Finaldraft ETSI ES 201 873-4 va.5.1 (2016-05)

<& >

ETSI STANDARD

Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3;
Part 4: TTCN-3 Operational Semantics

2 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

Reference
RES/MTS-201873-4 T3 ed451 OS

Keywords
language, testing, TTCN

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any
existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the
print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
https://portal.etsi.orq/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying
and microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2016.
All rights reserved.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPP™and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

ETSI

http://www.etsi.org/standards-search
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

3 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

Contents

Intellectual Property RIGNESccciiiiiiiiieciecie ettt ettt e et e e teestaesebesreessaessnesssessseensaessanns 8
FOTE@WOTA. ...ttt ettt a et et e s et e et e ea e bt e et et e e a e eme e e e ebeemeenseeneensesaeeneenseeneeneenne 8
Modal VErDS teIMINOLOZYveetieiiieiie ettt ettt ettt ettt e bt e s bt e s ateeate e bt e bt e bt ebeesbeesaeesneeenseenseens 8
1 1o) 1 TSSOSO 9
2 RETETEICES ...ttt ettt et ettt e a et s bt e et e ea e e s e e st eneebeene et e ebeententeeneaneens 9
2.1 INOTMALIVE TETETEICESnviiieieietieit ettt ettt ettt se e et e ettt e et ea e e et e e bt emteemteeseesaeesaeesaee bt enteenseeneeeneanseans 9
2.2 INFOIMALIVE TETRIEIICES ... eeeetietiete ettt ettt ettt a et e e et et e a e e bt et et e emteemtesseesneesneenseeneeenes 9
3 Definitions and abbhIeVIAIONS.ceviiiiiiieiiieeie ettt ettt ettt e et esbtesbeesbeesaeeeaee e 9
3.1 DIETINITIONS 1.ttt ettt bbbt e et e st e b e bbbt e bt e bt bt e bt e st e s et e bbbt e bt st et et e b e 9
3.2 AADDIEVIALIONS ...ttt sttt ettt et ettt sb e eh e bttt es et et s bt eb e s bt eh e eatea b en b e st e b e e bt eh e esten b ente st e ebesbeebeeseententente b nee 9
4 IETOAUCTION ...ttt ettt a et e b et et e e bt et e e bt e e e e bt eaeeetesaeenseebeentenseeneeneenne 10
5 Structure of the Present dOCUMENL..........ccviiieiieiieeie ettt ere et sb e b e b e eseessaeseaessbesseesssesssennns 10
6 T 1 41015101 41 TR PRSPPI 10
7 Replacement 0f SHOTt OTINSiiiiiriieiiiiie ettt e b e ere e seesseesseesseeenes 11
7.0 GEIMIETAL ...ttt bt eh et et b e s bbbt eb e st e e b e st e bbbt bt e st et et e bt nh e eb e e bt e st et et e b nae 11
7.1 Order Of TEPIACEIMENT SEEPS .. .eeivieiieiierieieeiertieteeteeteetestestee st esseesseesseesseesseseesseesseessesssesssesssesssesseenseensenssens 12
7.2 Replacement of global constants and module Parametersoceeveereriieiienieneese e 12
73 Embedding single receiving operations into alt Statements.cceererririieiieiiere e e 12
7.4 Embedding stand-alone altstep calls into alt StateMENTS.........ccuevieiieriiiiie e 13
7.5 Replacement of interleave StAtEIMENTSc.oioiiiiiiieii ettt ettt sttt e b e beeee e 13
7.6 Replacement Of trig@er OPEIAtIONS.c..utiuiiiieitieieeie ettt te et et et et et e seeesaeeseeesbe e et emeeeseeeseesteenbeeseenbeeneeenees 26
7.7 Replacement Of Select-Case STATEIMENLScueeiirieitieitieie ettt ettt sttt ettt et st e bt e et et e b eteeneeenees 26
7.8 Replacement of simple break StatemMENTS.c.cccverieriieiiieieeie ettt ettt esa e se e beebeeseessesnnas 28
7.9 Replacement of CONtINUE STATEIMENLScoieriieciieieeiesieseesieeteeteseesteeteeseeseesaesseesseesseessesseesseesseenseessenssens 28
7.10 Adding default parameters to disconnect and unmap operations without parameters..............ccoecververrreerennnns 29
7.11 Adding default values Of PATAMETIETSc.cccuieriieiieieeieciece ettt et et e ebesaestaesseessesseesseeseenseensenssens 29
8 Flow graph semantics Of TTCN-=3.......cciiiiiiiiiiieiierierieste ettt ettt saesaesbeere e taessaessaessbessseesseesseesnes 29
8.0 L€ 153 1 | PRSPPSO 29
8.1 Sy T 1) 4 LTSS 30
8.1.0 (€ 1531 1<) | OSSR 30
8.1.1 FIOW GIaph fTAIMNIC.......eeieieiieie ettt ettt et e a e b e b e e bt emaesaeesaeesaeenaeenteenteeneeas 30
8.1.2 FLOW EAPN NOAESecuvieeiiciieciieiteieee ettt ettt et e b e s sbessaessaesseeseenseesseessesssesaenseenseensesssennsenns 30
8.1.2.0 GBIETAL ...ttt bbbt ettt b e bbbt e a et b e ettt be bt bt bt en b et e bbb 30
8.1.2.1 SEATE IOAES ...ttt h et ettt be bt bt e a st e e e st e bt sb e e bt ebe e st et e st e b saeebeene 30
8.1.2.2 BN DOAES ...ttt bbb bbb bt ettt besaeebe et s 30
8.1.2.3 BaSIC NMOGES ...ttt ettt bbbt a et b e bbbt h et et be b b eae s 30
8.1.24 RETEIENCE NOTES ...ttt bttt ettt b e bbbt bt et et e b saesbeeaean 31
8.1.2.4.0 (13113 2) USSP 31
8.1.2.4.1 OR combination of 1eference NOAEScceeuiiiiiiirieiee ettt 31
8.1.24.2 Multiple occurrences of reference NOAEScoouiiiiriirieiieiee e 31
8.1.3 FLIOW LINES ...ttt ettt ettt ettt et e a e e et et e et e em e e st e e b e e ebe e beemeesaeesaeesbeenseeneeeneeeneeeneans 32
8.1.4 FIOW GIaph SEEIMENLSeiiiiiieiiiieie ettt ettt et e sttt et e et e et e st e e bt et e e bt eneesaeesbe e bt eneeeneeeneenneans 33
8.1.5 COMUIMENLS ...ttt ettt ettt et et sb et e bt e bt eat e eb b e sbe e s bt e bt eateeat e saeesbe e bt et e embeeatesbaesbeenbeenseenne 33
8.1.6 Handling of flow graph deSCrIPLONS.ccvevieriieiieiieieeiesieete e ete st et et ete e esaessaessaesseessessaesseesseenseenns 34
8.2 Flow graph representation of TTCN-3 DERAVIOUTcccuieiiriirieriieieeie ettt ettt re e beeseebeenseenees 34
8.2.0 GEIMETAL ...ttt bbb bbbt bt et et et bbbt bt h et b et b e bt bt et et e bt enes 34
8.2.1 Flow graph CONStrucCtion PrOCEAUIEccveruieriieiietietesiesteesteeteeaeseeeseeesseesseessesssessaessaesseessesssesseesseesseenes 34
8.2.2 Flow graph representation of module CONLrOL..........cccveriiiviiiiiiieriieiieie ettt eeae e 35
823 Flow graph representation Of tESt CASESeeoueriirierieieeieetie sttt ettt et ettt e e seeesteesaeesteeeeeneeeneesneesneens 36
8.2.4 Flow graph representation of fUNCHIONSc.ooiiiiiriiiieerie ettt sttt e s 36
8.2.5 Flow graph representation Of QltSEEPSeiueerueeiiiierieri ettt ettt s sa et e eneeeneeeaeens 37
8.2.6 Flow graph representation of component type definitions.........cccceerueeiirienierieeieee e 38

ETSI

4 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

8.2.7 Retrieval of start nodes of flOW Graphiscoouiiiiiiiiieiee et e 39
8.3 State definitions for TTCN-3 MOAUIEScoiuiiiiiiiieiieie ettt s 39
8.3.0 (€ 1531 1<) | USSR 39
8.3.1 IMOAUIE SEALE..... .ottt ettt ettt et et et et e s et e s bt e bt et e eateem e e es e e bt e be e s e emeesneesaeeesee bt eneeeneeeneeeneens 39
8.3.1.0 (13313 Y OSSP 39
8.3.1.1 Accessing the MOAUIE SEALEcc.iiiiiiiie ettt et ettt be et e ee e 40
8.3.1a CONTIGUIALION SALC......vieuvieiieeiieitietieteete e st et eteeteetteesaesteeteesseessesssesseesseesseenseasseassessseseesseensenssesssesssenns 40
8.3.1a.0 GIBIITAL. ..t h ettt b e bbbt e bt et et e h e e bbbt e a e e a b et et beshe bt bt en b et et benae e 40
8.3.1a.1 Accessing the CONfIGUIATION STALC..........ccvieiiirieeieriieteete e ste st se ettt e e steesteesbeesbesssessaesaaesseenseenseenns 40
8.3.2 EEIEY STALES .. eeutiruiertieiietiete et et et et e st e st e stt e bt esbeesbeeteessaesseesseessesssesaeesseesseesseesseeseensaensaenseensenneesneenseenseenns 41
8.3.2.0 GBIMETAL ...ttt bbbt e b et et a e bbbt eb e st et a bt ae bbbt bt e bt en b et et e b e 41
8.3.2.1 ACCESSING ENLILY STATES ..eeuveeeieiiiiieitiertiete ettt et et et e st e st e ste e bt et e eneeeseesbe e beeneeenteemeesaeesneesaeeneeenes 42
8.3.2.2 Data state and variable DINdIngcooiiiiiiiiiee et 44
8.3.23 ACCESSING AALA STATESeeutieuiietieitietiete ettt ettt et et e st e bt et e st e eaeesaeesaee et embeeneeesee bt e beenteeneeennes 44
8324 Timer state and timMer DINAINGcoouiiiiiiiiiiie ettt ettt et be et e 45
8.3.25 ACCESSING TIMET STALESeeeieeietietiete ettt te st et e e bt et et e et ee bt e bt entesmtesseesaeesaee et eneeeneeeseenseenseenseenneeneas 46
8.3.2.6 Port references and port BINAINGcccueieeiiiiieiieie et ettt e 47
8.3.2.7 ACCESSING POTt TETETEIICESevvieiieiiieiieiieie e sterte ettt et eetaeeteeste e beesbeessessaesasesseesseenseessenssessseseensennses 48
833 POTE STALES ...ttt ettt ettt et e st h ettt h e ettt et st sae e b b 48
8.3.3.0 GIBIETAL ...ttt bbb et e e bbbt bt eb e a et b ettt be bbbt en b et et e b e 48
8.3.3.1 Handling of cONNECtions amMONG POTLS.......c.eeverieriieriierieieeiesttesteesteesesreseresseesseesseessesssesseessesssesssesses 49
8.3.3.2 HaNAlNg Of POIT STALES ...vveuvieiieiiiciiecieeie ettt ettt teeste et e ebeesbessaesseesseesseessesssesssensseseensennss 49
8.3.3a COMPONENE VETAICT STALESevvevieiietieieitesttesttesteeteeteestesteesseesseessesssesssesseesseesseessesssesseessesssessessesssesseens 50
834 General functions for the handling of MoOdule Statescovierieiiiiiieee e 50
8.4 Messages, procedure calls, replies and eXCEPLIONSeeiuirruiriirieiieiiete ettt ettt 51
8.4.0 (€ 1531 1<) | OSSR 51
8.4.1 IMLESSAEES ... eeeuveeeutteeutte ettt ettt ettt et ettt ettt ettt ettt ettt st et e bttt e bt e e bt sa bt ettt s bt e et e e s bt e e bee s bt e eabeesbeeeareeea 51
8.4.2 Procedure calls and TEPLIESooeiiuieiiieiieie ettt ettt ettt sttt ettt e eneeeneens 51
843 2 et 01103 4 LTSRS 52
8.4.4 Construction of messages, procedure calls, replies and eXCEPiONS.........c.ccvervieireciereerierieeieseeseenee e 52
8.4.5 Matching of messages, procedure calls, replies and eXCEPLIONSccvvevveriereerieeiieriereere e e eeeesieenieens 52
8.4.6 Retrieval of information from reCeived TLEMScc.eruieiirieiiierieriereeee ettt 53
8.5 Call records for functions, altsteps and tESt CASES........cuerrierrieriieieeierierie et etesee st e e eteeeeseeesseeseesseesseesaensnens 53
8.5.0 (€15 115 1 OO OO OO OO OO SOURU SRR 53
8.5.1 Handling of Call TECOTAS.eeiuiiiieiiei ettt ettt b et et st saeesaeesaeeteenteeneeas 53
8.6 The evaluation procedure for a TTCN-3 MOAUIEooouiiiiiiiiiieie e 54
8.6.1 EValUation PRASES ...oeeieiiieiieiiect ettt ettt ettt ettt et e e h e bt et e beenteeneeeaee e 54
8.6.1.0 (13313 Y OSSP 54
8.6.1.1 Phase It INTtAlIZAtION.c.eeiieieeee ettt ettt st e et ettt e s e e s e b e aeenees 54
8.6.1.2 Phase I1: UPAALec..eeieieeiieeeee ettt ettt ettt et s e sa e s be e aeemteeneeeseeeneesse e seennes 55
8.6.1.3 Phase TI1: SEIECLIONeeuieiiiiiiitiiteeitet ettt st st b e s b et ea et et e b b ebeeaean 55
8.6.1.4 Phase IV EXECULIONceiiiiiiitiitieieetetet ettt ettt st b e bbbt st et et b ebeeaean 55
8.6.2 GLODAL fUNCHONS. ¢ttt ettt ettt b e bt b e bt es et et e s b e s bt e bt sbeeb e e st eat et et e sbesbeebeenean 55
9 Flow graph segments for TTCN-=-3 CONSIIUCESccuveruierrerrieriesiiesieesreereesseesseeseessessseesseesseesssssssensees 56
9.0 L€ 153 1 | OSSPSR PRTRUPRRSURN 56
9.1 F 18 (o) B 21 1S) 103U OSSP 56
9.2 ACHIVALE SEATEIMCIIE ...ee.tieeteeeieeeie ettt ettt ettt et et at e et e e eb e et e et e embeemtesaeesaeesaeanbeemeeeneeemeeese e beenbeenseenseeneeeneas 57
9.2a AlIVE COMPONENE OPETALIONe.eeiiieiieieieetiete ettt et e et e ste e et eteeteeaeeeaeestee bt enseemeeemeeaseesseesaeemeesmeesaeenseeseanseeneeas 58
9.2a.0 (1531 1<) 2 | USRS 58
9.2a.1 Flow graph segment <aliVe-COMP-aCTt™cccveriieriiriieriesieerieeieetesee st e st eteeseessaesseesseessasssesseesseesseenseenes 59
9.2a.2 Flow graph segment <alive-COMP-SNaAP™..........ceeieriierrierereerieesteeteeaesaesseesseesseesesssesssesseessesssesssesssesseenns 60
9.3 ATE STALEIMIEIIL ...ttt ettt b bbb et et b e s bt eb e bt eb s et et e b s bt e bt e bt ea b eae et et e et bt e bbb et et et e enes 60
9.3.0 GEIMETAL. ...ttt bbb bbbt bt et et b e bbbt bt a et e bbbt bt bt et et e ae st enes 60
9.3.1 Flow graph segment <take-SNapShot™cccoviieiieiieriiiii ettt saee e eseenseesseenneas 62
9.3.2 Flow graph segment <receivVing-DrancCh™cccoieiiiiiiiiiiiiieiieee ettt saae s 63
9.33 Flow graph segment <altstep-call-branch>.............ccccoooiiiiiiiiii e 64
9.3.4 Flow graph segment <else-Dranch™............cocccoiiiiiiiiiiiie ettt 65
9.3.5 Flow graph segment <default-evoCation™............c.ccoiiiiiiiiiiiiieiiee ettt 66
9.4 YN L <] oI o7 1 | SRR 67
9.5 PN P a8 101 4 LAY X310 1<) o | OSSPSR 67
9.5a Break Statements 10 @lESTEPS. .. .ooueeuieie ettt ettt ettt b ettt e aeeaeesae e bt et eteeneeas 67

ETSI

9.6
9.6.0
9.6.1
9.6.1a
9.6.2
9.6.3
9.6.4
9.6.5
9.6.6
9.7
9.8
9.8.0
9.8.1
9.8.2
9.8a
9.8a.0
9.8a.1
9.8a.2
9.9
9.10
9.11
9.12
9.13
9.13.0
9.13.1
9.13.2
9.14
9.14.0
9.14.1
9.14.2
9.14.3
9.14.4
9.14.5
9.15
9.16
9.16.0
9.16.1
9.17
9.17.0
9.17.1
9.17.2
9.17.3
9.18
9.18.0
9.18.1
9.18.2
9.18.3
9.18.4
9.19
9.20
9.20a
9.20b
9.21
9.22
9.23
9.24
9.24.0
9.24.1
9.24.2
9.24.3
9.24.3a
9.24.4

5 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

(01 | o) 153 15 o) 1 OSSP RPRTRRURRSURN 68
GEMIETAL. ...ttt ettt st b ettt et a bttt et na bbb et ne e b 68
Flow graph segment <nb-call-With-0ne-r€CeiVer™............ccorriiriiiiiiieieie ettt 70
Flow graph segment <nb-call-with-multiple-reCeIVers™..........cccoriiiiriiriieie et 70
Flow graph segment <nb-call-WithOUt-TECEIVEI™ccoiiiiiieiieit et 72
Flow graph segment <b-call-withOUut-dUration™cccccoriiriiiiiiieeeie e 72
Flow graph segment <b-call-with-dUIation™c.cccccieviiriirieniieiieieeeese et e e ssaens 73
Flow graph segment <call-reCeption-Part™............ccocvierrierieiiierienierieeteeteeeesteesseesesaeseesseesseesseesseessenssens 74
Flow graph segment <catCh-timeoUt-EXCEPTION™cccvieiirieriiertieieeteeeesieesieesseeaesaeseeesseesseesseessessaenseens 75

(O 1ol o) o153 13 10 o PSR RSPURPRSUUR 75

CRECK OPCIALION. ... eeuveieieieiectiettett et ete et et e e e beesbeesbesseesaeessaesseesseasseassassseseenseessesssesssesseessaenseenseessenssenssenseens 76
GETIETAL......oniietiieeec ettt st b ettt et et h ettt et b e e bt ea et eae e eres 76
Flow graph segment <check-With-SENder™.............coociiiiiiiiiiii et 77
Flow graph segment <check-without-SENder™cccoiiiiiiiiiii e 78

ChecKState POIt OPETALIONceiuietieiieeiietieetee it ettt ettt et e bt et e et e et eaee st e e bt e teenteeaeeeseesseeemeesaeesseenaeenseenteeneeas 79
GEMIETAL ... ettt ettt st b ettt et e b st a et be st b e sh e eae et e ne e eaes 79
Flow graph segment <CheCK-pOrt-Statlis™............cocieiiiiiiiiiiieri ettt sttt eaeesaeenaeens 80
Flow graph segment <check-port-CONNECTION™...........ccerieriiriieieiie ettt be e seeesseense e 80

CLEAT POTT OPETALION......ueiitietieieeetieeteettesteesteeteesseeesessaesseesseesseesseassessseassesseenseensesssesssesssesssesseesseenseessenssenssenseens 82

COMNECE OPCTALION. ... veiuveieieererieetieteeteeeteesteeseesteeseesseassessseessesseesseasseensasssesssesssesssesseessesssesseesseensenssenssenssensenns 82

ConStant ETINTEIONc.evviieiiitiicietitet ettt ettt ettt sttt sbenene 83

CIEALE OPEIALION ...vveevveeereeireeeiestteteeteesteeeteestessaesseesseesseassesssessseseesssesseassesssesssensaessaessesssesssesssesseenseensenssenssensenns 84

DEactiVate STALEINEIIL.c..e.erteieuirteieiertetete ettt sttt sttt st et sttt et et st s be e bt ebe e ae s b e eaesbe e at e b e eneenenene 85
GETIETAL. ...ttt ettt ettt et b e bt bt ettt ettt b e eaeea et ne e eres 85
Flow graph segment <deactivate-one-default™.............ccoooiiiiiiiiiiie e 86
Flow graph segment <deactivate-all-defaults™...........c.ccoooiiiiiiiiiii e 86

DISCONNECE OPETALIONeueeiieetietiete et ettt e et e st e et et esteeseeebeesbeenbe e b e emeeemeeeaeessee st anseeneeeneaeseebeenseenseeneeeneas 87
GETIETAL. ...ttt ettt et bt ettt b e bbbt b e ehe bttt ne e eres 87
Flow graph segment <diSCONNECT-ONE-PAr-PAIISeiiiruieriieriieieeieetieetiente et eteseeesteesaeesteeeeeneesneesneesneens 87
Flow graph segment <diSCONNECT-Al1>ccoeviiriieiiiiiiiieriese ettt saeesseesbe s e eeaessaenseens 89
Flow graph segment <diSCONNECT-COMPcceeruierierierierrerienteeteeteeseesseesseesseesesssesssesseesseesseessesssenssens 90
Flow graph segment <diSCONNECT-POIT™...........ccveriieriirieriertestesteeteereeseesseesseesseeseasesssessaesseesseesseessenssens 91
Flow graph segment <diSCONNECI-tWO-PAr-PAIIS™.......ccceervierrierrierreereniertiesieeseesesaesseesseessesssesssesssesssenseens 91

DO-WHILE STALEIIIENIL.cutitinieiiiteieicrtetet ettt ettt st et sttt sttt bbbt b et e be et ebe et sne e 92

