ETSI ES 202 915-4-2 v1.2.1 2003-08)

ETSI Standard

Open Service Access (OSA);

Application Programming Interface (API);
Part 4: Call Control;

Sub-part 2: Generic Call Control SCF
(Parlay 4)

33

aal v'_t't-:.
P %K
v
Tepaty®
HH -

D

2 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

Reference
RES/SPAN-120096-4-2

Keywords
API, IDL, OSA, UML

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, send your comment to:

editor@etsi.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2003.
© The Parlay Group 2003.
All rights reserved.

DECT™, PLUGTESTS ™ and UMTS™ are Trade Marks of ETSI registered for the benefit of its Members.

TIPHON™ and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members.
3GPP™is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

ETSI

mailto:editor@etsi.org
http://portal.etsi.org/tb/status/status.asp
http://www.etsi.org/

3 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

Contents

Intellectual Property RIGNES.........oo et 6
0 Yo (o SRS 6
1 o010 SRS 8
2 REFEIBINCES ...ttt sttt e et et et e e e bt e bt e bt s b e se e be st e st e st e benbenbeneenbentenees 8
3 Definitions and aDbrEVIBLIONS.........c.viieie ettt e e e tesreeeesneeneeseesneeneeseeenes 8
31 D= T aT] (0] PO P TP PR UPTPRUSUSII 8
3.2 ADDIEVIBLIONS ...ttt et b b h ekt e e e e se e e bt e bt eh e eh e et e e e bt e b e e Rt e Re e e e e e besheebenneeneennen 8
4 Generic Call Control Service SEqUENCE DIagramS........ccviueeieieeieie et esee et te st sreeae s e 9
41 YN (o N 1To g IO L 7= o3 USSR 9
4.2 T 0 K PR 10
4.3 APPLICAioN TNITTAEEA Callcoveeieieeieee bbbt bbb nn s 12
4.4 Cll BAITING L ...ttt ettt bbbt h e b et bt s b e bt s b e eb e e R et e b s e e st e he e b e s e e ne e b e e e et b et e b b 13
45 AN U gl I =g S o o RS 15
4.6 Number Trandation 1 (With CAlIDACKS)coiiiiiiie s 17
4.7 NUMDBEN TEANSIBLION 2.ttt ettt bt b e h e bt e e e e e b e b sheeb e s et eaeene e e e b e sheebesneene e e enrenes 19
4.8 NUMDBEN TFANSIBLION 3.ttt ettt et bbb e e st e e e e e b e e beshe e bt s et ea e ene e e e besheebesneene e e enrenes 20
4.9 NUMDBEN TEANSIBLION 4.ttt ettt ettt e bt h e b e et e s e e e e e s e ke sh e e b e s et e s e e ne e e e beseeebesaeene e e enrees 22
4.10 NUMDEN TIANSIBHION 5.ttt e b et b e e b s bt e b et e e e e e b e s besbeebe e e ennennens 24
411 = o o ST PS 25
412 Pre-Paid with AdVice Of Charge (AOC).......uiiiicieieeteeee et s e ste st teetestesraesaaesreesseesseesesreesseesneenseensenns 26
5 ClaSS DIBOIAIMS. ...ttt h bbb b e e e e s e e a e e Rt e b e eb e b e s e e s e e e e e e e aeesenb e abenb e e e nrennan 29
6 Generic Call Control Service INterface ClasseS ..o 30
6.1 Interface Class |PCall CONTOIM@NAQEYcccue ettt eee sttt et e s e re e te e e e nteenreeneenneeenes 31
6.1.1 [V E= g oo e 1= O | S 31
6.1.2 Method enabl€Cal INOLITICAION() ...veiveerieeiieieeies e e b et ereeteeneeneeenes 32
6.1.3 Method disabl@CallNOLITICAIION()eveverieieierieeee ettt st st s a et be s 33
6.1.4 YTz 1 elo S = (@=L o= o [@0 a1 o]) P 33
6.1.5 Method changeCallNOLITICAITON()coverveerrereeerie e 34
6.1.6 T (oo Mo = (@2] (= = ISP SO P TSR U SR URT 34
6.2 Interface Class IPAPPCAl CONTOIMENEGEcoireeiririeiirierieeri ettt 34
6.2.1 L= (o To = N oo g (= o [SO P TSP UT SR P TR 35
6.2.2 Method CIIEVENINOLIFY()veeeeeieeeete sttt 35
6.2.3 Method callNotificationI NEETUPLEA()cveeeeerieeieie ettt reeaeeeeenneenes 36
6.24 \VT= 1gleloRer= | NN LoluNiler= o] g [@Xe] 1 (] o 1N 1= o (S 36
6.2.5 Method call Overl0a0ENCOUNTENEU()civereeeee e eieestie st e e te e sttt e s et e s re e e e teennesnneenes 36
6.2.6 Method CallOVErlOB0CEASEU() .. eoveieeieereese et et eteee s e ste e te e te e s esae e s te e aeenteesaeesaesteesseeseenseennesneennes 36
6.3 LS = e T O =SS 1 o[37
6.3.1 V= 1 0o o TU (o) S 37
6.3.2 MELNOO FEIEBSE() ... eeve ettt b et b e et b et b e bt b e se et b et et b b et b b 38
6.3.3 MEthOd dEASSIGNCEAII() ...cvereeeeete ettt b bbbt b et b et eb s 39
6.34 Method GetCall INFOREG() ...+ eveere ettt ettt b et b e et b et b s 39
6.3.5 Method SetCall ChargePIaN() veeerereeere ettt eb e 39
6.3.6 Method SEtAAVICEOFCNAITGE()eueerereeeeteriee ettt ettt sttt b et b et sb e et b b 40
6.3.7 Method getM oreDial|€dDIGItSREG() ...veveverrereereriererie ettt sttt sttt bt sb e 40
6.3.8 Method SUPEIVISECAITREG() «.vververeereeieeieesti et et ste e st e e e e e sstesaeesaeesreesaeeseeneeeseesseasseente e seeseensennsenneesnns 41
6.4 Interface ClasS IPAPPCEILoo ettt et e e s e s re et e e ateesteeseesaeesteesteenseeneenneennes 41
6.4.1 MELNOT FOULERES()veenveeeieeie ettt ettt e e e e e et esaee s aeesaeesaeeseenaeeaeeeseessaesteesseenseensesneesneesnes 42
6.4.2 =1 0o o TU (o RS 42
6.4.3 YTz 1 g leTe Re T (=) o] =) 42
6.4.4 YT (g leTo o = (@2 1 N g o] =) ST P TSP U SR P SR 43
6.4.5 Method SUPEIVISECAITRES(). ... ccve ettt sttt st b et b e et s b e bt eb e n e 43
6.4.6 Method SUPEIVISECAITEIT() ...eiveeeeeitereeiesteseeie sttt sttt b e bbb et eb e bt et ne e 43
6.4.7 Method CallFAUITDELECIEA()eveverreeeterieeet ettt ettt b e et b e et b et sb e b 44

ETSI

4 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

6.4.8 Method getMoreDiall €dDIGITSRES()vvevieieeriesiieieeie et re et e e st e te e been e enteeneesneennes 44
6.4.9 Method getMoreDiall €dDIGITSEIT() ...vevveeeeieereeseeie e et rte ettt e s e te e te e teeteeneesneeenes 44
6.4.10 MENOO CAIIENTEA() +..v.vv etttk sttt en e 44
7 Generic Cal Control Service State Transition Diagrams..........cccoeieeieieeieseecee s 45
7.1 State Transition Diagrams for |pCallCoNtrolMaNAGgEYcoeoeiireiireieee e 45
711 ACTIVE SEBLE. ...ttt ettt sttt et e e e n et e st et e seeeb e e st eseea e e e eneese e beeReen e e e eeenEeeReeaeeneeneeeeneenee 45
712 NOtifiCation tErMINALEA SEALE.........eoiieiee ettt se et s reeae s eeseesbesaesreeneeneeneens 45
7.2 State Transition Diagrams fOr IPCAlL........cooiiiiie bbb e 46
721 NEWOIK REIEASEA SEALE.......eteee ettt st e e bt se e e e neeseesbesaesseeneeneeneens 46
722 FINISNEA SEALE......cveeeeete etttk b et et R bt e et e bt e bt ne b 46
723 APPlICaioN REIEASEU SEALE........eiiieeee et st e st e e ee s e e saeesteenteeneeenaeenaesreeneens 46
7.2.4 INO PartiES SEALE.......eeueerereeeereieee ettt sttt r et r e et r e et r e et e renn et r e re e r e re s 47
7.2.5 ACTIVE SEBLE. ...ttt Rt et E e e R Rt e n et R re s 47
7.2.6 L PEArtY IN Call SEBLEcveueeeeiiteteere ettt bbbttt b e e n et se bt e et e n e 47
7.2.7 2 PaAtiESIN Call SEALE........cceiireciiirereee et seer e e e r e r e r e r e e nenrennenea 47
7.2.8 RoUtiNg 10 DESHINALTION(S) SEALE.......ccueiteieterieeete ettt sttt b ettt b et b e et sb e e 48
8 Generic Call Control ServiCe PrOPEITIESccoiiiriiiiieseste e 48
8.1 LiSt Of SEIVICE PrOPEITIEScveieeeietireeeet ettt bbb bbbt b s b et eb e n e ens 48
8.2 Service Property values for the CAMEL Service ENVIrONMENtccoccviieiieieese e 49
9 Generic Call Control Data DEfiNITiONS.........coueieiririnesisie e se e nee s 50
9.1 Generic Call Control Event Notification Data DefiNitioNns...........ccoeoveereineieniennneeee e 50
911 TPCAITEVENINGIME ...ttt bbb bt bbb et et b e bt b et b n e 50
912 TPCAINOL I CALIONT Y.ttt bbbttt b et b e bbbt b et b e et eb e et e 51
9.13 TP A EVENECTITEITA. ...ttt b bbbt b et b bbb e e st bbb et 51
9.14 TPCAITEVENTINTO ...ttt bbb bbbt b et b bt nb e ne s 52
9.2 Generic Call Control Data DefiNitiONS..........coieieieee e sae e ne e eneas 52
9.21 o1 O RTOTTRTN 52
9.2.2 IPCAIIRES ...t bbb bR bR R et n et 52
9.2.3 IPAPPCEIL ... R e b e Rt e et e et r e 52
9.24 IPAPPCEITRES ...ttt bbbttt 52
9.25 TPCAITAENLITIEN ...ttt bbb et bk e bt b b e r et n e 52
9.2.6 [0TAN o] oL@z 1 L@] o 1Y, = = o = P 52
9.2.7 IPAPPCAICONrOIMANAGEIRESc.eee et e e teeteenesneeenes 52
9.28 I PCAlICONIIOIMANAGESeeeeeeite ittt ettt b et s b et ae bt h e b e st bt b et b e e b e et nbesb et et e 52
9.29 IPCallCONLrOIMANAGEIRESocvieeee e bbb e et b et e e 53
9.2.10 QLI o102 Y o] o] [| o TSSOSO TP PE SO RPT SRS 53
9211 TP A LA PP NTOT Y. .ttt bbb bt b et bt bbb e et b b st b et e 53
9.2.12 TPCAITAPPINTOSEL.....ceeeieeeterte ettt bbbt b bbbt b e et b et eb e b 53
9.2.13 TPCAIENTEAREPONT ...ttt bbbt b et b e et b et nb e et 53
9.2.14 TPCAIFAUIT ...ttt et b et e bR bt e bR bt R st e b b e r e 54
9.2.15 LI 0 1T 10 = oo o USSR 54
9.2.16 TPCAIREIEASECALISEceeeceeetiete et ee st s e te et e e e s este e te et e esaesseeste e beenseastessaesseesaeeseenseensennsesnenssensnens 54
9.2.17 QLI 0 1 = oo SR 55
9.2.18 TPCalAdditioNAIREPOMINTO.cii et sae s e saeesreeteenteenaesseesseesnens 55
9.2.19 TPCAIREPOIREGUESL......c.ecveeeeeetirteet sttt b bbbt b bbbt b et b et b e 55
9.2.20 TPCall AdditioNal REPOITCIITEITAc. v ettt bbb e 56
9221 TPCAIREPOIREGUESESEL ..ottt b et b et b bbb et b s st b et e 56
9.2.22 I o102 1 = oTo i Y L= TSSOSO TSP P RSO RU TSRO 56
9.2.23 TPCAI TIEBIMENT ...ttt etttk b et bbb e st b s b e b e e e bt b e e e st b e bt eb e b 57
9.2.24 TPCAll EVENICIITErIARESUITSEL. ...ttt bbbt b e 57
9.2.25 TPCAIEVENTCHTEITARESUIL........ectieieee ettt e ee st et e st e et e e tesraesreesaeenseenseeneeenaensenssaesnens 57
Annex A (nor mative): OMG IDL Description of Generic Call Control SCF.........cccoovenireniennee. 58
Annex B (informative): W3C WSDL Description of Generic Call Control SCF........cccoccevvveenene 59
Annex C (informative): Java API Description of the Call Control SCFs........cccoccevviievevecciececen 60
Annex D (informative): Contents of 3GPP OSA Rel-5 Call Controlcccceeviieeveieneece e 61

ETSI

5 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

Annex E (informative): ReCOrd of ChANQES.........cciiiee et 62
O [01 (= = o= OSSO 62
E.1.1 N BV ettt e e et e et e e e e e e e et— et e et e e e sa e aateeeeeaeeaaaateeeeaaeaaaantateeaeeeeiaantateeeeeaeeaaanrreeeeaeeaaanrrreeeaanaaaan 62
E.12 DL o < orz = o IO TSSOSO RPURRRR 62
E.1.3 REMIOVE. ...ttt ettt e s e st e s te e bt e teeabeeteesbeesbeesbeesbeeaseeaeesaeesaeabeenteeaseeseesteesbeesbeensesnsesneesans 62
A 1 = 1 oo LTSS 62
E21 NSRS 62
E.2.2 == o =0 P 63
E.2.3 Y7o T 1 1= o USSR ROPSRPO 63
E.24 L 11101 S 63
G T B 7 = W B 1= 11 (]SSR 63
E.3.1 N BV ettt e e et e et e e e e e e e et— et e et e e e sa e aateeeeeaeeaaaateeeeaaeaaaantateeaeeeeiaantateeeeeaeeaaanrreeeeaeeaaanrrreeeaanaaaan 63
E.3.2 1Y Koo 1 1= PO OSSPSR 63
E.3.3 L 1101 S 64
Eid SOIVICE PrOPEITIES.eeiie ettt ettt ettt et s e st e s be et e st e e be e besbeeasesbeeaseseeeneentesteensentesaeensenreens 64
E4.1 NSRS 64
E.4.2 = = o =0 64
E.4.3 1Y Koo 1 1= PO OSSPSR 64
E.4.4 REMIOVEX. ...ttt st e st e s te e be e beeabeebeesbeesbeesbeesteeasesaeesaeesaeabeenbeeasesseesbeesbeebeensesnsesneesans 64
R o= o1 oSS 65
E5.1 NSRS 65
E.5.2 Y7o T 1 1= o PSP POPSPN 65
E.5.3 L 1101 S 65
R O 1 1= SRR 65
[11 (TSR P PSPPSR 66

ETSI

6 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards', which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/| PR/home.asp).

