

ETSI ES 202 212 V1.1.2 (2005-11)

ETSI Standard

Speech Processing, Transmission and Quality Aspects (STQ);
Distributed speech recognition;

Extended advanced front-end feature extraction algorithm;
Compression algorithms;

Back-end speech reconstruction algorithm

�

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 2

Reference
RES/STQ-00084a

Keywords
performance, speech, transmission

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).

In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2005.

All rights reserved.

DECTTM, PLUGTESTSTM and UMTSTM are Trade Marks of ETSI registered for the benefit of its Members.
TIPHONTM and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members.
3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 3

Contents

Intellectual Property Rights ..6

Foreword...6

Introduction ..6

1 Scope ..7

2 References ..8

3 Definitions, symbols and abbreviations ...8
3.1 Definitions..8
3.2 Symbols..9
3.3 Abbreviations ...10

4 System overview ..11

5 Feature extraction description ..12
5.1 Noise reduction ..12
5.1.1 Two stage mel-warped Wiener filter approach...12
5.1.2 Buffering...13
5.1.3 Spectrum estimation ...13
5.1.4 Power spectral density mean...14
5.1.5 Wiener filter design ..15
5.1.6 VAD for noise estimation (VADNest)..16
5.1.7 Mel filter-bank ..18
5.1.8 Gain factorization ...19
5.1.9 Mel IDCT ...20
5.1.10 Apply filter..21
5.1.11 Offset compensation ...21
5.2 Waveform Processing...22
5.3 Cepstrum Calculation ...23
5.3.1 Log energy calculation..23
5.3.2 Pre-emphasis (PE) ..23
5.3.3 Windowing (W) ..23
5.3.4 Fourier transform (FFT) and power spectrum estimation...23
5.3.5 Mel Filtering (MEL-FB)...24
5.3.6 Non-linear transformation (Log)...25
5.3.7 Cepstral coefficients (DCT)..25
5.3.8 Cepstrum calculation output ...26
5.4 Blind equalization...26
5.5 Extension to 11 kHz and 16 kHz sampling frequencies ...26
5.5.1 FFT-based spectrum estimation..26
5.5.2 Mel Filter-Bank ..28
5.5.3 High-frequency band coding and decoding ..28
5.5.4 VAD for noise estimation and spectral subtraction in high-frequency bands...29
5.5.5 Merging spectral subtraction bands with decoded bands..30
5.5.6 Log energy calculation for 16 kHz ...31
5.6 Pitch and class estimation...32
5.6.1 Spectrum and energy computation..32
5.6.2 Voice Activity Detection for Voicing Classification (VADVC) ..33
5.6.3 Low-band noise detection...38
5.6.4 Pre-Processing for pitch and class estimation...38
5.6.5 Pitch estimation ..39
5.6.5.1 Dirichlet interpolation ...40
5.6.5.2 Non-speech and low-energy frames ..42
5.6.5.3 Search ranges specification and processing ..42
5.6.5.4 Spectral peaks determination ..42
5.6.5.5 F0 Candidates generation..44
5.6.5.6 Computing correlation scores..46

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 4

5.6.5.7 Pitch estimate selection ...48
5.6.5.8 History information update ...50
5.6.5.9 Output pitch value ...51
5.6.6 Classification ..51

6 Feature compression...52
6.1 Introduction ..52
6.2 Compression algorithm description..52
6.2.1 Input..52
6.2.2 Vector quantization...52
6.2.3 Pitch and class quantization ..53
6.2.3.1 Class quantization ...53
6.2.3.2 Pitch quantization..54

7 Framing, bit-stream formatting and error protection..55
7.1 Introduction ..55
7.2 Algorithm description...56
7.2.1 Multiframe format ..56
7.2.2 Synchronization sequence...56
7.2.3 Header field ..56
7.2.4 Frame packet stream ...58

8 Bit-stream decoding and error mitigation...58
8.1 Introduction ..58
8.2 Algorithm description...58
8.2.1 Synchronization sequence detection ...58
8.2.2 Header decoding ...59
8.2.3 Feature decompression ...59
8.2.4 Error mitigation ..59
8.2.4.1 Detection of frames received with errors ..59
8.2.4.2 Substitution of parameter values for frames received with errors...60
8.2.4.3 Modification of parameter values for frames received with errors ...60

9 Server feature processing ...63
9.1 lnE and c(0) combination ...63
9.2 Derivatives calculation ...63
9.3 Feature vector selection..63

10 Server side speech reconstruction ..64
10.1 Introduction ..64
10.2 Algorithm description...64
10.2.1 Speech reconstruction block diagram ...64
10.2.2 Pitch Tracking and Smoothing..65
10.2.2.1 First stage - gross pitch error correction..66
10.2.2.2 Second stage - voiced/unvoiced decision and other corrections ...68
10.2.2.3 Third stage - smoothing ..69
10.2.2.4 Voicing class correction..69
10.2.3 Harmonic Structure Initialization ...70
10.2.4 Unvoiced phase synthesis ...70
10.2.5 Cepstra de-equalization...70
10.2.6 Transformation of features extracted at 16 kHz..71
10.2.7 Harmonic magnitudes reconstruction ...71
10.2.7.1 High order cepstra recovery ..71
10.2.7.2 Solving front-end equation..73
10.2.7.3 Cepstra to magnitudes transformation...77
10.2.7.4 Combined magnitudes estimate calculation ..79
10.2.7.4.1 Combined magnitude estimate for unvoiced harmonics..79
10.2.7.4.2 Combined magnitude estimate for voiced harmonics..80
10.2.8 All-pole spectral envelope modelling ...81
10.2.9 Postfiltering...83
10.2.10 Voiced phase synthesis ...84
10.2.11 Line spectrum to time-domain transformation..86
10.2.11.1 Mixed-voiced frames processing ..86
10.2.11.2 Filtering very high-frequency harmonics ..86

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 5

10.2.11.3 Energy normalization ..87
10.2.11.4 STFT spectrum synthesis ..87
10.2.11.5 Inverse FFT ...87
10.2.12 Overlap-Add ...88

Annex A (informative): Voice Activity Detection (VAD)..89

A.1 Introduction ..89

A.2 Stage 1 - Detection ...89

A.3 Stage 2 - VAD Logic..90

Annex B (informative): Bibliography...92

History ..93

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 6

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This ETSI Standard (ES) has been produced by ETSI Technical Committee Speech Processing, Transmission and
Quality Aspects (STQ).

Introduction
The performance of speech recognition systems receiving speech that has been transmitted over mobile channels can be
significantly degraded when compared to using an unmodified signal. The degradations are as a result of both the low
bit rate speech coding and channel transmission errors. A Distributed Speech Recognition (DSR) system overcomes
these problems by eliminating the speech channel and instead using an error protected data channel to send a
parameterized representation of the speech, which is suitable for recognition. The processing is distributed between the
terminal and the network. The terminal performs the feature parameter extraction, or the front-end of the speech
recognition system. These features are transmitted over a data channel to a remote "back-end" recognizer. The end
result is that the degradation in performance due to transcoding on the voice channel is removed and channel
invariability is achieved.

The present document presents a standard for a front-end to ensure compatibility between the terminal and the remote
recognizer. The first ETSI standard DSR front-end ES 201 108 [1] was published in February 2000 and is based on the
Mel-Cepstrum representation that has been used extensively in speech recognition systems. This second standard is for
an Advanced DSR front-end that provides substantially improved recognition performance in background noise.
Evaluation of the performance during the selection of the present document showed an average of 53 % reduction in
speech recognition error rates in noise compared to ES 201 108 [1].

For some applications, it may be necessary to reconstruct the speech waveform at the back-end. Examples include:

• Interactive Voice Response (IVR) services based on the DSR of "sensitive" information, such as banking and
brokerage transactions. DSR features may be stored for future human verification purposes or to satisfy
procedural requirements.

• Human verification of utterances in a speech database collected from a deployed DSR system. This database
can then be used to retrain and tune models in order to improve system performance.

• Applications where machine and human recognition are mixed (e.g. human assisted dictation).

In order to enable the reconstruction of speech waveform at the back-end, additional parameters such as fundamental
frequency (F0) and voicing class need to be extracted at the front-end, compressed, and transmitted. The availability of
tonal parameters (F0 and voicing class) is also useful in enhancing the recognition accuracy of tonal languages,
e.g. Mandarin, Cantonese, and Thai.

The present document specifies a proposed standard for an Extended Advanced Front-End (XAFE) that extends the
noise-robust advanced front-end with additional parameters, viz., fundamental frequency F0 and voicing class. It also
specifies the back-end speech reconstruction algorithm using the transmitted parameters.

http://webapp.etsi.org/IPR/home.asp

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 7

1 Scope
The present document specifies algorithms for extended advanced front-end feature extraction, their transmission,
back-end pitch tracking and smoothing, and back-end speech reconstruction which form part of a system for distributed
speech recognition. The specification covers the following components:

a) the algorithm for advanced front-end feature extraction to create Mel-Cepstrum parameters;

b) the algorithm for extraction of additional parameters, viz., fundamental frequency F0 and voicing class;

c) the algorithm to compress these features to provide a lower data transmission rate;

d) the formatting of these features with error protection into a bitstream for transmission;

e) the decoding of the bitstream to generate the advanced front-end features at a receiver together with the
associated algorithms for channel error mitigation;

f) the algorithm for pitch tracking and smoothing at the back-end to minimize pitch errors;

g) the algorithm for speech reconstruction at the back-end to synthesize intelligible speech.

NOTE: The components a), c), d) and e) are already covered by the ES 202 050 [2]. Besides these (four)
components, the present document covers the components b), f) and g) to provide back-end speech
reconstruction and enhanced tonal language recognition capabilities. If these capabilities are not of
interest, the reader is better served by (un-extended) ES 202 050 [2].

The present document does not cover the "back-end" speech recognition algorithms that make use of the received DSR
advanced front-end features.

The algorithms are defined in a mathematical form, pseudo-code, or as flow diagrams. Software implementing these
algorithms written in the 'C' programming language is contained in the ZIP file es_202212v010101p0.zip which
accompanies the present document. Conformance tests are not specified as part of the standard. The recognition
performance of proprietary implementations of the standard can be compared with those obtained using the reference 'C'
code on appropriate speech databases.

It is anticipated that the DSR bitstream will be used as a payload in other higher level protocols when deployed in
specific systems supporting DSR applications. In particular, for packet data transmission, it is anticipated that the IETF
AVT RTP DSR payload definition (see bibliography) will be used to transport DSR features using the frame pair format
described in clause 7.

The extended advanced DSR standard is designed for use with discontinuous transmission and to support the
transmission of Voice Activity information. Annex A describes a VAD algorithm that is recommended for use in
conjunction with the Advanced DSR standard, however it is not part of the present document and manufacturers may
choose to use an alternative VAD algorithm.

The Extended Advanced Front-End (XAFE) incorporates tonal information, viz., fundamental frequency F0 and voicing
class, as additional parameters. This information can be used for enhancing the recognition accuracy of tonal languages,
e.g. Mandarin, Cantonese, and Thai.

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 8

2 References
The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

• References are either specific (identified by date of publication and/or edition number or version number) or
non-specific.

• For a specific reference, subsequent revisions do not apply.

• For a non-specific reference, the latest version applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

[1] ETSI ES 201 108: "Speech Processing, Transmission and Quality Aspects (STQ); Distributed
speech recognition; Front-end feature extraction algorithm; Compression algorithms".

[2] ETSI ES 202 050: "Speech Processing, Transmission and Quality Aspects (STQ); Distributed
speech recognition; Advanced front-end feature extraction algorithm; Compression algorithms".

[3] ETSI EN 300 903: "Digital cellular telecommunications system (Phase 2+) (GSM); Transmission
planning aspects of the speech service in the GSM Public Land Mobile Network (PLMN) system
(GSM 03.50)".

3 Definitions, symbols and abbreviations

3.1 Definitions
For the purposes of the present document, the following terms and definitions apply:

analog-to-digital conversion: electronic process in which a continuously variable (analog) signal is changed, without
altering its essential content, into a multi-level (digital) signal

blind equalization: process of compensating the filtering effect that occurs in signal recording

NOTE: In the present document blind equalization is performed in the cepstral domain.

DC-offset: Direct Current (DC) component of the waveform signal

discrete cosine transform: process of transforming the log filter-bank amplitudes into cepstral coefficients

fast fourier transform: fast algorithm for performing the discrete Fourier transform to compute the spectrum
representation of a time-domain signal

feature compression: process of reducing the amount of data to represent the speech features calculated in feature
extraction

feature extraction: process of calculating a compact parametric representation of speech signal features which are
relevant for speech recognition

NOTE: The feature extraction process is carried out by the front-end algorithm.

feature vector: set of feature parameters (coefficients) calculated by the front-end algorithm over a segment of speech
waveform

framing: process of splitting the continuous stream of signal samples into segments of constant length to facilitate
blockwise processing of the signal

frame pair packet: definition is specific to the present document: the combined data from two quantized feature
vectors together with 4 bits of CRC

http://docbox.etsi.org/Reference

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 9

front-end: part of a speech recognition system which performs the process of feature extraction

magnitude spectrum: absolute-valued Fourier transform representation of the input signal

multiframe: grouping of multiple frame vectors into a larger data structure

mel-frequency warping: process of non-linearly modifying the frequency scale of the Fourier transform representation
of the spectrum

mel-frequency cepstral coefficients: cepstral coefficients calculated from the mel-frequency warped Fourier transform
representation of the log magnitude spectrum

notch filtering: filtering process in which the otherwise flat frequency response of the filter has a sharp notch at a
predefined frequency

NOTE: In the present document, the notch is placed at the zero frequency, to remove the DC component of the
signal.

offset compensation: process of removing DC offset from a signal

power spectral density: squared magnitude spectrum of the signal

pre-emphasis: filtering process in which the frequency response of the filter has emphasis at a given frequency range

NOTE: In the present document, the high-frequency range of the signal spectrum is pre-emphasized.

sampling rate: number of samples of an analog signal that are taken per second to represent it digitally

SNR-dependent Waveform Processing (SWP): processing of signal waveform with objective to emphasize high-SNR
waveform portions and de-emphasize low-SNR waveform portions

voice activity detection: process of detecting voice activity in the signal

NOTE: In the present document one voice activity detector is used for noise estimation and a second one is used
for non-speech frame dropping.

wiener filtering: filtering of signal by using Wiener filter (filter designed by using Wiener theory)

NOTE: In this work, objective of Wiener filtering is to de-noise signal

windowing: process of multiplying a waveform signal segment by a time window of given shape, to emphasize
pre-defined characteristics of the signal

zero-padding: method of appending zero-valued samples to the end of a segment of speech samples for performing a
FFT operation

3.2 Symbols
For the purposes of the present document, the following symbols apply:

For feature extraction:

bin FFT frequency index
c(i) cepstral coefficients; used with appropriate subscript
E(k) filter-bank energy; used with appropriate subscript
H(bin) or H(k) Wiener filter frequency characteristic; used with appropriate subscript
h(n) Wiener filter impulse response; used with appropriate subscript
k filter-bank band index
KFB number of bands in filter-bank

lnE log-compressed energy feature appended to cepstral coefficients
n waveform signal time index
N length, (e.g. frame length, FFT length, ...); used with appropriate subscript
P(bin) power spectrum; used with appropriate subscript
S(k) log filter-bank energy; used with appropriate subscript
s(n) waveform signal; used with appropriate subscript

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 10

t frame time index
TPSD number of frames used in the PSD Mean technique

w(n) windowing function in time domain; used with appropriate subscript
W(bin) frequency window
X(bin) FFT complex output

For compression:

Idx i, i + 1 (t) codebook index
N i, i + 1 size of the codebook (compression)
Q i, i + 1 compression codebook
qj

i, i + 1 jth codevector in the codebook Q i, i + 1

y(t) feature vector with 14 components

3.3 Abbreviations
For the purposes of the present document, the following abbreviations apply:

APM All-Pole spectral envelope Modelling
AVT Audio/Video Transport
BPL Break Point Lists
CDE Cepstra De-Equalization
CLS CLaSsification
COMB COMBined magnitudes estimate calculation
CRC Cyclic Redundancy Code
CTM Cepstra To Magnitudes transformation
DC Direct Current
DCT Discrete Cosine Transform
DSR Distributed Speech Recognition
FB Filter-Bank
FFT Fast Fourier Transform
FIR Finite Impulse Response
FVS Feature Vector Selection
HFB High Frequency Band
HOCR High Order Cepstra Recovery
HSI Harmonic Structure Initialization
IDCT Inverse Discrete Cosine Transform
IETF Internet Engineering Task Force
IVR Interactive Voice Response
LBND Low-Band Noise Detection
LFB Low Frequency Band
LSB Least Significant Bit
LSTD Line Spectrum to Time-Domain transformation
MEL-FB MEL Filter Bank
MF Mel-Filtering
MFCC Mel-Frequency Cepstral Coefficients
MSB Most Significant Bit
NR Noise Reduction
OLA OverLap-Add
PF PostFiltering
PITCH PITCH estimation
PP Pre-Processing
PSD Power Spectral Density
PTS Pitch Tracking and Smoothing
QMF Quadrature-Mirror Filters
RTP Real Time Protocol
SEC Spectrum and Energy Computation
SFEQ Solving Front-Equation
SNR Signal to Noise Ratio
SS Spectral Subtraction

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 11

STFT Short Time Fourier Transform
SWP SNR-dependent Waveform Processing
UPH Unvoiced PHase
VAD Voice Activity Detection (used for non-speech frame dropping)
VADNest Voice Activity Detection (used for Noise estimation)
VADVC Voice Activity Detection for Voicing Classification
VC Voicing Class
VPH Voiced Phase synthesis
VQ Vector Quantizer
XAFE eXtended Advanced Front-End

4 System overview
This clause describes the distributed speech recognition front-end algorithm based on mel-cepstral feature extraction
technique. The specification covers the computation of feature vectors from speech waveforms sampled at different
rates (8 kHz, 11 kHz and 16 kHz).

The feature vectors consist of 13 static cepstral coefficients and a log-energy coefficient.

The feature extraction algorithm defined in this clause forms a generic part of the specification while clauses 4 to 6
define the feature compression and bit-stream formatting algorithms which may be used in specific applications.

The characteristics of the input audio parts of a DSR terminal will have an effect on the resulting recognition
performance at the remote server. Developers of DSR speech recognition servers can assume that the DSR terminals
will operate within the ranges of characteristics as specified in EN 300 903 [3]. DSR terminal developers should be
aware that reduced recognition performance may be obtained if they operate outside the recommended tolerances.

Figure 4.1 shows the block scheme of the proposed front-end and its implementation in both the terminal and server
sides. In the terminal part, which is shown in figure 4.1(a), speech features are computed from the input signal in the
Feature Extraction part. Then, features are compressed and further processed for channel transmission.

In the Feature Extraction part, noise reduction is performed first. Then, waveform processing is applied to the de-noised
signal and cepstral features are calculated. At the end, blind equalization is applied to the cepstral features. The Feature
Extraction part also contains an 11 kHz and 16 kHz extension block for handling these two sampling frequencies. Voice
Activity Detection (VAD) for the non-speech frame dropping is also implemented in Feature Extraction.

At the server side (see figure 4.1(b)), bit-stream decoding, error mitigation and decompression are applied. Before
entering the back-end, an additional server feature processing is performed. All blocks of the proposed front-end are
described in detail in the following clauses.

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 12

11 kHz and 16 kHz
Extension

VAD

Noise
Reduction

Pitch &
class

estimation

Waveform
Processing

Cepstrum

Calculation

Blind
Equalization

Feature

Compression

Framing,

Bit - Stream
Formatting,

Error Protection

Input

Signal

To

Channel

Terminal

Terminal Front - End

Feature Extraction

(a)

Bit - Stream Decoding,
Error Mitigation

Feature

Decompression

Server Feature
Processing

Back - End

Pitch Tracking
& Smoothing

Speech
Reconstruction

From
Channel

Server

Tonal Features

Output Speech

(b)

Figure 4.1: Block scheme of the proposed extended front-end
(a) shows blocks implemented at the terminal side and

(b) shows blocks implemented at the server side

5 Feature extraction description

5.1 Noise reduction

5.1.1 Two stage mel-warped Wiener filter approach

Noise reduction is based on Wiener filter theory and it is performed in two stages. Figure 5.1 shows the main
components of the Noise Reduction block of the proposed front-end. The input signal is first de-noised in the first stage
and the output of the first stage then enters the second stage. In the second stage, an additional, dynamic noise reduction
is performed, which is dependent on the Signal-to-Noise Ratio (SNR) of the processed signal.

Noise reduction is performed on a frame-by-frame basis. After framing the input signal, the linear spectrum of each
frame is estimated in the Spectrum Estimation block. In PSD Mean block (Power Spectral Density), the signal spectrum
is smoothed along the time (frame) index. Then, in the WF Design block, frequency domain Wiener filter coefficients
are calculated by using both the current frame spectrum estimation and the noise spectrum estimation. The noise
spectrum is estimated from noise frames, which are detected by a Voice Activity Detector (VADNest). Linear Wiener
filter coefficients are further smoothed along the frequency axis by using a Mel Filter-Bank, resulting in a Mel-warped
frequency domain Wiener filter. The impulse response of this Mel-warped Wiener filter is obtained by applying a Mel
IDCT (Mel-warped Inverse Discrete Cosine Transform). Finally, the input signal of each stage is filtered in the Apply
Filter block. Notice from figure 5.1 that the input signal to the second stage is the output signal from the first stage. At
the end of Noise Reduction, the DC offset of the noise-reduced signal is removed in the OFF block.

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 13

Additionally, in the second stage, the aggression of noise reduction is controlled by Gain Factorization block.

Noise Reduct ion

2nd Stage

1st Stage

Spectrum

Estimation

PSD

Mean

WF

Design

Mel

Filter-Bank

Mel

IDCT

Apply

Filter

Spectrum

Estimation

PSD

Mean

WF

Design

Mel

Filter-Bank

Mel

IDCT

Apply

Filter

Gain

Factorization

sin(n)

snr_of (n)

VADNest

OFF

Figure 5.1: Block scheme of noise reduction

5.1.2 Buffering

The input of the noise reduction block is a 80-sample frame. A 4-frame (frame 0 to frame 3) buffer is used for each
stage of the noise reduction. At each new input frame, the 2 buffers are shifted by one frame. The new input frame
becomes frame 3 of the first buffer. Then the frame 1 (from position 80 to position 159 in the buffer) of the first buffer
is denoised and this denoised frame becomes frame 3 of the second buffer. The frame 1 of the second buffer is denoised
and this denoised frame is the output of the noise reduction block. Hence at each stage of the noise reduction block,
there is a latency of 2 frames (20 ms). For each stage of the noise reduction block, the spectrum estimation is performed
on the window which starts at position 60 and ends at position 259.

5.1.3 Spectrum estimation

Input signal is divided into overlapping frames of Nin samples. 25 ms (Nin = 200) frame length and 10ms (80 samples)

frame shift are used. Each frame ()nsin is windowed by a Hanning window of length Nin, ()nwHann , like:

 () () () 10 , −≤≤×= inHanninw Nnnwnsns (5.1)

where:

 () ()2 0,5
0,5 0 5 cosHann

in

n
w n

N

π × × + 
= − × ×  

 
 (5.2)

Then, zeros are padded from the sample Nin up to the sample NFFT -1, where NFFT =256 is the Fast Fourier Transform

(FFT) length:

 () ()




−≤≤
−≤≤

=
1 ,0

10 ,

FFTin

inw
FFT NnN

Nnns
ns (5.3)

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 14

To get the frequency representation of each frame, the FFT is applied to ()nsFFT like:

 () (){ }nsFFTbinX FFT= (5.4)

where bin denotes the FFT frequency index.

The power spectrum of each frame, () 20 FFTNbinbinP ≤≤ is computed by applying the power of 2 function to the

FFT bins:

 () () 20 ,
2

FFTNbinbinXbinP ≤≤= (5.5)

The power spectrum ()binP is smoothed like:

 () () ()
40 ,

2

122
FFTin Nbin

binPbinP
binP <≤+×+×= (5.6)

 () ()24 FFTFFTin NPNP =

By this smoothing operation, the length of the power spectrum is reduced to 14 += FFTSPEC NN .

5.1.4 Power spectral density mean

This module computes for each power spectrum bin ()binPin
 the mean over the last

PSDT frames.

 + ... +
SPECN

()()1, −− PSDin TtbinP ()tbinPin ,

PSDT

PSDT

1

Figure 5.2: Mean computation over the last TPSD frames as performed in PSD mean

Power Spectral Density mean (PSD mean) is calculated as:

 () () 10for ,,
1

,
1

0
_ −≤≤−= ∑

−

=
SPEC

T

i
in

PSD
PSDin NbinitbinP

T
tbinP

PSD

 (5.7)

where the chosen value for
PSDT is 2 and t is frame (time) index. Note that throughout the present document, we use

frame index t only if it is necessary for explanation. If the frame index is dropped, current frame is referred.

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 15

5.1.5 Wiener filter design

A forgetting factor lambdaNSE (used in the update of the noise spectrum estimate in first stage of noise reduction) is
computed for each frame depending on the frame time index t :

()_ _ _

1 1

_

if t NB FRAME THRESHOLD NSE

then

lambdaNSE t

else

lambdaNSE LAMBDA NSE

<

= −

=

 (5.8)

where _ _ _NB FRAME THRESHOLD NSE equals 100 and _LAMBDA NSE equals 0,99.

In first stage the noise spectrum estimate is updated according to the following equation, dependent on the flagVADNest

from VADNest:

() () () ()()
() ()

1/ 2 1/ 2 1/ 2
_

1/ 2 1/ 2

, , 1 1 , ,

, ,

noise n noise n in PSD n

noise noise n

P bin t max lambdaNSE P bin t lambdaNSE P bin t EPS

P bin t P bin t

 = × − + − ×


=

 (5.9)

where EPS equals)0,10exp(− , t represents the current frame index, nt represents the index of the last non-speech

frame and ()_ ,in PSDP bin t is the output of the PSD Mean module. ()1/ 2 , 1noiseP bin − is initialized to EPS .

