ETSl ES 201 915-4 V1.2.2 (2002-05)

ETSI Standard

Open Service Access (OSA);
Application Programming Interface (API);
Part 4: Call Control SCF

D

2 ETSI ES 201 915-4 V1.2.2 (2002-05)

Reference
RES/SPAN-120076-4

Keywords
API, IDL, UML, OSA

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/th/status/status.asp

If you find errors in the present document, send your comment to:
editor@etsi.fr

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2002.
© The Parlay Group 2002.
All rights reserved.

DECT™, PLUGTESTS ™ and UMTS™ are Trade Marks of ETSI registered for the benefit of its Members.

TIPHON™ and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members.
3GPP™is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

ETSI

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
mailto:editor@etsi.fr

3 ETSI ES 201 915-4 V1.2.2 (2002-05)

Contents

Intellectual Property RIGNES...... ..ot 9
0 Yo (o SRS RRR 9
1 000 SRR 10
2 REFEIENCES ...ttt b bt e et ae Rt b e bt e bt s e et et et et et e b e ebeebene e et et e e e ens 10
3 Definitions and aDDrEVIBLIONS...........cov ettt s e e reeeeseesreeeeneeas 10
31 DL T 0] 3OS 10
3.2 ADDIEVIBLIONS ...t ettt ettt b bt b et etk e b et ke be st e Rt b e st et et e st et ebe e e e ere s 10
4 Call CONLIOl ST ...ttt sttt be bt s bt s b e s b e b e b e e et e e nbesbenb e s e e eneas 10
5 The Service Interface SPECITICALIONS..........coiiiiiriereee e 12
51 Interface SPECITiCatiON FOMMELcccoiieiriri ettt bbbt e e st e et e s b s ns 12
511 1S g = oY O = SOOI 12
512 MELNOO AESCIILIONS. ...tttk b et b e bbbt b e bbb e et b et nn st e 12
513 e o 0= (= 0 (== 0] 014 o] = SR 12
514 STz (1Y oo L= TSRS P PSP 12
52 2T S 1= = ot 12
521 INtErfaCe Class IPINEEITACEccue ittt reere e e e e sresbesneeneeneens 12
53 S VLo L =g o= ST RPS 13
531 (O Y= OSSR 13
54 GENENIC SEIVICE INLEITACE ...ttt sttt b ae bt et e s e e e e e e besee et e e e eneeseesbesaeeneeneannan 13
541 INEEITACE ClaSS IPSEIVICE ...ttt sttt ettt e e be et b e s et eaeene e e ebeseesbesneenneneens 13
6 GENENIC Call CONIOl SEIVICE ...ttt ettt e e e ste e e saesseeeesaeeneesseeneeneeseeenen 15
6.1 S0 (U 1c Lo Y Do - SR 15
6.1.1 AdditionNal CallDBCKS.......ceeiiiieiiee ettt bbb e e 15
6.1.2 F = 02 1 OSSP 16
6.1.3 WY o) 1= Lo g I H g TR (= =0 [| S 18
6.1.4 (@ == 14 1o S 20
6.1.5 N W o1 g I =0 o 1 TSRS 22
6.1.6 Number Trangation 1 (With CalIDACKS).........coiiiiii e 24
6.1.7 NUMDEN TFANSIBION 2 ...ttt st e e bt st e e e e e se e b e s be e bt eae e e e beseesbesaeennennans 26
6.1.8 NUMDEN TFANSIBLION 3 ...ttt e e s bt st ae e e e e e seesbesbeeaeeae e e enbeseesbesaeenneneans 28
6.1.9 NUMDEN TFANSIBLION 4 ...ttt et et s b et ae et e e e e se e b e s beeaeeae e e e beseesbesaeenneneans 30
6.1.10 NUMDEr TFANSIBLIONGottt et et b st e e e se e besbeebesaeeaeeaee e ebeseesbesneeneenean 32
6.1.11 (= . o O 33
6.1.12 Pre-Paid with AdVice Of Charge (AOC)cecieriieieereeeeeereste et s e ese e e e seestesnesneesesseeneeneens 35
6.2 (O =SS DT o |- 0SSR 38
6.3 Generic Call Control Service INtErface ClaSSES.........coiiiieirierie ettt 39
6.3.1 Interface Class IpCall CONtrOIM@NAJESccoviireieriireeeeresees e e e st s besaeere s e eneeneesresneeneeneens 40
6.3.2 Interface Class IpAPPCal CONtrOIMANAGEYccvieiiireeeeereese s s e se e e et sre e e e eesrestesaeeneeneens 44
6.3.3 INEEITACE ClASS IPCAIL..... ettt bbbt b e e e sb e b e besbe e ae e e e beseesbesaeeneeneens 46
6.3.4 INterface Class IPAPPCEILo et e et b e s bt b e se e e e b e e eneeeen 51
6.4 Generic Call Control Service State Transition DIagramMS..........cceeeeerierierenese e seeseeeneas 55
6.4.1 State Transition Diagrams for IpCall CONtrolManNagErcceeeeeieriirere e e 55
6.4.1.1 F o A = = USRS 55
6.4.1.2 NOtifiCation tErMINALEA SEALEooeieiieieeetere ettt et bbb ae e e seesbesaeeaeeneens 55
6.4.2 State Transition Diagrams fOr IPCALooiiiiiie e 56
6.4.2.1 NEWOrK REIEASEA SEALEvecveeeceeeieee ettt et naesae e e resseese e e e e eneeseestesnneneeneens 56
6.4.2.2 LTS TS0 S (PR 56
6.4.2.3 APPlICAioN REIEESEA SEALEoeiiiieeieie et b 57
6.4.2.4 Tl = T U= P 57
6.4.2.5 F o A = = TSP RRR 57
6.4.2.6 L PArtY iN Call SEALE.......coeiieiiteiteie ettt ettt e e e e sbesbesbesbe e e e beseesbesaeeneennan 57
6.4.2.7 2 PartieSiN Call SEALE.....ccueeeeeee ettt b et b e bt eb e e st e e e e e st e besae b e aeeneenean 57
6.4.2.8 Routing t0 DEStINGLION(S) SEALEc.eiueeieiereesie ettt b et e b e eaeenean 58

ETSI

4 ETSI ES 201 915-4 V1.2.2 (2002-05)

6.5 Generic Call CoNtrol SErVICE PrOPEITIESceiiee e cee sttt e e et ste e e saesreesneesneenreenseensenn 58
6.5.1 LiSt Of SEIVICE PrOPEITIES. ...c.viiiecee ettt et e s e s e e saeesaeenteeneeenteensenneesneesneennes 58
6.5.2 Service Property values for the CAMEL Service ENVIrONMENt........ccccievvieieseeeieeriese e see e e 59
6.6 Generic Call Control Data DEfiNITIONS..........ccviirieireieisiereee ettt sttt e et e s s 60
6.6.1 Generic Call Control Event Notification Data DefiNitioNnS........ccocovierieienenenenerese e 61
6.6.1.1 QLI LO= LY 11 NN = T S 61
6.6.1.2 TPCAINOLfICAT ONT YR ...ttt bbbt b et b et b et nn e e 61
6.6.1.3 TP A EVENICTITEITA ...ttt bbb et bbbttt e et st e e e 62
6.6.1.4 TPCAIEVENIINTO. ...ttt b et et bbbt b e bt b e e 62
6.6.2 Generic Call Control Data DEfiNITIONS........coiiiiiiiriieeeeee ettt s see e e sre e eneas 62
6.6.2.1 oL SRS 62
6.6.2.2 F oL@ = ST PSRS 62
6.6.2.3 F 7AYo o1 | ST SRTSTRTS 62
6.6.2.4 1 7Y o] 0@ 1 1 ==, S 62
6.6.2.5 B oL@ o L= 1] = OSSR 63
6.6.2.6 FoTaY oo @ 1 E@ala1d g0l 11Y, F=0= o = C 63
6.6.2.7 IPAPPCAlCONLrOIMaNAQErRES ..o et sr et sresre e eneenes 63
6.6.2.8 [PCAlCONETOIM@NAGET ... ettt ettt ettt b e et b e bbbt b e et b e s bbb e ne b nn s s 63
6.6.2.9 IPCall CONrOIM@NEGEIRESc.eiviieeiite bbbt 63
6.6.2.10 TPCATAPPINTO ...ttt b st bbbt b b e bbb e 63
6.6.2.11 TPCA L APPINTOTYI. ...ttt b e b a bt b et b e et b e e 64
6.6.2.12 TPCAIAPPINTOSEL ...ttt sttt et b et e e se e be et e b e e aeeae e e e e e beseeebesaeeaeeneenean 64
6.6.2.13 I 102 1 o L= | L= oo o SO USRI 64
6.6.2.14 B o1 1 O SRS 64
6.6.2.15 LI o 1O= L1 010 = P 65
6.6.2.16 TPCAIREIEASECAUSEcveeeieieeci ettt b et e et et be st et e st e e b be e neeee 65
6.6.2.17 QLI 1= L= oo PSS 66
6.6.2.18 B o 1O= 1 V2N o [(Lo 7= = 7o g1 {1 66
6.6.2.19 TPCAIREPOIMREGUESLeeiveiieitieieeieeese e e st et e e e st e e sre st s e eseeseessetesaestesseeseeseensensessentesseesenneenen 66
6.6.2.20 TPCall AdditiONAI REPOICIITEITAL.....ceeeiieeiee ettt e e ee s e besaeeneeneeneas 67
6.6.2.21 TPCA I REPOIMREGUESESEL ... ceeeeeeeeee ettt sttt sttt se e e e b e sbeeaeeae e e e s e seesbesaeeneeneeneas 67
6.6.2.22 I 1Oz = oo i Y o= TP 67
6.6.2.23 I 1O L I == 0 1= o PRSI 68
6.6.2.24 TPCalEVENICIILErTARESUITSEL ..ottt bt e e e e b e sbe e eneas 68
6.6.2.25 I 1Oz Y (@) (= (=1 (=T 68
7 MultiParty Call CONIOl SEIVICE.......couiuieirieiriese ettt 68
7.1 S0 [0 1C Lol Do = SR 68
711 Application iNItiated Call SEIUDovvererir ettt r e se e e e sr e aesnesre e e eneenes 68
712 (@ | I ST 14 11 o 2SSOSR 70
7.13 Call forwarding 0N BUSY SEIVICE.ccueiuiiieeeieee ettt sttt s be bt st e e e e et e b sbebe e sbeeneenean 72
714 Call INfOrmation COlECE SEIVICEciueieeie ettt sttt bbbt bt et e b e e besaesbeeneeneas 73
7.15 COMPIEX CArd SEIVICE. ... ettt ettt sttt ettt et e b e aeehe e e e e e beseeebe s et ebeeae et anbeseesbesaeebeeneenean 77
7.1.6 HOUINE SEIVICE ...ttt ettt se e e et e bt s be bt e bt e e e st e e e ee e s beeaeeaee e e beseeebesneenneneans 79
7.1.7 Use Of the REAITECEEA BVENL ..o ettt b e st 82
7.2 (O =SS DT To - 2SS 83
7.3 MultiParty Call Control Service INterface ClasSeS........ccuivvviiririeiicerieeeseses e e se e enes 84
731 Interface Class |pM ultiPartyCal | CONtrOIM@NAQEScccvveiueriereeeeeereeseseese e sae s e eseeseeseessesressessesneeneens 84
732 Interface Class IpAppMultiPartyCall CONtrolMaNagercccvvereeeeieeieresesieseesteseseseeseeseeseesseseeseesseens 88
7.3.3 Interface Class IPMUItIPAITYCallccoiiieiiiiciceceseee e e s e sre b e eneeneens 91
734 Interface Class IPAPPMUItIPArtYCall...... ..o 96
7.35 INtEIfACE ClasS IPCAIILEG ...coueeieieiiere ettt b ettt bbb e s bt ebe et e e seesbesaeeneeneens 99
7.3.6 Interface Class IPAPPCAIILEY. ..ot ettt sttt e bbb 105
74 MultiParty Call Control Service State Transition DiagramsS..........coceeeerererierenene e e 109
74.1 State Transition Diagrams for IpM ultiPartyCall COntrolManagercoeeereereenereene e 109
7411 ACHIVE SEBLE. ...ttt bttt e et b e bt eh e e Rt e Rt et e e e beeee b e et et eeeebe e aeene e e eneas 109
7412 INEEITUPLEO SEBEE......e.eeeeitieetceteee etttk sttt b et bbb et ettt eee 109
74.1.3 Overview of alloWed MELNOS.........cooii i sre e e s 109
742 State Transition Diagrams for IpMUltiPartyCallooeiriiriniinereee e 110
7421 DT S (=PSRN 110
7422 F N O I AV S = (USRS 111
74.23 L I NS I I - (S 111

ETSI

7424
743
7431
74311
74312
74313
74314
74315
7432
74321
74322
74.3.2.3
74324
7.5
751
752
7.6
7.6.1
7.6.2
7621
7.6.2.2
7.6.2.3
7624
7.6.2.5
7.6.2.6
7.6.2.7
7.6.2.8
7.6.2.9
7.6.2.10
7.6.2.11
7.6.2.12
7.6.2.13
7.6.2.14
7.6.2.15
7.6.2.16
7.6.2.17
7.6.2.18
7.6.2.19
7.6.2.20
7.6.2.21
7.6.2.22
7.6.2.23
7.6.2.24
7.6.2.25
7.6.2.26
7.6.2.27
7.6.2.28
7.6.2.29
7.6.2.30
7.6.2.31
7.6.2.32
7.6.2.33
7.6.2.34
7.6.2.35
7.6.2.36
7.6.2.37
7.6.2.38
7.6.2.39
7.6.2.40
7.6.241
7.6.242

5 ETSI ES 201 915-4 V1.2.2 (2002-05)

Overview Of alowed MELNOGS............cciiriiirc e 111
State Transition Diagrams fOr IPCAllLEg........oiveiieii et e e ne s 111
(@ aTo Tt (0o [0 = o [112
FaTR A= g To S = = SR 113

F N 4= VS T g0 RS - (P 114
ACHVE SEALE ...t p s 115
REIBASING SEALE ...ttt et b bbbt b e b e e bt sa e e b e ebese e e ebenr e ene s 117
Overview of allowed methods, Originating Call Leg STDccccceiiiieineneireicesieseeeseseeeees 118
TEMINAING Call LGuieiiiitiieeet ettt b bt n s nn s 119
[dle (1ErMINALiNG) SEALE.ceitereeeeiteeet ettt et sr et sb e e 119
ACtIVE (TErMINGLING) SEALEcveiveeiteieeieeie ettt 120
Releasing (1ermiNating) StAEEcceeeeeeieeresese sttt rae e sttt se e e e e e e sre b e sneeneeneeneas 123
Overview of allowed methods and trigger events, Terminating Call Leg STD........cccccecvevvvenee. 125
Multi-Party Call Control Service ProOPEItiEScceieeiereeie s s s se e e st eneenneneas 125
LiSt Of SErVICE PrOPEITIES.....cviie et eteeeeee ettt sttt ese e et e teseentesneereenaebesreerennneneenes 125
Service Property values for the CAMEL Service ENVIrONMENt.........ccccuevereresesenieeieseesese e sseseesesnens 126
Multi-Party Call Control Data DefinNitiONS..........ccoveiieieririese st s ene e eneas 127
Event Notification Data DefiNitioNScooiiiiiiiee e e 127
Multi-Party Call Control Data DEfiNitiONS...........coueoiririeiiireiseese e e e 127
[PCAIILEG ..tttk bbb b Ak E ARt £ b AR e e R Rt e bRt e et e e ebene e 127
[PCAIILEGRES ...ttt ettt e b b st b bbbt A bR bR bt b b e et e et ne e 127

T TN o] oL@ 1 1= o TSRS 127
IPAPPCAILEGRES ...ttt ettt et e et b et e ae e e e b e be e e besaeeae e e eneas 127
IPMUITIPEITYCAIcecveecieeee et nn e re s 127
IPMUILIPEITYCAITREScvciiieercei e 127
IPAPPMUILIPAITYCall.......eeeeie ettt sttt e e s r et e e sreene e e enaesresbesneennenneneas 127
IPAPPMUITPArtYCAllRES ..ottt e e e besneeneeneenes 128

I pMulti PartyCall CONtrOIM@NAGESccveveeieieeeierieeeeeeeeeste s et e e sae e tesre st s e esae e enaessesraeneeneas 128

[pMultiPartyCall ControlManagerREScoviiiieeceee e 128
IPAPPM UltiPartyCall CONtrOIM@NAJEYc.oiiieirieie ettt et e e b e e eneas 128
IpAppMultiPartyCall ControlManagerREfce it 128
TPAPPCAITLEGREFSEL ...ttt st b ettt se et see b e e e e ean 128
TPMUItiPartyCal lHABNTIFIENcoeeeeeee et e een 128
TPAPPMUILIPArtyCallBACKcccoiuiiiiiieieetieeee ettt s een 128
TPAPPMUItiPartyCal IBaCKREF TYPE ...c.veie et e st sae e eneeneens 129
TPRAPPCAILEGCAIBACK........icieeeeeeierie ettt st er e e e et e saesbeseesresneeneennens 129
TPMUItiPartyCal l lAENTIFIErSELccveveeeece et e e e r e eneennens 129

LI 102172 o o] 1) S 129

LI 1O= 1A o o]) o 15/ =SS 130

LI 102 A o o])0 S S 130
TPCAIEVENTREQUESE ..ottt ettt bbb e e e b e se e st e besaesbesaeennennan 130
TPCAIEVENTREQUESESEL ... vttt e b et he et e b e b e sbe b seesbe s e eneeeen 130

R 1O Y o Y oS PRTTURRRS 131
TPAAditiONal CallEVENECIITEITA. ..o ittt sttt b e e e se e e be e eaeeeen 133
TPCAIEVENIINTO. ...t b et e b e bt sb et et et e se et saesbesaeeneeeen 133
TPCall AdditiONAIEVENLINTO. ...ttt ettt bbb e b enee e 134
TPCaAINOLIfICATONREGUESL ..ottt nb e e 134
TPCAINOLfICAT ONSCOPE. ...ttt sttt sttt sttt bbb et et es e e e e nnes 134
TPCAINOLFICATONINFO.....i ittt bbb n b nas 135
TPCallNOLiIfiCati ONREPOITSCOPE.veveeertereeieeterieste ettt b ettt se b sa e e e nnas 135
TPNOLIfiCaIONREGUESLEevineetiieeieterieeet ettt ettt s b ae e 135
TPNOLIfiCati ONREGUESIEASEL ...ttt n b nas 135
TPREIEASECALISE ...tttk ettt b bt aeeh et e ee st e besbesbeeheeae e s e e e e beseeebeebeeaeeaeens e besaeebesaeenteeen 135
TPREIEASECALSESEL ... vttt ettt sttt ettt et be s bt eb e e it e e e bese e besaeebesaeeaeeneess e besaeebenneentennan 136
TPCAILOGIABNLITIEN ..ottt et b et e et et b e bt et ae e sa e besaesbesaeeneeeen 136
TPCAILEGIAENLITIEISELeiui et e b st b et e b e e enseeen 136
TPCallLegAttaChMEChENISIM ...ttt e b een 136
TPCallLegCONNEC ONPrOPEITIES.c.eeveieeeetirtieetesie ettt a b b nas 136
TPCAILEGINFOREPOIT ...ttt bbb bbbt b b b nns 137
o101 T o o) {o) Y L= O SOPTRSR PR 137
TPCallLEgSUPENVISETIEEIMENTeiviieterieietesteeet sttt ettt sb e bt e b bbb s nnas 137

ETSI

6 ETSI ES 201 915-4 V1.2.2 (2002-05)

8 MultiMedia Call CONIOl SENVICE........couiireriieresie ettt be e b ns 138
8.1 SEOUENCE DIBOIAITIS.....cueiceiiceeetiesteete e e e e s e e ste e steeeeeae e e seeste e teenteestesseesseesseesseansesneesseenseanseensennteentenneesneesnes 138
811 Barring for media combined with call routing, alternative L ..o ieieseceeecre s 138
812 Barring for media combined with call routing, alternative 2 ..o 139
8.13 Barring for Media, SIMPIE ... bbb 141
814 Call Volume Charging SUPEIVISION.cceiieuirierieieriesieie sttt sttt st st b e sbe e b e b b e e 142
8.2 ClaSS DIAOIAIMS. ...ttt ettt ettt b e st bt e b b e st b e s e s e b e s s e b £ £ e Rt e b e b e Rt e b e s et e bt e b et e bt e b e b e st eb e n et ees 144
8.3 MultiMedia Call Control Service INterface ClaSSES.......ciuiiiirireeee et s 145
831 Interface Class IpMultiM ediaCall CONrOIM@NAJETc.eoeririeiririeerieieesese et 146
8.3.2 Interface Class |pAppMultiMediaCall CoNtrolManagerccovveeerieeeereresesese e seesee e e e 148
8.3.3 Interface Class IPMUIIMEAIACAL..........ccceiiie e r e 150
8.34 Interface Class IpAPPMUIIMEAIACEILcceiiieiecee e e st 151
8.35 Interface Class IPMUIIMEAIACAIILEYcceieeieeecice et e re e 152
8.3.6 Interface Class IpAPPMUItIM EAIACAIILEG.ccceieeeeeieeee e e 153
8.3.7 Interface Class IPMUItIMEdIASIIEAM.........ccvieceeeee e r e nes 154
8.4 MultiMedia Call Control Service State Transition Diagramscceeereerereenenesesee e 155
8.5 Multi-Media Call Control Data DEfiNItiONScceiieieiieiere et 155
851 Event Notification Data DefiNitioNScooiiiiiiiee e e 155
8511 TPMEdiaSIrEAMREGUESISELc.ecueitereeieitereeie ettt b e bt e e s b s e 155
8512 TPMEIASITEAMREGUESL.......cveteeeetiiteeet sttt b et eb e bt sn e b es b s e 155
8513 TPMEdiaStrEAMDITECTION........ccviivieiitiieeieete ettt bbb e st n bt b s s nn e ns 156
8.5.14 TpMediaStreamDataT YPEREQUESEcvecveieeeeeeeeeries ettt se s e e e e st ese e e esessessestesaessesneeneennens 156
8.5.1.5 QLI AN (o [T @ o = o L =])Y = SRS 156
8.5.1.6 I)Y A (= o 1O o= o 1 L (=] 1Y o L= SRS 157
8.5.1.7 LI 1B = (= 0 7= | o 11 11 (1= 157
8.5.1.8 BN Y e S = g Y=g I8 o1 PSS 157
85.1.9 TPMEIASIIEAIMSEL. ... c.eetiiieeietiiietiete ettt te st e s e e be st eseesessesesbesseseesesseseesessesessensesessensenenss 157
85.1.10 L 01V = [== TSRS 157
85.1.11 TPM eI ASEEAMDBIAT YPE ... cteeeeueereerteste ettt ee e ste e tesee bt eaeese e e e eeseeseeebesaeeaeeneensensessesbeseessesneensensens 157
852 Multi-Media Call Control Data Definitions...........coceeeeiiieni e e 157
85.2.1 IPMUIIIMELIACENLottt et se st et e e se s be e e nesbenseneans 157
85.2.2 IPMUIIMEIACAITRES ..ottt et e sesbe e e nesbe s neaee 157
8.5.2.3 T TN o] oYU 1Y o 1 | 158
8.5.24 T TN o) oY AU 1Y o = (@ 1 =, 158
8.5.25 F LAY 0L K="o = O = 158
8.5.2.6 F o AV TO Y=o = @=L = | 158
8.5.2.7 T TN o) oY AU 1Y o = = = o T 158
8.5.2.8 IPAPPMUItIM EAIACAI I LEGREScee e st ere e eneas 158
8.5.2.9 TPAPPMUItIMEdiaCallLEJREFSEL........cviirieeieiirieietes ettt sse s nns 158
8.5.2.10 TPMUItIM EdiaCal llAENE TNcveivieieiicieee et s s s nns 158
85.2.11 TPMUItIM ediaCal Il AENETIEISEL.......cviiieicee et s s s nns 158
8.5.2.12 TpMultiMediaCall Leglaentifier...........ooi et e 158
8.5.2.13 IPAPPMUltiM ediaCall CONLTOIMBNAOETciveiterieeieeieeieie ettt b e e a e e e 158
8.5.2.14 IpAppMultiMediaCall ControlManagerREScooveieeee s 159
8.5.2.15 TPAPPMUILIMEAIACAIIBECK......c..ceiivieeeiiiiieistere st 159
8.5.2.16 TPAPPMUItiMediaCall BECKREFTYPE.c.iiveeiriireeiirieree ettt 159
85217 TpAppMuUltiMediaCallLegCallBaCK.........ccciiieiiierie s 159
8.5.2.18 TPCAl SUPEIVISEV OIUME.......uiiinietiitieeierieet ettt sttt b e et b et s bt nnas 160
8.5.2.19 TPNOLtIficatiONMEAIBREGUESEcovieeiiriireertee sttt sb et 160
8.5.2.20 TpMediaNotifiCatiONREGUESLEXccueiiieetiieeie ettt sttt sb et se et e b ene e 160
85221 TpMediaNotifiCatiONSREQUESEEASEL.ccere it 160
9 Conference Call CONLIOl SENVICE........ooi ittt st seeseesneeeeseeeneeeeneens 160
9.1 SEOUENCE DIAGIAITIS....c.eeteeiueetertieetestetetes et st et esesbe e esesbeseesessesseseeb e be st s b e se st sb et e st s b et e st ebeabe e ebesbe e esesbeneeneees 160
911 Meet-me conference without SUDCONTErENCINGcovriiiiiiee e 160
912 Non-add hoc add-on With SUDCONFENENCINGeveuiriiieirire e e 163
9.1.3 [N[oTaTr="o (o [gloToRr="o (o KoL W o LU L 11 1 4o 1 O 165
914 RESOUICE RESEINVELIONeeveieeieies sttt sttt ese e e sae s tesse e e eneese e tesaesreeseeneeneesaensesnenrenneeneenes 167
9.2 L@ Sy BT o 4 USSP 168
9.3 Conference Call Control Service INterface ClaSSES.cueririieriire ittt s 169
931 Interface Class IpConfCall CONtrOIMANAGEYcieeueriierieie ettt se et s sb e 170
932 Interface Class IpAppCOoNfCallCONtrOIMENEGEYcoeiirrerieieie ettt see e 173

ETSI

7 ETSI ES 201 915-4 V1.2.2 (2002-05)

9.3.3 Interface Class IPCONFCEAIL....... .o ettt esraesreesaeesaeesaeereenneans 174
9.34 Interface Class IPAPPCONTCEIL.......uiiieiee ettt e e s aesaesaeesaeeneenneens 176
9.35 Interface Class IPSUBCONTCAL ..ot sre s re e e s 177
9.3.6 Interface Class IPAPPSUDCONTCAlL.........ceiieieese et re e nes 181
9.4 Conference Call Control Service State Transition DiagramsS.........cccveeeeeieereeresiesesese e sese e seesee e seeseeses 182
9.5 Conference Call Control Data DEfiNITIONScceiiirieiiieireseses et 183
951 Event Notification Data DEfiNitiONScoiiiiiriiiee e e 183
9.5.2 Conference Call Control Data DeEfiNitiONS..........ccoiiiririeiirese e s 183
9521 F o100 1 SRR 183
95.2.2 IPCONTCAIIRES ..ottt se s be st se b et e sesbe e beseebe e e sesbe s enesbeseneans 183
9523 IPAPPCONTCAIL ...ttt bbbt b et bbbt bt b et e 183
9524 T 7Y o]0 @001 (@ 1 = 183
95.25 IPSUDCONTCEIL ...ttt b bbbt bt e e e ne s be st enenes 183
95.2.6 I PSUDCONTCAITREScviieieetiriee ettt st et bt eene st s ne e 183
9.5.2.7 T 7Y o] 05 o 1o) (| 183
95.28 [PAPPSUBCONTCEITRES ...ttt ettt b et b e e 184
9.5.29 TPSUDCONfCATABNEIFIEISEL. ... et sb et 184
9.5.2.10 TPCONFCAITABNMEITIENcveteeee et bbb b n et b s b e 184
9.52.11 TPSUBCONTCAll BN TNecviiteeeetirieiee et b et sa e a s e s e senenns 184
95212 IPAPPCONFCAICONIIOIMEBNEGEYceceereieeieeierteee sttt bbb 184
95213 IPAPPCONfCAlCONtrOIMBNAGEIRESoeeieiiee e 184
95214 TP CONT PO CY TYPE. ..ttt b ettt b bbb bt e b et b e bt b s s e b e e 184
9.5.2.15 QLI 010011 o 1o TR 185
9.5.2.16 TPMONOMEAIACONTPOIICY ...veviveeeeceieee et sttt st e et e saesbesnesresneeneeneens 185
95217 LI O o1 a1 Yo o TSRS 185
9.5.2.18 LI 1O o1 5= o O = - SRS 185
9.5.2.19 TPCONTSEAICNRESUILo.veecieeece e et r e te st st sae s e e e enaestestentesresresnneneeneens 186
9.5.2.20 TPMUItIMEAIACONTPOLICYeevveeeie ettt r e e e st besre b s e e e e e e naentesresresneeneennens 186
95221 TPRESOUICERESEIVBLIONeveviieeiieeieste ettt e e st e et esreese e e e aesseteseestesseeneeneesaenteseessesneeneeneens 186
95222 TPVIAEOHBNAINGTYPE -..eeeee ettt sttt eae et et e aesee ek e saeehe e e eneeseeseesbeseesbesneenseneans 186
10 Common Call CONLrOl Dala TYPES.ceouerueeeereeeteeniesieeeestesee e steeeeseesseeseeseeeneessesseensessesneessesneeneeseesses 187
101 I 1Oz VAN T 5 i e Y = o = T T o U 187
10.2 LI 1Oz NS T= = T ot 187
10.3 QLI 1O= g T= o = = - 1 187
104 QLI 1Oz L= Y 0 O = o= 188
105 QLI 1Oz LN Y oL@ = o T= 1Y o 188
10.6 QLI 1O= g0 =@ o L= 188
10.7 TPCAIChargeOIrderCalOUOIYcceieirerieieetereesiesestestesseeseseessesteseestesseasesseesesseseessesssssesseessessessessessessessennees 188
10.8 LI L0z LN gl (= e |2 = oo o AU 189
10.9 QLI 1O L1 o PSPPSR 189
10.10 TPCaAlAAAiItIONAIEITOITNFO. ... ettt et be b b et et e e besaesae e e eneas 189
10.11 LI 102 L1 (o I/ o L= TSRS 189
10.12 LI 102 L 10 = o OSSR 190
10.13 QLI 1O= L1 1o) 5/ 190
10.14 QLI o 1O= LT Ia="o (@] g 11 0] 1Y/ =Tox 7= X o 1 190
10.15 TPCalLoadControlINtENVAIRGLE.cciieeeeeeeese sttt e st e e tesre st e saesreese e e e teseeseesaeerenneenen 191
10.16 TpPCallLoadControlMEChaNi ST YPE.......vieereeeeeeeseesiesesreseeeeeesees e saesresseeeeseeseestesaessesseensenseseessesaeesesneenees 191
10.17 QLI 1O= 111, Ko gl 01, oo L= 191
10.18 TPCAINEIWOIKACCESSTYPE ...ttt sttt sttt sttt ettt be bbb s bt s be st e bt s b et e b b et ebe s be st ebesbeneenesbenteneees 191
10.19 TPCAIPAIYCAIEOOIYeterueeueeeetesie sttt et et e e e be e be s et ebesae e e eseese e beseeshesbesaeesee e ebeseesbeeaeentaneeseesbesaeeneeneaneas 192
10.20 TPCAISEIVICECOUE ...ttt ettt b et se e be bt e b e e bt e st enbese e besaeeb e e st entenbeseesbesaeeneeneeneas 192
10.21 TPCAI SENVICECOUESELc.ecviitiieteite sttt sttt st st e sttt e s te e te s te e e besae e e besbeneebesaeneetesseseabeseeseabeseenestensenens 192
10.22 LI L= IS = Yo = e o (5 Y/ o TSSOSO 192
10.23 TPCA I SUPEIVISEREPOIc.eeeveeieeieete ettt ettt b ettt s e b ae b e e e e e e beseesb e s aeebeeaeemeenbeseesbesaeeneeneaneas 193
10.24 TPCA SUPEIVISETTEAIMENT ...ttt ettt ettt et ae bt st e e e beseeebe s et ebeeae et eneeseenbesaesneeneeneas 193
10.25 TPCA TR ESEIVICE. ...ttt ettt ettt b e e b e b e bt bt be s b et bt e e e bt ebe e enesbeseenesbenbeneees 194
10.26 TPCAITIEALMENL ...ttt ettt st b e e be b s bt b e se e bt s b e se e bt e be st e bt ebe st e st sbeseenesbeneeneees 194
10.27 B0 L0 LI == 010 LY USRS 195
10.28 TpCall Additional TreatMENIINFO.......co i e st 195
10.29 QI 011V =0 [T I o= SRS 195

ETSI

8 ETSI ES 201 915-4 V1.2.2 (2002-05)

Annex A (normative): OMG IDL Description of Call Control SCFcccccevvieeveveecece e, 196
Annex B (informative): Contents of 3GPP OSA R4 Call Controlccceoeoereninenineneseseeee 197
Annex C (informative): Summary of differences between V1.1.1 (Parlay 3.0) and V1.2.1

(R T = Y 20) TSRS 198
LT 1015 Y Yo = ST 198
(O3 1 o = ST 198
C.3 IPAPPCAILEG. ...ttt bR e R e et R h R nr e n e n e nen e 198
(O3 1o Y U (Y=o = 1= o T 198
C.5 1pConfCalCONIOIMEBNAGET........ccceeiuiireeiiesieeeeste st erte sttt e sre e stesreeaestesreestesbeesestesneetesreensessesreeseenrens 198
C.6 IPAPPSUDCONTCEIL......cueeieeeeeeee e e et b b sr e nennenen e 199
C.7 Generic Call CoNtrol DalaTYPES......ccvecieiieieiti ettt este st re et st s e e te e e te s reeaaestesreetesresraeseenreens 199
C.8 Multi Party Call CONtrol Dala TYPES ...ccveecviiieeeeiti et stee et sae e s e s reestesreeaeste s e stesreetesreennesreereens 201
C.9 Multi Media Call CONrol DA@ TYPES.ceeerrerreriearertesreseeseeesesse st sse s ss s ee e sse s snesresnesneneas 204
C.10 Conference Call CoNtrol DEta TYPEScoveruereerierieriesiesreseess e et ss s s e se e s snesresnenneneas 205
C.11 Common Call CONtrol Dala TYPES.......ccceiieeiiitieeesieseeste st s e s e sreete s e e e te e essesreensesteeseetesaeenaessenseens 206
[1 0] YOS PRTR 207

ETSI

9 ETSI ES 201 915-4 V1.2.2 (2002-05)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, ispublicly available for ETSI membersand non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, |PRs notified to ETS in
respect of ETS standards’, which is available from the ETSI Secretariat. Latest updates are available on the ETS| Web
server (http://webapp.etsi.org/| PR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETS| Web
server) which are, or may be, or may become, essential to the present document.

Foreword

ThisETSI Standard (ES) has been produced by ETSI Technical Committee Services and Protocols for Advanced
Networks (SPAN), and is now submitted for the ETSI standards Membership Approval Procedure.

The present document is part 4 of a multi-part deliverable covering Open Service Access (OSA); Application
Programming Interface (API), asidentified below. The API specification (ES 201 915) is structured in the following
parts:

Part 1: "Overview";

Part 2. "Common Data Definitions”;
Part 3: "Framework";

Part 4: " Call Control SCF";

Part5: "User Interaction SCF";
Part6: "Mobility SCF";

Part 7 "Terminal Capabilities SCF";
Part 8: "Data Session Control SCF";
Part9: "Generic Messaging SCF";
Part 10: "Connectivity Manager SCF";
Part 11: "Account Management SCF";
Part 12: "Charging SCF".

The present document has been defined jointly between ETSI, The Parlay Group [24] of ES 201 915-1 and the 3GPP, in
co-operation with a number of JAIN™ Community [25] of ES 201 915-1 member companies.

The present document forms part of the Parlay 3.1 set of specifications.

ETSI

http://webapp.etsi.org/IPR/home.asp

10 ETSI ES 201 915-4 V1.2.2 (2002-05)

1 Scope

The present document is part 4 of the Stage 3 specification for an Application Programming Interface (API) for Open
Service Access (OSA).

The OSA specifications define an architecture that enables application devel opers to make use of network functionality
through an open standardised interface, i.e. the OSA APIs.

The present document specifies the Call Control Service Capability Feature (SCF) aspects of the interface. All aspects
of the Call Control SCF are defined here, these being:

¢ Sequence Diagrams

¢ Class Diagrams

* Interface specification plus detailed method descriptions
e State Transition diagrams

o DataDefinitions

e |IDL Description of the interfaces

The process by which this task is accomplished is through the use of object modelling techniques described by the
Unified Modelling Language (UML).

2 References

Thereferenceslisted in clause 2 of ES 201 915-1 contain provisions which, through reference in this text, constitute
provisions of the present document.

ETSI ES 201 915-1: "Open Service Access (OSA); Application Programming Interface (API); Part 1: Overview".

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in ES 201 915-1 apply.

3.2 Abbreviations

For the purposes of the present document, the abbreviations defined in ES 201 915-1 apply.

4 Call Control SCF

Two flavours of call control APIs have been included in 3GPP Release 4. These are the generic call control and the
multi-party call control. The generic call control isthe same API as was already present in the previous specification for
3GPP Release 99 (TS 129 198 V3.2.0) and isin principle able to satisfy the requirements on Call Control APIsfor
3GPP Release 4.

However, the joint work between 3GPP CN5, ETSI SPAN12 and the Parlay Call Control Working group with
collaboration from JAIN has been focussed on the M ulti-party call control API. A number of improvements on call
control functionality have been made and are reflected in this API. For thisit was necessary to break the inheritance that
previously existed between Generic and Multi-party call control.

ETSI

11 ETSI ES 201 915-4 V1.2.2 (2002-05)

Thejoint call control group has furthermore decided that the multi-party call control isto be considered as the future
base call control family and the technical work will not be continued on Generic Call control. Errors or technical flaws
will of course be corrected.

The following clauses describe each aspect of the Call Control Service Capability Feature (SCF).
The order isasfollows:
* The Seguence diagrams give the reader a practical idea of how each of the SCF isimplemented.
¢ The Class relationships clause show how each of the interfaces applicable to the SCF, relate to one another.
¢ The Interface specification clause describesin detail each of the interfaces shown within the Class diagram part.

e The State Transition Diagrams (STD) show the transition between states in the SCF. The states and transitions
are well-defined; either methods specified in the Interface specification or events occurring in the underlying
networks cause state transitions.

« The Data Definitions clause show a detailed expansion of each of the data types associated with the methods
within the classes. Note that some data types are used in other methods and classes and are therefore defined
within the Common Data types part of this specification.

The adopted call model has the following objects.

e acal object. A call isarelation between a number of parties. The call object relatesto the entire call view from
the application. E.g. the entire call will be released when areleaseis called on the call. Note that different
applications can have different views on the same physical call, e.g. one application for the originating side and
another application for the terminating side. The applications will not be aware of each other, all
"communication” between the applications will be by means of network signalling. The API currently does not
specify any feature interaction mechanisms.

e acal leg object. The leg object represents alogical association between a call and an address. The relationship
includes at least the signalling relation with the party. The relation with the address is only made when theleg is
routed. Before that the leg object is IDLE and not yet associated with the address.

e anaddress. The address|logically represents a party in the call.

e aterminal. A terminal isthe end-point of the signalling and/or mediafor a party. This object typeis currently not
addressed.

The call object isused to establish arelation between a number of parties by creating aleg for each party within the
call.

Associated with the signalling relationship represented by the call leg, there may also be a bearer connection (e.g. in the
traditional voice only networks) or a number (zero or more) of media channels (in multi-media networks).

A leg can be attached to the call or detached from the call. When the leg is attached, this means that media or bearer
channelsrelated to the legs are connected to the media or bearer channels of the other legs that are attached to the same
cal. l.e. only legs that are attached can "speak” to each other. A leg can have a number of states, depending on the
signalling received from or sent to the party associated with the leg. Usually there isalimit to the number of legs that
arein being routed (i.e. the connection is being established) or connected to the call (i.e. the connection is established).
Also, there usually is alimit to the number of legs that can be simultaneously attached to the same call.

Some networks distinguish between controlling and passive legs. By definition the call will be released when the
controlling leg is released. All other legs are called passive legs. There can be at most one controlling leg per call.
However, thereis currently no way the application can influence whether aLeg is controlling or not.

There are two ways for an application to get the control of acall. The application can request to be notified of callsthat
meet certain criteria. When acall occursin the network that meets these criteria, the application is notified and can
control the call. Some legs will already be associated with the call in this case. Another way isto create anew call from
the application.

ETSI

12 ETSI ES 201 915-4 V1.2.2 (2002-05)

5 The Service Interface Specifications

5.1 Interface Specification Format

This clause defines the interfaces, methods and parameters that form a part of the API specification. The Unified
Modelling Language (UML) is used to specify the interface classes. The general format of an interface specificationis
described below.

51.1 Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters
and types. The Service and Framework interfaces for enterprise-based client applications are denoted by classes with
name | p<nane>. The callback interfaces to the applications are denoted by classes with name | pApp<nane>. For
the interfaces between a Service and the Framework, the Service interfaces are typically denoted by classes with name
IpSve<name>, while the Framework interfaces are denoted by classes with name |pFw<name>

5.1.2 Method descriptions

Each method (APl method "call") is described. Both synchronous and asynchronous methods are used in the API.
Asynchronous methods are identified by a"Req" suffix for a method request, and, if applicable, are served by
asynchronous methods identified by either a"Res™ or "Er r " suffix for method results and errors, respectively. To
handle responses and reports, the application or service developer must implement the relevant | pApp<nane> or
| pSvc<nane> interfaces to provide the callback mechanism.

5.1.3 Parameter descriptions

Each method parameter and its possible values are described. Parameters described as "in" represent those that must
have a value when the method is called. Those described as "out" are those that contain the return result of the method
when the method returns.

514 State Model

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface.

5.2 Base Interface

5.2.1 Interface Class Ipinterface

All application, framework and service interfaces inherit from the following interface. This APl Base Interface does not
provide any additional methods.

<<Interface>>

Ipinterface

ETSI

13 ETSI ES 201 915-4 V1.2.2 (2002-05)

5.3 Service Interfaces

531 Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user
interaction, messaging, mobility and connectivity management.

The interfaces that are implemented by the services are denoted as " Service Interface”. The corresponding interfaces
that must be implemented by the application (e.g. for API callbacks) are denoted as " Application Interface".

5.4 Generic Service Interface

54.1 Interface Class IpService
Inherits from: Iplnterface

All service interfacesinherit from the following interface.

<<Interface>>

IpService

setCallback (applnterface : in IpinterfaceRef) : void

setCallbackWithSessionID (applinterface : in IpinterfaceRef, sessionID : in TpSessionID) : void

Method
set Cal | back()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the
application. It is not alowed to invoke this method on an interface that uses SessionlDs.

Parameters

applnterface : in IplnterfaceRef
Specifies areference to the application interface, which is used for callbacks

Raises
TpComonExcepti ons, P_I NVALI D_| NTERFACE_TYPE

Method
set Cal | backW t hSessi onl)

This method specifies the reference address of the application's callback interface that a service uses for interactions
associated with a specific session ID: e.g. aspecific call, or call leg. It is not allowed to invoke this method on an
interface that does not use SessionlDs.

ETSI

14 ETSI ES 201 915-4 V1.2.2 (2002-05)

Parameters

applnterface : in IplnterfaceRef
Specifies areference to the application interface, which is used for callbacks

sessionlD : in TpSessionlD
Specifies the session for which the service can invoke the application's callback interface.

Raises
TpConmmonExceptions, P_INVALI D SESSION I D, P_I NVALI D | NTERFACE TYPE

ETSI

15 ETSI ES 201 915-4 V1.2.2 (2002-05)

6 Generic Call Control Service

6.1 Sequence Diagrams

6.1.1 Additional Callbacks

The following sequence diagram shows how an application can register two call back interfaces for the same set of
events. If one of the call backs can not be used, e.g. because the application crashed, the other call back interfaceis used
instead.

first instance : (Logical : IpAppCallControlManager second instance : : IpAp pCallGontrolMan ager : IpCallControlManag er
View::IpAppLogic) Logic...
T T
| |
: 1: new() !

2: enabIeCaIINotiﬁcatiqn()

3: new()

| g

|

|

|

|

|

|

l

|

: 4: enableCaIINotificption()
|

|

|

|

|

| |
|

|

5: callEventNotify()

6: forward event' |

7: “call Notify resul}: failure"

|
|
| 8: callEventNotify()

9: "forward event"

‘4444444444444444444444444444444|:}44444444444444444

e [

1. Thefirst instance of the application is started on node 1. The application creates a new
IpAppCallControlManager to handle callbacks for this first instance of the logic.

2: The enableCalINotification is associated with an applicationl D. The call control manager uses the applicationl D
to decide whether thisis the same application.

3: The second instance of the application is started on node 2. The application creates a new
I pAppCallControlManager to handle callbacks for this second instance of the logic.

4. The same enableCallNotification request is sent as for the first instance of the logic. Because both requests are
associated with the same application, the second request is not rejected, but the specified callback object is stored
as an additional callback.

ETSI

16 ETSI ES 201 915-4 V1.2.2 (2002-05)

5: When the trigger occurs one of the first instance of the application is notified. The gateway may have different
policies on how to handle additional callbacks, e.g. awaysfirst try the first registered or use some kind of round
robin scheme.

6: Theevent isforwarded to the first instance of the logic.

7: When thefirst instance of the application is overloaded or unavailable this is communicated with an exception to
the call control manager.

8: Based on this exception the call control manager will notify another instance of the application (if available).

9: Theevent isforwarded to the second instance of the logic.

6.1.2 Alarm Call

The following sequence diagram shows a "reminder message”, in the form of an alarm, being delivered to a customer as
aresult of atrigger from an application. Typically, the application would be set to trigger at a certain time, however, the
application could also trigger on events.

: (Logical - IpAppCall e o : IpCall o : IpUICall
View::IpApp Logic) IpAppUICall | |IpCallControlManager IpAppUIManager
l l l l l l l
t					
0 : 2: createCall() : : : : :					
L L L 1					
l l snew)	l l				
l l i l l					
T					
l l 4 routeReq()	l l l				
				I	
		J : :			
T : : 5: routeRes() : : : :					
6:'forward event' " ; .					
D					
‘ l l H l l					
: : 7: c:reateUICaII() :	: :				
‘ ; ; ; ; 8: new() :					
l l l l					
: 9: s‘endlnfOReq() : : T :					
l l l l l gl					
l l l l l l					
: : : : 10: sendlnf(l)Res() : :					
				L	
: 11: 'for\Nar“d event' ’_L : : :					
D\					
: : ‘ 12: r?le&e() : :					
: 13::re	ease() : : :				
l l l g l					

e

ETSI

17 ETSI ES 201 915-4 V1.2.2 (2002-05)

This message is used to create an object implementing the IpAppCall interface.

This message requests the object implementing the |pCall ControlM anager interface to cresate an object
implementing the IpCall interface.

Assuming that the criteriafor creating an object implementing the IpCall interface (e.g. load control values not
exceeded) ismet it is created.

This message instructs the object implementing the IpCall interface to route the call to the customer destined to
receive the "reminder message"

This message passes the result of the call being answered to its callback object.
This message is used to forward the previous message to the IpAppLogic.

The application requests anew Ul Call object that is associated with the call object.
Assuming all criteriaare met, anew UlCall object is created by the service.

This message instructs the object implementing the IpUI Call interface to send the alarm to the customer's call.

10: When the announcement ends this is reported to the call back interface.

11: The event is forwarded to the application logic.

