Final draft ETS| ES 203 119-1 V1.2.0 (2015-04)

<& >

ETSI STANDARD

Methods for Testing and Specification (MTS);
The Test Description Language (TDL);
Part 1: Abstract Syntax and Associated Semantics

2 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

Reference
RES/MTS-203119-1v1.2.1

Keywords

language, MBT, methodology, testing, TSS&TP,
TTCN-3, UML

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any
existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the
print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying
and microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2015.
All rights reserved.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPP™and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

ETSI

http://www.etsi.org/standards-search
http://portal.etsi.org/tb/status/status.asp
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

3 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

Contents

Intellectual Property RIGNES.... ..ot e e b e 6
0 L= V1V (o RS 6
MoOdal VErDS TEMINOIOQYccveieeiii ettt ettt e e s re s be e b e sbeeaeesbesreensesaeeaseseesneensesreeneensensens 6
1 o0 0L SR 7
2 S = (= (0= S 7
21 NOFMBLIVE FEFEIEINCEScutieiitiite ittt ettt sttt h ettt e e besb e ek e s bt e bt e ae e e e s bese e besheeb e e ae e s e eean e besaeebenneennennen 7
2.2 INfOrMELIVE FEFEIENCES. ... ettt e b b bbbt e e e e se e b e s bt eb e et e e e e e se e et e saeebeeneennennens 7
3 Definitions and abbreVIGtiONS...........cceeiiie et r e et saeeae e resreeneesreenes 8
31 DEfINITIONS. ...ttt et e et et e e te e e be e be e beeabeeaaesheesbeesbeesbeeseesaeesaeeseenseeaseenseeseesteeteentens 8
3.2 ADDIEVIBLIONS ...ttt ettt ettt et e et e st e et e e testesaeesaeesaeebeeaseeaeeebeeebe e be e beenbeensesaeesaeesreeaaeereenreans 9
4 BaSIC PIINCIPIES. ...ttt b bbb e e e e e et b e na e n e nen e 9
4.1 LAY = E T I] RO SRRUPRTONt 9
4.2 Applicability Of the PreSent OCUMENL..........c.ciceiie ettt sre e e s e e sseereenseeseeeneesseesneas 10
4.3 DS o | @0 1S Ko (== 1 o 1T 10
4.4 DOCUMENT SEFUCKUIE. ...ttt ettt et ae e s e she e see e et e s e eseeeneeaneenne e b e e neennesaneenes 11
4.5 NOLATONAl CONVEIMLIONS. ... ettt sttt ettt et e bt b e s bt bt s st ae e e e s e b se e ekt s bt eheene e e e sbesheebeeneenee e enrenes 12
4.6 (00010100 7= 0o TR TSSO U U P USROS 12
5 (0T WT 0T =0 o TSSO 12
51 OVEIVIBW ...ttt ettt ettt e et e st e e e te e beeteeaeesaeesaeeebeeabeeaseesteeheesbaesbeesbeeseensesaeesaeesseenbeanteenteessesseesteesrnns 12
52 Abstract Syntax and Classifier DESCIIPIION.c.ciireiiirieireri e sn e 13
521 1= 01 0| RSSO 13
522 NBIMEAETEMENT ...ttt e e bbbt b e et e e e e e s et e bt sheeb e e e ea e e e e b e nbesaesbe e e enneneea 14
523 PaCkageall EEIEIMIENLeoiee et e s e et e et e et e e raeere e te e re e reeteeneeneeenes 14
524 0 L= P 14
525 L= 0074 0] oo S 15
526 1000111111 o | TP P PRSPPI 16
527 F N 410701 (o] RSP PR UR PRSPPI 16
528 F N g aTe = o]l Iy o= TP P RSO PSR PROP 17
529 TESIODECHIVE. ...ttt b bbbt bbbt a b et b et b e 17
6 D - SRR 18
6.1 OVEBIVIBWW ...ttt bkt b e E bt ehe e b e s e e st e eE £ e E e b e eh e e h £ e a e e a e e eE e b e AR e eheeb e e Rt ehe e e e s e beebeebesneenne e entas 18
6.2 Data Definition - Abstract Syntax and Classifier DESCIiPLiON...........ccvccvieerieesieeie e e 18
6.2.1 DataRESOUICEM ADPING. eeiteeiteeiteeeecee st e st esteeteestesteesteeste e teetesseesseesaeesaeeseenseaseeaseanseasteeseesseesesnsennsennes 18
6.2.2 MapPabl EDELAETEMENL........cc.ee ettt e s s esae e teeaeesteeseesraente e be e seeteeneeeneennes 19
6.2.3 D= ez = =0T 111/ o o 19
6.2.4 = 1= (= 1Y/ = o o T S 20
6.2.5 Dz k2 1 N o< TP 20
6.2.6 D2 1S =00 SRS 21
6.2.7 SIMPIEDALATYPE ...ttt ettt e b etk b e e h e bt st bt s b e e bt e b e e e bt e b et b e e b et eb e s b e e e bt e b e ne b e nreneenea 21
6.2.8 SIMPIEDEIAINSLANCE ...ttt b et b bbbt b bt bbb e e e b e sb et e bt b e s e st eb e b ese e b e b eneens 21
6.2.9 SUUCIUNEOD BT YE ...tttk sttt b ettt e et b e et b e s e et bt s e et b e se e e eb e sb et ebeseebesb e e ebesbeneenenbennenea 22
6.2.10 Y= 0o SOOI 23
6.2.11 SIrUCTUrEADEIAI NSEANCE. ... ettt sttt b e bbbt e e e b sbe bt eb e s he e st e e et e b e sbesbeeneenne s enres 23
6.2.12 V= g oA =L P 23
6.2.13 s = 111 (= PR PSPPSRSO 24
6.2.14 FOrMAIPAIAMELES ...ttt bbb e s e bt et bt e aeeae e st e st e s e et e ebenbesbesbe e e enteneea 25
6.2.15 W AHBDIE ..ttt bRt R e R b et Rt E et be bR bt e ene 25
6.2.16 X ox o] o OSSR SRS PRORO 25
6.2.17 FFUNCEION ...ttt ettt et b e et e e bee s beesbe e beeaseeaeesaeesaeaebeanseeaseeseesbeesteesbaeteenteensesnnenans 26
6.3 Data Use - Abstract Syntax and Classifier DESCIIPLION.........ccciireirirecirieee e 26
6.3.1 D= 0= SRS SRPRN 26
6.3.2 PAraMELEIBINGING ...cveieeeeiteieeie ettt bt b e et b et b et b e et b et b bbb 27
6.3.3 SEALICDAIAISE ...ttt ettt e bt et e e et e et e e s teesbe e beeaseeaeeeaeeebe e beeateeateebeeabe e beeteeteeaeeaaeeereanbeenreans 28
6.34 DAtAl NSLANCEUSE ...ttt h e sr e e e e e e eae e e R e e e R e e Rt e e sb e e s b e e s be e reenneeneeaneeaes 28

ETSI

7.2.8
7.2.9
7.2.10
7.2.11
7.2.12

8
8.1
8.2
821
8.2.2
8.2.3
8.24
8.25
8.2.6
8.2.7
8.2.8

9

9.1
9.2
921
9.2.2
9.3
931
932
933
9.34
9.35
9.3.6
9.3.7
9.3.8
9.3.9
9.3.10
9.3.11
9.3.12
9.3.13
9.3.14
9.3.15
9.4
94.1
9.4.2
9.4.3
9.4.4

4 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

SPECIAIVAIUBUSE.........oeieectiee ettt ettt et e s s e s te e te e teetesaeesaeesaeeseenteeneenseesseesseeseeeseenneenes 28

N VA4 LU= S 29

F N VAV 4> LU= (@ 0T S 29
OMITV@IUE...... ettt b b h e a et b e b se e b e e Rt eh e e s e e e e b se e bt s heeheeae e s e besbeebesneene e e ennes 29
DT T g ol = 1 = S 30
FUNCLIONCAIL ...t bbbt a et e e e e bt bt eheeb e e he e s e et e ne e ke sbeebe e e ennennens 30
FOrMAIPAraMELEIUSE ...ttt sttt ettt et e st e besaeebeeneene e e e seeseeneeseestesaeeseeneenseneeas 31

RV T2 o 1= LSS 31
LIRS 32
OVEBIVIBW ...ttt bbbttt b e H bt e he e b £ e s e e st e eE e E e bt eh e e h £ e aeea e e e e b e AR e eh e eb e e Rt eh e e s e b e beebeebeeneenee e ennes 32
Abstract Syntax and Classifier DESCIIPLION.ccueiieiecie e se e e e aeeaeesaeenaesreesreas 32
B 110U P PP PRSPPI 32
THMEBLAIDEL ... bbb e bbbt h e h ettt bbb b e ne e nras 33
THMELAIDEIUSE. ...ttt bbb bt s e e e bt eh e eb e s he e s e et e e e b e eb e ebesreene e e et e 33
THMECONSIFBINL ...ttt sttt e ettt eb et e e e ekt sh e eb e e st ek e e e e e e b e sheeb e eheeh e e e e e et e sbeebesreene e e enrenes 33
THMEOPEIBEION.....c.eeeeeteeeeet ettt ettt bbbt bbb b £ b b e e bt b e e e bt e b e b e ae e b e b e st eb e bt nbe b 34
LT T SR 35

(@ =S = o o= PSR 35
207 SR 36
THMEIOPEIELION. ...ttt ettt ettt b et b et b e et b e e e e eb e e s e b e s b e s e b e s e st bt s e a e eb e s b en e ebe e ennens 36
QLIS £ PSR 37

B I L 1= 5] o PSP 37

LI 00= O LU OSSP PR URRS RPN 37
JLIC=S @00 4 To U= 1 o o SR 38
L@ o= OSSR 38
Abstract Syntax and Classifier DESCIIPLION.cciireiiirieireri e sae e 38
L€z 1 I oL TSP PP PR ORP 38
LT L 1 Lo SO APRR 39
COMPONENMETYIE ..ttt ettt e b s e Rt b et e s e s et Resbe e bt e bt e s e s e e e s e reereenesae e e e e eares 39
COMPONENEINSIANCE ...t et r e e e r e e e s e s e sreeresaeeen e enes 40
ComMPONENtINSLANCEROIE.........cecviieteeieeeee ettt e e s tese e s reesaeeseenseesaeeseesseesseenseenseeneennes 40

(€ 1 RS 1= £ 00T ST U PP USSR 41

(@00 107 o1 oo FAUE PSSO U TP PRUSRRTP 41
QL= (o010 U= 1 o o TSSO 42
LIS 00 == 0= VoL SRS 42
L@ = PSSP 42
Test Description - Abstract Syntax and Classifier DESCHPLIONc.coveeriirenieese e 43
TESIDESCITPLION....cteeeeeetee ettt bbb bbb st e bbb e e s e b e e e bt e b b et bbb b 43
BENAVIOUIDESCITPION ...ttt bbbt b bbb bt e b et et b bbb 44
Combined Behaviour - Abstract Syntax and Classifier DESCIipLioncccvevveveeie e 45
BBINAVIOUI ...ttt bbbt b e etk bt e b e e e e e e e e e Rt bt eh e b e e he e R e e e e e e b eheeb e e e ennennen 45

2] oot TP R YO TPRTURTURURPRTIN 46
COMDINEABENAVIOU ...ttt ettt ettt sa e b bt ek e e e et e sb e sb e e bt e st ea e e e et e besreebesneenne s ennes 46
SiNgIeCOMBINEABENAVIOUFccueeiiieiteesieee ettt ettt et te e rte s e s e e saeesaeentees e ssaesseesseenseenseeneennns 46
COMPOUNABENAVIOU ...ttt sttt st eb e st eb e et b e se et b e se st b se e st b e sb e e ebesbe e ebesbennenen 47
BoUNEAL OOPBENAVIOU ...ttt bbb et b et se et b e bbb 47
UNboUuNdedL OOPBENAVIOUc.ciuiieeiiitiieeieete ettt bbbt b e bt b et b e bbb 48
MultipleComMDINEABENAVIOUcoiuiiiirieieie ettt sttt sb e 48
AREINAtTIVEBENAVIOUN ...ttt e ettt e et e seeebeeaees e e e e eeseeseesaeeneeneeneaneenes 48
(@0 o L0 g7=1 1 =T= 7= Y7 o B SO RS 49
Parall &l BENAVIOU ..ottt bbbttt e e et b sb e eb e s aeeae et e neenbesbeeb e e e ennennea 49
(o= o0 7= = T 0= 1Y o U 50
DEfAUITBENAVIOUI ...ttt bbbttt st et e e bt bt eh e st et e e e e e nb e s besbesbe e e entenrea 51

LS 0010 7= Y T U S 51
PEFTOOICBENAVIOUc..eeuiiieeiite ettt bt b e h e bt et e e et s bt she bt et e se e e e sbenbesbesbe e e entennea 52
Atomic Behaviour - Abstract Syntax and Classifier DEeSCIiption...........ccvvueieereesieere e 53
F N (o] 4ot =T= 7= 1Y/ o SRS 53

2 1= SN 53
(0] F TP U PP PSSP 54
VEIAICEASS GNMENT ...ttt bbb b s s bbbt bt bbbt b e et eb e bt e b b 54

ETSI

5 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

945 F S < 1 1o H OSSP PR URORRP 54
9.4.6 110 =1 o o DO TP TTUTPRTURTURURPRRIN 55
9.4.7 1= 0. OSSOSO 57
94.8 TeStDESCIiPlONREFEIEICE.c.veceeeeie ettt e st s ettt r e s te e te e teestesatessaesaeesaeeseenseenseensessenssanseens 58
9.4.9 ComponentiNSLANCEBINAING........ccieiieieeie et e et e s e s e s e e se e be e teesaesseesreesseensenneesnns 59
9.4.10 ACTIONBENAVIOUI ...ttt bttt bbb a e eh e e e e e b e se e eb e sbeeb e e e e e e b e sb e ebesaeene e e eneenes 60
94.11 ACHONREFEIEICE ... ettt ettt ettt et besee et e s aeeseene e e eeeseeebesaeeseeneensessessesaeeneeneeneeneeses 61
9.4.12 1 T Y oo o P RRSS 61
9.4.13 F ST 010 1= o | TSSOSO PSPPSR 61
10 Predefined TDL MOEl INSEANCES........cceeiiiiiee ettt stesneeeeseeeneeneesreeneens 62
10.1 OVEIVIBIN ...ttt bbbttt bbbttt €2 £ bbb bbb h £ £ £ E 4 bbb b bt A et e s e s £ e b e b bbb b e b et e e e e bbbt 62
10.2 Predefined Instances of the 'SimpleDataType EIEMENLccccvieiiieeiece e 62
10.21 BIOOIAIN...... et h e R bRk E e R Rt Rt Rt b e ae e R e e e e Rt b eheebe e e enneneens 62
10.2.2 RV o OSSPSR 62
10.2.3 LI L= o= I 1Y/ oSSR 62
10.3 Predefined Instances of 'SimpleDatal NStance’ EIEMENt ..o 62
10.31 L0 TP PP P UPP PR 62
10.3.2 1= TP 62
10.3.3 PIBSS ... e e a e e R e e e RS E R e e s Re e eae e e e e ra e er e e sh e e s R e are e e 63
10.34 TP 63
10.35 g Texe] o 11 S YO 63
104 Predefined INstances of TIimME EIEMENT ..ot sn 63
104.1 = o0 00 TP SOO U OO 63
105 Predefined Instances of the "FUNCION" EIEMENT ..o 63
10.5.1 OVEIVIBW ...ttt ettt bbbttt £ b bbb b 28 £ £ bbb bbb e e A e 4 e A £t e e b e bbb bbb et e e e bbb enas 63
10.5.2 Functions of Return TYPE 'BOOIEAN'..........cooi ettt et e e e e e teenesnneenes 63
10.5.3 Functions of Return Type TimeLabE TYPE ..o 64
1054 Functions of Return Type of INStance of TIME' ..o e 64
Annex A (informative): Technical Representation of the TDL Meta-Modécceeoevveievvceece e, 65
Annex B (informative): Examples of @ TDL CONCrete SYNTaXccevvereerieerininesie s 66
= 700 R 111 0o (1 (oo OSSPSR 66
B.2 A 3GPP Conformance Examplein Textual SyntaX ..., 66
B.3 AnIMS Interoperability Examplein TexXtual SYNtaX.........coceoeoereirrinineniseseseeeseee e 68
B.4 AnExample Demonstrating TDL Data CONCEPLS.cccviiuieiiiiieiieieceesieeee et esee et 70
B.5 TDL Textua SyntaX REFEIENCE.........ccuiiiiiiriirierieieeeesie sttt sttt be b e e 72
B.5.1 Conventions for the TDLan SyntaX DefiNitioncooeeeeieiiiee e 72
B.5.2 TDL Textual Syntax EBNF ProduCtion RUIEScoiiiiiiicinierecereeeese ettt ebe e 72
Annex C (informative): BiblOGrADNYccviieiiiicie sttt sttt st st b e sre e sne s 77
L T (TSP P PR URPRORPRPRORN 78

ETSI

6 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards', which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web

server (http://ipr.etsi.org).

Pursuant to the ETSI IPR Palicy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given asto the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

Thisfinal draft ETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and
Specification (MTS), and is now submitted for the ETSI standards Membership Approval Procedure.

The present document is part 1 of a multi-part deliverable covering the Test Description Language as identified below:
Part 1: " Abstract Syntax and Associated Semantics';
Part 2. "Graphical Syntax";
Part3: "Exchange Format";

Part 4. "Structured Test Objective Specification (Extension)".

Modal verbs terminology

In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" areto beinterpreted as described in clause 3.2 of the ETS| Drafting Rules (Verba forms for the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

ETSI

http://webapp.etsi.org/IPR/home.asp
http://portal.etsi.org/Help/editHelp!/Howtostart/ETSIDraftingRules.aspx

7 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

1 Scope

The present document specifies the abstract syntax of the Test Description Language (TDL) in the form of a
meta-model based on the OM G Meta Object Facility (MOF) [1]. It also specifies the semantics of the individual
elements of the TDL meta-model. The intended use of the present document is to serve as the basis for the devel opment
of TDL concrete syntaxes aimed at TDL users and to enable TDL tools such as documentation generators, specification
analyzers and code generators.

The specification of concrete syntaxes for TDL is outside the scope of the present document. However, for illustrative
purposes, an example of a possible textual syntax together with its application on some existing ETSI test descriptions
are provided.

2 References

2.1 Normative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

NOTE: While any hyperlinksincluded in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are necessary for the application of the present document.
[1] "OMG Meta Object Facility (MOF) Core Specification V2.4.1", formal/2013-06-01.
NOTE: Available at http://www.omg.org/spec/MOF/2.4.1/.

[2] "OMG Unified Modeling Language™ (OMG UML) Superstructure, Version 2.4.1",
formal/2011-08-06.

NOTE: Available at http://www.omg.org/spec/UML/2.4.1/.

[3] ETSI ES203 119-2 (V1.1.0): "Methods for Testing and Specification (MTS); The Test
Description Language (TDL); Part 2: Graphical Syntax".

[4] ETSI ES 203 119-3 (V1.1.0): "Methods for Testing and Specification (MTS); The Test
Description Language (TDL); Part 3: Exchange Format".

[5] ETSI ES 203 119-4 (V1.1.0): "Methods for Testing and Specification (MTS); The Test
Description Language (TDL); Part 4: Structured Test Objective Specification (Extension)".

[6] I SO/IEC 9646-1:1994: "Information technology - Open Systems | nterconnection -- Conformance
testing methodology and framework -- Part 1. General concepts’.

2.2 Informative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinksincluded in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

ETSI

http://docbox.etsi.org/Reference
http://www.omg.org/spec/MOF/2.4.1/
http://www.omg.org/spec/UML/2.4.1/

8 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] ETSI ES 201 873-1 (V4.5.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 1: TTCN-3 Core Language”.

[1.2] ETSI TS 136 523-1 (V10.2.0): "LTE; Evolved Universal Terrestrial Radio Access (E-UTRA) and
Evolved Packet Core (EPC); User Equipment (UE) conformance specification; Part 1. Protocol
conformance specification (3GPP TS 36.523-1 version 10.2.0 Release 10)".

[i.3] ETSI TS 186 011-2: "Core Network and Interoperability Testing (INT); IMS NNI Interoperability
Test Specifications (3GPP Release 10); Part 2: Test descriptions for IMS NNI Interoperability”.