In the second stage the noise spectrum estimate is updated permanently according to the following equation:

()

() () () ()

() () ()()
() ()()()

() ()
()()

() EPStbinP

then

EPStbinPif

upDatetbinPtbinP

tbinPtbinP

tbinPtbinPtbinPupDate

else

tbinPlambdaNSEtbinPlambdaNSEtbinP

tlambdaNSE

then

tif

noise

noise

noisenoise

noisePSDin

noisePSDinPSDin

PSDinnoisenoise

=

<

×−=

−×++×

−+×+=

×−+−×=
−=

<

,

,

1,,

1,,1,0111

1,,,1,09,0

,11,,

11

11

21

21

_

__

_

 (5.10)

Then the noiseless signal spectrum is estimated using a "decision-directed" approach:

 () () () () ()1/ 2 1/ 2 1/ 2 1/ 2
3 _, , 1 1 , ,den den in PSD noiseP bin t BETA P bin t BETA T P bin t P bin t = × − + − × − 

 (5.11)

()1/ 2 , 1denP bin − is initialized to 0, BETA equals 0,98 and the threshold function T is given by:

 () () (), if , 0
,

0 otherwise

z bin t z bin t
T z bin t

 >
  =  


 (5.12)

Then the a priori SNR (,)bin tη is computed as:

 ()
()

,
(,)

,
den

noise

P bin t
bin t

P bin t
η = (5.13)

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 16

The filter transfer function (,)H bin t is obtained according to the following equation:

 (,)
(,)

1 (,)

bin t
H bin t

bin t

η
η

=
+

 (5.14)

The filter transfer function (,)H bin t is used to improve the estimation of the noiseless signal spectrum:

 () () ()1/ 2 1/ 2
2 _, , ,den in PSDP bin t H bin t P bin t= (5.15)

Then an improved a priori SNR 2 (,)bin tη is obtained:

 ()
()

22 ,
(,) max ,

,
den

2 TH
noise

P bin t
bin t

P bin t
η η

 
=   

 

 (5.16)

where THη equals 0,079 432 823 (value corresponding to a SNR of -22 dB).

The improved transfer function 2 (,)H bin t is then obtained according to the following equation:

 2
2

2

(,)
(,)

1 (,)

bin t
H bin t

bin t

η
η

=
+

, 10 −≤≤ SPECNbin (5.17)

The improved transfer function 2 (,)H bin t is then used to calculate the noiseless signal spectrum ()1/ 2
3 ,denP bin t that will

be used for the next frame in Equation (5.11):

 () () ()1/ 2 1/ 2
3 2, , ,den inP bin t H bin t P bin t= (5.18)

5.1.6 VAD for noise estimation (VADNest)

A forgetting factor lambdaLTE (used in the update of the long-term energy) is computed for each frame using the
frame time index t :

()_ _ _

1 1

_

if t NB FRAME THRESHOLD LTE

then

lambdaLTE t

else

lambdaLTE LAMBDA LTE

<

= −

=

 (5.19)

where _ _ _NB FRAME THRESHOLD LTE equals 10 and _LAMBDA LTE equals 0,97.

Then the logarithmic energy frameEn of the M (M = 80) last samples of the input signal ()ins n is computed:

 ()1 2

0
64 ()16

0,5 ln
ln 2 64

M

ini
s n

frameEn

−

=
 +
 = + ×
 
 
 

∑ (5.20)

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 17

Then frameEn is used in the update of meanEn :

()()

()

() ()()

() ()

() ()

_ _ _

_

_

1

1

frameEn meanEn SNR THRESHOLD UPD LTE

if OR

t MIN FRAME

then

if frameEn meanEN OR t MIN FRAME

then

meanEn meanEn lambdaLTE frameEn meanEn

else

meanEn meanEn lambdaLTEhigherE frameEn meanEn

if meanEn

 − <
 
 
  <
 

< <

= + − × −

= + − × −

<()_ _ENERGY FLOOR then meanEn ENERGY FLOOR=

 (5.21)

where _ _ _SNR THRESHOLD UPD LTE equals 20, _ENERGY FLOOR equals 80, _MIN FRAME equals 10 and

lambdaLTEhigherE equals 0,99.

Then frameEn and meanEn are used to decide if the current frame is speech (1NestflagVAD =) or not

(0NestflagVAD =):

()

()()

()

()

4

_ _

1

1

_ _ _

0

! 0

Nest

if t

then

if frameEn meanEn SNR THRESHOLD VAD

then

flagVAD

nbSpeechFrame nbSpeechFrame

else

if nbSpeechFrame MIN SPEECH FRAME HANGOVER

then

hangOver HANGOVER

nbSpeechFrame

if hangOver

then

hangOver hang

>

− >

=
= +

>

=
=

=

= 1

1

0

Nest

Nest

Over

flagVAD

else

flagVAD

−
=

=

 (5.22)

where _ _SNR THRESHOLD VAD equals 15, _ _ _MIN SPEECH FRAME HANGOVER equals 4

and HANGOVER equals 15.

nbSpeechFrame , meanEn ,
NestflagVAD and hangOver are initialized to 0. The frame time index t is initialised to 0

and is incremented each frame by 1 so that it equals 1 for the first frame processed.

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 18

5.1.7 Mel filter-bank

The linear-frequency Wiener filter coefficients () ,10 ,2 −≤≤ SPECNbinbinH (computed by formula (5.17)) are

smoothed and transformed to the Mel-frequency scale. Mel-warped Wiener filter coefficients ()kH mel_2
 are estimated

by using triangular-shaped, half-overlapped frequency windows applied on ()binH 2
. To obtain the central frequencies

of FB bands in terms of FFT bin indices, ()kbincentr
, the linear frequency scale flin was transformed to mel scale by

using the following formula:

 { } ()7001log5952 10 linlin ffMEL +×= (5.23)

Then, the central frequency of the k-th band, fcentr(k), is calculated as:

 ()
()

FB

kf

centr Kkkf
mel

≤≤









−×= 1for ,110700 2595 (5.24)

with KFB = 23 and

 () { }
1

2_

+
×=

FB

samplin
mel K

fMEL
kkf (5.25)

where 0008_ =samplinf is the sampling frequency. Additionally, two marginal FB bands with central frequencies

fcentr(0) = 0 and () 21 _ samplinFBcentr fKf =+ are added to the KFB = 23 Mel FB bands for purposes of following

DCT transformation to the time domain; thus, in total we calculate KFB + 2 = 25 Mel-warped Wiener filter coefficients.
The FFT bin index corresponding to central frequencies is obtained as:

 () () ()













−××= 12

_
SPEC

samplin

centr
centr N

f

kf
roundkbin (5.26)

Frequency windows W(k,i) for FBKk ≤≤1 are calculated as:

 () ()
() () () ()kbinikbin

kbinkbin

kbini
ikW centrcentr

centrcentr

centr ≤≤+−
−−

−−
= 11for ,

1

1
, (5.27a)

 () ()
() () () ()11for ,

1
1, +≤≤+

−+
−

−= kbinikbin
kbinkbin

kbini
ikW centrcentr

centrcentr

centr (5.27b)

and W(k,i) = 0 for other i. For k = 0

 () () () () () 1010for ,
01

1,0 −−≤≤
−

−= centrcentr
centrcentr

binbini
binbin

i
iW (5.27c)

and W(0,i) = 0 for other i. For k = KFB + 1

 () ()
() () () ()11for ,

1
,1 +≤≤+

−+
−

=+ FBcentrFBcentr
FBcentrFBcentr

FBcentr
FB KbiniKbin

KbinKbin

Kbini
iKW (5.27d)

and W(KFB+1,i)=0 for other i. Mel-warped Wiener filter coefficients ()kH mel_2
 for 10 +≤≤ FBKk are computed as:

 ()
()

() ()∑
∑

−

=
−

=

×=
1

0
21

0

_2 ,

,

1 SPEC

SPEC

N

i
N

i

mel iHikW

ikW

kH (5.28)

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 19

5.1.8 Gain factorization

In this block, factorization of the Wiener filter Mel-warped coefficients (or gains), ()kH mel_2 , is performed to control

the aggression of noise reduction in the second stage.

In the first stage, de-noised frame signal energy ()tEden
, where t is frame index starting with 1, is calculated by using

the de-noised power spectrum ()tbinPden ,3 computed by (5.18) as:

nbSpeechFrame , meanEn , NestflagVAD and hangOver are initialized to 0.

 () ()
1

1/ 2
3

0

,
SPECN

den den
bin

E t P bin t
−

=

= ∑ (5.29)

In the second stage, the noise energy at the current frame index t is estimated by using the noise power spectrum

()tbinPnoise , as:

 () ()
1

1/ 2

0

,
SPECN

noise noise
bin

E t P bin t
−

=

= ∑ (5.30)

Then, smoothed SNR is evaluated by using three de-noised frame energies (notice there is two frames delay between
the first and the second stage) and noise energy like:

() () ()
() () ()

()

() ()

() 3100

log320

0001,0

12

10

−=

×=

>
××
×−×−

=

tSNR

else

RatiotSNR

then

Ratioif

tEtEtE

tEtEtE
Ratio

aver

aver

noisenoisenoise

dendenden

 (5.31)

To decide the degree of aggression of the second stage Wiener filter for each frame, the low SNR level is tracked by
using the following logic:

() ()(){ }
()

() () () ()() ()

() ()1

11

 calculate

10or 101

__

_

−=

×−+−×=

<<−−

tSNRtSNR

else

tSNRtλtSNRtλtSNR

tλ

ttSNRtSNRif

tracklowtracklow

averSNRlow_trackSNRlow_track

SNR

tracklowaver

 (5.32)

with
tracklowSNR _

 initialized to zero. The forgetting factor ()tλSNR
 is calculated by the following logic:

{ }
()

() (){ }
()

() 99,0

95,0

11

10

=

=

<

−=
<

t λ

else

tλ

tSNRtSNRif

else

ttλ

tif

SNR

SNR

low_trackaver

SNR

 (5.33)

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 20

The intention of gain factorization is to apply more aggressive noise reduction to purely noisy frames and less
aggressive noise reduction to frames also containing speech. At this point, the current SNR estimation, ()tSNRaver

 is

compared to the low SNR tracked value, ()tSNR tracklow _
, and the Wiener filter gain factorization coefficient ()tGFα is

updated. This is done by the following logic:

()()

() ()(){ }
() ()

(){ }
()

() ()
(){ }

() 1,0

1,0

3,01

8,0

8,0

15,01

5,3

100

_

=
<

−−=

=
>

+−=

+<

>

t

tif

tt

else

t

tif

tt

tSNRtSNRif

then

tEif

GF

GF

GFGF

GF

GF

GFGF

tracklowaver

den

α
α

αα

α
α

αα

 (5.34)

with () 8,00 =GFα .

The second stage Wiener filter gains are multiplied by ()tGFα like:

 () ()() () () 10 ,,1, _2__2 +≤≤×+−= FBmelGFGFGFmel KktkHtttkH αα (5.35)

The coefficient ()tGFα takes values from 0,1 to 0,8, which means that the aggression of the second stage Wiener filter

is reduced to 10 % for speech + noise frames and to 80 % for noise frames.

5.1.9 Mel IDCT

The time-domain impulse response of Wiener filter ()nhWF
 is computed from the Mel Wiener filter coefficients

()kH mel_2
 from clause 5.1.6 (in the second stage, ()kH GFmel __2 from equation (5.35)) by using Mel-warped inverse

DCT:

 () () () 10 ,,
1

0
_2 +≤≤×= ∑

+

=
FB

K

k
melmelWF KnnkIDCTkHnh

FB

 (5.36)

where ()nkIDCTmel , are Mel-warped inverse DCT basis computed as follows.

First, central frequencies of each band are computed for
FBKk ≤≤1 like:

 ()
()

() ()∑
∑

−

=
−

=

−×
××=

1

0
1

0

12
,

,

1 SPEC

SPEC

N

i SPEC

samp

N

i

centr N

f
iikW

ikW

kf (5.37)

where fsamp = 8 000 is sampling frequency. fcentr(0) = 0 and fcentr(KFB + 1) = fsamp / 2. Then, Mel-warped inverse

DCT basis are obtained as:

 () () () 10 ,10 ,
2

cos, +≤≤+≤≤×












 ×××= FBFB
samp

centr
mel KnKkkdf

f

kfn
nkIDCT

π (5.38)

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 21

where ()kf centr
 is central frequency corresponding to the Mel FB index k and ()kdf is computed like:

 () () ()
FB

samp

centrcentr Kk
f

kfkf
kdf ≤≤

−−+
= 1 ,

11
 (5.39)

 () () () () () ()
samp

FBcentrFBcentr
FB

samp

centrcentr

f

KfKf
Kdf

f

ff
df

−+
=+

−
=

1
1 and

01
0

The impulse response of Wiener filter is mirrored as:

 () ()
()() ()




+×≤≤+−++×
+≤≤

=
122 ,112

10 ,
_

FBFBFBWF

FBWF
mirrWF KnKnKh

Knnh
nh (5.40)

5.1.10 Apply filter

The causal impulse response _ (,)WF caush n t is obtained from _ (,)WF mirrh n t according to the following relations:

 ()
_ _

_ _

(,) (1,), 0, ,

(,) (1,), 1, ,2 1
WF caus WF mirr FB FB

WF caus WF mirr FB FB FB

h n t h n K t n K

h n t h n K t n K K

= + + =
 = − − = + × +

L

L

 (5.41)

The causal impulse response _ (,)WF caush n t is then truncated giving _ (,)WF trunch n t :

 ()()_ _(,) 1 1 2, , 0, , 1WF trunc WF caus FBh n t h n K FL t n FL= + + − − = −L (5.42)

where the filter length FL equals 17.

The truncated impulse response is weighted by a Hanning window:

()

_ _

2 0,5
(,) 0,5 0,5 cos (,), 0 1WF w WF trunc

n
h n t h n t n FL

FL

π × × +  = − × × ≤ ≤ −  
   

 (5.43)

Then the input signal ins
 is filtered with the filter impulse response _ (,)WF wh n t

 to produce the noise-reduced signal

nrs :

 ()()
()

()
()

1 2

_
1 2

() 1 2 , 0 1
FL

nr WF w in
i FL

s n h i FL s n i n M
−

=− −

= + − × − ≤ ≤ −∑ (5.44)

where the filter length FL equals 17 and the frame shift interval M equals 80.

5.1.11 Offset compensation

To remove the DC offset, a notch filtering operation is applied to the noise-reduced signal like:

 () () () () () 10 ,11024111 __ −≤≤−×−+−−= Mnnsnsnsns ofnrnrnrofnr
 (5.45)

where ()1−nrs and ()1_ −ofnrs correspond to the last samples of the previous frame and equal 0 for the first frame, and

80=M is the frame shift interval.

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 22

5.2 Waveform Processing

Smoothed
Energy Contour

Peak
Picking

Waveform
SNR Weighting

waveform

from NR

waveform

to CC

Figure 5.3: Main components of SNR-dependent waveform processing

SNR-dependent Waveform Processing (SWP) is applied to the noise reduced waveform that comes out from the Noise
Reduction (NR) block. The noise reduction block outputs 80-sample frames that are stored in a 240-sample buffer (from
sample 0 to sample 239). The waveform processing block is applied on the window that starts at sample 1 and ends at
sample 200. Figure 5.3 describes the basic components of SWP. In the Smoothed Energy Contour block, the instant
energy contour is computed for each input frame by using the Teager operator like:

 () () () () 11 ,11 __
2

_ −<≤+×−−= inofnrofnrofnrTeag NnnsnsnsnE (5.46a)

 () () () () 1000 __
2

_ ofnrofnrofnrTeag sssE ×−= (5.46b)

and

 () () () ()1211 __
2

_ −×−−−=− inofnrinofnrinofnrinTeag NsNsNsNE (5.46c)

The energy contour is smoothed by using a simple FIR filter of length 9 like:

 () ()∑
−=

+=
4

4
_ 9

1

i
TeagSmoothTeag inEnE (5.47)

At the beginning or ending edge of ETeag(n), the ETeag(0) or ETeag(Nin-1) value is repeated, respectively.

In the Peak Picking block, maxima in the smoothed energy contour related to the fundamental frequency are found.
First, the global maximum over the entire energy contour () 10 ,_ −≤≤ inSmoothTeag NnnE , is found. Then, maxima on

both left and right sides of the global maximum are identified. Each maximum is expected to be between 25 and 80
samples away from its neighbour.

In the block Waveform SNR Weighting, a weighting function is applied to the input frame. Having the number of
maxima MAXN of the smoothed energy contour ()nE SmoothTaeg _

 and their positions () MAXMAXMAXMAX Nnnpos <≤0 , , a

weighting function ()nwswp
 of length Nin is constructed, which equals 1,0 for n from intervals:

 ()[] ()[] () ()[] MAXMAXMAXMAXMAXMAXMAXMAXMAXMAX Nnnposnposnposnpos <≤−+×+−− 0 ,18,04 ,4

and equals 0 otherwise. At the transitions (from 0,0 to 1,0 or from 1,0 to 0,0), the ()nwswp
 function has value 0,5.

Finally, the following weighting is applied to the input noise-reduced frame:

 () () () ()() () 10 ,18,02,1 __ −≤≤×−×+××= inofnrswpofnrswpswp Nnnsnwnsnwns (5.48)

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 23

5.3 Cepstrum Calculation
This block performs cepstrum calculation. Cepstrum calculation is applied on the signal that comes out from the
waveform processing block. Figure 5.4 shows main components of the Cepstrum Calculation block.

 W FFT MEL-FB Log DCT

sswp_pe(n) sswp_w(n) Pswp(bin) EFB(k) SFB(k) c(i)

PE

sswp(n)

Figure 5.4: Main components of the cepstrum calculation block

5.3.1 Log energy calculation

For each frame, a log energy parameter is calculated from the de-noised signal as:

()

()

 ≥

=
otherwise ln

 if ln

THRESH

THRESHswpswp

E

EEE
lnE (5.49a)

where ETHRESH = exp(-50) and Eswp is computed as:

 () ()∑
−

=

×=
1

0

inN

n
swpswpswp nsnsE (5.49b)

5.3.2 Pre-emphasis (PE)

A pre-emphasis filter is applied to the output of the waveform processing block ()nsswp like:

 () () ()19,0_ −×−= nsnsns swpswppeswp (5.50)

where ()1_ −ofswps is the last sample from the previous frame and equals 0 for the first frame.

5.3.3 Windowing (W)

A Hamming window of length Nin =200 is applied to the output of the pre-emphasis block:

 () () ()_ _

2 0,5
0,54 0,46 cos , 0 1swp w swp pe in

in

n
s n s n n N

N

π  × + 
= − × × ≤ ≤ −  

   
 (5.51)

5.3.4 Fourier transform (FFT) and power spectrum estimation

Each frame of Nin samples is zero padded to form an extended frame of 256 samples. An FFT of length NFFT = 256 is

applied to compute the complex spectrum ()binX swp
 of the de-noised signal:

 () (){ }nsFFTbinX wswpswp _= (5.52)

Corresponding power spectrum ()binPswp is calculated as:

 () () 20 ,
2

FFTswpswp NbinbinXbinP ≤≤= (5.53)

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 24

5.3.5 Mel Filtering (MEL-FB)

Purpose

The leading idea of the MEL-FB module is to recombine the information contained in the frequency-dependent
representation (FFT) by regrouping it in a Mel-band representation.

The FFT-bins are linearly recombined for each Mel-band. The useful frequency band lies between fstart and fsamp / 2.

This band is divided into KFB channels equidistant in the Mel frequency domain. Each channel has a triangular-shaped
frequency window. Consecutive channels are half-overlapping.

Frequencies and index

In the FFT calculation, index value bin = NFFT corresponds to the frequency fsamp. The formula that accounts for the
index calculation of frequencies is then:

 { }












×= FFT
samp

N
f

f
roundfindex (5.54)

where {}⋅round stands for rounding towards the nearest integer.

Mel-function

The Mel-function is the operator which rescales the frequency domain.

 { } ()10ln
 with ,1ln1log10

Λ
λ

µ

x
λ

µ

x
ΛxMel =








+×=








+×= (5.55a)

The inverse Mel-function is:

 { } 






 −






×=− 1exp1

λ

y
µyMel (5.55b)

Central frequencies of the filters

The central frequencies of the filters are calculated from the Mel-function, in order to have an equidistant distribution of
the bands in the Mel domain.

 0 fstart fcentr(k) fcentr(k+1) fsamp/2 Frequencies

Mel

Figure 5.5: Linear to Mel frequency mapping

 () { } { } { }
FB

FB

startsamp
startcentr Kk

K

fMelfMel
kfMelMelkf ≤≤









+
−

×+= − 1 ,
1

21 (5.56)

In our proposal, parameters are chosen as follows:

23

12715952700

864

=
===

==

FB

sampstart

K

λ,Λ,µ

kHzf,Hzf

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 25

In terms of FFT index, the central frequencies of the filters correspond to:

 () (){ } ()
FBFFT

samp

centr
centrcentr KkN

f

kf
roundkfindexkbin ≤≤













×== 1 , (5.57)

For the k-th Mel-band, the frequency window is divided into two parts . The former part (i.e. frequencies
() ()kffkf centrcentr <<−1) accounts for increasing weights, whereas the latter part (i.e. frequencies

() ()1+<< kffkf centrcentr
) accounts for decreasing weights. Each frequency window is applied to the de-noised power

spectrum ()binPswp
 computed by (5.53). Frequency window weights for each band are calculated depending on the

position of each frequency bin with respect to the corresponding band central frequency like:

if the bin i is from () ()kbinikbin centrcentr ≤≤−1 , then:

 () ()
() () FB

centrcentr

centr
left Kk

kbinkbin

kbini
kiW ≤≤

+−−
+−−

= 1for ,
11

11
, (5.58)

if the bin i is from () ()1+≤< kbinikbin centrcentr
, then:

 () ()
() () FB

centrcentr

centr
right Kk

kbinkbin

kbini
kiW ≤≤

+−+
−

−= 1for ,
11

1, (5.59)

For other situations, weights equal zero.

Output of MEL-FB

The output of each Mel filter is the weighted sum of the de-noised power spectrum values ()binPswp
 from equation

(5.53) in each band. Triangular, half-overlapped windowing is used as follows:

 () () ()
()

()
() ()

()

()

FB

kbin

kbini
swpright

kbin

kbini
swpleftFB KkiPkiWiPkiWkE

centr

centr

centr

centr

≤≤×+×= ∑∑
+

+=−=

1for ,,,
1

11

 (5.60)

5.3.6 Non-linear transformation (Log)

The output of Mel filtering is subjected to a logarithm function (natural logarithm).

 () ()() FBFBFB KkkEkS ≤≤= 1for ,ln (5.61)

A flooring is applied in such a way that the log filter bank outputs cannot be smaller than -10.

5.3.7 Cepstral coefficients (DCT)

13 cepstral coefficients are calculated from the output of the Non-linear transformation block by applying a DCT.

 () () () 120 ,5,0cos
1

≤≤







−×××=∑

=

ik
K

i
kSic

FBK

k FB
FB

π (5.62)

Notice that in the case of 16 kHz input signal, number of FB bands KFB is increased by 3 (see clause 5.5 for more

details).

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 26

5.3.8 Cepstrum calculation output

The final feature vector consists in 14 coefficients: the log-energy coefficient lnE and the 13 cepstral coefficients c(0) to
c(12).

The ()0c coefficient is often redundant when the log-energy coefficient is used. However, the feature extraction

algorithm is defined here for both energy and ()0c . Depending on the application, either the coefficient ()0c , or the

log-energy coefficient, or a combination of ()0c and lnE may be used.

5.4 Blind equalization
12 cepstral coefficients (()1c ,…, ()12c) are equalized according to the following LMS algorithm:

 ()()1, 0, ln 211 64 ,weightingPar Min Max E= − (5.63)

 0,008 789 062 5 ,stepSize weightingPar= × (5.64)

 () () () , 1 12eqc i c i bias i i= − ≤ ≤ (5.65)

 () () ()() , 1 12eqbias i stepSize c i RefCep i i+ = × − ≤ ≤ (5.66)

where lnE is the log energy of the current frame as computed by (5.49a) and the values of ()bias i and ()RefCep i at

the initialization stage are the following:

()

() () ()
() () ()
() () ()
()

0,0, 1 12,

1 6,618 909, 2 0,198 269, 3 0,740 308

4 0,055132, 5 0, 227 086, 6 0,144 280,

7 0,112 451, 8 0,146 940, 9 0,327 466,

10 0,134 571, 1

bias i i

RefCep RefCep RefCep

RefCep RefCep RefCep

RefCep RefCep RefCep

RefCep RefCep

= ≤ ≤

= − = = −

= = − =

= − = − = −

= () ()1 0,027 884, 12 0,114 905,RefCep= = −

 (5.67)

The reference cepstrum corresponds to the cepstrum of a flat spectrum.

5.5 Extension to 11 kHz and 16 kHz sampling frequencies
For the 11 kHz sampling frequency, we perform downsampling from 11 kHz to 8 kHz and all front-end processing is
the same as in the case of the 8 kHz sampling frequency.

For the 16 kHz sampling frequency, we extended the 8 kHz front-end as shown on figure 5.6. In this approach, the
8 kHz feature extraction part processes the signal from the Low-Frequency Band (LFB, 0 kHz to 4 kHz) and it is
re-used without significant changes. The signal from the High Frequency Band (HFB, 4 kHz to 8 kHz) is processed
separately and the high-frequency information is added to the low-frequency information just before transforming the
log FB energies to cepstral coefficients. Additionally, the whole-band log energy parameter lnE is also computed by
using both the low-frequency and high-frequency information.

5.5.1 FFT-based spectrum estimation

As it can be observed from figure 5.6, the input signal, ()nsin 16_
, is first filtered by a couple of Quadrature-Mirror

Filters (QMF), ()nh QMFLFB _
 and ()nh QMFHFB _

, to get both the LFB and HFB signal portions:

 () () ()nhnsns QMFLFBinLFB _16_ ×= , () () ()nhnsns QMFHFBinHFB _16_ ×= (5.68)

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 27

QMF

HP

DEC by

2 and SI

QMF

LP

FFT

based SE

Mel FB

DEC by 2

Noise

Reduction

Waveform

Processing

Cepstrum

Calculation*

MFCC
features

16 kHz
signal

8 kHz Feature Extraction

8kHz SE

HP

Coding

HP

Decoding

code

Merging SS and

Decoded Bands

decoded bands

SS bands

FB energies

VADNestH

and SS

Blind

Equalization

8kHz SE

* Cepstrum Calculation block is slightly modified for 16 kHz

Figure 5.6: Extension of 8 kHz front-end for 16 kHz sampling frequency

The LFB QMF is a Finite Impulse Response (FIR) filter of length 118 from the ITU-T standard software tools library
for downsampling. The HFB QMF is an FIR filter obtained from the LFB QMF by multiplying each sample of its
impulse response by (-1)n, where n is sample index. Both LFB and HFB signals are decimated by factor 2 by choosing
only every second sample from the corresponding filtered signal. Additionally, the HFB signal is frequency-inverted
(spectrum inversion, SI on figure 5.6) by multiplying the HFB signal sequence by the sequence (-1)n, where n is the
sample index. The LFB signal enters the Noise Reduction part of Feature Extraction and it is processed up to the
cepstral coefficient computation in the same way as in the case of 8 kHz sampling frequency.