12: The application rel eases the UICall object, since no further announcements are required. Alternatively, the

application could have indicated P_FINAL_REQUEST in the sendinfoReq in which case the Ul Call object
would have been implicitly released after the announcement was played.

13: The application releases the call and all associated parties.

ETSI

18 ETSI ES 201 915-4 V1.2.2 (2002-05)

6.1.3 Application Initiated Call

The following sequence diagram shows an application creating a call between party A and party B. This sequence could
be done after a customer has accessed a Web page and selected a name on the page of a person or organisation to talk
to.

: (Logical : IpAppCall o : IpCall
View :IpAppLo... IpCallControlManager
T T
1 1
| |
! 1:new() :

H 3:new()

2:createCall()

4:routeReq()

5:routeRes()

6: forward event' F

7:routeReq()

|
:
[| |
|

|
|
|
|
|
|
|
1
10: deassignCall() :
L
|
|
|
|
|
|
|
|
|
|

1: Thismessageisused to create an object implementing the IpAppCall interface.

2: This message requests the object implementing the I pCall Control M anager interface to create an object
implementing the |pCall interface.

3: Assuming that the criteriafor creating an object implementing the IpCall interface (e.g. load control values not
exceeded) is met, it is created.

ETSI

9

19 ETSI ES 201 915-4 V1.2.2 (2002-05)
This message is used to route the call to the A subscriber (origination). In the message the application request
response when the A party answers.
This message indicates that the A party answered the call.
This message forwards the previous message to the application logic.

This message is used to route the call to the B-party. Also in this case aresponse is requested for call answer or
failure.

This message indicates that the B-party answered the call. The call now has two parties and a speech connection
isautomatically established between them.

This message is used to forward the previous message to the IpAppLogic.

10: Since the application is no longer interested in controlling the call, the application deassigns the call. The call

will continue in the network, but there will be no further communication between the call object and the
application.

ETSI

20 ETSI ES 201 915-4 V1.2.2 (2002-05)

6.1.4 Call Barring 1

The following sequence diagram shows a call barring service, initiated as aresult of a prearranged event being received
by the framework. Before the call is routed to the destination number, the calling party is asked for aPIN code. The
code is accepted and the call isrouted to the original called party.

: (Logical M| CallControlManager : IpAppCall S e : IpCall e cIpUICall
View::IpAppLogic) IpAppUICall IpCallControlManage IpUIManager
T
| | | |
| |
: 1: new() :

T
|
|
|
|
|:| |
‘ 2: enabIeCaIINotificaqon()
|
|
|
|
|

D

T			
: 3: q‘aIIEventNotify(): : : :			
1 1			
4: 'forward event'			
5:new() ! : : : :			
\j			
T			
L			
	I a.		
‘ ‘	6.createUICaIId)		7:new()
0 : : 8: sendlnfoAnddoIIectReq() : : : :			
U			
! ! 9: sendInfoAndCollectRes() ! !			
10: ‘forward event'	' ' ' L		
t t			
U<			
		11:release() 7	
T T T T T T			
U		12:routeReq()	
T T T T			
			>ﬂ
U			13:routeRes()
14: 'forward event' T T T			
T			
Lrl\	u		
			.
16: "forward event" . \ 15: callEnded()			
t			
i			
17: dea‘*ssignCaII() 1 1 : :			
T			

E

1: Thismessageisused by the application to create an object implementing the | pAppCall ControlManager
interface.

2: Thismessage is sent by the application to enable notifications on new call events. Asthis sequence diagram
depictsacall barring service, it islikely that all new call events destined for a particular address or address range
prompted for a password before the call is allowed to progress. When a new call, that matches the event criteria
set, arrives a message (not shown) is directed to the object implementing the |pCall ControlManager. Assuming
that the criteria for creating an object implementing the |pCall interface (e.g. load control values not exceeded) is
met, other messages (not shown) are used to create the call and associated call leg object.

3: Thismessage is used to pass the new call event to the object implementing the | pAppCall ControlM anager
interface.

4: This messageis used to forward the previous message to the IpAppLogic.

ETSI

8.
9:

21 ETSI ES 201 915-4 V1.2.2 (2002-05)

This message is used by the application to create an object implementing the IpAppCall interface. The reference
to thisobject is passed back to the object implementing the IpCall ControlManager using the return parameter of
the callEventNotify.

This message is used to create a new UICall object. The reference to the call object is given when creating the
UlcCall.

Provided all the criteria are fulfilled, anew UlCall object is created.
The call barring service dialogue isinvoked.

The result of the dialogue, which in this caseisthe PIN code, is returned to its callback object.

10: This message is used to forward the previous message to the IpAppLogic.

11: This message releases the Ul Call object.

12: Assuming the correct PIN is entered, the call is forward routed to the destination party.

13: This message passes the result of the call being answered to its callback object.

14: Thismessage is used to forward the previous message to the IpAppLogic

15: When the call is terminated in the network, the application will receive a natification. This notification will

always be received when the call isterminated by the network in anormal way, the application does not have to
reguest this event explicitly.

16: The event is forwarded to the application.

17: The application must free the call related resources in the gateway by calling deassignCall.

ETSI

22 ETSI ES 201 915-4 V1.2.2 (2002-05)

6.1.5 Number Translation 1

The following sequence diagram shows a simple number transation service, initiated as aresult of a prearranged event
being received by the framework.

: (Logical : IpAppCallControlManager . IpAppCall o . IpCall
View: :IpApplLo... IpCallControlManager
T T T
| |
i 1: new() !

g |

2: enableCallNatification()

F----

3: callEventNotify()

4: 'forward event'

|
|
|
|
1
|
5: new() :

6: 'translate number'

P

F---o

7: routeReq()

8 route:Res()

|
10: deassigndall()

SERhie— S

|
|
|
|
|
1
|
9: forward event’ F
|
|
|
|
|
|
|
|
1
|
|
|
|
|
|
|
|
|
|

o

ETSI

23 ETSI ES 201 915-4 V1.2.2 (2002-05)

This message is used by the application to create an object implementing the |pAppCall ControlManager
interface.

This message is sent by the application to enable notifications on new call events. As this sequence diagram
depicts a number trandation service, it islikely that only new call events within a certain address range will be
enabled. When anew call, that matches the event criteria set in message 2, arrives a message (not shown) is
directed to the object implementing the |pCall ControlManager. Assuming that the criteriafor creating an object
implementing the |pCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are
used to create the call and associated call leg object.

This message is used to pass the new call event to the object implementing the | pAppCall ControlM anager
interface.

This message is used to forward message 3 to the IpAppLogic.

5: Thismessage is used by the application to create an object implementing the IpAppCall interface. The reference

© ®© N 9

to this object is passed back to the object implementing the |pCallControlManager using the return parameter of
message 3.

This message invokes the number translation function.
The returned translated number is used in message 7 to route the call towards the destination.
This message passes the result of the call being answered to its callback object

This message is used to forward the previous message to the IpAppLogic.

10: The application is no longer interested in controlling the call and therefore deassigns the call. The call will

continue in the network, but there will be no further communication between the call object and the application.

ETSI

24 ETSI ES 201 915-4 V1.2.2 (2002-05)

6.1.6 Number Translation 1 (with callbacks)

The following sequence diagram shows a simple number transation service, initiated as aresult of a prearranged event
being received by the framework.

For illustration, in this sequence the callback references are set explicitly. Thisis optional. All the callbacks references
can also be passed in other methods. From an efficiency point of view that is also the preferred method. The rest of the
seguences use that mechanism.

: (Logical . IpAppCallControlManager . IpAppCall o : IpCall
View::IpAppLogic) IpCallControlManager
T T T
| |
! 1: new() !

T
|
|
|
|
|
|
|
:
|
2: enabIeCaIINotificationq)

3: setCallback()

4: callEventNotify()

5: forward event'

|
|
|
|
|
T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6: new() :

g

]
7: setCallbackWithSessionID()
|

8 ‘translate number'

%1

9: routeReq()

|
12: deassignCall()

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
10: routéRes()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
:
11: 'forwat:m:i event'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

S s i TP R

ETSI

© ®© N o O

25 ETSI ES 201 915-4 V1.2.2 (2002-05)
This message is used by the application to create an object implementing the |pAppCall ControlManager
interface.

This message is sent by the application to enable notifications on new call events. As this sequence diagram
depicts a number trandation service, it islikely that only new call events within a certain address range will be
enabled. When anew call, that matches the event criteria set in message 2, arrives a message (not shown) is
directed to the object implementing the |pCall ControlManager. Assuming that the criteriafor creating an object
implementing the |pCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are
used to create the call and associated call leg object.

This message sets the reference of the |pAppCallControl M anager object in the CallControlManager. The
CallControlManager reports the callEventNotify to referenced object only for enableCall Notifications that do not
have a explicit IpAppCallControlManager reference specified in the enableCall Notification.

This message is used to pass the new call event to the object implementing the | pAppCall ControlM anager
interface.

This message is used to forward message 4 to the IpAppLogic.

This message is used by the application to create an object implementing the IpAppCall interface.
This message is used to set the reference to the IpAppCall for thiscall.

This message invokes the number trand ation function.

The returned trandlated number is used in message 7 to route the call towards the destination.

10: This message passes the result of the call being answered to its callback object

11: This message is used to forward the previous message to the IpAppLogic.

12: The application is no longer interested in controlling the call and therefore deassigns the call. The call will

continue in the network, but there will be no further communication between the call object and the application.

ETSI

26 ETSI ES 201 915-4 V1.2.2 (2002-05)

6.1.7 Number Translation 2

The following sequence diagram shows a number trandation service, initiated as a result of a prearranged event being
received by the framework. If the trandated number being routed to does not answer or is busy then the call is
automatically released.

: (Logical : IpAppCallControlManager : IpAppCall . IpCallControlManager : IpCall
View::IpAppLogic)
T
| 1: new()

2: enableCaIINotiﬁcatioq()

: |

3: callEventNotify()

| |

4: *forward event'

5: new()

i

6: 'translate number'

[P=—

b -

7: routeReq()

8: routeRes()

9: ‘forwar:d event’ J

10: release(l)

! T

1. Thismessageisused by the application to create an object implementing the I pAppCall ControlManager
interface.

2: Thismessage is sent by the application to enable notifications on new call events. Asthis sequence diagram
depicts anumber trandation service, it islikely that only new call events within a certain address range will be
enabled. When anew call, that matches the event criteria, arrives a message (not shown) is directed to the object
implementing the |pCallControlManager. Assuming that the criteria for creating an object implementing the
IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the
call and associated call leg object.

3: Thismessage is used to pass the new call event to the object implementing the | pAppCall ControlM anager
interface.

4: This messageis used to forward the previous message to the IpAppLogic.

ETSI

9:

27 ETSI ES 201 915-4 V1.2.2 (2002-05)

This message is used by the application to create an object implementing the IpAppCall interface. The reference
to thisobject is passed back to the object implementing the IpCall ControlManager using the return parameter of
the callEventNotify.

This message invokes the number trandlation function.
The returned trand ated number is used to route the call towards the destination.

Assuming the called party is busy or does not answer, the object implementing the IpCall interface sends a
callback in this message, indicating the unavailability of the called party.

This message is used to forward the previous message to the IpAppLogic.

10: The application takes the decision to release the call.

ETSI

28 ETSI ES 201 915-4 V1.2.2 (2002-05)

6.1.8 Number Translation 3

The following sequence diagram shows a number trandation service, initiated as a result of a prearranged event being
received by the framework. If the trandated number being routed to does not answer or is busy then the call is
automatically routed to a voice mailbox.

: (Logical : IpAppCallControlManager : IpAppCall : IpCallControlManager :IpCall
View::| Logic

T T
| |
| . |
‘ 1:new() ‘

|

|

2: enableCallNotification()

Ul i
i g

|
|
|
1
3: caIIEveﬁtNotify()

4:*forward event'

5:new()

6: 'translate number'

—

7:routeReq()

L
! L
| |
| |
| |
| |
| |
| |
| |
| |
| |
1 1 1	
: : 8: routeRes()
d :

9: 'forwar ! event' H
|
|
|
|
|
|
|

1 10: 'rans late number’

= | |
| | 1L rouReq() |
l l 1]

| | | 12: routeRes() |
:D< 13: forward event J ‘
| | 14: deassignGall() |
l ‘ gl

ETSI

9:

29 ETSI ES 201 915-4 V1.2.2 (2002-05)

This message is used by the application to create an object implementing the |pAppCall ControlManager
interface.

This message is sent by the application to enable notifications on new call events. As this sequence diagram
depicts a number trandation service, it islikely that only new call events within a certain address range will be
enabled. When anew call, that matches the event criteria, arrives a message (not shown) is directed to the object
implementing the I pCall ControlManager. Assuming that the criteria for creating an object implementing the
IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the
call and associated call leg object.

This message is used to pass the new call event to the object implementing the | pAppCall ControlM anager
interface.

This message is used to forward the previous message to the IpAppLogic.

This message is used by the application to create an object implementing the IpAppCall interface. The reference
to this object is passed back to the object implementing the |pCallControlManager using the return parameter of
the callEventNotify.

This message invokes the number translation function.
The returned trandlated number is used to route the call towards the destination.

Assuming the called party is busy or does not answer, the object implementing the IpCall interface sends a
callback, indicating the unavailability of the called party.

This message is used to forward the previous message to the IpAppLogic.

10: The application takes the decision to trans ate the number, but this time the number istrandated to a number

belonging to a voice mailbox system.

11: This message routes the call towards the voice mailbox.

12: This message passes the result of the call being answered to its callback object.

13: This message is used to forward the previous message to the IpAppLogic.

14: The application is no longer interested in controlling the call and therefore deassigns the call. The call will

continue in the network, but there will be no further communication between the call object and the application.

ETSI

30 ETSI ES 201 915-4 V1.2.2 (2002-05)

6.1.9 Number Translation 4

The following sequence diagram shows a number trandation service, initiated as a result of a prearranged event being
received by the framework. Before the call is routed to the translated number, the application requests for al call related
information to be delivered back to the application on completion of the call.

: (Logical : IpAppCall ControlManager : IpAppCall : IpCallControlManager : IpCall
View::IpAppLogic)
T
|
I 1: new()
|

T
|
|
|
|
|
:
| 2! enableCallNotification() |
‘ ‘]

|

|

|
| 3: callEventNotify()
T

ﬂ i

4: 'forward event'

- — — {

5:Jew0 >D

|
7: getCaIIInqueq()

6: 'translate number'

p—

F - - -1

|
8: roqteReq()

4
)

9 routeRes()

10: ‘forward event'

11: callEnded()

L
|
|
|
|
|
|
|
|
|
12: "forwaré‘i event"
|
|
|
|
|
|
|
|
|
|

13: getCallinfoRes()

14: forward event'

|
|
H

e) Y sy W S

|

|

|

|

|

|

1 1
| |
15:deassignCall() |
| |
| |
| |
| |
| |
| |
| |
| |
| |

ETSI

8.
9:

31 ETSI ES 201 915-4 V1.2.2 (2002-05)

This message is used by the application to create an object implementing the |pAppCall ControlManager
interface.

This message is sent by the application to enable notifications on new call events. As this sequence diagram
depicts a number trandation service, it islikely that only new call events within a certain address range will be
enabled. When anew call, that matches the event criteria, arrives a message (not shown) is directed to the object
implementing the I pCall ControlManager. Assuming that the criteria for creating an object implementing the
IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the
call and associated call leg object.

This message is used to pass the new call event to the object implementing the | pAppCall ControlM anager
interface.

This message is used to forward the previous message to the IpAppLogic.

This message is used by the application to create an object implementing the IpAppCall interface. The reference
to this object is passed back to the object implementing the |pCallControlManager using the return parameter of
the callEventNotify.

This message invokes the number trandation function.

The application instructs the object implementing the IpCall interface to return all call related information once
the call has been released.

The returned translated number is used to route the call towards the destination.

This message passes the result of the call being answered to its callback object.

10: This message is used to forward the previous message to the IpAppLogic.

11: Towards the end of the call, when one of the parties disconnects, a message (not shown) is directed to the object

implementing the IpCall. This causes an event, to be passed to the object implementing the IpAppCall object.

12: This message is used to forward the previous message to the IpAppLogic.

13: The application now waits for the call information to be sent. Now that the call has completed, the object

implementing the |pCall interface passes the call information to its callback object.

14: This message is used to forward the previous message to the | pAppLogic

15: After the last information is received, the application deassigns the call. This will free the resources related to

this call in the gateway.

ETSI

32 ETSI ES 201 915-4 V1.2.2 (2002-05)

6.1.10 Number Translation5

The following sequence diagram shows a simple number transation service which contains a status check function,
initiated as aresult of a prearranged event being received. In the following sequence, when the application receives an
incoming call, it checks the status of the user, and returns a busy code to the calling party.

IpAppLogic : IpAppCallControlManager : IpAppCall : IpCallControlManager : IpCall

b

1: new()

|
I 2: eq‘nabIeCaII Notification(),

3: callEventNotify()

I AN

4: 'forward event'

N S,

L
6: i‘heck status'

—

7: appropriate release cause
|

1. Thismessageisused by the application to create an object implementing the I pAppCall ControlManager
interface.

2: Thismessage is sent by the application to enable notifications on new call events. Asthis sequence diagram
depicts anumber trandation service, it islikely that only new call events within a certain address range will be
enabled.

When anew call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the
object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing
the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create
the call and associated call leg object.

3: Thismessage is used to pass the new call event to the object implementing the | pAppCall ControlManager
interface.

4: This messageis used to forward message 3 to the IpAppLogic.

5: Thismessage is used by the application to create an object implementing the IpAppCall interface. The reference
to this object is passed back to the object implementing the | pCallControlManager using the return parameter of

message 3.
6: This message invokes the status checking function.

7: The application decidesto release the call, and sends a release cause to the calling party indicating that the user
isbusy.

ETSI

33 ETSI ES 201 915-4 V1.2.2 (2002-05)

6.1.11 Pre-paid

This sequence shows a Pre-paid application.

The subscriber isusing a pre-paid card or credit card to pay for the call. The application each time allows a certain
timedlice for the call. After the timeslice, a new timeslice can be started or the application can terminate the call. In the
following sequence the end-user will receive an announcement before hisfinal timeslice.

Prepaid : (Logical : IpAppCall : IpAppCallControlManager : IpAppUlICall - IpCall : IpCallControlManager : IpUIManager : IpUlCall
View::IpAppLogic]

T T T

| 1;new() |

|) !
4: "forward event" 3: callFventNotify()
' |

5: new() :

T
!

| /u 2: enableCaIII*lotification()
[
I
I
I
I

:

} -

|
|
|
|
6: superviseCallReq()

et

|

|

|

|
7:routeReq()

T

|

|

|

|

|

|
8:superviseCallRes()

9: "forward evemJ T

|

|

|

|

|
10: superviseﬁ:allReq()
|

!
?
!

|
11: supeniseCallRes()

112: "forward event’,

|
|
|
|
|
13: supervise?allReq()

U l4:$uperviseCallRes()
115: “forward eventj !

- -+ — L

|
16: createUICall()
1
17: sendlnfoReq(|)

gl

]
18:sendinfoRes()

19: “forward event"

]
u

20:release()

|
21:supervisgeCallReq()

: i

! ; |
b3: "forward event: 22: superviseCallRes() |
!

g

]

| [
: H

24: releasé‘z()

|

|

|

|

|

|

|

|

ETSI

34 ETSI ES 201 915-4 V1.2.2 (2002-05)

1. Thismessageis used by the application to create an object implementing the |pAppCall Control M anager
interface.

2: Thismessageis sent by the application to enable notifications on new call events. Asthis sequence diagram
depicts apre-paid service, it is likely that only new call events within a certain address range will be enabled.
When anew call, that matches the event criteria, arrives a message (not shown) is directed to the object
implementing the I pCall ControlManager. Assuming that the criteria for creating an object implementing the
IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the
call and associated call leg object.

The incoming call triggers the Pre-Paid Application (PPA).
The message is forwarded to the application.

A new object on the application side for the Generic Call object is created

o g A~ w

The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the period
indicated in the message. This period is related to the credits left on the account of the pre-paid subscriber.

7: Before continuation of the call, PPA sends all charging information, a possible tariff switch time and the call
duration supervision period, towards the GW which forwards it to the network.

8: At the end of each supervision period the application isinformed and a new period is started.
9: The message is forwarded to the application.

10: The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

11: At the end of each supervision period the application isinformed and a new period is started.
12: The message is forwarded to the application.

13: The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

14: When the user is amost out of credit an announcement is played to inform about this. The announcement is
played only to the leg of the A-party, the B-party will not hear the announcement.

15: The message is forwarded to the application.
16: A new UICall object is created and associated with the controlling leg.

17: An announcement is played to the controlling leg informing the user about the near-expiration of his credit limit.
The B-subscriber will not hear the announcement.

18: When the announcement is completed the application isinformed.

19: The message is forwarded to the application.

20: The application releases the UICall object.

21: The user does not terminate so the application terminates the call after the next supervision period.
22: The supervision period ends

23: The event is forwarded to the logic.

24: The application terminates the call. Since the user interaction is aready explicitly terminated no
userInteractionFaultDetected is sent to the application.

ETSI

35 ETSI ES 201 915-4 V1.2.2 (2002-05)

6.1.12 Pre-Paid with Advice of Charge (AoC)

This sequence shows a Pre-paid application that uses the Advice of Charge feature.

The application will send the charging information before the actual call setup and when during the call the charging
changes new information is sent in order to update the end-user. Note: the Advice of Charge feature requires an
application in the end-user terminal to display the charges for the call, depending on the information received from the

application.

ETSI

ETSI ES 201 915-4 V1.2.2 (2002-05)

36

: IpUICall

- IpCall

[IpCall Contro M an ager

Prepaid : (Logical

View::IpAppLogic

‘ ‘ : IpUIManager

‘ IpAppCallControlManager H IpAppCall H IpAppUICall

\\\\\\ e E—
z
9
2
2
=
3
z
L _® |~ ______ e
2 = %
g % :
o ©
c N =
® c o
N W o)
o 3
“““ =8
8 A 3
R 1)
[72)
2
e b
(=)
- 2
E)
c c
Q|5
[[
z T
2 g
- S
i
- - s B —

W_\W_\D\\HT\\
@ -
5}
o —
L L1l =1 ______X o
@)
o x
» ©
2 w
L ®
5 2
2 g
o =]
7
[~L _~1 ___ |l ______ i
_ —
| =
=3
s 2
S e
[} S
2 =
ST - ---
o
=
7
&
2
>
o
RS S D © 0 S —
:
o
S
=
- F-----

o e s S
o
=
@
=
3
N
\\\\\\\\\\\\\\\\\\\\\\\\\\ -
-
=l
g
(5]
Q
2
5]
o}
=
=}
- b B T8
&
c
o
k3]
5]
I
— — — 3
c
7l o~ - 7 -~ z 5
5] o —~ I
2 3 5 £ e s £ >
T =4 =z 3 - b4 o (8] &
% g = [} —~ g 14 = [}
o 9 S 2 = o 2 Q g -
b= o) > 2 = 8 = @ S ot
m w 0 o] £ c S Q »
- = S =] @ S «
= S S > 2 c prd o »]
5| 3 s g g8 & Bl g s
[
N]] - o 2 N * ~ =
- o 2 ~
2 5 S S < 2
R e . 1 B A R R R e A R S
-
i S - s e e e — R
. e o
c [m
& g = o
e N e R
] IS} o]
2 gl S s 2
£ 2] = z £
S o
3 e S Q
= &
i P m— R H S -

ETSI

37 ETSI ES 201 915-4 V1.2.2 (2002-05)

1. Thismessageis used by the application to create an object implementing the |pAppCall Control M anager
interface.

2: Thismessageis sent by the application to enable notifications on new call events. Asthis sequence diagram
depicts apre-paid service, it is likely that only new call events within a certain address range will be enabled.
When anew call, that matches the event criteria, arrives a message (not shown) is directed to the object
implementing the I pCall ControlManager. Assuming that the criteria for creating an object implementing the
IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the
call and associated call leg object.

The incoming call triggers the Pre-Paid Application (PPA).
The message is forwarded to the application.

A new object on the application side for the Call object is created

o g A~ w

The Pre-Paid Application (PPA) sends the AoC information (e.g. the tariff switch time). (it shall be noted the
PPA contains ALL the tariff information and knows how to charge the user).

During this call sequence 2 tariff changes take place. The call starts with tariff 1, and at the tariff switch time (e.g.
18:00 hours) switchesto tariff 2. The application is not informed about this (but the end-user isl)

7: The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the period
indicated in the message. This period isrelated to the credits left on the account of the pre-paid subscriber.

8: The application requests to route the call to the destination address.

9: At the end of each supervision period the application isinformed and a new period is started.
10: The message is forwarded to the application.

11: The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

12: At the end of each supervision period the application isinformed and a new period is started.
13: The message is forwarded to the application.

14: Before the next tariff switch (e.g. 19:00 hours) the application sends a new AOC with the tariff switch time.
Again, at the tariff switch time, the network will send AoC information to the end-user.

15: The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

16: When the user is almost out of credit an announcement is played to inform about this (19-21). The
announcement is played only to the leg of the A-party, the B-party will not hear the announcement.

17: The message is forwarded to the application.

18: The application creates a new call back interface for the User interaction messages.

19: A new Ul Call object that will handle playing of the announcement needs to be created
20: The Gateway creates anew Ul call object that will handle playing of the announcement.
21: With this message the announcement is played to the calling party.

22: The user indicates that the call should continue.

23: The message is forwarded to the application.

24: The user does not terminate so the application terminates the call after the next supervision period.
25: The user is out of credit and the application isinformed.

26: The message is forwarded to the application.

27:With this message the application requests to release the call.

ETSI

38

ETSI ES 201 915-4 V1.2.2 (2002-05)

28: Terminating the call which has still a Ul Call object associated will result in a userlnteractionFaultDetected. The
UICall object isterminated in the gateway and no further communication is possible between the Ul Call and the

application.

6.2 Class Diagrams

This class diagram shows the interfaces of the generic call control service package.

<<Interface>>
IpSenice

setCallback()
setCallbackWithSes sionlD()

A

<<Interface>>
IpCallControlManager

(from gccs)

ScreateCall()

%¥setCallLoadControl()

$getCriteria()

¥enable CallNotification..
¥disableCalINotificatio. ..

%¥changeCallNotificatia ...

Figure 1: Service Interfaces

<<Interface>>
IpCall

(from gccs)

¥routeReq()
®release()
%deassignCall()
SgetCallinfoReq()
@setCallChargePlan()

@setAdviceOfCharge()
...

The generic call control service consists of two packages, one for the interfaces on the application side and one for

interfaces on the service side.

The class diagrams in the following figures show the interfaces that make up the generic call control application
package and the generic call control service package. Communication between these packages is indicated with the
<<uses>> associations; e.g. the IpCallControl M anager interface uses the I pAppCall ControlManager, by means of

calling callback methods.

This class diagram shows the interfaces of the generic call control application package and their relations to the
interfaces of the generic call control service package.

ETSI

39 ETSI ES 201 915-4 V1.2.2 (2002-05)

<<Interface

Ipinterfa

A
a
<<Interface
IpAppC
<<Interface emEes)
IpAppCallControlMa
(from gccs) ‘rOUte Res
orim= outeErr
1 ..N¥getCallinfoR
Jeallaborte ~ SgetCallinfoE
callEventNotif S : I
ScallNotificationinterrup %uperv!sega”R
®callNotificationContin %ul?erwlse a
:caIIOverIoadEncount & 2tl\|j|?)lrjetgieiatlfgéDi i
callOverloadCeas Y ; gt
getMoreDialledDigits
®callEnded
<<uses> /
<<uses>
<<Interface <<Interface
IpCallControlMan | 1 0..n IpCal
(from gcces) - (from gccs)
Figure 2: Application Interfaces
6.3 Generic Call Control Service Interface Classes

The Generic Call Control Service (GCCS) provides the basic call control service for the API. It is based around a third
party model, which allows calls to be instantiated from the network and routed through the network.

The GCCS supports enough functionality to allow call routing and call management for today's Intelligent Network
(IN) servicesin the case of a switched telephony network, or equivalent for packet based networks.

It isthe intention of the GCCS that it could be readily speciaised into call control specifications, for example, ITU-T
recommendations H.323, ISUP, Q.931 and Q.2931, ATM Forum specification UNI3.1 and the IETF Session Initiation
Protocol, or any other call control technology.

For the generic call control service, only a subset of the call model defined in clause 4 is used; the API for generic call
control does not give explicit access to the legs and the media channels. Thisis provided by the Multi-Party Call
Control Service. Furthermore, the generic call isrestricted to two party calls, i.e. only two legs are active at any given
time. Activeis defined here as "being routed" or connected.

The GCCS s represented by the |pCallControlManager and IpCall interfaces that interface to services provided by the
network. Some methods are asynchronous, in that they do not lock athread into waiting whilst a transaction performs.
In this way, the client machine can handle many more calls, than one that uses synchronous message calls. To handle
responses and reports, the devel oper must implement |pAppCallControlManager and |pAppCall to provide the callback
mechanism.

ETSI

40 ETSI ES 201 915-4 V1.2.2 (2002-05)

6.3.1 Interface Class IpCallControlManager
Inherits from: IpService

Thisinterface isthe "service manager" interface for the Generic Call Control Service. The generic call control manager
interface provides the management functions to the generic call control service. The application programmer can use
thisinterface to provide overload control functionality, create call objects and to enable or disable call-related event
notifications.

<<Interface>>

IpCallControlManager

createCall (appCall : in IpAppCallRef) : TpCallldentifier

enableCallNotification (appCallControlManager : in IpAppCallControlManagerRef, eventCriteria : in
TpCallEventCriteria) : TpAssignmentID

disableCallNotification (assignmentID : in TpAssignmentID) : void

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in
TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentID

changeCallNotification (assignmentID : in TpAssignmentID, eventCriteria : in TpCallEventCriteria) : void

getCriteria () : TpCallEventCriteriaResultSet

Method
createCall ()

This method is used to create anew call object. An IpAppCallControlManager should already have been passed to the
IpCallControlManager, otherwise the call control will not be able to report a call Aborted()

to the application (the application should invoke setCallback() if it wishes to ensure this).

Returns callReference: Specifies the interface reference and sessionlD of the call created.

Parameters

appCall : in | pAppCal | Ref
Specifies the application interface for callbacks from the call created.

Returns

TpCal |l I dentifier

Raises

TpCommonExcepti ons, P_I NVALI D_I NTERFACE_TYPE

ETSI

41 ETSI ES 201 915-4 V1.2.2 (2002-05)

Method
enabl eCal | Notification()

This method is used to enable call notifications so that events can be sent to the application. Thisisthefirst step an
application has to do to get initial notification of calls happening in the network. When such an event happens, the
application will be informed by callEventNotify(). In case the application is interested in other events during the context
of aparticular call session it has to use the routeReq() method on the call object. The application will get accessto the
call object when it receives the callEventNotify(). (Note that the enableCallNotification() is not applicable if the call is
setup by the application).

The enableCalINotification method is purely intended for applications to indicate their interest to be notified when
certain call eventstake place. It is possible to subscribe to a certain event for awhole range of addresses, e.g. the
application can indicate it wishes to be informed when a call is made to any number starting with 800.

If some application already requested notifications with criteria that overlap the specified criteria, the request is refused
with P_GCCS INVALID_CRITERIA. The criteria are said to overlap if both originating and terminating ranges
overlap and the same number plan is used and the same CallNotificationTypeis used.

If anctification is requested by an application with the monitor mode set to notify, then there is no need to check the
rest of the criteria for overlapping with any existing request as the notify mode does not allow control on acall to be
passed over. Only one application can place an interrupt request if the criteria overlaps.

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used.
In case the enableCallNatification contains no callback, at the moment the application needs to be informed the gateway
will use as callback the callback that has been registered by setCallback().

Returns assignmentI D: Specifiesthe ID assigned by the generic call control manager interface for this newly-enabled
event notification.

Parameters

appCal | Control Manager : in | pAppCall Control Manager Ref

If this parameter is set (i.e. not NULL) it specifies areference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

eventCriteria : in TpCallEventCriteria

Specifies the event specific criteria used by the application to define the event required. Only events that meet these
criteria are reported. Examples of events are "incoming call attempt reported by network™, "answer", "no answer",
"busy". Individual addresses or address ranges may be specified for destination and/or origination.

Returns
TpAssi gnment | D
Raises

TpConmonExcept i ons, P_I NVALI D_CRI TERI A, P_I NVALI D_| NTERFACE_TYPE,
P_I NVALI D_EVENT_TYPE

Method
di sabl eCal | Notification()

This method is used by the application to disable call notifications.

ETSI

42 ETSI ES 201 915-4 V1.2.2 (2002-05)

Parameters

assignment | D : in TpAssignnentl D

Specifies the assignment 1D given by the generic call control manager interface when the previous
enableCallNotification() was called. If the assignment ID does not correspond to one of the valid assignment IDs, the
exception P_INVALID_ASSIGNMENTID will be raised. If two callbacks have been registered under this assignment
ID both of them will be disabled.

Raises
TpComonExceptions, P_I NVALI D ASSI GNVENT | D

Method
set Cal | LoadControl ()

This method imposes or removes load control on calls made to a particular address range within the generic call control
service. The address matching mechanismis similar as defined for TpCallEventCriteria.

Returns assignment| D: Specifies the assignmentI D assigned by the gateway to this request. This assignmentlD can be
used to correlate the call OverloadEncountered and call OverloadCeased methods with the request.

Parameters

duration : in TpDuration
Specifies the duration for which the load control should be set.

A duration of 0 indicates that the load control should be removed.
A duration of -1 indicates an infinite duration (i.e. until disabled by the application)
A duration of -2 indicates the network default duration.

mechani sm: in TpCal | LoadControl Mechani sm

Specifies the load control mechanism to use (for example, admit one call per interval), and any necessary parameters,
such asthe call admission rate. The contents of this parameter are ignored if the load control duration is set to zero.

treatnent : in TpCall Treat nent

Specifies the treatment of callsthat are not admitted. The contents of this parameter areignored if the load control
duration is set to zero.

addressRange : in TpAddressRange
Specifies the address or address range to which the overload control should be applied or removed.

Returns

TpAssi gnnent | D

Raises

TpCommonExcepti ons, P_I NVALI D_ADDRESS, P_UNSUPPORTED ADDRESS PLAN

Method
changeCal | Noti fication()

This method is used by the application to change the event criteria introduced with enableCallNotification. Any stored
criteria associated with the specified assignmentI D will be replaced with the specified criteria.

ETSI

43 ETSI ES 201 915-4 V1.2.2 (2002-05)

Parameters

assignment | D : in TpAssignnentl D

Specifies the ID assigned by the generic call control manager interface for the event notification. If two call backs have
been registered under this assignment ID both of them will be changed.

eventCriteria : in TpCallEventCriteria

Specifies the new set of event specific criteria used by the application to define the event required. Only events that
meet these criteria are reported.

Raises

TpConmonExcept i ons, P_I NVALI D_ASSI GNVENT | D, P_I NVALI D_CRI TERI A,
P_I NVALI D_EVENT_TYPE

Method
getCriteria()

This method is used by the application to query the event criteria set with enableCallNotification or
changeCalINatification.

Returns eventCriteria: Specifies the event specific criteria used by the application to define the event required. Only
events that meet these criteria are reported.

Parameters
No Parameters were identified for this method.

Returns

TpCal | Event Criteri aResul t Set
Raises

TpComonExcept i ons

ETSI

44 ETSI ES 201 915-4 V1.2.2 (2002-05)

6.3.2 Interface Class IpAppCallControlManager
Inherits from: Iplnterface

The generic call control manager application interface provides the application call control management functions to the
generic cal control service.

<<Interface>>

IpAppCallControlManager

callAborted (callReference : in TpSessionlID) : void

callEventNotify (callReference : in TpCallldentifier, eventinfo : in TpCallEventinfo, assignmentID : in
TpAssignmentlD) : IpAppCallRef

callNotificationInterrupted () : void
callNotificationContinued () : void
callOverloadEncountered (assignmentID : in TpAssignmentlD) : void

callOverloadCeased (assignmentID : in TpAssignmentID) : void

Method
cal | Aborted()

This method indicates to the application that the call object (at the gateway) has aborted or terminated abnormally. No
further communication will be possible between the call and application.

Parameters

cal |l Reference : in TpSessionlD
Specifies the sessionl D of call that has aborted or terminated abnormally.

Method
cal | Event Noti fy()

This method notifies the application of the arrival of a call-related event.

If this method isinvoked with a monitor mode of P CALL_MONITOR_MODE_INTERRUPT, then the APL has
control of the call. If the APL does nothing with the call (including its associated legs) within a specified time period
(the duration of which forms a part of the service level agreement), then the call in the network shall be released and
callEnded() shall be invoked, giving arelease cause of 102 (Recovery on timer expiry).

When this method is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, the application
writer should ensure that no routeReq() is performed until an IpAppCall has been passed to the gateway, either through
an explicit setCallback() invocation on the supplied IpCall, or via the return of the callEventNotify() method.

Returns appCall: Specifies areference to the application interface which implements the callback interface for the new
cal. This parameter will be null if the notification isin NOTIFY mode.

ETSI

45 ETSI ES 201 915-4 V1.2.2 (2002-05)

Parameters

call Reference : in TpCallldentifier

Specifies the reference to the call interface to which the notification relates. This parameter will be null if the
notification isin NOTIFY mode.

eventinfo : in TpCall Eventlnfo
Specifies data associated with this event.

assignment|I D : in TpAssignnentl D
Specifies the assignment id which was returned by the enableCallNotification() method. The application can use

assignment id to associate events with event specific criteriaand to act accordingly.

Returns
| pAppCal | Ref

Method
cal I Notificationlnterrupted()

This method indicates to the application that all event notifications have been temporarily interrupted (for example, due
to faults detected).

Note that more permanent failures are reported via the Framework (integrity management).

Parameters
No Parameters were identified for this method.

Method
cal I NotificationContinued()

This method indicates to the application that event notifications will again be possible.

Parameters
No Parameters were identified for this method.

Method
cal | Over | oadEncount er ed()

This method indicates that the network has detected overload and may have automatically imposed load control on calls
requested to a particular address range or calls made to a particular destination within the call control service.

Parameters

assignmentI D : in TpAssignnentlD

Specifies the assignmentI D corresponding to the associated setCallLoadControl. Thisimplies the address range for
within which the overload has been encountered.

ETSI

46 ETSI ES 201 915-4 V1.2.2 (2002-05)

Method
cal | Over| oadCeased()

This method indicates that the network has detected that the overload has ceased and has automatically removed any
load controls on calls requested to a particular address range or calls made to a particular destination within the call
control service.

Parameters

assignment|I D : in TpAssignnentl D

Specifies the assignmentI D corresponding to the associated setCallLoadControl. This implies the address range for
within which the overload has been ceased

6.3.3 Interface Class IpCall

Inherits from: IpService

The generic Call provides the possibility to control the call routing, to request information from the call, control the
charging of the call, to release the call and to supervise the call. It does not give the possibility to control the legs
directly and it does not allow control over the media. The first capability is provided by the multi-party call and the
latter as well by the multi-media call. The call islimited to two party calls, although it is possible to provide "follow-on
calls, meaning that the call can be rerouted after the terminating party has disconnected or routing to the terminating
party has failed. Basically, this means that at most two legs can be in connected or routing state at any time.

<<Interface>>

IpCall

routeReq (callSessionID : in TpSessionID, responseRequested : in TpCallReportRequestSet, targetAddress
. in TpAddress, originatingAddress : in TpAddress, originalDestinationAddress : in TpAddress,
redirectingAddress : in TpAddress, applnfo : in TpCallAppInfoSet) : TpSessionID

release (callSessionID : in TpSessionID, cause : in TpCallReleaseCause) : void

deassignCall (callSessionID : in TpSessionID) : void

getCallinfoReq (callSessionID : in TpSessionID, callinfoRequested : in TpCallinfoType) : void
setCallChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callSessionID : in TpSessionID, aOClinfo : in TpAoClnfo, tariffSwitch : in TpDuration) :
void
getMoreDialledDigitsReq (callSessionID : in TpSessionID, length : in TpInt32) : void

superviseCallReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallSuperviseTreatment) : void

ETSI

a7 ETSI ES 201 915-4 V1.2.2 (2002-05)

Method
rout eReq()

This asynchronous method requests routing of the call to the remote party indicated by the targetAddress.

Note that in case of routeReq() it is recommended to request for "successful” (e.g. "answer" event) and "failure" events
at invocation, because those are needed for the application to keep track of the state of the call.

The extra address information such as originatingAddressis optional. If not present (i.e. the planis set to
P_ADDRESS PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used,
otherwise the network or gateway provided numbers will be used.

If this method in invoked, and call reports have been requested, yet no |pAppCall interface has been provided, this
method shall throw the P_ NO_CALLBACK_ADDRESS SET exception.

Returns callLegSessionl D: Specifies the sessionlD assigned by the gateway. Thisisthe sessionlD of theimplicitly
created call leg. The same ID will be returned in the routeRes or Err. This allows the application to correlate the request
and the resuilt.

This parameter is only relevant when multiple routeReq() calls are executed in parallel, e.g. in the multi-party call
control service.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

responseRequested : in TpCal |l Report Request Set

Specifies the set of observed events that will result in zero or more routeRes() being generated.
E.g. when both answer and disconnect is monitored the result can be received two times.

If the application wants to control the call (in whatever sense) it shall enable event reports

target Address : in TpAddress
Specifies the destination party to which the call leg should be routed.

ori gi nati ngAddress : in TpAddress
Specifies the address of the originating (calling) party.

ori gi nal Desti nati onAddress : in TpAddress
Specifies the original destination address of the call.

redirecti ngAddress : in TpAddress
Specifies the address from which the call was last redirected.

applnfo : in TpCall Appl nf oSet

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service
identities and interaction indicators).

ETSI

48 ETSI ES 201 915-4 V1.2.2 (2002-05)

Returns

TpSessi onl D

Raises

TpCommonExcepti ons, P_I NVALI D SESSI ON | D, P_I NVALI D_ADDRESS,

P_UNSUPPORTED_ADDRESS_PLAN, P_I NVALI D_NETWORK_STATE, P_I NVALI D_CRI TERI A,
P_I NVALI D_EVENT_TYPE

Method
rel ease()

This method requests the release of the call object and associated objects. The call will also be terminated in the
network. If the application requested reportsto be sent at the end of the call (e.g. by means of getCallInfoReq) these
reports will still be sent to the application.

The application should always either release or deassign the call when it is finished with the call, unless a
callFaultDetected is received by the application.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

cause : in TpCall Rel easeCause
Specifies the cause of the release.

Raises
TpConmmonExceptions, P_INVALI D SESSI ON I D, P_I NVALI D NETWORK_STATE

Method
deassi gnCal | ()

This method requests that the relationship between the application and the call and associated objects be de-assigned. It
leaves the call in progress, however, it purges the specified call object so that the application has no further control of
call processing. If acall isde-assigned that has event reports, call information reports or call Leg information reports
requested, then these reports will be disabled and any related information discarded.

The application should always either release or deassign the call when it is finished with the call, unless
callFaultDetected is received by the application.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

ETSI

49 ETSI ES 201 915-4 V1.2.2 (2002-05)

Raises
TpComonExcepti ons, P_I NVALI D SESSI ON_ | D

Method
get Cal | I nf oReq()

This asynchronous method requests information associated with the call to be provided at the appropriate time (for
example, to calculate charging). This method must be invoked before the call is routed to atarget address.

A report is received when the destination leg or party terminates or when the call ends. The call object will exist after
the call isended if information is required to be sent to the application at the end of the cal. In case the originating party
is il available the application can still initiate a follow-on call using routeReq.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

cal l I nfoRequested : in TpCalllnfoType
Specifiesthe call information that is requested.

Raises
TpComonExceptions, P_INVALID SESSION ID

Method
set Cal | Char gePl an()

Set an operator specific charge plan for the call.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

call ChargePl an : in TpCall ChargePl an
Specifies the charge plan to use.

Raises
TpComonExcepti ons, P_I NVALI D_SESSI ON_I D

Method
set Advi ceOF Char ge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this
information.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

ETSI

50 ETSI ES 201 915-4 V1.2.2 (2002-05)

aCClnfo : in TpAoClinfo
Specifies two sets of Advice of Charge parameter.

tariffSwitch : in TpDuration
Specifiesthe tariff switch interval that signifies when the second set of AoC parameters becomes valid.

Raises
TpComonExcepti ons, P_I NVALI D SESSI ON_| D

Method
get MoreDi al | edDi gi t sReq()

This asynchronous method requests the call control service to collect further digits and return them to the application.
Depending on the administered data, the network may indicate a new call to the gateway if a caller goes off-hook or
dialed only afew digits. The application then gets a new call event which contains no digits or only the few dialled
digitsin the event data.

The application should use this method if it requires more dialled digits, e.g. to perform screening.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

length : in Tplnt32
Specifies the maximum number of digitsto collect.

Raises
TpComonExcepti ons, P_I NVALI D SESSION | D

Method
supervi seCal | Req()

The application calls this method to supervise a call. The application can set a granted connection time for this call. If
an application calls this function before it calls arouteReq() or a user interaction function the time measurement will
start as soon asthe call is answered by the B-party or the user interaction system.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

time : in TpDuration
Specifies the granted time in milliseconds for the connection.

treatment : in TpCall Supervi seTr eat ment
Specifies how the network should react after the granted connection time expired.

ETSI

51 ETSI ES 201 915-4 V1.2.2 (2002-05)

Raises
TpComonExcepti ons, P_I NVALI D SESSI ON_ | D

6.3.4 Interface Class IpAppCall
Inherits from: Iplnterface

The generic call application interface isimplemented by the client application developer and is used to handle call
request responses and state reports.

<<Interface>>

IpAppCall

routeRes (callSessionID : in TpSessionID, eventReport : in TpCallReport, callLegSessionID : in
TpSessioniID) : void

routeErr (callSessionID : in TpSessionID, errorindication : in TpCallError, callLegSessionID : in TpSessionID)
: void

getCallinfoRes (callSessionID : in TpSessionID, callinfoReport : in TpCalllnfoReport) : void
getCallinfoErr (callSessionID : in TpSessionID, errorindication : in TpCallError) : void

superviseCallRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in
TpDuration) : void

superviseCallErr (callSessionID : in TpSessionID, errorindication : in TpCallError) : void
callFaultDetected (callSessionID : in TpSessionID, fault : in TpCallFault) : void
getMoreDialledDigitsRes (callSessionID : in TpSessionID, digits : in TpString) : void
getMoreDialledDigitsErr (callSessionID : in TpSessionID, errorindication : in TpCallError) : void

callEnded (callSessionID : in TpSessionID, report : in TpCallEndedReport) : void

Method
rout eRes()

This asynchronous method indicates that the request to route the call to the destination was successful, and indicates the
response of the destination party (for example, the call was answered, not answered, refused due to busy, etc.).

If this method is invoked with a monitor mode of P CALL_MONITOR_MODE_INTERRUPT,

then the APL has control of the call. If the APL does nothing with the call (including its associated legs) within a
specified time period (the duration of which forms a part of the service level agreement), then the call in the network
shall be released and callEnded() shall be invoked, giving a release cause of 102 (Recovery on timer expiry).

ETSI

52 ETSI ES 201 915-4 V1.2.2 (2002-05)

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

event Report : in TpCall Report

Specifies the result of the request to route the call to the destination party. It also includes the network event, date and
time, monitoring mode and event specific information such as rel ease cause.

cal |l LegSessionl D : in TpSessionlD

Specifies the sessionl D of the associated call leg. This corresponds to the sessionl D returned at the routeReq() and can
be used to correlate the response with the request.

Method
rout eErr ()

This asynchronous method indicates that the request to route the call to the destination party was unsuccessful - the call
could not be routed to the destination party (for example, the network was unable to route the call, the parameters were
incorrect, the request was refused, etc.).

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

cal |l LegSessionl D : in TpSessionlD

Specifies the sessionl D of the associated call leg. This corresponds to the sessionlD returned at the routeReq() and can
be used to correlate the error with the request.

