Final draft ETS| ES 203 915-3 V1.3.1 (2008-01)

ETSI Standard

Open Service Access (OSA);

Application Programming Interface (API);
Part 3: Framework

(Parlay 5)

D

2 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Reference
RES/TISPAN-01055-03-OSA

Keywords
API, IDL, OSA, UML

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2008.
© The Parlay Group 2008.
All rights reserved.

DECT™, PLUGTESTS™, UMTS™, TIPHON™, the TIPHON logo and the ETSI logo are Trade Marks of ETSI registered

for the benefit of its Members.
3GPP™ s a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

ETSI

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

3 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Contents

Intellectual Property RIGNES.... ..ot b e e b e r b sr e n e 14
01 Yo (o SRS 14
1 000 S SSSPR 15
2 RS L= = 000 S 15
3 Definitions and aDbreVILIONS...........cieeieieeese ettt e sre e besreestesaeeneeseeeneeneenneas 15
31 D= T 1] (0] PSP PP URT USSP 15
3.2 ADDIEVIBLIONS ...ttt b bbb ae e h et b e e bt E e e bt e heeh e e e et e Rt b e e Re e b e R e eb e bt eneene e e re e 15
4 OVErVIEW Of the FramEWOTK...........coiiiiiirieee ettt eb e e e e 16
5 The Base INterface SPECITICALION.c..coveieeeeieeeee et 17
51 Interface SPECIfiCatioN FOIMELc.ciiiiiir ettt bbbttt e 17
511 E 1S = To Y O =SSP 17
512 MELNOO AESCIILIONS. ...ttt ettt b e e bt bt b e b et b e se et b b et b b 18
5.1.3 e 1= (= 0 L= o 1)0 S 18
514 Sz (= 1Y T L= O SPRPSP 18
52 BaSE INEEITACE. ...ttt bttt bt bbb h et E e bR e Rt Rt eh e e e R e bbbt neene e re e 18
521 [oL O E= S T o] 11 o = o= P 18
53 SEIVICE NI TACES ...ttt b bbbt e e st e e e b e b e sh e eb e s he e b e e e et e s b e ebeebeeneenne e ennes 18
531 OVEIVIBW ..ttt ettt sttt et se et e b e se e s et e s e e st et e s e e st ebe s e eseeb e sees e ebese e s e e beseeneebesbeneebenbe e ebenbeneesenbesennens 18
54 GENENIC SEIVICE INEEITACE ...ttt sttt et et e st et e b e seeebesaeese e e e s e seesaeseeeneeneeneeneas 18
54.1 INEEITACE ClASS IPSEIVICE ...ttt ettt b e bbbt b e bt b s bbb et b n et 18
54.1.1 MELDOO SEECAITDACK() ...vevveveieeieeieiieeete ettt sttt st e et e sa e besae e ebesaeseesesaeseesesseneesens 19
5412 Method setCallbackWithSESSIONID ()cveviiieieriiierieieseieesieee e stee e seee e see e e sae e stesaesestesaeseesesseneesens 19
6 Framework ACCESS SESSION AP ...ttt s e st s ae e e e seeeneeneenreas 20
6.1 SEOOUENCE DIAQIAIMS......ecueeitieieeie et eee s e s e s e e teeteseesaeesae e seeaseasseaseeaseeteesseenteaseesaeesaeesseesseenseanseensenneesseessenssens 20
6.1.1 Trust and Security Management SeqUENCE DIAQIaIMScccverieeierieree e seeste e seesreesseeeeseesseesreenseensens 20
6.1.1.1 TNITEBI ALCCESS. ...ttt bbb bttt h e bbb e s e e e e b e se e ke s Rt eb e eae e b e b e ereebeeneebe e e e e e 20
6.1.1.2 Framework TEIMINGEES ACCESSccueiertertirterteeteeeete st st s be e bt et eee st e s besbesaesbe et esseseenbesbeseeebesaeenneneens 21
6.1.1.3 APPlICATON TEMINGLES ACCESS......eeeeuertereeteetereete st ettt et ettt st e et et e et sbesb et b e st esesbese e st sbeseeneebenseneees 22
6.1.14 NON-API [evel AUNENLICALION.coiiieie et seesee e eneeneen 23
6.1.1.5 Y o Y= BN 11 1= g (o= o] o 24
6.2 ClaSS DIAOIAMS. ...ttt sttt sttt b e bt b e bt b e b e e e bt s b e e e bt e R e e e bt e E et e Rt e b e e eb e e b et e b e s e e st ebene et eb e s b et ebenbe e e 26
6.3 1 10= g o To T O o RS 27
6.3.1 Trust and Security Management INterface ClasSES........cvvveiieiieere et 27
6.3.1.1 Interface Class |pClientAPILevel AUthENLICaLION...........cveviieecieece e 27
6.3.1.1.1 Method <<deprecated>> authentiCate()..........corverirrirrierieese e 28
6.3.1.1.2 Method abOrtAUNENEICALTION()eeveieee e e e e ee e s 28
6.3.1.1.3 Method authentiCatiONSUCCEEAEU()eeveerreeiieeieeesee ettt e enaeeeesneeenes 29
6.3.1.1.4 VK= 10 To ol 7= = o = 29
6.3.1.2 INterface Class IPCIIENTACCESS........couciieeei ettt sttt b et b e bt b et sb e e 30
6.3.1.2.1 MEthOd LEFMINBLEACCESS() .. euveverereererrereetertese ettt ettt se st b e es bt s b ne s s b n s b s ene b e e e enis 30
6.3.1.3 INterface Class IPINITTALooiieiee bbb et 31
6.3.1.3.1 Method <<deprecated>> initiateAUthENti CaLION()veververeeiriieeeree s 31
6.3.1.3.2 Method initiateAuthentiCatioNWithVerSion()coeeeereiririeneeesereeese s 32
6.3.14 Interface Class IPAUNENTICAIION...........coiiiie et et 33
6.3.14.1 MEthOO FEQUESIACCESS()vveuveerierteerieesieesteestesee st e s te e te e te e tesseessaesseesaeesseenseessesseasseeseentennseensesneesnns 34
6.3.1.5 Interface Class IPAPILeVEl AUtNENEICAIONcovieiiiee e 34
6.3.15.1 Method <<deprecated>> selectEncryptionM ethod().........ccovreerieriniinre e 35
6.3.1.5.2 Method <<deprecated>> authentiCate()..........covvererrrrierieeseere e 36
6.3.1.5.3 Method abortAUNENEICALTION()eoveieee e e et ae e s 36
6.3.1.54 Method authentiCatioNSUCCEEAEA()vevrrerriiereriei ettt 36
6.3.1.5.5 Method selectAuthenticationMeChaNi SIM()c.cevereeiririeirrere e 37
6.3.1.5.6 MELNOA CRAITENGE() ... e veueetereeeet ettt bbbt bbbt n s 37
6.3.1.6 INEEITACE ClASS IPACCESSveieeueete ittt sttt sttt sttt e et b et b e s e st b s e ae b e e e st b e sb e st b e s e st sbenne e e 38

ETSI

4 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

6.3.1.6.1 Method OBtai NENEEMTACE()eeveeieee ettt eeeaeeneeenes 39
6.3.1.6.2 Method obtaininterfaceWithCallDack()ceoverveeieiiesieseese e 39
6.3.1.6.3 Method <<deprecatet™> ENUACCESS() .. .ccverrrerrrrrereiereeseeseesteseeseeseesreesteeteseessaesreesreesseeaesneesaes 40
6.3.1.6.4 MethOd HHSHNEEITACES() ..veiveeieeieeie ettt e eeae e s ra e te e b e e teeeeennennes 40
6.3.1.6.5 Method <<deprecated>> releasel MErfaCe().........ccvveerieririe e 40
6.3.1.6.6 Method selectSigniNGAIGOITtRM()coieeieee e 41
6.3.1.6.7 MEthOd LEFMINBLEACCESS() ...+ euveverereeuertereetertese et sttt ettt se e b e b bbbt b e s sb s bbb senb s e enis 41
6.3.1.6.8 Method relinquiSNENEEITACE()eivieeiereie et 42
6.4 State TranSitionN DIBGIAIMSottt sttt sttt b et b e bt b e s b et b e sb et b e s e e ae b e sb e st ebe s b et ebenbenees 42
6.4.1 Trust and Security Management State Transition Diagramscceoeeerereineneeneseeseseesee e e 43
6.4.1.1 State Transition Diagrams fOr IPINItialccoooeiiiiin s 43
6.4.1.2 State Transition Diagrams for IpAPILevel AuthentiCation...........ccccvveeveeve e 44
6.4.1.2.1 [AIE SEBEE.....e ettt sttt ettt sttt st e b et e et e s b e et e s b e ek e e b et ebe s be e benee e etenteneenens 44
6.4.1.2.2 Authenticating FrameWOrK SEALE.........c.vccuveiieieceesie e ae e 45
6.4.1.2.3 Framework AUtNENTICAIEA SEALEeeeeeeierietere e s 45
6.4.1.2.4 Authenticating CHENt SEALE..........ccuviieeiecie et e st e e be e e reeaesneeenes 45
6.4.1.2.5 Client AUThENtICAEEA SEALE...........ciieiieeieiee et b bbb e e e e 45
6.4.1.2.6 Lo [= (= ST 46
6.4.1.2.7 Authenticating Framework SEALE..........coeoiiiiiieriereet e 47
6.4.1.2.8 Framework AUtNENtICALEA SEALEcceeeeee e et 47
6.4.1.2.9 AUhentiCating ClIENT SLALE.........covieieeieie et s ene s 47
6.4.1.2.10 Client AUhENtiCAEEO SEALE........cce ettt ettt e e et s eestesbesaeereeneeneeneens 47
6.4.1.2.11 Lo [= (= TP 48
6.4.1.2.12 Authenticating FrameWOrK SEALE..........c.vccuveiieeciesiec e ae e 48
6.4.1.2.13 Framework AUtNENTICAIEA SEALEeeeieeiereee e e e 49
6.4.1.2.14 Authenticating CHENt SEALE..........ccuiiiieieie et e st e e e e e eeeaeeneeenes 49
6.4.1.2.15 Client AUthENTICAEEH SEALE.........ceiieeiriirieeree ettt e e ae b ene 49
6.4.1.2.16 [AIE SEBEE.....ee ettt sttt sttt sttt e ettt etk e s b et et e e b et et e b et ebe e et benee e etenteneerens 50
6.4.1.2.17 Authenticating FrameWOrK SEALE...........occuveiieeeciesies et ae e 50
6.4.1.2.18 Framework AUtNENtICAIEA SEALEcceeeeeee et st 51
6.4.1.2.19 AUhentiCating ClIENT SLALE.........coeiiieeiie et be e neeneas 51
6.4.1.2.20 Client AUhENtiCAEEA SEALE........cceie et e e e e s eesbesbesneere e e eneeneens 51
6.4.1.3 State Transition Diagrams fOr IPACCESS.........cuiiriiirireerie ettt 52
6.4.1.3.1 ot L= = S 52
7 Framework-to-APPHCAHON APlocoe ettt s ae et e s be e e sreenaenbesreas 53
7.1 S o U= Torc T D TF=o =0 1SS 53
711 Event Notification SeqUENCE DIaQraMS.........ccveiiieiiiiesie et eseseesee e steeste e e e se e beestessaeeaeeeesneesnes 53
7111 ENable EVENt NOLTICATON ..ottt b ettt b b nnen 53
712 Integrity Management SEQUENCE DIBGIAIMSc.ovueiiirieirerieie ettt ettt 54
7121 Load Management: Suspend/resume notification from application.............cccevererreneieneneieneseeenee 54
7122 Load Management: Framework queries|0ad StatiStiCS........oooeirireererieene s 54
7123 Load Management: Framework callback registration and Application load controlc.ccceveneenene 55
7124 Load Management: Application reports current 10ad CONAItioN...........covereierereinenec e 56
7.1.25 Load Management: Application queries |0ad StatiStiCS........cuuovrieeieeieeie e 57
7.1.2.6 Load Management: Application callback registration and load controlccceceevveveeieccievceseennen, 58
7.1.2.7 Heartbeat Management: Start/perform/end heartbeat supervision of the applicationcccceeueeeen. 59
7.1.2.8 Fault Management: Framework detects a Service faillure ... e e 60
7.1.2.9 Fault Management: Application requests a Framework activity teStccecvvveveeviece e, 62
713 Service Agreement Management SeqUENCE DIagraMS.........ccceiieieeieereeseeereeseesteesseeaessessreeseessesneessessnes 62
7131 S YT IS 1= ot (o] o P RRRUSN 62
714 Service DiSCOVEry SEQUENCE DIBgIaIMSc..eiieueriiieterieeete sttt et sb et b e bbb et e e b sneneenens 64
7141 SEIVICE DISCOVEIY ..ottt ettt sttt ettt e ekt s bt e ekt h e s bt s e bt e bt b et b e e e st eb e s e bt b e b e e b e nn e e enis 64
7.2 ClaSS DIAOIAMS. ...ttt sttt sttt b e bt b e bt b e b e e e bt s b e e e bt e R e e e bt e E et e Rt e b e e eb e e b et e b e s e e st ebene et eb e s b et ebenbe e e 67
7.3 1 10= g o o T O o PR S 69
731 Service DiSCOVErY INErfaCE ClasSES......ccuiiiieerieeie ettt b e e b b snenea 69
7311 Interface Class |PSErVICEDISCOVETYccuiiieiieieesieeieseeseesteesteeteeaessaesteesteeteesesseesseesaeesseesseensennsenns 69
73111 MethOd [HSESEIVICETYPES() «veveereereeeeiieseesteesteeteeeestee e e e sstesaeesseesreesseansesseesseasseenseenseeseensesneesans 70
7.3.1.1.3 MethOd diSCOVErSEIVICE()...eeuveerreieeiieieeseeste et ete et e st e st e s e e stesteseesaeesse e teenteenteesaessaenteenteeneesneennes 71
73114 Method i StSUDSCIIDEASENVICES()vevervieeiiriiieieriee et enas 72
7.3.2 Service Agreement Management INterface ClasSseS.......oiveireie ettt 72
7321 Interface Class |pAppServiceAgreementManagemMeEntccccveveeieeiesiesee e e e e seesee e e seesseeeeens 72

ETSI

73211
73212
7322
73221
73222
7.3.2.2.3
73224
7.3.3
7331
73311
7.3.31.2
7.3.3.1.3
73314
7.33.15
7.3.3.1.6
73317
7.3.3.1.8
7.3.31.9
7.3.3.1.10
733111
7.3.3.1.12
7.3.3.1.13
733114
7.3.3.1.15
7.3.3.1.16
7.3.3.2
73321
7.3.32.2
7.3.3.2.3
73324
7.3.3.25
7.3.3.2.6
7.3.3.2.7
7.3.3.2.8
7.3.3.29
7.3.3.2.10
733211
733212
7.3.3.3
7.333.1
7.3.33.2
7.3.33.3
7334
7.3.34.1
7.3.35
7.3.351
7.3.35.2
7.3.35.3
7.3.3.6
7.3.36.1
7.3.3.7
73371
7.3.3.7.2
7.3.3.7.3
73374
7.3.3.75
7.3.3.7.6
7.3.3.7.7
7.3.3.7.8
7.3.3.79
7.3.3.7.10
7.3.3.7.11

5 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Method SIgNSErVICEAGrEEMENL()c.veieereeseeiteeteetesee s e seesteseeseesreesreeste e e essessaesraesreesaeeneesneesnes 72
Method terminateServiCEAGrEEMENL()cccverieieeieseeseese e e seesee e e see e e s e re e re e e enaessaesneesnes 73
Interface Class |pServiceAgreementManagemMeENtccccceeveereereeieeie e see e e e eseeseesee e esseeneeens 74
Method SIgNSErVICEAGrEEMENL()veieereeseerie et eee st eseeseesteste st e sreesreeste e e entessaesraesreesaeensesnnennns 74
Method terminateServiCEAGrEEMENL()ccveieeieeieseeseereeesee e sreesre e e e et e e e e e enaessaesnnesnes 75
MEthOO SEIECESEIVICE() ...vervveiveesieeiieeie et st e sttt ettt et e e e e te s e s esaeesaeenteeseeereesseente e teenseeneeeneennns 76
Method initiateSigNSErviCEAGrEEMENT()cervieerire ettt 76
Integrity Management INEErface CIaSSES..........ci ittt 77
Interface Class |PAPPFAUITIMANAGETccoiiiieirieeee ettt s 77
MEthOd ACHIVITYTESERES() ...eveueevertireeiertere ettt ettt ettt eb bbbt se e bbb b e e 78
Method aPPACHVITY TESEREG() ... veveverrereeierterieietert ettt sb e b e eb e ens 78
Method <<deprecated>> fWFaUItREPOrtINA()cccverveeieeiiee e 78
Method <<deprecated>> fWFaUtRECOVEIYINA()ccveiirierie e 78
Method <<deprecated>> svcUnavailablelNd()ccoveviriiiieie e 78
Method <<deprecated>> genFaultStatSRECOIARES()veeverreerieriieeerr e 79
Method <<deprecated>> fwUnavailablelNd()ccceceeriieiiriiiie e 79
Method aCHIVITYTESIEIT() ...veeveeieeie ettt e e e ae et e enae e teenteeaeenneenes 79
Method <<deprecated>> genFaultStAESRECOIAEIT()........veirviereirieieerieieierie e 79
Method appUnavai labl €INA().........eeeeeriieeiriee e 80
Method <<deprecated>> genFaultStatSRECOIAREG()veverveuerrerieerie s 80
Method SVCAVEIISEALUSINA()cveveeeeeereeeet ettt 80
Method <<new>> generateFaultStatistiCSRECOrARES()eoveviriirieiriieree s 80
Method <<new>> generateFaultStatistiCSRECOrAEIT()coervrireirirerriee e 81
Method <<new>> generateFaultStatistiCSRECOrAREG()......verreereereerierireer e e e 8l
Method <<new>> fWAVAH I SEEEUSINA()ceeiveeieeieeie e e 8l
Interface Class IPFAUIIMANAQETccviieiierieseee et e st ste e ste e e e et e e estessaesseesseesaeesaeesseenseensenns 82
Method aCtIVITYTESIREG() ...veveereeieriee et ste ettt ste e e e s e e sae e beente e b e eneeenaeeneennes 82
Method aPPACEIVIEYTESIRES()eieeieeeiee ettt e see e s sae e e eaeesraesre e reenteeneesneennes 83
Method sveUnavai labDl€INa()oovereeieese ettt e ae e 83
Method <<deprecated>> genFaultStatSRECOIAREG() «....veverveuerrerieerierieerie e 84
Method aPPACHVITYTESIEIT() ...veieeeeeeereeietere ettt 84
Method <<deprecated>> appUnavailablelNd().........ccoereiririiriee s 84
Method <<deprecated>> genFaultStatSRECOIARES()ceververirreriiieerieeeie e 85
Method <<deprecated>> genFaultStAESRECOIAEIT()......c.veerueereerieieerieeeerieesi e 85
Method apPAVEIT SEEEUSINA() «.e.vveeeeeieeiiese et e b et reeaeeaesnneenes 85
Method <<new>> generateFaultStatistiCSRECOrAREG()......verreereereereeireee e eee e e 86
Method <<new>> generateFaultStatistiCSRECOTARES()evvvereereeiiereere e 86
Method <<new>> generateFaultStatistiCSRECOTAEIT()cevvuerieereerieie e 86
Interface Class IPAPPHEABEAIM QMLcciiiiiece e se e e sreenneeneeens 87
Method enabl €APPHEAMBEAL().......ccveieeiiiie et 87
Method diSablEAPPHEBITBEAL()ceverveerrereeieteriee ettt 87
Method ChanGEINEEIVEI()veuerrerieeriereeiet ettt bbb e enas 87
Interface Class IPAPPHEBIMBEAL...........c..ciiiieiie ettt bbb 88
IMEENOA PUISE() .vneeeeteeee ettt bbb bbb bbbt b e et b et s bt enas 88
Interface Class IPHEABEAM GIML. ..ot s 88
Method enablEHEAMBEAL()cveiveeeeeriiieteri ettt a e 88
Method diSablEHEAMBEEE().. ... cverveereirieieieriiete ettt enas 89

Y T= e o ol 7= T 1= Fa U= AV 89
Interface Class IPHEAMBEALccuviiieiece ettt te s aesaeesneesreenseenneens 89
=1 0o T 90
Interface Class IPAPPLOBAMENGOESccvveiveeierieseeseesteesteeseeseeseesteestee e etesseesseessaesseesseesseenseensenns 90
Method <<deprecated>> qQUErYAPPLOAAREG() .. vveeveerreeierierieseeseesteesieeeeeeesreesreesree e eee e seeesns 90
Method <<deprecated>> qUENYLOBORES().......ccerueueriirieiriirieieiesieeste sttt 91
Method <<deprecated>> qQUENYLOBOEIT()cviirieeriirieiririeisiesieesi et 91
Method [0adL eVElNOLIfiCATON()vevereeeererreeet sttt 91
Method reSUMENOLIFICALTON()eiveereereeeerert ettt 91
Method SUSPENANOLIFICATON() -...e.veueererrieeeere ettt 92
Method createl. 0adL evVelNOtifiCAION()civerreeieeieciesees e e 92
Method destroyL oadL evelNOtifiCaHON()cvveovieeeeeerieee et 92
Method <<new>> queryAppPLOadSIASREG() .. .ecoveeeereeieeere e 92
Method <<new>> qQUErYLOAOSIAISRES()cvveoveeeieeeriieie ettt 92
Method <<new>> QUErYLOAOSIALSEIT() ...vvevveeereeeeeesieeieeieseesee e e seeeseeete e ere e s e te et eeeenaesneesnes 92

ETSI

6 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

7.3.38 Interface Class IPLOAOME@NAQEYccueiierieieeeeie e st e st seeste et e ee e s e s e e steesteesseeneesnnesseesseenseenseans 93
7.3.38.1 V=1 oo = oo {0 7= [94
7.3.38.2 Method <<deprecated>> qQUErYLOAOREG() .. .eieeieereeriieieeiesee et e sttt e st ae e 94
7.3.3.8.3 Method <<deprecated>> qQUErYAPPLOBARES)ccvervieiirieriesee e steerte e e et e ae e e s 95
7.3.384 Method <<deprecated>> qQUErYAPPLOAEIT().......cceerreeieeiesie e seeste e eee e et sae e sns 95
7.3.3.85 Method createl 0adL evelNOtI fiCAION()ecverveereeee e e 96
7.3.3.8.6 Method destroyL 0adL eVelNOtifiCai ON()veveverreerririeieeriee ettt 96
7.3.3.8.7 Method reSUMENOLIFICALION()eoveerrereeeer ittt 96
7.3.3.8.8 Method SUSPENANOLIFICATON() -...e.veueererrieeeeri et 97
7.3.3.8.9 Method <<new>> qUEryLOBdStAISREG() ... e veeererreeererieieieriee et 97
7.3.3.8.10 Method <<new>> queryAppLOadStAISRES()......couereeririirieirieieerieee e 97
7.3.38.11 Method <<new>> queryApPPLOAASIALSEIT().......ccveierieiciece s 98
7.3.39 INLErfaCe ClaSS IPOAM ..ottt s te ettt e et e e aeesreeste e te e teensesneesanesseenseenseenseans 98
7.3.39.1 Method systemMDateTimEQUENY() .vevveiueereerieerieerieeesteeseeseesteseeseesseesseesseesteessessaessaesseesseenensneesnns 98
7.3.3.10 Interface ClassS IPAPPOAM ...ttt s e st et e e teestesstesseesseesseesseeseeneesneesseenseenseans 99
7.3.3.10.1 Method systemDateTimMEQUENY() .veveeiveereereeeieeeeeeiesteesteesesteseeseesreesseesseesseessessaesseesseessessesnsesnns 99
734 Event Notification INtErface ClIAsSES.........coii ittt sae e 99
7341 Interface Class |PAPPEVENINOLIFICALTIONcoveiiiieiieee e 99
73411 Method repOrtNOLIfiCaEION() ...veverveeererieiet sttt bbb eneas 100
73412 Method notificationTerMINAIEA()c.ereeererieereeete e e ene s 100
7.34.2 Interface Class IPEVENINOLIFICALION ..o e 100
73421 Method CreateNOLIfiCaLION()e.vorereeeeriere ettt et b e ene s 101
73422 Method destroyNOLIfiCaLTON()e veeererreeererieeet ettt et b e seene s 101
74 State TranSitioN DIBGIAIMIS.cceeieiceieeseeseeste et et e st e et te s tesseesreesteesseseesseesseesseanseanseassenseesseesseesseeseaneeanes 101
74.1 Service Discovery State Transition DIaQraMScccceceeeeereeieee e seesee st see e see e e e seeeseeneesraesseesnees 102
74.1.1 State Transition Diagrams for [pServiCEDISCOVENYcccviiireeriereeie e se e steeste e seesreenaeeee e 102
74111 ACHVE SEALE ...ttt et sttt sttt et et a ettt e et e bt et e et et a et bt e e 102
7.4.2 Service Agreement Management State Transition DIiagramsS........cvecveeeeiereseesee s ese e e 102
74.3 Integrity Management State Transition DiagramsS..........cceceeieieerieeseesieeeeeeseeseeseeaesaesseesreesaeenseenseens 103
7431 State Transition Diagrams for IPLOBAM@NAGEYcoieiieriiririeeee st 103
74311 [AIE SEALE.......e ettt bbbt b e bbbt b e et bR bbb b e b p e 103
74312 NOtification SUSPENTEA SEALE.........cc.coiiiriiiie ettt s b e seene s 103
74313 F o L= (= RS 104
7432 State Transition Diagrams for LoadManagerinternal.............cceeveereneeneneene e 104
74321 NOIMEl OB SEALE.......eeeeeeeieeeee et et b ettt e bbb ae e nr e e 104
74322 ApPPlIcation OVENTOAd SLALEcceeiieiieie sttt e e e e e ae s aesreesreesneenseenreens 104
74323 INternal OVENTOBO SEALE.........cceiieieiiie ettt bbb nn e 105
74324 Internal and Application OVErIoad SLALEccciceeieeiii e 105
7.4.3.3 State Transition Diagrams for IDOAM ..ot te e e e e e sneenaeereens 105
74331 ACHVE SEALE ..ttt et sttt sttt et et e ettt e e b et et e st ettt e b e e 105
7434 State Transition Diagrams for IpFaUltManager...........cocoeiereiiineeneeeese e 106
74341 FrameWOrK ACHIVE SELE.........coeiiieie ettt st eae e e e e e e stesbesaeseesneeneeneeneas 106
74342 Framework FaUITY SEBEE.........cccciiieiieet ettt sb e e b e neene s 106
74343 Framework ACHIVILY TSt SEALE.cceieeirierieeete ettt s s b e eie s 106
74344 SENVICE ACHIVITY TESE SEALE ...ttt se b 106
744 Event Notification State Transition DiagramS.........co.corireierinieienerieesesie st 107
7441 State Transition Diagrams for IpEVENtNOLIfICatioNcocvvvieiieeee e 107
8 Framework-to-Enterprise Operator APlcoo et 107
8.1 S oIS Torc T D TT= o = 1 111
811 Event Notification SeqUENCE DIagramsS.ecueerieeririeiresiees et sb e 111
812 Service SUbSCription SEQUENCE DIBgIaIMS........ccoviiiiiieieie sttt 111
8121 Service Discovery and SUDSCIPLioN SCENAITO........ccviiiiiiiiiei e 111
8122 Enterprise Operator and Client Application Subscription Management Sequence Diagram.............. 113
8.2 ClaSS DIAOIAIMS. ...ttt sttt h bbbt h b e bt b e e e b b e e bt e E e b e bt e b e b e st e b e b ehe e b e s e st eb e b e st ebe et e ees 115
8.3 INEEITACE CIBSSES. ... e eeeeeete ettt ettt ettt et e et se e s bt e st e st e e e seseeetesbeeaeeseeneeneensenseseeseesseeneenseneeneas 117
831 Event Notification INtEerface CIAssES..........coiiiiiiirieieeeie e 117
8311 Interface Class |pClientEVENtNOLIfICaLIONccveceiiiecieec e 117
83111 \V/T= 1ol = ool \\ o (Koo o] I USSR 118
83112 Method notificatioNTerMINALEO()veeevereeieese et e e e et se e e e e reenaesreesneas 118
8.3.1.2 Interface Class IPEVENINOLIfICALIONcciiieee e sneas 118
83121 VK= 1glele Rerg it N\ o (] o= i o] o) IS 119

ETSI

7 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

8.3.1.2.2 (VY= 1gTeTe o oo}V \\ oL o= i o] ol S 119
8.3.2 Service SUDSCription INErfaCE ClaSSES.........ciiiiii ettt e e sraesneas 119
8321 Interface Class |pClientAPPM @NAJEMENLccveieeiieere e e eee e e e steeste s e seeseesreesseeseensesseesseesses 119
83211 Method CreateClIENEAPD() -+ eveereereriereeree st e st e ste et e et e st e s e e e e e e aessaesseesreesseesseensesneesneessaesseessens 120
8.3.21.2 Method MOdifYCIIENEAPP() ...veereeereerreereeieerieeresreesee s ese e s e e e e teeaessaesreesreesseesseeseenseeseessaessensses 120
8.3.2.1.3 Method del €teClIENEADPP() ... vereerereeerierieiere sttt sttt e e besee et see e ebesaeneebeseeeesesbeneenens 121
83214 MELNOO CrEAIESAG() ...veueeverreeetertereet ettt ettt ettt b et b e bt eb e b et e b e sb et eb e s b e e ebese e e ebesbeneeneas 121
83215 MELhOA MOGITYSAG() ..eveveeeterrereeierie ettt b et b e et b e et b e et ebe e e b e sreneeneas 121
8.3.2.1.6 MELNOO AEIEEESAG()vveerereeieete sttt ettt b e et b e et b e et b e et ebe e e e ebesbeneeneas 122
83217 Method addSAGMEMDENS()eoveieeieriirieteitereee ettt et b e et ebesaeneeneas 122
83218 Method remoVESA GMEMDEIS()covirieiriirieeeie ettt ettt s b e ene s 122
8.3.2.1.9 Method requESICONTIICHINTO()vveveeieiee et e enneas 123
8.3.2.2 Interface Class IpClientAPPINFOQUETYeeieee ettt sneas 123
83221 Method desCriDECHIENLAPD() -vverveerrreereerieseeseeste et eeestee s e e e e e stessaesseesreesseesseenseessesseessaessensses 124
8.3.2.2.2 IV T= 1o To RS (@ T2 o] o) U 124
8.3.2.2.3 MELNOO AESCIIDESAG()eveeetestereeiesie ettt sttt sttt sttt b et seebesbeseesesbesee e esesbeneenens 125
83224 MELNOO [ISESAGS() .. eveveneeterieieete sttt sttt sttt ettt sttt s be e be st e seebesbe e ebesae e ebeebesaeneenenbeneenens 125
83225 MEthOd [ISESAGMEIMDEIS()eevereeeeterieeete sttt b et b e et b e e ebe e et b sreneeneas 125
8.3.2.2.6 Method listClientAPPMEMBErSNIP() ...vevervireererieieierie ettt ene s 126
8323 Interface Class |pServiceProfileManagemMent ..o 126
83231 Method createServiCePIOfiIE() ... oo e 126
8.3.23.2 Method ModifyServiCePrOfil€()covieiriieeeree e 127
8.3.23.3 Method del eteServiCePrOfilE()cociiireiiee b 127
8.3.234 IMEENOO @SSIGN() 1+ vveeereererie st sttt sttt sttt e sttt e st st e seese et e seeseebesee st ebeseeneebeseeneesenteneenens 127
8.3.2.35 V= 10 o o (=T o | USSR 128
8.3.2.3.6 Method requESICONTIICHINFO()vveveeieiee et e sneas 128
8.3.24 Interface Class |pServiceProfil el NFOQUENYooueeeeeiiiecee e 129
8.3.24.1 Method [IStSErVICEPIOfIIES()cueevereeeire ettt st s sbeseeneas 129
8.3.24.2 Method describDESErVICEPIOIIE()coveieeiee ettt r e nneas 130
83243 Method [iStASSIGNEAMEMDEIS()c.eivieeiiitereeieee ettt b e s b e e b e e neene s 130
8.3.25 Interface Class |pServiceContraCctManagemeNtcereeeirienirereresesie e 130
83251 Method CreateServiCECONIIACE()o vrrereeerrereeierte ettt sb et b e e ebesreneeneas 131
8.3.25.2 Method ModifyServiCECONMIIACT()civereererireeririeriet ettt eb e ene s 131
8.3.25.3 Method del eteServiCECONIACE() veuerrereeerre ettt ettt sttt seeb e neeneas 132
8.3.2.6 Interface Class |pServiceContraCtiNfOQUENYocviiiieierieece ettt 132
8.3.26.1 Method desCribDESErVICERCONIACI() ..o vverveereieieieseeste e e eesee e se e ste et e e e e re e re e e enaeenaesreesneas 132
8.3.26.2 Method [1SESErVIiCECONIACIS() ...uveiveerieereeii e st e st e e ee s e ste e e e sre e sreesaeeneesreesseesraesseennens 133
8.3.2.6.3 Method [IStSErVICEPIOfIIES()c.eeereeire ettt st seeneas 133
8.3.2.7 Interface Class |pENtOPACCOUNTM ANAJEMENLcciveieerieereeeeseeseestee e eeesseeseesseesseeseeneesseessaesses 134
8.3.27.1 Method MOdifyENOPACCOUNT().....eeveerreerieerieesieeiereeeeeeseesee e e e e seesaeseesreesreesseeseenseensesssesseessens 134
83272 Method del eteENTOPACCOUNL()......eueeverteiererieeeterte ettt b e e b e e eb e b e e neeneas 134
8328 Interface Class | pENtOPACCOUNtINFOQUENYcuiiiiieiiriiieerie ettt 134
83281 Method descriDEENTOPACCOUNL()ververerrereeerterieeete sttt sttt r e s eb e e b e e enea 135
8.4 State TranSitionN DIGOIAMS.........c.uiieeirtiiet ettt s b e s e bbb e st b e e e st e b e s e st s b et et sbe b 135
84.1 Event Notification State Transition DiagramS.........c..coriiererinieirinieesese s 135
842 Service Subscription State TranSition DIiagramS.........c.cceeiieierereine et 135
9 FramewOorK-10-SEIVICE AP ..ottt ettt be b sttt nes 136
9.1 S oIS Torc T D TT=o = 1 136
9.1.1 Service Discovery SEqQUENCE DIBGIAIMSc.eiieiierieeieeeestees e e e sesee e sreesaeseesaesseesseeseensesseesseesseessens 136
912 Service Registration SeqUENCE DIBOIaAIMSccuiiirerieieie ettt sttt sb et sb e e b 136
9121 New SCF SUD TYPE REGISITAIION ..ottt st st b e 136
9122 NEW SCF REJISITALION. ...ccveteeeiteieeeete sttt sttt et b e st b e st b e et b e bt st eb e bt et be e 136
9.13 Service Instance Lifecycle Manager Sequence Diagramscooeeeereeeneneeenienesiesie s 138
9131 SIgN SEIVICE AQIEEITIENE ...ttt ettt ettt ettt b e b s bt b s b e e e bt sb e seeb e sbeseebesb e st et e st e e ebesbennenens 138
9.14 Integrity Management SEqQUENCE DIBgIaIMSc.ciuiieiriiieerieieert ettt bbb 139
9141 Load Management: Service callback registration and load control..............ccoveeeeievcnvce e 139
9.1.4.2 Load Management: Framework callback registration and service load controlccccceveevvennene 140
9.1.4.3 Load Management: Client and Service Load BalanCing.........cccccvevveeiveeneesece e seeseeseese e e 141
9.1.4.4 Heartbeat Management: Start/perform/end heartbeat supervision of the service........cccvcevcveveenne 142
9.1.45 Fault Management: Service requests Framework activity teSt.........ccccevvevvecineeseeseee e 143
9.1.4.6 Fault Management: Service requests Application activity teStcccvvverveciieie s, 144

ETSI

8 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

9.1.4.7 Fault Management: Application requests Service actiVity teStccccvveeveecicce e 145
9.1.4.8 Fault Management: Application detects service isunavailable...........ccccevvecievevevieccecce e, 146
9.15 Event Notification SeqUENCE DIAQraIMS.........ccuviiueiieiieseeiesieeseesee s e eteeae s e e e e estessaessaesseesteesseenseensenns 146
9.2 (0= LSS D= =0 1 147
9.3 INEEITACE CIASSES. ... ettt bbbt h ekt e b e s e e bt e bt eh e e b e eaeeae e e e b e besheebeeneenee e ennes 149
931 Service Registration INtErfaCe CIaSSES........ciciiieii ettt e e e e e e snaesraesneas 149
9311 Interface Class |pFWSErVICEREGISIIAIONcoueiiirieerer e 149
93111 MELhO FEQISIErSEIVICE() ...verveueetereeeete sttt b et b e et b e st eb e e e b sneneeneas 150
93112 Method announceServiCeAVa laDIliTY ()oooeeririeireeeree e 151
93113 Method UNFegiStErSEIVICE()ecveireeeririeietestereet ettt ettt st b e b e bbb eb e e e b b neeneas 151
93114 MethOd dESCrDESEIVICE() ... v eueerereeeeteriee ettt ettt st sr e b b neeneas 152
9.3.1.15 Method UNANNOUNCESENVICE()veeuvereeieeieesiee st esteeteeteeseesteeseesreesteesseeaeeneesseeeseasseeseensensansseessens 152
9.3.1.16 Method <<new>> regiSter ServiCESUDTYPE() ...vvevreereereieseesee e eiesee e sreesreesaeeae e e s e eeeneeas 153
9.3.2 Service Instance Lifecycle Manager Interface Classes........cevveiieieiieeiiee s 154
9321 Interface Class |pServicelnstanceLifeCyClEManagerccveveveereesieie e 154
93211 Method Create€ServiCEMaANAOEN()cceerueieeieereeseerteeteste s e s e e eestesteseesreesreesseeseensesneesraesreesnens 154
93212 Method destroyServiCEMaNAgEr()cceeieereereerreeeeeesee s e e e e e e stesaeseesreesreesseenteenseeneessaesseennens 155
9.33 Service DiSCOVErY INErfaCe ClasSeS.......cii ittt ettt 155
9331 Interface Class |PFWSEIVICEDISCOVETYc.ciirieiriiieiriesie ettt 155
93311 MELhO [ISESEIVICETYPES() ..veueeverteeeterieiete sttt sttt sttt sttt st b e et et b e e bt sbese e e b sneneeneas 156
93312 Method desCriDESEIVICETYPE() ... veueerereeirie ittt sttt e b e s b e st b e e neene s 156
9.3.3.13 MELhOO di SCOVEISEIVICE() ... veueerereeieetertei ettt ettt b bbb et b e e b e e b b neeneas 157
93314 Method liStREQI SLEr@ASEIVICES(). .. c.eeververeererieeete ettt ettt sb e e besreseene s 157
9.34 Integrity Management INtErface ClIaSSES.........cviuiiiiiieiiese e e st sreesaeenreeneens 158
9.34.1 Interface Class |PFWFaUITIMBNAGESccveieiieiee st eete e e e sreesseeneeneesnnennaessaesneas 158
9.34.1.1 MELhOd ACHIVITY TESEREG() ..+ evereerereeeererieietesieeete st ettt ete e e sbesee st sbesee e s beseesesbeseesesbeseeeesesbeseenens 159
9.34.1.2 Method SVCACHVITY TESIRES() ...veiveierieieeieie ettt et sttt seeneas 160
9.34.1.3 Method appUnavailabl€lN()ccveeieieeiee ettt nneas 160
9.34.1.4 Method <<deprecated>> genFaultStatSRECOAREG()eveverreereerierirereesee e e se et eee e seee e 160
9.34.15 Method <<deprecated>> sveUnavailablelNd()cccoreeririiiiireeree e 161
9.34.16 Method SVCACHVITY TESIEIT() ...coveieeeeitereeeet ettt 161
9.34.1.7 Method <<deprecated>> genFaultStatSRECOIARES()coverveerierieire e 161
9.34.18 Method <<deprecated>> genFaultStatSRECOIAEIT()......c.coereeerererisieneee et 162
9.3.4.1.9 Method <<deprecated>> generateFault StatSRECOTARES()vcuvrvereeeeriirieene et 162
9.34.1.10 Method <<deprecated>> generateFault StatSRECOrAEIT()veveevieieeii e 162
9.34.1.11 Method SVCAVEITSEALUSINA() ...cververerrerieieie sttt ettt s sreneeneas 163
9.34.1.12 Method <<new>> generateFaultStati sticCSRECOrAREG().....c.vereerrerirrieiee e ese e e e e 163
9.34.1.13 Method <<new>> generateFaultStatistiCSRECOrARES()c.vvevveererieeiie e 163
9.34.1.14 Method <<new>> generateFaultStatiSstiCSRECOITAEIT()ccvvererieieerie e 164
9.34.2 Interface Class IPSVCFAUITMANAGETcoieieeieeeee e ese e ete st te e e sreesse e nne e e sneesnaesnaesneas 164
93421 MEthOd CHIVITYTESERES() ...eveueeterteeeteriee et sttt sttt sttt b e et b e et b e e bt sbe e e b e snenneneas 165
93422 Method SVCACHVITY TESIREG() «vveveuerrereeiiite ettt st s eb e 166
9.34.2.3 Method <<deprecated>> fWFaUItREPOITINA()evvrverieiririeere e 166
93424 Method <<deprecated>> fWFaUItRECOVEIYINA()coverveueririeerie e 166
9.34.25 Method <<deprecated>> fwUnavai lablelNd()coceererieerinireee e 166
9.34.2.6 Method sveUnavailahl €INA()coveeeverieieieieeieree e 167
9.3.4.2.7 Method <<deprecated>> appUnavailablelNd()........ccccovrrrrierieeiinie e 167
9.34.2.8 Method <<deprecated>> genFaultStatSRECOIARES()cceereererir e 167
9.3.4.2.9 MELNOO CHIVITY TESEEIT() «.veveueeteieeeetesiecete sttt st sttt st b st e besae e ebesaesee e esesbeneenens 168
9.34.2.10 Method <<deprecated>> genFaultStatSRECOIAEIT()......ccververriereree e seerte et 168
9.34.2.11 Method <<deprecated>> genFaultStatSRECOIAREG()cveeeereereereerieeieeseesee e sre et eee e 168
9.34.2.12 Method <<deprecated>> generateFault StatSRECOrdREG() ... ecvverveereereere e ree e 169
9.34.2.13 Method apPAVEII SEALUSINA() -..eveeeeerreeeiiitereeese bbb e b e 169
934214 Method <<new>> generateFaultStatisticSRECOrARES()ccvervrereiiririceree e 169
9.34.2.15 Method <<new>> generateFaultStatisticSRECOrAEIT()coevrereiieieeseeree e 170
9.34.2.16 Method <<new>> generateFaultStati sticSRECOrAREG(). ... e veerrerrereriirieere e 170
9.34.2.17 Method <<new>> fWAVA T SEAEUSING()eeverrereeririeeireeeeee e 171
9.34.3 Interface Class IPFWHEArBEAIMOIML...........coiiiee ettt et snaesraennees 171
9.34.31 Method enablEHEAMBEAL()veverveeeeerieietisieiee ettt ettt se et b e st et see e besbeneeneas 171
9.34.3.2 Method diSablEHEAMBEBE().......everveuereerieirie ettt s et s be b seeneas 172
9.34.33 Method ChanQEINLEIVEI()ccveeieeieee e esre e beeteeneeeneeenaesraesneas 172
9.34.4 Interface Class IPFWHEAIBERLcccceeiieiec ettt sa et e e snaesnaesnaesneas 172

ETSI

9 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

9.34.4.1 IMELNOO PUISE() «.vneveieieteste ettt st st st et st et e sa et e besae st ebesee e ebesbeneeneas 172
9.345 Interface Class IpSVCHEABEaIM QMLcoci ittt 173
9.345.1 Method enabl€SVCHEABEAL()eecveieeiieiee ettt et esraesreenneas 173
9.3.45.2 Method diSablESVCHEAMBEAL()......cveverveeeririereeisie ettt sttt st st re bbb seeneas 173
9.345.3 Method ChanQEINLEIVEI()ccveeieeie e e esre e teete et e eneesnaesreesnnas 174
9.34.6 Interface Class IPSVCHEAMBEALooeeiiee ettt sneas 174
9.346.1 IMEENOO PUISE() .ttt et et b e et b e et b e et et esa e e eb e s b e e e b e sbeneeneas 174
9.34.7 Interface Class |PFWL OAOMBNAGEScouiiriiiririeieerie ettt bbb b b 175
9.34.7.1 T (aleTo = oo {0 ="o [ISP S PP STPRTPUPURPRRUN 175
9.34.7.2 Method <<deprecated>> qUErYLOBOREG() ... cveiveeereriiieiirierieerie ettt eene 176
9.34.7.3 Method <<deprecated>> qUErySVCLOBORES().......ceririeiriirieerie ettt 176
9.34.74 Method <<deprecated>> qUErYSVCLOBAEIT()......ceivvereerierieeeeeeeseeseesreesreesreenee e enaesraesreeneens 176
9.34.75 Method createl 0adL eVelNOtIfiCaION()eieereereeie e 177
9.34.7.6 Method destroyL oadL evelNOtifiCaLON()verreerereeieieseese e neees 177
9.3.4.7.7 Method SUSPENANOLIFICALTION() ...vveuveeeereeiee sttt e sre e s sr et e e e ereeeraesreennees 177
9.34.7.8 Method reSUMENOLITICALTON()veeveeieiee et re e sraesraenneas 178
9.34.7.9 Method <<new>> qUEryLOadSIAISREI() ... ecveerveerrreereeeeeesiees e e esiesee e sre e e sreeae e e e sraesreeneens 178
9.3.4.7.10 Method <<new>> qUerySVCLOBOSIAISRES().......crveerrerieirierieesie ettt ene s 178
9.34.7.11 Method <<new>> qUErySVCLOBASIAISENT()cvrveerrereeinierieeeie et eene s 179
9.34.8 Interface Class IPSVCLOBAMBNAGEYcouiiieiriiieiriee e bbb b 179
9.348.1 Method <<deprecated>> qUErySVCLOBAREG()veververeererierieesie ettt 180
9.348.2 Method <<deprecated>> qUENYLOBORES().......ciereereriirieiirierieerie ettt eene 180
9.3.4.8.3 Method <<deprecated>> qUENYLOBOEIT()coiiieiriiieierierieere et ene 181
9.34.84 Method 10adL evElNOLITICAION()cccveieeiee e e e e nneas 181
9.34.85 Method SUSPENANOLIFICALION() ...vveuverrereeiee et ere et e st e e sre e e e sre et e e e eneesnaesreenneas 181
9.3.4.8.6 Method reSUMENOLITICALTON()vveveeieiee ettt e ere e sraesraenneas 181
9.3.4.8.7 Method createl 0adL evelNOtifiCaION()eivereereeie e 182
9.3.4.8.8 Method destroyLoadL evelNOtifiCaON()verreereeeeieiereesie e e e 182
9.3.4.89 Method <<new>> qUErySVCL 0aOStAESREM() ... vvervrerrerrrreerrieseeseesieeseesseeseesseesseenseeeeeseessaessaesnes 182
9.3.4.8.10 Method <<new>> qUeryLoadStaSRES()cccoireiririeirie e 183
934811 Method <<new>> queryLoadStaESEIT()coerireiriireere e 183
9.349 INtErface Class IPFWOAIM ..ottt et b et b et b et be b 183
9.349.1 Method systemDaETIMEQUENY()eeververerrerieieterieeete sttt sttt ebe b e s e se s b e sesreneeneas 184
9.3.4.10 INtErface Class IPSVCOAM ..ottt bbb st b e 184
9.34.10.1 Method systemMDate€TimMEQUENY() ..eevverreeieeieerreerireteeeeseeseesees e estesaeseesreesseesseeseesseessessaessenssees 184
9.35 Event Notification INtErface CIAssES.........ooiiiiiiirieieieeie st 185
9.35.1 Interface Class |pPFWEVENINOLIfiCALION..........cceeii e 185
9.35.1.1 VK= 1glele Rerg== it N\ Lo (] o= i o] o) IS 185
9.35.1.2 (VY= 1gTe e o ooV \ o1 X o= i o] ol () USSR 185
9.35.2 Interface Class |pSVCEVENINOLITICALIONccveiicee et 186
93521 Method repOrtNOLIfiCaEION()everveeeeerteiet sttt b e e b e ene s 186
9.3522 Method notificationTerMINAIEA()coereeereeeereete e e ene s 186
9.4 State TranSitionN DIGOIAMS.........c.eiieiertiiet sttt st b e s bbbt b e e st b e b st eb e s e st b et et sbe b 187
94.1 Service Registration State Transition DiagramsS........coeeeereererieeneseee et 188
9411 State Transition Diagrams for |pFWServiCeREgISIraliON.ccovreeririeine e 188
94111 SCF REGISIENEA SEALE........c.cevieeiiitereeieete ettt b e b st b e st b s es e bbb e e e ens 188
94112 SCF ANNOUNCED SEBEE........eeueeieeeeie et sttt sttt sb e e se e bbbt b e e st ese e e et sneene e e e e nes 188
94.2 Service Instance Lifecycle Manager State Transition Diagrams........ccvecuveeeeeeneesescesee e esee e s 189
94.3 Service Discovery State Transition DIaQraMScccceceeeeenierieeiesie e seesteesee e seesee e e teese e sraesseesneas 189
944 Integrity Management State Transition DIiagramsS..........cceceeceieeiieeseesieeeseeseesieesesaesaeseeseesneenseeseens 189
9441 State Transition Diagrams for IpFWLOaOdM@aNagErccvevrreeeierieie e se s sre e s ens 189
9.4.41.1 [AIE SEBEE.....ee ettt et sttt sttt s b et et s b et b et b e bR bbb e st et ne st e 189
94412 NOtification SUSPENTEA SEALE.........cc.ceririeiie ettt neeneas 189
94413 F o L= (= RS 190
9442 State Transition Diagrams for IpFWFaUItManagercocoveiiiiiienereeeereee e 190
94421 FrameWOrK ACHIVE SELE.........coeiiieie ettt st eae e e e e e e stesbesaeseesneeneeneeneas 190
94422 Framework ACHVILY TSt SEALE.cci ittt e b e ene s 190
9.4.4.2.3 ApPPlICation ACHIVILY TESE SEALEeecvieiiee et re e sae e reenreens 190
9.4.4.2.4 Framework FaUILY SEALE.........c.ccveiieieiieiiesee st este e e e te e e e sreesteeaesseesneeeneesnaesnaennens 190
945 Event Notification State Transition DIagramS.........ccecvieeiieereereeieeeeseeseesese e seesreesaessesseesseenseensenns 191
OIS s Yo £0] 0= 4 11 191

ETSI

10 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

10.1 SErVICE SUPES QN0 SUD TYPES....eiiteeieeieeieiieeseesteesteesteeeeeseesteesseesteeteassessaesseesseaseanseansesseasseessenssenssesnsesssanes 191
10.2 SEIVICE PIOPEITY TYPES .. uveeueeetiesteesteesie et steseesaeesteesseasseaseesseesseeteesteansesseesseesseaseanseanseassassaesseesseesseesesnseanes 191
10.3 GENEral SEIVICE PrOPEITIES ... i ciecie ettt ettt e e e e te s e e e s teesteastesaeesseesseessaesseesseenseenseenenanes 193
1031 SEIVICE NBITIE.ttt a et bbbt bt e b e ae e s s e s e e b e s beeheeb e eaeehe e e ene e e e sbenbesaeene e e enbennen 194
10.3.2 = VLo A= £ o] o T OO RO PP PRURORRTPRN 194
10.3.3 SEIVICE ID et e b bttt E b et bRt h e e R e R Rt R e eRe R e e e e e e R e bt ebeeheene e e enrenren 194
10.34 SEIVICE DESCITPION. ...ttt sttt b b bt b e bt b e bt b e s b et eb e sh e e eb e s b e e ebesbeneenenbennene s 194
10.35 0o [0 Tot B V=0 oS 194
10.3.6 0o (U (ot Y= = Yo o SR 194
10.3.7 <<deprecated>> SUPPOItEd INTEITACES.ccoiiiieeiree bbb 195
10.3.8 OPEIBLION SEL ...ttt ettt ettt ettt bt eb e bt bt s b e e eb e se e e eb e s E e e e b e e E e e eb e e E e e eb e sh e e bt e R e e bt b e neene b e ne s 195
10.3.9 (@0 pgT o7z 1 o LTS LYo TSRS 195
10.3.10 Backward CompatiDility LEVELcooi ettt s e e e nreeneens 196
10.3.11 Yo = o T L= U] = o PR 196
10.3.12 (D= E= AV 1T = (= o (OO P VRSSO 197
10.3.13 Migration Dale AN TIME...c..eicie e ceeceese et e s ee st e e ste et e s e s e e s se e te e teestesseessaesseesseenaesnnesaeesseenseensenns 198
10.3.14 Support for Regular EXpressions in AdAreSS RANGE.........civeiiereerieereeeeiesee e see e sae e e e e eesseesnees 198
R B = = W = o S 198
111 Common Framework Data DefiNitiONScoiiiiiiie ettt s see e nee e 199
1111 TPCHENTAPPID ..ottt bbbt h bbb bkt b e bRt e bt b e b e st bt e bt e e enn 199
11.1.2 TP I ENEAPPIDLISE ..ttt b b b et b et b et b b e e st bbbt e ens 199
1113 TPDOMAINID ...ttt b et e b bt b e heea e et e ee e b e sReeb e e Rt eh e et e e e besbeeb e e e ennennennes 199
11.1.4 LI 1BTo g T o Y o= 199
1115 TPENLEOPID ...t e h et e bbb e et et e e e e e bt e Rt b e Rt e R e et et e bR e a e et nrenrers 199
11.16 QLI o 0] 0= Y]\ V=0 1T PSPPSR 199
11.1.7 QI 0o T= YA = = S 200
11.1.8 TPPTOPEITY ... e e e e e e e e 200
11.1.9 LI &1 001 11 I OSSP UT PSR TRRR 200
11.1.10 QLI =01 o1 5 OSSP 200
11111 LI o OSSR 200
11.1.12 LI 015 = LYot OSSOSO 200
11.1.13 TSEIVICELISE ettt b b b e b bt h bt s ek b e s b e h bbb b b e n e ens 200
11.1.14 TPSEIVICEDESCIIPLIONc.eeceeeeteeeteete e st s et e e e e et eeste et e e e estessaesseesseesaeensesneesneesneanseansennsenns 200
11.1.15 TPSEIVICEID ...ttt ettt b e bbbt he e a e e e e e se e e bt e bt eheehe et e s e e e e b e beseeebeeneene e e ennan 200
11.1.16 TPSEIVICEIDLISE ...ttt a ettt b bbbt et e e b bt s he e bt et e s e e e e e e besbeebe e e ennennenres 201
11.1.17 TPSEIVICEINSIANCEID ...t e st e st este et e a e eseeesaesbeesseesseetesneesneesneanseenseansenns 201
11.1.18 T PSEIViCETYPEPIOPEITY ..ottt te e e s et e e be et e e s e estessaesseesteesseesesneesneesneanseensennsenns 201
11.1.19 T PSErViCETYPEPIOPEITY LIS ...ttt ettt e s et e e e e e sseesneesseesaeesnnenseeseensenns 201
11.1.20 TPSErVICETYPEPIOPEITYIMOUE. ...ttt bbbttt 201
11121 TPSErVICEPTOPEIY TYPENGBIME.ctiieiitieeieet ettt b et b bbbt b b e bt b e bt neeb e e e e ens 201
11.1.22 TPSENVICEPTOPEITYINGITIE. ...ttt ettt rb et bt b bbbt b e et b b e e b e e e st bt e bt sb e ens 201
11.1.23 TPSErVICEPTOPEIYNAIMELISE. . ..cvetieeetiiteeet sttt b et b et b b e 201
11.1.24 TPSENVICEPTOPEIYV AIUE. ...ttt b et b et b bbb e s e bt ne bt sn e ens 201
11.1.25 TPSErViCePrOPErtYV AlUELISL......cveeieciece ettt ee s e st e e e teete e e e sreesneenseeseensenns 202
11.1.26 IO V0= (0] 0T S 202
11.1.27 I 0SS V0= 0] 0= 1Y I S 202
11.1.28 TPSEIVICESUPPIIENTD ...ttt e e e te e te e teeseessaesaeesseesseetesneesneesneanseanseensenns 202
11.1.29 TPSErViCETYPED ESCIIPLIONeeeiteeteeie e ee sttt et e e s e st e e steete s e ssaeesaesse e teessesntesneesneesneenseensennsenns 202
11.1.30 TPSEIVICETYPENGIME ... ieeeieete ettt e e s te st e st e s e e steeeeaseeaseeeseesse e teesseenseansesneesseesaeessesneesneesneenseensennsenns 203
11131 TPSEVICETYPENBMELISE ...ttt bbbt b et b b sn e ens 203
11.1.32 I IS Lo T= o I o =TSO PRPTTOTRSRURRR 203
11.1.33 TPSErVICETYPEPIOPEITYV BIUE.... .ottt ettt b et sn s 204
11.1.34 TPServiceTYPEPrOPErtYV AlUELISEc.oivieciiieice b 204
11.2 Event Notification Data DefiNitiONS..........cccoiieiriiieeee et e e e 204
1121 TPFWEVENINGIME......ce e s 204
11.2.2 I T Y= o (O] (- S 205
11.2.3 TPRWEVENTINTO. ..t b et e bbbt e et et et b e eb e et e e e eras 205
11.2.4 TpFwWMigrationServiCeAVa labI@INTO e ee e 205
11.25 I\ e = Kol g VAN (o 110 7=) o 1SR 206
11.2.6 RN\ NTe gz KolgVaNo [o f o r= L Hi) o) 1Y/ o= TS 207
11.2.7 TPMigratioNAAAitioNalINFOSELecieeiece e e e e e e e sneenaeenreens 207

ETSI

11.2.8
11.3
1131
1132
11.33
11.34
11.35
11.3.6
11.3.7
11.38
11.3.9
11.3.10
11.311
11.3.12
11.3.13
11.3.14
114
1141
1142
1143
1144
1145
1146
1147
1148
1149
11.4.10
11411
11.4.12
11.4.13
11.4.14
11.4.15
11.4.16
11.4.17
11.4.18
11.4.19
11.4.20
11421
11.4.22
11.4.23
11.4.24
11.4.25
11.4.26
11.4.27
115
1151
1152
1153
1154
1155
1156
11.5.7
1158
11.5.9
11.5.10
11511
11.5.12
11513
11.5.14
11.5.15
11.5.16
11.5.17

