ETSl ES 201 915-3 V1.2.1 (2002-05)

ETSI Standard

Open Service Access (OSA);
Application Programming Interface (API);
Part 3: Framework

D

2 ETSI ES 201 915-3 V1.2.1 (2002-05)

Reference
RES/SPAN-120076-3

Keywords
API, OSA, IDL, UML

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/th/status/status.asp

If you find errors in the present document, send your comment to:
editor@etsi.fr

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2002.
© The Parlay Group 2002.
All rights reserved.

DECT™, PLUGTESTS ™ and UMTS™ are Trade Marks of ETSI registered for the benefit of its Members.

TIPHON™ and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members.
3GPP™is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

ETSI

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
mailto:editor@etsi.fr

3 ETSI ES 201 915-3 V1.2.1 (2002-05)

Contents

Intellectual Property RIGNES...... ..ot 9
0 Yo (o SRS RRR 9
1 000 SRR 10
2 REFEIENCES ...ttt b bt e et ae Rt b e bt e bt s e et et et et et e b e ebeebene e et et e e e ens 10
3 Definitions and aDDrEVIBLIONS...........cov ettt s e e reeeeseesreeeeneeas 10
31 DL T 0] 3OS 10
3.2 ADDIEVIBLIONS ...t ettt ettt b bt b et etk e b et ke be st e Rt b e st et et e st et ebe e e e ere s 10
4 OVErVIEW Of The FraMEWOTK........cceiiiiiiieiee ettt bt 10
5 The Base INterface SPECITICALION........c..ci i 12
51 Interface SPECITiCatiON FOMMELccoirieirire ettt e st se b b e s b s e es 12
511 1S g = oY O = SOOI 12
512 MELNOO AESCIILIONS. ...tttk b et b e bbbt b e bbb e et b et nn st e 12
513 e o 0= (= 0 (== 0] 014 o] = SR 12
514 STz (1Y oo L= TSRS P PSP 12
52 2T S 1= = ot 13
521 INtErfaCe Class IPINEEITACEccue ittt reere e e e e sresbesneeneeneens 13
53 S VLo L =g o= ST RPS 13
531 (O Y= OSSR 13
54 GENENIC SEIVICE INLEITACE ...ttt sttt b ae bt et e s e e e e e e besee et e e e eneeseesbesaeeneeneannan 13
541 INEEITACE ClaSS IPSEIVICE ...ttt sttt ettt e e be et b e s et eaeene e e ebeseesbesneenneneens 13
6 Framework ACCESS SESTION APo ettt ettt e st st e st e s ae e e e seeenseneeneeas 15
6.1 S0 (U 1c Lo Y Do - SR 15
6.1.1 Trust and Security Management SEQUENCE DIiagramsSccvvvvevereeeeieeseseseseseesresesseseeseesseseessesesssesnes 15
6.1.1.1 INitial ACCESS fOr trUSLEA PAMTIES. .. ccveiveieeetececeeees et e ettt e e e e sr e tesnesrenneeneenes 15
6.1.1.2 L TL T Ao o= SO RS 15
6.1.1.3 F 140 = 0 L= 1 o] o OSSP 17
6.1.14 API LeVEl AULNENTICEIION ..ot sttt st e st 17
6.2 ClaSS DIAOIAIMIS. ... ettt ettt ebe et et et e se e beseeebesaeeaeeae e e enbesE e b e eheeaeeheeaeem s e eeebesbeeheeneensenbeseesbesaeeaeeneaneas 19
6.3 T 1S g oo O o =SSR 19
6.3.1 Trust and Security Management INterface ClaSSeS.........coirireiinereiieiee et e 19
6.3.1.1 Interface Class | pClientAPILevel AUtheNtiCatioN...........cooeiiierieeieees e 19
6.3.1.2 INtErfaCE Class I PCIIENTACTESS. ... coueruirieeeeie ettt sttt sb e bt et s be b e ebe st eae e e e nbesaesbeeneeneenes 21
6.3.1.3 Interface Class IPINITIAlcccooviiiece e sr et e sre s renne e enes 22
6.3.1.4 Interface Class IPAUNENTICALION..........cciriieiecece et e e et sre e e e s 23
6.3.1.5 Interface Class IpAPILEeVEI AUtNENLICALIONcceeeeeeee s 24
6.3.1.6 INEEITACE ClaSS IPACCESS ... eeieiteetecte ettt e ettt e e e st este s tesrees e e e e s eese e e seesbesseeneeneensensesnesrenneensenes 26
6.4 State TranSitiON DIGGIAMS. .. .cueieeeieeeeeeiereses e stestese s e e e e e e seesaestesaesresseeseeseessesseseesesseseesaeensensesaessesseasennenneen 28
6.4.1 Trust and Security Management State Transition Diagramscccccceveverenesesieeeeeeseeseseesese e see e 29
6.4.1.1 State Transition Diagrams for IPINITIaloooiiiiii e 29
6.4.11.1 ACHIVE SEBEE ...ttt et h ettt et b ae b e he et et e se e ke sheeb e e Rt e Rt et e ne e be et ebeene e e enes 29
6.4.1.2 State Transition Diagrams for IpAPILevel AUthentiCation.............ccooiii i 29
6.4.1.2.1 [AIE SEAEE.....cveeeeeete ettt sttt sttt st bese st e beseeseebesees e e beseeseebeseeseebe st eneebeneeneereseeneetenaeneerens 30
6.4.1.2.2 SElECtiNG MELNOT SEALE.eoieiieeeee et e bttt ne e b b sbe e eneeneen 30
6.4.1.2.3 AUthentiCating ClIENT SEAEE.........couiiiieie ittt sb e se e e b aeenes 30
6.4.1.2.4 Client AULHENTICAEEA SEAEE........ccveeeeeeeererese e e e ae e esee e seestesresresseeseeseeseesessessesneenenneens 30
6.4.1.3 State Transition Diagrams fOr IPACCESS......couriiiiieirieee ettt nas 31
6.4.1.3.1 ot L= = 31
7 Framework-t0-APPIICEAHON APl ..ottt e st e s be e e stesraeeesteennentenreas 32
7.1 S o (U 1S T BT = 1 SRR URSRRTRR 32
711 Event Notification SeqUENCE DIGOraMIS........coiiiririiiieeeeie ettt se bbbt b e e e e e see e sneeneens 32
7111 ENable EVENt NOTICATON ..ottt et se et e b eae e 32
7.12 Integrity Management SEqUENCE DIG0raMIScoeiiririiiierie ettt se e et b saeeeens 33

ETSI

4 ETSI ES 201 915-3 V1.2.1 (2002-05)

7121 Load Management: Suspend/resume notification from application...........cccccvevvecveciniesce e 33
7.1.2.2 Load Management: Framework queries |0ad StatiStiCS........ccucvvieeieeieeiecre e 34
7123 Load Management: Application reports current load condition............cccceeevenievesiseceeceereee e 34
7124 Load Management: Application queries [0ad StatiStiCS.........cccvreeveiesinie e 35
7.1.25 Load Management: Application callback registration and load control............cccceeeeveevevenenevesenneen, 36
7.1.26 Heartbeat Management: Start/perform/end heartbeat supervision of the applicationcccccceceeenene 37
7.1.2.7 Fault Management: Framework detects a Service faillure ... 38
7128 Fault Management: Application requests a Framework activity teStcccoovereinenniineneeeeseee 39
7.13 Service Discovery SEqUENCE DIagraimScoviuiiriiriiieierieeete sttt sttt b e e b e b sneneere 39
7131 SEIVICE DISCOVETY ...eeneiiitieetietese ettt b et b et b e bt e bt s s b e b e s e bt s b e b eb e sb e s eb e e b e s eb e b e s enennin 39
714 Service Agreement Management SeqUENCE DIiagramsScoereererieirerine ettt 42
7141 SEIVICE SEIECHION.....c.eeeiiecieies et b et b et ne et n b nn e 42
7.2 (O =SS DT o -2 43
7.3 INEEITAOE CIASSES.cvereaereeieerie sttt R bR e R bt re R R e e R Rt ne et ne R b nenn et e rene e 46
731 Service DISCOVENY INTEITACe ClaSSES......uiiiieiieie ittt sttt st st a e e e ese e besreereennenean 46
7311 Interface Class |PSErVICEDISCOVEIYcc.cieieiiiiieeeeieereesestese e ste st s e saesaeste e sresresseeseeaensensesresneensenes 46
732 Service Agreement Management INterface ClassES.........cccucvereieneiesesee e s 49
7321 Interface Class |pAppServiceAgreementManagementcoveererrerereneiesese e 49
7322 Interface Class |pServiceAgreementManagemENtcccoereirereeneree et 51
7.3.3 Integrity Management INTErface ClaSSES.........coiiiiiiriere et 54
7331 Interface Class |PAPPFAUITIMENEGETcoeiiiiieieieriere ettt 54
7.3.32 Interface Class IPFaUITIMIBNGAGETooiiiie ettt et sb e e et e e e be e sbe e e e e enes 57
7.333 Interface Class IPAPPHEABEBIMGIMILoiuieie et et 61
7334 Interface Class IPAPPHEAIBERL............coeie e et sae s r e nes 62
7.3.35 Interface Class IPHEABEAIM gML.........c.coeieiieeieeeeeeee et e e st ess e e sre st e e neeneenes 62
7.3.36 INterface Class IPHEAMBERLcccveeeeeie ettt e et e e st r e e ese e e e tesresrenneennenes 64
7.3.3.7 Interface Class IPAPPLOAAMBNGGETccccveruerererieeieseeeetesiesesrestesseeseesaessessesressesseeseessesessessesseensenes 65
7.3.38 Interface Class IPLOAAMBNAGETvcvieerierierese st eteeeeaesteste e sressesseesaessestesresresseeseessesseseseesresseensenes 67
7.339 INtEfACE ClaSS IPOAM ...ttt sttt s e e e sa et e s ee et e eseeneenseseentesaenrenneeneenes 70
7.3.3.10 Interface Class IPAPPOAM ... ettt h et et s e et e st ea e e e et e sbesbesaesaesbeeneeneenes 71
734 Event Notification INtErface CIaSSES.ottt s e et be e e e sbe e eneeeens 72
7.34.1 Interface Class IPAPPEVENINOIFICAIONoiiieeeeieeee e e 72
7.34.2 Interface Class IPEVENtNOLITICAION ..o e e 73
7.4 State TranSItiON DIBOIAMIS.ciueeueeuerieierie ettt sttt ettt e e seeseesbesbe b e s aeeaeeae e e emeeseesbesbesaenbeensaneeseeebesaeeaeeneannan 74
74.1 Service Discovery State Transition DiagramsSccoeeereiisieieseseeseeeeseesesieseese e sressessseseeseessesseseesseenees 74
74.1.1 State Transition Diagrams for |PServiCEDISCOVEIYcvirieririereseseseeeeseeeesesees e e ste e e sreseeseeneens 74
74111 ACHVE SEAIE ...ttt et sttt s e et e st b e e Rt b st n e b et be et et 74
7.4.2 Service Agreement Management State TranSition DiagramsS.........ccccuerererieiesiesesesesseeseeseeseesee e sseseeseens 74
7.4.3 Integrity Management State Transition DIiagramS........c.cvveieeereerieresesiesesesesessesseeeeseessessessessessesseseens 75
7431 State Transition Diagrams for IpLOGOMaNagEYccviereereereeresese e se e s esae e s e snesre e eseeneens 75
74311 [AIE SEALE.....cve ettt sttt sttt st e st et e se e s e e beseese s be s e eseebeseeseebesaeseebeneeReebeseeneereneeneereneeneerens 75
74312 NoOtification SUSPENAEA SEALE.........coeeeiieee et se et e s 75
74313 F o N = = USRS 75
7.4.3.2 State Transition Diagrams for LoadManagerinternal.............cooeeeeereeienenese e 76
74321 [N ol g gr= I o= o IS = (T TP 76
74322 APPliCation OVErI0a0 SEALEcoueieiieie et b e 76
74323 INtErNal OVEIOAE SEALE. ... cveiveieeieeeeeeeee st et se e e seestesreeseesa e e e beseenrenneeneenes 76
74324 Internal and Application OVErload SEALEccciieieereee e 76
7433 State Transition Diagrams fOr IPOAMooiiiiree et 77
74331 ot L= 1= 77
7434 State Transition Diagrams for IpFaUItManager ..o 77
74341 FrameEWOrK ACHIVE SELE......ccueeeeeeieriesiesese et e eeeseeste e e sre e esee e eteseestessesseese e e enaessessesaesnenneeneenes 78
7.4.34.2 FrameWOrK FAUITY SEAEE.........c.ooiiireieeiieeeie ettt b et e et se e be e b e e e nes 78
74343 Framework ACHIVITY TESE SALE.... ..o ittt se e b et sb e nes 78
74344 SErVICE ACHVILY TESE SEALEeiiiie ettt st sb e sb et e e e b sbesaesneeneens 78
744 Event Notification State Transition DIagramiS..... ..o iireieiireneeie e een 78
7441 State Transition Diagrams for |pEVENtNOLITiCaHION ... 78
74411 101 = (= S 78
74412 [N o0 Lo 1T T AN Y S - (S 78
8 Framework-to-ENterprise OPErator APlot 79
8.1 SEOUENCE DIAGIAIMISeteeeieete sttt sttt sttt st et st e st e bt s bese e st bese e bt s beseebesbe s e ebe e be st e bt s be e ebe e be e ebesbeneesesbeneenesbeneenees 83

ETSI

5 ETSI ES 201 915-3 V1.2.1 (2002-05)

8.1.1 Service SUbSCription SEQUENCE DIBGIAIMS..........ciieiiere e see e ee e esreesae e ae e seeste e beeeesneesneesnes 83
8111 Service Discovery and SUDSCIiPtiON SCENAIO........ccueivereerireiieeesteesteese e see e sreesreeee e e e enseeseeneens 83
8.1.12 Enterprise Operator and Client Application Subscription Management Sequence Diagram................ 84
8.2 ClaSS DIAQIAIMS. ... cviiuiitieiecteeieee s e ste et ste et et et e s ae s besaesteeseeseess e s entesseateaaeaseeseensensessetesbeeseeneensanteseentesseenannennes 86
8.3 INEEITACE CIASSES.cvereeeeieer et E e e R b re R bR Rt ne et e R s nenn et e rene e 88
8.3.1 Service SUDSCIIPLioN INEEITACce ClaSSES.......cccciiie i e e sttt a et e et sresreeneenean 88
8311 Interface Class |pClieNtAPPM ANEGEMENTccoiviiririeieeieree ettt st 88
8312 Interface Class |pClientAPPINFOQUETYc.eeuiiiiiieiie ettt 92
8313 Interface Class |pServiceProfileManagement ..o e 95
8314 Interface Class |pServiceProfilel NFOQUENYccoi i 98
8.3.15 Interface Class |pServiceContraCtManagemeENTcooeirereirenee et 99
8.3.1.6 Interface Class | pServiceContractiNfOQUETYeeveiuerereiesereeee e se e st see e et sne e eneas 101
8.3.17 Interface Class | pENtOPACCOUNtMANAGEMENTccveieeriereeseseeeeeesee e sres e e ereeeesaeseeseestessesreeneenens 103
8.3.1.8 Interface Class | pENtOPACCOUNtINfFOQUETYc.vevieiieeiieeeie e st e e te s e e e sne e neas 104
8.4 State TranSitiON DIGGIAMS.......cceieeeeeeiesestes e sestese e e eseeseestestestestesaestesseeseeseessestessessestesseateesenseseestesseesennsans 105
8.4.1 Service Subscription State Transition DiagramS.........ccccverererieiesiesieeeeieeseesesee e se e seeseeseessessessessesseens 105
9 FrameworK-T0-SEIVICE AP ..ottt bttt 105
9.1 SEOUENCE DIAOIAITISc.eeteveueeterteeete sttt sttt sb e es b e e st b esesb e s e bt e b e b e st b e s e st e b e b e se s b e b e st eb e b e e eb e e b e e e bt ebe st ees 105
911 Service Discovery SEqUENCE DIagraimScccoi ittt 105
912 Service Registration SEQUENCE DIBgIaIMSc..eiiirieiiieieee sttt 106
9121 NEW SCF REJISITALION.ceeiveeeteiteeete sttt sttt sttt se bt b et b bt et sb et et be e 106
9.1.3 Service Instance Lifecycle Manager Sequence DiagramsScccveeeeeriereresesesesseeaeseeseesseseessessessesneens 107
9131 SIgN SEIVICE AQIEEMENT....c.viitieeieeeeeeterteste st st e ete et e e se e tesresresseeseeseessesteseestesseeseeseensenseseestesaeesenneeneenes 107
9.14 Integrity Management SEQUENCE DIagramS........ccuieeieriereresieseseesesseessessessessessessessesssessessessessessessesseenes 108
9.14.1 Load Management: Service callback registration and load control............cccecvevevenievesenese e 108
9.14.2 Load Management: Client and Service Load BalanCing..........cccovveeeereerenesesieseseeseeseeseseese e seeenes 109
9.14.3 Heartbeat Management: Start/perform/end heartbeat supervision of the service...........ccoceeeiennene 110
9.144 Fault Management: Service requests Framework aCtiVity teSt.........ccovereierene e 110
9.145 Fault Management: Service requests Application activity teStccoceeeierieeieneie e 111
9.14.6 Fault Management: Application requests Service actiVity testcoereieienenienirree e 112
9.14.7 Fault Management: Application detects serviceis unavailable...........c.ccoooiiiiiiiiniiiniicee 113
9.15 Event Notification SeqUENCE DIGQraMIS........coeiiierieeeeieiee sttt ee et sae e sbe st eae e e e eeseeseesneeneenes 113
9.2 (O =SS BT o |- 0O 114
9.3 INEETAOE CIASSES.....cverieeciiee ettt e R et b et R et e R R R s n e e ren e nenn et neer e 117
931 Service Registration INtErface ClaSSES.......uuiiiiii i seeeereeseseese s e e see et sresre s e eseeneestesnneneeneens 117
9311 Interface Class | pFWSErViCEREZISLIAtiONccvieiececeee s resre e eneas 117
932 Service Instance Lifecycle Manager Interface Classes.......coivvviireieeieieesese s seeseeseesee s e e eneens 120
9321 Interface Class | pServicelnstanceLifeCyCleManagerccocvvvverereeieeese e 121
9.33 Service DiSCOVErY INTErface ClaSSES.......oo ittt e st et se et s eneeean 122
9331 Interface Class | PFWSErVICEDISCOVENYc.oiiiiiiiiieieeiieie ettt ee et b e e e sbe b sae e neas 122
9.34 Integrity Management INLErface ClIasSES.......oou ettt s e s 125
9.34.1 Interface Class IPFWFELITM@NAJESooiiiiieeei et st ae e sae e 125
9.34.2 Interface Class IPSVCFAUITIMANGAGEYcooeiiriirieieie ettt st sbe e e e e b b sae e eneas 129
9.34.3 Interface Class |pFWHEABEAMOML........cccoiiiiiececee e s sne e 133
9344 Interface Class IPFWHEAIMBEALcceeveeie et ere e neas 135
9.345 Interface Class |PSVCHEABEAIMOML.......ccoiiiiieeeeeres e e e se e e re e ene e eneas 135
9.34.6 Interface Class IPSVCHEAMBERLccoirieiriee bbb 137
9.34.7 Interface Class |PFWL OAOMBNAGESceiirieiriieser ettt bbbttt 137
9.3438 Interface Class IPSVCLOBAMEBNEGEYccoirriririeeere ettt 141
9.349 INterface Class IPFWOAM ...ttt ettt bt e e et e e be b sae e e eneas 144
9.34.10 INterface Class IPSVCOAM ...ttt bttt s e e bbbt aesae e e eneas 145
9.35 Event Notification INtEerface CIASSES........ccovii ittt s s b 146
9351 Interface Class | pPFWEVENNOLIfICaLIONcouiiiieeeeeee e e 146
9.35.2 Interface Class | pSVCEVENINOLIfICATIONco.eiiiieie e e 147
9.4 State TranSitioN DIBOIAMIS.coueieeieieiee sttt sttt ettt st et et e s st e st e st e e e eesee b e sbesaeebe e e anbeseesbesseeneeneans 148
941 Service Registration State TranSition DIiagramsS.........coeeieirererene e 149
9411 State Transition Diagrams for |pFwWServiCeREgISITatioN.covieerererese et 149
94111 S Ol o S (S (=0 RS - (= T 149
94112 SCF ANNOUNCEA SEBEE. ... e.veeveeeeeeeiesiestesieeteseeeeseestestesaessesseeseesaessessesaessesseeseessensessessessessessesseensenes 149
942 Service Instance Lifecycle Manager State Transition Diagrams..........cooeeverneneieneneie e 149
9.4.3 Service Discovery State TranSition DIiagramsSccceverererieenenene st 149

ETSI

6 ETSI ES 201 915-3 V1.2.1 (2002-05)

944 Integrity Management State Transition DIagramsS..........ccvceeieereeieeieeseeseesese e se e e e saeeneesnne e 150
9441 State Transition Diagrams for IpFWLOaOM@NagErc.ccvereerieneeie e et esee e e e e e enae e e 150
94411 [AIE SEBLE..... vttt r e 150
9.4.4.1.2 Notification SUSPENAEA SEALE.........ccceeiieieiiie st sr e be s aeere e eneas 150
94413 ACHVE SEALE ...ttt R e 150
945 Event Notification State Transition DIiagramsS........ccccoeverereseseeieeeeseeseseseesesae e sseeeeseesessseseeseessesseenes 151
1O SEIVICE PrOPEITIES. ..ottt b et s et e e et h bbb b e b et e e e b et b e nb s e e e nenn s 151
10.1 SEIVICE PIOPEITY TYPES ..ttt sttt ettt bbb bbbt bbbt b et e bt e b b e e e bt b e e bt et e st e 151
10.2 GENEral SEIVICE PrOPEITIES......citieceeititei ettt b et b et b et b e st b e e bt b e et st nn et s 152
10.2.1 SEIVICE INGITIE. ...ttt b bRt e Rt e R s e Rt e R e e Rt se bt e r e ren s 152
10.2.2 SEIVICE VOIS ON. ...ttt ettt E e e bR R e E bRt E R e Rt ne bt e bt nren s 152
10.2.3 SENVICE INSLANCE ID ...ttt e e R e r e e r et nner e ner s 152
10.2.4 SErViCE INSLANCE DESCIIPLION. .. c.viivecieeeceesies e e sttt e e e sttt e e sa e e et e tesaesresseeseeneeteseesrennnensensens 152
10.25 PrOQUCE NBIME ..ottt R Rt e et b et e b et n b e n e nn e 152
10.2.6 PrOQUCE VEISION ...ttt et b et b et nr e 152
10.2.7 SUPPOIEA INEEITACES ...tttk b e e b b e bt b se st bese e et e se e e b e srenneneas 152
10.2.8 OPEIBLION SEL ...ttt ettt ettt e et bt e et b e e e e eb e se e e eb e sR e e eb e s R e e eb e R e e eb e eEeR e eR e ne e e b e R e e bt e e ene s 152
11 Dat@ DEFINITIONS ...c.eeiiiiiteeee ettt b b s e e e e et s e b e n e b ne e nenn e e 153
111 Common Framework Data DEfiNItIONSccvriieirreirreies s 153
1111 LI oL O 1= 017N oo SR P STTR ST 153
11.1.2 LI oL O 1= 017N o) o1 T = TSP S PRSP 153
11.1.3 LI 01001107 T | 5 ST PE ST R ST P 153
11.14 QLI 100 7= g 0 15/ = 154
11.15 LI 0101 o] 1 I ST TRT ST SPR 154
11.1.6 TPPIOPEITYINGIMIE. ...ttt ettt ettt et s ae e she e ebe e b e e beeabesaeesaeesaeesaeesaeeraeanbeenneans 154
11.1.7 QLI L (0] 1= YA VA= LU OSSPSR 154
11.1.8 Bl (0 0= £ YRR 154
11.19 QLI (0] 1= 1Y T OSSR 154
11.1.10 LI oL =010 o] 1 B = SOOI 154
11111 LI o1 LSOO 154
11.1.12 LI 05 = T =TSSP TSP 155
11.1.13 LI 05 = Y= T TSP RT ST RSPR 155
11.1.14 QLI 1= L0 TS o o1 o 155
11.1.15 TPSEIVICEID ...ttt E e Rt R et R Rt R e 155
11.1.16 TPSEIVICEIDLISE ...ttt r e r et r e et e r e nn e 155
11.1.17 TPSENVICEINSLANCEID ..ottt et be bt e e e e be s et eb e s st eae e e e e e nbeseesbesaeene e e eneas 155
11.1.18 T PSEIVICESPECSIITNG ..veveterteeueeieeeeete et te sttt te et e e e beseesbesbesaeeae e st emeeseese e besaeebesaeeaeeas e s anbeseesbesaeeseeneannas 155
11.1.19 T PSEIVICETYPEPTOPEITY ... ettt ettt ettt ettt e e et e bt b e et e e e e e se e beseeebeeaeeme e e e aeanbeseesbesaeeneeneaneas 156
11.1.20 T PSErVICETYPEP OPEITY LIS ...ttt ettt e bbbt st et eeeseesbesaesne e e annas 156
11121 TPServiCETYPEPIOPEITYIMOUE. ..ottt sttt b e b e b bt ese et e bt e e besaesae e e aneas 156
11.1.22 TPSErViCEPIOPEITY TYPENEITIE. ...ttt ettt sttt ae et e e e e besbe s be e bt et e neeseesbesaeseeebesaesae e e aneas 156
11.1.23 T PSEVICEPIOPEITYNGITIE. ..ot cteeeeee e sttt e e te st e e aeste e e e e e e e s eesbesaeeseeseeneeneeseneeseentenneeneennensn 156
11.1.24 TPSErVICEPrOPEITYNGIMEL IS ... ccveiieceeeeeeee ettt et se e e s re st e reeneese e e enaesresresneeneeneenees 156
11.1.25 TPSENVICEPIOPEITYV AIUE......c.ee ettt sttt e st st e s e e e saeetesreene e e e e entesrentesneeneeneeneen 156
11.1.26 TPSErVICEPIOPEITYV AIUELISE ... ecveeeeceeeeees ettt ettt e e et entesrenresneeneeneenean 156
11.1.27 TPSENVICEPTOPENTYccveveueeterteeete sttt sttt ettt et be bbbt s e b e s e e st s b e s e st e b e st e m e e b e b e ne s e e s ese s b et enenbeseeneenas 157
11.1.28 TPSENVICEPTOPEIYLISE ...ttt b e bbbt b e b et b et et e s e b et ene bt enennas 157
11.1.29 TPSENVICESUPPHENTD ...ttt sttt b et e e e e b e s et eb e s st e ae e e e e enbeseeebesaeene e e ennas 157
11.1.30 TPSErVICETYPEDESCIIPLION ...ttt sttt ettt sttt be bt e e besee b e s bt e beese e e et seesbesaeeneeneanean 157
11.1.31 TPSENVICETYPENGIME ...ttt ettt sttt bt ae et ebese e b e s bt e heeae e e emeese e et anteseesbesaeeneeneennas 158
11.1.32 TPSErVICETYPENAMELISE ..ottt b e et b et s et e e e e e e s besaeeae e e eneas 158
11.1.33 T DU OO TYPIE.c.vtteteeseeteeetetesereeteesbetereeeheesbeb e ekt b bbbt e b et s bt b b et se b et s b b et se b et b e b e et n e b 158
11.2 Event Notification Data DEfiNitiONS.cccciviiiiiieiieiee et ese e te e e e enaenes 159
1121 TPFWEVENINGIMIE ...t r e r et em e e sr e e sre e smeesreenneenneeneenneens 159
11.2.2 LI LR AL 1 (O] = T TSRS 159
11.2.3 TPPWEVENTINTO. ...ttt ettt b et b e et b e bt e bt b e e e bt b et ene b et e neenis 159
11.3 Trust and Security Management Data DefinitioNScooeiiirenenne e 160
11.31 DA CCESSTYPIE ..ttt ettt s e sre e sh e nre e ee e e e e e et e ae e eae e e R e e R e e R e e e e n e nnnenRe e nre e nneenneeneeneen 160
11.32 QLI 2L I8 TSRS 160
11.33 TPENCIYPLONCAP@DITTYeeeieieteee ettt et b et be et et be e e b saeese e e eneas 160

ETSI

11.34
11.35
11.36
11.3.7
11.38
11.39
11.3.10
11.3.11
114
1141
1142
1143
1144
1145
1146
1147
1148
1149
11.4.10
11411
11.4.12
11.4.13
11.4.14
11.4.15
11.4.16
11.4.17
11.4.18
11.4.19
11.4.20
11421
115
1151
1152
1153
1154
1155
1156
11.5.7
1158
1159
11.5.10
11511
11.5.12
11513
11.5.14
11.5.15
11.5.16
11.5.17
11.5.18
11.5.19
11.5.20
11521
11.5.22
11.5.23
11.5.24
11.5.25
11.5.26
11.5.27
11.5.28
11.5.29
11.5.30
11.5.31

7 ETSI ES 201 915-3 V1.2.1 (2002-05)

TPRENCrYPtioNCap@liliTYLiStccveeereeieeeiesiesteee et se et e e e et e te e e eseesaaesseesreesseenseenneenseans 160
T PENUA CCESSPIOPEITIES. .. .cteeie e ettt e st e e ste et e s e s e e s ae e beenteenteeseesseessaesseesaeesseenseenseenseans 160
QLI 714 10T 1 = 1 o SR 161
QI oL = o= AV T SR 161
LI L= == = = 161
QLI 015 = VAT 0T= T 10 o 161
TPSIGNAIUrEANASENVICEMQE ...ttt bbb e et b et b ekt b e bt b e s e bt b e s e st b e s ene b e nn e e 162
TPSIGNINGATGOITENM ...t b bbbt b e se b s e 162
Integrity Management Data DefiNitioNS............ceiiieiiireiiesee et ene 162
TPACHVITY TESIRES ...ttt bt e bt s b e st b e b bt s st b e eb e bt s e e s e st b et ene b e e e e nnis 162
TPFAUIESEEESRECOITeveieetiieeieet ettt bbbt b b b e e e bt b s se b b nenns 162
QLI L= 0 5 = 163
QLI L= 0 S = S s o S 163
TPFAUILSEBESSEL ... vttt r e e et e Rt e et R e bt ren e r s r s 163
TPACHVITYTESIID ...ttt r e nr et et ren e n e 163
QLI 1= o= S 163
TPSVCUNGVAIIREASON.cviieieecticecesees ettt e s et e e e e e e s e e besaeetesseeseense s anteseestenneeneennenean 164
TPPWUNAVAITREASON ...ttt ettt b e bt e st b s b e e e s e eb s e es e b s se b nn e e 164
TPLOAOLEVEL.......eeeceeeeeee ettt bbbt h bbb bbbt e bt h e bt be b e bt e enn 164
TPLOAOTRIESNON ...ttt bbbt e et bbbt b st b e nn e e 164
TPLOAOINITV @I ...ttt bbbtk b et b bbbt e bt b st benn e ens 164
QLI /=T | o 1Yo OSSR 165
QLI] =0 S S oSO 165
QLI]I S = o = S 165
QLI]I = S oD - SRS 165
QLI 1= S = S =g) S 165
QLI L= 5 R U g) I3 TS 166
QLI]I = 5 = g o SRS 166
QLI]I 5 = R g oI o= S 166
TPLOBASEALISHCEITO ...ttt ettt e e e b e et et e et e neese e s e eeseeebesaeenee e aneas 166
Service Subscription Data DEfiNitiONSooeiiiireeee e e sr e een 166
TPPIOPEITYINGIMIE. ...ttt b e bttt et s ae e ehe e e be e b e e beeabesaeesaeesaeesaeesaeanseennennneans 166
QLI L (0] 1= AT AVA= | LU OSSPSR 166
QI oL (0 0= 1 | U TP RUPTUSTPRO 167
QLI 0] 1= 1 3 T S 167
QLI 1@ oo o= 1= S 167
I 111 o TS 167
QLI 1= 0T 0o =t {1 0 167
QLI 1= [0 o = ot € 0 S 167
TPPEISONNGITIEceieeiee et e e s e e e e te s s e saeesreesaeesaeeeeeneeaneeeseesse e seenseenseensesneesneesreesnnenseenseensnnns 167
TPPOSIAIAGUIESS... ...ttt bttt ee e b e bt bt e st et et e ee e e beeheeb e et eneese e s anbeseesbesaeeneeeeneas 167
TPTE EPNONENUMDE ...ttt b et e e e b b e s ae b e et e e e seeseenbeseesbesaeeae e e aneas 167
QLI =10 OSSO 167
TPHOMEPAGE ...ttt ettt et st e st e s et e ehe e bt e b e et e eabesaeesaeesaeesaeesaeanaeanneenneans 168
T PPEISONPIOPEITIES. ...ttt ettt b ket ee et e bt bt e st e s e e e e e e s be s bt ebeeneeneese e e enbesbesbesneeneeneeneas 168
TPPEISON.....eee ettt h e bt h e et e et e eh e e R e e eh e e ebe e beeaEeeaeesRe e sReeeaeenReeneennean 168
TPSENVICESLANTD@LE. ... vttt sttt ettt b et b e et b et s e bt e st e bt st e st b e e ene b et e s e b et e neenas 168
TPSENVICEENUDEGLE........cvieeierieriet ettt b ettt e bt b et b bt s e b et e s e s e s ene st et ene b e seeneens 168
TPSENVICEREGUESION ...ttt sttt sttt ettt b et b s b et b e b e e eb e s b e s eb e b et e st b et e s e e e s eb e s b e tenenbeneenennas 168
QLI 012111 1T g 1] g = o OSSPSR 168
TPSErViCESUDSCII Pt ONPIOPEITIES.cveivieeiiitereeeerte ettt b et sb e e s bt se b seenennes 168
I OIS = VLo e 11 o O SOTROTTRR 169
TPSErviCECONIrACIDESTITPLION. ... iteieeiterie ettt ettt be et e e se et e e seesbesaeene e e eneas 169
L L IT= q17aY o] o] o] ol g =SOSR 169
L O IT= q1 VAN o] o B I= ol] 11T FO SO SRORP 169
LI 052 o | 1 OSSOSO PSR TTRTST PRSP 169
TSAGIDLISE .tttk ettt etk b bbb e bRt E R £ bR R Rt R b e e bbbt bR b 169
I OIS D= o T oo o OO PTRSTRPRR 170
1S OO 170
TPSENVICEPTOFITEID ...ttt bbbt b e b e b et b b nnas 170
TPSENVICEPTOFTEIDLIS ...ttt ettt b bbb e e ens 170
TPSENVICEPTOFTIE ...t b bttt b et b e bbbt b e b enas 170

ETSI

8 ETSI ES 201 915-3 V1.2.1 (2002-05)

11.5.32 TPSErViCePrOfilEDESCITPLION.etieteeeee ettt et e et ebe e e estessaesseesreesaeenseenseenseans 170
I (= o (o O = 5T RS 171
Annex A (normative): OMG IDL Description of Frameworkccccevvvierenencennseese e 172
Annex B (informative): Contents of 3GPP OSA R4 FrameworkK........ccccoeeirieineneneneseseeseeeee 173
Annex C (informative): Summary of differences between V1.1.1 (Parlay 3.0) and V1.2.1

(R = 1Y 25) TSRS 174
(O3 R 1 o2 oo o= U LAY/ =g T= T T 174
(O 1o = 41, 7= = T 174
C.3 | PFWRAUITIMIANAGESttt b et e b n e e et senn e nenn e nen e 174
C.4 I PSVCFAUITIMIBNGOEY ...ttt sttt sb st s e e e se st b e nn e nennen e e e 174
C.5 IpFWSEIVICEREQISIIAIIONc.eeeiectecie ettt et e st e et e s b e et et e saeetesreeneestesaeentesreeneensens 174
(O I D - = B 1Y/ 0] TSP PSPPSR 175
[11 (TP 177

ETSI

9 ETSI ES 201 915-3 V1.2.1 (2002-05)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, ispublicly available for ETSI membersand non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, |PRs notified to ETS in
respect of ETS standards’, which is available from the ETSI Secretariat. Latest updates are available on the ETS| Web
server (http://webapp.etsi.org/| PR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other |PRs not referenced in ETSI SR 000 314 (or the updates on the ETS| Web
server) which are, or may be, or may become, essential to the present document.

Foreword

ThisETSI Standard (ES) has been produced by ETSI Technical Committee Services and Protocols for Advanced
Networks (SPAN), and is now submitted for the ETSI standards Membership Approval Procedure.

The present document is part 3 of a multi-part deliverable covering Open Service Access (OSA); Application
Programming Interface (API), asidentified below. The API specification (ES 201 915) is structured in the following
parts:

Part 1: "Overview";

Part 2. "Common Data Definitions”;
Part 3: " Framework";

Part 4. "Call Control SCF";

Part5: "User Interaction SCF";
Part6: "Mobility SCF";

Part 7 "Terminal Capabilities SCF";
Part 8: "Data Session Control SCF";
Part9: "Generic Messaging SCF";
Part 10: "Connectivity Manager SCF";
Part 11: "Account Management SCF";
Part 12: "Charging SCF".

The present document has been defined jointly between ETSI, The Parlay Group [24] of ES 201 915-1 and the 3GPP, in
co-operation with a number of JAIN™ Community [25] of ES 201 915-1 member companies.

The present document forms part of the Parlay 3.1 set of specifications.

ETSI

http://webapp.etsi.org/IPR/home.asp

10 ETSI ES 201 915-3 V1.2.1 (2002-05)

1 Scope

The present document is part 3 of the Stage 3 specification for an Application Programming Interface (API) for Open
Service Access (OSA).

The OSA specifications define an architecture that enables application devel opers to make use of network functionality
through an open standardised interface, i.e. the OSA APIs.

The present document specifies the Framework aspects of the interface. All aspects of the Framework are defined in the
present document, these being:

¢ Sequence Diagrams

¢ Class Diagrams

* Interface specification plus detailed method descriptions
e State Transition diagrams

o DataDefinitions

e |IDL Description of the interfaces

The process by which this task is accomplished is through the use of object modelling techniques described by the
Unified Modelling Language (UML).

2 References

Thereferenceslisted in clause 2 of ES 201 915-1 contain provisions which, through reference in this text, constitute
provisions of the present document.

ETSI ES 201 915-1: "Open Service Access (OSA); Application Programming Interface (API); Part 1: Overview".