Method
get Cal | I nf oRes()

This asynchronous method reports time information of the finished call or call attempt as well as release cause
depending on which information has been requested by getCalllnfoReq. This information may be used e.g. for charging
purposes. The call information will possibly be sent after routeRes in all cases where the call or aleg of the call has
been disconnected or a routing failure has been encountered.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

call I nfoReport : in TpCalllnfoReport
Specifies the call information requested.

ETSI

53 ETSI ES 201 915-4 V1.2.2 (2002-05)

Method
getCal I I nfoErr ()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

Method
supervi seCal | Res()

This asynchronous method reports a call supervision event to the application when it has indicated its interest in these
kind of events.

Itisalso called when the connection is terminated before the supervision event occurs. Furthermore, this method is
invoked as a response to the request also when atariff switch happensin the network during an active call.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call

report : in TpCall Supervi seReport
Specifies the situation which triggered the sending of the call supervision response.

usedTine : in TpDuration
Specifies the used time for the call supervision (in milliseconds).

Method
supervi seCal |l Err ()

This asynchronous method reports a call supervision error to the application.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

Method
cal | Faul t Det ect ed()

This method indicates to the application that afault in the network has been detected. The call may or may not have
been terminated.

The system deletes the call object. Therefore, the application has no further control of call processing. No report will be
forwarded to the application.

ETSI

54 ETSI ES 201 915-4 V1.2.2 (2002-05)

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call in which the fault has been detected.

fault : in TpCall Fault
Specifies the fault that has been detected.

Method
get MoreDi al | edDi gi t sRes()

This asynchronous method returns the collected digitsto the application.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

digits : in TpString
Specifies the additional dialled digitsif the string length is greater than zero.

Method
get MoreDi al | edDi gi tsErr ()

This asynchronous method reports an error in collecting digits to the application.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

errorlindication : in TpCallError
Specifies the error which led to the original request failing.

Method
cal | Ended()

This method indicates to the application that the call has terminated in the network. However, the application may still
receive some results (e.g. getCallInfoRes) related to the call. The application is expected to deassign the call object after
having received the call Ended.

Note that the event that caused the call to end might also be received separately if the application was monitoring for it.

Parameters

call SessionlD : in TpSessionlD
Specifies the call sessioniD.

report : in TpCall EndedReport
Specifies the reason the call is terminated.

ETSI

55 ETSI ES 201 915-4 V1.2.2 (2002-05)

6.4 Generic Call Control Service State Transition Diagrams

6.4.1 State Transition Diagrams for IpCallControlManager

The state transition diagram shows the application view on the Call Control Manager object.

"a call object hasterminated abnormally" ~IpAp pCallCo ntrolManager.callAborted

create a Call object NlpAppCall Control Manager.cal IEvent Noti fy

disableCallNotification "arrival of call related event"[notification active for this call event]/
enableCallNotification

createCall / create a Call obj...
"new" Active ‘
o | |

Creation of
CallControlManager
by Service Instance
Lifecycle Manager

IpAccess.terminateServiceAgreement

"notifications not possible”
IpAp pCall Control Manager .cal INotificationinterm pted

o
L)

"notifications possible again”
ApAppCallControlManager.callNotificationContinued

IpAccess.te min ate Service Agre eme nt
disableCallNotification

"a call object has terminated abnormally"
AlpAppCallControlManager.callAborted

Notification terminated ‘

J

Figure 3: Application view on the Call Control Manager

6.4.1.1 Active State

In this state a relation between the Application and the Generic Call Control Service has been established. The state
allowsthe application to indicate that it isinterested in call related events. In case such an event occurs, the Call Control
Manager will create a Call object and inform the application by invoking the operation callEventNotify() on the
IpAppCallControlManager interface. The application can also indicateit is no longer interested in certain call related
events by calling disableCallNatification().

6.4.1.2 Notification terminated State

When the Call Control Manager isin the Notification terminated state, events requested with enableCallINotification()
will not be forwarded to the application. There can be multiple reasons for this: for instance it might be that the
application receives more notifications from the network than defined in the Service Level Agreement. Another
exampleisthat the Service has detected it receives no notifications from the network dueto e.g. alink failure. In this
state no requests for new notifications will be accepted.

ETSI

56 ETSI ES 201 915-4 V1.2.2 (2002-05)

6.4.2 State Transition Diagrams for IpCall

The state transition diagram shows the application view on the Call object.

superviseCallReq
getCallinfoReq

setAdviceOfCharge
setCallChargePlan |

®

createCall No Parties

mode = interupt] “routeRes, release
getCallinfoRes, supenviseCallRes

IpAppCal IControlManage . call EvdntNoti fy

“routing aborted orinvalid addéddviee@Eharge
supenviseCaliReq

routeReq[number of routing requests <2] routeReg[only 1 outstanding routgReq]

it “connection to called party unsuccessful’[no fore
getCallinfoReq

outsanding routeReq operai ons] “rou teRps

getMoreDialledDigitsReq[no routeReq outstanding [
“connedionto called party o
monitor mode = interrupt] ~rputeRe

Active “requesisfailed’[no more outstanding

“answer from called party’ Routing to routeReq operations] “routeErm
Destination(s)

“pary releasd”

"Digits collected" "gethon igitsRes
“Ertorin collecting digits” "getMoreDialled

“party released"[no more outstanding
requests]

2 Partiesin

IpAppCallControlManager.callEventNotify(Answer from call pity)

deassignCall
lease
“call ends: calling party abahdoned” ~callEnded
“call ends: calling partyfisconnects’ AcallEnded
“call ends: called party disconnects'l mafitor for this event] AcallEnded, routeRes(party disconect)

“call ends: calling party disgdfinects'T no monitor for this event] callEnded

“fault detected"[fault cannot be ggmmunicated with network eve nt] ~callFaultDetected

‘Application
release Released

Netvok Relea sed

“requested informatiory/feady"
AgetCallinfoRes, superyfseCallRes
“requested informafion ready"
“getCallinfoRes, supdnviseCallRes

[no reports requested with getf

allinfoRed, AND supenviseCallReq |

[no reports requested with-getCallinfoReq AND supeviseCallReq]

atof Tformation” AgetCalllnfoEr, superviseCallErr

deassgnCall

Finished release

“fault in retrieval of inforfnation”

timeout ~callFaultDetected("timeout on release”)
Tvise CallErr

In state Finshed and No Parties, a timer
mechanism should prevent the object from
occupying resources. Upon the expiry of
this timer, callEnded() should be invoked
with a release cause of 102 (Recovery on
timer expiry). In the case when no
IpAppCall is available on which to invoke
callEnded(, callAborted() shall be invoked
on the IpAppCallControlManager as this is
an abnormal termination.

Figure 4: Application view on the IpCall object

6.4.2.1 Network Released State

In this state the call has ended and the Gateway collects the possible call information requested with getCalllnfoReq()
and/or superviseCallReq(). The information will be returned to the application by invoking the methods
getCallInfoRes() and/or superviseCallRes() on the application. Also when a call was unsuccessful these methods are
used. In case the application has not requested additional call related information immediately atransition is made to
state Finished.

6.4.2.2 Finished State

In this state the call has ended and no call related information is to be send to the application. The application can only

release the call object. Calling the deassignCall() operation has the same effect. Note that the application has to release
the object itself as good OO practice requires that when an object was created on behalf of a certain entity, thisentity is
also responsible for destroying it when the object is no longer needed.

ETSI

57 ETSI ES 201 915-4 V1.2.2 (2002-05)

6.4.2.3 Application Released State

In this state the application has requested to rel ease the Call object and the Gateway collects the possible call
information requested with getCallInfoReq() and/or superviseCallReq(). In case the application has not requested
additional call related information the Call object is destroyed immediately.

6.4.2.4 No Parties State

In this state the Call object has been created. The application can request the gateway for a certain type of charging of
the call by calling setCall ChargePlan(). The application can request for charging related information by calling
getCallinfoReq(). Furthermore the application can request supervision of the call by calling superviseCallReq(). It is
also allowed to request Advice of Charge information to be sent by calling setAdviceOfCharge().

6.4.2.5 Active State

In this state a call between two partiesis being setup or present. Refer to the substates for more details. The application
can request supervision of the call by calling superviseCallReq(). It is also allowed to send Advice of Charge
information by calling setAdviceOf Charge() as well asto define the charging by invoking setCallChargePlan.

6.4.2.6 1 Party in Call State

In this state there is one party in the call.

In this state the application can request the gateway for a certain type of charging of the call by calling

setCall ChargePlan(). The application can aso request for charging related information by calling getCalllnfoReq(). The
setCall ChargePlan() and getCalllnfoReq() should be issued before requesting a connection to a second party in the call
by means of routeReq().

Two cases apply: network initiated calls and application initiated calls.

In case the call originated from the network the application can now request for more digits in case more digits are
needed. When the calling party abandons the call before the application has invoked the routeReq() operation, the
application isinformed with callEnded(). When the calling party abandons the call after the application has invoked
routeReq|() but before the call has actually been established, the gateway informs the application by invoking
callEnded().

In case the call was setup by the application and the called party was reached by issuing a routeReq|() the application
can request a connection to a second call party by calling the operation routeReq() again.

Otherwise, it depends on the actual number of invoked (and still outstanding or successful) routing requests whether the
application can still call the routeReq|() operation in order to setup a connection to a called party. Also in this case the
called party can disconnect before another party isreached. In this case depending on the actual configuration, the call
isended or atransition is made back to the Routing to Destinations substate. When the second party answersthe call, a
transition will be made to the 2 Partiesin Call state.

In this state user interaction is possible.

6.4.2.7 2 Parties in Call State

A connection between two parties has been established.

In case the calling party disconnects, the gateway informs the application by invoking callEnded().
When the called party disconnects different situations apply:

1. theapplication is monitoring for this event in interrupt mode: atransition is made to the 1 Party in Call state, the
application isinformed with routeRes with indication that the called party has disconnected and all requested reports are
sent to the application. The application now again has control of the call.

2. the application is monitoring for this event but not in interrupt mode. In this case atransition is made to the Network
Released state and the gateway informs the application by invoking the operation routeRes() and callEnded().

ETSI

58 ETSI ES 201 915-4 V1.2.2 (2002-05)

3. the application is not monitoring for this event. In this case the application isinformed by the gateway invoking the
callEnded() operation and atransition is made to the Network Released state.

In this state user interaction is possible, depending on the underlying network.

6.4.2.8 Routing to Destination(s) State

In this state there is at least one outstanding routeReq.

6.5 Generic Call Control Service Properties

6.5.1 List of Service Properties

The following table lists properties relevant for the GCC API.

Property Type Description/Interpretation

P_TRIGGERING_EVENT_TYPES |INTEGER_SET Indicates the static event types supported by the SCS. Static events are the events by
which applications are initiated.

P_DYNAMIC_EVENT_TYPES INTEGER_SET Indicates the dynamic event types supported by the SCS. Dynamic events are the events
the application can request for during the context of acall.

P_ADDRESSPLAN INTEGER_SET Indicates the supported address plan (defined in TpAddressPlan.) e.g.
{P_ADDRESS PLAN_E164, P ADDRESS PLAN_IP})

P_UI_CALL_BASED BOOLEAN_SET |Value= TRUE : User interaction can be performed on call level and areferenceto aCall

object can be used in the IpUIManager.createUICall () operation.
Value = FALSE: No User interaction on call level is supported.

P_UI_AT_ALL_STAGES BOOLEAN_SET |Value= TRUE: User Interaction can be performed at any stage during a call.
Value = FALSE: User Interaction can be performed in case there is only one party in the
call.

P_MEDIA_TYPE INTEGER_SET Specifies the media type used by the Service. Values are defined by data-type

TpMediaType : P_AUDIO, P_VIDEO, P_DATA

The previoustable lists properties related to capabilities of the SCSitself. The following table lists properties that are
used in the context of the Service Level Agreement, e.g. to restrict the access of applications to the capabilities of the
SCS.

ETSI

59 ETSI ES 201 915-4 V1.2.2 (2002-05)

Property Type

Description

P_TRIGGERING ADDRESSES ADDRESS RANGE_SET

Indicates for which numbers the notification may be set. For terminating
notificationsit applies to the terminating number, for originating
notificationsit applies only to the originating number.

P_NOTIFICATION_TYPES INTEGER_SET

Indicates whether the application is allowed to set originating and/or
terminating triggersin the ECN. Setis:

P_ORIGINATING
P_TERMINATING

P_MONITOR_MODE INTEGER_SET

Indicates whether the application is allowed to monitor in interrupt and/or
notify mode. Set is:

P_INTERRUPT
P_NOTIFY

P_NUMBERS TO BE_CHANGED |INTEGER_SET

Indicates which numbers the application is alowed to change or fill for legs
inanincoming call. Allowed value set:

{P_ORIGINAL_CALLED_PARTY_NUMBER,
P_REDIRECTING_NUMBER,

P TARGET_NUMBER,
P_CALLING_PARTY_NUMBER}.

P_CHARGEPLAN_ALLOWED INTEGER_SET

Indicates which charging is allowed in the setCallChargePlan indicator.
Allowed values:

{P_TRANSPARANT_CHARGING,
P_CHARGE_PLAN}

P_CHARGEPLAN_MAPPING

INTEGER_INTEGER_MAP

Indicates the mapping of chargeplans (we assume they can be indicated
with integers) to alogical network chargeplan indicator. When the
chargeplan supportsindicates P CHARGE_PLAN then only chargeplansin
this mapping are allowed.

6.5.2

Service Property values for the CAMEL Service Environment.

Implementations of the Generic Call Control API relying on the CSE shall have the Service Properties outlined above

set to the indicated values :

P_OPERATI ON_SET = {

"I pCal | Cont r ol Manager .
"I pCal | Cont r ol Manager .
"| pCal | Cont rol Manager.
"| pCal | Cont rol Manager.
"I pCal | Cont r ol Manager .
"I pCall.routeReq",

"I pCall.rel ease",

"I pCall.deassignCall",
"I pCall.getcCalllnfoReq",

"I pCal |l .set Cal | ChargePl an",
"I pCal | . set Advi ceOF Char ge",
"I pCall.superviseCall Req"

}

P_TRI GGERI NG_EVENT_TYPES = {
P_EVENT_GOCS_ADDRESS_COLLECTED EVENT,
P_EVENT_GOCS_ADDRESS_ANALYSED EVENT,
P_EVENT_GCCS_CALLED PARTY_BUSY,
P_EVENT_GOCS_CALLED_PARTY_UNREACHABLE,
P_EVENT_GOCS_NO_ANSWER FROM CALLED_PARTY,
P_EVENT_GOCS_ROUTE_SELECT FAI LURE

}

P_DYNAM C_EVENT_TYPES = {
P_CALL_REPORT ANSVER,
P_CALL_REPORT_BUSY,
P_CALL_REPORT_NO ANSWER,
P_CALL_REPORT DI SCONNECT,
P_CALL_REPORT ROUTI NG FAI LURE,
P_CALL_REPORT_NOT_REACHABLE

}

enabl eCal | Noti fication",

changeCal | Noti ficati on",
getCriteria",
set Cal | LoadControl ",

P_ADDRESS_PLAN = {
P_ADDRESS_PLAN E164
}

di sabl eCal | Noti fi cation",

ETSI

60 ETSI ES 201 915-4 V1.2.2 (2002-05)

P_U _CALL_BASED = {
TRUE
}

P_U _AT_ALL_STAGES = {
FALSE
}

P_MEDI A TYPE = {
P_AUDI O
}

6.6 Generic Call Control Data Definitions
This clause provides the GCC data definitions necessary to support the API specification.
The general format of a Data Definition specification is described below.
e DataType
This shows the name of the data type.
e Description
This describes the data type.
e Tabular Specification
This specifies the data types and values of the data type.
¢ Example
If relevant, an example is shown to illustrate the data type.

All data types referenced but not defined in this clause are either in the common call control data definitions clause of
the present document (clause 10) or in the common data definitions which may be found in ES 201 915-2.

ETSI

61 ETSI ES 201 915-4 V1.2.2 (2002-05)

6.6.1 Generic Call Control Event Notification Data Definitions

6.6.1.1 TpCallEventName

Defines the names of event being notified. The following events are supported. The values may be combined by a
logical "OR" function when requesting the notifications. Additional eventsthat can be requested/received during the
call process are found in the TpCallReportType data-type.

Name Value Description
P_EVENT_NAVME_UNDEFI NED 0 Undefined
P_EVENT_GCCS_OFFHOOK_EVENT 1 GCCS - Offhook event

This can be used for hot-line features. In case thisevent isset in
the TpCallEventCriteria, only the originating address(es) may
be specified in the criteria.

P_EVENT_GCCS_ADDRESS COLLECTED EVENT 2 GCCS — Address information collected

The network has collected the information from the A-party,
but not yet analysed the information. The number can till be
incomplete. Applications might set notifications for this event
when part of the number analysis needs to be donein the
application (see also the getMoreDialledDigitsReq method on

the call class).
P_EVENT_GCCS_ADDRESS_ ANALYSED EVENT 4 GCCS— Address information is analysed
The dialled number isavalid and complete number in the
network.
P_EVENT_GCCS_CALLED PARTY_BUSY 8 GCCS - Called party is busy
P_EVENT_GCCS_CALLED PARTY_UNREACHABLE 16 GCCS— Called party is unreachable (e.g. the called party has a
mobile telephone that is currently switched off).
P_EVENT_GCCS_NO_ANSWER_FROM CALLED PARTY |32 GCCS— No answer from called party
P_EVENT_GCCS_ROUTE_SELECT_FAI LURE 64 GCCS— Failurein routing the call
P_EVENT_GCCS_ANSWER_FROM CALL_PARTY 128 GCCS - Party answered call.

6.6.1.2 TpCallNotificationType

Defines the type of natification. Indicates whether it is related to the originating of the terminating user in the call.

Name Value Description
P_ORI G NATI NG 0 Indicates that the notification is related to the originating user in the call.
P_TERM NATI NG 1 Indicates that the notification is related to the terminating user in the call.

ETSI

6.6.1.3

TpCallEventCriteria

62 ETSI ES 201 915-4 V1.2.2 (2002-05)

Definesthe Sequence of Data El enent s that specify the criteriafor a event notification.

Of the addresses only the Plan and the AddrString are used for the purpose of matching the notifications against the

criteria.

Sequence Element

Sequence Element

Description

Name Type
Desti nati onAddr ess TpAddr essRange Defines the destination address or address range for which the natification is
requested.
Ori gi nati ngAddr ess TpAddr essRange Defines the origination address or a address range for which the notification is

requested.

Cal | Event Nane

TpCal | Event Nane

Name of the event(s)

Cal I NotificationType

TpCal | Noti fi cationType

Indicates whether it isrelated to the originating or the terminating user in the
call.

Moni t or Mode TpCal | Moni t or Mode Defines the mode that the call isin following the notification.
Monitor mode P_CALL_MONITOR_MODE_DO_NOT_MONITOR isnot a
legal value here.
6.6.1.4 TpCallEventinfo
Definesthe Sequence of Data El enent s that specify the information returned to the applicationin a Call event
notification.
Sequence Element Name Sequence Element Type
Desti nati onAddr ess TpAddr ess
Ori gi nati ngAddr ess TpAddr ess
Origi nal Destinati onAddr ess TpAddr ess
Redi rect i ngAddr ess TpAddr ess
Cal | Appl nfo TpCal | Appl nf oSet
Cal | Event Nanme TpCal | Event Nane
Cal | NotificationType TpCal | Noti ficationType
Moni t or Mbde TpCal | Moni t or Mode
6.6.2 Generic Call Control Data Definitions
6.6.2.1 IpCall

Definesthe addressof an | pCal | Interface.

6.6.2.2

IpCallRef

DefinesaRef er ence to type IpCall.

6.6.2.3

IpAppCall

Definesthe address of an | pAppCal | Interface.

6.6.2.4

IpAppCallRef

DefinesaRef er ence to type IpAppCall

ETSI

63

6.6.2.5 TpCallldentifier

ETSI ES 201 915-4 V1.2.2 (2002-05)

Definesthe Sequence of Data El enent s that unambiguously specify the Generic Call object

Sequence Element Sequence Element Sequence Element Description
Name Type
Cal | Ref erence | pCal | Ref This element specifies theinterface reference for the call object.
Cal | Sessionl D TpSessi onl D This element specifies the call session ID of the call.

6.6.2.6 IpAppCallControlManager

Definesthe address of an | pAppCal | Cont r ol Manager Interface.

6.6.2.7 IpAppCallControIManagerRef

Defines aRef er ence to type |pAppCallControlManager.

6.6.2.8 IpCallControlManager

Definesthe address of an | pCal | Cont r ol Manager Interface.

6.6.2.9 IpCallControIManagerRef

DefinesaRef er ence to type IpCallControlManager.

6.6.2.10 TpCallAppinfo

Definesthe Tagged Choi ce of Data El enent s that specify application-related call information.

Tag Element Type
TpCal | Appl nf oType
Tag Element Choice Element Choice Element Name
Value Type

P_CALL_APP_ALERTI NG_MECHANI SM TpCallAlertingM echanism Cal | AppAl erti ngMechani sm
P_CALL_APP_NETWORK_ACCESS TYPE TpCallNetworkAccessType Cal | AppNet wor kAccessType
P_CALL_APP _TELE SERVI CE TpCall TeleService Cal | AppTel eServi ce
P_CALL_APP_BEARER SERVI CE TpCallBearerService Cal | AppBear er Servi ce
P_CALL_APP_PARTY CATEGORY TpCallPartyCategory Cal | AppPar t yCat egory
P_C:ALL_APP_PRESENTATl O\I_AIJJ?ESS TpAddr ess Cal | AppPr esent at i onAddr ess
P_CALL_APP_CENERI C_|I NFO TpString Cal | AppCGenericlnfo
P_CALL_APP_ADDI TI ONAL_ADDRESS TpAddr ess Cal | AppAddi ti onal Addr ess

ETSI

64 ETSI ES 201 915-4 V1.2.2 (2002-05)

6.6.2.11 TpCallAppInfoType

Defines the type of call application-related specific information.

Name Value Description
P_CALL_APP_UNDEFI NED Undefined

P_CALL_APP_ALERTI NG_MECHANI SM
P_CALL_APP_NETWORK_ACCESS_TYPE
P_CALL_APP_TELE_SERVI CE

The alerting mechanism or pattern to use

The network access type (e.g. ISDN)

Indicates the tele-service (e.g. telephony)

P_CALL_APP_BEARER SERVI CE Indicates the bearer service (e.g. 64kbit/s unrestricted data).

P_CALL_APP_PARTY_CATEGORY The category of the calling party

P_CALL_APP_PRESENTATI ON_ADDRESS
P_CALL_APP_GENERI C_I NFO
P_CALL_APP_ADDI TI ONAL_ADDRESS

The address to be presented to other call parties

Carries unspecified service-service information

O N o O B W N | O

Indicates an additional address

6.6.2.12 TpCallAppinfoSet

DefinesaNunber ed Set of Data El enment s of TpCallApplnfo.

6.6.2.13 TpCallEndedReport

Definesthe Sequence of Data El enent s that specify the reason for the call ending.

Sequence Element Sequence Element Description
Name Type
Cal | LegSessi onl D TpSessi onl D Theleg that initiated the release of the call.
If the call release was not initiated by the leg, then thisvalueis set to —1.
Cause TpCal | Rel easeCause The cause of the call ending.

6.6.2.14 TpCallFault

Defines the cause of the call fault detected.

Name Value Description
P_CALL_FAULT_UNDEFI NED 0 Undefined

P_CALL_TI MEQUT_ON_RELEASE 1 This fault occurs when the final report has been
sent to the application, but the application did
not explicitly release or deassign the call object,
within a specified time.

The timer value is operator specific.

P_CALL_TI MEOUT_ON_I NTERRUPT 2 This fault occurs when the application did not
instruct the gateway how to handle the call
within a specified time, after the gateway
reported an event that was requested by the
application in interrupt mode.

The timer value is operator specific.

ETSI

6.6.2.15 TpCallinfoReport

65

ETSI ES 201 915-4 V1.2.2 (2002-05)

Definesthe Sequence of Data El enent s that specify the call information requested. Information that was not

requested isinvalid.

Sequence Element
Name

Sequence Element
Type

Description

Cal I I nf oType

TpCallIinfoType

Thetype of call report.

CalllnitiationStartTinme

TpDat eAndTi ne

The time and date when the call, or follow-on call, was
started as aresult of arouteReq.

Cal | Connect edToResour ceTi ne

TpDat eAndTi ne

The date and time when the call was connected to the

This data element is only valid when information on
user interaction is reported.

resource.

Cal | Connect edToDest i nati onTi ne

TpDat eAndTi e

The date and time when the call was connected to the
destination (i.e. when the destination answered the call).
If the destination did not answer, thetime is set to an empty

This data element isinvalid when information on
user interaction is reported.

string.

Cal | EndTi ne TpDat eAndTi e The date and time when the call or follow-on call or user
interaction was terminated.
Cause TpCal | Rel easeCause The cause of the termination.

A calllnfoReport will be generated at the end of user interaction and at the end of the connection with the associated
address. This means that either the destination related information is present or the resource related information, but not

both.

6.6.2.16 TpCallReleaseCause

Definesthe Sequence of Data El enent s that specify the cause of the release of acall.

Sequence Element

Sequence Element

Name Type
Val ue Tpl nt 32
Location Tpl nt 32

NOTE:

The Value and Location are specified as in ITU-T Recommendation Q.850.

The following example was taken from I TU-T Recommendation Q.850 to aid understanding:

Equivalent Call Report Cause Value Set by Cause Value from
Application Network

P_CALL_REPORT_BUSY 17 17
P_CALL_REPCORT_NO_ANSVEER 19 18,19,21
P_CALL_REPORT_DI SCONNECT 16 16
P_CALL_REPORT_REDI RECTED 23 23
P_CALL_REPORT_SERVI CE_CODE 31 NA
P_CALL_REPCORT_NOT_REACHABLE 20 20
P_CALL_REPORT_ROUTI NG_FAI LURE 3 Any other value

ETSI

6.6.2.17 TpCallReport

66

ETSI ES 201 915-4 V1.2.2 (2002-05)

Definesthe Sequence of Data El enent s that specify the call report and call leg report specific information.

Sequence Element
Name

Sequence Element

Type

Moni t or Mode

TpCal | Moni t or Mode

Cal | Event Ti ne

TpDat eAndTi ne

Cal | Report Type

TpCal | Report Type

Addi ti onal Reportlnfo

TpCal | Addi ti onal ReportlInfo

6.6.2.18 TpCallAdditionalReportinfo

Definesthe Tagged Choi ce of Data El ement s that specify additional call report information for certain types

of reports.

Tag Element Type

TpCal | Report Type

Tag Element Value

Choice Element Type

Choice Element Name

P_CALL_REPORT_UNDEFI NED NULL Undefined
P_CALL_REPORT_PROGRESS NULL Undefined
P_CALL_REPORT_ALERTI NG NULL Undefined
P_CALL_REPORT_ANSVER NULL Undefined
P_CALL_REPORT_BUSY TpCallReleaseCauise Busy

P_CALL_REPORT_NO ANSVER NULL Undefined

P_CALL_REPORT_DI SCONNECT

TpCallReleaseCause

CallDisconnect

P_CALL_REPORT_REDI RECTED TpAddress ForwardAddress
P_CALL_REPORT_SERVI CE_CODE TpCallServiceCode ServiceCode
P_CALL_REPORT_ROUTI NG_FAI LURE TpCallReleaseCause RoutingFailure
P_CALL_REPORT_QUEUED TpString QueueStatus
P_CALL_REPORT_NOT_REACHABLE TpCallReleaseCause NotReachable

6.6.2.19 TpCallReportRequest

Definesthe Sequence of Data El enent s that specify the criteriarelating to call report requests.

Sequence Element Name

Sequence Element Type

Moni t or Mbde

TpCalMonitorMode

Cal | Report Type

TpCallReportType

Addi ti onal ReportCriteria

TpCallAdditionalReportCriteria

ETSI

67 ETSI ES 201 915-4 V1.2.2 (2002-05)

6.6.2.20 TpcCallAdditionalReportCriteria

Definesthe Tagged Choi ce of Data El enent s that specify specific criteria

Tag Element Type
TpCallReportType
Tag Element Choice Element Choice Element
Value Type Name
P_CALL_REPORT_UNDEFI NED NULL Undefined
P_CALL_REPORT_PROGRESS NULL Undefined
P_CALL_REPORT_ALERTI NG NULL Undefined
P_CALL_REPORT_ANSVER NULL Undefined
P_CALL_REPORT_BUSY NULL Undefined
P_CALL_REPORT_NO_ANSVER TpDuration NoAnswerDuration
P_CALL_REPORT_DI SCONNECT NULL Undefined
P_CALL_REPORT_REDI RECTED NULL Undefined
P_CALL_REPORT_SERVI CE_CODE TpCallServiceCode ServiceCode
P_CALL_REPORT_ROUTI NG_FAI LURE NULL Undefined
P_CALL_REPORT_QUEUED NULL Undefined
P_CALL_REPORT_NOT_REACHABLE NULL Undefined

6.6.2.21 TpCallReportRequestSet

DefinesaNunber ed Set

6.6.2.22 TpCallReportType

Defines a specific call event report type.

of Data El enents of TpCallReportRequest.

Name Value Description
P_CALL_REPORT_UNDEFI NED 0 Undefined.
P_CALL_REPORT_PROGRESS 1 Call routing progress event: an indication from the network that progress has
been made in routing the call to the requested call party. This message may be
sent more than once, or may not be sent at al by the gateway with respect to
routing agiven cal leg to a given address.
P_CALL_REPORT_ALERTI NG 2 Cal isalerting at the call party.
P_CALL_ REPORT_ANSVER 3 Call answered at address.
P_CALL_ REPORT_ BUSY 4 Called address refused call due to busy.
P_CALL_REPORT_NO ANSVER 5 No answer at called address.
P_CALL_ REPORT_ DI SCONNECT 6 |The mediastream of the called party has disconnected. This does not imply that
the call has ended. When the call is ended, the callEnded method is called. This
event can occur both when the called party hangs up, or when the application
explicitly releases the leg using |pCallLeg.rel ease() This cannot occur when the
app explicitly releases the call leg and the call.
P_CALL_ REPORT_REDI RECTED 7 Call redirected to new address; an indication from the network that the call has
been redirected to a new address.
P_CALL_REPORT_SERVI CE_CCDE 8 Mid-call service code received.
P_CALL_REPORT_ROUTI NG FAILURE [9 Call routing failed - re-routing is possible.
P_CALL_REPORT_QUEUED 10 ([Thecal isbeing held in aqueue. This event may be sent more than once during
the routing of acall.
P_CALL_REPORT_NOT_REACHABLE 11 [Thecaled addressis not reachable; e.g. the phone has been switched off or the

phone is outside the coverage area of the network.

ETSI

68 ETSI ES 201 915-4 V1.2.2 (2002-05)

6.6.2.23 TpCallTreatment

Definesthe Sequence of Data El enent s that specify the treatment for calls that will be handled only by the
network (for example, call which are not admitted by the call load control mechanism).

Sequence Element Sequence Element
Name Type
Cal | Tr eat nent Type TpCal | Tr eat ment Type
Rel easeCause TpCal | Rel easeCause
Addi ti onal Treat ment | nfo TpCal | Addi ti onal Tr eat nent | nf o

6.6.2.24 TpCallEventCriteriaResultSet

Defines a set of TpCallEventCriteriaResult.

6.6.2.25 TpCallEventCriteriaResult

Defines a sequence of data elements that specify arequested call event notification criteria with the associated
assignmentID.

Sequence El enent Sequence El enent Sequence El enment
Narme Type Descri ption
EventCriteria |[TpCallEventCriteria The event criteria that were specified by the application.
Assi gnrent | D Tpl nt 32 The associated assignmentlD. This can be used to disable the notification.
7 MultiParty Call Control Service
7.1 Sequence Diagrams

7.1.1 Application initiated call setup

The following segquence diagram shows an application creating a call between party A and party B. Here, acall is
created first. Then party A'scall leg is created before events are requested on it for answer and then routed to the call.
On answer from party A, an announcement is played indicating that the call is being set up to party B. While the
announcement is being played, party B's call leg is created and then events are requested on it for answer. On answer
from Party B the announcement is cancelled and party B is routed to the call.

The service may as a variation be extended to include 3 parties (or more). After the two party call is established, the
application can create a new leg and request to route it to a new destination address in order to establish a 3 party call.

The event that causes this to happen could for example be the report of answer event from B-party or controlled by the
A-party by entering a service code (mid-call event).

The procedure for call setup to party C is exactly the same as for the set up of the connection to party B (sequence 13 to
17 in the sequence diagram).

ETSI

69 ETSI ES 201 915-4 V1.2.2 (2002-05)

: (Logical = AppPartyA : AppPartyB : = = = PartyA: PartyB : = :IpUICall
View::IpAppLogic] IpAppMultiPartyCall | | (IpAppMultiPartyCallLeq) | | (IpAppMultiPartyCallLeq) | | IpAppUICall | |ipMultiPartyCallControlManager| | IpMultiPartyCall || IpCallLeg || IpCaliLeg ||IpUIManager
I L newd I I I I I I

|

2: createCall()

I I
I I I
I I I
. I
| | \‘ 3: new() |
I I ﬁ I
I I I
| I I I
T 4: SEtCaHchk[) | | |
H | | gl |
| I | I
| 5: e CaHLEg[) | | |
| | 6: new() |
| | i
I I I
| I I I
7: eveniReportReq() j j j
I I I 1l
bovra)| [[
Il Il
I I E]
|9 tReportRes () | |
T T
| I H
s |
|
|

- - T T A

|
|
15: eventReportReq(;)

|
|
16: routeReq()|

|
18 abortActionRed()

|
|
|
|
|
l
i
|
|
|
|
|

19: deassigpCall()

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
l
J
[l
|
|
|
I
|
|
|
|
|
|
|
|
1
|
|
|
|
|
|
|
|
|
|
[
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
l
i
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

i
u
;

s [s [s R s

1: Thismessageisused to create an object implementing the | pAppMultiPartyCall interface.

2: This message requests the object implementing the I pMulti PartyCall Control M anager interface to create an
object implementing the IpMultiPartyCall interface.

3: Assuming that the criteriafor creating an object implementing the IpMultiPartyCall interface (e.g. load control
values not exceeded) ismet it is created.

4: Once the object implementing the |pMultiPartyCall interface is created it is used to pass the reference of the
object implementing the IpAppMultiPartyCall interface as the callback reference to the object implementing the
IpMultiPartyCall interface. Note that the reference to the callback interface could already have been passed in
the createCall.

5: This message instructs the object implementing the IpMultiPartyCall interface to create a call leg for customer
A.

6: Assuming that the criteriafor creating an object implementing the I pCallLeg interface is met, message 6 is used
to createit.

7: This message requests the call leg for customer A to inform the application when the call leg answersthe call.
8: The call isthen routed to the originating call leg.

9: Assuming the call is answered, the object implementing party A's IpCallLeg interface passes the result of the call
being answered back to its callback object. This message is then forwarded via another message (not shown) to
the object implementing the IpAppLogic interface.

10: A UICall object is created and associated with the just created call leg.
11: This message is used to inform party A that the call is being routed to party B.

12: Anindication that the dialogue with party A has commenced is returned via message 13 and eventually
forwarded via another message (not shown) to the object implementing the | pAppLogic interface.

ETSI

70 ETSI ES 201 915-4 V1.2.2 (2002-05)

13: This message instructs the object implementing the IpMultiPartyCall interface to create acall leg for customer B.
14: Assuming that the criteriafor creating a second object implementing the IpCallLeg interface is met, it is created.
15: This message requests the call leg for customer B to inform the application when the call leg answers the call.
16: The call isthen routed to the call leg.

17: Assuming the call is answered, the object implementing party B's IpCallLeg interface passes the result of the call
being answered back to its callback object. This message is then forwarded via another message (not shown) to
the object implementing the IpAppLogic interface.

18: This message then instructs the object implementing the IpUICall interface to stop sending announcements to
party A.

19: The application deassigns the call. Thiswill also deassign the associated user interaction.

7.1.2 Call Barring 2

The following sequence diagram shows a call barring service, initiated as aresult of a prearranged event being received
by the framework. Before the call is routed to the destination number, the calling party is asked for aPIN code. The
code isrgjected and the call is cleared.

: (Logical 2 2 A : IpMultiPartyCallControlManager 2 2 : IpUICall
View:IpApplL... IpAppMultiPartyCallControlManager IpAppMultiPartyCall IpAppUICall IpMultiPartyCall IpUIManager
T T T T T T T T
| 1 new() | | | | | | |
| | | | | |
H U | | | | | |
| | | | | | |
| | 2: createNotification(!) | | | | |
! | | | | | |
H | | | /D | | |
1 ! 3 :reporlNomcanon() : : : : :
4: 'forward event'				
5: new)				
D				
T				
	6: getCallLegs()			
t t t t				
H				/u
		7 crealeulC§ll()		
				/Q
j : : 8: sendlnfé‘JAndCDIIectReq() : : : !				
! ! ! ! ! 9: sendlnfoAndCollectRes*) ! !				
! : 10: 'forward event' : ! :	: !			
U<				
		11: sendinfoReq()		
			12: sendinfoRes()	
! : 13: 'forward event' : : : :				
D\				
: : 14: release() : : :				
[15: release()				
T T T >m I				
\-v				

o

ETSI

71 ETSI ES 201 915-4 V1.2.2 (2002-05)

This message is used by the application to create an object implementing the
I pAppMultiPartyCall Control Manager interface.

This message is sent by the application to enable notifications on new call events. As this sequence diagram
depictsacall barring service, it islikely that all new call events destined for a particular address or address range
prompted for a password before the call is alowed to progress. When anew call, that matches the event criteria,
arrives a message (not shown) is directed to the object implementing the | pMultiPartyCall Control M anager.
Assuming that the criteriafor creating an object implementing the IpMultiPartyCall interface (e.g. load control
values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

This message is used to pass the new call event to the object implementing the
I pAppM ultiPartyCall Control Manager interface.

This message is used to forward message 3 to the IpAppLogic.

5: Thismessage is used by the application to create an object implementing the IpAppMultiPartyCall interface. The

© ®© N o

reference to this object is passed back to the object implementing the IpMultiPartyCall ControlManager using the
return parameter of the callEventNotify.

The application requests an list of all the legs currently in the call.
This message is used to create a UICall object that is associated with the incoming leg of the call.
The call barring service dialogue isinvoked.

Theresult of the dialogue, which in this caseisthe PIN code, isreturned to its callback object.

10: This message is used to forward the previous message to the | pAppLogic

11: Assuming an incorrect PIN is entered, the calling party isinformed using additional dialogue of the reason why

the call cannot be compl eted.

12: This message passes the indication that the additional dialogue has been sent.

13: This message is used to forward the previous message to the IpAppLogic.

14: No more Ul isrequired, so the UICall abject is released.

15: This message is used by the application to clear the call.

ETSI

72 ETSI ES 201 915-4 V1.2.2 (2002-05)

7.1.3 Call forwarding on Busy Service
The following sequence diagram shows an application establishing a call forwarding on busy.

When acall is made from A to B but the B-party is detected to be busy, then the application is informed of this and sets
up a connection towards a C party. The C party can for instance be a voicemail system.

{

Applagic Appleg C : Appleg A: App Call : App CCM : CCM : Call: Leg A: LegB: LegC: Scs
IpAppCallleg IpAppCallLeg IpAppMultiPartyCall IpAppMultiPartyCallC IpMultiPartyCallC M ulf PartyC all IpCallLeg IpCallLeg bCAlLex
T T T T T T T T T T T
| | | 1 'new | | | | | | | |
T T T | | | | | |
2: createNotification()
! ! i /u ! ! 3 "Ermmgger“ ! ! !
| | |] I | I I I
| | | | | | U
| | | | | | |
| | | | 4:"trigger event: Busy' | | |
! ! ! 5:‘checki dpplication interested” | I I I u
		L			
		6: "new"			
		hew			
		8: "statefransition to Active’			
		R			
		o	9		
			10: to Releas\ng		
	12: "forward event" 11: reportNotification()				
u\ t t					
]					
	13:'new’				
I					

I

|
|
|
|
|
|
|
|
|
|
|
|
|
|
[l
|
|
|
|
|
|
|
T

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
|
ki
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
| |
| |
| |
| | |
gl | | |
16: createCallLe " .
: | eg() . " 17: "new’ |
| | | !
| | | u 18: sﬂi# transitionto ldle"|
: : 19: eventReportReq() : | F :
| | | | I |
20: routeReq()
| | | | | |
| | | | 2T St fransition (o Activg”
| | | | | e— |
T | | | | 221 "inform Call objett” |
				t t			
		.		U\			
		23: continueProgessing()				u	
H				24: "inform Call obJ:L\J‘			
[
! ! ! ! ! ! 25: “ccmmuec‘	processing” ! !						
I I I I I	g il processing”						
							0
							46:"C-party answey
: : : : 27 evemReporl‘hes() : : :							
28 fovw?vd event							
N							
i i i

B

|

1: Thismessageisused by the application to create an object implementing the
I pAppM uultiPartyCall Control Manager interface.

2: Thismessage is sent by the application to enable notifications on new call events.

4: When anew call, that matches the event criteria, arrives a message ("busy") is directed to the object
implementing the | pM ultiPartyCall ControlManager. Assuming that the criteria for creating an object
implementing the |pMultiPartyCall interface is met, other messages are used to create the call and associated call
leg objects.

6: A new MultiPartyCall object is created to handle this particular call.
7: A new CallLeg object corresponding to party A is created.
8: Thenew Call Leg instance transits to state I nitiating.

11: This message is used to pass the new call event to the object implementing the
IpAppMuultiPartyCall ControlManager interface. Applied monitor mode is "interrupt

12: This message is used to forward the message to the IpAppLogic.

ETSI

73 ETSI ES 201 915-4 V1.2.2 (2002-05)

13: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The
reference to this object is passed back to the object implementing the |pMultiPartyCall ControlManager using the
return parameter of the reportNotification.

14: A new AppCallLeg is created to receive callbacks for the Leg corresponding to party A.
15: A new AppCallLeg Cis created to receive callbacks for another leg.

16: This message is used to create a new call leg object. The object is created in the idle state and not yet routed in
the network.

19: The application requests to be notified (monitor mode "INTERRUPT") when party C answers the call.
20: The application requests to route the terminating leg to reach the associated party C.

The application may request information about the original destination address be sent by setting up the field
P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallApplInfo in the request to route the call leg
to the remote party C.

23: The application requests to resume call processing for the terminating call leg to party B to terminate the leg.
Alternative the application could request to deassign the leg to party B for exampleif it is not interested in
possible requested call leg information (getlnfoRes, superviseRes).

When the terminating call leg is destroyed, the AppLeg B is notified and the event is forwarded to the
application logic (not shown).

25: The application requests to resume call processing for the originating call leg.
Asaresult call processing is resumed in the network that will try to reach the associated party B.
26: When the party C answers the call, the termination call leg is notified.

27: Assuming the call is answered, the object implementing party C's |pCallLeg interface passes the result of the call
being answered back to its callback object.

28: This answer message is then forwarded to the object implementing the IpAppLogic interface.

7.1.4 Call Information Collect Service

The following sequence diagram shows an application monitoring a call between party A and a party B in order to
collect call information at the end of the call for e.g. charging and/or statistic information collection purposes. The
service may apply to ordinary two-party calls, but could also include a number trand ation of the dialled number and
special charging (e.g. a premium rate service).

Additional call leg related information is requested with the getlnfoReq and superviseReq methods.
The answer and call release events are in this service exampl e requested to be reported in notify mode and

additional call leg related information is requested with the getlnfoReq and superviseReq methods in order to illustrate
the information that can be collected and sent to the application at the end of the call.

Furthermore is shows the order in which information is sent to the application: network release event followed by
possible requested call leg information, then the destroy of the call leg object (callLegEnded) and finally the destroy of
the call object (callEnded).

ETSI

74 ETSI ES 201 915-4 V1.2.2 (2002-05)

17 é‘vemReponReq()

18: puperviseReq()

1é‘ gethfReq()
207 geK)

I H T

Zi‘.‘ raueReq()

22 "stagﬁamiﬁon to Active!

23; "inform Call object" P—

AmLogic ApplegB: Appleg A: p Call : AppCCM CccM - Call: LegA: LegB: scs
I allLe IpAppCallLeg %mMuluParggall IpAppMulti szx‘zur IpMulti ParM‘;qII(‘ IpMultiPartyCall IpCallLeg CallLe Ip CallLeg
T T T T T
| | I 1 mew \ \ \ | \ \ |
L + + + L | | | | |
| | 2: createNotification() U | | | | |
" " " | | 3:"armtrigger” | |
| | | I I I /IT‘
| | | | | |
: : : T‘ 4" }rlgger ewent: Analyﬁed Information” : :
| | | | 5:"check f fpplication interested” | | | H
| | | | *ZI | | |
| | | | 6: "new" | | |]
			8: "statetransition to Active"		
			le—		
			9: reportN dificaion()		
	‘10: “forward event"				
N ! 11: "new’ ! ! ! !					
1 L					
12 ‘new					
T					
R					
mew i I I I I I					
gl 14 createCalleg() ! ! ! ! !					
	5: new I I				
L L					
! \; ! s&&uanﬁlllonm Idle"					
1 1					
T T					
1 1					
! !					

|

|

|

|

24: evemRepor}Req() U\
25: getinfoReq ()

ﬂ i

26: continueProc“essing()
[

l iU

277: "inform Call ob;cu

]

28:['gontinuecal | pr ocess‘lng

|
|
|
|
|
|
|
|
l
H : >

|

|

|

|

[

|

|

| [l
| |
129: "B party answer"

30: eventReportRes()
31L: "forward event',

! 32:"D om A-party"

33 "state umsmon to Releaslnd"
L [

%1

%

34: eventReportRes()

|
|
|
|
| |
| |
| 35: "forwgrd event"
i |
3 “forw%rd ewent”
|

|
39; "forwdrd event’

=

36: getinfoRes()

38: callLegEnded()

St -1 ----------7

: “inform Call objegt

41 “bisccnnecl from E!wl%any'

L
|

: 42:"slate‘ ition to Releasing"
| —

f

|

|

|

|

|

|

|

T

43: eventReportRes()

44: forward ev

45: getinfoRes()

146: 'forward event' |

(-

: 48: "forward event'|

)

|
|
|
|
|
t
|
|
|
|
|
|
|
150: "forward event'| T
|
|
|
|
i

47: superviseRes()

49: callLegEnded)

0

|
51: “inform|Call object"
T

52: callEnded()

53: "forward evenf"

e | A |

et T g

Bt s I s s

i : 3

1: Thismessageisused by the application to create an object implementing the
I pAppMuultiPartyCall Control Manager interface.

2: Thismessage is sent by the application to enable notifications on new call events.

ETSI

75 ETSI ES 201 915-4 V1.2.2 (2002-05)

4. When anew call, that matches the event criteria, arrives a message ("anaysed information") is directed to the
object implementing the I pMultiPartyCall ControlManager. Assuming that the criteriafor creating an object
implementing the |pMultiPartyCall interface is met, other messages are used to create the call and associated call
leg object

A new MultiPartyCall object is created to handle this particular call.
A new CallLeg object corresponding to party A is created.

The new Call Leg instance transits to state Active.

© © N 9

This message is used to pass the new call event to the object implementing the
I pAppM ultiPartyCall Control Manager interface. Applied monitor mode is "interrupt"

10: This message is used to forward message 9 to the IpAppLogic.

11: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The
reference to this object is passed back to the object implementing the IpMultiPartyCall ControlManager using the
return parameter of the reportNotification.

12: A new AppCallLeg is created to receive callbacks for the Leg corresponding to party A.
13: A new AppCallLeg is created to receive callbacks for another leg.

14: This message is used to create a new call leg object. The object is created in the idle state and not yet routed in
the network.

