Final draft ETS| ES 201 915-4 V1.5.1 (2004-11)

ETSI Standard

Open Service Access (OSA);

Application Programming Interface (API);
Part 4. Call Control SCF

(Parlay 3)

D

2 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Reference
RES/TISPAN-01008-04-OSA

Keywords
API, OSA, IDL, UML

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2004.
© The Parlay Group 2004.
All rights reserved.

DECT™, PLUGTESTS ™ and UMTS™ are Trade Marks of ETSI registered for the benefit of its Members.

TIPHON™ and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members.
3GPP™is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

ETSI

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

3 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Contents

Intellectual Property RIGNES.........oo et 9
0 Yo (o SRS 9
1 o010 RSP 10
2 S L= (= 000 P 10
3 Definitions and aDbreVIBLIONS...........eceere ettt e sre e be s e e tesneeneeseeeneeneenreas 10
31 (D= T o T] (0] PP P PP USTORPP 10
3.2 ADDIEVIBLIONS ...ttt bbbt bt ae st e e eeE e e bt e bt e he e b e e e et e Rt eh e e Re e b e R e bt bt eneene e e re e 10
4 Call CONLIOI SR ...ttt b et b et e e e et e st e st e b e s beebesb e b e e e sesbeebeneeneensenean 10
4.1 Call MOUE! DESCIPLION ...ttt ettt b et b e bbbt bbb e e s et b e se et b e st et eb e b e 11
4.2 General requirements on SUPPOrt Of MELNOUS...........ooiiiii e 12
5 The Service Interface SPECITICALIONS..........coiiiierieiee e 12
51 Interface SPECITiCatiON FOIMELccciiie ettt b e e e b e ens 12
511 INEEITACE ClBSS ...ttt bbb etk bt b e et et e e e e et bt sh e eb e e heeae et e nbeabesbeeb e e e ennennea 12
5.1.2 =100 0 === ol o (o] S 12
5.1.3 e 1= (= 0 L= o 1 0] 0] 12
514 Sz (= 1Y T L= OSSPSR 12
52 BaSE INEEITACE.ttt h ettt b e bbbt a e e e bRt b e Rt a e e e R et eh e bt ene e re e 13
521 1 g o O F= S T o] 11 o = o= PR 13
5.3 S Vel g 1= = o= OSSP 13
531 OVEIVIBW ...ttt ettt ettt e bt et e et e et e s aeesheesbeebeaaseeaeeebeesbeenteeateeseesaeesaeesseenseanseanseeseeeteesbaesbeesbeensesnsennns 13
54 GENENIC SEIVICE INEEITACE ...ttt ettt ettt et e e et e beseesbe s et ese e e e s e seesaeseesneeneenenneas 13
54.1 INEEITACE ClASS IPSEIVICE ...ttt et b e bt b e bbbt b et b e bbb 13
6 GENENC Call CONIOl SEIVICE ...c.viieeesieeeese ettt sttt et e s eesae e e seeeneesaesseenteseesneeneeseeenes 14
6.1 S 010 c T D TT=o =0 1 SRS 14
6.1.1 AditioNal CAlTDACKS......c..eteieeieiet ettt h et se bbbt ae e e et e sb e b e aeeae e e enne e 14
6.1.2 = 14 12 1 ST 16
6.1.3 APPlCaioN TNITIALEA Call.......cceeeeeeeeeee et re e sae e s reeteenteenaeenensraesnens 18
6.1.4 Call BATING L ..ottt b etk s et b e e et b e s b e st e bt se et e bt s e e neeb e sb e e eb e s b e e eb e s b e neenenbennenea 20
6.1.5 N U gl o= I =0 1S = o o 0 PP RSN 22
6.1.6 Number Tranglation 1 (With CAlIDACKS).........couriiiiii e 24
6.1.7 N U gl o= I =0 IS = o] o 2T 26
6.1.8 N U gl oT= I =0 IS = o] o R PP RSRN 28
6.1.9 NUMDEN TFANSIBHION 4 ...ttt et b et e e et bbb s heeae e e e ne e besbesb e e e enneneen 30
6.1.10 NUMDEr TFaNSIBHON 5 ...ttt bt bt ae e e e e besbesb e e e enneneen 32
6.1.11 = o T o PSR TRSPS 33
6.1.12 Pre-Paid with Advice Of Charge (AOC)ecei ittt et e e s rae e s reeteenesneeenes 35
6.2 L0 =SS D= =0 1SS 38
6.3 Generic Call Control Service INtErfate ClaSSES..........coiiiriire ittt 39
6.3.1 Interface Class [PCall CONTOIM@NEGEYcoeririeirierieeee ettt st sb e 40
6.3.2 Interface Class IPAPPCAl CONFOIM@NEGEYceivirieieierieeeie ettt 43
6.3.3 INEEITACE ClASS IPCAlL......civiieeeiiie et bbbt b e et b e bbb 46
6.34 INterface Class IPAPPCEILoiie bbbt se et b e et b 50
6.4 Generic Call Control Service State TranSition DiagramsS.........coceiererereinenese st 54
6.4.1 State Transition Diagrams for IpCallControlMaNagercoueeiireeiineeerereee e 54
6.4.1.1 F e Y RS = (=SSR 55
6.4.1.2 NOLifiCation tErMINALE SEALEeiietiieeeeiee ettt et b e se e b e et sbe e enne e 55
6.4.2 State Transition Diagrams fOr IPCallooeeeieicecec e 55
6.4.2.1 NEIWOrK REIEASEA SEALEovieeceeeeeee et ettt e e b sa e sb e ne e 56
6.4.2.2 FINISNE SEALE.....cve ettt sttt sttt s b et se e bt et e se b e s beseebeebe e et e sbe e ebesaeneebenbeneenens 56
6.4.2.3 APPlICaion REIEESEA SEALEc.eiviieeieie e bbb e 56
6.4.24 Lol = T USSR SRS 56
6.4.25 ot == (= S 56
6.4.2.6 Pty TN Call SEALEeiveeceeeeeet bbbt b e et b e et eb e s e e e e bt s b e bt b e ene 56

ETSI

4 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

6.4.2.7 PartieSiN Call SEALE.......ccveeerireeiire ittt r e e e r e nr e e enenrennenea 57
6.4.2.8 RoULiNG t0 DESLINGLION(S) SLALEccveeieieeieeceesieeste et ee s e te e te e e e e e sreenteeneeensessaesneesseesaeas 57
6.5 Generic Call Control SErviCe PrOPEIMIESc.vccve ettt teeae e et e snaesnaesneesneas 57
6.5.1 RS oSS AV Tor o o o= - S 57
6.5.2 Service Property values for the CAMEL Service ENVIFONMENL...........ccooveeviceineeseeseeeeie e 58
6.6 Generic Call Control Data DEfiNItiONS..........c.ccviireiiere e e 59
6.6.1 Generic Call Control Event Notification Data Definitions...........ccocooeiiiiniene i 60
6.6.1.1 TPCAIEVENINGIME.ccuitiieieitie ettt b bbbttt b et bt b e et bbb nn e 60
6.6.1.2 TPCAINOLfICAT ONT YR ...ttt bbb et b bt b et b e 60
6.6.1.3 TP A EVENICTITETA. ...ttt bbbt b et b et b et b s st b et 60
6.6.1.4 TPCAIEVENIINTO. ...ttt b et b et b et b et et e et b e e 61
6.6.2 Generic Call Control Data DEfiNItiONS..........ccoeeiereireecerreeee e snenen 61
6.6.2.1 oL SO SRTS 61
6.6.2.2] oL@ = OSSPSR 61
6.6.2.3 T 7AYo o1 | OSSPSR 61
6.6.2.4 FoTAN o] oL@ 1 == OSSPSR 61
6.6.2.5 B 010 o L= 01 = SRS 61
6.6.2.6 [PAPPCAI CONTOIM@NAGETeivieeieitereeieete ettt sttt et e et b e bt b e bbbt et e et sbenn e 61
6.6.2.7 IPAPPCAl CONrOIMANBGEIRESot et et 61
6.6.2.8 [PCAlCONFOIM@NEGETcoveeeieete ettt ettt sttt et b et b e bt b e bbbt b e se et b et sb s ee 61
6.6.2.9 IPCall CONrOIM@NAGEIRES ...ttt e et sb e 62
6.6.2.10 TPCATAPPINTO ...ttt bbb et b bbb e ae b e 62
6.6.2.11 TP A APPINTOT Y. ...ttt b bbbt bbbt et b et b s ne b nn e 62
6.6.2.12 QLI N o o] 1101 = 62
6.6.2.13 QLI 1= 0 L= | o] 62
6.6.2.14 B o1 1 O O STS 63
6.6.2.15 QLI 10 oo o 63
6.6.2.16 TPCAIREIEASECAUSEcvieeiietireeieete ettt et et se st et st et e s s be e e e s bestenesbenteneene 63
6.6.2.17 QLI €1 oo o 64
6.6.2.18 TpCall Additional REPOIINTOecuiiiiieiiriee bbb 64
6.6.2.19 TPCAIREPOIMREGUESE ...ttt bt b et b et st neae b e e 64
6.6.2.20 TPCall AdditioNal REPOICIITEITALveieeeereireeiere ettt 65
6.6.2.21 TPCAIREPOIMREGUESESEL ...ttt bbbt 65
6.6.2.22 TPCAIREPOMTYPE ...ttt b st b bbb bt b et b et e bt b e et b e ne et e e e 65
6.6.2.23 QLI I == 1 0= | 66
6.6.2.24 TPCAIEVENICIITENTARESUITSELecviiiiieiirieeeree ettt 66
6.6.2.25 TPCAlEVENCHITErTARESUIL ... coveeeeeee ettt e et esae e te e teeneeeneesneeanes 66
7 MultiParty Call CONIOl SEIVICE.cii ettt st s re e e besaeesresaesteenaenresreas 66
7.1 SEOUENCE DIBOIAITIS ...ttt sttt sttt sttt sttt s e et b se et e b e se et eb e s e ebeeb e s e e bt e b e s e e he e b e e e bt e b e seeneebene e st eb e s b et ebenreneees 66
711 Application INItIAE CAll SEIUPc.eivieeiiriie bbb 66
712 CAll BATING 2 ...ttt h et b et b e et b e e et b e sh e s e ekt sE e Rt e b e s e et eb e sh e e eb e sb e e ebenbe e ebenbennenea 68
7.13 Call forwarding 0N BUSY SEIVICE........c.iiiriiiereeete ettt bbbt bbb neenea 70
714 Call INfOrmMation COlECE SEIVICEoiiiere ettt e sttt ae bt eae et e teseesaesneeneeneeneas 71
7.15 (00 gp] o] Lo O o ST o P 74
7.1.6 HOUINE SEIVICE ...ttt ettt r et r e r e et r e et r e r et er e n s 77
7.1.7 Use Of the REAITECIEA BVENTce ettt 80
7.2 L0 =SS D= =0 1SS 80
7.3 MultiParty Call Control Service INterface ClaSSES.......ciiiiieiieiieie et 82
731 Interface Class [pM ultiPartyCall CONtroIM@anagerccvvcueieeieese e se e e et s 82
732 Interface Class |pAppMultiPartyCal | CONtrolManagerc..ceeereeerienereseese e 86
733 Interface Class IPMUILIPArYCEllcooiiiiiiee e e 89
734 Interface Class IPAPPMUIIPAIYCEll...........ooiiiiieiieeee bbb 93
7.35 INErfACE ClasS IPCAIILEY ...ttt bbbttt b et b e et st 95
7.3.6 Interface Class IPAPPCEAIILED. ..ottt 101
7.4 MultiParty Call Control Service State Transition Diagrams..........cccoererereeneneenieese e 105
74.1 State Transition Diagrams for [pMultiPartyCall ControlManager..........cccvecveveereereeceseeseese e see e 105
74.11 ACHIVE SEAEE ...ttt ettt b et b et et R b et et b et et R et Rt b e bttt ene 105
74.1.2 L0 001 0 S = (TSR 105
74.13 Overview Of allowed MELNOGS............coiiiiirce e e 105
74.2 State Transition Diagrams for IpPMUltiPartyCallcoeeeeeiie e 106
7421 T T S =TSR 106

ETSI

5 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

7422 ACTIVE SEBLE.....ee ettt b e e b bbbt st nn et e bt nn et nn b nennas 106
7423 RELEASED SEALEc.ccveuiriieeiieeteit sttt sttt b bbbt ns st sn bt e b n e s 107
7424 Overview Of allowed MELNOGS............coiiriiirc e e 107
74.3 State Transition Diagrams fOr IPCallLEQ......c.vcvviieiieiece ettt ae e snees 107
7431 (@ g o Nat= 1 aTo J O | 1= o OSSR 108
74311 F TR 1] 0 R = = PSSR 108
74312 ANBIYSING SEALE. ...ttt ettt bbbt b e bbbt b et b e et e e 110
74313 F o L= (= RS 111
74314 REIBASING SEALE ...ttt b ettt b e et b e se et b e e e et e b e e bt e b e eneas 113
74315 Overview of alowed methods, Originating Call Leg STDccccociriirinireneneeee e 115
7432 TEMINAING Call LEGiivieitiieiet ettt bbb b 116
74321 [dle (1ErMiNaLiNG) SEALE.......ccceeiieireeieeie et re e te e e e e e et eesaesreeste e teeneeensesneesreesneanseensenns 116
74322 AcCtive (1ermiNating) SEALEccecieeieeeee ettt e et ae e s e s re e s reentesnaesneesaeenseenrenns 117
7.4.3.2.3 Releasing (terminating) SEALEeevviieiie et sr e e s e enaesraesneas 120
74324 Overview of allowed methods and trigger events, Terminating Call Leg STD..........cccevcvevevenennee 122
75 Multi-Party Call Control SErviCe PrOPEITIEScccveiieeeeieseesiee e se e te e teesae e essaesnaesraesnees 122
751 LiSt Of SEIVICE PrOPEITIES.c.eeeee ettt ettt et e s s e saaesteesteenaesneesaeesaeenseesenns 122
752 Service Property values for the CAMEL Service ENVIrONMENt..........coooviereeinenenienenee e 123
7.6 Multi-Party Call Control Data DEfiNitiONS...........cciirieeriieireene e ebe e 124
76.1 Event Notification Data DefiNitiONScoviieiiieiee e 124
76.2 Multi-Party Call Control Data DEfiNitioNS..........cccoireiiiieeiiese e 124
76.21 IPCAIILEG ..ottt bbb b bR R R R bRt R bR ae bbb b 124
7.6.2.2 IPCAILEGRES ... bbbt b e b et bbbt b e 124
7.6.2.3 IPADDCEILEG. ...ttt b et r et n e 124
7.6.24 IPAPPCEILEGRES ...ttt b et n et n e 124
7.6.25 IPMUITIPEITYCAI ...ttt b b n b n e 124
7.6.2.6 IPMUITIPEITYCAITREScvceiiiceer bbb b 124
7.6.2.7 IPAPPMUITTPAITYCEILottt n et 124
7.6.2.8 IPAPPMUITPArTYCAIIRES ..ottt 125
7.6.29 IPM Ulti PartyCall CONtrOIMANAGEScovieeiiriiieierieeeesi ettt e st 125
7.6.2.10 IpMultiPartyCall ControlManagerREf ..o e 125
7.6.211 IPAPPM Ulti PartyCall CONtrOIMANAJESciveirierieieiereie ettt st 125
7.6.2.12 IpAppM ultiPartyCall Control ManagerRES ..o e 125
7.6.2.13 TPAPPCAILEGREFSEL.......eceeitieeeit ettt bbbt n e bbb e ens 125
7.6.2.14 TPMUItIPartyCal lAENTITIENcvveeeerieier e 125
7.6.2.15 TPAPPMUILIPATYCEIIBECKc.evcvieieiiisietees ettt 125
7.6.2.16 TPAPPMUItiParty Cal IBaCKREF TYPE .. .eceeiee ettt st esre et e nraenneas 126
7.6.2.17 TPAPPCAILEGCAIBACK........ceiieeieiriieir ettt 126
7.6.2.18 TPMUItiPartyCall lAentifIErSaL ..o e 126
7.6.2.19 BN 0L 2N o o] 1 o1 (o PSSR 126
7.6.2.20 TPCA APPINTOT Y. ...ttt ettt bttt bbbt e e bbbt bbbt nb e ens 127
76221 TPCAIAPPINTOSEL ...ttt ettt b bbb st b s s e b s st b bbb ens 127
7.6.2.22 TPCAIEVENTREGUESL ..ottt ittt b et b e bbbt e bbb b e ens 127
7.6.2.23 TPCAIEVENTREQUESESELccveeiietiiteiet sttt b et n et eb e n e ens 127
7.6.2.24 TP A EVENET Y ...ttt b bbbt b bbbt bt e st eb s s bt e st bt b eeb et nens 128
7.6.2.25 TPAAditiONal Cal | EVENECIITEITAL ..ottt 130
7.6.2.26 TPCAIEVENIINTO. ...ttt bbbt 130
7.6.2.27 TpCallAdditiONAIEVENLINFO.......ciieeee ettt ereesraesraesnees 131
7.6.2.28 TPCallNOLIfiCalIONREQUESLeeeeieee et eie ettt et e s e st e e eeeseesneesseesteesaeeseesnaesseesneas 131
7.6.2.29 IO N (o) 1= o oo o= PSR 131
7.6.2.30 I 010N (o) 1= 1 o g g1 (o PSS 132
7.6.2.31 TpPCallNOtifiCati ONREPOMSCOPE. ... eeeeeee ettt ettt e e s s e sre e reeeeeeaeesse e be e sesseessaesseesnees 132
7.6.2.32 TPNOLIfiCaIONREGUESLE ...ttt bbbt e e eb e ens 132
7.6.2.33 TPNOLIfi Cati ONREGUESIEASEL ...ttt bbb 132
7.6.2.34 TPREIEASECELSE ...ttt ettt b bbbt b et b e bt e e bt e e bR e n bbbt n e ens 132
7.6.2.35 TPRE EASECALSESELevieeteitieet ettt b et b et s bbbt s bt e et b bbbt e st b b eb e ens 132
7.6.2.36 TPCAILEGIABNEIFIENcveeieetereeet ettt b e b b et b eb e e e ens 133
7.6.2.37 TPCAILEGIAENTIEISEL ...t 133
7.6.2.38 TpCallLegAttaChMEChANISIMoiieece et essaesraesreesneas 133
7.6.2.39 TPCallLegCoNNECti ONPIOPEITIES.ei e iee et este et ee sttt et e e e e e s e e s se e teenteesaesraesreesnees 133
7.6.2.40 IO L I=o | 0] oo PSSR 133
7.6.241 IO L I=o g o I8 o= PSS 134

ETSI

6 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

7.6.2.42 TPCallLegSUPErVISETIEAMENTc.eeiiecee e see st este e ete et e et e e e sre e te et e seesseesreesse e seensenseesseesseesneas 134
8 MultiMedia Call CONIOl SENVICE........cviiieiiriesiese ettt b bt e s 134
8.1 S 010 c T D TT= o = 1 134
811 Barring for media combined with call routing, alternative 1 ..o 134
812 Barring for media combined with call routing, alternative 2 ..o 136
8.13 Barring for Media, SIMPIE ... bbb 138
814 Call Volume Charging SUPEIVISION.cceiueuiriireeie sttt sttt sttt sttt st se et b b 139
8.2 ClaSS DIAOIAMS. ...ttt ettt h bbbt h bbb et e bt b e e bt E e e e bt b e b e bt e b e e e h e e b e b e st eb e b e st eb e b e ees 141
8.3 MultiMedia Call Control Service INterface ClasseS......covi e 142
831 Interface Class IpMultiMediaCall CONtrOIM@aNagErcccuvveereeieeiesieseese e e e s eee e ens 143
8.3.2 Interface Class IpAppMultiMediaCall CONtrolManagErcccveeeeeereeieee e seeseeseesae e se e e enee e e 145
8.3.3 Interface Class IPMUIIMEIACEL..........cccue e e e e nreereens 146
8.34 Interface Class IPAPPMUItIMEAIACEAILocouiiie e s e eneens 147
8.35 Interface Class IPMUItIMEAIACAIILEQocveeieeeee ettt saeenreenneens 148
8.3.6 Interface Class IPAPPMUItIMEAIACAIILED........ccciiee e saeenreeneens 149
837 Interface Class IPMUIIMEJIASIIEEMocuiirieieere e bbb e 150
8.4 MultiMedia Call Control Service State Transition DiagramsSccoereeerereeereeseeee e 151
8.5 Multi-Media Call Control Data DefinitioNScoooiiiiireie e 151
851 Event Notification Data DefiNitiONScoviiieeieee e 151
8511 TPM ediaSHEAMREGUESISELc.eeeiiteeetertee ettt ettt b bttt b bbb bbb b ens 151
8512 TPM EIASITEAMREGUESEcv ettt ettt b bbbt s bt b s bbb s b e e e 151
8.5.1.3 TPM i aSIrEAMDITECTION.ecueeieee e et ettt te e te et e e teeteeeesseesseesaeenaeenseenneeseenseesseesrens 152
85.14 TpMediaStreamDataT YPEREUUESLcueiveieereereeieeieeeteseestee e etesaeseeseesreesaeeseeeeeseesseenseesseessens 152
8.5.15 TPAUAIOCAPEDI lTIESTYPE.... e ieeeieee e re ettt e e e et e e te e ee s e e saeesaeeseeneeenneeneesseessaesneas 152
8.5.1.6 I A T0 (=010 o= o =] I oSSR 153
8.5.1.7 QI D= = 0= o 7= o =SSR 153
8518 TPM ediaSHEAMEVENTTYIE ...ttt ettt ettt ettt bbbt b b e bt b e bbb se b e e ens 153
8519 TPMEAIASITEAMSEL. ...ttt b et b bbb et b bbbt e st b b e se b e ens 153
8.5.1.10 TPMEAIASIIEAIM. ...ttt ettt bbb bt h et b et b e b s bt nb s e bt s b e st bt eneeb e b e ens 153
85111 TPM diaSHEAMDE@IATYPE......ccveeeeeetereeierte sttt sttt sttt b et b e bt e eb b e s e e bt e e b sene b e eeneens 153
8.5.2 Multi-Media Call Control Data DefinitioNS..........ccooiieiireii e 153
8521 IPMUITIMELIBCEL ...ttt bbbt b st b b 153
85.2.2 IPMUIIMEIACAITRES ...ttt ettt ettt e et b e 153
85.2.3 IPAPPMUILIMEAIBCANccviiiieiiee ettt sttt b e 154
85.24 IPAPPMUILIM EIBCAIIRES ..ottt bttt 154
85.25 IPMUIIIMEIACAITLEGveeeeeieieeeeiesie et bbbttt bt e st st ne 154
8.5.2.6 IPMUIIM EJIACAI I LEGRES ...ttt st 154
85.2.7 [PAPPMUILIM EAIBCAIILEG.eeueeviiiieiirieie ettt bbbttt 154
8528 IPAPPMUItIM EIBCA I LEGRES ..ot 154
8529 TPAPPMUItIMEdiaCallLEIREFSEL........c.ciuireeieterieet et 154
8.5.2.10 TPMUItIMediaCal llAENETIENcvieeeeeee e 154
85211 TPMUItiMediaCalllAENtifIErSEL.......c.coiei s 154
85212 TPMUItiMediaCallLegldentifier...........coiireireeere e 154
8.5.2.13 TpMultiMediaCallL egldentifierSeL.........ccciireirieeree e 154
8.5.2.14 IPAPPMUltiMediaCal | CONtrOIM@NAQEYcccue ettt sre et eesneenreesreesreas 155
8.5.2.15 IpAppMultiMediaCallControlManagerREScoeo e 155
8.5.2.16 TPAPPMUILIMEAIACAIIBECK.........ceiieieeiiiiesieieierieetes ettt sne e neens 155
8.5.2.17 TPAPPMUItiMediaCall BECKREFTYPE.cuiiveiireirieiriisieeete sttt enes 155
8.5.2.18 TpAppMultiMediaCallLegCallBaCK...........coiiririierisieeres s 155
8.5.2.19 TPCAl SUPEIVISEV OIUME. ...ttt b et b bt b e a e bbb b ens 156
8.5.2.20 TPNOLIficatioNMEAIBREGUESTcovieeeiitireeet e ens 156
85221 TPMediaNotifiCatiONREGUESIEMoeeueeieciiet et 156
85222 TpMediaNotifiCatiONSREQUESIEASEL..........eiveereirieisteree et 156
9 Conference Call CONLIOl SENVICE........ciiiieiiiere ettt ee e et e e stesreeeesseeneeseesseeneensensens 156
9.1 S o1 =g orc T D TT= o = 1 156
91.1 M eet-me conference wWithout SUDCONFEIENCINGccvveieiie et ene e 156
9.1.2 Non-add hoc add-on with SUDCONFErENCINGcvveviciiiee e sreenreeeeens 158
9.1.3 Non-addhoc add-0n MUITIMEAIAcoirieei e e sb e e 160
9.14 RESOUICE RESEIVELION ...ttt sttt et e st et e e se e beseeebesseeneeneesaesbesaeeneeneeneenes 163
9.2 ClaSS DIAOIAMS. ...ttt ettt h st b bbbt h bt e bt b e e e bt E e e e bt e b e e e bt e b e b e h e e b e b e st e b e b e st ebe b e 164

ETSI

7 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

9.3 Conference Call Control Service INErface ClASSES..........ooiiiiirirerieieieee et e 165
931 Interface Class |pConfCall CONtrOIMaNAJEYcoveiieeieee e see s e et e eesaae e e e sreenaeenseenseens 166
9.3.2 Interface Class |pApPpCONfCall CONrOIMaNAgESc.ocvueieeree e et e e sae e e saeenreeneens 169
9.3.3 Interface Class IPCONFCAIL.........ooee ettt e te s aeseesaeesaeenreenseens 170
9.34 Interface Class IPAPPCONTCEIL.......c.eiiiie et re e sae e e s e e sreenseenseens 171
9.35 Interface Class IPSUBCONTCEILcooi et re e saeenreereens 173
9.3.6 Interface Class IPAPPSUDCONTCELL. ..o 176
9.4 Conference Call Control Service State Transition Diagrams..........ccceeeririeerieninenenesesee e 177
9.5 Conference Call Control Data DefiNitiONScoeeiieiiierire e e seens 177
951 Event Notification Data DefiNitiONScoeiiiiiieee e 178
9.5.2 Conference Call Control Data DefinitioNS..........ccoeeieriieiiieie e s 178
9521 o T0e] 1= SRS 178
95.2.2 FoT@te 1@ 1 == SRS 178
9.5.2.3 10N oo 1o | S 178
9.5.24 IPAPPCONTCAIIRES ...ttt e st e et e e teeteseesaeeeseesteenseensesnensneesnens 178
95.25 IPSUDCONTCEIL ...ttt et et b et et s st et e e ebesbenene 178
95.2.6 I PSUDCONTCAITRESceiieeeieieeeee ettt e e s bt e e s besbenene 178
9527 IPAPPSUBCONTCENL ...ttt bbbt b et st b e 178
9528 IPAPPSUBCONTCAITRES ...ttt bbbt 178
9529 TPSUDCONFCATABNIIFIEISEL......c.eeeiitieeeee b 178
9.5.2.10 TPCONFCATABNEITIEN ...t e e b 179
95211 TPSUDCONFCATABNIIFIENceeieieeeieeee bbb 179
95212 IPAPPCONFCAICONIIOIMEBNEGEYceeeeeiieieeiertee et bbbt be b 179
9.5.2.13 IPAPPCONfCAlCONtrolMaNagErREScceeeeece et esraesrees 179
9.5.2.14 I 0O]1 =o [T oy Y 1Y o= TSRS 179
9.5.2.15 QLI 010011 = o [T 179
9.5.2.16 TPMONOM EIACONTPOIICY ...ecuvieiieiecie ettt e e e s sae e s ae e teeteenteenaesnaesreesreas 180
9.5.2.17 TPIOINEVENTINTO. ...t e e e e te s e s e e saeesseeseenteenaeeneesnaessaesneas 180
9.5.2.18 I O] 15 o [(- PSS 180
95219 TPCONFSEAICHRESUIL ...ttt b e b e ens 180
9.5.2.20 TPMUItIMEAIACONTPOIICY ...ttt bbb 181
95221 TPRESOUNCERESEIVELIONccvivineetieeet ettt b bbb e b bbb e ens 181
95222 TPV IAEOHANAIINGTYPE ...ttt b et eb et a bbb b 181
10 CommoON Call CONIrOl DA TYPES.veiuereeeeeieieeesiesie sttt be b s s sn s e eseese b e e 181
10.1 IO AN K= e Y=o 7= o S 181
10.2 IO L Te = o YT o 182
10.3 QLI O L= T o S 182
104 TpCallPartyToChargeAdditioNal INFO.........cccuieecece e enreeneens 182
105 TPCA I PartY TOCNAIGET YR ...ttt ettt sttt b et b e bbbt b e s bbbt eb e en e e e st b e et e b b 183
10.6 TPCAlChargEOITErCAIEGONYccveiveerterieeetertese et sttt ettt se st st ebesbe e e bt be st ebe s b et eb e s b et ebesbeseenesbeseenesbenbeneees 183
10.7 TPCAIENGEAREDON ...ttt ettt et e ettt b e et b e s bbb et bt s b e st ebe b et e b e s b e e ebe b e 183
10.8 QI 010 1 = (o TSSOSO VTSR USRI 183
10.9 TPCAlAAAItiONBIEITONTNTO. ... ettt b et b et b e 184
10.10 QLI T g I8/ o= PR 184
10.11 QLI e oo o PR 184
10.12 QLI 1o 1Y/ o= S 185
10.13 TpCallLoadControlMECHANISIMcceeieee e e e s et e e e staeste e te e teensesnaesneesneesseenseensenns 185
10.14 TPCallLoadControlINtEIVAIRELE.cccveiiereeeeiesiesee e se e se et et e st e sta e te e teesessaesnnesneesseenseesenns 185
10.15 TpCallLoadControlMeChaNi SMTYPE......cccuieiieiietiesteesteeseetesseeseesaeesreesteeeeeseessaesteesseesesnsessessneesseesseenseensenns 185
10.16 TPCAIMONITONMOOE ...ttt ettt b et b e bbb et b e bbb et b b et ebe b 186
10.17 TPCA I NEIWOIKACCESSTYPE ...ttt sttt ettt ettt e et b e s s e b et b se e st b e s e e bt b e st e bt ebe s e e st eb e s e et ebenbe s 186
10.18 TPCAIPAITYCEIEJONYcveeeterteeete sttt sttt sttt et et et e st b seehe e b se e bt e b e st ebe s b et e bt e besb e st ebe s b e st ebe s b e e ebenbe e e 186
10.19 TPCAISEIVICECOUE ..ottt b ettt b e e h e bt et b et he b e e e bt b e st et b e e e et e bt e e ebe b e 187
10.20 TPCAISEIVICECOUESELecueiteeeieet ettt b et bbbt b e bt b e s bt b e b et e b e b et be b 187
10.21 TPCAll SErVICECOUETYIE ...ttt sttt ettt sttt sttt et b et b e bbbt b e b et b e b et bt b et b b et be s bt e be b e 187
10.22 TPCAll SUPEIVISEREDOIT ..ottt e s esae e be e be e s e esaesaaesseesseensesneesnnesseesseensennsenns 187
10.23 TPCaAll SUPEIVISET FTEALMIENL ec.ee e seeeste et ete e e et et e ste e teesteseeseesaeesse e seesseeseessaessaesseeseensesneesnnesseesseensennsenns 188
10.24 TP A TR ESEIVICE. ...ttt sttt sttt sttt e et et s e et b se e st s b e s e e se e be st eneebeseeneebesaeneebenbenens 188
10.25 QLI = 0= o S 189
10.26 IO = (0= 11N 189
10.27 TpCallAdditioNal TreatMENIINTO.......cei e e e te e s aesreesreesaeenseenneens 189

ETSI

8 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

10.28 QLI LY=o = U1/ o 189
Annex A (normative): OMG IDL Description of Call Control SCF..........ccccviiiininenereieeeeseseie 190
Annex B (informative): Contents of 3GPP OSA R4 Call CoNtrolccccevvveeieieseece e 191
Annex C (informative): ReCord Of ChaNQES.........coeeiiii e 192
(O R 111 (= = o= R 192
Cl1 A<, TR 192
Cl1l2 (D= o1 o= 1= o [T TSRS PE TP 192
C.13 RS 101017/= I TSRO 192
(O Y. 1< 1 00T LT TR RO 193
c2l1 [=T OSSR 193
c22 D10 o 1= o S 193
C.2.3 1Y Lol [N =10 PR 193
C24 11101V TR 193
(ORCTI BT r= N D= {1 alL (0] o TR TT TR 194
C31 [=T OSSR 194
C3.2 1Y oo [1= I 194
C.3.3 (S 11101V 194
(O S Yool o o= £ (1= ST 194
C4a1 A<, 194
C4.2 (D= o1 o= 1= o ISP TP USURPR 195
C4.3 1Y L0l [N =10 F TR 195
C44 11101V FE TR 195
ORI ol)10 1S 195
C5h1 [=T OSSR 195
C5h.2 1Y oo [1= I 196
C5.3 (1110 1Y/ o 196
LGN T @1 1< (TR 196
(o 11 (TP 197

ETSI

9 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards', which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/| PR/home.asp).

Pursuant to the ETSI IPR Palicy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

ThisETSI Standard (ES) has been produced by ETSI Technical Committee Telecommunications and I nternet
converged Services and Protocols for Advanced Networking (TISPAN), and is now submitted for the ETSI standards
Membership Approval Procedure.

The present document is part 4 of a multi-part deliverable covering Open Service Access (OSA); Application
Programming Interface (API), asidentified below. The API specification (ES 201 915) is structured in the following
parts:

Part1: "Overview";

Part 2. "Common Data Definitions";
Part 3: "Framework";

Part 4: " Call Control SCF";

Part 5: "User Interaction SCF";
Part6: "Mobility SCF";

Part 7: "Terminal Capabilities SCF";
Part 8: "Data Session Control SCF";
Part9: "Generic Messaging SCF";
Part 10: "Connectivity Manager SCF";
Part 11: "Account Management SCF",
Part 12: "Charging SCF".

The present document has been defined jointly between ETSI, The Parlay Group (http://www.parlay.org) and the 3GPP,
in co-operation with a number of JAIN™ Community (http://www.java.sun.com/products/jain) member companies.

The present document forms part of the Parlay 3.4 set of specifications.

A subset of the present document isin 3GPP TS 29.198-4 4.a.0 (Release 4).

ETSI

http://webapp.etsi.org/IPR/home.asp
http://www.parlay.org/
http://www.java.sun.com/products/jain

10 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

1 Scope

The present document is part 4 of the Stage 3 specification for an Application Programming Interface (API) for Open
Service Access (OSA).

The OSA specifications define an architecture that enables application developers to make use of network functionality
through an open standardised interface, i.e. the OSA APIs.

The present document specifies the Call Control Service Capability Feature (SCF) aspects of the interface. All aspects
of the Call Control SCF are defined here, these being:

. Sequence Diagrams.

. Class Diagrams.

. Interface specification plus detailed method descriptions.
. State Transition diagrams.

. Data Definitions.

. IDL Description of the interfaces.

The process by which this task is accomplished is through the use of object modelling techniques described by the
Unified Modelling Language (UML).

2 References

The referenceslisted in clause 2 of ES 201 915-1 contain provisions which, through reference in this text, constitute
provisions of the present document.

ETSI ES 201 915-1: "Open Service Access (OSA); Application Programming Interface (API); Part 1. Overview
(Parlay 3)".

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in ES 201 915-1 apply.

3.2 Abbreviations

For the purposes of the present document, the abbreviations defined in ES 201 915-1 apply.

4 Call Control SCF

Two flavours of call control APIs have been included in 3GPP Release 4. These are the generic call control and the
multi-party call control. The generic call control isthe same API as was aready present in the previous specification for
3GPP Release 99 (TS 129 198 V3.4.0) and isin principle able to satisfy the requirements on Call Control APIsfor
3GPP Release 4.

ETSI

11 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

However, the joint work between 3GPP CN5, ETSI and Parlay with collaboration from JAIN has been focussed on the
Multi-party call control API. A number of improvements on call control functionality have been made and are reflected
inthis API. For thisit was necessary to break the inheritance that previously existed between Generic and Multi-party
call control.

Thejoint call control group has furthermore decided that the multi-party call control isto be considered as the future
base call control family and the technical work will not be continued on Generic Call control. Errors or technical flaws
will of course be corrected.

The following clauses describe each aspect of the Call Control Service Capability Feature (SCF).
The order is asfollows:
. The Sequence diagrams give the reader a practical idea of how each of the SCF isimplemented.
. The Class relationships clause show how each of the interfaces applicable to the SCF, relate to one another.

. The Interface specification clause describes in detail each of the interfaces shown within the Class diagram
part.

. The State Transition Diagrams (STD) show the transition between states in the SCF. The states and transitions
are well-defined; either methods specified in the Interface specification or events occurring in the underlying
networks cause state transitions.

. The Data Definitions clause show a detailed expansion of each of the data types associated with the methods
within the classes. Note that some data types are used in other methods and classes and are therefore defined
within the Common Data types part of the present document.

4.1 Call Model Description
The adopted call model has the following objects:

. acall object. A call isarelation between anumber of parties. The call object relates to the entire call view
from the application. E.g. the entire call will be released when areleaseis called on the call. Note that different
applications can have different views on the same physical call, e.g. one application for the originating side
and another application for the terminating side. The applications will not be aware of each other, al
"communication” between the applications will be by means of network signalling. The API currently does not
specify any feature interaction mechanisms;

. acall leg object. The leg object represents alogical association between a call and an address. The relationship
includes at least the signalling relation with the party. The relation with the address is only made when the leg
isrouted. Before that the leg object is IDLE and not yet associated with the address;

. an address. The address logically represents a party in the call;

. aterminal. A terminal isthe end-point of the signalling and/or media for a party. This object typeis currently
not addressed.

The call object isused to establish arelation between a number of parties by creating aleg for each party within the
call.

Associated with the signalling relationship represented by the call leg, there may also be a bearer connection (e.g. in the
traditional voice only networks) or anumber (zero or more) of media channels (in multi-media networks).

A leg can be attached to the call or detached from the call. When the leg is attached, this means that media or bearer
channelsrelated to the legs are connected to the media or bearer channels of the other legs that are attached to the same
cal. l.e. only legs that are attached can "speak” to each other. A leg can have a number of states, depending on the
signalling received from or sent to the party associated with the leg. Usually thereisalimit to the number of legs that
arein being routed (i.e. the connection is being established) or connected to the call (i.e. the connection is established).
Also, there usually isalimit to the number of legs that can be simultaneously attached to the same call.

Some networks distinguish between controlling and passive legs. By definition the call will be released when the
controlling leg is released. All other legs are called passive legs. There can be at most one controlling leg per call.
However, thereis currently no way the application can influence whether aLeg is controlling or not.

ETSI

12 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

There are two ways for an application to get the control of acall. The application can request to be notified of calls that
meet certain criteria. When a call occurs in the network that meets these criteria, the application is notified and can
control the call. Some legs will already be associated with the call in this case. Another way isto create anew call from
the application.

4.2 General requirements on support of methods

An implementation of this APl which supports or implements a method described in the present document, shall
support or implement the functionality described for that method, for at least one valid set of values for the parameters
of that method.

Where a method is not supported by an implementation of a Service interface, the exception
P_METHOD_NOT_SUPPORTED shall be returned to any call of that method.

Where amethod is not supported by an implementation of an Application interface, a call to that method shall be
possible, and no exception shall be returned.

5 The Service Interface Specifications

5.1 Interface Specification Format

This clause defines the interfaces, methods and parameters that form a part of the API specification. The Unified
Modelling Language (UML) is used to specify the interface classes. The general format of an interface specificationis
described below.

51.1 Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters
and types. The Service and Framework interfaces for enterprise-based client applications are denoted by classes with
name | p<name>. The callback interfaces to the applications are denoted by classes with name | pApp<nane>. For
the interfaces between a Service and the Framework, the Service interfaces are typically denoted by classes with name
IpSve<name>, while the Framework interfaces are denoted by classes with name IpFw<name>.

5.1.2 Method descriptions

Each method (APl method "call") is described. Both synchronous and asynchronous methods are used in the API.
Asynchronous methods are identified by a"Req" suffix for a method request, and, if applicable, are served by
asynchronous methods identified by either a"Res™ or "Er r " suffix for method results and errors, respectively. To
handle responses and reports, the application or service developer must implement the relevant | pApp<nane> or
| pSvc<nane> interfacesto provide the callback mechanism.

5.1.3 Parameter descriptions

Each method parameter and its possible val ues are described. Parameters described as "in" represent those that must
have a value when the method is called. Those described as "out" are those that contain the return result of the method
when the method returns.

514 State Model

If relevant, astate model is shown to illustrate the states of the objects that implement the described interface.

ETSI

13 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

5.2 Base Interface

5.2.1 Interface Class Ipinterface

All application, framework and service interfaces inherit from the following interface. This APl Base Interface does not
provide any additional methods.

<<Interface>>

Ipinterface

5.3 Service Interfaces

53.1 Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user
interaction, messaging, mobility and connectivity management.

The interfaces that are implemented by the services are denoted as " Service Interface”. The corresponding interfaces
that must be implemented by the application (e.g. for API callbacks) are denoted as " Application Interface".

54 Generic Service Interface

54.1 Interface Class IpService
Inherits from: I plnterface.

All service interfacesinherit from the following interface.

<<Interface>>

IpService

setCallback (applinterface : in IpinterfaceRef) : void
setCallbackWithSessionID (applinterface : in IpinterfaceRef, sessionID : in TpSessionID) : void

Method
set Cal | back()

This method specifies the reference address of the callback interface that a service usesto invoke methods on the
application. It is not allowed to invoke this method on an interface that uses SessionlDs.

ETSI

14 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Parameters

applnterface : in IplnterfaceRef
Specifies areference to the application interface, which is used for callbacks

Raises
TpComonExcepti ons, P_I NVALI D | NTERFACE TYPE

Method
set Cal | backW t hSessi onl X))

This method specifies the reference address of the application's callback interface that a service uses for interactions
associated with a specific session ID: e.g. a specific call, or call leg. It is not allowed to invoke this method on an
interface that does not use SessionlDs.

Parameters

applnterface : in IplnterfaceRef
Specifies areference to the application interface, which is used for callbacks.

sessionlD : in TpSessionlD
Specifies the session for which the service can invoke the application's callback interface.

Raises
TpConmmonExceptions, P_I NVALI D SESSION I D, P_I NVALI D | NTERFACE TYPE

6 Generic Call Control Service

6.1 Sequence Diagrams

6.1.1 Additional Callbacks

The following sequence diagram shows how an application can register two call back interfaces for the same set of
events. If one of the call backs can not be used, e.g. because the application crashed, the other call back interfaceis used
instead.

ETSI

15 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

first instance : (Logical : IpAppCallControlManager second instance : : IpAp pCallControlMan ager : IpCallControlManag er
View::1pAppLogic; Logic...

1: new()

2: enableCaIINotiﬁcatian()

5: callEventNotify(‘)
\

| |
T |
|
|)
| |
|

6: ‘forward event'

7: "call Notify resuIL: failure"

8: callEventNotify()

‘ ‘ 3: new() %

‘ L 4: enabIeCallNotificPtion()
| |

\ \

9: "forward event" ‘J
\

Thefirst instance of the application is started on node 1. The application creates a new
I pAppCallControlManager to handle callbacks for this first instance of the logic.

The enableCallNotification is associated with an applicationID. The call control manager uses the
applicationI D to decide whether thisis the same application.

The second instance of the application is started on node 2. The application creates a new
IpAppCall ControlManager to handle callbacks for this second instance of the logic.

The same enableCalINotification request is sent as for the first instance of the logic. Because both regquests are
associated with the same application, the second request is not rejected, but the specified callback object is
stored as an additional callback.

When the trigger occurs one of the first instance of the application is notified. The gateway may have different
policies on how to handle additional callbacks, e.g. always first try the first registered or use some kind of
round robin scheme.

The event is forwarded to the first instance of the logic.

When the first instance of the application is overloaded or unavailable thisis communicated with an exception
to the call control manager.

Based on this exception the call control manager will notify another instance of the application (if available).

The event is forwarded to the second instance of the logic.

ETSI

16 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

6.1.2 Alarm Call

The following sequence diagram shows a "reminder message”, in the form of an alarm, being delivered to a customer as
aresult of atrigger from an application. Typically, the application would be set to trigger at a certain time, however, the
application could also trigger on events.

: (Logical : IpAppCall o - :IpCall o . IpUICall
View::IpAppLogic) IpAppUICall | | IpCallControlManager | UlManager
1: new() ‘ ‘ ‘

T |

2: createCall() ‘

| | | |
L 3: new()

\
L: routeReq()

_—F —

6: ‘forward event'

|
‘ 5: routeRes()
[

7: createUICall ()

—

8: new()

T
9: ﬁendlnfoReq()

T
|
10: sendlnerRes()

Hﬁ

11: 'fonNaHF event' (
ﬁ\ ‘

13:

release()

|
[
|
T
|
|
12: r%lease()

: ~

ETSI

11:
12:

13:

17 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

This message is used to create an object implementing the IpAppCall interface.