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in ES 201 915-1 apply.

3.2 Abbreviations

For the purposes of the present document, the abbreviations defined in ES 201 915-1 apply.

4 Overview of the Framework

This clause explains which basic mechanisms are executed in the OSA Framework prior to offering and activating
applications.

The Framework API contains interfaces between the Application Server and the Framework, between the Network
Service Capability Server (SCS) and the Framework, and between the Enterprise Operator and the Framework (these
interfaces are represented by the yellow circles in the diagram below). The description of the Framework in the present
document separates the interfaces into these three distinct sets: Framework to Application interfaces, Framework to
Enterprise Operator interfaces and Framework to Service interfaces.

ETSI

11 ETSI ES 201 915-3 V1.2.1 (2002-05)

Enterprise Operator

l

Framework oAl (|mobitty| | ui

Registered Services

Figure O

Some of the mechanisms are applied only once (e.g. establishment of service agreement), others are applied each time a
user subscription is made to an application (e.g. enabling the call attempt event for a new user).

Basic mechanisms between Application and Framework:

Authentication: Once an off-line service agreement exists, the application can access the authentication
interface. The authentication model of OSA is a peer-to-peer model, but authentication does not have to be
mutual. The application must be authenticated before it is allowed to use any other OSA interface. It isapolicy
decision for the application whether it must authenticate the framework or not. It isa policy decision for the
framework whether it allows an application to authenticate it before it has completed its authentication of the
application.

Authorisation: Authorisation is distinguished from authentication in that authorisation is the action of
determining what a previously authenticated application is allowed to do. Authentication must precede
authorisation. Once authenticated, an application is authorised to access certain service capability features.

Discovery of framework and network service capability features: After successful authentication,
applications can obtain available framework interfaces and use the discovery interface to obtain information on
authorised network service capability features. The Discovery interface can be used at any time after successful
authentication.

Establishment of service agreement: Before any application can interact with a network service capability
feature, a service agreement must be established. A service agreement may consist of an off-line (e.g. by
physically exchanging documents) and an on-line part. The application has to sign the on-line part of the service
agreement before it is allowed to access any network service capability feature.

Accessto network service capability features: The framework must provide access control functions to
authorise the access to service capability features or service data for any APl method from an application, with
the specified security level, context, domain, etc.

Basic mechanism between Framework and Service Capability Server:

Registering of network service capability features. SCFs offered by a Service Capability Server can be
registered at the Framework. In this way the Framework can inform the Applications upon request about
available service capability features (Discovery). For example, this mechanism is applied when installing or
upgrading a Service Capability Server.

Basic mechanism between Framework and Enterprise Operator:

Service Subscription function. This function represents a contractual agreement between the Enterprise
Operator and the Framework. In this subscription business model, the enterprise operators act in the role of
subscriber/customer of services and the client applications act in the role of users or consumers of services. The
framework itself actsin therole of retailer of services.

ETSI

12 ETSI ES 201 915-3 V1.2.1 (2002-05)

The following clauses describe each aspect of the Framework in the following order:

¢ The sequence diagrams give the reader a practical idea of how the Framework isimplemented.

The class diagrams clause show how each of the interfaces applicable to the Framework relate to one another.
e Theinterface specification clause describesin detail each of the interfaces shown within the class diagram part.

¢ The Sate Transition Diagrams (STD) show the transition between states in the Framework. The states and
transitions are well-defined; either methods specified in the Interface specification or events occurring in the
underlying networks cause state transitions.

¢ The data definitions clause shows a detailed expansion of each of the data types associated with the methods
within the classes. Note that some data types are used in other methods and classes and are therefore defined
within the common data types part of this specification.

5 The Base Interface Specification

5.1 Interface Specification Format

This clause defines the interfaces, methods and parameters that form a part of the API specification. The Unified
Modelling Language (UML) is used to specify the interface classes. The general format of an interface specification is
described below.

51.1 Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters
and types. The Service and Framework interfaces for client applications are denoted by classes with name | p<nane>.
The callback interfaces to the applications are denoted by classes with name | pApp<nane>. For the interfaces
between a Service and the Framework, the Service interfaces are typically denoted by classes with name | pSvc<name>,
while the Framework interfaces are denoted by classes with name |pFw<name>.

5.1.2 Method descriptions

Each method (API method "call") is described. Both synchronous and asynchronous methods are used in the API.
Asynchronous methods are identified by a'Req' suffix for a method request, and, if applicable, are served by
asynchronous methods identified by either a'Res' or 'Er r ' suffix for method results and errors, respectively. To handle
responses and reports, the application or service developer must implement the relevant | pApp<name> or

| pSvc<nane> interfaces to provide the callback mechanism.

5.1.3 Parameter descriptions

Each method parameter and its possible values are described. Parameters described as 'in' represent those that must have
avalue when the method is called. Those described as 'out' are those that contain the return result of the method when
the method returns.

514 State Model

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface.

ETSI

13 ETSI ES 201 915-3 V1.2.1 (2002-05)

5.2 Base Interface

5.2.1 Interface Class Ipinterface

All application, framework and service interfaces inherit from the following interface. This API Base Interface does not
provide any additional methods.

<<Interface>>

Ipinterface

5.3 Service Interfaces

531 Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user
interaction, messaging, mobility and connectivity management.

Theinterfaces that are implemented by the services are denoted as 'Service Interface'. The corresponding interfaces that
must be implemented by the application (e.g. for API callbacks) are denoted as 'Application Interface'.

5.4 Generic Service Interface

54.1 Interface Class IpService
Inherits from: Ipinterface

All service interfacesinherit from the following interface.

<<Interface>>

IpService

setCallback (applnterface : in IpinterfaceRef) : void

setCallbackWithSessionID (applinterface : in IpinterfaceRef, sessionID : in TpSessionID) : void

Method
set Cal | back()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the
application. It is not allowed to invoke this method on an interface that uses SessioniDs.

Parameters

applnterface : in IplnterfaceRef
Specifies areference to the application interface, which is used for callbacks.

ETSI

14 ETSI ES 201 915-3 V1.2.1 (2002-05)

Raises
TpComonExcepti ons, P_I NVALI D_| NTERFACE_TYPE

Method
set Cal | backWt hSessi onl X))

This method specifies the reference address of the application's callback interface that a service uses for interactions
associated with a specific session ID: e.g. a specific call, or call leg. It is not allowed to invoke this method on an
interface that does not use SessionlDs.

Parameters

applnterface : in IplnterfaceRef
Specifies areference to the application interface, which is used for callbacks

sessionlD : in TpSessionlD
Specifies the session for which the service can invoke the application's callback interface.

Raises
TpCommonExceptions, P_I NVALI D SESSION | D, P_I NVALI D_| NTERFACE_TYPE

ETSI

15 ETSI ES 201 915-3 V1.2.1 (2002-05)

6 Framework Access Session API

6.1 Sequence Diagrams

6.1.1 Trust and Security Management Sequence Diagrams

6.1.1.1 Initial Access for trusted parties

The following figure shows a trusted party, typically within the same domain as the Framework, accessing the OSA
Framework for the first time. Trusted parties do not need to be authenticated and after contacting the Initial interface the
Framework will indicate that no further authentication is needed and that the application can immediately gain access to
other framework interfaces and SCFs. Thisis done by invoking the requestAccess method.

: IpClientAPILevelAuthentication Client : IpInitial : IpAccess Framework

IQAPILeveIEuthentication

1: initiateAuthentication()

U 2: auther;(litionSucceeded()

3: requestAccess()

1) The Client invokes initiateAuthentication on the Framework's "public" (initial contact) interface to initiate the
authentication process. It providesin turn areference to its own authentication interface. The Framework returns
areference to its authentication interface.

2) Based on the domainl D information that was supplied in the Initiate Authentication step, the Framework knows
it deals with atrusted party and no further authentication is needed. Therefore the Framework provides the
authentication succeeded indication.

3) The Client invokes requestAccess on the Framework's API Level Authentication interface, providing in turn a
reference to its own access interface. The Framework returns a reference to its access i nterface.

6.1.1.2 Initial Access

The following figure shows a client accessing the OSA Framework for the first time.

Before being authorized to use the OSA SCFs, the client must first of all authenticate itself with the Framework. For
this purpose the client needs a reference to the Initial Contact interfaces for the Framework; this may be obtained
through a URL, a Naming or Trading Service or an equivalent service, a stringified object reference, etc. At this stage,
the client has no guarantee that this is a Framework interface reference, but it to initiate the authentication process with
the Framework. The Initial Contact interface supports only the initiateAuthentication method to allow the authentication
process to take place.

Once the client has authenticated with the Framework, it can gain access to other framework interfaces and SCFs. This
is done by invoking the requestAccess method, by which the client requests a certain type of access SCF.

ETSI

16 ETSI ES 201 915-3 V1.2.1 (2002-05)

Client . IpInitial : IpAPILevelAuthentication : IpAccess Eramework

IQCIientAPILev_eIAuthentication

1: initiateAuthentication()

1]

2: selectEncryptionMethod()

3: authenticate()

4: authenticationSucdeeded()

5: authenticate()

6: authenticationSucceeded()

G

7: requestAccess()

1]

®

obtaininterface()

. Initiate Authentication

The client invokes initiateAuthentication on the Framework's "public" (initial contact) interface to initiate the
authentication process. It providesin turn areference to its own authentication interface. The Framework returns
areference to its authentication interface.

. Select Encryption Method

The client invokes sel ectEncryptionM ethod on the Framework's API Level Authentication interface, identifying
the encryption methods it supports. The Framework prescribes the method to be used.

. Authenticate
. Theclient provides an indication if authentication succeeded.

: The client and Framework authenticate each other. The sequence diagram illustrates one of a series of one or
more invocations of the authenticate method on the Framework's APl Level Authentication interface. In each
invocation, the client supplies a challenge and the Framework returns the correct response. Alternatively or
additionally the Framework may issue its own challenges to the client using the authenticate method on the
client's APl Level Authentication interface.

: The Framework provides an indication if authentication succeeded.
Request Access

Upon successful (mutual) authentication, the client invokes requestAccess on the Framework's API Level
Authentication interface, providing in turn areference to its own access interface. The Framework returns a
reference to its access interface.

. The client invokes obtainl nterface on the framework's Access interface to obtain areference to its service
discovery interface.

ETSI

17 ETSI ES 201 915-3 V1.2.1 (2002-05)

6.1.1.3 Authentication

This sequence diagram illustrates the two-way mechanism by which the client and the framework mutually authenticate
one another using an underlying distribution technology mechanism.

Client . Ipinitial Framework . IpAuthentication : IpAccess

T T
| 1: initiateAuthentication(... |
| |

]

| 2: requesltAccess(. .
|

Underlying Distribution
Technology Mechanism is used
for application identification and
authentication.

|

3: obtaininterface.

!

!

1: Theclient callsinitiateAuthentication on the OSA Framework Initial interface. This allows the client to specify
the type of authentication process. In this case, the client selects to use the underlying distribution technology
mechanism for identification and authentication.

2: The client invokes the requestAccess method on the Framework's Authentication interface. The Framework now
uses the underlying distribution technology mechanism for identification and authentication of the client.

3: If the authentication was successful, the client can now invoke obtainl nterface on the framework's Access
interface to obtain areference to its service discovery interface.

6.1.1.4 API Level Authentication

This sequence diagram illustrates the two-way mechanism by which the client and the framework mutually authenticate
one another.

The OSA API supports multiple authentication techniques. The procedure used to select an appropriate technique for a
given situation is described below. The authentication mechanisms may be supported by cryptographic processes to
provide confidentiality, and by digital signatures to ensure integrity. The inclusion of cryptographic processes and
digital signaturesin the authentication procedure depends on the type of authentication technique selected. In some
cases strong authentication may need to be enforced by the Framework to prevent misuse of resources. In addition it
may be necessary to define the minimum encryption key length that can be used to ensure a high degree of
confidentiality.

The client must authenticate with the Framework beforeit is able to use any of the other interfaces supported by the
Framework. Invocations on other interfaces will fail until authentication has been successfully completed.

1) Theclient callsinitiateAuthentication on the OSA Framework Initial interface. This allows the client to specify
the type of authentication process. This authentication process may be specific to the provider, or the
implementation technology used. The initiateAuthentication method can be used to specify the specific process,
(e.g. CORBA security). OSA defines a generic authentication interface (APl Level Authentication), which can
be used to perform the authentication process. The initiateAuthentication method allows the client to pass a
reference to its own authentication interface to the Framework, and receive a reference to the authentication
interface preferred by the client, in return. In this case the API Level Authentication interface.

ETSI

18 ETSI ES 201 915-3 V1.2.1 (2002-05)

2) The client invokes the selectEncryptionMethod on the Framework's APl Level Authentication interface. This
includes the encryption capabilities of the client. The framework then chooses an encryption method based on
the encryption capabilities of the client and the Framework. If the client is capable of handling more than one
encryption method, then the Framework chooses one option, defined in the prescribedM ethod parameter. In
some instances, the encryption capability of the client may not fulfil the demands of the Framework, in which
case, the authentication will fail.

3) The application and Framework interact to authenticate each other. For an authentication method of
P_OSA_AUTHENTICATION, this procedure consists of a number of challenge/response exchanges. This
authentication protocol is performed using the authenticate method on the API Level Authentication interface.
P_OSA_AUTHENTICATION isbased on CHAP, which is primarily a one-way protocol. Mutual authentication
is achieved by the framework invoking the authenticate method on the client's APILevel Authentication interface.

Note that at any point during the access session, either side can request re-authentication. Re-authentication does not
have to be mutual.

: IpClientAPILevelAuthentication Client . IpInitial Framework . IpAPILevelAuthentication

T T
| |
| |
| 1: initiateAuthentication() |
| |

1]

T

|

|

|

|

|

|

IpClientAPlLevel Authentication :
reference is pased to framework |
|

|

|

|

|

|

|

|

|

and IpAPILevel Auth entication
reference is returned.

T
|
2: selectEpcryptionMethod() |

Thisisan example of the 1\
sequence of

authentication

|
|
|
|
3: authenticate() :

may have different

requirements on the

Il

|
X | order of operations.
5: authenticate() |
|

6: authenticate() U

7: re(‘questAcce$()
Il

pased to Famework, and
IpAccess reference is
returned.

T

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

| t

| |

| |

| |

| |

| |

| |
U : operations. Different

T | . authentication protocols

| 4: aythenticate()

| |

| |

| |

| |

| |
D |

|

| |

I u

| |

| |

| |

|

|

|

|

|

|

|

|

|

|

|

|

|

|

T
|
|
|
|
|
|
L
‘ L
IpClientAccess reference is ‘
|
|
|
|
|
|
|

R

ETSI

19 ETSI ES 201 915-3 V1.2.1 (2002-05)

6.2 Class Diagrams
<<Interface>> <<lInterface>>
IpClientAccess IpClientAPILevelAuthentication
(from Client interfaces) (from Client interfaces)
SterminateAccess() Sauthenticate()
SabortAuthentication()
authenticationSucceeded()
<<uses>> <<uses>>
<<Interface>> <<Interface>>
IpInitial <<Interface>> IpAPILevelAuthentication
(from Framework interfaces) IpAccess (from Framework interfaces)
(from Framework interfaces)

FinitiateAuthentication() WselectEncryptionMethad()
Fobtaininterface() Sauthenticate()
SobtaininterfaceWithCallback() SabortAuthentication()
WendAccess() SauthenticationSucceeded()
Histinterfaces() v
Freleaselnterface()

<<Interface>>
IpAuthentication
(from Framework interfaces)
BrequestAccess()

Figure 1: Trust and Security Management Package Overview

6.3 Interface Classes

6.3.1 Trust and Security Management Interface Classes
The Trust and Security Management I nterfaces provide:

- thefirst point of contact for a client to access a Framework provider;

the authentication methods for the client and Framework provider to perform an authentication protocol;

the client with the ability to select a service capability feature to make use of;
- theclient with a portal to access other Framework interfaces.

The process by which the client accesses the Framework provider has been separated into 3 stages, each supported by a
different Framework interface:

1) Initial Contact with the Framework;
2) Authentication to the Framework;

3) Accessto Framework and Service Capability Features.

6.3.1.1 Interface Class IpClientAPILevelAuthentication

Inherits from: Ipinterface.

ETSI

20 ETSI ES 201 915-3 V1.2.1 (2002-05)

<<Interface>>

IpClientAPILevelAuthentication

authenticate (challenge : in TpOctetSet) : TpOctetSet
abortAuthentication () : void

authenticationSucceeded () : void

Method

aut henticate()

This method is used by the framework to authenticate the client. The challenge will be encrypted using the mechanism
prescribed by selectEncryptionMethod. The client must respond with the correct responses to the challenges presented
by the framework. The number of exchanges is dependent on the policies of each side. The whole authentication

process is deemed successful when the authenticationSucceeded method is invoked. The invocation of this method may
be interleaved with authenticate() calls by the client on the | pAPILevel Authentication interface.

Returns <response> : Thisis the response of the client application to the challenge of the framework in the current
sequence. The response will be based on the challenge data, decrypted with the mechanism prescribed by
selectEncryptionM ethod().

Parameters

chal l enge : in TpCctet Set

The challenge presented by the framework to be responded to by the client. The challenge mechanism used will bein
accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994,
August1996]. The challenge will be encrypted with the mechanism prescribed by selectEncryptionM ethod().

Returns
TpCct et Set

Method

abort Aut henti cati on()

The framework uses this method to abort the authentication process. This method isinvoked if the framework wishesto
abort the authentication process, (unless the client responded incorrectly to a challenge in which case no further
communication with the client should occur.) If this method has been invoked, calls to the requestAccess operation on

IpAPILevel Authentication will return an error code (P_ACCESS_DENIED), until the client has been properly
authenticated.

Parameters
No Parameters were identified for this method.

Method
aut henti cati onSucceeded()

The Framework uses this method to inform the client of the success of the authentication attempt.

ETSI

21 ETSI ES 201 915-3 V1.2.1 (2002-05)

Parameters
No Parameters were identified for this method.

6.3.1.2 Interface Class IpClientAccess
Inherits from: I plnterface.

IpClientAccess interface is offered by the client to the framework to allow it to initiate interactions during the access
session.

<<Interface>>

IpClientAccess

terminateAccess (terminationText : in TpString, signingAlgorithm : in TpSigningAlgorithm, digitalSignature : in
TpOctetSet) : void

Method
t erm nat eAccess()

The terminateAccess operation is used by the framework to end the client's access session.

After terminateAccess() isinvoked, the client will no longer be authenticated with the framework. The client will not be
able to use the references to any of the framework interfaces gained during the access session. Any callsto these
interfaces will fail. If at any point the framework's level of confidence in the identity of the client becomes too low,
perhaps due to re-authentication failing, the framework should terminate all outstanding service agreements for that
client, and should take steps to terminate the client's access session WITHOUT invoking terminateAccess() on the
client. This follows a generally accepted security model where the framework has decided that it can no longer trust the
client and will therefore sever ALL contact with it.

Parameters

term nationText : in TpString
Thisisthe termination text describes the reason for the termination of the access session.

signingAlgorithm: in TpSigningAl gorithm

Thisisthe algorithm used to compute the digital signature. If the signingAlgorithm isinvalid, or unknown to the client,
the P_INVALID_SIGNING_ALGORITHM exception will be thrown.

digital Signature : in TpCctet Set

Thisisasigned version of a hash of the termination text. The framework uses this to confirm its identity to the client.
The client can check that the terminationText has been signed by the framework. If a match is made, the access session
isterminated, otherwise the P_INVALID_SIGNATURE exception will be thrown.

Raises
TpCommonExceptions, P_I NVALI D SI GNI NG ALGORI THM P_I NVALI D_SI GNATURE

ETSI

22 ETSI ES 201 915-3 V1.2.1 (2002-05)

6.3.1.3 Interface Class Iplinitial
Inherits from: Iplnterface.

The Initial Framework interface is used by the client to initiate the mutual authentication with the Framework.

<<Interface>>

IpInitial

initiateAuthentication (clientDomain : in TpAuthDomain, authType : in TpAuthType) : TpAuthDomain

Method
I nitiateAuthentication()

This method isinvoked by the client to start the process of mutual authentication with the framework, and request the
use of a specific authentication method.

Returns <fwDomain> : This provides the client with a framework identifier, and a reference to call the authentication
interface of the framework.

structure TpAuthDomain {

domainiD: TpDomainiD;

authinterface: IplnterfaceRef;

The domainlD parameter is an identifier for the framework (i.e. TpFwID). It is used to identify the framework to the
client. The authinterface
parameter is areference to the authentication interface of the framework. The type of thisinterface is defined by the
authType parameter. The client uses this interface to authenti cate with the framework.

Parameters

clientDonmain : in TpAuthDomain
Thisidentifies the client domain to the framework, and provides a reference to the domain's authentication interface.

structure TpAuthDomain {
domainiD: TpDomainlD;
authinterface: IplnterfaceRef; }

The domainlD

parameter is an identifier either for a client application (i.e. TpClientAppl D) or for an enterprise operator (i.e.
TpENtOpID), or for an existing registered service (i.e. TpServicel D) or for a service supplier (i.e.
TpServiceSupplierlD). It is used to identify the client domain to the framework, (see authenticate() on
IpAPILevel Authentication). If the framework does not recognise the domainiD, the framework returns an error code
(P_INVALID_DOMAIN_ID).

The authinterface parameter is areference to call the authentication interface of the client. The type of thisinterface
is defined by the authType parameter. If the interface reference is not of the correct type, the framework returns an error
code (P_INVALID_INTERFACE_TYPE).

ETSI

23 ETSI ES 201 915-3 V1.2.1 (2002-05)

aut hType : in TpAuthType

Thisidentifies the type of authentication mechanism requested by the client. It provides operators and clients with the
opportunity to use an alternative to the API level Authentication interface, e.g. an implementation specific
authentication mechanism like CORBA Security, using the | pAuthentication interface, or Operator specific
Authentication interfaces. OSA API level Authentication isthe default authentication mechanism
(P_OSA_AUTHENTICATION). If P_OSA_AUTHENTICATION is selected, then the clientDomain and fwDomain
authl nterface parameters are references to interfaces of type Ip(Client)APILevel Authentication. If
P_AUTHENTICATION is selected, the fwDomain authlnterface parameter references to interfaces of type

I pAuthentication which is used when an underlying distribution technology authentication mechanism is used.

Returns
TpAut hDomai n

Raises

TpConmonExcept i ons, P_I NVALI D_DOVAI N_I D, P_I NVALI D_I NTERFACE_TYPE,
P_I NVALI D_AUTH_TYPE

6.3.1.4 Interface Class IpAuthentication
Inherits from: Iplnterface.

The Authentication Framework interface is used by client to request access to other interfaces supported by the
Framework. The mutual authentication process should in this case be done with some underlying distribution
technology authentication mechanism, e.g. CORBA Security.

<<Interface>>

IpAuthentication

requestAccess (accessType : in TpAccessType, clientAccessinterface : in IpinterfaceRef) : IpinterfaceRef

Method
request Access()

Once client and framework are authenticated, the client invokes the requestAccess operation on the IpAuthentication or
IpAPILevel Authentication interface. This allows the client to request the type of accessthey require. If they request
P_OSA_ACCESS, then areference to the IpAccess interface is returned. (Operators can define their own access
interfaces to satisfy client requirements for different types of access.)

If this method is called before the client and framework have successfully completed the authentication process, then
the request fails, and an error code (P_ACCESS DENIED) isreturned.

Returns <fwA ccesslnterface> : This provides the reference for the client to call the access interface of the framework.

Parameters

accessType : in TpAccessType

Thisidentifies the type of access interface requested by the client. If the framework does not provide the type of access
identified by accessType, then an error code (P_INVALID_ACCESS TY PE) isreturned.

ETSI

24 ETSI ES 201 915-3 V1.2.1 (2002-05)

clientAccessinterface : in IplnterfaceRef

This provides the reference for the framework to call the access interface of the client. If the interface reference is not of
the correct type, the framework returns an error code (P_INVALID_INTERFACE_TY PE).

Returns
| pl nt er f aceRef
Raises

TpConmonExcept i ons, P_ACCESS DENI ED, P_| NVALI D_ACCESS_TYPE,
P_I NVALI D_I NTERFACE_TYPE

6.3.1.5 Interface Class IpAPILevelAuthentication
Inherits from: | pAuthentication.

The API Level Authentication Framework interface is used by client to perform its part of the mutual authentication
process with the Framework necessary to be allowed to use any of the other interfaces supported by the Framework.

<<Interface>>

IpAPILevelAuthentication

selectEncryptionMethod (encryptionCaps : in TpEncryptionCapabilityList) : TpEncryptionCapability
authenticate (challenge : in TpOctetSet) : TpOctetSet
abortAuthentication () : void

authenticationSucceeded () : void

Method

sel ect Encrypti onMet hod()

The client uses this method to initiate the authentication process. The framework returns its preferred mechanism. This
should be within capability of the client. If a mechanism that is acceptable to the framework within the capability of the
client cannot be found, the framework throwsthe P NO_ACCEPTABLE_ENCRYPTION_CAPABILITY exception.
Once the framework has returned its preferred mechanism, it will wait for a predefined unit of time before invoking the

client's authenticate() method (the wait is to ensure that the client can initialise any resources necessary to use the
prescribed encryption method).

Returns <prescribedMethod> : Thisis returned by the framework to indicate the mechanism preferred by the framework
for the encryption process. If the value of the prescribedM ethod returned by the framework is not understood by the
client, it is considered a catastrophic error and the client must abort.

Parameters

encryptionCaps : in TpEncrypti onCapabilityLi st

Thisis the means by which the encryption mechanisms supported by the client are conveyed to the framework.

ETSI

25 ETSI ES 201 915-3 V1.2.1 (2002-05)

Returns

TpEncryptionCapability

Raises

TpComonExcepti ons, P_ACCESS DEN ED,
P_NO_ACCEPTABLE_ENCRYPTI ON_CAPABI LI TY

Method

aut henti cate()

This method is used by the client to authenticate the framework. The challenge will be encrypted using the mechanism
prescribed by selectEncryptionMethod. The framework must respond with the correct responses to the challenges
presented by the client. The domainiD received in the initiateAuthentication() can be used by the framework to
reference the correct public key for the client (the key management system is currently outside of the scope of the OSA
APIs). The number of exchanges is dependent on the policies of each side. The whole authentication process is deemed

successful when the authenticationSucceeded method is invoked. The invocation of this method may be interleaved
with authenticate() calls by the framework on the client's APILevel Authentication interface.

Returns <response> : Thisis the response of the framework to the challenge of the client in the current sequence. The
response will be based on the challenge data, decrypted with the mechanism prescribed by selectEncryptionM ethod().

Parameters

chal l enge : in TpCctet Set

The challenge presented by the client to be responded to by the framework. The challenge mechanism used will bein
accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994,
August1996]. The challenge will be encrypted with the mechanism prescribed by selectEncryptionM ethod().

Returns

TpCct et Set

Raises

TpComonExcepti ons, P_ACCESS DEN ED

Method
abort Aut henti cati on()

The client uses this method to abort the authentication process. This method isinvoked if the client no longer wishesto
continue the authentication process, (unless the client responded incorrectly to a challenge in which case no further
communication with the client should occur.) If this method has been invoked, calls to the requestAccess operation on
IpAPILevel Authentication will return an error code (P_ACCESS_DENIED), until the client has been properly
authenticated.

Parameters
No Parameters were identified for this method.

ETSI

Raises

26 ETSI ES 201 915-3 V1.2.1 (2002-05)

TpComonExcept i ons, P_ACCESS_DEN ED

Method

aut henti cati onSucceeded()

The client uses this method to inform the framework of the success of the authentication attempt.

Parameters

No Parameters were identified for this method.

Raises

TpComonExcepti ons, P_ACCESS DEN ED

6.3.1.6 Interface Class IpAccess

Inherits from: Ipinterface.

<<Interface>>

IpAccess

obtaininterface (interfaceName : in TpinterfaceName) : IpIinterfaceRef

obtaininterfaceWithCallback (interfaceName : in TpinterfaceName, clientinterface : in IpIinterfaceRef) :

IpInterfaceRef

endAccess (endAccessProperties : in TpEndAccessProperties) : void

listinterfaces () : TpinterfaceNameList

releaselnterface (interfaceName : in TpinterfaceName) : void

Method
obt ai nl nterface()

This method is used to obtain other framework interfaces. The client uses this method to obtain interface references to
other framework interfaces. (The obtainlnterfaceWithCallback method should be used if the client is required to supply

a callback interface to the framework.)

Returns <fwlInterface> : Thisisthe reference to the interface requested.

Parameters

interfaceNanme : in TplnterfaceNane

The name of the framework interface to which areference to the interface is requested. If the interfaceNameisinvalid,
the framework returns an error code (P_INVALID_INTERFACE_NAME).

ETSI

27 ETSI ES 201 915-3 V1.2.1 (2002-05)

Returns

| pl nt er f aceRef

Raises

TpComonExcept i ons, P_ACCESS DENI ED, P_I NVALI D_| NTERFACE_NAME

Method
obt ai nl nterfaceWthCal | back()

This method is used to obtain other framework interfaces. The client uses this method to obtain interface references to
other framework interfaces, when it is required to supply a callback interface to the framework. (The obtainl nterface
method should be used when no callback interface needs to be supplied.)

Returns <fwlInterface> : Thisisthe reference to the interface requested.

Parameters

interfaceName : in TplnterfaceNanme

The name of the framework interface to which areference to the interface is requested. If the interfaceNameisinvalid,
the framework returns an error code (P_INVALID_INTERFACE_NAME).

clientinterface : in |IplnterfaceRef

Thisisthe reference to the client interface, which is used for callbacks. If aclient interface is not needed, then this
method should not be used. (The obtainl nterface method should be used when no callback interface needs to be
supplied.) If the interface reference is not of the correct type, the framework returns an error code
(P_INVALID_INTERFACE_TYPE).

Returns

| pl nt erfaceRef

Raises

TpComonExcepti ons, P_ACCESS DEN ED, P_I NVALI D | NTERFACE NAME,
P_1I NVALI D_I NTERFACE_TYPE

Method
endAccess()
The endAccess operation is used by the client to request that its access session with the framework is ended. After it is

invoked, the client will no longer be authenticated with the framework. The client will not be able to use the references
to any of the framework interfaces gained during the access session. Any calls to these interfaces will fail.

Parameters

endAccessProperties : in TpEndAccessProperties

Thisisalist of properties that can be used to tell the framework the actions to perform when ending the access session
(e.g. exigting service sessions may be stopped, or left running). If aproperty is not recognised by the framework, an
error code (P_INVALID_PROPERTY) is returned.

ETSI

28 ETSI ES 201 915-3 V1.2.1 (2002-05)

Raises
TpCommonExcept i ons, P_ACCESS_DENI ED, P_I NVALI D_PROPERTY

Method
listlnterfaces()

The client uses this method to obtain the names of all interfaces supported by the framework. It can then obtain the
interfaces it wishes to use using either obtainlnterface() or obtainlnterfaceWithCallback().

Returns <frameworklnterfaces> : The frameworklnterfaces parameter contains alist of interfaces that the framework
makes available.

Parameters
No Parameters were identified for this method.

Returns

Tpl nt er f aceNaneLi st

Raises

TpComonExcepti ons, P_ACCESS DEN ED

Method
rel easel nterface()

The client uses this method to rel ease a framework interface that was obtained during this access session.

Parameters

interfaceName : in TplnterfaceName

Thisisthe name of the framework interface which is being released. If the interfaceName isinvalid, the framework
throwsthe P_INVALID_INTERFACE_NAME exception. If the interface has not been given to the client during this
access session, then the P_TASK_REFUSED exception will be thrown.

Raises
TpCommonExcepti ons, P_ACCESS DENI ED, P_I NVALI D_| NTERFACE_NANE

6.4 State Transition Diagrams

This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the
gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can
be invoked by the client are shown. Methods not shown for a specific state are not relevant for that state and will return
an exception. Apart from the methods that can be invoked by the client also eventsinternal to the gateway or related to
network events are shown together with the resulting event or action performed by the gateway. These internal events
are shown between quotation marks.

ETSI

29 ETSI ES 201 915-3 V1.2.1 (2002-05)

6.4.1 Trust and Security Management State Transition Diagrams

6.4.1.1 State Transition Diagrams for IpInitial

initiateAuthentication/return new IpAuthentication

Figure 2: State Transition Diagram for Iplnitial

6.4.1.1.1 Active State

6.4.1.2 State Transition Diagrams for IpAPILevelAuthentication

Ipnitial.initiateAuthentication

Idle
requestAccess
_ACCESS_DENIE
"no method found"

P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY
selectEngryptionMethod

Selecting
requestAccess Method
"P_ACCESS_DENIED

“found method" / return prescribedMethod “client.authenticate

All States

7~
L

authenticate result(VALID)[Auth

authenticate / "Buffer request”
Incomplete] “client.authenticate

requestAccess "P_ACCESS_DENIE

Authenticating result(INVALID)
Client

authenticate result(VALID)[AuthComplete] /
"Process guthenticate requests" “client.authenticationS uc ceeded

"re-authenticate”
“client.authenticate

requestAccess / new IpAccess
Client
Authenticated

Figure 3: State Transition Diagram for IpAPILevelAuthentication

ETSI

30 ETSI ES 201 915-3 V1.2.1 (2002-05)

6.4.1.2.1 Idle State

When the client has invoked the Iplnitial initiateAuthentication method, an object implementing the
IpAPILevel Authentication interface is created. The client now has to provide its encryption capabilities by invoking
selectEncryptionMethod.

6.4.1.2.2 Selecting Method State

In this state the Framework selects the preferred encryption mechanism within the capability of the client. It isa policy
of the framework (perhaps agreed off-line with the enterprise operator) whether the client has to be authenticated or not.
In case no mechanism can be found the P NO_ACCEPTABLE_ENCRYPTION_CAPABILITY exception isthrown
and the Authentication object moves back to the IDLE state The client can now revisit itslist of supported capabilities
to identify whether it is complete. If it has no more encryption capabilities to use, then it must invoke
abortAuthentication.

6.4.1.2.3 Authenticating Client State

When entering this state, the Framework requests the client to authenticate itself by invoking the Authenticate method
on the client. In case the client requests the Framework to authenticate itself by invoking Authenticate on the
IpAPILevel Authentication interface, the Framework will either buffer the requests and respond when the client has
been authenticated, or respond immediately, depending on policy. When the Framework has processed the response
from the Authenticate request on the client, the response is analysed. If the response is valid but the authentication
processis not yet complete, then another Authenticate request is sent to the client. If the responseis valid and the
authentication process has been completed, then atransition to the state ClientAuthenticated is made, the client is
informed of its success by invoking authenticationSucceeded, then the framework begins to process any buffered
authenticate requests. In case the response is not valid, the Authentication object is destroyed. Thisimplies that the
client has to re-initiate the authentication by calling once more the initiateAuthentication method on the Iplnitial
interface.

6.4.1.2.4 Client Authenticated State

In this state the client is considered authenticated and is now allowed to request access to the IpAccessinterface. In case
the client requests the Framework to authenticate itself by invoking Authenticate on the IpAPILevel Authentication
interface, the Framework provides the correct response to the challenge. If the framework decides to re-authenticate the
client, then the authenticate request is sent to the client and a transition back to the AuthenticatingClient state occurs.

ETSI

31 ETSI ES 201 915-3 V1.2.1 (2002-05)

6.4.1.3 State Transition Diagrams for IpAccess

IpInitial.requestAccess

obtaininterface / return requested FW interface
obtaininterfaceWithCallback / return requested FW interface

Active

network operator initiated endAccess / destroy all interface objects used by the client

endAccess / destroy all interface objects used by the client

Figure 4: State Transition Diagram for IpAccess

6.4.1.3.1 Active State

When the client requests access to the Framework on the Iplnitial interface, an object implementing the IpAccess
interfaceis created. The client can now request other Framework interfaces, including Service Discovery. When the
client isno longer interested in using the interfaces it calls the endAccess method. This results in the destruction of all
interface objects used by the client. In case the network operator decides that the client has no longer access to the
interfaces the same will happen.

ETSI

32 ETSI ES 201 915-3 V1.2.1 (2002-05)

7 Framework-to-Application API

7.1 Sequence Diagrams

7.1.1 Event Notification Sequence Diagrams

7111 Enable Event Notification

Applogic . IpAppEventNotification . IpAccess . IpEventNotification

T

1: new()

. 2: obtaininterfaceWithCallback()
|

3: new()

|
|
|
l
|
4: createNotification() |
|
|
|
|
|
|

5: reporthBtiﬁcati on()
|

- ‘ J

1. Thismessageisused to create an object implementing the IpAppEventNotification interface.

2: Thismessage is used to receive areference to the object implementing the IpEventNotification interface and set
the callback interface for the framework.

3: If thereis currently no object implementing the IpEventNotification interface, then one is created using this
message.

4. createNotification(eventCriteria: in TpFwEventCriteria) : TpAssignment|D

This message is used to enable the notification mechanism so that subsequent framework events can be sent to
the application. The framework event the application requests to be informed of is the availability of new SCFs.

Newly installed SCFs become available after the invocation of registerService and announceServiceAvailability on the
Framework. The application uses the input parameter eventCriteria to specify the SCFs of whose availability it wants to
be notified: those specified in ServiceTypeNameL.ist.

ETSI

33 ETSI ES 201 915-3 V1.2.1 (2002-05)
The result of thisinvocation has many similarities with the result of invoking listServiceTypes: in both cases the
application isinformed of the availability of alist of SCFs. The differences are:

- inthe case of invoking listServiceTypes, the application has to take theinitiative, but it isinformed of ALL SCFs
available

- inthe case of using the event notification mechanism, the application needs not take the initiative to ask about
the availability of SCFs, but it is only informed of the onesthat are newly available.

Alternatively, or additionally, the application can request to be informed of SCFs becoming unavailable.
5: The application is notified of the availability of new SCFs of the requested type(s).

7.1.2 Integrity Management Sequence Diagrams

7.1.2.1 Load Management: Suspend/resume notification from application

This sequence diagram shows the scenario of suspending or resuming notifications from the application based on the
evaluation of the load balancing policy as aresult of the detection of a change in load level of the framework.