15: A new CallLeg corresponding to party B is created.
16: A transition to state Idle is made after the Call leg has been created.

17: The application requests to be notified (monitor mode "NOTIFY") when party B answers the call and when the
leg to B-party is released.

18: The application requests to supervise the call leg to party B.
19: The application requests information associated with the call leg to party b for example to calculate charging.
20: The application requests a specific charge plan to be set for the call leg to party B.
21: The application requests to route the terminating leg to reach the associated party B.
22: The Call Leg instance transits to state Active.
24: The application requests to be notified (monitor mode "Notify") when the leg to A-party is released.
25: The application requests information associated with the call leg to party A for example to calculate charging.
26: The application requests to resume call processing for the originating call leg.
Asaresult call processing isresumed in the network that will try to reach the associated party B.
29: When the B-party answers the call, the termination call leg is notified.

30: Assuming the call is answered, the object implementing party B's IpCallLeg interface passes the result of the call
being answered back to its callback object (monitor mode "NOTIFY").

31: This answer message is then forwarded.

32: When the A-party releases the call, the originating call leg is notified (monitor mode "NOTIFY") and makes a
transition to "releasing state'".

34: The application IpAppLeg A is notified, as the release event has been requested to be reported in Notify mode.
35: The event is forwarded to the application logic

36: The call leg information is reported.

ETSI

76 ETSI ES 201 915-4 V1.2.2 (2002-05)

37: The event is forwarded to the application logic
38: The origination call leg is destroyed, the AppLeg A is notified.
39: The event is forwarded to the application logic

41: When the B-party releases the call or the call is released as aresult of the release request from party A, i.e. a
"originating release” indication, the terminating call leg is notified and makes a transition to "releasing state".

43: If anetwork release event is received being a "terminating release” indication from called party B, the
application IpAppLeg B is notified, as the release event from party B has been requested to be reported in
NOTIFY mode.

Note that no report is sent if the release is caused by propagation of network release event being a " originating release”
indication coming from calling party A.

44: The event is forwarded to the application logic.

45: The call leg information is reported.

46: The event is forwarded to the application logic.

47: The supervised call leg information is reported.

48: The event is forwarded to the application logic.

49: The terminating call leg is destroyed, the AppLeg B is notified.
50: The event is forwarded to the application logic.

52: Assuming the IpCall object has been informed that the legs have been destroyed, the IpAppMultiPartyCall is
notified that the call is ended.

53: The event is forwarded to the application logic.

ETSI

ETSI ES 201 915-4 V1.2.2 (2002-05)

77

Complex Card Service

7.1.5

The following sequence diagram shows an advanced card service, initiated as a result of a prearranged event being

received by the framework. Before the call is made, the calling party is asked for an ID and PIN code. If the ID and PIN

code are accepted, the calling party is prompted to enter the address of the destination party. A trigger of "#5" isthen set

on the controlling leg (the calling party's leg) such that if the calling party entersa"#5" an event will be sent to the

application. The call isthen routed to the destination party. Sometime during the call the calling party enters "#5" which
causes the called leg to be released. The calling party is how prompted to enter the address of a new destination party, to

which it is then routed.

:IpUiCall

AppPartyA
IpAppCallLeg

AppPartyB
pAppCaliLeg

g8 - - -+ -4 -——————|- -+ -4

S - - e — — — — — m — — m m — —m————— — - — e - -
e e e — 0 — — — — — — — — — — | = — — — — — — -
R T e [— e el e H A R
R R - H :

St --1-- H--—p-f -1 -- - |--t-4F----F-—-1-——+ — Ho-m oo

] i
—st — — - — —F - — —|-— —|— — O —|—— g - |- =|-==|-=-==]-=- —HF - - - —-t-—-—-—7--- H_\\w,,\\\\ﬂ_\\\‘
H
H
| | W\M\\m \\\\\\ e ek, e
i
e s I - ----
:)
————q - —— == ===t - m\\l\\\\\\\\\\\ﬂ \\\\\\\\ —F — |- — — 4 e s el e e
5 H
5 ¥ ¥
H 7 H §
g oS :
\\\\\\\\\\ fH--H-3r-Y--14--|- =2-t2----t--—- -t ¢2|-- - - - - - |- - - - -3 - - —-
H § = 3
s H H 3 3
H b e H
h ; H
\\\\\\\\\\\\\\\ o B A e P - e)
&

\\ S N

\\ m 2
T e T P

ETSI

78 ETSI ES 201 915-4 V1.2.2 (2002-05)
1. Thismessageis used by the application to create an object implementing the
I pAppMultiPartyCall Control Manager interface.

2: Thismessageis sent by the application to enable notifications on new call events. Asthis sequence diagram
depictsacall barring service, it islikely that all new call events destined for a particular address or address range
result in the caller being prompted for a password before the call is allowed to progress. When a new call, that
matches the event criteria set in message 2, arrives a message (not shown) is directed to the object implementing
the IpMultiPartyCall ControlM anager. Assuming that the criteriafor creating an object implementing the
IpMultiPartyCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to
create the call and associated call leg object.

3: Thismessageis used to pass the new call event to the object implementing the
I pAppM ultiPartyCall Control Manager interface.

4: This messageis used to forward message 3 to the IpAppLogic.

5: Thismessage is used by the application to create an object implementing the IpAppMultiPartyCall interface. The
reference to this object is passed back to the object implementing the IpMultiPartyCall ControlManager using the
return parameter of message 3.

6: This message returns the call legs currently in the call. In principle a reference to the call leg of the calling party
is already obtained by the application when it was notified of the new call event.

7: Thismessage is used to associate a user interaction object with the calling party.
8: Theinitial card service dialogue isinvoked using this message.

9: Theresult of the dialogue, which in this caseisthe ID and PIN code, isreturned to its callback object using this
message and eventually forwarded via another message (not shown) to the IpAppLogic.

10: Assuming the correct ID and PIN are entered, the final dialogue isinvoked.

11: The result of the dialogue, which in this case is the destination address, is returned and eventually forwarded via
another message (not shown) to the IpAppLogic.

12: This message is used to forward the address of the callback object.
13: The trigger for follow-on callsis set (on service code).

14: A new AppCallLeg is created to receive callbacks for another leg. Alternatively, the already existing
AppCallLeg object could be passed in the subsequent createCallLeg(). In that case the application has to use the
sessionl Ds of the legsto distinguish between callbacks destined for the A-leg and callbacks destined for the B-

leg.

15: This message is used to create a new call leg object. The object is created in the idle state and not yet routed in
the network.

16: The application requests to be notified when the leg is answered.

17: The application routes the leg. As aresult the network will try to reach the associated party.
18: When the B-party answers the call, the application is notified.

19: The event is forwarded to the application logic.

20: Legsthat are created and routed explicitly are by default in state detached. This means that the mediais not
connected to the other parties in the call. In order to allow inband communication between the new party and the
other partiesin the call the media have to be explicitly attached.

21: At some time during the call the calling party enters "#5". This causes this message to be sent to the object
implementing the |pAppCallLeg interface, which forwards this event as a message (not shown) to the
IpAppLogic.

22: The event is forwarded to the application.

23: This message rel eases the called party.

ETSI

79 ETSI ES 201 915-4 V1.2.2 (2002-05)

24: Another user interaction dialogue is invoked.

25: Theresult of the dialogue, which in this case is the new destination addressis returned and eventually forwarded
via another message (not shown) to the IpAppLogic.

26: A new AppCallLeg is created to receive callbacks for another leg.
27: The call isthen forward routed to the new destination party.
28: Asaresult anew Callleg object is created.

29: This message passes the result of the call being answered to its callback object and is eventually forwarded via
another message (not shown) to the IpAppLogic.

30: When the A-party terminates the application isinformed.
31: The event is forwarded to the application logic.

32: Since the release of the A-party will in this case terminate the entire call, the application is also notified with this
message.

33: The event is forwarded to the application logic.

34: Since the user interaction object were not released at the moment that the call terminated, the application
receives this message to indicate that the Ul resources are rel eased in the gateway and no further communication
ispossible.

35: The event is forwarded to the application logic.

36: The application deassigns the call object.

7.1.6 Hotline Service

The following sequence diagram shows an application establishing a call between party A and pre-arranged party B
defined to constitute a hot-line address. The address of the destination party is provided by the application as the calling
party makes a call attempt (goes off-hook) and do not dial any number within a predefined time. In thiscase a
pre-defined number (hot-line number) is provided by the application. The call is then routed to the pre-defined
destination party.

The call release is monitored to enable the sending of information to the application at call release, e.g. for charging
pUrposEs.

Note that this service could be extended as follows:

Sometime during the call the calling party enters "#5" which causes the called leg to be released. The calling
party is now prompted to enter the address of a new destination party, to which it is then routed.

ETSI

80 ETSI ES 201 915-4 V1.2.2 (2002-05)

1B:routeReq() |

AppLogic ApplegB: ApplegA: AppCall - fopccm ccm: call: Leg A: LegB: scs
IpAppCallleg IpAppCallLeg. tyCall allC i allC ot dl IpCallleg IpCdlleg
T T T T T T T T T
! ! [1: "new’ | | | | | |
- - - | | | |
| 2 createNotificatin() g | | | |
; ; ; | 3 "armtiggey” |
| | | T T T
| | | | | |
: : : T 4 “mgge:r event: Originating Ca\l Attempt Author\sed":
| | | | 5: "checkjf hpplication interested" | | | H
| | | | P=— | | |
| | | | 6 "new’ | | |
7:"new"
| | | | | |
>
| | | | |
| | | | 8: "state'fransition to Inma(mg“‘
| | | | 9 reportNotification() ‘ < |
‘ ‘ 10 forvardevent’ ‘ ‘
= | 11 "new | ‘J | | |
L | L | | |
12 “pew’ U | | |
T | | | |
| | | | |
Bmew | ‘ ‘ ‘ ‘
U 14: createCalileg() ! ! ! !
L L 15: "bw" |
| | L
| \; | 16: "s| transition to Idle”
17: ‘E/emRepuﬂReq() 1
| |
L |
T
‘ .
|

19: sﬂs& transition to Active”

—

T
|
. | <1
: : 20: "inform Clall object”
: 21 eveanepc‘hReq() ‘
| | U 0
22: continuePropessing () | | |
L T |
23: inform Call umenu |
24}

: gl

I
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
L
|
|
25: event "address_analysed” |

H}n(mue call processw‘hg"
I
I
I

p—| I
| |
27: {Disconnect from B-party’

T
26: "stA&A transition to Active”| U

28: "stateltransition to Releasin|

p—

29 eventReportR es()
30: "forward event"

31 cal ILegEnded()

32: "forward event"
| -

e i el s S

I

I

I

I

T

I

I

T
33:inform Cal oject”

I

I

I I

| 34: "Disconnett from A-party"

|
|
:
: 2 |

36: callLeg Ended()

i

38; "inform Call object!

|
|
|
|
|
|
l
i [
T
i |
|
|
:
L\l\
|
|
|
|
|

39: callEnded()

40: "forward event’

|
|
|
|
|
|
|
|
| |
| |
| |
| t
| 35: “staieLrJansmonloReleasmg” U
|
| |
L |
I |
|
|
|
|
|
|
|
|
|
|
|
|
|
|

o
A 1

_—1
—— e — —

1: Thismessageisused by the application to create an object implementing the
| pAppM ultiPartyCall Control M anager interface.

2: Thismessage is sent by the application to enable notifications on new call events.

4: When anew call, that matches the event criteria, arrives a message ("analysed information") is directed to the
object implementing the IpMultiPartyCall ControlManager. Assuming that the criteriafor creating an object
implementing the I pMultiPartyCall interface is met, other messages are used to create the call and associated call
leg object

6: A new MultiPartyCall object is created to handle this particular call.

7: A new CallLeg object corresponding to party A is created.

ETSI

81 ETSI ES 201 915-4 V1.2.2 (2002-05)

8: The new Call Leg instance transitsto state Initiating.

9: This messageis used to pass the new call event to the object implementing the
I pAppM ultiPartyCall Control Manager interface. Applied monitor mode is "interrupt"

10: This message is used to forward message 9 to the IpAppLogic.

11: Thismessage is used by the application to create an object implementing the IpAppMultiPartyCall interface. The
reference to this object is passed back to the object implementing the IpM ultiPartyCall ControlManager using the
return parameter of the reportNotification.

12: A new AppCallLeg is created to receive callbacks for the Leg corresponding to party A.
13: A new AppCallLeg is created to receive callbacks for another leg.

14: This message is used to create a new call leg object. The object is created in the idle state and not yet routed in
the network.

15: A new CallLeg corresponding to party B is created.
16: A transition to state Idle is made after the Call leg has been created.
17: The application requests to be notified (monitor mode "NOTIFY") when the leg to party B isreleased.

18: The application requests to route the terminating leg to reach the associated party as specified by the application
("hot-line number").

19: The Call Leg instance transits to state Active.
21: The application requests to be notified (monitor mode "Notify") when the leg to A-party is released.
22: The application requests to resume call processing for the originating call leg.

Asaresult call processing is resumed in the network that will try to reach the associated party as specified by the
application (E.164 number provided by application).

25: The originating call leg is notified that the number (provided by application) has been analysed by the network
and the originating call leg STD makes atransition to "active" state. The application is not notified asit has not
reguested this event to be reported.

27: When the B-party releases the call, the terminating call leg is notified (monitor mode "NOTIFY") and makes a
transition to "Releasing state”.

29: The application is notified, as the release event has been requested to be reported in Notify mode.
30: The event is forwarded to the application logic.

31: Theterminating call leg is destroyed, the AppLeg B is notified.

32: This answer message is then forwarded.

34: When the call release ("terminating release” indication) is propagated in the network toward the party A, the
originating call leg is notified and makes atransition to "releasing state”. This release event (being propagated
from party B) is not reported to the application.

36: When the originating call leg is destroyed, the AppLeg A is notified.
37: The event is forwarded to the application logic
39: When dl legs have been destroyed, the |pAppMultiPartyCall is notified that the call is ended.

40: The event is forwarded to the application logic.

ETSI

82 ETSI ES 201 915-4 V1.2.2 (2002-05)

7.1.7 Use of the Redirected event

AppLogic : IpAppCallLeg : IpCallLeg
—

T T
)/ | |
! 1: eventReportReq(ANSWER, REDIRECTED - NOTIFY) ;

, | U

2: routeReq()

3: eventReportRes(REDIRECTED)

|
|
|
|
|
|
[
/ |
T
|
|
|
|
|
|
|

hawe already been
created.

The Call and the Leg ﬁ

1: The application has aready created the call and a call leg. It places an event report request for the ANSWER and
REDIRECTED eventsin NOTIFY mode.

2: The application routes the call leg.

3: Thecall isredirected within the network and the application isinformed. The new destination address is passed
within the event. The event is not disarmed, so subsequent redirections will also be reported. Also, the same call
leg is used so the application does not have to create a new one.

4: Thecal isanswered at its new destination.

ETSI

7.2

The multiparty call control service consists of two packages, one for the interfaces on the application side and one for

interfaces on the service side.

The class diagramsin the following figures show the interfaces that make up the multi party call control application
package and the multi party call control service package. This class diagram shows the interfaces of the multi-party call

Class Diagrams

83

ETSI ES 201 915-4 V1.2.2 (2002-05)

control application package and their relations to the interfaces of the multi-party call control service package.

<<Interface>>
IpInterface
(from csapi)

B

<<Interface>> <<Interface>>
IpAppMultiPartyCallControlManager IpAppMultiPartyCall
(from mpccs) (fr am mpccs)
[®eporiNotificationg 1 | | PEgetinfokey)
[call Aborted () ["®getinfoErm()
[™¥managernterupted([®superviseRes()
[™manageResumed() [®superviseErm()
["call OverloadEncountered() ["®callEnded()
[call OverloadCeased() ["createAndRouteCallLegErm()
N\
<<uses>>
<<uses>>

<<Interface>>
IpAppCallLeg

(from mpccs)

[®eventReportRes()
[eventReportEr()
[®attachMediaRes()
N [®attachMediaErm()
[®detachMediaRes()
[detachMediaErr()

[®getinfoRes()
[®getinfoEm()
[®routeEn()
[superviseRes()
[®superviseErm()
[®callLegEnded ()

<<yses>>

|
|
|
I

<<Interface>>
IpMultiPartyCallControlManager

(from mpccs)

<<Interface>>
IpMultiPartyCall

(fr aon mpccs)

<<Interface>>
IpCallLeg
(frommpccs)

[®createcall()
[createNotification()
[destroyNotification()
[MchangeNotification()
[MgetNotification()
[setCallLoadControl()

[#getCallLegs)

n ®createCallLeg()
.createAndRouteCal ILegReq()
[®release()

[®deassigncall()
[®getinfoReq()
[®setChargePlan()
[®setAdviceOfCharge()
[®supenviseReq()

routeReq()
[eventReportReq()
[Wrelease(

o..n EgetinfoReq()

[®getcall()

[®attachMediaReq()
[#detachMediaReq()
[getCurrentDestinationAddress()
[#continueProcessing()
[setChargePlan()
[MsetAdviceOfCharge()
[MsuperviseReq()

[Mdeassign()

Figure 5: Application Interfaces

This class diagram shows the interfaces of the multi-party call control service package.

ETSI

84 ETSI ES 201 915-4 V1.2.2 (2002-05)

<<Interface>>
IpSenice
(from csapi)

WsetCallback()
WsetCallbackWithSession...

<<Interface>>
IpCallLeg
<<Interface>> (from mpccs
<§Inteﬁace>> IpMultiParty Call
IpMuttiPartyCall Contro (from mpccs) WouteReq()
IManager Wevent ReportReq()
grommpccs) WoetCallLegs() Wrelease()
1 0..n|[#WcreateCallLeg() 1 0..n [MigetinfoReq()
WcreateCall) [~ ~|¥createAndRouteCallLegReq.. [~~~ ~ ~ T~ | [MigetCall()
®createNotification() Melease() WattachMediaReq()
®destroyNotification. #deassignCall() ®detachMediaReq()
®changeNotification.. WoetinfoReq() WgetCurrentDestinationAddres. ..
FgetNotification() WsetChargePlan() ®continueProcessing()
®setCallLoadContro.. W ®setChargePlan()
WsetAdvice OfCharge()
=
Figure 6: Service Interfaces
7.3 MultiParty Call Control Service Interface Classes

The Multi-party Call Control service enhances the functionality of the Generic Call Control Service with leg
management. It also allows for multi-party callsto be established, i.e. up to a service specific number of legs can be
connected simultaneously to the same call.

The Multi-party Call Control Service is represented by the |pMultiPartyCall ControlManager, |pMultiPartyCall,
IpCallLeg interfaces that interface to services provided by the network. Some methods are asynchronous, in that they do
not lock athread into waiting whilst a transaction performs. In this way, the client machine can handle many more calls,
than one that uses synchronous message calls. To handle responses and reports, the devel oper must implement

I pAppM ultiPartyCall ControlManager, |pAppMultiPartyCall and |pAppCallLeg to provide the callback mechanism.

7.3.1 Interface Class IpMultiPartyCallControlManager
Inherits from: IpService

Thisinterface isthe "service manager" interface for the Multi-party Call Control Service. The multi-party call control
manager interface provides the management functions to the multi-party call control service. The application
programmer can use this interface to provide overload control functionality, create call objects and to enable or disable
call-related event notifications. The action table associated with the STD shows in what state the

IpMultiPartyCall ControlM anager must be if a method can successfully complete. In other words, if the

I pMultiPartyCall ControlManager is in another state the method will throw an exception immediately.

ETSI

85 ETSI ES 201 915-4 V1.2.2 (2002-05)

<<Interface>>

IpMultiPartyCallControlManager

createCall (appCall : in IpAppMultiPartyCallRef) : TpMultiPartyCallldentifier

createNotification (appCallControlManager : in IpAppMultiPartyCallControlManagerRef, notificationRequest :
in TpCallNotificationRequest) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentlD) : void

changeNotification (assignmentID : in TpAssignmentlD, notificationRequest : in TpCallNotificationRequest) :
void

getNotification () : TpNotificationRequestedSet

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in
TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentID

Method
createCall ()

This method is used to create a new call object. An IpAppM ultiPartyCall ControlManager should already have been
passed to the |pMultiPartyCall Control M anager,

otherwise the call control will not be able to report a call Aborted() to the application (the application should invoke
setCallback() if it wishesto ensure this).

Returns callReference: Specifies the interface reference and sessionlD of the call created.

Parameters

appCall : in IpAppMiltiPartyCal |l Ref
Specifies the application interface for callbacks from the call created.

Returns
TpMul ti PartyCallldentifier

Raises
TpComonExcepti ons, P_I NVALI D_| NTERFACE_TYPE

Method
createNotification()

This method is used to enable call notifications so that events can be sent to the application. Thisisthefirst step an
application hasto do to get initial notifications of calls happening in the network. When such an event happens, the
application will be informed by reportNotification(). In case the application is interested in other events during the
context of aparticular call session it hasto use the createAndRouteCallL egReq() method on the call object or the
eventReportReq() method on the call leg object. The application will get accessto the call object when it receives the
reportNotification(). (Note that createNotification() is not applicableif the call is setup by the application).

The createNotification method is purely intended for applications to indicate their interest to be notified when certain
call eventstake place. It is possible to subscribe to a certain event for awhole range of addresses, e.g. the application
can indicate it wishes to be informed when a call is made to any number starting with 800.

ETSI

86 ETSI ES 201 915-4 V1.2.2 (2002-05)

If some application already requested notifications with criteria that overlap the specified criteria, the request is refused
with P_INVALID_CRITERIA. The criteriaare said to overlap if both originating and terminating ranges overlap and
the same number plan is used.

If anotification is requested by an application with monitor mode set to notify, then thereis no need to check the rest of
the criteriafor overlapping with any existing request as the notify mode does not allow control on acall to be passed
over. Only one application can place an interrupt request if the criteria overlaps.

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used.
In case the enableCallNotification contains no callback, at the moment the application needs to be informed the gateway
will use as callback the callback that has been registered by setCallback().

Returns assignmentI D: Specifiesthe ID assigned by the call control manager interface for this newly-enabled event
notification.

Parameters

appCal | Control Manager : in | pAppMiltiPartyCall Control Manager Ref

If this parameter is set (i.e. not NULL) it specifies areference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

notificationRequest : in TpCall Notificati onRequest

Specifies the event specific criteria used by the application to define the event required. Only events that meet these
criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer",
"busy". Individual addresses or address ranges may be specified for destination and/or origination.

Returns

TpAssi gnnment | D

Raises

TpComonExceptions, P_I NVALI D CRI TERI A, P_I NVALI D_I| NTERFACE_TYPE,
P_I NVALI D_EVENT_TYPE

Method
destroyNotification()

This method is used by the application to disable call notifications.

Parameters

assignmentI D : in TpAssignnentlD

Specifies the assignment 1D given by the generic call control manager interface when the previous enableNotification()
was called. If the assignment | D does not correspond to one of the valid assignment I1Ds, the exception
P_INVALID_ASSIGNMENTID will be raised. If two callbacks have been registered under this assignment 1D both of
them will be disabled.

ETSI

87 ETSI ES 201 915-4 V1.2.2 (2002-05)

Raises
TpComonExcepti ons, P_I NVALI D_ASSI GNVENT_I D

Method
changeNoti fication()

This method is used by the application to change the event criteriaintroduced with createNotification. Any stored
criteria associated with the specified assignmentI D will be replaced with the specified criteria.

Parameters

assignnmentI D : in TpAssignnmentlD

Specifiesthe ID assigned by the generic call control manager interface for the event notification. If two callbacks have
been registered under this assignment ID both of them will be changed.

notificationRequest : in TpCall Notificati onRequest
Specifies the new set of event specific criteria used by the application to define the event required. Only events that

meet these criteria are reported.

Raises

TpComonExceptions, P_I NVALI D ASSI GNVENT I D, P_I NVALI D_CRI TERI A,
P_I NVALI D_EVENT_TYPE

Method
get Notification()

This method is used by the application to query the event criteria set with createNotification or changeNatification.
Returns notificationsRequested: Specifies the notifications that have been requested by the application.

Parameters
No Parameters were identified for this method.

Returns

TpNoti fi cati onRequest edSet
Raises

TpComobnExcept i ons

Method
set Cal | LoadControl ()

This method imposes or removes load control on calls made to a particular address range within the call control service.
The address matching mechanism is similar as defined for TpCallEventCriteria.

Returns assignmentI D: Specifies the assignmentI D assigned by the gateway to this request. This assignmentID can be
used to correlate the call OverloadEncountered and call OverloadCeased methods with the request.

ETSI

88 ETSI ES 201 915-4 V1.2.2 (2002-05)

Parameters

duration : in TpDuration
Specifies the duration for which the load control should be set.

A duration of 0 indicates that the load control should be removed.
A duration of -1 indicates an infinite duration (i.e. until disabled by the application)
A duration of -2 indicates the network default duration.

mechani sm: in TpCal | LoadControl Mechani sm

Specifies the load control mechanism to use (for example, admit one call per interval), and any necessary parameters,
such asthe call admission rate. The contents of this parameter areignored if the load control duration is set to zero.

treatnment : in TpCall Tr eat nment

Specifies the treatment of callsthat are not admitted. The contents of this parameter are ignored if the load control
duration is set to zero.

addressRange : in TpAddressRange
Specifies the address or address range to which the overload control should be applied or removed.

Returns

TpAssi gnnment | D

Raises

TpComonExcepti ons, P_I NVALI D_ADDRESS, P_UNSUPPORTED ADDRESS PLAN

7.3.2 Interface Class IpAppMultiPartyCallControlManager

Inherits from: Iplinterface

The Multi-Party call control manager application interface provides the application call control management functions
to the Multi-Party call control service.

<<Interface>>

IpAppMultiPartyCallControlManager

reportNotification (callReference : in TpMultiPartyCallldentifier, callLegReferenceSet : in
TpCallLegldentifierSet, natificationInfo : in TpCallNotificationInfo, assignmentID : in TpAssignmentID) :
TpAppMultiPartyCallBack

callAborted (callReference : in TpSessionID) : void
managerinterrupted () : void

managerResumed () : void

callOverloadEncountered (assignmentID : in TpAssignmentlD) : void

callOverloadCeased (assignmentID : in TpAssignmentID) : void

ETSI

89 ETSI ES 201 915-4 V1.2.2 (2002-05)

Method
reportNotification()

This method notifies the application of the arrival of a call-related event.

If this method isinvoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, then the APL has
control of the call. If the APL does nothing with the call (including its associated legs) within a specified time period
(the duration of which forms a part of the service level agreement), then the call in the network shall be released and
callEnded() shall be invoked, giving arelease cause of P TIMER_EXPIRY .

Returns appCallBack: Specifies references to the application interface which implements the callback interface for the
new call and/or new call leg. This parameter may be null if the notification is being given in NOTIFY mode.

Parameters

call Reference : in TpMultiPartyCallldentifier

Specifies the reference to the call interface to which the notification relates. This parameter will be null if the
notification is being givenin NOTIFY mode.

cal | LegRef erenceSet : in TpCallLegldentifierSet

Specifiesthe set of al call leg references. First in the set is the reference to the originating callLeg. It indicates the call
leg related to the originating party. In case thereis adestination call leg this will be the second leg in the set. from the
notificationl nfo can be found on whose behalf the notification was sent.

However, this parameter will be null if the notification is being given in NOTIFY mode.

notificationlnfo : in TpCall Notificationlnfo
Specifies data associated with this event (e.g. the originating or terminating leg which reports the notification).

assignnmentI D : in TpAssignnmentlD

Specifies the assignment id which was returned by the createNatification() method. The application can use assignment
id to associate events with event specific criteria and to act accordingly.

Returns
TpAppMul ti PartyCal | Back

Method
cal | Aborted()

This method indicates to the application that the call object has aborted or terminated abnormally. No further
communication will be possible between the call and application.

Parameters

cal |l Reference : in TpSessionlD
Specifies the sessionl D of call that has aborted or terminated abnormally.

Method
manager | nt errupt ed()

This method indicates to the application that event notifications and method invocations have been temporarily
interrupted (for example, due to network resources unavailable).

Note that more permanent failures are reported via the Framework (integrity management).

ETSI

90 ETSI ES 201 915-4 V1.2.2 (2002-05)

Parameters
No Parameters were identified for this method.

Method
manager Resuned()

This method indicates to the application that event notifications are possible and method invocations are enabled.

Parameters
No Parameters were identified for this method.

Method
cal | Over| oadEncount ered()

This method indicates that the network has detected overload and may have automatically imposed load control on calls
requested to a particular address range or calls made to a particular destination within the call control service.

Parameters

assignnmentI D : in TpAssignnmentlD

Specifies the assignmentI D corresponding to the associated setCallL oadControl. Thisimplies the addressrange for
within which the overload has been encountered.

Method
cal | Over | oadCeased()

This method indicates that the network has detected that the overload has ceased and has automatically removed any
load controls on calls requested to a particular address range or calls made to a particular destination within the call
control service.

Parameters

assignmentI D : in TpAssignnentlD

Specifies the assignmentl D corresponding to the associated setCallLoadControl. Thisimplies the addressrange for
within which the overload has been ceased

ETSI

91 ETSI ES 201 915-4 V1.2.2 (2002-05)

7.3.3 Interface Class IpMultiPartyCall
Inherits from: IpService

The Multi-Party Call provides the possibility to control the call routing, to request information from the call, control the
charging of the call, to release the call and to supervise the call. It aso gives the possibility to manage call legs
explicitly. An application may create more then one call leg.

<<|Interface>>

IpMultiPartyCall

getCallLegs (callSessionID : in TpSessionID) : TpCallLegldentifierSet
createCallLeg (callSessionID : in TpSessionID, appCallLeg : in IpAppCallLegRef) : TpCallLegldentifier

createAndRouteCallLegReq (callSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet,
targetAddress : in TpAddress, originatingAddress : in TpAddress, applnfo : in TpCallAppInfoSet,
appLeginterface : in IpAppCallLegRef) : TpCallLegldentifier

release (callSessionlID : in TpSessionID, cause : in TpReleaseCause) : void

deassignCall (callSessionID : in TpSessionID) : void

getinfoReq (callSessionID : in TpSessionID, callinfoRequested : in TpCallinfoType) : void
setChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callSessionID : in TpSessionID, aOClinfo : in TpAoClinfo, tariffSwitch : in TpDuration) :
void

superviseReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallSuperviseTreatment) : void

Method
get Cal | Legs()

This method requests the identification of the call leg objects associated with the call object. Returnsthe legsin the
order of creation.

Returns callLegList: Specifies the call legs associated with the call. The set contains both the sessionl Ds and the
interface references.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

ETSI

92 ETSI ES 201 915-4 V1.2.2 (2002-05)

Returns

TpCal | Legl denti fi er Set

Raises

TpComonExcepti ons, P_I NVALI D SESSI ON_ | D

Method
createCal |l Leg()

This method requests the creation of anew call leg object.

Returns callLeg: Specifies the interface and sessionl D of the call leg created.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

appCall Leg : in I pAppCal |l LegRef
Specifies the application interface for callbacks from the call leg created.

Returns

TpCal | Legl denti fier

Raises

TpComonExcepti ons, P_I NVALI D_SESSI ON_| D, P_I NVALI D_|I NTERFACE_TYPE

Method
cr eat eAndRout eCal | LegReq()

This asynchronous operation requests creation and routing of a new callLeg. In case the connection to the destination
party is established successfully the CallLeg is attached to the call, i.e. no explicit attachM ediaReq|() operation is
needed. Requested events will be reported on the IpAppCallLeg interface. This interface the application must provide
through the appL egl nterface parameter.

The extra address information such as originatingAddressis optional. If not present (i.e. the planis set to
P_ADDRESS PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used,
otherwise the network or gateway provided numbers will be used.

If the application wishes that the call leg should be represented in the network as being a redirection it should include a
value for thefield P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallApplnfo.

If this method isinvoked, and call reports have been requested, yet the IpAppCallLeg interface parameter isNULL, this
method shall throw the P_NO_CALLBACK_ADDRESS SET exception.

Returns callLegReference: Specifies the reference to the CallLeg interface that was created.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

ETSI

93 ETSI ES 201 915-4 V1.2.2 (2002-05)

event sRequested : in TpCal | Event Request Set

Specifies the event specific criteria used by the application to define the events required. Only events that meet these
criteria are reported. Examples of events are "address analysed"”, "answer" and "release”.

target Address : in TpAddress
Specifies the destination party to which the call should be routed.

ori gi nati ngAddress : in TpAddress
Specifies the address of the originating (calling) party.

applnfo : in TpCall Appl nf oSet

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service
identities and interaction indicators).

appLeglnterface : in | pAppCal | LegRef

Specifies areference to the application interface that implements the callback interface for the new call leg. Requested
events will be reported by the eventReportRes() operation on this interface.

Returns

TpCal | Legl denti fier

Raises

TpComonExceptions, P_I NVALI D_SESSI ON_| D, P_I NVALI D_| NTERFACE_TYPE,

P | NVALI D_ADDRESS, P_UNSUPPORTED ADDRESS PLAN, P_I NVALI D_NETWORK_STATE,
P_I NVALI D_EVENT_TYPE, P_INVALI D _CRI TER A

Method
rel ease()

This method requests the release of the call object and associated objects. The call will also be terminated in the
network. If the application requested reports to be sent at the end of the call (e.g. by means of getinfoReq) these reports
will still be sent to the application.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

cause : in TpRel easeCause
Specifies the cause of the release.

Raises
TpCommonExceptions, P_I NVALI D SESSI ON | D, P_I NVALI D_NETWORK_STATE

Method
deassignCal | ()

This method requests that the relationship between the application and the call and associated objects be de-assigned. It
leaves the call in progress, however, it purges the specified call object so that the application has no further control of
call processing. If acall isde-assigned that has call information reports, call leg event reports or call Leg information
reports requested, then these reports will be disabled and any related information discarded.

ETSI

94 ETSI ES 201 915-4 V1.2.2 (2002-05)

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

Raises
TpComonExceptions, P_INVALID SESSION ID

Method
get I nf oReq()

This asynchronous method requests information associated with the call to be provided at the appropriate time (for
example, to calculate charging). This method must be invoked before the call is routed to atarget address.

A report is received when the destination leg or party terminates or when the call ends. The call object will exist after
the call isended if information is required to be sent to the application at the end of the call. In case the originating party
is till available the application can still initiate a follow-on call using routeReq.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

cal l I nfoRequested : in TpCalllnfoType
Specifies the call information that is requested.

Raises
TpComonExcepti ons, P_I NVALI D SESSI ON_|I D

Method
set Char gePl an()

Set an operator specific charge plan for the call.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

cal |l ChargePl an : in TpCall ChargePl an
Specifies the charge plan to use.

Raises

TpCommonExcepti ons, P_I NVALI D_SESSI ON_|I D

Method
set Advi ceOF Char ge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this
information.

ETSI

95 ETSI ES 201 915-4 V1.2.2 (2002-05)

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

aCClnfo : in TpAoC nfo
Specifies two sets of Advice of Charge parameter.

tariffSwitch : in TpDuration
Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

Raises
TpCommonExcepti ons, P_I NVALI D_SESSI ON | D, P_I NVALI D_CURRENCY,
P_| NVALI D_AMOUNT

Method
supervi seReq()

The application calls this method to supervise a call. The application can set a granted connection time for thiscall. If
an application calls this operation before it routes acall or a user interaction operation the time measurement will start
as soon as the call is answered by the B-party or the user interaction system.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

time : in TpDuration
Specifies the granted time in milliseconds for the connection.

treatnment : in TpCall SuperviseTreat nent
Specifies how the network should react after the granted connection time expired.

Raises
TpComonExcepti ons, P_I NVALI D SESSI ON_|I D

ETSI

96 ETSI ES 201 915-4 V1.2.2 (2002-05)

7.3.4 Interface Class IpAppMultiPartyCall
Inherits from: Iplnterface

The Multi-Party call application interface is implemented by the client application developer and is used to handle call
request responses and state reports.

<<Interface>>

IpAppMultiPartyCall

getinfoRes (callSessionID : in TpSessionID, callinfoReport : in TpCalllnfoReport) : void
getinfoErr (callSessionID : in TpSessionID, errorindication : in TpCallError) : void

superviseRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in TpDuration)
: void

superviseErr (callSessionID : in TpSessionID, errorindication : in TpCallError) : void
callEnded (callSessionID : in TpSessionID, report : in TpCallEndedReport) : void

createAndRouteCallLegErr (callSessionID : in TpSessionID, callLegReference : in TpCallLegldentifier,
errorindication : in TpCallError) : void

Method
get | nf oRes()

This asynchronous method reports time information of the finished call or call attempt as well as release cause
depending on which information has been requested by getinfoReq. This information may be used e.g. for charging
purposes. The call information will possibly be sent after reporting of all cases where the call or aleg of the call has
been disconnected or arouting failure has been encountered.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

call I nfoReport : in TpCalllnfoReport
Specifies the call information requested.

Method
get I nfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

ETSI

97 ETSI ES 201 915-4 V1.2.2 (2002-05)

Method
super vi seRes()

This asynchronous method reports a call supervision event to the application when it hasindicated its interest in these
kind of events.

It is also called when the connection is terminated before the supervision event occurs. Furthermore, this method is
invoked as a response to the request also when atariff switch happensin the network during an active call.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call

report : in TpCall Supervi seReport
Specifies the situation which triggered the sending of the call supervision response.

usedTinme : in TpDuration
Specifies the used time for the call supervision (in milliseconds).

Method
supervi seErr ()

This asynchronous method reports a call supervision error to the application.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

Method
cal | Ended()

This method indicates to the application that the call has terminated in the network.
Note that the event that caused the call to end might have been received separately if the application was monitoring for
it.

Parameters

call SessionlD : in TpSessionlD
Specifies the call sessionID.

report : in TpCall EndedReport
Specifies the reason the call is terminated.

Method
creat eAndRout eCal | LegErr ()

This asynchronous method indicates that the request to route the call leg to the destination party was unsuccessful - the
call leg could not be routed to the destination party (for example, the network was unable to route the call leg, the

ETSI

98 ETSI ES 201 915-4 V1.2.2 (2002-05)

parameters were incorrect, the request was refused, etc.). Note that the event cases that can be monitored and
correspond to an unsuccessful setup of a connection (e.g. busy, no_answer) will be reported by eventReportRes() and
not by this operation.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

cal |l LegReference : in TpCallLegldentifier
Specifies the reference to the CallLeg interface that was created.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

ETSI

99 ETSI ES 201 915-4 V1.2.2 (2002-05)

7.3.5 Interface Class IpCallLeg
Inherits from: IpService

The call leg interface represents the logical call leg associating acall with an address. The call leg tracks its own states
and allows charging summaries to be accessed. The leg represents the signalling relationship between the call and an
address. An application that uses the IpCallLeg interface to set up connections has good control, e.g. by defining leg
specific event request and can obtain call leg specific report and events.

<<Interface>>

IpCaliLeg

routeReq (callLegSessionID : in TpSessionID, targetAddress : in TpAddress, originatingAddress : in
TpAddress, applnfo : in TpCallApplnfoSet, connectionProperties : in TpCallLegConnectionProperties) :
void

eventReportReq (callLegSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet) : void
release (callLegSessionID : in TpSessionID, cause : in TpReleaseCause) : void

getinfoReq (callLegSessionID : in TpSessionID, callLeginfoRequested : in TpCallLeglnfoType) : void
getCall (callLegSessionID : in TpSessionID) : TpMultiPartyCallldentifier

attachMediaReq (callLegSessionID : in TpSessionID) : void

detachMediaReq (callLegSessionID : in TpSessionID) : void

getCurrentDestinationAddress (callLegSessionID : in TpSessionID) : TpAddress

continueProcessing (callLegSessionID : in TpSessionID) : void

setChargePlan (callLegSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callLegSessionID : in TpSessionID, aOClInfo : in TpAoClinfo, tariffSwitch : in TpDuration)
: void

superviseReq (callLegSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallLegSuperviseTreatment) : void

deassign (callLegSessionID : in TpSessionID) : void

Method
rout eReq()

This asynchronous method requests routing of the call leg to the remote party indicated by the targetAddress.

In case the connection to the destination party is established successfully the CallLeg will be either detached or attached
to the call based on the attach Mechanism values specified in the connectionProperties parameter.

The extra address information such as originatingAddressis optional. If not present (i.e. the planis set to
P_ADDRESS PLAN_NOT_PRESENT), the information provided in the corresponding addresses from the route is
used, otherwise network or gateway provided addresses will be used.

If the application wishes that the call leg should be represented in the network as being a redirection it should include a
value for the field P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallApplnfo.

This operation continues processing of the call leg.

ETSI

100 ETSI ES 201 915-4 V1.2.2 (2002-05)

Parameters

call LegSessionl D : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

target Address : in TpAddress
Specifies the destination party to which the call leg should be routed

originati ngAddress : in TpAddress
Specifies the address of the originating (calling) party.

applnfo : in TpCall Appl nf oSet

Specifies application-related information pertinent to the call leg (such as aerting method, tele-service type, service
identities and interaction indicators).

connectionProperties : in TpCall LegConnecti onProperties
Specifies the properties of the connection.

Raises
TpCommonExceptions, P_I NVALI D SESSION | D, P_I NVALI D_NETWORK_STATE,
P_I NVALI D_ADDRESS, P_UNSUPPORTED ADDRESS PLAN

Method
event Report Req()

This asynchronous method sets, clears or changes the criteriafor the events that the call leg object will be set to
observe.

Parameters

call LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

event sRequested : in TpCal |l Event Request Set

Specifies the event specific criteria used by the application to define the events required. Only events that meet these
criteria are reported. Examples of events are "address analysed", "answer" and "release”.

Raises

TpConmonExcept i ons, P_I NVALI D_SESSI ON_| D, P_I NVALI D_EVENT TYPE,
P_I NVALI D_CRI TERI A

Method
rel ease()

This method requests the release of the call leg. If successful, the associated address (party) will be released from the
call, and the call leg deleted. Note that in some cases releasing the party may lead to release of the complete call in the
network. The application will be informed of this with callEnded().

This operation continues processing of the call leg.

ETSI

101 ETSI ES 201 915-4 V1.2.2 (2002-05)

Parameters

call LegSessionl D : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

cause : in TpRel easeCause
Specifies the cause of the release.

Raises
TpConmmonExceptions, P_INVALI D SESSI ON | D, P_I NVALI D NETWORK_ STATE

Method
get I nf oReq()

This asynchronous method requests information associated with the call leg to be provided at the appropriate time (for
example, to calculate charging). Note that in the call leg information must be accessible before the objects of concern
are deleted.

Parameters

cal |l LegSessionlD : in TpSessionlD
Specifies the call leg session ID of the call leg.

cal | Legl nfoRequested : in TpCall Legl nfoType
Specifies the call leg information that is requested.

Raises
TpComonExcepti ons, P_I NVALI D SESSION | D

Method
getCall ()

This method requests the call associated with this call leg.

Returns callReference: Specifies the interface and sessionl D of the call associated with this call leg.

Parameters

call LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

ETSI

102 ETSI ES 201 915-4 V1.2.2 (2002-05)

Returns
TpMul ti PartyCallldentifier

Raises
TpComonExcepti ons, P_I NVALI D SESSI ON_ | D

Method
at tachMedi aReq()

This method requests that the call leg be attached to its call object. Thiswill allow transmission on all associated bearer
connections or media streams to and from other partiesin the call. The call leg must be in the connected state for this
method to complete successfully.

Parameters

call LegSessionl D : in TpSessionlD
Specifies the sessionl D of the call leg to attach to the call.

Raises
TpCommonExceptions, P_INVALI D SESSION I D, P_I NVALI D NETWORK_STATE

Method
det achMedi aReq()

This method will detach the call leg fromits call, i.e. thiswill prevent transmission on any associated bearer
connections or media streams to and from other partiesin the call. The call leg must be in the connected state for this
method to complete successfully.

Parameters

call LegSessionlD : in TpSessionlD
Specifies the sessionl D of the call leg to detach from the call.

Raises
TpCommonExceptions, P_I NVALI D_SESSI ON I D, P_I NVALI D_ NETWORK_STATE

Method
get Current Desti nati onAddress()

Queries the current address of the destination the leg has been directed to.
Returns the address of the destination point towards which the call leg has been routed.

If this method isinvoked on the Originating Call Leg, exception P_INVALID_STATE will be thrown.

Parameters

call LegSessionlD : in TpSessionlD
Specifiesthe call session ID of the call leg.

ETSI

103 ETSI ES 201 915-4 V1.2.2 (2002-05)

Returns

TpAddr ess

Raises

TpComonExcepti ons, P_I NVALI D_SESSI ON_I D

Method
cont i nuePr ocessi ng()

This operation continues processing of the call leg. Applications can invoke this operation after call leg processing was
interrupted due to detection of a notification or event the application subscribed itsinterest in.

Parameters

cal |l LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

Raises
TpCommonExceptions, P_INVALI D SESSION I D, P_I NVALI D NETWORK_STATE

Method
set Char gePl an()

Set an operator specific charge plan for the call leg.

Parameters

cal |l LegSessionI D : in TpSessionlD
Specifiesthe call leg session ID of the call party.

call ChargePl an : in TpCall ChargePl an
Specifies the charge plan to use.

Raises
TpComonExcepti ons, P_I NVALI D SESSI ON_|I D

Method
set Advi ceOr Char ge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this
information.

Parameters

call LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call party.

a0Clnfo : in TpAoClinfo
Specifies two sets of Advice of Charge parameter.

ETSI

104 ETSI ES 201 915-4 V1.2.2 (2002-05)

tariffSwitch : in TpDuration
Specifiesthe tariff switch interval that signifies when the second set of AoC parameters becomes valid.

Raises
TpCommonExcepti ons, P_I NVALI D SESSI ON | D, P_I NVALI D_CURRENCY,
P_| NVALI D_AMOUNT

Method
super vi seReq()

The application calls this method to supervise a call leg. The application can set a granted connection time for this call.
If an application calls this function before it calls arouteReq() or a user interaction function the time measurement will
start as soon asthe call is answered by the B-party or the user interaction system.

Parameters

cal |l LegSessionl D : in TpSessionlD
Specifiesthe call leg session ID of the call party.

time : in TpDuration
Specifies the granted time in milliseconds for the connection.

treatnent : in TpCall LegSupervi seTreat nment
Specifies how the network should react after the granted connection time expired.

Raises
TpComonExcepti ons, P_I NVALI D SESSI ON_|I D

Method
deassi gn()

This method requests that the relationship between the application and the call leg and associated objects be de-
assigned. It leavesthe call leg in progress, however, it purges the specified call leg object so that the application has no
further control of call leg processing. If acall leg is de-assigned that has event reports or call leg information reports
requested, then these reports will be disabled and any related information discarded.

The application should not release or deassign the call leg when received a callLegEnded() or callEnded(). This
operation continues processing of the call leg.

Parameters

call LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

Raises
TpCommonExcepti ons, P_I NVALI D_SESSI ON_|I D

ETSI

105 ETSI ES 201 915-4 V1.2.2 (2002-05)

7.3.6 Interface Class IpAppCallLeg
Inherits from: Iplnterface

The application call leg interface isimplemented by the client application developer and is used to handle responses and
errors associated with requests on the call leg in order to be able to receive leg specific information and events.

<<Interface>>

IpAppCallLeg

eventReportRes (callLegSessionID : in TpSessionID, eventinfo : in TpCallEventinfo) : void
eventReportErr (callLegSessionID : in TpSessionID, errorindication : in TpCallError) : void
attachMediaRes (callLegSessionID : in TpSessionID) : void

attachMediaErr (callLegSessionID : in TpSessionID, errorindication : in TpCallError) : void
detachMediaRes (callLegSessionID : in TpSessionID) : void

detachMediaErr (callLegSessionID : in TpSessionID, errorindication : in TpCallError) : void
getinfoRes (callLegSessionID : in TpSessionID, callLeginfoReport : in TpCallLeglnfoReport) : void
getinfoErr (callLegSessionID : in TpSessionID, errorindication : in TpCallError) : void

routeErr (callLegSessionID : in TpSessionlD, errorindication : in TpCallError) : void

superviseRes (callLegSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in
TpDuration) : void

superviseErr (callLegSessionID : in TpSessionID, errorindication : in TpCallError) : void

callLegEnded (callLegSessionID : in TpSessionID, cause : in TpReleaseCause) : void

Method
event Report Res()

This asynchronous method reports that an event has occurred that was requested to be reported (for example, a mid-call
event, the party has requested to disconnect, etc.).