3 Definitions and abbreviations
3.1 Definitions

For the purposes of the present document, the following terms and definitions apply:
abstract syntax: graph structure representing a TDL specification in an independent form of any particular encoding
action: any procedure carried out by a component of atest configuration or an actor during test execution

actor: abstraction of entities outside atest configuration that interact directly with the components of that test
configuration

component: active element of atest configuration that is either in the role tester or system under test

concr ete syntax: particular representation of a TDL specification, encoded in a textual, graphical, tabular or any other
format suitable for the users of this language

interaction: any form of communication between components that is accompanied with an exchange of data
meta-model: modelling elements representing the abstract syntax of alanguage

system under test (SUT): role of acomponent within atest configuration whose behaviour is validated when executing
atest description

TDL model: instance of the TDL meta-model
TDL specification: representation of a TDL model given in a concrete syntax

test configuration: specification of a set of components that contains at least one tester component and one system
under test component plus their interconnections via gates and connections

test description: specification of test behaviour that runs on a given test configuration
test verdict: result from executing atest description

tester: role of a component within atest configuration that controls the execution of atest description against the
components in the role system under test

tester-input event: event that occurs at a component in the role tester and determines the subsequent behaviour of this
tester component

<undefined>: semantical concept denoting an undefined data value

ETSI

9 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

ADT Abstract Data Type
EBNF Extended Backus-Naur Form
IEC International Electrotechnical Commission
IMS IP Multimedia Subsystem
SO International Organization for Standardization
MBT Model-Based Testing
MOF Meta-Object Facility
OMG Object Management Group®
SUT System Under Test
TDD Test Driven Development
TDL Test Description Language
TTCN-3 Testing and Test Control Notation version 3
UML Unified Modelling Language
URI Unified Resource Identifier
UTP UML Testing Profile
XML eXtensible Markup Language
4 Basic Principles

4.1 What is TDL?

TDL isalanguage that supports the design and documentation of formal test descriptions that can be the basis for the
implementation of executable testsin a given test framework, such as TTCN-3 [i.1]. Application areas of TDL that will
benefit from this homogeneous approach to the test design phase include:

. Manual design of test descriptions from atest purpose specification, user storiesin test driven development or
other sources.

o Representation of test descriptions derived from other sources such as MBT test generation tools, system
simulators, or test execution traces from test runs.

TDL supports the design of black-box tests for distributed, concurrent real-time systems. It is applicable to awide range
of testsincluding conformance tests, interoperability tests, tests of real-time properties and security tests based on attack
traces.

TDL clearly separates the specification of tests from their implementation by providing an abstraction level that lets
users of TDL focus on the task of describing tests that cover the given test objectives rather than getting involved in
implementing these tests to ensure their fault detection capabilities onto an execution framework.

TDL isdesigned to support different abstraction levels of test specification. On one hand, the concrete syntax of the
TDL meta-model can hide meta-model elements that are not needed for a declarative (more abstract) style of specifying
test descriptions. For example, a declarative test description could work with the time operations wait and quiescence
instead of explicit timers and operations on timers (see clause 9).

On the other hand, an imperative (less abstract or refined) style of atest description supported by a dedicated concrete
syntax could provide additional means necessary to derive executable test descriptions from declarative test
descriptions. For example, an imperative test description could include timers and timer operations necessary to
implement the reception of SUT output at atester component and further details. It is expected that most details of a
refined, imperative test description can be generated automatically from a declarative test description. Supporting
different levels of abstraction by a single TDL meta-model offers the possibility of working within a single language
and using the sametools, simplifying the test development process that way.

ETSI

10 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

4.2 Applicability of the present document

The TDL language design is centred around the three separate concepts of abstract syntax, concrete syntax, and

semantics (see figure 4.1). The present document covers the TDL abstract syntax given as the TDL meta-model and its
associated semantics.

Concrete Syntax

=
(14 (TH 2 x
QI X || gE
(o} — - <SS
- =) [m] g
A - ol n
a) = Legend:
-
TDL-TO: Structured Test Objective
Language, part4
TDL-GR: Graphical Syntax, part2
TDL-MM TDL-XF: ExchangeFormat, part3
TDL-MM: Abstract Syntax and
Associated Semantics, part 1
Abstract Syntax

Figure 4.1: The TDL standards and their relation

The TDL concrete syntax is application or domain specific and is not specified in the present document. However, for

information, see annex B for an example of a concrete textual syntax. A proposed concrete graphical syntax can be
foundin[3].

The semantics of the meta-model elements are captured in the individual clauses describing the meta-model elements
defined in the present document.

User-defined - TDLModel TDL Test
TDL Editor P Analyzer Generator

ﬂ\ A

()

Jr / .
TDL-GR TDLDocument TestCode
Editor Generator Generator

Figure 4.2: A scalable TDL tool architecture

The TDL abstract syntax (TDL meta-model) and semantics defined in the present document serve as the basis for the
development of TDL tools such as editors for TDL specificationsin graphical, textual or other forms of concrete
syntaxes, analyzers of TDL specifications that check the consistency of TDL specifications, test documentation
generators, and test code generators to derive executable tests. The TDL exchange format [4] serves as the connector to
hold all TDL tools together (see figure 4.2).

4.3 Design Considerations

TDL makes a clear distinction between concrete syntax that is adjustable to different application domains and a
common abstract syntax, which a concrete syntax is mapped to (an example concrete syntax can be found in annex B).
The definition of the abstract syntax for a TDL specification plays the key role in offering interchangeability and
unambiguous semantics of test descriptions. It is defined in the present document in terms of a MOF meta-model.

ETSI

11 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

A TDL specification consists of the following magjor parts that are also reflected in the meta-model:

e Atest configuration consisting of at least one tester and at least one SUT component and connections among
them reflecting the test environment.

. A set of test descriptions, each of them describing one test scenario based on interactions between the
components of a given test configuration and actions of components or actors. The control flow of atest
description is expressed in terms of sequential, alternative, parallel, iterative, etc. behaviour.

. A set of data definitions that are used in interactions and as parameters of test description invocations.
o Behavioural elements used in test descriptions that operate on time.
Using these major ingredients, a TDL specification is abstract in the following sense:

. Interactions between tester and SUT components of atest configuration are considered to be atomic and not
detailed further. For example, an interaction can represent a message exchange, a remote function/procedure
call, or a shared variable access.

e All behavioural elements within atest description are totally ordered, unlessit is specified otherwise. That is,
thereis an implicit synchronization mechanism assumed to exist between the components of atest
configuration.

e Thebehaviour of atest description represents the expected, foreseen behaviour of atest scenario assuming an
implicit test verdict mechanism, if it is not specified otherwise. If the specified behaviour of atest description
is executed, the 'pass test verdict is assumed. Any deviation from this expected behaviour is considered to be a
failure of the SUT, therefore the 'fail’ verdict is assumed.

e Anexplicit verdict assignment can be used if in a certain case thereis a need to override the implicit verdict
setting mechanism (e.g. to assign 'inconclusive' or any user-defined verdict values).

e The dataexchanged viainteractions and used in parameters of test descriptions are represented as values of an
abstract data type without further details of their underlying semantics, which is implementation-specific.

e Thereisno assumption about verdict arbitration, which isimplementation-specific. If a deviation from the
specified expected behaviour is detected, the subsequent behaviour becomes undefined. In this case an
implementation might stop executing the TDL specification.

A TDL specification represents a closed system of tester and SUT components. That is, each interaction of atest
description refers to one source component and at least one target component that are part of the underlying test
configuration a test description runs on. The actions of the actors (entities of the environment of the given test
configuration) can be indicated in an informal way.

Timein TDL isconsidered to be global and progressesin discrete quantities of arbitrary granularity. Progressintimeis
expressed as a monotonically increasing function. Time starts with the execution of the first (‘base’) test description
being invoked.

TDL can be extended with tool, application, or framework specific information by means of annotations.

4.4 Document Structure

The present document defines the TDL abstract syntax expressed as a MOF meta-model. The TDL meta-model offers
language features to express.

. Fundamental concepts such as structuring of TDL specifications and tracing of test objectives to test
descriptions (clause 5).

e Abstract representations of data used in test descriptions (clause 6).
. Concepts of time, time constraints, and timers as well astheir related operations (clause 7).
e Test configurations, on which test descriptions are executed (clause 8).

e A number of behavioural operationsto specify the control flow of test descriptions (clause 9).

ETSI

12 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

. A set of predefined instances of the TDL meta-model for test verdict, time, datatypes and functions over them
that can be extended further by a user (clause 10).

4.5 Notational Conventions

In the present document, the following notational conventions are applied:

‘element’ The name of an element or of the property of an element from the meta-model, e.g. the name of a
meta-class.
«metaclass» Indicates an element of the meta-model, which corresponds to a node of the abstract syntax, i.e. an

intermediate node if the element nameis put initalic or aterminal nodeif givenin plain text.
«Enumeration» Denotes an enumeration type.

/ name The value with this name of a property or relation is derived from other sources within the meta-
model.

[1] Multiplicity of 1, i.e. there exists exactly one element of the property or relation.

[0..1] Multiplicity of O or 1, i.e. there exists an optional element of the property or relation.

[*] or [0..%] Multiplicity of O to many, i.e. there exists a possibly empty set of elements of the property or
relation.

[1.%] Multiplicity of one to many, i.e. there exists a non-empty set of elements of the property or
relation.

{unique} All elements contained in a set of elements shall be unique.

{ ordered} All elements contained in a set of elements shall be ordered, i.e. the elements form alist.

{readOnly} The element can be accessed read-only, i.e. cannot be modified. Used for derived properties.

Furthermore, the definitions and notations from the MOF 2 core framework [1] and the UML class diagram
definition [2] apply.

4.6 Conformance

For an implementation claiming to conform to this version of the TDL meta-model, all features specified in the present
document shall be implemented consistently with the requirements given in the present document. The electronic
attachment in annex A can serve as a starting point for a TDL meta-model implementation conforming to the present
document.

5 Foundation

5.1 Overview

The 'Foundation’ package specifies the fundamental concepts of the TDL meta-model. All other features of the TDL
meta-model rely on the concepts defined in this 'Foundation' package.

ETSI

13 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

5.2 Abstract Syntax and Classifier Description
5.2.1 Element

«metaclass»
E Element 4

name: String [0..1]

[

«metaclass»
Q NamedElement

/ qualifiedName: String [1] {readOnly}

R

«metaclass» packagedElement [*] {unique} «metaclass»

E Package > E Packageableflement

-

nestedPackage [*] {unique}

importedElement][*] {unique}
importedPackage [1]

import [*] {unique}

«metaclass»
lj' Elementimport

Figure 5.1: Foundational language concepts

Semantics

An 'Element’ represents any constituent of a TDL model. It is the super-class of all other meta classes. It provides the
ability to add comments and annotations. An 'Element' may contain any number of ‘Comment's and 'Annotation's.

Generalization
There is no generalization specified.
Properties

. name: String [0..1]
The name of the 'Element’. It can contain any character, including white-spaces. Having no name specified is
different from an empty name (which is represented by an empty string).

. comment: Comment [0..*] { unique}
The contained set of ‘Comment's attached to the 'Element’.

. annotation: AnnotationType [0..*] { unique}
The contained set of 'Annotation's attached to the 'Element’.

Constraints

There are no constraints specified.

ETSI

14 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

52.2 NamedElement

Semantics
A 'NamedElement' represents any element of a TDL model that mandatorily has a name and a qualified name.

The 'qualifiedName' is a compound name derived from the directly and all indirectly enclosing parent 'Package's by
concatenating the names of each 'Package’. As a separator between the segments of a 'qualifiedName’ the string "' shall
be used. The name of the root 'Package' that (transitively) owns the 'PackageableElement’ shall always constitute the
first segment of the 'qualifiedName'.

Generalization
. Element
Properties

. / qualifiedName: String [1] {readOnly}
A derived property that represents the unique name of an element within a TDL model.

Constraints

. Mandatory name
A 'NamedElement' shall have the 'name' property set and the 'name’ shall be not an empty String.

. Distinguishable qualified names
All qualified names of instances of the same meta-class shall be distinguishable withina TDL model.

NOTE: Itisup to the concrete syntax definition and tooling to resolve any name clashes between instances of the
same meta-classin the qualified name.

5.2.3 PackageableElement
Semantics
A 'PackageableElement’ denotes elements of a TDL model that can be contained in a 'Package’.

The visibility of a'PackageableElement’ is restricted to the 'Package’ in which it is directly contained. A
'Packageabl eElement’ may be imported into other 'Package's by using 'Elementlmport’. A 'PackageableElement’ has no
means to actively increase its visibility.

Generalization

o NamedElement
Properties
There are no properties specified.
Constraints

There are no constraints specified.

5.2.4 Package

Semantics

A 'Package’ represents a container for 'PackageableElement's. A TDL model contains at least one 'Package), i.e. the root
'Package’ of the TDL model. A 'Package’ may contain any number of 'PackageableElement's, including other 'Package's.

A 'Package’ constitutes a scope of visibility for its contained ‘PackageableElement's. A 'PackageableElement’ is only
accessible within its owning 'Package’ and within any 'Package’ that directly imports it. '‘Packageabl eElement's that are
defined within a nested 'Package’ are not visible from within its containing 'Package’.

ETSI

15 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

A 'Package’ may import any 'PackageableElement’ from any other '‘Package’ by means of 'Elementimport’. By importing
a 'PackageableElement’, the imported 'PackageableElement’ becomes visible and accessible within the importing
'Package’. Cyclic imports of packages are not permitted.
Generalization

. NamedElement
Properties

e packagedElement: PackageableElement [0..*] {unique}
The set of 'PackageableElement's that are directly contained in the 'Package’.

. import: Elementimport [0..*] {unique}
The contained set of import declarations.

. nestedPackage: Package [0..*] { unique}
The contained set of 'Package’s contained within this ‘Package’.

Constraints

. No cyclicimports
A 'Package’ shall not import itself directly or indirectly.

5.25 Elementimport
Semantics

An 'Elementimport' allows importing 'PackageableElement's from arbitrary 'Package's into the scope of an importing
'Package’. By establishing an import, the imported 'PackageableElement's become accessible within the importing
'‘Package’.

Only those 'Packageabl eElement's can be imported via 'ElementImport' that are directly contained in the exporting
'Package’. That is, theimport of 'PackageableElement'sis not transitive. After the import, al the imported elements
become accessible within the importing 'Package’. The set of imported elementsis declared via the 'importedElement’
property.

If the set 'importedElement’ is empty, it implies that al elements of the importedPackage’ are imported.
Generalization

. Element
Properties

. importedPackage: Package [1]
Reference to the 'Package’ whose 'Packageabl eElement's are imported.

. importedElement: PackageableElement [0..*] { unique}
A set of 'PackageableElement's that are imported into the context 'Package’ via this 'Elementl mport'.

Constraints

. Consistency of imported elements
All imported 'Packageabl eElement's referenced by an 'Elementlmport’ shall be directly owned by the imported
'‘Package’.

ETSI

comment [*] {unique}

5.2.6

Semantics

‘Comment's may be attached to 'Element’s for documentation or for other informative purposes. Any 'Element’, except
for a’Comment’ or an ‘Annotation’, may contain any number of '‘Comment's. The contents of ‘Comment's shall not be
used for adding additional semanticsto elements of a TDL model.

Generalization
. Element

Properties

. commentedElement: Element [1]

16

commentedElement [1]

e

Element

<

«metaclass»

£ Comment

body: String [1]

Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

annotatedElement [1]

annotation [*] {unique}

_«metaclass»
g Annotation

«metaclass»
E TestObjective

value: String [0..1]

objectiveURL: String [*]
description: String [0..1]

key [1]

«metaclass»
= AnnotationType

—)

PackageableElement

Figure 5.2: Miscellaneous elements

Comment

The 'Element’ to which the 'Comment' i s attached.

e body: String [1]
The content of the 'Comment'.

Constraints

° No nested comments
A 'Comment’ shall not contain ‘Comment's.

. No annotationsto comments
A 'Comment' shall not contain 'Annotation's.

5.2.7

Semantics

An'Annotation’ is a means to attach user or tool specific semantics to any 'Element’ of a TDL model, except to a
‘Comment’ and an 'Annotation’ itself. An 'Annotation’ represents a pair of a (‘key’, 'value’) properties. Whereas the 'key'
is mandatory for each 'Annotation’, the 'value' might be left empty. This depends on the nature of the Annotation.

Generalization

. Element

Annotation

ETSI

17 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

Properties

e annotatedElement: Element [1]
The 'Element' to which the 'Annotation' is attached.

. key: AnnotationType [1]
Reference to the 'AnnotationType'.

e vaue String [0..1]
The 'value' mapped to the 'key'.

Constraints

° No nested annotations
An 'Annotation’ shall not contain 'Annotation's.

° No commentsto annotations
An 'Annotation’ shall not contain '‘Comment's.

5.2.8 AnnotationType
Semantics

An'AnnotationType' is used to define the 'key' of an 'Annotation'. It can represent any kind of user or tool specific
semantics.

Generalization

. Packageabl eElement
Properties
There are no properties specified.
Constraints

There are no constraints specified.

5.2.9 TestObjective

Semantics

A 'TestObjective' specifies the reason for designing either a'TestDescription' or a particular '‘Behaviour' of a
"TestDescription'. A 'TestObjective' may contain a 'description’ directly and/or refer to an external resource for further
information about the objective.

The 'description’ of a TestObjective' should be in natural language, however, it may be provided as structured
(i.e. machine-readable) format. In the latter case, a structured test objective specification language is provided in ETSI
ES 203 119-4 [5].

Generalization
o Packageabl eElement
Properties

. description: String [0..1]
A textual description of the "TestObjective'.

e objectiveURI: String [0..*] {unique}
A set of URIslocating resources that provide further information about the 'TestObjective'. These resources
aretypically external to aTDL model, e.g. part of requirements specifications or a dedicated test objective
specification.

ETSI

18 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

Constraints

There are no constraints specified.

6 Data

6.1 Overview

The 'Data package describes all meta-model elements required to specify dataand their usein a TDL model. It
introduces the foundation for data types and data instances and distinguishes between simple data types and structured
data types. The package a so introduces parameters and variables and deals with the definition of actions and functions.
It makes a clear separation between the definition of data types and data instances (clause 6.2) and their usein
expressions (clause 6.3). The following main elements are described in this package:

. Elements to define data types and data instances, actions and functions, parameters and variables.
. Elements to make use of data elementsin test descriptions, e.g. in guard conditions or datain interactions.

. Elements to allow the mapping of data elements (types, instances, actions, functions) to their concrete
representations in an underlying runtime system.

For the purpose of defining the semantics of some data related meta-model elements, the semantical concept
<undefined> is introduced denoting an undefined data value in a TDL model. The semantical concept <undefined> has
no syntactical representation.

6.2 Data Definition - Abstract Syntax and Classifier Description
6.2.1 DataResourceMapping

(Foundation)
PackageableElement q

«metaclass» «metaclass»

= DataElementMapping mappableDataElement [l,L é MappableDataElement
elementURL: String [0..1]

dataResourceMapping [1]

«metaclass»

__ «metaclass» parameterMapping [*] {unique} 8 ParameterMapping
0 s ;

i DataResourceMapping parameterURL: String [0..1]

resourceURL String [0..1]
parameter [1]

(Foundation)
Element

Parameter

Figure 6.1: Data mapping concepts

Semantics

A 'DataResourceMapping' specifies aresource, in which the platform-specific representation of a'DataType' or a
'‘Datal nstance), i.e. their representation in a concrete data type system, islocated as identified in the 'resourceURI’
property. The 'DataResourceMapping’ thus connects a TDL model with resources and artefacts that are outside of the
scope of TDL.

ETSI

19 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

Generalization
. Packageabl eElement
Properties

. resourceURI: String [0..1]
Location of the resource that contains concrete data definitions. The location shall resolve to an unambiguous
name.

Constraints

There are no constraints specified.

6.2.2 MappableDataElement
Semantics

A 'MappableDataElement' is the super-class of all data-related elements that can be mapped to a platform-specific
representation by using a'DataResourceMapping' and a 'DataElementM apping'. Each 'MappableDataElement' can be
mapped to any number of concrete representations located in different resources. However the same
‘MappableDataElement’ shall not be mapped more than once to different concrete representations in the same
'‘DataResourceM apping'.

Generalization

. Packageabl eElement
Properties
There are no properties specified.
Constraints

There are no constraints specified.

6.2.3 DataElementMapping
Semantics

A 'DataElementMapping' specifies the location of a single concrete data definition within an externally identified
resource (see clause 6.2.1). The location of the concrete data element within the external resource is described by means
of the 'elementURI" property. A 'DataElementMapping’ maps arbitrary data elementsin a TDL model to their platform-
specific counterparts.

If the 'DataElementMapping’ refersto a'StructuredDataType', an ‘Action’, or a'Function’, it is possible to map specific
'‘Members' (in the first case) or 'Parameters’ (in the other cases) to concrete data representations explicitly.

Generalization
. Packageabl eElement
Properties

e elementURI: String [0..1]
Location of a concrete data element within the resource referred in the referenced 'DataResourceMapping'’. The
location shall resolve to an unambiguous name within the resource.

. dataResourceM apping: DataResourceMapping [1]
The 'DataResourceM apping' that specifies the URI of the external resource containing the concrete data
element definitions.

. mappableDataElement: MappableDataElement [1]
Refersto a'MappableDataElement' that is mapped to its platform-specific counterpart identified in the
‘elementURI".