This message requests the object implementing the IpCall Control Manager interface to create an object
implementing the IpCall interface.

Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not
exceeded) ismet it is created.

This message instructs the object implementing the IpCall interface to route the call to the customer destined
to receive the "reminder message”.

This message passes the result of the call being answered to its callback object.

This message is used to forward the previous message to the IpAppLogic.

The application requests anew Ul Call object that is associated with the call object.

Assuming all criteriaare met, a new UlCall object is created by the service.

This message instructs the object implementing the IpUICall interface to send the alarm to the customer's call.
When the announcement ends this is reported to the call back interface.

The event is forwarded to the application logic.

The application releases the UICall object, since no further announcements are required. Alternatively, the
application could have indicated P_FINAL_REQUEST in the sendinfoReq in which case the UICall object
would have been implicitly released after the announcement was played.

The application releases the call and all associated parties.

ETSI

18 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

6.1.3 Application Initiated Call

The following sequence diagram shows an application creating a call between party A and party B. This sequence could
be done after a customer has accessed a Web page and sel ected a name on the page of a person or organisation to talk
to.

: (Logical : IpAppCall o : IpCall
View::IpAppLo... IpCallControlManager
1:new() ‘

Ju 3:new()

2: createCall()

5: rout%Res()

|
|
u
|
|
ﬁ

‘ 7:routeReq()
9: forward event' D

\

\

\
|
|
‘ ‘ 4:routeReq()
|
|
|

10: deassignCall()

R T S B S

|
|
|
8: routTRes()
|
|
|
\
\
|
|
|

— — —T

ETSI

10:

19 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

This message is used to create an object implementing the IpAppCall interface.

This message requests the object implementing the IpCall Control Manager interface to create an object
implementing the IpCall interface.

Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not
exceeded) is met, it is created.

This message is used to route the call to the A subscriber (origination). In the message the application request
response when the A party answers.

This message indicates that the A party answered the call.
This message forwards the previous message to the application logic.

This message is used to route the call to the B-party. Also in this case aresponse is requested for call answer
or failure.

This message indicates that the B-party answered the call. The call now has two parties and a speech
connection is automatically established between them.

This message is used to forward the previous message to the IpAppLogic.

Since the application is no longer interested in controlling the call, the application deassigns the call. The call
will continue in the network, but there will be no further communication between the call object and the
application.

ETSI

20 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

6.1.4 Call Barring 1

The following sequence diagram shows a call barring service, initiated as a result of a prearranged event being received
by the call control service. Before the call is routed to the destination number, the calling party is asked for a PIN code.
The code is accepted and the call is routed to the original called party.

: (Logical : IpAppCallControlManager _ IpAppCall : . IpCall - cIpuiCall
View::IpAppLogic) IQAQQUICaII IQCaIIControIMangge IpUIManager
1: new()
ﬁ 2: enableCallNotifica on() ‘ ‘ ‘ ‘ ‘
| 3:9aIIEventNotify()‘ |
‘ 4: 'forward event' ‘ ‘ ‘ ‘ ‘
5:new() ‘ ‘ ‘ ‘ ‘
T i ? ‘ ‘ ‘ ‘
‘ ‘ 6:createUICaIIJ) ‘ 7: new()
t t t
8:send|nfoAnd(JoIIectReq(‘ ‘

‘ ‘ 9:

‘ 11:release() ‘ ‘

12:routeReq()
13:routeRes()
14:'forward event'

\ H

\
16: "forward event" ‘
,

sendInfoAndColleciRes()

t
li: ‘forward event'

I

17: dea55|gnCaII()

4:—;4441—4 4:—;{4:%
S oy

1

\
15: callEnded() ‘
,

1. Thismessageisused by the application to create an object implementing the |pAppCall Control M anager
interface.

2. Thismessageis sent by the application to enable notifications on new call events. Asthis sequence diagram
depictsacall barring service, it islikely that all new call events destined for a particular address or address
range prompted for a password before the call is allowed to progress. When anew call, that matches the event
criteria set, arrives a message (not shown) is directed to the object implementing the IpCall Control Manager.
Assuming that the criteriafor creating an object implementing the IpCall interface (e.g. load control values not
exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

3: Thismessageis used to pass the new call event to the object implementing the IpAppCall Control M anager
interface.

4: Thismessageis used to forward the previous message to the IpAppLogic.

ETSI

10:
11:
12:
13:
14:
15:

16:
17:

21 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

This message is used by the application to create an object implementing the IpAppCall interface. The
reference to this object is passed back to the object implementing the |pCall ControlManager using the return
parameter of the callEventNotify.

This message is used to create anew UICall object. The reference to the call object is given when creating the
UlCall.

Provided al the criteria are fulfilled, a new Ul Call object is created.

The call barring service dialogue isinvoked.

The result of the dialogue, which in this caseisthe PIN code, is returned to its callback object.
This message is used to forward the previous message to the IpAppLogic.

This message releases the Ul Call object.

Assuming the correct PIN is entered, the call is forward routed to the destination party.

This message passes the result of the call being answered to its callback object.

This message is used to forward the previous message to the IpAppLogic.

When the call is terminated in the network, the application will receive a notification. This notification will
aways be received when the call is terminated by the network in a normal way, the application does not have
to request this event explicitly.

The event is forwarded to the application.

The application must free the call related resources in the gateway by calling deassignCall.

ETSI

22 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

6.1.5 Number Translation 1

The following sequence diagram shows a simple number translation service, initiated as a result of a prearranged event
being received by the call control service.

: (Logical : IpAppCallControlManager . IpAppCall o : IpCall
View: :lpApplo... IpCallControlManager
‘ 1: new() ‘

2: enabl eCaIINotificationJ)

| |
g |

|

|

|

|
3: callEventNotify() ‘

4: ‘forward event'

[5: new()
|
|

—

6: 'translate number'

P—

7: routeReq()

©° !

8: routeRes()

10: deassign&all()

9: 'forwar+ event’ T
|

— —] —

ETSI

© © N 9

23 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)
This message is used by the application to create an object implementing the |pAppCall Control M anager
interface.

This message is sent by the application to enable notifications on new call events. As this sequence diagram
depicts anumber tranglation service, it islikely that only new call events within a certain address range will be
enabled. When anew call, that matches the event criteria set in message 2, arrives a message (not shown) is
directed to the object implementing the I pCall ControlManager. Assuming that the criteriafor creating an
object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not
shown) are used to create the call and associated call leg object.

This message is used to pass the new call event to the object implementing the IpAppCall Control M anager
interface.

This message is used to forward message 3 to the IpAppLogic.

This message is used by the application to create an object implementing the IpAppCall interface. The
reference to this object is passed back to the object implementing the |pCall ControlManager using the return
parameter of message 3.

This message invokes the number trandation function.

The returned translated number is used in message 7 to route the call towards the destination.
This message passes the result of the call being answered to its callback object.

This message is used to forward the previous message to the IpAppLogic.

The application is no longer interested in controlling the call and therefore deassigns the call. The call will
continue in the network, but there will be no further communication between the call object and the
application.

ETSI

24 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

6.1.6 Number Translation 1 (with callbacks)

The following sequence diagram shows a simple number translation service, initiated as a result of a prearranged event
being received by the call control service.

For illustration, in this sequence the callback references are set explicitly. Thisisoptional. All the callbacks references
can also be passed in other methods. From an efficiency point of view that is aso the preferred method. The rest of the
sequences use that mechanism.

: (Logical : IpAppCallControlManager : IpAppCall o : IpCall
View::IpAppLogic) IpCallControlManager
‘ 1: new() ‘

] K

3: setCallback()

-

2: enabIeCaIINotification(J)
|
|
!

vy

4: callEventNotify()

|
\
|
5: 'forward event' m ‘

6: new()
]

7 setCaIIbackWithSe‘ssjonlD()

g

8 'translate number'

%l

—]

9: routeReq()

11: forward event'

12: deassignQaII()
|

|
|
|
*

|
|
I
|
|
|
|
|
10: routFRes()
|
|
|
|
|
|
|

R e = W

ETSI

© o N o2 O

11:
12:

25 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)
This message is used by the application to create an object implementing the |pAppCall Control M anager
interface.

This message is sent by the application to enable notifications on new call events. As this sequence diagram
depicts anumber tranglation service, it islikely that only new call events within a certain address range will be
enabled. When anew call, that matches the event criteria set in message 2, arrives a message (not shown) is
directed to the object implementing the I pCall ControlManager. Assuming that the criteriafor creating an
object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not
shown) are used to create the call and associated call leg object.

This message sets the reference of the IpAppCall ControlManager object in the CallControlManager. The
CallControlManager reports the callEventNotify to referenced object only for enableCallNotifications that do
not have a explicit IpAppCallControlManager reference specified in the enableCalINotification.

This message is used to pass the new call event to the object implementing the IpAppCall Control M anager
interface.

This message is used to forward message 4 to the IpAppLogic.

This message is used by the application to create an object implementing the IpAppCall interface.
This message is used to set the reference to the IpAppCall for this call.

This message invokes the number trandation function.

The returned translated number is used in message 7 to route the call towards the destination.
This message passes the result of the call being answered to its callback object.

This message is used to forward the previous message to the IpAppLogic.

The application is no longer interested in controlling the call and therefore deassigns the call. The call will
continue in the network, but there will be no further communication between the call object and the
application.

ETSI

26 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

6.1.7 Number Translation 2

The following sequence diagram shows a number translation service, initiated as aresult of a prearranged event being
received by the call control service. If the trandated number being routed to does not answer or isbusy then the cal is
automatically released.

: (Logical . IpAppCallControlManager : IpAppCall : IpCallControlM anager . IpCall
View::IpAppLogic)
1: new() ‘

2: enableCalINotiﬁcatioq() m

3: callEventNotify()\

\
4: ‘forward event' ‘
[5: new() %ﬁ

|
!
|

|
|

6: 'translate number'

i

| |
< | |
| | |

| |

7: routeReq()

9: ‘forward event' J

|
|
| |
‘ 8: route#es()
|
|
|
\
|
|

—_— — T

‘ 10: release(‘)
| |

ETSI

10:

27 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)
This message is used by the application to create an object implementing the |pAppCall Control M anager
interface.

This message is sent by the application to enable notifications on new call events. As this sequence diagram
depicts anumber tranglation service, it islikely that only new call events within a certain address range will be
enabled. When anew call, that matches the event criteria, arrives a message (not shown) is directed to the
object implementing the |pCall ControlManager. Assuming that the criteria for creating an object
implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown)
are used to create the call and associated call leg object.

This message is used to pass the new call event to the object implementing the IpAppCall Control M anager
interface.

This message is used to forward the previous message to the IpAppLogic.

This message is used by the application to create an object implementing the IpAppCall interface. The
reference to this object is passed back to the object implementing the |pCall ControlManager using the return
parameter of the callEventNotify.

This message invokes the number trandation function.
The returned translated number is used to route the call towards the destination.

Assuming the called party is busy or does not answer, the object implementing the IpCall interface sends a
callback in this message, indicating the unavailability of the called party.

This message is used to forward the previous message to the IpAppLogic.

The application takes the decision to release the call.

ETSI

28 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

6.1.8 Number Translation 3

The following sequence diagram shows a number translation service, initiated as aresult of a prearranged event being
received by the call control service. If the trandated number being routed to does not answer or isbusy then the cal is
automatically routed to a voice mailbox.

: (Logical : IpAp pCallC ontrolManager : IpAppCall : IpCallControlManager :IpCall
View::IpAppLogic)
‘ 1: new() ‘

LH 2: enableCJllNotification()

\
)

4:*forward event'

|
—

6: translate number' W

3: caIIEver1tN otify()
1

-
p—

|
|
7: roLteReq()
|
|

event' Q

[
|

&f 9: forwar

|
|
|
8: routeDJes() ‘

10: 'ranslate number'

p—

1l:routeReq()

—_— g T —

\
13: ‘forwarL ewent' J

12: routelﬁes()
I
\

g

14: deassignJall()
\

ETSI

10:

11:
12:
13:
14:

29 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)
This message is used by the application to create an object implementing the |pAppCall Control M anager
interface.

This message is sent by the application to enable notifications on new call events. As this sequence diagram
depicts anumber tranglation service, it islikely that only new call events within a certain address range will be
enabled. When anew call, that matches the event criteria, arrives a message (not shown) is directed to the
object implementing the |pCall ControlManager. Assuming that the criteria for creating an object
implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown)
are used to create the call and associated call leg object.

This message is used to pass the new call event to the object implementing the IpAppCall Control M anager
interface.

This message is used to forward the previous message to the IpAppLogic.

This message is used by the application to create an object implementing the IpAppCall interface. The
reference to this object is passed back to the object implementing the |pCall ControlManager using the return
parameter of the callEventNotify.

This message invokes the number trandation function.
The returned translated number is used to route the call towards the destination.

Assuming the called party is busy or does not answer, the object implementing the IpCall interface sends a
callback, indicating the unavailability of the called party.

This message is used to forward the previous message to the IpAppLogic.

The application takes the decision to translate the number, but this time the number is trandated to a number
belonging to a voice mailbox system.

This message routes the call towards the voice mailbox.
This message passes the result of the call being answered to its callback object.
This message is used to forward the previous message to the IpAppLogic.

The application is no longer interested in controlling the call and therefore deassigns the call. The call will
continue in the network, but there will be no further communication between the call object and the
application.

ETSI

30 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

6.1.9 Number Translation 4

The following sequence diagram shows a number translation service, initiated as aresult of a prearranged event being
received by the call control service. Before the call isrouted to the translated number, the application requests for all
call related information to be delivered back to the application on completion of the call.

: (Logical : IpAppCall Co ntroIManager : IpAppCall : IpCallControlManager - IpCall
View::| Logic
1:new() ‘

!

2:‘enabIeCaIINotification() ‘
I
|

|
|
5

3: callEventNotify()

T 4:'forward event'

5:Inew()

e

6: 'translate number'

P —

7: getCaIIInchReq

|

|

|

|

|

|

|

|

| |
8: routeReq(‘ F
| i
\

—

10: 'forvva%d event' J ‘
T

‘ 11: callEnded()

|

13: getCallinfoRes(

12: ”forwar? event"

— Y —

\
14: 'forvvaq‘d event' Q
\

15:deassign¢a||()

-0 — —C— —— —[}— -

ETSI

10:
11:

12:

13:

14.
15:

31 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)
This message is used by the application to create an object implementing the |pAppCall Control M anager
interface.

This message is sent by the application to enable notifications on new call events. As this sequence diagram
depicts anumber tranglation service, it islikely that only new call events within a certain address range will be
enabled. When anew call, that matches the event criteria, arrives a message (not shown) is directed to the
object implementing the |pCall ControlManager. Assuming that the criteria for creating an object
implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown)
are used to create the call and associated call leg object.

This message is used to pass the new call event to the object implementing the IpAppCall Control M anager
interface.

This message is used to forward the previous message to the IpAppLogic.

This message is used by the application to create an object implementing the IpAppCall interface. The
reference to this object is passed back to the object implementing the |pCall ControlManager using the return
parameter of the callEventNotify.

This message invokes the number trandlation function.

The application instructs the object implementing the IpCall interface to return all call related information
once the call has been released.

The returned translated number is used to route the call towards the destination.
This message passes the result of the call being answered to its callback object.
This message is used to forward the previous message to the IpAppLogic.

Towards the end of the call, when one of the parties disconnects, a message (not shown) is directed to the
object implementing the IpCall. This causes an event, to be passed to the object implementing the IpAppCall
object.

This message is used to forward the previous message to the IpAppLogic.

The application now waits for the call information to be sent. Now that the call has completed, the object
implementing the IpCall interface passes the call information to its callback object.

This message is used to forward the previous message to the IpAppLogic.

After the last information is received, the application deassigns the call. Thiswill free the resources related to
this call in the gateway.

ETSI

32 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

6.1.10 Number Translation 5

The following sequence diagram shows a simple number transation service which contains a status check function,
initiated as aresult of a prearranged event being received. In the following sequence, when the application receives an
incoming call, it checks the status of the user, and returns a busy code to the calling party.

IpAppLogic : IpAppCallControlManager : IpAppCall : IpCallControlManager : IpCall

1: new() ‘

|
.

1

| 2: elnabIeCaII Notification()

3: cauEv#ntNorjfy() ‘
\

‘ U
U

|

\

‘ ‘ 7. appropriate re’ease cause
I I

4: 'forward event'

| —
a
p I

. ne

6: ;Lheck status'

pe—

1: Thismessageisused by the application to create an object implementing the IpAppCall Control Manager
interface.

2. Thismessageis sent by the application to enable notifications on new call events. As this sequence diagram
depicts anumber tranglation service, it islikely that only new call events within a certain address range will be
enabled.

When a new call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to
the object implementing the IpCall ControlManager. Assuming that the criteriafor creating an object
implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown)
are used to create the call and associated call leg object.

3: Thismessageis used to pass the new call event to the object implementing the I pAppCall ControlM anager
interface.

4: Thismessageis used to forward message 3 to the IpAppLogic.

5. Thismessage is used by the application to create an object implementing the IpAppCall interface. The
reference to this object is passed back to the object implementing the |pCall ControlManager using the return
parameter of message 3.

6: This message invokes the status checking function.

7: Theapplication decidesto release the call, and sends a release cause to the calling party indicating that the user
isbusy.

ETSI

33 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

6.1.11 Prepaid

This sequence shows a Pre-paid application.

The subscriber is using a pre-paid card or credit card to pay for the call. The application each time allows a certain
timeslice for the call. After the timeslice, a new timeslice can be started or the application can terminate the call. In the
following sequence the end-user will receive an announcement before his final timeslice.

Prepaid : (Logical : IpAppCall : IpAppCallControlManager : IpAppUICall : IpCall : IpCallControlManager : IpUIManager : IpUiCall
View::IpAppLogic)
‘ 14new() ‘ ‘
/U 2: enableCallNotification()
4:"f0Ward event" 3: call?ventNotify() ‘
5: new() ‘ U

6: supervise+:al IReq()
|

7: routLReq()

8: 5yperviseCaIIRes()

T

|
9: "forward event" ‘J

‘ 11 iseCallR
12: “forward event" supervseCallRes()

J

10: superviseCallReq()

—r —

13: supervisel:aIIReq()

-

15: “forward event'J

16: creaIEUICa’I()

17: sendInfoReq(‘)

14: %uperviseCallRes()
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
g

11

18:s endl%foR es()

20: release()

21: supeniseCallReq()

|
‘ 19: “forward event"
\
\
|
|

D3: "forward event: 22:superviseCallRes()

[e 1
|

—A|—

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

]

|

| |
\ \
\ \
| |
| |
| |
| |
| |

ETSI

10:
11:
12:
13:

14:
15:
16:

17
18:
19:
20:
21:
22:
23
24:

34 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)
This message is used by the application to create an object implementing the |pAppCall Control M anager
interface.

This message is sent by the application to enable notifications on new call events. As this sequence diagram
depicts apre-paid service, it islikely that only new call events within a certain address range will be enabled.
When anew call, that matches the event criteria, arrives a message (not shown) is directed to the object
implementing the I pCall ControlManager. Assuming that the criteria for creating an object implementing the
IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create
the call and associated call leg object.

The incoming call triggers the Pre-Paid Application (PPA).
The message is forwarded to the application.
A new object on the application side for the Generic Call object is created.

The Pre-Paid Application (PPA) reguests to supervise the call. The application will be informed after the
period indicated in the message. This period is related to the credits left on the account of the pre-paid
subscriber.

Before continuation of the call, PPA sends all charging information, a possible tariff switch time and the call
duration supervision period, towards the GW which forwards it to the network.

At the end of each supervision period the application isinformed and a new period is started.
The message is forwarded to the application.

The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

At the end of each supervision period the application is informed and a new period is started.
The message is forwarded to the application.

The Pre-Paid Application (PPA) requests to supervise the call for another call duration. When the timer
expiresit will indicate that the user is almost out of credit.

When the user isamost out of credit the application isinformed.
The message is forwarded to the application.

The application decides to play an announcement to the partiesin thiscall. A new UlCall object is created and
associated with the call.

An announcement is played informing the user about the near-expiration of his credit limit.

When the announcement is completed the application is informed.

The message is forwarded to the application.

The application releases the UICall object.

The user does not terminate so the application terminates the call after the next supervision period.
The supervision period ends.

The event is forwarded to the logic.

The application terminates the call. Since the user interaction is already explicitly terminated no
userlnteractionFaultDetected is sent to the application.

ETSI

35 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

6.1.12 Pre-Paid with Advice of Charge (AoC)

This sequence shows a Pre-paid application that uses the Advice of Charge feature.

The application will send the charging information before the actual call setup and when during the call the charging
changes new information is sent in order to update the end-user.

NOTE: The Advice of Charge feature requires an application in the end-user terminal to display the charges for
the call, depending on the information received from the application.

ETSI

36 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

:IQCalIControIManaaer‘

Prepaid : (Logical
View::IpAppLogic)

: IpCall ‘ ‘ : IpUIManager

‘ - IpuICall ‘

‘ IpAppCallControlManager H IpAppCall H IpAppuUiCall

1: new() % ‘ ‘

‘ 2: enableCFxIlNotification()
\

\
4: "forward event" 3 ‘JHE"emNOtifV(})

5: new() ‘ ‘
1
6: setAd\JiceOfCharge()
I
|
!

7: supe*viseCallReq(‘)
I

I
8‘: routeReq()

9: superviseCﬂllRes()

I
\
10: "forwar% event"

—
y

|

Y e Yy

!
|
!
lh: superviseCaIIRe}q()
I I
T

14: setAdviceOfChar%e() ‘
l
2

22:sendlane§()

I I
13- "forwarL event" J 12:superV|seCa}IRes()
I I
L | I |
‘ 15:superviseCaIIRelq() T
‘ ‘ ‘ 16:superviseCJIIRes()
17: "forwarfi event” ‘
18:new() ‘
L] 19: createUICall() 0: new()
|
23: "forward e#ent”

J |
‘Zl:sendlnfoReq(|) |

| g

|

|

-t

?4:superviseCallR+aq() %
\

27:release()

W

ZXJ: userinteractionFaultDetected()

|
25: superviseC%IIRes() ‘ ‘
|

- — 3]

\
26: "forwajd event:
|

B] E—

ETSI

10:
11:
12:
13:
14:

15:

16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:

37 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)
This message is used by the application to create an object implementing the |pAppCall Control M anager
interface.

This message is sent by the application to enable notifications on new call events. As this sequence diagram
depicts apre-paid service, it islikely that only new call events within a certain address range will be enabled.
When anew call, that matches the event criteria, arrives a message (not shown) is directed to the object
implementing the I pCall ControlManager. Assuming that the criteria for creating an object implementing the
IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create
the call and associated call leg object.

The incoming call triggers the Pre-Paid Application (PPA).
The message is forwarded to the application.
A new object on the application side for the Call object is created.

The Pre-Paid Application (PPA) sends the AoC information (e.g. the tariff switch time). (it shall be noted the
PPA contains ALL the tariff information and knows how to charge the user).

During this call sequence 2 tariff changes take place. The call starts with tariff 1, and at the tariff switch time
(e.g. 18:00 hours) switchesto tariff 2. The application is not informed about this (but the end-user is!).

The Pre-Paid Application (PPA) reguests to supervise the call. The application will be informed after the
period indicated in the message. This period is related to the credits left on the account of the pre-paid
subscriber.

The application requests to route the call to the destination address.

At the end of each supervision period the application isinformed and a new period is started.
The message is forwarded to the application.

The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

At the end of each supervision period the application is informed and a new period is started.
The message is forwarded to the application.

Before the next tariff switch (e.g. 19:00 hours) the application sends a new AOC with the tariff switch time.
Again, at the tariff switch time, the network will send AoC information to the end-user.

The Pre-Paid Application (PPA) requests to supervise the call for another call duration. When the timer
expiresit will indicate that the user is almost out of credit.

When the user is almost out of credit the application isinformed.

The message is forwarded to the application.

The application creates a new call back interface for the User interaction messages.

A new Ul Call object that will handle playing of the announcement needs to be created.
The Gateway creates anew Ul call object that will handle playing of the announcement.
With this message the announcement is played to the partiesin the call.

The user indicates that the call should continue.

The message is forwarded to the application.

The user does not terminate so the application terminates the call after the next supervision period.
The user isout of credit and the application isinformed.

The message is forwarded to the application.

With this message the application requests to release the call.

ETSI

38 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

28: Terminating the call which has still a UICall object associated will result in a userlnteractionFaultDetected.
The UICall object isterminated in the gateway and no further communication is possible between the UICall
and the application.

6.2 Class Diagrams

This class diagram shows the interfaces of the generic call control service package.

<<Interface>>
IpSenvice

setCallback()
setCallbackWithSessionID()

8

<<Interface>>
IpCall

(from gccs)

<<Interface>>
IpCallControlManager
(from gccs)

®routeReq()

n ®release()
— —— —— —— —[MdeassignCall()
WgetCallinfoReq()
¥setCallChargePlan()
¥setAdviceOfCharge()
®getMoreDialledDigitsReq()
¥supeniseCallReq()
¥<<new>> continueProcessing()

ScreateCall()
SenableCallNotification()
SdisableCallNotification()
%setCallLoadControl()

S changeCallNotification()
WgetCriteria()

Figure 1: Service Interfaces

The generic call control service consists of two packages, one for the interfaces on the application side and one for
interfaces on the service side.

The class diagramsin the following figures show the interfaces that make up the generic call control application
package and the generic call control service package. Communication between these packages is indicated with the
<<uses>> associations; e.g. the IpCall ControlManager interface uses the | pAppCall ControlManager, by means of
calling callback methods.

This class diagram shows the interfaces of the generic call control application package and their relations to the
interfaces of the generic call control service package.

ETSI

39 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

<<Interface>>
Ipinterface
/\\\\
Lﬁ
<<Interface>>
IpAppCall
<<Interface>> (from gcces)
IpAppCallControlManager
(from gecs) SrouteRes()
SrouteErr()
FcallAborted() o 70'£ getCallinfoRes()
ScallEventNotify() ~ [®getCallinfoErr()
%callNotificationinterrupted () ¥supeniseCallRes()
ScallNotificationContinued() SsupeniseCallErr()
%callOwerloadEncountered() %callFaultDetected()
%callOwrloadCeased() SgetMoreDialledDigitsRes()
AN ¥getMoreDialledDigitsErr()
L %callEnded()
<uses>> A
‘ f<uses>>

<<Interface>> <<Interface>>
IpCallControlManager 1 0. IpCall

(from gccs) (from gccs)

Figure 2: Application Interfaces

6.3 Generic Call Control Service Interface Classes

The Generic Call Control Service (GCCS) provides the basic call control service for the API. It is based around a third
party model, which alows calls to be instantiated from the network and routed through the network.

The GCCS supports enough functionality to allow call routing and call management for today's Intelligent Network
(IN) servicesin the case of a switched telephony network, or equivalent for packet based networks.

It is the intention of the GCCS that it could be readily specialised into call control specifications, for example, ITU-T
Recommendations H.323, ISUP, Q.931 and Q.2931, ATM Forum specification UNI3.1 and the IETF Session Initiation
Protocol, or any other call control technology.

For the generic call control service, only a subset of the call model defined in clause 4 is used; the API for generic call
control does not give explicit access to the legs and the media channels. Thisis provided by the Multi-Party Call
Control Service. Furthermore, the generic call isrestricted to two party calls, i.e. only two legs are active at any given
time. Activeis defined here as "being routed" or connected.

ETSI

40 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

The GCCS s represented by the IpCallControlManager and I pCall interfaces that interface to services provided by the
network. Some methods are asynchronous, in that they do not lock athread into waiting whilst a transaction performs.
In this way, the client machine can handle many more calls, than one that uses synchronous message calls. To handle
responses and reports, the developer must implement |pAppCallControlManager and |pAppCall to provide the callback
mechanism.

6.3.1 Interface Class IpCallControlManager
Inherits from: IpService.

Thisinterface isthe "service manager" interface for the Generic Call Control Service. The generic call control manager
interface provides the management functions to the generic call control service. The application programmer can use
thisinterface to provide overload control functionality, create call objects and to enable or disable call-related event
notifications.

Thisinterface shall be implemented by a Generic Call Control SCF. As a minimum requirement either the createCall()
method shall be implemented, or the enableCalINotification() and disableCallNotification() methods shall be
implemented.

<<Interface>>

IpCallControlManager

createCall (appCall : in IpAppCallRef) : TpCallldentifier

enableCallNotification (appCallControlManager : in IpAppCallControlManagerRef, eventCriteria : in
TpCallEventCriteria) : TpAssignment|D

disableCallNotification (assignmentID : in TpAssignmentID) : void

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in
TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentID

changeCallNatification (assignmentID : in TpAssignmentID, eventCriteria : in TpCallEventCriteria) : void

getCriteria () : TpCallEventCriteriaResultSet

Method
createCall ()

This method is used to create a new call object.
Call back reference:

An IpAppCallControlManager should already have been passed to the I pCall Control Manager, otherwise the call control
will not be able to report a call Aborted() to the application. The application should invoke setCallback() prior to
createCall if it wishes to ensure this.

Returns callReference: Specifies the interface reference and sessionl D of the call created.

Parameters

appCall : in | pAppCal |l Ref
Specifies the application interface for callbacks from the call created.

Returns
TpCall I dentifier

ETSI

41 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Raises
TpComonExcepti ons, P_I NVALI D_| NTERFACE_TYPE

Method
enabl eCal | Notification()

This method is used to enable call notifications so that events can be sent to the application. Thisisthefirst step an
application hasto do to get initial notification of calls happening in the network. When such an event happens, the
application will be informed by callEventNotify(). In case the application isinterested in other events during the context
of aparticular call session it has to use the routeReq() method on the call object. The application will get accessto the
call object when it receives the callEventNotify(). (Note that the enableCalINoatification() is not applicableif the call is
setup by the application).

The enableCalINotification method is purely intended for applications to indicate their interest to be notified when
certain call eventstake place. It is possible to subscribe to a certain event for awhole range of addresses, e.g. the
application can indicate it wishesto be informed when acall is made to any number starting with 800.

If some application already requested notifications with criteria that overlap the specified criteria, the request is refused
with P_GCCS_INVALID_CRITERIA. The criteriaare said to overlap if both originating and terminating ranges
overlap and the same number plan is used and the same CalINotificationTypeis used.

If anotification is requested by an application with the monitor mode set to notify, then there is no need to check the
rest of the criteriafor overlapping with any existing request as the notify mode does not alow control on acall to be
passed over. Only one application can place an interrupt request if the criteria overlaps.

Set of the callback reference:

The call back reference can be registered either in @) enableCallNotification() or b) explicitly with a separate
setCallback() method depending on how the application provides its callback reference.

Casea

From an efficiency point of view the enableCallNotification() with explicit immediate registration (no "Null" value) of
call back reference may be the preferred method.

Caseb:

The enableCallNotfication() with no call back reference ("Null" value) is used where (e.g. due to distributed application
logic) the call back referenceis provided subsequently in a setCallback().

In case the enableCallNotification() contains no callback, at the moment the application needs to be informed the
gateway will use as callback the callback that has been registered by setCallback(). See examplein clause 6.1.6.

Set additional callback reference:

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used.
See examplesin clause 6.1.1.

Returns assignmentI D: Specifies the ID assigned by the generic call control manager interface for this newly-enabled
event notification.

Parameters

appCal | Control Manager : in | pAppCall Control Manager Ref

If this parameter is set (i.e. not NULL) it specifies areference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

eventCriteria : in TpCallEventCriteria

Specifies the event specific criteria used by the application to define the event required. Only events that meet these
criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer",
"busy". Individual addresses or address ranges may be specified for destination and/or origination.

ETSI

42 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Returns
TpAssi gnnment | D
Raises

TpConmonExcept i ons, P_I NVALI D CRI TERI A, P_I NVALI D_| NTERFACE_TYPE
P I NVALI D_EVENT_TYPE

Method

di sabl eCal | Noti fication()
This method is used by the application to disable call notifications.

Parameters

assignment|I D : in TpAssignnentl D

Specifies the assignment ID given by the generic call control manager interface when the previous
enableCallNotification() was called. If the assignment ID does not correspond to one of the valid assignment IDs, the
exception P_INVALID_ASSIGNMENTID will be raised. If two callbacks have been registered under this assignment
ID both of them will be disabled.

Raises
TpComonExcepti ons, P_I NVALI D_ASSI GNVENT_I D

Method
set Cal | LoadControl ()

This method imposes or removes load control on calls made to a particular address range within the generic call control
service. The address matching mechanism is similar as defined for TpCallEventCriteria.

Returns assignmentl D: Specifies the assignmentlI D assigned by the gateway to this request. This assignmentlD can be
used to correlate the call Overl oadEncountered and call OverloadCeased methods with the request.

Parameters

duration : in TpDuration
Specifies the duration for which the load control should be set.

A duration of 0 indicates that the load control should be removed.
A duration of -1 indicates an infinite duration (i.e. until disabled by the application).
A duration of -2 indicates the network default duration.

mechani sm: in TpCal | LoadCont rol Mechani sm

Specifies the load control mechanism to use (for example, admit one call per interval), and any necessary parameters,
such asthe call admission rate. The contents of this parameter are ignored if the load control duration is set to zero.

treatnment : in TpCall Tr eat ment
Specifies the treatment of callsthat are not admitted. The contents of this parameter are ignored if the load control

duration is set to zero.

addressRange : in TpAddressRange
Specifies the address or address range to which the overload control should be applied or removed.

Returns
TpAssi gnnment | D

ETSI

43 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Raises

TpCommonExcept i ons, P_I NVALI D_ADDRESS, P_UNSUPPORTED ADDRESS PLAN
Method

changeCal | Notification()

This method is used by the application to change the event criteria introduced with enableCallNotification. Any stored
criteria associated with the specified assignmentI D will be replaced with the specified criteria

Parameters

assignment|I D : in TpAssignnent| D

Specifiesthe ID assigned by the generic call control manager interface for the event notification. If two call backs have
been registered under this assignment 1D both of them will be changed.

eventCriteria : in TpCallEventCriteria
Specifies the new set of event specific criteria used by the application to define the event required. Only events that

meet these criteria are reported.
Raises

TpConmonExcept i ons, P_I NVALI D_ASSI GNVENT | D, P_I NVALI D_CRI TERI A,
P I NVALI D_EVENT_TYPE

Method
getCriterial()

This method is used by the application to query the event criteria set with enableCallNotification or
changeCalINoatification.

Returns eventCriteria: Specifies the event specific criteria used by the application to define the event required. Only
events that meet these criteria are reported.

Parameters
No Parameters were identified for this method.

Returns

TpCal | Event Criteri aResul t Set
Raises

TpComonExcept i ons

6.3.2 Interface Class IpAppCallControlManager
Inherits from: Ipinterface.

The generic call control manager application interface provides the application call control management functionsto the
generic call control service.

ETSI

44 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

<<Interface>>

IpAppCallControlManager

callAborted (callReference : in TpSessionID) : void

callEventNotify (callReference : in TpCallldentifier, eventinfo : in TpCallEventinfo, assignmentID : in
TpAssignmentlD) : IpAppCallRef

callNotificationIinterrupted () : void
callNotificationContinued () : void
callOverloadEncountered (assignmentID : in TpAssignmentID) : void

callOverloadCeased (assignmentID : in TpAssignmentID) : void

Method

cal | Aborted()

This method indicates to the application that the call object (at the gateway) has aborted or terminated abnormally. No
further communication will be possible between the call and application.

Parameters

cal | Reference : in TpSessionlD
Specifies the sessionl D of call that has aborted or terminated abnormally.

Method
cal | Event Noti fy()

This method notifies the application of the arrival of acall-related event.

If this method isinvoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, then the APL has
control of the call. If the APL does nothing with the call (including its associated legs) within a specified time period
(the duration of which forms a part of the service level agreement), then the call in the network shall be released and
callEnded() shall be invoked, giving arelease cause of 102 (Recovery on timer expiry).

Set of the callback reference:

A reference to the application interface has to be passed back to the call interface to which the notification relates.
However, the setting of a call back referenceis only applicableif the notification isin INTERRUPT mode.

When callEventNotify() isinvoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, the
application writer should ensure that no continue processing e.g. routeReq() is performed until an IpAppCall has been
passed to the gateway, either through an explicit setCallbackWithSessionl D() invocation on the supplied IpCall, or via
the return of the callEventNotify() method.

The call back reference can be registered either in @) callEventNotify() or b) explicitly with a
setCallbackWithSessionl D() method e.g. depending on how the application providesits call reference.

Casea
From an efficiency point of view the callEventNotify() with explicit pass of registration may be the preferred method.
Caseb:

The callEventNotify() with no call back reference ("Null" value) is used where (e.g. due to distributed application logic)
the callback reference is provided subsequently in a setCallbackWithSessionl D().

ETSI

45 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

In case the callEventNotify() contains no callback, at the moment the application needs to be informed the gateway will
use as callback the callback that has been registered by setCallbackWithSessionl D(). See example in clause 6.1.6.

Returns appCall: Specifies areference to the application interface which implements the callback interface for the new
call. If the application has previously explicitly passed areference to the IpAppCall interface using a
setCallbackWithSessionl D() invocation, this parameter may be null, or if supplied must be the same as that provided
during the setCallbackWithSessionl D().

This parameter will be null if the notificationisin NOTIFY mode and in case b.

Parameters

call Reference : in TpCallldentifier

Specifies the reference to the cal interface to which the notification relates. If the notification isin NOTIFY mode, this
parameter shall be ignored by the application client implementation, and consequently the implementation of the SCS
entity invoking callEventNotify may populate this parameter asit chooses.

eventinfo : in TpCall Eventlnfo
Specifies data associated with this event.

assignnmentI D : in TpAssignnmentlD
Specifies the assignment id which was returned by the enableCallNotification() method. The application can use

assignment id to associate events with event specific criteriaand to act accordingly.

Returns
| pAppCal | Ref

Method
cal I Notificationlnterrupted()

This method indicates to the application that all event notifications have been temporarily interrupted (for example, due
to faults detected).

Note that more permanent failures are reported via the Framework (integrity management).

Parameters
No Parameters were identified for this method.

Method
cal I NotificationContinued()

This method indicates to the application that event notifications will again be possible.

Parameters
No Parameters were identified for this method.

Method

cal | Over | oadEncount er ed()

This method indicates that the network has detected overload and may have automatically imposed load control on calls
requested to a particular address range or calls made to a particular destination within the call control service.

Parameters

assignment|I D : in TpAssignnent| D

Specifies the assignmentI D corresponding to the associated setCallLoadControl. Thisimplies the address range for
within which the overload has been encountered.

ETSI

46 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Method
cal | Over | oadCeased()

This method indicates that the network has detected that the overload has ceased and has automatically removed any
load controls on calls requested to a particular address range or calls made to a particular destination within the call
control service.

Parameters

assignment|I D : in TpAssignnent| D

Specifies the assignmentI D corresponding to the associated setCallLoadControl. Thisimplies the address range for
within which the overload has been ceased.

6.3.3 Interface Class IpCall
Inherits from: IpService.

The generic Call provides the possibility to control the call routing, to request information from the call, control the
charging of the call, to release the call and to supervise the call. It does not give the possihility to control the legs
directly and it does not allow control over the media. The first capability is provided by the multi-party call and the
latter as well by the multi-media call. The call islimited to two party calls, athough it is possible to provide "follow-on"
calls, meaning that the call can be rerouted after the terminating party has disconnected or routing to the terminating
party hasfailed. Basically, this means that at most two legs can be in connected or routing state at any time.

This interface shall be implemented by a Generic Call Control SCF. Asa minimum regquirement, the routeReq (),
release() and deassignCall() methods shall be implemented.

<<Interface>>
IpCall

routeReq (callSessionID : in TpSessionID, responseRequested : in TpCallReportRequestSet, targetAddress
. in TpAddress, originatingAddress : in TpAddress, originalDestinationAddress : in TpAddress,
redirectingAddress : in TpAddress, applnfo : in TpCallAppInfoSet) : TpSessionID

release (callSessionID : in TpSessionID, cause : in TpCallReleaseCause) : void

deassignCall (callSessionID : in TpSessionID) : void

getCallinfoReq (callSessionID : in TpSessionID, callinfoRequested : in TpCallinfoType) : void
setCallChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callSessionID : in TpSessionID, aOClinfo : in TpAoClinfo, tariffSwitch : in TpDuration) :
void

getMoreDialledDigitsReq (callSessionID : in TpSessionID, length : in TpInt32) : void

superviseCallReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallSuperviseTreatment) : void

<<new>> continueProcessing (callSessionID : in TpSessionID) : void

Method
rout eReq()

This asynchronous method requests routing of the call to the remote party indicated by the targetAddress.

Note that in case of routeReq() it is recommended to request for "successful" (e.g. "answer" event) and "failure" events
at invocation, because those are needed for the application to keep track of the state of the call.

ETSI

a7 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

The extra address information such as originatingAddress is optional. If not present (i.e. the planis set to
P_ADDRESS PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used,
otherwise the network or gateway provided numbers will be used.

If this method in invoked, and call reports have been requested, yet no IpAppCall interface has been provided, this
method shall throw the P_NO_CALLBACK_ADDRESS SET exception.

This operation continues processing of the call implicitly.

Returns callLegSessionl D: Specifiesthe sessionlD assigned by the gateway. Thisisthe sessionlD of the implicitly
created call leg. The same ID will be returned in the routeRes or Err. This allows the application to correlate the request
and the result.

This parameter is only relevant when multiple routeReq() calls are executed in paralel, e.g. in the multi-party call
control service.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

responseRequested : in TpCall Report Request Set
Specifies the set of observed events that will result in zero or more routeRes() being generated.

E.g. when both answer and disconnect is monitored the result can be received two times.
If the application wants to control the call (in whatever sense) it shall enable event reports.

target Address : in TpAddress
Specifies the destination party to which the call leg should be routed.

originati ngAddress : in TpAddress
Specifies the address of the originating (calling) party.

ori gi nal Desti nati onAddress : in TpAddress
Specifiesthe original destination address of the call.

redirecti ngAddress : in TpAddress
Specifies the address from which the call was last redirected.

applnfo : in TpCall Appl nf oSet
Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service

identities and interaction indicators).
Returns

TpSessi onl D

Raises

TpComonExceptions, P_INVALID SESSION | D, P I NVALI D _ADDRESS,
P_UNSUPPORTED_ADDRESS PLAN, P_I NVALI D_NETWORK_STATE, P_I NVALI D_CRI TERI A,
P_1I NVALI D_EVENT_TYPE

ETSI

48 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Method
rel ease()

This method requests the release of the call object and associated objects. The call will also be terminated in the
network. If the application requested reports to be sent at the end of the call (e.g. by means of getCallInfoReq) these
reports will still be sent to the application.

This operation continues processing of the call implicitly.
The application should always either release or deassign the call when it is finished with the call, unlessa
callFaultDetected is received by the application.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

cause : in TpCall Rel easeCause
Specifies the cause of the release.

Raises
TpCommonExceptions, P_I NVALI D SESSION I D, P_I NVALI D NETWORK_STATE

Method
deassi gnCal | ()

This method requests that the relationship between the application and the call and associated objects be de-assigned. It
leaves the call in progress, however, it purges the specified call object so that the application has no further control of
call processing. If acal isde-assigned that has event reports, call information reports or call Leg information reports
requested, then these reports will be disabled and any related information discarded.

This operation continues processing of the call implicitly.
The application should always either release or deassign the call when it is finished with the call, unless
callFaultDetected is received by the application.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

Raises
TpComonExcepti ons, P_I NVALI D SESSION | D

Method
get Cal | I nf oReq()

This asynchronous method requests information associated with the call to be provided at the appropriate time (for
example, to calculate charging). This method must be invoked before the call is routed to atarget address.

A report is received when the destination leg or party terminates or when the call ends. The call object will exist after
the call isended if information is required to be sent to the application at the end of the call. In case the originating party
is still available the application can still initiate a follow-on call using routeReq.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

ETSI

49 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

cal | I nfoRequested : in TpCalllnfoType
Specifies the call information that is requested.

Raises
TpComonExcepti ons, P_I NVALI D SESSI ON_ | D

Method
set Cal | Char gePl an()

Set an operator specific charge plan for the call.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

cal | ChargePlan : in TpCall ChargePl an
Specifies the charge plan to use.

Raises
TpComonExcepti ons, P_I NVALI D SESSI ON_ | D

Method
set Advi ceOr Char ge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this
information.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

aCClnfo : in TpAoCl nfo
Specifies two sets of Advice of Charge parameter.

tariffSwitch : in TpDuration
Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

Raises
TpComonExcepti ons, P_I NVALI D SESSI ON_|I D

Method
get MoreDi al | edDi gi t sReq()

This asynchronous method requests the call control service to collect further digits and return them to the application.
Depending on the administered data, the network may indicate a new call to the gateway if a caller goes off-hook or
dialed only afew digits. The application then gets a new call event which contains no digits or only the few dialled
digitsin the event data.

The application should use this method if it requires more dialled digits, e.g. to perform screening.

ETSI

50 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

length : in Tplnt32
Specifies the maximum number of digits to collect.