. IpAppLoadManager . IpLoadManager

1: load change defection and policy evaluation

| | This is
' 2: suspendNotification() implementation
u _ U detail

| -
-

Load balancing senice l
= ! P
makes a decision based

on pre-defined policy 3: load change deﬁection/aﬁ(/j policy evaluation

P—

w 4: res ufneNotification()

-

ETSI

34 ETSI ES 201 915-3 V1.2.1 (2002-05)

7.1.2.2 Load Management: Framework queries load statistics

This sequence diagram shows how the framework requests load statistics for an application.

. IpLoadManager . IpAppLoadManager

1: queryAppLoadReq()

'load information

3 <
i 3: queryAppLoadRes()

D< This is the
implementation
detail

7.1.2.3 Load Management: Application reports current load condition

This sequence diagram shows how an application reports its load condition to the framework load manager.

. IpAppLoadManager . IpLoadM anager

I

2: evaluate policy

1: reportLoad()

detail

This is the implementationﬁ

ETSI

35 ETSI ES 201 915-3 V1.2.1 (2002-05)

7.1.2.4 Load Management: Application queries load statistics

This sequence diagram shows how an application requests load statistics for the framework.

. IpAppLoadManager . IpLoadManager

1: queryLoadReq()

U 2: get'load information

| 3: queryLoadRes() ~ This is the

1 X implementation
U\ detail

ETSI

7.1.2.5

This sequence diagram shows how an application registersitself and the framework invokes load management function

based on poalicy.

36

Load Management: Application callback registration and load control

. IpAppLoadManager

: IpLoadManager

|
|
|
1: createLoadLevelNotification() |

Framework detects its
load condition change
and initiates load control
action

N

2:load change/cl;ltection & policy evaluation

[@\

\
\

-~ ---_3:loadLevelNotification()

|
This is the
implementation detail

|
|
N 4:load change detection & policy evaluation

ETSI ES 201 915-3 V1.2.1 (2002-05)

. This is the
N implementation detail

ETSI

37

ETSI ES 201 915-3 V1.2.1 (2002-05)

7.1.2.6 Heartbeat Management: Start/perform/end heartbeat supervision of the

application

In this sequence diagram, the framework has decided that it wishes to monitor the application, and has therefore
requested the application to commence sending its heartbeat. The application responds by sending its heartbeat at the
specified interval. The framework then decides that it is satisfied with the application's health and disables the heartbeat
mechanism. If the heartbeat was not received from the application within the specified interval, the framework can
decide that the application has failed the heartbeat and can then perform some recovery action.

Framework

. IpHeart Beat

. IpAppHeartBeatMgmt

1: enable AppHeartBeat()

2: pulse()

3: pulse()

U
U

4: disableAppHeartBeat()

T | At a certain point of
. |time the framework

. |decides to stop

i heartbeat supenision
|

|

|

|

ETSI

38 ETSI ES 201 915-3 V1.2.1 (2002-05)

7.1.2.7 Fault Management: Framework detects a Service failure

The framework has detected that a service instance has failed (probably by the use of the heartbeat mechanism). The
framework updates its own records and informs the client application using the service instance to stop.

Client Application : IpAppFaultManager Framework : IpFault Manager

T

|

|

| The framework should detect if [
| asenice instance fails, for

| example via an unretumed

| heartbeat. The framework

| should inform the application
| that is using that senice

| instance.

|

|

|

|

|

1: swcUnavailablelnd() |

u I

1 |
The application must !
cease the use of this !
|
|

senice instance.

1. Theframework informs the client application that is using the service instance that the service is unavailable.
The client application is then expected to abandon use of this service instance and access a different service
instance via the usual means (e.g. discovery, selectService etc.). The client application should not need to re-
authenticate in order to discover and use an aternative service instance. The framework will also need to make
the relevant updates to its internal records to make sure the service instance is removed from service and no
client applications are still recorded as using it.

ETSI

39 ETSI ES 201 915-3 V1.2.1 (2002-05)

7.1.2.8 Fault Management: Application requests a Framework activity test

Client Application : IpAppFaultManager Framework : IpFaultManager

|

|
Client application asks
framework to carry out an
activity test. The framework is
denoted as the target by a NULL

svcld parameter value.

i 1: activity TestReq() i

| “

returns result to client application.

Framework carries out test and ﬁ

2: activityTestRes()

1. The client application asks the framework to do an activity test. The client identifies that it would like the
activity test done for the framework, rather then a service, by supplying aNULL value for the svcld parameter.

2: The framework does the requested activity test and sends the result to the client application.

7.1.3 Service Discovery Sequence Diagrams

7.1.3.1 Service Discovery

The following figure shows how Applications discover a new Service Capability Feature in the network. Even
applications that have already used the OSA API of a certain network know that the operator may upgrade it any time;
thisis why they use the Service Discovery interfaces.

Before the discovery process can start, the Application needs a reference to the Framework's Service Discovery
interface; thisis done via an invocation the method obtainlnterface on the Framework's Access interface.

Discovery can be a three-step process. The first two steps have to be performed initialy, but can subsequently be
skipped (if the service type and its properties are already known, the application can invoke discoverService() without
having to re-invoke the list/discoverServiceType methods).

ETSI

40 ETSI ES 201 915-3 V1.2.1 (2002-05)

Application : IpAccess . IpSeniceDiscovery

T
[1: obtainInterface() |

gl

| 2: listSeniceTypes()

S

3: describeSenviceType()

|
! 4: discowerSenice()

u
u
:

S ——

2: Discovery: first step - list service types

In thisfirst step the application asks the Framework what service types that are available from this network. Service
types are standardized or non-standardised SCF names, and thus this first step allows the Application to know what
SCFs are supported by the network.

The following output is the result of this first discovery step:
- outlistTypes

Thisisalist of service type names, i.e., alist of strings, each of them the name of a SCF or a SCF specialization
(e.g. "P_MPCC").

3: Discovery: second step - describe service type

In this second step the application requests what are the properties that describe a certain service type that it isinterested
in, among those listed in the first step.

The following input is necessary:
- inname

Thisisaservice type name: a string that contains the name of the SCF whose description the Application isinterested in
(e.g."P_MPCC").

And the output is:
- out serviceTypeDescription
The description of the specified SCF type. The description provides information about:
- the property names associated with the SCF,
- the corresponding property value types,
- the corresponding property mode (mandatory or read only) associated with each SCF property,
- the names of the super types of thistype, and
- whether the typeis currently enabled or disabled.

4: Discovery: third step - discover service

ETSI

41 ETSI ES 201 915-3 V1.2.1 (2002-05)
In thisthird step the application requests for a service that matches its needs by tuning the service properties (i.e.,
assigning values for certain properties).

The Framework then checks whether there is a match, in which case it sends the Application the servicel D that is the
identifier this network operator has assigned to the SCF version described in terms of those service properties. Thisis
the moment where the servicel D identifier is shared with the application that is interested on the corresponding service.

Thisis done for either one service or more (the application specifies the maximum number of responsesit wishesto
accept).

Input parameters are:
- inserviceTypeName

Thisisastring that contains the name of the SCF whose description the Application isinterested in (e.g. "P_MPCC").
- indesiredPropertyList

Thisisagain alist like the one used for service registration, but where the value of the service properties have been fine
tuned by the Application to (they will be logically interpreted as " minimum", "maximum®, etc. by the Framework).

The following parameter is necessary as input:

- inmax
This parameter states the maximum number of SCFsthat are to be returned in the " ServicelList" result.
And the output is:

- out servicelist

Thisisalist of duplets: (servicel D, servicePropertyList). It provides alist of SCFs matching the requirements from the
Application, and about each: the identifier that has been assigned to it in this network (servicel D), and once again the
service property list.

ETSI

42 ETSI ES 201 915-3 V1.2.1 (2002-05)

7.1.4 Service Agreement Management Sequence Diagrams

7.1.4.1 Service Selection
The following figure shows the process of selecting an SCF.

After discovery the Application gets alist of one or more SCF versions that match its required description. It now needs
to decide which service it is going to use; it also needs to actually get away to useit.

Thisisachieved by the following two steps:

Application : Framework

IpServiceAqreem_entManaqement
T

IpAppServiceAqregmentManaqement

i 1: selectService() i

: initiateSignSeniceAg reement(b
|

1]

S

3: signSeniceAgreement(|)

|

: U
|

4: signSenviceAgreement() |

L

!

1: Service Selection: first step - selectService

In thisfirst step the Application identifies the SCF version it has finally decided to use. Thisis done by means of the
servicel D, which isthe agreed identifier for SCF versions. The Framework acknowledges this selection by returning to
the Application a new identifier for the service chosen: a service token, that is a private identifier for this service
between this Application and this network, and is used for the process of signing the service agreement.

Inputis:

- inservicelD
This identifies the SCF required.
And output:

- out serviceToken

Thisisafree format text token returned by the framework, which can be signed as part of a service agreement. It
contains operator specific information relating to the service level agreement.

ETSI

43 ETSI ES 201 915-3 V1.2.1 (2002-05)

2: Service Selection: second step - signServiceAgreement

In this second step an agreement is signed that allows the Application to use the chosen SCF version. And once this
contractual details have been agreed, then the Application can be given the meansto actually use it. The means are a
reference to the manager interface of the SCF version (remember that a manager is an entry point to any SCF). By
calling the createServiceManager operation on the lifecycle manager the Framework retrieves this interface and returns
it to the Application. The service properties suitable for this application are also fed to the SCF (viathe lifecycle
manager interface) in order for the SCSto instantiate an SCF version that is suitable for this application.

Input:
- inserviceToken
Thisisthe identifier that the network and Application have agreed to privately use for a certain version of SCF.
- in agreementText
Thisisthe agreement text that is to be signed by the Framework using the private key of the Framework.
- insigningAlgorithm
Thisisthe algorithm used to compute the digital signature.
Output:
- out signatureAndServiceMgr

Thisisareference to a structure containing the digital signature of the Framework for the service agreement, and a
reference to the manager interface of the SCF.

7.2 Class Diagrams

<<Interface>>
IpAppEventNotification
(from App Interfaces)

S@reportNotification ()
@notificationTerminated()

N
<<uses>>

<<Interface>>
IpEventNotification
(from Framework Interfaces)

createNotification()
®destroyNotification()

Figure 5: Event Notification Class Diagram

ETSI

44 ETSI ES 201 915-3 V1.2.1 (2002-05)

<<Interface>>
<<Interface>> IpAppFaultManager
IpAppLoadManager
activityTestRes()
queryAppLoadReq() appActivity TestReq|()
<<Interface>> EOTT— queryLoadRes() fwFaultReportind()
IpAppHeartBeatMgmt queryLoadEm() fwFaultRecoverylnd()
IpAppHeartBeat e B svcUnavailablelnd() <<Interface>>
loadLevel Notification()
AT e genFaultStatsRecordRes() IPAPpOAM
Sina bF App Hea nBeatO 0..n|pulse() fwUnavailablelnd()
SRR EElHEE) A activityTestErr() systemDateTimeQuery()
changelnterval() I
9 A | genFaultStatsRecordErr() A
| I |
| I : o |
| I |
<<uses>> ! ccuses>> | <<uses>> | <<uses>> |
! | <<uses>> ! |
| I | |
| I : | |
<<Interface>> : | <<Interface>> nt r‘f
<<Interface>>
IpHeartBeatMgmt e I<L<Int((13'\r/|face>> IpFaultManager POAM
IpHeartBeat poacvianagen
enableHeartBeat() activityTestReq()
disableHeartBeat() | 1 0..n SiT5E] reportLoad() appActivityTestRes() systemDateTimeQuery()
changelnterval() queryLoadReq() swvcUnavailablelnd()
queryAppLoadRes() genFaultStatsRecordReq()
queryAppLoadErr() appActivity TestErr()
createLoadLewelNotification() appUnavailablelnd()
destroyLoadLevelNotification() .

Figure 6: Integrity Management Package Overview

<<Interface>>
IpSeniceDiscowvery
(from Framewoik interfaces)

SlistSeniceTypes()
®describeSeniceType()
SdiscoverSeniice()
®listSubscribedSenices()

Figure 7: Service Discovery Package Overview

ETSI

45 ETSI ES 201 915-3 V1.2.1 (2002-05)

<<Interface>>

<<Interface>> IpClientAPILevelAuthentication
IpCIientAccess (from Client interfaces)
(from Client interfaces)
[®authenticate()
ISterminateAccess) [®abortAuthentication()

[®authentication Succeeded()

A

|)
| |
<<uses>> | |
| <<uses>> |
| |
| |
| |

<<Interface>>

<<Interface>>
IpAccess

IpAPILevelAuthentication

from Framework interfaces
<<Interface>> ¢) (from Framework interfaces)

IpInitial
(from Framework interfaces)

[Fobtaininterface()

[@selectEncryptionMethod()

[®obtaininterfaceWithCallback()

[Bauthenticate()
[®abortAuthentication()

[=initiate Authentication() endAccess()
listinterfaces()

[®authenticationSucceeded()

v

<<Interface>>
IpAuthentication
(from Framework interfaces)

[®releaselnterface()

[BrequestAccess()

Figure 8: Trust and Security Management Package Overview

ETSI

46 ETSI ES 201 915-3 V1.2.1 (2002-05)

<<Interface>>
IpPAppS erviceAgreementM anagem ent
(from App Interfaces)

¥signSeniceAgreement()
$terminateSeniceAgreement()

<<uses>>

<<Interface>>
IpSeniceAgreementManagement
(from Framework Interfaces)

¥signSeniceAgreement()
¥terminateSeniceAgreement()
¥selectSenice()
@initiateSignSeniceAgreement()

Figure 9: Service Agreement Management Package Overview

7.3 Interface Classes

7.3.1 Service Discovery Interface Classes

7.3.1.1 Interface Class IpServiceDiscovery
Inherits from: Iplinterface.

The service discovery interface, shown below, consists of four methods. Before a service can be discovered, the
enterprise operator (or the client applications) must know what "types' of services are supported by the Framework and
what service "properties’ are applicable to each service type. The listServiceType() method returnsalist of all "service
types' that are currently supported by the framework and the " describeServiceType()" returns a description of each
service type. The description of service type includes the "service-specific properties’ that are applicable to each service
type. Then the enterprise operator (or the client applications) can discover a specific set of registered services that both
belong to a given type and possess the desired "property values', by using the "discoverService() method. Once the
enterprise operator finds out the desired set of services supported by the framework, it subscribes to (a sub-set of) these
services using the Subscription Interfaces. The enterprise operator (or the client applicationsin its domain) can find out
the set of services available to it (i.e., the service that it can use) by invoking "listSubscribedServices()". The service
discovery APIs areinvoked by the enterprise operators or client applications. They are described below.

ETSI

a7 ETSI ES 201 915-3 V1.2.1 (2002-05)

<<Interface>>

IpServiceDiscovery

listServiceTypes () : TpServiceTypeNameList
describeServiceType (name : in TpServiceTypeName) : TpServiceTypeDescription

discoverService (serviceTypeName : in TpServiceTypeName, desiredPropertyList : in TpServicePropertyList,
max : in TpInt32) : TpServiceList

listSubscribedServices () : TpServiceList

Method
| i st Servi ceTypes()

This operation returns the names of all service typesthat are in the repository. The details of the service types can then
be obtained using the describeServiceType() method.

Returns <listTypes> : The names of the requested service types.

Parameters
No Parameters were identified for this method.

Returns

TpSer vi ceTypeNaneLi st

Raises
TpComonExcept i ons, P_ACCESS_DENI ED

Method
descri beServi ceType()

This operation lets the caller obtain the details for a particular service type.

Returns <serviceTypeDescription> : The description of the specified service type. The description provides information
about:
- the service properties associated with this service type: i.e. alist of service property { name, mode and type} tuples,
- the names of the super types of this service type, and
- whether the service typeis currently available or unavailable.

Parameters

nane : in TpServiceTypeNane
The name of the service type to be described.

e |fthe"name" ismalformed, thenthe P_ILLEGAL_SERVICE_TY PE exception is raised.

e |f the"name" does not exist in the repository, then the P_UNKNOWN_SERVICE_TY PE exception is raised.

ETSI

48 ETSI ES 201 915-3 V1.2.1 (2002-05)

Returns
TpServi ceTypeDescri ption

Raises
TpCommonExcept i ons, P_ACCESS DEN ED, P_| LLEGAL_SERVI CE_TYPE, P_UNKNOWN_SERV
CE_TYPE

Method
di scover Servi ce()

The discoverService operation is the means by which a client application is able to obtain the service IDs of the services
that meet its requirements. The client application passesin alist of desired service properties to describe the serviceitis
looking for, in the form of attribute/value pairs for the service properties. The client application also specifies the
maximum number of matched responses it is willing to accept. The framework must not return more matches than the
specified maximum, but it is up to the discretion of the Framework implementation to choose to return less than the
specified maximum. The discoverService() operation returns a servicel D/Property pair list for those services that match
the desired service property list that the client application provided. The service properties returned will form a
complete view of what the client application will be able to do with the service, as per the service level agreement. If
the framework supports service subscription, the service level agreement will be encapsulated in the subscription
properties contained in the contract/profile for the client application, which will be arestriction of the registered
properties.

Returns <servicelList> : This parameter gives alist of matching services. Each serviceis characterised by its service ID
and alist of service properties{ hame and value list} associated with the service.

Parameters

servi ceTypeNane : in TpServi ceTypeNane

The "serviceTypeName" parameter conveys the required service type. It is key to the central purpose of "service
trading”. It isthe basis for type safe interactions between the service exporters (via registerService) and service
importers (via discoverService). By stating a service type, the importer implies the service type and a domain of
discourse for talking about properties of service.

- If the string representation of the "type" does not obey the rules for service type identifiers, then the
P_ILLEGAL_SERVICE_TYPE exception is raised.

- If the "type" is correct syntactically but is not recognised as a service type within the Framework, then the
P_UNKNOWN_SERVICE_TY PE exception israised.

The framework may return a service of a subtype of the "type" requested. A service sub-type can be described by the
properties of its supertypes.

desiredPropertylList : in TpServicePropertylLi st

The "desiredPropertyList" parameter isalist of service properties { name and value list} that the discovered set of
services should satisfy. These properties deal with the non-functional and non-computational aspects of the desired
service. The property valuesin the desired property list must be logically interpreted as "minimum”, " maximum"”, etc.
by the framework (due to the absence of a Boolean constraint expression for the specification of the service criterion). It
is suggested that, at the time of service registration, each property value be specified as an appropriate range of values,
so that desired property values can specify an "enclosing” range of valuesto help in the selection of desired services.

max @ in Tplnt32
The "max" parameter states the maximum number of servicesthat areto be returned in the "servicelList" result.

ETSI

49 ETSI ES 201 915-3 V1.2.1 (2002-05)

Returns
TpServi ceLi st
Raises

TpConmonExcept i ons, P_ACCESS_DENI ED, P_| LLEGAL_SERVI CE_TYPE, P_UNKNOAN_SERVI
CE_TYPE, P_I NVALI D_PROPERTY

Method
| i st Subscri bedServi ces()

Returns alist of services so far subscribed by the enterprise operator. The enterprise operator (or the client applications
in the enterprise domain) can obtain alist of subscribed services that they are allowed to access.

Returns <serviceList> : The "serviceList" parameter returns alist of subscribed services. Each serviceis characterised
by itsservice ID and alist of service properties { name and value list} associated with the service.

Parameters
No Parameters were identified for this method.

Returns
TpServi ceLi st

Raises
TpComonExcept i ons, P_ACCESS_DEN ED

7.3.2 Service Agreement Management Interface Classes

7.3.2.1 Interface Class IpAppServiceAgreementManagement

Inherits from: Iplinterface.

<<Interface>>

IpAppServiceAgreementManagement

signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm :
in TpSigningAlgorithm) : TpOctetSet

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString,
digitalSignature : in TpOctetSet) : void

ETSI

50 ETSI ES 201 915-3 V1.2.1 (2002-05)

Method

si gnServi ceAgr eenent ()

Upon receipt of the initiateSignServiceAgrement() method from the client application, this method is used by the
framework to request that the client application sign an agreement on the service. The framework provides the service
agreement text for the client application to sign. The service manager returned will be configured as per the service
level agreement. If the framework uses service subscription, the service level agreement will be encapsulated in the
subscription properties contained in the contract/profile for the client application, which will be arestriction of the
registered properties. If the client application agrees, it signs the service agreement, returning its digital signature to the
framework.

Returns <digital Signature> : The digital Signature is the signed version of a hash of the service token and agreement text
given by the framework. If the signature is incorrect the serviceToken will be expired immediately.

Parameters

servi ceToken : in TpServiceToken

Thisisthe token returned by the framework in a call to the selectService() method. This token is used to identify the
service instance to which this service agreement corresponds. (I the client application selects many services, it can
determine which selected service corresponds to the service agreement by matching the service token.) If the
serviceToken isinvalid, or not known by the client application, then the P_INVALID_SERVICE_TOKEN exceptionis
thrown.

agreenent Text : in TpString

Thisisthe agreement text that is to be signed by the client application using the private key of the client application. If
the agreementText isinvalid, then the P_INVALID_AGREEMENT_TEXT exception is thrown.

signingAl gorithm: in TpSigningAl gorithm

Thisisthe algorithm used to compute the digital signature. If the signingAlgorithm isinvalid, or unknown to the client
application, the P_INVALID_SIGNING_ALGORITHM exception is thrown.

Returns

TpCct et Set

Raises

TpCommonExceptions, P_I NVALI D_ AGREEMENT TEXT, P_I NVALI D_SERVI CE_TOKEN,
P_I NVALI D_SI GNI NG_ALGORI THM

Method
t er m nat eSer vi ceAgr eenent ()

This method is used by the framework to terminate an agreement for the service.

Parameters

servi ceToken : in TpServiceToken

Thisisthe token passed back from the framework in a previous selectService() method call. Thistoken isused to
identify the service agreement to be terminated. If the serviceToken isinvalid, or unknown to the client application, the
P_INVALID_SERVICE_TOKEN exception will be thrown.

termnationText : in TpString
Thisis the termination text that describes the reason for the termination of the service agreement.

ETSI

51 ETSI ES 201 915-3 V1.2.1 (2002-05)

digital Signature : in TpCctet Set

Thisisasigned version of a hash of the service token and the termination text. The signing algorithm used is the same
as the signing agorithm given when the service agreement was signed using signServiceAgreement(). The framework
uses this to confirm its identity to the client application. The client application can check that the terminationText has
been signed by the framework. If a match is made, the service agreement is terminated, otherwise the
P_INVALID_SIGNATURE exception will be thrown.

Raises

TpCommonExcepti ons, P_I NVALI D_SERVI CE_TOKEN, P_I NVALI D_SI GNATURE

7.3.2.2 Interface Class IpServiceAgreementManagement

Inherits from: I plnterface.

<<Interface>>

IpServiceAgreementManagement

signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm :
in TpSigningAlgorithm) : TpSignatureAndServiceMgr

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString,
digitalSignature : in TpOctetSet) : void

selectService (servicelD : in TpServicelD) : TpServiceToken

initiateSignServiceAgreement (serviceToken : in TpServiceToken) : void

Method
si gnSer vi ceAgr eenent ()

This method is used by the client application to request that the framework sign an agreement on the service, which
allows the client application to use the service. If the framework agrees, both parties sign the service agreement, and a
reference to the service manager interface of the serviceis returned to the client application. The service manager
returned will be configured as per the service level agreement. If the framework uses service subscription, the service
level agreement will be encapsulated in the subscription properties contained in the contract/profile for the client
application, which will be arestriction of the registered properties. If the client application is not allowed to access the
service, then an error code (P_SERVICE_ACCESS DENIED) is returned.

Returns <signatureAndServiceMgr> : This contains the digital signature of the framework for the service agreement,
and a reference to the service manager interface of the service.
structure TpSignatureAndServiceMgr {
digitalSignature: TpOctetSet;
serviceMgrinterface: |pServiceRef;

b The
digital Signature is the signed version of a hash of the service token and agreement text given by the client application.
The

serviceMgrinterface is areference to the service manager interface for the selected service.

ETSI

52 ETSI ES 201 915-3 V1.2.1 (2002-05)

Parameters

servi ceToken : in TpServiceToken

Thisis the token returned by the framework in a call to the selectService() method. This token is used to identify the
service instance requested by the client application. If the serviceToken isinvalid, or has expired, an error code
(P_INVALID_SERVICE_TOKEN) isreturned.

agreenent Text : in TpString

Thisisthe agreement text that is to be signed by the framework using the private key of the framework. If the
agreementText isinvalid, then an error code (P_INVALID_AGREEMENT_TEXT) isreturned.

signingAlgorithm: in TpSigningAl gorithm

Thisisthe algorithm used to compute the digital signature. If the signingAlgorithm isinvalid, or unknown to the
framework, an error code (P_INVALID_SIGNING_ALGORITHM) isreturned.

Returns

TpSi gnat ur eAndSer vi ceMgr

Raises

TpComonExcept i ons, P_ACCESS DEN ED, P_I NVALI D_AGREEMENT _TEXT, P_I NVALI D_SER
VI CE_TOKEN, P_I NVALI D_SI GNI NG_ALGORI THM P_SERVI CE_ACCESS_DENI ED

Method
t er m nat eSer vi ceAgr eenent ()

This method is used by the client application to terminate an agreement for the service.

Parameters

servi ceToken : in TpServiceToken

Thisisthe token passed back from the framework in a previous selectService() method call. Thistoken is used to
identify the service agreement to be terminated. If the serviceToken isinvalid, or has expired, an error code
(P_INVALID_SERVICE_TOKEN) is returned.

term nationText : in TpString
Thisisthe termination text that describes the reason for the termination of the service agreement.

digital Signature : in TpCctet Set

Thisisasigned version of a hash of the service token and the termination text. The signing algorithm used is the same
as the signing algorithm given when the service agreement was signed using signServiceAgreement().The framework
uses this to check that the terminationText has been signed by the client application. If a match is made, the service
agreement is terminated, otherwise an error code (P_INVALID_SIGNATURE) is returned.

Raises

TpConmonExcept i ons, P_ACCESS DENI ED, P_| NVALI D_SERVI CE_TOKEN,
P_I NVALI D_SI GNATURE

ETSI

53 ETSI ES 201 915-3 V1.2.1 (2002-05)

Method

sel ect Ser vi ce()

This method is used by the client application to identify the service that the client application wishes to use. If the client
application is not allowed to access the service, then the P_SERVICE_ACCESS DENIED exception isthrown. The
P_SERVICE_ACCESS DENIED exception is also thrown if the client attempts to select a service for which it has

already signed a service agreement for, and therefore obtained an instance of. Thisis because there must be only one
service instance per client application.

Returns <serviceToken> : Thisis afree format text token returned by the framework, which can be signed as part of a
service agreement. Thiswill contain operator specific information relating to the service level agreement. The
serviceToken has alimited lifetime. If the lifetime of the serviceT oken expires, a method accepting the serviceToken
will return an error code (P_INVALID_SERVICE_TOKEN). Service Tokens will automatically expire if the client
application or framework invokes the endAccess method on the other's corresponding access interface.

Parameters

servicelD : in TpServicelD

Thisidentifies the service required. If the servicel D is not recognised by the framework, an error code
(P_INVALID_SERVICE_ID) isreturned.

Returns

TpServi ceToken

Raises

TpComonExcepti ons, P_ACCESS DEN ED, P_I NVALI D_SERVI CE_I D,
P_SERVI CE_ACCESS_DENI ED

Method
i nitiateSi gnServi ceAgreenent ()

This method is used by the client application to initiate the sign service agreement process. If the client application is
not allowed to initiate the sign service agreement process, the exception (P_SERVICE_ACCESS DENIED) isthrown.

Parameters

servi ceToken : in TpServiceToken

Thisisthe token returned by the framework in a call to the selectService() method. This token is used to identify the
service instance requested by the client application. If the serviceToken isinvalid, or has expired, the exception
(P_INVALID_SERVICE_TOKEN) isthrown.

Raises
TpComonExcepti ons, P_I NVALI D SERVI CE_TOKEN, P_SERVI CE_ACCESS DEN ED

ETSI

54 ETSI ES 201 915-3 V1.2.1 (2002-05)

7.3.3 Integrity Management Interface Classes

7.3.3.1 Interface Class IpAppFaultManager
Inherits from: Iplinterface.

Thisinterface is used to inform the application of events that affect the integrity of the Framework, Service or Client
Application. The Fault Management Framework will invoke methods on the Fault Management Application Interface
that is specified when the client application obtains the Fault Management interface: i.e. by use of the

obtainl nterfaceWithCallback operation on the IpAccess interface

<<Interface>>

IpAppFaultManager

activityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void
appActivityTestReq (activityTestID : in TpActivityTestID) : void

fwFaultReportind (fault : in TpInterfaceFault) : void

fwFaultRecoverylnd (fault : in TpinterfaceFault) : void

svcUnavailablelnd (servicelD : in TpServicelD, reason : in TpSvcUnavailReason) : void
genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord, servicelDs : in TpServicelDList) : void
fwUnavailablelnd (reason : in TpFwUnavailReason) : void

activityTestErr (activityTestID : in TpActivityTestID) : void

genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError, servicelDs : in TpServicelDList) : void
appUnavailablelnd () : void

genFaultStatsRecordReq (timePeriod : in TpTimelnterval) : void

Method
activityTest Res()

The framework uses this method to return the result of a client application-requested activity test.

Parameters

activityTestID : in TpActivityTestlD
Used by the client application to correlate this response (when it arrives) with the original request.

activityTestResult : in TpActivityTestRes
The result of the activity test.

Method
appActivityTest Req()

The framework invokes this method to test that the client application is operational. On receipt of this request, the
application must carry out atest on itself, to check that it is operating correctly. The application reports the test result by
invoking the appActivity TestRes method on the | pFaultM anager interface.

ETSI

55 ETSI ES 201 915-3 V1.2.1 (2002-05)

Parameters

activityTestID : in TpActivityTestID
Theidentifier provided by the framework to correlate the response (when it arrives) with this request.

Method
f wFaul t Report | nd()

The framework invokes this method to notify the client application of afailure within the framework. The client
application must not continue to use the framework until it has recovered (as indicated by a fwFaultRecoverylnd).

Parameters

fault : in TplnterfaceFault
Specifies the fault that has been detected by the framework.

Method
f wFaul t Recoveryl nd()

The framework invokes this method to notify the client application that a previously reported fault has been rectified.
The application may then resume using the framework.

Parameters

fault : in TplnterfaceFault
Specifies the fault from which the framework has recovered.

Method
svcUnavai | abl el nd()

The framework invokes this method to inform the client application that it can no longer use its instance of the indicated
service. On receipt of this request, the client application must act to reset its use of the specified service (using the
normal mechanisms, such as the discovery and authentication interfaces, to stop use of this service instance and begin
use of adifferent service instance).

Parameters

servicelD : in TpServicelD
Identifies the affected service.

reason : in TpSvcUnavail Reason
Identifies the reason why the service is ho longer available.

Method
genFaul t St at sRecor dRes()

This method is used by the framework to provide fault statistics to a client application in response to a
genFaultStatsRecordReg method invocation on the IpFaultM anager interface.

ETSI

56 ETSI ES 201 915-3 V1.2.1 (2002-05)

Parameters

faultStatistics : in TpFaultStatsRecord
The fault statistics record.

servicelDs : in TpServicel DLi st

Specifies the framework or services that are included in the general fault statistics record. If the servicel Ds parameter is
an empty list, then the fault statistics are for the framework.

Method
f wnavai | abl el nd()

The framework invokes this method to inform the client application that it is no longer available.

Parameters

reason : in TpFwUnavail Reason
Identifies the reason why the framework is no longer available.

Method
activityTestErr()

The framework uses this method to indicate that an error occurred during an application-initiated activity test.

Parameters

activityTestID : in TpActivityTestID
Used by the application to correlate this response (when it arrives) with the original request.

Method

genFaul t St at sRecor dErr ()

This method is used by the framework to indicate an error fulfilling the request to provide fault statistics, in response to
a genFaultStatsRecordReq method invocation on the IpFaultManager interface.

Parameters

faultStatisticsError : in TpFaultStatisticsError
Thefault statistics error.

servicelDs : in TpServicel DLi st

Specifies the framework or services that were included in the general fault statistics record request. If the servicel Ds
parameter is an empty list, then the fault statistics were requested for the framework.

Method
appUnavai | abl el nd()

The framework invokes this method to indicate to the application that the service instance has detected that it is not
responding. On receipt of this indication, the application must end its current session with the service instance.

Parameters
No Parameters were identified for this method.

ETSI

57 ETSI ES 201 915-3 V1.2.1 (2002-05)

Method
genFaul t St at sRecor dReq()

This method is used by the framework to solicit fault statistics from the client application, for example when the
framework was asked for these statistics by a service instance by using the genFaultStatsRecordReq operation on the

| pFwFaultM anager interface. On receipt of this request, the client application must produce a fault statistics record, for
the application during the specified time interval, which is returned to the framework using the genFaultStatsRecordRes
operation on the |pFaultM anager interface.

Parameters

timePeriod : in TpTinelnterval

The period over which the fault statistics are to be generated. A null value leaves this to the discretion of the client
application.

7.3.3.2 Interface Class IpFaultManager
Inherits from: Iplinterface.

Thisinterface is used by the application to inform the framework of eventsthat affect the integrity of the framework
and services, and to request information about the integrity of the system. The fault manager operations do not
exchange callback interfaces asit is assumed that the client application supplies its Fault Management callback
interface at the time it obtains the Framework's Fault Management interface, by use of the obtainlnterfaceWithCallback
operation on the IpAccess interface.

<<Interface>>

IpFaultManager

activityTestReq (activityTestID : in TpActivityTestID, svcID : in TpServicelD) : void

appActivityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void
svcUnavailablelnd (servicelD : in TpServicelD) : void

genFaultStatsRecordReq (timePeriod : in TpTimelnterval, servicelDs : in TpServicelDList) : void
appActivityTestErr (activityTestID : in TpActivityTestID) : void

appUnavailablelnd (servicelD : in TpServicelD) : void

genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord) : void

genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError) : void

Method
activityTest Req()

The application invokes this method to test that the framework or its instance of a service is operational. On receipt of
this request, the framework must carry out atest onitself or on the client's instance of the specified service, to check
that it is operating correctly. The framework reports the test result by invoking the activity TestRes method on the
IpAppFaultManager interface. If the application does not have access to a service instance with the specified servicel D,
the P UNAUTHORISED PARAMETER_VALUE exception shall be thrown. The extralnformation field of the
exception shall contain the corresponding servicel D.

ETSI

58 ETSI ES 201 915-3 V1.2.1 (2002-05)

For security reasons the client application has access to the service ID rather than the service instance ID. However, as
there is a one to one relationship between the client application and a service, i.e. thereis only one service instance of
the specified service per client application, it is the obligation of the framework to determine the service instance D
from the service ID.

Parameters

activityTestID : in TpActivityTestlD
The identifier provided by the client application to correlate the response (when it arrives) with this request.

svclD : in TpServicel D
Identifies either the framework or a service for testing. The framework is designated by a null value.

Raises
TpConmmonExcept i ons, P_| NVALI D_SERVI CE_I D, P_UNAUTHORI SED PARAVETER VALUE

Method
appActivityTest Res()

The client application uses this method to return the result of aframework-requested activity test.

Parameters

activityTestID : in TpActivityTestID
Used by the framework to correlate this response (when it arrives) with the original request.

activityTestResult : in TpActivityTestRes
The result of the activity test.

Raises
TpConmmonExcept i ons, P_I NVALI D_SERVI CE_| D, P_I NVALI D_ACTI VI TY_TEST | D

Method
svcUnavai | abl el nd()

This method is used by the client application to inform the framework that it can no longer use its instance of the
indicated service (either due to afailurein the client application or in the service instance itself). On receipt of this
request, the framework should take the appropriate corrective action. The framework assumes that the session between
this client application and service instance is to be closed and updates its own records appropriately as well as
attempting to inform the service instance and/or its administrator. Attempts by the client application to continue using
this session should be rejected. If the application does not have access to a service instance with the specified servicel D,
the P UNAUTHORISED PARAMETER_VALUE exception shall be thrown. The extralnformation field of the
exception shall contain the corresponding servicelD.

Parameters

servicelD : in TpServicelD
I dentifies the service that the application can no longer use.

ETSI

59 ETSI ES 201 915-3 V1.2.1 (2002-05)

Raises
TpComonExceptions , P_I NVALI D_SERVI CE_| D, P_UNAUTHORI SED_PARAMETER VALUE

Method
genFaul t St at sRecor dReq()

This method is used by the application to solicit fault statistics from the framework. On receipt of this request the
framework must produce a fault statistics record, for either the framework or for the client's instances of the specified
services during the specified time interval, which is returned to the client application using the genFaultStatsRecordRes
operation on the | pAppFaultM anager interface. If the application does not have access to a service instance with the
specified servicel D, the P_UNAUTHORISED PARAMETER VALUE exception shall be thrown. The
extralnformation field of the exception shall contain the corresponding servicel D.

Parameters

timePeriod : in TpTinelnterval
The period over which the fault statistics are to be generated. A null value leavesthis to the discretion of the framework.

servicelDs : in TpServicel DLi st

Specifies either the framework or servicesto be included in the general fault statistics record. If this parameter is not an
empty list, the fault statistics records of the client's instances of the specified services are returned, otherwise the fault
statistics record of the framework is returned.

Raises
TpConmmonExceptions, P_I NVALI D SERVI CE_| D, P_UNAUTHORI SED PARAMETER VALUE

Method
appActivityTestErr()

The client application uses this method to indicate that an error occurred during a framework-requested activity test.

Parameters

activityTestID : in TpActivityTestlD
Used by the framework to correlate this response (when it arrives) with the original regquest.

Raises
TpComonExceptions, P_I NVALI D ACTIVITY_TEST_ID

Method

appUnavai | abl el nd()

This method is used by the application to inform the framework that it is ceasing its use of the service instance. This
may aresult of the application detecting a failure. The framework assumes that the session between this client

application and service instance is to be closed and updates its own records appropriately as well as attempting to
inform the service instance and/or its administrator.

ETSI

60 ETSI ES 201 915-3 V1.2.1 (2002-05)

Parameters

servicelD : in TpServicelD
Identifies the affected application.

Raises
TpComonExcept i ons

Method
genFaul t St at sRecor dRes()

This method is used by the client application to provide fault statistics to the framework in responseto a
genFaultStatsRecordReg method invocation on the IpAppFaultM anager interface.

Parameters

faultStatistics : in TpFaultStatsRecord
The fault statistics record.