11 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

I TN 0 == 0.1 o] TS 207
Trust and Security Management Data DEfiNItIONSccvieeieeiieiceseesee e s ne e 207
QI 0T e el =] Y/ oL PSP 207
LI AN U 1 I8Y/ =TS S 207
BN]=oi Y/ o 0] g @ oT=1 o 1 1 2SS 208
TPENCIYPtiONCaP@DI lITYLISEeeieeieeeieeeieeees ettt st e e e e st e e e e tees e ssaessaesreesreesneesseenseensenns 208
TPENCOA CCESSPIOPEITIES......veeeueetereeieete sttt sttt sttt sb et ebe et b bbbt s b s eb bt e e st e bt b e st eb e s ene b et e e enenrennens 208
TPAUINDOMAIN ...ttt bt bt b et b e e b e e eh e e e bt R e e eh e bt s e st bt e e ebenn e s ens 208
TPINEEITACENGITIE ...t bbbt b bt h bbbt b e et bt e e bt nr e ens 209
TPINEETACENGIMELISE ...ttt bbb et b et bt b e ens 209
TPSEIVICET OKEN. ...ttt bbbt b et b e et b bbb e e bt b eh bbb e e bt ne e e ebene e e ens 209
I oS T 7= (U =T AN 10 = AV otV o S 209
BN o5 T T aTe 72N Ko] 11 o o S 210
TpSigningAlgorithmCapahilityLiStceeceieeiee e e sa e eaesneesneenaeenreens 210
QI AN U 1Y = P T oSS 210
TPAUNMECHANISINILISE ... eeiveee ettt e este e te e be e s e sneessaesneesneesnnenseenseensenns 210
Integrity Management Data DefiNitiONS..........cccocviiiiiiieiceseesee et e e sraesnees 211
TPACHVITY TESIRES ...ttt b bbbt b et b e et h e et b e e et e bbb e se bt b e e ebenn e ens 211
TPFAUIESIBESRECOIT ...ttt sttt eh bt b et b et b et b b e b b et b et e bt e ens 211
TOFAUIESEAES. ...ttt b bbbt b e bt et b e s b e bR e R e Rt e bbbt e enn 211
TPFAUIESEALI SHICSETTON ...ttt ettt b bt b et b e bbbt e st b e et bt b e bt b nnens 211
TPFBLITSEBESSEL ...ttt ettt bbbt b et b bbb bt s et b e b e e b bt b e st b b e e bt e e ens 211
TPACHVITYTESID ...ttt et et b bbbt b s b e bt e bt b e e e bt b e e eb e e e s ens 211
QI 10 = e= = T S S 212
TPSVCUNGVAI TREBSON........ceiuieitieieeie e ette st e st e e e e stessee st e saeeseeeeeeseeeseasse e seenseessesseessaesneesneesseanseansennsenns 212
TPFWURNQVAITREBSONeeiveeieeie ettt st e e te et e s e ereestaete e teessesnaesneesneesneenseenseensenns 212
QLI 0 7= o | =Y 212
QI oo 7= o I I === o] o S 212
QLI o070 | 1o A 2 SR 213
TPLOAUPOIICY ...ttt b bbbt e b e bbbt e e bt bt e e e e bt b e bt nn e ens 213
QLI o107z o S L oSO 213
TPL OAOSEAE SHICL IS .ttt b e bbb bbb e e et bbbt e ens 213
TPL OAOSEALI SHICD@LA ...ttt ettt eb et b ettt b s b b e bt b e bt b e e e st bt e e b nn e ens 213
TPLOAOSEALISHICENLITYIDc.evitieterieet ettt b et b et nn s 213
QI 0720 S o S o =1 Y/ L= S 214
QLI o070 S = = o 1 | oSS 214
QI 070 = S e LTI o S 214
QI o 0720 S = S o = o] S 214
TPSVCAVAI SLALUSREASON.c.eeiveeieeieee et s et e e st este et teestessaesseesseesseensesneesaeesneenseanseensenns 214
TPAPPAVE I SEBLUSREBSON.......c.veeieeiieeieetieseesteeste e e s teseeseesaeesteesseeteestesseessaesseesseesseenseeneesseesseesseansennsenns 215
QLI 1= I 1= SRS 215
TPFAUIESEBESEITOILISL ...ttt bbbttt b bbb ens 216
TPFAUITREGID ...ttt b bbbt bbbt bt b s e bbb e st bt e e a e e ens 216
TPFWAVEIH SEBEUSREASON ...ttt sb et b et b st b s b e e e e bt s e e e bt s e ese bt e e ebesreneens 216
Service Subscription Data DEfiNItIONScceiiiiiiriiic e 216
TPPIOPEITYNGIME. ... e s e e e e 216
QI oL 0 o T= YA = S 216
I o] (0] 0= 1 YRS 216
I oL 0 0 T= 1 Y = S 216
BN o] (o) 0] 7 = S 217
I 0] = 1 o T PSPPSR 217
QI 05 V0= 11 o 0 S 217
TPSENVICECONIITBCHIDLISE. . .ccveeeeeit ittt e et b et b e e ens 217
TPPEISONNGITIE ... et b e s e e s e sae e e e ae e nn e ne e 217
TPPOSLAI AGAIESS........eeeteieeet ettt ettt b e et b e et b e s b et b s e et eb e se e e ebesb e e ebeebeseebenbeneeneas 217
TPTEEPNONENUMDE ...t b et b e bt e 217
LI 01017 OO OSSOSO 217
TPHOMEPAGE ...t b e b e b e e be e e be e e sb e e e bb e e ebe e e nbbe e s ate e nabe e nareennres 217
I L= £ o1 1] 1= = 217
I8 = £ o] o PSSP TR 218
T PSEIVICESIAIDEALE. ... e eveeieee ettt st e e e s e et e et e e e e s s e e sbe e tees e estessaesseesseesseentesneesneesneanseansennsenns 218
TPSEIVICEENUDEALE. ... e cee ettt s ettt e e e e e e s e e s te e te e teesteestessaesseesseesseeneesnnesneesnennseansennsenns 218

ETSI

12 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

11.5.18 T PSEIVIiCEREQUESLOL ... eeveeiteeie et eee et e stee e e teete e e sseesseesseesaeesseenseenseasseeseessaesseeseesseensesneesnnesneanseansennsenns 218
11.5.19 QI o12 T gTe 0] o S 218
11.5.20 TPServiCeSUDSCIi Pt ONPrOPEITIES.c..ecieiieiee e e et ee et ste et eertessaesseesreesreenseeeesseesneesseenseensenns 218
11.5.21 QI 05 V0T O 11 ot S 218
11.5.22 TPSErViCeCONtraCtDESCIIPLION.ecieeeee et e e e e tese e s e saeesaeesaesseesneesseeseensenns 219
11.5.23 I @I 01N o] oL o o= 1= S 219
11.5.24 TPCl ENTAPPDESCIIPIION. ...ttt ettt b et b et b e s bt b s e e bt s e s e bt e e b see e enis 219
11.5.25 TOSAGIDooecveeeeee ettt 219
11.5.26 TPSAGIDLIS «..eoveevecvececieeee sttt e s st en et s st en s s sen e 219
11.5.27 TPSAODESCIIPLION ...ttt ettt bbbtk b e b b e bt bt s b bt e b bt e e bbbt e e st bt b e bt nn s enn 219
11.5.28 LI 05 = o TSRS 220
11.5.29 TPSEIVICEPTOTIEID ...ttt e et eestessaesaeesseessesatesneesseesneanseanseensenns 220
11.5.30 I 0SS Vo= (o) = 0 = S 220
11.5.31 QI 0SS V0= (0 = S 220
11.5.32 TPSErViCePrOfilEDESCITPLION.ccvieciieeee et e st te e e sre e st e s te e teessesntesneesseesnnenseenseensenns 220
11.5.33 TPSAGPIOFIEPAIT.......ceeeieet ettt bbbt p et 221
11.5.34 QI 0 a0 (0 K= o 1Y/ i o= @] 1 o S 221
11.5.35 TPAAASagM EMBDErSCONTIICILISEttt 221
11.5.36 TPASSIgNSAgT 0SErVICEPTOfIHIECONTIICE.cueieieeeeireieet s 222
11.5.37 TPAsSIgNSagT 0SerViCePrOfil@CONTIICELISEc.ecviiviieeiieect e 222
12 EXCEPLION ClASSES.......ciuitiieieeeeeie ettt sttt s b b e b e e et h e bt bbb et e e e e e st e bt nb e b e nn e e e e 222
Annex A (nor mative): OMG IDL Description of Frameworkcccoeieieieieieneneneseseeseeeenes 224
Annex B (informative): W3C WSDL Description of Framework..........ccccecvvveveveceeseseese e 225
Annex C (informative): Java™ API Description of the Frameworkccoceeevveeveiicieese e, 226
Annex D (informative): Contents of 3GPP OSA R6 FrameworK..........ccocooevereieienenienenenieeeeenes 227
Annex E (informative): Description of the Framework for 3GPP2 cdma2000 networks.............. 228
o €= g 1= o= o1 o S 228
E.2 SPECITIC EXCEPLIONS.....c.eeiiiieecie ettt ettt st et s ae et e s te e e e s besaeentesaesreenesneeneesrennes 228
E21 ClAUSE L1 SCOPE ...ttt ettt ettt ettt s bt s st b e e st bt b e st e bt b e e e b b e e e bt E e b e he e b e b e st b e s ehe e b et e bt e b e b et et e et ees 228
E.2.2 ClalSE 2: REFEIEICES ... e ettt ettt ettt e e et et e se e tesee et e sneeneeseensesaesneeneennenseneens 228
E.2.3 Clause 3: Definitions and abreViations............ocoiiriiieeeee et st ae e sre e eneeseens 228
E24 Clause 4: OVerview Of the FramBWOIK...........ccoiiii et s see e e e 228
E.25 Clause 5: The Base Interface SPeCifiCalioN.........ccccuiiierieiierese ettt e enee s 228
E.2.6 Clause 6: Framework ACCESS SESSION APcci ittt st b sae b e e e 228
E.2.7 Clause 7 Framework-to-Application Sequence DiagramsS........c.cceiveieeieereeeeeseeseesieeseete e saeseesreeseesneesnes 228
E.2.8 Clause 9: Framework-t0-SErVICE APlottt b et b b neen 229
E.2.9 Clause 10: SErVICE PrOPEITIES.......ueieeieesieciesie st e st e ste et e st e e et e e e s ee s aeesreesseeteeneesseasseessaesseesseesseeseeneeanes 229
E.210 Clause 11: Data DEfiNITIONS........coiiireeieieriesie sttt sttt st b et se e st et besbeese e e e saesbesbesre e e enneneen 229
E.2.11 Clause 12: EXCEPLION ClASSES........ceiuiieuertiieiirtisieiesiesseesie sttt sie st e st st be s esesbe b sesbe st sbenbe st e benbeneens 229
E.212 Annex A (normative): OMG IDL Description of the Framework.............cceoiineineneineeeeeeees 229
E.213 Annex B (informative): W3C WSDL Description of the Framework...........cccocoeeinenenneneeseseese e 229
E.214 Annex C (informative): Java™ API Description of the Framework ... 229
Annex F (informative): ReCOrd of ChanQES........cccoeiuiieeie et e 230
et O [01 =g o= R 230
F11 N BV etttk sh ek e e e h et ek e e e he e e R e e e R e e R e e e Re e e R e e e Re e e R et e Re e oA R e e eaRe e e beeeneeeReeeneeeaneeenee s 230
F.1.2 1= 1= o =0 S 230
F.1.3 REMOVEX. ...ttt bt h et b e et b e e bt b e ae e s s e b e eE e beeh e eb e e aeen e e e e nbenbeeheebeeneennennentas 230
e V= 0o ST 231
F.2.1 N BV etttk sh ek e e e h et ek e e e he e e R e e e R e e R e e e Re e e R e e e Re e e R et e Re e oA R e e eaRe e e beeeneeeReeeneeeaneeenee s 231
F.2.2 DL o< or= 1= o IO TS PP TSRO PPPTUROPSRURPRRON 231
F.2.3 1Y o o TSRS 231
F.24 111017 SRS 231
G T I T = W D= 1 010 S 232

ETSI

13 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

F.3.1 N PRV UROPRPRO 232
F.3.2 1Yo o 1 T="s F T PP PRSP SPTO 233
F.3.3 REMOVEX. ...ttt bt h et b e et b e e bt b e ae e s s e b e eE e beeh e eb e e aeen e e e e nbenbeeheebeeneennennentas 233
R VLo = 0] 0= =SS 234
F.4.1 N B ettt e e e e et e e e et et e e aeee e e e beeeeabteee ettt e e aaneeeeanteeeeantaeeeenneeeeanteeeeatteeeeanneeeeareeeean 234
F.4.2 DL o< or= 1= o IO OSSP PSP U TSTURPRSRURPRRN 234
F.4.3 Y7o o 1 =" PSR ST 234
F.4.4 111017 PSR ST 234
I (e = o 0] 0 = TSSO UR PR 235
F.5.1 NPTV PR TP 235
F.5.2 1Yo o L= DT PP U PR PR TSTRPPO 235
F.5.3 REMOVEX. ...t bt h ettt et bbb e ae e s s et e eE e b e sh e eb e e st eae e e e e b e besheebeeneenne e enras 235
T 1 1 R 235
[11 (TP 236

ETSI

14 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards', which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/| PR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other I|PRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

ThisETSI Standard (ES) has been produced by ETSI Technical Committee Telecommunications and I nternet
converged Services and Protocols for Advanced Networking (TISPAN), and is now submitted for the ETSI standards
Membership Approval Procedure.

The present document is part 3 of a multi-part deliverable covering Open Service Access (OSA); Application
Programming Interface (API), asidentified below. The API specification (ES 203 915) is structured in the following
parts:

Part1: "Overview";

Part 2. "Common Data Definitions";
Part 3: " Framework";

Part 4. "Cdll Control";

Part5: "User Interaction SCF";

Part6: "Mobility SCF";

Part 7: "Termina Capabilities SCF";
Part 8: "Data Session Control SCF";
Part9: "Generic Messaging SCF";

Part 10: "Connectivity Manager SCF";
Part 11: "Account Management SCF";
Part 12: "Charging SCF";

Part 13: "Policy Management SCF";
Part 14: "Presence and Availability Management SCF";
Part 15: "Multi Media Messaging SCF".

The present document has been defined jointly between ETSI, The Parlay Group (http://www.parlay.org) and the 3GPP,
in co-operation with a number of JAIN™ Community (http://www.java.sun.com/products/jain) member companies.

The present document forms part of the Parlay 5.2 set of specifications.

A subset of the present document isin 3GPP TS 29.198-3 V6.7.0 (Release 6).

ETSI

http://webapp.etsi.org/IPR/home.asp
http://www.parlay.org/
http://www.java.sun.com/products/jain

15 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

1 Scope

The present document is part 3 of the Stage 3 specification for an Application Programming Interface (API) for Open
Service Access (OSA).

The OSA specifications define an architecture that enables application devel opers to make use of network functionality
through an open standardised interface, i.e. the OSA APIs.

The present document specifies the Framework aspects of the interface. All aspects of the Framework are defined in the
present document, these being:

e Seguence Diagrams.

. Class Diagrams.

. Interface specification plus detailed method descriptions.
. State Transition diagrams.

. Data Definitions.

. IDL Description of the interfaces.

. WSDL Description of the interfaces.

o Reference to the Java™ API description of the interfaces.

The process by which this task is accomplished is through the use of object modelling techniques described by the
Unified Modelling Language (UML).

2 References

Thereferenceslisted in clause 2 of ES 203 915-1 contain provisions which, through reference in this text, constitute
provisions of the present document.

ETSI ES 203 915-1: "Open Service Access (OSA); Application Programming Interface (API); Part 1. Overview
(Parlay 5)".

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in ES 203 915-1 apply.

3.2 Abbreviations

For the purposes of the present document, the abbreviations defined in ES 203 915-1 apply.

ETSI

16 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

4

Overview of the Framework

This clause explains which basic mechanisms are executed in the OSA Framework prior to offering and activating
applications.

The Framework API contains interfaces between the Application Server and the Framework, between the Network
Service Capability Server (SCS) and the Framework, and between the Enterprise Operator and the Framework (these
interfaces are represented by the yellow circles in the diagram below). The description of the Framework in the present
document separates the interfaces into these three distinct sets: Framework to Application interfaces, Framework to
Enterprise Operator interfaces and Framework to Service interfaces.

Enterprise Operator

[

Some of the mechanisms are applied only once (e.g. establishment of service agreement), others are applied each time a
user subscription is made to an application (e.g. enabling the call attempt event for a new user).

Basic mechanisms between Application and Framework:

Authentication: Once an off-line service agreement exists, the application can access the authentication
interface. The authentication model of OSA is a peer-to-peer model, but authentication does not have to be
mutual. The application must be authenticated before it is allowed to use any other OSA interface. Itisa
policy decision for the application whether it must authenticate the framework or not. It is a policy decision for
the framework whether it allows an application to authenticate it before it has completed its authentication of
the application.

Authorisation: Authorisation is distinguished from authentication in that authorisation is the action of
determining what a previously authenticated application is allowed to do. Authentication must precede
authorisation. Once authenticated, an application is authorised to access certain service capability features.

Discovery of framework and network service capability features: After successful authentication,
applications can obtain available framework interfaces and use the discovery interface to obtain information on
authorised network service capability features. The Discovery interface can be used at any time after

successful authentication.

Establishment of service agreement: Before any application can interact with a network service capability
feature, a service agreement must be established. A service agreement may consist of an off-line (e.g. by
physically exchanging documents) and an on-line part. The application has to sign the on-line part of the
service agreement beforeiit is allowed to access any network service capability feature.

ETSI

17 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

- Accessto network service capability features. The framework must provide access control functions to
authorise the access to service capability features or service data for any APl method from an application, with
the specified security level, context, domain, etc.

Basic mechanism between Framework and Service Capability Server:

- Registering of network service capability features: SCFs offered by a Service Capability Server can be
registered at the Framework. In this way the Framework can inform the Applications upon request about
available service capability features (Discovery). For example, this mechanism is applied when installing or
upgrading a Service Capability Server.

Basic mechanism between Framework and Enterprise Operator:

- Service Subscription function: This function represents a contractual agreement between the Enterprise
Operator and the Framework. In this subscription business model, the enterprise operators act in the role of
subscriber/customer of services and the client applications act in the role of users or consumers of services.
The framework itself actsin the role of retailer of services.

The following clauses describe each aspect of the Framework in the following order:
. The sequence diagrams give the reader a practical idea of how the Framework isimplemented.
e Theclassdiagrams clause shows how each of the interfaces applicable to the Framework relate to one another.

. The interface specification clause describesin detail each of the interfaces shown within the class diagram
part.

. The Sate Transition Diagrams (STD) show the transition between states in the Framework. The states and
transitions are well-defined; either methods specified in the Interface specification or events occurring in the
underlying networks cause state transitions.

e The data definitions clause shows a detailed expansion of each of the data types associated with the methods
within the classes. Note that some data types are used in other methods and classes and are therefore defined
within the common data types part ES 203 915-2.

An implementation of this APl which supports or implements a method described in the present document, shall
support or implement the functionality described for that method, for at least one valid set of values for the parameters
of that method. Where a method is not supported by an implementation of a Framework or Service interface, the
exception P METHOD_NOT_SUPPORTED shall be returned to any call of that method. Where a method is not
supported by an implementation of an Application interface, acall to that method shall be possible, and no exception
shall be returned.

5 The Base Interface Specification

5.1 Interface Specification Format

This clause defines the interfaces, methods and parameters that form a part of the API specification. The Unified
Modelling Language (UML) is used to specify the interface classes. The general format of an interface specificationis
described below.

511 Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters
and types. The Service and Framework interfaces for client applications are denoted by classes with name | p<name>.
The callback interfaces to the applications are denoted by classes with name |pApp<name>. For the interfaces between
a Service and the Framework, the Service interfaces are typically denoted by classes with name IpSvc<name>, while
the Framework interfaces are denoted by classes with name | pFw<name>.

ETSI

18 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

5.1.2 Method descriptions

Each method (APl method “call”) is described. Both synchronous and asynchronous methods are used in the API.
Asynchronous methods are identified by a'Req' suffix for a method request, and, if applicable, are served by
asynchronous methods identified by either a'Res' or 'Err’ suffix for method results and errors, respectively. To handle
responses and reports, the application or service devel oper must implement the relevant |pApp<name> or |pSvc<name>
interfaces to provide the callback mechanism.

5.1.3 Parameter descriptions

Each method parameter and its possible val ues are described. Parameters described as 'in' represent those that must have
avalue when the method is called. Those described as 'out' are those that contain the return result of the method when
the method returns.

514 State Model

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface.

5.2 Base Interface

5.2.1 Interface Class Ipinterface

All application, framework and service interfaces inherit from the following interface. This APl Base Interface does not
provide any additional methods.

<<Interface>>

Ipinterface

5.3 Service Interfaces

531 Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user
interaction, messaging, mobility and connectivity management.

The interfaces that are implemented by the services are denoted as 'Service Interface’. The corresponding interfaces that
must be implemented by the application (e.g. for API callbacks) are denoted as 'Application Interface'.

5.4 Generic Service Interface

54.1 Interface Class IpService
Inherits from: Iplnterface;

All service interfacesinherit from the following interface.

ETSI

19 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

<<Interface>>

IpService

setCallback (applinterface : in IpinterfaceRef) : void

setCallbackWithSessionID (applnterface : in IpinterfaceRef, sessionID : in TpSessionID) : void

5.4.1.1 Method setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the
application. It is not allowed to invoke this method on an interface that uses SessionlDs. Multiple invocations of this
method on an interface shall result in multiple callback references being specified. The SCS shall use the most recent
callback interface provided by the application using this method. In the event that a callback reference fails or isno
longer available, the next most recent callback reference available shall be used.

Parameters

appInterface: in IpInterfaceRef
Specifies areference to the application interface, which is used for callbacks.

Raises
TpCommonExceptions, P _INVALID INTERFACE TYPE

5.4.1.2 Method setCallbackWithSessionID()

This method specifies the reference address of the application's callback interface that a service uses for interactions
associated with a specific session ID: e.g. a specific call, or cal leg. It is not allowed to invoke this method on an
interface that does not use SessionlDs. Multiple invocations of this method on an interface shal result in multiple
callback references being specified. The SCS shall use the most recent callback interface provided by the application
using this method. In the event that a callback reference fails or is no longer available, the next most recent callback
reference available shall be used.

Parameters

appInterface: in IpInterfaceRef
Specifies areference to the application interface, which is used for callbacks.

sessionID: in TpSessionID
Specifies the session for which the service can invoke the application's callback interface.

Raises

TpCommonExceptions, P_INVALID SESSION ID, P INVALID INTERFACE TYPE

ETSI

20 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

6 Framework Access Session API

6.1 Sequence Diagrams

6.1.1 Trust and Security Management Sequence Diagrams

6.1.1.1 Initial Access
The following figure shows a client accessing the OSA Framework for the first time.

Before being authorized to use the OSA SCFs, the client must first of all authenticate itself with the Framework. For
this purpose the client needs a reference to the Initial Contact interfaces for the Framework; this may be obtained
through a URL, aNaming or Trading Service or an equivalent service, a stringified object reference, etc. At this stage,
the client has no guarantee that thisis a Framework interface reference, but it isto initiate the authentication process
with the Framework. The Initial Contact interface supports the initiateAuthenticationWithVersion and the deprecated
initiateA uthentication methods to alow the authentication process to take place.

Once the client has been authenticated by the Framework, it can gain access to other framework interfaces and SCFs.
Thisis done by invoking the requestAccess method, by which the client requests a certain type of access SCF.

Independently, the client could decide to authenticate the Framework, before deciding to continue using the interfaces
provided by the Framework.

Client ‘ ‘ . IpInitial ‘ ‘ : IpAPILevelAuthentication

‘ : IpAccess

o Framework
IpClientAPILevelAuthentication
T

1 initiateAuthenticaﬁ‘ionwithVersion(clientDomain, authTyp‘é, frameworkVersion)

T

2: selectAuthenticationMechanism()
1

3 chaIIenge(:)

k
» d
L
g

4: authenticationSua‘;eeded()

!
|
!
] ;
|
|
|

5: challenge()
T
|
6: authenticationSucceeded()
\

|
7: requestAccess()
Il

|
8: selectSigningAlgorithm()
1

9:'obtaininterface()

o
T

ETSI

21 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

1: Initiate Authentication

The client invokes initiateAuthenticationWithVersion on the Framework's "public" (initial contact) interface to initiate
the authentication process. It providesin turn areference to its own authentication interface. The Framework returns a
reference to its authentication interface.

2. Select Authentication Mechanism

The client invokes sel ectAuthenti cationM echanism on the Framework's API Level Authentication interface, identifying
the authentication algorithm it supports for use with CHAP authentication. The Framework prescribes the method to be
used. OSA authentication is based on CHAP, which prescribes the MD5 hashing algorithm as the minimum to be
supported. Note however that the framework need not accept this algorithm.

3: The client authenticates the Framework, issuing a challenge in the challenge() method.
4. The client provides an indication if authentication succeeded.

5: The Framework authenticates the client. The sequence diagram illustrates one of a series of one or more invocations
of the challenge method on the client's API Level Authentication interface. In each invocation, the Framework supplies
achallenge and the client returns the correct response. The Framework could authenticate the client before the client
authenticates the Framework, or afterwards, or the two authentication processes could be interleaved. However, the
client shall respond immediately to any challenge issued by the Framework, as the Framework might not respond to any
challenge issued by the client until the Framework has successfully authenticated the client.

6: The Framework provides an indication if authentication succeeded.
7: Request Access

Upon successful authentication of the client by the Framework, the client is permitted to invoke requestAccess on the
Framework's APl Level Authentication interface, providing in turn areference to its own access interface. The
Framework returns areference to a framework Accessinterface that is unique for this client. The success or failure of
the client's authentication of the Framework does not affect the client's right to invoke requestAccess.

8: Theclient and framework negotiate the signing algorithm to be used for any signed exchanges.

9: The client invokes obtainlnterface or obtainlnterfaceWithCallback on the framework's Access interface. Thisis used
to obtain a reference to a framework interface that supports the required framework functionality, such as service
discovery, integrity management, service subscription etc.

6.1.1.2 Framework Terminates Access

This sequence shows how a Framework could terminate an application's use of the Framework and of all service
instances. This type of termination is unusual, but possible with the terminateA ccess method. Note that if at any point
the framework's level of confidence in the identity of the client becomes too low, perhaps due to re-authentication
failing, the framework should terminate al outstanding service agreements for that client, and should take stepsto
terminate the client's access session WITHOUT invoking terminateAccess() on the client. Thisfollows a generally
accepted security model where the framework has decided that it can no longer trust the client and will therefore sever
ALL contact withit.

ETSI

22 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

AppLogic ‘ IpAccess ‘ - IpMultiPartyCallControlManag{ - IpUserLocationCamel

‘I AppServic IQSErvICEAgrEememManaggmenJ

‘ IpClientAcces

|
1;signServiceAgreement()

|
|
|
2;signSenviceAgreement()

3: ceateNotification()

|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
b

4:

U

|
|
U
|

y 1
d 1
i "

T T
| |
| |
1 |
| |
| |
| |
| |
| [‘
	1
: 5: le:rrmnaleAcceﬂ) :

U ! |
\ | ‘
| | ‘
| | ‘
| | ‘
| | :

1: Following successful authentication and service discovery, the client initiates the service agreement signing process
(not shown). Thisis completed when the client invokes signServiceAgreement on the Framework's
I pServiceAgreementM anagement interface, and a reference to an instance of a service manager interface is returned.

2: Theclient (application) had initiated service agreement signing process for a second service agreement (not shown),
and when the client signs this second service agreement, areference to an instance of another service manager, for
another service type, isreturned.

3: The application starts to use the new service manager interface.
4: The application starts to use the other new service manager interface.

5: The framework decides to terminate the application's access session, and to terminate all its service agreements. This
isan unusual and drastic step, but could be e.g. due to violation or expiry of the application's service agreements, or
some problem within the framework itself. The framework will also destroy each of the service managers the
application was using (not shown). The application is now no longer authenticated with the framework, and all
Framework and service interfaces it was using are destroyed.

6.1.1.3 Application Terminates Access

This sequence shows how an application could terminate its use of the Framework and of al service instances. This
type of termination is unusual, but possible with the terminateAccess method.

ETSI

23 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

App Logic L : pAccess
IpClientAccess

IpMulti PanyCaE ontrolManager IQUserLoc;tionCam el

1: destroyNotification()

|
|
|
|
|
|
:
|
2: triggeredLoqationReporlingStop()

S

3: terminateAccess()

—

:

1: The application terminates its use of the multi-party call control service manager in a controlled manner.
2: The application ceases to use the user location camel SCF.

3: The application decides to terminate its access session and all its service agreements in one go. The framework will
also destroy each of the service managers the application was using (not shown). The application is now no longer
authenticated with the framework, and all Framework and service interfaces it was using are destroyed. The application
could have terminated its service agreements one by one, by invoking terminateServiceAgreement on the Framework's
I pServiceAgreementManager interface, and then invoked terminateAccess on the Framework's |pAccess interface,
which would have been a more controlled shutdown.

6.1.1.4 Non-API level Authentication
The following figure shows a client accessing the OSA Framework for the first time. The client and the framework have

mutually authenticated one another using an underlying distribution technology mechanism, or the client and the
framework recognise each other as atrusted party, not requiring authentication.

ETSI

24 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Client . Ipinitial Framework . IpAuthentication : IpAccess

initiateAuthenticdtionWithVersion(cIientDomain, authTypé, frameworkVersion):
| | |
|

i |
U Underlying Distribution Technology Mechanism is used for application
| |identification and authentication, or both the client and the Framework
| |recognise each other as trusted parties not requiring AP level
! authentication. There is no requirement as to when authentication should
|| take place using the Underlying Distribution Technology Mechanism:
| | before initiateAuthenticationWithVersion is invoked, after requestAccess is
! invoked, or between the two.
|
|
|
|
|

|
2: reque§tAccess()

]
|
|
|
| |
| |
L l l

| | |

| 3, selectSigningAlgorithm()

!
!

|
:
4: obtaininterface()
|
|
|
|
|
|
|
|
|
|

S ERRREt

1. Theclient callsinitiateAuthenticationWithVersion on the OSA Framework Initial interface. This allowsthe client to
specify the type of authentication process. In this case, the client selects to use the underlying distribution technology
mechanism for identification and authentication. What that mechanism is, if it even exists, is outside the scope of the
API.

2. Theclient invokes the requestAccess method on the Framework's Authentication interface. This returns areference
to the framework Accessinterface that is unique for the client.

3: If the authentication was successful, the client and the framework can negotiate, on the framework's Access
interface, the signing algorithm to be used for any signed exchanges.

4: The client can now invoke obtaininterface or obtainlnterfaceWithCallback on the framework's Access interface.
Thisis used to obtain areference to a framework interface such as service discovery, integrity management, service
subscription etc.

6.1.1.5 API Level Authentication

This sequence diagram illustrates the two-way mechanism by which the client and the framework mutually authenticate
one another.

The OSA API supports multiple authentication techniques. The procedure used to select an appropriate technique for a
given situation is described below. The authentication mechanisms may be supported by cryptographic processesto
provide confidentiality, and by digital signatures to ensure integrity. The inclusion of cryptographic processes and
digital signatures in the authentication procedure depends on the type of authentication technique selected. In some
cases strong authentication may need to be enforced by the Framework to prevent misuse of resources. In addition it
may be necessary to define the minimum encryption key length that can be used to ensure a high degree of
confidentiality.

The client must authenticate with the Framework before it is able to use any of the other interfaces supported by the
Framework. Invocations on other interfaces will fail until authentication has been successfully completed.

ETSI

25 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

1) Theclient callsinitiateAuthenticationWithVersion on the OSA Framework Initial interface. This alows the client to
specify the type of authentication process. This authentication process may be specific to the provider, or the
implementation technology used. The initiateAuthenticationWithVersion method can be used to specify the specific
process, (e.g. CORBA security). OSA defines a generic authentication interface (APl Level Authentication), which can
be used to perform the authentication process. The initiateA uthenticationWithV ersion method allows the client to passa
reference to its own authentication interface to the Framework, and receive a reference to the authentication interface
preferred by the client, in return. In this case the API Level Authentication interface.

2) The client invokes the selectA uthenticationM echanism on the Framework's API Level Authentication interface. This
includes the authentication a gorithms supported by the client. The framework then chooses a mechanism based on the
capabilities of the client and the Framework. If the client is capable of handling more than one mechanism, then the
Framework chooses one option, defined in the prescribedM ethod parameter. In some instances, the authentication
mechanism of the client may not fulfil the demands of the Framework, in which case, the authentication will fail, for
example CHAP prescribes the M D5 hashing algorithm as the minimum to be supported, however the framework need
not accept this algorithm.

3) The application and Framework interact to authenticate each other by using the challenge method. For an
authentication method of P_OSA_AUTHENTICATION, this procedure consists of a number of challenge/ response
exchanges. This authentication protocol is performed using the challenge method on the API Level Authentication
interface. P_OSA_AUTHENTICATION is based on CHAP, which is primarily a one-way protocol. There arein fact
two authentication processes. authentication of the client performed by the Framework, and authentication of the
Framework performed by the client. Mutual authentication is achieved by both these processes terminating successfully.
Mutual authentication may not necessarily be required, i.e. it could be that a client may not need to authenticate the
Framework. Thereis also no required order for the execution of these two authentication processes, however, the client
shall respond immediately to any challenge issued by the Framework, as the Framework might not respond to any
challenge issued by the client until the Framework has successfully authenticated the client.

Note that at any point during the access session, either side can request re-authentication of the other side.

ETSI

26 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

: IpClientAPILevelAuthentication Client . IpInitial Framework : IpAPILevelAuthentication

[
|
] | I
1: initiateAuthenticationWithVersion(clientDomain, authType, frameworkVersion)
L L |
|
|

IpClientAPILevel Authentication
reference is pased to framework
and IpAP ILevel Auth entication
reference is returned.

| |
2: selectAuthenticationMechanism()
| |

3: challenge()

sequence of

U Thisisan example of the AN
authentication

| operations. Different
5: challenge() | authenticati.on protocols
! may have different
requirements on the

order of operations.

6: authenticationSucceeded()

7: thallenge()

|
|
l
4. <:ha||enge()
|
|
|
|
|
|
|
l
it
|
|
|

8: authenti:cationSucceeded()

| I

|
9: re(ﬁuestAccess()
|
IpClientAccess reference is
L] pased to Framework, and
: IpAccess reference is
| returned.
|
|
|

!
:
u

6.2 Class Diagrams

ETSI

27 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

<<Interface>>
IpClientAPILevelAuthentication
(from Client interfaces)

<<Interface>>
IpClientAccess
from Clientinteffacey

$<<deprecated>> authenticate()

FterminateAcc o
erminateAccess() SabortAuthentication()

A\ WauthenticationSucceeded()
! ®challenge()
<<uses>> | A
| <<uses>> |
l l
<<Interface>> <<Interface>>
IpAccess IpAP ILewvelAuthentication
<<Imen_‘a_mE>> (from Fra’:neworkimerfaces) p(fmm Framework interfaces)
Ipinitial
fom Framework intertaces Wobtaininterface() W<<deprecated>> selectEncryptionMethod()
S<<deprecated>> initiateAuthentication() lobtaininterfaceWithCallback) ’<<deprecate(.j>>. LETEEE()
I S W<<deprecated>> endAccess() ‘abortAu.theptlcatlon()
Wiistinterfaces() SauthenticationSucceeded()
S<<deprecated>> releaselnterface() WselectAuthenticationMechanism()
SselectSigningAlgorithm() Schallenge()
SterminateAccess()
Srelinquishinterface()

<<Interface>>
IpAuthentication
(from Framework interfaces)

SrequestAccess()

Figure 1. Trust and Security Management Package Overview

6.3 Interface Classes

6.3.1 Trust and Security Management Interface Classes

The Trust and Security Management Interfaces provide:

- thefirst point of contact for a client to access a Framework provider;

- the authentication methods for the client and Framework provider to perform an authentication protocol;
- theclient with the ability to select a service capability feature to make use of;

- theclient with aportal to access other Framework interfaces.

The process by which the client accesses the Framework provider has been separated into 3 stages, each supported by a
different Framework interface:

1) Initial Contact with the Framework;
2) Authentication;

3) Accessto Framework and Service Capability Features.

6.3.1.1 Interface Class IpClientAPILevelAuthentication
Inherits from: Ipinterface;

If the IpClientAPILevel Authentication interface is implemented by a client, authenticate(), challenge(),
abortAuthentication() and authenticationSucceeded() methods shall be implemented.

ETSI

28 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

<<Interface>>

IpClientAPILevelAuthentication

<<deprecated>> authenticate (challenge : in TpOctetSet) : TpOctetSet
abortAuthentication () : void
authenticationSucceeded () : void

challenge (challenge : in TpOctetSet) : TpOctetSet

6.3.1.1.1 Method <<deprecated>> authenticate()

This method is deprecated and replaced by challenge(). It shall only be used when the deprecated method
initiateAuthentication() is used on the Iplnitial interface instead of initiateAuthenticationWithVersion(). This method
will be removed in alater release of the specification.

This method is used by the framework to authenticate the client. The challenge will be encrypted using the mechanism
prescribed by selectEncryptionMethod. The client must respond with the correct responses to the challenges presented
by the framework. The number of exchanges is dependent on the policies of each side. The authentication of the client
is deemed successful when the authenticationSucceeded method isinvoked by the Framework.

Theinvocation of this method may be interleaved with authenticate() calls by the client on the
IpAPILevel Authentication interface. The client shall respond immediately to authentication challenges from the
Framework, and not wait until the Framework has responded to any challenge the client may issue.

Returns <response> : This s the response of the client application to the challenge of the framework in the current
sequence. The response will be based on the challenge data, decrypted with the mechanism prescribed by
selectEncryptionM ethod().

Parameters

challenge: in TpOctetSet

The challenge presented by the framework to be responded to by the client. The challenge mechanism used will bein
accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol in RFC 1994.
The challenge will be encrypted with the mechanism prescribed by sel ectEncryptionMethod().

Returns
TpOctetSet

6.3.1.1.2 Method abortAuthentication()

The framework uses this method to abort the authentication process where the client is authenticating the Framework.
This method isinvoked if the framework wishes to abort the authentication process before it has been authenticated by
the client, (unless the client responded incorrectly to a challenge in which case no further communication with the client
should occur.) Callsto this method after the Framework has been authenticated by the client shall not result in an
immediate removal of the Framework's authentication (the client may wish to authenticate the Framework again,
however).

Parameters
No Parameters were identified for this method.

ETSI

29 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

6.3.1.1.3 Method authenticationSucceeded()

The Framework uses this method to inform the client of the success of the authentication attempt. The client may
invoke requestAccess on the Framework's APILevel Authentication interface following invocation of this method.

Parameters
No Parameters were identified for this method.

6.3.1.1.4 Method challenge()

This method is used by the framework to authenticate the client. The client must respond with the correct responses to
the challenges presented by the framework. The number of exchanges is dependent on the policies of each side. The
authentication of the client is deemed successful when the authenti cationSucceeded method is invoked by the
Framework.

The invocation of this method may be interleaved with challenge() calls by the client on the IpAPILevel Authentication
interface. The client shall respond immediately to authentication challenges from the Framework, and not wait until the
Framework has responded to any challenge the client may issue.

This method shall only be used when the method initiateA uthenticationWithVersion() is used on the Iplnitial interface.

Returns <response> : Thisisthe response of the client application to the challenge of the framework in the current
sequence. The formatting and construction of this parameter shall be according to section 4.1 of RFC 1994. A complete
CHAP Response packet shall be used to carry the response octet set. That octet set will be the result of applying the
designated hashing a gorithm, which isindicated via the client's invocation of selectAuthenticationM echanism(), to an
octet set consisting of the concatenation of the CHAP Identifier, the shared "secret”, and the supplied challenge value.
The Name field of the CHAP Response packet must be present and contain avalid value in order for the CHAP
Response to be valid. However, the Name field is not used in the authentication process.

Steps for constructing the response octet set:

1. Extract the Identifier and Vaue fields from the CHAP Challenge packet passed in the challenge() method's
challenge parameter

2. Build an octet set consisting of the concatenation of the Identifier, the "shared secret", and the Value from the CHAP
Challenge

3. Compute the hash of the octet set resulting from the previous step using the designated hashing algorithm
4. Construct acomplete CHAP Response packet with the resulting octet set from previous step asthe CHAP Vaue
Steps for validating the response octet set:

1. Verify that the Identifier sent in the original CHAP Challenge matches the Identifier received in the CHAP
Response. If it does not, authentication fails.

2. Build an octet set consisting of the concatenation of the original Identifier, the "shared secret”, and the origina
challenge value

3. Compute the hash of the resulting octet set from the previous step using the designated hashing algorithm

4. Verify the octet set resulting from the previous step matches the octet set contained in the Value field of the CHAP
Response. A match indicates successful authentication.

Parameters

challenge: in TpOctetSet

The challenge presented by the framework to be responded to by the client. The challenge format used will bein
accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol (RFC 1994).

The challenge octet set must be formatted as a CHAP Challenge packet as defined in section 4.1 of RFC 1994. A
complete and properly formatted CHAP Challenge packet must be used. The Name field of the CHAP Challenge packet
must be present and contain avalid value in order for the CHAP Response to be valid. However, the Name field is not
used in the authentication process.

ETSI

30 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Steps for constructing the challenge octet set:
1. Create arandom challenge value (octet set). Per RFC 1994, this value must between 1 and 255 octetsin length.

2. Construct a CHAP Challenge packet based on 4.1 of RFC 1994 with the octet set from the previous step passed in
the Value field within the CHAP Challenge.

Returns
TpOctetSet

6.3.1.2 Interface Class IpClientAccess
Inherits from: Ipinterface;

IpClientAccess interface is offered by the client to the framework to alow it to initiate i nteractions during the access
session. Thisinterface and the terminateAccess() method shall be implemented by a client.

<<Interface>>

IpClientAccess

terminateAccess (terminationText : in TpString, signingAlgorithm : in TpSigningAlgorithm, digitalSignature : in
TpOctetSet) : void

6.3.1.2.1 Method terminateAccess()
The terminateAccess operation is used by the framework to end the client's access session.

After terminateAccess() isinvoked, the client will no longer be authenticated with the framework. The client will not be
able to use the references to any of the framework interfaces gained during the access session. Any calls to these
interfaces will fail. The framework shall also identify and terminate all remaining service instances that apply as aresult
of the client access termination. If at any point the framework'slevel of confidence in the identity of the client becomes
too low, perhaps due to re-authentication failing, the framework should terminate all outstanding service agreements for
that client, and should take steps to terminate the client's access session WITHOUT invoking terminateAccess() on the
client. This follows a generally accepted security model where the framework has decided that it can no longer trust the
client and will therefore sever ALL contact with it.

Parameters

terminationText: in TpString
Thisisthe termination text describes the reason for the termination of the access session.

signingAlgorithm: in TpSigningAlgorithm

Thisisthe algorithm used to compute the digital signature. It shall be identical to the one chosen by the framework in
response to I pAccess.selectSigningAlgorithm(). If the signingAlgorithm is not the chosen one, isinvalid, or unknown to
the client, the P_INVALID_SIGNING_ALGORITHM exception will be thrown. The list of possible algorithmsis as
specified in the TpSigningAlgorithm table. The identifier used in this parameter must correspond to the digestAlgorithm
and signatureAlgorithm fields in the Signerinfo field in the digital Signature (see below).

ETSI

31 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

digitalSignature: in TpOctetSet

This contains a CM S (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data.
The signature is calculated and created as per section 5 of RFC 2630. The content is made of the termination text. The
"external signature” construct shall not be used (i.e. the eContent field in the EncapsulatedContentinfo field shall be
present and contain the termination text string). The signing-time attribute, as defined in section 11.3 of RFC 2630,
shall also be used to provide replay prevention. The framework uses this to confirmits identity to the client. The client
can check that the terminationText has been signed by the framework. If a match is made, the access sessionis
terminated, otherwise the P_INVALID_SIGNATURE exception will be thrown.

Raises

TpCommonExceptions, P INVALID SIGNING ALGORITHM, P INVALID SIGNATURE
6.3.1.3 Interface Class Iplinitial

Inherits from: Iplnterface;

The Initial Framework interface is used by the client to initiate the authentication with the Framework. Thisinterface
shall be implemented by a Framework. The initiateAuthentication() and the initiateAuthenticationWithVersion()
methods shall be implemented.

<<Interface>>

IpInitial

<<deprecated>> initiateAuthentication (clientDomain : in TpAuthDomain, authType : in TpAuthType) :
TpAuthDomain

initiateAuthenticationWithVersion (clientDomain : in TpAuthDomain, authType : in TpAuthType,
frameworkVersion : in TpVersion) : TpAuthDomain

6.3.1.3.1 Method <<deprecated>> initiateAuthentication()

This method is deprecated in this version, this means that it will be supported until the next major release of the present
document.

This method isinvoked by the client to start the process of authentication with the framework, and request the use of a
specific authentication method.

Returns <fwDomain> : This provides the client with aframework identifier, and a reference to call the authentication
interface of the framework.

structure TpAuthDomain {
domainiD: TpDomainiD;
authinterface: IplnterfaceRef;
1

The domainiD parameter is an identifier for the framework (i.e. TpFwID). It is used to identify the framework to the
client.

The authinterface parameter is a reference to the authentication interface of the framework. The type of thisinterfaceis
defined by the authType parameter. The client uses thisinterface to authenticate with the framework.

ETSI

32 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Parameters

clientDomain: in TpAuthDomain
Thisidentifies the client domain to the framework, and provides a reference to the authentication interface.

structure TpAuthDomain {
domainlD: TpDomainlD;
authinterface: IplnterfaceRef;
¥

The domainiD parameter is an identifier either for aclient application (i.e. TpClientAppID) or for an enterprise operator
(i.e. TPENtOpID), or for an instance of a service for which a client application has signed a service agreement (i.e.
TpServicel nstancel D), or for a service supplier (i.e. TpServiceSupplierlD). It is used to identify the client domain to the
framework, (see authenticate() on IpAPILevel Authentication). If the framework does not recognise the domainiD, the
framework returns an error code (P_INVALID_DOMAIN_ID).

A client application (identifiable by a given TpClientAppl D) may optionaly initiate authentication with the Framework
by invoking this method multiple times. The Framework may elect to reject these subsequent requests, or may choose to
associate them together asindependent sessions under the same TpClientApplD.

The authlnterface parameter is areference to call the authentication interface of the client. The type of thisinterfaceis
defined by the authType parameter. If the interface referenceis not of the correct type, the framework returns an error
code (P_INVALID_INTERFACE_TYPE).

authType: in TpAuthType

Thisidentifies the type of authentication mechanism requested by the client. It provides operators and clients with the
opportunity to use an alternative to the API level Authentication interface, e.g. an implementation specific
authentication mechanism like CORBA Security, using the |pAuthentication interface, or Operator specific
Authentication interfaces. OSA API level Authentication isthe default authentication mechanism
(P_OSA_AUTHENTICATION). If P_OSA_AUTHENTICATION is selected, then the clientDomain and fwDomain
authlnterface parameters are references to interfaces of type Ip(Client) APILevel Authentication. If
P_AUTHENTICATION is selected, the fwDomain authl nterface parameter references to interfaces of type

I pAuthentication which is used when an underlying distribution technology authentication mechanism is used.

Returns
TpAuthDomain
Raises

TpCommonExceptions, P _INVALID DOMAIN ID, P INVALID INTERFACE TYPE,
P _INVALID AUTH TYPE

6.3.1.3.2 Method initiateAuthenticationWithVersion()

This method isinvoked by the client to start the process of authentication with the framework, and request the use of a
specific authentication method using the new method with support for backward compatibility in the framework. The
returned fwDomain authl nterface will be selected to match the proposed version from the Client in the Framework
response. |f the Framework cannot work with the proposed framework version the framework returns an error code
(P_INVALID_VERSION).

Returns <fwDomain> : This provides the client with aframework identifier, and a reference to call the authentication
interface of the framework.

structure TpAuthDomain {
domainlD: TpDomainiD;
authinterface: IpInterfaceRef;
h

The domainlD parameter is an identifier for the framework (i.e. TpFwID). It is used to identify the framework to the
client.

ETSI

33 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

The authlnterface parameter is a reference to the authentication interface of the framework that is unique for each
requesting client. The type of thisinterface is defined by the authType parameter. The client usesthisinterface to
authenticate with the framework.

Note, there are no identifiers used in the authentication interface to correlate requests and responses, therefore the
authentication interface may not be shared amongst multiple clients.

Parameters

clientDomain: in TpAuthDomain
Thisidentifies the client domain to the framework, and provides a reference to the authentication interface.

structure TpAuthDomain {
domainiD: TpDomainiD;
authinterface: IplnterfaceRef;
b

The domainlD parameter is an identifier either for aclient application (i.e. TpClientApplD) or for an enterprise operator
(i.e. TpENtOpID), or for an instance of a service for which a client application has signed a service agreement (i.e.
TpServicelnstancel D), or for a service supplier (i.e. TpServiceSupplierID). It is used to identify the client domain to the
framework, (see challenge() on IpAPILevel Authentication). If the framework does not recognise the domainiD, the
framework returns an error code (P_INVALID_DOMAIN_ID).

A client application (identifiable by a given TpClientAppl D) may optionally initiate authentication with the Framework
by invoking this method multiple times. The Framework may elect to reject these subsequent requests, or may choose to
associate them together asindependent sessions under the same TpClientApplD.

The authinterface parameter is areference to call the authentication interface of the client. The type of thisinterfaceis
defined by the authType parameter. If the interface reference is not of the correct type, the framework returns an error
code (P_INVALID_INTERFACE_TYPE).

authType: in TpAuthType

Thisidentifies the type of authentication mechanism requested by the client. It provides operators and clients with the
opportunity to use an aternative to the API level Authentication interface, e.g. an implementation specific
authentication mechanism like CORBA Security, using the I pAuthentication interface, or Operator specific
Authentication interfaces. OSA API level Authentication is the default authentication mechanism
(P_OSA_AUTHENTICATION). If P_OSA_AUTHENTICATION is selected, then the clientDomain and fwDomain
authl nterface parameters are references to interfaces of type Ip(Client)APILevel Authentication. If
P_AUTHENTICATION is selected, the fwDomain authl nterface parameter references to interfaces of type
IpAuthentication that is used when an underlying distribution technology authentication mechanism is used.

frameworkVersion: in TpVersion

Thisidentifies the version of the Framework implemented in the client. The TpVersion is a String containing the
version number. Valid version numbers are defined in the respective framework specification.

Returns
TpAuthDomain
Raises

TpCommonExceptions, P _INVALID DOMAIN ID, P INVALID INTERFACE TYPE,
P _INVALID AUTH TYPE, P_INVALID VERSION

6.3.1.4 Interface Class IpAuthentication
Inherits from: Ipinterface;

The Authentication Framework interface is used by client to request access to other interfaces supported by the
Framework. The authentication process should in this case be done with some underlying distribution technology

ETSI

34 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

authentication mechanism, e.g. CORBA Security.
At least one of IpAuthentication or IpAPILevel Authentication interfaces shall be implemented by a Framework as a
minimum requirement. The requestAccess() method shall be implemented in each.

<<Interface>>

IpAuthentication

requestAccess (accessType : in TpAccessType, clientAccessinterface : in IpinterfaceRef) : IpInterfaceRef

6.3.1.4.1 Method requestAccess()

Once the client has been authenticated by the framework, the client may invoke the requestAccess operation on the
IpAuthentication or IpAPILevel Authentication interface. This allows the client to request the type of access they
require. If they request P_OSA_ACCESS, then areference to the | pAccess interface is returned. (Operators can define
their own access interfaces to satisfy client requirements for different types of access.)

If this method is called before the client has been successfully authenticated, then the request fails, and an error code
(P_ACCESS_DENIED) isreturned.

This method may be invoked by the client immediately on IpAuthentication, when API Level authentication is not
being used, since thereis no indication to the client at API level that it is authenticated with the Framework.

Returns <fwA ccessinterface> : This provides the reference for the client to call the access interface of the framework.
The access reference provided is unique to the requesting client.
Parameters

accessType: in TpAccessType

Thisidentifies the type of access interface requested by the client. If the framework does not provide the type of access
identified by accessType, then an error code (P_INVALID_ACCESS_TYPE) isreturned.

clientAccessInterface: in IpInterfaceRef

This provides the reference for the framework to call the access interface of the client. If the interface reference is not of
the correct type, the framework returns an error code (P_INVALID _INTERFACE_TYPE).

Returns
IpInterfaceRef
Raises

TpCommonExceptions, P_ACCESS DENIED, P INVALID ACCESS TYPE,
P_INVALID INTERFACE TYPE

6.3.1.5 Interface Class IpAPILevelAuthentication
Inherits from: IpAuthentication;

The API Level Authentication Framework interface is used by the client to authenticate the Framework. It is also used
to initiate the authentication process.
If the IpAPILevel Authentication interface isimplemented by a Framework, then selectEncryptionMethod(),

ETSI

35 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

sel ectA uthenti cationM echanism(), authenticate(), challenge(), abortAuthentication() and authenticationSucceeded ()
shall be implemented. | pAPILevel Authentication inherits the requirements of 1pAuthentication, therefore
requestAccess() shall be implemented.

<<Interface>>

IpAPILevelAuthentication

<<deprecated>> selectEncryptionMethod (encryptionCaps : in TpEncryptionCapabilityList) :
TpEncryptionCapability

<<deprecated>> authenticate (challenge : in TpOctetSet) : TpOctetSet

abortAuthentication () : void

authenticationSucceeded () : void

selectAuthenticationMechanism (authMechanismList : in TpAuthMechanismList) : TpAuthMechanism
challenge (challenge : in TpOctetSet) : TpOctetSet

6.3.1.5.1 Method <<deprecated>> selectEncryptionMethod()

This method is deprecated and replaced by selectAuthenticationMechanism(). It shall only be used when the
IpAPILevel Authentication interface is obtained by using the deprecated method initiateA uthentication() instead of
initiateA uthenticationWithVersion() on the Iplnitial interface. This method will be removed in alater release.

The client uses this method to initiate the authentication process. The framework returns its preferred mechanism. This
should be within capahility of the client. If a mechanism that is acceptable to the framework within the capability of the
client cannot be found, the framework throwsthe P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY exception.
Once the framework has returned its preferred mechanism, it will wait for a predefined unit of time before invoking the
client's authenticate() method (the wait isto ensure that the client can initialise any resources necessary to use the
prescribed encryption method).

Returns <prescribedMethod> : Thisis returned by the framework to indicate the mechanism preferred by the framework
for the encryption process. If the value of the prescribedM ethod returned by the framework is not understood by the
client, it is considered a catastrophic error and the client must abort.

Parameters

encryptionCaps: in TpEncryptionCapabilityList
Thisisthe means by which the encryption mechanisms supported by the client are conveyed to the framework.

Returns
TpEncryptionCapability
Raises

TpCommonExceptions, P_ACCESS DENIED,
P NO ACCEPTABLE ENCRYPTION CAPABILITY

ETSI

36 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

6.3.1.5.2 Method <<deprecated>> authenticate()

This method is deprecated and replaced by challenge(). It shall only be used when the IpAPILevel Authentication
interface is obtained by using the deprecated method initiateAuthentication() instead of
initiateAuthenticationWithVersion() on the Iplnitial interface. This method will be removed in alater release.

This method is used by the client to authenticate the framework. The challenge will be encrypted using the mechanism
prescribed by selectEncryptionMethod. The framework must respond with the correct responses to the challenges
presented by the client. The domainiD received in the initiateA uthentication() can be used by the framework to
reference the correct public key for the client (the key management system is currently outside of the scope of the OSA
APIs). The number of exchanges is dependent on the policies of each side. The authentication of the framework is
deemed successful when the authenticationSucceeded method isinvoked by the client.

Theinvocation of this method may be interleaved with authenticate() calls by the framework on the client's
APILevel Authentication interface.

Returns <response> : Thisisthe response of the framework to the challenge of the client in the current sequence. The
response will be based on the challenge data, decrypted with the mechanism prescribed by selectEncryptionMethod().

Parameters

challenge: in TpOctetSet

The challenge presented by the client to be responded to by the framework. The challenge mechanism used will bein
accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol (RFC 1994).
The challenge will be encrypted with the mechanism prescribed by selectEncryptionMethod().

Returns

TpOctetSet

Raises

TpCommonExceptions, P_ACCESS DENIED

6.3.1.5.3 Method abortAuthentication()

The client uses this method to abort the authentication process where the framework is authenticating the client. This
method is invoked if the client no longer wishes to continue the authentication process, (unless the framework
responded incorrectly to a challenge in which case no further communication with the framework should occur.) If this
method has been invoked before the client has been authenticated by the Framework, calls to the requestAccess
operation on |pAPILevel Authentication will return an error code (P_ACCESS _DENIED), until the client has been
properly authenticated. If this method isinvoked after the client has been authenticated by the Framework, it shall not
result in the immediate removal of the client's authentication. (The Framework may wish to authenticate the client
again, however).

Parameters
No Parameters were identified for this method.

Raises
TpCommonExceptions, P _ACCESS DENIED

6.3.1.5.4 Method authenticationSucceeded()
The client uses this method to inform the framework of the success of the authentication attempt. Calls to this method

have no impact on the client's rights to call requestAccess(), which depend exclusively on the framework'’s successful
authentication of the client.

ETSI

37 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Parameters
No Parameters were identified for this method.

Raises
TpCommonExceptions, P_ACCESS DENIED

6.3.1.5.5 Method selectAuthenticationMechanism()

The client uses this method to inform the Framework of the different authentication mechanisms it supports as part of
API level Authentication. The Framework will select one of the suggested authentication mechanisms and that
mechanism shall be used for authentication by both Framework and Client. The authentication mechanism chosen as a
result of the response to this method remains valid for an instance of IpAPILevel Authentication and until this method is
re-invoked by the client. If a mechanism that is acceptable to the framework within the capability of the client cannot be
found, the framework throwsthe P_NO_ACCEPTABLE_AUTHENTICATION_MECHANISM exception.

This method shall only be used when the IpAPILevel Authentication interface is obtained by using
initiateAuthenticationWithVersion() on the Iplnitial interface.

Returns: selectedMechanism. Thisis the authentication mechanism chosen by the Framework. The chosen mechanism
shall be taken from the list of mechanisms proposed by the Client.

Parameters

authMechanismlList: in TpAuthMechanismList
Thelist of authentication mechanisms supported by the client.

Returns
TpAuthMechanism

Raises

TpCommonExceptions, P_ACCESS DENIED,
P NO ACCEPTABLE AUTHENTICATION MECHANISM

6.3.1.5.6 Method challenge()

This method is used by the client to authenticate the framework. The framework must respond with the correct
responses to the challenges presented by the client. The domainl D received in the initiateA uthenticationWithV ersion()
can be used by the framework to reference the correct public key for the client (the key management systemis currently
outside of the scope of the OSA APIs). The number of exchangesis dependent on the policies of each side. The
authentication of the framework is deemed successful when the authenticationSucceeded method isinvoked by the
client.

Theinvocation of this method may be interleaved with challenge() calls by the framework on the client's
APILevel Authentication interface.

This method shall only be used when the | pAPILevel Authentication interface is obtained by using
initiateA uthenticationWithVersion() on the Iplnitial interface.

Returns <response> : Thisis the response of the framework to the challenge of the client in the current sequence. The
formatting and construction of this parameter shall be according to section 4.1 of RFC 1994. A complete CHAP
Response packet shall be used to carry the response octet set. That octet set will be the result of applying the designated
hashing a gorithm, which isindicated via the client's invocation of selectAuthenticationM echanism(), to an octet set
consisting of the concatenation of the CHAP Identifier, the shared "secret”, and the supplied challenge value. The Name
field of the CHAP Response packet must be present and contain avalid value in order for the CHAP Response to be
valid. However, the Name field is not used in the authentication process.

Steps for constructing the response octet set:

ETSI

38 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)
1. Extract the Identifier and Vaue fields from the CHAP Challenge packet passed in the challenge() method's
challenge parameter

2. Build an octet set consisting of the concatenation of the Identifier, the "shared secret", and the Value from the CHAP
Challenge

3. Compute the hash of the octet set resulting from the previous step using the designated hashing algorithm
4. Construct a complete CHAP Response packet with the resulting octet set from previous step as the CHAP Value
Steps for validating the response octet set:

1. Verify that the Identifier sent in the original CHAP Challenge matches the Identifier received in the CHAP
Response. If it does not, authentication fails.