Depending on the type of event received, outstanding requests for events are discarded. The exact details of these so-
called disarming rules are captured in the data definition of the event type.

If this method isinvoked for areport with a monitor mode of P CALL_MONITOR_MODE_INTERRUPT, then the
application has control of the call leg. If the application does nothing with the call leg within a specified time period
(the duration which forms a part of the service level agreement), then the connection in the network shall be released
and callLegEnded() shall be invoked, giving arelease cause of P TIMER_EXPIRY..

Parameters

cal |l LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call leg on which the event was detected.

eventinfo : in TpCall Eventlnfo
Specifies data associated with this event.

ETSI

106 ETSI ES 201 915-4 V1.2.2 (2002-05)

Method
event Report Err ()

This asynchronous method indicates that the request to manage call leg event reports was unsuccessful, and the reason
(for example, the parameters were incorrect, the request was refused, etc.).

Parameters

cal |l LegSessionl D : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

Method
at tachMedi aRes()

This asynchronous method reports the attachment of a call leg to acall has succeeded. The media channels or bearer
connections to thisleg is now available.

Parameters

call LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call leg to which the information relates.

Method
attachMedi aErr ()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

call LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

Method
det achMedi aRes()

This asynchronous method reports the detachment of a call leg from a call has succeeded. The media channels or bearer
connections to thisleg is no longer available.

Parameters

call LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call leg to which the information relates.

Method
det achMedi aErr ()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

ETSI

107 ETSI ES 201 915-4 V1.2.2 (2002-05)

Parameters

call LegSessionI D : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

Method
get | nf oRes()

This asynchronous method reports all the necessary information requested by the application, for example to calculate
charging.
Parameters

call LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call leg to which the information relates.

cal | Legl nfoReport : in TpCall Legl nf oReport
Specifies the call leg information requested.

Method
getl nfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

call LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

Method
rout ekrr ()

This asynchronous method indicates that the request to route the call leg to the destination party was unsuccessful - the
call leg could not be routed to the destination party (for example, the network was unable to route the call leg, the
parameters were incorrect, the request was refused, etc.).

Parameters

call LegSessionl D : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

ETSI

108 ETSI ES 201 915-4 V1.2.2 (2002-05)

Method
super vi seRes()

This asynchronous method reports a call leg supervision event to the application when it hasindicated itsinterest in
these kind of events.

It is also called when the connection to a party is terminated before the supervision event occurs. Furthermore, this
method is invoked as a response to the request also when a tariff switch happensin the network during an active call.

Parameters

cal |l LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call leg

report : in TpCall Supervi seReport
Specifies the situation which triggered the sending of the call leg supervision response.

usedTinme : in TpDuration
Specifies the used time for the call leg supervision (in milliseconds).

Method
supervi seErr ()

Parameters

cal |l LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

Method
cal | LegEnded()

This method indicates to the application that the leg has terminated in the network. The application has received all
requested results (e.g. getinfoRes) related to the call leg. The call leg will be destroyed after returning from this method.

Parameters

call LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

cause : in TpRel easeCause
Specifies the reason the connection is terminated.

ETSI

109 ETSI ES 201 915-4 V1.2.2 (2002-05)

7.4 MultiParty Call Control Service State Transition Diagrams

7.4.1 State Transition Diagrams for IpMultiPartyCallControlManager

managerinterrupted

Interrupted

W

IpAccess.terminateSeniceAgreement

new'

IpAccess.terminateSeniceAgreement

o ®

Figure 7: Application view and the Multi-Party Call Control Manager

7411 Active State

In this state a relation between the Application and the Service has been established. The state allows the application to
indicate that it isinterested in call related events. In case such an event occurs, the Manager will create a Call object
with the appropriate number of Call Leg objects and inform the application. The application can aso indicate it is no
longer interested in certain call related events by calling destroyNotification().

7.4.1.2 Interrupted State

When the Manager isin the Interrupted state it is temporarily unavailable for use. Events requested cannot be forwarded
to the application and methods in the API cannot successfully be executed. A number of reasons can cause this: for
instance the application receives more notifications from the network than defined in the Service Agreement. Another
example isthat the Service has detected it receives no notifications from the network due to e.g. alink failure.

7.4.1.3 Overview of allowed methods

Call Control Manager State Methods applicable

Active createCall,
createNotification,
destroyNotification,
changeNotification,
getNotification,
setCallLoadControl

Interrupted getNotification

ETSI

71.4.2

110

ETSI ES 201 915-4 V1.2.2 (2002-05)

State Transition Diagrams for IpMultiPartyCall

The state transition diagram shows the application view on the MultiParty Call object.

When an IpMultiPartyCall is created using createCall, or when an IpMultiPartyCall is given to the application for a
notification with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, an activity timer is started. The
activity timer is stopped when the application invokes a method on the IpMultiPartyCall. The action upon expiry of this
activity timer isto invoke callEnded() on the IpAppMultiPartyCall with arelease cause of P TIMER_EXPIRY. In the
case when no IpAppMultiPartyCall is available on which to invoke callEnded(), call Aborted() shall be invoked on the
IpAppM ultiPartyCall ControlManager as thisis an abnormal termination.

7421

IpMultiPartyCallManager.createCall

RELEASED

'last leg released’

~callEnded

ACTIVE

deassignCall

creatéCallLeg

deassign

A timer mechanisem preventsthatthe object
kee ps occupying resources. In case the timer
expires, callEnded()isinwledon the
IpAppM Ul tiP artyCal | with a rele ase cause of
P_TIMER_EXPIRY. Inthe case when no

IpAppM Ul tiPartyCall isavailabl e on whichto invoke
callEnded(), callAborted () shall be invoked on the

IpAppM ultiPartyCallIControIManagerasthisisan
abnormal termination.

AN

Figure 8: Application view on the MultiParty Call object

IDLE State

In this state the Call object has no Call Leg object associated to it.

The application can request for charging related information reports, call supervision, set the charge plan and set Advice
Of Charge indicators. When the first Call Leg object is requested to be created a state transition is made to the Active

stete.

ETSI

111 ETSI ES 201 915-4 V1.2.2 (2002-05)

7422 ACTIVE State

In this state the Call object has one or more Call Leg objects associated to it. The application is allowed to create
additional Call Leg objects.

Furthermore, the application can request for call supervision. The Application can request charging related information
reports, set the charge plan and set Advice Of Charge indicatorsin this state prior to call establishment.

7.4.2.3 RELEASED State

In this state the last Call leg object has released or the call itself was released. While the call isin this state, the
requested call information will be collected and returned through getl nfoRes() and/or superviseRes(). As soon as all
information is returned, the application will be informed that the call has ended and Call object transition to the end
State.

7424 Overview of allowed methods

Methods applicable Call Control Call Call Control Manager
State State

getCallLegs, Idle, Active, Released |-
createCallLeg, Idle, Active Active
createAndRouteCallLe
gReq,
setAdviceOfCharge,
superviseReq,
release Active Active
deassignCall Idle, Active -
setChargePlan, Idle, Active Active
getinfoReq

7.4.3 State Transition Diagrams for IpCallLeg

The IpCallLeg State Transition Diagram is divided in two State Transition Diagrams, one for the originating call leg
and one for the terminating call leg.

Call Leg State Model General Objectives:
1) Eventsin backwards direction (upstream), coming from terminating leg, are not visible in originating leg model.

2) Eventsin forwards direction (downstream), coming from originating leg, are not visible in terminating leg
model.

3) States are as seen from the application: if there is no change in the method an application is permitted to apply on
the IpCallLeg object, then there is no state change. Therefore receipt of e.g. answer or aerting eventson
terminating leg do not change state. NOTE 2

4) The applicationisto send arequest to continue processing (using an appropriate method like
continueProcessing) for each leg and event reported in monitor mode "interrupt”.

5) In case on aleg more than one network event (for example mid-call event "service code") isto be reported to the
application at quasi the same time, then the events are to be reported one by one to the application in the order
received from the network. When for aleg an event is reported in interrupt mode, a next pending event is not to
be reported to the application until arequest to resume call processing for the current reported event has been
received on the leg.

NOTE 1: Call processing is suspended if for aleg a network event is met, which was requested to be monitored in
the P_CALL_MONITOR_MODE_INTERRUPT.

ETSI

112

NOTE 2: Even though there in the Originating Call Leg STD is no change

ETSI ES 201 915-4 V1.2.2 (2002-05)

in the methods the application is

permitted to apply to the IpCallLeg object for the states Analysing and Active, separate states are
maintained. The states may therefore from an application viewpoint appear as just one state that may be
have substates like Analysing and Active. The digit collection task in state Analysing state may be viewed

as a specialised task that may not at all be applicable in some net
being a state on its own.

7.4.3.1 Originating Call Leg

Originating Call Leg.

‘originating call attempt amhorizem

works and therefore here described as

IpAppMultiPartyCallControlManager.
reportN otification (originating CallAttem

IpAppMultiPartyCallControlManag er

reportNotification(originating CallAttemptAuthorized)

IpAppMultiPartyCallControlManager.

Initiatin
attachM eda J
detachMedia ‘
'Address Collected
‘networkRelease’
'Address_Collected'
Analysing
attachMedia Bl
detachMeda
‘networkreleas €
'Address Analysed'
[R ‘originating service_code'

reportNatification(address_collected)

IpAppMultiPartyCallControlManager.
reportNotification(address_analysed)

IpAppMultiPartyCallControlManager.
reportNotification(originating service code)

IManager.
reportNotification(originating
release)

Active

attachMedia ‘

detachMedia ‘

\ ‘network release’
Releasing
All States release do/ send reports if requested, or error reports if required
‘timer expiry ‘
deasign

()
&/

NpAppCallLeg.callLeg Ended

Transitions/ewents na shown:

All states:

contirueProcessing , g etlastRedirectedAddress , getC all: no state change
All states except Releasing :

ewentR epatReq, setAdiceOfChar ge, getlnfoReq , superviseReq,
setChar gePlan

Figure 9: Originating Leg

ETSI

113 ETSI ES 201 915-4 V1.2.2 (2002-05)

7.4.3.1.1 Initiating State
Entry events:

- Sending of areportNotification() method by the I pMultiPartyCall ControlManager for an
"Originating_Call_Attempt" initial notification criterion.

iii) Sending of areportNotification() method by the pMultiPartyCall ControlManager for an
"Originating_Call_Attempt_Authorised" initial notification criterion.

Functions:

In this state the network checks the authority/ability of the party to place the connection to the remote (destination)
party with the given properties, e.g. based on the originating party's identity and service profile.

The setup of the connection for the party has been initiated and the application activity timer is being provided.

The figure below shows the order in which network events may be detected in the Initiating state and depending on the
monitor mode be reported to the application.

Initiating See OREL
State note 2

__ 4 ocA |__ocAA ||| AC

Seenote 1

NOTE 1: Event oCA only applicable as an initial notification.

NOTE 2: The release event (OREL) can occur in any state resulting in a transition to Releasing state.

Abbreviations used for the events:

oCA: originating Call Attempt; oCAA: originating Call Attempt Authorized; AC: Address Collected, oREL:
originating RELease.

Figure 10: Application view on event reporting order in Initiating State

In this state the following functions are applicable;
- The detection of a"Originating_Call_Attempt" initial notification criterion.

- Thedetection of an "Originating_Call_Attempt_Authorised" initial notification criterion as aresult that the call
attempt authorisation is successful.

- Thereport of the"Originating_Call_Attempt_Authorised" event indication whereby the following functions are
performed:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_CALL_ATTEMPT_AUTHORISED then the event is reported and call leg processing is
suspended.

ii) WhentheP_CALL_MONITOR_MODE_NOTIFY isreguested for the call leg event
P_CALL_EVENT_CALL_ATTEMPT_AUTHORISED then the event is notified and call leg processing
continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_CALL_ATTEMPT_AUTHORISED then no monitoring is performed.

- Thereceipt of destination address information, i.e. initial information package/dialling string as received from
caling party.

- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

ETSI

114 ETSI ES 201 915-4 V1.2.2 (2002-05)

Exit events:

- Availahility of destination address information, i.e. the initial information package/dialling string received from
the calling party.

- Application activity timer expiry indicating that no requests from the application have been received during a
certain period.

- Receipt of adeassign() method.
- Receipt of arelease() method.

- Detection of a"originating release” indication as aresult of a premature disconnect from the calling party.

7.4.3.1.2 Analysing State
Entry events:

- Availability of an "Address Collected" event indication as a result of the receipt of the (complete) initial
information package/dialling string from the calling party.

- Sending of areportNotification() method by the IpMultiPartyCall ControlM anager for an "Address_Collected"
initial notification criterion.

Functions:
In this state the destination address provided by the calling party is collected and analysed.

The received information (dialled address string from the calling party) is being collected and examined in accordance
to the dialing plan in order to determine end of address information (digit) collection. Additional address digits can be
collected. Upon completion of address collection the address is analysed.

The address analysis is being made according to the dialling plan in force to determine the routing address of the call
leg connection and the connection type (e.g. locdl, transit, gateway).

The request (with eventReportReq method) to collect a variable number of more address digits and report them to the
application (within eventReportRes method)) is handled within this state. The collection of more digits as requested and
the reporting of received digits to the application (when the digit collect criteriais met) is donein this state. This action
isrecursive, e.g. the application could ask for 3 digits to be collected and when report request can be done repeatedly,
e.g. the application may for example request first for 3 digits to be collected and when reported request further digits.

The figure below shows the order in which network events may be detected in the Analysing state and depending on the
monitor mode be reported to the application.

OREL

Anaysing notel >
State

0CAA J AC) AA

NOTE 1: The release event (OREL) can occur in any state resulting in a transition to Releasing state.

Abbreviations used for the events:

0CAA: originating Call Attempt Authorized; AC: Address Collected; AA: Address Analysed; oREL originating
RELease.

Figure 11: Application view on event reporting order in Analysing State

ETSI

115 ETSI ES 201 915-4 V1.2.2 (2002-05)

In this state the following functions are applicable;

The detection of a"Address Collected" initial notification criterion.
On receipt of the "Address_Collected" indication the following functions are performed:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_ADDRESS_COLLECTED then the event is reported and call leg processing is
suspended.

ii) WhentheP_CALL_MONITOR_MODE_NOTIFY isreguested for the call leg event
P_CALL_EVENT_ADDRESS _COLLECTED then the event is notified and call leg processing continues.

iii) Whenthe P_CALL_MONITOR_MODE_DO_NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_ADDRESS COLLECTED then no monitoring is performed.

Receipt of a eventReportReq() method defining the criteriafor the eventsthe call leg object isto observe.

Resumption of suspended call leg processing occurs on receipt of a continueProcessing() or a routeReq()
method.

Exit events:

Detection of an "Address Analysed" indication as aresult of the availability of the routing address and nature of
address.

Receipt of adeassign() method.
Receipt of arelease() method.

Detection of a"originating release" indication as aresult of a premature disconnect from the calling party.

7.4.3.1.3 Active State

Entry events:

Receipt of an "Address Analysed" indication as aresult of the availability of the routing address and nature of
address.

Sending of areportNotification() method by the I pMultiPartyCall ControlManager for an "Address Analysed
initial indication criterion.

Functions:

In this state the call leg connection to the calling party exists and originating mid call events can be received.

The figure below shows the order in which network events may be detected in the Active state and depending on the
monitor mode be reported to the application.

ETSI

116 ETSI ES 201 915-4 V1.2.2 (2002-05)

See notel See
ﬂ note2
oSC AN
AC T REL
> AA °
Active
State

NOTE 1: Only the detected service code or the range to which the service code belongs is disarmed as the service
code is reported to the application

NOTE 2: The release event (OREL) can occur in any state resulting in a transition to Releasing state.

Abbreviations used for the events:

AC: Address Collected; AA: Address Analysed; 0SC: originating Service Code; oREL: originating RELease.

Figure 12: Application view on event reporting order Active State

In this state the following functions are applicable;
- Thedetection of a Address_Analysed initial indication criterion.
- Onreceipt of the"Address Analysed" indication the following functions are performed:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_ADDRESS ANALY SED then the event isreported and call leg processing is suspended.

ii) WhentheP_CALL_MONITOR_MODE_NOTIFY isreguested for the call leg event
P_CALL_EVENT_ADDRESS ANALY SED then the event is notified and call leg processing continues.

iii) Whenthe P_CALL_MONITOR_MODE_DO_NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_ADDRESS ANALY SED then no monitoring is performed.

- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

- Inthis state the routing information is interpreted, the authority of the calling party to establish this connection is
verified and the call leg connection is set up to the remote party.

- Inthis state a connection to the call party is established.

- Detection of a"terminating release” indication (not visible to the application) from remote party caused by a
network release event propagated from aterminating party, possibly resulting in an "originating rel ease"
indication and causing the originating call leg STD to transit to Releasing state:

- Detection of adisconnect from the calling party.

- Receipt of adeassign() method.

- Receipt of arelease() method.

- Onreceipt of the "originating_service code" indication the following functions are performed:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_ORIGINATING_SERVICE_CODE then the event is reported and call leg processing is
suspended.

ii) WhentheP_CALL_MONITOR_MODE_NOTIFY isreguested for the call leg event
P_CALL_EVENT_ORIGINATING_SERVICE_CODED then the event is notified and call leg processing
continues.

ETSI

117 ETSI ES 201 915-4 V1.2.2 (2002-05)
iii) Whenthe P_CALL_MONITOR_MODE_DO _NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_ORIGINATING_SERVICE_CODE then no monitoring is performed.
- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.
Exit events:

- Detection of an "originating release” indication as a result of a disconnect from the calling party and a
"terminating release” indication as aresult of a disconnect from called party.

- Receipt of adeassign() method.

- Receipt of arelease() method from the application.

7.4.3.1.4 Releasing State
Entry events:

- Detection of an "Originating_Release" indication as a result of the network release initiated by calling party or
called party.

- Reception of the release() method from the application.

- A transition due to fault detection to this state is made when the Call leg object isin a state and no requests from
the application have been received during a certain time period (timer expiry).

Functions:

In this state the connection to the call party is released as requested by the network or by the application and the reports
are processed and sent to the application if requested.

When the Releasing state is entered the order of actionsto be performed is as follows:
i) the network release event handling is performed.

ii) thepossible call leg information requested with getlnfoReq() and/ or superviseReq() is collected and send to
the application.

iii) the callLegEnded() method is sent to the application to inform that the call leg object is destroyed.

In this state the following functions are applicable:

The detection of a"originating_release" initial indication criterion.

On receipt of the "originating_release” indication the following functions are performed:
- The network release event handling is performed as follows:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_RELEASE then the event isreported and call leg processing is suspended.

ii) WhentheP_CALL_MONITOR_MODE_NOTIFY isreguested for the call leg event
P_CALL_EVENT_RELEASE then the event is notified and call leg processing continues.

iii) Whenthe P_CALL_MONITOR_MODE_DO_NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_RELEASE then no monitoring is performed.

¢ Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

e Thepossible call leg information requested with the getlnfoReq() and/or superviseReq() is collected and sent to
the application with respectively the getlnfoRes() and/or superviseRes() methods.

e The callLegEnded() method is sent to the application after all information has been sent. In case that the
application has not requested additional call leg related information the call leg object is destroyed immediately
and additionally the application will also be informed that the connection has ended

ETSI

118 ETSI ES 201 915-4 V1.2.2 (2002-05)

¢ In case of abnormal termination due to afault and the application requested for call leg related information
previoudly, the application will be informed that this information is not available and additionally the application
isinformed that the call leg object is destroyed (callLegEnded).

NOTE: Thecall in the network may continue or be released, depending e.g. on the call state.

e Incasetherelease() method is received in Releasing state it will be discarded. The request from the application
to release the leg isignored in this case because release of the leg is aready ongoing.

Exit events:

- Incase that the application has not requested additional call leg related information the call leg object is
destroyed immediately and additionally the application isinformed that the call leg connection has ended, by
sending the callLegEnded() method.

- After the sending of the last call leg information to the application the Call Leg object is destroyed and
additionally the application is informed that the call leg connection has ended, by sending the callLegEnded()
method.

7.4.3.1.5 Overview of allowed methods, Originating Call Leg STD

State Methods allowed

Initiating
attachMediaReq (as a request),
detachMediaReq, (as a request)
getCall,

continueProcessing,

release (call leg),

deassign

eventReportReq,

getinfoReq,

setChargePlan,
setAdviceOfCharge,
superviseReq

Analysing
attachMediaReq (as a request),
detachMediaReq, (as a request)
getCall,

continueProcessing,

release (call leg),

deassign

eventReportReq,

getinfoReq,

setChargePlan,
setAdviceOfCharge,
superviseReq

Active attachMediaReq,
detachMediaReq,
getCall,
continueProcessing,
release

deassign
eventReportReq,
getinfoReq,
setChargePlan,
setAdviceOfCharge,
superviseReq

Releasing getCall,
continueProcessing,
release

deassign

ETSI

7.4.3.2 Terminating Call Leg

Terminating Call Leg. ﬁ

119

Idle

(terminating) ﬁ

routeReq

‘terminating call attempt authorized',
‘alerting’, ‘answer’, ‘terminating senfce
code', 'redirected’, ‘queued'

Act
attachMedia
detachMedia

‘network

ETSI ES 201 915-4 V1.2.2 (2002-05)

(terminating)

IpMultiPartyCall.createCallLeg

IpPAppM ultiParty CallControlManager.r
eportNotification(“terminating call
attempt”, "terminating call attempt
authorised", “alerting", "answer",

"terminating senice code",
"redirected", "queued")

m
)

release’

IpMultiPartyCall.createAndRouteCallLegReq

Releasing (terminating)

All States release ‘
(terminating) ‘timer expiry" ‘ do/ send reports if requested, or eror reports if require..

IpAppMultiParty CallControlManager.

NpAppCallLeg.callLegEnded

deasign

()

reportNotification(terminating
release)

Transitions/events not shown:
All states:

supeniseRes: no state change,
All states except Releasing:

created and is initialized to be in the Active state.

continueProcessing, getLastRedirectedAddress, getCall, sending getinfoRes,

eventReportReq, setAdviceOfCharge, getinfoReq, supeniseReq, setChargePlan.

When the application is notified in reportNotfication of an call related network event
associated with the Terminating Call Leg STD, then the Originating Call Leg STD is

Figure 13: Terminating Leg

7.4.3.2.1 Idle (terminating) State

Entry events:

- Receipt of acreateCallLeg() method to start an application initiated call leg connection.

Functions:

In this state the call leg object is created and the interface connection isidled.

The application activity timer is being provided.

In this state the following functions are applicable:

- Invoking routeReq will result in arequest to actually route the call leg object.

- Resumption of call leg processing occurs on receipt of arouteReq() method.

ETSI

120 ETSI ES 201 915-4 V1.2.2 (2002-05)

Exit events:

Receipt of arouteReq() method from the application.

Application activity timer expiry indicating that no requests from the application have been received during a
certain period to continue processing.

Receipt of adeassign() method.
Receipt of arelease() method.

Detection of a network release event being an "originating release” indication as a result of a premature
disconnect from the calling party.

7.4.3.2.2 Active (terminating) State

Entry events:

Receipt of an routeReq will result in actually routing the call leg object.
Receipt of a createAndRouteCallLegReq() method to start an application initiated call leg connection.

Sending of areportNotification() method by the IpMultiPartyCall ControlManager for the following trigger
criteria "Terminating_Call_Attempt", "Terminating_Call_Attempt_Authorised", "Alerting", "Answer",
"Terminating service code", "Redirected" and "Queued".

Functions:

In this state the routing information is interpreted, the authority of the called party to establish this connection is verified
for the call leg connection. In this state a connection to the call party is established whereby events from the network
may indicate to the application when the party is alerted (acknowledge connection setup) and when the party answer
(confirmation of connection setup).

Furthermore, in this state terminating service code events can be received.

The figure below shows the order in which network events may be detected in the Active state and depending on the
monitor mode be reported to the application.

ETSI

121 ETSI ES 201 915-4 V1.2.2 (2002-05)

Active
State
\\
tCA —» 1| tREL
Note 1
Note 2 p tSC

NOTE 1: Event tCA applicable as initial notification

NOTE 2: Only the detected service code or the range to which the service code belongs is disarmed as the service
code is reported to the application

NOTE 3: The release event (tREL) can occur in any state resulting in a transition to Releasing state.

Abbreviations used for the events:

tCA: terminating Call Attempt; tCAA: terminating Call Attempt Authorized; AL: Alerting; ANS: Answer; tREL:
terminating RELease; Q: Queued; RD: ReDirected; tSC: terminating Service Code.

Figure 14: Application view on event reporting order in Active State

In this state the following functions are applicable;

- The detection and report of the "Terminating_Call_Attempt_Authorised" event indication whereby the following
functions are performed:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED then the event is reported and call
leg processing is suspended.

ii) WhentheP_CALL_MONITOR_MODE_NOTIFY isreguested for the call leg event
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED then the event is notified and call
leg processing continues.

iii) Whenthe P_CALL_MONITOR_MODE_DO_NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_CALL_TERMINATING ATTEMPT_AUTHORISED then no monitoring is performed.

- Detection of an "Queued" indication as a result of the terminating call being queued.
- Onreceipt of the "Queued" indication the following functions are performed:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_QUEUED then the event isreported and call leg processing is suspended.

ii) WhentheP_CALL_MONITOR_MODE_NOTIFY isreguested for the call leg event
P_CALL_EVENT_QUEUED then the event is notified and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_QUEUED then no monitoring is performed.

- Onreceipt of the"Alerting" indication the following functions are performed:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_ALERTING then the event isreported and call leg processing is suspended.

i) WhentheP CALL_MONITOR MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_ALERTING then the event is notified and call leg processing continues.

ETSI

122 ETSI ES 201 915-4 V1.2.2 (2002-05)
iii) Whenthe P_CALL_MONITOR_MODE_DO _NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_ALERTING then no monitoring is performed.
- Detection of an "Answer" indication as a result of the remote party being connected (answered).
- Onreceipt of the"Answer" indication the following functions are performed:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_ANSWER then the event is reported and call leg processing is suspended.

ii) WhentheP_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_ANSWER then the event is notified and call leg processing continues.

iii) Whenthe P_CALL_MONITOR_MODE_DO_NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_ANSWER then no monitoring is performed.

- Thedetection of a"service_code" trigger criterion suspends call leg processing.
- Onreceipt of the "service code" indication the following functions are performed:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_TERMINATING_SERVICE_CODE then the event isreported and call leg processing is
suspended.

ii) WhentheP_CALL_MONITOR_MODE_NOTIFY isreguested for the call leg event
P_CALL_EVENT_TERMINATING_SERVICE CODE then thisis not avalid event (that event is not
notified) and call leg processing continues.

iii) Whenthe P_CALL_MONITOR_MODE_DO_NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_TERMINATING_SERVICE_CODE then no monitoring is performed.

- Onreceipt of the "redirected" indication the following functions are performed:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_REDIRECTED then the event is reported and call leg processing is suspended.

ii) WhentheP_CALL_MONITOR_MODE_NOTIFY isreguested for the call leg event
P_CALL_EVENT_REDIRECTED then the event is notified and call leg processing continues.

iii) Whenthe P_CALL_MONITOR_MODE_DO_NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_REDIRECTED then no monitoring is performed.

- Resumption of call leg processing occurs on receipt of a continueProcessing() method.
Exit events:
- Detection of a network release event being an "terminating release" indication as a result of the following events:

i) Unable to select aroute or indication from the remote party of the call leg connection cannot be presented
(thisisthe network determined busy condition)

ii) Occurrence of an authorisation failure when the authority to place the call leg connection was denied (e.g.
business group restriction mismatch).

iii) Detection of aroute busy condition received from the remote call leg connection portion.
iv) Detection of a no-answer condition received from the remote call leg connection portion.
v) Detection that the remote party was not reachable.
- Detection of a network release event being an "originating release” indication as aresult of the following events:
vi) Detection of a premature disconnect from the calling party.

- Receipt of adeassign() method.

ETSI

123 ETSI ES 201 915-4 V1.2.2 (2002-05)

- Receipt of arelease() method from the application.

- Detection of a network release event being an "originating release” indication as a result of a disconnect from the
calling party or a"terminating release” indication as aresult of a disconnect from the called party.

7.4.3.2.3 Releasing (terminating) State
Entry events:

- Detection of a network release event being an "originating release” indication as a result of the network release
initiated by calling party or a"terminating release”" indication as aresult of the network release initiated by called

party.
- Sending of the release() method by the application.

- A transition due to fault detection to this state is made when the Call leg object awaits arequest from the
application and thisis not received within a certain time period.

- Detection of a network event being a"terminating release" indication as aresult of the following events:

i) Unable to select aroute or indication from the remote party of the call leg connection cannot be presented
(thisisthe network determined busy condition)

ii) Occurrence of an authorisation failure when the authority to place the call leg connection was denied (e.g.
business group restriction mismatch).

iii) Detection of aroute busy condition received from the remote call leg connection portion.
iv) Detection of a no-answer condition received from the remote call leg connection portion.
v) Detection that the remote party was not reachable.
- Detection of a network release event being an "originating release” indication as aresult of the following events:
vi) Detection of a premature disconnect from the calling party.
Functions:

In this state the connection to the call party is released as requested by the network or by the application
and the reports are processed and sent to the application if requested.

When the Releasing state is entered the order of actionsto be performed is as follows:
i) therelease event handling is performed.

ii) the possible call leg information requested with getlnfoReq() and/ or superviseReq() is collected and send to the
application.

iii) the callLegEnded() method is sent to the application to inform that the call leg object is destroyed.

Where the entry to this state is caused by the application, for example because the application has requested the leg to
be released or deassigned or afault (e.g. timer expiry, no response from application) has been detected, then i) is not
applicable. In the fault case for action ii) error report methods are sent to the application for any possible requested
reports.

In this state the following functions are applicable:
- Thedetection of a"Terminating Release” trigger criterion.

- On receipt of the network release event being a" Terminating Release” indication the following functions are
performed:

-The network release event handling is performed as follows:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_TERMINATING_RELEASE then the event isreported and call leg processing is
suspended.

ETSI

124 ETSI ES 201 915-4 V1.2.2 (2002-05)

ii) WhentheP_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_TERMINATING_RELEASE then the event is notified and call leg processing
continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_TERMINATING_RELEASE then no monitoring is performed.

Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

The possible call leg information requested with the getinfoReq() and/or superviseReq() is collected and sent to
the application with respectively the getlnfoRes() and/or superviseRes() methods.

The callLegEnded() method is sent to the application after all information has been sent. In case that the
application has not requested additional call leg related information the call leg object is destroyed immediately
and additionally the application will also be informed that the connection has ended

In case of abnormal termination due to a fault and the application requested for call leg related information
previously, the application will be informed that this information is not available and additionally the application
isinformed that the call leg object is destroyed (callLegEnded).

NOTE: Thecall inthe network may continue or be released, depending e.g. on the call state.

In case the release() method is received in Releasing state it will be discarded. The request from the application
to release the leg isignored in this case because release of the leg is aready ongoing.

Exit events:

In case that the application has not requested additional call leg related information the call leg object is
destroyed immediately and additionally the application isinformed that the call leg connection has ended, by
sending the callLegEnded() method.

After the sending of the last call leg information to the application the Call Leg object is destroyed and
additionally the application is informed that the call leg connection has ended, by sending the callLegEnded()
method.

ETSI

125

ETSI ES 201 915-4 V1.2.2 (2002-05)

7.4.3.2.4 Overview of allowed methods and trigger events, Terminating Call Leg STD

State

Methods allowed

Idle

routeReq,

getCall,
getCurrentDestinationAddress,
release,

deassign

eventReportReq,

getinfoReq,

setChargePlan,
setAdviceOfCharge,
superviseReq

Active

attachMediaReq
detachMediaReq
getCall,
getCurrentDestinationAddress,
continueProcessing,
release,

deassign
eventReportReq,
getinfoReq,
setChargePlan,
setAdviceOfCharge,
superviseReq

Releasing

getCall,
getCurrentDestinationAddress,
continueProcessing,

release,

deassign

7.5

7.5.1

List of Service Properties

Multi-Party Call Control Service Properties

The following table lists properties relevant for the MPCC API. These properties are additional to the properties of the
GCC, from which the MPCC is an extension.

Property Type Description

P_MAX_CALLLEGS PER_CALL INTEGER_SET Indicates how many parties can bein one call.

P_UI_CALLLEG BASED BOOLEAN_SET |Value=TRUE : User interaction can be performed on leg level and a
reference to a CallLeg object can be used in the
IpUIManager.createU1Call() operation.
Value=FALSE : No user interaction on leg level is supported.

P_ROUTING _WITH_CALLLEG_OPERATIONS |BOOLEAN_SET |Value= TRUE : the atomic operations for routing a CallLeg are supported
{IpMultiPartyCall.createCallLeg(), IpCall Leg.eventReportReq(),
IpCallLeg.routeReq(), IpCallLeg.attachM ediaReq()}
Value = FALSE : the convenience function has to be used for routing a
CallLeg.

P_MEDIA_ATTACH_EXPLICIT BOOLEAN_SET |Value= TRUE : the CallLeg shall be explicitly attached to a Call.

Value= FALSE : the CallLeg is automatically attached to a Call, no
IpCallL eg.attachM ediaReq() is needed when a party answers.

ETSI

126 ETSI ES 201 915-4 V1.2.2 (2002-05)

7.5.2 Service Property values for the CAMEL Service Environment.

Implementations of the MultiParty Call Control API relying on the CSE shall have the Service Properties outlined
above set to the indicated values :

P_OPERATI ON_SET = {

"I pMul ti PartyCall Control Manager.createNotification",
"I pMul ti PartyCall Control Manager. destroyNoti fication",
"I pMul ti PartyCall Control Manager. changeNoti fication",
"I pMul tiPartyCall Control Manager. get Notification",

"l pMul ti PartyCal | Control Manager. set Cal | LoadControl "
"I'pMul ti PartyCall.getCallLegs",

"I'pMul ti PartyCall.createCall Leg",

"I pMul ti PartyCall.createAndRout eCal | LegReq",

"I pMul ti PartyCall.rel ease",

"I'pvul ti PartyCall . deassignCal ",

"I'pMul ti PartyCall . getlnfoReq",

"I pMul ti PartyCall.set ChargePl an",

"I pMul ti PartyCall.set Advi ceOf Char ge",

"I pMul ti PartyCall.supervi seReq",

"I pCal | Leg. rout eReq",

"I pCal | Leg. event Report Req",

"l pCal | Leg. rel ease",

"I pCal | Leg. get | nf oReq",

"I pCall Leg.getCall",

"I pCal | Leg. conti nueProcessi ng"

P_TRI GGERI NG_EVENT_TYPES = {
P_CALL_EVENT CALL_ATTEMPT,
P_CALL_EVENT ADDRESS_COLLECTED,
P_CALL_EVENT_ADDRESS_ANALYSED,
P_CALL_EVENT_RELEASE,

}

P_DYNAM C_EVENT_TYPES = {
P_CALL_EVENT_ANSVER
P_CALL_EVENT RELEASE

}

P_ADDRESS_PLAN = {
P_ADDRESS_PLAN_E164
}

P_U _CALL_BASED = {
TRUE
}

P_U _AT_ALL_STAGES = {
FALSE
}

P_MEDI A TYPE = {
P_AUDI O
}

P_MAX_CALLLEGS_PER CALL = {

0
2
}

P_U _CALLLEG BASED = {
FALSE
}

P_MEDI A ATTACH EXPLICIT = {

FALSE
}

ETSI

127 ETSI ES 201 915-4 V1.2.2 (2002-05)

7.6 Multi-Party Call Control Data Definitions

This clause provides the MPCC data definitions necessary to support the API specification.
The general format of a data definition specification is described below.
e DataType
This shows the name of the data type.
e Description
This describes the data type.
e Tabular Specification
This specifies the data types and values of the data type.
e Example
If relevant, an example is shown to illustrate the data type.

All data types referenced but not defined in this clause are either in the common call control data definitions clause of
the present document (clause 10) or in the common data definitions which may be found in ES 201 915-2.

7.6.1 Event Notification Data Definitions

No specific event notification data defined.
7.6.2 Multi-Party Call Control Data Definitions

7.6.2.1 IpCallLeg

Definesthe address of an | pCal | Leg Interface.

7.6.2.2 IpCallLegRef

DefinesaRef er ence to type IpCallLeg.

7.6.2.3 IpAppCallLeg

Definesthe address of an | pAppCal | Leg Interface.

7.6.2.4 IpAppCallLegRef
DefinesaRef er ence to type IpAppCallLeg.

7.6.2.5 IpMultiPartyCall

Definesthe addressof an| pMul ti PartyCal | Interface.

7.6.2.6 IpMultiPartyCallRef

DefinesaRef er ence to type IpMultiPartyCall.

7.6.2.7 IpAppMultiPartyCall

Definesthe address of an | pAppMul ti PartyCal | Interface.

ETSI

128 ETSI ES 201 915-4 V1.2.2 (2002-05)

7.6.2.8 IpAppMultiPartyCallRef

DefinesaRef er ence to type IpAppMultiPartyCall.

7.6.2.9 IpMultiPartyCallControlManager

Definesthe addressof an | pMul ti Part yCal | Cont r ol Manager Interface.

7.6.2.10 IpMultiPartyCallControlManagerRef

Defines aRef er ence to type IpMultiPartyCall ControlManager.

7.6.2.11 IpAppMultiPartyCallControlManager

Definesthe address of an | pAppMul ti PartyCal | Cont r ol Manager Interface.

7.6.2.12 IpAppMultiPartyCallControlManagerRef

Defines aRef er ence to type |pAppMultiPartyCall Control M anager.

7.6.2.13 TpAppCallLegRefSet

Definesa Nunbered Set of Data El ements of IpAppCallLegRef.

7.6.2.14 TpMultiPartyCallldentifier

Defines the Sequence of Data Elements that unambiguoudly specify the Call object.

Sequence Element Sequence Element Sequence Element
Name Type Description
Cal | Ref erence I pMul ti PartyCal | Ref |Thiselement specifiesthe interface reference for the Multi-party call
object.
Cal | Sessi onl D TpSessi onl D This element specifies the call session ID.

7.6.2.15 TpAppMultiPartyCallBack

Defines the Tagged Choice of Data Elements that references the application callback interfaces

Tag Element Type
TpAppMul ti PartyCal | BackRef Ty

pe
Tag Element Value Choice Element Type Choice Element Name
P_APP_CALLBACK_UNDEFI NED NULL Undef i ned
P_APP_MULTI PARTY CALL_CALLBACK IpAppMlti PartyCallRef AppMul ti PartyCal |
P_APP_CALL_LEG CALLBACK IpAppCallL egRef AppCal | Leg
P_APP_CALL_AND CALL LEG CALLBACK TpAppCallLegCalBack AppMil ti PartyCal | AndCal I Leg

ETSI

129 ETSI ES 201 915-4 V1.2.2 (2002-05)

7.6.2.16 TpAppMultiPartyCallBackRefType

Defines the type application call back interface.

Name Value Description
P_APP_CALLBACK_UNDEFI NED 0 Application Call back interface undefined
P_APP_MJULTI PARTY_CALL_CALLBACK 1 Application Multi-Party Call interface
referenced
P_APP_CALL_LEG CALLBACK 2 Application CallLeg interface referenced
P_APP_CALL_AND CALL_LEG CALLBACK 3 Application Multi-Party Call and CallLeg
interface referenced

7.6.2.17 TpAppCallLegCallBack

Defines the Sequence of Data Elements that references a call and acall leg application interface.

Sequence Element Name Sequence Element Type
AppMil ti PartyCal | | pAppMul ti Part yCal | Ref
AppCal | LegSet TpAppCal | LegRef Set Specifiesthe set of all call leg call back

references. First in the set isthe reference to
the call back of the originating callLeg. In
casethereisacall back to adestination call
leg thiswill be second in the set.

7.6.2.18 TpMultiPartyCallldentifierSet

DefinesaNunbered Set of Data El ements of TpMultiPartyCallldentifier.

7.6.2.19 TpCallAppinfo

Definesthe Tagged Choi ce of Data El enent s that specify application-related call information.

Tag Element Type
TpCal | Appl nf oType

Tag Element Choice Element Choice Element
Value Type Name

P_CALL_APP_ALERTI NG_MECHANI SM TpCal | Al erti ngMechani sm|[Cal | AppAl erti ngMechani sm
P_CALL_APP_NETWORK_ACCESS_TYPE TpCal | Net wor kAccessType [Cal | AppNet wor kAccessType
P_CALL_APP TELE SERVI CE TpCal | Tel eServi ce Cal | AppTel eServi ce
P_CALL_APP_ BEARER SERVI CE TpCal | Bear er Ser vi ce Cal | AppBear er Servi ce
P_CALL_APP_PARTY_CATEGORY TpCal | Part yCat egory Cal | AppPart yCat egory
P_CALL_APP_PRESENTATI ON_ADDRESS TpAddr ess Cal | AppPr esent ati onAddr ess
P_CALL_APP_GENERI C_| NFO TpString Cal | AppGenericlnfo
P_CALL_APP_ADDI TI ONAL_ADDRESS TpAddr ess Cal | AppAddi ti onal Addr ess
P_CALL_APP_ORI G NAL_DESTI NATI ON_ADDRESS [TpAddr ess Cal | AppOri gi nal Desti nati onAddr ess
P_CALL_APP_REDI RECTI NG_ADDRESS TpAddr ess Cal | AppRedi recti ngAddr ess

ETSI

7.6.2.20 TpCallAppInfoType

130

ETSI ES 201 915-4 V1.2.2 (2002-05)

Defines the type of call application-related specific information.

Name Value Description
P_CALL_APP_UNDEFI NED 0 Undefined
P_CALL_APP_ALERTI NG_MECHANI SM 1 The alerting mechanism or pattern to use
P_CALL_APP_NETWORK_ACCESS_TYPE 2 The network access type (e.g. ISDN)
P_CALL_APP_TELE_SERVI CE 3 Indicates the tele-service (e.g. telephony)
P_CALL_APP_BEARER_SERVI CE 4 Indicates the bearer service (e.g. 64 kbit/s unrestricted data).
P_CALL_APP_PARTY_CATEGORY 5 The category of the calling party
P_CALL_APP_PRESENTATI ON_ADDRESS 6 The address to be presented to other call parties
P_CALL_APP_GENERI C_| NFO 7 Carries unspecified service-service information
P_CALL_APP_ADDI TI ONAL_ADDRESS 8 Indicates an additional address
P_CALL_APP_ORI G NAL_DESTI NATI ON_ADDRESS 9 Contains the origina address specified by the originating user
when launching the call.
P_CALL_APP_REDI RECTI NG_ADDRESS 10 Contains the address of the user from which the call is
diverting.

7.6.2.21 TpCallAppinfoSet

DefinesaNunbered Set of Data El enents of TpCallApplnfo.

7.6.2.22 TpCallEventRequest

Definesthe Sequence of Data El enent s that specify the criteriarelating to call report requests.

Sequence Element Name

Sequence Element Type

Cal | Event Type

TpCal | Event Type

Addi tional Cal | EventCriteria

TpAdditional Cal |l EventCriteria

Cal | Moni t or Mbde

TpCal | Moni t or Mode

7.6.2.23 TpCallEventRequestSet

DefinesaNunbered Set of Data El enents of TpCallEventRequest.

ETSI

131 ETSI ES 201 915-4 V1.2.2 (2002-05)

7.6.2.24 TpCallEventType

Defines a specific call event report type.

Name Valu Description
e
P_CALL_EVENT_UNDEFI NED 0 Undefined
P_CALL_EVENT_ORI G NATI NG_CALL_ATTEMPT 1 An originating call attempt takes place (e.g. Off-hook
event).
P_CALL_EVENT_ORI G NATI NG CALL_ATTEMPT_AUTHOR | 2 An originating call attempt is aithorised
| SED
P_CALL_EVENT_ADDRESS COLLECTED 3 The destination address has been collected.
P_CALL_EVENT_ADDRESS_ ANALYSED 4 The destination address has been analysed.
P_CALL_EVENT_ORI G NATI NG_SERVI CE_CODE 5 Mid-call originating service code received.
P_CALL_EVENT_ORI G NATI NG_RELEASE 6 A originating call/call leg isreleased
P_CALL_EVENT_TERM NATI NG_CALL_ATTEMPT 7 A terminating call attempt takes place
P_CALL_EVENT_TERM NATI NG_CALL_ATTEMPT_AUTHOR | 8 A terminating call is authorized
| SED
P_CALL_EVENT_ALERTI NG 9 Call isalerting at the call party.
P_CALL_EVENT_ANSVER 10 Call answered at address.
P_CALL_EVENT_TERM NATI NG_RELEASE 11 | A terminating cal leg has been released or the call could
not be routed.

P_CALL_EVENT_REDI RECTED 12 Call redirected to new address: an indication from the

network that the call has been redirected to a new address

(no events disarmed as aresult of this).
P_CALL_EVENT_TERM NATI NG_SERVI CE_CODE 13 Mid call terminating service code received.
P_CALL_EVENT_QUEUED 14 | The Call Event has been queued. (no events are disarmed
as aresult of this)

EVENT HANDLING RULES:
The following general event handling rules apply to dynamically armed events:
When requesting events for one leg;

¢ When the monitor modeissetto P CALL_MONITOR_MODE_DO_NOT_MONITOR al events armed for that
eventtype are disarmed. The additional EventCriteria are not taken into account.

« When requesting two events for the same event type with different criteria and/or different monitor mode the last
used criteria and monitor mode apply.

« Eventsthat are not applicable to aleg are refused with exception P_INVALID_EVENT_TYPE. The same
exception is used when criteria are used that are not applicable to the leg,
E.g. requesting P_CALL_EVENT_TERMINATING_SERVICE_CODE on an originating leg is refused with
exception P_INVALID_CRITERIA.
When P_CALL_EVENT_ORIGINATING_RELEASE isrequested with P_BUSY in the criteriathe request is
refused with the same exception.

When receiving events:
e |If anarmed event is met, then it is disarmed, unless explicit stated that it will not to be disarmed.
e If anevent is met that causes the release of the related leg, then all eventsrelated to that leg are disarmed.

¢ When an event is met on acall leg irrespective of the event monitor mode, then only events belonging to that call
leg may become disarmed (see table below).

* |f acall isreleased, then all eventsrelated to that call are disarmed.

NOTE: Event disarmed means monitor modeissetto DO_NOT_MONITOR. and
event armed means monitor mode is set to INTERRUPT or NOTIFY.

ETSI

132

ETSI ES 201 915-4 V1.2.2 (2002-05)

The table below defines the disarming rules for dynamic events. In case such an event occurs on a call leg the table
shows which events are disarmed (are not monitored anymore) on that call leg and should be re-armed by
eventReportReq() in case the application is still interested in these events.