Raises

TpComonExceptions, P_I NVALI D SESSION | D
Method

supervi seCal | Req()

The application calls this method to supervise a call. The application can set a granted connection time for this call. If
an application calls this function before it calls arouteReq() or a user interaction function the time measurement will
start as soon as the call is answered by the B-party or the user interaction system.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

time : in TpDuration
Specifies the granted time in milliseconds for the connection.

treatnment : in TpCall SuperviseTreat nent
Specifies how the network should react after the granted connection time expired.

Raises
TpComonExcepti ons, P_I NVALI D SESSI ON_ | D

Method
<<new>> conti nueProcessi ng()

This operation continues processing of the call explicitly. Applications can invoke this operation after call processing
was interrupted due to detection of a notification or event the application subscribed its interest in.

In case the operation isinvoked and call processing is not interrupted the exception P_INVALID_NETWORK_STATE
will be raised.

Parameters
call SessionlD : in TpSessionlD

Specifies the call session ID of the call.

Raises

TpComonExceptions, P_INVALID SESSION | D, P_I NVALI D NETWORK STATE
6.3.4 Interface Class IpAppCall

Inherits from: Iplnterface.

The generic call application interface isimplemented by the client application developer and is used to handle call
request responses and state reports.

ETSI

51 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

<<Interface>>

IpAppCall

routeRes (callSessionID : in TpSessionlD, eventReport : in TpCallReport, callLegSessionID : in
TpSessionID) : void

routeErr (callSessionID : in TpSessionID, errorindication : in TpCallError, callLegSessionID : in
TpSessionID) : void

getCallinfoRes (callSessionID : in TpSessionID, callinfoReport : in TpCallinfoReport) : void
getCallinfoErr (callSessionID : in TpSessionID, errorindication : in TpCallError) : void

superviseCallRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in
TpDuration) : void

superviseCallErr (callSessionID : in TpSessionID, errorindication : in TpCallError) : void
callFaultDetected (callSessionID : in TpSessionID, fault : in TpCallFault) : void
getMoreDialledDigitsRes (callSessionID : in TpSessionID, digits : in TpString) : void
getMoreDialledDigitsErr (callSessionID : in TpSessionID, errorindication : in TpCallError) : void

callEnded (callSessionID : in TpSessionlID, report : in TpCallEndedReport) : void

Method
rout eRes()

This asynchronous method indicates that the request to route the call to the destination was successful, and indicates the
response of the destination party (for example, the call was answered, not answered, refused due to busy, etc.).

If this method isinvoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, then the APL has
control of the call. If the APL does nothing with the call (including its associated legs) within a specified time period
(the duration of which forms a part of the service level agreement), then the call in the network shall be released and
callEnded() shall be invoked, giving arelease cause of 102 (Recovery on timer expiry).

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

event Report : in TpCall Report

Specifies the result of the request to route the call to the destination party. It aso includes the network event, date and
time, monitoring mode and event specific information such as release cause.

call LegSessionl D : in TpSessionlD

Specifies the sessionl D of the associated call leg. This corresponds to the sessionl D returned at the routeReq() and can
be used to correlate the response with the request.

Method
rout eErr ()

This asynchronous method indicates that the request to route the call to the destination party was unsuccessful - the call
could not be routed to the destination party (for example, the network was unable to route the call, the parameters were
incorrect, the request was refused, etc.).

ETSI

52 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

call LegSessionl D : in TpSessionlD

Specifies the sessionl D of the associated call leg. This corresponds to the sessionl D returned at the routeReq() and can
be used to correlate the error with the request.

Method
get Cal I I nf oRes()

This asynchronous method reports time information of the finished call or call attempt as well as release cause
depending on which information has been requested by getCalllnfoReg. Thisinformation may be used e.g. for charging
purposes. The call information will possibly be sent after routeResin all cases where the call or aleg of the call has
been disconnected or a routing failure has been encountered.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

call I nfoReport : in TpCalllnfoReport
Specifies the call information requested.

Method
getCal I I nfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

Method
supervi seCal | Res()

This asynchronous method reports a call supervision event to the application when it has indicated itsinterest in these
kind of events.

It is also called when the connection is terminated before the supervision event occurs.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

report : in TpCall Supervi seReport
Specifies the situation which triggered the sending of the call supervision response.

ETSI

53 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

usedTine : in TpDuration
Specifies the used time for the call supervision (in milliseconds).

Method
supervi seCal |l Err ()

This asynchronous method reports a call supervision error to the application.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

Method
cal | Faul t Det ect ed()

This method indicates to the application that a fault in the network has been detected. The call may or may not have
been terminated.

The system deletes the call object. Therefore, the application has no further control of call processing. No report will be
forwarded to the application.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call in which the fault has been detected.

fault : in TpCall Fault
Specifies the fault that has been detected.

Method
get MoreDi al | edDi gi t sRes()

This asynchronous method returns the collected digits to the application.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

digits : in TpString
Specifies the additional dialled digitsif the string length is greater than zero.

Method
get MoreDi al | edDi gi t sErr ()

This asynchronous method reports an error in collecting digits to the application.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

ETSI

54 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

errorindication : in TpCallError
Specifies the error which led to the original request failing.

Method
cal | Ended()

This method indicates to the application that the call has terminated in the network. However, the application may still
receive some results (e.g. getCalllnfoRes) related to the call. The application is expected to deassign the call object after
having received the call Ended.

Note that the event that caused the call to end might also be received separately if the application was monitoring for it.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call sessioniID.

report : in TpCall EndedReport
Specifies the reason the call is terminated.

6.4 Generic Call Control Service State Transition Diagrams

6.4.1 State Transition Diagrams for IpCallControlManager

The state transition diagram shows the application view on the Call Control Manager object.

"a call object hasterminated abnormally" ~"lpAp pCallCo ntrolManager.callAborted

create a Call object N'pAppCall Control Manager.cal IEvent Noti fy

disableCallNotification "arrival of call related event"[notification active for thiscall event]/
enableCallNotificati on

createCall / create a Call obj...
"new" Active ‘
o | {)

Creation of
CallControlManager
by Service Instance
Lifecycle Manager

IpAccess.terminateServiceAgreement

"notifications not possible"
IpAp pCall Control Manager.cal INotificationinteru pted

\

P~
@)

"notifications possible again”
NpAppCallControlManager.callNotificationContinued

IpAccess.te mj|n ate Service Agre eme nt
disableCallNotification

"a call object hasterminated abnormally"
ApAppCallControlIManager.callAborted

Notifi cation terminated ‘

Figure 3: Application view on the Call Control Manager

ETSI

55 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

6.4.1.1 Active State

In this state a relation between the Application and the Generic Call Control Service has been established. The state
allows the application to indicate that it isinterested in call related events. In case such an event occurs, the Call Control
Manager will create a Call object and inform the application by invoking the operation callEventNotify() on the
IpAppCallControlManager interface. The application can aso indicate it is no longer interested in certain call related

events by calling disableCallNatification().

6.4.1.2 Notification terminated State

When the Call Control Manager isin the Notification terminated state, events requested with enableCallNotification()
will not be forwarded to the application. There can be multiple reasons for this: for instance it might be that the
application receives more notifications from the network than defined in the Service Level Agreement. Another
exampleisthat the Service has detected it receives no notifications from the network due to e.g. alink failure. Inthis

state no requests for new notifications will be accepted.
6.4.2 State Transition Diagrams for IpCall

The state transition diagram shows the application view on the Call object.

superviseCallReq
getCalllnfoReq

setAdviceOfCharge
setCallChargePlan

createCall No Parties

mode = interrupt] “routeRes, release

getCallinfoRes, supenviseCallRes

IpAppCalIContioIM anager. call EvgntNot fy

“rouing aborted or invalid addvdwee@Eharge
supenviseCallReq
routeReq[number of routing requests < 2] routeReq only 1 outstanding routgReq] “connection to called party unsuccessful[no fore
getCallinfoReq outstanding routeReq operations] ~routeRps
getMoreDialledDigitsReq[no routeReq outstanding
“connedtionto called party o
monitor mode = interrupt] ~rbuteRe Active “requests failed"[no more outstanding
1 Partyin answer from called party" Routing to routeReq operations | “routeErr

call Destination(s)

“paty released”
igitsRes

“Digits collected" Agethiorat
“Ertor in collecting digits' "getMoreDialledDn

“party released" no more outstanding
requests]

2 Partiesin
call

IpAppCallControlManager.callEventNotify(Answer from call phrty)

deassgnCall
lease

“call ends calling party abafidoned" ~callEnded
“call ends: calling partyffisconnects’ rcallEnded

“call ends called party disconnects'[mgfhitor for this event] AcallEnded, routeRes(party discopnect)

“call ends calling party disgghnects'[no monitor for this event] ~callEnded

Application
telease Released

“fault detected"[fault cannotbe communichted with network event] ~callFaultDetected

Netwo k Re lea sed

“requested informatioryfeady"

“getCallinfoRes, supery{seCallRes
“requested informafion ready"

“getCallinfoRes, supg viseCallRes

[no reports rguested with getfallinfoRed AND supenviseCallReq |
[no reports requested with-gétCallinfoReq AND supeviseCallReq]

fommation” AgetCallinfoEr, superviseCallEm

“fault in retrievatof

deassignCall
release

Finished

“fault in retrieval of inforjnation” B . -
h iy imeout ~callFauliDetected(timeout on release) e R O s
the object from occupuing resources
Upon expiry of thistimer,
callFaultDetected() shall be invoked as
thisisan abnormal termination.

Figure 4. Application view on the IpCall object

ETSI

56 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

6.4.2.1 Network Released State

In this state the call has ended and the Gateway collects the possible call information requested with getCalllnfoReq|()
and/or superviseCallReq(). The information will be returned to the application by invoking the methods
getCallInfoRes() and/or superviseCallRes() on the application. Also when a call was unsuccessful these methods are
used. In case the application has not requested additional call related information immediately atransition is made to
state Finished.

6.4.2.2 Finished State

In this state the call has ended and no call related information isto be send to the application. The application can only
release the call object. Calling the deassignCall() operation has the same effect. Note that the application has to release
the object itself as good OO practice requires that when an object was created on behalf of a certain entity, this entity is
also responsible for destroying it when the object is no longer needed.

6.4.2.3 Application Released State

In this state the application has requested to release the Call object and the Gateway collects the possible call
information requested with getCalllnfoReq() and/or superviseCallReq(). In case the application has not requested
additional call related information the Call object is destroyed immediately.

6.4.2.4 No Parties State

In this state the Call object has been created. The application can request the gateway for a certain type of charging of
the call by calling setCall ChargePlan(). The application can request for charging related information by calling
getCalllnfoReq(). Furthermore the application can request supervision of the call by calling superviseCallReq(). Itis
also alowed to request Advice of Charge information to be sent by calling setAdviceOfCharge().

6.4.2.5 Active State

In this state a call between two partiesis being setup or present. Refer to the substates for more details. The application
can request supervision of the call by calling superviseCallReq(). It is also allowed to send Advice of Charge
information by calling setAdviceOf Charge() as well asto define the charging by invoking setCall ChargePlan.

Call processing is suspended when a network event is met for the call, which was requested to be monitored in the
P_CALL_MONITOR_MODE_INTERRUPT. In order to resume of the suspended call processing, the application
invokes continueProcessing(), routeReq(), release() or deassignCall() method.

6.4.2.6 Party in Call State
In this state there is one party in the call.

In this state the application can request the gateway for a certain type of charging of the call by calling
setCallChargePlan(). The application can also request for charging related information by calling getCalllnfoReg(). The
setCall ChargePlan() and getCalllnfoReq() should be issued before requesting a connection to a second party in the call
by means of routeReq().

Two cases apply: network initiated calls and application initiated calls.

In case the call originated from the network the application can now request for more digitsin case more digits are
needed. When the calling party abandons the call before the application has invoked the routeReq() operation, the
application isinformed with callEnded(). When the calling party abandons the call after the application has invoked
routeReq() but before the call has actually been established, the gateway informs the application by invoking
callEnded().

In case the call was setup by the application and the called party was reached by issuing a routeReq() the application
can reguest a connection to a second call party by calling the operation routeReq() again.

ETSI

57 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Otherwise, it depends on the actual number of invoked (and still outstanding or successful) routing requests whether the
application can still call the routeReq() operation in order to setup a connection to acalled party. Also in this case the
called party can disconnect before another party is reached. In this case depending on the actual configuration, the call
isended or atransition is made back to the Routing to Destinations substate. When the second party answersthe call, a
transition will be made to the 2 Partiesin Call state.

In this state user interaction is possible.

6.4.2.7 Parties in Call State

A connection between two parties has been established.

In case the calling party disconnects, the gateway informs the application by invoking call Ended().
When the called party disconnects different situations apply:

1. theapplication is monitoring for this event in interrupt mode: atransition is made to the 1 Party in Call state,
the application isinformed with routeRes with indication that the called party has disconnected and all
reguested reports are sent to the application. The application now again has control of the call;

2. theapplication is monitoring for this event but not in interrupt mode. In this case atransition is made to the
Network Released state and the gateway informs the application by invoking the operation routeRes() and
calEnded();

3. theapplication is not monitoring for this event. In this case the application is informed by the gateway
invoking the callEnded() operation and atransition is made to the Network Released state.

In this state user interaction is possible, depending on the underlying network.

6.4.2.8 Routing to Destination(s) State

Inthis state there is at least one outstanding routeReq.

6.5 Generic Call Control Service Properties

6.5.1 List of Service Properties

The following table lists properties relevant for the GCC API.

Property Type Description/Interpretation

P_TRIGGERING_EVENT_TYPES |INTEGER_SET Indicates the static event types supported by the SCS. Static events are the events by
which applications are initiated.

P_DYNAMIC_EVENT_TYPES INTEGER_SET Indicates the dynamic event types supported by the SCS. Dynamic events are the events
the gpplication can request for during the context of acall.

P_ADDRESSPLAN INTEGER_SET Indicates the supported address plans (defined in TpAddressPlan.)
eg. {P_ADDRESS PLAN_E164, P ADDRESS PLAN_IP}). Note that more than one
address plan may be supported.

P_UI_CALL_BASED BOOLEAN_SET |Vaue=TRUE : User interaction can be performed on call level and areferenceto a Call

object can be used in the IpUIManager.createUICall () operation.
Value = FALSE: No User interaction on cal level is supported.

P_UI_AT ALL_STAGES BOOLEAN_SET ([Value= TRUE: User Interaction can be performed at any stage during acall.
Value = FALSE: User Interaction can be performed in case thereis only one party in the
call.

P_MEDIA_TYPE INTEGER_SET Specifies the mediatype used by the Service. Values are defined by data-type

TpMediaType : P_AUDIO, P_VIDEO, P_DATA

The previous table lists properties related to capabilities of the SCSitself. The following table lists properties that are
used in the context of the Service Level Agreement, e.g. to restrict the access of applications to the capabilities of the
SCS.

ETSI

58 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Property Type Description
P_TRIGGERING_ADDRESSES ADDRESSRANGE_SET Indicates for which numbers the notification may be set. For
(Deprecated) terminating notifications it applies to the terminating number, for

originating notificationsit gpplies only to the originating number.

P_NOTIFICATION_ADDRESS_RANGES | XML_ADDRESS RANGE_SET | Indicates for which numbers notifications may be set. More than
one range may be present. For terminating notifications they
apply to the terminating number, for originating notifications
they apply only to the originating number.

P_NOTIFICATION_TYPES INTEGER_SET Indicates whether the application is allowed to set originating
and/or terminating triggersin the ECN. Set is:

P_ORIGINATING
P_TERMINATING

P_MONITOR_MODE INTEGER_SET Indicates whether the application is allowed to monitor in
interrupt and/or notify mode. Set is:
P_INTERRUPT
P_NOTIFY

P_NUMBERS_TO_BE_CHANGED INTEGER_SET Indicates which numbers the application is allowed to change or

fill for legsin an incoming call. Allowed value set:
{P_ORIGINAL_CALLED_PARTY_NUMBER,
P_REDIRECTING_NUMBER,

P TARGET NUMBER,
P_CALLING_PARTY_NUMBERY}.

P_CHARGEPLAN_ALLOWED INTEGER_SET Indicates which charging is allowed in the setCallChargePlan
indicator. Allowed values:

{P_TRANSPARANT CHARGING,
P_CHARGE_PLAN}

P_CHARGEPLAN_MAPPING INTEGER_INTEGER_MAP Indicates the mapping of chargeplans (we assume they can be
indicated with integers) to alogical network chargeplan indicator.
When the chargeplan supportsindicates P CHARGE_PLAN
then only chargeplans in this mapping are allowed.

6.5.2 Service Property values for the CAMEL Service Environment

Implementations of the Generic Call Control API relying on the CSE of CAMEL phase 3 shall have the Service
Properties outlined above set to the indicated values:

P_OPERATI ON_SET = {

"1 pCal | Cont rol Manager . enabl eCal | Noti fication',
"I pCal | Cont rol Manager . di sabl eCal | Notification',
"I pCal | Control Manager . changeCal | Notification',
"1 pCal | Control Manager.getCriteria',

"I pCal | Cont rol Manager . set Cal | LoadControl ',

I pCall . routeReq',
| pCal | . rel ease',
| pCal I . deassi gnCal | ',

"I pCall.getCalllnfoReq',

"I pCall.setCall ChargePl an',
| pCal | . set Advi ceCf Char ge' ,
| pCal | . supervi seCal | Req'

}
P_TRI GGERI NG_EVENT_TYPES = {
P_EVENT_GCCS_ADDRESS_COLLECTED_EVENT,
P_EVENT_GCCS_ADDRESS_ANALYSED EVENT,
P_EVENT_GCCS_CALLED PARTY_BUSY,
P_EVENT_GCCS_CALLED_PARTY_UNREACHABLE,
P_EVENT_GCCS_NO ANSWER FROM CALLED PARTY,
P_EVENT_GCCS_ROUTE_SELECT_FAI LURE

}

P_DYNAM C_EVENT_TYPES = {
P_CALL_REPORT_ANSVER,
P_CALL_REPORT BUSY,
P_CALL_REPORT _NO ANSVER,
P_CALL_REPORT_DI SCONNECT,
P_CALL_REPORT_ROUTI NG _FAI LURE,
P_CALL_REPORT_NOT_REACHABLE

}

ETSI

59 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

P_ADDRESS_PLAN = {
P_ADDRESS_PLAN E164
}

P_U _CALL_BASED = {
TRUE
}

P_U AT _ALL_STAGES = {
FALSE
}

P_MEDI A TYPE = {
P_AUDI O
}

6.6 Generic Call Control Data Definitions
This clause provides the GCC data definitions necessary to support the API specification.
The general format of a Data Definition specification is described below.
. Data Type
This shows the name of the data type.
. Description
This describes the data type.
. Tabular Specification
This specifies the data types and values of the data type.
. Example
If relevant, an example is shown to illustrate the data type.

All data types referenced but not defined in this clause are either in the common call control data definitions clause of
the present document (clause 10) or in the common data definitions which may be found in ES 201 915-2.

ETSI

60 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

6.6.1 Generic Call Control Event Notification Data Definitions

6.6.1.1 TpCallEventName

Defines the names of event being notified. The following events are supported. The values may be combined by a
logical "OR" function when requesting the notifications. Additional eventsthat can be requested/received during the
call process are found in the TpCallReportType data-type.

Name Value Description
P_EVENT_NAME_UNDEFI NED 0 Undefined
P_EVENT_GCCS_OFFHOOK_EVENT 1 GCCS - Offhook event

This can be used for hot-line features. In case thisevent isset in
the TpCallEventCriteria, only the originating address(es) may
be specified in the criteria.

P_EVENT_GCCS_ADDRESS COLLECTED_EVENT 2 GCCS - Address information collected

The network has collected the information from the A-party,
but not yet analysed the information. The number can still be
incomplete. Applications might set notifications for this event
when part of the number analysis needs to be donein the
application (see also the getM oreDialledDigitsReq method on

the call class).
P_EVENT_GCCS_ADDRESS ANALYSED EVENT 4 GCCS - Address information is analysed
The dialled number isavalid and complete number in the
network.
P_EVENT_GCCS_CALLED PARTY_ BUSY 8 GCCS - Called party is busy
P_EVENT_GCCS_CALLED_PARTY_UNREACHABLE 16 GCCS - Called party is unreachable (e.g. the called party hasa
mobile telephone that is currently switched off).
P_EVENT_GCCS_NO _ANSWER _FROM CALLED PARTY 32 GCCS - No answer from called party
P_EVENT_GCCS_ROUTE_SELECT_FAI LURE 64 GCCS - Failurein routing the call
P_EVENT_GCCS_ANSWER FROM CALL_PARTY 128 GCCS - Party answered call.

6.6.1.2 TpCallNotificationType

Defines the type of notification. Indicates whether it is related to the originating of the terminating user in the call.

Name Value Description
P_ORI G NATI NG 0 Indicates that the notification isrelated to the originating user in the call.
P_TERM NATI NG 1 Indicates that the notification is related to the terminating user in the call.

6.6.1.3 TpCallEventCriteria
Definesthe Sequence of Data El enent s that specify the criteriafor a event notification.

Of the addresses only the Plan and the AddrString are used for the purpose of matching the notifications against the
criteria

Sequence Element Sequence Element Description
Name Type
Desti nati onAddr ess TpAddr essRange Defines the destination address or address range for which the notification is
requested.
Origi nati ngAddr ess TpAddr essRange Defines the origination address or a address range for which the notification is
requested.
Cal | Event Name TpCal | Event Nare Name of the event(s)
Cal I NotificationType | TpCall NotificationType Indicates whether it is related to the originating or the terminating user in the
call.
Moni t or Mbde TpCal | Moni t or Mode Defines the mode that the call isin following the notification.
Monitor mode P_CALL_MONITOR_MODE_DO _NOT_MONITOR isnot a
legal value here.

ETSI

61

Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

6.6.1.4 TpCallEventinfo
Definesthe Sequence of Data El enent s that specify the information returned to the application in a Call event
notification.
Sequence Element Name Sequence Element Type
Desti nati onAddr ess TpAddr ess
Origi nati ngAddr ess TpAddr ess
Origi nal Destinati onAddr ess TpAddr ess
Redi r ect i ngAddr ess TpAddr ess
Cal | Appl nfo TpCal | Appl nf oSet
Cal | Event Nanme TpCal | Event Nane
Cal | NotificationType TpCal | Noti ficationType
Moni t or Mode TpCal | Moni t or Mode
6.6.2 Generic Call Control Data Definitions

6.6.2.1 IpCall

Definesthe addressof an | pCal | Interface.

6.6.2.2 IpCallRef

Defines aRef er ence to type IpCall.

6.6.2.3 IpAppCall

Definesthe address of an | pAppCal | Interface.

6.6.2.4 IpAppCallRef

DefinesaRef er ence to type IpAppCall.

6.6.2.5 TpCallldentifier
Definesthe Sequence of Data El ement s that unambiguously specify the Generic Call object.
Sequence Element Sequence Element Sequence Element Description
Name Type
Cal | Ref erence | pCal | Ref This element specifies theinterface reference for the call object.
Cal | Sessi onl D TpSessi onl D This element specifiesthe call session ID of the call.

6.6.2.6 IpAppCallControlManager

Definesthe address of an | pAppCal | Cont r ol Manager Interface.

6.6.2.7 IpAppCallControlIManagerRef

Defines aRef er ence to type |pAppCall ControlManager.

6.6.2.8 IpCallControlManager

Definesthe address of an | pCal | Cont r ol Manager Interface.

ETSI

62 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

6.6.2.9 IpCallControlManagerRef

DefinesaRef er ence to type IpCallControlManager.

6.6.2.10 TpCallAppinfo

Definesthe Tagged Choi ce of Data El enent s that specify application-related call information.

Tag Element Type
TpCal | Appl nf oType
Tag Element Choice Element Choice Element Name
Value Type

P_CALL_APP_ALERTI NG_MECHANI SM TpCallAlertingMechanism Cal | AppAl ertingMechani sm
P_CALL_APP_NETWORK ACCESS TYPE TpCallNetworkAccessType Cal | AppNet wor kAccessType
P_CALL_APP_TELE SERVI CE TpCallTeleService Cal | AppTel eServi ce
P_CALL_APP_BEARER_SERVI CE TpCallBearerService Cal | AppBear er Ser vi ce
P_CALL_APP_PARTY_CATEGORY TpCallPartyCategory Cal | AppPart yCat egory
P_CALL_APP_PRESENTATI ON_ADDRESS TpAddr ess Cal | AppPr esent ati onAddr ess
P_CALL_APP_CENERI C_I NFO TpString Cal | AppGenericlnfo
P_CALL_APP_ADDI TI ONAL_ADDRESS TpAddr ess Cal | AppAddi ti onal Addr ess

6.6.2.11 TpcCallAppinfoType

Defines the type of call application-related specific information.

Name Value Description
P_CALL_APP_UNDEFI NED 0 Undefined

P_CALL_APP_ALERTI NG _MECHANI SM The aerting mechanism or pattern to use
P_CALL_APP_NETWORK_ACCESS_TYPE
P_CALL_APP_TELE SERVI CE
P_CALL_APP_BEARER_SERVI CE
P_CALL_APP_PARTY_CATEGORY
P_CALL_APP_PRESENTATI ON_ADDRESS
P_CALL_APP_GENERI C_I NFO
P_CALL_APP_ADDI TI ONAL_ADDRESS

The network access type (e.g. ISDN)

Indicates the tele-service (e.g. telephony)
Indicates the bearer service (e.g. 64 kbit/s unrestricted data).

The category of the calling party

The address to be presented to other call parties

Carries unspecified service-service information
Indicates an additional address

N[O B|]W[IN]| -

6.6.2.12 TpCallAppinfoSet

DefinesaNunber ed Set of Data El ement s of TpCallApplnfo.

6.6.2.13 TpCallEndedReport

Definesthe Sequence of Data El enment s that specify the reason for the call ending.

Sequence Element Sequence Element Description
Name Type
Cal | LegSessi onl D TpSessi onl D Theleg that initiated the release of the call.
If the call release was not initiated by the leg, then thisvalueis set to -1.
Cause TpCal | Rel easeCause The cause of the call ending.

ETSI

6.6.2.14 TpCallFault

63

Defines the cause of the call fault detected.

Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Name Value Description
P_CALL_FAULT_UNDEFI NED 0 Undefined
P_CALL_TI MEQUT_ON_RELEASE 1 This fault occurs when the final report has been

sent to the application, but the application did
not explicitly release or deassign the call object,
within a specified time.

Thetimer value is operator specific.

P_CALL_TI MEOUT_ON_| NTERRUPT

2 This fault occurs when the application did not
ingtruct the gateway how to handle the call
within a specified time, after the gateway
reported an event that was requested by the
application in interrupt mode.

Thetimer value is operator specific.

6.6.2.15 TpCallinfoReport

Definesthe Sequence of Data El enent s that specify the call information requested. |nformation that was not

requested isinvalid.

Sequence Element Sequence Element Description
Name Type
Cal I I nf oType TpCallinfoType The type of call report.
CalllnitiationStartTine TpDat eAndTi e The time and date when the call, or follow-on call, was
started as aresult of arouteReq.
Cal | Connect edToResour ceTi me TpDat eAndTi ne The date and time when the call was connected to the

resource.
This data element is only valid when information on user
interaction is reported.

Cal | Connect edToDest i nat

ionTi me TpDat eAndTi ne

The date and time when the call was connected to the
destination (i.e. when the destination answered the call).
If the destination did not answer, thetime i's set to an empty
string.

This data element isinvalid when information on user
interaction is reported.

Cal | EndTi e TpDat eAndTi e The date and time when the call or follow-on call or user
interaction was terminated.
Cause TpCal | Rel easeCause The cause of the termination.

A calllnfoReport will be generated at the end of user interaction and at the end of the connection with the associated
address. This means that either the destination related information is present or the resource related information, but not

both.

6.6.2.16 TpCallReleas

eCause

Definesthe Sequence of Data El enent s that specify the cause of the release of acall.

Sequence Element Sequence Element
Name Type
Val ue Tpl nt 32
Locati on Tpl nt 32
NOTE: The Value and Location are specified as in ITU-T Recommendation Q.850.

ETSI

64

The following example was taken from Q.850 to aid understanding:

Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Equivalent Call Report Cause Value Set by Cause Value from
Application Network
P_CALL_REPORT_BUSY 17 17
P_CALL_REPORT_NO ANSVER 19 18,19,21
P_CALL_REPORT_DI SCONNECT 16 16
P_CALL_REPORT_REDI RECTED 23 23
P_CALL_REPORT_SERVI CE_CODE 31 NA
P_CALL_REPORT_NOT_REACHABLE 20 20
P_CALL_REPORT_ROUTI NG_FAI LURE 3 Any other value

6.6.2.17 TpCallReport

Definesthe Sequence of Data El enent s that specify the call report and call leg report specific information.

Sequence Element
Name

Sequence Element
Type

Moni t or Mode

TpCal | Moni t or Mode

Cal | Event Ti ne

TpDat eAndTi e

Cal | Report Type

TpCal | Report Type

Addi ti onal Reportlnfo

TpCal | Addi ti onal Reportlnfo

6.6.2.18 TpCallAdditionalReportinfo

Definesthe Tagged Choi ce of Data El enent s that specify additional call report information for certain types

of reports.
Tag Element Type
TpCal | Report Type
Tag Element Value Choice Element Type Choice Element Name

P_CALL_REPORT_UNDEFI NED NULL Undefined
P_CALL_REPORT_PROGRESS NULL Undefined
P_CALL_REPORT_ALERTI NG NULL Undefined
P_CALL_REPORT_ANSVER NULL Undefined
P_CALL_REPORT_BUSY TpCallReleaseCause Busy
P_CALL_REPORT_NO ANSVER NULL Undefined
P_CALL_REPORT_DI SCONNECT TpCallReleaseCause CallDisconnect
P_CALL_REPORT_REDI RECTED TpAddress ForwardAddress
P_CALL_REPORT_SERVI CE_CODE TpCallServiceCode ServiceCode
P_CALL_REPORT_ROUTI NG_FAI LURE TpCallReleaseCause RoutingFailure
P_CALL_REPORT QUEUED TpString QueueStatus
P_CALL_REPORT_NOT_REACHABLE TpCallReleaseCause NotReachable

6.6.2.19 TpCallReportRequest

Definesthe Sequence of Data El enent s that specify the criteriarelating to call report requests.

Sequence Element Name

Sequence Element Type

Moni t or Mode

TpCallMonitorMode

Cal | Report Type

TpCallReportType

Addi tional ReportCriteria

TpCall Additiona ReportCriteria

ETSI

65 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

6.6.2.20 TpCallAdditionalReportCriteria

Definesthe Tagged Choi ce of Data El enent s that specify specific criteria.

Tag Element Type
TpCallReportType
Tag Element Choice Element Choice Element
Value Type Name
P_CALL_REPORT_UNDEFI NED NULL Undefined
P_CALL_REPORT_PROGRESS NULL Undefined
P_CALL_REPORT_ALERTI NG NULL Undefined
P_CALL_REPORT_ANSVER NULL Undefined
P_CALL_REPORT_BUSY NULL Undefined
P_CALL_REPORT_NO_ANSVER TpDuration NoAnswerDuration
P_CALL_REPORT_DI SCONNECT NULL Undefined
P_CALL_REPORT_REDI RECTED NULL Undefined
P_CALL_REPORT_SERVI CE_CODE TpCallServiceCode ServiceCode
P_CALL_REPORT_ROUTI NG_FAI LURE NULL Undefined
P_CALL_REPORT_QUEUED NULL Undefined
P_CALL_REPORT_NOT_REACHABLE NULL Undefined

6.6.2.21 TpCallReportRequestSet

DefinesaNunber ed Set of Data El enent s of TpCallReportRequest.

6.6.2.22 TpCallReportType

Defines a specific call event report type.

Name Value Description
P_CALL_REPORT_UNDEFI NED 0 Undefined.
P_CALL_REPORT_PROGRESS 1 Call routing progress event: an indication from the network that progress has been made in
routing the call to the requested call party. This message may be sent more than once, or may

not be sent at all by the gateway with respect to routing a given call leg to a given address.

P_CALL_REPORT_ALERTI NG 2 Call isalerting at the call party.

P_CALL_REPORT_ANSWER 3 Call answered at address.

P_CALL_REPORT_BUSY 4 Called address refused call due to busy.

P_CALL_REPORT_NO ANSVER 5 No answer at called address.

P_CALL_REPORT_DI SCONNECT 6 The media stream of the called party has disconnected. This does not imply that the call has
ended. When the call is ended, the callEnded method is called. This event can occur both

when the called party hangs up, or when the application explicitly rel eases the leg using
IpCallLeg.release() This cannot occur when the app explicitly releases the call leg and the
call.
P_CALL_REPORT_REDI RECTED 7 Call redirected to new address: an indication from the network that the call has been
redirected to a new address.

P_CALL_REPORT_SERVI CE_CODE Mid-call service code received.

P_CALL_REPORT_RQUTI NG_FAI LURE 9 Call routing failed - re-routing is possible.

P_CALL_REPORT_QUEUED 10 The call isbeing held in a queue. This event may be sent more than once during the routing

of acall.
P_CALL_REPORT_NOT_REACHABLE 11 The called address is not reachable; e.g. the phone has been switched off or the phoneis
outside the coverage area of the network.

ETSI

66 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

6.6.2.23 TpCallTreatment

Definesthe Sequence of Data El enent s that specify the treatment for calls that will be handled only by the
network (for example, call which are not admitted by the call load control mechanism).

Sequence Element Sequence Element
Name Type
Cal | Tr eat ment Type TpCal | Tr eat ment Type
Rel easeCause TpCal | Rel easeCause
Addi ti onal Treat nent | nfo TpCal | Addi ti onal Treat nent| nfo

6.6.2.24 TpCallEventCriteriaResultSet

Defines a set of TpCallEventCriteriaResullt.

6.6.2.25 TpCallEventCriteriaResult

Defines a sequence of data elements that specify arequested call event notification criteria with the associated
assignmentID.

Sequence Element Sequence Element Sequence Element
Name Type Description
Cal | EventCriteria |TpCallEventCriteria The event criteria that were specified by the application.
Assi gnnment | D Tpl nt 32 The associated assignment|D. This can be used to disable the notification.

7 MultiParty Call Control Service

7.1 Sequence Diagrams

7.1.1 Application initiated call setup

The following sequence diagram shows an application creating a call between party A and party B. Here, acal is
created first. Then party A'scall leg is created before events are requested on it for answer and then routed to the call.
On answer from Party A, an announcement is played indicating that the call is being set up to party B. While the
announcement is being played, party B's call leg is created and then events are requested on it for answer. On answer
from Party B the announcement is cancelled and party B is routed to the call.

The service may as avariation be extended to include 3 parties (or more). After the two party cal is established, the
application can create a new leg and request to route it to a new destination addressin order to establish a 3 party call.

The event that causes this to happen could for example be the report of answer event from B-party or controlled by the
A-party by entering a service code (mid-call event).

The procedure for call setup to party C is exactly the same as for the set up of the connection to party B (sequence 13 to
17 in the sequence diagram).

ETSI

67 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

10:
11:
12:

: (Logical - AppPartyA: AppPartyB : - - - PartyA: PartyB : o : IpUICall
View::IpAppLogic IpAppMultiPartyCall | | (IpAppMultiPartyCallLeq) | | (IpAppMultiPartyCallLeq) | |IpAppUICall | |lpMultiPartyCallControlManager | IpMultiPartyCall | | IpCallLeg || IpCallLeg ||IpUIManager
ne
2: createCall()
‘ ‘ ‘ = & ‘ ‘ ‘

| ‘ ‘ 4 senCaun‘ack() ‘ ‘ qu] ‘ ‘ ‘ ‘
u | | 5: createCalleq() | | |
| | | | == | |
1 ‘ ‘ 7 %vemﬁepon?eﬂ() ‘ ‘ ‘ ‘ ‘ ‘ ‘
H 8: outeReq()
L I | f ‘ ‘ ‘
L
‘ ‘ 10: createL\Cal\() ‘ ‘ é] ‘
‘ | ! 11: sendinfoReq(| | |
u ‘ ‘ % 12: sendinfoRes() /?
13: createCallLeg()
L t f ‘ ‘
‘ ‘ ‘ 14 ni ‘
15: eventReportReq()
| | | o s | I .
T ! ! ‘ ‘ ‘
% ‘ ‘ ‘ 17 *vemﬁewnﬁes(‘ ‘ ‘ ‘ ‘
‘ ‘ | | 18; abortActionReq() | | | | | #
| | i Hﬁ ‘ ‘ ‘ ‘

_

This message is used to create an object implementing the |pAppMultiPartyCall interface.

This message requests the object implementing the |pMulti PartyCall Control M anager interface to create an
object implementing the I|pMultiPartyCall interface.

Assuming that the criteriafor creating an object implementing the IpMultiPartyCall interface (e.g. load control
values not exceeded) is met it is created.

Once the object implementing the IpMultiPartyCall interface is created it is used to pass the reference of the
object implementing the I|pAppMultiPartyCall interface as the callback reference to the object implementing
the IpMultiPartyCall interface. Note that the reference to the callback interface could aready have been passed
in the createCall.

This message instructs the object implementing the |pMultiPartyCall interface to create acall leg for
customer A.

Assuming that the criteriafor creating an object implementing the IpCallLeg interface is met, message 6 is
used to createit.

This message requests the call leg for customer A to inform the application when the call leg answers the call.
The call isthen routed to the originating call leg.

Assuming the call is answered, the object implementing party A's IpCallLeg interface passes the result of the
call being answered back to its callback object. This message is then forwarded via another message (not
shown) to the object implementing the IpAppLogic interface.

A UICall object is created and associated with the just created call leg.
This message is used to inform party A that the call is being routed to party B.

Anindication that the dialogue with party A has commenced is returned via message 13 and eventually
forwarded via another message (not shown) to the object implementing the IpAppLogic interface.

ETSI

68 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)
13: This message instructs the object implementing the IpMulti PartyCall interface to create acall leg for
customer B.

14: Assuming that the criteriafor creating a second object implementing the IpCallLeg interface ismet, it is
created.

15. This message requests the call leg for customer B to inform the application when the call leg answersthe call.
16: Thecal isthen routed to the call leg.

17: Assuming the call is answered, the object implementing party B's IpCallLeg interface passes the result of the
call being answered back to its callback object. This message is then forwarded via another message (not
shown) to the object implementing the IpAppLogic interface.

18: This message then instructs the object implementing the IpUICall interface to stop sending announcements to
party A.

19: The application deassigns the call. Thiswill also deassign the associated user interaction.

7.1.2 Call Barring 2

The following sequence diagram shows a call barring service, initiated as aresult of a prearranged event being received
by the call control service. Before the call is routed to the destination number, the calling party is asked for a PIN code.
The code is regjected and the call is cleared.

: (Logical o o o : IpMultiPartyCallControlManager = o : IpUICall
View:IpAppL... IpAppMultiPartyCallControlManager IpAppMultiPartyCall IpAppUiCall IpMultiPartyCall IpUIManager

‘ 1: new()

2: createNotif ication(|

)

i
|

| | J

H—‘ 3 ‘reportNomrzanon() ‘ ‘
4: 'forward event' ‘ ‘
\7 5: new() ‘ ‘
|

|

|

|

|

. getCallLegs()

7: createUlCall()

8: sendinfoAndCollectReq()

S O O

9: sendinfoAndCollectRes() |

10: *forward ev ent' !

11: sl JdlnfoReq()

12: sendinfoRes() ‘

13: *forward ev ent'

11 release()

'15: release()

g
|
|
|
|
|
|
|
|
|
|
|
|
|

— I O -

I

S 2

—

ETSI

11:

12:
13:
14:
15:

69 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)
This message is used by the application to create an object implementing the
I pAppMultiPartyCall Control Manager interface.

This message is sent by the application to enable notifications on new call events. As this sequence diagram
depictsacall barring service, it islikely that all new call events destined for a particular address or address
range prompted for a password before the call is alowed to progress. When anew call, that matches the event
criteria, arrives a message (not shown) is directed to the object implementing the

IpMultiPartyCall ControlManager. Assuming that the criteriafor creating an object implementing the
IpMultiPartyCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used
to create the call and associated call leg object.

This message is used to pass the new call event to the object implementing the
I pAppM ultiPartyCall Control M anager interface.

This message is used to forward message 3 to the IpAppLogic.

This message is used by the application to create an object implementing the IpAppMultiPartyCall interface.
The reference to this object is passed back to the object implementing the I pM ultiPartyCall Control M anager
using the return parameter of the callEventNotify.

The application requests an list of all the legs currently in the call.

This message is used to create a UICall object that is associated with the incoming leg of the call.
The call barring service dialogue isinvoked.

The result of the dialogue, which in this caseisthe PIN code, is returned to its callback object.
This message is used to forward the previous message to the IpAppLogic.

Assuming an incorrect PIN is entered, the calling party isinformed using additional dialogue of the reason
why the call cannot be completed.

This message passes the indication that the additional dialogue has been sent.
This message is used to forward the previous message to the IpAppLogic.
No more Ul isrequired, so the UICall object is released.

This message is used by the application to clear the call.

ETSI

70 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

7.1.3 Call forwarding on Busy Service
The following sequence diagram shows an application establishing a call forwarding on busy.

When acall is made from A to B but the B-party is detected to be busy, then the application isinformed of thisand sets
up aconnection towards a C party. The C party can for instance be a voicemail system.

AppLayic ADDLeCIC ADDLqu: App Call : AppCCM : CCM: Call: LegA: LegB: LegC: SCs
Calll allLe MultiPartyCall | | IpAppMultiPartyCallContr IpMultiPartyCallC bM uIﬂ Part\C all IpCallLeg IpCallLeg bCdlLeg
‘ ‘ 1 'new ‘ ‘
‘ ‘ 2: createNotification() /U
U) 3:"armftrigger”)))
‘ ‘ ‘ ‘ ‘ 4:"trigger event: Busy" ‘ ‘ L‘J
5:"check I‘_éﬁ)llcau onintaested"
<6 mnewr
7 'new"
‘ ‘ ‘ ‘ ‘ 8: "stateftansition to AClI\# ‘ ‘
-] 9:"
‘ ‘ ‘ ‘ to ReleaslT ‘
12: "forward event" 11: reportNotification()
LH\ ‘ 13:"new' ‘ u\ ‘ ‘ ‘ ‘
- ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
15: "new"
/u ‘ ‘ 16: createCallLeg() ‘ ‘ “ ‘ J— ‘ ‘
| | | | | | T e auasionoae
‘ ‘ ‘ ‘ 19: eventReportReq() ‘ ‘ ‘ ‘
1]
‘ ‘ ‘ ‘ 20: routeReq() ‘ ‘ ‘ ‘
ransition to Acti
T ‘ ‘ ‘ ‘ ‘ ‘ 22| "inform Call ob;eL 7
‘ ‘ ‘ ‘ 23 commueProcessngcallLeg SessionlD) ‘ Lﬁ\ ‘ ‘ ‘
[| | | | | — !
‘ ‘ ‘ ‘ ‘ ‘ u 25: "continue 4allprocessmg ‘ ‘
f f f U
‘ ‘ ‘ ‘ ‘ L HJ ‘ ‘ éﬁ e
27: eventReportRes()
L‘H\ 28: Yorde event ‘ ‘ ‘ ‘ ‘ ‘ \T‘

1: Thismessageisused by the application to create an object implementing the
I pAppM ultiPartyCall Control M anager interface.

2. Thismessageis sent by the application to enable notifications on new call events.

4. When anew call, that matches the event criteria, arrives a message ("busy") is directed to the object
implementing the IpMulti PartyCall Control M anager. Assuming that the criteriafor creating an object
implementing the IpMultiPartyCall interface is met, other messages are used to create the call and associated
call leg objects.

6: A new MultiPartyCall object is created to handle this particular call.
7: A new CallLeg object corresponding to Party A is created.
8: Thenew Cal Leginstance transits to state Initiating.

11: Thismessageis used to pass the new call event to the object implementing the
I pAppMuultiPartyCall ControlManager interface. Applied monitor mode is "interrupt”.

12: Thismessage is used to forward the message to the IpAppLogic.

ETSI

71 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

13: Thismessage is used by the application to create an object implementing the IpAppMultiPartyCall interface.
The reference to this object is passed back to the object implementing the I pM ultiPartyCall Control M anager
using the return parameter of the reportNotification.

14: A new AppCallLeg is created to receive callbacks for the Leg corresponding to party A.
15: A new AppCallLeg C is created to receive callbacks for another leg.

16: Thismessageisused to create anew call leg object. The object is created in the idle state and not yet routed in
the network.

19: The application regqueststo be notified (monitor mode "INTERRUPT") when party C answersthe call.
20: The application requests to route the terminating leg to reach the associated party C.

The application may request information about the original destination address be sent by setting up the field
P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallApplInfo in the request to route the call
leg to the remote party C.

23: The application requests to resume call processing for the terminating call leg to party B to terminate the leg.
Alternative the application could request to deassign the leg to party B for exampleif it isnot interested in
possible requested call leg information (getlnfoRes, superviseRes).

When the terminating call leg is destroyed, the AppLeg B is notified and the event is forwarded to the
application logic (not shown).

25: The application requests to resume call processing for the originating call leg.
Asaresult call processing isresumed in the network that will try to reach the associated party B.
26: When the party C answers the call, the termination call leg is notified.