2. Build an octet set consisting of the concatenation of the original Identifier, the "shared secret”, and the original
challenge value

3. Compute the hash of the resulting octet set from the previous step using the designated hashing algorithm
4. Verify the octet set resulting from the previous step matches the octet set contained in the Value field of the CHAP

Response. A match indicates successful authentication.

Parameters

challenge: in TpOctetSet

The challenge presented by the client to be responded to by the framework. The challenge format used will bein
accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol (RFC 1994).

The challenge octet set must be formatted as a CHAP Challenge packet as defined in section 4.1 of RFC 1994. A
complete and properly formatted CHAP Challenge packet must be used. The Name field of the CHAP Challenge packet
must be present and contain avalid value in order for the CHAP Response to be valid. However, the Name field is not
used in the authentication process.

Steps for constructing the challenge octet set:

1. Create arandom challenge value (octet set). Per RFC 1994, this value must between 1 and 255 octetsin length.

2. Construct a CHAP Challenge packet based on 4.1 of RFC 1994 with the octet set from the previous step passed in
the Value field within the CHAP Challenge.

Returns
TpOctetSet

Raises
TpCommonExceptions, P _ACCESS DENIED

6.3.1.6 Interface Class IpAccess
Inherits from: Iplnterface;

This interface shall be implemented by a Framework. As a minimum requirement the obtainlnterface() and
obtainlnterfaceWithCallback(), selectSigningAlgorithm() and terminateAccess() methods shall be implemented.

ETSI

39 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

<<Interface>>

IpAccess

obtaininterface (interfaceName : in TpinterfaceName) : IpinterfaceRef

obtaininterfaceWithCallback (interfaceName : in TplnterfaceName, clientinterface : in IpinterfaceRef) :
IpinterfaceRef

<<deprecated>> endAccess (endAccessProperties : in TpEndAccessProperties) : void

listinterfaces () : TpinterfaceNameList

<<deprecated>> releaselnterface (interfaceName : in TpinterfaceName) : void

selectSigningAlgorithm (signingAlgorithmCaps : in TpSigningAlgorithmCapabilityList) : TpSigningAlgorithm
terminateAccess (terminationText : in TpString, digitalSignature : in TpOctetSet) : void

relinquishinterface (interfaceName : in TpinterfaceName, terminationText : in TpString, digitalSignature : in
TpOctetSet) : void

6.3.1.6.1 Method obtaininterface()

This method is used to obtain other framework interfaces. The client uses this method to obtain interface references to
other framework interfaces. (The obtainl nterfaceWithCallback method should be used if the client is required to supply
a callback interface to the framework.)

Returns <fwlInterface> : Thisisthe reference to the interface requested.

Parameters

interfaceName: in TpInterfaceName

The name of the framework interface to which areference to the interface is requested. If the interfaceNameisinvalid,
the framework returns an error code (P_INVALID_INTERFACE_NAME).

Returns
IpInterfaceRef
Raises

TpCommonExceptions, P_ACCESS DENIED, P INVALID INTERFACE NAME

6.3.1.6.2 Method obtaininterfaceWithCallback()

This method is used to obtain other framework interfaces. The client uses this method to obtain interface referencesto
other framework interfaces, when it isrequired to supply a callback interface to the framework. (The obtaininterface
method should be used when no callback interface needs to be supplied.)

Returns <fwlinterface> : Thisisthe reference to the interface requested.

Parameters

interfaceName: in TpInterfaceName

The name of the framework interface to which areference to the interface is requested. If the interfaceName isinvalid,
the framework returns an error code (P_INVALID_INTERFACE_NAME).

ETSI

40 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

clientInterface: in IpInterfaceRef

Thisisthe reference to the client interface, which is used for callbacks. If a client interface is not needed, then this
method should not be used. (The obtainlnterface method should be used when no callback interface needsto be
supplied.) If the interface reference is not of the correct type, the framework returns an error code
(P_INVALID_INTERFACE_TYPE).

Returns
IpInterfaceRef
Raises

TpCommonExceptions, P_ACCESS DENIED, P INVALID INTERFACE NAME,
P INVALID INTERFACE TYPE

6.3.1.6.3 Method <<deprecated>> endAccess()

This method is deprecated and will be removed in alater release. It is replaced with terminateAccess. The endAccess
operation is used by the client to request that its access session with the framework is ended. After it isinvoked, the
client will no longer be authenticated with the framework. The client will not be able to use the references to any of the
framework interfaces gained during the access session. Any calls to these interfaces will fail.

Parameters

endAccessProperties: in TpEndAccessProperties
Thisisalist of properties that can be used to tell the framework the actions to perform when ending the access session

(e.0. exigting service sessions may be stopped, or left running). If a property is not recognised by the framework, an
error code (P_INVALID_PROPERTY) is returned.

Raises

TpCommonExceptions, P_ACCESS DENIED, P INVALID PROPERTY

6.3.1.6.4 Method listinterfaces()

The client uses this method to obtain the names of al interfaces supported by the framework. It can then obtain the
interfaces it wishes to use using either obtainl nterface() or obtainlnterfaceWithCallback().

Returns <frameworklnterfaces> : The frameworklnterfaces parameter contains alist of interfaces that the framework
akes available.

Parameters
No Parameters were identified for this method.

Returns
TpInterfaceNameList

Raises
TpCommonExceptions, P_ACCESS DENIED

6.3.1.6.5 Method <<deprecated>> releaselnterface()

This method is deprecated and will be removed in alater release. It is replaced with relinquishlinterface. The client uses
this method to release a framework interface that was obtained during this access session.

ETSI

41 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Parameters

interfaceName: in TpInterfaceName

Thisisthe name of the framework interface which is being released. If the interfaceName isinvalid, the framework
throwsthe P_INVALID_INTERFACE_NAME exception. If the interface has not been given to the client during this
access session, then the P_TASK_REFUSED exception will be thrown.

Raises
TpCommonExceptions, P_ACCESS DENIED, P INVALID INTERFACE NAME

6.3.1.6.6 Method selectSigningAlgorithm()

The client uses this method to inform the Framework of the different signing algorithms it supports for usein all cases
where digital signatures are required. The Framework will select one of the suggested a gorithms. This method shall be
the first method invoked by the client on IpAccess. The algorithm chosen as a result of the response to this method
remains valid for an instance of IpAccess and until this method is re-invoked by the client.

Subsequent invocations of selectSigningAlgorithm() may change the signing algorithm used during the access session.
However, once signServiceAgreement() has been called on the client by the framework, the signing algorithm currently
selected must be used for the client's invocation of signServiceAgreement() on the Framework as well as for subsequent
calls to terminateServiceAgreement(). Other operations requiring digital signatures will use the latest algorithm
specified by selectSigningAlgorithm().

If an algorithm that is acceptable to the framework within the capability of the client cannot be found, the framework
throwsthe P_NO_ACCEPTABLE_SIGNING_ALGORITHM exception.

Returns: selectedAlgorithm. Thisisthe signing algorithm chosen by the Framework. The chosen algorithm shall be
taken from the list proposed by the Client.

Parameters

signingAlgorithmCaps: in TpSigningAlgorithmCapabilityList
Thelist of signing algorithms supported by the client.

Returns

TpSigningAlgorithm

Raises

TpCommonExceptions, P_ACCESS DENIED, P NO ACCEPTABLE SIGNING ALGORITHM

6.3.1.6.7 Method terminateAccess()

The terminateAccess method is used by the client to request that its access session with the framework is ended. After it
isinvoked, the client will no longer be authenticated with the framework. The client will not be able to use the
references to any of the framework interfaces gained during the access session. Any callsto these interfaces will fail.
Also, al remaining service instances created by the framework either directly in this access session or on behalf of the
client during this access session shall be terminated.

Parameters

terminationText: in TpString
Thisisthe termination text describes the reason for the termination of the access session.

ETSI

42 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

digitalSignature: in TpOctetSet

This contains a CM S (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data.
The signature is calculated and created as per section 5 of RFC 2630 using the latest signing al gorithm selected with
selectSigningAlgorithm(). The content is made of the termination text. The "external signature” construct shall not be
used (i.e. the eContent field in the Encapsul atedContentInfo field shall be present and contain the termination text
string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay
prevention. The client uses this to confirm itsidentity to the framework. The framework can check that the
terminationText has been signed by the client. If a match is made, the access session is terminated, otherwise the
P_INVALID_SIGNATURE exception will be thrown.

Raises
TpCommonExceptions, P_INVALID SIGNATURE

6.3.1.6.8 Method relinquishinterface()

The client uses this method to release an instance of a framework interface that was obtained during this access session.

Parameters

interfaceName: in TpInterfaceName

Thisisthe name of the framework interface which is being released. If the interfaceName isinvalid, the framework
throwsthe P_INVALID_INTERFACE_NAME exception. If the interface has not been given to the client during this
access session, then the P_TASK_REFUSED exception will be thrown.

terminationText: in TpString

Thisisthe termination text describes the reason for the release of the interface. Thistext is required simply because the
digital Signature parameter requires a terminationText to sign.

digitalSignature: in TpOctetSet

This contains a CM S (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data.
The signature is calculated and created as per section 5 of RFC 2630 using the latest signing algorithm selected with
selectSigningAlgorithm(). The content is made of the termination text. The "external signature” construct shall not be
used (i.e. the eContent field in the EncapsulatedContentInfo field shall be present and contain the termination text
string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay
prevention. The client uses this to confirm itsidentity to the framework. The framework can check that the
terminationText has been signed by the client. If a match is made, the interface is released, otherwise the
P_INVALID_SIGNATURE exception will be thrown.

Raises
TpCommonExceptions, P INVALID SIGNATURE, P INVALID INTERFACE NAME

6.4 State Transition Diagrams

This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the
gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can
be invoked by the client are shown. Methods not shown for a specific state are not relevant for that state and will return
an exception. Apart from the methods that can be invoked by the client also eventsinternal to the gateway or related to
network events are shown together with the resulting event or action performed by the gateway. These internal events
are shown between quotation marks.

ETSI

6.4.1

6.4.1.1

43 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Trust and Security Management State Transition Diagrams

State Transition Diagrams for IplInitial

initiateAuthentication / return new IpAuthe
initiat eAuthentic ationWithVersion / return
IpAuthentication

Active

AN /

Figure 2: State Transition Diagram for Iplnitial

ETSI

44 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

6.4.1.2 State Transition Diagrams for IpAPILevelAuthentication

Ipinitial.initiateAuthentication
Idle
selectEncryptionMethod

authenticate / Client

lectE ncryptionMeth
challenges FW selectEncryptionMethod

Authenticating
‘ Framework

authenticate / Client

) FW Aborts
re-authenticates FW

NpClientAPILevelAut hentication.

L) L abortAuthentication
authenticationSucceeded / Client satisfied

with FW response

selectEncryptionMethod

Framework
‘ Authenticated

Figure 3: STD for IpAPILevelAuthentication: Client authenticates Framework using deprecated
initiateAuthentication() and authenticate() method combination

6.4.1.2.1 Idle State

When the client has invoked the Iplnitia initiateAuthentication or the initiateA uthenticationWithV ersion method, an
object implementing the IpAPILevel Authentication interface is created. If the client used initiateA uthentication, the
client now hasto provide its encryption capabilities by invoking selectEncryptionMethod. If the client used
initiateAuthenticationWithVersion, the client now has to select the authentication mechanism to be used using

sel ectA uthenti cationM echanism.

ETSI

45 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

6.4.1.2.2 Authenticating Framework State

When entering this state, the client requests the Framework to authenticate itself. The client invokes the authenticate
method on the Framework if it has used initiateAuthentication followed by selectEncryptionM ethod (deprecated
mechanism). The client invokes the challenge on the Framework if it has used sel ectAuthenticationM echanism followed
by selectAuthenticationM echanism. The Framework may either buffer the requests and respond when the client has
been authenticated, or respond immediately, depending on policy. When the client has processed the response from the
authenticate request on the Framework, the response is analysed. If the response is valid but the authentication process
is not yet complete, then another authenticate request or challenge is sent to the Framework. If the responseisvalid and
the authentication process has been completed, then atransition to the state Framework Authenticated is made and the
Framework isinformed of its success by invoking authenticationSucceeded. At any time the Framework may abort the
authentication process by calling abortAuthentication on the client's APILevel Authentication interface. The client may
also call selectEncryptionMethod to choose other encryption capabilities, or call selectAuthenticationM echanism to
choose another hash algorithm.

6.4.1.2.3 Framework Authenticated State

This state is entered when the client indicates that the Framework has been authenticated, by calling
authenticationSucceeded on the Framework's | pAPILevel Authentication interface. The client may at any time request
re-authentication of the Framework, by calling the authenticate method if it had previously used the
initiateAuthentication method on Iplnitial, or by calling the challenge method if it had previously used the
initiateAuthenticationWithVersion method on Iplnitial, resulting in atransition back to Authenticating Framework state.
The client may also call selectEncryptionMethod to choose other encryption capabilities, or call

sel ectA uthenti cationM echanism to choose another hash algorithm.

6.4.1.2.4 Authenticating Client State

When entering this state, the Framework requests the client to authenticate itself. The Framework invokes the
authenticate method on the client if the client has used initiateA uthentication followed by selectEncryptionMethod
(deprecated mechanism). The Framework invokes the challenge on the client if the client has used

sel ectAuthenti cationM echanism followed by sel ectAuthenticationM echanism. When the Framework has processed the
response from the Authenticate request on the client, the response is analysed. If the responseis valid but the
authentication processis not yet complete, then another Authenticate request or challengeis sent to the client. If the
response is valid and the authentication process has been completed, then a transition to the state Client Authenticated is
made, the client isinformed of its success by invoking authenticationSucceeded. In case the response is not valid, the
Authentication object is destroyed. Thisimplies that the client has to re-initiate the authentication by calling once more
the initiateAuthentication or the initiateAuthenticationWithVersion method on the Iplnitial interface. At any time the
client may abort the authentication process by calling abortAuthentication on the Framework's

IpAPILevel Authentication interface. The client may also call selectEncryptionMethod to choose other encryption
capabilities, or call selectAuthenticationM echanism to choose another hash agorithm.

6.4.1.2.5 Client Authenticated State

In this state the client is considered authenticated and is now allowed to request access to the IpAccessinterface If the
framework decides to re-authenticate the client, then the authenticate request or challenge, depending on whether
initiateAuthentication or initiateAuthenticationWithV ersion was previously used, is sent to the client and a transition
back to the AuthenticatingClient state occurs. The client may also call selectEncryptionMethod to choose other
encryption capabilities, or call selectAuthenticationM echanism to choose another hash algorithm.

ETSI

46

Ipinitial.initiateAut

henticationWithVersion

o

FW
NpClientAP ILewel Auther

selectAuthenticationMechanism

select AuthenticationMec hanism

Aborts
tication. abort Authentication

challenge / Client
challenges FW

Authenticating

‘ Framework

authenticationSucce

/ Client satisfied with FW

Framework

challenge
re-challenges

eded / Client

FW Aborts
"NpClientAP ILeel Authentic ation.
abortAuthentication

response

selectAuthenticationMechanism

‘ Framework
‘ Authenticated

Figure 4: STD for IpAPILevelAuthentication: Client authenticates Framework using
initiateAuthenticationWithVersion() and challenge() method combination

6.4.1.2.6 Idle State

When the client has invoked the Iplnitia initiateAuthentication or the initiateA uthenticationWithV ersion method, an
object implementing the IpAPILevel Authentication interface is created. If the client used initiateA uthentication, the
client now has to provide its encryption capabilities by invoking selectEncryptionMethod. If the client used

initiateA uthenticationWithVersion, the client now has to select the authentication mechanism to be used using

sel ectA uthenticationM echanism.

ETSI

Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

a7 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

6.4.1.2.7 Authenticating Framework State

When entering this state, the client requests the Framework to authenticate itself. The client invokes the authenticate
method on the Framework if it has used initiateAuthentication followed by selectEncryptionM ethod (deprecated
mechanism). The client invokes the challenge on the Framework if it has used sel ectAuthenticationM echanism followed
by selectAuthenticationM echanism. The Framework may either buffer the requests and respond when the client has
been authenticated, or respond immediately, depending on policy. When the client has processed the response from the
authenticate request on the Framework, the response is analysed. If the response is valid but the authentication process
is not yet complete, then another authenticate request or challenge is sent to the Framework. If the responseisvalid and
the authentication process has been completed, then atransition to the state Framework Authenticated is made and the
Framework isinformed of its success by invoking authenticationSucceeded. At any time the Framework may abort the
authentication process by calling abortAuthentication on the client's APILevel Authentication interface. The client may
also call selectEncryptionMethod to choose other encryption capabilities, or call selectAuthenticationM echanism to
choose another hash algorithm.

6.4.1.2.8 Framework Authenticated State

This state is entered when the client indicates that the Framework has been authenticated, by calling
authenticationSucceeded on the Framework's | pAPILevel Authentication interface. The client may at any time request
re-authentication of the Framework, by calling the authenticate method if it had previously used the
initiateAuthentication method on Iplnitial, or by calling the challenge method if it had previously used the
initiateAuthenticationWithVersion method on Iplnitial, resulting in atransition back to Authenticating Framework state.
The client may also call selectEncryptionMethod to choose other encryption capabilities, or call

sel ectA uthenti cationM echanism to choose another hash algorithm.

6.4.1.2.9 Authenticating Client State

When entering this state, the Framework requests the client to authenticate itself. The Framework invokes the
authenticate method on the client if the client has used initiateA uthentication followed by selectEncryptionMethod
(deprecated mechanism). The Framework invokes the challenge on the client if the client has used

sel ectAuthenti cationM echanism followed by sel ectAuthenticationM echanism. When the Framework has processed the
response from the Authenticate request on the client, the response is analysed. If the responseis valid but the
authentication processis not yet complete, then another Authenticate request or challengeis sent to the client. If the
response is valid and the authentication process has been completed, then a transition to the state Client Authenticated is
made, the client isinformed of its success by invoking authenticationSucceeded. In case the response is not valid, the
Authentication object is destroyed. Thisimplies that the client has to re-initiate the authentication by calling once more
the initiateAuthentication or the initiateAuthenticationWithVersion method on the Iplnitial interface. At any time the
client may abort the authentication process by calling abortAuthentication on the Framework's

IpAPILevel Authentication interface. The client may also call selectEncryptionMethod to choose other encryption
capabilities, or call selectAuthenticationM echanism to choose another hash agorithm.

6.4.1.2.10 Client Authenticated State

In this state the client is considered authenticated and is now allowed to request access to the IpAccessinterface If the
framework decides to re-authenticate the client, then the authenticate request or challenge, depending on whether
initiateAuthentication or initiateAuthenticationWithV ersion was previously used, is sent to the client and a transition
back to the AuthenticatingClient state occurs. The client may also call selectEncryptionMethod to choose other
encryption capabilities, or call selectAuthenticationM echanism to choose another hash algorithm.

ETSI

48 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Ipinitial.initiateAuthentication

requestAccess
"P_ACCESS_DENIED /.\

ldle
Invalid Client Response

selectEncryptionMethod

requestAccess .
P_ACCESS_DENIED) FW challenge_s C!|ent)
. ApClientAPILevelAuthentication.authenticate
selectEncryptionMethod

Authenticating

Client

abortAuthentication /
Client Aborts

FW satisfied with|Client response
ANpClientAPILewelA uthenticatipn.authenticationSucceeded

requestAccess / new IpAccess
selectEncryptionMethod

Client

Authenticated

FW re-authenticates Client
ANpClientAPILevelAuthentication.authenticate

Figure 5. STD for IpAPILevelAuthentication: Framework authenticates Client using deprecated
initiateAuthentication() and authenticate() method combination

6.4.1.2.11 Idle State

When the client has invoked the Iplnitial initiateAuthentication or the initiateAuthenticationWithV ersion method, an
object implementing the IpAPILevel Authentication interface is created. If the client used initiateAuthentication, the
client now has to provide its encryption capabilities by invoking selectEncryptionMethod. If the client used

initiateA uthenticationWithVersion, the client now has to select the authentication mechanism to be used using

sel ectA uthenti cationM echanism.

6.4.1.2.12 Authenticating Framework State

When entering this state, the client requests the Framework to authenticate itself. The client invokes the authenticate
method on the Framework if it has used initiateAuthentication followed by selectEncryptionM ethod (deprecated
mechanism). The client invokes the challenge on the Framework if it has used selectAuthenticationM echanism followed
by selectAuthenticationM echanism. The Framework may either buffer the requests and respond when the client has
been authenticated, or respond immediately, depending on policy. When the client has processed the response from the
authenticate request on the Framework, the response is analysed. If the response is valid but the authentication process
is not yet complete, then another authenticate request or challenge is sent to the Framework. If the responseisvalid and
the authentication process has been completed, then atransition to the state Framework Authenticated is made and the
Framework isinformed of its success by invoking authenticationSucceeded. At any time the Framework may abort the
authentication process by calling abortAuthentication on the client's APILevel Authentication interface. The client may
aso call selectEncryptionMethod to choose other encryption capabilities, or call selectAuthenticationMechanism to
choose another hash algorithm.

ETSI

49 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

6.4.1.2.13 Framework Authenticated State

This state is entered when the client indicates that the Framework has been authenticated, by calling
authenticationSucceeded on the Framework's IpAPILevel Authentication interface. The client may at any time request
re-authentication of the Framework, by calling the authenticate method if it had previously used the

initiateA uthentication method on Iplnitial, or by calling the challenge method if it had previously used the

initiateA uthenticationWithVersion method on Iplnitial, resulting in atransition back to Authenticating Framework state.
The client may also call selectEncryptionMethod to choose other encryption capabilities, or call

sel ectA uthenti cationM echanism to choose another hash a gorithm.

6.4.1.2.14 Authenticating Client State

When entering this state, the Framework requests the client to authenticate itself. The Framework invokes the
authenticate method on the client if the client has used initiateAuthentication followed by selectEncryptionM ethod
(deprecated mechanism). The Framework invokes the challenge on the client if the client has used

sel ectA uthenti cationM echanism followed by sel ectAuthenticationM echanism. When the Framework has processed the
response from the Authenticate request on the client, the response is analysed. If the responseis valid but the
authentication process is not yet complete, then another Authenticate request or challenge is sent to the client. If the
responseis valid and the authentication process has been completed, then atransition to the state Client Authenticated is
made, the client isinformed of its success by invoking authenticationSucceeded. In case the response is not valid, the
Authentication object is destroyed. Thisimplies that the client has to re-initiate the authentication by calling once more
the initiateAuthentication or the initiateAuthenticationWithVersion method on the Iplnitial interface. At any time the
client may abort the authentication process by calling abortAuthentication on the Framework's

IpAPILevel Authentication interface. The client may also call selectEncryptionMethod to choose other encryption
capabilities, or call selectAuthenticationM echanism to choose another hash algorithm.

6.4.1.2.15 Client Authenticated State

In this state the client is considered authenticated and is now allowed to request access to the IpAccessinterface If the
framework decides to re-authenticate the client, then the authenticate request or challenge, depending on whether
initiateAuthentication or initiateA uthenticationWithV ersion was previously used, is sent to the client and atransition
back to the AuthenticatingClient state occurs. The client may also call selectEncryptionMethod to choose other
encryption capabilities, or call selectAuthenticationM echanism to choose another hash algorithm.

ETSI

50 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

IpInitial.initiateA uthenticationWith Version

requestAccess
"P_ACCESS_DENIED

Idle “@
-
Invalid Client Response

selectAuthenticationMechanism

requestAccess
"P_ACCESS_DENIED

selectAuthenticationMechanism

FW challenges Client
ANpClientAPILewvelAuthentication.challenge

Authenticating

ﬂ Client

abortAuthentication
FW satisfied with Client response / Client Aborts

ApClientAPILevelAuthentication.authenticationSucceede

requestAccess / new IpAccess
selectAuthenticationMechanism

FW rechallenges Client
ANpClientAPILeyelAuthentication.challenge Client

Authenticated

Figure 6: STD for IpAPILevelAuthentication: Framework authenticates Client using
initiateAuthenticationWithVersion() and challenge() method combination

6.4.1.2.16 Idle State

When the client has invoked the Iplnitia initiateAuthentication or the initiateA uthenticationWithV ersion method, an
object implementing the IpAPILevel Authentication interface is created. If the client used initiateA uthentication, the
client now hasto provide its encryption capabilities by invoking selectEncryptionMethod. If the client used
initiateAuthenticationWithVersion, the client now has to select the authentication mechanism to be used using

sel ectAuthenti cationM echanism.

6.4.1.2.17 Authenticating Framework State

When entering this state, the client requests the Framework to authenticate itself. The client invokes the authenticate
method on the Framework if it has used initiateAuthentication followed by selectEncryptionMethod (deprecated
mechanism). The client invokes the challenge on the Framework if it has used sel ectAuthenticationM echanism followed
by selectAuthenticationM echanism. The Framework may either buffer the requests and respond when the client has
been authenticated, or respond immediately, depending on policy. When the client has processed the response from the
authenticate request on the Framework, the response is analysed. If the responseis valid but the authentication process
isnot yet complete, then another authenticate request or challenge is sent to the Framework. If the responseisvalid and
the authentication process has been completed, then atransition to the state Framework Authenticated is made and the
Framework isinformed of its success by invoking authenticationSucceeded. At any time the Framework may abort the
authentication process by calling abortAuthentication on the client's APILevel Authentication interface. The client may
also call selectEncryptionMethod to choose other encryption capabilities, or call selectAuthenticationM echanism to
choose another hash algorithm.

ETSI

51 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

6.4.1.2.18 Framework Authenticated State

This state is entered when the client indicates that the Framework has been authenticated, by calling
authenticationSucceeded on the Framework's IpAPILevel Authentication interface. The client may at any time request
re-authentication of the Framework, by calling the authenticate method if it had previously used the

initiateA uthentication method on Iplnitial, or by calling the challenge method if it had previously used the

initiateA uthenticationWithVersion method on Iplnitial, resulting in atransition back to Authenticating Framework state.
The client may also call selectEncryptionMethod to choose other encryption capabilities, or call

sel ectA uthenti cationM echanism to choose another hash a gorithm.

6.4.1.2.19 Authenticating Client State

When entering this state, the Framework requests the client to authenticate itself. The Framework invokes the
authenticate method on the client if the client has used initiateAuthentication followed by selectEncryptionM ethod
(deprecated mechanism). The Framework invokes the challenge on the client if the client has used

sel ectAuthenti cationM echanism followed by sel ectAuthenticationMechanism. When the Framework has processed the
response from the Authenticate request on the client, the response is analysed. If the responseis valid but the
authentication process is not yet complete, then another Authenticate request or challenge is sent to the client. If the
responseis valid and the authentication process has been completed, then atransition to the state Client Authenticated is
made, the client isinformed of its success by invoking authenticationSucceeded. In case the response is not valid, the
Authentication object is destroyed. Thisimplies that the client has to re-initiate the authentication by calling once more
the initiateAuthentication or the initiateAuthenticationWithVersion method on the Iplnitial interface. At any time the
client may abort the authentication process by calling abortAuthentication on the Framework's

IpAPILevel Authentication interface. The client may also call selectEncryptionMethod to choose other encryption
capabilities, or call selectAuthenticationM echanism to choose another hash algorithm.

6.4.1.2.20 Client Authenticated State

In this state the client is considered authenticated and is now allowed to request access to the IpAccessinterface If the
framework decides to re-authenticate the client, then the authenticate request or challenge, depending on whether
initiateAuthentication or initiateA uthenticationWithV ersion was previously used, is sent to the client and atransition
back to the AuthenticatingClient state occurs. The client may also call selectEncryptionMethod to choose other
encryption capabilities, or call selectAuthenticationM echanism to choose another hash algorithm.

ETSI

52 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

6.4.1.3 State Transition Diagrams for IpAccess

IpAuthentication.requestAccess

obtaininterface / return requested FW interface
obtaininterfaceWithCallback / return requested FW ir

listinterfaces
-, selectSigningAlgorithm

ABIEE relinquishinterface
A J

network operator initiated access temir
/ destroy all interface objects used by the
NpClientAccess.terminateAccess
application initiated access terminatic
terminateAccess / destroy all interface objects us:

7 '/'\

w:)

L}

Figure 7. State Transition Diagram for IpAccess

6.4.1.3.1 Active State

When the client requests access to the Framework on the I pAuthentication (IpAPILevel Authentication) interface, an
object implementing the IpAccess interface is created. The client can now request other Framework interfaces,
including Service Discovery, Integrity Management, Service Subscription etc., and if at any point these framework
interfaces are no longer required, to relinquish these. In addition the client can select the signing agorithm that shall be
used during the access session in cases where a digital signature is required. When the client is no longer interested in
using the interfaces it calls the terminateAccess method. This results in the destruction of all interface objects used by
the client. In case the network operator decides that the client has no longer access to the interfaces the same will
happen.

ETSI

53 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

7 Framework-to-Application API

7.1 Sequence Diagrams

7.1.1 Event Notification Sequence Diagrams

7111 Enable Event Notification

Applogic . IpAppEventNotification . IpAccess : IpEventNotification

T

1: new()

. 2: obtaininterfaceWithCallback()
|

3: new()

4: createNotification()

5: reportNotification()

1. Thismessageis used to create an object implementing the I pAppEventNotification interface.

2: Thismessage is used to receive areference to the object implementing the IpEventNotification interface and set the
callback interface for the framework.

3: If thereis currently no object implementing the | pEventNotification interface, then oneis created using this
message.

4. createNotification(eventCriteria: in TpFwEventCriteria) : TpAssignmentID.

This message is used to enable the notification mechanism so that subsequent framework events can be sent to the
application. The framework event the application requests to be informed of is the availability of new SCFs.

Newly installed SCFs become available after the invocation of registerService and announceServiceAvailability on the
Framework. The application uses the input parameter eventCriteriato specify the SCFs of whose availability it wantsto
be notified: those specified in ServiceTypeNameList.

The result of thisinvocation has many similarities with the result of invoking listServiceTypes: in both cases the
application isinformed of the availability of alist of SCFs. The differences are:

ETSI

54 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

in the case of invoking listServiceTypes, the application has to take the initiative, but it isinformed of ALL SCFs
available

in the case of using the event notification mechanism, the application needs not take the initiative to ask about the
availability of SCFs, but it is only informed of the ones that are newly available.

Alternatively, or additionally, the application can request to be informed of SCFs becoming unavailable.
5: The application is notified of the availability of new SCFs of the requested type(s).

7.1.2 Integrity Management Sequence Diagrams

7.1.2.1 Load Management: Suspend/resume notification from application

This sequence diagram shows the scenario of suspending or resuming notifications from the application based on the
evauation of the load balancing policy as aresult of the detection of achangein load level of the framework.

. IpAppLoadManager . IpLoadManager

1: load change detection and policy evaluation

-

2: suspendNotification T —
P () | This is
H T implementation
‘ 7 detail
| .
! -
L
|
|

-

| . // . .
Load balancing senice 3: load change det‘ectlon/and policy evaluation

makes a decision based i <
on pre-defined policy |

-—-_ 4 [Qs\qmeNotiﬁcation()

5: reportLoad()

Application provides - /u/ o

initial load report on
notification
resumption

1

7.1.2.2 Load Management: Framework queries load statistics

This sequence diagram shows how the framework requests load statistics for an application.

ETSI

55 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

: IpLoadManager . IpAppLoadManager

1: queryAppLoadStatsReq()

2: geti load information

e
3: queryAppLoadStatsRes() -

D< This is the

implementation
detall

7.1.2.3 Load Management: Framework callback registration and Application load
control

This sequence diagram shows how the framework registersitself and the application invokes load management function
to inform the framework of application load.

ETSI

56

IDADDLOEEManaqu’

This is implementation
detail. The Application
may take appropriate
load control action.

1: createLoadLewelNotification() !

Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

IQLoadManager

2: reportLoad()

3: load change detection

This is implementation
detail. The Application
may take appropriate
load control action.

7.1.2.4

4: reportLoad()

~- \w Application reports its

; “|initial load condition on
: notification creation
|

|

|

|

|

|

|

|

5: load change detection

a—

o 6: reportLoad() -~

Application detects a load AN
condition change and

-~ | reports to Framework.

The Framework may take
appropriate load control
action - implementation

- detail.

7: destroyLoadLevelNotification()

Load Management: Application reports current load condition

This sequence diagram shows how an application reports its load condition to the framework load manager.

ETSI

. IpAppLoadManager

57

Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

. IpLoadM anager

: reportLoad()

I

2: evaluate policy

T
|
|
|
|
|
|
i

This is the implementation
detail

7.1.2.5 Load Management: Application queries load statistics

This sequence diagram shows how an application requests load statistics for the framework.

ETSI

: IpAppLoadManager

58

1: queryLoadStatsReq()

Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

. IpLoadManager

This is the
implementation
. detail

7.1.2.6 Load Management: Application callback registration and load control

This sequence diagram shows how an application registersitself and the framework invokes load management function

based on policy.

ETSI

59 Final draft

ETSI ES 203 915-3 V1.3.1 (2008-01)

: IpApplLoadManager

: IpLoadManager

1: createLoadLevelN ofification()

!

2:loadLevelNotification() - - -

Framework detects a load D\

Framework reports its
initial load condition on
notification creation

3:load change dTetection & policy evaluation

condition change

and notifies the \
application. The |
application may take |
appropriate load control |
action - implementation !
detail. |

- 6:loadLevelNofification()

5:load change detection &
| N\

~{ This is Framework
implementation detail.
The Framework may take
appropriate load control
action.

policyevaluation

-4

7: destroyLoadLevelNotification()

7.1.2.7
application

This is Framework
implementation detail. The
Framework may take
appropriate load control
action.

u

Heartbeat Management: Start/perform/end heartbeat supervision of the

In this sequence diagram, the framework has decided that it wishes to monitor the application, and has therefore
requested the application to commence sending its heartbeat. The application responds by sending its heartbeat at the
specified interval. The framework then decides that it is satisfied with the application's health and disables the heartbeat
mechanism. If the heartbeat was not received from the application within the specified interval, the framework can
decide that the application has failed the heartbeat and can then perform some recovery action.

ETSI

Fram ework

60

Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

: IpHeart Beat

. IpAppHeartBeatMgmt

1: enableAppHeartBeat()

3: pulse()

u
[

7 | At a certain point of
.| time the framework

. |decides to stop

i heartbeat supenision
|

|

|

|

4: disableAppHeartBeat()

7.1.2.8 Fault Management: Framework detects a Service failure

The framework has detected that a service instance has failed (probably by the use of the heartbeat mechanism). The
framework informs the client application.

ETSI

61 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Client Application : IpAppFaultManager Framework : IpFaultManager

The framework should detect if a senice instance
fails, for example via an unreturned heartbeat. The
framework should inform the application that is
using that senice instance, with the reason:
SVC_UNAVAILABLE_NO_RESPONSE.

1: swcAwailStatusind()

u |

The application may wait until i
it receives SVC_AVAILABLE !

1. The framework informs the client application that is using the service instance that the service is unavailable. The
client application may wait to receive a new call to the svcAvailStatusind with the reason SVC_AVAILABLE when the
Service has become available again. The different Unavailability reasons used by the Framework

(TpSvcAvail StatusReason) guides the client application devel opers to make the decision.

ETSI

62 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

7.1.2.9 Fault Management: Application requests a Framework activity test

Client Application : IpAppFaultManager Framework : IpFaultManager

Client application asks framework to
carry out an activty test. The
framework is denoted as the target by
an empty string value for svcld
parameter value.

| 1: activityTestReq()

Framework carries out test and
returns result to client application.

2: activityTestRes()

1. The client application asks the framework to do an activity test. The client identifies that it would like the activity
test done for the framework, rather then a service, by supplying an empty string value for the svcld parameter.

2. Theframework does the requested activity test and sends the result to the client application.

7.1.3 Service Agreement Management Sequence Diagrams

7.1.3.1 Service Selection
The following figure shows the process of selecting an SCF.

After discovery the Application gets alist of one or more SCF versions that match its required description. It now needs
to decide which service it is going to use; it also needsto actually get away to useit.

Thisis achieved by the following two steps:

ETSI

63 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Application : Framework

IpSeniceAgreementManagement
T

IpAppSeniceAgreementManagement

1: selectService()

U "1

|

|
| |
| |
2 initiateSignSenic eAg reement(b
| |

J

!

-

3: signSeniceAgreement(|)

u

4: signSeniceAgreement()

1: Service Selection: first step - selectService

Inthisfirst step the Application identifies the SCF version it has finally decided to use. This is done by means of the
servicel D, which isthe agreed identifier for SCF versions. The Framework acknowledges this selection by returning to
the Application an identifier for the service chosen: a service token, that is a private identifier for this service between
this Application and this network, and is used for the process of signing the service agreement.

Inputis:

in servicel D.
Thisidentifies the SCF required.
And output:

out serviceToken.

Thisisafree format text token returned by the framework, which can be signed as part of a service agreement. It
contains operator specific information relating to the service level agreement. An application (identifiable by a given
TpClientAppl D) may select the same service on more than one occasion in which case the same serviceT oken, that
identifies the relationship between the Application and the network, and the service agreement that applies, shall be
returned.

2: Service Selection: second step - signServiceAgreement

In this second step an agreement is signed that allows the Application to use the chosen SCF version. And once these
contractual details have been agreed, then the Application can be given the meansto actually use it. The means are a
reference to the manager interface of the SCF version (remember that a manager is an entry point to any SCF). By
calling the createServiceM anager operation on the lifecycle manager the Framework retrieves this interface and returns
it to the Application. The service properties suitable for this application are aso fed to the SCF (viathe lifecycle
manager interface) in order for the SCS to instantiate an SCF version that is suitable for this application.

The sequence of events indicated above, where the application initiates the signature process by calling
initiateSignServiceAgreement, and where the framework calls signServiceAgreement on the application's

| pAppServiceAgreementM anagement interface before the application calls signServiceAgreement on the frameworks's
I pServiceAgreementManagement, is the only sequence permitted.

ETSI

64 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Input:
in serviceT oken.
Thisisthe identifier that the network and Application have agreed to privately use for a certain version of SCF.
in agreementText.
Thisisthe agreement text that is to be signed by the Framework using the private key of the Framework.
in signingAlgorithm.
Thisisthe algorithm used to compute the digital signature.
Output:
out signatureAndServiceMgr.

Thisis areference to a structure containing the digital signature of the Framework for the service agreement, and a
reference to the manager interface of the SCF.

There must be only one service instance per client application. Therefore, in case an application (identifiable by a given
TpClientAppl D) attempts to select a service for which it has aready signed a service agreement and this service
agreement has not been terminated, the Framework may return a reference to the already existing service, or may raise
an exception to the client indicating that this request is denied.

7.1.4 Service Discovery Sequence Diagrams

7.1.4.1 Service Discovery

The following figure shows how Applications discover a new Service Capability Feature in the network. Even
applications that have aready used the OSA API of a certain network know that the operator may upgrade it any time;
thisis why they use the Service Discovery interfaces.

Before the discovery process can start, the Application needs areference to the Framework's Service Discovery
interface; thisis done via an invocation the method obtaininterface on the Framework's Access interface.

Discovery can be athree-step process. The first two steps have to be performed initially, but can subsequently be
skipped (if the service type and its properties are already known, the application can invoke discoverService() without
having to re-invoke the list/discoverServiceType methods).

ETSI

65 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Application : IpAccess . IpSeniceDiscovery

! 1: obtaininterface() |

L

! 2: listSenviceTypes()

3: describeSeniceType()

R

|
: 4: discowerSenice()

R ——

2: Discovery: first step - list service types.

In thisfirst step the application asks the Framework what service types that are available from this network. Service
types are standardized or non-standardised SCF names, and thus this first step allows the Application to know what
SCFs are supported by the network.

The following output isthe result of thisfirst discovery step:
out listTypes.

Thisisalist of service type names, i.e., alist of strings, each of them the name of a SCF or a SCF specialization (e.g.
"P_MPCC").

3: Discovery: second step - describe service type.

In this second step the application requests what are the properties that describe a certain service type that it isinterested
in, among those listed in the first step.

The following input is necessary:
in name,

Thisisaservice type name: a string that contai ns the name of the SCF whose description the Application isinterested in
(e.g. "P_MPCC").

And the output is:
out serviceTypeDescription.
The description of the specified SCF type. The description provides information about:
the property names associated with the SCF;
the corresponding property value types;
the corresponding property mode (mandatory or read only) associated with each SCF property;
the names of the super types of thistype; and

whether the typeis currently enabled or disabled.

ETSI

66 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

4. Discovery: third step - discover service

In this third step the application requests for a service that matches its needs by tuning the service properties (i.e.
assigning values for certain properties).

The Framework then checks whether there is a match, in which case it sends the Application the servicel D that is the
identifier this network operator has assigned to the SCF version described in terms of those service properties. Thisis
the moment where the servicel D identifier is shared with the application that is interested on the corresponding service.

Thisis done for either one service or more (the application specifies the maximum number of responsesit wishesto
accept).

Input parameters are:
in serviceTypeName.

Thisisastring that contains the name of the SCF whose description the Application isinterested in (e.g. "P_MPCC").
in desiredPropertyList.

Thisisagain alist like the one used for service registration, but where the value of the service properties have been fine

tuned by the Application to (they will be logically interpreted as "minimum", "maximum”, etc. by the Framework).
The following parameter is necessary as input:
in max.
This parameter states the maximum number of SCFsthat are to be returned in the " ServiceList" result.
And the output is:
out serviceList.

Thisisalist of duplets: (servicel D, servicePropertyList). It provides alist of SCFs matching the requirements from the
Application, and about each: the identifier that has been assigned to it in this network (servicel D), and once again the
service property list.

ETSI

67 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

7.2 Class Diagrams

<<Interface>>
IpAppEventNotification
(from App Interfaces)

SreportNotification ()
PnotificationTerminated()

<<uses>> |

<<Interface>>

IpEventNotification
(from Framework Interfaces)

ScreateNotification()
S destroyNotification ()

<<Interface>>
IpAppLoadManager

<<deprecated>> queryAppLoadReq|()
<<deprecated>> queryLoadRes()
<<deprecated>> queryLoadErr()
loadLevelNotification()

Figure 8: Event Notification Class Diagram

<<Interface>>
IpAppFaultManager

activity TestRes()

appActivity TestReq()

<<deprecated>> fwFaultReportind()
<<deprecated>> fwFaultRecoveryInd()
<<deprecated>> svcUnavailablelnd()
<<deprecated>> genFaultStatsRecordRes()
<<deprecated>> fwUnavailablelnd()

activity TestErr()

resumeNotification() <<deprecated>> genFaultStatsRecordErr()
lliEEes suspendNotification() appUnavailableind()
<< >>
IpAppHeartBeatMgmt |pA;I:;)IfIZtheBe ot | |createLoadLewelNotification(<<deprecated>> genFaultStatsRecordReq()

— destroyLoadLevelNotification() swcAvailStatusInd() <<Interface>>
enableAppHeartBeat() o. b <<new>> queryAppLoadStatsReq() <<new>> generateFaultStatisticsRecordRes () IPAPpPOAM
disableAppHeartBeat() ulse() <<new>> queryLoadStatsRes() <<new>> generateFaultStatisticsRecordErr()
changelntenval() A <<new>> querylLoadStatsErr() <<new>> generateFaultStatisticsRecordReq() systemDateTimeQuery()

A | N <<new>> fwAvailStatusind()
| | | :)
! | | |
| | |
<<uses>> | <<uses>> | <<uses>> | <<uses>> | <<uses>>
| | : : |
! | | I
|
‘ : <cietace> e
<<Interface>> R IpLoadManager g g P!
IpHeartBeatMgmt <<Interface>> tivity TestR
IpHeartBeat reportLoad() activityTes eq() systemDateTimeQuery()
| appActivity TestRes()
enableHeartBeat() E— <<deprecated>> queryLoadReq() :
disableHeartBeat() 0.n ulse() <<deprecated>> queryAppLoadRes() swunawilableind()
P <<deprecated>> genFaultStatsRecordReq()
changelntenal() <<deprecated>> queryAppLoadErr() appActivity TestEr()

createLoadLevelNotification()
destroyLoadLevelNotification()
resumeNotification()
suspendNotification()

<<new>> queryLoadStatsReq()
<<new>> queryAppLoadStatsRes()
<<new>> queryAppLoadStatsErr()

<<deprecated>> appUnavailablelnd()
<<deprecated>> genFaultStatsRecordRes()
<<deprecated>> genFaultStatsRecordErr()
appAwailStatusind()

<<new>> generateFaultStatisticsRecordReq()
<<new>> generateFaultStatisticsRecordRes()
<<new>> generateFaultStatisticsRecordErr()

Figure 9: Integrity Management Package Overview

ETSI

68 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

<<Interface>>

IpAppSeniceAgreementManagement
(from App Interfaces)

PsignSeniceAgreement()
YterminateSeniceAgreement()

[
<<uses>>

<<Interface>>

IpSeniceAgreementManagement
(from Framework Interfaces)

¥signSeniceAgreement()
@terminateSeniceAgreement()
@selectSenice()
initiateSignSeniceAgreement()

Figure 10: Service Agreement Management Package Overview

<<Interface>>
IpS erviceDiscowvery
from Framework interfaces)

listServiceTy pes()
$describeSeniceType()
LdiscoverService()
@listSubscribedSenices()

Figure 11: Service Discovery Package Overview

ETSI

69 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

<<Interface>>
IpClientAPILevelAuthentication

<<Interface>> (from Client interfaces)
IpClientAccess
(from Client interfaces) $<<deprecated>> authenticate()
SabortAuthentication ()
SiterminateAccess () @authenticaonSucceeded()
A Schallenge()
l A
<<uses>> |
| <<uses>> |
l l
<<Interface>> <<Interface>>
IpAccess IpAPILevelAuthentication
<<Interface>> (from Framework interfaces) (from Framework interfaces)
IpInitial
(from Framework interfaces) FobtainInterface () W<<deprecated>> selectEncryptionMethod ()
SobtainInterface With Callback() S<<deprecated>> authenticate()
$<<deprecated>> initiateAuthentication() $<<deprecated>> endAccess|() ‘abortAu.thepticationO
SinitiateAuthenticationWithVersion() Slistinterfaces() SauthenticationSucceeded()
¥<<deprecated>> releaselnterface() % selectAuthenticationMechanism ()
®selectSigningAlgorithm () Schallenge()
FterminateAccess() -
®relinquishinterface() \/

<<Interface>>
IpAuthentication
(from Framework interfaces)

®requestAccess()

Figure 12: Trust and Security Management Package Overview

7.3 Interface Classes

7.3.1 Service Discovery Interface Classes

7.3.1.1 Interface Class IpServiceDiscovery
Inherits from: Ipinterface;

The service discovery interface, shown below, consists of four methods. Before a service can be discovered, the
enterprise operator (or the client applications) must know what "types’ of services are supported by the Framework and
what service "properties’ are applicable to each service type. The listServiceTypes() method returnsalist of al "service
types' that are currently supported by the framework and the "describeServiceType()" returns a description of each
service type. The description of service type includes the " service-specific properties’ that are applicable to each service
type. Then the enterprise operator (or the client applications) can discover a specific set of registered services that both
belong to a given type and possess the desired "property values', by using the "discoverService() method. Once the
enterprise operator finds out the desired set of services supported by the framework, it subscribes to (a sub-set of) these
services using the Subscription Interfaces. The enterprise operator (or the client applications in its domain) can find out
the set of servicesavailableto it (i.e., the service that it can use) by invoking "listSubscribedServices()". The service
discovery APIs are invoked by the enterprise operators or client applications. They are described below.

Thisinterface shall be implemented by a Framework with as a minimum requirement the listServiceTypes(),
describeServiceType() and discoverService() methods.

ETSI

70 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

<<Interface>>

IpServiceDiscovery

listServiceTypes () : TpServiceTypeNameList
describeServiceType (name : in TpServiceTypeName) : TpServiceTypeDescription

discoverService (serviceTypeName : in TpServiceTypeName, desiredPropertyList : in TpServicePropertyList,
max : in TpInt32) : TpServiceList

listSubscribedServices () : TpServiceList

7.3.1.1.1 Method listServiceTypes()

This operation returns the names of all service super and sub types that are in the repository. The details of the service
types can then be obtained using the describeServiceType() method. If a sub type of a serviceis registered, this method
returns, besides the sub type, also the super type.

Returns <listTypes> : The names of the requested service types.

Parameters
No Parameters were identified for this method.

Returns

TpServiceTypeNameList

Raises

TpCommonExceptions, P _ACCESS DENIED

7.3.1.1.2 Method describeServiceType ()
This operation lets the caller obtain the details for a particular service type.

Returns <serviceTypeDescription> : The description of the specified service type. The description provides information
about:

- the service properties associated with this service type: i.e. alist of service property { name, mode and type} tuples;
- the names of the super types of this service type; and
- whether the service type is currently available or unavailable.

Parameters

name : in TpServiceTypeName
The name of the service type to be described.

- If the "name" is malformed, then the P_ILLEGAL_SERVICE_TY PE exception is raised.

- 1f the "name" does not exist in the repository, then the P_UNKNOWN_SERVICE_TY PE exception is raised.

ETSI

71 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Returns

TpServiceTypeDescription

Raises
TpCommonExceptions, P_ACCESS DENIED, P ILLEGAL SERVICE TYPE,
P_UNKNOWN SERVICE TYPE

7.3.1.1.3 Method discoverService()

The discoverService operation is the means by which a client application is able to obtain the service IDs of the services
that meet its requirements. The client application passesin alist of desired service propertiesto describe the serviceitis
looking for, in the form of attribute/value pairs for the service properties. The client application also specifies the
maximum number of matched responsesit is willing to accept. The framework must not return more matches than the
specified maximum, but it is up to the discretion of the Framework implementation to choose to return less than the
specified maximum. The discoverService() operation returns a servicel D/Property pair list for those services that match
the desired service property list that the client application provided. The service properties returned form a complete
view of what the client application can do with the service, as per the service level agreement. If the framework
supports service subscription, the service level agreement will be encapsulated in the subscription properties contained
in the contract/profile for the client application, which will be arestriction of the registered properties.

Returns <serviceList> : This parameter gives alist of matching services. Each serviceis characterised by its service ID
and alist of service properties{name and value list} associated with the service.

Parameters

serviceTypeName : in TpServiceTypeName

The "serviceTypeName" parameter conveys the required service type. It is key to the central purpose of "service
trading”. It isthe basis for type safe interactions between the service exporters (viaregisterService) and service
importers (via discoverService). By stating a service type, the importer implies the service type and a domain of
discourse for talking about properties of service.

- If the string representation of the "type" does not obey the rules for service type identifiers, then the
P_ILLEGAL_SERVICE_TYPE exceptionisraised.

- If the "type" is correct syntactically but is not recognised as a service type within the Framework, then the
P_UNKNOWN_SERVICE_TY PE exception is raised.

The framework may return a service of a subtype of the "type" requested. The requestor may also request for a service
of a specific subtype. The framework will not return the corresponding supertype(s) in this case.

desiredPropertyList: in TpServicePropertyList

The "desiredPropertyList" parameter isalist of service property { name, mode and value list} tuplesthat the discovered
set of services should satisfy. These properties deal with the non-functional and non-computational aspects of the
desired service. The property valuesin the desired property list must be logically interpreted as " minimum",
"maximum”, etc. by the framework (due to the absence of a Boolean constraint expression for the specification of the
service criterion). It is suggested that, at the time of service registration, each property value be specified as an
appropriate range of values, so that desired property values can specify an "enclosing” range of valuesto help in the
selection of desired services.

The desiredPropertyList only contains service propertiesthat are relevant for the application. If an application is not
interested in the value of a certain service property, this service property shall not be included in the
desiredPropertyL.ist.

P_INVALID_PROPERTY israised when an application includes an unknown service property name or invalid service
property value.

max: in TpInt32
The"max" parameter states the maximum number of servicesthat are to be returned in the "serviceList" result.

ETSI

72 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Returns
TpServicelList
Raises

TpCommonExceptions, P_ACCESS DENIED, P ILLEGAL SERVICE TYPE,
P UNKNOWN SERVICE TYPE, P INVALID PROPERTY

7.3.1.1.4 Method listSubscribedServices()

Returns alist of services so far subscribed by the enterprise operator. The enterprise operator (or the client applications
in the enterprise domain) can obtain alist of subscribed services that they are allowed to access.

Returns <servicelList>: The "serviceList" parameter returns alist of subscribed services. Each serviceis characterised
by its service ID and alist of service properties{name and value list} associated with the service.

Parameters
No Parameters were identified for this method.

Returns

TpServicelList

Raises

TpCommonExceptions, P_ACCESS DENIED

7.3.2 Service Agreement Management Interface Classes

7.3.2.1 Interface Class IpAppServiceAgreementManagement
Inherits from: Iplnterface;

This interface and the signServiceAgreement() and terminateServiceAgreement() methods shall be implemented by an
application.

<<Interface>>

IpAppServiceAgreementManagement

signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm :
in TpSigningAlgorithm) : TpOctetSet

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString,
digitalSignature : in TpOctetSet) : void

7.3.2.1.1 Method signServiceAgreement()

Upon receipt of the initiateSignServiceAgrement() method from the client application, this method is used by the
framework to request that the client application sign an agreement on the service. The framework provides the service
agreement text for the client application to sign. The service manager returned will be configured as per the service
level agreement. If the framework uses service subscription, the service level agreement will be encapsulated in the

ETSI

73 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

subscription properties contained in the contract/profile for the client application, which will be arestriction of the
registered properties. If the client application agrees, it signs the service agreement, returning its digital signature to the
framework.

Returns <digital Signature> : This contains a CM S (Cryptographic Message Syntax) object (as defined in RFC 2630)
with content type Signed-data. The signature is calculated and created as per section 5 of RFC 2630. The content is the
agreement text given by the framework. The "external signature" construct shall not be used (i.e. the eContent field in
the EncapsulatedContentInfo field shall be present and contain the agreement text). The signing-time attribute, as
defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention. If the signature is incorrect the
serviceToken will be expired immediately.

Parameters

serviceToken: in TpServiceToken

Thisisthe token returned by the framework in a cal to the selectService() method. Thistoken is used to identify the
service instance to which this service agreement corresponds. (If the client application selects many services, it can
determine which selected service corresponds to the service agreement by matching the service token). If the
serviceTokenisinvalid, or not known by the client application, then the P_INVALID_SERVICE_TOKEN exception is
thrown.

agreementText: in TpString
Thisisthe agreement text that is to be signed by the client application using the private key of the client application. If

the agreementText isinvalid, thenthe P_INVALID_AGREEMENT_TEXT exception is thrown.

signingAlgorithm: in TpSigningAlgorithm

Thisisthe algorithm used to compute the digital signature. It shall be identical to the one chosen by the framework in
response to I pAccess.selectSigningAlgorithm(). If the signingAlgorithm is not the chosen one, isinvalid, or unknown to
the client application, the P_INVALID_SIGNING_ALGORITHM exception isthrown. Thelist of possible algorithms
is as specified in the TpSigningAlgorithm table. The identifier used in this parameter must correspond to the
digestAlgorithm and signatureAlgorithm fieldsin the Signerinfo field in the digital Signature (see below).

Returns
TpOctetSet
Raises

TpCommonExceptions, P_INVALID AGREEMENT TEXT, P_INVALID SERVICE TOKEN,
P INVALID SIGNING ALGORITHM

7.3.2.1.2 Method terminateServiceAgreement()

This method is used by the framework to terminate an agreement for the service.

Parameters

serviceToken: in TpServiceToken

Thisisthe token passed back from the framework in a previous selectService() method call. This token is used to
identify the service agreement to be terminated. If the serviceToken isinvalid, or unknown to the client application, the
P_INVALID_SERVICE_TOKEN exception will be thrown.

terminationText: in TpString
Thisisthe termination text that describes the reason for the termination of the service agreement.

ETSI

74 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

digitalSignature: in TpOctetSet

This contains a CM S (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data.
The signature is calculated and created as per section 5 of RFC 2630 using the same signing algorithm as was used to
initially sign the service agreement. The content is the termination text. The "external signature" construct shall not be
used (i.e. the eContent field in the Encapsul atedContentInfo field shall be present and contain the termination text
string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay
prevention. The signing algorithm used is the same as the signing a gorithm given when the service agreement was
signed using signServiceAgreement(). The framework uses this to confirm itsidentity to the client application. The
client application can check that the terminationText has been signed by the framework. If a match is made, the service
agreement is terminated, otherwise the P_INVALID_SIGNATURE exception will be thrown.

Raises
TpCommonExceptions, P_INVALID SERVICE TOKEN, P INVALID SIGNATURE

7.3.2.2 Interface Class IpServiceAgreementManagement
Inherits from: Ipinterface;

Thisinterface and the signServiceAgreement(), terminateServiceAgreement(), selectService() and
initiateSignServiceAgreement() methods shall be implemented by a Framework.

<<Interface>>

IpServiceAgreementManagement

signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm :
in TpSigningAlgorithm) : TpSignatureAndServiceMgr

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString,
digitalSignature : in TpOctetSet) : void

selectService (servicelD : in TpServicelD) : TpServiceToken

initiateSignServiceAgreement (serviceToken : in TpServiceToken) : void

7.3.2.2.1 Method signServiceAgreement()

After the framework has called signServiceAgreement() on the application's | pAppServiceAgreementM anagement
interface, this method is used by the client application to request that the framework sign the service agreement, which
allows the client application to use the service. A reference to the service manager interface of the service isreturned to
the client application. The service manager returned will be configured as per the service level agreement. If the
framework uses service subscription, the service level agreement will be encapsulated in the subscription properties
contained in the contract/profile for the client application, which will be arestriction of the registered properties. If the
client application is not allowed to access the service, then an error code (P_SERVICE_ACCESS DENIED) is
returned. If the client application invokes this method before the processing (i.e. digital signature verification) of the
response of signServiceAgreement() on the application's |pAppServiceAgreementM anagement interface has completed,
a TpCommonExceptions with ExceptionType P_INVALID_STATE may be raised to indicate that this method is
currently unable to complete the method due to a race condition. In this case, the TpCommonExceptions with
ExceptionType P_INVALID_STATE suggests the application to retry the method invocation after a reasonable amount
of time has passed.

There must be only one service instance per client application. Therefore, in case the client attempts to select a service

for which it has aready signed a service agreement and this service agreement has not been terminated, a reference to
the already existing service manager will be returned.

ETSI

75 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Returns <signatureAndServiceMgr> : This contains the digital signature of the framework for the service agreement,
and a reference to the service manager interface of the service.
structure TpSignatureAndServiceMgr {
digitalSignature: TpOctetSet;
serviceMgrinterface: |pServiceRef;
1

The digital Signature contains a CM S (Cryptographic Message Syntax) object (as defined in RFC 2630) with content
type Signed-data. The signature is calculated and created as per section 5 of RFC 2630. The content is the agreement
text given by the client application. The "external signature” construct shall not be used (i.e. the eContent field in the
EncapsulatedContentInfo field shall be present and contain the agreement text string). The signing-time attribute, as

defined in section 11.3 of RFC 2630, shall aso be used to provide replay prevention.

The serviceMgrinterface is areference to the service manager interface for the selected service.

Parameters

serviceToken: in TpServiceToken

Thisisthe token returned by the framework in a call to the selectService() method. Thistoken is used to identify the
service instance requested by the client application. If the serviceToken isinvalid, or has expired, an error code
(P_INVALID_SERVICE_TOKEN) isreturned.

agreementText:in TpString

Thisis the agreement text that is to be signed by the framework using the private key of the framework. If the
agreementText isinvalid, then an error code (P_INVALID_AGREEMENT_TEXT) isreturned.

signingAlgorithm: in TpSigningAlgorithm

Thisisthe algorithm used to compute the digital signature. It shall be identical to the one used by the framework when
invoking signServiceAgreement() on the client. If the signingAlgorithm is not the same one, isinvalid, or unknown to
the framework, an error code (P_INVALID_SIGNING_ALGORITHM) isreturned. The list of possible algorithmsis as
specified in the TpSigningAlgorithm table. The identifier used in this parameter must correspond to the digestAlgorithm
and signatureAlgorithm fields in the Signerinfo field in the digital Signature (see below).