Event Occurred

Events Disarmed

P_CALL_EVENT_UNDEFI NED

Not Applicable

P_CALL_EVENT_ORI Gl NATI NG CALL_ATTENPT

Not applicable, can only be armed astrigger

P_CALL_EVENT ORI G NATI NG CALL_ATTEMPT_A
UTHORI SED

P_CALL_EVENT ORI G NATI NG _CALL_ATTEMPT_A
UTHORI SED

P_CALL_EVENT_ADDRESS_COLLECTED

P CALL_EVENT ADDRESS COLLECTED

P_CALL_EVENT_ADDRESS_ANALYSED

P CALL_EVENT ADDRESS COLLECTED
P CALL_EVENT ADDRESS ANALYSED

P_CALL_EVENT_ALERTI NG

P_CALL_EVENT_ALERTING
P_CALL_EVENT__TERMINATING_RELEASE with criteria:
P_USER _NOT_AVAILABLE

P BUSY

P_NOT_REACHABLE

P_ROUTING FAILURE

P CALL_ RESTRICTED

P _UNAVAILABLE RESOURCES

P_CALL_EVENT_ANSVER

P CALL_EVENT ALERTING
P_CALL_EVENT_ANSWER

P_CALL_EVENT TERMINATING_RELEASE with criteria
P USER NOT AVAILABLE

P BUSY

P NOT REACHABLE

P_ROUTING_FAILURE

P_CALL_RESTRICTED

P_UNAVAILABLE RESOURCES

P NO ANSWER

P_CALL_EVENT_ ORI G NATI NG RELEASE

All pending network events for the call leg are disarmed

P_CALL_EVENT_TERM NATI NG RELEASE

All pending network events for the call leg are disarmed

P_CALL_EVENT_ORI G NATI NG SERVI CE_CODE

P_CALL_EVENT_ ORI G NATI NG SERVI CE_CODE *) see
NOTE

P_CALL_EVENT_TERM NATI NG SERVI CE_CODE

P_CALL_EVENT_TERMINATING_SERVICE_CODE *) see NOTE 2

NOTE:

Only the detected service code or the range to which the service code belongs is disarmed.

ETSI

7.6.2.25 TpAdditionalCallEventCriteria

Definesthe Tagged Choi ce of Data El enent s that specify specific criteria

133

ETSI ES 201 915-4 V1.2.2 (2002-05)

Tag Element Type

TpCal | Event Type

Tag Element

Choice Element

Choice Element

Value Type Name
P_CALL_EVENT_UNDEFI NED NUL L Undefined
P_CALL_EVENT_ORI G NATI NG_CALL_ATTEMPT NUL L Undefined
P_CALL_EVENT_ORI G NATI NG _CALL_ATTEM NULL Undefined
PT_AUTHORI SED
P_CALL_EVENT_ADDRESS_COLLECTED Tpl nt 32 MinAddressLength
P_CALL_EVENT_ADDRESS ANALYSED NULL Undefined

P_CALL_EVENT_ORI G NATI NG SERVI CE_CODE

TpCal | Servi ceCodeSet

OriginatingServiceCode

P_CALL_EVENT_ORI G NATI NG_RELEASE

TpRel easeCauseSet

OriginatingRel easeCauseS

et
P_CALL_EVENT TERM NATI NG CALL_ATTEM NULL Undefined

PT

P_CALL_EVENT_TERM NATI NG CALL_ATTEM NULL Undefined
PT_AUTHORI SED

P_CALL_EVENT_ALERTI NG NUL L Undefined
P_CALL_EVENT_ANSWER NUL L Undefined
P_CALL_EVENT_TERM NATI NG_RELEASE TpRel easeCauseSet TerminatingRel easeCauseSet
P_CALL_EVENT REDI RECTED NULL Undef i ned
P_CALL_EVENT_TERM NATI NG_SERVI CE_CODE TpCal | Servi ceCodeSet Ter mi nati ngSer vi ceCode
P_CALL_EVENT_QUEUED NULL Undef i ned

7.6.2.26 TpCallEventinfo

Definesthe Sequence of Data El enent s that specify the event report specific information.

Sequence Element
Name

Sequence Element

Type

Cal | Event Type

TpCal | Event Type

Addi tional Cal | Event| nfo

TpCal | Addi ti onal Event | nfo

Cal | Moni t or Mbde

TpCal | Moni t or Mode

Cal | Event Ti ne

TpDat eAndTi e

ETSI

134

7.6.2.27 TpCallAdditionalEventinfo

ETSI ES 201 915-4 V1.2.2 (2002-05)

Definesthe Tagged Choi ce of Data El enment s that specify additional call event information for certain types

of events.

Tag Element Type

TpCal | Event Type

Tag Element Choice Element Choice Element
Value Type Name

P_CALL_EVENT_UNDEFI NED NULL Undefined
P_CALL_EVENT_ORI G NATI NG_CALL_ATTEMPT NULL Undefined
P_CALL_EVENT_ORI G NATI NG _CALL_ATTEMPT_A NULL Undefined
UTHORI SED
P_CALL_EVENT_ADDRESS_COLLECTED TpAddr ess CollectedAddress
P_CALL_EVENT_ADDRESS ANALYSED TpAddr ess CalledAddress

P_CALL_EVENT_ORI Gl NATI NG_SERVI CE_CODE

TpCal | Servi ceCode | OriginatingServiceCode

P_CALL_EVENT_ORI Gl NATI NG_RELEASE

TpRel easeCause | oyigingtingRel easeCaus

e
P _CALL_EVENT TERM NATI NG CALL_ ATTEMPT NULL Undefined
P_CALL_EVENT TERM NATI NG CALL_ATTEMPT A NULL Undefined
UTHORI SED
P_CALL_EVENT_ALERTI NG NULL Undefined
P_CALL_EVENT_ANSVER NULL Undefined
P_CALL_EVENT_TERM NATI NG_RELEASE TpRel easeCause TerminatingRel easeCause
P_CALL_EVENT_REDI RECTED TpAddr ess ForwardAddress
P_CALL_EVENT_TERM NATI NG_SERVI CE_CODE TpCal | Servi ceCode | TerminatingServiceCode
P_CALL_EVENT_QUEUED NULL Undefined
7.6.2.28 TpCallNotificationRequest
Defines the Sequence of Data Elements that specify the criteriafor an event notification
Sequence Element Name Sequence Element Type Description
Cal | Noti ficati onScope TpCal | Noti ficationScope |Definesthe scope of the notification request.
Cal | Event sRequest ed TpCal | Event Request Set Defines the events which are requested

7.6.2.29 TpCallNotificationScope

Defines a the sequence of Data elements that specify the scope of a notification request.

Of the addresses only the Plan and the AddrString are used for the purpose of matching the notifications against the

criteria
Sequence Element Sequence Element Description
Name Type
Dest i nat i onAddr ess TpAddr essRange Defines the destination address or address range for which the notification is
requested.
Ori gi nati ngAddr ess TpAddr essRange Defines the origination address or address range for which the notification is
requested.

ETSI

135

7.6.2.30 TpCallNotificationInfo

ETSI ES 201 915-4 V1.2.2 (2002-05)

Definesthe Sequence of Data El enent s that specify the information returned to the application in a Call

notification report.

Sequence Element

Sequence Element

Description

Name Type
Cal I Noti ficationReport Scope TpCal I Noti fi cati onReport Scope Defines the scope of the notification report.
Cal | Appl nfo TpCal | Appl nf 0Set Contains additional call info.

Cal | EventInfo

TpCal | Event | nfo

Contains the event which is reported.

7.6.2.31 TpCallNotificationReportScope

Definesthe Sequence of Data El enment s that specify the scope for which a notification report was sent.

Sequence Element Sequence Element Description
Name Type
Desti nati onAddr ess TpAddr ess Contains the destination address of the call.
Ori gi nati ngAddr ess TpAddr ess Contains the origination address of the call

7.6.2.32 TpNotificationRequested

Defines the Sequence of Data Elements that specify the criteria relating to event requests.

Sequence Element
Name

Sequence Element
Type

AppCal | Noti fi cati onRequest

TpCal | Noti fi cati onRequest

Assi gnment | D Tpl nt 32
7.6.2.33 TpNotificationRequestedSet
Defines a numbered Set of Data Elements of TpNotificationRequested.
7.6.2.34 TpReleaseCause
Defines the reason for arelease.
Name Value Description
P_UNDEFI NED 0 The reason of release is not known, because no info was received from the network.
P_USER_NOT_AVAI LABLE 1 The user is not available in the network. This means that the number is not allocated or
that the user is not registered.
P_BUSY 2 The user is busy.
P_NO ANSVER 3 No answer was received
P_NOT_REACHABLE 4 The user terminal is not reachable
P_ROUTI NG_FAI LURE 5 |Arouting failure occurred. For example an invalid address was received
P_PREMATURE_DI SCONNECT 6 The user disconnected the call/call leg during the setup phase.
P_DI SCONNECTED 7 |A disconnect was received.
P_CALL_RESTRI CTED 8 The call was subject of restrictions
P_UNAVAI LABLE_RESOURCE | 9 [Therequest could not be carried out as no resources were available.
P_CGENERAL_FAI LURE 10 [A genera network failure occurred.
P_TI MER_EXPI RY 11 [Thecall/call leg was rel eased because an activity timer expired.

ETSI

136 ETSI ES 201 915-4 V1.2.2 (2002-05)

7.6.2.35 TpReleaseCauseSet
Defines a Numbered Set of Data Elements of TpCallReleaseCause.

7.6.2.36 TpCallLegldentifier

Defines the Sequence of Data Elements that unambiguously specify the Call Leg object.

Sequence Element Sequence Element Sequence Element

Name Type Description
Cal | LegRef erence | pCal | LegRef This element specifies the interface reference for the callLeg object.
Cal | LegSessi onl D TpSessi onl D This element specifies the callLeg session ID.

7.6.2.37 TpCallLegldentifierSet

DefinesaNunber ed Set of Data El ement s of TpCallLegldentifier.

7.6.2.38 TpCallLegAttachMechanism
Defines how a CallLeg should be attached to the call.

Name Value Description

P_CALLLEG ATTACH IMPLICITLY | 0 |CallLeg should be attached implicitly to the call.

P_CALLLEG ATTACH EXPLICITLY | 1 |CdlLegshould be attached explicitly to the call by using the attachM ediaReq|()
operation. This alows e.g. the application to do first user interaction to the party
before he/sheis placed in the call.

7.6.2.39 TpCallLegConnectionProperties

Defines the Sequence of Data Elements that specify the connection properties of the Call Leg object

Sequence Element Sequence Element Sequence Element
Name Type Description
At t achMechani sm TpCal | LegAt t achMechani sm Defines how a CallL eg should be attached to the call.

ETSI

137 ETSI ES 201 915-4 V1.2.2 (2002-05)

7.6.2.40 TpCallLegIinfoReport

Definesthe Sequence of Data El enent s that specify the call leg information requested.

Sequence Element Sequence Element Description
Name Type
Cal | Legl nf oType TpCal | Legl nf oType The type of call leg information.
Call LegStartTi nme TpDat eAndTi ne The time and date when the call leg was started (i.e. the leg was
routed).

Cal | LegConnect edToResour ceTi nme

TpDat eAndTi e The date and time when the call leg was connected to the resource.
If no resource was connected the timeis set to an empty string.
Either this element isvalid or the
CallLegConnectedToAddressTimeis valid, depending on whether
thereport is sent as aresult of user interaction.

Cal | LegConnect edToAddr essTi ne

TpDat eAndTi e The date and time when the call leg was connected to the
destination (i.e. when the destination answered the call). If the
destination did not answer, thetimeis set to an empty string.
Either this element isvalid or the CallConnectedToResourceTime
isvalid, depending on whether the report is sent as aresult of user

interaction.
Cal | LegEndTi ne TpDat eAndTi e The date and time when the call leg was released.
Connect edAddr ess TpAddr ess The address of the party associated with the leg. If during the call

the connected address was received from the party then thisis
returned, otherwise the destination address (for legs connected to a
destination) or the originating address (for legs connected to the
origination) is returned.

Cal | LegRel easeCause TpRel easeCause The cause of the termination. May be present with
P CALL LEG INFO RELEASE CAUSE was specified.
Cal | Appl nfo TpCal | Appl nf oSet Additional information for the leg. May be present with

P CALL_LEG_INFO_APPINFO was specified.

7.6.2.41 TpCallLegIinfoType

Defines the type of call leg information requested and reported. The values may be combined by alogica "OR"

function.
Name Value Description
P_CALL_LEG | NFO_UNDEFI NED 00h Undefined
P_CALL_LEG | NFO_TI MES 01h Relevant call times
P_CALL_LEG | NFO_RELEASE_CAUSE 02h Call leg release cause
P_CALL_LEG | NFO_ADDRESS 04h Call leg connected address
P_CALL_LEG | NFO_APPI NFO 08h Call leg application related information

7.6.2.42 TpCallLegSuperviseTreatment

Defines the treatment of the call leg by the call control service when the call leg supervision timer expires. The values
may be combined by alogical "OR" function.

Name Value Description
P_CALL_LEG SUPERVI SE_RELEASE 01h Release the call leg when the call leg supervision timer expires
P_CALL_LEG SUPERVI SE_RESPOND 02h Notify the application when the call leg supervision timer expires
P_CALL_LEG SUPERVI SE_APPLY_TONE 04h Send awarning tone on the call leg when the call leg supervision timer
expires. If call leg release is requested, then the call leg will be released
following the tone after an administered time period

ETSI

138 ETSI ES 201 915-4 V1.2.2 (2002-05)

8 MultiMedia Call Control Service

8.1 Sequence Diagrams

8.1.1 Barring for media combined with call routing, alternative 1

This sequence illustrates how one application can influence both the call routing and the media stream establishment of
onecall.

In this sequence there is one application handling both the media barring and the routing of the call.

:(Logical - = - = -
View::IpAppLogic) IpAppMultiMediaCallControlManager| |IpAppMultiMediaCallLeg| Jp MultiMe diaCallControlManager |lpMultiMediaCall| | IpMultiMediaCallLeg
T T T

= 1: new()

|
|
|
|
|
2: createNotification() |
T

1

|
3: reportNotification()]
1

:

4: “forward event"

6: mediaStreamMonitorReq()
\

|
|
| 7: med{aStreamMonitorRes()
.

|

9: me;‘:liaStreamAIIow()

8: "forward event"

|
10:createAndRouteCd‘llLegReq()

!

.
11: mediaStreamMonitorRes()
;

|

|

|

|

| |
12: "forwﬁ‘—.\rd event" :

: 13:‘&nediaStreamAIOw()

|

|

|

|

|

|

|

|

|

|

!

1. The application creates a AppMultiMediaCall ControlManager interface in order to handle callback methods.

N

The application expresses interest in all calls from subscriber A. Since createNotification is used and not
createMediaNotification al calls are reported regardless of the media used.

A makes acall with the SIP INVITE with SDP media stream indicating video. The application is notified.
The event is forwarded to the application.

The application creates a new AppMultiMediaCallL eg interface to receive callbacks.

The application sets a monitor on video media streams to be established (added) for the indicated leg.

ETSI

139 ETSI ES 201 915-4 V1.2.2 (2002-05)

7. Since the video media stream was included in the SIP invite, the media streams monitored will be returned in the
monitor result.
8: Theevent isforwarded to the application.

9: The application denies the video media stream, i.e. it is not included in the allowed media streams. This
corresponds to removing the media stream from the setup.

10: The application requests to reroute the call to a different destination (or the same one, etc.)

11: Later in the call the A party triesto establish alower bandwidth video media stream. Thisis again reported with
MediaStreamMonitorRes.

12: The event is forwarded.
13: Thistime the application allows the establishment of the media stream by including the media stream in the
allowed list.
8.1.2 Barring for media combined with call routing, alternative 2

This sequence illustrates how one application can influence both the call routing and the media establishment of one
call.

Media establishment and call establishment are regarded separately by the application.

From the gateway point of view it can actually be regarded as two separately triggered applications, one for media
control and one for routing. Thisis also the way that it is shown here, for clarity.

However, an implementation of the application could combine the medialogic and call logic in one object.

ETSI

140 ETSI ES 201 915-4 V1.2.2 (2002-05)

callLogic : (Logical ‘ ‘ callAppLogic ‘ ‘ IpAppMultiMediaCall H PartyA ‘ ‘ Pary8. ‘ ‘ medial ogic ‘ ‘ mediaAppLogic ‘ ‘ < ‘ ‘ = ‘ ‘ Partya H Party8
View:IpAppl ogic) T IpMuiMedi IpAppCalll (Logic. IiC: c iiLeq pCalll
T T T T T T T T T T
1: new() | | | | | | | | | |
) | [Ee— ! ! | : : :
| | | | 8 rev) /u | | |
L | | | | 4 uaa;;edauoucamn() | | | |
					>D			
			SireppriNotificaton)					
! 6 "forwerd event” ! ! ! ! ! ! ! !								
il 1 l l l l l l l								
8: new() /U								
T il								
L					9: reportMediaNotification()			
U								
					10 orverdeent			
x				[l				
			Il					
11: new()								
T T T -								
		[
		12: createAndRouteCallLegReq()						
13 new()								
[[[[[[L L							
					/U	U		
! ! ! ! ! 14: mediaStreamAllow) ! !								
T				t t t				
							/u	
! ! ! ! !	ssmsigcny	! ; ;						
						/u		
				L	[
	17 "brvardevnt’					18 eventRepartRes{)		
= [[[JEL								
			18: degssignCall()					
H T T T T T T ’U								
					[
! ! ! ! ! !	o eyt) ! ! !							
					20:forwerd event'			
				21)				
				T /U				
					[l			
				22deassignCal)				
				1				
, , , , , , , ,

1. The application creates a new AppM ultiMediaCall ControlManager interface.
2: The application expressesinterest in al calls from subscriber A for rerouting purposes.

3. The application creates a new AppMultiMediaCall ControlManager interface. Thisisto be used for the media
control only.

4. Separately the application expresses interest is some media streams for calls from and to A. The request indicates
interrupt mode.

5: Subscriber A makes a call with the SIP INVITE with SDP media stream indicating video. Since the media
establishment is combined with the SIP INVITE message, both applications are triggered (not necessarily in the
order shown).

Here the call application is notified about the call setup.

6: Theevent isforwarded to the call control application.

7: The call control application creates a new AppMultiMediaCall interface.

8: The call control application creates a new AppMultiMediaCallL eg interface.

9: The media application is notified about the call setup. All media streams from the setup will be indicated.
10: The event is forwarded to the media application.

11: The call control application creates a new AppMultiMediaCallLeg interface.

ETSI

141 ETSI ES 201 915-4 V1.2.2 (2002-05)
12: The call application decidesto reroute the call to another address. Included in the request are monitors on answer
and call end.

However, since the media was also triggered in mode interrupt the call will not proceed until the media streams are
confirmed or rejected.

14: The application allows the audio media stream, but refuses the high bandwidth video, by excluding it from the
allowed list. Since both call processing and media handling is now acknowledged, the call routing can continue
(with a changed SDP parameter reflecting the manipulated media).

15: The Media application is no longer interested in the call.

16: When the B subscriber answers the call application is notified.

17: The event is forwarded to the call application.

19: When later in the call A triesto establish alower bandwidth video stream the media application is triggered.
20: Thetriggering is forwarded to the media application.

21: The application now allows the establishment of the media stream by including the media stream in the
mediaStreamAllow list.

22: The media application is no longer interested in the call.

8.1.3 Barring for media, simple

This sequence illustrates how an application can block the establishment of video streams for a certain user.

5: mediaStreamAllow()

6: deassignCall()

: (Logical o = = =
View::IpApplLogic) IpAppMultiMediaCall ControlManager | IpMultiMediaCallControlMan... IpMultiMediaCall | | IpMultiMediaCallLeg

1 1 1 1 1
1 1: new() 1 1 1 1
1 1 1
2: createMediaNotification() 1 1 1
1		
1		
‘ : 3: reportMediaNatification() : : :		
I 4: "forward event" I		
U\		

|

|

|

|

1: The application starts a new AppMultiMediaCall ControlManager interface for reception of callbacks.

2: The application expressesinterest in all calls from or to subscriber A that use video. The just created App
interface is given as the callback interface.

3: Subscriber A makes a call with the SIP INVITE with SDP media stream indicating video.

4: The messageis forwarded to the application.

ETSI

142 ETSI ES 201 915-4 V1.2.2 (2002-05)

5: The application indicates that the setup of the media stream is not allowed by not including the media streamin
the allowed list. This has the effect of suppressing the video capabilities in the setup.
6: The application is no longer interested in the call.

New attempts to open video streams will again be indicated with a createMediaNotification.

8.1.4 Call Volume charging supervision

This sequence illustrates how an application may supervise a call based on the number of bytes that are exchanged.

15: sendInf nAndCoHectF—?{eq()

|
|
| |

| 16: sepdinfoAndCallectRes()

17: "forward event" T

18: release(),

|
19: superyviseVolumeReq()

|
20’ release()

gl
gl

: (Logical o o : IpAppUICall = i : IpUlICall IpUIManager :
View::IpAppLogic: IpAppMultiMediaCallControlManager IpAppMutiMediaCall IpMultiMediaCallControlMan. .. IpMul iMediaC all IpUIManager
T 1: new() I T T T T T T
L | | | | | |
2: setCallback() ' ! ! ! ! !
L 1 1 1 | | |
| | | | | |
3: new() | | u | | |
+ t | | | | |
| 4; creaIeCaII()/U | | | | [
t t | | |
! 5: ro ‘teReq() ! D ! ! !
| . 'TI | | | | |
| | | | ﬁj I I
| | | | | |
| | | 6: routeRes() | | |
| 7: "forward event" rT T T | |
u\ I | | | |
| | | | | | |
| | | | | |
| | | | | | |
! ! 8: rolteReq() ! ! an ! !
I I ! ! ! >D | |
| | | | | |
: : : 9: routeRes() : : : :
| 10: ‘fowrd event” T T T | |
m< | | | |
| | | |
| | | | |
: 11 superv:iseVo\umeReq() : : = : :
[l [l [l > | |
| | | | | |
| | | | |
| | | | | |
| | | | | |
| | | 12: superviseVolumeRes() | |
| T T | |
| | | |
u\ J | | | |
| | | | |
: 14: cre:aleulca\l() : : :
| | | 1]
| | [l
| >D |
| |
| | |
| |
| |
J |
|
|
|
|
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

I
|
|
|
|
[l
|
|
|
|
13: orvqud event"
I
|
|
|
L
|
|
|
|
|
|
|
|
f
|
|
[
|
|
|
|
|
|
T
|
|
|
|
|
|
|
|
|
|

B e R e e

The application creates a new interface to receive callbacks on the call control manager.
The created interface is set as the callback interface for the call control manager.
The application creates a new interface to receive callback on the call.

The application requests the creation of a call.

The application initiates the call by routing to the origination. Thiswill implicitly create acal leg. The
application requests a notification when the party answers.

ETSI

143 ETSI ES 201 915-4 V1.2.2 (2002-05)

6: When the A party answers the application is notified.
7: Themessageis forwarded to thelogic.

8: The application also routesthe call to the destination. Thisimplicitly createsacall leg. The application requests
to be notified on answer of the B-party.

9: When the B-party answers the application is notified.
10: The message is forwarded to the logic.

11: The application requests to supervise the call. In the request the application specifies alimit on the amount of
bytes that may be transferred. The application specifiesthat if the limit is reached the application should be
notified.

12: When the limit is reached a notification is send to the application.
13: The message is forwarded to the logic.

15: The application plays an announcement to the user, asking whether the user wants to end the call or continue the
cal.

16: When the user answers whether the call should continue.
17: The message is forwarded to the logic.
18: The Ulcall isreleased, since no further announcements are needed.

19: In case the user answers that the call should continue, the supervision isreset with a new maximum number of
allowed bytes. (note that this might have charging consequences, not shown)

20: If the user answered that the call should not continue, the call is released.

ETSI

8.2

144

Class Diagrams

<<Interface>>
IpAppMultiiPartyC allControlManager

(from mpccs)

<<Interface>>
IpAppMultiPartyCall

(from mpccs)

[#eportNotification()
[#callAborted()
[#®managerinterrupted()

™ managerResumed()
[#callOverloadEncountered()
[®calloverloadCeased()

- ¥getinfoRes () 1

[#®supeniseRes()
s upeniseErr()
[#callEnded()
[#createAndRouteCallLegErr()

<<Interface>>
IpAppMultiMediaCallC ontrol Manager

(from mmccs)

[#eportMediaNotification()

N

|
<<uses>>
|

<<Interface>>
IpAppMultiMediaCall

(from mmccs)

[#supeniseVolumeRes()
[#®supeniseVolumeErr()

N

I
<<uses>>,
I

<<Interface>>
IpMultiMediaCallControlManager

(from mmccs)

<<Interface>>

IpMultiMediaCall

[#createMediaNotification()
[#destroyMediaNotification()
[#changeMediaNotification()
[#getMediaNotification()

(from mmccs)

#s upeniseVolumeReq()

Figure 15: Application Interfaces

ETSI

[#getinfoErr() r--

ETSI ES 201 915-4 V1.2.2 (2002-05)

<<Interface>>
IpAppCallLeg

(from mpccs)

[#eventReportRes()
[#eventReportErr()
[#attachMediaRes ()
[#attachMediaErr()

letachMediaRes()

o
=]

e

etachMediaErr()
[#getinfoRes()
[#getinfoErr()
[#routeErm()
[#supeniseRes()
[#supeniseErr()
[#callLegEnded()

]

<<Interface>>
IpAppMultiMediaCallLeg

(from mmccs)

[#mediaStreamMonitorRes ()

\
1A
I
I
I
<<uses>>
I
I
I

<<Interface>>
IpMultiMediaCallLeg

(from mmccs)

¥ ediaStreamAllow()
[#mediaStreamMonitorReq()
[#getMediaStreams ()

145 ETSI ES 201 915-4 V1.2.2 (2002-05)

<<Interface>> R <<Interface>>
IpMultiPartyCallControlManager IpMultiPartyCall IpCallLeg
(from mpccs) (from mpccs)
(from mpccs)
WcreateCall() WrouteReq()
ScreateNotification () Ezﬁ:”&jﬁfg 0 e ven tReportReq()
SdestroyNotification() g 9 el ease()
e reateAndRouteCallLegReq()
SchangeNotification() Brelease() %y etinfoRe q(
getNotification() ieassignCall) g etCall()
SsetCallLoadControl () 9 % ttachMe diaReq()
WgetinfoReq() :
% etachM edi aReq()
[ctChargePlan() %y etCurren tDeginati onAddre ss()
WsetAdviceOfCharge() Bonti)
B, perviseReq() ontinueProcessing()
P WsetChargePlan(
WsetAdviceOfCharg e()
SsuperviseReq()
%d eassign()
<<Interface>>
IpM ul i MediaCallCo ntrolM <<Interface>>
pMu e(fla n)0 anager <<Interface>> IpMultiMediaCallLeg <<Interface>>
rom mmccs : A
IpNujjiMediaCall (from mmccs) IpMultiMediaStream
I s 1 0.. 1 0..n
% MediaNotificati 70 7777777777 I —|- - — {fromsmmces) | - - - - = - = (from mmccs)
reateMediaNotification ’
SdestroyMediaNotification()] .med!aStreamAlloyv()
#changeMediaNotification() Wsupervi seV olume Req () mediaStreamMonitorReq() Mubtract()
WgetMediaNotification() HyetMediastreams)

Figure 16: Service Interfaces

8.3 MultiMedia Call Control Service Interface Classes

The MultiMedia Call Control service enhances the functionality of the MultiParty Call Control Service with multi-
media capabilities.

The MultiMedia Call Control Service is represented by the | pMultiM ediaCall ControlManager, |pMultiMediaCall,
IpMultiMediaCallLeg and |pMultiMediaStream interfaces that interface to services provided by the network. Some
methods are asynchronous, in that they do not lock athread into waiting whilst a transaction performs. In this way, the
client machine can handle many more calls, than one that uses synchronous message calls. To handle responses and
reports, the developer must implement |pAppMultiMediaCallControlManager, |pAppMultiMediaCall and
IpAppMultiMediaCallLeg to provide the callback mechanism.

To handle the multi-media aspects of a call the concept of media stream isintroduced. A media streamis bi-directiona
media stream and is associated with a call leg. These media streams are usually negotiated between the terminalsin the
call. The multi-party Call Service gives the application control over the media streams associated with thelegsin a
multi-media call in the following way:

« the application can be triggered on the establishment of a media stream that meets the application defined
characteristics.

« the application can monitor on the establishment (addition) or release (subtraction) of media streams of an
ongoing call.

» the application can allow or deny the establishment of media streams (provided the stream establishment was
monitored/notified in interrupt mode).

« the application can explicitly subtract already established media streams.

« the application can request the media streams associated with a specific leg.

ETSI

146 ETSI ES 201 915-4 V1.2.2 (2002-05)

8.3.1 Interface Class IpMultiMediaCallControlManager
Inherits from: IpMultiPartyCall Control M anager

The Multi Media Call Control Manager is the factory interface for creating multimedia calls. The multi-media call
control manager interface provides the management functions to the multi-media call control service. The application
programmer can use this interface to create, destroy, change and get media stream related notifications.

<<|Interface>>

IpMultiMediaCallControlManager

createMediaNotification (applnterface : in IpAppMultiMediaCallControlManagerRef, notificationMediaRequest
: in TpNotificationMediaRequest) : TpAssignmentID

destroyMediaNotification (assignmentID : in TpAssignmentID) : void

changeMediaNotification (assignmentID : in TpAssignmentID, notificationMediaRequest : in
TpNotificationMediaRequest) : void

getMediaNatification () : TpMediaNatificationRequestedSet

Method
creat eMedi aNoti fication()

This method is used to create media stream notifications so that events can be sent to the application.

This applies both to callsetup media (e.g. SIP initial INVITE or H.323 with faststart) and for media setup during the
call.

Thisisthefirst step an application has to do to get initial notifications of media streams happening in the network.
When such an event happens, the application will be informed by reportMediaNotification(). In case the application is
interested in other events during the context of a particular call session it has to use the mediaStreamM onitorReq()
method on the Multi-Media call leg object.

The createM ediaNotification method is purely intended for applications to indicate their interest to be notified when
certain media stream events take place. It is possible to subscribe to a certain media stream event for a whole range of
addresses, e.g. the application can indicate it wishesto be informed when acall is made to any humber starting with
800.

If some application already requested notifications with criteria that overlap the specified criteria, the request is refused
with P_INVALID_CRITERIA. The criteria are said to overlap if both originating and terminating ranges overlap and
the same number plan is used.

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used.
In case the createM ediaNotification contains no callback, at the moment the application needs to be informed the
gateway will use as callback the one that has been registered by setCallback().

Returns assignmentI D: Specifiesthe ID assigned by the multi-media call control manager interface for this newly-
created notification.

Parameters

applnterface : in I pAppMilti Medi aCal | Cont rol Manager Ref
Specifies areference to the application interface, which is used for callbacks.

ETSI

147 ETSI ES 201 915-4 V1.2.2 (2002-05)

notificati onMedi aRequest : in TpNotificati onMedi aRequest

The mediaMonitorMode is a parameter of TpM ediaStreamRequest and can be in interrupt or in notify mode. If in
interrupt mode the application has to specify which media streams are allowed by calling mediaStreamAllow on the
callLeg.

The notificationM ediaRequest parameter specifies the event specific criteria used by the application to define the event
required. Thisisthe media portion of the criteria. Only events that meet the notificationM ediaRequest are reported.

Individual addresses or address ranges may be specified for the destination and/or origination.

Returns

TpAssi gnnent | D

Raises

TpCommonExceptions, P_INVALID CRITERI A, P_I NVALI D_| NTERFACE_TYPE,
P_I NVALI D_EVENT_TYPE

Method
destroyMedi aNoti fi cation()

This method is used by the application to disable Multi Media Channel notifications

Parameters

assignnmentI D : in TpAssignnmentlD

Specifies the assignment 1D given by the Multi Media call control manager interface when the previous
enableM ediaNotification was called. If the assignment ID does not correspond to one of the valid assignment I Ds, the
exception P_INVALID_ASSIGNMENTID will be raised.

Raises
TpCommonExcepti ons

Method
changeMedi aNot i fication()

This method is used by the application to change the event criteriaintroduced with createM ediaNotification. Any stored
criteria associated with the specified assignmentI D will be replaced with the specified criteria.

Parameters

assignmentI D : in TpAssignnentlD

Specifies the ID assigned by the multi-media call control manager interface for the media stream notification. If two
callbacks have been registered under this assignment 1D both of them will be disabled.

notificati onMedi aRequest : in TpNotificati onMedi aRequest

Specifies the new set of event specific criteria used by the application to define the event required. Only events that
meet these criteria are reported.

ETSI

148 ETSI ES 201 915-4 V1.2.2 (2002-05)

Raises
TpCommonExcepti ons, P_I NVALI D_ASSI GNVENT | D, P_I NVALI D_CRI TERI A,
P_| NVALI D_EVENT_TYPE

Method
get Medi aNot i fication()

This method is used by the application to query the event criteria set with createM ediaNotification or
changeM ediaNotification.

Returns notificationsM ediaRequested: Specifies the notifications that have been requested by the application.

Parameters
No Parameters were identified for this method.

Returns

TpMedi aNot i fi cati onRequest edSet
Raises

TpComonExcept i ons

8.3.2 Interface Class IpAppMultiMediaCallControlManager

Inherits from: 1pAppM ultiPartyCall Control M anager

The Multi Media call control manager application interface provides the application call control management functions
to the multi media call control service.

<<Interface>>

IpAppMultiMediaCallControlManager

reportMediaNotification (callReference : in TpMultiMediaCallldentifier, callLegReferenceSet : in
TpMultiMediaCallLegldentifierSet, mediaStreams : in TpMediaStreamSet, type : in
TpMediaStreamEventType, assignmentlD : in TpAssignmentID) : TpAppMultiMediaCallBack

ETSI

149 ETSI ES 201 915-4 V1.2.2 (2002-05)

Method
report Medi aNotification()

This method is used to inform the application about the establishment of media streams.

If the corresponding monitor was in interrupt mode, then the application has to allow or deny the streams using
mediaStreamAllow() method.

Returns appl nterface : Specifies areference to the application interface which implements the callback interface for the
new call.

Returns appMultiMediaCallBack: Specifies references to the application interface which implements the callback
interface for the new multi-media call and/or new call leg. This parameter may be null if the notification is being given
in NOTIFY mode

Parameters

call Reference : in TpMilti Medi aCallldentifier

Specifies the call interface on which the media streams were added or subtracted. It also gives the corresponding
session|D.

cal | LegReferenceSet : in TpMilti Medi aCal | Legl denti fi er Set
Specifies set of all callLeg references (interface and sessionl D) for which the media streams were established or
subtracted.

First in the set is the reference to the originating callLeg. It indicates the call leg related to the originating party. In case
thereis a destination call leg thiswill be the second leg in the set. from the notificationinfo can be found on whose
behalf the notification was sent.

However, this parameter will be null if the notification is being given in NOTIFY mode

medi aStreans : in TpMedi aSt r eantet

Specifies all the media streams that are established. Note that this can be more media streams than requested in the
createMediaNotification, e.g. when faststart is used in H.323 or in SIP when an INVITE method with SDP media
stream parametersis used.

type : in TpMedi aStreankEvent Type
Refers to the type of event on the media stream, i.e. added or subtracted.

assignnmentI D : in TpAssignnentlD

Specifies the assignment id which was returned by the createM ediaNotification() method. The application can use
assignment id to associate events with event specific criteriaand to act accordingly.

Returns
TpAppMul ti Medi aCal | Back

ETSI

150 ETSI ES 201 915-4 V1.2.2 (2002-05)

8.3.3 Interface Class IpMultiMediaCall

Inherits from: IpMultiPartyCall

<<Interface>>
IpMultiMediaCall

superviseVolumeReq (callSessionID : in TpSessionID, volume : in TpCallSuperviseVolume, treatment : in
TpCallSuperviseTreatment) : void

Method
super vi seVol uneReq()

The application calls this method to supervise acall. The application can set a granted data volume this call.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

vol ume : in TpCall Supervi seVol une
Specifies the granted time in milliseconds for the connection.

treatnment : in TpCall Supervi seTreat nent
Specifies how the network should react after the granted volume expired.

Raises
TpComonExcepti ons, P_I NVALI D SESSI ON_|I D

ETSI

151 ETSI ES 201 915-4 V1.2.2 (2002-05)

8.3.4 Interface Class IpAppMultiMediaCall

Inherits from: |pAppMultiPartyCall

The application multi-media call interface contains the callbacks that will be used from the multi-media call interface
for asynchronous results to requests performed by the application. The application should implement thisinterface.

<<Interface>>
IpAppMultiMediaCall

superviseVolumeRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedVolume : in
TpCallSuperviseVolume) : void

superviseVolumeErr (callSessionID : in TpSessionID, errorindication : in TpCallError) : void

Method
super vi seVol uneRes()

This asynchronous method reports a call supervision event to the application when it hasindicated itsinterest in these
kind of events.

It is also called when the connection is terminated before the supervision event occurs. Furthermore, this method is
invoked as a response to the request also when a tariff switch happensin the network during an active call.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call

report : in TpCall Supervi seReport
Specifies the situation which triggered the sending of the call supervision response.

usedVol une : in TpCall Supervi seVol une
Specifies the used time for the call supervision (in milliseconds).

Method
super vi seVol uneErr ()

This asynchronous method reports a call supervision error to the application.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

ETSI

152 ETSI ES 201 915-4 V1.2.2 (2002-05)

8.3.5 Interface Class IpMultiMediaCallLeg

Inherits from: IpCallLeg

The Multi-Media call leg represents the signalling relationship between the call and an address. Associated with the
signalling relationship there can be multiple media channels. Media channels can be started and stopped by the
terminals themselves. The application can monitor on these changes and influence them.

<<Interface>>
IpMultiMediaCallLeg

mediaStreamAllow (callLegSessionID : in TpSessionID, mediaStreamList : in TpSessionIDSet) : void

mediaStreamMonitorReq (callLegSessionID : in TpSessionID, mediaStreamEventCriteria : in
TpMediaStreamRequestSet) : void

getMediaStreams (callLegSessionID : in TpSessionID) : TpMediaStreamSet

Method
medi aSt reamAl | ow()

This method can be used to alow setup of a media stream that was reported by a mediaStreamM onitorRes method.

Parameters

call LegSessionl D : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

medi aStreanli st : in TpSessi onl DSet
Refers to the media streams (sessionl Ds) as received in the mediaStreamMonitorRes() or in the

reportMediaNotification() that is allowed to be established.
Raises
TpComonExcepti ons, P_I NVALI D SESSI ON_|I D

Method
medi aSt r eamvbni t or Req()

With this method the application can set monitors on the addition and subtraction of media streams. The monitors can
either be general or restricted to certain types of codecs.

Monitoring on addition of media streams can be done in either interrupt of notify mode. In the first case the application
has to allow or deny the establishment of the stream with mediaStreamAllow.

Monitoring on subtraction of media streamsis only alowed in notify mode.

Parameters

call LegSessionlD : in TpSessionlD
Specifies the session ID of the call leg.

ETSI

153 ETSI ES 201 915-4 V1.2.2 (2002-05)

nmedi aStreantEventCriteria : in TpMedi aStreanRequest Set
Specifies the event specific criteria used by the application to define the event required. The mediaMonitorMode.is a

parameter of TpMediaStreamRequest and can be in interrupt or in notify mode. If in interrupt mode the application has
to respond with mediaStreamAllow().
Raises

TpConmonExcept i ons, P_I NVALI D_SESSI ON | D, P_I NVALI D_CRI TERI A
P I NVALI D_EVENT_TYPE

Method
get Medi aStreans()

This method is used to return al currently established media streams for the leg.

Parameters

cal |l LegSessionl D : in TpSessionlD
This method is used to return al currently open media channels for the leg,

Returns

TpMedi aSt r eantet

Raises

TpComonExcepti ons, P_I NVALI D SESSION | D

8.3.6 Interface Class IpAppMultiMediaCallLeg
Inherits from: IpAppCallLeg

The application multi-media call leg interface contains the callbacks that will be called from the multi-media call leg for
asynchronous results to requests performed by the application. The application should implement this interface.

<<Interface>>

IpAppMultiMediaCallLeg

mediaStreamMonitorRes (callLegSessionID : in TpSessionID, streams : in TpMediaStreamSet, type : in
TpMediaStreamEventType) : void

ETSI

154 ETSI ES 201 915-4 V1.2.2 (2002-05)

Method
medi aSt r eanivbni t or Res()

This method is used to inform the application about the media streams that are being established (added) or subtracted.
If the corresponding request was done in interrupt mode, the application hasto allow or deny the media streams using
mediaStreamAllow().

Parameters

cal |l LegSessionl D : in TpSessionlD
Specifiesthe session ID of the call leg for which the media channels are opened or closed.

streans : in TpMedi aStreantet

Specifies all the media streams that are added. Note that this can be more media streams than requested in the
createMediaNotification, e.g. when faststart is used in H.323 or SIP INVITE with SDP media stream parametersis
used.

type : in TpMedi aStreanEvent Type
Refers to the type of event on the media stream, i.e. added or subtraced.

8.3.7 Interface Class IpMultiMediaStream
Inherits from: IpService

The Multi Media Stream Interface represents a bi-directional information stream associated with acall leg. Currently,
the only available method is to subtract the media stream.

<<Interface>>

IpMultiMediaStream

subtract (mediaStreamSessionID : in TpSessionID) : void

Method
subtract ()

This method can be used to subtract the multi-media stream.

Parameters

medi aSt reanSessionl D : in TpSessionl D
Specifies the sessionl D for the media stream.

ETSI

155 ETSI ES 201 915-4 V1.2.2 (2002-05)

Raises
TpComonExcepti ons, P_I NVALI D SESSI ON_ | D

8.4 MultiMedia Call Control Service State Transition Diagrams

There are no State Transition Diagrams for the MultiMedia Call Control Service package

8.5 Multi-Media Call Control Data Definitions
This clause provides the Multi-Media call control data definitions necessary to support the API specification.
The general format of a data definition specification is described below.
e DataType
This shows the name of the data type.
e Description
This describes the data type.
e Tabular Specification
This specifies the data types and values of the data type.
e Example
If relevant, an example is shown to illustrate the data type.

All data types referenced but not defined in this clause are either in the common call control data definitions clause of
the present document (clause 10) or in the common data definitions which may be found in ES 201 915-2.

8.5.1 Event Notification Data Definitions

8.5.1.1 TpMediaStreamRequestSet

DefinesaNunbered Set of Data El ements of TpMedi aSt r eanRequest

8.5.1.2 TpMediaStreamRequest

Definesthe Sequence of Data El enent s that specify the type of media stream.

Sequence Element Name Sequence Element Type
Direction TpMedi aStreanDi recti on
Dat aTypeRequest TpMedi aSt r eanDat aTypeRequest
Medi aMoni t or Mbde TpCal | Moni t or Mode

ETSI

8.5.1.3

156

TpMediaStreamDirection

ETSI ES 201 915-4 V1.2.2 (2002-05)

Defines the direction in which the media stream is established (as seen from the leg).

Name

Value

Description

P_SEND_ONLY

0

Indicates that the offerer is only willing to send
this media stream

P_RECEI VE_ONLY

Indicates that the offerer is only willing to
receive this media stream

P_SEND_RECEI VE

Indicates that the offerer iswilling to send and
receive this media stream

8.5.1.4 TpMediaStreamDataTypeRequest
Definesthe Tagged Choi ce of Data El enent s that specify the mediatype and associated codecs that are of
interest.
Tag Element Type
TpMedi aType
Tag Element Value Choice Element Type Choice Element Name
P_AUDI O TpAudi oCapabi | i ti esType Audi o
P_VI DEO TpVi deoCapabi | i ti esType Vi deo
P_DATA TpDat aCapabi lities Dat a
8.5.1.5 TpAudioCapabilitiesType

Defines the audio codec. The requested capabilities can be indicated by adding the values together (i.e. alogical OR
function). e.g. 28 indicatesinterest in all G.722 codes (4+8+16).

Name Value Description
P_Gri1l1_64K 1 0.711 on 64k, both alaw and ulaw
P_Gr11_56K 2 0.711 on 56k, both alaw and ulaw
P_Gr22_64K 4
P_Gr22_56K 8
P_Gr22_48K 16
P_Gr231 32
P_Gr28 64
P_Gr29 128
P_Gr29_ANNEX_A 256
P_I S1172 512
P_1S1318 1024
P_G729_ANNEXB 2048
P_G729_ANNEX_A AND B 4096
P_Gr231_ANNEX _C 8192
P_GSM FULLRATE 16384
P_GSM HALFRATE 32768
P_GSM_ENHANCED 65536

ETSI

157 ETSI ES 201 915-4 V1.2.2 (2002-05)

8.5.1.6 TpVideoCapabilitiesType

Defines the video codec. The requested capabilities can be indicated by adding the values together (i.e. alogical OR
function). e.g. 3 indicates both H.261 and H.262 codecs.

Name Value Description

P_H261

P_H262

P_H263

ol | N

P_1S11172

8.5.1.7 TpDataCapabilities

A TplInt32 defining the minimum maxBitRate in bit/s. |.e. al data media streams whose maxBitRate exceeds this
number are reported.

8.5.1.8 TpMediaStreamEventType

Defines the action performed on the media stream.

Name Value Description
P_MEDI A_STREAM ADDED 0 The media stream is added
P_MEDI A_STREAM SUBTRACTED 1 The media stream is subtracted.

8.5.1.9 TpMediaStreamSet

DefinesaNunbered Set of Data El ements of TpMediaStream

8.5.1.10 TpMediaStream

Definesthe Sequence of Data El enent s that specify the type of media stream.

Sequence Element Name Sequence Element Type
Direction TpMedi aStreanDirecti on
Dat aType TpMedi aSt r eanDat aType
Channel Sessi onl D TpSessi onl D
Medi aSt ream I pMul ti Medi aSt ream

8.5.1.11 TpMediaStreamDataType

Defines the type of the reported media stream. It isidentical to TpMedi aSt r eanDat aTypeRequest , only now the
values are not used as amask, but as the actual codec should be indicated for audio and video. For data the actual
maximum bit rate is indicated.

85.2 Multi-Media Call Control Data Definitions

8.5.2.1 IpMultiMediaCall

Definesthe addressof an| pMul t i Medi aCal | Interface.

8.5.2.2 IpMultiMediaCallRef

DefinesaRef er ence to type IpMultiMediaCall.

ETSI

8.5.2.3

158

IpAppMultiMediaCall

ETSI ES 201 915-4 V1.2.2 (2002-05)

Definesthe address of an | pAppMul t i Medi aCal | Interface.

8.5.24

IpAppMultiMediaCallRef

DefinesaRef er ence to type IpAppMultiMediaCall.

8.5.2.5

IpMultiMediaCallLeg

Definesthe addressof an | pMul t i Medi aCal | Leg Interface.

8.5.2.6

IpMultiMediaCallLegRef

DefinesaRef er ence to type IpMultiMediaCallLeg.

8.5.2.7

IpAppMultiMediaCallLeg

Definesthe address of an | pAppMul ti Medi aCal | Leg Interface.

8.5.2.8

IpAppMultiMediaCallLegRef

Defines aRef er ence to type IpAppMultiMediaCallLeg.

8.5.2.9

DefinesaNunber ed Set

of Data El ements of

TpAppMultiMediaCallLegRefSet

8.5.2.10 TpMultiMediaCallldentifier
Defines the Sequence of Data Elements that unambiguously specify the MultiMediaCall object

| pAppMul ti Medi aCal | LegRef .

Sequence Element Name

Sequence Element Type

Sequence Element Description

MVCal | Ref er ence

I pMul ti Medi aCal | Ref

This element specifies the interface reference for the call object.

MMCal | Sessi onl D

TpSessi onl D

This element specifies the call session ID of the call created.

8.5.2.11 TpMultiMediaCallldentifierSet

Defines a Numbered Set of Data Elements of TpMultiMediaCallldentifier

8.5.2.12 TpMultiMediaCallLegldentifier

Defines the Sequence of Data Elements that unambiguously specify the Call Leg object

Sequence Element Name

Sequence Element Type

Sequence Element Description

MVCal | LegRef erence

I pMul ti Medi aCal | LegRef

This element specifies the interface reference for the callLeg
object.

MMCal | LegSessi onl D

TpSessi onl D

This element specifies the callLeg session ID of the call created.

8.5.2.13

IpAppMultiMediaCallControlManager

Definesthe address of an | pAppMul ti Medi aCal | Cont r ol Manager Interface.

ETSI

8.5.2.14

159

IpAppMultiMediaCallControlManagerRef

DefinesaRef er ence to type IpAppMultiMediaCall ControlManager.

