ETSI ES 201 873-9 va.4.1 (201209

ETSI Standard

Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3;
Part 9: Using XML schema with TTCN-3

2 ETSI ES 201 873-9 V4.4.1 (2012-04)

Reference
RES/MTS-136-9 T3 ed441 XML

Keywords
MTS, testing, TTCN, XML

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2012.
All rights reserved.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPP™and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

ETSI

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

3 ETSI ES 201 873-9 V4.4.1 (2012-04)

Contents

INtelleCtual Property RIGNTSoiiieieie bbbttt b e nre s 7
0] 1= 0] o SRS 7
1 RS0t 0] 0 PSSP 8
2 R L= =] (0= ST S 8
2.1 NOFMALIVE FEFEIENCESeeieeieieeie ettt ettt sttt s et e et e be s b e et e ebeeseese e s e besaeebeereeneeneenseneeneens 8
2.2 L) (o] e A= =] (T T 0ot SR 9
3 Definitions and aDDIEVIALIONS.coi i sttt sae e e e e seeanee e 9
3.1 DBTINMITIONS ...ttt bttt h et b ekt h e bbbt e s e e bt b e bt e bt bR e e e bk Rt Rt b e Rt e e e r b nre 9
3.2 ADDIEVIALIONS ...ttt et h bbb h e h e e b bt eh s e et e bbbt b e bt e e e bt nn e 10
4 LT [N o1 T] o SRR 10
4.1 Conformance and COMPALIDITITYcoviiiiiiii e 11
5 MaPPING XML SCREMAS ..ot bbbt 11
5.1 Namespaces and dOCUMENT FEFEIENCESvcviiieiie ettt te e e st e sta e teesteesaeeeeannas 12
51.1 T o oL PSPPSR UPPRTPRPN 12
512 INCIUAES ... bbb bbbt bbb e bt bt e b e b ekt e bt eb e bt e bt et e b e b e 13
5.1.3 100100 4 PP PP PPPRTR 13
514 Attributes of the XSD SChema EIEMENT........c.ciiii e 14
5.15 THE CONIIOI NAMESPACEeeveeveeieiie et e et e ete e e et e e e s e s e e s e e te e eeaseesaeease e seesseesseassesseestaesseesseenseansennsenseenrenns 15
5.2 INAITIE CONMVEBISIONectiiieiee ittt ettt ettt e et e st e e e be e be e teeaeeeaeeebe e beesbeesbeeseesteesbeesbeebeenbeeabeeabestsesbaesbeesbeeneesnnas 15
5.2.1 (1T o =T | OSSOSO 15
5.2.2 NAME CONVETSION FUIBS. ... ittt ettt sttt e b et sbe st e be et et e e e eesaenbesbeeseeneeneeeeneeneees 16
523 Order OF the MEPPING .. .cveie ettt bttt b e et b e et eb e b e et e b e et sb et e nne e 20
5.3 Mapping of XSD SChEMA COMPONENEScuiitiiiiiiteieeie ittt eb et b et sb e et sbesr et ene e 21
54 UNSUPPOTTEA TRALUIES. ... teeie ettt et et e st e et e e s e e s e s re e s teesteeteeneeeneeen b e nseestaesteeseneeeaneas 21
6 BUITE-IN GALA TYPES ©..vecviitiiie ettt sttt st e s e et e s ae e s b e s be e st e sbeete e besaeesbesteeneesresteentens 22
6.1 Y To] oL To o = 1o =] SRR 22
6.1.1 T30 |1 USSR 22
6.1.2 IVHINLENGEN ..ttt b bbb b bbbt b bbbt b e 23
6.1.3 IVIAXLENGEN ...t b bbb bbbt bt 23
6.1.4 U (= PRSPPI 24
6.1.5 ENUMEIALION.teie ettt et e et e et e e e be e be e beesbeeae e s be e ebeeebeeabeenbeebsesbeesbeesbeesbeennenanes 25
6.1.6 WV NIEESPACE ...ttt bt b bt b bt b bbb bt b bt b £ bbb bbb 27
6.1.7 IVIININCIUSIVE ...ttt b bbbt b bt bbbt e st e b eb bbbt e e et neesb et 27
6.1.8 IMAXINCIUSIVE ...ttt bbbt bbbt bbbt et e bbbt bt e e et e b e b 29
6.1.9 IMHINEXCIUSIVE ...ttt bbbkt b e bbbt b b e st et bbbt bt et e et e b e b 30
6.1.10 IMAXEXCIUSIVE ...ttt bbbkt b bt bbbt bt et eb bbbt et et e b e b 31
6.1.11 L0] 7= L Lo RSSO 32
6.1.12 Not specifically MapPeU TACELSciie ettt re e teeaeeneas 33
6.2 ST TIIG EY DS . ettt bbb bbbtk bbb bR R R R R R R R bR bR bbb b e 33
6.2.1 Y1110 ST ST P PP TP PR P PPPRPPRRPRORIN 34
6.2.2 NOFMEAIIZEA SEFING ..ttt bbbt b et b et b bbb 34
6.2.3 TOKBN . ettt et e bt et e b e e be e et eeehe e ebeeebe e be A beea b e eheeateeateeateeaeeeheeaheeebeebeebeententeenreea 34
6.2.4 I = T 1 PSPPI 34
6.2.5 LY IO] = RS UPRTS 34
6.2.6 INCINBITIE L.ttt ettt bbbtk e b ke e bbb e Rt E b e st e bt e st b e b e st e b ek e b e et e st e be b e st et nbns 34
6.2.7 5 OSSP RRR PR 35
6.2.8 IDREF ...ttt ettt ettt ettt h et R bt R bR ARt R R R bR R AR Rt E et Rt Rt n e b e n e n e enen 35
6.2.9 A I 1 OSSOSO SOPR 35
6.2.10 [[0 1o LTt [4 Y I o] Y USSR 35
6.2.11 BASE B4 DINAIY ...ttt bbbt bbbt 35
6.2.12 ANY URI oo 36
6.2.13 LANGUAGE ... s 36
6.2.14 I L I 1N] PSPPSR 36

ETSI

6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.3.6
6.3.7
6.3.8
6.3.9
6.3.10
6.3.11
6.3.12
6.3.13
6.4
6.4.1
6.4.2
6.4.3
6.5
6.5.1
6.5.2
6.5.3
6.5.4
6.5.5
6.5.6
6.5.7
6.5.8
6.5.9
6.6
6.6.1
6.6.2
6.6.3
6.6.4
6.7
6.8

7.1
7.1.1
7.1.2
7.13
7.1.4
7.15
7.1.6
7.1.7
7.1.8
7.1.9
7.1.10
7.1.11
7.1.12
7.1.13
7.1.14
7.1.15
7.2
7.3
7.4
7.4.1
7.4.2
7.5
7.5.1
7.5.2
7.5.3

4 ETSI ES 201 873-9 V4.4.1 (2012-04)

01 =0 [T Y61 T PR P PR TPPTRN 36
101 (=0 T SRR PP PPPRTR 36
oL LN] =T =] SR 36
INON-POSITIVE INMEEYEE ... vvivieite ettt et e e et e et e te e te e te e s tesseesreesaeesneeeseesseesseeseaeenereeanees 36
=0 oL TN] =T -] USSR 36
TR et oA] =] USSR 37
0] o o OO PP O PP PP POTON 37
UNSTGNEA TONQ ..ttt bbb bbbt bbbt bbb bt st 37
10 S TP O O PR PP PPROPPRPPRTOTIN 37
UNSTGNEA TNttt bbbt bbb bbb bbb bbb bbbt n e 37
S o] o PSSR 37
LYo [T IS o] o USSR 37
By et E bR R R e b e R R e R e R £ R £ R e e b bRt Rt bt et nr e h e 38
LSy [T I o) (USSR 38

L 0T L 1Y/ 1= PSS 38
DECIMAL. ...ttt b bbbt h b e bbbt bbb e e bbbt bbbt n e nn e 38
o [0 | TSP OO P TR U PP TP 38
D To ¥ o] TSR 38

I LT N 0L OO TSSOSO TR TS UR VPO URO 38
D101 4T o ISP 39
D 12 Lo o N] LSS 39
LI L0PSRSS 39
D (T T T TSP PP P PR PPPTRPRN 39
Gregorian Year ant MONENoiiie et e e e st e ste e teeteeraesneesreeareenreenes 40
LT = To T AT VAN T: T ST 40
Gregorian MONEN AN GAYc.vieiiiieiee et e e e e ste e te e e e eseesseesteestaeseeesaesneesreenreereenes 40
LT 1=To o] AT Ta I - Y SR 40
LT 7=To o] g - Ta T4 20] 011 SR 40

S TeTo 0= LTI oL L TSP TP UPPTPR 40
NIMTOKENS ...ttt ettt et bt bt e Rt e s e st e eeeeeebesEeebeebeemees e e beebeeneeneeneenteneesaenee e 41
0 o S 41
VI I 1 TSP 41
(0] \F: 11 4SRRI 41

B OO IBAN LY ...ttt E bbb e b bR bbb e bbbt bt benr e bt nre e 42

ANYTYPe and any SiMPIETYPE TYPES. . .uveireeiee ittt et et e e e e e e e sreesteesae s e e saeesreesaeesbeenteesteenteeseeaneas 42

MapPINg XSD COMPONENLSc.viivieiiitecie it sttt ste et te st e st e et estesre e beste e s e s beetaesbesteesbesbeaseestesseesressaensens 42

Attributes of XSD cOmMpPoNnent deCIarationS.c.ccveiieiriieiie et se et steeste e eeannas 42
Lo O ST TSP PP U TR P PP 43
(= ST 43
NI ettt ettt h ekt b ekt b R e e ARt e E et e Rt e E R e e R bt e eRn e ek r e e e Re e e nnn e e anreenere s 44
MiINOCCUIS AN MAXOCCUIS. ...e.eeeveeueeriestesteseeeteeteeseeseeseesteseestesteaseeseaseeseessestesteaseaseaneeseessenseseeaseeseeneeseeseessenns 44
) = LU LA a0 I =T TSR 49
0] 01 | TP OO PO ST PP P PR UPPTRTRTON 49
LY LT OO PP OPRUROPRTR 50
IVEEXEA ..ttt bbbt h bbb bt E e R e b e R b et E bR SRR e bbbt R Rt b et nn b 50
AADSTTACT ...ttt bbbkt E bR R R R R bR bbbt Rt e bt nr e 50
BIOCK and DIOCKDETAUIL ..ot bbbt nee e 50
INTHTBIIE . bbbt bbbt bbbt et e e b e b 51
L0 LTS O PR PR PSP 52
SUBSEITULION GFOUP ...ttt b bt bbbt b e bbbt nb ekt eb e et abe et e ene e 53
- LSS 53
PrOCESS CONIBNTS.......eeetee ittt et h e s ab e et bt e s ab e e sh bt e s ab e e et e e e nbe e e ke e e nbe e et e e ennne e e 53

SCNEIMA COMPONENT. ...ttt bbb bbb bbbt b bbbt b ettt b n e 53

E1EMENT COMPONENT ...ttt b bbbt b bt bbb bbbt bbb s bbbt nnenes 53

Attribute and attribute group definitionsccoiriiiiii s 54
Attribute element AEFINITIONSoiiiiiiee bbb 54
ALLFDULE group JefiNITIONS.iiiiie e e e e e sre e steesbeenaeeneenreenreens 55

SIMPIETYPE COMPONENTSveeieeie ettt ettt e e e e e teeste e e e s e e saeesteesseesseassestaesseesteesseesseeseenseenseensensaenrenns 55
Derivation DY FESIICHIONeiii et e st e te et e sneeste e teeste e eeeneannas 55
= gL Lo N o)V L USSR 56
Derivation DY UNTONoiiiiiecc ettt et e e e e s e sae e s teeneessaeste e teesteeseeennesneas 57

ETSI

5 ETSI ES 201 873-9 V4.4.1 (2012-04)

7.6 COMPIEXTYPE COMPONENTSeevietieereeeiesteesteeteesteesaesraesteesteesteaseeaseeaseeaseesseenseassesseessaesseesseassaesseenseanseassenseessenns 59
7.6.1 ComplexType containing SIMPIE CONTENTc.viiiiiiii et be e sreenre s 60
7.6.1.1 EXtending SIMPIE CONLENT.......cc.oiiieiieeee et e e st e e e ste et e e beeneeeneesseenreens 60
7.6.1.2 ReStricting SIMPIE CONENT..........oiiieiie e et esre et e e ae e e e aneesreesreens 60
7.6.2 ComplexType containing COMPIEX CONTENTcoiiiiiieiiei e sreesreenre s 61
7.6.2.1 Complex content derived DY EXIENSIONcc.viiiiiiiiecee e ae e 61
7.6.2.2 Complex content derived DY FeStIICLIONcoeiiiiiiiie e 65
7.6.3 Referencing group COMPONENTSc..eiitiriiiitiieietist ettt bbbttt bbbttt bbb 67
7.6.4 N L o0} 1 | USRS 69
7.6.5 (01 Lo ToT= I oo 1 (=1 | USRS 71
7.6.5.1 Choice With NEStEA BIEMENTS ...ttt se et re s e e e neeseesne s 71
7.6.5.2 ChOiCe WIth NESLEA GrOUDevveieeiiee ittt sttt ettt ettt e e e e steesteebe e st e e neeensestaestaesteeteasteeneennees 72
7.6.5.3 Choice With NESTEA ChOICE.......couiiicieee bbb 72
7.6.5.4 ChOice With NESEA SEOUENCE. ... eevieeete sttt ettt te et e e s et esteesteebe et e aseeessestaesteesteesteeteeneesnnas 73
7.6.5.5 (O T ot 1 1Y T - T | OSSR 74
7.6.6 S T=To [0 1=T ot oo g (=] | S PP P R OPRTROPRPTRN 74
7.6.6.1 Sequence With nested eleMENt CONTENT.........c.eccviiiiiie e ee e 74
7.6.6.2 Sequence With nested group CONTENTooiiiiiiiiiirc bbb 75
7.6.6.3 Sequence With nested ChOICE CONTENTccoiiiiiiiieii bbb 75
7.6.6.4 Sequence With nested SEQUENCE CONTENT.........o.eiiiiiieirieiet ettt 76
7.6.6.5 Sequence With NeSted @NY CONENT.........ciiiiiiiietir et sre e 76
7.6.6.6 Effect of the minOccurs and maxOccurs attributes on the Mappingccocooevereineneieneneeeee 77
7.6.7 Attribute definitions, attribute and attributeGroup referenCes ... 78
7.6.8 IMIEXEA COMEENT ...ttt bbbt h et b e bbbt bbb e e e et e eb bt e bt bt et e e e e bt 80
7.7 F N V=TT B 017N (] o =SOSR 83
7.7.1 BN TC T L0V =] =T 0= o OSSPSR 83
7.7.2 The anYALIDULE BIEBIMENT ..ottt e e st e s teesteesteebeenaeeseenreenreens 85
7.8 ANNOTATION ...tk h ke h et b bt h ek b e e b e e e b e b e b e e b £ b e e bt e b e et e bRt bRt bt e bt nn e 87
7.9 (1o N o JNel0] 401 010] 411 o] K] TSP TR UPPTRN 88
7.10 Identity-constraint definition SChema COMPONENTS ..ot 89
8 Y0 1S] 010 ST 89
8.1 EIEMENT SUDSTIULION ...ttt ettt sttt e st e et st e seesaeereene e b e neeseesee e 89
8.1.1 Head elements Of SUDSTITULION GrOUPSvoiveeiieeie ettt steeeeeae e 89
8.1.2 SUDSLITULION GrOUP MEMDEISviieieciee ettt et e e esbe e be e e e s e e saesneesreesneenreenes 94
8.2 IR/ LI o1 0 o] o SRS 94
Annex A (nor mative): TTCN-3MOTUIE XSD ..ot 96
Annex B (normative): ENCOdiNg INSIFUCLIONS......cviiiieieeeeeieeee e s 100
2 300 R €T T 0T | ST 100
B.2 The XML eNCOUE tLIIDULEc.viiiiiiteieeieieieee ettt 100
B.3 ENCOUING INSEIUCTIONSeuvirieiieiieiieiste sttt sttt sttt sttt e e ene e 101
B.3.1 XSD data type IdeNtifICALION ..o 101
B.3.2 AANY CIBIMENT ...t bbb bbb bbbt b et b e b e bbb bt e b b e bbb e bt et b st et r e 101
B.3.3 ANY BEFTDULES ..ot b bbbt b bbb bbbttt b et et b et b r e 102
B.3.4 AITTOULE L.ttt b et b et b e bbbt Ee b e AR e R R Rt b et Rt R bt et bt b nbens 103
B.3.5 ALrDUtEFOrMQUAIITIE ..o e e e e esteesaeenbeesbeenbeeraesneeas 103
B.3.6 Control namespace IdentifiCatIONccveiii i ae s 103
B.3.7 (=] T [(0] =T 0] 0SSR 104
B.3.8 =100 o | ST TP TP P PP PO PP P PRTPPO 104
B.3.9 ElementFormQUANITIEAcoieiie et e s e sra et e te e reenreenneeneas 104
B.3.10 EMBDEA VAIUES ...ttt sttt sttt sttt s e n et s e e bt s ee e Rt e neen e et e nbenbeeRe b e eneeneeneente e e 105
L 0 o ¢ U OUPRRURTR 105
B.3.12] SO OP TP PP RRRUROPROO 105
R 0 S |- T 1 USRS 106
B.3.14 NamesPaCe IdENTITICALIONc.eiviiieiiieieirt ettt b bbbt b et nne s 106
B.3.15 NIlIADIE BIEIMENTS ...t bbbt bbb bbbt bt et et nb b e 107
B.3.18 USE UNMIOM. ..ttt ettt e bbbt b et s bbbkt b e b e R b e bR Rt R e SR £ SR e e R e bbbt Rt b e e st n et nn e ne e 107
270 20 A 1= SO OSPRRRR 107

ETSI

6 ETSI ES 201 873-9 V4.4.1 (2012-04)

B.3.18 USE NMUMDET ...ttt b b bbbt s bbbt bt bt e bbbt bbbt n et nn b e 108
B.3.19 USE OFAEI ...ttt e b bbb E bR R R R R Rt R R R R e b e bRt Rt b e e Rt n et nnenre e 108
R T O B VL T (=TS o Ut oo 1 (o OSSR 109
T T R O 1 01 oo <o I =] 1= 1< o1 OSSR 109
B.3.22 ADSITACT ...ttt bbbt E bR h R R R £ bR R £ R e R e R bbbt ke et b n b e 110
B.3.23 BIOCK .ttt bbb Rt E R R R AR e bbbt Rt bRt n et n e b e 110
B.3.24 USB Y ittt R R R R R R r R bRt 111
B.3.25 Process the content of any elements and attribULEScoiiiiiiiiiini s 111
B.3.26 THANSPAIENT.....c.eiitiitiiteeti ettt bttt et R R R R R R Rt R Rt Rt r e re e 112
B3 27 N T ittt E R R Rt r R bRt r e 112
Annex C (informative): =101 0] 1SS 113
C.1 EXAMPIE Lotttk b b bRttt e bR b e r e re s 113
O b V1 1o [OOSR 114
(O T =1 1o (= TSRS 116
C.4 EXAMPIE 4.t E bttt R R bt et n et ere s 117
Annex D (informative): Deprecated fEALUINES.........ceeii et s 119
D.1 Using the anyElement encoding instruction to record of fieldsc.coeiiiiiiiiinnecce, 119
D.2 Using the XML language identifier SIHNG.........cccoieiiiiiiieiiisie s 119
Annex E (informative): Bibliography ... s 121
[1T (0] SRR 122

ETSI

7 ETSI ES 201 873-9 V4.4.1 (2012-04)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI membersand non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards’, which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web

server (http://ipr.etsi.org).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

This ETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and Specification
(MTS).

The present document is part 9 of a multi-part deliverable. Full details of the entire series can be found in part 1 [1].

ETSI

http://webapp.etsi.org/IPR/home.asp

8 ETSI ES 201 873-9 V4.4.1 (2012-04)

1 Scope

The present document defines the mapping rules for W3C Schema (as defined in [7] to [9]) to TTCN-3 as defined in
ES 201 873-1 [1] to enable testing of XML-based systems, interfaces and protocols.

2 References

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee
their long term validity.

2.1 Normative references
The following referenced documents are necessary for the application of the present document.
[1] ETSI ES 201 873-1: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language".
[2] ETSI ES 201 873-7: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 7: Using ASN.1 with TTCN-3".
[3] ITU-T Recommendation X.680: "Information technology - Abstract Syntax Notation One
(ASN.1): Specification of basic notation".
[4] ITU-T Recommendation X.694: "Information technology - ASN.1 encoding rules: Mapping W3C
XML schema definitions into ASN.1".
[5] World Wide Web Consortium W3C Recommendation: "Extensible Markup Language (XML)
11"

NOTE: Available at http://www.w3.0rg/TR/xml11.

[6] World Wide Web Consortium W3C Recommendation (2006): "Namespaces in XML 1.0".

NOTE: Available at http://www.w3.0rg/TR/REC-xml-names/.

[7] World Wide Web Consortium W3C Recommendation (2004): "XML Schema Part 0: Primer".

NOTE: Available at http://www.w3.0org/TR/xmlschema-0.

[8] World Wide Web Consortium W3C Recommendation (2004): "XML Schema Part 1: Structures”.

NOTE: Available at http://www.w3.0rg/TR/xmlschema-1.

[9] World Wide Web Consortium W3C Recommendation (2004): "XML Schema Part 2: Datatypes".

NOTE: Available at http://www.w3.0rg/TR/xmlschema-2.

ETSI

http://docbox.etsi.org/Reference
http://www.w3.org/TR/xml11
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/xmlschema-0
http://www.w3.org/TR/xmlschema-1
http://www.w3.org/TR/xmlschema-2

9 ETSI ES 201 873-9 V4.4.1 (2012-04)

2.2 Informative references

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] World Wide Web Consortium W3C Recommendation: "SOAP version 1.2, Part 1: Messaging
Framework".

NOTE: Available at http://www.w3.0rg/TR/soap12.

[i.2] ISO 8601 (2004): "Data elements and interchange formats - Information interchange -
Representation of dates and times".

[i.3] ETSI ES 202 781: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions: Configuration and Deployment Support".

[i.4] ETSI ES 202 782: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions: TTCN-3 Performance and Real Time Testing".

[i.5] ETSI ES 202 784: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions: Advanced Parameterization".

[i.6] ETSI ES 202 785: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions: Behaviour Types".

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in ES 201 873-1 [1], ITU-T
Recommendation X.694 [4] and the following apply:

schema component: generic XSD term for the building blocks that comprise the abstract data model of the schema

NOTE: The primary components, which may (type definitions) or obliged to (element and attribute declarations)
have names are as follows: simple type definitions, complex type definitions, attribute declarations and
element declarations. The secondary components, which are obliged to have names, are as follows:
attribute group definitions, identity-constraint definitions, model group definitions and notation
declarations. Finally, the "helper" components provide small parts of other components; they are not
independent of their context: annotations, model groups, particles, wildcards and attribute uses.

schema document: contains a collection of schema components, assembled in a schema element information item

NOTE: The target namespace of the schema document may be defined (specified by the targetNamespace
attribute of the schema element) or may be absent (identified by a missing targetNamespace attribute of
the schema element). The latter case is handled in the present document as a particular case of the target
namespace being defined.

target TTCN-3 module: TTCN-3 module, generated during the conversion, to which the TTCN-3 definition produced
by the translation of a given XSD declaration or definition is added

XML Schema: represented by a set of schema documents forming a complete specification (i.e. all definitions and
references are completely defined)

NOTE: The set may be composed of one or more schema documents, and in the latter case identifying one or
more target namespaces (including absence of the target namespace) and more than one schema
documents of the set may have the same target namespace (including absence of the target namespace).

ETSI

http://www.w3.org/TR/soap12

10 ETSI ES 201 873-9 V4.4.1 (2012-04)

Xsi: attributes: stipulating the content of schema-instances (schema-valid XML documents), XSD defines several
attributes for direct use in any XML documents

NOTE: These attributes are in the namespace http://www.w3.0rg/2001/XMLSchema-instance. By
convention these XML attributes are referred to by using the prefix "xsi: ", though in practice, any
prefix can be used.

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

ASN.1 Abstract Syntax Notation One
DTD Document Type Description
SOAP Simple Object Access Protocol
SUT System Under Test
TTCN-3 Testing and Test Control Notation version 3
URI Uniform Resource Identifier
UTF-8 Unicode Transformation Format-8
W3C World Wide Web Consortium
XER XML Encoding Rules
XML eXtensible Markup Language
XSD XML Schema Definition

4 Introduction

An increasing number of distributed applications use the XML format to exchange data for various purposes like data
bases queries or updates or event telecommunications operations such as provisioning. All of these data exchanges
follow very precise rules for data format description in the form of Document Type Description (DTD) [5] and [6] or
more recently the proposed XML Schemas [7], [8] and [9]. There are even some XML based communication protocols
like SOAP [i.1] that are based on XML Schemas. Like any other communication-based systems, components and
protocols, XML based systems, components and protocols are candidates for testing using TTCN-3 [1]. Consequently,
there is a need for establishing a mapping between XML data description techniques like DTD or Schemas to TTCN-3
standard data types.

The core language of TTCN-3 is defined in ES 201 873-1 [1] and provides a full text-based syntax, static semantics and
operational semantics as well as a definition for the use of the language with ASN.1 in ES 201 873-7 [2]. The XML
mapping provides a definition for the use of the core language with XML Schema structures and types, enabling
integration of XML data with the language as shown in figure 1.

TTCN-3 < >

Core
ASN.1 Types N Tabular
& Values (" Language format < >

o Graphical
XSD Types format ¢ >
TTCN-3 User

Other Types R Presentation The shaded boxes are not
& Values v format, D E— defined in this document

Figure 1. User's view of the core language and the various presentation formats

ETSI

http://www.w3.org/2001/XMLSchema-instance

11 ETSI ES 201 873-9 V4.4.1 (2012-04)

For compatibility reasons, it is the purpose of the present document that the TTCN-3 code obtained from the XML
Schema using the explicit mapping shall be the same as the TTCN-3 code obtained from first converting the XML
Schema using ITU-T Recommendation X.694 [4] into ASN.1 [3] and then converting the resulting ASN.1 code into
TTCN-3 according to ES 201 873-7 [2]. Moreover, the XML document produced from the TTCN-3 code containing the
encoding instructions obtained from the XML Schema based on the present document, shall be the same as the XML
document produced by the ASN.1 E-XER encoding, when the same XML Schema is converted using ITU-T
Recommendation X.694 [4] and the resulted ASN.1 specification is encoded using the E-XER encoding. However, due
to the specifics of testing, in a few cases the present document will produce a superset of what ITU-T Recommendation
X.694 [4] would produce. For example, according to ITU-T Recommendation X.694 [4], abstract elements are omitted
when converting the head element of a substitution group, while the present document includes also the abstract
elements into the resulted union type, thus allowing provoking the SUT with incorrect data.

4.1 Conformance and compatibility

For an implementation claiming to support the use of XSD with TTCN-3, all features specified in the present document
shall be implemented consistently with the requirements given in the present document and in ES 201 873-1 [1].

The language mapping presented in the present document is compatible to:
. ES 201 873-1 [1], version V4.2.1.

If later versions of those parts are available and should be used instead, the compatibility of the language mapping
presented in the present document has to be checked individually.

5 Mapping XML Schemas

There are two approaches to the integration of XML Schema and TTCN-3, which will be referred to as implicit and
explicit mapping. The implicit mapping makes use of the import mechanism of TTCN-3, denoted by the keywords
language and import. It facilitates the immediate use of data specified in other languages. Therefore, the definition of a
specific data interface for each of these languages is required. The explicit mapping translates XML Schema definitions
directly into appropriate TTCN-3 language artefacts.

In case of an implicit mapping an internal representation shall be produced from the XML Schema, which
representation shall retain all the structural and encoding information. This internal representation is not accessible by
the user.

For explicit mapping, the information present in the XML Schema shall be mapped into accessible TTCN-3 code

and - the XML structural information which does not have its correspondent in TTCN-3 code - into accessible encoding
instructions. Built-in data types, described in detail in clause 6, in case of an implicit conversion are internal to the tool
and can be referenced directly by the user, while in case of an explicit conversion, the user shall have to import the
XSD.ttcn module (see annex A) in addition to the TTCN-3 modules resulted from the conversion. When importing from
an XSD Schema, the following language identifier string shall be used:

e "XSD"
The mapping shall start on a set of valid XSD schema-s and shall result in a set of valid TTCN-3 modules.
All XSD definitions are public by default (see clause 8.2.3 of ES 201 873-1 [1]).

The examples of the present document are written in the assumption of explicit mapping, although the difference is
mainly in accessibility and visibility of generated TTCN-3 code and encoding instruction set.

The present document is structured in three distinct parts:

. Clause 6 "Built-in data types" defines the TTCN-3 mapping for all basic XSD data types like strings
(see clause 6.2), integers (see clause 6.3), floats (see clause 6.4), etc. and facets (see clause 6.1) that allow for a
simple modification of types by restriction of their properties (e.g. restricting the length of a string or the range
of an integer).

ETSI

12 ETSI ES 201 873-9 V4.4.1 (2012-04)

. Clause 7 "Mapping XSD components” covers the translation of more complex structures that are formed using
the components shown in table 1 and a set of XSD attributes (see clause 7.1) which allow for modification of
constraints of the resulting types.

. Clause 8 "Substitution™ covers the translation of more XSD elements and types that may be substituted for
other XSD elements or types respectively in instance documents.

Table 1: Overview of XSD constructs

Element Defines tags that can appear in a conforming XML document.

attribute Defines attributes for element tags in a conforming XML document.
Defines the simplest types. They may be a built-in type, a list or choice of built-in
types and they are not allowed to have attributes.

Defines types that are allowed to be composed, e.g. have attributes and an
internal structure.

named model group Defines a named group of elements.

Defines a group of attributes that can be used as a whole in definitions of
complexTypes.

Defines that a component has to exhibit certain properties in regard to
uniqueness and referencing.

simpleType

complexType

attribute group

identity constraint

5.1 Namespaces and document references

5.1.1 Namespaces

A single XML Schema may be composed of a single or several schema element information items, and shall be
translated to one or more TTCN-3 modules, corresponding to schema components that have the same target namespace,
including no target namespace. For XSD schemas with the same target namespace (including absence of the target
namespace) exactly one TTCN-3 module shall be generated.

The names of the TTCN-3 modules generated based on this clause shall be the result of applying the name
transformation rules in clause 5.2.2 to the related target namespace, if it exists, or to the predefined name
"NoTargetNamespace".

NOTE 1: More than one schema element information items in an XML Schema may have the same target
namespace, including the case of no target namespace.

The information about the target namespaces and prefixes from the targetNamespace and xmins attributes of the
corresponding schema elements, if exist, shall be preserved in the encoding instruction "namespace as..." attached to
the TTCN-3 module. If the target namespace is absent, no "namespace as ..." encoding instruction shall be attached to
the TTCN-3 module. All declarations in the module shall inherit the target namespace of the module (including absence
of the target namespace).

NOTE 2: If different schema element information items using the same target namespace associates different
prefixes to that namespace, it is a tool implementation option, which prefix is preserved in the
"namespace as..." encoding instruction.

EXAMPLE: Schemas with the same namespace:

<?xml version="1.0" encoding="UTF-8"7?>
<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:nsl="http://www.example.org"
targetNamespace="http://www.example.org">
<!-- makes no difference if this schema is including the next one -->

</schema>

<?xml version="1.0" encoding="UTF-8"?>

<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:ns2="http://www.example.org"
targetNamespace="http://www.example.org">

<!-- makes no difference if this schema is including the previous one -->

</schema>

ETSI

13 ETSI ES 201 873-9 V4.4.1 (2012-04)

//Will result the TTCN-3 module
module http www_example org {
: // the content of the module is coming from both schemas

with {
encode "XML";
variant "namespace as 'http://www.example.org' prefix 'nsl'"
// the prefix in the encoding instruction could also be 'ns2', this is a tool's option.

}

51.2 Includes

XSD include element information items shall be ignored if the included schema element has the same target namespace
as the including one (implying the absence of the target namespace). If the included schema element has no target
namespace but the including schema has (i.e. it is not absent), all definitions of the included schema shall be mapped
twice, i.e. the resulted TTCN-3 definitions shall be inserted to the TTCN-3 module generated for the schema element(s)
with no target namespace as well as to the module generated for the schema element(s) with the target namespace of the
including schema.

EXAMPLE: A schema with a target namespace is including a schema without a target namespace:

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:ns="http://www.example.org"
targetNamespace="http://www.example.org">
<!-- the including schema -->
<include schemalocation="included.xsd"/>

</schema>

<?xml version="1.0" encoding="UTF-8"7?>
<schema xmlns="http://www.w3.0rg/2001/XMLSchema">
<!—this is the included schema -->

</schema>

//Will result the TTCN-3 modules (please note, the content of the modules may come
// from more than one schemas.

module http www_example org {

: // contains definitions mapped from both schemas

with {
encode "XML";
variant "namespace as 'http://www.example.org' prefix 'nsl'"

}

module NoTargetNamespace {
: // contains definitions mapped from the schema without target namespace only

with {
encode "XML"
1

5.1.3 Imports

All XSD import statements (i.e. import element information items and the related xmins attributes, where present) shall
be mapped to equivalent TTCN-3 import statements, importing all definitions from the other TTCN-3 module. All XSD
components are public by default (see clause 8.2.3 of ES 201 873-1 [1]). Multiple XSD import element information
items with the same namespace attribute (including no target namespace) shall be mapped to a single TTCN-3 import
statement.

NOTE 1: The above statement means that XSD components using imported XSD references are complete, i.e. in
case of implicit mapping it is not needed to additionally import the schema containing the referenced
XSD components to TTCN-3, unless the referenced XSD component wanted to be used in TTCN-3
directly.

ETSI

14 ETSI ES 201 873-9 V4.4.1 (2012-04)

NOTE 2: XSD permits a bare <import> information item (in schemas having a target namespace). This allows
unqualified references to foreign components with no target namespace without giving hints where to find
them. The resolution of such cases is left to tool implementations. It is allowed to import single XSD
components into TTCN-3. When the TTCN-3 import statement is importing single definitions or
definitions of the same kind from XSD (see clauses 8.2.3.2 and 8.2.3.4 of ES 201 873-1 [1]), or an import
all statement contains an exception list (see clause 8.2.3.5 of ES 201 873-1 [1]), this results in the import
of a type definition only, but not in the import of a group, template, testcase etc.

NOTE 3: Please note that importing all types of a target namespace has the same effect as importing all definitions
of that namespace (i.e. "import from TargetNamespace { type all };"resultsin the same
as"import from TargetNamespace all;").

It is not allowed to import XSD import statements to TTCN-3 (i.e. there is no transitive import of XSD import
statements as defined for TTCN-3, see clause 8.2.3.7 of ES 201 873-1 [1]).