Pursuant to the ETSI IPR Palicy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETS| Web
server) which are, or may be, or may become, essential to the present document.

Foreword

ThisETSI Standard (ES) has been produced by ETSI Technical Committee Services and Protocols for Advanced
Networks (SPAN).

The present document is part 4, sub-part 2 of a multi-part deliverable covering Open Service Access (OSA);
Application Programming Interface (API), asidentified below. The API specification (ES 202 915) is structured in the
following parts:

Part1: "Overview";

Part 2. "Common Data Definitions";

Part 3: "Framework";

Part 4: " Call Control";
Sub-part 1: "Call Control Common Definitions';
Sub-part 2: " Generic Call Control SCF";
Sub-part 3: "Multi-Party Call Control SCF";
Sub-part 4: "Multi-Media Call Control SCF";
Sub-part 5: "Conference Call Control SCF";

Part5: "User Interaction SCF";

Part6: "Mobility SCF";

Part 7. "Termina Capabilities SCF";

Part 8: "Data Session Control SCF";

Part9: "Generic Messaging SCF";

Part 10: "Connectivity Manager SCF";

Part 11: "Account Management SCF";

Part 12: "Charging SCF";

Part 13: "Policy management SCF";

Part 14: "Presence and Availability Management SCF".

ETSI

http://webapp.etsi.org/IPR/home.asp

7 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

The present document has been defined jointly between ETSI, The Parlay Group (http://www.parlay.org) and the 3GPP,
in co-operation with a number of JAIN™ Community (http://www.java.sun.com/products/jain) member companies.

The present document forms part of the Parlay 4.1 set of specifications.

The present document is equivalent to 3GPP TS 29.198-4-2 V5.2.0 (Release 5).

ETSI

http://www.java.sun.com/products/jain
http://www.parlay.org/

8 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

1 Scope

The present document is part 4, sub-part 2 of the Stage 3 specification for an Application Programming Interface (API)
for Open Service Access (OSA).

The OSA specifications define an architecture that enables application devel opers to make use of network functionality
through an open standardised interface, i.e. the OSA APIs.

The present document specifies the Generic Call Control Service Capability Feature (SCF) aspects of the interface. All
aspects of the Generic Call Control SCF are defined here, these being:

. Sequence Diagrams

. Class Diagrams

. Interface specification plus detailed method descriptions
. State Transition diagrams

. Data Definitions

. IDL Description of the interfaces

. WSDL Description of the interfaces

. Reference to the Java API description of the interfaces

The process by which this task is accomplished is through the use of object modelling techniques described by the
Unified Modelling Language (UML).

2 References

Thereferenceslisted in clause 2 of ES 202 915-1 contain provisions which, through reference in this text, constitute
provisions of the present document.

ETSI ES 202 915-1: "Open Service Access (OSA); Application Programming Interface (API); Part 1. Overview
(Parlay 4)".

ETSI ES 202 915-2: "Open Service Access (OSA); Application Programming Interface (API); Part 2: Common Data
Definitions (Parlay 4)".

ETSI ES 202 915-4-1: "Open Service Access (OSA); Application Programming Interface (API); Part 4: Call Control;
Sub-part 1: Call Control Common Definitions (Parlay 4)".

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in ES 202 915-1 apply.

3.2 Abbreviations

For the purposes of the present document, the abbreviations defined in ES 202 915-1 apply.

ETSI

9 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

4 Generic Call Control Service Sequence Diagrams

4.1 Additional Callbacks

The following sequence diagram shows how an application can register two call back interfaces for the same set of
events. If one of the call backs can not be used, e.g. because the application crashed, the other call back interfaceis used
instead.

first instance : (Logical : IpAppCallControlManager second instance : : IpAppCallControlManager : IpCallControlManag er
View::1pAppLogic; Logic...
T

T
| |
: 1: new() !

T
|
|
l
|
! 2: enableCaIINotificatiqm()
|
|
|
|
|
|

3: new()

g

|
|
|
|
|
|
l
|
: 4: enableCaIINotiﬁc?tion()
|
|
|
|
|
|
|
|

| g

|
5: callEventNotify(:)

6: forward event' |

7: “call Notify resul: failure"

|
l
: 8: callEventNotify()

9: "forward event"

e

e [A

1: Thefirst instance of the application is started on node 1. The application creates a new |pAppCall ControlManager to
handle callbacks for this first instance of the logic.

2: The enableCalINotification is associated with an applicationl D. The call control manager uses the applicationl D to
decide whether thisis the same application.

3: The second instance of the application is started on node 2. The application creates a new
IpAppCallControlManager to handle callbacks for this second instance of the logic.

4. The same enableCalINotification request is sent as for the first instance of the logic. Because both requests are
associated with the same application, the second request is not rejected, but the specified callback object is stored as an
additional callback.

5: When the trigger occurs one of the first instance of the application is notified. The gateway may have different
policies on how to handle additional callbacks, e.g., aways first try the first registered or use some kind of round robin
scheme.

6: Theevent isforwarded to the first instance of the logic.

ETSI

10 ETSI ES 202 915-4-2 V1.2.1 (2003-08)
7: When the first instance of the application is overloaded or unavailable thisis communicated with an exception to the
call control manager.
8: Based on this exception the call control manager will notify another instance of the application (if available).

9: Theevent isforwarded to the second instance of the logic.

4.2 Alarm Call

The following sequence diagram shows a 'reminder message, in the form of an alarm, being delivered to a customer as
aresult of atrigger from an application. Typically, the application would be set to trigger at a certain time, however, the
application could also trigger on events.

:(Logical : IpAppCall o = :IpCall = : IpUICall
View::IpAppLogic) IpAppUICall | | IpCallControlManager IpAppUIManager
1 1 ‘ 1 1
|t | | |
| |
g : :
N 2: createCall() : :
L 1 |
3: new() :

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
:
‘A: routeReq()

R

5: routeRes()

-

|
|

|

|

|

|

6: ‘forward event' I
- |
|

|

|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7: createUlCall() :
|

8: new() |
|

u

|
|
|
|
|
9: s‘endlnfoReq()
T
|
|
|
|
|

10: sendinfoRes()

|
|
|
|
|
|
12: rélease() :
|
|
|
|

13:'release()

I
I
|
I
I
I
I
I
I T
T T
I I
I I
I I
I I
I I
I |
1: 'fonNaH‘d event' ’_L :
[I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I

| |

| |

| |

| |

| |

| |

| |

| |

- | |
| | |
| | |
| | |
| | |
| | |

1: Thismessage isused to create an object implementing the IpAppCall interface.

2: This message requests the object implementing the I pCall ControlManager interface to create an object
implementing the IpCall interface.

3: Assuming that the criteriafor creating an object implementing the IpCall interface (e.g. load control values not
exceeded) ismet it is created.

4: This message instructs the object implementing the IpCall interface to route the call to the customer destined to
receive the 'reminder message'

5: This message passes the result of the call being answered to its callback object.

ETSI

11 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

This message is used to forward the previous message to the IpAppLogic.
The application requests a new Ul Call object that is associated with the call object.

Assuming al criteriaare met, anew UICall object is created by the service.

This message instructs the object implementing the IpUICall interface to send the alarm to the customer's call.
10: When the announcement ends thisis reported to the call back interface.
11: The event is forwarded to the application logic.

12: The application releases the Ul Call object, since no further announcements are required. Alternatively, the
application could haveindicated P_FINAL_REQUEST in the sendinfoReq in which case the Ul Call object would have
been implicitly released after the announcement was played.

13: The application releases the call and all associated parties.

ETSI

12 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

4.3 Application Initiated Call

The following sequence diagram shows an application creating a call between party A and party B. This sequence could
be done after a customer has accessed a Web page and selected a name on the page of a person or organisation to talk
to.

: (Logical : IpAppCall o . IpCall
View: :IpAppLo... IpCallControlManager
T T
1 1
i 1:new() :

-

|
|
|
|
|
|
|
|
l
2::createCaII() :
; H 3:new()

4:routeReq()

6: forward event' F

7:routeReq()

|
|
|
|
|
|
|
|
|
|
|
|
|
5: routéRes()
|
|
|
|
|
|
|
|
|
|
|
T
|
|

|
|
|
|
|
U l
|
| 8:routéRes()
|

9: forward event'

!
g

|
|
|
|
|
|
|
|
|
|
10: deassignCall()
T
|
|
|
|
|
|
|
|
|

|

1: Thismessage isused to create an object implementing the IpAppCall interface.

2: This message requests the object implementing the I pCall ControlManager interface to create an object
implementing the IpCall interface.

3: Assuming that the criteriafor creating an object implementing the IpCall interface (e.g. load control values not
exceeded) is met, it is created.

4: This messageis used to route the call to the A subscriber (origination). In the message the application request
response when the A party answers.

5: This message indicates that the A party answered the call.

6: This message forwards the previous message to the application logic.

ETSI

13 ETSI ES 202 915-4-2 V1.2.1 (2003-08)
7: This message is used to route the call to the B-party. Also in this case aresponse is requested for call answer or
failure.

8: This message indicates that the B-party answered the call. The call nhow has two parties and a speech connection is
automatically established between them.

9: This message is used to forward the previous message to the IpAppLogic.

10: Since the application is no longer interested in controlling the call, the application deassigns the call. The call will
continue in the network, but there will be no further communication between the call object and the application.

4.4 Call Barring 1

The following sequence diagram shows a call barring service, initiated as aresult of a prearranged event being received
by the call control service. Before the call is routed to the destination number, the calling party is asked for a PIN code.
The code is accepted and the call is routed to the original called party.

: (Logical : IpAppCallControlManager : IpAppCall - ‘ = :IpCall = :lpyiCall
View::IpAppLogic) IpAppUICall IpCallControlManage IpUIManager
T T T T T T T T
I 1:new()						
/D						
. e						
; 2:enableCallNotification()						
		>ﬂ				
	3: callEventNotify()i					
t t						
: 4:‘forward event' : : : : :						
5:new()						
D						
T						
T						
: : : 6: createUICallq) : : L 7:inew() :						
T : : 8: sendlnfoAnddoIIectReq() : : : :						
H						/u
! ! ! 9: sendInfoAndCollectRes() ! !						
! lﬂ?: ‘forward event' 1 L ; ; ; L						
D<						
	I 11:release()					
U						
	12:routeReq()					
1						
			>m			
! ! ! 13:routeRes() ! ! ! !						
‘ 14: 'forwar‘d event' F“ ; ; L : :						
U\	U					
]					
				L		
: 16:"fomarbevent" ‘: : 15: callEnded() : I : :						
u\						
17:deassignCall() I | | |
+ + + | |
| | | | |
H | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |

S

ETSI

14 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

1. This messageis used by the application to create an object implementing the I|pAppCall ControlManager interface.

2: Thismessageis sent by the application to enable notifications on new call events. Asthis sequence diagram depicts
acall barring service, itislikely that all new call events destined for a particular address or address range prompted for
apassword before the call is allowed to progress. When a hew call, that matches the event criteria set, arrives a message
(not shown) is directed to the object implementing the |pCallControlManager. Assuming that the criteria for creating an
object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are
used to create the call and associated call leg object.

3: Thismessage is used to pass the new call event to the object implementing the IpAppCall ControlManager interface.
4. Thismessage is used to forward the previous message to the IpAppLogic.

5: Thismessage is used by the application to create an object implementing the IpAppCall interface. The referenceto
this object is passed back to the object implementing the I pCall ControlManager using the return parameter of the
callEventNotify.

6: Thismessage is used to create a new UICall object. The reference to the call object is given when creating the
UlCall.

7: Provided al the criteriaare fulfilled, anew Ul Call object is created.

8: Thecall barring service dialogue isinvoked.

9: Theresult of the dialogue, which in this case isthe PIN code, is returned to its callback object.
10: This message is used to forward the previous message to the IpAppLogic.

11: This message rel eases the U1 Call object.

12: Assuming the correct PIN is entered, the call is forward routed to the destination party.

13: This message passes the result of the call being answered to its callback object.

14: This message is used to forward the previous message to the IpAppLogic

15: When the call is terminated in the network, the application will receive a notification. This notification will aways
be received when the call isterminated by the network in a normal way, the application does not have to request this
event explicitly.

16: The event is forwarded to the application.

17: The application must free the call related resourcesin the gateway by calling deassignCall.

ETSI

15 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

4.5 Number Translation 1

The following sequence diagram shows a simple number translation service, initiated as aresult of a prearranged event
being received by the call control service.

: (Logical . IpAppCaliControlManager : IpAppCall o . IpCall
View: :ipApplo... IpCallControlManager
T T
| |
N 1: new() !

2: enableCallNatification()

!

3: callEwentNotify()

4: ‘forward event'

SREEEEEE

5: new()

6: 'translate number'

I

F-- -4

7: routeReq()

8 routeRes()
|

<
!
F

9: forward event'

10: deassign(i:all()

] ; L

1: Thismessage is used by the application to create an object implementing the IpAppCall ControlManager interface.