8.5.2.15 TpAppMultiMediaCallBack

ETSI ES 201 915-4 V1.2.2 (2002-05)

Defines the Tagged Choice of Data Elements that references the application callback interfaces.

Tag Element Type

TpAppMul ti Medi aCal | BackRef Type

Tag Element Value

Choice Element Type

Choice Element Name

P_APP_CALLBACK_UNDEFI NED

NULL

Undef i ned

P_APP_MULTI MEDI A_CALL_CALLBACK

| pAppMul ti Medi aCal | Ref

AppMul ti Medi aCal |

P_APP_CALL_LEG CALLBACK

| pAppMul ti Medi aCal | LegRef

AppMul ti Medi aCal | Leg

P_APP_CALL_AND CALL_LEG CALLBACK

TpAppMul ti Medi aCal | LegCal | Back

AppMul ti Medi aCal | AndCal | Leg

8.5.2.16 TpAppMultiMediaCallBackRefType

Defines the type application call back interface.

Name Value Description

P_APP_CALLBACK_UNDEFI NED 0 Application Call back interface undefined

P_APP_MJULTI MEDI A_CALL_CALLBACK 1 Application Multi-Media Call interface
referenced

P_APP_CALL_LEG CALLBACK 2 Application Multi-Media CallLeg interface
referenced

P_APP_CALL_AND CALL_LEG CALLBACK 3 Application Multi-Media Call and CallLeg
interface referenced

8.5.2.17 TpAppMultiMediaCallLegCallBack

Defines the Sequence of Data Elements that references a call and a call leg application interface.

Sequence Element Name

Sequence Element Type

AppMil ti Medi acal |

| pAppMul ti Medi aCal | Ref

AppCal | LegSet

TpAppMul ti Medi aCal | LegRef Set

Specifies the set of al call leg call back
references. First in the set isthe reference to
the call back of the originating callLeg. In
casethereisacall back to adestination call
leg thiswill be second in the set.

ETSI

160 ETSI ES 201 915-4 V1.2.2 (2002-05)

8.5.2.18 TpCallSuperviseVolume

Defines the Sequence of Data Elements that specify the amount of volume that is allowed to be transmitted for the
specific connection.

Sequence Element Name | Sequence Element Type Sequence Element Description
Vol uneQuantity Tpl nt 32 This datatypeisidentical to a Tpint32, and defines the quantity
of the granted volume that can be transmitted for the specific
connection.
Vol uneUni t Tpl nt 32 This datatypeisidentical to a Tpint32, and defines the unit of the
granted volume that can be transmitted for the specific
connection.

Unit must be specified as 10"n number of bytes, where
n denotes the power.

When the unit is for examplein kilobytes, VolumeUnit must be
set to 3.

8.5.2.19 TpNotificationMediaRequest

Defines the Sequence of Data Elements that specify the criteria for a media stream notification.

Sequence Element Name Sequence Element Type Description
Medi aNot i fi cati onScope TpCal | Noti fi cati onScope Defines the scope of the notification request.
Medi aSt r eansRequest ed TpMedi aSt r eanRequest Set Defines the media stream events which are requested

8.5.2.20 TpMediaNotificationRequested

Defines the Sequence of Data Elements that specify the criteriarelating to event requests.

Sequence Element Name Sequence Element Type
ppNoti fi cati onMedi aRequest pNoti fi cati onMedi aRequest

ssignment | D pl nt 32

8.5.2.21 TpMediaNotificationsRequestedSet
Defines a numbered Set of Data Elements of TpM ediaNotificationRequested.

9 Conference Call Control Service

9.1 Sequence Diagrams

9.1.1 Meet-me conference without subconferencing

This sequence illustrates a pre-arranged meet-me conference for a specified time period. During this timeslot parties can
"call into" the meet-me conference by dialling a special humber.

For each participant joining the conference, the application can decide to accept the participant in to the conference.

The application can aso be notified when parties are leaving the conference.

ETSI

161 ETSI ES 201 915-4 V1.2.2 (2002-05)

: (Logical o o o
View::IpApplogic) IpAppConfCallControlManager IpAppConfCall IpConfCallControlM anager

|
! 1: new() !

1

2:: reseneResources()

: IpConfCall

T
|
|
|
|
|
|
|
|
1
|
|
|
|
|
|
|
|
|
|
3: conferenceCreated()

[l
|
|
|
|
|
|
|
|
|
|
|
|
|
L

5: new()

4: "forward event"

]

6: leaveMonitorReq()

! [

7: partyJoined()

8: attachMedia 0
|

|

|
11: attachMedia ()

:
|

|
|
| T
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
I . |
10: “forward event” 9: panyJ?lned()
T |
| |
| |
| |
| |
| |
| |

13: "“foward event"

H

|
14: releasg()
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
:
|
12: leaveM qnitorRes()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

1. The application creates a new object to receive the callbacks from the conference call control manager.
2: The application reserves resources for some time in the future.

With this same method the application registers interest in the creation of the conference (e.g. when the first party to
joins the conference or at the specified start time, thisisimplementation dependant).

ETSI

162 ETSI ES 201 915-4 V1.2.2 (2002-05)

The reservation also includes the conference policy. One of the elements is whether joined parties must be explicitly
attached. If so, thisistreated as an implicit joinMonitorReq.

3

o N o a &

The conference is created.

The message is forwarded to the application.

The application creates an object to receive the call back messages from the conference call.
The application also requests to be notified when parties leave the conference.

The applicationis notified of the first party that joined the conference

When the party is allowed to join the conference, the party is added.

Alternatively, the party could have been rejected with areleaseCallLeg.

9:

A new party joins the conference and the application is notified.

10: The message is forwarded to the application.

11: This party also is allowed into the conference by attaching the leg.

12: A party leaves the conference.

13: The message is forwarded to the application.

14: The application decides to release the entire conference.

ETSI

163 ETSI ES 201 915-4 V1.2.2 (2002-05)

9.1.2 Non-add hoc add-on with subconferencing

This sequence illustrates a prearranged add-on conference. The end user that initiates the call, communicates with the
conference application via a web interface (not shown). By dragging and dropping names from the addressbook, the
end-users adds parties to the conference.

Also viathe web-interface, the end-user can group parties in subconferences. Only parties in the same subconference
can talk to each other.

|
131 moveCallLeg()
1

|
|
12: splitSubConference(:)
T
|
|
1
|
|
| |
|
|

: (Logical o : IpAppCallleg o : IpConfCall first : : IpCallLeg second :
View::IpAppLogic) |I[pAppConfCall IpConfCallControlManager IpSubConfCall IpSubConfCall
T T T T T T T T
| 1: new() I I I I I I I
L | | | | | |
| | | | | |
‘2: OLDcreaIeConfera‘nce 0 : : : : :
+ + | | | |
| | D | | | |
: 3 getSq‘bConferences() : : : : :
T T T | | |
| | | U | | |
| | | | | | |
a | | | | | |
4: hew() | | | | | |
T | | | | |
| | | | | |
I 5: createAndRouteCallLegRe! I I I I
| cr ‘a eAndroutet-aliLeg \q() | | 6: new() | | |
| | | | ﬂ |
| | | | |
| | | | |
| | | | | |
| 7: createAndRouteCallLegReq() | | | |
| | | | \ | |
| | | | /I_‘ | |
: 8: créateAndRouteCaIILegRa‘q() : : : :
; X ; ; . | |
| | | | /IJ | |
: 9 cr#ateAndRouteCallLegRé‘q() : : : :
| | | | | |
! ! ! 10: eventReportRes() /U ! !
11: "forward event" ! ! ! ! ! :
s | | | | |
u\ | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | |
| | | | |
T T T |
| | /IJ |
| | |
1 1 1
| |
| |
| |
| |
| |

|
14: release()

1. The application creates a new interface to receive the callbacks from the conference call.

2: The application initiates the conference. There has been no prior resource reservation, so there is a chance that
no resources are available when parties are added to the conference.

The conferenceCall interface object is returned.
3: Together with the conference a subconference isimplicitly created.

However, the subconference is not returned as a result of the createConference, therefore the application uses this
method to get the subconference.

4: The application creates anew IpAppCallLeg interface

5: The application adds the first party to the subconference. This processis repeated for al 4 parties. Note that in
the following not all steps are shown.

ETSI

164 ETSI ES 201 915-4 V1.2.2 (2002-05)

The gateway creates a new |pCallLeg interface.
The application adds parties to the subconference.

The application adds parties to the subconference.

The application adds parties to the subconference.
10: When a party A answers the application is notified.

We assume that all parties answer. This happensin the same way as for party A and is not shown in the following.
11: The message is forwarded to the application.
12: The application decides to split the conference. Party C&D are indicated in the message.

The gateway will create a new subconference and move party C and D to the new subconference.

The configuration is A&B arein speech, C&D are in speech. There is no bearer connection between the two
subconferences.

13: The application moves one of the legs from the second subconference back to the first. The configuration now is
A,B&C arein speech configuration. D isaone in its own subconference.

14: The second subconference is released. Since party D was in this subconference, this callleg is also released.

This |eaves one subconference with A,B & C.

ETSI

165 ETSI ES 201 915-4 V1.2.2 (2002-05)

9.1.3 Non-addhoc add-on multimedia

This sequence illustrates a prearranged add-on multi-media conference. The end user that initiates the call,
communicates with the conference application via a web interface (not shown). By dragging and dropping names from
the addressbook, the end-users adds parties to the conference.

Also viathe web-interface, the end-user can do things that normally the chair would be able to do, e.g. determine who
has the floor (e.g. whose video is being broadcast to the other participants) or inspect the video of participants who do
not have the floor (e.g. to see how they react to the current speaker).

: (Logical : IpAppSubConfCall PartyA : PartyB : o : IpConfCall : IpSubConfCall PartyA : PartyB :
View::IpAppLogic; IpAppCallLeg IpAppCallLeg IpConfCallControIManage IpAppCalliLeg | | IpAppCallLeg
T 1: new() T T T T T T T T
|) | | | | | |
1] I I I I I
: 2 crealeConkre+ce() : : : :
| [| 1 I I
| 3: getSub Conferences()) I | |
T T T T |
| | | | /u |
s | | | | |
| 1 | | | |
| | 5:createAndRouteCallLegReq() | | | 6: new(
t
|
7: new() :

8: createAndl;lfﬁ‘eCallLegReq()
|

|
10: createAndRoyteCallLegReq()

T
11: crea!eAndRo+teCallLegReq()

|
14: chairSelection()

iy

t
|
|
|
|
|
|
|
|
|
|
T
|
|
|
| | 12: eventReportRes()
T
|
|
|
f
|
|
|
|
[l
|
|
|
16: appoihtSpeaker() [
I

t
|
|
|
|
|
I
|
|
|
|
T
|
|
|
|

13: "forward event" T
I
|
|
T
|
|
|
|
|
|
|
|
|

T
|
|
|
T
|
|
|
15: gventReportRes()
[l
|
|
|
|

|
17: insp%ctvid eo()

|

|

|

| |

| |

| |

18: inspectVideo() |
[[

| |
|

|

|

T

|

|

|

1

|
19: inspectyideoCancel()

20: floorRequest()

21: "forward event" J

|

|
|
|
I
|
|
22: appoi!’\tSpeaker()
|
|
|
|
|
|

=

The application creates a new object for receiving callbacks from the MM SubConference.

2: When the user selects the appropriate option in the web interface, the application will create a conference
without resource reservation. The policy for video is set to chairperson switched.

w

The application requests the subconference that was implicitly created together with the conference.

&

The application creates a new IpAppCallLeg interface.

(2l

. The application adds the first party to the subconference. This process is repeated for al 4 parties. Note that in
the following not all steps are shown.

ETSI

166 ETSI ES 201 915-4 V1.2.2 (2002-05)

The gateway creates a new |pCallLeg interface.
The application creates a new IpAppCallLeg interface.

The application add parties to the conference and monitors on success.

The gateway creates a new IpCallLeg interface.
10: The application add parties to the conference and monitors on success.
11: The application add parties to the conference and monitors on success.
12: When a party A answers the application is notified.

We assume that all parties answer.
14: We assume that A was the initiating party.

Theinitiating end-user is assigned the chairpersonship.

This message is needed to synchronise the chairpersonship in the application with the MCU chairpersonship, since the
chair can also use H.323 messages to control the conference.

15: When a party B answers the application is notified. We assume the other parties answer as well and thisis not
shown below in the sequence.

16: Chairperson (A) decides via WWW interface that party B is the speaker. This means that the video of B is
broadcast to the rest.

17: The chairperson select the video of C in order to judge their reactions on B's proposal.

18: The chairperson select the video of D in order to judge their reactions on B's proposal.

19: The chairperson goes back to receiving the broadcasted videostream (B)

20: User C requests the floor viathe H.323 signals. The application is notified of this.

21: The message is forwarded to the application logic.

22: The chairperson (viathe WWW interface) grants the request by appointing C as the speaker.

ETSI

167 ETSI ES 201 915-4 V1.2.2 (2002-05)

9.14 Resource Reservation

This sequence illustrates how an application can check and reserve resources for a meet-me conference.

: (Logical o o . IpConfCall
View:: pApplLogic) IpAppConfCallControlManager | | IpConfCallControlManager
T T
1 1: checkResources()

2: new() |

gl

3: reseneResources()
1

|
l
4: ﬁeeRésources()

} s
] s
;]
i s

|
5: reseneResources()

7: “forward event"

==

|
|
|
|
|
|
|
|
|
1
|
6: conferenceCreated()
|
|
|
|
|
|
|
|
|
|
|
|
|

1. The application checksif enough conference resources are available in a given time period.

2: The application creates a object to receive callback messages.

w

The application reserves resources for the time period. The callback object isin order to receive anotification
when the conference is started.

Because the time was wrong by accident, the application cancels the earlier reservation.
The application makes a new reservation.

At the specified time, or when the first party joins the conference the application is notified.

N e g A

The event is forwarded to the application.

ETSI

9.2

168

Class Diagrams

ETSI ES 201 915-4 V1.2.2 (2002-05)

The conference call control service consists of two packages, one for the interfaces on the application side and one for
interfaces on the service side. The class diagrams in the following figures show the interfaces that make up the
conference call control application package and the conference call control service package.

This class diagram shows the interfaces that make up the application conference call control service package and the
relation to the interfaces in the conference call control service package.

The diagram al so shows the inheritance relation between the multi-party call application interfaces and the conference
call application interfaces; the conference interfaces are specialisations of the corresponding multi-party call interfaces.

Communication between the application and service packages is done via the <<uses>> relations; the interfaces can
communicate with callback methods in the corresponding application interfaces.

<<Interface>>
IpAppMultiMediaCal IControIManager
(fom mmecs)

®rep ortM edia Noti fication ()

V

<<Interface>>
IpAppMultiMediaCall
(from mmccs)

[®superviseVolumeRes()
[®superviseVolumeErr()

<<Interface>>
IpAppMuliMediaCall Leg
(from mmccs)

®mediaStreamMonitorRes()

O-n
s

_ - 1
= <<Interface>> 1/ -7 <<Interface>>
D ABLG <:C'"‘IT C§Cf>I>M IpAppConfCall IpAppSubConfCall
pApp&on (? n)m anager 1 0..n (from cces) 1 0.. (from cces)
romcees) 0000000000 - - == — — — — =
. ®partyJoined() ®chairSelection()
onferenceCreatedy() ®eaveMonitorRes() o orRe quest()
B <<lises>>
<<uses>> I
| I<<uses>> :
I
I
| L
| | <<Interface>>
1 : IpSubConfCall
<<Interface>> (from cccs)
<<Interface>>
IpConfCallControlManager IpConfCall :
(from cccs) (rom ccs) MsplitsubConference()
L 707->- 1 O.[®mergeSubConference()
WcreateConference() SyetsubConferences) ‘moveCaI'ILeg()
McheckResources() ®inspectVideo()
— R McreateSubConference() - VideoC |
eserveResources() S eaveMonitorReq() nspe.c ideoCancel()
®reeResources() ®appointSpeaker()
MchairSelection()
MchangeConferencePolicy()

Figure 17: Application Interfaces

ETSI

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<<uses>> |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
<<Interface>>
IpMultiMediaCallLeg
(from mmccs)

®mediaStreamAllow()
®mediaStreamMonitorReq()
MgetMediaStreams()

169 ETSI ES 201 915-4 V1.2.2 (2002-05)

This class diagram shows the interfaces that make up the conference call control service package.

The diagram al so shows the inheritance relation between the multi-party call interfaces and the conference call
interfaces; the conference interfaces are specialisations of the corresponding multi-party call interfaces.

Furthermore, the class diagram illustrates that the conference call control manager can instantiate or be associated with
zero or more conference calls. Each conference call can have one or more subconferences associated with it. Each
subconference contains zero or more call legs associated. Detached legs are not associated with any specific
subconference, instead they are associated with the conference call itself.

<<Interface>>
IpMultiMediaCallControlManager

(from mmccs)

<<Interface>>
IpMultiMediaCall
(from mmecs)

®createMediaNotification()
%l estroyMediaNotification()
®changeMediaNotification()

®WsuperviseVolumeReq()

®yetMediaNotification() 4
T
‘\ <<Interface>>
| IpSubConfCall
| Conf:;allrl];:eoiat(r:(ijjana er SENEBES (romeees)
P 9 IpConfCall
(fromeccs) (from cccs) BplitSubConference()
- 1 0.n[MmergeSubConference()
McreateConference() "getSubConferences() ﬂnoveCaI.ILeg()
McheckResources()) ®inspectVideo()
createSubConference() . "
MeserveResources() | caveMonitorReq() i nspectVideoCancel()
®freeResources() q WappointSpeaker()

WchairSelection()
\ S|changeConferencePolicy()

\ <<Interface>>
IpMultiMediaCallLeg

0..n (frommnces)

®mediaStreamAllow()
®mediaStreamMonitorReq()
WgetMediaStreams()

Figure 18: Service Interfaces

9.3

The Conference Call Control Service enhances the multi-media call control service. The conference call control service
gives the application the ability to manipulate subconferences within a conference. A subconference defines the
grouping of legs within the overall conference call. Only parties in the same subconference have a bearer connection (or
media channel connection) to each other (e.g. can speak to each other). The application can:

Conference Call Control Service Interface Classes

« create new subconferences within the conference, either as an empty subconference or by splitting an existing
subconference in two subconferences.

* move legs between subconferences.
e merge subconferences.
« getalist of al subconferencesin the call.
The generic conference also gives the possibility to manipulate typical multi-media conference details, such as:
¢ interworking with network signalled conference protocols (e.g. H.323)

e manipulation of the mediain the MCU, e.g. broadcasting of video.

ETSI

170 ETSI ES 201 915-4 V1.2.2 (2002-05)

¢ handling of multi-media conference policies, e.g. how video should be handled, voice controlled switched or
chair controlled.

Furthermore the conference call control service adds support for the reservation of resources needed for conferencing.
The application can:

e reserveresources for a predefined time period.

« freereserved resources.

« search for the availability of conference resources based on a number of criteria.
There are two ways to initiate a conference:

« the conferences can be started on the pre-arranged time by the service, at the start time indicated in the
reservation. The application is notified about this. The application can then add parties to the conference and/or
parties can dial-in to the conference using the address provided during reservation.

« the conference can be created directly on request of the application using the createConference method in the
I pConfCall Control M anager interface.
9.3.1 Interface Class IpConfCallControlManager
Inherits from: IpMultiMediaCall Control M anager

The conference Call Control Manager is the factory interface for creating conferences. Additionally it takes care of
resource management.

<<Interface>>

IpConfCallControlManager

createConference (appConferenceCall : in IpAppConfCallRef, numberOfSubConferences : in Tpint32,
conferencePolicy : in TpConfPolicy, numberOfParticipants : in TpInt32, duration : in TpDuration) :
TpConfCallldentifier

checkResources (searchCriteria : in TpConfSearchCriteria) : TpConfSearchResult

reserveResources (applnterface : in IpAppConfCallControlManagerRef, startTime : in TpDateAndTime,
numberOfParticipants : in TpInt32, duration : in TpDuration, conferencePolicy : in TpConfPolicy) :
TpResourceReservation

freeResources (resourceReservation : in TpResourceReservation) : void

Method
cr eat eConf erence()

This method is used to create a new conference. If the specified resources are not available for the indicated duration the
creation isrejected with P_ RESOURCES UNAVAILBLE.

Returns conference : Specifies the interface reference and sessionl D of the created conference.

Parameters

appConferenceCall : in |IpAppConfCal |l Ref
Specifies the callback interface for the conference created.

ETSI

171 ETSI ES 201 915-4 V1.2.2 (2002-05)

nunber O SubConf erences : in Tplnt32

Specifies the number of subconferences that the user wantsto create automatically. The references to the interfaces of
the subconferences can later be requested with getSubConferences.

The number of subconferences should be at least 1.

conferencePolicy : in TpConfPolicy
Specifies the policy to be applied for the conference, e.g. are parties allowed to join (call into) the conference?

Note that if parties are allowed to join the conference, the application can expect partyJoined() messages on the
IpAppConfCall interface.

nunmber O Partici pants : in Tplnt32

Specifies the number of participants in the conference. The actual number of participants may exceed this, but these
resources are not guaranteed, i.e. anything exceeding this will be best effort only and the conference service may drop
or reject participantsin order to fulfil other committed resource requests. By specifying 0, the application can request a
best effort conference.

duration : in TpDuration

Specifies the duration for which the conference resources are reserved. The duration of the conference may exceed this,
but after the duration, the resources are no longer guaranteed, i.e. parties may be dropped or rejected by the servicein
order to satisfy other committed resource requests. When the conference is released before the allocated duration, the
reserved resources are released and can be used to satisfy other resource requests. By specifying 0O, the application
requests a best effort conference.

Returns
TpConf Cal | I dentifier
Raises
TpComonExcept i ons

Method
checkResour ces()

This method is used to check for the availability of conference resources.
Theinput isthe search period (start and stop time and date) - mandatory.
Furthermore, a conference duration and number of participants can be specified - optional.

The search algorithm will search the specified period for availability of conference resources and tries to find an
optimal solution.

When a match is found the actual number of available resources, the actual start and the actual duration for which these
are available isreturned. These values can exceed the requested values.

When no match is found a best effort isreturned, still the actual start time, duration, number of resources are returned,
but these values now indicate the best that the conference bridge can offer, e.g. one or more of these values will not
reach the requested val ues.

Returns result : Specifies the result of the search. It indicates if a match was found. If no exact match was found the best
attempt is returned.

ETSI

172 ETSI ES 201 915-4 V1.2.2 (2002-05)

Parameters

searchCriteria : in TpConfSearchCriteria

Specifies the boundary conditions of the search. E.g. the time period that should be searched, the number of
participants.

Returns

TpConf Sear chResul t
Raises
TpComonExcept i ons

Method
reserveResources()

This method is used to reserve conference resources for a given time period. Conferences can be created without first
reserving resources, but in that case no guarantees can be made.

Returns resourceReservation : Specifies a structured data type which contains two fields:

Resourcel D: The address with which the conference can be addressed, both in the methods of the interface and in the
network, i.e. if joinAllowed is TRUE, parties can use this address to join the conference.

If no match isfound the Resourcel D contains an empty address.

Reservationl D: Specifies the reservation made. It should be unique in a particular resource.

Parameters

appl nterface : in | pAppConf Cal | Cont rol Manager Ref

Specifies the callback interface to be used when the conferenceis created in the network. The application will receive
the conferenceCreated message when a conference is created in the network.

startTine : in TpDateAndTi ne
Specifies the time at which the conference resources should be reserved, i.e. the start time of the conference.

nunber O Participants : in Tplnt32

Specifies the number of participants in the conference. The actual number of participants may exceed this, but these
resources are not guaranteed, i.e. anything exceeding this will be best effort only and the conference service may drop
or reject participants in order to fulfil other committed resource requests.

duration : in TpDuration

Specifies the duration for which the conference resources are reserved. The duration of the conference may exceed this,
but after the duration, the resources are no longer guaranteed, i.e. parties may be dropped or regjected by the service in
order to satisfy other committed resource requests. When the conference is released before the all ocated duration, the
reserved resources are released and can be used to satisfy other resource requests.

conferencePolicy : in TpConfPolicy

The policy to be applied for the conference, e.g. are parties allowed to join (call into) the conference? Note that if
parties are allowed to join the conference, the application can expect partyJoined() messages on the appConfCall.

ETSI

173 ETSI ES 201 915-4 V1.2.2 (2002-05)

Returns

TpResour ceReservati on
Raises

TpCommonExcepti ons

Method
freeResources()

This method can be used to cancel an earlier made reservation of conference resources.

This a'so means that no ConferenceCreated events will be received for this conference.

Parameters

resourceReservation : in TpResourceReservation
Specifies the Resourcel D and the Reservationl D that were received during the reservation.

Raises
TpComonExcept i ons

9.3.2 Interface Class IpAppConfCallControlManager
Inherits from: 1pAppMultiM ediaCall Control M anager.

The conference call control manager application interface provides the application with additional callbacks when a
conference is created by the network (based on an earlier reservation).

<<Interface>>

IpAppConfCallControlManager

conferenceCreated (conferenceCall : in TpConfCallldentifier) : IpAppConfCallRef

Method
conferenceCreated()

This method is called when a conference is created from an earlier resource reservation.

Returns applnterface : Specifies areference to the application interface which implements the callback interface for the
new conference.

ETSI

174 ETSI ES 201 915-4 V1.2.2 (2002-05)

Parameters

conferenceCall : in TpConfCallldentifier
Specifies the reference to the conference call interface to which the notification relates and the associated sessionlD.

Returns
| pAppConf Cal | Ref

9.3.3 Interface Class IpConfCall
Inherits from: IpMultiMediaCall

The conference call manages the subconferences. It also provides some convenience methods to hide the fact of
multiple subconferences from the applications that do not need it. Note that the conference call always contains one
subconference. The following inherited call methods apply to the conference as a whole, with the specified semantics:

- setCallback; changes the callback interface reference.
- release; releases the entire conference, including all the subconferences and detached legs.

- deassignCall; de-assigns the complete conference. No callbacks will be received by the application, either on the
conference, or on any of the contained subconferences or call legs.

- getInfoReq; request information over the complete conference. The conference duration is defined as the time when
the first party joined the conference until when the last party leaves the conference or the conference is released.

- setChargePlan; set the chargeplan for the conference. This chargeplan will apply to al the subconferences, unless
another chargeplan is explicitly overridden on the subconference.

- superviseReq; supervise the duration of the complete conference.
- getCallLegs; return all the call legs used within the conference.

- superviseVolumeReq; supervises and sets a granted data volume for the conference.

Other
methods apply to the default subconference. When using multiple subconferences, it is recommended that the
application calls these methods directly on the subconference since this makes it more explicit what the effect of the
method is:

- createAndRouteCallLegReq
- createCallLeg

ETSI

175 ETSI ES 201 915-4 V1.2.2 (2002-05)

<<Interface>>
IpConfCall

getSubConferences (conferenceSessionID : in TpSessionID) : TpSubConfCallldentifierSet

createSubConference (conferenceSessionID : in TpSessionID, appSubConference : in
IpAppSubConfCallRef, conferencePolicy : in TpConfPolicy) : TpSubConfCallldentifier

leaveMonitorReq (conferenceSessionID : in TpSessionID) : void

Method
get SubConf erences()

This method returns all the subconferences of the conference.

Returns subConferencelList : Specifiesthe list of all the subconferences of the conference.

Parameters

conferenceSessionlD : in TpSessionlD
Specifies the sessionl D of the conference.

Returns
TpSubConf Cal | | denti fi er Set

Raises
TpComonExcepti ons, P_I NVALI D SESSION | D

Method
cr eat eSubConf erence()

This method is used to create a new subconference. Note that one subconferenceis already created together with the
conference.

Returns subConference : Specifies the created subconference (interface and sessioni D).

Parameters

conferenceSessionlD : in TpSessionlD
Specifies the sessionl D of the conference.

appSubConference : in | pAppSubConf Cal | Ref
Specifies the call back interface for the created subconference.

conferencePolicy : in TpConfPolicy

Conference Policy to be used in the subconference. Optional; if undefined, the policy of the conference is used. Note
that not all policy elements have to be applicable for subconferences.

ETSI

176 ETSI ES 201 915-4 V1.2.2 (2002-05)

Returns

TpSubConf Cal | I denti fi er

Raises

TpComonExcepti ons, P_I NVALI D SESSI ON_ | D

Method
| eaveMoni t or Req()

This method is used to request a notification when a party leaves the conference.

Parameters
conferenceSessionlD : in TpSessionlD

Specifies the session ID of the conference.
Raises
TpComonExcepti ons, P_I NVALI D SESSION | D

9.34 Interface Class IpAppConfCall
Inherits from: IpAppMultiMediaCall

The Conference Call application interface allows the application to handle call responses and state reports. Additionally
it allows the application to handle parties entering and leaving the conference.

<<Interface>>

IpAppConfCall

partyJoined (conferenceSessionID : in TpSessionID, callLeg : in mpccs:: TpCallLegldentifier, eventinfo : in
TpJoinEventinfo) : mpccs::IpAppCallLegRef

leaveMonitorRes (conferenceSessionID : in TpSessionID, callLeg : in TpSessionID) : void

Method
partyJoi ned()

This asynchronous method indicates that a new party (leg) hasjoined the conference. This can be used in, e.g. a meetme
conference where the participants dial in to the conference using the address returned during reservation of the
conference.

The Leg will be assigned to the default subconference object and will be in a detached state. The application may move
the call Leg to adifferent subconference before attaching the media.

ETSI

177 ETSI ES 201 915-4 V1.2.2 (2002-05)

The method will only be called when joinAllowed is indicated in the conference policy.

Returns appCallLeg : Specifies the call back interface that should be used for callbacks from the new call Leg.

Parameters

conferenceSessionlD : in TpSessionlD
Specifies the session ID of the conference that the party wantsto join.

callLeg : in npccs:: TpCall Legldentifier
Specifies the interface and sessionlD of the call leg that joined the conference.

eventInfo : in TpJoi nEventlnfo
Specifies the address information of the party that wants to join the conference.

Returns
npccs: : | pAppCal | LegRef

Method
| eaveMoni t or Res()

This asynchronous method indicates that a party (leg) has left the conference.

Parameters

conferenceSessionlD : in TpSessionlD
Specifies the session 1D of the conference that the party wantsto leaves.

callLeg : in TpSessionlD
Specifies the sessionl D of the call leg that left the conference.

9.3.5 Interface Class IpSubConfCall
Inherits from: IpMultiMediaCall

The subconference is an additional grouping mechanism within a conference. Parties (legs) that are in the same
subconference have a speech connection with each other. The following inherited call methods apply to the
subconference as a whole, with the specified semantics:

- setCallback; changes the callback interface reference.

- release; releases the subconference, including all currently attached legs. When the last subconference in the
conference is released, the conference isimplicitly released as well.

- deassignCall; de-assigns the subconference. No callbacks will be received by the application on this
subconference, nor will the gateway accept any methods on this subconference or accept any methods using the
subconference as a parameter (e.g. merge). When the subconference is the last subconference in the conference, the
conference is deassigned as well. In general it is recommended to only use deassignCall for the complete conference.

- getInfoReq; request information over the subconference. The subconference duration is defined as the time when
the first party joined the subconference until when the last party leaves the subconference or the subconferenceis
released.

- setChargePlan; set the charge plan for the subconference.

ETSI

178 ETSI ES 201 915-4 V1.2.2 (2002-05)

- superviseReq; supervise the duration of the subconference. It is recommended that this method is only used on the
complete conference.

- superviseVolumeReq; supervises and sets a granted data volume for the subconference.
- getCallLegs; return all the call legs in the subconference.
- createCallLeg; create acal leg.

- createAndRouteCallLegReq; implicitly create aleg and route the leg to the specified destination.

<<Interface>>
IpSubConfCall

splitSubConference (subConferenceSessionID : in TpSessionID, callLegList : in TpSessionIDSet,
appSubConferenceCall : in IpAppSubConfCallRef) : TpSubConfCallldentifier

mergeSubConference (subConferenceCallSessionID : in TpSessionID, targetSubConferenceCall : in
TpSessioniID) : void

moveCallLeg (subConferenceCallSessionID : in TpSessionID, targetSubConferenceCall : in TpSessionlID,
callLeg : in TpSessionID) : void

inspectVideo (subConferenceSessionID : in TpSessionID, inspectedCallLeg : in TpSessionID) : void
inspectVideoCancel (subConferenceSessionID : in TpSessionID) : void

appointSpeaker (subConferenceSessionID : in TpSessionID, speakerCallLeg : in TpSessionID) : void
chairSelection (subConferenceSessionID : in TpSessionlID, chairCallLeg : in TpSessionID) : void

changeConferencePolicy (subConferenceSessionID : in TpSessionID, conferencePolicy : in TpConfPolicy) :
void

Method
spl i t SubConf erence()

This method is used to create a new subconference and move some of the legsto it.

Returns newSubConferenceCall : Specifies the new subconference that isimplicitly created as aresult of the method.

Parameters

subConf erenceSessionl D : in TpSessionlD
Specifies the session 1D of the subconference.

cal |l LegList : in TpSessionl DSet
Specifies the sessionl Ds of the legs that will be moved to the new subconference.

appSubConferenceCall : in | pAppSubConf Cal | Ref
Specifies the application call back interface for the new subconference.

ETSI

179 ETSI ES 201 915-4 V1.2.2 (2002-05)

Returns

TpSubConf Cal | I denti fi er

Raises

TpComonExcepti ons, P_I NVALI D SESSI ON_ | D

Method
mer geSubConf er ence()

This method is used to merge two subconferences, i.e. move all our legs from this subconference to the other
subconference followed by arelease of this subconference.

Parameters

subConf erenceCal | SessionlD : in TpSessionlD
Specifies the session ID of the subconference.

t ar get SubConferenceCall : in TpSessionlD
The session ID of target subconference with which the current subconference will be merged.

Raises
TpComonExcepti ons, P_I NVALI D SESSION | D

Method
noveCal | Leg()

This method moves one leg from this subconference to another subconference.

Parameters

subConf erenceCal | SessionlD : in TpSessionlD
Specifies the session 1D of the source subconference.

target SubConferenceCall : in TpSessionlD
Specifies the sessionl D of the target subconference.

callLeg : in TpSessionlD
Specifies the sessionl D of the call leg to be moved.

Raises
TpComonExcepti ons, P_I NVALI D SESSI ON | D

Method
| nspect Vi deo()

This method can be used by the application to select which video should be sent to the party that is currently selected as
the chair.

Whether this method can be used depends on the selected conference policy.

ETSI

180 ETSI ES 201 915-4 V1.2.2 (2002-05)

Parameters

subConf erenceSessionl D : in TpSessionlD
Specifies the session ID of the multi media subconference.

i nspectedCall Leg : in TpSessionlD
Specifies the sessionl D of call leg of the party whose video stream should be sent to the chair.

Raises
TpComonExcepti ons, P_I NVALI D SESSION | D

Method
I nspect Vi deoCancel ()

This method cancels a previous inspectVideo. The chair will receive the broadcasted video.

Whether this method can be used depends on the selected conference policy.

Parameters

subConf erenceSessionl D : in TpSessionlD
Specifies the session ID of the multi media subconference.

Raises
TpComonExcepti ons, P_I NVALI D SESSION | D

Method
appoi nt Speaker ()

This method indicates which of the participants in the conference has the floor. The video of the speaker will be
broadcast to the other parties.

Whether this method can be used depends on the selected conference policy.

Parameters

subConf erenceSessionl D : in TpSessionlD
Specifies the session ID of the multi media subconference.

speakerCal |l Leg : in TpSessionlD
Specifies the sessionl D of the call leg of the party whose video stream should be broadcast.

Raises
TpComonExcepti ons, P_I NVALI D_SESSI ON_|I D

Method
chai r Sel ecti on()

This method is used to indicate which participant in the conference is the chair. E.g. the terminal of this participant will
be the destination of the video of the inspectVideo method.

Whether this method can be used depends on the selected conference policy.

ETSI

181

Parameters

subConf erenceSessionl D : in TpSessionlD
Specifies the session ID of the multi media subconference.

chairCallLeg : in TpSessionlD
Specifies the sessionlI D of the call leg of the party that will become the chair.

Raises

TpComonExcepti ons, P_I NVALI D SESSION | D

Method
changeConf er encePol i cy()

ETSI ES 201 915-4 V1.2.2 (2002-05)

This method can be used to change the conference policy in an ongoing conference.

- Multi media conference policy options available. E.g.;
- chair controlled video/voice switched video
- closed conference/open conference

- Composite video (different types)/only speaker

Parameters

subConf erenceSessionl D : in TpSessionlD
Specifies the session 1D of the multi media subconference.

conferencePolicy : in TpConfPolicy
New Conference Policy to be used in the subconference.

Raises
TpComonExcepti ons, P_I NVALI D SESSION | D

9.3.6 Interface Class IpAppSubConfCall
Inherits from: IpAppMultiMediaCall

The Subconference Call application interface allows the application to handle call responses and state reports from a

subconference.

ETSI

182 ETSI ES 201 915-4 V1.2.2 (2002-05)

<<Interface>>

IpAppSubConfCall

chairSelection (subConferenceSessionID : in TpSessionID, callLegSessionID : in TpSessionID) : void

floorRequest (subConferenceSessionlID : in TpSessionlD, callLegSessionID : in TpSessionID) : void

Method

chai r Sel ection()

This method is used to inform the application about the chair selection requests from the network. The application can
grant the request by calling the chairSelection method on the subconference.

Parameters

subConf erenceSessionl D : in TpSessionlD
Specifies the session 1D of the subconference where the chair request originates.

call LegSessionlD : in TpSessionlD
Specifies the session ID of the call leg making the chair request.

Method
f | oor Request ()

This method is used to inform the application about the floor requests from the network. The application can grant the
request by calling the appointSpeaker method.

Parameters

subConf erenceSessionl D : in TpSessionlD
Specifies the session ID of the subconference where the floor request originates.

call LegSessionlD : in TpSessionlD
Specifies the session ID of the call leg making the floor request.

9.4 Conference Call Control Service State Transition Diagrams

There are no State Transition Diagrams for the Conference Call Control Service package

ETSI

183 ETSI ES 201 915-4 V1.2.2 (2002-05)

9.5 Conference Call Control Data Definitions

This clause provides the Conference call control data definitions necessary to support the API specification.
The general format of a data definition specification is described below.
e DataType
This shows the name of the data type.
e Description
This describes the data type.
e Tabular Specification
This specifies the data types and values of the data type.
e Example
If relevant, an example is shown to illustrate the data type.

All data types referenced but not defined in this clause are either in the common call control data definitions clause of
the present document (clause 10) or in the common data definitions which may be found in ES 201 915-2.

95.1 Event Notification Data Definitions

No specific event notification data.
95.2 Conference Call Control Data Definitions

9.5.2.1 IpConfCall

Definesthe address of an | pConf Cal | Interface.

9.5.2.2 IpConfCallRef

DefinesaRef er ence to type IpConfCall.

9.5.2.3 IpAppConfCall
Definesthe address of an | pAppConf Cal | Interface.

9.5.2.4 IpAppConfCallRef

DefinesaRef er ence to type IpAppConfCall.

9.5.25 IpSubConfCall
Defines the address of an | pSubConf Cal | Interface.

9.5.2.6 IpSubConfCallRef

DefinesaRef er ence to type IpSubConfCall.

9.5.2.7 IpAppSubConfCall
Definesthe address of an | pAppSubConf Cal | Interface.

ETSI

184 ETSI ES 201 915-4 V1.2.2 (2002-05)

9.5.2.8 IpAppSubConfCallRef

DefinesaRef er ence to type IpAppSubConfCall.

9.5.29 TpSubConfCallldentifierSet

DefinesaNunbered Set of Data El enents of IpSubConfCallldentifier.

9.5.2.10 TpConfCallldentifier

Defines the Sequence of Data Elements that unambiguoudly specify the Conference Call object.

Sequence Element Name | Sequence Element Type Sequence Element Description
Conf Cal | Ref erence | pConf Cal | Ref This element specifies the interface reference for the conference
call object.
Conf Cal | Sessi onl D TpSessi onl D This element specifiesthe session ID of the conference call.

9.5.2.11 TpSubConfCallldentifier

Defines the Sequence of Data Elements that unambiguously specify the SubConference Call object.

Sequence Element Name | Sequence Element Type Sequence Element Description
SubConf Cal | Ref er ence I pSubConf Cal | Ref This element specifies the interface reference for the
subconference call object.

SubConf Cal | Sessi onl D TpSessi onl D This element specifiesthe session ID of the subconference call.

9.5.2.12 IpAppConfCallControlManager

Defines the address of an | pAppConf Cal | Cont r ol Manager Interface.

9.5.2.13 IpAppConfCallControlIManagerRef

Defines aRef er ence to type IpAppConfCall Control M anager.

9.5.2.14 TpConfPolicyType
Defines policy type for the conference.
If undefined the gateway will select an appropriate default.

If amono media conference policy is specified for a multi-media conference, the gateway will select appropriate
defaults for the multi-media policy items.

If amulti-media policy is selected for a mono-media (voice-only) conference, the multi-media conference items will be
ignored.

Name Value Description
P_CONFERENCE_PCLI CY_UNDEFI NED 0 Undefined
P_CONFERENCE_POLI CY_MONOVEDI A 1 CCCS— monomedia conference policy
P_CONFERENCE_PCLI CY_MULTI MEDI A 2 MM CCS — multimedia conference policy

ETSI

9.5.2.15 TpConfPolicy

185

ETSI ES 201 915-4 V1.2.2 (2002-05)

Definesthe Tagged Choi ce of Data El enent s that specify the policy that needs adhered to by the

conference.

Tag Element Type

TpConf Pol i cyType

Tag Element Value

Choice Element Type

Choice Element Name

P_CONFERENCE_POLI CY_MONOMEDI A

TpMonoMedi aConf Pol i cy

MonoMedia

P_CONFERENCE_PCLI CY_MJULTI MEDI A

TpMul ti Medi aConf Pol i cy

MultiMedia

9.5.2.16 TpMonoMediaConfPolicy

Defines the type of conference policy as a sequence of Palicy Items and their values.

For mono mediathere are only two types of conference policies; specified, i.e. the application provides the policy, or
undefined, i.e. the GW may choose a default conference policy.

Sequence Element Name

Sequence Element Type

Description

Joi nAl | owed

TpBool ean

Specifiesif dial-in to the conference is allowed. Parties can
dial-in to the conference using the address returned during
reservation. If thisis specified the application will receive

partyJoined for each participant dialling into the
conference.

9.5.2.17 TpJoinEventinfo

Definesthe Sequence of Data El enent s that specify the information returned to the application in a Join event

notification.

Sequence Element Name

Sequence Element Type

Desti nati onAddr ess TpAddr ess
Ori gi nati ngAddr ess TpAddr ess
Ori gi nal Desti nati onAddr ess TpAddr ess
Redi rect i ngAddr ess TpAddr ess

Cal | Appl nfo

TpCal | Appl nf 0Set

9.5.2.18 TpConfSearchCriteria

Definesthe Sequence of Data El enent s that specify the criteriafor doing a search for available conference

resources.

Sequence Element Name

Sequence Element Type

Start Search

TpDat eAndTi e

St opSear ch

TpDat eAndTi e

Request edResour ces

Tpl nt 32

Request edDur ati on

TpDur ati on

ETSI

186

9.5.2.19 TpConfSearchResult

Definesthe Sequence of Data El enent s that specifiesthe result of a search for available conference resources.

ETSI ES 201 915-4 V1.2.2 (2002-05)

Sequence Element Name

Sequence Element Type

Mat chFound

TpBool ean

Actual StartTi ne

TpDat eAndTi ne

Act ual Resour ces

Tpl nt 32

Act ual Durati on

TpDur ati on

9.5.2.20 TpMultiMediaConfPolicy

Sequence of items for multi-media conferences.

Sequence Element Name

Sequence Element Type

Description

Joi nAl | owed

TpBool ean

Specifiesif dial-in to the conference is
allowed. Parties can dial-in to the conference
using the address returned during reservation.
If thisis specified the application will receive
partyJoined for each participant dialling into
the conference.

Medi aAl | owed

TpMedi aType

Specifies the mediathat are allowed to be
used by the participants. E.g. this can be used
to limit the conference to audio only, even
when all participants support video.

Chaired

TpBool ean

Specifies whether the conferenceis chaired or
free. In achaired conference the application or
one of the participants acting as chair has
special privileges; e.g. can control the video
distribution.

Vi deoHandl i ng

TpVi deoHandl i ngType

Specifies how the video should be handled.

9.5.2.21 TpResourceReservation

Definesthe Sequence of Data El enent s that specifies the result of a search for available conference resources.

Sequence Element Name [Sequence Element Type

Sequence Element Description

Resour cel D TpAddress The address with which the conference can be addressed
Reservati onl D Tpl nt 32 Specifies the reservation made. It should be unique in a particular
resource
9.5.2.22 TpVideoHandlingType
Defines how video should be handled in the conference.
Name Value Description
P_M XED_VI DEO 0 Video is mixed, no special treatment of speaker
P_SW TCHED VI DEO CHAI R_CONTROLLED 1 Video is switched, chair determines the speaker
P_SW TCHED VI DEO VO CE_CONTROLLED 2 Video is switched automatically based on audio
output of the speaker

ETSI

187 ETSI ES 201 915-4 V1.2.2 (2002-05)

10 Common Call Control Data Types

The following data types referenced in this clause are defined in ES 201 915-5:
TpUl I nfo

All other data types referenced but not defined in this clause are common data definitions which may be found in
ES 201 915-2.

10.1 TpCallAlertingMechanism
Thisdatatypeisidentical toaTpl nt 32, and defines the mechanism that will be used to alert acall party. The values
of this data type are operator specific.

10.2 TpCallBearerService

This data type defines the type of call application-related specific information (Q.931: Information Transfer Capability,
and TS 122 002)

Name Value Description
P_CALL_BEARER SERVI CE_UNKNOMN 0 Bearer capability information unknown at thistime
P_CALL_BEARER_SERVI CE_SPEECH 1 Speech
P_CALL_BEARER SERVI CE_DI G TALUNRESTRI CTED |2 Unrestricted digital information
P_CALL_BEARER SERVI CE_DI G TALRESTRI CTED 3 Restricted digital information
P_CALL_BEARER SERVI CE_AUDI O 4 3,1 kHz audio
P_CALL_BEARER SERVI CE_ 5 Unrestricted digital information with tones/announcements
Dl G TALUNRESTRI CTEDTONES
P_CALL_BEARER SERVI CE_VI DEO 6 Video

10.3 TpCallChargePlan

Definesthe Sequence of Data El enent s that specify the charge plan for the call.

Sequence Element Name Sequence Element Type Description
Char geOr der Type TpCal | Char geOr der Cat egor y Charge order
Tr anspar ent Char ge TpCct et Set Operator specific charge plan specification,

e.g. charging table name/charging table entry.
The associated charge plan datawill be send
trangparently to the charging records.

Only applicable when transparent charging is
selected.

Char gePl an Tpl nt 32 Pre-defined charge plan. Example of the
charge plan set from which the application can
choose could be : (0 = normal user, 1 = silver
card user, 2 = gold card user).

Only applicable when transparent charging is
selected.

Addi tional I nfo TpCct et Set Descriptive string which is sent to the billing
system without prior evaluation. Could be
included in the ticket.

Part yToChar ge TpCal | Part yToChar ge Identifies the entity or party to be charged for
the call or call leg.

ETSI

188 ETSI ES 201 915-4 V1.2.2 (2002-05)

10.4 TpCallPartyToCharge

Defines the Tagged Choice of Data Elements that identifies the entity or party to be charged.

Tag Element Type
TpCallPartyToChargeType

Tag Element Value Choice Element Type Choice Element Name
P_CALL_PARTY_ORIGINATING, , NULL Undef i ned
P_CALL_PARTY_DESTINATION, NULL Undef i ned
P_CALL_PARTY_SPECIAL TpAddress Cal | PartySpeci al

10.5 TpCallPartyToChargeType

Defines the type of call party to charge.