Returns

TpSignatureAndServiceMgr
Raises

TpCommonExceptions, P_ACCESS DENIED, P INVALID AGREEMENT TEXT,
P _INVALID SERVICE TOKEN, P _INVALID SIGNING ALGORITHM,
P _SERVICE ACCESS DENIED

7.3.2.2.2 Method terminateServiceAgreement()

This method is used by the client application to terminate an agreement for the service.

Parameters

serviceToken: in TpServiceToken

Thisisthe token passed back from the framework in a previous selectService() method call. This token is used to
identify the service agreement to be terminated. If the serviceToken isinvalid, or has expired, an error code
(P_INVALID_SERVICE_TOKEN) is returned.

terminationText: in TpString
Thisisthe termination text that describes the reason for the termination of the service agreement.

ETSI

76 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

digitalSignature: in TpOctetSet

This contains a CM S (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data.
The signature is calculated and created as per section 5 of RFC 2630 using the same signing algorithm as was used to
initially sign the service agreement. The content is the termination text. The "external signature" construct shall not be
used (i.e. the eContent field in the Encapsul atedContentInfo field shall be present and contain the termination text
string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay
prevention. The signing algorithm used is the same as the signing a gorithm given when the service agreement was
signed using signServiceAgreement(). The framework uses this to check that the terminationText has been signed by
the client application. If a match is made, the service agreement is terminated, otherwise an error code
(P_INVALID_SIGNATURE) is returned.

Raises

TpCommonExceptions, P_ACCESS DENIED, P INVALID SERVICE TOKEN,
P INVALID SIGNATURE

7.3.2.2.3 Method selectService()

This method is used by the client application to identify the service that the client application wishesto use. If the client
application is not allowed to access the service, then the P_SERVICE_ACCESS DENIED exception is thrown.

Returns <serviceToken> : Thisis afree format text token returned by the framework, which can be signed as part of a
service agreement. This will contain operator specific information relating to the service level agreement. The
serviceToken has alimited lifetime. If the lifetime of the serviceToken expires, a method accepting the serviceT oken
will return an error code (P_INVALID_SERVICE_TOKEN). Service Tokens will automatically expire if the client
application or framework invokes the endAccess method on the other's corresponding access interface.

Parameters

servicelID: in TpServiceID

Thisidentifies the service required. If the servicel D is not recognised by the framework, an error code
(P_INVALID_SERVICE_ID) is returned.

Returns
TpServiceToken
Raises

TpCommonExceptions, P_ACCESS DENIED, P INVALID SERVICE ID,
P SERVICE ACCESS DENIED

7.3.2.2.4 Method initiateSignServiceAgreement()

This method is used by the client application to initiate the sign service agreement process. This method shall be
invoked following the application's call to selectService(), and before the signing of the service agreement can take
place. If the client application is not alowed to initiate the sign service agreement process, the exception
(P_SERVICE_ACCESS DENIED) isthrown.

Parameters

serviceToken: in TpServiceToken

Thisisthe token returned by the framework in a cal to the selectService() method. Thistoken is used to identify the
service instance requested by the client application. If the serviceToken isinvalid, or has expired, the exception
(P_INVALID_SERVICE_TOKEN) isthrown.

ETSI

77 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Raises
TpCommonExceptions, P_INVALID SERVICE TOKEN, P SERVICE ACCESS DENIED

7.3.3 Integrity Management Interface Classes

7.3.3.1 Interface Class IpAppFaultManager
Inherits from: Iplnterface;

Thisinterface is used to inform the application of events that affect the integrity of the Framework, Service or Client
Application. The Fault Management Framework will invoke methods on the Fault Management Application Interface
that is specified when the client application obtains the Fault Management interface: i.e. by use of the

obtainl nterfaceWithCallback operation on the IpAccessinterface

<<Interface>>

IpAppFaultManager

activityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void
appActivityTestReq (activityTestID : in TpActivityTestID) : void

<<deprecated>> fwFaultReportind (fault : in TpinterfaceFault) : void

<<deprecated>> fwFaultRecoveryind (fault : in TpInterfaceFault) : void

<<deprecated>> svcUnavailableInd (servicelD : in TpServicelD, reason : in TpSvcUnavailReason) : void

<<deprecated>> genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord, servicelDs : in
TpServicelDList) : void

<<deprecated>> fwUnavailablelnd (reason : in TpFwUnavailReason) : void
activityTestErr (activityTestID : in TpActivityTestID) : void

<<deprecated>> genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError, servicelDs : in
TpServicelDList) : void

appUnavailablelnd (servicelD : in TpServicelD) : void
<<deprecated>> genFaultStatsRecordReq (timePeriod : in TpTimelnterval) : void
svcAvailStatusind (servicelD : in TpServicelD, reason : in TpSvcAvailStatusReason) : void

<<new>> generateFaultStatisticsRecordRes (faultStatsReqID : in TpFaultReqID, faultStatistics : in
TpFaultStatsRecord, servicelDs : in TpServicelDList) : void

<<new>> generateFaultStatisticsRecordErr (faultStatsReqID : in TpFaultReqID, faultStatistics : in
TpFaultStatsErrorList, servicelDs : in TpServicelDList) : void

<<new>> generateFaultStatisticsRecordReq (faultStatsReqID : in TpFaultReqID, timePeriod : in
TpTimelnterval) : void

<<new>> fwAvailStatusind (reason : in TpFwAvailStatusReason) : void

ETSI

78 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

7.3.3.1.1 Method activityTestRes()

The framework uses this method to return the result of a client application-requested activity test.

Parameters

activityTestID:in TpActivityTestID
Used by the client application to correlate this response (when it arrives) with the original request.

activityTestResult: in TpActivityTestRes
The result of the activity test.

7.3.3.1.2 Method appActivityTestReq()

The framework invokes this method to test that the client application is operational. On receipt of this request, the
application must carry out atest on itself, to check that it is operating correctly. The application reports the test result by
invoking the appActivityTestRes method on the |pFaultManager interface.

Parameters

activityTestID: in TpActivityTestID
Theidentifier provided by the framework to correlate the response (when it arrives) with this request.

7.3.3.1.3 Method <<deprecated>> fwFaultReportind()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method fwAvail Statusind shall be used instead, using the new type of reason parameter to inform the
Application the reason why the Framework is unavailable.

The framework invokes this method to notify the client application of afailure within the framework. The client
application must not continue to use the framework until it has recovered (as indicated by a fwFaultRecoverylnd).

Parameters

fault:in TpInterfaceFault
Specifies the fault that has been detected by the framework.

7.3.3.1.4 Method <<deprecated>> fwFaultRecoverylnd()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method fwAvail Statusind shall be used instead, using the new type of reason parameter to inform the
Application when the Framework becomes available again.

The framework invokes this method to notify the client application that a previously reported fault has been rectified.
The application may then resume using the framework.

Parameters
fault:in TpInterfaceFault

Specifies the fault from which the framework has recovered.
7.3.3.1.5 Method <<deprecated>> svcUnavailablelnd()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method svcAvail Statusind shall be used instead, using the new type of reason parameter to inform the
Application the reason why the Service is unavailable and also when the Service becomes available again.

ETSI

79 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

The framework invokes this method to inform the client application that it may experience difficulties using its instance
of the indicated service.

Parameters

serviceID: in TpServicelD
Identifies the affected service.

reason: in TpSvcUnavailReason
I dentifies the reason why the service is no longer available.

7.3.3.1.6 Method <<deprecated>> genFaultStatsRecordRes()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method generateFaultStatisticsRecordRes shall be used instead, using the new identifier to correlate
requests and responses.

This method is used by the framework to provide fault statistics to a client application in responseto a
genFaultStatsRecordReg method invocation on the IpFaultM anager interface.

Parameters

faultStatistics:in TpFaultStatsRecord
The fault statistics record.

serviceIDs: in TpServiceIDList

Specifies the framework or services that are included in the general fault statistics record. If the servicel Ds parameter is
an empty list, then the fault statistics are for the framework.

7.3.3.1.7 Method <<deprecated>> fwUnavailableInd()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method fwAvail Statusind shall be used instead, using the new type of reason parameter to inform the
Application the reason why the Framework is unavailable and a so when the Framework becomes available again.

The framework invokes this method to inform the client application that it is no longer available.

Parameters

reason: in TpFwUnavailReason
I dentifies the reason why the framework is no longer available.
7.3.3.1.8 Method activityTestErr()

The framework uses this method to indicate that an error occurred during an application-initiated activity test.

Parameters

activityTestID:in TpActivityTestID
Used by the application to correlate this response (when it arrives) with the original request.

7.3.3.1.9 Method <<deprecated>> genFaultStatsRecordErr()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method generateFaultStatisticsRecordErr shall be used instead, using the new identifier to correlate
requests and errors.

This method is used by the framework to indicate an error fulfilling the request to provide fault statistics, in response to
a genFaultStatsRecordReq method invocation on the | pFaultM anager interface.

ETSI

80 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Parameters

faultStatisticsError:in TpFaultStatisticsError
The fault statistics error.

servicelIDs: in TpServiceIDList

Specifies the framework or services that were included in the general fault statistics record request. If the servicelDs
parameter isan empty list, then the fault statistics were requested for the framework.

7.3.3.1.10 Method appUnavailablelnd()

The framework invokes this method to indicate to the application that the service instance has detected that it is not
responding.

Parameters

serviceID: in TpServicelD
Specifies the service for which the indication of unavailability was received.

7.3.3.1.11 Method <<deprecated>> genFaultStatsRecordReq()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method generateFaultStatisticsRecordReq shall be used instead, using the new identifier to correlate
requests and responses.

This method is used by the framework to solicit fault statistics from the client application, for example when the
framework was asked for these statistics by a service instance by using the genFaultStatsRecordReq operation on the

| pFwFaultM anager interface. On receipt of this request, the client application must produce a fault statistics record, for
the application during the specified time interval, which is returned to the framework using the genFaultStatsRecordRes
operation on the | pFaultManager interface.

Parameters

timePeriod: in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings
leaves the time period to the discretion of the client application.

7.3.3.1.12 Method svcAvailStatusind()

The framework invokes this method to inform the client application about the Service instance availability status, i.e.
that it can no longer use itsinstance of the indicated service according to the reason parameter but as well information
when the Service Instance becomes available again. On receipt of this request, the client application either actsto reset
its use of the specified service (using the normal mechanisms, such as the discovery and authentication interfaces, to
stop use of this service instance and begin use of a different service instance). The client application can also wait for
the problem to be solved and just stop the usage of the service instance until the svcAvail Statusind() is called again with
the reason SVC_AVAILABLE.

Parameters

servicelID: in TpServiceID
I dentifies the affected service.

reason: in TpSvcAvailStatusReason
I dentifies the reason why the service is no longer available or that it has become available again.

7.3.3.1.13 Method <<new>> generateFaultStatisticsRecordRes()

This method is used by the framework to provide fault statistics to a client application in response to a
generateFaultStati sticsRecordReq method invocation on the | pFaultM anager interface.

ETSI

81 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Parameters

faultStatsReqID: in TpFaultReqID
Used by the client application to correlate this response (when it arrives) with the original request.

faultStatistics:in TpFaultStatsRecord
The fault statistics record.

serviceIDs: in TpServiceIDList

Specifies the framework or services that are included in the general fault statistics record. If the servicel Ds parameter is
an empty list, then the fault statistics are for the framework.

In the case where alist of servicesis present, thisis an ordered list in which the location of the service in thislist
corresponds to the location of the related fault statistics in the TpFaultStatsRecord returned.

7.3.3.1.14 Method <<new>> generateFaultStatisticsRecordErr()

This method is used by the framework to indicate an error fulfilling the request to provide fault statistics, in response to
a generateFaultStati sticsRecordReq method invocation on the |pFaultM anager interface.

Parameters

faultStatsReqID: in TpFaultReqID
Used by the client application to correlate this error (when it arrives) with the original request.

faultStatistics:in TpFaultStatsErrorList
Thelist of fault statistics errors returned.

serviceIDs: in TpServiceIDList
Specifies the framework or services that areincluded in the list of fault statistics errors returned. If the servicelDs
parameter is an empty list, then the fault statistics error relates to the framework.

In the case where alist of servicesis present, thisis an ordered list in which the location of the service in thislist
corresponds to the location of the related fault statistics error in the TpFaultStatsErrorList returned.

7.3.3.1.15 Method <<new>> generateFaultStatisticsRecordReq()

This method is used by the framework to solicit fault statistics from the client application, for example when the
framework was asked for these statistics by a service instance by using the generateFaultStatisticsRecordReq operation
on the IpFwFaultM anager interface. On receipt of this request, the client application must produce a fault statistics
record, for the application during the specified time interval, which is returned to the framework using the
generateFaultStati sticsRecordRes operation on the I pFaultM anager interface.

Parameters

faultStatsReqID: in TpFaultReqID
The identifier provided by the framework to correlate the response (when it arrives) with this request.

timePeriod: in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings
leaves the time period to the discretion of the client application.

7.3.3.1.16 Method <<new>> fwAvailStatusind()

The framework invokes this method to inform the client application about the Framework availability status, i.e. that it
can no longer use the Framework according to the reason parameter or that the Framework has become available again.

ETSI

82 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

The client application may wait for the problem to be solved and just stop the usage of the Framework until the
fwAvailStatusind() is called again with the reason FRAMEWORK_AVAILABLE.

Parameters

reason: in TpFwAvailStatusReason
I dentifies the reason why the framework is no longer available or that it has become available again.

7.3.3.2 Interface Class IpFaultManager
Inherits from: Ipinterface;

Thisinterface is used by the application to inform the framework of events that affect the integrity of the framework
and services, and to request information about the integrity of the system. The fault manager operations do not
exchange callback interfaces asit is assumed that the client application suppliesits Fault Management callback
interface at the time it obtains the Framework's Fault Management interface, by use of the obtainl nterfaceWithCallback
operation on the IpAccess interface.

If the |pFaultManager interface isimplemented by a Framework, at least one of these methods shall be
implemented. If the Framework is capable of invoking the | pAppFaultManager.appActivity TestReq() method, it shall
implement appActivityTestRes() and appActivityTestErr() in thisinterface. If the Framework is capable of invoking
| pAppFaultM anager.generateFaul t Stati sticsRecordReq(), it shall implement generateFaultStatisticsRecordRes() and
generateFaul tStati sticsRecordErr() in this interface.

<<Interface>>

IpFaultManager

activityTestReq (activityTestID : in TpActivityTestID, svcID : in TpServicelD) : void
appActivityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void
svcUnavailablelnd (servicelD : in TpServicelD) : void

<<deprecated>> genFaultStatsRecordReq (timePeriod : in TpTimelnterval, servicelDs : in TpServicelDList) :
void

appActivityTestErr (activityTestID : in TpActivityTestID) : void

<<deprecated>> appUnavailablelnd (servicelD : in TpServicelD) : void

<<deprecated>> genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord) : void
<<deprecated>> genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError) : void
appAvailStatusind (reason : in TpAppAvailStatusReason) : void

<<new>> generateFaultStatisticsRecordReq (faultStatsReqID : in TpFaultReqID, timePeriod : in
TpTimelnterval, servicelDs : in TpServicelDList) : void

<<new>> generateFaultStatisticsRecordRes (faultStatsReqID : in TpFaultReqID, faultStatistics : in
TpFaultStatsRecord) : void

<<new>> generateFaultStatisticsRecordErr (faultStatsReqID : in TpFaultReqID, faultStatisticsError : in
TpFaultStatisticsError) : void

7.3.3.2.1 Method activityTestReq()
The application invokes this method to test that the framework or its instance of a service is operational. On receipt of

this request, the framework must carry out atest on itself or on the client's instance of the specified service, to check
that it is operating correctly. The framework reports the test result by invoking the activity TestRes method on the

ETSI

83 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

I pAppFaultManager interface. If the application does not have access to a service instance with the specified servicel D,
the P_UNAUTHORISED _PARAMETER_VALUE exception shall be thrown. The extralnformation field of the
exception shall contain the corresponding servicel D.

For security reasons the client application has access to the service ID rather than the service instance ID. However, as
there is a one to one relationship between the client application and a service, i.e. there is only one service instance of
the specified service per client application, it is the obligation of the framework to determine the service instance ID
from the service ID.

Parameters

activityTestID: in TpActivityTestID
The identifier provided by the client application to correlate the response (when it arrives) with this request.

svecID: in TpServiceID
Identifies either the framework or a service for testing. The framework is designated by an empty string.

Raises
TpCommonExceptions, P_INVALID SERVICE ID, P UNAUTHORISED PARAMETER VALUE

7.3.3.2.2 Method appActivityTestRes()

The client application uses this method to return the result of aframework-requested activity test.

Parameters

activityTestID:in TpActivityTestID
Used by the framework to correlate this response (when it arrives) with the original request.

activityTestResult:in TpActivityTestRes
Theresult of the activity test.

Raises
TpCommonExceptions, P_INVALID ACTIVITY TEST ID

7.3.3.2.3 Method svcUnavailablelnd()

This method is used by the client application to inform the framework that it can no longer use its instance of the
indicated service (either due to afailure in the client application or in the service instance itself). On receipt of this
request, the framework should take the appropriate corrective action.

Parameters

serviceID: in TpServicelD
Identifies the service that the application can no longer use.

Raises
TpCommonExceptions, P _INVALID SERVICE ID, P UNAUTHORISED PARAMETER VALUE

ETSI

84 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

7.3.3.2.4 Method <<deprecated>> genFaultStatsRecordReq()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method generateFaultStatisticsRecordReq shall be used instead, using the new identifier to correlate
requests and responses.

This method is used by the application to solicit fault statistics from the framework. On receipt of this request the
framework must produce a fault statistics record, for either the framework or for the client's instances of the specified
services during the specified time interval, which is returned to the client application using the genFaultStatsRecordRes
operation on the |pAppFaultM anager interface. If the application does not have access to a service instance with the
specified servicel D, the P_UNAUTHORISED PARAMETER_VALUE exception shall be thrown. The
extralnformation field of the exception shall contain the corresponding servicelD.

Parameters

timePeriod: in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings
leaves the time period to the discretion of the framework.

servicelIDs: in TpServiceIDList

Specifies either the framework or servicesto be included in the general fault statistics record. If this parameter is not an
empty list, the fault statistics records of the client's instances of the specified services are returned, otherwise the fault
statistics record of the framework is returned.

Raises
TpCommonExceptions, P_INVALID SERVICE ID, P UNAUTHORISED PARAMETER VALUE

7.3.3.2.5 Method appActivityTestErr()

The client application uses this method to indicate that an error occurred during a framework-requested activity test.

Parameters

activityTestID:in TpActivityTestID
Used by the framework to correlate this response (when it arrives) with the original request.

Raises
TpCommonExceptions, P_INVALID ACTIVITY TEST ID

7.3.3.2.6 Method <<deprecated>> appUnavailablelnd()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. Applications can indicate they no longer use a particular service instance using

| pServiceAgreementManagement.terminateServiceAgreement(). Applications can indicate a fault with a particular
service instance using | pFaultM anager.svcUnavailablel nd().

This method is used by the application to inform the framework that it is ceasing its use of the service instance. This
may aresult of the application detecting a failure. The framework assumes that the session between this client
application and service instance is to be closed and updates its own records appropriately as well as attempting to
inform the service instance and/or its administrator.

Parameters

servicelID: in TpServiceID
Identifies the affected application.

ETSI

85 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Raises

TpCommonExceptions

7.3.3.2.7 Method <<deprecated>> genFaultStatsRecordRes()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method generateFaultStatisticsRecordRes shall be used instead, using the new identifier to correlate
requests and responses.

This method is used by the client application to provide fault statistics to the framework in response to a
genFaultStatsRecordReq method invocation on the | pAppFaultManager interface.

Parameters

faultStatistics:in TpFaultStatsRecord
The fault statistics record.

Raises

TpCommonExceptions

7.3.3.2.8 Method <<deprecated>> genFaultStatsRecordErr()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method generateFaultStatisticsRecordErr shall be used instead, using the new identifier to correlate
requests and errors.

This method is used by the client application to indicate an error fulfilling the request to provide fault statistics, in
response to a genFaultStatsRecordReq method invocation on the | pA ppFaultManager interface.

Parameters

faultStatisticsError: in TpFaultStatisticsError
The fault statistics error.

Raises

TpCommonExceptions

7.3.3.2.9 Method appAvailStatusind()

This method is used by the application to inform the framework of its availability status. If the Application has detected
afailureit uses one of the APP_UNAVAILABLE reason types to indicate the problem and that it is ceasing its use of
all of its subscribed service instances. When the Application is working again it shall call this method again with the
APP_AVAILABLE reason to inform the Framework that it is working properly again. The Framework shall aso
attempt to inform all of the service instances used by the specific application and/or its administrator about the problem.

Parameters

reason: in TpAppAvailStatusReason

| dentifies the reason why the application is no longer available. APP_AVAILABLE is used to inform the Framework
and the Service that the Application is available again.

ETSI

86 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Raises

TpCommonExceptions

7.3.3.2.10 Method <<new>> generateFaultStatisticsRecordReq()

This method is used by the application to solicit fault statistics from the framework. On receipt of this request the
framework must produce a fault statistics record, for either the framework or for the client's instances of the specified
services during the specified time interval, which is returned to the client application using the

generateFaul tStati sticsRecordRes operation on the | pAppFaultManager interface. If the application does not have
access to a service instance with the specified servicel D, the P_UNAUTHORISED _PARAMETER_VALUE exception
shall be thrown. The extral nformation field of the exception shall contain the corresponding servicelD.

Parameters

faultStatsReqID: in TpFaultReqID
The identifier provided by the application to correlate the response (when it arrives) with this request.

timePeriod: in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings
leaves the time period to the discretion of the framework.

servicelIDs: in TpServiceIDList

Specifies either the framework or servicesto be included in the general fault statistics record. If this parameter is not an
empty list, the fault statistics records of the client's instances of the specified services are returned, otherwise the fault
statistics record of the framework is returned.

Raises
TpCommonExceptions, P _INVALID SERVICE ID, P UNAUTHORISED PARAMETER VALUE

7.3.3.2.11 Method <<new>> generateFaultStatisticsRecordRes()

This method is used by the client application to provide fault statistics to the framework in response to a
generateFaul tStati sticsRecordReq method invocation on the IpAppFaultManager interface.

Parameters

faultStatsReqID: in TpFaultReqID
Used by the framework to correlate this response (when it arrives) with the original request.

faultStatistics:in TpFaultStatsRecord
The fault statistics record.

Raises

TpCommonExceptions

7.3.3.2.12 Method <<new>> generateFaultStatisticsRecordErr()

This method is used by the client application to indicate an error fulfilling the request to provide fault statistics, in
response to a generateFaul tStatisticsRecordReq method invocation on the |pAppFaultManager interface.

ETSI

87 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Parameters

faultStatsReqID: in TpFaultReqID
Used by the framework to correlate this error (when it arrives) with the original request.

faultStatisticsError:in TpFaultStatisticsError
The fault statistics error.
Raises

TpCommonExceptions

7.3.3.3 Interface Class IpAppHeartBeatMgmt
Inherits from: Iplnterface;

Thisinterface allows the initialisation of a heartbeat supervision of the client application by the framework.

<<Interface>>

IpAppHeartBeatMgmt

enableAppHeartBeat (interval : in TpInt32, fwinterface : in IpHeartBeatRef) : void
disableAppHeartBeat () : void

changelnterval (interval : in TpInt32) : void

7.3.3.3.1 Method enableAppHeartBeat()

With this method, the framework instructs the client application to begin sending its heartbeat to the specified interface
at the specified interval.

Parameters

interval:in TpInt32
Thetime interval in milliseconds between the heartbeats.

fwInterface: in IpHeartBeatRef
This parameter refersto the callback interface the heartbeat is caling.

7.3.3.3.2 Method disableAppHeartBeat()

Instructs the client application to cease the sending of its heartbeat.

Parameters
No Parameters were identified for this method.

7.3.3.3.3 Method changelnterval()

Allows the administrative change of the heartbeat interval.

ETSI

88 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Parameters
interval: in TpInt32

Thetimeinterval in milliseconds between the heartbests.
7.3.3.4 Interface Class IpAppHeartBeat
Inherits from: Ipinterface;

The Heartbeat Application interface is used by the Framework to send the client application its heartbeat.

<<Interface>>

IpAppHeartBeat

pulse () : void

7.3.3.4.1 Method pulse()

The framework uses this method to send its heartbeat to the client application. The application will be expecting a pulse
at the end of every interval specified in the parameter to the |pHeartBeatM gmt.enableHeartbeat() method. If the pulse()
is not received within the specified interval, then the framework can be deemed to have failed the heartbeat.

Parameters

No Parameters were identified for this method.

7.3.3.5 Interface Class IpHeartBeatMgmt
Inherits from: Iplnterface;

Thisinterface allows the initialisation of a heartbeat supervision of the framework by a client application. If the
IpHeartBeatM gmt interface is implemented by a Framework, as a minimum enableHeartBeat() and disableHeartBest()
shall be implemented.

<<Interface>>

IpHeartBeatMgmt

enableHeartBeat (interval : in TpInt32, applinterface : in IpAppHeartBeatRef) : void
disableHeartBeat () : void

changelnterval (interval : in TpInt32) : void

7.3.3.5.1 Method enableHeartBeat()

With this method, the client application instructs the framework to begin sending its heartbeat to the specified interface
at the specified interval.

ETSI

89

Parameters

interval: in TpInt32
Thetime interval in milliseconds between the heartbeats.

appInterface: in IpAppHeartBeatRef

This parameter refersto the callback interface the heartbeat is caling.

Raises

TpCommonExceptions

7.3.3.5.2 Method disableHeartBeat()

Instructs the framework to cease the sending of its heartbeat.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

7.3.3.5.3 Method changelnterval()

Allows the administrative change of the heartbeat interval.

Parameters

interval:in TpInt32
The time interval in milliseconds between the heartbeats.

Raises

TpCommonExceptions

7.3.3.6 Interface Class IpHeartBeat

Inherits from: Iplnterface;

Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

The Heartbeat Framework interface is used by the client application to send its heartbeat. If a Framework is capable of
invoking |pAppHeartBeatM gmt.enableHeartBeat(), it shall implement I pHeartBeat and the pulse() method.

<<Interface>>

IpHeartBeat

pulse () : void

ETSI

90 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

7.3.3.6.1 Method pulse()

The client application uses this method to send its heartbeat to the framework. The framework will be expecting a pulse
at the end of every interval specified in the parameter to the IpAppHeartBeatM gmt.enableAppHeartbeat() method. If the
pulse() is not received within the specified interval, then the client application can be deemed to have failed the
heartbeat.

Parameters
No Parameters were identified for this method.
Raises

TpCommonExceptions

7.3.3.7 Interface Class IpAppLoadManager
Inherits from: Iplnterface;

The client application devel oper supplies the load manager application interface to handle requests, reports and other
responses from the framework |oad manager function. The application supplies the identity of this callback interface at
the time it obtains the framework's load manager interface, by use of the obtainlnterfaceWithCallback() method on the
IpAccess interface.

<<Interface>>

IpAppLoadManager

<<deprecated>> queryAppLoadReq (timelnterval : in TpTimelnterval) : void

<<deprecated>> queryLoadRes (loadStatistics : in TpLoadStatisticList) : void

<<deprecated>> queryLoadErr (loadStatisticsError : in TpLoadStatisticError) : void

loadLevelNotification (loadStatistics : in TpLoadStatisticList) : void

resumeNotification () : void

suspendNotification () : void

createLoadLevelNotification () : void

destroyLoadLevelNotification () : void

<<new>> queryAppLoadStatsReq (loadStatsReqID : in TpLoadTestID, timelnterval : in TpTimelnterval) : void

<<new>> queryLoadStatsRes (loadStatsReqID : in TpLoadTestID, loadStatistics : in TpLoadStatisticList) :
void

<<new>> queryLoadStatsErr (loadStatsReqID : in TpLoadTestID, loadStatisticsError : in
TpLoadStatisticError) : void

7.3.3.7.1 Method <<deprecated>> queryAppLoadReq()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method queryAppLoadStatsReq shall be used instead, using the new identifier to correlate requests
and responses.

The framework uses this method to request the application to provide load statistics records for the application.

ETSI

91 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Parameters

timeInterval: in TpTimeInterval
Specifies the timeinterval for which load statistic records should be reported.

7.3.3.7.2 Method <<deprecated>> queryLoadRes()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method queryL cadStatsRes shall be used instead, using the new identifier to correlate requests and
responses.

The framework uses this method to send load statistic records back to the application that requested the information; i.e.
in response to an invocation of the queryl oadReq method on the |pLoadManager interface.

Parameters

loadStatistics:in TpLoadStatisticList
Specifies the framework-supplied load statistics.

7.3.3.7.3 Method <<deprecated>> queryLoadErr()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method queryL oadStatsErr shall be used instead, using the new identifier to correlate requests and
errors.

The framework uses this method to return an error response to the application that requested the framework's load
statistics information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an
invocation of the queryL oadReq method on the IpLoadManager interface.

Parameters

loadStatisticsError: in TpLoadStatisticError
Specifies the error code associated with the failed attempt to retrieve the framework's load statistics.

7.3.3.7.4 Method loadLevelNotification()

Upon detecting load condition change, (e.g. load level changing from0to 1, 0to 2, 1 to O, for the SCFs or framework
which have been registered for load level notifications) this method isinvoked on the application. In addition this
method shall be invoked on the application in order to provide a notification of current load status, when load
notifications are first requested, or resumed after suspension.

Parameters

loadStatistics:in TpLoadStatisticList
Specifies the framework-supplied load statistics, which include the load level change(s).

7.3.3.7.5 Method resumeNotification()

The framework uses this method to request the application to resume sending it notifications. e.g. after a period of
suspension during which the framework handled a temporary overload condition. Upon receipt of this method the client
application shall inform the framework of the current load using the reportL oad method on the corresponding
IpLoadManager.

Parameters
No Parameters were identified for this method.

ETSI

92 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

7.3.3.7.6 Method suspendNotification()

The framework uses this method to request the application to suspend sending it any notifications: e.g. while the
framework handles atemporary overload condition.

Parameters
No Parameters were identified for this method.

7.3.3.7.7 Method createLoadLevelNotification()

The framework uses this method to register to receive notifications of load level changes associated with the
application. Upon receipt of this method the client application shall inform the framework of the current load using the
reportLoad method on the corresponding | pLoadM anager.

Parameters
No Parameters were identified for this method.

7.3.3.7.8 Method destroyLoadLevelNotification()

The framework uses this method to unregister for notifications of load level changes associated with the application.

Parameters
No Parameters were identified for this method.

7.3.3.7.9 Method <<new>> queryAppLoadStatsReq()

The framework uses this method to request the application to provide load statistics records for the application.

Parameters

loadStatsReqID: in TpLoadTestID
Theidentifier provided by the framework to correlate the response (when it arrives) with this request.

timeInterval: in TpTimeInterval
Specifies the time interval for which load statistic records should be reported.

7.3.3.7.10 Method <<new>> queryLoadStatsRes()

The framework uses this method to send load statistic records back to the application that requested the information; i.e.
in response to an invocation of the queryL oadReq method on the I pLoadManager interface.

Parameters

loadStatsReqID: in TpLoadTestID
Used by the client application to correlate this response (when it arrives) with the original request.

loadStatistics:in TpLoadStatisticList
Specifies the framework-supplied load statistics.
7.3.3.7.11 Method <<new>> queryLoadStatsErr()

The framework uses this method to return an error response to the application that requested the framework's load
statistics information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an
invocation of the queryL oadReq method on the |pLoadM anager interface.

ETSI

93 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Parameters

loadStatsReqID: in TpLoadTestID
Used by the client application to correlate this error (when it arrives) with the original request.

loadStatisticsError: in TpLoadStatisticError
Specifies the error code associated with the failed attempt to retrieve the framework's load statistics.

7.3.3.8 Interface Class IpLoadManager
Inherits from: Iplnterface;

The framework API should alow the load to be distributed across multiple machines and across multiple component
processes, according to aload management policy. The separation of the load management mechanism and load
management policy ensures the flexibility of the load management services. The load management policy identifies
what load management rules the framework should follow for the specific client application. It might specify what
action the framework should take as the congestion level changes. For example, some real-time critical applications will
want to make sure continuous service is maintained, below a given congestion level, at all costs, whereas other services
will be satisfied with disconnecting and trying again later if the congestion level rises. Clearly, the load management
policy isrelated to the QoS level to which the application is subscribed. The framework load management function is
represented by the I pLoadM anager interface. Most methods are asynchronous, in that they do not lock a thread into
waiting whilst atransaction performs. To handle responses and reports, the client application devel oper must implement
the IpAppLoadManager interface to provide the callback mechanism. The application supplies the identity of this
callback interface at the time it obtains the framework's load manager interface, by use of the

obtainl nterfaceWithCallback operation on the IpAccess interface.

If the IpLoadManager interface isimplemented by a Framework, at |east one of the methods shall be implemented
asaminimum requirement. If load level notifications are supported, the createl oadL evelNotification() and
destroyL oadL evel Natification() methods shall be implemented. If suspendNotification() is implemented, then
resumeNotification() shall be implemented also. If a Framework is capable of invoking the
I pAppLoadM anager.queryAppL oadStatsReq() method, then it shall implement queryAppL oadStatsRes() and
queryAppLoadStatsErr() methodsin this interface.

ETSI

94 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

<<Interface>>

IpLoadManager

reportLoad (loadLevel : in TpLoadLevel) : void

<<deprecated>> queryLoadReq (servicelDs : in TpServicelDList, timelnterval : in TpTimelnterval) : void
<<deprecated>> queryAppLoadRes (loadStatistics : in TpLoadStatisticList) : void

<<deprecated>> queryAppLoadErr (loadStatisticsError : in TpLoadStatisticError) : void
createLoadLevelNotification (servicelDs : in TpServicelDList) : void

destroyLoadLevelNotification (servicelDs : in TpServicelDList) : void

resumeNotification (servicelDs : in TpServicelDList) : void

suspendNotification (servicelDs : in TpServicelDList) : void

<<new>> queryLoadStatsReq (loadStatsReqID : in TpLoadTestID, servicelDs : in TpServicelDList,
timelnterval : in TpTimelnterval) : void

<<new>> queryAppLoadStatsRes (loadStatsReqID : in TpLoadTestID, loadStatistics : in TpLoadStatisticList)
: void

<<new>> queryAppLoadStatsErr (loadStatsReqID : in TpLoadTestID, loadStatisticsError : in
TpLoadStatisticError) : void

7.3.3.8.1 Method reportLoad()

The client application uses this method to report its current load level (O, 1, or 2) to the framework: e.g. when the load
level on the application has changed.

At level 0 load, the application is performing within its load specifications (i.e. it is not congested or overloaded). At
level 1 1oad, the application is overloaded. At level 2 load, the application is severely overloaded. In addition this
method shall be called by the application in order to report current load status, when load notifications are first
requested, or resumed after suspension.

Parameters

loadLevel : in TpLoadLevel
Specifies the application's load level.

Raises

TpCommonExceptions

7.3.3.8.2 Method <<deprecated>> queryLoadReq()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method queryL oadStatsReq shall be used instead, using the new identifier to correlate requests and
responses.

The client application uses this method to request the framework to provide load statistic records for the framework or
for itsinstances of the individual services. If the application does not have access to a service instance with the
specified servicel D, the P UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The
extralnformation field of the exception shall contain the corresponding servicelD.

ETSI

95 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Parameters

servicelIDs: in TpServiceIDList

Specifies the framework or the services for which load statistics records should be reported. If this parameter is not an
empty list, the load statistics records of the client's instances of the specified services are returned, otherwise the load
statistics record of the framework is returned.

timeInterval: in TpTimeInterval
Specifies the time interval for which load statistics records should be reported.

Raises

TpCommonExceptions, P_INVALID SERVICE ID, P _SERVICE NOT ENABLED,
P UNAUTHORISED PARAMETER VALUE

7.3.3.8.3 Method <<deprecated>> queryAppLoadRes()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method queryA ppLoadStatsRes shall be used instead, using the new identifier to correlate requests
and responses.

The client application uses this method to send load statistic records back to the framework that requested the
information; i.e. in response to an invocation of the queryAppL oadReq method on the IpAppLoadManager interface.

Parameters

loadStatistics:in TpLoadStatisticList
Specifies the application-supplied load statistics.

Raises

TpCommonExceptions

7.3.3.8.4 Method <<deprecated>> queryAppLoadErr()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method queryAppLoadStatsErr shall be used instead, using the new identifier to correlate requests
and errors.

The client application uses this method to return an error response to the framework that requested the application's load
statistics information, when the application is unsuccessful in obtaining any load statistic records; i.e. in response to an
invocation of the queryAppL oadReq method on the | pAppL oadM anager interface.

Parameters

loadStatisticsError: in TpLoadStatisticError
Specifies the error code associated with the failed attempt to retrieve the application's load statistics.

Raises

TpCommonExceptions

ETSI

96 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

7.3.3.8.5 Method createLoadLevelNotification()

The client application uses this method to register to receive notifications of load level changes associated with either
the framework or with its instances of the individual services used by the application. If the application does not have
access to a service instance with the specified servicel D, the P_UNAUTHORISED_PARAMETER_VALUE exception
shall be thrown. The extralnformation field of the exception shall contain the corresponding servicel D. Upon receipt of
this method the framework shall inform the client application of the current framework or service instance load using
the loadL evel Natification method on the corresponding 1pAppL oadManager.

Parameters

serviceIDs: in TpServiceIDList

Specifies the framework or SCFsto be registered for load control. To register for framework load control, the
servicel Ds parameter must be an empty list.

Raises
TpCommonExceptions, P _INVALID SERVICE ID, P UNAUTHORISED PARAMETER VALUE

7.3.3.8.6 Method destroyLoadLevelNotification()

The client application uses this method to unregister for notifications of load level changes associated with either the
framework or with itsinstances of the individual services used by the application. If the application does not have
access to a service instance with the specified servicel D, the P_ UNAUTHORISED PARAMETER_VALUE exception
shall be thrown. The extralnformation field of the exception shall contain the corresponding servicelD.

Parameters

servicelIDs: in TpServiceIDList

Specifies the framework or the services for which load level changes should no longer be reported. To unregister for
framework load control, the servicel Ds parameter must be an empty list.

Raises
TpCommonExceptions, P_INVALID SERVICE ID, P UNAUTHORISED PARAMETER VALUE

7.3.3.8.7 Method resumeNotification()

The client application uses this method to request the framework to resume sending it load management notifications
associated with either the framework or with its instances of the individual services used by the application; e.g. after a
period of suspension during which the application handled a temporary overload condition. If the application does not
have access to a service instance with the specified servicel D, the P_ UNAUTHORISED PARAMETER VALUE
exception shall be thrown. The extralnformation field of the exception shall contain the corresponding servicel D. Upon
receipt of this method the framework shall inform the client application of the current framework or service instance
load using the loadL evelNotification method on the corresponding IpAppLoadManager.

Parameters

serviceIDs: in TpServiceIDList

Specifies the framework or the services for which the sending of notifications of load level changes by the framework
should be resumed. To resume notifications for the framework, the servicel Ds parameter must be an empty list.

Raises

TpCommonExceptions, P_INVALID SERVICE ID, P _SERVICE NOT ENABLED,
P UNAUTHORISED PARAMETER VALUE

ETSI

97 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

7.3.3.8.8 Method suspendNotification()

The client application uses this method to request the framework to suspend sending it load management notifications
associated with either the framework or with its instances of the individual services used by the application; e.g. while
the application handles a temporary overload condition. If the application does not have access to a service instance
with the specified servicel D, the P UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The
extralnformation field of the exception shall contain the corresponding servicelD.

Parameters

serviceIDs: in TpServiceIDList

Specifies the framework or the services for which the sending of notifications by the framework should be suspended.
To suspend notifications for the framework, the servicel Ds parameter must be an empty list.

Raises

TpCommonExceptions, P_INVALID SERVICE ID, P _SERVICE NOT ENABLED,
P UNAUTHORISED PARAMETER VALUE

7.3.3.8.9 Method <<new>> queryLoadStatsReq()

The client application uses this method to request the framework to provide load statistic records for the framework or
for itsinstances of the individual services. If the application does not have access to a service instance with the
specified servicel D, the P_UNAUTHORISED PARAMETER_VALUE exception shall be thrown. The
extralnformation field of the exception shall contain the corresponding servicel D.

Parameters

loadStatsReqID: in TpLoadTestID
The identifier provided by the application to correlate the response (when it arrives) with this request.

serviceIDs: in TpServiceIDList

Specifies the framework or the services for which load statistics records should be reported. If this parameter is not an
empty list, the load statistics records of the client's instances of the specified services are returned, otherwise the load
statistics record of the framework is returned.

timeInterval: in TpTimeInterval
Specifies the time interval for which load statistics records should be reported.

Raises

TpCommonExceptions, P_INVALID SERVICE ID, P_SERVICE NOT ENABLED,
P _UNAUTHORISED PARAMETER VALUE

7.3.3.8.10 Method <<new>> queryAppLoadStatsRes()

The client application uses this method to send load statistic records back to the framework that requested the
information; i.e. in response to an invocation of the queryAppL oadStatsReq method on the |pAppL oadM anager
interface.

Parameters

loadStatsReqID: in TpLoadTestID
Used by the framework to correlate this response (when it arrives) with the original request.

ETSI

98 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

loadStatistics:in TpLoadStatisticList
Specifies the application-supplied load statistics.

Raises

TpCommonExceptions

7.3.3.8.11 Method <<new>> queryAppLoadStatsErr()

The client application uses this method to return an error response to the framework that requested the application's load
statistics information, when the application is unsuccessful in obtaining any load statistic records; i.e. in response to an
invocation of the queryAppL oadStatsReq method on the |pA ppLoadManager interface.

Parameters

loadStatsReqID: in TpLoadTestID
Used by the framework to correlate this error (when it arrives) with the original request.

loadStatisticsError: in TpLoadStatisticError
Specifies the error code associated with the failed attempt to retrieve the application’'s load statistics.

Raises

TpCommonExceptions

7.3.3.9 Interface Class IpOAM
Inherits from: Ipinterface;

The OAM interface is used to query the system date and time. The application and the framework can synchronise the
date and time to a certain extent. Accurate time synchronisation is outside the scope of the OSA APIs. Thisinterface
and the systemDateTimeQuery() method are optional.

<<Interface>>
IPOAM

systemDateTimeQuery (clientDateAndTime : in TpDateAndTime) : TpDateAndTime

7.3.3.9.1 Method systemDateTimeQuery()

This method is used to query the system date and time. The client application passesin its own date and time to the
framework. The framework responds with the system date and time.

Returns <systemDateAndTime> : Thisis the system date and time of the framework.

ETSI

99 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Parameters

clientDateAndTime: in TpDateAndTime

Thisisthe date and time of the client (application). The error code P_INVALID_DATE_TIME_FORMAT isreturned if
the format of the parameter isinvalid.

Returns

TpDateAndTime

Raises

TpCommonExceptions, P_INVALID TIME AND DATE FORMAT

7.3.3.10 Interface Class IpAppOAM
Inherits from: Ipinterface;

The OAM client application interface is used by the Framework to query the application date and time, for
synchronisation purposes. This method isinvoked by the Framework to interchange the framework and client
application date and time.

<<Interface>>
IpPAppOAM

systemDateTimeQuery (systemDateAndTime : in TpDateAndTime) : TpDateAndTime

7.3.3.10.1 Method systemDateTimeQuery()

This method is used to query the system date and time. The framework passesin its own date and time to the
application. The application responds with its own date and time.

Returns <clientDateAndTime> : Thisis the date and time of the client (application).

Parameters

systemDateAndTime: in TpDateAndTime
Thisisthe system date and time of the framework.

Returns
TpDateAndTime

7.3.4 Event Notification Interface Classes

7.3.4.1 Interface Class IpAppEventNotification

Inherits from: Iplnterface;

ETSI

100 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Thisinterface is used by the framework to inform the application of a generic service-related event. The Event
Notification Framework will invoke methods on the Event Notification Application Interface that is specified when the
Event Notification interface is obtained.

<<Interface>>

IpAppEventNotification

reportNotification (eventinfo : in TpFwEventinfo, assignmentID : in TpAssignmentID) : void

notificationTerminated () : void

7.3.4.1.1 Method reportNotification()

This method notifies the application of the arrival of a generic event.

Parameters

eventInfo: in TpFwEventInfo
Specifies specific data associated with this event.

assignmentID: in TpAssignmentID

Specifies the assignment id which was returned by the framework during the createNotification() method. The
application can use assignment id to associate events with event specific criteriaand to act accordingly.

7.3.4.1.2 Method notificationTerminated()

This method indicates to the application that all generic event notifications have been terminated (for example, due to
faults detected).

Parameters

No Parameters were identified for this method.

7.3.4.2 Interface Class IpEventNotification
Inherits from: Iplnterface;

The event notification mechanism is used to notify the application of generic service related events that have occurred.
If Event Notifications are supported by a Framework, this interface and the createNotification() and
destroyNatification() methods shall be supported.

<<Interface>>

IpEventNotification

createNotification (eventCriteria : in TpFwEventCriteria) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

ETSI

101 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

7.3.4.2.1 Method createNotification()
This method is used to enable generic notifications so that events can be sent to the application.

Returns <assignmentl D> : Specifiesthe ID assigned by the framework for this newly installed notification.

Parameters

eventCriteria:in TpFwEventCriteria
Specifies the event specific criteria used by the application to define the event required.

Returns
TpAssignmentID
Raises

TpCommonExceptions, P_ACCESS DENIED, P INVALID CRITERIA,
P _INVALID EVENT TYPE

7.3.4.2.2 Method destroyNotification()

This method is used by the application to delete generic notifications from the framework.

Parameters

assignmentID: in TpAssignmentID

Specifies the assignment ID given by the framework when the previous createNotification() was caled. If the
assignment ID does not correspond to one of the valid assignment IDs, the framework will return the error code
P INVALID_ASSIGNMENTID.

Raises
TpCommonExceptions, P_ACCESS DENIED, P INVALID ASSIGNMENT ID

7.4 State Transition Diagrams

This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the
gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can
be invoked by the application are shown. Methods not shown for a specific state are not relevant for that state and will
return an exception. Apart from the methods that can be invoked by the application also eventsinternal to the gateway
or related to network events are shown together with the resulting event or action performed by the gateway. These
internal events are shown between quotation marks.

ETSI

102 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

7.4.1 Service Discovery State Transition Diagrams

7.4.1.1 State Transition Diagrams for IpServiceDiscovery

obtainFrameworkInterfac e(discoweryService)
obtaininterface WithCallback(dis coverySenice)

listSeniceTypes
describeSeniceType

listSubscribedS ervices
N discoverSenice

Active

IpAccess.endAccess

Figure 13: State Transition Diagram for IpServiceDiscovery

7.4.1.1.1 Active State

When the application requests Service Discovery by invoking the obtainl nterface or the obtainl nterfaceWithCallback
methods on the IpAccess interface, an instance of the IpServiceDiscovery will be created. Next the application is
allowed to request alist of the provided SCFs and to obtain a reference to interfaces of SCFs.

7.4.2 Service Agreement Management State Transition Diagrams

There are no State Transition Diagrams defined for Service Agreement Management.

ETSI

103 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

7.4.3 Integrity Management State Transition Diagrams

7.4.3.1 State Transition Diagrams for IpLoadManager

reportLoad
"load change” NoadLevelNotification querySvcLoadRes| load statistics requested by LoadManz
querySvcLoadErr[load statistics requested by LoadMan

createLoadLevelNotification NoadLevelNotification ‘ Active queryLoadReq

destroyLoadLewlIN otification

IpAccess\obtainl

IpAccess gbtaininterfaceWithCallback

resumeNotification
NoadLevelNotification

reportLoad
querySvcLoadRes[load statistics requested by LoadM
querySvcLoadE | load statistics requested by Load

Notification queryLoadReq
Suspended

destroylLoadLevelNotification

All States

IpAccesss.endAccess

suspendNotification[all notifications
suspended]

Figure 14: State Transition Diagram for IpLoadManager

7.4.3.1.1 Idle State

In this state the application has obtained an interface reference of the LoadManager from the IpAccess interface.

7.4.3.1.2 Notification Suspended State

Dueto e.g. atemporary load condition, the application has requested the LoadManager to suspend sending the load
level notification information.

ETSI

104 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

7.4.3.1.3 Active State

In this state the application has indicated its interest in notifications by performing a createl oadL evel Notification()
invocation on the IpLoadManager. The load manager can now reguest the application to supply load statistics
information (by invoking queryAppLoadReq()). Furthermore the LoadManager can request the application to control its
load (by invoking loadLevelNatification(), resumeNotification() or suspendNotification() on the application side of
interface). In case the application detects a change in load level, it reports this to the LoadManager by calling the
method reportLoad().

7.4.3.2 State Transition Diagrams for LoadManagerinternal

A necessary action can
be suspending the load
notifictions to the
application or enabling
load control mechanisms
on certain senices.

mrLoadCOntroller ,'
I
reportLoad[loadlevel 1= 0] |

[Normal load @ Application Overload

reportLoad[loadlevel = 0]

"internal load change detection”

"internal load change tb non owerloaded" interrjal load change detection

"internal load change/to non gverload”

reportLoad[loadlevel != 0]

Internal overload

Internal and Application Oerload

\

\ reportLoad[loadlevel = 0]

\

\

A necessary action can be AN
suspending the load

notifictions from the

application by invoking

sus pendNotific ation or

enabling load control
mechanisms on the

application by invoking
enableLoadControl.

Figure 15: State Transition Diagram for LoadManagerinternal

7.4.3.2.1 Normal load State

In this state none of the entities defined in the load balancing policy between the application and the framework / SCFs
is overloaded.

7.4.3.2.2 Application Overload State

In this state the application has indicated it is overloaded. When entering this state the load policy is consulted and the
appropriate actions are taken by the LoadManager.

ETSI

105 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

7.4.3.2.3 Internal overload State

In this state the Framework or one or more of the SCFs within the specific load policy is overloaded. When entering this
state the load policy is consulted and the appropriate actions are taken by the LoadManager.

7.4.3.2.4 Internal and Application Overload State

In this state the application is overloaded as well as the Framework or one or more of the SCFs within the specific load
policy. When entering this state the load policy is consulted and the appropriate actions are taken by the LoadManager.

7.4.3.3 State Transition Diagrams for IpPOAM

IpAccess.obtaininterface
IpAccess. obtaininterfaceWithCallback

systemDateTimeQuery
(Active A
- J

IpAccess.endAccess

°

Figure 16: State Transition Diagram for IpOAM

7.4.3.3.1 Active State

In this state the application has obtained a reference to the IpOAM interface. The application is now able to request the
date / time of the Framework.

ETSI

106 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

7.4.3.4 State Transition Diagrams for IpFaultManager

IpAccess.obtaininterfaceWithCallback("FaultManagement") /
add application to fault management
‘change in framework availabililty (non fault)' ~fwAvailStatusind to all applications with callback
‘change in service availability' “svcAvailStatusind to all applications using the service

svcUnavailablelnd / test the service, inform service that application is not using it
genFaultStatsRecordReq “app.genFaultStatsRecordRes/Err

service fault ~svcAvailStatusind to all applications using the service Framework \‘

Active ‘ no fault detected

activityTestReq][scflD activityTestReq[

empty string]
no fault detected

Framework Activity T est

Service Activity Test

IpActess.endAccess | entry/ test activity of framework
exit/ "lpAppFaultManager.activityTestRes
exit/ "lpAppFaultManager.activityTestErm

entry/ test activity of service
exit/ "lpAppFaultManager.activityTestRes
exit/ "lpAppFaultManager.activityTestErr

IpAccess.endAcgess/ Abort
fault detected in fw pending tegt request
IpAccess.endAccess/ remove
application from load management

O fault detected in fw

Framework Faulty ‘

entry/ “MwAvailStatusind to all applications with callback
exit/ MfwAvailStatusind to all applications with callback

J

Figure 17: State Transition Diagram for IpFaultManager

7.4.3.4.1 Framework Active State

Thisisthe normal state of the framework, which is fully functional and able to handle requests from both applications
and services capability features.

7.4.3.4.2 Framework Faulty State
In this state, the framework has detected an internal problem with itself such that application and services capability
features cannot communicate with it anymore; attempts to invoke any methods that belong to any SCFs of the

framework return an error. If the framework ever recovers, applications with fault management callbacks will be
notified viaa fwAvail Statuslnd message.

7.4.3.4.3 Framework Activity Test State

In this state, the framework is performing self-diagnostic test. If a problem is diagnosed, all applications with fault
management callbacks are notified through a fwAvail Statusl nd message.

7.4.3.4.4 Service Activity Test State

In this state, the framework is performing atest on one service capability feature. If the SCF is faulty, applications with
fault management callbacks are notified accordingly through a svcAvail Statusind message.

ETSI

7.4.4

7441

IpAccess.obtaininterface

107 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Event Notification State Transition Diagrams

State Transition Diagrams for IpEventNotification

createNotification

inlnterfaceWithCallback

createNotification
Notification

Active

destroyNatification[no more notificationg installed]

IpAccess.endAccess
IpAccegs.endAccess

Figure 18: State Transition Diagram for IpEventNotification

8

In this model, the enterprise operators act in the role of subscriber/customer of services and the client applications act in
the role of users or consumers of services. The framework itself actsin therole of retailer of services. The following

Framework-to-Enterprise Operator API

In some cases, the client applications (or the enterprise operators on behalf of these applications) must explicitly
subscribe to the services before the client applications can access those services. To accomplish this, they use the
service subscription function of the Framework for subscribing or un-subscribing to services. Subscription represents a
contractual agreement between the enterprise operator and the Framework operator. In general, an entity acting in the
role of a customer/subscriber subscribes to the services provided by the Framework on behalf of the users/consumers of
the service.

examplesillustrate these roles:

Service (to be subscribed): Call Centre Service, Mobility Service, etc.
Framework Operator: AT&T, BT, etc.

Enterprise Operator: A Financia institution such as a Bank or Insurance Company, or possibly an Application
Service Provider (Such an enterprise has a conformant Subscription Application in its domain which "talks' to its
peer in the Framework).

User/Consumer: Client Applications (or their associated users) in the enterprise domain that use the Call Centre
Service or the Mobility Service.

ETSI

destroyNotification

108 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

The Service Subscription interface is used by an enterprise operator to subscribe to new services and is required before
aclient application of the enterprise can use the new service. In general, the service subscription is performed after an
off-line negotiation of a set of services and the associated price between the framework operator and the enterprise
operator. The service subscription is performed online by the enterprise operator in the frame of an existing off-line
negotiated contract between the framework operator and the enterprise. The on-line service subscription function is
used for subscriber, client application, and service contract management. The following clause describes a service
subscription model.

Subscription Business Model

The following figure shows the subscription business model with respect to the business roles involved in the service
subscription process. The subscription process involves the enterprise operator (which actsin the role of service
subscriber) and the Framework (which acts in the role of provider or retailer of a service).

Services may be provided to the Enterprise Operator directly by a service provider or indirectly through aretailer, such
as the Framework. An enterprise operator represents an organisation or a company which will be hosting client
applications. Before a service can be used by the client applications in the enterprise operator's domain, subscription to
the service must take place. An enterprise operator subscribes to a service by (electronically) signing a contract about
the service usage with the Framework, using an on-line subscription interface provided by the Framework. The
Framework provides the service according to the service contract. The Enterprise Operator authorises the client
application in his’/her domain for the service usage. Finally a subscribed service can be used by a particular client
application.

Enterprise Operator (In the role
of Service Subscriber)

Signs contract about service usage
Framework (In the role
of Service Retailer)
Authorises C'!h

A%

L I
v
rer- Uses service

Client Application (In the role of
User or Consumer of Services)

Figure 19: Subscription Business Model

The interfaces between an enterprise operator and the client applications in its domain are outside the scope of this API.

The enterprise operator provides to the Framework the data about the client applicationsin its domain and the type of
services each of them should be allowed access to, using the subscription interfaces offered by the Framework. The
Framework provides (to the enterprise operator) the subscription interfaces for subscriber, client application and service
contract management. This gives the enterprise operators the capability to dynamically create, modify and delete, in the
framework domain, the client applications and service contracts belonging to its domain.

ETSI

109 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

The enterprise operator is represented in the Framework domain as an EntOp object. The EntOp object isidentified by a
unique ID and contains the enterprise operator properties. The EntOp ID is aunique identifier of an enterprise operator
in the Framework domain. It is created by the Framework Operator during the pre-subscription off-line negotiation of
services (and their price, etc.) phase. The enterprise operator properties contain information such as the name and
address of the enterprise operator (individual or organisation), service charge payment information, etc. The enterprise
operator domain has one or more client applications associated with it. The enterprise operator may group a sub-set of
client applicationsin its domain in order to assign the same set of service features to the group. Such agroup iscalled a
Subscription Assignment Group (SAG). An enterprise operator may have multiple SAGsin its domain. A SAG relates a
client application to the features of aservice. A client application may be a member of multiple SAGs, one for each
service subscribed for the client application by its enterprise operator.

The enterprise operator subscribes to a number of services by creating a service contract with the Framework for each
service. Each service subscription is described by a service contract which defines the conditions for the service
provision. A service contract restricts the usage of a service at subscription time. A service contract contains one or
more Service Profiles, one for each SAG in the enterprise operator domain. A Service Profile contains the service
parameters which further restrict the corresponding parametersin the service contract in order to adapt the service to the
SAG's needs. A service profile istherefore arestriction of the service contract in order to provide restricted service
featuresto a SAG. It isidentified by aunique ID (within the framework domain) and contains a set of service
properties, which defines the restricted usage of service allowed for that SAG (and its client applications).

Client Applicationsand SAGsin the Enterprise Domain

Service Contractsfor Individual Services
ibed Dy Enterprise Operate

Service Profilesin a Service Contract

Figure 20: Relationship between Client Applications/SAG, Service Contract and Service Profiles

The client application is related to the enterprise operator for the usage of a service. The client applicationis
represented in the Framework domain as a clientApp object. The clientApp object isidentified by aunique ID and
contains a set of client application properties describing the client application relevant information for subscription.
Each client application is part of at least one SAG, which can contain one or more client applications. Each SAG has
one service profile per service that defines the preferences of the SAG members for the usage of that service. A SAG
can have multiple Service Profiles associated with it, one for each service subscribed by the enterprise operator on
behalf of the SAG members. The figure above shows the relationship between client application objects, SAGs, service
contracts and service profiles.

ETSI

110 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

An enterprise operator may not want to grant all client applicationsin its domain the same service characteristics and
usage permissions. In this case the enterprise operator can group them in a set of SAGs and assign a particular Service
Profile to each group. A client application can be assigned to more than one service profile for a given service, aslong
as the dates within those service profiles do not overlap. The figure below illustrates this. Here the client is assigned to
two SAGs. One of these SAGs uses ServiceProfilel to control accessto service 1. The other uses ServiceProfile3 to
control accessto service 1. If the datesin the two service profiles overlap, asis the case here, then it cannot be
determined when the client signs the service agreement which service profile should be used. For example, if the client
application signed the service agreement on February the 8", then it could not be determined which of service profile 1
or service profile 3 would apply. If the dates are not overlapping then there is not a problem with identifying which of
the service profilesto use. A SAG may have multiple service profiles, one for each subscribed service, associated with

it.
SAG
Client Client
App.1 App.2

SAG

Client Client
App.1 App.3

erviceProfile
Start: 02, Feb
End: 10, Feb

ServicelD: 2

viceProfil
Start: 08, Feb
End: 30, Feb
ServicelD: 1

Start: 02, Feb
End: 10, Feb
ServicelD: 1

Figure 21: Overlapping date fields in service profiles

Enterprise Enterprise

Operator 1 / Operator 2

Enterprise
Operator 3

Ce

Figure 22: Multiple Enterprise Operators

ETSI

111 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

The figure above illustrates that the framework can offer its services to applications in the domains of many enterprise
operators. An enterprise operator could be an Application Service Provider, a corporation, or even the network operator
(if the services offered through the framework belong to a single network — it is even possible that the network operator
will be the only enterprise operator). It is possible, however, that each service registered with the framework could
actually be in adifferent network. The client application IDs have to be unique within the framework. The framework
operator could decide to allocate a block of application IDs to each enterprise operator, or even negotiate with the
enterprise operators to provide a set of client application IDs that are meaningful to them.