2: Thismessageis sent by the application to enable notifications on new call events. Asthis sequence diagram depicts
anumber trandation service, it islikely that only new call events within a certain address range will be enabled. When a
new call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object
implementing the IpCall ControlManager. Assuming that the criteria for creating an object implementing the I pCall
interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and
associated call leg object.

3: Thismessage is used to pass the new call event to the object implementing the I|pAppCall ControlManager interface.

ETSI

16 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

4. Thismessage is used to forward message 3 to the IpAppLogic.

5: Thismessage is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the IpCallControlManager using the return parameter of message
3.

This message invokes the number tranglation function.
The returned translated number is used in message 7 to route the call towards the destination.

This message passes the result of the call being answered to its callback object

© © N o

This message is used to forward the previous message to the IpAppLogic.

10: The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue
in the network, but there will be no further communication between the call object and the application.

ETSI

17 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

4.6 Number Translation 1 (with callbacks)

The following sequence diagram shows a simple number translation service, initiated as aresult of a prearranged event
being received by the call control service.

For illustration, in this sequence the callback references are set explicitly. Thisis optional. All the callbacks references
can also be passed in other methods. From an efficiency point of view that is also the preferred method. The rest of the
sequences use that mechanism.

: (Logical : IpAppCallControlManager . IpAppCall o : IpCall
View::IpAppLogic) IpCallControlManager
T T T
| |
! 1: new() !

g s

]

2: enabIeCaIINotiﬁcationq)

1

B

3: setCallback()

4: callEventNotify()

5: 'forward event'

6: new()

1]

7: setCaIIbacMNithSe‘Lss'onlD()

8 ‘translate number'

%l

=

9: routeReq()

H
D 11 'forwar§d event' H
|

12: deassignCall()

1)

1: Thismessage is used by the application to create an object implementing the IpAppCall ControlManager interface.

2: Thismessageis sent by the application to enable notifications on new call events. Asthis sequence diagram depicts
anumber trandation service, it islikely that only new call events within a certain address range will be enabled. When a
new call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object
implementing the IpCall ControlManager. Assuming that the criteriafor creating an object implementing the IpCall
interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and
associated call leg object.

ETSI

3.

18 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

This message sets the reference of the IpAppCallControlManager object in the CallControlManager. The

CalControlManager reports the callEventNotify to referenced object only for enableCallNotifications that do not have
an explicit IpAppCallControlManager reference specified in the enableCalINotification.

4:
5.

6
7
8:
9

This message is used to pass the new call event to the object implementing the I pAppCall ControlManager interface.

This message is used to forward message 4 to the IpAppLogic.

. This messageis used by the application to create an object implementing the IpAppCall interface.
: Thismessage is used to set the reference to the IpAppCall for this call.

This message invokes the number tranglation function.

. Thereturned translated number is used in message 7 to route the call towards the destination.

10: This message passes the result of the call being answered to its callback object.

11: This message is used to forward the previous message to the IpAppLogic.

12: The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue
in the network, but there will be no further communication between the call object and the application.

ETSI

19 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

4.7 Number Translation 2

The following sequence diagram shows a number translation service, initiated as aresult of a prearranged event being
received by the call control service. If the trandated number being routed to does not answer or isbusy then the cal is
automatically released.

: (Logica : IpAppCallControlManager : IpAppCall : IpCallControlManager : IpCall
View::IpAppLogic)
T
| .
‘ 1: new()

T
|
|
|
|
2: enableCallNotification()

| | W

3: callEventNatify()

4: 'forward event'

5: new()

g

6: translate number'

i

|

|

L |

| |
1 1 '
| | |
[Z | | |
: 1 1 1		
: 7: routeReq(): :		
i i i		

! ! 8: routeRes()

: 9: 'fomaﬁd event' J :
D t |
|
] |
| |
| | |
1 1 1
: 10: release(:) :
|
|
|
|
|
|
|
|

| ~

‘ I
1. This messageis used by the application to create an object implementing the |pAppCall ControlManager interface.

2: Thismessageis sent by the application to enable notifications on new call events. Asthis sequence diagram depicts
anumber trandation service, it islikely that only new call events within a certain address range will be enabled. When a
new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteriafor creating an object implementing the IpCall interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: Thismessage is used to pass the new call event to the object implementing the IpAppCall ControlManager interface.
4: This messageis used to forward the previous message to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the IpCall ControlManager using the return parameter of the
callEventNotify.

6: This message invokes the number trandation function.

7. Thereturned translated number is used to route the call towards the destination.

ETSI

20 ETSI ES 202 915-4-2 V1.2.1 (2003-08)
8: Assuming the called party is busy or does not answer, the object implementing the IpCall interface sends a callback
in this message, indicating the unavailability of the called party.
9: This messageis used to forward the previous message to the IpAppLogic.

10: The application takes the decision to release the call.

4.8 Number Translation 3

The following sequence diagram shows a number translation service, initiated as aresult of a prearranged event being
received by the call control service. If the transated number being routed to does not answer or is busy then the call is
automatically routed to a voice mailbox.

p—

: (Logical : IpAp pCallControlManager il Call : IpCallControlManager :IpCall
View::| Logic

1 1 1 1 1
| 1: new() | | | |
U | | |
| | |
: 2: enabIeCa:IINotificati on() : :
| | U |
i 1 1 1 1
1 1 3: caIIEveﬁtNotify() 1 1
1 ‘ 1
: 4:'forward event' : :
| | |
1 1
5:new() : :
>D |
|
|
|
| |
| |
|
T |
|
|
|
|
|
|
|
|

|

|

|

|

|

:

| |
7: royteReq() !
|

|

|

|

|

|

|

L)
}6: ‘translate number’ }
|
|
|
|
|
|
|
|
L
|
|
|
|
|
|
|

8: routeRes()

|
D< 9: forwarq event H

| 10:'ranslate number

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

| |
12:routeRes() |

|

|

|

|

|
| |
<— | |
J | 1
| | i ‘

: | 11:roueReq() |

! |

T | |
| | ; ‘
: 13: ‘forwarb ewvent J ;
[| |
|

| |

| ‘ 1

| i !

: 14: deassignCall() : |
l 1
|
|
|
|
|
|
|

| *

ETSI

21 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

1. This messageis used by the application to create an object implementing the I|pAppCall ControlManager interface.

2: Thismessageis sent by the application to enable notifications on new call events. As this sequence diagram depicts
anumber trangdlation service, it islikely that only new call events within a certain address range will be enabled. When a
new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg

object.

3: Thismessage is used to pass the new call event to the object implementing the IpAppCall ControlManager interface.
4. Thismessage is used to forward the previous message to the IpAppLogic.

5: Thismessage is used by the application to create an object implementing the IpAppCall interface. The referenceto
this object is passed back to the object implementing the I pCall ControlManager using the return parameter of the
callEventNotify.

6: This message invokes the number trandation function.
7. Thereturned translated number is used to route the call towards the destination.

8: Assuming the called party isbusy or does not answer, the object implementing the IpCall interface sends a callback,
indicating the unavailability of the called party.

9: This message is used to forward the previous message to the IpAppLogic.

10: The application takes the decision to translate the number, but this time the number is translated to a number
belonging to a voice mailbox system.

11: This message routes the call towards the voice mailbox.
12: This message passes the result of the call being answered to its callback object.
13: This message is used to forward the previous message to the IpAppLogic.

14: The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue
in the network, but there will be no further communication between the call object and the application.

ETSI

22 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

4.9 Number Translation 4

The following sequence diagram shows a number translation service, initiated as aresult of a prearranged event being
received by the call control service. Before the call is routed to the translated number, the application requests for all
call related information to be delivered back to the application on completion of the call.

: (Logical : IpAppCall ControlManager : IpAppCall : IpCallControlManager :IpCall
View::| Logic
T
|
I 1:new()
|

f T
! |
! |
! |
D |
|
| |
| 2:enableCallNotification() |

T

~ » :

|
| 3: callEventNotify()

4:forward event'

- — — {

S:Jewo >D

|
7. getCaIIInqueq()

6: translate number'

<

Fo—— -1

|
8: roqteReq()

10: 'forward event'

9: routeRes()

Il
|
|
|
|
|
|
|
|
! 11: callEnded()
12: "forward event"

13: getCallinfoRes()

e Hn R

15:deassignCall()

|
|
|
|
|
|
|
|
|
|
14: forward event’
|
|
|
|
|
|
|
|
1
|
|
|
|
|
|
|

e [R s I . N

ETSI

23 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

1. This messageis used by the application to create an object implementing the I|pAppCall ControlManager interface.

2: Thismessageis sent by the application to enable notifications on new call events. Asthis sequence diagram depicts
anumber tranglation service, it islikely that only new call events within a certain address range will be enabled. When a
new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg

object.

3: Thismessage is used to pass the new call event to the object implementing the IpAppCall ControlManager interface.
4. Thismessage is used to forward the previous message to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the I pCall ControlManager using the return parameter of the
callEventNotify.

6: This message invokes the number trandlation function.

7. The application instructs the object implementing the IpCall interface to return al call related information once the
call has been released.

8: Thereturned translated number is used to route the call towards the destination.
9: This message passes the result of the call being answered to its callback object.
10: This message is used to forward the previous message to the IpAppLogic.

11: Towards the end of the call, when one of the parties disconnects, a message (not shown) is directed to the object
implementing the IpCall. This causes an event, to be passed to the object implementing the IpAppCall object.

12: This message is used to forward the previous message to the IpAppLogic.

13: The application now waits for the call information to be sent. Now that the call has completed, the object
implementing the IpCall interface passes the call information to its callback object.

14: This message is used to forward the previous message to the IpAppLogic

15: After the last information is received, the application deassigns the call. Thiswill free the resources related to this
call in the gateway.

ETSI

24 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

4.10 Number Translation 5

The following sequence diagram shows a simple number translation service which contains a status check function,
initiated as aresult of a prearranged event being received. In the following sequence, when the application receives an
incoming call, it checks the status of the user, and returns a busy code to the calling party.

IpAppLoagic : IpAppCall ControlManager : IpAppCall . IpCallControlManager : IpCall

1: new() T

u

|
| 2‘; enableCallNotification(),
Il }

3: callEventNotify()

T T
| |
| |
| |
| |
| |
| |
L |
u |
|
| |
| |
4: 'forward ewent' J : H :
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
|
|
|
|
|
|
|
|
|

e R

5: new()
1

L

6: 'Fheck status'

P—

|
|
|
|
|
|
|
|
7: appropriate re!ease cause
|
|
|
|
|
|
|
|
|

R

1. This messageis used by the application to create an object implementing the I|pAppCall ControlManager interface.

2: Thismessageis sent by the application to enable notifications on new call events. Asthis sequence diagram depicts
anumber tranglation service, it islikely that only new call events within a certain address range will be enabled.

When a new call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object
implementing the IpCall ControlManager. Assuming that the criteria for creating an object implementing the I pCall
interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and
associated call leg object.

3: Thismessage is used to pass the new call event to the object implementing the I|pAppCall ControlManager interface.
4: Thismessageis used to forward message 3 to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the IpCallControlManager using the return parameter of message
3.

6: This message invokes the status checking function.

7: The application decidesto release the call, and sends a release cause to the calling party indicating that the user is
busy.

ETSI

25 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

4.11 Prepaid

This sequence shows a Pre-paid application.

The subscriber is using a pre-paid card or credit card to pay for the call. The application each time allows a certain
timedlice for the call. After the timeslice, a new timeslice can be started or the application can terminate the call. In the
following sequence the end-user will receive an announcement before his final timeslice.

U

19: “forward event"

|
|
|
|
|
|
T
|
|
1
|
|
|
]
|
|
|
: 20: release()
|

21: superviséCaIIReq()
T
|

| .
| p3: "forward event; 22:superviseCallRes()

Prepaid : (Logical ‘ ‘ : IpAppCall ‘ ‘ : IpAppCallControlManager ‘ ‘ : IpAppUICall ‘ : IpCall H : IpCallControlManager : IpUIManager : IpUlCall ‘
View::IpAppLogic)
T T T T T T T T
| 1ynew() | | | | | |
T | | | | |
| /U 2:enableCallNotification() | | |
T T T T D | |
| | | | | |
| | | | | | |
T | | | . | | | |
: 4: "for\}‘vard event" | 3: callleventNonfy() 1 1 : :
(] | | | | |
5: new() | | | | |
ﬂ | | | |
| | | |
T | | | |
L | | | | |
	6: supervisefallReq()					
		u				
: 7 routbReq() : : : : :						
		u				
! ! 8:superviseCallRes() ! I I						
I'9: "forward event"r* ‘ ‘ - : : :						
J						
			T			
: : 10: superviseFaIIReq() : : : : :						
		u				
11: sypeniseCallRes

112: “forward event'| lT'p Q) ‘ ‘ : : :
T					
: : 13: supervisebaIIReq() : : : : :					
T T T					
U			U		
14:superviseCallRes() 1					
i . ' !					
115: "forward event]					
: 16: createUICa'I() : : :					
T T					
	TJ				
U 17:sendinfoReq(|,) | | |

t t t
: 18:sendl‘hf0Res() : /U\

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

B e o e SR B SRS —

|
|
|
|
| | 24:release()
|
|
|
|
|
|
|

ETSI

26 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

1. This messageis used by the application to create an object implementing the I|pAppCall ControlManager interface.

2: Thismessageis sent by the application to enable notifications on new call events. Asthis sequence diagram depicts
apre-paid service, it islikely that only new call events within a certain address range will be enabled. When a new call,
that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: Theincoming call triggers the Pre-Paid Application (PPA).
4. The message is forwarded to the application.
5: A new object on the application side for the Generic Call object is created.

6: The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the period
indicated in the message. This period isrelated to the credits left on the account of the pre-paid subscriber.

7: Before continuation of the call, PPA sends all charging information, a possible tariff switch time and the call
duration supervision period, towards the GW which forwards it to the network.

8: At the end of each supervision period the application isinformed and a new period is started.
9: The messageis forwarded to the application.

10: The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

11: At the end of each supervision period the application isinformed and a new period is started.
12: The message is forwarded to the application.

13: The Pre-Paid Application (PPA) requests to supervise the call for another call duration. When the timer expires it
will indicate that the user is almost out of credit.

14: When the user is almost out of credit the application isinformed.
15: The message is forwarded to the application.