514 Attributes of the XSD schema element

If the TTCN-3 module corresponds to a (present) target namespace and the value of the attributeFormDefault and/or
elementFormDefault attributes of any schema element information items that contribute to the given TTCN-3 module is
qualified, the encoding instructions "attributeFormQualified" and/or "elementFormQualified™" shall
be attached accordingly to the given TTCN-3 module. All fields of TTCN-3 definitions in the given TTCN-3 module
corresponding to local attribute declarations or to attribute and attributeGroup references in schema element
information items with the value of its attributeFormDefault attribute being unqualified (explicitly or implicitly via
defaulting) shall be supplied with the "form as unqualified" encoding instruction, unless a form attribute of the
given declaration requires differently (see clause 7.1.6). All fields of TTCN-3 definitions in the given TTCN-3 module
corresponding to local element declarations or element and model group references in schema element information
items with the value of its elementFormDefault attribute unqualified (explicitly or implicitly via defaulting) shall be
supplied with the "form as unqualified™ encoding instruction, unless a formattribute of the given declaration
requires differently (see clause 7.1.6).

Mapping of the blockDefault XSD attribute information item see in clauses 7.1.10, 8.1 and 8.2.
The final Default, id, version and xml:lang attributes of schema elements shall be ignored.

EXAMPLE: Mapping of schema attributes:

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://www.example.org"
attributeFormDefault="qualified"
elementFormDefault="unqualified">
<complexType name="CTypel">
<sequence>
<element name="elem" type="integer"
</sequence>
<attribute name="attrib" type="integer"/>
</complexType></schemas>
</schema>

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://www.example.org"
attributeFormDefault="unqualified"
elementFormDefault="qualified">
<complexType name="CType2">
<sequence>
<element name="elem" type="integer"
</sequence>
<attribute name="attrib" type="integer"/>
</complexType></schema>
</schema>

//Will result in the TTCN-3 modules (please note, that the content of the modules may come
//from more than one schemas.
module http www_example org {
type record CTypel ({
XSD.Integer attrib optional,
XSD.Integer elem

ETSI

15 ETSI ES 201 873-9 V4.4.1 (2012-04)

with {
variant (attrib) "attribute";
variant (elem) "form as unqualified"

}

type record CType2 {
XSD.Integer attrib optional,
XSD.Integer elem

with {
variant (attrib) "attribute";
variant (attrib) "form as unqualified"

}

with {
encode "XML";
variant "namespace as 'http://www.example.org'";
variant "attributeFormQualified";
variant "elementFormQualified"

5.1.5 The control namespace

The control namespace is the namespace of the schema-instance attributes defined in clause 2.6 of XSD Part-1 [9], for
direct use in any XML documents (e.g. in the special XML attribute value "xsi:nil", see mapping of the nillable XSD
attribute in clause 7.1.11 or in case of substitutable types is the special XML attribute value "xsi:type", see clause 8.2
etc.). It shall be specified globally, with the controlNamespace encoding instruction attached to the TTCN-3 module.

NOTE 1: These attributes are in the namespace http://www.w3.0rg/2001/XMLSchema-instance.

NOTE 2: See also the definition "xsi: attributes" in clause 3.1 of the present document.

EXAMPLE: Identifying the control namespace of a module:

module MyModule
with {
encode "XML";
variant "controlNamespace'http://www.w3.org/2001/XMLSchema-instance' prefix 'xsi'"

52 Name conversion

521 General

Translation of identifiers (e.g. type or field names) has a critical impact on the usability of conversion results: primarily,
it must guarantee TTCN-3 consistency, but, in order to support migration of conversion results from code generated
with tools based on ITU-T Recommendation X.694 [4], it must also generate identifiers compatible with that standard.
It must also support portability of conversion results (the TTCN-3 code and the encoding instruction set) between
TTCN-3 tools of different manufacturers, which is only possible if identifier conversion is standardized.

For different reasons a valid XSD identifier may not be a valid identifier in TTCN-3. For example, it is valid to specify
both an attribute and an element of the same name in XSD. When mapped in a naive fashion, this would result in two
different types with the same name in TTCN-3.

A name conversion algorithm has to guarantee that the translated identifier name:
a) is unique within the scope it is to be used;
b) contains only valid characters;
¢) isnota TTCN-3 keyword;

d) isnotareserved word (e.g. "base" or "content™).

ETSI

http://www.w3.org/2001/XMLSchema-instance

16 ETSI ES 201 873-9 V4.4.1 (2012-04)

The present document specifies the generation of:

a) TTCN-3 type reference names corresponding to the names of model group definitions, top-level element
declarations, top-level attribute declarations, top-level complex type definitions, and user-defined top-level
simple type definitions;

b) TTCN-3 identifiers corresponding to the names of top-level element declarations, top-level attribute
declarations, local element declarations, and local attribute declarations;

¢) TTCN-3 identifiers for the mapping of certain simple type definitions with an enumeration facet
(see clause 6.1.5);

d) TTCN-3 identifiers of certain sequence components introduced by the mapping (see clause 7).

All of these TTCN-3 names shall be generated by applying clause 5.2.2 either to the name of the corresponding schema
component, or to a member of the value of an enumeration facet, or to a specified character string, as specified in the
relevant clauses of the present document.

5.2.2 Name conversion rules

Names of attribute declarations, element declarations, model group definitions, user-defined top-level simple type
definitions, and top-level complex type definitions can be identical to TTCN-3 reserved words, can contain characters
not allowed in TTCN-3 identifiers. In addition, there are cases in which TTCN-3 names are required to be distinct
where the names of the corresponding XSD schema components (from which the TTCN-3 names are mapped) are
allowed to be identical.

First:

a) the character strings to be used as names in a TTCN-3 module, shall be ordered in accordance to clause 5.2.3
(i.e. primary ordering the character strings according to their categories as names of elements, followed by
names of attributes, followed by names of type definitions, followed by names of model groups, and
subsequently ordering in alphabetical order);

NOTE 1: The above ordering of character strings is necessary to produce the same final names for the same
definitions independent of the order in which tools are processing schema elements with the same target
namespace. It does not affect the order in which the generated TTCN-3 definitions are written to the
modules by tools.

Secondly, the following character substitutions shall be applied, in order, to each character string being mapped to a
TTCN-3 name, where each substitution (except the first) shall be applied to the result of the previous transformation:

b) the characters " " (SPACE), "." (FULL STOP), "-" (HYPEN-MINUS), ":" (COLON) and "/" (SOLIDUS)
shall all be replaced by a” " (LOW LINE);

NOTE 2: Please note that the ":" (COLON) and "/" (SOLIDUS) character may appear in (target) namespace
attributes only but not in local parts of XML qualified names; i.e. the colon above does not refer to the
colon separating the Prefix and the NCName parts of XML qualified names (see [9], clause 3.2.18).

¢) any character except "A" to "Z" (LATIN CAPITAL LETTER A to LATIN CAPITAL LETTER Z), "a" to "z"
(LATIN SMALL LETTER A to LATIN SMALL LETTER Z), "0" to "9" (DIGIT ZERO to DIGIT NINE), and
" " (LOW LINE) shall be removed,;

d) asequence of two or more " " (LOW LINE) characters shall be replaced with a single *_* (LOW LINE);

e) "_"(LOW LINE) characters occurring at the beginning or at the end of the name shall be removed:;

f) if a character string that is to be used as a name of a TTCN-3 type starts with a lower-case letter, the first letter
shall be capitalized (converted to upper-case); if it starts with a digit (DIGIT ZERO to DIGIT NINE), it shall
be prefixed with an "X" (LATIN CAPITAL LETTER X) character;

g) ifacharacter string that is to be used as an identifier of a structured type field or enumeration value starts with

an upper-case letter, the first letter shall be uncapitalized (converted to lower-case); if it starts with a digit
(DIGIT ZERO to DIGIT NINE), it shall be prefixed with an "x" (LATIN SMALL LETTER X) character;

ETSI

h)

17 ETSI ES 201 873-9 V4.4.1 (2012-04)

if a character string that is to be used as a name of a TTCN-3 type definition or as a type reference name is
empty, it shall be replaced by "X" (LATIN CAPITAL LETTER X); and

if a character string that is to be used a name of a record or union field or enumeration value is empty, it shall
be replaced by "x" (LATIN SMALL LETTER X).

Finally, depending on the kind of name being generated, one of the three following items shall apply:

)

K)

If the name being generated is the name of a TTCN-3 type and the character string generated by items a) to i)
above is identical to the name of another TTCN-3 type previously generated in the same TTCN-3 module, or
is one of the reserved words specified in clause 11.27 of ITU-T Recommendation X.680 [3], then a postfix
shall be appended to the character string generated according to the above rules. The postfix shall consist of a
" " (LOW LINE) followed by the canonical lexical representation (see W3C XML Schema Part 2 [9],

clause 2.3.1) of an integer. This integer shall be the least positive integer such that the new name is different
from the type reference name of any other TTCN-3 type assignment previously generated in any of those
TTCN-3 modules.

If the name being generated is the identifier of a field of a record or a union type, and the character string
generated by the rules in items a) to i) above is identical to the identifier of a previously generated field
identifier of the same type, then a postfix shall be appended to the character string generated by the above
rules. The postfix shall consist of a” " (LOW LINE) followed by the canonical lexical representation (see
W3C XML Schema Part 2 [9], clause 2.3.1) of an integer. This integer shall be the least positive integer such
that the new identifier is different from the identifier of any previously generated component of that sequence,
set, or choice type. Field names that are one of the TTCN-3 keywords (see clause A.1.5 of ES 201 873-1 [1])
or names of predefined functions (see clause 16.1.2 of ES 201 873-1 [1]) after applying the postfix to clashing
field names, shall be suffixed by a single "_" (LOW LINE) character.

NOTE 3: ES 201 873-1 [1] clause A.1.5 table A.2 defines the keywords of the core language. However, TTCN-3

language extensions (see [i.3] to [i.6], but other extensions may also be published after the publication of
the present document) may define additional keywords and rules for handling those keywords in TTCN-3
modules requiring the given extension.

If the name being generated is the identifier of an enumeration item (see clause 6.2.4 of ES 201 873-1 [1]) of
an enumerated type, and the character string generated by the rules in items a) to i) above is identical to the
identifier of another enumeration item previously generated in the same enumerated type, then a postfix shall
be appended to the character string generated by the above rules. The postfix shall consist of a"_" (LOW
LINE) followed by the canonical lexical representation (see W3C XML Schema Part 2 [9], clause 2.3.1) of an
integer. This integer shall be the least positive integer such that the new identifier is different from the
identifier in any other enumeration item already present in that TTCN-3 enumerated type. Enumeration names
that are one of the TTCN-3 keywords (see clause A.1.5 of ES 201 873-1 [1]) or names of predefined functions
(see clause 16.1.2 of ES 201 873-1 [1]) after applying the postfix to clashing enumeration names, shall be
suffixed by a single *_" (LOW LINE) character.

EXAMPLE 1: Conversion of an XML Schema composed of two schema elements with identical target

namespaces:

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.0rg/2001/XMLSchema"

targetNamespace="http://www.example.org/1l">

<!— this file is: includeCircularla.xsd -->
<include schemalLocation="includeCircularlb.xsd"/>
<!-- simpleType "Foobar" -->

<simpleType name="Foobar">

<restriction base="integer"/>

</simpleType>

<!-- attribute "Foo-Bar" -->

<attribute name="Foo-Bar" type="integer"/>
<!-- attribute "Foo_Bar" -->

<attribute name="Foo Bar" type="integer"/>
<!-- attribute "Foobar" -->

<attribute name="Foobar" type="integer"/>
<!-- element "foobar" -->

<element name="foobar" type="integer"/>
<!-- element "Foobar" --»>

<element name="Foobar" type="integer"/>
<complexType name="Akarmi"s>

<sequence/>
<!-- complexType attribute "foobar" -->

ETSI

18 ETSI ES 201 873-9 V4.4.1 (2012-04)

<attribute name="foobar" type="integer"/>

<!-- complexType attribute "Foobar" -->
<attribute name="Foobar" type="integer"/>
</complexType>

</schema>

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://www.example.org/1l">

<!-- this file is: includeCircularlb.xsd -->
<include schemalLocation="includeCircularla.xsd"/>
<!-- simpleType "foobar" -->

<simpleType name="foobar">
<restriction base="integer"/>

</simpleType>

<!-- attribute "foobar" -->

<attribute name="foobar" type="integer"/>
</schema>

//Will be translated to:
module http www_example org_ 1 {
/* this file is: includeCircularla.xsd */
/* simpleType "Foobar" */
type XSD.Integer Foobar 4
// postfixed with " 4" as types are the third category and capital letters are preceding
// small letters in ISO 646.
with {
variant "name as 'Foobar'"
}

/* attribute "Foo-Bar" */
type XSD.Integer Foo Bar
with {
variant "name as 'Foo-Bar'"; variant "attribute"
}

/* attribute "Foo_Bar" */
type XSD.Integer Foo_Bar_1
// postfixed with " 1" as after changing dash to underscore in the name of the attribute
// "Foo-Bar", the names of the two types are clashing with each other.
with {
variant "name as 'Foo Bar'"; variant "attribute"
}

/* attribute "Foobar" */
type XSD.Integer Foobar 2
// postfixed with " 2" as attributes are the second category and capital letters are
// preceding small letters in ISO 646.
with {
variant "name as 'Foobar'";
variant "attribute"

}

/* element "foobar" */
type XSD.Integer Foobar 1
// postfixed with " 1" as elements are the first category and small letters are following
// capital letters in ISO 646.
with {
variant "name as 'foobar'";
variant "element"

}

/* element "Foobar" */
type XSD.Integer Foobar
// no postfix as elements are the first category and capital letters are preceding
// small letters in ISO 646.
with {
variant "element"
}

type record Akarmi {
/* complexType attribute "Foobar" */
XSD.Integer foobar optional,
/* complexType attribute "foobar" */
XSD.Integer foobar 1 optional

ETSI

19 ETSI ES 201 873-9 V4.4.1 (2012-04)

with {
variant (foobar) "name as capitalized";
variant (foobar 1) "name as 'foobar'";
variant (foobar,foobar 1) "attribute"

/* this file is: includeCircularlb.xsd*/
/* simpleType "foobar" */
type XSD.Integer Foobar 5
// postfixed with " 5" as types are the third category and small letters are following
// capital letters in ISO 646.
with {
variant "name as 'foobar'"
}

/* attribute "foobar" */
type XSD.Integer Foobar 3
// postfixed with " 3" as attributes are the second category and small letters are
// following capital letters in ISO 646.
with {
variant "name as 'foobar'";
variant "attribute"

}

with {
variant "namespace as 'http www.example.org/l'"
}

For an TTCN-3 type definition name or field identifier that is generated by applying this clause to the name of an
element declaration, attribute declaration, top-level complex type definition or user-defined top-level simple type
definition, if the type definition name generated is different from the value of the name attribute of the corresponding
schema component, a final "name as..." variant attribute shall be attached to the TTCN-3 type definition with that type
definition name (or to the field with that identifier) as specified in the items below:

a) If the only difference is the case of the first letter (which is upper case in the type definition name and lower
case in the name), then the variant attribute "name as uncapitalized" shall be used.

b) If the only difference is the case of the first letter (which is lower case in the identifier and upper case in the
name), then the variant attribute "name as capitalized" shall be applied to the field concerned or the
"name all as capitalized" shall be applied to the related type definition (in this case the attribute has effect on
all identifiers of all fields but not on the name of the type!).

c) Otherwise, the "name as '<name>'" variant attribute shall be used, where <name> is the value of the
corresponding name attribute.

EXAMPLE 2: Using the "name" variant attribute:

//The top-level complex type definition:
<xsd:complexType name="COMPONENTS" >
<xsd:sequence>
<xsd:element name="Elem" type="xsd:boolean"/>
<xsd:element name="elem" type="xsd:integer"/>
<xsd:element name="Elem-1" type="xsd:boolean"/>
<xsd:element name="elem-1" type="xsd:integer"/>
</xsd:sequences
</xsd:complexType>

//1is mapped to the TTCN-3 type assignment:
type record COMPONENTS_ 1
{

boolean elem,

integer elem 1,

boolean elem 1 1,

integer elem 1 2

with {

variant "name as 'COMPONENTS'";
variant (elem) "name as capitalized";
variant (elem 1) "name as 'elem'";
variant (elem_1_1) "name as 'Elem-1'";
variant (elem_1_2) "name as 'elem-1'";

}i

ETSI

20 ETSI ES 201 873-9 V4.4.1 (2012-04)

For an TTCN-3 identifier that is generated by applying this clause for the mapping of a simple type definition with an
enumeration facet where the identifier of the generated TTCN-3 enumeration value is different from the corresponding
member of the value of the enumeration facet, a "text as..." variant attribute shall be assigned to the TTCN-3
enumerated type, with qualifying information specifying the identifier of the enumeration item of the enumerated type.
One of the two following items shall apply:

a) If the only difference is the case of the first letter (which is lower case in the identifier and upper case in the
member of the value of the enumeration facet), then the "text "<TTCN-3 enumeration identifier>" as
capitalized™ variant attribute shall be used.

b) If all TTCN-3 enumeration values differ in the case of the first letter only (which is lower case in the identifier
and upper case in the member of the value of the enumeration facet), then the "text all as capitalized" variant
attribute shall be used.

¢) Otherwise, the "text "<TTCN-3 enumeration identifier>" as "<member of the value of the enumeration facet>
variant attribute shall be used.

EXAMPLE 3: Using the "text as..." variant attribute:

//The XSD enumeration facet:
<xsd:simpleType name="state">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="Off"/>
<xsd:enumeration value="off"/>
</xsd:restriction>
</xsd:simpleType>

//Is mapped to the TTCN-3 type assignment:

type enumerated State { off, off 1 }

with {
variant "name as uncapitalized";
variant "text 'off' as capitalized";
variant "text 'off 1' as 'off'";

5.2.3 Order of the mapping

An order shall be imposed on the top-level schema components of the source XSD Schema on which the mapping is
performed. This applies to model group definitions, top-level complex type definitions, user-defined top-level simple
type definitions, top-level attribute declarations, and top-level element declarations.

NOTE: Other top-level schema components are not mapped to TTCN-3, and XSD built-in data types are mapped
in a special way.

The order is specified in the three following items:

a) Top-level schema components shall first be ordered by their target namespace, with the absent namespace
preceding all namespace names in ascending alphabetical order.

b) Within each target namespace, top-level schema components shall be divided into four sets ordered as follows:
1) element declarations;
2) attribute declarations;
3) complex type definitions and simple type definitions;
4) model group definitions.
€) Within each set of item b), schema components shall be ordered by name in ascending alphabetical order.

TTCN-3 type definitions that correspond directly to the XSD schema components shall be generated in the order of the
corresponding XSD schema components.

ETSI

5.3

21 ETSI ES 201 873-9 V4.4.1 (2012-04)

Mapping of XSD schema components

Table 1a: Mapping of XSD schema components

XSD schema component Sub-category W3C XML Schema TTCN-3 mapping
reference defined by
attribute declaration Part1, 3.2 Clause 7.4
global Clause 7.3
element declaration local Part1, 3.3 Clause 7.3
head of a substitution Clause 8.1.1
group
complex type definition not substitutable Part1, 3.4 Clause 7.6
substitutable Clause 8.2
Built-in datatypes Part 2 Clause 6
attribute use Part1, 3.5 Clause 7.1.12
attribute group definition Part 1, 3.6 Clause 7.4.2
model group definition Part1, 3.7 Clause 7.9
model group use Part1, 3.8 Clause 7.6.7
particle Part 1, 3.9 Clause
wildcard Part 1, 3.10 Clause 7.1.15
identity-constraint definition Part1, 3.11 Clause 7.10
notation declaration Part1, 3.12 ignored by the mapping
annotation Part1, 3.13 ignored by the mapping
simple type definition not substitutable Part 1, 3.14 Clause 7.5
substitutable Clause 8.2
schema Part 1, 3.15 Clause 7.2
ordered Part2,4.2.2.1 ignored by the mapping
bounded Part2,4.2.3.1 ignored by the mapping
cardinality Part2,4.2.4.1 ignored by the mapping
numeric Part2,4.2.5.1 ignored by the mapping
length Part 2, 4.3.1.1 Clause 6.1.1
minLength Part 2, 4.3.2.1 Clause 6.1.2
maxLength Part 2,4.3.3.1 Clause 6.1.3
pattern Part 2,4.3.4.1 Clause 6.1.4
enumeration Part 2, 4.3.5.1 Clause 6.1.5
whiteSpace Part 2, 4.3.6.1 Clause 6.1.6
maxInclusive Part 2, 4.3.7.1 Clause 6.1.8
maxExclusive Part 2, 4.3.8.1 Clause 6.1.10
minExclusive Part 2,4.3.9.1 Clause 6.1.9
minInclusive Part 2, 4.3.10.1 Clause 6.1.7
totalDigits Part 2, 4.3.11.1 Clause 6.1.11
fractionDigits Part 2, 4.3.12.1 ignored by the mapping

5.4

Unsupported features

XSD and TTCN-3 are very distinct languages. Therefore some features of XSD have no equivalent in TTCN-3 or make
no sense when translated to the TTCN-3 language. Whenever possible, these features are translated into encoding
instructions completing the TTCN-3 code. The following list contains a collection of the unsupported features:

a)
b)
c)
d)

e)

Numeric types are not allowed to be restricted by patterns.
List types are not allowed to be restricted by enumerations or patterns.
Specifying the number of fractional digits for float types is not supported.

Translation of the identity-constraint definition schema components (unige, key, keyref, selector and field
elements) are not supported.

All time types (see clause 6.5) restrict year to 4 digits.

ETSI

22 ETSI ES 201 873-9 V4.4.1 (2012-04)

6 Built-in data types

XSD built-in data types may be primitive or derived types. The latter are gained from primitive types by means of a
restriction mechanism called facets. For the mapping of primitive types, a specific TTCN-3 module xsp is provided by
the present document, which defines the relation of XSD primitive types to TTCN-3 types. Whenever a new simpleType
is defined, with a built-in XSD type as its base type, it shall be mapped directly from types defined in the module XSD:

EXAMPLE:

<simpleType name="el">
<restriction base="integer"/>
</simpleType>

//Becomes
type XSD.Integer E1
with {
variant "name as uncapitalized"
}

In the following clauses both the principle mappings of facets and the translation of primitive types are given. The
complete content of the XSD module is given in annex A.

6.1 Mapping of facets

Table 2 summarizes the facets for the built-in types that are mapped to TTCN-3 specifically, i.e. to a specific TTCN-3
language construct. Facets, allowed by XML Schema but without a counterpart in TTCN-3, shall be retained by a
"transparent” encoding instruction as given in clause 6.1.12 and therefore not marked in table 2.

Table 2: Mapping support for facets of built-in types

Facet | length min max pattern | enum. min max min max tptal white
Length | Length Incl. Incl. Excl. Excl. Digits | Space
v v v v v
Type (see (see (see (see v (see
string note 1) | note 2) | note 2) | note 2) note 3)
integer v v
v
float v (see
note 4)
time v v
list v v v
boolean

NOTE 1: With the exception of QName which does not support length restriction.
NOTE 2: With the exception of hexBinary which does not support patterns.
NOTE 3: With the exception of some types (see clause 6.1.6).

NOTE 4: With the exception of decimal which does support totalDigits.

6.1.1 Length

The XSD facet length describes, how many units of length a value of the given simple type must have. For string and
data types derived from string, length is measured in units of characters. For hexBinary and base64Binary and data
types derived from them, length is measured in octets. For data types derived by list, length is measured in number of
list items. A length-restricted XSD type shall be mapped to a corresponding length restricted TTCN-3 type.

EXAMPLE 1:

<simpleType name="e2">
<restriction base="string">
<length value="10"/>
</restriction>
</simpleType>

ETSI

23 ETSI ES 201 873-9 V4.4.1 (2012-04)

Is translated to the following TTCN-3 type

type XSD.String E2 length(10)
with {

variant "name as uncapitalized"
}

For built-in list types (see clause 6.6) the number of elements of the resulting structure will be restricted.

EXAMPLE 2:

<simpleType name="e3">
<restriction base="NMTOKENS">
<length value="10"/>
</restriction>
</simpleType>

//Mapped to TTCN-3:
type XSD.NMTOKENS E3 length(10)
with {

variant "name as uncapitalized"
}

6.1.2 MinLength

The XSD facet minLength describes the minimal length that a value of the given simple type shall have. It shall be
mapped to a length restriction in TTCN-3 with a set lower bound and an open upper bound. The fixed XSD attribute
(see clause 7.1.5) shall be ignored.

EXAMPLE:

<simpleType name="e4">
<restriction base="string">
<minLength value="3"/>
</restrictions>
</simpleType>

//Is translated to:
type XSD.String E4 length(3 .. infinity)
with {
variant "name as uncapitalized";
}

6.1.3 MaxLength

The XSD facet maxLength describes the maximal length that a value of the given simple type shall have. It shall be
mapped to a length restriction in TTCN-3 with a set upper bound and a lower bound zero. The fixed XSD attribute
(see clause 7.1.5) shall be ignored.

EXAMPLE:

<simpleType name="e5">
<restriction base="string">
<maxLength value="5"/>
</restriction>
</simpleType>

//Is mapped to:
type XSD.String E5 length(0 .. 5)
with {

variant "name as uncapitalized"
}

ETSI

24 ETSI ES 201 873-9 V4.4.1 (2012-04)

6.1.4 Pattern

The XSD pattern facet allows constraining the value space of XSD data types by restricting the value notation by a
regular expression. This facet is supported for XSD types derived directly or indirectly from the XSD string type. For
these types pattern facets shall directly be mapped to TTCN-3 pattern subtyping. As the syntax of XSD regular patterns
differs from the syntax of the TTCN-3 pattern subtyping, a mapping of the pattern expression has to be applied. The
symbols "(" (LEFT PARENTHESIS), ")" (RIGHT PARENTHESIS), "[" (VERTICAL LINE), "[" (LEFT SQUARE
BRACKET), "1" (RIGHT SQUARE BRACKET) and """ (CIRCUMFLEX ACCENT) shall not be changed and shall be
translated directly. Other meta characters shall be mapped according to tables 3 and 4.

Table 3: Translation of meta characters

XSD TTCN-3
?
\s [\g{0,0,0,201\g{0,0,0,10}\t\r]
(see note)
\S [M\g{0,0,0,20}\q{0,0,0,10}\t\r]
(see note)
\d \d
\D [Md]
\w \w
\W [Mw]
\i [\Ww\d:]
\l [MwA\d:]
\c [\WwAd.\-_:]
\C [MwAd.\-]

NOTE: \g{0,0,0,20} denotes the " "
(SPACE) graphical character and
\g{0,0,0,10} denotes the line feed
(LF) control character.

Table 4: Translation of quantifiers

XSD TTCN-3
? #(0,1)
+ #(1,)
* #(0,)

{n,m} #(n,m)
{n} #n

{n, } #(n,)

Unicode characters in XSD patterns are directly translated but the syntax changes from s#xgpre; in XSD t0 \q{g, p,
r, <} in TTCN-3, where g, p, r, and c each represent a single character.

Escaped characters in XSD shall be mapped to the appropriate character in TTCN-3 (e.g. ".", and "+") or, if this
character has a meta-character meaning in TTCN-3 patterns, to an escaped character in TTCN-3. The double quote
character must be mapped to a pair of double quote characters in TTCN-3. Character categories and blocks (like \p{ru}
Or \p{IsBasicLatin}) are not supported. The mapping shall result in a valid TTCN-3 pattern according to clause B.1.5
of ES 201 873-1 [1].

EXAMPLE:

<simpleType name="e6">
<restriction base="string"s>
<pattern value=" (aUser|anotherUser)@(i|I)nstitute"/>
</restrictions>
</simpleType>

ETSI

25 ETSI ES 201 873-9 V4.4.1 (2012-04)
//Will be mapped to the following TTCN-3 expresion:

type XSD.String E6 (pattern " (aUser|anotherUser)@(i|I)nstitute")
with {

variant "name as uncapitalized"
}

6.1.5 Enumeration
The facet enumeration constraints the value space of XSD simple types to a specified set of values.

A simple type definition that is derived from an XSD string type (directly or indirectly) by restriction using the
enumeration facet, shall be mapped to a TTCN-3 enumerated type (see clause 6.2.4 of ES 201 873-1 [1]), where
each XSD enumeration information item is mapped to a TTCN-3 enumeration value of a TTCN-3 enumerated type
(see clause 6.2.4 of ES 201 873-1 [1]), as follows:

a) For each member of the XSD enumeration facet, a TTCN-3 enumeration item shall be added to the enumerated
type that is an identifier (i.e. without associated integer value), except for members not satisfying a relevant
length, minLength, maxLength, pattern facet or a whiteSpace facet with a value of replace or collapse and the
member name contain any of the characters HORIZONTAL TABULATION, NEWLINE or CARRIAGE
RETURN, or (in the case of collapse) contain leading, trailing, or multiple consecutive SPACE characters.

b) Each enumeration identifier shall be generated by applying the rules defined in clause 5.2.2 of the present
document to the corresponding value of the enumeration facet.

€) The members of the same enumeration facet (children of the sameXSD restriction element) shall be mapped in
ascending lexicographical order and any duplicate members shall be discarded.

A simple type definition that is derived from the XSD integer type (directly or indirectly) by restriction using the
enumeration facet, shall be mapped to a TTCN-3 enumerated type (see clause 6.2.4 of ES 201 873-1 [1]), where
each XSD enumeration information item is mapped a TTCN-3 enumeration value, as specified below. In this case the
enumeration names are artificial and the encoded XML component shall contain the integer values, not the TTCN-3
enumeration names. The encoder shall be instructed to do so with the encoding instruction "useNumber™.

a) For each member of the XSD enumeration facet, a TTCN-3 enumeration item shall be added to the enumerated
type that is an enumeration identifier plus the associated integer value shall be added to the enumeration type,
except for facet values not satisfying a relevant length, minLength, maxLength, pattern facet or a whiteSpace
facet with a value of replace or collapse and the member name contain any of the characters HORIZONTAL
TABULATION, NEWLINE or CARRIAGE RETURN, or (in the case of collapse) contain leading, trailing, or
multiple consecutive SPACE characters.

b) The identifier of each enumeration item shall be generated by concatenating the character string "int" with the
canonical lexical representation (see W3C XML Schema Part 2 [9], clause 2.3.1) of the corresponding member
of the value of the enumeration facet. The assigned integer value shall be the TTCN-3 integer value notation
for the member.

€) The members of the same enumeration facet (children of the sameXSD restriction element) shall be mapped in
ascending numerical order and any duplicate members shall be discarded.

Any other enumeration facet shall be mapped to value list subtyping, if this is allowed by ES 201 873-1 [1], that is
either a single value or a union of single values corresponding to the members of the enumeration facet. If a
corresponding value list subtyping is not allowed by ES 201 873-1 [1], the enumeration facet shall be ignored.

NOTE: The enumeration facet applies to the value space of the base type definition. Therefore, for an
enumer ation of the XSD built-in datatypes QName, the value of the uri component of the use_gname
record (see clause 6.6.4) is determined, in the XML representation of an XSD Schema, by the nhamespace
declarations whose scope includes the QName, and by the prefix (if any) of the QName.

EXAMPLE 1: The following represents a user-defined top-level simple type definition that is a restriction of
xsd:string with an enumeration facet:

<xsd:simpleType name="state">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="off"/>
<xsd:enumeration value="on"/>

ETSI

26 ETSI ES 201 873-9 V4.4.1 (2012-04)

</xsd:restriction>
</xsd:simpleType>

//Is mapped to the TTCN-3 type definition:
type enumerated State {off, on_}
with {
variant "name as uncapitalized";
variant "text 'on_' as 'on'";

}

EXAMPLE 2: The following represents a user-defined top-level simple type definition that is a restriction of
xsd:integer with an enumeration facet:

<xsd:simpleType name="integer-0-5-10">
<xsd:restriction base="xsd:integer"s>
<xsd:enumeration value="0"/>
<xsd:enumeration value="5"/>
<xsd:enumeration value="-5"/>
<xsd:enumeration value="10"/>
</xsd:restriction>
</xsd:simpleType

//Is mapped to the TTCN-3 type definition:
type enumerated Integer 0_5_10 {int_5(-5), int0(0), int5(5), int10(10)}
with {

variant "name as uncapitalized";

variant "useNumber"

EXAMPLE 3: The following represents a user-defined top-level simple type definition that is a restriction of
xsd:integer with a mininclusive and a maxInclusive facet:

<xsd:simpleType name="integer-1-10">
<xsd:restriction base="xsd:integer">
<xsd:minInclusive value="1"/>
<xsd:maxInclusive value="10"/>
</xsd:restriction>
</xsd:simpleType>

//Is mapped to the TTCN-3 type definition:
type integer Integer 1 10 (1..10)
with {
variant "name as uncapitalized"
}

EXAMPLE 4: The following represents a user-defined top-level simple type definition that is a restriction (with a
minExclusive facet) of another simple type definition, derived by restriction from xsd:integer with
the addition of a mininclusive and a maxInclusive facet:

<xsd:simpleType name="multiple-of-4">
<xsd:restriction>
<xsd:simpleType>
<xsd:restriction base="xsd:integer">
<xsd:minInclusive value="1"/>
<xsd:maxInclusive value="10"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:minExclusive value="5"/>
</xsd:restriction>
</xsd:simpleType>

//Is mapped to the TTCN-3 type definition:
type integer Multiple of 4 (1..4,6..10)
with {

variant "name as uncapitalized"
}

EXAMPLE 5: The following represents a user-defined top-level simple type definition that is a restriction (with a
minLength and a maxLength facet) of another simple type definition, derived by restriction from
xsd:string with the addition of an enumeration facet:

<xsd:simpleType name="colour">
<xsd:restriction>
<xsd:simpleType>
<xsd:restriction base="xsd:string">

ETSI

27 ETSI ES 201 873-9 V4.4.1 (2012-04)

<xsd:enumeration value="white"/>
<xsd:enumeration value="black"/>
<xsd:enumeration value="red"/>
</xsd:restriction>

</xsd:simpleType>

<xsd:minLength value="2"/>

<xsd:maxLength value="4"/>

xsd:restriction>
</xsd:simpleType>

//Is mapped to the TTCN-3 type definition:
type enumerated Color { red }
with {
variant "name as uncapitalized"
}

6.1.6 WhiteSpace

The whiteSpace facet has no corresponding feature in TTCN-3 but shall be preserved using the whitespace encoding
instruction.

EXAMPLE:

<simpleType name="e8">
<restriction base="string">
<whiteSpace value="replace"/>
</restrictions>
</simpleType>

This can be mapped into a charstring, sending information about the whiteSpace facet to the codec.

type XSD.String E8

with {
variant "whiteSpace replace";
variant "name as uncapitalized"

}

For most built-in types the value of the whiteSpace facet shall be set to "collapse" and only for the string types
normalizedString (see clause 6.2.2), token (see clause 6.2.2), language (see clause 6.2.13), Name (see clause 6.2.4) and
NCName (see clause 6.2.6) are allowed to specify this facet.

