ETSIES 202 915-13 vi.1.1 oos-o1)

ETSI Standard

Open Service Access (OSA);
Application Programming Interface (API);
Part 13: Policy management SCF

D

2 ETSI ES 202 915-13 V1.1.1 (2003-01)

Reference
DES/SPAN-120091-13

Keywords
API, IDL, OSA, UML

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, send your comment to:

editor@etsi.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2003.
© The Parlay Group 2003.
All rights reserved.

DECT™, PLUGTESTS ™ and UMTS™ are Trade Marks of ETSI registered for the benefit of its Members.

TIPHON™ and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members.
3GPP™is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

ETSI

mailto:editor@etsi.org
http://portal.etsi.org/tb/status/status.asp
http://www.etsi.org/

3 ETSI ES 202 915-13 V1.1.1 (2003-01)

Contents

Intellectual Property RIGNES.........oo et 7
0 Yo (o SRS 7
1 o010 SRS 8
2 REFEIBINCES ...ttt sttt e et et et e e e bt e bt e bt s b e se e be st e st e st e benbenbeneenbentenees 8
3 Definitions and aDbrEVIBLIONS.........c.viieie ettt e e e tesreeeesneeneeseesneeneeseeenes 8
31 D= T aT] (0] PO P TP PR UPTPRUSUSII 8
3.2 ADDIEVIBLIONS ...ttt et b b h ekt e e e e se e e bt e bt eh e eh e et e e e bt e b e e Rt e Re e e e e e besheebenneeneennen 8
4 POlICY ManagEmMENL SCR.......ocue ettt st et s ae e te b e e e s resae e besbeeneesaeenaesesreeneesrennes 9
5 SEQUENCE DIAOIAITIS ...ttt ettt s e et ae bbb e e s et e s e e e st e bt e Rt eb e e b e e R et e e e s e e ene e s e ebe et e nenn e e s 9
51 USE O POIICY REPOSITOIY ...ttt sttt st b et b e bbbt bbb et b e s 9
52 Introduce condition and aCtioN INEO FUIE.........co.eierieee et st 11
5.3 Create aN FECEIVE BN BVENTi ittt e et e st e ettt et ea e e e et e eeseeebesaeeseeneenseseesaeseesneeneeeanees 13
54 Create and MOiTY QOMIBINcceiiieiee et e st et e e e teetesaesaeesaeesaeenseenseenseeseesneessensens 15
55 ASP offering services to prepaid SUDSCIIDEIS.........ooiii e 17
6 (O = ST o = o 1 S 20
7 The Service INterface SPECITICALIONS..........coiiiierieee e 22
7.1 Interface SPECITiCatiON FOIMELc.ciiieii et b et b e bbbt ens 22
711 E 1S = Tor Y O =SOSR 22
7.1.2 =100 0 === ol o (o] T 22
7.1.3 = 1= (= 0 == o 1 0] 0] P 22
7.14 Sz (= 1Y T L= SO PPSTPTSN 22
7.2 BaSE INEEITACE.ttt h ettt b e bbbt a e e e bRt b e Rt a e e e R et eh e bt ene e re e 22
721 L g o O F= S T o] 11 o = o= P 22
7.3 SEIVICE INEEITACES ... ettt bbbt bt a e s e e b e bt eh e e bt s bt e b e e e e s e b e sbeebeeneenee e ennes 23
731 (@ TSP 23
74 GENENIC SEIVICE INEEITACE ...ttt ettt e e et e e et e teseesbe s et ese e e e seseeseeseeeneeneeneeneas 23
74.1 INEEITACE ClASS IPSEIVICE ...ttt bbb et b e bbbt b e et b b et b b 23
74.1.1 MELOO SELCAIIDACK() ...vevveveieieeteiieeiete ettt sttt sa et e sae e besaeseetesee e esesaeneesesseneenens 23
7412 Method setCallbackWithSESSIONID() .. .c.vcviiierieriiieieesieietesieee e stee et se e e e stesaesestesaeseesesseseesens 23
8 Policy Management INTErfate ClaSSES.........ooiiireeieiee et 24
8.1 Interface Class IPPOIICYM@ANAOET..........ciieiiece et cee sttt ee s te e te e sre e sreesseanteasaeeseesseesseesseeseensesneesnns 24
8.1.1 YTz g oo e 1= Lo o T o P 25
8.1.2 VK= 1o Te e T 1D o 0= o P 26
8.13 Method remMOVED OMEAIN()veueeeeieeieite ettt sttt bbb et s be bt sb e n s 26
814 Method getDOMEINCOUNT()ceveeeueeteiteeetesee ettt sttt sttt b e e bt bese bt b et b e se et b e et sbe s 26
8.15 Method getDOMEINITEIEIOI() veeeeerteeeterteeete ettt b e et b e et b et be bt n s 27
8.1.6 Method findMatChiNgDOMEINS()eoveueruerieieie ettt st b e et b e 27
8.17 Method CreatEREPOSITONY() .. .eevereeueeterieeete ettt ettt b e et b et bbb n e 27
8.1.8 MEthOd GEIREPOSITONY() ... veueeverteeetertereete sttt sttt ettt b e et b e et b et b e et b et s b e et eb e et 28
8.1.9 Method reMOVEREPOSITONY()vverveerieesieesieesie et et e st e ste e e e e etesstesseesseesaeesaeeseenseesseaseesseasteesseensennsesnsesneesnes 28
8.1.10 Method gEtREPOSITONYCOUNT() ...evvereeieesieeie st see st este et e e tesseeseesreesreesaeeeeesaeeseesseasseeteeseeseensesneesneesnes 28
8.1.11 Method gEtREPOSITONYITEIGION() ...vveiveeieeeseesieeteete et e st e e e steetesee e e e saeesteeaeeseeesaesseessaeseenseensesneesnnesnes 29
8.1.12 [V T= 1o To s = i I =1 o o T 29
8.1.13 Method COMMITTFANSACLION() .. vverveereeeeeeeseeste et eeetesae s e st eestesteseesreesaeesseenseesseesaesseeteeseenseenseensesnnesnes 30
8.1.14 VK= g oo =T oo g i I = ok e o 30
8.2 INEEITACE ClASS IPPOIICYceeiteeetiteeet ettt b bbbt b b e st b s b et e e eb s ens 30
8.21 N L] o1 (= S S SR 31
822 MEthOd GELATIIIULE()ceveee ettt b e et sb e e 32
823 MeEthOd SEEALIITULE()eeveieee et bbb et b e et eb e 32
824 MEthOd GELATIIIULES()veeieeeteieeet et b e b et b e et eb e e 32
8.25 MELhOO SELALIITULES() ... veveeeete ettt st sttt sttt st s ee e ebe b es 33

ETSI

8.3
831
832
8.3.3
834
8.35
8.3.6
8.3.7
8.3.8
8.3.9
8.3.10
8.3.11
8.3.12
8.3.13
8.3.14
8.3.15
8.3.16
8.3.17
8.3.18
8.3.19
8.3.20
8321
8.3.22
8.3.23
8.3.24
8.3.25
8.3.26
8.3.27
8.3.28
8.3.29
8.3.30
8.3.31
8.3.32
8.4
84.1
84.2
8.4.3
844
845
8.4.6
8.4.7
8.4.8
8.4.9
8.4.10
84.11
8.4.12
8.4.13
8.5
851
852
8.5.3
854
8.5.5
8.5.6
8.5.7
8.5.8
8.5.9
8.5.10
8.5.11
8.5.12
8.5.13
8.5.14

4 ETSI ES 202 915-13 V1.1.1 (2003-01)

Interface Class IPPOIICYDOMAIN............ciieieiie e seeseeseete e e st e e e e te s e seesaeesreeseenseeseesseesseesseesseenseensesnensnns 33
ATITTDULES ...t b et e e et bbbt ekt e e e e e se e b e e Rt eh e et e s e b e ebeebeereene e e et e 35
Method getParentDOMEIN()eeoeieeieeieese et e e e e e te e e e e e steeeeeseesseesre e seenteeseenseenseeneesneennes 36
YTz g oo e 1= Lo o o 36
VK= 1 oTo e T 1D o 0= o P 36
Method remMOVEDOMAIN() ...cuveeeeiieieeiee st et erte ettt e st e e eertessaesreesreesaeeeeeneeeseeeseesseenteeseenseenseensesneennes 37
Method getDOMEINCOUNT()ceveeeueeterieeetest ettt sttt sttt sttt b e b e b e bt b e bt se et eb e e et ebe s 37
Method getDOMEINITEIEIOI()c.veeeeerteeeterteeete ettt b e et b e et b et bbb s 37
MELNOA CrEAIEGIOUP(). .+ e veeevertereeteste sttt sttt sttt sttt b et be b e bt s bese bt bt e bt b e e e bt e b et e bt e b e ne et sb e s b et ebe b e 38
L= (o Te o 7= (o1 o USSP U SR P SR 38
MELNOA FEMOVEGIOUPD() -+ vveerereemeeteseeeete sttt sttt sttt ettt b et be b e bt b e bt b et e bt b et e bt b e ne et ebene et sbe s 39
MethOd gELGIOUPCOUNT() ..veuveeerereeieeieesieesteeteeteeteesteestees e estesseesseesseesaeesaeeseeneeeseeeseasseenseeseessennsesnsesneesnns 39
VK= 1 lelo Re T (] Co 1N o] L = o) ST 39
[T= g oo e = U S 40
=1 0o e T = S 40
MEthOd FEMOVERUIE()c.veeieeieiie ettt e e e et e st e e te s e s e e saeesse e aeenteentessaesteeseenseensesneesneesnes 40
V= g oTe e {0 = o 1 S 41
MEthOd GELRUIEITEIION()veveevereeieete sttt ettt b bbbt s b e et sb e et n e 41
Method createEVentDEfiNItION()coveererieiie e e 41
Method getEVENIDEFINITION() ... veuereereeeite ettt sb e 42
Method removeEVENtDEFINITION()......coveeierieeeie et 42
Method getEventDefiNitioNCOUNT()coerreerereeieie ettt 43
Method getEventDEfiNitiONITEIEION()coerreeriereeeete et 43
MethOd gENEIALEEVENT() ...vveveeieeiecee et se et e et et e e et e e s e s e sreesaeesseenaeenseeseessaasteesseeseenseensesnnennes 43
(VK= g oo ey it \ o] o= i o] o) TP 44
(VK= 1glelo Ro o= o) Y7\ o) o1 o] o () PR 44
Method CreateV ariabIESEL()veieerreerie ettt e se et e s te e beentees e sre e se e teeseeneenneennes 45
Tz g oo e e AN =TT o] =S [45
Method remOVEV @@l €SEL()......ccvereeeee et se et et re et e b e e be e teereenneeneennes 45
Method getV ariabl €SEICOUNL()veuerrereeeriereeie ettt sb e e 46
Method getV ariabl €SEHTEIEION()eveverreeereriee ettt ettt bbb et b 46
MELNOA SEEVATADIE() ...ttt b et b e et b et b e n e 46
MELhOA GEEVArTADIE() ...ttt b e n e 47

INtErfaCe ClasS [PPOIICYGIOUDeveuertiieiertieettstee ettt b et b st b bbb se bt e bt b e s s b e eneeb e s eneens 47
ATITTDULES ...ttt bt et bbb e e bt e e e st e ne e b e bt eh e et e e e b e eh e ebeeheene e e et e 48
Method getParentDOMEIN()ecoeieeeieeieese et e s e e et e s e e s e e steeeeeseesseesre e seente e seenseenseeneesnnennes 49
MethOd gELPAr@NEGIOUDP() ..veveerereereeieeseeste et et et e etee s e e e e e estesseesaeesaeesaeesseenseeseeeseasseateeseenseensennsesneesnes 49
[V T= g leTe e 1=] (01N o PR 50
V=1 0 Te e T (] o1 o 50
MethOd rEMOVEGIOUD() +...veeveeereerreesieesieestessteseeseesseesse e teesteessesseesseesseesseesseanseaneeassesseasseansenssenssennsesnsssneesnes 50
MEthOd GELGIOUPCOUNE()veveevereeieete ettt b et b et b et s b e et s b e bt b s 51
MethOd GELGIOUPITEIEION()eovereeuertereeieete sttt sttt sttt st st b et b et b et bbb n e 51
MELhOA CrEREERUIE() ...t bttt b et b e bbb 51
MELNOA GELRUIE() ...ttt ettt b e et b e bbbt b e et b et et b e bt sb e e 52
MELhOd FEMOVERUIE()ccveeeieiee ettt et b e bbbt b et bttt e e 52
MELhOO GEIRUIECOUNT() ...ttt ettt b et b et b et b et et n et 52
MethOd GELRUIEITEIEEON() ..veuveeereiieiee e sttt e e s e s e s e e steeeeeseeeaeesse e seenteesseeseenseensesneennes 53

Interface Class |PPOIICYREPOSITONYcceeiiiieiiicieeees et e e ee e ste e ste e sae e e s e e be e teenteestesreesseesseeseensenneennns 53
ATITTDULES ...ttt bt et bbb e e bt e e e st e ne e b e bt eh e et e e e b e eh e ebeeheene e e et e 54
Method getParentREPOSITONY() ...ecveieeieeieesreie et st e st e e e te e e st e e e steeaesseesreesreeteente e seeseenseeneenneennes 55
MethOd CreateREPOSITONY() .uveeverrereeieeieest et et et e et e e e e e tesaeseesreesaeesseenseesseesaesseeteeseenseenseeneenneesnes 55
MethOd GELREPOSITONY()veeureieeeieesiee et e seeee sttt e st e e e eestesaee s e saeesaeeseeenaeesseenaesseesteeseenseenseeneesneesnes 55
Method reMOVEREDOSITONY() ...c.veueeeertereeterieneete sttt sttt sttt sttt s b et b e et b e e st s b e et be et s e 56
Method gEtREPOSITOrYCOUNL()ceveeeeeterieeete ettt sttt sttt sttt sttt b e et b et sb e et b n e 56
Method getREPOSITOrYITErGION()eiveeeeertereeieete ettt e et b e ettt b e 56
Method CreateCONAITION() veverreeeeertee ettt et b e et b et b e bt b e se et bbb n s 57
V=1 loTo o 7= (@0 0o] ('l IR OSSP P TSP UT SR PSR 57
Method remMOVECONAITION() ...eoveeieiieieeseese et et e e esae e teeaeesaeesaesseeste e seeseenseeneesneesnes 58
VK= 1g0eTe RaT (@] o [Lo o100 1) I 58
(VK= 1glelo ReTs (@] g o [N Lo gl L 1= = (o]) ST 58
Y T= g loTo e 1Yot o o S 59
V=10 To o T 7 o £ o 59

ETSI

5 ETSI ES 202 915-13 V1.1.1 (2003-01)

8.5.15 MethOd FEMOVEACHION() ...vveieeieeie ettt ettt e e e e e te s e saeesaeesae e seenaeeneeesaesseete e seenseenseensesneennes 60
8.5.16 VK= g ToTo o VAN ox o O U o | R 60
8.5.17 VK= g oo Re T Vo oi o g1 e) T 60
8.6 Interface ClassS IPPOIICYRUIE............oiee ettt et et e s re e s e e saeesteesteereeneeaneennns 61
8.6.1 ATITTOULES ...ttt ettt s b et st ket e st e R e b et e R e b et e ne e b e bt e re b ene 63
8.6.2 MethOd gELPAr@NEGIOUDP() ..o vverereeieeieeseesteeste et eteesteestee e e teestesseesseesreesaeesseenseeseeaseasseateeseenseenseensesnsesnes 64
8.6.3 Method getParentDOMAIN{)c.civeeererieeeerieeeie ettt b e bbb bbbt sb e s 65
8.6.4 Method CreateCONAITION() ... e vererreeereriee ettt b et b et b e bt b e se et sb e et sb e e 65
8.6.5 (V=1 TeTo o 7= (@0 aTo] ('l IR OO T PP U TSP 66
8.6.6 Method remOVECONTITION()coverveeererieeeie et b et b e et b et b et b n s 66
8.6.7 Method getCoNAitiONCOUNL()veuerrereeeeriere ettt sttt b et sb e et sb s 66
8.6.8 (VK= 1glelo ReTs (@] g o [N Tela] L 1= = (o]) P 67
8.6.9 VK= g loTo e =T ot o] o P 67
8.6.10 =10 Te e T o £ oo TS 68
8.6.11 MethOd FEMOVEACHION() ...vveieeieiie e cee sttt et et e e e e e e te s see s e e saeesaeesseenseeneeeseasseeteeseeseenseensesneennes 68
8.6.12 VK= 1 ToTo o VAN ox o O U o | (ST 68
8.6.13 VK= g oo Re T Vo oi ol g] 1 == e) 69
8.6.14 Method setValidityPeriodConditionBYNaME()cccoireiririiiiereee e e 69
8.6.15 Method setValidityPeriodCONditioN()........c.oreirerieiieree e 69
8.6.16 Method getValidityPeriodCONitioN()coeerereirienee e e 70
8.6.17 Method unsetV alidityPeriodConditiON()..........coeerereirerieieeeriee et s 70
8.6.18 Method SEECONITIONLISE() ... veueevereeeeterteeete ettt sttt b et b e et bbb 70
8.6.19 Method GEtCONAITIONLISI() «.veuvevereeeererieeete sttt ettt b e et b et b n e 71
8.6.20 [V T= 1o o s = 7 ot i o] o = 71
8.6.21 VK= g ToTo e 7N ox o I) S 71
8.7 Interface Class |PPOIICYCONITION..........c.oiiiiecie et s et e e e sreesse e seesteesteenseeneesneesnns 72
8.7.1 N Lo 11 1= S 73
8.7.2 Method getParentREPOSITONY() ...ecveieeieereerieeite et st e st e e e te s e s et e e e steeeesseesaeesreeseense e seeteenseeneesneesnes 74
8.7.3 Method gELPAr@NERUIE()cveeieiie ettt s e s este et e e e e eaeeere et e e s te e teeseenseeneesneennes 74
8.8 Interface Class |pPolicy TimePeriodCONitiONcc.ciiieiriere e 74
881 N L] o1 (= S S SR 75
89 INterface Class IPPOIICYACHION...........iiirieeet ittt b et bbb bt b e bt en e ens 78
891 N L] o1 (= S R S 79
892 Method getParentREDOSITONY()veuervereeueriereeerie ettt sttt st b et e et b e bt b e se et sbe bt nb e s 79
8.9.3 Method gELPAr@NERUIE()cveeieiie ettt s e e s sae e te e e e eaeeereasseeste e se e seenseeneesneennes 80
8.10 Interface Class |pPOli CYEVENtDEfINITIONccieece ettt re e 80
8.10.1 ATITOULES ...ttt bbbt bt b et b e b e e bt s b et e Rt e b et e nenbe st e re e ene 80
8.10.2 Method SetReqUIFEALLIIULES()c.ve et e ae et e b e e eeeneesneesnes 8l
8.10.3 Method setOptioNAl ATEHDULES()ecve et et sra e st e ereeteennesneennes 8l
8.10.4 Method getReqUITEdATLIIULES()veiee et et e st ebe e teeteeneeneennes 82
8.10.5 Method getOptiONal ATEFIDULES().......cueiveeeieieeeeie et 82
8.10.6 Method getParenNtDOMAIN()c.eoveeererieieieriee ettt sttt b et b e et b e et b et be b et b n e 82
8.11 Interface Class |PPOlICYEVENTCONITIONcciriiiiiiieiitiere et 83
8111 N L1 o1 (== SS 83
8.12 Interface Class | pPoliCyEXPressioNCONItiONoiieriiiinirieesiese s 84
8.12.1 N L1 o1 (= S S R 84
8.13 Interface Class |PPOIICYEVENTACLION.c.viciiie ettt e te e e e s e e teeteesaesseesseesseesseeseeneesneesnns 85
8.13.1 ATITOULES ...t b e £t b e st e e bt b et e b e b et e Rt b et e neebe b e e e b e 85
8.14 Interface Class |PPOliCYEXPreSSIONA CLIONcuiieesieeieeieeesteseeseesteesteesaeseesreeste e teesseeseesseesseesseenseensesneesnns 86
8.14.1 ATITOULES ...ttt bbbt bt b et b e b e e bt s b et e Rt e b et e nenbe st e re e ene 87
8.15 Interface Class IPPOIICYILEIGLOciieieece e cee sttt e e e et e e s e e s reesseenteesaeesaessaesseesseenseensenneennns 88
8.15.1 ATITOULES ...t b e £t b e st e e bt b et e b e b et e Rt b et e neebe b e e e b e 88
8.15.2 L= (o Te e = (I ISP URTSTR PP 89
8.16 Interface Class |PAPPPOIICYDOMEINcoitireuiriiietiriere ettt eb et e bt s e bt sa b e ene b e nennas 89
8.16.1 Method rePOrtNOLITICAIION().....cverveeeeereee ettt ettt b et e et b e bt sb e e 89
9 State TranSitionN DIB0IAMIS........oivieeere et ree st eee et te e e tesseeseesseeeesteeseenteseeeneessesnsensesseenseseennes 90
O T D - = B = 11 (oSS 90
10.1 Policy Management Data DEfiNITIONS..........c.ciueiieieie et re et ete e e e e tesaesseesreesreesneeseenseens 90
10.11 TPPOl CYCONAIIONLISITYPE ...ttt bbb bbbttt bbb e e 20
10.1.2 TPPolicyConditioNLISEEIEMENT ..o 90