Service subscription and subscription management requires a careful delineation of subscription-related functions. The
service subscription interfaces are classified in the following categories:

. Enterprise Operator Account Management.
. Enterprise Operator Account Query.

. Service Contract Management.

e Service Contract Query.

. Service Profile Management.

. Service Profile Query.

. Client Application Management.

. Client Application Query.

Only the enterprise operator, which is registered and later on authenticated, is alowed to use these interfaces.

8.1 Sequence Diagrams

8.1.1 Event Notification Sequence Diagrams

No Sequence Diagrams exist for Event Notification.
8.1.2 Service Subscription Sequence Diagrams

8.1.2.1 Service Discovery and Subscription Scenario

This scenario is shown in the sequence diagram below. Services are subscribed to by the enterprise operator on behalf
of the client applications which then use these services. Before an enterprise operator can subscribe to a service, it must
have knowledge of the existence of that service in the framework. The enterprise operator discovers the set of services
provided by the framework using the |pServiceDiscovery interface. Initially, the enterprise operator obtains alist of
service types supported by the framework by invoking listServiceTypes() on IpServiceDiscovery interface. Then it
obtains the description of a service type using describeServiceType() to find out the set of properties applicable to a
particular service type. Subsequently it invokes discoverService() to discover the services of a given type which
supports the desired set of property values. The discoverService() method returns alist of "servicelDs' and their
associated property values. The service discovery phase is followed by the service subscription phase. The enterprise
operator uses the | pServiceContractM anagement and | pServiceProfileM anagement interfaces to perform service
subscription.

ETSI

112 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

The enterprise operator invokes the createServiceContract() on | pServiceContractManagement interface to subscribe to
a service. Depending upon the Framework Operator's policy, the services may be subscribed by identifying them by
their "servicel D" or by their service type. In the former case only the specific service can be used by the enterprise
operator and its client applications. In the latter case, al registered services of the given type can be used. The enterprise
operator may create multiple service profiles (each of which are arestriction of the service contract) by invoking
createServiceProfile() on IpServiceProfileManagement interface and assign each service profile to a different
Subscription Assignment Group (SAG), using assign() method. This allows an enterprise operator to assign different
service privileges to different client application groups. During the life time of a service contract, the enterprise operator
may perform service contract and service profile management functions, such as modifying the service profiles
(modifyServiceProfile()) and service contract (modifyServiceContract()), re-assigning the service profilesto a SAG
(assign()), obtaining information about a service profile (getServiceProfile()), deleting service profiles
(deleteServiceProfilg()), etc. These methods may be interleaved in any logical order. The enterprise operator or the
client applications, can at any time obtain alist of currently subscribed services by invoking listSubscribedServices()
method on the I pServiceDiscovery interface. This method returns alist of servicel Ds of the set of subscribed services.
The service contract ceases to exist after the specified end date. The deleteServiceContract del etes the service contract
object held in the framework. It is up to the discretion of the Framework operator to alow the enterprise operator to
delete a service contract before its specified end date.

After the service subscription is performed the client applications can access and use the set of subscribed servicesin
addition to the set of freely available services. In order to start a service, the interface reference of the serviceis
required. The discoverService() method or the listSubscribedServices() method, described above, return the

"servicel D". The interface reference of the service is obtained in the service access phase. The service access phase
begins with the client applications selecting the service, via the selectService() method, and signing a service
agreement, via the signServiceAgreement() method. The selectService() method is used by the client application to
identify the service that it wantsto initiate. The input to the selectService() isthe "servicel D" returned by the
discoverService() or the listSubscribedServices() and the output is a"serviceT oken". The serviceToken is free format
text token returned by the framework, which can be used as part of a service agreement. If the service is not subscribed
by the enterprise operator, then a " service not subscribed" exception israised. The signServiceAgreement() isinvoked
by the client application on the framework to sign an agreement on the service. The input to this method is the service
token returned by the selectService() method. The sign service agreement is used as a way of non-repudiation of the
intention to use the service by the client application. The successful completion of the signServiceAgreement() returns
the interface reference to the service (or to its service manager). The client application can then use this interface
reference to start the service.

ETSI

113 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

[13: modifyServiceContract(in TpServiceCdntract)
t t

. . : IpAccess : IpServiceDiscovery - IpServiceContr - 1pSer viceCont adtInf oQ ter - IpServicePr : IpServic eProfi e nb Query
EnterpriseOperator | | ClientApplication
T T T T T T
| Auth. phase | | | | | |
I loved by I I I I I I
! i oualnlrﬁe'iace() ! ! ! ! ! !
L + L | | | | |
U | U | | | | |
‘ | 2 istseniceTypes(| | | | | |
| | gl | | | |
| | | | | | |
! 3: describeServceTypé() ! ! ! ! !
t + + t | | | |
U | | /I-J | | | |
	Find desired D					
		Services				
	4: discoser Service()				
I I /l-r‘						
5: obtaininterface()						
T						
! !	the Services ! ! ! !					
[6: createSeniceContrdct(in TpSenviceContractD boorrpero [[[[
t t t						
I			L .			
! ! ! ! SPsinSC ! ! !						
! ! ! ! 7: createSenviceProfile(! ! !					
I I I I	I I					
U				/U		
		T				
H				/U		
			9 modfySer\aceProﬁleq			
			g			
			10: assigr()			
T T T T /u						
			11: desdribeServiceProfile() ! !			
f f f f f						
U					/u	
			12: celeteServicePrdile())			
			T			
			[
t						
U			/u			
‘ 1 14:listSubscibedSenices() 1 : : :						
H	/U					
: 1#: listSubs cnbedSa'\nﬁ‘es() : : : :						
	gl					
		16: describeSenviceContract()				
t t t						
U						
17: crealeSer\nceConnpct(l n TpServiceConlrac‘Descri ption)						
1 1 1 gl						
I						
I						

8.1.2.2 Enterprise Operator and Client Application Subscription Management Sequence
Diagram

Thefirst step in the service subscription process is the creation of an account for the enterprise operator. The creation of
enterprise operator accounts is performed by the Framework Operator viainterfaces outside of the present document.
When the enterprise operator's account has been created they are allowed to use the framework. The enterprise operator
(acting in the role of service subscriber) can then create accounts within the framework for all of the client applications
in its domain. The enterprise operator obtains the reference to the | pEntOpManagement interface by invoking

obtainl nterface() on the IpAccess interface. The enterprise operator at any time may inspect its subscription account by
invoking describeEntOpAccount on the I pEntOpA ccountlnfoQuery interface and modify the subscriber-rel ated
information contained in its subscription account by invoking modifyEntOpAccount() on | pEntOpAccountM anagement
interface.

An enterprise operator usualy has many client applicationsin its enterprise domain. These client applications must be
registered within the framework so that the set of services subscribed to by the enterprise operator (through
createServiceContract()) can be assigned to these client applications by associating a service profile (arestriction of
service contracts) with a group of client applications, called a Subscription Assignment Group (SAG). In order to create
an account for individual client applications, the enterprise operator invokes createClientApp() on

ETSI

114 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

I pClientAppManagement interface. The enterprise operator groups a related set of client applicationsin a SAG so that
the same service profile can be assigned to them. The enterprise operator may create an empty SAG by invoking
createSAG() on IpClientAppManagement interface. The enterprise operator adds client applications to the newly
created SAG by invoking addSAGMembers() on I pClientA ppManagement interface. The enterprise operator also
performs other client application / SAG management functions such as modifyClientApp(), deleteClientApp(),
modifySAG(), listSAGS(), lissSAGMembers(), addSAGmembers(), removeSAGmembers()etc. These methods can be
interleaved in any logical order. Finaly, the enterprise operator (or the framework operator) can delete its subscription
account by invoking deleteEntOpAccount() on IpEntOpAccountManagement interface.

Enterprise Framework : IpAccess o o o o
Operator Operator IpEntOpAccountManagement IpEntOpAccountinfoQuery | | IpClientAppManagement | | IpClientAppinfoQuery
T T

I
The Enterprise Operator
account has already been created.

Auth. Phase followed by:

1: obtainlbterface() :

v

|
|
2: describeEntOpAccount()
T
|
|

3: modifyEntOpActount()

|
4: obtainlhterface()
I

L

5: createCl i‘entApp()

Create more client
apps

|
|
|
|
|
I
|
|
T
|
|
|
| 6: createSAG()
|
|
|
|
T
|
|
|
T
|
|
|
|
|
|
|
|
|
|
|
|
i
|
|
|
|
|
|
|
|
|
|
T
|
|
|
!
|
|
|

|
|
|
7: addSAGMembers()
T

|
8: modifyCljentApp()
T

9: modify‘SAG()

e 1 s s S e SO e Y e SO s S s SN s SRR

|
10: deleteClientApp()
}

|
11: removeSA¢Memberi)

|
12: modifySAG()

13: obtain]nterface()
T

14: listSAGs()

15: listsSAGMembers()

g

1
1

e s e s [e S e S s i &

1

|
|
|
|
]
|
|
|
|
|
|
|
16: deleteEntOpAdcount()
|
|
|
|
|
|
|
|
I

ETSI

115 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

8.2 Class Diagrams

<<Interface>>
IpClientE ventNotification
(from ClientInte face9

@reportNotification()
@notificationTerminated()

<<uses>> |

<<Interface>>
IpEventNotification
(from Framework Interfaces)

ScreateNotification()
destroyNotification()

Figure 23: Event Notification Package Overview

ETSI

116 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

<<Interface>>
<<Interface>> IpClientAPILevelAuthentication
IpClientAccess (from Client interfaces)

(from Client interfaces)

[®<<deprecated>> authenticate()

[®terminateAccess() [®abortAuthentication()
[®authenticationSucceeded()
| [®challenge()
|
<<uses>> : :
| <<uses>> |
| |
<<Interface>> :
IpAccess <<Interface>>
<<Interface>> (from Framework interfaces) IpAPILevelAuthentication
IpInitial (from Framework interfaces)
(from Framework interfaces) -obtai ninterface()
¥obtaininterfaceWith Callback () [¥i<<deprecated>> selectEncryptionMethod()
[®<<deprecated>> initiateAuthentication() [®¥<<deprecated>> endAccess() [®¥<<deprecated>> authenticate()
[®initiateAuthenticationWithVersion() [®istinterfaces() [®abortAuthentication()
[®i<<deprecated>> releas einterface() [®authenticationSucceeded()
[®selectSigningAlgorithm) [®¥selectAuthenticationMechanism()
[SterminateAccess() [Schallenge()
®relinquishinterface() %7

<<Interface>>
IpAuthentication
(from Framework interfaces)

®requestAccess()

Figure 24: Trust and Security Management Package Overview

ETSI

117 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

<<Interface>>
IpClientAppManagement
from Fram ewo ki nterfaces)
<<Interface>>
IpClientAppInfoQuery Fcreatedi entApp()
(from Fram eworkiinte faces) “modifyCIientApp()
BdeleteClientApp()
®describeClientApp() Screate SAG()
®listClientApps() ¥modifySAG()
HdescribeSAG() FdeleteSAG()
WlistSAGs() WaddSAGMembers()
®listSAGMembers() ®removeSA GMembers()
BlistClientAppMembership() ®requestConflictinfo()

<<Interface>>
IpPEntOpAccountManagement
(from Framework interfaces)

<<Interface>>
IpSeniceContractinfoQuery

(from Framework interfaces)

<<Interface>>
IpEntOpAccountinfoQuery

(from Framework interfaces)

:modinyntOpAccountO SdescribeSeniceContract ()
®describeEntOpAccount() deleteE ntOpAccount() ::IstgemceCor:itlracz)s()
istSeniceProfiles

<<Interface>>

<<lInterface>> : : <<Interface>>
) ¢ IpSeniceProfileManagement -
IpSenvceProfileinfoQuery (from Framework interfaces) IpSemceContractManagement
(from Fram eworkinterfaces) (from Framework interfaces)
WcreateSeniceProfile() © .
i i i : . createSeniceContract
:IlstSe_r\AcePrgﬂles() i imodifySeniceProfile(““modifyServiceContract(())
descibeServiceProfile() WdeleteSeniceProfile() B e lotoSericeContract
lis tAssignedMembers() Wassign() eleteSenviceContract()
Wdeassign()

FrequestConflictinfo()

Figure 25: Service Subscription Package Overview

8.3 Interface Classes

8.3.1 Event Notification Interface Classes

8.3.1.1 Interface Class IpClientEventNotification
Inherits from: Ipinterface;

Thisinterface is used by the framework to inform the client of a generic event. The Event Notification Framework will
invoke methods on the Event Notification Client Interface that is specified when the Event Notification interfaceis
obtained.

ETSI

118 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

<<Interface>>

IpClientEventNotification

reportNotification (eventinfo : in TpFwEventinfo, assignmentID : in TpAssignmentID) : void
notificationTerminated () : void

8.3.1.1.1 Method reportNotification()

This method notifies the client of the arrival of a generic event.

Parameters

eventInfo: in TpFwEventInfo
Specifies specific data associated with this event.

assignmentID: in TpAssignmentID

Specifies the assignment id which was returned by the framework during the createNotification() method. The client
can use assignment id to associate events with event specific criteria and to act accordingly.

8.3.1.1.2 Method notificationTerminated()

This method indicates to the client that all generic event notifications have been terminated (for example, due to faults
detected).

Parameters

No Parameters were identified for this method.

8.3.1.2 Interface Class IpEventNotification
Inherits from: Ipinterface;

The event notification mechanism is used to notify the client of generic eventsthat have occurred. If Event Notifications
are supported by a Framework, thisinterface and the createNotification() and destroyNotification() methods shall be
supported.

<<Interface>>

IpEventNotification

createNotification (eventCriteria : in TpFwEventCriteria) : TpAssignmentlD

destroyNotification (assignmentID : in TpAssignmentID) : void

ETSI

119 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

8.3.1.2.1 Method createNotification()
This method is used to enable generic notifications so that events can be sent to the client.

Returns <assignmentl D> : Specifiesthe ID assigned by the framework for this newly installed notification.

Parameters

eventCriteria:in TpFwEventCriteria
Specifies the event specific criteria used by the client to define the event required.

Returns
TpAssignmentID
Raises

TpCommonExceptions, P_ACCESS DENIED, P INVALID CRITERIA,
P _INVALID EVENT TYPE

8.3.1.2.2 Method destroyNotification()

This method is used by the client to delete generic notifications from the framework.

Parameters

assignmentID: in TpAssignmentID

Specifies the assignment ID given by the framework when the previous createNotification() was caled. If the
assignment ID does not correspond to one of the valid assignment IDs, the framework will return the error code
P_INVALID_ASSIGNMENT _ID.

Raises
TpCommonExceptions, P_ACCESS DENIED, P INVALID ASSIGNMENT ID

8.3.2 Service Subscription Interface Classes

8.3.2.1 Interface Class IpClientAppManagement
Inherits from: Iplnterface;

If the enterprise operator wants the client applications in its domain to access the subscribed services in name of the
enterprise, then (s)he has to register these client applications in the Framework domain. For this the enterprise operator
must use the client application management interface, to which (s)he can subscribe as a privileged user. The client
application management interface isintended for cases where an organisation wants to allow several client applications
to register with a Framework as service consumers. It allows enterprise operators to dynamically add new client
applications and SAGs, delete them and to modify subscription related information concerning the client applications
and the SAGs. Client applications use the subscribed services in the enterprise operator's name. The main task of client
application management is to register, modify and delete client applications (Client Application Management), and
manage groups of client applications, called Subscription Assignment Groups (SAG Management).

ETSI

120 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

<<Interface>>

IpClientAppManagement

createClientApp (clientAppDescription : in TpClientAppDescription) : void
modifyClientApp (clientAppDescription : in TpClientAppDescription) : void
deleteClientApp (clientAppID : in TpClientAppID) : void

createSAG (sag : in TpSag, clientAppIDs : in TpClientAppIDList) : void

modifySAG (sag : in TpSag) : void

deleteSAG (saglID : in TpSagID) : void

addSAGMembers (sagID : in TpSagID, clientAppIDs : in TpClientApplDList) : void
removeSAGMembers (saglD : in TpSaglID, clientAppIDList : in TpClientAppIDList) : void
requestConflictinfo () : TpAddSagMembersConflictList

8.3.2.1.1 Method createClientApp()

A client application is represented in the Framework domain as a " clientApp object". This method creates a new
clientApp object associated with the enterprise operator object. Each clientApp object has a clientApp ID and other
subscription related client application's properties stored init.

Parameters

clientAppDescription: in TpClientAppDescription

The "clientAppDescription” parameter contains the clientApp ID that isto be associated with the newly created
clientApp object and the subscription-related "client application properties'. The clientApp ID must be aunique ID
across framework, if the ID aready exists, an exception "P_INVALID_CLIENT_APP_ID" would be raised. The client
application properties are alist of name/value pairs. The client application properties are an item for bi-lateral
agreement between the enterprise operator and the framework operator.

Raises

TpCommonExceptions, P _ACCESS DENIED, P INVALID CLIENT APP ID

8.3.2.1.2 Method modifyClientApp()

Modify the information contained in an existing clientApp object associated with the enterprise operator. An exception
"P_TASK_REFUSED" would be raised if a non-associated enterprise operator invokes this method.

Parameters

clientAppDescription: in TpClientAppDescription

The"clientAppDescription” parameter contains the modified client application information. If the clientApp ID does
not exist, an exception "P_INVALID_CLIENT_APP_ID" would be raised.

ETSI

121 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Raises
TpCommonExceptions, P_ACCESS DENIED, P INVALID CLIENT APP ID

8.3.2.1.3 Method deleteClientApp()

Delete the specified client application associated with the enterprise operator. If the client application currently has an
access session with the framework then this will be terminated, along with any service instances it may have created.
An exception of "P_TASK_REFUSED" will beraised if a non-associated enterprise operator invokes this method.

Parameters

clientAppID: in TpClientAppID

The"clientApplD" parameter identifies the client application that isto be deleted. If the clientAppl D does not exist, a
"P_INVALID_CLIENT_APP_ID" exception will be raised.

Raises
TpCommonExceptions, P_ACCESS DENIED, P INVALID CLIENT APP ID

8.3.2.1.4 Method createSAG()

Create a new SAG associated with the enterprise operator. The SAG object isidentified by a SAG - ID and contains
SAG - specific description.

Parameters

sag: in TpSag

The"sag" parameter contains the SAG-ID and SAG-specific description. This saglD is particular to the SAG, and must
be unique across framework. If the saglD supplied already exists, an exception of type"P_INVALID_SAG_ID" would
be raised.

clientAppIDs: in TpClientAppIDList
The"clientApplDs" parameter contains the list of client application IDs that are to be associated with the newly created

SAG.
Raises

TpCommonExceptions, P _ACCESS DENIED, P INVALID CLIENT APP_ID,
P_INVALID SAG ID

8.3.2.1.5 Method modifySAG()

Modify the description of an existing SAG associated with the enterprise operator. An exception of
"P_TASK_REFUSED" would be raised if a non-associated enterprise operator invokes this method.
Parameters

sag: in TpSag

The"sag" parameter contains the modified SAG-specific description. If the SAG ID does not exist, an exception
"P_INVALID_SAG_ID" would be raised.

ETSI

122 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Raises
TpCommonExceptions, P _ACCESS DENIED, P INVALID SAG ID

8.3.2.1.6 Method deleteSAG()

Delete an existing SAG. Only the enterprise operator associated with the SAG is alowed to delete it, an exception
"P_TASK_REFUSED" would be raised if a non-associated enterprise operator invokes this method.

Parameters
sagID: in TpSagID

The "sagID" parameter identifies the SAG that isto be deleted. If the SAG ID does not exist, an exception
"P_INVALID_SAG_ID" israised.

Raises
TpCommonExceptions, P _ACCESS DENIED, P _INVALID SAG ID

8.3.2.1.7 Method addSAGMembers()

Add the specified client applications to the specified SAG associated with the enterprise operator. Only the enterprise
operator associated with the SAG is allowed to assign membersto it, an exception "P_TASK_REFUSED" would be
raised if a non-associated enterprise operator invokes this method. Each client application may be assigned to a service
only through a single service profile at a particular moment in time. If this condition is violated, a
"P_INVALID_ADDITION_TO_SAG" would be raised. In this case, no partial execution of this method is performed.
The enterprise operator can query further information about this invalid addition using the method
requestConflictinfo().

Parameters

sagID: in TpSagID

The"saglD" parameter identifies the SAG object to which the client applications are to be added. If the SAG ID does
not exist, an exception "P_INVALID_SAG_ID" would be raised.

clientAppIDs: in TpClientAppIDList

The "clientApplDs" parameter contains the list of the clientApp IDs that are to be added to the specified SAG. The
clientApp objects are first created using the createClientApp() method. If one or al of the client application IDsin the
list does not exist, an exception "P_INVALID_CLIENT_APP_ID" would be raised.

Raises

TpCommonExceptions, P _ACCESS DENIED, P INVALID CLIENT APP_ID,
P _INVALID SAG ID, P _INVALID ADDITION TO SAG

8.3.2.1.8 Method removeSAGMembers()
Delete specified client applications from the specified SAG object of the enterprise operator. Only the enterprise

operator associated with the SAG is allowed to remove members from it, an exception "P_TASK_REFUSED" would be
raised if anon-associated enterprise operator invokes this method.

ETSI

123 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Parameters
sagID: in TpSagID

The"saglD" parameter identifies the SAG from which the client applications are to be removed. If the SAG ID does not
exist, an exception "P_INVALID_SAG_ID" would be raised.

clientAppIDList: in TpClientAppIDList

The "clientAppIDList" parameter contains the list of the clientApp IDs that are to be removed from the specified SAG.
If one or al of the client application IDsin the list does not exist, an exception "P_INVALID_CLIENT_APP_ID"
would be raised.

Raises

TpCommonExceptions, P _ACCESS DENIED, P INVALID CLIENT APP ID,
P _INVALID SAG ID

8.3.2.1.9 Method requestConflictinfo()

Requests details about the latest conflict that occurred during performing the method addSagMembers() on this
interface (i.e. Information about the invocation of addSagM embers() that raised a
P_INVALID_ADDITION_TO_SAG). Each client application may be assigned to a service only through asingle
service profile at a particular moment in time. The enterprise operator might try to add a client application to a SAG,
where both, the client application and the SAG are already assigned to the same service through different service
profiles. Asthis may happen in one method call for multiple client applications, a conflict list is generated.

It isonly possible to retrieve information about the last conflicting addSagM embers() method call; information about
previous conflicts cannot be requested. If there has never been a conflict, the method returns an empty conflict list.

Returns <TpAddSagMembersConflictList> : Thelist of conflicts of the last invocation of addSagMembers() that raised
aP_INVALID_ADDITION_TO_SAG. Each conflict contains the following elements:

a. the conflict generating client application.

b. the SAG and the service profile through which the conflict generating client application is already assigned to the
conflict generating service. It includes the current service profile.

c. the SAG, to which the conflict generating client application should be added. However, this SAG is aready
assigned to a concurrent service profile concerning the conflict generating service. This creates a conflict, as each client
application may be assigned to a service only through a single service profile at a particular moment in time.

d. the conflict generating service.

Parameters
No Parameters were identified for this method.

Returns
TpAddSagMembersConflictList

Raises
TpCommonExceptions, P_ACCESS DENIED

8.3.2.2 Interface Class IpClientApplnfoQuery
Inherits from: Ipinterface;

Thisinterface is used by the enterprise operator to list the client applications and the SAGs in its domain and to obtain
information about them.

ETSI

124 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

<<Interface>>

IpClientAppIinfoQuery

describeClientApp (clientAppID : in TpClientAppID) : TpClientAppDescription
listClientApps () : TpClientAppIDList

describeSAG (sagID : in TpSagID) : TpSagDescription

listSAGs () : TpSaglIDList

listSAGMembers (sagID : in TpSagID) : TpClientAppIDList
listClientAppMembership (clientAppID : in TpClientApplID) : TpSagIDList

8.3.2.2.1 Method describeClientApp()
Query information about the specified client application of the enterprise operator.

Returns <clientAppDescription> : The "clientAppDescription” parameter contains the clientApp description.

Parameters

clientAppID: in TpClientAppID
The"clientApplD" parameter identifies the clientApp object whose description is requested.

Returns

TpClientAppDescription

Raises

TpCommonExceptions, P ACCESS DENIED, P INVALID CLIENT APP ID

8.3.2.2.2 Method listClientApps()
Get alist of al client applications belonging to an enterprise operator.

Returns <clientApplDs> : The "clientApplDs" parameter identifies the list of client applicationsin the enterprise
operator domain.

Parameters
No Parameters were identified for this method.

ETSI

125 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Returns

TpClientAppIDList

Raises

TpCommonExceptions, P_ACCESS DENIED

8.3.2.2.3 Method describeSAG()
Query information about the specified SAG associated with the enterprise operator.

Returns <SagDescription> : The "sagDescription” parameter returns the SAG-specific description.

Parameters

sagID: in TpSagID
The"saglD" parameter identifies the SAG whose description is required.

Returns

TpSagDescription

Raises

TpCommonExceptions, P_ACCESS DENIED, P INVALID SAG ID

8.3.2.2.4 Method listSAGSs()
Get alist of al SAGs associated with an enterprise operator.

Returns <SagIDList>: The "sagIDList" parameter returnsthelist of the identifiers of the SAGs associated with the
enterprise operator.

Parameters
No Parameters were identified for this method.

Returns

TpSagIDList

Raises

TpCommonExceptions, P _ACCESS DENIED

8.3.2.2.5 Method listSAGMembers()
Get alist of al client applications associated with the specified SAG.

Returns <clientApplDList> : The"clientAppIDList" parameter returnsthe list of the client applications associated with
the SAG.

Parameters
sagID: in TpSagID
The "sagID" parameter identifies the SAG whose clientApplD list is required.

ETSI

126 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Returns

TpClientAppIDList

Raises

TpCommonExceptions, P _ACCESS DENIED, P INVALID SAG ID

8.3.2.2.6 Method listClientAppMembership()
Obtain alist of the SAGs of which the specified client application is a member.

Returns <sags> : The SAGs of which the client application is a member.

Parameters

clientAppID: in TpClientAppID
The"clientApplD" parameter identifies the clientApp object whose membership details are requested.

Returns

TpSagIDList

Raises

TpCommonExceptions, P ACCESS DENIED, P INVALID CLIENT APP ID

8.3.2.3 Interface Class IpServiceProfileManagement
Inherits from: Iplnterface;

Thisinterface is used by the enterprise operator for the management of Service Profiles, which are defined for every
subscribed service, and to assign/de - assign the Service Profilesto SAGs.

<<Interface>>

IpServiceProfileManagement

createServiceProfile (serviceProfileDescription : in TpServiceProfileDescription) : TpServiceProfile|D
modifyServiceProfile (serviceProfile : in TpServiceProfile) : void

deleteServiceProfile (serviceProfilelD : in TpServiceProfilelD) : void

assign (saglD : in TpSaglD, serviceProfileID : in TpServiceProfilelD) : void

deassign (saglID : in TpSaglID, serviceProfilelD : in TpServiceProfileID) : void

requestConflictinfo () : TpAssignSagToServiceProfileConflictList

8.3.2.3.1 Method createServiceProfile()

Creates anew Service Profile for the specified service contract. The service properties within the service profile restrict
the service to meet the client application requirements. A Service Profileis arestriction of the corresponding service
contract. When the description has been verified, a service profile ID will be generated.

ETSI

127 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Returns <serviceProfilelD> : The service profile ID, generated by the framework, will be used to uniquely identify the
service profile within the framework.

Parameters

serviceProfileDescription: in TpServiceProfileDescription

The "serviceProfile" parameter is a structured data type, which contains a subset of the associated service contract
information and which may further restrict the value ranges of the service subscription properties.

Returns

TpServiceProfileID

Raises

TpCommonExceptions, P _ACCESS DENIED

8.3.2.3.2 Method modifyServiceProfile()

Modifies the specified Service Profile associated with the enterprise operator. Only the enterprise operator associated
with the particular service profile is allowed to modify it, an exception "P_TASK_REFUSED" would be raised if a non-
associated enterprise operator invokes this method.

Parameters

serviceProfile: in TpServiceProfile

The modified Service Profile. If the serviceProfilel D specified in the serviceProfile parameter does not exist, an
exception "P_INVALID_SERVICE_PROFILE_ID" would be raised.

Raises
TpCommonExceptions, P_ACCESS DENIED, P INVALID SERVICE PROFILE ID

8.3.2.3.3 Method deleteServiceProfile()

Deletes the specified Service Profile. If there are any service instances running that are governed by this profile then
they will be terminated. Only the enterprise operator associated with the particular service profileis allowed to delete it,
a"P_TASK_REFUSED" exception will be raised if a non-associated enterprise operator invokes this method.

Parameters

serviceProfileID: in TpServiceProfileID

The "serviceProfilel D" parameter identifies the Service Profile that isto be deleted. If the serviceProfilel D does not
exist, a"P_INVALID_SERVICE _PROFILE_ID" exception will be raised.

Raises
TpCommonExceptions, P_ACCESS DENIED, P INVALID SERVICE PROFILE ID

8.3.2.3.4 Method assign()

Assign a Service Profile to the specified SAG. Only the enterprise operator associated with the serviceProfilelD is
allowed to assign it to a SAG, an exception "P_TASK_REFUSED" would be raised if a non-associated enterprise
operator invokes this method. Each client application may be assigned to a service only through a single service profile
at a particular moment in time. If this condition isviolated, a
"P_INVALID_SAG_TO_SERVICE_PROFILE_ASSIGNMENT" would be raised. In this case, no partial execution of

ETSI

128 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

this method is performed. The enterprise operator can query further information about this invalid assignment using the
method requestConflictinfo().

Parameters

sagID: in TpSagID

The"saglD" parameter identifies the SAG to which Service Profileisto be assigned. If the SAG ID does not exist, an
exception "P_INVALID_SAG_ID" would be raised.

serviceProfileID: in TpServiceProfileID

The "serviceProfilel D" parameter identifies the Service Profile that isto be assigned to the SAG. If the serviceProfilelD
does not exist, an exception "P_INVALID_SERVICE_PROFILE_ID" would be raised.

Raises

TpCommonExceptions, P_ACCESS DENIED, P INVALID SAG ID,
P _INVALID SERVICE PROFILE ID, P INVALID SAG TO SERVICE PROFILE ASSIGNMENT

8.3.2.3.5 Method deassign()

De-assign the Service Profile from the specified SAG. Because only the enterprise operator associated with the
serviceProfilel D is allowed to deassign it from a SAG, an exception "P_TASK_REFUSED" would be raised if anon-
associated enterprise operator invokes this method.

Parameters

sagID: in TpSagID

The "sagID" parameter identifies the SAG whose Service Profileis to be de-assigned. If the SAG ID does not exist, an
exception "P_INVALID_SAG_ID" would be raised.

serviceProfileID: in TpServiceProfileID

The"serviceProfilelD" parameter identifies the Service Profile that is to be de-assigned. If the serviceProfilelD does not
exist, an exception "P_INVALID_SERVICE_PROFILE_ID" would be raised.

Raises

TpCommonExceptions, P_ACCESS DENIED, P INVALID SAG ID,
P _INVALID SERVICE PROFILE ID

8.3.2.3.6 Method requestConflictinfo()

Requests details about the latest conflict that occurred during performing the method assign() on thisinterface (i.e.
Information about the invocation of assign () that threw a

P_INVALID_SAG _TO_SERVICE_PROFILE_ASSIGNMENT). Each client application may be assigned to a service
only through a single service profile at a particular moment in time. The enterprise operator could try to assign a SAG
to aservice profile of agiven service. If one or more client applicationsin this SAG are already assigned to service
profiles belonging to the given service, the client applications would have two concurrent service profiles at a particular
moment in time. Asthisis prohibited, aconflict list is generated.

It isonly possible to retrieve information about the last conflicting assign() method call; information about previous
conflicts cannot be requested. If there has never been a conflict, the method returns an empty conflict list.

Returns <TpAssignSagT oServiceProfileConflictList> : The description of the conflicts occurring at the latest invocation
of assign() that raised aP_INVALID_SAG_TO_SERVICE_PROFILE_ASSIGNMENT. Each conflict contains the
following elements:

ETSI

129 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

a. the conflict generating client application.

b. the SAG and the service profile through which the conflict generating client application is already assigned to the
conflict generating service. It includes the current service profile.

c. the conflict generating service.

The conflict generating SAG and service profile are supposed to be well known, because they are input parameters of
the assign() method. Therefore, they do not appear in the returned conflict list.

Parameters
No Parameters were identified for this method.

Returns
TpAssignSagToServiceProfileConflictList
Raises

TpCommonExceptions, P _ACCESS DENIED

8.3.2.4 Interface Class IpServiceProfileInfoQuery
Inherits from: Iplnterface;

Thisinterface is used by the enterprise operator to obtain information about individual Service Profiles, to find out
which SAGs are assigned to a given Service Profile, and to find out what Service Profile is associated with a given
client application or SAG.

<<|Interface>>

IpServiceProfileInfoQuery

listServiceProfiles () : TpServiceProfileIDList
describeServiceProfile (serviceProfilelD : in TpServiceProfilelD) : TpServiceProfileDescription

listAssignedMembers (serviceProfilelD : in TpServiceProfilelD) : TpSagIDList

8.3.2.4.1 Method listServiceProfiles()
Get alist of al service profiles created by the enterprise operator.

Returns <serviceProfilelDList> : The"serviceProfilelDList" isalist of the service profiles associated with the
enterprise operator.

Parameters
No Parameters were identified for this method.

ETSI

130 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Returns

TpServiceProfileIDList

Raises

TpCommonExceptions, P_ACCESS DENIED

8.3.2.4.2 Method describeServiceProfile()
Query information about a single service profile.

Returns <serviceProfileDescription> : The "serviceProfileDescription” parameter is a structured data type which
contains a description for the specified service profile.

Parameters

serviceProfileID: in TpServiceProfileID
The "serviceProfilelD" parameter identifies the Service Profile whose description is being requested.

Returns

TpServiceProfileDescription

Raises

TpCommonExceptions, P _ACCESS DENIED, P INVALID SERVICE PROFILE_ ID

8.3.2.4.3 Method listAssignedMembers()
Get alist of SAGs assigned to the specified service profile.

Returns <saglDList> : The "saglDs' parameter isthe list of the SAG IDsthat are assigned to the specified service
profile.

Parameters

serviceProfileID: in TpServiceProfileID

The "serviceProfilelD" parameter identifies the Service Profile. If the serviceProfilel D is not recognised by the
framework, an exception "P_INVALID_SERVICE_PROFILE_ID" would be raised.

Returns

TpSagIDList

Raises

TpCommonExceptions, P ACCESS DENIED, P INVALID SERVICE PROFILE ID

8.3.2.5 Interface Class IpServiceContractManagement
Inherits from: Iplnterface;

The enterprise operator uses this interface for service contract management, such as create, modify, and delete service
contracts.

ETSI

131 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

<<Interface>>

IpServiceContractManagement

createServiceContract (serviceContractDescription : in TpServiceContractDescription) : TpServiceContractlD
modifyServiceContract (serviceContract : in TpServiceContract) : void

deleteServiceContract (serviceContractID : in TpServiceContractID) : void

8.3.2.5.1 Method createServiceContract()

Create a new service contract for an enterprise operator. The enterprise operator provides the service contract
description. This contract should conform to the previously negotiated high - level agreement (regarding the services,
their usage and the price, etc.), if any, between the enterprise operator and the framework operator, otherwise the
appropriate exception is raised by the framework. When the description has been validated, a service contract 1D will be
generated.

Returns <serviceContractl D> : The service contract ID will be used to uniquely identify the service contract within the
framework.

Parameters

serviceContractDescription: in TpServiceContractDescription

The "serviceContractDescription” parameter provides the information contained in the service contract. The service
contract is a structured data type, which contains the following information:
a. information about the service requestor, i.e., the enterprise operator;
b. information about the billing contact (person);
C. service start date;

d. service end date;

e. service type (e.g. obtained from listServiceType() method);

f. service ID (e.g. obtained from discoverService() method). For certain services, service type informationis
sufficient and service ID may not be required. Thisimplies that any service of the type specified above is subscribed
and hence accessible to the enterprise operator or to its client applications;

g. list of service subscription properties and their value ranges (service profiles further restrict these val ue ranges).

Returns

TpServiceContractID

Raises

TpCommonExceptions, P_ACCESS DENIED, P INVALID SERVICE ID

8.3.2.5.2 Method modifyServiceContract()

Modify an existing service contract. The service contract can be modified only within the context of a pre-existing off-
line negotiated high-level agreement between the enterprise operator and the framework operator. Only the enterprise
operator associated with the serviceContract is allowed to modify it, an exception "P_TASK_REFUSED" would be
raised if anon-associated enterprise operator invokes this method.

ETSI

132 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Parameters

serviceContract: in TpServiceContract
The "serviceContract” parameter provides the modified service contract. If the serviceContractlD does not exist, an

exception "P_INVALID_SERVICE_CONTRACT _ID" would be raised.
Raises

TpCommonExceptions, P_ACCESS DENIED, P INVALID SERVICE ID,
P _INVALID SERVICE CONTRACT ID

8.3.2.5.3 Method deleteServiceContract()

Delete an existing service contract. All the Service Profiles associated with the service contract are also deleted. If there
are any service instances running that are governed by this contract, or any of the profiles associated with it, then they
will be terminated. Only the enterprise operator associated with the serviceContract is allowed to deleteit, a
"P_TASK_REFUSED" exception will be raised if a non-associated enterprise operator invokes this method.
Parameters

serviceContractID: in TpServiceContractID

The "serviceContractI D" parameter identifies the service contract that the enterprise operator wishes to delete. If the
serviceContract!D does not exist, a"P_INVALID_SERVICE_CONTRACT_ID" exception will be raised.

Raises
TpCommonExceptions, P_ACCESS DENIED, P INVALID SERVICE CONTRACT ID

8.3.2.6 Interface Class IpServiceContractinfoQuery
Inherits from: Iplnterface;

The enterprise operator uses this interface to query information about a given service contract.

<<Interface>>

IpServiceContractinfoQuery

describeServiceContract (serviceContractID : in TpServiceContractID) : TpServiceContractDescription
listServiceContracts () : TpServiceContractlDList

listServiceProfiles (serviceContractID : in TpServiceContractID) : TpServiceProfileIDList

8.3.2.6.1 Method describeServiceContract()

Query information about the specified service contract. The enterprise operator invokes this operation to obtain
information that is stored in the specified service contract. The enterprise operator can only obtain information about the
service contracts that it has created.

Returns <serviceContractDescription> : The "serviceContract" parameter contains the description for the specified
service contract.

ETSI

133 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Parameters

serviceContractID: in TpServiceContractID
The "serviceContractID" parameter identifies the service whose description is being requested.

Returns

TpServiceContractDescription

Raises

TpCommonExceptions, P_ACCESS DENIED, P INVALID SERVICE CONTRACT ID

8.3.2.6.2 Method listServiceContracts()
Returns alist of the IDs of service contracts created by the Enterprise Operator.

Returns <serviceContractlDs> : The "serviceContractlDs" parameter will contain alist of IDs for service contracts that
the enterprise operator has created.

Parameters
No Parameters were identified for this method.

Returns

TpServiceContractIDList

Raises

TpCommonExceptions, P _ACCESS DENIED

8.3.2.6.3 Method listServiceProfiles()

The enterprise operator invokes this operation to obtain alist of service profilesthat are associated with a particular
service contract.

Returns <serviceProfilelDs> : This contains the service profiles associated with a particular service contract.

Parameters

serviceContractID: in TpServiceContractID

The "serviceContractl D" parameter identifies the service contract. If the serviceContractI D is not recognised by the
framework, an exception "P_INVALID_SERVICE_CONTRACT_ID" would be raised.

Returns
TpServiceProfileIDList

Raises
TpCommonExceptions, P_ACCESS DENIED, P INVALID SERVICE CONTRACT ID

ETSI

134 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

8.3.2.7 Interface Class IpEntOpAccountManagement
Inherits from: Iplnterface;

The enterprise operator, in the role of the service subscriber, uses this interface for the management of enterprise
operator subscription accounts, such as modify and del ete enterprise operator accounts. The EntOplD will be decided in
an off-line agreement between the FW operator and the EntOp, as the EntOp may require the ID to be something more
meaningful than a random number. The EntOp account, consisting of the EntOpl D, along with thelist of valid
properties and their modes and prescribed ranges, will be entered viaa FW operator interface that is currently outside
the scope of the API.

<<|Interface>>

IPEntOpAccountManagement

modifyEntOpAccount (enterpriseOperatorProperties : in TpEntOpProperties) : void
deleteEntOpAccount () : void

8.3.2.7.1 Method modifyEntOpAccount()

Modification of the enterprise operator information contained in the enterprise operator object.

Parameters

enterpriseOperatorProperties: in TpEntOpProperties

The "enterprise operator properties' parameter conveys the modified/popul ated information about the enterprise
operator. The values of the "enterprise operator properties’ can only be modified within the prescribed range, as
negotiated earlier (an off-line process) between the enterprise operator and the framework operator, otherwise a
P_INVALID_PROPERTY exception is raised.

Raises

TpCommonExceptions, P_ACCESS DENIED, P INVALID PROPERTY

8.3.2.7.2 Method deleteEntOpAccount()
Deletes the specified enterprise operator object. Deletion of the enterprise operator object cannot be performed until the
enterprise operator has deleted all the service contracts (and the Service Profiles) associated with it. An attempt to delete

the enterprise operator account will result inaP_TASK_REFUSED exception if there are outstanding service contracts
(and service profiles).

Parameters
No Parameters were identified for this method.

Raises
TpCommonExceptions, P_ACCESS DENIED

8.3.2.8 Interface Class IpEntOpAccountinfoQuery

Inherits from: Ipinterface;

ETSI

135 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Thisinterface is used by the enterprise operator to query information related to its own subscription account as held
within the framework.

<<|Interface>>

IpEntOpAccountinfoQuery

describeEntOpAccount () : TpEntOp

8.3.2.8.1 Method describeEntOpAccount()

Query information about the enterprise operator. The enterprise operator invokes this operation to find out what
information about itself is stored in the enterprise operator account object within the Framework.

Returns <enterpriseOperator> : The "enterpriseOperator” parameter conveys the information stored in the EntOp object
about the enterprise operator. It contains the unique "enterprise operator ID" followed by alist of "enterprise operator
properties'. The enterprise operator propertiesis alist of name/value pairs which provide enterprise operator related
information such as the name, organisation, address, phone, e-mail, fax, payment method (credit card, bank account),
etc. to the framework.

Parameters
No Parameters were identified for this method.

Returns

TpEntOp

Raises

TpCommonExceptions, P_ACCESS DENIED

8.4 State Transition Diagrams

This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the
gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can
be invoked by the client are shown. Methods not shown for a specific state are not relevant for that state and will return
an exception. Apart from the methods that can be invoked by the client also eventsinternal to the gateway or related to

network events are shown together with the resulting event or action performed by the gateway. These internal events
are shown between quotation marks.

8.4.1 Event Notification State Transition Diagrams

There are no State Transition Diagrams defined for Event Notification.

8.4.2 Service Subscription State Transition Diagrams

There are no State Transition Diagrams defined for Service Subscription.

ETSI

136 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

9 Framework-to-Service API

9.1 Sequence Diagrams

9.1.1 Service Discovery Sequence Diagrams

No Sequence Diagrams exist for Service Discovery.
9.1.2 Service Registration Sequence Diagrams

9.1.2.1 New SCF Sub Type Registration

The following figure shows the process of registering a new proprietary Service Capability Feature in the Framework.
This SCF is a sub type of the standard SCF.

IpFwS ervic&eeqistrati on

1: registerServiceSubType()

U 1

2: announceSenviceAvailability()

1. Registration: first step - register service sub type. For sub type registration, besides the values for the standard
service properties, the modes, types, and values for the additional service properties must be provided by the SCF.

2: Registration: second step - announce service availability. Thisisidentical to announcing availability of super types.

9.1.2.2 New SCF Registration

The following figure shows the process of registering a new Service Capability Feature in the Framework. Service
Registration is atwo step process.

ETSI

137 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

IpFwService;?eqistration

1: registerSenice()

2: announceSenviceAvailability()

1. Registration: first step - register service.

The purpose of thisfirst step in the process of registration is to agree, within the network, on aname to call, internaly, a
newly installed SCF version. It is necessary because the OSA Framework and SCF in the same network may come from
different vendors. The goal isto make an association between the new SCF version, as characterized by alist of
properties, and an identifier called servicel D.

This service ID will be the name used in that network (that is, between that network's Framework and its SCSs),
whenever it is necessary to refer to this newly installed version of SCF (for example for announcing its availability, or
for withdrawing it later).

The following input parameters are given from the SCS to the Framework in this first registration step:
in serviceTypeName

Thisisastring with the name of the SCF, among alist of standard names (e.g. "P_MPCC").
in servicePropertyList

Thisisalist of types TpServiceProperty; each TpServiceProperty isapair of (ServicePropertyName,
ServicePropertyValueList).

ServicePropertyName is a string that defines avalid SFC property name (valid SCF property names are listed in the
SCF data definition).

ServicePropertyValuelList isa numbered set of types TpServicePropertyVaue; TpServicePropertyVaueisastring
that describes avalid value of a SCF property (valid SCF property values are listed in the SCF data definition).

The following output parameter results from service registration:
out servicelD
Thisisastring, automatically generated by the Framework and unique within the Framework.

Thisisthe name by which the newly installed version of SCF, described by the list of properties above, is going to be
identified internally in this network.

2. Registration: second step - announce service availability.

ETSI

138 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

At this point the network's Framework is aware of the existence of a new SCF, and could let applications know - but
they would have no way to useit. Installing the SCSlogic and assigning a name to it does not make this SCF available.
In order to make the SCF available an "entry point”, called lifecycle manager, is used. The role of the lifecycle manager
isto control the life cycle of an interface, or set of interfaces, and provide clients with the references that are necessary
to invoke the methods offered by these interfaces. The starting point for a client to use an SCF isto obtain an interface
reference to alifecycle manager of the desired SCF.

A Network Operator, upon completion of the first registration phase, and once it has an identifier to the new SCF
version, will instantiate a lifecycle manager for it that will allow client to use it. Then it will inform the Framework of
the value of the interface associated to the new SCF. After the receipt of thisinformation, the Framework makes the
new SCF (identified by the pair [servicel D, servicel nstancelifecycleManagerRef]) discoverable.

The following input parameters are given from the SCS to the Framework in this second registration step:
inservicelD.

Thisisthe identifier that has been agreed in the network for the new SCF; any interaction related to the SCF needs to
include the servicel D, to know which SCF it is.

in servicelnstancel ifecycleM anagerRef.

Thisisthe interface reference at which the lifecycle manager of the new SCF is available. Note that the Framework will
have to invoke the method createServiceManager() in thisinterface when a client application signs an agreement to use
the SCF so that it can get the service manager interface necessary for applications as an entry point to any SCF.

9.1.3 Service Instance Lifecycle Manager Sequence Diagrams

9.1.3.1 Sign Service Agreement

This sequence illustrates how the application can get access to a specified service. It only illustrates the last part: the
signing of the service agreement and the corresponding actions towards the service. For more information on accessing
the framework, authentication and discovery of services, see the corresponding clauses.

‘ AppLogic ‘ ‘ : IpAppCalCont mIManager : Iplnitial

L GenericCallControlService : :_IpCallControlManager
IpAp pServ iceAgr eem ent Managem ent er IpSer ifec:
T T T T T T

We assume that the application is already authenticated and dscoveredthe service it wants touse ﬁ

|

| |

| !

| 1 selectsewlceﬁ)
|

|
|
|
|
|
| 2: sighServiceAgreement()
f
| D\ |
|
|

-

|
3: signServiceAgreement()

5: new()

|
|
I
|
|
|
|

6. new()

7: setCallback()

g
g

: i

1: The application selects the service, using a servicel D for the generic call control service. The servicel D could have
been obtained via the discovery interface. A ServiceToken is returned to the application.

2: Theclient application signs the service agreement.

3: The framework signs the service agreement. As aresult a service manager interface reference (in this case of type
I pCallControlManager) is returned to the application.

4: Provided the signature information is correct and all conditions have been fulfilled, the framework will request the
service identified by the servicel D to return a service manager interface reference. The service manager istheinitial
point of contact to the service.

ETSI

139 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

5: Thelifecycle manager creates a new manager interface instance (a call control manager) for the specified
application. It should be noted that this is an implementation detail. The service implementation may use other
mechanism to get a service manager interface instance.

Following the creation of the service manager outlined above, a unique instance of the service particular to the
application client results. This service instance is assigned a servicelnstancel D by the Framework, which is provided to
the Service Instance Lifecycle manager during the createServiceManager operation. If it is necessary that Framework
Integrity Management functionality and operations are to be supported between the Framework and the service instance
identified by the defined servicelnstancel D, it is then necessary for the new service instance to establish an access
session with the Framework. This provides the Framework with the ability to manage and monitor the operation of the
service instance that relates to a particular application client. The steps required to establish a Framework access session
are outlined in clause 6 of the present document.

6: The application creates a new |pAppCallControlManager interface to be used for callbacks.

7: The Application sets the callback interface to the interface created with the previous message.

An application (identifiable by a given TpClientApplD may carry out the sequence, as exemplified above, multiple
times.

9.1.4 Integrity Management Sequence Diagrams

9.1.4.1 Load Management: Service callback registration and load control

This sequence diagram shows how a service registersitself and the framework invokes load management function
based on policy.

ETSI

140

Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

. IpSwcLoadManager

. IpFwLoadManager

i 1: createLoadLevelNotification()

U 2: IoadLe\,eINotiﬁcationg) -

m Framework reports its
! initial load condition on
o " | notification creation

1

|
|
|
|
|
|
|
|
1
| 4: loadLevelNotification()
|

3: load change dete

-

tion & policy evaluation

[This is Framework

Framework detects aload -7
condition change and notifies
the senice. The service may
take appropriate load control

implementation detail. The
Framework may take

L appropriate load control action.
|
|

|
5: load change det‘ection & policy evaluation

~
<
~

~
~

o This is Framework
‘ implementation detail. The

Framework may take
appropriate load control action.

action - implementation
detail. Tl
1 6: loadLewvelNotification()
| =~
1
i 7: destroyLoadLeelNotification() T
U |
|
| |
| |
| |
| |
| |
| |
| |
9.14.2

Load Management: Framework callback registration and service load control

This sequence diagram shows how the framework registersitself and the service invokes load management function to

inform the framework of service load.

ETSI

IQSchanManager

| 1: createLoadLeeINotification()

141

Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

IQFWLanM anager

initial load condition on

Service reports its U
|
|
notification creation To--lL

o g: reportLoad()

|
3: load :change detection

—

This is Senice implementation

4: reportLoad()

detail. The Senice may take
appropriate load control action.

T
|

|
5: load :change detection

Senivce detects a load condition
change and reports to

.~ |Framework. The Framework

| |may take appropriate load

1 |control action - implementation
|

|

|
u
u

- _|detail.
pam— -
This is Service implementation a 6: reportLoad() ~ ;
detail. The Senice may take ‘ B
appropriate load control action.
N 7: destroyLoadLevelNotification()

9.14.3

ETSI

Load Management: Client and Service Load Balancing

142 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Application : Framework : . Service :
IpAppLoadManager IpLoadManager IpFwLoadManager IpSvcLoadManager

|
Framework checks
application load.

. 1:queryAppLoadStatsReq()

[~

| 2:queryApplLoadStatsRes() |
1 1

U /U Depending on the load, the

framework may choose to stop
sending notifications to the
application, to allowits load to
reduce.

3: querySvcLoadStatsReq()

=

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

1

i . :
: The framework may then check
| the load on the senvice, and take
| action if (according to the load
! balancing policy) if required.
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

i 4: querySvcLoadStatsRes()

9.1.4.4 Heartbeat Management: Start/perform/end heartbeat supervision of the service

In this sequence diagram, the framework has decided that it wishes to monitor the service, and has therefore requested
the service to commence sending its heartbeat. The service responds by sending its heartbeat at the specified interval.
The framework then decides that it is satisfied with the service's health and disables the heartbeat mechanism. If the
heartbeat was not received from the service within the specified interval, the framework can decide that the service has
failed the heartbeat and can then perform some recovery action.

ETSI

143 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Framework

IQFWH;rtBeat IpSvc HeaHBeatM amt

|
| 1: enableéSvcHeartBeat()
| |

2: pulse()

3: pulse() At a certain point of

U\ time the framework
decides to stop

heartbeat supenision

|
4: disableSvcHeartBeat()

U \

9.1.45 Fault Management: Service requests Framework activity test

Framework : Senice :
IpFwFaultManager IpSwvcFaultManager

1: activity TestReq() The Senvice requests that the

D< U Framework does an activity test.
|
|
|
|
|
T
|
|
|
|
|
|
|
|

2: activityTestRes()

1: The service asksthe framework to carry out its activity test. The service denotes that it requires the activity test done
for the framework, rather than an application, by supplying an appropriate parameter.

2: The framework carries out the test and returns the result to the service.

ETSI

144 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

9.1.4.6 Fault Management: Service requests Application activity test

Senice : - Eramework : Application :
IpSwc Fault Manager IpFwFaultManager IpFaultManager IpAppFaultManager

The Framework identifies the senice
instance to conclude which
U m Application the test is directed at, and

1: activityTestReq()

comunicates internally to Framework
interface to the Application.

2: appActivity TestReq()

U /U The application

I carries out the
| activity test and

: returns the result to
|

|

3: appActivityTestRes() the Framework.

Communications.

Internal Fram ework ﬁ

4: activityTestRes()

=

1. The service instance asks the framework to invoke an activity test on the client application.

2: Theframework asks the application to do the activity test. It is assumed that there isinternal communication
between the service facing part of the framework (i.e. |pFwFaultManager interface) and the part that faces the client
application.

3: The application does the activity test and returns the result to the framework.

4. The framework internally passes the result from its application facing interface (IpFaultManager) to its service
facing side, and sends the result to the service.

ETSI

145 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

9.1.4.7 Fault Management: Application requests Service activity test

Client Application : Framework : o Senice :
IpAppFault Manager IpFaultManager IpFwFaultManager IpSvcFaultManager

:
L |
The client application asks the !
framework to carry out the [
activity test on a senice. |
|
|
|
|
|
|

1: activityTestReq()

U 1

|
The Framework identifies which
senice the test is directed at by the
svclD parameter, and
communicates internally with the
appropriate framework interface.
W hich inwokes the call on the
senice.

| 2: sweActivity TestReq()

| u

returns the result.

Senice does test and ﬁ

Framework passes result .

internally from senice facing 3 sweActivityTestRes()
part to application facing part, LF U
and sends the result to the

application.

|
4: activityTestRes() |
|

=

1: The client application asks the framework to invoke an activity test on a service, the service isidentified by the
svcld parameter.

2. Theframework asks the service to do the activity test. It is assumed that there isinternal communication between
the application facing part of the framework (i.e. |pFaultManager interface) and the part that faces the service.

3: The service does the activity test and returns the result to the framework.

4: The framework internally passes the result from its service facing interface (IpFwFaultManager) to its application
facing side, and sends the result to the client application.

ETSI

146 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

9.1.4.8 Fault Management: Application detects service is unavailable

Client Application : Framework : o Senvice :
IpAppFault Manager IpFaultManager | | IpFwFaultManager IpSwcFaultManager
T

|

|

:

L |
The application detects that !
the senice is not responding, :
soit informs the framework via |
the swcUnavailablelnd method. |
|

|

|

|

|

|

|

|

|

|

|

1: svcUnavailablelnd()

|
The framework informs
the senice.

2: swcUnavailablelnd()

1. Theclient application detects that the service instance is currently not available, i.e. the service instance is not
responding to the client application in the normal way, so it informs the framework.

2. Theframework informs the service instance that the client application was unable to get a response from it and can
no longer use the service instance. The service or framework may then decide to carry out an activity test to see whether
thereisagenera problem with the service instance that requires further action.

9.1.5 Event Notification Sequence Diagrams

No Sequence Diagrams exist for Event Notification.

ETSI

9.2

147

Class Diagrams

<<Interface>>
IpSwcHeartBeatMgmt

Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

<<Interface>>
IpSvc EventNotification
from Service Interfaces)

SreportNotification()
¥notificationTerminated()

<<uses>>

<<Interface>>

IpFWE \ent Notification
(from Framework Interfaces)

@createNotification()
S destroyNotification()

Figure 26: Event Notification Package Overview

<<Interface>>
IpSwvcFaultManager

<<Interface>>
IpSwvcLoadManager

<<Interface>>
IpSwcHeartBeat

enableSvcHeartBeat()
disableSvcHeartBeat()
changelntenal()

[

|
|
<<uses>> !
|
|

|
<<Interface>>
IpFwHeartBeatMgmt

.n
pulse()

|
|
|
<<uses>> |
|
|
|

<<deprecated>> querySw LoadReq()
<<deprecated>> queryLoadRes()
<<deprecated>> queryLoadErr()
loadLeelNotification()
suspendNotification()
resumeNatification()
createLoadLeweINotification()
destroyLoadLevelNotification()
<<new>> queryS\vcLoadStatsReq()
<<new>> queryLoadStatsRes()
<<new>> queryL oadStatsErr()

|
<<uses>> !
|

activity TestRes()

swcActivity TestReq()

<<deprecated>> fwFaultReportind()
<<deprecated>> fwFaultRecoveryInd()
<<deprecated>> fwUnavailableind()
swcUnavailableind()

<<deprecated>> appUnavailablelnd()
<<deprecated>> genFaultStatsRecordRes()
activity TestErr()

<<deprecated>> genFaultStatsRecordErr()
<<deprecated>> genFaultStatsRecordReq|()
<<deprecated>> generateFaultStatsRecordReq()
appAvailStatusind()

<<new>> generateFaultStatisticsRecordRes()
<<new>> generateFaultStatisticsRecordErr()
<<new>> generateFaultStatisticsRecordReq()
<<new>> fwAwailStatusInd()

<<Interface>>
IpPS\wOAM

systemDateTimeQuery()

|
<<uses>>

<<Interface>>
IpFwHeartBeat

<<Interface>>

<<Interface>>

|
<<uses>> !
|

<<Interface>>
IpFWOAM

enableHeartBeat()
disableHeartBeat()
changelnterval()

n
pulse()

IpFwLoadManager IpFwFaultManager
reportLoad() activity TestReq()
<<deprecated>> queryLoadReq() svcActivity TestRes ()

<<deprecated>> querySw LoadRes()
<<deprecated>> querySw LoadErr()
createLoadLee|Notification()
destroyLoadLevelNotification()
suspendNotification()
resumeNotification()

<<new>> queryL oadStatsReq|()
<<new>> querySwlLoadStatsRes()
<<new>> querySwvcLoadStatsE()

appUnavailablelnd()

<<deprecated>> genFaultStatsRecordReq|()
<<deprecated>> svcUnavailablelnd()

svcActivity TestErr()

<<deprecated>> genFaultStatsRecordRes()
<<deprecated>> genFaultStatsRecordErr()
<<deprecated>> generateFaultStatsRecordRes()
<<deprecated>> generateFaultStatsRecordErr()
swvcAvailStatusind()

<<new>> generateFaultStatisticsRecordReq()
<<new>> generateFaultStatisticsRecordRes()
<<new>> generateFaultStatisticsRecordErr()

systemDateTimeQuery()

Figure 27: Integrity Management Package Overview

ETSI

148 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

<<Interface>>
IpFwSeniceDiscowvery
(from Framework interfaces)

®listSeniceTypes()
®describeServiceType()
¥discoverSenice()
%listRegisteredServices()

Figure 28: Service Discovery Package Overview

<<lInterface>>
IpSenicelnstanceLifecycleManager
(from Service Interfaces)

WcreateSeniceManager()
WdestroySeniceManager()

Figure 29: Service Instance Lifecycle Manager Package Overview

<<Interface>>
IpFwSeniceRegistration
(from Framework interfaces)

WregisterSenice ()

announceS enviceAvailability ()
SunregisterSenice()
SdescribeSenice()

unannounce Senvice()

$<<new>> registerSeniceSubType()

Figure 30: Service Registration Package Overview

ETSI

149 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

<<Interface>>
IpClientAPILevelAuthentication
(fom Clientinterfaces

<<Interface>>
IpClientAccess
(from Client interfaces)

¥<<deprecated>> authenticate()

SabortAuthentication()
@ A
®terminateAccess() ‘authentlcatlonSucceededO
challenge()
N :
| |
<<uses>> | <<uses>> |
| |
| |
| |
<<Interface>> <<Interface>>
<<Interface>> IpAccess IpPAP ILevel Authentication
IpInitial (from Framework interfaces) (from Frameworkinterfaces)
(from Framework interfaces)

Wobtaininterface() W<<deprecated>> selectEncryptionMethod()
®<<deprecated>> initiateAuthentication() WobtaininterfaceWithCallback() ¥<<deprecated>> authenticate()
FinitiateAuthenticationWithVersion() W<<deprecated>> endAccess() SabortAuthentication()

Wlistinterfaces() WauthenticationSucceeded()

®<<deprecated>> releaselnterface() WselectAuthenticationMechanism()

WselectSigningAlgorithm() Wchallenge()

SterminateAccess()

®relinquishinterface()

//
<<Interface>>
IpAuthentication
(from Framework interfaces)

WrequestAccess()

Figure 31: Trust and Security Management Package Overview

9.3 Interface Classes

9.3.1 Service Registration Interface Classes

Before a service can be brokered (discovered, subscribed, accessed, etc.) by an enterprise, it has to be registered with
the Framework. Services are registered against a particular service type. Therefore service types are created first, and
then services corresponding to those types are accepted from the Service Suppliers for registration in the framework.
The framework maintains a repository of service types and registered services.