Raises

TpComonExcept i ons

Method

genFaul t St at sRecor dErr ()

This method is used by the client application to indicate an error fulfilling the request to provide fault statistics, in
response to a genFaultStatsRecordReq method invocation on the |pAppFaultM anager interface.

Parameters

faultStatisticsError : in TpFaultStatisticsError
The fault statistics error.

Raises
TpComonExcept i ons

ETSI

61 ETSI ES 201 915-3 V1.2.1 (2002-05)

7.3.3.3 Interface Class IpAppHeartBeatMgmt
Inherits from: Iplnterface.

Thisinterface allows the initialisation of a heartbeat supervision of the client application by the framework.

<<Interface>>

IpAppHeartBeatMgmt

enableAppHeartBeat (interval : in TpInt32, fwinterface : in IpHeartBeatRef) : void
disableAppHeartBeat () : void

changelnterval (interval : in TpInt32) : void

Method

enabl eAppHeart Beat ()

With this method, the framework instructs the client application to begin sending its heartbeat to the specified interface
at the specified interval.

Parameters

interval : in Tplnt32
The time interval in milliseconds between the heartbeats.

fwnterface : in | pHeart Beat Ref
This parameter refersto the callback interface the heartbeat is calling.

Method
di sabl eAppHeart Beat ()

Instructs the client application to cease the sending of its heartbeat.

Parameters
No Parameters were identified for this method.

Method
changel nt erval ()

Allows the administrative change of the heartbeat interval.

Parameters

interval : in Tplnt32
The time interval in milliseconds between the heartbeats.

ETSI

62 ETSI ES 201 915-3 V1.2.1 (2002-05)

7.3.3.4 Interface Class IpAppHeartBeat

Inherits from: Iplnterface.

The Heartbeat Application interface is used by the Framework to send the client application its heartbeat.

<<Interface>>

IpAppHeartBeat

pulse () : void

Method
pul se()

The framework uses this method to send its heartbeat to the client application. The application will be expecting a pulse
at the end of every interval specified in the parameter to the |pHeartBeatM gmt.enableHeartbeat() method. If the pulse()
is not received within the specified interval, then the framework can be deemed to have failed the heartbeat.

Parameters
No Parameters were identified for this method.

7.3.3.5 Interface Class IpHeartBeatMgmt

Inherits from: Iplinterface.

Thisinterface allows the initialisation of a heartbeat supervision of the framework by a client application.

<<Interface>>

IpHeartBeatMgmt

enableHeartBeat (interval : in TpInt32, applnterface : in IpAppHeartBeatRef) : void
disableHeartBeat () : void

changelnterval (interval : in TpInt32) : void

Method
enabl eHear t Beat ()

With this method, the client application instructs the framework to begin sending its heartbeat to the specified interface
at the specified interval.

ETSI

63 ETSI ES 201 915-3 V1.2.1 (2002-05)

Parameters

interval : in Tplnt32
The time interval in milliseconds between the heartbeats.

appl nterface : in | pAppHeart Beat Ref
This parameter refersto the callback interface the heartbeat is calling.

Raises
TpComonExcept i ons

Method
di sabl eHear t Beat ()

Instructs the framework to cease the sending of its heartbeat.

Parameters

No Parameters were identified for this method.
Raises

TpCommonExcepti ons

Method
changel nterval ()

Allows the administrative change of the heartbeat interval.

Parameters

interval : in Tplnt32
The time interval in milliseconds between the heartbeats.

Raises
TpComonExcept i ons

ETSI

64 ETSI ES 201 915-3 V1.2.1 (2002-05)

7.3.3.6 Interface Class IpHeartBeat
Inherits from: Iplnterface.

The Heartbeat Framework interface is used by the client application to send its heartbeat.

<<Interface>>

IpHeartBeat

pulse () : void

Method
pul se()

The client application uses this method to send its heartbeat to the framework. The framework will be expecting a pulse
at the end of every interval specified in the parameter to the |pAppHeartBeatM gmt.enableAppHeartbeat() method. If the
pulse() is not received within the specified interval, then the framework can be deemed to have failed the heartbeat.

Parameters
No Parameters were identified for this method.

Raises
TpComonExcept i ons

ETSI

65 ETSI ES 201 915-3 V1.2.1 (2002-05)

7.3.3.7 Interface Class IpAppLoadManager
Inherits from: Iplnterface.

The client application developer supplies the load manager application interface to handle requests, reports and other
responses from the framework load manager function. The application supplies the identity of this callback interface at
the time it obtains the framework's load manager interface, by use of the obtainl nterfaceWithCallback() method on the
IpAccess interface.

<<Interface>>

IpAppLoadManager

queryAppLoadReq (timelnterval : in TpTimelnterval) : void
gueryLoadRes (loadStatistics : in TpLoadStatisticList) : void
gueryLoadErr (loadStatisticsError : in TpLoadStatisticError) : void
loadLevelNotification (loadStatistics : in TpLoadStatisticList) : void
resumeNoatification () : void

suspendNotification () : void

Method
quer yAppLoadReq()

The framework uses this method to request the application to provide load statistics records for the application.

Parameters

tinelnterval : in TpTimelnterval
Specifies the time interval for which load statistic records should be reported.

Method
queryLoadRes()

The framework uses this method to send load statistic records back to the application that requested the information; i.e.
in response to an invocation of the querylL oadReq method on the |pLoadManager interface.
Parameters

| oadStatistics : in TpLoadStatisticLi st
Specifies the framework-supplied load statistics.

Method
qgquer yLoadErr ()

The framework uses this method to return an error response to the application that requested the framework's |oad
statistics information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an
invocation of the queryL oadReq method on the | pLoadManager interface.

ETSI

66 ETSI ES 201 915-3 V1.2.1 (2002-05)

Parameters

| oadStatisticsError : in TpLoadStatisticError
Specifies the error code associated with the failed attempt to retrieve the framework's load statistics.

Method
| oadLevel Notification()

Upon detecting load condition change, (e.g. load level changing from0to 1, 0to 2, 1to 0, for the SCFs or framework
which have been registered for load level notifications) this method is invoked on the application.

Parameters

| oadStatistics : in TpLoadStatisticLi st
Specifies the framework-supplied load statistics, which include the load level change(s).

Method
resunmeNoti fication()

The framework uses this method to request the application to resume sending it notifications: e.g. after a period of
suspension during which the framework handled a temporary overload condition.

Parameters
No Parameters were identified for this method.

Method
suspendNoti fication()

The framework uses this method to request the application to suspend sending it any notifications: e.g. while the
framework handles a temporary overload condition.

Parameters
No Parameters were identified for this method.

ETSI

67 ETSI ES 201 915-3 V1.2.1 (2002-05)

7.3.3.8 Interface Class IpLoadManager
Inherits from: Iplnterface.

The framework API should allow the load to be distributed across multiple machines and across multiple component
processes, according to aload management policy. The separation of the load management mechanism and load
management policy ensures the flexibility of the load management services. The load management policy identifies
what load management rules the framework should follow for the specific client application. It might specify what
action the framework should take as the congestion level changes. For example, some real-time critical applications will
want to make sure continuous service is maintained, below a given congestion level, at al costs, whereas other services
will be satisfied with disconnecting and trying again later if the congestion level rises. Clearly, the load management
policy isrelated to the QoS level to which the application is subscribed. The framework |oad management function is
represented by the IpLoadManager interface. Most methods are asynchronous, in that they do not lock athread into
waiting whilst atransaction performs. To handle responses and reports, the client application developer must implement
the IpAppLoadManager interface to provide the callback mechanism. The application supplies the identity of this
callback interface at the time it obtains the framework's load manager interface, by use of the
obtainlnterfaceWithCallback operation on the IpAccessinterface.

<<Interface>>

IpLoadManager

reportLoad (loadLevel : in TpLoadLevel) : void

queryLoadReq (servicelDs : in TpServicelDList, timelnterval : in TpTimelnterval) : void
queryAppLoadRes (loadStatistics : in TpLoadStatisticList) : void

queryAppLoadErr (loadStatisticsError : in TpLoadStatisticError) : void
createLoadLevelNotification (servicelDs : in TpServicelDList) : void
destroyLoadLevelNotification (servicelDs : in TpServicelDList) : void
resumeNotification (servicelDs : in TpServicelDList) : void

suspendNotification (servicelDs : in TpServicelDList) : void

Method
report Load()

The client application uses this method to report its current load level (0,1, or 2) to the framework: e.g. when the load
level on the application has changed.

At level 0 load, the application is performing within its load specifications (i.e. it is not congested or overloaded). At
level 1 1oad, the application is overloaded. At level 2 load, the application is severely overloaded.

Parameters

| oadLevel : in TpLoadLevel
Specifies the application's load level.

Raises
TpComonExcept i ons

ETSI

68 ETSI ES 201 915-3 V1.2.1 (2002-05)

Method
quer yLoadReq()

The client application uses this method to request the framework to provide load statistic records for the framework or
for itsinstances of the individual services. If the application does not have access to a service instance with the specified
servicel D, the P_ UNAUTHORISED PARAMETER _VALUE exception shall be thrown. The extralnformation field of
the exception shall contain the corresponding servicel D.

Parameters

servicelDs : in TpServicel DLi st

Specifies the framework or the services for which load statistics records should be reported. If this parameter is not an
empty list, the load statistics records of the client's instances of the specified services are returned, otherwise the load
statistics record of the framework is returned.

tinmelnterval : in TpTinelnterval
Specifies the time interval for which load statistics records should be reported.

Raises
TpCommonExcepti ons, P_I NVALI D SERVI CE_I D, P_SERVI CE_NOT_ENABLED,
P_UNAUTHORI SED PARAMETER VALUE

Method
guer yAppLoadRes()

The client application uses this method to send load statistic records back to the framework that requested the
information; i.e. in response to an invocation of the queryAppL oadReq method on the |pAppLoadManager interface.

Parameters

| cadStatistics : in TpLoadStatisticLi st
Specifies the application-supplied load statistics.

Raises
TpComonExcept i ons

Method
quer yAppLoadErr ()

The client application uses this method to return an error response to the framework that requested the application's load
statistics information, when the application is unsuccessful in obtaining any load statistic records; i.e. in response to an
invocation of the queryAppLoadReq method on the |pAppL oadM anager interface.

Parameters

| oadSt ati sticsError : in TpLoadStatisticError
Specifies the error code associated with the failed attempt to retrieve the application's load statistics.

ETSI

69 ETSI ES 201 915-3 V1.2.1 (2002-05)

Raises
TpComonExcept i ons

Method

creat eLoadLevel Noti fication()

The client application uses this method to register to receive notifications of load level changes associated with either
the framework or with its instances of the individual services used by the application. If the application does not have

access to a service instance with the specified servicel D, the P_ UNAUTHORISED_PARAMETER_VALUE exception
shall be thrown. The extralnformation field of the exception shall contain the corresponding servicelD.

Parameters

servicelDs : in TpServicel DLi st

Specifies the framework or SCFsto be registered for load control. To register for framework load control, the
servicel Ds parameter must be an empty list.

Raises
TpComonExcepti ons, P_I NVALI D SERVI CE_| D, P_UNAUTHORI SED_PARAMETER VALUE

Method

destroyLoadLevel Notification()

The client application uses this method to unregister for naotifications of load level changes associated with either the
framework or with itsinstances of the individual services used by the application. If the application does not have

access to a service instance with the specified servicel D, the P UNAUTHORISED PARAMETER_VALUE exception
shall be thrown. The extralnformation field of the exception shall contain the corresponding servicelD.

Parameters

servicelDs : in TpServicel DLi st

Specifies the framework or the services for which load level changes should no longer be reported. To unregister for
framework load control, the servicel Ds parameter must be an empty list.

Raises
TpConmonExceptions, P_I NVALI D _SERVI CE_|I D, P_UNAUTHORI SED PARAVETER VALUE

Method
resuneNotification()

The client application uses this method to request the framework to resume sending it load management notifications
associated with either the framework or with its instances of the individual services used by the application; e.g. after a
period of suspension during which the application handled a temporary overload condition. If the application does not
have access to a service instance with the specified servicel D, the P UNAUTHORISED PARAMETER_VALUE
exception shall be thrown. The extralnformation field of the exception shall contain the corresponding servicel D.

ETSI

70 ETSI ES 201 915-3 V1.2.1 (2002-05)

Parameters

servicelDs : in TpServicel DLi st

Specifies the framework or the services for which the sending of notifications of load level changes by the framework
should be resumed. To resume notifications for the framework, the servicel Ds parameter must be an empty list.

Raises

TpComonExceptions, P_INVALID SERVI CE | D, P_SERVI CE _NOT_ENABLED,
P_UNAUTHORI SED_PARAMETER_VALUE

Method
suspendNoti fication()

The client application uses this method to request the framework to suspend sending it |oad management notifications
associated with either the framework or with its instances of the individual services used by the application; e.g. while
the application handles a temporary overload condition. If the application does not have access to a service instance
with the specified servicel D, the P_ UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The
extralnformation field of the exception shall contain the corresponding servicel D.

Parameters

servicelDs : in TpServicel DLi st
Specifies the framework or the services for which the sending of notifications by the framework should be suspended.

To suspend natifications for the framework, the servicel Ds parameter must be an empty list.
Raises

TpConmonExcept i ons, P_I NVALI D_SERVI CE_I D, P_SERVI CE_NOT_ENABLED,
P_UNAUTHORI SED_PARAMETER VALUE

7.3.3.9 Interface Class IpOAM
Inherits from: Ipinterface.

The OAM interface is used to query the system date and time. The application and the framework can synchronise the
date and time to a certain extent. Accurate time synchronisation is outside the scope of the OSA APIs.

<<Interface>>

IpPOAM

systemDateTimeQuery (clientDateAndTime : in TpDateAndTime) : TpDateAndTime

ETSI

71 ETSI ES 201 915-3 V1.2.1 (2002-05)

Method
syst enDat eTi meQuery()

This method is used to query the system date and time. The client application passesin its own date and time to the
framework. The framework responds with the system date and time.

Returns <systemDateAndTime> : Thisisthe system date and time of the framework.

Parameters

clientDat eAndTinme : in TpDat eAndTi ne

Thisisthe date and time of the client (application). The error code P_INVALID_DATE_TIME_FORMAT isreturned if
the format of the parameter isinvalid.

Returns

TpDat eAndTi ne

Raises

TpComonExcepti ons, P_I NVALI D_TI ME_ AND_DATE FORMAT

7.3.3.10 Interface Class IpAppOAM

Inherits from: Iplinterface.

The OAM client application interface is used by the Framework to query the application date and time, for
synchronisation purposes. This method is invoked by the Framework to interchange the framework and client
application date and time.

<<Interface>>
IpPAppOAM

systemDateTimeQuery (systemDateAndTime : in TpDateAndTime) : TpDateAndTime

Method
syst enDat eTi meQuery()

This method is used to query the system date and time. The framework passesin its own date and time to the
application. The application responds with its own date and time.

Returns <clientDateAndTime> : Thisis the date and time of the client (application).

Parameters

syst enDat eAndTi me : in TpDat eAndTi ne
Thisisthe system date and time of the framework.

ETSI

72 ETSI ES 201 915-3 V1.2.1 (2002-05)

Returns
TpDat eAndTi ne

7.3.4 Event Notification Interface Classes

7.3.4.1 Interface Class IpAppEventNotification
Inherits from: Iplinterface.

Thisinterface is used by the services to inform the application of a generic service-related event. The Event Notification
Framework will invoke methods on the Event Notification Application Interface that is specified when the Event
Notification interface is obtained.

<<Interface>>

IpAppEventNotification

reportNotification (eventinfo : in TpFwEventinfo, assignmentID : in TpAssignmentlD) : void

notificationTerminated () : void

Method
reportNotification()

This method notifies the application of the arrival of a generic event.

Parameters

eventinfo : in TpFwEventlInfo
Specifies specific data associated with this event.

assignnmentI D : in TpAssignnmentlD

Specifies the assignment id which was returned by the framework during the createNotification() method. The
application can use assignment id to associate events with event specific criteriaand to act accordingly.

Method
notificationTerm nated()

This method indicates to the application that all generic event notifications have been terminated (for example, due to
faults detected).

Parameters
No Parameters were identified for this method.

ETSI

73 ETSI ES 201 915-3 V1.2.1 (2002-05)

7.3.4.2 Interface Class IpEventNotification
Inherits from: Iplnterface.

The event notification mechanism is used to notify the application of generic service related events that have occurred.

<<Interface>>

IpEventNotification

createNotification (eventCriteria : in TpFwEventCriteria) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentlD) : void

Method
createNotification()

This method is used to enable generic notifications so that events can be sent to the application.

Returns <assignmentl D> : Specifiesthe ID assigned by the framework for this newly installed notification.

Parameters

eventCriteria : in TpFwEventCriteria
Specifies the event specific criteria used by the application to define the event required.

Returns
TpAssi gnment | D
Raises

TpComonExcepti ons, P_ACCESS DEN ED, P_I NVALI D CRI TERI A,
P_I NVALI D_EVENT_TYPE

Method
destroyNotification()

This method is used by the application to delete generic notifications from the framework.

Parameters

assignmentI D : in TpAssignnentlD

Specifies the assignment ID given by the framework when the previous createNotification() was called. If the
assignment ID does not correspond to one of the valid assignment | Ds, the framework will return the error code
P_INVALID_ASSIGNMENTID.

ETSI

74 ETSI ES 201 915-3 V1.2.1 (2002-05)

Raises
TpCommonExcept i ons, P_ACCESS_DENI ED, P_I NVALI D_ASSI GNVENT_| D

7.4 State Transition Diagrams

This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the
gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can
be invoked by the application are shown. Methods not shown for a specific state are not relevant for that state and will
return an exception. Apart from the methods that can be invoked by the application also eventsinternal to the gateway
or related to network events are shown together with the resulting event or action performed by the gateway. These
internal events are shown between quotation marks.

7.4.1 Service Discovery State Transition Diagrams

7.4.1.1 State Transition Diagrams for IpServiceDiscovery

obtainFrameworkInterfac e(disc overyService)
obtaininterface WithCallback(dis coverySenice)

listServceTypes
describeSeniceType

listSubscribedServices
discoverSenice

Active 1

AN J

IpAccess.endAccess

\
/-
@
=
Figure 10: State Transition Diagram for IpServiceDiscovery

7.4.1.1.1 Active State

When the application regquests Service Discovery by invoking the obtainl nterface or the obtainl nterfaceWithCallback
methods on the IpAccess interface, an instance of the |pServiceDiscovery will be created. Next the application is
allowed to request alist of the provided SCFs and to obtain a reference to interfaces of SCFs.

7.4.2 Service Agreement Management State Transition Diagrams

There are no State Transition Diagrams defined for Service Agreement Management

ETSI

75 ETSI ES 201 915-3 V1.2.1 (2002-05)

7.4.3 Integrity Management State Transition Diagrams

7.4.3.1 State Transition Diagrams for IpLoadManager

reportLoad
"load change" MoadLevelNotification querySvcLoadRes] load statistics requested by LoadManager]
querySvcLoadErr| load statistics requested by LoadManager]

createLoadLevelNotification (Active } queryLoadReq

destroyLoadLevelNotification

IpAccess\obtain
IpAccess obtainipterfaceWithCallback

resumeNotification

reportLoad

querySvcLoadRes] load statistics requested by LoadManager]

querySvclLoadErr[load statistics requested by LoadManager]
queryLoadReq

Notification
Suspended

destroyLoadLevelNotification

suspendNotification

All States [all notifications suspended]

IpAccess.endAccess

®

Figure 11: State Transition Diagram for IpLoadManager

7.4.3.1.1 Idle State

In this state the application has obtained an interface reference of the LoadManager from the IpAccess interface.

7.4.3.1.2 Notification Suspended State

Dueto e.g. atemporary load condition, the application has requested the LoadManager to suspend sending the load
level notification information.

7.4.3.1.3 Active State

In this state the application hasindicated its interest in notifications by performing a createl oadL evel Notification()
invocation on the IpLoadManager. The load manager can now request the application to supply load statistics
information (by invoking queryAppLoadReq()). Furthermore the LoadManager can request the application to control its
load (by invoking loadL evel Notification(), resumeNotification() or suspendNotification() on the application side of
interface). In case the application detects a change in load level, it reports this to the LoadManager by calling the
method reportL oad().

ETSI

76 ETSI ES 201 915-3 V1.2.1 (2002-05)

7.4.3.2 State Transition Diagrams for LoadManagerinternal

A necessary action can
be suspending the load
notifictions to the
application or enabling
load control mechanisms
on certain senices.

registerLoadController I

i

reportLoad[loadlevel 1= 0] |

[Normal load @ Application Overload

reportLoad[loadlevel = 0]

"internal logd change detection”

"internal load change th non owerloaded" internal load change detection”

"internal load change/to non qverload"

reportLoad[loadlewvel 1= 0]

Internal overload
Internal and Application Oerload

\\ reportLoad[loadlevel = 0]
\
\

A necessary action can be AN
suspending the load

notifictions from the

application by invoking

sus pendNotification or

enabling load control
mechanisms on the

application by invoking
enableLoadControl.

ALL
STATES

unregistefLoadControler

Figure 12: State Transition Diagram for LoadManagerinternal

7.4.3.2.1 Normal load State

In this state the none of the entities defined in the load balancing policy between the application and the
framework/SCFs is overloaded.

7.4.3.2.2 Application Overload State

In this state the application hasindicated it is overloaded. When entering this state the load policy is consulted and the
appropriate actions are taken by the LoadManager.

7.4.3.2.3 Internal overload State

In this state the Framework or one or more of the SCFs within the specific load policy is overloaded. When entering this
state the load policy is consulted and the appropriate actions are taken by the LoadManager.

7.4.3.2.4 Internal and Application Overload State

In this state the application is overloaded as well as the Framework or one or more of the SCFs within the specific load
policy. When entering this state the load policy is consulted and the appropriate actions are taken by the LoadManager.

ETSI

77 ETSI ES 201 915-3 V1.2.1 (2002-05)

7.4.3.3 State Transition Diagrams for IpPOAM

IpAccess.obtaininterface
IpAccess. obtaininterfaceWithCallback

\ systemDateTimeQuery
|

LV V
Active

IpAccess.endAccess

()

Figure 13: State Transition Diagram for IpOAM

7.4.3.3.1 Active State

In this state the application has obtained a reference to the IpOAM interface. The application is now able to request the
date/time of the Framework.

7.4.3.4 State Transition Diagrams for IpFaultManager

IpAccess.obtaininterfaceWithCallback("FaultManagement") /
add application to fault management

‘service fault' “svcUnavailablelnd to all applications using the service
. srvUnavailablelnd / test the service, inform service that application isnot using it
genFaultStatsRecordReq “app.genFaultStatsRecordRes
service fault ~srvUnavailablelnd to all applications using the service Framework)
q L no fault detected
Active ~

activityTestReq[null

service list]
no fault detected

(Service Xctivny

entry/ test activity of service
exit/ NpAppFaultManager.activityTestRes

Framework Activity Test h

IpAccess.endAccess entry/ teg adivity of framework

exit/ NpAppFaultManager.acivityT esRes

IpAccess.endAcgess/ Abort

pending tegt request
fault detected in fw

IpAccess.endAccess/ remove
application from load management

.\ fault detected in fw

Framework Faulty ‘

entry/ MwFaultReportind to all applications with callback

exit/ “MfwFaultRecoveryind to all applications with callback
N

J

Figure 14: State Transition Diagram for IpFaultManager

ETSI

78 ETSI ES 201 915-3 V1.2.1 (2002-05)

7.4.3.4.1 Framework Active State

Thisisthe normal state of the framework, which is fully functional and able to handle requests from both applications
and services capability features.

7.4.3.4.2 Framework Faulty State

In this state, the framework has detected an internal problem with itself such that application and services capability
features cannot communicate with it anymore; attempts to invoke any methods that belong to any SCFs of the
framework return an error. If the framework ever recovers, applications with fault management callbacks will be
notified via a fwFaultRecoverylnd message.

7.4.3.4.3 Framework Activity Test State

In this state, the framework is performing self-diagnostic test. If a problem is diagnosed, all applications with fault
management callbacks are notified through a fwFaultReportind message.

7.4.3.4.4 Service Activity Test State

In this state, the framework is performing atest on one service capability feature. If the SCF is faulty, applications with
fault management callbacks are notified accordingly through a svcUnavailablelnd message.

7.4.4 Event Notification State Transition Diagrams

7.4.4.1 State Transition Diagrams for IpEventNotification

IpAccess.obtaininterface
IpAccess.obtaininterfaceWithCallback

createNotification

destroyNotification

- |tion
Active

destroyNatification[no more notificationg installed]

IpAccess.endAccess

IpAccegs.endAccess

&
L)
Figure 15: State Transition Diagram for IpEventNotification

7.4.4.1.1 Idle State
Void.

7.4.4.1.2 Notification Active State
Void.

ETSI

79 ETSI ES 201 915-3 V1.2.1 (2002-05)

8 Framework-to-Enterprise Operator API

In some cases, the client applications (or the enterprise operators on behalf of these applications) must explicitly
subscribe to the services before the client applications can access those services. To accomplish this, they use the
service subscription function of the Framework for subscribing or un-subscribing to services. Subscription represents a
contractual agreement between the enterprise operator and the Framework operator. In general, an entity acting in the
role of a customer/subscriber subscribes to the services provided by the Framework on behalf of the users/consumers of
the service.

In this model, the enterprise operators act in the role of subscriber/customer of services and the client applications act in
therole of users or consumers of services. The framework itself actsin the role of retailer of services. The following
examplesillustrate these roles:

e Service (to be subscribed): Call Centre Service, Mobility Service, etc.
¢ Framework Operator: AT&T, BT, etc.

» Enterprise Operator: A Financial institution such as a Bank or |nsurance Company, or possibly an Application
Service Provider (Such an enterprise has a conformant Subscription Application in its domain which "talks' to
its peer in the Framework).

e User/Consumer: Client Applications (or their associated users) in the enterprise domain that use the Call Centre
Service or the Mobility Service.

The Service Subscription interface is used by an enterprise operator to subscribe to new services and is required before
aclient application of the enterprise can use the new service. In general, the service subscription is performed after an
off-line negotiation of a set of services and the associated price between the framework operator and the enterprise
operator. The service subscription is performed online by the enterprise operator in the frame of an existing off-line
negotiated contract between the framework operator and the enterprise. The on-line service subscription function is
used for subscriber, client application, and service contract management. The following clause describes a service
subscription model.

Subscription Business Model

The following figure shows the subscription business model with respect to the business roles involved in the service
subscription process. The subscription process involves the enterprise operator (which actsin the role of service
subscriber) and the Framework (which actsin the role of provider or retailer of a service).

Services may be provided to the Enterprise Operator directly by a service provider or indirectly through aretailer, such
as the Framework. An enterprise operator represents an organisation or a company which will be hosting client
applications. Before a service can be used by the client applications in the enterprise operator’ s domain, subscription to
the service must take place. An enterprise operator subscribes to a service by (electronically) signing a contract about
the service usage with the Framework, using an on-line subscription interface provided by the Framework. The
Framework provides the service according to the service contract. The Enterprise Operator authorises the client
application in his’her domain for the service usage. Finally a subscribed service can be used by a particular client
application.

ETSI

80 ETSI ES 201 915-3 V1.2.1 (2002-05)

Enterprise Operator (In the role
of Service Subscriber)

Signs contract about service usage
Framework (In the role
of Service Retailer)
Authorises 3
j/’ - {
G
v
Uses service
”

[t
|
T S S

Client Application (In the role of
User or Consumer of Services)

Figure 16: Subscription Business Model

The interfaces between an enterprise operator and the client applicationsin its domain are outside the scope of this API.

The enterprise operator provides to the Framework the data about the client applications in its domain and the type of
services each of them should be allowed access to, using the subscription interfaces offered by the Framework. The
Framework provides (to the enterprise operator) the subscription interfaces for subscriber, client application and service
contract management. This gives the enterprise operators the capability to dynamically create, modify and delete, in the
framework domain, the client applications and service contracts belonging to its domain.

The enterprise operator is represented in the Framework domain as an EntOp object. The EntOp object isidentified by a
unique ID and contains the enterprise operator properties. The EntOp ID is a unique identifier of an enterprise operator
in the Framework domain. It is created by the Framework Operator during the pre-subscription off-line negotiation of
services (and their price, etc.) phase. The enterprise operator properties contain information such as the name and
address of the enterprise operator (individual or organisation), service charge payment information, etc. The enterprise
operator domain has one or more client applications associated with it. The enterprise operator may group a sub-set of
client applicationsin itsdomain in order to assign the same set of service features to the group. Such agroupiscalled a
Subscription Assignment Group (SAG). An enterprise operator may have multiple SAGsinitsdomain. A SAG relates a
client application to the features of aservice. A client application may be a member of multiple SAGs, one for each
service subscribed for the client application by its enterprise operator.

The enterprise operator subscribes to a number of services by creating a service contract with the Framework for each
service. Each service subscription is described by a service contract which defines the conditions for the service
provision. A service contract restricts the usage of a service at subscription time. A service contract contains one or
more Service Profiles, one for each SAG in the enterprise operator domain. A Service Profile contains the service
parameters which further restrict the corresponding parameters in the service contract in order to adapt the service to the
SAG’sneeds. A service profile is therefore arestriction of the service contract in order to provide restricted service
featuresto a SAG. It isidentified by aunique ID (within the framework domain) and contains a set of service
properties, which defines the restricted usage of service allowed for that SAG (and its client applications).

ETSI

81 ETSI ES 201 915-3 V1.2.1 (2002-05)

Client Applicationsand SAGsin the Enterprise Domain

Service Contractsfor Individual Services
ibed Dy Enter prise Operato

Service Profilesin a Service Contract

Figure 17: Relationship between Client Applications/SAG, Service Contract and Service Profiles

The client application isrelated to the enterprise operator for the usage of a service. The client applicationis
represented in the Framework domain as a clientApp object. The clientApp object isidentified by aunique ID and
contains a set of client application properties describing the client application relevant information for subscription.
Each client application is part of at least one SAG, which can contain one or more client applications. Each SAG has
one service profile per service that defines the preferences of the SAG members for the usage of that service. A SAG
can have multiple Service Profiles associated with it, one for each service subscribed by the enterprise operator on
behalf of the SAG members. The figure above shows the relationship between client application objects, SAGS, service
contracts and service profiles.

An enterprise operator may not want to grant all client applications in its domain the same service characteristics and
usage permissions. In this case the enterprise operator can group them in a set of SAGs and assign a particular Service
Profile to each group. A client application can be assigned to more than one service profile for a given service, aslong
as the dates within those service profiles do not overlap. The figure below illustrates this. Here the client is assigned to
two SAGs. One of these SAGs uses ServiceProfilel to control accessto service 1. The other uses ServiceProfile3 to
control accessto service 1. If the dates in the two service profiles overlap, asisthe case here, then it cannot be
determined when the client signs the service agreement which service profile should be used. For example, if the client
application signed the service agreement on February the 8", then it could not be determined which of service profile 1
or service profile 3 would apply. If the dates are not overlapping then there is not a problem with identifying which of
the service profilesto use. A SAG may have multiple service profiles, one for each subscribed service, associated with
it.

ETSI

82 ETSI ES 201 915-3 V1.2.1 (2002-05)

SAG

Client Client
App.1 App.3

erviceProfile
Start; 08, Feb
End: 30, Feb

ServicelD: 1

Start: 02, Feb
End: 10, Feb
ServicelD: 1

Start: 02, Feb
End: 10, Feb
ServicelD: 2

Figure 18: Overlapping date fields in service profiles

Enterprise Enterprise

Operator 1 / Operator 2

Enterprise
Operator 3

Ee

Figure 19: Multiple Enterprise Operators

The figure above illustrates that the framework can offer its services to applicationsin the domains of many enterprise
operators. An enterprise operator could be an Application Service Provider, a corporation, or even the network operator
(if the services offered through the framework belong to a single network) it is even possible that the network operator
will be the only enterprise operator). It is possible, however, that each service registered with the framework could
actually be in a different network. The client application I Ds have to be unique within the framework. The framework
operator could decide to allocate a block of application IDsto each enterprise operator, or even negotiate with the
enterprise operators to provide a set of client application IDs that are meaningful to them.

Service subscription and subscription management requires a careful delineation of subscription-related functions. The
service subscription interfaces are classified in the following categories:

« Enterprise Operator Account Management
e Enterprise Operator Account Query
e Service Contract Management

e Service Contract Query

ETSI

83 ETSI ES 201 915-3 V1.2.1 (2002-05)

¢ Service Profile Management

e Service Profile Query

¢ Client Application Management
e Client Application Query

Only the enterprise operator, which is registered and |later on authenticated, is allowed to use these interfaces.

8.1 Sequence Diagrams

8.1.1 Service Subscription Sequence Diagrams

8.1.1.1 Service Discovery and Subscription Scenario

This scenario is shown in the sequence diagram below. Services are subscribed to by the enterprise operator on behal f
of the client applications which then use these services. Before an enterprise operator can subscribe to a service, it must
have knowledge of the existence of that service in the framework. The enterprise operator discovers the set of services
provided by the framework using the IpServiceDiscovery interface. Initially, the enterprise operator obtains alist of
service types supported by the framework by invoking listServiceTypes() on I pServiceDiscovery interface. Then it
obtains the description of a service type using describeServiceType() to find out the set of properties applicableto a
particular service type. Subsequently it invokes discoverService() to discover the services of agiven type which
supports the desired set of property values. The discoverService() method returns alist of "servicelDs' and their
associated property values. The service discovery phase is followed by the service subscription phase. The enterprise
operator uses the | pServiceContractM anagement and | pServiceProfileM anagement interfaces to perform service
subscription.

The enterprise operator invokes the createServiceContract() on | pServiceContractManagement interface to subscribe to
a service. Depending upon the Framework Operator's policy, the services may be subscribed by identifying them by
their "servicel D" or by their service type. In the former case only the specific service can be used by the enterprise
operator and its client applications. In the latter case, all registered services of the given type can be used. The enterprise
operator may create multiple service profiles (each of which are a restriction of the service contract) by invoking
createServiceProfile() on |pServiceProfileM anagement interface and assign each service profile to a different
Subscription Assignment Group (SAG), using assign() method. This allows an enterprise operator to assign different
service privileges to different client application groups. During the life time of a service contract, the enterprise operator
may perform service contract and service profile management functions, such as modifying the service profiles
(modifyServiceProfile()) and service contract (modifyServiceContract()), re-assigning the service profilesto a SAG
(assign()), obtaining information about a service profile (getServiceProfile()), deleting service profiles
(deleteServiceProfile()), etc. These methods may be interleaved in any logical order. The enterprise operator or the
client applications, can at any time obtain alist of currently subscribed services by invoking listSubscribedServices()
method on the |pServiceDiscovery interface. This method returns alist of servicel Ds of the set of subscribed services.
The service contract ceasesto exist after the specified end date. The deleteServiceContract deletes the service contract
object held in the framework. It is up to the discretion of the Framework operator to allow the enterprise operator to
delete a service contract before its specified end date.

After the service subscription is performed the client applications can access and use the set of subscribed servicesin
addition to the set of freely available services. In order to start a service, the interface reference of the serviceis
required. The discoverService() method or the listSubscribedServices() method, described above, return the

"servicel D". The interface reference of the service is obtained in the service access phase. The service access phase
begins with the client applications selecting the service, via the selectService() method, and signing a service
agreement, via the signServiceAgreement() method. The selectService() method is used by the client application to
identify the service that it wantsto initiate. The input to the selectService() isthe "servicel D" returned by the
discoverService() or the listSubscribedServices() and the output is a " serviceToken". The serviceToken is free format
text token returned by the framework, which can be used as part of a service agreement. If the serviceis not subscribed
by the enterprise operator, then a " service not subscribed" exception israised. The signServiceAgreement() isinvoked
by the client application on the framework to sign an agreement on the service. The input to this method is the service
token returned by the selectService() method. The sign service agreement is used as a way of non-repudiation of the
intention to use the service by the client application. The successful completion of the signServiceAgreement() returns
the interface reference to the service (or to its service manager). The client application can then use thisinterface
reference to start the service.

ETSI

84 ETSI ES 201 915-3 V1.2.1 (2002-05)

L L : IpAccess - IpServiceDiscovery : IpServiceC : 1pSe viceConr ad Inf dQ Ler. : IpServicePr - IpServic eProfi e nb Query
EnterpriseOperator ClientApplication
T T T T T T
I Auth. phase T I I I I I I
I loved by I I I I I I
! T ouamlrﬁa'iace() ! ! ! ! ! !
L + L | | | | |
U | U | | | | |
; JE— ! ! ! ! !
| | gl | | | |
| | | | | | |
! 3: describeServceTypé() ! ! ! ! !
t + + t | | | |
U | | /U | | | |
	Find desired D					
		Services				
	4: discoser Service()				
I I /ITI						
5: obtaininterface()						
T						
! !	the Services ! ! ! !					
! ! 6: credteServiceContract()						
t t t						
! ! ! ! SPsinSC ! ! !						
! ! ! ! 7: createSenviceProfile(! ! !					
I I I I	I					
U				/I-J		
		T				
H				/U		
: : : : 9: modifyServiceProfile(]‘ : :						
			g			
			10: assigr()			
T T T T /u						
			11: desdribeServiceProfile() ! !			
f f f f f						
U					/u	
			12: celeteServicePrdile()			
			gl			
			[
13: modiifyServiceContract()						
t t t						
U			/u			
1 14: IistSuhsc‘hbedSerwces() 1 : : :						
H	/U					
: 15:: listSubs cnbedsavuc:es() : : : :						
	gl					
		16: describeSenviceContract()				
t t t t						
U						
	17: crepteServiceContract()					
	gl					
[
I						

8.1.1.2 Enterprise Operator and Client Application Subscription Management Sequence
Diagram

Thefirst step in the service subscription process is the creation of an account for the enterprise operator. The creation of
enterprise operator accounts is performed by the Framework Operator viainterfaces outside of this specification. When
the enterprise operator's account has been created they are allowed to use the framework. The enterprise operator
(acting in the role of service subscriber) can then create accounts within the framework for all of the client applications
inits domain. The enterprise operator obtains the reference to the | pEntOpManagement interface by invoking
obtainlnterface() on the IpAccessinterface. The enterprise operator at any time may inspect its subscription account by
invoking describeEntOpAccount on the | pEntOpAccountl nfoQuery interface and modify the subscriber-related
information contained in its subscription account by invoking modifyEntOpAccount() on |pEntOpAccountM anagement
interface.