6.1.7 MinlInclusive

The mininclusive XSD facet is only applicable to the numerical types (integer, decimal, float, double and their
derivatives) and date-time types (duration, dateTime, time, gYearMonth, gYear, gMonthDay, gDay and gMonth). It
specifies the lowest bound of the type's value space, including the bound. This facet is mapped to TTCN-3 depending
on the base type of the facet's parent restriction element and the value of the facet:

a) if the mininclusive facet is applied to a float or double type (including their derivatives) and its value is one of
the special values INF (positive infinity) or NaN (hot-a-number), it shall be translated to a list subtyping with
the single TTCN-3 value infinity or not a number, respectively (independent of the value of a
max| nclusive or maxEclusive facet applied to the same type, if any);

b) otherwise, if the mininclusive facet is applied to a numeric type, it shall be translated to an inclusive lower
bound of a range restriction in TTCN-3. The upper bound of the base type range shall be:

- defined by a maxinclusive (see clause 6.1.8) or a maxEclusive (see clause 6.1.10) facet, which is a child
of the same restriction element, if any;

- or inherited from the base type; in case the base type is one of the XSD built-in types integer, decimal,
float, double, nonNegativel nteger or positivel nteger, it shall be set to infinity if not set) (in case of
other built-in numerical types the upper bounds of their value spaces are defined in [9]);

c) for the date-time types the facet shall be ignored.

ETSI

28 ETSI ES 201 873-9 V4.4.1 (2012-04)

NOTE: Note, that the upper bound of the value space of the XSD float type is
3.4028234663852885981170418348452E38 ((2°24-1)*27104) and of the XSD double type is
1.8268770466636284449305100043786E47 ((2°53-1)*27970). However, TTCN-3 does not place the
requirement to support these values by TTCN-3 tools. Therefore, to maintain the portability of the
generated TTCN-3 code, the upper bound is set to infinity, if no maxinclusive or maxEclusive facet is
applied. However, users should respect the values above, otherwise the result of producing encoded XML
values in undeterministic.

EXAMPLE 1: Mapping of an integer element with a minlnclusive facet:

<simpleType name="e%a">
<restriction base="integer">

<minInclusive value="-5"/>
</restriction>
</simpleType>
//Is mapped to:
type XSD.Integer E9a (-5 .. infinity)
with {

variant "name as uncapitalized"

}
EXAMPLE 2: Mapping of a float element with a numeric mininclusive value:

<simpleType name="e9b">
<restriction base="float">
<minInclusive value="-5"/>
</restrictions>
</simpleType>

//Is mapped to:
type XSD.Float E9b (-5.0 .. infinity)
with {

variant "name as uncapitalized";
}

EXAMPLE 3: Mapping of a float element with special mininclusive values:

<simpleType name="e9c">
<restriction base="float">

<minInclusive value="-INF"/>
</restriction>
</simpleType>
//Is mapped to:
type XSD.Float E9c (-infinity .. infinity)
with {

variant "name as uncapitalized";

}

<simpleType name="e9d">
<restriction base="float">
<minInclusive value="INF"/>
</restriction>
</simpleType>

//Is mapped to:
type XSD.Float E9d (infinity)
with {
variant "name as uncapitalized";
}

<simpleType name="e9%e">
<restriction base="float">
<minInclusive value="NaN"/>
</restrictions>
</simpleType>

//Is mapped to:
type XSD.Float E9e (not_a number)
with {

variant "name as uncapitalized";
}

ETSI

29 ETSI ES 201 873-9 V4.4.1 (2012-04)

6.1.8 MaxInclusive

The maxinclusive facet is only applicable to the numerical types (integer, decimal, float, double and their derivatives)
and date-time types (duration, dateTime, time, gYearMonth, gYear, gMonthDay, gDay and gMonth). It specifies the
upmost bound of the type's value space, including the bound. This facet is mapped to TTCN-3 depending on the base
type defined in the facet's parent restriction element and the value of the facet:

a) if the maxinclusive facet is applied to a float or double type (including their derivatives) and its value is one of
the special values -INF (negative infinity) or NaN (not-a-number), it shall be translated to a list subtyping with
the single TTCN-3 value -infinity Or not_a number, respectively (independent of the value of a
minlnclusive or minEclusive facet applied to the same restriction element, if any);

b) otherwise, if the maxinclusive facet is applied to a numeric type, it shall be translated to an inclusive upper
bound of a range restriction in TTCN-3. The lower bound of the range shall be:

- defined by a mininclusive (see clause 6.1.7) or a minEclusive (see clause 6.1.9) facet, which is a child of
the same restriction element, if any;

- or inherited from the base type; in case the base type is one of the XSD built-in types integer, decimal,
float, double, nonPositivelnteger or negativel nteger, it shall be set to (-infinity if not set) (in case of
other built-in numerical types the lower bounds of their value spaces are given in [9]);

c) for the date-time types the facet shall be ignored.

NOTE: Note, that the lower bound of the value space of the XSD float type is
-3.4028234663852885981170418348452E38 ((2/24-1)*2104) and of the XSD double type is
-1.8268770466636284449305100043786E47 ((2"53-1)*27970). However, TTCN-3 does not place
the requirement to support these values by TTCN-3 tools. Therefore, to maintain the portability of the
generated TTCN-3 code, the lower bound is set to -infini ty, if no mininclusive or minEclusive facet is
applied. However, users should respect the values above, otherwise the result of producing encoded XML
values in undeterministic.

EXAMPLE 1: Mapping of elements of type integer with maxinclusive facet:

<simpleType name="elOa">
<restriction base="positiveInteger">
<maxInclusive value="100"/>
</restrictions>
</simpleType>

//Is mapped to:
type XSD.PositiveInteger El0a (1 .. 100)
with {
variant "name as uncapitalized"
}

EXAMPLE 2: Mapping of a float type with a numeric maxinclusive facet:

<simpleType name="elOb">
<restriction base="float">

<maxInclusive value="-5"/>
</restrictions>
</simpleType>
//Is mapped to:
type XSD.Float E10b (-infinity .. -5.0)
//pls. note that XSD allows an integer-like value notation for float types but TTCN-3 does not!
with {

variant "name as uncapitalized";

}
EXAMPLE 3: Mapping of a float type with specific-value maxinclusive facets:

<simpleType name="elOc">
<restriction base="float">
<maxInclusive value="INF"/>
</restriction>
</simpleType>

ETSI

30

//Is mapped to:
type XSD.Float E10c (-infinity .. infinity)
with {
variant "name as uncapitalized";
}

<simpleType name="elOd">
<restriction base="float">
<maxInclusive value="NaN"/>
</restrictions>
</simpleType>

//Is mapped to:
type XSD.Float E10d (not_a number)
with {

variant "name as uncapitalized";
}

6.1.9 MinExclusive

ETSI ES 201 873-9 V4.4.1 (2012-04)

The XSD facet minExclusive is similar to mininclusive but the specified bound is not part of the range. It is also
applicable to the XSD numerical and date-time types (see clause 6.1.7). This facet is mapped to TTCN-3 depending on
the base type defined in the facet's parent restriction element and the value of the facet:

a) if the minExclusive facet is applied to a float or double type and its value is one of the special values
INF (positive infinity) or NaN (not-a-number), this type shall not be translated to TTCN-3;

NOTE 1: If the value of the minExclusive facet is INF or NaN, this result an empty type in XSD, but empty types

do not exist in TTCN-3.

b) otherwise, if the minExclusive facet is applied to an integer, float, double or decimal type, it shall be translated
to an exclusive lower bound of a range restriction in TTCN-3; the value of the bound shall be the value of the

minExclusive facet;

¢) incase b) the upper bound of the range shall be:

- defined by a maxinclusive (see clause 6.1.8) or a maxEclusive (see clause 6.1.10) facet, which is a child

of the same restriction element, if any;

- or inherited from the base type; in case the base type is one of the XSD built-in types integer, decimal,
float, double, nonNegativelnteger or positivelnteger, it shall be set to infinity (in case of other
built-in numerical types the upper bounds of their value spaces are defined in [9]);

d) for the date-time types the facet shall be ignored.

NOTE 2: Note, that the upper bound of the value space of the XSD float type is

3.4028234663852885981170418348452E38 ((2°24-1)*27104) and of the XSD double type is
1.8268770466636284449305100043786E47 ((253-1)*27970). However, TTCN-3 does not place the
requirement to support these values by TTCN-3 tools. Therefore, to maintain the portability of the
generated TTCN-3 code, the upper bound is set to infinity, if no maxinclusive or maxEclusive facet is
applied. However, users should respect the values above, otherwise the result of producing encoded XML
values in undeterministic.

EXAMPLE 1: Mapping of the minExclusive facet applied to an integer type:

<simpleType name="ella"s>
<restriction base="integer">

<minExclusive value="-5"/>
</restriction>
</simpleType>
//Is mapped to TTCN-3 as:
type XSD.Integer Ella (!-5 .. infinity)
with {

variant "name as uncapitalized"

}

ETSI

31 ETSI ES 201 873-9 V4.4.1 (2012-04)

EXAMPLE 2: Mapping of a float type with minExclusive facet:

<simpleType name="ellb">
<restriction base="float">

<minExclusive value="-5"/>
</restriction>
</simpleType>
//Is mapped to TTCN-3 as:
type XSD.Float Ellb (!-5.0 .. infinity)
//pls. note that XSD allows an integer-like value notation for float types but TTCN-3 does not!
with {

variant "name as uncapitalized"

}

<simpleType name="ellc">
<restriction base="ns:el0b">

<minExclusive value="-6"/>
</restriction>
</simpleType>
//Is mapped to TTCN-3 as:
type XSD.Float Ellc (!-6.0 .. -5.0)
with {

variant "name as uncapitalized"

}

<simpleType name="elld"s>
<restriction base="float">
<minExclusive value="INF"/>
</restriction>
</simpleType>

// No corresponding TTCN-3 type is produced

6.1.10 MaxExclusive

The XSD facet maxExclusive is similar to maxInclusive but the specified bound is not part of the range. It is also
applicable to the XSD numerical and date-time types (see clause 6.1.8). This facet is mapped to TTCN-3 depending on
the base type defined in the facet's parent restriction element and the value of the facet:

a) if the maxExclusive facet is applied to a float or double type and its value is one of the special values -INF
(negative infinity) or NaN (not-a-number), this type shall not be translated to TTCN-3;

NOTE 1: If the value of the maxExclusive facet is -INF or NaN, this result an empty type in XSD, but empty types
do not exist in TTCN-3.

b) otherwise, if the maxExclusive facet is applied to an integer, float, double or decimal type, it shall be translated
to an exclusive upper bound of a range restriction in TTCN-3; the value of the bound shall be the value of the
maxExclusive facet;

¢) incase b) the lower bound of the range shall be:

- defined by a mininclusive (see clause 6.1.7) or a minEclusive (see clause 6.1.9) facet, which is a child of
the same restriction element, if any;

- or inherited from the base type; in case the base type is one of the XSD built-in types integer, decimal,
float, double, nonPositivelnteger or negativel nteger, it shall be set to -infinity (in case of other
built-in numerical types the lower bounds of their value spaces are given in [9]);

d) for the date-time types the facet shall be ignored.

NOTE 2: Note, that the lower bound of the value space of the XSD float type is
-3.4028234663852885981170418348452E38 ((2'24-1)*27104) and of the XSD double type is
-1.8268770466636284449305100043786E47 ((2"53-1)*27970). However, TTCN-3 does not place
the requirement to support these values by TTCN-3 tools. Therefore, to maintain the portability of the
generated TTCN-3 code, the lower bound is set to -infini ty, if no mininclusive or minEclusive facet is
applied. However, users should respect the values above, otherwise the result of producing encoded XML
values in undeterministic.

ETSI

32

ETSI ES 201 873-9 V4.4.1 (2012-04)

EXAMPLE 1: Mapping of a maxExclusive facet applied to a type, which is derivative of integer:

<simpleType name="el2a">
<restriction base="positiveInteger">
<maxExclusive value="100"/>
</restriction>
</simpleType>

// Is mapped in TTCN-3 to:
type XSD.PositiveInteger El2a (1 .. !100)
with {
variant "name as uncapitalized"
}

EXAMPLE 2: Mapping of a maxExclusive facet applied to the float type:

<simpleType name="el2b">
<restriction base="float">
<maxExclusive value="-5"/>
</restrictions>
</simpleType>

// Is mapped in TTCN-3 to:
type XSD.Float El12b (-infinity .. ! -5.0)

//pls. note that XSD allows an integer-like value notation for float types but TTCN-3 does not!

with {
variant "name as uncapitalized"

<simpleType name="el2c">
<restriction base="ns:e9%b">
<maxExclusive value="-4"/>
</restrictions>
</simpleType>

// Is mapped in TTCN-3 to:
type XSD.Float El2c (-5.0 .. ! -4.0)
with {

variant "name as uncapitalized"
}

<simpleType name="el2d">
<restriction base="float">
<maxExclusive value="-INF"/>
</restrictions>
</simpleType>

/I No corresponding TTCN-3 type is produced.

6.1.11 Total digits

This facet defines the total number of digits a numeric value is allowed to have. It shall be mapped to TTCN-3 using
ranges by converting the value of totalDigits to the proper boundaries of the numeric type in question.

EXAMPLE:

<simpleType name="el3">
<restriction base="negativeInteger"s>
<totalDigits value="3"/>
</restrictions>
</simpleType>

// Is translated to:
type XSD.NegativeInteger E13 (-999 .. -1)
with {
variant "name as uncapitalized"
1

ETSI

33 ETSI ES 201 873-9 V4.4.1 (2012-04)

6.1.12 Not specifically mapped facets

Whenever an XSD facet element is not mapped to a TTCN-3 by one of the preceding clauses, it shall be mapped to a
“transparent ..." encoding instruction containing the name and the value of the XSD facet element.

The content of the encoding instruction shall be of the form transparent <facet> '<value>' where
<facet> is the XSD facet element’s name and <value> is the content of the value attribute of that facet element.

NOTE: Since the pattern and enumeration facets are the only facets which can contain the " character and this is
only possible for XSD string based types which will be mapped to value or pattern subtype restrictions
(see clauses 5 and 6), it is never necessary to quote the " character in any valid pattern value.

EXAMPLE:

<simpleType name="decimalWithWhole">
<restriction base="decimal">
<pattern value="[0-9][.][0-9]*"/>
</restrictions>
</simpleType>

// Is translated to:
type XSD.Decimal DecimalWithWhole

with {

variant "name as uncapitalized";

variant "transparent pattern '[0-9][.][0-9]*'"
}
<!-- The XSD type -->

<simpleType name="decimalWithlFraction">
<restriction base="decimal">
<fractionDigits value='1"'/>
</restriction>
</simpleType>

// Is translated to:
type XSD.Decimal DecimalWithlFraction
with {
variant "name as uncapitalized";
variant "transparent fractionDigits '1'"

6.2 String types

XSD string types shall generally be converted to TTCN-3 as subtypes of universal charstring or octetstring as specified
in this and in subsequent clauses. For an overview of the allowed facets please refer to table 2. Following clauses
specify the mapping of all string types of XSD.

To support mapping, the following type definitions are added to the built-in data types (utf8string is declared as a
UTF-8 encoded subtype of universal charstring in clause D.2.2.0 of ES 201 873-1 [1]):

type utf8string XMLCompatibleString
(
char(0,0,0,9).. char(0,0,0,9),
char(0,0,0,10) ..char(0,0,0,10),
char(0,0,0,13)..char(0,0,0,13),
char(0,0,0,32)..char(0,0,215,255),
char(0,0,224,0) ..char(0,0,255,253),
char(0,1,0,0)..char(0,16,255,253)
)i

type utf8string XMLStringWithNoWhitespace
(
char(0,0,0,33)..char(0,0,215,255),
char(0,0,224,0) ..char(0,0,255,253),
char(0,1,0,0)..char(0,16,255,253)

)i

ETSI

34 ETSI ES 201 873-9 V4.4.1 (2012-04)

type utf8string XMLStringWithNoCRLFHT
(
char(0,0,0,32)..char(0,0,215,255),
char(0,0,224,0) ..char(0,0,255,253),
char(0,1,0,0)..char(0,16,255,253)
)i

6.2.1 String

The string type shall be translated to TTCN-3 as an XML compatible restriction of the universal charstring:
type XSD.XMLCompatibleString String

with {
variant "XSD:string"
}

6.2.2 Normalized string

The normalizedString type shall be translated to TTCN-3 using the following XML compatible restricted subtype of the
universal charstring:

type XSD.XMLStringWithNoCRLFHT NormalizedString

with {
variant "XSD:normalizedString"
}

6.2.3 Token

The token type shall be translated to TTCN-3 using the built-in data type NormalizedString:
type XSD.NormalizedString Token

with {
variant "XSD:token"
}

6.2.4 Name

The Name type shall be translated to TTCN-3 using the following XML compatible restricted subtype of the universal
charstring:

type XSD.XMLStringWithNoWhitespace Name

with {
variant "XSD:Name"
}

6.2.5 NMTOKEN

The NMTOKEN type shall be translated to TTCN-3 using the following XML compatible restricted subtype of the
universal charstring:

type XSD.XMLStringWithNoWhitespace NMTOKEN

with {
variant "XSD:NMTOKEN"
}

6.2.6 NCName

The NCName type shall be translated to TTCN-3 using the built-in data type Name:
type XSD.Name NCName

with {
variant "XSD:NCName"

ETSI

35 ETSI ES 201 873-9 V4.4.1 (2012-04)

6.2.7 ID

The 1D type shall be translated to TTCN-3 using the built-in data type NCName:
type XSD.NCName ID

with {
variant "XSD:ID"

6.2.8 IDREF

The IDREF type shall be translated to TTCN-3 using the built-in data type NCName:
type XSD.NCName IDREF

with {
variant "XSD:IDREF"

6.2.9 ENTITY

The ENTITY type shall be translated to TTCN-3 using the built-in data type NCName:
type XSD.NCName ENTITY

with {
variant "XSD:ENTITY"

6.2.10 Hexadecimal binary

The hexBinary type shall be translated to TTCN-3 using a plain octetstring:
type octetstring HexBinary

with {
variant "XSD:hexBinary"
}

No pattern shall be specified for hexBinary types.

6.2.11 Base 64 binary

The XSD base64Binary type shall be translated to an octetstring in TTCN-3. When encoding elements of this type, the
XML codec will invoke automatically an appropriate base64 encoder; when decoding XML instance content, the
base64 decoder will be called.

The base64Binary type shall be mapped to the TTCN-3 type:
type octetstring Baseé64Binary

with {
variant "XSD:base64Binary"

EXAMPLE:

<simpleType name="E14">

<restriction base="base64Binary"/>

</simpleType>

//Is translated as:

type XSD.Baseé64Binary E14;

// and the template:

template E14 MyBase64BinaryTemplate := '546974616E52756C6573'0

// Is encoded as:

<E14>VGl0YW5SdWxlcw==\r\n</E14>

ETSI

36 ETSI ES 201 873-9 V4.4.1 (2012-04)

6.2.12 Any URI

The anyURI type shall be translated to TTCN-3 as an XML compatible restricted subtype of the universal charstring:

type XSD.XMLStringWithNoCRLFHT AnyURI
with {

variant "XSD:anyURI"
}

6.2.13 Language

The language type shall be translated to the TTCN-3 type:

type charstring Language (pattern "[a-zA-Z]#(1,8) (-\w#(1,8))#(0,)")
with {

variant "XSD:language"
}

6.2.14 NOTATION

The XSD NOTATION type shall not be translated to TTCN-3.

6.3 Integer types

XSD integer types shall generally be converted to TTCN-3 as subtypes of integer-based types. For an overview of the
allowed facets please refer to table 2. The following clauses specify the mapping of all integer types of XSD.

6.3.1 Integer

The integer type is not range-restricted in XSD and shall be translated to TTCN-3 as a plain integer:

type integer Integer
with {
variant "XSD:integer"

6.3.2 Positive integer

The positivelnteger type shall be translated to TTCN-3 as the range-restricted integer:

type integer PositiveInteger (1 .. infinity)
with { variant "XSD:positiveInteger"};

6.3.3 Non-positive integer

The nonPositivel nteger type shall be translated to TTCN-3 as the range-restricted integer:

type integer NonPositiveInteger (-infinity .. 0)
with {
variant "XSD:nonPositiveInteger"

6.3.4 Negative integer

The negativelnteger type shall be translated to TTCN-3 as the range-restricted integer:

type integer Negativelnteger (-infinity .. -1) with
variant "XSD:negativeInteger"
}i

ETSI

37 ETSI ES 201 873-9 V4.4.1 (2012-04)

6.3.5 Non-negative integer

The nonNegativel nteger type shall be translated to TTCN-3 as the range-restricted integer:
type integer NonNegativeInteger (0 .. infinity)

with {
variant "XSD:nonNegativeInteger"

6.3.6 Long

The long type is 64bit based in XSD and shall be translated to TTCN-3 as a plain longlong as defined in clause D.2.1.3
of ES 201 873-1 [1]:

type longlong Long

with {
variant "XSD:long"
}

6.3.7 Unsigned long

The unsignedLong type is 64bit based in XSD and shall be translated to TTCN-3 as a plain unsignedlionglong as defined
in clause D.2.1.3 of ES 201 873-1 [1]:

type unsignedlonglong UnsignedLong
with {

variant "XSD:unsignedLong"
}

6.3.8 Int

The int type is 32bit based in XSD and shall be translated to TTCN-3 as a plain long as defined in clause D.2.1.2 of
ES 201 873-1 [1]):

type long Int

with {
variant "XSD:int"

6.3.9 Unsigned int

The unsignedint type is 32bit based in XSD and shall be translated to TTCN-3 as a plain unsignediong as defined in
clause D.2.1.2 of ES 201 873-1 [1]:

type unsignedlong UnsignedInt

with {
variant "XSD:unsignedInt"

6.3.10 Short

The short type is 16bit based in XSD and shall be translated to TTCN-3 as a plain short as defined in clause D.2.1.1 of
ES 201 873-1 [1]:
type short Short

with {
variant "XSD:short"
}

6.3.11 Unsigned Short

The unsignedShort type is 16bit based in XSD and shall be translated to TTCN-3 as a plain unsignedshort as defined in
clause D.2.1.1 of ES 201 873-1 [1]:

type unsignedshort UnsignedShort
with {

ETSI

38 ETSI ES 201 873-9 V4.4.1 (2012-04)

variant "XSD:unsignedShort"

6.3.12 Byte

The byte type is 8bit based in XSD and shall be translated to TTCN-3 as a plain byte as defined in clause D.2.1.0 of
ES 201 873-1 [1]:

type byte Byte
with {

variant "XSD:byte"
}

6.3.13 Unsigned byte

The unsignedByte type is 8bit based in XSD and shall be translated to TTCN-3 as a plain unsignedbyte as defined in
clause D.2.1.0 of ES 201 873-1 [1]:

type unsignedbyte UnsignedByte
with {

variant "XSD:unsignedByte"
}

6.4 Float types

XSD float types are generally converted to TTCN-3 as subtypes of float. For an overview of the allowed facets refer to
table 2 in clause 6.1. Following clauses specify the mapping of all float types of XSD.

6.4.1 Decimal

The decimal type shall be translated to TTCN-3 as a plain float:

type float Decimal (!-infinity .. !infinity)
with {
variant "XSD:decimal"
}
6.4.2 Float

The float type shall be translated to TTCN-3 as an IEEE754float as defined in clause D.2.1.4 of ES 201 873-1 [1]:

type IEEE754float Float
with { variant "XSD:float"};

6.4.3 Double

The double type shall be translated to TTCN-3 as an IEEE754double as defined in clause D.2.1.4 of ES 201 873-1 [1]:

type IEEE754double Double
with {

variant "XSD:double"
}

6.5 Time types

XSD time types shall generally be converted to TTCN-3 as pattern restricted subtypes of charstring. For an overview of
the allowed facets refer to table 2. Details on the mapping of all time types of XSD are given in the following.

For the definition of XSD time types, the supplementary definitions below are used. These definitions are part of the
module XSD (see annex A). As a consequence, in case of both implicit and explicit mappings, it shall be possible to use
their identifiers in other (user defined) modules but also, it shall be possible to reference these definitions by using their
qualified names (e.g. XSD.year).

ETSI

39 ETSI ES 201 873-9 V4.4.1 (2012-04)

const charstring

dash := "-",
cln = ":",
year := "(0(0(0[1-9]]|[1-9]1([0-9])|[1-9][0-9][0-9])]|[1-9][0-9]([0-9][0-9])™",
yearExpansion := " (-([1-9][0-9]1#(0,))#(,1))#(,1)",
month := "(0[1-9]|1[0-2])",
dayOfMonth := " (0[1-9]|[12][0-9]|3[01])",
hour := "([01] [0-9]|2[0-3])",
minute := " ([0-5][0-9])",
second := " ([0-5][0-9])",
sFraction := " (.[0-91#(1,))#(,1)",
endOfDayExt := "24:00:00 (.0#(1,))#(,1)",
nums := "[0-91#(1,)",
ZorTimeZoneExt := "(Z| [\+\-1((0[0-9]1|1[0-3]):[0-5][0-9]|14:00))#(,1)",
durTime := "(T[0-91#(1,)"&
"(H([0-91#(1,) (M([0-91#(1,) (S|.[0-91#(1,)S))#(,1)].[0-91#(1,)S|S)N)#(,1)|" &
"M([0-91#(1,) (S]|.[0-91#(1,)S)|.[0-91# (1,)M#(,1)|"&
"S|re
" [0-91#(1,)8))"

NOTE 1: The patterns below implement the syntactical restrictions of 1SO 8601 [i.2] and XSD (e.g. year 0000,
month 00 or 13, day 00 or 32 are disallowed) but the semantical restrictions of XSD (e.g. 2001-02-29 is a
non existing date as 2001 is not a leap year) are not imposed.

NOTE 2: The patterns in the subsequent clauses, i.e. the text between the double quotes, need to be one continuous
string without whitespace when being used in a TTCN-3 code. The lines below are cut for pure editorial
reasons, to fit the text to the standard page size of the present document.

6.5.1 Duration

The duration type shall be translated to TTCN-3 using the following pattern-restricted charstring:

type charstring Duration (pattern
.."{dash}#(,1)P ({nums} (Y ({nums} (M ({nums}D{durTime}# (,1) | {durTime}# (,1)) |D{durTime}#(,1)) |" &
"{durTime}#(,1)) |M({nums}D{durTime}#(,1) | {durTime}# (,1)) |D{durTime}#(,1)) | {durTime})"
)
with {
variant "XSD:duration"
}

6.5.2 Date and time

The dateTime type shall be translated to TTCN-3 using the following pattern-restricted charstring:

type charstring DateTime (pattern
."{yearExpansion}{year}{dash}{month}{dash}{dayOofMonth}T ({hour}{cln}{minute}{cln}{second}" &
"{sFraction} | {endOfDayExt}) { ZorTimeZoneExt }"
)
with {
variant "XSD:dateTime"
}

6.5.3 Time

The time type shall be translated to TTCN-3 using the following pattern-restricted charstring:

type charstring Time (pattern
."({hour}{cln}{minute}{cln}{second}{sFraction} | {endOfDayExt}) {ZorTimeZoneExt}"
)
with {
variant "XSD:time"
1

6.5.4 Date

The date type shall be translated to TTCN-3 using the following pattern-restricted charstring:
type charstring Date (pattern

."{yearExpansion}{year}{dash}{month}{dash}{dayOfMonth}{ZorTimeZoneExt}"
)

ETSI

40 ETSI ES 201 873-9 V4.4.1 (2012-04)

with {
variant "XSD:date"
1

6.5.5 Gregorian year and month

The gYearMonth type shall be translated to TTCN-3 using the following pattern-restricted charstring:

type charstring GYearMonth (pattern
. ."{yearExpansion}{year}{dash}{month}{ZorTimeZoneExt}"
)
with {
variant "XSD:gYearMonth"
}

6.5.6 Gregorian year

The gYear type shall be translated to TTCN-3 using the following pattern-restricted charstring:

type charstring GYear (pattern
"{yearExpansion}{year}{ZorTimeZoneExt}"
)
with {
variant "XSD:gYear"
}

6.5.7 Gregorian month and day

The gMonthDay type shall be translated to TTCN-3 using the following pattern-restricted charstring:

type charstring GMonthDay (pattern
"{dash}{dash}{month}{dash}{dayOfMonth} {ZorTimeZoneExt}"
)
with {
variant "XSD:gMonthDay"
}

6.5.8 Gregorian day

The gDay type shall be translated to TTCN-3 using the following pattern-restricted charstring:

type charstring GDay (pattern
"{dash}{dash}{dash}{dayOfMonth}{ZorTimeZoneExt }"
)
with {
variant "XSD:gDay"
}

6.5.9 Gregorian month

The gMonth type shall be translated to TTCN-3 using the following pattern-restricted charstring:

type charstring GMonth (pattern
"{dash}{dash}{month} {ZorTimeZoneExt }"
)
with {
variant "XSD:gMonth"
}

6.6 Sequence types

XSD sequence types shall generally be converted to TTCN-3 as a record of their respective base types. For an overview
of the allowed facets refer to table 2. Following clauses specify the mapping of all sequence types of XSD.

ETSI

41 ETSI ES 201 873-9 V4.4.1 (2012-04)

6.6.1 NMTOKENS

The XSD NMTOKENS type shall be mapped to TTCN-3 using a record of construct of type NMTOKEN:
type record of XSD.NMTOKEN NMTOKENS

with {
variant "XSD:NMTOKENS"

6.6.2 IDREFS

The XSD IDREFStype shall be mapped to TTCN-3 using a record of construct of type IDREF:

type record of IDREF IDREFS
with { variant "XSD:IDREFS" };

6.6.3 ENTITIES

The XSD ENTITIEStype shall be mapped to TTCN-3 using a record of construct of type ENTITY:

type record of ENTITY ENTITIES
with {

variant "XSD:ENTITIES"
}

6.6.4 QName

The XSD QName type shall be translated to the TTCN-3 type QName as given below:

type record QName {
AnyURI uri optional,
NCName name

with {
variant "XSD:QName"
1

When encoding an element of type QName (or derived from QName), if the encoder detects the presence of an URI and
this is different from the target namespace, the following encoding shall result (the assumed target namespace is
http://www.example.org/).

EXAMPLE:

type record El4a

{

QName name,
integer refId

}

template Eld4a t_Elda:=

{

name: ={
uri:="http://www.organization.org/",
name: ="someName"

refId:=10

}

<?xml version="1.0" encoding="UTF-8"?>

<El4a xmlns="http://www.example.org/">

<name xmlns:ns="http://www.organization.org/">ns:someName</name>
<refId>10</refId>

</Elda>

ETSI

http://www.example.org/

42 ETSI ES 201 873-9 V4.4.1 (2012-04)

6.7 Boolean type

The XSD boolean type shall be mapped to the TTCN-3 boolean type:

type boolean Boolean
with {

variant "XSD:boolean"
}

During translation of XSD boolean values it is hecessary to handle all four encodings that XSD allows for Booleans
("true", "fa1se", "0", and "1"); This shall be realized by using the "text" encoding instruction:

type XSD.Boolean MyBooleanType
with {
variant "text 'true' as '1'";
variant "text 'false' as '0'"

}

6.8 AnyType and anySimpleType types

The XSD anySmpleType can be considered as the base type of all primitive data types, while the XSD anyType is the
base type of all complex definitions and the anySimpleType.

The anySimpleType shall be translated as an XML compatible restricted subtype of the universal charstring.

EXAMPLE:

type XSD.XMLCompatibleString AnySimpleType
with {

variant "XSD:anySimpleType"
}

//while anyType is translated into XML content opagque to the codec:

type record AnyType {
record length (1 .. infinity) of XSD.String attr optiomal,
record of XSD.String elem list

with {
variant "XSD:anyType";
variant (attr) "anyAttributes";
variant (elem_list) "anyElement";

}

See also clause 7.7.

7 Mapping XSD components

After mapping the basic layer of XML Schema (i.e. the built-in types) a mapping of the structures shall follow. Every
structure that may appear, globally or not, shall have a corresponding mapping to TTCN-3.

7.1 Attributes of XSD component declarations

Tables 5 and 6 contain an overview about the the use of XSD Mappings of the attributes are described in the
corresponding clauses. Tables 5 and 6 show which attributes shall be evaluated when converting to TTCN-3, depending
on the XSD component to be translated.

ETSI

43 ETSI ES 201 873-9 V4.4.1 (2012-04)

Table 5: Attributes of XSD component declaration #1

components . simple |complex |simple |complex wild-
attributes element attribute type type |content | content group \card
id v v v v v v v
final v v v
name v v v v v
maxOccurs v v
(see note 1)
minOccurs v v
(see note 1)
ref v v v
abstract v v
block v v
default v v
fixed v v
form v v
type v v
mixed v v
nillable v
use v
substitutionGroup v
(see note 2)
processContents v
NOTE 1: Can be used in locally defined components only.
NOTE 2: Can be used in globally defined components only.
Table 6: Attributes of XSD component declaration #2
omponents
all choice |sequence | attribute |annotation |restriction list union |extension
attributes Group
id v v v v v v v v v
name v
maxOccurs v v v
minOccurs v v v
ref v

It is also necessary to consider default values for attributes coming from the original definitions of the XSD components
(e.g. minOccurs s set to 1 for element components by default) when translating.

7.1.1 Id

The attribute id enables a unique identification of an XSD component. They shall be mapped to TTCN-3 as simple type
references, e.g. any component mapping to a type with name typeName and an attribute id="I1D" shall result in an
additional TTCN-3 type declaration:

type <Typename> ID;

7.1.2 Ref

The ref attribute may reference an id or a schema component in XSD. The ref attribute is not translated on its own but
the local element, attribute, attributeGroup or group references is mapped as specified in the appropriate clauses of the
present document.

ETSI

44 ETSI ES 201 873-9 V4.4.1 (2012-04)

7.1.3 Name

The XSD attribute name holds the specified name for an XSD component. A component without this attribute shall
either be defined anonymously or given by a reference (see clause 7.1.2). Names shall directly be mapped to TTCN-3
identifiers; please refer to clause 5.2.2 on constraints and properties of this conversion.

7.1.4 MinOccurs and maxOccurs

The minOccurs and maxOccurs XSD attributes provide the number of times an XSD component can appear in a
context. In case of mapping locally defined XSD elements, choice and sequence compositors, this clause is invoked by
clauses 7.3, 7.6.5 and 7.6.6.6 respectively. In case of the all compositor, mapping of the minOccurs and maxOccurs
attributes are specified in clause 7.6.4.

The minOccurs and maxOccurs attributes of an XSD component shall be mapped together as follows:

. In the general case, when both the minOccurs and maxOccurs attribute equal to "1™ (either explicitly or by
defaulting to "1"), they shall be ignored, i.e. are not mapped to TTCN-3.

. If the parent of the component being translated is a sequence or all, the minOccurs attribute equals to "0" and
the maxOccurs attribute equals to "1" (either explicitly or by defaulting to "1"), the TTCN-3 field resulted by
mapping the respective XSD component shall be set to optional.