DONE COMPONENE OPETALION.eutieutieiieeieeetie ittt et et ete et et e bt e bt e bt enteemeesaeesseeseeeseeneeemeeeseeeneesseenbeenseensesnneeneas 93
GETIETAL. ...ttt ettt sttt ettt b e bt bttt et ettt be bt bttt et e enes 93
Flow graph segment <dONe-asSIZNIMENT™c.eeouiriiiiiiieriienieeie et eteeeestee st esteeeeeeesaeeeseesseeneeeneeeseesneens 95

EXECULE STALEIMENTccouvtiiiiiiiieeiie ettt et ettt e sb e e eb e e b e e bt e e sb b e e sae e s b et s bt e sabeeebee s beeenbeeenree 95
GEMIETAL...... ettt ettt bttt b e bbb et be bttt ene e eres 95
Flow graph segment <execute-withOut-tiIMEOUL™coiviiiiiiiiiieie e 96
Flow graph segment <eXECULE-tIMEOUL™..........cccueriieriieieiieitestesteeteereeeeesteeseeseesesssesseesseesseesseessesssenssens 97
Flow graph segment <dyNamiC-EITOTI™...........c.cciverreerreerrerieesresstesseesseesseesessesssessaesseesseessesssesseesseessesssenssens 98

540 (3 ()1 OSSR 98
GEIIETAL ...ttt ettt ettt ettt ettt et bbbttt a ettt a et ekttt sa et sae e 98
Flow graph segment <Ht-VAIUE™cocieiieiiiiiieiieieeie ettt steeste b e ebesssesaaessaesseeseenseensennsens 99
Flow graph Segment <VAr-VAlUE™c.occuieiiriiriieieeie ettt et eteeteeaesteesseesseesseesaesseesseesseessenssesssenseens 99
Flow graph segment <func-0p-Call™............ccoiiiiiiiiiiie et 100
Flow graph segment <OPEerator-apPl™cccooioierieiieieie ettt ettt et e et teeneesseesaeeenee e 100

Flow graph segment <finalize-CoOmMPONENt-iNit™ccceoiriiiiiiiiiieie et 101

Flow graph segment <init-COMPONENE-SCOPE™eeuiruieruiertierieeieeeesteesteesteeteeneeeseesteeteenteeneesseesseesaeesseenseenes 101

Flow graph segment <init-SCOPE-WIth-TUNS-01>ccoiiiiiiiiieiiee ettt s e e 102

Flow graph segment <init-SCOPE-WithOUL-TUNS=0N>c.ooiiiiiiiiiiieie ettt 102

Flow graph segment <parameter-handling>..............ccoveeiiriiiiiienieniere e eee sttt eresaesree e essesnaesnnesenenns 102

Flow graph segment <statement-blOCK™cccveviiiiiieiiiiiiiieieie ettt ssae e seeesene e 103

FOI STATEIMENTouiiiiiiiiiiii et st s 104

FUNCHION CALL ...ttt ettt st sttt eb et ebe e ne e 105
GEIIETAL. ...ttt ettt ettt ettt ettt b ettt et et a et b e a ettt s h ettt ae et 105
Flow graph segment <value-par-calculation™.............cooiiiieiiiiiiiiniee et e 107
Flow graph segment <ref-par-var-CalC™ccccooiiiiiiiiiieii ettt 107
Flow graph segment <ref-par-timer-Cale™cooouiiiiiiiiiiiiie et 108
Flow graph segment <ref-par-port-Cale™...........ccooiiiiiiiiiiie ettt 108
Flow graph segment <user-def-func-call>..............coooiiiiiiiiiii e 109

ETSI

9.24.5
9.25
9.26
9.27
9.28
9.28a
9.29
9.29a
9.29a.0
9.29a.1
9.29a.2
9.29a.3
9.29b
9.29b.0
9.29b.1
9.29¢
9.30
9.31
9.32
9.33
9.34
9.35
9.35.0
9.35.1
9.35.1a
9.35.2
9.36
9.37
9.37.0
9.37.1
9.37.2
9.37.3
9.38
9.39
9.39.0
9.39.1
9.39.1a
9.39.2
9.40
9.40.0
9.40.1
9.40.2
9.41
9.41.0
9.41.1
9.41.2
9.42
9.43
9.44
9.44.0
9.44.1
9.44.1a
9.44.2
9.45
9.46
9.47
9.48
9.48.0
9.48.1
9.48.2
9.49
9.49.0

6 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

Flow graph segment <predef-ext-func-call>.............cccooiiiiiiiiiiiii e 109
(€ LTz o] o3 2151023 PRSP 110
(€ L5150 0] N o) 1S3 14 Lo} WSS 110
(€ LA (o To) 1S3 1 (o) USSR 110
GOTO STALEIMIEIE.eeeitieete ettt ettt et ettt e bt e eb et e sat e e s bt e s bt e e sb et e s bt e e bteesaee e bt e esbbeenbteesaneennneesaneenane 111
L5 F L o To) (o) o1 15 o) DO OSSR RURURRRRNE 111
TE-E1SE SLALETIIENIE ...ttt b bbb ettt s b e bt bt eh b et e b e b sb e e bt s bt eb b et et e nbesbeebeeaean 112
Kill COMPONENE OPETALION ... eeiteetieeteeieetesitesteeteeteestesstesteeseessesssesssesseesseesseessesssesssesseesseesesssesssesssesssessaenns 113
GEIMETAL ...ttt b bbb et et b e bt bt e bt bt e st et et h e bbbt et et et et be bt eanene 113
Flow graph segment <KIill-MEC™..........c.covieiiieiiiiiiiieiieieeie ettt eesteebeesseeesessbesnsesssesnnessnenes 115
Flow graph segment <Kill-COMPONENT™c.cecuiiiiiiiriieiieie et see et et eee st e steesseesseessesssessaesseessnenns 116
Flow graph segment <Kill-all-COmMP™........ccooiiiiiiiiiiiiee ettt s 117
Kill €XECULION SEALEIMEIIEeeuteiiieeeieitiett ettt e ettt se e st e et e et et e aeesaee st e e bt eaeeeneeeseenseenbeanbeenseemeeeneesnnenne 117
L€ 1531 1<) | USSP 117
Flow graph segment <Kill-CONTIOL™cciiiiiiiiiiiiieiee ettt 118
Killed COMPONENE OPEIATIONeeutieiieeiteiie ettt ettt eete et e st e et ete e et estesaeeetee bt e bt enteenteeaeenseenseenseenseeneesnnenns 119
2 o) B 21 1S3 14 33 L OSSR RRURURRRNE 121
) oY e v 1153 04 L2 4L RO OO SO PRPOTOPROTRPPO 121
IMAAD OPETALION ...vvivvieereeeieetteteeteeteeteestesetesatesseesseesseesseassesssessaessaesseasseasseassesssenssensaensenssensaenseensesssesnsesssessnenns 122
IMIEC OPETALIONvvieevieiiieitietieeteesteeteeteeaeeetesaeesseesseesseesseessesseessaessaesseassesssesseesssenseesseassenssenssensaensennsennsesnsensnenns 122
POTt AECIATATION ...ttt ettt b e e bttt e e st e b e b bt e bt sbeeb b et et e nbesbeebeeaean 123
RAISE OPCTALIONevieeiieiietieieeieeteeteste et e st esteesbeeseeesseesaesseessaesseessesssessaesseenseesseesseassesssenssesaesseessesnseensensnens 123
GIEIMETAL ...ttt b et e ettt h e e bt bt eh st e e e e b e bt b e ebeehe et et et et bt bt eatene 123
Flow graph segment <raise-with-0Nne-Te€CEIVEI-0P>c.ccoiriiiriiriertiertieteeie e eee st see et eee e 124
Flow graph segment <raise-with-multiple-receivers-0P>.........cccoceririiriieiieieeiese e 124
Flow graph segment <raise-withOUt-TECEIVET-0P>eeiuiiiiiieiieriiesteeie ettt ettt 126
REAd tIMET OPETALION ...ttt ettt ettt e sttt et e e bt et e e st e ea e et e e bt enteeseeseenbeenbeenseeneeeneesneenne 126
RECEIVE OPETALION ...ttt ettt ettt e b et et e e aeeeaee s et e sse e bt em et emtees e e seenseenbeemseeneeeneesnnenne 128
L€ 1531 1<) | O TP S USRS 128
Flow graph segment <receive-with-SENAeI™............cccueviiriiiiiiiiiiiie ettt sae e seee e e 128
Flow graph segment <receive-withOUt-SENAEI™...........ccciiviiiiiiiieiieriee e 130
Flow graph segment <reCeive-asSiZNMENt™..........cc.evcveriereerreerieesieerenseesseesseesseessessesssesseesseessesssesssesseenn 131
REPEAL STALEINIENTeeitieeiiii ettt et ettt et e et e et e s beeebteesbbeesbeesabeeenseesabeeensaeenbaeensaaens 131
REPLY OPCTALION ...ttt ettt ettt et e et e e te e te e beesbeesseessessaesseenseesseesseasseassessensaenseensesnsesnsessnenns 132
L€ 1531 1<) | USSP 132
Flow graph segment <reply-with-0ne-reCeIVEI-0P>ccoiiiiiiiiiiiiieiieit ettt 133
Flow graph segment <reply-with-multiple-receivers-0p>ccccerierieiieiieeee e 133
Flow graph segment <reply-wWithOUt-T@CEIVETI=0P™cccuiiiiiiiiiieiie ettt 135
RETUIN STATEIMENEeeiitiiiiii ettt ettt et bt e e b et e bt e sb bt e sbe e s b e e e bt e sbeeenbaeebeeenneeens 135
L€ 1531 1<) | USROS 135
Flow graph segment <return-with-valuUe>.............cccooiiiiiiiiiiiiii et s 137
Flow graph segment <return-withOut-value™cccooviiiiriiiiiiiiicieeeeee e s 138
RUNNING COMPONENT OPETALION ...e.eveereeieiieriieieeteeteeteestesteesseesseeseesesssesssesssesseesseesseessesssessesssesssessessessnees 139
GEIMETAL ...ttt bt a ettt h e e bt e h e h e st e e bt h e e bttt h e bt bt et et et e st e bt bt eatene 139
Flow graph segment <running-COMP-aCt™.........c.cccuerierrierrerrrerieerieereesseesseesseessesssesssessaesseessesssesssesssesseenns 140
Flow graph segment <running-COMP-SNaP>cc.cceerrerrrerrereeseesseesseessesssesssesseesseesseessesssesssesssesseesseenes 141
RUNNING tIMET OPETALION.ceutieitieiiiiiie ettt ettt et et e e et e et e satees e et e e bt enteemtenseenbeenbeemteeneeeneesnnenne 142
N TSN le) 1<) 15 1o 4 LRSS 143
N1 10 0] 053 215101 s BRSSPSR 143
L€ 1531 1<) | USROS 143
Flow graph segment <send-with-0ne-T€CeIVEIr-0P>cooiiiiiiirieiiee ettt 144
Flow graph segment <send-with-multiple-reCeivers-0P>ccoceeririiriiinieriereeeee e 144
Flow graph segment <send-withOUt-TECEIVEI-0D>cceeriirrierieiienieniieie et eteeteesteesseeseesessessaessnesseenns 146
SEEVEIAICT OPETALION.eieitiitieitieiterie et eteeteesteeteetesetesseesseeseeseessesseesseesseasseassesssesaessesssesssesssesssesseenseessenssens 146
Start COMPONENE OPETALION........eeverierrereiertietieteetesteesseeseeseasesssesseesseassesssesssesseessesssesssesssesssesssesseesseessesssens 147
STATt POIT OPEIATIONevvietretieieeteeieeteetesteesteeteesteesaesseesseesseesseassesssesssenseesseassenssesssessesssesssesssesssesseenseensenssens 149
STt tIMET OPETALIONvivvetietieteeteeteettesteesteeteeeteettesseesseessesssesseesseesseesseassesssanssensaesseessesssesssesssesseenseessennsens 149
L€ 1531 1<) | OSSPSR 149
Flow graph segment <start-timer-op-default™ccccoiiiiiiiiii e e 150
Flow graph segment <start-timer-op-dUration™cccooieriritiienieniese et 151
StOP COMPONENT OPEIATIONc..veeieiieieierttett et et ette et testeete e teeteeaeesaeesaeenteenteemseeneeeseeasee st sneesneesaeesseenseenseenneas 151
L€ 1531 1<) | OO SS USRS 151

ETSI

7 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.49.1 /0 1« USSR 153
9.49.2 Flow graph segment <stop-alive-COMPONENE™.........cciiiiiiiieieeie ettt ettt see e 153
9.49.3 Flow graph segment <StOp-all-COMP™coiiiiiiiiiiiiet ettt 154
9.50 StOP EXCCULION STATETIIEIILeeietieiieie et etie et te et e e et e st e e ste e bt e et eaeeeaee st e et e emeeentesseeabeesesmeesaeesaeenseeseeneeennens 155
9.51 N0 o oo o) 5 1S3 X (o) USSP 156
9.52 N0 U101 0] o1 110 s BTSSP 157
9.53 SYSTEIM OPEIATION ...c.vvevieuiieniieeteeitestestesttesteeteesteestasssesseesseesseassesssesssesssesseenseesseassesssessesssesssesssesssesseenseensenssens 157
9.53a TSt CASE STOP OPETALIONvievvieeiieeieeiiestiesteesieeteetteeeteeteesseesseesseesseessesseessaesseesseesseesseasseassensaensasnsenssesssesnsessnens 158
9.54 TIMET AECIATALION ...ttt ettt ettt b e bt bt et et e b bt eb e s e e sb e eb e s bt ebteme e benbesbeebeenean 158
9.54.0 GEIMETAL ...ttt b et a ettt h e bbbt st e e b e b e b et b e bt bt e st et et st bt bt eatene 158
9.54.1 Flow graph segment <timer-decl-default™.............ccooiiiiiiiiiiiiicecee e e 159
9.54.2 Flow graph segment <timer-decl-no-def> ... 159
9.55 TIMEOUL LML OPEIATIONeeutieutieiieeite et ettt et et et eete et e eteesbe e bt e et e eeeaeeeaeeese et e e st enseemtenseenseenseenseeneesneesneenne 160
9.56 UNIMAP OPCIATION ...ttt ettt ettt et e et e st e bt et e e te e teeaeesaeesue e bt et e emeeemeeeseeeseeabeebeemeesseesaeenseenseenseenseeneeas 161
9.56.0 L€ 15115 1 S ST RPN 161
9.56.1 Flow graph segment <unmap-all™cccooiiiiiiiiiii e 163
9.56.2 Flow graph segment <UNMAP-COMP™ccciertieriieitieieaieeeesteesteestee et eteenteeneesseesseesaeesseesseensesneesaeenseenes 164
9.56.3 Flow graph segment <UNMAP-POTE>.......c..ccueiiierieriierieeteeteeteseeseesseesseesseesseessesssesseesseesseessesssesssessseseenn 165
9.57 Variable dECIATATIONcc.eiuiiiiiiiieet ettt bbbttt ettt b e bt eb et et bbb eaean 165
9.57.0 GEIMETAL ...ttt bt e ettt h e bbbt st e bbb e b a e bbbt et et et st be bt eanene 165
9.57.1 Flow graph segment <var-declaration-init>.............cccceeeieriierieneesieeieeieseesteesteereseeseesseesessessaessnesseenes 166
9.57.2 Flow graph segment <var-declaration-undef>...........cccccovviiriiriiiiiiiieieiecee e 166
9.58 WHILE SEALETIIENIEc..eeutintetete ettt h et e bbbt b e st e s et e b e e sb e bt sbeeb e et et enbesbeebeeneen 167
10 Lists of operational SEmMantic COMPOMNENTSeeeirrierrieeriierieeieeteerteesteesteeteebeebeesaeesseesaeeeseeneeeeeens 168
10.1 FUNCHIONS ANA STALES.eutitietietiet ettt ettt et ettt et e s et e et e e bt et em b e es e e st e beenbeenteeneeeneesnnenne 168
10.2 SPECIAL KEYWOTES ...ttt ettt ettt e a e et e bt et et e emeesaeemtesaeesaeesaeenaeeseeneeennens 169
10.3 Flow graphs of TTCN-3 behaviour deSCIIPLIONSccveeieriieriieieereeiestestesseeseeseeeseesaesseeseessesssesssesssessnenes 170
10.4 FIOW Iaph SCEIMENTS.......ccuiiiiieiiieiieie ettt ettt et e et e st e te e beesbeesaessaesseesseesseesseassesssensaensaenseessesnsesssessnenns 170
3 1) 2 USRS 173

ETSI

8 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI membersand non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards’, which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

This final draft ETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and
Specification (MTS), and is now submitted for the ETSI standards Membership Approval Procedure.

The present document is part 4 of a multi-part deliverable. Full details of the entire series can be found in part 1 [1].

NOTE: All formatting in the present document has been done intentionally. Underlined words denote special
elements of the formal semantics. Their meaning is described in clauses 7 and 8.

Modal verbs terminology

In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

ETSI

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

9 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

1 Scope

The present document defines the operational semantics of TTCN-3. The present document is based on the TTCN-3
core language defined in ETSI ES 201 873-1 [1].

2 References

2.1 Normative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
https://docbox.etsi.org/Reference/.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are necessary for the application of the present document.

[1] ETSI ES 201 873-1: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language".

2.2 Informative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

Not applicable.

3 Definitions and abbreviations
3.1 Definitions

For the purposes of the present document, the terms and definitions given in ETSI ES 201 873-1 [1] apply.

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

BNF Backus-Nauer Form

MTC Master Test Component

SUT System Under Test

TTCN Testing and Test Control Notation

ETSI

https://docbox.etsi.org/Reference/

10 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

4 Introduction

This clause defines the meaning of TTCN-3 behaviour in an intuitive and unambiguous manner. The operational
semantics is not meant to be formal and therefore the ability to perform mathematical proofs based on this semantics is
very limited.

This operational semantics provides a state oriented view on the execution of a TTCN module. Different kinds of states
are introduced and the meaning of the different TTCN-3 constructs is described by:

1) using state information to define the preconditions for the execution of a construct; and
2) defining how the execution of a construct will change a state.

The operational semantics is restricted to the meaning of behaviour in TTCN-3, i.e. functions, altsteps, test cases,
module control and language constructs for defining test behaviour, e.g. Send and r ecei ve operations, i f -el se-, or
whi | e- statements. The meaning of some TTCN-3 constructs is explained by replacing them with other language
constructs. For example, i nt er | eave statements are short forms for series of nested al t statements and the meaning
of each i nt er | eave statement is explained by its replacement with a corresponding series of nested alt statements.

In most cases, the definition of the semantics of a language is based on an abstract syntax tree of the code that may be
described. This semantics does not work on an abstract syntax tree but requires a graphical representation of TTCN-3
behaviour descriptions in form of flow graphs. A flow graph describes the flow of control in a function, alt step, test
case or the module control. The mapping of TTCN-3 behaviour descriptions onto flow graphs is straightforward.

NOTE: The mapping of TTCN-3 statements onto flow graphs is an informal step and is not defined by using the
BNF rules in ETSI ES 201 873-1 [1]. The reason for this is that the BNF rules are not optimal for an
intuitive mapping because several static semantic rules are coded into BNF rules in order to allow static
semantic checks during the syntax check.

5 Structure of the present document

The present document is structured into four parts:

1) The first part (see clause 6) describes restrictions of the operational semantics, i.e. issues related to the
semantics, which are not covered by the present document.

2) The second part (see clause 8) defines the meaning of TTCN-3 short cut and macro notations by their
replacement with other TTCN-3 language constructs. These replacements in a TTCN-3 module can be seen as
pre-processing step before the module can be interpreted according to the following operational semantics
description.

3) The third part (see clause 9) describes the operational semantics of TTCN-3 by means of flow graph
interpretation and state modification.

4) The fourth part (see clause 10) specifies the mapping of the different TTCN-3 statements onto flow graph
segments, which provide the building blocks for flow graphs representing functions, alt steps, test cases and
module control.

6 Restrictions

The operational semantics only covers behavioural aspects of TTCN-3, i.e. it describes the meaning of statements and
operations. It does not provide:

a) A semantics for the data aspects of TTCN-3. This includes aspects like encoding, decoding and the usage of
data imported from non-TTCN-3 specifications.

b) A semantics for the grouping mechanism. Grouping is related to the definitions part of a TTCN-3 module and
has no behavioural aspects.

ETSI

11 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

A semantics for the i mport statement. The import of definitions has to be done in the definitions part of a
TTCN-3 module. The operational semantics handles imported definitions as if they are defined in the
importing module.

A semantics for the visibility of definitions. The correct usage of imported definitions declared with publ i c,
privat e and f ri end visibility has to be checked by other means.

A semantics for fuzzy and lazy evaluation of variables and parameters. However, notes in the appropriate
clauses of this standard refer to places where fuzzy and lazy evaluation has to be considered.

2
7.0

Replacement of short forms

General

Short forms have to be expanded by the corresponding complete definitions on a textual level before this operational
semantics can be used for the explanation of TTCN-3 behaviour.

TTCN-3 short forms are:

lists of module parameter, constant and variable declarations of the same type and lists of timer declarations;
stand-alone receiving operations;

stand-alone altsteps calls;

tri gger operations;

missing r et ur n and St op statements at the end of function and test case definitions;

missing St Op execution statements;

i nterl eave statements;

sel ect - case statements;

break and conti nue statements;

di sconnect and unmap operations without parameters; and

default values of missing actual parameters.

In addition to the handling of short forms, the operational semantics requires a special handling for module parameters,
global constants, i.e. constants that are defined in the module definitions part, and pre-processing macros. All references
to module parameters, global constants and pre-processing macros shall be replaced by concrete values. This means, it
is assumed that the value of module parameters, global constants and pre-processing macros can be determined before
the operational semantics becomes relevant.

