ETSIES 201 915-3 vi.5.1 (200502

ETSI Standard

Open Service Access (OSA);

Application Programming Interface (API);
Part 3: Framework

(Parlay 3)

D

2 ETSI ES 201 915-3 V1.5.1 (2005-02)

Reference
RES/TISPAN-01008-03-OSA

Keywords
API, OSA, IDL, UML

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2005.
© The Parlay Group 2005.
All rights reserved.

DECT™, PLUGTESTS ™ and UMTS™ are Trade Marks of ETSI registered for the benefit of its Members.

TIPHON™ and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members.
3GPP™is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

ETSI

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

3 ETSI ES 201 915-3 V1.5.1 (2005-02)

Contents

Intellectual Property RIGNES.........oo et 9
0 Yo (o SRS 9
1 o010 RSP 10
2 S L= (= 000 P 10
3 Definitions and aDbreVIBLIONS...........eceere ettt e sre e be s e e tesneeneeseeeneeneenreas 10
31 (D= T o T] (0] PP P PP USTORPP 10
3.2 ADDIEVIBLIONS ...ttt bbbt bt ae st e e eeE e e bt e bt e he e b e e e et e Rt eh e e Re e b e R e bt bt eneene e e re e 10
4 OVENVIEW OF the FramEWOTK.........c.coiiiiiiirieee ettt sb e e e e 10
41 General requirements on SUPPOIt Of MELNOUS...........oooiiiie s 12
5 The Base INterface SPECITICALION.couieeeieee et 12
51 Interface SPECITiCatiON FOIMELcc.ciiie ettt sb et b e bt ens 12
511 E 1= = Tor Y O =SSP 12
5.1.2 =10 T0 0 === ol o (o] S 13
5.1.3 = 1= (= 0 == o 1 0] 0] S 13
514 Sz (= 1Y T L= O SPRPSPTS 13
52 BaSE INEEITACE.ttt h ettt b e bbbt a e e e bRt b e Rt a e e e R et eh e bt ene e re e 13
521 LS g o O F= S T o] 11 o = o= P 13
53 SEIVICE INEEITACES ... ettt e et b bbbttt e e e e b e bt e h e eb e s aeehe e e e s e besbeebesneenee e ennes 13
531 OVEBIVIBWW ..ttt e ettt sttt e st et e s e se e besaeeaeeaeeneemeese e EeeReeeeeseemeemeese e beeaeeneeneenseaseseesaesneeneensenss 13
54 GENENIC SEIVICE INLEITACE ...ttt ettt et et e e et e beseeebe s et ese e e e e e stesaeseesneeneenenneas 13
54.1 INEEITACE ClASS IPSEIVICE ...ttt ettt b e et b e bbbt b et b e bbb 13
6 Framework ACCESS SESSION APottt re e e seeeneenaenneas 15
6.1 SOOUENCE DIAQIAIMS......ecuiietieieeie et eeesee e e s e e s e e tesee st e sae e seeateaseeaseeaseeseesseestesseesaeesaeesseesseenseanseensennsenneessenssens 15
6.1.1 Trust and Security Management SeqUENCE DIAQIaMSccvereeierieiie e seesee e seeseesseeseesesseesreesseesses 15
6.1.1.1 Initial ACCESS FOr trUSLEA PAITIES.....ccueeiieeiiiee et sre e saeesreesreenseenneans 15
6.1.1.2 INTEBI ALCCESS. ...ttt b et bttt e b h e bt bt eh e e s e e e e b e se e ke s Rt eb e e aeen e et e neeebeeneebe e e ennees 15
6.1.1.3 AUTNENTICALTION ...ttt b e b et he et b b et e b e s bt e b e et e e e eesbeebesaeere e e ennees 17
6.1.14 Y o Y= BN 11 1= (o o] o 17
6.2 ClaSS DIAOIAMS.ecve ettt ettt ettt b et bt bt bt e et bt b e e bt s e e e eh e e R e seeh e e R e st e b e e R e e eb e b e ne e b e s e e st ebese et eb e s b et ebenre e 19
6.3 1 1= oo O o PR 19
6.3.1 Trust and Security Management INterface ClaSSeS........cciieiriieirieeseee e 19
6.3.1.1 Interface Class |pClientAPILevel AUhENEI CALION.........cccoieiiieieeee e 20
6.3.1.2 INtErface Class P I ENTACCESS.......ccveieiieseesee st e steeste st et ese e s e e e eteesaesseesseesseesseessesnsesseesseesseenseesenns 21
6.3.1.3 INterface ClasS IPINITIALccccieiiei et e st et e et e e teeeesreesreesneesseeseenseans 22
6.3.14 Interface Class IPAUINENLICALION............ccciieiee et ae e s e sreesneesreenseeneeens 23
6.3.1.5 Interface Class IPAPILeVEl AUtNENEICALIONccciieiiee et ae e 24
6.3.1.6 INEErTACE ClaSS IPACCESScveete et eeie ettt et et e st e teeteseeseesaeesteesaeeaeeeseeeseesseesseenteenseaneesseesanesseenseenseenseans 26
6.4 State TranSitioN DIBGIAIMS.ccciiieieeieere e eee st et ste et e e st e et e e e eseesseesteesseessesaesseesseesseenseanseensenssesneesseesses 28
6.4.1 Trust and Security Management State Transition Diagramscocoveereerinieenenieesesese e 28
6.4.1.1 State Transition Diagrams fOr IPINItIalcooociiicr s 28
6.4.1.2 State Transition Diagrams for IpAPILevel AUthentiCation.............couoeiriieineinereeeee e 29
6.4.1.2.1 Lo [= (= TSP 29
6.4.1.2.2 SElECtiNg MELNOO SEALE.........cvieeiiriiece bbbt bt 29
6.4.1.2.3 AUhentiCating ClIENT SLALE.........oouiiieeieie et b et b e neene s 30
6.4.1.24 Client AUTNENTICAEEA SEALE........c..eieeeeeeieierie ettt b bt e e sbesbe s e enneneen 30
6.4.1.3 State Transition Diagrams fOr IPACCESS.......ccuveiieieriesiee e se st e e e e saeeeessaesreesteesaesseesseesaens 30
6.4.1.3.1 ACHVE SEALE ...ttt et sttt st et et e sttt ese et be st et et esee e et e nae e renreneeneas 31
7 Framework-to-APPHCAHON APloooee ettt st et e st s be e e sreenaenbenreas 31
7.1 SEOUENCE DIBOIAITIS ...ttt sttt sttt sttt bt ebe et ebese et b e s e e st b e s e e bt eb e s e e bt e be s e e Rt e b e e ebe e b e neeneebese e st eb e st et ebenreneees 31
711 Event Notification SeqUENCE DIAgramS.ccueirieiierieeniereeie ettt sttt b e e b s 31
7111 Enable EVENt NO ICAONeieeieeeee ettt seesbe e eneeneen 31
712 Integrity Management SEqQUENCE DIBGIaIMSc.cooueiiirieinieriee ettt 33

ETSI

4 ETSI ES 201 915-3 V1.5.1 (2005-02)

7121 Load Management: Suspend/resume notification from application...........cccecvevvneenvenieccecce e 33
7.1.2.2 Load Management: Framework queries |0ad StatiStiCS........cccovvuerieeiieese e see e 34
7.1.2.3 Load Management: Framework callback registration and Application load controlcccceveuenen. 35
7.1.24 Load Management: Application reports current load CONdition.............ccvecvvreereecrece e 36
7.1.25 Load Management: Application queries |0ad StatiStiCS........ccvviveieeieere e 36
7.1.2.6 Load Management: Application callback registration and load controlccccceveeveeivcciencnseennen, 37
7127 Heartbeat Management: Start/perform/end heartbeat supervision of the applicationc.ccccceeveneee 38
7128 Fault Management: Framework detects a Service fallure ..o 39
7129 Fault Management: Application requests a Framework activity test ... iiinencc e 40
713 Service DiSCOVErY SEQUENCE DIBgIaIMSc..oiveerieieterieeete sttt sttt e sb et b et e e b se e ebesreneenens 40
7131 SEIVICE DISCOVEIY ...etieetiitieettstee ettt ettt b b bt h b e ek bt e b bt bbbt st b s ese b e s e st bt b et b e nn e e enis 40
714 Service Agreement Management SeqUENCE DIagramMS.........ccceveieeieeseeseeieeseesreese e e sae e e sseeneesseesnes 42
7141 SEIVICE SEIBCTION. ...ttt bbbttt s e et e s b e bt bt e st e he et e e e besbesbesneebe e e enneneens 42
7.2 L= LSS D= =0 1SS 44
7.3 INEEITACE CIBSSES. ... ettt ettt e e bbbt b et e e e e e e b e e bt sh e e b e e Rt eh e e e e e et sheebeeneenee e enrees 47
731 Service DiSCOVErY INEIfate ClaSSES.uuiiiiieii e e et e s be et e aesraesre e beeteeneeneeenes 47
7311 Interface Class |PSErVICEDISCOVETYocuiiieiieeiieieeieieeseesteesteeteeaesseesteeste e tesssesseesseesseesseesseenseesenns 47
732 Service Agreement Management INterface ClaSSES.........cciieiiirieeie et 50
7321 Interface Class |pAppServiceAgreementManagementcovrerererereresesieese s 50
7322 Interface Class |pServiceAgreementManagemENtc.coereirererieeserese et 52
733 Integrity Management INEErface CIASSES..........coi it 54
7331 Interface Class |PAPPFAUITIMANAGETcoiirieieirieiee ettt 54
7.3.32 Interface Class IPFAUITIMANAGESoiiiieiee ettt bbbt et sb e 58
7.3.33 Interface Class IPAPPHEABEAIM QMLcceeiiiece e se e e s reereenne e 61
7.3.34 Interface Class IPAPPHEABERL.cceeiieiiecece et e s te e e e e e e sneesreenseenneens 62
7.3.35 Interface Class IPHEArtBEAMOMIL.........ccuiiieiie e ae e s sre e s e e sneenseenneens 62
7.3.3.6 Interface Class IPHEAMBEALccuveiieiece et e ste e e e sreesreenaeenneens 63
7.3.37 Interface Class IPAPPLOBAMENEOESccveeveeieiieieeseesteesteeseeseesees e e tee e eteseesseessaesaeesseesseensennsenns 64
7.3.38 Interface Class IPLOAOME@NAQEYccueeiereeieeieeeseesee st e steesteeteeeessaess e sseesteesseesseensesnnesseesseenseenseans 66
7.3.39 INLEIFACE ClasS IPOAM ..ottt ettt b e et b e bbbt b e et b e e et sb e s 69
7.3.3.10 INterface Class IPAPPOAM ...ttt et et b e st b e bbbt be bbbt sb e b 70
734 Event Notification INterface ClasseS.ottt st e e e e 71
7341 Interface Class |PAPPEVENINOLIFICATIONooveiiireiieee e 71
7342 Interface Class IPEVENINOLIFICATON ..ot 71
7.4 State TranSitioN DIBGIAIMS.ccce e iee e ereeie et et e st et e e e st e et e e e estesseesseesteessesnaesaeesaeesseenseenseensenseesneessenssens 72
74.1 Service Discovery State Transition DIagramsScccecevieieeieere e se st eee e e e sree e eeeeeesnee s 73
74.1.1 State Transition Diagrams for IPSerViCEDISCOVENYccuuiiiiiiriiiee et ee et see s sre e 73
74111 ACHVE SEAEE ...ttt sttt sttt s b ettt st et et e s e et et e st et et esee e et e nae e erenbeneenens 73
74.2 Service Agreement Management State Transition Diagrams.........ccvccvevereereeieseeseee e 73
74.3 Integrity Management State TranSition DIiagramMS..........cceieerieecieneeseesie e see et eee e ssaesee e e 74
7431 State Transition Diagrams for IPLOBAM@NAGEYcoireeririeerieeeieriee et 74
74311 L[S = (= TP 74
74312 NOLifiCation SUSPENTEA SEALE..........c.eoveeiriiieiireee et 74
74313 ot L= (= R 74
7432 State Transition Diagrams for LoadManagerInternal.............cocevireerineinineeneeseseese s 75
74321 [N To g r= L= o S = (TSR 75
74322 ApPPlICation OVENTOAO SLALEcceeiieciieieee ettt et e et be e e e teeaesnnesnes 75
74323 INtErNal OVENTOBH SEALE.........coueieeeeeeie ittt bbbttt e sr e bt ebe e e s 75
74324 Internal and Application OVErload SEaLEccccceieeiee e 75
7.4.3.3 State Transition Diagrams fOr IDOAM ..o et re e eraesnaesraesnees 76
74331 ACHVE SEALE ...ttt et sttt st et et e sttt ese et be st et et esee e et e nae e renreneeneas 76
7434 State Transition Diagrams for IpFaUltManagerccveieeiieie e 77
74341 FrameWOrK ACHIVE SEBLE..........ceeereiie ettt st et et ese e e et e s teseesbesneene e e eneees 77
74342 Framework FAUITY SEBLE.........cccceiiieiiteeeter ettt 77
74343 Framework ACHVILY TSt SELE........coervieeeiriieet ettt 77
74344 SENVICE ACHIVITY TESE SEALEc.ecueitieeeert ettt bbbt b et b e e 77
744 Event Notification State Transition DiagraimS........cocirereirieenereee st 78
7441 State Transition Diagrams for IPEVENtNOLITICALiONcccveciveiie e 78
8 Framework-to-Enterprise OPErator APl ...ttt ere s 78
8.1 SOOUENCE DIAQIAIMS......ecuiietieieeie et eeesee e e s e e s e e tesee st e sae e seeateaseeaseeaseeseesseestesseesaeesaeesseesseenseanseensennsenneessenssens 82
8.1.1 Service SubsCription SEqUENCE DIAQIAIMIS.......ccvccuiiieriesieeeee e see e ste e e e e saeeee s e sraesre e beeteeneesneesnes 82

ETSI

5 ETSI ES 201 915-3 V1.5.1 (2005-02)

8111 Service Discovery and SUDSCIiPtioN SCENAIMO.........couicuieieriee e sie st ree e sre et e s e sreesrees 82
8.1.1.2 Enterprise Operator and Client Application Subscription Management Sequence Diagram................. 84
8.2 L= S D= =0 1 SRS 87
8.3 INEEITACE CIBSSES. ... ettt st e e bbbt b e e et e et e bt e bt e Rt e b e s aeeh e e e e b et sheebeeneene e e eneenes 88
831 Service SUDSCription INLErfaCe ClasSESccii it aeen e e enes 88
8311 Interface Class |pClientAPPM @NAJEMENLccceeiieiieiee e seesteeeeeee e sreeseesreesteeseeseeseesseesseenseenseans 88
8312 Interface Class |pClientAPPINFOQUETY ..ottt bbb 92
8313 Interface Class |pServiceProfileManagement ..o e 94
8314 Interface Class |pServiceProfilel NFOQUENYo.ciiiiiiieeeseee e 96
8.3.15 Interface Class |pServiceContraCtManagemENTcoiereeeririreree et 97
8.3.16 Interface Class |pServiceContraCtiNfFOQUETYcooiieiiirieiiiet e e 99
8.3.1.7 Interface Class |pENtOPACCOUNTMANAJEMENLcciiveieerieereeeeseeseestee e saesseesseesseesseeseessesseessaenses 101
8.3.1.8 Interface Class |pENtOPACCOUNtINFOQUENYc.veeieeiieie ettt sttt 102
84 State TranSitioN DIBOIAIMS.c.cueieeieeie e eee e et e s et e e e e eesaeesaeesteeeesseesseesseenseasseaseeaseesseessensseensesneeanes 102
84.1 Service Subscription State Transition DiagramiS.........ccveueieereerieesieesesieeseeseesre e eeesreesreesse e e sreesseesses 102
9 FramewOorK-10-SEIVICE AP ..ottt sttt ettt nes 103
9.1 SEOUENCE DIBOIAITIS ...ttt ettt ettt b e st h bt b s e s b e £ e b e b e ae e b e b et bt b et e et e b e b e st e b et et ebe b 103
911 Service DiSCOVEry SEQUENCE DIBgIaIMSc..coiiirieieieriee sttt sttt sttt st b e et sb e 103
912 Service Registration SeqUENCE DIBOIAIMSccuiiieerieeeierie sttt sttt sb e et sb e e sb e 103
9121 NEW SCF REJISITALION.ccveveaeete ittt ettt sttt b e st b e st b e et b e e bt st bt e e b b 103
9.13 Service Instance Lifecycle Manager Sequence DiagramsSc.cooeeeereeenereeenienesie s 104
9131 SN SEIVICE AQIEEIMIENLeeiuietieieeieeie et esee e s e e steseeseesaeesse e teenseessesseesseesseeteensesneesneesneesseenseensenns 104
914 Integrity Management SeqUENCE DIiagramS........cvuueiueieeieerieeiesieeseesee e etesseessaesreesseessessessseesseensesnsenns 106
9141 Load Management: Service callback registration and load control..............ccoevveiieecevcn e 106
9.1.4.2 Load Management: Framework callback registration and service load controlcccccevveveennnnne 107
9.1.4.3 Load Management: Client and Service Load BalanCing.........cccocvevveveeeenieneesece e e e see e 108
9144 Heartbeat Management: Start/perform/end heartbeat supervision of the service.........ccccooeeeveneee 108
9.145 Fault Management: Service requests Framework activity teSt.........cooooereiriineineneseees e 109
9.14.6 Fault Management: Service requests Application aCtiVity testccoeevereienenninesneees e 110
9.14.7 Fault Management: Application requests Service actiVity testcoevverrinennesereee e 111
9.1438 Fault Management: Application detects serviceis unavailable.............cccvireinennincinenceeee 112
9.15 Event Notification SeqUENCE DIagramS.eoueeruirieiriiieesieie sttt et s 112
9.2 (O =SS D= =0 1P 113
9.3 INEEITACE CIBSSES. ... ettt b bbbt h et e e e e e Rt e b eh e eb e e st eae e e e nb e besheeb e e e enneneenras 115
931 Service Registration INtErface ClaSSES........civiiiiiiei ettt e e te e s esnaesraesneas 115
9311 Interface Class |pFWSErVICEREQISIIaLi ONecovieeeiieeeee e e e e sraenrees 116
9.3.2 Service Instance Lifecycle Manager Interface Classes.........uvveiireiieiee i se et 119
9321 Interface Class |pServicel nstanceLifeCyClEManagerccvevvveeieesiere et 119
9.33 Service DIiSCOVErY INErfaCe ClasSES........coi ittt bbbt 120
9331 Interface Class |PFWSEIVICEDISCOVETYc.ciirieiiiieirierie sttt b e 120
9.34 Integrity Management INEErfate CIASSES..........ucririiieirieiee e 123
9341 Interface Class |PFWFELITMBNAGEScociiiieiiiere bbb 123
9342 Interface Class |PSVCFAUIMBNAGEYcoririieirieeere bbb 126
9.34.3 Interface Class IPFWHEArBEAIMOIML.........c.eoiieee ettt et e e snaesraennees 129
9.34.4 Interface Class IPFWHEAIMBERLcccceeiieie ettt sre et e e ae e sneesnaesneas 131
9.345 Interface Class |pSVCHEABEAIM QMLcoiiie ettt et sneas 131
9.34.6 Interface Class IPSVCHEAMBEALoceeiiee ettt sneas 132
9.34.7 Interface Class IPFWLOBAMENAGESc.ccveiiereereereeiteeeesee s e e te e e entesaessaesreesaeesseeseensesneesseesseessens 133
9.34.8 Interface Class IPSVCLOAOM@NAGETcccveiieiie et ee e e e et e e ae e e e sreesbe e e enaesneessaesneas 136
9.349 INtErface Class IPFWOAIMooiiiieet ettt ettt bbbt bbb 139
9.3.4.10 INtErface Class IPSVCOAM ..ottt bbbt b et bt b et be e 139
9.35 Event Notification INterface ClIassesS.......couiiii ittt 140
9351 Interface Class |PFWEVENINOLIiCALION..........cciirieiriere e 140
9.352 Interface Class |PSVCEVENENOLIfICALIONccouiieiiieee e 141
9.4 State TranSItioN DIGOIAMS.coueuiiriietiriee ettt ettt b e st b e st b e e st b e e e st be e e bt ebe e e st e b et et ebenbe e e 142
94.1 Service Registration State Transition DIagramsS.........ccvcueveereenieesiesiesieeseeseeesee e seesseesseesesseessessseessees 143
94.1.1 State Transition Diagrams for | pFWServiCeRegiStration...........ccevvvceieeiee s 143
9.4.11.1 SCF REGISIENEA SEALE......cuectiieeeietirieeete ettt ettt e st e e st bt e s e s b et esesbeseenensesseneens 143
94112 SCF ANNOUNCED SEBEE........eeueeieeteie sttt ettt sttt b e ittt se et e bbb e et e se e e e b e saeene e e e e nes 143
9.4.2 Service Instance Lifecycle Manager State Transition DiagramsS.........ceceeveeieeeeneeseeieseeseeseeseeseeseens 143
94.3 Service Discovery State Transition DIiagramScc.ecveieeienieiee s esessee s s sae e e esee e sreesraesseesnees 144

ETSI

6 ETSI ES 201 915-3 V1.5.1 (2005-02)

94.4 Integrity Management State TranSition DIaQraMS.........ccveveeiereesieeiesieseese e see e e siessaeseesreesaesseeneens 144
9441 State Transition Diagrams for IpFWLOaOdMaNagerccvevieienieneesiecie e se e ene e 144
94411 LA SEAL....... ettt e b e h e h e et b e Rt bRt b ettt er e b ae e e nas 144
94.4.1.2 Notification SUSPENAEA SLALE...........ccceeiierieeieieeees ettt ereesnaeeraesnaesneas 144
94413 ACTIVE SEBLE ...ttt bbbt bt et b se e eb e a e eh e et e e e e et b e ne e e nns 145
945 Event Notification State Transition DIagramsS.........cccccvecueieereereeieeeeseeseetesee e sesaesaesseesseesseessesnsenns 145
1O SEIVICE PrOPEITIES. ..ottt b b bbb e et e s e bt e bttt b e nb e b st e bt nb e b e nnennenn s 145
10.1 SEIVICE PIOPEITY TYIIES ...etiueetirtieettrtet ettt ettt e e b et b st e bbbt £ et e bt b e bt b et e bt e b e b e st e b et et e b e b 145
10.2 GENEral SEIVICE PrOPEITIESttt bbbt b et a b e st b e bbb 147
10.21 SEIVICE NBITIE. .. .ttt h et e bbbt eh e ae e s e e e e b e besh e eb e eheehe et en s e e e sbesbesneebe e e ennennen 147
10.2.2 = Ve A< £ o] o T OO OU PR PRURORTPRN 147
10.2.3 SEIVICE INSLANCE ID ...ttt e b ettt e b et b e s bt bt e st e s e e e sb e s besaeebe e e enteneen 147
10.2.4 SErVICE INSLANCE DESCIIPLION.......eiiie e iee ettt e e te et esae et e eaaesaeesae e seente e seenseeseenneeneennes 147
10.25 PIOGUCE INBITIE ...ttt e b ekttt bbbtk e st e e e ne e bt see e bt e aeene e b e ebeebeebeene e e et nes 147
10.2.6 Lo To (§To Y= = Yoo TP R VPRSPPI 148
10.2.7 SUPPOILE INEEITECEScvieeeeeie et ettt b e et b et b st s b e et b et e be b 148
10.2.8 OPEIBLION SEL ...ttt ettt ettt b bt b e e et bt b e eb e se e e eb e s h e e eb e s R e e eb e s R e e eb e eR e e bt R e e bt e bene Rt ere e ene s 148
R B = = = 1 o 148
111 Common Framework Data DefiNitiONScooiiiiiiieeee et s sb e neen 148
1111 TPCHEMAPPID ... bbbt b e bt bt e s e e e e bt s Rt eb e e st e st e e e b e besbeebeeneenne e enres 148
11.1.2 L O 1= 017N o] o115] I E= PRSP PP UR USSP 148
1113 TPDOMAINID ...ttt bt st b et e b e h e e ae et e e e b e sR e e b e e Rt e R e e e et e nbesheebe e e enre e enres 148
11.1.4 QLI 01510 0= 1Y/ oS 149
1115 TPENLOPID ...t bbbttt e bbb e e st e e e e e R bt e Rt b e Rt e R e et et e Rt eh e a e e e nrenreras 149
1116 TPPIOPEITYNGIME. ... e e e s e n e 149
11.1.7 TPPTOPEITYV BIUB.......cvieiiitireeieet ettt b et b et b e bt b bt b bt e e bt bt e e bt e bt nn s ens 149
11.1.8 TPPTOPEITY ... et h e s e e e e n e 149
11.1.9 TOPTOPEITYLISE ...ttt bbbt b b e bt bt sk h e R bbb bbbt e n e e e enn 149
11.1.10 QLI =01 o1 5 = OSSP 149
11111 LI o USSR 150
11.1.12 LI 15 = Lol TS TO PSP PP USSP 150
11.1.13 I 1S = [0l R OO TSP PP URTSR TP 150
11.1.14 TPSEIVICEDESCIIPLIONc.eeceeeeteeeteete et s e e e e e e s reesbe et e e e estessaesseesseesaeensesneesneesneanseansennsenns 150
11.1.15 TPSEIVICEID ...ttt b e bbbt bt a e e e e e s et bt e bt e Reeae et e R e e e et e besheebeeneene e e ennan 150
11.1.16 TPSENVICEIDLISE ...ttt et b bbbt e e b bt s Rt e b e e st e s e e e e s e besbeebe e e enneneenres 150
11.1.17 TPSENVICEINSLANCEIDoueiiiitiieieet ettt bbbt bt e s bt et b e e st bt e e bt b e ens 150
11.1.18 TPSEIVICESPECSEIING ...eveveueeterteneetert ettt ettt ettt eb et b e bt b a e e bt s e ae e bt e e st e bt b e bbbt b eseeb e b e e ebenn e e ens 150
11.1.19 TPSENVICETYPEPIOPEITY ...ttt bbbt b b b s e st b et b e nn e ens 151
11.1.20 TPSENVICETYPEPIOPEITYLISEc.eceeeeeet ettt bbbt b e ens 151
11121 TPSErVIiCETYPEPIOPEITYIMOUE. ... ettt bbbt b et 151
11.1.22 TPSErVICEPTOPEIY TYPENGBIME.ctiieiitieeiert ettt b bbb bbbt b et b bbb e ens 151
11.1.23 I 0SS Vo= 0] 0= NN = T TS 151
11.1.24 TPSerViCeProPErtYNAMELISL......cvieiieiececees et et et et e e e e e tesnaesneesreesneenaeeseensenns 151
11.1.25 TPSErVICEPIOPEITYV AIUE.eeieeie et ete sttt e e sre et e ettt e s e esaestaeste e teentesneesneesaeesneenseenseensenns 151
11.1.26 TPSErViCEPrOPErtYV AlUELISL......cveeiecece ettt te s e st e st e s reenteeeesaeesneenneeseensenns 151
11.1.27 IS V0= (0] 0T S 152
11.1.28 I 0SS Vo= 0] 0= 1 I S 152
11.1.29 TPSENVICESUPPIIEITD ...ttt bbbttt b bt b et st bt e e bt b neens 152
11.1.30 TPSENVICETYPEDESCIIPLION ...ttt ettt b et b bbbt et b et b b e st b b ne b e ens 152
11131 TPSENVICETYPENGBIMIE ...ttt b et b et b e e bt et b b e e bt b s e bt b e b e bt e e st bt et e e e bt ne e s ens 152
11.1.32 TPSEVICETYPENBMELISE ...ttt b et b et bese e ens 153
11.1.33 I IS Lo T= o I o= OO SOOI 153
11.2 Event Notification Data DEfiNiTIONS..........cccoiiriiiiiiieeeeee et 153
1121 TPPWEVENINGITIE. ...ttt bt e bbbt et e e s e e b s et e bt s bt ehe e e et e besheebeeneenne e entas 153
11.2.2 I o T Y= o (O (- S 153
11.2.3 TPRWEVENTINTO. .t e e b bbbt et e e b et bt bt et nne e e ras 154
11.3 Trust and Security Management Data DEfiNItIONSccvvveiieiieice et eneens 154
11.31 QLI 0T e el =S S] Y/ oL TP 154
11.32 I T AU 1 a] Y OO UPERRURTORSRURR 154
11.33 TPENCIYPLONCAPEDINTTYc.eveeetirteeet ettt e et b et b e sn s 155

ETSI

11.34
11.35
11.36
11.3.7
11.38
11.39
11.3.10
11.3.11
114
1141
1142
1143
1144
1145
1146
1147
1148
1149
11.4.10
11411
11.4.12
11.4.13
11.4.14
11.4.15
11.4.16
11.4.17
11.4.18
11.4.19
11.4.20
11421
115
1151
1152
1153
1154
1155
1156
11.5.7
1158
1159
11.5.10
11511
11.5.12
11.5.13
11.5.14
11.5.15
11.5.16
11.5.17
11.5.18
11.5.19
11.5.20
11521
11.5.22
11.5.23
11.5.24
11.5.25
11.5.26
11.5.27
11.5.28
11.5.29
11.5.30
11531

7 ETSI ES 201 915-3 V1.5.1 (2005-02)

TPRENCIYPtiONCaP@Di lITYLISEeeveeieeeieeee et se et e et e e e e e e be e s e sseessaesreesreesneesseenseensenns 155
T PENUA CCESSPIOPEITIES. .. ccveeee et et ee sttt e e s e s e s e sre e s te e te et e essesseessaesseeseeseensesneesseesneenseanseensenns 155
QLI o7AN U 10100 0 o S 155
QI 10 = e= \VF= T SSUS 156
I L1 0 = V= 1= S 156
QI 05 V0T 0 o TS 156
TPSIGNAIUrEANASENVICEMQE ...ttt ettt b et b et b et b e e b e e e eb e b ese bt e e ebenr e ens 156
TPSIGNINGATGOITENM ... bbbt b bbbt b e nr e ens 157
Integrity Management Data DefiNitioNS....... ..ottt 157
TPACHVITY TESIRES ...ttt h bbbt b et b e et b et e bt b e st bt bt b e s e bt st e e ebenn e s ens 157
TPFAUIESIBESRECOIT ..ottt b e b ettt b et b e bbb e b e et b et e e bt e e ens 157
QI =S 157
QI L = S o= =t o S 157
TPRAUITSEAESSEL ...ttt ettt b e bbb bt h et e e e e b ekt s et eb e e bt e b e e e e e e bt eb e bt e e e renneren 158
TPACHVITYTESIID ...ttt e e e bttt ne et s et e b e bt eh e e e et e besbeeb e e e enee e enres 158
QI 10 =0 = T S 158
TPSVCUNGVAITREBSON........ceiueeiteeieeieeeeee st e ste e e e e stesseesaeesteesseeeeeseeeseasseeseenseessessenssaesneesneesneanseansennsenns 158
TPPWUNAVAITREBSON ...ttt ettt b et b e bt bbbt e bt b e e e bt sb e s e st b et e e bt sr e e enis 158
TPLOAOLEVEL.......eoeeeeeeeee ettt bbbt bt e bt et h e e bt bbbt e st bt b e a e e enen 158
TPLOAOTRIESNONA ...ttt bbbt b bbbt b b e et bbbt b e ens 159
TPLOAOINITV @I ...ttt bbbt e bbbt bbbt bt b et e bt b e s ens 159
TPLOAOPOIICY ...ttt ettt bbbt et b e bt e e e bt e e bt bt e et e bt e a e e e e ens 159
QLI o1 Moz o S 1 oSSR SUTOTRRRURRR 159
QI o 0720 S = o T S 159
QI o I0r= 0 S o I - - S 159
QI o I07= 0 S = S o =11 0 S 160
QI 07= 0 S S o =1 Y/ L= S 160
QI o 0720 S = = o 1 | oSS 160
I 070 = S o L g (018 o S 160
Bl o1 Moz o S e (o = o PSPPSR 160
Service SUbSCription Data DEfINITIONScciiieiriiee bbb 161
TPPIOPEITYNGIME. ... e s e s e 161
TPPTOPEITYV BIUB.......cvieiieteeeiet ettt bbbt bbbt bt bt b bbbt bt e et bt e e bt e s ens 161
TPPTOPEITY ... e e s e e e e 161
QI 0 0 T= 1 Y = S 161
BN]1(o) 0] 7 = S 161
I 0] = 1 o TSRS 161
QI 0SS V0T 11 o 0 S 161
TPSErVIiCECONIIACHIDLISE ... eeitieeteesieeiee e se et e e et e e e esteesaesseesreesaeesseeseesneesneenseenseensenns 161
TPPEISONNGITIE ..ottt s esae e s h b e e saee e shbe e sb b e e shbeeeab e e sabeenbb e e sabeesabeesnbeesabeesnneenares 161
TPPOSEBIAGUIESS ...ttt ettt b bbbt b b et b e b a bt e et b e e s e bt b e bt b e b e st bt e bt ne e e ens 162
TPTEEPNONENUMDE ..ot bbb bt et b et sn e ens 162
LI 01017 OO OSSOSO 162
TPHOMEPAGE ... s e e e s s s 162
TPPEISONPIOPEITIES. ...ttt sttt ettt b bt bt s bt e st b e s e bt s e et bt b eb e bt bese bt e e bt ne e s ens 162
TPPEISON.....ceee e e e e e e e e 162
TPSEIVICESIADEALE. ... e evecieee ettt st e e e s e e te et e e e st e e s be e te e e estessaesaeesseesseantesneesneesneenseanseensenns 162
TPSEIVICEENUDALE........ei e ceeeeteeete ettt s et e e e e e s e e s te e te e tees e estessaesseesseesseeneesnnesneesneanseansennsenns 162
T PSEIVIiCEREQUESLOL ... eeeeeiteeteeteeee et e steesteeste e te e e seesseesaeesaeesseenseenseesseaseessaesseesseesseansesnnesneessnnnsennsennsenns 162
QI o12 T LgTe 0] o o S 162
TPServiCeSUDSCIi Pt ONPIOPEITIES.c..ecieeeeiee e e st ete st et e st e et eeraessaesseesreesseenseeeesseesneesseanseensenns 163
QI 05 V0T O 11 ot S 163
TPSErViCECONIIACIDESCITPIION. ...ttt ettt b e b bbbt bbb s ens 163
TPCHENTAPPPIOPEITIES.cueieeieetere ettt b bbb bbb h bbb e bt b e s s b e s et b et e e b b e e ens 163
TPCHENTAPPDESCITPIION. ...ttt b e s b e s bbbt b e s e s e bt e e b e e e ens 163
QLI 1= | SO SSR 163
QLI 1= 0| OSSP 164
QI 05= 0 | L== ot] (o] o S 164
QLI 152 o TR TP TP PP UR USSP 164
TPSEIVICEPIOTIEID ...ttt et eestessaesaeesreesteeneesnnessnesneanneanseensenns 164
IO S Vo= (o) = = S 164
QI 0SS V0= (0 = S 164

ETSI

8 ETSI ES 201 915-3 V1.5.1 (2005-02)

11.5.32 TPSErViCePrOfilEDESCITPLION.ccveecieeieee ettt e s te et e e e e e staesbe e teeteentesneesreesnnenseenseensenns 164
D (= o (0 O = 5T 165
Annex A (nor mative): OMG IDL description Of Framework...........ccuevereinienineseneseeeeeeens 167
Annex B (informative): Contents of 3GPP OSA R4 FrameworK........ccocccereieieieneneneseseseeseeeee 168
Annex C (informative): ReCOrd Of ChaNQES........coiiieeee e 169
O 111 =0 - ST 169
Cl1 N1 PPV P USSP 169
Cl2 D10 o 1= o SR 169
C1l3 REMOVEQ. ...ttt e h b bt e h et e e e e se e b e h e e b e e e e s e b e Sh e e bt e Rt eb e e ne e s e b e nbeebesaeen e e e ennees 169
(O3 |V = 1 o L3RRS 170
cz21 N BV et e e et e e et e e e et e e e e R te e e e heeeeeaateeeea_eee e e Reeeeaanbe e e e aanteeeeanaeeeeanteeeeanreeeeareeeean 170
C22 (D= o1 o= 1= o [T TSP P TSR 170
c23 1Y, oo [1= P 170
c24 L 1070277 S 170
(ORI BT r= B 1=] 01110 TSSO 171
C31 LT TSRS PRRRO 171
C32 1Y Koo L TT="o PSSP U TP URORPRO 171
C33 REMOVEU. ...t e e b bt e h et e e e e sh e e b e Rt ek e e s e e s e b e sh e e bt e Rt eb e e ne e s e beebeebeeaeen e e e ennees 171
C.d SEIVICE PrOPEITIES. ... i ieeeeeie ettt sttt sttt e st et e s teseeeneesbesseessesseensesaeenseseeseeeneensesreensessens 171
c4al N BV et e e et e e et e e e et e e e e R te e e e heeeeeaateeeea_eee e e Reeeeaanbe e e e aanteeeeanaeeeeanteeeeanreeeeareeeean 171
C4.2 (D= o1 o= 1= o ISP TP USURPR 172
c43 1Y Koo L TT="o PSSP U TP URORPRO 172
c44 REMOVEQ. ...t e b bt e h et et e e sh e e b e Rt eh e e s e e b e b e sheeb e e bt eh e e ne e e e b e ebeebeeaeeb e e e e e e e 172
C.5 EXCEPDUIONSccueeeeeiietesieste sttt ettt sttt sttt st be bt s b e s e e et et e st e Rt eb e e be s b e s b et et e ne e st ebenbeebeneeneenee e 172
Ch.1 N BV et e e et e e et e e e et e e e e R te e e e heeeeeaateeeea_eee e e Reeeeaanbe e e e aanteeeeanaeeeeanteeeeanreeeeareeeean 172
Cbh2 1,0 [1= 173
C53 L 107027 o T 173
O3 T O 1107 £ ST 173
115 SRS 174

ETSI

9 ETSI ES 201 915-3 V1.5.1 (2005-02)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards', which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/| PR/home.asp).

Pursuant to the ETSI IPR Palicy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

ThisETSI Standard (ES) has been produced by ETSI Technical Committee Telecommunications and I nternet
converged Services and Protocols for Advanced Networking (TISPAN).

The present document is part 3 of a multi-part deliverable covering Open Service Access (OSA); Application
Programming Interface (API), asidentified below. The API specification (ES 201 915) is structured in the following
parts:

Part1: "Overview";

Part 2. "Common Data Definitions";
Part 3: " Framework";

Part 4: "Cdl Control SCF";

Part5: "User Interaction SCF";
Part6: "Mobility SCF";

Part 7: "Terminal Capabilities SCF";
Part 8. "Data Session Control SCF";
Part9: "Generic Messaging SCF";
Part 10: "Connectivity Manager SCF";
Part 11: "Account Management SCF";
Part 12: "Charging SCF".

The present document has been defined jointly between ETSI, The Parlay Group (http://www.parlay.org) and the 3GPP,
in co-operation with a number of JAIN™ Community (http://www.java.sun.com/products/jain) member companies.

The present document forms part of the Parlay 3.4 set of specifications.

A subset of the present document isin 3GPP TS 29.198-3 4.9.0 (Release 4).

ETSI

http://webapp.etsi.org/IPR/home.asp
http://www.parlay.org/
http://www.java.sun.com/products/jain

10 ETSI ES 201 915-3 V1.5.1 (2005-02)

1 Scope

The present document is part 3 of the Stage 3 specification for an Application Programming Interface (API) for Open
Service Access (OSA).

The OSA specifications define an architecture that enables application developers to make use of network functionality
through an open standardised interface, i.e. the OSA APIs.

The present document specifies the Framework aspects of the interface. All aspects of the Framework are defined in the
present document, these being:

. Sequence Diagrams.

. Class Diagrams.

. Interface specification plus detailed method descriptions.
. State Transition diagrams.

. Data Definitions.

. IDL Description of the interfaces.

The process by which this task is accomplished is through the use of object modelling techniques described by the
Unified Modelling Language (UML).

2 References

The referenceslisted in clause 2 of ES 201 915-1 contain provisions which, through reference in this text, constitute
provisions of the present document.

ETSI ES 201 915-1: "Open Service Access (OSA); Application Programming Interface (API);
Part 1: Overview (Parlay 3)".

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in ES 201 915-1 apply.

3.2 Abbreviations

For the purposes of the present document, the abbreviations defined in ES 201 915-1 apply.

4 Overview of the Framework

This clause explains which basic mechanisms are executed in the OSA Framework prior to offering and activating
applications.