16: The application decides to play an announcement to the partiesin thiscall. A new Ul Call object is created and
associated with the call.

17: An announcement is played informing the user about the near-expiration of his credit limit.

18: When the announcement is completed the application is informed.

19: The message is forwarded to the application.

20: The application releases the UICall object.

21: The user does not terminate so the application terminates the call after the next supervision period.
22: The supervision period ends.

23: The event is forwarded to the logic.

24: The application terminates the call. Since the user interaction is already explicitly terminated no
userlnteractionFaultDetected is sent to the application.

4.12 Pre-Paid with Advice of Charge (AoC)

This sequence shows a Pre-paid application that uses the Advice of Charge feature.

The application will send the charging information before the actual call setup and when during the call the charging
changes new information is sent in order to update the end-user. Note: the Advice of Charge feature requires an
application in the end-user terminal to display the charges for the call, depending on the information received from the
application.

ETSI

ETSI ES 202 915-4-2 V1.2.1 (2003-08)

27

3
S
S T T, o M e S s P
E
» =
2
L]
c
3| S
g N
f=t
(|
S b
5
E
T
I e e IRk e --- -1 e e =i
g - - ~
g e . v — — w -~
S o] o) I} —_ -
g 24 ~ 4 ~ ~ @ —~ =
=l = = Q o = ~
g F---- e S R e e = R H--F|-ot------~ F|---R-----------1 R i d e o
cf Q [} = o O - Q [v4
8 Q 4 0 5 x 3 = & =
= - s = Q 5 ©) Z 2 £ S
T = 2 5) Q S . = @ $)
9 S s 9 s o) o 2 = S £ o]
B S 9] I @ @ I 9 3] = T 2
— 3 Ey = £ S 2 > 3 = @ 2
. c ® Q
— = ») o N I o o) et
3 ° & =3 & 5 ©] I N >
3 = a2 9 5 - g 5| 2
I 1 S it A N IS A S O o |- __ | R R S o 1 -
g 0 ™ = < — ﬂf & ——+ ~
2 3 - - = 3 &
= = P [o
= = F) o o %
B o o | X)
| o £ ol 8| §
3 N Q 6| | 35
O w Q (%2} <]
al = o S
3 F----- e~ el B B e e s EEEEEE R, e s e e
3 8 I
E = M s
7 ® 3| 2
2] ..
— .. ~
©
3|
|
g £) 9
m c c c
s 2 2 2 E”
E o o o <
g P - B e - R e B -E T ——— N fErrrr
S - 15 15 © o
g s g g g T
2 2| @ S 2 L2 = =
g S| 4 - o
g8 g o S a 5| ¢ £
H ° X @
2 a ~
g z
L
<9 f
g -
g <
33
g ! - G
Q- --O-E-- R I Fo- - 8 I
ol g
3=
9 9
82

|

26: "forward event:

ETSI

28 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

1. This messageis used by the application to create an object implementing the I|pAppCall ControlManager interface.

2: Thismessageis sent by the application to enable notifications on new call events. Asthis sequence diagram depicts
apre-paid service, it islikely that only new call events within a certain address range will be enabled. When a new call,
that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: Theincoming call triggers the Pre-Paid Application (PPA).
4. The message is forwarded to the application.
5: A new object on the application side for the Call object is created.

6: The Pre-Paid Application (PPA) sends the AoC information (e.g. the tariff switch time). (it shall be noted the PPA
contains ALL the tariff information and knows how to charge the user).

During this call sequence 2 tariff changes take place. The call starts with tariff 1, and at the tariff switch time
(e.g. 18:00 hours) switches to tariff 2. The application is not informed about this (but the end-user is!)

7: The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the period
indicated in the message. This period isrelated to the credits left on the account of the pre-paid subscriber.

8: The application requests to route the call to the destination address.

9: At the end of each supervision period the application isinformed and a new period is started.
10: The message is forwarded to the application.

11: The Pre-Paid Application (PPA) regquests to supervise the call for another call duration.

12: At the end of each supervision period the application isinformed and a new period is started.
13: The message is forwarded to the application.

14: Before the next tariff switch (e.g., 19:00 hours) the application sends a new AOC with the tariff switch time. Again,
at the tariff switch time, the network will send AoC information to the end-user.

15: The Pre-Paid Application (PPA) requests to supervise the call for another call duration. When the timer expiresit
will indicate that the user is almost out of credit.

16: When the user is almost out of credit the application isinformed.

17: The message is forwarded to the application.

18: The application creates a new call back interface for the User interaction messages.

19: A new Ul Call object that will handle playing of the announcement needs to be created.
20: The Gateway creates anew Ul call object that will handle playing of the announcement.
21: With this message the announcement is played to the partiesin the call.

22: The user indicates that the call should continue.

23: The message is forwarded to the application.

24: The user does not terminate so the application terminates the call after the next supervision period.
25: The user is out of credit and the application is informed.

26: The message is forwarded to the application.

27: With this message the application requests to release the call.

ETSI

29 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

28: Terminating the call which has still a Ul Call object associated will result in a userlnteractionFaultDetected. The
UlICall object isterminated in the gateway and no further communication is possible between the Ul Call and the
application.

5 Class Diagrams

The generic call control service consists of two packages, one for the interfaces on the application side and one for
interfaces on the service side.

The class diagramsin the following figures show the interfaces that make up the generic call control application
package and the generic call control service package. Communication between these packages is indicated with the
<<uses>> associations; e.g. the IpCallControlManager interface uses the IpAppCall ControlManager , by means of
calling callback methods.

This class diagram shows the interfaces of the generic call control service package.

<<lInterface>>
IpSenice

setCallback()
setCallbackWithSessionID()

i

<<Interface>>
<<Interface>> IpCall
IpCallControlManager (from gccs)
(from gccs)
FrouteReq()
WcreateCall() 1 0..n|[Srelease()
FenableCallNotification() [-~ |[MdeassignCall()
FdisableCallNotification() FgetCallinfoReq()
WsetCallLoadControl() WsetCallChargePlan()
BchangeCallNotification() ¥setAdviceOfCharge()
FgetCriteria() FgetMoreDialledDigitsReq|()
FsupeniseCallReq()

Figure 1: Service Interfaces

This class diagram shows the interfaces of the generic call control application package and their relations to the
interfaces of the generic call control service package.

ETSI

30 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

<<Interface>>
Ipinterface
T
<<Interface>>
IpAppCall
<<Interface>> (from gccs)
IpAppCallControlManager
(from gccs) *routeRes()
FrouteErm()
Wcall Aborted() 1 0..n|[®getCallinfoRes()
Sc all EventNotify() S ~ " |®getCallinfoErr()
Wc allNotificationIinterupted() FsupeniseCallRes()
c allNotificationContinued() FsupeniseCallErr()
Wc allOverloadEncountered) FcallFaultDetected()
WcallOverloadCeased () ®getMoreDialledDigitsRes()
FgetMoreDialledDigitsErr()
$ FcallEnded()
F<uses>> /T<\
<uses>>
<<Interface>> <<Interface>>
IpCallControlManager | 1 0..n IpCall
(fromgcesy | —> (from gccs)

Figure 2: Application Interfaces

6 Generic Call Control Service Interface Classes

The Generic Call Control Service (GCCS) provides the basic call control service for the API. It isbased around athird
party model, which alows calls to be instantiated from the network and routed through the network.

The GCCS supports enough functionality to allow call routing and call management for today's Intelligent Network
(IN) servicesin the case of a switched telephony network, or equivalent for packet based networks.

It isthe intention of the GCCS that it could be readily specialised into call control specifications, for example, ITU-T
Recommendations H.323, Q.763 ISUP, Q.931 and Q.2931, ATM Forum specification UNI3.1 and the IETF RFC 3261
Session Initiation Protocol, or any other call control technology.

For the generic call control service, only a subset of the call model defined in clause 4 is used; the API for generic call
control does not give explicit access to the legs and the media channels. Thisis provided by the Multi-Party Call
Control Service. Furthermore, the generic call isrestricted to two party cals, i.e., only two legs are active at any given
time. Active is defined here as 'being routed' or connected.

The GCCS s represented by the IpCallControlManager and I pCall interfaces that interface to services provided by the
network. Some methods are asynchronous, in that they do not lock athread into waiting whilst a transaction performs.
In this way, the client machine can handle many more calls, than one that uses synchronous message calls. To handle
responses and reports, the devel oper must implement |pAppCallControlManager and |pAppCall to provide the callback
mechanism.

ETSI

31 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

6.1 Interface Class IpCallControlManager

Inherits from: IpService;

Thisinterface is the 'service manager' interface for the Generic Call Control Service. The generic call control manager
interface provides the management functions to the generic call control service. The application programmer can use
thisinterface to provide overload control functionality, create call objects and to enable or disable call-related event
notifications.

This interface shall be implemented by a Generic Call Control SCF. As a minimum requirement either the
createCall() method shall be implemented, or the enableCallNotification() and disableCall Notification() methods shall
be implemented.

<<Interface>>

IpCallControlManager

createCall (appCall : in IpAppCallRef) : TpCallldentifier

enableCallNotification (appCallControlManager : in IpAppCallControlManagerRef, eventCriteria : in
TpCallEventCriteria) : TpAssignmentID

disableCallNotification (assignmentID : in TpAssignmentlD) : void

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in
TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentlD

changeCallNotification (assignmentID : in TpAssignmentlID, eventCriteria : in TpCallEventCriteria) : void

getCriteria () : TpCallEventCriteriaResultSet

6.1.1 Method createCall()

This method is used to create a new call object. An IpAppCallControlManager should already have been passed to the
I pCallControlManager, otherwise the call control will not be able to report a call Aborted() to the application (the
application should invoke setCallback() if it wishes to ensure this).

Returns call Reference: Specifies the interface reference and sessionl D of the call created.

Parameters

appCall :in | pAppCal | Ref
Specifies the application interface for callbacks from the call created.

Returns
TpCal |l I dentifier

Raises
TpComonExcepti ons, P_I NVALI D | NTERFACE TYPE

ETSI

32 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

6.1.2 Method enableCallNotification()

This method is used to enable call notifications so that events can be sent to the application. Thisisthefirst step an
application hasto do to get initial notification of calls happening in the network. When such an event happens, the
application will be informed by callEventNotify(). In case the application isinterested in other events during the context
of aparticular call session it has to use the routeReq() method on the call object. The application will get accessto the
call object when it receives the callEventNotify(). (Note that the enableCalINoatification() is not applicableif the call is
setup by the application).

The enableCallNotification method is purely intended for applications to indicate their interest to be notified when
certain call eventstake place. It is possible to subscribe to a certain event for awhole range of addresses, e.g. the
application can indicate it wishesto be informed when a call is made to any number starting with 800.

If some application already requested notifications with criteria that overlap the specified criteria, the request is refused
with P_GCCS_INVALID_CRITERIA. The criteriaare said to overlap if both originating and terminating ranges
overlap and the same number plan is used and the same CallNotificationType is used.

If anotification is requested by an application with the monitor mode set to notify, then there is no need to check the
rest of the criteriafor overlapping with any existing request as the notify mode does not alow control on acall to be
passed over. Only one application can place an interrupt request if the criteria overlaps.

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used.
In case the enableCallNotification contains no callback, at the moment the application needs to be informed the gateway
will use as callback the callback that has been registered by setCallback().

Returns assignmentI D: Specifies the ID assigned by the generic call control manager interface for this newly-enabled
event notification.

Parameters

appCal | Control Manager :in | pAppCal | Cont r ol Manager Ref

If this parameter is set (i.e. not NULL) it specifies areference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

eventCriteria:in TpCallEventCriteria

Specifies the event specific criteria used by the application to define the event required. Only events that meet these
criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer",
"busy". Individual addresses or address ranges may be specified for destination and/or origination.

Returns
TpAssi gnnment | D
Raises

TpConmonExcept i ons, P_I NVALI D CRI TERI A, P_I NVALI D_| NTERFACE_TYPE,
P_I NVALI D_EVENT_TYPE

ETSI

33 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

6.1.3 Method disableCallNotification()

This method is used by the application to disable call notifications.

Parameters

assignment I D:in TpAssignnent| D

Specifies the assignment ID given by the generic call control manager interface when the previous
enableCallNotification() was called. If the assignment ID does not correspond to one of the valid assignment IDs, the
exception P_INVALID_ASSIGNMENTID will be raised. If two callbacks have been registered under this assignment
ID both of them will be disabled.

Raises

TpComonExcepti ons, P_I NVALI D_ASSI GNVENT_I D

6.1.4 Method setCallLoadControl()

This method imposes or removes load control on calls made to a particular address range within the generic call control
service. The address matching mechanism is similar as defined for TpCallEventCriteria.

Returns assignmentI D: Specifies the assignmentID assigned by the gateway to this request. This assignmentID can be
used to correlate the call Overl oadEncountered and call OverloadCeased methods with the request.

Parameters

duration:in TpDuration
Specifies the duration for which the load control should be set.

A duration of 0 indicates that the load control should be removed.
A duration of -1 indicates an infinite duration (i.e., until disabled by the application)

A duration of -2 indicates the network default duration.

mechani sm:in TpCal | LoadCont r ol Mechani sm

Specifies the load control mechanism to use (for example, admit one call per interval), and any necessary parameters,
such asthe call admission rate. The contents of this parameter are ignored if the load control duration is set to zero.

treatnment :in TpCall Tr eat ment

Specifies the treatment of calls that are not admitted. The contents of this parameter are ignored if the load control
duration is set to zero.

addr essRange : i n TpAddr essRange
Specifies the address or address range to which the overload control should be applied or removed.

Returns
TpAssi gnnment | D

Raises
TpConmmonExceptions, P_I NVALI D_ADDRESS, P_UNSUPPORTED ADDRESS PLAN

ETSI

34 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

6.1.5 Method changeCallNotification()

This method is used by the application to change the event criteriaintroduced with enableCallNotification. Any stored
criteria associated with the specified assignmentI D will be replaced with the specified criteria
Parameters

assignment I D:in TpAssignnent| D

Specifiesthe ID assigned by the generic call control manager interface for the event notification. If two call backs have
been registered under this assignment ID both of them will be changed.

eventCriteria:in TpCall EventCriteria

Specifies the new set of event specific criteria used by the application to define the event required. Only events that
meet these criteria are reported.