ETSI

20 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

. parameterMapping: ParameterMapping [0..*] { unique}
The set of 'Member's of a 'StructuredDataType' or 'Formal Parameter's of an 'Action’ or 'Function' that are
mapped.

Constraints

. Restricted use of parameter mapping
A set of 'ParameterMapping's shall only be provided if ‘mappableDataElement’ refersto a
'StructuredDataType', an 'Action’ or a'Function’ definition.

6.2.4 ParameterMapping

Semantics

A 'ParameterMapping' is used to provide a mapping of ‘Member's of a 'StructuredDataType' or 'Formal Parameter's of an
‘Action’ or a'Function'. It represents the location of a single concrete data element within the resource according to the
'‘DataResourceM apping’, which the containing 'DataElementMapping’ of the '‘ParameterM apping’ refers to. The location
within the resource is described by means of the ‘'memberURI' property.

Generalization
. Element
Properties

e memberURI: String [0..1]
Location of a concrete data element within the resource referred indirectly viathe 'DataElementMapping' in
the 'DataResourceMapping'. The location shall resolve to an unambiguous name within the resource.

. parameter: Parameter [1]
Refers to the 'Parameter' (‘Member' of a'StructuredDataType' or 'Formal Parameter' of an 'Action’ or a
'Function’) to be mapped to a concrete data representation.

Constraints

There are no constraints specified.

— MappableDataklement (}————

_«metaclass» __ametaclass»
= DataType dataType [1] k= Datalnstance
_ «metaclass» «metaclass»
= SimpleDataType = SimpleDatalnstance

Figure 6.2: Basic data concepts and simple data

6.2.5 DataType

Semantics
A 'DataType' is the super-class of all type-related concepts. It is considered as abstract in several dimensions:

1) Itisan abstract meta-classthat is concretized by 'SimpleDataType' and 'StructuredDataType'.

ETSI

21 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)
2) Itisabstract regarding its structure (simple or structured), semantics and operations that can operate on it. It,
thus, shall be considered as an abstract data type (ADT).
3) Itisabstract with respect to its manifestation in a concrete data type system.

A 'DataType' is expected to be mapped to a concrete data type definition contained in aresource, which is external to
the TDL model.

Generalization

. M appableDataElement
Properties
There are no properties specified.
Constraints

There are no constraints specified.

6.2.6 Datalnstance
Semantics
A 'Datal nstance' represents a symbolic value of a'DataType'.
Generalization
0 MappableDataElement
Properties

e dataType DataType[1]
Refers to the 'DataType', which this 'Datal nstance' is a value of.

Constraints

There are no constraints specified.

6.2.7 SimpleDataType
Semantics

A 'SimpleDataType' represents a 'DataType' that has no internal structure. It resembles the semantics of ordinary
primitive types from programming languages such as Integer or Boolean.

A set of predefined 'SimpleDataType'sis provided by TDL by default (see clause 10.2).
Generalization
. DataTlype
Properties
There are no properties specified.
Constraints
There are no constraints specified.
6.2.8 SimpleDatalnstance
Semantics
A 'SimpleDatal nstance' represents a symbolic value of a'SimpleDataType'. This symbolic value can denote either one

specific value or a set of valuesin a concrete type system (the latter is similar to the notion of templatein TTCN-3, see
clause 15in [i.1]).

ETSI

22 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

EXAMPLE: Assuming the 'SimpleDataT ype' Integer, 'SimpleDatal nstance's of this type can be specified as
Strings. "0", "1","2", "max", "[-10..10]" etc. These symbolic values need to be mapped to concrete
definitions of an underlying concrete type system to convey a specific meaning.

Generalization

. Datal nstance
Properties
There are no properties specified.
Constraints

. SimpleDatal nstance shall refer to SimpleDataType
The inherited reference 'dataType' from 'Datal nstance' shall refer to instances of 'SimpleDataType' solely.

Datalnstance

DataType
«metaclass» «metaclass»
= StructuredDataType E StructuredDatalnstance

memberAssignment [*] {ordered, unique}

member [*] {ordered, unique}

«metaclass» L< member [1] «metaclass»
é Member E MemberAssignment
isOptional: Boolean [1] = false

memberSpec [1]

(Foundation)
Element

Parameter StaticDataUse

Figure 6.3: Structured data type and instance

6.2.9 StructuredDataType

Semantics

A 'StructuredDataType' represents a 'DataType' with an internal structure expressed by the concepts of 'Member's. It
resembles the semantics of acomplex datatypein XML Schema, arecord in TTCN-3 or aclassin Java.

Generalization
. DataTlype
Properties

. member: Member [0..*] { ordered, unique}
The contained ordered set of individual elements of the 'StructuredDataT ype'.

Constraints

There are no constraints specified.

ETSI

23 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

6.2.10 Member

Semantics

A 'Member' specifies asingle part of the internal structure of a'StructuredDataType'. It can be an optional or a
mandatory part. By default, all 'Member's of a'StructuredDataType' are mandatory.

An optional member of a structured data type has an impact on the use of 'StructuredDatal nstance's of this type (see
clause 6.3.1).

Generalization
. Parameter
Properties

. isOptional: Boolean [1] = false
If set to 'true’ it indicates that the member is optional within the containing 'StructuredDataType'.

Constraints

. Different member namesin a structured data type
All 'Member' names of a 'StructuredDataType' shall be distinguishable.

6.2.11 StructuredDatalnstance
Semantics

A 'StructuredDatal nstance' represents a symbolic value of a'StructuredDataType'. It contains 'MemberAssignment's for
none, some or all 'Member's of the 'StructuredDataType'. This alowsinitializing the 'Member's with symbolic val ues.

If a'StructuredDatal nstance' has no ‘MemberAssignment’ for a given 'Member' of its 'StructuredDataType', it is
assumed that the 'Member' has the value <undefined> assigned to it.

Generalization
. Datal nstance
Properties

. memberAssignment: MemberAssignment [0..*] { ordered, unique}
Refers to the contained list of 'MemberAssignment's, which are used to assign values to 'Member's.

Constraints

. StructuredDatal nstance shall refer to StructuredDataType
The inherited reference 'dataType' from 'Datal nstance' shall refer to instances of 'StructuredDataType' solely.

6.2.12 MemberAssignment
Semantics
A 'MemberAssignment’ specifies the assignment of a symbolic value to a‘'Member' of a'StructuredDataType'.
Generalization
o Element
Properties

. member: Member [1]
Refers to the 'Member' of the 'StructuredDataType' definition that is referenced via the 'dataType' property of
the 'StructuredDatal nstance'.

ETSI

24 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

. memberSpec: StaticDatalUse [1]
The contained 'StaticDatalUse' specification for the referenced 'Member'. The symbolic value of this
‘StaticDataUse' will be assigned to the 'Member'.

Constraints

. 'Member' of the'StructuredDataType'
The'Member' shall be referenced in the 'StructuredDataType' that the 'StructuredDatal nstance', which contains
this 'MemberAssignment’, refersto.

. Type of a'member Spec’ and ‘"M ember' shall coincide
The 'DataType' of the 'StaticDatalUse' of 'memberSpec’ shall coincide with the 'DataType' of the 'Member' of
the 'MemberAssignment'.

o Restricted use of 'OmitValue' for optional ‘M ember's only
A non-optiona 'Member' shall have a 'StaticDataUse’ specification assigned to it that is different from

'‘OmitValue'.
turnT' 1 dataType [1]
returnType [Baialype yp
dataType [1]
(Foundation)
NamedElement
«metaclass» «metaclass»
£ Function Q Parameter
‘L formalParameter [*] {ordered, unique} T
«metaclass» -~ e - «metaclass» «metaclass»
E Action E FormalParameter E Variable
body: String [0..1]

} l

(Foundation)
Element

MappableDataElement

Figure 6.4: Action, function, parameter and variable

6.2.13 Parameter

Semantics

A 'Parameter’ is used to define some common operations over 'Formal Parameter' and ‘M ember' such as data mapping
and assignments.

Generalization
. Element
Properties

e dataType DataType[1]
Refers to the 'DataType', which the 'Parameter’ can be bound to.

Constraints

There are no constraints specified.

ETSI

25 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

6.2.14 FormalParameter
Semantics
A 'Formal Parameter' represents the concept of aformal parameter as known from programming languages.
Generalization
. Parameter
Properties
There are no properties specified.
Constraints

There are no constraints specified.

6.2.15 Variable

Semantics

A 'Variable' is used to denote a component-wide local variable. When it is defined, which occurs when the
‘Componentlnstance' that is assumed to hold this variable is created (see clause 8.2.4), the 'Variable' has the value
<undefined> assigned to it.

Generalization
. NamedElement
Properties

e dataType DataType[1]
Refers to the 'DataType' of 'Datal nstance's, which the 'Variable' shall be bound to.

Constraints

There are no constraints specified.

6.2.16 Action

Semantics

An'Action’ is used to specify any procedure, e.g. alocal computation, physical setup or manual task. The interpretation
of the'Action' is outside the scope of TDL. That is, its semantics is opague to TDL. The implementation of an 'Action’
can be provided by means of a'DataElementMapping'.

An'Action’ may be parameterized. Actual parameters are provided in-kind. That is, executing an ‘Action’ does not
change the values of the parameters provided; execution of an 'Action’ is side-effect free.

Generalization
o MappableDataElement
Properties

e body: String [0..1]
Aninformal, textual description of the 'Action’ procedure.

. formal Parameter: Formal Parameter [0..*] { ordered, unique}
The ordered set of contained 'Formal Parameter's of this 'Action'.

Constraints

There are no constraints specified.

ETSI

26 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

6.2.17 Function

Semantics

A 'Function’ isa specia kind of an 'Action’ that has areturn value. 'Function's are used to express calculations over
‘Datal nstance's within a 'TestDescription' at runtime. The execution of a'Function’ is side-effect free. That is, a
'Function’ does not modify any passed or accessible 'Datal nstance's or 'Variable's of the TestDescription'. The value of
a'Function’ is defined only by itsreturn value.

Generalization
. Action
Properties

. returnType: DataType[1]
The 'DataType' of the 'Datal nstance' that is returned when the 'Function'’ finished its cal culation.

Constraints

There are no constraints specified.
6.3 Data Use - Abstract Syntax and Classifier Description
6.3.1 DataUse

—{) (Foundation) Member
Element
Lf reduction [*] {ordered, unique}
«rj:setadass»
Li Datalse
datalse [1] DataType
_«metaclass»
l:i StaticDataUse
dataType [1]
argument [*){ordered, junique} ?
~ «metaclass» _ «metaclass» a «metaclass»
= ParameterBinding = DatalnstanceUse = SpecialValueUse
parameter [1] datalnstance [1)
«metaclass» «metaclass» «metaclass»
Parameter Datalnstance g AnyValue = AnyValueOrOmit El omitvalue

Figure 6.5: Data use concepts and static data use

Semantics

A 'DataUse' denotes an expression that evaluates to a'Datal nstance' of a given 'DataType'’. Thus, a'DatalUse’ delivers
the symbolic value that can be used in assignments and invocations. Sub-classes of 'DataUse’ are used in specific
situations, e.g. to invoke a'Function’ or refer to a'Datal nstance'. The decision on what a'DataUse’ refersto is made by
the concrete sub-classes. Thisis called the context of a'DataUse’.

A 'DataUse’ offers the capability to be parameterized. Thisis achieved by the use of a ‘ParameterBinding'.

ETSI

27 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

In case that the context of a'DatalUse’ evaluates to a 'StructuredDatal nstance, it is possible to specify alocation
expression over nested 'StructuredDatal nstance's in order to reduce the 'DatalUse’ to the symbolic value contained in a
potentially nested 'Member'. Thisis called reduction. The reduction is semantically equivalent to the dot-notation
typically found in programming languages, e.g. in Javaor TTCN-3, in order to navigate from a context object, i.e. the
‘StructuredDatal nstance’, which this 'DatalUse’ evaluates to at runtime, to a specific location. The starting point of a
location expression is the implicitly or explicitly referenced 'StructuredDatal nstance' obtained after the 'DatalUse’ has
been evaluated at runtime. The first element of the 'reduction’ hasto be a'Member' of the context

'StructuredDatal nstance'. In case that a 'Member' in the reduction list represents a'SimpleDataType, no more 'Member's
shall occur in the location expression after this 'Member'.

Generalization
. Element
Properties

. argument: ParameterBinding [0..*] { ordered, unique}
The contained ordered set of 'ParameterBinding's that handles the assignment of symbolic valuesto
'Parameter's or 'Member's depending on the respective context of this 'DataUse’.

e reduction: Member [0..*] { ordered, unique}
Location expression that refersto potentially nested ‘Member's of a'StructuredDataType'. Each '‘Member' of
the ordered set represents one fragment of the location expression. The location expression is evaluated after
all 'argument’ assignments have been put into effect.

Constraints

. No mixed use of 'Member' and 'For malParameter’ in 'argument’ set
All 'ParameterBinding's that are referenced in the 'argument’ set shall refer only to one kind of ‘"Member' or
'Formal Parameter.

. Occurrence of 'argument' and 'reduction’
Both, ‘argument’ and 'reduction’, shall be provided only in case of a 'FunctionCall'.

. Structured data typesin 'reduction’ set
A 'Member' at index i of a'reduction’ shall be contained in the 'StructuredDataType' of the '"Member' at index
(i - 1) of that 'reduction'.

6.3.2 ParameterBinding

Semantics

A 'ParameterBinding' is used to assign a 'DataUse’ specification to a'Formal Parameter' or a'Member' of a
‘StructuredDataType'.

If an 'OmitValue' is assigned to a non-optional ‘'Member' at runtime, the resulting semanticsis kept undefined in TDL
and needs to be resolved outside the scope of the present document.

NOTE: A typical treatment of the above case in an implementation would be to raise a runtime error.
Generalization

J Element
Properties

. dataUse: DataUse [1]
Refers to the contained 'DatalUse’ specification whose symbolic value shall be assigned to the 'Parameter'.

. parameter: Parameter [1]
Refersto the parameter, which gets the symbolic value of a'DataUse’ specification assigned to.

ETSI

28 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

Constraints

. Matching data type
The provided 'DataUse’ shall match the 'DataType' of the referenced 'Parameter’.

. Use of a'StructuredDatal nstance' with non-optional ‘Member's
A non-optional '"Member' of a'StructuredDataType' shall have a'DataUse’ specification assigned to it that is
different from 'OmitValue'.

6.3.3 StaticDataUse

Semantics

A 'StaticDatalUse' specification denotes an expression that evaluates to a symbolic value that does not change during
runtime, in other words, a constant.

Generalization
. DataUse
Properties
There are no properties specified.
Constraints

e Staticdatausein structured data
If the 'Datal nstance' refers to a 'StructuredDatal nstance, all its members shall obtain 'ParameterBinding's that
refer to 'StaticDataUse'.

6.3.4 DatalnstanceUse
Semantics

A 'Datal nstanceUse' refers either to a'SimpleDatal nstance' or a 'StructuredDatal nstance'. It is provided as a'DataUse’
specification.

In caseit refersto a 'StructuredDatal nstance', its value can be modified inline by providing arguments as
'‘ParameterBinding's. This allows replacing the current value of the referenced 'Member' with a new val ue eval uated
from the provided 'DataUse’ specification.

Generalization
. StaticDataUse
Properties

e datalnstance: Datalnstance [1]
Refers to the 'Datalnstance' that is used in this 'DatalUse’ specification.

Constraints

0 Either argument list or reduction list provided
Either one of the 'argument’ list or ‘reduction’ list or none of them shall be provided.

6.3.5 SpecialValueUse
Semantics

A 'Specia VaueUse' is the super-class of all 'StaticDataUse' specifications that represent predefined wildcards instead
of values.

Generalization

. StaticDataUse

ETSI

29 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

Properties

e dataType DataType[1]
Refers to the 'DataType' of the 'SpeciaValueUse'.

Constraints

o Empty 'argument’ and 'reduction’ sets
The "argument’ and 'reduction’ sets shall be empty.

6.3.6 AnyValue

Semantics

An'AnyValue' denotes an unknown symbolic value from the set of all possible values of a'DataType' that is not
restricted to values explicitly specified as 'Datal nstance'sin agiven TDL model, but excluding the 'OmitValue' and the
<undefined> value.

Its purpose is to be used as a placeholder in the specification of a data value when the actual value is not known or
irrelevant.

Generalization

. SpeciaValueUse
Properties
There are no properties specified.
Constraints

There are no constraints specified.

6.3.7 AnyValueOrOmit

Semantics
An 'AnyValueOrOmit' denotes an unknown symbolic value from the union set of 'AnyValue' and 'OmitValue'.

Its purpose is to be used as a placeholder in the specification of a data value when the actual value is not known or
irrelevant.

NOTE: 'AnyValueOrOmit'is semantically equivalent to 'AnyValue' if applied on mandatory '"Member's of a
‘StructuredDataType'.

Generalization

. SpeciaVaueUse
Properties
There are no properties specified.
Constraints

There are no constraints specified.

6.3.8 OmitValue

Semantics

An'OmitVaue denotes a symbolic value indicating that a concrete value is not transmitted in an ‘Interaction’ at
runtime. Outside an 'Interaction’ it carries no specific meaning.

NOTE: Thetypical use of an 'OmitValue' isits assignment to an optional 'Member' that is part of a
'StructuredDataT ype' definition.

ETSI

30 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

Generalization

. SpeciaValueUse
Properties
There are no properties specified.
Constraints

There are no constraints specified.

DataUse

[

«metaclass»
= DynamicDataUse

Ar
| | |

«metaclass» «metaclass» «metaclass»
Q VariableUse E FormalParameterUse Q FunctionCall

componentlnstance [1]

variable [1] parameter [1] function [1]

(TestConfiguration)

Variable FormalParameter Function
Componentlnstance

Figure 6.6: Dynamic data use

6.3.9 DynamicDataUse
Semantics
A 'DynamicDataUse' is the super-class for al symbolic values that are evaluated at runtime.
Generalization
. DataUse
Properties
There are no properties specified.
Constraints

There are no constraints specified.

6.3.10 FunctionCall

Semantics
A 'FunctionCall' specifies the invocation of a'Function’ with its arguments.

If the invoked 'Function' has declared 'Formal Parameter's the corresponding arguments shall be specified by using
'‘ParameterBinding'.

If a'reduction’ is provided, it applies to the return value of the 'Function', which implies that the return value is of
‘StructuredDataType'.

ETSI

31 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

Generalization
. DynamicDataUse
Properties

e function: Function [1]
Refers to the function being invoked.

Constraints

. Matching parameters
The arguments specified by the 'ParameterBinding' shall match (in terms of number and data type) the list of
'Formal Parameter's of the invoked 'Function'.

6.3.11 FormalParameterUse
Semantics
A 'FormalParameterUse' specifies the access of a symbolic value stored in a 'Formal Parameter' of a 'TestDescription'.
Generalization
. DynamicDatalUse
Properties

. parameter: Formal Parameter [1]
Refers to the 'Formal Parameter' of the containing 'TestDescription' being used.

Constraints

. Either argument list or reduction list provided
Either one of the 'argument’ list or 'reduction’ list or none of them shall be provided.

6.3.12 VariableUse
Semantics
A 'VariableUse' denotes the use of the symbolic value stored in a'Variable'.
Generalization
. DynamicDatalUse
Properties

e vaiable Variable[1]
Refers to the 'Variable', whose symbolic value shall be retrieved.

. componentl nstance: Componentlnstance [1]
Refersto the 'Componentinstance’ that references the 'Variable' viaits 'ComponentType'.

Constraints

o Either argument list or reduction list provided
Either one of the ‘argument’ list or 'reduction’ list or none of them shall be provided.

. Local variables of tester componentsonly

All variables used in a'DatalUse’ specification viaa'VariableUse' shall be loca to the same
‘componentl nstance' and the ‘componentinstance' shall be in the role Tester'.

ETSI

32

Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

7 Time

7.1 Overview

The 'Time' package defines the elements to express time, time constraints, timers and operations over time and timers.

7.2 Abstract Syntax and Classifier Description
7.2.1 Time
(Data::DataDefinition) (Foundation) (TestBehaviour::AtomicBehaviour) (Data::DataUse)
SimpleDataType Element AtomicBehaviour DynamicDataUse
me:Ea" —T «metaclass»
“ET . TimeLabelUs
= Time timeConstraint [*] {unique} timeLabel [0..1]] TimeL abelUse
«metaclass» Lmetaclas;»
£ TimeConstraint & TimeLabel timeLabel [1]
timeConstraintExpression [1]
(Data::DataUse) (Foundation)
DataUse NamedElement
Figure 7.1: Time, time label and time constraint
Semantics

A 'Time' element extends the 'SimpleDataType' and is used to measure time and hel ps expressing time-related concepts
inaTDL model.

Timein TDL is considered to be global and progresses in discrete quantities of arbitrary granularity. Time starts with
the execution of the first 'TestDescription' being invoked. Progressin time is expressed as a monotonically increasing
function, which is outside the scope of TDL.