The Framework API contains interfaces between the Application Server and the Framework, between the Network
Service Capability Server (SCS) and the Framework, and between the Enterprise Operator and the Framework (these
interfaces are represented by the yellow circlesin the diagram below). The description of the Framework in the present
document separates the interfaces into these three distinct sets: Framework to Application interfaces, Framework to
Enterprise Operator interfaces and Framework to Service interfaces.

ETSI

11 ETSI ES 201 915-3 V1.5.1 (2005-02)

Enterprise Operator

[

Some of the mechanisms are applied only once (e.g. establishment of service agreement), others are applied each time a
user subscription is made to an application (e.g. enabling the call attempt event for a new user).

Basic mechanisms between Application and Framework:

- Authentication: Once an off-line service agreement exists, the application can access the authentication
interface. The authentication model of OSA is a peer-to-peer model, but authentication does not have to be
mutual. The application must be authenticated before it is allowed to use any other OSA interface. Itisa
policy decision for the application whether it must authenticate the framework or not. It is a policy decision for
the framework whether it allows an application to authenticate it before it has completed its authentication of
the application.

- Authorisation: Authorisation is distinguished from authentication in that authorisation is the action of
determining what a previously authenticated application is allowed to do. Authentication must precede
authorisation. Once authenticated, an application is authorised to access certain service capability features.

- Discovery of framework and network service capability features: After successful authentication,
applications can obtain available framework interfaces and use the discovery interface to obtain information on
authorised network service capability features. The Discovery interface can be used at any time after
successful authentication.

- Establishment of service agreement: Before any application can interact with a network service capability
feature, a service agreement must be established. A service agreement may consist of an off-line (e.g. by
physically exchanging documents) and an on-line part. The application has to sign the on-line part of the
service agreement beforeit is allowed to access any network service capability feature.

- Accessto network service capability features: The framework must provide access control functions to
authorise the access to service capability features or service datafor any APl method from an application, with
the specified security level, context, domain, etc.

Basic mechanism between Framework and Service Capability Server:

- Registering of network service capability features: SCFs offered by a Service Capability Server can be
registered at the Framework. In this way the Framework can inform the Applications upon reguest about
available service capability features (Discovery). For example, this mechanism is applied when installing or
upgrading a Service Capability Server.

ETSI

12 ETSI ES 201 915-3 V1.5.1 (2005-02)

Basic mechanism between Framework and Enterprise Operator:

- Service Subscription function: This function represents a contractual agreement between the Enterprise
Operator and the Framework. In this subscription business model, the enterprise operators act in the role of
subscriber/customer of services and the client applications act in the role of users or consumers of services.
The framework itself actsin the role of retailer of services.

The following clauses describe each aspect of the Framework in the following order:
. The sequence diagrams give the reader a practical idea of how the Framework isimplemented.
. The class diagrams clause show how each of the interfaces applicable to the Framework relates to one another.

. The interface specification clause describesin detail each of the interfaces shown within the class diagram
part.

. The Sate Transition Diagrams (STD) show the transition between states in the Framework. The states and
transitions are well-defined; either methods specified in the Interface specification or events occurring in the
underlying networks cause state transitions.

. The data definitions clause shows a detailed expansion of each of the data types associated with the methods
within the classes. Note that some data types are used in other methods and classes and are therefore defined
within the common data types part of the present document.

4.1 General requirements on support of methods

An implementation of this APl which supports or implements a method described in the present document, shall
support or implement the functionality described for that method, for at least one valid set of values for the parameters
of that method.

Where amethod is not supported by an implementation of a Framework or Service interface, the exception
P_METHOD_NOT_SUPPORTED shall be returned to any call of that method.

Where a method is not supported by an implementation of an Application interface, acall to that method shall be
possible, and no exception shall be returned.

5 The Base Interface Specification

5.1 Interface Specification Format

This clause defines the interfaces, methods and parameters that form a part of the API specification. The Unified
Modelling Language (UML) is used to specify the interface classes. The general format of an interface specificationis
described below.

51.1 Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters
and types. The Service and Framework interfaces for client applications are denoted by classes with name | p<nane>.
The callback interfaces to the applications are denoted by classes with name | pApp<nane>. For the interfaces
between a Service and the Framework, the Service interfaces are typically denoted by classes with name | pSvc<name>,
while the Framework interfaces are denoted by classes with name |pFw<name>.

ETSI

13 ETSI ES 201 915-3 V1.5.1 (2005-02)

5.1.2 Method descriptions

Each method (APl method "call") is described. Both synchronous and asynchronous methods are used in the API.
Asynchronous methods are identified by a"Req" suffix for a method request, and, if applicable, are served by
asynchronous methods identified by either a"Res" or "Er r " suffix for method results and errors, respectively. To
handle responses and reports, the application or service developer must implement the relevant | pApp<nane> or
| pSvc<nane> interfaces to provide the callback mechanism.

5.1.3 Parameter descriptions

Each method parameter and its possible val ues are described. Parameters described as "in" represent those that must
have a value when the method is called. Those described as "out" are those that contain the return result of the method
when the method returns.

514 State Model

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface.

5.2 Base Interface

5.2.1 Interface Class Ipinterface

All application, framework and service interfaces inherit from the following interface. This APl Base Interface does not
provide any additional methods.

<<Interface>>

Ipinterface

5.3 Service Interfaces

53.1 Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user
interaction, messaging, mobility and connectivity management.

The interfaces that are implemented by the services are denoted as " Service Interface”. The corresponding interfaces
that must be implemented by the application (e.g. for API callbacks) are denoted as " Application Interface".

54 Generic Service Interface

54.1 Interface Class IpService

Inherits from: Iplinterface.

All service interfacesinherit from the following interface.

ETSI

14 ETSI ES 201 915-3 V1.5.1 (2005-02)

<<Interface>>

IpService

setCallback (applinterface : in IpinterfaceRef) : void
setCallbackWithSessionID (applinterface : in IpinterfaceRef, sessionID : in TpSessionID) : void

Method
set Cal | back()

This method specifies the reference address of the callback interface that a service usesto invoke methods on the
application. It is not allowed to invoke this method on an interface that uses SessionlDs.

Parameters

applnterface : in IplnterfaceRef
Specifies areference to the application interface, which is used for callbacks.

Raises

TpComonExcepti ons, P_I NVALI D_| NTERFACE TYPE
Method

set Cal | backW t hSessi onl X))

This method specifies the reference address of the application's callback interface that a service uses for interactions
associated with a specific session ID: e.g. a specific call, or call leg. It is not allowed to invoke this method on an
interface that does not use SessioniDs.

Parameters

applnterface : in IplnterfaceRef
Specifies areference to the application interface, which is used for callbacks.

sessionlD : in TpSessionlD
Specifies the session for which the service can invoke the application's callback interface.

Raises
TpConmmonExceptions, P_I NVALI D SESSION I D, P_I NVALI D | NTERFACE TYPE

ETSI

15 ETSI ES 201 915-3 V1.5.1 (2005-02)

6 Framework Access Session API

6.1 Sequence Diagrams

6.1.1 Trust and Security Management Sequence Diagrams

6.1.1.1 Initial Access for trusted parties

The following figure shows a trusted party, typically within the same domain as the Framework, accessing the OSA
Framework for the first time. Trusted parties do not need to be authenticated and after contacting the Initial interface the
Framework will indicate that no further authentication is needed and that the application can immediately gain access to
other framework interfaces and SCFs. Thisis done by invoking the requestAccess method.

: IpClientAPILewelAuthentication Client : Ipinitial : IpAccess Framework

IQAPILeveIA_uthentication
T T
|

T
|
| 1 iniiateAuthentication() |

I

|
2: aumentiqalionSucceeded()
]

3: requestAccess()

1

u

1. TheClient invokes initiateAuthentication on the Framework's "public” (initial contact) interface to initiate the
authentication process. It provides in turn areference to its own authentication interface. The Framework
returns a reference to its authentication interface.

2. Based on the domainl D information that was supplied in the Initiate Authentication step, the Framework
knows it deals with atrusted party and no further authentication is needed. Therefore the Framework provides
the authentication succeeded indication.

3: The Client invokes requestAccess on the Framework's APl Level Authentication interface, providing in turn a
reference to its own access interface. The Framework returns a reference to its access interface.

6.1.1.2 Initial Access
The following figure shows a client accessing the OSA Framework for the first time.

Before being authorized to use the OSA SCFs, the client must first of all authenticate itself with the Framework. For
this purpose the client needs a reference to the Initial Contact interfaces for the Framework; this may be obtained
through a URL, aNaming or Trading Service or an equivalent service, a stringified object reference, etc. At this stage,
the client has no guarantee that thisis a Framework interface reference, but it to initiate the authentication process with
the Framework. The Initial Contact interface supports only the initiateAuthentication method to allow the authentication
process to take place.

Once the client has authenticated with the Framework, it can gain access to other framework interfaces and SCFs. This
is done by invoking the requestAccess method, by which the client requests a certain type of access SCF.

ETSI

16 ETSI ES 201 915-3 V1.5.1 (2005-02)

IpClientAPILevelAuthentication

Client - IpInitial : IpAPILevelAuthentication : IpAccess Framework

q 3

T
|
: 1: initiateAuthentication()

2: selectEncryptionMethod()

|
3: authenticate()
‘

4: authemicationSuc‘peeded()

E
.
=
¢

5: ag‘dthenticate()
T

6: authenticationSucceeded()
|

I s Y s T s M

|
7: requestAccess()
1

8:lobtaininterface()

:
:

Initiate Authentication

The client invokes initiateAuthentication on the Framework's "public” (initial contact) interface to initiate the
authentication process. It provides in turn areference to its own authentication interface. The Framework
returns a reference to its authentication interface.

Select Encryption Method

The client invokes sel ectEncryptionMethod on the Framework's APl Level Authentication interface,
identifying the encryption methods it supports. The Framework prescribes the method to be used.

Authenticate
The client provides an indication if authentication succeeded.

The client and Framework authenticate each other. The sequence diagram illustrates one of a series of one or
more invocations of the authenticate method on the Framework's APl Level Authentication interface. In each
invocation, the client supplies a challenge and the Framework returns the correct response. Alternatively or
additionally the Framework may issue its own challenges to the client using the authenticate method on the
client's API Level Authentication interface.

The Framework provides an indication if authentication succeeded.
Request Access

Upon successful (mutual) authentication, the client invokes requestAccess on the Framework's API Level
Authentication interface, providing in turn areference to its own access interface. The Framework returns a
reference to its access interface.

The client invokes obtainlnterface on the framework's Access interface to obtain areference to its service
discovery interface.

ETSI

17 ETSI ES 201 915-3 V1.5.1 (2005-02)

6.1.1.3 Authentication

This sequence diagram illustrates the two-way mechanism by which the client and the framework mutually authenticate
one another using an underlying distribution technology mechanism.

Client . Ipinitial Framework . IpAuthentication . IpAccess

T T
| 1: initiateAuthentication() |
| |

]

| 2: requesltAccess()
|

Underlying Distribution
Technology Mechanism is used
for application identification and
authentication.

|

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3: obtaininterface()

!

!

1: Theclient calsinitiateAuthentication on the OSA Framework Initial interface. This allows the client to
specify the type of authentication process. In this case, the client selects to use the underlying distribution
technology mechanism for identification and authentication.

2: Theclient invokes the requestAccess method on the Framework's Authentication interface. The Framework
now uses the underlying distribution technology mechanism for identification and authentication of the client.

3. If the authentication was successful, the client can now invoke obtainl nterface on the framework's Access
interface to obtain areference to its service discovery interface.

6.1.1.4 API Level Authentication

This sequence diagram illustrates the two-way mechanism by which the client and the framework mutually authenticate
one another.

The OSA API supports multiple authentication techniques. The procedure used to select an appropriate technique for a
given situation is described below. The authentication mechanisms may be supported by cryptographic processes to
provide confidentiality, and by digital signaturesto ensure integrity. The inclusion of cryptographic processes and
digital signaturesin the authentication procedure depends on the type of authentication technique selected. In some
cases strong authentication may need to be enforced by the Framework to prevent misuse of resources. In addition it
may be necessary to define the minimum encryption key length that can be used to ensure a high degree of
confidentiality.

The client must authenticate with the Framework before it is able to use any of the other interfaces supported by the
Framework. Invocations on other interfaces will fail until authentication has been successfully compl eted.

1) Theclient calsinitiateAuthentication on the OSA Framework Initial interface. This alows the client to
specify the type of authentication process. This authentication process may be specific to the provider, or the
implementation technology used. The initiateAuthentication method can be used to specify the specific
process, (e.g. CORBA security). OSA defines a generic authentication interface (APl Level Authentication),
which can be used to perform the authentication process. The initiateAuthentication method allows the client
to pass areference to its own authentication interface to the Framework, and receive a reference to the
authentication interface preferred by the client, in return. In this case the API Level Authentication interface.

ETSI

18 ETSI ES 201 915-3 V1.5.1 (2005-02)

2) Theclient invokes the selectEncryptionM ethod on the Framework's API Level Authentication interface. This
includes the encryption capabilities of the client. The framework then chooses an encryption method based on
the encryption capabilities of the client and the Framework. If the client is capable of handling more than one
encryption method, then the Framework chooses one option, defined in the prescribedM ethod parameter. In
some instances, the encryption capability of the client may not fulfil the demands of the Framework, in which
case, the authentication will fail.

3) Theapplication and Framework interact to authenticate each other. For an authentication method of
P_OSA_AUTHENTICATION, this procedure consists of a number of challenge/response exchanges. This
authentication protocol is performed using the authenti cate method on the API Level Authentication interface.
P_OSA_AUTHENTICATION is based on CHAP, which is primarily a one-way protocol. Mutual
authentication is achieved by the framework invoking the authenticate method on the client's
APILevel Authentication interface.

Note that at any point during the access session, either side can request re-authentication. Re-authentication does not
have to be mutual.

: IpClientAPILevelAuthentication Client . IpInitial Framework : IpAPILevelAuthentication

T T
| |
| |
| 1: initiateAuthentication() |
i L

1]

T

|

|

|

|

l

IpClientAPlLevel Authentication !
reference is pased to framework :
and IpAP IL evel Authentication |
|

|

|

|

|

|

|

|

reference i s returned.

|
2: selectEncryptionMethod()
|

‘ i I

|
: Thisisan example of the [\
. . | sequence of
3: authenticate() ! authentication

; U operations. Different

authentication protocols

|
4 au‘nhenncate() may have different

requirements on the

I

|
) ! order of operations.
5: authenticate() !
|

6: authenticationSucceeded()

|
|
|
|
|
|
|
|
|
|
|
7: authenticate()
|

|
|

8: authenticationSucceeded(), |
T T

| | U

| |]

9: requestAccess() | |

| | |

passed to Framework, and
IpAccess reference is
retumed.

!
!
u

R

IpClientAccess reference is U
|
|
|
|
|
|
|
|

ETSI

19 ETSI ES 201 915-3 V1.5.1 (2005-02)

6.2 Class Diagrams
<<Interface>> <<Interface>>
(from Client interfaces) (from Clientinterfaces)
SterminateAccess() Sauthenticate()
: $abortAuthentication()
| WauthenticationSucceeded()
l N
<<uses>> | ccuses>> |
<<Interface>> 1 <<Interface>>
IpInitial <<Interface>> IpPAPILevelAuthentication
from Framewo ik interfa ces) IpAccess (from Framework interfaces)
(from Frame work interface s)
Sinitiat eAuthentication() *selectE_ncryptionMethod()
Sobtaininterface() Sauthenticate()
SobtaininterfaceWithCallback () SabortAuthentication()
FendAccess() FauthenticationSucceeded()
Wlistinterfaces()
Wreleaselnterface() \

<<Interface>>
IpAuthentication
(from Framework interfaces)

WrequestAccess()

Figure 1: Trust and Security Management Package Overview

6.3 Interface Classes

6.3.1 Trust and Security Management Interface Classes
The Trust and Security Management Interfaces provide:
- the first point of contact for a client to access a Framework provider;
- the authentication methods for the client and Framework provider to perform an authentication protocol;
- the client with the ability to select a service capability feature to make use of;
- the client with a portal to access other Framework interfaces.

The process by which the client accesses the Framework provider has been separated into 3 stages, each supported by a
different Framework interface:

1) Initial Contact with the Framework;
2) Authentication to the Framework;

3) Accessto Framework and Service Capability Features.

ETSI

20 ETSI ES 201 915-3 V1.5.1 (2005-02)

6.3.1.1 Interface Class IpClientAPILevelAuthentication
Inherits from: Iplnterface.

If the IpClientAPILevel Authentication interface isimplemented by a client, authenticate(), abortAuthentication() and
authenticationSucceeded() methods shall be implemented.

<<Interface>>

IpClientAPILevelAuthentication

authenticate (challenge : in TpOctetSet) : TpOctetSet
abortAuthentication () : void

authenticationSucceeded () : void

Method
aut henticate()

This method is used by the framework to authenticate the client. The challenge will be encrypted using the mechanism
prescribed by selectEncryptionMethod. The client must respond with the correct responses to the challenges presented
by the framework. The number of exchanges is dependent on the policies of each side. The whole authentication
processis deemed successful when the authenticationSucceeded method isinvoked. The invocation of this method may
be interleaved with authenticate() calls by the client on the IpAPILevel Authentication interface.

Returns <response> : Thisis the response of the client application to the challenge of the framework in the current
sequence. The response will be based on the challenge data, decrypted with the mechanism prescribed by
selectEncryptionM ethod().

Parameters

challenge : in TpCctet Set

The challenge presented by the framework to be responded to by the client. The challenge mechanism used will bein
accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994,
August1996]. The challenge will be encrypted with the mechanism prescribed by sel ectEncryptionMethod().

Returns
TpCct et Set

Method
abort Aut henti cati on()

The framework uses this method to abort the authentication process. This method isinvoked if the framework wishesto
abort the authentication process, (unless the client responded incorrectly to a challenge in which case no further
communication with the client should occur.) If this method has been invoked, calls to the requestAccess operation on

I pAPILevel Authentication will return an error code (P_ACCESS_DENIED), until the client has been properly
authenticated.

Parameters
No Parameters were identified for this method.

ETSI

21 ETSI ES 201 915-3 V1.5.1 (2005-02)

Method
aut henti cati onSucceeded()

The Framework uses this method to inform the client of the success of the authentication attempt.

Parameters

No Parameters were identified for this method.
6.3.1.2 Interface Class IpClientAccess
Inherits from: Iplnterface.

IpClientAccessinterfaceis offered by the client to the framework to allow it to initiate interactions during the access
session. Thisinterface and the terminateAccess() method shall be implemented by aclient.

<<Interface>>

IpClientAccess

terminateAccess (terminationText : in TpString, signingAlgorithm : in TpSigningAlgorithm, digitalSignature :
in TpOctetSet) : void

Method
t erm nat eAccess()

The terminateAccess operation is used by the framework to end the client's access session.

After terminateAccess() isinvoked, the client will no longer be authenticated with the framework. The client will not be
able to use the references to any of the framework interfaces gained during the access session. Any callsto these
interfaces will fail. If at any point the framework's level of confidence in the identity of the client becomes too low,
perhaps due to re-authentication failing, the framework should terminate al outstanding service agreements for that
client, and should take steps to terminate the client's access session WITHOUT invoking terminateAccess() on the
client. This follows a generally accepted security model where the framework has decided that it can no longer trust the
client and will therefore sever ALL contact with it.

Parameters

termnationText : in TpString
Thisisthe termination text describes the reason for the termination of the access session.

signingAl gorithm: in TpSigningAl gorithm

Thisis the algorithm used to compute the digital signature. If the signingAlgorithm isinvalid, or unknown to the client,
the P_INVALID_SIGNING_ALGORITHM exception will be thrown.

digital Signature : in TpCctet Set

Thisisasigned version of a hash of the termination text. If no signing algorithm is used, the digital Signature is the octet
sequence of the termination text itself. The framework uses thisto confirm itsidentity to the client. The client can check
that the terminationText has been signed by the framework. If a match is made, the access session is terminated,
otherwise the P_INVALID_SIGNATURE exception will be thrown.

ETSI

22 ETSI ES 201 915-3 V1.5.1 (2005-02)

Raises

TpComonExcepti ons, P_I NVALI D_SI GNI NG_ALGORI THM P_I NVALI D_SI GNATURE
6.3.1.3 Interface Class Iplinitial

Inherits from: Iplnterface.

The Initial Framework interface is used by the client to initiate the mutual authentication with the Framework. This
interface and the initiateAuthentication() method shall be implemented by a Framework.

<<Interface>>

IpInitial

initiateAuthentication (clientDomain : in TpAuthDomain, authType : in TpAuthType) : TpAuthDomain

Method
I nitiateAuthentication()

This method is invoked by the client to start the process of mutual authentication with the framework, and request the
use of a specific authentication method.

Returns <fwDomain> : This provides the client with aframework identifier, and a reference to call the authentication
interface of the framework.

structure TpAuthDomain {

domainiD: TpDomainiD;

authinterface: IplnterfaceRef;

The domainlD parameter is an identifier for the framework (i.e. TpFwID). It is used to identify the framework to the
client. The authinterface
parameter is a reference to the authentication interface of the framework. The type of thisinterface is defined by the
authType parameter. The client uses this interface to authenticate with the framework.

Parameters

clientDomain : in TpAut hDomain
Thisidentifies the client domain to the framework, and provides a reference to the domain's authentication interface.

structure TpAuthDomain {
domainlD: TpDomainiD;
authinterface: IplnterfaceRef; b

The
domainlD parameter is an identifier either for aclient application (i.e. TpClientApplD) or for an enterprise operator
(i.e. TPENtOpID), or for an instance of a service for which a client application has signed a service agreement
(i.e. TpServicelnstancel D), or for a service supplier (i.e. TpServiceSupplierlD). It is used to identify the client domain
to the framework, (see authenticate() on IpAPILevel Authentication). If the framework does not recognise the
domainiD, the framework returns an error code (P_INVALID_DOMAIN_ID).

The authinterface parameter is areference to call the authentication interface of the client. The type of thisinterfaceis
defined by the authType parameter. If the interface reference is not of the correct type, the framework returns an error
code (P_INVALID_INTERFACE_TYPE).

ETSI

23 ETSI ES 201 915-3 V1.5.1 (2005-02)

aut hType : in TpAut hType

Thisidentifies the type of authentication mechanism requested by the client. It provides operators and clients with the
opportunity to use an alternative to the API level Authentication interface, e.g. an implementation specific
authentication mechanism like CORBA Security, using the | pAuthentication interface, or Operator specific
Authentication interfaces. OSA API level Authentication isthe default authentication mechanism
(P_OSA_AUTHENTICATION). If P_OSA_AUTHENTICATION is selected, then the clientDomain and fwDomain
authlnterface parameters are references to interfaces of type Ip(Client) APILevel Authentication. If
P_AUTHENTICATION is selected, the fwDomain authl nterface parameter references to interfaces of type

I pAuthentication which is used when an underlying distribution technology authentication mechanism is used.

Returns

TpAut hDomai n

Raises

TpCommonExcepti ons, P_I NVALI D DOVAIN | D, P_I NVALI D_| NTERFACE_TYPE
P_| NVALI D_AUTH TYPE

6.3.1.4 Interface Class IpAuthentication
Inherits from: Iplnterface.

The Authentication Framework interface is used by client to request access to other interfaces supported by the
Framework. The mutual authentication process should in this case be done with some underlying distribution
technology authentication mechanism, e.g. CORBA Security.

One of IpAuthentication or IpAPILevel Authentication interfaces shall be implemented by a Framework. The
requestAccess() method shall be implemented in each.

<<Interface>>

IpAuthentication

requestAccess (accessType : in TpAccessType, clientAccessinterface : in IpinterfaceRef) : IpinterfaceRef

Method
request Access()

Once client and framework are authenticated, the client invokes the requestAccess operation on the | pAuthentication or
IpAPILevel Authentication interface. This allows the client to request the type of access they require. If they request
P_OSA_ACCESS, then areference to the IpAccess interface is returned. (Operators can define their own access
interfaces to satisfy client requirements for different types of access.)

If this method is called before the client and framework have successfully completed the authentication process, then
the request fails, and an error code (P_ACCESS DENIED) is returned.

Returns <fwA ccesslnterface> : This provides the reference for the client to call the access interface of the framework.

Parameters

accessType : in TpAccessType

Thisidentifies the type of access interface requested by the client. If the framework does not provide the type of access
identified by accessType, then an error code (P_INVALID_ACCESS TYPE) isreturned.

ETSI

24 ETSI ES 201 915-3 V1.5.1 (2005-02)

clientAccessinterface : in IplnterfaceRef

This provides the reference for the framework to call the access interface of the client. If the interface reference is not of
the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).

Returns
| pl nt er f aceRef

Raises

TpConmonExcept i ons, P_ACCESS DENI ED, P_| NVALI D_ACCESS TYPE,
P_I NVALI D_I NTERFACE_TYPE

6.3.1.5 Interface Class IpAPILevelAuthentication
Inherits from: | pAuthentication.

The API Level Authentication Framework interface is used by client to perform its part of the mutual authentication
process with the Framework necessary to be allowed to use any of the other interfaces supported by the Framework.
If the IpAPILevel Authentication interface isimplemented by a Framework, the selectEncryptionMethod(),
authenticate(), abortAuthentication() and authenticationSucceeded() methods shall be implemented.

I pAPILevel Authentication inherits the requirements of | pAuthentication, therefore requestAccess() shall be
implemented.

<<Interface>>

IpAPILevelAuthentication

selectEncryptionMethod (encryptionCaps : in TpEncryptionCapabilityList) : TpEncryptionCapability
authenticate (challenge : in TpOctetSet) : TpOctetSet
abortAuthentication () : void

authenticationSucceeded () : void

Method

sel ect Encrypti onMet hod()

The client uses this method to initiate the authentication process. The framework returns its preferred mechanism. This
should be within capability of the client. If a mechanism that is acceptable to the framework within the capability of the
client cannot be found, the framework throwsthe P NO_ACCEPTABLE_ENCRYPTION_CAPABILITY exception.
Once the framework has returned its preferred mechanism, it will wait for a predefined unit of time before invoking the

client's authenticate() method (the wait is to ensure that the client can initialise any resources necessary to use the
prescribed encryption method).

Returns <prescribedMethod> : Thisis returned by the framework to indicate the mechanism preferred by the framework
for the encryption process. If the value of the prescribedM ethod returned by the framework is not understood by the
client, it is considered a catastrophic error and the client must abort.

Parameters
encryptionCaps : in TpEncrypti onCapabilityList
Thisisthe means by which the encryption mechanisms supported by the client are conveyed to the framework.

ETSI

25 ETSI ES 201 915-3 V1.5.1 (2005-02)

Returns

TpEncryptionCapability

Raises

TpComonExcepti ons, P_ACCESS DEN ED,
P_NO_ACCEPTABLE_ENCRYPTI ON_CAPABI LI TY

Method
aut henticate()

This method is used by the client to authenticate the framework. The challenge will be encrypted using the mechanism
prescribed by selectEncryptionMethod. The framework must respond with the correct responses to the challenges
presented by the client. The domainlD received in the initiateA uthentication() can be used by the framework to
reference the correct public key for the client (the key management system is currently outside of the scope of the OSA
APIs). The number of exchangesis dependent on the policies of each side. The whole authentication process is deemed
successful when the authenticationSucceeded method isinvoked. The invocation of this method may be interleaved
with authenticate() calls by the framework on the client's APILevel Authentication interface.

Returns <response> : Thisisthe response of the framework to the challenge of the client in the current sequence. The
response will be based on the challenge data, decrypted with the mechanism prescribed by selectEncryptionM ethod().

Parameters

chal l enge : in TpCctet Set

The challenge presented by the client to be responded to by the framework. The challenge mechanism used will bein
accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994,
August1996]. The challenge will be encrypted with the mechanism prescribed by selectEncryptionM ethod().

Returns

TpCct et Set

Raises

TpComonExcepti ons, P_ACCESS DEN ED
Method

abort Aut henti cati on()

The client uses this method to abort the authentication process. This method isinvoked if the client no longer wishesto
continue the authentication process, (unless the client responded incorrectly to a challenge in which case no further
communication with the client should occur.) If this method has been invoked, calls to the requestAccess operation on
IpAPILevel Authentication will return an error code (P_ACCESS_DENIED), until the client has been properly
authenticated.

Parameters
No Parameters were identified for this method.

Raises
TpComonExcepti ons, P_ACCESS DEN ED

Method
aut henti cati onSucceeded()

The client uses this method to inform the framework of the success of the authentication attempt.

Parameters
No Parameters were identified for this method.

ETSI

26 ETSI ES 201 915-3 V1.5.1 (2005-02)

Raises

TpComonExcepti ons, P_ACCESS DEN ED
6.3.1.6 Interface Class IpAccess

Inherits from: Iplnterface.

Thisinterface shall be implemented by a Framework. As a minimum requirement the obtainlnterface(),
obtainlnterfaceWithCallback() and endAccess() methods shall be implemented.

<<Interface>>

IpAccess

obtaininterface (interfaceName : in TpinterfaceName) : IpinterfaceRef

obtaininterfaceWithCallback (interfaceName : in TpinterfaceName, clientinterface : in IpinterfaceRef) :
IpinterfaceRef

endAccess (endAccessProperties : in TpEndAccessProperties) : void
listinterfaces () : TpinterfaceNameList

releaselnterface (interfaceName : in TplinterfaceName) : void

Method
obt ai nl nterface()

This method is used to obtain other framework interfaces. The client uses this method to obtain interface references to
other framework interfaces. (The obtainlnterfaceWithCallback method should be used if the client is required to supply
a callback interface to the framework.)

Returns <fwlinterface> : Thisisthe reference to the interface requested.

Parameters

interfaceName : in TplnterfaceName

The name of the framework interface to which areference to the interface is requested. If the interfaceName isinvalid,
the framework returns an error code (P_INVALID_INTERFACE_NAME).

Returns
| pl nt er f aceRef

Raises
TpCommonExcepti ons, P_ACCESS DENI ED, P_I NVALI D_| NTERFACE_NANE

Method
obt ai nl nterfaceWthCal | back()

This method is used to obtain other framework interfaces. The client uses this method to obtain interface references to
other framework interfaces, when it isrequired to supply a callback interface to the framework. (The obtaininterface
method should be used when no callback interface needs to be supplied.)

Returns <fwlnterface> : Thisis the reference to the interface requested.

ETSI

27 ETSI ES 201 915-3 V1.5.1 (2005-02)

Parameters

interfaceName : in TplnterfaceName

The name of the framework interface to which a reference to the interface is requested. If the interfaceName isinvalid,
the framework returns an error code (P_INVALID_INTERFACE_NAME).

clientinterface : in IplnterfaceRef

Thisisthe reference to the client interface, which is used for callbacks. If a client interface is not needed, then this
method should not be used. (The obtainl nterface method should be used when no callback interface needs to be
supplied.) If the interface referenceis not of the correct type, the framework returns an error code
(P_INVALID_INTERFACE_TYPE).

Returns

| pl nt er f aceRef

Raises

TpCommonExcepti ons, P_ACCESS DEN ED, P_I NVALI D | NTERFACE_NAME,
P_I NVALI D_I NTERFACE_TYPE

Method
endAccess()

The endAccess operation is used by the client to request that its access session with the framework is ended. After it is
invoked, the client will no longer be authenticated with the framework. The client will not be able to use the references
to any of the framework interfaces gained during the access session. Any calls to these interfaces will fail.

Parameters

endAccessProperties : in TpEndAccessProperties
Thisisalist of properties that can be used to tell the framework the actions to perform when ending the access session

(e.0. existing service sessions may be stopped, or left running). If a property is not recognised by the framework, an
error code (P_INVALID_PROPERTY) isreturned.

Raises

TpComonExcepti ons, P_ACCESS DEN ED, P_I NVALI D PROPERTY

Method

listlnterfaces()

The client uses this method to obtain the names of all interfaces supported by the framework. It can then obtain the
interfaces it wishes to use using either obtainl nterface() or obtainl nterfaceWithCallback().

Returns <frameworklnterfaces> : The frameworklnterfaces parameter contains a list of interfaces that the framework
makes available.

Parameters
No Parameters were identified for this method.

Returns
Tpl nt er f aceNaneLi st

Raises
TpComonExcepti ons, P_ACCESS DEN ED

ETSI

28 ETSI ES 201 915-3 V1.5.1 (2005-02)

Method
rel easel nterface()

The client uses this method to release a framework interface that was obtained during this access session.

Parameters

interfaceName : in TplnterfaceName

Thisisthe name of the framework interface which is being released. If the interfaceName isinvalid, the framework
throwsthe P_INVALID_INTERFACE_NAME exception. If the interface has not been given to the client during this
access session, then the P_TASK_REFUSED exception will be thrown.

Raises
TpComonExcepti ons, P_ACCESS DEN ED, P_I NVALI D | NTERFACE NAME

6.4 State Transition Diagrams

This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the
gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can
be invoked by the client are shown. Methods not shown for a specific state are not relevant for that state and will return
an exception. Apart from the methods that can be invoked by the client also eventsinternal to the gateway or related to
network events are shown together with the resulting event or action performed by the gateway. These internal events
are shown between quotation marks.

6.4.1 Trust and Security Management State Transition Diagrams

6.4.1.1 State Transition Diagrams for IpInitial

initiateAuthentication / return new IpAuthentication

/ \
/ \
[\
| |

| \ J/

Active

AN J

Figure 2: State Transition Diagram for IpInitial

ETSI

29 ETSI ES 201 915-3 V1.5.1 (2005-02)

6.4.1.2 State Transition Diagrams for IpAPILevelAuthentication

Ipinitial.initiateAuthentication

Idle
requestAccess
P _ACCESS_DENIE
“no method found"

P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY
selectEngryptionMethod

Selecting
requestAccess Method
"P_ACCESS_DENIED

“found method" / return prescribedMethod “client.authenticate

All States

&/

authenticate result(VALID)[Auth
Incomplete] “client.authenticate

authenticate / "Buffer request”
requestAccess "P_ACCESS_DENIE

Authenticating result(INVALID)
Client

authenticate result(VALID)[AuthComplete] /
"Process guthenticate requests” “client.authenticationS uc ceeded

"re-authenticate”
“client.authenticate

requestAccess / new IpAccess
Client
Authenticated

Figure 3: State Transition Diagram for IpAPILevelAuthentication

6.4.1.2.1 Idle State

When the client has invoked the Iplnitia initiateAuthentication method, an object implementing the
IpAPILevel Authentication interface is created. The client now has to provide its encryption capabilities by invoking
sel ectEncryptionMethod.

6.4.1.2.2 Selecting Method State

In this state the Framework selects the preferred encryption mechanism within the capability of the client. It isa policy
of the framework (perhaps agreed off-line with the enterprise operator) whether the client has to be authenticated or not.
In case no mechanism can be found the P NO_ACCEPTABLE_ENCRYPTION_CAPABILITY exception isthrown
and the Authentication object moves back to the IDLE state The client can now revisit itslist of supported capabilities
to identify whether it is complete. If it has no more encryption capabilities to use, then it must invoke
abortAuthentication.

ETSI

30 ETSI ES 201 915-3 V1.5.1 (2005-02)

6.4.1.2.3 Authenticating Client State

When entering this state, the Framework requests the client to authenticate itself by invoking the Authenticate method
on the client. In case the client requests the Framework to authenticate itself by invoking Authenticate on the
IpAPILevel Authentication interface, the Framework will either buffer the requests and respond when the client has
been authenticated, or respond immediately, depending on policy. When the Framework has processed the response
from the Authenticate request on the client, the response is analysed. If the response is valid but the authentication
process is not yet complete, then another Authenticate request is sent to the client. If the responseis valid and the
authentication process has been completed, then atransition to the state ClientAuthenticated is made, the client is
informed of its success by invoking authenticationSucceeded, then the framework begins to process any buffered
authenticate requests. In case the response is not valid, the Authentication object is destroyed. Thisimplies that the
client has to re-initiate the authentication by calling once more the initiateAuthentication method on the I plInitial
interface.

6.4.1.2.4 Client Authenticated State

In this state the client is considered authenticated and is now allowed to request access to the IpAccess interface. In case
the client requests the Framework to authenticate itself by invoking Authenticate on the IpAPILevel Authentication
interface, the Framework provides the correct response to the challenge. If the framework decides to re-authenticate the
client, then the authenticate request is sent to the client and a transition back to the AuthenticatingClient state occurs.

6.4.1.3 State Transition Diagrams for IpAccess

Ipinitial.requestAccess

obtaininterface / return requested FW interface
obtaininterfaceW ithCallback / return requested FW interface

network operator initiated endAccess / destroy all interface objects used by the c

endAccess / destroy all interface objects used by the client

/

N
.

Figure 4. State Transition Diagram for IpAccess

ETSI

31 ETSI ES 201 915-3 V1.5.1 (2005-02)

6.4.1.3.1 Active State

When the client requests access to the Framework on the Iplnitial interface, an object implementing the IpAccess
interface is created. The client can now request other Framework interfaces, including Service Discovery. When the
client isno longer interested in using the interfaces it calls the endAccess method. This resultsin the destruction of all
interface objects used by the client. In case the network operator decides that the client has no longer access to the
interfaces the same will happen.

7 Framework-to-Application API

7.1 Sequence Diagrams

7.1.1 Event Notification Sequence Diagrams

7111 Enable Event Notification

Applogic : IpAppEventNotification . IpAccess . IpEventNotification

1

1: new()

. 2: obtaininterfaceWithCallback()
|

3: new()

4: createNotification()

5: reportNotification()

ETSI

32 ETSI ES 201 915-3 V1.5.1 (2005-02)

This message is used to create an object implementing the |pAppEventNotification interface.

This message is used to receive areference to the object implementing the IpEventNotification interface and
set the callback interface for the framework.

If thereis currently no object implementing the IpEventNotification interface, then oneis created using this
message.

createNotification(eventCriteria : in TpFwEventCriteria): TpAssignment!D.

This message is used to enable the notification mechanism so that subsequent framework events can be sent to
the application. The framework event the application requests to be informed of is the availability of new
SCFs.

Newly installed SCFs become available after the invocation of registerService and
announceServiceAvailability on the Framework. The application uses the input parameter eventCriteriato
specify the SCFs of whose availability it wants to be notified: those specified in ServiceTypeNameList.

The result of thisinvocation has many similarities with the result of invoking listServiceTypes: in both cases
the application isinformed of the availability of alist of SCFs. The differences are:

- in the case of invoking listServiceTypes, the application hasto take the initiative, but it isinformed of
ALL SCFsavailable;

- in the case of using the event notification mechanism, the application needs not take the initiative to ask
about the availability of SCFs, but it is only informed of the onesthat are newly available.

Alternatively, or additionally, the application can request to be informed of SCFs becoming unavailable.

The application is notified of the availability of new SCFs of the requested type(s).

ETSI

33 ETSI ES 201 915-3 V1.5.1 (2005-02)

7.1.2 Integrity Management Sequence Diagrams

7.1.2.1 Load Management: Suspend/resume notification from application

This sequence diagram shows the scenario of suspending or resuming notifications from the application based on the
evaluation of the load balancing policy as aresult of the detection of a change in load level of the framework.

IpAppLanManaqer IQLoadManager

T T \

! \

! \
| \
| \
|

1: load change detection and\\\ policy evaluation

| :

\

s This is
! im plementation

T detail

~ L /

/

I
- ! /
! /
I

/

Load balancing senice
makes a decision based
on pre-defined policy

3: load change deﬁectior)/and policy evaluation

—

ERRE resumeNotification() B

Application provides
initial load report on
notification
resum ption

N 5: reportLoad()

g

ETSI

34

ETSI ES 201 915-3 V1.5.1 (2005-02)

7.1.2.2 Load Management: Framework queries load statistics

This sequence diagram shows how the framework requests load statistics for an application.

. IpLoadManager

. IpAppLoadManager

1: queryAppLoadReq()

3: queryAppLoadRes()

J

2: geti load information

L
N
N
N
N
N

ETSI

This is the
implementation
detail

35 ETSI ES 201 915-3 V1.5.1 (2005-02)
7.1.2.3 Load Management: Framework callback registration and Application load
control

This sequence diagram shows how the framework registersitself and the application invokes load management function
to inform the framework of application load.

|QAQQLO&G Manager gLoadManager
T

1: createLoadLe\elNotification()

load condition on notification

\
1
: Application reports its initial
U _| creation

iy

2: reportLoad()7 o _

3: IoacLhange detection

This is Application -
implementation detail. T
|
|

Application detects a load
4 tLoad condition change and
appropriate load control - reportLoad() reports to framework. The

|
|
|
|
|
|
:
The Application may take |
|
action. S U - framework may take

|

|

|

s

|

|

|

|

|

|

|

|

|

|

|

|

|

appropriate load control
action - implementation
- | detail.

|
5: Ioad:change detection _
This is Application = -7
implementation detail. - -7
The Application may take - 6: repoangd(j’
appropriate load control
action.