ETSI

6 ETSI ES 202 915-13 V1.1.1 (2003-01)

10.1.3 QLI L0 FTon Y1 T 11 o] K TSRS 90
10.1.4 QLI L0 FTon Y@ o 14 o] 1Y o= OSSR 90
10.1.5 TPPOICYACHONLISIEIEMENLc.vieiecie ettt ettt e e e tesraesaeesaeesseeneeenseenaesnensneesnens 91
10.1.6 QLI L0 FTonY 7 i e | = USSR 91
10.1.7 LI o0 FTonY 7 i e 1 1Y oSS 91
10.1.8 LI 0] T 0n Y < o | S 91
10.1.9 TPPOHCYKEYWOIT. ..ottt bbbt bbb bbb bbb et eb e n et 91
10.1.10 TPPOICYKEYWOITSEL........ccueitieeiitiee ettt bbb et b bbbt b et nb e et e 92
10.1.11 (Folmo] TTo1Y/ Do 407 1 o [OOSR PSPPSR PSR 92
10.1.12 IPPOlICYDOMAINRES ...ttt ettt b e bbbt b e bbbt s b e et b e b et et s e 92
10.1.13 I PPOlTICYREDOSITONY ..ttt sttt sttt et et b et b e bbbt b e b et b s bt e bt e et b e ee et ebe st et eb e s s 93
10.1.14 T o Ty L o 01] (] Y/ (= 93
10.1.15 0] 0] FT0nY] o 1o S 93
10.1.16 100 T oY1 011 o] = S 93
10.1.17 IPPOIICYRUIE ...ttt bbbt e bbbt bbbt b et ne bt neen s 93
10.1.18 IPPOIICYRUIBRES ...t b ettt se et r s 93
10.1.19 I PPl CYEVENIDEf I NITION ...ttt e s e st e e te e teestessaeste e se e seeteeneeeneennns 93
10.1.20 I PPOliCYEVENtDEfINITIONRES ...ttt 93
10.1.21 IPAPPPOITICYDOMEIN ...ttt ettt b e bbbt b e b e bt b e bt bbb e ne et b b et ebe b 93
10.1.22 IPAPPPOlICYDOMAINRESocviiiiiitiitereeie ettt b e bbbt b et b bbbt 93
10.1.23 IPPOITCYCONTITION ..ottt ettt b e et b et b e e a e b e et b e st et b e b et b e b 93
10.1.24 IPPOlTICYCONTITIONRES ...t b et e et b e et b e bbb 93
10.1.25 IPPOliCY TIMEPETOACONMITION ...ttt ettt b e 93
10.1.26 IpPolicy TImePeriodCOoNditiONREScceie e 94
11 Policy Management EXCEPLiON ClIASSES........couiiririiirierisie ettt sbe e s 9
Annex A (nor mative): OMG IDL Description of Policy Management SCF..........cccccooveiiiicinenene 95
Annex B (informative): Contents of 3GPP OSA R5 Policy Managementccocvvvevenencniennennns 96
Annex C (informative): RECOrd Of ChANGES......c.eiiieireeteee e 97
LT 11 =0 =SSR 97
C1l1 BV .t bbb R e R R R R R R R AR R AR R R e R R R R R R e R Rt R Rt R R ren s 97
C12 DIEPIECAIEM. ... etttk b e bt s R R bR R e R R R AR Rt R b e R Rt n R nen s 97
C.13 REIMOVED. ...ttt E e bt E b e bt e b e e bt e b et e e bt e b nen s 97
(O3 |V = 1 o L3O 97
c21 BV .ttt ettt ettt et se b e Rt s e E e Rt se b e Rt eA e R e Re A £ SR eReAE R e Re £ R eReAE SR e ReeEeReReeEeEeREeE e R et eA et enteeeRe e eEebeneetenenes 97
C22 (D= o o 1= o [OOSR U TSR PT SR PSR 97
C.23 1Y T T 1T o ST 98
c24 L 1010277 SRS 98
(O I BT r= B 1= 1 ol (0] LS 98
C31 BV .t bbb R e R R R R R R R AR R AR R R e R R R R R R e R Rt R Rt R R ren s 98
C32 IMIOTITIEA ...t b b e bR bt E bR bt e Rt n e bbb et e bt n b e ren s 98
C.33 REIMOVED. ...ttt Rt e b e b e bt e b e e bt e b et n bt e b senren s 98
Cd SEIVICE PrOPEITIES.o ieeeeeie ettt sttt te st e et e e et e et eseeeseenbeseeenseasesseesesseeseseeaneenseneeeneensensenn 98
C41 BV .ttt ettt ettt et se b e Rt s e E e Rt se b e Rt eA e R e Re A £ SR eReAE R e Re £ R eReAE SR e ReeEeReReeEeEeREeE e R et eA et enteeeRe e eEebeneetenenes 98
C4.2 (D= o o 1= o [PPSR U TSR PT SRR PSR 99
C43 IMIOTITIEA ...t b b e bR bt E bR bt e Rt n e bbb et e bt n b e ren s 99
C44 REIMOVED. ...ttt E e bt E b e bt e b e e bt e b et e e bt e b nen s 99
(O3 ST ot (' ST 99
C5.1 BV .ttt ettt ettt et se b e Rt s e E e Rt se b e Rt eA e R e Re A £ SR eReAE R e Re £ R eReAE SR e ReeEeReReeEeEeREeE e R et eA et enteeeRe e eEebeneetenenes 99
C5.2 1Y T T 1T o ST 99
C53 L 1010277 SRS 99
L3 T O 1107 £ USSR 99
[1S 0] YOS 100

ETSI

7 ETSI ES 202 915-13 V1.1.1 (2003-01)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards', which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/| PR/home.asp).

All published ETSI deliverables shall include information which directs the reader to the above source of information.

Foreword

ThisETSI Standard (ES) has been produced by ETSI Technical Committee Services and Protocols for Advanced
Networks (SPAN).

The present document is part 13 of a multi-part deliverable covering Open Service Access (OSA); Application
Programming Interface (API), asidentified below. The API specification (ES 202 915) is structured in the following
parts:

Part1: "Overview";

Part 2. "Common Data Definitions";
Part 3: "Framework";

Part4: "Cdl Control";

Part5: "User Interaction SCF";
Part6: "Mobility SCF";

Part 7: "Terminal Capabilities SCF";
Part 8. "Data Session Control SCF";
Part9: "Generic Messaging SCF";
Part 10: "Connectivity Manager SCF";
Part 11: "Account Management SCF";
Part 12: "Charging SCF";

Part 13: " Policy Management SCF";
Part 14: "Presence and Availability Management SCF".

The present document has been defined jointly between ETSI, The Parlay Group (http://www.parlay.org) and the 3GPP,
in co-operation with a number of JAIN™ Community (http://www.java.sun.com/products/jain) member companies.

The present document forms part of the Parlay 4.0 set of specifications.

The present document is equivalent to 3GPP TS 29.198-13 V5.1.0 (Release 5).

ETSI

http://www.java.sun.com/products/jain
http://www.parlay.org/
http://webapp.etsi.org/IPR/home.asp

8 ETSI ES 202 915-13 V1.1.1 (2003-01)

1 Scope

The present document is part 13 of the Stage 3 specification for an Application Programming I nterface (API) for Open
Service Access (OSA).

The OSA specifications define an architecture that enables application developers to make use of network functionality
through an open standardised interface, i.e. the OSA APIs.

The present document specifies the Policy Management Service Capability Feature (SCF) aspects of the interface. All
aspects of the Policy Management SCF are defined here, these being:

. Sequence Diagrams

. Class Diagrams

. Interface specification plus detailed method descriptions
. State Transition diagrams

. Data Definitions

. IDL Description of the interfaces

The process by which this task is accomplished is through the use of object modelling techniques described by the
Unified Modelling Language (UML).

2 References

The referenceslisted in clause 2 of ES 202 915-1 contain provisions which, through reference in this text, constitute
provisions of the present document.

ETSI ES 202 915-1: "Open Service Access (OSA); Application Programming Interface (API); Part 1. Overview".

ETSI ES 202 915-2: "Open Service Access (OSA); Application Programming Interface (API); Part 2: Common Data
Definitions".

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in ES 202 915-1 apply.

3.2 Abbreviations

For the purposes of the present document, the abbreviations defined in ES 202 915-1 apply.

ETSI

9 ETSI ES 202 915-13 V1.1.1 (2003-01)

4 Policy Management SCF

It is expected that more and more OSA services will use policies to express operationa criteria. It is also expected that
network providers will host policy-enabled services that have been written by 3 party application service providers. In
order to manage policy information and control accessto it a policy management service is needed. Consistent with
this, a policy management service interface manager, | pPolicyManager, has been defined. All policy management
interfaces are accessible from | pPolicyManager.

A number of APIs have been defined to obtain services from a policy management service. These include APIsto
create, update or view policy information. Additionally APIs have been defined to facilitate interactions between clients
(e.g. a3“ party application) and any policy enabled service. These include APIs to view policy events, to subscribe to
policy events and for the generation of events by clients. All APIs conform to an underlying policy information model.

Clientsthat perform administrative tasks, e.g. create, update or delete policy information must obtain accessto
IpPolicyManager using the family of obtainlnterface() methods supported by the IpAccess interface. Administrative
tasks may be performed through methods supported by |pPolicyManager.

Clients that need to interact with a specific policy enabled service (for non-administrative tasks) can obtain access to
that service'sinterface directly viathe selectService() method supported by the IpAccess interface. It should be noted
that specific policy enabled services may support additional interfaces and methods that are not defined below.
Examples of policy enabled servicesinclude: A load balancing service that uses policies to manage application loads on
the network, a charging service that determines charging criteria based on policies, a call management service that uses
policiesto direct end-user callsto appropriate call agents, etc.

The order isasfollows:
. The Sequence diagrams give the reader a practical idea of how each of the SCF isimplemented.
. The Class relationships clause show how each of the interfaces applicable to the SCF, relate to one another.

. The Interface specification clause describesin detail each of the interfaces shown within the Class diagram
part.

. The State Transition Diagrams (STD) show the transition between states in the SCF. The states and transitions
are well-defined; either methods specified in the Interface specification or events occurring in the underlying
networks cause state transitions.

. The Data Definitions clause shows a detailed expansion of each of the data types associated with the methods
within the classes. Note that some data types are used in other methods and classes and are therefore defined
within the Common Data types part ES 202 915-2.

An implementation of this APl which supports or implements a method described in the present document, shall
support or implement the functionality described for that method, for at least one valid set of values for the parameters
of that method. Where a method is not supported by an implementation of a Service interface, the exception
P_METHOD_NOT_SUPPORTED shall be returned to any call of that method.

5 Sequence Diagrams

5.1 Use of Policy Repository

The example shown here shows the use of a Policy Repository. The repository is meant to hold unattached conditions
and actions. The Network Operator can populate the repository with the conditions and actions that it can support.
These may indeed be based on 'off-line' negotiations with the application developer. The application developer usesthe
conditions and actions in the Policy Repository to create rules for his own application. In the example application logic
represented by AppLogicl belongs to the Network Operator, whereas the application logic represented by AppLogic2
belongs to the ASP. This example uses the same conditions, actions, and rules as the ASP example.

ETSI

10 ETSI ES 202 915-13 V1.1.1 (2003-01)

ApplLogicl AppLogic2

‘ : IpPolicy Manager

‘ IpPolicy Repositor

‘ IpPalicy ExpressionCondition

‘ : IpPolicy ExpressionAction

[] I i

‘ : IpPolicy Domain

‘ : IpPolicy R ue

T
|
| 1: startTransaction()

gl

2: createRepository () 3: new()

|
4: createCondition()
1

ID

|
|
|
|
|
|
|
|
|
5: new() :
|
| J
! I
!

. |
6 createﬁcnon() | 74 new()

|
8: commitTransaction() |

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9: startTransaction()
t

g

10: get Rejpository ()

g

|
|
11: getRepos itory Count()‘

f
|
|
|
|
|
|
|
| 12: getConditionCount() |

t

|
|
13: getConditionlterator()!

}

14: getCondition()

16: getActionlterator()

17: getAction()

t
|
|
|
}
|
|
|
I
|
|
| 15: getActionCount()
}
|
|
|
I
|
|
|
|
|
|

18: creatgDomain() 19t new()

U

21: new()

22: setConditionList()

23: setActionList()

f
|
|
|
|
T
|
|
|
|
T
|
|
|
f
|
24: commitfransacnon()

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t
\
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

g

|

|

|

T |
| |

| |

| |

| |

1. The creation of the repository by the Network Operator takes place within one transaction.
2: The method createRepository isinvoked on the |pPolicyManager interface to create a new repository.

3. Asaresult of the createRepository method a new instance of the IpPolicyRepository interface is created. Its
interface reference is returned as return parameter of the createRepository method.

4. The Network Operator creates an unattached condition in the new repository by invoking the createCondition
method. For simplicity reasons, thisis the same condition as in sequence 8 of the ASP example. The same condition
attributes apply.

5: A new instance of the |pPolicyExpressionCondition interface is created.

ETSI

11 ETSI ES 202 915-13 V1.1.1 (2003-01)
6: The Network Operator creates an unattached action in the repository. Again, thisisthe same action as in sequence
10 of the ASP example. The same action attributes apply.
7: A new instance of the IpPolicyExpressionAction interfaceis created.
8: The Network Operator is finished with creating and populating the repository and closes the transaction.

9: Now that arepository exists, the ASP application can open a transaction to start creating a rule based on the
conditions and actions stored in the repository.

10: The application invokes the getRepository to obtain a reference to the top-level repository. The returned referencein
this case is the reference to the new repository just created by the Network Operator.

11: The application can invoke the getRepositoryCount method on the IpPolicyRepository interface to check whether
there are any sub-repositories available. Thisis not the case for this example.

12: Before trying to obtain al available conditions in this repository the application retrieves the number of conditions
by invoking the method getConditionCount.

13: The application can now invoke the getConditioniterator method to obtain the reference to an iterator that contains
the names of each of the conditions contained by this repository that the application is authorized to see. Asthe previous
method only return one available condition, this would be only one name, i.e. " SufficientCredit".

14: A reference to the condition can be obtained by invoking getCondition, with the condition name from the iterator as
input parameter.

15: Similar to 12.
16: Similar to 13.
17: Similar to 14.

18: At this point in time the application has the names and references to the unattached condition and action from the
repository it wantsto use to create the rule. First adomain is created by invoking the createDomain method on the
|pPolicyManager interface.

19: A new instance of the IpPolicyDomain interface is created.
20: The application invokes createRul e to create a rule within the domain that was just created in flow 18 and 19.
21: A new instance of the IpPolicyRuleinterfaceis created.

22: By invoking the method setConditionList, the application can now apply the condition from the repository to this
rule, by passing the condition reference, obtained by getCondition in flow 14, as an input parameter.

23: Similarly the application can apply the action to the rule by invoking setActionList.

24:Finally, once therule is created using the condition and action from the policy repository, the transaction can be
closed.

52 Introduce condition and action into rule

This sequence diagram describes how a specific policy rule is managed. A rule consists generally of conditions and of
actions, the latter being evaluated if al conditions eval uate to true.

This sequence includes:

- creation of a condition and introduction of it into therule;

- retrieval of an already defined action object from arepository and introduction into the rule;
- establishing a transaction bracket.

Presumption: the Application got areference to the group, e.g. by having performed the sequence " create& modify"
domain.

ETSI

12 ETSI ES 202 915-13 V1.1.1 (2003-01)

: (Logical = : IpPolicyRule o o
View:: Application) IpPolicyGroup IpPolicyManager IpPolicyRepository
T

| 11: startTransaction(),
|

2: createRule()

|
3 commitTransaction(:)

|
4: startTransaction()!

|
i
|
5: createCondition()

6: commitTransaction(!)

i 7: getRepository() i

8: getAction()

|
9: startTransaction()!

L 10: setActionList()

o 11: setConditionList() !

12: commitTransaction()

u
U
-
U
u
u
u

1. Opensthe transaction bracket.

2: createsarule object in the group by passing the name as parameter. The method returns the reference to the new rule
object.

3: Closesthe transaction bracket.
4. Opens the transaction bracket.

5: After having created the rule object one can "fill" it with actions and conditions. Here a condition is created on the
rule object, thus becoming a part of the rule. Conditions defined in such away cannot be reused in other rules. For this
the repository approach should be used.

Parameters passed are the condition name and the condition type.

Returns areference to this condition object.

As preliminary to the invocation of "createCondition”, the application should perform the following activities:
1) Create a TpAttribute, with AttributeName: "Expression”, AttributeType: P_STRING, AttributeValue:

"<the condition expression to be evaluated>"

ETSI

13 ETSI ES 202 915-13 V1.1.1 (2003-01)

2) Add the TpAttribute from 1) to a new TpAttributeSet asits sole element

After having performed these steps the application can call the method createCondition() on the appropriate repository
or rule, passing in the name of the condition, the type of the condition I pPolicyExpressionCondition, and the
TpAttributeSet created in 2). Note that this call may throw an exception if the expression defined in 1) is not parsable
according to the published BNF.

Creating |pPolicyExpressionAction is done similarly.
6: Closes the transaction bracket.

7: Now we're using the repository approach, i.e. reusable condition or action objects. In this example we reuse an
action.

For that purpose we ask at the IpPolicyManager interface for areference to a named repository.
The repository name is passed.
Returns the reference to the repository.

8: If we know already the name of the action object one retrieves the action directly by passing the name as parameter.
Otherwise one has to retrieve the name first by using an action iterator.

Returns areference to the action object.
9: Opensthe transaction bracket.

10: Now, the action(s) must be assigned to the rule. Furthermore and different to the conditions, one has to assign an
ordering number to the action.

Passed parameter is the action list, which is alist of action reference/ sequence pairs.

11: After having created or retrieved all needed conditions they must be assigned to the rule. Thisis done by passing the
list of condition to that method.

Thisisexplicitly done by passing TpPolicyConditionList again consisting of TpPolicyConditionListElements which
contains the reference the | pPolicyCondition object created with message 2.

If theruleisactive, thiswill then cause the expression defined in the condition to be evaluated (as often as necessary).
Note that the binding between the variables referenced in the expression and the instances of the variable availableis
done each time the expression is evaluated. That is, when evaluating a variable reference, each enclosing domainis
searched in order (from closest to farthest) for a matching variable. If oneisfound, it is used. If no matching variableis
set, the expression condition fails (evaluates to FAL SE).

Activation of actionsis done similarly.

12: Closes the transaction bracket.

5.3 Create and receive an event

This sequence shows how policy events are used.
For clarification we list the different policy related objects used:

- IpPolicyEventDefinition: The "template” used to define allowable events. The template is used to define formally a
distinct type of rule condition and rule action, namely, IpPolicyEventCondition and I pPolicyEventAction.

- IpPolicyEventCondition: A special instance of a policy condition used in arule. The condition evaluatesto "True" on
the occurrence of the event instance that is formally associated with it.- IpPolicyEventAction: A special instance of a
policy action used in arule. The action resultsin the generation of an instance of the formal event associated with it.

- TpPolicyEvent: This datatype is passed as a parameter in the formal notification (to a client) of the occurrence of an
instance of an event.

Presumption: the reference to arule has been somehow retrieved.

ETSI

14 ETSI ES 202 915-13 V1.1.1 (2003-01)

: (Logical - - : IpPolicyRule - o _(Logical
View::Application) IpAppPolicyDomain IpPolicyManager IpPolicyDomain|| IpPolicyEventDefinition | | View::PolicyEng...

T T T T
| 1: startTransaction() : | : : !
t | | | !
| m | | | !
L : 2:createEventDefiq‘ition() : : : :
f T T | !
| | ! j_‘ ! !
| | ! | | !
- ! 3: setRequiredAttributes() ! | | |
| | ! | | !
| | ! | !
| | ! | !
| | ! | | !
T | | |
| | 4: setOp‘ptionalAttributes() | : : |
. ; ; I |
| | ! | !
| | ! | I !
(| | | | | | !
! ! 5: generateEvent() I | | |
| | | | L | |
| | | | !
I 6:createCondition() | | /I-J | |
Il } L | | |
| | u | | !
| | | | !
| | |
o | 7:sewvalidiyPeriodCohdition() | ! | |
t f - | | !
| | u | | !
| | I | | !
L | | ! | | !
! | 8:createAction() ! | ! ! |
T T | | !
| | u | | !
| | ! | | !
N | 9:setActionList() ! | ! ! |
1 | | | !
| | u | | !
! | ! | | !
T 10: commitTransaction() | | | | !
| | I | | | !
| | | | !
| 11: create Notificafion() | | | |
m T T | !
: 12: rt‘;portNotification?HJ : :

T T

|

|

|

|

|

|

|

|

T iy : 1 |
1. All changes of policy objects must be performed in a transaction bracket. This method opens the bracket.