. In all other cases, the type of the related TTCN-3 type or field shall be set to record of, where the
replicated inner type is the TTCN-3 type that would be the type of the field in the general case above. The
initial name of the field shall be postfixed with "_list", the encoding instruction "untagged" shall be attached to
the outer record of and, finally, if no "untagged" encoding instruction is attached to the inner TTCN-3 type
being iterated, a "name as '<initial name>"" encoding instruction shall be attached to the inner type, where
<initial name> is the name resulted from applying clause 5.2.2 to the name of the XSD component being
translated. The record of shall be:

- if the parent of the component being translated is a choice, the minOccurs attribute equals to "0" and the
maxOccurs attribute equals to "1" (either explicitly or by defaulting to "1") and:

L] if the component being translated is the first direct child of the choice with minOccurs="0",
restricted to the length range from O to 1;

L] if the component being translated is not the first direct child of the choice with minOccurs="0",
restricted to the fixed length 1;

- if the parent of the component is a sequence or all,minOccurs equals to "0" and maxOccurs equals to
"unbounded", the record of shall be unrestricted;

- if the parent of the component is a choice, the minOccurs attribute equals to "0" and the maxOccurs
attribute is more than 1", and:

" if the component being translated is the first direct child of the choice with minOccurs="0", it shall
be restricted to the length range from 0 to the upper bound corresponding to the value of the
maxOccurs attribute (where maxOccurs="unbounded" shall be translated to the upper bound
infinity);

L] if the component being translated is not the first child of the choice with minOccurs="0", it shall be
restricted to the length range from 1 to the upper bound corresponding to the value of the
maxOccurs attribute (where maxOccurs="unbounded" shall be translated to the upper bound
infinity);

- if the minOccurs attribute does not equal to "0" and the maxOccurs attribute is more than "1", the
record of shall be restricted to the length range corresponding to the values of the minOccurs and

maxOccurs attributes (where maxOccurs="unbounded" shall be translated to the upper bound
infinity).

NOTE 1: The effect of the "name as ..." encoding instruction is, that each repetition of the given element in an
encoded XML document will be tagged with the specified name. Thus, in this case the instruction has
effect on the elements of the TTCN-3 record of field and not on the field itself.

ETSI

45 ETSI ES 201 873-9 V4.4.1 (2012-04)

NOTE 2: Please note, that TTCN-3 constructs corresponding to anonymous XSD types always have the "untagged"
encoding instruction attached before this clause is invoked.

Table 7: Summary of mapping the minOccurs and maxOccurs attributes

minOccurs | maxOccurs in... TTCN-3 mapping
TTCN-3 construct preserved field
name postfix
0 0
1 or not .
0 present optional
1 or not 1 or not all other cases <the TTCN-3 element is
present present mandatory>
0 unbounded then below record of <initial type> list
<20 21 record' lgngth (<x>..<y>) of st
<initial type>
record length
<x>2>1 unbounded (<x>..infinity) of <initial _list
type>
0 1 or not child of XSD choice, the first record length (0..1) of list
present alternative with <initial type> —
unbounded minOccurs="0" record of <initial type> list
1 or not record length (1) of i
present child of XSD choice, <initial type> st
not the first alternative with record length
0 unbounded minOccurs="0" (1..infinity)of _list
<initial types>

EXAMPLE 1: Mapping of an optional element:

<complexType name="el5a">
<sequence>
<element name="foo" type="integer" minOccurs="0"/>
<element name="bar" type="float"/>
</sequence>
</complexType>

// Is translated to an optional field as:
type record El5a {

XSD.Integer foo optional,
XSD.Float Dbar

with {
variant "name as uncapitalized"
}
EXAMPLE 2: Mapping of elements allowing multiple recurrences:
<!-- The unrestricted case: -->
<complexType name="el5b">
<sequence>
<element name="foo" type="integer" minOccurs="0" maxOccurs="unbounded"/>
<element name="bar" type="float"/>
</sequence>
</complexType>

// Is translated to TTCN-3 as:

type record E15b {
record of XSD.Integer foo list,
XSD.Float Dbar

with {
variant "name as uncapitalized";
variant (foo_list) "untagged"

variant (foo_list[-]) "name as 'foo'"
<!-- The length restricted case: -->
<complexType name="el5c">

<sequence>

<element name="foo" type="integer" minOccurs="5" maxOccurs="10"/>

ETSI

46 ETSI ES 201 873-9 V4.4.1 (2012-04)
<element name="bar" type="float"/>
</sequence>
</complexType>
// Is translated to TTCN-3 as:
type record El5c {
record length(5..10) of XSD.Integer foo_list,
XSD.Float bar
with {
variant "name as uncapitalized ";
variant (foo_list) "untagged"
variant (foo_list[-]) "name as 'foo'"
}
EXAMPLE 3: Mapping of a group reference:
<!-- Provided we have: -->
<group name="foobarGroup">
<sequence>
<element name="foo" type="string"/>
<element name="bar" type="string"/>
</sequence>
</group>
<!-- The optional case: -->
<complexType name="el5d">
<group ref="ns:foobarGroup" minOccurs="0"/>
</complexType>
// Is translated to TTCN-3 as:
type record FoobarGroup
XSD.String foo,
XSD.String bar
with {
variant "untagged"
//pls. note, no "name as..." instruction is attached to the type due to the presence

//of the untagged instruction

}

type record E15d {
FoobarGroup foobarGroup optional

with {
variant "name as uncapitalized"

EXAMPLE 4: Mixed case, both elements and a group reference are present:

<complexType name="el5f">
<sequence>

<element name="comment" minOccurs="0" maxOccurs="unbounded" type="string"/>

<group ref="ns:foobarGroup" minOccurs="5" maxOccurs="10"/>

</sequence>
</complexType>

// Is translated to TTCN-3 as:
type record E15f {
record of XSD.String comment list,

record length (5..10) of FoobarGroup foobarGroup list

with {
variant "name as uncapitalized ";
variant (comment_list) "untagged";
variant (comment_list[-]) "name as 'comment'"
variant (foobarGroup list) "untagged"

//pls. note, no "name as..." instruction is attached to foobarGroup[-] due to the
//presence of the "untagged" instruction attached to the FoobarGroup type.

EXAMPLE 5: Resolving a name clash:

The Schema

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"

ETSI

a7 ETSI ES 201 873-9 V4.4.1 (2012-04)

xmlns:ns="www.example.org/name_clash element-attribute”
targetNamespace="www.example.org/name_clash element-attribute">

<xs:simpleType name="start list"s>
<xs:1list itemType="xs:string"/>
</xs:simpleType>

<xs:complexType name="start'"s>
<Xs:sequence>
<xs:element name='"start" type='"xs:integer" minOccurs="0" maxOccurs="10"/>
</xs:sequence>
<xs:attribute name="start list" type='"ns:start list"/>
</xs:complexType>
</xs:schema>

//is translated to the TTCN-3 module:
module http www_example org name clash element attribute {
import from XSD all;

type record of XSD.String Start_list

with {
variant "name as uncapitalized";
variant "list"

type record Start {

Start_list start_list optiomal,

record length (0 10) of XSD.Integer start_list_1

//the composed name of the record of field would clashes with the name of the field
//added for the XSD attribute, this is resolved by postfixing it according to $5.2.2

with {
variant "name as uncapitalized";
variant (start list) "attribute";
variant (start list 1) "untagged";
variant (start_list 1[-]) "name as 'start'";
}i
with {
encode "XML";

variant "namespace as 'www.example.org/name clash element-attribute' prefix 'ns'";
variant "controlNamespace 'http://www.w3.org/2001/XMLSchema-instance' prefix 'xsi'";

1
EXAMPLE 6: Mapping of childs of choice components:

<!—The XSD elements
<element name="ChoiceChildMinMax">

-->

<complexType>
<choice>
<element name="elem0" type="string" minOccurs="1" maxOccurs="5"/>
<element name="eleml" type="string" minOccurs="0" />
<element name="elem2" type="string" minOccurs="0" />
<element name="elem3" type="string" minOccurs="0" maxOccurs="unbounded"/>
</choices>
</complexType>
</element>
<!-- added only to enable showing all cases in one XML instance -->

<xs:element name="minOccurs_maxOccurs_frame">
<xs:complexType>

<xs:choice minOccurs="0"

maxOccurs="unbounded" >

<xs:element ref="ns:ChoiceChildMinMax"/>

</xs:cho

ice>

</xs:complexType>

</xs:element>

// Are translated to TTCN-3 as:
type record ChoiceChildMinMax {

union {
record 1

!/

record 1

//

//

record

ength (1 5)

ength (0

of XSD.String elem0O_list,

child of choice with minOccurs different
1) of XSD.String eleml list,
first child of choice with minOccurs O0;
this alternative is to be used create an
length(l) of XSD.String elem2 list,

ETSI

from 0

empty choice element

48 ETSI ES 201 873-9 V4.4.1 (2012-04)

// second child of choice with minOccurs 0
record length(l .. infinity) of XSD.String elem3 list
// third child of choice with minOccurs 0
} choice

with {
variant "element";
variant (choice) "untagged";

variant (choice.elem0_list) "untagged";
variant (choice.elem0 list[-]) "name as 'elem0'";
variant (choice.eleml list) "untagged";
variant (choice.eleml list[-]) "name as 'eleml'";
variant (choice.elem2 list) "untagged";
variant (choice.elem2 list[-]) "name as 'elem2'";
variant (choice.elem3 list) "untagged";
variant (choice.elem3 list[-]) "name as 'elem3'";

}i

/* added only to enable showing all cases in one XML instance */
type record MinOccurs maxOccurs_ frame {
record of union
ChoiceChildMinMax choiceChildMinMax
} choice list

with {

variant "name as uncapitalized";

variant "element";

variant (choice list) "untagged";

variant (choice list[-]) "untagged";

variant (choice_list[-].choiceChildMinMax) "name as capitalized";

}i

// and the TTCN-3 template:

template MinOccurs maxOccurs_ frame t MinOccurs maxOccurs_inChoice := {
choice list := {

// instances of the element elem0

{ choiceChildMinMax := { choice := { elem0 list := {"e01", "e02" }}}},
// an instance of the element eleml

choiceChildMinMax := { choice := { eleml list := { "el" }}}},

// an instance of the element elem2

{ choiceChildMinMax := { choice := { elem2 list := { "e2" }}}},
// instances of the element elem3

{ choiceChildMinMax := { choice := { elem3 list := { "e31", "e32", "e33" }}}},
// an empty choice element

{ choiceChildMinMax := { choice := { eleml list := {}}}}

}

} <!—could be encoded in XML e.g. as -->

<?xml version="1.0" encoding="UTF-8"7?>

<this:minOccurs maxOccurs frame xmlns:this="http://www.example.org/minOccurs maxOccurs"
xmlns:xsi="http://www.w3.0org/2001/XMLSchema-instance"
xsi:schemaLocation:"http://www.example.org/minOccurs_maxOccurs

./XSD/minOccurs_maxOccurs.xsd">
<!-- instances of the element elem0 -->
<this:ChoiceChildMinMax><elemO>e0l</elem0><elem0>e02</elem0></this:ChoiceChildMinMax>

<!-- an instance of the element eleml -->
<this:ChoiceChildMinMax><eleml>el</eleml></this:ChoiceChildMinMax>

<!-- an instance of the element elem2 -->
<this:ChoiceChildMinMax><elem2>e2</elem2></this:ChoiceChildMinMax>

<!-- instances of the element elem3 -->
<this:ChoiceChildMinMax><elem3>e3l</elem3><elem3>e32</elem3><elem3>e33</elem3>

</this:ChoiceChildMinMax>

<!— an empty choice element -->
<this:ChoiceChildMinMax/>

</this:minOccurs maxOccurs frame>

ETSI

49 ETSI ES 201 873-9 V4.4.1 (2012-04)

7.1.5 Default and Fixed

The XSD default attribute assigns a default value to a component in cases where it is missing in the XML data.

The XSD fixed attribute gives a fixed constant value to a component according to the given type, so in some XML data
the value of the component may be omitted. The XSD fixed attribute can also be applied to XSD facets, preventing a
derivation of that type from modifying the value of the fixed facets.

As default has no equivalent in TTCN-3 space, it shall be mapped to a "defaultForEmpty ..." encoding instruction. The
fixed attribute applied to attribute or element elements shall be mapped to a subtype definition with the single allowed
value identical to the value of the fixed attribute plus a "defaultForEmpty ..." encoding instruction identifying the value
of the fixed attribute as well. The fixed attribute applied to XSD facets shall be ignored.

EXAMPLE:

<element name="elementDefault" type="string" default="defaultValue"/>
<element name="elementFixed" type="string" fixed="fixedValue"/>

// Is be translated to:

type XSD.String ElementDefault

with {
variant "element";
variant "defaultForEmpty as 'defaultValue'";
variant "name as uncapitalized";

}
type XSD.String ElementFixed ("fixedValue")
with {
variant "element";
variant "defaultForEmpty as 'fixedvalue'";
variant "name as uncapitalized"
}
7.1.6 Form

The XSD form attribute controls if an attribute or element tag shall be encoded in XML by using a qualified or
unqualified name. The values of the form attributes shall be preserved in the "form as..." encoding instructions as
specified below:

a) If the value of the formattribute is qualified and the attributeFormQualified encoding instruction is attached to
the TTCN-3 module the given XSD declaration contributes to, or the value of the form attribute is unqualified
and no attributeFormQualified encoding instruction is assigned to the corresponding TTCN-3 module, the
formattribute shall be ignored.

b) If the value of a form attribute of an XSD attribute declaration is qualified and no attributeFormQualified
encoding instruction is attached to the target TTCN-3 module, or the value of a formattribute of an element
declaration is qualified and no elementFormQualified encoding instruction is attached to the target TTCN-3
module, a "form as qualified™ encoding instruction shall be attached to the TTCN-3 field resulted
from mapping the given XSD attribute or element declaration.

¢) Ifthe value of a formattribute of an XSD attribute declaration is unqualified and the attributeFormQualified
encoding instruction is attached to the target TTCN-3 module, or the value of a form attribute of an element
declaration is unqualified and the elementFormQualified encoding instruction is attached to the target TTCN-3
module, a "form as unqualified™ encoding instruction shall be attached to the TTCN-3 field resulted
from mapping the given XSD attribute or element declaration.

NOTE: An XSD declaration may contribute to more than one TTCN-3 module (see clause 5.1), therefore in case
of a given XSD declaration item a) and b) or c) above may apply at the same time.

Table 8 summarizes the mapping of the attributeFormDefault, elementFormDefault (see also clause 5.1) and form XSD
attributes.

ETSI

50

ETSI ES 201 873-9 V4.4.1 (2012-04)

Table 8: Summary of mapping of the form XSD attribute

ag??necsf;ﬁe attributeFormQualified and/or
; daing elementFormQualified encoding
instruction ; .
attached to the instructions attached to the
target TTCN-3 module
target
TTCN-3 module absent present
any value form |any value or absent "form as..." N/A
or absent |attribute absent absent (see note)
"form as..." "form as
absent present absent unqualified"
. unqualified form . "form as..." "form as
attnbut:rljg/r(r)r;Default or absent |attribute unqualified present absent unqualified”
elementFormDefault qualified present Loarlrinﬁjci' fo;?ggii”
in the ancestor 9 N/A of m
schema element absent present orm as....
(see note) absent
- form e N/A "form as
qualified attribute unqualified present (see note) unqualified”
. N/A "form as..."
qualified present (see note) absent
NOTE: Excluded by the mapping of attributeFormDefault and elementFormDefault in clause 5.1.
7.1.7 Type

The XSD type attribute holds the type information of the XSD component. The value is a reference to the global
definition of simpleType, complexType or built-in type. If type is not given, the component must define either an
anonymous (inner) type, or contain a reference attribute (see clause 7.1.2), or use the XSD ur-type definition.

7.1.8 Mixed

The mixed content attribute allows inserting text between the elements of XSD complex type or element definitions. Its
translation is defined in clause 7.6.8.

7.1.9 Abstract

The abstract XSD attribute can be used in global element XSD element information items and complexType XSD
element information items. When its value is set to "true" in a global element XSD definition, the given element shall
not be used in instances of the given XML Schema but is forced to be substituted with a member element of the
substitution group of which the abstract element is the head of (if there is no substitutable elements in the Schema, the
element cannot be used in instance documents). When its value is set to "true” in a global complexType XSD definition,
XSD elements referencing this type in their type attribute are forced to be instantiated by using an another type
definition, which is derived from the abstract type (the actual type used at instantiation shall be indicated by the xsi:type
XML attribute in the instance of the given element). See more details on mapping of substitutions in clause 8.

The abstract XSD attribute shall be translated to TTCN-3 by adding the "abstract" encoding instruction to the generated
TTCN-3 type definition corresponding to the XSD element or complexType information items with the abstract
attribute value "true”. If the value of the abstract attribute information item is set to "false" directly or indirectly (i.e. by
defaulting to "false™), the abstract XSD attribute shall be ignored. See example in clause 8.1.1.

7.1.10 Block and blockDefault

The XSD block and blockDefault attribute information items control the allowed element and type substitutions at the
instance level; blockDefault can be used in XSD schema elements, and has effect on all element and type child of the
schema. This default value can be overridden by a block attribute applied to a given element or complexType element
information item directly. This will result produce the effective block value for the given element or complexType. See
also clauses 3.3.2 and 3.4.2 of XML Schema Part 1 [9].

ETSI

51 ETSI ES 201 873-9 V4.4.1 (2012-04)

The effective block value shall be translated together with substitution. If a TTCN-3 code allowing element
substitutions is generated (see clause 8), the effective block value of head elements shall be translated together with the
head element of the substitution group according to clause 8.1.1. If a TTCN-3 code allowing type substitutions is
generated (see clause 8), the effective block value of substitutable parent types shall be translated together with the
substitutable parent types according to clause 8.2. The blockDefault and block attributes shall be ignored in all other
cases.

7.1.11 Nillable

If the nillable attribute of an element declaration is set to "true", then an element may also be valid if it carries the
namespace qualified attribute with (local) name nil from the namespace
"http://www.w3.0rg/2001/XMLSchema-instance™ and the value "true" (instead of a value of its type).

A nillable XSD element shall be mapped to a TTCN-3 recoxrd type (in case of global elements) or field (in case of
local elements), with the name resulted by applying clause 5.2.2 to the name of the corresponding element. The
record type or field shall contain one optional field with the name "content" and its type shall be the TTCN-3 type
of the element if the value of the nillable attribute would be "false". The record type or field shall be appended with
the "useNil™ encoding instruction.

EXAMPLE 1: Mapping of nillable elements:

<element name="remarkNillable" type="string" nillable="true"/>

<complexType name="elé6c">
<sequence>
<element name="foo" type="integer"/>
<element name="bar" type="string" nillable="true"/>
</sequence>
</complexType>

//Are translated to TTCN-3 as:
type record RemarkNillable {
XSD.String content optional

with {
variant "name as uncapitalized";
variant "element";
variant "useNil"

}

type record Eléc {
XSD.Integer foo,
record {
XSD.String content optional
} bar

with {
variant "name as uncapitalized";
variant (bar) "useNil"

}

// Which allows e.g. the following encoding:
template El6a t_El6a :=

foo:=3,
bar:= { content := omit }
}
<?xml version="1.0" encoding="UTF-8"?>
<eléa>
<foo>3</foo>
<bar xsi:nil="true"/>
</el6a>

ETSI

52 ETSI ES 201 873-9 V4.4.1 (2012-04)

EXAMPLE 2: Joint use of the nillable, minOccurs and maxOccurs attributes:

<element name="SegNillable" nillable="true">
<complexType>
<sequence>
<element name="forename" type="string" nillable="true"/>
<element name="surname" type="string" minOccurs="0" nillable="true"/>
<element name="bornPlace" type="string" minOccurs="0" maxOccurs="unbounded"
nillable="true"/>
<element ref="ns:remarkNillable"/>
</sequence>
</complexType>
</element>

//Is translated to TTCN-3 as:
type record SegNillable {
record {
record {
XSD.String content optional
} forename,
record {
XSD.String content optional
} surname optionmal,
record of record {
XSD.String content optional
} bornPlace list,
record {
XSD.String content optional
} remarkNillable
} content optional

with {
variant "element";
variant "useNil";
variant (content.bornPlace_list) "name as'bornPlace'";
variant (content.forename, content.surname, content.bornPlace list, content.remarkNillable)
"useNil"

7.1.12 Use

XSD local attribute declarations and references may contain also the special attribute use. The use attribute specifies the
presence of the attribute in an XML value. The values of this attribute are: optional, prohibited and required with the
default value optional. If the use attribute is missing or its value is optional in an XSD attribute declaration, the
TTCN-3 field resulted by the mapping of the corresponding attribute shall be optional. If the value of the use
attribute is required, the TTCN-3 field corresponding to the XSD attribute shall be mandatory (i.e. without
optional). XSD attributes with the value of the use attribute prohibited shall not be translated to TTCN-3 (for an
example see clause 7.6.2.2).

EXAMPLE: Mapping of the use attribute:

<xsd:complexType name="el7a">
<xsd:sequence>
</xsd:sequences>
<xsd:attribute name="fooLocal" type="xsd:float" use="required" />
<xsd:attribute name="barLocall" type="xsd:string" />
<xsd:attribute name="barLocal2" type="xsd:string" use="optional" />
<xsd:attribute name="dingLocal" type="xsd:integer" use="prohibited" />
</xsd:complexType>

//is translated to TTCN-3 as:

type record El7a {
XSD.String barLocall optional,
XSD.String barLocal2 optional,
XSD.Float fooLocal,

with {

variant "name as uncapitalized ";
variant (barLocall, barLocal2, fooLocal) "attribute"

ETSI

53 ETSI ES 201 873-9 V4.4.1 (2012-04)

7.1.13 Substitution group

The XSD substitutionGroup attribute can be used in global XSD element information items. Its value is the name of the
head element of a substitutionGroup and thus the XSD element definition containing the substitutionGroup attribute
becomes a member of that substitution group.

The substitutionGroup attribute information item shall be ignored when the element is translated to TTCN-3.

NOTE: See more details on mapping XSD substitutions in clause 8.

7.1.14 Final

The final XSD attribute information item constrains the creation of derived types and types of substitution group
members (see more details on mapping of substitutions in clause 8).

The final XSD attribute information item(s) shall produce no TTCN-3 language construct when translating an XML
Schema to TTCN-3.

NOTE: As specified in clause 5, the XML Schema is validated before the actual translation process can be
started. Therefore the restrictions imposed by any final attribute(s) will be enforced during schema
validation and no need to reflect it in the generated TTCN-3 code.

7.1.15 Process contents

The processContents XSD attribute information item controls the validation level of the content of instances
corresponding to XSD any and anyAttribute information items (see clause 7.7). Its allowed values are "strict", "lax" and
"skip". This attribute shall be translated by attaching a "processContents ..." encoding instruction replicating the value
of the XSD attribute to the TTCN-3 component generated for the XSD element with the processContents XSD attribute.

If the value of the processContents XSD attribute is "strict”, and no XSD schema is present with a target namespace
allowed by the namespace attribute of the XSD any or anyAttribute element being translated, or the schema does not
contain an XSD element or attribute declaration respectively, this shall cause an error.

7.2 Schema component

The schema element information items are not directly translated to TTCN-3 but the content(s) of schema element
information item(s) with the same target namespace (including absence of the target namespace) are mapped to
definitions of a target TTCN-3 module. See more details in clause 5.1.

7.3 Element component

An XSD element component defines a new XML element. Elements may be global (as a child of either schema or
redefine), in which case they are obliged to contain a name attribute or may be defined locally (as a child of all, choice
or sequence) using a name or ref attribute.

Globally defined XSD elements shall be mapped to TTCN-3 type definitions. In the general case, when the nillable
attribute of the element is "false” (either explicitly or by defaulting to "false™), the type of the TTCN-3 type definition
shall be one of the following:

a) Incase of XSD datatypes, and simple types defined locally as child of the element, the type of the XSD
element mapped to TTCN-3.

b) In case of XSD user-defined types referenced by the type attribute of the element, the TTCN-3 type generated
for the referenced XSD type.

¢) Incase the child of the element is a locally defined complexType, it shall be a TTCN-3 record.

d) If none of the above cases apply and the element has the substitutionGroup attribute, it shall be the type of the
head element of the substitution group.

e) Otherwise it shall be the type XSD.AnyType (see clauses 6.8 and B.3.1).

ETSI

54 ETSI ES 201 873-9 V4.4.1 (2012-04)

NOTE: In the last case the element’s type defaults to the ur-type definition in XSD, see clause 3.3.2 of [8].

The name of the TTCN-3 type definition shall be the result of applying clause 5.2.2 to the name of the XSD element.
When nillable attribute is "true", the procedures in clause 7.1.11 shall be invoked. The encoding instruction "element"
shall be appended to the TTCN-3 type definition resulted by mapping of a global XSD element.

EXAMPLE 1: Mapping of a globally defined element:

<element name="el6a" type="typename"/>

// 1s translated to:
type typename Elé6a
with {
variant "element";
ariant "name as uncapitalized "

}

Locally defined elements shall be mapped to fields of the enframing type or structured type field. In the general case,
when both the minOccurs and maxOccurs attribute equal to "1™ (either explicitly or by defaulting to "1") and the
nillable attribute of the element is "false™ (either explicitly or by defaulting to "false™), the type of the field shall be the
type resulted by mapping the type of the XSD element as specified for global elements in this clause above and the
name of the field shall be the result of applying clause 5.2.2 to the name of the XSD element.

When a local element is defined by reference (the ref attribute is used) and the target namespace of the XSD Schema in
which the referenced element is defined differs from the target namespace of the referencing XSD Schema (including
the no target namespace case), the TTCN-3 field generated for this element reference shall be appended with a
"namespace as" encoding instruction (see clause B.3.1), which shall identify the namespace and optionally the prefix of
the XSD schema in which the referenced entity is defined.

When either the minOccurs or the maxOccurs attributes or both differ from "1", the procedures in clause 7.1.4 shall be
invoked.

When the nillable attribute is "true", the procedures in clause 7.1.11 shall be invoked.

EXAMPLE 2: Mapping of locally defined elements, general case (see further examples in clauses 7.1.4 and
7.1.11):

<complexType name="el6b">
<sequence>
<element name="foo" type="integer"/>
<element name="bar" type="string"/>
</sequence>
</complexType>

//Is translated into:
type record El6b

{

XSD.Integer foo,

XSD.String bar
with {

variant "name as uncapitalized"
}

7.4 Attribute and attribute group definitions

7.4.1 Attribute element definitions

Attribute elements define valid qualifiers for XML data and are used when defining complex types. Just like XSD
elements, attributes can be defined globally (as a child of schema or redefine) and then be referenced from other
definitions or defined locally (as a child of complexType, restriction, extension or attributeGroup) without the
possibility of being used outside of their context.

ETSI

55 ETSI ES 201 873-9 V4.4.1 (2012-04)

Global attributes shall be mapped to TTCN-3 type definitions. In the general case, the type of the TTCN-3 type
definition shall be one of the following:

a) Incase of XSD datatypes, and simple types defined locally as child of the attribute element, the type of the
XSD attribute mapped to TTCN-3.

b) In case that a XSD user-defined type is referenced by the type attribute of the XSD attribute element, the
TTCN-3 type generated for the referenced XSD type.

c) Otherwise it shall be the type XSD.AnySimpleType (see clause 6.8 and B.3.1).
NOTE: In the last case the element's type defaults to the simple ur-type definition in XSD, see clause 3.2.2 of [8].

The name of the TTCN-3 type definition shall be the result of applying clause 5.2.2 to the name of the XSD attribute
element. The generated TTCN-3 type definition shall be appended with the "attribute” TTCN-3 encoding instruction.

EXAMPLE: Mapping of a globally defined attribute:
<attribute name="el7" type="typename"/>

// is mapped to:
type typename E17
with {
variant "attribute";
variant "name as uncapitalized "

}

For the mapping of locally defined attributes please refer to clause 7.6.7.

7.4.2 Attribute group definitions

An XSD attributeGroup defines a group of attributes that can be included together into other definitions by referencing
the attributeGroup. As children attribute elements of attributeGroup definitions are directly mapped to the TTCN-3
record types corresponding to the complexType referencing the attributeGroup, attributeGroup-s are not mapped to
TTCN-3. See also clauses 7.6.1 and 7.6.7.

7.5 SimpleType components

XSD simple types may be defined globally (as child of schema and using a mandatory name attribute) or locally (as a
child of element, attribute, restriction, list OF union) in a named or anonymous fashion. The simpleType
components are used to define new simple types by three means:

e Restricting a built-in type (with the exception of anyType, anySimpleType) by applying a facet to it.
. Building lists.
. Building unions of other simple types.

These means are quite different in their translation to TTCN-3 and are explained in the following clauses. For the
translation of attributes for simple types please refer to the general mappings defined in clause 7.1. Please note that an
XSD simpleType is not allowed to contain elements or attributes, redefinition of these is done by using XSD
complexType-S (See clause 7.6).

7.5.1 Derivation by restriction

For information about restricting built-in types, please refer to clause 6 which contains an extensive description on the
translation of restricted simpleType using facets to TTCN-3.

It is also possible in XSD to restrict an anonymous simple type. The translation follows the mapping for built-in data
types, but instead of using the base attribute to identify the type to apply the facet to, the base attribute type shall be
omitted and the type of the inner, anonymous simpleType shall be used.

ETSI

56 ETSI ES 201 873-9 V4.4.1 (2012-04)

EXAMPLE: Consider the following example restricting an anonymous simpleType using a pattern facet (the
bold part marks the inner smpleType):

<simpleType name="el8">
<restriction base="string"/>
<pattern value=" (aUser|anotherUser)@(i|I)nstitute"/>
</restrictions>
</simpleType>

// This will generate a mapping for the inner type and a restriction thereof:
type XSD.String E18 (pattern " (aUser|anotherUser)@(i|I)nstitute")
with {
variant "name as uncapitalized "
}

7.5.2 Derivation by list

XSD list components shall be mapped to the TTCN-3 record of type. In their simplest form lists shall be mapped by
directly using the listltem attribute as the resulting type.

EXAMPLE 1:

<simpleType name="el9">
<list itemType="float"/>
</simpleType>

// Will translate to
type record of XSD.Float E19
with {
variant "list";
variant "name as uncapitalized"

}

When using any of the supported XSD facets (length, maxLength, minLength) the translation shall follow the mapping
for built-in list types, with the difference that the base type shall be determined by an anonymous inner list item type.

EXAMPLE 2: Consider this example:

<simpleType name="e20">
<restriction>
<simpleTypes>
<list itemType="float"/>
</simpleType>
<length value="3"/>
</restrictions>
</simpleType>

// Will map to:
type record length(3) of XSD.Float E20
with {

variant "list";

variant "name as uncapitalized"

}

//For instance the template:

template E20 t E20:={ 1.0, 2.0, 3.0 }
// will be encoded as:

<?xml version="1.0" encoding="UTF-8"?>
<e20>

1.0 2.0 3.0
</e20>

The other XSD facets shall be mapped accordingly (refer to respective 6.1 clauses). If no itemType s given, the
mapping has to be implemented using the given inner type (see clause 7.5.3).

ETSI

57 ETSI ES 201 873-9 V4.4.1 (2012-04)

7.5.3 Derivation by union

An XSD union is considered as a set of mutually exclusive alternative types for a ssimpleType. As this is compatible
with the union type of TTCN-3, a simpleType derived by union in XSD shall be mapped to a union type definition in
TTCN-3. The generated TTCN-3 union type shall contain one alternative for each member type of the XSD union,
preserving the textual order of the member types in the initial XSD union type. The field names of the TTCN-3 union
type shall be the result of applying clause 5.2.2 to either to the unqualified name of the member type (in case of built-in
XSD data types and user defined named types) or to the string "alt" (in case of unnamed member types).

NOTE 1: XSD requires (see XML Schema Part 2: Datatypes [9], clause 2.5.1.3) that an element or attribute value
of an instance is validated against the member types in the order in which they appear in the XSD
definition until a match is found (considering any xsi:type attribute present, see also clause B.3.24). A
TTCN-3 tool has to use this strategy as well, when decoding an XSD union value.

The encoding instruction “useUnion" shall be applied to the generated union type and, in addition, the "name as
("name as followed by a pair of single quote followed by a double quote) encoding instruction shall be applied to each
field generated for an unnamed member type.

NOTE 2: Please note, that alt and the names of several built-in XSD data types are TTCN-3 keywords, hence
according to the naming rules these field identifiers will be postfixed with a single underscore character.

EXAMPLE 1: Mapping of named simple type definitions derived by union:

<?xml version="1.0" encoding="UTF-8"7?>
<xsd:schema xmlns="http://www.example.org/union"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://www.example.org/union">

<xsd:simpleType name="e2lmemberlist">
<xsd:union memberTypes="xsd:string xsd:integer xsd:boolean"/>
</xsd:simpleType>

<xsd:element name="e2lnamedElement" type="e2lmemberlist"/>
</xsd:schema>

// Results in the following mapping:
module http www_example org union {

import from XSD all;

type E2lmemberlist E2lnamedElement
with {
variant "name as uncapitalized";
variant "element";

}

type union E2lmemberlist {
XSD.String string,
XSD.Integer integer ,
XSD.Boolean boolean_

with {
variant "name as uncapitalized";
variant "useUnion";

variant (integer) "name as 'integer'";
variant (boolean) "name as 'boolean'"
with {

encode "XML";
variant "namespace as 'www.example.org/union'";
variant "controlNamespace 'http://www.w3.org/2001/XMLSchema-instance' prefix 'xsi'";

}

// For instance, the below structure:
template E2lnamedElement t UnionNamedInt := { integer := 1 }

ETSI

58 ETSI ES 201 873-9 V4.4.1 (2012-04)

// will result in the following encoding:

<?xml version="1.0" encoding="UTF-8"?>

<e2lnamedElement xmlns='www.example.org/union' xmlns:xsd='http://www.w3.0org/2001/XMLSchema'
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance' xsi:type= 'xsd:integer's>l</e2lnamedElements>

EXAMPLE 2: Mapping of unnamed simple type definitions derived by union:

<?xml version="1.0" encoding="UTF-8"7?>
<xsd:schema xmlns="http://www.example.org/union"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://www.example.org/union" >

<!-- Please compare with the previous example -->
<simpleType name="e2lunnamed">
<unions>
<simpleTypes>
<restriction base="xsd:string"/>
</simpleType>
<simpleTypes>
<restriction base="xsd:float"/>
</simpleType>
<simpleTypes>
<restriction base="xsd:integer"/>
</simpleType>
</unions>
</simpleType>

<xsd:element name="e2lunnamedElement" type="e2lunnamed"/>

</xsd:schema>

// Results in the following mapping:
module http www_example org union {

import from XSD all;

// Please compare with the previous example
type E2lunnamed E2lunnamedElement
with {

variant "name as uncapitalized";

variant "element";

}i

type union E2lunnamed {
XSD.String alt_,
XSD.Float alt_1,
XSD.Integer alt_2

with {
variant "name as uncapitalized";
variant "useUnion"
variant (alt_, alt_1, alt_2) "name as ''"

}

with {
encode "XML";
variant "namespace as 'www.example.org/union'";
variant "controlNamespace 'http://www.w3.org/2001/XMLSchema-instance' prefix 'xsi'";
1
// For instance, the below structure:
template E2lunnamed t UnionUnnamedInt := { alt 2 := 1 }

// will result in the following encoding:

<?xml version="1.0" encoding="UTF-8"?>

<e2lunnamedElement xmlns='www.example.org/union' xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance' xsi:type='xsd:integer's>1l</e2lunnamedElement>

EXAMPLE 3: Mixed use of named and unnamed types:

<xsd:simpleType name="Time-or-int-or-boolean-or-dateRestricted">
<xsd:union memberTypes="xsd:time e2lmemberlist">
<xsd:simpleType>
<xsd:restriction base="xsd:date">
<xsd:minInclusive value="2003-01-01"/>

ETSI

59 ETSI ES 201 873-9 V4.4.1 (2012-04)

</xsd:restriction>
</xsd:simpleType>
</xsd:union>
</xsd:simpleType>

//Will be mapped to the TTCN-3 type definition:
type union Time or int or boolean or dateRestricted {
XSD.Time time,
XSD.Integer integer_,
XSD.Boolean boolean_,
XSD.Date alt_

with {
variant "useUnion";
variant (alt_) "name as ''"

}

The only supported facet is enumeration, allowing mixing enumerations of different kinds.