7: destroyLoadLevelNotification()

ETSI

36 ETSI ES 201 915-3 V1.5.1 (2005-02)

7.1.2.4 Load Management: Application reports current load condition

This sequence diagram shows how an application reportsits load condition to the framework load manager.

. IpAppLoadManager . IpLoadM anager

1: reportLoad()

2: evaluate policy

~
N
~
~
~
N

N

~

This is the implementation
detail

]

7.1.2.5 Load Management: Application queries load statistics

This sequence diagram shows how an application requests load statistics for the framework.

. IpAppLoadManager . IpLoadManager

1: queryLoadReq()

U 2: get'load information

| 3: queryLoadRes() " This is the

‘ implementation
u\ detail

ETSI

7.1.2.6

37 ETSI ES 201 915-3 V1.5.1 (2005-02)

Load Management: Application callback registration and load control

This sequence diagram shows how an application registersitself and the framework invokes load management function

based on policy.

:IpAppLoadManager

Framework detects a load
condition change

The application may take
appropriate load control
action - implementation
detail.

and notifies the application.

:IpLoadManager

T
1: createLoadLevelNotification() |
|

|
|
|
2: IoadLeveINotiﬁcatioﬁnrQ ot

/U Framework reports its initial
load condition on notification
creation

3:load change detection & policy evaluation
|

4:loadLevelNotification() ‘ N

H

J
)

-~ - __6:loadLevelNotification() s N

This is Framework implementation
detail. The Framework may take
appropriate load control action.

5:load change detec
|

— N

[]

7: destroyLoadLevelNotification() |
|

This is Framework implementation
detail. The Framework may take

/U appropriate load control action.

ETSI

38

ETSI ES 201 915-3 V1.5.1 (2005-02)

7.1.2.7 Heartbeat Management: Start/perform/end heartbeat supervision of the

application

In this sequence diagram, the framework has decided that it wishes to monitor the application, and has therefore
requested the application to commence sending its heartbeat. The application responds by sending its heartbeat at the
specified interval. The framework then decides that it is satisfied with the application's health and disables the heartbeat
mechanism. If the heartbeat was not received from the application within the specified interval, the framework can
decide that the application has failed the heartbeat and can then perform some recovery action.

Framework

: IpHeartBeat

. IpAppHeartBeatMgmt

1: enableAppHeartBeat()

2: pulse()

3: pulse()

U
U

4: disableAppHeartBeat()

T | At a certain point of
. |time the framework

. | decides to stop

i heartbeat supenision
|

|

|

|

ETSI

39 ETSI ES 201 915-3 V1.5.1 (2005-02)

7.1.2.8 Fault Management: Framework detects a Service failure

The framework has detected that a service instance has failed (probably by the use of the heartbeat mechanism). The
framework updates its own records and informs the client application using the service instance to stop.

Client Application : IpAppFaultManager Framework : IpFault Manager

i The framework should detect if ™
asenice instance fails, for

: example via an unretumed
heartbeat. The ramework

; should inform the application
l that is using that senvice

i instance.

1: swcUnavailablelnd() |

The application must i
cease the use of this
senice instance. ;

1. Theframework informsthe client application that is using the service instance that the service is unavailable.
The client application is then expected to abandon use of this service instance and access a different service
instance via the usual means (e.g. discovery, selectService etc.). The client application should not need to
re-authenticate in order to discover and use an alternative service instance. The framework will also need to
make the relevant updates to itsinternal records to make sure the service instance is removed from service and
no client applications are still recorded as using it.

ETSI

40 ETSI ES 201 915-3 V1.5.1 (2005-02)

7.1.2.9 Fault Management: Application requests a Framework activity test

Client Application : IpAppFaultManager Framework : IpFaultManager

Client application asks framework to
carry out an activty test. The
framework is denoted as the target
by an empty string value for swvcid.

1: activityTestReq()

Framework carries out test and
returns result to client application.

2: activityTestRes()

1. Theclient application asks the framework to do an activity test. The client identifies that it would like the
activity test done for the framework, rather then a service, by supplying an empty string value for the svcld
parameter.

2. Theframework does the requested activity test and sends the result to the client application.

7.1.3 Service Discovery Sequence Diagrams

7.1.3.1 Service Discovery

The following figure shows how Applications discover a new Service Capability Feature in the network. Even
applications that have already used the OSA API of a certain network know that the operator may upgrade it any time;
thisis why they use the Service Discovery interfaces.

Before the discovery process can start, the Application needs a reference to the Framework's Service Discovery
interface; thisis done via an invocation the method obtaininterface on the Framework's Access interface.

Discovery can be athree-step process. The first two steps have to be performed initially, but can subsequently be
skipped (if the service type and its properties are already known, the application can invoke discoverService() without
having to re-invoke the list/discoverServiceType methods):

ETSI

41 ETSI ES 201 915-3 V1.5.1 (2005-02)

Application : IpAccess : IpSeniceDiscowery

! 1: obtaininterface() |

gl

| 2: listSeniceTypes()

3: describeSeniceType()

S

|
: 4: discowerSenice()

:
u
:

R

2: Discovery: first step - list service types

In thisfirst step the application asks the Framework what service types that are available from this network.
Service types are standardized or non-standardised SCF names, and thus thisfirst step alows the Application
to know what SCFs are supported by the network.

The following output is the result of this first discovery step:
- out listTypes.

Thisisalist of service type names, i.e. alist of strings, each of them the name of a SCF or a SCF
specidization (e.g. "P_MPCC").

3: Discovery: second step - describe service type

In this second step the application requests what are the properties that describe a certain service typethat it is
interested in, among those listed in the first step.

The following input is necessary:
- in name.

Thisisaservice type name: a string that contains the name of the SCF whose description the Applicationis
interested in (e.g. "P_MPCC").

And the output is:
- out serviceTypeDescription.
The description of the specified SCF type. The description provides information about:
- the property names associated with the SCF;
- the corresponding property value types,
- the corresponding property mode (mandatory or read only) associated with each SCF property;
- the names of the super types of thistype; and

- whether the typeis currently enabled or disabled.

ETSI

42 ETSI ES 201 915-3 V1.5.1 (2005-02)

4. Discovery: third step - discover service

In thisthird step the application requests for a service that matches its needs by tuning the service properties
(i.e. assigning values for certain properties).

The Framework then checks whether thereis a match, in which case it sends the Application the servicel D that
isthe identifier this network operator has assigned to the SCF version described in terms of those service
properties. Thisisthe moment where the servicel D identifier is shared with the application that isinterested on
the corresponding service.

Thisis done for either one service or more (the application specifies the maximum number of responsesit
wishes to accept).

Input parameters are:
- in serviceTypeName.

Thisisastring that contains the name of the SCF whose description the Application isinterested in
(eg."P_MPCC").

- in desiredPropertyList.

Thisisagain alist like the one used for service registration, but where the value of the service properties have

been fine tuned by the Application to (they will be logically interpreted as " minimum", "maximum”, etc. by
the Framework).

The following parameter is necessary as input:

- in max.

This parameter states the maximum number of SCFsthat are to be returned in the " ServiceList”" result.
And the output is:

- out servicelList.

Thisisalist of duplets: (servicel D, servicePropertyList). It provides alist of SCFs matching the requirements
from the Application, and about each: the identifier that has been assigned to it in this network (servicel D),
and once again the service property list.

7.1.4 Service Agreement Management Sequence Diagrams

7.1.4.1 Service Selection
The following figure shows the process of selecting an SCF.

After discovery the Application gets alist of one or more SCF versions that match its required description. It now needs
to decide which serviceit is going to use; it also needsto actually get away to useit.

ETSI

43 ETSI ES 201 915-3 V1.5.1 (2005-02)

Thisis achieved by the following two steps:

Application o Framework
IpSeniceAgreementManagement

IpAppServiceAqregmentManaqement

1: selectService()

g

1

1
|
2 initiateSignSenvic eAg reement(b

|
| ;
3: signSeniceAgreement(|)

u

4: signSeniceAgreement()

!

1. Service Selection: first step - selectService

In thisfirst step the Application identifies the SCF version it has finally decided to use. Thisis done by means
of the servicel D, which isthe agreed identifier for SCF versions. The Framework acknowledges this selection
by returning to the Application a new identifier for the service chosen: a service token, that is a private
identifier for this service between this Application and this network, and is used for the process of signing the
service agreement.

Input is:

- in servicel D.
Thisidentifies the SCF required.
And output:

- out serviceToken.

Thisisafree format text token returned by the framework, which can be signed as part of a service agreement.
It contains operator specific information relating to the service level agreement.

2: Service Selection: second step - signServiceAgreement

In this second step an agreement is signed that allows the Application to use the chosen SCF version. And
once these contractual details have been agreed, then the Application can be given the means to actually use it.
The means are areference to the manager interface of the SCF version (remember that a manager is an entry
point to any SCF). By calling the createServiceManager operation on the lifecycle manager the Framework
retrieves this interface and returns it to the Application. The service properties suitable for this application are
also fed to the SCF (viathe lifecycle manager interface) in order for the SCS to instantiate an SCF version that
is suitable for this application.

Input:

- in serviceToken.

ETSI

44 ETSI ES 201 915-3 V1.5.1 (2005-02)
Thisistheidentifier that the network and Application have agreed to privately use for a certain version of
SCF.
- in agreementText.
Thisisthe agreement text that is to be signed by the Framework using the private key of the Framework.
- in signingAlgorithm.
Thisisthe algorithm used to compute the digital signature.
Output:
- out signatureAndServiceMar.

Thisis areference to a structure containing the digital signature of the Framework for the service agreement,
and a reference to the manager interface of the SCF.

7.2 Class Diagrams

<<Interface>>
IpAppEventNot ification
(from App Interfaces)

“reportNotification ()
LnotificationTerminated()

<<uses>> |

<<Interface>>
IpEventNotification
(from Framework Interfaces)

®createNotification()
®destroyNotification()

Figure 5: Event Notification Class Diagram

ETSI

45 ETSI ES 201 915-3 V1.5.1 (2005-02)

<<Interface>> <<Interface>>
IpAppLoadManager IpAppFaultManager
queryAppLoadReq() activityTestRes()
queryLoadRes() appActivity TestReq()
<<Interface>> queryLoadErr() fwFaultReportind()
IpAppHeartBeatMgmt <<Interface>> loadLevelNotification() fwFaultRecoveryind()

IpAppHeartBeat resumeNotification() sveUnavailablelnd() el
enableAppHeartBeat() suspendNotification() o genFaultStats RecordRes () IPAPPOAM
disableAppHeartBeat() 0..n pulse() <<new>> createLoadLe\eINotlﬁlcathno fwUnavailablelnd()
changelnterval(<<new>> destroyLoadLevelNotification() activity TestErr() systemDateTimeQuery()

o : A genFaultStats RecordErr() B
| i | appUnavailableind() |
! | | genFaultStats RecordReq () !
<<uses>> | <<uses>> | <<uses>> | <<uses>> !
: | | <<uses>>'l :
| | 1
= r‘fac . I | <<Interface>> |
Interface |
IpHeartBeatMgmt <<Interface>> I;Ij:c?l:/lfé;i;;:r 53 tManaoen <<Interface>>
IPOAM
IpHeartBeat -
enableHeartBeat() rtLoad! chxlcyt‘il;/?tm‘:j:s?geso
disableHeartBeat() 1 0.n pulse() ;T:rng:dgeq() S\F:(?Unavaiilablelnd() systemDateTimeQuery()
changelnterval() queryAppLoadRes() genFauitStats RecordReq ()
queryAppLoadE rr() appActivity TestErm()
createLoadLe\el Notific ation() appUnavail ableind()
destroyLoadLeelNotification() genFaultStats RecordRes ()
resumeNoatification() genFaultStats RecordErr()
suspend Notification ()

Figure 6: Integrity Management Package Overview

<<Interface>>
IpS erviceDiscovery
(from Frameworkinterfaces)

listServiceTy pes()
$describeSeniceType()
LdiscoverService()
%listSubscribedSenices()

Figure 7: Service Discovery Package Overview

ETSI

46

<<Interface>>
IpClientAccess

(from Client interfaces)

FterminateAccess()

]
1
|
<<uses>> !
|
|
|
|
I

ETSI ES 201 915-3 V1.5.1 (2005-02)

<<Interface>>
IpClientAPILevelAuthentication

(from Client interfaces)

Fauthenticate()
SabortAuthentication()
FauthenticationSucceeded()

<<Interface>>
IpInitial

(from Framework interfaces)

<<Interface>>
IpAccess

(from Framework interfaces)

/N

<<uses>>

<<Interface>>
IpAPILevelAuthentication

(from Framework interfaces)

FinitiateAuthentication()

FobtainInterface()
FobtainInterfaceWithCallback()
BendAccess()

Flistinterfaces()
Preleaselnterface()

FselectEncryptionMethod ()
Fauthenticate()
FabortAuthentication()
FauthenticationSucceeded()

<<Interface>>
IpAuthentication

(from Framework interfaces)

FrequestAccess()

Figure 8: Trust and Security Management Package Overview

ETSI

a7 ETSI ES 201 915-3 V1.5.1 (2005-02)

<<Interface>>
IpAppSeniceAgreementManagement
(from App Interfaces)

¥signSeniceAgreement()
$terminateSeniceAgreement()

/\
<<uses>>

<<Interface>>
IpSeniceAgreementM anagement
(from Framework Interfaces)

¥signSeniceAgreement()
@terminateSeniceAgreement()
@selectSenice()
PinitiateSignSeniceAgreement()

Figure 9: Service Agreement Management Package Overview

7.3 Interface Classes

7.3.1 Service Discovery Interface Classes

7.3.1.1 Interface Class IpServiceDiscovery
Inherits from: Ipinterface.

The service discovery interface, shown below, consists of four methods. Before a service can be discovered, the
enterprise operator (or the client applications) must know what "types" of services are supported by the Framework and
what service "properties’ are applicable to each service type. The listServiceType() method returns alist of all "service
types' that are currently supported by the framework and the " describeServiceType()" returns a description of each
service type. The description of service type includes the " service-specific properties’ that are applicable to each service
type. Then the enterprise operator (or the client applications) can discover a specific set of registered services that both
belong to a given type and possess the desired "property values', by using the "discoverService() method". Once the
enterprise operator finds out the desired set of services supported by the framework, it subscribes to (a sub-set of) these
services using the Subscription Interfaces. The enterprise operator (or the client applicationsin its domain) can find out
the set of servicesavailableto it (i.e. the service that it can use) by invoking "listSubscribedServices()". The service
discovery APIs areinvoked by the enterprise operators or client applications. They are described below.

Thisinterface shall be implemented by a Framework with as a minimum requirement the listServiceTypes(),
describeServiceType() and discoverService() methods.

ETSI

48 ETSI ES 201 915-3 V1.5.1 (2005-02)

<<Interface>>

IpServiceDiscovery

listServiceTypes () : TpServiceTypeNameList
describeServiceType (name : in TpServiceTypeName) : TpServiceTypeDescription

discoverService (serviceTypeName : in TpServiceTypeName, desiredPropertyList : in
TpServicePropertyList, max : in TpInt32) : TpServiceList

listSubscribedServices () : TpServiceList

Method
| i st Servi ceTypes()

This operation returns the names of all service typesthat are in the repository. The details of the service types can then
be obtained using the describeServiceType() method.

Returns <listTypes> : The names of the requested service types.

Parameters
No Parameters were identified for this method.

Returns

TpServi ceTypeNaneLi st

Raises

TpComonExcepti ons, P_ACCESS DEN ED

Method
descri beServi ceType()

This operation lets the caller obtain the details for a particular service type.

Returns <serviceTypeDescription> : The description of the specified service type. The description provides information
about:

. the service properties associated with this service type: i.e. alist of service property { name, mode and type}
tuples;

. the names of the super types of this service type; and

. whether the service typeis currently available or unavailable.

Parameters

nane : in TpServiceTypeNane
The name of the service type to be described.

- 1f the "name" is malformed, then the P_ILLEGAL_SERVICE_TY PE exception is raised.

- If the "name" does not exist in the repository, then the P_UNKNOWN_SERVICE_TY PE exception is raised.

ETSI

49 ETSI ES 201 915-3 V1.5.1 (2005-02)

Returns
TpServi ceTypeDescri ption

Raises

TpConmonExcept i ons, P_ACCESS DENI ED, P_| LLEGAL_SERVI CE_TYPE,
P_UNKNOWN_SERVI CE_TYPE

Method
di scover Servi ce()

The discoverService operation is the means by which a client application is able to obtain the service IDs of the services
that meet its requirements. The client application passesin alist of desired service properties to describe the serviceitis
looking for, in the form of attribute/value pairs for the service properties. The client application also specifies the
maximum number of matched responsesit is willing to accept. The framework must not return more matches than the
specified maximum, but it is up to the discretion of the Framework implementation to choose to return less than the
specified maximum. The discoverService() operation returns a servicel D/Property pair list for those services that match
the desired service property list that the client application provided. The service properties returned will form a
complete view of what the client application will be able to do with the service, as per the service level agreement. If
the framework supports service subscription, the service level agreement will be encapsulated in the subscription
properties contained in the contract/profile for the client application, which will be arestriction of the registered
properties.

Returns <serviceList> : This parameter gives alist of matching services. Each service is characterised by its service ID
and alist of service properties{name and value list} associated with the service.

Parameters

servi ceTypeNane : in TpServiceTypeNane

The "serviceTypeName" parameter conveys the required service type. It is key to the central purpose of "service
trading”. It isthe basis for type safe interactions between the service exporters (via registerService) and service
importers (via discoverService). By stating a service type, the importer implies the service type and a domain of
discourse for talking about properties of service.

If the string representation of the "type" does not obey the rules for service type identifiers, then the
P_ILLEGAL_SERVICE_TYPE exception is raised.

If the "type" is correct syntactically but is not recognised as a service type within the Framework, then the
P_UNKNOWN_SERVICE_TY PE exception is raised.

The framework may return a service of a subtype of the "type" requested. A service sub-type can be described by the
properties of its supertypes.

desiredPropertylList : in TpServicePropertylLi st

The "desiredPropertyList" parameter isalist of service properties{ hame and value list} that the discovered set of
services should satisfy. These properties deal with the non-functional and non-computational aspects of the desired

service. The property valuesin the desired property list must be logically interpreted as "minimum”, " maximum", etc.
by the framework (due to the absence of a Boolean constraint expression for the specification of the service criterion). It
is suggested that, at the time of service registration, each property val ue be specified as an appropriate range of values,
so that desired property val ues can specify an "enclosing” range of values to help in the selection of desired services.

max : in Tplnt32
The "max" parameter states the maximum number of servicesthat areto be returned in the "servicelList" result.

Returns
TpServi ceLi st

ETSI

50 ETSI ES 201 915-3 V1.5.1 (2005-02)

Raises

TpConmonExcept i ons, P_ACCESS DENI ED, P_| LLEGAL_SERVI CE_TYPE,
P_UNKNOWN_SERVI CE_TYPE, P_I NVALI D_PROPERTY

Method
| i st Subscri bedSer vi ces()

Returns alist of services so far subscribed by the enterprise operator. The enterprise operator (or the client applications
in the enterprise domain) can obtain alist of subscribed services that they are allowed to access.

Returns <serviceList>: The "serviceList" parameter returns alist of subscribed services. Each serviceis characterised
by its service ID and alist of service properties{name and value list} associated with the service.

Parameters
No Parameters were identified for this method.

Returns

TpServi ceLi st

Raises

TpComonExcepti ons, P_ACCESS DEN ED

7.3.2 Service Agreement Management Interface Classes

7.3.2.1 Interface Class IpAppServiceAgreementManagement
Inherits from: Ipinterface.

Thisinterface and the signServiceAgreement() and terminateServiceAgreement() methods shall be implemented by an
application.

<<Interface>>

IpAppServiceAgreementManagement

signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm :
in TpSigningAlgorithm) : TpOctetSet

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString,
digitalSignature : in TpOctetSet) : void

ETSI

51 ETSI ES 201 915-3 V1.5.1 (2005-02)

Method

si gnServi ceAgreenent ()

Upon receipt of the initiateSignServiceAgrement() method from the client application, this method is used by the
framework to request that the client application sign an agreement on the service. The framework provides the service
agreement text for the client application to sign. The service manager returned will be configured as per the service
level agreement. If the framework uses service subscription, the service level agreement will be encapsulated in the
subscription properties contained in the contract/profile for the client application, which will be arestriction of the

registered properties. If the client application agrees, it signs the service agreement, returning its digital signature to the
framework.

Returns <digital Signature> : The digital Signature is the signed version of a hash of the service token and agreement text
given by the framework. If no signing algorithm is used, the digital Signature is the octet sequence of the service token
and the agreement text. If the signature isincorrect the serviceToken will be expired immediately.

Parameters

servi ceToken : in TpServiceToken

Thisisthe token returned by the framework in acall to the selectService() method. Thistoken is used to identify the
service instance to which this service agreement corresponds. (If the client application selects many services, it can
determine which selected service corresponds to the service agreement by matching the service token.) If the
serviceToken isinvalid, or not known by the client application, then the P_INVALID_SERVICE_TOKEN exception is
thrown.

agreenent Text : in TpString
Thisisthe agreement text that is to be signed by the client application using the private key of the client application. If

the agreementText isinvalid, thenthe P_INVALID_AGREEMENT_TEXT exception is thrown.

signingAl gorithm: in TpSigningAl gorithm

Thisisthe agorithm used to compute the digital signature. If the signingAlgorithm isinvalid, or unknown to the client
application, the P_INVALID_SIGNING_ALGORITHM exception is thrown.

Returns
TpCct et Set
Raises

TpConmonExcept i ons, P_I NVALI D_AGREEMENT _TEXT, P_I NVALI D_SERVI CE_TOKEN,
P I NVALI D_SI GNI NG_ALGORI THV

Method
t er m nat eSer vi ceAgr eenent ()

This method is used by the framework to terminate an agreement for the service.

Parameters

servi ceToken : in TpServiceToken

Thisisthe token passed back from the framework in a previous selectService() method call. Thistoken is used to
identify the service agreement to be terminated. If the serviceToken isinvalid, or unknown to the client application, the
P_INVALID_SERVICE_TOKEN exception will be thrown.

termnationText : in TpString
Thisisthe termination text that describes the reason for the termination of the service agreement.

ETSI

52 ETSI ES 201 915-3 V1.5.1 (2005-02)

digital Signature : in TpCctet Set

Thisisasigned version of a hash of the service token and the termination text. If no signing algorithm is used, the
digital Signature is the octet sequence of the termination text itself. The signing al gorithm used is the same as the
signing algorithm given when the service agreement was signed using signServiceAgreement(). The framework uses
this to confirm itsidentity to the client application. The client application can check that the terminationText has been
signed by the framework. If a match is made, the service agreement is terminated, otherwise the
P_INVALID_SIGNATURE exception will be thrown.

Raises

TpComonExcepti ons, P_I NVALI D SERVI CE_ TOKEN, P_I NVALI D_SI GNATURE
7.3.2.2 Interface Class IpServiceAgreementManagement

Inherits from: Ipinterface.

Thisinterface and the signServiceAgreement(), terminateServiceAgreement(), selectService() and
initiateSi gnServiceAgreement() methods shall be implemented by a Framework.

<<Interface>>

IpServiceAgreementManagement

signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm :
in TpSigningAlgorithm) : TpSignatureAndServiceMgr

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString,
digitalSignature : in TpOctetSet) : void

selectService (servicelD : in TpServicelD) : TpServiceToken

initiateSignServiceAgreement (serviceToken : in TpServiceToken) : void

Method
si gnServi ceAgreenent ()

This method is used by the client application to request that the framework sign an agreement on the service, which
allowsthe client application to use the service. If the framework agrees, both parties sign the service agreement, and a
reference to the service manager interface of the serviceis returned to the client application. The service manager
returned will be configured as per the service level agreement. If the framework uses service subscription, the service
level agreement will be encapsulated in the subscription properties contained in the contract/profile for the client
application, which will be arestriction of the registered properties. If the client application is not allowed to access the
service, then an error code (P_SERVICE_ACCESS _DENIED) is returned.

Returns <signatureAndServiceMgr> : This contains the digital signature of the framework for the service agreement,
and a reference to the service manager interface of the service.
structure TpSignatureAndServiceMagr {
digital Signature: TpOctetSet;
serviceMgrinterface: |pServiceRef;
b
The digitalSignature is the signed version of a hash of the service token and agreement text given by the client
application. If no signing algorithm is used, the digital Signature is the octet sequence of the service token and the
agreement text given by the client application.
The serviceMgrinterface is areference to the service manager interface for the selected service.

ETSI

53 ETSI ES 201 915-3 V1.5.1 (2005-02)

Parameters

servi ceToken : in TpServiceToken

Thisisthe token returned by the framework in acall to the selectService() method. Thistoken is used to identify the
service instance requested by the client application. If the serviceToken isinvalid, or has expired, an error code
(P_INVALID_SERVICE_TOKEN) isreturned.

agreenent Text : in TpString

Thisisthe agreement text that isto be signed by the framework using the private key of the framework. If the
agreementText isinvalid, then an error code (P_INVALID_AGREEMENT_TEXT) is returned.

signingAlgorithm: in TpSigningA gorithm

Thisisthe algorithm used to compute the digital signature. If the signingAlgorithm isinvalid, or unknown to the
framework, an error code (P_INVALID_SIGNING_ALGORITHM) isreturned.

Returns
TpSi gnat ur eAndSer vi ceMgr

Raises

TpConmonExcept i ons, P_ACCESS DENI ED, P_|I NVALI D_AGREEMENT TEXT,
P_I NVALI D_SERVI CE_TOKEN, P_I NVALI D_SI GNI NG ALGORI THM
P_SERVI CE_ACCESS_DEN ED

Method
t er m nat eSer vi ceAgr eenent ()

This method is used by the client application to terminate an agreement for the service.

Parameters

servi ceToken : in TpServiceToken

Thisisthe token passed back from the framework in a previous selectService() method call. Thistokenis used to
identify the service agreement to be terminated. If the serviceToken isinvalid, or has expired, an error code
(P_INVALID_SERVICE_TOKEN) is returned.

termnationText : in TpString
Thisisthe termination text that describes the reason for the termination of the service agreement.

digital Signature : in TpCctet Set

Thisisasigned version of a hash of the service token and the termination text. If no signing algorithm is used, the
digitalSignature is the octet sequence of the termination text itself. The signing algorithm used is the same as the
signing a gorithm given when the service agreement was signed using signServiceAgreement(). The framework usesthis
to check that the terminationText has been signed by the client application. If a match is made, the service agreement is
terminated, otherwise an error code (P_INVALID_SIGNATURE) isreturned.

Raises

TpConmonExcept i ons, P_ACCESS DENI ED, P_| NVALI D_SERVI CE_TOKEN,
P | NVALI D_SI GNATURE

ETSI

54 ETSI ES 201 915-3 V1.5.1 (2005-02)

Method
sel ect Ser vi ce()

This method is used by the client application to identify the service that the client application wishes to use. If the client
application is not allowed to access the service, then the P_SERVICE_ACCESS_DENIED exception isthrown. The
P_SERVICE_ACCESS DENIED exception is also thrown if the client attempts to select a service for which it has
already signed a service agreement for, and therefore obtained an instance of. Thisis because there must be only one
service instance per client application.

Returns <serviceToken> : Thisis afree format text token returned by the framework, which can be signed as part of a
service agreement. This will contain operator specific information relating to the service level agreement. The
serviceToken has alimited lifetime. If the lifetime of the serviceToken expires, a method accepting the serviceToken
will return an error code (P_INVALID_SERVICE_TOKEN). Service Tokens will automatically expireif the client
application or framework invokes the endAccess method on the other's corresponding access interface.

Parameters

servicelD : in TpServicelD

Thisidentifies the service required. If the servicel D is not recognised by the framework, an error code
(P_INVALID_SERVICE_ID) isreturned.

Returns
TpServi ceToken
Raises

TpConmonExcept i ons, P_ACCESS DENI ED, P_|I NVALI D_SERVI CE_I D,
P_SERVI CE_ACCESS_DEN ED

Method
I nitiateSi gnServi ceAgreenent ()
This method is used by the client application to initiate the sign service agreement process. If the client applicationis

not allowed to initiate the sign service agreement process, the exception (P_SERVICE_ACCESS_DENIED) isthrown.

Parameters

servi ceToken : in TpServiceToken
Thisisthe token returned by the framework in a call to the selectService() method. Thistoken isused to identify the

service instance requested by the client application. If the serviceToken isinvalid, or has expired, the exception
(P_INVALID_SERVICE_TOKEN) is thrown.

Raises

TpComonExcepti ons, P_I NVALI D_SERVI CE_TOKEN, P_SERVI CE_ACCESS DEN ED

7.3.3 Integrity Management Interface Classes

7.3.3.1 Interface Class IpAppFaultManager
Inherits from: Ipinterface.

Thisinterface is used to inform the application of events that affect the integrity of the Framework, Service or Client
Application. The Fault Management Framework will invoke methods on the Fault Management Application Interface
that is specified when the client application obtains the Fault Management interface: i.e. by use of the
obtainlnterfaceWithCallback operation on the IpAccessinterface.

ETSI

55 ETSI ES 201 915-3 V1.5.1 (2005-02)

<<Interface>>

IpAppFaultManager

activityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void
appActivityTestReq (activityTestID : in TpActivityTestID) : void

fwFaultReportind (fault : in TpinterfaceFault) : void

fwFaultRecoverylnd (fault : in TpinterfaceFault) : void

svcUnavailablelnd (servicelD : in TpServicelD, reason : in TpSvcUnavailReason) : void
genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord, servicelDs : in TpServicelDList) : void
fwUnavailablelnd (reason : in TpFwUnavailReason) : void

activityTestErr (activityTestID : in TpActivityTestID) : void

genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError, servicelDs : in TpServicelDList) :
void

appUnavailablelnd (servicelD : in TpServicelD) : void

genFaultStatsRecordReq (timePeriod : in TpTimelnterval) : void

Method
activityTest Res()

The framework uses this method to return the result of a client application-requested activity test.

Parameters

activityTestID : in TpActivityTestlD
Used by the client application to correlate this response (when it arrives) with the original request.

activityTestResult : in TpActivityTestRes
The result of the activity test.

Method
appActivityTest Req()

The framework invokes this method to test that the client application is operational. On receipt of this request, the
application must carry out atest on itself, to check that it is operating correctly. The application reports the test result by
invoking the appActivityTestRes method on the |pFaultM anager interface.

Parameters

activityTestID : in TpActivityTestlD
The identifier provided by the framework to correlate the response (when it arrives) with this request.

Method
f wFaul t Report | nd()

The framework invokes this method to notify the client application of afailure within the framework. The client
application must not continue to use the framework until it has recovered (as indicated by a fwFaultRecoverylnd).

ETSI

56 ETSI ES 201 915-3 V1.5.1 (2005-02)

Parameters

fault : in TplnterfaceFault
Specifies the fault that has been detected by the framework.

Method
f wFaul t Recoveryl nd()

The framework invokes this method to notify the client application that a previously reported fault has been rectified.
The application may then resume using the framework.

Parameters

fault : in TplnterfaceFault
Specifies the fault from which the framework has recovered.

Method
svcUnavai | abl el nd()

The framework invokes this method to inform the client application that it can no longer use its instance of the indicated
service. On receipt of thisrequest, the client application must act to reset its use of the specified service (using the
normal mechanisms, such as the discovery and authentication interfaces, to stop use of this service instance and begin
use of a different service instance).

Parameters

servicelD: in TpServicelD
Identifies the affected service.

reason : in TpSvcUnavail Reason
I dentifies the reason why the service is no longer available.

Method

genFaul t St at sRecor dRes()

This method is used by the framework to provide fault statistics to a client application in responseto a
genFaultStatsRecordReq method invocation on the | pFaultM anager interface.

Parameters

faultStatistics : in TpFaultStatsRecord
The fault statistics record.

servicelDs : in TpServicel DLi st

Specifies the framework or services that are included in the general fault statistics record. If the servicel Ds parameter is
an empty list, then the fault statistics are for the framework.

Method
f wnavai | abl el nd()

The framework invokes this method to inform the client application that it is no longer available.

Parameters

reason : in TpFwUnavail Reason
Identifies the reason why the framework is no longer available.

ETSI

57 ETSI ES 201 915-3 V1.5.1 (2005-02)

Method
activityTestErr()

The framework uses this method to indicate that an error occurred during an application-initiated activity test.

Parameters

activityTestID : in TpActivityTestID
Used by the application to correlate this response (when it arrives) with the original request.

Method
genFaul t St at sRecor dErr ()

This method is used by the framework to indicate an error fulfilling the request to provide fault statistics, in response to
a genFaultStatsRecordReq method invocation on the IpFaultManager interface.

Parameters

faultStatisticsError : in TpFaultStatisticsError
The fault statistics error.

servicelDs : in TpServicel DLi st

Specifies the framework or services that were included in the general fault statistics record request. If the servicel Ds
parameter is an empty list, then the fault statistics were requested for the framework.

Method
appUnavai | abl el nd()

The framework invokes this method to indicate to the application that the service instance has detected that it is not
responding. On receipt of thisindication, the application must end its current session with the service instance.

Parameters

servicelD : in TpServicelD
Specifies the service for which the indication of unavailability was received.

Method

genFaul t St at sRecor dReq()

This method is used by the framework to solicit fault statistics from the client application, for example when the
framework was asked for these statistics by a service instance by using the genFaultStatsRecordReq operation on the

I pFwFaultManager interface. On receipt of this request, the client application must produce a fault statistics record, for

the application during the specified timeinterval, which is returned to the framework using the genFaultStatsRecordRes
operation on the |pFaultManager interface.

Parameters

timePeriod : in TpTinelnterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings
leaves the time period to the discretion of the client application.

ETSI

58 ETSI ES 201 915-3 V1.5.1 (2005-02)

7.3.3.2 Interface Class IpFaultManager
Inherits from: Iplnterface.

Thisinterface is used by the application to inform the framework of events that affect the integrity of the framework
and services, and to request information about the integrity of the system. The fault manager operations do not
exchange callback interfaces asit is assumed that the client application supplies its Fault Management callback
interface at the time it obtains the Framework's Fault Management interface, by use of the obtainlnterfaceWithCallback
operation on the |pAccess interface.

If the IpFaultManager interface isimplemented by a Framework, at least one of these methods shall be implemented. If
the Framework is capable of invoking the | pAppFaultManager.appActivity TestReq() method, it shall implement
appActivityTestRes() and appActivityTestErr() in thisinterface. If the Framework is capable of invoking

| pAppFaultManager.genFaultStatsRecordReq(), it shall implement genFaultStatsRecordRes() and
genFaultStatsRecordErr() in this interface.

<<Interface>>

IpFaultManager

activityTestReq (activityTestID : in TpActivityTestID, svcID : in TpServicelD) : void

appActivityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void
svcUnavailablelnd (servicelD : in TpServicelD) : void

genFaultStatsRecordReq (timePeriod : in TpTimelnterval, servicelDs : in TpServicelDList) : void
appActivityTestErr (activityTestID : in TpActivityTestID) : void

appUnavailablelnd (servicelD : in TpServicelD) : void

genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord) : void

genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError) : void

Method

activityTest Req()

The application invokes this method to test that the framework or its instance of a service is operational. On receipt of
this request, the framework must carry out atest on itself or on the client's instance of the specified service, to check
that it is operating correctly. The framework reports the test result by invoking the activity TestRes method on the
IpAppFaultManager interface. If the application does not have access to a service instance with the specified servicel D,
the P_UNAUTHORISED _PARAMETER_VALUE exception shall be thrown. The extralnformation field of the
exception shall contain the corresponding servicel D.

For security reasons the client application has access to the service ID rather than the service instance ID. However, as
there is a one to one relationship between the client application and a service, i.e. there is only one service instance of
the specified service per client application, it is the obligation of the framework to determine the service instance ID
from the service ID.

Parameters

activityTestID : in TpActivityTestlD
Theidentifier provided by the client application to correlate the response (when it arrives) with this request.

svclD : in TpServicelD
Identifies either the framework or a service for testing. The framework is designated by an empty string.

ETSI

59 ETSI ES 201 915-3 V1.5.1 (2005-02)

Raises
TpCommonExcepti ons, P_I NVALI D_SERVI CE_I D, P_UNAUTHORI SED_PARAMVETER VALUE

Method
appActivityTest Res()

The client application uses this method to return the result of a framework-requested activity test.

Parameters

activityTestID : in TpActivityTestID
Used by the framework to correlate this response (when it arrives) with the original request.

activityTestResult : in TpActivityTestRes
The result of the activity test.

Raises
TpConmmonExceptions, P_INVALI D SERVICE ID, P_I NVALI D ACTI VI TY_TEST I D

Method

svcUnavai | abl el nd()

This method is used by the client application to inform the framework that it can no longer use its instance of the
indicated service (either due to afailurein the client application or in the service instance itself). On receipt of this
request, the framework should take the appropriate corrective action. The framework assumes that the session between
this client application and service instance isto be closed and updates its own records appropriately as well as
attempting to inform the service instance and/or its administrator. Attempts by the client application to continue using
this session should be rejected. If the application does not have access to a service instance with the specified servicel D,
the P_UNAUTHORISED _PARAMETER_VALUE exception shall be thrown. The extralnformation field of the
exception shall contain the corresponding servicel D.

Parameters

servicelD: in TpServicelD
Identifies the service that the application can no longer use.

Raises
TpCommonExcepti ons, P_I NVALI D_SERVI CE_I D, P_UNAUTHORI SED PARAVETER VALUE

Method

genFaul t St at sRecor dReq()

This method is used by the application to solicit fault statistics from the framework. On receipt of this request the
framework must produce a fault statistics record, for either the framework or for the client's instances of the specified
services during the specified time interval, which is returned to the client application using the genFaultStatsRecordRes
operation on the |pAppFaultManager interface. If the application does not have access to a service instance with the

specified servicel D, the P_ UNAUTHORISED _PARAMETER _VALUE exception shall be thrown. The
extralnformation field of the exception shall contain the corresponding servicelD.

Parameters

timePeriod : in TpTinelnterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings
leaves the time period to the discretion of the framework.

ETSI

60 ETSI ES 201 915-3 V1.5.1 (2005-02)

servicelDs : in TpServicel DLi st

Specifies either the framework or servicesto be included in the general fault statistics record. If this parameter is not an
empty list, the fault statistics records of the client's instances of the specified services are returned, otherwise the fault
statistics record of the framework is returned.

Raises
TpCommonExcepti ons, P_I NVALI D_SERVI CE_I D, P_UNAUTHORI SED PARAMVETER VALUE
Method

appActivityTestErr()
The client application uses this method to indicate that an error occurred during a framework-reguested activity test.

Parameters

activityTestID : in TpActivityTestID
Used by the framework to correlate this response (when it arrives) with the original request.

Raises

TpComonExceptions, P_I NVALI D ACTIVITY_TEST_ID
Method

appUnavai | abl el nd()

This method is used by the application to inform the framework that it is ceasing its use of the service instance. This
may aresult of the application detecting a failure. The framework assumes that the session between this client
application and service instance is to be closed and updates its own records appropriately as well as attempting to
inform the service instance and/or its administrator.

Parameters

servicelD: in TpServicelD
Identifies the affected application.

Raises

TpComonExcept i ons

Method

genFaul t St at sRecor dRes()

This method is used by the client application to provide fault statistics to the framework in response to a
genFaultStatsRecordReg method invocation on the IpAppFaultM anager interface.

Parameters

faultStatistics : in TpFaultStatsRecord
The fault statistics record.

Raises
TpComonExcept i ons

Method
genFaul t St at sRecor dErr ()

This method is used by the client application to indicate an error fulfilling the request to provide fault statistics, in
response to a genFaultStatsRecordReq method invocation on the |pAppFaultManager interface.

ETSI

61 ETSI ES 201 915-3 V1.5.1 (2005-02)

Parameters
faultStatisticsError : in TpFaultStatisticsError

The fault statistics error.

Raises

TpComonExcept i ons

7.3.3.3 Interface Class IpAppHeartBeatMgmt
Inherits from: Ipinterface.

Thisinterface allows the initialisation of a heartbeat supervision of the client application by the framework.

<<Interface>>

IpAppHeartBeatMgmt

enableAppHeartBeat (interval : in TpInt32, fwinterface : in IpHeartBeatRef) : void
disableAppHeartBeat () : void

changelnterval (interval : in TpInt32) : void

Method
enabl eAppHeart Beat ()

With this method, the framework instructs the client application to begin sending its heartbeat to the specified interface
at the specified interval.