A timevalue is expressed as a'SimpleDatal nstance' of an associated 'Time' 'SimpleDataType'. The way how atime
value isrepresented, e.g. as an integer or areal number, is kept undefined in TDL and can be defined by the user viaa
'DataElementMapping'.

The 'name’ property of the Time' element expresses the granularity of time measurements. TDL defines the predefined
instance 'Second' of the 'Time' data type, which measures the time in the physical unit seconds. See clause 10.4.

NOTE: When designing a concrete syntax from the TDL meta-model, it is recommended that the 'Time' data type

can be instantiated at most once by a user and the same 'Time' instance isused in al 'DatalUse'
expressions within a TDL model; let it be the predefined instance 'Second' or a user-defined instance.
This assures a consistent use of time-related concepts throughout the TDL model.

Generalization
. SimpleDataType
Properties

There are no properties specified.

ETSI

33 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

Constraints

There are no constraints specified.

7.2.2 TimeLabel

Semantics

A TimeLabel" is a symbolic hame attached to an 'AtomicBehaviour' that represents an ordered list of timestamps of
execution of this atomic behaviour. A 'TimeLabel' allows the expression of time constraints (see subsequent clauses). It
is contained in the 'AtomicBehaviour' that produces the timestamps at runtime.

If the atomic behaviour the 'TimelLabel' is attached to is executed once, the TimeLabel' contains only asingle
timestamp. Otherwise, if the atomic behaviour is executed iteratively, e.g. within aloop, the TimeLabel' represents a
list of timestamps. In the latter case, some functions are predefined that return a single timestamp from thislist (see
clause 10.5.3). To enable the definition of these functions, it is assumed that all 'TimelL abel's belong to the predefined
datatype TimeLabel Type' (see clause 10.2.3).

There is no assumption being made when the timestamp is taken: at the start or the end of the 'AtomicBehaviour' or at
any other point during its execution. It is however recommended to have it consistently defined in an implementation of
the TDL model.

Generalization

. NamedElement
Properties
There are no properties specified.
Constraints

There are no constraints specified.

7.2.3 TimelLabelUse

Semantics

A 'TimeLabelUse' enables the use of atime label in a'DataUse’ specification. The most frequent use of that will be
within a 'TimeConstraint' expression.

Generalization
. DynamicDataUse
Properties

e timeLabel: TimelLabel [1]
Refers to the time label being used in the 'DataUse’ specification.

Constraints

o Empty argument and reduction lists
The ‘argument’ and 'reduction’ lists shall be empty.

7.2.4 TimeConstraint

Semantics

A 'TimeConstraint' is used to express a time requirement for an 'AtomicBehaviour'. The 'TimeConstraint' is usually
formulated over one or more 'Timelabel's. A 'TimeConstraint' constrains the execution time of the 'AtomicBehaviour'
that contains this 'TimeConstraint'.

ETSI

34 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

If the '"AtomicBehaviour' is atester-input event, the 'TimeConstraint' is evaluated after this 'AtomicBehaviour'
happened. If it evaluates to Boolean 'true’ it implies a'pass' test verdict; otherwise a 'fail’ test verdict. In other cases of
‘AtomicBehaviour’, the 'TimeConstraint' is eval uated before its execution. Execution is blocked and keeps blocking
until the TimeConstraint' evaluates to Boolean 'true'’.

Generalization
. Element
Properties

e timeConstraintExpression: DataUse [1]
Defines the time constraint over 'TimeL abel's as an expression of predefined type '‘Boolean'.

Constraints

e Time constraint expression of type Boolean
The expression given in the 'DatalUse’ specification shall evaluate to predefined type ‘Boolean'.

e Useof local variablesonly
The expression given in the 'DataUse’ specification shall contain only 'Variable's that are local to the
'AtomicBehaviour' that contains thistime constraint. That is, all 'Variable's shall be referenced in the
'‘Componentinstance' that executes the 'AtomicBehaviour'.

(TestBehaviour::AtomicBehaviour)
AtomicBehaviour

[

eriod [1] «metaclass» componentInstance [0..1]) .
(Data::DataUse) TimeOperation (TestConfiguration)
DataUse Componentlnstance

«metaclass» Ekitlagin gateReference [0..1]

estConfiguration
H wait E] Quiescence T iguetion)

GateReference

Figure 7.2: Time operations

7.2.5 TimeOperation

Semantics

A 'TimeOperation' summarizes the two possible time operations that can occur at a Tester' 'Component| nstance”: 'Wait'
and 'Quiescence'.

Generalization
. AtomicBehaviour
Properties

. period: DataUse [1]
The 'period’ defines the time duration of the TimeOperation'.

. componentl nstance: Componentinstance [0..1]
The 'Componentl nstance’, to which the TimeOperation' is associated.

ETSI

35 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

Constraints

e Timeoperationson tester componentsonly
A 'TimeOperation' shall be performed only on a'Componentinstance' in the role Tester'.

. 'Time' datatypefor period expression
The'DatalUse’ expression assigned to the "period’ shall evaluate to a data instance of the Time' datatype.

7.2.6 Wait

Semantics
A 'Wait' defines the time duration that a 'Tester' component instance waits before performing the next behaviour.

Any input arriving at the 'Tester' component during 'Wait' at runtime is handled by the following behaviour and is not a
violation of the test description. The specific mechanism of implementing 'Wait' is not specified.

NOTE: 'Wait'isimplemented typically by means of atimer started with the given ‘period’ property. After the
timeout, the "Tester' component continues executing the next behaviour.

Generalization

e TimeOperation
Properties
There are no properties specified.
Constraints

e Tester component for 'Wait' shall be known
The relation to a'Componentl nstance' of a 'Wait' shall be set and refer to a 'Tester' component instance.

7.2.7 Quiescence
Semantics

A 'Quiescence' is called atester-input event and defines the time duration, during which a "Tester' component shall
expect no input from a'SUT' component at a given gate reference (if '‘Quiescence’ is associated to a gate reference) or at
all the gate references the 'Tester' component instance contains of (if 'Quiescence’ is associated to a component
instance).

When a 'Quiescence’ is executed, the 'Tester' component listens to ‘Interaction's that occur at the defined gate
reference(s). If such an 'Interaction’ occurs during the defined 'period' (time duration), the test verdict is set to fail’;
otherwise to 'pass.

Input arriving during 'Quiescence’ that matches an ‘'Interaction’ of an aternative block in 'AlternativeBehaviour' or
‘ExceptionalBehaviour' is allowed and not a violation of the test description. A similar statement holds for the use of
'‘Quiescence’ in 'ParallelBehaviour'.

If 'Quiescence’ occurs as the first behaviour element in an aternative block of an 'AlternativeBehaviour' or
‘ExceptionalBehaviour', then its behaviour is defined as follows. The measurement of the quiescence duration starts
with the execution of the associated alternative or exceptional behaviour. The check for the absence of an 'Interaction’
occurs only if none of the alternative blocks have been selected.

NOTE: 'Quiescence' isimplemented typically by means of atimer with the given 'period' property and listening at
the indicated gate reference(s). The occurrence of the timeout indicates the end of a'Quiescence’ with
verdict 'pass’.

Generalization

. TimeOperation

ETSI

36 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

Properties

e gateReference: GateReference [0..1]
The 'GateReference', to which the 'Quiescence’ is associated.

Constraints

. Exclusive use of gate reference or component instance
If a'GateReference' is provided, a'Componentl nstance' shall be not provided and vice versa.

(Foundation) (TestBehaviour::AtomicBehaviour)
NamedElement AtomicBehaviour

1

(TestConfiguration)
«metaclass» Componentlnstance
Timer
anetodosse Tcomponendn:tance 1)
% timer [1] E TimerOperation
AN
(Data::DataUse)
DataUse
period [1]
«metaclass» «metaclass» «metaclass»
E Timerstart E TimerStop El TimeOut
Figure 7.3: Timer and timer operations
7.2.8 Timer

Semantics

A 'Timer' defines atimer that is used to measure time intervals. A 'Timer' is contained within a'ComponentType'
assuming that each '‘Componentinstance' of the given ‘ComponentType' has its own local copy of that timer at runtime.

Generalization

. NamedElement
Properties
There are no properties specified.
Constraints

. Initial state of atimer
When atimer isdefined, it is operationally in the state idle.

7.2.9 TimerOperation
Semantics

A 'TimerOperation' operates on an associated ‘Timer'. It is an element that summarizes the operations on timers: timer
start, timeout and timer stop.

Generalization

° AtomicBehaviour

ETSI

37 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

Properties

e timer: Timer [1]
This property refersto the 'Timer' on which the TimerOperation' operates.

. componentl nstance: Componentinstance [1]
The 'Componentl nstance’, to which the 'TimerOperation' is associated.

Constraints

e Timer operationson tester componentsonly
A 'TimerOperation' shall be performed only on a'Componentinstance' in the role 'Tester".

7.2.10 TimerStart

Semantics

A 'TimerStart' operation starts a specific timer and the state of that timer becomes running. If a running timer is started,
the timer is stopped implicitly and then (re-)started.

Generalization
e TimerOperation
Properties

. period: DataUse [1]
Defines the duration of the timer from start to timeout.

Constraints

e 'Time datatypefor period expression
The 'DatalUse’ expression assigned to the 'period’ shall evaluate to a data instance of the 'Time' data type.

7.2.11 TimerStop

Semantics

A 'TimerStop' operation stops arunning timer. If anidle timer is stopped, then no action shall be taken. After
performing a ‘TimerStop' operation on a running timer, the state of that timer becomesidle.

Generalization

e TimerOperation
Properties
There are no properties specified.
Constraints

There are no constraints specified.

7.2.12 TimeOut

Semantics

A 'TimeOut' is called atester-input event and is used to specify the occurrence of atimeout event when the period set by
the TimerStart' operation has elapsed. At runtime, the timer changes from running state to idle state.

Generalization

. TimerOperation

ETSI

38 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

Properties
There are no properties specified.
Constraints

There are no constraints specified.

8 Test Configuration

8.1 Overview

The Test Configuration' package describes the elements needed to define a TestConfiguration' consisting of tester and
SUT components, gates, and their interconnections represented as 'Connection's. A 'TestConfiguration' specifies the
structural foundations on which test descriptions can be built upon. The fundamental units of a ' TestConfiguration' are
the 'Componenti nstance's. Each '‘Componentl nstance' specifies afunctional entity of the test system. A
‘Componentinstance' may either be a (part of a) tester or a (part of an) SUT. That is, both the tester and the SUT can be
decomposed, if required. The communication exchange between '‘Componentl nstance's is established through
interconnected 'Gatel nstance's via 'Connection's and 'GateReference's. To offer reusability, TDL introduces
'‘ComponentType's and 'GateType's.

8.2 Abstract Syntax and Classifier Description
8.2.1 GateType

(Foundation) (Data) (Foundation)
PackageableElement DataType Element
yaN
dataT 1. i
(Time) (Data) mvType L Harsquel
Timer Variable
; . . «metaclass»
timer [*] {unique) variable [*]l{unique} = GateType
type [1]
«metaclass»
= N . smetaclasss
= ComponentType gatelnstance [1."] {ordered, unique} £ Gatelnstance
e H

Figure 8.1: Component and gate type

Semantics

A 'GateType' represents atype of communication points, called 'Gatel nstance's, for exchanging information between
‘Componentlnstance's. A 'GateType' specifies the 'DataType's that can be exchanged via 'Gatel nstance's of thistypein
both directions.

Generalization
. Packageabl eElement
Properties
. dataType: DataType [1..*] {unique}

The'DataType's that can be exchanged via 'Gatel nstance's of that 'GateType'. The arguments of ‘Interactions’
shall adhere to the 'DataType's that are allowed to be exchanged.

ETSI

39 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

Constraints

There are no constraints specified.

8.2.2 Gatelnstance
Semantics

A 'Gatel nstance' represents an instance of a'GateType'. It is the means to exchange information between connected
‘Componentlnstance's. A 'Gatel nstance' is contained in a'ComponentType'.

Generalization
. Element
Properties

e type GateType[1]
The 'GateType' of the 'Gatel nstance'.

Constraints

There are no constraints specified.

8.2.3 ComponentType
Semantics

A 'ComponentType' specifies the type of one or several functional entities, called 'Componentl nstance's, that participate
ina TestConfiguration'. A '‘ComponentType' contains at least one 'Gatel nstance' and may contain any number of
‘Timer'sand 'Variable's.

Generalization
o Packageabl eElement
Properties

. gatelnstance: Gatelnstance [1..*] { ordered, unique} The 'Gatel nstance's used by 'Componentinstance's of that
'ComponentType'.

e timer: Timer [0..*] { unique}
The 'Timer's owned by the 'ComponentType'.

. variable: Variable [0..*] {unique}
The 'Variable's owned by the 'ComponentType'.

Constraints

There are no constraints specified.

ETSI

40 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

(Foundation) (Foundation)
ComponentType NamedElement Gatelnstance Element
type [1] gate [1]
«metaclass» tacl metaclass
«metaclass» = R
i ComponentInstance component [1]] GateReference endPoint [2] = connection

role: ComponentInstanceRole [1] <

?componenﬂnstance [2..*] {unique} connection [1.*] {unique¢
«Enumeration» l l
E€] ComponentInstanceRole «metaclasse
= SUT g TestConfiguration (Foundation)
B Tester {> PackageableElement

Figure 8.2: Test configuration

8.2.4 Componentinstance
Semantics

A 'Componentlnstance' represents an active, functional entity of the "TestConfiguration', which containsit. Itsmain
purpose is to exchange information with other connected components via 'l nteraction’s. It acts either in therole of a
Tester' or an 'SUT' component.

A 'Componentlnstance’ derives the 'Gatel nstance's, ‘'Timer's, and 'Variable's from its ‘ComponentType' for use within a
‘TestDescription'. However, component-internal 'Timer's and 'Variable's shall be only used in 'TestDescription'sif the
role of the component is of Tester'. When a 'Componentinstance' is created, a Timer' shall be in theidle state (see
clause 7.2.8) and a'Variable' shall have the value <undefined> (see clause 6.2.15).

Generalization
. NamedElement
Properties

e type: ComponentType[1]
The 'ComponentType' of this 'Componentl nstance'.

. role: Componentl nstanceRole [1]
Therole that the 'Componentinstance' plays within the 'TestConfiguration'. It can be either 'Tester' or 'SUT".

Constraints

There are no constraints specified.

8.2.5 ComponentinstanceRole
Semantics

'‘ComponentInstanceRol €' specifies the role of a'Componentlnstance', whether it actsasa 'Tester' or asan 'SUT'
component.

Generalization

Thereis no generalization specified.

ETSI

41 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

Literals

e SUT
The 'Componentl nstance' assumes the role 'SUT' in the enclosing "'TestConfiguration'.

. Tester
The 'Componentl nstance’ assumes the role Tester' in the enclosing 'TestConfiguration'.

Constraints

There are no constraints specified.

8.2.6 GateReference

Semantics

A 'GateReference' is an endpoint of a'Connection’, which it contains. It allows the specification of a connection
between two 'Gatel nstance's of different component instances in unique manner (because 'Gatel nstance's are shared
between al 'Componentlnstance's of the same '‘ComponentType).

Generalization
. NamedElement
Properties

e component: Componentinstance [1]
The 'ComponentInstance' that this 'GateReference' refers to.

. gate: Gatelnstance [1]
The 'Gatel nstance' that this 'GateReference’ refers to.

Constraints

e Gateinstance of thereferred component instance
The referred 'Gatel nstance' shall be contained in the 'ComponentType' of the referred ‘Componentl nstance'.

8.2.7 Connection
Semantics

A 'Connection’ defines a communication channel for exchanging information between ‘Componentl nstance's via
'‘GateReference's. It does not specify or restrict the nature of the communication channel that is eventually used in an
implementation. For example, a'Connection’ could refer to an asynchronous communication channel for the exchange
of messages or it could rather refer to a programming interface that enables the invocation of functions.

A 'Connection’ is always bidirectional and point-to-point, which is assured by defining exactly two endpoints, given as
‘GateReference's. A 'Connection’ can be established between any two different ‘GateReference's acting as 'endPoint' of
this connection. That is, self-loop '‘Connection's that start and end at the same ‘endPoint’ are not permitted.

A 'Connection’ can be part of a point-to-multipoint communication relation. In this case, the same pair of

‘Gatel nstance'/'Componentl nstance' occurs multiple timesin different ‘Connection's. However, multiple connections
between the same two pairs of 'Gatel nstance/'Componentinstance' are not permitted in a TestConfiguration' (see
clause 8.2.8).

Generalization
. Element
Properties

e endPoint: GateReference [2]
The two 'GateReference's that form the endpoints of this 'Connection'.

ETSI

42 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

Constraints

e Sdf-loop connections are not permitted
The 'endPoint's of a'Connection’ shall not be the same. Two endpoints are the same if both, the referred
‘ComponentInstance's and the referred 'Gatel nstance's, are identical.

. Unique type of a connection
The 'Gatel nstance's of the two 'endPoint's of a'Connection’ shall refer to the same 'GateType'.

8.2.8 TestConfiguration
Semantics

A TestConfiguration' specifies the communication infrastructure necessary to build "TestDescription's upon. As such, it
contains all the elements required for information exchange: ‘Componentl nstance's and 'Connection'’s.

It is not necessary that al '‘Componentl nstance's contained in a 'TestConfiguration' are actually connected via
‘Connection's. But for any 'TestConfiguration' at least the semantics of a minimal test configuration shall apply, which
comprises one 'Tester' component and one 'SUT' component that are connected via one 'Connection'.

Generalization
. Packageabl eElement
Properties

. componentlnstance: Componentlnstance [2..*] { unique}
The 'Componentl nstance's of the 'TestConfiguration'.

e connection: Connection [1..*] {unique}
The'Connection’s of the TestConfiguration' over which ‘Interaction's are exchanged.

Constraints

. '"TestConfiguration' and componentsroles
A TestConfiguration' shall contain at least one 'Tester' and one 'SUT' ‘Componentl nstance'.

o Minimal 'TestConfiguration'
Each 'TestConfiguration' shall specify at least one ‘Connection’ that connects a 'Gatel nstance' of a
‘Componentinstance’ in the role 'Tester' with a'Gatel nstance' of a‘Componentinstance’ in the role 'SUT".

e At most one connection between any two 'Gatel nstance'/' Componentl nstance' pairs
Given the set of 'Connection's contained in a 'TestConfiguration'. There shall be no two 'Connection's
containing 'GateReference's that in turn refer to identical pairs of 'Gatel nstance’/'Componenti nstance'.

9 Test Behaviour

9.1 Overview

The TestBehaviour' package defines all elements needed to describe the behaviour of atest description.

ETSI

43 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

9.2 Test Description - Abstract Syntax and Classifier
Description

9.2.1 TestDescription

(Foundation)

(TestConfiguration)
PackageableElement 9

TestConfiguration

ﬂ; testConfiguration [1]T

~«metaclass»
£ TestDescription

testObjective [*] {unique}

formalParameter [*] {ordered, unique} behaviourDescription [0..1]
(Foundation)
TestObjective

«metaclass»
EE; BehaviourDescription

testObjective [*] {unique}
behaviour [1]

(TestBehaviour::CombinedBehaviour)
Behaviour

(Data)
FormalParameter

(Foundation)
Element

Figure 9.1: Test description

Semantics

A TestDescription' is a 'PackageableElement’ that may contain a 'BehaviourDescription' defining the test behaviour
based on ordered 'AtomicBehaviour' el ements. It may also refer to 'TestObjective’ elementsthat it realizes.

A TestDescription' is associated with exactly one 'TestConfiguration' that provides ‘Componentl nstance's and
'Gatel nstance's to be used in the behaviour.

A "TestDescription' may contain 'Formal Parameter' that are used to pass data to behaviour.

If a'TestDescription' with formal parametersisinvoked within another 'TestDescription’, actual parameters are provided
viaa 'TestDescriptionReference’ (see clause 9.4.8). The mechanism of passing argumentsto a ' TestDescription' that is
invoked by atest management tool is not defined.

Generalization
. Packageabl eElement
Properties

. testConfiguration: TestConfiguration [1]
Refersto the TestConfiguration' that is associated with the 'TestDescription'.

. behaviourDescription: BehaviourDescription [0..1]
The actual behaviour of the test description in terms of 'Behaviour' elements.

o formaParameter: Formal Parameter [0..*] { ordered, unique}
The formal parameters that shall be substituted by actual data when the 'TestDescription' isinvoked.

e testObjective: TestObjective [0..*]
The 'TestObjective's that are realized by the 'TestDescription'.

ETSI

44

Constraints

There are no constraints specified.

9.2.2 BehaviourDescription

Semantics

A 'BehaviourDescription’ contains the behaviour of a TestDescription'.

Generalization
. Element
Properties

e behaviour: Behaviour [1]
The contained root 'Behaviour' of the "TestDescription'.

Constraints

There are no constraints specified.