ETSI

85

ETSI ES 201 915-3 V1.2.1 (2002-05)

An enterprise operator usually has many client applicationsin its enterprise domain. These client applications must be
registered within the framework so that the set of services subscribed to by the enterprise operator (through
createServiceContract()) can be assigned to these client applications by associating a service profile (a restriction of
service contracts) with a group of client applications, called a Subscription Assignment Group (SAG). In order to create
an account for individual client applications, the enterprise operator invokes createClientApp() on
IpClientAppManagement interface. The enterprise operator groups arelated set of client applicationsin a SAG so that
the same service profile can be assigned to them. The enterprise operator may create an empty SAG by invoking
createSAG() on IpClientAppManagement interface. The enterprise operator adds client applications to the newly
created SAG by invoking addSAGMembers() on IpClientAppManagement interface. The enterprise operator also
performs other client application/SAG management functions such as modifyClientApp(), deleteClientApp(),
modifySAG(), listSAGS(), lissSAGMembers(), addSAGmembers(), removeSAGmembers()etc. These methods can be
interleaved in any logical order. Finally, the enterprise operator (or the framework operator) can delete its subscription
account by invoking deleteEntOpAccount() on I pEntOpA ccountM anagement interface.

Enterprise
Operator

Framework : IpAccess =
Operator IpEntOpAccountManagement
T

IpEnlOpAcco_umInfoQuery

IpCIlentAppManaqem ent IpCIlentAp_pInfoQuery
T

I
The Enterprise Operator
account has already been created.
Auth. Phase followed by:

1: obtainl}wterface() :

1

|
|
2: describeEntOpAccount()
T
|
|

3: modifyE ntOpActount()

4: obtainl‘hterface()

!

5: createCl |‘pntApp()

S s [s S s S s SR s R

6: createSAG()
}

|
7: addSAGMembers()

|
8: modifyCljentApp()

|
9: modifySAG()

|
10: deleteClientApp()
|

11: removeSA#Members()

B o s M e S s s B s

|
12: modifySAG()

13: obtain|nterface()

14: listSAGs()

15: listsSAGMembers()

B s R e S s S s

1

T
|
|
|
|
T
|
|
|
|
|
|
|
‘hs: deleteEntOpAd‘count()
|
|
|
|
|
|
|
|

ETSI

|
|
|
|
|
L
|
|
: Create more client
| apps
|
|
}
|
|
|
|
T
|
|
|
T
|
|
|
t
|
|
|
|
|
|
I
|
|
|
[
|
|
|
I
|
|
|
|
|
|
|
T
|
|
|
|
|
|
|

g

T
1

86 ETSI ES 201 915-3 V1.2.1 (2002-05)

8.2 Class Diagrams
<<Interface>>
<<Interface>> IpClie ntA ppM anagement
IpClientAppinfoQuery from App interfaces)
(from App interfaces)
WcreateClientApp()
SdescribeClientApp() $modifyClientApp()
SistClientApps() WdeleteClientApp()
®describeSAG() ¥createSAG()
istSAGs() $modifySAG()
®listSAGMembers() ¥deleteSAG()
SlistClientAppMembersh... [®¥addSAGMembers()
FremoveSAGMembers()
<<Interface>>
IPEntOpAccountManagement <<Interface>>
<<Interface>> (from Framework interfaces) IpSeniceContractinfoQuery
IPEntOpAccountinfoQuery (from Framework interfaces)
(from Framework interfaces) ‘mOdinyntOpAccount()
SdeleteEntOpAccount() WdescribeSeniceContract()
®describeEntOpAccount() SiistSeniceContracts()
FlistSeniceProfiles()

<<Interface>> <<Interface>> _ <<Interface>>
IpSeniceProfileinfoQuery IpSeniceProfileManagement IpSeniceContractManagement
(from Framework i nterfaces) (from Framework interfaces) (from Framework interfaces)
FlistSeniceProfiles() ScreateSeniceProfile() ““‘createServiceContract()
FdescribeSeniceProfile() ®modifySeniceProfile() ®modifySeniceContract()
FlistAssignedMembers() SdeleteSeniceProfile() SldeleteSeniceContract()
assign()
®deassign()

Figure 20: Service Subscription Package Overview

ETSI

87

<<lInterface>>
IpClientAccess
(from Client interfaces)

rerminateAccess()

<<uses>>

ETSI ES 201 915-3 V1.2.1 (2002-05)

<<Interface>>
IpClientAPILevelAuthentication
(from Client interfaces)

Fauthenticate()
*abortAuthentication()
‘authenticationSucceeded()

<<Interface>>
Iplnitial
(from Framework interfaces)

<<Interface>>
IpAccess
(from Framework interfaces)

‘lnitiateAuthentication()

‘obtainlnterface()

"obtainInterfaceWithCaIIback
endAccess()

ﬁistlnterfaces()
releaselnterface()

<<uses>>

<<Interface>>
IpAPILevelAuthentication
(from Framework interfaces)

‘selectEncryption Method(

authenticate()
abortAuthentication()
authenticationSucceeded

<

<<Interface>>
IpAuthentication
(from Framework interfaces)

‘requestAccess()

Figure 21: Trust and Security Management Package Overview

ETSI

88 ETSI ES 201 915-3 V1.2.1 (2002-05)

8.3 Interface Classes

8.3.1 Service Subscription Interface Classes

8.3.1.1 Interface Class IpClientAppManagement
Inherits from: Iplinterface.

If the enterprise operator wants the client applications in its domain to access the subscribed services in name of the
enterprise, then (s)he has to register these client applications in the Framework domain. For this the enterprise operator
must use the client application management interface, to which (s)he can subscribe as a privileged user. The client
application management interface isintended for cases where an organisation wants to allow several client applications
to register with a Framework as service consumers. It allows enterprise operators to dynamically add new client
applications and SAGs, delete them and to modify subscription related information concerning the client applications
and the SAGs. Client applications use the subscribed servicesin the enterprise operator's name. The main task of client
application management isto: - register, modify and delete client applications (Client Application Management), -
manage groups of client applications, called Subscription Assignment Groups (SAG Management).

<<Interface>>

IpClientAppManagement

createClientApp (clientAppDescription : in TpClientAppDescription) : void
modifyClientApp (clientAppDescription : in TpClientAppDescription) : void
deleteClientApp (clientAppID : in TpClientAppID) : void

createSAG (sag : in TpSag, clientApplIDs : in TpClientAppIDList) : void

modifySAG (sag : in TpSag) : void

deleteSAG (sagID : in TpSagID) : void

addSAGMembers (sagID : in TpSagID, clientAppIDs : in TpClientAppIDList) : void
removeSAGMembers (sagID : in TpSaglID, clientAppIDList : in TpClientApplDList) : void

Method
created i ent App()

A client application is represented in the Framework domain as a " clientApp object”. This method creates a new
clientApp object associated with the enterprise operator object. Each clientApp object has a clientApp ID and other
subscription related client application's properties stored in it.

ETSI

89 ETSI ES 201 915-3 V1.2.1 (2002-05)

Parameters
client AppDescription : in TpdientAppDescription

The "clientAppDescription” parameter contains the clientApp ID that is to be associated with the newly created
clientApp object and the subscription-related "client application properties’. The clientApp ID must be aunique ID
across framework, if the ID already exists, an exception "P_INVALID_CLIENT_APP_ID" would be raised. The client
application properties are alist of name/value pairs. The client application properties are an item for bi-lateral
agreement between the enterprise operator and the framework operator.

Raises
TpCommonExcept i ons, P_ACCESS _DENI ED, P_I NVALI D_CLI ENT_APP_I D

Method
nodi fyd i ent App()

Modify the information contained in an existing clientApp object associated with the enterprise operator. An exception
"P_TASK_REFUSED" would be raised if a non-associated enterprise operator invokes this method.

Parameters
client AppDescription : in TpdientAppDescription

The "clientAppDescription” parameter contains the modified client application information. . If the clientApp ID does
not exist, an exception "P_INVALID_CLIENT_APP_ID" would be raised.

Raises
TpComonExcepti ons, P_ACCESS DEN ED, P_I NVALID CLIENT_APP_ID

Method
del et ed i ent App()

Delete the specified clientApp object associated with the enterprise operator. An exception of "P_TASK_REFUSED" is
raised if a non-associated enterprise operator invokes this method.

Parameters
clientApplD : in TpdientAppl D

The"clientApplD" parameter identifies the clientApp object that isto be deleted. . If the clientApp ID does not exist, an
exception "P_INVALID_APP_ID" would be raised.

Raises
TpCommonExcepti ons, P_ACCESS DEN ED, P_I NVALI D _CLI ENT_APP_I D

ETSI

90 ETSI ES 201 915-3 V1.2.1 (2002-05)

Method
creat eSAH))

Create anew SAG associated with the enterprise operator. The SAG object isidentified by a SAG - ID and contains
SAG - specific description.

Parameters
sag : in TpSag

The"sag" parameter contains the SAG-ID and SAG-specific description. ThissaglD is particular to the SAG, and must
be unique across framework. If the saglD supplied already exists, an exception of type "P_INVALID_SAG_ID" would
be raised.

clientApplDs : in TpdientAppl DLi st

The "clientApplDs' parameter contains the list of client application IDsthat are to be associated with the newly created
SAG.

Raises
TpCommonExcept i ons, P_ACCESS_DENI ED, P_I NVALI D_CLI ENT_APP_I D, P_I NVALI D_SAG_
(D)

Method
nodi f ySAEH)

Modify the description of an existing SAG associated with the enterprise operator. An exception of
"P_TASK_REFUSED" would be raised if a non-associated enterprise operator invokes this method.

Parameters
sag : in TpSag

The"sag" parameter contains the modified SAG-specific description. . If the SAG ID does not exist, an exception
"P_INVALID_SAG_ID" would be raised.

Raises
TpCommonExcepti ons, P_ACCESS DENIED, P_INVALID SAG ID

Method
del et eSAY)

Delete an existing SAG. Only the enterprise operator associated with the SAG is allowed to delete it, an exception
"P_TASK_REFUSED" would beraised if a non-associated enterprise operator invokes this method.

Parameters
saglD : in TpSaglD

The "sagID" parameter identifies the SAG that isto be deleted. If the SAG ID does not exist, an exception
"P_INVALID_SAG_ID" israised.

ETSI

91 ETSI ES 201 915-3 V1.2.1 (2002-05)

Raises
TpCommonExcept i ons, P_ACCESS_DENI ED, P_I NVALI D_SAG | D

Method
addSAGvenber s()
Add the specified client applications to the specified SAG associated with the enterprise operator. Only the enterprise

operator associated with the SAG is allowed to assign membersto it, an exception "P_TASK_REFUSED" would be
raised if anon-associated enterprise operator invokes this method.

Parameters
saglD : in TpSaglD

The "saglD" parameter identifies the SAG object to which the client applications are to be added. If the SAG ID does
not exist, an exception "P_INVALID_SAG_ID" would be raised.

clientApplDs : in TpdientAppl DLi st

The"clientApplDs' parameter contains the list of the clientApp IDsthat are to be added to the specified SAG. The
clientApp objects are first created using the createClientApp() method. If one or al of the client application IDsin the
list does not exist, an exception "P_INVALID_APP_ID" would be raised.

Raises
TpCommonExcept i ons, P_ACCESS_DENI ED, P_I NVALI D_CLI ENT_APP_I D, P_I NVALI D_SAG_
(D)

Method
r enoveSAGvenber s()
Delete specified client applications from the specified SAG object of the enterprise operator. Only the enterprise

operator associated with the SAG is allowed to remove members from it, an exception "P_TASK_REFUSED" would be
raised if a non-associated enterprise operator invokes this method.

Parameters
saglD : in TpSaglD

The "saglD" parameter identifies the SAG from which the client applications are to be removed. If the SAG ID does not
exist, an exception "P_INVALID_SAG_ID" would be raised.

clientAppl DList : in TpdientAppl DLi st

The"clientApplIDList" parameter contains the list of the clientApp IDs that are to be removed from the specified SAG.
If one or al of the client application IDsin the list does not exist, an exception "P_INVALID_CLIENT_APP_ID"
would be raised.

ETSI

92 ETSI ES 201 915-3 V1.2.1 (2002-05)

Raises
TpCommonExcepti ons, P_ACCESS DENI ED, P_I NVALI D _CLI ENT_APP_I D,
P_INVALI D SAG I D

8.3.1.2 Interface Class IpClientAppinfoQuery
Inherits from: Iplinterface.

Thisinterface is used by the enterprise operator to list the client applications and the SAGsin its domain and to obtain
information about them.

<<Interface>>

IpClientAppinfoQuery

describeClientApp (clientAppID : in TpClientAppID) : TpClientAppDescription
listClientApps () : TpClientApplIDList

describeSAG (sagID : in TpSagID) : TpSagDescription

listSAGs () : TpSagIDList

listSAGMembers (sagID : in TpSagID) : TpClientAppIDList
listClientAppMembership (clientAppID : in TpClientAppID) : TpSagIDList

Method
descri bed i ent App()

Query information about the specified client application of the enterprise operator.

Returns <clientAppDescription> : The "clientAppDescription” parameter contains the clientApp description.

Parameters
clientApplD : in TpdientAppl D
The"clientAppID" parameter identifies the clientApp object whose description is requested.

Returns
Tpd i ent AppDescri ption

Raises
TpCommonExcept i ons, P_ACCESS DENI ED, P_I NVALI D_CLI ENT_APP_I D

ETSI

93 ETSI ES 201 915-3 V1.2.1 (2002-05)

Method
listCient Apps()

Get alist of al client applications belonging to an enterprise operator.
Returns <clientApplDs> : The "clientApplDs" parameter identifies the list of client applications in the enterprise
operator domain.

Parameters
No Parameters were identified for this method.

Returns

Tpd i ent Appl DLi st

Raises

TpComonExcepti ons, P_ACCESS DEN ED

Method
descri beSAH)

Query information about the specified SAG associated with the enterprise operator.

Returns <SagDescription> : The "sagDescription” parameter returns the SAG-specific description.

Parameters
saglD : in TpSaglD
The "saglD" parameter identifies the SAG whose description is required.

Returns

TpSagDescri pti on

Raises

TpComonExcepti ons, P_ACCESS DEN ED, P_I NVALI D SAG ID

Method
| i st SAGs()

Get alist of all SAGs associated with an enterprise operator.

Returns <SaglDList>: The"saglDList" parameter returnsthe list of the identifiers of the SAGs associated with the
enterprise operator.

Parameters
No Parameters were identified for this method.

ETSI

94 ETSI ES 201 915-3 V1.2.1 (2002-05)

Returns

TpSagl DLi st

Raises

TpComonExcepti ons, P_ACCESS DEN ED

Method
| i st SAGVenber s()

Get alist of all client applications associated with the specified SAG.

Returns <clientApplDList> : The"clientAppIDList" parameter returnsthe list of the client applications associated with
the SAG.

Parameters
saglD : in TpSaglD
The "sagID" parameter identifies the SAG whose clientApplID list is required.

Returns

Tpd i ent Appl DLi st

Raises

TpComonExcepti ons, P_ACCESS DEN ED, P_I NVALI D SAG ID

Method
i st ient AppMenbershi p()

Obtain alist of the SAGs of which the specified client application is a member.

Returns <sags> : The SAGs of which the client application is a member.

Parameters
clientAppl D : in Tpdient Appl D
The "clientAppID" parameter identifies the clientApp object whose membership details are requested.

Returns

TpSagl DLi st

Raises

TpCommonExcepti ons, P_ACCESS DENI ED, P_I NVALI D CLI ENT_APP_I D

ETSI

95 ETSI ES 201 915-3 V1.2.1 (2002-05)

8.3.1.3 Interface Class IpServiceProfileManagement
Inherits from: Iplnterface.

Thisinterface is used by the enterprise operator for the management of Service Profiles, which are defined for every
subscribed service, and to assign/de - assign the Service Profilesto SAGs.

<<Interface>>

IpServiceProfileManagement

createServiceProfile (serviceProfileDescription : in TpServiceProfileDescription) : TpServiceProfilelD
modifyServiceProfile (serviceProfile : in TpServiceProfile) : void

deleteServiceProfile (serviceProfilelD : in TpServiceProfilelD) : void

assign (saglD : in TpSagID, serviceProfilelD : in TpServiceProfilelD) : void

deassign (sagID : in TpSagID, serviceProfilelD : in TpServiceProfileID) : void

Method
createServiceProfile()

Creates anew Service Profile for the specified service contract. The service properties within the service profile restrict
the service to meet the client application requirements. A Service Profileis arestriction of the corresponding service
contract. When the description has been verified, a service profile ID will be generated.

Returns <serviceProfilelD> : The service profile ID, generated by the framework, will be used to uniquely identify the
service profile within the framework.

Parameters

serviceProfil eDescription : in TpServiceProfil eDescription

The "serviceProfile" parameter is a structured data type, which contains a subset of the associated service contract
information and which may further restrict the value ranges of the service subscription properties.

Returns
TpServiceProfilelD

Raises
TpCommonExcept i ons, P_ACCESS DEN ED, P_I NVALI D_SERVI CE_PROFI LE_I D

ETSI

96 ETSI ES 201 915-3 V1.2.1 (2002-05)

Method
nodi f yServi ceProfil e()

Modifies the specified Service Profile associated with the enterprise operator. Only the enterprise operator associated
with the particular service profile is allowed to modify it, an exception "P_TASK_REFUSED" would be raised if a non-
associated enterprise operator invokes this method.

Parameters

serviceProfile : in TpServiceProfile

The modified Service Profile. If the serviceProfilel D specified in the serviceProfile parameter does not exist, an
exception "P_INVALID_SERVICE_PROFILE_ID" would be raised.

Raises
TpCommonExcepti ons, P_ACCESS DEN ED, P_| NVALI D_SERVI CE_PROFI LE_ I D

Method
del et eServi ceProfile()

Deletes the specified Service Profile. Only the enterprise operator associated with the particular service profileis
allowed to deleteit, an exception "P_TASK REFUSED" would be raised if a non-associated enterprise operator
invokes this method.

Parameters

serviceProfilelD : in TpServiceProfilelD

The "serviceProfilelD" parameter identifies the Service Profile that isto be deleted. . If the serviceProfilel D does not
exist, an exception "P_INVALID_SERVICE_PROFILE_ID" would be raised.

Raises
TpCommonExcepti ons, P_ACCESS DEN ED, P_| NVALI D_SERVI CE_PROFI LE_ I D

Method
assi gn()

Assign a Service Profile to the specified SAG. Only the enterprise operator associated with the serviceProfilelD is
allowed to assign it to a SAG, an exception "P_TASK_REFUSED" would be raised if a non-associated enterprise
operator invokes this method.

Parameters
saglD : in TpSaglD

The "sagID" parameter identifies the SAG to which Service Profile isto be assigned. If the SAG ID does not exist, an
exception "P_INVALID_SAG_ID" would be raised.

ETSI

97 ETSI ES 201 915-3 V1.2.1 (2002-05)

serviceProfilelD: in TpServiceProfilelD

The "serviceProfilel D" parameter identifies the Service Profile that isto be assigned to the SAG. If the serviceProfilelD
does not exist, an exception "P_INVALID_SERVICE_PROFILE_ID" would be raised.

Raises
TpComonExcept i ons,
P_ACCESS DEN ED, P_I NVALI D_SAG | D, P_I NVALI D_SERVI CE_PRCFI LE_I D

Method
deassi gn()

De-assign the Service Profile from the specified SAG. Because only the enterprise operator associated with the
serviceProfilel D is allowed to deassign it from a SAG, an exception "P_TASK_REFUSED" would be raised if a non-
associated enterprise operator invokes this method.

Parameters
saglD : in TpSaglD

The "saglD" parameter identifies the SAG whose Service Profile isto be de-assigned. If the SAG ID does not exist, an
exception "P_INVALID_SAG_ID" would be raised.

serviceProfilelD: in TpServiceProfilelD

The "serviceProfilelD" parameter identifies the Service Profile that isto be de-assigned. If the serviceProfilelD does not
exist, an exception "P_INVALID_SERVICE_PROFILE_ID" would be raised.

Raises

TpConmonExcept i ons, P_ACCESS_DENI ED, P_I NVALI D_SAG | D, P_I NVALI D_SERVI CE_PRO
FILE_ID

ETSI

98 ETSI ES 201 915-3 V1.2.1 (2002-05)

8.3.1.4 Interface Class IpServiceProfileInfoQuery
Inherits from: Iplnterface.

Thisinterface is used by the enterprise operator to obtain information about individual Service Profiles, to find out
which SAGs are assigned to a given Service Profile, and to find out what Service Profile is associated with a given
client application or SAG.

<<Interface>>

IpServiceProfileInfoQuery

listServiceProfiles () : TpServiceProfileIDList
describeServiceProfile (serviceProfilelD : in TpServiceProfilelD) : TpServiceProfileDescription

listAssignedMembers (serviceProfilelD : in TpServiceProfileID) : TpSagIDList

Method
| i st ServiceProfiles()

Get alist of all service profiles created by the enterprise operator.
Returns <serviceProfilel DList> : The"serviceProfilelDList" isalist of the service profiles associated with the

enterprise operator.

Parameters
No Parameters were identified for this method.

Returns
TpServi ceProfil el DLi st

Raises
TpComonExcepti ons, P_ACCESS DEN ED

Method
descri beServi ceProfil e()

Query information about a single service profile.
Returns <serviceProfileDescription> : The "serviceProfileDescription” parameter is a structured data type which

contains a description for the specified service profile.

Parameters

serviceProfilelD : in TpServiceProfilelD
The "serviceProfilelD" parameter identifies the Service Profile whose description is being requested.

ETSI

99 ETSI ES 201 915-3 V1.2.1 (2002-05)

Returns
TpServi ceProfil eDescription

Raises
TpCommonExcept i ons, P_ACCESS DENI ED, P_I NVALI D_SERVI CE_PROFI LE_I D

Method
| i st Assi gnedMenber s()

Get alist of SAGs assigned to the specified service profile.
Returns <sagIDList>: The "saglDs" parameter isthe list of the SAG IDs that are assigned to the specified service

profile.

Parameters

serviceProfilelD: in TpServiceProfilelD

The "serviceProfilel D" parameter identifies the Service Profile. If the serviceProfilelD is not recognised by the
framework, an exception "P_INVALID_SERVICE_PROFILE_ID" would be raised.

Returns

TpSagl DLi st

Raises

TpConmmonExcept i ons, P_ACCESS DENI ED, P_I NVALI D_SERVI CE_PROFI LE_| D

8.3.1.5 Interface Class IpServiceContractManagement

Inherits from: Iplinterface.

The enterprise operator uses this interface for service contract management, such as create, modify, and delete service
contracts.

<<Interface>>

IpServiceContractManagement

createServiceContract (serviceContractDescription : in TpServiceContractDescription) : TpServiceContract|D
modifyServiceContract (serviceContract : in TpServiceContract) : void

deleteServiceContract (serviceContractID : in TpServiceContractID) : void

ETSI

100 ETSI ES 201 915-3 V1.2.1 (2002-05)

Method
createServi ceContract ()

Create a new service contract for an enterprise operator. The enterprise operator provides the service contract
description. This contract should conform to the previously negotiated high - level agreement (regarding the services,
their usage and the price, etc.), if any, between the enterprise operator and the framework operator, otherwise the
appropriate exception is raised by the framework. When the description has been validated, a service contract 1D will be
generated.

Returns <serviceContractl D> : The service contract 1D will be used to uniquely identify the service contract within the
framework.

Parameters

servi ceContractDescription : in TpServiceContractDescription

The "serviceContractDescription” parameter provides the information contained in the service contract. The service
contract is a structured data type, which contains the following information:
a. information about the service requestor, i.e., the enterprise operator,
b. information about the billing contact (person),
C. service start date,

d. service end date,

e. service type (e.g. obtained from listServiceType() method),

f. service ID (e.g. obtained from discoverService() method). For certain services, service type informationis
sufficient and service ID may not be required. Thisimplies that any service of the type specified above is subscribed
and hence accessible to the enterprise operator or to its client applications.

0. list of service subscription properties and their value ranges (service profiles further restrict these val ue ranges)

Returns

TpServi ceContract | D

Raises

TpComonExcept i ons,

P_ACCESS DEN ED, P_I NVALI D_SERVI CE_| D, P_I NVALI D_SERVI CE_CONTRACT_I D

Method

nodi f ySer vi ceContract ()

Modify an existing service contract. The service contract can be modified only within the context of a pre-existing off-
line negotiated high-level agreement between the enterprise operator and the framework operator. Only the enterprise

operator associated with the serviceContract is allowed to modify it, an exception "P_TASK_REFUSED" would be
raised if a non-associated enterprise operator invokes this method.

Parameters

serviceContract : in TpServiceContract

The "serviceContract" parameter provides the modified service contract. If the serviceContract|D does not exists, an
exception "P_INVALID_SERVICE_CONTRACT _ID" would be raised.

ETSI

101 ETSI ES 201 915-3 V1.2.1 (2002-05)

Raises

TpComonExcept i ons,
P_ACCESS DENI ED, P_I NVALI D_SERVI CE_| D, P_I NVALI D_SERVI CE_CONTRACT _I D

Method
del et eSer vi ceContract ()

Delete an existing service contract. All the Service Profiles associated with the service contract are also deleted. Only
the enterprise operator associated with the serviceContract is allowed to delete it, an exception "P_TASK_REFUSED"
would beraised if a non-associated enterprise operator invokes this method.

Parameters

serviceContractID : in TpServiceContractl D

The "serviceContractI D" parameter identifies the service contract that the enterprise operator wishes to delete. If the
serviceContractlD does not exists, an exception "P_INVALID_SERVICE_CONTRACT _ID" would be raised.

Raises
TpComonExcepti ons, P_ACCESS DEN ED, P_| NVALI D_SERVI CE_CONTRACT I D

8.3.1.6 Interface Class IpServiceContractinfoQuery
Inherits from: Iplinterface.

The enterprise operator uses this interface to query information about a given service contract.

<<Interface>>

IpServiceContractinfoQuery

describeServiceContract (serviceContractID : in TpServiceContractID) : TpServiceContractDescription
listServiceContracts () : TpServiceContractIDList

listServiceProfiles (serviceContractID : in TpServiceContractID) : TpServiceProfile|DList

Method
descri beServi ceContract ()

Query information about the specified service contract. The enterprise operator invokes this operation to obtain
information that is stored in the specified service contract. The enterprise operator can only obtain information about the
service contracts that it has created.

ETSI

102 ETSI ES 201 915-3 V1.2.1 (2002-05)

Returns <serviceContractDescription> : The "serviceContract" parameter contains the description for the specified
service contract.

Parameters

serviceContractI D : in TpServiceContractlD
The "serviceContractI D" parameter identifies the service whose description is being requested.

Returns
TpSer vi ceContract Descri ption

Raises
TpCommonExcept i ons, P_ACCESS _DENI ED, P_I NVALI D_SERVI CE_CONTRACT_| D

Method
| i st Servi ceContracts()

Returns alist of the IDs of service contracts created by the Enterprise Operator.

Returns <serviceContractlDs> : The "serviceContractIDs" parameter will contain alist of IDsfor service contracts that
the enterprise operator has created.

Parameters
No Parameters were identified for this method.

Returns

TpServi ceContract | DLi st

Raises

TpComonExcepti ons, P_ACCESS DEN ED

Method
| i st ServiceProfiles()

The enterprise operator invokes this operation to obtain alist of service profiles that are associated with a particular
service contract.

Returns <serviceProfilel Ds> : The "serviceContractl DS"' parameter contains the service profile members associated
with a particular service contract.

Parameters

serviceContractID : in TpServiceContractlD

The "serviceContractI D" parameter identifies the service contract. If the serviceContractID is not recognised by the
framework, an exception "P_INVALID_SERVICE_CONTRACT_ID" would be raised.

ETSI

103 ETSI ES 201 915-3 V1.2.1 (2002-05)

Returns
TpServi ceProfil el DLi st

Raises
TpCommonExcepti ons, P_ACCESS DENI ED, P_I NVALI D_SERVI CE_CONTRACT | D

8.3.1.7 Interface Class IpEntOpAccountManagement

Inherits from: Iplinterface.

The enterprise operator, in the role of the service subscriber, uses thisinterface for the management of enterprise
operator subscription accounts, such as modify and del ete enterprise operator accounts. The EntOplD will be decided in
an off-line agreement between the FW operator and the EntOp, as the EntOp may require the ID to be something more
meaningful than a random number. The EntOp account, consisting of the EntOpl D, along with thelist of valid
properties and their modes and prescribed ranges, will be entered viaa FW operator interface that is currently outside
the scope of the API.

<<Interface>>

IPEntOpAccountManagement

modifyEntOpAccount (enterpriseOperatorProperties : in TpEntOpProperties) : void
deleteEntOpAccount () : void

Method
nodi f yEnt OpAccount ()

Modification of the enterprise operator information contained in the enterprise operator object.

Parameters

enterpriseQperatorProperties : in TpEnt QoProperties

The "enterprise operator properties’ parameter conveys the modified/populated information about the enterprise
operator. The values of the "enterprise operator properties’ can only be modified within the prescribed range, as
negotiated earlier (an off-line process) between the enterprise operator and the framework operator, otherwise a
P_INVALID_PROPERTY exceptionisraised.

Raises
TpCommonExcepti ons, P_ACCESS DEN ED, P_I NVALI D_PROPERTY

ETSI

104 ETSI ES 201 915-3 V1.2.1 (2002-05)

Method
del et eEnt OpAccount ()

Deletes the specified enterprise operator object. Deletion of the enterprise operator object cannot be performed until the
enterprise operator has deleted al the service contracts (and the Service Profiles) associated with it. An attempt to delete
the enterprise operator account will result inaP_TASK_REFUSED exception if there are outstanding service contracts
(and service profiles).

Parameters
No Parameters were identified for this method.

Raises
TpComonExcepti ons, P_ACCESS DEN ED

8.3.1.8 Interface Class IpEntOpAccountinfoQuery
Inherits from: I plnterface.

Thisinterface is used by the enterprise operator to query information related to its own subscription account as held
within the framework.

<<Interface>>

IpEntOpAccountinfoQuery

describeEntOpAccount () : TpEntOp

Method
descri beEnt OpAccount ()

Query information about the enterprise operator. The enterprise operator invokes this operation to find out what
information about itself is stored in the enterprise operator account object within the Framework.

Returns <enterpriseOperator> : The "enterpriseOperator" parameter conveys the information stored in the EntOp object
about the enterprise operator. It contains the unique "enterprise operator ID" followed by alist of "enterprise operator
properties'. The enterprise operator propertiesisalist of name/value pairs which provide enterprise operator related
information such as the name, organisation, address, phone, e-mail, fax, payment method (credit card, bank account),
etc. to the framework.

Parameters
No Parameters were identified for this method.

ETSI

105 ETSI ES 201 915-3 V1.2.1 (2002-05)

Returns

TpEnt Op

Raises

TpComonExcepti ons, P_ACCESS DEN ED

8.4 State Transition Diagrams

This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the
gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can
be invoked by the client are shown. Methods not shown for a specific state are not relevant for that state and will return
an exception. Apart from the methods that can be invoked by the client also eventsinternal to the gateway or related to
network events are shown together with the resulting event or action performed by the gateway. These internal events
are shown between quotation marks.

8.4.1 Service Subscription State Transition Diagrams

There are no State Transition Diagrams defined for Service Subscription.

9 Framework-to-Service API

9.1 Sequence Diagrams

9.1.1 Service Discovery Sequence Diagrams

No Sequence Diagrams exist for Service Discovery.

ETSI

106 ETSI ES 201 915-3 V1.2.1 (2002-05)

9.1.2 Service Registration Sequence Diagrams

9.1.2.1 New SCF Registration

The following figure shows the process of registering a new Service Capability Feature in the Framework. Service
Registration is atwo step process.

IpFwService_Reqistration

1: registerSenice()

2: announceSenviceAvailability()

1: Registration: first step - register service

The purpose of thisfirst step in the process of registration is to agree, within the network, on anameto cal, internally, a
newly installed SCF version. It is necessary because the OSA Framework and SCF in the same network may come from
different vendors. The goal isto make an association between the new SCF version, as characterized by alist of
properties, and an identifier called servicel D.

This service ID will be the name used in that network (that is, between that network's Framework and its SCSs),
whenever it is necessary to refer to this newly installed version of SCF (for example for announcing its availability, or
for withdrawing it later).

The following input parameters are given from the SCSto the Framework in thisfirst registration step:
- inserviceTypeName

Thisisastring with the name of the SCF, among alist of standard names (e.g. "P_MPCC").
- inservicePropertyList

Thisisalist of types TpServiceProperty; each TpServiceProperty isa pair of (ServicePropertyName,
ServicePropertyValuelList).

- ServicePropertyName is a string that defines avalid SFC property name (valid SCF property names are listed in
the SCF data definition).

- ServicePropertyVauelList is a numbered set of types TpServicePropertyValue; TpServicePropertyValueisa
string that describes a valid value of a SCF property (valid SCF property values are listed in the SCF data
definition).

The following output parameter results from service registration:
- out servicelD

Thisisastring, automatically generated by the Framework and unique within the Framework.

ETSI

107 ETSI ES 201 915-3 V1.2.1 (2002-05)

Thisisthe name by which the newly installed version of SCF, described by the list of properties above, is going to be
identified internally in this network.

2: Registration: second step - announce service availability

At this point the network's Framework is aware of the existence of anew SCF, and could let applications know - but
they would have no way to use it. Installing the SCS logic and assigning a name to it does not make this SCF available.
In order to make the SCF available an "entry point", called lifecycle manager, is used. The role of the lifecycle manager
isto control the life cycle of an interface, or set of interfaces, and provide clients with the references that are necessary
to invoke the methods offered by these interfaces. The starting point for a client to use an SCF is to obtain an interface
reference to alifecycle manager of the desired SCF.

A Network Operator, upon completion of the first registration phase, and once it has an identifier to the new SCF
version, will instantiate alifecycle manager for it that will allow client to useit. Then it will inform the Framework of
the value of the interface associated to the new SCF. After the receipt of thisinformation, the Framework makes the
new SCF (identified by the pair [servicel D, servicelnstancel ifecycleManagerRef]) discoverable.

The following input parameters are given from the SCSto the Framework in this second registration step:
- inservicelD

Thisisthe identifier that has been agreed in the network for the new SCF; any interaction related to the SCF needs to
include the servicel D, to know which SCF it is.

- inservicelnstanceL ifecycleM anagerRef

Thisisthe interface reference at which the lifecycle manager of the new SCF is available. Note that the Framework will
have to invoke the method createServiceManager() in this interface, any time between now and when it accepts the first
application requests for discovery, so that it can get the service manager interface necessary for applications as an entry
point to any SCF.

9.1.3 Service Instance Lifecycle Manager Sequence Diagrams

9.1.3.1 Sign Service Agreement

This sequence illustrates how the application can get access to a specified service. It only illustrates the last part: the
signing of the service agreement and the corresponding actions towards the service. For more information on accessing
the framework, authentication and discovery of services, see the corresponding clauses.

‘ AppLogic H IpAppCalCont oiManager - Ipinitial

o GenericCallControlService : IpCallControlManager
IpServ \agement er if

IpAp pServ iceAgreem ent Managem ent

We assume that the application s already authentcated and dscovered the service it warts to use ﬁ

| |
| |
| o
| 1: selectService()

|
|
|
|
|
| 2: sighServiceAgreement()
T
| D\ |
|
|

-

|
3: signServiceAgreement()

5: new()

|
|
I
|
|
|
|

6! new()

7: setCallback()

g
g

: i

1. The application selectsthe service, using a servicel D for the generic call control service. The servicel D could
have been obtained via the discovery interface. A ServiceToken is returned to the application.

2: The framework signs the service agreement.

ETSI

108 ETSI ES 201 915-3 V1.2.1 (2002-05)
3: Theclient application signs the service agreement. As aresult a service manager interface reference (in this case
of type IpCallControlManager) is returned to the application.

4: Provided the signature information is correct and all conditions have been fulfilled, the framework will request
the service identified by the servicel D to return a service manager interface reference. The service manager isthe
initial point of contact to the service.

5: Thelifecycle manager creates a new manager interface instance (a call control manager) for the specified
application. It should be noted that thisis an implementation detail. The service implementation may use other
mechanism to get a service manager interface instance.

6: The application creates a new |pAppCallControlManager interface to be used for callbacks.

7: The Application sets the callback interface to the interface created with the previous message.
9.1.4 Integrity Management Sequence Diagrams

9.1.4.1 Load Management: Service callback registration and load control

This sequence diagram shows how a service registersitself and the framework invokes load management function
based on policy.

. IpSvclLoadManager . IpFwioadM anager

1: createLoadLevelNotification()

U gl

2: load change deteétion & policy evaluation

! 3: loadLewelNotification() S
U P This is the
‘ T implementation detail
Framework detects its -7
load condition change |
and initiates load control |
action 4: load change detection & policy evaluation
‘ 5 loadLewelNotification()

i L This is the

implementation detail

6: destroy LoadLevelNatification() |

ETSI

109 ETSI ES 201 915-3 V1.2.1 (2002-05)

9.1.4.2 Load Management: Client and Service Load Balancing

Application : Framework : = Service :
IpAppLoadManager IpLoadManager IpFwLoadManager IpSvcLoadManager

|
|
|
1
Framework checks

application load.

; 1: queryAppLoadReq()

oy

| 2: queryAppLoadRes()
|

1
Depending on the load, the
framework may choose to stop
sending notifications to the
application, to allowits load to
reduce.

3: suspendNotfication()

U\ U i 4: querySvcLoadReq()

| | ;

The framework may then check
the load on the senvice, and take
action if (according to the load
balancing policy) if required.

i 5: querySvcLoadRes()

ETSI

110 ETSI ES 201 915-3 V1.2.1 (2002-05)

9.1.4.3 Heartbeat Management: Start/perform/end heartbeat supervision of the service

In this sequence diagram, the framework has decided that it wishes to monitor the service, and has therefore requested
the service to commence sending its heartbeat. The service responds by sending its heartbeat at the specified interval.
The framework then decides that it is satisfied with the service's health and disables the heartbeat mechanism. If the
heartbeat was not received from the service within the specified interval, the framework can decide that the service has
failed the heartbeat and can then perform some recovery action.