Name Value Description
P_CALL_PARTY_ORIGINATING 0 Calling party, i.e. party that initiated the call. For application initiated callsthis
indicates the first party of the call
P_CALL_PARTY_DESTINATION 1 Called party
P_CALL_PARTY_SPECIAL 2 An address identifying e.g. athird party, a service provider

10.6 TpCallChargeOrder

Definesthe Tagged Choi ce of Data El enent s that specify the charge plan for the call.

Tag Element Type
TpCal | Char geOr der Cat egor y

Tag Element Value Choice Element Type Choice Element Name
P_CALL_CHARGE_TRANSPARENT TpCct et Set Tr anspar ent Char ge
P_CALL_CHARGE_PREDEFI NED_SET Tpl nt 32 Char gePl an

10.7 TpCallChargeOrderCategory

Defines the type of charging to be applied

Name Value Description
P_CALL_CHARGE_TRANSPARENT 0 Operator specific charge plan specification, e.g. charging table name/charging
table entry. The associated charge plan datawill be send transparently to the
charging records

P_CALL_CHARGE_PREDEFI NED_SET 1 Pre-defined charge plan. Example of the charge plan set from which the
application can choose could be : (0 = normal user, 1 = silver card user, 2 =
gold card user).

ETSI

189

10.8 TpCallEndedReport

Definesthe Sequence of Data El ement s that specify the reason for the call ending.

ETSI ES 201 915-4 V1.2.2 (2002-05)

Sequence Element Name Sequence Element Type Description
Cal | LegSessi onl D TpSessi onl D Theleg that initiated the release of the call.
If the call release was not initiated by the leg,
then thisvalueis set to—1.
Cause TpRel easeCause The cause of the call ending.

10.9 TpCallError

Definesthe Sequence of Data El ement s that specify the additional information relating to a call error.

Sequence Element Name

Sequence Element Type

ErrorTi ne

TpDat eAndTi e

Error Type

TpCal | Error Type

Addi tional Errorlnfo

TpCal | Addi tional Errorlnfo

10.10 TpCallAdditionalErrorinfo

Definesthe Tagged Choi ce of Data El enent s that specify additional call error and call error specific
information. Thisis also used to specify cal leg errors and information errors.

Tag Element Type

TpCal | Error Type

Tag Element Value

Choice Element Type

Choice Element Name

P_CALL_ERROR _UNDEFI NED

NULL

Undef i ned

P_CALL_ERROR_| NVALI D_ADDRESS TpAddressError Cal | Errorlnval i dAddr ess
P_CALL_ERROR | NVALI D_STATE NULL Undefi ned
P_CALL_ERROR_RESOURCE_UNAVAI LABLE NULL Undef i ned
10.11 TpCallErrorType
Defines a specific call error.
Name Value Description
P_CALL_ERROR_UNDEFI NED 0 Undefined; the method failed or was refused,
but no specific reason can be given.
P_CALL_ERROR_| NVALI D_ADDRESS 1 The operation failed because an invalid address
was given
P_CALL_ERROR | NVALI D_STATE 2 Thecall was not in avalid state for the
requested operation
P_CALL_ERROR_RESOURCE_UNAVAI LABLE 3 There are not enough resources to complete the
request successfully

ETSI

190 ETSI ES 201 915-4 V1.2.2 (2002-05)

10.12 TpCallinfoReport

Definesthe Sequence of Data El ement s that specify the call information requested. Information that was not
requested isinvalid.

Sequence Element Name Sequence Element Type Description
Cal | I nf oType TpCallIinfoType Thetype of call report.
CalllnitiationStartTi me TpDat eAndTi e The time and date when the call, or follow-
on call, was started.
Cal | Connect edToResour ceTi ne TpDat eAndTi e The date and time when the call was
connected to the resource.

This data element is only valid when
information on user interaction is reported.

Cal | Connect edToDest i nati onTi ne TpDat eAndTi e The date and time when the call was
connected to the destination (i.e. when the
destination answered the call). If the
destination did not answer, thetimeis set to
an empty string.

This data element isinvalid when
information on user interaction is reported
with an intermediate report.

Cal | EndTi e TpDat eAndTi e The date and time when the call or follow-
on call or user interaction was terminated.

Cause TpRel easeCause The cause of the termination.

A calllnfoReport will be generated at the end of user interaction and at the end of the connection with the associated
address. This means that either the destination related information is present or the resource related information, but not
both.

10.13 TpCallinfoType

Defines the type of call information requested and reported. The values may be combined by alogical "OR" function.

Name Value Description
P_CALL_I NFO_UNDEFI NED 00h Undefined
P_CALL_I NFO_TI MES 0lh Relevant call times
P_CALL_I NFO_RELEASE_CAUSE 02h Call release cause

10.14 TpCallLoadControlIMechanism

Defines the Tagged Choice of Data Elements that specify the applied mechanism and associated parameters.

Tag Element Type
TpCallLoadControlMechanismType

Tag Element Value Choice Element Type Choice Element Name
P_CALL_LOAD CONTROL_PER I NTERVAL |[TpCal | LoadControl I nterval Rate Cal | LoadCont r ol Perl nterval

ETSI

191

10.15 TpCallLoadControlintervalRate

Defines the call admission rate of the call load control mechanism used. This data type indicates theinterval (in

milliseconds) between calls that are admitted.

ETSI ES 201 915-4 V1.2.2 (2002-05)

Name Value Description
P_CALL_LOAD CONTROL_ADM T_NO_CALLS 0 Infiniteinterval
(do not admit any calls)
1-60000 (Durationin milliseconds

10.16 TpCallLoadControlMechanismType

Defines the type of call load control mechanism to use.

Name

Value

Description

P_CALL_LOAD_CONTROL_PER | NTERVAL

admit one call per interval

10.17 TpCallMonitorMode

Defines the mode that the call will monitor for events, or the mode that the call isin following a detected event.

Name

Value

Description

P_CALL_MONI TOR_MODE_I NTERRUPT

0

The call event isintercepted by the call control
service and call processing is interrupted. The
application is notified of the event and call
processing resumes following an appropriate
API call or network event (such asacall
release)

P_CALL_NMONI TOR_MODE_NOTI FY

The call event is detected by the call control
service but not intercepted. The application is
notified of the event and call processing
continues

P_CALL_NONI TOR_MODE_DO_NOT_NONI TOR

Do not monitor for the event

10.18 TpCallNetworkAccessType

This data defines the bearer capabilities associated with the call. (TS 124 002) This information is network operator
specific and may not always be available because there is no standard protocol to retrieve the information.

Name Value Description
P_CALL_NETWORK_ACCESS_TYPE_UNKNOMN 0 Network type information unknown at thistime
P_CALL_NETWORK_ACCESS_TYPE_POT 1 POTS
P_CALL_NETWORK_ACCESS_TYPE_| SDN 2 ISDN
P_CALL_NETWORK_ACCESS_TYPE_DI ALUPI NTERNET |3 Dial-up Internet
P_CALL_NETWORK_ACCESS TYPE XDSL 4 XDSL
P_CALL_NETWORK_ACCESS TYPE_W RELESS 5 Wireless

ETSI

192 ETSI ES 201 915-4 V1.2.2 (2002-05)

10.19 TpCallPartyCategory

This data type defines the category of a calling party. (Q.763: Calling Party Category/Called Party Category).

Name Value Description
P_CALL_PARTY_CATEGORY_UNKNOMW 0 calling party's category unknown at thistime
P_CALL_PARTY_CATEGORY_OPERATOR F 1 operator, language French
P_CALL_PARTY_CATEGORY_OPERATOR_E 2 operator, language English
P_CALL_PARTY_CATEGORY_OPERATOR_G 3 operator, language German
P_CALL_PARTY_CATEGORY_OPERATOR_R 4 operator, language Russian
P_CALL_PARTY_CATEGORY_OPERATCOR_S 5 operator, language Spanish
P_CALL_PARTY_CATEGORY_ORDI NARY_SUB |6 ordinary calling subscriber
P_CALL_PARTY_CATEGORY_PRIORITY_SUB |7 calling subscriber with priority
P_CALL_PARTY_CATEGORY_DATA CALL 8 data call (voice band data)
P_CALL_PARTY_CATEGORY_TEST_CALL 9 test call
P_CALL_PARTY_CATEGORY_PAYPHONE 10 payphone

10.20 TpCallServiceCode

Definesthe Sequence of Data El enent s that specify the service code and type of service code received during
acall. The service code type defines how the value string should be interpreted.

Sequence Element Name Sequence Element Type
Cal | Servi ceCodeType TpCal | Servi ceCodeType
Servi ceCodeVal ue TpString

10.21 TpCallServiceCodeSet

Defines a Numbered Set of Data Elements of TpCallServiceCode.

10.22 TpCallServiceCodeType

Defines the different types of service codes that can be received during the call.

Name Value Description

P_CALL_SERVI CE_CODE_UNDEFI NED 0 The type of service code is unknown. The corresponding string is
operator specific.

P_CALL_SERVI CE_CODE DIA TS 1 The user entered a digit sequence during the call. The corresponding
string isan ASCI|I representation of the received digits.

P_CALL_SERVI CE_CODE_FACI LI TY 2 A facility information element is received. The corresponding string
contains the facility information element as defined in ITU Q.932

P_CALL_SERVI CE_CODE_U2U 3 A user-to-user message was received. The associated string contains
the content of the user-to-user information element.

P_CALL_SERVI CE_CODE_HOOKFLASH 4 The user performed a hookflash, optionally followed by some digits.
The corresponding string is an ASCII representation of the entered
digits.

P_CALL_SERVI CE_CODE_RECALL 5 The user pressed the register recall button, optionally followed by

some digits. The corresponding string is an ASCII representation of
the entered digits.

ETSI

10.23 TpCallSuperviseReport

193

ETSI ES 201 915-4 V1.2.2 (2002-05)

Defines the responses from the call control service for calls that are supervised. The values may be combined by a

logical "OR" function.

Name Value Description
P_CALL_SUPERVI SE_TI MEQUT 0lh The call supervision timer has expired
P_CALL_SUPERVI SE_CALL_ENDED 02h The call has ended, either due to timer expiry or
call party release. In case the called party
disconnects but a follow-on call can still be
made also thisindication is used.
P_CALL_SUPERVI SE_TONE_APPLI ED 04h A warning tone has been applied. Thisis only
sent in combination with
P_CALL_SUPERVISE_TIMEOUT
P_CALL_SUPERVI SE_Ul _FI NI SHED 08h The user interaction has finished.

10.24 TpCallSuperviseTreatment

Defines the treatment of the call by the call control service when the call supervision timer expires. The values may be

combined by alogical "OR" function.

Name Value Description
P_CALL_SUPERVI SE_RELEASE 01h Release the call when the call supervision timer
expires
P_CALL_SUPERVI SE_RESPOND 02h Notify the application when the call supervision
timer expires
P_CALL_SUPERVI SE_APPLY_TONE 04h Send awarning tone to the originating party

when the call supervision timer expires. If call
release is requested, then the call will be
released following the tone after an
administered time period

ETSI

10.25 TpCallTeleService

194 ETSI ES 201 915-4 V1.2.2 (2002-05)

This data type defines the tele-service associated with the call. (Q.763: User Teleservice Information, Q.931: High

Layer Compatibility Information, and TS 122 003).

Name Value Description
P_CALL_TELE_SERVI CE_UNKNOMN 0 Teleservice information unknown at thistime
P_CALL_TELE_SERVI CE_TELEPHONY 1 Telephony
P_CALL_TELE_SERVI CE_FAX 2_3 2 Facsimile Group 2/3
P _CALL_TELE_SERVI CE_FAX 4_1I 3 Facsimile Group 4, Class |
P_CALL_TELE_SERVICE FAX 4_I1_I11 4 Facsimile Group 4, Classes I and 111
P_CALL_TELE_SERVI CE_VI DEOTEX_SYN 5 Syntax based Videotex
P_CALL_TELE_ SERVI CE_VI DECTEX_| NT 6 International Videotex interworking via gateways or interworking

units

P_CALL_TELE_SERVI CE_TELEX 7 Telex service
P_CALL_TELE SERVI CE_MHS 8 Message Handling Systems
P_CALL_TELE_SERVI CE_OSI 9 OSl application
P_CALL_TELE_SERVI CE_FTAM 10 FTAM application
P_CALL_TELE_SERVI CE_VI DEO 11 Videotelephony
P_CALL_TELE_SERVI CE_VI DEO_CONF 12 Videoconferencing

P_CALL_TELE_SERVI CE_AUDI OGRAPH_CONF 13

Audiographic conferencing

P_CALL_TELE SERVI CE_MJULTI MEDI A 14 Multimedia services

P_CALL_TELE SERVI CE_CS_| NI _H221 15 Capability set of initial channel of H.221

P_CALL_TELE_SERVI CE_CS_SUB_H221 16 Capability set of subsequent channel of H.221

P_CALL_TELE SERVI CE_CS_| NI _CALL 17 Capability set of initial channel associated with an active 3,1 kHz
audio or speech call.

P_CALL_TELE_SERVI CE_DATATRAFFI C 18 Datatraffic.

P_CALL_TELE_SERVI CE_EMERGENCY_CALLS 19

Emergency Calls

P_CALL_TELE_SERVI CE_SM5_MT_PP 20 Short message M T/PP
P_CALL_TELE_SERVI CE_SM5_NMD_PP 21 Short message MO/PP
P_CALL_TELE_SERVI CE_CELL_BROADCAST 22 Cell Broadcast Service

P _CALL_TELE SERVI CE_ALT_SPEECH FAX 3 |23

Alternate speech and facsimile group 3

P_CALL_TELE_SERVI CE_AUTOVATI C FAX 3 24

Automatic Facsimile group 3

P_CALL_TELE_SERVI CE_ VO CE GROUP_CALL |25

Voice Group Call Service

P_CALL_TELE_SERVI CE_VO CE_BROADCAST 26

Voice Broadcast Service

10.26 TpCallTreatment

Definesthe Sequence of Data El enent s that specify the treatment for calls that will be handled only by the

network (for example, call which are not admitted by the call load control mechanism).

Sequence Element Name

Sequence Element Type

Cal | Tr eat nent Type

TpCal | Tr eat ment Type

Rel easeCause

TpRel easeCause

Addi tional TreatnmentlInfo

TpCal | Addi ti onal Treatnent | nfo

ETSI

195 ETSI ES 201 915-4 V1.2.2 (2002-05)

10.27 TpCallTreatmentType

Defines the treatment for calls that will be handled only by the network.

Name Value Description
P_CALL_TREATMENT_DEFAULT 0 Default treatment
P_CALL_TREATMENT_RELEASE 1 Release the call
P_CALL_TREATMENT_SI AR 2 Send information to the user, and release the

call (Send Info & Release)

10.28 TpCallAdditionalTreatmentinfo

Definesthe Tagged Choi ce of Data El enent s that specify the information to be sent to a call party.

Tag Element Type
TpCall TreatmentType

Tag Element Value Choice Element Type Choice Element Name
P_CALL_TREATMENT DEFAULT NULL Undefi ned
P_CALL_TREATMVENT_RELEASE NULL Undef i ned
P_CALL_TREATMENT_SI AR TpUl I nfo I nf or mat i onToSend

10.29 TpMediaType

Defines the mediatype of a media stream. The values may be combined by alogical "OR" function.

Name Value Description
P_AUDI O 1 Audio stream
P_VI DEO 2 Video stream
P_DATA 4 Data stream (e.g. T.120)

ETSI

196 ETSI ES 201 915-4 V1.2.2 (2002-05)

Annex A (normative):
OMG IDL Description of Call Control SCF

The OMG IDL representation of thisinterface specification is contained in text files (common_cc_data.idl,
gcc_data.idl, gec_interfaces.idl, mpec_data.idl, mpcc_interfaces.idl, mmccs.idl, ccs.idl contained in archive
es 20191504v010202m0.ZIP) which accompanies the present document.

ETSI

197 ETSI ES 201 915-4 V1.2.2 (2002-05)

Annex B (informative):
Contents of 3GPP OSA R4 Call Control

All itemsin Generic Call Control, clause 6 and all itemsin MultiParty Call Control are relevant for TS 129 198-4 V4
(Release 4).

ETSI

198 ETSI ES 201 915-4 V1.2.2 (2002-05)

Annex C (informative):
Summary of differences between V1.1.1 (Parlay 3.0) and
V1.2.1 (Parlay 3.1)

C.1 IpService

setCallback() and setCallbackWithSessionl D() now both raise P_INVALID_INTERFACE_TY PE.

C.2 IpCallLeg

attachMediaReq (callLegSessionID : in TpSessioniD) : void
detachMediaReq (callLegSessionID : in TpSessionID) : void

superviseReq (callLegSessionID : in TpSessionlD, time: in TpDuration, treatment : in
FpCaliSuperviseTreatmentTpCallL egSuperviseTreatment) : void

getCurrentDestinationAddressgetk-astRedirectedAddress (callLegSessionID : in TpSessionID) : TpAddress

routeReq (callLegSessionID : in TpSessionl D, targetAddesstargetAddress : in TpAddress, originatingAddress:: in
TpAddress, applnfo : in TpCall ApplnfoSet, connectionProperties : in TpCallLegConnectionProperties) : void

setAdviceOf Charge (callLegSessionID : in TpSessionl D, aOClInfo : in TpAoCInfo, tarrifSwiteh-tariffSwitch : in
TpDuration) : void

C.3 IpAppCallLeg

The following methods have been added
attachM ediaRes (callLegSessionID : in TpSessionI D) : void

attachMediaErr (calLegSessionlD : in TpSessionl D, errorindication : in TpCallError) : void

detachMediaRes (callLegSessionID : in TpSessionlD) : void

detachMediaErr (callLegSessionID : in TpSessionI D, errorindication : in TpCallError) : void

C.4 IpMultiMediaStream

subtractsubstract (mediaStreamSessionID : in TpSessionID) : void

C.5 IpConfCallControlManager

reserveResources (applnterface : in IpAppConfCall ControlManagerRef, startTime : in TpDateAndTime,
numberOfParticipants : in Tplnt32, duration : in TpDuration, conferencePolicy : in TpConfPolicy) :
FpAddressT pResourceReservation

freeResources (resourcelD——in-FpAddressresourceReservation : in TpResourceReservation) : void

ETSI

199 ETSI ES 201 915-4 V1.2.2 (2002-05)

C.6 IpAppSubConfCall

chairSelection (subConferenceSessionID : in TpSessionI D, callL egSessionID : in TpSessioniD) :
rmpeesFpCaltegidentifier void

floorRequest (subConferenceSessionlD : in TpSessionlD, callLegSessionID : in TpSessionID) :
mpees: FpCallegldentifiervoid

C.7 Generic Call Control Data Types

TpCallNatificationType

Defines the type of notification. Indicates whether it is related to the originating of the terminating user in the call.

Name Value Description
P_ORI G NATI NG 10 Indicates that the notification is related to the originating user in the call.
P_TERM NATI NG 21 Indicates that the notification is related to the terminating user in the call.

TpCallAdditionalReportinfo

Definesthe Tagged Choi ce of Data El ement s that specify additional call report information for certain types
of reports.

Tag Element Type
TpCal | Report Type

Tag Element Value Choice Element Type Choice Element Name

P_CALL_REPORT_UNDEFI NED NULL Undefined
P_CALL_REPORT_PROGRESS NULL Undefined
P_CALL_REPORT_ALERTI NG NULL Undefined
P_CALL_REPORT_ANSVER NULL Undefined
P_CALL_REPORT_BUSY TpCallReleaseCause Busy

P_CALL_REPORT_NO ANSVER NULL Undefined

P_CALL_REPORT_DI SCONNECT

TpCallReleaseCause

CallDisconnect

P_CALL_REPORT_REDI RECTED

TpAddress

ForwardAddress

P_CALL_REPORT_SERVI CE_CODE

TpCallServiceCode

ServiceCode

P_CALL_REPORT_ROUTI NG_FAI LURE

TpCallReleaseCause

RoutingFailure

P_CALL_REPORT_QUEUED TpString QueueStatus
P_CALL_REPORT_NOT_REACHABLE TpCallReleaseCause NotReschable
P—CALL_REPORT_QJEUED FpString QueueStatts

ETSI

TpCallAdditionalReportCriteria

Definesthe Tagged Choi ce of Data El ement s that specify specific criteria.

200

ETSI ES 201 915-4 V1.2.2 (2002-05)

Tag Element Type
TpCallReportType
Tag Element Choice Element Choice Element
Value Type Name
P_CALL_REPORT_UNDEFI NED NULL Undefined
P_CALL_REPORT_PROGRESS NULL Undefined
P_CALL_REPORT_ALERTI NG NULL Undefined
P_CALL_REPORT_ANSVER NULL Undefined
P_CALL_REPORT_BUSY NULL Undefined
P_CALL_REPORT_NO_ANSWVER TpDuration NoAnswerDuration
P_CALL_REPORT_DI SCONNECT NULL Undefined
P_CALL_REPORT_REDI RECTED NULL Undefined
P_CALL_REPORT_SERVI CE_CODE TpCallServiceCode ServiceCode
P_CALL_REPORT_ROUTI NG_FAI LURE NULL Undefined
P_CALL_REPORT_QUEUED NULL Undefined
P_CALL_REPORT_NOT_REACHABLE NULL Undefined

TpCallReportType

Defines a specific call event report type.

Name Value Description
P_CALL_REPORT_UNDEFI NED 0 Undefined.
P_CALL_REPORT_PROGRESS 1 Call routing progress event: an indication from the network that progress has
been made in routing the call to the requested call party. This message may be
sent more than once, or may not be sent at al by the gateway with respect to
routing agiven cal leg to a given address.
P_CALL_REPORT_ALERTI NG 2 Cal isalerting at the call party.
P_CALL_REPORT_ANSVEER 3 Call answered at address.
P_CALL_REPORT_BUSY 4 Called address refused call due to busy.
P_CALL_REPORT_NO ANSVER 5 No answer at called address.
P_CALL_ REPORT_ DI SCONNECT 6 |The mediastream of the called party has disconnected. This does not imply that
the call has ended. When the call is ended, the callEnded method is called. This
event can occur both when the called party hangs up, or when the application
explicitly releases the leg using |pCallLeg.release() This cannot occur when the
app explicitly releases the call leg and the call.
P_CALL_ REPORT_REDI RECTED 7 Call redirected to new address; an indication from the network that the call has
been redirected to a new address.
P_CALL_REPORT_SERVI CE_CCDE 8 Mid-call service code received.
P_CALL_REPORT_RQOUTI NG_FAILURE | 9 Call routing failed - re-routing is possible.
P_CALL_REPORT_QUEUED 10 [Thecal isbeing held in aqueue. This event may be sent more than once during
the routing of acall.
P_CALL_REPORT NOT REACHABLE 11 [Thecaled addressis not reachable; e.g. the phone has been switched off or the
phone is outside the coverage area of the ne_twork.

ETSI

201 ETSI ES 201 915-4 V1.2.2 (2002-05)

TpCallTreatment

Definesthe Sequence of Data El ement s that specify the the treatment for calls that will be handled only by the
network (for example, call which are not admitted by the call load control mechanism).

Sequence Element Sequence Element
Name Type
Cal | Tr eat nent Type TpCal | Tr eat nent Type
Rel easeCause TpCal | Rel easeCause
Addi ti onal Treat nentlnfo TpCal | Addi ti onal Treat ment | nfo

C.8 Multi Party Call Control Data Types

TpAppM ultiPartyCallBack
Defines the Tagged Choice of Data Elements that references the application callback interfaces

Tag Element Type
TpAppMultiPartyCallBackRef Type

Tag Element Value Choice Element Type Choice Element Name
P_APP_CALLBACK_UNDEFI NED NULL Undef i ned
P_APP_MULTI PARTY_CALL_CALLBACK IpAppMultiPartyCallRef appMil-ti-PartyCal--AppMul ti Par
tyCall
P_APP_CALL_LEG CALLBACK IpAppCallL egRef appCat-tegAppCal | Leg
P_APP_CALL_AND CALL_LEG CALLBACK TpAppCallLegCallBack appM-t-PartyCal--ArdCal-egA
ppMil ti PartyCal | AndCal | Leg

TpAppCallL egCallBack

Defines the Sequence of Data Elements that references a call and acall leg application interface.

Sequence Element Name Sequence Element Type
appMi-ti-PartyCall-AppMil ti Pa | pAppMul ti PartyCal | Ref
rtyCall
appCal LegSet AppCal | LegSet [TpAppCallLegRefSet Specifies the set of all call leg call back

references. First in the set isthe reference to
the call back of the originating callLeg. In
casethereisacall back to adestination call
leg thiswill be second in the set.

ETSI

202

TpCallAdditionalEventInfo

Definesthe Tagged Choi ce of Data El ement s that specify additional call event information for certain types

of events.

ETSI ES 201 915-4 V1.2.2 (2002-05)

Tag Element Type

TpCallEventType

Tag Element

Choice Element

Choice Element

Value Type Name
P_CALL_EVENT_UNDEFI NED NULL Undefined
P_CALL_EVENT_ORI G NATI NG_CALL_ATTEMPT NULL Undefined
P_CALL_EVENT_ORI G NATI NG_CALL_ATTEMPT_A NULL Undefined
UTHORI SED
P_CALL_EVENT_ADDRESS_COLLECTED TpAddress CollectedAddress
P_CALL_EVENT_ADDRESS_ANALYSED TpAddress CalledAddress

P_CALL_EVENT_ORI Gl NATI NG_SERVI CE_CODE

TpCallServiceCode

OriginatingServiceCode

P_CALL_EVENT_ORI G NATI NG_RELEASE TpReleaseCauise OriginatingRel easeCaus
e
P_CALL_EVENT_TERM NATI NG_CALL_ATTEMPT NULL Undefined
P_CALL_EVENT_TERM NATI NG_CALL_ATTEMPT_A NULL Undefined
UTHORI SED
P—CALLEVENT—QUEUED NULL Undefined
P_CALL_EVENT_ALERTI NG NULL Undefined
P_CALL_EVENT_ANSVER NULL Undefined
P_CALL_EVENT_TERM NATI NG_RELEASE TpReleaseCause TerminatingRel easeCause
P_CALL_EVENT_REDI RECTED TpAddress ForwardAddress
P_CALL_EVENT_TERM NATI NG_SERVI CE_CODE TpCallServiceCode TerminatingServiceCode
P CALL EVENT QUEUED NULL Undefined

ETSI

203

TpAdditionalCallEventCriteria

ETSI ES 201 915-4 V1.2.2 (2002-05)

Definesthe Tagged Choi ce of Data El ement s that specify specific criteria.

Tag Element Type

TpCallEventType

Tag Element Choice Element Choice Element
Value Type Name
P_CALL_EVENT_UNDEFI NED NULL Undefined
P_CALL_EVENT_ORI G NATI NG_CALL_ATTEMPT NULL Undefined
P_CALL_EVENT_ORI G NATI NG_CALL_ATTEMPT_A NULL Undefined
UTHORI SED
P_CALL_EVENT_ADDRESS COLLECTED TpInt32 MinAddressLength
P_CALL_EVENT_ADDRESS ANALYSED NULL Undefined
P_CALL_EVENT_ORI G NATI NG_SERVI CE_CODE TpCallServiceCodeSetFpC | OriginatingServiceCode
aHServiceCode
P_CALL_EVENT_ORI G NATI NG_RELEASE TpReleaseCatiseSet OriginatingRel easeCauseS
et

P_CALL_EVENT_TERM NATI NG_CALL_ATTEMPT NULL Undefined
P_CALL_EVENT_TERM NATI NG_CALL_ATTEMPT_A NULL Undefined
UTHORI SED
P_CALL_EVENT_ALERTI NG NULL Undefined
P_CALL_EVENT_ANSVER NULL Undefined
P_CALL_EVENT_TERM NATI NG_RELEASE TpReleaseCauseSet TerminatingRel easeCaliseSet

P_CALL_EVENT_REDI RECTED

NULL

Undef i ned

P_CALL_EVENT_TERM NATI NG_SERVI CE_CCDE

TpCallServiceCodeSetFpCS
aHServiceCode

Ter m nati ngSer vi ceCode

P_CALL_EVENT_QUEUED

NULL

Undef i ned

TpCallNatificationReportScope

Definesthe Sequence of Data El enent s that specify the scope for which a notification report was sent.

Sequence Element Sequence Element Description
Name Type
Desti nati onAddr ess TpAddr ess Contains the destination address of the call.
Ori gi nati ngAddr ess TpAddr ess
o - I A - I
pe e

The following data types have been added:

TpCal | Servi ceCodeSet

Defines a Numbered Set of Data Elements of TpCall ServiceCode.

ETSI

TpCallL egSuperviseTreatment

204

ETSI ES 201 915-4 V1.2.2 (2002-05)

Defines the treatment of the call leg by the call control service when the call leg supervision timer expires. The values

may be combined by alogical "OR" function.

Name Value Description
P _CALL_LEG SUPERVI SE_RELEASE 01h Release the call leg when the call leg supervision timer expires
P_CALL_LEG _SUPERVI SE_RESPOND 02h Notify the application when the call leg supervision timer expires
P_CALL_LEG SUPERVI SE_APPLY_TONE 04h Send awarning tone on the call leg when the call leg supervision timer
expires. If call leg release is requested, then the call leg will be released
following the tone after an administered time period

C.9

TpAppMultiM ediaCallBack

Multi Media Call Control Data Types

Defines the Tagged Choice of Data Elements that references the application callback interfaces.

Tag Element Type

TpAppMultiMediaCallBackRef Type

Tag Element Value

Choice Element Type

Choice Element Name

P_APP_CALLBACK_UNDEFI NED

NULL

Undef i ned

P_APP_MJLTI MEDI A_CALL_CALLBACKP-APP
MIETH-MEBHA--CGALLE—CGALEBACK

IpAppMultiMediaCall Ref

AppMul ti Medi aCal | appMu-ti-Med

aCal--

P_APP_CALL_LEG CALLBACKP-APP—CALL-
LEG-CGALLEBACK

IpAppMultiMediaCall L egRef

AppMul ti Medi aCal | LegappMiti-
Medi-aCall-Leg

P_APP_CALL AND CALL LEG CALLBACKP_APP

TpAppMultiMediaCallL egCallBack

AppMul 11 Medi aCal | AndCal | Leg

TpAppM ultiM ediaCallBackRef Type
Defines the type application call back interface.

Name Value Description
P_APP_CALLBACK_UNDEFI NED 0 Application Call back interface undefined
P_APP_MJLTI MEDI A_CALL_ CALLBACKP—ARPP—MILF-NMEDHA- 1 Application Multi-Media Call interface
CALL—CALLBACK referenced
P_APP CALL LEG CALLBACKP_APP_CALL-LEG CALLBACK 2 Application Multi-Media CallLeg interface

referenced

~—LEG-GALLBACK

P_APP_CALL_AND CALL LEG CALLBACKP_APP CALL_AND CALL |3

Application Multi-Media Call and CallLeg
interface referenced

ETSI

205 ETSI ES 201 915-4 V1.2.2 (2002-05)

TpAppM ultiM ediaCallL egCallBack

Defines the Sequence of Data Elements that references a call and acall leg application interface.

Sequence Element Name Sequence Element Type
AppMul ti Medi aCal | appMut-ti-Me | pAppMul ti Medi aCal | Ref
di-aCall-
AppCal | LegSet appGat-egSet | TpAppMultiMediaCallL egRef Set Specifies the set of all call leg call back

references. First in the set isthe reference to
the call back of the originating callLeg. In
casethereisacall back to adestination call
leg thiswill be second in the set.

TpMediaNotificationReguested

Defines the Sequence of Data Elements that specify the criteriarelating to event requests.

Sequence Element Name Sequence Element Type
ppNoti fi cati onMedi aRequest AppNetificati-onMEdi-aReque [pNotificati onMedi aRequest
+

ssignment | D pl nt 32

C.10 Conference Call Control Data Types
TpConfSearchCriteria

Definesthe Sequence of Data El enent s that specify the criteriafor doing a search for available conference
resources.

Sequence Element Name Sequence Element Type
Start Search TpDat eAndTi e
St opSear ch TpDat eAndTi e
Request edResour ces Tpl nt 32
Request edDur at i onRregquestedburati-on TpDur ati on

The following data types have been added:

TpResour ceReser vation

Definesthe Sequence of Data El enent s that specifies the result of a search for available conference resources.

Sequence Element Name Sequence Element Type Sequence Element Description
Resourcel D TpAddress The address with which the conference can be
addressed
Reservationl D Tpl nt 32 Specifies the reservation made. 1t should be
unique in a particul ar resource

ETSI

206 ETSI ES 201 915-4 V1.2.2 (2002-05)

C.11 Common Call Control Data Types

TpCallLoadControlM echanismType

Defines the type of call load control mechanism to use.

Name Value Description
P_CALL_LOAD_CONTROL_PER_| NTERVAL 10 admit one call per interval

The following data type was del eted:

Fag-Element-Value GCheoice-Element Choice-Element Deseription
Type Name
P—CALL—CHARGETFRANSPARENT NokE Undefi-ned
the .3?5‘6‘ WitROUL pHoF
theticket

ETSI

207

ETSI ES 201 915-4 V1.2.2 (2002-05)

History
Document history
V111 February 2002 Publication
V122 May 2002 Membership Approval Procedure MV 20020705: 2002-05-07 to 2002-07-05

ETSI

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Call Control SCF
	5 The Service Interface Specifications
	5.1 Interface Specification Format
	5.1.1 Interface Class
	5.1.2 Method descriptions
	5.1.3 Parameter descriptions
	5.1.4 State Model

	5.2 Base Interface
	5.2.1 Interface Class IpInterface

	5.3 Service Interfaces
	5.3.1 Overview

	5.4 Generic Service Interface
	5.4.1 Interface Class IpService

	6 Generic Call Control Service
	6.1 Sequence Diagrams
	6.1.1 Additional Callbacks
	6.1.2 Alarm Call
	6.1.3 Application Initiated Call
	6.1.4 Call Barring 1
	6.1.5 Number Translation 1
	6.1.6 Number Translation 1 (with callbacks)
	6.1.7 Number Translation 2
	6.1.8 Number Translation 3
	6.1.9 Number Translation 4
	6.1.10 Number Translation5
	6.1.11 Pre-paid
	6.1.12 Pre-Paid with Advice of Charge (AoC)

	6.2 Class Diagrams
	6.3 Generic Call Control Service Interface Classes
	6.3.1 Interface Class IpCallControlManager
	6.3.2 Interface Class IpAppCallControlManager
	6.3.3 Interface Class IpCall
	6.3.4 Interface Class IpAppCall

	6.4 Generic Call Control Service State Transition Diagrams
	6.4.1 State Transition Diagrams for IpCallControlManager
	6.4.1.1 Active State
	6.4.1.2 Notification terminated State

	6.4.2 State Transition Diagrams for IpCall
	6.4.2.1 Network Released State
	6.4.2.2 Finished State
	6.4.2.3 Application Released State
	6.4.2.4 No Parties State
	6.4.2.5 Active State
	6.4.2.6 1 Party in Call State
	6.4.2.7 2 Parties in Call State
	6.4.2.8 Routing to Destination(s) State

	6.5 Generic Call Control Service Properties
	6.5.1 List of Service Properties
	6.5.2 Service Property values for the CAMEL Service Environment.

	6.6 Generic Call Control Data Definitions
	6.6.1 Generic Call Control Event Notification Data Definitions
	6.6.1.1 TpCallEventName
	6.6.1.2 TpCallNotificationType
	6.6.1.3 TpCallEventCriteria
	6.6.1.4 TpCallEventInfo

	6.6.2 Generic Call Control Data Definitions
	6.6.2.1 IpCall
	6.6.2.2 IpCallRef
	6.6.2.3 IpAppCall
	6.6.2.4 IpAppCallRef
	6.6.2.5 TpCallIdentifier
	6.6.2.6 IpAppCallControlManager
	6.6.2.7 IpAppCallControlManagerRef
	6.6.2.8 IpCallControlManager
	6.6.2.9 IpCallControlManagerRef
	6.6.2.10 TpCallAppInfo
	6.6.2.11 TpCallAppInfoType
	6.6.2.12 TpCallAppInfoSet
	6.6.2.13 TpCallEndedReport
	6.6.2.14 TpCallFault
	6.6.2.15 TpCallInfoReport
	6.6.2.16 TpCallReleaseCause
	6.6.2.17 TpCallReport
	6.6.2.18 TpCallAdditionalReportInfo
	6.6.2.19 TpCallReportRequest
	6.6.2.20 TpCallAdditionalReportCriteria
	6.6.2.21 TpCallReportRequestSet
	6.6.2.22 TpCallReportType
	6.6.2.23 TpCallTreatment
	6.6.2.24 TpCallEventCriteriaResultSet
	6.6.2.25 TpCallEventCriteriaResult

	7 MultiParty Call Control Service
	7.1 Sequence Diagrams
	7.1.1 Application initiated call setup
	7.1.2 Call Barring 2
	7.1.3 Call forwarding on Busy Service
	7.1.4 Call Information Collect Service
	7.1.5 Complex Card Service
	7.1.6 Hotline Service
	7.1.7 Use of the Redirected event

	7.2 Class Diagrams
	7.3 MultiParty Call Control Service Interface Classes
	7.3.1 Interface Class IpMultiPartyCallControlManager
	7.3.2 Interface Class IpAppMultiPartyCallControlManager
	7.3.3 Interface Class IpMultiPartyCall
	7.3.4 Interface Class IpAppMultiPartyCall
	7.3.5 Interface Class IpCallLeg
	7.3.6 Interface Class IpAppCallLeg

	7.4 MultiParty Call Control Service State Transition Diagrams
	7.4.1 State Transition Diagrams for IpMultiPartyCallControlManager
	7.4.1.1 Active State
	7.4.1.2 Interrupted State
	7.4.1.3 Overview of allowed methods

	7.4.2 State Transition Diagrams for IpMultiPartyCall
	7.4.2.1 IDLE State
	7.4.2.2 ACTIVE State
	7.4.2.3 RELEASED State
	7.4.2.4 Overview of allowed methods

	7.4.3 State Transition Diagrams for IpCallLeg
	7.4.3.1 Originating Call Leg
	7.4.3.1.1 Initiating State
	7.4.3.1.2 Analysing State
	7.4.3.1.3 Active State
	7.4.3.1.4 Releasing State
	7.4.3.1.5 Overview of allowed methods, Originating Call Leg STD

	7.4.3.2 Terminating Call Leg
	7.4.3.2.1 Idle (terminating) State
	7.4.3.2.2 Active (terminating) State
	7.4.3.2.3 Releasing (terminating) State
	7.4.3.2.4 Overview of allowed methods and trigger events, Terminating Call Leg STD

	7.5 Multi-Party Call Control Service Properties
	7.5.1 List of Service Properties
	7.5.2 Service Property values for the CAMEL Service Environment.

	7.6 Multi-Party Call Control Data Definitions
	7.6.1 Event Notification Data Definitions
	7.6.2 Multi-Party Call Control Data Definitions
	7.6.2.1 IpCallLeg
	7.6.2.2 IpCallLegRef
	7.6.2.3 IpAppCallLeg
	7.6.2.4 IpAppCallLegRef
	7.6.2.5 IpMultiPartyCall
	7.6.2.6 IpMultiPartyCallRef
	7.6.2.7 IpAppMultiPartyCall
	7.6.2.8 IpAppMultiPartyCallRef
	7.6.2.9 IpMultiPartyCallControlManager
	7.6.2.10 IpMultiPartyCallControlManagerRef
	7.6.2.11 IpAppMultiPartyCallControlManager
	7.6.2.12 IpAppMultiPartyCallControlManagerRef
	7.6.2.13 TpAppCallLegRefSet
	7.6.2.14 TpMultiPartyCallIdentifier
	7.6.2.15 TpAppMultiPartyCallBack
	7.6.2.16 TpAppMultiPartyCallBackRefType
	7.6.2.17 TpAppCallLegCallBack
	7.6.2.18 TpMultiPartyCallIdentifierSet
	7.6.2.19 TpCallAppInfo
	7.6.2.20 TpCallAppInfoType
	7.6.2.21 TpCallAppInfoSet
	7.6.2.22 TpCallEventRequest
	7.6.2.23 TpCallEventRequestSet
	7.6.2.24 TpCallEventType
	7.6.2.25 TpAdditionalCallEventCriteria
	7.6.2.26 TpCallEventInfo
	7.6.2.27 TpCallAdditionalEventInfo
	7.6.2.28 TpCallNotificationRequest
	7.6.2.29 TpCallNotificationScope
	7.6.2.30 TpCallNotificationInfo
	7.6.2.31 TpCallNotificationReportScope
	7.6.2.32 TpNotificationRequested
	7.6.2.33 TpNotificationRequestedSet
	7.6.2.34 TpReleaseCause
	7.6.2.35 TpReleaseCauseSet
	7.6.2.36 TpCallLegIdentifier
	7.6.2.37 TpCallLegIdentifierSet
	7.6.2.38 TpCallLegAttachMechanism
	7.6.2.39 TpCallLegConnectionProperties
	7.6.2.40 TpCallLegInfoReport
	7.6.2.41 TpCallLegInfoType
	7.6.2.42 TpCallLegSuperviseTreatment

	8 MultiMedia Call Control Service
	8.1 Sequence Diagrams
	8.1.1 Barring for media combined with call routing, alternative 1
	8.1.2 Barring for media combined with call routing, alternative 2
	8.1.3 Barring for media, simple
	8.1.4 Call Volume charging supervision

	8.2 Class Diagrams
	8.3 MultiMedia Call Control Service Interface Classes
	8.3.1 Interface Class IpMultiMediaCallControlManager
	8.3.2 Interface Class IpAppMultiMediaCallControlManager
	8.3.3 Interface Class IpMultiMediaCall
	8.3.4 Interface Class IpAppMultiMediaCall
	8.3.5 Interface Class IpMultiMediaCallLeg
	8.3.6 Interface Class IpAppMultiMediaCallLeg
	8.3.7 Interface Class IpMultiMediaStream

	8.4 MultiMedia Call Control Service State Transition Diagrams
	8.5 Multi-Media Call Control Data Definitions
	8.5.1 Event Notification Data Definitions
	8.5.1.1 TpMediaStreamRequestSet
	8.5.1.2 TpMediaStreamRequest
	8.5.1.3 TpMediaStreamDirection
	8.5.1.4 TpMediaStreamDataTypeRequest
	8.5.1.5 TpAudioCapabilitiesType
	8.5.1.6 TpVideoCapabilitiesType
	8.5.1.7 TpDataCapabilities
	8.5.1.8 TpMediaStreamEventType
	8.5.1.9 TpMediaStreamSet
	8.5.1.10 TpMediaStream
	8.5.1.11 TpMediaStreamDataType

	8.5.2 Multi-Media Call Control Data Definitions
	8.5.2.1 IpMultiMediaCall
	8.5.2.2 IpMultiMediaCallRef
	8.5.2.3 IpAppMultiMediaCall
	8.5.2.4 IpAppMultiMediaCallRef
	8.5.2.5 IpMultiMediaCallLeg
	8.5.2.6 IpMultiMediaCallLegRef
	8.5.2.7 IpAppMultiMediaCallLeg
	8.5.2.8 IpAppMultiMediaCallLegRef
	8.5.2.9 TpAppMultiMediaCallLegRefSet
	8.5.2.10 TpMultiMediaCallIdentifier
	8.5.2.11 TpMultiMediaCallIdentifierSet
	8.5.2.12 TpMultiMediaCallLegIdentifier
	8.5.2.13 IpAppMultiMediaCallControlManager
	8.5.2.14 IpAppMultiMediaCallControlManagerRef
	8.5.2.15 TpAppMultiMediaCallBack
	8.5.2.16 TpAppMultiMediaCallBackRefType
	8.5.2.17 TpAppMultiMediaCallLegCallBack
	8.5.2.18 TpCallSuperviseVolume
	8.5.2.19 TpNotificationMediaRequest
	8.5.2.20 TpMediaNotificationRequested
	8.5.2.21 TpMediaNotificationsRequestedSet

	9 Conference Call Control Service
	9.1 Sequence Diagrams
	9.1.1 Meet-me conference without subconferencing
	9.1.2 Non-add hoc add-on with subconferencing
	9.1.3 Non-addhoc add-on multimedia
	9.1.4 Resource Reservation

	9.2 Class Diagrams
	9.3 Conference Call Control Service Interface Classes
	9.3.1 Interface Class IpConfCallControlManager
	9.3.2 Interface Class IpAppConfCallControlManager
	9.3.3 Interface Class IpConfCall
	9.3.4 Interface Class IpAppConfCall
	9.3.5 Interface Class IpSubConfCall
	9.3.6 Interface Class IpAppSubConfCall

	9.4 Conference Call Control Service State Transition Diagrams
	9.5 Conference Call Control Data Definitions
	9.5.1 Event Notification Data Definitions
	9.5.2 Conference Call Control Data Definitions
	9.5.2.1 IpConfCall
	9.5.2.2 IpConfCallRef
	9.5.2.3 IpAppConfCall
	9.5.2.4 IpAppConfCallRef
	9.5.2.5 IpSubConfCall
	9.5.2.6 IpSubConfCallRef
	9.5.2.7 IpAppSubConfCall
	9.5.2.8 IpAppSubConfCallRef
	9.5.2.9 TpSubConfCallIdentifierSet
	9.5.2.10 TpConfCallIdentifier
	9.5.2.11 TpSubConfCallIdentifier
	9.5.2.12 IpAppConfCallControlManager
	9.5.2.13 IpAppConfCallControlManagerRef
	9.5.2.14 TpConfPolicyType
	9.5.2.15 TpConfPolicy
	9.5.2.16 TpMonoMediaConfPolicy
	9.5.2.17 TpJoinEventInfo
	9.5.2.18 TpConfSearchCriteria
	9.5.2.19 TpConfSearchResult
	9.5.2.20 TpMultiMediaConfPolicy
	9.5.2.21 TpResourceReservation
	9.5.2.22 TpVideoHandlingType

	10 Common Call Control Data Types
	10.1 TpCallAlertingMechanism
	10.2 TpCallBearerService
	10.3 TpCallChargePlan
	10.4 TpCallPartyToCharge
	10.5 TpCallPartyToChargeType
	10.6 TpCallChargeOrder
	10.7 TpCallChargeOrderCategory
	10.8 TpCallEndedReport
	10.9 TpCallError
	10.10 TpCallAdditionalErrorInfo
	10.11 TpCallErrorType
	10.12 TpCallInfoReport
	10.13 TpCallInfoType
	10.14 TpCallLoadControlMechanism
	10.15 TpCallLoadControlIntervalRate
	10.16 TpCallLoadControlMechanismType
	10.17 TpCallMonitorMode
	10.18 TpCallNetworkAccessType
	10.19 TpCallPartyCategory
	10.20 TpCallServiceCode
	10.21 TpCallServiceCodeSet
	10.22 TpCallServiceCodeType
	10.23 TpCallSuperviseReport
	10.24 TpCallSuperviseTreatment
	10.25 TpCallTeleService
	10.26 TpCallTreatment
	10.27 TpCallTreatmentType
	10.28 TpCallAdditionalTreatmentInfo
	10.29 TpMediaType

	Annex A (normative): OMG IDL Description of Call Control SCF
	Annex B (informative): Contents of 3GPP OSA R4 Call Control
	Annex C (informative): Summary of differences between V1.1.1 (Parlay 3.0) and V1.2.1 (Parlay 3.1)
	C.1 IpService
	C.2 IpCallLeg
	C.3 IpAppCallLeg
	C.4 IpMultiMediaStream
	C.5 IpConfCallControlManager
	C.6 IpAppSubConfCall
	C.7 Generic Call Control Data Types
	C.8 Multi Party Call Control Data Types
	C.9 Multi Media Call Control Data Types
	C.10 Conference Call Control Data Types
	C.11 Common Call Control Data Types

	History