2: This method creates a new event type. Event definitions describe the attributes of a specific event class, which can
than be instantiated as policy condition or policy event. Returns the reference to the newly created EventDefinition
instance which then can be modified according to ones needs.

3: Now, after having created a new instance of a policy event definition, one can set the required attributes by passing
the respective attribute set ...

4: ... and the optional attributes. Such attributes may be (...).

5: This method can be used to test the newly created event by passing a attribute set and checking whether the expected
event is generated.

6: This createCondition() method creates locally a Policy TimePeriodCondition defining the validity period of thisrule.
Returns a reference to the new |pPolicyTimePeriodCondition object.
As preliminary to the invocation of "createCondition”, the application should perform the following activities:

1) Create a set of TpAttribute setting the different time and dates applying to this condition. For instance, one attribute
might be defined as:

TpAttribute. AttributeName (type: TpString)=TimePeriod

TpAttribute. AttributeType= P_STRING

TpAttribute.AttributeV alue= "20000101T080000/20000131T 120000"

the latter indicating the time period "January 1, 2000, 0800 through January 31, 2000, noon".

2) Add the set of TpAttributes from 1) to a new TpAttributeSet. This will be passed with createCondition().

ETSI

15 ETSI ES 202 915-13 V1.1.1 (2003-01)
7: Using the reference got with createCondition() the validity period is set to rule. Before this created condition will
not become valid.

8: The assignment of a policy event is made as for other actions. The difference is the action type passed as parameter:
it MUST be of type I pPolicyEventAction.

Passed parameters are the name of the created action, the action type and the attributes of the action; one of these
attributes refers by name to the event definition as created before in this sequence.

Returns the reference to the newly created action object.

9: This method activates the action (here the action event) for thisrule. After creation this action is not yet active.
The name of the action object is passed.

10: This closes the transaction bracket.

11: Now - independently of the activities before - the application can register with the policy domain for events of a
certain type. If such an event occurs (as aresult of rule's action) the application is notified.

Passed parameters are the callback interface reference and the list of event types the application isinterested in.
Returns a sessionID.

12:1n the policy engine complex, a certain event action is performed leading to an event the application registered for.
In that case, the application is notified via the callback interface whose reference has been sent with
enablePolicyNoatification().

Parameters are the sessionl D relating the this notification to the specific enablePolicyNotification()-call and the
policyEvent arising.

54 Create and modify domain

This sequence describes how

- atop-level policy domain is created which is then maintained by the policy manager object;

- alist of domains managed by the policy manager isretrieved and a specific domain is accessed;

- how manipulations on this domain (in this example creation of group and removal of arule) are performed;
- how the transaction control is initiated.

Presumption: the Application has received areference to the IpPolicyManager interface.

ETSI

16 ETSI ES 202 915-13 V1.1.1 (2003-01)

: (Logical o . -
View::Application) IpPolicyManager IpPolicylterator IpPolicyDomain
T

T
| 1: startTransaction() |
| |

2:creattDomain() u

]

|
L/ 3:commitTransaction() |
|

|

Ll 4:rgetDomainliterator() !

5: getLisL(J)

:

L] 6: getbomain()

o 7: startTransaction()

Lé.l): createGroup()

L/ 10:commitTransaction()

9:removeRule() |

¢
T
:

(-
|
|
|
|
|
|
|
|

1. Opensthe transaction bracket.

2: Creates adomain by providing the name of the to be created domain object as parameter. The method returns the
reference to the domain object.

3: Closes the transaction bracket.

4. The user wants to get all domains handled by the policy manager. This method returns a policy iterator object which
can be used to go through the available domains.

5: This method returns the list of domains starting with "index". For efficiency reasons the number of returned entries
can be set with the parameter "numberRequested".

6: After having extracted one of the domain name as returned with getList(), the reference to this specific domain get
be retrieved by passing the domain name with getDomain(). Returns the domain reference.

7: Opensthe transaction bracket.

8: Now, one can act upon the domain, i.e. one can create, modify or delete objects in that domain. Valid objects are
domains, groups, and rules.

In this example one creates a group by passing the name of the group to be created with createGroup().

ETSI

17 ETSI ES 202 915-13 V1.1.1 (2003-01)

Returns the reference to the new group.

9: Another action isto remove arule. We assume here that the name of the rule (which is passed as parameter) is
already known. Otherwise one has to retrieve the name by using the I pRulelterator interface (the reference is got with
getRulelterator()).

Returns void.

10: Closes the transaction bracket.

5.5 ASP offering services to prepaid subscribers

The example shown here is based on an Application Service Provider (ASP) offering services to the prepaid subscribers
of acertain Network Operator. The ASP discoversthat, as part of the business logic of the applicationsit offers, the
prepaid credit of the subscriber needs to be verified with regards to the current charge for the service in order to
determine whether the purchase should be allowed or not. Rather than including this credit check in the business logic
of each and every application that the ASP hasin its service portfolio, the ASP may decide to enable a Policy Rule to be
hosted in the Policy Engine of the Network Operator.

AppLogic : IpPolicyManager || _: IpPolicyDomain | | : IpPolicyGroup : IpPolicyRule : IpPolicyExpressionCondition . IpPolicyExpressionAction

T T
:l: startTransaction():

1

|
2: createDomain() :

4: createGroup() |

: L 5: new(

6: createRule()

|
8: createCondition()
Il

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9: new() :

g

10: createAction()

11:new(

=

|
12: setConditionList()
| |

|

Il

|

|

|

|

|

|

|

|

|

|

|

|

|

L

| |
| |
| |
13: setActionList() !
| |
|

|

|

|

|

|

|

|

|

|

|

|

|

=
N

: commitTransaction()

1

]
|
l
n:
|
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

)
:

LJ
|
|
|
|
|

1. For the sake of this example, all activities to create a Domain, a Group, and the Rule are contained within asingle
transaction. The method startTransaction is used by the application to open the transaction.

2: Therulein thissimplistic exampleis part of asingle group, which in turn is contained within a single domain. The
application creates that domain by invoking the method createDomain. The value of the parameter domainNameis
"eCommerceDomain".

3: Asaresult of the createDomain method a new instance of the IpPolicyDomain interface is created. Its interface
reference isreturned as return parameter of the createDomain method.

ETSI

18 ETSI ES 202 915-13 V1.1.1 (2003-01)
4. Oncethe domainis created agroup is created within that domain. The application invokes the createGroup method,
where the parameter groupName has value " PrePaidGroup”.

5: Asaresult of the createGroup method a new instance of the | pPolicyGroup interface is created. Itsinterface
reference is returned as return parameter of the createGroup method.

6: At thispoint in time there exists the "PrePaidGroup” group within the "eCommerceDomain” domain. The actual rule
can be created, using the method createRule. The parameter ruleName has value " SufficientCreditRul€". The new rule
SufficientCreditRule has the following attributes:

- Enabled == TRUE; the policy ruleis currently enabled.

- RuleUsage == NULL; no free-format usage recommendation is provided.

- Priority == 0O; default value, asthereisonly onerule.

- Mandatory == TRUE; mandatory rule, evaluation of the expression must be attempted
- PolicyRoles==NULL; no roles defined

- ConditionListType==P_PM_DNF,; digunctive normal form (DNF)

- SeguencedActions == 3; do not care, asthereisonly onerule.

7: A new instance of the IpPolicyRule interface is created. createRule returns the reference to this newly created
interface.

8: Once an instance of IpPolicyRule exists, the actual policy rule can be constructed by means of conditions and
actions. Invoking the method createCondition creates the condition. The parameter conditionName has value
"SufficientCredit". The parameter conditionType hasvalue"P_PM_EXPRESSION_CONDITION", to indicate that the
condition must satisfy certain expressional syntax. The parameter conditionAttributesis a set of structures. For this
example the set contains of only one attribute structure.

- ConditionAttribute.AttributeName = " SufficientCreditExpression”
- ConditionAttribute. AttributeType ="P_STRING"
- ConditionAttribute. AttributeV alue = "PrePaidCredit > CurrentCharge”

Note that the variables "PrePaidCredit" and "CurrentCharge" in the expression of AttributeValue are assumed to be
defined a priori. The value of the expression is derived from the core grammar expressed in the PM information model.

9: A new instance of the IpPolicyExpressionCondition interface is created.

10: The construction of the rule is completed by creating the action that isto be performed when the condition
expression evaluates to TRUE. The parameter actionName has value "PurchaseAllowed". The parameter actionType
hasvalue"P_PM_EXPRESSION_ACTION" to indicate that the action must satisfy certain expressional syntax. The
actionAttributes are again a set containing of only one structure.

- ActionAttribute.AttributeName = "PurchaseAllowedExpression"

- ActionAttribute AttributeType = "P_STRING"

- ActionAttribute. AttributeValue = " AllowedPurchase == TRUE".

11: A new instance of the IpPolicyExpressionAction interface is created.

12: The attributes for the condition are set by invoking the method setConditionList. The conditionListisalist
consisting of one structure;

- conditionList.Condition == <reference to the I pPolicyCondition interface returned by 9>

- conditionList.GroupNumber == 1; indicates how the conditions need to be grouped in DNF or CNF in case more
groups of rules exist.

- conditionList.Negated == FALSE.

ETSI

19 ETSI ES 202 915-13 V1.1.1 (2003-01)
13: The attributes for the action are set by invoking the method setActionList. The actionList is alist consisting of only
one structure:
- actionList.Action == <reference to the I pPolicyAction interface returned by step 10>
- actionList.SequenceNumber == 1,
14: The "SufficientCreditRule" now existsin the "PrePaidGroup" of the "eCommerceDomain". The rulesis as follows:

IF "PrePaidCredit > CurrentCharge " THEN "AllowedPurchase == TRUE". This policy rule is enabled upon creation
and it is mandatory for the policy engine to evaluate the rule.

The class IpPolicyDomain is defined as a generalized aggregation container, enabling PolicyDomains, PolicyGroups,
and PolicyRules to be aggregated in a single container. The following figure shows how this container looks for the
example.

B T .. + | |
| PolicyRule "SufficientCreditRule” | | |
I I+II --------------- + e e e e eeeeaaaa + 1 | |
| |PolicyCondition | |PolicyAction | | | |
| | "SufficientCredit"| | "PurchaseAl lowed" | | | |
[B + 1 | |
oo e o e oo oo +] |
B N N, + |
TN NN +

ETSI

20 ETSI ES 202 915-13 V1.1.1 (2003-01)

6 Class Diagrams

<<Interface>>
Ipinterface
(from csapi)

|
|

\
\

<<Interface>>
IpAppPolicy Domain
_ (from policy)

<<Interface>>
IpPolicy
(from policy)

IpPolicy Manager
(from policy)

|
<<Interface>>
IpPolicy Group
(from policy)

<<Interface>>
IpPolicy Ev entDefinition
(from policy)

<<Interface>>
IpPolicy Rule
(from policy)

<<Interface>>
IpPolicy Repository
(fompolicy)

<<Interface>>
IpPolicy Iterator
(from policy)

<<Interface>>
IpPolicy Domain
(from policy)

<<Interface>>
IpPolicy Condition
(from policy)

<<Interface>>
IpPolicy Action
(from policy)

<<Interface>>
IpPolicy Ev entAction
(from policy)

<<Interface>>

(from policy)

IpPolicy ExpressionAction

<<Interface>>

IpPolicy Ev entCondition

(from policy)

<<Interface>>
IpPolicy ExpressionCondition
(from policy)

<<Interface>>

IpPolicy TimePeriodCondition

(from policy)

Figure 1: Policy Classes

ETSI

21 ETSI ES 202 915-13 V1.1.1 (2003-01)

‘ IpPolicyManager ‘ ~ Ipinterface
[j 1]
[J
PolicyDomaininPolicyManager
IpPolicy

CommonNane : TpString
PolicyK eynords : TpStringSet
Caption : TpString
Description : TpString

IpPolicyDomain

sitoryln Polic yManager

Note: IpPolicyDomain, IpPolicyGroup,
PoalicyGrouplnPolicyDor

IpPolicyRule, IpPolicyCondition,
IpPolicyAction and
IpPolicyEventDefinition are all derived
from IpPolicy

PolicyDorrmxulnPolic omain PolicyEventDefinitioninPolicyDomain

IpPolicyGroup

PolicyRulelnPolicyDomain

IpPolicyEventDefinition

RequiredAttributes : TpAttributeSet IpPolicyRepository
OptionalAttributes : TpAttributeSet i i
\ PolicyRulelnPolicyGroup
PnlicyGrnupinP cyGroup
|
|

PolicyEventDefinitioninPolicyRepository

IpPolicyRule
Enabled : TpBoolean
RuleUsage : TpString
Priority : TpInt32
Mandatory : TpBoolean
PolicyRoles : TpString Set
ConditionListType : TpPolicyConditionListType
SequencedActions : Tpint32

olicyRepositorylnPolicyRepository

PolicyConditioninPoli€yRepository

PolicyActioninPolicyRepository
PolicyRuleValidityPeriod PolicyConditioninPolicyRule

PolicyActioninPolicyRule

IpPolicyTimePeriodCondition
TimePeriod : TpString
MonthOfYearMask: TpString

IpPolicyCondition

IpPolicyAction

DayOfMonthMask: TpString A 4&

DayOfWeekMask: TpString ‘

TimeOfDayMask: TpString ‘ ‘

LocalOrUtcTime : Tpint32 IpPolicyEventCondition IpPolicyExpressionCondition IpPolicyEventAction IpPolicyExpressionAction
EvertDefinitmName : T pString Bxpression : TpString EventDefinitionName : TpString Expression : TpString
MatchingAttri butes : TpAttributeSet, Attributes : TpAttributeSet

Figure 2: Policy Management Information Model

ETSI

22 ETSI ES 202 915-13 V1.1.1 (2003-01)

7 The Service Interface Specifications

7.1 Interface Specification Format

This clause defines the interfaces, methods and parameters that form a part of the API specification. The Unified
Modelling Language (UML) is used to specify the interface classes. The general format of an interface specificationis
described below.

7.1.1 Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters
and types. The Service and Framework interfaces for enterprise-based client applications are denoted by classes with
name | p<nanme>. The callback interfaces to the applications are denoted by classes with name | pApp<nane>. For
the interfaces between a Service and the Framework, the Service interfaces are typically denoted by classes with name
I pSve<name>, while the Framework interfaces are denoted by classes with name IpFw<name>

7.1.2 Method descriptions

Each method (APl method "call") is described. Both synchronous and asynchronous methods are used in the API.
Asynchronous methods are identified by a'Req' suffix for a method request, and, if applicable, are served by
asynchronous methods identified by either a'Res' or 'Er r ' suffix for method results and errors, respectively. To handle
responses and reports, the application or service developer must implement the relevant | pApp<name> or

| pSvc<nane> interfaces to provide the callback mechanism.

7.1.3 Parameter descriptions

Each method parameter and its possible val ues are described. Parameters described as 'in' represent those that must have
avalue when the method is called. Those described as 'out' are those that contain the return result of the method when
the method returns.

7.1.4 State Model

If relevant, astate model is shown to illustrate the states of the objects that implement the described interface.

7.2 Base Interface

7.2.1 Interface Class Ipinterface

All application, framework and service interfaces inherit from the following interface. This APl Base Interface does not
provide any additional methods.

<<Interface>>

Ipinterface

ETSI

23 ETSI ES 202 915-13 V1.1.1 (2003-01)

7.3 Service Interfaces

7.3.1 Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user
interaction, messaging, mobility and connectivity management.

Theinterfaces that are implemented by the services are denoted as 'Service Interface'. The corresponding interfaces that
must be implemented by the application (e.g. for API callbacks) are denoted as 'Application Interface'.

7.4 Generic Service Interface

7.4.1 Interface Class IpService
Inherits from: Iplnterface

All service interfacesinherit from the following interface.

<<Interface>>

IpService

setCallback (applinterface : in IpinterfaceRef) : void

setCallbackWithSessionID (applnterface : in IpinterfaceRef, sessionID : in TpSessionID) : void

7.4.1.1 Method setCallback()
This method specifies the reference address of the callback interface that a service usesto invoke methods on the
application. It is not allowed to invoke this method on an interface that uses SessionlDs.

Parameters

applnterface : in IplnterfaceRef
Specifies areference to the application interface, which is used for callbacks.

Raises
TpComonExcepti ons, P_I NVALI D | NTERFACE TYPE

7.4.1.2 Method setCallbackWithSessionID()

This method specifies the reference address of the application's callback interface that a service uses for interactions
associated with a specific session ID: e.g. a specific call, or call leg. It is not allowed to invoke this method on an
interface that does not use SessionlDs.

Parameters

applnterface : in IplnterfaceRef
Specifies areference to the application interface, which is used for callbacks.

ETSI

24 ETSI ES 202 915-13 V1.1.1 (2003-01)

sessionlD : in TpSessionlD

Specifies the session for which the service can invoke the application's callback interface.

Raises

TpComonExcepti ons, P_I NVALI D _SESSI ON_| D, P_I NVALI D_I NTERFACE_TYPE

8 Policy Management Interface Classes

The Policy Management APIs defined below address the following :
The creation, modification and viewing of policy information.

Generally, policy enabled services will be created by a network service provider. A policy service may also be created
by an application service provider (ASP) and hosted in the network. Such services need not be based on published OSA
specifications. However, they will be created using OSA policy management APIs, will conform to the OSA policy
information model and will be accessible via OSA defined interfaces.

Publishing of policy events supported by a service.
Subscription to policy events supported by a service.
Generation of events.

Obtaining statistics associated with the use of policies.

Handling of service level agreements (SLA). SLAs may be used to convey authorisation for access or subscription
to pollcy information or to modify or create policy information.

8.1 Interface Class IpPolicyManager

Inherits from: Iplinterface

Clients that wish to participate in Policy Management obtain a reference to an instance of the I pPolicyManager interface
from the Framework. Using this reference, clients can obtain areference to a policy domain of interest, iterate through
the names of all policy domains, create a new policy domain, or remove an existing one. Clients can also obtain a
reference to a policy repository, iterate through the names of all policy repositories, create a new policy repository or
remove an existing one.

Note that al operations through Policy Management interfaces are subject to authorization checks - clients will only
have permission to invoke methods as are allowed by the client's privileges as established by a prior agreement between
the owner of the client and the owner of the policy management complex. Similarly, methods will only return data that
the client is authorized to see. For example, if the client is authorized to see some of the top-level domains and not
others, the IpPolicylterator returned by getDomainlterator() will only return those domains that the client is authorized
for.

ETSI

25 ETSI ES 202 915-13 V1.1.1 (2003-01)

<<Interface>>

IpPolicyManager

createDomain (domainName : in TpString) : IpPolicyDomainRef

getDomain (domainName : in org::csapi::Common Data::TpString) : IpPolicyDomainRef
removeDomain (domainName : in org::csapi::Common Data::TpString) : void

getDomainCount () : TpInt32

getDomainlterator () : IpPolicylteratorRef

findMatchingDomains (matchingAttributes : in TpAttributeSet) : TpStringSet

createRepository (repositoryName : in org::csapi::Common Data:: TpString) : IpPolicyRepositoryRef
getRepository (repositoryName : in org::csapi::Common Data:: TpString) : IpPolicyRepositoryRef
removeRepository (repositoryName : in org::csapi::Common Data:: TpString) : void
getRepositoryCount () : TpInt32

getRepositorylterator () : IpPolicylteratorRef

startTransaction () : void

commitTransaction () : TpBoolean

abortTransaction () : void

8.1.1 Method createDomain()
Create the specified top-level Policy Domain and get a reference to the new instance.

Returns areference to the domain just created.

Parameters
domai nNane : in TpString
The name of the domain to create.

Returns
| pPol i cyDomai nRef

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON, P_SYNTAX ERROR,
P_NAME_SPACE_ERRCR, P_NO TRANSACTI ON_|I N_PROCESS

ETSI

26 ETSI ES 202 915-13 V1.1.1 (2003-01)

8.1.2 Method getDomain()

Get areference to the specified top-level Domain.

Returns the reference to the domain.

Parameters
domai nNanme : in org::csapi::Comon Data:: TpString
The name of the domain.

Returns
| pPol i cyDomai nRef
Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERRCR

8.1.3 Method removeDomain()

Remove the specified top-level domain.

Parameters

domai nNanme : in org::csapi::Comon Data:: TpString
The name of the top-level domain to delete.

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON, P_SYNTAX ERROR,
P_NAME_SPACE_ERROR, P_NO_TRANSACTI ON_I N_PROCESS

8.1.4 Method getDomainCount()

Returns the number of top-level Policy Domains contained by the PolicyManager that the client is authorized to see.

Returns the number of domains.

Parameters
No Parameters were identified for this method

Returns

Tpl nt 32

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON

ETSI

27 ETSI ES 202 915-13 V1.1.1 (2003-01)

8.1.5 Method getDomainliterator()

Obtain areference to an iterator that will return the names of each of the top-level Policy Domains known to the
PolicyManager that the client is authorized to see.

Returnsthe reference to the iterator.

Parameters
No Parameters were identified for this method

Returns
| pPol i cyl t er at or Ref

Raises
TpComonExcepti ons, P_ACCESS VI OLATI ON

8.1.6 Method findMatchingDomains()

Ask for the set of domains that contain attributes that match the specified set of attributes that the client is authorized to
see. This could be used, for example, to get alist of al of the domains whose 'Rol€e' is'QOS.