27: Assuming the call is answered, the object implementing party C's IpCallLeg interface passes the result of the
call being answered back to its callback object.

28. Thisanswer message is then forwarded to the object implementing the IpAppL ogic interface.

7.1.4 Call Information Collect Service

The following sequence diagram shows an application monitoring a call between party A and a party B in order to
collect call information at the end of the call for e.g. charging and/or statistic information collection purposes. The
service may apply to ordinary two-party calls, but could also include a number trandation of the dialled number and
special charging (e.g. a premium rate service).

Additional call leg related information is requested with the getlnfoReq and superviseReq methods.

The answer and call release events are in this service example requested to be reported in notify mode and additional
call leg related information is requested with the getlnfoReq and superviseReq methods in order to illustrate the
information that can be collected and sent to the application at the end of the call.

Furthermore is shows the order in which information is sent to the application: network release event followed by
possible requested call leg information, then the destroy of the call leg object (callLegEnded) and finally the destroy of
the call object (callEnded).

ETSI

72 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

AmlLogic ApplegB: Appleg A: App Call: App CCM ccMm: Call: leg A
IpAppCallleg IpAppCall IpAppMultiPartyCall IpAppMultiPartyCaliC IpMultiPartyCallC IpMultiPartyCall IpCallLeg IpCaliLeq
‘ 1:"new"

Leg B: ‘ ‘ scs ‘
|

3 "armtrigger”

/LH
U
|
|
|
|
|
|

| |
4 “’rlgger event: Analysed Information” |

8: "statertransition to Active”

9: reportN dificaion()

‘ ‘ 2: createNofification() i
|
5: "check ii!rﬁ:ullcaliun interested”
<—)
| | ‘

6: "new’

14 createCal leg()

16: "leLL transition to Idle"

18: FmervlseReq()
19 gethfoReq ()
20: $etChargePlan()

2% raweReq()

22 "stanJtransm on to Active’

Call object” P=—

23:"inform

24; eventRepor|

Req()

|
\
-

25: getinbR

aq()

26: continueProcessing(¢

allLeg SessioniD)

—

il
U

2f7: "inform Call objecf" J ‘
28:["¢ontinuecal | pr ccessing”

u T 29:"B partyansv;l'-lj

| |

_q

30: eventReportRes()

|

31: "forward event'|

35 “Vorw%!d ewent"

‘ 36: getinfoRes()

32 "Di om A-party’

|
\
|
\
i
\

\
\
17 %vemReporlReq() }
|
|
|
|
|
|
|

33:"state LﬂLnslllon to Releasing”

34 eventReportRes() l<— ‘ ‘

3 “Vorw?rd ewent"

39: "forward event" =

I
44: Yorward event

‘ 46: forward E\IE’K”T ‘
I

| :
I

AP: “inform Call objett/'

38: callLegEnded()

D Y Y S

41: "Pisconnect from B-party"
‘ 42: "state ition to Releasing”

43: eventReportRes()

45: getinfores()

) 48: "forward event'|

LHS\OI forward event'|

49: callLegEnded)

51: "mform‘call object”

W
W |
|

52: callEnded()

\
53: "forward event" J

‘ 47: supenviseRes() ‘
I I

e

1: Thismessageisused by the application to create an object implementing the
I pAppM ultiPartyCall Control M anager interface.

2: Thismessageis sent by the application to enable notifications on new call events.

ETSI

11:

12:
13:
14:

15:
16:
17:

18:
19:
20:
21:
22:
24:
25:
26:

29:
30:

31:
32:

34
35:
36:

73 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

When a new call that matches the event criteria arrives, a message ("anaysed information”) is directed to the
object implementing the I pMultiPartyCall ControlManager. Assuming that the criteria for creating an object
implementing the IpMultiPartyCall interface is met, other messages are used to create the call and associated
call leg object.

A new MultiPartyCall object is created to handle this particular call.
A new CallLeg object corresponding to Party A is created.
The new Call Leg instance transitsto state Active.

This message is used to pass the new call event to the object implementing the
I pAppM ultiPartyCall Control M anager interface. Applied monitor modeis "interrupt".

This message is used to forward message 9 to the IpAppLogic.

This message is used by the application to create an object implementing the |pAppMultiPartyCall interface.
The reference to this object is passed back to the object implementing the I pM ulti PartyCall Control M anager
using the return parameter of the reportNotification.

A new AppCallLeg is created to receive callbacks for the Leg corresponding to party A.
A new AppCallLeg is created to receive callbacks for another leg.

This message is used to create anew call leg object. The object is created in the idle state and not yet routed in
the network.

A new CallLeg corresponding to party B is created.
A transition to state Idle is made after the Call leg has been created.

The application reguests to be notified (monitor mode "NOTIFY") when party B answers the call and when the
leg to B-party is released.

The application requests to supervise the call leg to party B.

The application requests information associated with the call leg to party b for example to cal culate charging.
The application requests a specific charge plan to be set for the call leg to party B.

The application requests to route the terminating leg to reach the associated party B.

The Call Leg instance transits to state Active.

The application requests to be notified (monitor mode "Notify") when the leg to A-party is released.

The application requests information associated with the call leg to party A for example to calculate charging.
The application requests to resume call processing for the originating call leg.

Asaresult call processing is resumed in the network that will try to reach the associated party B.

When the B-party answers the call, the termination call leg is notified.

Assuming the call is answered, the object implementing party B's |pCallLeg interface passes the result of the
call being answered back to its callback object (monitor mode "NOTIFY™").

This answer message is then forwarded.

When the A-party releases the call, the originating call leg is notified (monitor mode "NOTIFY™) and makes a
transition to "releasing state".

The application IpAppLeg A isnotified, as the release event has been requested to be reported in Notify mode.
The event is forwarded to the application logic.

The call leg information is reported.

ETSI

37:
38:
39:
41:

44:
45:
46:
47:
48:
49:
50:
52:

53:

7.1.5

74 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

The event is forwarded to the application logic.
The origination call leg is destroyed, the AppLeg A is notified.
The event is forwarded to the application logic.

When the B-party releases the call or the call isreleased as aresult of the release request from party A, i.e. a
"originating release” indication, the terminating call leg is notified and makes atransition to "releasing state".

If anetwork release event isreceived being a "terminating release” indication from called party B, the
application IpAppLeg B is notified, as the release event from party B has been requested to be reported in
NOTIFY mode.

Note that no report is sent if the release is caused by propagation of network release event being a " originating
release” indication coming from calling party A..

The event is forwarded to the application logic.

The call leg information is reported.

The event is forwarded to the application logic.

The supervised call leg information is reported.

The event is forwarded to the application logic.

The terminating call leg is destroyed, the AppLeg B is notified.
The event is forwarded to the application logic.

Assuming the IpCall object has been informed that the legs have been destroyed, the IpAppMultiPartyCall is
notified that the call is ended.

The event is forwarded to the application logic.

Complex Card Service

The following sequence diagram shows an advanced card service, initiated as a result of a prearranged event being
received by the call control service. Before the call is made, the calling party is asked for an ID and PIN code. If the ID
and PIN code are accepted, the calling party is prompted to enter the address of the destination party. A trigger of '#5' is
then set on the controlling leg (the calling party'sleg) such that if the calling party enters a'#5' an event will be sent to
the application. The cal is then routed to the destination party. Sometime during the call the calling party enters '#5'
which causes the called leg to be released. The calling party is now prompted to enter the address of a new destination
party, to which it is then routed.

ETSI

75 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

(Logical 2 I AppPanyB : || AppPartyA: | Appparye' I
View:lpAppLogic) | | lpAppMultiPartyCallControlManager | | ipAppMultiPartyCall | | lpApeCalitea || IpAppCaliLeq || pAwcallea || jpappUICall| |1

- ‘

——

19: "forward event

1: Thismessageisused by the application to create an object implementing the
I pAppMultiPartyCall Control Manager interface.

2. Thismessageis sent by the application to enable notifications on new call events. As this sequence diagram
depictsacall barring service, it islikely that all new call events destined for a particular address or address
range result in the caller being prompted for a password before the call is alowed to progress. When a new
call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object
implementing the I pMultiPartyCall Control M anager. Assuming that the criteria for creating an object
implementing the IpMultiPartyCall interface (e.g. load control values not exceeded) is met, other messages
(not shown) are used to create the call and associated call leg object.

3: Thismessageis used to pass the new call event to the object implementing the
I pAppM ultiPartyCall Control M anager interface.

ETSI

10:
11:

12:
13:
14:

15:

16:
17:
18:
19:
20:

21:

22:
23
24:
25:

26:
27:
28:
29:

76 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

This message is used to forward message 3 to the IpAppLogic.

This message is used by the application to create an object implementing the |pAppMultiPartyCall interface.
The reference to this object is passed back to the object implementing the I pMultiPartyCall Control M anager
using the return parameter of message 3.

This message returns the call legs currently in the call. In principle areference to the call leg of the calling
party is already obtained by the application when it was notified of the new call event.

This message is used to associate a user interaction object with the calling party.
Theinitia card service dialogue isinvoked using this message.

The result of the dialogue, which in this caseisthe ID and PIN code, is returned to its callback object using
this message and eventually forwarded via another message (not shown) to the IpAppLogic.

Assuming the correct ID and PIN are entered, the final dialogue is invoked.

The result of the dialogue, which in this case is the destination address, is returned and eventually forwarded
via another message (not shown) to the IpAppLogic.

This message is used to forward the address of the callback object.
The trigger for follow-on callsis set (on service code).

A new AppCallLeg is created to receive callbacks for another leg. Alternatively, the already existing
AppCallLeg abject could be passed in the subsequent createCallLeg(). In that case the application hasto use
the sessionl Ds of the legs to distinguish between callbacks destined for the A-leg and callbacks destined for
the B-leg.

This message is used to create anew call leg object. The object is created in the idle state and not yet routed in
the network.

The application requests to be notified when the leg is answered.

The application routes the leg. As aresult the network will try to reach the associated party.
When the B-party answers the call, the application is notified.

The event is forwarded to the application logic.

Legsthat are created and routed explicitly are by default in state detached. This means that the mediais not
connected to the other parties in the call. In order to allow inband communication between the new party and
the other partiesin the call the media have to be explicitly attached.

At some time during the call the calling party enters ‘#5'. This causes this message to be sent to the object
implementing the |pAppCallLeg interface, which forwards this event as a message (not shown) to the
IpAppLogic.

The event is forwarded to the application.
This message releases the called party.
Another user interaction dialogue is invoked.

The result of the dialogue, which in this case is the new destination addressis returned and eventually
forwarded via another message (not shown) to the IpAppLogic.

A new AppCallLegis created to receive callbacks for another leg.
The call isthen forward routed to the new destination party.
Asaresult anew Callleg object is created.

This message passes the result of the call being answered to its callback object and is eventually forwarded via
another message (not shown) to the IpAppLogic.

ETSI

77 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

30: When the A-party terminates the application isinformed.
31: Theeventisforwarded to the application logic.

32: Sincetherelease of the A-party will in this case terminate the entire call, the application is also notified with
this message.

33: Theeventisforwarded to the application logic.

34. Since the user interaction object were not released at the moment that the call terminated, the application
receives this message to indicate that the Ul resources are released in the gateway and no further
communication is possible.

35: Theeventisforwarded to the application logic.

36: The application deassigns the call object.

7.1.6 Hotline Service

The following sequence diagram shows an application establishing a call between party A and pre-arranged party B
defined to congtitute a hot-line address. The address of the destination party is provided by the application as the calling
party makes a call attempt (goes off-hook) and do not dial any number within a predefined time. In this case a
pre-defined number (hot-line number) is provided by the application. The call isthen routed to the pre-defined
destination party.

The call release is monitored to enable the sending of information to the application at call release, e.g. for charging
pUrpOSES.

Note that this service could be extended as follows:

Sometime during the call the calling party enters '#5' which causes the called leg to be released. The calling party is now
prompted to enter the address of a new destination party, to which it is then routed.

ETSI

78 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Applogic LegB Appleg A: AppCall - ADDCCM cem: Call: LegA: LegB: sc
IpAppCall IpAppCall iPartyCall iParyCallC IpMuliPartyCallC: IpMuliParyCal IpCallleg IpCallLeg
‘ 1:"new"
2 createNotification() g
‘ ‘ ‘ | 3 "amtigge | |
T 4 rigger evrt: Originating Call Atempt Authorisedt ‘
‘ ‘ ‘ 5 "check_@p\icanm interested” ‘ U
6: "new’
7: "new"
R
‘ ‘ ‘ ‘ \; 8: "state'fransition to Initiating |
| 9: reportNotification() <

‘ ‘ ‘ 10:"forvard event ‘

16: g‘ﬁe transition to Idle"

14: createCallLeg() ‘

\
\
jﬁ

x
i
\
\
\
|

i
\
\
x
\
)
\

-

7: brentReportReq()

15 ”HFN‘
I

18: routeReq()

wReq()

!
}
\
|
|
| |
|
|
|
|
|
|
\
|
|
|
|
|
|
|

19: s:l&% transition to Active”

1

20: “inform C‘aH object”

21: eventRepol

|
i L
|

e] =

22 continueProcessing (callLeg SessioniD)

23: “inform Call object!
24:"continue call processing”

|
|
T !
u‘

25: event "address_analysed"
\ I

26: "statg transition to Active”
27: [Disconnect from B-party”

28: "stateltransition to Releasin

29: eventReportR es()

31: callLegEnced()

|
33: inform JaH object”

|
34:"Disconnect from A-party"
|

35: "state LTLnsiuon to Re\easm%" u

36: callLeg Ended()

38: “inform Call object]

—

39: callEnded()

]

This message is used by the application to create an object implementing the
I pAppMultiPartyCall Control Manager interface.

This message is sent by the application to enable notifications on new call events.

When a new call that matches the event criteria arrives, a message ("anaysed information") is directed to the
object implementing the I pMultiPartyCall ControlManager. Assuming that the criteria for creating an object
implementing the IpMultiPartyCall interface is met, other messages are used to create the call and associated
call leg object.

A new MultiPartyCall object is created to handle this particular call.

A new CallLeg object corresponding to Party A is created.

ETSI

10:
11:

12:
13:
14:

15:
16:
17:
18:

19:
21:
22.

25:

27

29:
30:
31
32:
34:

36:
37:
39:
40:

79 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

The new Call Leg instance transits to state I nitiating.

This message is used to pass the new call event to the object implementing the
I pAppMuultiPartyCall Control Manager interface. Applied monitor mode is "interrupt”.

This message is used to forward message 9 to the IpAppLogic.

This message is used by the application to create an object implementing the |pAppMultiPartyCall interface.
The reference to this object is passed back to the object implementing the I pMultiPartyCall Control M anager
using the return parameter of the reportNotification.

A new AppCallLeg is created to receive callbacks for the Leg corresponding to party A.
A new AppCallLeg is created to receive callbacks for another leg.

This message is used to create anew call leg object. The object is created in the idle state and not yet routed in
the network.

A new CallLeg corresponding to party B is created.
A transition to state Idle is made after the Call leg has been created.
The application regquests to be notified (monitor mode "NOTIFY") when the leg to party B is released.

The application requests to route the terminating leg to reach the associated party as specified by the
application ("hot-line number").

The Call Leg instance transits to state Active.
The application requests to be notified (monitor mode "Notify") when the leg to A-party is released.
The application requests to resume call processing for the originating call leg.

Asaresult call processing is resumed in the network that will try to reach the associated party as specified by
the application (E.164 number provided by application).

The originating call leg is notified that the number (provided by application) has been analysed by the network
and the originating call leg STD makes atransition to "active" state. The application is not notified asit has not
requested this event to be reported.

When the B-party releases the call, the terminating call leg is notified (monitor mode "NOTIFY") and makes a
transition to "Releasing state”.

The application is notified, as the release event has been requested to be reported in Notify mode.
The event is forwarded to the application logic.

The terminating call leg is destroyed, the AppLeg B is notified.

This answer message is then forwarded.

When the call release ("terminating release” indication) is propagated in the network toward the party A, the
originating call leg is notified and makes atransition to "releasing state”. This rel ease event (being propagated
from party B) is not reported to the application.

When the originating call leg is destroyed, the AppLeg A is notified.
The event is forwarded to the application logic.
When all legs have been destroyed, the IpAppMultiPartyCall is notified that the call is ended.

The event is forwarded to the application logic.

ETSI

7.1.7

80 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Use of the Redirected event

AppLogic . IpAppCallLeqg . IpCallLeg

1: eventRéportReq(ANSWER, REDIRECTED - NOTIFY)

|
=
]/

‘2: routeReq()

The Call and the Leg

3: eventReportRes(REDIRECTED)

7.2

|

|

|
hawe already been LTF
created.

|

|

|

|

|

4: eventReportRes(ANSWER)

|
i
!
|
|
|

The application has already created the call and acall leg. It places an event report request for the ANSWER
and REDIRECTED eventsin NOTIFY mode.

The application routes the call leg.

The call isredirected within the network and the application isinformed. The new destination addressis
passed within the event. The event is not disarmed, so subsequent redirections will also be reported. Also, the
same call leg is used so the application does not have to create a new one.

The call isanswered at its new destination.

Class Diagrams

The multiparty call control service consists of two packages, one for the interfaces on the application side and one for
interfaces on the service side.

The class diagramsin the following figures show the interfaces that make up the multi party call control application
package and the multi party call control service package. This class diagram shows the interfaces of the multi-party call
control application package and their relations to the interfaces of the multi-party call control service package.

ETSI

81

<<Interface>>
Ipinterface
(from csapi)

i

Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

<<Interface>>
IpAppMultiPartyCallControlManager
(from mpccs)

[®reportNotification()
[®callAborted()
[®managerinterrupted()
[®managerResumed()
.caIIOverloadEncountered()
[®calloverloadCeased()

!

<<uses>>

<<Interface>>
IpMultiPartyCallControlManager
(from mpccs)

[®createcall() 1
[McreateNotification()
[8d esroyNotification()
[MchangeNotifi cati on()
g etNotifi cation()
[MsetCallLoadControl()

<<Interface >>
Ip AppMultiPartyCal |
(frommpccs)

| ¥getinfoRes()
[®getinfoEr()
[®superviseRes()

[®superviseErmr()
[#®callEnded()
[®createAndRouteCallLegErr()

A

<<uses>>

<<Interface >>
IpMultiPartyCall
(frommpccs)

N

Vi

®getcallLegs(
[McreatecallLeg()
.createAndRouteCal ILegReq()
[Mrelease()

[®deassigncall()
[®getinfoReq()
[®setChargePlan()
[®setAdviceOfCharge()
[®superviseReq()

LI

Figure 5: Application Interfaces

ETSI

<<Interface>>
IpAppCallLeg
(from mpccs)

[eventReportRes()
[®eventReportErr()
[®attachMediaRes()
— [®attachMediaErm()
[®detachMediaRes()
[®detachMediaErr()
[getinfoRes()
[®getinfoErm()
[®routeEm()
[MsupenviseRes()
[MsuperviseErm()
[®callLegEnded()
A usScsS~

<<Interface>>
IpCallLeg
(from mpccs)

[®routeReq()
[®eventReportReq()

[®release()

0..n®getinfoReq()

=

[®getcall()
[®attachMediaReq()

[®detachMediaReq()
[getCurrentDestinationAddress()
[McontinueProcessing()
[setChargePlan()
[MsetAdviceOfCharge()
[BsuperviseReq()

[®deassign()

This class diagram shows the interfaces of the multi-party call control service package.

82 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

<<Interface>>
IpSenice
(from csapi)

WsetCallback()
s etCallbackWithSessioniD()

/\

<<Interface>>
IpCallLeg
<<Interface>> (from mpccs)
e IpMultiPartyCall
IpMultiParty CallControlManager (romimpces) WouteReq()
(from mpccs) WeventReportReq()
WgetCallLegs() :gelease()

1 0..n[M¥createCallLeg() 1 0..nMgetinfoReq()
z:ggiﬁsltli(ﬁ)cation() —— — >{[®createAndRouteCallLegReq() —— —— =|[®getCall()
®destroyNotification() Weleas_e() ‘attachMedi_aReq()
WchangeNotification() SdeassignCall() SdetachMediaReq()
SgciNotification() FgetinfoReq() "getC_urremDesunauonAddress()
WsetCallLoadControl() SsetChargePlan() ScontinueProcessing()

WsetAdviceOfCharge() WsetChargePlan()
supeniseReq() WsetAdviceOfCharge()
WsupeniseReq()
Wdeassign()
Figure 6: Service Interfaces
7.3 MultiParty Call Control Service Interface Classes

The Multi-party Call Control service enhances the functionality of the Generic Call Control Service with leg
management. It also allows for multi-party calls to be established, i.e. up to a service specific number of legs can be
connected simultaneously to the same call.

The Multi-party Call Control Serviceis represented by the IpMultiPartyCall ControlManager, IpMultiPartyCall,
IpCallLeg interfaces that interface to services provided by the network. Some methods are asynchronous, in that they do
not lock athread into waiting whilst a transaction performs. In this way, the client machine can handle many more calls,
than one that uses synchronous message calls. To handle responses and reports, the developer must implement

I pAppM ultiPartyCall ControlManager, |pAppMultiPartyCall and |pAppCallLeg to provide the callback mechanism.

7.3.1 Interface Class IpMultiPartyCallControlManager
Inherits from: IpService.

Thisinterface isthe "service manager” interface for the Multi-party Call Control Service. The multi-party call control
manager interface provides the management functions to the multi-party call control service. The application
programmer can use this interface to provide overload control functionality, create call objects and to enable or disable
call-related event notifications. The action table associated with the STD showsin what state the

IpMultiPartyCall ControlManager must be if a method can successfully complete. In other words, if the
IpMultiPartyCall ControlManager isin another state the method will throw an exception immediately.

Thisinterface shall be implemented by a Multi Party Call Control SCF. As a minimum requirement either the
createCall() method shall be implemented, or the createNotification() and destroyNotification() methods shall be
implemented.

ETSI

83 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

<<Interface>>

IpMultiPartyCallControlManager

createCall (appCall : in IpAppMultiPartyCallRef) : TpMultiPartyCallldentifier

createNotification (appCallControlManager : in IpAppMultiPartyCallControlManagerRef, notificationRequest :
in TpCallNotificationRequest) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

changeNotification (assignmentID : in TpAssignmentID, notificationRequest : in TpCallNotificationRequest) :
void

getNoatification () : TpNotificationRequestedSet

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in
TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentID

Method
createCall ()

This method is used to create a new call object. An IpAppM ultiPartyCall ControlManager should already have been
passed to the IpMultiPartyCall ControlManager, otherwise the call control will not be able to report a call Aborted() to
the application. The application should invoke setCallback() prior to createCall() if it wishesto ensure this.

Returns call Reference: Specifies the interface reference and sessionl D of the call created.

Parameters

appCall : in IpAppMiltiPartyCall Ref
Specifies the application interface for callbacks from the call created.

Returns
TpMul ti PartyCallldentifier

Raises
TpComonExcepti ons, P_I NVALI D_| NTERFACE_TYPE

Method
createNotification()

This method is used to enable call notifications so that events can be sent to the application. Thisisthefirst step an
application has to do to get initial notifications of calls happening in the network. When such an event happens, the
application will be informed by reportNotification(). In case the application isinterested in other events during the
context of aparticular call session it has to use the createAndRouteCallLegReq() method on the call object or the
eventReportReq() method on the call leg object. The application will get access to the call object when it receivesthe
reportNotification(). (Note that createNotification() is not applicableif the call is setup by the application).

The createNotification method is purely intended for applications to indicate their interest to be notified when certain
call eventstake place. It is possible to subscribe to a certain event for awhole range of addresses, e.g. the application
can indicate it wishes to be informed when a call is made to any number starting with 800.

If some application aready requested notifications with criteria that overlap the specified criteria, the request is refused
with P_INVALID_CRITERIA. The criteriaare said to overlap if both originating and terminating ranges overlap and
the same number plan is used.

ETSI

84 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

If anotification is requested by an application with monitor mode set to notify, then there is no need to check the rest of
the criteria for overlapping with any existing request as the notify mode does not allow control on a cal to be passed
over. Only one application can place an interrupt request if the criteria overlaps.

Set of the callback reference:

The call back reference can be registered either in @) createNotification() or b) explicitly with a setCallback() method
e.g. depending on how the application providesits callback reference.

Casea
From an efficiency point of view the createNotification() with explicit registration may be the preferred method.
Case b:

The createNotification() with no call back reference ("Null" value) is used where (e.g. due to distributed application
logic) the call back reference is provided subsequently in a setCallback().

In case the createNotification() contains no callback, at the moment the application needs to be informed the gateway
will use as callback the callback that has been registered by setCallback().

Set additional Call back:

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used.
In case the createNotification contains no callback, at the moment the application needs to be informed the gateway will
use as callback the callback that has been registered by setCallback().

Returns assignment| D: Specifies the ID assigned by the call control manager interface for this newly-enabled event
notification.

Parameters

appCal | Cont rol Manager : in | pAppMilti PartyCall Control Manager Ref

If this parameter is set (i.e. not NULL) it specifies areference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

notificationRequest : in TpCall NotificationRequest

Specifies the event specific criteria used by the application to define the event required. Only events that meet these
criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer",
"busy". Individual addresses or address ranges may be specified for destination and/or origination.

Returns
TpAssi gnnment | D
Raises

TpConmonExcept i ons, P_I NVALI D_CRI TERI A, P_I NVALI D_| NTERFACE_TYPE
P_I NVALI D_EVENT_TYPE

Method
destroyNotification()

This method is used by the application to disable call notifications.

ETSI

85 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Parameters

assignment|I D : in TpAssignnent| D

Specifies the assignment 1D given by the generic call control manager interface when the previous enableNotification()
was called. If the assignment ID does not correspond to one of the valid assignment 1Ds, the exception
P_INVALID_ASSIGNMENTID will be raised. If two callbacks have been registered under this assignment 1D both of
them will be disabled.

Raises

TpComonExcepti ons, P_I NVALI D_ASSI GNVENT I D

Method

changeNoti fi cati on()

This method is used by the application to change the event criteriaintroduced with createNotification. Any stored
criteria associated with the specified assignmentI D will be replaced with the specified criteria

Parameters

assignment|I D : in TpAssignnent| D

Specifiesthe ID assigned by the generic call control manager interface for the event notification. If two callbacks have
been registered under this assignment 1D both of them will be changed.

notificati onRequest : in TpCall NotificationRequest
Specifies the new set of event specific criteria used by the application to define the event required. Only events that

meet these criteria are reported.
Raises

TpConmonExcept i ons, P_I NVALI D_ASSI GNVENT | D, P_I NVALI D_CRI TERI A,
P_I NVALI D_EVENT_TYPE

Method
get Notification()

This method is used by the application to query the event criteria set with createNotification or changeNotification.
Returns notificationsRequested: Specifies the notifications that have been requested by the application.

Parameters
No Parameters were identified for this method.

Returns
TpNoti fi cati onRequest edSet

Raises
TpComonExcept i ons

Method
set Cal | LoadControl ()

This method imposes or removes load control on calls made to a particular address range within the call control service.
The address matching mechanism is similar as defined for TpCallEventCriteria.

Returns assignmentl D: Specifies the assignmentI D assigned by the gateway to this request. This assignmentlD can be
used to correlate the call Overl oadEncountered and call OverloadCeased methods with the request.

ETSI

86 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Parameters

duration : in TpDuration
Specifies the duration for which the load control should be set.

A duration of 0 indicates that the load control should be removed.
A duration of -1 indicates an infinite duration (i.e. until disabled by the application).
A duration of -2 indicates the network default duration.

mechani sm: in TpCal | LoadControl Mechani sm

Specifies the load control mechanism to use (for example, admit one call per interval), and any necessary parameters,
such asthe call admission rate. The contents of this parameter are ignored if the load control duration is set to zero.

treatnment : in TpCall Tr eat nent

Specifies the treatment of callsthat are not admitted. The contents of this parameter are ignored if the load control
duration is set to zero.

addressRange : in TpAddressRange
Specifies the address or address range to which the overload control should be applied or removed.

Returns

TpAssi gnnment | D

Raises

TpConmonExcept i ons, P_I NVALI D_ADDRESS, P_UNSUPPORTED ADDRESS PLAN
7.3.2 Interface Class IpAppMultiPartyCallControlManager

Inherits from: Iplinterface.

The Multi-Party call control manager application interface provides the application call control management functions
to the Multi-Party call control service.

<<Interface>>

IpAppMultiPartyCallControlManager

reportNotification (callReference : in TpMultiPartyCallldentifier, callLegReferenceSet : in
TpCallLegldentifierSet, notificationinfo : in TpCallNotificationInfo, assignmentID : in TpAssignmentiD) :
TpAppMultiPartyCallBack

callAborted (callReference : in TpSessionID) : void
managerinterrupted () : void

managerResumed () : void

callOverloadEncountered (assignmentID : in TpAssignmentID) : void

callOverloadCeased (assignmentID : in TpAssignmentID) : void

ETSI

87 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Method
reportNotification()

This method notifies the application of the arrival of acall-related event.

If this method isinvoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, then the APL has
control of the call. If the APL does nothing with the call (including its associated legs) within a specified time period
(the duration of which forms a part of the service level agreement), then the call in the network shall be released and
callEnded() shall be invoked, giving arelease cause of P_TIMER_EXPIRY.

Set of the callback reference:

A reference to the application interface has to be passed back to the call interface to which the notification relates.
However, the setting of a call back referenceis only applicableif the notification isin INTERRUPT mode.

The call back reference can be registered either in @) reportNotification() or b) explicitly with a
setCallbackWithSessionl D() method depending on how the application provides its callback reference.

Casea
From an efficiency point of view the reportNotification() with explicit pass of registration may be the preferred method.
Caseb:

The reportNotification() with no call back reference ("Null" value) is used where (e.g. due to distributed application
logic) the call back reference is provided subsequently in a setCallbackWithSessionl D().

In case reportNotification() contains no callback, at the moment the application needs to be informed the gateway will
use as callback the callback that has been registered by setCallbackWithSessionl D().

Returns appCallBack: Specifies references to the application interface which implements the callback interface for the
new call and/or new call leg. If the application has previoudy explicitly passed a reference to the callback interface
using a setCallbackWithSessionl D() invocation, this parameter may be set to P_APP_CALLBACK_UNDEFINED, or
if supplied must be the same as that provided during the setCallbackWithSessionl D().

This parameter will be set to P_ APP_CALLBACK_UNDEFINED if the notification isin NOTIFY mode and in case b.

Parameters

call Reference : in TpMiltiPartyCallldentifier

Specifies the reference to the call interface to which the notification relates. If the notification is being givenin
NOTIFY mode, this parameter shall be ignored by the application client implementation, and consequently the
implementation of the SCS entity invoking reportNotification may populate this parameter as it chooses.

cal | LegRef erenceSet : in TpCallLegldentifierSet

Specifiesthe set of al call leg references. First in the set is the reference to the originating callLeg. It indicates the call
leg related to the originating party. In case there is a destination call leg this will be the second leg in the set. from the
notificationl nfo can be found on whose behalf the notification was sent.

However, if the notification is being given in NOTIFY mode, this parameter shall be ignored by the application client
implementation, and consequently the implementation of the SCS entity invoking reportNotification may populate this
parameter as it chooses.

notificationlnfo : in TpCall Notificationlnfo
Specifies data associated with this event (e.g. the originating or terminating leg which reports the notification).

assignment|I D : in TpAssignnent| D

Specifies the assignment id which was returned by the createNatification() method. The application can use assignment
id to associate events with event specific criteria and to act accordingly.

ETSI

88 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Returns
TpAppMul ti PartyCal | Back

Method
cal | Aborted()

This method indicates to the application that the call object has aborted or terminated abnormally. No further
communication will be possible between the call and application.

Parameters

cal | Reference : in TpSessionlD
Specifies the sessionl D of call that has aborted or terminated abnormally.

Method
manager | nt er r upt ed()

This method indicates to the application that event notifications and method invocations have been temporarily
interrupted (for example, due to network resources unavailable).

Note that more permanent failures are reported via the Framework (integrity management).

Parameters
No Parameters were identified for this method.

Method
manager Resuned()

This method indicates to the application that event notifications are possible and method invocations are enabled.

Parameters
No Parameters were identified for this method.

Method
cal | Over| oadEncount ered()

This method indicates that the network has detected overload and may have automatically imposed load control on calls
requested to a particular address range or calls made to a particular destination within the call control service.

Parameters

assignmentI D : in TpAssignnmentlD

Specifies the assignmentI D corresponding to the associated setCallLoadControl. Thisimplies the addressrange for
within which the overload has been encountered.

Method
cal | Over| oadCeased()

This method indicates that the network has detected that the overload has ceased and has automatically removed any
load controls on calls requested to a particular address range or calls made to a particular destination within the call
control service.

Parameters

assignnmentI D : in TpAssignnentlD

Specifies the assignmentI D corresponding to the associated setCallLoadControl. Thisimplies the addressrange for
within which the overload has been ceased.

ETSI

89 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

7.3.3 Interface Class IpMultiPartyCall
Inherits from: IpService.

The Multi-Party Call provides the possibility to control the call routing, to request information from the call, control the
charging of the call, to release the call and to supervise the call. It also gives the possibility to manage call legs
explicitly. An application may create more then one call leg.

Thisinterface shall be implemented by a Multi Party Call Control SCF. The release() and deassignCall() methods, and
either the createCallLeg() or the createAndRouteCallLegReq(), shall be implemented as a minimum requirement.

<<Interface>>

IpMultiPartyCall

getCallLegs (callSessionID : in TpSessionID) : TpCallLegldentifierSet
createCallLeg (callSessionID : in TpSessionID, appCallLeg : in IpAppCallLegRef) : TpCallLegldentifier

createAndRouteCallLegReq (callSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet,
targetAddress : in TpAddress, originatingAddress : in TpAddress, applnfo : in TpCallAppinfoSet,
appLeginterface : in IpAppCallLegRef) : TpCallLegldentifier

release (callSessionID : in TpSessionID, cause : in TpReleaseCause) : void

deassignCall (callSessionID : in TpSessionID) : void

getinfoReq (callSessionID : in TpSessionID, callinfoRequested : in TpCallinfoType) : void
setChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callSessionID : in TpSessionID, aOClnfo : in TpAoClnfo, tariffSwitch : in TpDuration) :
void

superviseReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallSuperviseTreatment) : void

Method
get Cal | Legs()

This method requests the identification of the call 1eg objects associated with the call object. Returnsthe legsin the
order of creation.

Returns callLegList: Specifiesthe call legs associated with the call. The set contains both the sessionlDs and the
interface references.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

Returns

TpCal | Legl denti fi er Set

Raises

TpComonExcepti ons, P_I NVALI D SESSION | D

ETSI

90 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Method
createCall Leg()

This method requests the creation of anew call leg object.

Returns callLeg: Specifies the interface and sessionlD of the call leg created.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

appCal l Leg : in | pAppCal | LegRef
Specifies the application interface for callbacks from the call leg created.

Returns

TpCal | Legl dentifier

Raises

TpCommonExcepti ons, P_I NVALI D _SESSI ON_I D, P_I NVALI D_| NTERFACE_TYPE

Method
cr eat eAndRout eCal | LegReq()

This asynchronous operation requests creation and routing of a new callLeg. In case the connection to the destination
party is established successfully the CallLeg is attached to the call, i.e. no explicit attachM ediaReq() operation is
needed. Requested events will be reported on the IpAppCallLeg interface. Thisinterface the application must provide
through the appL egl nterface parameter.

The extra address information such as originatingAddress is optional. If not present (i.e. the plan is set to
P_ADDRESS PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used,
otherwise the network or gateway provided numbers will be used.

If the application wishes that the call leg should be represented in the network as being a redirection it should include a
value for thefield P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallApplnfo.

If this method isinvoked, and call reports have been requested, yet the IpAppCallLeg interface parameter is NULL, this
method shall throw the P_NO_CALLBACK_ADDRESS_SET exception.

Returns call LegReference: Specifies the reference to the CallLeg interface that was created.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

event sRequested : in TpCal | Event Request Set
Specifies the event specific criteria used by the application to define the events required. Only events that meet these

criteria are reported. Examples of events are "address analysed"”, "answer" and "release”.

target Address : in TpAddress
Specifies the destination party to which the call should be routed.

originati ngAddress : in TpAddress
Specifies the address of the originating (calling) party.

ETSI

91 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

applnfo : in TpCall Appl nf oSet

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service
identities and interaction indicators).

appLeglnterface : in | pAppCall LegRef

Specifies areference to the application interface that implements the callback interface for the new call leg. Requested
events will be reported by the eventReportRes() operation on thisinterface.

Returns
TpCal | Legl dentifier
Raises

TpConmonExcept i ons, P_I NVALI D_SESSI ON_| D, P_I NVALI D_|I NTERFACE_TYPE
P_I NVALI D_ADDRESS, P_UNSUPPORTED ADDRESS PLAN, P_I NVALI D_NETWORK_STATE,
P_I NVALI D_EVENT_TYPE, P_INVALI D _CRI TER A

Method
rel ease()

This method requests the release of the call object and associated objects. The call will also be terminated in the
network. If the application requested reports to be sent at the end of the call (e.g. by means of getlnfoReq) these reports
will till be sent to the application.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

cause : in TpRel easeCause
Specifies the cause of the release.

Raises
TpCommonExceptions, P_INVALI D SESSION I D, P_I NVALI D NETWORK STATE

Method
deassi gnCal | ()

This method requests that the relationship between the application and the call and associated objects be de-assigned. It
leaves the call in progress, however, it purges the specified call object so that the application has no further control of
call processing. If acall is de-assigned that has call information reports, call leg event reports or call Leg information
reports requested, then these reports will be disabled and any related information discarded.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

Raises
TpComonExcepti ons, P_I NVALI D SESSION | D

ETSI

92 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Method
get I nf oReq()

This asynchronous method requests information associated with the call to be provided at the appropriate time (for
example, to calculate charging). This method must be invoked before the call is routed to atarget address.

A report is received when the destination leg or party terminates or when the call ends. The call object will exist after
the call isended if information is required to be sent to the application at the end of the call. In case the originating party
is still available the application can still initiate a follow-on call using routeReq.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

call I nfoRequested : in TpCalllnfoType
Specifies the call information that is requested.

Raises

TpComonExcepti ons, P_I NVALI D SESSION | D
Method

set Char gePl an()

Set an operator specific charge plan for the call.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

cal | ChargePlan : in TpCall ChargePl an
Specifies the charge plan to use.

Raises
TpComonExcepti ons, P_I NVALI D SESSION | D

Method
set Advi ceOI Char ge()

This method alows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this
information.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

aCClnfo : in TpAoCl nfo
Specifies two sets of Advice of Charge parameter.

tariffSwitch : in TpDuration
Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

ETSI

93 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Raises
TpCommonExcepti ons, P_I NVALI D SESSI ON I D, P_I NVALI D_CURRENCY,
P_| NVALI D_AMOUNT

Method
super vi seReq()

The application calls this method to supervise acall. The application can set a granted connection time for this call. If
an application calls this operation before it routes a call or a user interaction operation the time measurement will start
as soon asthe call is answered by the B-party or the user interaction system.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

time : in TpDuration
Specifies the granted time in milliseconds for the connection.

treatnent : in TpCall Supervi seTr eat nent
Specifies how the network should react after the granted connection time expired.

Raises
TpComonExcepti ons, P_I NVALI D SESSI ON_ | D
7.3.4 Interface Class IpAppMultiPartyCall

Inherits from: Ipinterface.

The Multi-Party call application interface isimplemented by the client application developer and is used to handle call
request responses and state reports.

<<Interface>>

IpAppMultiPartyCall

getinfoRes (callSessionID : in TpSessionID, callinfoReport : in TpCallinfoReport) : void

getinfoErr (callSessionID : in TpSessionID, errorindication : in TpCallError) : void

superviseRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in TpDuration)
: void

superviseErr (callSessionID : in TpSessionID, errorindication : in TpCallError) : void

callEnded (callSessionID : in TpSessionlID, report : in TpCallEndedReport) : void

createAndRouteCallLegErr (callSessionID : in TpSessionID, callLegReference : in TpCallLegldentifier,
errorindication : in TpCallError) : void

ETSI

94 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Method
get | nf oRes()

This asynchronous method reports time information of the finished call or call attempt as well as release cause
depending on which information has been requested by getlnfoReq. Thisinformation may be used e.g. for charging
purposes. The call information will possibly be sent after reporting of al cases where the call or aleg of the call has
been disconnected or a routing failure has been encountered.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

call I nfoReport : in TpCalllnfoReport
Specifies the call information requested.

Method
get I nfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

Method
super vi seRes()

This asynchronous method reports a call supervision event to the application when it has indicated its interest in these
kind of events.

It is also called when the connection is terminated before the supervision event occurs.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call

report : in TpCall Supervi seReport
Specifies the situation which triggered the sending of the call supervision response.

usedTinme : in TpDuration
Specifies the used time for the call supervision (in milliseconds).

Method
supervi seErr ()

This asynchronous method reports a call supervision error to the application.

ETSI

95 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

Method
cal | Ended()

This method indicates to the application that the call has terminated in the network.

Note that the event that caused the call to end might have been received separately if the application was monitoring for
it.

Parameters

call SessionlD : in TpSessionlD
Specifies the call sessionID.

report : in TpCall EndedReport
Specifies the reason the call is terminated.

Method

creat eAndRout eCal | LegErr ()

This asynchronous method indicates that the request to route the call leg to the destination party was unsuccessful - the
call leg could not be routed to the destination party (for example, the network was unable to route the call leg, the
parameters were incorrect, the request was refused, etc.). Note that the event cases that can be monitored and

correspond to an unsuccessful setup of a connection (e.g. busy, no_answer) will be reported by eventReportRes() and
not by this operation.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

cal |l LegReference : in TpCallLegldentifier
Specifies the reference to the CallLeg interface that was created.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

7.3.5 Interface Class IpCallLeg
Inherits from: IpService.

The call leg interface represents the logical call leg associating a call with an address. The call leg tracks its own states
and allows charging summaries to be accessed. The leg represents the signalling relationship between the call and an
address. An application that uses the IpCallLeg interface to set up connections has good control, e.g. by defining leg
specific event request and can obtain call leg specific report and events.

Thisinterface shall be implemented by a Multi Party Call Control SCF. The routeReq|(), eventReportReq|(), releas(),
continueProcessing() and deassign() methods shall be implemented as a minimum requirement.

ETSI

96 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

<<Interface>>

IpCallLeg

routeReq (callLegSessionID : in TpSessionID, targetAddress : in TpAddress, originatingAddress : in
TpAddress, applinfo : in TpCallAppInfoSet, connectionProperties : in TpCallLegConnectionProperties) :
void

eventReportReq (callLegSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet) : void
release (callLegSessionID : in TpSessionID, cause : in TpReleaseCause) : void

getinfoReq (callLegSessionID : in TpSessionID, callLeginfoRequested : in TpCallLeginfoType) : void
getCall (callLegSessionID : in TpSessionID) : TpMultiPartyCallldentifier

attachMediaReq (callLegSessionID : in TpSessionID) : void

detachMediaReq (callLegSessionID : in TpSessionID) : void

getCurrentDestinationAddress (callLegSessionID : in TpSessionID) : TpAddress

continueProcessing (callLegSessionID : in TpSessionID) : void

setChargePlan (callLegSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callLegSessionID : in TpSessionlID, aOClinfo : in TpAoClInfo, tariffSwitch : in TpDuration)
: void

superviseReq (callLegSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallLegSuperviseTreatment) : void

deassign (callLegSessionID : in TpSessionID) : void

Method
rout eReq()

This asynchronous method requests routing of the call leg to the remote party indicated by the targetAddress.

In case the connection to the destination party is established successfully the CallLeg will be either detached or attached
to the call based on the attach Mechanism val ues specified in the connectionProperties parameter.

The extra address information such as originatingAddress is optional. If not present (i.e. the planis set to
P_ADDRESS PLAN_NOT_PRESENT), the information provided in the corresponding addresses from the route is
used, otherwise network or gateway provided addresses will be used.

If the application wishes that the call leg should be represented in the network as being aredirection it should include a
value for the field P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallApplnfo.

This operation continues processing of the call leg.

Parameters

call LegSessionl D : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

target Address : in TpAddress
Specifies the destination party to which the call leg should be routed.

ETSI

97 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

ori gi nati ngAddress : in TpAddress
Specifies the address of the originating (calling) party.

applnfo : in TpCall Appl nf oSet

Specifies application-related information pertinent to the call leg (such as alerting method, tele-service type, service
identities and interaction indicators).

connectionProperties : in TpCall LegConnecti onProperties
Specifies the properties of the connection.

Raises

TpConmonExcept i ons, P_I NVALI D_SESSI ON_I D, P_I NVALI D_NETWORK_STATE,
P_I NVALI D_ADDRESS, P_UNSUPPORTED_ ADDRESS_PLAN

Method
event Report Req()

This asynchronous method sets, clears or changes the criteriafor the events that the call leg object will be set to
observe.

Parameters

cal |l LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

event sRequested : in TpCall Event Request Set

Specifies the event specific criteria used by the application to define the events required. Only events that meet these
criteria are reported. Examples of events are "address analysed", "answer" and "release”.