By downsampling and spectral-inversion, the HFB signal is shifted to the frequency range 0 kHz to 4 kHz. This shifted
HFB signal ()ns HFBSI _ is further processed on frame-by-frame basis, where the frame length and frame shift are

synchronized with the LFB processing and are the same as in the case of 8 kHz input signal (i.e. 25ms/10ms). Each
frame of length Nin = 200 is windowed by a Hamming window:

 () () () 10 ,__ −≤≤×= inHammHFBSIHFBW Nnnwnsns (5.69)

and zeros are padded from the sample Nin up to the sample NFFT -1, where NFFT = 256 is the FFT length:

 () ()




−≤≤
−≤≤

=
1 ,0

10 ,_
__

FFTin

inHFBW
FFTHFBW NnN

Nnns
ns (5.70)

A smoothed HFB power spectrum, ()binP HFBSmooth _
, is estimated by using an FFT followed by power of 2 like:

 () (){ }nsFFTbinX FFTHFBWHFB __= (5.71)

 () () 20 ,
2

FFTHFBHFB NbinbinXbinP ≤≤= (5.72)

 () () ()
40 ,

2

122
_ FFT

HFBHFB
HFBSmooth Nbin

binPbinP
binP <≤+×+×= (5.73)

 () ()24_ FFTHFBFFTHFBSmooth NPNP =

By the smoothing operation, the length of the power spectrum is reduced to 14 += FFTSPEC NN

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 28

5.5.2 Mel Filter-Bank

The entire high-frequency band is divided into KHFB = 3 Filter-Bank (FB) bands, which are equidistantly distributed in

the Mel-frequency domain. Energies within the FB bands, ()kEHFB
, are estimated by using triangular-shaped,

half-overlapped frequency windows applied on the HFB power spectrum. To obtain the central frequencies of FB bands
in terms of FFT bin indices, ()kbincentr

, we used the following relationship between the linear and mel frequency scales:

 { } ()7001log5952 10 linlinmel ffMELf +×== (5.74)

Then, the central frequency of the k-th band, fcentr(k), is calculated as:

 ()
()

HFB

kf

centr Kkkf
mel

≤≤













−×= 1 ,110700 5952 (5.75)

with:

 () { } { } { }
1

2 __
_ +

−
×+=

HFB

startlinsamplin
startlinmel K

fMELfMEL
kfMELkf (5.76)

where 80_ =startlinf is the starting frequency and 0008_ =samplinf is the sampling frequency. The corresponding FFT

bin index is obtained as:

 () ()













××= SPEC

samplin

centr
centr N

f

kf
roundkbin 2

_

 (5.77)

Having the central frequencies, ()kbincentr
, the energy within the k-th FB band, ()kEHFB

, is computed as:

() ()
() () ()

()

()

()
() () ()

()

()

_
1 1

1

_
1

1

1

 1
1

centr

centr

centr

centr

bin k
centr

HFB Smooth HFB
i bin k centr centr

bin k
centr

Smooth HFB
i bin k centr centr

i bin k
E k P i

bin k bin k

i bin k
P i

bin k bin k

= − +

+

= +

− −
= × +

− −

 −
+ − ×  + − 

∑

∑

 (5.78)

where
HFBKk ≤≤1 , ()0centrbin and ()1+HFBcentr Kbin are the FFT indices corresponding to the starting frequency

startlinf _
, and half of the sampling frequency 2_ samplinf .

5.5.3 High-frequency band coding and decoding

Before coding, the natural logarithm is applied to the HFB mel FB energies ()kEHFB
 as:

 () ()() HFBHFBHFB KkkEkS ≤≤= 1 ,ln (5.79)

with a flooring avoiding values of SHFB(k) lower than -10. The HFB log FB energies, ()kSHFB
, are coded and decoded

by using three auxiliary bands computed from 2 kHz to 4 kHz frequency interval of LFB power spectrum. For coding,
the auxiliary bands are calculated before applying both Noise Reduction (NR) and waveform processing (SWP) to the
LFB signal. For decoding, the auxiliary bands are calculated after applying both NR and SWP to the LFB signal.
Auxiliary bands are approximately logarithmically spaced in the given frequency interval.

The three auxiliary log FB energies for coding are computed from the input signal power spectrum ()binPin
,

SPECNbin <≤0 , calculated in the first stage of Noise Reduction block (see equation (5.6) in clause 5.1.2) as:

 () ()






= ∑
=

38

33
_ ln1

bin
inauxLFB binPS , () ()







= ∑
=

48

39
_ ln2

bin
inauxLFB binPS and (5.80)

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 29

 () ()






= ∑
=

64

49
_ ln3

bin
inauxLFB binPS

with flooring that avoids values of ()kS auxLFB _
 lower than -10. Then, coding is performed as:

 () () () HFBHFBauxLFB KlklSkSlkCode ≤≤−= ,1 ,, _ (5.81)

The three auxiliary bands for decoding are computed from the de-noised power spectrum ()binPswp
,

20 FFTNbin ≤≤ , calculated in the Cepstrum Calculation block (see clause 5.3.5) as:

 () ()






= ∑
=

76

66
__ 2

1
ln1

bin
swpauxLFBswp binPS , () ()







= ∑
=

96

77
__ 2

1
ln2

bin
swpauxLFBswp binPS , and (5.82)

 () ()






= ∑
=

128

97
__ 2

1
ln3

bin
swpauxLFBswp binPS

with flooring that avoids values of ()kS auxLFBswp __
 lower than -10. The decoded HFB bands, ()kS HFBcode _

, are obtained

by using the code ()lkCode , and the three de-noised auxiliary LFB log FB energies ()kS auxLFBswp __
 like:

 () () () ()() HFB

K

l
auxLFBswpcodeHFBcode KkklCodelSlwkS

HFB

≤≤−= ∑
=

1 ,,
1

 (5.83)

where ()lwcode
 is a frequency-dependent weighting with:

 () 1
1

=∑
=

HFBK

l
code lw (5.84)

In the current implementation, frequency weights are () () () 7,03 ,2,02 ,1,01 === codecodecode www

5.5.4 VAD for noise estimation and spectral subtraction in high-frequency
bands

A simple, energy-based Voice Activity Detector for Noise estimation (VADNestH) is designed for noise estimation in
the HFB signal. A forgetting factor for a) updating the noise estimation and b) tracking the low log energy level is
computed for each frame t according to the logic:

{ }
()

() 99,0

11

100

=

−=
<

tλ

else

ttλ

tif

NSE

NSE (5.85)

The low log energy level is tracked by using the following logic:

() ()()[] []{ }
{ }

() () () ()() ()

() (){ }
() () () ()

() () () ()tEtEtE

else

tEtEtE

tEtEif

else

tEtλtEtλtE

tif

ttEtEif

tracklowtracklow

tracklowtracklow

tracklow

NSEtracklowNSEtracklow

tracklow

log_log__log_

log_log__log_

_log_log

log_log__log_

_log_log

995,011995,0

98,01198,0

1

11

10

10or 2,11

×−+−×=

×−+−×=

−<

×−+−×=
<

<<−−

 (5.86)

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 30

where tracklowE _log_ is initialized to 0 and the log energy ()tElog is computed like:

 () ()∑
=

=
HFBK

k
HFB ktEtE

1

, (5.87a)

 () ()() ()
() ()




≤
>

=
001,0for 001,0ln

001,0for ln
log tE

tEtE
tE (5.87b)

VADNestH flag ()tflagVADNestH
 is updated by using the current frame log energy ()tElog

 and the low log energy level

()tE tracklow _log_ as follows:

() ()(){ }
()

() ()

(){ }
()
()

(){ }
() ()

()

() 0

1

11

0!

0

5

41

11

1

2,2 _log_log

=

=
−=+

=
=

=
>−

+−=
=

>−

tflagVAD

else

tflagVAD

thangOverthangOver

thangOverif

tamenbSpeechFr

thangOver

tamenbSpeechFrif

else

tamenbSpeechFrtamenbSpeechFr

tflagVAD

tEtEif

NestH

NestH

NestH

tracklow

 (5.88)

VADNestH flag is used for estimating the HFB noise spectrum in terms of FB energies like:

(){ }

() () () ()() () ,Kk, k,tNtλk,tEtλk,tN

tflagVADif

HFBHFBNSEHFBNSEHFB

NestH

≤≤−×−+×=

=

11ˆ1ˆ

0
 (5.89)

where t is the frame index and the noise FB energy vector is initialized to a zero vector.

Spectral subtraction is performed like:

 () () () (){ } HFBHFBHFBHFBHFBSS KkkEkNkEkE ≤≤××−= 1 , ,ˆmax_ βα (5.90)

where α = 1,5 and β = 0,1 were set empirically.

5.5.5 Merging spectral subtraction bands with decoded bands

In the Cepstrum Calculation block, log FB energies from both LFB and HFB are joined and cepstral coefficients
representing the entire frequency band are calculated. It is obvious that the noise reduction performed on the LFB signal
is more complex than the Spectral Subtraction (SS) algorithm applied on HFB FB bands, and thus FB energies resulting
from these two processes are not entirely compatible. To reduce the differences between the FB energies from the HFB
and LFB, the SS HFB log FB energies are used in combination with the HFB log FB energies resulting from the coding
scheme described in clause 5.5.3.

First, rough pre-emphasis correction and log non-linearity are applied on HFB energies resulting from spectral
subtraction like:

 () () ()() FBHFBSSpreHFBSS KkkEakS ≤≤×+= 1 1ln __
 (5.91)

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 31

where 9,0=prea is pre-emphasis constant. The HFB log FB energies ()kS HFB
 are then obtained by combining both

()kS HFBSS _
 and ()kS HFBcode _ , like:

 () () () () HFBSS_HFBmergecode_HFBmergeHFB Kk, kSλkSλkS ≤≤×−+×= 11 (5.92)

where 7,0=mergeλ is an empirically set constant.

For each frame, a cepstrum is calculated from a vector of log FB energies that is formed by appending the three HFB
log FB energies to the LFB log FB energies. Before joining the LFB and HFB log FB energies, the transition between
the last LFB band ()FBFB KS (computed as in clause 5.3.7) and the first HFB ()1HFBS is smoothed by modifying the two

transition log energies like:

 () () averFBFBFBFB SKSKS ×+×=′ 4,06,0 (5.93a)

and

 () () averHFBHFB SSS ×+×=′ 4,016,01 (5.93b)

where

() ()

2

1HFBFBFB
aver

SKS
S

+
= (5.93c)

Finally, the log FB energy vector for cepstrum calculation () HFBFBcep KKkkS +≤≤1 , , is formed like:

 () () () () () () () (){ }3,2,1,,1,...,2,1 HFBHFBHFBFBFBFBFBFBFBcep SSSKSKSSSkS ′′−= (5.94)

5.5.6 Log energy calculation for 16 kHz

Log energy parameter is computed by using information from both the LFB and HFB. We used the HFB log FB

energies, ()kSHFB , to modify the log energy parameter. First, we computed the HFB energy HFBE by using

pre-emphasis corrected, de-noised HFB log FB energies like:

 ()()∑
=

−=
HFBK

k
HFBHFB corrpreemkSE

1

_exp (5.95)

where:

 ()preacorrpreem += 1ln_ (5.96)

and apre = 0,9 is the pre-emphasis constant. Then, the energy parameter is computed as the natural logarithm of the sum

of the de-noised LFB energy swpE and the de-noised HFB energy
HFBE :

 ()HFBswp EElnE += ln (5.97)

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 32

5.6 Pitch and class estimation
As indicated in figure 4.1, estimation of pitch and voicing class parameters is embedded inside the noise reduction
block (clause 5.1). A block diagram for pitch and class estimation is shown in figure 5.7. The "spectrum estimation"
block at the top-left corner of figure 5.7 represents the block with the same name in figure 5.1. The input to this block,
viz., sin(n), and one of the outputs from this block, viz., X(bin) (Eq. 5.4), form the inputs to the estimation of the Pitch
(P) and Voicing Class (VC) parameters.

SEC
VADVC

PITCH

CLS

PP

LBND

Spectrum
Estimation

sin(n)

MF

P VC

Rest of the Noise Reduction blocks

CLS CLaSsification
LBND Low-Band Noise Detection
MF Mel-Filtering
PITCH PITCH estimation
PP Pre-Processing for pitch and class estimation
SEC Spectrum and Energy Computation
VADVC Voice Activity Detection for Voicing Classification

Figure 5.7: Block scheme for pitch and class estimation

5.6.1 Spectrum and energy computation

The input to the SEC block is the input speech sin(n) and X(bin), bin = 0, 1,…, NFFT -1, where X(bin) represents the

complex short-time Fourier Transform of sin(n). As a first step, X(0) is set to 0 to remove any DC offset. Then, the

following quantities are computed: power spectrum pbin, pre-emphasized power spectrum pbinpe, frame energy E,

logarithm of frame energy logE, and average spectral value sw(1).

The power spectrum is computed as

 22))(Im())(Re(kXkXpbink +=

The pre-emphasized power spectrum is computed as:

 ()22

,)128/sin()128/cos(97,01 ππ kkpbinpbin kkpe +×−×=

The frame energy is computed as:

21

0

1

0

2)(
1

)(






−= ∑∑
−

=

−

=

N

n
in

N

n
in ns

N
nsE

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 33

The log-energy is computed as logE = log(E). A floor is used in the energy calculation, which makes sure that the result
for logE is not less than -50. The floor value for E (lower limit for the argument of ln) is approximately 2e-22.

The average spectral value is computed as:

 ∑
−

=

=
1

0

)(
1

)1(
FFTN

kFFT
w kX

N
s

The power spectrum pbin is fed into the MF block, mel-filtered as described in clause 5.3.5, and the mel-filter outputs
fbanki, i = 1, …, 23 are fed into the VADVC block. The pre-emphasized power spectrum pbinpe is fed into the LBND
block. The frame energy E is fed into the LBND block and the CLS block. The short-time Fourier transform X(bin), the
power spectrum pbin, the log-energy logE, and the average spectral value Sw(1) are fed into the PITCH block.

Furthermore, the input speech signal Sin(n) is fed into the PP block and the CLS block.

5.6.2 Voice Activity Detection for Voicing Classification (VADVC)

The input to the Voice Activity Detection (VAD) block is the mel-filter output fbanki, i = 1, …, 23. The outputs of the

VAD block are the vad_flag and hangover_flag. The vad_flag, if TRUE, indicates that the current frame is a speech
frame. The hangover_flag, if TRUE, indicates that the current frame is likely to be a speech frame because it follows a
speech segment. The operation of the VAD block is described below with reference to figure 5.8.

In the following, we denote the mel-filter output for the mth frame and ith channel by F(m,i), and when the specific
channel is not important, the mel-filter output for the mth frame by F(m). Using these values as input, the channel
energy estimator provides a smoothed estimate of the channel energies as follows:

 { })),())((1(),1()(,max),(min imFmimEmEimE ichchchch λα−+−α= ; i = 1, 2, …, 23 (5.98)

where Ech(m,i) is the smoothed channel energy estimate for the mth frame and the ith channel, Emin is the minimum

allowable channel energy, {λi, i = 1, 2, …, 23} are the correction factors to compensate for the effect of the

pre-emphasis filter and the varying widths of the triangular weighting windows used in mel-filtering, and αch(m) is the
channel energy smoothing factor defined as:





>
=

=
1;45,0

1;00,0
)(

m

m
mchα (5.99)

The minimum channel energy Emin is 5 000 for 8 kHz, 6 400 for 11 kHz, and 10 000 for 16 kHz sampling frequency

respectively. he value of the correction factor λi is given by the ith value in the 23-element table: {0,3333, 0,3333,
0,2857, 0,2857, 0,2857, 0,2500, 0,2500, 0,2222, 0,2000, 0,2000, 0,2000, 0,1818, 0,1667, 0,1538, 0,1429, 0,1429,
0,1333, 0,1176, 0,1111, 0,1111, 0,1000, 0,0909, 0,0870}.

From the channel energy estimate, the peak-to-average ratio for the current frame m, denoted by P2A(m) is estimated at
the peak-to-average ratio estimator as follows:



















=
∑
=

=
23

1

23

5
10

),()23/1(

)),(max(
log10)(2

i
ch

ich

imE

imE
mAP (5.100)

Similar to the channel energy estimate, the channel noise energy estimate (defined below) is initialized as follows:

 if ((m ≤ INIT_FRAMES) OR (fupdate_flag == TRUE))
 {
 if (P2A(m) < PEAK_TO_AVE_THLD)
 {

;231,_2);,(3,0),1(7,0

;231,1);,(
),(

≤≤≤≤+−
≤≤=





=
iFRAMESINITmimEimE

imimE
imE

chn

ch
n

 }

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 34

 else
 {

 ;231;),(min ≤≤= iEimEn

 }

 } (5.101)

where En(m,i) is the smoothed noise energy estimate for the mth frame and the ith channel, INIT_FRAMES is the number

of initial frames which are assumed to be noise-only frames, and fupdate_flag is the forced update flag defined later.
The value of INIT_FRAMES = 10, and that of PEAK_TO_AVE_THLD = 10.0. Initially, fupdate_flag is set to FALSE.

P2A(m)

To 205, 206,
and 208

To 208

To 208

U
P

D
A

T
E

_F
L

A
G

F
U

P
D

A
T

E
_F

L
A

G

σσσσq(m)

Ech(m)En(m)

NOISE
ENERGY

SMOOTHER

NOISE
ENERGY

ESTIMATE
STORAGE

SPECTRAL
DEVIATION
ESTIMATOR

UPDATE
DECISION

DETERMINER

VOICE METRIC
CALCULATOR

VOICE
ACTIVITY

DETERMINER

CHANNEL
ENERGY

ESTIMATOR

F(m)
Ech(m)

En(m)

CHANNEL SNR
ESTIMATOR

SIGNAL SNR
ESTIMATOR

PEAK TO
AVERAGE

RATIO
ESTIMATOR

201

205

202

203

204

206

207

208

209
210

SNRq(m)

En(m+1)

∆∆∆∆E(m)

V(m)

vad_flag
hangover_flag

Figure 5.8: Block diagram of the voice activity detection (VADVC) algorithm

The channel energy estimate Ech(m) and the channel noise energy estimate En(m) are used to estimate the quantized
channel signal-to-noise ratio (SNR) indices at the channel SNR estimator as:

 231));)375,0
),(

),(
log10(round,89min(,0max(),(10 ≤≤







= i
imE

imE
im

n

ch

qσ (5.102)

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 35

where the values {σq(m, i), i = 1, 2, …, 23}are constrained to be between 0 and 89 both inclusive.

From the channel SNR estimate σq(m) for the current frame, the voice metric V(m) for the current frame is computed at
the voice metric calculator as the sum:

 ∑
=

=
23

1

))(()(
i

q ivmV σ (5.103)

where v(k) is the kth value of the 90-element voice metric table v defined as: v = {1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,
5,5,5,6,6,7,7,7,8,8,9,9,10,10,11,12,12,13,13,14,15,15,16,17,17,18,19,20,20,21,22,23,24,24,25,26,27,28,28,29,30,31,32,
33,34,35,36,37,37,38,39,40,41,42,43,44,45,46,47,48,49,50,50,50,50,50,50,50,50,50,50}.

The channel energy estimate Ech(m) is also used as input to the spectral deviation estimator, which estimates the

spectral deviation ∆E(m) for the current frame as follows. First, the log energy spectrum is estimated as:

)),((log10),(10 imEimE chdB = ; i = 1, 2, …, 23 (5.104)

Next, the spectral deviation ∆E(m) is estimated as the sum of the absolute difference between the current log energy

spectrum and an average long-term log energy spectrum denoted by dBE (m), that is:

 ∑
=

−=∆
23

1

),(),()(
i

dBdBE imEimEm (5.105)

The average long-term log energy spectrum is initialized as follows:

 if ((m ≤ INIT_FRAMES) OR (fupdate_flag == TRUE))

 231);,(),(≤≤= iimEimE dBdB (5.106)

The average long-term log energy spectrum is updated as follows:





≤+
>+

=+
)(_)();,(3,0),(7,0

)(_)();,(1,0),(9,0
),1(

mTHLDSIGmVimEimE

mTHLDSIGmVimEimE
imE

dBdB

dBdB
dB (5.107)

where the parameter SIG_THLD(m) depends on the quantized signal SNR described next. The initial value of
SIG_THLD is 217.

The speech signal SNR is estimated at the signal SNR estimator as follows. First, the total noise energy of the current
frame Etn(m) is computed as the sum of the channel noise energies, that is:

 ∑
=

=
23

1

),()(
i

ntn imEmE (5.108)

Next, the instantaneous total signal energy Ets,inst(m) is computed as follows:

 if (V(m) > SIG_THLD(m))

 ∑
=

=
23

1
,)),(),,(max()(

i
nchinstts imEimEmE ;

 else

);()(, mEmE tninstts =

 end (5.109)

Initialization of Ets,inst(m) is performed as follows:

 if ((m ≤ INIT_FRAMES) OR (fupdate_flag == TRUE))

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 36

 Ets,inst(m) = INIT_SIG_ENRG; (5.110)

where the value of INIT_SIG_ENRG = 1,0E+09 for 8 kHz, 1,67E+09 for 11 kHz, and 3,0E+09 for 16 kHz respectively.

Once the total instantaneous signal energy and the total noise energy are computed, the instantaneous signal-to-noise
ratio of the current frame denoted by SNRinst(m) is computed as:

 SNRinst = max(0,0, 10 log10(Ets,inst(m) / Etn(m))) (5.111)

From the instantaneous SNR, the smoothed SNR is estimated as:

 if ((m ≤ INIT_FRAMES) OR (fupdate_flag == TRUE))
 SNR(m) = SNRinst(m);
 else
 {
 if (V(m) > SIG_THLD(m))
 {
 SNR(m) = β SNR(m-1) + (1-β) SNRinst(m);
 β = min(β+0.003, HI_BETA);
 }
 else
 β = max(β-0.003, LO_BETA);
 } (5.112)

The lower and upper limits of the smoothing factor β are respectively LO_BETA = 0,950 and HI_BETA = 0,998.
Initially, the value of β is set at LO_BETA. The signal SNR is then quantized to 20 different values as:

 SNRq(m) = max(0,min(round(SNR(m)/1,5),19)). (5.113)

The quantized signal SNR is used to determine different threshold values. For example, the signal threshold for the next
frame SIG_THLD(m+1) is determined using SNRq(m) as an index into the 20-element table {36, 43, 52, 62, 73, 86, 101,

117, 134, 153, 173, 194, 217, 242, 268, 295, 295, 295, 295, 295}.

At this point, the voice metric V(m), the spectral deviation ∆E(m), the peak-to-average ratio P2A(m), and the quantized

signal SNR SNRq(m) are input to an update decision determiner. The logic shown below in pseudo-code demonstrates
how the noise estimate update decision is made and also how a forced update decision is made (a forced update
mechanism allows the voice activity detector to recover from wrong classification of background noise as speech
whenever there is a sudden increase in background noise level).

First, the update threshold for the current frame UPDATE_THLD(m) is determined using SNRq(m) as an index into a

20-element table given by {31, 32, 33, 34, 35, 36, 37, 37, 37, 37, 37, 37, 37, 37, 37, 38, 38, 38, 38, 38}. The update
decision determination process begins by clearing the update flag (update_flag) and the forced update flag
(fupdate_flag). These flags are set if certain conditions are satisfied as illustrated by the pseudo-code below. The initial
value of update_cnt is set to 0.

 update_flag = FALSE;
 fupdate_flag = FALSE;
 if ((m > INIT_FRAMES) AND (V(m) < UPDATE_THLD(m)) AND
 (P2A(m) < PEAK_TO_AVE_THLD)
 {
 update_flag = TRUE;
 update_cnt = 0;
 }
 else
 {
 if ((P2A(m) < PEAK_TO_AVE_THLD) AND (∆E(m) < DEV_THLD))
 {
 update_cnt = update_cnt + 1;
 if (update_cnt ≥ UPDATE_CNT_THLD)
 {
 update_flag = TRUE;
 fupdate_flag = TRUE;
 }
 }

 } (5.114)

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 37

In order to avoid long term "creeping" of the update counter (update_cnt) setting the forced update flag (fupdate_flag)
falsely in the above pseudo-code, an hysteresis logic is implemented as shown below. Initial values of last_update_cnt
and hyster_cnt are set to 0.

 if (update_cnt == last_update_cnt)
 hyster_cnt = hyster_cnt + 1;
 else
 {
 hyster_cnt = 0;
 last_update_cnt = update_cnt;
 }
 if (hyster_cnt > HYSTER_CNT_THLD)

 update_cnt = 0; (5.115)

The values of different constants used above are as follows: DEV_THLD = 70, UPDATE_CNT_THLD = 500, and
HYSTER_CNT_THLD = 9. Whenever the above referenced update flag is set for a given frame, the channel noise
estimate for the next frame is updated in the noise energy smoother as follows:

)),(1,0),(9,0),1(imEimEimE chnn +=+ ; i = 1, 2, …, 23 (5.116)

The updated channel noise estimate is stored in noise energy estimate storage for all future frames until the next update
occurs. The output of the noise energy estimate storage En(m) is used as an input to the channel SNR estimator as
described earlier.

Next, we describe the operation of the voice activity determiner, which uses the voice metric V(m) and the quantized
signal SNR value SNRq(m) as inputs. For the first INIT_FRAMES frames, the outputs of the voice activity determiner,

viz., vad_flag and hangover_flag are set to FALSE since these frames are assumed to be noise-only frames. For the
following frames, the voice activity determiner operates by testing if the voice metric exceeds the voice metric
threshold Vth. If the output of this test is TRUE, then the current frame is declared "voice-active". Otherwise, the
hangover count variable (hangover_count) is tested to find out if it is greater than or equal to zero. If the output of this
test is TRUE, then also the current frame is declared "voice-active". If the outputs of both tests are FALSE, then the
current frame is declared "voice-inactive". The "hangover" mechanism is generally used to cover slowly decaying
speech that might otherwise be classified as noise, and to bridge over small gaps or pauses in speech. It is activated if
the number of consecutive "voice-active" frames (counted by the burst_count variable) is at least equal to Bcnt, the burst

count threshold. To activate the mechanism, the number of hangover frames is set to Hcnt, the hangover count threshold.

The pseudo-code for the voice activity determiner is shown below. To begin with, the voice metric threshold Vth, the

hangover count threshold Hcnt, and the burst count threshold Bcnt are initialized to 56, 28 and 6 respectively.

Furthermore, the variables hangover_count and burst_count are both initialized to 0.

if (V(m) > Vth(m))
 {
 vad_local = TRUE;
 burst_count = burst_count + 1;
 if (burst_count >= Bcnt(m))
 hangover_count = Hcnt(m);
 }
 else
 {
 vad_local = FALSE:
 burst_count = 0;
 }

if ((vad_local == TRUE) OR (hangover_count > 0))
 vad_flag = TRUE;
 else
 vad_flag = FALSE;

if ((vad_local == FALSE) && (hangover_count > 0))
{
 hangover_flag = TRUE;
 hangover_count = hangover_count - 1;
 }
 else

 hangover_flag = FALSE; (5.117)

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 38

As a final step, the quantized SNR value is used to determine the voice metric threshold Vth, the hangover count

threshold Hcnt, and the burst count threshold Bcnt for the next frame as:

 Vth(m+1) = Vtable[SNRq(m)], Hcnt(m+1) = Htable[SNRq(m)], Bcnt(m+1) = Btable[SNRq(m)], (5.118)

where SNRq(m) is used as an index into the respective tables. These tables are defined by: Vtable = {32, 34, 36, 38, 40,

42, 44, 46, 48, 50, 52, 54, 55, 56, 57, 57, 58, 58, 58, 58}, Htable = {54, 52, 50, 48, 46, 44, 42, 40, 38, 36, 34, 32, 30, 28,

26, 24, 22, 20, 18, 16}, and Btable = {2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6}.