NOTE 1: The handling of module parameters and global constants in the operational semantics will be different

from their handling in a TTCN-3 compiler. The operational semantics describes the meaning of TTCN-3
behaviour and is not a guideline for the implementation of a TTCN-3 compiler.

NOTE 2: The operational semantics handles parameters of and local constants in test components, test cases,

functions and module control like variables. The wrong usage of local constants or i n, out and i nout
parameters has to be checked statically.

ETSI

12 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

7.1 Order of replacement steps

The textual replacements of short forms, global constants and module parameters have to be done in the following
order:

1) replacement of lists of module parameter, constant, variable and timer declarations with individual
declarations;

2) replacement of global constants and module parameters by concrete values;

3) replacement of all sel ect - case statements by equivalent nested i f - el se statements;

4) embedding stand-alone receiving operations into al t statements;

5) embedding stand-alone altstep calls into al t statements;

6) expansion of i nt er | eave statements;

7) replacement of all t r i gger operations by equivalent r ecei ve operations and r epeat statements;

8) addingr et ur n at the end of functions without r et ur n statement, adding sel f .st op operations at the end
of testcase definitions without a St op statement;

9) adding St op at the end a module control part without stop statement;

10) expansion of break statements;

11) expansion of continue statements;

12) adding default parameters to di sconnect and unnmap operations without parameters; and
13) adding default values of parameters.

NOTE: Without keeping this order of replacement steps, the result of the replacements would not represent the
defined behaviour.

7.2 Replacement of global constants and module parameters

Constants declared in the module definitions part are global for module control and all test components that are created
during the execution of a TTCN-3 module. Module parameters are meant to be global constants at run-time.

All references to global constants and module parameters shall be replaced by the actual values before the operational
semantics starts the interpretation of the module. If the value of a constant or module parameter is given in form of an
expression, the expression has to be evaluated. Then, the result of the evaluation shall replace all references of the
constant or module parameter.

7.3 Embedding single receiving operations into alt statements

TTCN-3 receiving operations are: r ecei ve, tri gger,getcal | ,getreply,catch,check,ti meout, and
done.

NOTE: The operations r ecei ve,tri gger,getcal |l ,getreply,catch and check operate on ports and
they allow branching due to the reception of messages, procedure calls, replies and exceptions. The
operations t i meout and done are not real receiving operations, but they can be used in the same
manner as receiving operations, i.c. as alternatives in al t statements. Therefore, the operational
semantics handles t i neout and done like receiving operations.

A receiving operation can be used as stand-alone statement in a function, an altstep or a test case. The t i meout
operation can also be used as stand-alone statement in module control. In such a case the receiving operation as
considered to be shorthand for an al t statement with only one alternative defined by the receiving operation. For the
operational semantics an al t statement in which the receiving statement is embedded shall replace all stand-alone
occurrences of receiving operations.

ETSI

13 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

EXAMPLE:
/1 The stand-al one occurrence of

M/CL. trigger(MType: ?);

/1 shall be replaced by

ait {
} [1 MWCL.trigger (MType:?) { }
Il or

WPTC. done;

/1 shall be replaced by

al't {
[T MPTC. done { }
}

7.4 Embedding stand-alone altstep calls into alt statements

TTCN-3 allows calling altsteps like functions in functions, altsteps, test cases and module control. The meaning of a
stand-alone call of an altstep is given by an al t statement with one branch only that calls the altstep. The al t
statement is responsible for the snapshot that is evaluated within the altstep and for the invocation of the default
mechanism if none of the alternatives in the altstep can be chosen.

NOTE: An altsteps used in module control can only include alternatives with t i meout operations and an el se
branch.

EXAMPLE:
/1 The stand-al one occurrence of

@N tstep(MyParlval);

/1 shall be replaced by

ait {
[T nyAltstep(MyParlval) { }
}
7.5 Replacement of interleave statements

The meaning of an i nt er | eave statement is defined by its replacement by a series of nested al t statements that has
the same meaning. The algorithm for the construction of the replacement for an i nt er | eave statement is described in
this clause. The replacement shall be made on a syntactical level.

Within ani nt er | eave statement it is not allowed:

1) to use the control transfer statements f or , whi | e, do-whi | e, got 0, acti vat e, deact i vat e, st op,
repeat andreturn;

2) to call altsteps;
3) to call user-defined functions which include communication operations;
4) to guard branches of the i nt er | eave statement with Boolean expressions; and

5) to specify el se branches.

ETSI

14 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

Due to these restrictions, all not mentioned stand-alone statements (e.g. assignment, | 0g, send or r epl y), blocking
call operations and the compound statements i nt er | eave, i f - el se and al t can be used withinani nt er| eave
statement.

NOTE 1: Blocking cal | operations and i f - el se statements can be treated like stand-alone statements if they
have no embedded al t statements. In case of embedded al t statements, the alternatives contribute to
the i nt er | eave statement and need a special handling. For simplicity, the algorithm below does not
distinguish between these two cases.

NOTE 2: Non-blocking cal | operations are also allowed in interleave statements, they are considered to be
stand-alone statements.

The algorithm described in this clause only works for i nt er | eave statements without embedded i nt er | eave
statements. In case of an i nt er | eave statement that has embedded i nt er | eave statements, the embedded
i nt er| eave statements have to be replaced before the algorithm can be applied.

NOTE 3: Due to restrictions 1 to 5, it is always possible to find finite replacements for nested embeddings of
i nt erl eave statements.

The replacement algorithm works on a graph representation of an interleave statement and transforms it into a
semantically equivalent tree structure describing a series of nested al t statements. For this, a graph representation of
stand-alone statements, the compound statements i f - el se, blockingcal | ;alt andi nterl eave is needed.

A stand-alone statement is described by a node with the statement as inscription. A sequence of stand-alone statements
is described by a set of nodes connected by a flow lines. This is shown in figure 1.

P1. send(MyVar); P1. send(MyVar);

(a) TTCN-3 stand-alone statement (b) graph representation of (a)

P1. send(MyVar);

P1. send(MyVar);
X =7+ 5;

(c) Sequence of TTCN-3 stand-alone statements (d) graph representation of (c)

Figure 1. Graph representation of TTCN-3 stand-alone statements

The graph representation of an i f - el se statement is shown in figure 2. Anii f - el se statement is represented by an
IF node with two flow lines connected to the first statement in the two alternatives. An'i f - el se statement without
ELSE branch is represented in the same manner, if there are statements following the i f - el se statement. In this case
the flow line representing the €lse branch is connected to the first statement following the i f - el se statement. An

i f-el se statement without ELSE branch and without following statements is represented by an IF node with one flow
line only.

NOTE 4: The inscriptions on the flow lines in figure 1 are introduced for readability purposes only. The algorithm
only uses the relation expressed by the flow line and not the inscription.

ETSI

15 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

if (x <7) {
P1. send(MyVar);

el se {
X :=7 + 5
}

X =X * 2

(a) TTCN-3 if-else statement

(b) Graph representation of (a)

if (x <7) {
P1. send(MyVar);
}

X =X * 2

(c) TTCN-3 if-else statement without else branch

(d) Graph representation of (c)

Figure 2: Graph representation of TTCN-3 if-else statements

The graph representation of a blocking cal | statement is shown in figure 3. A blocking cal | statement is represented
by a BLOCKING-CALL node with flow lines connected to the get r epl y and cat ch statements of the different

alternatives.

Pl.call (MyProc:{-, true}, 20E-3) {

[1 Pl.getreply(MProc:{?,-} {
setverdi ct (pass);

}
[T Pl.catch(M/Proc, MyException) {}

[1 Pl.catch(timeout) {
setverdict(fail);
}

X :=7 + 5;

——

(a) TTCN-3 blocking call statement

Pl.call (MyProc:{-,true}

BLOCKI NG CALL
, 20E-3)

P1. getreply(MProc:{?,-})

setverdi ct (pass);

1. catch(M/Proc, MyExcepti on)

P1. catch(ti meout)

setverdict(fail);

(b) Graph representation of (a)

Figure 3: Graph representation of a TTCN-3 blocking call statement

ETSI

16 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

The graph representation of an al t statement is shown in figure 4. An al t statement is represented by an alt-node
with several flow lines connected to the different alternatives.

alt {

[x<5] P1l.receive(M/MssageOne} {

}
[T Pl.receive(M/MessageTwo) {}
[T Ti.tineout {

}

setverdi ct (pass);

setverdict(fail);

(a) TTCN-3 alt statement

P1. recei ve(MyMessageOne)

setverdi ct (pass);

G —

[x<5]

P1.recei ve(MyMessageTwo)

setverdict(fail);

(b) Graph representation of (a)

Figure 4. Graph representation of a TTCN-3 alt statement

In general, the graph representations of i f - el se, blockingcal | and al t statements are directed graphs without
loops where the flow lines of the different alternatives join when leaving the statement. By means of duplication, it is
possible to transform such directed graphs into a semantically equivalent tree representation. This is shown in figure 5
for the alt statement in figure 4. The algorithm described below will construct such tree representations.

ETSI

17

Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

alt {

[x<5] P1l.receive(M/MssageOne} {
set verdi ct (pass);
X =7+ 5;

}
[T Pl.recei ve(M/MessageTwo) {
X :=7 + 5

}
[Ti.timeout {
setverdict(fail);
X =7+ 5;

(a) TTCN-3 alt statement that is semantically equivalent to figure 4(a)

S

ALT

I

P1.recei ve(MyMessageOne)

setverdi ct (pass);

Pl.recei ve(MyMessageTwo)

T1.ti meout

setverdict(fail);

(b) Graph representation of (a) (semantically equivalent to figure 4(b))

Figure 5. Graph representation of a TTCN-3 alt statement

ETSI

18

Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

Ani nt er| eave statement can be described by a graph that consists of a set of directed sub-graphs, each of which is
constructed by means of stand-alone statements and the compound statements i f - el se, blockingcal | andal t . The
directed sub-graphs describe the interleaved flows of control. An example is shown in figure 6. The node inscriptions in
figure 6 (b) refer to the labels of the TTCN-3 statements in figure 6(a).

interleave {

}

[T Pl.receive(M} { I/
alt { /1
[1 Pl.receive(M) { I
setverdi ct (pass); I
}
[T Til.timeout { } /1
}
[T P2.receive(M) { /1
if (x <5) { /1
alt { /1
[T P2.receive(M) { /1
setverdi ct (pass); /1
}
[1 Conpl.done { } /1
}
X =7+ 5; 11
el se {
P3. cal | (MyProcTenpl, 20E-3) { /1
[T P3.getreply(ReplyTenpl) { /1
alt { /1
[T P2.receive(Md) { } [/
[T P2.receive(Ms) { } [/
} }
[1 P3.catch(timeout) { /1
setverdict(fail); /1

L1
ALT
L2
L3

L4

LS
I F
ALT
L6
L7

L8

L9

BC (= BLOCKI NG CALL)

L10
ALT
L11
L12

L13
L14

(a) TTCN-3 interleave statement

@

(b) Graph representation of (a)

Figure 6: Graph representation of a TTCN-3 interleave statement

ETSI

19 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

Formally, an i nt er | eave statement can be described by a graph Gl = (St, F) where:
St is the set of allowed TTCN-3 statements; and
Fc (St X St) describes the flow relation.
The term allowed TTCN-3 statements refers to the static restrictions 1-5 above.
For the construction algorithm the following functions need to be defined:
. The REACHABLE function returns all statements that are reachable from a statement Sin a graph Gl = (St, F):

REACHABLE (s Gl)={s}u
{stmt|stmte St A J(s=Xq, Xy, ... , X, = StMt) where X; € St,
ie {l...n} A (X, Xj1)€ F}
. The SUCCESSORS function returns all successors of a statement Sin a graph Gl = (St, F):
SUCCESORS (s, Gl) = { stmt|stmt € St A (S, stmt) € F}
. The ENABLED function returns all statements of a graph Gl = (St, F) which have no predecessors:
ENABLED (Gh)={stmt|stmte StA (F n (S X {s})=0)}

. The KIND function returns the kind or type of a TTCN-3 statement in a graph representing an i nt er | eave
statement.

. The DISCARD function deletes a statement S or a set of statements S from a graph Gl = (St, F) and returns the
resulting graph GI'= (St', F'):

For single nodes:

DISCARD (s Gl) = GI' where: GI' = (S, F'), with St' = St\{s} and
F'=F A (S\{s} X St\{s}).

For sets of nodes:
DISCARD (S5 Gl)=GlI" where: GI' = (St', F"), with St' = St\Sand F' = F n (St\S X S1\S).
. The RECEIVING function takes a set of statements of a graph Gl and returns all receiving statements:

RECEIVING (S = {smt|stmt e S A KIND(stmt) € {receive, trigger, getcall, getreply, catch, check,
done, timeout} }

. The RANDOM function selects randomly an element S from a given set S and returns S.
RANDOM (S)=swherese S

The construction algorithm (see figure 7) of the tree is a recursive procedure where in each recursive call the successor
nodes for a given node is constructed. The procedure is provided in a C-like pseudo-code notation that uses the
functions defined above and some additional mathematical notation.

ETSI

20 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

CONSTRUCT- SUCCESSORS (st at enent Type *predecessor, graphType A) {
/1 - statenentType refers to the type of a node of the tree that is constructed
/1 - *predecessor refers to the | ast node that has been created
/1 - graphType denotes type of the graph of TTCN-3 statenents
/Il - d is called by value and refers to the subgraph consisting of all renaining TTCN-3
/] statements that have to be taken into consideration

var graphType nyG aph;

var statement Type i, nyStnt;

var statenent Type *newStnt, *firstinBranch; // pointers for new statenent nodes in the
/] tree that is constructed recursively

/'l Retrieving sets of TTCN-3 statenents that have no predecessors in 'd’

var statementSet enabStnts := ENABLED(Q); /1 all statements wi thout predecessor

var statement Set enabRecStnts : = RECEIVING enabStnts); // receiving statenments in 'enabStnts'
var statenent Set enabNonRecStnts : = enabStnts\enabRecStnts;

/1 non receiving statenments in 'enabStnts'

if (.St ==@) { /] It is assuned that G .St refers to the set of statenents in G
return; /1 No statenments are left, termnation criterion of Recursion
}

el seif (enabNonRecStnts != &) { // Handling of non receiving statements in 'enabStnts'

nyStnt : = RANDOM enabNonRecSt nt s) ;
/1 There can only be one statenent in 'enabNonRec', because the Al gorithm
/1 continues the construction until there is a branch that contributes to
I/l the interlave statenent.

newStnt := create(nyStnt, predecessor);
/] Creation of a new tree node representing 'nyStnt' in the tree
/1 and update of pointers in 'newStnt' and 'predecessor'.

if (KIND(nyStnt) == IF || KIND(nmyStnt) == BLOCKI NG CALL) {
for each i in SUCCESSORS(nyStnt, d) {

firstinBranch := create(i, newsStnt);
/] Creation of a second node for the first statement of in a branch due to
/1 an if-else statenent.
/1l Note, this create statenent will be used to create tree nodes
/'l representing the receiving statements in blocking call operations.

myGraph := DI SCARD({i, nyStnt} U REACHABLE(nyStnt, G)\REACHABLE(i, G))
/1 Rermoval of i, nyStnt and all statenents that are reachable from
/1 nyStmt but not reachable fromi. The latter considers the branching of
/1 a flow of control in a subgraph of Q.

CONSTRUCT- SUCCESSORS(fi rst | nBranch, nyG aph); /1 NEXT RECURSI ON STEP
}

}
elseif (KIND(nmyStnt) == ALT) {
for each (i in SUCCESSORS(nyStnt, d) {

CONSTRUCT- SUCCESSORS(nyst nt, DI SCARD(REACHABLE(nmyStnt, G)\ REACHABLE(i, d)));
/1 NEXT RECURSI ON STEP, the DI SCARD(REACHABLE(nyStnt, G)\REACHABLE(i, G))
/'l argunment considers the branching of a flow of control due to different
/] receiving events.

}

el se { /1 nystnt is a stand-al one statenent
CONSTRUCT- SUCCESSORS(newSonNode, DI SCARD(nyStnt, G));
/1 NEXT RECURSI ON STEP

}
else { // Handling of receiving events that interleave
if (KIND(predecessor) != ALT) { // an alt node is missing and has to be created, if the
/1 interleaving is not influenced by an enbedded alt statenent

predecessor := create(ALT, predecessor);

}

for each i in enabRecStnts) {
newStnt := create(i, predecessor); /1 New tree node
CONSTRUCT- SUCCESSORS(newSt nt, DI SCARD(i, G)); // NEXT RECURSI ON STEP(S)

}

Figure 7: Replacement algorithm for TTCN-3 interleave statements

ETSI

21 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

Initially, the CONSTRUCT-SUCCESSORS function (see figure 7) will be called with a root node of an empty tree and
the graph of TTCN-3 statements describing the i nt er | eave statement that shall be replaced. After termination, the
root node can be used to access the constructed tree.

The application of the CONSTRUCT-SUCCESSORS function to the i nt er | eave statement shown in figure 6 leads
to the tree shown in figure 8. The labels refer to the statements in figure 6(a). Multiple labels are the result of the
duplication of code. The TTCN-3 code that corresponds to the tree in figure 8 is shown in figure 9.

NOTE 5: The example for the application of the algorithm in figure 7 (see figures 6, 8 and 9) is very
comprehensive. This example is provided in order to show most of the special situations, i.e. branching
and joining of flow lines, an embedded al t statement, a blocking cal | statement and ani f - el se
statement.

ETSI

Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

22

T
< il
DD mie L o

€9 6) NS,
<t » 1
P CEP@ErE) € - :

LS
) 4
I F

Figure 8: Result of applying the algorithm in figure 7 to the interleave statement in figure 6
ETSI

23 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

alt { /1 ALT
[T Pl.receive(M} { /1 L1
alt { /1 ALT
[T Pl.receive(M) { /1 L2
set verdi ct (pass); /1 L3
alt { /1 ALT
[1 P2.receive(M) { /1 L5
if (x <5) { Il 1F
alt { /1 ALT
[1 P2.receive(M) { /1 L6
setverdi ct (pass); /1 L7
X =7 +5; /1 L9
}
[1 Conpl.done { /1 L8
X =7+ 5 /1 L9
P} }
el se {
P3.cal | (MyProcTenpl, 20E-3) { // BC (= BLOCKI NG CALL)
[1 P3.getreply(ReplyTenmpl) { /1 L10
alt { /1 ALT
[T P2.receive(M) { } /1 L11
[T P2.receive(Ms) { } /1 L12
P}
[1 P3.catch(timeout) { /1 L13
setverdict(fail); /1 L14
;) by} }
[T Ti.tinmeout { /Il L4
alt { /1 ALT
[T P2.receive(M) { /1 L5
if (x <5) { Il 1F
alt { /1 ALT
[1 P2.receive(M) { /1 L6
set verdi ct (pass); /Il L7
X =7+ 5; /1 L9
}
[T Conpl.done { // L8
X =7+ 5; /Il L9
Pl }
el se {
P3. cal | (MyProcTenpl, 20E-3) { // BC (= BLOCKI NG CALL)
[1 P3.getreply(ReplyTenpl) { /1 L10
alt { /1 ALT
[1 P2.receive(M) { } /1 L11
[1 P2.receive(M) { } /1 L12
Pl
[T P3.catch(tinmeout) { /1 L13
setverdict(fail); /1 L14
b Y Y Y) }
[1 P2.receive(M) { /1 L5
if (x <5) { Il 1F
alt { /1 ALT
[1 P2.receive(Md) { /1 L6
setverdi ct (pass); Il L7
X =7 + 5; /1 L9
alt { /1 ALT
[T Pl.receive(M) { /Il L2
setverdi ct (pass); /1 L3
}
[T Ti.tineout { } Il L4
ol
[1 Conpl.done { /1 L8
X =7+ 5; /1 L9
alt { /1 ALT
[1 Pl.receive(M) { /1 L2
setverdi ct (pass); /1 L3
}
[T Ti.tineout { } Il L4
Pl
[1 Pl.receive(M) { /1 L2
setverdi ct (pass); /1 L3
alt { /1 ALT
[T P2.receive(M) { /1 L6
setverdi ct (pass); 11 L7
X :=7 + 5 /11 L9
}
[T Conpl.done { /1 L8
X =7+ 5 /1 L9
P} }

ETSI

24 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

[T Ti.tineout { Il L4
alt { /1 ALT
[1 P2.receive(M) { /1 L6
set verdi ct (pass); /1 L7
X =7 + 5 /1 L9
}
[1 Conpl.done { /1 L8
X =7+ 5; /1 L9
P} P} }
el se {
P3. cal | (MyProcTenpl, 20E-3) { /1 BC (= BLOCKI NG CALL)
[T P3.getreply(ReplyTenpl) { /1 L10
alt { /1 ALT
[T Pl.receive(M) { /Il L2
setverdi ct (pass); /1 L3
alt { /1 ALT
[1 P2.receive(M) { } /1 L11
[1 P2.receive(M) { } /1 L12
P}
[T Ti.tineout { Il L4
alt { /1 ALT
[T P2.receive(M) { } /1 L11
[1 P2.receive(M) { } /1 L12
Pl
[T P2.receive(M) { /1 L11
alt { /1 ALT
[T Pl.receive(M) { /Il L2
setverdi ct (pass); /1 L3
}
[T Ti.tineout { } Il L4
P}
[1 P2.receive(M) { /1 L12
alt { /1 ALT
[T Pl.receive(M) { /1 L2
setverdi ct (pass); /1 L3
}
[T Ti.tineout { } Il L4
1} o)

[1 P3.catch(tineout) { /1 L13
setverdict(fail); /1 L14
alt { /1 ALT

[T Pl.receive(M) { /1 L2
setverdi ct (pass); /1 L3
}
[T Ti.tineout { } /Il L4
P} I P}
[T P2.receive(M) { /1 L5
if (x <5) { /Il 1F
alt { /1 ALT