Parameters

interval : in Tplnt32
Thetime interval in milliseconds between the heartbeats.

fwnterface : in | pHeart Beat Ref
This parameter refersto the callback interface the heartbeat is calling.

Method
di sabl eAppHeart Beat ()

Instructs the client application to cease the sending of its heartbeat.

Parameters
No Parameters were identified for this method.

Method
changel nterval ()

Allows the administrative change of the heartbeat interval.

ETSI

62 ETSI ES 201 915-3 V1.5.1 (2005-02)

Parameters
interval : in Tplnt32

Thetime interval in milliseconds between the heartbeats.
7.3.3.4 Interface Class IpAppHeartBeat

Inherits from: Ipinterface.

The Heartbeat Application interface is used by the Framework to send the client application its heartbeat.

<<Interface>>

IpAppHeartBeat

pulse () : void

Method
pul se()

The framework uses this method to send its heartbeat to the client application. The application will be expecting a pulse
at the end of every interval specified in the parameter to the |pHeartBeatM gmt.enableHeartbeat() method. If the pul se()
is not received within the specified interval, then the framework can be deemed to have failed the heartbeat.

Parameters

No Parameters were identified for this method.

7.3.3.5 Interface Class IpHeartBeatMgmt
Inherits from: Ipinterface.

Thisinterface allows the initialisation of a heartbeat supervision of the framework by a client application. If the
IpHeartBeatM gmt interface is implemented by a Framework, as a minimum enableHeartBeat() and disableHeartBest()
shall be implemented.

<<Interface>>

IpHeartBeatMgmt

enableHeartBeat (interval : in TpInt32, applnterface : in IpAppHeartBeatRef) : void
disableHeartBeat () : void

changelnterval (interval : in TpInt32) : void

Method
enabl eHear t Beat ()

With this method, the client application instructs the framework to begin sending its heartbeat to the specified interface
at the specified interval.

ETSI

63

Parameters

interval : in Tplnt32
Thetime interval in milliseconds between the heartbeats.

appl nterface : in | pAppHeart Beat Ref

This parameter refersto the callback interface the heartbeat is calling.

Raises
TpComonExcept i ons

Method
di sabl eHear t Beat ()

Instructs the framework to cease the sending of its heartbeat.

Parameters
No Parameters were identified for this method.

Raises
TpComonExcept i ons

Method
changel nterval ()

Allows the administrative change of the heartbeat interval.

Parameters
interval : in Tplnt32

Thetime interval in milliseconds between the heartbeats.
Raises

TpComonExcept i ons

7.3.3.6 Interface Class IpHeartBeat

Inherits from: Ipinterface.

ETSI ES 201 915-3 V1.5.1 (2005-02)

The Heartbeat Framework interface is used by the client application to send its heartbeat. If a Framework is capable of
invoking |pAppHeartBeatM gmt.enableHeartBeat(), it shall implement IpHeartBeat and the pulse() method.

<<Interface>>

IpHeartBeat

pulse () : void

ETSI

64 ETSI ES 201 915-3 V1.5.1 (2005-02)

Method
pul se()

The client application uses this method to send its heartbeat to the framework. The framework will be expecting a pulse
at the end of every interval specified in the parameter to the | pAppHeartBeatM gmt.enableAppHeartbeat() method. If the
pulse() is not received within the specified interval, then the framework can be deemed to have failed the heartbeat.

Parameters
No Parameters were identified for this method.

Raises
TpComonExcept i ons
7.3.3.7 Interface Class IpAppLoadManager

Inherits from: Iplnterface.

The client application devel oper supplies the load manager application interface to handle requests, reports and other
responses from the framework load manager function. The application supplies the identity of this callback interface at
the time it obtains the framework's load manager interface, by use of the obtainl nterfaceWithCallback() method on the
IpAccess interface.

<<Interface>>

IpAppLoadManager

queryAppLoadReq (timelnterval : in TpTimelnterval) : void
queryLoadRes (loadStatistics : in TpLoadStatisticList) : void
queryLoadErr (loadStatisticsError : in TpLoadStatisticError) : void
loadLevelNotification (loadStatistics : in TpLoadStatisticList) : void
resumeNotification () : void

suspendNotification () : void

<<new>> createlLoadLevelNotification () : void

<<new>> destroyLoadLevelNotification () : void

Method
quer yAppLoadReq()

The framework uses this method to request the application to provide load statistics records for the application.

Parameters

timelnterval : in TpTimelnterval
Specifies the time interval for which load statistic records should be reported.

Method
guer yLoadRes()

The framework uses this method to send load statistic records back to the application that requested the information;
i.e. in response to an invocation of the queryL oadReq method on the |pLoadManager interface.

ETSI

65 ETSI ES 201 915-3 V1.5.1 (2005-02)

Parameters

| cadStatistics : in TpLoadStati sticlLi st
Specifies the framework-supplied load statistics.

Method
guer yLoadErr ()
The framework uses this method to return an error response to the application that requested the framework's load

statistics information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an
invocation of the queryL oadReq method on the |pLoadM anager interface.

Parameters

| oadSt atisticsError : in TpLoadStatisticError
Specifies the error code associated with the failed attempt to retrieve the framework's load statistics.

Method

| oadLevel Notification()

Upon detecting load condition change, (e.g. load level changing from0to 1, 0to 2, 1 to 0, for the SCFs or framework
which have been registered for load level notifications) this method is invoked on the application. In addition this

method shall be invoked on the application in order to provide a notification of current load status, when |oad
notifications are first requested, or resumed after suspension.

Parameters

| cadStatistics : in TpLoadStatisticLi st
Specifies the framework-supplied load statistics, which include the load level change(s).

Method

resunmeNotification()

The framework uses this method to request the application to resume sending it notifications: e.g. after a period of
suspension during which the framework handled a temporary overload condition. Upon receipt of this method the client

application shall inform the framework of the current load using the reportLoad method on the corresponding
I pLoadManager.

Parameters
No Parameters were identified for this method.

Method

suspendNoti fication()

The framework uses this method to request the application to suspend sending it any notifications. e.g. while the
framework handles atemporary overload condition.

Parameters
No Parameters were identified for this method.

Method
<<new>> cr eat eLoadLevel Notification()

The framework uses this method to register to receive notifications of load level changes associated with the
application. Upon receipt of this method the client application shall inform the framework of the current load using the
reportLoad method on the corresponding | pLoadM anager.

ETSI

66 ETSI ES 201 915-3 V1.5.1 (2005-02)

Parameters
No Parameters were identified for this method.

Method
<<new>> destroyLoadLevel Notification()

The framework uses this method to unregister for notifications of load level changes associated with the application.

Parameters
No Parameters were identified for this method.

7.3.3.8 Interface Class IpLoadManager
Inherits from: Iplnterface.

The framework API should alow the load to be distributed across multiple machines and across multiple component
processes, according to aload management policy. The separation of the load management mechanism and load
management policy ensures the flexibility of the load management services. The load management policy identifies
what load management rules the framework should follow for the specific client application. It might specify what
action the framework should take as the congestion level changes. For example, some real-time critical applications will
want to make sure continuous service is maintained, below a given congestion level, at all costs, whereas other services
will be satisfied with disconnecting and trying again later if the congestion level rises. Clearly, the load management
policy isrelated to the QoS level to which the application is subscribed. The framework load management function is
represented by the I pLoadManager interface. Most methods are asynchronous, in that they do not lock athread into
waiting whilst atransaction performs. To handle responses and reports, the client application devel oper must implement
the IpAppLoadManager interface to provide the callback mechanism. The application supplies the identity of this
callback interface at the time it obtains the framework's |load manager interface, by use of the
obtainlnterfaceWithCallback operation on the IpAccessinterface.

If the IpLoadManager interface isimplemented by a Framework, at least one of the methods shall be implemented as a
minimum requirement. If load level notifications are supported, the createloadL evelNotification() and
destroyL oadL evel Natification() methods shall be implemented. If suspendNotification() is implemented, then
resumeNotification() shall be implemented also. If a Framework is capable of invoking the

I pAppLoadManager.queryAppLoadReq() method, then it shall implement queryAppL oadRes() and queryAppL oadErr()
methods in this interface.

<<Interface>>

IpLoadManager

reportLoad (loadLevel : in TpLoadLevel) : void

queryLoadReq (servicelDs : in TpServicelDList, timelnterval : in TpTimelnterval) : void
queryAppLoadRes (loadStatistics : in TpLoadStatisticList) : void

queryAppLoadErr (loadStatisticsError : in TpLoadStatisticError) : void
createLoadLevelNotification (servicelDs : in TpServicelDList) : void
destroyLoadLevelNotification (servicelDs : in TpServicelDList) : void
resumeNotification (servicelDs : in TpServicelDList) : void

suspendNotification (servicelDs : in TpServicelDList) : void

ETSI

67 ETSI ES 201 915-3 V1.5.1 (2005-02)

Method
report Load()

The client application uses this method to report its current load level (0,1, or 2) to the framework: e.g. when the load
level on the application has changed. In addition this method shall be called by the application in order to report current
load status, when load notifications are first requested, or resumed after suspension.

At level 0 load, the application is performing within its load specifications (i.e. it is not congested or overloaded). At
level 1 load, the application is overloaded. At level 2 load, the application is severely overloaded.

Parameters

| oadLevel : in TpLoadLevel
Specifies the application's load level.

Raises
TpComonExcept i ons

Method
guer yLoadReq()

The client application uses this method to request the framework to provide load statistic records for the framework or
for itsinstances of the individual services. If the application does not have access to a service instance with the specified
servicel D, the P_ UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The extralnformation field of
the exception shall contain the corresponding servicel D.

Parameters

servicelDs : in TpServicel DLi st

Specifies the framework or the services for which load statistics records should be reported. If this parameter is not an
empty list, the load statistics records of the client's instances of the specified services are returned, otherwise the load
statistics record of the framework is returned.

timelnterval : in TpTinmelnterval
Specifies the timeinterval for which load statistics records should be reported.

Raises

TpConmonExcept i ons, P_I NVALI D_SERVI CE_I D, P_SERVI CE_NOT_ENABLED,
P_UNAUTHORI SED_PARAMETER VALUE

Method

quer yAppLoadRes()

The client application uses this method to send load statistic records back to the framework that requested the
information; i.e. in response to an invocation of the queryAppL oadReq method on the |pAppL oadM anager interface.
Parameters

| cadStatistics : in TpLoadStati sticLi st
Specifies the application-supplied load statistics.

Raises
TpComonExcept i ons

ETSI

68 ETSI ES 201 915-3 V1.5.1 (2005-02)

Method
quer yAppLoadErr ()

The client application uses this method to return an error response to the framework that requested the application's load
statistics information, when the application is unsuccessful in obtaining any load statistic records; i.e. in response to an
invocation of the queryAppL oadReq method on the |pAppL oadManager interface.

Parameters

| oadStatisticsError : in TpLoadStatisticError
Specifies the error code associated with the failed attempt to retrieve the application's load statistics.

Raises
TpComonExcept i ons

Method
creat eLoadLevel Noti fication()

The client application uses this method to register to receive notifications of load level changes associated with either
the framework or with itsinstances of the individual services used by the application. If the application does not have
access to a service instance with the specified servicel D, the P_UNAUTHORISED _PARAMETER_VALUE exception
shall be thrown. The extralnformation field of the exception shall contain the corresponding servicel D. Upon receipt of
this method the framework shall inform the client application of the current framework or service instance load using
the loadL evel Notification method on the corresponding | pAppLoadManager.

Parameters

servicelDs : in TpServicel DLi st

Specifies the framework or SCFsto be registered for load control. To register for framework load control, the
servicel Ds parameter must be an empty list.

Raises
TpCommonExcepti ons, P_I NVALI D_SERVI CE_I D, P_UNAUTHORI SED PARAMVETER VALUE

Method
destroyLoadLevel Notification()

The client application uses this method to unregister for notifications of load level changes associated with either the
framework or with itsinstances of the individual services used by the application. If the application does not have
access to a service instance with the specified servicel D, the P_UNAUTHORISED _PARAMETER_VALUE exception
shall be thrown. The extralnformation field of the exception shall contain the corresponding servicel D.

Parameters

servicelDs : in TpServicel DLi st

Specifies the framework or the services for which load level changes should no longer be reported. To unregister for
framework load control, the servicel Ds parameter must be an empty list.

Raises
TpCommonExcepti ons, P_I NVALI D_SERVI CE_I D, P_UNAUTHORI SED_PARAMVETER VALUE

ETSI

69 ETSI ES 201 915-3 V1.5.1 (2005-02)

Method

resunmeNoti fication()

The client application uses this method to request the framework to resume sending it load management notifications
associated with either the framework or with its instances of the individual services used by the application; e.g. after a
period of suspension during which the application handled a temporary overload condition. If the application does not
have access to a service instance with the specified servicel D, the P_ UNAUTHORISED PARAMETER VALUE
exception shall be thrown. The extralnformation field of the exception shall contain the corresponding servicel D. Upon
receipt of this method the framework shall inform the client application of the current framework or service instance
load using the loadL evel Notification method on the corresponding IpAppLoadManager.

Parameters

servicelDs : in TpServicel DLi st

Specifies the framework or the services for which the sending of notifications of load level changes by the framework
should be resumed. To resume notifications for the framework, the servicel Ds parameter must be an empty list.

Raises

TpConmonExcept i ons, P_I NVALI D_SERVI CE_I D, P_SERVI CE_NOT_ENABLED,
P_UNAUTHORI SED_PARAMETER VALUE

Method
suspendNoti fication()

The client application uses this method to request the framework to suspend sending it load management notifications
associated with either the framework or with its instances of the individual services used by the application; e.g. while
the application handles atemporary overload condition. If the application does not have access to a service instance
with the specified servicel D, the P UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The
extralnformation field of the exception shall contain the corresponding servicelD.

Parameters

servicelDs : in TpServicel DLi st

Specifies the framework or the services for which the sending of notifications by the framework should be suspended.
To suspend notifications for the framework, the servicel Ds parameter must be an empty list.

Raises

TpConmonExcept i ons, P_I NVALI D_SERVI CE_I D, P_SERVI CE_NOT_ENABLED,
P_UNAUTHORI SED_PARAMETER VALUE

7.3.3.9 Interface Class IpOAM

Inherits from: Ipinterface.

The OAM interface is used to query the system date and time. The application and the framework can synchronise the
date and time to a certain extent. Accurate time synchronisation is outside the scope of the OSA APIs. Thisinterface
and the systemDateTimeQuery() method are optional.

<<Interface>>
IpPOAM

systemDateTimeQuery (clientDateAndTime : in TpDateAndTime) : TpDateAndTime

ETSI

70 ETSI ES 201 915-3 V1.5.1 (2005-02)

Method
syst enDat eTi meQuer y()

This method is used to query the system date and time. The client application passesin its own date and time to the
framework. The framework responds with the system date and time.

Returns <systemDateAndTime> : Thisis the system date and time of the framework.

Parameters

clientDat eAndTinme : in TpDat eAndTi me

Thisisthe date and time of the client (application). The error code P_INVALID_DATE_TIME_FORMAT isreturned if
the format of the parameter isinvalid.

Returns

TpDat eAndTi ne

Raises

TpComonExcepti ons, P_I NVALI D Tl ME AND DATE FORVAT
7.3.3.10 Interface Class IpAppOAM

Inherits from: Ipinterface.

The OAM client application interface is used by the Framework to query the application date and time, for
synchronisation purposes. This method isinvoked by the Framework to interchange the framework and client
application date and time.

<<Interface>>
IpPAppOAM

systemDateTimeQuery (systemDateAndTime : in TpDateAndTime) : TpDateAndTime

Method
syst enDat eTi nreQuer y()

This method is used to query the system date and time. The framework passesin its own date and time to the
application. The application responds with its own date and time.

Returns <clientDateAndTime> : Thisis the date and time of the client (application).

Parameters

systenDat eAndTi e : in TpDat eAndTi ne
Thisisthe system date and time of the framework.

Returns
TpDat eAndTi ne

ETSI

71 ETSI ES 201 915-3 V1.5.1 (2005-02)

7.3.4 Event Notification Interface Classes

7.3.4.1 Interface Class IpAppEventNotification
Inherits from: Iplnterface.

Thisinterface is used by the services to inform the application of a generic service-related event. The Event Notification
Framework will invoke methods on the Event Notification Application Interface that is specified when the Event
Notification interface is obtai ned.

<<Interface>>

IpAppEventNotification

reportNotification (eventinfo : in TpFwEventinfo, assignmentID : in TpAssignmentID) : void

notificationTerminated () : void

Method
reportNotification()

This method notifies the application of the arrival of a generic event.

Parameters

eventinfo : in TpFwEventlInfo
Specifies specific data associated with this event.

assignmentI D : in TpAssignnentlD

Specifies the assignment id which was returned by the framework during the createNotification() method. The
application can use assignment id to associate events with event specific criteria and to act accordingly.

Method
notificationTerm nated()

This method indicates to the application that all generic event notifications have been terminated (for example, due to
faults detected).

Parameters

No Parameters were identified for this method.

7.3.4.2 Interface Class IpEventNotification
Inherits from: Ipinterface.

The event notification mechanism is used to notify the application of generic service related events that have occurred.
If Event Notifications are supported by a Framework, thisinterface and the createNotification() and
destroyNotification() methods shall be implemented.

ETSI

72 ETSI ES 201 915-3 V1.5.1 (2005-02)

<<Interface>>

IpEventNotification

createNotification (eventCriteria : in TpFwEventCriteria) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

Method
createNotification()

This method is used to enable generic notifications so that events can be sent to the application.

Returns <assignmentlI D> : Specifies the ID assigned by the framework for this newly installed notification.

Parameters

eventCriteria : in TpFwEventCriteria
Specifies the event specific criteria used by the application to define the event required.

Returns

TpAssi gnnment | D

Raises

TpComonExcepti ons, P_ACCESS DEN ED, P_I NVALI D CRI TERI A,
P_I NVALI D_EVENT_TYPE

Method
destroyNotification()

This method is used by the application to delete generic notifications from the framework.

Parameters

assignment|I D : in TpAssignnent| D

Specifies the assignment 1D given by the framework when the previous createNotification() was called. If the
assignment ID does not correspond to one of the valid assignment I Ds, the framework will return the error code
P INVALID_ASSIGNMENTID.

Raises
TpCommonExcepti ons, P_ACCESS DENI ED, P_I NVALI D_ASSI GNVENT | D

7.4 State Transition Diagrams

This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the
gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can
be invoked by the application are shown. Methods not shown for a specific state are not relevant for that state and will
return an exception. Apart from the methods that can be invoked by the application also eventsinternal to the gateway
or related to network events are shown together with the resulting event or action performed by the gateway. These
internal events are shown between quotation marks.

ETSI

73 ETSI ES 201 915-3 V1.5.1 (2005-02)

7.4.1 Service Discovery State Transition Diagrams

7.4.1.1 State Transition Diagrams for IpServiceDiscovery

obtainFrameworkInterfac e(disc overyService)
obtaininterface WithCallback(dis coverySenvice)

listSericeTypes
describeSeniceType
listSubscrbedServices

discoverSenice

Active

IpAccess.endAccess

°

Figure 10: State Transition Diagram for IpServiceDiscovery

7.4.1.1.1 Active State

When the application reguests Service Discovery by invoking the obtainl nterface or the obtainlnterfaceWithCallback
methods on the IpAccess interface, an instance of the IpServiceDiscovery will be created. Next the application is
alowed to request alist of the provided SCFs and to obtain a reference to interfaces of SCFs.

7.4.2 Service Agreement Management State Transition Diagrams

There are no State Transition Diagrams defined for Service Agreement Management.

ETSI

74 ETSI ES 201 915-3 V1.5.1 (2005-02)

7.4.3 Integrity Management State Transition Diagrams

7.4.3.1 State Transition Diagrams for IpLoadManager

reportLoad
"load change" NoadLevelNotification querySvcLoadRes|[load statistics requested by LoadManager]
querySvcLoadErr[load statistics requested by LoadManager]

createLoadLevel Notificaton M oadLevelNotification (Active } queryLoadReq

destroyLoadLevelNotification

IpAccess\obtainl

IpAccess gbtaininterfaceWithCallback

suspendNotification

resumeNotification [all notifications suspended]

NoadLevelNotification

reportLoad
querySvcLoadRes|[load statistics requested by LoadManager]
querySvcLoadErr| load statistics requested by LoadManager]

Notification queryLoadReq
Suspended

destroyLoadLewelN otification

All States

IpAccesis.endAccess

-
L)

Figure 11: State Transition Diagram for IpLoadManager

7.4.3.1.1 Idle State

In this state the application has obtained an interface reference of the LoadManager from the IpAccess interface.

7.4.3.1.2 Notification Suspended State

Dueto e.g. atemporary load condition, the application has requested the LoadManager to suspend sending the load
level notification information.

7.4.3.1.3 Active State

In this state the application hasindicated its interest in notifications by performing a createl oadL evel Notification()
invocation on the IpLoadManager. The load manager can now request the application to supply load statistics
information (by invoking queryAppL oadReq()). Furthermore the LoadManager can request the application to control its
load (by invoking loadLevelNatification(), resumeNotification() or suspendNotification() on the application side of
interface). In case the application detects a change in load level, it reports this to the LoadManager by calling the
method reportL oad().

ETSI

75 ETSI ES 201 915-3 V1.5.1 (2005-02)

7.4.3.2 State Transition Diagrams for LoadManagerinternal

A necessary action can
be suspending the load
notifictions to the
application or enabling
load control mechanisms
on certain senices.

registerLoadController I

1

reportLoad[loadlevel 1= 0] |

[Normal load @ Application Overload

reportLoad[loadlevel = 0]

"internal logd change detection”

"internal load change th non owerloaded" internal load change detection”

"internal load change/to non qverload"

reportLoad[loadlewvel = 0]

Internal overload
Internal and Application Oerload

\\ reportLoad[loadlevel = 0]
\
\

A necessary action can be AN
suspending the load

notifictions from the

application by invoking

sus pendNotification or

enabling load control
mechanisms onthe

application by invoking
enableLoadControl.

ALL
STATES

unregisterLoadControler

Figure 12: State Transition Diagram for LoadManagerinternal

7.4.3.2.1 Normal load State

In this state the none of the entities defined in the load balancing policy between the application and the
framework/SCFs is overloaded.

7.4.3.2.2 Application Overload State

In this state the application has indicated it is overloaded. When entering this state the load policy is consulted and the
appropriate actions are taken by the LoadM anager.

7.4.3.2.3 Internal overload State

In this state the Framework or one or more of the SCFs within the specific load policy is overloaded. When entering this
state the load policy is consulted and the appropriate actions are taken by the LoadManager.

7.4.3.2.4 Internal and Application Overload State

In this state the application is overloaded as well as the Framework or one or more of the SCFs within the specific load
policy. When entering this state the load policy is consulted and the appropriate actions are taken by the LoadManager.

ETSI

76 ETSI ES 201 915-3 V1.5.1 (2005-02)

7.4.3.3 State Transition Diagrams for IpPOAM

IpAccess.obtaininterface
IpAccess. obtaininterfaceWithCallback

/ \\ systemDateTimeQuery
R

‘Active

IpAccess.endAccess

Figure 13: State Transition Diagram for IDOAM

7.4.3.3.1 Active State

In this state the application has obtained a reference to the IpOAM interface. The application is now able to request the
date/time of the Framework.

ETSI

77 ETSI ES 201 915-3 V1.5.1 (2005-02)

7.4.3.4 State Transition Diagrams for IpFaultManager

IpAccess.obtaininterfaceWithCallback("FaultManagement") /
add application to fault management

'service fault' ~svcUnavailableind to all applications using the service

. srvUnavailablelnd / test the service, inform service that application is not using it
genFaultStatsRecordReq “app.genFaultStatsRecordRes
service fault AsrvUnavailablelnd to all applications using the service (" Framework)
‘ no fault detected

Active

activityTestReq[
emtpy dring]

- — Framework Activity Test
Service Activity Test

IpAccess.endAccess entry/ teg adivity of framework

entry/ test activity of service exit/ NpAppFaultManager.adtivityT egRes

exit/ "lpAppFaultManager.activityTestRes

IpAccess.endAccess /
Abort pendingte

IpAccess.endAcgess / Abort
pending tegt request
fault detected in fw

IpAccess.endAccess/ remove
application from load management

N b i
N @ fault detected in fw

Framework Faulty

entry/ ~MwFaultReportind to all applications with callback
exit/ MwFaultRecoveryind to all applications with callback

Figure 14: State Transition Diagram for IpFaultManager

7.4.3.4.1 Framework Active State

Thisisthe normal state of the framework, which is fully functional and able to handle requests from both applications
and services capability features.

7.4.3.4.2 Framework Faulty State

In this state, the framework has detected an internal problem with itself such that application and services capability
features cannot communicate with it anymore; attempts to invoke any methods that belong to any SCFs of the
framework return an error. If the framework ever recovers, applications with fault management callbacks will be
notified via a fwFaultRecoverylnd message.

7.4.3.4.3 Framework Activity Test State

In this state, the framework is performing self-diagnostic test. If a problemis diagnosed, all applications with fault
management callbacks are notified through a fwFaultReportind message.

7.4.3.4.4 Service Activity Test State

In this state, the framework is performing atest on one service capability feature. If the SCF is faulty, applications with
fault management callbacks are notified accordingly through a svcUnavailablelnd message.

ETSI

7.4.4

78 ETSI ES 201 915-3 V1.5.1 (2005-02)

Event Notification State Transition Diagrams

7.4.4.1 State Transition Diagrams for IpEventNotification

IpAccess.obtaininterface
IpAccess.obtaininterfaceWithCallback

createNotification

destroyNotification

*"Nofification
Active

destroyNotification[no more notificationg installed]

IpAccess.endAccess

IpAccegs.endAccess

Figure 15: State Transition Diagram for IpEventNotification

8

Framework-to-Enterprise Operator API

In some cases, the client applications (or the enterprise operators on behalf of these applications) must explicitly
subscribe to the services before the client applications can access those services. To accomplish this, they use the
service subscription function of the Framework for subscribing or un-subscribing to services. Subscription represents a
contractual agreement between the enterprise operator and the Framework operator. In general, an entity acting in the
role of a customer/subscriber subscribes to the services provided by the Framework on behalf of the users/consumers of
the service.

In this model, the enterprise operators act in the role of subscriber/customer of services and the client applications act in
the role of users or consumers of services. The framework itself actsin therole of retailer of services. The following
examplesillustrate these roles:

Service (to be subscribed): Call Centre Service, Mobility Service, etc.

Framework Operator: AT&T, BT, etc.

Enterprise Operator: A Financial institution such as a Bank or Insurance Company, or possibly an Application
Service Provider (Such an enterprise has a conformant Subscription Application inits domain which "talks' to
its peer in the Framework).

User/Consumer: Client Applications (or their associated users) in the enterprise domain that use the Call
Centre Service or the Mobility Service.

ETSI

79 ETSI ES 201 915-3 V1.5.1 (2005-02)

The Service Subscription interface is used by an enterprise operator to subscribe to new services and is required before
aclient application of the enterprise can use the new service. In general, the service subscription is performed after an
off-line negotiation of a set of services and the associated price between the framework operator and the enterprise
operator. The service subscription is performed online by the enterprise operator in the frame of an existing off-line
negotiated contract between the framework operator and the enterprise. The on-line service subscription function is
used for subscriber, client application, and service contract management. The following clause describes a service
subscription model.

Subscription Business Model

The following figure shows the subscription business model with respect to the business roles involved in the service
subscription process. The subscription process involves the enterprise operator (which acts in the role of service
subscriber) and the Framework (which acts in the role of provider or retailer of a service).

Services may be provided to the Enterprise Operator directly by a service provider or indirectly through aretailer, such
as the Framework. An enterprise operator represents an organisation or a company which will be hosting client
applications. Before a service can be used by the client applications in the enterprise operator's domain, subscription to
the service must take place. An enterprise operator subscribes to a service by (electronically) signing a contract about
the service usage with the Framework, using an on-line subscription interface provided by the Framework. The
Framework provides the service according to the service contract. The Enterprise Operator authorises the client
application in his’/her domain for the service usage. Finally a subscribed service can be used by a particular client
application.

Enterprise Operator (In the role
of Service Subscriber)

Signs contract about service usage

Framework (In the role
of Service Retailer)

Authorises

Uses service

Client Application (In the role of
User or Consumer of Services)

Figure 16: Subscription Business Model

The interfaces between an enterprise operator and the client applications in its domain are outside the scope of this API.

The enterprise operator provides to the Framework the data about the client applications in its domain and the type of
services each of them should be allowed access to, using the subscription interfaces offered by the Framework. The
Framework provides (to the enterprise operator) the subscription interfaces for subscriber, client application and service
contract management. This gives the enterprise operators the capability to dynamically create, modify and delete, in the
framework domain, the client applications and service contracts belonging to its domain.

ETSI

80 ETSI ES 201 915-3 V1.5.1 (2005-02)

The enterprise operator is represented in the Framework domain as an EntOp object. The EntOp object isidentified by a
unique ID and contains the enterprise operator properties. The EntOp ID is aunique identifier of an enterprise operator
in the Framework domain. It is created by the Framework Operator during the pre-subscription off-line negotiation of
services (and their price, etc.) phase. The enterprise operator properties contain information such as the name and
address of the enterprise operator (individua or organisation), service charge payment information, etc. The enterprise
operator domain has one or more client applications associated with it. The enterprise operator may group a sub-set of
client applicationsin its domain in order to assign the same set of service features to the group. Such agroup is called a
Subscription Assignment Group (SAG). An enterprise operator may have multiple SAGsinits domain. A SAG relates a
client application to the features of a service. A client application may be a member of multiple SAGs, one for each
service subscribed for the client application by its enterprise operator.

The enterprise operator subscribes to a number of services by creating a service contract with the Framework for each
service. Each service subscription is described by a service contract which defines the conditions for the service
provision. A service contract restricts the usage of a service at subscription time. A service contract contains one or
more Service Profiles, one for each SAG in the enterprise operator domain. A Service Profile contains the service
parameters which further restrict the corresponding parameters in the service contract in order to adapt the service to the
Sag's needs. A service profile istherefore arestriction of the service contract in order to provide restricted service
featuresto a SAG. It isidentified by aunique ID (within the framework domain) and contains a set of service
properties, which defines the restricted usage of service allowed for that SAG (and its client applications).

Client Applications and SAGsin the Enterprise Domain

Service Contractsfor Individual Services
Subscribed by Enter prise Operato

Service Profilesin a Service Contract

Figure 17: Relationship between Client Applications/SAG, Service Contract and Service Profiles

The client application is related to the enterprise operator for the usage of a service. The client applicationis
represented in the Framework domain as a clientApp object. The clientApp object is identified by aunique ID and
contains a set of client application properties describing the client application relevant information for subscription.
Each client application is part of at least one SAG, which can contain one or more client applications. Each SAG has
one service profile per service that defines the preferences of the SAG members for the usage of that service. A SAG
can have multiple Service Profiles associated with it, one for each service subscribed by the enterprise operator on
behalf of the SAG members. The figure above shows the relationship between client application objects, SAGs, service
contracts and service profiles.

ETSI

81 ETSI ES 201 915-3 V1.5.1 (2005-02)

An enterprise operator may not want to grant all client applicationsin its domain the same service characteristics and
usage permissions. In this case the enterprise operator can group them in a set of SAGs and assign a particular Service
Profile to each group. A client application can be assigned to more than one service profile for a given service, aslong
as the dates within those service profiles do not overlap. The figure below illustrates this. Here the client is assigned to
two SAGs. One of these SAGs uses ServiceProfilel to control accessto service 1. The other uses ServiceProfile3 to
control accessto service 1. If the datesin the two service profiles overlap, asisthe case here, then it cannot be
determined when the client signs the service agreement which service profile should be used. For example, if the client
application signed the service agreement on February the 8, then it could not be determined which of service profile 1
or service profile 3 would apply. If the dates are not overlapping then there is not a problem with identifying which of

the service profilesto use. A SAG may have multiple service profiles, one for each subscribed service, associated with
it.

SAG2

Client Client
App.1 App.3

SAG1

Client Client
App.1 App.2

A 4
viceProfil
Start: 08, Feb
End: 30, Feb
ServicelD: 1

Start: 02, Feb
End: 10, Feb
ServicelD: 1

Start: 02, Feb
End: 10, Feb
ServicelD: 2

Figure 18: Overlapping date fields in service profiles

Enterprise Enterprise
Operator 1 . Operator 2

Enterprise
Operator 3

E e

Figure 19: Multiple Enterprise Operators

ETSI

82 ETSI ES 201 915-3 V1.5.1 (2005-02)

The figure above illustrates that the framework can offer its services to applications in the domains of many enterprise
operators. An enterprise operator could be an Application Service Provider, a corporation, or even the network operator
(if the services offered through the framework belong to a single network — it is even possible that the network operator
will be the only enterprise operator). It is possible, however, that each service registered with the framework could
actually be in adifferent network. The client application I Ds have to be unique within the framework. The framework
operator could decide to allocate a block of application IDs to each enterprise operator, or even negotiate with the
enterprise operators to provide a set of client application IDs that are meaningful to them.

Service subscription and subscription management requires a careful delineation of subscription-related functions. The
service subscription interfaces are classified in the following categories:

. Enterprise Operator Account Management.
. Enterprise Operator Account Query.

. Service Contract Management.

. Service Contract Query.

. Service Profile Management.

. Service Profile Query.

. Client Application Management.

. Client Application Query.

Only the enterprise operator, which is registered and later on authenticated, is allowed to use these interfaces.

8.1 Sequence Diagrams

8.1.1 Service Subscription Sequence Diagrams

8.1.1.1 Service Discovery and Subscription Scenario

This scenario is shown in the sequence diagram below. Services are subscribed to by the enterprise operator on behal f
of the client applications which then use these services. Before an enterprise operator can subscribe to a service, it must
have knowledge of the existence of that service in the framework. The enterprise operator discovers the set of services
provided by the framework using the |pServiceDiscovery interface. Initially, the enterprise operator obtains alist of
service types supported by the framework by invoking listServiceTypes() on IpServiceDiscovery interface. Then it
obtains the description of a service type using describeServiceType() to find out the set of properties applicable to a
particular service type. Subsequently it invokes discoverService() to discover the services of a given type which
supports the desired set of property values. The discoverService() method returns alist of "servicelDs' and their
associated property values. The service discovery phase is followed by the service subscription phase. The enterprise
operator uses the | pServiceContractM anagement and | pServiceProfileM anagement interfaces to perform service
subscription.

The enterprise operator invokes the createServiceContract() on | pServiceContractM anagement interface to subscribe to
a service. Depending upon the Framework Operator's policy, the services may be subscribed by identifying them by
their "servicel D" or by their service type. In the former case only the specific service can be used by the enterprise
operator and its client applications. In the latter case, all registered services of the given type can be used. The enterprise
operator may create multiple service profiles (each of which are arestriction of the service contract) by invoking
createServiceProfile() on IpServiceProfileManagement interface and assign each service profile to a different
Subscription Assignment Group (SAG), using assign() method. This allows an enterprise operator to assign different
service privileges to different client application groups. During the life time of a service contract, the enterprise operator
may perform service contract and service profile management functions, such as modifying the service profiles
(modifyServiceProfile()) and service contract (modifyServiceContract()), re-assigning the service profilesto a SAG
(assign()), obtaining information about a service profile (getServiceProfile()), deleting service profiles
(deleteServiceProfilg()), etc. These methods may be interleaved in any logical order. The enterprise operator or the
client applications, can at any time obtain alist of currently subscribed services by invoking listSubscribedServices()
method on the IpServiceDiscovery interface. This method returns alist of servicelDs of the set of subscribed services.

ETSI

83 ETSI ES 201 915-3 V1.5.1 (2005-02)

The service contract ceases to exist after the specified end date. The deleteServiceContract del etes the service contract
object held in the framework. It is up to the discretion of the Framework operator to alow the enterprise operator to
delete a service contract before its specified end date.

After the service subscription is performed the client applications can access and use the set of subscribed servicesin
addition to the set of freely available services. In order to start a service, the interface reference of the serviceis
required. The discoverService() method or the listSubscribedServices() method, described above, return the

"servicel D". The interface reference of the service is obtained in the service access phase. The service access phase
begins with the client applications selecting the service, viathe selectService() method, and signing a service
agreement, via the signServiceAgreement() method. The selectService() method is used by the client application to
identify the servicethat it wantsto initiate. The input to the selectService() isthe "servicel D" returned by the
discoverService() or the listSubscribedServices() and the output is a "serviceToken". The serviceToken is free format
text token returned by the framework, which can be used as part of a service agreement. If the service is not subscribed
by the enterprise operator, then a " service not subscribed" exception is raised. The signServiceAgreement() isinvoked
by the client application on the framework to sign an agreement on the service. The input to this method is the service
token returned by the selectService() method. The sign service agreement is used as a way of non-repudiation of the
intention to use the service by the client application. The successful completion of the signServiceAgreement() returns
the interface reference to the service (or to its service manager). The client application can then use thisinterface
reference to start the service.

ETSI

84 ETSI ES 201 915-3 V1.5.1 (2005-02)

L L : IpAccess : IpSenviceDiscovery : IpServiceCi it : IpServiceCont act nfaQ Ler : IpSenviceProfileManag ement : | pServic eProfi d noQuery
EnterpriseOperator | | Clier i
T T T T T

| Auth. phase 1 | |
| followed by | |
: 1 onamlri‘mace() : :
H | U |
| | |
| ‘ 2:listSenviceTypes() |
H | L
| I
\ |
L

\
: # descrlbeServlceT
H | \
! ! Find desired ™
! ! ! Senices
| \ I

4: dis coer Service ()
I
|
|
|
|
|
|
|
|
|
|
|
T
|
|
|

UI

Subscribe 1N
the Services
6: cregteServiceContract()

|
|
5 onamlr\‘talace(
|
|
|
|
|
|
|
|
T
|
|
\

- - - - -

beeY Y Y]

|
| T create more
| | SPsinSC
| 7: createServiceProfile()
T T
| |
| |
[8: assign() [
I ;
U | | | | |
| | | | |
: : : : 9: modifyServiceProfile(:
			10: assign()	
T T T T T				
! ! ! ! 11: describeServiceProfile() !				
12: deleteSenvicePrdie()				
T				
13 mé‘jif)ser\dce«:ontract()

|
14: listSubscribedServices()

-

185: listSubs cribedSe vices()

I R 2 e |

16: describeSgrviceContract()
|

|
|
|
|
|
|
|
17: cre‘?leSerm’ceComrac!()

gl

R 2R

- - --C—F

|
|
/I_\‘
l
|
|
|
|
|
|
|
|
|
|
|
l
/I_\‘
l
|
|

8.1.1.2 Enterprise Operator and Client Application Subscription Management Sequence
Diagram

The first step in the service subscription process is the creation of an account for the enterprise operator. The creation of
enterprise operator accounts is performed by the Framework Operator viainterfaces outside of the present document.
When the enterprise operator's account has been created they are allowed to use the framework. The enterprise operator
(acting in the role of service subscriber) can then create accounts within the framework for all of the client applications
inits domain. The enterprise operator obtains the reference to the | pEntOpManagement interface by invoking
obtainlnterface() on the IpAccessinterface. The enterprise operator at any time may inspect its subscription account by
invoking describeEntOpAccount on the I pEntOpAccountl nfoQuery interface and modify the subscriber-related
information contained in its subscription account by invoking modifyEntOpAccount() on |pEntOpA ccountM anagement
interface.

ETSI

85 ETSI ES 201 915-3 V1.5.1 (2005-02)

An enterprise operator usually has many client applicationsin its enterprise domain. These client applications must be
registered within the framework so that the set of services subscribed to by the enterprise operator (through
createServiceContract()) can be assigned to these client applications by associating a service profile (arestriction of
service contracts) with a group of client applications, called a Subscription Assignment Group (SAG). In order to create
an account for individual client applications, the enterprise operator invokes createClientApp() on

I pClientAppManagement interface. The enterprise operator groups arelated set of client applicationsin a SAG so that
the same service profile can be assigned to them. The enterprise operator may create an empty SAG by invoking
createSAG() on IpClientAppManagement interface. The enterprise operator adds client applications to the newly
created SAG by invoking addSAGMembers() on IpClientAppManagement interface. The enterprise operator also
performs other client application/SAG management functions such as modifyClientApp(), deleteClientApp(),
modifySAG(), listSAGS(), lissSAGMembers(), addSAGmembers(), removeSAGmembers()etc. These methods can be
interleaved in any logical order. Finaly, the enterprise operator (or the framework operator) can delete its subscription
account by invoking deleteEntOpAccount() on |pEntOpAccountManagement interface.