EXAMPLE 4: Mapping member type with an enumeration facet:

<xsd:element name="maxOccurs">
<xsd:simpleType>
<xsd:union memberTypes="xsd:nonNegativeInteger"s>
<xsd:simpleType>
<xsd:restriction base="xsd:token">
<xsd:enumeration name="unbounded"/>
</xsd:restrictions>
</xsd:simpleType>
</xsd:union>
</xsd:simpleType>
</xsd:element>

//Will be translated to TTCN-3 as:

type union MaxOccurs {
XSD.NonNegativeInteger nonNegativeInteger,
enumerated {unbounded} alt

with {
variant "name as uncapitalized";
variant "element";
variant "useUnion";
variant (alt_) "name as ''"

EXAMPLE 5: Mapping member types with enumeration facets applied to different member types:

<simpleType name="e22">
<restriction base="e2lunnamed">
<enumeration value="20"/>
<enumeration value="50"/>
<enumeration value="small"/>

</restriction>
</simpleType>
// will be translated to:
type E2lunnamed E22 ({alt 1:=20.0},{alt 1:=50.0}, {alt_:="small"})
with {
variant "name as uncapitalized"
}
7.6 ComplexType components

The XSD complexType is used for creating new types that contain elements and attributes. XSD complexTypes may be
defined globally as child of schema or redefine(in which case the name XSD attribute is mandatory), or locally in an
anonymous fashion (as a child of element, without the name XSD attribute).

Globally defined XSD complexTypes shall be translated to a TTCN-3 record type. This record type shall enframe
the fields resulted by mapping the content (the children) of the XSD complexType as specified in the next clauses. The
name of the TTCN-3 record type shall be the result of applying clause 5.2.2 to the XSD name attribute of the
complexType definition.

ETSI

60 ETSI ES 201 873-9 V4.4.1 (2012-04)

Locally defined anonymous complexTypes shall be ignored. In this case the record type generated for the parent
element of the complexType (see clause 7.3), shall enframe the fields resulted by mapping the content (the children) of
the XSD complexType.

NOTE: The mapping rules in subsequent clauses may be influenced by the attributes applied to the component, if
any. See more details in clause 7.1, especially in clause 7.1.4.

7.6.1 ComplexType containing simple content

An XSD simpleContent component may extend or restrict an XSD simple type, being the base type of the
simpleContent and expands the base type with attributes, but not elements.

76.1.1 Extending simple content
When extending XSD simpleContent, further XSD attributes may be added to the original type.

The base type of the extended simpleContent and the additional XSD attributes shall be mapped to fields of the TTCN-3
record type, generated for the enclosing XSD complexType (see clause 7.6). At first, attribute elements and attribute
groups shall be translated according to clause 7.6.7, and added to the enframing TTCN-3 record (see clause 7.6).
Next, the extended type shall be mapped to TTCN-3 and added as a field of the enframing record. The field name of
the latter shall be "base" and the variant attribute "untagged" shall be attached to it.

EXAMPLE: The example below extends a built-in type by adding an attribute:

<complexType name="e23">
<simpleContent>
<extension base="string">
<attribute name="foo" type="float"/>
<attribute name="bar" type="integer"/>
</extensions>
</simpleContent>
</complexType>

// Will be mapped as:
type record E23

XSD.Integer bar optional,
XSD.Float foo optional,
XSD.String base

with {
variant "name as uncapitalized";
variant (base) "untagged";
variant (bar, foo) "attribute"

}

// and the template

template E23 t E23 := {
bar := 1,
foo := 2.0,
base := "something"

// shall be encoded as:
<?xml version="1.0" encoding="UTF-8"7?>
<e23 bar=1 foo=2.0>something</e23>

7.6.1.2 Restricting simple content

An XSD simpleContent may restrict its base type or attributes of the base type by applying more restrictive facets than
those of the base type (if any).

Such XSD simpleContent shall be mapped to fields of the enframing TTCN-3 record (see clause 7.6). At first, the
fields corresponding to the local attribute definitions, attribute and attributeGroup references shall be generated
according to clause 7.6.7, followed by the field generated for the base type. The field name of the latter shall be "base".
The restrictions of the given simpleContent shall be applied to the "base" field directly (i.e. the base type shall not be
referenced but translated to a new type definition in TTCN-3).

ETSI

61 ETSI ES 201 873-9 V4.4.1 (2012-04)

Other base types shall be dealt with accordingly, see clause 6.

EXAMPLE: Example for restriction of a base type:

<complexType name="e24">
<simpleContent>
<restriction base="ns:e23">
<length value="4"/>
</restrictions>
</simpleContent>
</complexType>

//Is translated to:

type record E24
XSD.Integer bar optional,
XSD.Float foo optional,
XSD.String base length(4)

with {
variant (base) "untagged";
variant (bar, foo) "attribute";
variant "name as uncapitalized"

}

// and the template
template E24 t E24 := {
bar := 1,
foo := 2.0,
base := "some"

}

// shall be encoded as:
<?xml version="1.0" encoding="UTF-8"7?>
<e23 bar=1 foo=2.0>some</e23>

7.6.2 ComplexType containing complex content

In contrast to simpleContent, complexContent is allowed to have elements. It is possible to extend a base type with by
adding attributes or elements, it is also possible to restrict a base type to certain elements or attributes.

7.6.2.1 Complex content derived by extension

By using the XSD extension for a complexContent it is possible to derive new complex types from a base (complex)
type by adding attributes, elements or groups (group, attributeGroup). The compositor of the base type may be
sequence or choice (i.e. complex types with the compositor all shall not be extended).

This shall be translated to TTCN-3 as follows (the generated TTCN-3 constructs shall be added to the enframing
TTCN-3 record, see clause 7.6, in the order of the items below):

a) At first, attributes and attribute and attribute group references of the base type and the extending type shall be
translated according to clause 7.6.7 and the resulted fields added to the enframing TTCN-3 record directly
(i.e. without nesting).

b) The choice or sequence content model of the base (extended) complexType shall be mapped to TTCN-3
according to clauses 7.6.5 or 7.6.6 respectively, and the resulted TTCN-3 constructs shall be added to the
enframing record.

¢) The extending choice or sequence content model of the extending complexContent shall be mapped to
TTCN-3 according to clauses 7.6.5 or 7.6.6 respectively, and the resulted TTCN-3 constructs shall be added to
the enframing record.

EXAMPLE 1: Both the base and the extending types have the compositor sequence:

<!-- The base definitions: -->
<complexType name="e25seq">
<sequence>

<element name="titleElemBase" type="string"/>
<element name="forenameElemBase" type="string"/>
<element name="surnameElemBase" type="string"/>

ETSI

62 ETSI ES 201 873-9 V4.4.1 (2012-04)

</sequence>

<attribute name="genderAttrBase" type="integer"/>

<attributeGroup ref="ns:g25attr2"/>
</complexType>

<group name="g25seqg">
<sequence>
<element name="familyStatusElemInGroup" type="string"/>
<element name="spouseElemInGroup" type="string" minOccurs="0"/>
</sequence>
</group>

<attributeGroup name="g25attrl"s>
<attribute name="birthPlaceAttrGroup" type="string"/>
<attribute name="birthDateAttrGroup" type="string"/>
</attributeGroup>

<attributeGroup name="g25attr2">
<attribute name="jobPositionAttrGroup" type="string"/>

</attributeGroup>
<!-- Now a type is defined that extends e25seq by adding a new element, group and attributes: -->
<complexType name="e26seq">
<complexContent>
<extension base="ns:e25seq">
<sequence>

<element name="ageElemExt" type="integer"/>
<group ref="ns:g25seq"/>
</sequence>
<attribute name="unitOfAge" type="string"/>
<attributeGroup ref="ns:g25attrl"/>
</extensions>
</complexContent>
</complexType>

// This is translated to the TTCN-3 structure:
type record E26seq
{
// fields corresponding to attributes of the base and the extending type
// (in alphabetical order)
XSD.String birthDateAttrGroup optional,
XSD.String birthPlaceAttrGroup optional,
XSD.Integer genderAttrBase optional,
XSD.String jobPositionAttrGroup optional,
XSD.String unitOfAge optional,
// followed by fields corresponding to elements of the base type
XSD.String titleElemBase,
XSD.String forenameElemBase,
XSD.String surnameElemBase,
// finally fields corresponding to the extending element and group reference
XSD.Integer ageElemExt,
G25seq g25seq

with {
variant "name as uncapitalized ";
variant (birthDateAttrGroup, birthPlaceAttrGroup, genderAttrBase, jobPositionAttrGroup,
unitOfAge) "attribute";
}i
// where
type record G25seq {
XSD.String familyStatusElemInGroup,
XSD.String spouseElemInGroup optional

with {
variant "untagged"
}

EXAMPLE 2: Both the base and the extending types have the compositor sequence and multiple occurrences are
allowed:

<!-- Additional base definition:-->

<complexType name="e25segRecurrence">
<sequence minOccurs="0" maxOccurs="unbounded">
<element name="titleElemBase" type="string"/>
<element name="forenameElemBase" type="string"/>
<element name="surnameElemBase" type="string"/>

ETSI

63 ETSI ES 201 873-9 V4.4.1 (2012-04)

</sequence>

<attribute name="genderAttrBase" type="integer"/>

<attributeGroup ref="ns:g25attr2"/>
</complexType>

<!-- The extending type definition: -->

<complexType name="e26seqReccurrence">
<complexContent>
<extension base="ns:e25seq">
<sequence minOccurs="0" maxOccurs="unbounded">
<group ref="ns:g25seq"/>
<element name="ageElemExt" type="integer"/>
</sequence>
<attribute name="unitOfAge" type="string"/>
</extension>
</complexContent>
</complexType>

<complexType name="e26segDoubleRecurrence">
<complexContent>
<extension base="ns:e25segRecurrence" >
<sequence minOccurs="0" maxOccurs="unbounded">
<group ref="ns:g25seq"/>
<element name="ageElemExt" type="integer"/>
</sequence>
<attribute name="unitOfAge" type="string"/>
</extension>
</complexContent>
</complexType>

//The extending types are translated to TTCN-3 as:

type record E26segRecurrence {
// fields corresponding to attributes of the base and the extending type
// (in alphabetical order)
XSD.Integer genderAttrBase optional,
XSD.String jobPositionAttrGroup optional,
XSD.String unitOfAge optional,
// followed by a "simple" field list corresponding to elements of the base type
XSD.String titleElemBase,
XSD.String forenameElemBase,
XSD.String surnameElemBase,
// the extending sequence is recurring (see clause 7.6.6.6 for the mapping)
record of record {
G25seq g25seq
XSD.Integer ageElemExt,
} sequence list

with {
variant "name as uncapitalized";
variant (sequence_list) "untagged";
variant (genderAttrBase, jobPositionAttrGroup, unitOfAge) "attribute"

}

type record E26segDoubleRecurrence {
// fields corresponding to attributes of the base and the extending type
// (in alphabetical order)
XSD.Integer genderAttrBase optional,
XSD.String jobPositionAttrGroup optiomal,
XSD.String unitOfAge optional,
// followed by a record of record field containing the fields corresponding to elements of
// the base type; the base type is a recurring sequence (see clause
// 7.6.6.6 for the
// mapping)
record of record {
XSD.String titleElemBase,
XSD.String forenameElemBase,
XSD.String surnameElemBase
} sequence 1list,
// the extending sequence is recurring too(see clause
// 7.6.6.6 for the
// mapping)
record of record {
G25seq g25seq
XSD.Integer ageElemExt,
} sequence list 1

ETSI

64 ETSI ES 201 873-9 V4.4.1 (2012-04)

with {
variant "name as uncapitalized";
variant (sequence list, sequence_list_ 1) "untagged";
variant (genderAttrBase, jobPositionAttrGroup, unitOfAge) "attribute"

EXAMPLE 3: Both the base and the extending types have the compositor choice:

<complexType name="e25cho">
<choice>
<element name="titleElemBase" type="string"/>
<element name="forenameElemBase" type="string"/>
<element name="surnameElemBase" type="string"/>

</choice>
<attribute name="genderAttrBase" type="string"/>
</complexType>
<!-- and -->
<complexType name="e26cho">
<complexContent>
<extension base="ns:e25cho">
<choice>
<element name="ageElemExt" type="integer"/>
<element name="birthdayElemExt" type="date"/>
</choice>
<attribute name="unitAttrExt" type="string"/>
</extensions>
</complexContent>
</complexType>

//Are translated to TTCN-3 as:
type record E26cho {
XSD.String genderAttrBase optional,
XSD.String unitAttrExt optiomnal,
union {
XSD.String titleElemBase,
XSD.String forenameElemBase,
XSD.String surnameElemBase
} choice,
union {
XSD.Integer ageElemExt
XSD.Date birthdayElemExt
} choice 1

with {
variant "name as uncapitalized";
variant (genderAttrBase, unitAttrExt) "attribute";

variant (choice, choice_ 1) "untagged"

EXAMPLE 4: Extension of a sequence base type by a choice model group:

<complexType name="e27cho">
<complexContent>
<extension base="ns:e25seq">
<choice>
<element name="ageElemExt" type="integer"/>
<element name="birthdayElemExt" type="date"/>
</choice>
<attribute name="unitAttrExt" type="string"/>
</extensions>
</complexContent>
</complexType>

// is translated to TTCN-3 as:
type record E27cho
{
XSD.Integer genderAttrBase optional,
XSD.String jobPositionAttrGroup optional,
XSD.String unitAttrExt optiomal,
XSD.String titleElemBase,
XSD.String forenameElemBase,
XSD.String surnameElemBase,
union {
XSD.Integer ageElemExt,
XSD.Date birthdayElemExt
} choice

ETSI

65 ETSI ES 201 873-9 V4.4.1 (2012-04)

with {
variant "name as uncapitalized";
variant (genderAttrBase, jobPositionAttrGroup, unitAttrExt) "attribute";
variant (choice) "untagged"

EXAMPLE 5: Extending of a base type with choice model group by a sequence model group:

<complexType name="e27seq">
<complexContent>
<extension base="ns:e25cho">
<sequence>
<element name="ageElemExt" type="integer"/>
</sequence>
<attribute name="unitAttrExt" type="string"/>
</extension>
</complexContent>
</complexType>

// Is translated to TTCN-3 as:
type record E27seq {
XSD.String genderAttrBase optional,
XSD.String unitAttrExt optional,
union {
XSD.String ElemBase,
XSD.String forenameElemBase,
XSD.String surnameElemBase
} choice,
XSD.Integer ageElemExt

with {
variant "name as uncapitalized";
variant (genderAttrBase, unitAttrExt) "attribute";

variant (choice) "untagged";

EXAMPLE 6: Recursive extension of an anonymous inner type is realized using the TTCN-3 dot notation (starts
from the name of the outmost type):

<complexType name="X">
<sequence>
<element name="x" type="string"/>
<element name="y" minOccurs="0">
<complexType>
<complexContent>
<extension base="ns:X">
<sequences>
<element name="z" type="string"/>
</sequence>
</extensions>
</complexContent>
</complexType>
</element>
</sequence>
</complexType>

// Is translated to the TTCN-3 structure
type record X {
XSD.String x,
record {
XSD.String x,
X.y y optional,
XSD.String z
} v optionmal

7.6.2.2 Complex content derived by restriction
The restriction uses a base complex type and restricts one or more of its components.

All components present in the restricted type shall be mapped to TTCN-3, applying the restrictions, and the resulted
fields shall be added to the enframing TTCN-3 record (see clause 7.6). Thus neither the base type nor its components
are referenced from the restricted type.

ETSI

66 ETSI ES 201 873-9 V4.4.1 (2012-04)

EXAMPLE 1. Restricting anyType: in the example below anyType (any possible type) is used as the base type
and it is restricted to only two elements:

<complexType name="e28">
<complexContent>
<restriction base="anyType">
<sequence>
<element name="size" type="nonPositiveInteger"/>
<element name="unit" type="NMTOKEN"/>
</sequence>
</restriction>
</complexContent>
</complexType>

// Is translated to:

type record E28 {
XSD.NonPositiveInteger size,
XSD.NMTOKEN unit

with {

variant "name as uncapitalized"

EXAMPLE 2: Restricting a user defined complex type (the effect of the use attribute is described in
clause 7.1.12):

<element name="comment" type="string"/>

<!-- The base type is: -->
<complexType name="PurchaseOrderType">
<sequence>
<element name="shipTo" type="string"/>
<element name="billTo" type="string"/>
<element ref="ns:comment" minOccurs="0"/>
<element name="items" type="ns:Items"/>
</sequence>

<attribute name="shipDate" type="date"/>
<attribute name="orderDate" type="date"/>

</complexType>
<!-- The restricting type is: -->
<complexType name="RestrictedPurchaseOrderType">
<complexContent>
<restriction base="ns:PurchaseOrderType">
<sequence>
<element name="shipTo" type="string"/>
<element name="billTo" type="string"/>
<element ref="ns:comment" minOccurs="1"/>
<element name="items" type="ns:Items"/>
</sequence>

<attribute name="shipDate" type="date" use="required" />
<attribute name="orderDate" type="date" use="prohibited" />
</restrictions>
</complexContent>
</complexType>

//is translated to TTCN-3 as:

type XSD.String Comment

with {
variant "name as uncapitalized";
variant "element"

}

/* base type */

type record PurchaseOrderType {
XSD.Date orderDate optiomnal,
XSD.Date shipDate optional,
XSD.String shipTo,
XSD.String billTo,
Comment comment optional,
Items items

}
with {

variant (orderDate, shipDate) "attribute"
}

ETSI

67 ETSI ES 201 873-9 V4.4.1 (2012-04)

/* restricting type */
type record RestrictedPurchaseOrderType {
XSD.Date orderDate, //note that this field become mandatory
//note that the field shipDate is not added
XSD.String shipTo,
XSD.String billTo,
Comment comment, //note that this field become mandatory
Items items

with {
variant (orderDate) "attribute"

7.6.3 Referencing group components
Referenced model group components shall be translated as follows:

. when group reference is a child of complexType, the compositor of the referenced group definition is sequence
and both the minOccurs and maxOccurs attributes of the group reference equal to 1" (either explicitly or by
defaulting to "1"), it shall be translated as if the child elements of the referenced group definition were was
present in the complexType definition directly;

. when the referenced group has the compositor all, it has to be translated is the content of the referenced group
definition was present directly, i.e. according to clause 7.6.4;

. in all other cases the referenced group component shall be translated to a field of the enclosing record of type
(generated for the parent complexType, sequence or choice element) referencing the TTCN-3 type generated
for the referenced group definition, considering also the attributes of the referenced group component
according to clause 7.1.

NOTE: Please. note, as the "untagged" attribute is applied to the TTCN-3 type generated for the referenced model
group, the name of the field corresponding to the group reference will never appear in an encoded XML
value.

When a referenced group is defined in an XSD Schema with a target namespace, different from the target namespace of
the referencing XSD schema (including the no target namespace case), all TTCN-3 fields generated for this group
reference shall be appended with a "namespace as" encoding instruction (see clause B.3.1), which shall identify the
namespace and optionally the prefix of the XSD schema in which the referenced entity is defined.

EXAMPLE 1: Mapping of a group reference, child of complexType, compositor < sequence>:

<!-- Referencing a group with compositor <sequence> (see group declaration in $7.9) -->
<xsd:complexType name="LonelySegGroup">

<xsd:group ref="ns:shipAndBill"/>
</xsd:complexType>

//Is translated to TTCN-3 as:

type record LonelySegGroup {
XSD.String shipTo,
XSD.String billTo

}

<!-- The group reference is optional, compositor <sequence> (see group declaration in $7.9) -->
<xsd:complexType name="LonelySegGroupOptional">

<xsd:group ref="ns:shipAndBill" minOccurs="0"/>
</xsd:complexType>

//Is translated to TTCN-3 as:

type record LonelySeqGroupOptional ({
ShipAndBill shipAndBill optional

}

<!-- The group reference is iterative, compositor <sequences> (see group declaration in $7.9) -->
<xsd:complexType name="LonelySegGroupRecurrence'">

<xsd:group ref="ns:shipAndBill" minOccurs="0" maxOccurs="unbounded"/>
</xsd:complexType>

//Is translated to TTCN-3 as:

type record LonelySegGroupRecurrence {
record of ShipAndBill shipAndBill list

}

ETSI

68 ETSI ES 201 873-9 V4.4.1 (2012-04)

with {
variant (shipAndBill list) "untagged";
}

EXAMPLE 2: Mapping of a group reference, child of complexType, compositor <all>:

<!-- Referencing a group with compositor <all> (see group declaration in $7.9) -->
<xsd:complexType name="LonelyAllGroup">

<xsd:group ref="ns:shipAndBillAll"/>
</xsd:complexType>

//Is translated to TTCN-3 as:

type record LonelyAllGroup {
record of enumerated { shipTo, billTo } order,
XSD.String shipTo,
XSD.String billTo

with {
variant "useOrder"

<!-- The group reference is optional, compositor <alls> (see group declaration in $7.9) -->
<xsd:complexType name="LonelyAllGroupOptional">

<xsd:group ref="ns:shipAndBillAll" minOccurs="0"/>
</xsd:complexType>

//Is translated to TTCN-3 as:

type record LonelyAllGroupOptional {
record of enumerated { shipTo, billTo } order,
XSD.String shipTo optional,
XSD.String billTo optional

with {
variant "useOrder"

EXAMPLE 3: Mapping of a group reference, child of complexType, compositor <choice>:

<!-- Referencing a group with compositor <choice> (see group declaration in $7.9) -->
<xsd:complexType name="LonelyChoGroup">

<xsd:group ref="ns:shipOrBill"/>
</xsd:complexType>

//Is translated to TTCN-3 as:
type record LonelyChoGroup {
ShipOrBill shipOrBill

1

<!-- The group reference is optional, compositor <choice> (see group declaration in $7.9) -->
<xsd:complexType name="LonelyChoGroupOptional">

<xsd:group ref="ns:shipOrBill" minOccurs="0"/>
</xsd:complexType>

//Is translated to TTCN-3 as:

type record LonelyChoGroup {
ShipOrBill shipOrBill optional

}

<xsd:complexType name="LonelyChoGroupRecurrence">

<annotations<documentation xml:lang="EN">choice group reference</documentations</annotations
<xsd:group ref="ns:shipOrBill" minOccurs="0" maxOccurs="unbounded"/>

</xsd:complexType>

//Is translated to TTCN-3 as:
type record LonelyChoGroup {
record of ShipOrBill shipOrBill list

with {
variant (shipAndBill list) "untagged";
}

EXAMPLE 4: Mapping of group references, children of <sequence> or <choice>:

<!-- Referencing a group with compositor <sequence> in <sequence>
(see group declaration in clause 7.9) -->
<xsd:complexType name="SegGroupAndElementsInSequence">
<xsd:sequence id="embeddingSequence">
<xsd:group ref="ns:shipAndBill"/>

ETSI

69 ETSI ES 201 873-9 V4.4.1 (2012-04)

<xsd:element name="comment" type="xsd:string" minOccurs="0" />
<xsd:element name="items" type="xsd:string" />
</xsd:sequence>
</xsd:complexType>

//Is translated to TTCN-3 as:
type record SegGrouplnSequence {
ShipAndBill shipAndBill,
XSD.String comment optional,

XSD.String items

}

<!-- Referencing a group with compositor <sequence> in <choices
(see group declaration in clause 7.9) -->
<xsd:complexType name="SegGroupAndElementsAndAttributeInChoice">
<xsd:choice id="embeddingChoice">
<annotations<documentation xml:lang="EN">sequence group ref.</documentations</annotations
<xsd:group ref="ns:shipAndBill"/>
<xsd:element name="comment" minOccurs="0" type="xsd:string"/>
<xsd:element name="items" type="xsd:string"/>
</xsd:choice>
<xsd:attribute name="orderDate" type="xsd:date"/>
</xsd:complexType>

//Is translated to TTCN-3 as:
SegGroupAndElementsAndAttributeInChoice ::= SEQUENCE {
XSD.Date orderDate optional,
union {
/* sequence group ref.*/
ShipAndBill shipAndBill,
record length (0..1) of XSD.String comment list,
XSD.String items

} choice
with {
variant (orderDate) "attribute";
variant (choice) "untagged";
variant (choice.comment list) "untagged";
variant (choice.comment list[-]) "name as comment"

7.6.4 All content

An XSD all compositor defines a collection of elements, which can appear in any order in an XML value.

In the general case, when the values of both the minOccurs and maxOccurs attributes of the all compositor equal "1"
(either explicitly or by defaulting to "1"), it shall be translated to TTCN-3 by adding the fields resulted by mapping the
XSD elements to the enframing TTCN-3 record (see clause 7.6). By setting the minOccurs XSD attribute of the all
compositor to 0, all elements of the all content model are becoming optional. In this case all record fields corresponding
to the elements of the all model group shall be set to optional too. In addition, to these fields, an extra first field
named "order" shall be inserted into the enframing record. The type of this extra field shall be record of
enumerated, where the names of the enumeration values shall be the names of the fields resulted by mapping the
elements of the all structure. Finally, a "useOrder" variant attribute shall be attached to the enframing record.

The order field shall precede the fields resulted by the translation of the attributes and attribute and attributeGroup
references of the given complexType but shall follow the embed values field, if any, generated for the mixed="true"
attribute value (see also clause 7.6.8).

NOTE: When encoding, the presence and order of elements in the encoded XML instance will be controlled by
the order field. This is indicated by the "useOrder" encoding instruction. When decoding, the presence
and order of elements in the XML instance will control the value of the order field that appears in the
decoded structure. See more details in annex B. This mapping is required by the alignment to ITU-T
Recommendation X.694 [4].

ETSI

70

EXAMPLE 1: XSD all content model with mandatory elements:

<complexType name="e29a">
<alls>
<element name="foo" type="integer"/>
<element name="bar" type="float"/>
<element name="ding" type="string"/>
</alls>
</complexType>

// Is mapped to the following TTCN-3 structure:
type record E29a {
record of enumerated {foo,bar,ding} order,
XSD.Integer foo,
XSD.Float Dbar,
XSD.String ding

with {
variant "name as uncapitalized ";
variant "useOrder"

EXAMPLE 2: XSD all content model with each element being optional:

<complexType name="e29b">
<all minOccurs="0">
<element name="foo" type="integer"/>
<element name="bar" type="float"/>
<element name="ding" type="string"/>
</all>
</complexType>

// Is mapped to the following TTCN-3 structure:
type record E29b
record of enumerated {foo,bar,ding} order,
XSD.Integer foo optional,
XSD.Float Dbar optional,
XSD.String ding optional

with {
variant "name as uncapitalized ";
variant "useOrder"

EXAMPLE 3: XSD all content model, with selected optional elements:

<complexType name="e29c">
<alls>
<element name="foo" type="integer"/>
<element name="bar" type="float" minOccurs="0"/>
<element name="ding" type="string"/>
</alls>
</complexType>

// Is mapped to the following TTCN-3 structure:
type record E29c {
record of enumerated {foo,bar,ding} order,
XSD.Integer foo,
XSD.Float Dbar optional,
XSD.String ding

with {
variant "name as uncapitalized ";
variant "useOrder"

EXAMPLE 4: XSD complex type with attributes and all content model:

<attribute name="attrGlobal" type="token"/>

<attributeGroup name="attrGroup"s>
<attribute name="attrInGroup2" type="token"/>
<attribute name="attrInGroupl" type="token"/>
</attributeGroup>

<complexType name="e29aAndAttributes">
<all>

ETSI

ETSI ES 201 873-9 V4.4.1 (2012-04)

71 ETSI ES 201 873-9 V4.4.1 (2012-04)

<element name="foo" type="integer"/>
<element name="bar" type="float"/>
<element name="ding" type="string"/>
</alls>
<attribute name="attrLocal" type="integer"/>
<attribute ref="ns:attrGlobal"/>
<attributeGroup ref="ns:attrGroup"/>
</complexType>

//Is translated to TTCN-3 as:
type record E29aAndAttributes {
record of enumerated { foo, bar, ding } order,
XSD.Token attrInGroupl optional,
XSD.Token attrInGroup2 optional,
XSD.Integer attrLocal optional,
XSD.Token attrGlobal optiomnal,
XSD.Integer foo,
XSD.Float bar,
XSD.String ding

with {
variant "name as uncapitalized";
variant "useOrder";
variant (attrInGroupl, attrInGroup2, attrLocal, attrGlobal) "attribute"

7.6.5 Choice content

An XSD choice content defines a collection of mutually exclusive alternatives.

In the general case, when both the minOccurs and maxOccurs attribute equal to "1" (either explicitly or by defaulting
to "1"), it shall be mapped to a TTCN-3 union field with the field name "choice” and the encoding instruction
"untagged" shall be attached to this field.

If the value of the minOccurs or the maxOccurs attributes or both differ from "1", the following rules shall apply:
a) The union field shall be generated as above (including attaching the "untagged™ encoding instruction).
b) The procedures in clause 7.1.4 shall be called for the union field.

NOTE: As the result of applying clause 7.1.4, the type of the field may be changed to record of union and
in parallel the name of the field may be changed to "choice_list".

¢) Finally, clause 5.2.2 shall be applied to the name of the resulted field and subsequently the field shall be added
to the enframing TTCN-3 record type (see clause 7.6) or record or union field corresponding to the parent of
the mapped choice compositor.

The content for a choice component may be any combination of element, group, choice, sequence or any. The following
clauses discuss the mapping for various contents nested in a choice component.

7651 Choice with nested elements

Nested elements shall be mapped as fields of the enframing TTCN-3 union or record of union field
(see clause 7.6.5) according to clause 7.3.

EXAMPLE:

<complexType name="e30">
<choice>
<element name="foo" type="integer"/>
<element name="bar" type="float"/>
</choice>
</complexType>

// Will be translated to:
type record E30 {
union {
XSD.Integer foo,
XSD.Float bar
} choice

ETSI

72 ETSI ES 201 873-9 V4.4.1 (2012-04)

with {
variant "name as uncapitalized";
variant (choice) "untagged"

7.6.5.2 Choice with nested group

Nested group components shall be mapped along with other content as a field of the enframing TTCN-3 union or
record of union field (see clause 7.6.5). The type of this field shall refer to the TTCN-3 type generated for the
corresponding group and the name of the field shall be the name of the TTCN-3 type with the first character
uncapitalized.

EXAMPLE: The following example shows this with a sequence group and an element:

<group name="e31">
<sequence>
<element name="foo" type="string"/>
<element name="bar" type="string"/>
</sequence>
</group>

<complexType name="e32">
<choice>
<group ref="ns:e31"/>
<element name="ding" type="string"/>
</choice>
</complexType>

//Is translated to TTCN-3 as:
type record E31 {
XSD.String foo,
XSD.String bar

}
with
{
variant "name as uncapitalized "
}
type record E32 {
union {
E31 e31,
XSD.String ding
} choice
with {
variant "name as uncapitalized ";
variant (choice) "untagged"
}
7.6.5.3 Choice with nested choice
An XSD choice nested to a choice shall be translated according to clause 7.6.5:
EXAMPLE:
<complexType name="e33">
<choice>
<choice>

<element name="foo" type="string"/>
<element name="bar" type="string"/>
</choice>
<element name="ding" type="string"/>
</choice>
</complexType>

// Is mapped to TTCN-3 as:
type record E33 {
union {
union {
XSD.String foo,
XSD.String bar
} choice,
XSD.String ding
} choice

ETSI

73

with {
variant "name as uncapitalized";
variant (choice, choice.choice) "untagged"

7654 Choice with nested sequence

ETSI ES 201 873-9 V4.4.1 (2012-04)

An XSD sequence nested to a choice shall be mapped to a TTCN-3 record field of the enframing TTCN-3 union or

record of union field (see clause 7.6.5), according to clause 7.6.6.

EXAMPLE 1: Single sequence nested to choice:
<complexType name="e34a">
<choice>
<sequence>

<element name="foo" type="string"/>
<element name="bar" type="string"/>
</sequence>
<element name="ding" type="string"/>
</choice>
</complexType>

// Is translated to:
type record E34a {
union {
record {
XSD.String foo,
XSD.String bar
} sequence,
XSD.String ding
} choice

with {
variant "name as uncapitalized ";

variant (choice, choice.sequence) "untagged"
}
EXAMPLE 2: Multiple sequence-s nested to choice:
<complexType name="e34b">
<choice>
<sequence>
<sequence>
<element name="foo" type="string"/>
<element name="bar" type="string"/>
</sequence>
<element name="ding" type="string"/>
<element name="foo" type="string"/>
<element name="bar" type="string"/>
</sequence>
<element name="ding" type="string"/>
</choice>
</complexType>

// Is translated to:
type record E34b
union {
record {
record {
XSD.String foo,
XSD.String bar
} sequence,
XSD.String ding,
XSD.String foo,
XSD.String bar
} sequence,
XSD.String ding
} choice

with {
variant "name as uncapitalized ";

variant (choice, choice.sequence, choice.sequence.sequence)

ETSI

"untagged"

74

7.6.55 Choice with nested any

An XSD any element nested to a choice shall be translated according to clause 7.7.

EXAMPLE:

<complexType name="e35">
<choice>
<element name="foo" type="string"/>
<any namespace="other"/>
</choice>
</complexType>

// Is translated to:
type record E35 {
union {
XSD.String foo,
XSD.String elem
} choice

with {
variant "name as uncapitalized";
variant (choice) "untagged"
variant (choice.elem) "anyElement from 'other' "

7.6.6 Sequence content

ETSI ES 201 873-9 V4.4.1 (2012-04)

An XSD sequence defines an ordered collection of components and its content may be of any combination of XSD

elements, group references, choice, sequence or any.