In order to register a new service in the framework, the service supplier must select a service type and the "property
values' for the service. The service discovery functionality described in the previous clause enables the service supplier
to obtain alist of all the service types supported by the framework and their associated sets of service property values.

The Framework service registration-related interfaces are invoked by third party service supplier's administrative
applications. They are described below. Note that these methods cannot be invoked until the authentication methods
have been invoked successfully.

9.3.1.1 Interface Class IpFwServiceRegistration

Inherits from: Ipinterface;

The Service Registration interface provides the methods used for the registration of network SCFs at the framework.
Thisinterface and at least the methods registerService(), announceServiceAvailability(), unregisterService() and
unannounceService() shall be implemented by a Framework.

ETSI

150 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

<<Interface>>

IpFwServiceRegistration

registerService (serviceTypeName : in TpServiceTypeName, servicePropertyList : in TpServicePropertyList)
: TpServicelD

announceServiceAvailability (servicelD : in TpServicelD, servicelnstanceLifecycleManagerRef : in
service_lifecycle::IpServicelnstanceLifecycleManagerRef) : void

unregisterService (servicelD : in TpServicelD) : void
describeService (servicelD : in TpServicelD) : TpServiceDescription
unannounceService (servicelD : in TpServicelD) : void

<<new>> registerServiceSubType (serviceTypeName : in TpServiceTypeName, servicePropertyList : in
TpServicePropertyList, extendedServicePropertyList : in TpServiceTypePropertyValueList) : TpServicelD

9.3.1.1.1 Method registerService()

The registerService() operation is the means by which a service is registered in the Framework, for subsequent
discovery by the enterprise applications. Registration can only succeed when the Service type of the service is known to
the Framework (ServiceType is 'available’). A service-ID isreturned to the service supplier when a service is registered
in the Framework. When the service is not registered because the ServiceTypeis 'unavailable, a
P_SERVICE_TYPE_UNAVAILABLE israised. The service-ID isthe handle with which the service supplier can
identify the registered service when needed (e.g. for withdrawing it). The service-ID is only meaningful in the context
of the Framework that generated it.

This method should be used for registration of service super types only. For registering service sub types, the
registerServiceSubType() method should be used.

Returns <servicel D> : Thisisthe unique handle that is returned as a result of the successful completion of this
operation. The Service Supplier can identify the registered service when attempting to accessit via other operations
such as unregisterService(), etc. Enterprise client applications are also returned this service-ID when attempting to
discover a service of thistype.

If aserviceisregistered with the property P_COMPATIBLE_WITH_SERVICE in its servicePropertyL.ist, then the
Framework shall notify all applications using instances of servicesidentified by this property, using the
P_EVENT_FW_MIGRATION_SERVICE_AVAILABLE event, if they have registered for such anotification. If an
incorrect combination of propertiesisincluded in conjunction with P_COMPATIBLE_WITH_SERVICE, a
P_MISSING_MANDATORY_PROPERTY exception is raised.

Parameters

serviceTypeName : in TpServiceTypeName

The "serviceTypeName" parameter identifies the service type. If the string representation of the "type" does not obey
therulesfor identifiers, thenaP_ILLEGAL_SERVICE_TY PE exception israised. If the "type" is correct syntactically
but the Framework is able to unambiguously determine that it is not a recognised service type, then a
P_UNKNOWN_SERVICE_TY PE exception is raised.

servicePropertyList:in TpServicePropertyList

The "servicePropertyList" parameter isalist of property name and property value pairs. They describe the service being
registered. This description typically covers behavioural, non-functional and non-computational aspects of the service.
Service properties are marked "mandatory" or "readonly". These property mode attributes have the following semantics:

a. mandatory - a service associated with this service type must provide an appropriate value for this property when
registering.

ETSI

151 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

b. readonly - this modifier indicates that the property isoptional, but that once given a value, subsequently it may
not be modified.

Specifying both modifiersindicates that a value must be provided and that subsequently it may not be modified.
Examples of such properties are those which form part of a service agreement and hence cannot be modified by service
suppliers during the life time of service.

If the type or the semantics of the type of any of the property valuesis not the same as the declared type (declared in
the service type), then aP_PROPERTY _TYPE_MISMATCH exception israised. If the "servicePropertyList"
parameter omits any property declared in the service type with a mode of mandatory, then a
P_MISSING_MANDATORY_PROPERTY exceptionisraised. If two or more properties with the same property name
areincluded in this parameter, the P DUPLICATE_PROPERTY _NAME exception is raised.

Returns
TpServiceID

Raises
TpCommonExceptions, P PROPERTY TYPE MISMATCH, P DUPLICATE PROPERTY NAME,

P_ILLEGAL SERVICE TYPE, P_UNKNOWN SERVICE_TYPE,
P MISSING MANDATORY PROPERTY, P SERVICE TYPE UNAVAILABLE

9.3.1.1.2 Method announceServiceAvailability()

The registerService() method described previously does not make the service discoverable. The
announceServiceAvailability() method isinvoked after the service is authenticated and its service instance lifecycle
manager isinstantiated at a particular interface. This method informs the framework of the availability of "service
instance lifecycle manager" of the previously registered service, identified by its service ID, at a specific interface. After
the receipt of this method, the framework makes the corresponding service discoverable.

There exists a " service manager" instance per service instance. Each service implements the

I pServicel nstancelifecycleManager interface. The IpServicel nstancelLifecycleManager interface supports a method
called the createServiceManager(application: in TpClientAppl D, serviceProperties : in TpServicePropertyList,
servicelnstancel D : in TpServicelnstancel D) : 1pServiceRef. When the service agreement is signed for some servicel D
(using signServiceAgreement()), the framework calls the createServiceManager() for this service, getsa
serviceManager and returns this to the client application.

Parameters

servicelID: in TpServiceID

The service ID of the service that is being announced. If the string representation of the "servicel D" does not obey the
rules for service identifiers, thenaP_ILLEGAL_SERVICE_ID exceptionisraised. If the "servicel D" is legal but there
is no service offer within the Framework with that ID, thenaP_UNKNOWN_SERVICE_ID exception is raised.

serviceInstancelLifecycleManagerRef: in
service lifecycle::IpServicelInstancelLifecycleManagerRef

The interface reference at which the service instance lifecycle manager of the previously registered service is available.

Raises

TpCommonExceptions, P _ILLEGAL SERVICE ID, P _UNKNOWN SERVICE ID,
P INVALID INTERFACE TYPE

9.3.1.1.3 Method unregisterService()

The unregisterService() operation is used by the service suppliers to remove aregistered service from the Framework.
The serviceisidentified by the "service-ID" which was originally returned by the Framework in response to the
registerService() operation. The service must be in the SCF Registered state. All instances of the service will be deleted.

ETSI

152 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Parameters

servicelID: in TpServiceID

The service to be withdrawn isidentified by the "servicel D" parameter which was originally returned by the
registerService() operation. If the string representation of the "servicel D" does not obey the rules for service identifiers,
thenaP_ILLEGAL_SERVICE_ID exception israised. If the"servicel D" islega but there is no service offer within the
Framework with that ID, then aP_UNKNOWN_SERVICE_ID exception is raised.

Raises
TpCommonExceptions, P _ILLEGAL SERVICE ID, P_UNKNOWN SERVICE ID

9.3.1.1.4 Method describeService()

The describeService() operation returns the information about a service that is registered in the framework. It
comprises, the "type" of the service, and the "properties’ that describe this service. The service isidentified by the
"service-ID" parameter which was originally returned by the registerService() operation.

The SCS may register various versions of the same SCF, each with a different description (more or less restrictive, for
example), and each getting a different servicel D assigned.

Returns <serviceDescription> : This consists of the information about an offered service that is held by the Framework.
It comprises the "type" of the service, and the properties that describe this service.

Parameters

serviceID: in TpServicelD

The service to be described isidentified by the "servicel D" parameter which was originally returned by the
registerService() operation. If the string representation of the "servicel D" does not obey the rules for object identifiers,
then an P_ILLEGAL_SERVICE_ID exceptionisraised. If the "servicel D" islegal but there is no service offer within
the Framework with that ID, thenaP_UNKNOWN_SERVICE_ID exception is raised.

Returns

TpServiceDescription

Raises

TpCommonExceptions, P _ILLEGAL SERVICE ID, P _UNKNOWN SERVICE ID

9.3.1.1.5 Method unannounceService()

This method results in the service no longer being discoverable by applications. It is, however, still registered and the
service ID is still associated with it. Applications currently using the service can continue to use the service but no new
applications should be able to start using the service. Also, all unused service tokens relating to the service will be
expired. Thiswill prevent anyone who has aready performed a selectService() but not yet performed the
signServiceAgreement() from being able to obtain a new instance of the service.

Parameters

servicelID: in TpServiceID

The service ID of the service that is being unannounced. If the string representation of the "servicel D" does not obey the
rules for service identifiers, thenaP_ILLEGAL_SERVICE_ID exceptionisraised. If the "servicel D" islegal but there
is no service offer within the Framework with that 1D, then aP_UNKNOWN_SERVICE_ID exception is raised.

ETSI

153 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Raises
TpCommonExceptions, P _ILLEGAL SERVICE ID, P_UNKNOWN SERVICE ID

9.3.1.1.6 Method <<new>> registerServiceSubType()

The registerServiceSubType() operation is the means by which an extended service is registered in the Framework, for
subsequent discovery by the enterprise applications. Registration only succeeds if the service type is known to the
Framework (ServiceTypeis 'available’). A service-ID isreturned to the service supplier when a service isregistered in
the Framework. When the service is not registered because the ServiceTypeis 'unavailable, a
P_SERVICE_TYPE_UNAVAILABLE exception israised. The service-ID is the handle with which the service supplier
can identify the registered service when needed (e.g. for withdrawing it). The service-ID is only meaningful in the
context of the Framework that generated it.

This method should be used for registration of service sub types only. For registering service super types, the
registerService () method should be used.

Returns <servicel D> : Thisisthe unique handle that is returned as aresult of the successful completion of this
operation. The Service Supplier can identify the registered service when attempting to accessit via other operations
such as unregisterService(), etc. Enterprise client applications are also returned this service-1D when attempting to
discover a service of thistype.

Parameters

serviceTypeName : in TpServiceTypeName

The"serviceTypeName" parameter identifies the service type. If the string representation of the "type" does not obey
therulesfor identifiers, thenaP_ILLEGAL_SERVICE_TY PE exception israised. If the "type" is correct syntactically
but the Framework is able to unambiguously determine that it is not a recognised service type, then a
P_UNKNOWN_SERVICE_TY PE exception is raised.

servicePropertyList:in TpServicePropertylList

The "servicePropertyList" parameter isalist of property name and property value pairs corresponding to the service
properties applicable to the standard service. They describe the service being registered.

If the type or the semantics of the type of any of the property valuesis not the same as the declared type (declared in the
service type), thenaP_PROPERTY_TYPE _MISMATCH exception is raised.

If the "servicePropertyList" parameter omits any property declared in the service type with a mode of mandatory, then a
P_MISSING_MANDATORY_PROPERTY exception is raised.

If two or more properties with the same property name are included in this parameter, the
P_DUPLICATE_PROPERTY_NAME exception is raised.

extendedServicePropertyList: in TpServiceTypePropertyValueList

The "extendedServicePropertyList" parameter isalist of property name, mode, type, and property val ue tuples
corresponding to the service properties applicable to the extended standard service. They describe the service being
registered.

If two or more properties with the same property name are included in this parameter, the
P_DUPLICATE_PROPERTY_NAME exception is raised.

ETSI

154 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Returns
TpServiceID
Raises

TpCommonExceptions, P_PROPERTY TYPE MISMATCH, P _DUPLICATE PROPERTY NAME,
P _ILLEGAL SERVICE TYPE, P UNKNOWN SERVICE TYPE,
P MISSING MANDATORY PROPERTY, P SERVICE TYPE UNAVAILABLE

9.3.2 Service Instance Lifecycle Manager Interface Classes

The IpServicel nstanceLifecycleManager interface allows the framework to get access to a service manager interface of
aservice. It is used during the signServiceAgreement, in order to return a service manager interface reference to the
application. Each service has a service manager interface that istheinitial point of contact for the service. E.g. the
generic call control service uses the |pCall ControlManager interface.

9.3.2.1 Interface Class IpServicelnstanceLifecycleManager
Inherits from: Iplnterface;

The IpServicel nstanceL ifecycleManager interface allows the Framework to create and destroy Service Manager
Instances. Thisinterface and the createServiceManager() and destroyServiceManager() methods shall be implemented
by a Service.

<<Interface>>

IpServicelnstancelifecycleManager

createServiceManager (application : in TpClientAppID, serviceProperties : in TpServicePropertyList,
servicelnstancelD : in TpServicelnstancelD) : IpServiceRef

destroyServiceManager (servicelnstance : in TpServicelnstancelD) : void

9.3.2.1.1 Method createServiceManager()

This method returns a new service manager interface reference for the specified application. The service instance will
be configured for the client application using the properties agreed in the service level agreement.

In case there is already a service manager available for the specified application and servicelnstancel D this referenceis
returned and no new service manager is created.

Returns <serviceManager> : Specifies the service manager interface reference for the specified application ID.

Parameters

application:in TpClientAppID
Specifies the application for which the service manager interface is requested.

serviceProperties: in TpServicePropertyList

Specifies the service properties and their values that are to be used to configure the service instance. These properties
form a part of the service level agreement. An example of these propertiesisalist of methods that the client application
is allowed to invoke on the service interfaces.

ETSI

155 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

serviceInstanceID: in TpServiceInstancelID
Specifies the Service Instance ID that the new Service Manager isto be identified by.

Returns

IpServiceRef

Raises

TpCommonExceptions, P _INVALID PROPERTY

9.3.2.1.2 Method destroyServiceManager()

This method destroys an existing service manager interface reference. Thiswill result in the client application being
unable to use the service manager any more.

Parameters

serviceInstance: in TpServicelnstanceID
I dentifies the Service Instance to be destroyed.

Raises

TpCommonExceptions

9.3.3 Service Discovery Interface Classes
This API complements the Service Registration functionality described in another clause.

Before a service can be registered in the framework, the service supplier must know what "types" of servicesthe
Framework supports and what service "properties’ are applicable to each service type. The "listServiceType()" method
returnsalist of all "service types' that are currently supported by the framework and the "describeServiceType()"
method returns a description of each service type. The description of service type includes the "service-specific
properties' that are applicable to each service type. Then the service supplier can retrieve a specific set of registered
services that both belong to a given type and possess a specific set of "property values', by using the
"discoverService()" method.

Additionally the service supplier can retrieve alist of al registered services, without regard to type or property values,
by using the "listRegisteredServices()" method. However the scope of the list will depend upon the framework
implementation; e.g. a service supplier may only be permitted to retrieve alist of services that the service supplier has
previously registered.

9.3.3.1 Interface Class IpFwServiceDiscovery

Inherits from: Iplnterface;

Thisinterface shall be implemented by a Framework with as a minimum requirement the listServiceTypes(),
describeServiceType() and discoverService() methods.

ETSI

156 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

<<Interface>>

IpFwServiceDiscovery

listServiceTypes () : TpServiceTypeNameList
describeServiceType (name : in TpServiceTypeName) : TpServiceTypeDescription

discoverService (serviceTypeName : in TpServiceTypeName, desiredPropertyList : in TpServicePropertyList,
max : in TpInt32) : TpServiceList

listRegisteredServices () : TpServiceList

9.3.3.1.1 Method listServiceTypes()

This operation returns the names of all service types that are in the repository. The details of the service types can then
be obtained using the describeServiceType() method.

Returns <listTypes> : The names of the requested service types.

Parameters
No Parameters were identified for this method.

Returns
TpServiceTypeNameList
Raises

TpCommonExceptions

9.3.3.1.2 Method describeServiceType()
This operation lets the caller obtain the details for a particular service type.

Returns <serviceTypeDescription> : The description of the specified service type. The description provides information
about: the service properties associated with this service type: i.e. alist of service property { name, mode and type}
tuples, the names of the super types of this service type, and whether the service typeis currently available or
unavailable.

Parameters

name : in TpServiceTypeName

The name of the service type to be described. If the "name" is malformed, then the P_ILLEGAL_SERVICE_TYPE
exception israised. If the "name" does not exist in the repository, then the P_UNKNOWN_SERVICE_TY PE exception
israised.

Returns

TpServiceTypeDescription

Raises

TpCommonExceptions, P ILLEGAL SERVICE TYPE, P UNKNOWN SERVICE TYPE

ETSI

157 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

9.3.3.1.3 Method discoverService()

The discoverService operation is the means by which the service supplier can retrieve a specific set of registered
services that both belong to a given type and possess a specific set of "property values'. The service supplier passesin a
list of desired service properties to describe the service it islooking for, in the form of attribute/value pairs for the
service properties. The service supplier also specifies the maximum number of matched responsesit is willing to accept.
The framework must not return more matches than the specified maximum, but it is up to the discretion of the
Framework implementation to choose to return less than the specified maximum. The discoverService() operation
returns a servicel D/Property pair list for those services that match the desired service property list that the service
supplier provided.

Returns <serviceList> : This parameter gives alist of matching services. Each serviceis characterised by its service ID
and alist of service properties{name and value list} associated with the service.

Parameters

serviceTypeName : in TpServiceTypeName

The name of the required service type. If the string representation of the "type" does not obey the rules for service type
identifiers, thenthe P_ILLEGAL_SERVICE_TY PE exception israised. If the "type" is correct syntactically but is not
recognised as a service type within the Framework, then the P_UNKNOWN_SERVICE_TY PE exception israised. The
framework may return a service of a subtype of the "type" requested. A service sub-type can be described by the
properties of its supertypes.

desiredPropertyList: in TpServicePropertyList

The "desiredPropertyList" parameter isalist of service properties { name and value list} that the required services
should satisfy. These properties deal with the non-functional and non-computational aspects of the desired service. The
property valuesin the desired property list must be logically interpreted as " minimum", "maximum”, etc. by the
framework (due to the absence of a Boolean constraint expression for the specification of the service criterion). It is
suggested that, at the time of service registration, each property value be specified as an appropriate range of values, so
that desired property values can specify an "enclosing” range of valuesto help in the selection of desired services.

max:in TpInt32
The "max" parameter states the maximum number of servicesthat areto be returned in the "servicelList" result.

Returns
TpServicelList
Raises

TpCommonExceptions, P _ILLEGAL SERVICE TYPE, P _UNKNOWN SERVICE TYPE,
P _INVALID PROPERTY

9.3.3.1.4 Method listRegisteredServices()
Returns alist of services so far registered in the framework.

Returns <serviceList> : The "serviceList" parameter returns alist of registered services. Each service is characterised by
itsservice ID and alist of service properties { name and value list} associated with the service.

Parameters
No Parameters were identified for this method.

ETSI

158 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Returns

TpServicelList

Raises

TpCommonExceptions

9.34 Integrity Management Interface Classes

9.3.4.1 Interface Class IpFwFaultManager
Inherits from: Iplnterface;

Thisinterface is used by the service instance to inform the framework of events which affect the integrity of the AP,
and request fault management status information from the framework. The fault manager operations do not exchange
callback interfaces as it is assumed that the service instance has supplied its Fault Management callback interface at the
time it obtains the Framework's Fault Management interface, by use of the obtainl nterfaceWithCallback operation on
the IpAccess interface.

If the IpFwFaultManager interface isimplemented by a Framework, at |east one of these methods shall be
implemented. If the Framework is capable of invoking the | pSvcFaultManager.svcActivity TestReq() method, it shall
implement svcActivityTestRes() and svcActivityTestErr() in thisinterface. If the Framework is capable of invoking
| pSvcFaultM anager.generateFaul tStati sticsRecordReq(), it shall implement generateFaul tStati sticsRecordRes() and
generateFaultStatisticsRecordErr() in thisinterface. If the Framework is capable of invoking
| pSvcFaultM anager.generateFaul tStati sticsRecordReq(), it shall implement generateFaul tStatisticsRecordRes() and
generateFaultStati sticsRecordErr() in thisinterface.

ETSI

159 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

<<Interface>>

IpFwFaultManager

activityTestReq (activityTestID : in TpActivityTestID, testSubject : in TpSubjectType) : void
svcActivityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void
appUnavailablelnd () : void

<<deprecated>> genFaultStatsRecordReq (timePeriod : in TpTimelnterval, recordSubject : in
TpSubjectType) : void

<<deprecated>> svcUnavailableInd (reason : in TpSvcUnavailReason) : void
svcActivityTestErr (activityTestID : in TpActivityTestID) : void

<<deprecated>> genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord, servicelDs : in
TpServicelDList) : void

<<deprecated>> genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError, servicelDs : in
TpServicelDList) : void

<<deprecated>> generateFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord) : void
<<deprecated>> generateFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError) : void
svcAvailStatusind (reason : in TpSvcAvailStatusReason) : void

<<new>> generateFaultStatisticsRecordReq (faultStatsReqID : in TpFaultReqID, timePeriod : in
TpTimelnterval, recordSubject : in TpSubjectType) : void

<<new>> generateFaultStatisticsRecordRes (faultStatsReqID : in TpFaultReqID, faultStatistics : in
TpFaultStatsRecord) : void

<<new>> generateFaultStatisticsRecordErr (faultStatsReqID : in TpFaultReqID, faultStatisticsError : in
TpFaultStatisticsError) : void

9.3.4.1.1 Method activityTestReq()

The service instance invokes this method to test that the framework or the client application is operational. On receipt of
this request, the framework must carry out atest on itself or on the application, to check that it is operating correctly.
The framework reports the test result by invoking the activity TestRes method on the | pSvcFaultM anager interface.

Parameters

activityTestID:in TpActivityTestID
Theidentifier provided by the service instance to correlate the response (when it arrives) with this request.

testSubject: in TpSubjectType
Identifies the subject for testing (framework or client application).

Raises

TpCommonExceptions

ETSI

160 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

9.3.4.1.2 Method svcActivityTestRes()

The service instance uses this method to return the result of aframework-requested activity test.

Parameters

activityTestID:in TpActivityTestID
Used by the framework to correlate this response (when it arrives) with the original request.

activityTestResult: in TpActivityTestRes
The result of the activity test.

Raises
TpCommonExceptions, P_INVALID ACTIVITY TEST ID

9.3.4.1.3 Method appUnavailableInd()
This method is used by the service instance to inform the framework that the client application is not responding. On
receipt of thisindication, the framework must act to inform the client application.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

9.3.4.1.4 Method <<deprecated>> genFaultStatsRecordReq()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method generateFaultStatisticsRecordReq shall be used instead, using the new identifier to correlate
requests and responses.

This method is used by the service instance to solicit fault statistics from the framework. On receipt of this request, the
framework must produce a fault statistics record, for the framework or for the application during the specified time
interval, which is returned to the service instance using the genFaultStatsRecordRes operation on the

| pSvcFaultM anager interface.

Parameters

timePeriod: in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings
leaves the time period to the discretion of the framework.

recordSubject: in TpSubjectType
Specifies the subject to be included in the general fault statistics record (framework or application).

Raises

TpCommonExceptions

ETSI

161 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

9.3.4.1.5 Method <<deprecated>> svcUnavailablelnd()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method svcAvail Statusind() shall be used instead, using the new and updated reason parameter to
inform the Framework the reason why the Service has become unavailable and also when the Service instance becomes
available again.

This method is used by the service instance to inform the framework that it is about to become unavailable for use. The
framework should inform the client application that is currently using this service instance that it is unavailable for use
(viathe svcUnavailablelnd method on the IpAppFaultM anager interface).

Parameters

reason: in TpSvcUnavailReason
Identifies the reason for the service instance's unavailability.

Raises

TpCommonExceptions

9.3.4.1.6 Method svcActivityTestErr()

The service instance uses this method to indicate that an error occurred during a framework-requested activity test.

Parameters

activityTestID: in TpActivityTestID
Used by the framework to correlate this response (when it arrives) with the original request.

Raises
TpCommonExceptions, P_INVALID ACTIVITY TEST ID

9.3.4.1.7 Method <<deprecated>> genFaultStatsRecordRes()

This method is deprecated and will be removed in alater release. It cannot be used as described, since the servicel Ds
parameter has no meaning. It is replaced with generateFaultStatsRecordRes().

This method is used by the service to provide fault statistics to the framework in response to a genFaultStatsRecordReq
method invocation on the |pSvcFaultManager interface.
Parameters

faultStatistics:in TpFaultStatsRecord
The fault statistics record.

servicelIDs: in TpServiceIDList

Specifies the services that are included in the general fault statistics record. The servicel Ds parameter is not allowed to
be an empty list.

ETSI

162 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Raises

TpCommonExceptions

9.3.4.1.8 Method <<deprecated>> genFaultStatsRecordErr()

This method is deprecated and will be removed in alater release. It cannot be used as described, since the servicel Ds
parameter has no meaning. It is replaced with generateFaultStatsRecordErr().

This method is used by the service to indicate an error fulfilling the request to provide fault statistics, in responseto a
genFaultStatsRecordReq method invocation on the |pSvcFaultManager interface.

Parameters

faultStatisticsError:in TpFaultStatisticsError
The fault statistics error.

servicelIDs: in TpServiceIDList
Specifies the services that were included in the general fault statistics record request. The servicel Ds parameter is not

allowed to be an empty list.
Raises

TpCommonExceptions

9.3.4.1.9 Method <<deprecated>> generateFaultStatsRecordRes()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method generateFaultStati sticsRecordRes shall be used instead, using the new identifier to correlate
requests and responses.

This method is used by the service to provide fault statistics to the framework in response to a genFaultStatsRecordReq
method invocation on the | pSvcFaultManager interface.

Parameters

faultStatistics:in TpFaultStatsRecord
The fault statistics record.

Raises

TpCommonExceptions

9.3.4.1.10 Method <<deprecated>> generateFaultStatsRecordErr()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method generateFaultStatisticsRecordErr shall be used instead, using the new identifier to correlate
requests and errors.

This method is used by the service to indicate an error fulfilling the request to provide fault statistics, in response to a
genFaultStatsRecordReg method invocation on the | pSvcFaultM anager interface.

Parameters

faultStatisticsError: in TpFaultStatisticsError
Thefault statistics error.

ETSI

163 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Raises

TpCommonExceptions

9.3.4.1.11 Method svcAvailStatusind()

This method is used by the service instance to inform the framework that it is about to become unavailable for use
according to the provided reason and as well to inform the Framework when the Service instance becomes available
again. The framework should inform the client applications that are currently using this service instance that it is
unavailable and as well when it becomes available again for use (viathe svcAvail Statuslnd method on the

| pAppFaultManager interface).

Parameters

reason: in TpSvcAvailStatusReason
Identifies the reason for the service instance's unavailability and also the reason SERVICE_AVAILABLE to be used to

inform the Framework when the Service instance becomes available again.
Raises

TpCommonExceptions

9.3.4.1.12 Method <<new>> generateFaultStatisticsRecordReq()

This method is used by the service instance to solicit fault statistics from the framework. On receipt of this request, the
framework must produce afault statistics record, for the framework or for the application during the specified time
interval, which is returned to the service instance using the generateFaultStatisticsRecordRes operation on the

I pSvcFaultManager interface.

Parameters

faultStatsReqID: in TpFaultReqID
The identifier provided by the service instance to correlate the response (when it arrives) with this request.

timePeriod: in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings
leaves the time period to the discretion of the framework.

recordSubject: in TpSubjectType
Specifies the subject to be included in the general fault statistics record (framework or application).
Raises

TpCommonExceptions

9.3.4.1.13 Method <<new>> generateFaultStatisticsRecordRes()

This method is used by the service to provide fault statistics to the framework in response to a
generateFaul tStati sticsRecordReq method invocation on the 1pSvcFaultManager interface.

Parameters

faultStatsReqID: in TpFaultReqID
Used by the framework to correlate this response (when it arrives) with the original request.

ETSI

164 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

faultStatistics:in TpFaultStatsRecord
The fault statistics record.

Raises

TpCommonExceptions

9.3.4.1.14 Method <<new>> generateFaultStatisticsRecordErr()

This method is used by the service to indicate an error fulfilling the request to provide fault statistics, in response to a
generateFaul tStati sticsRecordReg method invocation on the IpSvcFaultManager interface.

Parameters

faultStatsReqID: in TpFaultReqID
Used by the framework to correlate this error (when it arrives) with the original request.

faultStatisticsError:in TpFaultStatisticsError
The fault statistics error.

Raises

TpCommonExceptions

9.3.4.2 Interface Class IpSvcFaultManager
Inherits from: Ipinterface;

Thisinterface is used to inform the service instance of events that affect the integrity of the Framework, Service or
Client Application. The Framework will invoke methods on the Fault Management Service Interface that is specified
when the service instance obtains the Fault Management Framework interface: i.e. by use of the
obtainlnterfaceWithCallback operation on the IpAccessinterface.

If the IpSvcFaultManager interface isimplemented by a Service, at least one of these methods shall be implemented.
If the Serviceis capable of invoking the |pFwFaultManager.activity TestReq() method, it shall implement
activityTestRes() and activityTestErr() in thisinterface. If the Service is capable of invoking
I pFwFaultM anager.generateFaul tStati sticsRecordReq(), it shall implement generateFaultStati sticsRecordRes() and
generateFaul tStati sticsRecordErr() in this interface.

ETSI

165 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

<<Interface>>

IpSvcFaultManager

activityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void
svcActivityTestReq (activityTestID : in TpActivityTestID) : void

<<deprecated>> fwFaultReportind (fault : in TpinterfaceFault) : void

<<deprecated>> fwFaultRecoveryInd (fault : in TpInterfaceFault) : void

<<deprecated>> fwUnavailablelnd (reason : in TpFwUnavailReason) : void

svcUnavailablelnd () : void

<<deprecated>> appUnavailablelnd () : void

<<deprecated>> genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord, recordSubject : in
TpSubjectType) : void

activityTestErr (activityTestID : in TpActivityTestID) : void

<<deprecated>> genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError, recordSubject : in
TpSubjectType) : void

<<deprecated>> genFaultStatsRecordReq (timePeriod : in TpTimelnterval, servicelDs : in TpServicelDList) :
void

<<deprecated>> generateFaultStatsRecordReq (timePeriod : in TpTimelnterval) : void
appAvailStatusind (reason : in TpAppAvailStatusReason) : void

<<new>> generateFaultStatisticsRecordRes (faultStatsReqID : in TpFaultReqID, faultStatistics : in
TpFaultStatsRecord, recordSubject : in TpSubjectType) : void

<<new>> generateFaultStatisticsRecordErr (faultStatsReqID : in TpFaultReqID, faultStatisticsError : in
TpFaultStatisticsError, recordSubject : in TpSubjectType) : void

<<new>> generateFaultStatisticsRecordReq (faultStatsReqID : in TpFaultReqID, timePeriod : in
TpTimelnterval) : void

<<new>> fwAvailStatusind (reason : in TpFwAvailStatusReason) : void

9.3.4.2.1 Method activityTestRes()

The framework uses this method to return the result of a service-requested activity test.

Parameters

activityTestID: in TpActivityTestID
Used by the service to correlate this response (when it arrives) with the original request.

activityTestResult: in TpActivityTestRes
The result of the activity test.

Raises
TpCommonExceptions, P_INVALID ACTIVITY TEST ID

ETSI

166 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

9.3.4.2.2 Method svcActivityTestReq()

The framework invokes this method to test that the service instance is operational. On receipt of this request, the service
instance must carry out atest onitself, to check that it is operating correctly. The service instance reports the test result
by invoking the svcActivity TestRes method on the | pFwFaultM anager interface.

Parameters

activityTestID: in TpActivityTestID
The identifier provided by the framework to correlate the response (when it arrives) with this request.

Raises

TpCommonExceptions

9.3.4.2.3 Method <<deprecated>> fwFaultReportind()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method fwAvail Statusind shall be used instead, using the new type of reason parameter to inform the
Service the reason why the Framework is unavailable.

The framework invokes this method to notify the service instance of afailure within the framework. The service
instance must not continue to use the framework until it has recovered (as indicated by a fwFaultRecoveryind).

Parameters

fault:in TpInterfaceFault
Specifies the fault that has been detected by the framework.

Raises

TpCommonExceptions

9.3.4.2.4 Method <<deprecated>> fwFaultRecoverylnd()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method fwAvail Statusind shall be used instead, using the new type of reason parameter to inform the
Service when the Framework becomes available again.

The framework invokes this method to notify the service instance that a previously reported fault has been rectified. The
service instance may then resume using the framework.

Parameters
fault:in TpInterfaceFault

Specifies the fault from which the framework has recovered.
Raises

TpCommonExceptions

9.3.4.2.5 Method <<deprecated>> fwUnavailablelnd()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method fwAvail Statusind shall be used instead, using the new type of reason parameter to inform the
Application the reason why the Framework is unavailable and a so when the Framework becomes available again.

ETSI

167 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

The framework invokes this method to inform the service instance that it is no longer available.

Parameters

reason: in TpFwUnavailReason
Identifies the reason why the framework is no longer available.

Raises

TpCommonExceptions

9.3.4.2.6 Method svcUnavailablelnd()

The framework invokes this method to inform the service instance that the client application has reported that it can no
longer use the service instance.

Parameters
No Parameters were identified for this method.
Raises

TpCommonExceptions

9.3.4.2.7 Method <<deprecated>> appUnavailableInd()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method appAvail Statusind shall be used instead, using the new reason parameter to inform the
Service the reason why the Application is unavailable and a so when the application becomes available again.

The framework invokes this method to inform the service instance that the framework may have detected that the
application has failed: e.g. non-response from an activity test, failure to return heartbeats.

Parameters
No Parameters were identified for this method.
Raises

TpCommonExceptions

9.3.4.2.8 Method <<deprecated>> genFaultStatsRecordRes()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method generateFaultStatisticsRecordRes shall be used instead, using the new identifier to correlate
requests and responses.

This method is used by the framework to provide fault statistics to a service instance in response to a
genFaultStatsRecordReg method invocation on the | pFwFaultM anager interface.

Parameters

faultStatistics:in TpFaultStatsRecord
The fault statistics record.

recordSubject: in TpSubjectType
Specifies the entity (framework or application) whose fault statistics record has been provided.

ETSI

168 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Raises

TpCommonExceptions

9.3.4.2.9 Method activityTestErr()

The framework uses this method to indicate that an error occurred during a service-requested activity test.

Parameters

activityTestID:in TpActivityTestID
Used by the service instance to correlate this response (when it arrives) with the original request.

Raises
TpCommonExceptions, P_INVALID ACTIVITY TEST ID

9.3.4.2.10 Method <<deprecated>> genFaultStatsRecordErr()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method generateFaultStatisticsRecordErr shall be used instead, using the new identifier to correlate
requests and errors.

This method is used by the framework to indicate an error fulfilling the request to provide fault statistics, in response to
a genFaultStatsRecordReq method invocation on the | pFwFaultManager interface.

Parameters

faultStatisticsError: in TpFaultStatisticsError
The fault statistics error.

recordSubject: in TpSubjectType
Specifies the entity (framework or application) whose fault statistics record was requested.

Raises

TpCommonExceptions

9.3.4.2.11 Method <<deprecated>> genFaultStatsRecordReq()

This method is deprecated and will be removed in alater release. It cannot be used as described, since the servicel Ds
parameter has no meaning. It is replaced with generateFaultStatsRecordReq|().

This method is used by the framework to solicit fault statistics from the service, for example when the framework was
asked for these statistics by the client application using the genFaultStatsRecordReq operation on the | pFaultManager
interface. On receipt of this request the service must produce afault statistics record, for either the framework or for the
client'sinstances of the specified services during the specified time interval, which is returned to the framework using
the genFaultStatsRecordRes operation on the | pFwFaultManager interface. If the framework does not have accessto a
service instance with the specified servicel D, the P_ UNAUTHORISED_PARAMETER_VALUE exception shall be
thrown. The extralnformation field of the exception shall contain the corresponding servicel D.

Parameters

timePeriod: in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings
leaves the time period to the discretion of the service.

ETSI

169 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

serviceIDs: in TpServiceIDList
Specifies the services to be included in the general fault statistics record. This parameter is not allowed to be an empty

list.
Raises
TpCommonExceptions, P _INVALID SERVICE ID, P UNAUTHORISED PARAMETER VALUE

9.3.4.2.12 Method <<deprecated>> generateFaultStatsRecordReq()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method generateFaultStatisticsRecordReq shall be used instead, using the new identifier to correlate
requests and responses.

This method is used by the framework to solicit fault statistics from the service instance, for example when the
framework was asked for these statistics by the client application using the genFaultStatsRecordReq operation on the
IpFaultManager interface. On receipt of this request the service instance must produce a fault statistics record during the
specified time interval, which is returned to the framework using the genFaultStatsRecordRes operation on the

I pFwFaultManager interface.

Parameters

timePeriod: in TpTimeInterval
The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings

leaves the time period to the discretion of the service.
Raises

TpCommonExceptions

9.3.4.2.13 Method appAvailStatusind()

The framework invokes this method to inform the service instance that the client application is no longer available
using different reasons for the unavailability. This may be aresult of the application reporting afailure. Alternatively,
the framework may have detected that the application has failed: e.g. non-response from an activity test, failure to return
heartbeats, using the reason APP_UNAVAILABLE_NO_RESPONSE. When the application becomes available again
the reason APP_AVAILABLE shall be used to inform the Service about that.

Parameters

reason: in TpAppAvailStatusReason

I dentifies the reason why the application is no longer available. APP_AVAILABLE is used to inform the Service that
the Application is available again.

Raises

TpCommonExceptions

9.3.4.2.14 Method <<new>> generateFaultStatisticsRecordRes()

This method is used by the framework to provide fault statistics to a service instance in responseto a
generateFaultStati sticsRecordReq method invocation on the | pFwFaultManager interface.

ETSI

170 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Parameters

faultStatsReqID: in TpFaultReqID
Used by the service instance to correlate this response (when it arrives) with the original request.

faultStatistics:in TpFaultStatsRecord
The fault statistics record.

recordSubject: in TpSubjectType
Specifies the entity (framework or application) whose fault statistics record has been provided.

Raises

TpCommonExceptions

9.3.4.2.15 Method <<new>> generateFaultStatisticsRecordErr()

This method is used by the framework to indicate an error fulfilling the request to provide fault statistics, in response to
a generateFaul tStati sticsRecordReq method invocation on the | pFwFaultManager interface.

Parameters

faultStatsReqID: in TpFaultReqID
Used by the service instance to correlate this error (when it arrives) with the original request.

faultStatisticsError: in TpFaultStatisticsError
Thefault statistics error.

recordSubject: in TpSubjectType
Specifies the entity (framework or application) whose fault statistics record was regquested.

Raises

TpCommonExceptions

9.3.4.2.16 Method <<new>> generateFaultStatisticsRecordReq()

This method is used by the framework to solicit fault statistics from the service instance, for example when the
framework was asked for these statistics by the client application using the generateFaultStati sticsRecordReq operation
on the I pFaultManager interface. On receipt of this request the service instance must produce afault statistics record
during the specified time interval, which is returned to the framework using the generateFaultStati sticsRecordRes
operation on the | pFwFaultM anager interface.

Parameters

faultStatsReqID: in TpFaultReqID
The identifier provided by the framework to correlate the response (when it arrives) with this request.

timePeriod: in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings
leaves the time period to the discretion of the service.

ETSI

171 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Raises

TpCommonExceptions

9.3.4.2.17 Method <<new>> fwAvailStatusind()

The framework invokes this method to inform the service instance about the Framework availability status, i.e. that it
can no longer use the Framework according to the reason parameter or that the Framework has become available again.
The service instance may wait for the problem to be solved and just stop the usage of the Framework until the

fwAvail Statusind() is called again with the reason FRAMEWORK_AVAILABLE.

Parameters

reason: in TpFwAvailStatusReason
I dentifies the reason why the framework is no longer available or that it has become available again.

9.3.4.3 Interface Class IpFwHeartBeatMgmt
Inherits from: Iplnterface;

Thisinterface allows the initialisation of a heartbeat supervision of the framework by a service instance. If the
IpFwHeartBeatM gmt interface isimplemented by a Framework, as a minimum enableHeartBeat() and
disableHeartBeat() shall be implemented.

<<|Interface>>

IpFwHeartBeatMgmt

enableHeartBeat (interval : in TpInt32, svcinterface : in IpSvcHeartBeatRef) : void
disableHeartBeat () : void

changelnterval (interval : in TpInt32) : void

9.3.4.3.1 Method enableHeartBeat()

With this method, the service instance instructs the framework to begin sending its heartbeat to the specified interface at
the specified interval.

Parameters

interval:in TpInt32
The time interval in milliseconds between the heartbeats.

svcInterface: in IpSvcHeartBeatRef
This parameter refersto the callback interface the heartbeat is calling.

Raises
TpCommonExceptions, P _INVALID INTERFACE TYPE

ETSI

172 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

9.3.4.3.2 Method disableHeartBeat()

Instructs the framework to cease the sending of its heartbeat.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

9.3.4.3.3 Method changelnterval()

Allows the administrative change of the heartbeat interval.

Parameters

interval:in TpInt32
The time interval in milliseconds between the heartbeats.

Raises

TpCommonExceptions

9.3.4.4 Interface Class IpFwHeartBeat
Inherits from: Iplnterface;

The service side framework heartbeat interface is used by the service instance to send the framework its heartbeat. If a
Framework is capable of invoking |pSvcHeartBeatM gmt.enableHeartBeat(), it shall implement |pFwHeartBeat and the
pulse() method.

<<Interface>>

IpFwHeartBeat

pulse () : void

9.3.4.4.1 Method pulse()

The service instance uses this method to send its heartbeat to the framework. The framework will be expecting a pulse
at the end of every interval specified in the parameter to the |pSvcHeartBeatM gmt.enableSvcHeartbeat() method. If the
pulse() is not received within the specified interval, then the service instance can be deemed to have failed the heartbeat.

Parameters
No Parameters were identified for this method.

ETSI

173 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Raises

TpCommonExceptions

9.3.4.5 Interface Class IpSvcHeartBeatMgmt
Inherits from: Ipinterface;

Thisinterface allows the initialisation of a heartbeat supervision of the service instance by the framework. If the
IpSvcHeartBeatM gmt interface isimplemented by a Service, as a minimum enableHeartBeat() and disableHeartBeat()
shall be implemented.

<<Interface>>

IpSvcHeartBeatMgmt

enableSvcHeartBeat (interval : in TpInt32, fwinterface : in IpFwHeartBeatRef) : void
disableSvcHeartBeat () : void

changelnterval (interval : in TpInt32) : void

9.3.4.5.1 Method enableSvcHeartBeat()

With this method, the framework instructs the service instance to begin sending its heartbeat to the specified interface at
the specified interval.

Parameters

interval:in TpInt32
The time interval in milliseconds between the heartbeats.

fwInterface: in IpFwHeartBeatRef
This parameter refersto the callback interface the heartbeat is caling.

Raises

TpCommonExceptions, P_INVALID INTERFACE TYPE

9.3.4.5.2 Method disableSvcHeartBeat()

Instructs the service instance to cease the sending of its heartbeat.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

ETSI

174 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

9.3.4.5.3 Method changelnterval()

Allows the administrative change of the heartbeat interval.

Parameters

interval:in TpInt32
The time interval in milliseconds between the heartbeats.

Raises

TpCommonExceptions

9.3.4.6 Interface Class IpSvcHeartBeat
Inherits from: Iplnterface;

The service heartbeat interface is used by the framework to send the service instance its heartbeat. If a Serviceis
capable of invoking |pFwHeartBeatM gmt.enableHeartBest(), it shall implement IpSvcHeartBeat and the pulse()
method.

<<Interface>>

IpSvcHeartBeat

pulse () : void

9.3.4.6.1 Method pulse()
The framework uses this method to send its heartbeat to the service instance. The service will be expecting a pulse at

the end of every interval specified in the parameter to the |pFwHeartBeatM gmt.enableHeartbeat() method. If the pulse()
is not received within the specified interval, then the framework can be deemed to have failed the heartbeat.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

ETSI

175 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

9.3.4.7 Interface Class IpFwLoadManager
Inherits from: Iplnterface;

The framework API should allow the load to be distributed across multiple machines and across multiple component
processes, according to aload management policy. The separation of the load management mechanism and load
management policy ensures the flexibility of the load management services. The load management policy identifies
what load management rules the framework should follow for the specific service. It might specify what action the
framework should take as the congestion level changes. For example, some real-time critical applications will want to
make sure continuous service is maintained, below a given congestion level, at all costs, whereas other services will be
satisfied with disconnecting and trying again later if the congestion level rises. Clearly, the load management policy is
related to the QoS level to which the application is subscribed. The framework load management function is represented
by the IpFwLoadManager interface. To handle responses and reports, the service developer must implement the

I pSvcL oadManager interface to provide the callback mechanism.

If the IpFwL oadManager interface isimplemented by a Framework, at least one of the methods shall be
implemented as a minimum requirement. If load level notifications are supported, the createl oadL evel Notification()
and destroyL oadL evel Notification() methods shall be implemented. If suspendNotification() isimplemented, then
resumeNotification() shall be implemented also. If a Framework is capable of invoking the
| pSvcl oadM anager.querySvcl oadStatsReq() method, then it shall implement querySvcl oadStatsRes() and
querySvcl oadStatsErr() methodsin thisinterface.

<<|Interface>>

IpFwLoadManager

reportLoad (loadLevel : in TpLoadLevel) : void

<<deprecated>> queryLoadReq (querySubject : in TpSubjectType, timelnterval : in TpTimelnterval) : void
<<deprecated>> querySvcLoadRes (loadStatistics : in TpLoadStatisticList) : void

<<deprecated>> querySvcLoadErr (loadStatisticError : in TpLoadStatisticError) : void
createLoadLevelNotification (notificationSubject : in TpSubjectType) : void

destroyLoadLevelNotification (notificationSubject : in TpSubjectType) : void

suspendNotification (notificationSubject : in TpSubjectType) : void

resumeNotification (notificationSubject : in TpSubjectType) : void

<<new>> queryLoadStatsReq (loadStatsReqID : in TpLoadTestID, querySubject : in TpSubjectType,
timelnterval : in TpTimelnterval) : void

<<new>> querySvcLoadStatsRes (loadStatsReqID : in TpLoadTestID, loadStatistics : in TpLoadStatisticList)
: void

<<new>> querySvclLoadStatsErr (loadStatsReqID : in TpLoadTestID, loadStatisticError : in
TpLoadStatisticError) : void

9.3.4.7.1 Method reportLoad()

The service instance uses this method to report its current load level (0, 1, or 2) to the framework: e.g. when the load
level on the service instance has changed.

At level 0 load, the service instance is performing within its load specifications (i.e. it is not congested or overloaded).
At level 1 load, the service instance is overloaded. At level 2 load, the service instance is severely overloaded. In
addition this method shall be called by the service instance in order to report current load status, when load notifications
arefirst requested, or resumed after suspension.

ETSI

176 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Parameters

loadLevel: in TpLoadLevel
Specifies the service instance's load level.

Raises

TpCommonExceptions

9.3.4.7.2 Method <<deprecated>> queryLoadReq()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method queryL cadStatsReq shall be used instead, using the new identifier to correlate requests and
responses.

The service instance uses this method to request the framework to provide load statistics records for the framework or
for the application that uses the service instance.

Parameters

querySubject: in TpSubjectType
Specifies the entity (framework or application) for which load statistics records should be reported.

timeInterval: in TpTimeInterval
Specifies the time interval for which load statistics records should be reported.

Raises

TpCommonExceptions

9.3.4.7.3 Method <<deprecated>> querySvcLoadRes()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method querySvcl oadStatsRes shall be used instead, using the new identifier to correlate requests
and responses.

The service instance uses this method to send load statistic records back to the framework that requested the
information; i.e. in response to an invocation of the querySvcl oadReq method on the IpSvcl oadManager interface.

Parameters

loadStatistics:in TpLoadStatisticList
Specifies the service-supplied |oad statistics.

Raises

TpCommonExceptions

9.3.4.7.4 Method <<deprecated>> querySvcLoadErr()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method querySvcL oadStatsErr shall be used instead, using the new identifier to correlate requests and
errors.

ETSI

177 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

The service instance uses this method to return an error response to the framework that requested the service instance's
load statistics information, when the service instance is unsuccessful in obtaining any load statistic records; i.e. in
response to an invocation of the querySvclL oadReq method on the I pSvcl oadManager interface.

Parameters

loadStatisticError: in TpLoadStatisticError
Specifies the error code associated with the failed attempt to retrieve the service instance's load statistics.

Raises

TpCommonExceptions

9.3.4.7.5 Method createLoadLevelNotification()

The service instance uses this method to register to receive notifications of load level changes associated with the
framework or with the application that uses the service instance. Upon receipt of this method the framework shall
inform the service instance of the current framework or application load using the loadL evel Notification method on the
corresponding IpSvcl oadM anager.

Parameters

notificationSubject: in TpSubjectType
Specifies the entity (framework or application) for which load level changes should be reported.

Raises

TpCommonExceptions

9.3.4.7.6 Method destroyLoadLevelNotification()

The service instance uses this method to unregister for notifications of load level changes associated with the
framework or with the application that uses the service instance.

Parameters

notificationSubject: in TpSubjectType
Specifies the entity (framework or application) for which load level changes should no longer be reported.

Raises

TpCommonExceptions

9.3.4.7.7 Method suspendNotification()

The service instance uses this method to request the framework to suspend sending it notifications associated with the
framework or with the application that uses the service instance; e.g. while the service instance handles a temporary
overload condition.

Parameters

notificationSubject: in TpSubjectType

Specifies the entity (framework or application) for which the sending of notifications by the framework should be
suspended.

ETSI

178 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Raises

TpCommonExceptions

9.3.4.7.8 Method resumeNotification()

The service instance uses this method to request the framework to resume sending it notifications associated with the
framework or with the application that uses the service instance; e.g. after a period of suspension during which the
service instance handled a temporary overload condition. Upon receipt of this method the framework shall inform the
service instance of the current framework or application load using the loadL evelNotification method on the
corresponding | pSvcL oadM anager.

Parameters

notificationSubject: in TpSubjectType
Specifies the entity (framework or application) for which the sending of notifications of load level changes by the

framework should be resumed.
Raises

TpCommonExceptions

9.3.4.7.9 Method <<new>> queryLoadStatsReq()

The service instance uses this method to request the framework to provide load statistics records for the framework or
for the application that uses the service instance.

Parameters

loadStatsReqID: in TpLoadTestID
The identifier provided by the service instance to correlate the response (when it arrives) with this request.

querySubject: in TpSubjectType
Specifies the entity (framework or application) for which load statistics records should be reported.

timeInterval: in TpTimeInterval
Specifies the time interval for which load statistics records should be reported.

Raises

TpCommonExceptions

9.3.4.7.10 Method <<new>> querySvcLoadStatsRes()

The service instance uses this method to send load statistic records back to the framework that requested the
information; i.e. in response to an invocation of the querySvcl oadStatsReq method on the 1pSvcl oadM anager
interface.

Parameters

loadStatsReqID: in TpLoadTestID
Used by the framework to correlate this response (when it arrives) with the original request.

ETSI

179 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

loadStatistics:in TpLoadStatisticList
Specifies the service-supplied load statistics.

Raises

TpCommonExceptions

9.3.4.7.11 Method <<new>> querySvcLoadStatsErr()

The service instance uses this method to return an error response to the framework that requested the service instance's
load statistics information, when the service instance is unsuccessful in obtaining any load statistic records; i.e. in
response to an invocation of the querySvcL oadStatsReq method on the I pSvcl oadManager interface.

Parameters

loadStatsReqID: in TpLoadTestID
Used by the framework to correlate this error (when it arrives) with the original request.

loadStatisticError: in TpLoadStatisticError
Specifies the error code associated with the failed attempt to retrieve the service instance's load statistics.

Raises

TpCommonExceptions

9.3.4.8 Interface Class IpSvcLoadManager
Inherits from: Ipinterface;

The service developer supplies the load manager service interface to handle requests, reports and other responses from
the framework load manager function. The service instance supplies the identity of its callback interface at the time it
obtains the framework's load manager interface, by use of the obtainlnterfaceWithCallback() method on the IpAccess
interface.

If the IpSvcLoadManager interface isimplemented by a Service, at least one of the methods shall be implemented as
aminimum requirement. If load level notifications are supported, then loadLevel Notification() shall be implemented. If
a Serviceis capable of invoking the | pFwL oadManager.queryL oadStatsReq() method, then it shall implement
querylL oadStatsRes() and queryL oadStatsErr() methods in this interface.

ETSI

180 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

<<Interface>>

IpSvcLoadManager

<<deprecated>> querySvcLoadReq (timelnterval : in TpTimelnterval) : void

<<deprecated>> queryLoadRes (loadStatistics : in TpLoadStatisticList) : void

<<deprecated>> queryLoadErr (loadStatisticsError : in TpLoadStatisticError) : void

loadLevelNotification (loadStatistics : in TpLoadStatisticList) : void

suspendNotification () : void

resumeNotification () : void

createLoadLevelNotification () : void

destroyLoadLevelNotification () : void

<<new>> querySvcLoadStatsReq (loadStatsReqID : in TpLoadTestID, timelnterval : in TpTimelnterval) : void

<<new>> queryLoadStatsRes (loadStatsReqID : in TpLoadTestID, loadStatistics : in TpLoadStatisticList) :
void

<<new>> queryLoadStatsErr (loadStatsReqID : in TpLoadTestID, loadStatisticsError : in
TpLoadStatisticError) : void

9.3.4.8.1 Method <<deprecated>> querySvcLoadReq()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method querySvcL oadStatsReq shall be used instead, using the new identifier to correlate requests
and responses.

The framework uses this method to request the service instance to provide its load statistic records.

Parameters

timeInterval: in TpTimeInterval
Specifies the time interval for which load statistic records should be reported.

Raises

TpCommonExceptions

9.3.4.8.2 Method <<deprecated>> queryLoadRes()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method queryL cadStatsRes shall be used instead, using the new identifier to correlate requests and
responses.

The framework uses this method to send load statistic records back to the service instance that requested the
information; i.e. in response to an invocation of the queryL oadReg method on the | pFwL oadM anager interface.

Parameters

loadStatistics:in TpLoadStatisticList
Specifies the framework-supplied load statistics.

ETSI

181 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Raises

TpCommonExceptions

9.3.4.8.3 Method <<deprecated>> queryLoadErr()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method querylL oadStatsErr shall be used instead, using the new identifier to correlate requests and
errors.

The framework uses this method to return an error response to the service that requested the framework's load statistics
information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an
invocation of the queryL oadReq method on the |pFwL oadManager interface.

Parameters

loadStatisticsError: in TpLoadStatisticError
Specifies the error code associated with the failed attempt to retrieve the framework's load statistics.

Raises

TpCommonExceptions

9.3.4.8.4 Method loadLevelNotification()

Upon detecting load condition change, (e.g. load level changing from0to 1, 0to 2, 1 to O, for the application or
framework which has been registered for load level notifications) this method is invoked on the SCF. In addition this
method shall be invoked on the SCF in order to provide a notification of current load status, when load notifications are
first requested, or resumed after suspension.

Parameters
loadStatistics:in TpLoadStatisticList

Specifies the framework-supplied load statistics, which include the load level change(s).
Raises

TpCommonExceptions

9.3.4.8.5 Method suspendNotification()

The framework uses this method to request the service instance to suspend sending it any notifications: e.g. while the
framework handles atemporary overload condition.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

9.3.4.8.6 Method resumeNotification()

The framework uses this method to request the service instance to resume sending it notifications: e.g. after a period of
suspension during which the framework handled a temporary overload condition. Upon receipt of this method the

ETSI

182 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

service instance shall inform the framework of the current load using the reportL oad method on the corresponding
I pFwL oadManager.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

9.3.4.8.7 Method createLoadLevelNotification()

The framework uses this method to register to receive notifications of load level changes associated with the service
instance. Upon receipt of this method the service instance shall inform the framework of the current load using the
reportL oad method on the corresponding | pFwL oadManager.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

9.3.4.8.8 Method destroyLoadLevelNotification()

The framework uses this method to unregister for notifications of load level changes associated with the service
instance.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

9.3.4.8.9 Method <<new>> querySvcLoadStatsReq()

The framework uses this method to request the service instance to provide its load statistic records.

Parameters

loadStatsReqID: in TpLoadTestID
The identifier provided by the framework to correlate the response (when it arrives) with this request.

timeInterval: in TpTimeInterval
Specifies the timeinterval for which load statistic records should be reported.

Raises

TpCommonExceptions

ETSI

183 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

9.3.4.8.10 Method <<new>> queryLoadStatsRes()
The framework uses this method to send load statistic records back to the service instance that requested the
information; i.e. in response to an invocation of the queryL oadReq method on the | pFwL oadM anager interface.

Parameters

loadStatsReqID: in TpLoadTestID
Used by the service instance to correlate this response (when it arrives) with the original request.

loadStatistics:in TpLoadStatisticList
Specifies the framework-supplied load statistics.