ETSI

Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

9.3

45 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

Combined Behaviour - Abstract Syntax and Classifier

Description
9.3.1 Behaviour
(Foundation) (Data::DataUse)
D Element <]] DataUse
guard [0..1]

L‘metadass» -r‘_rEtaclas:,

. Behaviowr behaviour [1..*] {ordered, unique} i Block

-
T block [L.*] {ordered, unique} block [1]

«metaclass»

E CombinedBehaviour <[1

|

«metaclass»
E MultipleCombinedBehaviour

1 i

«metaclass»
Q ConditionalBehaviour

«metaclass»
Q AlternativeBehaviour

«metaclass»
E ParallelBehaviour

= «metaclass»
= SingleCombinedBehaviour

«metaclass»
E BoundedLoopBehaviour

«metaclass»

Q UnboundedLoopBehaviour

Lﬂ (Data::DataUse)

DataUse

numlteration [1]

«metaclass»
E CompoundBehaviour

Figure 9.2: Combined behaviour concepts

Semantics

A 'Behaviour' is a constituent of the '‘BehaviourDescription' of a TestDescription'. It represents the super-class for any
concrete behavioural units a'BehaviourDescription' is composed of. It offers the capability to refer to 'TestObjective's to

enable traceability among 'TestObjective's and any concrete subclass of '‘Behaviour'.

If a'Behaviour' references a 'TestObjective, the 'Behaviour' is considered to realize/cover that 'TestObjective'.

Generalization
° Element

Properties

e testObjective: TestObjective [0..*] { unique}
A set of 'TestObjective's that are realized by the 'Behaviour'.

Constraints

There are no constraints specified.

ETSI

46 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

9.3.2 Block

Semantics

A 'Block’ serves as a container for behavioural units that are executed sequentially. If a'Block’ has a'guard, it shall only
be executed if that guard eval uates to Boolean 'true’. If a'Block' has no 'guard’, it is equivalent to a ‘guard’ that evaluates
to 'true'.

Generalization
° Element
Properties

. behaviour: Behaviour [1..*] {unique, ordered}
The ordered set of 'Behaviour's that describe the sequentially executed units of 'Behaviour' contained in the
'‘Block'.

. guard: DataUse [0..1]
An expression, whose type shall resolve to the predefined 'DataT ype' 'Boolean'.

Constraints

. Guard shall evaluate to Boolean
The type of 'guard' shall be 'Boolean'.

9.3.3 CombinedBehaviour

Semantics

A 'CombinedBehaviour' is a behavioural constituent over all ‘Componentinstance's and ‘GateReference's defined in the
associated 'TestConfiguration' the containing 'TestDescription' operates on.

Additionally, a'CombinedBehaviour' may contain any number of ordered 'PeriodicBehaviour's and
‘Exceptional Behaviour's that are evaluated in combination with the directly defined behaviour of the
‘CombinedBehaviour'.

Generalization
) Behaviour
Properties

. periodic: PeriodicBehaviour [0..*] {unique, ordered}
The ordered set of 'PeriodicBehaviour's attached to this 'CombinedBehaviour'.

. exceptional: Exceptional Behaviour [0..*] { unique, ordered}
The ordered set of 'Exceptional Behaviour's attached to this 'CombinedBehaviour'.

Constraints

There are no constraints specified.

9.3.4 SingleCombinedBehaviour

Semantics

A 'SingleCombinedBehaviour' contains asingle '‘Block’ of ‘Behaviour'.
Generalization

. CombinedBehaviour

ETSI

a7 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

Properties

e block: Block [1]
The 'Block’ that is contained in the 'SingleCombinedBehaviour'.

Constraints

There are no constraints specified.

9.3.5 CompoundBehaviour
Semantics

A 'CompoundBehaviour' serves as a container for sequentially ordered 'Behaviour's. Its purpose isto group or structure
behaviour, for example to describe the root behaviour of a 'TestDescription' or enable the assignment of
'PeriodicBehaviour's and/or 'Exceptional Behaviour's.

Generalization

. SingleCombinedBehaviour
Properties
There are no properties specified.
Constraints

There are no constraints specified.

9.3.6 BoundedLoopBehaviour
Semantics

A 'BoundedL oopBehaviour' represents a recurring execution of the contained behaviour 'Block'. It has the same
semantics as a for-loop statement in programming languages, i.e. the 'Block' shall be executed as many timesasis
determined by the 'numlteration’ property.

The evaluation of the 'numiteration’ expression happens once at the beginning of the 'BoundedLoopBehaviour'. For
dynamically evaluated loop conditions, the ‘UnboundedL oopBehaviour' shall be used.

The concrete mechanism of counting is not defined.
Generalization

. SingleCombinedBehaviour
Properties

e numiteration: DataUse [1]
An expression that determines how many times the 'Block’ of a 'BoundedLoopBehaviour' shall be executed.

Constraints

. No guard constraint
The 'Block' of a'BoundedLoopBehaviour' shall not have a'guard'.

. Iteration number shall be countable and positive

The expression assigned to the 'numlteration’ property shall evaluate to a countable 'SimpleDatal nstance' of an
arbitrary user-defined datatype, e.g. apositive Integer value.

ETSI

48 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

9.3.7 UnboundedLoopBehaviour
Semantics

An 'UnboundedL oopBehaviour' represents a recurring execution of the contained behaviour ‘Block'. It has the same
semantics as awhile-loop statement in programming languages, i.e. the 'Block’ shall be executed as long as the ‘guard’
of the 'Block' evaluates to Boolean ‘true'. If the 'Block’ has no guard condition, it shall be executed an infinite number of
times, unlessit contains a 'Break’ or a'Stop'.

Generalization

. SingleCombinedBehaviour
Properties
There are no properties specified.
Constraints

There are no constraints specified.

9.3.8 MultipleCombinedBehaviour

Semantics

A 'MultipleCombinedBehaviour' contains at least one potentially guarded '‘Block’ (in case of 'Conditional Behaviour') or
at least two ordered and potentially guarded '‘Block's (in case of 'AlternativeBehaviour' or 'ParallelBehaviour").

Generalization
. CombinedBehaviour
Properties

. block: Block [1..*] {unique, ordered}
The contained ordered list of 'Block's that specifies the behaviour of the 'MultipleCombinedBehaviour'.

Constraints

There are no constraints specified.

9.3.9 AlternativeBehaviour
Semantics

An 'AlternativeBehaviour' shall contain two or more '‘Block's, each of which starting with a distinct tester-input event
(see definition in clause 3.1).

Guards of all blocks are evaluated at the beginning of an 'AlternativeBehaviour'. Only blocks with guards that evaluate
to Boolean 'true' are active in this 'AlternativeBehaviour'. If none of the guards evaluates to 'true’, none of the 'Block's
are executed, i.e. execution continues with the next 'Behaviour' following this 'AlternativeBehaviour'.

Only one of the aternative 'Block's will be executed. The evaluation algorithm of an alternative 'Block' at runtimeisa
step-wise process:

1) All guardsare evaluated and only those 'Block's, whose guards evaluated to ‘true' are collected into an ordered
set of potentially executable 'Block's.

2) Thetester-input event of each potentially executable 'Block' is evaluated in the order, in which the 'Block's are
specified.

3) Thefirst 'Block’ with an executable tester-input event is entered; the tester-input event itself and the
subsequent '‘Behaviour' of this 'Block' are executed.

ETSI

49 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

Generalization

o MultipleCombinedBehaviour
Properties
There are no properties specified.
Constraints

° Number of 'Block's
An 'AlternativeBehaviour' shall contain at |east two ‘Block's.

. First behaviour of 'Block's
Each block of an 'AlternativeBehaviour' shall start with atester-input event.

9.3.10 ConditionalBehaviour

Semantics

A 'ConditionalBehaviour' represents an alternative choice over a number of 'Block's. A ‘ConditionalBehaviour' is
equivalent to an if-el seif-el se statement in programming languages, e.g. select-case statement in TTCN-3.

Only one of the aternative 'Block's will be executed. The evaluation algorithm of an alternative 'Block' at runtimeisa
step-wise process:

1) Theguards of the specified 'Block's are evaluated in the order of their definition.
2) Thefirst 'Block’, whose guard is evaluated to 'true’, is entered and the ‘Behaviour’ of this 'Block’ is executed.

If none of the guards evaluates to 'true’, none of the 'Block’s are executed, i.e. execution continues with the next
'‘Behaviour' following this 'Conditional Behaviour'.

NOTE: Typically, 'Block's are specified with a'guard'. If aguard is missing, it is equivalent to a guard that
evaluates to 'true’ (see clause 9.3.2). The latter case is also known as the el se branch of an if-elseif-else
statement in a programming language. Blocks specified after this el se block would never be executed.

Generalization

. MultipleCombinedBehaviour
Properties
There are no properties specified.

Constraints

. Guard for 'ConditionalBehaviour' with single block
If thereisonly one '‘Block’ specified, it shall have a'guard'.

o Possible else block for 'ConditionalBehaviour' with multiple blocks
All 'Block's specified, except the last one, shall have a'guard'.

o First 'AtomicBehaviour' allowed
Thefirst ‘AtomicBehaviour' of any 'Block’ of a'Conditional Behaviour' shall not be a tester-input event.

9.3.11 ParallelBehaviour

Semantics

A 'ParallelBehaviour' represents the parallel execution of '‘Behaviour's contained in the multiple '‘Block's. That is, the
relative execution order of the '‘Behaviour's among the different '‘Block's is not specified. The execution order of
‘Behaviour's within the same 'Block'’ shall be kept as specified, even though it might be interleaved with 'Behaviour's
from other parallel '‘Block's.

ETSI

50 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

'‘Block's may have guards. Guards of al blocks are evaluated at the beginning of a 'ParallelBehaviour'. Only blocks with
guards that evaluate to Boolean 'true’ are executed in this'ParallelBehaviour'. If none of the guards evaluates to 'true’,
none of the 'Block’s are executed, i.e. execution continues with the next '‘Behaviour' following this 'ParallelBehaviour'.

The 'ParallelBehaviour' terminates when the all '‘Block’s are terminated.
Generalization
o MultipleCombinedBehaviour
Properties
There are no properties specified.
Constraints

° Number of blocksin 'ParallelBehaviour!
There shall be at least two 'Block’s specified.

~ «metaclass» «metaclass»
é; PeriodicBehaviour L:j ExceptionalBehaviour
-»-—————
period [1] block [1] block [1] T T
«metaclass» = «metaclass»
£ DefaultBehaviour =] InterruptBehaviour

(Data::DataUse)

DataUse AiBex

Figure 9.3: Exceptional and periodic behaviour

9.3.12 ExceptionalBehaviour
Semantics

'Exceptional Behaviour' is optionally contained within a'CombinedBehaviour'. It isa 'Behaviour' that consists of one
‘Block' that shall have no guard and shall start with atester-input event (see definition in clause 3.1).

An 'Exceptional Behaviour' may specify the 'Componentlnstance' that it guards. This allows restricting the possible
situations when the '‘Behaviour' of the ‘CombinedBehaviour' containing this 'Exceptional Behaviour' is executed. In this
case only those 'Behaviour's that are defined in the scope of the 'guardedComponent’ force the 'Exceptional Behaviour' to
be activated.

An 'ExceptionalBehaviour' defines 'Behaviour' that is an alternative to every 'Interaction’ directly or indirectly contained
in the enclosing 'CombinedBehaviour' that matches one of the following two conditions:

. If no 'guardedComponent’ reference is present, an interaction whose target ‘Gatel nstance' is associated to a
‘Componentinstance’ with the role of Tester’;

o If a'guardedComponent’ reference is present, an interaction whose target 'Gatel nstance' is associated to the
same 'Componentl nstance' as referenced by the 'guardedComponent’ property.

ETSI

51 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)
In case of more than one 'Exceptional Behaviour' is attached to the same 'CombinedBehaviour', the corresponding
‘AlternativeBehaviour' would contain the 'Blocks' of all the attached 'Exceptiona Behaviour's in the same order.
An 'Exceptional Behaviour' can be either a'DefaultBehaviour' or an ‘I nterruptBehaviour'.
Generalization
. Behaviour
Properties

. block: Block [1]
The contained 'Block’ that specifies the 'Behaviour' of the 'Exceptional Behaviour'.

. guardedComponent: Componentlnstance [0..1]
Reference to a'Componentinstance' with role "'Tester', for which the 'Exceptional Behaviour' is to be applied.

Constraints

. No guard
The'Block’ shall have no guard.

o First 'AtomicBehaviour' in block allowed
Each block of an 'Exceptional Behaviour' shall start with a tester-input event.

. Guarded component shall bea'Tester' component
The 'guardedComponent’ shall refer to a‘Componentl nstance' with the role of "Tester'.

9.3.13 DefaultBehaviour

Semantics
A 'DefaultBehaviour' is a specialization of an 'Exceptiona Behaviour'.

If a'DefaultBehaviour' of the 'CombinedBehaviour', which it is attached to, becomes executable and the 'Behaviour'
defined in the 'Block' of the 'DefaultBehaviour' subsequently completes execution, the execution of the
‘CombinedBehaviour' continues with the next '‘Behaviour' that follows the 'Behaviour' that caused the execution of the
'‘DefaultBehaviour'.

Generalization

. Exceptiona Behaviour
Properties
There are no properties specified.
Constraints

There are no constraints specified.

9.3.14 InterruptBehaviour
Semantics
An'InterruptBehaviour' is a specialization of an 'Exceptional Behaviour'.

If an 'InterruptBehaviour' of the '‘CombinedBehaviour', which it is attached to, becomes executable and the 'Behaviour'
defined in the '‘Block' of the 'I nterruptBehaviour' subsequently completes execution, the execution of the
'‘CombinedBehaviour' continues with the same 'Behaviour' that caused the execution of the 'InterruptBehaviour'.

Generalization

. Exceptiona Behaviour

ETSI

52 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

Properties
There are no properties specified.
Constraints

There are no constraints specified.

9.3.15 PeriodicBehaviour

Semantics

A 'PeriodicBehaviour' defines a'Behaviour' in asingle '‘Block’ that is executed periodically in parallel with the
‘CombinedBehaviour' it is attached to. The recurrence interval of the execution is specified by its 'period’ property. If
the execution of the contained '‘Block' takes longer than the specified period, the semantics of the resulting behaviour is
unspecified.

The execution of 'PeriodicBehaviour' terminatesif the 'CombinedBehaviour', which it is attached to, terminates.
Generalization

J Behaviour
Properties

e block: Block [1]
The contained 'Block’, whose 'Behaviour' is executed periodically in parallel with the '‘Behaviour' of the
‘CombinedBehaviour', which this 'PeriodicBehaviour' is attached to.

. period: DataUse [1]
The recurrence interval of executing the behaviour of the 'Block’ specified by the 'block’ property.

Constraints

o First '‘AtomicBehaviour' allowed
Thefirst ‘AtomicBehaviour' of any '‘Block' of a'PeriodicBehaviour' shall not be a tester-input event.

. 'Time' datatypefor period expression
The 'DatalUse’ expression assigned to the 'period’ shall evaluate to a data instance of the 'Time' datatype.

ETSI

53 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

9.4 Atomic Behaviour - Abstract Syntax and Classifier
Description

94.1 AtomicBehaviour

(TestBehaviour::CombinedBehaviour)
Behaviour

1

«metaclass»
Q AtomicBehaviour

[T T 1

«metaclass» «metaclass» «metaclass» «metaclass»
Q " ‘ 0 R]
=4 VerdictAssignment = Assertion Q Break = Stop

otherwise [0..1] condition [1]

verdict [1] (DataUse)

DataUse

Figure 9.4: Global atomic behaviour concepts

Semantics

An 'AtomicBehaviour' defines the simplest form of behavioural activity of a TestDescription' that cannot be
decomposed further.

An'AtomicBehaviour' can have a'TimeLabel' that holds the timestamp of this behaviour when it is executed (see
clause 7.2.2). In addition, an 'AtomicBehaviour' may contain alist of 'TimeConstraint' expressions that affect its
execution time (see clause 7.2.4).

Generalization
° Behaviour
Properties

. timeLabel: TimeLabel [0..1]
Refersto the time label contained in the 'AtomicBehaviour'.

e timeConstraint: TimeConstraint [0..*] { unique}
Refersto a contained list of "TimeConstraint's that determines the execution of the given 'AtomicBehaviour' by
means of time constraint expressions.

Constraints

There are no constraints specified.

9.4.2 Break

Semantics

A 'Break' terminates the execution of the behavioural 'Block’, in which the 'Break' is contained. Execution continues
with the 'Behaviour' that follows afterwards. In case of 'ParallelBehaviour', a 'Break' terminates only the execution of its
own '‘Block’, but does not affect the execution of the other parallel 'Block'(s).

ETSI

54 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

Generalization

e AtomicBehaviour
Properties
There are no properties specified.
Constraints

There are no constraints specified.

9.4.3 Stop

Semantics

'Stop' is used to describe an explicit and immediate stop of the execution of the entire 'TestDescription' that wasinitially
invoked. No further behaviour shall be executed beyond a'Stop'. In particular, a'Stop' in areferenced (called)
"TestDescription' shall also stop the behaviour of the referencing (calling) "TestDescription'(s).

Generalization

e AtomicBehaviour
Properties
There are no properties specified.
Constraints

There are no constraints specified.

9.4.4 VerdictAssignment
Semantics

The 'VerdictAssignment' is used to set the verdict of the test run explicitly. This might be necessary if the implicit
verdict mechanism described below is not sufficient.

By default, the test description specifies the expected behaviour of the system. If an execution of atest description
performs the expected behaviour, the verdict is set to 'pass implicitly. If atest run deviates from the expected
behaviour, the verdict 'fail' will be assigned to the test run implicitly. Other verdicts, including ‘inconclusive' and user-
definable verdicts, need to be set explicitly within atest description.

Generalization
. AtomicBehaviour
Properties

. verdict: StaticDataUse [1]
Stores the value of the verdict to be set.

Constraints

. Verdict of type'Verdict'
The'verdict' shall evaluate to a, possibly predefined, instance of a'SimpleDatal nstance' of datatype 'Verdict'.

9.45 Assertion

Semantics

An 'Assertion’ alows the specification of atest ‘condition’ that needs to evaluate to 'true’ at runtime for a passing test, in
which case the implicit test verdict is set to ‘pass. If the ‘condition’ is not satisfied, the test verdict is set to 'fail’ or to the
optionally specified verdict given in ‘otherwise'.

ETSI

55

Generalization
° AtomicBehaviour
Properties

e condition: DataUse [1]
Refersto the test condition that is evaluated.

. otherwise: StaticDatalUse [0..1]

Refersto the value of the verdict to be set if the assertion fails.

Constraints

. Boolean condition

Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

The 'condition’ shall evaluate to predefined 'DataType' 'Boolean'.

. Otherwise of type'Verdict'

The 'otherwise' shall evaluate to a, possibly predefined, instance of a 'SimpleDatal nstance' of data type

‘Verdict'.
(AtomicBehaviour)
AtomicBehaviour (Foundation)
Element
_«metaclass» target [1."] {unique} «metaclass»
iBeta) argument [1] =] Interaction - Q Target
DataUse isTrigger: Boolean [1] = false
sourceGate [1] targetGate [1] variable [0..1]
(TestConfiguration) (Data)
GateReference Variable

Figure 9.5: Interaction behaviour

9.4.6 Interaction

Semantics

An'Interaction’ is a representation of any information exchanged between connected components. An ‘Interaction’ isan
‘AtomicBehaviour', i.e. it cannot be decomposed into smaller behavioural activities. It isalso directed, i.e. the
information being exchanged is sent by a component via the 'sourceGate' and received by one or many components via
the other 'targetGate's (point-to-point and point-to-multipoint communication, see clause 8.2.7).

NOTE 1: Inaconcrete realization, an interaction can represent typically one of the following options, among

others:

- M essage-based communication: The data of an interaction argument represents a message being sent

(from 'sourceGate') and received (by 'targetGate’).

- Procedure-based communication: The data of an interaction argument represents a remote function call
being initiated (from 'sourceGate’) and invoked (at 'targetGate’) or its return values being transmitted

back.

ETSI

56 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

- Shared variable access: The data of an interaction argument represents a shared variable being read
('sourceGate' is the gate of the component that owns this variable, 'targetGate' is the gate of the reading
component) or written ('sourceGate' is the gate of the component that wants to change the value of a
shared variable, targetGate' is the gate of the component that owns this variable).

An'Interaction’ with a ‘Target' that in turn—viaits 'GateReference—refers to a '‘Componentinstance' in the role Tester'
is called atester-input event.

The "argument' property of an 'Interaction’ refers to the expected data value being exchanged. Executing an 'Interaction’
implies that this expected data value occurs at runtime among the participating components and the implicit test verdict
'pass shall be set. If the expected value does not occur, i.e. either the interaction with the expected val ue does not occur
at all within an arbitrary time or an interaction with different value occurs, the test verdict 'fail' shall be set.

NOTE 2: Thetime period to wait for the specified interaction to occur is defined outside the scope of the present
document.