Framework

|QFWH;.ITBeat IpSwvc HeaﬁBeatM gmt

| |
| 1: enableéSvcHeartBeat()
| |

2: pulse()

3: pulse() At a certain point of

L‘F 7 | time the framework
decides to stop

heartbeat supenision

|
4: disableSvcHeartBeat()
U |

9.1.4.4 Fault Management: Service requests Framework activity test

Framework : Senice :
IpFwFaultManager IpSvcFaultManager

1: activityTestReq() The Senice requests that the
D< U Framework does an activity test.

2: activityTestRes()

ETSI

111 ETSI ES 201 915-3 V1.2.1 (2002-05)

1. The service asks the framework to carry out its activity test. The service denotes that it requires the activity test
done for the framework, rather than an application, by supplying an appropriate parameter.

2: The framework carries out the test and returns the result to the service.

9.1.45 Fault Management: Service requests Application activity test

Senice : Framework : = Application :
IpSwc Fault Manager IpFaultManager IpFaultManager IpAppFaultManager

The Framework identifies the senice
instance to conclude which
/u Application the test is directed at, and
U comunicates internally to Framework
interface to the Application.

1: activityTestReq()

2: appActivity TestReq()

U /U The application

I carries out the
| activity test and
: returns the result to
the Framework.

3: appActivity TestRes() |

Communications.

Internal Fram ework ﬁ

4: activityTestRes()

_—

1: The service asks the framework to invoke an activity test on aclient application, the application isidentified by
the appld parameter.

2: The framework asks the application to do the activity test. It is assumed that thereisinternal communication
between the service facing part of the framework (i.e. |pFwFaultManager interface) and the part that faces the
client application.

3: The application does the activity test and returns the result to the framework.

4: The framework internally passes the result from its application facing interface (I pFaultM anager) to its service
facing side, and sends the result to the service.

ETSI

112 ETSI ES 201 915-3 V1.2.1 (2002-05)

9.1.4.6 Fault Management: Application requests Service activity test

Client Application : Framework : o Senvce :
IpAppFault Manager IpFaultManager IpFwFaultManager IpSvcFaultManager

|
|
L |
The client application asks the !
framework to carry out the [
activity test on a senvice. |
|
|
|
|
|
|

1: activityTestReq()

U 1

|
The Framework identifies which
senice the test is directed at by the
svclD parameter, and
communicates internally with the
appropriate framework interface.
W hich inwkes the call on the
senice.

| 2: sweActivity TestReq()

| u

returns the result.

Senice does test and ﬁ

|
Framework passes result
internally from senice facing |

part to application facing part, D\ H

3: s\cActivity TestRes()

and sends the result to the
application.

|
4: activityTestRes() |
|

A

1: The client application asks the framework to invoke an activity test on a service, the service isidentified by the
svcld parameter.

2: The framework asks the service to do the activity test. It is assumed that there isinternal communication between
the application facing part of the framework (i.e. IpFaultManager interface) and the part that faces the service.

3. The service does the activity test and returns the result to the framework.

4: The framework internally passes the result from its service facing interface (IpFwFaultM anager) to its
application facing side, and sends the result to the client application.

ETSI

113 ETSI ES 201 915-3 V1.2.1 (2002-05)

9.1.4.7 Fault Management: Application detects service is unavailable

Client Application : Framework : o Senice :
IpAppFault Manager IpFaultManager | | IpFwFaultManager IpSwcFaultManager

| |

| |

1 1

| |

The application detects that AN |
the senice is not responding, !
so it informs the framework via w
the svcUnavailableind method |
|

|

|

|

|

|

|

|

|

|

|

and then ceases use of the
senice.

| 1: swceUnavailablelnd()

U The framework informs the
senice that the application
is no longer using it.

i 2: appUnavailablelnd()

1: The client application detects that the service instance is currently not available, i.e. the service instance is not
responding to the client application in the normal way, so it informs the framework and takes action to stop using
this service instance and change to a different one (viathe usual mechanisms, such as discovery, selectService
etc.). The client application should not need to re-authenticate in order to discover and use an alternative service
instance.

2: The framework informs the service instance that the client application was unable to get a response from it and
has ceased to be one of its users. The framework and service instance must carry out the appropriate updatesto
remove the client application as one of the users of this service instance. The service or framework may then
decide to carry out an activity test to see whether there is a general problem with the service instance that
reguires further action.

9.1.5 Event Notification Sequence Diagrams

No Sequence Diagrams exist for Event Notification

ETSI

114 ETSI ES 201 915-3 V1.2.1 (2002-05)

9.2 Class Diagrams

<<Interface>>
IpFwSeniceDiscovery
(from Framework interfaces)

WlistSeniceTypes()
¥describeSeniceType()
$discoverSenice()
@listRegisteredSenvices()

Figure 22: Service Discovery Package Overview

<<Interface>>
IpFwSeniceRegistration
(from Framework interfaces)

@registerSenice()
$announceS eniceAvailability ()
SunregisterSenice()
LdescribeSenice()
S$unannounceS ervice()

Figure 23: Service Registration Package Overview

ETSI

115 ETSI ES 201 915-3 V1.2.1 (2002-05)

<<Interface>>

<<Interface>> IpClientAPILevelAuthentication
IpClientAccess (from Client interfaces)
(from Client interfaces)
Pauthenticate()
WterminateAccess() FabortAuthentication()

DauthenticationSucceeded()

<< >>
uses <<uses>>

<<Interface>> <<Interface>>

<<Interface>> IpAccess IpAPILevelAuthentication
Ipinitial (from Framework interfaces) (from Framework interfaces)
(from Framework interfaces)
Sobtaininterface() WselectEncryptionMethod()..
WinitiateAuthentication() RobtainlnterfaceWithCallback() Sauthenticate()
SendAccess() SabortAuthentication()
Sistinterfaces () SauthenticationSucceeded()

Sreleaselnterface() ‘

V

<<Interface>>
IpAuthentication
(from Framework interfaces)

WrequestAccess()

Figure 24: Trust and Security Management Package Overview

<<Interface>>
IpSenicelnstanceLifecycleManager
(from Service Interfaces)

WcreateSeniceManager()
WdestroySeniceManager()

Figure 25: Service Instance Lifecycle Manager Package Overview

ETSI

<<Interface>>
IpSwcHeartBeatMgmt

enableSvcHeartBeat()
disableSvcHeartBeat()
changelnterval()

<<Interface>>
IpSwcHeartBeat

|
|
|
<<uses>> |
|

<<Interface>>
IpFwHeartBeatMgmt

enableHeartBeat()
disableHeartBeat()
changelnterval()

iy

0..n

pulse()

|
|
|
|
<<uses>> !
|
|
|
|

116

ETSI ES 201 915-3 V1.2.1 (2002-05)

<<Interface>>
IpSwcFaultManager

<<Interface>>

IpSvcLoadManager

querySwvcLoadReq()
queryLoadRes()
queryLoadErr()
loadLewvelNotification()

activity TestRes()
swcActivity TestReq()
fwFaultReportind()
fwFaultRecoveryInd()
fwUnavailablelnd()
swvcUnavailableind()
appUnavailablelnd()
genFaultStatsRecordRes()
activity TestErr()

<<Interface>>
IpPS\cOAM

systemDate TimeQuery ()

<<uses>>

h
<<uses>> :

i
|
|
|
|
|
|
|
1

<<Interface>>
IpFwFaultManager

<<Interface>> <<Interface>>
IpFwHeartBeat IpFwLoadManager
0.n
pulse() reportLoad()
queryLoadReq()
querySwvcLoadRes()
querySwvcLoadErr()

createLoadLevelNotification()
destroyLoadLevelNotification()

activity TestReq()
swcActivity TestRes()
appUnavailablelnd()
genFaultStatsRecordReq()
swvcUnavailableind()
swcActivity TestErr()

|
|
|
|
<<uses>> !
|
|
|
|

|
<<Interface>>
IpPFWOAM

systemDateTimeQuery()

Figure 26: Integrity Management Package Overview

<<Interface>>
Ip SvcEvent Notification
(from Service Interfaces)

reportNotification()

notificationTerminated()

A

<<uses>>

<<Interface>>
IpFwEwventNotification
(from Framework Interfaces)

®createNotification()
$destroyNotification()

Figure 27: Event Notification Package Overview

ETSI

117 ETSI ES 201 915-3 V1.2.1 (2002-05)

9.3 Interface Classes

9.3.1 Service Registration Interface Classes

Before a service can be brokered (discovered, subscribed, accessed, etc.) by an enterprise, it has to be registered with
the Framework. Services are registered against a particular service type. Therefore service types are created first, and
then services corresponding to those types are accepted from the Service Suppliers for registration in the framework.
The framework maintains a repository of service types and registered services.

In order to register anew service in the framework, the service supplier must select a service type and the "property
values' for the service. The service discovery functionality described in the previous clause enables the service supplier
to obtain alist of all the service types supported by the framework and their associated sets of service property values.

The Framework service registration-related interfaces are invoked by third party service supplier's administrative
applications. They are described below. Note that these methods cannot be invoked until the authentication methods
have been invoked successfully.

9.3.1.1 Interface Class IpFwServiceRegistration

Inherits from: I plnterface.

The Service Registration interface provides the methods used for the registration of network SCFs at the framework.

<<Interface>>

IpFwServiceRegistration

registerService (serviceTypeName : in TpServiceTypeName, servicePropertyList : in TpServicePropertyList)
: TpServicelD

announceServiceAvailability (servicelD : in TpServicelD, servicelnstanceLifecycleManagerRef : in
service_lifecycle::IpServicelnstanceLifecycleManagerRef) : void

unregisterService (servicelD : in TpServicelD) : void
describeService (servicelD : in TpServicelD) : TpServiceDescription

unannounceService (servicelD : in TpServicelD) : void

Method
regi sterService()

The registerService() operation is the means by which a service is registered in the Framework, for subsequent
discovery by the enterprise applications. Registration can only succeed when the Service type of the service is known to
the Framework (ServiceTypeis ‘available’). A service-ID isreturned to the service supplier when a serviceis registered
in the Framework. When the service is not registered because the ServiceTypeis 'unavailable, a

P_SERVICE _TYPE_UNAVAILABLE israised. The service-ID is the handle with which the service supplier can
identify the registered service when needed (e.g. for withdrawing it). The service-ID is only meaningful in the context
of the Framework that generated it.

ETSI

118 ETSI ES 201 915-3 V1.2.1 (2002-05)

Returns <servicel D> : Thisisthe unique handle that is returned as aresult of the successful completion of this
operation. The Service Supplier can identify the registered service when attempting to accessit via other operations
such as unregisterService(), etc. Enterprise client applications are also returned this service-ID when attempting to
discover aservice of thistype.

Parameters

servi ceTypeNane : in TpServi ceTypeNane

The "serviceTypeName" parameter identifies the service type. If the string representation of the "type" does not obey
the rules for identifiers, then an P_ILLEGAL_SERVICE_TY PE exception israised. If the "type" is correct syntactically
but the Framework is able to unambiguously determine that it is not a recognised service type, then a
P_UNKNOWN_SERVICE_TY PE exception israised.

servi cePropertyList : in TpServicePropertylLi st

The "servicePropertyList" parameter isalist of property name and property value pairs. They describe the service being
registered. This description typically covers behavioural, non-functional and non-computational aspects of the service.
Service properties are marked "mandatory" or "readonly”. These property mode attributes have the following semantics:

a. mandatory - a service associated with this service type must provide an appropriate value for this property when
registering.

b. readonly - this modifier indicates that the property is optional, but that once given avalue, subsequently it may
not be modified.

Specifying both modifiersindicates that a value must be provided and that subsequently it may not be modified.
Examples of such properties are those which form part of a service agreement and hence cannot be modified by service
suppliers during the life time of service.

If the type of any of the property valuesis not the same as the declared type (declared in the service type), then a
P_PROPERTY_TYPE_MISMATCH exceptionisraised. If an attempt is made to assign a dynamic property valueto a
readonly property, then the P READONLY_DYNAMIC_PROPERTY exception israised. If the "servicePropertyList"
parameter omits any property declared in the service type with a mode of mandatory, then a
P_MISSING_MANDATORY_PROPERTY exceptionisraised. If two or more properties with the same property name
areincluded in this parameter, the P DUPLICATE_PROPERTY_NAME exception is raised.

Returns

TpServi cel D

Raises

TpComonExceptions, P_I LLEGAL SERVI CE_| D,

P_UNKNOMN_SERVI CE_| D, P_PROPERTY_TYPE_M SMATCH, P_DUPLI CATE_PROPERTY_NAME,

P | LLEGAL_SERVI CE_TYPE, P_UNKNOWN_SERVI CE_TYPE
P_M SSI NG_MANDATORY_PROPERTY, P_SERVI CE_TYPE_UNAVAI LABLE

Method
announceServi ceAvai l ability()

The registerService() method described previously does not make the service discoverable. The
announceServiceAvailability() method isinvoked after the service is authenticated and its service instance lifecycle
manager isinstantiated at a particular interface. This method informs the framework of the availability of "service
instance lifecycle manager" of the previously registered service, identified by its service ID, at a specific interface. After
the receipt of this method, the framework makes the corresponding service discoverable.

ETSI

119 ETSI ES 201 915-3 V1.2.1 (2002-05)

There exists a"service manager" instance per service instance. Each service implements the

I pServicel nstancelifecycleManager interface. The IpServicel nstancelL ifecycleManager interface supports a method
called the createServiceManager(application: in TpClientAppl D, serviceProperties : in TpServicePropertyList,
servicelnstancel D : in TpServicelnstancel D) : | pServiceRef. When the service agreement is signed for some servicel D
(using signServiceAgreement()), the framework calls the createServiceManager() for this service, getsa
serviceManager and returns this to the client application.

Parameters

servicelD : in TpServicelD

The service ID of the service that is being announced. If the string representation of the "servicel D" does not obey the
rules for service identifiers, then an P_ILLEGAL_SERVICE_ID exception israised. If the "servicel D" islegal but there
is no service offer within the Framework with that ID, then an P_UNKNOWN_SERVICE_ID exception israised.

servi cel nst ancelLi f ecycl eManagerRef : in
service_lifecycle::|pServicel nstanceli fecycl eManager Ref

The interface reference at which the service instance lifecycle manager of the previously registered serviceis available.

Raises
TpCommonExceptions, P_I LLEGAL_SERVI CE_I D, P_UNKNOMN SERVI CE_I D
P_| NVALI D_| NTERFACE_TYPE

Method
unr egi st er Servi ce()
The unregisterService() operation is used by the service suppliers to remove aregistered service from the Framework.

The service isidentified by the "service-ID" which was originally returned by the Framework in response to the
registerService() operation. The service must be in the SCF Registered state. All instances of the service will be deleted.

Parameters

servicelD: in TpServicelD

The service to be withdrawn isidentified by the "servicel D" parameter which was originally returned by the
registerService() operation. If the string representation of the "servicel D" does not obey the rules for service identifiers,
thenan P_ILLEGAL_SERVICE_ID exception israised. If the "servicelD" islegal but there is no service offer within
the Framework with that 1D, then an P_UNKNOWN_SERVICE_ID exception is raised.

Raises
TpCommonExcept i ons, P_| LLEGAL_SERVI CE_I D, P_UNKNOWN_SERVI CE_I D

Method
descri beService()

The describeService() operation returns the information about a service that is registered in the framework. It
comprises, the "type" of the service, and the "properties’ that describe this service. The service isidentified by the
"service-ID" parameter which was originally returned by the registerService() operation.

ETSI

120 ETSI ES 201 915-3 V1.2.1 (2002-05)

The SCS may register various versions of the same SCF, each with a different description (more or less restrictive, for
example), and each getting a different servicel D assigned.

Returns <serviceDescription> : This consists of the information about an offered service that is held by the Framework.
It comprises the "type" of the service , and the properties that describe this service.

Parameters

servicelD : in TpServicelD

The service to be described isidentified by the "servicel D" parameter which was originally returned by the
registerService() operation. If the string representation of the "servicel D" does not obey the rules for object identifiers,
thenan P_ILLEGAL_SERVICE_ID exception israised. If the "servicel D" islegal but there is no service offer within
the Framework with that 1D, thenaP_UNKNOWN_SERVICE_|ID exception is raised.

Returns

TpSer vi ceDescri ption

Raises

TpComonExcepti ons, P_I LLEGAL_SERVI CE_| D, P_UNKNOAN_SERVI CE_| D

Method

unannounceSer vi ce()

This method results in the service no longer being discoverable by applications. It is, however, still registered and the
service ID is till associated with it. Applications currently using the service can continue to use the service but no new
applications should be able to start using the service. Also, al unused service tokens relating to the service will be

expired. Thiswill prevent anyone who has already performed a selectService() but not yet performed the
signServiceAgreement() from being able to obtain a new instance of the service.

Parameters

servicelD : in TpServicelD

The service ID of the service that is being unannounced. If the string representation of the "servicel D" does not obey the
rules for service identifiers, then an P_ILLEGAL_SERVICE_ID exception israised. If the "servicel D" islegal but there
is no service offer within the Framework with that ID, then an P_UNKNOWN_SERVICE_ID exception israised.

Raises
TpComonExcepti ons, P_I LLEGAL_SERVI CE | D, P_UNKNOWN_SERVI CE I D

9.3.2 Service Instance Lifecycle Manager Interface Classes

The I pServicel nstancelL ifecycleManager interface allows the framework to get access to a service manager interface of
aservice. It isused during the signServiceAgreement, in order to return a service manager interface reference to the
application. Each service has a service manager interface that istheinitial point of contact for the service. E.g., the
generic call control service uses the |pCall ControlManager interface.

ETSI

121 ETSI ES 201 915-3 V1.2.1 (2002-05)

9.3.2.1 Interface Class IpServicelnstanceLifecycleManager
Inherits from: Iplnterface.

The I pServicel nstancelL ifecycleManager interface allows the Framework to create and destroy Service Manager
Instances.

<<Interface>>

IpServicelnstancelifecycleManager

createServiceManager (application : in TpClientApplID, serviceProperties : in TpServicePropertyList,
servicelnstancelD : in TpServicelnstancelD) : IpServiceRef

destroyServiceManager (servicelnstance : in TpServicelnstancelD) : void

Method
creat eSer vi ceManager ()

This method returns a new service manager interface reference for the specified application. The service instance will
be configured for the client application using the properties agreed in the service level agreement.

Returns <serviceManager> : Specifies the service manager interface reference for the specified application I1D.

Parameters
application : in TpCdientApplD
Specifies the application for which the service manager interface is requested.

serviceProperties : in TpServicePropertylLi st

Specifies the service properties and their values that are to be used to configure the service instance. These properties
form a part of the service level agreement. An example of these propertiesisalist of methods that the client application
is allowed to invoke on the service interfaces.

servicelnstancel D : in TpServicel nstancel D
Specifies the Service Instance ID that the new Service Manager is to be identified by.

Returns

| pSer vi ceRef

Raises

TpComonExcepti ons, P_I NVALI D PROPERTY

Method
destroyServi ceManager ()

This method destroys an existing service manager interface reference. Thiswill result in the client application being
unable to use the service manager any more.

ETSI

122 ETSI ES 201 915-3 V1.2.1 (2002-05)

Parameters

servi celnstance : in TpServicel nstancel D
Identifies the Service Instance to be destroyed.

Raises
TpComonExcept i ons

9.3.3 Service Discovery Interface Classes
This APl complements the Service Registration functionality described in another clause.

Before a service can be registered in the framework, the service supplier must know what "types"' of servicesthe
Framework supports and what service "properties’ are applicable to each service type. The "listServiceType()" method
returnsalist of all "service types' that are currently supported by the framework and the "describeServiceType()"
method returns a description of each service type. The description of service type includes the " service-specific
properties' that are applicable to each service type. Then the service supplier can retrieve a specific set of registered
services that both belong to a given type and possess a specific set of "property values', by using the
"discoverService()" method.

Additionally the service supplier can retrieve alist of all registered services, without regard to type or property values,
by using the "listRegisteredServices()" method. However the scope of the list will depend upon the framework
implementation; e.g. a service supplier may only be permitted to retrieve alist of services that the service supplier has
previously registered.

9.3.3.1 Interface Class IpFwServiceDiscovery

Inherits from: Iplinterface.

<<Interface>>

IpFwServiceDiscovery

listServiceTypes () : TpServiceTypeNameList
describeServiceType (name : in TpServiceTypeName) : TpServiceTypeDescription

discoverService (serviceTypeName : in TpServiceTypeName, desiredPropertyList : in TpServicePropertyList,
max : in TpInt32) : TpServiceList

listRegisteredServices () : TpServiceList

Method
| i st Servi ceTypes()

This operation returns the names of all service typesthat are in the repository. The details of the service types can then
be obtained using the describeServiceType() method.

Returns <listTypes> : The names of the requested service types.

ETSI

123 ETSI ES 201 915-3 V1.2.1 (2002-05)

Parameters
No Parameters were identified for this method.

Returns

TpServi ceTypeNaneLi st
Raises

TpComonExcept i ons

Method
descri beServi ceType()

This operation lets the caller obtain the details for a particular service type.

Returns <serviceTypeDescription> : The description of the specified service type. The description provides information
about: the service properties associated with this service type: i.e. alist of service property { name, mode and type}
tuples, the names of the super types of this service type, and whether the service typeis currently available or
unavailable.

Parameters

nane : in TpServiceTypeNane

The name of the service type to be described. If the "name" is malformed, thenthe P_ILLEGAL_SERVICE_TYPE
exception israised. If the "name" does not exist in the repository, then the P_UNKNOWN_SERVICE_TY PE exception
israised.

Returns
TpServi ceTypeDescri ption

Raises
TpCommonExcepti ons, P_I LLEGAL_SERVI CE_TYPE, P_UNKNOM_ SERVI CE_TYPE

Method
di scover Servi ce()

The discoverService operation is the means by which the service supplier can retrieve a specific set of registered
services that both belong to a given type and possess a specific set of "property values'. The service supplier passesin a
list of desired service properties to describe the service it islooking for, in the form of attribute/value pairs for the
service properties. The service supplier also specifies the maximum number of matched responsesit iswilling to accept.
The framework must not return more matches than the specified maximum, but it is up to the discretion of the
Framework implementation to choose to return less than the specified maximum. The discoverService() operation
returns a servicel D/Property pair list for those services that match the desired service property list that the service
supplier provided.

Returns <servicelList> : This parameter gives alist of matching services. Each serviceis characterised by its service ID
and alist of service properties { name and value list} associated with the service.

ETSI

124 ETSI ES 201 915-3 V1.2.1 (2002-05)

Parameters

servi ceTypeNane : in TpServi ceTypeNane

The name of the required service type. If the string representation of the "type" does not obey the rules for service type
identifiers, thenthe P_ILLEGAL_SERVICE_TY PE exception israised. If the "type" is correct syntactically but is not
recognised as a service type within the Framework, then the P_UNKNOWN_SERVICE_TY PE exception israised. The
framework may return a service of a subtype of the "type" requested. A service sub-type can be described by the
properties of its supertypes.

desiredPropertylList : in TpServicePropertylLi st

The "desiredPropertyList" parameter isalist of service properties { name and value list} that the required services
should satisfy. These properties dea with the non-functional and hon-computational aspects of the desired service. The
property values in the desired property list must be logically interpreted as " minimum", "maximum”, etc. by the
framework (due to the absence of a Boolean constraint expression for the specification of the service criterion). Itis
suggested that, at the time of service registration, each property value be specified as an appropriate range of values, so
that desired property val ues can specify an "enclosing” range of values to help in the selection of desired services.

max : in Tplnt32
The "max" parameter states the maximum number of servicesthat areto be returned in the "servicelList" result.

Returns

TpServi celLi st

Raises

TpComronExceptions, P_| LLEGAL_SERVI CE_TYPE, P_UNKNOAN_SERVI CE_TYPE,
P_I NVALI D_PROPERTY

Method
| i st Regi st eredServi ces()

Returns alist of services so far registered in the framework.

Returns <servicelList>: The"serviceList" parameter returns alist of registered services. Each service is characterised by
itsservice ID and alist of service properties{name and value list} associated with the service.

Parameters
No Parameters were identified for this method.

Returns

TpServi celLi st
Raises
TpComonExcept i ons

ETSI

125 ETSI ES 201 915-3 V1.2.1 (2002-05)

9.34 Integrity Management Interface Classes

9.3.4.1 Interface Class IpFwFaultManager
Inherits from: Iplinterface.

Thisinterface is used by the service instance to inform the framework of events which affect the integrity of the AP,
and request fault management status information from the framework. The fault manager operations do not exchange
callback interfaces asit is assumed that the service instance has supplied its Fault Management callback interface at the
time it obtains the Framework's Fault Management interface, by use of the obtainl nterfaceWithCallback operation on
the IpAccessinterface.

<<Interface>>

IpFwFaultManager

activityTestReq (activityTestID : in TpActivityTestID, testSubject : in TpSubjectType) : void
svcActivityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void
appUnavailablelnd () : void

genFaultStatsRecordReq (timePeriod : in TpTimelnterval, recordSubject : in TpSubjectType) : void
svcUnavailablelnd (reason : in TpSvcUnavailReason) : void

svcActivityTestErr (activityTestID : in TpActivityTestID) : void

genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord, servicelDs : in TpServicelDList) : void

genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError, servicelDs : in TpServicelDList) : void

Method
activityTest Req()

The service instance invokes this method to test that the framework or the client application is operational. On receipt of
this request, the framework must carry out atest on itself or on the application, to check that it is operating correctly.
The framework reports the test result by invoking the activity TestRes method on the IpSvcFaultM anager interface.
Parameters

activityTestID : in TpActivityTestlD
Theidentifier provided by the service instance to correlate the response (when it arrives) with this request.

test Subject : in TpSubjectType
I dentifies the subject for testing (framework or client application).

Raises
TpComonExcept i ons

ETSI

126 ETSI ES 201 915-3 V1.2.1 (2002-05)

Method
svcActivityTest Res()

The service instance uses this method to return the result of aframework-requested activity test.

Parameters

activityTestID : in TpActivityTestID
Used by the framework to correlate this response (when it arrives) with the original request.

activityTestResult : in TpActivityTestRes
The result of the activity test.

Raises
TpComonExcepti ons, P_I NVALI D ACTIVITY_TEST ID

Method
appUnavai | abl el nd()

This method is used by the service instance to inform the framework that the client application is not responding. On
receipt of thisindication, the framework must act to inform the client application that it should cease use of this service
instance.

Parameters
No Parameters were identified for this method.

Raises
TpComonExcept i ons

Method
genFaul t St at sRecor dReq|()

This method is used by the service instance to solicit fault statistics from the framework. On receipt of this request, the
framework must produce a fault statistics record, for the framework or for the application during the specified time
interval, which isreturned to the service instance using the genFaultStatsRecordRes operation on the

| pSvcFaultM anager interface.

Parameters

timePeriod : in TpTinelnterval
The period over which the fault statistics are to be generated. A null value leaves this to the discretion of the framework.

recordSubj ect : in TpSubjectType
Specifies the subject to be included in the general fault statistics record (framework or application).

ETSI

127 ETSI ES 201 915-3 V1.2.1 (2002-05)

Raises
TpComonExcept i ons

Method
svcUnavai | abl el nd()

This method is used by the service instance to inform the framework that it is about to become unavailable for use. The
framework should inform the client application that is currently using this service instance that it is unavailable for use
(viathe svcUnavailablelnd method on the IpAppFaultManager interface).

Parameters

reason : in TpSvcUnavail Reason
Identifies the reason for the service instance's unavailability.

Raises
TpComonExcept i ons

Method
SvCcActivityTestErr()

The service instance uses this method to indicate that an error occurred during a framework-requested activity test.

Parameters

activityTestID : in TpActivityTestlD
Used by the framework to correlate this response (when it arrives) with the original regquest.

Raises
TpComonExceptions, P_I NVALID ACTIVITY_TEST_ID

Method

genFaul t St at sRecor dRes()

This method is used by the service to provide fault statistics to the framework in response to a genFaultStatsRecordReq
method invocation on the | pSvcFaultManager interface.

Parameters

faultStatistics : in TpFaultStatsRecord
The fault statistics record.

ETSI

128 ETSI ES 201 915-3 V1.2.1 (2002-05)

servicelDs : in TpServicel DLi st
Specifies the services that are included in the general fault statistics record. The servicel Ds parameter is not allowed to

be an empty list.
Raises
TpComonExcept i ons

Method

genFaul t St at sRecor dErr ()

This method is used by the service to indicate an error fulfilling the request to provide fault statistics, in response to a
genFaultStatsRecordReq method invocation on the |pSvcFaultManager interface.

Parameters

faultStatisticsError : in TpFaultStatisticsError
The fault statistics error.

servicelDs : in TpServicel DLi st

Specifies the services that were included in the general fault statistics record request. The servicel Ds parameter is not
allowed to be an empty list.

Raises
TpComonExcept i ons

ETSI

129 ETSI ES 201 915-3 V1.2.1 (2002-05)

9.3.4.2 Interface Class IpSvcFaultManager
Inherits from: Iplnterface.

Thisinterface is used to inform the service instance of eventsthat affect the integrity of the Framework, Service or
Client Application. The Framework will invoke methods on the Fault Management Service Interface that is specified
when the service instance obtains the Fault Management Framework interface: i.e. by use of the
obtainlnterfaceWithCallback operation on the IpAccessinterface.

<<Interface>>

IpSvcFaultManager

activityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void
svcActivityTestReq (activityTestID : in TpActivityTestID) : void

fwFaultReportind (fault : in TpinterfaceFault) : void

fwFaultRecoverylnd (fault : in TpinterfaceFault) : void

fwUnavailablelnd (reason : in TpFwUnavailReason) : void

svcUnavailablelnd () : void

appUnavailablelnd () : void

genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord, recordSubject : in TpSubjectType) : void
activityTestErr (activityTestID : in TpActivityTestID) : void

genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError, recordSubject : in TpSubjectType) :
void

genFaultStatsRecordReq (timePeriod : in TpTimelnterval, servicelDs : in TpServicelDList) : void

Method
activityTest Res()

The framework uses this method to return the result of a service-requested activity test.

Parameters

activityTestID : in TpActivityTestlD
Used by the service to correlate this response (when it arrives) with the original request.

activityTestResult : in TpActivityTestRes
The result of the activity test.

Raises
TpComonExcepti ons, P_I NVALI D_ACTIVITY_TEST_I D

ETSI

130 ETSI ES 201 915-3 V1.2.1 (2002-05)

Method
svcActivityTest Req()

The framework invokes this method to test that the service instance is operational. On receipt of this request, the service
instance must carry out atest onitself, to check that it is operating correctly. The service instance reports the test result
by invoking the svcActivityTestRes method on the | pFwFaultManager interface.

Parameters

activityTestID : in TpActivityTestID
Theidentifier provided by the framework to correlate the response (when it arrives) with this request.

Raises
TpComonExcept i ons

Method
f wFaul t Report | nd()

The framework invokes this method to notify the service instance of afailure within the framework. The service
instance must not continue to use the framework until it has recovered (as indicated by a fwFaultRecoverylnd).

Parameters

fault : in TplnterfaceFault
Specifies the fault that has been detected by the framework.

Raises
TpComonExcept i ons

Method
f wFaul t Recoveryl nd()

The framework invokes this method to notify the service instance that a previously reported fault has been rectified. The
service instance may then resume using the framework.

Parameters

fault : in TplnterfaceFault
Specifies the fault from which the framework has recovered.

Raises
TpComonExcept i ons

ETSI

131 ETSI ES 201 915-3 V1.2.1 (2002-05)

Method
f wwnavai | abl el nd()

The framework invokes this method to inform the service instance that it is no longer available.

Parameters

reason : in TpFwUnavai |l Reason
I dentifies the reason why the framework is no longer available.

Raises
TpComonExcept i ons

Method
svcUnavai | abl el nd()

The framework invokes this method to inform the service instance that the client application has reported that it can no
longer use the service instance (either dueto afailurein the client application or in the service instance itself). The
service should assume that the client application is leaving the service session and the service should act accordingly to
terminate the session from its own end too.

Parameters
No Parameters were identified for this method.

Raises
TpCommonExcepti ons

Method
appUnavai | abl el nd()

The framework invokes this method to inform the service instance that the client application is ceasing its current use of
the service. This may be aresult of the application reporting a failure. Alternatively, the framework may have detected
that the application has failed: e.g. non-response from an activity test, failure to return heartbeats.

Parameters
No Parameters were identified for this method.

Raises
TpComonExcept i ons

ETSI

132 ETSI ES 201 915-3 V1.2.1 (2002-05)

Method
genFaul t St at sRecor dRes()

This method is used by the framework to provide fault statistics to a service instance in response to a
genFaultStatsRecordReg method invocation on the I pFwFaultM anager interface.

Parameters

faultStatistics : in TpFaultStatsRecord
The fault statistics record.

recordSubject : in TpSubjectType
Specifies the entity (framework or application) whose fault statistics record has been provided.

Raises
TpComonExcept i ons

Method
activityTestErr()

The framework uses this method to indicate that an error occurred during a service-requested activity test.

Parameters

activityTestID : in TpActivityTestID
Used by the service instance to correlate this response (when it arrives) with the original request.

Raises
TpComonExceptions, P_I NVALID ACTIVITY_TEST_ID

Method

genFaul t St at sRecor dErr ()

This method is used by the framework to indicate an error fulfilling the request to provide fault statistics, in response to
a genFaultStatsRecordReq method invocation on the |pFwFaultM anager interface.

Parameters

faultStatisticsError : in TpFaultStatisticsError
The fault statistics error.

recordSubj ect : in TpSubjectType
Specifies the entity (framework or application) whose fault statistics record was requested.

Raises
TpComobnExcept i ons

ETSI

133 ETSI ES 201 915-3 V1.2.1 (2002-05)

Method
genFaul t St at sRecor dReq()

This method is used by the framework to solicit fault statistics from the service, for example when the framework was
asked for these statistics by the client application using the genFaultStatsRecordReq operation on the | pFaultManager
interface. On receipt of this request the service must produce afault statistics record, for either the framework or for the
client'sinstances of the specified services during the specified time interval, which is returned to the framework using
the genFaultStatsRecordRes operation on the | pFwFaultManager interface. If the framework does not have accessto a
service instance with the specified servicel D, the P UNAUTHORISED PARAMETER_VALUE exception shall be
thrown. The extralnformation field of the exception shall contain the corresponding servicel D.

Parameters

timePeriod : in TpTinelnterval
The period over which the fault statistics are to be generated. A null value leavesthis to the discretion of the service.

servicelDs : in TpServicel DLi st
Specifies the services to be included in the general fault statistics record. This parameter is not allowed to be an empty

list.
Raises
TpConmmonExceptions, P_I NVALI D SERVI CE_| D, P_UNAUTHORI SED PARAVETER VALUE

9.3.4.3 Interface Class IpFwHeartBeatMgmt
Inherits from: Ipinterface.

Thisinterface allows the initialisation of a heartbeat supervision of the framework by a service instance.

<<Interface>>

IpFwHeartBeatMgmt

enableHeartBeat (interval : in TpInt32, svcinterface : in IpSvcHeartBeatRef) : void
disableHeartBeat () : void

changelnterval (interval : in TpInt32) : void

Method
enabl eHear t Beat ()

With this method, the service instance instructs the framework to begin sending its heartbeat to the specified interface at
the specified interval.

ETSI

134 ETSI ES 201 915-3 V1.2.1 (2002-05)

Parameters

interval : in Tplnt32
The time interval in milliseconds between the heartbeats.

svcinterface : in | pSvcHeart Beat Ref
This parameter refersto the callback interface the heartbeat is calling.

Raises
TpComonExcepti ons, P_I NVALI D_| NTERFACE TYPE

Method
di sabl eHear t Beat ()

Instructs the framework to cease the sending of its heartbeat.

Parameters

No Parameters were identified for this method.
Raises

TpComonExcept i ons

Method
changel nterval ()

Allows the administrative change of the heartbeat interval.

Parameters

interval : in Tplnt32
The time interval in milliseconds between the heartbeats.

Raises
TpComonExcept i ons

ETSI

135 ETSI ES 201 915-3 V1.2.1 (2002-05)

9.3.4.4 Interface Class IpFwHeartBeat
Inherits from: Iplnterface.

The service side framework heartbeat interface is used by the service instance to send the framework its heartbeat.

<<Interface>>

IpFwHeartBeat

pulse () : void

Method
pul se()

The service instance uses this method to send its heartbeat to the framework. The framework will be expecting a pulse
at the end of every interval specified in the parameter to the | pSvcHeartBeatM gmt.enableSvcHeartbeat() method. If the
pulse() is hot received within the specified interval, then the service instance can be deemed to have failed the heartbeat.

Parameters
No Parameters were identified for this method.

Raises
TpCommonExcepti ons

9.3.4.5 Interface Class IpSvcHeartBeatMgmt
Inherits from: Ipinterface.

Thisinterface allows the initialisation of a heartbeat supervision of the service instance by the framework.

<<Interface>>

IpSvcHeartBeatMgmt

enableSvcHeartBeat (interval : in Tpint32, fwinterface : in IpFwHeartBeatRef) : void
disableSvcHeartBeat () : void

changelnterval (interval : in TpInt32) : void

ETSI

136 ETSI ES 201 915-3 V1.2.1 (2002-05)

Method
enabl eSvcHear t Beat ()

With this method, the framework instructs the service instance to begin sending its heartbeat to the specified interface at

the specified interval.

Parameters

interval : in Tplnt32
The time interval in milliseconds between the heartbeats.

fwnterface : in | pFwHeart Beat Ref
This parameter refersto the callback interface the heartbeat is calling.

Raises
TpComonExcepti ons, P_I NVALI D_| NTERFACE _TYPE

Method
di sabl eSvcHeart Beat ()

Instructs the service instance to cease the sending of its heartbeat.

Parameters

No Parameters were identified for this method.
Raises

TpComonExcept i ons

Method
changel nterval ()

Allows the administrative change of the heartbeat interval.

Parameters

interval : in Tplnt32
The time interval in milliseconds between the heartbeats.

Raises
TpComonExcept i ons

ETSI

137 ETSI ES 201 915-3 V1.2.1 (2002-05)

9.3.4.6 Interface Class IpSvcHeartBeat
Inherits from: Iplnterface.

The service heartbeat interface is used by the framework to send the service instance its heartbeat.

<<Interface>>

IpSvcHeartBeat

pulse () : void

Method
pul se()

The framework uses this method to send its heartbeat to the service instance. The service will be expecting a pulse at
the end of every interval specified in the parameter to the | pFwHeartBeatM gmt.enableHeartbeat() method. If the pul se()
is not received within the specified interval, then the framework can be deemed to have failed the heartbeat.