5.6.3 Low-band noise detection

In the scope of clause 5.6.3, the following symbolic notations for some constants are used if not stated differently in the
text:

 FFTL = 256 - FFT dimension;

 fs = 8 - sampling rate of the input speech data in kHz.

The input to the low-band noise detection (LBND) block are the pre-emphasized power spectrum pbinpe,k,

k=0,…,FFTL/2, from the SEC block, the vad_flag and the frame energy E. The output of the LBND block is
lbn_flag indicating (if TRUE) that the current frame contains background noise in the low frequency band.

The LBND code maintains an internal state variable LH_Ratio which is initialized to 1,9. The operation of the LBND
block is described by the following pseudo code wherein the cut_idx parameter is defined as:

 ()()sfFFTLflooridxcut ××= 0001380_ (5.119)

if (vad_flag == FALSE)
{
 if (2E/FFTL < 500)
 cur_ratio = 0;
 else
 {
low_max =

kpe
idxcutk

pbin ,
_1

max
≤≤

;

high_max =
kpe

FFTLkidxcut

pbin ,
2/_

max
≤<

;

 if (high_max == 0)
 cur_ratio = 10;
 else
 cur_ratio = low_max / high_max
 }

LH_Ratio = ;_01,0_99,0 ratiocurRatioLH ×+×

}

if (LH_Ratio > 1,9)
 lbn_flag = TRUE;
else

 lbn_flag = FALSE; (5.120)

5.6.4 Pre-Processing for pitch and class estimation

The input to the Pre-Processing (PP) block is the input signal ins and the lbn_flag from the Low-Band Noise Detection

(LBND) block. The outputs of the PP block are the low-pass filtered, downsampled speech signal lpdss which is fed into

the Pitch estimation block (PITCH) and the high-pass filtered upper-band signal ubs which is fed into the Classification

block (CLS). The low-pass and high-pass filtering are performed using pole-zero filters with the generic form shown
below:

)(...)2()1()(...)1()()(2110 MnyanyanyaMnxbnxbnxbny MM −−−−−−−−++−+= (5.121)

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 39

where x is the input, y is the output, M is order of the filter,
Mbbb ,...,, 10

are the coefficients of the numerator

polynomial defining the zeros, and
Maaa ,...,,,1 21

 are the coefficients of the denominator polynomial defining the poles.

The filter coefficients used are shown in table 5.1. The low-pass filtered speech is first decimated by a factor DSMP,
where DSMP is 4. The latest (2 × MAX_PITCH / DSMP) samples referred to as the low-pass filtered extended
downsampled frame is fed into the PITCH block. The value of the MAX_PITCH parameter is 160.

Table 5.1: Filter coefficients used in the pre-processing block

Filter details Filter Coefficients
low-pass filter numerator
coefficients
filter order - 7
lbn_flag = FALSE

0,0003405377
0,0018389033
0,0038821292
0,0037459142
0,0010216130

-0,0010216130
-0,0008853979
-0,0002043226

low-pass filter denominator
coefficients;
filter order - 7
lbn_flag = FALSE

1,00000000
-4,47943480
8,88015848

-10,05821568
6,99836861

-2,98181953
0,71850318

-0,07538083
low-pass filter numerator
coefficients
filter order - 6
lbn_flag = TRUE

0,00034054
0,00204323
0,00510806
0,00681075
0,00510806
0,00204323
0,00034054

low-pass filter denominator
coefficients
filter order - 6
lbn_flag = TRUE

1,00000000
-3,57943480
5,65866717

-4,96541523
2,52949491

-0,70527411
0,08375648

high-pass filter numerator
coefficients
filter order - 6

0,14773250
-0,88639500
2,21598750

-2,95464999
2,21598749

-0,88639500
0,14773250

high-pass filter denominator
coefficients
filter order - 6

1,00000000
-2,37972104
2,91040657

-2,05513144
0,87792390

-0,20986545
0,02183157

5.6.5 Pitch estimation

In the scope of clause 5.6.5, the following symbolic notations for some constants and variables are used if not stated
differently in the text:

 FFTL = 256 - FFT dimension;

 N = 200 - frame size;

 fs = 8 - sampling rate of the input speech data in kHz;

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 40

 stft(n) = X(n) - Short Time Fourier Transform (STFT) spectrum given by (5.4);

 pbin(n) = pbinn - power spectrum computed in the SEC block.

A flowchart of the pitch estimation process is shown on figure 5.9. Pitch frequency (F0) candidates are generated
sequentially in high, middle and low frequency intervals (search ranges). The candidates generated for a search range
are added to the candidates generated earlier and an attempt is made to determine a pitch estimate among the
candidates. If the pitch estimate is not determined, the next search range is processed. Otherwise certain internal
variables, which represent the pitch estimation history information are updated. At output, the pitch estimate is
converted from the frequency to time representation or is set to 0 indicating an unvoiced frame.

5.6.5.1 Dirichlet interpolation

Frequency resolution of the discrete complex spectrum in the diapason [0 kHz, 4 kHz] is doubled by the interpolation of
the STFT (5.4) by Dirichlet kernel. The interpolated STFT is calculated as follows:

kHzNn

knstftknstftkDnistft

knstftknstftkDnistft

nstftnistft

LDK

k

LDK

k

4,...,1,0

)]}1(Re[)]({Re[)()]12(Im[

)]}1(Im[)]({Im[)()1(s)]12(Re[

)()2(

1

0

1

0
w

=

++−−×=+

++−−×−=+

=

∑

∑

−

=

−

= (5.122)

where:

 (N4kHz-1) is the index of the FFT point representing 4kHz frequency;

 






 +×=)5,0(
1

)(k
FFTL

tg
FFTL

kD
π

; (5.123)

 LDK= 8

In (5.122), an stft(i) value corresponding to a negative value of i<0 is replaced by the complex conjugate stft×(-i)
associated with -i.

The number of istft samples computed and used further is FFTIL = 2 × N4 kHz - 1. The istf vector is used for the
processing of the current and the next frames.

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 41

High F0 band
candidates generation

Correlation scores
calculation

Pitch estimate selection

Found pitch?

Middle F0 band
candidates generation

Correlation scores
calculation

Pitch estimate selection

Found pitch?

Low F0 band
candidates generation

YES NO

YES NO

Low-pass filtered downsampled speech STFT

Correlation scores
calculation

Pitch estimate selection

History info update

Pitch convertion &
output

Figure 5.9: Pitch estimation flowchart

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 42

5.6.5.2 Non-speech and low-energy frames

If the frame either has been classified by the VADVC block as a non-speech frame or its log-energy value is less than a
predefined threshold log E < 13,6 then the pitch frequency F0 estimate is set to 0 and the final step of history
information update is performed as described further.

5.6.5.3 Search ranges specification and processing

The entire search diapason for pitch frequency is defined as SR = [52 Hz, 420 Hz]. If a variable StableTrackF0 (which
is described below) has a non-zero value then SR is narrowed as follows:

SR = SR 3 [0,666 × StableTrackF0, 2,2 × StableTrackF0].

Three slightly overlapping search ranges are specified:

SR1 = SR 3 [52 Hz, 120 Hz];

SR2 = SR 3 [100 Hz, 210 Hz];

SR3 = SR 3 [200 Hz, 420 Hz].

The processing stages described in clauses 5.6.5.3 to 5.6.5.7 are performed consequently for the three search ranges in
the order SR3, SR2, SR1. If there are differences specific to a certain search range they are explained in the relevant
clause. It might happen that some of the search ranges are empty. No processing is performed for an empty search
range.

5.6.5.4 Spectral peaks determination

This stage is performed only twice: first time for the SR3 and SR2 ranges, and a second time for SR1.

When the processing is being performed for SR3/SR2 search interval, power spectrum with doubled frequency
resolution is computed as follows:





+
=

noddfornistftnistft

nevenforpbin
nps n

,)](Im[)](Re[

,
)(22

2/ (5.124)

When the processing is being performed for SR1 search interval, an STFT corresponding to a double frame is
approximated as follows:

)()exp()()(2 nistft
FFTIL

Mn
jnistftnistft prev××××−+= π

 (5.125)

where istftprev is the Dirichlet interpolated STFT of the previous frame. Then power spectrum is computed as:

 2
2

2
2)](Im[)](Re[)(nistftnistftnps += (5.126)

In (5.124) to (5.126), n = 0, 1, …, FFTIL - 1 corresponding to the frequency interval [0, 4kHz].

Smoothing by 3-tap symmetric filter is applied to the power spectrum:

)1()1(),0()0(

2,...,1)],1()1([1875,0)(625,0)(

−=−=
−=++−×+×=

FFTILpsFFTILspspssps

FFTILnnpsnpsnpsnsps
 (5.127)

The values of the smoothed power spectrum sps(n) are analysed within the range n∈ [N0+2, FFTIL-3] and all local

maxima are determined. N0 is set to)0001(2300 sfFFTL ×× if low band noise has been detected at that frame.

Otherwise N0 = 0. That is, if low band noise is present then the spectral components residing at frequencies lower than

300 Hz are not analysed. A value sps(n) is considered as a local maximum if the following condition is TRUE

)2()1()2()1([)1()()1()(+≥+∨−≥−∧+>∧−> nspsnspsnspsnspsnspsnspsnspsnsps

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 43

Let {(Ak, nk), k = 1,…,Npeaks} be a list of all the local maxima (representing spectral peaks) sorted in ascending

order of their frequencies where Ak = sps(nk).

Scaling down of high frequency peaks

The entire range [0, FFTIL] of the frequency index is divided into three equal sub-intervals, and the maximal values
Amax1, Amax2 and Amax3 of Ak is found in the low, middle and high sub-intervals correspondingly. The value Amaxj

(j = 2,3) is evaluated against a threshold 2
1max jj ATHR ρ×= . If Amaxj > THRj then all the Ak associated with j-th

interval are multiplied by factor THRj/Amaxj . The following parameter values are used 45,0,65,0 32 == ρρ .

If the number of the peaks (the local maxima) exceeds 30 then the peaks with amplitudes less than
kAmax001,0 2 × are

discarded from the peaks list. If the number of remaining peaks is still exceeds 30 then all the high frequency peaks
starting from the peak #31 are discarded. The total number Npeaks of the peaks is updated as needed.

The peaks are sorted in descending order of their amplitudes. If the number of peaks is greater than 20 then only 20 first
peaks are selected for further processed, and the number Npeaks is set to 20.

Location and amplitude of each peak is refined by fitting parabola through the corresponding local maximum and the
two neighbouring samples of the power spectrum sps.

)1()1(

),1(2)1(

),(25,0)1(

5,0

−−+=
++−−=

−××++=
×−=

kk

kkk

kkkk

kk

nspsnspsb

andnspsAnspsa

where

nlocbnspsrefA

abnloc

 (5.128)

Then the peak locations lock are converted to Hz units and the square roots are taken from the peak amplitudes:

kk

skk

refAPA

FFTLflocPF

=

×××=)2/(0001
 (5.129)

The sequence {PAk, PFk, k=1,…,Npeaks} represents magnitude spectrum peaks.

Scaling down of high frequency peaks procedure is applied to this peaks sequence as described above except for that
this time

jρ is used for the threshold THRj computation instead of 2
jρ .

If Npeaks > 7 the final attempt to reduce the number of peaks is done as follows. If a number N1 exists so that

∑ ∑
= =

×≤
1

1 1

95,0
N

k

Npeaks

k
kk PAPA then only N1 starting peaks are taken. Otherwise the peaks are scanned from the end of the

list towards the beginning and all the peaks with amplitudes less than
7406,0 PA× are put out. The number Npeaks of

peaks is updated.

The peak amplitudes are normalized:

 ∑
=

=
Npeaks

i
ikk PAPANPA

1

 (5.130)

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 44

5.6.5.5 F0 Candidates generation

Pitch candidates are selected among the local maxima of a piecewise constant utility function U(F0):

5121002,512651

)()1(

5,02,0

21,5,0

1,1

)(

)0()0(

==
=+









<<
≤<
≤

=

×=∑

DD

rIrI

rD

DrD

Dr

rI

where

FPFINPAFU
i

ii

 (5.131)

Lower F0min and upper F0max limits for F0 are defined as the left and the right edges respectively of the processed
search range SRi, i = 1, 2, 3.

First, a partial utility function is built including only contributions of a few highest peaks. The partial utility function is
represented by a list of break points. Then all local maxima locations of the partial utility function are determined.
Finally, the values of the whole utility function at the local maxima are computed.

Building partial utility function

NPprelim peaks are selected from the top of the peaks list. NPprelim = min(Npeaks, 7). A counter variable is
initialized BPCount = 0. For each peak (NPAk, PFk), k=1,…,NPprelim, a list BPLk of the utility function break
points is collected as described below.

The maximal and minimal dividers of the peak frequency are calculated:

 






 +=






 −= 2
min0

)1
max0

,0max(maxmin D
F

PF
floorND

F

PF
ceilN kk (5.132)

The counter BPCount is updated BPCount = BPCount + Nmax - Nmin +1 and compared against a predefined

threshold BPLimit:









=
320

230

160

SRfor

SRfor

SRfor

BPLimit (5.133)

If the counter value exceeds the threshold then the entire peaks processing is terminated, and no more break point lists
are built. Otherwise the processing of the k-th peak continues. Index n scans the range [Nmin, Nmax] in the reverse
order n = Nmax, Nmax-1, …, Nmin each time generating four new breakpoints in the list, each break point is given
by its frequency value BPF and amplitude value BPA:

knkn

knkn

knkn

knkn

PABPADnPFBPF

PABPADnPFBPF

PABPADnPFBPF

PABPADnPFBPF

×−=−=

×−=−=

×=+=

×=+=

+−+−

+−+−

+−+−

+−+−

5,0)2(

5,0)1(

5,0)1(

5,0)2(

4)1(44)1(4

3)1(43)1(4

2)1(42)1(4

1)1(41)1(4

 (5.134)

Note that the break points in the list are ordered in the increasing order of the frequency.

If the list is not empty and min01 FBPF < then the beginning of the list is modified as follows. The first

k = max(1, m - 2) elements are discarded where min}0{:min FBPFim i >= . The new head of the list (former element

#m-1) is set to: ∑
+

=

==
1

1

min,0
k

j
jBPABPAFBPF .

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 45

If the list is not empty and there are elements (at the tail) with max0FBPF ≥ , that elements are deleted from the list.

Finally, if 2max0 DPFF k> then one or two elements are appended at the end of the list depending on certain

conditions as described below. Two frequency values are calculated: 21 DPFF k= and 12 DPFF k= .

if (min02 FF <)

 One element is appended: kPFBPAFBPF == min,0

else if (max02min01 FFFF ≤<<)

 Two elements are appended: kPFBPAFBPF 5,0min,0 == and kPFBPAFBPF 5,0,2 ==

else if (max02min01 FFFF >∧<)

 One element is appended: kPFBPAFBPF 5,0min,0 ==

else if (max02min01 FFFF ≤∧≥)

 Two elements are appended: kPFBPAFBPF 5,0,1 == and kPFBPAFBPF 5,0,2 ==

else if (max02min01 FFFF >∧≥)

 One element is appended: kPFBPAFBPF 5,0,1 ==

All the Break Point Lists {BPLk} are merged together into one array Upartial={(BPFn, BPAn)} preserving the
frequency ascending order, and the amplitudes of the break points are modified as:

 ...,3,2,1 =+= − nBPABPABPA nnn

If the last break point frequency is less than F0max then a new terminating element (BPF = F0max, BPA = 0) is
appended to the array. Further we will refer to the number of elements in the Upartial array as NBP.

Preliminary candidates determination

NCprelim break points are determined which are the highest in amplitude local maxima among the elements of the
Upartial array, where NCprelim = min(4,NBP). These break points being sorted in the descended order of amplitude

form a list of preliminary candidates. If a variable StableTrackF0 (which is described in clause 5.6.5.8) has a non-zero
value then an additional break point BPad is sought which is the highest in amplitude local maximum among the
Upartial array elements having frequency in the range [StableTrackF0/1,22, StableTrackF0 × 1,22]. If such the
break point is found then the amplitude associated with it is increased by 0,06 and compared against the amplitudes of
the preliminary candidates list members. If the modified amplitude is greater than the amplitude of at least one of the
preliminary candidates then BPad is inserted into the preliminary candidate list so that the list elements order is
preserved, and the last list member is put out. Finally, the frequency value for each candidate is modified as:

)(5,0 1++×= nnn BFBFBF

If n < NBP where n is the index of the break point in the Upartial array.

Candidate amplitudes refinement

For each preliminary candidate the amplitude value is recomputed in accordance to formula (5.131) wherein F0 is
substituted by the frequency value associated with that candidate and the summation is performed over all the Npeaks
spectral peaks.

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 46

Final candidates determination

NC (final) candidates are selected from the preliminary candidates, NC = min(2,Nprelim). For the selection purpose a
compare function is defined for a pair (F1,A1) and (F2,A2) of candidates given by their frequencies Fi and amplitudes
Ai. Let F1 < F2. The first candidate is declared to be better than the second one if the following condition is satisfied:

)2117,121(06,021 FFAAAA >×∧>∨+> (5.135)

otherwise the second candidate is considered as the best between the two.

NC best candidates are determined, sorted in descending order of their quality, and form a final candidates list. If the
pitch estimate PrevF0 obtained at the previous frame has non-zero value then the preliminary candidates are
determined having frequency values within the interval [PrevF0/1,22, PrevF0 × 1,22]. If such preliminary candidates
exist then one of them having the maximal amplitude is declared as an additional candidate. The amplitude a of the
additional candidate is increased by 0,06 (b = a + 0,06), and compared against the amplitudes of the final candidates
list members. If a member exists with amplitude less than b then the last member of the final candidates list is replaced
by the additional candidate.

Below the amplitudes associated with the candidates are referred to as Spectral Scores (SS).

5.6.5.6 Computing correlation scores

Correlation score is computed for each pitch candidate. The input for correlation score calculation stage comprises the
low-pass filtered extended downsampled frame (clause 5.6.4) and the candidate pitch frequency F0. Here we designate
the low-pass filtered extended downsampled frame by u(n) and assume that the origin n = 0 is associated with the
sample #NDS counting from the end of the vector u, so that the preceding to it samples have negative index values.
NDS is the length of downsampled frame NDS = 200/DSMP where DSMP is the downsampling factor (clause 5.6.4).

Candidate pitch frequency is converted to a time-domain lag:

DSMPF ×

=
0

0008τ (5.136)

An integer lag is calculated by rounding the lag value to the upper integer number)(ττ ceili = .

Analysis window length is calculated:

 






=
DSMP

floorLW
75 (5.137)

Offset and length parameters calculation

Offset O and length Len parameters are calculated to be used by further processing, besides two following cases are
treated differently.

Case 1:

 LWi ≤τ

)(maxarg
0

tE
iLWNDSt

iO
τ

τ
−−≤≤

+= ,

where:

 ∑
−++

=

=
1

2)()(
τiLWt

tn

nutE

 τiLWLen +=

Case 2:

 LWi >τ

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 47

Two vectors are extracted from the signal u:

 u1={u(t0), u(t0 + 1), …, u(t0 + iτ - 1)} and u2={ u(t0 - iτ), u(t0 + 1 - iτ), …, u(t0 - 1)},

where:

 



−
<

=
otherwiseiNDS

NDSiifNDS
t

,

2/,2/
0

τ
τ

An auxiliary offset ofs is determined as:

)(maxarg
10

tE
it

ofs
−≤≤

=
τ

where:

),)mod0()mod0(()(2
1

0

2 τττ initnunitnutE
LW

n

−+++++= ∑
−

=





−
<

=
otherwiseiNDS

NDSiifNDS
t

,

2/,2/
0

τ
τ

If ofs+LW τi≤ then O = t0 + ofs and Len = LW.

Otherwise two sets of the offset and length parameters are prepared:

 {O1 = t0 + ofs, Len1 = iτ - ofs} and (O2 = t0, Len2 = LW - Len1}.

Correlator

Input parameters for this block are O, Len and iτ

Three vectors are extracted from u:

X = {u(O), u(O + 1), …, u(O + Len - 1)}T

Y = {u(O - iτ), u(O - iτ + 1), …, u(O - iτ + Len - 1)}T

Z = {u(O - iτ + 1), u(O - iτ + 2), …, u(O - iτ + Len)}T

For each vector the sum of the coordinates is computed: ΣX, ΣY and ΣZ. The following inner products are computed
also: XTX, YTY, ZTZ, XTY, XTZ and YTZ.

Where there are two sets of the offset and length parameters (O1, Len1) and (O2, Len2), the correlator block is
applied twice, one time for each set, and the corresponding output values (the sums and the inner products) are summed.

DC removal

The inner products computed by the correlator are modified as follows:

XTX = XTX - (ΣΣΣΣX)2/LW

YTY = YTY - (ΣΣΣΣY)2/LW

ZTZ = ZTZ - (ΣΣΣΣZ)2/LW

XTY = XTY - ΣΣΣΣX×ΣΣΣΣY/LW

XTZ = XTZ - ΣΣΣΣX×ΣΣΣΣZ/LW

YTZ = YTZ - ΣΣΣΣY×ΣΣΣΣZ/LW

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 48

Interpolation

Correlation score CS is computed by the following interpolation formula:

()YYYXXXZZ

ZYZX
CS

TTTT

TT

×+×+××
×+×=

22 2 ααββ
αβ

 (5.138)

where:

 αβττα −=−= 1,i .

Finally, CS value is truncated if it falls outside the interval [0, 1].

 CS = max(CS,0),

 CS = min(CS,1).

5.6.5.7 Pitch estimate selection

Input to this stage is the set of pitch candidates. Each candidate (F0k, SSk, CSk) is represented by the corresponding

pitch frequency F0k, spectral score (the utility function value) SSk and correlation score CSk. The block outputs a pitch

estimate (F0, SS, CS) which either is selected among the candidates or indicates that that the frame represents unvoiced
speech in which case F0 is set to 0.

Pitch estimate selection block might be entered several (at most 3) times during the processing of one frame. It is
entered after pitch candidates generation is performed for each pitch search interval SRi. Each time the list of pitch
candidates which is fed into the block is updated appropriately to include all the pitch candidates detected so far. Thus
the list passed into this block after the processing of SR3 search range includes the candidates found within this range,
typically two candidates. If one of the candidates is selected as the pitch estimate then the pitch estimation process
terminates and the control flows to the history information update block (described in clause 5.6.5.8). Otherwise the
candidates generated within the SR2 range are combined with the ones found within SR3 and the combined list
(typically containing four candidates) is fed into pitch estimate selection block. If no pitch estimate is selected at this
time the block is entered again after SR1 range is processed. At this time the candidate list contains the candidates
generated in all the three ranges (typically 6 candidates). A variable EPT which is fed to the block along with the
candidates list indicates whether the list contains candidates generated for all the three search ranges (EPT = 1) or not
(EPT = 0).

The selection process is shown on the flow-chart of figure 5.10.

The candidates are sorted at step 100 in descending order of their F0 values. Then at step 110 the candidates are
scanned sequentially until a candidate of class 1 is found, or all the candidates are tested. A candidate is defined to be of
class 1 if the CS and SS values associated with the candidate satisfy the following condition:

 (CS ≥ C1 AND SS ≥ S1) OR (SS ≥ S11 AND SS + CS ≥ C S1) (Class 1 condition)

where:

 C1 = 0,79, S1 = 0,78, S11 = 0,68 and CS1 = 1,6.

At step 130 the flow branches. If a class 1 candidate is found it is selected to be a preferred candidate, and the control is
passed to step 140 performing a Find Best in Vicinity procedure described by the following. Those candidates among
the ones following in the list the preferred candidate are checked to determine those ones which are close in terms of F0
to the preferred candidate. Two values F01 and F02 are defined to be close to each other if:

 (F01 < 1,2 × F02 AND F02 < 1,2 × F01) (Closeness condition).

A plurality of better candidates is determined among the close candidates. A better candidate must have a higher SS and
a higher CS values than those of the preferred candidate respectively. If at least one better candidate exists then the best
candidate is determined among the better candidates. The best candidate is characterized by that there is no other better
candidate, which has a higher SS and a higher CS values than those of the best candidate respectively. The best
candidate is selected to be a preferred candidate instead of the former one. If no better candidate is found the preferred
candidate remains the same.

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 49

At step 150 the candidates following the preferred candidate are scanned one by one until either a candidate of class 1 is
found whose scores SScandidate and CScandidate satisfy following condition:

 SScandidate + CScandidate ≥≥≥≥ SSpreferred + CSpreferred + 0,18

or all the candidates are scanned. If a candidate is found which meets the above condition it is selected to be the
preferred candidate and Find Best in Vicinity procedure is applied. Otherwise the control is passed directly to step 180,
where the EPT variable value is tested. If EPT indicates that all the pitch search ranges have been processed the pitch
estimate is set to the preferred candidate. Otherwise the following condition is tested:

 SSpreferred ≥ 0,95 AND CSpreferred ≥ 0,95

If the condition is satisfied the pitch estimate is set to the preferred candidate, otherwise the pitch frequency F0 is set to
0 indicating that no pitch is detected.

Returning to the conditional branching step 130, if no class 1 candidate is found then at step 120 it is checked if the
StableTrackF0 variable has non-zero value in which case the control is passed to step 210, otherwise step 270 is
performed.

At step 210 a reference fundamental frequency value F0ref is set to StableTrackF0. Then at step 220 the candidates are
scanned sequentially until either a candidate of a class 2 is found or all the candidates are tested. A candidate is defined
to be of class 2 if the frequency and the score values associated with it satisfy the condition:

 (CS > C2 AND SS > S2) AND (1/1,22 < |F0/F0ref | < 1,22 (Class 2 condition)

where C2 = 0,7, S2 = 0,7. If no class 2 candidate is found then the pitch estimate is set to 0 at step 240. Otherwise, the
class 2 candidate is chosen to be the preferred candidate and Find Best in Vicinity procedure is applied at step 250.
Then at step 260 the pitch estimate is set to the preferred candidate.