ETSI

86 ETSI ES 201 915-3 V1.5.1 (2005-02)

‘ Enterprise H Framework H : IpAccess H

‘ IpEntOpAccountinfoQuery ‘ IpClientAppManagem ent

Operator Operator IDEntOpAccountManagement IpCIiemA;:GInM
T T T T T
| | | |
| | | |

The Enterprise Operator | |
account has already been created. | |
Auth. Phase followed by: ! !
| |
| |
1 obtainl‘pterface() : : :
T | |
/U		
2: describeEntOpAccount()		
, , .

| |

| |

'3: modifyE mOpAc‘Eoum()

4: obtainipterface()

T

|
5: createClientApp()
|

Create more client
apps

6: create$AG()

7: addSAGM‘embers()

8: modifycll‘entApp()

1
T

9: modifySAG()

|
10: deleteClientApp()
t

|
11: removeSA(:.‘aMembers()

|
12: modifySAG()

|
[
|
l
n
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
13: obtain|nterface()

14: litSAGs()

15: lissSAGMembers()

e e e e e e e e

g
1

———— - - - -t - -t - - -

T

T
|
|
|
|
T
|
|
|
|
i
|
|
hG: deIeteEntOpAq‘coum()
T
|
|
|
|
|
|
|

ETSI

8.2

Class Diagrams

87

<<Interface>>
IpClientApplinfoQuery

(from Framework interfaces)

[B&describeClientApp()

i stClientApps ()
[Bdescribe SAG()

[®istsAGs()
[stSAGMembers ()
[stClientA ppM embership()

ETSI ES 201 915-3 V1.5.1 (2005-02)

<<Interface>>
IpClientAppManagement

(from Framework interfaces)

[BEcreateClientApp()
[®modify ClientApp()
[BdeleteClientApp()
[BcreateSAG()
[EmodifySAG()
[BdeleteSAG()
[®addsAGMembers()
[®removeSAGMembers()

<<Interface>>
IpEntOpAccountinfoQuery

(from Framework interfaces)

<<Interface>>
IpEntOpAccountManagement
(from Framework interfaces)

[¥describeEnt OpAc count()

[®modifyEntOpAccount()
[BdeleteEntOpAccount()

<<Interface>>
IpSenviceProfileinfoQuery
(from Framework interface 9

[BistSeniceProfiles()
[BdescribeServiceProfile()
[MistAssignedMembers ()

<<Interface>>
IpSeniceProfileManagement
(from Framework interfaces)

[FEcreateSeniceProfile()
¥ modifySeniceProfile()
[¥deleteSeniceProfile()
[FEassign()
[¥deassign()

<<lInterface>>
IpSenviceContractinfoQuery
(from Framework interfaces)

[¥desciibeServiceContract()
[MistseniceContracts ()
[HistseniceProfiles()

<<Interface>>
IpSeniceContractManagement
(from Fram ework interfaces)

[BcreateSeniceContract()
[®modify SeniceContract()
[MdeleteSeniceContract()

Figure 20: Service Subscription Package Overview

ETSI

88 ETSI ES 201 915-3 V1.5.1 (2005-02)

<<Interface>> <<Interface>>
IpClientAccess IpClientAPILewvelAuthentication
(fom Clientinte faces) (from Client interfaces)
@terminateAccess() Sauthenticate()
BabortAuthentication()
3 FauthenticationSucceeded()
1)
<<uses>>

|
l
<<uses>>
|
|
|
|

<<Interface>> !
IpAccess <<Interface>>

IPAP ILe\el Authentication

(from Framework interfaces)

<<Interface>>
Ipinitial
(from Framework interfaces)

(from Framework interfaces)

Fobtaininterface()

L o SobtaininterfaceWithCallback() SselectEncryptionMethod()
WinitiateAuthentication() SendAccess() Bauthenticate()
Slistinterfaces() SabortAuthentication()
Wreleaselnterface() FauthenticationSucceeded()

|

\
\ /
\/

<<Interface>>
IpAuthentication

(from Framework interfaces)

FrequestAccess()

Figure 21: Trust and Security Management Package Overview

8.3 Interface Classes

8.3.1 Service Subscription Interface Classes

8.3.1.1 Interface Class IpClientAppManagement
Inherits from: Iplnterface.

If the enterprise operator wants the client applicationsin its domain to access the subscribed services in name of the
enterprise, then (s)he has to register these client applications in the Framework domain. For this the enterprise operator
must use the client application management interface, to which (s)he can subscribe as a privileged user. The client
application management interface isintended for cases where an organisation wants to allow several client applications
to register with a Framework as service consumers. It allows enterprise operators to dynamically add new client
applications and SAGs, delete them and to modify subscription related information concerning the client applications
and the SAGs. Client applications use the subscribed servicesin the enterprise operator's name. The main task of client
application management is to: register, modify and delete client applications (Client Application Management), manage
groups of client applications, called Subscription Assignment Groups (SAG Management).

ETSI

89 ETSI ES 201 915-3 V1.5.1 (2005-02)

<<Interface>>

IpClientAppManagement

createClientApp (clientAppDescription : in TpClientAppDescription) : void
modifyClientApp (clientAppDescription : in TpClientAppDescription) : void
deleteClientApp (clientAppID : in TpClientAppID) : void

createSAG (sag : in TpSag, clientAppIDs : in TpClientAppIDList) : void

modifySAG (sag : in TpSag) : void

deleteSAG (sagID : in TpSagID) : void

addSAGMembers (sagID : in TpSagID, clientAppIDs : in TpClientAppIDList) : void
removeSAGMembers (sagID : in TpSaglID, clientApplIDList : in TpClientAppIDList) : void

Method
created i ent App()

A client application is represented in the Framework domain as a " clientApp object". This method creates a new
clientApp object associated with the enterprise operator object. Each clientApp object has a clientApp ID and other
subscription related client application's properties stored in it.

Parameters
client AppDescription : in TpdientAppDescription

The "clientAppDescription” parameter contains the clientApp ID that isto be associated with the newly created
clientApp object and the subscription-related "client application properties'. The clientApp ID must be aunique ID
across framework, if the ID already exists, an exception "P_INVALID_CLIENT_APP_ID" would be raised. The client
application properties are alist of name/value pairs. The client application properties are an item for bi-lateral
agreement between the enterprise operator and the framework operator.

Raises

TpConmonExcept i ons, P_ACCESS _DENI ED, P_I NVALI D CLI ENT_APP_I D
Method

nodi fyC i ent App()

Modify the information contained in an existing clientApp object associated with the enterprise operator. An exception
"P_TASK_REFUSED" would be raised if a non-associated enterprise operator invokes this method.

Parameters
client AppDescription : in TpdientAppDescription

The "clientAppDescription” parameter contains the modified client application information. If the clientApp ID does
not exist, an exception "P_INVALID_CLIENT_APP_ID" would be raised.

Raises
TpCommonExcepti ons, P_ACCESS DENI ED, P_I NVALI D CLI ENT_APP_I D

ETSI

90 ETSI ES 201 915-3 V1.5.1 (2005-02)

Method
del et ed i ent App()

Delete the specified client application associated with the enterprise operator. If the client application currently has an
access session with the framework then this will be terminated, along with any service instances it may have created.
An exception of "P_TASK_REFUSED" will beraised if a non-associated enterprise operator invokes this method.

Parameters
clientAppl D : in TpdientApplD

The"clientAppl D" parameter identifies the client application that is to be deleted. If the clientAppl D does not exist, a
"P_INVALID_CLIENT_APP_ID" exception will be raised.

Raises
TpConmmonExcepti ons, P_ACCESS DENI ED, P_| NVALI D CLI ENT_APP | D

Method
creat eSAH))

Create a new SAG associated with the enterprise operator. The SAG object isidentified by a SAG - ID and contains
SAG - specific description.

Parameters

sag : in TpSag

The"sag" parameter contains the SAG-ID and SAG-specific description. ThissaglD is particular to the SAG, and must
be unique across framework. If the saglD supplied already exists, an exception of type"P_INVALID_SAG_ID" would
be raised.

clientApplDs : in Tpdient Appl DLi st

The "clientApplDs" parameter contains the list of client application IDs that are to be associated with the newly created
SAG.

Raises
TpCommonExcepti ons, P_ACCESS DENI ED, P_I NVALI D _CLI ENT_APP_I D,
P_INVALI D SAG I D

Method
nodi f ySAFH)

Modify the description of an existing SAG associated with the enterprise operator. An exception of
"P_TASK_REFUSED" would be raised if a non-associated enterprise operator invokes this method.

Parameters

sag : in TpSag

The"sag" parameter contains the modified SAG-specific description. If the SAG ID does not exist, an exception
"P_INVALID_SAG_ID" would be raised.

Raises
TpCommonExcepti ons, P_ACCESS DENIED, P_INVALID SAG ID

Method
del et eSAY)

Delete an existing SAG. Only the enterprise operator associated with the SAG is allowed to delete it, an exception
"P_TASK_REFUSED" would be raised if a non-associated enterprise operator invokes this method.

ETSI

91 ETSI ES 201 915-3 V1.5.1 (2005-02)

Parameters
saglD : in TpSaglD

The"saglD" parameter identifies the SAG that isto be deleted. If the SAG ID does not exist, an exception
"P_INVALID_SAG_ID" israised.

Raises
TpComonExcepti ons, P_ACCESS DENI ED, P_INVALID SAG ID

Method
addSAGvenber s()
Add the specified client applications to the specified SAG associated with the enterprise operator. Only the enterprise

operator associated with the SAG is allowed to assign membersto it, an exception "P_TASK_REFUSED" would be
raised if anon-associated enterprise operator invokes this method.

Parameters
saglD : in TpSaglD

The"saglD" parameter identifies the SAG object to which the client applications are to be added. If the SAG ID does
not exist, an exception "P_INVALID_SAG_ID" would be raised.

clientApplDs : in Tpdient Appl DLi st

The"clientApplDs" parameter contains the list of the clientApp IDs that are to be added to the specified SAG. The
clientApp objects are first created using the createClientApp() method. If one or all of the client application IDsin the
list does not exist, an exception "P_INVALID_CLIENT_APP_ID" would be raised.

Raises

TpConmonExcept i ons, P_ACCESS DENI ED, P_| NVALI D _CLI ENT_APP_I D,
P I NVALI D_SAG I D

Method
r enoveSAGvenber s()

Delete specified client applications from the specified SAG object of the enterprise operator. Only the enterprise
operator associated with the SAG is allowed to remove members from it, an exception "P_TASK_REFUSED" would be
raised if a non-associated enterprise operator invokes this method.

Parameters
saglD : in TpSaglD

The "sagIlD" parameter identifies the SAG from which the client applications are to be removed. If the SAG ID does not
exist, an exception "P_INVALID_SAG_ID" would be raised.

clientApplDList : in TpdientAppl DLi st

The "clientAppIDList" parameter contains the list of the clientApp IDs that are to be removed from the specified SAG.
If one or al of the client application IDsin the list does not exist, an exception "P_INVALID_CLIENT_APP_ID"
would be raised.

Raises

TpConmonExcept i ons, P_ACCESS DENI ED, P_| NVALI D_CLI ENT_APP_I D,
P I NVALID_SAG I D

ETSI

92 ETSI ES 201 915-3 V1.5.1 (2005-02)

8.3.1.2 Interface Class IpClientAppinfoQuery
Inherits from: Iplnterface.

Thisinterface is used by the enterprise operator to list the client applications and the SAGsin its domain and to obtain
information about them.

<<Interface>>

IpClientAppinfoQuery

describeClientApp (clientApplID : in TpClientAppID) : TpClientAppDescription
listClientApps () : TpClientApplIDList

describeSAG (saglID : in TpSagID) : TpSagDescription

listSAGs () : TpSaglDList

listSAGMembers (sagID : in TpSagID) : TpClientApplDList
listClientAppMembership (clientAppID : in TpClientApplID) : TpSagIDList

Method
descri bed i ent App()

Query information about the specified client application of the enterprise operator.

Returns <clientAppDescription> : The "clientAppDescription” parameter contains the clientApp description.

Parameters
clientAppl D : in TpdientApplD
The"clientApplD" parameter identifies the clientApp object whose description is requested.

Returns

Tpd i ent AppDescri ption

Raises

TpComonExcepti ons, P_ACCESS DEN ED, P_I NVALI D CLI ENT_APP_I D

Method
listdient Apps()

Get alist of al client applications belonging to an enterprise operator.

Returns <clientApplDs> : The "clientApplDs" parameter identifies the list of client applicationsin the enterprise
operator domain.

Parameters
No Parameters were identified for this method.

ETSI

93 ETSI ES 201 915-3 V1.5.1 (2005-02)

Returns

Tpd i ent Appl DLi st

Raises

TpComonExcepti ons, P_ACCESS DEN ED

Method
descri beSAH)

Query information about the specified SAG associated with the enterprise operator.

Returns <SagDescription> : The "sagDescription” parameter returns the SAG-specific description.

Parameters
saglD : in TpSaglD
The "sagIlD" parameter identifies the SAG whose description is required.

Returns

TpSagDescri pti on

Raises

TpComonExcepti ons, P_ACCESS DENI ED, P_INVALID SAG ID
Method

| i st SAGs()

Get alist of al SAGs associated with an enterprise operator.
Returns <SagIDList>: The "sagIDList" parameter returnsthe list of the identifiers of the SAGs associated with the
enterprise operator.

Parameters
No Parameters were identified for this method.

Returns

TpSagl DLi st

Raises

TpComonExcepti ons, P_ACCESS DEN ED

Method
| i st SAGVvenber s()

Get alist of al client applications associated with the specified SAG.

Returns <clientApplDList> : The"clientAppIDList" parameter returns the list of the client applications associated with
the SAG.

Parameters
saglD : in TpSaglD
The"saglD" parameter identifies the SAG whose clientApplD list is required.

ETSI

94 ETSI ES 201 915-3 V1.5.1 (2005-02)

Returns

Tpd i ent Appl DLi st

Raises

TpCommonExcepti ons, P_ACCESS DEN ED, P_I NVALID SAG ID

Method
| i stdient AppMenbershi p()

Obtain alist of the SAGs of which the specified client application is a member.

Returns <sags> : The SAGs of which the client application is a member.

Parameters
clientApplD : in Tpdient Appl D
The"clientApplD" parameter identifies the clientApp object whose membership details are requested.

Returns

TpSagl DLi st

Raises

TpConmmonExcepti ons, P_ACCESS DENI ED, P_| NVALI D CLI ENT_APP | D
8.3.1.3 Interface Class IpServiceProfileManagement

Inherits from: Ipinterface.

Thisinterface is used by the enterprise operator for the management of Service Profiles, which are defined for every
subscribed service, and to assign/de - assign the Service Profilesto SAGs.

<<Interface>>

IpServiceProfileManagement

createServiceProfile (serviceProfileDescription : in TpServiceProfileDescription) : TpServiceProfilelD
modifyServiceProfile (serviceProfile : in TpServiceProfile) : void

deleteServiceProfile (serviceProfilelD : in TpServiceProfilelD) : void

assign (saglID : in TpSagID, serviceProfilelD : in TpServiceProfileID) : void

deassign (sagID : in TpSagID, serviceProfilelD : in TpServiceProfilelD) : void

Method
createServiceProfile()

Creates anew Service Profile for the specified service contract. The service properties within the service profile restrict
the service to meet the client application requirements. A Service Profile is arestriction of the corresponding service
contract. When the description has been verified, a service profile ID will be generated.

Returns <serviceProfilelD> : The service profile ID, generated by the framework, will be used to uniquely identify the
service profile within the framework.

ETSI

95 ETSI ES 201 915-3 V1.5.1 (2005-02)

Parameters

serviceProfileDescription : in TpServiceProfileDescription

The "serviceProfile" parameter is a structured data type, which contains a subset of the associated service contract
information and which may further restrict the value ranges of the service subscription properties.

Returns

TpServi ceProfilel D

Raises

TpComonExcepti ons, P_ACCESS DEN ED, P_I NVALI D_SERVI CE_PROFI LE_I D

Method
nodi f yServi ceProfil e()

Modifies the specified Service Profile associated with the enterprise operator. Only the enterprise operator associated
with the particular service profile is allowed to modify it, an exception "P_TASK_REFUSED" would beraised if a
non-associated enterprise operator invokes this method.

Parameters

serviceProfile : in TpServiceProfile

The modified Service Profile. If the serviceProfilel D specified in the serviceProfile parameter does not exist, an
exception "P_INVALID_SERVICE_PROFILE_ID" would be raised.

Raises

TpConmmonExcept i ons, P_ACCESS_DENI ED, P_I NVALI D_SERVI CE_PROFI LE_I D
Method

del eteServiceProfil e()

Deletes the specified Service Profile. If there are any service instances running that are governed by this profile then
they will be terminated. Only the enterprise operator associated with the particular service profile is allowed to delete it,
a"P_TASK_REFUSED" exception will beraised if a non-associated enterprise operator invokes this method.

Parameters

serviceProfilelD : in TpServiceProfilelD

The "serviceProfilelD" parameter identifies the Service Profile that is to be deleted. If the serviceProfilel D does not
exist, a"P_INVALID_SERVICE_PROFILE_ID" exception will be raised.

Raises
TpConmmonExcepti ons, P_ACCESS DENI ED, P_| NVALI D SERVI CE_PROFI LE I D

Method
assign()

Assign a Service Profile to the specified SAG. Only the enterprise operator associated with the serviceProfilelD is
allowed to assign it to a SAG, an exception "P_TASK_REFUSED" would be raised if a non-associated enterprise
operator invokes this method.

Parameters
saglD : in TpSaglD

The"saglD" parameter identifies the SAG to which Service Profileisto be assigned. If the SAG ID does not exist, an
exception "P_INVALID_SAG_ID" would be raised.

ETSI

96 ETSI ES 201 915-3 V1.5.1 (2005-02)

serviceProfilelD: in TpServiceProfilelD

The "serviceProfilel D" parameter identifies the Service Profile that isto be assigned to the SAG. If the serviceProfilelD
does not exist, an exception "P_INVALID_SERVICE_PROFILE_ID" would be raised.

Raises
TpCommonExcepti ons, P_ACCESS DENI ED, P_I NVALI D SAG I D,
P_| NVALI D_SERVI CE_PROFI LE_I D

Method
deassi gn()

De-assign the Service Profile from the specified SAG. Because only the enterprise operator associated with the
serviceProfilel D is allowed to deassign it from a SAG, an exception "P_TASK_REFUSED" would be raised if a
non-associated enterprise operator invokes this method.

Parameters
saglD : in TpSaglD

The "sagID" parameter identifies the SAG whose Service Profileis to be de-assigned. If the SAG ID does not exist, an
exception "P_INVALID_SAG_ID" would be raised.

serviceProfilelD: in TpServiceProfilelD
The "serviceProfilel D" parameter identifies the Service Profile that isto be de-assigned. If the serviceProfilelD does not

exist, an exception "P_INVALID_SERVICE_PROFILE_ID" would be raised.
Raises

TpComonExcepti ons, P_ACCESS DEN ED, P_I NVALI D SAG I D,
P_I NVALI D_SERVI CE_PRCFI LE_I D

8.3.1.4 Interface Class IpServiceProfileInfoQuery
Inherits from: Ipinterface.

Thisinterface is used by the enterprise operator to obtain information about individual Service Profiles, to find out
which SAGs are assigned to a given Service Profile, and to find out what Service Profile is associated with a given
client application or SAG.

<<Interface>>

IpServiceProfileInfoQuery

listServiceProfiles () : TpServiceProfilelDList
describeServiceProfile (serviceProfileID : in TpServiceProfilelD) : TpServiceProfileDescription

listAssignedMembers (serviceProfilelD : in TpServiceProfilelD) : TpSagIDList

Method
| i st ServiceProfiles()

Get alist of al service profiles created by the enterprise operator.

Returns <serviceProfilelDList> : The "serviceProfilelDList" isalist of the service profiles associated with the
enterprise operator.

ETSI

97 ETSI ES 201 915-3 V1.5.1 (2005-02)

Parameters
No Parameters were identified for this method.

Returns
TpServi ceProfil el DLi st

Raises
TpComonExcepti ons, P_ACCESS DEN ED

Method
descri beServiceProfil e()

Query information about a single service profile.

Returns <serviceProfileDescription> : The "serviceProfileDescription” parameter is a structured data type which
contains a description for the specified service profile.

Parameters

serviceProfilelD: in TpServiceProfilelD
The "serviceProfilelD" parameter identifies the Service Profile whose description is being requested.

Returns

TpServi ceProfil eDescription

Raises

TpComonExcepti ons, P_ACCESS DEN ED, P_I NVALI D_SERVI CE_PROFI LE_I D

Method
| i st Assi gnedMenber s()

Get alist of SAGs assigned to the specified service profile.
Returns <saglDList> : The "saglDs' parameter isthe list of the SAG IDsthat are assigned to the specified service
profile.

Parameters

serviceProfilelD: in TpServiceProfilelD

The "serviceProfilelD" parameter identifies the Service Profile. If the serviceProfilel D is not recognised by the
framework, an exception "P_INVALID_SERVICE_PROFILE_ID" would be raised.

Returns

TpSagl DLi st

Raises

TpCommonExcepti ons, P_ACCESS DENI ED, P_I NVALI D_SERVI CE_PROFI LE_ I D
8.3.1.5 Interface Class IpServiceContractManagement

Inherits from: Iplnterface.

The enterprise operator uses this interface for service contract management, such as create, modify, and del ete service
contracts.

ETSI

98 ETSI ES 201 915-3 V1.5.1 (2005-02)

<<Interface>>

IpServiceContractManagement

createServiceContract (serviceContractDescription : in TpServiceContractDescription) :
TpServiceContractID

modifyServiceContract (serviceContract : in TpServiceContract) : void

deleteServiceContract (serviceContractID : in TpServiceContractID) : void

Method
creat eServi ceContract ()

Create a new service contract for an enterprise operator. The enterprise operator provides the service contract
description. This contract should conform to the previously negotiated high - level agreement (regarding the services,
their usage and the price, etc.), if any, between the enterprise operator and the framework operator, otherwise the
appropriate exception is raised by the framework. When the description has been validated, a service contract 1D will be
generated.

Returns <serviceContractl D> : The service contract ID will be used to uniquely identify the service contract within the
framework.

Parameters

servi ceContractDescription : in TpServiceContractDescription

The "serviceContractDescription” parameter provides the information contained in the service contract. The service
contract is a structured data type, which contains the following information:
a. information about the service requestor, i.e. the enterprise operator,
b. information about the billing contact (person),
C. service start date,

d. service end date,

e. service type (e.g. obtained from listServiceType() method),

f. service ID (e.g. obtained from discoverService() method). For certain services, service type informationis
sufficient and service ID may not be required. Thisimplies that any service of the type specified above is subscribed
and hence accessible to the enterprise operator or to its client applications.

0. list of service subscription properties and their value ranges (service profiles further restrict these value ranges)

Returns
TpServi ceContract| D

Raises
TpComonExcepti ons, P_ACCESS DEN ED, P_I NVALI D SERVI CE | D,
P_1I NVALI D_SERVI CE_CONTRACT_I D

Method

nodi f ySer vi ceContract ()

Modify an existing service contract. The service contract can be modified only within the context of a pre-existing
off-line negotiated high-level agreement between the enterprise operator and the framework operator. Only the

enterprise operator associated with the serviceContract is allowed to modify it, an exception "P_TASK_REFUSED"
would be raised if a non-associated enterprise operator invokes this method.

ETSI

99 ETSI ES 201 915-3 V1.5.1 (2005-02)

Parameters

serviceContract : in TpServiceContract

The "serviceContract” parameter provides the modified service contract. If the serviceContractlD does not exist, an
exception "P_INVALID_SERVICE_CONTRACT_ID" would be raised.

Raises
TpComonExcepti ons, P_ACCESS DEN ED, P_I NVALI D SERVI CE | D,
P_I NVALI D_SERVI CE_CONTRACT_I D

Method
del et eServi ceContract ()

Delete an existing service contract. All the Service Profiles associated with the service contract are also deleted. If there
are any service instances running that are governed by this contract, or any of the profiles associated with it, then they
will be terminated. Only the enterprise operator associated with the serviceContract is allowed to delete it, a
"P_TASK_REFUSED" exception will be raised if a non-associated enterprise operator invokes this method.

Parameters

serviceContractID : in TpServiceContractlD

The "serviceContractID" parameter identifies the service contract that the enterprise operator wishes to delete. If the
serviceContractI D does not exist, a"P_INVALID_SERVICE_CONTRACT_ID" exception will be raised.

Raises
TpCommonExcepti ons, P_ACCESS DENI ED, P_I NVALI D_SERVI CE_CONTRACT | D

8.3.1.6 Interface Class IpServiceContractinfoQuery
Inherits from: Iplnterface.

The enterprise operator uses this interface to query information about a given service contract.

<<Interface>>

IpServiceContractinfoQuery

describeServiceContract (serviceContractID : in TpServiceContractID) : TpServiceContractDescription
listServiceContracts () : TpServiceContractIDList

listServiceProfiles (serviceContractID : in TpServiceContractID) : TpServiceProfilelDList

Method
descri beServi ceContract ()

Query information about the specified service contract. The enterprise operator invokes this operation to obtain
information that is stored in the specified service contract. The enterprise operator can only obtain information about the
service contracts that it has created.

Returns <serviceContractDescription> : The "serviceContract" parameter contains the description for the specified
service contract.

ETSI

100 ETSI ES 201 915-3 V1.5.1 (2005-02)

Parameters

serviceContractID : in TpServiceContractl D
The "serviceContractID" parameter identifies the service whose description is being requested.

Returns
TpServi ceCont ract Descri ption

Raises

TpCommonExcepti ons, P_ACCESS DEN ED, P_I NVALI D_SERVI CE_CONTRACT_I D

Method

| i st Servi ceContracts()

Returns alist of the IDs of service contracts created by the Enterprise Operator.

Returns <serviceContractlDs> : The "serviceContractlDs" parameter will contain alist of IDs for service contracts that

the enterprise operator has created.

Parameters
No Parameters were identified for this method.

Returns

TpServi ceContract | DLi st

Raises

TpComonExcepti ons, P_ACCESS DEN ED
Method

| i st ServiceProfiles()

The enterprise operator invokes this operation to obtain alist of service profiles that are associated with a particular
service contract.

Returns <serviceProfilelDs> : The "serviceContractI DS parameter contains the service profile members associated
with a particular service contract.

Parameters

serviceContractI D : in TpServiceContractlD

The "serviceContractI D" parameter identifies the service contract. If the serviceContractI D is not recognised by the
framework, an exception "P_INVALID_SERVICE_CONTRACT _ID" would be raised.

Returns
TpServi ceProfil el DLi st

Raises
TpCommonExcepti ons, P_ACCESS DENI ED, P_I NVALI D_SERVI CE_CONTRACT | D

ETSI

101 ETSI ES 201 915-3 V1.5.1 (2005-02)

8.3.1.7 Interface Class IpEntOpAccountManagement
Inherits from: Iplnterface.

The enterprise operator, in the role of the service subscriber, uses this interface for the management of enterprise
operator subscription accounts, such as modify and del ete enterprise operator accounts. The EntOplD will be decided in
an off-line agreement between the FW operator and the EntOp, as the EntOp may require the ID to be something more
meaningful than a random number. The EntOp account, consisting of the EntOpl D, along with the list of valid
properties and their modes and prescribed ranges, will be entered viaa FW operator interface that is currently outside
the scope of the API.

<<Interface>>

IPEntOpAccountManagement

modifyEntOpAccount (enterpriseOperatorProperties : in TpEntOpProperties) : void
deleteEntOpAccount () : void

Method
nodi f yEnt QpAccount ()

Modification of the enterprise operator information contained in the enterprise operator object.

Parameters

enterpriseCperatorProperties : in TpEnt OpProperties

The "enterprise operator properties' parameter conveys the modified/popul ated information about the enterprise
operator. The values of the "enterprise operator properties’ can only be modified within the prescribed range, as
negotiated earlier (an off-line process) between the enterprise operator and the framework operator, otherwise a
P_INVALID_PROPERTY exception israised.

Raises
TpCommonExcepti ons, P_ACCESS DENI ED, P_I NVALI D_PROPERTY

Method
del et eEnt OpAccount ()

Deletes the specified enterprise operator object. Deletion of the enterprise operator object cannot be performed until the
enterprise operator has deleted all the service contracts (and the Service Profiles) associated with it. An attempt to delete
the enterprise operator account will result inaP_TASK_REFUSED exception if there are outstanding service contracts
(and service profiles).

Parameters
No Parameters were identified for this method.

Raises
TpComonExcepti ons, P_ACCESS DEN ED

ETSI

102 ETSI ES 201 915-3 V1.5.1 (2005-02)

8.3.1.8 Interface Class IpEntOpAccountinfoQuery
Inherits from: Iplnterface.

Thisinterface is used by the enterprise operator to query information related to its own subscription account as held
within the framework.

<<Interface>>

IpEntOpAccountinfoQuery

describeEntOpAccount () : TpEntOp

Method
descri beEnt OpAccount ()

Query information about the enterprise operator. The enterprise operator invokes this operation to find out what
information about itself is stored in the enterprise operator account object within the Framework.

Returns <enterpriseOperator> : The "enterpriseOperator” parameter conveys the information stored in the EntOp object
about the enterprise operator. It contains the unique "enterprise operator ID" followed by alist of "enterprise operator
properties’. The enterprise operator propertiesis alist of name/value pairs which provide enterprise operator related
information such as the name, organisation, address, phone, e-mail, fax, payment method (credit card, bank account),
etc. to the framework.

Parameters

No Parameters were identified for this method.

Returns

TpEnt Op

Raises

TpComonExcepti ons, P_ACCESS DEN ED

8.4 State Transition Diagrams

This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the
gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can
be invoked by the client are shown. Methods not shown for a specific state are not relevant for that state and will return
an exception. Apart from the methods that can be invoked by the client also eventsinternal to the gateway or related to
network events are shown together with the resulting event or action performed by the gateway. These internal events
are shown between quotation marks.

8.4.1 Service Subscription State Transition Diagrams

There are no State Transition Diagrams defined for Service Subscription.

ETSI

103 ETSI ES 201 915-3 V1.5.1 (2005-02)

9 Framework-to-Service API

9.1 Sequence Diagrams

9.1.1 Service Discovery Sequence Diagrams

No Sequence Diagrams exist for Service Discovery.

9.1.2 Service Registration Sequence Diagrams

9.1.2.1 New SCF Registration

The following figure shows the process of registering a new Service Capability Feature in the Framework. Service
Registration is atwo step process.

IpFwService;Qeqistration

1: registerSenvice()

2: announceSeniceAvailability()

1. Registration: first step - register service

The purpose of thisfirst step in the process of registration is to agree, within the network, on a name to call,
internally, a newly installed SCF version. It is necessary because the OSA Framework and SCF in the same
network may come from different vendors. The goal isto make an association between the new SCF version,
as characterized by alist of properties, and an identifier called servicelD.

This service ID will be the name used in that network (that is, between that network's Framework and its
SCSs), whenever it is necessary to refer to this newly installed version of SCF (for example for announcing its
availability, or for withdrawing it later).

The following input parameters are given from the SCS to the Framework in this first registration step:
- in serviceTypeName.
Thisisastring with the name of the SCF, among alist of standard names (e.g. "P_MPCC").

- in servicePropertyList.

ETSI

9.1.3

9.1.3.1

104 ETSI ES 201 915-3 V1.5.1 (2005-02)

Thisisalist of types TpServiceProperty; each TpServiceProperty isa pair of (ServicePropertyName,
ServicePropertyValuelist).

- ServicePropertyName is a string that defines avalid SFC property name (valid SCF property names are
listed in the SCF data definition).

- ServicePropertyVauelList is a numbered set of types TpServicePropertyValue; TpServicePropertyValue
isastring that describes avalid value of a SCF property (valid SCF property values are listed in the SCF
data definition).

The following output parameter results from service registration:
- out servicelD.
Thisisastring, automatically generated by the Framework and unique within the Framework.

Thisisthe name by which the newly installed version of SCF, described by the list of properties above, is
going to be identified internally in this network.

Registration: second step - announce service availability

At this point the network's Framework is aware of the existence of a new SCF, and could |et applications know
- but they would have no way to useit. Installing the SCS logic and assigning a name to it does not make this
SCF available. In order to make the SCF available an "entry point”, called lifecycle manager, is used. Therole
of the lifecycle manager isto control the life cycle of an interface, or set of interfaces, and provide clients with
the references that are necessary to invoke the methods offered by these interfaces. The starting point for a
client to use an SCF is to obtain an interface reference to alifecycle manager of the desired SCF.

A Network Operator, upon completion of the first registration phase, and once it has an identifier to the new
SCF version, will instantiate a lifecycle manager for it that will allow client to useit. Then it will inform the
Framework of the value of the interface associated to the new SCF. After the receipt of thisinformation, the
Framework makes the new SCF (identified by the pair [servicel D, servicel nstancel ifecycleManagerRef])
discoverable.

The following input parameters are given from the SCS to the Framework in this second registration step:
- in servicel D.

Thisistheidentifier that has been agreed in the network for the new SCF; any interaction related to the SCF
needs to include the servicel D, to know which SCF it is.

- in servicelnstancel ifecycleM anagerRef.

Thisisthe interface reference at which the lifecycle manager of the new SCF is available. Note that the
Framework will have to invoke the method createServiceManager() in thisinterface, any time between now
and when it accepts the first application requests for discovery, so that it can get the service manager interface
necessary for applications as an entry point to any SCF.

Service Instance Lifecycle Manager Sequence Diagrams

Sign Service Agreement

This sequence illustrates how the application can get access to a specified service. It only illustrates the last part: the
signing of the service agreement and the corresponding actions towards the service. For more information on accessing
the framework, authentication and discovery of services, see the corresponding clauses.

ETSI

105 ETSI ES 201 915-3 V1.5.1 (2005-02)

‘ AppLogic H

: IpAppCalContmlManager - Iplnitial

GenericCallControlService : : IpCallControlManager
IpServ it IpServ it ifecy

IpAppServiceAgreem ent Managem ent
T T T T T T
.

1 I | I I
We assume that the application & already authenticated and discoveredthe service it wants touse ﬁ

7 |
| |

| |
1: selectService() |

u

|
|
|
|
I I
[2: sighServiceAgreement()
\
i |
|
3: signServic eAgreenment()
t

7 i

|
5: new()

7: setCallback()

| ! !

?

The application selects the service, using a servicel D for the generic call control service. The servicel D could
have been obtained via the discovery interface. A ServiceToken is returned to the application.

The client application signs the service agreement.

The framework signs the service agreement. As aresult a service manager interface reference (in this case of
type |pCallControlManager) is returned to the application.

Provided the signature information is correct and all conditions have been fulfilled, the framework will request
the service identified by the servicel D to return a service manager interface reference. The service manager is
theinitial point of contact to the service.

The lifecycle manager creates a new manager interface instance (a call control manager) for the specified
application. It should be noted that this is an implementation detail. The service implementation may use other
mechanism to get a service manager interface instance.

Following the creation of the service manager outlined above, a unique instance of the service particular to the
application client results. This service instance is assigned a servicelnstancel D by the Framework, which is
provided to the Service Instance Lifecycle manager during the createServiceManager operation. If itis
necessary that Framework Integrity Management functionality and operations are to be supported between the
Framework and the service instance identified by the defined servicelnstancelD, it is then necessary for the
new service instance to establish an access session with the Framework. This provides the Framework with the
ability to manage and monitor the operation of the service instance that relates to a particular application
client. The steps required to establish a Framework access session are outlined in clause 6 of the present
document.

The application creates a new | pAppCallControlManager interface to be used for callbacks.

The Application sets the callback interface to the interface created with the previous message.

ETSI

106 ETSI ES 201 915-3 V1.5.1 (2005-02)

9.1.4 Integrity Management Sequence Diagrams

9.1.4.1 Load Management: Service callback registration and load control

This sequence diagram shows how a service registersitself and the framework invokes load management function
based on policy.

: IpSvcL.oadManager : IpFwlL.oadManager

| 1: createLoadLevelNotification() |
| |
/U Framework reports its initial load
condition on naotification creation

|
2:loadLevelNotification() -

3:load change detection & policy evaluation
|

4:loadLevelNotification() ' | This is Framework
= implementation detail. The
- Framework may take appropriate

Fram ework detects a load e L] |load control action.

condition change |
and notifies the senice. The |

u
u

service maytake appropriate 5: load change detection & policy evaluation
load control action - ‘
implementation detail. ~ < N

6: loadLevelNotification() = [This is Framework

implementation detail. The
Framework may take appropriate

7: destroyLoadLevelNotification() load control action

44|:444

ETSI

107 ETSI ES 201 915-3 V1.5.1 (2005-02)

9.1.4.2 Load Management: Framework callback registration and service load control

This sequence diagram shows how the framework registersitself and the service invokes load management function to
inform the framework of service load.

| Schoa_dMana er IQFwLanManager

. g . T
Senice reports its nitial : 1: createLoadLewelNotification() !

load condition on u\ U

notification creation -

i

Teeel gireponLoad()

This is senice L)

|

. |

implementation detail. load :change detection |
The senice may take = }
appropriate load control 4: reportLoad() :
action. o s

Senice detects a load

-| condition change and reports
to framework. The Framework
may take appropriate load
control action -
implementation detail.

5: load lchange detection
|

This is senice -
implementation detail. |- -|” < T
The senice may take 6: reportLoad() -~ -

appropriate load control

|
action. u
U

7: destroyLoadLevelNotification()

b

ETSI

108 ETSI ES 201 915-3 V1.5.1 (2005-02)

9.1.4.3 Load Management: Client and Service Load Balancing

Application : Framework : - Senvice :
IpAppLoadManager IpLoadManager IpFwLoadManager IpSvcLoadManager

Framework checks
application load.

| 1: queryAppLoadReq()

oy

| 2: queryAppLoadRes()
|

L
Depending on the load, the
framework may choose to stop
sending notifications to the
application, to allowits load to
reduce.

3: querySvcLoadReq()

N

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

1

| ‘

I The framework may then check
| .

| the load on the service, and take
| action if (according to the load
! balancing policy) if required.
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

]
: 4: querySvcLoadRes()

9.1.4.4 Heartbeat Management: Start/perform/end heartbeat supervision of the service

In this sequence diagram, the framework has decided that it wishes to monitor the service, and has therefore requested
the service to commence sending its heartbeat. The service responds by sending its heartbeat at the specified interval.
The framework then decides that it is satisfied with the service's health and disables the heartbeat mechanism. If the
heartbeat was not received from the service within the specified interval, the framework can decide that the service has
failed the heartbeat and can then perform some recovery action.

ETSI

Framework

IpFwHeartBeat

109

1: enableéSwvcHeartBeat()
|

ETSI ES 201 915-3 V1.5.1 (2005-02)

IpSvc HeaEieatM amt

|

2: pulse()

u

i

3: pulse()

S

At a certain point of

Iy

|
4: disableSvcHeartBeat()

time the framework
decides to stop
heartbeat supenision

9.1.4.5 Fault Management: Service requests Framework activity test

Framework :
IpFwFaultManager

1: activityTestReq()

Senice :
IpSvcFaultManager

The Senvice requests that the
Framework does an activity test.

2: activityTestRes()

1. Theservice asksthe framework to carry out its activity test. The service denotes that it requires the activity test
done for the framework, rather than an application, by supplying an appropriate parameter.

2. Theframework carries out the test and returns the result to the service.

ETSI

110 ETSI ES 201 915-3 V1.5.1 (2005-02)

9.1.4.6 Fault Management: Service requests Application activity test

Senvice : o Framework : Application :
IpSve FaultManager IpFwFaultManager IpFaultManager IpAppFaultManager

The Framework identifies the senice
instance to conclude which
m Application the test is directed at, and
comunicates internally to Framework
interface to the Application.

1: activityTestReq()

2: appActivityTestReq()

U /U The application

carries out the
activity test and
returns the result to
the Framework.

3: appActivityTestRes()

Communications.

Internal Framework ﬁ

4: activityTestRes()

==

1. Theservice asks the framework to invoke an activity test on a client application, the application is identified
by the appld parameter.

2. Theframework asks the application to do the activity test. It is assumed that thereis internal communication
between the service facing part of the framework (i.e. IpFwFaultManager interface) and the part that faces the
client application.

3: Theapplication does the activity test and returns the result to the framework.

4. Theframework internally passes the result from its application facing interface (IpFaultM anager) to its service
facing side, and sends the result to the service.