Parameters
No Parameters were identified for this method.

Raises
TpCommonExcepti ons

9.3.4.7 Interface Class IpFwLoadManager
Inherits from: Ipinterface.

The framework API should allow the load to be distributed across multiple machines and across multiple component
processes, according to aload management policy. The separation of the |load management mechanism and load
management policy ensures the flexibility of the load management services. The load management policy identifies
what load management rules the framework should follow for the specific service. It might specify what action the
framework should take as the congestion level changes. For example, some real-time critical applications will want to
make sure continuous service is maintained, below a given congestion level, at all costs, whereas other services will be
satisfied with disconnecting and trying again later if the congestion level rises. Clearly, the load management policy is
related to the QoS level to which the application is subscribed. The framework oad management function is represented
by the I pFwL oadManager interface. To handle responses and reports, the service developer must implement the

IpSvcL oadManager interface to provide the callback mechanism.

ETSI

138 ETSI ES 201 915-3 V1.2.1 (2002-05)

<<Interface>>

IpFwLoadManager

reportLoad (loadLevel : in TpLoadLevel) : void

queryLoadReq (querySubject : in TpSubjectType, timelnterval : in TpTimelnterval) : void
querySvclLoadRes (loadStatistics : in TpLoadStatisticList) : void

querySvcLoadErr (loadStatisticError : in TpLoadStatisticError) : void
createLoadLevelNatification (notificationSubject : in TpSubjectType) : void
destroyLoadLevelNotification (notificationSubject : in TpSubjectType) : void
suspendNotification (notificationSubject : in TpSubjectType) : void

resumeNotification (notificationSubject : in TpSubjectType) : void

Method
report Load()

The service instance uses this method to report its current load level (0,1, or 2) to the framework: e.g. when the load
level on the service instance has changed.

At level 0 load, the service instance is performing within its load specifications (i.e. it is not congested or overloaded).
At level 1load, the service instanceis overloaded. At level 2 load, the service instance is severely overloaded.

Parameters

| oadLevel : in TpLoadLeve
Specifies the service instance's load level.

Raises
TpComonExcept i ons

Method
guer yLoadReq()

The service instance uses this method to request the framework to provide load statistics records for the framework or
for the application that uses the service instance.

Parameters
guerySubject : in TpSubjectType
Specifies the entity (framework or application) for which load statistics records should be reported.

ETSI

139 ETSI ES 201 915-3 V1.2.1 (2002-05)

tinmelnterval : in TpTinelnterva
Specifies the time interval for which load statistics records should be reported.

Raises
TpComonExcept i ons

Method
quer ySvcLoadRes()

The service instance uses this method to send load statistic records back to the framework that requested the
information; i.e. in response to an invocation of the querySvcl oadReq method on the |pSvcl oadManager interface.

Parameters

| oadStatistics : in TpLoadStatisticLi st
Specifies the service-supplied load statistics.

Raises
TpComonExcept i ons

Method
querySvcLoadErr ()

The service instance uses this method to return an error response to the framework that requested the service instance's
load statistics information, when the service instance is unsuccessful in obtaining any load statistic records; i.e. in
response to an invocation of the querySvcl oadReq method on the |pSvcl oadManager interface.

Parameters

| oadStatisticError : in TpLoadStatisticError
Specifies the error code associated with the failed attempt to retrieve the service instance's |oad statistics.

Raises
TpComonExcept i ons

Method
creat eLoadLevel Notification()

The service instance uses this method to register to receive notifications of load level changes associated with the
framework or with the application that uses the service instance.

ETSI

140 ETSI ES 201 915-3 V1.2.1 (2002-05)

Parameters

notificationSubject : in TpSubjectType
Specifies the entity (framework or application) for which load level changes should be reported.

Raises
TpComonExcept i ons

Method
destroyLoadLevel Notification()

The service instance uses this method to unregister for notifications of load level changes associated with the
framework or with the application that uses the service instance.

Parameters

notificationSubject : in TpSubjectType
Specifies the entity (framework or application) for which load level changes should no longer be reported.

Raises
TpComonExcept i ons

Method
suspendNoti fication()

The service instance uses this method to request the framework to suspend sending it notifications associated with the
framework or with the application that uses the service instance; e.g. while the service instance handles atemporary
overload condition.

Parameters

notificationSubject : in TpSubjectType

Specifies the entity (framework or application) for which the sending of notifications by the framework should be
suspended.

Raises
TpComobnExcept i ons

ETSI

141 ETSI ES 201 915-3 V1.2.1 (2002-05)

Method
resunmeNoti fication()

The service instance uses this method to request the framework to resume sending it notifications associated with the
framework or with the application that uses the service instance; e.g. after a period of suspension during which the
service instance handled a temporary overload condition.

Parameters

notificationSubject : in TpSubjectType
Specifies the entity (framework or application) for which the sending of notifications of load level changes by the

framework should be resumed.
Raises
TpComopnExcept i ons

9.3.4.8 Interface Class IpSvcLoadManager
Inherits from: Iplnterface.

The service developer supplies the load manager service interface to handle requests, reports and other responses from
the framework load manager function. The service instance supplies the identity of its callback interface at the time it
obtains the framework's load manager interface, by use of the obtainlnterfacewWithCallback() method on the IpAccess
interface.

<<Interface>>

IpSvcLoadManager

querySvclLoadReq (timelnterval : in TpTimelnterval) : void
gueryLoadRes (loadStatistics : in TpLoadStatisticList) : void
queryLoadErr (loadStatisticsError : in TpLoadStatisticError) : void
loadLevelNotification (loadStatistics : in TpLoadStatisticList) : void
suspendNotification () : void

resumeNotification () : void

Method
gquerySvclLoadReq()

The framework uses this method to request the service instance to provide its load statistic records.

ETSI

142 ETSI ES 201 915-3 V1.2.1 (2002-05)

Parameters

timelnterval : in TpTinmelnterva
Specifies the time interval for which load statistic records should be reported.

Raises
TpComonExcept i ons

Method
guer yLoadRes()

The framework uses this method to send load statistic records back to the service instance that requested the
information; i.e. in response to an invocation of the queryL oadReq method on the IpFwL oadManager interface.

Parameters

| cadStatistics : in TpLoadStatisticlLi st
Specifies the framework-supplied load statistics

Raises
TpComonExcept i ons

Method
guer yLoadErr ()

The framework uses this method to return an error response to the service that requested the framework's |oad statistics
information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an
invocation of the queryL oadReq method on the I pFwL oadManager interface.

Parameters

| oadSt atisticsError : in TpLoadStatisticError
Specifies the error code associated with the failed attempt to retrieve the framework's load statistics.

Raises
TpComonExcept i ons

ETSI

143 ETSI ES 201 915-3 V1.2.1 (2002-05)

Method
| oadLevel Notification()

Upon detecting load condition change, (e.g. load level changing from0to 1, 0to 2, 1 to O, for the application or
framework which has been registered for load level notifications) this method isinvoked on the SCF.

Parameters

| oadStatistics : in TpLoadStatisticLi st
Specifies the framework-supplied load statistics, which include the load level change(s).

Raises
TpComonExcept i ons

Method

suspendNoti fication()

The framework uses this method to request the service instance to suspend sending it any notifications: e.g. while the
framework handles a temporary overload condition.

Parameters

No Parameters were identified for this method.
Raises

TpCommonExcepti ons

Method
resunmeNoti fication()

The framework uses this method to request the service instance to resume sending it notifications: e.g. after a period of
suspension during which the framework handled a temporary overload condition.

Parameters
No Parameters were identified for this method.

Raises
TpComonExcept i ons

ETSI

144 ETSI ES 201 915-3 V1.2.1 (2002-05)

9.3.4.9 Interface Class IpFwOAM
Inherits from: Iplnterface.

The OAM interface is used to query the system date and time. The service and the framework can synchronise the date
and time to a certain extent. Accurate time synchronisation is outside the scope of this API.

<<Interface>>
IpFWOAM

systemDateTimeQuery (clientDateAndTime : in TpDateAndTime) : TpDateAndTime

Method
syst enDat eTi meQuer y()

This method is used to query the system date and time. The client (service) passesin its own date and time to the
framework. The framework responds with the system date and time.

Returns <systemDateAndTime> : Thisisthe system date and time of the framework.

Parameters

clientDat eAndTinme : in TpDat eAndTi me

Thisisthe date and time of the client (service). The error code P_INVALID_DATE_TIME_FORMAT isreturned if the
format of the parameter isinvalid.

Returns
TpDat eAndTi ne

Raises
TpComonExcepti ons, P_I NVALI D TI ME_AND DATE FORVAT

ETSI

145 ETSI ES 201 915-3 V1.2.1 (2002-05)

9.3.4.10 Interface Class IpSvcOAM

Inherits from: Iplnterface.

<<Interface>>
IpSvcOAM

systemDateTimeQuery (systemDateAndTime : in TpDateAndTime) : TpDateAndTime

Method
syst enDat eTi meQuer y()

This method is used by the framework to send the system date and time to the service. The service responds with its
own date and time.

Returns <clientDateAndTime> : Thisis the date and time of the client (service).

Parameters

syst enDat eAndTi e : in TpDat eAndTi ne

Thisisthe system date and time of the framework. The error code P_INVALID_DATE TIME_FORMAT isreturned if
the format of the parameter isinvalid.

Returns
TpDat eAndTi ne

Raises
TpComonExcepti ons, P_I NVALI D TI ME_AND DATE FORVAT

ETSI

146 ETSI ES 201 915-3 V1.2.1 (2002-05)

9.35 Event Notification Interface Classes

9.3.5.1 Interface Class IpFwEventNotification
Inherits from: Iplinterface.

The event notification mechanism is used to notify the service of generic events that have occurred.

<<Interface>>

IpFwEventNotification

createNotification (eventCriteria : in TpFwEventCriteria) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

Method
createNotification()

This method is used to install generic notifications so that events can be sent to the service.

Returns <assignmentl D> : Specifies the ID assigned by the framework for this newly installed event notification.

Parameters

eventCriteria : in TpFwEventCriteria
Specifies the event specific criteria used by the service to define the event required.

Returns
TpAssi gnhnent | D

Raises
TpConmmonExcept i ons, P_I NVALI D_EVENT_TYPE, P_| NVALI D_CRI TERI A

Method
destroyNoti fication()

This method is used by the service to delete generic notifications from the framework.

Parameters

assignment|I D : in TpAssignnentl D

Specifies the assignment ID given by the framework when the previous createNotification() was called. If the
assignment ID does not correspond to one of the valid assignment | Ds, the framework will return the error code
P_INVALID_ASSIGNMENT ID.

ETSI

147 ETSI ES 201 915-3 V1.2.1 (2002-05)

Raises
TpComonExcepti ons, P_I NVALI D_ASSI GNVENT_I D

9.3.5.2 Interface Class IpSvcEventNotification
Inherits from: Iplnterface.

Thisinterface is used by the framework to inform the service of a generic event. The Event Notification Framework
will invoke methods on the Event Notification Service Interface that is specified when the Event Notification interface
is obtained.

<<Interface>>

IpSvcEventNotification

reportNotification (eventinfo : in TpFwEventinfo, assignmentID : in TpAssignmentlD) : void

notificationTerminated () : void

Method
reportNotification()

This method notifies the service of the arrival of a generic event.

Parameters

eventinfo : in TpFwEventlnfo
Specifies specific data associated with this event.

assignnmentI D : in TpAssignnmentlD

Specifies the assignment id which was returned by the framework during the createNotification() method. The service
can use the assignment id to associate events with event specific criteria and to act accordingly.

Raises
TpComonExcept i ons, P_I NVALI D_ASSI GNVENT_I D

ETSI

148 ETSI ES 201 915-3 V1.2.1 (2002-05)

Method
notificationTerm nated()

This method indicates to the service that all generic event notifications have been terminated (for example, due to faults
detected).

Parameters
No Parameters were identified for this method.

Raises
TpComonExcept i ons

9.4 State Transition Diagrams

This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the
gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can
be invoked by the client are shown. Methods not shown for a specific state are not relevant for that state and will return
an exception. Apart from the methods that can be invoked by the client also eventsinternal to the gateway or related to
network events are shown together with the resulting event or action performed by the gateway. These internal events
are shown between quotation marks.

ETSI

149 ETSI ES 201 915-3 V1.2.1 (2002-05)

9.4.1 Service Registration State Transition Diagrams

9.4.1.1 State Transition Diagrams for IpFwServiceRegistration

registterService

SCF
Registered

AN /

. Qs I
unannounceSenice announceServiceAvailability

/ B . .
{ \describeService

‘ \“/

‘” CF
‘ Announced

(S

unregisterService

o

Figure 28: State Transition Diagram for IpFwServiceRegistration

9.4.1.1.1 SCF Registered State

Thisisthe state entered when a Service Capability Server (SCS) registersits SCF in the Framework, by informing it of
the existence of an SCF characterised by a service type and a set of service properties. As aresult the Framework
associates a service D to this SCF, that will be used to identify it by both sides.

An SCF may be unregistered, the service ID then being no longer associated with the SCF.

9.4.1.1.2 SCF Announced State

Thisisthe state entered when the existence of the SCF has been announced, thus making it available for discovery by
applications. The SCF can be unannounced at any time, taking it back into the SCF Registered state whereit isno
longer available for discovery.

9.4.2 Service Instance Lifecycle Manager State Transition Diagrams

There are no State Transition Diagrams defined for Service Instance Lifecycle Manager

9.4.3 Service Discovery State Transition Diagrams

There are no State Transition Diagrams defined for Service Discovery

ETSI

150 ETSI ES 201 915-3 V1.2.1 (2002-05)

9.4.4 Integrity Management State Transition Diagrams
9.4.4.1 State Transition Diagrams for IpFwLoadManager

reportLoad

"load change” NoadLewelNotification queryAppLoadRes|[load statistics requested by LoadManag
queryAppLoadEr load statistics requested by LoadMana

createLoadLewelNotification ‘ Active ‘ queryLoadReq

destroyLoadLevelNotification

pAccess\obtainintefface
IpAccess \gbtaininterfaceWithCallback
Idle

resumeNatification

reportLoad
queryAppLoadRes|[load statistics requested by LoadM
queryAppLoadErr load statistics requested by Load

Notification queryLoadReq
Suspended

destroyLoadLevelNotification

All States

IpAccesss.endAccess

suspendNotification
[all notifications suspended]

Figure 29: State Transition Diagram for IpFwLoadManager

9.4.4.1.1 Idle State

In this state the service has obtained an interface reference of the LoadManager from the IpAccessinterface.

9.4.4.1.2 Notification Suspended State

Dueto e.g. atemporary load condition, the service has requested the L oadM anager to suspend sending the load level
notification information.

9.4.4.1.3 Active State

In this state the service hasindicated its interest in notifications by performing a createl oadL evelNatification()
invocation on the |pFwL oadManager. The load manager can now request the service to supply load statistics
information (by invoking querySvcL oadReq()). Furthermore the LoadManager can request the service to control its
load (by invoking loadL evelNotification(), resumeNotification() or suspendNotification() on the service side of
interface). In case the service detects a change in load level, it reports this to the LoadManager by calling the method
reportLoad().

ETSI

9.4.5

151 ETSI ES 201 915-3 V1.2.1 (2002-05)

Event Notification State Transition Diagrams

There are no State Transition Diagrams defined for Event Notification

10

10.1

Service Properties

Service Property Types

The service type defines which properties the supplier of an SCF supplier shall provide when he registers an SCF.

At Service Registration the properties of atype shall be interpreted as the set of values that can be supported by the
service. If aservice type has a certain property (e.g. "CAN_DO_SOVETHI NG'), aservice registers with a property value

of {"true",

"fal se"}. This meansthat the SCSis able to support Service instances where this property is used or

allowed and instances where this property is not used or allowed. This clarifies why sets of values shall be used for the
property valuesinstead of primitive types.

At establishment of the Service Level Agreement the property can then be set to the val ue of the specific agreement.
The context of the Service Level Agreement thus restricts the set of property values of the SCS and will thuslead to a
sub-set of the service property values. When the correct SCF is instantiated during the discovery and selection
procedure (see Note), the Service Properties shall thus be interpreted as the requested property values.

NOTE:
interface.

Thisis achieved through the createServiceManager() operation in the Service Instance Lifecycle Manager

All property values are represented by an array of strings. The following table shows all supported property types.

Property type name Description Example value (array of Interpretation of example
strings) value
BOOLEAN_SET set of Booleans {"FALSE"} The set of Booleans consisting of

the Boolean "false".

INTEGER_SET set of integers {"1","2", "5", "7"} The set of integers consisting of
the integers 1, 2, 5and 7.
STRING_SET set of strings {"Sophia", "Rijen"} The set of strings consisting of

the string "Sophia" and the string
"Rijen"

ADDRESSRANGE_SET

set of address ranges

{"1237?7?*", "* ericsson.se"}

The set of address ranges
consisting of ranges 123??* and
*.ericsson.se.

INTEGER_INTERVAL

interval of integers

{"5", "100"}

The integers that are between or
equal to 5 and 100.

STRING_INTERVAL

interval of strings

{"Rijen", "Sophia"}

The strings that are between or
equal to the strings "Rijen" and
"Sophia", in lexicographical
order.

INTEGER_INTEGER_MAP

map from integers to
integers

{"1*, "10", "2", "20", "3",
"30"}

The map that maps 1 to 10, 2 to
20 and 3 to 30.

The bounds of the string interval and the integer interval types may hold the reserved value "UNBOUNDED". If the | eft
bound of the interval holds the value "UNBOUNDED", the lower bound of the interval is the smallest value supported
by the type. If the right bound of the interval holds the value "UNBOUNDED", the upper bound of the interval isthe
largest value supported by the type.

ETSI

152 ETSI ES 201 915-3 V1.2.1 (2002-05)

10.2 General Service Properties

Each service instance has the following general properties:
e Service Name
e ServiceVersion

¢ Service Instance ID

¢ Service Instance Description

¢ Product Name
¢ Product Version

¢ Supported Interfaces

¢ Operation Set

10.2.1 Service Name

This property contains the name of the service, e.g. "UserLocation", "UserLocationCamel”, "UserL ocationEmergency"
or "UserStatus'.

10.2.2 Service Version

This property contains the version of the APIs, to which the service is compliant, e.g. "2.1".

10.2.3 Service Instance ID

This property uniquely identifies a specific instance of the service. The Framework generates this property.

10.2.4 Service Instance Description

This property contains a textual description of the service.

10.2.5 Product Name

This property contains the name of the product that provides the service, e.g. "Find It", "Locate.com".

10.2.6 Product Version

This property contains the version of the product that provides the service, e.g. "3.1.11".

10.2.7 Supported Interfaces

This property contains alist of strings with interface names that the service supports, e.g. "IpUserLocation",
"IpUserStatus”.

10.2.8 Operation Set

Property Type Description
P_OPERATION_SET |STRING_SET |[Specifies set of the operations the SCS supports.
The notation to be used is :
{"Interfacel.operationl","Interfacel.operation2",
"Interface2.operation1"}, e.g.:
{"IpCall.createCall","IpCall.routeReq"}.

ETSI

153 ETSI ES 201 915-3 V1.2.1 (2002-05)

11 Data Definitions

This clause provides the Framework specific data definitions necessary to support the OSA interface specification.
The general format of a data definition specification is the following:

- Datatype, that shows the name of the data type;

Description, that describes the data type;

Tabular specification, that specifies the data types and values of the data type;
- Example, if relevant, shown to illustrate the data type.

All data types referenced but not defined in this clause are common data definitions which may be found in
ES 201 915-2.

11.1 Common Framework Data Definitions

11.1.1 TpClientAppID

Thisisan identifier for the client application. It is used to identify the client to the Framework. This datatypeis
identical to TpString and is defined as a string of characters that uniquely identifies the application. The content of this
string shall be unique for each OSA API implementation (or unique for a network operator’s domain). This unique
identifier shall be negotiated with the OSA operator and the application shall useit to identify itself.

11.1.2 TpClientAppIDList

This data type defines a Numbered Set of Data Elements of type TpClientApplD.

11.1.3 TpDomainlD

Definesthe Tagged Choi ce of Data El enent s that specify either the Framework or the type of entity
attempting to access the Framework.

Tag Element Type
TpDomainlDType

Tag Element Value Choice Element Type Choice Element Name
P_FW TpFW D Fw D
P_CLIENT_APPLICATION Tpd i ent Appl D CientAppl D
P_ENT_OP TpEnt Opl D Ent Opl D
P_SERVI CE_| NSTANCE TpServi cel nst ancel D Servicel D
P_SERVICE SUPPLIER TpServi ceSupplierl D Servi ceSupplierlD

ETSI

154 ETSI ES 201 915-3 V1.2.1 (2002-05)

11.1.4 TpDomainIDType

Defines either the Framework or the type of entity attempting to access the Framework.

Name Value Description
P_FW 0 The Framework
P_CLI ENT_APPLI CATI ON 1 A client application
P_ENT_OP 2 An enterprise operator
P_SERVI CE_| NSTANCE 3 A serviceinstance
P_SERVI CE_SUPPLI ER 4 A service supplier

11.1.5 TpEntOpID

Thisdatatypeisidentical to TpString and is defined as a string of characters that identifies an enterprise operator.
In conjunction with the application it uniquely identifies the enterprise operator which uses a particular OSA Service
Capability Feature (SCF).

11.1.6 TpPropertyName

Thisdatatypeisidentical to TpSt ri ng. It isthe name of a generic "property".

11.1.7 TpPropertyValue

Thisdatatypeisidentical to TpSt ri ng. Itisthe value (or the list of values) associated with a generic "property”.

11.1.8 TpProperty

ThisdatatypeisaSequence of Data El enment s which describesageneric "property”. It isastructured data
type consisting of the following { name,value} pair.

Sequence Element Sequence Element
Name Type
PropertyName TpPropertyName
PropertyValue TpPropertyValue

11.1.9 TpPropertyList

Thisdatatype definesaNunber ed Li st of Data El enent s of type TpProperty.

11.1.10 TpEntOpIDList

This data type defines a Numbered Set of Data Elements of type TpEntOplD.

11.1.11 TpFwiID

Thisdatatypeisidentical to TpSt r i ng and identifies the Framework to a client application (or Service Capability
Feature)

ETSI

155 ETSI ES 201 915-3 V1.2.1 (2002-05)

11.1.12 TpService

This datatypeis a Sequence of Data Elements which describes aregistered SCFs. It is a structured type which consists
of:

Sequence Element Sequence Element Documentation
Name Type
Servicel D TpServicelD
Servi ceDescri ption TpServiceDescription This field contains the description of the service

11.1.13 TpServiceList

This data type defines a Numbered Set of Data Elements of type TpService.

11.1.14 TpServiceDescription

This data type is a Sequence of Data Elements which describes aregistered SCF. It is a structured data type which
consists of:

Sequence Element Sequence Element Documentation
Name Type
Servi ceTypeNane TpServiceTypeName
Servi cePropertylLi st TpServicePropertyList

11.1.15 TpServicelD

Thisdatatypeisidentical to a TpString, and is defined as a string of characters that uniquely identifies a registered SCF
interface. The string is automatically generated by the Framework.

11.1.16 TpServicelDList

This data type defines a Numbered Set of Data Elements of type TpServicelD.

11.1.17 TpServicelnstancelD

Thisdatatypeisidentical to a TpString, and is defined as a string of characters that uniquely identifies an instance of a
registered SCF interface. The string is automatically generated by the Framework.

11.1.18 TpServiceSpecString

Thisdatatypeisidentical to a TpString, and is defined as a string of characters that uniquely identifies the name of an
SCF specialization interface. Other network operator specific capabilities may also be used, but should be preceded by
the string "SP_". The following values are defined.

Character String Value Description
NULL An empty (NULL) string indicates no SCF specialization
P_CALL The Call specialization of the of the User Interaction SCF

ETSI

156 ETSI ES 201 915-3 V1.2.1 (2002-05)

11.1.19 TpServiceTypeProperty

ThisdatatypeisaSequence of Data El enent s which describes a service property associated with a service
type. It defines the name and mode of the service property, and also the service property type: e.g. Boolean, integer.
Itissimilar to, but distinct from, TpServiceProperty. The latter is associated with an actual service: it defines the service
property’ s name and mode, but also defines the list of values assigned to it.

Sequence Element Sequence Element Documentation
Name Type
Servi cePropertyName TpServicePropertyName
Ser vi ceTypePr opert yMode TpServiceTypePropertyMode
Servi cePropertyTypeNane TpServicePropertyTypeName

11.1.20 TpServiceTypePropertyList

This data type defines a Numbered Set of Data Elements of type TpServiceTypeProperty.

11.1.21 TpServiceTypePropertyMode
This type defines SCF property modes.

Name Value Documentation
NORMAL 0 The value of the corresponding SCF property type may optionally be provided
MANDATCORY 1 The value of the corresponding SCF property type shall be provided at service registration time
READONLY 2 The value of the corresponding SCF property typeis optional, but once given avalue it can not be

modified/restricted by a service level agreement

MANDATORY_READONLY (3 The value of the corresponding SCF property type shall be provided but can not subsequently be
modified/restricted by a service level agreement.

11.1.22 TpServicePropertyTypeName

Thisdatatypeisidentical to TpString and describes a valid SCF property name. The valid SCF property names are
listed in the SCF data definition.

11.1.23 TpServicePropertyName

Thisdatatypeisidentical to TpString. It defines avalid SCF property name.

11.1.24 TpServicePropertyNameList

This data type defines a Numbered Set of Data Elements of type T pServicePropertyName.

11.1.25 TpServicePropertyValue

Thisdatatypeisidentical to TpString and describes a valid value of a SCF property.

11.1.26 TpServicePropertyValuelList

This data type defines a Numbered Set of Data Elements of type TpServicePropertyValue

ETSI

11.1.27 TpServiceProperty

This datatypeis a Sequence of Data Elements which describes an " SCF property”. It is a structured data type which

157 ETSI ES 201 915-3 V1.2.1 (2002-05)

consists of:
Sequence Element Sequence Element Documentation
Name Type
Ser vi cePr opert yNane TpServicePropertyName
Servi cePropertyVal uelLi st TpServicePropertyValuelist

11.1.28 TpServicePropertyList
This data type defines a Numbered Set of Data Elements of type TpServiceProperty.

11.1.29 TpServiceSupplierlD

Thisisan identifier for a service supplier. It is used to identify the supplier to the Framework. This data type isidentical

toTpStri ng.

11.1.30 TpServiceTypeDescription

This data type is a Sequence of Data Elements which describes an SCF type. It is a structured data type. It consists of:

Sequence Element
Name

Sequence Element
Type

Documentation

Servi ceTypePropertylLi st

TpServiceTypePropertyList

a sequence of property name and property mode tuples associated with the
SCF type

Servi ceTypeNaneLi st

TpServiceTypeNameList

the names of the super types of the associated SCF type

Avai | abl eOr Unavai | abl e

TpBoolean

an indication whether the SCF type is available (true) or unavailable (false)

ETSI

158 ETSI ES 201 915-3 V1.2.1 (2002-05)

11.1.31 TpServiceTypeName

This datatypeisidentical to a TpString, and is defined as a string of characters that uniquely identifies the type of an
SCF interface. Other Network operator specific capabilities may aso be used, but should be preceded by the string

"SP_". The following values are defined.

Character String Value

Description

NULL

An empty (NULL) string indicates no SCF name

P_GENERI C_CALL_CONTROL

The name of the Generic Call Control SCF

P_MILTI _PARTY_CALL_CONTROL

The name of the MultiParty Call Control SCF

P_MILTI _MEDI A_CALL_CONTROL

The name of the MultiMedia Call Control SCF

P_CONFERENCE_CALL_CONTRCL

The name of the Conference Call Control SCF

P_USER | NTERACTI ON

The name of the User Interaction SCFs

P_TERM NAL_CAPABI LI TI ES

The name of the Terminal Capabilities SCF

P_USER_LOCATI ON

The name of the User Location SCF

P_USER LOCATI ON_CAVEL

The name of the Network User Location SCF

P_USER_LOCATI ON_ENERGENCY

The name of the User Location Emergency SCF

P_USER STATUS

The name of the User Status SCF

P_DATA_SESSI ON_CONTROL

The name of the Data Session Control SCF

P_GENERI C_MESSAG NG

The name of the Generic Messaging SCF

P_CONNECTI VI TY_MANAGER

The name of the Connectivity Manager SCF

P_CHARG NG

The name of the Charging SCF

P_ACCOUNT_MANAGENENT

The name of the Account Management SCF

P_POLI CY_MANAGEVENT

The name of the Policy Management SCF

P_PAM _PRESENCE_AND_AVAI LABI LI TY

The name of PAM presentity SCF

P_PAM _EVENT_NANAGEVENT

The name of PAM watcher SCF

P_PAM PROVI SI ONI NG

The name of PAM provisioning SCF

11.1.32 TpServiceTypeNamelList

This data type defines a Numbered Set of Data Elements of type TpServiceTypeName.

11.1.33 TpSubjectType

Defines the subject of a query/notification request/result.

Name

Value Description

P_SUBJECT_UNDEFI NED

0 The subject is neither the framework nor the
client application

P_SUBJECT_CLI ENT_APP

1 The subject is the client application

P_SUBJECT_FW

2 The subject is the framework

ETSI

159 ETSI ES 201 915-3 V1.2.1 (2002-05)

11.2 Event Notification Data Definitions

11.2.1 TpFwEventName

Defines the name of event being notified.

Name Value Description
P_EVENT_FW NAVE_UNDEFI NED 0 Undefined
P_EVENT_FW SERVI CE_AVAI LABLE 1 Notification of SCS(s) available
P_EVENT_FW_SERVICE_UNAVAILABLE 2 Notification of SCS(s) becoming unavailable

11.2.2 TpFwEventCriteria

Definesthe Tagged Choi ce of Data El ement s that specify the criteriafor an event notification to be

generated.

Tag Elem

ent Type

TpFwEvent Name

Tag Element Value

Choice Element Type

Choice Element Name

P_EVENT FW_NAME_UNDEFINED

TpString

Event NaneUndef i ned

P_EVENT_PW_SERVICE_AVAILABLE

TpServiceTypeNameL.ist

ServiceTypeNameList

P_EVENT_PW_SERVICE_UNAVAILABLE

TpServiceTypeNameL.ist

UnavailableServiceTypeNameL.ist

11.2.3 TpFwEventinfo

Definesthe Tagged Choi ce of Data El enent s that specify the information returned to the applicationin an

event notification.

Tag Elem

ent Type

TpFwEvent Name

Tag Element Value

Choice Element Type

Choice Element Name

P_EVENT FW_NAME UNDEFINED

TpString

Event NaneUndef i ned

P_EVENT FW_SERVICE AVAILABLE

TpServi cel DLi st

Servi cel DLi st

P_EVENT FW_SERVICE UNAVAILABLE

TpServi cel DLi st

Unavai | abl eServi cel DLi st

ETSI

160 ETSI ES 201 915-3 V1.2.1 (2002-05)

11.3 Trust and Security Management Data Definitions

11.3.1 TpAccessType

Thisdatatypeisidentical to a TpString. This identifies the type of access interface requested by the client application.
If they request P_OSA_ACCESS, then areference to the IpAccess interface is returned. (Network operators can define
their own access interfaces to satisfy client requirements for different types of access. These can be selected using the
TpAccessType, but should be preceded by the string "SP_". The following value is defined.

String Value Description
P_OSA_ACCESS Access using the OSA Access Interfaces: IpAccess and IpClientAccess

11.3.2 TpAuthType

This datatypeisidentical to a TpString. It identifies the type of authentication mechanism requested by the client. It
provides Network operators and clients with the opportunity to use an alternative to the OSA API Level Authentication
interface. This can for example be an implementation specific authentication mechanism, e.g. CORBA Security, or a
proprietary Authentication interface supported by the Network Operator. OSA API Level Authentication isthe default
authentication method. Other Network operator specific capabilities may also be used, but should be preceded by the
string "SP_". The following values are defined.

String Value Description

P _OSA_AUTHENTICATION Authenticate using the OSA API Level Authentication Interfaces: IpAPILevel Authentication and

IpClientAPILevel Authentication

P _AUTHENTICATION Authenticate using the implementation specific authentication mechanism, e.g. CORBA Security.

11.3.3 TpEncryptionCapability

Thisdatatypeisidentical to a TpString, and is defined as a string of characters that identify the encryption capabilities
that could be supported by the framework. Other Network operator specific capabilities may also be used, but should be
preceded by the string "SP_". Capabilities may be concatenated, using commas (,) as the separation character. The
following values are defined.

String Value Description

NULL An empty (NULL) string indicates no client capabilities.

P_DES 56 A simpletransfer of secret information that is shared between the client application and the Framework with protection
against interception on the link provided by the DES algorithm with a 56-bit shared secret key.

P _DES 128 A simple transfer of secret information that is shared between the client entity and the Framework with protection against
interception on the link provided by the DES algorithm with a 128-bit shared secret key.

P_RSA 512 A public-key cryptography system providing authentication without prior exchange of secrets using 512-bit keys.

P _RSA 1024 A public-key cryptography system providing authentication without prior exchange of secrets using 1 024-hit keys.

11.3.4 TpEncryptionCapabilityList

Thisdatatypeisidentical to a TpString. It isastring of multiple TpEncryptionCapability concatenated using a comma
(,)as the separation character.

11.3.5 TpEndAccessProperties
This datatypeis of type TpPropertyList. It identifies the actions that the Framework should perform when an

application or service capability feature entity ends its access session (e.g. existing service capability or application
sessions may be stopped, or |eft running).

ETSI

161 ETSI ES 201 915-3 V1.2.1 (2002-05)

11.3.6 TpAuthDomain

ThisisSequence of Data El enent s containing al the data necessary to identify a domain: the domain
identifier, and a reference to the authentication interface of the domain.

Sequence Element | Sequence Element Description
Name Type
Domai nl D TpDomai nl D Identifies the domain for authentication. Thisidentifier is assigned to the domain during the

initial contractual agreements, and isvalid during the lifetime of the contract.

Aut hl nterface | pl nterfaceRef Identifies the authentication interface of the specific entity. This data element has the same
lifetime as the domain authentication process, i.e. in principle a new interface reference can
be provided each time a domain intends to access another.

11.3.7 TplinterfaceName

This datatypeisidentical to a TpString, and is defined as a string of characters that identify the names of the
Framework SCFsthat are to be supported by the OSA API. Other Network operator specific SCFs may also be used,
but should be preceded by the string "SP_". The following values are defined.

Character String Value Description
P_DI SCOVERY The name for the Discovery interface.
P_EVENT_NOTI FI CATI ON The name for the Event Notification interface.
P_OAM The name for the OA&M interface.
P_LOAD_MANAGER The name for the Load Manager interface.
P_FAULT_MANAGER The name for the Fault Manager interface.
P_HEARTBEAT_MANAGENMENT The name for the Heartbeat Management interface.
P_SERVI CE_AGREEMENT _VANAGEME The name of the Service Agreement Management interface.
NT
P_REQ STRATI ON The name for the Service Registration interface.
P_ENT_OP_ACCOUNT_MANAGEMENT The name for the Service Subscription: Enterprise Operator Account Management
P_ENT_OP_ACCOUNT_I NFO_QUERY The name for the Service Subscription: llgt:tr;apcr?se Operator Account Information Query
P_SVC_CONTRACT_MANAGEMENT The name for the Service Subscri ptiI gaerfszcra ce Contract Management interface.
P_SVC_CONTRACT_I NFO_QUERY The name for the Service Subscription: Service Contract Information Query interface.
P_CLI ENT_APP_MANAGEMENT The name for the Service Subscription: Client Application Management interface.
P_CLI ENT_APP_I NFO_QUERY The name for the Service Subscription: Client Application Information Query interface.
P_SVC_PRCFI LE_MANAGEMENT The name for the Service Subscription: Service Profile Management interface.
P_SVC_PRCFI LE_I NFO_QUERY The name for the Service Subscription: Service Profile Information Query interface.

11.3.8 TplinterfaceNameList

This data type defines a Numbered Set of Data Elements of type TplnterfaceName.

11.3.9 TpServiceToken

Thisdatatypeisidentical to a TpString, and identifies a selected SCF. Thisis afree format text token returned by the
Framework, which can be signed as part of a service agreement. Thiswill contain Network operator specific
information relating to the service level agreement. The serviceToken has alimited lifetime, which is the same asthe
lifetime of the service agreement in normal conditions. If something goes wrong the serviceT oken expires, and any
method accepting the serviceT oken will return an error code (P_I NVALI D_SERVI CE_TOKEN). Service Tokens will
automatically expireif the client or Framework invokes the endAccess method on the other's corresponding access
interface.

ETSI

162 ETSI ES 201 915-3 V1.2.1 (2002-05)

11.3.10 TpSignatureAndServiceMgr

Thisis a Sequence of Data Elements containing the digital signature of the Framework for the service agreement, and a
reference to the SCF manager interface of the SCF.

Sequence Element Sequence Element
Name Type
Di gital Si gnature TpCct et Set
Servi ceMyrinterface | pSer vi ceRef

The digital Signature is the signed version of a hash of the service token and agreement text given by the client
application.

The ServiceMgrinterface is areference to the SCF manager interface for the selected SCF.

11.3.11 TpSigningAlgorithm

This datatypeisidentical to a TpString, and is defined as a string of characters that identify the signing agorithm that
shall be used. Other Network operator specific capabilities may also be used, but should be preceded by the string
"SP_". Thefollowing values are defined.

String Value Description
NULL An empty (NULL) string indicates no signing algorithm is required

P MD5 RSA 51 [MD5 takesan input message of arbitrary length and produces as output a 128-bit message digest of the input. This
2 - - is then encrypted with the private key under the RSA public-key cryptography system using a 512-hit key.

P MD5 RSA 10 [MDS5 takesan input message of arbitrary length and produces as output a 128-bit message digest of the input. This
24 - - isthen encrypted with the private key under the RSA public- key cryptography system using a 1 024-bit key

11.4 Integrity Management Data Definitions

11.4.1 TpActivityTestRes

Thistypeisidentical to TpString and is an implementation specific result. The valuesin this data type are "Available"
or "Unavailable".

11.4.2 TpFaultStatsRecord

This defines the set of recordsto be returned giving fault information for the requested time period.