[T P2.receive(M) { /1 L6
set verdi ct (pass); /1 L7
X =7+ 5 /1 L9
alt { /1 ALT

[T Pl.receive(M} { /1 L1
alt { /1 ALT

[1 Pl.receive(M) { /Il L2
setverdi ct (pass); /1 L3
}
[T Ti.tineout { } Il L4
ool ol

[1 Conpl.done { /1 L8
X =7+ 5; /1 L9
alt { /1 ALT

[1 Pl.receive(M} { /1 L1
alt { /1 ALT

[T Pl.receive(M) { /1 L2
set verdi ct (pass); /1 L3
}
[T Ti.tineout { } /1 L4
1YY)

[T Pl.receive(M) { /1 L2
setverdi ct (pass); /1 L3
alt { /1 ALT

[1 P2.receive(M) { /1 L6
setverdict (pass); /1 L7
X =7 + 5 /1 L9

}
[1 Conpl.done { /] L8

ETSI

25 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

;) }
[T Ti.tineout { /]l L4

alt { /1 ALT
[T P2.receive(M) { /1 L6
setverdi ct (pass); /1 L7
X =7 + 5 /1 L9

}
[T Conpl.done { // L8
X =7 + 5 /1 L9
P }
el se {

P3. cal | (MyProcTenpl, 20E-3) { /1 BC (= BLOCKI NG CALL)
[1 P3.getreply(ReplyTenpl) { /1 L10
alt {

[T P2.receive(M) { /1 L11
alt { /1 ALT
[T Pl.receive(M} { /1 L1
alt { /1 ALT
[T Pl.receive(M) { /1 L2
set verdi ct (pass); /1 L3
}

[T Ti.tineout { } /Il L4
Pl P

[T P2.receive(M) { /1 L12
alt { /1 ALT

[T Pl.receive(M} { /1 L1
alt { /1 ALT

[T Pl.receive(M) { /1 L2

set verdi ct (pass); /1 L3

}

[T Ti.tineout { } /1 L4
P} P}

[T Pl.receive(M} { /1 L1
alt { /1 ALT

[1 Pl.receive(M) { /Il L2

set verdi ct (pass); /1 L3
alt { /1 ALT

[P2.receive(M) { } /1 L11
[P2.receive(M) { } /1 L12

] P2.receive(M) { } /1 L11
] P2.receive(Ms) { } /1 L12

[T P2.receive(M) { /1 L11
alt { /1 ALT

[T Pl.receive(M) { /Il L2

set verdi ct (pass); /1 L3

[] }I'l.timaout {} /1 L4

}
[1 P2.receive(M) ({ /1 L12
alt { /1 ALT
[1 Pl.receive(M) { /Il L2
setverdi ct (pass); /1 L3
}

[T Ti.tineout { } Il L4
b) b

[T P3.catch(tineout) { /1 L13
setverdict(fail); /1 L14
alt { /1 ALT

[1 Pl.receive(M} { /1 L1
alt { /1 ALT

[T Pl.receive(M) { /1 L2

set verdi ct (pass); /1 L3

}

[T Ti.timeout { } /1l L4

S S SR S SN S

Figure 9: Semantically equivalent TTCN-3 code for the interleave statement in figure 6

ETSI

26 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

7.6 Replacement of trigger operations

The t ri gger operation filters messages with a certain matching criterion from a stream of messages on a given port.
The semantics of the t r i gger operation can be described by its replacement with two r ecei ve operations and a
got o statement. The operational semantics assumes that this replacement is done on the syntactical level.

EXAMPLE 1:

/1 The follow ng trigger operation ...

alt {
} [1 MOQL.trigger (MType:?) { }
/1 shall be replaced by ...
alt {
[T MCL.receive (MType:?) { }
[T MCL.receive {
r epeat
}
}

Ifthe t ri gger statement is used in a more complex al t statement, the replacement is done in the same manner.

EXAMPLE 2:

/1 The following alt statenment includes a trigger statenent

alt {
[T PCR.receive {
st op;
} .
[] MCL.trigger (MType:?) { }
[T PC3B.catch {
setverdict(fail);
st op;
}
}
/1 which will be replaced by
alt {
[T PCR.receive {

st op;
}

M/CL. recei ve (M/Type:?) { }
M/CL. recei ve {

repeat ;

—_——
—_——

}
[] PC®.catch {
setverdict(fail);
st op;

7.7 Replacement of select-case statements

The sel ect - case statement is an alternative to using a set of nested i f - el se statements when comparing a value
(defined by a select-expression following the sel ect keyword) to one or several other values (defined by template
instances in the case branches). Therefore, the semantics of a Sel ect - case statement can be described by its
replacement with a set of nested i f - el se statements. To avoid a multiple evaluation of the select-expression, the set
of nested i f - el se statements has to be placed into a statement block and value of the expression has to be stored in a
variable at the beginning of the statement block. The operational semantics assumes that this replacement is done on the
syntactical level.

ETSI

27 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

Schematically the sel ect - case statement looks as follows:

sel ect (<expression>) {

case (<tenplatelnst, > ., <tenplatelnst, >)
<st at ement bl ock,>
case (<tenplatelnst, > ., <tenplatelnst, >)

<st at ement bl ock,>

case (<tenplatelnst > ., <tenplatelnst >)
<st at ement bl ock >

case el se
<stat ement bl ock,,>

}

The syntactical replacement of the schematic sel ect - case statement by nested i f - el se statements looks as
follows:

{
var <expression>Type nyTenpVar : = <expression>; /1 tenporary variable for storing the
/1 value of the expression
if (match(nyTenpVar, <tenplatelnst, >) or ..or match(nmyTenpVar, <tenplatelnst, >))
<st at ement bl ock,>
el se {
if (match(nyTenpVar, <tenplatelnst, >) or ..or match(nmyTenpVar, <tenplatelnst, >))
<st at ement bl ock,>
el se {
|f (mat ch(nyTenpVar, <tenplatelnst, >) or ..or match(nmyTenpVar, <tenplatelnst, >))
<st at ement bl ock >
el se
<stat ement bl ock,,>
}
}
}
EXAMPLE:

/1 The follow ng sel ect-case statenent:

sel ect (MyModul ePar) { // where MyMddul ePar is of charstring type
case ("firstValue") {
log ("The first branch is selected");

}
case (MCharstingVar, MyCharstringConst) {
log ("The second branch is sel ected");

case else {
log ("The else branch is selected");

}
}
/Il is semantically equivalent to:
{ .
var charstring nyTenpVar := MyModul ePar;
if (match(nyTenmpVar, "firstValue")) {
log ("The first branch is selected");
}
el se {
if (match(nyTenpVar, MyCharstingVar) or match(nmyTenpVar, MCharstingConst)) {
log ("The second branch is selected");
el se {
log ("The else branch is selected");
}
}
}

ETSI

28 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

7.8 Replacement of simple break statements

"Simple" break statements are break statements used for leaving loops, interleave statements and alt statements. Such
simple break statements are considered to be a short-hand form for using a pair of got o- | abel statements. For each
br eak statement a | abel statement is added after the loop, al t statement or expanded i nt er | eave statement. The
| abel statement shall have an unused label. The br eak statement is replaced by a got 0 statement to this specific
label.

Note, that i nt er | eave statements are explained already. Therefore the limitation that got 0 statements cannot be
used within i nt er | eave statements does not hold.

NOTE: The semantics for the br eak statement used to leave an altstep is defined in clause 9.5a.

EXAMPLE:
/1 The following loop with a break statenent:
while (condl) { // condl is a Bool ean condition guarding the | oop
i”f.(condZ) {
br eak;
H

}
/1 is semantically equivalent to:

while (condl) { // condl is a Boolean condition guarding the | oop

i f(cond2) {
got o break_12345; /1 break_12345 is a unique | abel
b

}
| abel break_12345;

7.9 Replacement of continue statements

The cont i nue statement is a short-hand form for using a pair of got o- | abel statements. For each cont i nue
statement a | abel statement is added at the end of the loop body. The | abel statement shall have an unused label.
The cont i nue statement is replaced by a got 0 statement to this specific label.

EXAMPLE:
/1 The following loop with a continue statenent:
while (condl) { // condl is a Bool ean condition guarding the | oop

if(cond2) {
conti nue;
}

/1 is semantically equivalent to:
while (condl) { // condl is a Bool ean condition guarding the | oop
i f(cond2) {

goto continue_12345; /1 continue_12345 is a unique | abel
b

| abelm conti nue_12345;
}

ETSI

29 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

7.10 Adding default parameters to disconnect and unmap
operations without parameters

The usage of a di sconnect or unmap operation without any parameters is a shorthand form for using the operation
with the parameter sel f: al | port. It disconnects or unmaps all ports of the component that calls the operation. For
the operational semantics the parameter sel f: al | port shall be added to all occurrences of di sconnect and
unmap operations without parameters.

EXAMPLE:

/'l each occurrence of
di sconnect;

/1 shall be expanded in the follow ng nanner:
di sconnect (self:all port);

/1 and

/1 each occurrence of
unnap;

/1 shall be expanded in the follow ng nanner:
unmap(sel f:all port);

7.11 Adding default values of parameters

Formal parameters may have default values. If no actual parameter is provided in a specific invocation, then the default
value is added to the actual parameter list. If list notation has been used for the actual parameter list, then the default
value is inserted according to the order in the formal parameter list. If assignment notation has been used for the actual
parameter list, then the default values are appended to the actual parameters, the order among the default values
corresponds to their order in the formal parameter list.

EXAMPLE:

function f_conp (in integer p_intl, ininteger p_int2 := 3) return integer {
var integer v := p_intl + p_int2;

return v,

}

/1 Each occurrence of
f_conp(1)

/1 shall be expanded to
f_conp(1, 3);

/1 Each occurrence of
f_comp(p_intl := 1)

/1 shall be expanded to
f_comp(p_intl :=1, p_int2 := 3);

8 Flow graph semantics of TTCN-3
8.0 General

The operational semantics of TTCN-3 is based on the interpretation of flow graphs. In this clause flow graphs are
introduced (see clause 8.1), the construction of flow graphs representing TTCN-3 module control, test cases, altsteps,
functions and component type definitions is explained (see clause 8.2), module and component states for the description
of the execution states of a TTCN-3 module are defined (see clause 8.3), the handling of messages, remote procedure
calls, replies to remote procedure calls and exceptions is described (see clause 8.4) and the evaluation procedure of
module control and test cases is explained (see clause 8.6).

ETSI

30 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

8.1 Flow graphs
8.1.0 General

A flow graph is a directed graph that consists of labelled nodes and labelled edges. Traversing a flow graph describes
the possible flow of control during the execution of a represented behaviour description.

8.1.1 Flow graph frame

A flow graph shall be put into a frame defining the border of the flow graph. The name of flow graph follows the
keywords flow graph (these are not TTCN-3 core language keywords) and shall be put into the upper left corner of the
flow graph. As convention it is assumed that the flow graph name refers to the TTCN behaviour description represented
by the flow graph. A simple flow graph is shown in figure 10.

fl ow graph
M/Si npl eFl owG aph

Figure 10: A simple flow graph

8.1.2 Flow graph nodes
8.1.2.0 General

Flow graphs consist of start nodes, end nodes, basic nodes and reference nodes.

8.1.2.1 Start nodes

Start nodes describe the starting point of a flow graph. A flow graph shall only have one start node. A start node is

shown in figure 11(a).

(a) Flow graph start node (b) Flow graph end node

Figure 11: Start and end nodes

8.1.2.2 End nodes

End nodes describe end points of a flow graph. A flow graph may have several end nodes or in case of loops no end
node. Basic nodes (see clause 8.1.2.3) and reference nodes (see clause 8.1.2.4) that have no successor nodes shall be
connected to an end node to indicate that they describe the last action of a path through a flow graph. An end node is
shown in figure 11(b).

8.1.2.3 Basic nodes

A basic node describes an execution unit, i.e. it is executed in one step. A basic node has a type and, depending on the
type, may have an associated list of attributes. Two basic nodes are shown in figure 12.

In the inscription of a basic node the attributes of a node follow the node type and are put into round parentheses. Type
and attributes are used to determine the action to be performed during execution of the represented language construct.
The attributes describe information to be retrieved from the corresponding TTCN-3 construct.

ETSI

31 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

Attributes have values and the operational semantics will retrieve these values by referring to the attribute name. If
required, it is allowed to assign explicit values in basic nodes by using assignment ":=". An example is shown in
figure 12(b).

node-type
(attrq, attr,, ...,
attry)

(@) (b)

Figure 12: Basic nodes with attributes

8.1.24 Reference nodes

8.1.2.4.0 General

Reference nodes refer to flow graph segments (see clause 8.1.4) that are sub-flow graphs. The meaning of a reference
node is defined by its replacement by the referenced flow graph segment in the flow graph. The node inscription of the
reference node provides the reference to a flow graph segment. A reference node is shown in figure 13(a).

segnent - r ef erence;
OR

segnent - r ef erence segrrent-agfer ence;

segnent -r ef erence;

(a) Single reference node (b) OR combination of three reference nodes

Figure 13: Reference node

8.1.24.1 OR combination of reference nodes

In some cases several flow graph segments may replace a reference node. For these cases an OR operator may be used
to refer to several flow graph segments (see figure 13(b)). In the actual flow graph representing the module control, a
test case or a function, one alternative is determined by the represented construct.

8.1.2.4.2 Multiple occurrences of reference nodes

In some cases the same kind of reference node may occur zero, one or more times in a flow graph. In regular
expressions the possible repetition of parts of a regular expression is described by using the operator symbols "+" (one
or more repetitions) and "*" (zero or more repetitions). As shown in figure 14, these operators have been adopted to
flow graphs by introducing double-framed reference nodes with associated operator symbols. A single flow

(see clause 8.1.3) line shall replace a reference node, in case of zero occurrences (using a double-framed reference node
with "*"-operator).

B -+

segnment -ref erence segnment -ref erence

Figure 14: Repetition of reference nodes
An upper bound of possible repetitions of a reference node can be given in form of an integer number in round

parenthesis following the "*" or "+" symbol in the double framed reference node. The segment reference shown in
figure 15 may occur from zero up to 5 times.

ETSI

32 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

Q

segnent - ref erence

Figure 15: Restricted repetition of a reference node

8.1.3 Flow lines

Flow lines are represented by means of arrows. A flow line has an inscription of true or false which indicates a
condition under which the flow line is chosen during the flow graph interpretation. As a short hand notation it is
allowed to omit the true inscription. Examples of flow lines are shown in figure 15a.

false
|

true

> which is identical to >

Figure 15a: Explicit and implicit inscriptions of flow lines

To support the joining of several flow lines into one flow line on a graphical level, a special join node is introduced.
The join node and an example for its usage are shown in figure 15b.

join node:

®
usage of join node: >. >

Figure 15b: Joining of flow lines
Drawing long flow lines in big diagrams as it is, for example, necessary to model the TTCN-3 constructs got 0 and

| abel , is awkward. For this purpose, labels for outgoing and incoming flow lines can be used. Examples are shown in
figure 15c.

Incoming flow line with label: in-labdd ——p
Outgoing flow line with label: —» out-label

Figure 15c: Incoming and outgoing flow lines with labels
An outgoing flow line with a label is connected with an incoming flow line with a label, if the labels are identical. The

flow line labels for the incoming flow lines shall be unique. If there are several outgoing flow lines with the same label,
this is considered to be a join of lines to the incoming flow line with an identical label.

ETSI

33 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

8.1.4 Flow graph segments

Flow graph segments are sub-flow graphs. They are referenced in reference nodes and define the meaning of that
reference node. Flow graph segments may include further reference nodes.

As shown in figure 16, flow graph segments have precise interfaces that consist of incoming and outgoing flow lines.
There is only one unlabeled incoming and one or none unlabeled outgoing flow lines. In addition there might exist
several labelled incoming and outgoing flow lines. For example, the labelled incoming and outgoing flow lines are
needed to describe the meaning of TTCN-3 statements got 0 and al t .

Flow graph segments are put into a frame and the name of the flow graph segment shall follow the keyword segment
followed by the segment name in the upper left corner of the frame. The flow lines describing the flow graph segment
interface shall cross the flow graph segment frame.

segnment SegnentNanei

LI, >

LO LO ... LOy
Figure 16: Structure of a flow graph segment description

8.1.5 Comments

To improve readability and coherence a special comment symbol can be used to associate comments to flow graph
nodes and flow lines. The comment symbol and its usage are shown in figure 17.

1
1
]
]
1
! Comment related to
flow line

This is a comment in
........................ a comment symbol \ 4

inscription Y.

Comment related to
basic node

(&) Comment symbol (b) Usage of comment symbols

Figure 17: Flow graph representation of comments

ETSI

34 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

8.1.6 Handling of flow graph descriptions

The evaluation procedure of the operational semantics traverses flow graphs that only consist of basic nodes, i.e. all
reference nodes have to be expanded by the corresponding flow graph segment definitions. The NEXT function is
required to support this traversal. NEXT is defined in the following manner:

actualNodeRef NEXT(bool) := successor NodeRef where:
. actualNodeRef is the reference of a basic flow graph node;
. successorNodeRef is the reference of a successor node of the node referenced by actualNodeRef;

. bool is a Boolean specifying whether the true or the false successor is returned
(see clause 8.1.3).

8.2 Flow graph representation of TTCN-3 behaviour
8.2.0 General

The operational semantics assumes that TTCN-3 behaviour descriptions are provided in form of a set of flow graphs,
i.e. for each TTCN-3 behaviour description a separate flow graph has to be constructed.

The operational semantics interprets the following kinds of TTCN-3 definitions as behaviour descriptions:
a) module control;
b) test case definitions;
c) function definitions;
d) altstep definitions;
e) component type definitions.

The module control specifies the test campaign, i.e. the execution order (possibly repetitious) of the actual test cases.
Test case definitions define the behaviour of the MTC. Functions structure behaviour. They are executed by the module
control or by the test components. Altsteps are used for the definition of default behaviour or in a function-like manner
to structure behaviour. Component type definitions are assumed to be behaviour descriptions because they specify the
creation, declaration and initialization of ports, constants, variables and timers during the creation of an instance of a
component type.

8.2.1 Flow graph construction procedure

The flow graphs presented in the figures 18 to 22 and the flow graph segments presented in clause 8 are only templates.
They include placeholders for information that has to be provided in order to produce a concrete flow graph or flow
graph segment. The placeholders are marked with "<" and ">" parenthesis.

The construction of a flow graph representation of a TTCN-3 module is done in three steps:

1) For each TTCN-3 statement in module control, test cases, altsteps, functions and component type definitions a
concrete flow graph segment is constructed.

2) For the module control and for each test case, altstep, function and component type definition a concrete flow
graph (with reference nodes) is constructed.

3) Inastepwise procedure all reference nodes in the concrete flow graphs are replaced by corresponding flow
graph segment definitions until all flow graphs only include one start node, end nodes and basic flow graph
nodes.

NOTE 1: Basic flow graph nodes describe basic indivisible execution units. The operational semantics for TTCN-3
behaviour is based on the interpretation of basic flow graph nodes. Clause 8.6 presents execution methods
for basic flow graph nodes only.

ETSI

35 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

The replacement of a reference node by the corresponding flow graph segment definition may lead to unconnected parts
in a flow graph, i.e. parts which cannot be reached from the start node by traversing through the flow graph along the
flow lines. The operational semantics will ignore unconnected parts of a flow graph.

NOTE 2: An unconnected part of a flow graph is a result of the mechanical replacement procedure. For the
construction of an optimal flow graph representation the different combinations of TTCN-3 statements
also has to be taken into consideration. However, the goal of the present document is to provide a correct
and complete semantics, not an optimal flow graph representation.

8.2.2 Flow graph representation of module control

Schematically, the syntactical structure of a TTCN-3 module is:

nmodul e <identifier> <nodul e-definitions-part> control <statemnent-block>

For the flow graph behaviour representation the following information is relevant only:

nodul e <identifier> <statenent-bl ock>

This is comparable to a function definition and therefore the flow graph representation of module control is similar to
the flow graph representation of a function (see clause 8.2.4). The semantics will access the flow graph representing the
module control by using the module name.

NOTE: The meaning of the module definitions part is outside the scope of this operational semantics. Module
parameters are defined as global constants at run-time. References to module parameters have to be
replaced by their concrete values on a syntactical level (see clause 8.3).

The scheme of the flow graph representation of the module control is shown in figure 18. The flow graph name
cont r ol identifies the flow graph representing the module control. The nodes of the flow graph have associated
comments describing the meaning of the different nodes. The reference node <st op- ent i t y- op> covers the case
where no explicit St Op operation is specified, i.e. the operational semantics assumes that a St Op operation is
implicitly added.

fl ow graph control

/1 The nodul e control behaves |like a
<i ni t-conponent - scope> /1 conponent and therefore, its scope
/1 has to be initialised.

y

/ The body of the nodule control
<st at ement - bl ock> Il specifies the statenments to be
/'l execut ed.

* (1) /1 For the case that an explicit stop
/1 operation is missing at the end of
/1 nodul e control

<stop-entity-op>

JA

Figure 18: Flow graph representation of module control

ETSI

36 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

8.2.3 Flow graph representation of test cases

Schematically, the syntactical structure of a TTCN-3 test case definition is:

testcase <identifier> (<paraneter>) <testcase-interface> <statenent-bl ock>

The <t est case- i nt er f ace> above refers to the (mandatory) r uns on and the (optional) Syst emclauses in the
test case definition. The flow graph description of a test case describes the behaviour of the MTC. Variables, timers and
constants defined and declared in the component type definition are made visible to the MTC behaviour by the r uns
on clause in the <t est case-i nt er f ace>. The syst emclause is not relevant for the MTC and is therefore not
represented in the flow graph representation of a test case.