ETSI

111 ETSI ES 201 915-3 V1.5.1 (2005-02)

9.1.4.7 Fault Management: Application requests Service activity test

Client Application : Framework : o Senice :
IpAppFault Manager IpFaultManager IpFwFaultManager IpSvcFaultManager

:
L |
The client application asks the !
framework to carry out the w
activity test on a senvice. |
|
|
|
|
|
|

1: activity TestReq()

U g

|
The Framework identifies which
senice the test is directed at by the
svclD parameter, and
communicates internally with the
appropriate famework interface.
W hich inwokes the call on the
senice.

| 2: sweActivity TestReq()

| u

returns the result.

Seniice does test and ﬁ

Framework passes result | .

internally from senice facing 3 sveActivity TestRes()
part to application facing part, LF U
and sends the result to the

application.

|
4: activityTestRes() |
|

=

1. Theclient application asks the framework to invoke an activity test on a service, the serviceisidentified by the
svcld parameter.

2. Theframework asks the service to do the activity test. It is assumed that there is internal communication
between the application facing part of the framework (i.e. | pFaultManager interface) and the part that faces the
service.

3: Theservice doesthe activity test and returns the result to the framework.

4: Theframework internally passes the result from its service facing interface (IpFwFaultManager) to its
application facing side, and sends the result to the client application.

ETSI

112 ETSI ES 201 915-3 V1.5.1 (2005-02)

9.1.4.8 Fault Management: Application detects service is unavailable

Client Application : Framework : o Senice :
IpAppFault Manager IpFaultManager | | IpFwFaultManager IpSwvcFaultManager
T

| |

| |

| |

L |

The application detects that AN |
the seniice is not responding, !
so it informs the framework via [
the svcUnavailableind method |
|

|

|

|

|

|

|

|

|

|

|

and then ceases use of the
senice.

| 1: svwcUnavailablelnd()

] |

U The framework informs the
senvce that the application
is no longer using it.

i 2: appUnavailablelnd()

1. Theclient application detects that the service instanceis currently not available, i.e. the service instance is not
responding to the client application in the normal way, so it informs the framework and takes action to stop
using this service instance and change to a different one (via the usual mechanisms, such as discovery,
selectService etc.). The client application should not need to re-authenticate in order to discover and use an
alternative service instance.

2. Theframework informs the service instance that the client application was unable to get a response from it and
has ceased to be one of its users. The framework and service instance must carry out the appropriate updates to
remove the client application as one of the users of this service instance. The service or framework may then
decide to carry out an activity test to see whether there is a general problem with the service instance that
reguires further action.

9.1.5 Event Notification Sequence Diagrams

No Sequence Diagrams exist for Event Notification.

ETSI

113 ETSI ES 201 915-3 V1.5.1 (2005-02)

9.2 Class Diagrams

<<Interface>>
IpFwSeniceDiscovery
(from Framework interfaces)

%listSeniceTypes()
®describeServiceType()
WdiscoverSenice()
®listRegisteredServices()

Figure 22: Service Discovery Package Overview

<<Interface>>
IpFwSeniceRegistration
(from Framewo Kk interfaces)

WregisterSenice()
®announceSeniceAvailability ()
BunregisterSenice()
¥describeSenice()
®unannounceSenice()

Figure 23: Service Registration Package Overview

ETSI

114 ETSI ES 201 915-3 V1.5.1 (2005-02)

<<Interface>>

<<Interface>> IpClientAPILevelAuthentication
IpClientAccess (from Client interfaces)
(from Client interfaces)
Fauthenticate()
terminateAccess() SabortAuthentication()

FauthenticationSucceeded()

I
I
|
<<uses>>
I
I
I
I
I

<<uses>> 3
<<Interface>> <<Interface>>
<<Interface>> [PAEEEsE IpAPILevelAuthentication
Ipinitial (from Framework interfaces) (from Framework interfaces)
(from Framework interfaces))
:okk;ta!nlnte;fface() hCallback #selectEncryptionMethod()
SinitiateAuthentication () ‘O :jalnlnte e CE) ‘authentlcate() .
endAccess() WabortAuthentication()
Slistinterfaces() BauthenticationSucceeded()

Wreleaselnterface()

<<lInterface>>
IpAuthentication
(from Framework interfaces)

®requestAccess()

Figure 24: Trust and Security Management Package Overview

<<Interface>>
IpSenicelnstancelifecycleManager
(from Service Interfaces)

WcreateSeniceManager()
WdestroySeniceManager()

Figure 25: Service Instance Lifecycle Manager Package Overview

ETSI

115 ETSI ES 201 915-3 V1.5.1 (2005-02)
<<Interface>>
<<Interface>> IpSveFaultManager
IpSwcLoadManager
activityTestRes()
querySwvcLoadReq() s\cActivity TestReq()
<<Interface>> queryLoadRes() fwFaultReportind()

IpSvcHeartBeatMgmt <<Interface>> queryLoadErr() fwFaultRecoveryInd()

IpSvcHeartBeat loadLewelNotification() fwUnavailablelnd() <<Interface>>
enableSvcHeartB eat () on suspendNotification() swcUnavailablelnd() IPS\COAM
disableSvcHeartBeat() "I pulse() resumeNotification() o appUnavailablelnd()
change Intenval() A <<new>> createLoadLevelNotification() genFaultStatsRecordRes() systemDateTimeQuery ()
—— | <<new>> destroyLoadLewelNotification() activity TestErT() i

: ! N genFaultStatsRecordErr() !

| : : genFaultStatsRecordReq() :

<<uses>> | <<uses>> | | /\ ‘
i | <<uses>> <<uses>> I <<uses>>

| | | L |

I | | <<Interface>> |
<<Interface>> 1 L IpFwFaultManager !

IpFwHeartB eatMgmt <<Interface>> <<Interface>>

IpFwHeartBeat IpFwLoadManager activity TestReq() <<Interface>>
enableHeartBeat() n swcActivity TestRes() PRWOAM
disableHeartBeat () pulse() reportLoad() appUnavailablelnd()
changelnter\al() queryLoadReq() genFaultStatsRecordReq|() systemDateTimeQuery()

querySwcLoadRes() swcUnavailablelnd()
querySvcLoadErr() s\CActivity TestErm()
createLoadLevelNotification() genFaultStatsRecordRes()
destroyLoadLevelNotification() genFaultStatsRecordErr()
suspendNotification()

resumeNotification()

Figure 26: Integrity Management Package Overview

<<Interface>>
IpSvc EventNotification
from Service Interfaces)

reportNotification()
LnotificationTerminated()

<<uses>> |

<<Interface>>
IpFWE \vent Notification
(from Framework Interfaces)

ScreateNotification()
®destroyNotification()

Figure 27: Event Notification Package Overview

9.3 Interface Classes

9.3.1

Before a service can be brokered (discovered, subscribed, accessed, etc.) by an enterprise, it has to be registered with
the Framework. Services are registered against a particular service type. Therefore service types are created first, and
then services corresponding to those types are accepted from the Service Suppliers for registration in the framework.
The framework maintains a repository of service types and registered services.

Service Registration Interface Classes

ETSI

116 ETSI ES 201 915-3 V1.5.1 (2005-02)

In order to register a new service in the framework, the service supplier must select a service type and the "property
values' for the service. The service discovery functionality described in the previous clause enables the service supplier
to obtain alist of all the service types supported by the framework and their associated sets of service property values.

The Framework service registration-related interfaces are invoked by third party service supplier's administrative
applications. They are described below. Note that these methods cannot be invoked until the authentication methods
have been invoked successfully.

9.3.1.1 Interface Class IpFwServiceRegistration
Inherits from: Ipinterface.

The Service Registration interface provides the methods used for the registration of network SCFs at the framework.
Thisinterface and at least the methods registerService(), announceServiceAvailability(), unregisterService() and
unannounceService() shall be implemented by a Framework.

<<Interface>>

IpFwServiceRegistration

registerService (serviceTypeName : in TpServiceTypeName, servicePropertyList : in TpServicePropertyList)
: TpServicelD

announceServiceAvailability (servicelD : in TpServicelD, servicelnstanceLifecycleManagerRef : in
service_lifecycle::IpServicelnstanceLifecycleManagerRef) : void

unregisterService (servicelD : in TpServicelD) : void
describeService (servicelD : in TpServicelD) : TpServiceDescription

unannounceService (servicelD : in TpServicelD) : void

Method
regi sterService()

The registerService() operation is the means by which a service is registered in the Framework, for subsequent
discovery by the enterprise applications. Registration can only succeed when the Service type of the service is known to
the Framework (ServiceType is"available"). A service-ID isreturned to the service supplier when a service is registered
in the Framework. When the service is not registered because the ServiceType is"unavailable", a

P_SERVICE _TYPE_UNAVAILABLE israised. The service-ID isthe handle with which the service supplier can
identify the registered service when needed (e.g. for withdrawing it). The service-ID is only meaningful in the context
of the Framework that generated it.

Returns <servicel D> : Thisisthe unique handle that is returned as a result of the successful completion of this
operation. The Service Supplier can identify the registered service when attempting to accessit via other operations
such as unregisterService(), etc. Enterprise client applications are also returned this service-ID when attempting to
discover a service of thistype.

Parameters

servi ceTypeNane : in TpServiceTypeNane

The "serviceTypeName" parameter identifies the service type. If the string representation of the "type" does not obey
therulesfor identifiers, then an P_ILLEGAL_SERVICE_TY PE exception israised. If the "type" is correct syntactically
but the Framework is able to unambiguously determine that it is not a recognised service type, then a
P_UNKNOWN_SERVICE_TYPE exception is raised.

ETSI

117 ETSI ES 201 915-3 V1.5.1 (2005-02)

servi cePropertyList : in TpServicePropertylLi st

The "servicePropertyList" parameter isalist of property name and property value pairs. They describe the service being
registered. This description typically covers behavioural, non-functional and non-computational aspects of the service.
Service properties are marked "mandatory" or "readonly". These property mode attributes have the following semantics:

a. mandatory - a service associated with this service type must provide an appropriate value for this property when
registering.

b. readonly - this modifier indicates that the property is optional, but that once given a value, subsequently it may
not be modified.

Specifying both modifiersindicates that a value must be provided and that subsequently it may not be modified.
Examples of such properties are those which form part of a service agreement and hence cannot be modified by service
suppliers during the life time of service.

If the type of any of the property valuesis not the same as the declared type (declared in the service type), then a
P_PROPERTY_TYPE_MISMATCH exceptionisraised. If an attempt is made to assign a dynamic property valueto a
readonly property, then the P READONLY_DYNAMIC_PROPERTY exception israised. If the "servicePropertyList"
parameter omits any property declared in the service type with a mode of mandatory, then a
P_MISSING_MANDATORY_PROPERTY exceptionisraised. If two or more properties with the same property name
areincluded in this parameter, the P DUPLICATE_PROPERTY _NAME exception is raised.

Returns
TpServicel D

Raises

TpCommonExcept i ons, P_|I LLEGAL_SERVI CE_I D, P_UNKNOAN_SERVI CE_I D
P_PROPERTY_TYPE_M SMATCH, P_DUPLI CATE_PROPERTY_NAVE

P | LLEGAL_SERVI CE_TYPE, P_UNKNOWN_SERVI CE_TYPE

P_M SSI NG_MANDATCORY_PROPERTY, P_SERVI CE_TYPE_UNAVAI LABLE

Method
announceServi ceAvai l ability()

The registerService() method described previously does not make the service discoverable. The
announceServiceAvailability() method isinvoked after the service is authenticated and its service instance lifecycle
manager isinstantiated at a particular interface. This method informs the framework of the availability of "service
instance lifecycle manager" of the previously registered service, identified by its service ID, at a specific interface. After
the receipt of this method, the framework makes the corresponding service discoverable.

There exists a " service manager" instance per service instance. Each service implements the

I pServicel nstancelifecycleManager interface. The IpServicel nstancelLifecycleManager interface supports a method
called the createServiceManager(application: in TpClientAppl D, serviceProperties : in TpServicePropertyList,
servicelnstancel D : in TpServicel nstancel D) : | pServiceRef. When the service agreement is signed for some servicel D
(using signServiceAgreement()), the framework calls the createServiceManager() for this service, getsa
serviceManager and returns this to the client application.

Parameters

servicelD : in TpServicelD

The service ID of the service that is being announced. If the string representation of the "servicel D" does not obey the
rules for service identifiers, then an P_ILLEGAL_SERVICE_ID exception israised. If the "servicel D" islegal but there
is no service offer within the Framework with that ID, then an P_UNKNOWN_SERVICE_ID exception is raised.

servi cel nstanceli f ecycl eManagerRef : in

service_lifecycle::|pServicel nstancelifecycl eManager Ref
The interface reference at which the service instance lifecycle manager of the previously registered serviceis available.

ETSI

118 ETSI ES 201 915-3 V1.5.1 (2005-02)

Raises

TpConmonExcept i ons, P_|I LLEGAL_SERVI CE_I D, P_UNKNOAN_SERVI CE_| D
P_I NVALI D_I NTERFACE_TYPE

Method
unr egi st er Servi ce()
The unregisterService() operation is used by the service suppliers to remove aregistered service from the Framework.

The serviceisidentified by the "service-ID" which was originally returned by the Framework in response to the
registerService() operation. The service must be in the SCF Registered state. All instances of the service will be deleted.

Parameters

servicelD : in TpServicelD

The service to be withdrawn isidentified by the "servicel D" parameter which was originally returned by the
registerService() operation. If the string representation of the "servicel D" does not obey the rules for service identifiers,
thenan P_ILLEGAL_SERVICE_ID exception israised. If the "servicel D" islegal but there is no service offer within
the Framework with that 1D, then an P_UNKNOWN_SERVICE_ID exception is raised.

Raises
TpCommonExceptions, P_I LLEGAL_SERVI CE_I D, P_UNKNOAN SERVI CE_I D

Method
descri beService()
The describeService() operation returns the information about a service that is registered in the framework. It

comprises, the "type" of the service, and the "properties’ that describe this service. The service isidentified by the
"service-ID" parameter which was originally returned by the registerService() operation.

The SCS may register various versions of the same SCF, each with a different description (more or lessrestrictive, for
example), and each getting a different servicel D assigned.

Returns <serviceDescription> : This consists of the information about an offered service that is held by the Framework.
It comprises the "type" of the service, and the properties that describe this service.

Parameters

servicelD: in TpServicelD

The service to be described isidentified by the "servicel D" parameter which was originally returned by the
registerService() operation. If the string representation of the "servicel D" does not obey the rules for object identifiers,
then an P_ILLEGAL_SERVICE_ID exceptionisraised. If the "servicel D" islegal but there is no service offer within
the Framework with that ID, thenaP_UNKNOWN_SERVICE_ID exception is raised.

Returns
TpServi ceDescri ption

Raises
TpConmmonExceptions, P_|LLEGAL_SERVI CE I D, P_UNKNOWN SERVI CE | D

Method
unannounceSer vi ce()

This method results in the service no longer being discoverable by applications. It is, however, still registered and the
service ID is still associated with it. Applications currently using the service can continue to use the service but no new
applications should be able to start using the service. Also, all unused service tokens relating to the service will be
expired. Thiswill prevent anyone who has aready performed a selectService() but not yet performed the
signServiceAgreement() from being able to obtain a new instance of the service.

ETSI

119 ETSI ES 201 915-3 V1.5.1 (2005-02)

Parameters

servicelD : in TpServicelD

The service ID of the service that is being unannounced. If the string representation of the "servicel D" does not obey the
rules for service identifiers, then an P_ILLEGAL_SERVICE_ID exception israised. If the "servicel D" islegal but there
is no service offer within the Framework with that 1D, then an P_UNKNOWN_SERVICE_ID exception is raised.

Raises
TpConmonExcept i ons, P_| LLEGAL_SERVI CE_I D, P_UNKNOAN_SERVI CE | D
9.3.2 Service Instance Lifecycle Manager Interface Classes

The IpServicel nstanceLifecycleManager interface allows the framework to get access to a service manager interface of
aservice. It is used during the signServiceAgreement, in order to return a service manager interface reference to the
application. Each service has a service manager interface that is theinitial point of contact for the service. E.g. the
generic call control service uses the |pCall ControlManager interface.

9.3.2.1 Interface Class IpServicelnstanceLifecycleManager
Inherits from: Iplnterface.

The I pServicel nstancelL ifecycleManager interface allows the Framework to create and destroy Service Manager
Instances.

Thisinterface and the createServiceM anager() and destroyServiceManager() methods shall be implemented by a
Service.

<<Interface>>

IpServicelnstanceLifecycleManager

createServiceManager (application : in TpClientAppID, serviceProperties : in TpServicePropertyList,
servicelnstancelD : in TpServicelnstancelD) : IpServiceRef

destroyServiceManager (servicelnstance : in TpServicelnstancelD) : void

Method
creat eServi ceManager ()

This method returns a new service manager interface reference for the specified application. The service instance will
be configured for the client application using the properties agreed in the service level agreement.

Returns <serviceManager> : Specifies the service manager interface reference for the specified application ID.

Parameters
application : in TpdientAppl D
Specifies the application for which the service manager interface is requested.

servi ceProperties : in TpServicePropertyli st

Specifies the service properties and their values that are to be used to configure the service instance. These properties
form a part of the service level agreement. An example of these propertiesisalist of methods that the client application
is allowed to invoke on the service interfaces.

ETSI

120 ETSI ES 201 915-3 V1.5.1 (2005-02)

servicelnstancel D : in TpServicel nstancel D
Specifies the Service Instance ID that the new Service Manager isto be identified by.

Returns

| pSer vi ceRef

Raises

TpComonExcepti ons, P_I NVALI D_PROPERTY
Method

destroySer vi ceManager ()

This method destroys an existing service manager interface reference. Thiswill result in the client application being
unable to use the service manager any more.

Parameters

servi celnstance : in TpServicel nstancel D
I dentifies the Service Instance to be destroyed.

Raises
TpComonExcept i ons

9.3.3 Service Discovery Interface Classes
This API complements the Service Registration functionality described in another clause.

Before a service can be registered in the framework, the service supplier must know what "types* of servicesthe
Framework supports and what service "properties’ are applicable to each service type. The "listServiceType()" method
returnsalist of al "service types' that are currently supported by the framework and the " describeServiceType()"
method returns a description of each service type. The description of service type includes the "service-specific
properties' that are applicable to each service type. Then the service supplier can retrieve a specific set of registered
services that both belong to a given type and possess a specific set of "property values', by using the
"discoverService()" method.

Additionally the service supplier can retrieve alist of all registered services, without regard to type or property values,
by using the "listRegisteredServices()" method. However the scope of the list will depend upon the framework
implementation; e.g. a service supplier may only be permitted to retrieve alist of services that the service supplier has
previously registered.

9.3.3.1 Interface Class IpFwServiceDiscovery

Inherits from: Iplnterface.

Thisinterface shall be implemented by a Framework with as a minimum requirement the listServiceTypes(),
describeServiceType() and discoverService() methods.

ETSI

121 ETSI ES 201 915-3 V1.5.1 (2005-02)

<<Interface>>

IpFwServiceDiscovery

listServiceTypes () : TpServiceTypeNameList
describeServiceType (name : in TpServiceTypeName) : TpServiceTypeDescription

discoverService (serviceTypeName : in TpServiceTypeName, desiredPropertyList : in
TpServicePropertyList, max : in TpInt32) : TpServiceList

listRegisteredServices () : TpServiceList

Method
| i st Servi ceTypes()

This operation returns the names of all service typesthat are in the repository. The details of the service types can then
be obtained using the describeServiceType() method.

Returns <listTypes> : The names of the requested service types.

Parameters
No Parameters were identified for this method.

Returns

TpServi ceTypeNaneLi st

Raises

TpComonExcept i ons

Method

descri beServi ceType()

This operation lets the caller obtain the details for a particular service type.

Returns <serviceTypeDescription> : The description of the specified service type. The description provides information
about: the service properties associated with this service type: i.e. alist of service property { name, mode and type}
tuples, the names of the super types of this service type, and whether the service typeis currently available or
unavailable.

Parameters

nane : in TpServiceTypeNane

The name of the service type to be described. If the "name" is malformed, thenthe P_ILLEGAL_SERVICE_TYPE
exception israised. If the "name" does not exist in the repository, then the P_ UNKNOWN_SERVICE_TY PE exception
israised.

Returns
TpServi ceTypeDescri ption

Raises
TpConmmonExcepti ons, P_| LLEGAL_SERVI CE_TYPE, P_UNKNOWN SERVI CE_TYPE

ETSI

122 ETSI ES 201 915-3 V1.5.1 (2005-02)

Method

di scover Servi ce()

The discoverService operation is the means by which the service supplier can retrieve a specific set of registered
services that both belong to a given type and possess a specific set of "property values'. The service supplier passesin a
list of desired service properties to describe the service it islooking for, in the form of attribute/value pairs for the
service properties. The service supplier aso specifies the maximum number of matched responsesit iswilling to accept.
The framework must not return more matches than the specified maximum, but it is up to the discretion of the
Framework implementation to choose to return less than the specified maximum. The discoverService() operation

returns a servicel D/Property pair list for those services that match the desired service property list that the service
supplier provided.

Returns <serviceList> : This parameter gives alist of matching services. Each service is characterised by its service ID
and alist of service properties { name and value list} associated with the service.

Parameters

servi ceTypeNane : in TpServi ceTypeNane

The name of the required service type. If the string representation of the "type" does not obey the rules for service type
identifiers, thenthe P_ILLEGAL_SERVICE_TY PE exception israised. If the "type" is correct syntactically but is not
recognised as a service type within the Framework, then the P_UNKNOWN_SERVICE_TY PE exception israised. The
framework may return a service of a subtype of the "type" requested. A service sub-type can be described by the
properties of its supertypes.

desiredPropertylList : in TpServicePropertylLi st

The "desiredPropertyList" parameter isalist of service properties { name and value list} that the required services
should satisfy. These properties deal with the non-functional and non-computational aspects of the desired service. The
property valuesin the desired property list must be logically interpreted as " minimum’, "maximum”, etc. by the
framework (due to the absence of a Boolean constraint expression for the specification of the service criterion). It is
suggested that, at the time of service registration, each property value be specified as an appropriate range of values, so
that desired property values can specify an "enclosing” range of valuesto help in the selection of desired services.

max : in Tplnt32
The "max" parameter states the maximum number of servicesthat areto be returned in the "servicelList" result.

Returns
TpServi ceLi st
Raises

TpConmonExcept i ons, P_|I LLEGAL_SERVI CE_TYPE, P_UNKNOAN_SERVI CE_TYPE,
P | NVALI D_PROPERTY

Method
| i st Regi st eredSer vi ces()

Returns alist of services so far registered in the framework.

Returns <serviceList> : The "serviceList" parameter returns alist of registered services. Each service is characterised by
itsservice ID and alist of service properties { name and value list} associated with the service.

Parameters
No Parameters were identified for this method.

Returns
TpServi ceLi st

ETSI

123 ETSI ES 201 915-3 V1.5.1 (2005-02)

Raises
TpComonExcept i ons

9.34 Integrity Management Interface Classes

9.3.4.1 Interface Class IpFwFaultManager
Inherits from: Ipinterface.

Thisinterface is used by the service instance to inform the framework of events which affect the integrity of the AP,
and request fault management status information from the framework. The fault manager operations do not exchange
callback interfaces as it is assumed that the service instance has supplied its Fault Management callback interface at the
time it obtains the Framework's Fault Management interface, by use of the obtainl nterfaceWithCallback operation on
the IpAccess interface.

If the IpFwFaultManager interface isimplemented by a Framework, at least one of these methods shall be implemented.
If the Framework is capable of invoking the |pSvcFaultManager.svcActivity TestReq() method, it shall implement
svcActivityTestRes() and svcActivityTestErr() in thisinterface. If the Framework is capable of invoking

I pSvcFaultManager.genFaultStatsRecordReq(), it shall implement genFaultStatsRecordRes() and
genFaultStatsRecordErr() in this interface.

<<Interface>>

IpFwFaultManager

activityTestReq (activityTestID : in TpActivityTestID, testSubject : in TpSubjectType) : void
svcActivityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void
appUnavailablelnd () : void

genFaultStatsRecordReq (timePeriod : in TpTimelnterval, recordSubject : in TpSubjectType) : void
svcUnavailablelnd (reason : in TpSvcUnavailReason) : void

svcActivityTestErr (activityTestID : in TpActivityTestID) : void

genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord, servicelDs : in TpServicelDList) : void

genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError, servicelDs : in TpServicelDList) :
void

Method
activityTest Req()

The service instance invokes this method to test that the framework or the client application is operational. On receipt of
this request, the framework must carry out atest on itself or on the application, to check that it is operating correctly.
The framework reports the test result by invoking the activity TestRes method on the IpSvcFaultManager interface.

Parameters

activityTestID : in TpActivityTestlD
The identifier provided by the service instance to correlate the response (when it arrives) with this request.

t est Subj ect : in TpSubject Type
Identifies the subject for testing (framework or client application).

ETSI

124 ETSI ES 201 915-3 V1.5.1 (2005-02)

Raises

TpComonExcept i ons

Method
svcActivityTest Res()

The service instance uses this method to return the result of a framework-requested activity test.

Parameters

activityTestID : in TpActivityTestID
Used by the framework to correlate this response (when it arrives) with the original request.

activityTestResult : in TpActivityTestRes
The result of the activity test.

Raises
TpComonExceptions, P_INVALID ACTIVITY_TEST ID

Method
appUnavai | abl el nd()

This method is used by the service instance to inform the framework that the client application is not responding. On
receipt of thisindication, the framework must act to inform the client application that it should cease use of this service
instance.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExcept i ons

Method

genFaul t St at sRecor dReq()

This method is used by the service instance to solicit fault statistics from the framework. On receipt of this request, the
framework must produce a fault statistics record, for the framework or for the application during the specified time
interval, which is returned to the service instance using the genFaultStatsRecordRes operation on the

I pSvcFaultManager interface.

Parameters

timePeriod : in TpTinelnterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings
leaves the time period to the discretion of the framework.

recordSubj ect : in TpSubjectType
Specifies the subject to be included in the general fault statistics record (framework or application).

Raises
TpComonExcept i ons

ETSI

125 ETSI ES 201 915-3 V1.5.1 (2005-02)

Method
svcUnavai | abl el nd()

This method is used by the service instance to inform the framework that it is about to become unavailable for use. The
framework should inform the client application that is currently using this service instance that it is unavailable for use
(viathe svcUnavailablelnd method on the IpAppFaultM anager interface).

Parameters

reason : in TpSvcUnavail Reason
I dentifies the reason for the service instance's unavailability.

Raises

TpComonExcept i ons

Method
SsvcActivityTestErr()

The service instance uses this method to indicate that an error occurred during a framework-requested activity test.

Parameters

activityTestID : in TpActivityTestlD
Used by the framework to correlate this response (when it arrives) with the original request.

Raises

TpComonExceptions, P_INVALID ACTIVITY_TEST ID
Method

genFaul t St at sRecor dRes()

This method is used by the service to provide fault statistics to the framework in response to a genFaultStatsRecordReq
method invocation on the |pSvcFaultManager interface.

Parameters

faultStatistics : in TpFaultStatsRecord
The fault statistics record.

servicelDs : in TpServicel DLi st
Specifies the services that are included in the general fault statistics record. The servicel Ds parameter is not allowed to

be an empty list.

Raises

TpComonExcept i ons

Method

genFaul t St at sRecor dErr ()

This method is used by the service to indicate an error fulfilling the request to provide fault statistics, in responseto a
genFaultStatsRecordReq method invocation on the |pSvcFaultM anager interface.

Parameters

faultStatisticsError : in TpFaultStatisticsError
The fault statistics error.

ETSI

126 ETSI ES 201 915-3 V1.5.1 (2005-02)

servicelDs : in TpServicel DLi st

Specifies the services that were included in the general fault statistics record request. The servicel Ds parameter is not
allowed to be an empty list.

Raises
TpComonExcept i ons

9.3.4.2 Interface Class IpSvcFaultManager
Inherits from: Iplnterface.

Thisinterface is used to inform the service instance of eventsthat affect the integrity of the Framework, Service or
Client Application. The Framework will invoke methods on the Fault Management Service Interface that is specified
when the service instance obtains the Fault Management Framework interface: i.e. by use of the

obtainl nterfaceWithCallback operation on the IpAccess interface.

If the IpSvcFaultManager interface isimplemented by a Service, at least one of these methods shall be implemented. If
the Serviceis capable of invoking the |pFwFaultM anager.activity TestReq() method, it shall implement
activityTestRes() and activityTestErr() in thisinterface. If the Service is capable of invoking

I pFwFaultM anager.genFaultStatsRecordReq(), it shall implement genFaultStatsRecordRes() and
genFaultStatsRecordErr() in this interface.

<<Interface>>

IpSvcFaultManager

activityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void
svcActivityTestReq (activityTestID : in TpActivityTestID) : void

fwFaultReportind (fault : in TpinterfaceFault) : void

fwFaultRecoverylnd (fault : in TpinterfaceFault) : void

fwUnavailablelnd (reason : in TpFwUnavailReason) : void

svcUnavailablelnd () : void

appUnavailablelnd () : void

genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord, recordSubject : in TpSubjectType) : void
activityTestErr (activityTestID : in TpActivityTestID) : void

genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError, recordSubject : in TpSubjectType) :
void

genFaultStatsRecordReq (timePeriod : in TpTimelnterval, servicelDs : in TpServicelDList) : void

Method
activityTest Res()

The framework uses this method to return the result of a service-requested activity test.

Parameters

activityTestID : in TpActivityTestID
Used by the service to correlate this response (when it arrives) with the original request.

ETSI

127 ETSI ES 201 915-3 V1.5.1 (2005-02)

activityTestResult : in TpActivityTestRes
The result of the activity test.

Raises

TpComonExceptions, P_I NVALI D ACTIVITY_TEST_ID
Method

svcActivityTest Req()

The framework invokes this method to test that the service instance is operational. On receipt of this request, the service
instance must carry out atest onitself, to check that it is operating correctly. The service instance reports the test result
by invoking the svcActivity TestRes method on the | pFwFaultM anager interface.

Parameters

activityTestID : in TpActivityTestID
Theidentifier provided by the framework to correlate the response (when it arrives) with this request.

Raises
TpComonExcept i ons

Method
f wFaul t Report | nd()
The framework invokes this method to notify the service instance of afailure within the framework. The service

instance must not continue to use the framework until it has recovered (as indicated by a fwFaultRecoverylnd).

Parameters

fault : in TplnterfaceFault
Specifies the fault that has been detected by the framework.

Raises

TpComonExcept i ons

Method

f wFaul t Recoveryl nd()

The framework invokes this method to notify the service instance that a previously reported fault has been rectified. The

service instance may then resume using the framework.

Parameters
fault : in TplnterfaceFault

Specifies the fault from which the framework has recovered.
Raises
TpComonExcept i ons

Method
f wnavai | abl el nd()

The framework invokes this method to inform the service instance that it is no longer available.

ETSI

128 ETSI ES 201 915-3 V1.5.1 (2005-02)

Parameters

reason : in TpFwUnavail Reason
I dentifies the reason why the framework is no longer available.

Raises

TpComonExcept i ons
Method
svcUnavai | abl el nd()

The framework invokes this method to inform the service instance that the client application has reported that it can no
longer use the service instance (either due to afailurein the client application or in the service instance itself). The
service should assume that the client application is leaving the service session and the service should act accordingly to
terminate the session from its own end too.

Parameters
No Parameters were identified for this method.

Raises

TpComonExcept i ons
Method
appUnavai | abl el nd()

The framework invokes this method to inform the service instance that the client application is ceasing its current use of
the service. This may be aresult of the application reporting afailure. Alternatively, the framework may have detected
that the application has failed: e.g. non-response from an activity test, failure to return heartbeats.

Parameters

No Parameters were identified for this method.

Raises

TpComonExcept i ons

Method

genFaul t St at sRecor dRes()

This method is used by the framework to provide fault statistics to a service instance in response to a
genFaultStatsRecordReq method invocation on the | pFwFaultM anager interface.

Parameters

faultStatistics : in TpFaultStatsRecord
The fault statistics record.

recordSubj ect : in TpSubjectType

Specifies the entity (framework or application) whose fault statistics record has been provided.
Raises

TpComonExcept i ons

Method
activityTestErr()

The framework uses this method to indicate that an error occurred during a service-requested activity test.

ETSI

129 ETSI ES 201 915-3 V1.5.1 (2005-02)

Parameters

activityTestID : in TpActivityTestID
Used by the service instance to correlate this response (when it arrives) with the original request.

Raises
TpComonExceptions, P_INVALID ACTIVITY_TEST ID

Method
genFaul t St at sRecor dErr ()

This method is used by the framework to indicate an error fulfilling the request to provide fault statistics, in response to
a genFaultStatsRecordReq method invocation on the IpFwFaultManager interface.

Parameters

faultStatisticsError : in TpFaultStatisticsError
The fault statistics error.

recordSubj ect : in TpSubjectType
Specifies the entity (framework or application) whose fault statistics record was requested.

Raises
TpComonExcept i ons

Method

genFaul t St at sRecor dReq()

This method is used by the framework to solicit fault statistics from the service, for example when the framework was
asked for these statistics by the client application using the genFaultStatsRecordReq operation on the | pFaultM anager
interface. On receipt of this request the service must produce a fault statistics record, for either the framework or for the
client'sinstances of the specified services during the specified time interval, which is returned to the framework using
the genFaultStatsRecordRes operation on the | pFwFaultManager interface. If the framework does not have accessto a
service instance with the specified servicel D, the P UNAUTHORISED _PARAMETER_VALUE exception shall be
thrown. The extralnformation field of the exception shall contain the corresponding servicel D.

Parameters

timePeriod : in TpTinelnterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings
leaves the time period to the discretion of the service.

servicelDs : in TpServicel DLi st
Specifies the services to be included in the general fault statistics record. This parameter is not allowed to be an empty

list.

Raises

TpCommonExcepti ons, P_I NVALI D_SERVI CE_I D, P_UNAUTHORI SED_PARAMVETER VALUE
9.3.4.3 Interface Class IpFwHeartBeatMgmt

Inherits from: Iplnterface.

Thisinterface allows the initialisation of a heartbeat supervision of the framework by a service instance. If the
I pFwHeartBeatM gmt interface is implemented by a Framework, as a minimum enableHeartBeat() and
disableHeartBeat() shall be implemented.

ETSI

130 ETSI ES 201 915-3 V1.5.1 (2005-02)

<<Interface>>

IpFwHeartBeatMgmt

enableHeartBeat (interval : in TpInt32, svcinterface : in IpSvcHeartBeatRef) : void
disableHeartBeat () : void

changelnterval (interval : in TpInt32) : void

Method

enabl eHear t Beat ()

With this method, the service instance instructs the framework to begin sending its heartbeat to the specified interface at
the specified interval.

Parameters

interval : in Tplnt32
Thetime interval in milliseconds between the heartbeats.

svclnterface : in | pSvcHeart Beat Ref
This parameter refersto the callback interface the heartbeat is calling.

Raises
TpComonExcepti ons, P_I NVALI D | NTERFACE TYPE

Method
di sabl eHear t Beat ()

Instructs the framework to cease the sending of its heartbeat.

Parameters

No Parameters were identified for this method.
Raises

TpComonExcept i ons

Method
changel nterval ()

Allows the administrative change of the heartbeat interval.

Parameters

interval : in Tplnt32
Thetime interval in milliseconds between the heartbeats.

Raises
TpComonExcept i ons

ETSI

131 ETSI ES 201 915-3 V1.5.1 (2005-02)

9.3.4.4 Interface Class IpFwHeartBeat
Inherits from: Iplnterface.

The service side framework heartbeat interface is used by the service instance to send the framework its heartbeat. If a
Framework is capable of invoking |pSvcHeartBeatM gmt.enableHeartBeat(), it shall implement |pFwHeartBeat and the
pulse() method.

<<Interface>>

IpFwHeartBeat

pulse () : void

Method
pul se()

The service instance uses this method to send its heartbeat to the framework. The framework will be expecting a pulse
at the end of every interval specified in the parameter to the | pSvcHeartBeatM gmt.enableSvcHeartbeat() method. If the
pulse() is not received within the specified interval, then the service instance can be deemed to have failed the heartbeat.

Parameters

No Parameters were identified for this method.

Raises

TpComonExcept i ons

9.3.4.5 Interface Class IpSvcHeartBeatMgmt
Inherits from: Iplnterface.

Thisinterface allows the initialisation of a heartbeat supervision of the service instance by the framework. If the
IpSvcHeartBeatM gmt interface isimplemented by a Service, as a minimum enableHeartBeat() and disableHeartBeat()
shall be implemented.

<<Interface>>

IpSvcHeartBeatMgmt

enableSvcHeartBeat (interval : in TpInt32, fwinterface : in IpFwHeartBeatRef) : void
disableSvcHeartBeat () : void

changelnterval (interval : in TpInt32) : void

Method
enabl eSvcHear t Beat ()

With this method, the framework instructs the service instance to begin sending its heartbeat to the specified interface at
the specified interval.

ETSI

132

Parameters

interval : in Tplnt32
Thetime interval in milliseconds between the heartbeats.

fwnterface : in | pFwHeart Beat Ref
This parameter refersto the callback interface the heartbeat is calling.

Raises
TpComonExcepti ons, P_I NVALI D | NTERFACE TYPE

Method
di sabl eSvcHeart Beat ()

Instructs the service instance to cease the sending of its heartbeat.

Parameters
No Parameters were identified for this method.

Raises
TpComonExcept i ons

Method
changel nterval ()

Allows the administrative change of the heartbeat interval.

Parameters
interval : in Tplnt32

Thetime interval in milliseconds between the heartbeats.
Raises

TpComonExcept i ons

9.3.4.6 Interface Class IpSvcHeartBeat

Inherits from: Ipinterface.

ETSI ES 201 915-3 V1.5.1 (2005-02)

The service heartbeat interface is used by the framework to send the service instance its heartbeat. If a Serviceis
capable of invoking |pFwHeartBeatM gmt.enableHeartBest(), it shall implement IpSvcHeartBeat and the pulse()

method.

<<Interface>>

IpSvcHeartBeat

pulse () : void

ETSI

133 ETSI ES 201 915-3 V1.5.1 (2005-02)

Method
pul se()

The framework uses this method to send its heartbeat to the service instance. The service will be expecting a pulse at
the end of every interval specified in the parameter to the |pFwHeartBeatM gmt.enableHeartbeat() method. If the pulse()
is not received within the specified interval, then the framework can be deemed to have failed the heartbeat.

Parameters
No Parameters were identified for this method.

Raises
TpComonExcept i ons

9.3.4.7 Interface Class IpFwLoadManager
Inherits from: Iplnterface.

The framework API should alow the load to be distributed across multiple machines and across multiple component
processes, according to aload management policy. The separation of the load management mechanism and load
management policy ensures the flexibility of the load management services. The load management policy identifies
what load management rules the framework should follow for the specific service. It might specify what action the
framework should take as the congestion level changes. For example, some real-time critical applications will want to
make sure continuous service is maintai ned, below a given congestion level, at all costs, whereas other services will be
satisfied with disconnecting and trying again later if the congestion level rises. Clearly, the load management policy is
related to the QoS level to which the application is subscribed. The framework load management function is represented
by the I pFwL cadManager interface. To handle responses and reports, the service devel oper must implement the

IpSvclL oadManager interface to provide the callback mechanism.

If the IpFwL oadManager interface isimplemented by a Framework, at |east one of the methods shall be implemented as
aminimum requirement. If load level notifications are supported, the createl oadlL evel Natification() and
destroyL oadL evel Notification() methods shall be implemented. If suspendNotification() isimplemented, then
resumeNotification() shall be implemented aso. If a Framework is capable of invoking the

I pSvcl oadM anager.querySvcl oadReq() method, then it shall implement querySvcl oadRes() and querySvcl oadErr()
methods in thisinterface.

<<Interface>>

IpFwLoadManager

reportLoad (loadLevel : in TpLoadLevel) : void

queryLoadReq (querySubject : in TpSubjectType, timelnterval : in TpTimelnterval) : void
guerySvclLoadRes (loadStatistics : in TpLoadStatisticList) : void

querySvcLoadErr (loadStatisticError : in TpLoadStatisticError) : void
createLoadLevelNotification (notificationSubject : in TpSubjectType) : void
destroyLoadLevelNotification (notificationSubject : in TpSubjectType) : void
suspendNotification (notificationSubject : in TpSubjectType) : void

resumeNotification (notificationSubject : in TpSubjectType) : void

ETSI

134 ETSI ES 201 915-3 V1.5.1 (2005-02)

Method
report Load()

The service instance uses this method to report its current load level (0,1, or 2) to the framework: e.g. when the load
level on the service instance has changed. In addition this method shall be called by the service instance in order to
report current load status, when load notifications are first requested, or resumed after suspension.