Returning to the conditional branching step 120, if StableTrackF0 = 0 then control is passed to step 270 where a
Continuous Pitch Condition:

 PrevF0 > 0 AND StablePitchCount > 1

is tested (StablePitchCount variable is described below in clause 5.9.8) If the condition is satisfied then at step 280 the
frequency reference value F0ref is set to PrevF0 and the class 2 candidate search is performed at step 290. If a class 2
candidate is found (test step 300) then it is selected as the preferred candidate, Find Best In Vicinity procedure is
applied at step 310, and the pitch estimate is set to the preferred candidate at step 320. Otherwise, the processing
proceeds with step 330 likewise it happens if Continuous Pitch Condition test of step 270 fails.

At step 330 the candidates are scanned sequentially until a candidate of class 3 is found or all the candidates are tested.
A candidate is defined to be of class 3 if the scores associated with it satisfy the condition:

 (CS ≥ C3 OR SS ≥ S3) (Class 3 condition)

where, C3 = 0,85, S3 = 0,82. If no class 3 candidate is found then the pitch frequency is set to 0. Otherwise, the
class 3 candidate is selected as the preferred candidate, and Find Best in Vicinity procedure is applied at step 360. Then
at step 370 the pitch estimate is set to the preferred candidate.

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 50

Sort F0

Find Class 1
candidate

Found

Find best
In Vicinity

Find better
Class 1
candidate

Stable
Track?

Set reference to
stable pitch

Found?

Find best
In Vicinity

Set
pitch

Find Class 2
candidate

Found?

Find best
in vicinity

Set UV
pitch

Set
pitch

Continuous
Pitch?

Set reference to
previous pitch

Find Class 2
candidate

Found?

Find best
in vicinity

Set
pitch

Find Class 3
candidate

Found?

Find best
in vicinity

Set UV
pitch

Set
pitch

EPT=0?

Very high
scores

Set UV
pitch

Set
pitch

YES

NO

YES

NO

NO

NO

NO
NO

NO

YES

YES

YES NO

YES

YES

YES

YES

NO

100

110

130

120

140

150

160

170

180

190 400

410 420

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350
360

Figure 5.10: Pitch estimate selection

5.6.5.8 History information update

The pitch estimator maintains following variables holding information on the estimation process history: PrevF0,
StableTrackF0, StablePitchCount and DistFromStableTrack.

The variables are initialized as follows:

 PrevF0 = 0, StablePitchCount = 0, DistFromStableTrack = 1 000, StableTrackF0 = 0.

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 51

The variables are updated at each frame after pitch estimation processing is completed and the pitch frequency estimate
F0 is set. The update process is described by the following pseudo code section.

if (F0 > 0 AND PrevF0 > 0 AND 1/1.22 < |F0/PrevF0| < 1.22)
 StablePitchCount = StablePitchCount + 1;
else
 StablePitchCount = 0;
if (StablePitchCount ≥ 6)
{
 DistFromStableTrack = 0;
 StableTrackF0 = F0;
}

else if (DistFromStableTrack 2≤)
{
 if (StableTrackF0 > 0 AND 1/1.22 < |F0/StableTrackF0| < 1.22)
 {
 DistFromStableTrack = 0;
 StableTrackF0 = F0;
 }
 else
 DistFromStableTrack = DistFromStableTrack + 1;
}
else {
 StableTrackF0 = 0;
 DistFromStableTrack = DistFromStableTrack + 1;
}

PrevF0 = F0;

5.6.5.9 Output pitch value

The pitch frequency estimate F0 is converted to an output pitch value P representing pitch period duration measured in
sampling intervals.



 =

=
otherwiseF

Fif
P

0/0008

000
 (5.139)

5.6.6 Classification

The inputs to the classification block are the vad_flag and hangover_flag from the VAD block, the frame energy E from

the SEC block, the input signal ins , the upper-band signal ubs from the PP block, and the pitch period estimate P from

the PITCH block. The output of the classification block is the voicing class VC, which is one of the output parameters
of the front-end.

The voicing class VC is estimated from the different inputs to the classification block as follows. From the upper-band

signal ubs and the frame energy E, the upper-band energy fraction EFub is computed as:

E

is
EF

N

i
ub

ub

∑
== 1

2)(
 (5.140)

From the offset-free input signal ofs , the zero-crossing measure ZCM is computed as follows:

 ∑
=

−−
−

=
N

i
ofof isis

N
ZCM

2

|)]1(sgn[)](sgn[|
)1(2

1
 (5.141)

where:





<−
≥+

=
0)(,1

0)(,1
)](sgn[

is

is
is

of

of

of
 (5.142)

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 52

The logic used by the classification block is illustrated by the pseudo-code below.

if (vad_flag == FALSE)
 VC = "non-speech";
else if (P == 0)
 VC = "unvoiced";
else if ((hangover_flag == TRUE) || (EFub ≤ EF_UB_THLD) || (ZCM >= ZCM_THLD))
 VC = "mixed-voiced";
else
 VC = "fully-voiced";
end

The upper-band energy fraction threshold EF_UB_THLD is 0.0018 and the zero-crossing measure threshold
ZCM_THLD is 0,4375.

6 Feature compression

6.1 Introduction
This clause describes the distributed speech recognition front-end feature vector compression algorithm. The algorithm
makes use of the parameters from the front-end feature extraction algorithm of clause 5. Its purpose is to reduce the
number of bits needed to represent each front-end feature vector.

6.2 Compression algorithm description

6.2.1 Input

The compression algorithm is designed to take the feature parameters for each short-time analysis frame of speech data
as they are available and as specified in clause 5.4.

Fourteen of the sixteen parameters are compressed using a Vector Quantizer (VQ). The input parameters for the VQ are
the first twelve static Mel cepstral coefficients:

 () () () ()[]Teqeqeq tctctct ,12,...,,2,,1=eqc (6.1)

where t denotes the frame index, plus the zeroth cepstral coefficient c(0) and a log energy term lnE(t) as defined in
clause 5.3.2. The final input to the compression algorithm is the VAD flag. These parameters are formatted as:

 ()

()
()

()
() 


















=

tEln

tc

tVAD

t

ty
,0

eqc

 (6.2)

The remaining two parameters, viz., pitch period and class, are compressed jointly using absolute and differential scalar
quantization techniques.

6.2.2 Vector quantization

The feature vector y(t) is directly quantized with a split vector quantizer. The 14 coefficients (c(1) to c(12), c(0) and
lnE) are grouped into pairs, and each pair is quantized using its own VQ codebook. The resulting set of index values is
then used to represent the speech frame. Coefficient pairings (by front-end parameter) are shown in table 6.1, along with
the codebook size used for each pair. The VAD flag is transmitted as a single bit. c(1) to c(10) are quantized with 6 bits
per pair, while c(11) and c(12) are quantized with 5 bits. The closest VQ centroid is found using a weighted Euclidean
distance to determine the index:

 q
ty

ty
d

ii
j

i

iii
j

1,

1

1,

)(

)(+

+

+ −







= (6.3)

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 53

 () () () (){ } { }12...4,2,0,
10

argmin
1,1,1,

1,
1, =

−≤≤
= +++

+
+ idWd

Nj
tidx ii

j
iiii

jii
ii (6.4)

where 1, +ii
jq denotes the jth codevector in the codebook 1, +iiQ , 1, +iiN is the size of the codebook, W ii 1, + is the

(possibly identity) weight matrix to be applied for the codebook 1, +iiQ , and ()tidx ii 1, + denotes the codebook index

chosen to represent the vector () ()[]Tii tyty 1, + . The indices are then retained for transmission to the back-end.

Table 6.1: Split vector quantization feature pairings

 Size Weight Matrix
Codebook (NI,I + 1) (WI,I + 1) Element 1 Element 2

Q0,1 64 I c(1) c(2)

Q2,3 64 I c(3) c(4)

Q4,5 64 I c(5) c(6)

Q6,7 64 I c(7) c(8)

Q8,9 64 I c(9) c(10)

Q10,11 32 I c(11) c(12)

Q12,13 256 Non-identity c(0) lnE

Two sets of VQ codebooks are defined; one is used for speech sampled at 8 kHz or 11 kHz while the other for speech
sampled at 16 kHz. The numeric values of these codebooks and weights are specified as part of the software
implementing the standard. The weights used (to one decimal place of numeric accuracy) are:

8 kHz or 11 kHz sampling rate 








+
+

=
01798733692e2.189273750

004433857079e1.06456373
13,12W

16 kHz sampling rate 








+
+

=
01068143168e1.519002320

004221841998e1.05865394
13,12W

6.2.3 Pitch and class quantization

The pitch period of a frame can range from 19 samples to 140 samples (both inclusive) at 8 kHz sampling rate. The

voicing class of a frame can be one of the following four: non-speech, unvoiced speech, mixed-voiced speech, and
(fully) voiced speech. The class information of a frame is represented jointly using the pitch and class indices. The pitch

information of alternate frames is quantized absolutely using 7 bits or differentially using 5 bits.

6.2.3.1 Class quantization

When the voicing class of a frame is non-speech or unvoiced speech, the pitch index of the corresponding frame is
chosen to be zero, i.e. all-zero codeword either 5 bits or 7 bits long. For non-speech, the 1-bit class index is chosen as 0,
and for unvoiced speech, the class index is chosen as 1. For such frames, the pitch period is indeterminate.

When the voicing class of a frame is mixed-voiced speech or (fully) voiced speech, the pitch index of the corresponding
frame is chosen to be some index other than zero, either 5 bits or 7 bits long. For mixed-voiced speech, the 1-bit class
index is chosen as 0, and for (fully) voiced speech, the class index is chosen as 1. For such frames, the pitch index
specifies the pitch period as discussed under clause 5.2.3.2.

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 54

Thus the pitch and class indices of a frame jointly determine the voicing class of the frame as illustrated in table 6.2.

Table 6.2: Class quantization

Voicing Class (VC) Pitch index (Pidx) Class index (Cidx)
Non-speech 0 0
Unvoiced-speech 0 1
Mixed-voiced speech > 0 0
Fully-voiced speech > 0 1

6.2.3.2 Pitch quantization

The pitch period of an even-numbered frame (with the starting frame numbered zero), or equivalently, the first frame of
each frame pair is quantized absolutely using 7 bits. Out of the 128 indices ranging from 0 to 127, the index 0 is
reserved for indicating that the voicing class is non-speech or unvoiced speech as discussed under clause 5.2.3.1. The
remaining 127 indices are assigned in increasing order to 127 quantization levels that span the range from 19 to 140
uniformly in the log-domain. Given the pitch period of the frame, the quantization level that is closest to the pitch
period in the Euclidean sense and the corresponding index are chosen:

 2))((
1271

minarg
)(jqmP

j
mPidx −

≤≤
= (6.5)

where P(m) is the pitch period of the mth frame (m even), jq is the jth quantization level, and Pidx(m) is the pitch

quantization index for the mth frame.

The pitch period of an odd-numbered frame (with the starting frame numbered zero), or equivalently, the second frame
of each frame pair is quantized differentially using 5 bits. Out of the 32 indices ranging from 0 to 31, the index 0 is
reserved for indicating that the voicing class is non-speech or unvoiced speech as discussed under clause 6.2.3.1. The
remaining 31 indices are assigned in increasing order to 31 quantization levels, which are chosen depending on which
of the three preceding quantized pitch periods serves as the reference (for differential quantization) and what its value
is. The choice of the reference pitch period and the 31 quantization levels for different situations are illustrated in
table 6.3. With reference to the table, a quantized pitch period value with a non-zero index may be reliable or unreliable
to serve as a reference. An absolutely quantized pitch period value is always considered reliable. A differentially
quantized pitch period value is considered reliable only if the reference value used for its quantization is the quantized
pitch period value of the preceding frame. In table 6.3, the different quantization levels are specified as a factor that
multiplies the chosen reference value. If any quantization level falls outside the pitch range of 19 to 140, then it is
limited to the appropriate boundary value.

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 55

Table 6.3: Choice of reference and quantization levels for differential quantization

Pitch indices of preceding 3 frames
Pidx(m-2) Pidx(m-1) Pidx(m)

Choice of reference pitch period and 31 quantization levels for (m+1)th
frame

0 0
OR

 > 0 but
unreliable

0 No suitable reference is available. Use 5-bit absolute quantization.
The 31 quantization levels are chosen to span the range from 19 to 140
uniformly in the log-domain.

Do not care Don't care > 0 The quantized pitch period value of the mth frame is chosen as the
reference.
Out of the 31 quantization levels, 27 are chosen to cover the range from
(0,8163 × reference) to (1,2250 × reference) uniformly in the log-domain.
The other 4 levels depend on the reference value as follows:
19 ≤ reference ≤ 30 - (2,00, 3,00, 4,00, 5,00) × reference
30 < reference ≤ 60 - (1,50, 2,00, 2,50, 3,00) × reference
60 < reference ≤ 95 - (0,50, 0,67, 1,50, 2,00) × reference
95 < reference ≤ 140 - (0,25, 0,33, 0,50, 0,67) × reference

Do not care > 0
Reliable

0 The quantized pitch period value of the (m-1)th frame is chosen as the
reference.
The choice of quantization levels is the same as shown in the row below.

> 0 0
OR

> 0 but
unreliable

0 The quantized pitch period value of the (m-2)th frame is chosen as the
reference.
Out of the 31 quantization levels, 25 are chosen to cover the range from
(0,7781 × reference) to (1,2852 × reference) uniformly in the log-domain.
The other 6 levels depend on the reference value as follows:
19 ≤ reference ≤ 30 - (1,50, 2,00, 2,50, 3,00, 4,00, 5,00) × reference
30 < reference ≤ 60 - (0,67, 1,50, 2,00, 2,50, 3,00, 4,00) × reference
60 < reference ≤ 95 - (0,33, 0,50, 0,67, 1,50, 1,75, 2,00) × reference
95 < reference ≤ 140 - (0,20, 0,25, 0,33, 0,50, 0,67, 1,50) × reference

The 31 indices used for differential quantization are assigned in increasing order to the 31 quantization levels. Given the
pitch period of the frame, the quantization level that is closest to the pitch period in the Euclidean sense and the
corresponding index are chosen:

 2))1((
311

minarg
)1(jqmP

j
mPidx −+

≤≤
=+ (6.6)

where P(m+1) is the pitch period of the (m+1)th frame (m even), jq is the jth quantization level, and Pidx(m+1) is the

pitch quantization index for the (m+1)th frame.

7 Framing, bit-stream formatting and error protection

7.1 Introduction
This clause describes the format of the bitstream used to transmit the compressed feature vectors. The frame structure
used and the error protection that is applied to the bitstream is defined. The basic unit for transmission consists of a pair
of speech frames and associated error protection bits with the format defined in clause 7.2.4. This frame pair unit can be
used either for circuit data systems or packet data systems such as the IETF Real-Time Protocols (RTP). For circuit data
transmission a multiframe format is defined consisting of 12 frame pairs in each multiframe and is described in
clauses 7.2.1 to 7.2.3. The formats for DSR transmission using RTP are defined in the IETF Audio Video Transport,
Internet-Draft (see bibliography) where the number of frame pairs sent per payload is flexible and can be designed for a
particular application.

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 56

7.2 Algorithm description

7.2.1 Multiframe format

In order to reduce the transmission overhead, each multiframe message packages speech features from multiple
short-time analysis frames. A multiframe, as shown in table 7.1, consists of a synchronization sequence, a header field,
and a stream of frame packets.

Table 7.1: Multiframe format

Sync Sequence Header Field Frame Packet Stream
<- 2 octets -> <- 4 octets -> <- 162 octets ->

<- 168 octets ->

In order to improve the error robustness of the protocol, the multiframe has a fixed length (168 octets). A multiframe
represents 240 ms of speech, resulting in a data rate of 5 600 bits/s.

In the specification that follows, octets are transmitted in ascending numerical order; inside an octet, bit 1 is the first bit
to be transmitted. When a field is contained within a single octet, the lowest-numbered bit of the field represents the
lowest-order value (or the least significant bit). When a field spans more than one octet, the lowest-numbered bit in the
first octet represents the lowest-order value (LSB), and the highest-numbered bit in the last octet represents the
highest-order value (MSB). An exception to this field mapping convention is made for the cyclic redundancy code
(CRC) fields. For these fields, the lowest numbered bit of the octet is the highest-order term of the polynomial
representing the field. In simple stream formatting diagrams (e.g. table 7.1) fields are transmitted left to right.

7.2.2 Synchronization sequence

Each multiframe begins with the 16-bit synchronization sequence 0 × 87B2 (sent LSB first, as shown in table 7.2).

The inverse synchronization sequence 0 × 784D can be used for synchronous channels requiring rate adaptation. Each
multiframe may be preceded or followed by one or more inverse synchronization sequences. The inverse
synchronization is not required if a multiframe is immediately followed by the synchronization sequence for the next
multiframe.

Table 7.2: Multiframe synchronization sequence

Bit 8 7 6 5 4 3 2 1 Octet
 1 0 0 0 0 1 1 1 1
 1 0 1 1 0 0 1 0 2

7.2.3 Header field

Following the synchronization sequence, a header field is transmitted. Due to the critical nature of the data in this field,
it is represented in a (31, 16) extended systematic codeword. This code will support 16-bits of data and has an error
correction capability for up to three bit errors, an error detection capability for up to seven bit errors, or a combination
of both error detection and correction.

Ordering of the message data and parity bits is shown in table 7.3, and definition of the fields appears in table 7.4. The
4 bit multiframe counter gives each multiframe a modulo-16 index. The counter value for the first multiframe is "0001".
The multiframe counter is incremented by one for each successive multiframe until the final multiframe. The final
multiframe is indicated by zeros in the frame packet stream (see clause 7.2.4).

NOTE: The remaining nine bits which are currently undefined are left for future expansion. A fixed length field
has been chosen for the header in order to improve error robustness and mitigation capability.

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 57

Table 7.3: Header field format

Bit 8 7 6 5 4 3 2 1 Octet
 Ext MframeCnt feType SampRate 1
 EXP8 EXP7 EXP6 EXP5 EXP4 EXP3 EXP2 EXP1 2
 P8 P7 P6 P5 P4 P3 P2 P1 3
 P16 P15 P14 P13 P12 P11 P10 P9 4

Table 7.4: Header field definitions

Field No. Bits Meaning Code Indicator
SampRate 2 sampling rate 00 8 kHz
 01 11 kHz
 10 undefined
 11 16 kHz
FeType 1 Front-end specification 0 standard
 1 noise robust
MframeCnt 4 multiframe counter xxxx Modulo-16 number
Ext 1 Extended front-end 0 Not extended (4 800 bps)
 1 Extended (5 600 bps)
EXP1 - EXP8 8 Expansion bits (TBD) 0 (zero pad)
P1 - P16 16 Cyclic code parity bits (see below)

The generator polynomial used is:

 () 1514128
1 1 XXXXXg ++++= (7.1)

The proposed (31, 16) code is extended, with the addition of an (even) overall parity check bit, to 32 bits. The parity
bits of the codeword are generated using the calculation:





















































×

























































=























































8

7

6

5

4

3

2
1

4

3

2
1

2

1

1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0

1 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0

1 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0

1 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0

1 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0

1 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0

1 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0

1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1

0 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0

0 0 1 1 0 1 0 0 0 1 1 1 0 1 0 0

0 0 0 1 1 0 1 0 0 0 1 1 1 0 1 0

0 0 0 0 1 1 0 1 0 0 0 1 1 1 0 1

1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 0

1 0 1 1 0 1 1 1 0 0 0 0 0 1 1 1

0 1 1 1 0 0 1 1 0 0 0 0 0 0 1 1

1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

EXP

EXP

EXP

EXP

EXP

EXP

EXP
EXP

Ext
MFrameCnt

MFrameCnt

MFrameCnt
MFrameCnt

feType

SampRate

SampRate

P

P

P

P

P
P

P
P

P

P
P

P

P
P

P

P
T

 (7.2)

where T denotes the matrix transpose.

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 58

7.2.4 Frame packet stream

Each 10 ms frame from the front-end is represented by the codebook indices specified in clause 6.2.2, the pitch index
and class index specified in clause 6.2.3, and the VAD flag. The indices and the VAD flag for a pair of frames are
formatted according to table 7.5.

NOTE: The exact alignment with octet boundaries will vary from frame pair to frame pair.

Table 7.5: Frame information for mth and (m+1)th frames

Bit 8 7 6 5 4 3 2 1 Octet
 Idx2,3(m) Idx0,1(m) 1
 Idx4,5(m) Idx2,3(m) (cont) 2
 Idx6,7(m) Idx4,5(m) (cont) 3
 Idx10,11(m) VAD(m) Idx8,9(m) 4
 Idx 12,13(m) Idx 10,11(m) (cont) 5
 Idx0,1(m+1) Idx 12,13(m) (cont) 6
 Idx2,3(m+1) Idx0,1(m+1) (cont) 7
 Idx6,7(m+1) Idx4,5(m+1) 8
 Idx8,9(m+1) Idx6,7(m+1) (cont) 9
 Idx10,11(m+1) VAD(m+1) Idx8,9(m+1) (cont) 10
 Idx 12,13(m) 11
 Pidx(m) CRC(m,m+1) 12
 Pidx(m+1) Pidx(m) (cont) 13
 PC-CRC(m,m+1) Cidx(m+1) Cidx(m) 14

The codebook indices for each frame take up 44 bits. After two frames worth of codebook indices, or 88 bits, a 4-bit
CRC (XXXg 41)(++=) calculated on these 88 bits immediately follows it. The pitch indices of the first frame (7 bits)

and the second frame (5 bits) of the frame pair then follow. The class indices of the two frames in the frame pair worth
1 bit each next follow. Finally, a 2-bit CRC (denoted by PC-CRC) calculated on the pitch and class bits (total: 14 bits)
of the frame pair using the binary polynomial g(X) = 1 + X + X2 is included. The total number of bits in frame pair
packet is therefore 44 + 44 + 4 + 7 + 5 + 1 + 1 + 2 = 108, or 13,5 octets. Twelve of these frame pair packets are
combined to fill the 162 octet (1 296 bit) feature stream. When the feature stream is combined with the overhead of the
synchronization sequence and the header, the resulting format requires a data rate of 5 600 bits/s.

All trailing frames within a final multiframe that contain no valid speech data will be set to all zeros.

8 Bit-stream decoding and error mitigation

8.1 Introduction
This clause describes the algorithms used to decode the received bitstream to regenerate the speech feature vectors. It
also covers the error mitigation algorithms that are used to minimize the consequences of transmission errors on the
performance of a speech recognizer and/or a speech reconstructor.

8.2 Algorithm description

8.2.1 Synchronization sequence detection

The method used to achieve synchronization is not specified in the present document. The detection of the start of a
multiframe may be done by the correlation of the incoming bit stream with the synchronization flag. The output of the
correlator may be compared with a correlation threshold (the value of which is not specified in this definition).
Whenever the output is equal to or greater than the threshold, the receiver should decide that a flag has been detected.
For increased reliability in the presence of errors the header field may also be used to assist the synchronization method.

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 59

8.2.2 Header decoding

The decoder used for the header field is not specified in the present document. When the channel can be guaranteed to
be error-free, the systematic codeword structure allows for simple extraction of the message bits from the codeword. In
the presence of errors, the code may be used to provide either error correction, error detection, or a combination of both
moderate error correction capability and error detection capability.

In the presence of errors, the decoding of the frame packet stream in a multiframe is not started until at least two
headers have been received in agreement with each other. Multiframes are buffered for decoding until this has occurred.
The header block in each received multiframe has its cyclic error correction code decoded and the "common
information carrying bits" are extracted. With the header defined in the present document the "common information
carrying bits" consist of SampRate, FeType, Ext, and EXP1 - EXP8 (expansion bits).

NOTE: The use of EXP1 - EXP8 depends on the type of information they may carry in the future. Only those bits
which do not change between each multiframe are used in the check of agreement described above.

Once the common information carrying bits have been determined then these are used for all the multiframes in a
contiguous sequence of multiframes.

8.2.3 Feature decompression

Codebook, pitch, and class indices and the VAD flag are extracted from the frame packet stream, with optional
checking of CRC and PC-CRC. (Back-end handling of frames failing the CRC and PC-CRC check is specified in
clause 8.2.4.) Using the codebook indices received, estimates of the front-end features are extracted with a VQ
codebook lookup:

()
() () { }12...4,2,0

ˆ

ˆ
1,

1

1, ==






 +

+
+ iq

ty

ty ii

midx
i

i
ii

 (8.1)

From the pitch and class indices, the voicing class feature is extracted as specified in table 6.2. For non-speech and
unvoiced frames, the pitch period is indeterminate. For a mixed-voiced or (fully) voiced frame, the pitch period is
estimated from the pitch index as follows. For a frame with absolute pitch quantization (m even), the pitch index
directly specifies the quantized pitch period. For a frame with differential pitch quantization (m odd), the pitch index
specifies the factor by which the reference has to be multiplied. The reference, which can be the quantized pitch period
value of any one of the preceding three frames, is obtained using the rules of table 6.3. If no suitable reference is
available (Row 1 of table 6.3), then the pitch index directly specifies the quantized pitch period.

8.2.4 Error mitigation

8.2.4.1 Detection of frames received with errors

When transmitted over an error prone channel then the received bitstream may contain errors. Two methods are used to
determine if a frame pair packet has been received with errors:

• CRC and PC-CRC: The CRC recomputed from the codebook indices of the received frame pair packet data
does not match the received CRC for the frame pair, or, the PC-CRC recomputed from the pitch and class
indices of the received frame pair packet data does not match the received PC-CRC for the frame pair, or both.

• Data consistency: A heuristic algorithm to determine whether or not the decoded parameters for each of the
two speech vectors in a frame pair packet are consistent. The details of this algorithm are described below.

The parameters corresponding to each index, idxi, i + 1, of the two frames within a frame packet pair are compared to
determine if either of the indices are likely to have been received with errors:

() ()() () ()()



 >−+>−+

= +++

otherwise

TtytyORTtyty
agbadindexfl iiiiii

i 0

1 1 if1 111 i = {0,2....12} (8.2)

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 60

The thresholds Ti have been determined based on measurements of error free speech. A voting algorithm is applied to

determine if the whole frame pair packet is to be treated as if it had been received with transmission errors. The frame
pair packet is classified as received with error if:

 ∑
=

≥
12,...2,0

2
i

iagbadindexfl (8.3)

The data consistency check for erroneous data is only applied when frame pair packets failing the CRC test are
detected. It is applied to the frame pair packet received before the one failing the CRC test and successively to frames
after one failing the CRC test until one is found that passes the data consistency test. The details of this algorithm are
shown in the flow charts of figures 8.1 and 8.2.

8.2.4.2 Substitution of parameter values for frames received with errors

The parameters from the last speech vector received without errors before a sequence of one or more "bad" frame pair
packets and those from the first good speech vector received without errors afterwards are used to determine
replacement vectors to substitute for those received with errors. If there are B consecutive bad frame pairs
(corresponding to 2B speech vectors) then the first B speech vectors are replaced by a copy of the last good speech
vector before the error and the last B speech vectors are replaced by a copy of the first good speech vector received after
the error. It should be noted that the speech vector includes the 12 static cepstral coefficients, the zeroth cepstral
coefficient, the log energy term and the VAD flag, and all are therefore replaced together. In the presence of errors, the
decoding of the frame packet stream in a multiframe is not started until at least two headers have been received in
agreement with each other. Multiframes are buffered for decoding.