Raises

TpCommonExceptions

9.3.4.8.11 Method <<new>> queryLoadStatsErr()

The framework uses this method to return an error response to the service that requested the framework's load statistics
information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an
invocation of the queryL oadReq method on the IpFwL oadM anager interface.

Parameters

loadStatsReqID: in TpLoadTestID
Used by the service instance to correlate this error (when it arrives) with the original request.

loadStatisticsError: in TpLoadStatisticError
Specifies the error code associated with the failed attempt to retrieve the framework's load statistics.

Raises

TpCommonExceptions

9.3.4.9 Interface Class IpFwOAM
Inherits from: Iplnterface;

The OAM interface is used to query the system date and time. The service and the framework can synchronise the date
and time to a certain extent. Accurate time synchronisation is outside the scope of this API. Thisinterface and the
systemDateTimeQuery() method are optional.

<<|Interface>>

IpFWOAM

systemDateTimeQuery (clientDateAndTime : in TpDateAndTime) : TpDateAndTime

ETSI

184 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

9.3.4.9.1 Method systemDateTimeQuery()

This method is used to query the system date and time. The client (service) passesin its own date and time to the
framework. The framework responds with the system date and time.

Returns <systemDateAndTime> : Thisis the system date and time of the framework.

Parameters

clientDateAndTime: in TpDateAndTime

Thisisthe date and time of the client (service). The error code P_INVALID_DATE_TIME_FORMAT isreturned if the
format of the parameter isinvalid.

Returns

TpDateAndTime

Raises

TpCommonExceptions, P_INVALID TIME AND DATE FORMAT

9.3.4.10 Interface Class IpSvcOAM
Inherits from: Ipinterface;

Thisinterface and the systemDateTimeQuery() method are optional.

<<Interface>>
IpSvcOAM

systemDateTimeQuery (systemDateAndTime : in TpDateAndTime) : TpDateAndTime

9.3.4.10.1 Method systemDateTimeQuery()

This method is used by the framework to send the system date and time to the service. The service responds with its
own date and time.

Returns <clientDateAndTime> : Thisisthe date and time of the client (service).

Parameters

systemDateAndTime: in TpDateAndTime

Thisisthe system date and time of the framework. The error code P_INVALID_DATE TIME_FORMAT isreturned if
the format of the parameter isinvalid.

ETSI

185 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Returns
TpDateAndTime
Raises

TpCommonExceptions, P_INVALID TIME AND DATE FORMAT

9.3.5 Event Notification Interface Classes

9.3.5.1 Interface Class IpFwEventNotification
Inherits from: Iplnterface;

The event notification mechanism is used to notify the service of generic events that have occurred. If Event
Notifications are supported by a Framework, this interface and the createNotification() and destroyNotification()
methods shall be supported.

<<|Interface>>

IpFwEventNotification

createNotification (eventCriteria : in TpFwEventCriteria) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

9.3.5.1.1 Method createNotification()
This method is used to install generic notifications so that events can be sent to the service.

Returns <assignmentl D> : Specifiesthe ID assigned by the framework for this newly installed event notification.

Parameters

eventCriteria:in TpFwEventCriteria
Specifies the event specific criteria used by the service to define the event required.

Returns
TpAssignmentID
Raises

TpCommonExceptions, P_INVALID EVENT TYPE, P INVALID CRITERIA

9.3.5.1.2 Method destroyNotification()

This method is used by the service to delete generic notifications from the framework.

ETSI

186 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Parameters

assignmentID: in TpAssignmentID

Specifies the assignment 1D given by the framework when the previous createNotification() was called. If the
assignment ID does not correspond to one of the valid assignment 1Ds, the framework will return the error code
P_INVALID_ASSIGNMENT _ID.

Raises
TpCommonExceptions, P_INVALID ASSIGNMENT ID

9.3.5.2 Interface Class IpSvcEventNotification
Inherits from: Ipinterface;

Thisinterface is used by the framework to inform the service of a generic event. The Event Notification Framework
will invoke methods on the Event Notification Service Interface that is specified when the Event Notification interface
is obtained. If Event Notifications are supported by a Service, this interface and the reportNotification() and
notificationTerminated() methods shall be supported.

<<Interface>>

IpSvcEventNoatification

reportNotification (eventinfo : in TpFwEventinfo, assignmentID : in TpAssignmentID) : void

notificationTerminated () : void

9.3.5.2.1 Method reportNotification()

This method notifies the service of the arrival of a generic event.

Parameters

eventInfo: in TpFwEventInfo
Specifies specific data associated with this event.

assignmentID: in TpAssignmentID

Specifies the assignment id which was returned by the framework during the createNotification() method. The service
can use the assignment id to associate events with event specific criteriaand to act accordingly.

Raises
TpCommonExceptions, P_INVALID ASSIGNMENT ID

9.3.56.2.2 Method notificationTerminated()

This method indicates to the service that al generic event notifications have been terminated (for example, due to faults
detected).

ETSI

187 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

9.4 State Transition Diagrams

This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the
gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can
be invoked by the client are shown. Methods not shown for a specific state are not relevant for that state and will return
an exception. Apart from the methods that can be invoked by the client also eventsinternal to the gateway or related to
network events are shown together with the resulting event or action performed by the gateway. These internal events
are shown between quotation marks.

ETSI

188

Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

9.4.1 Service Registration State Transition Diagrams

9.4.1.1 State Transition Diagrams for IpFwServiceRegistration

registerService

SCF
Registered

—

/

unannounceSernvice ann

-

A

ounceS

SCF
Announced

erviceAvailability

describeService

|

unregisterService

o~

Figure 32: State Transition Diagram for IpFwServiceRegistration

9.4.1.1.1 SCF Registered State

Thisisthe state entered when a Service Capability Server (SCS) registersits SCF in the Framework, by informing it of
the existence of an SCF characterised by a service type and a set of service properties. As aresult the Framework
associates a service ID to this SCF, that will be used to identify it by both sides.

An SCF may be unregistered, the service ID then being no longer associated with the SCF.

9.4.1.1.2 SCF Announced State

Thisisthe state entered when the existence of the SCF has been announced, thus making it available for discovery by
applications. The SCF can be unannounced at any time, taking it back into the SCF Registered state where it isno

longer available for discovery.

ETSI

189 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

9.4.2 Service Instance Lifecycle Manager State Transition Diagrams

There are no State Transition Diagrams defined for Service Instance Lifecycle Manager.

9.4.3 Service Discovery State Transition Diagrams

There are no State Transition Diagrams defined for Service Discovery.
9.4.4 Integrity Management State Transition Diagrams
9.4.4.1 State Transition Diagrams for IpFwLoadManager

reportLoad

"load change” NoadLevelNotification queryAppLoadRes|[load statistics requested by LoadManag
queryAppLoadEr load statistics requested by LoadMan:

createLoadLevelNotification NoadLevelNotification ‘ Active ‘ queryLoadReq

destroyLoadLevelNotification

I[pAccess\obtainl

IpAccess \gbtaininterfaceWithCallback

resumeNotification
~NoadLevelNatification

reportLoad
queryAppLoadRes|[load statistics requested by LoadM
queryAppLoadErr| load statistics requested by Loac

Notification queryLoadReq
Suspended

destroyLoadLevelNotification

All States

IpAccess.endAccess

suspendNotification
[all notifications suspended]

Figure 33: State Transition Diagram for IpFwLoadManager

9.44.1.1 Idle State

In this state the service has obtained an interface reference of the LoadManager from the IpAccess interface.

9.4.4.1.2 Notification Suspended State

Dueto e.g. atemporary load condition, the service has requested the LoadManager to suspend sending the load level
notification information.

ETSI

190 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

9.4.4.1.3 Active State

In this state the service has indicated its interest in notifications by performing a createl oadL evel Notification()
invocation on the |pFwL oadManager. The load manager can now request the service to supply load statistics
information (by invoking querySvcLoadReq()). Furthermore the LoadManager can request the service to control its
load (by invoking loadL evelNotification(), resumeNotification() or suspendNotification() on the service side of
interface). In case the service detects a changein load level, it reports this to the LoadManager by calling the method
reportLoad().

9.4.4.2 State Transition Diagrams for IpFwFaultManager

IpAccess.obtaininterfaceWithCallback "FaultManagement”)
/ add service to fault management

‘change in framework availability (non fault)' ~MwAvailStatusind to all serviceswith callback
‘change in application availability' ~appAvail Statusind to all services used by application

appUnavailablelnd / test the application, inform application that service is not using it

A
application fault AappAvail Statusind to all genFaultStatsRecordReq "svc.genFaultStatsRecordRes/Err

servicesused by the application

Framework
Active J

no fault detected

. . ctivityTestReq[framework]
activityTestRegfclient]

fault\resolved

no fault detected

— — Framework Activity Test
Application Activity Test
PP Y IpAccess.endAccess

entry/ test activity of framework
exit/ NlpSvcFaultManager.activityTestRes
exit/ NlpSvcFaultManager.activityTestErm

entry/ test activity of application
exit/ "lpSvcFaultManager.activityTestRes
exit/ MlpSvcFaultManager.activityTestEm

IpAccess.endAccess/ Abort
pending fest request|

fault detected in
IpAccess.endAccess/ remove service

from load management
fault detected in fw

Framework Faulty ‘

entry/ MwAvailStatusind to all services with callback
exit/ MwAvail Statusind to all services with callback

Figure 34: State Transition Diagram for IpFwFaultManager

9.4.4.2.1 Framework Active State

Thisisthe normal state of the framework, which is fully functional and able to handle requests from both applications
and service capability features.

9.4.4.2.2 Framework Activity Test State

In this state, the framework is performing a self-diagnostic test. If a problem is diagnosed, all services with fault
management callbacks are notified through an fwAvail Statusind message.

9.4.4.2.3 Application Activity Test State

In this state, the framework is performing atest on one client application. If the application is faulty, servicesthat are
used by the application and that have provided fault management callbacks are notified accordingly through an
appAvail Statusl nd message.

9.4.4.2.4 Framework Faulty State

In this state, the framework has detected an internal problem with itself such that application and service capability
features cannot communicate with it anymore; attempts to invoke any methods that belong to any SCFs of the
framework return an error. If the framework ever recovers, services with fault management callbacks will be notified
viaafwAvail Statuslnd message.

ETSI

191 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

9.45 Event Notification State Transition Diagrams

There are no State Transition Diagrams defined for Event Notification.

10 Service Properties

10.1 Service Super and Sub Types

Service Properties are used at service registration to indicate the capabilities of an SCF. They are normally used as an
indication for limitations an SCF has. These limitations can come from the way an SCF isimplemented or from
limitations in the network. The service type of an SCF defines which properties the supplier shall provide at registration
of the SCF.

An application uses Service Properties at service discovery to find services that have the required capabilities. The
Framework validates the requested properties with the registered properties and provides the application with alist of
SCFsthat comply to the application's request.

The capabilities of an SCF can be extended by providing service properties in addition to the ones defined in this
standard. For this extended SCF, a dedicated sub-type of a service is defined. A sub-type of an SCF shall be fully
compatible with the standard SCF, that is, an application shall be able to use the sub type asif it was the standard type.
Thisimpliesthat the interface to the SCF remains unchanged. Also SCF sub types can be further extended. Thisway a
hierarchy of service types can be built with the standard type being the root.

An example of asub typeisaMulty Party Call Control service that allows the application to request a certain quality-
of-service level. An additional service property is added for this.

10.2 Service Property Types

At Service Registration the properties of atype shall be interpreted as the set of values that can be supported by the
service. If aservice type has a certain property (e.g. "CAN_DO_SOMETHING"), a service registers with a property
value of {"true", "false"}. This means that the SCSis able to support Service instances where this property is used or
allowed and instances where this property is not used or allowed. This clarifies why sets of values shall be used for the
property values instead of primitive types.

At establishment of the Service Level Agreement the property can then be set to the value of the specific agreement.
The context of the Service Level Agreement thus restricts the set of property values of the SCS and will thuslead to a
sub-set of the service property values. When the correct SCF isinstantiated during the discovery and selection
procedure (see Note), the Service Properties shall thus be interpreted as the requested property val ues.

NOTE: Thisisachieved through the createServiceManager() operation in the Service Instance Lifecycle Manager
interface.

All property values are represented by an array of strings. The following table shows all supported service property
types.

ETSI

192 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)
Service Property type name Description Example value Interpretation of example
(array of strings) value
BOOLEAN_SET set of Booleans {"FALSE"} The set of Booleans

consisting of the Boolean
"false".

INTEGER_SET set of integers {"1", 2", "5", "7} The set of integers
consisting of the integers 1,
2,5and 7.

STRING_SET set of strings {"Sophia", "Rijen"} The set of strings consisting

of the string "Sophia" and
the string "Rijen".

INTEGER_INTERVAL

interval of integers

{"5", "100"}

The integers that are
between or equal to 5 and
100.

STRING_INTERVAL

interval of strings

{"Rijen", "Sophia"}

The strings that are between
or equal to the strings "Rijen"
and "Sophia", in
lexicographical order.

INTEGER_INTEGER_MAP

map from integers to

{"1", "10”, ||2n, n20n, ||3u, 113011}

The map that maps 1 to 10,

integers 2 to 20 and 3 to 30.
XML_ADDRESS RANGE_SET |set of values of {"<AddressRangeSet> In case

TpAddressRange. <AddressRange> P_REGEX_SUPPORT_FOR

Values of <Plan>P_ADDRESS PLA | ADDRESS_RANGE is

TpAddressRange are
described using XML.
An XML schema is
provided below for this
purpose.

N_E164</Plan>
<AddrString>123*</AddrS

tring>

</AddressRange>

<AddressRange>
<Plan>P_ADDRESS PLA

N_E164</Plan>
<AddrString>456*</AddrS

tring>

</AddressRange>

</AddressRangeSet>"}

TRUE: Any addresses
containing 123 or containing
456 in the E.164 Address
Plan.

In case
P_REGEX_SUPPORT_FOR
_ADDRESS_RANGE is
FALSE:

Any addresses starting with
123 or starting with 456 in
the E.164 Address Plan.

FLOAT_SET

set of values of
TpFloat

{'0.1", “.2", "0.1e+3}

The set of floats containing
floating point numbers 0.1,
0.2 and 100.

FLOAT_INTERVAL

interval of TpFloat
values

{*-1.1”,“5.0"}

The floating point numbers
that are between or equal to
—1.1 and 5.0.

The bounds of the string interval, integer interval and float interval types may hold the reserved value

"UNBOUNDED". If the left bound of the interval holds the value "UNBOUNDED", the lower bound of the interval is
the smallest value supported by the type. If the right bound of the interval holds the value "UNBOUNDED", the upper
bound of the interval isthe largest value supported by the type.

Thelexical representation of float values shall be compliant with the |EEE 754 standard.

When an SCF is registered by the Service Supplier, Service Properties of type BOOLEAN_SET shall not contain an
empty set. When a serviceis discovered by an application, this application shall specify either { TRUE} or { FALSE} as
value for service properties of type BOOLEAN_SET.

The value of XML_ADDRESS RANGE_SET should comply with the following XML Schema:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlins:xs="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="qualified"

attributeFormDefault="unqualified">

<xs:element name="AddressRangeSet">

<xs:complexType>
<xs:sequence>

<xs:element name="AddressRange" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="Plan" type="xs:string" default="P_ADDRESS_PLAN_ANY"/>
<xs:element name="AddrString" type="xs:string"/>

ETSI

193 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

<xs:element name="SubAddressString" type="xs:string" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

An example usage could be:

{ n<?xml version="1.0" encoding="UTF-8"?>
<AddressRangeSet xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemal ocation="xml_address_range_set.xsd">
<AddressRange>
<Plan>P_ADDRESS_PLAN_E164</Plan>
<AddrString>789*</AddrString>
</AddressRange>
<AddressRange>
<Plan>P_ADDRESS_PLAN_ANY</Plan>
<AddrString>123*</AddrString>
</AddressRange>
<AddressRange>
<Plan>P_ADDRESS_PLAN_SIP</Plan>
<AddrString><sip:*@parlay.org></AddrString>
<Name/>
</AddressRange>
</AddressRangeSet>"}

Note that the final address range corresponds to any sip address @parlay.org, i.e. <sip:* @parlay.org>.

10.3 General Service Properties
Each service instance has the following general properties:

e Service Name

e ServiceVersion

e ServicelD

e Service Description

e Product Name
e Product Version

e Supported Interfaces

e Operation Set
e Compatible Service

e Backward Compatibility Level

e Migration Required

o DataMigrated

e Migration Date and Time

e Support for Regular Expressionsin Address Range

The following clauses describe these general service propertiesin more detail. The values for the mode are defined in
the type TpServiceTypePropertyMode.

ETSI

10.3.1 Service Name

194 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Property Type

Mode

Description

P_SERVICE_NAME STRING_SET

MANDATORY_READONLY

This property contains the name of the

service, e.g. "UserLocation”,
"UserLocationCamel",
"UserLocationEmergency" or

"UserStatus".
10.3.2 Service Version
Property Type Mode Description
P_SERVICE_VERSION STRING_SET MANDATORY This property contains the version of the
APIs, to which the service is compliant. It is a
set of strings as specified in the TpVersion
type.
10.3.3 Service ID
Property Type Mode Description
P_SERVICE_ID STRING_INTERVAL |READONLY This property uniquely identifies a specific
service. Note that the Framework generates
this property value when the Service Supplier
registers the service. This property should not
be confused with the servicelnstancelD
generated by the Framework when a Client
Application signs a Service Agreement to
obtain the Service Manager
10.3.4 Service Description
Property Type Mode Description
P_SERVICE_DESCRIPTION |STRING_SET MANDATORY_READONLY |This property contains a textual
description of the service. It should not
be interpreted as a description of a
Service Instance (as identified by a
servicelnstancelD generated by the
Framework when a Client Application
signs a Service Agreement to obtain
the Service Manager).
10.3.5 Product Name
Property Type Mode Description
P_PRODUCT_NAME STRING_SET READONLY This property contains the name of the
product that provides the service, e.g. "Find
It", "Locate.com".
10.3.6 Product Version
Property Type Mode Description
P_PRODUCT_VERSION STRING_SET READONLY This property contains the version of the

product that provides the service, e.g.
"3.1.11".

ETSI

10.3.7 <<deprecated>> Supported Interfaces

195

Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

This property contains alist of strings with interface names that the service supports, e.g. "lpUserLocation”,
"IpUserStatus'. This property is deprecated and will be removed in a future version of the present document.

10.3.8 Operation Set

Property Type Mode Description
P_OPERATION_SET STRING_SET MANDATORY Specifies set of the operations the SCS
supports.
The notation to be used is :
{"Interfacel.operationl","Interfacel.operation
2", "Interface2.operation1"}, e.g.:
{"IpCall.createCall","IpCall.routeReq"}.
10.3.9 Compatible Service
Property Type Mode Description
P_COMPATIBLE_WITH_SERVICE [STRING_SET |READONLY Specifies the Set of Services, identified by

their ServicelDs, with which this new service
is compatible.

This property should at least be accompanied
with the properties
P_BACKWARD_COMPATIBILITY_LEVEL,
P_MIGRATION_REQUIRED.

Note that the new Service can be compatible
with more than one Service that is currently
registered to the Framework. Therefore this
Property is a SET, as well as all related
properties like Migration Required, Data
Migrated, etc.

For all these properties the order of the
Services shall be identical.

ETSI

196

10.3.10 Backward Compatibility Level

Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Property

Type

Mode

Description

P_BACKWARD_COMPATIBILITY_L |BOOLEAN_SET

EVEL

READONLY

Specifies if the new service is completely
backwards compatible with each service
identified in the
P_COMPATIBLE_WITH_SERVICE property:
Value = TRUE: Service is completely
backwards compatible

Value = FALSE: SCS is not completely
backwards compatible.

This property requires the presence of
P_COMPATIBLE_WITH_SERVICE property.

Note that the new Service can be compatible
with more than one Service that is currently
registered to the Framework. Therefore this
Property is a SET, as well as all related
properties.

For each service identified in
P_COMPATIBLE_WITH_SERVICE, one
value of this property shall be present in the
value set of this property at service
registration.

For all these properties the order of the
Services shall be identical.

10.3.11 Migration Required

Property

Type

Mode

Description

P_MIGRATION_REQUIRED

BOOLEAN_SET

READONLY

Specifies if the new service is replacing the
service identified in the
P_COMPATIBLE_WITH_SERVICE property:
Value = TRUE: new service is replacing the
existing one — migration is required before the
date/time indicated in
P_MIGRATION_DATE_AND_TIME property.
Value = FALSE: new service is not replacing
the existing one — migration not required, the
existing service is retained.

This property requires the presence of
P_COMPATIBLE_WITH_SERVICE property.
If the value set of
P_MIGRATION_REQUIRED contains TRUE,
P_DATA_MIGRATED and
P_MIGRATION_DATE_AND_TIME
properties shall also to be present.

Note that the new Service can be compatible
with more than one Service that is currently
registered to the Framework. Therefore this
Property is a SET, as well as all related
properties.

For each service identified in
P_COMPATIBLE_WITH_SERVICE, one
value of this property shall be present in the
value set of this property at service
registration.

For all these properties the order of the
Services shall be identical.

ETSI

197 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

10.3.12 Data Migrated

Property Type Mode Description

P_DATA_MIGRATED BOOLEAN_SET READONLY Indicates if the data (e.g. notifications) from
the existing service identified in the
P_COMPATIBLE_WITH_SERVICE property
is also available in this Service.

Value = TRUE: all data is migrated.

Value = FALSE: no data is migrated.

This property requires the presence of
P_COMPATIBLE_WITH_SERVICE and the
P_MIGRATION_REQUIRED properties.

Note that the new Service can be compatible
with more than one Service that is currently
registered to the Framework. Therefore this
Property is a SET, as well as all related
properties.

For each service identified in
P_COMPATIBLE_WITH_SERVICE, one
value of this property shall be present in the
value set of this property at service
registration.

For all these properties the order of the
Services shall be identical.

ETSI

198 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

10.3.13 Migration Date And Time

Property Type Mode Description

P_MIGRATION_DATE_AND_TIME |STRING_SET READONLY [This property contains the date and time, in
the format described in TpDateAndTime, by
which point applications shall have migrated
from existing services to this new service.
Migration to the new service requires the
application to terminate the existing service
agreement, and sign a new one.

Failure to do this by the migration date and
time indicated in this property may result in
the service agreement being terminated by
the Framework, since the service supplier
may choose to unregister the service
following this date and time.

Only one value of TpDateAndTime is
permitted to be present in this property at
service registration.

This property requires the presence of
P_COMPATIBLE_WITH_SERVICE,
P_MIGRATION_REQUIRED and
P_DATA_MIGRATED properties.

Note that the new Service can be compatible
with more than one Service that is currently
registered to the Framework. Therefore this
Property is a SET, as well as all related
properties.

For each service identified in
P_COMPATIBLE_WITH_SERVICE, one
value of this property shall be present in the
value set of this property at service
registration.

For all these properties the order of the
Services shall be identical. For those services
for which migration is not required
(P_MIGRATION_REQUIRED set to FALSE),
the corresponding value of this property shall
be ignored.

10.3.14 Support for Regular Expressions in Address Range

Property Type Mode Description
P_REGEX_SUPPORT FOR_ADDRES [BOOLEAN _SET |READONLY [Indicates if the AddrString and
S RANGE SubAddressString fields of

TpAddressRange are expressed as regular
expressions (TRUE) or not (FALSE)

11 Data Definitions

This clause provides the Framework specific data definitions necessary to support the OSA interface specification.
The general format of a data definition specification is the following:

- Datatype, that shows the name of the data type.

Description, that describes the data type.

- Tabular specification, that specifies the data types and values of the data type.

ETSI

199 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

- Example, if relevant, shown to illustrate the data type.

All data types referenced but not defined in this clause are common data definitions which may be found in
ES 203 915-2 [57].

11.1 Common Framework Data Definitions

11.1.1 TpClientAppID

Thisisan identifier for the client application. It is used to identify the client to the Framework. This datatypeis
identical to TpString and is defined as a string of characters that uniquely identifies the application. The content of this
string shall be unique for each OSA API implementation (or unique for a network operator's domain). This unique
identifier shall be negotiated with the OSA operator and the application shall useit to identify itself.

11.1.2 TpClientApplIDList

This data type defines a Numbered Set of Data Elements of type TpClientApplD.

11.1.3 TpDomainlD

Defines the Tagged Choice of Data Elements that specify either the Framework or the type of entity attempting to
access the Framework.

Tag Element Type
TpDomainIDType

Tag Element Value Choice Element Type Choice Element Name
P_FW TpFwID FwID
P_CLIENT_APPLICATION TpClientAppID ClientAppID
P_ENT_OP TpEntOpID EntOpID
P SERVICE INSTANCE TpServicelnstancelD ServicelD (See note)
P_SERVICE_SUPPLIER TpServiceSupplierlD ServiceSupplierID

NOTE: The Choice Element Name ServicelD of TpDomainID refers to a service instance.

11.1.4 TpDomainiDType

Defines either the Framework or the type of entity attempting to access the Framework.

Name Value Description
P FW 0 The Framework
P_CLIENT_APPLICATION 1 A client application
P_ENT_OP 2 An enterprise operator
P_SERVICE_INSTANCE 3 A service instance
P_SERVICE SUPPLIER 4 A service supplier

11.1.5 TpEntOpID

This datatypeisidentical to TpString and is defined as a string of characters that identifies an enterprise operator.
In conjunction with the application it uniquely identifies the enterprise operator which uses a particular OSA Service
Capability Feature (SCF).

11.1.6 TpPropertyName

Thisdatatypeisidentical to TpString. It isthe name of a generic "property".

ETSI

200 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

11.1.7 TpPropertyValue

This datatypeisidentical to TpString. It isthe value (or the list of values) associated with a generic "property”.

11.1.8 TpProperty

This datatypeis a Sequence of Data Elements which describes a generic "property”. It is a structured data type
consisting of the following { name, value} pair.

Sequence Element Name Sequence Element Type
PropertyName TpPropertyName
PropertyValue TpPropertyValue

11.1.9 TpPropertyList

This datatype defines a Numbered List of Data Elements of type TpProperty.

11.1.10 TpEntOpIDList

This data type defines a Numbered Set of Data Elements of type TpEntOplD.

11.1.11 TpFwiID

This datatypeisidentical to TpString and identifies the Framework.

11.1.12 TpService

This datatypeis a Sequence of Data Elements which describes a registered SCFs. It is a structured type which consists
of:

Sequence Element Name Sequence Element Type Documentation
ServicelD TpServicelD
ServiceDescription TpServiceDescription This field contains the description of the
service.

11.1.13 TpServicelList

This data type defines a Numbered Set of Data Elements of type TpService.

11.1.14 TpServiceDescription

This data type is a Sequence of Data Elements which describes aregistered SCF. It is a structured data type which
consists of:

Sequence Element Name Sequence Element Type Documentation
ServiceTypeName TpServiceTypeName
ServicePropertyList TpServicePropertyList

11.1.15 TpServicelD

This datatypeisidentical to a TpString, and is defined as a string of characters that uniquely identifies a registered SCF
interface. The string is automatically generated by the Framework.

ETSI

201 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

11.1.16 TpServicelDList

This data type defines a Numbered Set of Data Elements of type TpServicelD.

11.1.17 TpServicelnstancelD

This datatypeisidentical to a TpString, and is defined as a string of characters that uniquely identifies an instance of a
registered SCF interface. The string is automatically generated by the Framework.

11.1.18 TpServiceTypeProperty

This datatype is a Sequence of Data Elements which describes a service property associated with a service type. It
defines the name and mode of the service property, and also the service property type: e.g. Boolean, integer.

Itissimilar to, but distinct from, TpServiceProperty. The latter is associated with an actual service: it defines the service
property's name and mode, but also defines the list of values assigned to it.

Sequence Element Name Sequence Element Type Documentation
ServicePropertyName TpServicePropertyName

ServiceTypePropertyMode TpServiceTypePropertyMode

ServicePropertyTypeName TpServicePropertyTypeName

11.1.19 TpServiceTypePropertyList

This data type defines a Numbered Set of Data Elements of type TpServiceTypeProperty.

11.1.20 TpServiceTypePropertyMode

This type defines SCF property modes.

Name Value Documentation
NORMAL 0 The value of the corresponding SCF property type may optionally be provided.
MANDATORY 1 The value of the corresponding SCF property type shall be provided at service
registration time.
READONLY 2 The value of the corresponding SCF property type is optional, but once given a

value it can not be modified/restricted by a service level agreement.

MANDATORY_READONLY 3 The value of the corresponding SCF property type shall be provided but can not
subsequently be modified/restricted by a service level agreement.

11.1.21 TpServicePropertyTypeName

Thisdatatypeisidentical to TpString and describes a valid SCF property type name. Valid service property type names
are detailed in clause 10.1.

11.1.22 TpServicePropertyName

Thisdatatypeisidentical to TpString. It defines avalid SCF property name. The valid service property names are
detailed in clause 10.3 and in the SCF data definitions. Additionally, service property names for proprietary service
properties (used for service sub types) are possible.

11.1.23 TpServicePropertyNameList

This data type defines a Numbered Set of Data Elements of type T pServicePropertyName.

11.1.24 TpServicePropertyValue

This datatypeisidentical to TpString and describes avalid value of a SCF property.

ETSI

202 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

11.1.25 TpServicePropertyValueList

This data type defines a Numbered Set of Data Elements of type TpServicePropertyVal ue.

11.1.26 TpServiceProperty

This datatypeis a Sequence of Data Elements which describes an " SCF property". It is a structured data type which

consists of:

Sequence Element Name

Sequence Element Type

Documentation

ServicePropertyName

TpServicePropertyName

ServicePropertyValueList

TpServicePropertyValueList

11.1.27 TpServicePropertyList

This data type defines aNumbered Set of Data Elements of type TpServiceProperty.

11.1.28 TpServiceSupplierlD

Thisisan identifier for aservice supplier. It is used to identify the supplier to the Framework. This data type isidentical

to TpString.

11.1.29 TpServiceTypeDescription

This datatypeis a Sequence of Data Elements which describes an SCF type. It is a structured data type. It consists of:

Sequence Element Name

Sequence Element Type

Documentation

ServiceTypePropertyList

TpServiceTypePropertyList

A sequence of property name and
property mode tuples associated
with the SCF type.

ServiceTypeNameList TpServiceTypeNamelList The names of the super types of
the associated SCF type.
AvailableOrUnavailable TpBoolean An indication whether the SCF

type is available (true) or
unavailable (false).

ETSI

203 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

11.1.30 TpServiceTypeName

This datatypeisidentical to a TpString, and is defined as a string of characters that uniquely identifies the type of an
SCF interface. Other Network operator specific capabilities may a so be used, but should be preceded by the string
"SP_". The following values are defined.

Character String Value

Description

NULL

An empty (NULL) string indicates no SCF name.

P _GENERIC CALL CONTROL

The name of the Generic Call Control SCF.

P_MULTI_PARTY_CALL_CONTROL

The name of the MultiParty Call Control SCF.

P _MULTI MEDIA CALL CONTROL

The name of the MultiMedia Call Control SCF.

P_CONFERENCE_CALL CONTROL

The name of the Conference Call Control SCF.

P_USER_INTERACTION

The name of the User Interaction SCFs.

P_USER_INTERACTION_ADMIN

The name of the User Interaction Administration SCF.

P_TERMINAL_CAPABILITIES

The name of the Terminal Capabilities SCF.

P_USER _BINDING

The name of the User Binding SCF.

P _USER LOCATION

The name of the User Location SCF.

P_USER_LOCATION_CAMEL

The name of the Network User Location SCF.

P_USER_LOCATION_EMERGENCY

The name of the User Location Emergency SCF.

P _USER STATUS

The name of the User Status SCF.

P _EXTENDED USER STATUS

The name of Extended User Status SCF.

P_DATA_SESSION_CONTROL

The name of the Data Session Control SCF.

P_GENERIC_MESSAGING

The name of the Generic Messaging SCF.

P_CONNECTIVITY_MANAGER

The name of the Connectivity Manager SCF.

P _CHARGING

The name of the Charging SCF.

P_ACCOUNT_MANAGEMENT

The name of the Account Management SCF.

P_POLICY_PROVISIONING

The name of the Policy Management provisioning SCF.

P_POLICY_EVALUATION

The name of the Policy Management policy evaluation SCF.

P _PAM ACCESS

The name of PAM presentity SCF.

P_PAM_EVENT_MANAGEMENT

The name of PAM watcher SCF.

P_PAM_PROVISIONING

The name of PAM provisioning SCF.

P _MULTI_MEDIA MESSAGING

The name of the Multimedia Messaging SCF.

11.1.31 TpServiceTypeNameList

This data type defines a Numbered Set of Data Elements of type TpServiceTypeName.

11.1.32 TpSubjectType

Defines the subject of a query/notification request/result.

Name Value Description
P_SUBJECT_UNDEFINED 0 The subject is neither the framework
nor the client application.
P_SUBJECT_CLIENT_APP The subject is the client application.
P _SUBJECT FW 2 The subject is the framework.

=

ETSI

204 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

11.1.33 TpServiceTypePropertyValue

ThisdatatypeisaSequence of Data Elements which describes a service property associated with a service. It
defines the name and mode of the service property, the service property type (e.g. Boolean, integer), and also value. It is

similar to, but distinct from, TpServiceProperty. The latter does not define the modes and types and is used to register

values for known service properties only.

Sequence ElementName Sequence ElementType Documentation
ServicePropertyName TpServicePropertyName The name of the service property.
ServiceTypePropertyMode TpServiceTypePropertyMode The mode of the service property.
ServicePropertyTypeName TpServicePropertyTypeName The type of the service property.
ServicePropertyValuelList TpServicePropertyValueList The Value-list of the service
property.

11.1.34 TpServiceTypePropertyValueList

This data type defines a Numbered Set of Data Elements of type TpServiceTypePropertyVaue.

11.2 Event Notification Data Definitions

11.2.1 TpFwEventName

Defines the name of event being notified.

Name Value Description

P_EVENT FW_NAME_UNDEFINED 0 Undefined.

P EVENT FW SERVICE AVAILABLE 1 Notification of SCS(s) available.

P_EVENT_FW_SERVICE_UNAVAILABLE 2 Notification of SCS(s) becoming
unavailable.

P_EVENT_FW_MIGRATION_SERVICE_AVAILABLE 3 Notification of a backwards compatible
SCS becoming available, to which the
application can migrate.

P_EVENT_FW_APP_SESSION_CREATED 4 Notification of an application<->FW
access session created. (See note)

P_EVENT_FW_APP_SESSION_TERMINATED 5 Notification of an application<->FW
access session terminated. (See note)

P_EVENT_FW_APP_AGREEMENT_SIGNED 6 Noatification that a service agreement
has been signed. (See note)

P_EVENT_FW_APP_AGREEMENT_ENDED 7 Notification that a service agreement
has been ended/terminated. (See
note)

NOTE : These events can only be requested by enterprise operators. If requested by any other entity then the

method will throw the P_INVALID CRITERIA exception.

ETSI

11.2.2 TpFwEventCriteria

205 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Defines the Tagged Choice of Data Elements that specifies the criteriafor an event notification to be generated.

Tag Element Type

TpFwEventName

Tag Element Value

Choice Element Type

Choice Element Name

P_EVENT_FW_NAME_UNDEFINED

TpString

EventNameUndefined

P EVENT FW_SERVICE AVAILABLE

TpServiceTypeNamelList

ServiceTypeNameList

P_EVENT FW _SERVICE_UNAVAILABLE
P_EVENT_FW_MIGRATION_SERVICE_AVAIL
ABLE

P EVENT FW APP SESSION CREATED

P _EVENT FW _APP_SESSION TERMINATED
P _EVENT FW _APP AGREEMENT SIGNED
P EVENT FW APP AGREEMENT ENDED

TpServiceTypeNamelList [UnavailableServiceTypeNamelList
TpServiceTypeNameList | CompatibleServiceTypeNameList

SessionCreatedList
SessionTerminatedList
AgreementSignedList
AgreementEndedList

TpClientApplIDList
TpClientApplIDList
TpClientAppIDList
TpClientApplIDList

11.2.3 TpFwEventinfo

Defines the Tagged Choice of Data Elements that specifies the information returned to the client in an event
notification.

Tag Element Type
TpFwEventName

Choice Element Name
EventNameUndefined
ServicelDList
UnavailableServicelDList
MigrationServiceAvailable

Tag Element Value
P_EVENT_FW_NAME_UNDEFINED
P_EVENT_FW_ SERVICE_AVAILABLE TpServicelDList
P_EVENT_FW_SERVICE_UNAVAILABLE TpServicelDList
P_EVENT_FW_MIGRATION_SERVICE_A | TpFWMigrationServiceAvailabl

Choice Element Type
TpString

VAILABLE elnfo

P_EVENT_FW_APP_SESSION_CREATE TpClientApplID AppSessionCreated
g_EVENT_FW_APP_SESSION_TERMIN TpClientApplID AppSessionTerminated
éjg\?ENT_FW_APP_AGREEMENT_SIGN TpFwAgreementinfo AppAgreementSigned
E?EVENT_FW_APP_AGREEMENT_END TpFwAgreementinfo AppAgreementEnded
ED

11.2.4 TpFwMigrationServiceAvailablelnfo

Defines the information to be supplied when an SCS becomes available.

ETSI

206 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Sequence ElementName Sequence ElementType Documentation
ServiceType TpServiceTypeName Type of SCS that has become available.
ServicelD TpServicelD ID of the SCS that has become available.
CompatibleServicelD TpServicelD ID of the SCS with which this new SCS is
compatible with.
BackwardCompatibilityLevel TpBoolean Specifies if the new SCS is completely backwards

compatible with the currently used SCS.

Value = TRUE: SCS is completely backwards
compatible.

Value = FALSE: SCS is not completely backwards
compatible. Contact the Framework operator for
more information.on how to migrate.
MigrationRequired TpBoolean Specifies if the new SCS is replacing the existing
SCS.

Value = TRUE: new SCS is replacing the existing
one - migration is required before the date/time
indicated in MigrationDateAndTime field.

Value = FALSE: new SCS is not replacing the
existing one, but is provided in addition.

All migration to the new SCS, whether required or
not, shall involve the application terminating the
existing service agreement and signing a new one.
DataMigrated TpBoolean Indicates whether all the data the application set in
the previous SCS (e.g. notifications) is also
available in the new SCS.

Value = FALSE : the new SCS has not obtained all
data (e.g. notifications) related to the old SCS and
the application needs to reset all the previous data.
Value = TRUE: the new SCS has obtained data
(e.g. notifications) related to the old SCS, the
application can use the new SCS without resetting
data.

MigrationDataAndTime TpDateAndTime Indicates the date and time before which
applications shall have migrated from existing the
existing SCS to this new SCS.

Migration to the new SCS requires the application to
terminate the existing service agreement, and sign a
new one.

Failure to do this by the migration date and time
indicated in this field may result in the service
agreement being terminated by the Framework,
since the service supplier may choose to unregister
the service following this date and time.

The value of this parameter, if present, shall be
ignored if MigrationRequired is set to FALSE.
MigrationAdditionallnfo TpMigrationAdditionallnfoSet |Contains additional migration information. This is
initially provided to permit addition of information in
later releases without impacting backwards
compatibility.

11.2.5 TpMigrationAdditionallnfo

Definesthe Tagged Choice of Data Elements that specify additional migration-related information.

Tag Element Type
TpMigrationAdditionallnfoType

Tag Element Value Choice Element Type Choice Element Name
P MIGRATION INFO UNDEFINED NULL Undefined

ETSI

207 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

11.2.6 TpMigrationAdditionallnfoType

Defines the type of migration-related additional information.

Name Value Description
P_MIGRATION_INFO_ UNDEFINED 0 Undefined

11.2.7 TpMigrationAdditionallnfoSet

DefinesaNumbered Set of Data Elements of TpMigrationAdditionalInfo.

11.2.8 TpFwAgreementinfo

Definesthe Sequence of Data Elements that specifiesthe information returned to the enterprise operator
application in an event notification.

Sequence Element Name Sequence Element Type Description
ClientApplicationID TpClientAppID The ID of the client application.
ServicelD TpServicelD The ID of the service for whom the
agreement was signed/terminated.
ServiceContractID TpServiceContract|D The ID of the service contract related to

the agreement if available, an empty
string otherwise.

ServiceProfilelD TpServiceProfilelD The ID of the service profile related to
the agreement if available, an empty
string otherwise.

11.3 Trust and Security Management Data Definitions

11.3.1 TpAccessType

Thisdatatypeisidentical to a TpString. Thisidentifies the type of access interface requested by the client application.
If they request P_OSA_ACCESS, then areference to the IpAccess interface is returned. (Network operators can define
their own access interfaces to satisfy client requirements for different types of access. These can be selected using the
TpAccessType, but should be preceded by the string "sp_". The following value is defined.

String Value Description
P OSA ACCESS Access using the OSA Access Interfaces: IpAccess and IpClientAccess.

11.3.2 TpAuthType

This datatype isidentical to a TpString. It identifies the type of authentication mechanism requested by the client. It
provides Network operators and clients with the opportunity to use an alternative to the OSA API Level Authentication
interface. This can for example be an implementation specific authentication mechanism, e.g. CORBA Security, or a
proprietary Authentication interface supported by the Network Operator. OSA API Level Authentication is the default
authentication method. Other Network operator specific capabilities may aso be used, but should be preceded by the
string "SP_". The following values are defined.

String Value Description

P_OSA_AUTHENTICATION |Authenticate using the OSA API Level Authentication Interfaces:
IpAPILevelAuthentication and IpClientAPILevelAuthentication.

P_AUTHENTICATION Authenticate using the implementation specific authentication mechanism, e.g. CORBA
Security.

ETSI

208 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

11.3.3 TpEncryptionCapability

This datatypeisidentical to a TpString, and is defined as a string of characters that identify the encryption capabilities
that could be supported by the framework. Other Network operator specific capabilities may also be used, but should be
preceded by the string "SP_". Capabilities may be concatenated, using commas (,) as the separation character. The
following values are defined.

String Value Description
NULL An empty (NULL) string indicates no client capabilities.
P_DES_56 A simple transfer of secret information that is shared between the client application and

the Framework with protection against interception on the link provided by the DES
algorithm with a 56-bit shared secret key. The ECB mode of DES is to be used.

P_DES_128 A simple transfer of secret information that is shared between the client entity and the
Framework with protection against interception on the link provided by the DES algorithm
with a 128-bit shared secret key. Use of the P_DES_128 value of TpEncryptionCapability
is deprecated, as DES cannot be used with a 128-bit key.

P_RSA 512 A public-key cryptography system providing authentication without prior exchange of
secrets using 512-bit keys.

P_RSA_1024 A public-key cryptography system providing authentication without prior exchange of
secrets using 1 024-bit keys.

P_TDEA The Triple-DES or TDEA algorithm with three 56-bit secret keys. The key exchange is

handled separately, and may permit use of three, two or only one unique key. The TECB
mode of Triple-DES is to be used.

11.3.4 TpEncryptionCapabilityList

This datatypeisidentical to a TpString. It is astring of multiple TpEncryptionCapability concatenated using a comma
(,) asthe separation character.

11.3.5 TpEndAccessProperties
This datatypeis of type TpPropertyList. It identifies the actions that the Framework should perform when an

application or service capability feature entity ends its access session (e.g. existing service capability or application
sessions may be stopped, or left running).

11.3.6 TpAuthDomain

Thisis Sequence of Data Elements containing all the data necessary to identify a domain: the domain identifier, and a
reference to the authentication interface of the domain.

Sequence Element Name Sequence Element Type Description

DomainlID TpDomainID Identifies the domain for authentication. This
identifier is assigned to the domain during the
initial contractual agreements, and is valid during
the lifetime of the contract.

Authinterface IpinterfaceRef Identifies the authentication interface of the
specific entity. This data element has the same
lifetime as the domain authentication process,
i.e. in principle a new interface reference can be
provided each time a domain intends to access
another.

ETSI

209 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

11.3.7 TplinterfaceName

This datatypeisidentical to a TpString, and is defined as a string of characters that identify the names of the
Framework SCFs that are to be supported by the OSA API. Other Network operator specific SCFs may also be used,
but should be preceded by the string "sP_". The following values are defined.

Character String Value Description

P_DISCOVERY The name for the Discovery interface.

P _EVENT NOTIFICATION The name for the Event Naotification interface.

P_OAM The name for the OA&M interface.

P_LOAD_MANAGER The name for the Load Manager interface.

P FAULT MANAGER The name for the Fault Manager interface.

P HEARTBEAT MANAGEMENT The name for the Heartbeat Management interface.

P_SERVICE_AGREEMENT_ MANAGEMENT |The name of the Service Agreement Management interface.

P_REGISTRATION The name for the Service Registration interface.

P_ENT_OP_ACCOUNT_MANAGEMENT The name for the Service Subscription: Enterprise Operator
Account Management interface.

P_ENT_OP_ACCOUNT_INFO_QUERY The name for the Service Subscription: Enterprise Operator
Account Information Query interface.

P_SVC_CONTRACT_MANAGEMENT The name for the Service Subscription: Service Contract
Management interface.

P_SVC_CONTRACT_INFO_QUERY The name for the Service Subscription: Service Contract
Information Query interface.

P_CLIENT_APP_MANAGEMENT The name for the Service Subscription: Client Application
Management interface.

P_CLIENT_APP_INFO_QUERY The name for the Service Subscription: Client Application
Information Query interface.

P_SVC_PROFILE_MANAGEMENT The name for the Service Subscription: Service Profile
Management interface.

P_SVC_PROFILE_INFO_QUERY The name for the Service Subscription: Service Profile
Information Query interface.

11.3.8 TplinterfaceNameList

This data type defines a Numbered Set of Data Elements of type TplnterfaceName.

11.3.9 TpServiceToken

This datatype isidentical to a TpString, and identifies a selected SCF. Thisis a free format text token returned by the
Framework, which can be signed as part of a service agreement. This will contain Network operator specific
information relating to the service level agreement. The serviceT oken has alimited lifetime, which is the same as the
lifetime of the service agreement in normal conditions. If something goes wrong the serviceToken expires, and any
method accepting the serviceToken will return an error code (P INVALID SERVICE_ TOKEN). Service Tokens will
automatically expireif the client or Framework invokes the endAccess method on the other's corresponding access
interface.

11.3.10 TpSignatureAndServiceMgr

Thisis a Sequence of Data Elements containing the digital signature of the Framework for the service agreement, and a
reference to the SCF manager interface of the SCF.

Sequence Element Name Sequence Element Type
DigitalSignature TpOctetSet
ServiceMgrinterface IpServiceRef

The digital Signature contains a CM S (Cryptographic Message Syntax) object (as defined in RFC 2630) with content
type Signed-data. The signature is calculated and created as per section 5 of RFC 2630. The content is the agreement
text given by the client application. The "external signature” construct shall not be used (i.e. the eContent field in the
EncapsulatedContentInfo field shall be present and contain the agreement text string). The signing-time attribute, as

defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention.

ETSI

210 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

The ServiceMgrinterface is areference to the SCF manager interface for the selected SCF.

11.3.11 TpSigningAlgorithm

This datatypeisidentical to a TpString, and is defined as a string of characters that identify the signing algorithm that
shall be used. Other Network operator specific capabilities may also be used, but should be preceded by the string
"SP_". Thefollowing values are defined.

String Value Description
NULL An empty (NULL) string indicates no signing algorithm is required.
P_MD5_RSA_512 MD5 takes an input message of arbitrary length and produces as

output a 128-bit message digest of the input. This is then encrypted
with the private key under the RSA public-key cryptography system
using a 512-bit modulus. The signature generation follows the
process and format defined in RFC 2313 (PKCS#1 v1.5). The use of
this signing method is deprecated.

P_MD5_RSA_1024 MDS5 takes an input message of arbitrary length and produces as
output a 128-bit message digest of the input. This is then encrypted
with the private key under the RSA public- key cryptography system
using a 1024-bit modulus.The signature generation follows the
process and format defined in RFC 2313 (PKCS#1 v1.5). The use of
this signing method is deprecated.
P_RSASSA_PKCS1_vl1_5 SHA1_ 1024 |SHA-1 is used to produce a 160-bit message digest based on the
input message to be signed. RSA is then used to generate the
signature value, following the process defined in section 8 of RFC
2437 and format defined in section 9.2.1 of RFC 2437. The RSA
private/public key pair is using a 1024-bit modulus.

P_SHA1 DSA SHA-1 is used to produce a 160-bit message digest based on the
input message to be signed. DSA is then used to generate the
signature value. The signature generation follows the process and
format defined in section 7.2.2 of RFC 2459.

11.3.12 TpSigningAlgorithmCapabilityList

This datatypeisidentical to a TpString. It isastring of multiple TpSigningAlgorithm concatenated using acomma (,)
as the separation character.

11.3.13 TpAuthMechanism

This datatypeisidentical to a TpString. It identifies an authentication mechanism to be used for API Level
Authentication. The following values are defined.

String Value Description
P_OSA_MD5 Authentication is based on the use of MD5 (RFC 1321) hashing algorithm to
generate a response based on a shared secret and a challenge received via
challenge() method. The capability to use this algorithm is required to be
supported when using CHAP (RFC 1994) but its use is not recommended.
P_OSA_HMAC_SHA1l 96 Authentication is based on the use of HMAC-SHAL (RFC 2404) hashing
algorithm to generate a response based on a shared secret and a challenge
received via challenge() method.
P_OSA_HMAC_MD5_96 Authentication is based on the use of HMAC-MD5 (RFC 2403) hashing algorithm
to generate a response based on a shared secret and a challenge received via
challenge() method.

11.3.14 TpAuthMechanismList

This datatypeisidentical to a TpString. It is astring of multiple TpAuthMechanism concatenated using acomma (,) as
the separation character.

ETSI

211 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

11.4 Integrity Management Data Definitions

11.4.1 TpActivityTestRes

Thistypeisidentical to TpString and is an implementation specific result. The valuesin this data type are "Available"
or "Unavailable".

11.4.2 TpFaultStatsRecord

This defines the set of recordsto be returned giving fault information for the requested time period.

Sequence Element Name Sequence Element Type
Period TpTimelnterval
FaultStatsSet TpFaultStatsSet

11.4.3 TpFaultStats

This defines the sequence of data elements which provide the statistics on a per fault type basis.

Sequence Element Name Sequence Element Type Description
Fault TplinterfaceFault
Occurrences TpInt32 The number of separate instances of this fault
MaxDuration TpInt32 The number of seconds duration of the longest fault
TotalDuration Tpint32 The cumulative duration (all occurrences)
NumberOfClientsAffected Tpint32 The number of clients informed of the fault by the Fw

Occurrences is the number of separate instances of this fault during the period. MaxDuration and Total Duration are the
number of seconds duration of the longest fault and the cumulative total during the period. NumberOfClientsAffected is
the number of clients informed of the fault by the Framework.

11.4.4 TpFaultStatisticsError

Defines the error code associated with afailed attempt to retrieve any fault statistics information.

Name Value Description
P_FAULT INFO ERROR_UNDEFINED 0 Undefined error
P FAULT INFO UNAVAILABLE 1 Fault statistics unavailable

11.45 TpFaultStatsSet

This data type defines a Numbered Set of Data Elements of type TpFaultStats.

11.4.6 TpActivityTestID

Thisdatatypeisidentical to a TpInt32, and is used as atoken to match activity test requests with their results.

ETSI

212 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)
11.4.7 TplinterfaceFault
Defines the cause of the interface fault detected.

Name Value Description
INTERFACE_FAULT_UNDEFINED 0 Undefined.
INTERFACE_FAULT_LOCAL_FAILURE 1 A fault in the local API software or hardware has

been detected.
INTERFACE_FAULT_GATEWAY_FAILURE 2 A fault in the gateway API software or hardware has
been detected.
INTERFACE_FAULT_PROTOCOL_ERROR 3 An error in the protocol used on the client-gateway
link has been detected.
11.4.8 TpSvcUnavailReason
Defines the reason why a SCF is unavailable.

Name Value Description
SERVICE_UNAVAILABLE_UNDEFINED 0 Undefined.
SERVICE_UNAVAILABLE_LOCAL_FAILURE 1 The Local API software or hardware has failed.
SERVICE _UNAVAILABLE GATEWAY FAILURE 2 The gateway API software or hardware has failed.
SERVICE_UNAVAILABLE_OVERLOADED 3 The SCF is fully overloaded.
SERVICE_UNAVAILABLE_CLOSED 4 The SCF has closed itself (e.g. to protect from fraud

or malicious attack).
11.4.9 TpFwUnavailReason
Defines the reason why the Framework is unavailable.

Name Value Description

FW_UNAVAILABLE_UNDEFINED 0 Undefined.
FW UNAVAILABLE LOCAL FAILURE 1 The Local API software or hardware has failed.
FW_UNAVAILABLE_GATEWAY_FAILURE 2 The gateway API software or hardware has failed.
FW_UNAVAILABLE_OVERLOADED 3 The Framework is fully overloaded.
FW_UNAVAILABLE_CLOSED 4 The Framework has closed itself (e.g. to protect
from fraud or malicious attack).
FW_UNAVAILABLE_PROTOCOL_FAILURE 5 The protocol used on the client-gateway link has

failed.

11.4.10 TpLoadLevel

Defines the Sequence of Data Elements that specify load level values.

Name Value Description
LOAD LEVEL NORMAL 0 Normal load
LOAD LEVEL OVERLOAD 1 Overload
LOAD LEVEL SEVERE OVERLOAD 2 Severe Overload

11.4.11 TpLoadThreshold

Defines the Sequence of Data Elements that specify the load threshold value. The actual load threshold valueis
application and SCF dependent, so is their relationship with load level.

Sequence Element Name

Sequence Element Type

LoadThreshold

TpFloat

ETSI

11.4.12 TpLoadinitVal

213

Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Defines the Sequence of Data Elements that specify the pair of load level and associated |oad threshold value.

Sequence Element Name

Sequence Element Type

LoadLevel

TpLoadLevel

LoadThreshold

TpLoadThreshold

11.4.13 TpLoadPolicy

Defines the load balancing policy.

Sequence Element Name

Sequence Element Type

LoadPolicy

TpString

11.4.14 TpLoadStatistic

Defines the Sequence of Data Elements that represents a load statistic record for a specific entity (i.e. Framework,
service or application) at a specific date and time.

Sequence Element Name

Sequence Element Type

LoadStatisticEntitylD

TpLoadStatisticEntitylID

TimeStamp

TpDateAndTime

LoadStatisticlnfo

TpLoadStatisticinfo

11.4.15 TpLoadStatisticList

Defines a Numbered List of Data Elements of type TpL oadStatistic.

11.4.16 TpLoadStatisticData

Defines the Sequence of Data Elements that represents load statistic information.

Sequence Element Name

Sequence Element Type

LoadValue (see note)

TpFloat

LoadLevel

TpLoadLevel

NOTE:

LoadValue is expressed as a percentage.

11.4.17 TpLoadStatisticEntitylD

Defines the Tagged Choice of Data Elements that specify the type of entity (i.e. service, application or Framework)
providing load statistics.

Tag Element Type
TpLoadStatisticEntityType

Tag Element Value Choice Element Type Choice Element Name

P_LOAD STATISTICS FW _TYPE TpFwID FrameworkID
P LOAD STATISTICS SVC TYPE TpServicelD ServicelD
P LOAD STATISTICS APP TYPE TpClientApplD ClientAppID

ETSI

214 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

11.4.18 TpLoadStatisticEntityType

Defines the type of entity (i.e. service, application or Framework) supplying load statistics.

Name Value Description
P LOAD STATISTICS FW TYPE 0 Framework-type load statistics
P _LOAD_ STATISTICS SVC TYPE 1 Service-type load statistics
P LOAD STATISTICS APP TYPE 2 Application-type load statistics

11.4.19 TpLoadStatisticinfo

Defines the Tagged Choice of Data Elements that specify the type of load statistic information (i.e. valid or invalid).

Tag Element Type
TpLoadStatisticinfoType

Tag Element Value Choice Element Type Choice Element Name
P LOAD STATISTICS VALID TpLoadStatisticData LoadStatisticData
P_LOAD STATISTICS INVALID TpLoadStatisticError LoadStatisticError

11.4.20 TpLoadStatisticinfoType

Defines the type of load statistic information (i.e. valid or invalid).

Name Value Description
P _LOAD STATISTICS VALID 0 Valid load statistics
P_LOAD STATISTICS INVALID 1 Invalid load statistics

11.4.21 TpLoadStatisticError

Defines the error code associated with afailed attempt to retrieve any load statistics information.

Name Value Description
P LOAD INFO ERROR UNDEFINED 0 Undefined error
P LOAD INFO UNAVAILABLE 1 Load statistics unavailable

11.4.22 TpSvcAvailStatusReason

Defines the reason detailing the change in status of Service Instance availability.

ETSI

215 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)
Name Value Description
SVC_UNAVAILABLE UNDEFINED 0 Undefined. A permanent failure. See note 1.
SVC_UNAVAILABLE_LOCAL_FAILURE 1 The Local API software or hardware has failed.
A permanent failure. See note 1.
SVC_UNAVAILABLE_GATEWAY_FAILURE 2 The gateway API software or hardware has
failed. A permanent failure. See note 1.
SVC_UNAVAILABLE_OVERLOADED 3 The Service Instance is fully overloaded. A
temporary problem. See note 2.
SVC_UNAVAILABLE_CLOSED 4 The Service Instance has closed itself (e.g. to
protect from fraud or malicious attack). A
permanent failure. See note 1.
SVC_UNAVAILABLE_NO_RESPONSE 5 The Framework has detected that a Service
Instance has failed: e.g. non-response from an
activity test, failure to return heartbeats. A
permanent failure. See note 1.
SVC_UNAVAILABLE_SW_UPGRADE 6 The Service Instance is unavailable due to
software upgrade or other similar maintenance.
A permanent failure. See note 1.
SVC_AVAILABLE 7 The Service has become available again.

NOTE 1: The client application must act to reset its use of the specified service instance (using the normal
mechanisms, such as the discovery and authentication interfaces, to stop use of this service instance
and begin use of a different service instance).

NOTE 2: The "expected" recovery time could be defined within the SLA.

11.4.23 TpAppAvailStatusReason

Defines the reason detailing the change in status of Application availability.

Name Value Description
APP_UNAVAILABLE UNDEFINED 0 Undefined. A permanent failure. See note 1.
APP_UNAVAILABLE_LOCAL_FAILURE 1 A local failure in the Application has been

detected. A permanent failure. See note 1.
APP_UNAVAILABLE_REMOTE_FAILURE 2 A remote failure to the application has been
detected, e.g. a database is not working. A
permanent failure. See note 1.
APP_UNAVAILABLE_OVERLOADED 3 The Application is fully overloaded. A temporary
problem. See note 2.
APP_UNAVAILABLE_CLOSED 4 The Application has closed itself (e.g. to protect
from fraud or malicious attack). A permanent
failure. See note 1.
APP_UNAVAILABLE_NO_RESPONSE 5 The Framework has detected that the application
has failed: e.g. non-response from an activity
test, failure to return heartbeats. A permanent
failure. See note 1.
APP_UNAVAILABLE_SW_UPGRADE 6 The Application is unavailable due to SW
upgrade or other similar maintenance. A
permanent failure. See note 1.
APP_AVAILABLE 7 The Application has become available.

NOTE 1: The client application is unable (or does not wish) to continue using the service instance.
NOTE 2: The "expected" recovery time could be defined within the SLA.

11.4.24 TplLoadTestID

This datatypeisidentical to a TpInt32, and is used as atoken to match load statistics requests with their results.

ETSI

11.4.25 TpFaultStatsErrorList

216

Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

DefinesaNumbered List of Data Elements of type TpFaultStatisticsError.

11.4.26 TpFaultReqlD

Thisdatatypeisidentical to a TpInt32, and is used as atoken to match fault statistics requests with their results.