At level 0 load, the service instance is performing within its load specifications (i.e. it is not congested or overloaded).
At level 1 load, the service instance is overloaded. At level 2 load, the service instance is severely overloaded.

Parameters

| oadLevel : in TpLoadLeve
Specifies the service instance's load level.

Raises
TpComonExcept i ons
Method
guer yLoadReq()

The service instance uses this method to request the framework to provide load statistics records for the framework or
for the application that uses the service instance.

Parameters
guerySubj ect : in TpSubjectType

Specifies the entity (framework or application) for which load statistics records should be reported.

tinmelnterval : in TpTinelnterva
Specifies the timeinterval for which load statistics records should be reported.

Raises

TpComonExcept i ons

Method

guerySvcLoadRes()

The service instance uses this method to send load statistic records back to the framework that requested the
information; i.e. in response to an invocation of the querySvcL oadReq method on the 1pSvcl oadM anager interface.

Parameters

| cadStatistics : in TpLoadStatisticlLi st
Specifies the service-supplied load statistics.

Raises

TpComonExcept i ons
Method
qguerySvcLoadErr ()

The service instance uses this method to return an error response to the framework that requested the service instance's
load statistics information, when the service instance is unsuccessful in obtaining any load statistic records; i.e. in
response to an invocation of the querySvclL oadReq method on the I pSvcl oadManager interface.

ETSI

135 ETSI ES 201 915-3 V1.5.1 (2005-02)

Parameters

| oadStatisticError : in TpLoadStatisticError
Specifies the error code associated with the failed attempt to retrieve the service instance's load statistics.

Raises
TpComonExcept i ons

Method
creat eLoadLevel Noti fication()

The service instance uses this method to register to receive notifications of load level changes associated with the
framework or with the application that uses the service instance. Upon receipt of this method the framework shall
inform the service instance of the current framework or application load using the loadL evel Notification method on the
corresponding 1pSvcl oadM anager.

Parameters

notificationSubject : in TpSubjectType
Specifies the entity (framework or application) for which load level changes should be reported.

Raises

TpComonExcept i ons

Method

destroyLoadLevel Notification()

The service instance uses this method to unregister for notifications of load level changes associated with the
framework or with the application that uses the service instance.

Parameters

notificationSubject : in TpSubjectType
Specifies the entity (framework or application) for which load level changes should no longer be reported.

Raises

TpComonExcept i ons

Method
suspendNotification()

The service instance uses this method to request the framework to suspend sending it notifications associated with the
framework or with the application that uses the service instance; e.g. while the service instance handles a temporary
overload condition.

Parameters

notificationSubject : in TpSubjectType

Specifies the entity (framework or application) for which the sending of notifications by the framework should be
suspended.

Raises
TpComonExcept i ons

ETSI

136 ETSI ES 201 915-3 V1.5.1 (2005-02)

Method

resunmeNoti fication()

The service instance uses this method to request the framework to resume sending it notifications associated with the
framework or with the application that uses the service instance; e.g. after a period of suspension during which the
service instance handled a temporary overload condition. Upon receipt of this method the framework shall inform the

service instance of the current framework or application load using the loadL evelNotification method on the
corresponding | pSvcL oadM anager.

Parameters

notificationSubject : in TpSubjectType

Specifies the entity (framework or application) for which the sending of notifications of load level changes by the
framework should be resumed.

Raises
TpComonExcept i ons

9.3.4.8 Interface Class IpSvcLoadManager
Inherits from: Iplnterface.

The service developer supplies the load manager service interface to handle requests, reports and other responses from
the framework load manager function. The service instance supplies the identity of its callback interface at the time it
obtains the framework's load manager interface, by use of the obtainlnterfaceWithCallback() method on the IpAccess
interface.

If the IpSvcLoadManager interface isimplemented by a Service, at least one of the methods shall be implemented as a
minimum requirement. If load level notifications are supported, then loadL evelNotification() shall be implemented. If a
the Serviceis capable of invoking the |pFwL oadM anager.queryL oadReq() method, then it shall implement

guerylL oadRes() and queryL oadErr() methods in this interface.

<<Interface>>

IpSvcLoadManager

querySvclLoadReq (timelnterval : in TpTimelnterval) : void
queryLoadRes (loadStatistics : in TpLoadStatisticList) : void
queryLoadErr (loadStatisticsError : in TpLoadStatisticError) : void
loadLevelNotification (loadStatistics : in TpLoadStatisticList) : void
suspendNotification () : void

resumeNotification () : void

<<new>> createLoadLevelNotification () : void

<<new>> destroyLoadLevelNotification () : void

Method
quer ySvcLoadReq()

The framework uses this method to request the service instance to provideits load statistic records.

ETSI

137 ETSI ES 201 915-3 V1.5.1 (2005-02)

Parameters

timelnterval : in TpTinmelnterva
Specifies the time interval for which load statistic records should be reported.

Raises
TpComonExcept i ons
Method
guer yLoadRes()

The framework uses this method to send load statistic records back to the service instance that requested the
information; i.e. in response to an invocation of the queryL oadReq method on the | pFwL oadManager interface.

Parameters

| cadStatistics : in TpLoadStatisticLi st
Specifies the framework-supplied load statistics.

Raises
TpComonExcept i ons
Method
guer yLoadErr ()

The framework uses this method to return an error response to the service that requested the framework's load statistics
information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an
invocation of the queryL oadReq method on the |pFwL oadManager interface.

Parameters

| oadSt atisticsError : in TpLoadStatisticError
Specifies the error code associated with the failed attempt to retrieve the framework's load statistics.

Raises
TpComonExcept i ons

Method
| oadLevel Notification()

Upon detecting load condition change, (e.g. load level changing from0to 1, 0to 2, 1 to O, for the application or
framework which has been registered for load level notifications) this method isinvoked on the SCF. In addition this
method shall be invoked on the SCF in order to provide a notification of current load status, when load notifications are
first requested, or resumed after suspension.

Parameters

| cadStatistics : in TpLoadStatisticlLi st
Specifies the framework-supplied load statistics, which include the load level change(s).

Raises
TpComonExcept i ons

ETSI

138 ETSI ES 201 915-3 V1.5.1 (2005-02)

Method
suspendNoti fication()

The framework uses this method to request the service instance to suspend sending it any notifications: e.g. while the
framework handles a temporary overload condition.

Parameters
No Parameters were identified for this method.

Raises

TpComonExcept i ons

Method

resunmeNoti fication()

The framework uses this method to request the service instance to resume sending it notifications: e.g. after a period of
suspension during which the framework handled a temporary overload condition. Upon receipt of this method the
service instance shall inform the framework of the current load using the reportL oad method on the corresponding

I pFwL oadManager.

Parameters
No Parameters were identified for this method.

Raises

TpComonExcept i ons

Method

<<new>> cr eat eLoadLevel Noti fication()

The framework uses this method to register to receive notifications of load level changes associated with the service
instance. Upon receipt of this method the service instance shall inform the framework of the current load using the
reportL oad method on the corresponding | pFwL oadManager.

Parameters

No Parameters were identified for this method.
Raises

TpComonExcept i ons

Method
<<new>> destroyLoadLevel Notification()

The framework uses this method to unregister for notifications of load level changes associated with the service
instance.

Parameters
No Parameters were identified for this method.

Raises
TpComonExcept i ons

ETSI

139 ETSI ES 201 915-3 V1.5.1 (2005-02)

9.3.4.9 Interface Class IpFwOAM
Inherits from: Iplnterface.

The OAM interface is used to query the system date and time. The service and the framework can synchronise the date
and time to a certain extent. Accurate time synchronisation is outside the scope of this API. Thisinterface and the
systemDateTimeQuery() method are optional.

<<Interface>>
IpFWOAM

systemDateTimeQuery (clientDateAndTime : in TpDateAndTime) : TpDateAndTime

Method
syst enDat eTi meQuer y()

This method is used to query the system date and time. The client (service) passesin its own date and time to the
framework. The framework responds with the system date and time.

Returns <systemDateAndTime> : Thisis the system date and time of the framework.

Parameters

clientDat eAndTinme : in TpDat eAndTi me

Thisisthe date and time of the client (service). The error code P_INVALID_DATE_TIME_FORMAT isreturned if the
format of the parameter isinvalid.

Returns

TpDat eAndTi ne

Raises

TpComonExcepti ons, P_I NVALI D Tl ME AND DATE FORVAT
9.3.4.10 Interface Class IpSvcOAM

Inherits from: Ipinterface.

Thisinterface and the systemDateTimeQuery() method are optional.

<<Interface>>
IpSvcOAM

systemDateTimeQuery (systemDateAndTime : in TpDateAndTime) : TpDateAndTime

ETSI

140 ETSI ES 201 915-3 V1.5.1 (2005-02)

Method
syst enDat eTi meQuer y()

This method is used by the framework to send the system date and time to the service. The service responds with its
own date and time.

Returns <clientDateAndTime> : Thisis the date and time of the client (service).

Parameters

syst enDat eAndTi me : in TpDat eAndTi e

Thisisthe system date and time of the framework. The error code P_INVALID_DATE TIME_FORMAT isreturned if
the format of the parameter isinvalid.

Returns

TpDat eAndTi ne

Raises

TpComonExcepti ons, P_I NVALI D Tl ME AND DATE FORVAT

9.3.5 Event Notification Interface Classes

9.3.5.1 Interface Class IpFwEventNotification
Inherits from: Iplnterface.

The event notification mechanism is used to notify the service of generic events that have occurred. If Event
Notifications are supported by a Framework, thisinterface and the createNotification() and destroyNotification()
methods shall be implemented.

<<Interface>>

IpFwEventNotification

createNotification (eventCriteria : in TpFwEventCriteria) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

Method
createNotification()

This method is used to install generic notifications so that events can be sent to the service.

Returns <assignmentl D> : Specifiesthe ID assigned by the framework for this newly installed event notification.

Parameters

eventCriteria : in TpFwEventCriteria
Specifies the event specific criteria used by the service to define the event required.

Returns
TpAssi gnnment | D

ETSI

141 ETSI ES 201 915-3 V1.5.1 (2005-02)

Raises

TpCommonExcept i ons, P_I NVALI D_EVENT_TYPE, P_|I NVALI D_CRI TERI A
Method

destroyNotification()

This method is used by the service to delete generic notifications from the framework.

Parameters

assignment|I D : in TpAssignnent| D

Specifies the assignment 1D given by the framework when the previous createNotification() was called. If the
assignment ID does not correspond to one of the valid assignment IDs, the framework will return the error code
P_INVALID_ASSIGNMENT_ID.

Raises
TpComonExcepti ons, P_I NVALI D_ASSI GNVENT I D
9.3.5.2 Interface Class IpSvcEventNotification

Inherits from: Iplnterface.

Thisinterface is used by the framework to inform the service of a generic event. The Event Notification Framework
will invoke methods on the Event Notification Service Interface that is specified when the Event Notification interface
is obtained. If Event Notifications are supported by a Service, this interface and the reportNotification() and
notificationTerminated() methods shall be implemented.

<<Interface>>

IpSvcEventNotification

reportNotification (eventinfo : in TpFwEventinfo, assignmentID : in TpAssignmentID) : void

notificationTerminated () : void

Method
reportNotification()

This method notifies the service of the arrival of a generic event.

Parameters

eventinfo : in TpFwEventlnfo
Specifies specific data associated with this event.

assignment|I D : in TpAssignnent| D

Specifies the assignment id which was returned by the framework during the createNotification() method. The service
can use the assignment id to associate events with event specific criteriaand to act accordingly.

Raises
TpComonExcepti ons, P_I NVALI D_ASSI GNVENT_I D

ETSI

142 ETSI ES 201 915-3 V1.5.1 (2005-02)

Method
notificationTerm nated()

This method indicates to the service that al generic event notifications have been terminated (for example, due to faults
detected).

Parameters
No Parameters were identified for this method.

Raises
TpComonExcept i ons

9.4 State Transition Diagrams

This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the
gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can
be invoked by the client are shown. Methods not shown for a specific state are not relevant for that state and will return
an exception. Apart from the methods that can be invoked by the client also eventsinternal to the gateway or related to
network events are shown together with the resulting event or action performed by the gateway. These interna events
are shown between quotation marks.

ETSI

143 ETSI ES 201 915-3 V1.5.1 (2005-02)

9.4.1 Service Registration State Transition Diagrams

9.4.1.1 State Transition Diagrams for IpFwServiceRegistration

registerService

" scF)
Registered

AN J

_ s S
unannounceSenice announceServiceAvailability

~

[] . .
| \describeService
\ \/

Y

CF
‘ Announced
~

unregisterService

&

Figure 28: State Transition Diagram for IpFwServiceRegistration

9.4.1.1.1 SCF Registered State

Thisisthe state entered when a Service Capability Server (SCS) registersits SCF in the Framework, by informing it of
the existence of an SCF characterised by a service type and a set of service properties. As aresult the Framework
associates a service ID to this SCF that will be used to identify it by both sides.

An SCF may be unregistered, the service ID then being no longer associated with the SCF.

9.4.1.1.2 SCF Announced State

Thisisthe state entered when the existence of the SCF has been announced, thus making it available for discovery by
applications. The SCF can be unannounced at any time, taking it back into the SCF Registered state where it isno
longer available for discovery.

9.4.2 Service Instance Lifecycle Manager State Transition Diagrams

There are no State Transition Diagrams defined for Service Instance Lifecycle Manager.

ETSI

144 ETSI ES 201 915-3 V1.5.1 (2005-02)

9.4.3 Service Discovery State Transition Diagrams

There are no State Transition Diagrams defined for Service Discovery.
9.4.4 Integrity Management State Transition Diagrams

9.4.4.1 State Transition Diagrams for IpFwLoadManager

reportLoad

"load change” NoadLevelNotification queryAppLoadRes[load statistics requested by LoadManager]
queryAppLoadEr| load statistics requested by LoadManager]

createLoadLewelNotification NoadLevelNotification \(Active } queryLoadReq

destroyLoadLevelNotification

IpAccess\obtaininteface
IpAccess)gbtaininterfaceWithCallback
Idle

suspendNotification

resumeNatification [all notifications suspended]

“NoadLewelNotification

reportLoad
queryAppLoadRes[load statistics requested by LoadManager]
queryAppLoadEr| load statistics requested by LoadManager]

Notification queryLoadReq
Suspended

destroyLoadLevelNotification

All States

IpAccess.endAccess

Figure 29: State Transition Diagram for IpFwLoadManager

9.4.4.1.1 Idle State

In this state the service has obtained an interface reference of the LoadManager from the IpAccess interface.

9.4.4.1.2 Notification Suspended State

Dueto e.g. atemporary load condition, the service has requested the LoadM anager to suspend sending the load level
notification information.

ETSI

145 ETSI ES 201 915-3 V1.5.1 (2005-02)

9.4.4.1.3 Active State

In this state the service has indicated its interest in notifications by performing a createl oadL evel Notification()
invocation on the |pFwL oadManager. The load manager can now request the service to supply load statistics
information (by invoking querySvcLoadReq()). Furthermore the LoadManager can reguest the service to control its
load (by invoking loadL evelNotification(), resumeNoatification() or suspendNotification() on the service side of
interface). In case the service detects a change in load level, it reports this to the LoadManager by calling the method
reportLoad().

9.4.5 Event Notification State Transition Diagrams

There are no State Transition Diagrams defined for Event Notification.

10 Service Properties

10.1 Service Property Types

The service type defines which properties the supplier of an SCF supplier shall provide when he registers an SCF.

At Service Registration the properties of atype shall be interpreted as the set of values that can be supported by the
service. If aservice type has a certain property (e.g. "CAN_DO_SOVETHI NG'), a service registers with a property value
of {"true", "false"}.Thismeansthat the SCSisableto support Service instances where this property is used or
allowed and instances where this property is not used or allowed. This clarifies why sets of values shall be used for the
property values instead of primitive types.

At establishment of the Service Level Agreement the property can then be set to the value of the specific agreement.
The context of the Service Level Agreement thus restricts the set of property values of the SCS and will thuslead to a
sub-set of the service property values. When the correct SCF isinstantiated during the discovery and selection
procedure (see Note), the Service Properties shall thus be interpreted as the requested property val ues.

NOTE: Thisisachieved through the createServiceManager() operation in the Service Instance Lifecycle Manager
interface.

All property values are represented by an array of strings. The following table shows all supported property types.

ETSI

146 ETSI ES 201 915-3 V1.5.1 (2005-02)

Property type name Description Example value (array of | Interpretation of example
strings) value
BOOLEAN_SET set of Booleans {"FALSE"} The set of Booleans
consisting of the Boolean
"false".
INTEGER_SET set of integers {"1","2", "5", "7} The set of integers consisting
of theintegers 1,2, 5and 7.
STRING_SET set of strings {"Sophia", "Rijen"} The set of strings consisting
of the string "Sophia" and the
string "Rijen"
ADDRESSRANGE_SET set of address ranges {"123??7*", "*.ericsson.se"} [The set of address ranges
(Deprecated) consisting of ranges 123??*
and *.ericsson.se.
INTEGER_INTERVAL interval of integers {"5", "100"} The integers that are between
or equal to 5 and 100.
STRING_INTERVAL interval of strings {"Rijen", "Sophia"} The strings that are between
or equal to the strings "Rijen"
and "Sophia", in
lexicographical order.
INTEGER_INTEGER_MAP map from integers to {"1","10", "2", "20", "3", The map that maps 1 to 10, 2
integers "30"} to 20 and 3 to 30.
XML_ADDRESS_RANGE_S (set of values of {"<AddressRangeSet> Any addresses starting with
ET TpAddressRange. Values of |<AddressRange> 123 or starting with 456 in the
TpAddressRange are <Plan>P_ADDRESS_P |E.164 Address Plan
described using XML. An LAN_E164</Plan>
XML schema is pI’OVidEd _<AddrString>123*</Add
below for this purpose. rstring>
</AddressRange>
<AddressRange>
<Plan>P_ADDRESS_P
LAN_E164</Plan>
<AddrString>234*</Add
rString>
</AddressRange>
</AddressRangeSet>"}

The bounds of the string interval and the integer interval types may hold the reserved value "UNBOUNDED". If the |eft
bound of the interval holds the value "UNBOUNDED", the lower bound of the interval isthe smallest value supported
by the type. If the right bound of the interval holds the value "UNBOUNDED", the upper bound of the interval isthe
largest value supported by the type.

Thevaue of XML_ADDRESS RANGE_SET should comply with the following XML Schema:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlins:xs="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">
<xs:element name="AddressRangeSet">
<xs:complexType>
<xs:sequence>
<xs:element name="AddressRange" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="Plan" type="xs:string" default="P_ADDRESS_PLAN_ANY"/>
<xs:element name="AddrString" type="xs:string"/>
<xs:element name="Name" type="xs:string" minOccurs="0"/>
<xs:element name="SubAddressString" type="xs:string" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

ETSI

147 ETSI ES 201 915-3 V1.5.1 (2005-02)

An example usage could be:

{" <?xml version="1.0" encoding="UTF-8"?>
<AddressRangeSet xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="xml_address_range_set.xsd">
<AddressRange>
<Plan>P_ADDRESS_PLAN_E164</Plan>
<AddrString>789*</AddrString>
</AddressRange>
<AddressRange>
<Plan>P_ADDRESS_PLAN_ANY</Plan>
<AddrString>123*</AddrString>
</AddressRange>
<AddressRange>
<Plan>P_ADDRESS_PLAN_SIP</Plan>
<AddrString><sip:*@parlay.org></AddrString>
<Name/>
</AddressRange>
</AddressRangeSet>"}

Note that the final address range corresponds to any sip address @parlay.org, i.e. <sip:* @parlay.org>.

10.2 General Service Properties
Each service instance has the following general properties:

* Service Name

* ServiceVersion

*« Servicelnstance ID

¢ Service Instance Description

¢ Product Name
¢ Product Version

e Supported Interfaces

¢ Operation Set.

10.2.1 Service Name

This property contains the name of the service, e.g. "UserLocation", "UserL ocationCamel", "UserL ocationEmergency"
or "UserStatus”.

10.2.2 Service Version

This property contains the version of the APIs, to which the service is compliant, e.g. "2.1".

10.2.3 Service Instance ID

This property uniquely identifies a specific instance of the service. The Framework generates this property.

10.2.4 Service Instance Description

This property contains a textual description of the service.

10.2.5 Product Name

This property contains the name of the product that provides the service, e.g. "Find It", "Locate.com".

ETSI

148 ETSI ES 201 915-3 V1.5.1 (2005-02)

10.2.6 Product Version

This property contains the version of the product that provides the service, e.g. "3.1.11".

10.2.7 Supported Interfaces

This property contains alist of strings with interface names that the service supports, e.g. "lpUserLocation”,
"IpUserStatus’.

10.2.8 Operation Set

Property Type Description

P_OPERATION_SET |STRING_SET |Specifies set of the operations the SCS supports.

The notation to be used is:
{"Interfacel.operationl","Interfacel.operation2", "Interface2.operation1"},
e.g.

{"IpCall.createCall","IpCall.routeReq"}.

11 Data Definitions

This clause provides the Framework specific data definitions necessary to support the OSA interface specification.
The general format of a data definition specification is the following:

- Datatype, that shows the name of the data type;

Description, that describes the data type;

Tabular specification, that specifies the data types and values of the data type;
- Example, if relevant, shown to illustrate the data type.

All datatypes referenced but not defined in this clause are common data definitions which may be found in
ES 201 915-2.

11.1 Common Framework Data Definitions

11.1.1 TpClientAppID

Thisisan identifier for the client application. It is used to identify the client to the Framework. This datatypeis

identical to TpString and is defined as a string of characters that uniquely identifies the application. The content of this

string shall be unique for each OSA API implementation (or unique for a network operator's domain). This unique
identifier shall be negotiated with the OSA operator and the application shall useit to identify itself.

11.1.2 TpClientApplIDList

This data type defines a Numbered Set of Data Elements of type TpClientAppID.

11.1.3 TpDomainiD

Definesthe Tagged Choi ce of Data El enent s that specify either the Framework or the type of entity
attempting to access the Framework.

Tag Element Type

TpDomainiDType

ETSI

149

ETSI ES 201 915-3 V1.5.1 (2005-02)

Tag Element Value

Choice Element Type

Choice Element Name

P_SERVI CE_I NSTANCE

P_FW TpFwl D Fw D

P_CLIENT_APPLICATION Tpd i ent Appl D d i ent Appl D

P_ENT OP TpEnt Gpl D Ent Opl D
TpServi cel nstancel D Servicel D

P_SERVICE_SUPPLIER

TpServi ceSupplierlD

Servi ceSupplierlD

11.1.4 TpDomainIDType

Defines either the Framework or the type of entity attempting to access the Framework.

Name Value Description
P_FW 0 The Framework
P_CLI ENT_APPLI CATI ON 1 A client application
P_ENT_OP 2 An enterprise operator
P_SERVI CE_| NSTANCE 3 A service instance
P_SERVI CE_SUPPLI ER 4 A service supplier

11.1.5 TpEntOpID

This datatypeisidentical to TpString and is defined as a string of characters that identifies an enterprise operator.
In conjunction with the application it uniquely identifies the enterprise operator which uses a particular OSA Service

Capability Feature (SCF).

11.1.6 TpPropertyName

Thisdatatypeisidentical to TpSt ri ng. It isthe name of a generic "property".

11.1.7 TpPropertyValue

Thisdatatypeisidentical to TpSt ri ng. It isthe vaue (or the list of values) associated with a generic "property”.

11.1.8 TpProperty

ThisdatatypeisaSequence of Data El ement s which describesageneric "property”. It is a structured data

type consisting of the following { name,value} pair.

Sequence Element Sequence Element
Name Type
PropertyName TpPropertyName
PropertyVaue TpPropertyValue

11.1.9 TpPropertyList

This datatype definesaNunber ed Li st of Data El enent s of type TpProperty.

11.1.10 TpEntOpIDList

This data type defines a Numbered Set of Data Elements of type TpEntOplD.

ETSI

150 ETSI ES 201 915-3 V1.5.1 (2005-02)

11.1.11 TpFwiID

Thisdatatypeisidentical to TpSt ri ng and identifies the Framework to a client application (or Service Capability
Feature).

11.1.12 TpService

This datatypeis a Sequence of Data Elements which describes a registered SCFs. It is a structured type which consists
of:

Sequence Element Sequence Element Documentation
Name Type
Servicel D TpServicelD
Servi ceDescri ption TpServiceDescription Thisfield contains the description of the service

11.1.13 TpServiceList

This data type defines a Numbered Set of Data Elements of type TpService.

11.1.14 TpServiceDescription

This data type is a Sequence of Data Elements which describes aregistered SCF. It is a structured data type which
consists of:

Sequence Element Sequence Element Documentation
Name Type
Servi ceTypeNane TpServiceTypeName
Servi cePropertyli st TpServicePropertyList

11.1.15 TpServicelD

This datatypeisidentical to a TpString, and is defined as a string of characters that uniquely identifies a registered SCF
interface. The string is automatically generated by the Framework.

11.1.16 TpServicelDList

This data type defines a Numbered Set of Data Elements of type TpServicel D.

11.1.17 TpServicelnstancelD

Thisdatatypeisidentical to a TpString, and is defined as a string of characters that uniquely identifies an instance of a
registered SCF interface. The string is automatically generated by the Framework.

11.1.18 TpServiceSpecString

This datatypeisidentical to a TpString, and is defined as a string of characters that uniquely identifies the name of an
SCF specialization interface. Other network operator specific capabilities may also be used, but should be preceded by
the string "SP_". The following values are defined.

Character String Value Description
NULL An empty (NULL) string indicates no SCF specialization
P_CALL The Call specialization of the of the User Interaction SCF

ETSI

151 ETSI ES 201 915-3 V1.5.1 (2005-02)

11.1.19 TpServiceTypeProperty

ThisdatatypeisaSequence of Data El enent s which describes a service property associated with a service
type. It defines the name and mode of the service property, and also the service property type: e.g. Boolean, integer.
Itissimilar to, but distinct from, TpServiceProperty. The latter is associated with an actual service: it defines the service
property's name and mode, but also defines the list of values assigned to it.

Sequence Element Sequence Element Documentation
Name Type
Ser vi cePr oper t yNanme TpServicePropertyName
Servi ceTypePr oper t yMode TpServiceTypePropertyMode
Ser vi cePr opertyTypeNane TpServiceProperty TypeName

11.1.20 TpServiceTypePropertyList

This data type defines a Numbered Set of Data Elements of type TpServiceTypeProperty.

11.1.21 TpServiceTypePropertyMode

This type defines SCF property modes.

Name Value Documentation
NORMAL 0 The vaue of the corresponding SCF property type may optionally be provided
MANDATORY 1 The value of the corresponding SCF property type shall be provided at service registration time
READONLY 2 The value of the corresponding SCF property type is optional, but once given avalueit can not be
modified/restricted by a service level agreement
MANDATORY_READONLY 3 The value of the corresponding SCF property type shall be provided but can not subsequently be
modified/restricted by a service level agreement.

11.1.22 TpServicePropertyTypeName

Thisdatatypeisidentical to TpString and describes a valid SCF property nhame. The valid SCF property names are
listed in the SCF data definition.

11.1.23 TpServicePropertyName

This datatypeisidentical to TpString. It defines avalid SCF property name.

11.1.24 TpServicePropertyNameList

This data type defines a Numbered Set of Data Elements of type T pServicePropertyName.

11.1.25 TpServicePropertyValue

This datatypeisidentical to TpString and describes a valid value of a SCF property.

11.1.26 TpServicePropertyValueList

This data type defines a Numbered Set of Data Elements of type TpServicePropertyValue.

ETSI

11.1.27 TpServiceProperty

152 ETSI ES 201 915-3 V1.5.1 (2005-02)

This datatypeis a Sequence of Data Elements which describes an " SCF property". It is a structured data type which

consists of:
Sequence Element Sequence Element Documentation
Name Type
Ser vi cePr opert yNane TpServicePropertyName
Ser vi cePr opertyVal uelLi st TpServicePropertyValuelList

11.1.28 TpServicePropertyList

This data type defines a Numbered Set of Data Elements of type TpServiceProperty.

11.1.29 TpServiceSupplierlD

Thisisan identifier for a service supplier. It isused to identify the supplier to the Framework. This datatypeisidentical

toTpStri ng.

11.1.30 TpServiceTypeDescription

This data type is a Sequence of Data Elements which describes an SCF type. It is a structured data type. It consists of:

Sequence Element Sequence Element
Name Type

Documentation

Servi ceTypePropertyli st TpServiceTypePropertyList

a sequence of property name and property mode tuples associated with the
SCF type

Servi ceTypeNaneLi st TpServiceTypeNameL.ist

the names of the super types of the associated SCF type

Avai | abl eOr Unavai | abl e TpBoolean

an indication whether the SCF type is available (true) or unavailable (false)

11.1.31 TpServiceTypeName

Thisdatatypeisidentical to a TpString, and is defined as a string of characters that uniquely identifies the type of an
SCF interface. Other Network operator specific capabilities may aso be used, but should be preceded by the string

"SP_". The following values are defined.

Character String Value

Description

NULL

An empty (NULL) string indicates no SCF name

P_GENERI C_CALL_CONTROL

The name of the Generic Call Control SCF

P_MULTI _PARTY_CALL_CONTROL

The name of the MultiParty Call Control SCF

P_MULTI _MEDI A CALL_CONTROL

The name of the MultiMedia Call Control SCF

P_OONFERENCE_CALL_CONTROL

The name of the Conference Call Control SCF

P_USER | NTERACTI ON

The name of the User Interaction SCFs

P_TERM NAL_CAPABI LI TI ES

The name of the Terminal Capabilities SCF

P_USER_LOCATI ON

The name of the User Location SCF

P_USER_LOCATI ON_CAMEL

The name of the Network User Location SCF

P_USER_LOCATI ON_EMERGENCY

The name of the User Location Emergency SCF

P_USER_STATUS

The name of the User Status SCF

P_DATA_SESSI ON_CONTROL

The name of the Data Session Control SCF

P_GENERI C_MESSAG NG

The name of the Generic Messaging SCF

P_CONNECTI VI TY_MANAGER

The name of the Connectivity Manager SCF

P_CHARG NG

The name of the Charging SCF

P_ACCOUNT _MANAGENMENT

The name of the Account Management SCF

P_POLI CY_MANAGENMENT

The name of the Policy Management SCF

ETSI

153

ETSI ES 201 915-3 V1.5.1 (2005-02)

Character String Value

Description

P_PAM PRESENCE_AND_AVAI LABI LI TY

The name of PAM presentity SCF

P_PAM EVENT_MANAGEMENT

The name of PAM watcher SCF

P_PAM PROVI S| ONI NG

The name of PAM provisioning SCF

11.1.32 TpServiceTypeNamelList

This data type defines a Numbered Set of Data Elements of type TpServiceTypeName.

11.1.33 TpSubjectType

Defines the subject of a query/notification request/result.

Name

Value

Description

P_SUBJECT UNDEFI NED

The subject is neither the framework nor the
client application

P_SUBJECT_CLI ENT_APP

The subject is the client application

P_SUBJECT FW

The subject is the framework

11.2 Event Notificati

on Data Definitions

11.2.1 TpFwEventName

Defines the name of event being notified.

Name Value Description
P_EVENT_FW NAME_UNDEF| NED 0 Undefined
P_EVENT_FW SERVI CE_AVAI LABLE 1 Notification of SCS(s) available
P_EVENT_FW_SERVICE_UNAVAILABLE 2 Notification of SCS(s) becoming unavailable

11.2.2 TpFwEventCriter

ia

Definesthe Tagged Choi ce of Data El enent s that specify the criteriafor an event notification to be

generated.

Tag Element Type

TpFwEvent Nanme

Tag Element Value

Choice Element Type

Choice Element Name

P_EVENT_FW_NAME_UNDEFINED

TpString

Event NameUndef i ned

P_EVENT_FW_ SERVICE_AVAILABLE

TpServiceTypeNameL.ist

ServiceTypeNamelList

P_EVENT_FW_SERVICE_UNAVAILABLE

TpServiceTypeNameL.ist

UnavailableServiceTypeNameL.ist

ETSI

154 ETSI ES 201 915-3 V1.5.1 (2005-02)

11.2.3 TpFwEventinfo

Definesthe Tagged Choi ce of Data El enent s that specify the information returned to the application in an
event notification.

Tag Element Type
TpFwEvent Name
Tag Element Value Choice Element Type Choice Element Name
P_EVENT_FW_NAME_UNDEFINED TpString Event NaneUndef i ned
P_EVENT_FW_ SERVICE_AVAILABLE TpSer vi cel DLi st Servi cel DLi st
P_EVENT_FW_SERVICE_UNAVAILABLE TpSer vi cel DLi st Unavai | abl eServi cel DLi st

11.3 Trust and Security Management Data Definitions

11.3.1 TpAccessType

This datatypeisidentical to a TpString. Thisidentifies the type of accessinterface requested by the client application.
If they request P_OSA_ACCESS, then areference to the IpAccess interface is returned. (Network operators can define
their own access interfaces to satisfy client requirements for different types of access. These can be selected using the
TpAccessType, but should be preceded by the string "SP_". The following value is defined.

String Value Description
P_OSA_ACCESS Access using the OSA Access Interfaces: IpAccess and IpClientAccess

11.3.2 TpAuthType

This datatype isidentical to a TpString. It identifies the type of authentication mechanism requested by the client. It
provides Network operators and clients with the opportunity to use an alternative to the OSA API Level Authentication
interface. This can for example be an implementation specific authentication mechanism, e.g. CORBA Security, or a
proprietary Authentication interface supported by the Network Operator. OSA API Level Authentication isthe default
authentication method. Other Network operator specific capabilities may aso be used, but should be preceded by the
string "SP_". The following values are defined.

String Value Description
P_OSA_AUTHENTICATION Authenticate using the OSA API Level Authentication Interfaces: IpAPILevel Authentication and
IpClientAPILevel Authentication
P_AUTHENTICATION Authenticate using the implementation specific authentication mechanism, e.g. CORBA Security.

ETSI

155 ETSI ES 201 915-3 V1.5.1 (2005-02)

11.3.3 TpEncryptionCapability

This datatypeisidentical to a TpString, and is defined as a string of characters that identify the encryption capabilities
that could be supported by the framework. Other Network operator specific capabilities may also be used, but should be
preceded by the string "SP_". Capabilities may be concatenated, using commas (,) as the separation character. The
following values are defined.

String Value Description
NULL An empty (NULL) string indicates no client capabilities.
P_DES 56 A simpletransfer of secret information that is shared between the client application and the Framework with protection
against interception on the link provided by the DES algorithm with a 56-bit shared secret key. The ECB mode of DESisto
be used.
P_DES 128 A simpletransfer of secret information that is shared between the client entity and the Framework with protection against

interception on the link provided by the DES algorithm with a 128-bit shared secret key. Use of the P_DES 128 value of
TpEncryptionCapability is deprecated, as DES cannot be used with a 128-bit key.

P_RSA_512 A public-key cryptography system providing authentication without prior exchange of secrets using 512-hit keys.
P_RSA_1024 A public-key cryptography system providing authentication without prior exchange of secrets using 1 024-hit keys.
P_TDEA The Triple-DES or TDEA algorithm with three 56-bit secret keys. The key exchange is handled separately, and may permit

use of three, two or only one unique key. The TECB mode of Triple-DES isto be used.

11.3.4 TpEncryptionCapabilityList

This datatypeisidentical to a TpString. It is a string of multiple TpEncryptionCapability concatenated using a comma
(,)as the separation character.

11.3.5 TpEndAccessProperties

This datatypeis of type TpPropertyList. It identifies the actions that the Framework should perform when an

application or service capability feature entity ends its access session (e.g. existing service capability or application
sessions may be stopped, or |eft running).

11.3.6 TpAuthDomain

ThisisSequence of Data El ement s containing all the data necessary to identify a domain: the domain
identifier, and a reference to the authentication interface of the domain.

Sequence Element | Sequence Element Description
Name Type
Domai nl D TpDomai nl D Identifies the domain for authentication. Thisidentifier is assigned to the domain during the

initial contractual agreements, and isvalid during the lifetime of the contract.

Aut hl nterface | pl nterfaceRef Identifies the authentication interface of the specific entity. This data element has the same
lifetime as the domain authentication process, i.e. in principle a new interface reference can
be provided each time adomain intends to access another.

ETSI

156 ETSI ES 201 915-3 V1.5.1 (2005-02)

11.3.7 TplinterfaceName

This datatypeisidentical to a TpString, and is defined as a string of characters that identify the names of the
Framework SCFs that are to be supported by the OSA API. Other Network operator specific SCFs may also be used,
but should be preceded by the string "SP_". The following values are defined.

Character String Value

Description

P_DI SCOVERY The name for the Discovery interface.
P_EVENT_NOTI FI CATI ON The name for the Event Notification interface.
P_0AM The name for the OA&M interface.

P_LOAD_MANAGER

The name for the Load Manager interface.

P_FAULT_MANAGER

The name for the Fault Manager interface.

P_HEARTBEAT_NANAGENENT

The name for the Heartbeat M anagement interface.

P_SERVI CE_AGREENENT_MANAGENENT

The name of the Service Agreement Management interface.

P_REG STRATI ON

The name for the Service Registration interface.

P_ENT_OP_ACCOUNT_NMANAGENENT

The name for the Service Subscription: Enterprise Operator Account Management
interface.

P_ENT_OP_ACCOUNT_I NFO_QUERY

The name for the Service Subscription: Enterprise Operator Account Information Query
interface.

P_SVC_CONTRACT_MANAGENENT

The name for the Service Subscription: Service Contract Management interface.

P_SVC_CONTRACT_I NFO_QUERY

The name for the Service Subscription: Service Contract Information Query interface.

P_CLI ENT_APP_NMANAGENENT

The name for the Service Subscription: Client Application Management interface.

P_CLI ENT_APP_I NFO_QUERY

The name for the Service Subscription: Client Application Information Query interface.

P_SVC_PROFI LE_MANAGENENT

The name for the Service Subscription: Service Profile Management interface.

P_SVC _PROFI LE_I NFO_QUERY

The name for the Service Subscription: Service Prafile Information Query interface.

11.3.8 TplinterfaceNameList

This data type defines a Numbered Set of Data Elements of type TplnterfaceName.

11.3.9 TpServiceToken

This datatypeisidentica to a TpString, and identifies a selected SCF. Thisis afree format text token returned by the
Framework, which can be signed as part of a service agreement. This will contain Network operator specific
information relating to the service level agreement. The serviceToken has alimited lifetime, which is the same asthe
lifetime of the service agreement in normal conditions. If something goes wrong the serviceToken expires, and any
method accepting the serviceToken will return an error code (P_I NVALI D_SERVI CE_TOKEN). Service Tokens will
automatically expireif the client or Framework invokes the endAccess method on the other's corresponding access
interface.

11.3.10 TpSignatureAndServiceMgr

Thisis a Sequence of Data Elements containing the digital signature of the Framework for the service agreement, and a
reference to the SCF manager interface of the SCF.

Sequence Element Sequence Element
Name Type
Di gital Signature TpCct et Set

| pSer vi ceRef

Servi ceMyrinterface

The digital Signature is the signed version of a hash of the service token and agreement text given by the client
application. If no signing algorithm is used, the digital Signature is the octet sequence of the service token and
agreement text given by the client application.

The ServiceMgrinterface is areference to the SCF manager interface for the selected SCF.

ETSI

157

11.3.11 TpSigningAlgorithm

This datatypeisidentical to a TpString, and is defined as a string of characters that identify the signing algorithm that
shall be used. Other Network operator specific capabilities may also be used, but should be preceded by the string
"SP_". The following values are defined.

ETSI ES 201 915-3 V1.5.1 (2005-02)

String Value Description
NULL An empty (NULL) string indicates no signing algorithm is required
P_MD5_RSA_512 MD5 takes an input message of arbitrary length and produces as output a 128-bit message digest of theinput. This

is then encrypted with the private key under the RSA public-key cryptography system using a 512-bit key.

P_MD5_RSA_1024 | M D5 takes an input message of arbitrary length and produces as output a 128-bit message digest of the input. This
is then encrypted with the private key under the RSA public- key cryptography system using a 1 024-bit key

11.4 Integrity Management Data Definitions

11.4.1 TpActivityTestRes

Thistypeisidentical to TpString and is an implementation specific result. The valuesin this data type are "Available"

or "Unavailable'.

11.4.2 TpFaultStatsRecord

This defines the set of records to be returned giving fault information for the requested time period.