8.2.4.3 Modification of parameter values for frames received with errors

The logE, pitch, and class parameters of frames received with errors are modified as follows after the substitution step
described in clause 8.2.4.2. This modification step affects only back-end speech reconstruction - it does not affect
speech recognition.

First, a 3-point median filter is applied to the logE parameter. The median value of the logE parameters of the
preceding, current, and succeeding frames replaces the logE parameter of the current frame. The median filter is
switched on only after the first frame error has been detected. In other words, there is no median filtering for an
error-free channel.

Second, the logE, pitch, and class parameters of frames received with errors are modified according to the runlength of
errors. Let the runlength of errors be 2B frames. If 2B is less than or equal to 4, no parameter modification is done. In
this case, because of the substitution step in clause 8.2.4.2, the first B frames receive their parameters from the good
frame on the left (before the error) and the next B frames receive their parameters from the good frame on the right
(after the error).

For a runlength greater than 4 but less than or equal to 24, the parameter modification is done as follows. The
parameters of the first two frames and last two frames are not modified. From the 3rd frame to the Bth frame, the logE
parameter is decreased linearly from left to right by 2 per frame. The value of the logE parameter is however not
allowed to go below 4,7. If these frames are (fully) voiced, then they are modified to mixed-voiced frames. The pitch
parameters are not changed. From the (2B-2)th frame to (B+1)th frame (both inclusive), the logE parameter is decreased
linearly from right to left by 2 per frame with a floor value of 4,7. Fully voiced frames are modified to mixed-voiced
frames and the pitch parameters are not modified.

If the runlength of errors is greater than 24, then the first 12 and the last 12 frames are handled exactly as above. The
remaining (2B-12) frames in the middle are modified as follows. The logE parameter is set to 4,7, the class parameter is
set to "unvoiced", and the pitch parameter is indeterminate.

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 61

Start

CurrentFrame = get next frame

Buffering Data
Mode

CRC of Current
Frame;

Threshold of
Previous Frame

CRC of
Current
Frame

On

Off

Buffering Data Mode = On
BufferIdx = 0

Buffer[BufferIdx] = CurrentFrame
BufferIdx++

Error

PreviousFrame = CurrentFrame

OK

Buffering Data Mode = Off

Buffer[BufferIdx++] = PreviousFrame
Buffer[BufferIdx++] = CurrentFrame

Buffering Data Mode = On

Both In Error
UnBuffer data from 0 to BufferIdx-1

End

Output Previous Frame

LastGoodFrame = PreviousFrame

Previousframe = CurrentFrame

Otherwise

Figure 8.1: Error mitigation initialization flow chart

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 62

Start
Processing of initial

frames to get a reliable
one in the

PreviousFrame.

CRC of
Current
Frame

Threshold
of Previous

Frame

LastGoodFrame =
PreviousFrame

Output
PreviousFrame

PreviousFrame =
CurrentFrame

LastGoodFrame =
PreviousFrame

Output
PreviousFrame

Buffer[0] = Current
BufferIdx = 1

Buffer[0] = PreviousFrame
BufferIdx = 1

Error

OK

OK

Error

Off

Buffering Data Mode = On

CRC of
Current
Frame

Buffer[BufferIdx] = Current Frame
BufferIdx++

On

Buffer[BufferIdx] = Current Frame
BufferIdx++

Threshold of
Current
Frame

Error

OK

Perform Error Correction from
0 to BufferIdx-1
BufferIdx = 0

Buffering Data Mode = Off

Error

OK

Previous Frame =
Current Frame

LastGoodFrame =
Current Frame

Buffering Data Mode = Off

Buffer[BufferIdx] = Current
BufferIdx++

Buffering
Data Mode

CurrentFrame =
GetNextFrame

Figure 8.2: Main error mitigation flow chart

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 63

9 Server feature processing
lnE and ()0c combination, derivatives calculation and feature vector selection (FVS) processing are performed at the

server side. ()0c , ()1c , …, ()12c , lnE are received in the back-end. ()0c is combined with lnE then the first and

second order derivatives of ()1c , …, ()12c , ()& 0lnE c are calculated resulting in a 39 dimensional feature vector. A

feature vector selection procedure is then performed according to the VAD information transmitted.

9.1 lnE and c(0) combination

()0c and lnE are combined in the following way:

 () ()& 0 0,6 0 23 0, 4lnE c c lnE= × + × (9.1)

9.2 Derivatives calculation
First and second derivatives are computed on a 9-frame window. Velocity and acceleration components are computed
according the following formulas:

(), 1,0 (, 4) 0,75 (, 3) 0,50 (, 2) 0,25 (, 1)

0,25 (, 1) 0,50 (, 2) 0,75 (, 3) 1,0 (, 4),

1 12

vel i t c i t c i t c i t c i t

c i t c i t c i t c i t

i

= − × − − × − − × − − × −
+ + + + + + + +
≤ ≤

× × × × (9.2)

(,) 1,0 (, 4) 0, 25 (, 3) 0, 285 714 (, 2)

0,607143 (, 1) 0,714 286 (,) 0,607143 (, 1)

0,285 714 (, 2) 0, 25 (, 3) 1,0 (, 4),

1 12

acc i t c i t c i t c i t

c i t c i t c i t

c i t c i t c i t

i

= × − + × − − × −
− × − − × − × +
− × + + × + + × +
≤ ≤

 (9.3)

where t is the frame time index.

The same formulae are applied to obtain ()& 0lnE c velocity and acceleration components.

9.3 Feature vector selection
A FVS algorithm is used to select the feature vectors that are sent to the recognizer. All the feature vectors are
computed and the feature vectors that are sent to the back-end recognizer are those corresponding to speech frames, as
detected by a VAD module (described in annex A).

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 64

10 Server side speech reconstruction

10.1 Introduction
This clause describes the server side speech reconstruction algorithm. Speech is reconstructed from feature vectors that
have been decoded from the received bit stream and error-mitigated. Each feature vector consists of the following
16 parameters - 13 Mel-Frequency Cepstral Coefficients (MFCC) C0 through C12, the log-energy parameter logE, the

pitch period value P, and the voicing class VC. The reconstructed speech is in digitized form and is provided at a
sampling rate of 8 kHz regardless of the sampling rate of the input speech from which the feature vectors have been
extracted.

The specification also covers a pitch tracking and smoothing algorithm, which is applied to the pitch (and class)
parameters before they are used for speech reconstruction.

In clause 10, the following symbolic notations are used for some constants if not stated differently in the text:

N = 200 - frame length in samples;

M = 80 - frame shift in samples;

fs = 8 - sampling rate of synthesized speech signal in kHz;

FFTL = 256 - FFT dimension.

10.2 Algorithm description
The reconstruction algorithm synthesizes one frame of speech signal from each MFCC vector and the corresponding
logE, pitch and voicing class parameters. Frame synthesis is based on a harmonic model representation. The model
parameters, viz., harmonic frequencies, magnitudes, and phases, are estimated for each frame and a complex spectrum
(STFT) of the frame is computed. The complex spectrum is then transformed to time-domain representation and
overlap-added with part of the speech signal already synthesized.

10.2.1 Speech reconstruction block diagram

Speech reconstruction block diagram is shown in figure 10.1.

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 65

PTS

HSI

HOC

SFE

CTM

COM

APM

PF

VPH

LSTD

OLA

MFCC, logE

pitch

voicing
class

 speech

UP

CDE T16kHz

APM All-Pole spectral envelope Modelling
CDE Cepstra De-Equalization
COMB Combined magnitudes estimate calculation
CTM Cepstra To Magnitudes transformation
HOCR High Order Cepstra Recovery
HSI Harmonic Structure Initialization
LSTD Line Spectrum to Time-Domain transformation
OLA Overlap-add
PF PostFiltering
PTS Pitch Tracking and Smoothing
SFEQ Solving Front-End eQuation
T16kHz feature Transformation at 16kHz
UPH Unvoiced Phase synthesis
VPH Voiced Phase synthesis

Figure 10.1: Speech reconstruction block diagram

10.2.2 Pitch Tracking and Smoothing

The input to the Pitch Tracking and Smoothing block (PTS) is a set of successive pitch period values P[n], log energy
values logE[n] and voicing class values VC[n]. (Zero pitch period indicates either an unvoiced frame or non-speech
frame.) The outputs are the corrected values pfixed [n] of pitch period and vcfixed [n] of voicing class.

Pitch processing is done in three stages. Then the voicing class value correction is performed.

The three stages of pitch processing require three working buffers to hold the pitch values of successive frames and
possibly the log-energy of the frames (for the first stage only). Each stage introduces further delay (look-ahead) in the
output pitch value. The buffer length L (an integer number of frames) is the sum of the number of look-ahead frames
(the delay) D, the number of backward frames (the history) H, plus one, which is the current output frame at that stage
(i.e. L=D+H+1). Each stage produces a new output value, which is pushed at the top (at the end) of the next stage
buffer. All other values in the buffer are pushed one frame backwards, with the oldest value discarded. This
configuration is described in figure 10.2.

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 66

0

Stage 1:

Stage 2:

Stage 3:

most recent

Input

Output

Oldest

D1H1

D2H2

D3H3

1 H1

Figure 10.2: Buffers of the three-stage pitch tracking and smoothing algorithm

The total look-ahead (in frames) required for the correction of current pitch value, and therefore the delay introduced by
the PTS block is: D = D1 + D2 + D3. The delay and history values used are:

First stage: D1 = 8, H1 = 10 (therefore L1 = 19);

Second stage: D2 = H2 = 1 (therefore L2 = 3);

Third stage: D3 = H3 = 2 (therefore L3 = 5).

And the total delay is 11 frames.

All the three stage buffers are initialized by zero values. Each coordinate of the energy buffer used at the first stage is
initialized by -50.

In the description of the three-stage pitch tracking algorithm the terms "voiced frame" and "unvoiced frame" are
redefined. A frame is referred to as voiced frame if it is either of "fully voiced" or of "mixed-voiced" class. A frame is
referred to as unvoiced if it is of "unvoiced" or "non-speech" class.

10.2.2.1 First stage - gross pitch error correction

Let p[n], n=0,1,...,L1-1 be the pitch period values of the first stage buffer, such that p[L1-1] is the most recent value
(the new input pitch), and p[0] is the oldest value. A pitch value of zero indicates an unvoiced frame. Similarly, there is
a buffer of the same length holding the energy values.

The output pitch of the first stage has a delay of D1 frames compared to the most recent frame in the buffer. The
processed frame has D1 frames look-ahead and H1 backwards frames. A new pitch value Pout associated with the
location n=H1 in the buffer has to be calculated and pushed to the second stage pitch tracking.

If the frame is unvoiced (i.e. p[H1]==0) then Pout=0 as well.

If the frame is voiced, but there are unvoiced frame at both sides (i.e. p[H1]!=0, p[H1-1]==p[H1+1]==0), then
Pout=0.

If the frame is voiced, and is a member of a voiced segment of only two frames, then the similarity between the pitch
values of the two voiced frames is examined as described below. If they are similar, then no change is made to the pitch
value, i.e. Pout=p[H1]. Otherwise, the frame is reclassified as unvoiced, Pout=0.

In the remaining cases, the output pitch value Pout will be assigned the value p[H1], or it may be assigned an integer

multiplication or integer divide of p[H1]. To do this, first the voiced segment in which the frame H1 is located in is
identified. This voiced segment can extend D1 frames ahead and H1 frames backwards at the most. It will be shorter if
there are unvoiced frames in the buffer. Then, a reference pitch value is extracted using the information from the
neighbouring frames in the voiced segment. Finally, the output pitch value of the first stage is identified.

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 67

Similarity measure

Two (positive) pitch periods P1 and P2 are declared as similar if for a given similarity factor 1ρ > the following is true:

 ρρ /121 PPP ≥≥×

A similarity factor of 1,28 is used to check the similarity of two pitch periods of successive frames (i.e. 10 ms apart). A
factor of 1,4 is used for pitch periods that are two frames apart (20 ms).

Relevant frames identification

The voiced segment in which the current frame (in position H1) is located and its pitch and energy values are copied to
a temporary buffer. The pitch values of this segment are notified by q[n], n = 0, 1, …, N - 1 and the corresponding
log-energy values as e[n], n = 0, 1, …, N - 1. Here N is the number of frames in the voiced segment. (Note that

12 LN ≤<). Figure 10.3 describes the indexing of the voiced segment. "U" represents an unvoiced frame, and "V" a
voiced frame. Location K in the voiced segment now represents the current examined frame (p[H1], for which a first
stage output pitch value must be calculated):

most recentOldest

D1H1

vv v uvvu

voiced segment

0

v

1 N-1K

Figure 10.3: Location of a voiced segment within the first stage buffer

The purpose of the following process is to identify the set of frames that have similar pitch values, and their total energy
is the greatest. To do that, the N pitch values are sorted according to ascending pitch values. The sorted pitch values are
then divided into groups. A group contains one or more consecutive sorted pitch periods, such that neighbouring pitch
values are similar (with the similarity factor 1,28) in the sense defined above. The pitch values are processed from the
smallest to the largest. When the similarity is violated between the consecutive sorted pitch values, the previous group
is closed and a new group is opened.

For each group, the total energy of all frames in the group is calculated. The group that has the biggest total energy is
selected. All other frames that are not within the selected group are marked as deleted in the original (unsorted) voiced
segment temporary buffer q.

Reference pitch value calculation

One or more pitch tracks are identified in the voiced segment (represented by the buffers q and e). The tracking is done
only on the frames that were not deleted by the relevant frames identification process. If frame K (examined frame of
the stage 1) was not deleted, it will be included in one of the pitch tracks. A pitch track is defined as a set of successive
undeleted voiced frames, whose neighbouring pitch values are similar in the above specified sense. The energy of each
pitch track is the sum of the log-energy of all its frames

After all the pitch tracks are identified, the one with the biggest energy is examined. The reference pitch Pref is defined
as the pitch value in the selected track that is closest to position K. If the selected pitch track includes frame K, it means
that the reference pitch is exactly the pitch value of the examined frame (meaning it will not change at the first stage of
processing).

First stage output calculation

Let p1 and p2 be two positive numbers. We define the distance measure Dist(p1,p2) in the following way:

21

21
21),(

pp

pp
ppDist

+
−=

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 68

Given a reference pitch value Pref and the pitch value of the current examined frame p[H1], the new pitch value Pout is

calculated as specified by the following pseudo code:

INTEGER SCALING
{

])1[(HpPif ref ==

])1[HpPout == ;

])1[(HpPelseif ref >

 {

])1[(HpPceilQ ref= ;

 ()]1[,minarg
,...,1

HpmPDistM ref

Qm

×=
=

;

]1[HpMPout ×= ;

 }

else
 {

)]1[(refPHpceilQ = ;

 ()]1[,minarg
,...,1

HpPmDistM ref

Qm

×=
=

;

 MHpPout /]1[= ;

 }

)2(==Mif

 {

])1[(HpPif ref >

 {

 () ())]1[,]1[2,4,1(HpPDistHpPDistif refref >×

]1[HpPout = ;

 }

])1[(HpPif ref <

 {

 () ())]1[,]1[,24,1(HpPDistHpPDistif refref >×

]1[HpPout = ;

 }
 }
}

10.2.2.2 Second stage - voiced/unvoiced decision and other corrections

Let p[n], n = 0, 1, 2 (L2 = 3) be the pitch period values of the second stage buffer, such that p[2] is the most recent
value (the new output of the first stage), and p[0] is the oldest value. An output value will be associated with the middle
location n=1 in the buffer, and will be marked Pout.

Pout will be assigned the value of p[1], unless one of the following occurs:

If all three frames are voiced, and p[2] is similar to p[0], then we examine the middle value p[1]. If it is not similar
(with 28,1=ρ) to the average of p[2] and p[0], the output value Pout will receive this average value instead of p[1].

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 69

If p[0] and p[2] are voiced and similar, and if p[1] is unvoiced, then the output frame will be voiced with a pitch Pout

equal to average of p[0] and p[2]. Here the similarity is evaluated using a similarity factor of 28,1=ρ instead of 1,4,

even though the pitch values to be compared are two frames apart.

1) If the oldest frame in the buffer is unvoiced (p[0]==0) and the two other frames are voiced, or if the most
recent frame is unvoiced (p[2]==0) and the two other frames are voiced, then the similarity between the two
voiced frames is examined. If they are not similar, then the output frame will be unvoiced, i.e. Pout=0.

10.2.2.3 Third stage - smoothing

Let p[n], n = 0, 1, ..., L3 - 1 be the pitch period values of the third stage buffer, such that p[L3-1] is the most recent
value (the new output of the second stage), and p[0] is the oldest value. L3 is odd. An output value will be associated
with the middle location (L3-1)/2 in the buffer, and will be marked pfixed.

If there is an unvoiced frame in the middle location (i.e. p[(L3-1)/2]==0) then the output frame is also unvoiced and
pfixed=0. Otherwise, a filtering operation is performed by weighting a modified version of all the pitch values in the
buffer as described below.

A new set of pitch values q[n], n = 0, 1, …, L3 - 1 is derived from the current values p[n] in the third stage buffer,
according to the following rules:

1) q[(L3-1)/2] = p[(L3-1)/2].

2) For each n, if p[n]==0 (unvoiced frame) then q[n] = p[(L3-1)/2].

3) All other pitch values are multiplied by an integer or divided by an integer, such that they become as close as
possible to the value of the middle frame p[(L3-1)/2]. That is, q[n] = M×p[n] or q[n]=p[n]/M where M is an
integer greater or equal one. The exact calculation of the new value is done as is described by the pseudo code
titled INTEGER SCALING in the clause 10.2.2.1 above wherein the variables substitution should be done as:
Pref by p[(L3-1)/2], p[H1] by p[n], and Pout by q[n].

The final output pitch is calculated in the following way:

 ∑
−

=

×=
13

0

][][
L

n
fixed nhnqp

where:

 h[0]=1/9, h[1]=2/9, h[2]=3/9, h[3]=2/9, h[4]=1/9, (L3 = 5).

10.2.2.4 Voicing class correction

The input for the voicing class correction are three voicing class values VC[n-1], VC[n] and VC[n+1] associated
with three consecutive frames, and pitch values before and after the tracking procedure associated with the middle
frame n and marked as P and pfixed correspondingly. The output of this processing step is a corrected voicing class

value vcfixed associated with the middle frame n. VC[n-1] is initialized by zero when the very first frame is processed.

The processing is described by the following pseudo code:

{
 if (VC[n-1]=="mixed-voiced" AND VC[n]=="fully-voiced" AND VC[n+1] != "fully-voiced")
 vcfixed = "mixed-voiced";
 else
 vcfixed = VC[n];

 if (P == 0 AND pfixed != 0)
 vcfixed = "mixed-voiced";
 elseif (P != 0 AND pfixed == 0)
 vcfixed = "unvoiced";
}

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 70

10.2.3 Harmonic Structure Initialization

Inputs for the Harmonic Structure Initialization (HSI) block are the pitch value p=pfixed and the voicing class value

vcfixed corresponding to the current frame being synthesized. The HSI block produces modified values of the input

parameters and array(s) of harmonic-elements.

The reconstruction algorithm treats non-speech frames and unvoiced frames in the same way. Consequently the voicing
class value is modified as:

if (vcfixed == "non-speech") (10.1)
 vc = "unvoiced";
else
 vc = vcfixed;

The modified voicing class vc has one of the three possible values: "fully-voiced", "mixed-voiced", and "unvoiced".
Accordingly we refer to the frame being synthesized as fully-voiced, mixed-voiced or unvoiced.

For a fully-voiced frame an array VH = {Hk, k=1,…,Nv} of harmonics is allocated. Each harmonic),,(kkkk AfH ϕ= is

represented by a normalized frequency fk, magnitude Ak and phase ϕk values. The number of harmonics Nv is:

)2(pfloorNv = (10.2)

The normalized frequency fk associated with k-th harmonic is set to:

 pkfk = (10.3)

For an unvoiced frame an array UH = {Hk, k=1,…,Nu} of harmonics is allocated. The number of harmonics Nu is:

 12−= FFTLNu
 (10.4)

The normalized frequency associated with k-th harmonic is set to:

 FFTLkfk = (10.5)

For a mixed-voiced frame both VH and UH arrays are allocated.

The HSI block does not set values of the harmonic magnitudes and phases. This is a subject of the further processing.

The elements of the VH-array will be henceforth referred to as voiced harmonics, and the elements of the VU-array as
unvoiced harmonics.

10.2.4 Unvoiced phase synthesis

The input for the Unvoiced Phase synthesis (UPH) block is the UH array of unvoiced harmonics. Thus the block is
entered only if the vc_variable value is either "unvoiced" or "mixed-voiced". The block sets phase values
{ϕk,k=1,…,Nu} associated with the array elements (unvoiced harmonics). The phase values are obtained by a generator

of pseudo random uniformly distributed numbers, and they are scaled to fit into the interval [0π, 2π]. A new vector of
phase values is generated each time the UPH block is entered.

10.2.5 Cepstra de-equalization

This block inverts the blind equalization transform (clause 5.4) performed at front-end. Twelve cepstra coefficients Ck,

k=1, …, 12, are modified as described by the pseudo code shown below:

weightingPar = min(1,max(0, logE - 211/64));

stepSize = 0,0087890625 weightingPar;

new_bias(i) = 0,999 bias(i) + stepSize (Ci - RefCep(i)), i=1,…,12;

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 71

Ci += bias(i), i=1,…,12;

bias(i) = new_bias(i), i=1,…,12.

where logE is log-energy value of the current frame from the decoded feature vector; bias and RefCep vectors are
initialized as described in clause 5.4.

10.2.6 Transformation of features extracted at 16 kHz

This processing step is performed only if the features have been extracted from the input speech sampled at 16 kHz. The
function of this block is to convert the features (cepstra and log-energy) to the ones representing [0 kHz, 4 kHz]
frequency band corresponding to the sampling rate of 8 kHz.

First, the vector of cepstra coefficients undergoes 26-dimensional IDCT:

 26,...,1,)5,0(
26

cos
26

2 12

0

=






 −×××= ∑
=

kknCval
n

nk

π (10.6)

Then the first 23 obtained values are used to produce a modified cepstra vector by means of 23-dimensional DCT:

 () 12,...,0,5,0
23

cos
23

1

=






 −××=∑
=

ki
k

valC
i

ik

π
 (10.7)

Finally the last three values val24, val25 and val26 are used to modify the log-energy as specified below:

{
 del = ln(1.9);
 E = exp(logE);
 fixE = exp(val24 - del) + exp(val25 - del) + exp(val26 - del);
 if (E > fixE)
 {
 E = E - fixE;
 logE = max(-50, ln(E));
 }
}

10.2.7 Harmonic magnitudes reconstruction

Harmonic magnitudes reconstruction is done in three major steps. An estimate AE of the magnitudes vector is obtained
in the SFEQ block. Another estimate AI of the magnitudes vector is obtained in the CTM block. Then a final estimate A
is calculated in the COMB block by combining AE with AI.

10.2.7.1 High order cepstra recovery

The harmonic magnitudes are estimated from the Mel-Frequency Cepstral Coefficients (MFCC) and the pitch period
value (clauses 10.2.7.2 to 10.2.7.4). At the front-end, only 13 of the 23 possible MFCC's are computed (clause 5.3.7),
compressed, and transmitted to the back-end. The remaining 10 values, C13 through C22, referred to as high order

cepstra here, are simply discarded, i.e. not computed. Clearly, if these missing values are available, the harmonic
magnitudes can be estimated more accurately. The HOCR block attempts to at least partially recover the missing high
order cepstral information for voiced frames (both mixed and fully voiced). This recovery process continues further
within the Solving Front-Equation (SFEQ) block as described below in clause 10.2.7.2. For unvoiced frames, the high
order cepstra are not recovered.

The recovery of high order cepstra is achieved through lookup table (table 10.1) using the pitch period as a parameter.
Table 10.1 was generated by analysing a large speech database and computing the average value of (uncompressed)
high order cepstra over all frames with pitch values falling in the appropriate range.