11.4.27 TpFwAvailStatusReason

Defines the reason detailing the change in status of Framework availability.

Name Value Description

FRAMEWORK UNAVAILABLE UNDEFINED 0 Undefined. A permanent failure. See note 1.

FRAMEWORK_UNAVAILABLE_LOCAL_FAILU 1 A local failure in the Framework has been

RE detected. A permanent failure. See note 1.

FRAMEWORK_UNAVAILABLE_REMOTE_FAIL 2 A remote failure to the Framework has been

URE detected, e.g. a database is not working. A
permanent failure. See note 1.

FRAMEWORK_UNAVAILABLE_OVERLOADED 3 The Framework is fully overloaded. A temporary
problem. See note 2.

FRAMEWORK_UNAVAILABLE_CLOSED 4 The Framework has closed itself (e.g. to protect
from fraud or malicious attack). A permanent
failure. See note 1.

FRAMEWORK_UNAVAILABLE_PROTOCOL_F 5 The Framework has detected that the protocol

AILURE used between client and framework has failed. A
permanent failure. See note 1.

FRAMEWORK_UNAVAILABLE_SW_UPGRADE 6 The Framework is unavailable due to SW
upgrade or other similar maintenance. A
permanent failure. See note 1.

FRAMEWORK AVAILABLE 7 The Framework has become available.

NOTE 1: The Framework is unable (or does not wish) to continue using the client or service instance.
NOTE 2: The 'expected' recovery time could be part of the Framework's local policies.

11.5

11.5.1 TpPropertyName

Service Subscription Data Definitions

This datatypeisidentica to TpString. It is the name of a generic "property".

11.5.2 TpPropertyValue

This datatypeisidentical to TpString. It isthe value (or the list of values) associated with a generic "property”.

11.5.3 TpProperty

This datatypeis a Sequence of Data Elements which describes a generic "property”. It is a structured data type

consisting of the following { name, value} pair.

Sequence Element Name

Sequence Element Type

PropertyName

TpPropertyName

PropertyValue

TpPropertyValue

11.5.4 TpPropertyList

This data type defines a Numbered List of Data Elements of type TpProperty.

ETSI

217 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

11.5.5 TpEntOpProperties

This datatypeis of type TpPropertyList. It identifies the list of properties associated with an enterprise operator: e.g.
name, organisation, address, phone, e-mail, fax, payment method (credit card, bank account).

11.5.6 TpENtOp

This data type is a Sequence of Data Elements which describes an enterprise operator. It is a structured data type,
consisting of a unique "enterprise operator ID" and alist of "enterprise operator properties’, as follows.

Sequence Element Name Sequence Element Type
EntOpID TpENtOpID
EntOpProperties TpEntOpProperties

11.5.7 TpServiceContractiD

This datatypeisidentical to TpString. It uniquely identifies the contract, between an enterprise operator and the
Framework, for the use of an OSA service by the enterprise.

11.5.8 TpServiceContractIDList

This datatype defines a Numbered List of Data Elements of type TpServiceContractID.

11.5.9 TpPersonName

This datatypeisidentical to TpString. It isthe name of a generic "person”.

11.5.10 TpPostalAddress

This datatypeisidentical to TpString. It is the mailing address of a generic "person”.

11.5.11 TpTelephoneNumber

This datatypeisidentica to TpString. It is the telephone number of a generic "person”.

11.5.12 TpEmail

This datatypeisidentical to TpString. It isthe email address of a generic "person”.

11.5.13 TpHomePage

This datatypeisidentical to TpString. It isthe web address of a generic "person”.

11.5.14 TpPersonProperties

This datatypeis of type TpPropertyList. It identifies the list of additional properties, other than those listed above, that
can be associated with a generic "person”.

ETSI

218 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

11.5.15 TpPerson

This datatype is a Sequence of Data Elements which describes a generic "person”: e.g. abilling contact, a service
requestor. It isastructured data type which consists of:

Sequence Element Name Sequence Element Type
PersonName TpPersonName
PostalAddress TpPostalAddress
TelephoneNumber TpTelephoneNumber
Email TpEmail
HomePage TpHomePage
PersonProperties TpPersonProperties

11.5.16 TpServiceStartDate

Thisis of type TpDateAndTime. It identifies the contractual start date and time for the use of an OSA service by an
enterprise or an enterprise Subscription Assignment Group (SAG).

11.5.17 TpServiceEndDate

Thisis of type TpDateAndTime. It identifies the contractual end date and time for the use of an OSA service by an
enterprise or an enterprise Subscription Assignment Group (SAG).

11.5.18 TpServiceRequestor

Thisis of type TpPerson. It identifies the enterprise person requesting use of an OSA service: e.g. the enterprise
operator.

11.5.19 TpBillingContact

Thisis of type TpPerson. It identifies the enterprise person responsible for billing issues associated with an enterprise's
use of an OSA service.

11.5.20 TpServiceSubscriptionProperties

Thisis of type TpServicePropertyList. It specifies a subset of all available service properties and service property values
that apply to an enterprise's use of an OSA service.

11.5.21 TpServiceContract

This data type is a Sequence of Data Elements which represents a service contract. It is a structured data type which
consists of:

Sequence Element Name Sequence Element Type
ServiceContractlD TpServiceContractlD
ServiceContractDescription TpServiceContractDescription

ETSI

219 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

11.5.22 TpServiceContractDescription

This datatypeis a Sequence of Data Elements which describes a service contract. This contract should conformto a
previously negotiated high-level agreement (regarding OSA services, their usage and the price, etc.), if any, between the
enterprise operator and the framework operator. It is a structured data type which consists of:

Sequence Element Name Sequence Element Type
ServiceRequestor TpServiceRequestor
BillingContact TpBillingContact
ServiceStartDate TpServiceStartDate
ServiceEndDate TpServiceEndDate
ServiceTypeName TpServiceTypeName
ServicelD TpServicelD
ServiceSubscriptionProperties TpServiceSubscriptionProperties
InUse TpBoolean (See note)
NOTE: The InUse flag indicates if the contract, or one of its associated profiles, is currently in
use by a service instance and will be returned in describeServiceContract(). This flag
will be ignored if it is passed in to createServiceContract().

11.5.23 TpClientAppProperties

Thisis of type TpPropertyList. The client application propertiesisalist of { name, value} pairs, for bilateral agreement
between the enterprise operator and the Framework.

11.5.24 TpClientAppDescription

This datatypeis a Sequence of Data Elements which describes an enterprise client application. It is a structured data
type, consisting of a unique "client application ID", password and allist of client application properties.

Sequence Element Name Sequence Element Type
ClientAppID TpClientAppID
ClientAppProperties TpClientAppProperties
HasAccessSession TpBoolean (See note 1)
HasServicelnstances TpBoolean(See note 2)

NOTE 1: The HasAccessSession flag indicates if the client application currently has an access
session active with the framework and will be returned in describeClientApp(). This flag
will be ignored if it is passed in to createClientApp().

NOTE 2: The HasServicelnstances flag indicates if the client application currently has service
instances active and will be returned in describeClientApp(). This flag will be ignored if
it is passed in to createClientApp(). This flag must be false if hasAccessSession is
false.

11.5.25 TpSagID

This datatypeisidentical to TpString. It uniquely identifies a Subscription Assignment Group (SAG) of client
applications within an enterprise.

11.5.26 TpSagIDList

This datatype defines aNumbered List of Data Elements of type TpSagID.

11.5.27 TpSagDescription

This datatypeisidentical to TpString. It describes a SAG: e.g. alist of identifiers of the constituent client applications,
the purpose of the "grouping".

ETSI

220 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

11.5.28 TpSag

This datatype is a Sequence of Data Elements which describes a Subscription Assignment Group (SAG) of client
applications within an enterprise. It is a structured data type consisting of a unique SAG 1D and a description.

Sequence Element Name Sequence Element Type
SagIlD TpSagID
SagDescription TpSagDescription

11.5.29 TpServiceProfilelD

This datatypeisidentical to TpString. It uniquely identifies the service profile, which further constrains how an
enterprise SAG uses an OSA service.

11.5.30 TpServiceProfileIDList

This data type defines a Numbered List of Data Elements of type TpServiceProfilelD.

11.5.31 TpServiceProfile

This datatype is a Sequence of Data Elements which represents a Service Profile. It is a structured data type which
consists of:

Sequence Element Name Sequence Element Type
ServiceProfilelD TpServiceProfileID
ServiceProfileDescription TpServiceProfileDescription

11.5.32 TpServiceProfileDescription
This data type is a Sequence of Data Elements which describes a Service Profile. A service contract contains one or

more Service Profiles, one for each SAG in the enterprise operator domain. A service profile isarestriction of the
service contract in order to provide restricted service featuresto a SAG. It is a structured data type which consists of:

ETSI

221 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Sequence Element Type
TpServiceContractlD

Sequence Element Name
ServiceContractID

ServiceStartDate TpServiceStartDate
ServiceEndDate TpServiceEndDate
ServiceTypeName TpServiceTypeName (See note 1)
ServiceSubscriptionProperties TpServiceSubscriptionProperties
InUse TpBoolean (See note 2)
ServicelD TpServicelD (See note 3)

NOTE 1: When the Framework returns a TpServiceProfileDescription to the enterprise operator, it
should set the ServiceTypeName field to the same value as the corresponding field of the
service contract; When the enterprise operator passes a TpServiceProfileDescription to
the Framework, the Framework should ignore the value sent in the ServiceTypeName
field to ensure interoperability; The enterprise operator should be required to set the
ServiceTypeName field to the correct value when passing a TpServiceProfileDescription
to the Framework.

NOTE 2: The InUse flag indicates if the profile is currently in use by a service instance and will be
returned in describeServiceProfile(). This flag will be ignored if it is passed in to
createServiceProfile().

NOTE 3: The ServicelD field is used to restrict a service type-based service contract to a specific
service. When the TpServiceProfileDescription is passed to the Framework by an
enterprise operator, the Framework should ensure that the ServicelD field, if not empty,
contains a service which is of the service type specified in the service contract. If the
corresponding contract is for a service ID then the Framework should ignore this field.
When a TpServiceProfileDescription is returned to the enterprise operator, the contents of
this field will depend on the associated service contract. If the contract is for a service ID,
then this field should be populated with the correct value. If the contract is for a service
type, and the profile is restricted to a specific service ID then this field should be
populated with the correct value. Otherwise, it should contain an empty string.

11.5.33 TpSagProfilePair

This datatypeis a Sequence of Data Elements which describes a pair of a SAG and a Service Profile. It isa structured
data type which consists of:

Sequence Element Name

Sequence Element Type

Sag

TpSagID

ServiceProfile

TpServiceProfilelID

11.5.34 TpAddSagMembersConflict

This data type is a Sequence of Data Elements which describes a conflict that may occur when client applications are
added to a SAG - see method addSagM embers(). This happens, when a client application is assigned to a service twice.

The AlreadyAssignedSagProfilePair describes the SAG and the service profile through which the client application is
aready assigned to the service. It includes the current service profile. The ConflictGeneratingSagProfilePair describes
another SAG, to which the client application should be added, and the corresponding service profile, through which the
client application is also connected to this service. This creates a conflict, as there may exist only a single service profile
for each service.

The TpAddSagM embersConflict is a structured data type which consists of:

Sequence Element Name Sequence Element Type

ClientApplication

TpClientApplID

ConflictGeneratingSagProfilePair

TpSagProfilePair

AlreadyAssignedSagProfilePair

TpSagProfilePair

Service

TpServicelD

11.5.35 TpAddSagMembersConflictList

This data type defines aNumbered List of Data Elements of type TpAddSagM embersConflict.

ETSI

222 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

11.5.36 TpAssignSagToServiceProfileConflict

This datatypeis a Sequence of Data Elements which describes a conflict that may occur when a SAG isassigned to a
Service Profile - see method assign().

The AlreadyAssignedSagProfilePair describes the SAG and the service profile through which the client application is
aready assigned to the service.

The TpAssignSagT oServiceProfileConflict is a structured data type which consists of:

Sequence Element Name Sequence Element Type
ClientApplication TpClientAppID
AlreadyAssignedSagProfilePair TpSagProfilePair
Service TpServicelD

11.5.37 TpAssignSagToServiceProfileConflictList

This datatype defines aNumbered List of Data Elements of type TpAssignSagT oServiceProfileConflict.

12 Exception Classes

The following are the list of exception classes which are used in this interface of the API.

Name Description

P_ACCESS_DENIED The client is not currently authenticated
with the framework.

P_DUPLICATE_PROPERTY_NAME A duplicate property name has been
received.

P ILLEGAL SERVICE ID lllegal Service ID.

P ILLEGAL_SERVICE_TYPE lllegal Service Type.

P_INVALID_ACCESS_TYPE The framework does not support the type
of access interface requested by the
client.

P_INVALID_ACTIVITY_TEST_ID ID does not correspond to a valid activity
test request.

P_INVALID_ADDITION_TO_SAG A client application cannot be added to

the SAG because this would imply that the
client application has two concurrent
service profiles at a particular moment in
time for a particular service.

P INVALID AGREEMENT TEXT Invalid agreement text.

P_INVALID_ENCRYPTION_CAPABILITY Invalid encryption capability.

P_INVALID_AUTH_TYPE Invalid type of authentication mechanism.

P INVALID CLIENT APP ID Invalid Client Application ID.

P_INVALID_DOMAIN_ID Invalid client ID.

P_INVALID_ENT_OP_ID Invalid Enterprise Operator ID.

P_INVALID_PROPERTY The framework does not recognise the
property supplied by the client.

P _INVALID SAG ID Invalid Subscription Assignment Group ID.

P_INVALID_SAG_TO_SERVICE_PROFILE_ASSIGNMENT |A SAG cannot be assigned to the service
profile because this would imply that a
client application has two concurrent
service profiles at a particular moment in
time for a particular service.

P INVALID SERVICE CONTRACT ID Invalid Service Contract ID.

P_INVALID_SERVICE_ID Invalid service ID.

P_INVALID_SERVICE_PROFILE_ID Invalid service profile ID.

P_INVALID_SERVICE_TOKEN The service token has not been issued, or
it has expired.

P INVALID SERVICE TYPE Invalid Service Type.

P_INVALID_SIGNATURE Invalid digital signature.

ETSI

223 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Name Description

P INVALID SIGNING ALGORITHM Invalid signing algorithm.

P_MISSING_MANDATORY_PROPERTY Mandatory Property Missing.

P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY No encryption mechanism, which is
acceptable to the framework, is supported
by the client.

P_NO_ACCEPTABLE_AUTHENTICATION_MECHANISM |No authentication mechanism, which is
acceptable to the framework, is supported
by the client.

P_NO_ACCEPTABLE_SIGNING_ALGORITHM No signing algorithm, which is acceptable
to the framework, is supported by the
client.

P PROPERTY TYPE MISMATCH Property Type Mismatch.

P_SERVICE_ACCESS_DENIED The client application is not allowed to
access this service.

P_SERVICE_NOT_ENABLED The service ID does not correspond to a
service that has been enabled.

P_SERVICE_TYPE_UNAVAILABLE The service type is not available
according to the Framework.

P_UNKNOWN_SERVICE_ID Unknown Service ID.

P UNKNOWN SERVICE TYPE Unknown Service Type.

Each exception class contains the following structure:
Structure Element Name Structure Element Type Structure Element Description
Extralnformation TpString Carries extra information to help identify the source of
the exception, e.g. a parameter name.

ETSI

224 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Annex A (normative):
OMG IDL Description of Framework

The OMG IDL representation of this interface specification is contained in text files (fw_data.idl, fw_if_access.idl,
fw_if_app.idl, fw_if_entop.idl, fw_if_service.idl contained in archive es 203915031 DL.ZIP) which accompany the
present document.

This archive can be found in es_20391503v010301m0.zip which accompany the present document.

ETSI

225 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Annex B (informative):
W3C WSDL Description of Framework

The W3C WSDL representation of thisinterface specification is contained in zip file es 20391503WSDL.ZIP, which
accompanies the present document.

This archive can be found in es_20391503v010301m0.zip which accompany the present document.

ETSI

226 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Annex C (informative):
Java™ API Description of the Framework

The Java™ API realisation of thisinterface specification is produced in accordance with the Java™ Realisation rules
defined in ES 203 915-1. These rules aim to deliver for Java™, a developer API, provided as a realisation, supporting a
Java™ API that represents the UML specifications. The rules support the production of both J2SE™ and J2EE™
versions of the API from the common UML specifications.

The J2SE™ representation of this interface specification is provided as Java™, contained in archive 20391503J2SE.zip.
The J2EE™ representation of this interface specification is provided as Java™, contained in archive 20391503J2EE.zip.

Both these archives can be found in es_20391503v010301m0.zip which accompanies the present document.

ETSI

227 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Annex D (informative):
Contents of 3GPP OSA R6 Framework

All parts of the present document, except clause 8, Framework to Enterprise Operator API, are relevant for
TS 129 198-3 V6 (Release 6).

ETSI

228 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Annex E (informative):
Description of the Framework for 3GPP2 cdma2000
networks

Thisannex isintended to define the OSA API Stage 3 interface definitions and it provides the complete OSA
specifications for cdma2000-based systems. It is an extension of OSA API specifications capabilities to enable
operation in cdma2000 systems environment. They are in aignment with 3GPP2 Stage 1 requirements and Stage 2
architecture defined in [52], [53] and [54] of ES 203 915-1, clause 2. These requirements are expressed as additions to
and/or exclusions from the 3GPP Release 6 specification. The information given hereisto be used by developersin
3GPP2 cdma2000 network architecture to interpret the 3GPP OSA specifications.

E.1 General Exceptions

Theterm UMTS s not applicable for the cdma2000 family of standards. Nevertheless the term UMTSisused in
TR 121 905 (Vocabulary for 3GPP Specifications) mostly in the broader sense of "3G Wireless System". If not stated
otherwise there are no additions or exclusions required.

CAMEL and CAP mappings are not applicable for cdma2000 systems.

E.2 Specific Exceptions

E.2.1 Clause 1: Scope

There are no additions or exclusions.

E.2.2 Clause 2: References

Normative references on TS 123 078 and on TS 129 078 are not applicable for cdma2000 systems.

E.2.3 Clause 3: Definitions and abbreviations

There are no additions or exclusions.

E.2.4 Clause 4: Overview of the Framework

There are no additions or exclusions.

E.2.5 Clause 5: The Base Interface Specification

There are no additions or exclusions.

E.2.6 Clause 6: Framework Access Session API

There are no additions or exclusions.

E.2.7 Clause 7 Framework-to-Application Sequence Diagrams

There are no additions or exclusions.

ETSI

229 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

E.2.8 Clause 9: Framework-to-Service API

There are no additions or exclusions.

E.2.9 Clause 10: Service Properties

Since CAMEL protocol is not applicable for cdma2000 systems, an SCS shall indicate support for the CAMEL feature
through service properties. For cdma2000 systems the CAMEL service properties shall be disabled (CAMEL shall be
turned aways off in the case of the 3GPP2 networks; e.g.: UserL ocationCamel shall be set to false).

E.2.10 Clause 11: Data Definitions

There are no additions. P_USER_LOCATION_CAMEL value of TpServiceTypeNameis not required to be supported
in the 3GPP2 networks.

E.2.11 Clause 12: Exception Classes

There are no additions or exclusions.

E.2.12 Annex A (normative): OMG IDL Description of the
Framework

There are no additions or exclusions.

E.2.13 Annex B (informative): W3C WSDL Description of the
Framework

There are no additions or exclusions.

E.2.14 Annex C (informative): Java™ API Description of the
Framework

There are no additions or exclusions.

ETSI

230 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

Annex F (informative):
Record of changes

Thefollowing isalist of the changes made to the present document for each release. The list contains the names of all
changed, deprecated, added or removed items in the specifications and not the actual changes. Any type of change
information that isimportant to the reader is put in the final clause of this annex.

Changes are specified as changes to the prior major release, but every minor release will have its own part of the table
alowing the reader to know when the actual change was made.

F.1 Interfaces

F.1.1 New
Identifier | Comments
Interfaces added in ES 203 915-3 version 1.1.1 (Parlay 5.0)
IpClientEventNotification Event Notification added to Framework to Enterprise Operator
interfaces
IpEventNotification Event Notification added to Framework to Enterprise Operator
interfaces

Interfaces added in ES 203 915-3 version 1.2.1 (Parlay 5.1)

Interfaces added in ES 203 915-3 version 1.3.1 (Parlay 5.2)

F.1.2 Deprecated

Identifier | Comments
Interfaces deprecated in ES 203 915-3 version 1.1.1 (Parlay 5.0)

Interfaces deprecated in ES 203 915-3 version 1.2.1 (Parlay 5.1)

Interfaces deprecated in ES 203 915-3 version 1.3.1 (Parlay 5.2)

F.1.3 Removed

Identifier \ Comments
Interfaces removed in ES 203 915-3 version 1.1.1 (Parlay 5.0)

Interfaces removed in ES 203 915-3 version 1.2.1 (Parlay 5.1)

Interfaces removed in ES 203 915-3 version 1.3.1 (Parlay 5.2)

ETSI

231 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

F.2 Methods

F.2.1 New

Identifier | Comments

Methods added in ES 203 915-3 version 1.1.1 (Parlay 5.0)

IpFwServiceRegistration.registerServiceSubType()

IpAppFaultManager.fwAvailStatusind()

IpSvcFaultManager.fwAvailStatusind()

IpClientEventNotification.reportNotification()

IpEventNotification.createNotification()

IpEventNotification.destroyNotification()

Methods added in ES 203 915-3 version 1.2.1 (Parlay 5.1)

Methods added in ES 203 915-3 version 1.3.1 (Parlay 5.2)

F.2.2 Deprecated

Identifier | Comments

Methods deprecated in ES 203 915-3 version 1.1.1 (Parlay 5.0)

IpAppFaultManager.fwFaultReportind()

IpAppFaultManager.fwFaultRecoverylnd()

IpAppFaultManager.fwUnavailableInd()

IpSvcFaultManager.fwFaultReportind()

IpSvcFaultManager.fwFaultRecoverylnd()

IpSvcFaultManager.fwUnavailablelnd()

Methods deprecated in ES 203 915-3 version 1.2.1 (Parlay 5.1)

Methods deprecated in ES 203 915-3 version 1.3.1 (Parlay 5.2)

F.2.3 Modified

Identifier | Comments

Methods modified in ES 203 915-3 version 1.1.1 (Parlay 5.0)

Methods modified in ES 203 915-3 version 1.2.1 (Parlay 5.1)

Methods modified in ES 203 915-3 version 1.3.1 (Parlay 5.2)

F.2.4 Removed

Identifier | Comments

Methods removed in ES 203 915-3 version 1.1.1 (Parlay 5.0)

Methods removed in ES 203 915-3 version 1.2.1 (Parlay 5.1)

Methods removed in ES 203 915-3 version 1.3.1 (Parlay 5.2)

ETSI

232 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

F.3 Data Definitions

F.3.1 New

Identifier | Comments

Data Definitions added in ES 203 915-3 version 1.1.1 (Parlay 5.0)

TpServiceTypePropertyValue

TpServiceTypePropertyValueList

TpFwMigrationServiceAvailableInfo

TpMigrationAdditionallnfo

TpMigrationAdditionalinfoType

TpMigrationAdditionallnfoSet

TpFwAvailStatusReason

TpFwAgreementinfo

Data Definitions added in ES 203 915-3 version 1.2.1 (Parlay 5.1)

Data Definitions added in ES 203 915-3 version 1.3.1 (Parlay 5.2)

ETSI

233 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

F.3.2 Maodified

Identifier | Comments
Data Definitions modified in ES 203 915-3 version 1.1.1 (Parlay 5.0)
TpServiceTypeName Value P USER INTERACTION ADMIN added
TpServiceTypeName Value P_POLICY_MANAGEMENT renamed to
P POLICY PROVISIONING
TpServiceTypeName Value P POLICY EVALUATION added
TpServiceTypeName Value P EXTENDED USER STATUS added
TpServiceTypeName Value P USER BINDING added
TpFwEventName P EVENT FW MIGRATION SERVICE AVAILABLE added
TpFwEventCriteria CompatibleServiceTypeNameList added
TpFwEventinfo MigrationServiceAvailableList added
TpServiceContractDescription InUse field added
TpClientAppDescription HasAccessSession, HasServicelnstances fields added
TpServiceProfileDescription InUse, ServicelD fields added
TpFwEventName Events P_EVENT_FW_APP_SESSION_CREATED,
P_EVENT_FW_APP_SESSION_TERMINATED,
P_EVENT_FW_APP_AGREEMENT_SIGNED and
P EVENT FW APP AGREEMENT ENDED added.
TpFwEventCriteria Fields SessionCreatedList, SessionTerminatedList,
AgreementSignedList and AgreementEndedList added.
TpFwEventinfo Fields AppSessionCreated, AppSessionTerminated,
AppAgreementSigned and AppAgreementEnded added.

Data Definitions modified in ES 203 915-3 version 1.2.1 (Parlay 5.1)
TpServiceTypeName I[P MULTI MEDIA MESSAGING added
Data Definitions modified in ES 203 915-3 version 1.3.1 (Parlay 5.2)

F.3.3 Removed

Identifier | Comments
Data Definitions removed in ES 203 915-3 version 1.1.1 (Parlay 5.0)

Data Definitions removed in ES 203 915-3 version 1.2.1 (Parlay 5.1)

Data Definitions removed in ES 203 915-3 version 1.3.1 (Parlay 5.2)

ETSI

234 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

F.4 Service Properties

F.4.1 New

Identifier | Comments

Service Properties added in ES 203 915-3 version 1.1.1 (Parlay 5.0)

P _COMPATIBLE WITH SERVICE

P _BACKWARD COMPATIBILITY LEVEL

P MIGRATION REQUIRED

P DATA MIGRATED

P_MIGRATION DATE_AND_ TIME

XML ADDRESS RANGE SET New Service Property Type. Replaces ADDRESSRANGE SET

Service Properties added in ES 203 915-3 version 1.2.1 (Parlay 5.1)

Service Property Type FLOAT SET added

Service Property Type FLOAT INTERVAL added

Service Properties added in ES 203 915-3 version 1.3.1 (Parlay 5.2)

P_REGEX SUPPORT FOR ADDRESS RANGE |

F.4.2 Deprecated

Identifier | Comments

Service Properties deprecated in ES 203 915-3 version 1.1.1 (Parlay 5.0)

Service Properties deprecated in ES 203 915-3 version 1.2.1 (Parlay 5.1)

Service Properties deprecated in ES 203 915-3 version 1.3.1 (Parlay 5.2)

F.4.3 Modified

Identifier | Comments

Service Properties modified in ES 203 915-3 version 1.1.1 (Parlay 5.0)

Service Properties modified in ES 203 915-3 version 1.2.1 (Parlay 5.1)

Service Properties modified in ES 203 915-3 version 1.3.1 (Parlay 5.2)

Service Property Type Service Property Type modified to permit use of Regular Expressions.
XML _ADDRESS RANGE_SET

F.4.4 Removed

Identifier | Comments
Service Properties removed in ES 203 915-3 version 1.1.1 (Parlay 5.0)
ADDRESSRANGE_SET Deleted Service Property Type, replaced with

XML _ADDRESS RANGE SET

Service Properties removed in ES 203 915-3 version 1.2.1 (Parlay 5.1)

Service Properties removed in ES 203 915-3 version 1.3.1 (Parlay 5.2)

ETSI

235 Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

F.5 Exceptions
F.5.1 New
Identifier | Comments
Exceptions added in ES 203 915-3 version 1.1.1 (Parlay 5.0)
|
Exceptions added in ES 203 915-3 version 1.2.1 (Parlay 5.1)
|
Exceptions added in ES 203 915-3 version 1.3.1 (Parlay 5.2)
|
F.5.2 Modified
Identifier | Comments
Exceptions modified in ES 203 915-3 version 1.1.1 (Parlay 5.0)
|
Exceptions modified in ES 203 915-3 version 1.2.1 (Parlay 5.1)
|
Exceptions modified in ES 203 915-3 version 1.3.1 (Parlay 5.2)
|
F.5.3 Removed
Identifier | Comments

Exceptions removed in ES 203 915-3 version 1.1.1 (Parlay 5.0)

Exceptions removed in ES 203 915-3 version 1.2.1 (Parlay 5.1)

Exceptions removed in ES 203 915-3 version 1.3.1 (Parlay 5.2)

F.6

Others

ES203915V1.2.1:

WSDL code reworked and replaced in annex B.

ETSI

236

Final draft ETSI ES 203 915-3 V1.3.1 (2008-01)

History
Document history
V111 April 2005 Publication
V121 January 2007 Publication
V131 February 2008 Membership Approval Procedure MV 20080411: 2008-02-12 to 2008-04-11

ETSI

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Overview of the Framework
	5 The Base Interface Specification
	5.1 Interface Specification Format
	5.1.1 Interface Class
	5.1.2 Method descriptions
	5.1.3 Parameter descriptions
	5.1.4 State Model

	5.2 Base Interface
	5.2.1 Interface Class IpInterface

	5.3 Service Interfaces
	5.3.1 Overview

	5.4 Generic Service Interface
	5.4.1 Interface Class IpService
	5.4.1.1 Method setCallback()
	5.4.1.2 Method setCallbackWithSessionID()

	6 Framework Access Session API
	6.1 Sequence Diagrams
	6.1.1 Trust and Security Management Sequence Diagrams
	6.1.1.1 Initial Access
	6.1.1.2 Framework Terminates Access
	6.1.1.3 Application Terminates Access
	6.1.1.4 Non-API level Authentication
	6.1.1.5 API Level Authentication

	6.2 Class Diagrams
	6.3 Interface Classes
	6.3.1 Trust and Security Management Interface Classes
	6.3.1.1 Interface Class IpClientAPILevelAuthentication
	6.3.1.1.1 Method <<deprecated>> authenticate()
	6.3.1.1.2 Method abortAuthentication()
	6.3.1.1.3 Method authenticationSucceeded()
	6.3.1.1.4 Method challenge()

	6.3.1.2 Interface Class IpClientAccess
	6.3.1.2.1 Method terminateAccess()

	6.3.1.3 Interface Class IpInitial
	6.3.1.3.1 Method <<deprecated>> initiateAuthentication()
	6.3.1.3.2 Method initiateAuthenticationWithVersion()

	6.3.1.4 Interface Class IpAuthentication
	6.3.1.4.1 Method requestAccess()

	6.3.1.5 Interface Class IpAPILevelAuthentication
	6.3.1.5.1 Method <<deprecated>> selectEncryptionMethod()
	6.3.1.5.2 Method <<deprecated>> authenticate()
	6.3.1.5.3 Method abortAuthentication()
	6.3.1.5.4 Method authenticationSucceeded()
	6.3.1.5.5 Method selectAuthenticationMechanism()
	6.3.1.5.6 Method challenge()

	6.3.1.6 Interface Class IpAccess
	6.3.1.6.1 Method obtainInterface()
	6.3.1.6.2 Method obtainInterfaceWithCallback()
	6.3.1.6.3 Method <<deprecated>> endAccess()
	6.3.1.6.4 Method listInterfaces()
	6.3.1.6.5 Method <<deprecated>> releaseInterface()
	6.3.1.6.6 Method selectSigningAlgorithm()
	6.3.1.6.7 Method terminateAccess()
	6.3.1.6.8 Method relinquishInterface()

	6.4 State Transition Diagrams
	6.4.1 Trust and Security Management State Transition Diagrams
	6.4.1.1 State Transition Diagrams for IpInitial
	6.4.1.2 State Transition Diagrams for IpAPILevelAuthentication
	6.4.1.2.1 Idle State
	6.4.1.2.2 Authenticating Framework State
	6.4.1.2.3 Framework Authenticated State
	6.4.1.2.4 Authenticating Client State
	6.4.1.2.5 Client Authenticated State
	6.4.1.2.6 Idle State
	6.4.1.2.7 Authenticating Framework State
	6.4.1.2.8 Framework Authenticated State
	6.4.1.2.9 Authenticating Client State
	6.4.1.2.10 Client Authenticated State
	6.4.1.2.11 Idle State
	6.4.1.2.12 Authenticating Framework State
	6.4.1.2.13 Framework Authenticated State
	6.4.1.2.14 Authenticating Client State
	6.4.1.2.15 Client Authenticated State
	6.4.1.2.16 Idle State
	6.4.1.2.17 Authenticating Framework State
	6.4.1.2.18 Framework Authenticated State
	6.4.1.2.19 Authenticating Client State
	6.4.1.2.20 Client Authenticated State

	6.4.1.3 State Transition Diagrams for IpAccess
	6.4.1.3.1 Active State

	7 Framework-to-Application API
	7.1 Sequence Diagrams
	7.1.1 Event Notification Sequence Diagrams
	7.1.1.1 Enable Event Notification

	7.1.2 Integrity Management Sequence Diagrams
	7.1.2.1 Load Management: Suspend/resume notification from application
	7.1.2.2 Load Management: Framework queries load statistics
	7.1.2.3 Load Management: Framework callback registration and Application load control
	7.1.2.4 Load Management: Application reports current load condition
	7.1.2.5 Load Management: Application queries load statistics
	7.1.2.6 Load Management: Application callback registration and load control
	7.1.2.7 Heartbeat Management: Start/perform/end heartbeat supervision of the application
	7.1.2.8 Fault Management: Framework detects a Service failure
	7.1.2.9 Fault Management: Application requests a Framework activity test

	7.1.3 Service Agreement Management Sequence Diagrams
	7.1.3.1 Service Selection

	7.1.4 Service Discovery Sequence Diagrams
	7.1.4.1 Service Discovery

	7.2 Class Diagrams
	7.3 Interface Classes
	7.3.1 Service Discovery Interface Classes
	7.3.1.1 Interface Class IpServiceDiscovery
	7.3.1.1.1 Method listServiceTypes()
	7.3.1.1.3 Method discoverService()
	7.3.1.1.4 Method listSubscribedServices()

	7.3.2 Service Agreement Management Interface Classes
	7.3.2.1 Interface Class IpAppServiceAgreementManagement
	7.3.2.1.1 Method signServiceAgreement()
	7.3.2.1.2 Method terminateServiceAgreement()

	7.3.2.2 Interface Class IpServiceAgreementManagement
	7.3.2.2.1 Method signServiceAgreement()
	7.3.2.2.2 Method terminateServiceAgreement()
	7.3.2.2.3 Method selectService()
	7.3.2.2.4 Method initiateSignServiceAgreement()

	7.3.3 Integrity Management Interface Classes
	7.3.3.1 Interface Class IpAppFaultManager
	7.3.3.1.1 Method activityTestRes()
	7.3.3.1.2 Method appActivityTestReq()
	7.3.3.1.3 Method <<deprecated>> fwFaultReportInd()
	7.3.3.1.4 Method <<deprecated>> fwFaultRecoveryInd()
	7.3.3.1.5 Method <<deprecated>> svcUnavailableInd()
	7.3.3.1.6 Method <<deprecated>> genFaultStatsRecordRes()
	7.3.3.1.7 Method <<deprecated>> fwUnavailableInd()
	7.3.3.1.8 Method activityTestErr()
	7.3.3.1.9 Method <<deprecated>> genFaultStatsRecordErr()
	7.3.3.1.10 Method appUnavailableInd()
	7.3.3.1.11 Method <<deprecated>> genFaultStatsRecordReq()
	7.3.3.1.12 Method svcAvailStatusInd()
	7.3.3.1.13 Method <<new>> generateFaultStatisticsRecordRes()
	7.3.3.1.14 Method <<new>> generateFaultStatisticsRecordErr()
	7.3.3.1.15 Method <<new>> generateFaultStatisticsRecordReq()
	7.3.3.1.16 Method <<new>> fwAvailStatusInd()

	7.3.3.2 Interface Class IpFaultManager
	7.3.3.2.1 Method activityTestReq()
	7.3.3.2.2 Method appActivityTestRes()
	7.3.3.2.3 Method svcUnavailableInd()
	7.3.3.2.4 Method <<deprecated>> genFaultStatsRecordReq()
	7.3.3.2.5 Method appActivityTestErr()
	7.3.3.2.6 Method <<deprecated>> appUnavailableInd()
	7.3.3.2.7 Method <<deprecated>> genFaultStatsRecordRes()
	7.3.3.2.8 Method <<deprecated>> genFaultStatsRecordErr()
	7.3.3.2.9 Method appAvailStatusInd()
	7.3.3.2.10 Method <<new>> generateFaultStatisticsRecordReq()
	7.3.3.2.11 Method <<new>> generateFaultStatisticsRecordRes()
	7.3.3.2.12 Method <<new>> generateFaultStatisticsRecordErr()

	7.3.3.3 Interface Class IpAppHeartBeatMgmt
	7.3.3.3.1 Method enableAppHeartBeat()
	7.3.3.3.2 Method disableAppHeartBeat()
	7.3.3.3.3 Method changeInterval()

	7.3.3.4 Interface Class IpAppHeartBeat
	7.3.3.4.1 Method pulse()

	7.3.3.5 Interface Class IpHeartBeatMgmt
	7.3.3.5.1 Method enableHeartBeat()
	7.3.3.5.2 Method disableHeartBeat()
	7.3.3.5.3 Method changeInterval()

	7.3.3.6 Interface Class IpHeartBeat
	7.3.3.6.1 Method pulse()

	7.3.3.7 Interface Class IpAppLoadManager
	7.3.3.7.1 Method <<deprecated>> queryAppLoadReq()
	7.3.3.7.2 Method <<deprecated>> queryLoadRes()
	7.3.3.7.3 Method <<deprecated>> queryLoadErr()
	7.3.3.7.4 Method loadLevelNotification()
	7.3.3.7.5 Method resumeNotification()
	7.3.3.7.6 Method suspendNotification()
	7.3.3.7.7 Method createLoadLevelNotification()
	7.3.3.7.8 Method destroyLoadLevelNotification()
	7.3.3.7.9 Method <<new>> queryAppLoadStatsReq()
	7.3.3.7.10 Method <<new>> queryLoadStatsRes()
	7.3.3.7.11 Method <<new>> queryLoadStatsErr()

	7.3.3.8 Interface Class IpLoadManager
	7.3.3.8.1 Method reportLoad()
	7.3.3.8.2 Method <<deprecated>> queryLoadReq()
	7.3.3.8.3 Method <<deprecated>> queryAppLoadRes()
	7.3.3.8.4 Method <<deprecated>> queryAppLoadErr()
	7.3.3.8.5 Method createLoadLevelNotification()
	7.3.3.8.6 Method destroyLoadLevelNotification()
	7.3.3.8.7 Method resumeNotification()
	7.3.3.8.8 Method suspendNotification()
	7.3.3.8.9 Method <<new>> queryLoadStatsReq()
	7.3.3.8.10 Method <<new>> queryAppLoadStatsRes()
	7.3.3.8.11 Method <<new>> queryAppLoadStatsErr()

	7.3.3.9 Interface Class IpOAM
	7.3.3.9.1 Method systemDateTimeQuery()

	7.3.3.10 Interface Class IpAppOAM
	7.3.3.10.1 Method systemDateTimeQuery()

	7.3.4 Event Notification Interface Classes
	7.3.4.1 Interface Class IpAppEventNotification
	7.3.4.1.1 Method reportNotification()
	7.3.4.1.2 Method notificationTerminated()

	7.3.4.2 Interface Class IpEventNotification
	7.3.4.2.1 Method createNotification()
	7.3.4.2.2 Method destroyNotification()

	7.4 State Transition Diagrams
	7.4.1 Service Discovery State Transition Diagrams
	7.4.1.1 State Transition Diagrams for IpServiceDiscovery
	7.4.1.1.1 Active State

	7.4.2 Service Agreement Management State Transition Diagrams
	7.4.3 Integrity Management State Transition Diagrams
	7.4.3.1 State Transition Diagrams for IpLoadManager
	7.4.3.1.1 Idle State
	7.4.3.1.2 Notification Suspended State
	7.4.3.1.3 Active State

	7.4.3.2 State Transition Diagrams for LoadManagerInternal
	7.4.3.2.1 Normal load State
	7.4.3.2.2 Application Overload State
	7.4.3.2.3 Internal overload State
	7.4.3.2.4 Internal and Application Overload State

	7.4.3.3 State Transition Diagrams for IpOAM
	7.4.3.3.1 Active State

	7.4.3.4 State Transition Diagrams for IpFaultManager
	7.4.3.4.1 Framework Active State
	7.4.3.4.2 Framework Faulty State
	7.4.3.4.3 Framework Activity Test State
	7.4.3.4.4 Service Activity Test State

	7.4.4 Event Notification State Transition Diagrams
	7.4.4.1 State Transition Diagrams for IpEventNotification

	8 Framework-to-Enterprise Operator API
	8.1 Sequence Diagrams
	8.1.1 Event Notification Sequence Diagrams
	8.1.2 Service Subscription Sequence Diagrams
	8.1.2.1 Service Discovery and Subscription Scenario
	8.1.2.2 Enterprise Operator and Client Application Subscription Management Sequence Diagram

	8.2 Class Diagrams
	8.3 Interface Classes
	8.3.1 Event Notification Interface Classes
	8.3.1.1 Interface Class IpClientEventNotification
	8.3.1.1.1 Method reportNotification()
	8.3.1.1.2 Method notificationTerminated()

	8.3.1.2 Interface Class IpEventNotification
	8.3.1.2.1 Method createNotification()
	8.3.1.2.2 Method destroyNotification()

	8.3.2 Service Subscription Interface Classes
	8.3.2.1 Interface Class IpClientAppManagement
	8.3.2.1.1 Method createClientApp()
	8.3.2.1.2 Method modifyClientApp()
	8.3.2.1.3 Method deleteClientApp()
	8.3.2.1.4 Method createSAG()
	8.3.2.1.5 Method modifySAG()
	8.3.2.1.6 Method deleteSAG()
	8.3.2.1.7 Method addSAGMembers()
	8.3.2.1.8 Method removeSAGMembers()
	8.3.2.1.9 Method requestConflictInfo()

	8.3.2.2 Interface Class IpClientAppInfoQuery
	8.3.2.2.1 Method describeClientApp()
	8.3.2.2.2 Method listClientApps()
	8.3.2.2.3 Method describeSAG()
	8.3.2.2.4 Method listSAGs()
	8.3.2.2.5 Method listSAGMembers()
	8.3.2.2.6 Method listClientAppMembership()

	8.3.2.3 Interface Class IpServiceProfileManagement
	8.3.2.3.1 Method createServiceProfile()
	8.3.2.3.2 Method modifyServiceProfile()
	8.3.2.3.3 Method deleteServiceProfile()
	8.3.2.3.4 Method assign()
	8.3.2.3.5 Method deassign()
	8.3.2.3.6 Method requestConflictInfo()

	8.3.2.4 Interface Class IpServiceProfileInfoQuery
	8.3.2.4.1 Method listServiceProfiles()
	8.3.2.4.2 Method describeServiceProfile()
	8.3.2.4.3 Method listAssignedMembers()

	8.3.2.5 Interface Class IpServiceContractManagement
	8.3.2.5.1 Method createServiceContract()
	8.3.2.5.2 Method modifyServiceContract()
	8.3.2.5.3 Method deleteServiceContract()

	8.3.2.6 Interface Class IpServiceContractInfoQuery
	8.3.2.6.1 Method describeServiceContract()
	8.3.2.6.2 Method listServiceContracts()
	8.3.2.6.3 Method listServiceProfiles()

	8.3.2.7 Interface Class IpEntOpAccountManagement
	8.3.2.7.1 Method modifyEntOpAccount()
	8.3.2.7.2 Method deleteEntOpAccount()

	8.3.2.8 Interface Class IpEntOpAccountInfoQuery
	8.3.2.8.1 Method describeEntOpAccount()

	8.4 State Transition Diagrams
	8.4.1 Event Notification State Transition Diagrams
	8.4.2 Service Subscription State Transition Diagrams

	9 Framework-to-Service API
	9.1 Sequence Diagrams
	9.1.1 Service Discovery Sequence Diagrams
	9.1.2 Service Registration Sequence Diagrams
	9.1.2.1 New SCF Sub Type Registration
	9.1.2.2 New SCF Registration

	9.1.3 Service Instance Lifecycle Manager Sequence Diagrams
	9.1.3.1 Sign Service Agreement

	9.1.4 Integrity Management Sequence Diagrams
	9.1.4.1 Load Management: Service callback registration and load control
	9.1.4.2 Load Management: Framework callback registration and service load control
	9.1.4.3 Load Management: Client and Service Load Balancing
	9.1.4.4 Heartbeat Management: Start/perform/end heartbeat supervision of the service
	9.1.4.5 Fault Management: Service requests Framework activity test
	9.1.4.6 Fault Management: Service requests Application activity test
	9.1.4.7 Fault Management: Application requests Service activity test
	9.1.4.8 Fault Management: Application detects service is unavailable

	9.1.5 Event Notification Sequence Diagrams

	9.2 Class Diagrams
	9.3 Interface Classes
	9.3.1 Service Registration Interface Classes
	9.3.1.1 Interface Class IpFwServiceRegistration
	9.3.1.1.1 Method registerService()
	9.3.1.1.2 Method announceServiceAvailability()
	9.3.1.1.3 Method unregisterService()
	9.3.1.1.4 Method describeService()
	9.3.1.1.5 Method unannounceService()
	9.3.1.1.6 Method <<new>> registerServiceSubType()

	9.3.2 Service Instance Lifecycle Manager Interface Classes
	9.3.2.1 Interface Class IpServiceInstanceLifecycleManager
	9.3.2.1.1 Method createServiceManager()
	9.3.2.1.2 Method destroyServiceManager()

	9.3.3 Service Discovery Interface Classes
	9.3.3.1 Interface Class IpFwServiceDiscovery
	9.3.3.1.1 Method listServiceTypes()
	9.3.3.1.2 Method describeServiceType()
	9.3.3.1.3 Method discoverService()
	9.3.3.1.4 Method listRegisteredServices()

	9.3.4 Integrity Management Interface Classes
	9.3.4.1 Interface Class IpFwFaultManager
	9.3.4.1.1 Method activityTestReq()
	9.3.4.1.2 Method svcActivityTestRes()
	9.3.4.1.3 Method appUnavailableInd()
	9.3.4.1.4 Method <<deprecated>> genFaultStatsRecordReq()
	9.3.4.1.5 Method <<deprecated>> svcUnavailableInd()
	9.3.4.1.6 Method svcActivityTestErr()
	9.3.4.1.7 Method <<deprecated>> genFaultStatsRecordRes()
	9.3.4.1.8 Method <<deprecated>> genFaultStatsRecordErr()
	9.3.4.1.9 Method <<deprecated>> generateFaultStatsRecordRes()
	9.3.4.1.10 Method <<deprecated>> generateFaultStatsRecordErr()
	9.3.4.1.11 Method svcAvailStatusInd()
	9.3.4.1.12 Method <<new>> generateFaultStatisticsRecordReq()
	9.3.4.1.13 Method <<new>> generateFaultStatisticsRecordRes()
	9.3.4.1.14 Method <<new>> generateFaultStatisticsRecordErr()

	9.3.4.2 Interface Class IpSvcFaultManager
	9.3.4.2.1 Method activityTestRes()
	9.3.4.2.2 Method svcActivityTestReq()
	9.3.4.2.3 Method <<deprecated>> fwFaultReportInd()
	9.3.4.2.4 Method <<deprecated>> fwFaultRecoveryInd()
	9.3.4.2.5 Method <<deprecated>> fwUnavailableInd()
	9.3.4.2.6 Method svcUnavailableInd()
	9.3.4.2.7 Method <<deprecated>> appUnavailableInd()
	9.3.4.2.8 Method <<deprecated>> genFaultStatsRecordRes()
	9.3.4.2.9 Method activityTestErr()
	9.3.4.2.10 Method <<deprecated>> genFaultStatsRecordErr()
	9.3.4.2.11 Method <<deprecated>> genFaultStatsRecordReq()
	9.3.4.2.12 Method <<deprecated>> generateFaultStatsRecordReq()
	9.3.4.2.13 Method appAvailStatusInd()
	9.3.4.2.14 Method <<new>> generateFaultStatisticsRecordRes()
	9.3.4.2.15 Method <<new>> generateFaultStatisticsRecordErr()
	9.3.4.2.16 Method <<new>> generateFaultStatisticsRecordReq()
	9.3.4.2.17 Method <<new>> fwAvailStatusInd()

	9.3.4.3 Interface Class IpFwHeartBeatMgmt
	9.3.4.3.1 Method enableHeartBeat()
	9.3.4.3.2 Method disableHeartBeat()
	9.3.4.3.3 Method changeInterval()

	9.3.4.4 Interface Class IpFwHeartBeat
	9.3.4.4.1 Method pulse()

	9.3.4.5 Interface Class IpSvcHeartBeatMgmt
	9.3.4.5.1 Method enableSvcHeartBeat()
	9.3.4.5.2 Method disableSvcHeartBeat()
	9.3.4.5.3 Method changeInterval()

	9.3.4.6 Interface Class IpSvcHeartBeat
	9.3.4.6.1 Method pulse()

	9.3.4.7 Interface Class IpFwLoadManager
	9.3.4.7.1 Method reportLoad()
	9.3.4.7.2 Method <<deprecated>> queryLoadReq()
	9.3.4.7.3 Method <<deprecated>> querySvcLoadRes()
	9.3.4.7.4 Method <<deprecated>> querySvcLoadErr()
	9.3.4.7.5 Method createLoadLevelNotification()
	9.3.4.7.6 Method destroyLoadLevelNotification()
	9.3.4.7.7 Method suspendNotification()
	9.3.4.7.8 Method resumeNotification()
	9.3.4.7.9 Method <<new>> queryLoadStatsReq()
	9.3.4.7.10 Method <<new>> querySvcLoadStatsRes()
	9.3.4.7.11 Method <<new>> querySvcLoadStatsErr()

	9.3.4.8 Interface Class IpSvcLoadManager
	9.3.4.8.1 Method <<deprecated>> querySvcLoadReq()
	9.3.4.8.2 Method <<deprecated>> queryLoadRes()
	9.3.4.8.3 Method <<deprecated>> queryLoadErr()
	9.3.4.8.4 Method loadLevelNotification()
	9.3.4.8.5 Method suspendNotification()
	9.3.4.8.6 Method resumeNotification()
	9.3.4.8.7 Method createLoadLevelNotification()
	9.3.4.8.8 Method destroyLoadLevelNotification()
	9.3.4.8.9 Method <<new>> querySvcLoadStatsReq()
	9.3.4.8.10 Method <<new>> queryLoadStatsRes()
	9.3.4.8.11 Method <<new>> queryLoadStatsErr()

	9.3.4.9 Interface Class IpFwOAM
	9.3.4.9.1 Method systemDateTimeQuery()

	9.3.4.10 Interface Class IpSvcOAM
	9.3.4.10.1 Method systemDateTimeQuery()

	9.3.5 Event Notification Interface Classes
	9.3.5.1 Interface Class IpFwEventNotification
	9.3.5.1.1 Method createNotification()
	9.3.5.1.2 Method destroyNotification()

	9.3.5.2 Interface Class IpSvcEventNotification
	9.3.5.2.1 Method reportNotification()
	9.3.5.2.2 Method notificationTerminated()

	9.4 State Transition Diagrams
	9.4.1 Service Registration State Transition Diagrams
	9.4.1.1 State Transition Diagrams for IpFwServiceRegistration
	9.4.1.1.1 SCF Registered State
	9.4.1.1.2 SCF Announced State

	9.4.2 Service Instance Lifecycle Manager State Transition Diagrams
	9.4.3 Service Discovery State Transition Diagrams
	9.4.4 Integrity Management State Transition Diagrams
	9.4.4.1 State Transition Diagrams for IpFwLoadManager
	9.4.4.1.1 Idle State
	9.4.4.1.2 Notification Suspended State
	9.4.4.1.3 Active State

	9.4.4.2 State Transition Diagrams for IpFwFaultManager
	9.4.4.2.1 Framework Active State
	9.4.4.2.2 Framework Activity Test State
	9.4.4.2.3 Application Activity Test State
	9.4.4.2.4 Framework Faulty State

	9.4.5 Event Notification State Transition Diagrams

	10 Service Properties
	10.1 Service Super and Sub Types
	10.2 Service Property Types
	10.3 General Service Properties
	10.3.1 Service Name
	10.3.2 Service Version
	10.3.3 Service ID
	10.3.4 Service Description
	10.3.5 Product Name
	10.3.6 Product Version
	10.3.7 <<deprecated>> Supported Interfaces
	10.3.8 Operation Set
	10.3.9 Compatible Service
	10.3.10 Backward Compatibility Level
	10.3.11 Migration Required
	10.3.12 Data Migrated
	10.3.13 Migration Date And Time
	10.3.14 Support for Regular Expressions in Address Range

	11 Data Definitions
	11.1 Common Framework Data Definitions
	11.1.1 TpClientAppID
	11.1.2 TpClientAppIDList
	11.1.3 TpDomainID
	11.1.4 TpDomainIDType
	11.1.5 TpEntOpID
	11.1.6 TpPropertyName
	11.1.7 TpPropertyValue
	11.1.8 TpProperty
	11.1.9 TpPropertyList
	11.1.10 TpEntOpIDList
	11.1.11 TpFwID
	11.1.12 TpService
	11.1.13 TpServiceList
	11.1.14 TpServiceDescription
	11.1.15 TpServiceID
	11.1.16 TpServiceIDList
	11.1.17 TpServiceInstanceID
	11.1.18 TpServiceTypeProperty
	11.1.19 TpServiceTypePropertyList
	11.1.20 TpServiceTypePropertyMode
	11.1.21 TpServicePropertyTypeName
	11.1.22 TpServicePropertyName
	11.1.23 TpServicePropertyNameList
	11.1.24 TpServicePropertyValue
	11.1.25 TpServicePropertyValueList
	11.1.26 TpServiceProperty
	11.1.27 TpServicePropertyList
	11.1.28 TpServiceSupplierID
	11.1.29 TpServiceTypeDescription
	11.1.30 TpServiceTypeName
	11.1.31 TpServiceTypeNameList
	11.1.32 TpSubjectType
	11.1.33 TpServiceTypePropertyValue
	11.1.34 TpServiceTypePropertyValueList

	11.2 Event Notification Data Definitions
	11.2.1 TpFwEventName
	11.2.2 TpFwEventCriteria
	11.2.3 TpFwEventInfo
	11.2.4 TpFwMigrationServiceAvailableInfo
	11.2.5 TpMigrationAdditionalInfo
	11.2.6 TpMigrationAdditionalInfoType
	11.2.7 TpMigrationAdditionalInfoSet
	11.2.8 TpFwAgreementInfo

	11.3 Trust and Security Management Data Definitions
	11.3.1 TpAccessType
	11.3.2 TpAuthType
	11.3.3 TpEncryptionCapability
	11.3.4 TpEncryptionCapabilityList
	11.3.5 TpEndAccessProperties
	11.3.6 TpAuthDomain
	11.3.7 TpInterfaceName
	11.3.8 TpInterfaceNameList
	11.3.9 TpServiceToken
	11.3.10 TpSignatureAndServiceMgr
	11.3.11 TpSigningAlgorithm
	11.3.12 TpSigningAlgorithmCapabilityList
	11.3.13 TpAuthMechanism
	11.3.14 TpAuthMechanismList

	11.4 Integrity Management Data Definitions
	11.4.1 TpActivityTestRes
	11.4.2 TpFaultStatsRecord
	11.4.3 TpFaultStats

	11.4.4 TpFaultStatisticsError
	11.4.5 TpFaultStatsSet
	11.4.6 TpActivityTestID
	11.4.7 TpInterfaceFault
	11.4.8 TpSvcUnavailReason
	11.4.9 TpFwUnavailReason
	11.4.10 TpLoadLevel
	11.4.11 TpLoadThreshold
	11.4.12 TpLoadInitVal
	11.4.13 TpLoadPolicy
	11.4.14 TpLoadStatistic
	11.4.15 TpLoadStatisticList
	11.4.16 TpLoadStatisticData
	11.4.17 TpLoadStatisticEntityID
	11.4.18 TpLoadStatisticEntityType
	11.4.19 TpLoadStatisticInfo
	11.4.20 TpLoadStatisticInfoType
	11.4.21 TpLoadStatisticError
	11.4.22 TpSvcAvailStatusReason
	11.4.23 TpAppAvailStatusReason
	11.4.24 TpLoadTestID
	11.4.25 TpFaultStatsErrorList
	11.4.26 TpFaultReqID
	11.4.27 TpFwAvailStatusReason

	11.5 Service Subscription Data Definitions
	11.5.1 TpPropertyName
	11.5.2 TpPropertyValue
	11.5.3 TpProperty
	11.5.4 TpPropertyList
	11.5.5 TpEntOpProperties
	11.5.6 TpEntOp
	11.5.7 TpServiceContractID
	11.5.8 TpServiceContractIDList
	11.5.9 TpPersonName
	11.5.10 TpPostalAddress
	11.5.11 TpTelephoneNumber
	11.5.12 TpEmail
	11.5.13 TpHomePage
	11.5.14 TpPersonProperties
	11.5.15 TpPerson
	11.5.16 TpServiceStartDate
	11.5.17 TpServiceEndDate
	11.5.18 TpServiceRequestor
	11.5.19 TpBillingContact
	11.5.20 TpServiceSubscriptionProperties
	11.5.21 TpServiceContract
	11.5.22 TpServiceContractDescription
	11.5.23 TpClientAppProperties
	11.5.24 TpClientAppDescription
	11.5.25 TpSagID
	11.5.26 TpSagIDList
	11.5.27 TpSagDescription
	11.5.28 TpSag
	11.5.29 TpServiceProfileID
	11.5.30 TpServiceProfileIDList
	11.5.31 TpServiceProfile
	11.5.32 TpServiceProfileDescription
	11.5.33 TpSagProfilePair
	11.5.34 TpAddSagMembersConflict
	11.5.35 TpAddSagMembersConflictList
	11.5.36 TpAssignSagToServiceProfileConflict
	11.5.37 TpAssignSagToServiceProfileConflictList

	12 Exception Classes

	Annex A (normative): OMG IDL Description of Framework
	Annex B (informative): W3C WSDL Description of Framework
	Annex C (informative): Java TM API Description of the Framework
	Annex D (informative): Contents of 3GPP OSA R6 Framework
	Annex E (informative): Description of the Framework for 3GPP2 cdma2000 networks
	E.1 General Exceptions
	E.2 Specific Exceptions
	E.2.1 Clause 1: Scope
	E.2.2 Clause 2: References
	E.2.3 Clause 3: Definitions and abbreviations
	E.2.4 Clause 4: Overview of the Framework
	E.2.5 Clause 5: The Base Interface Specification
	E.2.6 Clause 6: Framework Access Session API
	E.2.7 Clause 7 Framework-to-Application Sequence Diagrams
	E.2.8 Clause 9: Framework-to-Service API
	E.2.9 Clause 10: Service Properties
	E.2.10 Clause 11: Data Definitions
	E.2.11 Clause 12: Exception Classes
	E.2.12 Annex A (normative): OMG IDL Description of the Framework
	E.2.13 Annex B (informative): W3C WSDL Description of the Framework
	E.2.14 Annex C (informative): Java TM API Description of the Framework

	Annex F (informative): Record of changes
	F.1 Interfaces
	F.1.1 New
	F.1.2 Deprecated
	F.1.3 Removed

	F.2 Methods
	F.2.1 New
	F.2.2 Deprecated
	F.2.3 Modified
	F.2.4 Removed

	F.3 Data Definitions
	F.3.1 New
	F.3.2 Modified
	F.3.3 Removed

	F.4 Service Properties
	F.4.1 New
	F.4.2 Deprecated
	F.4.3 Modified
	F.4.4 Removed

	F.5 Exceptions
	F.5.1 New
	F.5.2 Modified
	F.5.3 Removed

	F.6 Others

	History