Raises

TpConmonExcept i ons, P_I NVALI D_ASSI GNVENT | D, P_I NVALI D_CRI TERI A,
P_I NVALI D_EVENT_TYPE

6.1.6 Method getCriteria()

This method is used by the application to query the event criteria set with enableCalINotification or
changeCalINoatification.

Returns eventCriteria: Specifies the event specific criteria used by the application to define the event required. Only
events that meet these criteria are reported.

Parameters
No Parameters were identified for this method.

Returns
TpCal | Event Criteri aResul t Set

Raises
TpComonExcept i ons

6.2 Interface Class IpAppCallControlManager

Inherits from: Ipinterface;

The generic call control manager application interface provides the application call control management functions to the
generic call control service.

ETSI

35 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

<<Interface>>

IpAppCallControlManager

callAborted (callReference : in TpSessionID) : void

callEventNotify (callReference : in TpCallldentifier, eventinfo : in TpCallEventinfo, assignmentID : in
TpAssignmentlD) : IpAppCallRef

callNotificationlInterrupted () : void
callNotificationContinued () : void
callOverloadEncountered (assignmentID : in TpAssignmentID) : void

callOverloadCeased (assignmentID : in TpAssignmentID) : void

6.2.1 Method callAborted()

This method indicates to the application that the call object (at the gateway) has aborted or terminated abnormally. No
further communication will be possible between the call and application.

Parameters

cal | Reference:in TpSessionlD
Specifies the sessionl D of call that has aborted or terminated abnormally.

6.2.2 Method callEventNotify()

This method notifies the application of the arrival of acall-related event.

If this method isinvoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, then the APL has
control of the call. If the APL does nothing with the call (including its associated legs) within a specified time period
(the duration of which forms a part of the service level agreement), then the call in the network shall be released and
callEnded() shall be invoked, giving arelease cause of 102 (Recovery on timer expiry).

When this method is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, the application
writer should ensure that no routeReq() is performed until an IpAppCall has been passed to the gateway, either through
an explicit setCallback() invocation on the supplied IpCall, or viathe return of the callEventNotify() method.

Returns appCall: Specifies areference to the application interface which implements the callback interface for the new
call. If the application has previously explicitly passed areference to the IpAppCall interface using a setCallback()
invocation, this parameter may be null, or if supplied must be the same as that provided during the setCallback().

This parameter will be null if the notification isin NOTIFY mode.

Parameters

cal |l Reference:in TpCallldentifier

Specifies the reference to the call interface to which the notification relates. If the notification isin NOTIFY mode, this
parameter shall be ignored by the application client implementation, and consequently the implementation of the SCS
entity invoking callEventNotify may populate this parameter asit chooses.

eventinfo:in TpCall Eventlnfo
Specifies data associated with this event.

ETSI

36 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

assignnent|I D:in TpAssignnentl|D

Specifies the assignment id which was returned by the enableCallNotification() method. The application can use
assignment id to associate events with event specific criteriaand to act accordingly.

Returns
| pAppCal | Ref

6.2.3 Method callNotificationInterrupted()

This method indicates to the application that all event notifications have been temporarily interrupted (for example, due
to faults detected).

Note that more permanent failures are reported via the Framework (integrity management).

Parameters
No Parameters were identified for this method.

6.2.4 Method callNotificationContinued()

This method indicates to the application that event notifications will again be possible.

Parameters
No Parameters were identified for this method.

6.2.5 Method callOverloadEncountered()

This method indicates that the network has detected overload and may have automatically imposed load control on calls
requested to a particular address range or calls made to a particular destination within the call control service.

Parameters

assignnent I D:in TpAssignnmentl D

Specifies the assignmentI D corresponding to the associated setCallLoadControl. Thisimplies the address range for
within which the overload has been encountered.

6.2.6 Method callOverloadCeased()

This method indicates that the network has detected that the overload has ceased and has automatically removed any
load controls on calls requested to a particular address range or calls made to a particular destination within the call
control service.

Parameters

assignnent I D:in TpAssignnmentl D

Specifies the assignmentI D corresponding to the associated setCallLoadControl. Thisimplies the address range for
within which the overload has been ceased

ETSI

37 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

6.3 Interface Class IpCall

Inherits from: IpService;

The generic Call provides the possibility to control the call routing, to request information from the call, control the
charging of the call, to release the call and to supervise the call. It does not give the possibility to control the legs
directly and it does not allow control over the media. The first capability is provided by the multi-party call and the
latter as well by the multi-media call. The call islimited to two party calls, although it is possible to provide 'follow-on'
calls, meaning that the call can be rerouted after the terminating party has disconnected or routing to the terminating
party has failed. Basically, this means that at most two legs can be in connected or routing state at any time.

This interface shall be implemented by a Generic Call Control SCF. As a minimum reguirement, the routeReq (),
release() and deassignCall() methods shall be implemented.

<<Interface>>

IpCall

routeReq (callSessionID : in TpSessionID, responseRequested : in TpCallReportRequestSet, targetAddress
. in TpAddress, originatingAddress : in TpAddress, originalDestinationAddress : in TpAddress,
redirectingAddress : in TpAddress, applinfo : in TpCallApplInfoSet) : TpSessionID

release (callSessionID : in TpSessionID, cause : in TpCallReleaseCause) : void

deassignCall (callSessionID : in TpSessionID) : void

getCallinfoReq (callSessionID : in TpSessionID, callinfoRequested : in TpCallinfoType) : void
setCallChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callSessionID : in TpSessionID, aOClnfo : in TpAoClnfo, tariffSwitch : in TpDuration) :
void

getMoreDialledDigitsReq (callSessionID : in TpSessionID, length : in TpInt32) : void

superviseCallReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallSuperviseTreatment) : void

6.3.1 Method routeReq()

This asynchronous method requests routing of the call to the remote party indicated by the targetAddress.

Note that in case of routeReq() it is recommended to request for 'successful’ (e.g. 'answer' event) and 'failure’ events at
invocation, because those are needed for the application to keep track of the state of the call.

The extra address information such as originatingAddress is optional. If not present (i.e., the planis set to
P_ADDRESS PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used,
otherwise the network or gateway provided numbers will be used.

If this method in invoked, and call reports have been requested, yet no IpAppCall interface has been provided, this
method shall throw the P_NO_CALLBACK_ADDRESS_SET exception.

Returns callLegSessionlD: Specifies the sessionl D assigned by the gateway. Thisis the sessionID of the implicitly
created call leg. The same ID will be returned in the routeRes or Err. This allows the application to correlate the request
and the result.

This parameter is only relevant when multiple routeReq() calls are executed in parallel, e.g. in the multi-party call
control service.

ETSI

38 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

Parameters

cal | SessionlD:in TpSessionlD
Specifiesthe call session ID of the call.

responseRequested:in TpCal | Report Request Set

Specifies the set of observed events that will result in zero or more routeRes() being generated.
E.g., when both answer and disconnect is monitored the result can be received two times.

If the application wants to control the call (in whatever sense) it shall enable event reports

target Address:in TpAddress
Specifies the destination party to which the call leg should be routed.

ori gi nati ngAddress :in TpAddress
Specifies the address of the originating (calling) party.

ori gi nal Desti nati onAddress:in TpAddress
Specifiesthe original destination address of the call.

redi recti ngAddress :in TpAddress
Specifies the address from which the call was last redirected.

applnfo:in TpCall Appl nf 0Set

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service
identities and interaction indicators).

Returns
TpSessi onl D
Raises

TpConmonExcept i ons, P_I NVALI D_SESSI ON_| D, P_I NVALI D_ADDRESS,
P_UNSUPPORTED ADDRESS_PLAN, P_I NVALI D_NETWORK_STATE, P_I NVALI D_CRI TERI A,
P_I NVALI D_EVENT_TYPE

6.3.2 Method release()

This method requests the release of the call object and associated objects. The call will also be terminated in the
network. If the application requested reports to be sent at the end of the call (e.g., by means of getCalllnfoReq) these
reports will still be sent to the application.

The application should always either release or deassign the call when it is finished with the call, unlessa
callFaultDetected is received by the application.

Parameters

cal | SessionlD:in TpSessionlD
Specifiesthe call session ID of the call.

cause:in TpCal |l Rel easeCause
Specifies the cause of the release.

ETSI

39 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

Raises
TpComonExceptions, P_INVALI D SESSION I D, P_I NVALI D NETWORK_STATE

6.3.3 Method deassignCall()

This method requests that the relationship between the application and the call and associated objects be de-assigned. It
leaves the call in progress, however, it purges the specified call object so that the application has no further control of
call processing. If acal isde-assigned that has event reports, call information reports or call Leg information reports
requested, then these reports will be disabled and any related information discarded.

The application should always either release or deassign the call when it is finished with the call, unless
callFaultDetected is received by the application.

Parameters

cal | SessionlD:in TpSessionlD
Specifiesthe call session ID of the call.

Raises
TpComonExcepti ons, P_I NVALI D _SESSI ON | D

6.3.4 Method getCallinfoReq()

This asynchronous method requests information associated with the call to be provided at the appropriate time (for
example, to calculate charging). This method must be invoked before the call is routed to atarget address.

A report is received when the destination leg or party terminates or when the call ends. The call object will exist after
the call isended if information is required to be sent to the application at the end of the call. In case the originating party
is still available the application can still initiate a follow-on call using routeReq.

Parameters

cal | SessionlD:in TpSessionlD
Specifiesthe call session ID of the call.

cal l I nfoRequested:in TpCallInfoType
Specifies the call information that is requested.

Raises
TpComonExcepti ons, P_I NVALI D _SESSI ON | D

6.3.5 Method setCallChargePlan()

Set an operator specific charge plan for the call.

Parameters

cal | SessionlD:in TpSessionlD
Specifies the call session ID of the call.

cal | ChargePl an:in TpCal | ChargePl an
Specifies the charge plan to use.

ETSI

40 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

Raises
TpComonExcept i ons, P_I NVALI D_SESSI ON_I D

6.3.6 Method setAdviceOfCharge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this
information.

Parameters

cal | Sessionl D:in TpSessionlD
Specifiesthe call session ID of the call.

alClnfo:in TpAoC nfo
Specifies two sets of Advice of Charge parameter.

tariffSwitch:in TpDuration
Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

Raises
TpComonExceptions, P_I NVALID SESSION I D

6.3.7 Method getMoreDialledDigitsReq()

This asynchronous method requests the call control service to collect further digits and return them to the application.
Depending on the administered data, the network may indicate a new call to the gateway if a caller goes off-hook or
dialled only afew digits. The application then gets a new call event which contains no digits or only the few dialled
digitsin the event data.

The application should use this method if it requires more dialled digits, e.g. to perform screening.

Parameters

cal | SessionlD:in TpSessionl D
Specifies the call session ID of the call.

length:in Tplnt32
Specifies the maximum number of digits to collect.

Raises
TpComonExcepti ons, P_I NVALI D _SESSI ON | D

ETSI

41 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

6.3.8 Method superviseCallReq()

The application calls this method to supervise a cal. The application can set a granted connection time for this call. If
an application calls this function before it calls a routeReq() or a user interaction function the time measurement will
start as soon as the call is answered by the B-party or the user interaction system.

Parameters

cal | SessionlD:in TpSessionlD
Specifiesthe call session ID of the call.

tinme:in TpDuration
Specifies the granted time in milliseconds for the connection.

treatnent :in TpCal |l Supervi seTr eat nent

Specifies how the network should react after the granted connection time expired.
Raises

TpComonExcepti ons, P_I NVALI D _SESSI ON | D

6.4 Interface Class IpAppCall
Inherits from: Iplnterface;

The generic call application interface isimplemented by the client application developer and is used to handle call
request responses and state reports.

<<Interface>>

IpAppCall

routeRes (callSessionID : in TpSessionID, eventReport : in TpCallReport, callLegSessionID : in
TpSessionID) : void

routeErr (callSessionID : in TpSessionID, errorindication : in TpCallError, callLegSessionID : in
TpSessionID) : void

getCallinfoRes (callSessionID : in TpSessionID, callinfoReport : in TpCallinfoReport) : void
getCallinfoErr (callSessionID : in TpSessionID, errorindication : in TpCallError) : void

superviseCallRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in
TpDuration) : void

superviseCallErr (callSessionID : in TpSessionID, errorindication : in TpCallError) : void
callFaultDetected (callSessionID : in TpSessionID, fault : in TpCallFault) : void
getMoreDialledDigitsRes (callSessionID : in TpSessionID, digits : in TpString) : void
getMoreDialledDigitsErr (callSessionID : in TpSessionID, errorindication : in TpCallError) : void

callEnded (callSessionID : in TpSessionID, report : in TpCallEndedReport) : void

ETSI

42 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

6.4.1 Method routeRes()

This asynchronous method indicates that the request to route the call to the destination was successful, and indicates the
response of the destination party (for example, the call was answered, not answered, refused due to busy, etc.).

If this method isinvoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT,

then the APL has control of the call. If the APL does nothing with the call (including its associated legs) within a
specified time period (the duration of which forms a part of the service level agreement), then the call in the network
shall be released and callEnded() shall be invoked, giving a release cause of 102 (Recovery on timer expiry).

Parameters

cal | SessionlD:in TpSessionlD
Specifiesthe call session ID of the call.

event Report :in TpCal | Report

Specifies the result of the request to route the call to the destination party. It aso includes the network event, date and
time, monitoring mode and event specific information such as release cause.

call LegSessionl D:in TpSessionlD

Specifies the sessionl D of the associated call leg. This corresponds to the sessionl D returned at the routeReq() and can
be used to correlate the response with the request.

6.4.2 Method routeErr()

This asynchronous method indicates that the request to route the call to the destination party was unsuccessful - the call
could not be routed to the destination party (for example, the network was unable to route the call, the parameters were
incorrect, the request was refused, etc.).

Parameters

cal | SessionlD:in TpSessionlD
Specifiesthe call session ID of the call.

errorlindication:in TpCallError
Specifies the error which led to the original request failing.

cal |l LegSessionl D:in TpSessionlD

Specifies the sessionl D of the associated call leg. This corresponds to the sessionl D returned at the routeReq() and can
be used to correlate the error with the request.