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 72

Table 10.1: High order cepstra for different pitch ranges

Pitch
range

C13 thru C22 Pitch
range

C13 thru C22 Pitch
range

C13 thru C22 Pitch
range

C13 thru C22

p
≤

26

26
<
p
≤

32

32
<
p
≤

34

34
<
p
≤

35

35
<
p
≤

36

36
<
p
≤

37

-5,111350E-01
-1,682880E+00
-3,716587E-01
-7,956616E-01
-7,253695E-03
-5,274537E-01
9,280691E-04

-2,563041E-01
-1,049254E-01
-9,817168E-02

-1,323581E+00
-1,247226E+00

8,918094E-01
6,301045E-01
2,640953E-01

-6,120602E-01
-1,029995E+00
-1,210108E+00
-7,136748E-01
-2,458055E-01

-3,166838E+00
-3,976374E+00
-2,099192E+00
-5,804268E-01
4,614631E-01
4,824880E-01
7,639357E-01

-3,386363E-02
-6,201262E-01
-7,372425E-01

-3,018169E+00
-3,911408E+00
-2,720349E+00
-1,107410E+00

2,002102E-01
7,917436E-

011,441889E+00
7,677763E-01

-3,245252E-02
-7,143410E-01

 -2,260784E+00
 -3,289034E+00
 -2,556978E+00
 -1,653956E+00
-1,588058E-01
3,966002E-01
1,494472E+00
8,604176E-01
1,893507E-01

-3,483856E-01

-1,802585E+00
-2,144211E+00
-2,228024E+00
-1,802318E+00
-1,032504E+00

5,535706E-03
9,357433E-01
6,810726E-01
3,568225E-01

38
<
p
≤

39

39
<
p
≤

40

40
<
p

<41

41
<
p
≤

42

42
<
p
≤

43

43
<
p
≤

46

-1,031216E+00
-1,387326E+00
-1,014192E+00
-1,288828E+00
-1,319227E+00
-1,078165E+00
-3,695266E-01
-1,856345E-01
4,743951E-01
5,453367E-01

-7,697338E-01
-1,251034E+00
-1,135184E+00
-1,052677E+00
-1,081295E+00
-1,276117E+00
-8,835811E-01
-4,264293E-01
2,759056E-01
3,279340E-01

-2,970808E-01
-1,177779E+00
-7,915491E-01
-1,044372E+00
-8,211824E-01
-1,355624E+00
-1,054223E+00
-6,738636E-01
1,521423E-02
9,342021E-02

-1,576688E-01
-1,062970E+00
-6,441808E-01
-6,141125E-01
-7,753426E-01
-1,160622E+00
-1,042945E+00
-7,988926E-01
-3,823192E-01
-1,765679E-01

-2,594792E-01
-9,725035E-01
-4,955449E-01
-3,837078E-01
-5,113737E-01

 -1,020689E+00
-8,800513E-01
-9,256434E-01
-5,710840E-01
-2,608341E-01

1,150858E-01

-6,361938E-01
2,567051E-01

-2,648086E-01
-4,371306E-01
-1,010725E+00
-7,759937E-01
-6,455466E-01
-2,855171E-01

50
<
p
≤

54

54
<
p
≤

62

62
<
p
≤

66

66
<
p
≤

68

68
<
p
≤

69

69
<
p
≤

70

4,467755E-01
-2,535201E-01
7,538735E-01
5,603248E-01
7,922218E-01
3,434679E-01
4,104464E-01

-1,230457E-01
-1,280315E-01
-1,211750E-01

6,339330E-02

-7,212541E-01
5,986097E-01
1,459474E-01
6,876847E-01

-4,344984E-02
2,450704E-01

-1,760258E-01
-3,539870E-03
-7,837202E-02

-2,380725E-01
-1,641640E+00

1,450078E-01
-7,527372E-01
3,593675E-01

-4,426172E-01
1,779412E-02

-2,862400E-01
-7,476118E-02
-5,290803E-02

-3,377764E-01
-2,151872E+00
-1,180943E-01
-1,035271E+00

3,817170E-01
-5,135021E-01
2,217322E-01

-2,720239E-01
-1,189329E-01
-1,244790E-01

-1,775208E-01
-2,086558E+00
-2,195775E-01
-9,837000E-01
3,482551E-01

-4,620659E-01
2,664061E-01

-2,996481E-01
-9,481932E-02
-1,516739E-01

-1,539969E-01
-1,986363E+00
-3,533201E-01
-9,162003E-01
3,157739E-01

-3,801906E-01
2,569408E-01

-2,515628E-01
-1,431256E-01

71
<
p
≤

72

72
<
p
≤

74

74
<
p
≤

76

76
<
p
≤

77

77
<
p
≤

78

78
<
p
≤

79

-7,373724E-01
-1,685859E+00
-3,222678E-01
-9,107897E-01
2,935433E-01

-5,313740E-01
4,481341E-01

-2,842423E-01
-1,526781E-01
-2,500107E-01

-6,542689E-01
-1,688334E+00
-1,748565E-01
-9,630367E-01
2,920569E-01

-6,694176E-01
3,618038E-01

-2,193661E-01
-8,691479E-02
-1,523485E-01

-3,450635E-01
-1,905594E+00
-6,137879E-02
-1,113471E+00

2,747527E-01
-6,160255E-01
1,056195E-01

-2,321364E-01
-3,847001E-02
-9,724520E-02

2,806036E-02

-2,085802E+00
-4,639831E-02
-1,303672E+00

1,851366E-01
-6,901463E-01
-9,140391E-03
-2,332839E-01
-9,564089E-02
-1,168974E-01

8,053611E-02

-2,152415E+00
7,933393E-02

-1,489653E+00
2,179069E-01

-8,265848E-01
-5,724430E-02
-2,088230E-01
-9,954191E-02
-8,906914E-02

7,484316E-02

-2,018542E+00
-5,265641E-02
-1,365789E+00

2,166845E-01
-9,570920E-01
-1,540541E-01
-2,568645E-01
-7,194232E-02

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 73

Pitch
range

C13 thru C22 Pitch
range

C13 thru C22 Pitch
range

C13 thru C22 Pitch
range

C13 thru C22

37
<
p
≤

38

1,610291E-01

-1,227172E+00
-1,603199E+00
-1,504956E+00
-1,772818E+00
-1,395420E+00
-6,263873E-01
3,036422E-01
1,871070E-01
4,406141E-01
5,066580E-01

46
<
p
≤

50

-7,813629E-02

5,119228E-01
-3,679310E-01
6,489079E-01
1,279952E-01
2,239187E-01

-3,094574E-01
-2,643344E-01
-4,557250E-01
-2,296919E-01
-1,546537E-01

70
<
p
≤

71

-2,086413E-01

-3,404706E-01
-1,925969E+00
-3,744814E-01
-8,535586E-01
2,496247E-01

-4,021760E-01
3,560743E-01

-2,202438E-01
-1,582776E-01
-2,290248E-01

79
<
p
≤

80

80
<
p

-2,474382E-02

-1,306538E-01
-1,829025E+00
-7,194354E-02
-1,013687E+00

2,636875E-01
-6,979883E-01
-1,266116E-01
-2,186688E-01
-9,609150E-02
-1,777760E-02

-5,111350E-01
-1,682880E+00
-3,716587E-01
-7,956616E-01
-7,253695E-03
-5,274537E-01
9,280691E-04

-2,563041E-01
-1,049254E-01
-9,817168E-02

10.2.7.2 Solving front-end equation

The inputs for the SFEQ block are the MFCC vector C, an array HA={Hk, k=1,…,Nh} of harmonics and a boolean

indicator voiced_flag. If current frame is of fully-voiced class then VH array is fed into the block (HA=VH) and the
indicator is set to voiced_flag = TRUE. If current frame is of unvoiced class then UH array is passed to the block
(HA=UH) and the indicator is set to voiced_flag = FALSE. If the frame is of mixed-voiced class then the block is
entered twice, one time with (HA=VH, voiced_flag=TRUE) and another time with (HA=UH,
voiced_flag=FALSE). The SFEQ block outputs an estimate },...,1,{ h

E
k

E NkAA == of harmonic magnitudes.

A sequence of processing steps is carried out as described below.

Step 1. Original bins calculation

23-dimensional Inverse Discrete Cosine Transform (IDCT) followed by the exponent operation is applied to the low
order cepstra vector LOC = {Ck, k=0,…,12} resulting in an original bins vector }23,...,1,{ == kbB org

k
org
















 −×××= ∑
=

12

0

)5,0(
23

cos
23
2

exp
n

n
org
k knCb

π (10.8)

If the features have been extracted from the input speech signal sampled at 16 kHz the original bins are modified as
follows:

 23,...,1, =×= kMFSbb k
org
k

org
k (10.9)

where MFSk is a sum of the weights of k-th Mel-filter given by (5.58), (5.59).

Step 2. Basis vectors calculation

For each harmonic, the (normalized) frequency fk value is converted to the nearest FFT index fidxk

 hkk NkFFTLfroundfidx ,1),(=×= (10.10)

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 74

A binary grid vector }2/,...,0,{ FFTLngG n == is computed in two steps:

 1) gn = 0, n=0,…,FFTL/2 (10.11a)

 2) hfidx Nkg
k

,...,1,1 == (10.11b)

23 prototype basis vectors PBVk, k=1,23, are calculated. A prototype basis vector }2/,...,0,{ FFTLipbvPBV k
ik ==

is derived from the triangular weighting window associated with k-th frequency channel of the Mel-filters bank given
by (5.58), (5.59), clause 5.3.5.

()















≤≤+
+−

−−

≤≤
+−

+−
><

=

×+××=

+
+

−
−

−

+−

1
1

1
1

1

11

2

1,
1

1

,
1

1
,0

6,04,0

kk
kk

k

kk
kk

k

kk

k
i

k
i

k
ii

k
i

cbinicbinif
cbincbin

cbini

cbinicbinif
cbincbin

cbini
cbiniandcbiniif

where

gpbv

µ

µµ

 (10.12)

cbink is a shortcut notation for bincenter(k) given by (5.57).

(Note that in k-th prototype basis vector only coordinates
h

k
fidx Nnpbv

n
,...,1, = may have non-zero values.) A basis

vector },...,1,{ hk NnbvBV == is derived from each prototype basis vector PBVk by selecting only those

coordinates having the indexes fidxn as follows:

 23,...,1},,...,1,{ ==== kNnpbvbvBV h
k
fidx

k
nk n

 (10.13)

Step 3. Basis bin vectors and matrix calculation

Each basis vector BVk is converted to a (in general) complex valued vector },...,0,{ h
k
ik NilsLS == as specified by the

following pseudo code:

{

;kk BVLS =

 if (voiced_flag == FALSE)

 () hnn
k
n

k
n Nnfpephjbvls ,...,1),)exp(=×××= ϕ ;

}

where:

ϕn is a phase associated with n-th unvoiced harmonic as described in clause 10.2.4; and

peph is phase frequency characteristic of the preemphasis operator:

 9,0,
)2cos(21

)2sin()2cos(1
)(

2
=

+×−
××+×−= PE

PEfPE

fPEjfPE
fpeph

π
ππ (10.14)

Note that if voiced_flag is TRUE the coordinates of the LS-vectors have real values.

Each LSk vector is further converted to a synthetic magnitude spectrum vector }12/,...,0,{ −== FFTLismSM k
ik by

convolution with Fourier transformed Hamming window function followed by absolute value operation as follows:

 ∑
=

−×=
hN

n
n

k
n

k
i FFTLifHWTlssm

1

)((10.15)

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 75

where:

 ()
,_,

_,0
1

1

1

1
23,054,0

)(BWWTfif

BWWTfif
N

f
N

ff
fHWT ≤









>


















−
+∆+









−
−∆×+∆

= (10.16)

 () () ()



×××
=

=∆
fNf

fif
f

ππ sinsin

0,0
 (10.17)

 0008100_ =BWWT (10.18)

 N =200 is frame length.

Mel-filtering operation given by formula (5.60) is applied to each synthetic magnitude spectrum vector kSM , (in (5.60)

Pswi(i) is substituted by k
ism), and a 23-dimensional basis bins vector }23,...,1,{ == ibbBB k

ik
T is obtained. We see the

basis bins vectors as column vectors.

A 23-by-23 basis bins matrix BB which has the vectors BBk as its columns is constructed:

 []2321 ... BBBBBBBB = (10.19)

Step 4. Equation matrix calculation

A 23-by-23 symmetric equation matrix EM is computed as follows:

 EBBBBEM T ××+×= λ001,0 (10.20)

where 23))((BBBBdiagsum T ×=λ is an average of the main diagonal elements of the matrix BBTBB and E is

unit 23 by 23 matrix.

In order to reduce the computational complexity of the further processing in the reference implementation, the
LU-decomposition is applied to the equation matrix EM, and the LU representation is stored.

Step 5. Initialization of iterative process

Iteration counter is set:

 it_count = 1

Step 6. High bins calculation

This step is carried out only if voiced_flag = TRUE, and is skipped otherwise.

23-dimensional IDCT followed by the exponent operation is applied to the high order cepstra vector HOC = {Ck,

k=13,…,22} output from the HOCR block. The transform results in a high bins vector }23,...,1,{ == kbB high
k

high

 














 −×××= ∑
=

22

13

)5,0(
23

cos
23

2
exp

n
n

high
k knCb

π (10.21)

If the features have been extracted from an input speech signal sampled at 16 kHz and the first iteration is being
performed (it_count ==1) then the transform given by 10.9 (Step 1) is applied to the high bin values.

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 76

Step 7. Reference bins calculation

A 23-dimensional reference bins vector }23,...,1,{ == kbB ref
k

ref is computed as follows:

if (voiced_flag == TRUE)
{
 /* coordinatewise multiplication of Borg and Bhigh vectors */

 23,...,1, =×= kbbb org
k

hig
k

ref
k ;

}
else
{
 /* Borg is taken as Bref */
 Bref = Borg ;
}

Step 8. Basis coefficients calculation

A right side vector is computed by multiplication of the transposed basis bins matrix by the reference bins vector:

 refT BBBV ×= (10.22)

A set of linear equations specified in matrix notation as:

 VEM =×γ (10.23)

is solved and a basis coefficients vector T
k k }23,...,1,{ == γγ is obtained:

 VEM ×= −1γ (10.24)

In the reference implementation the equations (10.23) are solved using the LU-decomposition representation of the EM
matrix computed at step 4.

Negative basis coefficients if any are replaced by zero:

 23,...,1),,0max(== kkk γγ (10.25)

Step 9. Control branching

The control branching step is described by the following pseudo code:

if (voiced_flag == FALSE OR it_count == 3)
{
 go to Step 12;
}
/* Otherwise the processing proceeds with the next step 10. */

Step 10. Output bins calculation

First, an output bins vector Tout
k

out kbB }23,...,1,{ == is calculated by the multiplication of the transposed basis bins

matrix with the basis coefficients vector:

 γ×= Tout BBB (10.26)

Then each zero-valued coordinate of this vector (if any) is replaced by a regularization value:

 23005,0
23

1
∑
=

×=
k

out
kbη (10.27)

as shown by the following pseudo code instructions being performed for k=1,…,23:

 if)0(==out
kb

 ;η=out
kb

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 77

Step 11. High order cepstra refinement

Truncated logarithm operation described in clause 5.3.6 is applied to the coordinates of the output bins vector:

 }23,...,1),ln,50max({ =−== kblblB out
kk

out (10.28)

Discrete Cosine Transform (DCT) is applied to the lBout vector, besides only 10 last values are calculated out of 23:

 () 22,...,13,5,0
23

cos
23

1

=






 −××=∑
=

ki
k

lbC
i

i
out
k

π
 (10.29)

which are considered as new estimate of the high order cepstra (HOC). Current high order cepstra values are replaced
by these ten coefficients:

 }22,...,13,{ == kCHOC out
k (10.30)

The iteration counter it_count is incremented and control is passed to Step 6.

Step 12. Harmonic magnitude estimates calculation

The vector },...,1,{ h
E
k

E NkAA == of harmonic magnitude estimates is computed as a linear combination of the basis

vectors (computed at step 2) weighted by the basis coefficients (computed at step 8):

 ∑
=

×=
hN

n
nn

E BVA
1

γ (10.31a)

Finally, the obtained vector is modified in order to cancel the effect of the high frequency preemphasis done in the
front-end:

)2cos(9,029,01

,...,1,

2
kk

hk
E
k

E
k

fMagPempwhere

NkMagPempAA

××−+=

==

π
 (10.31b)

(fk are harmonic normalized frequencies)

10.2.7.3 Cepstra to magnitudes transformation

From the pitch period and voicing class parameters, the frequencies fk, k=1,…,Nv of voiced harmonics and the

frequencies fk, k=1,…,Nu of unvoiced harmonics are computed in clause 10.2.3. One method to estimate the magnitudes
at these frequencies from the mel-frequency cepstral coefficients C0, C1,…, C12 is described in clause 10.2.7.2. In this
clause, a second method for transforming cepstra to magnitudes is specified.

As a first step, the high order cepstra are recovered as described in clause 10.2.7.1 for voiced frames to form the
complete cepstra C0, C1,…, C22. For unvoiced frames, the high order cepstra are not recovered. From the cepstra of each
frame, a fixed cepstra are subtracted as follows: Di = Ci - Fi, i = 0, 1,…, 12 for unvoiced frames and i = 0, 1,…, 22 for
voiced frames. The fixed Cepstral values Fi are shown in table 10.2. The modified cepstra Di, i = 0, 1,…, 12 (or 22) are

used in the estimation of the harmonic magnitudes as described below. To estimate the harmonic magnitude AI
k at

harmonic frequency fk , the harmonic frequency fk is first transformed to a corresponding mel-frequency mk using
equation (5.55a) as follows:

 






 +×=
700

1log5952 10
k

k

f
m (10.32)

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 78

The mel-frequency mk is then transformed to an index jk with the help of table 10.3. In the table, (integer) index values

from 0 to 24 and corresponding mel-frequencies are shown. Let the mel-frequencies given in the table 10.3 be denoted
by M0,…,MJ,…,M24. Given a harmonic mel-frequency mk, it is first bounded so that it does not exceed M24. Then, the

index J (in the range from 1 to 24) is found such that mk ≤ MJ. The (possibly non-integer) index value jk corresponding

to mk is then calculated as:

))()((111 −−− −−+= JJJkJk MMMmMj (10.33)

From the index jk, another index lk is computed as follows:









>
<

=
otherwise ;

5,23 if ;5,23

5,0 if ;5,0

k

k

k

k

j

j

j

l (10.34)

From the modified cepstra Di, i = 0, 1,…, 12 (or 22), and the index lk, the log-magnitude estimate ak is obtained as:

 ∑
=

××−+=
iMax

i
kik ilD

D
a

_

1

0))23()5,0cos((
23

2

23
π (10.35)

where, Max_i is 12 or 22 depending on whether the frame is unvoiced or voiced respectively. From ak, the harmonic

magnitude estimate AI
k is obtained as follows:









>−××
<+××

=
otherwise);exp(

5,23 if);24(2)exp(

5,0 if));/((2)exp(10

k

kkk

kkk

k

a

jja

jMMma

B (10.36a)

 kk
I BA = (10.36b)

The above method (10.33 through 10.36) is applied to each harmonic frequency to estimate the harmonic magnitudes
AI

k for k = 1, 2,…, Nu (or Nv).

Table 10.2: Fixed cepstral values

Fixed Cepstral values F0 through F22

2,5245156e+01
-3,1339415e+01
-5,0421652e+00
-3,9743845e+00
-1,5154464e+00
-1,3563063e+00
-5,6955354e-01
-7,1809975e-01
-5,5995365e-01
-6,2237629e-01
-5,3362716e-02
-1,6299096e-01
-2,5138527e-01
-8,1102386e-02
-2,1767279e-01
9,1988824e-02
1,8607947e-01
9,6931091e-02
9,9251014e-02
4,1572605e-02
2,6646199e-02

-7,0223354e-02
-2,2043307e-02

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 79

Table 10.3: Index values and corresponding mel-frequencies

Index value Mel-Frequencies
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

9,6383e+01
1,8517e+02
2,6747e+02
3,4416e+02
4,5023e+02
5,1577e+02
6,0745e+02
6,9222e+02
7,7107e+02
8,6828e+02
9,5777e+02
1,0407e+03
1,1179e+03
1,2075e+03
1,2906e+03
1,3827e+03
1,4679e+03
1,5472e+03
1,6330e+03
1,7238e+03
1,8078e+03
1,8859e+03
1,9766e+03
2,0605e+03
2,1461e+03

10.2.7.4 Combined magnitudes estimate calculation

This block calculates a final combined estimate),...,1,{ hNnAnA == of harmonic magnitudes from the estimates

},...,1,{ h
E
n

E NnAA == and },...,1,{ h
I
n

I NnAA == obtained in SFEQ block (clause 10.2.7.2) and CTM block

(clause 10.2.7.3) correspondingly. Voiced and unvoiced harmonic arrays are treated slightly differently.

10.2.7.4.1 Combined magnitude estimate for unvoiced harmonics

Vector AE is scaled so that its squared norm is equal to the squared norm of the AI vector as is specified by the pseudo
code:

{

 ∑
−

=
hN

n

E
n

E AE
1

;
2

 if (EE == 0)
 sc = 0;
 else
 {

 ∑
=

=
hN

n

I
n

I AE
1

;
2

 ;/ EI EEsc =

 ;IE AscA ×=

 }
}

The magnitudes AE and AI are mixed:

 IE AAA ×+×= 1,09,0 (10.37)

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 80

10.2.7.4.2 Combined magnitude estimate for voiced harmonics

Vector AE is scaled and then mixed with the AI vector using a pitch dependent mixing proportion.

Scaling

Scaling is performed differently for long and short pitch period values.

If the pitch value p is less than 55 samples then AE vector is scaled exactly as is described in clause 10.2.7.4.1.
Otherwise (if 55≥p) the scaling procedure described below is carried out.

Two scaling factors sclow and schigh are calculated in frequency bands [0, 1 200 Hz] and [1 200 Hz, FNyquist]

respectively.

∑

∑

∑

∑

+=

+=

=

= ==
Nh

Ln

E
n

Nh

Ln

I
n

highL

n

E
n

L

n

I
n

low

A

A
sc

A

A
sc

1

2

1

2

1

2

1

2

, (10.38)

where))0001/(2001(sfpfloorL ××= . A scaling factor is set to 0 if the denominator of the corresponding expression

is equal to zero.

Then the harmonic magnitudes E
nA are modified as specified by the following pseudo code section being executed for:

 n=1,…,Hh.

{

 fHz = 0001×× sn ff ; /* harmonic frequency in Hz units */

 if (200≤fHz)

 low
E
n

E
n scAA ×= ;

 elseif (5002≥fHz

 high
E
n

E
n scAA ×= ;

 else
 {

)2005002()5002(−−= fHzλ ;

 highlow scscsc ×−+×=)1(λλ ;

 scAA E
n

E
n ×= ;

 }
}

Mixing

Mixture parameter values
nχ as a function of p n values are specified by table 10.4.

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 81

Table 10.4: Magnitude mixture parameter vs. pitch

N np nχ n np nχ

1 22,5 0,0459 14 87,5 0,8740
2 27,5 0,0765 15 92,5 0,8586
3 32,5 0,1124 16 97,5 0,8306
4 37,5 0,1384 17 102,5 0,8299
5 42,5 0,1869 18 107,5 0,8496
6 47,5 0,2858 19 112,5 0,8346
7 52,5 0,4309 20 117,5 0,7617
8 57,5 0,5676 21 122,5 0,7336
9 62,5 0,6458 22 127,5 0,6321

10 67,5 0,6779 23 132,5 0,5522
11 72,5 0,7009 24 137,5 0,4016
12 77,5 0,7646 25 142,5 0,3306
12 82,5 0,8347 26 147,5 0,2909

The mixture parameter value χ to be used for mixing the magnitude vectors is determined by linear interpolation

between the values given by the table as described by the following pseudo code:

{

 if (
1pp ≤)

1χχ = ;

 elseif (
26pp ≥)

26χχ = ;

 else
 {

 Find n such that
1+<≤ nn ppp ;

)()(11 nnn pppp −−= ++ρ ;

 1)1(+×−+×= nn χρχρχ ;

 }

IE AAA ×−+×=)1(χχ ;

}

10.2.8 All-pole spectral envelope modelling

Given the harmonic magnitudes estimate, Ak, k = 1, 2,…, Nv , of a voiced frame, an all-pole model is derived from the

magnitudes as specified in this clause. The all-pole model parameters aj, j = 1, 2,…, J are used for postfiltering

(clause 10.2.9) and harmonic phase synthesis (clause 10.2.10). The model order J is 10.

The magnitudes are first normalized as specified by the pseudo-code below so that the largest normalized value is 1.

 if (max(Ak) > 0)
 Bk = Ak / max(Ak); k = 1, 2,…, Nv
 else
 aj = 0; j = 1, 2,…, J

From the normalized magnitudes, a set of interpolated magnitudes is derived. The size of the interpolated vector is
given by K = (Nv - 1) × F + 1, where the interpolation factor F is a function of Nv as shown in table 10.5. The

interpolated vector is obtained by introducing (F - 1) additional magnitudes through linear interpolation between each
consecutive pair of the original magnitudes. When F = 1, i.e. when Nv ≥ 25, there is no interpolation and K = Nv. The

interpolated vector is specified as follows:








−=+<<+−−−−−+

+−++=
=

+

−+

1,...,2,1,11)1();(
1)1(

1)1(,...,12,1,1;

1

/)1(1

vjjj

vFk

k NjjFkFjBB
F

Fjk
B

FNFFkB
G (10.39)

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 82

where, Gk, k = 1, 2,…, K = (Nv - 1) × F + 1 represent the interpolated magnitude vector. Each of the interpolated

magnitudes is then assigned a normalized frequency in the range from 0 to π, viz., ωk = k × π / (K+1), k = 1, 2,…, K.

The interpolated vector is next augmented by two additional magnitude values corresponding to ωk = 0 (DC) and

ωk = π. The length of the augmented, interpolated vector is thus K + 2. This vector is still denoted by Gk, but the

subscript k now ranges from 0 to K + 1 = (Nv - 1) × F + 2. The values of G0 and GK+1 are obtained as shown in the

pseudo-code below.

 if (F == 1)
{
 GK+1 = GK;
if (G2 > 1.2 G1)
 G0 = 0.8 G1;
 else if (G2 < 0.8 G1)
 G0 = 1.2 G1;
 else
 G0 = G1;
}
else
{
 GK+1 = 2.0 (GK - GK-1);
 G0 = 2.0 (G1 - G2);
}

Table 10.5: Interpolation factor vs. number of harmonics

Number of voiced harmonics Interpolation factor
Nv < 12 4

12 ≤ Nv < 16 3

16 ≤ Nv < 25 2

25 ≤ Nv 1

From the augmented, interpolated vector Gk, k = 0, 1,…, K+1, a pseudo-autocorrelation function Rj is computed using

the cosine transform as follows:

 ;)cos(2)1(
1

10 ∑
=

+ ×+−+=
K

k
kiK

j
j jGGGR ω j = 0, 1,…, J (10.40)

From the pseudo-autocorrelation coefficients Rj, j = 0, 1,…, J, the all-pole model parameters aj, j = 1, 2,…, J are

obtained through the well known Levinson-Durbin recursion as the solution of the normal equations:

 ∑
=

− ≤≤=×
J

j
ijij JiRRa

1

1; (10.41)

For the case when F = 1, i.e. when Nv ≥ 25, the all-pole model parameters derived as above represent the final values.

For other cases when F > 1, the model parameters are further refined as specified below. The spectral envelope defined
by the all-pole model parameters is given by:

22

21 ...1

1
)(

ω−ω−ω− ++++
=ω

jJ
J

jj eaeaea
H (10.42)

where, the ωje represents a complex exponential at frequency ω. The spectral envelope given by (10.42) is sampled at
all the frequencies ωk = kπ / (K+1), k = 0, 1,..., K+1 to obtain the modelled magnitudes Hk, k = 0, 1,…, K+1. The
maximum of the modelled magnitudes at frequencies corresponding to the original estimated magnitudes is then used to
normalize the modelled magnitudes as follows:

 1 1,..., ,0);1)1(,...,12,1,1max(+=+−++== KkFNFFkHHL vkkk (10.43)

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 83

Next, scale factors Sk , k = 0, 1,…, K + 1 are computed as follows:













−=+<<+−−−−−+

+−++=
+==

=

+−++−)1(2,..., ,1 ;11)1();(
1)1(

1)1(1,...,2 1, 1, ;/

1 and 0 ;1

1)1(11)1(vFjjFFj

vkkk

NjjFkFjSS
F

Fjk
S

FNFFkLG

Kkk

S
 (10.44)

The normalized, modelled magnitudes are then multiplied by the appropriate scale factors to obtain a new set of
magnitudes Mk = Lk × Sk, k = 0, 1,…, K+1. This set of magnitudes is used to compute a new pseudo-autocorrelation
function using (10.40) and subsequently a new set of all-pole model parameters as a solution (10.41) as the final values.

10.2.9 Postfiltering

Postfiltering is applied to the harmonic magnitudes Ak , k = 1, 2,…, Nv of a voiced frame to emphasize the formants in

the speech signal using the all-pole model parameters aj, j = 1, 2,…, J as specified below.