If an'Interaction’ isatrigger 'Interaction’ (‘isTrigger' property is set), execution of the 'Interaction’ terminates only if the
expected data occurred (test verdict 'pass) or the expected data did not occur within an arbitrary time (test verdict 'fail’).
Intermediate 'Interaction’(s) with data values that do not match the expected value are discarded during the execution of
that trigger 'Interaction’.

The 'DatalUse' specification, which the ‘argument’ refers to, can contain 'Variable's of 'Componentinstance's
participating in this 'Interaction’. Use of a'Variable' in an ‘argument' specification implies the use of its value.
Additionally, placeholders such as'AnyValue' or 'AnyVaueOrOmit' can be used if the concrete value is not known or
irrelevant (see clauses 6.3.6 and 6.3.7).

NOTE 3: How the <undefined> value within the 'DatalUse’ specification of ‘argument' is resolved is outside of the
scope of the present document.

To store the actual data of an 'Interaction’ received at the 'Target' side at runtime, a'Variable' with the same data type as
the "argument’ specification can be used, provided that the 'Variable' isloca to the same 'Componentinstance' thet is
also referred to in the 'targetGate'.

NOTE 4: If the Variable refersto a'StructuredDataType', the non-optional ‘Member's of this data type can be
assigned values only that are different from '‘OmitValue’; see clause 6.3.2.

Generalization
e AtomicBehaviour
Properties
e isTrigger: Boolean [1] = false
If set to 'true’, this property denotes atrigger interaction that is successful only if a matching 'argument' has

occurred in this interaction. Previously occurring unmatched ‘argument's are discarded.

. argument: DatalUse [1]
Refersto a'DataUse’ that is taken as the argument (data value) of thisinteraction.

. sourceGate: GateReference [1]
Refersto a 'GateReference' that acts as the source of this interaction.

e target: Target [1..*] {unique}
Refersto a contained list of ‘Target' 'GateReference's of different component instances. If the list contains
more than one element, it implies point-to-multipoint communication.
Constraints

. Gatereferences of an interaction shall be different
All 'GateReference's that act as source or target(s) of an 'Interaction’ shall be different from each other.

. Gatereferences of an interaction shall be connected
The 'GateReference's that act as source or target(s) of an 'Interaction’ shall be interconnected by a'Connection'.

ETSI

9.4.7

57 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

Type of interaction argument

The 'DatalUse’ specification referred to in the ‘argument’ shall match one of the 'DataType's referenced in the
'‘GateType' definition of the 'Gatel nstance's referred to by the source and target 'GateReference's of the
'Interaction’.

Use of variablesin the'argument' specification
The use of 'Variable'sin the 'Datalse’ specification shall be restricted to 'Variabl€e's of 'Componenti nstance's
that participate in this 'Interaction’ viathe provided 'GateReference's.

Matching data type for 'argument' and 'variable
The 'DatalUse’ specification of the 'argument’ and the referenced 'Variable' of any 'Target' shall refer to the
same 'DataTlype'.

Target

Semantics

A Target' holds the 'GateReference’ that acts as target for the ‘Interaction’, which in turn contains this ‘Target’, and an
optional 'Variable' that stores the received data value from this 'Interaction'.

Generalization

Element

Properties

targetGate: GateReference [1]
Refers to the 'GateReference’ that acts as target for an interaction.

variable: Variable [0..1]
Refersto a'Variable' that stores the received data val ue from the 'Interaction’.

Constraints

Variable and target gate of the same component instance
The referenced 'Variable' shall exist in the same 'ComponentType' as the 'Gatel nstance' that is referred to by
the 'GateReference’ of the 'targetGate'.

Variable of atester component only
If a'Variable' is specified, the 'Componentinstance’ referenced by 'targetGate' shall bein the role Tester'.

ETSI

58 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

(TestBehaviour:AtomicBehaviour)
AtomicBehaviour

I

- «metaclass»
=i TestDescriptionReference

(Data) actualParameter [*] {ordered, unique}‘I
Datalse

testDescription [1]

(TestBehaviour:TestDescription)

: (Foundation)
TestDescription

Element

componentInstanceBinding [*] {unique}

formalComponent [1] e «metaclass»
= ComponentnstanceBinding

(TestConfiguration)
ComponentInstance ctualComponent [1]

Figure 9.6: Test description reference

9.4.8 TestDescriptionReference
Semantics

A 'TestDescriptionReference' is used to describe the invocation of the behaviour of atest description within another test
description. The invoked behaviour is executed in its entirety before the behaviour of the invoking test descriptionis
executed further. A 'TestDescriptionReference' has a possibly empty list of actual parameters which is passed to the
referenced TestDescription'. It also has an optional list of bindings between component instances of the involved test
configurations that shall be present if the test configurations of the referencing (invoking) and referenced (invoked) test
descriptions are different.

If the "TestConfiguration' of the invoked 'TestDescription' is different from the one of the invoking TestDescription’, it
shall be compatible with it. The compatibility rule is defined below. In case of different test configurations,
‘Componentinstance's contained in the "TestConfiguration' of the invoked TestDescription' will be substituted with
'‘ComponentInstance's of the 'TestConfiguration' of the invoking 'TestDescription'. Substitution isimplicit when both
test configurations coincide. Explicit substitution is defined using the 'Componentl nstanceBinding'.

Generalization
° AtomicBehaviour
Properties

. testDescription: TestDescription [1]
Refers the test description whose behaviour isinvoked.

. actual Parameter: DataUse [0..*] { ordered}
Refersto an ordered set of actual parameters passed to the referenced test description.

e componentl nstanceBinding: Componentl nstanceBinding [0..*] { unique}

Defines explicit bindings between 'Componentl nstance's from 'TestConfiguration' of invoking
‘TestDescription' and those from the "TestConfiguration' of the invoked TestDescription'.

ETSI

59 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

Constraints

. Number of actual parameters
The number of actual parametersin the TestDescriptionReference' shall be equal to the number of formal
parameters of the referenced "TestDescription'.

. No use of variablesin actual parameters
The 'DatalUse’ expressions used to describe actual parameters shall not contain variables directly or indirectly.

. M atching parameters
The actual parameter APJi] of index i in the ordered list of 'actual Parameter's shall match 'DataType' of the
'Formal Parameter' FP[i] of index i in the ordered list of formal parameters of the referenced 'TestDescription'.

. Restriction to 1: 1 component instance bindings
If component instance bindings are provided, the component instances referred to in the bindings shall occur at
most once for the given test description reference.

e Compatibletest configurations
Thetest configuration TConf2 of the referenced (invoked) test description shall be compatible with the test
configuration TConf1l of the referencing (invoking) test description under the provision of alist of bindings
between component instances in TConf1 and TConf2. Compatibility is then defined in the following terms:

- All component instances in TConf2 can be mapped to component instances of TConf1l.
A component instance B of test configuration TConf2 can be mapped to a component instance A of test
configuration TConflif and only if:

a) thereisabinding pair (A, B) provided;
b) Aand B refer to the same component type; and
¢) Aand B have the same component instance role { SUT, Tester} assigned.

- All connections between component instances in TConf2 exist also between the mapped component
instances in TConfl and the type of a connection in TConf2 equals the type of the related connection in
TConf1.

Two connections of the two test configurations are equal if and only if the same gate instances are used
in the definition of the gate references of the connections.

NOTE 1: The compatibility between test configurations is defined asymmetrically. That is, if TConf2 is compatible
with TConf1, it does not imply that TConflis compatible with TConf2. If TConf2 is compatible with
TConfl, it is said that TConf2 is a sub-configuration of TConfl under a given binding.

NOTE 2: If two test configurations are equal, then they are also compatible.

9.4.9 ComponentinstanceBinding
Semantics

The 'Componentl nstanceBinding' is used with the TestDescriptionReference’ in case when the 'TestConfiguration' of
theinvoked ‘TestDescription' differs from that of the invoking ‘TestDescription'. It specifies that a (formal)
‘Componentlnstance’ in the invoked "TestDescription’ will be substituted with an (actual) 'Componentinstance' from the
invoking "TestDescription'.

Additional rules and semantics are defined in clause 9.4.8.
Generalization

J Element
Properties

e forma Component: Componentl nstance [1]
Refers to a'Componentl nstance' contained in the 'TestConfiguration' of the invoked 'TestDescription'.

ETSI

60 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)
. actual Component: Componentinstance [1]
Refersto a'Componentlnstance' contained in the 'TestConfiguration' of the invoking 'TestDescription'.
Constraints

. M atching component types
Both, the formal and the actual component instances, shall refer to the same ‘ComponentType'.

o M atching component instanceroles
Both, the formal and the actual component instances, shall have the same ‘Componentl nstanceRol €' assigned

to.
AtomicBehaviour
__ «metaclass»
& ActionBehaviour componentinstance [0..1] (TestConfiguration)
D Componentlnstance
~ =metaclass» r__«:me?:acla::w
=i ActionReference = InlineAction
body: String [1]
_«metaclass»
£ Assignment
; actualParameter([*] {ordered, unique} action [1]
variable [1]

(Data) expression [(Data) (Data)

Variable DataUse Action

Figure 9.7: Action behaviour concepts

9.4.10 ActionBehaviour

Semantics

'‘ActionBehaviour' is arefinement of 'AtomicBehaviour' and a super-class for 'ActionReference’, 'InlineAction’ and
'‘Assignment’.

It may refer to a Tester' 'Componentlnstance’ that specifies the location, on which the 'ActionBehaviour' is executed. If
no reference to a'Componentl nstance' is given, the 'ActionBehaviour' is executed in the global scope of the associated
TestConfiguration'.

Generalization
° AtomicBehaviour
Properties

e componentl nstance: Componentlnstance [0..1]
Refers to a'Componentlnstance' from the 'TestConfiguration', on which the 'ActionBehaviour' is performed.

ETSI

61 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

Constraints

. 'ActionBehaviour' on 'Tester' components only
The 'ComponentInstance' that an ‘ActionBehaviour' refersto shall be of role "Tester".

9.4.11 ActionReference

Semantics

An 'ActionReference’ invokes an 'Action'’. It may carry alist of 'DataUse’ specifications to denote actual parameters of
this'Action'.

Generalization
. ActionBehaviour
Properties

. action: Action [1]
Refersto the 'Action' to be executed.

. actual Parameter: DatalUse [0..*] { ordered, unique}
Refers to an ordered set of actual parameters passed to the referenced action.

Constraints

o Matching parameters
The actual parameter AP[i] of index i in the ordered set of ‘actual Parameter's shall match the 'DataType' of the
'Formal Parameter' FP[i] of index i in the ordered set of formal parameters of the referenced 'Action'.

9.4.12 InlineAction

Semantics

An'InlineAction’ denotes the execution of an informally defined action. The semantics of its execution is outside the
scope of TDL.

Generalization
. ActionBehaviour
Properties

e body: String [1]
The action described as free text.

Constraints

There are no constraints specified.

9.4.13 Assignment
Semantics

An 'Assignment’ denotes the assignment of a value that is expressed as a'DataUse’ specification to a variable within a
component instance.

Generalization
. ActionBehaviour
Properties

e variable: Variable[1]
Refers to the variable that is assigned the data val ue resulting from evaluating the 'expression'.

ETSI

62 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

. expression; DatalUse [1]
Refersto the 'Datalse’ specification, which is evaluated at runtime and whose value is assigned to the
referenced 'Variable.

Constraints

o Known component instance
The property ‘componentlnstance' shall be set to identify the 'Variable' in this'Assignment'.

. M atching data type
The provided 'DataUse’ expression shall match the 'DataType' of the referenced 'Variable'.

10 Predefined TDL Model Instances

10.1 Overview

This clause lists the predefined element instances for various meta-model elements that shall be a part of a standard-
compliant TDL implementation. It is not specified how these predefined instances are made available to the user.
However, it isimplied that in different TDL models predefined instances with the same name are semantically
equivalent. This statement implies further that predefined instances shall not be overwritten with different instances of
the same name, but with a different meaning.

10.2 Predefined Instances of the 'SimpleDataType' Element
10.2.1 Boolean

The predefined 'SimpleDataType' 'Boolean’ denotes the common Boolean data type with the two val ues (instances of
‘SimpleDatal nstance') 'true’ and 'false' to denote truth val ues (see clause 10.3) and support logical expressions.

No assumptions are made about how ‘Boolean’ isimplemented in an underlying concrete type system.

10.2.2 Verdict

The predefined 'SimpleDataType' 'Verdict' denotes the data type that holds the possible test verdicts of a
‘TestDescription' (see clause 10.3). The 'Verdict' allows the definition of functions that use this data type as an argument
or asthe return type.

No assumptions are made about how "Verdict' isimplemented in an underlying concrete type system.

10.2.3 TimelLabelType

The predefined 'SimpleDataType' 'Timelabel Type' denotes the data type that holds all instances of 'TimelL abel’
elements defined in a'BehaviourDescription’ of a TestDescription'. Its mere purpose is to enable the definition of
functions over time labels; some of them are predefined (see clause 10.5.2).

No assumptions are made about how 'TimeL abel Type' isimplemented in an underlying concrete type system.
10.3 Predefined Instances of 'SimpleDatalnstance' Element
10.3.1 true

The predefined 'SimpleDatal nstance' 'true’ shall be associated with the 'SimpleDataType' '‘Boolean’ (see clause 10.2.1).
It denotes one of the two truth values with the usual meaning.

10.3.2 false

The predefined 'SimpleDatal nstance' 'false’ shall be associated with the 'SimpleDataType' 'Boolean’ (see clause 10.2.1).
It denotes one of the two truth values with the usual meaning.

ETSI

63 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

10.3.3 pass

The predefined 'SimpleDatal nstance' 'pass' shall be associated with the predefined 'SimpleDataType' 'Verdict' (see
clause 10.2.2). It denotes the valid behaviour of the SUT as observed by the tester in correspondence to the definition in
I|SO/IEC 9646-1 [6].

10.3.4 fall

The predefined 'SimpleDatal nstance' 'fail' shall be associated with the predefined 'SimpleDataType' 'Verdict' (see
clause 10.2.2). It denotes the invalid behaviour of the SUT as observed by the tester in correspondence to the definition
in ISO/IEC 9646-1 [6].

10.3.5 inconclusive

The predefined 'SimpleDatal nstance' 'inconclusive' shall be associated with the predefined 'SimpleDataType' 'Verdict'
(see clause 10.2.2). It denotes behaviour of the SUT as observed by the tester in cases when neither 'pass’ nor 'fail'
verdict can be given in correspondence to the definition in ISO/IEC 9646-1 [6].

10.4 Predefined Instances of 'Time' Element
10.4.1 Second

The predefined instance 'Second' of the 'Time' element denotes a data type that represents the physical quantity time
measured in seconds. Values of thistime datatype, i.e. instances of 'SimpleDatal nstance', denote a measurement of time
with the physical unit second.

No assumptions are made about how 'Second' is implemented in an underlying concrete type system.
10.5 Predefined Instances of the 'Function’' Element
10.5.1 Overview

In this clause, the predefined functions are provided in one of the following two syntax forms:
. Prefix notation: <function name>: <parameter type>, <parameter type>, ... = <return type>
. Infix notation: _<function name>_: <parameter type>, <parameter type> - <return type>

The <parameter type> and <return type> names from above refer to (predefined) instance names of meta-model
elements. If arbitrary instances are supported, the function instanceOf (<element>) shall provide such an arbitrary
instance of the given meta-model element.

No assumptions are made about how these functions are implemented in an underlying concrete type system.

10.5.2 Functions of Return Type 'Boolean’
The following functions of return type '‘Boolean’ shall be predefined.

. _==: instanceOf(Datal nstance), instanceOf (Datal nstance) > Boolean
Denotes equality of any two data instances of arbitrary, but same data type.

. _I=: instanceOf(Datal nstance), instanceOf(Datal nstance) - Boolean
Denotes inequality of any two data instances of arbitrary, but same data type.

e _and : Boolean, Boolean = Boolean
Denotes the standard logical AND operation.

e _or_:Boolean, Boolean > Boolean
Denotes the standard logical OR operation.

. not: Boolean - Boolean
Denotes the standard logical NOT operation.

ETSI

64 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

10.5.3 Functions of Return Type 'TimeLabelType'

The following functions of return type TimeLabel Type' shall be predefined. Their purpose isto identify unique
occurrences of atime label if it occursin an iterative behaviour, e.g. within bounded or unbounded loops. All functions
listed below will return the time label itself if they are applied to time labels that are outside of iterative behaviour.

first: TimeLabel Type - TimeLabel Type
Returnsthe first occurrence of atime label in an iterative behaviour.

last: TimeLabel Type > TimelLabel Type
Returnsthe last occurrence of atime label in an iterative behaviour.

prev: TimeLabel Type - TimelLabel Type
Returns the occurrence of atime label in the previous iteration. The previous occurrence of atime label in the
first iteration shall be equal to the first occurrence of thistime label.

10.5.4 Functions of Return Type of Instance of 'Time'

The following functions of return type of instance of the 'Time' meta-model element shall be predefined.

+:instanceOf(Time), instanceOf(Time) - instanceOf(Time)
Returns the sum of two time values of the same time data type, i.e. al parameters of the function definition
shall refer to the same instance of the 'Time' element as data type.

obs: TimeLabel Type = instanceOf(Time)
Returns the timestamp of atime label attached to an atomic behaviour instance, i.e. the time point when this
behavioura activity is observed. The timestamp is returned as a time val ue of the given time data type.

span: TimeLabel Type, TimeLabel Type = instanceOf(Time)
Returns the time span between two time label s attached to two atomic behaviour instances, i.e. the elapsed
time between the two behavioural activities. The time span is returned as a value of the given time data type.

ETSI

65 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

Annex A (informative):
Technical Representation of the TDL Meta-Model

The technical representation of the TDL meta-model isincluded as an electronic attachment
es 20311901v010200m0.zip which accompanies the present document. The purpose of thisannex isto serveasa

possible starting point for implementing the TDL meta-model conforming to the present document. See the readme
contained in the zip file for details.

ETSI

66 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

Annex B (informative):
Examples of a TDL Concrete Syntax

B.1 Introduction

The applicability of the TDL meta-model that is described in the main part of the present document depends on the
availability of TDL concrete syntaxes that implement the meta-model (abstract syntax). Such a TDL concrete syntax
can then be used by end users to write TDL specifications. Though a concrete syntax will be based on the TDL meta-
model, it can implement only parts of the meta-model if certain TDL features are not necessary to handle a user's needs.

Thisannex illustrates an example of a possible TDL concrete syntax in atextual format that supports all features of the
TDL meta-model, called "TDLan". Three examples are outlined below; two examples trandated from existing test
descriptions taken from [i.2] and [i.3] as well as an example illustrating some of the TDL data parameterization and
mapping concepts. The examples are accompanied by a compl ete reference description of the textual syntax of TDLan
givenin EBNF.

B.2 A 3GPP Conformance Example in Textual Syntax

This example describes one possible way to trandate clause 7.1.3.1 from ETSI TS 136 523-1 [i.2] into the proposed
TDL textual syntax, by mapping the concepts from the representation in the source document to the corresponding
conceptsin the TDL meta-model by means of the proposed textual syntax. The example has been enriched with
additional information, such as explicit data definitions and test configuration details for completeness where
applicable.

//Translated from[i.5], Section 7.1.3.
TDLan Specification Layer_2_DL_SCH Data_Transfer {
/'l Procedures carried out by a conponent of a test configuration
//or an actor during test execution
Action preCondition : "Pre-test Conditions:
RRC Connecti on Reconfiguration" ;
Action preanble : "Preanble:
The generic procedure to get UE in test state Loopback
Activated (State 4) according to TS 36.508 clause 4.5
is executed, with all the paraneters as specified in the
procedure except that the RLC SDU size is set to return no
data in uplink.
(reference correspondi ng behavi or once inpl enented" ;

// User-defined verdicts

/I Alternatively the predefined verdicts nay be used as well
Type Verdi ct

Ver di ct PASS;

Verdict FAIL;

/I User-defined annotation types

Annot ation TITLE ; /] Test description title

Annot ati on STEP ; /] Step identifiers in source docunents

Annot at i on PROCEDURE ; /1l nformal textual description of a test step
Annot ati on PRECONDI TION ; //ldentify pre-condition behaviour

Annot at i on PREAMBLE ; /11dentify preanbl e behavi our.