6.4.3 Method getCallinfoRes()

This asynchronous method reports time information of the finished call or call attempt as well as release cause
depending on which information has been requested by getCalllnfoReg. Thisinformation may be used e.g. for charging
purposes. The call information will possibly be sent after routeRes in all cases where the call or aleg of the call has
been disconnected or arouting failure has been encountered.

Parameters

cal | Sessionl D:in TpSessionlD
Specifies the call session ID of the call.

ETSI

43 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

call I nfoReport :in TpCal I | nf oReport
Specifies the call information requested.

6.4.4 Method getCallinfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

cal | Sessionl D:in TpSessionlD
Specifies the call session ID of the call.

errorindication:in TpCall Error
Specifies the error which led to the original request failing.

6.4.5 Method superviseCallRes()

This asynchronous method reports a call supervision event to the application when it has indicated itsinterest in this
kind of event.

It is also called when the connection is terminated before the supervision event occurs. Furthermore, this method is
invoked as a response to the request also when a tariff switch happensin the network during an active call.

Parameters

cal | SessionlD:in TpSessionlD
Specifiesthe call session ID of the call

report :in TpCal | Supervi seReport
Specifies the situation which triggered the sending of the call supervision response.

usedTi ne:in TpDuration
Specifies the used time for the call supervision (in milliseconds).

6.4.6 Method superviseCallErr()

This asynchronous method reports a call supervision error to the application.

Parameters

cal | Sessionl D:in TpSessionlD
Specifiesthe call session ID of the call.

errorindication:in TpCall Error
Specifies the error which led to the original request failing.

ETSI

44 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

6.4.7 Method callFaultDetected()

This method indicates to the application that a fault in the network has been detected. The call may or may not have
been terminated.

The system deletes the call object. Therefore, the application has no further control of call processing. No report will be
forwarded to the application.

Parameters

cal |l Sessionl D:in TpSessionlD
Specifiesthe call session ID of the call in which the fault has been detected.

fault :in TpCall Faul t
Specifies the fault that has been detected.

6.4.8 Method getMoreDialledDigitsRes()

This asynchronous method returns the collected digits to the application.

Parameters

cal | Sessionl D:in TpSessionlD
Specifies the call session ID of the call.

digits:in TpString
Specifies the additional dialled digitsif the string length is greater than zero.

6.4.9 Method getMoreDialledDigitsErr()

This asynchronous method reports an error in collecting digits to the application.

Parameters

cal | SessionlD:in TpSessionl D
Specifiesthe call session ID of the call.

errorindication:in TpCall Error
Specifies the error which led to the original request failing.

6.4.10 Method callEnded()

This method indicates to the application that the call has terminated in the network. However, the application may still
receive some results (e.g., getCallInfoRes) related to the call. The application is expected to deassign the call object
after having received the callEnded.

Note that the event that caused the call to end might also be received separately if the application was monitoring for it.

Parameters

cal | Sessionl D:in TpSessionlD
Specifies the call sessionID.

ETSI

45 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

report :in TpCal | EndedReport
Specifies the reason the call is terminated.

7 Generic Call Control Service State Transition
Diagrams
7.1 State Transition Diagrams for IpCallControlManager

The state transition diagram shows the application view on the Call Control Manager object.

"a call object hasterminated abnomally" NipAppCallControlM anager.call Abo rted

create a Call object “lpAppCallControlManager.callEventNotify

disableCal INotification "arrival of call related event"[notification active for thiscall event]/
enableCall Notification

createCall / create a Call object
"new" Active ‘

IpAccess.terminateServiceAgreement

Creation of
IpCallControlManager
by Service Instance
Lifecycle Manager

"notifications not possible"
IpAppCall Control Manager.cal INotifi cationInterrupted

/

L)

"notifications possible al
~pAppCallControlManager.callNotificationContinued

IpAccessteminateSewiceAgreement
disableCallNotification

"a call object hasterminated abnormally"
Alp App Call Control Man ager.cal IAborte d

Notification terminated ‘

A J

Figure 3: Application view on the Call Control Manager

7.1.1 Active State

In this state arelation between the Application and the Generic Call Control Service has been established. The state
allows the application to indicate that it isinterested in call related events. In case such an event occurs, the Call Control
Manager will create a Call object and inform the application by invoking the operation callEventNotify() on the
IpAppCallControlManager interface. The application can aso indicate it is no longer interested in certain call related
events by calling disableCallNatification().

7.1.2 Notification terminated State

When the Call Control Manager isin the Notification terminated state, events requested with enableCallNotification()
will not be forwarded to the application. There can be multiple reasons for this: for instance it might be that the
application receives more notifications from the network than defined in the Service Level Agreement. Another
exampleisthat the Service has detected it receives no notifications from the network due to e.g. alink failure. In this
state no requests for new notifications will be accepted.

ETSI

46 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

7.2 State Transition Diagrams for IpCall

The state transition diagram shows the application view on the Call object.

In state Finshed and No Parties, a timer mechanism should prevent the

object from ocaupying resources Upon the expity of thistimer, superviseCallReq

callEnded(should be invoked with a release cause of 102 (Recoveryon getCallinfoReq

timer expity). In the case when no IpApp Call is available on which to setAdvice OfCharge a

invoke callEnded(), callAborted() shall be invoked on the setCallChargePlan ‘\./‘

IpAppCallContoIManager asthisis an abnormal termination. deassi -
createCall No Parties release

from called party’[monitor’

mode = interrupt] “routeRes,
getCallinfoRes, superviseCallRes

_J

IpAppCaIICuntmlManagev.callE\ImNoufy

setAdviceOfCharge
“tonnection to called party unsuccessful"[monitor mode = |nterrupt] ~routeRes superviseCallReq
routeReq[number of routing requests < 2] "Error in collecting digits" "memalledmmuﬁmeq[only 1 outstanding ro ion to called jparty "[no mqre

outstanding muteReq ope rations] ~routeRes|

etCallinfoReq
getMoreDialledDigitsReq[no routeReq oulslandlﬁ \

" to called party " "
mENHR AR EFRE HIR ! Rdd s L g Active IV requests failed’[no more outstanding

1 Party in ~answer from called party” Routing to routeReq operations] Aroute Err

cal S Deination(s)

"party released"

“party rel eased"[no m ore|outstan ding
" requests |
‘answe

"Digits collected"

2 Partiesin

IpAppCallControlManager.callEvent Call

Notify(Answer from call party)

lease
“call ends calling party abafidoned" AcallEnded deassignCall
“call ends: calling partydisconnects’ “callEnded
“call ends:calledparty disconneds'] hitorfor thisevent] *callEnded, o uteRes(pary discon nect)

“call ends: calling party disednnects'[no monitor for this event] ~callEnded
“fault detected"[fault cannot b mmunicated with network event] “callFaultDetected
Network Rel eased

release Application
Released

“requested inforpration ready”

AgetCallinfoRes/superviseCallRgs
"requested information ready”

AgetCallinfoRgs, supgiseCallRes

[no reports

[no reports requested with-getCallinfoReq AND supenviseCallReq |

“faultinretrieval of information” ~getCalllnfoErm, supeniseQallEr

Finished) release ®
timeout ~callFaultDetected("timeout on release”)

Figure 4: Application view on the IpCall object

7.2.1 Network Released State

In this state the call has ended and the Gateway collects the possible call information requested with getCalllnfoReq()
and / or superviseCallReq(). The information will be returned to the application by invoking the methods
getCalllnfoRes() and / or superviseCallRes() on the application. Also when a call was unsuccessful these methods are
used. In case the application has not requested additional call related information immediately a transition is made to
state Finished.

7.2.2 Finished State

In this state the call has ended and no call related information isto be send to the application. The application can only
release the call object. Calling the deassignCall() operation has the same effect. Note that the application has to release
the object itself as good OO practice requires that when an object was created on behalf of a certain entity, this entity is
also responsible for destroying it when the object is no longer needed.

7.2.3 Application Released State
In this state the application has requested to rel ease the Call object and the Gateway collects the possible call

information requested with getCallInfoReq() and / or superviseCallReq(). In case the application has not requested
additional call related information the Call object is destroyed immediately.

ETSI

47 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

7.2.4 No Parties State

In this state the Call object has been created. The application can request the gateway for a certain type of charging of
the call by calling setCall ChargePlan(). The application can request for charging related information by calling
getCalllnfoReq(). Furthermore the application can request supervision of the call by calling superviseCallReq(). Itis
also alowed to request Advice of Charge information to be sent by calling setAdviceOf Charge().

7.2.5 Active State

In this state a call between two partiesis being setup or present. Refer to the substates for more details. The application
can request supervision of the call by calling superviseCallReq(). It is also allowed to send Advice of Charge
information by calling setAdviceOf Charge() as well asto define the charging by invoking setCall ChargePlan.

7.2.6 1 Party in Call State

In this state there is one party in the call.

In this state the application can request the gateway for a certain type of charging of the call by calling
setCallChargePlan(). The application can also request for charging related information by calling getCalllnfoReg(). The
setCall ChargePlan() and getCalllnfoReq() should be issued before requesting a connection to a second party in the call
by means of routeReq().

Two cases apply: network initiated calls and application initiated calls.

In case the call originated from the network the application can now request for more digits in case more digits are
needed. When the calling party abandons the call before the application has invoked the routeReq() operation, the
application isinformed with callEnded(). When the calling party abandons the call after the application has invoked
routeReq() but before the call has actually been established, the gateway informs the application by invoking
callEnded().

In case the call was setup by the application and the called party was reached by issuing a routeReq() the application
can request a connection to a second call party by calling the operation routeReq() again.

Otherwise, it depends on the actual number of invoked (and still outstanding or successful) routing requests whether the
application can still call the routeReq() operation in order to setup a connection to a called party. Also in this case the
called party can disconnect before another party is reached. In this case depending on the actual configuration, the call
is ended or atransition is made back to the Routing to Destinations substate. When the second party answers the call, a
transition will be made to the 2 Partiesin Call state.

In this state user interaction is possible.

7.2.7 2 Parties in Call State

A connection between two parties has been established.
In case the calling party disconnects, the gateway informs the application by invoking call Ended().
When the called party disconnects different situations apply:

1. theapplication is monitoring for this event in interrupt mode: a transition is made to the 1 Party in Call state, the
application isinformed with routeRes with indication that the called party has disconnected and all requested reports are
sent to the application. The application now again has control of the call.

2. the application is monitoring for this event but not in interrupt mode. In this case atransition is made to the Network
Released state and the gateway informs the application by invoking the operation routeRes() and call Ended().

3. the application is not monitoring for this event. In this case the application isinformed by the gateway invoking the
callEnded() operation and a transition is made to the Network Released state.

In this state user interaction is possible, depending on the underlying network.

ETSI

48 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

7.2.8 Routing to Destination(s) State

In this state there is at least one outstanding routeReq.

8 Generic Call Control Service Properties

8.1 List of Service Properties

The following table lists properties relevant for the GCC API.

Property Type Description / Interpretation
P_TRIGGERING_EVENT_TYPES |INTEGER_SET [Indicates the static event types supported by the SCS. Static
events are the events by which applications are initiated.
P_DYNAMIC_EVENT_TYPES INTEGER_SET |Indicates the dynamic event types supported by the SCS.
Dynamic events are the events the application can request for
during the context of a call.
P_ADDRESSPLAN INTEGER_SET |Indicates the supported address plan (defined in TpAddressPlan.)

e.g. {P_ADDRESS_PLAN_E164, P_ADDRESS_PLAN_IP})

P_Ul_CALL_BASED

BOOLEAN_SET

Value = TRUE : User interaction can be performed on call level
and a reference to a Call object can be used in the
IpUIManager.createUICall() operation.

Value = FALSE: No User interaction on call level is supported.

P_Ul_AT ALL_STAGES

BOOLEAN_SET

Value = TRUE: User Interaction can be performed at any stage
during a call .

Value = FALSE: User Interaction can be performed in case there
is only one party in the call.

P_MEDIA_TYPE

INTEGER_SET

Specifies the media type used by the Service. Values are defined
by data-type TpMediaType : P AUDIO, P VIDEO, P DATA

The previoustable lists properties related to capabilities of the SCSitself. The following table lists properties that are
used in the context of the Service Level Agreement, e.g. to restrict the access of applications to the capabilities of the

SCS.

ETSI

49

ETSI ES 202 915-4-2 V1.2.1 (2003-08)

Property

Type

Description

P_TRIGGERING_ADDRESSES

ADDRESS_RANGE_SET

Indicates for which numbers the notification may be
set. For terminating notifications it applies to the
terminating number, for originating notifications it
applies only to the originating number.

P_NOTIFICATION_TYPES

INTEGER_SET

Indicates whether the application is allowed to set
originating and/or terminating triggers in the ECN. Set
is:

P_ORIGINATING

P_TERMINATING

P_MONITOR_MODE

INTEGER_SET

Indicates whether the application is allowed to monitor
in interrupt and/or notify mode. Set is:

P_INTERRUPT

P_NOTIFY

P_NUMBERS_TO_BE_CHANGED

INTEGER_SET

Indicates which numbers the application is allowed to
change or fill for legs in an incoming call. Allowed
value set:
{P_ORIGINAL_CALLED_PARTY_NUMBER,
P_REDIRECTING_NUMBER,
P_TARGET_NUMBER,

P_CALLING PARTY_NUMBER].

P_CHARGEPLAN_ALLOWED

INTEGER_SET

Indicates which charging is allowed in the
setCallChargePlan indicator. Allowed values:
{P_TRANSPARANT_CHARGING,
P_CHARGE_PLAN}

P_CHARGEPLAN_MAPPING

INTEGER_INTEGER_MAP

Indicates the mapping of chargeplans (we assume
they can be indicated with integers) to a logical
network chargeplan indicator. When the chargeplan
supports indicates P_CHARGE_PLAN then only
chargeplans in this mapping are allowed.

8.2

Environment

I mplementations of the Generic Call Control API relying on the CSE of CAMEL phase 4 shall have the Service
Properties outlined above set to the indicated values :

P_OPERATI ON_SET = {

"l pCal | Cont rol Manager.
"l pCal | Cont rol Manager.
"| pCal | Control Manager.
"| pCal | Control Manager.
"l pCal | Cont rol Manager.
"I pCal | Cont rol Manager.