Sequence Element
Name

Sequence Element
Type

Peri od

TpTi mel nt erval

Faul t St at sSet

TpFaul t St at sSet

11.4.3 TpFaultStats

This defines the sequence of data el ements which provide the statistics on a per fault type basis.

Sequence Element Sequence Element Description
Name Type
Faul t Tpl nterfaceFaul t
Cccurrences Tpl nt 32 The number of separate instances of this fault
MaxDur ati on Tpl nt 32 The number of seconds duration of the longest fault
Tot al Durati on Tpl nt 32 The cumulative duration (all occurrences)
Nunber OF O i ent sAf f ect ed Tpl nt 32 The number of clientsinformed of the fault by the Fw

Occurrencesis the number of separate instances of this fault during the period. MaxDuration and Total Duration are the
number of seconds duration of the longest fault and the cumulative total during the period.
Nunmber OF C i ent sAf f ect ed isthe number of clients informed of the fault by the Framework.

11.4.4 TpFaultStatisticsError

Defines the error code associated with a failed attempt to retrieve any fault statistics information.

Name Value Description
P_FAULT_I NFO_ERROR_UNDEFI NED 0 Undef i ned error
P_FAULT_I NFO_UNAVAI LABLE 1 Fault statistics unavail abl e

ETSI

11.4.5 TpFaultStatsSet

This datatype definesaNunber ed Set of Data

11.4.6 TpActivityTestID

Thisdatatypeisidentical to a TpInt32, and is used as

11.4.7 TplinterfaceFault

Defines the cause of the interface fault detected.

158

El enent s of type TpFaultStats.

atoken to match activity test requests with their results.

Name Value Description
| NTERFACE_FAULT_UNDEFI NED 0 Undefined
| NTERFACE_FAULT_LCCAL_FAI LURE 1 A fault in the local API software or hardware has been detected
| NTERFACE_FAULT_GATEWAY_FAI LURE 2 A fault in the gateway API software or hardware has been detected
| NTERFACE_FAULT_PROTOCOL_ERROR 3 An error in the protocol used on the client-gateway link has been detected

11.4.8 TpSvcUnavailReason

Defines the reason why a SCF is unavailable.

Name Value Description
SERVI CE_UNAVAI LABLE_UNDEFI NED 0 Undefined
SERVI CE_UNAVAI LABLE LOCAL_FAI LURE 1 The Local API software or hardware has failed
SERVI CE_UNAVAI LABLE_GATEWAY_FAI LURE 2 The gateway API software or hardware has failed
SERVI CE_UNAVAI LABLE_OVERLOADED 3 The SCF isfully overloaded
SERVI CE_UNAVAI LABLE_CLGOSED 4 The SCF has closed itsdlf (e.g. to protect from fraud or malicious attack)

11.4.9 TpFwUnavailReason

Defines the reason why the Framework is unavailable.

Name Value Description
FW UNAVAI LABLE_UNDEFI NED 0 Undefined
FW UNAVAI LABLE_LOCAL_FAI LURE 1 The Local API software or hardware has failed
FW UNAVAI LABLE_GATEWAY_FAI LURE 2 The gateway API software or hardware has failed
FW UNAVAI LABLE_OVERLQADED 3 The Framework is fully overloaded
FW UNAVAI LABLE_CLOSED 4 The Framework has closed itself (e.g. to protect from fraud or malicious attack)
FW_UNAVAI LABLE_PROTOCOL_FAI LURE 5 The protocol used on the client-gateway link has failed

11.4.10 TpLoadLevel

Defines the Sequence of Data Elements that specify load level values.

Name Value Description
LOAD LEVEL_NORVAL 0 Normal load
LOAD LEVEL_OVERLOAD 1 Overload
LOAD LEVEL_SEVERE_OVERLQAD 2 Severe Overload

ETSI

ETSI ES 201 915-3 V1.5.1 (2005-02)

11.4.11 TpLoadThreshold

159

Defines the Sequence of Data Elements that specify the load threshold value. The actual load threshold valueis
application and SCF dependent, so is their relationship with load level.

Sequence Element
Name

Sequence Element
Type

LoadThr eshol d

TpFl oat

11.4.12 TpLoadinitVal

Defines the Sequence of Data Elements that specify the pair of load level and associated load threshold value.

Sequence Element
Name

Sequence Element
Type

LoadLeve

TpLoadLeve

LoadThr eshol d

TpLoadThr eshol d

11.4.13 TpLoadPolicy

Defines the load balancing policy.

Sequence Element Name

Sequence Element Type

LoadPol i cy

TpString

11.4.14 TpLoadStatistic

Definesthe Sequence of Data El enent s that represents aload statistic record for a specific entity
(i.e. Framework, service or application) at a specific date and time.

Sequence Element Name

Sequence Element Type

LoadStatisticEntityl D

TpLoadStatisticEntitylD

Ti meSt anp

TpDat eAndTi ne

LoadStatisticlnfo

TpLoadStatisticlnfo

11.4.15 TpLoadStatisticList

DefinesaNunbered Li st of Data El enents of type TpLoadStatistic.

11.4.16 TpLoadStatisticData

Definesthe Sequence of Data El enent s that represents load statistic information.

Sequence Element Name

Sequence Element Type

LoadVal ue (see Note)

TpFl oat

LoadLeve

TpLoadLeve

NOTE: LoadValue is expressed as a percentage.

ETSI

ETSI ES 201 915-3 V1.5.1 (2005-02)

11.4.17 TpLoadStatisticEntitylD

160

ETSI ES 201 915-3 V1.5.1 (2005-02)

Definesthe Tagged Choi ce of Data El enent s that specify the type of entity (i.e. service, application or

Framework) providing load statistics.

Tag Element Type

TpLoadStatisticEntityType

Tag Element Value

Choice Element Type

Choice Element Name

P_LOAD_STATISTICS FW_TYPE TpFwi D Framewor kI D
P_LOAD_STATISTICS SVC_TYPE TpSer vi cel D Servi cel D
P_LOAD_STATISTICS APP_TYPE Tpd i ent Appl D d i ent Appl D
11.4.18 TpLoadStatisticEntityType
Defines the type of entity (i.e. service, application or Framework) supplying load statistics.
Name Value Description
P_LOAD_STATI STI CS_FW TYPE 0 Framework-type load statistics

P_LQAD_STATI STI CS_SVC_TYPE

1

Service-type load statistics

P_LQAD_STATI STI CS_APP_TYPE

2

Application-type load statistics

11.4.19 TpLoadStatisticInfo

Definesthe Tagged Choi ce of Data El ement s that specify the type of load statistic information (i.e. valid or

invalid).

Tag Element Type

TpLoadStatisticinfoType

Tag Element Value

Choice Element Type

Choice Element Name

P_LOAD_STATISTICS VALID

TpLoadSt ati sticData

LoadStati sticData

P_LOAD_STATISTICS_INVALID

TpLoadStati sticError

LoadStati sticError

11.4.20 TpLoadStatisticinfoType

Defines the type of load statistic information (i.e. valid or invalid).

Name

Value

Description

P_LQAD_STATI STI CS_VALI D

Valid load statistics

P_LOAD_STATI STI CS_| NVALI D

Invalid load statistics

11.4.21 TplLoadStatisticError

Definestheerror code associated with a failed attenpt to retrieve any | oad

statistics information.

Name

Value

Description

P_LOAD_| NFO_ERROR_UNDEFI NED

0

Undef i ned error

P_LOAD_| NFO_UNAVAI LABLE

1

Load statistics unavail able

ETSI

161 ETSI ES 201 915-3 V1.5.1 (2005-02)

11.5 Service Subscription Data Definitions

11.5.1 TpPropertyName

Thisdatatypeisidentical to TpSt ri ng. It isthe name of a generic "property"”.

11.5.2 TpPropertyValue

Thisdatatypeisidentical to TpSt ri ng. It isthe value (or the list of values) associated with a generic "property".

11.5.3 TpProperty

ThisdatatypeisaSequence of Data El enent s which describesageneric "property”. It isastructured data
type consisting of the following { name,value} pair.

Sequence Element Sequence Element
Name Type
Pr opert yName TpPropertyName
PropertyVal ue TpPropertyValue

11.5.4 TpPropertyList

Thisdatatype definesaNunber ed Li st of Data El enent s of type TpProperty.

11.5.5 TpEntOpProperties

This datatypeis of type TpPropertyList. It identifies the list of properties associated with an enterprise operator:
€.g. name, organisation, address, phone, e-mail, fax, payment method (credit card, bank account).

11.5.6 TpENtOp

ThisdatatypeisaSequence of Data El enent s which describes an enterprise operator. It isa structured data
type, consisting of a unique "enterprise operator ID" and alist of "enterprise operator properties’, as follows:

Sequence Element Sequence Element
Name Type
Ent Opl D TpENtOpID
Ent OpProperties TpEntOpProperties

11.5.7 TpServiceContractiD

Thisdatatypeisidentical to TpSt ri ng. It uniquely identifies the contract, between an enterprise operator and the
Framework, for the use of an OSA service by the enterprise.

11.5.8 TpServiceContractIDList

Thisdatatype definesaNunber ed Li st of Data El enent s of type TpServiceContractD.

11.5.9 TpPersonName

Thisdatatypeisidentical to TpSt ri ng. It isthe name of a generic "person”.

ETSI

162 ETSI ES 201 915-3 V1.5.1 (2005-02)

11.5.10 TpPostalAddress

Thisdatatypeisidentical to TpSt ri ng. Itisthe mailing address of a generic "person”.

11.5.11 TpTelephoneNumber

Thisdatatypeisidentical to TpSt ri ng. It isthe telephone number of a generic "person”.

11.5.12 TpEmail

Thisdatatypeisidentical to TpSt ri ng. It isthe email address of a generic "person”.

11.5.13 TpHomePage

Thisdatatypeisidentical to TpSt ri ng. It isthe web address of a generic "person”.

11.5.14 TpPersonProperties

This datatypeis of type TpPropertyList. It identifies the list of additional properties, other than those listed above, that
can be associated with a generic "person”.

11.5.15 TpPerson

ThisdatatypeisaSequence of Data El ement s which describes ageneric "person”: e.g. abilling contact, a
service requestor. It is a structured data type which consists of:

Sequence Element Sequence Element

Name Type

Per sonNane TpPersonName

Post al Addr ess TpPostalAddress

Tel ephoneNunber TpTelephoneNumber

Enmai | TpEmail

HonePage TpHomePage

Per sonProperties TpPersonProperties

11.5.16 TpServiceStartDate

Thisis of type TpDat eAndTi ne. It identifies the contractual start date and time for the use of an OSA service by an
enterprise or an enterprise Subscription Assignment Group (SAG).

11.5.17 TpServiceEndDate

Thisisof type TpDat eAndTi ne. It identifies the contractual end date and time for the use of an OSA service by an
enterprise or an enterprise Subscription Assignment Group (SAG).

11.5.18 TpServiceRequestor

Thisis of type TpPerson. It identifies the enterprise person requesting use of an OSA service: e.g. the enterprise
operator.

11.5.19 TpBillingContact

Thisis of type TpPerson. It identifies the enterprise person responsible for billing issues associated with an enterprise’'s
use of an OSA service.

ETSI

163 ETSI ES 201 915-3 V1.5.1 (2005-02)

11.5.20 TpServiceSubscriptionProperties

Thisis of type TpServicePropertyList. It specifies a subset of all available service properties and service property values
that apply to an enterprise's use of an OSA service.

11.5.21 TpServiceContract

ThisdatatypeisaSequence of Data El enents which representsa service contract. It isa structured data type
which consists of:

Sequence Element Sequence Element
Name Type
Servi ceContract| D TpServiceContract|D
Servi ceContract Descri ption TpServiceContractDescription

11.5.22 TpServiceContractDescription

ThisdatatypeisaSequence of Data El enent s which describesa service contract. This contract should
conform to a previously negotiated high-level agreement (regarding OSA services, their usage and the price, etc.), if
any, between the enterprise operator and the framework operator. It is a structured data type which consists of:

Sequence Element Sequence Element
Name Type

Ser vi ceRequest or TpServiceRequestor
Bi | I i ngCont act TpBillingContact
ServiceStartDate TpServiceStartDate
Servi ceEndDat e TpServiceEndDate
Servi ceTypeNane TpServiceTypeName
Servi cel D TpServicelD
Servi ceSubscri ptionProperties TpServiceSubscriptionProperties

11.5.23 TpClientAppProperties

Thisis of type TpPropertyList. The client application propertiesisalist of { name,value} pairs, for bilateral agreement
between the enterprise operator and the Framework.

11.5.24 TpClientAppDescription

ThisdatatypeisaSequence of Data El enents which describes an enterprise client application. Itisa
structured data type, consisting of a unique "client application ID", password and alist of "client application
properties':

Sequence Element Sequence Element
Name Type
a i ent Appl D TpClientApplD
C i ent AppProperties TpClientAppProperties

11.5.25 TpSagIiD

Thisdatatypeisidentical to TpSt ri ng. It uniquely identifies a Subscription Assignment Group (SAG) of client
applications within an enterprise.

ETSI

164 ETSI ES 201 915-3 V1.5.1 (2005-02)

11.5.26 TpSagIDList

This datatype definesaNunber ed Li st of Data El ement s of type TpSagID.

11.5.27 TpSagDescription

This datatypeisidentical to TpSt ri ng. It describes a SAG: e.g. alist of identifiers of the constituent client
applications, the purpose of the "grouping”.

11.5.28 TpSag

ThisdatatypeisaSequence of Data El enment s which describesa Subscription Assignment Group (SAG) of
client applications within an enterprise. It is a structured data type consisting of a unique SAG ID and a description:

Sequence Element Sequence Element
Name Type
Sagl D TpSagID
SagDescri ption TpSagDescription

11.5.29 TpServiceProfilelD

This datatypeisidentical to TpSt ri ng. It uniquely identifies the service profile, which further constrains how an
enterprise SAG uses an OSA service.

11.5.30 TpServiceProfileIDList

Thisdatatype definesaNunber ed Li st of Data El ements of type TpServiceProfilelD.

11.5.31 TpServiceProfile

ThisdatatypeisaSequence of Data El enents which representsa Service Profile. It isastructured data type
which consists of:

Sequence Element Sequence Element
Name Type
ServiceProfilel D TpServiceProfilelD
Servi ceProfil eDescription TpServiceProfileDescription

11.5.32 TpServiceProfileDescription

ThisdatatypeisaSequence of Data El enent s which describesa Service Profile. A service contract contains
one or more Service Profiles, one for each SAG in the enterprise operator domain. A service profile is arestriction of
the service contract in order to provide restricted service features to a SAG. It is a structured data type which consists
of:

ETSI

165

Sequence Element
Name

Sequence Element
Type

Servi ceContract| D

TpServiceContract|D

ServiceStartDate

TpServiceStartDate

Ser vi ceEndDat e

TpServiceEndDate

Servi ceTypeNane

TpServiceTypeName (see Note)

Servi ceSubscri pti onProperties

TpServiceSubscriptionProperties

NOTE:

When the Framework returns a TpServiceProfileDescription to the enterprise operator, it should

set this field to the same value as the corresponding field of the service contract; When the
enterprise operator passes a TpServiceProfileDescription to the Framework, the Framework
should ignore the value sent in this field to ensure interoperability; The enterprise operator
should be required to set the field to the correct value when passing a
TpServiceProfileDescription to the Framework.

Exception Classes

The following are the list of exception classes which are used in thisinterface of the API.

Name

Description

P_ACCESS_DEN ED

The client isnot currently authenticated with the framework

P_APPLI CATI ON_NOT_ACTI VATED

An application is unauthorised to access information and request
services with regards to users that have deactivated that particular
application.

P_DUPLI CATE_PROPERTY_NAME

A duplicate property name has been received

P_I LLEGAL_SERVI CE_I D

Illegal Service ID

P_I LLEGAL_SERVI CE_TYPE

Illegal Service Type

P_I NVALI D_ACCESS_TYPE

The framework does not support the type of access interface requested
by the client.

P_I NVALI D_ACTI VI TY_TEST_I D

1D does not correspond to avalid activity test request

P_I NVALI D_AGREEMENT TEXT

Invalid agreement text

P_I NVALI D_ENCRYPTI ON_CAPABI LI TY

Invalid encryption capability

P_I N\VALI D_AUTH_TYPE

Invalid type of authentication mechanism

P_I NVALI D_CLI ENT_APP_| D

Invalid Client Application ID

P_I NVALI D_DOMAI N_I D

Invalid client ID

P_I NVALI D_ENT_CP_| D

Invalid Enterprise Operator ID

P_I NVALI D_PROPERTY

The framework does not recognise the property supplied by the client

P_I NVALI D_SAG | D

Invalid Subscription Assignment Group |D

P_I NVALI D_SERVI CE_CONTRACT_| D

Invalid Service Contract ID

P_I NVALI D_SERVI CE_I D

Invalid service ID

P_I NVALI D_SERVI CE_PROFI LE_I D

Invalid service profile ID

P_I NVALI D_SERVI CE_TOKEN

The service token has not been issued, or it has expired.

P_I NVALI D_SERVI CE_TYPE

Invalid Service Type

P_I NVALI D_SI GNATURE

Invalid digital signature

P_I NVALI D_SI GNI NG_ALGORI THM

Invalid signing algorithm

P_M SSI NG_MANDATORY_PROPERTY

Mandatory Property Missing

P_NO_ACCEPTABLE_ENCRYPTI ON_CAPABI LI TY

An encryption mechanism, which is acceptable to the framework, is not
supported by the client

P_PROPERTY_TYPE_M SMATCH

Property Type Mismatch

P_SERVI CE_ACCESS_DEN ED

The client application is not allowed to access this service.

P_SERVI CE_NOT_ENABLED

The service ID does not correspond to a service that has been enabled

P_SERVI CE_TYPE_UNAVAI LABLE

The service typeis not available according to the Framework.

P_UNKNOWN_SERVI CE_| D

Unknown Service ID

P_UNKNOWN_SERVI CE_TYPE

Unknown Service Type

ETSI

ETSI ES 201 915-3 V1.5.1 (2005-02)

166 ETSI ES 201 915-3 V1.5.1 (2005-02)

Each exception class contains the following structure:

Structure Element Name Structure Element Type Structure Element Description

Ext ral nformati on TpString Carries extrainformation to help identify the source of the exception,
e.g. a parameter name

ETSI

167 ETSI ES 201 915-3 V1.5.1 (2005-02)

Annex A (normative):
OMG IDL description of Framework

The OMG IDL representation of this interface specification is contained in text files (fw_data.idl, fw_if_access.idl,
fw_if_app.idl, fw_if_entop.idl, fw_if_service.idl contained in archive es 20191503v010501p0.zip) which accompany
the present document.

ETSI

168 ETSI ES 201 915-3 V1.5.1 (2005-02)

Annex B (informative):
Contents of 3GPP OSA R4 Framework

All parts of the present document, except clause 8, Framework to Enterprise Operator API, are relevant for
3GPP TS 29.198-3 V4 (Release 4).

ETSI

169 ETSI ES 201 915-3 V1.5.1 (2005-02)

Annex C (informative):
Record of changes

Thefollowing isalist of the changes made to this specification for each release. The list contains the names of all
changed, deprecated, added or removed items in the specifications and not the actual changes. Any type of change
information that isimportant to the reader is put in the Others part of this annex.

Changes are specified as changes to the prior major release, but every minor release will have its own part of the table
alowing the reader to know when the actual change was made.

C.1 Interfaces

C.1.1 New

Identifier | Comments

Interfaces added in ES 201 915-3 version 1.3.1 (Parlay 3.2)

Interfaces added in ES 201 915-3 version 1.4.1 (Parlay 3.3)

Interfaces added in ES 201 915-3 version 1.5.1 (Parlay 3.4)

C.1.2 Deprecated

Identifier | Comments

Interfaces deprecated in ES 201 915-3 version 1.3.1 (Parlay 3.2)

Interfaces deprecated in ES 201 915-3 version 1.4.1 (Parlay 3.3)

Interfaces deprecated in ES 201 915-3 version 1.5.1 (Parlay 3.4)

C.1.3 Removed

Identifier \ Comments

Interfaces removed in ES 201 915-3 version 1.3.1 (Parlay 3.2)

Interfaces removed in ES 201 915-3 version 1.4.1 (Parlay 3.3)

Interfaces removed in ES 201 915-3 version 1.5.1 (Parlay 3.4)

ETSI

170 ETSI ES 201 915-3 V1.5.1 (2005-02)

C.2 Methods

C.2.1 New

Identifier | Comments

Methods added in ES 201 915-3 version 1.3.1 (Parlay 3.2)

Methods added in ES 201 915-3 version 1.4.1 (Parlay 3.3)

IpAppLoadManager.createL oadLevelNotification

IpAppLoadManager.destroyL oadL evelNotification

IpSvcLoadManager.createLoadLevelNotification

IpSvcLoadManager.destroyLoadLevelNotification

Methods added in ES 201 915-3 version 1.5.1 (Parlay 3.4)

C.2.2 Deprecated

Identifier | Comments

Methods deprecated in ES 201 915-3 version 1.3.1 (Parlay 3.2)

Methods deprecated in ES 201 915-3 version 1.4.1 (Parlay 3.3)

Methods deprecated in ES 201 915-3 version 1.5.1 (Parlay 3.4)

C.2.3 Modified

Identifier | Comments
Methods modified in ES 201 915-3 version 1.3.1 (Parlay 3.2)
IpAppFaultManager.appUnavailableind |parameter servicelD added
Methods modified in ES 201 915-3 version 1.4.1 (Parlay 3.3)
IpLoadManager.createLoadLevelNotification Behaviour changed to always send first load level notification
IpLoadManager.resumeNotification Behaviour changed to always send first load level notification
IpAppLoadManager.resumeNotification Behaviour changed to always send first load level notification
I[pFwLoadManager.createLoadL evelNotification Behaviour changed to always send first load level notification
IpFwLoadManager.resumeNotification Behaviour changed to always send first load level naotification
IpSvcLoadManager.resumeNotification Behaviour changed to always send first load level notification

Methods modified in ES 201 915-3 version 1.5.1 (Parlay 3.4)

C.2.4 Removed

Identifier | Comments

Methods removed in ES 201 915-3 version 1.3.1 (Parlay 3.2)

Methods removed in ES 201 915-3 version 1.4.1 (Parlay 3.3)

Methods removed in ES 201 915-3 version 1.5.1 (Parlay 3.4)

ETSI

171 ETSI ES 201 915-3 V1.5.1 (2005-02)

C.3 Data Definitions

C.3.1 New

Identifier | Comments

Data Definitions added in ES 201 915-3 version 1.3.1 (Parlay 3.2)

Data Definitions added in ES 201 915-3 version 1.4.1 (Parlay 3.3)

Data Definitions added in ES 201 915-3 version 1.5.1 (Parlay 3.4)

C.3.2 Modified

Identifier | Comments

Data Definitions modified in ES 201 915-3 version 1.3.1 (Parlay 3.2)

Data Definitions modified in ES 201 915-3 version 1.4.1 (Parlay 3.3)

Data Definitions modified in ES 201 915-3 version 1.5.1 (Parlay 3.4)

TpEncryptionCapability P_DES_128 deprecated, P_TDEA added, mode of P_DES_56
clarified

C.3.3 Removed

Identifier | Comments

Data Definitions removed in ES 201 915-3 version 1.3.1 (Parlay 3.2)

Data Definitions removed in ES 201 915-3 version 1.4.1 (Parlay 3.3)

Data Definitions removed in ES 201 915-3 version 1.5.1 (Parlay 3.4)

C.4 Service Properties

C.4.1 New

Identifier | Comments

Service Properties added in ES 201 915-3 version 1.3.1 (Parlay 3.2)

Service Properties added in ES 201 915-3 version 1.4.1 (Parlay 3.3)

Service Properties added in ES 201 915-3 version 1.5.1 (Parlay 3.4)

XML ADDRESS RANGE SET |Service Property Type, to replace ADDRESSRANGE SET

ETSI

172 ETSI ES 201 915-3 V1.5.1 (2005-02)

C.4.2 Deprecated

Identifier | Comments

Service Properties deprecated in ES 201 915-3 version 1.3.1 (Parlay 3.2)

Service Properties deprecated in ES 201 915-3 version 1.4.1 (Parlay 3.3)

Service Properties deprecated in ES 201 915-3 version 1.5.1 (Parlay 3.4)

ADDRESSRANGE SET |Service Property Type, replaced by XML ADDRESS RANGE SET

C.4.3 Modified

Identifier | Comments

Service Properties modified in ES 201 915-3 version 1.3.1 (Parlay 3.2)

Service Properties modified in ES 201 915-3 version 1.4.1 (Parlay 3.3)

Service Properties modified in ES 201 915-3 version 1.5.1 (Parlay 3.4)

C.4.4 Removed

Identifier | Comments

Service Properties removed in ES 201 915-3 version 1.3.1 (Parlay 3.2)

Service Properties removed in ES 201 915-3 version 1.4.1 (Parlay 3.3)

Service Properties removed in ES 201 915-3 version 1.5.1 (Parlay 3.4)

C.5 Exceptions

C.5.1 New

Identifier | Comments

Exceptions added in ES 201 915-3 version 1.3.1 (Parlay 3.2)

Exceptions added in ES 201 915-3 version 1.4.1 (Parlay 3.3)

Exceptions added in ES 201 915-3 version 1.5.1 (Parlay 3.4)

ETSI

173 ETSI ES 201 915-3 V1.5.1 (2005-02)

C.5.2 Modified

Identifier | Comments

Exceptions modified in ES 201 915-3 version 1.3.1 (Parlay 3.2)

Exceptions modified in ES 201 915-3 version 1.4.1 (Parlay 3.3)

Exceptions modified in ES 201 915-3 version 1.5.1 (Parlay 3.4)

C.5.3 Removed

Identifier | Comments

Exceptions removed in ES 201 915-3 version 1.3.1 (Parlay 3.2)

Exceptions removed in ES 201 915-3 version 1.4.1 (Parlay 3.3)

Exceptions removed in ES 201 915-3 version 1.5.1 (Parlay 3.4)

C.6 Others

None.

ETSI

174

ETSI ES 201 915-3 V1.5.1 (2005-02)

History
Document history

V111 February 2002 Publication

V121 July 2002 Publication

V131 October 2002 Publication

V14.1 July 2003 Publication

V15.1 November 2004 | Membership Approval Procedure MV 20050128: 2004-11-30 to 2005-01-28
V151 February 2005 Publication

ETSI

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Overview of the Framework
	4.1 General requirements on support of methods

	5 The Base Interface Specification
	5.1 Interface Specification Format
	5.1.1 Interface Class
	5.1.2 Method descriptions
	5.1.3 Parameter descriptions
	5.1.4 State Model

	5.2 Base Interface
	5.2.1 Interface Class IpInterface

	5.3 Service Interfaces
	5.3.1 Overview

	5.4 Generic Service Interface
	5.4.1 Interface Class IpService

	6 Framework Access Session API
	6.1 Sequence Diagrams
	6.1.1 Trust and Security Management Sequence Diagrams
	6.1.1.1 Initial Access for trusted parties
	6.1.1.2 Initial Access
	6.1.1.3 Authentication
	6.1.1.4 API Level Authentication

	6.2 Class Diagrams
	6.3 Interface Classes
	6.3.1 Trust and Security Management Interface Classes
	6.3.1.1 Interface Class IpClientAPILevelAuthentication
	6.3.1.2 Interface Class IpClientAccess
	6.3.1.3 Interface Class IpInitial
	6.3.1.4 Interface Class IpAuthentication
	6.3.1.5 Interface Class IpAPILevelAuthentication
	6.3.1.6 Interface Class IpAccess

	6.4 State Transition Diagrams
	6.4.1 Trust and Security Management State Transition Diagrams
	6.4.1.1 State Transition Diagrams for IpInitial
	6.4.1.2 State Transition Diagrams for IpAPILevelAuthentication
	6.4.1.2.1 Idle State
	6.4.1.2.2 Selecting Method State
	6.4.1.2.3 Authenticating Client State
	6.4.1.2.4 Client Authenticated State

	6.4.1.3 State Transition Diagrams for IpAccess
	6.4.1.3.1 Active State

	7 Framework-to-Application API
	7.1 Sequence Diagrams
	7.1.1 Event Notification Sequence Diagrams
	7.1.1.1 Enable Event Notification

	7.1.2 Integrity Management Sequence Diagrams
	7.1.2.1 Load Management: Suspend/resume notification from application
	7.1.2.2 Load Management: Framework queries load statistics
	7.1.2.3 Load Management: Framework callback registration and Application load control
	7.1.2.4 Load Management: Application reports current load condition
	7.1.2.5 Load Management: Application queries load statistics
	7.1.2.6 Load Management: Application callback registration and load control
	7.1.2.7 Heartbeat Management: Start/perform/end heartbeat supervision of the application
	7.1.2.8 Fault Management: Framework detects a Service failure
	7.1.2.9 Fault Management: Application requests a Framework activity test

	7.1.3 Service Discovery Sequence Diagrams
	7.1.3.1 Service Discovery

	7.1.4 Service Agreement Management Sequence Diagrams
	7.1.4.1 Service Selection

	7.2 Class Diagrams
	7.3 Interface Classes
	7.3.1 Service Discovery Interface Classes
	7.3.1.1 Interface Class IpServiceDiscovery

	7.3.2 Service Agreement Management Interface Classes
	7.3.2.1 Interface Class IpAppServiceAgreementManagement
	7.3.2.2 Interface Class IpServiceAgreementManagement

	7.3.3 Integrity Management Interface Classes
	7.3.3.1 Interface Class IpAppFaultManager
	7.3.3.2 Interface Class IpFaultManager
	7.3.3.3 Interface Class IpAppHeartBeatMgmt
	7.3.3.4 Interface Class IpAppHeartBeat
	7.3.3.5 Interface Class IpHeartBeatMgmt
	7.3.3.6 Interface Class IpHeartBeat
	7.3.3.7 Interface Class IpAppLoadManager
	7.3.3.8 Interface Class IpLoadManager
	7.3.3.9 Interface Class IpOAM
	7.3.3.10 Interface Class IpAppOAM

	7.3.4 Event Notification Interface Classes
	7.3.4.1 Interface Class IpAppEventNotification
	7.3.4.2 Interface Class IpEventNotification

	7.4 State Transition Diagrams
	7.4.1 Service Discovery State Transition Diagrams
	7.4.1.1 State Transition Diagrams for IpServiceDiscovery
	7.4.1.1.1 Active State

	7.4.2 Service Agreement Management State Transition Diagrams
	7.4.3 Integrity Management State Transition Diagrams
	7.4.3.1 State Transition Diagrams for IpLoadManager
	7.4.3.1.1 Idle State
	7.4.3.1.2 Notification Suspended State
	7.4.3.1.3 Active State

	7.4.3.2 State Transition Diagrams for LoadManagerInternal
	7.4.3.2.1 Normal load State
	7.4.3.2.2 Application Overload State
	7.4.3.2.3 Internal overload State
	7.4.3.2.4 Internal and Application Overload State

	7.4.3.3 State Transition Diagrams for IpOAM
	7.4.3.3.1 Active State

	7.4.3.4 State Transition Diagrams for IpFaultManager
	7.4.3.4.1 Framework Active State
	7.4.3.4.2 Framework Faulty State
	7.4.3.4.3 Framework Activity Test State
	7.4.3.4.4 Service Activity Test State

	7.4.4 Event Notification State Transition Diagrams
	7.4.4.1 State Transition Diagrams for IpEventNotification

	8 Framework-to-Enterprise Operator API
	8.1 Sequence Diagrams
	8.1.1 Service Subscription Sequence Diagrams
	8.1.1.1 Service Discovery and Subscription Scenario
	8.1.1.2 Enterprise Operator and Client Application Subscription Management Sequence Diagram

	8.2 Class Diagrams
	8.3 Interface Classes
	8.3.1 Service Subscription Interface Classes
	8.3.1.1 Interface Class IpClientAppManagement
	8.3.1.2 Interface Class IpClientAppInfoQuery
	8.3.1.3 Interface Class IpServiceProfileManagement
	8.3.1.4 Interface Class IpServiceProfileInfoQuery
	8.3.1.5 Interface Class IpServiceContractManagement
	8.3.1.6 Interface Class IpServiceContractInfoQuery
	8.3.1.7 Interface Class IpEntOpAccountManagement
	8.3.1.8 Interface Class IpEntOpAccountInfoQuery

	8.4 State Transition Diagrams
	8.4.1 Service Subscription State Transition Diagrams

	9 Framework-to-Service API
	9.1 Sequence Diagrams
	9.1.1 Service Discovery Sequence Diagrams
	9.1.2 Service Registration Sequence Diagrams
	9.1.2.1 New SCF Registration

	9.1.3 Service Instance Lifecycle Manager Sequence Diagrams
	9.1.3.1 Sign Service Agreement

	9.1.4 Integrity Management Sequence Diagrams
	9.1.4.1 Load Management: Service callback registration and load control
	9.1.4.2 Load Management: Framework callback registration and service load control
	9.1.4.3 Load Management: Client and Service Load Balancing
	9.1.4.4 Heartbeat Management: Start/perform/end heartbeat supervision of the service
	9.1.4.5 Fault Management: Service requests Framework activity test
	9.1.4.6 Fault Management: Service requests Application activity test
	9.1.4.7 Fault Management: Application requests Service activity test
	9.1.4.8 Fault Management: Application detects service is unavailable

	9.1.5 Event Notification Sequence Diagrams

	9.2 Class Diagrams
	9.3 Interface Classes
	9.3.1 Service Registration Interface Classes
	9.3.1.1 Interface Class IpFwServiceRegistration

	9.3.2 Service Instance Lifecycle Manager Interface Classes
	9.3.2.1 Interface Class IpServiceInstanceLifecycleManager

	9.3.3 Service Discovery Interface Classes
	9.3.3.1 Interface Class IpFwServiceDiscovery

	9.3.4 Integrity Management Interface Classes
	9.3.4.1 Interface Class IpFwFaultManager
	9.3.4.2 Interface Class IpSvcFaultManager
	9.3.4.3 Interface Class IpFwHeartBeatMgmt
	9.3.4.4 Interface Class IpFwHeartBeat
	9.3.4.5 Interface Class IpSvcHeartBeatMgmt
	9.3.4.6 Interface Class IpSvcHeartBeat
	9.3.4.7 Interface Class IpFwLoadManager
	9.3.4.8 Interface Class IpSvcLoadManager
	9.3.4.9 Interface Class IpFwOAM
	9.3.4.10 Interface Class IpSvcOAM

	9.3.5 Event Notification Interface Classes
	9.3.5.1 Interface Class IpFwEventNotification
	9.3.5.2 Interface Class IpSvcEventNotification

	9.4 State Transition Diagrams
	9.4.1 Service Registration State Transition Diagrams
	9.4.1.1 State Transition Diagrams for IpFwServiceRegistration
	9.4.1.1.1 SCF Registered State
	9.4.1.1.2 SCF Announced State

	9.4.2 Service Instance Lifecycle Manager State Transition Diagrams
	9.4.3 Service Discovery State Transition Diagrams
	9.4.4 Integrity Management State Transition Diagrams
	9.4.4.1 State Transition Diagrams for IpFwLoadManager
	9.4.4.1.1 Idle State
	9.4.4.1.2 Notification Suspended State
	9.4.4.1.3 Active State

	9.4.5 Event Notification State Transition Diagrams

	10 Service Properties
	10.1 Service Property Types
	10.2 General Service Properties
	10.2.1 Service Name
	10.2.2 Service Version
	10.2.3 Service Instance ID
	10.2.4 Service Instance Description
	10.2.5 Product Name
	10.2.6 Product Version
	10.2.7 Supported Interfaces
	10.2.8 Operation Set

	11 Data Definitions
	11.1 Common Framework Data Definitions
	11.1.1 TpClientAppID
	11.1.2 TpClientAppIDList
	11.1.3 TpDomainID
	11.1.4 TpDomainIDType
	11.1.5 TpEntOpID
	11.1.6 TpPropertyName
	11.1.7 TpPropertyValue
	11.1.8 TpProperty
	11.1.9 TpPropertyList
	11.1.10 TpEntOpIDList
	11.1.11 TpFwID
	11.1.12 TpService
	11.1.13 TpServiceList
	11.1.14 TpServiceDescription
	11.1.15 TpServiceID
	11.1.16 TpServiceIDList
	11.1.17 TpServiceInstanceID
	11.1.18 TpServiceSpecString
	11.1.19 TpServiceTypeProperty
	11.1.20 TpServiceTypePropertyList
	11.1.21 TpServiceTypePropertyMode
	11.1.22 TpServicePropertyTypeName
	11.1.23 TpServicePropertyName
	11.1.24 TpServicePropertyNameList
	11.1.25 TpServicePropertyValue
	11.1.26 TpServicePropertyValueList
	11.1.27 TpServiceProperty
	11.1.28 TpServicePropertyList
	11.1.29 TpServiceSupplierID
	11.1.30 TpServiceTypeDescription
	11.1.31 TpServiceTypeName
	11.1.32 TpServiceTypeNameList
	11.1.33 TpSubjectType

	11.2 Event Notification Data Definitions
	11.2.1 TpFwEventName
	11.2.2 TpFwEventCriteria
	11.2.3 TpFwEventInfo

	11.3 Trust and Security Management Data Definitions
	11.3.1 TpAccessType
	11.3.2 TpAuthType
	11.3.3 TpEncryptionCapability
	11.3.4 TpEncryptionCapabilityList
	11.3.5 TpEndAccessProperties
	11.3.6 TpAuthDomain
	11.3.7 TpInterfaceName
	11.3.8 TpInterfaceNameList
	11.3.9 TpServiceToken
	11.3.10 TpSignatureAndServiceMgr
	11.3.11 TpSigningAlgorithm

	11.4 Integrity Management Data Definitions
	11.4.1 TpActivityTestRes
	11.4.2 TpFaultStatsRecord
	11.4.3 TpFaultStats
	11.4.4 TpFaultStatisticsError
	11.4.5 TpFaultStatsSet
	11.4.6 TpActivityTestID
	11.4.7 TpInterfaceFault
	11.4.8 TpSvcUnavailReason
	11.4.9 TpFwUnavailReason
	11.4.10 TpLoadLevel
	11.4.11 TpLoadThreshold
	11.4.12 TpLoadInitVal
	11.4.13 TpLoadPolicy
	11.4.14 TpLoadStatistic
	11.4.15 TpLoadStatisticList
	11.4.16 TpLoadStatisticData
	11.4.17 TpLoadStatisticEntityID
	11.4.18 TpLoadStatisticEntityType
	11.4.19 TpLoadStatisticInfo
	11.4.20 TpLoadStatisticInfoType
	11.4.21 TpLoadStatisticError

	11.5 Service Subscription Data Definitions
	11.5.1 TpPropertyName
	11.5.2 TpPropertyValue
	11.5.3 TpProperty
	11.5.4 TpPropertyList
	11.5.5 TpEntOpProperties
	11.5.6 TpEntOp
	11.5.7 TpServiceContractID
	11.5.8 TpServiceContractIDList
	11.5.9 TpPersonName
	11.5.10 TpPostalAddress
	11.5.11 TpTelephoneNumber
	11.5.12 TpEmail
	11.5.13 TpHomePage
	11.5.14 TpPersonProperties
	11.5.15 TpPerson
	11.5.16 TpServiceStartDate
	11.5.17 TpServiceEndDate
	11.5.18 TpServiceRequestor
	11.5.19 TpBillingContact
	11.5.20 TpServiceSubscriptionProperties
	11.5.21 TpServiceContract
	11.5.22 TpServiceContractDescription
	11.5.23 TpClientAppProperties
	11.5.24 TpClientAppDescription
	11.5.25 TpSagID
	11.5.26 TpSagIDList
	11.5.27 TpSagDescription
	11.5.28 TpSag
	11.5.29 TpServiceProfileID
	11.5.30 TpServiceProfileIDList
	11.5.31 TpServiceProfile
	11.5.32 TpServiceProfileDescription

	12 Exception Classes
	Annex A (normative): OMG IDL description of Framework
	Annex B (informative): Contents of 3GPP OSA R4 Framework
	Annex C (informative): Record of changes
	C.1 Interfaces
	C.1.1 New
	C.1.2 Deprecated
	C.1.3 Removed

	C.2 Methods
	C.2.1 New
	C.2.2 Deprecated
	C.2.3 Modified
	C.2.4 Removed

	C.3 Data Definitions
	C.3.1 New
	C.3.2 Modified
	C.3.3 Removed

	C.4 Service Properties
	C.4.1 New
	C.4.2 Deprecated
	C.4.3 Modified
	C.4.4 Removed

	C.5 Exceptions
	C.5.1 New
	C.5.2 Modified
	C.5.3 Removed

	C.6 Others

	History