/| Test objectives (copied verbatimfrom source docunent)
Test Objective TPL {
from: "36523-1-a20_s07_01.doc::7.1.3.1.1 (1)" ;
description : "with { UE in E-UTRA RRC_CONNECTED state }
ensure that {
when { UE receives downlink assignnment on the PDCCH
for the UEE's C-RNTI and receives data in the
associ ated subframe and UE perfornms HARQ
operation }
then { UE sends a HARQ feedback on the HARQ
process }

}
Test Objective TP2 {
from: "36523-1-a20_s07_01.doc::7.1.3.1.1 (2)" ;
description : "with { UE in E-UTRA RRC_CONNECTED state }
ensure that {

ETSI

67

Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

when { UE receives downlink assignnent on the PDCCH
with a CGRNTI unknown by the UE and data is
avail able in the associated subfrane }
then { UE does not send any HARQ feedback on the

HARQ process }
P
}

/I Rel evant data definitions
Type PDUY,;
PDU mac_pdu ;

Type ACK ;
ACK harq_ack ;

Type C_RNTI;
C_RNTI ue;
C_RNTI unknown;

Type PDCCH (optional c_rnti of type C RNTI);
PDCCH pdcch;

Type CONFI GURATI ON,
CONFI GURATI ON RRCConnect i onReconfi guration ;

/1 User-defined tinme units
Ti me SECONDS;
SECONDS fi ve;

// Gate type definitions

Gate Type defaul t GT accepts ACK, PDU, PDCCH, C _RNTI,

/| Component type definitions
Conponent Type defaul t CT having {
gate g of type defaul t GT;

}

/1 Test configuration definition

Test Configuration defaultTC {
create Tester SS of type defaul tCT;
create SUT UE of type defaul tCT ;
connect UE.g to SS. g ;

}

/| Test description definition

CONFI GURATI ON

Test Description TD 7_1_3 1 uses configuration defaul t TC {
/1 Pre-conditions and prean‘ol e fromthe source docurrent

performaction preCondition with { PRECOND Tl ON ;
performaction preanble wth { PREAMBLE ; } ;

/| Test sequence
SS. g sends pdcch (c_rnti=ue) to UE.g with {
STEP : "1" ;
PROCEDURE : "SS transmits a downlink assignnent
including the C-RNTlI assigned to
the UE" ;

} s
SS.g sends nac_pdu to UE.g with {
STEP : "2"
PROCEDURE : "SS transmits in the indicated
downl i nk assignnent a RLC PDU in
a MAC PDU' ;

P
UE. g sends harg_ack to SS.g with {
STEP : "3" ;
PROCEDURE : "Check: Does the UE transmt an
HARQ ACK on PUCCH?" ;
test objectives : TP1 ;
P
set verdict to PASS ;
SS. g sends pdcch (c_ rntl—unknown) to UE.g with {
STEP : "4" ;
PROCEDURE : "SS transnmits a downlink assignment
to including a CGRNTI different from
the assigned to the UE" ;

SS g sends nmac_pdu to UE.g with {
STEP : "5"

ETSI

68 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

PROCEDURE : "SS transmts in the indicated
downl i nk assi gnment a RLC PDU in
a MAC PDU'

}

/'l nterpolated original step 6 into an alternative behaviour,
/'l covering both the incorrect and the correct behaviours of the UE
alternatively {
UE. g sends harg_ack to SS.g ;
set verdict to FAIL ;
}oor {
gate SS.g is quiet for five ;
set verdict to PASS ;

} with {
STEP : "6" ;
PROCEDURE : "Check: Does the UE send any HARQ ACK

on PUCCH?" ;

test objectives : TP2 ;

}

} with {
Note : "Note 1: For TDD, the timng of ACK/ NACK is not

constant as FDD, see Table 10.1-1 of TS 36.213." ;
}
} with {
Note : "Taken from 3GPP TS 36.523-1 V10.2.0 (2012-09)"
TITLE : "Correct handling of DL assignment / Dynam c case" ;

}

B.3 An IMS Interoperability Example in Textual Syntax

This example describes one possible way to trandate clause 4.5.1 from ETSI TS 186 011-2 [i.3] into the proposed TDL
textual syntax, by mapping the concepts from the representation in the source document to the corresponding concepts
in the TDL meta-model by means of the proposed textual syntax. The example has been enriched with additional

information, such as explicit data definitions and test configuration details for completeness where applicable.

//Translated from[i.6], Section 4.5.1.
TDLan Specification | MS_NNI _General _Capabilities {
/'l Procedures carried out by a conponent of a test configuration
//or an actor during test execution
Action preConditions : "Pre-test conditions:
- HSS of IMS_A and of IMS B is configured according to table 1
- UE_A and UE_ B have | P bearers established to their respective
I M5 networks as per clause 4.2.1
- UE_A and I MS_A configured to use TCP for transport
- UEAis registered in IMS_A using any user identity
- UEBis registered user of |MS_B using any user identity
- MESSACE request and response has to be supported at |1-NNI
(ETSI TS 129 165 [16]
see tables 6.1 and 6.3)"

// User-defined verdicts
/IAl'ternatively the predefined verdicts nmay be used as wel |
Type Verdi ct

Verdict PASS ;

Verdict FAIL ;

/I User-defined annotation types

Annotation TITLE ; /] Test description title

Annot ati on STEP ; //Step identifiers in source docunents

Annot at i on PROCEDURE ; /1l nformal textual description of a test step
Annot ati on PRECONDI TION ; //ldentify pre-condition behaviour

Annot ati on PREAMBLE ; //1dentify preanbl e behaviour.

Annot ati on SUMMARY ; /1l nformal textual description of test sequence

/| Test objectives (copied verbatimfrom source docunent)
Test Objective TP_I M5_4002_1 {
//Location in source docunent
from: "ts_18601102v030101p. pdf::4.5.1.1 (CC 1)" ;
/I Further reference to another docunent
from: "ETSI TS 124 229 [1], clause 4.2A, paragraph 1" ;
description : "ensure that {
when { UE_A sends a MESSACE to UE_B
contai ning a Message_Body greater than 1 300
bytes }
then { I M5_B receives the MESSAGE containing the

ETSI

69 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

Message_Body greater than 1 300 bytes }
P

}

Test Objective UC 05_| {
/1Only a reference to corresponding section in the source docunent
from: "ts_18601102v030101p. pdf::4.4.4.2" ;

}

/I Rel evant data definitions

Type MSG (optional TCP of type CONTENT);
MSG MESSAGE ;

MSG DI NG ;

MSG DELI VERY_REPORT ;

MSG M 200_OK

Type CONTENT ;
CONTENT tcp;

Ti me seconds;
seconds defaul t_tineout;

// Gate type definitions.
Gate Type defaul t GT accepts MSG CONTENT ;

/| Component type definitions
/1ln this case they nmay al so be reduced to a single conponent type
Conmponent Type USER having {
gate g of type defaul tGT ;
}

Conmponent Type UE having {
gate g of type defaul tGT ;
}

Conponent Type | M5 having {
gate g of type defaul tGT ;

Conponent Type | BCF having {
gate g of type defaul tGT ;

/1 Test configuration definition
Test Configuration CF_INT_CALL {
create Tester USER A of type USER;
create Tester UE_A of type UE;
create Tester IM5_A of type | Ms;
create Tester |BCF_A of type |BCF;
create Tester |BCF_B of type IBCF;
create SUT I M5_B of type IM5;
create Tester UE B of type UE;
create Tester USER B of type USER;
connect USER A.g to UE_A g ;
connect UE_A. g to | M5_.

connect | M5_ »
connect IBCF_A g to IBCF_B.g ;
connect IBCF_B.g to IMS_B.g ;
connect IMS B.g to UE B.g ;
connect UE B.g to USER B. g ;

}

/] Test description definition

Test Description TD_| MS_MESS_0001 uses configuration CF_I NT_CALL {
//Pre-conditions fromthe source docunment
perform action preConditions with { PRECONDI TION ; };

/| Test sequence
USER A. g sends MESSAGE to UE_A.g with { STEP : "1" ; } ;
> A.g with { STEP : "2" ; ;
A g sends MESSAGE to IBCF_A. g

I MV5_ . with { STEP : "3" ; } ;

| BCF_A. g sends MESSAGE to IBCF_B.g with { STEP : "4" ; } ;

| BCF_B. g sends MESSAGE (TCP =t p)tolNSngth{STEP "5" ;1
IMS_B.g sends MESSAGE to UE B.g with { STEP : "6" ; } ;

UE_B.g sends DING to USER B.gwth{ STEP : "7" ; } ;

UE_B. g sends M 200_OK to IM5_B. g wth { STEP : "8" ; } ;
INS_Bgsends M 200_CK to | B.gwith { STEP : "9" ; } ;

| BCF_B. g sends M_ 200 XK to
| BCF_A. g sends M 200 K to
INSAg sends M 200_ K to U
alternatively {

UE_A. g sends DELIVERY _REPORT to USER A.g with { STEP : "13" ; } ;

g with { STEP : "11" ; } ;
with { STEP : "12" ; } ;

ﬂ'l__UJ

B.
CF_
BCF A g with { STEP : "10" ; } ;
VB
A

ETSI

70 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

}oor {
gate USER A. g is quiet for default_tineout;

}

} with {
SUMMARY : "I M5 network shall support SIP nessages greater than
1 500 bytes" ;
}
} with {

Note : "Taken from ETSI TS 186 011-2 V3.1.1 (2011-06)"
TITLE : "SI P nmessages | onger than 1 500 bytes" ;

B.4 An Example Demonstrating TDL Data Concepts

This example describes some of the concepts related to data and data mapping in TDL by means of the proposed TDL
textual syntax. It illustrates how data instances can be parameterized, mapped to concrete data entities specified in an
external resource, e.g. aTTCN-3 file, or to aruntime URI where dynamic concrete data values might be stored by the
execution environment during runtime in order to facilitate some basic data flow of dynamic values between different
interactions. The example considers a scenario where the SUT isrequired to generate and maintain a session ID
between subsequent interactions using a similar test configuration as defined for the first examplein clause B.2, and an
alternative realization where data flow is expressed with variables.

/1A manual |y constructed exanple illustrating the data mappi ng concepts
TDLan Specification DataExanple {

/] User-defined verdicts

/l'Al'ternatively the predefined verdicts may be used as well

Type Verdict ;

Verdi ct PASS ;

Verdict FAIL ;

/]| Test objectives
Test Objective CHECK_SESSI ON_| D | S_MAI NTAI NED {
//Only a description
description : "Check whether the session id is nuintained
after the first response."” ;

}

/1 Data definitions
Type SESSI ON_| D;
SESSI ON_| D SESSI ON |

I D 1;
SESSION I D SESSION I D 2

Type MSG (optional session of type SESSION ID);
MBG REQUEST_SESSI ON_| D(session = no SESSION_|I D);
MBG RESPONSE(session = any SESSION | D);

M5G MESSAGE(session = any SESSION | D);

/| Dat a mappi ngs

/'l Load resource.ttcn3
Use "resource.ttcn3" as TTCN_MAPPI NG ;

/I Map types and instances to TTCN-3 records and tenpl ates, respectively
/1 (located in the used TTCN-3 file)
Map MSG to "record_nessage” in TTCN_MAPPI NG as MSG nmapping with {
sessi on nmapped to "session_id";
}s
Map REQUEST_SESSION ID to "tenpl ate_nmessage_request” in TTCN_MAPPI NG as REQUEST_mappi ng ;
Map RESPONSE to "tenpl ate_response” in TTCN_MAPPI NG as RESPONSE_nappi ng ;
Map MESSAGE to "tenpl ate_nessage" in TTCN_MAPPI NG as MESSAGE_nappi ng ;

/1Use a runtine URI for dynamic data available at runtinme, such as

/'l session |Ds

Use "runtine://sessions/" as RUNTI ME_VAPPI NG ;

/I Map session ID data instances to |ocations within the runtinme URI

Map SESSION ID 1 to "id_1" in RUNTI ME_MAPPI NG as SESSION I D 1_mapping ;
Map SESSION ID 2 to "id_2" in RUNTI ME_MAPPI NG as SESSION_ | D_2_mappi ng ;

|/ Gate type definitions
Gate Type defaul t GT accepts M5SG, SESSI ON I D;

/ | Conponent type definitions

Conmponent Type defaul t CT havi ng {
gate g of type defaul tGrT ;

ETSI

71 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

}

/] Test configuration definition

Test Configuration defaultTC {
create SUT UE of type defaul tCT;
create Tester SS of type defaul tCT;
connect SS.g to UE. g ;

}

/] Test description definition
Test Description exanpl eTD uses configuration defaul t TC {
/] Tester requests a session id
SS. g sends REQUEST SESSION IDto UE. g ;
/1 SUT responds with a session id that is assigned to the URI
/I provided by the execution environnent
UE. g sends RESPONSE (session=SESSION |D 1) to SS.g ;
/] Tester sends a nmessage with the session id
//fromthe runtine UR
SS. g sends MESSAGE (session=SESSION ID 1) to UE g ;

alternatively {
/1 SUT responds with the sane session id
UE. g sends RESPONSE (session=SESSION D 1) to SS.g ;
set verdict to PASS;
}oor {
/1 SUT responds with a new session id
UE. g sends RESPONSE (session=SESSION |D 2) to SS.g ;
set verdict to FAIL;
} with {
test objectives : CHECK SESSION_| D | S _MAI NTAI NED ;
}

}
/I'Al'ternative approach with variabl es

/| Conponent type definitions

Conmponent Type defaul t CTwi t hVari abl e having {
variable v of type MSG
gate g of type defaul tGT ;

/| Test configuration definition

Test Configuration defaultTOm thVariabl es {
create SUT UE of type defaul tCT;
create Tester SS of type defaul t CTwi thVari abl e;
connect SS.g to UE. g ;

}

Test Description exanpl eTD uses configuration defaul t TC {
/| Tester requests a session id
SS. g sends REQUEST_SESSION ID to UE. g ;

/1 SUT responds with a response nessage containing a session ID
/1 The response could contain any of the known session |Ds

/1 The received response is stored in the variable v of the SS
UE. g sends RESPONSE to SS.g where it is assigned to v;

/Il Tester sends a nessage with the session ID
//fromthe response stored in the variable v of the SS
SS. g sends NMESSAGE(sessi on=SS->v.session) to UE. g ;

alternatively {
/1 SUT responds with the sane session ID that is stored in
//the variable v of the SS fromthe previous response
UE. g sends RESPONSE(sessi on=SS->v.session) to SS.g ;
set verdict to PASS;

}oor {
/1 SUT responds with a any session ID, including the one fromthe
/I previous response stored in v. The ordering of evaluation will
/1 always select the first alternative in that case. Alternatively
/1a function can be defined and called that checks explicitly that
/la the specific session ID fromthe previous response stored in v
/1is not received e.qg.
/1 UE.g sends RESPONSE(session=not (SS->v.session)) to SS.g;
UE. g sends RESPONSE to SS.g ;
set verdict to FAIL;

ETSI

72 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

} with {
test objectives : CHECK SESSION_|I D IS MAI NTAI NED ;
}

B.5 TDL Textual Syntax Reference
B.5.1 Conventions for the TDLan Syntax Definition

This annex describes the grammar of the used concrete textua syntax in the Extended Backus-Naur Form (EBNF)
notation. The EBNF representation is generated from a reference implementation of the TDL meta-model. The EBNF
representation can be used either as a concrete syntax reference for TDL end users or as input to a parser generator tool.
Table B.1 defines the syntactic conventions used in the definition of the EBNF rules. To distinguish this concrete
textual syntax from other possible concrete textual syntax representations, it isreferred to as"TDLan". This proposed
syntax is complete in the sense that it covers the whole TDL meta-model.

Table B.1: Syntax definition conventions used

= is defined to be

abc the non-terminal symbol abc
abc xyz abc followed by xyz

abc | xyz alternative (abc or xyz)
[abc] 0 or 1 instance of abc
{abc}+ 1 or more instances of abc
{abc} 0 or more instances of abc
'a-'z' all characters fromato z
(-.) denotes a textual grouping
‘abc’ the terminal symbol abc

; production terminator

\ the escape character

B.5.2 TDL Textual Syntax EBNF Production Rules

TDLSpec ::= 'TDLan Specification' Identifier '{' [El enentlnport {
El enent I nport }] [Packageabl eEl enent { Packageabl eEl ement }] [
Package { Package }] '"}' ['with" '"{' [Comment { Comment }] [
Annotation { Annotation }] '}'] ;
Action = Action_Inpl | Function ;
Acti onRef erence = ‘'perform 'action' ldentifier ['(' DataUse { ',' DataUse } ')']
["on' ldentifier] ["with" '"{'" [Comment { Comment }] [
Annotation { Annotation }] ['test objectives' ':' Identifier {
Identifier } ';" 1 ["nane' ldentifier] ["tine' 'label'
TimeLabel] ['"time' 'constraints' ':' TinmeConstraint { '
TimeConstraint } ';'] '} B
Acti on_I npl ::= 'Action' ldentifier ['(' Formal Parameter { ',' Formal Paraneter }
)1 [it stringd] ['with' "{' [Comment { Comment }] [
Annotation { Annotation }] "}"] ';' ;
Al ternativeBehaviour ::= ‘alternatively' Block { "or' Block } ["with" '{' [Comment ({
Comment }] [Annotation { Annotation}] ['test objectives'
Ildentifier { '," Identifier } '] ["nane' ldentifier] [
Peri odi cBehavi our { Per|od|cBehaV| our }] [Exceptional Behavi our {
Exceptional Behaviour }] '}’]
Annotation ::= ldentifier [':'" String0] [V\nth R ComTent { Comment }] [
Annotation{ Annot ation }] ldentifier "}']
Annot ationType ::= 'Annotation' ldentifier ['"with' '{' [Corrrrent { Corrrrent Y10
Annotatlon{ Annotatlon}] '} 1
AnyVal ueOoQrit ::= any' 'or' 'no' ldentifier ['with' '{' ['reduction' ' ('
Ildentifier { '," Identifier } ")"] ["argunent' '{'
ParaneterBinding { ',' ParaneterBinding } '}' 1 [Comment ({
Comment }] [Annotation { Annotation }] ['name' ldentifier]
R
AnyVal ue = ‘'any' ldentifier [Wlth { ["reduction' ' (' ldentifier { '
ldentifier } ")"] ["argument' '{' ParanmeterBinding { ','
Par anet er Bi ndi ng} }' 1 [Comment { Oomrent } 1 [Annotation {
Annotation }] ['nanme' Identifier] '}']
ParaneterBinding ::= ldentifier '='" DataUse ['with' '{' [Com'rent { Comment } 1 [
Annotation { Annotation }] ['name' Identifier] '}

ETSI

Assertion

Assi gnnment

Behavi our

Behavi our Descri ption
Bl ock

Bool ean
BoundedLoopBehavi our

Br eak

Conment

Conponent | nst ance

Conponent | nst anceBi ndi ng

Conponent Type

ConpoundBehavi our

Condi ti onal Behavi our

Connecti on

Dat aEl enent Mappi ng

Dat al nst ance

73 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

"assert' DatalUse ['otherwi se' 'set verdict' 'to' DataUse] [
‘with' "{' [Comment { Comment }] [Annotation { Annotation }] [

"test objectives' ':' ldentifier { ',' Identifier Yo'yt 1 [nane!
Identifier 1] ["tinme' 'label' TineLabel] [tirre ‘constraints’
' TineConstraint { ',' TinmeConstraint } ' | -
[Identifier "->] ldentifier '=' DataUse[with' '"{'" [Conmment
{ Commrent }] [Annotation { Annotation }] ['test objectives'

ldentifier { '," Identifier } ';"] ['name' ldentifier] [
"tine' 'label' TineLabel] ['time' 'constraints' '
TimeConstraint { ', TimeConstraint } ';" 1 "}" 1 ';' ;
TimerStart
| TinmerStop

Ti meQut

Vi t

Qui escence

I
|
|
| Periodi cBehavi our
| AlternativeBehavi our
| Paral | el Behavi our
| BoundedLoopBehavi our
| UnboundedLoopBehavi our
| Condi tional Behavi our
| ConpoundBehavi our
| Defaul t Behavi our
| InterruptBehavi our
| Verdi ct Assi gnment
| Assertion
| Stop
| Break
| Assi gnnent
| I'nlineAction
| ActionReference
| TestDescriptionReference
| Interaction ;

Behaviour ["with' '{' [Comment { Conment }] [Annotation {
Annotation }] ['nane' ldentifier] '}’

['[" DataUse ']'] '"{' [Comment { Oomrent } 1 [Annotation {
Annotation }] ['name' Identifier] Behaviour { Behaviour } '}' ;
"true' | 'false' ;
'repeat' DataUse 'tinmes' Block ['"with' '{' [Comment { Conment }
] [Annotation { Annotation }] ['test objectives' ':' Identifier
{ ', ldentifier } ';'] ['name' Identifier] [PeriodicBehaviour
{ PeriodicBehaviour }] [Exceptional Behavi our {
Exceptional Behaviour } 1 "}" 1 ;

"break' ['with' '"{' [Comment { Comment }] [Annotation {

Annotat|on}] [‘"test objectives' ':' ldentifier { ',' ldentifier
} ;"1 ["nane' ldentifier] ["time' 'label' TineLabel] [
"tine' 'constraints' ':' TimeConstraint { ',' TineConstraint }
|

"Note' ldentifier '":' String0 ["with' '{' [Comment { Comment }]

[Annotation { Annotation}] "}'" 1 ';' ;
‘create' ConponentlnstanceRole ldentifier 'of type' ldentifier [
‘with' '"{' [Comment { Comment }] [Annotation { Annotation }]
S
"bind ldentifier "to' ldentifier ["with' '{' [Comment { Oomrent
} 1 [Annotation { Annotation }] ['nane' Identifier] '}']