Clauses 7.6.6.1 to 7.6.6.5 discuss the mapping for various contents nested in an XSD sequence component in the
general case, when both the minOccurs and maxOccurs attribute equal to "1" (either explicitly or by defaulting to "1").

Clause 7.6.6.6 describes the mapping when either the minOccurs or the maxOccurs attribute of the sequence compositor

or both do not equal to "1".

7.6.6.1 Sequence with nested element content

In the general case, child elements of a sequence, which is a child of a complexType, shall be mapped to TTCN-3 as
fields of the enframing record (see clause 7.6) (i.e. the sequence itself is not producing any TTCN-3 construct).

EXAMPLE: Mapping a mandatory sequence content:

<complexType name="e36a">
<sequence>
<element name="foo" type="integer"/>
<element name="bar" type="float"/>
</sequence>
</complexType>

// Is mapped to

type record E36a {
XSD.Integer foo,
XSD.Float Dbar

with {
variant "name as uncapitalized"

ETSI

75 ETSI ES 201 873-9 V4.4.1 (2012-04)

7.6.6.2 Sequence with nested group content

In the general case, nested group reference components shall be mapped to a field of the enframing record type
(see clause 7.6) or field. The type of the field shall be the TTCN-3 type generated for the referenced group and the name
of the field shall be the result of applying clause 5.2.2 to the name of the referenced group.

EXAMPLE: The following example shows this translation with a choice group and an element:

<group name="e37">
<choice>
<element name="foo" type="string"/>
<element name="bar" type="string"/>
</choice>
</group>

<complexType name="e38">
<sequence>
<group ref="ns:e37"/>
<element name="ding" type="string"/>
</sequence>
</complexType>

// Is translated to:

type union E37 {
XSD.String foo,
XSD.String bar

with {
variant "name as uncapitalized";
variant "untagged"

}
type record E38 {
E37 e37,
XSD.String ding
with {
variant "name as uncapitalized"
}
7.6.6.3 Sequence with nested choice content

An XSD choice nested to a sequence shall be mapped as a field of the enframing record (see clauses 7.6, 7.6.5.4 and
7.6.6.4), according to clause 7.6.5 (i.e. the sequence itself is not producing any TTCN-3 construct).

EXAMPLE:

<complexType name="e39">
<sequence>
<choice>
<element name="foo" type="string"/>
<element name="bar" type="string"/>
</choice>
<element name="ding" type="string"/>
</sequence>
</complexType>

// Is translated to:
type record E39 {
union {
XSD.String foo,
XSD.String bar
} choice,
XSD.String ding

with {

variant "name as uncapitalized";
variant (choice) "untagged"

ETSI

76 ETSI ES 201 873-9 V4.4.1 (2012-04)

7.6.6.4 Sequence with nested sequence content

In the general case, a sequence nested in a sequence shall be translated to TTCN-3 according to clause 7.6.6 and the
resulted constructs shall be added to the enframing record type or field (see also clauses 7.6 and 7.6.5.4).

EXAMPLE 1: Sequence nesting a mandatory sequence:

<complexType name="e40a">
<sequences>
<sequence>
<element name="foo" type="string"/>
<element name="bar" type="string"/>
</sequence>
<element name="ding" type="string"/>
</sequence>
</complexType>

// Is mapped as

type record E40a {
XSD.String foo,
XSD.String bar,
XSD.String ding

with {
variant "name as uncapitalized"

EXAMPLE 2: Sequence nesting another sequence, choice and an additional element:

<complexType name="e40b">
<sequences>
<sequence>
<element name="foo" type="string"/>
<element name="bar" type="string"/>
</sequence>
<choice>
<element name="foo" type="string"/>
<element name="bar" type="string"/>
</choice>
<element name="ding" type="string"/>
</sequence>
</complexType>

// Is mapped as
type record E40b {
XSD.String foo,
XSD.String bar,
union {
XSD.String foo,
XSD.String bar
} choice,
XSD.String ding

with {
variant "name as uncapitalized";
variant (choice) "untagged"

7.6.6.5 Sequence with nested any content
An XSD any element nested in a sequence shall be translated according to clause 7.7.

EXAMPLE:

<complexType name="e4l">
<sequence>
<element name="foo" type="string"/>
<any/>
</sequence>
</complexType>

// Is translated to:

type record E41 {
XSD.String foo,
XSD.String elem

ETSI

77 ETSI ES 201 873-9 V4.4.1 (2012-04)

with {
variant "name as uncapitalized";
variant (elem) "anyElement"

7.6.6.6 Effect of the minOccurs and maxOccurs attributes on the mapping

When either or both the minOccurs and/or the maxOccurs attributes of the sequence compositor specify a different
value than "1", the following rules shall apply:

a) First, the sequence compositor shall be mapped to a TTCN-3 record field (as opposed to ignoring it in the
previous clauses, when both minOccurs and maxOccurs equal to 1) with the name "sequence".

b) The encoding instruction "untagged" shall be attached to the field corresponding to sequence.
¢) The procedures in clause 7.1.4 shall be applied to this record field.

NOTE: As the result of applying clause 7.1.4, the type of the field may be changed to record of record
and in parallel the name of the field may be changed to "sequence_list".

d) Finally, clause 5.2.2 shall be applied to the name of the resulted field and the field shall be added to the
enframing TTCN-3 record (see clauses 7.6 and 7.6.6) or union field (see clause 7.6.5).

EXAMPLE 1: Mapping an optional sequence:

<complexType name="e36b">
<sequence minOccurs="0">
<element name="foo" type="integer"/>
<element name="bar" type="float"/>
</sequence>
</complexType>

// Is mapped to
type record E36b {
record {
XSD.Integer foo,
XSD.Float bar
} sequence optional

with {
variant "name as uncapitalized";
variant (sequence) "untagged"

EXAMPLE 2: Sequence nesting an optional sequence:

<complexType name="e40c">
<sequences>
<sequence minOccurs="0">
<element name="foo" type="string"/>
<element name="bar" type="string"/>
</sequence>
<choice>
<element name="fool" type="string"/>
<element name="barl" type="string"/>
</choice>
<element name="ding" type="string"/>
</sequence>
</complexType>

// Is mapped to
type record E40c {
record {
XSD.String foo,
XSD.String bar
} sequence optional,
union {
XSD.String fool,
XSD.String barl
} choice,
XSD.String ding

ETSI

78 ETSI ES 201 873-9 V4.4.1 (2012-04)

with {
variant "name as uncapitalized";
variant (sequence, choice) "untagged"

EXAMPLE 3: Sequence nesting a sequence of multiple recurrence:

<complexType name="e40d">
<sequence>
<sequence minOccurs="0" maxOccurs="unbounded">
<element name="foo" type="string"/>
<element name="bar" type="string"/>
</sequence>
<element name="ding" type="string"/>
</sequence>
</complexType>

// Is mapped to
type record E40d {
record of record {
XSD.String foo,
XSD.String bar
} sequence list,
XSD.String ding

with {
variant "name as uncapitalized";
variant (sequence_list) "untagged"

7.6.7 Attribute definitions, attribute and attributeGroup references

Locally defined attribute elements, references to global attribute elements and references to attributeGroups shall be
mapped jointly. XSD attributes, either local or referenced global (including the content of referenced attributeGroups)
shall be mapped to individual fields of the enframing TTCN-3 record (see clause 7.6) directly (i.e. without nesting).
The types of the fields shall be the types of the corresponding attributes, mapped to TTCN-3 the same way as specified
in clause 7.4.1 for global attribute elements, and the names of the fields shall be the names resulted in applying

clause 5.2.2 to the attribute names. The fields generated for local attribute definitions, references and contents of
referenced attribute groups shall be inserted in the following order: they shall first be ordered, in an ascending
alphabetical order, by the target namespaces of the attribute declarations, with the fields without a target namespace
preceding fields with a target namespace, and then by the names of the attribute declarations within each target
namespace (also in ascending alphabetical order).

XSD local attribute declarations and references may contain also the special attribute use. The above mapping shall be
carried out jointly with the procedures specified for the use attribute in clause 7.1.12.

TTCN-3 record fields generated for attribute element or attributeGroup references, where the namespace of the
referenced XSD entity differs from the target namespace of the referencing XSD schema (including the no target
namespace case), shall be appended with a "namespace as" encoding instruction (see clause B.3.1), which shall identify
the namespace and optionally the prefix of the XSD schema in which the referenced entity is defined.

All generated TTCN-3 fields shall also be appended with the "attribute™ encoding instruction.

EXAMPLE 1: Referencing an attributeGroup in a complexType:

<attributeGroup name="e42">
<attribute name="foo" type="float"/>
<attribute name="bar" type="float"/>
</attributeGroup>

<complexType name="e44">

<sequences>
<element name="ding" type="string"/>
</sequence>
<attributeGroup ref="ns:e42"/>
</complexType>

// Is translated to TTCN-3 as:
type record E44 {
XSD.Float bar optional
XSD.Float foo optional,
XSD.String ding,

ETSI

79 ETSI ES 201 873-9 V4.4.1 (2012-04)

with {
variant "name as uncapitalized";
variant (bar, foo) "attribute"

EXAMPLE 2: Mapping of a local attributes, attribute references and attribute group references without a target
namespace:

<xsd:attribute name="fooGlobal" type="xsd:float" />
<xsd:attribute name="barGlobal" type="xsd:string" />
<xsd:attribute name="dingGlobal" type="xsd:integer" />

<xsd:attributeGroup name="Agroup">
<xsd:attribute name="foolnAgroup" type="xsd:float" />
<xsd:attribute name="barInAgroup" type="xsd:string " />
<xsd:attribute name="dingInAgroup" type="xsd:integer " />
</xsd:attributeGroup>

<xsd:complexType name="el7A">
<xsd:sequence>
<xsd:element name="elem" type="xsd:string"/>
</xsd:sequences>
<xsd:attribute ref="fooGlobal" />
<xsd:attribute ref="barGlobal" />
<xsd:attribute ref="dingGlobal" />
<xsd:attribute name="foolLocal" type="xsd:float" />
<xsd:attribute name="barLocal" type="xsd:string" />
<xsd:attribute name="dingLocal" type="xsd:integer" />
<xsd:attributeGroup ref="Agroup" />
</xsd:complexType>

//is translated to TTCN-3 as:

type XSD.Float FooGlobal

with {
variant "name as uncapitalized "
variant "attribute"

}

type XSD.String BarGlobal

with {
variant "name as uncapitalized ";
variant "attribute"

}

type XSD.Integer DingGlobal

with {
variant "name as uncapitalized ";
variant "attribute"

}

type record E17A {
XSD.String barGlobal optional,
XSD.String barInAgroup optional,
XSD.String barLocal optional,
XSD.Integer dingGlobal optional,
XSD.Integer dingInAgroup optional,
XSD.Integer dingLocal optional,
XSD.Float fooGlobal optional,
XSD.Float fooInAgroup optional,
XSD.Float foolLocal optional,
XSD.String elem

with {
variant "name as uncapitalized ";
variant (barGlobal, barInAgroup, barLocal, dingGlobal, dingInAgroup, dingLocal, fooGlobal,
fooInAgroup, fooLocal) "attribute"
//Please note, the order of the field names in the attribute qualifier may be arbitrary

ETSI

80 ETSI ES 201 873-9 V4.4.1 (2012-04)

EXAMPLE 3: Mapping the same local attributes, attribute references and attribute group references as above but
with a target schema namespace:

<!-- Using the same global attribute, attribute group and complex type definitions as in the
previous example -->

//el7A is translated to TTCN-3 as:

type record E17A {
XSD.Float barInAgroup optional,
XSD.String barLocal optional,
XSD.Integer dingInAgroup optional,
XSD.Integer dingLocal optional,
XSD.Float fooInAgroup optional,
XSD.Float foolocal optional,
XSD.String barGlobal optional,
XSD.Integer dingGlobal optional,
XSD.Float fooGlobal optional,
XSD.String elem

with {
variant "name as uncapitalized ";
variant (barInAgroup, barLocal,dingInAgroup, dinglLocal, fooInAgroup, fooLocal, barGlobal,
dingGlobal, fooGlobal) "attribute"
//Please note, the order of the field names in the attribute qualifier may be arbitrary

}

7.6.8 Mixed content

When mixed content is allowed for a complex type or content, (i.e. the mixed attribute is set to "true") an additional
record of XSD.String field, with the field name "embed_values" shall be generated and inserted as the first
field of the outer enframing TTCN-3 record type generated for the all, choice or sequence content (see clauses 7.6,
7.6.4,7.6.5 and 7.6.6). In TTCN-3 values, elements of the embed_values field shall be used to provide the actual
strings to be inserted into the encoded XML value or extracted from it (the relation between the record of elements and
the strings in the encoded XML values is defined in clause B.3.10). In TTCN-3 values the number of components of the
embed_values field (the number of strings to be inserted) shall not exceed the total number of components present in
the enclosing enframing record, corresponding to the child element elements of the complexType with the
mixed="true" attribute, i.e. ignoring fields corresponding to attribute elements, the embed_ values field itself and the
order field, if present (see clause 7.6.4), plus 1 (i.e. all components of enclosed record of-s).

The embed_values field shall precede all other fields, resulted by the translation of the attributes and attribute and
attributeGroup references of the given complexType and the order field, if any, generated for the all content models
(see also clause 7.6.4).

EXAMPLE 1: Complex type definition with sequence constructor and mixed content type:

<element name="MySegMixed">
<xsd:complexType name="MyComplexType-12" mixed="true">
<xsd:sequence>
<xsd:element name="a" type="xsd:string"/>
<xsd:element name="b" type="xsd:boolean"/>
</xsd:sequences
<attribute name="attrib" type="integer"/>
</xsd:complexType>
</element>

// Is translated to the TTCN-3 type definition
type record MySegMixedMyComplexType 12 {
record of XSD.String embed_values,
// in TTCN-3 values the embed values field may have max. 3 record of components
XSD.Integer attrib optional,
XSD.String a,
XSD.Boolean b

with {
variant "element";
variant "embedValues";
variant (attrib) "attribute"

ETSI

81 ETSI ES 201 873-9 V4.4.1 (2012-04)

//And the template

template MySegMixedMyComplexType 12 t_ MySegMixedMyComplexType 12 := {
embed values:= {"The ordered", "has arrived", "Wait for further information."},
a:= "Ear",
b:= true

}

//will be encoded as
<MySegMixedMyComplexType-12>

The ordered

<a>car

has arrived

true

Wait for further information.
</MySegMixedMyComplexType-12>

EXAMPLE 2: Complex type definition with sequence constructor of multiple occurrences and mixed content
type:

<element name="MyComplexElem-16">
<xsd:complexType name="MyComplexType-16" mixed="true">
<xsd:sequence maxOccurs="unbounded" minOccurs="0">
<xsd:element name="a" type="xsd:string"/>
<xsd:element name="b" type="xsd:boolean"/>
</xsd:sequences>
</xsd:complexType>
</element>

// Is translated to the TTCN-3 type definition
type record MyComplexTypeElem 16 {
record of XSD.String embed_values,
record of record {
XSD.String a,
XSD.Boolean b
} sequence list

with {
variant "name as 'MyComplexElem-16'";
variant "element"
variant "embedValues"

}
//And the template
template MyComplexTypeElem 16 t MyComplexTypeElem 16 := {
embed _values := { "The ordered", "has arrived",
"the ordered", "has arrived!", "Wait for further information."},
sequence list := {
{ a:= "car", b:= false},
{ a:= "bicycle", b:= true}

}

//will be encoded as
<MyComplexTypeElem-16>
The ordered
<a>car
has arrived
false
the ordered
<asbicycle
has arrived!
true
Wait for further information.
</MyComplexTypeElem-16>

EXAMPLE 3: Complex type definition with all constructor and mixed content type:

<element name="MyComplexElem-13">
<xsd:complexType name="MyComplexType-13" mixed="true">
<xsd:all>
<xsd:element name="a" type="xsd:string"/>
<xsd:element name="b" type="xsd:boolean"/>
</xsd:all>
</xsd:complexType>
</element>

ETSI

82 ETSI ES 201 873-9 V4.4.1 (2012-04)

// Is translated to the TTCN-3 type definition
type record MyComplexTypeElem 13 {
record of XSD.String embed values,
record of enumerated {a,b} order,
XSD.String a,
XSD.Boolean b

with {
variant "name as 'MyComplexElem-13'";
variant "element";
variant "embedValues";
variant "useOrder"

}
//And the template
template MyComplexTypeElem 13 t MyComplexTypeElem 13 := {
embed values:= {"Arrival status", "product name","Wait for further information."},
order := {b,a},
a:= "car",
b:= false

//will be encoded as
<MyComplexTypeElem-13>

Arrival status

false

product name

<a>car

Wait for further information.
</MyComplexTypeElem-13>

EXAMPLE 4: Complex type definition with all constructor, optional elements and mixed content type:

<xsd:complexType name="MyComplexType-15" mixed="true">
<xsd:all minOccurs="0">
<xsd:element name="a" type="xsd:string"/>
<xsd:element name="b" type="xsd:boolean"/>
</xsd:alls>
</xsd:complexType>

// Is translated to the TTCN-3 type definition
type record MyComplexType 15 {
record of XSD.String embed values,
record of enumerated {a,b} order,
XSD.String a optional,
XSD.Boolean b optional

with {
variant "embedValues";
variant "useOrder"

}
//And the template
template MyComplexType 15 t MyComplexType 15 := {
embed values:= {"Arrival status", "Wait for further information."},
order := {b},
a:= omit,
b:= false

1
//will be encoded as
<MyComplexType-15>

Arrival status

false

Wait for further information.
</MyComplexType-15>

EXAMPLE 5: Complex type definition with choice constructor and mixed content type:

<element name="MyComplexElem-14">
<xsd:complexType name="MyComplexType-14" mixed="true">
<xsd:choice>
<xsd:element name="a" type="xsd:string"/>
<xsd:element name="b" type="xsd:boolean"/>
</xsd:choice>
</xsd:complexType>
</element>

ETSI

83 ETSI ES 201 873-9 V4.4.1 (2012-04)

// Is translated to the TTCN-3 type definition
type record MyComplexTypeElem 14 {

record of XSD.String embed_values,
union {
XSD.String a,
XSD.Boolean b
} choice
with {

variant "name as 'MyComplexElem-14'";
variant "element";
variant "embedValues"

}

//And the template

template MyComplexTypeElem 14 t MyComplexTypeElem 14 := {
embed values:= {"Arrival status", "Wait for further information."},
choice := { b:= false }

//will be encoded as
<MyComplexTypeElem-14>

Arrival status

false

Wait for further information.
</MyComplexTypeElem-14>

7.7 Any and anyAttribute

An XSD any element can be defined in complex types, as a child of sequence or choice (i.e. locally only) and specifies
that any well-formed XML is permitted in the type's content model. In addition to the any element, which enables
element content according to namespaces, there is an analogous XSD anyAttribute element which enables transparent
(from the codec's point of view) attributes to appear in elements.

7.7.1 The any element

The XSD any element shall be translated, like other elements, to a field of the enframing recoxrd type or field or
union field (see clauses 7.6, 7.6.5 and 7.6.6). The type of this field shall be XSD. String and the name of the field
shall be the result of applying clause 5.2.2 to "elem”. Finally the "anyElement..." encoding instruction shall be attached,
which shall also specify the namespace wildcards and/or list of namespaces which are allowed or restricted to qualify
the given element, in accordance with the namespace attribute of the XSD any element, if present (see details in

clause B.3.2).

In the translation of any XSD elements, when a processContents XSD attribute is present, also clause 7.1.15 shall be
considered.

NOTE: The mapping may also be influenced by other attributes applied to the component, if any. See more
details in clause 7.1, especially clause 7.1.4.

In the value notation the XSD . St ring shall specify a syntactically correct XML element. It shall use a namespace
(including the no namespace case) allowed by the final "anyElement" encoding instruction.

EXAMPLE: Translating any:
The Schema

<?xml version="1.0" encoding="UTF-8"7?>

<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:this="http://www.example.org/wildcards"
targetNamespace="http://www.example.org/wildcards">

<import namespace="http://www.example.org/other" schemalocation="any additionalElements.xsd"/>
<element name="anyElementOtherNamespace" type="this:e46a"></elements>
<complexType name="e46">
<sequence>
<any namespace="##any"/>

</sequence>
</complexType>

ETSI

http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/

84 ETSI ES 201 873-9 V4.4.1 (2012-04)

<complexType name="e46a">
<sequence>
<any minOccurs="0" namespace="##fother"/>
</sequence>
</complexType>

<complexType name="e46b">
<sequence>
<any minOccurs="0" maxOccurs="unbounded" namespace="##local"/>
</sequence>
</complexType>
</schema>

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns=http://www.w3.o0rg/2001/XMLSchema
targetNamespace="http://www.example.org/other">
<element name="valami" type="string"/>
</schema>

//Is mapped to the following TTCN-3 module:

module http www_example org wildcards {
import from XSD all;

type E46a AnyElementOtherNamespace
with {
variant "name as uncapitalized";
variant "element"

}

type record E46 {
XSD.String elem

with {
variant "name as uncapitalized";
variant (elem) "anyElement"

}

type record E46a {
XSD.String elem optional

with {
variant "name as uncapitalized";
variant (elem) "anyElement except unqualified, 'http://www.organization.org/wildcards'"

}

type record E46b {
record of XSD.String elem list

with {
variant "name as uncapitalized";
variant (elem_list) "untagged"
variant (elem list[-]) "anyElement except unqualified"

}

with {
encode "XML";
variant "namespace as 'http://www.example.org/wildcards' prefix 'this'";
variant "controlNamespace 'http://www.w3.org/2001/XMLSchema-instance' prefix 'xsi'";

And the template:
module EncDec checking {
import from http_www_example_org wildcards all;

template AnyElementOtherNamespace t_AnyElementOtherNamespace := {
elem := "<other:valami xmlns:other=""http://www.example.org/other"">text</other:valami>"

}

}//end module

ETSI

85 ETSI ES 201 873-9 V4.4.1 (2012-04)

Can be encoded e.g. to the following XML instance:

<?xml version="1.0" encoding="UTF-8"?>

<this:anyElementOtherNamespace xmlns:this='http://www.example.org/wildcards'>
<other:valami xmlns:other="http://www.example.org/other">text</other:valami>
</this:anyElementOtherNamespace>

While, for example, receiving the following XML instance is causing a decoding failure, because the XML element
used in place of the any element shall be from a namespace different from "http://www.example.org/wildcards":

<?xml version="1.0" encoding="UTF-8"?>

<this:anyElementOtherNamespace xmlns:this='http://www.example.org/wildcards'>
<other:valami xmlns:other="http://www.example.org/wildcards">text</other:valamis>
</this:anyElementOtherNamespace>

71.7.2 The anyAttribute element

The anyAttribute element shall be translated, like other attributes, to a field of the enframing recorad type or field or
union field (see clauses 7.6, 7.6.5 and 7.6.6). The type of this field shall be record length (1..infinity)
of XSD. String, the field shall always be optional and the name of the field shall be the result of applying
clause 5.2.2 to "attr". In the case an XSD component contains more than one anyAttribute elements (e.g. by a complex
type extending an another complex type already containing an anyAttribute), only one new field shall be generated for
all the anyAttribute elements (with the name resulted from applying clause 5.2.2 to "attr") but the namespace
specifications of all anyAttribute components shall be considered in the "anyAttributes" encoding instruction (see
below). The field shall be inserted directly after the fields generated for the XSD attribute elements of the same
component or, if the component does not contain an attribute component, in the place where the first field generated for
an XSD attribute would be inserted (see clause 7.6.7).

Finally the " anyAttributes ..." encoding instruction (see clause B.3.3) shall be attached, which shall also specify the
namespace wildcards and/or list of namespaces which are allowed or restricted to qualify the given element, in
accordance with the namespace attribute of the XSD anyAttribute element if present (see details in clause B.3.3).

NOTE 1: When translating XSD attribute elements, the use attribute determines if the generated field is
optional or not (see clause 7.1.12). Because the use attribute is not allowed for anyAttribute elements,
the generated record of field will always be optional.

In the translation of anyAttribute XSD elements, when a processContents XSD attribute is present, also clause 7.1.15
shall be considered.

In the value notation each XSD . String of the generated record of shall specify exactly one XML attribute using
the following format: it shall be composed of an optional URI followed by whitespace, followed by the non-qualified
name of the XML attribute, followed by an EQUALS SIGN (=) character, followed by a APOSTROPHE () character
or two QUOTATION MARK (") characters, followed by the XML attribute value, followed by a APOSTROPHE (')
character or two QUOTATION MARK (") characters. In the string there shall be no other whitespace than specified
above. Each string shall use a namespace (including the no namespace case) allowed by the final "anyAttributes™
encoding instruction.

NOTE 2: The metaformat of each XSD. String is:
"[<URI><whitespace>]<non-qualified attribute name>=('|"")< attribute value>(|"")".

NOTE 3: Decoders are always using a single SPACE character as whitespace between the URI and the non-
qualified attribute name parts of the string (see clause B.3.3) to allow the user to employ specific values
for matching.

EXAMPLE: Translating anyAttribute:

The Schema
<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:this="http://www.example.org/wildcards"
targetNamespace="http://www.example.org/wildcards">

<element name="anyAttrAnyNamespace" type="this:e45"/>

<element name="anyAttrThisNamespace" type="this:e45b"/>
<complexType name="e45">

ETSI

http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/

86

<xs:attribute name="attr" type="xs:string"/>

<attribute name="bb" type="xs:date"/>

<attribute name="aa" type="xs:date"/>

<anyAttribute namespace="##any"/>
</complexType>

<complexType name="e45a">
<anyAttribute namespace="##other"/>
</complexType>

<complexType name="e45b">
<anyAttribute namespace="##targetNamespace"/>
</complexType>

<complexType name="e45c">

ETSI ES 201 873-9 V4.4.1 (2012-04)

<anyAttribute namespace="##local http://www.example.org/attribute"/>

</complexType>

<complexType name="e45d">
<complexContent>
<extension base="e45c">
<anyAttribute namespace="##targetNamespace"/>
</extensions>
</complexContent>
</complexType>
</schema>

// Is mapped e.g. to the following TTCN-3 module:
module http www_example org wildcards {

import from XSD all;

type E45 AnyAttrAnyNamespace

with {
variant "name as uncapitalized";
variant "element";

type E45b AnyAttrThisNamespace

with {
variant "name as uncapitalized";
variant "element";

}

type record E45 {
XSD.Date aa optional,
XSD.String attr optional,
XSD.Date bb optional

record length (1..infinity) of XSD.String attr 1 optional

with {
variant "name as uncapitalized";
variant (aa, attr, bb) "attribute";
variant (attr_1) "anyAttributes"

}

type record E45a {
record length (1..infinity) of XSD.String attr optional

with {
variant "name as uncapitalized";

variant (attr) "anyAttributes except unqualified, 'http://www.example.org/wildcards'"

}

type record E45b {
record length (1..infinity) of XSD.String attr optional

with {
variant "name as uncapitalized";

variant (attr) "anyAttributes from 'http://www.example.org/wildcards'"

type record E45c {
record length (1..infinity) of XSD.String attr optional
}

ETSI

87 ETSI ES 201 873-9 V4.4.1 (2012-04)

with {
variant "name as uncapitalized";
variant (attr) "anyAttributes from unqualified, 'http://www.example.org/attribute'"

type record E45d {
record length (1..infinity) of XSD.String attr optional

with {
variant "name as uncapitalized";
variant (attr) "anyAttributes from unqualified, 'http://www.example.org/attribute',
'http://www.example.org/wildcards'"

} //end module
with {
encode "XML";
variant "namespace as 'http://www.example.org/wildcards' prefix 'this'";
variant "controlNamespace 'http://www.w3.org/2001/XMLSchema-instance' prefix 'xsi'";

}
For example the template:
template AnyAttrThisNamespace t AnyAttrThisNamespace := {
attr := omit

}

Shall be encoded as an empty element with no attribute in XML.:

<?xml version="1.0" encoding="UTF-8"?>
<this:anyAttrThisNamespace xmlns:this='http://www.example.org/wildcards'/>

And the template:

template AnyAttrThisNamespace t_ AnyAttrThisNamespace := {
attr := {"http://www.example.org/wildcards akarmi='tinky-winky'",
"http://www.example.org/wildcards valami='dipsy'"}

Can be encoded e.g. to one of the following XML instances:

<?xml version="1.0" encoding="UTF-8"?>

<this:anyAttrThisNamespace xmlns:this='http://www.example.org/wildcards'
xmlns:b0="http://www.example.org/wildcards' b0:akarmi='tinky-winky"
xmlns:bl="http://www.example.org/wildcards' b0O:valami='dipsy'/>

Or

<?xml version="1.0" encoding="UTF-8"?>
<this:anyAttrThisNamespace xmlns:this="http://www.example.org/wildcards"
this:akarmi="tinky-winky" this:valami="dipsy"/>

While, for example, receiving the following XML instance shall cause a decoding failure, because all XML attributes
shall be from the namespace "http://www.example.org/wildcards":

<?xml version="1.0" encoding="UTF-8"?>

<this:anyAttrThisNamespace xmlns:this="http://www.example.org/wildcards"
xmlns:other="http://www.example.org/other "

this:akarmi="tinky-winky" other:valami="dipsy"/>

7.8 Annotation

An XSD annotation is used to include additional information in the XSD data. Annotations may appear in every
component and shall be mapped to a corresponding comment in TTCN-3. The comment shall appear in the TTCN-3
code just before the mapped structure it belongs to. The present document does not describe a format in which the
comment shall be inserted into the TTCN-3 code.

ETSI

88 ETSI ES 201 873-9 V4.4.1 (2012-04)

EXAMPLE:

<annotations

<appinfo>Note</appinfo>

<documentation xml:lang="en">This is a helping note!</documentation>
</annotations>

//Could be translated to:
// Note: This is a helping note !

7.9 Group components

XSD group definition, defined globally, enables groups of elements to be defined and named, so that the elements can
be used to build up the content models of complex types. The child of a group shall be one of the all, choice or
sequence Compositors.

They shall be mapped to TTCN-3 type definitions the same way as their child components would be mapped inside a
complexType with one difference: the "untagged" encoding instruction shall be attached to the generated TTCN-3
component, corresponding to the group element.

EXAMPLE: Mapping of groups:

<xs:group name="shipAndBill"s>
<XS:sequences
<xs:element name="shipTo" type="xs:string"/>
<xs:element name="billTo" type="xs:string"/>
</xs:sequence>
</Xs:group>

<xs:group name="shipOrBill">
<xs:choice>
<xs:element name="shipTo" type="xs:string"/>
<xs:element name="billTo" type="xs:string"/>
</xs:choice>
</xs:group>

<xs:group name="shipAndBillAll">
<xs:all>
<xs:element name="shipTo" type="xs:string"/>
<xs:element name="billTo" type="xs:string"/>
</xs:all>
</xs:group>

//Is translated to TTCN-3 as:

type record ShipAndBill {
XSD.String shipTo,
XSD.String billTo

with {
variant "untagged"
}

type union ShipOrBill {
XSD.String shipTo,
XSD.String billTo

with {
variant "untagged"
}

type record ShipAndBillall {
record of enumerated { shipTo, billTo } order,
XSD.String shipTo,
XSD.String billTo

with {

variant "untagged";
variant "useOrder"

ETSI

89 ETSI ES 201 873-9 V4.4.1 (2012-04)

7.10 Identity-constraint definition schema components

The XSD unique element enables to indicate that some XSD attribute or element values shall be unique within a certain
scope. As TTCN-3 does not allow a similar relational value constraint, mapping of the unique, key and keyref elements
are not supported by the present document, i.e. these elements shall be ignored in the translation process.

NOTE 1: Itis recommended that converter tools are retain the information of the unique, key and keyref elements in
a TTCN-3 comment, to help the user in producing TTCN-3 values and templates complying to the
original XSD specification.

NOTE 2: As the selector and field XSD elements may only appear as child elements of a unique, key or keyref
element, they are automatically ignored when their parent element is ignored.

8 Substitutions

XSD allows two types of substitutions:

. XML elements in instance documents may be replaced by other XML elements that have been declared as
members of the substitution group in XSD (of which the replaced element is the head); both the head element
and the substitution group members shall be global XSD elements; the types of the substitution group members
shall be the same or derived from the type of the head element.

. The XSD type actually used to create the instance of an XSD element information item may also be a hamed
simple or complex type derived from the type referenced by the type attribute of the XSD element information
item declaration; in this case the xsi:type (schema instance namespace) XML attribute shall identify the name
of the type used to create the given instance.

Depending on the SUT to be tested, it may be known a priori if the SUT could use element and/or type substitution or
not. For this reason, to simplify the generated TTCN-3 code in certain cases, TTCN-3 tools claiming to conform with
the present document shall support the following modes of operation, selectable by the user:

. generate a TTCN-3 code allowing both element substitution (code generated according to clause 8.1) and
allowing type substitution (code generated according to clause 8.2);

. generate a TTCN-3 code allowing element substitution (code generated according to clause 8.1) but
disallowing type substitution (code generated according to clauses 7.5 and 7.6);

. generate a TTCN-3 code disallowing element substitution (code generated according to clauses 7.3 and 8.1.2)
but allowing type substitution (code generated according to clause 8.2);

. generate a TTCN-3 code disallowing both element and type substitutions; for backward compatibility with the
previous versions of the present document this shall be the default mode.

8.1 Element substitution

8.1.1 Head elements of substitution groups

This clause is invoked if the global XSD element information item being translated is referenced by the
substitutionGroup attribute of one or more other global element information item(s) in the set of schemas being
translated (i.e. it is the head of an element substitution group) and the user has requested to generate TTCN-3 code
allowing using element substitution (see clause 8).

Substitution group head elements shall be translated to TTCN-3 union types. The name of the union type shall be
the result of applying clause 5.2.2 to the name composed of the header element's name and the postfix "_group".

ETSI

90 ETSI ES 201 873-9 V4.4.1 (2012-04)

One alternative shall be added for the head element itself and one for each member of the substitution group. The first
alternative (field) of the union type shall correspond to the head element. The alternatives corresponding to the
member elements shall be added in an ordered manner, first alphabetically ordering the elements according to their
target namespaces (elements with no target namespace first) and subsequently alphabetically ordering the elements with
the same namespace based on their names. For each alternative the field name shall be the name applying clause 5.2.2
to the name of the XSD element corresponding to the given alternative. The type of the alternative shall be:

e the TTCN-3 type resulted by applying clause 7.3 to the head element, in the case of the head element;

. the TTCN-3 type resulted by applying clause 8.1.2 to the member element, in the case of the member elements
(i.e. it shall reference the TTCN-3 type generated for the given global XSD element information item).

NOTE 1: In XSD, substitution group membership is transitive, i.e. the members of a substitution group (ESG1)
whose head is a member of another substitution group (ESG2) are all also members of the second
substitution group (ESG2).

If the value of the head element's abstract attribute is "true", the "abstract" encoding instruction has to be attached to the
field corresponding to the head element (i.e. to the first field).