Raises

TpConmonExcept i ons, P_I NVALI D_SESSI ON_| D, P_I NVALI D_EVENT_TYPE,
P_I NVALI D_CRI TERI A

Method
rel ease()

This method requests the release of the call leg. If successful, the associated address (party) will be released from the
call, and the call leg deleted. Note that in some cases releasing the party may lead to release of the complete call in the
network. The application will be informed of this with callEnded().

This operation continues processing of the call leg.

Parameters

cal |l LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

cause : in TpRel easeCause
Specifies the cause of the release.

Raises
TpCommonExceptions, P_INVALI D SESSI ON I D, P_I NVALI D NETWORK_ STATE

ETSI

98 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Method
get I nf oReq()

This asynchronous method requests information associated with the call leg to be provided at the appropriate time (for
example, to calculate charging). Note that in the call leg information must be accessible before the objects of concern
are deleted.

Parameters

call LegSessionl D : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

cal | Legl nf oRequested : in TpCall Legl nfoType
Specifiesthe call leg information that is requested.

Raises

TpComonExcepti ons, P_I NVALI D SESSI ON_ | D
Method

getCall ()

This method reguests the call associated with this call leg.

Returns call Reference: Specifies the interface and sessionlD of the call associated with this call leg.

Parameters

cal |l LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

Returns

TpMul ti PartyCallldentifier

Raises

TpComonExcepti ons, P_I NVALI D SESSION | D

Method
at tachMedi aReq()

This method requests that the call leg be attached to its call object. Thiswill alow transmission on all associated bearer
connections or media streams to and from other partiesin the call. The call leg must be in the connected state for this
method to compl ete successfully.

Parameters

cal |l LegSessionlD : in TpSessionlD
Specifies the sessionl D of the call leg to attach to the call.

Raises
TpCommonExceptions, P_I NVALI D SESSION I D, P_I NVALI D NETWORK_STATE

ETSI

99 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Method
det achMedi aReq()

This method will detach the call leg fromitscall, i.e. thiswill prevent transmission on any associated bearer
connections or media streams to and from other partiesin the call. The call leg must be in the connected state for this
method to complete successfully.

Parameters

call LegSessionl D : in TpSessionlD
Specifies the sessionl D of the call leg to detach from the call.

Raises

TpConmonExcept i ons, P_I NVALI D_SESSI ON_I D, P_I NVALI D_NETWORK_STATE
Method

get Current Desti nati onAddr ess()

Queries the current address of the destination the leg has been directed to.
Returns the address of the destination point towards which the call leg has been routed.
If this method is invoked on the Originating Call Leg, exception P_INVALID_STATE will be thrown.

Parameters

call LegSessionl D : in TpSessionlD
Specifiesthe call session ID of the call leg.

Returns

TpAddr ess

Raises

TpComonExceptions, P_I NVALI D SESSION | D

Method

conti nueProcessi ng()

This operation continues processing of the call leg. Applications can invoke this operation after call leg processing was

interrupted due to detection of a notification or event the application subscribed its interest in.

Parameters
call LegSessionl D : in TpSessionlD

Specifiesthe call leg session ID of the call leg.
Raises
TpComonExceptions, P_INVALID SESSION | D, P_I NVALI D NETWORK STATE

Method
set Char gePl an()

Set an operator specific charge plan for the call leg.

ETSI

100 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Parameters

cal |l LegSessionl D : in TpSessionlD
Specifiesthe call leg session ID of the call party.

cal | ChargePlan : in TpCall ChargePl an
Specifies the charge plan to use.

Raises
TpComonExceptions, P_I NVALI D SESSION | D

Method
set Advi ceOF Char ge()

This method alows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this
information.

Parameters

call LegSessionl D : in TpSessionlD
Specifiesthe call leg session ID of the call party.

aCClnfo : in TpAoCl nfo
Specifies two sets of Advice of Charge parameter.

tariffSwitch : in TpDuration
Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

Raises
TpCommonExcepti ons, P_I NVALI D SESSI ON | D, P_I NVALI D_CURRENCY,
P_| NVALI D_AMOUNT

Method
super vi seReq()

The application calls this method to supervise acall leg. The application can set a granted connection time for this call.
If an application calls this function before it calls a routeReq() or a user interaction function the time measurement will
start as soon as the call is answered by the B-party or the user interaction system.

Parameters

call LegSessionl D : in TpSessionlD
Specifiesthe call leg session ID of the call party.

time : in TpDuration
Specifies the granted time in milliseconds for the connection.

treatnment : in TpCall LegSupervi seTreat ment
Specifies how the network should react after the granted connection time expired.

Raises
TpComonExcepti ons, P_I NVALI D SESSI ON_ | D

ETSI

101 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Method
deassi gn()

This method requests that the relationship between the application and the call leg and associated objects be de-
assigned. It leavesthe call leg in progress, however, it purges the specified call leg object so that the application has no
further control of call leg processing. If acall leg is de-assigned that has event reports or call leg information reports
requested, then these reports will be disabled and any related information discarded.

The application should not release or deassign the call leg when received a callLegEnded() or callEnded(). This
operation continues processing of the call leg.

Parameters

cal |l LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

Raises
TpComonExceptions, P_I NVALI D SESSION | D
7.3.6 Interface Class IpAppCallLeg

Inherits from: Iplnterface.

The application call leg interface isimplemented by the client application developer and is used to handle responses and
errors associated with requests on the call leg in order to be able to receive leg specific information and events.

<<Interface>>

IpAppCallLeg

eventReportRes (callLegSessionID : in TpSessionID, eventinfo : in TpCallEventinfo) : void
eventReportErr (callLegSessionID : in TpSessionID, errorindication : in TpCallError) : void
attachMediaRes (callLegSessionID : in TpSessionID) : void

attachMediaErr (callLegSessionID : in TpSessionID, errorindication : in TpCallError) : void
detachMediaRes (callLegSessionID : in TpSessionID) : void

detachMediaErr (callLegSessionID : in TpSessionID, errorindication : in TpCallError) : void
getinfoRes (callLegSessionID : in TpSessionID, callLeginfoReport : in TpCallLeglnfoReport) : void
getinfoErr (callLegSessionID : in TpSessionID, errorindication : in TpCallError) : void

routeErr (callLegSessionID : in TpSessionID, errorindication : in TpCallError) : void

superviseRes (callLegSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in
TpDuration) : void

superviseErr (callLegSessionID : in TpSessionID, errorindication : in TpCallError) : void

callLegEnded (callLegSessionID : in TpSessionID, cause : in TpReleaseCause) : void

ETSI

102 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Method
event Report Res()

This asynchronous method reports that an event has occurred that was requested to be reported (for example, a mid-call
event, the party has requested to disconnect, etc.).

Depending on the type of event received, outstanding requests for events are discarded. The exact details of these so-
called disarming rules are captured in the data definition of the event type.

If this method isinvoked for a report with a monitor mode of P CALL_MONITOR_MODE_INTERRUPT, then the
application has control of the call leg. If the application does nothing with the call leg within a specified time period
(the duration which forms a part of the service level agreement), then the connection in the network shall be released
and callLegEnded() shall be invoked, giving arelease cause of P_ TIMER_EXPIRY.

Parameters

cal |l LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call leg on which the event was detected.

eventinfo : in TpCall Eventlnfo
Specifies data associated with this event.

Method

event Report Err ()

This asynchronous method indicates that the request to manage call leg event reports was unsuccessful, and the reason
(for example, the parameters were incorrect, the request was refused, etc.).

Parameters

cal |l LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

Method
at t achMedi aRes()

This asynchronous method reports the attachment of a call leg to a call has succeeded. The media channels or bearer
connections to thisleg is now available.

Parameters

cal |l LegSessionlD : in TpSessionlD
Specifies the call leg session ID of the call leg to which the information relates.

Method
attachMedi aErr ()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

call LegSessionl D : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

ETSI

103 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

errorindication : in TpCallError
Specifies the error which led to the original request failing.

Method
det achMedi aRes()

This asynchronous method reports the detachment of a call leg from a call has succeeded. The media channels or bearer
connections to thisleg is no longer available.

Parameters

call LegSessionl D : in TpSessionlD
Specifiesthe call leg session ID of the call leg to which the information relates.

Method
det achMedi aErr ()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

cal |l LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

Method

get | nf oRes()

This asynchronous method reports all the necessary information requested by the application, for example to calculate
charging.

Parameters

cal |l LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call leg to which the information relates.

cal | Legl nfoReport : in TpCall Legl nf oReport
Specifies the call leg information requested.

Method
get I nfoErr ()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

cal |l LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

ETSI

104 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Method
rout ekrr ()

This asynchronous method indicates that the request to route the call leg to the destination party was unsuccessful - the
call leg could not be routed to the destination party (for example, the network was unable to route the call leg, the
parameters were incorrect, the request was refused, etc.).

Parameters

call LegSessionl D : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

Method
super vi seRes()

This asynchronous method reports a call leg supervision event to the application when it hasindicated itsinterest in
these kind of events.

It is also called when the connection to a party is terminated before the supervision event occurs.

Parameters

cal |l LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

report : in TpCall Supervi seReport
Specifies the situation which triggered the sending of the call leg supervision response.

usedTinme : in TpDuration
Specifies the used time for the call leg supervision (in milliseconds).

Method

supervi seErr ()

Parameters

call LegSessionl D : in TpSessionlD

Specifiesthe call leg session ID of the call leg.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

Method
cal | LegEnded()

This method indicates to the application that the leg has terminated in the network. The application has received all
requested results (e.g. getinfoRes) related to the call leg. The call leg will be destroyed after returning from this method.

Parameters

call LegSessionl D : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

ETSI

105 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

cause : in TpRel easeCause
Specifies the reason the connection is terminated.

7.4 MultiParty Call Control Service State Transition Diagrams

7.4.1 State Transition Diagrams for [pMultiPartyCallControlManager

“managerinterrupted

Interrupted
W/

IpAccess.terminateSeniceAgreement
‘new'

IpAccess.terminateSeniceAgreement

L) ®

Figure 7: Application view and the Multi-Party Call Control Manager

74.1.1 Active State

In this state a relation between the Application and the Service has been established. The state allows the application to
indicate that it isinterested in call related events. In case such an event occurs, the Manager will create a Call object
with the appropriate number of Call Leg objects and inform the application. The application can also indicate it is no
longer interested in certain call related events by calling destroyNotification().

7.4.1.2 Interrupted State

When the Manager isin the Interrupted state it is temporarily unavailable for use. Events requested cannot be forwarded
to the application and methods in the API cannot successfully be executed. A number of reasons can cause this: for
instance the application receives more notifications from the network than defined in the Service Agreement. Another
exampleisthat the Service has detected it receives no notifications from the network dueto e.g. alink failure.

7.4.1.3 Overview of allowed methods

Call Control Manager State Methods applicable

Active createCall,
createNotification,
destroyNotification,
changeNotification,
getNotification,
setCallLoadControl

Interrupted getNotification

ETSI

106 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

7.4.2 State Transition Diagrams for IpMultiPartyCall
The state transition diagram shows the application view on the MultiParty Call object.

When an IpMultiPartyCall is created using createCall, or when an IpMultiPartyCall is given to the application for a
notification with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, an activity timer is started. The
activity timer is stopped when the application invokes a method on the IpMultiPartyCall. The action upon expiry of this
activity timer isto invoke callEnded() on the IpAppMultiPartyCall with arelease cause of P_TIMER_EXPIRY . In the
case when no IpAppMultiPartyCall is available on which to invoke call Ended(), callAborted() shall be invoked on the

I pAppMultiPartyCall ControlManager asthisis an abnormal termination.

' IpMultiPartyCallManager.createCall { IDLE }

coming call]
ApAppMultiPartyCallControlManager.reportNotification

creatéCallLeg

ACTIVE

deassign
'last leg released'
deassignCall
A /
RELEASED callEnded \@
&
A timer mechanisem preventsthatthe object AN

keepsoccupying resources. Incase the timer
expires, callEnded()isinvoked on the

IpAppM ultiP artyCal | with a release cause of
P_TIMER_EXPIRY. Inthe case when no

IpAppM ultiP artyCall isavailable on which to invoke
callEnded(), callAborted () shall be invoked on the
IpAppM ultiP artyCalIControIManagerasthisisan
abnormal termination.

Figure 8: Application view on the MultiParty Call object

7421 IDLE State
In this state the Call object has no Call Leg object associated to it.
The application can request for charging related information reports, call supervision, set the charge plan and set Advice

Of Charge indicators. When thefirst Call Leg object is requested to be created a state transition is made to the Active
state.

7.4.2.2 ACTIVE State

In this state the Call object has one or more Call Leg objects associated to it. The application is alowed to create
additional Call Leg objects.

ETSI

107 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Furthermore, the application can request for call supervision. The Application can request charging related information
reports, set the charge plan and set Advice Of Charge indicatorsin this state prior to call establishment.

7.4.2.3 RELEASED State

In this state the last Call leg object has released or the call itself was released. While the call isin this state, the
requested call information will be collected and returned through getlnfoRes() and/or superviseRes(). As soon as all
information is returned, the application will be informed that the call has ended and Call object transition to the end
State.

7.4.2.4 Overview of allowed methods
Methods applicable Call Control Call Call Control Manager
State State

getCallLegs, Idle, Active, Released |-
createCallLeg, Idle, Active Active
createAndRouteCallLe
gReq,
setAdviceOfCharge,
superviseReq,
release Active Active
deassignCall Idle, Active -
setChargePlan, Idle, Active Active
getinfoReq

7.4.3 State Transition Diagrams for IpCallLeg

The IpCallLeg State Transition Diagram is divided in two State Transition Diagrams, one for the originating call leg
and one for the terminating call leg.

Call Leg State Model General Objectives:

1) Eventsin backwards direction (upstream), coming from terminating leg, are not visible in originating leg
model.

2) Eventsin forwards direction (downstream), coming from originating leg, are not visible in terminating leg
model.

3) Statesare as seen from the application: if there is no change in the method an application is permitted to apply
on the IpCallLeg object, then there is no state change. Therefore receipt of e.g. answer or aerting eventson
terminating leg do not change state (see note 2).

4) Theapplication isto send a request to continue processing (using an appropriate method like
continueProcessing) for each leg and event reported in monitor mode "interrupt”.

5) Incaseon aleg more than one network event (for example mid-call event "service_code") isto be reported to
the application at quasi the same time, then the events are to be reported one by one to the application in the
order received from the network. When for aleg an event is reported in interrupt mode, a next pending event is
not to be reported to the application until arequest to resume call processing for the current reported event has
been received on the leg.

NOTE 1. Cal processing is suspended if for aleg a network event is met, which was requested to be monitored in
theP_CALL_MONITOR_MODE_INTERRUPT.

NOTE 2: Even though therein the Originating Call Leg STD is no change in the methods the application is
permitted to apply to the IpCallLeg object for the states Analysing and Active, separate states are
maintained. The states may therefore from an application viewpoint appear asjust one state that may be
have substates like Analysing and Active. The digit collection task in state Analysing state may be viewed
as a specialised task that may not at all be applicable in some networks and therefore here described as
being a state on its own.

ETSI

108 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

7.4.3.1 Originating Call Leg

Originating Call Leg. ﬁ
‘originating call attempt authorizedm
IpAppMultiPartyCallControlManager.
Initiatin reportN otification (originating CallAtterm)
attachM eda & ‘ s (orig 9)
detachMedia
‘ IpAppMultiPartyCallControlManager
reportNotification(originating CallAttemptAuthiorized)
'Address Collected'
‘networkRelease’

'Address_Collected'

Analysing
IpAppMultiPartyCallControlManager.

reportNotification(address_collected)

'Address Analysed'

attachMedia
detachMeda

‘networkreleas €

‘originating service_code'

Active IpAppMultiPartyCallControlManager.
attachMedia Cj ‘ reportNotification(address_analysed)
detachMedia
‘ IpAppMultiPartyCallControlManager.

reportNotification(originating service code)

‘network release’

\

‘ Releasing

All States release do/ send reports if requested, or error reports if required ‘ IpAppMultiPartyCallControlManager.
‘timer expiry ‘ ‘ reportNatification(originating

release)

deasign

)
NpAppCallLeg.callLegEnded &

Transtions/ewents na shown:

All states:

continueProcessing , g etlastRedirectedAddress , getCall: no state change
All states except Releasing :

ewentR epatReq, setAdvice OfChar ge, getlnfoReq , superviseReq,
setChar gePlan

Figure 9: Originating Leg

7.4.3.1.1 Initiating State
Entry events:

- Sending of areportNotification() method by the IpMultiPartyCall ControlManager for an
"Originating_Call_Attempt" initial notification criterion.

iii) Sending of areportNotification() method by the IpMultiPartyCall ControlManager for an
"Originating_Call_Attempt_Authorised" initial notification criterion.

ETSI

109 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Functions:

In this state the network checks the authority/ability of the party to place the connection to the remote (destination)
party with the given properties, e.g. based on the originating party's identity and service profile.

The setup of the connection for the party has been initiated and the application activity timer is being provided.

The figure below shows the order in which network events may be detected in the Initiating state and depending on the
monitor mode be reported to the application.

Initiating See .| OREL
State note 2 -

| oca ‘4 0CAA AC
Seenote 1

NOTE 1: Event oCA only applicable as an initial notification.
NOTE 2: The release event (OREL) can occur in any state resulting in a transition to Releasing state.

Abbreviations used for the events:

oCA originating Call Attempt;
oCAA originating Call Attempt Authorized;
AC Address Collected;

OoREL originating RELease.

Figure 10: Application view on event reporting order in Initiating State

In this state the following functions are applicable;
- Thedetection of an "Originating_Call_Attempt" initial notification criterion.

- Thedetection of an "Originating_Call_Attempt_Authorised" initial notification criterion as a result that the call
attempt authorisation is successful.

- The report of the "Originating_Call_Attempt_Authorised” event indication whereby the following functions
are performed:

i) WhentheP CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_CALL_ATTEMPT_AUTHORISED then the event is reported and call leg
processing is suspended.

ii) WhentheP_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_CALL_ATTEMPT_AUTHORISED then the event is notified and call leg processing
continues.

iii) Whenthe P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_CALL_ATTEMPT_AUTHORISED then no monitoring is performed.

- The receipt of destination address information, i.e. initial information package/dialling string as received from
caling party.

- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

ETSI

110 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Exit events:

- Availability of destination address information, i.e. the initial information package/dialling string received from
the calling party.

- Application activity timer expiry indicating that no requests from the application have been received during a
certain period.

- Receipt of adeassign() method.
- Receipt of arelease() method.

- Detection of a"originating release” indication as aresult of a premature disconnect from the calling party.

7.4.3.1.2 Analysing State
Entry events:

- Availability of an"Address_Collected" event indication as a result of the receipt of the (complete) initial
information package/dialling string from the calling party.

- Sending of areportNotification() method by the I pMultiPartyCall ControlManager for an "Address_Collected"
initial notification criterion.

Functions:
In this state the destination address provided by the calling party is collected and analysed.

The received information (dialled address string from the calling party) is being collected and examined in accordance
to the dialing plan in order to determine end of address information (digit) collection. Additional address digits can be
collected. Upon completion of address collection the address is analysed.

The address analysis is being made according to the dialling plan in force to determine the routing address of the call
leg connection and the connection type (e.g. local, transit, gateway).

The request (with eventReportReq method) to collect a variable number of more address digits and report them to the
application (within eventReportRes method) is handled within this state. The collection of more digits as requested and
the reporting of received digits to the application (when the digit collect criteriais met) is done in this state. This action
isrecursive, e.g. the application could ask for 3 digitsto be collected and when report request can be done repeatedly,
e.g. the application may for example request first for 3 digits to be collected and when reported request further digits.

The figure below shows the order in which network events may be detected in the Analysing state and depending on the
monitor mode be reported to the application.

ETSI

111 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

OoREL

A\ 4

Analysing note
State

oCAA AC AA

A 4
A 4

NOTE: The release event (OREL) can occur in any state resulting in a transition to Releasing state.
Abbreviations used for the events:

0CAA: originating Call Attempt Authorized;

AC Address Collected;

AA Address Analysed;

OoREL originating RELease.

Figure 11: Application view on event reporting order in Analysing State

In this state the following functions are applicable:
- The detection of a"Address_Collected” initial notification criterion.
- On receipt of the "Address_Collected" indication the following functions are performed:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_ADDRESS COLLECTED then the event isreported and call leg processing is
suspended.

ii) WhentheP_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_ADDRESS COLLECTED then the event is notified and call leg processing
continues.

iii) Whenthe P_CALL_MONITOR_MODE_DO_NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_ADDRESS COLLECTED then no monitoring is performed.

- Receipt of aeventReportReq() method defining the criteriafor the eventsthe call leg object isto observe.

- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() or a routeReq()
method.

Exit events:

- Detection of an "Address_Analysed" indication as aresult of the availability of the routing address and nature
of address.

- Receipt of adeassign() method.
- Receipt of arelease() method.

Detection of a"originating release” indication as aresult of a premature disconnect from the calling party.

7.4.3.1.3 Active State

Entry events:

- Receipt of an "Address_Analysed" indication as aresult of the availability of the routing address and nature of
address.

- Sending of areportNotification() method by the I pMultiPartyCall ControlManager for an "Address Analysed"
initial indication criterion.

ETSI

112 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Functions:
In this state the call leg connection to the calling party exists and originating mid call events can be received.

The figure below shows the order in which network events may be detected in the Active state and depending on the
monitor mode be reported to the application.

Seenote 1
See
f note 2
0oSC AN
AC R OoREL
v AA
Active
State

NOTE 1: Only the detected service code or the range to which the service code belongs is disarmed as the service
code is reported to the application.
NOTE 2: The release event (OREL) can occur in any state resulting in a transition to Releasing state.

Abbreviations used for the events:

AC Address Collected;
AA Address Analysed;
0oSC originating Service Code;

OoREL originating RELease.

Figure 12: Application view on event reporting order Active State

In this state the following functions are applicable:
- The detection of a Address_Analysed initial indication criterion.
- On receipt of the "Address Analysed" indication the following functions are performed:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_ADDRESS ANALY SED then the event isreported and call leg processing is
suspended.

ii) WhentheP_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_ADDRESS ANALY SED then the event is notified and call leg processing
continues.

iii) WhentheP_CALL_MONITOR_MODE DO _NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_ADDRESS ANALY SED then no monitoring is performed.

- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

- In this state the routing information is interpreted, the authority of the calling party to establish this connection
is verified and the call leg connection is set up to the remote party.

- In this state a connection to the call party is established.

- Detection of a"terminating release” indication (not visible to the application) from remote party caused by a
network release event propagated from a terminating party, possibly resulting in an "originating release”
indication and causing the originating call leg STD to transit to Releasing state:

- Detection of a disconnect from the calling party.

ETSI

113 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

- Receipt of adeassign() method.
- Receipt of arelease() method.
- On receipt of the "originating_service code" indication the following functions are performed:

i) WhentheP CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_ORIGINATING_SERVICE_CODE then the event is reported and call leg processing
is suspended.

i) WhentheP_CALL_MONITOR _MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_ORIGINATING_SERVICE _CODED then the event is notified and call leg
processing continues.

iii) WhentheP_CALL_MONITOR_MODE_DO_NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_ORIGINATING_SERVICE_CODE then no monitoring is performed.

- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.
Exit events:

- Detection of an "originating release” indication as aresult of a disconnect from the calling party and a
"terminating release” indication as aresult of a disconnect from called party.

- Receipt of adeassign() method.
- Receipt of arelease() method from the application.

7.4.3.1.4 Releasing State
Entry events:

- Detection of an "Originating_Release" indication as a result of the network release initiated by calling party or
called party.

- Reception of the release() method from the application.

- A transition due to fault detection to this state is made when the Call leg object isin a state and no requests
from the application have been received during a certain time period (timer expiry).

Functions:

In this state the connection to the call party is released as requested by the network or by the application and the reports
are processed and sent to the application if requested.

When the Releasing state is entered the order of actionsto be performed is as follows:
i) the network release event handling is performed.

ii) the possible call leg information requested with getl nfoReq() and/or superviseReq() is collected and send to
the application.

iii) the callLegEnded() method is sent to the application to inform that the call leg object is destroyed.
In this state the following functions are applicable:;
- Thedetection of a"originating_release" initial indication criterion..
- On receipt of the "originating_release" indication the following functions are performed:
- The network release event handling is performed as follows:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_RELEASE then the event is reported and call leg processing is suspended.

ii) Whenthe P_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_RELEASE then the event is notified and call leg processing continues.

ETSI

114 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

iii) Whenthe P_CALL_MONITOR_MODE_DO_NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_RELEASE then no monitoring is performed.

Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

The possible call leg information requested with the getlnfoReq() and/or superviseReq() is collected and sent to
the application with respectively the getlnfoRes() and/or superviseRes() methods.

The callLegEnded() method is sent to the application after all information has been sent. In case that the
application has not requested additional call leg related information the call leg object is destroyed immediately
and additionally the application will also be informed that the connection has ended

In case of abnormal termination due to afault and the application requested for call leg related information
previously, the application will be informed that this information is not available and additionally the
application isinformed that the call leg object is destroyed (callLegEnded).

NOTE: Thecall in the network may continue or be released, depending e.g. on the call state.

In case the release() method is received in Releasing state it will be discarded. The request from the
application to release the leg isignored in this case because release of the leg is already ongoing.

Exit events:

In case that the application has not requested additional call leg related information the call leg object is
destroyed immediately and additionally the application isinformed that the call leg connection has ended, by
sending the callLegEnded() method.

After the sending of the last call leg information to the application the Call Leg object is destroyed and
additionally the application is informed that the call leg connection has ended, by sending the callLegEnded()
method.

ETSI

115 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

7.4.3.1.5 Overview of allowed methods, Originating Call Leg STD

State Methods allowed

Initiating
attachMediaReq (as a request),
detachMediaReq, (as a request)
getCall,

continueProcessing,

release (call leg),

deassign

eventReportReq,

getinfoReq,

setChargePlan,
setAdviceOfCharge,
superviseReq

Analysing
attachMediaReq (as a request),
detachMediaReq, (as a request)
getCall,

continueProcessing,

release (call leg),

deassign

eventReportReq,

getinfoReq,

setChargePlan,
setAdviceOfCharge,
superviseReq

Active attachMediaReq,
detachMediaReq,
getCall,
continueProcessing,
release

deassign
eventReportReq,
getinfoReq,
setChargePlan,
setAdviceOfCharge,
superviseReq

Releasing getCall,
continueProcessing,
release

deassign

ETSI

116 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

7.4.3.2 Terminating Call Leg

Terminating Call Leg. ﬁ

Idle .
terminatini
(9 IpMultiPartyCall .createCallLeg

routeReq

IpPAppMultiParty CallControlManager.r
‘terminating call attempt authorized', eportNotification(“terminating call
‘alerting’, ‘answer’, 'terminating seryice attempt"”, "terminating call attempt
code', 'redirected’, 'queued' authorised", "alerting”, "answer",
“terminating senice code",

Active “redirected", "queued")
(terminating)

attachMedia
detachMedia

IpMultiPartyCall.createAndRouteCallLegReq

‘network release’

All States release ‘ Releasing (terminating) .
(terminating) ‘timer expiry" ‘ do/ send reports if requested, or error reports if require. IpAppMultiPartyCallControlManager.

reportNotification(terminating
release)

NpAppCallLeg.callLegEnded

deasign

Transitions/events not shown: AN
All states:

continueProcessing, getLastRedirectedAddress, getCall, sending getinfoRes,
supeniseRes: no state change,

All states except Releasing:

eventReportReq, setAdviceOfCharge, getinfoReq, supeniseReq, setChargePlan.

When the application is notified in reportNotfication of an call related network event
associated with the Terminating Call Leg STD, then the Originating Call Leg STD is
created and is initialized to be in the Active state.

Figure 13: Terminating Leg

7.4.3.2.1 Idle (terminating) State
Entry events:
- Receipt of acreateCallLeg() method to start an application initiated call leg connection.
Functions:
In this state the call leg object is created and the interface connection isidled.
The application activity timer is being provided.
In this state the following functions are applicable:
- Invoking routeReq will result in arequest to actually route the call leg object.

- Resumption of call leg processing occurs on receipt of a routeReq() method.

ETSI

117 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Exit events:
- Receipt of arouteReq() method from the application.

- Application activity timer expiry indicating that no requests from the application have been received during a
certain period to continue processing.

- Receipt of adeassign() method.
- Receipt of arelease() method.
- Detection of a network release event being an "originating release” indication as aresult of a premature
disconnect from the calling party.
7.4.3.2.2 Active (terminating) State
Entry events:
- Receipt of an routeReq will result in actually routing the call leg object.
- Receipt of acreateAndRouteCallL egReq() method to start an application initiated call leg connection.

- Sending of areportNotification() method by the I pMultiPartyCall ControlManager for the following trigger
criteria: "Terminating_Call_Attempt”, "Terminating_Call_Attempt_Authorised”, "Alerting", "Answer",
"Terminating service code", "Redirected” and "Queued".

Functions:

In this state the routing information is interpreted, the authority of the called party to establish this connection is verified
for the call leg connection. In this state a connection to the call party is established whereby events from the network
may indicate to the application when the party is aerted (acknowledge connection setup) and when the party answer
(confirmation of connection setup).

Furthermore, in this state terminating service code events can be received.

The figure below shows the order in which network events may be detected in the Active state and depending on the
monitor mode be reported to the application.

ETSI

NOTE 1:
NOTE 2:

NOTE 3:

118 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

I

Active ' > $
State P’ Q » RD

4 .

4 note 3 N
tCA » tCAA » AL » ANS »| tREL
note 1
A 4
note 2 P tSC

Event tCA applicable as initial notification.

Only the detected service code or the range to which the service code belongs is disarmed as the service
code is reported to the application.

The release event (tREL) can occur in any state resulting in a transition to Releasing state.

Abbreviations used for the events:

tCA
tCA
AL

A

ANS

tRE
Q
RD
tSC

L

terminating Call Attempt;
terminating Call Attempt Authorized,;
Alerting;

Answer;

terminating RELease;

Queued;

ReDirected;

terminating Service Code.

Figure 14: Application view on event reporting order in Active State

In this state the following functions are applicable;

The detection and report of the "Terminating_Call_Attempt_Authorised" event indication whereby the
following functions are performed:

i)

When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_TERMINATING CALL_ATTEMPT_AUTHORISED then the event is reported and
call leg processing is suspended.

Whenthe P_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_TERMINATING CALL_ATTEMPT _AUTHORISED then the event is notified and
call leg processing continues.

iii) Whenthe P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_CALL_TERMINATING _ATTEMPT_AUTHORISED then no monitoring is performed.

Detection of an "Queued" indication as aresult of the terminating call being queued.

On receipt of the "Queued” indication the following functions are performed:

i)

i)

Whenthe P_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_QUEUED then the event is reported and call leg processing is suspended.

When the P_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_QUEUED then the event is notified and call leg processing continues.

iii) Whenthe P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_QUEUED then no monitoring is performed.

ETSI

119 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

- On receipt of the "Alerting" indication the following functions are performed:

i) WhentheP CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_ALERTING then the event is reported and call leg processing is suspended.

ii) WhentheP_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_ALERTING then the event is notified and call leg processing continues.

iii) WhentheP_CALL_MONITOR_MODE DO _NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_ALERTING then no monitoring is performed.

- Detection of an "Answer" indication as aresult of the remote party being connected (answered).
- On receipt of the "Answer" indication the following functions are performed:

i) WhentheP CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_ANSWER then the event is reported and call leg processing is suspended.

i) WhentheP_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_ANSWER then the event is notified and call leg processing continues.

iii) Whenthe P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_ANSWER then no monitoring is performed.

- The detection of a"service_code" trigger criterion suspends call leg processing.
- On receipt of the "service code" indication the following functions are performed:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_TERMINATING_SERVICE_CODE then the event is reported and call leg
processing is suspended.

i) WhentheP_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event

P_CALL_EVENT_TERMINATING_SERVICE_CODE then thisis not avalid event (that event is not

notified) and call leg processing continues.

iii) Whenthe P_CALL_MONITOR_MODE_DO_NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_TERMINATING_SERVICE_CODE then no monitoring is performed.

- On receipt of the "redirected” indication the following functions are performed:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_REDIRECTED then the event is reported and call leg processing is suspended.

ii) WhentheP_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_REDIRECTED then the event is notified and call leg processing continues.

iii) WhentheP_CALL_MONITOR_MODE DO _NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_REDIRECTED then no monitoring is performed.

- Resumption of call leg processing occurs on receipt of a continueProcessing() method.

Exit events:

- Detection of a network release event being an "terminating release” indication as aresult of the following
events:

i) Unableto select aroute or indication from the remote party of the call leg connection cannot be
presented (thisis the network determined busy condition)

ii) Occurrence of an authorisation failure when the authority to place the call leg connection was denied

(e.g. business group restriction mismatch).
iii) Detection of aroute busy condition received from the remote call leg connection portion.

iv) Detection of ano-answer condition received from the remote call leg connection portion.

ETSI

120 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

v) Detection that the remote party was not reachable.

- Detection of a network release event being an "originating release” indication as aresult of the following
events:

vi) Detection of a premature disconnect from the calling party.
- Receipt of adeassign() method.
- Receipt of arelease() method from the application.
- Detection of a network release event being an "originating release” indication as aresult of a disconnect from
the calling party or a"terminating release” indication as aresult of a disconnect from the called party.
7.4.3.2.3 Releasing (terminating) State
Entry events:

- Detection of a network release event being an "originating release” indication as a result of the network release
initiated by calling party or a"terminating release" indication as aresult of the network release initiated by
called party.

- Sending of the release() method by the application.

A transition due to fault detection to this state is made when the Call leg object awaits a request from the
application and this is not received within a certain time period.

- Detection of a network event being a "terminating release” indication as aresult of the following events:

i) Unableto select aroute or indication from the remote party of the call leg connection cannot be
presented (thisis the network determined busy condition).

ii) Occurrence of an authorisation failure when the authority to place the call 1eg connection was denied
(e.g. business group restriction mismatch).

iii) Detection of aroute busy condition received from the remote call leg connection portion.
iv) Detection of ano-answer condition received from the remote call leg connection portion.
v) Detection that the remote party was not reachable.

- Detection of a network release event being an "originating release” indication as aresult of the following
events:

vi) Detection of a premature disconnect from the calling party.
Functions:

In this state the connection to the call party is released as requested by the network or by the application
and the reports are processed and sent to the application if requested.

When the Releasing state is entered the order of actions to be performed is as follows:
i) therelease event handling is performed;

ii) thepossible call leg information requested with getl nfoReq() and/or superviseReq() is collected and send to
the application;

iii) the callLegEnded() method is sent to the application to inform that the call leg object is destroyed.

Where the entry to this state is caused by the application, for example because the application has requested the leg to
be released or deassigned or afault (e.g. timer expiry, no response from application) has been detected, then i) is not
applicable. In the fault case for action ii) error report methods are sent to the application for any possible requested
reports.

ETSI

121 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

In this state the following functions are applicable;

The detection of a"Terminating Release" trigger criterion.

On receipt of the network release event being a " Terminating Release” indication the following functions are
performed:

- The network release event handling is performed as follows:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_TERMINATING_RELEASE then the event is reported and call leg processing
is suspended.

ii) Whenthe P_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_TERMINATING_RELEASE then the event is notified and call leg processing
continues.

iii) WhentheP_CALL_MONITOR_MODE _DO_NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_TERMINATING_RELEASE then no monitoring is performed.

Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

The possible call leg information requested with the getlnfoReq() and/or superviseReq() is collected and sent
to the application with respectively the getinfoRes() and/or superviseRes() methods.

The callLegEnded() method is sent to the application after all information has been sent. In case that the
application has not requested additional call leg related information the call leg object is destroyed
immediately and additionally the application will also be informed that the connection has ended.

In case of abnormal termination due to afault and the application requested for call leg related information
previously, the application will be informed that this information is not available and additionally the
application isinformed that the call leg object is destroyed (callLegEnded).

NOTE: Thecal inthe network may continue or be released, depending e.g. on the call state.

In case the release() method is received in Releasing state it will be discarded. The request from the
application to release the leg isignored in this case because release of the leg is already ongoing.

Exit events:

In case that the application has not requested additional call leg related information the call leg object is
destroyed immediately and additionally the application isinformed that the call leg connection has ended, by
sending the callLegEnded() method.

After the sending of the last call leg information to the application the Call Leg object is destroyed and

additionally the application is informed that the call leg connection has ended, by sending the call LegEnded()
method.

ETSI

122

Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

7.4.3.2.4 Overview of allowed methods and trigger events, Terminating Call Leg STD

State

Methods allowed

Idle

routeReq,

getCall,
getCurrentDestinationAddress,
release,

deassign

eventReportReq,

getinfoReq,

setChargePlan,
setAdviceOfCharge,
superviseReq

Active

attachMediaReq
detachMediaReq
getCall,
getCurrentDestinationAddress,
continueProcessing,
release,

deassign
eventReportReq,
getinfoReq,
setChargePlan,
setAdviceOfCharge,
superviseReq

Releasing

getCall,
getCurrentDestinationAddress,
continueProcessing,

release,

deassign

7.5

7.5.1

List of Service Properties

Multi-Party Call Control Service Properties

The following table lists properties relevant for the MPCC API. These properties are additional to the properties of the
GCC, from which the MPCC is an extension.

Property Type Description

P_MAX_CALLLEGS PER _CALL INTEGER_SET Indicates how many parties can bein onecall.

P_UI_CALLLEG BASED BOOLEAN_SET |Value=TRUE : User interaction can be performed on leg level and a
reference to a CallLeg object can be used in the
IpUIManager.createUICall() operation.
Value= FALSE : No user interaction on leg level is supported.

P_ROUTING_WITH_CALLLEG OPERATIONS [BOOLEAN_SET |Vaue= TRUE : the atomic operations for routing a CallLeg are supported
{IpMultiPartyCall.createCallLeg(), IpCallLeg.eventReportReq(),
IpCallLeg.routeReq(), IpCallLeg.attachM ediaReq()}
Value = FALSE : the convenience function has to be used for routing a
CallLeg.

P_MEDIA_ATTACH_EXPLICIT BOOLEAN_SET |Value=TRUE : the CallLeg shall be explicitly attached to a Call.

Value= FALSE : the CallLeg is automatically attached to a Call, no
IpCallL eg.attachM ediaReq|() is needed when a party answers.

ETSI

123

Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

7.5.2 Service Property values for the CAMEL Service Environment

Implementations of the MultiParty Call Control API relying on the CSE of CAMEL phase 3 shall have the Service

Properties outlined above set to the indicated values:

> OPERATI ON_SET = {

"I pMil tiPartyCal |l Control Manager. createNotification',
"I pMil ti PartyCal | Control Manager. destroyNotification',
"I pMil ti PartyCal | Control Manager. changeNotification',
"I pMil tiPartyCall Control Manager.getNotification',

"I pMil ti PartyCal | Control Manager. set Cal | LoadControl"’
"IpMulti PartyCall.getCallLegs',

"IpMul ti PartyCall.createCallLeg',
"IpMultiPartyCall.createAndRout eCal | LegReq',
"IpMulti PartyCall.rel ease',
"IpMultiPartyCall.deassignCall’,

"IpMul ti PartyCall.getlnfoReq',

"IpMul ti PartyCall.set ChargePl an',

"IpMul ti PartyCall.set Advi ceOr Char ge',
"IpMultiPartyCall.superviseReq',

"I pCal |l Leg. routeReq',

pCal | Leg. event Report Req'

pCal | Leg. rel ease',

pCal | Leg. get | nfoReq',

pCal | Leg. getCal | ',

pCal | Leg. cont i nueProcessi ng'

}

P_TRI GGERI NG_EVENT_TYPES = {

P_CALL_EVENT ADDRESS_COLLECTED,
P_CALL_EVENT_ADDRESS_ANALYSED,

P_CALL_EVENT_ ORI G NATI NG_RELEASE,
P_CALL_EVENT_TERM NATI NG CALL_ATTEMPT_AUTHORI SED,
P_CALL_EVENT_TERM NATI NG_RELEASE

}

NOTE: P_CALL_EVENT_ORIGINATING_RELEASE only for the routing failure case,

TpReleaseCause = P_ROUTI NG_FAI LURE.

P_DYNAM C_EVENT_TYPES = {
P_CALL_EVENT ANSVER
P_CALL_EVENT ORI Gl NATI NG_RELEASE,
P_CALL_EVENT_TERM NATI NG_RELEASE

}

P_ADDRESS_PLAN = {
P_ADDRESS_PLAN_E164
}

P U _CALL_BASED = {
TRUE
}

P U _AT ALL_STAGES = {
FALSE
}

P_MEDI A TYPE = {
P_AUDI O
}

P_MAX_CALLLEGS PER CALL = {

0
2
}

P_U _CALLLEG BASED = {
FALSE
}

P_MEDI A ATTACH EXPLICI T = {
FALSE

}

ETSI

124 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

7.6 Multi-Party Call Control Data Definitions

This clause provides the MPCC data definitions necessary to support the API specification.
The general format of a data definition specification is described below.
. Data Type
This shows the name of the data type.
. Description
This describes the data type.
. Tabular Specification
This specifies the data types and values of the data type.
. Example
If relevant, an example is shown to illustrate the data type.

All data types referenced but not defined in this clause are either in the common call control data definitions clause of
the present document (clause 10) or in the common data definitions which may be found in ES 201 915-2.

7.6.1 Event Notification Data Definitions

No specific event notification data defined.
7.6.2 Multi-Party Call Control Data Definitions

7.6.2.1 IpCallLeg

Definesthe address of an | pCal | Leg Interface.

7.6.2.2 IpCallLegRef

DefinesaRef er ence to type IpCallLeg.

7.6.2.3 IpAppCallLeg

Definesthe address of an | pAppCal | Leg Interface.

7.6.2.4 IpAppCallLegRef

DefinesaRef er ence to type IpAppCallLeg.

7.6.2.5 IpMultiPartyCall

Definesthe addressof an| pMul ti PartyCal | Interface.

7.6.2.6 IpMultiPartyCallRef

DefinesaRef er ence to type IpMultiPartyCall.

7.6.2.7 IpAppMultiPartyCall

Definesthe address of an | pAppMul ti PartyCal | Interface.

ETSI

125 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

7.6.2.8 IpAppMultiPartyCallRef

DefinesaRef er ence to type IpAppMultiPartyCall.

7.6.2.9 IpMultiPartyCallControlManager

Definesthe addressof an| pMul ti Par t yCal | Cont r ol Manager Interface.

7.6.2.10 IpMultiPartyCallControlManagerRef

Definesa Ref er ence to type IpMultiPartyCall ControlManager.

7.6.2.11 IpAppMultiPartyCallControlManager

Definesthe address of an | pAppMul ti Part yCal | Cont r ol Manager Interface.

7.6.2.12 IpAppMultiPartyCallControlManagerRef

Defines aRef er ence to type IpAppMultiPartyCall ControlManager.

7.6.2.13 TpAppCallLegRefSet

Definesa Nunbered Set of Data El ements of IpAppCallLegRef.

7.6.2.14 TpMultiPartyCallldentifier
Defines the Sequence of Data Elements that unambiguously specify the Call object.

Sequence Element Sequence Element Sequence Element
Name Type Description
Cal | Ref erence I pMul ti PartyCal | Ref This element specifies the interface reference for the Multi-party call object.
Cal | Sessi onl D TpSessi onl D This element specifiesthe call session ID.

7.6.2.15 TpAppMultiPartyCallBack

Defines the Tagged Choice of Data Elements that references the application callback interfaces.

Tag Element Type
TpAppMul ti PartyCal | BackRef Type

Tag Element Value Choice Element Type Choice Element Name
P_APP_CALLBACK_UNDEFI NED NULL Undef i ned
P_APP_MULTI PARTY_CALL_CALLBACK IpAppMultiPartyCallRef AppMul ti PartyCal |
P_APP_CALL_LEG CALLBACK IpAppCallLegRef AppCal | Leg
P_APP_CALL_AND CALL_LEG CALLBACK TpAppCallLegCallBack AppMul ti PartyCal | AndCal | Leg

ETSI

126 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

7.6.2.16 TpAppMultiPartyCallBackRefType

Defines the type application call back interface.

Name Value Description
P_APP_CALLBACK_UNDEFI NED 0 Application Call back interface undefined
P_APP_MJULTI PARTY_CALL_CALLBACK 1 Application Multi-Party Call interface
referenced
P_APP_CALL_LEG CALLBACK 2 Application CallLeg interface referenced
P_APP_CALL_AND CALL_LEG CALLBACK 3 Application Multi-Party Call and CallLeg
interface referenced

7.6.2.17 TpAppCallLegCallBack

Defines the Sequence of Data Elements that references acall and acall leg application interface.

Sequence Element Name Sequence Element Type
AppMul ti PartyCal | | pAppMul ti PartyCal | Ref
AppCal | LegSet TpAppCal | LegRef Set Specifies the set of all call leg call back

references. First in the set isthe reference to
the call back of the originating callLeg. In
casethereisacall back to adestination call
leg thiswill be second in the set.

7.6.2.18 TpMultiPartyCallldentifierSet

DefinesaNunber ed Set of Data El enent s of TpMultiPartyCallldentifier.

7.6.2.19 TpCallAppinfo

Definesthe Tagged Choi ce of Data El enent s that specify application-related call information.