Returns the names of the matching top-level domains.

Parameters
mat chi ngAttributes : in TpAttri buteSet

Returns

TpSt ri ngSet

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON

8.1.7 Method createRepository()
Create the specified top-level Policy Repository and get a reference to the new instance.

Returns areference to the repository just created.

Parameters
repositoryNane : in org::csapi::Conmon Data:: TpString
The name of the Repository to create.

Returns
| pPol i cyReposi t or yRef

ETSI

28 ETSI ES 202 915-13 V1.1.1 (2003-01)

Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERROR, P_NO TRANSACTI ON | N_PROCESS

8.1.8 Method getRepository()

Get areference to the specified top-level repository.

Returns areference to the repository.

Parameters
repositoryName : in org::csapi::Common Data:: TpString
The name of the repository.

Returns
| pPol i cyReposi t or yRef
Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON, P_SYNTAX ERROR,
P_NAME_SPACE_ERROR

8.1.9 Method removeRepository()

Remove the specified top-level Policy Repository.

Parameters

repositoryNane : in org::csapi::Conmon Data:: TpString
The name of the top-level Repository to delete.

Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERROR, P_NO TRANSACTI ON | N_PROCESS

8.1.10 Method getRepositoryCount()

Returns the number of top-level Policy Repositories contained by the PolicyManager that the client is authorized to see.

Returns: The number of repositories.

Parameters
No Parameters were identified for this method.

ETSI

29 ETSI ES 202 915-13 V1.1.1 (2003-01)

Returns

Tpl nt 32

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON

8.1.11 Method getRepositorylterator()

Obtain areference to an iterator that will return the names of each of the top-level Policy Repositories known to the
PolicyManager that the client is authorized to see.

Returns: The reference to the iterator.

Parameters
No Parameters were identified for this method.

Returns
| pPol i cyl terat or Ref

Raises
TpComonExcepti ons, P_ACCESS VI OLATI ON

8.1.12 Method startTransaction()

Open atransaction. All modifications to the policy information base up to the call to either commitTransaction() or
abortTransaction() will be treated as part of thistransaction.

Note that transaction brackets consisting of startTransaction() and commitTransaction() are generally used to perform
changesin an atomic way, i.e. to ensure that either al changes are made persistent or all changes are undone in case of
failure of even asingle action. Any other clients reading data modified by this transaction will see the existing data until
commitTransaction() is called. Any timeouts of this transaction are implementation specific. If atransaction istimed
out, any subsequent attempt to make requests that require a transaction will throw the exception
P_NO_TRANSACTION_IN_PROCESS.

Note, however, that the scope of transaction bracketsis extended here: Large transaction brackets can be aso useful for
efficiency reasons even if the different actions are not atomic. Creation of a transaction introduces a significant
overhead, reduction of the number of separate transactions reduces this. It is up to the application implementation to
reflect this fact.

Note that transactions can not be nested, that is, a second call to startTransaction() without calling commitT ransaction()
or abortTransaction() in between will result in the exception P_TRANSACTION_IN_PROCESS being thrown during
the second call.

Parameters
No Parameters were identified for this method.

Raises
TpComonExcepti ons, P_ACCESS VI OLATI ON, P_TRANSACTI ON_I N_PRCCESS

ETSI

30 ETSI ES 202 915-13 V1.1.1 (2003-01)

8.1.13 Method commitTransaction()

Commit atransaction. All modifications to the policy information base made since the last call to startTransaction() will
be committed.

Returns: TRUE is returned if the commit succeeded and the policy information base has been updated, FALSE
otherwise.

Parameters
No Parameters were identified for this method.

Returns

TpBool ean

Raises

TpComonExcepti ons, P_NO TRANSACTI ON I N PROCESS

8.1.14 Method abortTransaction()

Abort atransaction. All modifications to the policy information base made since the last call to startTransaction() will
be discarded.

Parameters
No Parameters were identified for this method.

Raises
TpComonExcepti ons, P_NO TRANSACTI ON I N PROCESS

8.2 Interface Class IpPolicy

Inherits from: Iplnterface

The base interface from which are derived al of the Policy interfaces (except I pPolicyManager). Thisinterface
documents four attributes for describing a policy-related instance. In the same way that the generic attribute accessor
methods are defined in this base interface, these common attributes are documented here as well and each interface that
is derived from IpPolicy will provide support for them.

Note that we could have defined dedicated get/set methods for each attribute, which would have the benefits of
being potentially faster and safer, but this design approach was not taken, primarily to make it simpler to add additional
attributes in the future without having to change the associated Interface.

ETSI

31 ETSI ES 202 915-13 V1.1.1 (2003-01)

<<Interface>>

IpPolicy

getAttribute (attributeName : in TpString) : TpAttribute
setAttribute (targetAttribute : in TpAttribute) : void

getAttributes (attributeNames : in TpStringList) : TpAttributeSet
setAttributes (targetAttributes : in TpAttributeSet) : void

821 Attributes

CommonNane : TpString

Theidentifier used to distinguish instances of a give class of objects within a container. It is defined and referenced by
the 'name’ parameter used in most API methods.

Pol i cyKeywords : TpStri ngSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examples include "Engineering”, "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION", "P_PM_KEYWORD_USAGE", "P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE", "P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originaly defined
in[PCIM].

One additional keyword is defined: "P_PM_KEYWORD_POLICY". Therole of this keyword isto identify policy-
related instances that would not otherwise be identifiable as being related to policy. It may be needed in some repository
implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString
This attribute provides a one-line description of a policy-related object.

Description : TpString
This attribute provides alonger description than that provided by the caption attribute.

ETSI

32 ETSI ES 202 915-13 V1.1.1 (2003-01)

8.2.2 Method getAttribute()

Get a copy of the specified attribute from the policy object. Note that modifying the returned attribute will not update
the actual attribute of the object. See setAttribute() for that functionality.

Returns: A copy of the attribute.

Parameters

attributeNanme : in TpString
The name of the attribute to retrieve.

Returns
TpAttribute

Raises
TpComonExcepti ons, P_SYNTAX ERRCOR, P_NAME_SPACE ERROR

8.2.3 Method setAttribute()

Set an attribute of a policy object.

Parameters

targetAttribute : in TpAttribute
The attribute to be set in this object.

Raises
TpComonExcepti ons, P_ACCESS VI OLATI ON, P_NO TRANSACTI ON | N _PROCESS

8.2.4 Method getAttributes()

Get a copy of the set of attributes for the policy object. Note that modifying the returned set will not update the actual
attributes of the object. See setAttributes() for that functionality.

Returns: A copy of the attributes.

Parameters

attributeNames : in TpStringList

Thelist of names of the attributes to retrieve. In case the list of namesis null or empty, al of the attributes will be
returned.

ETSI

33 ETSI ES 202 915-13 V1.1.1 (2003-01)

Returns
TpAttri but eSet

Raises
TpComonExcept i ons

8.2.5 Method setAttributes()

Set one or more attributes of a policy object.

Parameters

target Attributes : in TpAttributeSet
The attributes to be set in this object.

Raises
TpCommonExcepti ons, P_ACCESS VI OLATI ON, P_NO TRANSACTI ON_| N_PROCESS

8.3 Interface Class IpPolicyDomain

Inherits from: IpPolicy

This class is a generalized aggregation container. It enables PolicyDomains, PolicyGroups, PolicyRules, or
PolicyEventDefinitions to be aggregated in a single container. Loops, including the degenerate case of a PolicyDomain
that containsitself, are not allowed when PolicyDomains contain other PolicyDomains.

PolicyDomains and their nesting capabilities are shown in the figure below. Note that a PolicyDomain can nest other
PolicyDomains, and there is no restriction on the depth of the nesting in sibling PolicyDomains.

o o o oo e e e e e e e e e e e e e e e e e oo o= + |
Pol i cyDomai n | | | AR R R
I R + | | | PolicyDomain A | |
Pol i cyDomain X | | N |1+
------------- +] ooo | | | | | | PolicyDomain Al] | | | |

|] e 0 | e
--------------- R T T
................................ +

Asasimple example, think of the highest
level PolicyDomain shown in the figure above as a PolicyDomain for the Call Control Service. This PolicyDomain may
be called CallControlPolicy, and may aggregate several PolicyDomains that provide specialized rules per client
application. Hence, PolicyDomain A in the figure
above may define call control rules for athird party application from company A, while another PolicyDomain might
define rules for third party application B (e.g. PolicyDomain X), and so forth. Note also that the depth of each
PolicyDomain does not need to be the same. Thus, the ApplicationAPolicyDomain might have several additional layers
of PolicyDomains defined for any of several reasons (different locales, number of customers, etc.). The PolicyRules are
therefore contained at n levels from the ApplicationAPolicyDomain. Compare this to the Application B PolicyDomain
(PolicyDomain X), which might directly contain PolicyRules.

ETSI

34 ETSI ES 202 915-13 V1.1.1 (2003-01)

<<Interface>>

IpPolicyDomain

getParentDomain () : IpPolicyDomainRef

createDomain (domainName : in TpString) : IpPolicyDomainRef
getDomain (domainName : in TpString) : IpPolicyDomainRef
removeDomain (domainName : in TpString) : void
getDomainCount () : TpInt32

getDomainlterator () : IpPolicylteratorRef

createGroup (groupName : in TpString) : IpPolicyGroupRef
getGroup (groupName : in TpString) : IpPolicyGroupRef
removeGroup (groupName : in TpString) : void
getGroupCount () : TpInt32

getGrouplterator () : IpPolicylteratorRef

createRule (ruleName : in TpString) : IpPolicyRuleRef
getRule (ruleName : in TpString) : IpPolicyRuleRef
removeRule (ruleName : in TpString) : void

getRuleCount () : TpInt32

getRulelterator () : IpPolicylteratorRef

createEventDefinition (eventDefinitionName : in TpString, requiredAttributes : in TpStringSet,
optionalAttributes : in TpStringSet) : IpPolicyEventDefinitionRef

getEventDefinition (eventDefinitionName : in TpString) : IpPolicyEventDefinitionRef
removeEventDefinition (eventDefinitionName : in TpString) : void
getEventDefinitionCount () : TpInt32

getEventDefinitionlterator () : IpPolicylteratorRef

generateEvent (eventDefinitionName : in TpString, attributes : in TpAttributeSet) : void
createNotification (appPolicyDomain : in IpAppPolicyDomainRef, events : in TpStringSet) : TpAssignmentID
destroyNotification (assignmentID : in TpAssignmentID, events : in TpStringSet) : void
createVariableSet (variableSetName : in TpString) : void

getVariableSet (variableSetName : in TpString) : TpAttributeSet

removeVariableSet (variableSetName : in TpString) : void

getVariableSetCount () : TpIint32

getVariableSetlterator () : IpPolicylteratorRef

setVariable (variableSetName : in TpString, variable : in TpAttribute) : void

getVariable (variableSetName : in TpString, variableName : in TpString) : TpAttribute

ETSI

35 ETSI ES 202 915-13 V1.1.1 (2003-01)

8.3.1 Attributes

CommonNane : TpString

The identifier used to distinguish instances of a give class of objects within acontainer. It is defined and referenced by
the 'name’ parameter used in most APl methods.

Pol i cyKeywords : TpStri ngSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examplesinclude "Engineering", "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION", "P_PM_KEYWORD_USAGE", "P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE","P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originally defined
in [PCIM].

One additional keyword isdefined: "P_PM_KEYWORD_POLICY". Therole of this keyword isto identify
policy-related instances that would not otherwise be identifiable as being related to policy. It may be needed in some
repository implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString
This attribute provides a one-line description of a policy-related object.

Description : TpString
This attribute provides alonger description than that provided by the caption attribute.

Role : TpString

This attribute provides a way to specify higher-level context associated with atop-level domain, e.g. Role = Charging,
Role = QOS, or Role = User Interaction, etc. This attribute can be used to search for domains that specify a particular
Role by using the findM atchingDomains() method of the I pPolicyManager interface. This attribute must be explicitly
set for each instance of an IpPolicyDomain. Thereis no default and values are not copied from the parent domain (if

any).

Omner : TpString

This attribute provides a way to specify an owner of atop-level domain. This attribute can be used to search for
domains that specify a particular Owner by using the findMatchingDomains() method of the |pPolicyManager interface.
This attribute must be explicitly set for each instance of an IpPolicyDomain. There is no default and values are not
copied from the parent domain (if any).

ETSI

36 ETSI ES 202 915-13 V1.1.1 (2003-01)

8.3.2 Method getParentDomain()

Return areference to the domain that contains this one (if any). If thisis atop-level domain, return aNULL reference.

Returns: A reference to the parent domain.

Parameters
No Parameters were identified for this method

Returns

| pPol i cyDomai nRef
Raises
TpComonExcept i ons

8.3.3 Method createDomain()

Create the specified domain and get a reference to the new instance.

Returns: A reference to the domain just created.

Parameters
domai nNanme : in TpString
The name of the domain to create.

Returns
| pPol i cyDomai nRef
Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON, P_SYNTAX ERROR,
P_NAME_SPACE_ERROR, P_NO_TRANSACTI ON_I N_PROCESS

8.3.4 Method getDomain()

Get areference to the specified subdomain.

Returns: A reference to the domain.

Parameters
domai nNanme : in TpString
The name of the subdomain to get.

ETSI

37 ETSI ES 202 915-13 V1.1.1 (2003-01)

Returns
| pPol i cyDomai nRef
Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERRCR

8.35 Method removeDomain()

Remove the specified subdomain.

Parameters

domai nNanme : in TpString
The name of the subdomain to delete.
Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERROR, P_NO TRANSACTI ON | N_PROCESS

8.3.6 Method getDomainCount()

Returns the number of subdomains contained by this one that the client is authorized to see.

Returns: The number of subdomains.

Parameters
No Parameters were identified for this method.

Returns
Tpl nt 32

Raises
TpComonExcepti ons, P_ACCESS VI OLATI ON

8.3.7 Method getDomainliterator()

Obtain areference to an iterator that will return the names of each of the subdomains contained by this one that the
client is authorized to see.

Returns: A reference to the iterator.

Parameters
No Parameters were identified for this method.

ETSI

38 ETSI ES 202 915-13 V1.1.1 (2003-01)

Returns

| pPol i cyl terator Ref

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON

8.3.8 Method createGroup()

Create the specified group and get a reference to the new instance.

Returns: A reference to the group just created.

Parameters
groupNanme : in TpString
The name of the group to create.

Returns
| pPol i cyG oupRef
Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON, P_SYNTAX ERROR,
P_NAME_SPACE_ERRCR, P_NO TRANSACTI ON_I N_PROCESS

8.3.9 Method getGroup()

Get areference to the specified group.

Returns: A reference to the group.

Parameters

groupNanme : in TpString
The name of the group to get.
Returns

| pPol i cyG oupRef
Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON, P_SYNTAX ERROR,
P_NAME_SPACE_ERRCR

ETSI

39 ETSI ES 202 915-13 V1.1.1 (2003-01)

8.3.10 Method removeGroup()

Remove the specified group.

Parameters

groupName : in TpString
The name of the group to delete.
Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON, P_SYNTAX ERROR,
P_NAME_SPACE_ERROR, P_NO_TRANSACTI ON_I N_PROCESS

8.3.11 Method getGroupCount()

Returns the number of groups contained by this domain that the client is authorized to see.

Returns: The number of groups.

Parameters
No Parameters were identified for this method.

Returns

Tpl nt 32

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON

8.3.12 Method getGrouplterator()

Obtain areference to an iterator that will return the names of each of the groups contained by this domain that the client
is authorized to see.

Returns: A reference to the iterator.

Parameters
No Parameters were identified for this method

Returns

| pPol i cyl terator Ref

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON

ETSI

40 ETSI ES 202 915-13 V1.1.1 (2003-01)

8.3.13 Method createRule()

Create arule with the specified name, and get a reference to the new instance.

Returns: A reference to the just created rule.

Parameters

ruleNanme : in TpString
The name of the rule to create.

Returns
| pPol i cyRul eRef
Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERROR, P_NO TRANSACTI ON | N_PROCESS

8.3.14 Method getRule()

Get areference to the specified rule.

Returns: A reference to therule.

Parameters

ruleNanme : in TpString
The name of the rule to get.

Returns
| pPol i cyRul eRef

Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERRCR

8.3.15 Method removeRule()

Remove the specified rule.

Parameters

ruleNanme : in TpString
The name of the rule to delete.

ETSI

41 ETSI ES 202 915-13 V1.1.1 (2003-01)

Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERROR, P_NO TRANSACTI ON | N_PROCESS

8.3.16 Method getRuleCount()

Returns the number of rules contained by this domain that the client is authorized to see.

Returns: The number of rules.

Parameters
No Parameters were identified for this method.

Returns

Tpl nt 32

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON

8.3.17 Method getRulelterator()

Obtain areference to an iterator that will return the names of each of the rules contained by this domain that the client is
authorized to see.

Returns: A reference to the iterator.

Parameters
No Parameters were identified for this method.

Returns

| pPol i cyl t er at or Ref

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON

8.3.18 Method createEventDefinition()

Define a new event type, specifying the definition's name and the required and optional attributes that must/may appear
in an instance of that event.

Returns: A reference to the newly created definition.

Parameters

eventDefinitionName : in TpString
The name of the definition of the new event.

ETSI

42 ETSI ES 202 915-13 V1.1.1 (2003-01)

requiredAttributes : in TpStringSet
The set of attributesthat MUST be included in any event of this type.

optional Attributes : in TpStringSet
A set of attributesthat MAY be included in any event of this type.

Returns
| pPol i cyEvent Def i ni ti onRef
Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE ERROR, P_NO TRANSACTI ON | N PROCESS

8.3.19 Method getEventDefinition()

Get areference to the definition of an event type.

Returns: A reference to the definition.

Parameters

eventDefinitionName : in TpString
The name of the event definition to get.

Returns
| pPol i cyEvent Def i ni ti onRef
Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERRCR

8.3.20 Method removeEventDefinition()

Remove the definition for an event from the domain.

Parameters

eventDefinitionName : in TpString
The name of the definition to remove.

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON, P_SYNTAX ERROR,
P_NAME_SPACE_ERROR, P_NO_TRANSACTI ON_I N_PROCESS

ETSI

43 ETSI ES 202 915-13 V1.1.1 (2003-01)

8.3.21 Method getEventDefinitionCount()

Returns the number of event definitions contained by this domain that the client is authorized to see.
Returns: The number of event definitions.

Parameters
No Parameters were identified for this method.

Returns

Tpl nt 32

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON

8.3.22 Method getEventDefinitionlterator()

Obtain areference to an iterator that will return the names of each of the definitions contained by this domain that the
client is authorized to see.

Returns: A reference to the iterator.

Parameters
No Parameters were identified for this method.

Returns
| pPol i cyl terat or Ref

Raises
TpComonExcepti ons, P_ACCESS VI OLATI ON

8.3.23 Method generateEvent()

Generate an event using the attributes specified. Validate the attributes against the instance of | pPolicyEventDefinition
specified by the eventDefinitionName parameter. Validation includes verifying that all of the attributes specified as
required by the IpPolicyEventDefinition are included in the supplied attributes and that the supplied attributes do not
include any attributes that are not specified as either required or optional by the IpPolicyEventDefinition.

See also: IpPolicyEventAction.

Parameters

eventDefinitionName : in TpString
The name of the definition of the event that will be used to validate attributes.

attributes : in TpAttributeSet
The attributes that will be included in the event instance that is generated.

ETSI

44 ETSI ES 202 915-13 V1.1.1 (2003-01)

Raises
TpCommonExcepti ons, P_ACCESS VI OLATI ON, P_SYNTAX_ ERROR,
P_NAME_SPACE_ERRCR

8.3.24 Method createNotification()

Allows aclient to specify a set of events that they are interested in receiving. Once successfully subscribed, the client
will receive copies of all generated events on the callback provided by the appPolicyDomain parameter.

Returns: An identifier for this subscription. When the client is no longer interested in receiving these events, it should
call destroyNotification() with thisidentifier.

Parameters
appPol i cyDomain : in | pAppPol i cyDomai nRef
The callback to be used to send generated eventsto the client.

events : in TpStringSet
The set of names of event definitions specifying the events the client wishes to subscribe to.

Returns
TpAssi gnnment | D
Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERRCR

8.3.25 Method destroyNotification()

Allows aclient to indicate that it is no longer interested in receiving events that it previously subscribed to.

Parameters

assignnmentI D : in TpAssignnmentlD
Theidentifier the client received when it subscribed for the events.

events : in TpStringSet

If non-NULL and non-empty, this indicates the particular events that the client no longer wishes to receive. If NULL or
empty, then the client is unsubscribing from all events associated with the specified identifier.

Raises
TpComonExcepti ons, P_SYNTAX ERROR

ETSI

45 ETSI ES 202 915-13 V1.1.1 (2003-01)

8.3.26 Method createVariableSet()

Used by clients to define a named collection of variables. Variables are attributes that can be updated by the client to
reflect the current 'state’ of the client. Since variables can be referenced by name from expression conditions and
actions, the act of updating a variable may have a side effect of satisfying conditionsin rules that are currently active.
Variables that are defined by the network operator may be dynamically updated by the policy engine to reflect the
current 'state’ of the modelled networks and services.