NOTE 2: If the value of a member element’s abstract attribute is "true”, the "abstract” encoding instruction is
attached to the TTCN-3 type generated for that element, according to clause 7.1.9.

If the head element'’s effective block value (see clause 7.1.10) is "#all" or "substitution", the "block™ encoding
instruction shall be attached to all fields of the union type except the field corresponding to the head element (the first
field).

If the head element's effective block value (see clause 7.1.10) is "restriction™ or "extension” the "block™ encoding
instruction shall be attached to all fields, generated for group member elements with a type, which has been derived
from the type of the head element by restriction or by extension , respectively, at any step along the derivation path.

NOTE 3: The TTCN-3 syntax allows to attach the same attribute to several fields of the same structured type in one
with attribute.

Finally, the union type shall be appended with the "untagged™ encoding instruction.

When translating XSD references to the head element to TTCN-3, the TTCN-3 union type generated according to this
clause shall be used.

EXAMPLE 1: Substitution group:

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://www.example.org/SimpleCase"
xmlns:ns="http://www.example.org/SimpleCase" >
<!-- THE HEAD ELEMENT -->
<element name="head" type="string" />

<!-- SUBSTITUTION ELEMENT OF THE SAME TYPE AS THE HEAD -->
<element name="memberl" type="string" substitutionGroup="ns:head"/>

<!-- SUBSTITUTION ELEMENT OF A TYPE RESTRICTING THE TYPE OF THE HEAD -->
<simpleType name="stringEnum">
<restriction base="string"s>
<enumeration value="something"/>
<enumeration value="else"/>
</restriction>
</simpleType>

<element name="member2" type="ns:stringEnum" substitutionGroup="ns:head"/>

<!-- SUBSTITUTION ELEMENT OF A TYPE EXTENDING THE TYPE OF THE HEAD -->
<complexType name="complexEnum">
<simpleContent>

<extension base="string">
<attribute name="foo" type="float"/>
<attribute name="bar" type="integer"/>
</extensions>
</simpleContent>
</complexType>

ETSI

91 ETSI ES 201 873-9 V4.4.1 (2012-04)

<element name="member3" type="ns:complexEnum" substitutionGroup="ns:head"/>

<!-- TOP LEVEL ELEMENT TO DEMONSTRATE SUBSTITUTION -->
<element name="ize">
<complexType>
<sequence>
<element ref="ns:head" minOccurs="0" maxOccurs="unbounded"/>
</sequence>
</complexType>
</element>

</schema>

//Is translated to TTCN-3 as:

module http www example org SimpleCase

/* SUBSTITUTION ELEMENT OF THE SAME TYPE AS THE HEAD */
type XSD.String Memberl

with {

variant "name as uncapitalized";

variant "element";

}i

/* SUBSTITUTION ELEMENT OF A TYPE RESTRICTING THE TYPE OF THE HEAD */
type enumerated StringEnum { something, else }

with {

variant "name as uncapitalized";

}i

type StringEnum Member2

with {

variant "name as uncapitalized";
variant "element";

}i

/* SUBSTITUTION ELEMENT OF A TYPE EXTENDING THE TYPE OF THE HEAD */
type record ComplexEnum

{

XSD.Integer bar optional,
XSD.Float foo optional,
XSD.String base

with {

variant "name as uncapitalized";
variant (bar) "attribute";
variant (foo) "attribute";
variant (base) "untagged";

}i

type ComplexEnum Member3

with {

variant "name as uncapitalized";
variant "element";

}i

/* THE HEAD ELEMENT */
type union Head group
XSD.String head,

. .Memberl memberl,
. .Member2 member2,
Member3 member3

with {
variant "untagged"
}

/* TOP LEVEL ELEMENT TO DEMONSTRATE SUBSTITUTION */
type record Ize

{

record of Head group head list

with {

variant "name as uncapitalized";
variant "element";

variant (head list) "untagged";

} with {

encode "XML";
variant "namespace as 'http://www.example.org/SimpleCase' prefix 'ns'";

ETSI

92 ETSI ES 201 873-9 V4.4.1 (2012-04)

variant "controlNamespace 'http://www.w3.org/2001/XMLSchema-instance' prefix 'xsi'";

}

//and the template

template Ize t Ize := {
{ head := "anything" },
{ memberl := "any thing" },
{ member2 := something },
{ member3 := { bar:= 5, foo := omit, base := "anything else" }

}

//will be encoded in XML as:

<?xml version="1.0" encoding="UTF-8"7?>

<ns:ize
xmlns:ns="http://www.example.org/SimpleCase"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.example.org/SimpleCase SimpleCase.xsd">
<ns:head>anything</ns:head>
<ns:memberls>any thing</ns:memberls>
<ns:member2>something</ns:member2>
<ns:member3s>akarmi</ns:member3>
<ns:member3 bar="5" sanything else</ns:member3>

</ns:ize>

EXAMPLE 2: Effect of the block and abstract attributes on element substitution:

<?xml version="1.0" encoding="UTF-8"7?>

<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://www.example.org/BlockRestriction"
xmlns:ns="http://www.example.org/BlockRestriction">

<!-- THE HEAD ELEMENT -->
<element name="head" type="string" block="restriction" abstract="true"/>

<!-- Substitution group members memberl, member2, member3, their types and element "ize" are the
same as in example 1 above, hence not repeated here -->

</schema>

//Is translated to TTCN-3 as:
// TTCN-3 type definitions Memberl, StringEnum, Member2, ComplexEnum, Member3 and Ize
// are the same as in example 1 above, hence not repeated here

module http www example org BlockRestriction
/* THE HEAD ELEMENT */
type union Head group {

XSD.String head,

.Memberl memberl,

.Member2 member2,

Member3 member3

with {
variant "untagged";
variant (head) "abstract";
variant (member2) "block"
}
/* Substitution group members memberl, member2, member3, their types and element "ize" are the same
as in example 1 above, hence not repeated here */
} with {
encode "XML";
variant "namespace as 'http://www.example.org/BlockRestriction' prefix 'ns'";
variant "controlNamespace 'http://www.w3.org/2001/XMLSchema-instance' prefix 'xsi'";

//and the template

template Ize t Ize := {
{ head := "anything" },
{ memberl := "any thing" },
{ member2 := something },
{ member3 := { bar:= 5, foo := omit, base := "anything else" }

}

ETSI

93 ETSI ES 201 873-9 V4.4.1 (2012-04)

//will be encoded in XML as:

<?xml version="1.0" encoding="UTF-8"?>

<ns:ize
xmlns:ns="http://www.example.org/BlockRestriction "
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.example.org/BlockRestriction BlockRestriction.xsd">

<!-- allowed to send but causes a decoding failure if present in the received XML document
(the head element is abstract) --»>
<ns:head>anything</ns:head>

<!-- OK to send and receive -->
<ns:memberlsany thing</ns:memberls>

<!-- allowed to send but causes a decoding failure if present in the received XML document
(the type of member2 is derived by restriction in XSD) -->
<ns:member2>something</ns:member2>

<!-- OK to send and receive (the type of member3 is derived by extension in XSD) -->
<ns:member3s>akarmi</ns:member3>
<ns:member3 bar="5" sanything else</ns:member3>

</ns:ize>

EXAMPLE 3: Blocking substitution:

<?xml version="1.0" encoding="UTF-8"?>

<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://www.example.org/BlockAll"
xmlns:ns="http://www.example.org/BlockAll">

<!-- THE HEAD ELEMENT -->
<element name="headNoSubstition" type="string" block="#all"/>

<element name="groupMemberl" type="string" substitutionGroup="ns:headNoSubstition"/>
<element name="groupMember2" type="string" substitutionGroup="ns:headNoSubstition"/>

<!-- TOP LEVEL ELEMENT TO DEMONSTRATE SUBSTITUTION -->
<element name="ize2">
<complexType>
<sequence>
<element ref="ns:headNoSubstition" minOccurs="0" maxOccurs="unbounded"/>
</sequence>
</complexType>
</element>

</schema>

//Is translated to TTCN-3 as:
module http www example org BlockAll

type XSD.String GroupMemberl
with {

variant "name as uncapitalized";
variant "element";

}i

type XSD.String GroupMember2

with {

variant "name as uncapitalized";

variant "element";

i

/* THE HEAD ELEMENT */

type union HeadNoSubstition group {
XSD.String headNoSubstition,

. .GroupMemberl groupMemberl,

. .GroupMember2 groupMember?2

with {
variant "untagged";
variant (groupMemberl, groupMember2) "block"

}

/* TOP LEVEL ELEMENT TO DEMONSTRATE SUBSTITUTION */
type record Ize2

{

record of HeadNoSubstition group head list

ETSI

94 ETSI ES 201 873-9 V4.4.1 (2012-04)

with {

variant "name as uncapitalized";
variant "element";

variant (head list) "untagged";

} with {
encode "XML";
variant "namespace as 'http://www.example.org/BlockAll' prefix 'ns'";
variant "controlNamespace 'http://www.w3.org/2001/XMLSchema-instance' prefix 'xsi'";

}

//and the template

template Ize2 t Ize2 := {
{ headNoSubstition := "anything" },
{ groupMemberl := "any thing" },
{ groupMember2 := "something" }

//will be encoded in XML as:

<?xml version="1.0" encoding="UTF-8"?>

<ns:ize
xmlns:ns="http://www.example.org/BlockAll "
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.example.org/BlockAll BlockAll.xsd">

<!-- OK to send and receive -->
<ns:headNoSubstition>anything</ns:headNoSubstitions>

<!-- allowed to send but causes a decoding failure if present in the received XML document
(all substitutions are disallowed) -->
<ns:groupMemberl>any thing</ns:groupMemberls>

<!-- allowed to send but causes a decoding failure if present in the received XML document
(all substitutions are disallowed) -->
<ns:groupMember2>something</ns:groupMember2>
</ns:ize>

8.1.2 Substitution group members

XSD elements with a substitutionGroup attribute information item shall be translated to TTCN-3 according to
clauses 7.3 and 7.1.13 with one addition: if the type of the XSD element is not defined in the element declaration, the
type of the head element shall be used for the conversion.

8.2 Type substitution

This clause is invoked if the XSD simpleType or complexType is referenced by the base attribute of the restriction or
extension element information item(s) of one or more global XSD type definition(s) (i.e. the type is a parent type of one
or more global derived types) AND the parent type occurs as the type of at least one XSD element declaration and the
user has requested to generate TTCN-3 code allowing using type substitution (see clause 8). These types are called
substitutable parent types (as opposed to parent types that cannot be substituted because e.g. referenced only in attribute
declarations). Please note that when the type of an element is substituted in an instance document, XSD requires that the
actual type is identified by an xsi:type XML attribute.

NOTE 1: This definition also includes the case when the type of an element is a built-in XSD data type and one or
more user-defined types are derived from this built-in type.

Substitutable parent types shall be translated to TTCN-3 union types. The name of the union type shall be the result
of applying clause 5.2.2 to the name composed of the substitutable parent type's name and the postfix "_derivations". In
case of built-in XSD types, the names defined in clause 6 shall be used as the name of the substitutable parent type, of
course, without the "XSD" qualifier part.

ETSI

95 ETSI ES 201 873-9 V4.4.1 (2012-04)

One alternative shall be added for the substitutable parent type itself and one for each type derived from it in one or
more derivation steps. The first alternative (field) of the union type shall correspond to the substitutable parent type.
The alternatives corresponding to the derived types shall be added in an ordered manner, first alphabetically ordering
the types according to their target namespaces (types with no target namespace first) and subsequently alphabetically
ordering the types with the same namespace based on their names. For each alternative, the field name shall be the
name applying clause 5.2.2 to the name of the XSD type corresponding to the given alternative. The type of the
alternative shall be:

e the TTCN-3 type resulted by applying clauses 7.5 or 7.6, respectively, to the substitutable parent type for the
first field (corresponding to the substitutable parent type);

. the TTCN-3 type resulted by the translation of the derived type for the other fields.

If the value of the substitutable parent type's abstract attribute is "true”, the "abstract" encoding instruction has to be
attached to the field corresponding to the substitutable parent type, i.e. to the first field.

NOTE 2: If the value of a derived type's abstract attribute is "true", the "abstract" encoding instruction is attached
to the TTCN-3 type generated for that XSD type, according to clause 7.1.9.

If the substitutable parent type's effective block value (see clause 7.1.10) is "#all™, the "block™ encoding instruction shall
be attached to all fields of the union type except the field corresponding to the substitutable parent type (the first
field).

If the substitutable parent type's effective block value (see clause 7.1.10) is "restriction" or "extension" the "block™
encoding instruction shall be attached to all fields, generated for types, derived from the substitutable parent type by
restriction or by extension , respectively, at any step along the derivation path.

NOTE 3: The TTCN-3 syntax allows to attach the same attribute to several fields of the same structured type in one
with attribute.

Finally the "useType" encoding instruction shall be attached to the TTCN-3 union type.

NOTE 4: Please note that the first alternative of the union is encoded without an xsi:type attribute. The user, if he
wants to force xsi:type for the first alternative, needs to add the "useType" encoding instruction to the
first field manually.

When translating XSD references to the substitutable parent type to TTCN-3, the TTCN-3 union type generated
according to this clause shall be used.

ETSI

96 ETSI ES 201 873-9 V4.4.1 (2012-04)

Annex A (normative):
TTCN-3 module XSD

This annex defines a TTCN-3 module containing type definitions equivalent to XSD built-in types.

NOTE: The capitalized type names used in annex A of ITU-T Recommendation X.694 [4] have been retained for
compatibility. All translated structures are the result of two subsequent transformations applied to the
XSD Schema: first, transformations described in ITU-T Recommendation X.694 [4], then transformations
described in ES 201 873-7 [2]. In addition, specific extensions are used that allow codecs to keep track of
the original XSD nature of a given TTCN-3 type.

module XSD

//These constants are used in the XSd date/time type definitions
const charstring

dash := "-",
cln = ":",
year := "(0(0(0[1-9]][1-9][0-9])][1-9]1[0-9][0-9])]|[1-9][0-9][0-9][0-9])",
yearExpansion := " (-([1-9] [0-91#(0,))#(,1))#(,1)",
month := "(0[1-9]|1[0-2])",
dayOfMonth := "(0[1-9]|[12] [0-9]|3[01])",
hour := "([01] [0-9]|2[0-3])",
minute := " ([0-5][0-9])",
second := " ([0-5][0-9])",
sFraction := "(.[0-91#(1,))#(,1)",
endOfDayExt := "24:00:00(.0#(1,))#(,1)",
nums := "[0-9]1#(1,)",
ZorTimeZoneExt := " (Z| [\+\-1((0[0-9]]|1[0-3]):[0-5][0-9]|14:00))#(,1)",
durTime := "(T[0-9]1#(1,)"&
"(H([0-91#(1,) (M([0-91#(1,) (S|.[0-91#(1,)S))#(,1)|.[0-91#(1,)S[S))#(,1)|"&
"M([0-91#(1,) (S|.[0-91#(1,)S)|.[0-91#(1,)M#(,1)|"&
ns|n&
".[0-91#(1,)8))"
//anySimpleType

type XMLCompatibleString AnySimpleType with {
variant "XSD:anySimpleType"

i

//anyType;

type record AnyType

record length (1 .. infinity) of String attr optional,
record of String elem list
} with {

variant "XSD:anyType";
variant (attr) "anyAttributes";
variant (elem_list) "anyElement";

}i
// String types

type XMLCompatibleString String with {
variant "XSD:string"
}i

type XMLStringWithNoCRLFHT NormalizedString with
variant "XSD:normalizedString"
i

type NormalizedString Token with {
variant "XSD:token"
Vi

type XMLStringWithNoWhitespace Name with {
variant "XSD:Name"
i

ETSI

97 ETSI ES 201 873-9 V4.4.1 (2012-04)

type XMLStringWithNoWhitespace NMTOKEN with {
variant "XSD:NMTOKEN"
i

type Name NCName with
variant "XSD:NCName"

type NCName ID with {
variant "XSD:ID"

type NCName IDREF with {
variant "XSD:IDREF"

type NCName ENTITY with {
variant "XSD:ENTITY"

type octetstring HexBinary with {
variant "XSD:hexBinary"

type octetstring Base64Binary with {
variant "XSD:base64Binary";

}i

type XMLStringWithNoCRLFHT AnyURI with {
variant "XSD:anyURI"
}i

type charstring Language (pattern "[a-zA-Z]1#(1,8) (-\w#(1,8))#(0,)") with {
variant "XSD:language"
}i

// Integer types

type integer Integer with
variant "XSD:integer"

type integer Positivelnteger (1 .. infinity) with {
variant "XSD:positiveInteger"

type integer NonPositiveInteger (-infinity .. 0) with ({
variant "XSD:nonPositiveInteger"

type integer Negativelnteger (-infinity .. -1) with {
variant "XSD:negativeInteger™"

type integer NonNegativeInteger (0 .. infinity) with
variant "XSD:nonNegativeInteger"

type longlong Long with {
variant "XSD:long"

type unsignedlonglong UnsignedLong with {
variant "XSD:unsignedLong"

type long Int with {
variant "XSD:int"

type unsignedlong UnsignedInt with {
variant "XSD:unsignedInt™"

ETSI

98 ETSI ES 201 873-9 V4.4.1 (2012-04)

type short Short with
variant "XSD:short"

type unsignedshort UnsignedShort with
variant "XSD:unsignedShort"

type byte Byte with {
variant "XSD:byte"

type unsignedbyte UnsignedByte with {
variant "XSD:unsignedByte"

}i
// Float types

type float Decimal (!-infinity .. !infinity) with {
variant "XSD:decimal™"
Vi

type IEEE754float Float with {
variant "XSD:float"
Vi

type IEEE754double Double with {
variant "XSD:double"
bi

// Time types

type charstring Duration (pattern ") with {
variant "XSD:duration"
Vi

type charstring Duration (pattern
"{dash}#(,1)P({nums} (Y ({nums} (M({nums}D{durTime}#(,1) | {durTime}#(,1)) |D{durTime}#(,1)) |" &
"{durTime}#(,1)) |M({nums}D{durTime}# (,1) | {durTime}#(,1)) |D{durTime}#(,1)) | {durTime})"
) with {
variant "XSD:duration"
}i

type charstring DateTime (pattern
"{yearExpansion}{year}{dash}{month}{dash}{day0ofMonth}T ({hour}{cln}{minute}{cln}{second}" &
"{sFraction} | {endOfDayExt}) { ZorTimeZoneExt }"
) with {
variant "XSD:dateTime"
}i

type charstring Time (pattern
" ({hour}{cln}{minute}{cln}{second}{sFraction} | {endofDayExt}) {ZorTimeZoneExt}"
) with {
variant "XSD:time"
}i

type charstring Date (pattern
"{yearExpansion}{year}{dash}{month}{dash}{dayOfMonth}{ZorTimeZoneExt }"
) with {
variant "XSD:date"
}i

type charstring GYearMonth (pattern
"{yearExpansion}{year}{dash}{month} {ZorTimeZoneExt } "
) with {
variant "XSD:gYearMonth"
bi

type charstring GYear (pattern
"{yearExpansion}{year}{ZorTimeZoneExt }"
) with {
variant "XSD:gYear"
Vi

type charstring GMonthDay (pattern
"{dash}{dash}{month}{dash}{dayOfMonth}{ZorTimeZoneExt}"
) with {

ETSI

99

variant "XSD:gMonthDay"

}i

type charstring GDay (pattern
"{dash}{dash}{dash}{dayOfMonth}{ZorTimeZoneExt }"
) with {
variant "XSD:gDay"
}i

type charstring GMonth (pattern
"{dash}{dash}{month}{ZorTimeZoneExt }"
) with {
variant "XSD:gMonth"
}i

// Sequence types

type record of NMTOKEN NMTOKENS with {
variant "XSD:NMTOKENS"
}i

type record of IDREF IDREFS with
variant "XSD:IDREFS"
Vi

type record of ENTITY ENTITIES with ({
variant "XSD:ENTITIES"
i

type record QName

{
AnyURI uri optional,
NCName name
twith {
variant "XSD:QName"

Vi
// Boolean type

type boolean Boolean with
variant "XSD:boolean"
i

ETSI ES 201 873-9 V4.4.1 (2012-04)

//TTCN-3 type definitions supporting the mapping of W3C XML Schema built-in datatypes

type utf8string XMLCompatibleString
(
char(0,0,0,9).. char(0,0,0,9),
char(0,0,0,10)..char(0,0,0,10),
char(0,0,0,13)..char(0,0,0,13),
char(0,0,0,32)..char(0,0,215,255),
char(0,0,224,0) ..char(0,0,255,253),
char(0,1,0,0)..char(0,16,255,253)
)

type utf8string XMLStringWithNoWhitespace
(
char(0,0,0,33)..char(0,0,215,255),
char (0,0,224,0) ..char(0,0,255,253),
char(0,1,0,0)..char(0,16,255,253)

)

type utf8string XMLStringWithNoCRLFHT
(
char(0,0,0,32)..char(0,0,215,255),
char(0,0,224,0)..char(0,0,255,253),
char(0,1,0,0)..char(0,16,255,253)

}//end module

ETSI

100 ETSI ES 201 873-9 V4.4.1 (2012-04)

Annex B (normative):
Encoding instructions

As described in clause 5 of the present document, in case of explicit mapping, the information not necessary to produce
valid TTCN-3 abstract types and values but needed to produce the correct encoded value (an XML document), shall be
retained in encoding instructions. Encoding instructions are contained in TTCN-3 encode and variant attributes
associated with the TTCN-3 definition, field or value of a definition. This annex defines the encoding instructions for
the XSD to TTCN-3 mapping.

NOTE: In case of implicit mapping the information needed for correct encoding is to be retained by the TTCN-3
tool internally and thus its form is out of scope of the present document.

B.1 General

A single attribute shall contain one encoding instruction only. Therefore, if several encoding instructions shall be
attached to a TTCN-3 language element, several TTCN-3 attributes shall be used.

The "syntactical structure™ paragraphs of each clause below identify the syntactical elements of the attribute (i.e. inside
the "with { }" statement. The syntactical elements shall be separated by one or more whitespace characters. A
syntactical element may precede or follow a double quote character without a whitespace character. There shall be no
whitespace between an opening single quote character and syntactical element directly following it and between a
closing single quote character and the syntactical element directly preceding it. All characters (including whitespaces)
between a pair of single quote characters shall be part of the encoding instruction.

Typographical conventions: bold font identify TTCN-3 keywords. The syntactical elements freetext and name are
identified by italic font; they shall contain one or more characters and their contents are specified by the textual
description of the encoding instruction. Normal font identify syntactical elements that shall occur within the TTCN-3
attribute as appear in the syntactical structure. The following character sequences identify syntactical rules and shall not
appear in the encoding instruction itself:

. (]) - identify alternatives.
. [1- identify that the part of the encoding instruction within the square brackets is optional.
e {}-identify zero or more occurrences of the part between the curly brackets.

. - identify the opening or the enclosing double quote of the encoding instruction.

B.2 The XML encode attribute

The encode attribute "XML" shall be used to identify that the definitions in the scope unit to which this attribute is
attached shall be encoded in one of the following XML formats:

. "XML" or "XML1.0" for W3C XML 1.0; and

. "XML1.1" for W3C XML 1.1.

Syntactical structure

encode """ (XML | XML1.0 | XML1.1) """
Applicable to (TTCN-3)
Module, group, definition.

ETSI

101 ETSI ES 201 873-9 V4.4.1 (2012-04)

B.3 Encoding instructions

B.3.1 XSD data type identification

Syntactical structure(s)

variant """ (- XSD:string | XSD:normalizedString | XSD:token | XSD:Name | XSD:NMTOKEN |
XSD:NCName | XSD:ID | XSD:IDREF | XSD:ENTITY | XSD:hexBinary | XSD:base64Binary |
XSD:anyURI | XSD:language | XSD:integer | XSD:positivelnteger | XSD:nonPositivelnteger |
XSD:negativelnteger | XSD:nonNegativelnteger | XSD:long | XSD:unsignedLong | XSD:int |
XSD:unsignedint | XSD:short | XSD:unsignedShort | XSD:byte | XSD:unsignedByte |
XSD:decimal | XSD:float | XSD:double | XSD:duration | XSD:dateTime | XSD:time | XSD:date |
XSD:gYearMonth | XSD:gYear | XSD:gMonthDay | XSD:gDay | XSD:gMonth |
XSD:NMTOKENS | XSD:IDREFS | XSD:ENTITIES | XSD:QName | XSD:boolean) "

Applicableto (TTCN-3)

These encoding instructions shall not appear in a TTCN-3 module mapped from XSD. They are attached to the TTCN-3
type definitions corresponding to XSD data types.

Description

The encoder and decoder shall handle instances of a type according to the corresponding XSD data type definition. In
particular, record of elements of instances corresponding to the XSD sequence types NMTOKENS IDREFS and
ENTITIES shall be combined into a single XML list value using a single space as separator between the list elements.
At decoding the XML list value shall be mapped to a TTCN-3 record of value by separating the list into its itemType
elements (the whitespaces between the itemType elements shall not be part of the TTCN-3 value). The uri and name
fields of a TTCN-3 instance of an XSD:QName type shall be combined to an XSD QName value at encoding. At
decoding an XSD QName value shall be separated to the URI part and the non-qualified name part (the double colon
between the two shall be disposed) and those parts shall be assigned to the uri and name fields of the corresponding
TTCN-3 value correspondingly.

B.3.2 Any element

Syntactical structure(s)

variant """ anyElement [except ('freetext' | unqualified) |

from [unqualified ,] [{ freetext', } 'freetext']] ™"
Applicableto (TTCN-3)
Fields of structured types generated for the XSD any element (see clause 7.7.1).

NOTE 1: If the any element has a maxOccurs attribute with a value more than 1 (including "unbounded"), the
element is mapped to a record of XSD.String field, in which case the anyElement instruction will
be applied to the XSD.String type as well, as in all other cases. See for example the conversion of XSD
complex type e46b in clause 7.7.1.

Description

One TTCN-3 encoding instruction shall be generated for each field corresponding to an XSD any element. The freetext
part(s) shall contain the URI(s) identified by the namespace attribute of the XSD any element. The namespace attribute
may also contain wildcards. They shall be mapped as given in table B.1.

ETSI

102 ETSI ES 201 873-9 V4.4.1 (2012-04)

Table B.1: Mapping namespace attribute wildcards

acet Value of the XSD "except" or "from" clause in the Remark
namespace attribute TTCN-3 attribute
#any <nor except neither from clause
present>
type ##local from unqualified
##other except unqualified, "<target Also disallows unqualified

namespace of the ancestor elements, i.e. elements
schema element of the given any |without a target
element>" namespace
##other In the case no target
namespace is ancestor
schema element of the
given any element

except unqualified

##targetNamespace from "<target namespace of the
ancestor schema element of the
given any element >"

"http://www.w3.0rg/1999/xhtml from
##targetNamespace" "http://www.w3.0rg/1999/xhtml",
"<target namespace of the
ancestor schema element of the
given any element >"

In the encoding process the content of the TTCN-3 value shall be handled transparently, except when maxQOccurs is
greater than 1: in this case the elements of the TTCN-3 record of value (corresponding to the any XSD element), shall
be concatenated transparently to produce the encoded XML value.

In the decoding process, the decoder shall check if the fragment of the received XML document corresponding to the
TTCN-3 field with the "anyElement"” encoding instruction fulfils the namespace specification in the encoding
instruction and, if no "processContents" encoding instruction is present for the element being decoded, it shall check if
it is a well-formed XML element (i.e. the content shall be assessed according to XML Schema Part 1 [9], clause 3.10.1,
assessment level skip. If a "processContents™ encoding instruction is present, the content shall be assessed according to
it. The failure of the namespace checking or the content assessment shall cause a decoding failure.

NOTE 2: Please note that any other assessment level (strict or lax) could result in different outcomes if a schema
related to the content of the any element is available for the decoder or not. As this would have adverse
effect on test result reproducibility, only the skip assessment level is necessary.

B.3.3 Any attributes

Syntactical structure(s)
variant """ anyAttributes [except 'freetext’ | from [unqualified ,] { 'freetext’, } ‘freetext] ™"
Applicable to (TTCN-3)
Fields of structured types generated for the XSD anyAttribute element (see clause 7.7.2).
Description

One TTCN-3 encoding instruction shall be generated for each field corresponding to an XSD anyAttribute element. The
freetext part(s) shall contain the URI(s) identified by the namespace attribute of the XSD anyAttribute element. The
namespace attribute may also contain wildcards. They shall be mapped as given in table B.1.

In the encoding process, if the type is encoded as a top-level type, this encoding instruction shall be ignored.

ETSI

103 ETSI ES 201 873-9 V4.4.1 (2012-04)

In all other cases, in the encoding process one XML attribute shall be added to the XML element being encoded for
each element of the corresponding TTCN-3 record of value. When the <URI> part is present in the given TTCN-3
string element (see clause 7.7.2), the encoder shall use the <URI> and the <non-qualified attribute name> part of string
to create a qualified XML attribute name and, using the <attribute value> part it shall create a valid XML attribute.
When the <URI> part is not present, the XML attribute created for the given record of element shall have a non-
qualified name in the XML instance. See also example in clause 7.7.2. The order of the generated XML attribute shall
correspond to the order they are defined in the record of value to which the encoding instruction relates to. The
namespace prefix used and if already existing namespace prefixes identifying a given namespace is reused or not, is an
encoder option.

In the decoding process, the decoder shall create one TTCN-3 record of element for each attribute of the XML element
being decoded that is not from the control namespace, and whose name is not that of the identifier (possibly

modified in accordance with any final "name as" or "namespace as" encoding instructions) of another component of the
enclosing type that has a final "attribute” encoding instruction. The decoder shall create the TTCN-3 strings (the
elements of the record of to which the "anyAttribute" encoding instruction is attached) in the order of the affected XML
attributes in the XML element. The decoder shall check if the namespace of the actually decoded XML attribute
satisfies the namespace restrictions of the "anyAttribute™ encoding instruction (including the no namespace case) and in
case of non-compliance it shall cause a decoding failure. If the XML attribute has a namespace-qualified name, the
<URI> part (see clause 7.7.2) of the generated string value shall be present, otherwise the <URI> part shall be absent.
If the <URI> part present, the decoder shall insert a lonely SPACE character between the <URI> and the <non-
gualified attribute name> parts of the generated TTCN-3 string value.

B.3.4 Attribute

Syntactical structure(s)

variant """ attribute
Applicableto (TTCN-3)
Top-level type definitions and fields of structured types generated for XSD attribute elements.
Description

This encoding instruction designates that the instances of the TTCN-3 type or field shall be encoded and decoded as
XML attributes.

B.3.5 AttributeFormQualified

Syntactical structure(s)

variant """ attributeFormQualified
Applicableto (TTCN-3)

Modules.

Description

This encoding instruction designates that names of XML attributes that are instances of TTCN-3 definitions in the given
module shall be encoded as qualified names and at decoding qualified names shall be expected as valid attribute names.

B.3.6 Control namespace identification

Syntactical structure(s)

variant """ controlNamespace ‘freetext' prefix 'freetext’ """
Applicableto (TTCN-3)

Module.

ETSI

104 ETSI ES 201 873-9 V4.4.1 (2012-04)

Description

This encoding instruction commands the encoder to use the identified namespace and prefix whenever a type, nil,
schemal ocation or noNamespaceSchemal ocation schema-related attributes are to be inserted into the encoded XML
document (see also clauses 3.1 and 5.1.5 of the present document). The first freetext component shall identify a
syntactically valid namespace and the second freetext component shall identify a namespace prefix.

B.3.7 Default for empty
Syntactical structure(s)
variant """ defaultForEmpty as ‘freetext' """
Applicableto (TTCN-3)
TTCN-3 components generated for XSD attribute or element elements with a fixed or default attribute.
Description
The "freetext” component shall designate a valid value of the type to which the encoding instruction is attached to.

This encoding instruction has no effect on the encoding process and designates that the decoder shall insert the value
specified by freetext if the corresponding attribute is omitted or when the corresponding element appears without any
content in the XML instance being decoded; it has no effect in other cases.

NOTE: If an element with a defaultForEmpty encoding instruction attached is missing in the XML instance being
decoded, its corresponding field will also be absent in the decoded TTCN-3 value.

B.3.8 Element

Syntactical structure(s)

variant """ element
Applicableto (TTCN-3)
Top-level type definitions generated for XSD element elements that are direct children of a schema element.
Description

This encoding instruction designates that the instances of the TTCN-3 type shall be encoded and decoded as XML
elements.

B.3.9 ElementFormQualified

Syntactical structure(s)

variant """ elementFormQualified
Applicableto (TTCN-3)

Modules.

Description

This encoding instruction designates that tags of XML local elements that are instances of TTCN-3 definitions in the
given module shall be encoded as qualified names and at decoding qualified names shall be expected as valid element
tags names.

ETSI

105 ETSI ES 201 873-9 V4.4.1 (2012-04)

B.3.10 Embed values

Syntactical structure(s)

variant embedValues

Applicableto (TTCN-3)

TTCN-3 record types generated for XSD complexType-s and complexContent-s with the value of the mixed attribute
"true".

Description

The encoder shall encode the record type to which this attribute is applied in a way, which produces the same result as
the following procedure: first a partial encoding of the record is produced, ignoring the embed_values field. The first
string of the embed_values field (the first record of element) shall be inserted at the beginning of the partial encoding,
before the start-tag of the first XML element (if any). Each subsequent string shall be inserted between the end-tag of
the XML element and the start-tag of the next XML element (if any), until all strings are inserted. In the case the
maximum allowed number of strings is present in the TTCN-3 value (the number of the XML elements in the partial
encoding plus one) the last string will be inserted after end-tag of the last element (to the very end of the partial
encoding). The following special cases apply:

a) Atdecoding, strings before, in-between and following the XML elements shall be collected as individual
components of the embed_values field. If no XML elements are present, and there is also a defaultForEmpty
encoding instruction on the sequence type, and the encoding is empty, a decoder shall interpret it as an
encoding for the freetext part specified in the defaultForEmpty encoding instruction and assign this abstract
value to the first (and only) component of the embed_values field.

b) If the type also has a useNil encoding instruction and the optional component is absent, then the embedValues
encoding instruction has no effect.

¢) If the type has a useNil encoding instruction and if a decoder determines that the optional component is
present, by the absence of a nil identification attribute (or its presence with the value false), then item a) above
shall apply.

B.3.11 Form

Syntactical structure(s)

variant """ form as (qualified | unqualified)
Applicableto (TTCN-3)

Top-level type definitions generated for XSD attribute elements and fields of structured type definitions generated for
XSD attribute or element elements.

Description

This encoding instruction designates that names of XML attributes or tags of XML local elements corresponding to
instances of the TTCN-3 type or field of type to which the form encoding instruction is attached, shall be encoded as
qualified or unqualified names respectively and at decoding qualified or unqualified names shall be expected
respectively as valid attribute names or element tags.

B.3.12 List

Syntactical structure(s)
variant """ list """
Applicableto (TTCN-3)

Record of types mapped from XSD simpleType-s derived as a list type.