The scheme of the flow graph representation of a test case is shown in figure 19. The flow graph name
<i denti fi er > refers to the name of the represented test case. The nodes of the flow graph have associated
comments describing the meaning of the different nodes. The reference node <st op- ent i t y- op> covers the case

where no explicit St op operation for the MTC is specified, i.e. the operational semantics assumes that a St op
operation is implicitly added.

fl ow graph <identifier>

/1 Considers scope infornmation provided
<init-scope-wth-runs-on> /1 by the runs-on clause in the
Il interface of the test case.

v /1 - Actual paraneter values are
Il assumed to be in the val ue stack
. /11
<paramet er - handl i ng> /1 - Fornal paraneters are handl ed
11 l'i ke | ocal variables and |ocal

11 tinmers

\4

/1 The body of the test case specifies
<st at ement - bl ock> /1 the statements to be executed
/1 by the MIC

* (1) /1 For the case that an explicit stop
/1 operation is missing at the end of
/'l the test case

<stop-ntc>

A

Figure 19: Flow graph representation of test cases

8.2.4 Flow graph representation of functions

Schematically, the syntactical structure of a TTCN-3 function is:

function <identifier> (<parameter>) [<function-interface>] <statenent-bl ock>

The optional <f unct i on-i nt er f ace> above refers to the (optional) r uns on and the (optional) r et ur n clauses
in the function definition.

ETSI

37 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

The scheme of the flow graph representation of a function is shown in figure 20. The flow graph name

<i denti fi er > refers to the name of the represented function. Variables, timers, constants and ports defined and
declared in the component type definition are made visible to within the function by the r uns on clause in the
<function-interface>. Amissingruns on clause means that definitions within the component type definition
are not known within the scope of the function. The operational semantics distinguishes these two cases by the
reference nodes <i ni t - scope-wi t h-runs-on>and <i ni t - scope-w t hout - r uns- on>. The reference
node <r et ur n-wi t hout - val ue> covers the case where no explicit r et ur n statement is specified, i.e. the
operational semantics assumes that a r et ur n statement is implicitly added.

fl ow graph <identifier>

o ith /1 Considers the cases where either
<init-scope-w th-runs-on> /I a runs-on clause is present or

. O? /] absent.
<i ni t - scope-w t hout - runs- on> -

[/ - Actual paranmeter values are

A 4 11 assuned to be in the val ue stack
I
<par anet er - handl i ng> /1 - Formal paraneters are handl ed
11 li ke local variables and | ocal
11 tinmers

\ 4

/' The body of the function specifies
<st at ement - bl ock> /1l the statenents to be executed
/1 by the conponent.

* (1) ||
/1 For the case that an explicit
/1

return statenent is missing at the
<return-w thout-val ue> /1 end of the function.

A

Figure 20: Flow graph representation of functions

8.2.5 Flow graph representation of altsteps

Schematically, the syntactical structure of a TTCN-3 altstep is:

altstep <identifier> (<paranmeter>) [<altstep-interface>]
<const ant-vari abl e-ti mer-decl arati ons>
{ <receiving-branch> | <else-branch> }*

NOTE: Only the alternatives up to the first else branch and the first else branch are taken into consideration.
Branches following the first else branch are unreachable.

The optional <al t st ep-i nt er f ace> above refers to the r uns on clause in the altstep definition.

ETSI

38 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

The scheme of the flow graph representation of an altstep is shown in figure 21. The flow graph name

<i denti fi er > refers to the name of the represented altstep. Variables, timers, constants and ports defined and
declared in the component type definition are made visible to within the function by the r uns on clause in the
<function-interface>. A missingruns on clause means that definitions made within the component type
definition are not known within the scope of the function. The operational semantics distinguishes these two cases by
the reference nodes <i ni t - scope-w t h-runs- on>and <i ni t - scope-w t hout - r uns- on>. The reference
node <r et ur n- wi t hout - val ue> covers the case where no else-branch is specified and none of the alternatives
can be selected.

fl ow graph <identifier>

7

<init ith N /1 Considers the cases where either
Init-scope-w th-runs-on // a runs-on clause is present or
oR
-) /] absent.
<i nit-scope-without-runs-
\ 4 /1 - Actual paraneter values are
11 assuned to be in the val ue stack
<par anet er - hand! i ng> 1
// - Formal paraneters are handl ed
11 like local variables and | ocal
/1 tiners

<const ant -defini ti on>
oR

<vari abl e- decl ar ati on>
R
<t i ner-decl arati on>

/1 Constants, variables and tiners
/1 may be declared and initialised

A /1 Alternative

<r ecei vi ng- branch> OR /'l branches
<al t st ep-cal | - branch>
OR <el se-branch>

* (1) /1 For the case where no el se branch
................................. // is Specified and none Of the
/'l alternatives can be sel ected.

<ret urn-w t hout -val ue>

i

Figure 21: Flow graph representation of altsteps

8.2.6 Flow graph representation of component type definitions

Schematically, the syntactical structure of a TTCN-3 component type definition is:

type conponent <identifier> <port-constant-variabl e-timer-declarations>
The semantics will access flow graphs representing types by using the component type names.

The scheme of the flow graph representation of a component type definition is shown in figure 22. The flow graph
name <i dent i f i er > refers to the name of the represented component type.

ETSI

39 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

fl ow graph <identifier>

/1 The conponent scope is initialised

<i ni t - conponent - scope>

*
|| <port-decl arati on>

oR
<constant-definition>

R) .
<vari abl e-decl arat i on> /1 Constants, variables and tiners

R // are declared and initialised
<ti mer-decl arati on>

/] Ports are created

/1 The 'father' conponent waits for the
/1 conpletion of the conponent creation,
v /Il i.e., is in a 'blocking state.

/1 The created conponent gives the
/1 control back to the 'father' conponent.

<finalise-conmponent-init>

/1 The new conponent goes into a
/1 'blocking' state and waits to be
/1 started.

Figure 22: Flow graph representation of component type definitions

8.2.7 Retrieval of start nodes of flow graphs

For the retrieval of the start node reference of a flow graph the following function is required:

The GET- FLOM GRAPH functi on: GET- FLOM GRAPH (f 1 ow graph-identifier)

The function returns a reference to the start node of a flow graph with the name flow-graph-identifier. The
flow-graph-identifier refers to the module name for the control, to test case names, to function names, to altstep names
and to component type names.

8.3 State definitions for TTCN-3 modules
8.3.0 General

During the interpretation of flow graphs representing TTCN-3 behaviour, module states are manipulated. A module
state is a structured state that consists of several sub-states describing the states of module control and the different test
configurations. A test configuration state describes the states of test components and ports. Module states, configuration
states, component states and port states are introduced in this clause. In addition, functions to retrieve information from
and to manipulate states are defined.

8.3.1 Module state
8.3.1.0 General

As shown in figure 23 a module state is structured into a module CONTROL state and a TEST-CONFIGURATION state.
The module CONTROL state describes the state of the module control. Module control is handled like a test component,
i.e. CONTROL is an entitiy state as defined in clause 8.3.2. The TEST-CONFIGURATION state represents the test
configurations that is instantiated when a test case is executed by module control.

ETSI

40 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

CONTROL TEST-CONFIGURATION

Figure 23: Structure of a module state

8.3.1.1 Accessing the module state

The CONTROL state and the TEST-CONFIGURATION state of the module state can be addressed by using their names,
i.e. CONTROL and TEST-CONFIGURATION.

8.3.1a Configuration state

8.3.1a.0 Genral

As shown in figure 23a the configuration state is structured into ALL-ENTITY-STATES ALL-PORT-STATES
TC-VERDICT, DONE and KILLED. ALL-ENTITY-STATESrepresents the states of all instantiated test components
during the execution of a test case. The first element of ALL-ENTITY-STATES s the reference to the MTC of the
configuration. ALL-PORT-STATES describes the states of the different ports. TC-VERDICT stores the actual global test
verdict of a test case. DONE and KILLED are lists of component-verdict-states (CVS;). A component verdict state
denotes a stopped or killed component together with its local verdict at the point in time when the component was
stopped or killed.

NOTE 1: The number of updates of TC-VERDICT is identical to the number of test components that have
terminated.

NOTE 2: An alive-type test component is put into the DONE list each time when it is stopped and removed from
the DONE list each time when it is started. It is put into the KILL and the DONE list when it is killed.

NOTE 3: Port states may be considered to be part of the entity states. By connect and map ports are made visible
for other components and therefore, this operational semantics handles ports on the top level of the
configuration state.

ALL-ENTITY-STATES ALL-PORT-STATES | TC-VERDICT DONE KILLED
MTC [ESy [[ESk| | [P1] | P | | CvSy || CvSy [[cvsy || cvs, |

Figure 23a: Structure of a configuration state

8.3.1a.1 Accessing the configuration state

The TC-VERDICT and the lists ALL-ENTITY-STATES, ALL-PORT-STATES, DONE and KILLED can be accessed like
variables by their name.

For the handling of lists, e.g. ALL-ENTITY-STATES ALL-PORT-STATES DONE and KILLED in module states, the list
operations add, append, delete, member, first, last, length, next, random and change can be used. They have the
following meaning:

. myL ist.add(item) adds item as first element into the list myList and myList.add(sublist) adds the list sublist to
list myList, i.e. add can be used to add single elements or lists to lists;

. myL ist.append(item) appends item as last element into the list myList and myList.append(sublist) appends the
list sublist to list myList, i.e. append can be used to append single elements or lists to lists;

. myList.delete(item) deletes item from the list myList;

e myList.member(item) returns t r ue if itemis an element of the list myList, otherwise f al se;
. myList.first() returns the first element of myList;

. myList.last() returns the last element of myList;

. myL.ist.length() returns the length of myList;

. myList.next(item) returns the element that follows itemin myList, or NULL if itemis the last element in myList;

ETSI

41 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)
. myL.ist.random(< condition>) returns randomly an element of myList, which fulfils the Boolean condition
<condition> or NULL, if no element of myList fulfils <condition>;

. myList.change(<operation>) allows to apply <operation> on all elements of myList.

NOTE 1: The operations random and change are not common list operations. They are introduced to explain the
meaning of the keywords al | and any in TTCN-3 operations.

NOTE 2: Arguments of the operations delete, member and next may include "-" symbols denoting a field not
relevant for the unique identification of an item. For example, for a list aList of 2-tuples containing the
tuple (A, B), aList.member(A, -) returns t r ue if the field A uniquely identifies (A, B), otherwise f al se.

Additionally, a general copy operation is available. The copy operation copies and returns an item instead of returning a
reference to an item:

e copy(item) returns a copy of item.
8.3.2 Entity states
8.3.2.0 General

Entity states are used to describe the actual states of module control and test components. In the module state,
CONTROL is an entity state and in the configuration state, the test component states are handled in the list
ALL-ENTITY-STATES The structure of an entity state is shown in figure 24.

STATUS
CONTROL-STACK
DEFAULT-LIST
DEFAULT-POINTER
VALUE-STACK
E-VERDICT
TIMER-GUARD
DATA-STATE
TIMER-STATE
PORT-REF
SNAP-ALIVE
SNAP-DONE
SNAP-KILLED
KEEP-ALIVE

Figure 24: Structure of an entity state

The STATUS describes whether the module control or a test component is ACTI VE, BREAK, SNAPSHOT, REPEAT or
BLOCKED. Module control is blocked during the execution of a test case. Test components are blocked during the
creation of other test components, i.e. when they call a cr eat e operation, and when they wait for being started. The
status SNAPSHOT indicates that the component is active, but in the evaluation phase of a snapshot. The status REPEAT
denotes that the component is active and in an al t statement that should be re-evaluated due to a r epeat statement.
The BREAK status is set when a br eak statement is executed for leaving altstep. In this case, the al t statement in
which the altstep was directly or indirectly (i.e. by means of the default mechanism) called is immediately left.

The CONTROL-STACK is a stack of flow graph node references. The top element in CONTROL-STACK is the flow
graph node that has to be interpreted next. The stack is required to model function calls in an adequate manner.

The DEFAULT-LIST is a list of activated defaults, i.e. it is a list of pointers that refer to the start nodes of activated
defaults. The list is in the reverse order of activation, i.e. the default that has been activated first is the last element in
the list.

During the execution of the default mechanism, the DEFAULT-POINTER refers to the next default that has to be
evaluated if the actual default terminates unsuccessfully.

ETSI

42 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

The VALUE-STACK is a stack of values of all possible types that allows an intermediate storage of final or intermediate
results of operations, functions and statements. For example, the result of the evaluation of an expression or the result of
the nt ¢ operation will be pushed onto the VALUE-STACK. In addition to the values of all data types known in a
module, the special value MARK has been defined. MARK is element of the stack alphabet. When leaving a scope
unit, the MARK is used to clean VALUE-STACK.

The E-VERDICT stores the actual local verdict of a test component. The E-VERDICT is ignored if an entity state
represents the module control.

The TIMER-GUARD represents the special timer, which is necessary to guard the execution time of test cases and the
duration of call operations. The TIMER-GUARD is modelled as a timer binding (see clause 8.3.2.4 and figure 28).

The DATA-STATE is considered to be a list of lists of variable bindings. The list of lists structure reflects nested scope
units due to nested function and altstep calls. Each list in the list of lists of variable bindings describes the variables
declared in a certain scope unit and their values. Entering or leaving a scope unit corresponds to adding or deleting a list
of variable bindings from the DATA-STATE. A description of the DATA-STATE part of an entity state can be found in
clause 8.3.2.2.

The TIMER-STATE is considered to be a list of lists of timer bindings. The list of lists structure reflects nested scope
units due to nested function and altstep calls. Each list in the list of lists of timer bindings describes the known timers
and their status in a certain scope unit. Entering or leaving a scope unit corresponds to adding or deleting a list of timer
bindings from the TIMER-STATE. A description of the TIMER-STATE part of an entity state can be found in

clause 8.3.2.4.

The PORT-REF is considered to be a list of lists of port bindings. The list of lists structure reflects nested scope units
due to nested function and altstep calls. Nested scope units for ports are the result of port parameters in functions and
altsteps. Each list in the list of lists of port bindings identifies the known ports in a certain scope unit. Entering or
leaving a scope unit corresponds to adding or deleting a list of port bindings from the PORT-REF. A description of the
PORT-REF part of an entity state can be found in clause 8.3.2.6.

NOTE: The TTCN-3 semantics administrates ports globally in the module state. Due to port parameterization, a
test component may access a port by using different names in different scopes. The PORT-REF part of an
entity state is used to identify port states uniquely in the module state.

The SNAP-ALIVE supports the snapshot semantics of test components. When a snapshot is taken, a copy of the
ALL-ENTITY-STATES list of the module state will be assigned to SNAP-ALIVE, i.e. SNAP-ALIVE includes all entities
(test components and test control) which are alive in the test system.

The SNAP-DONE supports the snapshot semantics of test components. When a snapshot is taken, a copy of the DONE
list of the module state will be assigned to SNAP-DONE, i.e. SNAP-DONE is a list of component identifiers of stopped
components.

The SNAP-KILLED supports the snapshot semantics of test components. When a snapshot is taken, a copy of the
KILLED list of the module state will be assigned to SNAP-KILL, i.e. SNAP-DONE is a list of component identifiers of
terminated components.

The KEEP-ALIVE field indicates whether the entity can be restarted after its termination or not. It is set to true if the
entity can be restarted. Otherwise it is set to false.

8.3.2.1 Accessing entity states

The STATUS DEFAULT-POINTER, E-VERDICT and TIMER-GUARD parts of an entity state are handled like
variables that are globally visible, i.e. the values of STATUS DEFAULT-POINTER and E-VERDICT can be retrieved or
changed by using the "dot" notation, e.g. myEntity. STATUS myEntity. DEFAULT-POINTER and myEntity. E-VERDICT,
where myEntity refers to an entity state.

NOTE: In the following, it is assumed that the "dot" notation (with references and unique identifiers) is
applicable. For example, in myEntity. STATUS myEntityState may be pointer to an entity state or be the
value of the <identifier> field.

The CONTROL-STACK, DEFAULT-LIST and VALUE-STACK of an entity state myEntity can be addressed by using the
"dot" notation myEntity. CONTROL-STACK, myEntity. DEFAULT-LIST and myEntity. VALUE-STACK.

ETSI

43 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

CONTROL-STACK and VALUE-STACK can be accessed and manipulated by using the stack operations push, pop, top,
clear and clear-until. The stack operations have the following meaning:

. myStack.push(item) pushes item onto myStack;

. myStack.pop() pops the top item from myStack;

. myStack.top() returns the top element of myStack or NULL if myStack is empty;
. myStack.clear() clears myStack, i.e. pops all items from myStack;

. myStack.clear-until(item) pops items from myStack until item is found or myStack is empty.

DEFAULT-LIST can be accessed and manipulated by using the list operations add, append, delete, member, first,
length, next, random and change. The meaning of these list operations is defined in clause 8.3.1a.1.

For the creation of a new entity state the function NEW-ENTITY is assumed to be available:
. NEW-ENTITY (flow-graph-node-reference, keep-alive);

creates a new entity state and returns its reference. The components of the new entity state have the following values:
. STATUS s set to ACTI VE;

e flow-graph-node-reference is the only (top) element in CONTROL-STACK;

. DEFAULT-LIST is an empty list;

. DEFAULT-POINTER has the value NULL;

. VALUE-STACK is an empty stack;
° E-VERDICT is set to none;

e TIMER-GUARD is a new timer binding (see clause 8.3.2.4) with name GUARD, status | DL E and no default
duration;

. DATA-STATE is an empty list;

. TIMER-STATE is an empty list;

. PORT-REF is an empty list;

. SNAP-ALIVE is an empty list;

. SNAP-DONE is an empty list;

. SNAP-KILLED is an empty list;

. KEEP-ALIVE is set to the value of the keep-alive parameter.

During the traversal of a flow graph the CONTROL-STACK changes its value often in the same manner: the top element
is popped from and the successor node of the popped node is pushed onto CONTROL-STACK. This series of stack
operations is encapsulated in the NEXT-CONTROL function:

nyEnti ty. NEXT- CONTROL(nyBool) {
successor Node : = nyEntity. CONTROL- STACK. NEXT(nyBool). top();
nyEntity. CONTROL- STACK. pop();
nyEntity. CONTROL- STACK. push(successor Node) ;

ETSI

44 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

8.3.2.2 Data state and variable binding

As shown in figure 25, the data state DATA-STATE of an entity state is a list of lists of variable bindings. Each list of
variable bindings defines the variable bindings in a certain scope unit. Adding a new list of variable bindings
corresponds to entering a new scope unit, e.g. a function is called. Deleting a list of variable bindings corresponds to
leaving a scope unit, e.g. a function executes a I et ur n statement.

root ‘ P? P cecscscces

VariableBinding, VariableBinding,

v v
v v

VariableBinding, VariableBinding,

Figure 25: Structure of the DATA-STATE part of an entity state

The structure of a variable binding is shown in figure 26. A variable has a name, a <location> and a VALUE.
VAR NAME identifies a variable in a scope unit. The <location> is a unique identifier of the storage location of the
value of the variable. The VALUE part of a variable binding describes the actual value of a variable.

NOTE: Unique location identifiers should be provided automatically when a variable is declared.

[VAR-NAME | <location> | VALUE |

Figure 26: Structure of a variable binding

The distinction between variable name and location has been made to model function calls and the execution of test
cases with value and reference parameterization in an appropriate manner:

a) A parameter passed in by value is handled like the declaration of a new variable, i.e. a new variable binding is
appended to the list of variable bindings of the scope of the called function or executed test case. The new
variable binding uses the formal parameter name as VAR-NAME, receives a new location and gets the value
that is passed into the function or test case.

b) A parameter passed in by reference also leads to a new variable binding in the scope of the called function or
executed test case. The new variable binding also uses the formal parameter name as VAR-NAME, but receives
no new location and no new value. The new variable binding gets a copy of <location> and VALUE of the
variable that is passed in by reference.

When updating a variable value, e.g. in case of an assignment to a variable, the variable name is used to identify a
location and all variable bindings with the same location are updated at the same time. Thus, when leaving the scope
unit, the list of variables belonging to this scope unit can be deleted without further update. Due to the update
procedure, variables passed in by reference automatically have the correct value.

8.3.2.3 Accessing data states

The value of a variable can be retrieved by using the "dot" notation myEntity.myVar VALUE, where myEntity refers to
an entity state and myVar is the name of a variable.

For the handling of variables and variable scope the following functions are considered to be defined:

a) The VAR-SET function: myEntity.VAR-SET (myVar, myValue)

sets the VALUE part of variable myVar in the actual scope of an entity myEntity to myVal. In addition, the
VALUE part of all variables with the same location as variable myVar will also be set to myVal.

ETSI

45 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

b) The INIT-VAR function: myEntity.INIT-VAR (myVar, myVal)

creates a new variable binding for a variable myVar with the initial value myVal in the actual scope unit of an
entity myEntity. Using the keyword NONE as myVal means that a variable with undefined initial value is
created. A new and unique <location> value is automatically created.

¢) The GET-VAR-LOC function: myEntity. GET-VAR-LOC (myVar)
retrieves the location of variable myVar owned by myEntity.
d) The INIT-VAR-LOC function: myEntity.INIT-VAR-LOC (myVar,myLoc)

creates a new variable binding for a variable myVar with the location mylLoc in the actual scope unit of
myEntity. The variable will be initialized with the value of another variable with the location myLoc.

NOTE: Variables with the same location are a result of parameterization by reference. Due to the handling of
reference parameters as described in clause 8.3.2.2 all variables with the same location will have identical
values during their lifetime.

¢) The INIT-VAR-SCOPE function: myEntity.INI T-VAR-SCOPE ()

initializes a new variable scope in the data state of entity myEntity, i.e. an empty list is added as first list in the
list of lists of variable bindings.

f) The DEL-VAR-SCOPE function: myEntity. DEL-VAR-SCOPE ()
deletes a variable scope of the data state of myEntity, i.e. the first list in the list of lists of variable bindings is
deleted.
8.3.24 Timer state and timer binding

As shown in figures 27 and 25 the timer state TIMER-STATE and the data state DATA-STATE of an entity state are
comparable. Both are a list of lists of bindings and each list of bindings defines the valid bindings in a certain scope.
Adding a new list corresponds to entering a new scope unit and deleting a list of bindings corresponds to leaving a
scope unit.

root P cerercoces

TimerBinding, TimerBinding,

v v
v v

TimerBinding, TimerBinding,

XXX
XXX

Figure 27: Structure of the TIMER-STATE part of an entity state

The structure of a timer binding is shown in figure 28. The meaning of TIMER-NAME and <location> is similar to the
meaning of VAR-NAME and <location> for a variable binding (figure 26).