Parameters

vari abl eSet Name : in TpString
The name of the new variable set.

Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERROR, P_NO TRANSACTI ON | N_PROCESS

8.3.27 Method getVariableSet()

Get avariable set.

Returns; A variable set.

Parameters

vari abl eSet Name : in TpString
The name of the variable set to get.

Returns
TpAttri but eSet
Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON, P_SYNTAX ERROR,
P_NAME_SPACE_ERROR

8.3.28 Method removeVariableSet()

Remove the variable set from the domain.

Parameters

vari abl eSetNane : in TpString
The name of the variable set to remove.

Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERROR, P_NO TRANSACTI ON | N_PROCESS

ETSI

46 ETSI ES 202 915-13 V1.1.1 (2003-01)

8.3.29 Method getVariableSetCount()

Returns the number of variable sets contained by this domain that the client is authorized to see.

Returns: The number of variable sets.

Parameters
No Parameters were identified for this method.

Returns
Tpl nt 32

Raises
TpComonExcepti ons, P_ACCESS VI OLATI ON

8.3.30 Method getVariableSetlterator()

Obtain areference to an iterator that will return the names of each of the variable sets contained by this domain that the
client is authorized to see.

Returns: A reference to the iterator.

Parameters
No Parameters were identified for this method.

Returns

| pPol i cyl terat or Ref

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON

8.3.31 Method setVariable()

Set avariable within avariable set.

Parameters

vari abl eSetNane : in TpString
The name of the variable set within which to set the specified variable.

variable : in TpAttribute
The variable to set.

Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE ERROR, P_NO TRANSACTI ON | N PROCESS

ETSI

a7 ETSI ES 202 915-13 V1.1.1 (2003-01)

8.3.32 Method getVariable()

Get acopy of avariable from avariable set.

Returns: A copy of the variable.

Parameters

vari abl eSetNane : in TpString
The name of the variable set to find the variable in.

vari ableNanme : in TpString
The name of the variable to get a copy of.

Returns
TpAttribute
Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON, P_SYNTAX ERROR,
P_NAME_SPACE_ERRCR

8.4 Interface Class IpPolicyGroup

Inherits from: IpPolicy

This classis a generalized aggregation container. It enables either PolicyRules or PolicyGroups to be aggregated in a
single container. Loops, including the degenerate case of a PolicyGroup that contains itself, are not allowed when
PolicyGroups contain other PolicyGroups.

PolicyGroups and their nesting capabilities are shown in the figure below. Note that a PolicyGroup can nest other
PolicyGroups, and thereis no restriction on the depth of the nesting in sibling PolicyGroups.

o o o oo e e e e e e e e e e e e e e e e e oo o= + |
Pol i cyGroup | | | AR
e R + | | | PolicyGroup A| | PolicyG oup
X1 | NN |]
-+] 000 | | | | 1] PolicyGoup AL | | | | |

|] 1 I RRERREEEEEEED
G T + | oo e e e e e e e e m oo oo
__________________ +

Asasimple example, think of the highest level
PolicyGroup shown in the figure above as alogon policy or US employees of a company. This PolicyGroup may be
called USEmployeel ogonPolicy, and may aggregate several PolicyGroups that provide specialized rules per location.

Hence, PolicyGroup A in the figure above may define
logon rules for employees on the West Coast, while another PolicyGroup might define logon rules for the Midwest (e.g.
PolicyGroup X), and so forth. Note also that the depth of each PolicyGroup does not need to
be the same. Thus, the WestCoast PolicyGroup might have several additional layers of PolicyGroups defined for any of
several reasons (different locales, number of subnets, etc..). The PolicyRules are therefore contained at n levels from the
USEmployeel ogonPolicyGroup. Compare this to the Midwest PolicyGroup (PolicyGroup X), which might directly
contain PolicyRules. No attributes are defined for this class sinceit inherits al its
attributes from IpPolicy. The class exists to aggregate PolicyRules or other PolicyGroups.

ETSI

48 ETSI ES 202 915-13 V1.1.1 (2003-01)

<<Interface>>

IpPolicyGroup

getParentDomain () : IpPolicyDomainRef
getParentGroup () : IpPolicyGroupRef

createGroup (groupName : in TpString) : IpPolicyGroupRef
getGroup (groupName : in TpString) : IpPolicyGroupRef
removeGroup (groupName : in TpString) : void
getGroupCount () : TpInt32

getGrouplterator () : IpPolicylteratorRef

createRule (ruleName : in TpString) : IpPolicyRuleRef
getRule (ruleName : in TpString) : IpPolicyRuleRef
removeRule (ruleName : in TpString) : void
getRuleCount () : TpInt32

getRulelterator () : IpPolicylteratorRef

8.4.1 Attributes

CommonNane : TpString

The identifier used to distinguish instances of a give class of objects within acontainer. It is defined and referenced by
the 'name’ parameter used in most API methods.

Pol i cyKeywords : TpStri ngSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examples include "Engineering”, "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION","P_PM_KEYWORD_USAGE","P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE","P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originally defined
in [PCIM].

One additional keyword is defined: "P_PM_KEYWORD_POLICY". The role of this keyword isto identify
policy-related instances that would not otherwise be identifiable as being related to policy. It may be needed in some
repository implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

ETSI

49 ETSI ES 202 915-13 V1.1.1 (2003-01)

Caption : TpString
This attribute provides a one-line description of a policy-related object.

Description : TpString
This attribute provides alonger description than that provided by the caption attribute.

8.4.2 Method getParentDomain()

Get areference to the domain that directly contains this group (if any). If thisis a subgroup (whose immediate container
is another group instead of adomain), return aNULL reference.

Returns: A reference to the containing domain.

Parameters
No Parameters were identified for this method

Returns

| pPol i cyDomai nRef
Raises
TpComonExcept i ons

8.4.3 Method getParentGroup()

Return areference to the group that contains this one (if any). If thisis atop-level group, return aNULL reference.

Returns: A reference to the containing group.

Parameters
No Parameters were identified for this method

Returns
| pPol i cyG oupRef

Raises
TpComonExcept i ons

ETSI

50 ETSI ES 202 915-13 V1.1.1 (2003-01)

8.4.4 Method createGroup()

Create the specified group and get a reference to the new instance.

Returns: A reference to the group just created.

Parameters
groupNanme : in TpString
The name of the group to create.

Returns
| pPol i cyG oupRef
Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERROR, P_NO TRANSACTI ON | N_PROCESS

8.45 Method getGroup()

Get areference to the specified group.

Returns: A reference to the group.

Parameters

groupNanme : in TpString
The name of the group to get.
Returns

| pPol i cyG oupRef
Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERRCR

8.4.6 Method removeGroup()

Remove the specified group.

Parameters
groupNanme : in TpString
The name of the group to delete.

ETSI

51 ETSI ES 202 915-13 V1.1.1 (2003-01)

Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERROR, P_NO TRANSACTI ON | N_PROCESS

8.4.7 Method getGroupCount()

Returns the number of groups contained by this group that the client is authorized to see.

Parameters
No Parameters were identified for this method.

Returns
Tpl nt 32

Raises
TpComonExcepti ons, P_ACCESS VI OLATI ON

8.4.8 Method getGrouplterator()

Obtain areference to an iterator that will return the names of each of the groups contained by this group that the client is
authorized to see.

Returns: A reference to the iterator.

Parameters
No Parameters were identified for this method.

Returns
| pPol i cyl terat or Ref

Raises
TpComonExcepti ons, P_ACCESS VI OLATI ON

8.4.9 Method createRule()

Create arule with the specified name, and get a reference to the new instance.

Returns: A reference to the just created rule.

Parameters

ruleName : in TpString
The name of therule to create.

ETSI

52 ETSI ES 202 915-13 V1.1.1 (2003-01)

Returns
| pPol i cyRul eRef
Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERROR, P_NO TRANSACTI ON | N_PROCESS

8.4.10 Method getRule()

Get areference to the specified rule.

Returns: A reference to therule.

Parameters

ruleName : in TpString
The name of the rule to get.

Returns
| pPol i cyRul eRef
Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERRCR

8.4.11 Method removeRule()

Remove the specified rule.

Parameters

ruleNanme : in TpString
The name of the rule to delete.

Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERROR, P_NO TRANSACTI ON | N_PROCESS

8.4.12 Method getRuleCount()

Returns the number of rules contained by this group that the client is authorized to see.

Parameters
No Parameters were identified for this method.

ETSI

53 ETSI ES 202 915-13 V1.1.1 (2003-01)

Returns

Tpl nt 32

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON

8.4.13 Method getRulelterator()

Obtain areference to an iterator that will return the names of each of the rules contained by this group that the client is
authorized to see.

Returns: A reference to the iterator.

Parameters
No Parameters were identified for this method.

Returns

| pPol i cyl terat or Ref

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON

8.5 Interface Class IpPolicyRepository
Inherits from: IpPolicy

A class representing a container for reusable policy-related information. Instances of PolicyConditions and
PolicyActions can be defined here and then referenced from one or more PolicyRules. Note that some instantiations of
the Policy Management service will have Repositories that have been pre-defined by the Service Provider, with
pre-defined PolicyConditions and PolicyActions. It may also be possible that clients with the appropriate authorizations
will be able to define new Repositories and/or add new PolicyConditions and PolicyActions to existing Repositories.

<<Interface>>

IpPolicyRepository

getParentRepository () : IpPolicyRepositoryRef

createRepository (repositoryName : in TpString) : IpPolicyRepositoryRef
getRepository (repositoryName : in TpString) : IpPolicyRepositoryRef
removeRepository (repositoryName : in TpString) : void
getRepositoryCount () : TpInt32

getRepositorylterator () : IpPolicylteratorRef

createCondition (conditionName : in TpString, conditionType : in TpPolicyConditionType, conditionAttributes
: in TpAttributeSet) : IpPolicyConditionRef

getCondition (conditionName : in TpString) : IpPolicyConditionRef

removeCondition (conditionName : in TpString) : void

ETSI

54 ETSI ES 202 915-13 V1.1.1 (2003-01)

getConditionCount () : TpInt32
getConditionlterator () : IpPolicylteratorRef

createAction (actionName : in TpString, actionType : in TpPolicyActionType, actionAttributes : in
TpAttributeSet) : IpPolicyActionRef

getAction (actionName : in TpString) : IpPolicyActionRef
removeAction (actionName : in TpString) : void
getActionCount () : TpInt32

getActionlterator () : IpPolicylteratorRef

851 Attributes

CommonNane : TpString

Theidentifier used to distinguish instances of a give class of objects within a container. It is defined and referenced by
the 'name’ parameter used in most APl methods.

Pol i cyKeywords : TpStri ngSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examples include "Engineering", "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION", "P_PM_KEYWORD_USAGE", "P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE", "P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originally defined
in [PCIM].

One additional keyword isdefined: "P_PM_KEYWORD_POLICY". Therole of this keyword isto identify
policy-related instances that would not otherwise be identifiable as being related to policy. It may be needed in some
repository implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString
This attribute provides a one-line description of a policy-related object.

Description : TpString
This attribute provides alonger description than that provided by the caption attribute.

ETSI

55 ETSI ES 202 915-13 V1.1.1 (2003-01)

8.5.2 Method getParentRepository()

Return areference to the repository that contains this one (if any). If thisis atop-level repository, return aNULL
reference.

Returns: A reference to the parent repository.

Parameters
No Parameters were identified for this method.

Returns

| pPol i cyReposi t or yRef
Raises

TpComonExcept i ons

8.5.3 Method createRepository()
Create the specified repository and get a reference to the new instance.

Returns: A reference to the repository just created.

Parameters
repositoryName : in TpString
The name of the repository to create.

Returns
| pPol i cyReposi t or yRef
Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERROR, P_NO TRANSACTI ON | N_PROCESS

8.5.4 Method getRepository()

Get areference to the specified subrepository.

Returns: A reference to the repository.

Parameters
repositoryName : in TpString
The name of the subrepository to get.

ETSI

56 ETSI ES 202 915-13 V1.1.1 (2003-01)

Returns
| pPol i cyReposi t or yRef
Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERRCR

8.5.5 Method removeRepository()

Remove the specified subrepository.

Parameters

repositoryNanme : in TpString
The name of the subrepository to delete.
Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERROR, P_NO TRANSACTI ON | N_PROCESS

8.5.6 Method getRepositoryCount()

Returns the number of subrepositories contained by this repository that the client is authorized to see.

Parameters
No Parameters were identified for this method.

Returns
Tpl nt 32

Raises
TpComonExcepti ons, P_ACCESS VI OLATI ON

8.5.7 Method getRepositorylterator()

Obtain areference to an iterator that will return the names of each of the subrepositories contained by this one that the
client is authorized to see.

Returns: A reference to the iterator.

Parameters
No Parameters were identified for this method.

ETSI

57 ETSI ES 202 915-13 V1.1.1 (2003-01)

Returns

| pPol i cyl terator Ref

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON

8.5.8 Method createCondition()

Create a reusable condition. References to the newly created condition can be used in one or more PolicyRules.

Returns: The reference to the newly created condition.

Parameters

conditionNane : in TpString
The name uniquely identifying this condition within this repository.

condi ti onType : in TpPolicyConditionType

The type specifying which IpPolicyCondition class should be created. For this version of the Policy Management AP,
it must be one of P_PM_TIME_PERIOD_CONDITION, P_PM_EVENT_CONDITION, or
P_PM_EXPRESSION_CONDITION.

conditionAttributes : in TpAttributeSet
The attributes specifying the condition.

Returns
| pPol i cyCondi ti onRef
Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE ERROR, P_NO TRANSACTI ON | N PROCESS

8.5.9 Method getCondition()

Get areference to the specified condition.

Returns: A reference to the specified condition.

Parameters

conditionNanme : in TpString
The name of the condition to get.

ETSI

58 ETSI ES 202 915-13 V1.1.1 (2003-01)

Returns
| pPol i cyCondi ti onRef
Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERRCR

8.5.10 Method removeCondition()

Remove the specified condition.

Parameters
conditionNanme : in TpString

The name of the condition to delete.
Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERROR, P_NO TRANSACTI ON | N_PROCESS

8.5.11 Method getConditionCount()

Returns the number of conditions contained by this repository that the client is authorized to see.

Returns: The number of conditions.

Parameters
No Parameters were identified for this method.

Returns
Tpl nt 32

Raises
TpComonExcepti ons, P_ACCESS VI OLATI ON

8.5.12 Method getConditionlterator()

Obtain areference to an iterator that will return the names of each of the conditions contained by this repository that the
client is authorized to see.

Returns: A reference to the iterator.

Parameters
No Parameters were identified for this method.

ETSI

59 ETSI ES 202 915-13 V1.1.1 (2003-01)

Returns

| pPol i cyl terator Ref

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON

8.5.13 Method createAction()

Create a reusable action. References to the newly created action can be used in one or more PolicyRules.

Returns: The reference to the newly created action.

Parameters

actionNane : in TpString
The name uniquely identifying this action within this repository.

actionType : in TpPolicyActionType

The type specifying which I pPolicyAction class should be created. For this version of the Policy Management API, it
must be one of P_PM_EVENT_ACTION, or P_PM_EXPRESSION_ACTION.

actionAttributes : in TpAttributeSet
The attributes specifying the action.

Returns
| pPol i cyAct i onRef
Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERROR, P_NO TRANSACTI ON | N_PROCESS

8.5.14 Method getAction()

Get areference to the specified action.

Returns: A reference to the specified action.

Parameters

actionNanme : in TpString
The name of the action to get.

Returns
| pPol i cyAct i onRef

Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERRCR

ETSI

60 ETSI ES 202 915-13 V1.1.1 (2003-01)

8.5.15 Method removeAction()

Remove the specified action.

Parameters
actionNane : in TpString

The name of the action to delete.
Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON, P_SYNTAX ERROR,
P_NAME_SPACE_ERROR, P_NO_TRANSACTI ON_I N_PROCESS

8.5.16 Method getActionCount()

Returns the number of actions contained by this repository that the client is authorized to see.

Parameters
No Parameters were identified for this method.

Returns

Tpl nt 32

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON

8.5.17 Method getActionlterator()

Obtain areference to an iterator that will return the names of each of the actions contained by this repository that the
client is authorized to see.

Returns: A reference to the iterator.

Parameters
No Parameters were identified for this method.

Returns

| pPol i cyl t er at or Ref

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON

ETSI

61 ETSI ES 202 915-13 V1.1.1 (2003-01)

8.6 Interface Class IpPolicyRule

Inherits from: IpPolicy

This class represents the "If Condition then Action™ semantics associated with a policy. A PolicyRule condition, in the
most general sense, is represented as either an ORed set of ANDed conditions (Disjunctive Normal Form, or DNF) or
an ANDed set of ORed conditions (Conjunctive Normal Form, or CNF). Individual conditions may either be negated
(NQT C) or unnegated (C). The actions specified by a PolicyRule are to be performed if and only if the PolicyRule
condition (whether it is represented in DNF or CNF) evaluates to TRUE.

The conditions and actions associated with a policy rule are modelled, respectively, with subclasses of the classes
PolicyCondition and PolicyAction. These condition and action objects are tied to instances of PolicyRule by the
setConditionList() and setActionList() methods.

A policy rule may also be associated with one or more policy time periods, indicating the schedule according to
which the policy rule is active and inactive. In this case it is the setValidityPeriodCondition() method that provides the
linkage.

A policy ruleisillustrated conceptually in the figure below.

oo o o o e m oo - - +

Pol i cyRul e | | | R R T + +-
---------------- + | | PolicyCondition(s) | |

Pol i cyAction(s) | | I LR L L
--+ | | | I e +
| | | PolicyTinmePeriodCondition(s) | | | +---
--------------------------- + | oo e e e e e e e e o oo oo
................. +

The PolicyRule class uses the structure TpConditionList to specify
the list of conditions for the rule and uses the attribute ConditionListType, to indicate whether the conditions for the
rule arein DNF or CNF. The TpConditionList isalist of structures, each element of which contains areferenceto a
condition and two additiona attributes to complete the representation of the rule's conditional expression. Thefirst of
these attributes is an integer to partition the referenced conditions into one or more groups, and the second is a Boolean
to indicate whether the referenced condition is negated. An example shows how TpConditionList and these two
additional attributes provide a unique representation of a set of conditionsin either DNF or CNF.

Suppose we have a TpConditionList that aggregates five
PolicyConditions C1 through C5, with the following values in the attributes of the five elements of thelist:
C1: GroupNumber = 1, ConditionNegated = FALSE
C2: GroupNumber = 1, ConditionNegated = TRUE
C3: GroupNumber = 1, ConditionNegated = FALSE
C4: GroupNumber = 2, ConditionNegated = FALSE
C5: GroupNumber = 2, ConditionNegated = FALSE
If ConditionListType = P_PM_DNF, then the overall condition for the

PolicyRuleis: (C1 AND (NOT C2) AND C3) OR (C4 AND C5)
On the other hand, if ConditionListType = P_PM_CNF, then the overall
condition for the PolicyRuleis; (C1OR (NOT C2) OR C3) AND (C4 OR C5)

In both cases, there is an unambiguous specification of the overal
condition that is tested to determine whether to perform the actions associated with the PolicyRule.

Similarly, The PolicyRule class uses the structure TpPolicyActionList
to specify the list of actions for the rule and uses the attribute SequencedActions to indicate whether the actions for the
rule MUST be executed in the order specified in the TpActionList, SHOULD be executed in the order specified, or it
does not matter. The TpActionList isalist of structures, each element of which contains areference to an action and a
attribute sequenceNumber. This attribute provides an unsigned integer 'n' that indicates the relative position of an action
in the sequence of actions associated with a policy rule. When 'n' is a positive integer, it indicates a place in the
sequence of actions to be performed, with smaller integersindicating earlier positionsin the sequence. The specia value
'0" indicates "do not care". If two or more actions have the same non-zero sequence number, they may be performed in
any order, but they must all be performed at the appropriate place in the overall action sequence.

A series of examples will make ordering of actions clearer:
- If all actions have the same sequence number, regardless of whether it is'0’
or non-zero, any order is acceptable. - The values
1:ACTION A
2:ACTION B
1:ACTION C
3:ACTION D

ETSI

62 ETSI ES 202 915-13 V1.1.1 (2003-01)

indicate two acceptable orders. A,C,B,D or C,A,B,D, since A and C can be

performed in either order, but only at the '1' position.

- Thevalues

0:ACTION A

2:ACTION B

3:ACTION C

3:ACTION D

require that B,C, and D occur either as B,C,D or asB,D,C. Action A may appear at
any point relative to B,C, and D. Thus the complete set of acceptable ordersis: A,B,C,D; B,A,C,D; B,C,AD; B,CD,A;
ABDC;BADC;B,DAC;B,D,CA.
Note that the non-zero sequence numbers need not start with '1', and they need not be

consecutive. All that mattersistheir relative magnitude.