ETSI

106 ETSI ES 201 873-9 V4.4.1 (2012-04)

Description

This encoding instruction designates that the record of type shall be handled as an XSD list type, namely, record of
elements of instances shall be combined into a single XML list value using a single SP(32) (space) character as
separator between the list elements. At decoding the XML list value shall be mapped to a TTCN-3 record of value by
separating the list into its itemType elements (the whitespaces between the itemType elements shall not be part of the
TTCN-3 value).

B.3.13 Name

Syntactical structure(s)

variant name (as (‘freetext’' | changeCase) | all as changeCase) """,

where changeCase := (capitalized | uncapitalized | lowercased | uppercased)
Applicableto (TTCN-3)

Type or field of structured type. The form when freetext is empty shall be applied to fields of union types with the
"useUnion" encoding instruction only (see clause B.3.16).

Description

The name encoding instruction identifies if the name of the TTCN-3 definition or field differs from the value of the
name attribute of the related XSD element. The name resulted from applying the name encoding attribute shall be used
as the non-qualified part of the name of the corresponding XML attribute or element tag.

When the "name as ‘freetext™ form is used, freetext shall be used as the attribute name or element tag, instead of the
name of the related TTCN-3 definition (e.g. TTCN-3 type name or field name).

The "name as " (i.e. freetext is empty) form designates that the TTCN-3 field corresponds to an XSD unnamed type,
thus its name shall not be used when encoding and decoding XML documents.

The "name as capitalized" and "name as uncapitalized" forms identify that only the first character of the related
TTCN-3 type or field name shall be changed to lower case or upper case respectively.

The "name as lowercased™ and "name as uppercased” forms identify that each character of the related TTCN-3 type or
field name shall be changed to lower case or upper case respectively.

The "name all as capitalized", "name all as uncapitalized", "name as lowercased" and "name as uppercased" forms has
effect on all direct fields of the TTCN-3 definition to which the encoding instruction is applied (e.g. in case of a
structured type definition to the names of its fields in a non-recursive way but not to the name of the definition itself and
not to the name of fields embedded to other fields).

The name encoding instruction shall not be applied when the untagged encoding instruction is used. However, if
both instructions are applied to the same TTCN-3 component in the same or in different TTCN-3 definitions, the
untagged instruction takes precedence (i.e. no start and end tags shall be used, see clause B.3.21).

B.3.14 Namespace identification

Syntactical structure(s)

variant """ namespace as 'freetext' [prefix 'freetext']
Applicableto (TTCN-3)
o Modules.

. Fields of record types generated for attributes of complexTypes taken in to complexType definitions by
referencing attributeGroup(s), defined in schema elements with a different (but not absent) target namespace
and imported into the schema element which is the ancestor of the complexType.

ETSI

107 ETSI ES 201 873-9 V4.4.1 (2012-04)

Description

The first freetext component identifies the namespace to be used in qualified XML attribute names and element tags at
encoding, and to be expected in received XML documents. The second freetext component is optional and identifies the
namespace prefix to be used at XML encoding. If the prefix is not specified, the encoder shall either identify the
namespace as the default namespace (if all other namespaces involved in encoding the XML document have prefixes)
or shall allocate a prefix to the namespace (if more than one namespace encoding instructions are missing the prefix
part).

B.3.15 Nillable elements

Syntactical structure(s)

variant """ useNil
Applicableto (TTCN-3)
Top-level record types or record fields generated for nillable XSD element elements.
Description

The encoding instruction designates that the encoder, when the optional field of the record (corresponding to the
nillable element) is omitted, it shall produce the XML element with the xsi:nil="true" attribute and no value. When the
nillable XML element is present in the received XML document and carries the xsi:nil="true" attribute, the optional
field of the record in the corresponding TTCN-3 value shall be omitted. If the nillable XML element carries the
xsi:nil="true" attribute and has a children (either any character or element information item) at the same time, the
decoder shall initiate a test case error.

B.3.16 Use union

Syntactical structure(s)
variant """ useUnion """

Applicableto (TTCN-3)

Types and field of structured types generated for XSD simpleTypes derived by union (see clause 7.5.3).

Description

The encoding instruction designates that the encoder shall not use the start-tag and the end-tag around the encoding of
the selected alternative (field of the TTCN-3 union type) and shall use the type identification attribute (xsi:type),
identifying the XSD base datatype of the selected alternative, except when encoding attributes or the encoded
component has a "list" encoding instruction attached or the "noType" encoding instruction is also present (see

clause B.3.27). At decoding the decoder shall place the received XML value into the corresponding alternative of the
TTCN-3 union type, based on the received value and the type identification attribute, if present.

B.3.17 Text

Syntactical structure(s)
variant """ text ('name' as ('freetext' |) | all as changeCase) """
NOTE 1: The definition of changeCase is given in clause B.3.13.
Applicableto (TTCN-3)

Enumeration types generated for XSD enumeration facets where the enumeration base is a string type (see clause 6.1.5,
first paragraph), and the name(s) of one or more TTCN-3 enumeration values is(are) differs from the related XSD
enumeration item. XSD.Boolean types, instances of XSD.Boolean types(see clause 6.7).

ETSI

108 ETSI ES 201 873-9 V4.4.1 (2012-04)

Description

When name is used, it shall be generated for the differing enumerated values only. The name shall be the identifier of
the TTCN-3 enumerated value the given instruction relates to. If the difference is that the first character of the XSD
enumeration item value is a capital letter while the identifier of the related TTCN-3 enumeration value starts with a
small letter, the "text 'name’ as capitalized" form shall be used. Otherwise, freetext shall contain the value of the related
XSD enumeration item.

NOTE 2: The "text name' as uncapitalized", "text 'name' as lowercased" and "text 'name' as uppercased" forms are
not generated by the current version of the present document but tools are encouraged to support also
these encoding instructions for consistency with the "name as ... " encoding instruction.

If the first characters of all XSD enumeration items are capital letters, while the names of all related TTCN-3
enumeration values are identical to them except the case of their first characters, the "text all as capitalized” form shall
be used.

The encoding instruction designates that the encoder shall use freetext or the capitalized name(s) when encoding the
TTCN-3 enumeration value(s) and vice versa.

When the text encoding attribute is used with XSD.Boolean types, the decoder shall accept all four possible XSD
boolean values and map the received value 1 to the TTCN-3 boolean value true and the received value 0 to the
TTCN-3 boolean value £alse. When the text encoding attribute is used on the instances of the XSD.Boolean type, the
encoder shall encode the TTCN-3 values according to the encoding attribute (i.e. true as 1 and false as 0).

B.3.18 Use number

Syntactical structure(s)

variant useNumber
Applicableto (TTCN-3)

Enumeration types generated for XSD enumeration facets where the enumeration base is integer (see clause 6.1.5,
second paragraph).

Description

The encoding instruction designates that the encoder shall use the integer values associated to the TTCN-3 enumeration
values to produce the value or the corresponding XML attribute or element (as opposed to the names of the TTCN-3
enumeration values) and the decoder shall map the integer values in the received XML attribute or element to the
appropriate TTCN-3 enumeration values.

B.3.19 Use order

Syntactical structure(s)

variant """ useOrder """

Applicableto (TTCN-3)

Record type definition, generated for XSD complexType-s with all constructor (see clause 7.6.4).
Description

The encoding instruction designates that the encoder shall encode the values of the fields corresponding to the children
elements of the all constructor according to the order identified by the elements of the order field. At decoding, the
received values of the XML elements shall be placed in their corresponding record fields and a new record of element
shall be inserted into the order field for each XML element processed (the final order of the record of elements shall
reflect the order of the XML elements in the encoded XML document).

ETSI

109 ETSI ES 201 873-9 V4.4.1 (2012-04)

B.3.20 Whitespace control

Syntactical structure(s)

variant """ whitespace (preserve | replace | collapse)

Applicableto (TTCN-3)
Types or fields of structured types generated for XSD components with the whitespace facet.
Description

The encoding instruction designates that the value of the received XML attribute shall be normalized before decoding as
follows (see also clause 3.3.3 of XML 1.1 [5]):

. preserve: no normalization shall be done, the value is not changed (this is the behaviour required by XML
Schema Part 2 [9] for element content);

. replace: all occurrences of HT(9) (horizontal tabulation), LF(10) (line feed) and CR(13) (carriage return) shall
be replaced with an SP(32) (space) character;

. collapse: after the processing implied by replace, contiguous sequences of SP(32) (space) characters are
collapsed to a single SP(32) (space) character, and leading and trailing SP(32) (space) characters are removed.

B.3.21 Untagged elements

Syntactical structure(s)

variant untagged

Applicableto (TTCN-3)
Structured type definitions and structured type fields.
Description

Without this attribute the names of the structured type fields (as possible modified by a name as and namespace
encoding instructions) or, in case of TTCN-3 type definitions corresponding to global XSD element declarations the
name of the TTCN-3 type (as possible modified by a name as and namespace encoding instructions) are used as
the local part of the start and end tags of XML elements at encoding. If the untagged encoding instruction is applied
to a TTCN-3 type or structured type field, the name of the type or field shall not produce an XML tag when encoding
the value of that type or field (in other words, the tag that would be produced without the untagged attribute shall be
suppressed during encoding and shall not be expected during decoding). The untagged encoding instruction shall
only have effect on the TTCN-3 language element to which it is directly applied; e.g. if applied to a structured type, the
type itself shall not result a starting and end tag in the encoded XML document but the fields of the structured type shall
be encoded using starting and end tags (provided no untagged attribute is applied to the fields). At decoding no XML
starting and end tags shall be present in the encoded XML document.

Shall not be applied to TTCN-3 components generated for XSD attribute elements (neither global nor local).

For typical use in case of extending or restricting simple content see clauses 7.6.1.1 and 7.6.1.2 and for typical use in
case of model groups see clause 7.9.

NOTE: Please note, that using the untagged encoding instruction in other cases than specified in the present
document, may result in an undecodable XML document.

ETSI

110 ETSI ES 201 873-9 V4.4.1 (2012-04)

B.3.22 Abstract

Syntactical structure(s)

variant """ abstract
Applicableto (TTCN-3)
Type definitions (generated for global XSD elements and XSD complex types).
Description

This encoding instruction shall have no effect on the encoding process (i.e. it is allowed to send an abstract element or
an element with an abstract type to the SUT).

NOTE: Please note that when the "useType" encoding instruction is also appended to the type being used for
encoding the element, the xsi:type XML attribute will be inserted into the encoded XML element,
identifying the name of the abstract XSD type, according to clause B.3.24.

In the decoding process, any of the following cases shall cause a failure of the decoding process:

e the TTCN-3 type corresponding to the XML element to be decoded has both the "element" and "abstract"
encoding instructions appended;

e the type of the TTCN-3 field or the field corresponding to the XML element to be decoded has the "abstract"
encoding instruction appended and the XML element has no xsi:type attribute; or

. if the XML element to be decoded has an xsi:type attribute identifying a type to which the "abstract” encoding
instruction is appended.

Otherwise the encoding instruction shall have no effect on the decoding process.

B.3.23 Block

Syntactical structure(s)
variant """ block™""
Applicableto (TTCN-3)
Field of the union type generated for substitutable XSD elements and types.
Description
The encoding instruction shall have no effect on the encoding process.

NOTE: This behaviour is defined to allow sending of intentionally incorrect data to the SUT. Tools may notify
the user when the data to be encoded is not valid (a blocked type is used for substitution).

In the decoding process, any of the following cases shall cause a decoding failure:

. the XML element, considering all applied name and namespace encoding instructions and a possible xsi:type
XML attribute, would decode to a field of a TTCN-3 union type with a "block™ encoding instruction;

e the XML element, considering all applied name and namespace encoding instructions and a possible xsi:type

XML attribute, would decode to field of a TTCN-3 union type without a "block" encoding instruction, but the
TTCN-3 type of the field has a "block™ encoding instruction.

ETSI

111 ETSI ES 201 873-9 V4.4.1 (2012-04)

B.3.24 Use type

Syntactical structure(s)

variant useType

Applicableto (TTCN-3)
Types, fields of structured types
Description

The type identification attribute identifies the type of an XML element using the xsi:type attribute from the control
namespace (see clause 5.1.5).

In the encoding process useType instructs the encoder that it shall include the xsi:type XML attribute into the start tag
of the corresponding encoded XML element, with the exception given below. The attribute shall identify the XSD type
of the given element, possibly modified in accordance with any final name as and namespace encoding
instructions. In case of unnamed XSD types the name of the XSD base type shall be used. When useType is applied to
a TTCN-3 union type, the first alternative of the union type shall be encoded without an xsi:type XML attribute.
When useType is applied to a TTCN-3 union type supplemented with an untagged encoding instruction, the
useType encoding instruction shall apply to the alternatives of the union (i.e. the selected alternative shall be
encoded using the xsi:type attribute). See examples in clauses 7.5.3 and 8.2. When useType is applied to a TTCN-3
record of type with a 1ist encoding instruction, the xsi:type attribute shall be applied to the XML element
enclosing the list value. See example in clause 7.5.2.

If a "noType" encoding instruction is applied to the TTCN-3 value to be encoded, the type of which is appended with a
useType encoding instruction, the useType instruction shall be ignored.

In the decoding process the presence of the xsi:type attribute in an XML element is used in two ways: it shall be used
a) inthe schema validation process of the XML instance to be decoded; and

b) ifapplied to a TTCN-3 union type, to select the alternative of the union, to which the decoded value shall
be stowed (see also note in clause 7.5.3). In particular, in the case of type substitution (see clause 8.2), if the
XML element to be decoded does not contain an xsi:type attribute and it cannot be decoded to the first
alternative, the decoding process shall fail (provided no useType is applied to this field directly). If it is
applied to selected alternatives of a union type but not for the whole type, only these alternatives shall be
evaluated taking into account the xsi:type attribute.

If used in conjunction with the useUnion encoding instruction, the useType encoding instruction has no additional
effect (the xsi:type attribute is inserted only once). If the selected alternative of the TTCN-3 union type with the
useType encoding instruction is a union type with a final useUnion encoding instruction, the type identification
attribute shall identify the chosen alternative of the inner union (with the useUnion instruction) instead of the
alternative of the outer union (with the useType encoding instruction).

B.3.25 Process the content of any elements and attributes

Syntactical structure(s)

variant """ processContents (skip | lax | strict)
Applicableto (TTCN-3)

XSD.String and record of XSD.String fields of structured types
Description

The "processContents" encoding instruction controls the validation level of the content received at the place of XSD
any and anyAttribute elements at decoding. It has no effect at encoding and does not influence checking the correctness
of the namespace of the XML instance being decoded (the namespace shall always satisfy the "anyElement" or
"anyAttribute™ encoding instruction, see clauses B.3.2 and B.3.3).

ETSI

112 ETSI ES 201 873-9 V4.4.1 (2012-04)

If the value of the encoding instruction is "skip”, the decoder shall only check if the content is a well-formed XML
element or attribute and in case of a defect it shall cause a decoding failure.

If the value of the encoding instruction is "lax", the decoder shall check if the content is well-formed XML element or
attribute. If the TTCN-3 definition corresponding to the XML element or attribute being decoded is available for the
decoder , the decoder shall also check if the content comply with the TTCN-3 definition. A defect in the well-
formedness or in the content validation shall cause a decoding failure. The decoder shall not attempt to retrieve a
schema for the element or attribute being decoded from an external source.

If the value of the encoding instruction is "strict", the decoder shall check if the content is well-formed XML element
or attribute and, if its content is valid according to the TTCN-3 definition corresponding to the XML element or
attribute being decoded. A defect in the well-formedness or in the content validation shall cause a decoding failure. If
the corresponding TTCN-3 definition is not available for the decoder, this shall cause a decoding failure. The decoder
shall not attempt to retrieve a schema for the element or attribute being decoded from an external source.

B.3.26 Transparent

Syntactical structure(s)
variant """ transparent name 'value' """
Applicableto (TTCN-3)
Types generated for XSD data types with facet(s) with no direct mapping to TTCN-3.
Description

The "transparent™ encoding instruction encapsulates XSD facets that are not directly mapped to TTCN-3 (for directly
mapped facets see clause 6, and in particular table 2 of the present document). The name part of the instruction shall be
the name of the XSD facet and the value part of the instruction shall be the value of the facet as defined in XSD (i.e.
XSD patterns shall not be converted to TTCN-3 patterns when included into the transparent encoding instruction). In
other words, the "transparent” encoding instruction transports the non-mapped XSD facet elements between the XSD
specification and the XML codec in a transparent way.

The encoder shall use the content of the "transparent™ encoding instruction to generate a correct XML instance for the
TTCN-3 value being encoded.

The decoder shall use the "transparent” encoding instruction to validate the received XML document while decoding it.

B.3.27 No Type

Syntactical structure(s)

variant noType
Applicableto (TTCN-3)
Templates, values and fields of templates and values.
Description

The "noType" encoding variant can be applied to any TTCN-3 value or template, where normally an xsi:type attribute
would be generated when encoding this element (see clause 5.1.5). This is normally the result of the "useType" or
"useUnion" encoding instructions appended to the type of the value or template. This is especially useful for
suppressing the type identification attribute for elements derived from simpleType via union. The "noType" encoding
instruction takes precedence over the "useType" and "useUnion" encoding instructions.

For decoding purposes, this encoding instruction shall be ignored.

ETSI

113 ETSI ES 201 873-9 V4.4.1 (2012-04)

Annex C (informative):
Examples

The following examples show how a mapping would look like for example XML Schemas. It is only intended to give
an impression of how the different elements have to be mapped and used in TTCN-3.

C

1 Example 1

XML Schema:

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

<!-- This is an embedded example. An element with a sequence body and an attribute.
The sequence body is formed of elements, two of them are also complexTypes.-->

<xs:element name="shiporder"s
<xs:complexType>
<XS:sequence>

<xs:element name="orderperson" type="xs:string"/>

<xs:element name="shipto">
<xs:complexType>
<Xs:sequence>

<xs:element

<xs:element

<xs:element

<xs:element

</Xs:sequence>
</xs:complexType>

</xs:element>

name="name" type="xs:string"/>
name="address" type="xs:string"/>
name="city" type="xs:string"/>
name="country" type="xs:string"/>

<xs:element name="item" >
<xs:complexType>
<Xs:sequence>

<xs:element

<xs:element

<xs:element

<xs:element

</Xs:sequence>
</xs:complexType>

</xs:element>

name="title" type="xs:string"/>

name="note" type="xs:string" minOccurs="0"/>
name="quantity" type="xs:positiveInteger"/>
name="price" type="xs:decimal"/>

</xs:sequence>
<xs:attribute name="orderid" type="xs:string" use="required"/>
</xs:complexType>
</xs:element>

</xs:schema>

TTCN-3 Module:

module NoNamespace {

import from XSD language "XML" all;

type record Shiporder {
XSD.String orderid,
XSD.String orderperson,
record

XSD.String
XSD.String
XSD.String
XSD.String
} shipto,
record

{

name,
address_1,
city,
country

ETSI

114 ETSI ES 201 873-9 V4.4.1 (2012-04)

XSD.String title,
XSD.String note optional,
XSD.PositiveInteger quantity,
XSD.Decimal price
} item
} with {
variant "name as uncapitalized";
variant (shipto.address_1) "name as 'address'";
variant (orderid) "attribute";

}

} with {
encode "XML";

}

module ExamplelTemplate {

import from XSD language "XML" all;
import from Examplel all;

template Shiporder t_Shiporder::{
orderid:="18920320_17",
orderperson:="Dr.Watson",
shipto:=
{
name:="Sherlock Holmes",
addressField:="Baker Street 221B",
city:="London",
country:="England"

title:="Memoirs",
note:= omit,
quantity:=2,
price:=3.5
}

}

}//end module

<?xml version="1.0" encoding="UTF-8"?>
<shiporder orderid=18920320_17>
<orderperson>Dr.Watson</orderperson>
<shipto>

<name>Sherlock Holmes</name>
<address>Baker Street 221B</address>
<city>London</city>
<country>England</country>

</shipto>

<item>

<title>Memoirs</title>
<quantity>2</quantity>
<price>3.5</price>

</item>

</shiporder>

C.2 Example 2

XML Schema:
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

<xs:simpleType name="S1">
<xs:restriction base="xs:integer">
<xs:maxInclusive value="2"/>
</xs:restriction>
</xs:simpleType>

ETSI

<xs:simpleType name="S2">
<xs:restriction base="S1">
<xs:minInclusive value="-23"/>
<xs:maxInclusive value="1"/>
</xs:restriction>
</xs:simpleType>

<xs:simpleType name="S3">
<xs:restriction base="S2">
<xs:minInclusive value="-3"/>
<xs:maxExclusive value="1"/>
</xs:restriction>
</xs:simpleType>

<xs:complexType name="Cl">
<xs:simpleContent>
<xs:extension base="S3">

<xs:attribute name="Al" type="xs:integer"/>
<xs:attribute name="A2" type="xs:float"/>

</xs:extension>
</xs:simpleContent>
</xs:complexType>

</xs:schema>
TTCN-3 Module:
module NoNamespace {

import from XSD language "XML" all;

type XSD.Integer S1 (-infinity .. 2);
type S1 S2 (-23 .. 1);
type S2 S3 (-3 .. 0);
type record C1 {
S3 base,
XSD.Integer al optional,
XSD.Float a2 optional
} with {
variant (al,a2) "name as capitalized ";
variant (al,a2) "attribute";

variant (base) "untagged"
} with {
encode "XML";
1

module Example2Templates {

import from XSD language "XML" all;
import from Example2 all;

template Cl t Cl:= {

base :=-1,
al =1,
a2 :=2.0

<?xml version="1.0" encoding="UTF-8"?>
<Cl Al="1" A2="2.0">-1</Cl>

115

ETSI

ETSI ES 201 873-9 V4.4.1 (2012-04)

116 ETSI ES 201 873-9 V4.4.1 (2012-04)

C.3 Example 3

XML Schema:

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema" xmlns="nsA" targetNamespace="nsA">

<xs:complexType name="Cl">
<xs:simpleContent>
<xs:extension base="xs:integer">
<xs:attribute name="Al" type="xs:integer"/>
<xs:attribute name="A2" type="xs:integer"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>

<xs:complexType name="C2">
<xs:simpleContent>
<xs:restriction base="C1l">
<xs:minInclusive value="23"/>
<xs:maxInclusive value="26"/>
<xs:attribute name="Al" type="xs:byte" use="required"/>
<xs:attribute name="A2" type="xs:negativelnteger"/>
</xs:restriction>
</xs:simpleContent>
</xs:complexType>

<xs:complexType name="C3">
<xs:simpleContent>
<xs:restriction base="C2">
<xs:minInclusive value="25"/>
<xs:maxInclusive value="26"/>
</xs:restriction>
</xs:simpleContent>
</xs:complexType>

</xs:schema>

TTCN-3 Module:
module nsA {
import from XSD language "XML" all;
type record Cl ({
XSD.Integer base,

XSD.Integer al optional,
XSD.Integer a2 optional

} with {
variant (al,a2) "name as capitalized";
variant (al,a2) "attribute";

variant (base) "untagged"

}

type record C2 ({

XSD.Integer (23 .. 26) base,

XSD.Byte al,

XSD.NegativeInteger a2 optional
} with {

variant (al,a2) "name as capitalized";
variant (al,a2) "attribute";
variant (base) "untagged"

}

type record C3 ({

XSD.Integer (25 .. 26) base,

XSD.Byte ail,

XSD.NegativeInteger a2 optional
} with {

variant (al,a2) "name as capitalized";
variant (al,a2) "attribute";
variant (base) "untagged"

ETSI

117 ETSI ES 201 873-9 V4.4.1 (2012-04)

} with {

encode "XML";

variant "namespace as 'nsA'";

variant "controlNamespace'http://www.w3.0org/2001/XMLSchema-instance' prefix 'xsi'"

}

module Example3Templates {

import from XSD language "XML" all;
import from Example3 all;

template C1 t Cl:= ({

base :=-1000,
al =1,
az =2

template C2 t_C2:

I
—_

base :=24,
al
az
1
template C3 t_C3:= {
base :=25,
al =1,
a2 :=-1000

}

<?xml version="1.0" encoding="UTF-8"7?>
<Cl xmlns="nsA" Al=1 A2=2>-1000</Cl>

<?xml version="1.0" encoding="UTF-8"7?>
<C2 xmlns="nsA" Al=1 A2=-2>24</C2>

<?xml version="1.0" encoding="UTF-8"7?>
<C3 xmlns="nsA" Al="1" A2="-1000">25</C3>

C.4 Example 4

XML Schema:
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema" xmlns:NA="nsA" targetNamespace="nsA">

<xs:include schemalocation="Example3.xsd"/>
<xs:import schemalLocation="Example2.xsd"/>

<xs:complexType name="newCl">
<xs:complexContent>
<xs:extension base="NA:Cl"/>
</xs:complexContent>
</xs:complexType>

<xs:simpleType name="newS1l">
<xs:restriction base="S1"/>
</xs:simpleType>

</xs:schema>

TTCN-3 Module:

module nsA {
import from XSD language "XML" all;

import from Example2 language "XML" all;
import from Example3 language "XML" all;

ETSI

type Example3.Cl NewCl
with {variant "name as uncapitalized"}

type Example2.S1 NewSl
with {variant "name as uncapitalized"}

} with {

encode "XML";
variant "namespace as ‘nsA' prefix ‘NA'"
variant "controlNamespace'http://www.w3.org/2001/XMLSchema-instance' prefix 'xsi'"

}

module

import from
import from
import from
import from
template

base

al =1,

a2 =2
template

}

118

Example4Templates {

XSD language "XML" all;
Example2 language "XML"
Example3 language "XML"
Example4 all;

NewCl t NewCl:= {

:=-1000,

NewS1l NewSl:=1

<?xml version="1.0" encoding="UTF-8"?>

<NA:newCl xmlns:NA="nsA" Al="1" A2="2">-1000</NA:newCl>

<?xml version="1.0" encoding="UTF-8"7?>
<NA:newSl xmlns:NA="nsA">1</NA:newSl>

all;
all;

ETSI

ETSI ES 201 873-9 V4.4.1 (2012-04)

119 ETSI ES 201 873-9 V4.4.1 (2012-04)

Annex D (informative):
Deprecated features

D.1 Using the anyElement encoding instruction to record
of fields

The TTCN-3 core language, ES 201 873-1 [1], up to and including V3.4.1, did not allow referencing the type replicated
in a TTCN-3 record of or set of type definition. As a consequence, when the any XSD element have had a maxOccurs
attribute with the value more then 1 (including "unbounded"), and is converted to a TTCN-3 record of

XSD. String field, the anyElement encoding instruction could not be attached to the XSD.String type, as in all
other cases, but have had to be attached to the record of. As the above limitation was removed in the core language,
using the anyElement encoding instruction with other types than the XSD.String, resulted from the conversion of an
XSD any element is deprecated. TTCN-3 tools, however, are encouraged to accept both syntaxes in TTCN-3 modules
further on, but, when converting XSD Schemas to TTCN-3, generate only the syntax according to the present
document.

EXAMPLE 1: The outdated syntax:

<xs:complexType name="e46b">
<XS:sequences
<xs:any minOccurs="0" maxOccurs="unbounded" namespace="##local"/>
</xs:sequence>
</xs:complexType>

//Was mapped to the following TTCN-3 code and encoding extensions according to
//elder versions of this document:
type record E46b {

record of XSD.String elem list

with {
variant "name as uncapitalized";
variant (elem_list) "anyElement except unqualified"

EXAMPLE 2: The present syntax:

<xs:complexType name="e46b">
<XS:sequence>
<xs:any minOccurs="0" maxOccurs="unbounded" namespace="##local"/>
</Xs:sequence>
</xs:complexType>

//Is mapped to the following TTCN-3 code and encoding extensions:
type record E46b {

record of XSD.String elem list
with {

variant "name as uncapitalized";

variant (elem list[-]) "anyElement except unqualified"
// ~ ~ pls. note the dash syntax here

}

D.2 Using the XML language identifier string

When importing from an XSD Schema, previous versions of the present document (up to v4.3.1) required to use the
following language identifier strings:

e "XML" or "XML1.0" for W3C XML 1.0; and

e "XMLL1.1" for W3C XML 1.1.

ETSI

120 ETSI ES 201 873-9 V4.4.1 (2012-04)

These strings are deprecated and have been replaced by another string (see clause 5) and may be fully removed in a
future edition of the present document.

NOTE: Please note, that the encoding attribute values associated with the XSD to TTCN-3 language mapping
specified in the present document remain unchanged (see clause B.2).

ETSI

121 ETSI ES 201 873-9 V4.4.1 (2012-04)

Annex E (informative):
Bibliography

ISO/IEC 646: "Information technology - 1SO 7-bit coded character set for information interchange™.

ETSI

122 ETSI ES 201 873-9 V4.4.1 (2012-04)

History
Document history

V3.3.1 July 2008 Publication

V4.1.1 June 2009 Publication

V4.2.1 July 2010 Publication

V4.3.1 June 2011 Publication

V4.4.0 February 2012 Membership Approval Procedure MV 20120401: 2012-02-01 to 2012-04-02
V4.4.1 April 2012 Publication

ETSI

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Introduction
	4.1 Conformance and compatibility

	5 Mapping XML Schemas
	5.1 Namespaces and document references
	5.1.1 Namespaces
	5.1.2 Includes
	5.1.3 Imports
	5.1.4 Attributes of the XSD schema element
	5.1.5 The control namespace

	5.2 Name conversion
	5.2.1 General
	5.2.2 Name conversion rules
	5.2.3 Order of the mapping

	5.3 Mapping of XSD schema components
	5.4 Unsupported features

	6 Built-in data types
	6.1 Mapping of facets
	6.1.1 Length
	6.1.2 MinLength
	6.1.3 MaxLength
	6.1.4 Pattern
	6.1.5 Enumeration
	6.1.6 WhiteSpace
	6.1.7 MinInclusive
	6.1.8 MaxInclusive
	6.1.9 MinExclusive
	6.1.10 MaxExclusive
	6.1.11 Total digits
	6.1.12 Not specifically mapped facets

	6.2 String types
	6.2.1 String
	6.2.2 Normalized string
	6.2.3 Token
	6.2.4 Name
	6.2.5 NMTOKEN
	6.2.6 NCName
	6.2.7 ID
	6.2.8 IDREF
	6.2.9 ENTITY
	6.2.10 Hexadecimal binary
	6.2.11 Base 64 binary
	6.2.12 Any URI
	6.2.13 Language
	6.2.14 NOTATION

	6.3 Integer types
	6.3.1 Integer
	6.3.2 Positive integer
	6.3.3 Non-positive integer
	6.3.4 Negative integer
	6.3.5 Non-negative integer
	6.3.6 Long
	6.3.7 Unsigned long
	6.3.8 Int
	6.3.9 Unsigned int
	6.3.10 Short
	6.3.11 Unsigned Short
	6.3.12 Byte
	6.3.13 Unsigned byte

	6.4 Float types
	6.4.1 Decimal
	6.4.2 Float
	6.4.3 Double

	6.5 Time types
	6.5.1 Duration
	6.5.2 Date and time
	6.5.3 Time
	6.5.4 Date
	6.5.5 Gregorian year and month
	6.5.6 Gregorian year
	6.5.7 Gregorian month and day
	6.5.8 Gregorian day
	6.5.9 Gregorian month

	6.6 Sequence types
	6.6.1 NMTOKENS
	6.6.2 IDREFS
	6.6.3 ENTITIES
	6.6.4 QName

	6.7 Boolean type
	6.8 AnyType and anySimpleType types

	7 Mapping XSD components
	7.1 Attributes of XSD component declarations
	7.1.1 Id
	7.1.2 Ref
	7.1.3 Name
	7.1.4 MinOccurs and maxOccurs
	7.1.5 Default and Fixed
	7.1.6 Form
	7.1.7 Type
	7.1.8 Mixed
	7.1.9 Abstract
	7.1.10 Block and blockDefault
	7.1.11 Nillable
	7.1.12 Use
	7.1.13 Substitution group
	7.1.14 Final
	7.1.15 Process contents

	7.2 Schema component
	7.3 Element component
	7.4 Attribute and attribute group definitions
	7.4.1 Attribute element definitions
	7.4.2 Attribute group definitions

	7.5 SimpleType components
	7.5.1 Derivation by restriction
	7.5.2 Derivation by list
	7.5.3 Derivation by union

	7.6 ComplexType components
	7.6.1 ComplexType containing simple content
	7.6.1.1 Extending simple content
	7.6.1.2 Restricting simple content

	7.6.2 ComplexType containing complex content
	7.6.2.1 Complex content derived by extension
	7.6.2.2 Complex content derived by restriction

	7.6.3 Referencing group components
	7.6.4 All content
	7.6.5 Choice content
	7.6.5.1 Choice with nested elements
	7.6.5.2 Choice with nested group
	7.6.5.3 Choice with nested choice
	7.6.5.4 Choice with nested sequence
	7.6.5.5 Choice with nested any

	7.6.6 Sequence content
	7.6.6.1 Sequence with nested element content
	7.6.6.2 Sequence with nested group content
	7.6.6.3 Sequence with nested choice content
	7.6.6.4 Sequence with nested sequence content
	7.6.6.5 Sequence with nested any content
	7.6.6.6 Effect of the minOccurs and maxOccurs attributes on the mapping

	7.6.7 Attribute definitions, attribute and attributeGroup references
	7.6.8 Mixed content

	7.7 Any and anyAttribute
	7.7.1 The any element
	7.7.2 The anyAttribute element

	7.8 Annotation
	7.9 Group components
	7.10 Identity-constraint definition schema components

	8 Substitutions
	8.1 Element substitution
	8.1.1 Head elements of substitution groups
	8.1.2 Substitution group members

	8.2 Type substitution

	Annex A (normative): TTCN-3 module XSD
	Annex B (normative): Encoding instructions
	B.1 General
	B.2 The XML encode attribute
	B.3 Encoding instructions
	B.3.1 XSD data type identification
	B.3.2 Any element
	B.3.3 Any attributes
	B.3.4 Attribute
	B.3.5 AttributeFormQualified
	B.3.6 Control namespace identification
	B.3.7 Default for empty
	B.3.8 Element
	B.3.9 ElementFormQualified
	B.3.10 Embed values
	B.3.11 Form
	B.3.12 List
	B.3.13 Name
	B.3.14 Namespace identification
	B.3.15 Nillable elements
	B.3.16 Use union
	B.3.17 Text
	B.3.18 Use number
	B.3.19 Use order
	B.3.20 Whitespace control
	B.3.21 Untagged elements
	B.3.22 Abstract
	B.3.23 Block
	B.3.24 Use type
	B.3.25 Process the content of any elements and attributes
	B.3.26 Transparent
	B.3.27 No Type

	Annex C (informative): Examples
	C.1 Example 1
	C.2 Example 2
	C.3 Example 3
	C.4 Example 4

	Annex D (informative): Deprecated features
	D.1 Using the anyElement encoding instruction to record of fields
	D.2 Using the XML language identifier string

	Annex E (informative): Bibliography
	History