From the number of voiced harmonics Nv, the interpolation factor F from table 10.5 and the interpolated vector size

K = (Nv - 1) × F + 1 are first determined. Then, a weighting factor Uk is computed for each harmonic as follows:

))1/(()1)1((+×+×−= KFkk πθ (10.45a)

 ∑
=

×××+=
J

j
k

j
jk ja

1

)cos(11Re θα ; k = 1, 2,…, Nv (10.45b)

 ∑
=

×××−=
J

j
k

j
jk ja

1

)sin(1Im θα ; k = 1, 2,…, Nv (10.45c)

 ∑
=

×××+=
J

j
k

j
jk ja

1

)cos(12Re θβ ; k = 1, 2,…, Nv (10.45d)

 ∑
=

×××−=
J

j
k

j
jk ja

1

)sin(2Im θβ ; k = 1, 2,…, Nv (10.45e)

)cos(13Re kk θµ ×−= ; k = 1, 2,…, Nv (10.45f)

)sin(3Im kk θµ ×= ; k = 1, 2,…, Nv (10.45g)

])1(Im)1[(Re

])3(Im)3[(Re])2(Im)2[(Re
22

2222

kk

kkkk
kU

+
+×+

= ; k = 1, 2,…, Nv (10.45h)

The values of α, β, and µ are respectively 0,95, 0,75 and 0,5. The weights are then normalized and bounded as follows:

25.0

1

41













= ∑

=

vN

k
k

v
kk U

N
UV ; k = 1, 2,…, Nv (10.46a)

)),5,1min(,5,0max(kk VW = ; k = 1, 2,…, Nv (10.46b)

Postfiltering is applied to the harmonic magnitudes as follows. It is ensured that the energy in the harmonics before and
after postfiltering remains the same.



 ×≥×

=
otherwiseA

ifWA
B

k

kkk
k

;

05,0; πθ
 (10.47a)

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 84

 ∑∑
==

=ρ
vv N

k
k

N

k
k BW

1

2

1

2 (10.47b)

 kk BP ×= ρ ; k = 1, 2,…, Nv (10.47c)

where Pk, k = 1, 2,…, Nv represent the postfiltered harmonic magnitudes.

10.2.10 Voiced phase synthesis

The harmonic phases ϕk, k = 1, 2,…, Nv of a voiced frame with harmonic cyclic frequencies ωk = 2πfk, k = 1, 2,…, Nv

are specified as follows. Each harmonic phase ϕk is made up of three components: a linear phase component ϕk,lin, an

excitation phase component ϕk,exc, and an envelope phase component ϕk,env.

The linear phase component is computed as follows:









××+×= ;)(

;0

,1,,1, otherwisekMRF

unvoicedisframepreviousif

aveprevlinlink ωϕϕ (10.48)

where:

• ϕ1,lin,prev represents the linear phase component of the fundamental phase of the previous frame;

RF represents a rational factor of the R1/R2, where R1,R2 ∈ {1,2,3,4}, such that the jump given by

121 RpRpRp prev ××−× between the previous pitch period (pprev) and current pitch period (p) is minimized;

ω1,ave is the weighted sum of the fundamental (cyclic) frequency of the previous and current frames given by

2/)(1,1,1 ωωω +×= RFprevave , and M is the frame shift in samples.

Note that pprev and ϕ1,lin,prev are initialized to 0 (meaning the previous frame is unvoiced) when the very first frame is
being processed.

The excitation phase component is determined using table 10.6 as follows. Given a harmonic frequency ωk, it is first

transformed into an integer index)256(πωkk roundI ×= , the corresponding value T[Ik] from table 10.6 is looked up,

and un-normalized to obtain ϕk,exc = T[Ik] × π.

The envelope phase component is computed using the all-pole mode parameters, aj, j = 1, 2,…, J, as follows. From the

number of voiced harmonics Nv, the interpolation factor F from table 10.5 and the interpolated vector size K = (Nv - 1) ⋅
F + 1 are first determined. Then the envelope phase component is computed as:

))1/(()1)1((+×+×−= KFkk πθ ; k = 1, 2,…, Nv (10.49a)

 ∑
=

×+=
J

j
kjk ja

1

)cos(1Re θ ; k = 1, 2,…, Nv (10.49b)

 ∑
=

×−=
J

j
kjk ja

1

)sin(Im θ ; k = 1, 2,…, Nv (10.49c)

)Re/(Imtan)2(1
, kkenvk

−×−=ϕ ; k = 1, 2,…, Nv (10.49d)

The excitation and envelope components of the phases are added and any linear component is removed as follows:

 venvkexcksumk Nk 2,..., 1, ;,,, =ϕ+ϕ=ϕ (10.50a)

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 85

 vsumsumkaddk Nkk 2,..., 1, ;,1,, =×−= ϕϕϕ (10.50b)

The linear phase component and the additional phase component are added to obtain the harmonic phases for the voiced
frame as follows:

 vaddklinkk Nk 2,..., 1, ;,, =ϕ+ϕ=ϕ (10.51)

Table 10.6: Normalized excitation phases

Index Normalized
phase

Index Normalized
phase

Index Normalized
phase

Index Normalized
phase

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

0,000000
0,577271
0,471039
0,402039
0,341461
0,282104
0,221069
0,157074
0,089905
0,019989

-0,051819
-0,124237
-0,195770
-0,264679
-0,328705
-0,385162
-0,430573
-0,460846
-0,472351
-0,464783
-0,444977
-0,425323
-0,415466
-0,418579
-0,433502
-0,457764
-0,488617
-0,523315
-0,559174
-0,593689
-0,625031
-0,652130
-0,674835
-0,693390
-0,707428
-0,715729
-0,717133
-0,713837
-0,713104
-0,723785
-0,750366
-0,791931
-0,845093
-0,905945
-0,970825
0,963654
0,901123
0,846222
0,805481
0,788788
0,807312
0,857269
0,904724
0,922668
0,913757
0,888916

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

0,806122
0,761841
0,707184
0,649353
0,595245
0,553375
0,535004
0,551025
0,593689
0,629669
0,641205
0,637146
0,630432
0,626068
0,618439
0,597534
0,558716
0,504242
0,439545
0,371796
0,314423
0,322479
0,692352
0,820557
0,775940
0,703735
0,625885
0,549744
0,479889
0,420258
0,374023
0,341888
0,319366
0,297546
0,268768
0,230896
0,186066
0,137939
0,090027
0,045288
0,005859

-0,026398
-0,049316
-0,059448
-0,052521
-0,028687
-0,000732
0,012024
0,001312

-0,028900
-0,070801
-0,117004
-0,160583
-0,194824
-0,214020
-0,217743

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

-0,428986
-0,449249
-0,476257
-0,512085
-0,555054
-0,601379
-0,646881
-0,687469
-0,720123
-0,743896
-0,760712
-0,774292
-0,786865
-0,796417
-0,797058
-0,782288
-0,753052
-0,723755
-0,710052
-0,714722
-0,731720
-0,753998
-0,776672
-0,797760
-0,817749
-0,838562
-0,861664
-0,887115
-0,913971
-0,941437
-0,969849
0,999176
0,963562
0,922089
0,875092
0,824432
0,773285
0,726074
0,688934
0,669617
0,674377
0,698090
0,719421
0,721069
0,702698
0,671631
0,634674
0,596527
0,559784
0,525757
0,494995
0,468231
0,446991
0,433105
0,427216
0,426483

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

0,231750
0,219360
0,211182
0,207703
0,209747
0,215332
0,217590
0,208527
0,184631
0,147583
0,101593
0,051697
0,002960

-0,039154
-0,068756
-0,080597
-0,073730
-0,055573
-0,038666
-0,030792
-0,033630
-0,047180
-0,072174
-0,109039
-0,156860
-0,213318
-0,275146
-0,338562
-0,398956
-0,450836
-0,487793
-0,505707
-0,510162
-0,518524
-0,545410
-0,592499
-0,654510
-0,725586
-0,801025
-0,877136
-0,950897
0,980316
0,918762
0,866211
0,824219
0,795319
0,786377
0,810913
0,872406
0,925385
0,926483
0,882111
0,808807
0,716248
0,608063
0,480927

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 86

Index Normalized
phase

Index Normalized
phase

Index Normalized
phase

Index Normalized
phase

56
57
58
59
60
61
62
63

0,856750
0,823730
0,796082
0,781250
0,786346
0,809631
0,831787
0,831818

120
121
122
123
124
125
126
127

-0,215424
-0,221161
-0,241730
-0,274475
-0,313202
-0,351440
-0,384247
-0,409363

184
185
186
187
188
189
190
191

0,424225
0,414124
0,393951
0,365723
0,333374
0,301086
0,272278
0,249054

248
249
250
251
252
253
254
255
256

0,310974
-0,054810
-0,554077
-0,763275
-0,904968
0,977448
0,884125
0,849152
0,999969

10.2.11 Line spectrum to time-domain transformation

This block transforms a line spectrum of the frame represented by an array },...,1),,,({ hnnnn NnAfHH === ϕ of

harmonics to a time-domain speech signal segment. If the frame is of fully-voiced class as indicated by
vc =="fully-voiced" the array H is set to VH. In case of unvoiced frame (vc =="unvoiced") H is set to UH. In the
case of mixed-voiced frame the arrays of voiced and unvoiced harmonics are combined as described in the following
clause.

10.2.11.1 Mixed-voiced frames processing

This step is performed for the mixed-voiced frames only as indicated by vc == "mixed_voiced". The input to the step
are the array },...,1),,,({ v

v
n

v
n

v
n

v
n NnAfHVH === ϕ of voiced harmonics and the array

},...,1),,,({ u
u
n

u
n

u
n

u
n NnAfHUH === ϕ of unvoiced harmonics. The output is a combined array

},...,1),,,({ hnnnn NnAfHH === ϕ of harmonics. The combined array contains the voiced harmonics associated with

frequencies lower than 1 200 Hz and the unvoiced harmonics associated with frequencies higher than 1 200 Hz. The
processing is described by the following pseudo code:

{

 v_last =))0001(2001(pceil × ; /* index of the last voiced harmonic to be taken */

 u_first = 1))0001(2001(+× FFTLceil ; /* index of the first unvoiced harmonic to be taken */

∑

∑

=

+==
u

v

N

firstun

u
n

N

lastvn

v
n

A

A

sc

_

1_

2

; /* compute magnitude scaling factor */

 lastvnHH v
nn _,...,1, == ;

 u
u
nfirstunlastv

u
nfirstunlastv Nfirstunff ,...,_,, 1__1__ === +−++−+ ϕϕ ;

 u
u
nfirstunlastv NfirstunAscA ,...,_,1__ =×=+−+ ;

 1__ +−+= firstuNlastvN uh
;

}

10.2.11.2 Filtering very high-frequency harmonics

At this step the harmonics associated with the frequencies close enough to the Nyquist frequency (if any) are filtered
out. Those elements of the harmonics array which satisfy the condition:

)2/93,0()(FFTLroundFFTLfround ×>× (10.52)

are eliminated and the number Nh of harmonics is updated appropriately.

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 87

10.2.11.3 Energy normalization

A synthetic complex discrete spectrum is calculated:

 2/,...,0,)()exp(
1

FFTLiFFTLifjAsd
hN

n
nnni =−∆×××=∑

=

ϕ (10.53)

by convolution of the line spectrum with truncated Dirichlet kernel:

 () () ()



×××
>=

=∆
otherwisefNf

BWWTforfif
f

,sinsin

_0,0

ππ
 (10.54)

where WT_BW is given by (10.18). Then the frame energy estimate Ee is calculated:

 






 ×++= ∑
−

=

12/

1

22

2/

2

0 2
1 FFTL

i
iFFTLe sdsdsd

FFTL
E (10.55)

If the energy estimate is nonzero a normalization factor NF is computed using the logE parameter extracted from the
decoded feature vector:

 eEENF)exp(log= , (10.56)

otherwise the normalization factor is set to zero NF = 0.

The harmonic magnitudes are scaled:

 hnn NnANFA ,...,1, =×= (10.57)

10.2.11.4 STFT spectrum synthesis

A synthetic complex discrete spectrum s_stft is calculated like in (10.53) but Fourier transform of 2M (M = 80 is
frame shift) samples long Hann window is used instead of the Dirichlet kernel:

 2/,...,0,)()exp(_
1

FFTLiFFTLifHnWTjAstfts
hN

n
nnni =−×××=∑

=

ϕ , (10.58)

 ()
,_,

_,0
12

1

12

1
25,050,0

)(BWWTfif

BWWTfif
M

f
M

ff
fHWT ≤









>


















−
+∆+









−
−∆×+∆

= (10.59)

where ∆ is given by (10.17), and WT_BW by (10.18).

10.2.11.5 Inverse FFT

An inverse FFT is applied to the synthetic STFT spectrum resulting in FFTL-dimensional vector
}1,...,0,{ −== FFTLnsS syn

nsyn
with real coordinates which is used as a time-domain representation of current frame:

 ∑
−

=
×××=

1

0

)
2

exp(_
1 FFTL

i
i

syn
n FFTL

nijstfts
FFTL

s
π

 (10.60)

In (10.60) 2/__ *
1 FFTLiifstftsstfts iFFTLi ≥= −−

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 88

10.2.12 Overlap-Add

The input to the Overlap-Add block (OLA) is the synthesized time-domain frame Ssyn . The OLA block outputs an
M = 80 samples long segment of speech which is appended to the already synthesized part of the speech signal. The
OLA block maintains a pair of M samples long buffers: },...,1,{ MkbufBUF out

k
out == and },...,1,{ MkbufBUF ola

k
ola == .

Each coordinate of BUFola is initialized by zero values when the very first frame is processed. BUFola preserves its
contents in between invocations of the OLA block. The procedure performed in the OLA block is specified by the
following pseudo code:

{

 1,...,1,_11 −=+= +−++ Mkstftsbufbuf kMFFTL
ola

k
ola

k ; /* overlap-add */

 Mkbufbuf ola
k

out
k ,...,1, == ; /* copy OLA buffer to OUT buffer */

 Mkstftsbuf k
ola

k ,...,1,_ 1 == − ; /* prepare for the next frame */

 Output BUFout ;
}

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 89

Annex A (informative):
Voice Activity Detection (VAD)

A.1 Introduction
The voice activity detector has two stages - a frame-by-frame detection stage consisting of three measurements, and a
decision stage in which the pattern of measurements, stored in a circular buffer, is analysed to indicate speech
likelihood. The final decision from this second stage is applied retrospectively to the earliest frame in the buffer, so
providing a short look-ahead facility. A hangover facility is also provided, with hangover duration related to speech
likelihood.

A.2 Stage 1 - Detection
In non-stationary noise, long-term energy thresholds are not a reliable indicator of speech. Similarly, in high noise
conditions the structure of the speech (e.g. harmonics) cannot be wholly relied upon as an indicator as they may be
corrupted by noise, or structured noises may confuse the detector.

This voice activity detector uses a noise-robust characteristic of the speech, namely the energy acceleration associated
with voice onset. This acceleration is measured in three ways: across the whole spectrum, over a sub-region of the
spectrum likely to contain the fundamental pitch, and by the "acceleration" of the variance of values within the lower
half of the spectrum of each frame.

The generally higher SNRs of the sub-region detector make it highly noise robust, but it is vulnerable to high-pass
microphones, speaker changes and band-limited noise. Consequently it cannot be relied upon in all circumstances and is
treated as an augmentation of the whole spectrum measure rather than as a substitute. The variance measure detects
structure within the lower half of the spectrum, making it sensitive to voiced speech. This complements the whole
spectrum measure, which is better able to detect unvoiced and plosive speech.

All three measurements take their raw input from the linear-frequency Wiener filter coefficients generated by the first
stage of the double Wiener filter, as described in clause 5.1.4. Each measurement uses a different aspect of this data.

Measurement 1 - Whole spectrum

The whole-spectrum detector uses the Mel-warped Wiener filter coefficients generated by the first stage of the double
Wiener filter (see clause 5.1.6). A single input value is obtained by squaring the sum of the Mel filter banks.

The detector applies each of the following steps to the input from each frame, as described below:

1. If Frame < 15 AND Acceleration < 2,5, Tracker = MAX(Tracker, Input);

2. If Input < Tracker × UpperBound and Input > Tracker × LowerBound;

 Tracker = a × Tracker + (1 - a) × Input;

3. If Input < Tracker × Floor, Tracker = b × Tracker + (1 - b) × Input;

4. If Input > Tracker × Threshold, output TRUE else output FALSE.

Where a = 0,8 and b = 0,97, UpperBound is 150 % and LowerBound 75 %. Floor is 50 % and Threshold is 165 %.
Input is as described above. While Acceleration could be calculated using the double-differentiation of successive
inputs, it is estimated here by tracking the ratio of two rolling averages of the inputs. (The ratio of fast and
slow-adapting rolling averages reflects the acceleration of successive inputs. The contribution rates for the averages
used here were (0 × mean + 1 × input) and ((Frame - 1) × mean + 1 × input) / Frame respectively, making the
acceleration measure increasingly sensitive over the first 15 frames).

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 90

Step one initializes the noise estimate Tracker. The acceleration measure prevents Tracker being updated if speech
occurs within the lead-in of Frame < 15 frames. Step two updates Tracker if the current input is similar to the noise
estimate. Step three is a failsafe for those instances where there is speech or an uncharacteristically large noise within
the first few frames, causing the resulting erroneously high noise estimate to decay. Note there is no update if the value
is greater than UpperBound, or between LowerBound and Floor. Step four returns true if the current input is more than
165 % larger than Tracker. The ratio of the instantaneous input to the short-term mean Tracker is a function of the
acceleration of successive inputs.

Measurement 2 - Spectral sub-bands

The sub-band detector uses the average of the second, third and fourth Mel-filter bands described in Measurement 1 as
its input. The detector then applies each of the following steps to the input from each frame, as described below:

1. Input = p × CurrentInput + (1 - p) × PreviousInput;

2. If Frame < 15, Tracker = MAX(Tracker, Input);

3. If Input < Tracker × UpperBound and Input > Tracker × LowerBound;

 Tracker = a × Tracker + (1 - a) × Input;

4. If Input < Tracker × Floor, Tracker = b × Tracker + (1 - b) × Input;

5. If Input > Tracker × Threshold, output TRUE else output FALSE.

Here, p = 0,75. All other parameters are the same as for Measurement 1 except Threshold, which equals 3,25.

Measurement 3 - Spectral Variance

The variance of the values comprising the whole frequency range of the linear-frequency Wiener filter coefficients for
each frame is used as an input. The variance is calculated as:

 ()() () 2

21

0
2

1

0

2
2 /

1
SPEC

N

i

N

iSPEC

NbinHbinH
N

SPECSPEC









− ∑∑

−

=

−

=

 (A.1)

where 4FFTSPEC NN = , and ()binH 2
 are the values of the linear-frequency Wiener filter coefficients as calculated by

equation (5.17). The detector takes the maximum input value of the first 15 frames and then proceeds in the same
manner as steps 2-4 of Measurement 1, to give a true/false output.

A.3 Stage 2 - VAD Logic
The three measures discussed above are presented to a VAD decision algorithm. Successive inputs are presented to a
buffer, which provides contextual analysis. This introduces a frame delay equal to the length of the buffer minus 1.

For an N = 7 frame buffer, the most recent input is stored at position N. The decision logic applies each of the following
steps, which are explained in detail below:

VN = Measurement 1 OR Measurement 2 OR Measurement 3

M = MAX

Ci

i Ni1 ,
FALSEV 0C

TRUEV C









<<
==
=++

,

,

If M>=SP AND T<LS, T=LS

If M>=SL AND F>FS, T=LM else T=LL

If M<SP AND T>0, T--

If T>0 output TRUE else output FALSE

Frame++, Shift buffer left and return to step 1

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 91

Step 1: Input VN is true if any of the three measurements returns true.

Step 2: The algorithm searches for the longest single sequence of "true" values in the buffer; a counter C is
incremented if the next buffer value is true, and is reset to 0 if it is false. The maximum value of C
over the whole buffer is then taken as M. So for the sequence T T F T T T F, M would equal 3.

Step 3: If there are SP = 3 or more contiguous "true" values, the buffer is judged to contain "possible"

speech. A short timer T of LS = 5 frames is activated if no hangover is already present.

Step 4: If there are SL = 4 or more contiguous "true" values, the buffer is judged to contain "likely"

speech. A medium timer T of LM = 23 frames is activated if the current frame F is outside an

initial lead-in safety period FS. Otherwise, a failsafe long timer T of LL = 40 frames is used as the

early presence of speech in the utterance may cause the initial noise estimate of the VAD to be too
high.

Step 5: If there are less than SP = 3 contiguous "true" values, decrement the timer.

Step 6: If the timer is greater than 0, output a "true" speech decision.

Step 7: In preparation for the next frame, left-shift the buffer to accommodate the next input.

The output speech decision is applied to the frame being ejected from the buffer:

Time t

Time t+1

1 2 3 4 5 6 7

2 3 4 5 6 7 8

Figure A.1

At time t, only the current and previous inputs were "True". Consequently when the buffer is shifted, frame #1 will be
marked as False. At time t + 1, a third "true" input has been received. Consequently when the buffer is shifted, frame #2
will be marked as True.

Assuming only these three inputs are "True", the full output sequence will be:

F T T T T T T T T T T T T T T T T F F F F F F…

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23…

Where green is the buffer lead in/out, red marks the positions of the actual original inputs, and blue is the timer
hangover. The buffer length and hangover timers can be adjusted to suit needs, although the buffer should
always be ≥ SL. Once all frames in the utterance have been input, the buffer shifts until empty.

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 92

Annex B (informative):
Bibliography
IETF Audio Video Transport, Internet-Draft: "RTP Payload Format for ETSI ES 201 108 Distributed Speech
Recognition Encoding" http://www.ietf.org/internet-drafts/draft-ietf-avt-dsr-05.txt.

http://www.ietf.org/internet-drafts/draft-ietf-avt-dsr-05.txt

ETSI

ETSI ES 202 212 V1.1.2 (2005-11) 93

History

Document history

V1.1.1 November 2003 Publication

V1.1.2 November 2005 Publication

	Intellectual Property Rights
	Foreword
	Introduction
	1 Scope
	2 References
	3 Definitions, symbols and abbreviations
	3.1 Definitions
	3.2 Symbols
	3.3 Abbreviations

	4 System overview
	5 Feature extraction description
	5.1 Noise reduction
	5.1.1 Two stage mel-warped Wiener filter approach
	5.1.2 Buffering
	5.1.3 Spectrum estimation
	5.1.4 Power spectral density mean
	5.1.5 Wiener filter design
	5.1.6 VAD for noise estimation (VADNest)
	5.1.7 Mel filter-bank
	5.1.8 Gain factorization
	5.1.9 Mel IDCT
	5.1.10 Apply filter
	5.1.11 Offset compensation

	5.2 Waveform Processing
	5.3 Cepstrum Calculation
	5.3.1 Log energy calculation
	5.3.2 Pre-emphasis (PE)
	5.3.3 Windowing (W)
	5.3.4 Fourier transform (FFT) and power spectrum estimation
	5.3.5 Mel Filtering (MEL-FB)
	5.3.6 Non-linear transformation (Log)
	5.3.7 Cepstral coefficients (DCT)
	5.3.8 Cepstrum calculation output

	5.4 Blind equalization
	5.5 Extension to 11 kHz and 16 kHz sampling frequencies
	5.5.1 FFT-based spectrum estimation
	5.5.2 Mel Filter-Bank
	5.5.3 High-frequency band coding and decoding
	5.5.4 VAD for noise estimation and spectral subtraction in high-frequency bands
	5.5.5 Merging spectral subtraction bands with decoded bands
	5.5.6 Log energy calculation for 16 kHz

	5.6 Pitch and class estimation
	5.6.1 Spectrum and energy computation
	5.6.2 Voice Activity Detection for Voicing Classification (VADVC)
	5.6.3 Low-band noise detection
	5.6.4 Pre-Processing for pitch and class estimation
	5.6.5 Pitch estimation
	5.6.5.1 Dirichlet interpolation
	5.6.5.2 Non-speech and low-energy frames
	5.6.5.3 Search ranges specification and processing
	5.6.5.4 Spectral peaks determination
	5.6.5.5 F0 Candidates generation
	5.6.5.6 Computing correlation scores
	5.6.5.7 Pitch estimate selection
	5.6.5.8 History information update
	5.6.5.9 Output pitch value

	5.6.6 Classification

	6 Feature compression
	6.1 Introduction
	6.2 Compression algorithm description
	6.2.1 Input
	6.2.2 Vector quantization
	6.2.3 Pitch and class quantization
	6.2.3.1 Class quantization
	6.2.3.2 Pitch quantization

	7 Framing, bit-stream formatting and error protection
	7.1 Introduction
	7.2 Algorithm description
	7.2.1 Multiframe format
	7.2.2 Synchronization sequence
	7.2.3 Header field
	7.2.4 Frame packet stream

	8 Bit-stream decoding and error mitigation
	8.1 Introduction
	8.2 Algorithm description
	8.2.1 Synchronization sequence detection
	8.2.2 Header decoding
	8.2.3 Feature decompression
	8.2.4 Error mitigation
	8.2.4.1 Detection of frames received with errors
	8.2.4.2 Substitution of parameter values for frames received with errors
	8.2.4.3 Modification of parameter values for frames received with errors

	9 Server feature processing
	9.1 lnE and c(0) combination
	9.2 Derivatives calculation
	9.3 Feature vector selection

	10 Server side speech reconstruction
	10.1 Introduction
	10.2 Algorithm description
	10.2.1 Speech reconstruction block diagram
	10.2.2 Pitch Tracking and Smoothing
	10.2.2.1 First stage - gross pitch error correction
	10.2.2.2 Second stage - voiced/unvoiced decision and other corrections
	10.2.2.3 Third stage - smoothing
	10.2.2.4 Voicing class correction

	10.2.3 Harmonic Structure Initialization
	10.2.4 Unvoiced phase synthesis
	10.2.5 Cepstra de-equalization
	10.2.6 Transformation of features extracted at 16 kHz
	10.2.7 Harmonic magnitudes reconstruction
	10.2.7.1 High order cepstra recovery
	10.2.7.2 Solving front-end equation
	10.2.7.3 Cepstra to magnitudes transformation
	10.2.7.4 Combined magnitudes estimate calculation
	10.2.7.4.1 Combined magnitude estimate for unvoiced harmonics
	10.2.7.4.2 Combined magnitude estimate for voiced harmonics

	10.2.8 All-pole spectral envelope modelling
	10.2.9 Postfiltering
	10.2.10 Voiced phase synthesis
	10.2.11 Line spectrum to time-domain transformation
	10.2.11.1 Mixed-voiced frames processing
	10.2.11.2 Filtering very high-frequency harmonics
	10.2.11.3 Energy normalization
	10.2.11.4 STFT spectrum synthesis
	10.2.11.5 Inverse FFT

	10.2.12 Overlap-Add

	Annex A (informative): Voice Activity Detection (VAD)
	A.1 Introduction
	A.2 Stage 1 - Detection
	A.3 Stage 2 - VAD Logic

	Annex B (informative): Bibliography
	History