[TIMER-NAME | <location>] STATUS | DEF-DURATION | ACT-DURATION [TIME-LEFT [SNAP-VALUE [SNAP-STATUS |

Figure 28: Structure of a timer binding

ETSI

46 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

STATUSdenotes whether a timer is active, inactive or has timed out. The corresponding STATUS values are | DLE,
RUNNI NGand TI MEQUT. DEF-DURATION describes the default duration of a timer. ACT-DURATION stores the
actual duration with which a running timer has been started. TIME-LEFT describes the actual duration that a running
timer has to run before it times out.

NOTE: DEF-DURATION is undefined if a timer is declared without default duration. ACT-DURATION and
TIME-LEFT are set to 0.0 if a timer is stopped or times out. If a timer is started without duration, the
value of DEF-DURATION is copied into ACT-DURATION. A dynamic error occurs if a timer is started
without a defined duration.

SNAP-VALUE and SNAP-STATUS are needed to support the snapshot semantics of TTCN-3. When taking a snapshot,
SNAP-VALUE gets the actual value of ACT-DURATION — TIME-LEFT. And SNAP-STATUS gets the same value as
STATUS The evaluation of a snapshot will only be based on the values in SNAP-VALUE and SNAP-STATUS

Timer can be only passed by reference into functions, i.e. the mechanism is similar to the mechanism for variables
described in clause 8.3.2.2. This means a new timer binding (with the formal parameter name) is created which gets
copies of <location>, STATUS DEF-DURATION, ACT-DURATION, TIME-LEFT, SNAP-VALUE and SNAP-STATUS
from the timer that is passed in by reference. When updating a timer all timer bindings with the same <location> value
are updated at the same time.

8.3.25 Accessing timer states

The values of STATUS DEF-DURATION, ACT-DURATION, TIME-LEFT, SNAP-VALUE and SNAP-STATUS of a
timer myTimer can be retrieved by using the dot notation:

. myEntity.myTimer.STATUS;

. myEntity.myTimer. DEF-DURATION;

. myEntity.myTimer. ACT-DURATION;
. myEntity.myTimer. TIME-LEFT;

. myEntity.myTimer.SNAP-VALUE;

. myEntity.myTimer.SNAP-STATUS.

The myEntity in the dot notation refers to an entity state representing the state of a test component or module control
that owns the timer myTimer.

For changing the values of STATUS DEF-DURATION, ACT-DURATION, TIME-LEFT, SNAP-VALUE and
NAP-STATUS of a timer timer-name, the generic TIMER-SET operation has to be used, for example:

e myEntity. TIMER-SET(myTimer, STATUS, myVal)

sets the STATUS value of timer myTimer in the actual scope of myEntity to the value myVal. In addition, the STATUS of
all timers with the same location as timer myTimer will also be set to myVal. The TIMER-SET function can also be used
to change the values of DEF-DURATION, ACT-DURATION, TIME-LEFT, SNAP-VALUE and SNAP-STATUS

For the handling of timers, timer scope and snapshot the following functions have to be defined:
a) The INIT-TIMER function: myEntity.INIT-TIMER (myTimer, myDuration)

creates a new timer binding for a timer myTimer with the default duration myDuration in the actual scope of an
entity myEntity. Using the keyword NONE as myDuration means that a timer without default duration is
created.

b) The GET-TIMER-LOC function: myEntity. GET-TIMER-LOC (myTimer)

retrieves the location of timer myTimer owned by myEntity.

ETSI

a7 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

¢) TheINIT-TIMER-LOC function: myEntity.INI T-TIMER-LOC (myTimer, myLocation)

creates a new timer binding for a timer myTimer with the location myLocation in the actual scope unit of
myEntity. The timer will be initialized with the values of STATUS DEF-DURATION, ACT-DURATION and
TIME-LEFT of another timer with the location <location>.

NOTE: Timers with the same location are a result of parameterization by reference. Due to the handling of timer
reference parameters as described in clause 8.3.2.3 all timers with the same location will have identical
values for STATUS DEF-DURATION, ACT-DURATION and TIME-LEFT during their lifetime.

d) The INIT-TIMER-SCOPE function: myEntity.INIT-TIMER-SCOPE ()

initializes a new timer scope in the timer state of entity myEntity, i.e. an empty list is added as first list in the
list of lists of timer bindings.

¢) The DEL-TIMER-SCOPE function: myEntity.DEL-TIMER-SCOPE ()

deletes a timer scope of the timer state of entity myEntity, i.e. the first list in the list of lists of timer bindings is
deleted.

f) The SNAP-TIMER function: myEntity. SNAP-TIMER ()

makes an update of SNAP-VALUE and SNAP-STATUS in all timers owned by myEntity , i.e.:

nyEntity. SNAP-TI MERS () {
for all nyTinmer in TI MER STATE {
nyEntity. nyTi mer. SNAP- VALUE : = nyEntity. nyTi mer. ACT- DURATI ON —
nyEntity. myTi mer. Tl ME- LEFT;
nmyEntity. myTi mer. SNAP- STATUS : = nyEntity. myTi mer. STATUS,;

8.3.2.6 Port references and port binding

As shown in figures 28a, 27 and 25 the port references PORT-REF, the timer state TIMER-STATE and the data state
DATA-STATE of an entity state are comparable. All three are a list of lists of bindings and each list of bindings defines
the valid bindings in a certain scope. Adding a new list corresponds to entering a new scope unit and deleting a list of
bindings corresponds to leaving a scope unit.

root . :? > P cccscsccce

PortBinding1 PortBinding:

{ {
| |

PortBindingn PortBindingx

Figure 28a: Structure of the PORT-REF part of an entity state

The structure of a port binding is shown in figure 28b. A port has two names. PORT-NAME identifies a port in a scope
unit. COMP-PORT-NAME is the port name given in the component type to a port.

[PORT-NAME| COMP-PORT-NAME |

Figure 28b: Structure of a port binding

NOTE: PORT-NAME and COMP-PORT-NAME are equal directly after the creation of a component.

ETSI

48 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

Ports can be only passed by reference into functions and altsteps, i.e. the mechanism is similar to the mechanism for
variables described in clause 8.3.2.2. This means a new port binding (with the formal parameter name) is created which
gets a copy of COMP-PORT-NAME from the port that is passed in by reference. When accessing a port which is passed
in by reference, the corresponding port binding is used to retrieve the port name declared in the component type
definition.

8.3.2.7 Accessing port references

The value of COMP-PORT-NAME can be retrieved by using the dot notation:

. myEntity.myport. COMP-PORT-NAME

The myEntity in the dot notation refers to an entity state representing the state of a test component that owns the port
myPort.

For the handling of port parameters and port scopes the following functions have to be defined:
a) The INIT-PORT function: myEntity.INIT-PORT (myPort, myCompPortName)

creates a new port binding for a port myPort with myCompPortName as value for COMP-PORT-NAME in the
actual scope of an entity myEntity.

b) The INIT-PORT-SCOPE function: myEntity.INI T-PORT-SCOPE ()

initializes a new port scope in the port references of entity myEntity, i.e. an empty list is added as first list in
the list of lists of port bindings.

¢) The DEL-PORT-SCOPE function: myEntity.DEL-PORT-SCOPE ()

deletes a port scope of the port references of entity myEntity, i.e. the first list in the list of lists of port bindings

is deleted.
8.3.3 Port states
8.3.3.0 General

Port states are used to describe the actual states of ports. Within a module state, the port states are handled in the
ALL-PORT-STATES ist (see figure 23). The structure of a port state is shown in figure 29. The COMP-PORT-NAME
refers to the port name that is used to declare the port in the component type definition of the test component OWNER
that owns the port. STATUS provides the actual status of the port. A port may either be STARTED, HALTED or
STOPPED.

NOTE: A portin a test system is uniquely identified by the owning test component and by the port name used in
the component type definition to declare the port.

The CONNECTIONSLIST of a port state keeps track of the connections between the different ports in the test system.
The mechanism is explained in clause 8.3.3.1.

The VALUE-QUEUE in a port state stores the messages, calls, replies and exceptions that are received at this port but
have not yet been consumed.

The SNAP-VALUE supports the TTCN-3 snapshot mechanism. When a snapshot is taken, the first element in
VALUE-QUEUE is copied into SNAP-VALUE. SNAP-VALUE will get the value NULL if VALUE-QUEUE is empty or
STATUS s STOPPED.

| COMP-PORT-NAME | OWNER | STATUS | CONNECTIONS-LIST [VALUE-QUEUE | SNAP-VALUE |

Figure 29: Structure of a port state

ETSI

49 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

8.3.3.1 Handling of connections among ports

A connection between two test components is made by connecting two of their ports by means of a connect
operation. Thus, a component can afterwards use its local port name to address the remote queue. As shown in

figure 30, connection is represented in the states of both connected queues by a pair of REMOTE-ENTITY and
REMOTE-PORT-NAME. The REMOTE-ENTITY is the unique identifier of the test component that owns the remote
port. The REMOTE-PORT-NAME refers to the port name that is used to declare the port in the component type
definition of the test component REMOTE-ENTITY. TTCN-3 supports one-to-many connections of ports and therefore
all connections of a port are organized in a list.

NOTE 1: Connections made by map operations are also handled in the list of connections. The map operation:
map(PTC1:MyPort, syst emPCOLl) leads to a new connection (Syst em PCOL) in the port state of
MyPort owned by PTC1. The remote side to which PCO1 is connected to, resides inside the SUT. Its
behaviour is outside the scope of this semantics.

NOTE 2: The operational semantics handles the keyword Syst emas a symbolic address. A connection
(syst em myPort) in the list of connections of a port it indicates that the port is mapped onto the port
myPort in the test system interface.

[REMOTE-ENTITY | REMOTE-PORT-NAME |

Figure 30: Structure of a connection

8.3.3.2 Handling of port states

The queue of values in a port state can be accessed and manipulated by using the known queue operations enqueue,
degueue, first and_clear. Using a GET-PORT or a GET-REMOTE-PORT function references the queue that shall be
accessed.

NOTE 1: The queue operations enqueue, dequeue, first and_clear have the following meaning:

L] myQueue.engueue(item) puts item as last item into myQueue,
" myQueue.dequeue() deletes the first item from myQueue;
] myQueue.first() returns the first item in myQueue or NULL if myQueue is empty;
] myQueue.clear() removes all elements from myQueue.
The handling of port states is supported by the following functions:
a) The NEW-PORT function: NEW-PORT (myEntity, myPort)

creates a new port and returns its reference. The OWNER entry of the new port is set to myEntity and
COMP-PORT-NAME has the value myPort. The status of the new port is STARTED. The CONNECTIONS-LIST
and the VALUE-QUEUE are empty. The SNAP-VALUE has the value NULL (i.e. the input queue of the new port
is empty).

b) The GET-PORT function: GET-PORT (myEntity, myPort)

returns a reference to the port identified by OWNER myEntity and COMP-PORT-NAME myPort.

¢) The GET-REMOTE-PORT function: ~GET-REMOTE-PORT (myEntity, myPort, myRemoteEntity)

returns the reference to the port that is owned by test component myRemoteEntity and connected to a port
identified by OWNER myEntity and COMP-PORT-NAME myPort. The symbolic address SYSTEMis returned,
if the remote port is mapped onto a port in the test system interface.

NOTE 2: GET-REMOTE-PORT returns NULL if there is no remote port or if the remote port cannot be identified
uniquely. The special value NONE can be used as value for the myRemoteEntity parameter if the remote
entity is not known or not required, i.e. there exists only a one-to-one connection for this port.

ETSI

50 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

d) The STATUSof a port is handled like a variable. It can be addressed by qualifying STATUS with a GET-PORT
call:
GET-PORT(myEntity, myPort). STATUS

e) The ADD-CON function: ADD-CON (myEntity, myPort, myRemoteEntity, myRemotePort)

adds a connection (myRemoteEntity, myRemotePort) to the list of connections of the port identified by
OWNER myEntity and COMP-PORT-NAME myPort.

f) The DEL-CON function: DEL-CON (myEntity, myPort, myRemoteEntity, myRemotePort)

removes a connection (myRemoteEntity, myRemotePort) from the list of connections of the port identified by
OWNER myEntity and COMP-PORT-NAME myPort.

g) The NAP-PORTS function: SNAP-PORTS (myEntity)

updates NAP-VALUE for all ports owned by myEntity, i.e.

SNAP- PORTS (nyEntity) {
for all ports p /* in the nodule state */ {
if (p. ONER == nyEntity) {
i f (p. STATUS == STOPPED) {
p. SNAP- VALUE : = NULL;

el se {
if (p.STATUS == HALTED && p.first() == HALT- MARKER) {
/1 Port is halted and halt narker is reached
p. SNAP- VALUE : = NULL;
p. dequeue(); /'l Rermoval of halt narker
p. STATUS : = STOPPED,

el se {
p. SNAP-VALUE : = p.first()
}

}

NOTE 3: The SNAP-PORTS function handles the HALT- MARKER that may be put by a hal t port operation into
the port queue. If such a marker is found, the marker is removed, the SNAP-VALUE of the port is set to
NULL and the status of the port is changed to STOPPED.

8.3.3a Component verdict states

Component verdict states are the elements of the DONE and KILLED lists in a configuration state. As shown in

figure 30a, a component verdict state consists of a component identifier (COMP-ID) and a verdict (EIN-VERDICT). In
DONE and KILLED, a component verdict state denotes a stopped or killed component together with its local verdict
when it was stopped or killed.

| COMP-ID | FIN-VERDICT |

Figure 30a: Component Verdict State

8.3.4 General functions for the handling of module states

The operational semantics assumes the existence of the following functions for the handling of module states.

NOTE 1: During the interpretation of a TTCN-3 module, there only exists one module state. It is assumed that the
components of the module state are stored in global variables and not in a complex data object. Thus, the
following functions are assumed to work on global variables and do not address a specific module state
object.

a) The DEL-ENTITY function: DEL-ENTITY(myEntity)
deletes an entity with the unique identifier myEntity. The deletion comprises:

- the deletion of the entity state of myEntity;

ETSI

51 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

- deletion of all ports owned by myEntity;
- deletion of all connections in which myEntity is involved.

b) The UPDATE-REMOTE-REFERENCES function:

UPDATE-REMOTE-REFERENCES (source, target)

the UPDATE-REMOTE-REFERENCESupdates variables and timers with the same location in both entities.
The values that will be used for the update are the values of variables and timers owned by source.

NOTE 2: The UPDATE-REMOTE-REFERENCES s used during the termination of test cases. It allows updating of
variables of module control, which are passed as reference parameters to test cases.

8.4 Messages, procedure calls, replies and exceptions
8.4.0 General

The exchange of information among test components and between test components and the SUT is related to messages,
procedure calls, replies to procedure calls and exceptions. For communication purposes these items have to be
constructed, encoded and decoded. The concrete encoding, i.e. mapping of TTCN-3 data types to bits and bytes, and
decoding, i.e. mapping of bits and bytes to TTCN-3 data types, is outside the scope of the operational semantics. In the
present document messages, procedure calls, replies to procedure calls and exceptions are handled on a conceptual
level.

8.4.1 Messages

Messages are related to message-based communication. Values of all (pre- and user-defined) data types can be
exchanged among the entities that communicate. As shown in figure 31, the operational semantics handles a message as
structured object that consist of a sender a type and a value part. The sender part identifies the sender entity of a
message, the type part specifies the type of a message and the value part defines the message value.

| sender | type | value |

Figure 31: Structure of a message

NOTE: The operational semantics only presents a model for the concepts of TTCN-3. Whether and how the
sender information is or has to be sent and/or received depends on the implementation of the test system,
e.g. in some cases the sender information may be part of the value part of a message and therefore is no
separate part of the message structure.

8.4.2 Procedure calls and replies

Procedure calls and replies to procedures are related to procedure-based communication. They are defined like values of
a record with components representing the parameters. The operational semantics also handles procedure calls and
replies to procedure calls like values in structured types. The structure of a procedure call and the structure of a reply
are presented in figures 32 and 33.

The sender and the procedure-reference parts have the same meaning in both figures. The sender part refers to the
sender entity of a call or the reply to a procedure call. The procedure-reference refers to the procedure to which call and
reply belong. The parameter-part of the procedure call in figure 32 refers to the i n parameters and i hout parameters
and the parameter- part of the reply in figure 33 refers to the i nout parameters and out parameters of the procedure
to which call and reply belong. In addition, the reply has a value part for the return values in the reply to a procedure.

NOTE 1: As stated in the previous note, the operational semantics only presents a model for the concepts of
TTCN-3. Whether and how the information described in figures 32 and 33 is or has to be sent and/or
received depends on the implementation of the test system.

NOTE 2: For a procedure call, out parameters are of no relevance and are omitted in figure 32. For a reply to a
procedure call, i n parameters are of no relevance and are omitted in figure 33.

NOTE 3: The types of parameters and the type of the return value can always be derived unanimously from the
related signature definition.

ETSI

52 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

sender procedure-reference parameter-part
| in-or-inout-parameter, | ... | in-or-inout-parameter, |

Figure 32: Structure of a procedure call

sender | procedure-reference parameter-part value
| inout-or-out-parameter, | ... | inout-or-out-parameter,

Figure 33: Structure of areply to a procedure call

8.4.3 Exceptions

Exceptions are also related to procedure-based communication. The structure of an exception is shown in figure 34. It
consists of four parts. The sender part identifies the sender of the exception; the procedure-reference part refers to the
procedure to which the exception belongs, the type part identifies the type of the exception and the value part provides
the value of the exception. The procedure signature referred to in the procedure reference part defines the list of allowed
types of exceptions. A received exception shall comply with one of the listed types. In general it can be of any pre- or
user-defined TTCN-3 data type.

| sender | procedure-reference | type | value |

Figure 34: Structure of an exception

8.4.4 Construction of messages, procedure calls, replies and exceptions

The operations for sending a message, a procedure call, a reply to a procedure call or an exception are send, cal | ,
reply andrai se. All these sending operations are built up in the same manner:

<port - name>. <sendi ng- oper ati on>(<send-specification>) [to <receiver>]

The <port-name> and <sending-operation> define port and operation used for sending an item. In case of one-to-many
connections a <receiver> entity needs to be specified. The item to be sent is constructed by using the
<send-specification>. The send specification may use concrete values, template references, variable values, constants,
expressions, functions, etc. to construct and encode the item to be sent.

The operational semantics assumes that there exists a generic CONSTRUCT-ITEM function:

CONSTRUCT-ITEM (myEntity, <sending-operation>, <send-specification>)

returns a message, a procedure call, a reply to a procedure call or an exception depending on the

<sendi ng- oper at i on> and the <send- speci fi cati on> (both, <sendi ng- oper at i on> and the
<send- speci fi cat i on> refer to the corresponding parts in the TTCN-3 sending operation). The entity
reference myEntity is the sender of the item to be sent. This sender information is also assumed to be part of
the item to be sent (figures 31 to 34).

8.4.5 Matching of messages, procedure calls, replies and exceptions

The operations for receiving a message, a procedure call, a reply to a procedure call or an exception are r ecei ve,
getcal | ,getrepl y and cat ch. All these receiving operations are built up in the same manner:

<port-name>. <recei vi ng- oper ati on>(<mat chi ng-part>) [from <sender>] [<assi gnment-part>]

The <port - name> and <r ecei vi ng- oper at i on> define port and operation used for the reception of an item. In
case of one-to-many connections a f r omclause can be used to select a specific sender entity <sender >. The item to
be received has to fulfil the conditions specified in the <mat chi ng- par t >, i.e. it has to match. The <mat chi ng-
par t > may use concrete values, template references, variable values, constants, expressions, functions, etc. to specify
the matching conditions.

ETSI

53 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

The operational semantics assumes that there exists a generic MATCH-ITEM function:
MATCH-ITEM (myltem, <mat chi ng- part >, <sender >)

returns t r ue if myltem fulfils the conditions of <rmat chi ng- part > and if myltem has been sent by
<sender >, otherwise it returns f al se.

8.4.6 Retrieval of information from received items

Information from received messages, procedure calls, replies to procedure calls and exceptions can be retrieved in the
<assi gnnent - part > (see clause 8.4.5) of the receiving functions r ecei ve, get cal | ,getrepl y and cat ch.
The <assi gnnent - par t > describes how the parameters of procedure calls and replies, return values encoded in
replies, messages, exceptions and the identifier of the <sender > entity are assigned to variables.

The operational semantics assumes that there exists a generic RETRIEVE-INFO function:

RETRIEVE-INFO (myltem, <assi gnment - part >)

all values to be retrieved according to the <assi gnment - par t > are retrieved and assigned to the variables
listed in the assignment part. Assignments are done by means of the VAR-SET operation, i.e. variables with the
same location are updated at the same time.

8.5 Call records for functions, altsteps and test cases
8.5.0 General

Functions, altsteps and test cases are called (or executed) by their name and a list of actual parameters. The actual
parameters provide references for reference parameter and concrete values for the value parameter as defined by the
formal parameters in the corresponding function, altstep or test case definition. The operational semantics handles calls
of functions, altsteps and test cases by using call records as shown in figure 35. The value of BEHAVIOUR-ID is the
name of a function or test case, value parameters provide concrete values <parld;> ... <parld,> for the formal

parameters <parld,> ... <parld>. Variable and timer reference parameters provide references to locations of existing

variables and timers. Port reference parameters provide the port names declared in the component type definition of the
test component that calls the function or altstep. Before a function or test case can be executed an appropriate call
record has to be constructed.