Tag Element Type
TpCal | Appl nf oType

Tag Element Choice Element Choice Element
Value Type Name

P_CALL_APP_ALERTI NG_MECHANI SM TpCal | Al erti ngMechani sm |Cal | AppAl erti ngMechani sm
P_CALL_APP_NETWORK_ACCESS_TYPE TpCal | Net wor kKAccessType |Cal | AppNet wor kAccessType
P_CALL_APP_TELE SERVI CE TpCal | Tel eServi ce Cal | AppTel eServi ce
P_CALL_APP_BEARER_SERVI CE TpCal | Bear er Servi ce Cal | AppBear er Servi ce
P_CALL_APP_PARTY_CATEGORY TpCal | Part yCat egory Cal | AppPart yCat egory
P_CALL_APP_PRESENTATI ON_ADDRESS TpAddr ess Cal | AppPr esent ati onAddr ess
P_CALL_APP_CENERI C_I NFO TpString Cal | AppGenericlnfo
P_CALL_APP_ADDI TI ONAL_ADDRESS TpAddr ess Cal | AppAddi ti onal Addr ess
P_CALL_APP_ORI G NAL_DESTI NATI ON_ADDRESS [TpAddress Cal | AppOri gi nal Desti nati onAddr ess
P_CALL_APP_REDI RECTI NG_ADDRESS TpAddr ess Cal | AppRedi recti ngAddr ess

ETSI

7.6.2.20 TpCallAppinfoType

Defines the type of call application-related specific information.

127

Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Name Value Description
P_CALL_APP_UNDEFI NED 0 Undefined
P_CALL_APP_ALERTI NG_MECHANI SM 1 The aerting mechanism or pattern to use
P_CALL_APP_NETWORK_ACCESS_TYPE 2 The network access type (e.g. ISDN)
P_CALL_APP_TELE SERVI CE 3 Indicates the tele-service (e.g. telephony)
P_CALL_APP_BEARER_SERVI CE 4 Indicates the bearer service (e.g. 64 kbit/s unrestricted data).
P_CALL_APP_PARTY_CATEGORY 5 The category of the calling party
P_CALL_APP_PRESENTATI ON_ADDRESS 6 The address to be presented to other call parties
P_CALL_APP_CENERI C_|I NFO 7 Carries unspecified service-service information
P_CALL_APP_ADDI TI ONAL_ADDRESS 8 Indicates an additional address
P_CALL_APP_ORI G NAL_DESTI NATI ON_ADDRESS 9 Contains the original address specified by the originating user when

launching the call.

P_CALL_APP_REDI RECTI NG_ADDRESS 10 Contains the address of the user from which the call is diverting.

7.6.2.21 TpCallAppinfoSet

DefinesaNunmber ed Set of Data El ement s of TpCallApplnfo.

7.6.2.22 TpCallEventRequest

Definesthe Sequence of Data El enent s that specify the criteriarelating to call report requests.

Sequence Element Name

Sequence Element Type

Cal | Event Type

TpCal | Event Type

Addi ti onal Cal | EventCriteria

TpAddi tional Cal | EventCriteria

Cal | Moni t or Mbde

TpCal | Moni t or Mode

7.6.2.23 TpCallEventRequestSet

Defines a Numbered Set of Data Elements of TpCallEventRequest.

ETSI

128 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

7.6.2.24 TpCallEventType

Defines a specific call event report type.

Name Valu Description
e
P_CALL_EVENT_UNDEFI NED 0 Undefined
P_CALL_EVENT_ORI G NATI NG_CALL_ATTEMPT 1 An originating call attempt takes place (e.g. Off-hook event).
P_CALL_EVENT_ORI G NATI NG_CALL_ATTEMPT_AUTHORI SED 2 An originating call attempt is authorised
P_CALL_EVENT_ADDRESS COLLECTED 3 The destination address has been collected.
P_CALL_EVENT_ADDRESS ANALYSED 4 The destination address has been analysed.
P_CALL_EVENT_ORI G NATI NG_SERVI CE_CODE 5 Mid-call originating service code received.
P_CALL_EVENT_ORI G NATI NG_RELEASE 6 A originating call/call leg isreleased
P_CALL_EVENT_TERM NATI NG_CALL_ATTEMPT 7 A terminating call attempt takes place
P_CALL_EVENT_TERM NATI NG_CALL_ATTEMPT_AUTHORI SED 8 A terminating call is authorized
P_CALL_EVENT_ALERTI NG 9 Call isalerting at the call party.
P_CALL_EVENT_ANSVER 10 Call answered at address.
P_CALL_EVENT_TERM NATI NG_RELEASE 11 A terminating call leg has been reeldeased or the call could not be
routed.
P_CALL_EVENT_REDI RECTED 12 Call redirected to new address: an indication from the network
that the call has been redirected to a new address (no events
disarmed as aresult of this).
P_CALL_EVENT_TERM NATI NG_SERVI CE_CODE 13 Mid call terminating service code received.
P_CALL_EVENT_QUEUED 14 The Call Event has been queued. (no events aredisarmed as a
result of this)

EVENT HANDLING RULES:

The following general event handling rules apply to dynamically armed events:

When requesting events for one leg;

When the monitor modeisset to P CALL_MONITOR_MODE_DO NOT_MONITOR al events armed for
that eventtype are disarmed. The additional EventCriteria are not taken into account.

When requesting two events for the same event type with different criteria and/or different monitor mode the
last used criteria and monitor mode apply.

Events that are not applicable to aleg are refused with exception P_INVALID_EVENT_TYPE. The same
exception is used when criteria are used that are not applicable to the leg,

E.g. requesting P_CALL_EVENT_TERMINATING_SERVICE_CODE on an originating leg is refused with
exception P_INVALID_CRITERIA.

When P_CALL_EVENT_ORIGINATING_RELEASE isrequested with P_BUSY in the criteriathe request is
refused with the same exception.

When receiving events:

If an armed event is met, then it is disarmed, unless explicit stated that it will not to be disarmed.
If an event is met that causes the release of the related leg, then al events related to that leg are disarmed.

When an event is met on acall leg irrespective of the event monitor mode, then only events belonging to that
call leg may become disarmed (see table below).

If acall isreleased, then all eventsrelated to that call are disarmed.

NOTE: Event disarmed means monitor modeis set to DO_NOT_MONITOR. and event armed means monitor

mode is set to INTERRUPT or NOTIFY.

The table below defines the disarming rules for dynamic events. In case such an event occurs on acall leg the table
shows which events are disarmed (are hot monitored anymore) on that call leg and should be re-armed by
eventReportReq() in case the application is still interested in these events.

ETSI

129 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Event Occurred

Events Disarmed

P_CALL_EVENT_UNDEFI NED

Not Applicable

P_CALL_EVENT ORI G NATI NG CALL_ATTENPT

Not applicable, can only be armed astrigger

P_CALL_EVENT_ ORI G NATI NG CALL_ATTEMPT_AUTHORI SED

P_CALL_EVENT_ ORI Gl NATI NG CALL_ATTEMPT_AUTHORI SED

P_CALL_EVENT_ADDRESS_COLLECTED

P CALL_EVENT _ADDRESS COLLECTED

P_CALL_EVENT_ADDRESS_ANALYSED

P CALL_EVENT _ADDRESS COLLECTED
P CALL_EVENT ADDRESS ANALYSED

P_CALL_EVENT ALERTI NG

P _CALL_EVENT ALERTING
P_CALL_EVENT__TERMINATING RELEASE with criteria
P_USER NOT_AVAILABLE

P_BUSY

P_NOT_REACHABLE

P_ROUTING_FAILURE

P_CALL_RESTRICTED

P_UNAVAILABLE_RESOURCES

P_CALL_EVENT_ANSVER

P _CALL_EVENT ALERTING

P_CALL_EVENT ANSWER
P_CALL_EVENT_TERMINATING_RELEASE with criteria:
P_USER_NOT_AVAILABLE

P BUSY

P_NOT_REACHABLE

P_ROUTING_FAILURE

P_CALL_RESTRICTED

P_UNAVAILABLE_RESOURCES

P_NO_ANSWER

P_CALL_EVENT_OR G NATI NG_RELEASE

All pending network events for the call leg are disarmed

P_CALL_EVENT_TERM NATI NG_RELEASE

All pending network events for the call leg are disarmed

P_CALL_EVENT ORI G NATI NG_SERVI CE_CODE

P_CALL_EVENT_ORI G NATI NG_SERVI CE_CODE *) see note

P_CALL_EVENT TERM NATI NG_SERVI CE_CODE

P_CALL_EVENT_TERMINATING_SERVICE_CODE *) see note

NOTE:

Only the detected service code or the range to which the service code belongs is disarmed.

ETSI

130

7.6.2.25 TpAdditionalCallEventCriteria

Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Definesthe Tagged Choi ce of Data El enent s that specify specific criteria.

Tag Element Type

TpCal | Event Type

Tag Element

Choice Element

Choice Element

Value Type Name
P_CALL_EVENT_UNDEFI NED NULL Undefined
P_CALL_EVENT ORI G NATI NG CALL_ATTENPT NULL Undefined
P_CALL_EVENT ORI Gl NATI NG CALL_ATTEMPT_AUTHORI SED NULL Undefined
P_CALL_EVENT_ADDRESS COLLECTED Tpl nt 32 MinAddress_ength
P_CALL_EVENT ADDRESS ANALYSED NULL Undefined
P_CALL_EVENT_ORI G NATI NG_SERVI CE_CCDE TpCal | Servi ceCodeSet QriginatingServiceCode
P_CALL_EVENT ORI G NATI NG RELEASE TpRel easeCausesSet OriginatingReleaseCaviseSet
P_CALL_EVENT_TERM NATI NG CALL_ATTEMPT NULL Undefined
P_CALL_EVENT TERM NATI NG CALL_ATTEMPT AUTHORI SED NULL Undefined
P_CALL_EVENT_ALERTI NG NULL Undefined
P_CALL_EVENT_ANSVER NULL Undefined
P_CALL_EVENT_TERM NATI NG RELEASE TpRel easeCauseSet TerminatingRel easeCauseSet
P_CALL_EVENT_REDI RECTED NULL Undef i ned
P_CALL_EVENT_TERM NATI NG_SERVI CE_CCDE TpCal | Servi ceCodeSet | Ter ni nat i ngSer vi ceCode
P_CALL_EVENT_QUEUED NULL Undef i ned

7.6.2.26 TpCallEventinfo

Definesthe Sequence of Data El ement s that specify the event report specific information.

Sequence Element
Name

Sequence Element
Type

Cal | Event Type

TpCal | Event Type

Addi tional Cal | Event | nfo

TpCal | Addi ti onal EventInfo

Cal | Moni t or Mode

TpCal | Moni t or Mode

Cal | Event Ti me

TpDat eAndTi ne

ETSI

7.6.2.27 TpCallAdditionalEventinfo

131 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Definesthe Tagged Choi ce of Data El enent s that specify additional call event information for certain types

of events.

Tag Element Type

TpCal | Event Type

Tag Element

Choice Element

Choice Element

Value Type Name
P_CALL_EVENT_UNDEFI NED NULL Undefined
P_CALL_EVENT ORI Gl NATI NG CALL_ATTENPT NULL Undefined
P_CALL_EVENT ORI G NATI NG CALL_ATTEMPT_AUTHORI SED NULL Undefined
P_CALL_EVENT_ADDRESS COLLECTED TpAddr ess CollectedAddress
P_CALL_EVENT ADDRESS ANALYSED TpAddr ess CalledAddress

P_CALL_EVENT ORI G NATI NG_SERVI CE_CODE

TpCal | Servi ceCode

OriginatingServiceCode

P_CALL_EVENT_ORI G NATI NG_RELEASE

TpRel easeCause

OriginatingRel easeCause

NULL

P_CALL_EVENT_TERM NATI NG _CALL_ATTEMPT Undefined
P_CALL_EVENT TERM NATI NG CALL_ATTEMPT AUTHORI SED NULL Undefined
P_CALL_EVENT_ALERTI NG NULL Undefined
P_CALL_EVENT_ANSWER NULL Undefined
P_CALL_EVENT_TERM NATI NG_RELEASE TpRel easeCause TerminatingReleaseCause
P_CALL_EVENT_REDI RECTED TpAddr ess ForwardAddress
P_CALL_EVENT_TERM NATI NG_SERVI CE_CCDE TpCal | Servi ceCode TerminatingServiceCode
P_CALL_EVENT QUEUED NULL Undefined
7.6.2.28 TpCallNotificationRequest
Defines the Sequence of Data Elements that specify the criteria for an event notification.
Sequence Element Name Sequence Element Type Description

Cal I Noti fi cati onScope

TpCal | Noti fi cati onScope

Defines the scope of the notification request.

Cal | Event sRequest ed

TpCal | Event Request Set

Defines the events which are requested

7.6.2.29 TpCallNotificationScope

Defines a the sequence of Data elements that specify the scope of a notification request.

Of the addresses only the Plan and the AddrString are used for the purpose of matching the notifications against the

criteria.

Sequence Element

Sequence Element

Description

Name Type
Dest i nat i onAddr ess TpAddr essRange Defines the destination address or address range for which the notification is
requested.
Origi nati ngAddr ess TpAddr essRange Defines the origination address or address range for which the notification is
requested.

ETSI

132

7.6.2.30 TpCallNotificationInfo

Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Definesthe Sequence of Data El enent s that specify the information returned to the application in a Call

notification report.

Sequence Element

Sequence Element

Description

Name Type
Cal I Noti ficati onReport Scope TpCal | Noti fi cati onReport Scope Defines the scope of the notification report.
Cal | Appl nf o TpCal | Appl nf oSet Contains additional call info.

Cal | Event I nfo

TpCal | Event | nfo

Contains the event which is reported.

7.6.2.31 TpCallNotificationReportScope

Definesthe Sequence of Data El enent s that specify the scope for which a notification report was sent.

Sequence Element Sequence Element Description

Name Type
Dest i nat i onAddr ess TpAddr ess Contains the destination address of the call.
Ori gi nati ngAddr ess TpAddr ess Contains the origination address of the call

7.6.2.32 TpNotificationRequested

Defines the Sequence of Data Elements that specify the criteria relating to event requests.

Sequence Element

Sequence Element

Name Type
AppCal | Noti fi cati onRequest TpCal | Noti fi cati onRequest
Assi gnnent | D Tpl nt 32
7.6.2.33 TpNotificationRequestedSet
Defines a numbered Set of Data Elements of TpNotificationRequested.
7.6.2.34 TpReleaseCause
Defines the reason for arelease.
Name Value Description
P_UNDEFI NED 0 The reason of release is not known, because no info was received from the network.
P_USER _NOT_AVAI LABLE 1 The user is not available in the network. This means that the number is not allocated or that the user is
not registered.
P_BUSY 2 The user is busy.
P_NO_ANSVEER 3 No answer was received
P_NOT_REACHABLE 4 The user terminal is not reachable
P_ROUTI NG_FAI LURE 5 A routing failure occurred. For example an invalid address was received
P_PREVATURE_DI SCONNECT 6 The user disconnected the call/call leg during the setup phase.
P_DI SCONNECTED 7 A disconnect was received.
P_CALL_RESTRI CTED 8 The call was subject of restrictions
P_UNAVAI LABLE_RESOURCE 9 The request could not be carried out as no resources were available.
P_GENERAL_FAI LURE 10 A general network failure occurred.
P_TI MER_EXPI RY 11 The call/call leg was released because an activity timer expired.

7.6.2.35 TpReleaseCauseSet

Defines a Numbered Set of Data Elements of TpReleaseCause.

ETSI

133

7.6.2.36 TpCallLegldentifier

Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Defines the Sequence of Data Elements that unambiguously specify the Call Leg object.

Sequence Element Sequence Element Sequence Element

Name Type Description
Cal | LegRef erence | pCal | LegRef This element specifiesthe interface reference for the callLeg object.
Cal | LegSessi onl D TpSessi onl D This element specifiesthe callLeg session ID.

7.6.2.37 TpCallLegldentifierSet

DefinesaNunber ed Set of Data El enents of TpCallLegldentifier.

7.6.2.38 TpCallLegAttachMechanism
Defines how a CallLeg should be attached to the call.

Name Value

Description

P_CALLLEG ATTACH | MPLI CI TLY 0

CallLeg should be attached implicitly to the call.

P_CALLLEG ATTACH _EXPLI CI TLY 1

call.

CallLeg should be attached explicitly to the call by using the attachM ediaReq() operation. This
allows e.g. the application to do first user interaction to the party before he/sheis placed in the

7.6.2.39 TpCallLegConnectionProperties

Defines the Sequence of Data Elements that specify the connection properties of the Call Leg object.

Sequence Element
Type

Sequence Element
Name

Sequence Element
Description

At t achMechani sm

TpCal | LegAt t achMechani sm

Defines how a CallLeg should be attached to the call.

7.6.2.40 TpCallLegIinfoReport

Definesthe Sequence of Data El enent s that specify the call leg information requested.

Sequence Element
Type

Sequence Element
Name

Description

Cal | Legl nf oType TpCal | Legl nf oType

The type of call leg information.

Cal | LegStart Ti me TpDat eAndTi e

The time and date when the call leg was started (i.e. the leg was routed).

Cal | LegConnect edToResour ceTi e TpDat eAndTi e

The date and time when the call leg was connected to the resource. If no
resource was connected the time is set to an empty string.
Either this element isvalid or the CallLegConnectedToAddressTime is
valid, depending on whether the report is sent as a result of user
interaction.

Cal | LegConnect edToAddr essTi e TpDat eAndTi e

The date and time when the call leg was connected to the destination (i.e.
when the destination answered the call). If the destination did not answer,
thetimeis set to an empty string.

Either this element isvalid or the CallConnectedToResourceTimeis
valid, depending on whether the report is sent as a result of user
interaction.

Cal | LegEndTi e TpDat eAndTi e

The date and time when the call leg was released.

Connect edAddr ess TpAddr ess

The address of the party associated with the leg. If during the call the
connected address was received from the party then thisis returned,
otherwise the destination address (for legs connected to a destination) or
the originating address (for legs connected to the origination) is returned.

Cal | LegRel easeCause TpRel easeCause

The cause of the termination. May be present with
P CALL_LEG_INFO RELEASE CAUSE was specified.

Cal | Appl nfo TpCal | Appl nf oSet

Additional information for the leg. May be present with
P CALL LEG INFO APPINFO was specified.

ETSI

7.6.2.41 TpCallLegIinfoType

134

Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Defines the type of call leg information requested and reported. The values may be combined by alogical "OR"

function.
Name Value Description
P_CALL_LEG | NFO_UNDEFI NED 00h Undefined
P_CALL_LEG | NFO_TI MES 01h Relevant call times
P_CALL_LEG | NFO RELEASE_CAUSE 02h Call leg release cause
P_CALL_LEG | NFO_ADDRESS 04h Call leg connected address
P_CALL_LEG | NFO_APPI NFO 08h Call leg application related information

7.6.2.42 TpCallLegSuperviseTreatment

Defines the treatment of the call leg by the call control service when the call leg supervision timer expires. The values

may be combined by alogical "OR" function.

Name Value Description
P_CALL_LEG SUPERVI SE_RELEASE 01h Release the call leg when the call leg supervision timer expires
P_CALL_LEG SUPERVI SE_RESPOND 02h Notify the application when the call leg supervision timer expires
P_CALL_LEG SUPERVI SE_APPLY_TONE 04h Send awarning tone on the call leg when the call leg supervision timer

expires. If call leg release is requested, then the call leg will be released
following the tone after an administered time period

8 MultiMedia Call Control Service

8.1 Sequence Diagrams

8.1.1 Barring for media combined with call routing, alternative 1

This sequence illustrates how one application can influence both the call routing and the media stream establishment of

one call.

In this sequence there is one application handling both the media barring and the routing of the call.

ETSI

135 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

: (Logical - - - - o
View::IpAppLogic) IpAppMultiMediaCallControlManager| |I[pAppMultiMediaCallLeg QNultiMediaCaIIControIManageJ IpMultiMediaCall | |IpMultiMediaCallLeg
L 1:new() ‘
L‘J 2: createNotification() ‘ ‘
‘ 3: reportNotii*cation() /I-H
.

N e a &~ w0

®

10:
11:

12:

T
| 4: "forward event" ‘

5:new()

]

6: mediafitream MonitorReq()

7: mediaStreamMonitorRes()

8: "forward event"

9: meJiaStreamAllow()

4

|

10: createAndRouteCJllLegReq()
L
12: "forWer event" ‘

11: meEiaStreamMonitorRes()
|

13 rnediaStreamAllovv()

\
1 |
| |

|
|
|
|
|
* T
+
y
| |
| |

The application creates a AppMultiMediaCall Control M anager interface in order to handle callback methods.

The application expressesinterest in al calls from subscriber A. Since createNotification is used and not
createMediaNotification al calls are reported regardless of the media used.

A makes acall with the SIP INVITE with SDP media stream indicating video. The application is notified.
The event is forwarded to the application.

The application creates a new AppMultiMediaCallL eg interface to receive callbacks.

The application sets a monitor on video media streams to be established (added) for the indicated leg.

Since the video media stream was included in the SIP invite, the media streams monitored will be returned in
the monitor result.

The event is forwarded to the application.

The application denies the video media stream, i.e. it is not included in the allowed media streams. This
corresponds to removing the media stream from the setup.

The application requests to reroute the call to a different destination (or the same one, etc.).

Later in the call the A party tries to establish alower bandwidth video media stream. Thisis again reported
with MediaStreamMonitorRes.

The event is forwarded.

ETSI

136 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

13. Thistime the application alows the establishment of the media stream by including the media stream in the
allowed list.
8.1.2 Barring for media combined with call routing, alternative 2

This sequence illustrates how one application can influence both the call routing and the media establishment of one
call.

Media establishment and call establishment are regarded separately by the application.

From the gateway point of view it can actually be regarded as two separately triggered applications, one for media
control and one for routing. Thisis also the way that it is shown here, for clarity.

However, an implementation of the application could combine the medialogic and call logic in one object.

s | | e | ni

20:"forward event'

4
g
I — S —— el

1. Theapplication creates a new AppMultiMediaCall ControlManager interface.
2: Theapplication expressesinterest in al calls from subscriber A for rerouting purposes.

3: Theapplication creates a new AppMultiMediaCallControlManager interface. Thisisto be used for the media
control only.

4. Separately the application expresses interest is some media streams for calls from and to A. The request
indicates interrupt mode.

ETSI

© o N o

11:
12:

14:

15:
16:
17:
19:
20:
21:

22:

137 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Subscriber A makes a call with the SIP INVITE with SDP media stream indicating video. Since the media
establishment is combined with the SIP INVITE message, both applications are triggered (not necessarily in
the order shown).

Here the call application is notified about the call setup.

The event is forwarded to the call control application.

The call control application creates a new AppMultiMediaCall interface.

The call control application creates a new AppMultiMediaCallLeg interface.

The media application is notified about the call setup. All media streams from the setup will be indicated.
The event is forwarded to the media application.

The call control application creates a new AppMultiMediaCallLeg interface.

The call application decides to reroute the call to another address. Included in the request are monitors on
answer and call end.

However, since the media was also triggered in mode interrupt the call will not proceed until the media
streams are confirmed or rejected.

The application allows the audio media stream, but refuses the high bandwidth video, by excluding it from the
alowed list. Since both call processing and media handling is now acknowledged, the call routing can
continue (with a changed SDP parameter reflecting the manipulated media).

The Media application is no longer interested in the call.

When the B subscriber answers the call application is notified.

The event is forwarded to the call application.

When later in the call A triesto establish alower bandwidth video stream the media application is triggered.
Thetriggering is forwarded to the media application.

The application now allows the establishment of the media stream by including the media stream in the
mediaStreamAllow list.

The media application is no longer interested in the call.

ETSI

138 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

8.1.3 Barring for media, simple

This sequence illustrates how an application can block the establishment of video streams for a certain user.

: (Logical = = = =
View::IpAppLogic) IpAppM ultiMediaCall ControlManager || IpMultiMediaCallControlMan... IpMultiMediaCall | | IpMukiMediaCallLeg

1: new() ‘ ‘

2: createIVI/eLJ;JiiaNotiﬁcation() ‘

| o

3: reportMediaN atification(‘

\)
‘ 4: "forward event" ‘J J“J
‘ 5: mediaStreamAllow(")
| |

6: deassignCall()

|
| |
| |
| |
| |
| |
| b
g |
| |
| |

1. Theapplication starts a new AppMultiMediaCall ControlManager interface for reception of callbacks.

2: Theapplication expressesinterest in al calls from or to subscriber A that use video. The just created App
interface is given as the callback interface.

3: Subscriber A makes acall with the SIP INVITE with SDP media stream indicating video.
4: Themessage is forwarded to the application.

5. The application indicates that the setup of the media stream is not allowed by not including the media stream
in the allowed list. This has the effect of suppressing the video capabilities in the setup.

6: Theapplicationisno longer interested in the call.

New attempts to open video streams will again be indicated with a reportMediaNotification.

ETSI

139 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

8.14 Call Volume charging supervision
This sequence illustrates how an application may supervise a call based on the number of bytes that are exchanged.

NOTE: Inthe sequence diagram below, a single box represents both an IpAppCall and an IpAppCallLeg for
space reasons.

1 MediaCall :
IpApp MuitiMediaCallL eg

LD ical
Vlew IDADDLomc)

IgU IManager :

allLeg

: IpAppUICall
| A MultiMediaC IIComroIMana

I
/IT‘ 2: setCalllback()
I
|
|

: IpuiCall ‘

IpMultiMediaCallControlMan... IpMulti Medlacall

= ‘ ‘ /I-ﬁ ‘ ‘
! U
4: creal‘ecall() ‘ ‘ ‘ ‘
|

|
=

5: crsateAndRuuteCaIILegReF()

|

B ‘forward event'

10: new()

|
7 FvemReponRes()
I

‘ 9¢ ealeArdRuuteCalLegR%q()

11

I
‘| evemReponRes() H—‘

12 “forward event”

|

B: superviseVolumeReq()

|
|
%
\
|
|
|

15: "forward event”

J

|

16: createUlICall()

14: superv |seVollAmeRes()

17: 54ndlmoAmColec|Req(

18 sendinfoAndCdlectRes()

I
19: "forward event” ‘J

20: release()

04— — — —

22 release()

-y

el N R —l:—;

41: superv |seV0\umeReq¥)
| |

The application creates a new interface to receive callbacks on the call control manager.
The created interface is set as the callback interface for the call control manager.
The application creates a new interface to receive callback on the call.

The application requests the creation of a call.

The application initiates the call by routing to the origination. Thiswill implicitly create acall leg. The
application requests a notification when the party answers.

7: Whenthe A party answers the application is notified.

ETSI

11:
12:
13:

14:
15:
17:

18:
19:
20:
21:

22:

140 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

The message is forwarded to the logic.

The application also routes the call to the destination. Thisimplicitly creates a call leg. The application
requests to be notified on answer of the B-party.

When the B-party answers the application is notified.
The message is forwarded to the logic.

The application requests to supervise the call. In the request the application specifies alimit on the amount of
bytes that may be transferred. The application specifies that if the limit is reached the application should be
notified.

When the limit is reached a notification is send to the application.
The message is forwarded to the logic.

The application plays an announcement to the user, asking whether the user wants to end the call or continue
the call.

When the user answers whether the call should continue.
The message is forwarded to the logic.
The Ulcall isreleased, since no further announcements are needed.

In case the user answers that the call should continue, the supervision is reset with a new maximum number of
allowed bytes. (Note that this might have charging consequences, not shown).

If the user answered that the call should not continue, the call is released.

ETSI

8.2

Class Diagrams

<<Interface>>
IpAppMultiP artyC allControlManager

(from mpccs) (from mpccs) -sventReportErrO
o N [#®attachMediaRes ()
[®reportNotification() __ < I#getinfoRes() | [#®attachMediaErr()
[#callAborted() [#getinfoErr() [#®detachMediaRes ()
l:anagerlnterruptedo tuperviseRes() wetachMediaErr()
anagerResumed() uperviseErr() etinfoRes()
[#calloverloadEncountered() [#callEnded() [#getinfoErr()

[®callOverloadCeased()

141 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

<<Interface>>
IpAppMultiPartyCall

[#®createAndRouteCallLegErr()

<<Interface>>
IpAppCallLeg

(from mpccs)

[#eventReportRes()

[®outeErr()

[upeniseRes()
s upeniseErr()
[#callLegEnded()

<<Interface>>
IpAppMultiMediaCall

(from mmccs)

<<Interface>>
IpAppMultiMediaCallC ontrol Manager

(from mmccs)

<<Interface>>
IpAppMultiMediaCallLeg

(from mmccs)

[#supeniseVolumeRes()
[#supeniseVolumeErr()

[FreportMediaNotification() [®mediaStream MonitorRes ()

/ \ 4\
<<uses>>
<<uses>>

' <'<Interface>> ‘ <<Interface>>
IpMultiMediaCallControlManager IpMultiMediaCallLeg

(from mmccs)
(from mmccs)

‘ <<uses>>

<<Interface>>
IpMultiMediaCall
(from mmccs)
[#createMediaNotification() l:

[estroyMediaNotification())
[#changeMediaNotification() MlsupenisevolumeRedq0
[®getMediaNotification()

ediaStreamAllow()
ediaStreamMonitorReq()
[#getMediaStreams ()

Figure 15: Application Interfaces

ETSI

8.3

<<Interface>>
IpMultiPartyCallControlManager
(from mpccs)

142

®ereateCall()
rreateNotification()
*d estroyNotification()
*rhangeNotification()
|y etNotification()
#etCallLoadControl ()

<<Interface>>
IpMultiPartyCall
(from mpccs)

JA

WgetCallLegy)
®oreateCallLeg()
*®createAndRouteCall LegReq()
el ease ()

#deassi gnCall()
®ygetinfoReq()
#setChargePlan()
HsetAdviceOfCharge()
|supervi 2Req()

<<Interface>>
IpMultiMediaCallControl Manage r
(from mmccs)

> (from mmccs)

<<Interface>>
IpM ulti Me diaCall 1

Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

<<Interface>>
IpCallLeg
(from mpccs)

MouteReq ()

e ventReportReq()
Hrelease()
®yetinfoReq()
HyetCall()
*attachMediaReq()
*etachMediaReq()
®yetCurentDestinationAddress()
rontinueProcessing()
HsetChargePlan()

e tAdviceOfCharge()
®superviseReq()
®eassign()

<<Interface>>
IpMultiMediaCallLeg
(from mmeccs)

<<Interface>>

n IpMultiMediaStream

(from mmccs)

®reateMediaNotification()
®restroyMediaNotification()
changeMediaNotification ()
®|yetMediaNotification()

M ediaStreamAllow()
®mediaStreamMonitorReq() Mubtract()
#getMediaStreams()

®uperviseVolumeReq()

Figure 16: Service Interfaces

MultiMedia Call Control Service Interface Classes

The MultiMedia Call Control service enhances the functionality of the MultiParty Call Control Service with
multi-media capabilities.

The MultiMedia Call Control Service is represented by the | pMultiMediaCall ControlManager, IpMultiMediaCall,
IpMultiMediaCallLeg and IpMultiMediaStream interfaces that interface to services provided by the network. Some
methods are asynchronous, in that they do not lock athread into waiting whilst a transaction performs. In this way, the
client machine can handle many more calls, than one that uses synchronous message calls. To handle responses and
reports, the developer must implement 1pAppM ultiM ediaCall Control Manager, |pAppMultiMediaCall and
IpAppMultiMediaCallLeg to provide the callback mechanism.

To handle the multi-media aspects of a call the concept of media stream isintroduced. A media stream is bi-directional
media stream and is associated with acall leg. These media streams are usually negotiated between the terminalsin the
call. The multi-party Call Service gives the application control over the media streams associated with the legsin a
multi-media call in the following way:

the application can be triggered on the establishment of a media stream that meets the application defined
characteristics,

the application can monitor on the establishment (addition) or release (subtraction) of media streams of an
ongoing cal;

the application can allow or deny the establishment of media streams (provided the stream establishment was
monitored/notified in interrupt mode);

the application can explicitly subtract already established media streams;

the application can request the media streams associated with a specific leg.

ETSI

143 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

8.3.1 Interface Class IpMultiMediaCallControlManager
Inherits from: IpMultiPartyCall ControlManager.

The Multi Media Call Control Manager is the factory interface for creating multimedia calls. The multi-media call
control manager interface provides the management functions to the multi-media call control service. The application
programmer can use thisinterface to create, destroy, change and get media stream related notifications.
Thisinterface shall be implemented by a Multi Media Call Control SCF. As a minimum requirement the

createM ediaNotification() and destroyM ediaNotification() methods shall be implemented. The minimum required
methods from IpMultiPartyCall ControlManager are also required.

<<Interface>>

IpMultiMediaCallControlManager

createMediaNotification (applnterface : in IpAppMultiMediaCallControlManagerRef, notificationMediaRequest
. in TpNotificationMediaRequest) : TpAssignmentID

destroyMediaNoatification (assignmentID : in TpAssignmentID) : void

changeMediaNoatification (assignmentID : in TpAssignmentID, notificationMediaRequest : in
TpNotificationMediaRequest) : void

getMediaNotification () : TpMediaNotificationRequestedSet

Method
creat eMedi aNot i fication()

This method is used to create media stream notifications so that events can be sent to the application.

This applies both to callsetup media (e.g. SIP initial INVITE or H.323 with faststart) and for media setup during the
call.

Thisisthefirst step an application has to do to get initial notifications of media streams happening in the network.
When such an event happens, the application will be informed by reportMediaNotification(). In case the application is
interested in other events during the context of a particular call session it has to use the mediaStreamM onitorReq()
method on the Multi-Media call leg object.

The createM ediaNotification method is purely intended for applications to indicate their interest to be notified when
certain media stream eventstake place. It is possible to subscribe to a certain media stream event for a whole range of
addresses, e.g. the application can indicate it wishesto be informed when acall is made to any number starting with
800.

If some application already requested notifications with criteria that overlap the specified criteria, the request is refused
with P_INVALID_CRITERIA. The criteriaare said to overlap if both originating and terminating ranges overlap and
the same number plan is used.

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used.
In case the createM ediaNotification contains no callback, at the moment the application needs to be informed the
gateway will use as callback the one that has been registered by setCallback().

Returns assignment| D: Specifies the ID assigned by the multi-media call control manager interface for this
newly-created notification.

ETSI

144 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Parameters

applnterface : in I pAppMilti Medi aCal | Control Manager Ref
Specifies areference to the application interface, which is used for callbacks.

notificati onMedi aRequest : in TpNotificati onMedi aRequest

The mediaMonitorMode is a parameter of TpM ediaStreamRequest and can be in interrupt or in notify mode. If in
interrupt mode the application has to specify which media streams are alowed by calling mediaStreamAllow on the
callLeg.

The notificationM ediaRequest parameter specifies the event specific criteria used by the application to define the event
required. Thisisthe media portion of the criteria. Only events that meet the notificationM ediaRequest are reported.

Individual addresses or address ranges may be specified for the destination and/or origination.

Returns
TpAssi gnnment | D
Raises

TpConmonExcept i ons, P_I NVALI D CRI TERI A, P_I NVALI D_| NTERFACE_TYPE
P_I NVALI D_EVENT_TYPE

Method
destroyMedi aNoti fi cation()

This method is used by the application to disable Multi Media Channel notifications.

Parameters

assignmentI D : in TpAssignnmentlD

Specifies the assignment ID given by the Multi Media call control manager interface when the previous
enableM ediaNotification was called. If the assignment 1D does not correspond to one of the valid assignment 1Ds, the
exception P_INVALID_ASSIGNMENTID will be raised.

Raises
TpComonExcept i ons

Method
changeMedi aNot i fication()

This method is used by the application to change the event criteria introduced with createM ediaNotification. Any stored
criteria associated with the specified assignmentID will be replaced with the specified criteria

Parameters

assignmentI D : in TpAssignnmentlD

Specifies the ID assigned by the multi-media call control manager interface for the media stream notification. If two
callbacks have been registered under this assignment 1D both of them will be changed.

notificati onMedi aRequest : in TpNotificati onMedi aRequest

Specifies the new set of event specific criteria used by the application to define the event required. Only events that
meet these criteria are reported.

ETSI

145 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Raises
TpCommonExcepti ons, P_I NVALI D_ASSI GNVENT | D, P_I NVALI D_CRI TERI A,
P_| NVALI D_EVENT_TYPE

Method
get Medi aNot i fication()

This method is used by the application to query the event criteria set with createM ediaNotification or
changeM ediaNotification.

Returns notificationsM ediaRequested: Specifies the notifications that have been requested by the application.

Parameters
No Parameters were identified for this method.

Returns

TpMedi aNot i fi cati onRequest edSet

Raises

TpComonExcept i ons

8.3.2 Interface Class IpAppMultiMediaCallControlManager
Inherits from: | pAppM ultiPartyCall Control Manager.

The Multi Media call control manager application interface provides the application call control management functions
to the multi mediacall control service.

<<Interface>>

IpAppMultiMediaCallControlManager

reportMediaNotification (callReference : in TpMultiMediaCallldentifier, callLegReferenceSet : in
TpMultiMediaCallLegldentifierSet, mediaStreams : in TpMediaStreamSet, type : in
TpMediaStreamEventType, assignmentID : in TpAssignmentlID) : TpAppMultiMediaCallBack

Method
report Medi aNoti fication()

This method is used to inform the application about the establishment of media streams.

If the corresponding monitor was in interrupt mode, then the application hasto allow or deny the streams using
mediaStreamAllow() method.

Returns appMultiMediaCalIBack: Specifies references to the application interface which implements the callback
interface for the new multi-media call and/or new call leg. This parameter may be null if the notification is being given
in NOTIFY mode. If the application has previously explicitly passed areference to the callback interface using a
setCallbackWithSessionl D() invocation, this parameter may be set to null, or if supplied must be the same as that
provided during the setCallbackWithSessionl D().

ETSI

146 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Parameters

call Reference : in TpMiltiMedi aCallldentifier

Specifies the call interface on which the media streams were added or subtracted. It also gives the corresponding
sessioniD.

cal | LegReferenceSet : in TpMilti Medi aCal | Legl denti fi er Set

Specifies set of al callLeg references (interface and sessionl D) for which the media streams were established or
subtracted.

First in the set is the reference to the originating callLeg. It indicates the call leg related to the originating party. In case
there is a destination call leg this will be the second leg in the set. from the notificationlnfo can be found on whose
behalf the notification was sent.

However, this parameter will be null if the notification is being given in NOTIFY mode.

nmedi aStreans : in TpMedi aStreantet

Specifies all the media streams that are established. Note that this can be more media streams than requested in the
createMediaNotification, e.g. when faststart is used in H.323 or in SIP when an INVITE method with SDP media
stream parametersis used.

type : in TpMedi aStreanEvent Type
Refersto the type of event on the media stream, i.e. added or subtracted.

assignment|I D : in TpAssignnent| D

Specifies the assignment id which was returned by the createM ediaNotification() method. The application can use
assignment id to associate events with event specific criteriaand to act accordingly.

Returns
TpAppMul ti Medi aCal | Back

8.3.3 Interface Class IpMultiMediaCall

Inherits from: IpMultiPartyCall.

Thisinterface shall be implemented by a Multi Media Call Control SCF. Implementation of the superviseV olumeReq|()
method is optional. The minimum required methods from IpMultiPartyCall are required.

<<Interface>>
IpMultiMediaCall

superviseVolumeReq (callSessionID : in TpSessionID, volume : in TpCallSuperviseVolume, treatment : in
TpCallSuperviseTreatment) : void

Method
super vi seVol uneReq()

The application calls this method to supervise a call. The application can set a granted data volume this call.

ETSI

147 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

volunme : in TpCall SuperviseVol une
Specifies the granted time in milliseconds for the connection.

treatment : in TpCall Supervi seTreat nent
Specifies how the network should react after the granted volume expired.

Raises
TpComonExcepti ons, P_I NVALI D SESSI ON_ | D

8.3.4 Interface Class IpAppMultiMediaCall

Inherits from: IpAppMultiPartyCall.

The application multi-media call interface contains the callbacks that will be used from the multi-media call interface
for asynchronous results to requests performed by the application. The application should implement this interface.

<<Interface>>

IpAppMultiMediaCall

superviseVolumeRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedVolume : in
TpCallSuperviseVolume) : void

superviseVolumeErr (callSessionID : in TpSessionID, errorindication : in TpCallError) : void

Method
super vi seVol uneRes()

This asynchronous method reports a call supervision event to the application when it has indicated itsinterest in these
kind of events.

It is also called when the connection is terminated before the supervision event occurs.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

report : in TpCall Supervi seReport
Specifies the situation which triggered the sending of the call supervision response.

usedVol une : in TpCall Supervi seVol une
Specifies the used time for the call supervision (in milliseconds).

ETSI

148 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Method
super vi seVol unekErr ()

This asynchronous method reports a call supervision error to the application.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

8.3.5 Interface Class IpMultiMediaCallLeg
Inherits from: IpCallLeg.

The Multi-Media call leg represents the signalling relationship between the call and an address. Associated with the
signalling relationship there can be multiple media channels. Media channels can be started and stopped by the
terminals themsel ves. The application can monitor on these changes and influence them.

Thisinterface shall be implemented by a Multi Media Call Control SCF. The mediaStreamAllow() and

mediaStreamM onitorReq() methods shall be implemented as a minimum requirement. The minimum required methods
from IpCallLeg are also required.

<<Interface>>
IpMultiMediaCallLeg

mediaStreamAllow (callLegSessionID : in TpSessionID, mediaStreamList : in TpSessionIDSet) : void

mediaStreamMonitorReq (callLegSessionID : in TpSessionID, mediaStreamEventCriteria : in
TpMediaStreamRequestSet) : void

getMediaStreams (callLegSessionID : in TpSessionID) : TpMediaStreamSet

Method
medi aSt reamAl | ow()

This method can be used to alow setup of a media stream that was reported by a mediaStreamM onitorRes method.

Parameters

call LegSessionl D : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

medi aStreanlist : in TpSessi onl DSet

Refers to the media streams (sessionl Ds) as received in the mediaStreamMonitorRes() or in the
reportMediaNotification() that is allowed to be established.

ETSI

149 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Raises

TpComonExcepti ons, P_I NVALI D SESSI ON_ | D
Method

medi aSt r eamvoni t or Req()

With this method the application can set monitors on the addition and subtraction of media streams. The monitors can
either be general or restricted to certain types of codecs.

Monitoring on addition of media streams can be done in either interrupt of notify mode. In the first case the application
hasto allow or deny the establishment of the stream with mediaStreamAllow.

Monitoring on subtraction of media streamsis only allowed in notify mode.

Parameters

call LegSessionl D : in TpSessionlD
Specifies the session ID of the call leg.

nmedi aStreantEventCriteria : in TpMedi aStreanRequest Set

Specifies the event specific criteria used by the application to define the event required. The mediaMonitorModeis a
parameter of TpMediaStreamRequest and can be in interrupt or in notify mode. If in interrupt mode the application has
to respond with mediaStreamAllow().

Raises

TpConmonExcept i ons, P_I NVALI D_SESSI ON | D, P_I NVALI D_CRI TERI A
P_I NVALI D_EVENT_TYPE

Method
get Medi aSt r eans()

This method is used to return al currently established media streams for the leg.

Parameters

cal |l LegSessionlD : in TpSessionlD
This method is used to return al currently open media channels for the leg.

Returns

TpMedi aSt r eantet

Raises

TpComonExcepti ons, P_I NVALI D SESSI ON_ | D

8.3.6 Interface Class IpAppMultiMediaCallLeg
Inherits from: IpAppCallLeg.

The application multi-media call leg interface contains the callbacks that will be called from the multi-media cal leg for
asynchronous results to requests performed by the application. The application should implement this interface.

ETSI

150 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

<<Interface>>

IpAppMultiMediaCallLeg

mediaStreamMonitorRes (callLegSessionID : in TpSessionID, streams : in TpMediaStreamSet, type : in
TpMediaStreamEventType) : void

Method
nmedi aSt r eanivbni t or Res()

This method is used to inform the application about the media streams that are being established (added) or subtracted.

If the corresponding request was done in interrupt mode, the application hasto allow or deny the media streams using
mediaStreamAllow().

Parameters

call LegSessionl D : in TpSessionlD
Specifies the session ID of the call leg for which the media channels are opened or closed.

streans : in TpMedi aStreantet

Specifies all the media streams that are added. Note that this can be more media streams than requested in the
createMediaNoatification, e.g. when faststart is used in H.323 or SIP INVITE with SDP media stream parametersis
used.

type : in TpMedi aStreanEvent Type
Refers to the type of event on the media stream, i.e. added or subtraced.

8.3.7 Interface Class IpMultiMediaStream
Inherits from: IpService.

The Multi Media Stream I nterface represents a bi-directional information stream associated with a call leg. Currently,
the only available method isto subtract the media stream. This interface and the subtract() method shall be implemented
by aMulti Media Call Control SCF.

<<Interface>>

IpMultiMediaStream

subtract (mediaStreamSessionID : in TpSessionID) : void

Method
subtract ()

This method can be used to subtract the multi-media stream.