<<Interface>>

IpPolicyRule

getParentGroup () : IpPolicyGroupRef
getParentDomain () : IpPolicyDomainRef

createCondition (conditionName : in TpString, conditionType : in TpPolicyConditionType, conditionAttributes
. in TpAttributeSet) : IpPolicyConditionRef

getCondition (conditionName : in TpString) : IpPolicyConditionRef
removeCondition (conditionName : in TpString) : void
getConditionCount () : TpInt32

getConditionlterator () : IpPolicylteratorRef

createAction (actionName : in TpString, actionType : in TpPolicyActionType, actionAttributes : in
TpAttributeSet) : IpPolicyActionRef

getAction (actionName : in TpString) : IpPolicyActionRef

removeAction (actionName : in TpString) : void

getActionCount () : TpInt32

getActionlterator () : IpPolicylteratorRef
setValidityPeriodConditionByName (conditionName : in TpString) : void
setValidityPeriodCondition (conditionReference : in IpPolicyTimePeriodConditionRef) : void
getValidityPeriodCondition () : IpPolicyTimePeriodConditionRef
unsetValidityPeriodCondition () : void

setConditionList (conditionList : in TpPolicyConditionList) : void
getConditionList () : TpPolicyConditionList

setActionList (actionList : in TpPolicyActionList) : void

getActionList () : TpPolicyActionList

ETSI

63 ETSI ES 202 915-13 V1.1.1 (2003-01)

8.6.1 Attributes

CommonNane : TpString

The identifier used to distinguish instances of a give class of objects within acontainer. It is defined and referenced by
the 'name’ parameter used in most APl methods.

Pol i cyKeywords : TpStri ngSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examplesinclude "Engineering", "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION", "P_PM_KEYWORD_USAGE", "P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE","P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originally defined
in [PCIM].

One additional keyword isdefined: "P_PM_KEYWORD_POLICY". Therole of this keyword isto identify
policy-related instances that would not otherwise be identifiable as being related to policy. It may be needed in some
repository implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString
This attribute provides a one-line description of a policy-related object.

Description : TpString
This attribute provides alonger description than that provided by the caption attribute.

Enabl ed : TpBool ean

This attribute indicates whether apolicy rule is currently enabled, from an administrative point of view. Its purposeisto
allow a policy administrator to enable or disable a policy rule without having to add it to, or remove it from, the policy
repository.

Note that unlike [PCIM], this attribute does not support the value 'enabledForDebug'. It was considered confusing that
Enabled was not a boolean attribute. Support for debugging, including the ability to specify that the entity evaluating
the policy condition(s) is being told to evaluate the conditions for the policy rule, but not to perform the actionsif the
conditions evaluate to TRUE, will be considered for alater release.

Rul eUsage : TpString
This attribute is a free-form string that recommends how this policy should be used.

Priority : Tplnt32

This attribute provides a non-negative integer for prioritising policy rules relative to each other. Larger integer values
indicate higher priority. Since one purpose of this attribute is to allow specific, ad hoc policy rules to temporarily
override established policy rules, an instance that has this attribute set has a higher priority than all instances that use or
set the default value of zero.

Prioritisation among policy rules provides a basic mechanism for resolving policy conflicts.

ETSI

64 ETSI ES 202 915-13 V1.1.1 (2003-01)

Mandat ory : TpBool ean

This attribute indicates whether evaluation (and possibly action execution) of a PolicyRule is mandatory or not. Its
concept is similar to the ability to mark packets for delivery or possible discard, based on network traffic and device
load.

The evauation of aPolicyRule MUST be attempted if the Mandatory attribute value is TRUE. If the Mandatory
attribute value of a PolicyRule is FALSE, then the evaluation of theruleis "best effort” and MAY beignored.

Pol i cyRol es : TpStringSet

This attribute represents the roles and role combinations associated with a policy rule. Each value represents one role
combination. Since thisis a multi-valued attribute, more than one role combination can be associated with asingle
policy rule. Each valueis a string of the form

<RoleName>[& & <RoleName>]*
where the individual role names appear in aphabetical order.

Condi ti onLi st Type : TpPol i cyConditionLi st Type

This attribute is used to specify whether the list of policy conditions associated with this policy ruleisin disjunctive
normal form (DNF) or conjunctive normal form (CNF). If this attribute is not present, the list type defaults to DNF.

SequencedActions : Tplnt32

This attribute gives a policy administrator a way of specifying how the ordering of the policy actions associated with
this PolicyRule isto be interpreted. Three values are supported:

- mandatory(1): Do the actions in the indicated order, or do not do them at all.

- recommended(2): Do the actionsin the indicated order if you can, but if you cannot do them in this order, do them in
another order if you can.

- dontCare(3): Do them -- | do not care about the order.

When error / event reporting is addressed for the Policy Framework, suitable codes will be defined for reporting that a

set of actions could not be performed in an order specified as mandatory (and thus were not performed at al), that a set
of actions could not be performed in arecommended order (and moreover could not be performed in any order), or that
a set of actions could not be performed in a recommended order (but were performed in a different order).

8.6.2 Method getParentGroup()

Return areference to the PolicyGroup that directly containsthis Rule (if any). If this Ruleis contained by a
PolicyDomain, return aNULL reference.

Returns: The reference to the PolicyGroup.

Parameters
No Parameters were identified for this method.

Returns

| pPol i cyG oupRef
Raises
TpComonExcept i ons

ETSI

65 ETSI ES 202 915-13 V1.1.1 (2003-01)

8.6.3 Method getParentDomain()

Return areference to the PolicyDomain that directly containsthis Rule (if any). If this Ruleis contained by a
PolicyGroup, return aNULL reference.

Returns: The reference to the PolicyDomain to get.

Parameters
No Parameters were identified for this method.

Returns

| pPol i cyDomai nRef
Raises
TpComonExcept i ons

8.6.4 Method createCondition()

Create anew condition local to this Rule. Conditions created local to a Rule can only be referenced from that Rule. For
reusable conditions, see | pPolicyRepository.

Returns: The reference to the newly created condition.

Parameters

conditionNane : in TpString
The name uniquely identifying this condition within thisrule.

condi ti onType : in TpPolicyConditionType

The type specifying which IpPolicyCondition class should be created. For this version of the Policy Management AP,
it must be one of P_PM_TIME_PERIOD_CONDITION, P_PM_EVENT_CONDITION, or
P_PM_EXPRESSION_CONDITION.

conditionAttributes : in TpAttributeSet
Theinitial attributes for this condition.

Returns
| pPol i cyCondi ti onRef

Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERROR, P_NO TRANSACTI ON | N_PROCESS

ETSI

66 ETSI ES 202 915-13 V1.1.1 (2003-01)

8.6.5 Method getCondition()

Get areference to the specified condition.

Returns: A reference to the specified condition.

Parameters

conditionNanme : in TpString
The name of the condition to get.

Returns
| pPol i cyCondi ti onRef
Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERRCR

8.6.6 Method removeCondition()

Remove the specified condition.

Parameters

conditionNanme : in TpString
The name of the condition to delete.

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON, P_SYNTAX ERROR,
P_NAME_SPACE_ERROR, P_NO_TRANSACTI ON_I N_PROCESS

8.6.7 Method getConditionCount()

Returns the number of conditions contained by this rule that the client is authorized to see.

Parameters
No Parameters were identified for this method

Returns
Tpl nt 32

Raises
TpComonExcepti ons, P_ACCESS VI OLATI ON

ETSI

67 ETSI ES 202 915-13 V1.1.1 (2003-01)

8.6.8 Method getConditionlterator()

Obtain areference to an iterator that will return the names of each of the conditions contained by this rule that the client
is authorized to see.

Returns: A reference to the iterator.

Parameters
No Parameters were identified for this method.

Returns

| pPol i cyl t er at or Ref

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON

8.6.9 Method createAction()

Create anew action local to this Rule. Actions created local to a Rule can only be referenced from that Rule. For
reusable actions, see | pPolicyRepository.

Returns: The reference to the newly created action.

Parameters

actionNane : in TpString
The name uniquely identifying this action within thisrule.

actionType : in TpPolicyActionType

The type specifying which IpPolicyAction class should be created. For this version of the Policy Management API, it
must be one of P_PM_EVENT_ACTION, or P_PM_EXPRESSION_ACTION.

actionAttributes : in TpAttributeSet
The attributes specifying the action.

Returns
| pPol i cyAct i onRef
Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERROR, P_NO TRANSACTI ON | N_PROCESS

ETSI

68 ETSI ES 202 915-13 V1.1.1 (2003-01)

8.6.10 Method getAction()

Get areference to the specified action.

Returns: A reference to the specified action.

Parameters

actionNanme : in TpString
The name of the action to get.

Returns
| pPol i cyAct i onRef
Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERRCR

8.6.11 Method removeAction()

Remove the specified action.

Parameters

actionNane : in TpString
The name of the action to delete.

Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERROR, P_NO TRANSACTI ON | N_PROCESS

8.6.12 Method getActionCount()

Returns the number of actions contained by this rule that the client is authorized to see.

Parameters
No Parameters were identified for this method.

Returns
Tpl nt 32

Raises
TpComonExcepti ons, P_ACCESS VI OLATI ON

ETSI

69 ETSI ES 202 915-13 V1.1.1 (2003-01)

8.6.13 Method getActionlterator()

Obtain areference to an iterator that will return the names of each of the actions contained by thisrule that the client is
authorized to see.

Returns: A reference to the iterator.

Parameters
No Parameters were identified for this method.

Returns

| pPol i cyl t er at or Ref

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON

8.6.14 Method setValidityPeriodConditionByName()

Set the validity period for the rule, specifying the name of a condition of type IpValidityPeriodCondition. Since the
condition is specified by name, the condition must be defined local to thisrule.

Parameters

conditionNane : in TpString
Name identifying a condition local to thisrule.

Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERROR, P_NO TRANSACTI ON | N_PROCESS

8.6.15 Method setValidityPeriodCondition()

Set the validity period for the rule, providing areference to a condition of type IpValidityPeriodCondition. Since the
condition is specified by reference, the condition may be defined local to rule or may be a condition defined in a
PolicyRepository.

Parameters

condi ti onReference : in |pPolicyTinePeri odConditi onRef
Reference to the condition to be used to set the validity period condition.

Raises
TpComonExcepti ons, P_ACCESS VI OLATI ON, P_NO TRANSACTI ON | N _PROCESS

ETSI

70 ETSI ES 202 915-13 V1.1.1 (2003-01)

8.6.16 Method getValidityPeriodCondition()

Get areference to the condition used to set the validity period condition for thisrule.
Returns: The reference to the condition. Thiswill beaNULL referenceif the validity period condition is not set.

Parameters
No Parameters were identified for this method.

Returns

| pPol i cyTi mePeri odCondi ti onRef
Raises

TpComonExcept i ons

8.6.17 Method unsetValidityPeriodCondition()

Unset the validity period condition for this rule. When the validity period condition is not set, the rule is always active.

Parameters
No Parameters were identified for this method.

Raises
TpCommonExcepti ons, P_ACCESS VI OLATI ON, P_NO TRANSACTI ON_| N_PROCESS

8.6.18 Method setConditionList()

Set the condition list of this rule, specifying each triple of condition, Group Number and Negated attributes. See the text
under IpPolicyRule above for a description of the use of these two attributes. Note that although a condition may be
contained by arule (by creating the condition within the rule using createCondition(), it is not evaluated as part of the
rule's condition list until it isincluded in the list specified by this method.

Parameters

conditionList : in TpPolicyConditionLi st

List of (Condition reference, Group Number, Negated) triples and the value ConditionListType indicating whether the
conditions arein DNF or CNF.

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON, P_SYNTAX ERROR,
P_NO_TRANSACTI ON_I N_PROCESS

ETSI

71 ETSI ES 202 915-13 V1.1.1 (2003-01)

8.6.19 Method getConditionList()
Get the condition list set for the rule.

Returns: The condition list currently set for thisrule.

Parameters
No Parameters were identified for this method.

Returns

TpPol i cyCondi ti onLi st

Raises

TpCommonExcepti ons, P_ACCESS VI OLATI ON

8.6.20 Method setActionList()

Set thelist of actions for this rule, specifying each pair of Action and SequenceNumber. See the text under | pPolicyRule
above for a description of the use of this attribute. Note that although an action may be contained by arule (by creating
the action within the rule using createAction(), it is not evaluated as part of the rule's actions until it isincluded in the
list specified by this method.

Parameters
actionList : in TpPolicyActionLi st

List of (Action Reference, Sequence Number) pairs.
Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NO TRANSACTI ON_I N_PROCESS

8.6.21 Method getActionList()

Get the action list set for therule.

Returns: The action list currently set for thisrule.

Parameters
No Parameters were identified for this method.

Returns

TpPol i cyActi onLi st

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON

ETSI

72 ETSI ES 202 915-13 V1.1.1 (2003-01)

8.7 Interface Class IpPolicyCondition

Inherits from: IpPolicy

The purpose of a policy condition is to determine whether or not the set of actions (aggregated in the PolicyRule that the
condition applies to) should be executed or not. For the purposes of the Policy Core Information Model, all that matters
about an individual PolicyCondition isthat it evaluates to TRUE or FALSE. (Theindividual PolicyConditions
associated with a PolicyRule are combined to form a compound expression in either DNF or CNF, but thisis
accomplished viathe ConditionList, discussed above. A logical structure within an individua PolicyCondition may also
be introduced, but this would have to be done in a subclass of PolicyCondition.

Becauseit is genera, the PolicyCondition class does not itself contain any "real" conditions. These will be
represented by attributes of the domain-specific subclasses of PolicyCondition.

o o o o o o o o e o e oo - + |
Policy Conditions in DNF | I e S
----------- + | | ANDIlist | | AND list | | [I
e I I e R + 1 | | | | PolicyCondition | | |
PolicyCondition | | | I R +
| Il e R LR + 1 |1
PolicyCondition | | ... | | PolicyCondition | | | I I
--+ | ORed | +----------------- + 1 | I P [IR | |
ANDed | | ANDed | | I S B R +
| | | | PolicyCondition | | | | PolicyCondition | | | | | +---
---------------- S I R e N | H--mmmee -
B i I T + | e
......................... +

The figure above illustrates that when policy conditions are in DNF, there
are one or more sets of conditions that are ANDed together to form AND lists. An AND list evaluatesto TRUE if and
only if all of its constituent conditions evaluate to TRUE. The overall condition then evaluatesto TRUE if and only if at
least one of its constituent AND lists evaluates to TRUE.

e e, — . — -

------------- + | Policy Conditions in CNF | [
-------- L L EE L TR R | | ORIlist | | ORIlist | |
| | A | | e +1 |1
PolicyCondition | | | | PolicyCondition | | | | | +---------mmm e +
|]] T e R TR
----- + | | | | | PolicyCondition | | ... | | PolicyCondition | | |

| | 4---mmmmeeeee e +] ANDed | +----------------- +] | I
T | | ORed | | ORed | | | | +]
R T + | | | | PolicyCondition | | | | PolicyCondition |
| |] B e +] |+
---------------------- R I LR | .

In the figure above, the policy conditions
are in CNF. Consequently, there are one or more OR lists, each of which evaluatesto TRUE if and only if at least one
of its constituent conditions evaluates to TRUE. The overall condition then evaluatesto TRUE if and only if ALL of its
constituent OR lists evaluate to TRUE. When identifying and using the
PolicyCondition class, it is necessary to remember that a condition can be rule-specific or reusable. This was discussed
above. The distinction between the two types of policy conditions lies in the associations in which an instance can
participate, and in how the different instances are named. Conceptually, a reusable policy condition residesin a policy
repository, and is named within the scope of that repository. On the other hand, a rule-specific policy condition is, asthe
name suggests, named within the scope of the single policy rule to which it is related.

ETSI

73 ETSI ES 202 915-13 V1.1.1 (2003-01)

<<Interface>>

IpPolicyCondition

getParentRepository () : IpPolicyRepositoryRef
getParentRule () : IpPolicyRuleRef

8.7.1 Attributes

CommonNane : TpString

The identifier used to distinguish instances of a give class of objects within acontainer. It is defined and referenced by
the 'name’ parameter used in most APl methods.

Pol i cyKeywords : TpStri ngSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examples include "Engineering", "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION", "P_PM_KEYWORD_USAGE","P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE","P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originally defined
in [PCIM].

One additional keyword is defined: "P_PM_KEYWORD_POLICY". Therole of this keyword isto identify
policy-related instances that would not otherwise be identifiable as being related to policy. It may be needed in some
repository implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString
This attribute provides a one-line description of a policy-related object.

Description : TpString
This attribute provides alonger description than that provided by the caption attribute.

ETSI

74 ETSI ES 202 915-13 V1.1.1 (2003-01)

8.7.2 Method getParentRepository()

Return areference to the repository that contains this condition (if any). If this condition is contained by arule, return a
NULL reference.

Returns: A reference to the parent repository.

Parameters
No Parameters were identified for this method

Returns

| pPol i cyReposi t or yRef
Raises

TpComonExcept i ons

8.7.3 Method getParentRule()

Return areference to the rule that contains this condition (if any). If this condition is contained by a PolicyRepository,
return aNULL reference.

Returns: A reference to the parent rule.

Parameters
No Parameters were identified for this method.

Returns
| pPol i cyRul eRef

Raises
TpComonExcept i ons

8.8 Interface Class IpPolicyTimePeriodCondition

Inherits from: IpPolicyCondition

ETSI

75 ETSI ES 202 915-13 V1.1.1 (2003-01)

This class provides a means of representing the time periods during which apolicy ruleisvalid, i.e. active. At al times
that fall outside these time periods, the policy rule has no effect. A policy ruleistreated asvalid at al timesif it does
not specify a PolicyTimePeriodCondition.

In some cases a PDP may need to perform certain setup / cleanup actions when a policy rule becomes active /
inactive. For example, sessions that were established while a policy rule was active might need to be taken down when
the rule becomes inactive. In other cases, however, such sessions might be left up: in this case, the effect of deactivating
the policy rule would just be to prevent the establishment of new sessions. Setup / cleanup behaviours on validity period
transitions are not currently addressed by the PCIM, and must be specified in 'guideline’ documents, or via subclasses of
PolicyRule, PolicyTimePeriodCondition or other concrete subclasses of Policy. If such behaviours need to be under the
control of the policy administrator, then a mechanism to allow this control must also be specified in the subclass.

Policy TimePeriodCondition is defined as a subclass of PolicyCondition. Thisisto allow the inclusion of time-based
criteriain the AND/OR condition definitions for a PolicyRule.

I nstances of this class may have up to five attributes identifying time periods at different levels. The values of al the
attributes present in an instance are ANDed together to determine the validity period(s) for the instance. For example,
an instance with an overal validity range of January 1, 2000 through December 31, 2000; a month mask that selects
March and April; a day-of-the-week mask that selects Fridays; and a time of day range of 0800 through 1600 would
represent the following time periods:

Friday, March 5, 2000, from 0800 through 1600;

Friday, March 12, 2000, from 0800 through 1600;

Friday, March 19, 2000, from 0800 through 1600;

Friday, March 26, 2000, from 0800 through 1600;

Friday, April 2, 2000, from 0800 through 1600;

Friday, April 9, 2000, from 0800 through 1600;

Friday, April 16, 2000, from 0800 through 1600;

Friday, April 23, 2000, from 0800 through 1600;

Friday, April 30, 2000, from 0800 through 1600. Attributes not
present in an instance of PolicyTimePeriodCondition are implicitly treated as having their value "aways enabled".
Thus, in the example above, the day-of-the-month mask is not present, and so the validity period for the instance
implicitly includes a day-of-the-month mask that selects all days of the month. If we apply this "missing attribute” rule
toitsfullest, we see that there is a second way to indicate that a policy rule is always enabled: have it point to an
instance of PolicyTimePeriodCondition whose only attributes are its naming attributes. The attribute
Local OrUtcTime indicates whether the times represented in the other five time-related attributes of an instance of
Policy TimePeriodCondition are to be interpreted as local times for the location where apolicy ruleis being applied, or
as UTC times.

<<Interface>>

IpPolicyTimePeriodCondition

8.8.1 Attributes

CommonNane : TpString

Theidentifier used to distinguish instances of a give class of objects within a container. It is defined and referenced by
the 'name’ parameter used in most API methods.

Pol i cyKeywords : TpStri ngSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

ETSI

76 ETSI ES 202 915-13 V1.1.1 (2003-01)

- Installation-dependent keywords for characterizing policy objects. Examples include "Engineering”, "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION","P_PM_KEYWORD_USAGE","P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE","P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originally defined
in[PCIM].

One additional keyword is defined: "P_PM_KEYWORD_POLICY". Therole of this keyword is to identify
policy-related instances that would not otherwise be identifiable as being related to policy. It may be needed in some
repository implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString
This attribute provides a one-line description of a policy-related object.

Description : TpString
This attribute provides alonger description than that provided by the caption attribute.