NOTE: Port reference parameters can only appear in functions and altsteps which are executed on a test

component.
behaviour-id value-parameters variable and timer port
reference-parameters reference-parameters
parld, |...|parld , parld, |...| parld, parldg |...| parld,
value, |...|value, loc, |...| loc, name |...| name,

Figure 35: Structure of a call record

8.5.1 Handling of call records

The function, altstep or test case name and the actual parameter values can be retrieved by using the dot notation,
e.g. myCallRecord.parld, or myCallRecord.behaviour-id where myCallRecord is a pointer to a call record.

For the construction of a call the function NEW-CALL-RECORD is assumed to be available:

NEW-CALL-RECORD(myBehaviour)

creates a new call record for function, altstep or test case myBehaviour and returns a pointer to the new record.
The parameter fields of the new call record have undefined values.

ETSI

54 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

myEntity.INI T-CALL-RECORD(myCallRecord)

creates variables, timers and port references for the handling of value and reference parameters in the actual
scope of the test component or module control myEntity. The variables for the handling of value parameters
are initialized with the corresponding values provided in the call record. The variables and timers for the
handling of reference parameters get the provided location. In addition, they get a value of an existing variable
or timer in another scope unit of the component in which the call record was created. Port references get the
provided name as value for the COMP-PORT-NAME field.

8.6 The evaluation procedure for a TTCN-3 module

8.6.1 Evaluation phases
8.6.1.0 General

The evaluation procedure for a TTCN-3 module is structured into:
1) initialization phase;
2) update phase,
3) selection phase; and
4) execution phase.

The phases (2), (3) and (4) are repeated until module control terminates. The evaluation procedure is described by
means of a mixture of informal text, pseudo-code and the functions introduced in the previous clauses.

8.6.1.1 Phase I: Initialization
The initialization phase includes the following actions:

a) Declaration and initialization of variables:

- INIT-FLOW-GRAPHY(); // Initialization of flow graph handling. INIT-FLOW-GRAPHS is
// explained in clause 8.6.2.

- Entity := NULL; // Entity will be used to refer to an entity state. An entity state either
// represents module control or a test component.

- MTC := NULL; /I MTC will be used to refer to the entity state of the main test component of
// a test case during test case execution.

NOTE 1: The global variable CONTROL form the control state of a module state during the interpretation of a
TTCN-3 module (see clause 8.3.1).

- CONTROL := NULL; // CONTROL will be used to refer to the control state of a module state.

NOTE 2: The following global variables ALL-ENTITY-STATES ALL-PORT-STATES TC-VERDICT, DONE and
KILLED form the test configuration state of a module state during the interpretation of a TTCN-3 module
(see clause 8.3.1).

- ALL-ENTITY-STATES:= NULL;

- ALL-PORT-STATES:= NULL;

- TC-VERDICT := none;
- DONE :=NULL;
- KILLED :=NULL;

ETSI

55 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

b) Creation and initialization of module control:

CONTROL := NEW-ENTITY (GET-FLOW-GRAPH (<moduleld>), false);
/I A new entity state is created and initialized with the start node of
// the flow graph representing the behaviour of the control of the
// module with the name <moduleld>. The Boolean parameter
// indicates that module control cannot be restarted after it is
// stopped.

- CONTROL.INIT-VAR-SCOPE(); // New variable scope

- CONTROL.INIT-TIMER-SCOPE(); // New timer scope

- CONTROL.VALUE-STACK.push(M ARK); /I A mark is pushed onto the value stack

8.6.1.2 Phase II: Update

The update phase is related to all actions that are outside the scope of the operational semantics but influence the
interpretation of a TTCN-3 module. The update phase comprises the following actions:

a) Timeprogress: All running timers are updated, i.e. the TIME-LEFT values of running timers are (possibly)
decreased, and if due to the update a timer expires, the corresponding timer bindings are updated,
i.e. TIME-LEFT is set to 0.0 and STATUS s set to TI MEOUT.

NOTE 1: The update of timers includes the update of all running TIMER-GUARD timers in module states.
TIMER-GUARD timers are used to guard the execution of test cases and call operations.

b) Behaviour of the SUT: Messages, remote procedure calls, replies to remote procedure calls and exceptions
(possibly) received from the SUT are put into the port queues at which the corresponding receptions shall take
place.

NOTE 2: This operational semantics makes no assumptions about time progress and the behaviour of the SUT.

8.6.1.3 Phase IlI: Selection

The selection phase consists of the following two actions:

a) Selection: Select a non-blocked entity, i.e. an entity that has not the STATUS value BLOCKED. The entity may
be CONTROL, i.e. module control, or a test component, i.e. an element of ALL-ENTITY-STATES

b) Storage: Store the identifier of the selected entity in the global variable Entity.

8.6.1.4 Phase IV: Execution
The execution phase consists of the following two actions:

a) Execution step of the selected entity: Execute the top flow graph node in the CONTROL-STACK of Entity.

b) Check termination criterion: Stop execution if module control has terminated, i.e. CONTROL is NULL.
Otherwise continue with Phase II.

NOTE: The execution step of the selected entity can be seen as a procedure call. The check of the termination
criterion is done when the execution step terminates, i.e. returns the control.

8.6.2 Global functions

The evaluation procedure uses the global function INIT-FLOW-GRAPHS

a) INIT-FLOW-GRAPHS s assumed to be the function that initializes the flow graph handling. The handling may
include the creation of the flow graphs and the handling of the pointers to the flow graphs and flow graph
nodes.

ETSI

56 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

The pseudo-code used the following clauses to describe execution of flow graph nodes use the functions
CONTINUE-COMPONENT, RETURN, *** DYNAM C- ERROR* * *:

b) CONTINUE-COMPONENT the actual test component continues its execution with the node lying on top of
the control stack, i.e. the control is not given back to the module evaluation procedure described in this clause.

¢) RETURN returns the control back to the module evaluation procedure described in this clause. The RETURN is
the last action of the "execution step of the selected entity" of the execution phase.

d) ***DYNAM C- ERROR*** refers to the occurrence of a dynamic error. The error handling procedure itself is
outside the scope of the operational semantics. If a dynamic error occurs all following behaviour of the test
case is meant to be undefined. In this case resources allocated to the test case shall be cleared and the error
verdict is assigned to the test case. Control is given to the statement in the control part following the execute
statement in which the error occurred. This is modelled by the flow graph segment <dynamic-error>
(clause 9.18.5).

NOTE: The occurrence of a dynamic error is related to test behaviour. A dynamic error as specified by the
operational semantics denotes a problem in the usage of TTCN-3, e.g. wrong usage or race condition.

e) APPLY- OPERATOR used as generic function for describing the evaluation of operators (e.g. +, *, / or -) in
expressions (see clause 9.18.4).

9 Flow graph segments for TTCN-3 constructs
9.0 General

The operational semantics represents TTCN-3 behaviour in form of flow graphs. The construction algorithm for the
flow graphs representing behaviour is described in clause 8.2. It is based on templates for flow graphs and flow graph
segments that have to be used for the construction of concrete flow graphs for module control, test cases, altsteps,
functions and component type definitions defined in a TTCN-3 module. The definitions of the templates for the flow
graph segments can be found in this clause. They are presented in an alphabetical order and not in a logical order.

The flow graph segment definitions are provided in the form of figures. The flow graph nodes are presented on the left
side of the figures and comments associated to nodes and flow lines are shown on the right side. Descriptive comments
are presented for reference nodes and comments in form of pseudo-code are associated to basic nodes. The pseudo-code
describes how a basic node is interpreted, i.e. changes the module state. It makes use of the functions defined in clause 8
and the global variables declared and initialized in the evaluation procedure for TTCN-3 modules (see clause 8.6). An
overall view of all functions and keywords used by the pseudo-code can be found in clause 8.

9.1 Action statement

The syntactical structure of an act i on statement is:

action (<informal description>)

The flow graph segment <action-stmt> in figure 36 defines the execution of the act i on statement.

segnent <action-stmt>

/1 inscription ‘nop’ neans ‘no operation’
Entity. NEXT- CONTROL(true);
nop Ve RETURN:

v

NOTE: The <informal description> parameter of the act i on statement has no meaning for the operational
semantics and is therefore not represented in the flow graph segment.

Figure 36: Flow graph segment <action-stmt>

ETSI

57 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.2 Activate statement

The syntactical structure of the act i vat e statement is:

activat e(<al t st ep- name>([<act - par -desc,>, ..., <act-par-desc>]))

The <altstep-name> denotes to the name of an altstep that is activated as default behaviour, and
<act - par-descr >, ..., <act - par - descr > describe the actual parameter values of the altstep at the time of

its activation.

It is assumed that for each <act - par - desc > the corresponding formal parameter identifier <f - par - I d{> is

known, i.e. the syntactical structure above can be extended to:

activat e(<al t st ep- name>((<f-par-1d,>, <act-par-desc,>), .., (<f-par-ld_>, <act-par-desc>)))

The flow graph segment <act i vat e- st nt > in figure 37 defines the execution of the activate statement. The
execution is structured into three steps. In the first step, a call record for the altstep <f unct i on- name> is created. In
the second step the values of the actual parameter are calculated and assigned to the corresponding field in the call
record. In the third step, the call record is put as first element in the DEFAULT-LIST of the entity that activates the
default.

NOTE: For altsteps that are activated as default behaviour, only value parameters are allowed. In figure 37, the
handling of the value parameters is described by the flow graph segment <value-par-calculation>, which
is defined in clause 9.24.1.

segnment
<activate-stnt>

Entity. VALUE- STACK. push(NEW CALL- RECORD(f uncti on- nane));
Entity. NEXT- CONTROL(true);

construct-call-record

(altstep-name)) RETURN;
* /1 For each pair (<f-par-ldi> <act-paraneter-desc;>) the
/1 val ue of <act-paraneter-desc; is cal cul ated and
»»»»» /1 assigned to the corresponding field <f-par-Idi>
<val ue- par - cal cul ati on> // in the call record. The call record is assuned to be
/] the top elenent in the val ue stack.

Entity. DEFAULT- LI ST. add(Entity. VALUE- STACK. top());

/1 W assune that only a reference to the call record has
/1 been pushed onto the value stack. This reference has
“““ /1 not been renoved fromthe value stack. It is the result
/1 of the activate statenent.

Entity. NEXT- CONTROL(true);

RETURN;

activate-default

Figure 37: Flow graph segment <activate-stmt>

ETSI

58 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.2a Alive component operation
9.2a.0 General

The syntactical structure of the al i ve component operation is:

<conponent - expressi on>. al i ve

The al i ve component operation checks whether a component has been created and is ready to execute or is already
executing a behaviour function. The component to be checked is identified by a component reference, which may be
provided in form of a variable or value returning function, i.e. is an expression. For simplicity, the keywords "al |
conmponent "and "any conponent " are considered to be special expressions.

The al i ve component operation distinguishes between its usage in a Boolean guard of an al t statement or blocking
cal | operation and all other cases. If used in a Boolean guard, the result of al i ve component operation is based on
the actual snapshot. In all other cases the al i ve component operation evaluates directly the module state information.

The result of the al i ve component operation is pushed onto the value stack of the entity, which called the operation.

The flow graph segment <alive-component-op> in figure 37a defines the execution of the r unni ng component
operation.

segnment

<al i ve- conponent - op> \ 4)
/'l The expression shall evaluate
. 1 /1 to a conponent reference. The
<expressi on> /1 result is pushed onto VALUE- STACK

if (Entity.STATUS == ACTIVE) {
Entity. NEXT- CONTROL(true);

else { // Entity is in a snapshot
Entity. NEXT- CONTROL(fal se);
}

RETURN,

deci si on

<al i ve- conp- act > <al i ve- conp- snap>

!

Figure 37a: Flow graph segment <alive-component-op>

ETSI

59 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.2a.1 Flow graph segment <alive-comp-act>

The flow graph segment <al i ve- conp- act > in figure 37b describes the execution of the al i ve component
operation outside a snapshot, i.e. the entity is in the status ACTI VE.

segment - - . :
<al i ve- conp- act> if (_Ent ity. VALUE- STACK. top() == "all conponent') {
if (Entity I'= MiC) {
*** DYNAM C- ERROR*** // 'all conponent' is not all owed

el se {

i f (KILLED.length() == 0) { // no entity has termnated
Enti ty. VALUE STAKK. push(true);

else { // at | east one conponent has term nated

al i ve-conp- act Enti ty. VALUE STACK. push(f alse);
}

}
}
el se {

if (Entity.VALUE STACK.top() = 'any conponent') {
if (Entity T= MIC) {
DYNAM C- ERROR // 'any conponent' is not all owed
}

else {
i f (ALL-ENTITY- STATES.| ength() > 1) {
// at |east one PTCis aive
Entity. VALUE- STACK. push(true);

el se {

}

Entity. VALUE- STACK. push(f al se) ;
}
}
el se {

i f (ALL- ENTITY- STATES menber (Enti ty.VALUE- STACK. top())) {
/1 Specified conponent is alive
Enti ty. VALUE STACK. push(true);

else {
Enti ty. VALUE STAXK. push(false);
}

}

}
Entity. NEXT- CONTROL(t r ue);
RETURN,

Figure 37b: Flow graph segment <alive-comp-act>

ETSI

60 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.2a.2 Flow graph segment <alive-comp-snap>

The flow graph segment <al i ve- conp- snap> in figure 37c describes the execution of the al i ve component
operation during the evaluation of a snapshot, i.e. the entity is in the status SNAPSHOT .

segment - - —_ . .
<al i ve- conp- snap> if (iE?t I(:Eﬁt Vi—Tf\)L/ulE-:S-II\;[TAgK %ﬂ() == "a | conponent’) {
*** DYNAM C- ERROR ** // 'all conponent' is not all owed
el se {
if (Entity. SNAP-KILLED. I ength() == 0) {
Enti ty. VALUE STAXK. push(true);
) else {
alive-comp-snap) Enti ty. VALUE STACK. push(fal se)
}
}
}
el se {
if (Entity.VALUE STACK. top() = 'any conponent') {
if (Entity I'= MIQ) {
DYNAM C- ERROR // 'any conponent’' is not all owed
}
else {
if (Entity. SNAP-ALI VE.l ength() > 1) {
/] at |east one PTC was alive when the
/'l snapshot has been taken
Entity. VALUE- STACK. push(true);
el se {
Entity. VALUE- STACK. push(f al se);
}
}
el se {
if (Entity.SNAP-ALI VE menmber (Entity.VALUE- STACK. top())) {
/'l Conponent was al i ve when the snapshot was taken
Enti ty. VALUE STAKK. push(true);
}
else {
/'l Conponent was not alive when the snapshot was taken
Enti ty. VALUE STAKXK. push(true);
}
) }
Entity. NEXT- CONTROL(t r ue) ;
RETURN;
v

Figure 37c: Flow graph segment <alive-comp-snap>

9.3 Alt statement
9.3.0 General

The al t statement is the most complicated and important statement of TTCN-3. It implements the snapshot semantics
and specifies the branching due to the reception of messages, replies, calls and exceptions, due to the occurrence of
timeouts and due to the termination of components. In addition, the evocation of the TTCN-3 default mechanism is also
related to the al t statement.

The flow graph representation of the al t statement in figure 38. The different alternatives due to the reception of
messages, replies, calls and exceptions, due to the occurrence of timeouts and due to the termination of components are
hidden in the flow graph segment <r ecei vi ng- br anch>.

ETSI

61 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

segment <alt-

stnt >

<t ake- snapshot >

/'l A snapshot is taken

<recei vi ng-branch> OR
<al tstep-call -branch>
OR <el se- branch>

<defaul t - evocati on>

<<<<<<<<<<<

A

false

/alt_-exit
N

true

/1 The different alternatives

/1 are evaluated

/1 The default nmechani sm may

/1 be evoked.

if (Entity.STATUS == ACTIVE) {
Enti ty. NEXT- CONTROL(t r ue) ;

}

else {

}
el se {
/1 A new snapshot needs to be taken, the
/1l status of the entity is SNAPSHOT (none
/1 of the alternatives could be selected
/1 and executed) or REPEAT (due to a
/'l repeat statenment)
Enti t y. NEXT- CONTROL(f al se) ;
}
}
RETURN,

if (Entity.STATUS == BREAK) {
/1l altstep is left via a break statenent.
Enti ty. STATUS(ACTI VE) ;
Enti ty. NEXT- CONTROL(t r ue);

Figure 38: Flow graph segment <alt-stmt>

ETSI

62 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.3.1 Flow graph segment <take-snapshot>

The flow graph segment <t ake- snapshot > in figure 39 describes the procedure of taking a snapshot. The snapshot
records values of ports, timers and stopped components.

segnment <t ake-snapshot >

/'l Take Snapshot
SNAP- PORTS(Entity); /1l Ports
Entity. SNAP-TI MER(); /1 Tinmer

Entity. SNAP-ALI VE : = copy(ALL- ENTI TY- STATES); // ALIVE
Entity. SNAP- DONE : = copy(DONE); /1 DONE
v Entity. SNAP-KI LLED : = copy(KILLED); // KILLED

take-snapshot).
Entity. STATUS : = SNAPSHOT; // new conponent status
Entity. DEFAULT- PO NTER : = Entity. DEFAULT-LIST.first();

Entity. NEXT- CONTROL(true);
RETURN,

v

Figure 39: Flow graph segment <take-snapshot>

ETSI

9.3.2

63

Flow graph segment <receiving-branch>

The execution of the flow graph segment <r ecei vi ng- br anch> is shown in figure 40.

segment <recei vi ng- branch>

/'l The receiving branch is only eval uat ed,
/1 if the entity is in status SNAPSHOT
if (Entity.STATUS == SNAPSHOT) {

Entity. NEXT- CONTROL(true);

el se {
Entity. NEXT- CONTROL(fal se);
}

RETURN,

/1 Bool ean expression that

<expressi on>

// guards a branch

fal se
true

<recei ve-op> OR

Entity. NEXT- CONTROL(Ent i ty. VALUE- STACK. top());
Entity. VALUE- STACK. pop();
RETURN;

Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

/1 The operations may change the status of
Il Entity, if the operation is successful.

<getcal | -op> OR
<getreply-op> OR
<cat ch-op> OR
<ti neout-op> OR
<check-op> OR
<done- conponent - op>

fal se

<st at ement - bl ock>

true

\4

Figure 40: Flow graph segment <receiving-branch>

ETSI

64 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.3.3 Flow graph segment <altstep-call-branch>

The invocation of an altstep within an al t statement is described by the flow graph segment
<al t st ep- cal | - branch> in figure 41.

segment

<al t step-cal | -branch> /1 The branch is only evaluated,

/1 if the entity is in status SNAPSHOT

if (Entity.STATUS == SNAPSHOT) {
Entity. NEXT- CONTRCL(t rue);

}

........... | el se {
Entity. NEXT- CONTROL(f al se);

deci si on

}
RETURN;

/1 Bool ean expression that
<expression> e /'l guards a branch

Entity. NEXT- CONTROL(Enti ty. VALUE- STACK top());
........... | Entity. VALUE- STACK. pop();
RETURN;

false

true

5‘

/1 The altstep is called, the status of the
/'l entity may be changed inside the altstep
<altstep-call> | /1 by the different alternatives in the

/1 altstep.

/1 STATUS of Entity is ACTIVE if
... // one of the alternatives in the
/1 altstep has been executed

if (BEntity. STATUS == ACTI VE) {
true Entity. NEXT- CONTRCL(true);

}

fal se el se {

Entity. NEXT- CONTRCL(f al se);

}
RETURN;

4

/1 Execution of optional statement
/1 block

<st atenent - bl ock>

Figure 41: Flow graph segment <altstep-call-branch>

ETSI

9.3.4

65

Flow graph segment <else-branch>

Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

The execution of an el se branch within an al t statement is described by the flow graph segment <el se- br anch>

in figure 42.

segnent <el se-branch>

el se-part

/1l The branch is only eval uated,

/1 if the entity is in status SNAPSHOT

if (Entity.STATUS == SNAPSHOT) {
Entity. NEXT- CONTROL(true);

}

el se {
Entity. NEXT- CONTROL(fal se);

}
RETURN,;

/1 An el se-branch is always selected, i.e.
/] status of Entity will be set of ACTIVE
Entity. STATUS : = ACTI VE;

<st at ement - bl ock>

/1 The statenent
I

bl ock in an el se branch
i s al ways executed.

\4

Figure 42: Flow graph segment <else-branch>

ETSI

66 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.35 Flow graph segment <default-evocation>

The evocation of defaults behaviour at the end of al t statements is described by the flow graph segment
<def aul t - evocat i on> in figure 43.

segnment <default-evocation>

default-in

/1 A default is only evoked, if the
/] entity is in status SNAPSHOT

if (Entity.STATUS == SNAPSHOT) ({

v Entity. NEXT- CONTROL(true);

decision VY el se {

Enti ty. NEXT- CONTROL(f al se) ;
fal se }

true RETURN,

A 4

cal |l -record-handl i ng
fal se _/

true

/1 A call record in DEFAULT-LI ST, identified by

/] DEFAULT- PO NTER i s pushed onto the VALUE- STACK of

/1 Entity. Afterwards DEFAULT-PO NTER is updated, i.e.,
/1l will point to the next record in DEFAULT-LIST. If

/] DEFAULT-PO NTER is NULL, the Entity status will not

/'l change and, thus, a new SNAPSHOT will be initiated in
/] <alt-stnt>

if (Entity.DEFAULT- PO NTER == NULL) {
Entity. NEXT- CONTROL(f al se);

el se {
Entity. VALUE- STACK. push(Entity. DEFAULT- PO NTER) ;
Entity. DEFAULT- PO NTER : =
Entity. DEFAULT- LI ST. next (Entity. DEFAULT- PO NTER) ;
Entity. NEXT- CONTROL(true);

}
RETURN;

A 4

The actual default altstep is invoked
or called Iike a user defined function.