"I'pCal | . rout eReq",
"I'pCal |l . rel ease",
"I pCal | . deassi gnCal | ",

"I pCall.getCalllnfoReq",

"I pCal |l .set Cal | ChargePl an",
"I pCal | . set Advi ceCf Char ge",
"I pCal | . supervi seCal | Req"

}
P_TRI GGERI NG_EVENT_TYPES = {

createCal I ",

enabl eCal | Noti fication",
di sabl eCal I Noti fi cati on",
changeCal | Noti fication",
getCriteria",

set Cal | LoadControl ",

P_EVENT_GCCS_ADDRESS_COLLECTED_EVENT,
P_EVENT_GCCS_ADDRESS_ANALYSED_EVENT,

P_EVENT_GCCS_CALLED_PARTY_BUSY,

P_EVENT_GOCS_CALLED_PARTY_UNREACHABLE,
P_EVENT_GOCS_NO ANSVER FROM CALLED_PARTY,
P_EVENT_GCCS_ROUTE_SELECT FAI LURE

}

ETSI

Service Property values for the CAMEL Service

50

P_DYNAM C_EVENT_TYPES = {
P_CALL_REPORT_ALERTI NG,
P_CALL_REPORT_ANSWER
P_CALL_REPORT BUSY,
P_CALL_REPORT NO ANSVER,
P_CALL_REPORT_DI SCONNECT,
P_CALL_REPORT_SERVI CE_CODE,
P_CALL_REPORT_ROUTI NG _FAI LURE,
P_CALL_REPORT_NOT_REACHABLE

}

P_ADDRESS_PLAN = {
P_ADDRESS_PLAN E164
}

P_U _CALL_BASED = {
TRUE
}

P_U AT ALL_STAGES = {
FALSE
}

P_MEDI A TYPE = {
P_AUDI O
}

ETSI ES 202 915-4-2 V1.2.1 (2003-08)

9 Generic Call Control Data Definitions

This clause provides the GCC data definitions necessary to support the API specification.

The general format of a Data Definition specification is described below.

. Data Type
This shows the name of the data type.
. Description
This describes the data type.
. Tabular Specification
This specifies the data types and values of the data type.
. Example

If relevant, an example is shown to illustrate the data type.

All data types referenced in the present document but not defined in this clause are defined either in the common call
control data definitionsin ES 202 915-4-1 or in the common data definitions which may be found in ES 202 915-2.

9.1 Generic Call Control Event Notification Data Definitions

9.1.1 TpCallEventName

Defines the names of event being notified. The following events are supported. The values may be combined by a
logical "'OR' function when requesting the notifications. Additional events that can be requested / received during the

call process are found in the TpCallReportType data-type.

ETSI

51

ETSI ES 202 915-4-2 V1.2.1 (2003-08)

Name

Value Description

P_EVENT_NAME_UNDEFINED

0 Undefined

P_EVENT_GCCS_OFFHOOK_EVENT

1 GCCS - Offhook event

This can be used for hot-line features. In
case this event is set in the
TpCallEventCriteria, only the originating
address(es) may be specified in the criteria.

P_EVENT_GCCS_ADDRESS_COLLECTED_EVENT

2 GCCS - Address information collected

The network has collected the information
from the A-party, but not yet analysed the
information. The number can still be
incomplete. Applications might set
notifications for this event when part of the
number analysis needs to be done in the
application (see also the
getMoreDialledDigitsReq method on the call
class).

P_EVENT _GCCS_ADDRESS_ANALYSED_EVENT

4 GCCS - Address information is analysed
The dialled number is a valid and complete
number in the network.

P _EVENT GCCS CALLED PARTY BUSY

8 GCCS - Called party is busy

P_EVENT_GCCS_CALLED_PARTY_UNREACHABLE 16 GCCS - Called party is unreachable (e.g. the
called party has a mobile telephone that is
currently switched off).

P _EVENT GCCS NO ANSWER FROM CALLED PARTY 32 |GCCS - No answer from called party

P EVENT GCCS ROUTE SELECT FAILURE 64 |GCCS - Failure in routing the call

P EVENT GCCS ANSWER FROM CALL PARTY 128 |GCCS - Party answered call.

9.1.2

TpCallNotificationType

Defines the type of notification. Indicates whether it is related to the originating of the terminating user in the call.

Name Value Description
P_ORIGINATING 0 Indicates that the notification is related to the originating user in the call.
P_TERMINATING 1 Indicates that the notification is related to the terminating user in the
call.

9.1.3

TpCallEventCriteria

Definesthe Sequence of Data El enent s that specify the criteriafor an event notification.

Of the addresses only the Plan and the AddrString are used for the purpose of matching the notifications against the

criteria.

Sequence Element Name

Sequence Element Type

Description

DestinationAddress TpAddressRange Defines the destination address or address range for which
the notification is requested.
OriginatingAddress TpAddressRange Defines the origination address or an address range for

which the notification is requested.

CallEventName

TpCallEventName

Name of the event(s)

CallNotificationType

TpCallNotificationType

Indicates whether it is related to the originating or the
terminating user in the call.

MonitorMode

TpCallMonitorMode

Defines the mode that the call is in following the
notification.

Monitor mode

P_CALL _MONITOR_MODE_DO_NOT_MONITOR is not a
legal value here.

ETSI

52 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

9.1.4 TpCallEventinfo

Definesthe Sequence of Data El enent s that specify the information returned to the application in a Call event
notification.

Sequence Element Name Sequence Element Type
DestinationAddress TpAddress
OriginatingAddress TpAddress
OriginalDestinationAddress TpAddress
RedirectingAddress TpAddress
CallAppInfo TpCallAppInfoSet
CallEventName TpCallEventName
CallNotificationType TpCallNotificationType
MonitorMode TpCallMonitorMode
9.2 Generic Call Control Data Definitions
9.2.1 IpCall

Definesthe addressof an | pCal | Interface.

9.2.2 IpCallRef

Defines aRef er ence to type IpCall.

9.2.3 IpAppCall

Definesthe address of an | pAppCal | Interface.

9.24 IpAppCallRef

DefinesaRef er ence to type |pAppCal.

9.25 TpCallldentifier

Definesthe Sequence of Data El enent s that unambiguously specify the Generic Call object.

Sequence Element Name | Sequence Element Type Sequence Element Description
CallReference IpCallRef This element specifies the interface reference for
the call object.
CallSessionID TpSessionID This element specifies the call session ID of the call.

9.2.6 IpAppCallControlManager

Definesthe address of an | pAppCal | Cont r ol Manager Interface.

9.2.7 IpAppCallControlManagerRef

Defines aRef er ence to type |pAppCall ControlManager.

9.2.8 IpCallControlManager

Definesthe address of an | pCal | Cont r ol Manager Interface.

ETSI

9.2.9

53

IpCallControlManagerRef

DefinesaRef er ence to type IpCallControlManager.

9.2.10 TpCallApplinfo

ETSI ES 202 915-4-2 V1.2.1 (2003-08)

Definesthe Tagged Choi ce of Data El enent s that specify application-related call information.

Tag Element Type

TpCallAppInfoType

Tag Element Value

Choice Element Type

Choice Element Name

P_CALL_APP_ALERTING_MECHANISM

TpCallAlertingMechanism

CallAppAlertingMechanism

P CALL APP_ NETWORK_ACCESS TYPE

TpCallNetworkAccessType

CallAppNetworkAccessType

P CALL APP TELE SERVICE

TpCallTeleService

CallAppTeleService

P CALL APP BEARER SERVICE

TpCallBearerService

CallAppBearerService

P_CALL_APP_PARTY_CATEGORY

TpCallPartyCategory

CallAppPartyCategory

P_CALL_APP_PRESENTATION_ADDRESS TpAddress CallAppPresentationAddress
P_CALL_APP_GENERIC_INFO TpString CallAppGenericlnfo
P CALL APP_ ADDITIONAL ADDRESS TpAddress CallAppAdditionalAddress

9.2.11 TpCallAppInfoType
Defines the type of call application-related speci

fic information.

Name Value Description
P_CALL_APP _UNDEFINED 0 Undefined
P_CALL_APP_ALERTING_MECHANISM 1 The alerting mechanism or pattern to use
P_CALL_APP_NETWORK_ACCESS TYPE 2 The network access type (e.g. ISDN)
P CALL APP TELE SERVICE 3 Indicates the tele-service (e.g. telephony)
P_CALL_APP_BEARER_SERVICE 4 Indicates the bearer service (e.g. 64kbit/s

unrestricted data)

P _CALL_APP PARTY CATEGORY 5 The category of the calling party
P CALL APP PRESENTATION ADDRESS 6 The address to be presented to other call parties
P CALL APP_GENERIC INFO 7 Carries unspecified service-service information
P CALL APP ADDITIONAL ADDRESS 8 Indicates an additional address

9.2.12 TpCallAppInfoSet

DefinesaNunmber ed Set of Data El ement s of TpCallApplnfo.

9.2.13 TpCallEndedReport

Definesthe Sequence of Data El enment s that specify the reason for the call ending.

Sequence Element Name

Sequence Element Type

Description

CallLegSessionID

TpSessionlD

The leg that initiated the release of the call.
If the call release was not initiated by the leg, then
this value is set to -1.

Cause

TpCallReleaseCause

The cause of the call ending.

ETSI

54 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

9.2.14 TpCallFault

Defines the cause of the call fault detected.

Name Value Description
P_CALL_FAULT_UNDEFINED 0 Undefined
P_CALL_TIMEOUT_ON_RELEASE 1 This fault occurs when the final report has

been sent to the application, but the
application did not explicitly release or
deassign the call object, within a specified
time.

The timer value is operator specific.
P_CALL_TIMEOUT_ON_INTERRUPT 2 This fault occurs when the application did not
instruct the gateway how to handle the call
within a specified time, after the gateway
reported an event that was requested by the
application in interrupt mode.

The timer value is operator specific.

9.2.15 TpCallinfoReport

Definesthe Sequence of Data El enent s that specify the call information requested. Information that was not
requested isinvalid.

Sequence Element Name Sequence Element Type Description
CallinfoType TpCallinfoType The type of call report.
CallnitiationStartTime TpDateAndTime The time and date when the call, or follow-on
call, was started as a result of a routeReq.
CallConnectedToResourceTime TpDateAndTime The date and time when the call was

connected to the resource.

This data element is only valid when
information on user interaction is reported.
CallConnectedToDestinationTime TpDateAndTime The date and time when the call was
connected to the destination (i.e. when the
destination answered the call).

If the destination did not answer, the time is
set to an empty string.

This data element is invalid when information
on user interaction is reported.

CallEndTime TpDateAndTime The date and time when the call or follow-on
call or user interaction was terminated.
Cause TpCallReleaseCause The cause of the termination.

A callInfoReport will be generated at the end of user interaction and at the end of the connection with the associated
address. This means that either the destination related information is present or the resource related information, but not
both.

9.2.16 TpCallReleaseCause

Definesthe Sequence of Data El enent s that specify the cause of the release of acall.

Sequence Element Name Sequence Element Type
Value TpInt32
Location TpInt32
NOTE: The Value and Location are specified as in ITU-T Recommendation Q.850.

ETSI

55

ETSI ES 202 915-4-2 V1.2.1 (2003-08)

The following example was taken from ITU-T Recommendation Q.850 to aid understanding:

Equivalent Call Report Cause Value Set by Cause Value from
Application Network
P_CALL_REPORT BUSY 17 17
P_CALL_REPORT_NO_ANSWER 19 18,19, 21
P_CALL_REPORT_DISCONNECT 16 16
P_CALL_REPORT_REDIRECTED 23 23
P_CALL_REPORT_SERVICE_CODE 31 NA
P_CALL_REPORT _NOT_REACHABLE 20 20
P_CALL REPORT ROUTING_FAILURE 3 Any other value

9.2.17 TpCallReport

Definesthe Sequence of Data El enent s that specify the call report and call leg report specific information.

Sequence Element Name

Sequence Element Type

MonitorMode

TpCallMonitorMode

CallEventTime

TpDateAndTime

CallReportType

TpCallReportType

AdditionalReportinfo

TpCallAdditionalReportinfo

9.2.18 TpCallAdditionalReportinfo

Definesthe Tagged Choi ce of Data El enent s that specify additional call report information for certain types

of reports.
Tag Element Type
TpCallReportType
Tag Element Value Choice Element Type Choice Element Name

P _CALL_REPORT UNDEFINED NULL Undefined
P _CALL REPORT PROGRESS NULL Undefined
P CALL REPORT ALERTING NULL Undefined
P _CALL_REPORT _ANSWER NULL Undefined
P _CALL REPORT BUSY TpCallReleaseCause Busy
P CALL REPORT NO ANSWER NULL Undefined
P CALL REPORT DISCONNECT TpCallReleaseCause CallDisconnect
P _CALL_REPORT REDIRECTED TpAddress ForwardAddress
P _CALL REPORT_ SERVICE CODE TpCallServiceCode ServiceCode
P CALL REPORT ROUTING FAILURE TpCallReleaseCause RoutingFailure
P CALL REPORT QUEUED TpString QueueStatus
P CALL REPORT NOT REACHABLE TpCallReleaseCause NotReachable

9.2.19 TpCallReportRequest

Definesthe Sequence of Data El enent s that specify the criteriarelating to call report requests.

Sequence Element Name Sequence Element Type
MonitorMode TpCallMonitorMode
CallReportType TpCallReportType
AdditionalReportCriteria TpCallAdditionalReportCriteria

ETSI

56 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

9.2.20 TpCallAdditionalReportCriteria

Definesthe Tagged Choi ce of Data El enent s that specify specific criteria.

Tag Element Type
TpCallReportType
Tag Element Value Choice Element Type Choice Element Name
P CALL REPORT UNDEFINED NULL Undefined
P_CALL REPORT PROGRESS NULL Undefined
P _CALL REPORT_ALERTING NULL Undefined
P _CALL_REPORT ANSWER NULL Undefined
P _CALL REPORT BUSY NULL Undefined
P CALL REPORT NO ANSWER TpDuration NoAnswerDuration
P _CALL_REPORT DISCONNECT NULL Undefined
P _CALL_REPORT REDIRECTED NULL Undefined
P CALL REPORT SERVICE CODE TpCallServiceCode ServiceCode
P CALL REPORT ROUTING FAILURE NULL Undefined
P_CALL_REPORT QUEUED NULL Undefined
P CALL REPORT NOT REACHABLE NULL Undefined

9.2.21 TpCallReportRequestSet

DefinesaNunbered Set of Data El ement s of TpCallReportRequest.