ETSI

151 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Parameters
medi aSt r eanSessionl D : in TpSessionl D

Specifies the sessionl D for the media stream.
Raises
TpComonExceptions, P_I NVALI D SESSION | D

8.4 MultiMedia Call Control Service State Transition Diagrams

There are no State Transition Diagrams for the MultiMedia Call Control Service package.

8.5 Multi-Media Call Control Data Definitions

This clause provides the Multi-Media call control data definitions necessary to support the API specification.
The general format of a data definition specification is described below.
. Data Type
This shows the name of the data type.
. Description
This describes the data type.
. Tabular Specification
This specifies the data types and values of the data type.
. Example
If relevant, an example is shown to illustrate the data type.

All data types referenced but not defined in this clause are either in the common call control data definitions clause of
the present document (clause 10) or in the common data definitions which may be found in ES 201 915-2.

85.1 Event Notification Data Definitions

8.5.1.1 TpMediaStreamRequestSet

DefinesaNunbered Set of Data El enents of TpMedi aSt r eanRequest .

8.5.1.2 TpMediaStreamRequest

Definesthe Sequence of Data El enent s that specify the type of media stream.

Sequence Element Name Sequence Element Type
Direction TpMedi aSt reanDi recti on
Dat aTypeRequest TpMedi aSt r eanDat aTypeRequest
Medi aMoni t or Mbde TpCal | Moni t or Mbde

ETSI

8.5.1.3 TpMediaStreamDirection

152 Final

draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Defines the direction in which the media stream is established (as seen from the leg).

Name Value Description
P_SEND _ONLY 0 Indicates that the offerer is only willing to send
this media stream
P_RECEI VE_ONLY 1 Indicates that the offerer is only willing to
receive this media stream
P_SEND_ RECEI VE 2 Indicates that the offerer iswilling to send and
receive this media stream

8.5.1.4 TpMediaStreamDataTypeRequest
Definesthe Tagged Choi ce of Data El enent s that specify the mediatype and associated codecs that are of
interest.
Tag Element Type
TpMedi aType
Tag Element Value Choice Element Type Choice Element Name

P_AUDI O TpAudi oCapabi | i ti esType Audi o

P_VI DEO TpVi deoCapabi l i ti esType Vi deo

P_DATA TpDat aCapabi lities Dat a
8.5.1.5 TpAudioCapabilitiesType

Defines the audio codec. The requested capabilities can be indicated by adding the values together (i.e. alogical OR
function). e.g. 28 indicates interest in all G.722 codes (4+8+16).

Name Value Description
P_Gril1_64K 1 0.711 on 64k, both alaw and ulaw
P_Gri11_56K 2 0.711 on 56k, both alaw and ulaw
P_Gr22_64K 4
P_Gr22_56K 8
P_Gr22_48K 16
P_Gr231 32
P G728 64
P_Gr29 128
P_G729 ANNEX_A 256
P_IS1172 512
P_I1S1318 1024
P_G729_ANNEXB 2048
P_G729_ANNEX_A AND B 4096
P_G7231_ANNEX_C 8192
P_GSM FULLRATE 16384
P_GSM HALFRATE 32768
P_GSM_ENHANCED 65536

ETSI

153 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

8.5.1.6 TpVideoCapabilitiesType

Defines the video codec. The requested capabilities can be indicated by adding the values together (i.e. alogical OR
function). e.g. 3 indicates both H.261 and H.262 codecs.

Name Value Description
P_H261 1
P_H262 2
P_H263 4
P_IS11172 8

8.5.1.7 TpDataCapabilities

A TpInt32 defining the minimum maxBitRate in bit/s. |.e. al data media streams whose maxBitRate exceeds this
number are reported.

8.5.1.8 TpMediaStreamEventType

Defines the action performed on the media stream.

Name Value Description
P_MEDI A_STREAM ADDED 0 The media stream is added
P_MEDI A_STREAM SUBTRACTED 1 The media stream is subtracted.

8.5.1.9 TpMediaStreamSet

DefinesaNunbered Set of Data El enment s of TpMediaStream.

8.5.1.10 TpMediaStream

Definesthe Sequence of Data El enment s that specify the type of media stream.

Sequence Element Name Sequence Element Type
Direction TpMedi aStreanDi recti on
Dat aType TpMedi aSt r eanDat aType
Channel Sessi onl D TpSessi onl D
Medi aSt r eam I pMul ti Medi aSt ream

8.5.1.11 TpMediaStreamDataType

Defines the type of the reported media stream. It isidentical to TpMedi aSt r eanDat aTypeRequest , only now the
values are not used as a mask, but as the actual codec should be indicated for audio and video. For data the actual
maximum bit rate is indicated.

8.5.2 Multi-Media Call Control Data Definitions

8.5.2.1 IpMultiMediaCall

Definesthe addressof an | pMul ti Medi aCal | Interface.

8.5.2.2 IpMultiMediaCallRef

Defines aRef er ence to type IpMultiMediaCall.

ETSI

8.5.2.3

154

IpAppMultiMediaCall

Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Definesthe address of an | pAppMul t i Medi aCal | Interface.

8.5.24

IpAppMultiMediaCallRef

DefinesaRef er ence to type IpAppMultiMediaCall.

8.5.2.5

IpMultiMediaCallLeg

Definesthe addressof an | pMul ti Medi aCal | Leg Interface.

8.5.2.6

IpMultiMediaCallLegRef

DefinesaRef er ence to type IpMultiMediaCallLeg.

8.5.2.7

IpAppMultiMediaCallLeg

Definesthe address of an | pAppMul t i Medi aCal | Leg Interface.

8.5.2.8

IpAppMultiMediaCallLegRef

DefinesaRef er ence to type IpAppMultiMediaCallLeg.

8.5.2.9

DefinesaNunbered Set of Data El enents of

TpAppMultiMediaCallLegRefSet

8.5.2.10 TpMultiMediaCallldentifier

Defines the Sequence of Data Elements that unambiguously specify the MultiMediaCall object.

| pAppMul ti Medi aCal | LegRef .

Sequence Element Name

Sequence Element Type

Sequence Element Description

MVCal | Ref er ence

I pMul ti Medi aCal | Ref

This element specifies the interface reference for the call object.

MMCal | Sessi onl D

TpSessi onl D

This element specifiesthe call session ID of the call created.

8.5.2.11 TpMultiMediaCallldentifierSet

Defines a Numbered Set of Data Elements of TpMultiMediaCallldentifier.

8.5.2.12 TpMultiMediaCallLegldentifier

Defines the Sequence of Data Elements that unambiguously specify the Call Leg object.

Sequence Element Name

Sequence Element Type

Sequence Element Description

MVCal | LegRef er ence

I pMul ti Medi aCal | LegRef

This element specifies the interface reference for the callLeg
object.

MVCal | LegSessi onl D

TpSessi onl D

This element specifiesthe callLeg session ID of the call created.

8.5.2.13 TpMultiMediaCallLegldentifierSet

Defines a Numbered Set of Data Elements of TpMultiMediaCallLegldentifier.

ETSI

155 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

8.5.2.14 IpAppMultiMediaCallControlManager

Definesthe address of an | pAppMul t i Medi aCal | Cont r ol Manager Interface.

8.5.2.15 IpAppMultiMediaCallControlManagerRef

DefinesaRef er ence to type IpAppMultiMediaCall ControlManager.

8.5.2.16 TpAppMultiMediaCallBack

Defines the Tagged Choice of Data Elements that references the application callback interfaces.

Tag Element Type
TpAppMul ti Medi aCal | BackRef Type

Tag Element Value Choice Element Type Choice Element Name
P_APP_CALLBACK_UNDEFI NED NULL Undef i ned
P_APP_MULTI MEDI A_CALL_CALLBACK | pAppMul ti Medi aCal | Ref AppMil ti Medi aCal |
P_APP_CALL_LEG CALLBACK | pAppMul ti Medi aCal | LegRef AppMul ti Medi aCal | Leg
P_APP_CALL_AND CALL_LEG CALLBACK | TpAppMul ti Medi aCal | LegCal | Back | AppMul ti Medi aCal | AndCal | Leg

8.5.2.17 TpAppMultiMediaCallBackRefType

Defines the type application call back interface.

Name Value Description

P_APP_CALLBACK UNDEFI NED 0 Application Call back interface undefined

P_APP_MULTI MEDI A CALL_CALLBACK 1 Application Multi-Media Call interface
referenced

P_APP_CALL_LEG CALLBACK 2 Application Multi-Media CallLeg interface
referenced

P_APP_CALL_AND CALL_LEG CALLBACK 3 Application Multi-MediaCall and CallLeg

interface referenced

8.5.2.18 TpAppMultiMediaCallLegCallBack

Defines the Sequence of Data Elements that references a call and acall leg application interface.

Sequence Element Name Sequence Element Type
AppMul ti Medi aCal | | pAppMul ti Medi aCal | Ref
AppCal | LegSet TpAppMul ti Medi aCal | LegRef Set Specifiesthe set of al call leg call back

references. First in the set isthe reference to
the call back of the originating callLeg. In
casethereisacall back to adestination call
leg thiswill be second in the set.

ETSI

156 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

8.5.2.19 TpCallSuperviseVolume

Defines the Sequence of Data Elements that specify the amount of volume that is allowed to be transmitted for the
specific connection.

Sequence Element Name | Sequence Element Type Sequence Element Description
Vol umreQuantity Tpl nt 32 Thisdatatypeisidentical to a TpInt32, and defines the quantity
of the granted volume that can be transmitted for the specific
connection.

Vol urmeUni t Tpl nt 32 Thisdatatypeisidentical to a Tpint32, and defines the unit of the
granted volume that can be transmitted for the specific
connection.

Unit must be specified as 10"n number of bytes, where
n denotes the power.

When the unit is for examplein kilobytes, VolumeUnit must be
setto 3.

8.5.2.20 TpNotificationMediaRequest

Defines the Sequence of Data Elements that specify the criteriafor a media stream notification.

Sequence Element Name Sequence Element Type Description
Medi aNot i fi cati onScope TpCal | Noti fi cati onScope Defines the scope of the notification request.
Medi aSt r eanmrsRequest ed TpMedi aSt r eanrRequest Set Defines the media stream events which are requested

8.5.2.21 TpMediaNotificationRequested

Defines the Sequence of Data Elements that specify the criteriarelating to event requests.

Sequence Element Name Sequence Element Type
AppNot i fi cati onMedi aRequest TpNoti fi cati onMedi aRequest
Assi gnnment | D Tpl nt 32

8.5.2.22 TpMediaNotificationsRequestedSet
Defines a numbered Set of Data Elements of TpM ediaNotificationRequested.

9 Conference Call Control Service

9.1 Sequence Diagrams

9.1.1 Meet-me conference without subconferencing

This sequence illustrates a pre-arranged meet-me conference for a specified time period. During this timeslot parties can
"call into" the meet-me conference by dialling a special number.

For each participant joining the conference, the application can decide to accept the participant in to the conference.

The application can also be notified when parties are leaving the conference.

ETSI

157 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

: (Logical

o o o . IpConfCall
View::IpAppLogic) IpAppConfCallControlManager IpAppConfCall IpConfCallCont rolM anager

1: new() ‘ ‘ ‘

2:‘ reseneResources()

4: "forward event"

|
e

5: new()

|
\
3: conferencLCreated()

i

6: IeaveMonitﬂrReq()
|

‘ 7: partyJoined()

T h |

8: attachMedi?Req...
[

10: "forward event” ¢ o: partyJ{)i ned()

] \

11: attach Medi‘aReq() ‘

|
|
|
|
|
| | |
|
!
|
|
|
|

| |
i 12: leaveM qnitorRes()

14: releas%()
|
|
|

13: “forward event"

— g b0 40— — -
- A4 Y Y

1. Theapplication creates a new object to receive the callbacks from the conference call control manager.
2. The application reserves resources for some time in the future.

With this same method the application registers interest in the creation of the conference (e.g. when the first
party to joins the conference or at the specified start time, thisisimplementation dependant).

ETSI

158 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)
The reservation also includes the conference policy. One of the elements is whether joined parties must be
explicitly attached. If so, thisistreated as an implicit joinMonitorReq.
The conference is created.
The message is forwarded to the application.
The application creates an object to receive the call back messages from the conference call.
The application a so requests to be notified when parties |eave the conference.

The application is notified of the first party that joined the conference.

O N o g &~ w

When the party is alowed to join the conference, the party is added.
Alternatively, the party could have been rejected with areleaseCallLeg.
9: A new party joins the conference and the application is notified.

10: The messageis forwarded to the application.

11: Thisparty asoisalowed into the conference by attaching the leg.

12: A party leaves the conference.

13: The messageis forwarded to the application.

14: The application decides to release the entire conference.

9.1.2 Non-add hoc add-on with subconferencing

This sequence illustrates a prearranged add-on conference. The end user that initiates the call, communicates with the
conference application via aweb interface (not shown). By dragging and dropping names from the addressbook, the
end-users adds parties to the conference.

Also viathe web-interface, the end-user can group parties in subconferences. Only parties in the same subconference
can talk to each other.

ETSI

159 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

8: cr ateAndRouteCaIILegRJq()

: (Logical o : IpAppCallleg - : IpConfCall first : : IpCallLeg second :
View::IpAppLoagic) |IpAppConfCall IpConfCallControlManager IpSubConfCall IpSubConfCall
1: new() % ‘ ‘ ‘ ‘
F: OLDcreateConfer%nce 0 ‘ ‘ ‘
[[

‘ 3: getS%bCom‘erences() ‘ ‘ ‘ ‘

| | | U
4: new() ‘ ‘ ‘ ‘ ‘
5: jr?#ateAndRouteCallLegR ‘q() ! \T 6 new(‘

‘ 7: crlateAndRouteCallLegRJq()

9: cr ateAndRouteCaIILegRJq()

10: eventReportRes() j—r‘
\
|

11: "for\Lard event”

-

L: splitSubConference(
|

H}

)

13;

/LH

|
U

‘14: release()

mowveCallLeg() ‘
|
|

The application creates a new interface to receive the callbacks from the conference call.

The application initiates the conference. There has been no prior resource reservation, so there is a chance that
No resources are available when parties are added to the conference.

The conferenceCall interface object is returned.
Together with the conference a subconference isimplicitly created.

However, the subconference is not returned as a result of the createConference, therefore the application uses
this method to get the subconference.

The application creates a new |pAppCallLeg interface.

a

The application adds the first party to the subconference. This process is repeated for all 4 parties. Note that in
the following not all steps are shown.

The gateway creates a new |pCallLeg interface.
The application adds parties to the subconference.

The application adds parties to the subconference.

The application adds parties to the subconference.

10: When aparty A answers the application is notified.

ETSI

11:

12:

13:

14.

9.1.3

160 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)
We assume that all parties answer. This happensin the same way as for party A and is not shown in the
following.
The message is forwarded to the application.
The application decides to split the conference. Party C & D are indicated in the message.
The gateway will create a new subconference and move party C and D to the new subconference.

The configurationis A & B arein speech, C & D arein speech. There is no bearer connection between the two
subconferences.

The application moves one of the legs from the second subconference back to the first. The configuration now
isA, B & C arein speech configuration. D isaonein its own subconference.

The second subconference is released. Since party D was in this subconference, this callleg is aso released.

This leaves one subconference with A, B & C.

Non-addhoc add-on multimedia

This sequence illustrates a prearranged add-on multi-media conference. The end user that initiates the call,
communicates with the conference application via a web interface (not shown). By dragging and dropping hames from
the addressbook, the end-users adds parties to the conference.

Also viathe web-interface, the end-user can do things that normally the chair would be able to do, e.g. determine who
has the floor (e.g. whose video is being broadcast to the other participants) or inspect the video of participants who do
not have the floor (e.g. to see how they react to the current speaker).

ETSI

161 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

: (Logical : IpAppSubConfCall PartyA : PartyB : 2]} : IpConfCall : IpSubConfCall PartyA : PartyB :
View::IpAppLogic IpAppCallLeg IpAppCallLeg lpConfCallControIM anagef IpAppCalliLeg | | IpAppCallLeg
‘ 1: new() ﬁ
2: createConference()

7: new() |

‘ 5: crealeAndRuﬂleCaHLegReq()
|

8: createAndl;ICE‘eCaHLegReq()

| |

‘ 3 gFlSubCﬂnferen(ﬁs(‘) ﬁH
4: nev¥0 ‘

T

| |

i ‘

S I I 2

10: createAndRouteCallLegReq()

11: createAndRolteCallLegReq()

‘ 12: eventReportRes()‘

13: "fmwarc+ event” ‘

14: chawf;e\ecl\un()

15: eventReportRes()

-

17: mm%clvideu()

18: msch(Vldeo()

- — 0+ 4 — o

|
|
\
16: apmetSpeak&r() ‘
T

] {1 — 4:—;—4

) 20: floorRequest()‘

21: "forward event" J
1 |

1. Theapplication creates a new object for receiving callbacks from the MM SubConference.

22: appmptSpeak&r()

|
i
4
\
|
|
|
|
|
|
|
|

T
‘ 19: inspectVideoCancel()
|
|

- -

2: When the user selects the appropriate option in the web interface, the application will create a conference
without resource reservation. The policy for video is set to "chairperson” switched.

3: The application requests the subconference that was implicitly created together with the conference.

4: The application creates a new IpAppCallLeg interface.

a

The application adds the first party to the subconference. This processis repeated for all 4 parties. Note that in
the following not all steps are shown.

The gateway creates a new |pCallLeg interface.
The application creates a new |pAppCallLeg interface.

The application add parties to the conference and monitors on success.

The gateway creates a new IpCallLeg interface.
10: The application add parties to the conference and monitors on success.

11: The application add parties to the conference and monitors on success.

ETSI

12:

14:

15:

16:

17
18:
19:
20:
21:
22:

162 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

When a party A answers the application is notified.
We assume that all parties answer.

We assume that A was the initiating party.

The initiating end-user is assigned the chairpersonship.

This message is needed to synchronise the chairpersonship in the application with the MCU chairpersonship,
since the chair can also use H.323 messages to control the conference.

When a party B answers the application is notified. We assume the other parties answer as well and thisis not
shown below in the sequence.

Chairperson (A) decides via WWW interface that party B isthe speaker. This means that the video of B is
broadcast to the rest.

The chairperson select the video of C in order to judge their reactions on B's proposal.

The chairperson select the video of D in order to judge their reactions on B's proposal.

The chairperson goes back to receiving the broadcasted videostream (B).

User C requests the floor viathe H.323 signals. The application is notified of this.

The message is forwarded to the application logic.

The chairperson (viathe WWW interface) grants the request by appointing C as the speaker.

ETSI

163 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

9.14 Resource Reservation

This sequence illustrates how an application can check and reserve resources for a meet-me conference.

: (Logical = e : IpConfCall
View:: IpApplLogic) IpAppConfCallControlManager | | lpConfCallControlManager
l 1: checkR‘esources()

2: new() ‘

1

3 reserveR%sourc es()

|
]
|
|
|]
4; freeR%sources() g]

5: reserveReLsourc es()

|
J

|
|
|
|
|
|
|
|
|
|
|
|

7: "forward event"

]

M

!
|
|
|
i
|
|

|
|
|
6: conferencer\eated()
|
|
|
|
|

1. Theapplication checksif enough conference resources are available in a given time period.

2. Theapplication creates a object to receive callback messages.

w

The application reserves resources for the time period. The callback object isin order to receive anotification
when the conference is started.

Because the time was wrong by accident, the application cancels the earlier reservation.
The application makes a new reservation.

At the specified time, or when the first party joins the conference the application is notified.

N o2 a A~

The event is forwarded to the application.

ETSI

164 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

9.2 Class Diagrams

The conference call control service consists of two packages, one for the interfaces on the application side and one for
interfaces on the service side. The class diagrams in the following figures show the interfaces that make up the
conference call control application package and the conference call control service package.

This class diagram shows the interfaces that make up the application conference call control service package and the
relation to the interfaces in the conference call control service package.

The diagram al so shows the inheritance relation between the multi-party call application interfaces and the conference
call application interfaces; the conference interfaces are specialisations of the corresponding multi-party call interfaces.

Communication between the application and service packages is done via the <<uses>> relations; the interfaces can
communicate with callback methods in the corresponding application interfaces.

! ‘ .

<<Interface>>
<<Interface>> IpAppMultiMediaCall <<Interface>>
IpAppM ul tiMe dia Call Co ntrolMan ag er (from mmecs) IpAppMultiMediaCallLeg
(fommntcs) (from mmccs)
SsuperviseVolumeRes()
®reportMediaNotification() BsuperviseVolumeErr() oun ®mediaStreamMonitorRes()
/ O
/ ‘
/ /
Interf L Interf
<<Interface>> <<Interface>>
sl IpAppConfCall — IpAppSubConfCall
IpAppConfCallControlManager
©] 1 0.. (from cccs) 1 0 %n (from cccs)
'0Om CcCCS; — —_—
SoartyJoined() WchairSelection() ‘
SconferenceCreated(W eaveMonitorRes() "'floorReguest()
usess:
<<uses>> ‘
<<uses>>
<<Interface>>
e IpSubConfCall <<uses>>
<<Interface>> (from cces)
IpConfCallControlManager <|<r|)r::t§:?cc;|» ‘
(from cocs) L o (from cccs) . o MsplitSubConference()
<N B ®merg eSubConference(
McreateConf i callL
‘creae EREEEy ®ge tSub Conferences() Iimove g0
heckResources() inspe ctVideo()
McreateSubConference() —
“reserveResources() — MonitorR inspe ctVideoCancel()
WreeResources() gaveMonitorReq() ®ap pointSpeaker() ‘
WchairSelection ()
®chan ge Conference Poli cy() ‘

T~ o.n <<Interface>>
—~ IpMultiMediaCallLeg

o.n (from mmccs)
e >

®mediaStreamAllow()
®mediaStreamMonitorReq()
MgetMediaStreams()

|
| |
‘ ~

Figure 17: Application Interfaces

This class diagram shows the interfaces that make up the conference call control service package.

The diagram also shows the inheritance relation between the multi-party call interfaces and the conference call
interfaces; the conference interfaces are specialisations of the corresponding multi-party call interfaces.

ETSI

165 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Furthermore, the class diagram illustrates that the conference call control manager can instantiate or be associated with
zero or more conference calls. Each conference call can have one or more subconferences associated with it. Each
subconference contains zero or more call legs associated. Detached legs are not associated with any specific
subconference, instead they are associated with the conference call itself.

9.3

<<Interface>>
IpMultiMediaCallControlManager

(from mmecs)

<<Interface>>
IpMultiMediaCall

(from mmccs)

®reateMe diaNotification() -
%tle stroy Me diaNo tificati on() MsuperviseVolumeReq()
®chan geM ediaNotification ()
®ye tMe diaNotificati on()

% <<Interface>>

| IpSubConfCall
<<Interface>> (from cccs)
<<Interface>>
IpConfCallControlManager
P — 9 IpConfCall -
1 on s 1 o._n/EEsplitsubConference()
= - ®mergeSubConference()
®createConference() B ctSubConferences() SmoveCallLeg()
#checkResources() SinspectVideo()
SrreateSubConference() 1 "
reserveResources() - Y —— WnspectVideoCancel()
®freeResources() gaveManitorReq() ®appointSpeaker()
®chairSelection()
\ ®changeConferencePolicy()
\' !

\ &.n

\\ <<Interface>>
\ IpMultiMediaCallLeg
L N 0..n (frommnees)

W ediaStreamAllow()
®ediaStreamMonitorReq()
®yetMediaStreams()

Figure 18: Service Interfaces

Conference Call Control Service Interface Classes

The Conference Call Control Service enhances the multi-media call control service. The conference call control service
gives the application the ability to manipulate subconferences within a conference. A subconference defines the
grouping of legs within the overall conference call. Only parties in the same subconference have a bearer connection (or
media channel connection) to each other (e.g. can speak to each other). The application can:

create new subconferences within the conference, either as an empty subconference or by splitting an existing
subconference in two subconferences;

move legs between subconferences;
merge subconferences,

get alist of all subconferencesin the call.

The generic conference also gives the possibility to manipulate typical multi-media conference details, such as:

interworking with network signalled conference protocols (e.g. H.323);
manipulation of the mediain the MCU, e.g. broadcasting of video;

handling of multi-media conference policies, e.g. how video should be handled, voice controlled switched or
chair controlled.

ETSI

166 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Furthermore the conference call control service adds support for the reservation of resources needed for conferencing.
The application can:

. reserve resources for a predefined time period;

. free reserved resources;

. search for the availability of conference resources based on a number of criteria.
There are two ways to initiate a conference:

. the conferences can be started on the pre-arranged time by the service, at the start time indicated in the
reservation. The application is notified about this. The application can then add parties to the conference
and/or parties can dia-in to the conference using the address provided during reservation;

. the conference can be created directly on request of the application using the createConference method in the
I pConfCall ControlManager interface.

Each Conference Call Control interface inherits from a Multi Media Call Control interface, which in turn inherits from
Multi Party Call Control. It is possible to implement conference call control without any multi-media features, using
only those inherited methods which come from Multi Party Call Control, in addition to the Conference Call Control
methods. The minimum required method set for each Conference Call Control interface reflects this possibility, by not
requiring the Multi Media Call Control methods.

9.3.1 Interface Class IpConfCallControlManager
Inherits from: IpMultiMediaCall ControlM anager.

The conference Call Control Manager is the factory interface for creating conferences. Additionaly it takes care of
resource management.

Thisinterface shall be implemented by a Conference Call Control SCF. As a minimum requirement, either the
createConference() method shall be implemented, or the reserveResources() and freeResources() methods shall be
implemented. The minimum required methods from IpM ulti PartyCall ControlManager are also required.

<<Interface>>

IpConfCallControlManager

createConference (appConferenceCall : in IpAppConfCallRef, numberOfSubConferences : in TpInt32,
conferencePolicy : in TpConfPolicy, numberOfParticipants : in TpInt32, duration : in TpDuration) :
TpConfCallldentifier

checkResources (searchCriteria : in TpConfSearchCriteria) : TpConfSearchResult

reserveResources (applnterface : in IpAppConfCallControlManagerRef, startTime : in TpDateAndTime,
numberOfParticipants : in TpInt32, duration : in TpDuration, conferencePolicy : in TpConfPolicy) :
TpResourceReservation

freeResources (resourceReservation : in TpResourceReservation) : void

Method
creat eConference()

This method is used to create a new conference. If the specified resources are not available for the indicated duration the
creation is rejected with P RESOURCES UNAVAILBLE.

Returns conference : Specifies the interface reference and sessionl D of the created conference.

ETSI

167 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Parameters

appConferenceCall : in | pAppConfCall Ref
Specifies the callback interface for the conference created.

nunmber O SubConf erences : in Tplnt32

Specifies the number of subconferences that the user wantsto create automatically. The references to the interfaces of
the subconferences can later be requested with getSubConferences.

The number of subconferences should be at least 1.

conferencePolicy : in TpConfPolicy
Specifies the policy to be applied for the conference, e.g. are parties allowed to join (call into) the conference?

Note that if parties are allowed to join the conference, the application can expect partyJoined() messages on the
IpAppConfCall interface.

nunber O Participants : in Tplnt32

Specifies the number of participantsin the conference. The actual number of participants may exceed this, but these
resources are not guaranteed, i.e. anything exceeding this will be best effort only and the conference service may drop
or reject participants in order to fulfil other committed resource requests. By specifying 0, the application can request a
best effort conference.

duration : in TpDuration

Specifies the duration for which the conference resources are reserved. The duration of the conference may exceed this,
but after the duration, the resources are no longer guaranteed, i.e. parties may be dropped or rejected by the servicein
order to satisfy other committed resource requests. When the conference is released before the all ocated duration, the
reserved resources are released and can be used to satisfy other resource requests. By specifying O, the application
requests a best effort conference.

Returns

TpConf Cal | I dentifier
Raises
TpComonExcept i ons

Method
checkResour ces()

This method is used to check for the availability of conference resources.
Theinput isthe search period (start and stop time and date) - mandatory.
Furthermore, a conference duration and number of participants can be specified - optional.

The search algorithm will search the specified period for availability of conference resources and triesto find an
optimal solution.

When amatch is found the actual number of available resources, the actual start and the actual duration for which these
are available is returned. These values can exceed the requested values.

When no match is found a best effort is returned, still the actual start time, duration, number of resources are returned,
but these val ues now indicate the best that the conference bridge can offer, e.g. one or more of these values will not
reach the requested values.

Returns result : Specifies the result of the search. It indicates if a match was found. If no exact match was found the best
attempt is returned.

ETSI

168 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Parameters

searchCriteria : in TpConfSearchCriteria

Specifies the boundary conditions of the search. E.g. the time period that should be searched, the number of
participants.

Returns

TpConf Sear chResul t
Raises
TpComonExcept i ons

Method
reserveResour ces()

This method is used to reserve conference resources for a given time period. Conferences can be created without first
reserving resources, but in that case no guarantees can be made.

Returns resourceReservation : Specifies a structured data type which contains two fields:

Resourcel D: The address with which the conference can be addressed, both in the methods of the interface and in the
network, i.e. if joinAllowed is TRUE, parties can use this address to join the conference.

If no match isfound the Resourcel D contains an empty address.

Reservationl D: Specifies the reservation made. It should be unique in a particular resource.

Parameters

applnterface : in | pAppConf Cal | Control Manager Ref

Specifies the callback interface to be used when the conference is created in the network. The application will receive
the conferenceCreated message when a conference is created in the network.

startTine : in TpDateAndTi ne
Specifies the time at which the conference resources should be reserved, i.e. the start time of the conference.

nunber O Participants : in Tplnt32

Specifies the number of participantsin the conference. The actual number of participants may exceed this, but these
resources are not guaranteed, i.e. anything exceeding this will be best effort only and the conference service may drop
or reject participants in order to fulfil other committed resource requests.

duration : in TpDuration

Specifies the duration for which the conference resources are reserved. The duration of the conference may exceed this,
but after the duration, the resources are no longer guaranteed, i.e. parties may be dropped or rejected by the servicein
order to satisfy other committed resource requests. When the conference is released before the all ocated duration, the
reserved resources are released and can be used to satisfy other resource requests.

conferencePolicy : in TpConfPolicy

The policy to be applied for the conference, e.g. are parties allowed to join (call into) the conference? Note that if
parties are allowed to join the conference, the application can expect partyJoined() messages on the appConfCall.

ETSI

169 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Returns

TpResour ceReservati on
Raises

TpConmmonExcepti ons

Method
freeResources()

This method can be used to cancel an earlier made reservation of conference resources.

This also means that no ConferenceCreated events will be received for this conference.

Parameters
resourceReservation : in TpResourceReservation

Specifies the Resourcel D and the Reservationl D that were received during the reservation.
Raises

TpComonExcept i ons

9.3.2 Interface Class IpAppConfCallControlManager
Inherits from: I pAppMultiMediaCall Control M anager.

The conference call control manager application interface provides the application with additional callbacks when a
conference is created by the network (based on an earlier reservation).

<<Interface>>

IpAppConfCallControlManager

conferenceCreated (conferenceCall : in TpConfCallldentifier) : IpAppConfCallRef

Method
conf erenceCreat ed()

This method is called when a conference is created from an earlier resource reservation.

Returns applnterface : Specifies a reference to the application interface which implements the callback interface for the
new conference. If the application has previously explicitly passed a reference to the callback using a
setCallbackWithSessionl D() invocation, this parameter may be null, or if supplied must be the same as that provided
during the setCallbackWithSessionl D().

Parameters

conferenceCall : in TpConfCallldentifier
Specifies the reference to the conference call interface to which the notification relates and the associated sessioniD.

Returns
| pAppConf Cal | Ref

ETSI

170 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

9.3.3 Interface Class IpConfCall
Inherits from: IpMultiMediaCall

The conference call manages the subconferences. It aso provides some convenience methods to hide the fact of
multiple subconferences from the applications that do not need it. Note that the conference call always contains one
subconference. The following inherited call methods apply to the conference as a whole, with the specified semantics:

- setCallback; changes the callback interface reference.
- release; releases the entire conference, including all the subconferences and detached legs.
- deassignCall; de-assigns the complete conference. No callbacks will be received by the application, either on the
conference, or on any of the contained subconferences or call legs.

- getInfoReq; request information over the complete conference. The conference duration is defined as the time
when the first party joined the conference until when the last party leaves the conference or the conference is released.

- setChargePlan; set the chargeplan for the conference. This chargeplan will apply to all the subconferences, unless
another chargeplan is explicitly overridden on the subconference.

- superviseReq; supervise the duration of the complete conference.

- getCallLegs, return all the call legs used within the conference.

- superviseVolumeReq; supervises and sets a granted data volume for the conference.

Other methods apply to the default subconference. When using multiple subconferences, it is recommended that the
application calls these methods directly on the subconference since this makes it more explicit what the effect of the
method is:

- createAndRouteCallLegReq

- createCallLeg

Thisinterface shall be implemented by a Conference Call Control SCF. As a minimum requirement, the
getSubConferences() and createSubConference() methods shall be implemented. The minimum required methods from
IpMultiPartyCall are also required.

<<Interface>>
IpConfCall

getSubConferences (conferenceSessionID : in TpSessionID) : TpSubConfCallldentifierSet

createSubConference (conferenceSessionID : in TpSessionID, appSubConference : in
IpAppSubConfCallRef, conferencePolicy : in TpConfPolicy) : TpSubConfCallldentifier

leaveMonitorReq (conferenceSessionID : in TpSessionID) : void

Method
get SubConf erences()

This method returns all the subconferences of the conference.

Returns subConferenceList : Specifiesthelist of all the subconferences of the conference.

Parameters

conferenceSessionlD : in TpSessionlD
Specifies the sessionl D of the conference.

ETSI

171 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Returns

TpSubConf Cal | | denti fi er Set

Raises

TpComonExcepti ons, P_I NVALI D SESSI ON_|I D

Method
creat eSubConf er ence()

This method is used to create a new subconference. Note that one subconference is already created together with the
conference.

Returns subConference : Specifies the created subconference (interface and sessioniD).

Parameters

conferenceSessionlD : in TpSessionlD
Specifies the sessionl D of the conference.

appSubConference : in | pAppSubConf Cal | Ref
Specifies the call back interface for the created subconference.

conferencePolicy : in TpConfPolicy

Conference Policy to be used in the subconference. Optional; if undefined, the policy of the conference is used. Note
that not all policy elements have to be applicable for subconferences.

Returns
TpSubConf Cal | I denti fi er

Raises
TpComonExcepti ons, P_I NVALI D SESSI ON_ | D

Method
| eavelMbni t or Req()

This method is used to request a notification when a party leaves the conference.

Parameters
conferenceSessionlD : in TpSessionlD

Specifies the session ID of the conference.

Raises

TpComonExceptions, P_I NVALI D SESSION | D
9.34 Interface Class IpAppConfCall
Inherits from: IpAppMultiMediaCall.

The Conference Call application interface allows the application to handle call responses and state reports. Additionally
it allows the application to handle parties entering and leaving the conference.

ETSI

172 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

<<Interface>>

IpAppConfCall

partyJoined (conferenceSessionID : in TpSessionID, callLeg : in mpccs::TpCallLegldentifier, eventinfo : in
TpJoinEventinfo) : mpccs:: IpAppCallLegRef

leaveMonitorRes (conferenceSessionID : in TpSessionID, callLeg : in TpSessionID) : void

Method
partyJoi ned()

This asynchronous method indicates that a new party (leg) hasjoined the conference. This can be used in, e.g. a meetme
conference where the participants dial in to the conference using the address returned during reservation of the
conference.

The Leg will be assigned to the default subconference object and will be in a detached state. The application may move
the call Leg to adifferent subconference before attaching the media

The method will only be called when joinAllowed is indicated in the conference policy.

Returns appCallLeg : Specifies the call back interface that should be used for callbacks from the new call Leg.

Parameters

conferenceSessionlD : in TpSessionlD
Specifies the session ID of the conference that the party wantsto join.

callLeg : in npccs:: TpCall Legldentifier
Specifies the interface and sessionl D of the call leg that joined the conference.

eventInfo : in TpJoi nEventlnfo
Specifies the address information of the party that wants to join the conference.

Returns
npccs: : | pAppCal | LegRef

Method
| eaveMoni t or Res()

This asynchronous method indicates that a party (leg) has left the conference.

Parameters

conferenceSessionlD : in TpSessionlD
Specifies the session ID of the conference that the party wantsto leaves.

callLeg : in TpSessionlD
Specifies the sessionl D of the call leg that |eft the conference.

ETSI

173 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

9.35 Interface Class IpSubConfCall
Inherits from: IpMultiMediaCall.

The subconference is an additional grouping mechanism within a conference. Parties (Iegs) that are in the same
subconference have a speech connection with each other. The following inherited call methods apply to the
subconference as a whole, with the specified semantics:

- setCallback; changes the callback interface reference.

- release; releases the subconference, including all currently attached legs. When the last subconference in the
conference is released, the conference isimplicitly released as well.

- deassignCall; de-assigns the subconference. No callbacks will be received by the application on this
subconference, nor will the gateway accept any methods on this subconference or accept any methods using the
subconference as a parameter (e.g. merge). When the subconference is the last subconference in the conference, the
conference is deassigned as well. In general it is recommended to only use deassignCall for the complete conference.

- getInfoReq; request information over the subconference. The subconference duration is defined as the time when
the first party joined the subconference until when the last party leaves the subconference or the subconferenceis
released.

- setChargePlan; set the charge plan for the subconference.

- superviseReq; supervise the duration of the subconference. It is recommended that this method is only used on the
complete conference.

- superviseVolumeReq; supervises and sets a granted data volume for the subconference.

- getCallLegs; return all the call legs in the subconference.

- createCallLeg; create acall leg.

- createAndRouteCallLegReq; implicitly create aleg and route the leg to the specified destination.

Thisinterface shall be implemented by a Conference Call Control SCF. As a minimum requirement, either the
moveCallLeg() method shall be implemented, or the splitSubConference() and mergeSubConference() methods shall be
implemented. The minimum required methods from IpMultiPartyCall are also required.

<<Interface>>
IpSubConfCall

splitSubConference (subConferenceSessionID : in TpSessionID, callLegList : in TpSessionIDSet,
appSubConferenceCall : in IpAppSubConfCallRef) : TpSubConfCallldentifier

mergeSubConference (subConferenceCallSessionID : in TpSessionID, targetSubConferenceCall : in
TpSessionID) : void

moveCallLeg (subConferenceCallSessionID : in TpSessionID, targetSubConferenceCall : in TpSessionID,
callLeg : in TpSessionID) : void

inspectVideo (subConferenceSessionID : in TpSessionID, inspectedCallLeg : in TpSessionID) : void
inspectVideoCancel (subConferenceSessionID : in TpSessionID) : void

appointSpeaker (subConferenceSessionID : in TpSessionID, speakerCallLeg : in TpSessionID) : void
chairSelection (subConferenceSessionID : in TpSessionID, chairCallLeg : in TpSessionID) : void

changeConferencePolicy (subConferenceSessionID : in TpSessionID, conferencePolicy : in TpConfPolicy) :
void

Method
spl it SubConf erence()

This method is used to create a new subconference and move some of the legsto it.

Returns newSubConferenceCall : Specifies the new subconference that isimplicitly created as aresult of the method.

ETSI

174 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Parameters

subConf erenceSessionl D : in TpSessionlD
Specifies the session ID of the subconference.

cal | LegLi st : in TpSessi onl DSet
Specifies the sessionl Ds of the legs that will be moved to the new subconference.

appSubConferenceCall : in | pAppSubConf Cal | Ref
Specifies the application call back interface for the new subconference.

Returns

TpSubConf Cal | I denti fi er

Raises

TpComonExcepti ons, P_I NVALI D SESSI ON_ | D
Method

mer geSubConf er ence()

This method is used to merge two subconferences, i.e. move all our legs from this subconference to the other
subconference followed by arelease of this subconference.

Parameters

subConf erenceCal | SessionlD : in TpSessionlD
Specifies the session ID of the subconference.

t arget SubConferenceCall : in TpSessionlD
The session 1D of target subconference with which the current subconference will be merged.

Raises
TpComonExcepti ons, P_I NVALI D SESSI ON_ | D

Method
noveCal | Leg()

This method moves one leg from this subconference to another subconference.

Parameters

subConf erenceCal | SessionlD : in TpSessionlD
Specifies the session ID of the source subconference.

target SubConferenceCall : in TpSessionlD
Specifies the sessionl D of the target subconference.

callLeg : in TpSessionlD
Specifies the sessionl D of the call leg to be moved.

Raises
TpComonExcepti ons, P_I NVALI D SESSI ON_ | D

ETSI

175 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Method
| nspect Vi deo()

This method can be used by the application to select which video should be sent to the party that is currently selected as
the chair.

Whether this method can be used depends on the selected conference policy.

Parameters

subConf erenceSessionl D : in TpSessionlD
Specifies the session ID of the multi media subconference.

i nspectedCall Leg : in TpSessionlD
Specifies the sessionI D of call leg of the party whose video stream should be sent to the chair.

Raises
TpComonExceptions, P_I NVALI D SESSION | D

Method
| nspect Vi deoCancel ()

This method cancels a previous inspectVideo. The chair will receive the broadcasted video.

Whether this method can be used depends on the selected conference policy.

Parameters

subConf erenceSessionl D : in TpSessionlD
Specifies the session ID of the multi media subconference.

Raises
TpComonExceptions, P_I NVALI D SESSION | D

Method
appoi nt Speaker ()

This method indicates which of the participants in the conference has the floor. The video of the speaker will be
broadcast to the other parties.

Whether this method can be used depends on the selected conference policy.

Parameters

subConf erenceSessionl D : in TpSessionlD
Specifies the session ID of the multi media subconference.

speakerCal |l Leg : in TpSessionlD
Specifies the sessionl D of the call leg of the party whose video stream should be broadcast.

Raises
TpComonExcepti ons, P_I NVALI D SESSION | D

ETSI

176 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Method
chai r Sel ection()

This method is used to indicate which participant in the conference is the chair. E.g. the terminal of this participant will
be the destination of the video of the inspectVideo method.

Whether this method can be used depends on the selected conference policy.

Parameters

subConf erenceSessionl D : in TpSessionlD
Specifies the session ID of the multi media subconference.

chairCallLeg : in TpSessionlD

Specifies the sessionl D of the call leg of the party that will become the chair.
Raises

TpComonExceptions, P_I NVALI D SESSION | D

Method
changeConf er encePol i cy()

This method can be used to change the conference policy in an ongoing conference.
. Multi media conference policy options available. E.g.;
. chair controlled video/voice switched video;
. closed conference/open conference;

. Composite video (different types)/only speaker.

Parameters

subConf erenceSessionl D : in TpSessionlD
Specifies the session ID of the multi media subconference.

conferencePolicy : in TpConfPolicy

New Conference Policy to be used in the subconference.

Raises

TpComonExceptions, P_I NVALI D SESSION | D
9.3.6 Interface Class IpAppSubConfCall
Inherits from: IpAppMultiMediaCall.

The Sub Conference Call application interface allows the application to handle call responses and state reports from a
sub conference.

ETSI

177 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

<<Interface>>
IpAppSubConfCall

chairSelection (subConferenceSessionID : in TpSessionID, callLegSessionID : in TpSessionID) : void

floorRequest (subConferenceSessionID : in TpSessionID, callLegSessionID : in TpSessionID) : void

Method
chai r Sel ection()

This method is used to inform the application about the chair selection requests from the network. The application can
grant the request by calling the chairSelection method on the subconference.

Parameters

subConf erenceSessionl D : in TpSessionlD
Specifies the session 1D of the subconference where the chair request originates.

cal |l LegSessionlD : in TpSessionlD
Specifies the session ID of the call leg making the chair request.

Method
f 1 oor Request ()

This method is used to inform the application about the floor requests from the network. The application can grant the
request by calling the appointSpeaker method.

Parameters

subConf erenceSessionl D : in TpSessionlD
Specifies the session ID of the subconference where the floor request originates.

cal |l LegSessionlD : in TpSessionlD

Specifies the session ID of the call leg making the floor request.

9.4 Conference Call Control Service State Transition Diagrams

There are no State Transition Diagrams for the Conference Call Control Service package.

9.5 Conference Call Control Data Definitions
This clause provides the Conference call control data definitions necessary to support the API specification.
The general format of a data definition specification is described below:

. Data Type

This shows the name of the data type.

ETSI

178 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

. Description
This describes the data type.
. Tabular Specification
This specifies the data types and values of the data type.
. Example
If relevant, an example is shown to illustrate the data type.

All data types referenced but not defined in this clause are either in the common call control data definitions clause of
the present document (clause 10) or in the common data definitions which may be found in ES 201 915-2.

95.1 Event Notification Data Definitions

No specific event notification data.
95.2 Conference Call Control Data Definitions

9.5.2.1 IpConfCall

Definesthe address of an | pConf Cal | Interface.

9.5.2.2 IpConfCallRef

Defines aRef er ence to type IpConfCall.

9.5.2.3 IpAppConfCall

Definesthe address of an | pAppConf Cal | Interface.

9.5.2.4 IpAppConfCallRef

Defines aRef er ence to type IpAppConfCall.

9.5.25 IpSubConfCall

Defines the address of an | pSubConf Cal | Interface.

9.5.2.6 IpSubConfCallRef

DefinesaRef er ence to type IpSubConfCall.