Ti mePeriod : TpString

This attribute identifies an overall range of calendar dates and times over which apolicy ruleisvalid. It reuses the
format for an explicit time period defined in RFC 2445: a string representing a starting date and time, in which the
character 'T" indicates the beginning of the time portion, followed by the solidus character '/*, followed by a similar
string representing an end date and time. The first date indicates the beginning of the range, while the second date
indicates the end. Thus, the second date and time must be later than the first. Date/times are expressed as substrings of
the form "yyyymmddThhmmss'. For example:

20000101T080000/20000131T 120000
January 1, 2000, 0800 through January 31, 2000, noon

There are also two special cases in which one of the date/time strings is replaced with a specia string defined in
RFC 2445.

o If thefirst date/time is replaced with the string "THISANDPRIOR", then the attribute indicates that a policy ruleis
valid [from now] until the date/time that appears after the '/'.

o If the second date/time is replaced with the string "THISANDFUTURE", then the attribute indicates that a policy rule
becomes valid on the date/time that appears before the /', and remains valid from that point on.

Note that RFC 2445 does not use these two strings in connection with explicit time periods. Thusthe PCIM is
combining two elements from RFC 2445 that are not combined in the RFC itself.

Mont hOf Year Mask : TpString

The purpose of this attribute is to refine the definition of the valid time period that is defined by the TimePeriod
attribute, by explicitly specifying the months when the policy is valid. These attributes work together, with the
TimePeriod used to specify the overall time period during which the policy might be valid, and the MonthOfY earM ask
used to pick out the specific months within that time period when the policy is valid.

This attribute is formatted as an octet string of size 2, consisting of 12 bitsidentifying the 12 months of the year,
beginning with January and ending with December, followed by 4 bits that are always set to '0'. For each month, the
value '1' indicates that the policy is valid for that month, and the value '0' indicates that it is not valid. The value X'08
30, for example, indicates that apolicy rule isvalid only in the months May, November, and December.

See clause 5.4 for details of how CIM represents a single-valued octet string attribute such as this one. (Basically, CIM
prepends a 4-octet length to the octet string.)

If this attribute is omitted, then the policy ruleistreated as valid for all twelve months.

ETSI

77 ETSI ES 202 915-13 V1.1.1 (2003-01)

DayOf Mont hMask : TpString

The purpose of this attribute is to refine the definition of the valid time period that is defined by the TimePeriod
attribute, by explicitly specifying the days of the month when the policy isvalid. These attributes work together, with
the TimePeriod used to specify the overall time period during which the policy might be valid, and the
DayOfMonthMask used to pick out the specific days of the month within that time period when the policy isvalid.

This attribute is formatted as an octet string of size 8, consisting of 31 bits identifying the days of the month counting
from the beginning, followed by 31 more bits identifying the days of the month counting from the end, followed by

2 bitsthat are always set to '0'. For each day, the value '1' indicates that the policy isvalid for that day, and the value '0'
indicates that it is not valid.

The value X'80 00 00 01 00 00 00 00, for example, indicates that a policy ruleis valid on the first and last days of the
month.

For months with fewer than 31 days, the digits corresponding to days that the months do not have (counting in both
directions) are ignored.

The encoding of the 62 significant bits in the octet string matches that used for the schedDay object in the
DISMAN-SCHEDULE-MIB. Seereference [8] for more details on this object.

See clause 5.4 for details of how CIM represents a single-valued octet string attribute such as this one. (Basically, CIM
prepends a 4-octet length to the octet string.)

DayOf WeekMask : TpString

The purpose of this attribute is to refine the definition of the valid time period that is defined by the TimePeriod
attribute by explicitly specifying the days of the week when the policy is valid. These attributes work together, with the
TimePeriod used to specify the overall time period when the policy might be valid, and the DayOfWeekMask used to
pick out the specific days of the week in that time period when the policy isvalid.

This attribute is formatted as an octet string of size 1, consisting of 7 bitsidentifying the 7 days of the week, beginning
with Sunday and ending with Saturday, followed by 1 bit that is always set to '0'. For each day of the week, the value '1'
indicates that the policy is valid for that day, and the value '0' indicates that it is not valid.

Thevalue X'7C', for example, indicates that a policy ruleisvalid Monday through Friday.

See clause 5.4 for details of how CIM represents a single-valued octet string attribute such as this one. (Basicaly, CIM
prepends a 4-octet length to the octet string.)

Ti mef DayMask : TpString

The purpose of this attribute is to refine the definition of the valid time period that is defined by the TimePeriod
attribute by explicitly specifying arange of timesin a day the policy isvalid for. These attributes work together, with
the TimePeriod used to specify the overall time period that the policy is valid for, and the TimeOfDayMask used to pick
out which range of time periods in agiven day of that time period the policy isvalid for.

This attribute is formatted in the style of RFC 2445: atime string beginning with the character 'T', followed by the
solidus character /', followed by a second time string. The first time indicates the beginning of the range, while the
second time indicates the end. Times are expressed as substrings of the form " Thhmmss®.

The second substring always identifies a later time than the first substring. To alow for ranges that span midnight,
however, the value of the second string may be smaller than the value of the first substring. Thus, "T080000/T210000"
identifies the range from 0800 until 2100, while "T210000/T080000" identifies the range from 2100 until 0800 of the
following day.

ETSI

78 ETSI ES 202 915-13 V1.1.1 (2003-01)

When a range spans midnight, it by definition includes parts of two successive days. When one of these daysis aso
selected by either the MonthOfY earMask, DayOfMonthMask, and/or DayOfWeekMask, but the other day is not, then
the policy is active only during the portion of the range that falls on the selected day. For example, if the range extends
from 2100 until 0800, and the day of week mask selects Monday and Tuesday, then the policy is active during the
following three intervals:

From midnight Sunday until 0800 Monday;
From 2100 Monday until 0800 Tuesday;
From 2100 Tuesday until 23:59:59 Tuesday.

Local O Ut cTine : Tplnt32

This attribute indicates whether the times represented in the TimePeriod attribute and in the various Mask attributes
represent local times or UTC times. Thereis no provision for mixing of local times and UTC times: the value of this
attribute appliesto al of the other time-related attributes. Note that Local Time is designated by the integer 1 and
UtcTime by the integer 2. If no value is specified the default valueis 2, i.e. UtcTimeis used.

8.9 Interface Class IpPolicyAction

Inherits from: IpPolicy

The purpose of a policy action is to execute one or more operations that will affect network traffic and/or systems,
devices, etc., in order to achieve adesired state. This (new) state provides one or more (new) behaviours. A policy
action ordinarily changes the configuration of one or more elements.

A PoalicyRule contains one or more policy actions. A policy administrator can assign an order to the actions
associated with a PolicyRule, complete with an indication of whether the indicated order is mandatory, recommended,
or of no significance. Ordering of the actions associated with a PolicyRule is accomplished via the setActionList()
method.

The actions associated with a PolicyRule are executed if and only if the overall condition(s) of the PolicyRule
evaluates to TRUE.

When identifying and using the PolicyAction class, it is necessary to remember that an action can be rule-specific or
reusable. This was discussed above. The distinction between the two types of policy actionsliesin the associationsin
which an instance can participate, and in how the different instances are named. Conceptually, a reusable policy action
residesin a policy repository, and is named within the scope of that repository. On the other hand, a rule-specific policy
action is named within the scope of the single policy rule to which it is related.

<<Interface>>

IpPolicyAction

getParentRepository () : IpPolicyRepositoryRef
getParentRule () : IpPolicyRuleRef

ETSI

79 ETSI ES 202 915-13 V1.1.1 (2003-01)

8.9.1 Attributes

CommonNane : TpString

The identifier used to distinguish instances of a give class of objects within acontainer. It is defined and referenced by
the 'name’ parameter used in most APl methods.

Pol i cyKeywords : TpStri ngSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examplesinclude "Engineering", "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION", "P_PM_KEYWORD_USAGE", "P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE","P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originally defined
in [PCIM].

One additional keyword isdefined: "P_PM_KEYWORD_POLICY". Therole of this keyword isto identify
policy-related instances that would not otherwise be identifiable as being related to policy. It may be needed in some
repository implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString
This attribute provides a one-line description of a policy-related object.

Description : TpString
This attribute provides alonger description than that provided by the caption attribute.

8.9.2 Method getParentRepository()

Return a reference to the repository that contains this action (if any). If this action is contained by arule, returnaNULL
reference.

Returns: A reference to the parent repository.

Parameters
No Parameters were identified for this method

Returns

| pPol i cyReposi t or yRef
Raises

TpComonExcept i ons

ETSI

80 ETSI ES 202 915-13 V1.1.1 (2003-01)

8.9.3 Method getParentRule()

Return areference to the rule that contains this action (if any). If this action is contained by a PolicyRepository, return a
NULL reference.

Returns: A reference to the parent rule.

Parameters
No Parameters were identified for this method

Returns

| pPol i cyRul eRef
Raises
TpComonExcept i ons

8.10 Interface Class IpPolicyEventDefinition

Inherits from: IpPolicy

Instances of |pPolicyEventDefinition specify the required and optional attributes of events that can be subscribed to,
specified as conditions, and generated by clients or actions.

<<Interface>>

IpPolicyEventDefinition

setRequiredAttributes (requiredAttributes : in TpAttributeSet) : void
setOptionalAttributes (optionalAttributes : in TpAttributeSet) : void
getRequiredAttributes () : TpAttributeSet

getOptionalAttributes () : TpAttributeSet

getParentDomain () : IpPolicyDomainRef

8.10.1 Attributes

CommonNane : TpString

Theidentifier used to distinguish instances of a give class of objects within a container. It is defined and referenced by
the 'name’ parameter used in most APl methods.

Pol i cyKeywords : TpStri ngSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

ETSI

81 ETSI ES 202 915-13 V1.1.1 (2003-01)

- Installation-dependent keywords for characterizing policy objects. Examples include "Engineering”, "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION","P_PM_KEYWORD_USAGE","P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE","P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originally defined
in[PCIM].

One additional keyword is defined: "P_PM_KEYWORD_POLICY". Therole of this keyword is to identify
policy-related instances that would not otherwise be identifiable as being related to policy. It may be needed in some
repository implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString
This attribute provides a one-line description of a policy-related object.

Description : TpString
This attribute provides alonger description than that provided by the caption attribute.

Requi redAttri butes : TpAttri buteSet
The names and types of the attributes that generated events must include.

Optional Attributes : TpAttri buteSet
The names and types of the attributes that generated events may include.

8.10.2 Method setRequiredAttributes()

Specify the names and types of the attributes that generated events must include.

Parameters

requiredAttributes : in TpAttributeSet
The names and types of the attributes.

Raises
TpComonExcepti ons, P_ACCESS VI OLATI ON, P_NO TRANSACTI ON | N _PROCESS

8.10.3 Method setOptionalAttributes()

Specify the names and types of the attributes that may be included in a generated event.

Parameters

optional Attributes : in TpAttributeSet
The names and types of the attributes.

Raises
TpComonExcepti ons, P_ACCESS VI OLATI ON, P_NO TRANSACTI ON | N PROCESS

ETSI

82 ETSI ES 202 915-13 V1.1.1 (2003-01)

8.10.4 Method getRequiredAttributes()

Get the names and types of the attributes that a generated event is required to include.

Returns: A copy of the set of names and types.

Parameters
No Parameters were identified for this method.

Returns

TpAttri but eSet
Raises
TpComonExcept i ons

8.10.5 Method getOptionalAttributes()

Get the names and types of the attributes that a generated event may optionally include.

Returns: A copy of the set of names and types.

Parameters
No Parameters were identified for this method.

Returns
TpAttri but eSet

Raises
TpComonExcept i ons

8.10.6 Method getParentDomain()

Return areference to the domain that contains this event definition.

Returns: A reference to the containing domain.

Parameters
No Parameters were identified for this method.

Returns

| pPol i cyDomai nRef
Raises
TpComonExcept i ons

ETSI

83 ETSI ES 202 915-13 V1.1.1 (2003-01)

8.11 Interface Class IpPolicyEventCondition
Inherits from: 1pPolicyCondition

A PolicyCondition that is satisfied when the specified event, with the matching attributes, is generated.

<<Interface>>

IpPolicyEventCondition

8.11.1 Attributes

CommonNane : TpString

The identifier used to distinguish instances of a give class of objects within acontainer. It is defined and referenced by
the 'name’ parameter used in most APl methods.

Pol i cyKeywords : TpStri ngSet
This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examples include "Engineering”, "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION","P_PM_KEYWORD_USAGE","P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE","P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originaly defined
in[PCIM].

One additional keyword is defined: "P_PM_KEYWORD_POLICY". Therole of this keyword is to identify
policy-related instances that would not otherwise be identifiable as being related to policy. It may be needed in some
repository implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. I nstallation-defined keywords can be in any case.

Caption : TpString
This attribute provides a one-line description of a policy-related object.

Description : TpString
This attribute provides alonger description than that provided by the caption attribute.

Event Defi ni tonName : TpString
The EventDefinition that defines the event this condition is waiting on.

ETSI

84 ETSI ES 202 915-13 V1.1.1 (2003-01)

Mat chi ngAttri butes : TpAttri buteSet

The set of attributes that must match (name and value) for the condition to be satisfied. If this set is empty, then the
generation of the event is enough to satisfy the condition.

8.12 Interface Class IpPolicyExpressionCondition
Inherits from: IpPolicyCondition

A PolicyCondition that is satisfied when the specified event, with the matching attributes, is generated.

<<Interface>>

IpPolicyExpressionCondition

8.12.1 Attributes

CommonNane : TpString

Theidentifier used to distinguish instances of a give class of objects within a container. It is defined and referenced by
the 'name’ parameter used in most API methods.

Pol i cyKeywords : TpStri ngSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examplesinclude "Engineering”, "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION","P_PM_KEYWORD_USAGE", "P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE", "P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originaly defined
in[PCIM].

One additional keyword isdefined: "P_PM_KEYWORD_POLICY". Therole of this keyword isto identify
policy-related instances that would not otherwise be identifiable as being related to policy. It may be needed in some
repository implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString
This attribute provides a one-line description of a policy-related object.

Description : TpString
This attribute provides alonger description than that provided by the caption attribute.

ETSI

85 ETSI ES 202 915-13 V1.1.1 (2003-01)

Expression : TpString
The expression to be evaluated as the condition. The BNF describing the expression is defined as follows:

Expression:= VariableName <Comparison Operator> Constant or VariableName | VariableName <Arithmetic
Operator> Constant or V ariableName <Comparison Operator> Constant or VariableName |
(VariableName<ArithmeticOperator>Constant or VariableName) <ArithmeticOperator> Constant or VariableName
<Comparison Operator> Constant or VariableName

It is assumed that the Policy Engineis able to parse an expression defined in the above BNF. The BNF may be extended
as appropriate.

Note that:

1. Variableisassumed to be one of type { TpInt32, TpFloat or TpString} and consistency of type is assumed when an
expression is being defined.

2. Comparison Operator isone of: {==, =, <=, >=}, and, Arithmetic Operator isone of {*, +, -, /}. These are reserved
symbols. Note that when Variable is of type Tplnt32 or TpFloat the Comparison and Arithmetic operators have the
‘usual’ meanings. When Variable is of type string, the comparison operators are the 'standard' string comparison
operators. However, the only applicable Arithmetic operators are:

"' 1= string concatenation, e.g. abc*cdel2 isthe string abccdel2
' ;= gtring (positional) difference, e.g. ABCD - ABCD isthe null string but abcdef-abc is the string 'def’
'I' ;.= string (positional) overlap, e.g. achcd/acBCd is the string "acd'

3. Example showing an expression formed using Variables of type TpFloat (or TpInt32): (bandwidth.allocated -
bandwidth.used)/100 >= 36

Note that 'bandwidth' is assumed to be the name of a set of variables and 'allocated’ and 'used' are variables (attributes)
included in that set.

8.13 Interface Class IpPolicyEventAction

Inherits from: IpPolicyAction

Generate an instance of a specified event.

<<Interface>>

IpPolicyEventAction

8.13.1 Attributes

CommonNane : TpString

Theidentifier used to distinguish instances of a give class of objects within a container. It is defined and referenced by
the 'name’ parameter used in most API methods.

ETSI

86 ETSI ES 202 915-13 V1.1.1 (2003-01)

Pol i cyKeywords : TpStri ngSet
This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examples include "Engineering”, "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION","P_PM_KEYWORD_USAGE","P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE","P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originally defined
in [PCIM].

One additional keyword is defined: "P_PM_KEYWORD_POLICY". Therole of this keyword is to identify
policy-related instances that would not otherwise be identifiable as being related to policy. It may be needed in some
repository implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString

This attribute provides a one-line description of a policy-related object.

Description : TpString
This attribute provides alonger description than that provided by the caption attribute.

Event DefinitionNanme : TpString
The name of the EventDefinition that should be used to define the desired event.

Attributes : TpAttributeSet

The set of attributes that should be included with the generated event. Note that this set must contain all of the attributes
in the RequiredAttributes attribute of the specified EventDefinition and any remaining attributes must be included in the
Optional Attributes attribute.

8.14 Interface Class IpPolicyExpressionAction

Inherits from: IpPolicyAction

Evaluate an expression.

<<Interface>>

IpPolicyExpressionAction

ETSI

87 ETSI ES 202 915-13 V1.1.1 (2003-01)

8.14.1 Attributes

CommonNane : TpString

The identifier used to distinguish instances of a give class of objects within acontainer. It is defined and referenced by
the 'name’ parameter used in most APl methods.

Pol i cyKeywords : TpStri ngSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examplesinclude "Engineering", "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION", "P_PM_KEYWORD_USAGE", "P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE","P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originally defined
in [PCIM].

One additional keyword isdefined: "P_PM_KEYWORD_POLICY". Therole of this keyword isto identify
policy-related instances that would not otherwise be identifiable as being related to policy. It may be needed in some
repository implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString
This attribute provides a one-line description of a policy-related object.

Description : TpString
This attribute provides alonger description than that provided by the caption attribute.

Expression : TpString
The expression that should evaluated. The BNF describing the expression is defined as follows:

Expression:= VariableName<A ssignmentOperator>Constant or V ariableName<Arithmeti cOperator> Constant or
VariableName | VariableName<A ssignmentOperator>Constant

It is assumed that the Policy Engineis able to parse an expression defined in the above BNF. The BNF may be extended
as appropriate.

Note that:

1. Variableisassumed to be one of type { TpInt32, TpFloat or TpString} and consistency of type is assumed when an
expression is being defined.

2. Assignment Operator is denoted by the symbol (within quotes) '='. The assignment operator assigns the value of the
‘right hand side' to the variable on the 'left hand side' -- see example below. Arithmetic Operator isone of {*, +, -, /}.
All the above mentioned symbols are reserved symbols. Note that when Variableis of type TpInt32 or TpFloat the
Arithmetic operators have the ‘usual’ meanings. When Variable is of type string the only applicable operators are the
operators (within quotes) ™' (concatenation), "' (string difference) and /' (string overlap).

ETSI

88 ETSI ES 202 915-13 V1.1.1 (2003-01)
3. Example showing an assignment expression formed using V ariables of type TpFloat (or TpInt32): content.charge =
content.charge - 30.

Note that ‘content’ is assumed to be the name of a set of variables and 'charge’ is a variable (attribute) included in that
set. In the above example, the value of content.charge is decremented by 30.

8.15 Interface Class IpPolicylterator

Inherits from: IpPolicy

Thisinterface supports paging through the names of the appropriate objects within a container. Rather than retrieving
one name at atime, thisinterface specifically alows the caler to specify how many namesto retrieve on each call.

<<Interface>>

IpPolicylterator

getList (startindex : in TpInt32, numberRequested : in TpInt32) : TpStringSet

8.15.1 Attributes

CommonNane : TpString

The identifier used to distinguish instances of a give class of objects within acontainer. It is defined and referenced by
the 'name’ parameter used in most API methods.

Pol i cyKeywords : TpStri ngSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examplesinclude "Engineering”, "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION","P_PM_KEYWORD_USAGE","P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE","P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originally defined
in[PCIM].

One additional keyword is defined: "P_PM_KEYWORD_POLICY". Therole of this keyword is to identify
policy-related instances that would not otherwise be identifiable as being related to policy. It may be needed in some
repository implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString
This attribute provides a one-line description of a policy-related object.

ETSI

89 ETSI ES 202 915-13 V1.1.1 (2003-01)

Description : TpString
This attribute provides alonger description than that provided by the caption attribute.

8.15.2 Method getList()

Return at most numberRequested names starting at location startL ocation.

Returns: Thelist of names returned. The list can be examined to determine how many entries were actually returned.

Parameters

startlndex : in Tplnt32
Theindex (starting at 0) of the first name to be returned

nunber Requested : in Tplnt32
The maximum number of names expected to be returned by this call.

Returns

TpStri ngSet

Raises
TpComonExcept i ons

8.16 Interface Class IpAppPolicyDomain

Inherits from: Iplnterface

Thisinterface is supported by the client. A reference to the interface is provided by the client by calling
createNatification() on a given IpPolicyDomain. When notifications that the client has indicated interest in are
available, they will be communicated to the client by calling the appropriate method on this interface.

<<Interface>>

IpAppPolicyDomain

reportNotification (assignmentlD : in TpAssignmentID, event : in TpPolicyEvent) : void

8.16.1 Method reportNotification()

Notify the client about the specified event.