9.2.22 TpCallReportType

Defines a specific call event report type.

Name Value Description

P _CALL_REPORT_UNDEFINED 0 Undefined.

P_CALL_REPORT_PROGRESS 1 Call routing progress event: an indication from the network that
progress has been made in routing the call to the requested
call party. This message may be sent more than once, or may
not be sent at all by the gateway with respect to routing a given
call leg to a given address.

P_CALL_REPORT_ALERTING 2 Call is alerting at the call party.

P_CALL REPORT ANSWER 3 Call answered at address.

P CALL REPORT BUSY 4 Called address refused call due to busy.

P CALL REPORT NO ANSWER 5 No answer at called address.

P_CALL_REPORT_DISCONNECT 6 The media stream of the called party has disconnected. This
does not imply that the call has ended. When the call is ended,
the callEnded method is called. This event can occur both
when the called party hangs up, or when the application
explicitly releases the leg using IpCallLeg.release() This cannot
occur when the app explicitly releases the call leg and the call.

P_CALL_REPORT_REDIRECTED 7 Call redirected to new address: an indication from the network
that the call has been redirected to a new address.

P _CALL REPORT_ SERVICE CODE 8 Mid-call service code received.

P CALL REPORT ROUTING FAILURE 9 Call routing failed - re-routing is possible.

P_CALL_REPORT_QUEUED 10 The call is being held in a queue. This event may be sent more
than once during the routing of a call.

P_CALL_REPORT_NOT_REACHABLE 11 The called address is not reachable; e.g. the phone has been

switched off or the phone is outside the coverage area of the
network.

ETSI

57 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

9.2.23 TpCallTreatment

Definesthe Sequence of Data El enent s that specify the treatment for calls that will be handled only by the
network (for example, call which are not admitted by the call load control mechanism).

Sequence Element Name Sequence Element Type
CallTreatmentType TpCallTreatmentType
ReleaseCause TpCallReleaseCause
AdditionalTreatmentinfo TpCallAdditionalTreatmentinfo

9.2.24 TpCallEventCriteriaResultSet

Defines a set of TpCallEventCriteriaResult.

9.2.25 TpCallEventCriteriaResult

Defines a sequence of data elements that specify arequested call event notification criteria with the associated
assignmentID.

Sequence Element Name Sequence Element Type Sequence Element Description
CallEventCriteria TpCallEventCriteria The event criteria that were specified by the
application.
AssignmentID TpInt32 The associated assignmentlID. This can be used to
disable the notification.

ETSI

58 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

Annex A (normative):
OMG IDL Description of Generic Call Control SCF

The OMG IDL representation of this interface specification is contained in text files (gcc_data.idl and gec_interfaces.idl
contained in archive es _2029150402v010201p0.Z1P) which accompanies the present document.

ETSI

59 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

Annex B (informative):
W3C WSDL Description of Generic Call Control SCF

The W3C WSDL representation of thisinterface specification is contained in text files (gcc_data.wsdl and
gcc_interfaces.wsdl contained in archive es_2029150402v010201p0.ZIP) which accompanies the present document.

ETSI

60 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

Annex C (informative):
Java API Description of the Call Control SCFs

The Java API representation of thisinterface specification can be obtained from the following URL.:

« JavaCdl Control (http://jcp.org/jsr/detail/21.jsp)

Each JSR webpage contains a table identifying the relationships between the different versions of the Parlay,
ETSI/OSA, 3GPP/OSA and JAIN SPA specifications. In addition, each JAIN SPA specification version indicates to
which Parlay, ETSI/OSA and 3GPP/OSA specification versionsit corresponds to.

ETSI

http://jcp.org/jsr/detail/21.jsp

61 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

Annex D (informative):
Contents of 3GPP OSA Rel-5 Call Control

All itemsin Generic Call Control arerelevant for TS 129 198-4-2 V5 (Release 5).

ETSI

62 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

Annex E (informative):
Record of changes

Thefollowing isalist of the changes made to the present document for each release. The list contains the names of all
changed, deprecated, added or removed items in the specifications and not the actual changes. Any type of change
information that isimportant to the reader is put in the final clause of this annex.

Changes are specified as changes to the prior major release, but every minor release will have its own part of the table
alowing the reader to know when the actual change was made.

E1l Interfaces
E.1.1 New
Identifier | Comments
Interfaces added in ES 202 915-4-2 version 1.1.1 (Parlay 4.0)
|
Interfaces added in ES 202 915-4-2 version 1.2.1 (Parlay 4.1)
|
E.1.2 Deprecated
Identifier | Comments
Interfaces deprecated in ES 202 915-4-2 version 1.1.1 (Parlay 4.0)
|
Interfaces deprecated in ES 202 915-4-2 version 1.2.1 (Parlay 4.1)
|
E.1.3 Removed
Identifier \ Comments

Interfaces removed in ES 202 915-4-2 version 1.1.1 (Parlay 4.0)

Interfaces removed in ES 202 915-4-2 version 1.2.1 (Parlay 4.1)

E.2 Methods
E.2.1 New
Identifier | Comments

Methods added in ES 202 915-4-2 version 1.1.1 (Parlay 4.0)

Methods added in ES 202 915-4-2 version 1.2.1 (Parlay 4.1)

ETSI

63 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

E.2.2 Deprecated
Identifier | Comments
Methods deprecated in ES 202 915-4-2 version 1.1.1 (Parlay 4.0)
|
Methods deprecated in ES 202 915-4-2 version 1.2.1 (Parlay 4.1)
|
E.2.3 Modified
Identifier | Comments
Methods modified in ES 202 915-4-2 version 1.1.1 (Parlay 4.0)
|
Methods modified in ES 202 915-4-2 version 1.2.1 (Parlay 4.1)
|
E.2.4 Removed
Identifier | Comments
Methods removed in ES 202 915-4-2 version 1.1.1 (Parlay 4.0)
|
Methods removed in ES 202 915-4-2 version 1.2.1 (Parlay 4.1)
|
E.3 Data Definitions
E.3.1 New
Identifier | Comments
Data Definitions added in ES 202 915-4-2 version 1.1.1 (Parlay 4.0)
|
Data Definitions added in ES 202 915-4-2 version 1.2.1 (Parlay 4.1)
|
E.3.2 Modified
Identifier | Comments
Data Definitions modified in ES 202 915-4-2 version 1.1.1 (Parlay 4.0)
|
Data Definitions modified in ES 202 915-4-2 version 1.2.1 (Parlay 4.1)
TpCallEventCriteriaResult |Modified to match IDL

ETSI

64 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

E.3.3 Removed

Identifier | Comments

Data Definitions removed in ES 202 915-4-2 version 1.1.1 (Parlay 4.0)

Data Definitions removed in ES 202 915-4-2 version 1.2.1 (Parlay 4.1)

E.4 Service Properties

E.4.1 New

Identifier | Comments

Service Properties added in ES 202 915-4-2 version 1.1.1 (Parlay 4.0)

Service Properties added in ES 202 915-4-2 version 1.2.1 (Parlay 4.1)

E.4.2 Deprecated

Identifier | Comments

Service Properties deprecated in ES 202 915-4-2 version 1.1.1 (Parlay 4.0)

Service Properties deprecated in ES 202 915-4-2 version 1.2.1 (Parlay 4.1)

E.4.3 Modified

Identifier | Comments

Service Properties modified in ES 202 915-4-2 version 1.1.1 (Parlay 4.0)

Service Properties modified in ES 202 915-4-2 version 1.2.1 (Parlay 4.1)

E.4.4 Removed

Identifier | Comments

Service Properties removed in ES 202 915-4-2 version 1.1.1 (Parlay 4.0)

Service Properties removed in ES 202 915-4-2 version 1.2.1 (Parlay 4.1)

ETSI

65 ETSI ES 202 915-4-2 V1.2.1 (2003-08)

E.5 Exceptions

E.5.1 New

Identifier | Comments

Exceptions added in ES 202 915-4-2 version 1.1.1 (Parlay 4.0)

Exceptions added in ES 202 915-4-2 version 1.2.1 (Parlay 4.1)

E.5.2 Modified

Identifier | Comments

Exceptions modified in ES 202 915-4-2 version 1.1.1 (Parlay 4.0)

Exceptions modified in ES 202 915-4-2 version 1.2.1 (Parlay 4.1)

E.5.3 Removed

Identifier | Comments

Exceptions removed in ES 202 915-4-2 version 1.1.1 (Parlay 4.0)

Exceptions removed in ES 202 915-4-2 version 1.2.1 (Parlay 4.1)

E.6 Others

ETSI

66

ETSI ES 202 915-4-2 V1.2.1 (2003-08)

History
Document history
V111 January 2003 Publication
V121 June 2003 Membership Approval Procedure MV 20030801: 2003-06-03 to 2003-08-01
Viz2.1 August 2003 Publication

ETSI

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Generic Call Control Service Sequence Diagrams
	4.1 Additional Callbacks
	4.2 Alarm Call
	4.3 Application Initiated Call
	4.4 Call Barring 1
	4.5 Number Translation 1
	4.6 Number Translation 1 (with callbacks)
	4.7 Number Translation 2
	4.8 Number Translation 3
	4.9 Number Translation 4
	4.10 Number Translation 5
	4.11 Prepaid
	4.12 Pre-Paid with Advice of Charge (AoC)

	5 Class Diagrams
	6 Generic Call Control Service Interface Classes
	6.1 Interface Class IpCallControlManager
	6.1.1 Method createCall()
	6.1.2 Method enableCallNotification()
	6.1.3 Method disableCallNotification()
	6.1.4 Method setCallLoadControl()
	6.1.5 Method changeCallNotification()
	6.1.6 Method getCriteria()

	6.2 Interface Class IpAppCallControlManager
	6.2.1 Method callAborted()
	6.2.2 Method callEventNotify()
	6.2.3 Method callNotificationInterrupted()
	6.2.4 Method callNotificationContinued()
	6.2.5 Method callOverloadEncountered()
	6.2.6 Method callOverloadCeased()

	6.3 Interface Class IpCall
	6.3.1 Method routeReq()
	6.3.2 Method release()
	6.3.3 Method deassignCall()
	6.3.4 Method getCallInfoReq()
	6.3.5 Method setCallChargePlan()
	6.3.6 Method setAdviceOfCharge()
	6.3.7 Method getMoreDialledDigitsReq()
	6.3.8 Method superviseCallReq()

	6.4 Interface Class IpAppCall
	6.4.1 Method routeRes()
	6.4.2 Method routeErr()
	6.4.3 Method getCallInfoRes()
	6.4.4 Method getCallInfoErr()
	6.4.5 Method superviseCallRes()
	6.4.6 Method superviseCallErr()
	6.4.7 Method callFaultDetected()
	6.4.8 Method getMoreDialledDigitsRes()
	6.4.9 Method getMoreDialledDigitsErr()
	6.4.10 Method callEnded()

	7 Generic Call Control Service State Transition Diagrams
	7.1 State Transition Diagrams for IpCallControlManager
	7.1.1 Active State
	7.1.2 Notification terminated State

	7.2 State Transition Diagrams for IpCall
	7.2.1 Network Released State
	7.2.2 Finished State
	7.2.3 Application Released State
	7.2.4 No Parties State
	7.2.5 Active State
	7.2.6 1 Party in Call State
	7.2.7 2 Parties in Call State
	7.2.8 Routing to Destination(s) State

	8 Generic Call Control Service Properties
	8.1 List of Service Properties
	8.2 Service Property values for the CAMEL Service Environment

	9 Generic Call Control Data Definitions
	9.1 Generic Call Control Event Notification Data Definitions
	9.1.1 TpCallEventName
	9.1.2 TpCallNotificationType
	9.1.3 TpCallEventCriteria
	9.1.4 TpCallEventInfo

	9.2 Generic Call Control Data Definitions
	9.2.1 IpCall
	9.2.2 IpCallRef
	9.2.3 IpAppCall
	9.2.4 IpAppCallRef
	9.2.5 TpCallIdentifier
	9.2.6 IpAppCallControlManager
	9.2.7 IpAppCallControlManagerRef
	9.2.8 IpCallControlManager
	9.2.9 IpCallControlManagerRef
	9.2.10 TpCallAppInfo
	9.2.11 TpCallAppInfoType
	9.2.12 TpCallAppInfoSet
	9.2.13 TpCallEndedReport
	9.2.14 TpCallFault
	9.2.15 TpCallInfoReport
	9.2.16 TpCallReleaseCause
	9.2.17 TpCallReport
	9.2.18 TpCallAdditionalReportInfo
	9.2.19 TpCallReportRequest
	9.2.20 TpCallAdditionalReportCriteria
	9.2.21 TpCallReportRequestSet
	9.2.22 TpCallReportType
	9.2.23 TpCallTreatment
	9.2.24 TpCallEventCriteriaResultSet
	9.2.25 TpCallEventCriteriaResult

	Annex A (normative): OMG IDL Description of Generic Call Control SCF
	Annex B (informative): W3C WSDL Description of Generic Call Control SCF
	Annex C (informative): Java API Description of the Call Control SCFs
	Annex D (informative): Contents of 3GPP OSA Rel-5 Call Control
	Annex E (informative): Record of changes
	E1 Interfaces
	E.1.1 New
	E.1.2 Deprecated
	E.1.3 Removed

	E.2 Methods
	E.2.1 New
	E.2.2 Deprecated
	E.2.3 Modified
	E.2.4 Removed

	E.3 Data Definitions
	E.3.1 New
	E.3.2 Modified
	E.3.3 Removed

	E.4 Service Properties
	E.4.1 New
	E.4.2 Deprecated
	E.4.3 Modified
	E.4.4 Removed

	E.5 Exceptions
	E.5.1 New
	E.5.2 Modified
	E.5.3 Removed

	E.6 Others

	History