9.5.2.7 IpAppSubConfCall

Defines the address of an | pAppSubConf Cal | Interface.

9.5.2.8 IpAppSubConfCallRef

DefinesaRef er ence to type IpAppSubConfCall.

9.5.29 TpSubConfCallldentifierSet

DefinesaNunber ed Set of Data El enent s of IpSubConfCallldentifier.

ETSI

179 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

9.5.2.10 TpConfCallldentifier

Defines the Sequence of Data Elements that unambiguously specify the Conference Call object.

Sequence Element Name | Sequence Element Type Sequence Element Description
Conf Cal | Ref er ence | pConf Cal | Ref This element specifies the interface reference for the conference
call object.
Conf Cal | Sessi onl D TpSessi onl D This element specifies the session ID of the conference call.

9.5.2.11 TpSubConfCallldentifier

Defines the Sequence of Data Elements that unambiguously specify the SubConference Call object.

Sequence Element Name | Sequence Element Type Sequence Element Description

SubConf Cal | Ref er ence | pSubConf Cal | Ref This element specifies the interface reference for the
subconference call object.

SubConf Cal | Sessi onl D TpSessi onl D This element specifies the session ID of the subconference call.

9.5.2.12 IpAppConfCallControlManager

Definesthe address of an | pAppConf Cal | Cont r ol Manager Interface.

9.5.2.13 IpAppConfCallControlManagerRef

DefinesaRef er ence to type IpAppConfCall Control M anager.

9.5.2.14 TpConfPolicyType
Defines policy type for the conference.
If undefined the gateway will select an appropriate default.

If a mono media conference policy is specified for a multi-media conference, the gateway will select appropriate
defaults for the multi-media policy items.

If amulti-mediapolicy is selected for a mono-media (voice-only) conference, the multi-media conference items will be
ignored.

Name Value Description
P_CONFERENCE_PCOLI CY_UNDEFI NED 0 Undefined
P_CONFERENCE_POLI CY_MONOVEDI A 1 CCCS - monomedia conference policy
P_CONFERENCE_POLI CY_MULTI MEDI A 2 MMCCS - multimedia conference policy

9.5.2.15 TpConfPolicy

Definesthe Tagged Choi ce of Data El enent s that specify the policy that needs adhered to by the
conference.

Tag Element Type
TpConf Pol i cyType

Tag Element Value Choice Element Type Choice Element Name
P_CONFERENCE_POLI CY_MONOVEDI A TpMonoMedi aConf Pol i cy MonoMedia
P_CONFERENCE_POLI CY_MJLTI MEDI A TpMul ti Medi aConf Pol i cy MultiMedia

ETSI

180 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

9.5.2.16 TpMonoMediaConfPolicy
Defines the type of conference policy as a sequence of Policy Items and their val ues.

For mono media there are only two types of conference policies; specified, i.e. the application provides the policy, or
undefined, i.e. the GW may choose a default conference policy.

Sequence Element Name

Sequence Element Type

Description

Joi nAl | owed

TpBool ean

Specifiesif dial-in to the conference is allowed. Parties can
dial-in to the conference using the address returned during
reservation. If thisis specified the application will receive

partyJoined for each participant dialling into the
conference.

9.5.2.17 TpJoinEventinfo

Definesthe Sequence of Data El enent s that specify the information returned to the application in a Join event

notification.

Sequence Element Name

Sequence Element Type

Desti nati onAddr ess TpAddr ess
Origi nati ngAddr ess TpAddr ess
Origi nal Destinati onAddr ess TpAddr ess
Redi r ect i ngAddr ess TpAddr ess

Cal | Appl nfo

TpCal | Appl nf oSet

9.5.2.18 TpConfSearchCriteria

Definesthe Sequence of Data El enent s that specify the criteriafor doing a search for available conference

resources.

Sequence Element Name

Sequence Element Type

Start Search

TpDat eAndTi ne

St opSear ch

TpDat eAndTi ne

Request edResour ces

Tpl nt 32

Request edDur at i on

TpDur ati on

9.5.2.19 TpConfSearchResult

Definesthe Sequence of Data El ement s that specifies the result of a search for available conference resources.

Sequence Element Name

Sequence Element Type

Mat chFound TpBool ean
Actual Start Ti ne TpDat eAndTi e
Act ual Resour ces Tpl nt 32
Act ual Durati on TpDuration

ETSI

181 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

9.5.2.20 TpMultiMediaConfPolicy

Sequence of items for multi-media conferences.

Sequence Element Name Sequence Element Type Description
Joi nAl | owned TpBool ean Specifiesif dial-in to the conferenceis
allowed. Parties can dial-in to the conference
using the address returned during reservation.
If thisis specified the application will receive
partyJoined for each participant dialling into
the conference.

Medi aAl | owed TpMedi aType Specifies the media that are allowed to be
used by the participants. E.g. this can be used
to limit the conference to audio only, even
when all participants support video.

Chaired TpBool ean Specifies whether the conference s chaired or
free. In achaired conference the application or
one of the participants acting as chair has
special privileges; e.g. can control the video
distribution.

Vi deoHandl i ng TpVi deoHandl i ngType Specifies how the video should be handled.

9.5.2.21 TpResourceReservation

Definesthe Sequence of Data El enent s that specifiesthe result of a search for available conference resources.

Sequence Element Name | Sequence Element Type Sequence Element Description
Resourcel D TpAddress The address with which the conference can be addressed
Reservationl D Tplnt 32 Specifies the reservation made. It should be unique in a particular

resource

9.5.2.22 TpVideoHandlingType

Defines how video should be handled in the conference.

Name Value Description
P_M XED VI DEO 0 Video is mixed, no special treatment of speaker
P_SW TCHED VI DEO CHAI R_CONTROLLED 1 Video is switched, chair determines the speaker
P_SW TCHED VI DEO VO CE_CONTROLLED 2 Video is switched automatically based on audio
output of the speaker

10 Common Call Control Data Types

The following data types referenced in this clause are defined in ES 201 915-5:
TpUl I nfo

All other data types referenced but not defined in this clause are common data definitions which may be found in
ES 201 915-2.

10.1 TpCallAlertingMechanism

Thisdatatypeisidentical toaTpl nt 32, and defines the mechanism that will be used to aert acall party. The values
of this data type are operator specific.

ETSI

182

10.2 TpCallBearerService

Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

This data type defines the type of call application-related specific information (Q.931: Information Transfer Capability,

and TS 122 002).

Name Value Description
P_CALL_BEARER_SERVI CE_UNKNOMN 0 Bearer capability information unknown at thistime
P_CALL_BEARER SERVI CE_SPEECH 1 Speech
P_CALL_BEARER SERVI CE_DI G TALUNRESTRI CTED 2 Unrestricted digital information
P_CALL_BEARER SERVI CE_DI G TALRESTRI CTED 3 Restricted digital information
P_CALL_BEARER_SERVI CE_AUDI O 4 3,1 kHz audio
P_CALL_BEARER SERVI CE_DI G TALUNRESTRI CTED 5 Unrestricted digital information with tones/announcements
TONES
P_CALL_BEARER SERVI CE_VI DEO 6 Video

10.3 TpCallChargePlan

Definesthe Sequence of Data El enent s that specify the charge plan for the call.

Sequence Element Name Sequence Element Type Description
Char geOr der Type TpCal | Char geOr der Cat egory Charge order
Tr anspar ent Char ge TpCct et Set Operator specific charge plan specification,

e.g. charging table name/charging table entry. The
associated charge plan data will be sent
transparently to the charging records.

Only applicable when transparent charging is
selected.

Char gePl an Tpl nt 32

Pre-defined charge plan. Example of the charge

plan set from which the application can choose

could be: (0= normal user, 1 = silver card user,
2 =gold card user).

Only applicable when predefined charge plan is
selected.

Addi tional I nfo TpCct et Set

Descriptive string which is sent to the billing
system without prior evaluation. Could be
included in the ticket.

Part yToChar ge TpCal | Part yToChar geType Identifies the entity or party to be charged for the

call or cal leg.

Part yToChar geAddi tional Info [TpCal | PartyToChargeAdditional | nfo Contains additional information regarding the

charged party.

10.4 TpCallPartyToChargeAdditionallnfo

Defines the Tagged Choice of Data Elements that identifies the entity or party to be charged.

Tag Element Type

TpCallPartyToChargeType

Tag Element Value Choice Element Type Choice Element Name
P_CALL_PARTY_ORIGINATING NULL Undef i ned
P_CALL_PARTY_DESTINATION NULL Undef i ned
P_CALL_PARTY_SPECIAL TpAddress Cal | PartySpeci al

ETSI

183 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

10.5 TpCallPartyToChargeType

Defines the type of call party to charge.

Name Value Description
P_CALL_PARTY_ORIGINATING 0 Calling party, i.e. party that initiated the call. For application initiated calls this
indicates the first party of the call
P_CALL_PARTY_DESTINATION 1 Cal |l ed party
P_CALL_PARTY_SPECIAL 2 An address identifying e.g. athird party, a service provider

10.6 TpCallChargeOrderCategory

Defines the type of charging to be applied.

Name Value Description
P_CALL_CHARGE_TRANSPARENT 0 Operator specific charge plan specification, e.g. charging table name/charging
table entry. The associated charge plan data will be send transparently to the

charging records

P_CALL_CHARCE_PREDEFI NED_SET 1 Pre-defined charge plan. Example of the charge plan set from which the
application can choose could be : (0 = normal user, 1 = silver card user,
2 =gold card user).

10.7 TpCallEndedReport

Definesthe Sequence of Data El enent s that specify the reason for the call ending.

Sequence Element Name Sequence Element Type Description
Cal | LegSessi onl D TpSessi onl D Theleg that initiated the release of the call.

If the call release was not initiated by the leg,
then thisvalueis set to -1.

Cause TpRel easeCause The cause of the call ending.

10.8 TpCallError

Definesthe Sequence of Data El enent s that specify the additional information relating to acall error.

Sequence Element Name Sequence Element Type
ErrorTi me TpDat eAndTi e
Error Type TpCal | Error Type
Addi tional Errorlnfo TpCal | Addi tional Errorlnfo

ETSI

184 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

10.9 TpCallAdditionalErrorinfo

Definesthe Tagged Choi ce of Data El enent s that specify additiona call error and call error specific
information. Thisis also used to specify call leg errors and information errors.

Tag Element Type
TpCal | Error Type

Tag Element Value Choice Element Type Choice Element Name
P_CALL_ERROR_UNDEFI NED NULL Undef i ned
P_CALL_ERROR | NVALI D_ADDRESS TpAddressError Cal | Errorlnval i dAddr ess
P_CALL_ERRCR | NVALI D_STATE NULL Undef i ned
P_CALL_ERROR RESOURCE_UNAVAI LABLE NULL Undef i ned

10.10 TpCallErrorType

Defines a specific call error.

Name Value Description
P_CALL_ERROR_UNDEFI NED 0 Undefined; the method failed or was refused,
but no specific reason can be given.
P_CALL_ERROR_| NVALI D_ADDRESS 1 The operation failed because an invalid address
was given

P_CALL_ERRCR | NVALI D_STATE 2 The call was not in avalid state for the
requested operation

P_CALL_ERROR_RESOURCE_UNAVAI LABLE 3 There are not enough resources to complete the
request successfully

10.11 TpCallinfoReport

Definesthe Sequence of Data El enent s that specify the call information requested. Information that was not
requested isinvalid.

Sequence Element Name Sequence Element Type Description
Cal | I nfoType TpCallinfoType Thetype of call report.
CalllnitiationStartTi me TpDat eAndTi e The time and date when the call, or follow-
on call, was started.
Cal | Connect edToResour ceTi ne TpDat eAndTi e The date and time when the call was
connected to the resource.

This data element is only valid when
information on user interaction isreported.

Cal | Connect edToDest i nati onTi e TpDat eAndTi e The date and time when the call was
connected to the destination (i.e. when the
destination answered the call). If the
destination did not answer, thetimeis set to
an empty string.

This data element isinvalid when
information on user interaction is reported
with an intermediate report.

Cal | EndTi e TpDat eAndTi e The date and time when the call or follow-
on call or user interaction was terminated.

Cause TpRel easeCause The cause of the termination.

ETSI

185 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

A calllnfoReport will be generated at the end of user interaction and at the end of the connection with the associated
address. This means that either the destination related information is present or the resource related information, but not
both.

10.12 TpCallinfoType

Defines the type of call information requested and reported. The values may be combined by alogical "OR" function.

Name Value Description
P_CALL_| NFO_UNDEFI NED 00h Undefined
P_CALL_I NFO_TI MES 01h Relevant call times
P_CALL_I NFO_RELEASE CAUSE 02h Call release cause

10.13 TpCallLoadControlIMechanism

Defines the Tagged Choice of Data Elements that specify the applied mechanism and associated parameters.

Tag Element Type
TpCallLoadControlMechanismType

Tag Element Value Choice Element Type Choice Element Name
P_CALL_LQOAD CONTRCOL_PER | NTERVAL TpCal | LoadControl I nterval Rate Cal | LoadCont r ol Perl nt erval

10.14 TpCallLoadControlintervalRate

Defines the call admission rate of the call 1oad control mechanism used. This data type indicates the interval (in
milliseconds) between calls that are admitted.

Name Value Description
P_CALL_LQAD CONTROL_ADM T_NO CALLS 0 Infinite interval

(do not admit any calls)
1 - 60000 Duration in milliseconds

10.15 TpCallLoadControlMechanismType

Defines the type of call load control mechanism to use.

Name Value Description
P_CALL_LOAD CONTROL_PER | NTERVAL 0 admit one call per interval

ETSI

10.16 TpCallMonitorMode

186

Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Defines the mode that the call will monitor for events, or the mode that the call isin following a detected event.

Name

Value Description

P_CALL_MONI TOR_MODE_| NTERRUPT

0 The call event isintercepted by the call control
service and call processing isinterrupted. The
application is notified of the event and call
processing resumes following an appropriate
API call or network event (such asacall
release)

P_CALL_MONI TOR_MODE_NOTI FY

1 The call event is detected by the call control
service but not intercepted. The application is
notified of the event and call processing
continues

P_CALL_MONI TOR_MODE_DO_NOT_NMONI TOR

2 Do not monitor for the event

10.17 TpCallNetworkAccessType

This data defines the bearer capabilities associated with the call. (TS 124 002) Thisinformation is network operator
specific and may not always be available because there is no standard protocol to retrieve the information.

Name Value Description
P_CALL_NETWORK_ACCESS_TYPE_UNKNOMWN 0 Network type information unknown at thistime
P_CALL_NETWORK_ACCESS TYPE_POT 1 POTS
P_CALL_NETWORK_ACCESS TYPE | SDN 2 ISDN
P_CALL_NETWORK_ACCESS TYPE_DI ALUPI NTERNET 3 Dial-up Internet
P_CALL_NETWORK_ACCESS TYPE_XDSL 4 xDSL
P_CALL_NETWORK_ACCESS_TYPE_W RELESS 5 Wireless

10.18 TpCallPartyCategory

This data type defines the category of a calling party. (Q.763: Calling Party Category/Called Party Category).

Name Value Description
P_CALL_PARTY_CATEGORY_UNKNOAN 0 calling party's category unknown at thistime
P_CALL_PARTY_CATEGORY_OPERATOR _F 1 operator, language French
P_CALL_PARTY_CATEGORY_OPERATCOR_E 2 operator, language English
P_CALL_PARTY_CATEGORY_OPERATOR G 3 operator, language German
P_CALL_PARTY_CATEGORY_OPERATOR R 4 operator, language Russian
P_CALL_PARTY_CATEGORY_OPERATCOR_S 5 operator, language Spanish
P_CALL_PARTY_CATEGORY_ORDI NARY_SUB 6 ordinary calling subscriber
P_CALL_PARTY_CATEGORY_PRI ORI TY_SUB 7 calling subscriber with priority
P_CALL_PARTY_CATEGORY_DATA CALL 8 datacall (voice band data)
P_CALL_PARTY_CATEGORY_TEST_CALL 9 test call
P_CALL_PARTY_CATEGORY_ PAYPHONE 10 payphone

ETSI

187 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

10.19 TpCallServiceCode

Definesthe Sequence of Data El enent s that specify the service code and type of service code received during
acall. The service code type defines how the value string should be interpreted.

Sequence Element Name Sequence Element Type
Cal | Servi ceCodeType TpCal | Servi ceCodeType
Servi ceCodeVal ue TpString

10.20 TpCallServiceCodeSet

Defines a Numbered Set of Data Elements of TpCallServiceCode.

10.21 TpCallServiceCodeType

Defines the different types of service codes that can be received during the call.

Name Value Description
P_CALL_SERVI CE_CODE_UNDEFI NED 0 The type of service code is unknown. The corresponding string is
operator specific.
P_CALL_SERVI CE_CODE DI A TS 1 The user entered a digit sequence during the call. The corresponding
string is an ASCI| representation of the received digits.
P_CALL_SERVI CE_CODE_FACI LI TY 2 A facility information element is received. The corresponding string
contains the facility information element as defined in ITU Q.932
P_CALL_SERVI CE_CODE_U2U 3 A user-to-user message was received. The associated string contains
the content of the user-to-user information element.
P_CALL_SERVI CE_CCODE_HOOKFLASH 4 The user performed a hookflash, optionally followed by some digits.
The corresponding string is an ASCI| representation of the entered
digits.
P_CALL_SERVI CE_CODE_RECALL 5 The user pressed the register recall button, optionally followed by
some digits. The corresponding string is an ASCI| representation of
the entered digits.

10.22 TpCallSuperviseReport

Defines the responses from the call control service for calls that are supervised. The values may be combined by a
logical "OR" function.

Name Value Description
P_CALL_SUPERVI SE_TI MEQUT 01h The call supervision timer has expired
P_CALL_SUPERVI SE_CALL_ENDED 02h The call has ended, either due to timer expiry or

call party release. In case the called party
disconnects but a follow-on call can till be
made also thisindication is used.

P_CALL_SUPERVI SE_TONE_APPLI ED 04h A warning tone has been applied. Thisis only
sent in combination with
P_CALL_SUPERVISE TIMEOUT

P_CALL_SUPERVI SE_Ul _FI NI SHED 08h The user interaction has finished.

ETSI

188 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

10.23 TpCallSuperviseTreatment

Defines the treatment of the call by the call control service when the call supervision timer expires. The values may be
combined by alogical "OR" function.

Name Value Description
P_CALL_SUPERVI SE_RELEASE 01h Release the call when the call supervision timer
expires
P_CALL_SUPERVI SE_RESPOND 02h Notify the application when the call supervision
timer expires
P_CALL_SUPERVI SE_APPLY_TONE 04h Send awarning tone to the originating party

when the call supervision timer expires. If call
release is requested, then the call will be
rel eased following the tone after an
administered time period

10.24 TpCallTeleService

This data type defines the tele-service associated with the call. (Q.763: User Teleservice Information, Q.931: High
Layer Compatibility Information, and TS 122 003).

Name Value Description
P_CALL_TELE SERVI CE_UNKNOMN 0 Teleservice information unknown at thistime
P_CALL_TELE_SERVI CE_TELEPHONY 1 Telephony
P_CALL_TELE_SERVI CE_FAX_2_3 2 Facsimile Group 2/3
P_CALL_TELE SERVI CE_FAX 4_| 3 Facsimile Group 4, Class|
P CALL_TELE SERVICE FAX 4 I Il 4 Facsimile Group 4, Classes 1 and I11
P_CALL_TELE_SERVI CE_VI DEOTEX_SYN 5 Syntax based Videotex
P_CALL_TELE SERVI CE_VI DEOTEX_| NT 6 International Videotex interworki_ng via gateways or interworking

units
P_CALL_TELE_ SERVI CE_TELEX 7 Telex service
P_CALL_TELE_SERVI CE_MHS 8 Message Handling Systems
P_CALL_TELE SERVI CE_OSI OSl application
P_CALL_TELE SERVI CE_FTAM 10 FTAM application
P_CALL_TELE_SERVI CE_VI DEO 11 Videotelephony
P_CALL_TELE_SERVI CE_VI DEO_CONF 12 Videoconferencing
P_CALL_TELE_SERVI CE_AUDI OGRAPH_CONF 13 Audiographic conferencing
P_CALL_TELE SERVI CE_MJULTI MEDI A 14 Multimedia services
P_CALL_TELE SERVI CE_CS_| NI _H221 15 Capability set of initial channel of H.221
P_CALL_TELE SERVI CE_CS SUB H221 16 Capability set of subsequent channel of H.221
P_CALL_TELE SERVI CE_CS_|I NI _CALL 17 Capability set of initial channel associated with an active 3,1 kHz
audio or speech call.

P_CALL_TELE_SERVI CE_DATATRAFFI C 18 Datatraffic.
P_CALL_TELE SERVI CE_EMERGENCY_CALLS 19 Emergency Calls
P_CALL_TELE_SERVI CE_SM5_MI_PP 20 Short message MT/PP
P_CALL_TELE SERVI CE_SMS5_MD PP 21 Short message MO/PP
P_CALL_TELE SERVI CE_CELL_BROADCAST 22 Cell Broadcast Service
P_CALL_TELE_SERVI CE_ALT_SPEECH FAX_3 23 Alternate speech and facsimile group 3
P_CALL_TELE_SERVI CE_AUTOVATI C_FAX_3 24 Automatic Facsimile group 3
P_CALL_TELE SERVI CE_VO CE_GROUP_CALL 25 Voice Group Call Service
P_CALL_TELE_ SERVI CE_VA CE_BROADCAST 26 Voice Broadcast Service

ETSI

189 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

10.25 TpCallTreatment

Definesthe Sequence of Data El ement s that specify the treatment for calls that will be handled only by the
network (for example, call which are not admitted by the call load control mechanism).

Sequence Element Name Sequence Element Type
Cal | Tr eat ment Type TpCal | Tr eat ment Type
Rel easeCause TpRel easeCause
Addi ti onal Treat ment | nfo TpCal | Addi ti onal Treat ment | nfo

10.26 TpCallTreatmentType

Defines the treatment for calls that will be handled only by the network.

Name Value Description
P_CALL_TREATMENT_DEFAULT 0 Default treatment
P_CALL_TREATMENT_RELEASE 1 Release the call
P_CALL_TREATMENT_SI AR 2 Send information to the user, and release the

cal (Send Info & Release)

10.27 TpCallAdditionalTreatmentinfo

Definesthe Tagged Choi ce of Data El enent s that specify the information to be sent to acall party.

Tag Element Type
TpCalTreatmentType

Tag Element Value Choice Element Type Choice Element Name
P_CALL_TREATMENT_DEFAULT NULL Undef i ned
P_CALL_TREATMENT_RELEASE NULL Undef i ned
P_CALL_TREATMENT_SI AR TpU I nfo I nf or mat i onToSend

10.28 TpMediaType

Defines the media type of a media stream. The values may be combined by alogical "OR" function.

Name Value Description
P_AUDI O 1 Audio stream
P_VI DEO 2 Video stream
P_DATA 4 Data stream (e.g. T.120)

ETSI

190 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Annex A (normative):
OMG IDL Description of Call Control SCF

The OMG IDL representation of this interface specification is contained in text files (common_cc_data.idl,
gce_data.idl, gee_interfaces.idl, mpcc_dataidl, mpec_interfaces.idl, mmccs.idl, ccs.idl contained in archive
es 20191504v010501m0.zip) which accompany the present document.

ETSI

191 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Annex B (informative):
Contents of 3GPP OSA R4 Call Control

All itemsin Generic Call Control, clause 6 and all itemsin MultiParty Call Control are relevant for TS 129 198-4 V4
(Release 4).

ETSI

192 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

Annex C (informative):
Record of changes

Thefollowing isalist of the changes made to this specification for each release. The list contains the names of all
changed, deprecated, added or removed items in the specifications and not the actual changes. Any type of change
information that isimportant to the reader is put in the Others part of this annex.

Changes are specified as changes to the prior major release, but every minor release will have its own part of the table
alowing the reader to know when the actual change was made.

C.1 Interfaces

C.1.1 New

Identifier | Comments

Interfaces added in ES 201 915-4 version 1.3.1 (Parlay 3.2)

Interfaces added in ES 201 915-4 version 1.4.1 (Parlay 3.3)

Interfaces added in ES 201 915-4 version 1.5.1 (Parlay 3.4)

C.1.2 Deprecated

Identifier | Comments

Interfaces deprecated in ES 201 915-4 version 1.3.1 (Parlay 3.2)

Interfaces deprecated in ES 201 915-4 version 1.4.1 (Parlay 3.3)

Interfaces deprecated in ES 201 915-4 version 1.5.1 (Parlay 3.4)

C.1.3 Removed

Identifier \ Comments

Interfaces removed in ES 201 915-4 version 1.3.1 (Parlay 3.2)

Interfaces removed in ES 201 915-4 version 1.4.1 (Parlay 3.3)

Interfaces removed in ES 201 915-4 version 1.5.1 (Parlay 3.4)

ETSI

193 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

C.2 Methods
C.2.1 New
Identifier | Comments

Methods added in ES 201 915-4 version 1.3.1 (Parlay 3.2)

Methods added in ES 201 915-4 version 1.4.1 (Parlay 3.3)

Methods added in ES 201 915-4 version 1.5.1 (Parlay 3.4)

IpCall.continueProcessing |

C.2.2 Deprecated
Identifier | Comments
Methods deprecated in ES 201 915-4 version 1.3.1 (Parlay 3.2)
Methods deprecated i|n ES 201 915-4 version 1.4.1 (Parlay 3.3)
Methods deprecated i:n ES 201 915-4 version 1.5.1 (Parlay 3.4)
C.2.3 Modified
Identifier | Comments
Methods modified in ES 201 915-4 version 1.3.1 (Parlay 3.2)
Methods modified in| ES 201 915-4 version 1.4.1 (Parlay 3.3)
Methods modified in: ES 201 915-4 version 1.5.1 (Parlay 3.4)
C.2.4 Removed
Identifier | Comments

Methods removed in ES 201 915-4 version 1.3.1 (Parlay 3.2)

Methods removed in ES 201 915-4 version 1.4.1 (Parlay 3.3)

Methods removed in ES 201 915-4 version 1.5.1 (Parlay 3.4)

ETSI

194 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

C.3 Data Definitions

C.3.1 New

Identifier | Comments

Data Definitions added in ES 201 915-4 version 1.3.1 (Parlay 3.2)

TpCallPartyToChargeAdditionalinfo |TpCallPartyToCharge renamed TpCallPartyToChargeAdditionallnfo

Data Definitions added in ES 201 915-4 version 1.4.1 (Parlay 3.3)

TpMultiMediaCallLegldentifierSet |Missing from document, although used - already present in IDL

Data Definitions added in ES 201 915-4 version 1.5.1 (Parlay 3.4)

C.3.2 Modified

Identifier | Comments

Data Definitions modified in ES 201 915-4 version 1.3.1 (Parlay 3.2)

TpCallChargePlan |

Data Definitions modified in ES 201 915-4 version 1.4.1 (Parlay 3.3)

TpReleaseCauseSet Corrected in documentation to be a set of TpReleaseCause

TpCallEventCriteriaResult Corrected in documentation to match IDL

Data Definitions modified in ES 201 915-4 version 1.5.1 (Parlay 3.4)

C.3.3 Removed

Identifier | Comments
Data Definitions removed in ES 201 915-4 version 1.3.1 (Parlay 3.2)
TpCallPartyToCharge [TpCallPartyToCharge renamed TpCallPartyToChargeAdditionallnfo
Data Definitions removed in ES 201 915-4 version 1.4.1 (Parlay 3.3)
TpCallChargeOrder INo longer used.

Data Definitions removed in ES 201 915-4 version 1.5.1 (Parlay 3.4)

C.4 Service Properties

C.4.1 New

Identifier | Comments

Service Properties added in ES 201 915-4 version 1.3.1 (Parlay 3.2)

Service Properties added in ES 201 915-4 version 1.4.1 (Parlay 3.3)

Service Properties added in ES 201 915-4 version 1.5.1 (Parlay 3.4)

P _NOTIFICATION ADDRESS RANGES [Replaces P TRIGGERING ADDRESSES

ETSI

195 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

C.4.2 Deprecated

Identifier | Comments

Service Properties deprecated in ES 201 915-4 version 1.3.1 (Parlay 3.2)

Service Properties deprecated in ES 201 915-4 version 1.4.1 (Parlay 3.3)

Service Properties deprecated in ES 201 915-4 version 1.5.1 (Parlay 3.4)

P TRIGGERING ADDRESSES |Replaced by P NOTIFICATION ADDRESS RANGES

C.4.3 Modified

Identifier | Comments
Service Properties modified in ES 201 915-4 version 1.3.1 (Parlay 3.2)
P TRIGGERING EVENT TYPES Multi Party Call Control
P DYNAMIC EVENT TYPES Multi Party Call Control

Service Properties modified in ES 201 915-4 version 1.4.1 (Parlay 3.3)

Service Properties modified in ES 201 915-4 version 1.5.1 (Parlay 3.4)

C.4.4 Removed

Identifier | Comments

Service Properties removed in ES 201 915-4 version 1.3.1 (Parlay 3.2)

Service Properties removed in ES 201 915-4 version 1.4.1 (Parlay 3.3)

Service Properties removed in ES 201 915-4 version 1.5.1 (Parlay 3.4)

C.5 Exceptions

C.5.1 New

Identifier | Comments

Exceptions added in ES 201 915-4 version 1.3.1 (Parlay 3.2)

Exceptions added in ES 201 915-4 version 1.4.1 (Parlay 3.3)

Exceptions added in ES 201 915-4 version 1.5.1 (Parlay 3.4)

ETSI

196 Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

C.5.2 Modified

Identifier | Comments

Exceptions modified in ES 201 915-4 version 1.3.1 (Parlay 3.2)

Exceptions modified in ES 201 915-4 version 1.4.1 (Parlay 3.3)

Exceptions modified in ES 201 915-4 version 1.5.1 (Parlay 3.4)

C.5.3 Removed

Identifier | Comments

Exceptions removed in ES 201 915-4 version 1.3.1 (Parlay 3.2)

Exceptions removed in ES 201 915-4 version 1.4.1 (Parlay 3.3)

Exceptions removed in ES 201 915-4 version 1.5.1 (Parlay 3.4)

C.6 Others

None.

ETSI

197

Final draft ETSI ES 201 915-4 V1.5.1 (2004-11)

History
Document history
V111 February 2002 Publication
V122 July 2002 Publication
V131 October 2002 Publication
V14.1 July 2003 Publication
V15.1 November 2004 | Membership Approval Procedure MV 20050128: 2004-11-30 to 2005-01-28

ETSI

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Call Control SCF
	4.1 Call Model Description
	4.2 General requirements on support of methods

	5 The Service Interface Specifications
	5.1 Interface Specification Format
	5.1.1 Interface Class
	5.1.2 Method descriptions
	5.1.3 Parameter descriptions
	5.1.4 State Model

	5.2 Base Interface
	5.2.1 Interface Class IpInterface

	5.3 Service Interfaces
	5.3.1 Overview

	5.4 Generic Service Interface
	5.4.1 Interface Class IpService

	6 Generic Call Control Service
	6.1 Sequence Diagrams
	6.1.1 Additional Callbacks
	6.1.2 Alarm Call
	6.1.3 Application Initiated Call
	6.1.4 Call Barring 1
	6.1.5 Number Translation 1
	6.1.6 Number Translation 1 (with callbacks)
	6.1.7 Number Translation 2
	6.1.8 Number Translation 3
	6.1.9 Number Translation 4
	6.1.10 Number Translation 5
	6.1.11 Prepaid
	6.1.12 Pre-Paid with Advice of Charge (AoC)

	6.2 Class Diagrams
	6.3 Generic Call Control Service Interface Classes
	6.3.1 Interface Class IpCallControlManager
	6.3.2 Interface Class IpAppCallControlManager
	6.3.3 Interface Class IpCall
	6.3.4 Interface Class IpAppCall

	6.4 Generic Call Control Service State Transition Diagrams
	6.4.1 State Transition Diagrams for IpCallControlManager
	6.4.1.1 Active State
	6.4.1.2 Notification terminated State

	6.4.2 State Transition Diagrams for IpCall
	6.4.2.1 Network Released State
	6.4.2.2 Finished State
	6.4.2.3 Application Released State
	6.4.2.4 No Parties State
	6.4.2.5 Active State
	6.4.2.6 Party in Call State
	6.4.2.7 Parties in Call State
	6.4.2.8 Routing to Destination(s) State

	6.5 Generic Call Control Service Properties
	6.5.1 List of Service Properties
	6.5.2 Service Property values for the CAMEL Service Environment

	6.6 Generic Call Control Data Definitions
	6.6.1 Generic Call Control Event Notification Data Definitions
	6.6.1.1 TpCallEventName
	6.6.1.2 TpCallNotificationType
	6.6.1.3 TpCallEventCriteria
	6.6.1.4 TpCallEventInfo

	6.6.2 Generic Call Control Data Definitions
	6.6.2.1 IpCall
	6.6.2.2 IpCallRef
	6.6.2.3 IpAppCall
	6.6.2.4 IpAppCallRef
	6.6.2.5 TpCallIdentifier
	6.6.2.6 IpAppCallControlManager
	6.6.2.7 IpAppCallControlManagerRef
	6.6.2.8 IpCallControlManager
	6.6.2.9 IpCallControlManagerRef
	6.6.2.10 TpCallAppInfo
	6.6.2.11 TpCallAppInfoType
	6.6.2.12 TpCallAppInfoSet
	6.6.2.13 TpCallEndedReport
	6.6.2.14 TpCallFault
	6.6.2.15 TpCallInfoReport
	6.6.2.16 TpCallReleaseCause
	6.6.2.17 TpCallReport
	6.6.2.18 TpCallAdditionalReportInfo
	6.6.2.19 TpCallReportRequest
	6.6.2.20 TpCallAdditionalReportCriteria
	6.6.2.21 TpCallReportRequestSet
	6.6.2.22 TpCallReportType
	6.6.2.23 TpCallTreatment
	6.6.2.24 TpCallEventCriteriaResultSet
	6.6.2.25 TpCallEventCriteriaResult

	7 MultiParty Call Control Service
	7.1 Sequence Diagrams
	7.1.1 Application initiated call setup
	7.1.2 Call Barring 2
	7.1.3 Call forwarding on Busy Service
	7.1.4 Call Information Collect Service
	7.1.5 Complex Card Service
	7.1.6 Hotline Service
	7.1.7 Use of the Redirected event

	7.2 Class Diagrams
	7.3 MultiParty Call Control Service Interface Classes
	7.3.1 Interface Class IpMultiPartyCallControlManager
	7.3.2 Interface Class IpAppMultiPartyCallControlManager
	7.3.3 Interface Class IpMultiPartyCall
	7.3.4 Interface Class IpAppMultiPartyCall
	7.3.5 Interface Class IpCallLeg
	7.3.6 Interface Class IpAppCallLeg

	7.4 MultiParty Call Control Service State Transition Diagrams
	7.4.1 State Transition Diagrams for IpMultiPartyCallControlManager
	7.4.1.1 Active State
	7.4.1.2 Interrupted State
	7.4.1.3 Overview of allowed methods

	7.4.2 State Transition Diagrams for IpMultiPartyCall
	7.4.2.1 IDLE State
	7.4.2.2 ACTIVE State
	7.4.2.3 RELEASED State
	7.4.2.4 Overview of allowed methods

	7.4.3 State Transition Diagrams for IpCallLeg
	7.4.3.1 Originating Call Leg
	7.4.3.1.1 Initiating State
	7.4.3.1.2 Analysing State
	7.4.3.1.3 Active State
	7.4.3.1.4 Releasing State
	7.4.3.1.5 Overview of allowed methods, Originating Call Leg STD

	7.4.3.2 Terminating Call Leg
	7.4.3.2.1 Idle (terminating) State
	7.4.3.2.2 Active (terminating) State
	7.4.3.2.3 Releasing (terminating) State
	7.4.3.2.4 Overview of allowed methods and trigger events, Terminating Call Leg STD

	7.5 Multi-Party Call Control Service Properties
	7.5.1 List of Service Properties
	7.5.2 Service Property values for the CAMEL Service Environment

	7.6 Multi-Party Call Control Data Definitions
	7.6.1 Event Notification Data Definitions
	7.6.2 Multi-Party Call Control Data Definitions
	7.6.2.1 IpCallLeg
	7.6.2.2 IpCallLegRef
	7.6.2.3 IpAppCallLeg
	7.6.2.4 IpAppCallLegRef
	7.6.2.5 IpMultiPartyCall
	7.6.2.6 IpMultiPartyCallRef
	7.6.2.7 IpAppMultiPartyCall
	7.6.2.8 IpAppMultiPartyCallRef
	7.6.2.9 IpMultiPartyCallControlManager
	7.6.2.10 IpMultiPartyCallControlManagerRef
	7.6.2.11 IpAppMultiPartyCallControlManager
	7.6.2.12 IpAppMultiPartyCallControlManagerRef
	7.6.2.13 TpAppCallLegRefSet
	7.6.2.14 TpMultiPartyCallIdentifier
	7.6.2.15 TpAppMultiPartyCallBack
	7.6.2.16 TpAppMultiPartyCallBackRefType
	7.6.2.17 TpAppCallLegCallBack
	7.6.2.18 TpMultiPartyCallIdentifierSet
	7.6.2.19 TpCallAppInfo
	7.6.2.20 TpCallAppInfoType
	7.6.2.21 TpCallAppInfoSet
	7.6.2.22 TpCallEventRequest
	7.6.2.23 TpCallEventRequestSet
	7.6.2.24 TpCallEventType
	7.6.2.25 TpAdditionalCallEventCriteria
	7.6.2.26 TpCallEventInfo
	7.6.2.27 TpCallAdditionalEventInfo
	7.6.2.28 TpCallNotificationRequest
	7.6.2.29 TpCallNotificationScope
	7.6.2.30 TpCallNotificationInfo
	7.6.2.31 TpCallNotificationReportScope
	7.6.2.32 TpNotificationRequested
	7.6.2.33 TpNotificationRequestedSet
	7.6.2.34 TpReleaseCause
	7.6.2.35 TpReleaseCauseSet
	7.6.2.36 TpCallLegIdentifier
	7.6.2.37 TpCallLegIdentifierSet
	7.6.2.38 TpCallLegAttachMechanism
	7.6.2.39 TpCallLegConnectionProperties
	7.6.2.40 TpCallLegInfoReport
	7.6.2.41 TpCallLegInfoType
	7.6.2.42 TpCallLegSuperviseTreatment

	8 MultiMedia Call Control Service
	8.1 Sequence Diagrams
	8.1.1 Barring for media combined with call routing, alternative 1
	8.1.2 Barring for media combined with call routing, alternative 2
	8.1.3 Barring for media, simple
	8.1.4 Call Volume charging supervision

	8.2 Class Diagrams
	8.3 MultiMedia Call Control Service Interface Classes
	8.3.1 Interface Class IpMultiMediaCallControlManager
	8.3.2 Interface Class IpAppMultiMediaCallControlManager
	8.3.3 Interface Class IpMultiMediaCall
	8.3.4 Interface Class IpAppMultiMediaCall
	8.3.5 Interface Class IpMultiMediaCallLeg
	8.3.6 Interface Class IpAppMultiMediaCallLeg
	8.3.7 Interface Class IpMultiMediaStream

	8.4 MultiMedia Call Control Service State Transition Diagrams
	8.5 Multi-Media Call Control Data Definitions
	8.5.1 Event Notification Data Definitions
	8.5.1.1 TpMediaStreamRequestSet
	8.5.1.2 TpMediaStreamRequest
	8.5.1.3 TpMediaStreamDirection
	8.5.1.4 TpMediaStreamDataTypeRequest
	8.5.1.5 TpAudioCapabilitiesType
	8.5.1.6 TpVideoCapabilitiesType
	8.5.1.7 TpDataCapabilities
	8.5.1.8 TpMediaStreamEventType
	8.5.1.9 TpMediaStreamSet
	8.5.1.10 TpMediaStream
	8.5.1.11 TpMediaStreamDataType

	8.5.2 Multi-Media Call Control Data Definitions
	8.5.2.1 IpMultiMediaCall
	8.5.2.2 IpMultiMediaCallRef
	8.5.2.3 IpAppMultiMediaCall
	8.5.2.4 IpAppMultiMediaCallRef
	8.5.2.5 IpMultiMediaCallLeg
	8.5.2.6 IpMultiMediaCallLegRef
	8.5.2.7 IpAppMultiMediaCallLeg
	8.5.2.8 IpAppMultiMediaCallLegRef
	8.5.2.9 TpAppMultiMediaCallLegRefSet
	8.5.2.10 TpMultiMediaCallIdentifier
	8.5.2.11 TpMultiMediaCallIdentifierSet
	8.5.2.12 TpMultiMediaCallLegIdentifier
	8.5.2.13 TpMultiMediaCallLegIdentifierSet
	8.5.2.14 IpAppMultiMediaCallControlManager
	8.5.2.15 IpAppMultiMediaCallControlManagerRef
	8.5.2.16 TpAppMultiMediaCallBack
	8.5.2.17 TpAppMultiMediaCallBackRefType
	8.5.2.18 TpAppMultiMediaCallLegCallBack
	8.5.2.19 TpCallSuperviseVolume
	8.5.2.20 TpNotificationMediaRequest
	8.5.2.21 TpMediaNotificationRequested
	8.5.2.22 TpMediaNotificationsRequestedSet

	9 Conference Call Control Service
	9.1 Sequence Diagrams
	9.1.1 Meet-me conference without subconferencing
	9.1.2 Non-add hoc add-on with subconferencing
	9.1.3 Non-addhoc add-on multimedia
	9.1.4 Resource Reservation

	9.2 Class Diagrams
	9.3 Conference Call Control Service Interface Classes
	9.3.1 Interface Class IpConfCallControlManager
	9.3.2 Interface Class IpAppConfCallControlManager
	9.3.3 Interface Class IpConfCall
	9.3.4 Interface Class IpAppConfCall
	9.3.5 Interface Class IpSubConfCall
	9.3.6 Interface Class IpAppSubConfCall

	9.4 Conference Call Control Service State Transition Diagrams
	9.5 Conference Call Control Data Definitions
	9.5.1 Event Notification Data Definitions
	9.5.2 Conference Call Control Data Definitions
	9.5.2.1 IpConfCall
	9.5.2.2 IpConfCallRef
	9.5.2.3 IpAppConfCall
	9.5.2.4 IpAppConfCallRef
	9.5.2.5 IpSubConfCall
	9.5.2.6 IpSubConfCallRef
	9.5.2.7 IpAppSubConfCall
	9.5.2.8 IpAppSubConfCallRef
	9.5.2.9 TpSubConfCallIdentifierSet
	9.5.2.10 TpConfCallIdentifier
	9.5.2.11 TpSubConfCallIdentifier
	9.5.2.12 IpAppConfCallControlManager
	9.5.2.13 IpAppConfCallControlManagerRef
	9.5.2.14 TpConfPolicyType
	9.5.2.15 TpConfPolicy
	9.5.2.16 TpMonoMediaConfPolicy
	9.5.2.17 TpJoinEventInfo
	9.5.2.18 TpConfSearchCriteria
	9.5.2.19 TpConfSearchResult
	9.5.2.20 TpMultiMediaConfPolicy
	9.5.2.21 TpResourceReservation
	9.5.2.22 TpVideoHandlingType

	10 Common Call Control Data Types
	10.1 TpCallAlertingMechanism
	10.2 TpCallBearerService
	10.3 TpCallChargePlan
	10.4 TpCallPartyToChargeAdditionalInfo
	10.5 TpCallPartyToChargeType
	10.6 TpCallChargeOrderCategory
	10.7 TpCallEndedReport
	10.8 TpCallError
	10.9 TpCallAdditionalErrorInfo
	10.10 TpCallErrorType
	10.11 TpCallInfoReport
	10.12 TpCallInfoType
	10.13 TpCallLoadControlMechanism
	10.14 TpCallLoadControlIntervalRate
	10.15 TpCallLoadControlMechanismType
	10.16 TpCallMonitorMode
	10.17 TpCallNetworkAccessType
	10.18 TpCallPartyCategory
	10.19 TpCallServiceCode
	10.20 TpCallServiceCodeSet
	10.21 TpCallServiceCodeType
	10.22 TpCallSuperviseReport
	10.23 TpCallSuperviseTreatment
	10.24 TpCallTeleService
	10.25 TpCallTreatment
	10.26 TpCallTreatmentType
	10.27 TpCallAdditionalTreatmentInfo
	10.28 TpMediaType

	Annex A (normative): OMG IDL Description of Call Control SCF
	Annex B (informative): Contents of 3GPP OSA R4 Call Control
	Annex C (informative): Record of changes
	C.1 Interfaces
	C.1.1 New
	C.1.2 Deprecated
	C.1.3 Removed

	C.2 Methods
	C.2.1 New
	C.2.2 Deprecated
	C.2.3 Modified
	C.2.4 Removed

	C.3 Data Definitions
	C.3.1 New
	C.3.2 Modified
	C.3.3 Removed

	C.4 Service Properties
	C.4.1 New
	C.4.2 Deprecated
	C.4.3 Modified
	C.4.4 Removed

	C.5 Exceptions
	C.5.1 New
	C.5.2 Modified
	C.5.3 Removed

	C.6 Others

	History