Parameters

assignment|I D : in TpAssignnent| D
The assignmentI D returned by the call to createNotification that enabled notification for the specified event.

event : in TpPolicyEvent
The event.

ETSI

90 ETSI ES 202 915-13 V1.1.1 (2003-01)

9 State Transition Diagrams

There are no State Transition Diagrams for the Policy Management SCF.

10 Data Definitions

All datatypes referenced in the present document but not defined in this clause are common data definitions which may
be found in ES 202 915-2.

10.1 Policy Management Data Definitions

This section provides the Policy Management specific data definitions necessary to support the OSA interface
specification.

The general format of a data definition specification is the following:
. Datatype, that shows the name of the data type.
. Description, that describes the data type.
. Tabular specification, that specifies the data types and values of the data type.

. Example, if relevant, shown to illustrate the data type.

10.1.1 TpPolicyConditionListType

This data type defines the type condition list in apolicy rule.

Name Value Description
P PM DNF 0 Disjunctive normal form
P PM CNF 1 Conjunctive normal form

10.1.2 TpPolicyConditionListElement

ThisdatatypeisaSequence of Data El enent s which describes one element of a conditionlist. Itisa
structured data type consisting of the following { condition, groupNumber, negated} tuple:

Sequence Element Name Sequence Element Type
Condition IpPolicyCondition
GroupNumber TpInt32
Negated TpBoolean

10.1.3 TpPolicyConditionList

ThisdatatypeisaNunbered Set of Data El enents of type TpPolicyConditionListElement.

10.1.4 TpPolicyConditionType

This data type defines the condition type in apolicy rule.

Name Value Description
P PM TIME PERIOD CONDITION 0 IpPolicyTimePeriodCondition
P PM EVENT CONDITION 1 IpPolicyEventCondition
P PM EXPRESSION CONDITION 2 IpPolicyExpressionCondition

ETSI

91 ETSI ES 202 915-13 V1.1.1 (2003-01)

10.1.5 TpPolicyActionListElement

ThisdatatypeisaSequence of Data El enent s which describes one element of aaction list. It is a structured
data type consisting of the following { action, sequenceNumber) pair:

Sequence Element Name Sequence Element Type
Action IpPolicyAction
SequenceNumber TpInt32

10.1.6 TpPolicyActionList

ThisdatatypeisaNunber ed Set of Data El enent s of type TpPolicyActionListElement.

10.1.7 TpPolicyActionType

This data type defines the action typein apolicy rule.

Name Value Description
P PM_EVENT_ACTION 0 IpPolicyEventAction
P PM EXPRESSION ACTION 1 IpPolicyExpressionAction

10.1.8 TpPolicyEvent

ThisdatatypeisaSequence of Data El ement s which describesageneric "event". Events can be generated in
response to network activity, as aresult of clients calling the generateEvent() method of 1pPolicyDomain, or as aresult
of the evaluation of an I pPolicyEventAction action. Each instance of a generated event isidentified by a unique
EventID, a 32-bit integer. The time the event was generated is captured in the attribute TimeGenerated. All of the
attributes in the RequiredAttributes list of the EventDefinition associated with the given EventDefinitionName must be
present in Attributes. Any other attributes must be in the Optional Attributes list of the same EventDefinition.

It isastructured data type consisting of the following fields:

Sequence Element Name Sequence Element Type
EventID TpInt32
TimeGenerated TpDateAndTime

Attributes TpAttributeSet
EventDefinitionName TpString
EventDomainName TpString

10.1.9 TpPolicyKeyword

Thisdatatypeisidentical to a TpString, and is defined as a string of characters that identify the Policy Keywords that
are to be supported by the Policy Management API. Other Network operator specific keywords may also be used, but
should be preceded by the string "SP_". The following values are defined.

Name Description
P_PM_KEYWORD_UNKNOWN To be used when none of the defined values
apply.
P_PM_KEYWORD_CONFIGURATION Configuration Policies define the default (or
generic) setup of a managed entity (for
example, a network service). Examples of
Configuration Policies are the setup of a
network forwarding service or a
network-hosted print queue.

ETSI

92 ETSI ES 202 915-13 V1.1.1 (2003-01)

Name Description
P_PM_KEYWORD_USAGE Usage Policies control the selection and
configuration of entities based on specific
"usage" data. Configuration Policies can be
modified or simply re-applied by Usage
Policies. Examples of Usage Policies include
upgrading network forwarding services after a
user is verified to be a member of a "gold"
service group, or reconfiguring a printer to be
able to handle the next job in its queue.
P_PM_KEYWORD_SECURITY Security Policies deal with verifying that the
client is actually who the client purports to be,
permitting or denying access to resources,
selecting and applying appropriate
authentication mechanisms, and performing
accounting and auditing of resources.
P_PM_KEYWORD_SERVICE Service Policies characterize network and
other services (not use them). For example,
all wide-area backbone interfaces shall use a
specific type of queuing.

Service policies describe services available in
the network. Usage policies describe the
particular binding of a client of the network to
services available in the network.
P_PM_KEYWORD_MOTIVATIONAL Motivational Policies are solely targeted at
whether or how a policy's goal is
accomplished. Configuration and Usage
Policies are specific kinds of Motivational
Policies. Another example is the scheduling of
file backup based on disk write activity from
8am to 3pm, M-F.
P_PM_KEYWORD_INSTALLATION Installation Policies define what can and
cannot be put on a system or component, as
well as the configuration of the mechanisms
that perform the install. Installation policies
typically represent specific administrative
permissions, and can also represent
dependencies between different components
(e.g. to complete the installation of component
A, components B and C must be previously
successfully installed or uninstalled).
P_PM_KEYWORD_EVENT Error and Event Policies. For example, if a
device fails between 8am and 9pm, call the
system administrator, otherwise call the Help
Desk.

P_PM_KEYWORD_POLICY The role of this keyword is to identify
policy-related instances that would not
otherwise be identifiable as being related to
policy. It may be needed in some repository
implementations.

10.1.10 TpPolicyKeywordSet

This datatype definesaNunber ed Set of Data El enents of type TpPolicyKeyword

10.1.11 IpPolicyDomain

Definesthe address of an | pPol i cyDonai n Interface.

10.1.12 IpPolicyDomainRef

DefinesaRef er ence to an |pPolicyDomain

ETSI

93

10.1.13 IpPolicyRepository

Definesthe address of an | pPol i cyReposi t ory Interface.

10.1.14 IpPolicyRepositoryRef

Defines aRef er ence to an | pPolicyRepository

10.1.15 IpPolicyGroup

Definesthe address of an | pPol i cyG oup Interface.

10.1.16 IpPolicyGroupRef

DefinesaRef er ence to an | pPolicyGroup

10.1.17 IpPolicyRule

Definesthe address of an | pPol i cyRul e Interface.

10.1.18 IpPolicyRuleRef

DefinesaRef er ence to an IpPolicyRule

10.1.19 IpPolicyEventDefinition

Definesthe address of an | pPol i cyEvent Def i ni ti on Interface.

10.1.20 IpPolicyEventDefinitionRef

DefinesaRef er ence to an | pPolicyEventDefinition

10.1.21 IpAppPolicyDomain

Definesthe address of an | pAppPol i cyDonai n Interface.

10.1.22 IpAppPolicyDomainRef

Definesa Ref er ence to an | pAppPolicyDomain

10.1.23 IpPolicyCondition

Definesthe address of an | pPol i cyCondi t i on Interface.

10.1.24 IpPolicyConditionRef

DefinesaRef er ence to an | pPolicyCondition

10.1.25 IpPolicyTimePeriodCondition

Definesthe address of an | pPol i cyTi mePer i odCondi ti on Interface.

ETSI

ETSI ES 202 915-13 V1.1.1 (2003-01)

94 ETSI ES 202 915-13 V1.1.1 (2003-01)

10.1.26 IpPolicyTimePeriodConditionRef

Definesa Ref er ence to an | pPolicyTimePeriodCondition

11 Policy Management Exception Classes

The following are the list of exception classes which are used in this interface of the API.

Name Description

P_ACCESS_VIOLATION Thrown if the client does not have authorization to invoke this
method on this object with these parameters.

P_SYNTAX ERROR Thrown if the specified name is formatted improperly.

P_NAME_SPACE_ERROR Thrown if the specified name matches or does not match the
name of an existing object of the appropriate type within this
container.

P_NO_TRANSACTION_IN_PROCESS Thrown if there is currently no transaction in process.

P_TRANSACTION_IN_PROCESS Thrown if there is currently a transaction in process. Note that
transactions can not be nested, that is, a second call to
startTransaction() without calling commitTransaction() or
abortTransaction() in between will result in this exception being
thrown during the second call.

Each exception class contains the following structure:

Structure Element Name Structure Element Type Structure Element Description

Extralnformation TpString Carries extra information to help identify the source of
the exception, e.g. a parameter name.

ETSI

95 ETSI ES 202 915-13 V1.1.1 (2003-01)

Annex A (normative):
OMG IDL Description of Policy Management SCF

The OMG IDL representation of thisinterface specification is contained in atext file (policy_data.idl,
policy_interfaces.idl contained in archive es_20291513v010101p0.ZIP) which accompanies the present document.

ETSI

96 ETSI ES 202 915-13 V1.1.1 (2003-01)

Annex B (informative):
Contents of 3GPP OSA R5 Policy Management

All of the present document is relevant for TS 129 198-11 V5 (Release 5).

ETSI

97 ETSI ES 202 915-13 V1.1.1 (2003-01)

Annex C (informative):
Record of changes

Thefollowing isalist of the changes made to the present document for each release. The list contains the names of all
changed, deprecated, added or removed items in the specifications and not the actual changes. Any type of change
information that isimportant to the reader is put in the final clause of this annex.

Changes are specified as changes to the prior major release, but every minor release will have its own part of the table
alowing the reader to know when the actual change was made.

C.1 Interfaces

C.1.1 New

Identifier | Comments

Interfaces added in ES 202 915-13 version 1.1.1 (Parlay 4.0)

C.1.2 Deprecated

Identifier | Comments

Interfaces deprecated in ES 202 915-13 version 1.1.1 (Parlay 4.0)

C.1.3 Removed

Identifier \ Comments

Interfaces removed in ES 202 915-13 version 1.1.1 (Parlay 4.0)

C.2 Methods

C.2.1 New

Identifier | Comments

Methods added in ES 202 915-13 version 1.1.1 (Parlay 4.0)

C.2.2 Deprecated

Identifier | Comments

Methods deprecated in ES 202 915-13 version 1.1.1 (Parlay 4.0)

ETSI

98 ETSI ES 202 915-13 V1.1.1 (2003-01)

C.2.3 Modified
Identifier | Comments
Methods modified in ES 202 915-13 version 1.1.1 (Parlay 4.0)
|
C.2.4 Removed
Identifier | Comments

Methods removed in ES 202 915-13 version 1.1.1 (Parlay 4.0)

C.3

Data Definitions

C.3.1 New
Identifier | Comments
Data Definitions added in ES 202 915-13 version 1.1.1 (Parlay 4.0)
|
C.3.2 Modified
Identifier | Comments
Data Definitions modified in ES 202 915-13 version 1.1.1 (Parlay 4.0)
|
C.3.3 Removed
Identifier | Comments

Data Definitions removed in ES 202 915-13 version 1.1.1 (Parlay 4.0)

C4

C41

Service Properties

New

Identifier | Comments

Service Properties added in ES 202 915-13 version 1.1.1 (Parlay 4.0)

ETSI

99 ETSI ES 202 915-13 V1.1.1 (2003-01)

C.4.2 Deprecated
Identifier | Comments
Service Properties deprecated in ES 202 915-13 version 1.1.1 (Parlay 4.0)
|
C.4.3 Modified
Identifier | Comments
Service Properties modified in ES 202 915-13 version 1.1.1 (Parlay 4.0)
|
C.4.4 Removed
Identifier | Comments

Service Properties removed in ES 202 915-13 version 1.1.1 (Parlay 4.0)

C.5 Exceptions
C.5.1 New
Identifier | Comments
Exceptions added in ES 202 915-13 version 1.1.1 (Parlay 4.0)
|
C.5.2 Modified
Identifier | Comments
Exceptions modified in ES 202 915-13 version 1.1.1 (Parlay 4.0)
|
C.5.3 Removed
Identifier | Comments

Exceptions removed in ES 202 915-13 version 1.1.1 (Parlay 4.0)

C.6

Others

ETSI

100

ETSI ES 202 915-13 V1.1.1 (2003-01)

History

Document history
V111 November 2002 | Membership Approval Procedure MV 20030117: 2002-11-19 to 2003-01-17
V111 January 2003 Publication

ETSI

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Policy Management SCF
	5 Sequence Diagrams
	5.1 Use of Policy Repository
	5.2 Introduce condition and action into rule
	5.3 Create and receive an event
	5.4 Create and modify domain
	5.5 ASP offering services to prepaid subscribers

	6 Class Diagrams
	7 The Service Interface Specifications
	7.1 Interface Specification Format
	7.1.1 Interface Class
	7.1.2 Method descriptions
	7.1.3 Parameter descriptions
	7.1.4 State Model

	7.2 Base Interface
	7.2.1 Interface Class IpInterface

	7.3 Service Interfaces
	7.3.1 Overview

	7.4 Generic Service Interface
	7.4.1 Interface Class IpService
	7.4.1.1 Method setCallback()
	7.4.1.2 Method setCallbackWithSessionID()

	8 Policy Management Interface Classes
	8.1 Interface Class IpPolicyManager
	8.1.1 Method createDomain()
	8.1.2 Method getDomain()
	8.1.3 Method removeDomain()
	8.1.4 Method getDomainCount()
	8.1.5 Method getDomainIterator()
	8.1.6 Method findMatchingDomains()
	8.1.7 Method createRepository()
	8.1.8 Method getRepository()
	8.1.9 Method removeRepository()
	8.1.10 Method getRepositoryCount()
	8.1.11 Method getRepositoryIterator()
	8.1.12 Method startTransaction()
	8.1.13 Method commitTransaction()
	8.1.14 Method abortTransaction()

	8.2 Interface Class IpPolicy
	8.2.1 Attributes
	8.2.2 Method getAttribute()
	8.2.3 Method setAttribute()
	8.2.4 Method getAttributes()
	8.2.5 Method setAttributes()

	8.3 Interface Class IpPolicyDomain
	8.3.1 Attributes
	8.3.2 Method getParentDomain()
	8.3.3 Method createDomain()
	8.3.4 Method getDomain()
	8.3.5 Method removeDomain()
	8.3.6 Method getDomainCount()
	8.3.7 Method getDomainIterator()
	8.3.8 Method createGroup()
	8.3.9 Method getGroup()
	8.3.10 Method removeGroup()
	8.3.11 Method getGroupCount()
	8.3.12 Method getGroupIterator()
	8.3.13 Method createRule()
	8.3.14 Method getRule()
	8.3.15 Method removeRule()
	8.3.16 Method getRuleCount()
	8.3.17 Method getRuleIterator()
	8.3.18 Method createEventDefinition()
	8.3.19 Method getEventDefinition()
	8.3.20 Method removeEventDefinition()
	8.3.21 Method getEventDefinitionCount()
	8.3.22 Method getEventDefinitionIterator()
	8.3.23 Method generateEvent()
	8.3.24 Method createNotification()
	8.3.25 Method destroyNotification()
	8.3.26 Method createVariableSet()
	8.3.27 Method getVariableSet()
	8.3.28 Method removeVariableSet()
	8.3.29 Method getVariableSetCount()
	8.3.30 Method getVariableSetIterator()
	8.3.31 Method setVariable()
	8.3.32 Method getVariable()

	8.4 Interface Class IpPolicyGroup
	8.4.1 Attributes
	8.4.2 Method getParentDomain()
	8.4.3 Method getParentGroup()
	8.4.4 Method createGroup()
	8.4.5 Method getGroup()
	8.4.6 Method removeGroup()
	8.4.7 Method getGroupCount()
	8.4.8 Method getGroupIterator()
	8.4.9 Method createRule()
	8.4.10 Method getRule()
	8.4.11 Method removeRule()
	8.4.12 Method getRuleCount()
	8.4.13 Method getRuleIterator()

	8.5 Interface Class IpPolicyRepository
	8.5.1 Attributes
	8.5.2 Method getParentRepository()
	8.5.3 Method createRepository()
	8.5.4 Method getRepository()
	8.5.5 Method removeRepository()
	8.5.6 Method getRepositoryCount()
	8.5.7 Method getRepositoryIterator()
	8.5.8 Method createCondition()
	8.5.9 Method getCondition()
	8.5.10 Method removeCondition()
	8.5.11 Method getConditionCount()
	8.5.12 Method getConditionIterator()
	8.5.13 Method createAction()
	8.5.14 Method getAction()
	8.5.15 Method removeAction()
	8.5.16 Method getActionCount()
	8.5.17 Method getActionIterator()

	8.6 Interface Class IpPolicyRule
	8.6.1 Attributes
	8.6.2 Method getParentGroup()
	8.6.3 Method getParentDomain()
	8.6.4 Method createCondition()
	8.6.5 Method getCondition()
	8.6.6 Method removeCondition()
	8.6.7 Method getConditionCount()
	8.6.8 Method getConditionIterator()
	8.6.9 Method createAction()
	8.6.10 Method getAction()
	8.6.11 Method removeAction()
	8.6.12 Method getActionCount()
	8.6.13 Method getActionIterator()
	8.6.14 Method setValidityPeriodConditionByName()
	8.6.15 Method setValidityPeriodCondition()
	8.6.16 Method getValidityPeriodCondition()
	8.6.17 Method unsetValidityPeriodCondition()
	8.6.18 Method setConditionList()
	8.6.19 Method getConditionList()
	8.6.20 Method setActionList()
	8.6.21 Method getActionList()

	8.7 Interface Class IpPolicyCondition
	8.7.1 Attributes
	8.7.2 Method getParentRepository()
	8.7.3 Method getParentRule()

	8.8 Interface Class IpPolicyTimePeriodCondition
	8.8.1 Attributes

	8.9 Interface Class IpPolicyAction
	8.9.1 Attributes
	8.9.2 Method getParentRepository()
	8.9.3 Method getParentRule()

	8.10 Interface Class IpPolicyEventDefinition
	8.10.1 Attributes
	8.10.2 Method setRequiredAttributes()
	8.10.3 Method setOptionalAttributes()
	8.10.4 Method getRequiredAttributes()
	8.10.5 Method getOptionalAttributes()
	8.10.6 Method getParentDomain()

	8.11 Interface Class IpPolicyEventCondition
	8.11.1 Attributes

	8.12 Interface Class IpPolicyExpressionCondition
	8.12.1 Attributes

	8.13 Interface Class IpPolicyEventAction
	8.13.1 Attributes

	8.14 Interface Class IpPolicyExpressionAction
	8.14.1 Attributes

	8.15 Interface Class IpPolicyIterator
	8.15.1 Attributes
	8.15.2 Method getList()

	8.16 Interface Class IpAppPolicyDomain
	8.16.1 Method reportNotification()

	9 State Transition Diagrams
	10 Data Definitions
	10.1 Policy Management Data Definitions
	10.1.1 TpPolicyConditionListType
	10.1.2 TpPolicyConditionListElement
	10.1.3 TpPolicyConditionList
	10.1.4 TpPolicyConditionType
	10.1.5 TpPolicyActionListElement
	10.1.6 TpPolicyActionList
	10.1.7 TpPolicyActionType
	10.1.8 TpPolicyEvent
	10.1.9 TpPolicyKeyword
	10.1.10 TpPolicyKeywordSet
	10.1.11 IpPolicyDomain
	10.1.12 IpPolicyDomainRef
	10.1.13 IpPolicyRepository
	10.1.14 IpPolicyRepositoryRef
	10.1.15 IpPolicyGroup
	10.1.16 IpPolicyGroupRef
	10.1.17 IpPolicyRule
	10.1.18 IpPolicyRuleRef
	10.1.19 IpPolicyEventDefinition
	10.1.20 IpPolicyEventDefinitionRef
	10.1.21 IpAppPolicyDomain
	10.1.22 IpAppPolicyDomainRef
	10.1.23 IpPolicyCondition
	10.1.24 IpPolicyConditionRef
	10.1.25 IpPolicyTimePeriodCondition
	10.1.26 IpPolicyTimePeriodConditionRef

	11 Policy Management Exception Classes
	Annex A (normative): OMG IDL Description of Policy Management SCF
	Annex B (informative): Contents of 3GPP OSA R5 Policy Management
	Annex C (informative): Record of changes
	C.1 Interfaces
	C.1.1 New
	C.1.2 Deprecated
	C.1.3 Removed

	C.2 Methods
	C.2.1 New
	C.2.2 Deprecated
	C.2.3 Modified
	C.2.4 Removed

	C.3 Data Definitions
	C.3.1 New
	C.3.2 Modified
	C.3.3 Removed

	C.4 Service Properties
	C.4.1 New
	C.4.2 Deprecated
	C.4.3 Modified
	C.4.4 Removed

	C.5 Exceptions
	C.5.1 New
	C.5.2 Modified
	C.5.3 Removed

	C.6 Others

	History