Sequence Element Sequence Element
Name Type
Peri od TpTi mel nt er val
Faul t St at sSet TpFaul t St at sSet

ETSI

163 ETSI ES 201 915-3 V1.2.1 (2002-05)

11.4.3 TpFaultStats

This defines the sequence of data elements which provide the statistics on a per fault type basis.

Sequence Element Sequence Element Description
Name Type
Faul t Tpl nterfaceFaul t
Qccurrences Tpl nt 32 The number of separate instances of this fault
MaxDur at i on Tpl nt 32 The number of seconds duration of the longest fault
Tot al Durati on Tpl nt 32 The cumulative duration (all occurrences)
Nunber O O i ent sAf f ect ed Tpl nt 32 The number of clientsinformed of the fault by the Fw

Occurrences is the number of separate instances of this fault during the period. MaxDuration and Total Duration are the
number of seconds duration of the longest fault and the cumulative total during the period.
NunmberOf Cli entsAffected is the nunmber of clients informed of the fault by the

Fr anmewor k.

11.4.4 TpFaultStatisticsError

Definestheerror code associated with a failed attenpt to retrieve any fault
statistics information.

Name Value Description
P_FAULT_I NFO_ERROR_UNDEFI NED 0 Undefined error
P_FAULT_I NFO_UNAVAI LABLE 1 Fault statistics unavail abl e

11.45 TpFaultStatsSet

Thisdatatype definesaNunber ed Set of Data El ement s of type TpFaultStats

11.4.6 TpActivityTestID

Thisdatatypeisidentical to a TpInt32, and is used as a token to match activity test requests with their results..

11.4.7 TplnterfaceFault

Defines the cause of the interface fault detected.

Name Value Description
| NTERFACE_FAULT_UNDEFI NED Undefined

| NTERFACE_FAULT_LCOCAL_FAI LURE A fault in the local API software or hardware has been detected

| NTERFACE_FAULT_GATEWAY_FAI LURE A fault in the gateway API software or hardware has been detected

w|l N k| O

| NTERFACE_FAULT_PROTOCOL_ERRCOR An error in the protocol used on the client-gateway link has been detected

ETSI

11.4.8 TpSvcUnavailReason

Defines the reason why a SCF is unavailable.

164 ETSI ES 201 915-3 V1.2.1 (2002-05)

Name Value Description
SERVI CE_UNAVAI LABLE_UNDEFI NED 0 Undefined
SERVI CE_UNAVAI LABLE _LOCAL_FAI LURE 1 The Local API software or hardware has failed
SERVI CE_UNAVAI LABLE_GATEWAY_FAI LURE 2 The gateway API software or hardware has failed
SERVI CE_UNAVAI LABLE_OVERLQOADED 3 The SCFis fully overloaded
SERVI CE_UNAVAI LABLE_CLOSED 4 The SCF has closed itself (e.g. to protect from fraud or malicious attack)

11.4.9 TpFwUnavailReason

Defines the reason why the Framework is unavailable.
Name Value Description
FW UNAVAI LABLE_UNDEFI NED Undefined

FW UNAVAI LABLE_LOCAL_FAI LURE

The Local API software or hardware has failed

FW UNAVAI LABLE_GATEWAY_FAI LURE

The gateway API software or hardware has failed

The Framework is fully overloaded

0

1

2

FW UNAVAI LABLE_OVERLQADED 3
FW UNAVAI LABLE_CLOSED 4
5

The Framework has closed itself (e.g. to protect from fraud or malicious attack)

FW UNAVAI LABLE_PROTOCOL_FAI LURE

The protocol used on the client-gateway link has failed

11.4.10 TpLoadLevel

Defines the Sequence of Data Elements that specify load level values.

Name Value Description
LOAD_LEVEL_NORVAL 0 Normal load
LOAD_LEVEL_OVERLOAD 1 Overload

LOAD_LEVEL_SEVERE_OVERLOAD 2 Severe Overload

11.4.11 TpLoadThreshold

Defines the Sequence of Data Elements that speci

ify the load threshold value. The actual load threshold valueis

application and SCF dependent, so is their relationship with load level.

Sequence Element
Name

Sequence Element
Type

LoadThr eshol d

TpFl oat

11.4.12 TpLoadInitVal

Defines the Sequence of Data Elements that specify the pair of load level and associated load threshold value.

Sequence Element
Name

Sequence Element
Type

LoadLevel

TpLoadLevel

LoadThr eshol d

TpLoadThr eshol d

ETSI

11.4.13 TpLoadPolicy
Defines the load balancing policy.

165

ETSI ES 201 915-3 V1.2.1 (2002-05)

Sequence Element Name

Sequence Element Type

LoadPol i cy

TpString

11.4.14 TpLoadStatistic

Definesthe Sequence of Data El ement s that represents aload statistic record for a specific entity (i.e.
Framework, service or application) at a specific date and time.

Sequence Element Name

Sequence Element Type

LoadStatisticEntityl D

TpLoadStatisticEntityl D

Ti meSt anp

TpDat eAndTi ne

LoadStati sticlnfo

TpLoadStatisticlnfo

11.4.15 TpLoadStatisticList

DefinesaNunber ed Li st of Data El ements of type TpLoadStatistic.

11.4.16 TpLoadStatisticData

Definesthe Sequence of Data El enent s that represents load statistic information.

Sequence Element Name

Sequence Element Type

LoadVal ue (see Note)

TpFl oat

LoadLevel

TpLoadLevel

NOTE: LoadValue is expressed as a percentage.

11.4.17 TpLoadStatisticEntitylD

Definesthe Tagged Choi ce of Data El enent s that specify the type of entity (i.e. service, application or

Framework) providing load statistics.

Tag Element Type

TpL oadStatisticEntity Type

Tag Element Value Choice Element Type Choice Element Name
P_LOAD_STATISTICS FW_TYPE TpFw D Fr anmewor kI D
P_LOAD_STATISTICS SVC TYPE TpServicel D Servicel D
P_LOAD_STATISTICS APP TYPE Tpd i ent Appl D CientAppl D

ETSI

166 ETSI ES 201 915-3 V1.2.1 (2002-05)

11.4.18 TpLoadStatisticEntityType

Defines the type of entity (i.e. service, application or Framework) supplying load statistics.

Name Value Description
P_LOAD_STATI STI CS_FW TYPE 0 Framework-type load statistics
P_LOAD_STATI STI CS_SVC _TYPE 1 Service-type load statistics
P_LOAD_STATI STI CS_APP_TYPE 2 Application-type load statistics

11.4.19 TpLoadStatisticlnfo

Definesthe Tagged Choi ce of Data El enent s that specify the type of load statistic information (i.e. valid or
invalid).

Tag Element Type
TpLoadStatisticinfoType

Tag Element Value Choice Element Type Choice Element Name
P_LOAD_STATISTICS VALID TpLoadStati sticData LoadSt ati sticData
P_LOAD_STATISTICS INVALID TpLoadSt ati sti cError LoadStati sticError

11.4.20 TpLoadStatisticinfoType

Defines the type of load statistic information (i.e. valid or invalid).

Name Value Description
P_LOAD_STATI STI CS_VALI D 0 Valid load statistics
P_LOAD_STATI STI CS_I NVALI D 1 Invalid load statistics

11.4.21 TpLoadStatisticError

Definestheerror code associated with a failed attenpt to retrieve any | oad
statistics information.

Name Value Description
P_LOAD_| NFO_ERROR_UNDEFI NED 0 Undef i ned error
P_LOAD_| NFO_UNAVAI LABLE 1 Load statistics unavail able

11.5 Service Subscription Data Definitions

11.5.1 TpPropertyName

Thisdatatypeisidentical to TpSt r i ng. It isthe name of a generic "property".

11.5.2 TpPropertyValue

Thisdatatypeisidentical to TpSt ri ng. Itisthe value (or the list of values) associated with a generic "property”.

ETSI

167 ETSI ES 201 915-3 V1.2.1 (2002-05)

11.5.3 TpProperty

ThisdatatypeisaSequence of Data El enent s which describesageneric "property”. It isastructured data
type consisting of the following { name,value} pair.

Sequence Element Sequence Element
Name Type
Propert yNane TpPropertyName
Pr opertyVal ue TpPropertyValue

11.5.4 TpPropertyList

This datatype definesaNunber ed Li st of Data El ement s of type TpProperty.

11.5.5 TpEntOpProperties

This datatypeis of type TpPropertyList. It identifies the list of properties associated with an enterprise operator: e.g.
name, organisation, address, phone, e-mail, fax, payment method (credit card, bank account).

11.5.6 TpENtOp

ThisdatatypeisaSequence of Data El enent s which describes an enterprise operator. It isastructured data
type, consisting of a unique "enterprise operator ID" and alist of "enterprise operator properties’, asfollows:

Sequence Element Sequence Element
Name Type
Ent Opl D TpENtOpID
Ent OpProperties TpENtOpProperties

11.5.7 TpServiceContractiD

Thisdatatypeisidentical to TpSt ri ng. It uniquely identifies the contract, between an enterprise operator and the
Framework, for the use of an OSA service by the enterprise.

11.5.8 TpServiceContractIDList

Thisdatatype definesaNunber ed Li st of Data El enent s of type TpServiceContractID.

11.5.9 TpPersonName

Thisdatatypeisidentical to TpSt ri ng. It isthe name of a generic "person”.

11.5.10 TpPostalAddress

Thisdatatypeisidentical to TpSt ri ng. It isthe mailing address of a generic "person”.

11.5.11 TpTelephoneNumber

Thisdatatypeisidentical to TpSt ri ng. It isthe telephone number of a generic "person”.

11.5.12 TpEmalil

Thisdatatypeisidentical to TpSt r i ng. It isthe email address of a generic "person”.

ETSI

168 ETSI ES 201 915-3 V1.2.1 (2002-05)

11.5.13 TpHomePage

Thisdatatypeisidentical to TpSt ri ng. It isthe web address of a generic "person”.

11.5.14 TpPersonProperties

This datatypeis of type TpPropertyList. It identifies the list of additional properties, other than those listed above, that
can be associated with a generic "person”.

11.5.15 TpPerson

ThisdatatypeisaSequence of Data El enment s which describesageneric "person”: e.g. ahilling contact, a
service reguestor. It isastructured data type which consists of:

Sequence Element Sequence Element
Name Type
Per sonNane TpPersonName
Post al Addr ess TpPostal Address
Tel ephoneNunber TpTelephoneNumber
Enai | TpEmail
HormePage TpHomePage
PersonProperties TpPersonProperties

11.5.16 TpServiceStartDate

Thisisof type TpDat eAndTi nre. It identifies the contractual start date and time for the use of an OSA service by an
enterprise or an enterprise Subscription Assignment Group (SAG).

11.5.17 TpServiceEndDate

Thisisof type TpDat e AndTi nre. It identifies the contractual end date and time for the use of an OSA service by an
enterprise or an enterprise Subscription Assignment Group (SAG).

11.5.18 TpServiceRequestor

Thisis of type TpPerson. It identifies the enterprise person requesting use of an OSA service: e.g. the enterprise
operator.

11.5.19 TpBillingContact

Thisis of type TpPerson. It identifies the enterprise person responsible for billing issues associated with an enterprise’s
use of an OSA service.

11.5.20 TpServiceSubscriptionProperties

Thisis of type TpServicePropertyList. It specifies a subset of all available service properties and service property values
that apply to an enterprise’ s use of an OSA service.

ETSI

169 ETSI ES 201 915-3 V1.2.1 (2002-05)

11.5.21 TpServiceContract

ThisdatatypeisaSequence of Data El enent s which representsa service contract. It isa structured data type
which consists of:

Sequence Element
Name
Servi ceContract!| D

Sequence Element
Type

TpServiceContract|D
TpServiceContractDescription

Servi ceContract Descri ption

11.5.22 TpServiceContractDescription

ThisdatatypeisaSequence of Data El enent s which describesa service contract. This contract should
conform to a previously negotiated high-level agreement (regarding OSA services, their usage and the price, etc.), if
any, between the enterprise operator and the framework operator. It is a structured data type which consists of:

Sequence Element
Name

Sequence Element
Type

Ser vi ceRequest or

TpServiceReguestor

Bi I I'i ngCont act

TpBillingContact

ServiceStart Dat e

TpServiceStartDate

Ser vi ceEndDat e

TpServiceEndDate

Servi ceTypeNane

TpServiceTypeName

Servicel D

TpServicelD

TpServiceSubscriptionProperties

Servi ceSubscri pti onProperties

11.5.23 TpClientAppProperties

Thisis of type TpPropertyList. The client application propertiesis alist of { name,value} pairs, for bilateral agreement
between the enterprise operator and the Framework.

11.5.24 TpClientAppDescription

ThisdatatypeisaSequence of Data El enment s which describes an enterprise client application. Itisa
structured data type, consisting of a unique "client application ID", password and alist of "client application properties.

Sequence Element
Name
dientAppl D

Sequence Element
Type

TpClientApplD

Cli ent AppProperties TpClientAppProperties

11.5.25 TpSagiD

Thisdatatypeisidentical to TpSt ri ng. It uniquely identifies a Subscription Assignment Group (SAG) of client
applications within an enterprise.

11.5.26 TpSaglDList

Thisdatatype definesaNunber ed Li st of Data El enents of type TpSagID.

ETSI

170 ETSI ES 201 915-3 V1.2.1 (2002-05)

11.5.27 TpSagDescription

Thisdatatypeisidentical to TpSt ri ng. It describes a SAG: e.g. alist of identifiers of the constituent client
applications, the purpose of the "grouping".

11.5.28 TpSag

ThisdatatypeisaSequence of Data El enent s which describes a Subscription Assignment Group (SAG) of
client applications within an enterprise. It is a structured data type consisting of a unique SAG ID and a description.

Sequence Element
Name

Sequence Element
Type

Sagl D TpSagID

TpSagDescription

SagDescri ption

11.5.29 TpServiceProfilelD

This datatypeisidentical to TpSt ri ng. It uniquely identifies the service profile, which further constrains how an
enterprise SAG uses an OSA service.

11.5.30 TpServiceProfileIDList

Thisdatatype definesaNunber ed Li st of Data El enents of type TpServiceProfilelD.

11.5.31 TpServiceProfile

ThisdatatypeisaSequence of Data El ement s which represents a Service Profile. It is a structured data type
which consists of:

Sequence Element
Name
ServiceProfilelD

Sequence Element
Type

TpServiceProfilelD
TpServiceProfileDescription

Servi ceProfil eDescription

11.5.32 TpServiceProfileDescription

ThisdatatypeisaSequence of Data El enment s which describesa Service Profile. A service contract contains
one or more Service Profiles, one for each SAG in the enterprise operator domain. A service profile is arestriction of
the service contract in order to provide restricted service features to a SAG. It is a structured data type which consists
of:

Sequence Element
Name

Sequence Element
Type

ServiceContract| D

TpServiceContract|D

ServiceStart Dat e

TpServiceStartDate

Ser vi ceEndDat e

TpServiceEndDate

Servi ceTypeNane

TpServiceTypeName

Servi ceSubscri ptionProperties

TpServiceSubscriptionProperties

ETSI

171 ETSI ES 201 915-3 V1.2.1 (2002-05)

12 Exception Classes

The following are the list of exception classes which are used in thisinterface of the API.

Name

Description

P_ACCESS_DENI ED

Theclient is not currently authenticated with the framework

P_APPLI CATI ON_NOT_ACTI VATED

An application is unauthorised to access information and request
services with regards to users that have deactivated that particular
application.

P_DUPLI CATE_PROPERTY_NANME

A duplicate property name has been received

P I LLEGAL_SERVI CE_I D

Illegal Service ID

P I LLEGAL_SERVI CE_TYPE

Illegal Service Type

P_I NVALI D_ACCESS_TYPE

The framework does not support the type of access interface requested
by the client.

P_I NVALI D_ACTI VI TY_TEST_I D

1D does not correspond to avalid activity test request

P_I NVALI D_AGREEMVENT_TEXT

Invalid agreement text

P_I NVALI D_ENCRYPTI ON_CAPABI LI TY

Invalid encryption capability

P_I NVALI D_AUTH_TYPE

Invalid type of authentication mechanism

P_I NVALI D_CLI ENT_APP_I D

Invalid Client Application ID

P_I NVALI D_DOVAI N_[D

Invalid client ID

P_INVALI D_ENT_OP_I D

Invalid Enterprise Operator ID

P_I NVALI D_PROPERTY

The framework does not recognise the property supplied by the client

P_INVALI D_SAG | D

Invalid Subscription Assignment Group ID

P_I NVALI D_SERVI CE_CONTRACT | D

Invalid Service Contract ID

P_I NVALI D_SERVI CE_I D

Invalid service ID

P_I NVALI D_SERVI CE_PROFI LE_I D

Invalid service profile ID

P_I NVALI D_SERVI CE_TOKEN

The service token has not been issued, or it has expired.

P_I NVALI D_SERVI CE_TYPE

Invalid Service Type

P_I NVALI D_SI GNATURE

Invalid digital signature

P_I NVALI D_SI GNI NG_ALGORI THM

Invalid signing algorithm

P_M SSI NG_MANDATORY_PROPERTY

Mandatory Property Missing

P_NO_ACCEPTABLE_ENCRYPTI ON_CAPABI LI TY

An encryption mechanism, which is acceptable to the framework, is not
supported by the client

P_PROPERTY_TYPE_M SMATCH

Property Type Mismatch

P_SERVI CE_ACCESS_DENI ED

The client application is not allowed to access this service.

P_SERVI CE_NOT_ENABLED

The service ID does not correspond to a service that has been enabled

P_SERVI CE_TYPE_UNAVAI LABLE

The service typeis not available according to the Framework.

P_UNKNOWN_SERVI CE_I D

Unknown Service ID

P_UNKNOWN_SERVI CE_TYPE

Unknown Service Type

Each exception class contains the following structure:

Structure Element Name Structure Element Type Structure Element Description

Extral nfornation TpString

e.g. aparameter name

ETSI

Carries extrainformation to help identify the source of the exception,

172 ETSI ES 201 915-3 V1.2.1 (2002-05)

Annex A (normative):
OMG IDL Description of Framework

The OMG IDL representation of thisinterface specification is contained in text files (fw_data.idl, fw_if access.idl,
fw_if_app.idl, fw_if_entop.idl, fw_if_service.idl contained in archive es 20191503v010201m0.Z1P) which accompany
the present document.

ETSI

173 ETSI ES 201 915-3 V1.2.1 (2002-05)

Annex B (informative):
Contents of 3GPP OSA R4 Framework

All parts of the present document, except clause 8, Framework to Enterprise Operator API, are relevant for
TS 129 198-3 V4 (Release 4).

ETSI

174 ETSI ES 201 915-3 V1.2.1 (2002-05)

Annex C (informative):
Summary of differences between V1.1.1 (Parlay 3.0) and
V1.2.1 (Parlay 3.1)

C.1 IpAppFaultManager
The following method is added

genFaultStatsRecordReq (timePeriod : in TpTimelnterval) : void

C.2 IpFaultManager

The following methods are added

genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord,) : void

genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError) : void

C.3 IpFwFaultManager

The following methods are added

genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord, servicel Ds: in TpServicel DList) : void

genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError, servicelDs : in TpServicelDList) : void

C.4 IpSvcFaultManager
The following method is added

genFaultStatsRecordReq (timePeriod : in TpTimelnterval, servicel Ds: in TpServicel DList) : void

C.5 IpFwServiceRegistration

registerService() now raisesP_SERVICE_TYPE_UNAVAILABLE exception.

ETSI

175

ETSI ES 201 915-3 V1.2.1 (2002-05)

C.6

TpDomainlD

Data Types

Definesthe Tagged Choi ce of Data El enent s that specify either the Framework or the type of entity

attempting to access the Framework.

Tag Element Type

TpDomainlDType

Tag Element Value

Choice Element Type

Choice Element Name

P_FW TpFwW D Fw D
P_CLIENT_APPLICATION Tpd i ent Appl D d i ent Appl D
P_ENT OP TpEnt Opl D Ent Opl D
P_SERVI CE_| NSTANCE TpServi cel nst ancel D ServicelD

P_SERVICE SUPPLIER

TpServi ceSupplierl D

Servi ceSupplierlD

TplnterfaceName

This datatypeisidentical to a TpString, and is defined as a string of characters that identify the names of the
Framework SCFsthat are to be supported by the OSA API. Other Network operator specific SCFs may also be used,
but should be preceded by the string "SP_". The following values are defined.

Character String Value

Description

P_DI SCOVERY The name for the Discovery interface.
P_EVENT_NOTI FI CATI ON The name for the Event Notification interface.
P_CAM The name for the OA&M interface.

P_LOAD MANAGER

The name for the Load Manager interface.

P_FAULT_MANAGER

The name for the Fault Manager interface.

P_HEARTBEAT_NMANAGEVENT

The name for the Heartbeat M anagement interface.

P_SERVI CE_ AGREENVENT MANAGEME
NT

The name of the Service Agreement M anagement interface.

P_REG STRATI ON

The name for the Service Registration interface.

P_ENT_OP_ACCOUNT _NVANAGENENT

The name for the Service Subscription: Enterprise Operator Account Management
interface.

P_ENT_OP_ACCOUNT_| NFO_QUERY

The name for the Service Subscription: Enterprise Operator Account Information Query
interface.

P_SVC_CONTRACT_MANAGENENT

The name for the Service Subscription: Service Contract Management interface.

P_SVC_CONTRACT_I NFO_QUERY

The name for the Service Subscription: Service Contract Information Query interface.

P_CLI ENT_APP_NMANAGENENT

The name for the Service Subscription: Client Application Management interface.

P_CLI ENT_APP_I NFO_QUERY

The name for the Service Subscription: Client Application Information Query interface.

P_SVC_PROFI LE_MANAGENENT

The name for the Service Subscription: Service Profile Management interface.

P_SVC _PROFI LE_I NFO_QUERY

The name for the Service Subscription: Service Profile Information Query interface.

TpServiceTypeName

Thisdatatypeisidentical to a TpString, and is defined as a string of characters that uniquely identifies the type of an
SCF interface. Other Network operator specific capabilities may also be used, but should be preceded by the string

"SP_". The following values are defined.

ETSI

176 ETSI ES 201 915-3 V1.2.1 (2002-05)

Character String Value

Description

NULL

An empty (NULL) string indicates no SCF name

P_GENERI C_CALL_CONTROL

The name of the Generic Call Control SCF

P_MILTI _PARTY_CALL_CONTROL

The name of the MultiParty Call Control SCF

P_MULTI _MEDI A_CALL_CONTROL

The name of the MultiMedia Call Control SCF

P_CONFERENCE_CALL_CONTROL

The name of the Conference Call Control SCF

P_USER | NTERACTI ON

The name of the User Interaction SCFs

P_TERM NAL_CAPABI LI TI ES

The name of the Terminal Capabilities SCF

P_USER_LOCATI ON

The name of the User Location SCF

P_USER_LOCATI ON_CAVEL

The name of the Network User Location SCF

P_USER_LOCATI ON_ENERGENCY

The name of the User Location Emergency SCF

P_USER STATUS

The name of the User Status SCF

P_DATA_SESSI ON_CONTROL

The name of the Data Session Control SCF

P_GENERI C_MESSAG NG

The name of the Generic Messaging SCF

P_CONNECTI VI TY_MANAGER

The name of the Connectivity Manager SCF

P_CHARG NG

The name of the Charging SCF

P_ACCOUNT_MANAGENENT

The name of the Account Management SCF

P_POLI CY_MANAGEMENT

The name of the Policy Management SCF

P_PAM PRESENCE_AND AVAI LABI LI TY

The name of PAM presentity SCF

P_PAM EVENT NANAGEMENT

The name of PAM watcher SCF

P_PAM PROVI SI ONI NG

The name of PAM provisioning SCF

TpServiceTypeDescription

Thisdatatypeisa Sequence of Data Elements which describes an SCF type. It is a structured data type. It consists of:

Sequence Element
Name

Sequence Element
Type

Documentation

Servi ceTypePropertylLi st

TpServiceTypePropertyList

a sequence of property name and property mode tuples associated with the
SCF type

Servi ceTypeNaneLi st

TpServiceTypeNameList

the names of the super types of the associated SCF type

Avai | abl eOr Unavai | abl eEn

abledOr-Di-sabled

TpBoolean

an indication whether the SCF type is availableenabled (true) or
unavailabledisabled (false)

ETSI

177

ETSI ES 201 915-3 V1.2.1 (2002-05)

History
Document history
V111 February 2002 Publication
V121 May 2002 Membership Approval Procedure MV 20020705: 2002-05-07 to 2002-07-05

ETSI

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Overview of the Framework
	5 The Base Interface Specification
	5.1 Interface Specification Format
	5.1.1 Interface Class
	5.1.2 Method descriptions
	5.1.3 Parameter descriptions
	5.1.4 State Model

	5.2 Base Interface
	5.2.1 Interface Class IpInterface

	5.3 Service Interfaces
	5.3.1 Overview

	5.4 Generic Service Interface
	5.4.1 Interface Class IpService

	6 Framework Access Session API
	6.1 Sequence Diagrams
	6.1.1 Trust and Security Management Sequence Diagrams
	6.1.1.1 Initial Access for trusted parties
	6.1.1.2 Initial Access
	6.1.1.3 Authentication
	6.1.1.4 API Level Authentication

	6.2 Class Diagrams
	6.3 Interface Classes
	6.3.1 Trust and Security Management Interface Classes
	6.3.1.1 Interface Class IpClientAPILevelAuthentication
	6.3.1.2 Interface Class IpClientAccess
	6.3.1.3 Interface Class IpInitial
	6.3.1.4 Interface Class IpAuthentication
	6.3.1.5 Interface Class IpAPILevelAuthentication
	6.3.1.6 Interface Class IpAccess

	6.4 State Transition Diagrams
	6.4.1 Trust and Security Management State Transition Diagrams
	6.4.1.1 State Transition Diagrams for IpInitial
	6.4.1.1.1 Active State

	6.4.1.2 State Transition Diagrams for IpAPILevelAuthentication
	6.4.1.2.1 Idle State
	6.4.1.2.2 Selecting Method State
	6.4.1.2.3 Authenticating Client State
	6.4.1.2.4 Client Authenticated State

	6.4.1.3 State Transition Diagrams for IpAccess
	6.4.1.3.1 Active State

	7 Framework-to-Application API
	7.1 Sequence Diagrams
	7.1.1 Event Notification Sequence Diagrams
	7.1.1.1 Enable Event Notification

	7.1.2 Integrity Management Sequence Diagrams
	7.1.2.1 Load Management: Suspend/resume notification from application
	7.1.2.2 Load Management: Framework queries load statistics
	7.1.2.3 Load Management: Application reports current load condition
	7.1.2.4 Load Management: Application queries load statistics
	7.1.2.5 Load Management: Application callback registration and load control
	7.1.2.6 Heartbeat Management: Start/perform/end heartbeat supervision of the application
	7.1.2.7 Fault Management: Framework detects a Service failure
	7.1.2.8 Fault Management: Application requests a Framework activity test

	7.1.3 Service Discovery Sequence Diagrams
	7.1.3.1 Service Discovery

	7.1.4 Service Agreement Management Sequence Diagrams
	7.1.4.1 Service Selection

	7.2 Class Diagrams
	7.3 Interface Classes
	7.3.1 Service Discovery Interface Classes
	7.3.1.1 Interface Class IpServiceDiscovery

	7.3.2 Service Agreement Management Interface Classes
	7.3.2.1 Interface Class IpAppServiceAgreementManagement
	7.3.2.2 Interface Class IpServiceAgreementManagement

	7.3.3 Integrity Management Interface Classes
	7.3.3.1 Interface Class IpAppFaultManager
	7.3.3.2 Interface Class IpFaultManager
	7.3.3.3 Interface Class IpAppHeartBeatMgmt
	7.3.3.4 Interface Class IpAppHeartBeat
	7.3.3.5 Interface Class IpHeartBeatMgmt
	7.3.3.6 Interface Class IpHeartBeat
	7.3.3.7 Interface Class IpAppLoadManager
	7.3.3.8 Interface Class IpLoadManager
	7.3.3.9 Interface Class IpOAM
	7.3.3.10 Interface Class IpAppOAM

	7.3.4 Event Notification Interface Classes
	7.3.4.1 Interface Class IpAppEventNotification
	7.3.4.2 Interface Class IpEventNotification

	7.4 State Transition Diagrams
	7.4.1 Service Discovery State Transition Diagrams
	7.4.1.1 State Transition Diagrams for IpServiceDiscovery
	7.4.1.1.1 Active State

	7.4.2 Service Agreement Management State Transition Diagrams
	7.4.3 Integrity Management State Transition Diagrams
	7.4.3.1 State Transition Diagrams for IpLoadManager
	7.4.3.1.1 Idle State
	7.4.3.1.2 Notification Suspended State
	7.4.3.1.3 Active State

	7.4.3.2 State Transition Diagrams for LoadManagerInternal
	7.4.3.2.1 Normal load State
	7.4.3.2.2 Application Overload State
	7.4.3.2.3 Internal overload State
	7.4.3.2.4 Internal and Application Overload State

	7.4.3.3 State Transition Diagrams for IpOAM
	7.4.3.3.1 Active State

	7.4.3.4 State Transition Diagrams for IpFaultManager
	7.4.3.4.1 Framework Active State
	7.4.3.4.2 Framework Faulty State
	7.4.3.4.3 Framework Activity Test State
	7.4.3.4.4 Service Activity Test State

	7.4.4 Event Notification State Transition Diagrams
	7.4.4.1 State Transition Diagrams for IpEventNotification
	7.4.4.1.1 Idle State
	7.4.4.1.2 Notification Active State

	8 Framework-to-Enterprise Operator API
	8.1 Sequence Diagrams
	8.1.1 Service Subscription Sequence Diagrams
	8.1.1.1 Service Discovery and Subscription Scenario
	8.1.1.2 Enterprise Operator and Client Application Subscription Management Sequence Diagram

	8.2 Class Diagrams
	8.3 Interface Classes
	8.3.1 Service Subscription Interface Classes
	8.3.1.1 Interface Class IpClientAppManagement
	8.3.1.2 Interface Class IpClientAppInfoQuery
	8.3.1.3 Interface Class IpServiceProfileManagement
	8.3.1.4 Interface Class IpServiceProfileInfoQuery
	8.3.1.5 Interface Class IpServiceContractManagement
	8.3.1.6 Interface Class IpServiceContractInfoQuery
	8.3.1.7 Interface Class IpEntOpAccountManagement
	8.3.1.8 Interface Class IpEntOpAccountInfoQuery

	8.4 State Transition Diagrams
	8.4.1 Service Subscription State Transition Diagrams

	9 Framework-to-Service API
	9.1 Sequence Diagrams
	9.1.1 Service Discovery Sequence Diagrams
	9.1.2 Service Registration Sequence Diagrams
	9.1.2.1 New SCF Registration

	9.1.3 Service Instance Lifecycle Manager Sequence Diagrams
	9.1.3.1 Sign Service Agreement

	9.1.4 Integrity Management Sequence Diagrams
	9.1.4.1 Load Management: Service callback registration and load control
	9.1.4.2 Load Management: Client and Service Load Balancing
	9.1.4.3 Heartbeat Management: Start/perform/end heartbeat supervision of the service
	9.1.4.4 Fault Management: Service requests Framework activity test
	9.1.4.5 Fault Management: Service requests Application activity test
	9.1.4.6 Fault Management: Application requests Service activity test
	9.1.4.7 Fault Management: Application detects service is unavailable

	9.1.5 Event Notification Sequence Diagrams

	9.2 Class Diagrams
	9.3 Interface Classes
	9.3.1 Service Registration Interface Classes
	9.3.1.1 Interface Class IpFwServiceRegistration

	9.3.2 Service Instance Lifecycle Manager Interface Classes
	9.3.2.1 Interface Class IpServiceInstanceLifecycleManager

	9.3.3 Service Discovery Interface Classes
	9.3.3.1 Interface Class IpFwServiceDiscovery

	9.3.4 Integrity Management Interface Classes
	9.3.4.1 Interface Class IpFwFaultManager
	9.3.4.2 Interface Class IpSvcFaultManager
	9.3.4.3 Interface Class IpFwHeartBeatMgmt
	9.3.4.4 Interface Class IpFwHeartBeat
	9.3.4.5 Interface Class IpSvcHeartBeatMgmt
	9.3.4.6 Interface Class IpSvcHeartBeat
	9.3.4.7 Interface Class IpFwLoadManager
	9.3.4.8 Interface Class IpSvcLoadManager
	9.3.4.9 Interface Class IpFwOAM
	9.3.4.10 Interface Class IpSvcOAM

	9.3.5 Event Notification Interface Classes
	9.3.5.1 Interface Class IpFwEventNotification
	9.3.5.2 Interface Class IpSvcEventNotification

	9.4 State Transition Diagrams
	9.4.1 Service Registration State Transition Diagrams
	9.4.1.1 State Transition Diagrams for IpFwServiceRegistration
	9.4.1.1.1 SCF Registered State
	9.4.1.1.2 SCF Announced State

	9.4.2 Service Instance Lifecycle Manager State Transition Diagrams
	9.4.3 Service Discovery State Transition Diagrams
	9.4.4 Integrity Management State Transition Diagrams
	9.4.4.1 State Transition Diagrams for IpFwLoadManager
	9.4.4.1.1 Idle State
	9.4.4.1.2 Notification Suspended State
	9.4.4.1.3 Active State

	9.4.5 Event Notification State Transition Diagrams

	10 Service Properties
	10.1 Service Property Types
	10.2 General Service Properties
	10.2.1 Service Name
	10.2.2 Service Version
	10.2.3 Service Instance ID
	10.2.4 Service Instance Description
	10.2.5 Product Name
	10.2.6 Product Version
	10.2.7 Supported Interfaces
	10.2.8 Operation Set

	11 Data Definitions
	11.1 Common Framework Data Definitions
	11.1.1 TpClientAppID
	11.1.2 TpClientAppIDList
	11.1.3 TpDomainID
	11.1.4 TpDomainIDType
	11.1.5 TpEntOpID
	11.1.6 TpPropertyName
	11.1.7 TpPropertyValue
	11.1.8 TpProperty
	11.1.9 TpPropertyList
	11.1.10 TpEntOpIDList
	11.1.11 TpFwID
	11.1.12 TpService
	11.1.13 TpServiceList
	11.1.14 TpServiceDescription
	11.1.15 TpServiceID
	11.1.16 TpServiceIDList
	11.1.17 TpServiceInstanceID
	11.1.18 TpServiceSpecString
	11.1.19 TpServiceTypeProperty
	11.1.20 TpServiceTypePropertyList
	11.1.21 TpServiceTypePropertyMode
	11.1.22 TpServicePropertyTypeName
	11.1.23 TpServicePropertyName
	11.1.24 TpServicePropertyNameList
	11.1.25 TpServicePropertyValue
	11.1.26 TpServicePropertyValueList
	11.1.27 TpServiceProperty
	11.1.28 TpServicePropertyList
	11.1.29 TpServiceSupplierID
	11.1.30 TpServiceTypeDescription
	11.1.31 TpServiceTypeName
	11.1.32 TpServiceTypeNameList
	11.1.33 TpSubjectType

	11.2 Event Notification Data Definitions
	11.2.1 TpFwEventName
	11.2.2 TpFwEventCriteria
	11.2.3 TpFwEventInfo

	11.3 Trust and Security Management Data Definitions
	11.3.1 TpAccessType
	11.3.2 TpAuthType
	11.3.3 TpEncryptionCapability
	11.3.4 TpEncryptionCapabilityList
	11.3.5 TpEndAccessProperties
	11.3.6 TpAuthDomain
	11.3.7 TpInterfaceName
	11.3.8 TpInterfaceNameList
	11.3.9 TpServiceToken
	11.3.10 TpSignatureAndServiceMgr
	11.3.11 TpSigningAlgorithm

	11.4 Integrity Management Data Definitions
	11.4.1 TpActivityTestRes
	11.4.2 TpFaultStatsRecord
	11.4.3 TpFaultStats
	11.4.4 TpFaultStatisticsError
	11.4.5 TpFaultStatsSet
	11.4.6 TpActivityTestID
	11.4.7 TpInterfaceFault
	11.4.8 TpSvcUnavailReason
	11.4.9 TpFwUnavailReason
	11.4.10 TpLoadLevel
	11.4.11 TpLoadThreshold
	11.4.12 TpLoadInitVal
	11.4.13 TpLoadPolicy
	11.4.14 TpLoadStatistic
	11.4.15 TpLoadStatisticList
	11.4.16 TpLoadStatisticData
	11.4.17 TpLoadStatisticEntityID
	11.4.18 TpLoadStatisticEntityType
	11.4.19 TpLoadStatisticInfo
	11.4.20 TpLoadStatisticInfoType
	11.4.21 TpLoadStatisticError

	11.5 Service Subscription Data Definitions
	11.5.1 TpPropertyName
	11.5.2 TpPropertyValue
	11.5.3 TpProperty
	11.5.4 TpPropertyList
	11.5.5 TpEntOpProperties
	11.5.6 TpEntOp
	11.5.7 TpServiceContractID
	11.5.8 TpServiceContractIDList
	11.5.9 TpPersonName
	11.5.10 TpPostalAddress
	11.5.11 TpTelephoneNumber
	11.5.12 TpEmail
	11.5.13 TpHomePage
	11.5.14 TpPersonProperties
	11.5.15 TpPerson
	11.5.16 TpServiceStartDate
	11.5.17 TpServiceEndDate
	11.5.18 TpServiceRequestor
	11.5.19 TpBillingContact
	11.5.20 TpServiceSubscriptionProperties
	11.5.21 TpServiceContract
	11.5.22 TpServiceContractDescription
	11.5.23 TpClientAppProperties
	11.5.24 TpClientAppDescription
	11.5.25 TpSagID
	11.5.26 TpSagIDList
	11.5.27 TpSagDescription
	11.5.28 TpSag
	11.5.29 TpServiceProfileID
	11.5.30 TpServiceProfileIDList
	11.5.31 TpServiceProfile
	11.5.32 TpServiceProfileDescription

	12 Exception Classes
	Annex A (normative): OMG IDL Description of Framework
	Annex B (informative): Contents of 3GPP OSA R4 Framework
	Annex C (informative): Summary of differences between V1.1.1 (Parlay 3.0) and V1.2.1 (Parlay 3.1)
	C.1 IpAppFaultManager
	C.2 IpFaultManager
	C.3 IpFwFaultManager
	C.4 IpSvcFaultManager
	C.5 IpFwServiceRegistration
	C.6 Data Types

	History