' Conponent Type' Identifier "having' '{" { Tiner } { Varlable} {
Gatelnstance } '}" ["with" "{" [Oom”rent { Comrent }] [
Annotation{ Annotation }] '}']

Block ["with' '{' [Coment { Oorment } 1 [Annotation {
Annotation}] [‘"test objectives' ':' Ildentifier { '," ldentifier
} ' 1 ["nane' ldentifier] [PeriodicBehaviour {
PeriodicBehaw our }] [Exceptional Behaviour {

Excepti onal Behaviour }] '}’ ;

"if* Block [(('else" Block)) | ({ 'else" "if" Block } | (
‘else' Block)) 1 ["with" '{" [Conment { Comment }] [
Annot ation { Annotation}] ["test objectives' ':' Identifier {
",'" ldentifier } ';'"] ['"name' ldentifier] [PeriodicBehaviour {
Peri odi cBehaviour }] [Exceptlonal Behavi our {

Exceptlonal Behaviour } 1 '}]

'connect' GateReference 'to' GateReference[‘'with' "{'" [Comment
{ Commrent }] [Annotation { Annotation }] ['as' Identifier]
I S B
' Map' Identifier ["to'" Stringd] "in' ldentifier ['as'
Identifier 1] ["with" '"{' { Paraneterl\/apping} [Comment { Comment
} 1 [Anotation { Annotation }] "}'"] ';' ;
Si npl eDat al nstance_| npl | StructuredDatal nstance ;

ETSI

Dat al nst anceUse

Dat aResour ceMappi ng

Dat aType

Dat aUse

Def aul t Behavi our

Identifier
I denti fi er Dot
El ement | nport

Excepti onal Behavi our
Functi on

FunctionCal |

CGat el nst ance

CGat eRef erence

Cat eType

I nlineAction

I nteraction

Tri gger
I nt er r upt Behavi our

Mappabl eDat aEl enent

Menber

Opti onal
Menber Assi gnnent
Par amet er Mappi ng

NoneVal ue

Package

74 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

ldentifier ['(' ParaneterBinding { ',' ParaneterBinding } ')'] {
ldentifier } ["with" '{" ['"nane' ldentifier] [Comment ({

Comment }] [Annotation { Annotation }] '}'] ;

"Use' String0 ['"as' ldentifier] ["with' '"{' [Comment { Conment

} 1 [Annotation { Annotation }] "}'"] ';'

Si npl eDat aType_| npl

| StructuredDat aType

| Time ;

Dat al nst anceUse

| FunctionCall

| Fornal Par anet er Use

| Ti meLabel Use

| Variabl eUse

| AnyVal ue

| AnyVal ueOr Om t

| NoneVal ue ;

"default' ['on' ldentifier] Block ["with" '"{' [Coment {

Comment }] [Annotation { Annotation }] ['test objectives' ':'

Identifier { '," Identifier } ';"] ['nanme' ldentifier] "}'] ;
1D ;

ID'"." ID;

"lmport' ('all' | (ldentifier | { '," ldentifier })) 'fron

Identifier ["with" '"{' [Commrent { Comment }] [Annotation {
Annotation }] ldentifier "}'"] ';"' ;

Def aul t Behavi our | | nterruptBehaviour ;
"Function' ldentifier '(' [Formal Parameter { ',' Formal Paraneter
}] ') ‘returns' ldentifier [':' String0] ['"with" "{' [

Comment { Comment }] [Annotation { Annotation }] "}'] ';' ;
"instance' 'returned' 'from ldentifier '(' [ParameterBinding {
',' ParameterBinding }] ')' { '.' ldentifier } ['"with" '{' [
"nane' ldentifier] [Comment { Coorment }] [Annotation {
Annotation }] '}'] ;

‘gate' ldentifier 'of type' ldentifier ["with' '{' [Comment {
Comment }] [Annotation { Annotation }] '}'] ';' ;

Identifier '." ldentifier ["with '{' [Oomrent{obrment}] [
Annotation { Annotation }] ['nane' ldentifier] "}'] ;
'Gate Type' ldentifier 'accepts' ldentifier { ',' ldentifier } [

‘with' "{'" [Comment { Comment }] [Annotation { Annotation }]
I A

"perform 'action' ':' String0 ['on' ldentifier] ['"with" "{' [
Comment { Comment }] [Annotation { Annotation }] ['test
objectives' ':' ldentifier { ',' ldentifier } ';'] ['nanme
ldentifier 1] ["tine' 'label' TineLabel] ['"tine' 'constraints'
;' TineConstraint { '," TineConstraint } ';" 1 "}" 1 "';";
IdentifierDot ('sends' | Trigger) DataUse 'to' Target { ','
Target } ['with' '{' [Comment { Comment }] [Annotation {

Annotation }] ['test objectives' ':' Identifier { '," ldentifier
} ' 1 ["nane' ldentifier] ['"time' 'label' TinmeLabel] [
"time' 'constraints' ':' TimeConstraint { ',' TimeConstraint } ';'
]}]

"triggers' ;

"interrupt' ['on' ldentifier] Block ["with' '{" [Coment ({
Comment }] [Annotation { Annotation }] ['test objectives'
ldentifier { '," ldentifier } ';'" 1 ['"nane' ldentifier] "}'] ;
Si npl eDat aType_| npl
| Si npl eDat al nst ance_| npl
| StructuredDat aType
| StructuredDat al nst ance
| Action_|npl
| Function

Time ;
Optional ldentifier 'of type' ldentifier ["with' '{' [Comment {
Comment }] [Annotation { Annotation }] '}'] ;
‘optional' ;
ldentifier '=" StaticDataUse ['with' '{' [Comment { Comment }]
[Annotation { Annotation }] ['nane' ldentifier] "}'] ;
Ildentifier ['"mapped' 'to' String0] ['"as' ldentifier] ["with'
"{* [Cormment { Comment }] [Annotation { Annotation }] '}']

‘no' ldentifier ["with' "{'" ["argument' '{' ParanmeterBinding {
','" ParanmeterBinding } '}] ['reduction' '(' Identifier { ','
Identifier } ')] [Comment { Conment }] [Annotation {
Annotation }] ['nane' Identifier] "}'] ;

' Package' ldentifier '{' [Elenentlnport { Elementlnport }] [
Packageabl eEl ement { Packageabl eEl enent }] [Package { Package }
] "} ["with” *{" [Comment { Comment }] [Annotation {
Annotation }] '}] ;

ETSI

Packageabl eEl enent

Par al | el Behavi our

Par anet er
For mal Par anet er

Ti meLabel Use

For mal Par anet er Use

Peri odi cBehavi our

Qui escence

Si npl eDat al nst ance_| npl
Si npl eDat aType_|I npl

St ati cDat aUse

St op

String0

St ruct ur edDat al nst ance

Struct ur edDat aType

Tar get

Test Confi guration

Test Descri ption

Test Descri pti onRef erence

Test Obj ecti ve

75 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

Annot ati onType
| Test Objective
| Dat aResour ceMappi ng
| Dat aEl enent Mappi ng
| Sinpl eDat aType_|I npl
| Si npl eDat al nst ance_| npl
| StructuredDat aType
| StructuredDat al nst ance
| Action_lnpl
| Function
| Conponent Type
| GateType
| Tinme
| Test Configuration
| TestDescription ;
‘run" Block { 'in" 'parallel' "to" Block } ["with" '"{' [Coment
{ Comrent }] [Annotation { Annotation }] ['test objectives'
;' ldentifier { '," ldentifier } ';'] ['name' Ildentifier] [
Peri odi cBehavi our { Periodi cBehaviour }] [Exceptional Behavi our {
Exceptional Behaviour }] "}"] ;
Menber | Fornmal Paraneter ;
Ildentifier 'of type' ldentifier ["with' '{' [Comment { Comment }
] [Annotation { Annotation }] '"}'] ;
Ildentifier ["with" '"{" ['name' ldentifier] [Comment { Comment
} 1 [Annotation { Annotation }] '}'] ;
‘paraneter' ldentifier ['(' ParaneterBinding { ','

ParaneterBinding } ")" 1 { '."' ldentifier } ["with" "{" ['nane'
ldentifier] [Cooment { Comment }] [Annotation { Annotation }]
A

"every' DataUse Block ["with' '{' [Comment { Comment }] [
Annotation { Annotation }] ['test objectives' ':' Identifier {
",'" ldentifier } ';'"] ['name' ldentifier] "}'] ;

(('component' | ldentifier) | ('gate' | ldentifierDot)) 'is'
‘quiet' 'for' DataUse ['with' '{' [Comment { Comment }] [
Annotation { Annotation }] ['test objectives' ':' Identifier {
",'" ldentifier } ';'"] ['name' ldentifier] ['"time' 'label’
TimeLabel] ['time' 'constraints' ':' TimeConstraint { ','

Ti meConstraint } ';'] '} B

Pl
Identifier Identifier ["with" '{'" [Comment { Comment }] [
Annotation { Annotation }] '}’ ;

"Type' ldentifier ["with' "{' [C7orment { Comment }] [

Annotation { Annotation }] "}"] ';' ;

Dat al nst anceUse

| AnyVal ue

| AnyVal ueOr Omi t

| NoneVal ue ;

"terminate’ ['with' '{'" [Comment { Comment }] [Annotation {
Annotation }] ['test objectives' ':' Identifier { '," ldentifier
Yy 'st] ['name' Identifier] ['time' 'label' TinmeLabel] [
"time' 'constraints' ':' TimeConstraint { ',' TimeConstraint } ';'
1 "}]

STRI NG ;

Ildentifier Identifier ['(" MenberAssignment { ','

Menber Assignnent } ')"] ['with' "{'" [Comment { Comment }] [
Annotation { Annotation }] "}'] ';' ;

"Type' ldentifier ['(' Menber { '," Menber } ")'] ["with" "{' [
Comment { Comment }] [Annotation { Annotation }] "}' 1 ';' ;
IdentifierDot ['"where it is' 'assigned 'to' ldentifier] [
'with' "{'" [Comment { Comment }] [Annotation { Annotation }] [
"nane' ldentifier] "}' 1 ;

'Test Configuration' Identifier '{' Conponentlnstance {
Conponent I nstance } Connection { Connection } '"}' ['"with" "{' [
Comment { Comment }] [Annotation { Annotation}] '"}'] ;

'Test Description' ldentifier ['(' Formal Parameter { ','

Formal Parameter } ')'] 'uses' 'configuration' ldentifier (

Behavi our Description | ';") ["with" "{" [Comment { Comment }]
[Annotation { Annotation }] ['test objectives' ':' ldentifier {
,' ldentifier } ;"] "} 1

"execute' ldentifier ['(' DatalUse { ',' DatalUse } ")"] ['with'

"{" ["bindings' '{' ConponentlnstanceBinding { ',
Conponent I nstanceBinding } '}'] [Comment { Comment }] [

Annotation { Annotation }] ['test objectives' ':' Identifier {

",'" ldentifier } ';'"] ['name' ldentifier] ['"time' 'label’

TineLabel] ['time' 'constraints' ':' TineConstraint { ','

Ti meConstraint '} ";" 1 "} 1 ";' ;

'Test bjective' ldentifier "{" ["from ':' String0 ';' { 'fron
String0 ';' }] ['description' ':' String0 ';'] '} ['wth

"{" [Comment { Comment }] [Annotation { Annotation }] '}'] ;

ETSI

Ti me
Ti meConst rai nt
Ti meLabel

Ti meQut

Ti mer

TinmerStart

Ti mer St op

UnboundedLoopBehavi our

Vari abl e

Vari abl eUse

Pr edef i nedVer di ct
Ver di ct Assi gnnent

Wi t

Conponent | nst anceRol e

I D
|
{

NT
STRI NG

76 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

"Time' ldentifier ["with' '"{' [Comment { Comment }] [
Annotation { Annotation }] "}"] ';' ;

ldentifier DataUse ["with' '{' [Comment { Comment }] [
Annotation { Annotation }] "}"] '}' ;

Ildentifier ["with" '"{' [Commrent { Conment }] [Annotation {
Annotation }] "}"] ';'

Identifier '." ldentifier "tines' 'out' ['"with" '{' [Comment ({
Comment }] [Annotation { Annotation }] ['test objectives'
Ildentifier { '," Identifier } ';'] ['name' ldentifier] ["tine'
"label' TimeLabel] ['"time' 'constraints' ':' TimeConstraint {
',' TimeConstraint } ';'" 1 '} 1 ';"' ;

"tinmer' ldentifier ["with' '{" [Conment { Comment }] [
Annotation { Annotation }] '}']

"start' ldentifier '.' ldentifier 'for' Datalse ["with' '{' [
Comment { Comment }] [Annotation { Annotation }] ['test
objectives' ':' Ildentifier { '," ldentifier } ";' 1 ['"time
"label' TineLabel] ['time' 'constraints' ':' TineConstraint {
",'" TimeConstraint } ';'] ['name' ldentifier] "}"] ';" ;
"stop' ldentifier '.' Identifier ["with' '{" [Conment { Coment

} 1 [Annotation { Annotation }] ['test objectives' ':
ldentifier { '," Identifier } ';"] ['name' ldentifier] ['"tinge'
"label' TineLabel] ['time' 'constraints' ':' TineConstraint {
',' TimeConstraint } ';" 1 "} 1 '";' ;

‘repeat’ Block ["with" '"{' [Commrent { Comment }] [Annotation {
Annotation }] ['test objectives' ':' Identifier { '," ldentifier
} 'st] ['name' ldentifier] [Periodi cBehaviour {

Peri odi cBehaviour }] [Exceptional Behavi our {

Exceptional Behaviour }] "}'] ;

‘variable' ldentifier 'of type' ldentifier ["with' '{' [Comment
{ Comment }] [Annotation { Annotation }] "}'] ';' ;

ldentifier '-> ldentifier ['(' ParaneterBinding { ',

ParaneterBinding } ')" 1 { '."' ldentifier } ["with" "{" ['nane'
Identifier] [Cooment { Comment }] [Annotation { Annotation }]
ol

"Verdict' ;

"set verdict' 'to' DataUse ['with' '{' [Comment { Comment }] [
Annotation { Annotation }] ['test objectives' ':' Identifier {
",'" ldentifier } ';'"] ['name' ldentifier] ['"time' 'label’
TineLabel] ['tinme' 'constraints' ':' TineConstraint { ','

TimeConstraint } ";"] "} 1 ';'

('component' ldentifier) '"waits' 'for' DataUse ['with' '{' [
Comment { Comment }] [Annotation { Annotation }] ['test
objectives' ':' ldentifier { '," ldentifier } ';'] ['name
ldentifier 1] ["tine' 'label' TineLabel] ["tine' 'constraints'
;' TineConstraint { '," TineConstraint } ';" 1 "}" 1 "';";

('"sSur | 'Tester') ;

([N] (ra-z A Z) A | AT |
0)

"0 -9

O O I O S B O T S B T A T A BT I
R I N I G A B I B A B B G I (YRR A U O
S e e L T B B B O D I G
L))

(e

C/7 '\t] "\t) LW Wt)

c

["\t

| "\

| e

ETSI

77 Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

Annex C (informative):
Bibliography

ETSI ES202 553 (V1.2.1): "Methods for Testing and Specification (MTS); TPLan: A notation for expressing Test
Purposes’.

| SO/IEC/IEEE 29119-3:2013: " Software and Systems Engineering - Software Testing; Part 3: Test Documentation”.
OMG: "UML Testing Profile (UTP) V1.2", formal/2013-04-03.

ETSI

78

Final draft ETSI ES 203 119-1 V1.2.0 (2015-04)

History
Document history
V111 April 2014 Publication as ETSI ES 203 119
V1.2.0 April 2015 Membership Approva Procedure MV 20150619: 2015-04-20 to 2015-06-19

ETSI

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Basic Principles
	4.1 What is TDL?
	4.2 Applicability of the present document
	4.3 Design Considerations
	4.4 Document Structure
	4.5 Notational Conventions
	4.6 Conformance

	5 Foundation
	5.1 Overview
	5.2 Abstract Syntax and Classifier Description
	5.2.1 Element
	5.2.2 NamedElement
	5.2.3 PackageableElement
	5.2.4 Package
	5.2.5 ElementImport
	5.2.6 Comment
	5.2.7 Annotation
	5.2.8 AnnotationType
	5.2.9 TestObjective

	6 Data
	6.1 Overview
	6.2 Data Definition - Abstract Syntax and Classifier Description
	6.2.1 DataResourceMapping
	6.2.2 MappableDataElement
	6.2.3 DataElementMapping
	6.2.4 ParameterMapping
	6.2.5 DataType
	6.2.6 DataInstance
	6.2.7 SimpleDataType
	6.2.8 SimpleDataInstance
	6.2.9 StructuredDataType
	6.2.10 Member
	6.2.11 StructuredDataInstance
	6.2.12 MemberAssignment
	6.2.13 Parameter
	6.2.14 FormalParameter
	6.2.15 Variable
	6.2.16 Action
	6.2.17 Function

	6.3 Data Use - Abstract Syntax and Classifier Description
	6.3.1 DataUse
	6.3.2 ParameterBinding
	6.3.3 StaticDataUse
	6.3.4 DataInstanceUse
	6.3.5 SpecialValueUse
	6.3.6 AnyValue
	6.3.7 AnyValueOrOmit
	6.3.8 OmitValue
	6.3.9 DynamicDataUse
	6.3.10 FunctionCall
	6.3.11 FormalParameterUse
	6.3.12 VariableUse

	7 Time
	7.1 Overview
	7.2 Abstract Syntax and Classifier Description
	7.2.1 Time
	7.2.2 TimeLabel
	7.2.3 TimeLabelUse
	7.2.4 TimeConstraint
	7.2.5 TimeOperation
	7.2.6 Wait
	7.2.7 Quiescence
	7.2.8 Timer
	7.2.9 TimerOperation
	7.2.10 TimerStart
	7.2.11 TimerStop
	7.2.12 TimeOut

	8 Test Configuration
	8.1 Overview
	8.2 Abstract Syntax and Classifier Description
	8.2.1 GateType
	8.2.2 GateInstance
	8.2.3 ComponentType
	8.2.4 ComponentInstance
	8.2.5 ComponentInstanceRole
	8.2.6 GateReference
	8.2.7 Connection
	8.2.8 TestConfiguration

	9 Test Behaviour
	9.1 Overview
	9.2 Test Description - Abstract Syntax and Classifier Description
	9.2.1 TestDescription
	9.2.2 BehaviourDescription

	9.3 Combined Behaviour - Abstract Syntax and Classifier Description
	9.3.1 Behaviour
	9.3.2 Block
	9.3.3 CombinedBehaviour
	9.3.4 SingleCombinedBehaviour
	9.3.5 CompoundBehaviour
	9.3.6 BoundedLoopBehaviour
	9.3.7 UnboundedLoopBehaviour
	9.3.8 MultipleCombinedBehaviour
	9.3.9 AlternativeBehaviour
	9.3.10 ConditionalBehaviour
	9.3.11 ParallelBehaviour
	9.3.12 ExceptionalBehaviour
	9.3.13 DefaultBehaviour
	9.3.14 InterruptBehaviour
	9.3.15 PeriodicBehaviour

	9.4 Atomic Behaviour - Abstract Syntax and Classifier Description
	9.4.1 AtomicBehaviour
	9.4.2 Break
	9.4.3 Stop
	9.4.4 VerdictAssignment
	9.4.5 Assertion
	9.4.6 Interaction
	9.4.7 Target
	9.4.8 TestDescriptionReference
	9.4.9 ComponentInstanceBinding
	9.4.10 ActionBehaviour
	9.4.11 ActionReference
	9.4.12 InlineAction
	9.4.13 Assignment

	10 Predefined TDL Model Instances
	10.1 Overview
	10.2 Predefined Instances of the 'SimpleDataType' Element
	10.2.1 Boolean
	10.2.2 Verdict
	10.2.3 TimeLabelType

	10.3 Predefined Instances of 'SimpleDataInstance' Element
	10.3.1 true
	10.3.2 false
	10.3.3 pass
	10.3.4 fail
	10.3.5 inconclusive

	10.4 Predefined Instances of 'Time' Element
	10.4.1 Second

	10.5 Predefined Instances of the 'Function' Element
	10.5.1 Overview
	10.5.2 Functions of Return Type 'Boolean'
	10.5.3 Functions of Return Type 'TimeLabelType'
	10.5.4 Functions of Return Type of Instance of 'Time'

	Annex A (informative): Technical Representation of the TDL Meta-Model
	Annex B (informative): Examples of a TDL Concrete Syntax
	B.1 Introduction
	B.2 A 3GPP Conformance Example in Textual Syntax
	B.3 An IMS Interoperability Example in Textual Syntax
	B.4 An Example Demonstrating TDL Data Concepts
	B.5 TDL Textual Syntax Reference
	B.5.1 Conventions for the TDLan Syntax Definition
	B.5.2 TDL Textual Syntax EBNF Production Rules

	Annex C (informative): Bibliography
	History