~—
~—

<user - def-func-cal | >

Junp back to the beginning of the segnent
/ to check if the next default behaviour has
/1 to be invoked.

v
default-in

;

Figure 43: Flow graph segment <default-evocation>

ETSI

67 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.4 Altstep call

As shown in figure 44, the call of an altstep is handled like a function call.

segnment <al tstep-call>

. /'l Reference to the flow graph segnent
<function-call > /1 describing the function call

v

Figure 44: Flow graph segment <altstep-call>

9.5 Assignment statement

The syntactical structure of an assi gnment statement is:

<var | d> : = <expressi on>

The value of the expression <expr essi on> is assigned to variable <var | d>. The execution of an assignment
statement is defined by the flow graph segment <assi gnnent - st mt > in figure 45.

segment <assi gnment - st nt >

. /| The expression is evaluated and the
<expressi on> /1 result is pushed onto the val ue stack

Entity. VAR-SET(varld, Entity.VALUE-STACK top());
Entity. VALUE- STACK. pop();

assi gnnment - st nt
(varld)y)} Entity. NEXT- CONTROL(true);

RETURN;

\4

Figure 45: Flow graph segment <assignment-stmt>

9.5a Break statements in altsteps

The syntactical structure of the br eak statement in an altstep is:

br eak

NOTE: The semantics of a br eak statement used for leaving a loop, an i nt er| eave oran al t statement is
defined in clause 7.8 as a shorthand form for using a pair of got o- | abel statements.

Basically, the br eak statement used for leaving an altstep is a r et ur n statement without return value, which also
changes the entity status to BREAK. The status BREAK prevents the re-evaluation of the al t statement in which the
altstep has been called statement has been called and also prevents the execution of the optional statement block
following the altstep call in the al t statement. The break statement also works for altsteps called indirectly by the
default mechanism. In this case, the alt statement that invokes the default mechanism is left. The flow graph segment
<br eak- al t st ep- st nt > shown in figure 45a defines the execution of the br eak statement for leaving an altstep.

ETSI

68 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

segnment <break-altstep-stnt>

Enti ty. STATUS(BREAK) ;
break-al t st ep-stnt et RETURN;

A

<return-wi t hout -val ue>

v

Figure 45a: Flow graph segment <break-altstep-stmt>

9.6 Call operation
9.6.0 General

The syntactical structure of the call operation is:

<portld>.call (<call Spec> [<blocking-info>]) [to <receiver-spec>] [<call-reception-part>]

The optional <bl ocki ng- i nf 0> consists of either the keyword nowai t or a duration for a timeout exception. The
optional <r ecei ver - spec> inthet 0 clause refers to the receivers of the call. In case of a one-to one
communication, the <r ecei ver - spec> addresses a single entity (including the SUT or an entity within the SUT). In
case of multicast or broadcast communication, the <r ecei ver - spec> specifies a set or all test components
connected via the specified port with the calling component. The optional <call-reception-part> denotes the alternative
receptions in case of a blocking cal | operation.

The operational semantics distinguishes between blocking and non-blocking cal | operations. A cal | is non-blocking
if the keyword nowai t is used in the cal | operation, or if the called procedure is non-blocking, i.e. defined by using
the keyword nobl ock. A blocking cal | hasa<cal | -reception-part>.

The flow graph segment <cal | - op> in figure 46 defines the execution of a cal | operation. It reflects the distinction
between blocking and non-blocking calls.

segnment <cal |l - op> l

<bl ocki ng- cal | - op>
oR /1 A call operation nay be bl ocking
<non- bl ocki ng-call -op> [77 /1 or non-bl ocki ng

\ 4

Figure 46: Flow graph segment <call-op>

ETSI

69 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

For blocking and non-blocking call operations a receiver entity may be specified in form of an expression. The
possibilities are shown in figures 47 and 48.

segment <bl ocki ng-cal | - op> l
"""" /1 A blocking call may or nay not
<b-cal | -w t hout - durati on> /1 be supervised by TI MER- GUARD
OR
<b-cal | -wi t h-duration>

\4

Figure 47: Flow graph segment <blocking-call-op>

segment <non- bl ocki ng-cal | - op>
A 4
<nb-cal | -wi t h-one-recei ver> (R /1 A non-blocking call may address one,
<nb-cal | -wi th-nul tiple-receivers> CR I/ multiple (multicast and broadcast) or
<nb-cal | - wi t hout - r ecei ver > /1 no receiver entities.
v

Figure 48: Flow graph segment <non-blocking-call-op>

ETSI

70 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.6.1 Flow graph segment <nb-call-with-one-receiver>

The flow graph segment <nb- cal | - wi t h- one-r ecei ver > in figure 49 defines the execution of a non-blocking
cal | operation where one receiver is specified in form of an expression.

segnent <nb-cal | -with-one-receiver>

/'l The expression shall evaluate
/1 to a conponent reference or
/| address val ue

<expressi on>

nb-cal | -wi th-one-receiver
(portld, call Spec)

let {
var receiver := Entity.VALUE- STACK top();
var renotePort :=
CET- REMOTE- PORT(Entity, Entity.portld. COWP-PORT- NAME, receiver);

if (remotePort == NULL) {
DYNAM C- ERROR; // Renpbte port cannot be found

}

if (remotePort == SYSTEM {
/1 Port is mapped onto a port of the test system
/'l reception of the reply by the SUT is outside
/'l the scope of the operational semantics

else { // sending of call
renot ePort . enqueue(CONSTRUCT- | TEM Entity, call, call Spec));

} /1 end of scope of receiver and renotePort
Entity. VALUE- STACK. pop(); /'l clean val ue stack

Entity. NEXT- CONTROL(t rue);
RETURN,

Figure 49: Flow graph segment <nb-call-with-one-receiver>

9.6.1a Flow graph segment <nb-call-with-multiple-receivers>

The flow graph segment <nb-cal | -wi t h-ul ti pl e-recei ver s> in figure 49a defines the execution of a
non-blocking cal | operation where multiple receivers are addressed. In case of broadcast communication the keyword
al I comnponent is used as receiver specification. In case of multicast communication a list of expressions is
provided which shall evaluate to component references or address values.

The component references or address values of the addressed entities (or the keyword al | conponent) are pushed
onto the value stack of the calling entity. The number of references or address values stored in the value stack is
considered to be known, i.e. it is the parameter nunber of the basic flow graph node

nb-cal |l -wi t h-nul ti pl e-recei vers in figure 49a. The nunber parameter is 1 in case of broadcast
communication, i.e. the keyword al I conmponent is top element in the value stack.

ETSI

71 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

segment <nb-call-w th-multiple-receivers>

/1
/1
/1

Each expression shall eval uate
to a conponent reference or
addr ess val ue

(portld, call Spec, nunber)

nb-cal I -with-multipl e-receivers

let { 11
var i;
var conn
var rece

| ocal Por
if (Enti

conn
whi |

el se {
for

}
}
} /1 end of

Entity. NEXT-
RETURN,

var local Port, renotePort; // variables for port references

CONTROL(true);

/1 1oop counter variable

ection; // variable for connections in port states

iver; /1 variable for receiver conponent references or
/] receiver address val ues

t := Entity.portld. COWP- PORT- NAME; // | ocal port

ty. VALUE- STACK. top() == all conponent) {

ection := | ocal Port. CONNECTI ONS- LI ST. next (connecti on);
e (connection !'= NULL) {
renpotePort : = connecti on. REMOTE- PORT- NAVE;

if (renotePort == SYSTEM {
/1 Port is mapped onto a port of the test system
/1 reception of the reply by the SUT is outside
/1 the scope of the operational semantics

else { // sending of call
renot ePort. enqueue(CONSTRUCT- | TEM Entity, call, call Spec));

}

connection : = | ocal Port. CONNECTI ONS- LI ST. next (connecti on);
(i == 1; i <= nunber; i :=i+1)

receiver := Entity.VALUE- STACK. top();

Entity. VALUE- STACK. pop(); /1 clean val ue stack

renotePort := CGET- REMOTE- PORT(Entity, local Port, receiver);
if (renmptePort == NULL) {
*** DYNAM C- ERROR***; // Renpbte port cannot be found

}

if (renotePort == SYSTEM ({
/1 Port is mapped onto a port of the test system
/1 reception of the reply by the SUT is outside
/'l the scope of the operational semantics

else { // sending of call
renot ePort . enqueue(CONSTRUCT- | TEM Entity, call, call Spec));
}

| ocal scope

v

Figure 49a: Flow g

raph segment <nb-call-with-multiple-receivers>

ETSI

72 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.6.2 Flow graph segment <nb-call-without-receiver>

The flow graph segment <nb- cal | - wi t hout - r ecei ver > in figure 50 defines the execution of a non-blocking
cal | operation without a t 0-clause.

segnent <nb-cal | -wi t hout -recei ver - op>

nb-cal | - wi t hout -r ecei ver - op
(portld, call Spec)

let {
var renotePort :=
CET- REMOTE- PORT(Entity, Entity.portld. COWP- PORT- NAVE, NONE) ;

if (remptePort == NULL) {
DYNAM C- ERROR; // Renote port cannot be found

}

if (renotePort == SYSTEM {
/1 Port is mapped onto a port of the test system
/1 reception of the reply by the SUT is outside
/1 the scope of the operational semantics

else { // sending of call
renot ePort . enqueue(CONSTRUCT- | TEM Entity, call, call Spec));

} /1 end of scope of renotePort

Entity. NEXT- CONTROL(true);
RETURN,

Figure 50: Flow graph segment <nb-call-without-receiver>

9.6.3 Flow graph segment <b-call-without-duration>

Blocking calls are modelled by a non-blocking call followed by the body of the call, which handles the replies and
exceptions. The flow graph segment <b- cal | - wi t hout - dur ati on> shown in figure 51 describes the execution
of a blocking call without a given duration as time guard.

segnent <b-call -without-duration>

\ 4
<nb-cal | - wi t h-one-recei ver> OR
<nb-call-wi th-nmul tiple-receivers> OR |.. /1 Call of renote procedure

<nb-cal | -wi t hout -recei ver >

\ 4
. /1 Handling of replies and
<cal | -reception-part> /1 exceptions of the called
/'l procedure.
v

Figure 51: Flow graph segment <b-call-without-duration>

ETSI

9.6.4

73

Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

Flow graph segment <b-call-with-duration>

The flow graph segment <b- cal | - wi t h- dur at i on> (see figure 52) describes the execution of a blocking call with
a duration as time guard.

segnment <b-call-w th-duration>

A 4

set-timer-guard

\4

/1 The expression shall evaluate
v /1l to a float value which defines
<expr essi on> H EihfreSurat ion of the guarding
Entity. Tl MER- GUARD. STATUS : = | DLE;

Entity. TI MER- GUARD. ACT- DURATI ON : =
Entity. VALUE- STACK. pop();

Entity. NEXT- CONTROL(true);
RETURN;

Entity. VALUE- STACK t op();

<nb-cal | -w th-one-receiver> OR
<nb-cal |l -with-mul tipl e-receivers> OR

<nb-cal | -wi t hout - r ecei ver >

/1 Call of renote procedure

A 4

start-timer-guard

A 4

Entity. TI MER- GUARD. STATUS : = RUNNI NG
Entity. VALUE- STACK. pop() ;

Entity. NEXT- CONTROL(true);
RETURN;

<cal | -recepti on-part>

/1
Il
/1

Handl i ng of replies and
exceptions of the called
procedure.

v

Figure 52: Flow graph segment <b-call-with-duration>

ETSI

9.6.5

74

Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

Flow graph segment <call-reception-part>

The flow graph segment <cal | - r ecept i on- part > (see figure 53) describes the handling of replies, exceptions
and the timeout exception of a blocking cal | operation.

segnment <cal | -reception-part>

-

[
|

<t ake- snapshot >

Il

A snapshot

is taken

H

<recei vi ng-branch> OR
<cat ch-ti meout - excepti on>

guar ded
by this

Branches with getcall
operations related to the call
a tineout

and catch

and
exception (if the call is
by a duration) are handl ed
node

fal se

N

ifo(

Entity. STATUS == ACTI VE) {
NEXT- CONTROL(t rue);
/1 To assure a defined state of Entity

Entity.
Entity.

/1
11
11
/1
Entity.

el se {

}
RETURN,

TI MER- GUARD. STATUS : = | DLE;

A new snapshot needs to be taken, the
status of the entity is SNAPSHOT (none
of the alternatives could be sel ected
and execut ed)

NEXT- CONTROL(f al se) ;

v

Figure 53: Flow graph segment <call-reception-part>

ETSI

75 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.6.6 Flow graph segment <catch-timeout-exception>

The flow graph segment <cat ch- t i meout - except i on> (see figure 54) is for the handling of a timeout exception
of a blocking call operation that is guarded by a duration.

segment <cat ch-ti meout - excepti on>

v if (Entity.TI MER- GUARD. STATUS == TI MEQUT) {
Entity. NEXT- CONTROL(true);

check-guard) /1 To assure a defined state of Entity
Entity. STATUS : = ACTI VE;

fal se
true else { // continue eval uation

Entity. NEXT- CONTROL(f al se);
}

RETURN,

A 4

/1l To be executed, if the
/1 tinmeout exception occured

<st at ement - bl ock>

!

Figure 54: Flow graph segment <catch-timeout-exception>

9.7 Catch operation

The syntactical structure of the catch operation is:

<portld>. catch (<matchingSpec>) [from <conponent_expression>] -> [<assignmentPart>]

Apart from the cat ch keyword this syntactical structure is identical to the syntactical structure of the r ecei ve
operation. Therefore, the operational semantics handles the cat ch operation in the same manner as the r ecei ve
operation. This is also shown in the flow graph segment <cat ch- op> (figure 55), which defines the execution of a
cat ch operation. The figure refers to flow graph segments related to the r ecei ve operation (see clause 9.37).

I
segment <cat ch- op> l

<recei ve-wi t h- sender >
OoR /1 Distinction due to the optional
<recei ve-wi t hout-sender> [/1 fromclause

\ 4

Figure 55: Flow graph segment <catch-op>

ETSI

76 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.8 Check operation
9.8.0 General

The syntactical structure of the check operation is:

<portld>.check(receive|getcall]|catch|getreply (<nmatchi ngSpec>)
[from <conponent - expressi on>]) [-> <assignnent Part >]

The optional <conponent - expr essi on> in the f r omclause refers to the sender entity. It may be provided in
form of a variable value or the return value of a function, i.e. it is assumed to be an expression. The optional

<assi gnnent Par t > denotes the assignment of received information if the received information matches to the
matching specification <mat chi ngSpec> and to the (optional) f r omclause.

The operational semantics handles the operations r ecei ve, get cal | , cat ch and get r epl y in the same manner,
i.e. they are described by referencing the same flow graph segments <r ecei ve- wi t h- sender > and

<recei ve- wi t hout - sender >. The check operation also handles the different operations in the same manner.
Thus the flow graph segment <check- op> in figure 56, which defines the execution of the check operation, also
references only two flow graph segments. The only difference to the flow graph segments

<recei ve-wi t h- sender > and <r ecei ve- wi t hout - sender > is that the received items are not deleted after
the match.

|
segnent <check-op> l

<check-w t h- sender >
R /1 Distinction due to the optional
<check-w t hout - sender> [7" /1 fromclause

\ 4

Figure 56: Flow graph segment <check-op>

ETSI

77 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.8.1 Flow graph segment <check-with-sender>

The flow graph segment <check-wi t h- sender > in figure 57 defines the execution of a check operation where
the sender entity is specified in form of an expression.

segment
<cﬁeck-with-sender> v /1 The Expression shall evaluate
< Cons /1 to a conponent reference or
expression /1 address value. The result is
// pushed onto the VALUE- STACK.

let { // local scope for portRef and sender

var portRef := NULL;

var sender := Entity.VALUE- STACK. top(); /1 Sender

Entity. VALUE- STACK. pop(); /1 dean val ue stack
if (portID == "any port”) {

port Ref := ALL- PORT- STATES. r andon{ MATCH | TEM SNAP- VALUE, nat chi ngSpec, sender)
&% OMER == Entity);

if (portRef == NULL) { // no 'matching'" port found
Entity. NEXT- CONTROL(f al se);
RETURN;
}
el se {
portRef := GET-PORT(Entity, Entity.portld. CO/P- PORT- NAVE) /1 Specified port
}
/1 MATCHI NG
if (PortRef.first() == NULL) { // Port queue is enpty, no match
Entity. NEXT- CONTROL(f al se);
RETURN;
}
el se {

if (MATCH | TEM port Ref . SNAP- VALUE, mat chi ngSpec, sender)) {
/1 The nessage in the queue natches
Entity. VALUE- STACK. push(port Ref); /1 Saving port reference
Entity. STATUS : = ACTI VE; /'l successful match, Entity status is changed
/1 from SNAPSHOT to ACTI VE

Entity. NEXT- CONTROL(true);

el se { /1 The top itemin the queue does not natch
Entity. NEXT- CONTROL(f al se);

}
RETURN,;

}
\ } /1 End of scope of portRef and sender

check-wi t h- sender

(portld, matchingSpec)
!/g true
// optional val ue

*(1) /'l assignent
<r ecel ve- assi gnnent >

I Entity. VALUE- STACK. pop() ;

A
Entity. NEXT- CONTROL(true);
cl ean-val ue-stack .. RETURN,;

fal se true
v v

Figure 57: Flow graph segment <check-with-sender>

ETSI

9.8.2 Flow graph segment <chec

The flow graph segment <check- wi t hout - sender
without a f r omclause.

78 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

k-without-sender>

> in figure 58 defines the execution of a check operation

segment <check-w t hout - sender >

let { // local scope
var portRef := NULL;
if (portlD == “any port”) {
port Ref := ALL- PORT- STATES. r andon(MATCH | TEM SNAP- VALUE, mat chi ngSpec, NONE)
&% OMER == Entity);
if (portRef == NULL) { // no 'matching' port found
Entity. NEXT- CONTROL(f al se);
RETURN;
}
el se {
portRef := GET-PORT(Entity, Entity.portld. CO/P- PORT- NAMVE) /1 Specified port
}
/1 MATCHI NG
if (PortRef.first() == NULL) { // Port queue is enpty, no match
Entity. NEXT- CONTROL(f al se);
RETURN;
}
el se {
if (MATCH | TEM port Ref . SNAP- VALUE, nat chi ngSpec, NONE)) {

/1l The nessage in the queue matches
Entity. VALUE- STACK. push(port Ref);

/'l Saving port reference
Entity. STATUS : = ACTI VE;

/'l successful match, Entity status is changed
/1 from SNAPSHOT to ACTI VE

Entity. NEXT- CONTROL(true);

el se { /'l The first
Entity. NEXT- CONTROL(f al se);

itemin the queue does not match

}
RETURN,;

}
} /1l End of scope

check-wi t hout - sender

(portld, matchingSpec)
/<’ true

*(1)
<recel ve- assi gnment >

// optional value

/1 assignent

Entity. VALUE- STACK. pop() ;

Entity. NEXT- CONTROL(true);

ue- st ack RETURN;

A 4

fal se true

Figure 58: Flow graph segment <check-without-sender>

ETSI

79 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.8a Checkstate port operation
9.8a.0 General

The syntactical structure of the checkst at e port operation is:

<port | d>. checkst at e(<char string-expressi on>)

The checkst at e port operation allows to examine the state of a port. If a port is in the state specified by the

char st ri ng parameter, the checkst at e operation returns the Boolean value t r ue. If the port is not in the
specified state, the checkst at e operation returns the Boolean value f al se. Calling the checkst at e operation
with an invalid argument leads to an error. For simplicity, the keywords "al | port " and "any port" are
considered to be special values of <portld>.

The result of the checkst at e port operation is pushed onto the value stack of the entity, which called the operation.

The flow graph segment <checkstate-port-op> in figure 58a defines the execution of the r unni ng component
operation.

segnent
<checkst at e- port - op>

/I The expression shall eval uate
< fons /I to a charstring value. The
expression !l result is pushed onto VALLE- STACK

let { //local scope
var portState := Entity.VALUE STAXK. top();
Entity. Value- STACK. push(portlid);

kind-of -state ~ }- if (porttate == “Sarted”

(portid) or portState == “Halted”
or portState == “Stopped”) {
Entity. NEXT-CONTROL(true);
el seif (portState == “Connected”
or portState == “Mapped”
or portState == “Linked”) {

Entity.NEXT-CONTROL(fal se);
el se {

DYNAM C-ERROR // invalid state

} // end local scope
RETURN,

<check- port - stat us> <check- port-connecti on>

'

Figure 58a: Flow graph segment <checkstate-port-op>

ETSI

80

9.8a.1

Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

Flow graph segment <check-port-status>

The flow graph segment <check- port - st at us> in figure 58b describes the execution of the checkst at e
component operation by checking for the STATUS field in port states (cf. clause 8.3.3).

\ checkstat e-par :=

Entity.VALUE- STACK. pop();
if (checkstate-par ==

if (checkstate-par ==
if (checkstate-par =

result := false;

else if (portld ==

port
result := true;
whil e (port

segnent

<check- port - stat us> let { // local scope
var portld; 11
var checkst at e-par; //
var checkSt at e; /1 port
var result; /1
var port;

A
/— portid := Entity. VALUE- STACK. top();
check- port - st at us Entity.VALUE- STACK. pop();

Enti ty.VALUE STAKK. t op() ;

“Sarted”) checkState : = STARTED;
“Halted’) checkSate := HALTED
“S opped”) checkState : = STOPPED;

if (Entity. PORT-REF =
"al |
;= ALL- PORT-STATES. first();

= NWL and result
if (port.OMNNER == Entity) {

for storing the portld

checkstate paraneter to be checked for
state to be checked for

Bool ean for internediate results

NULL) { // Entity has no ports

port’) {

true) {

}

if (port.STATUS != checkState) result := fal se;
}
port := ALL- PORT- STATES next ();
}
else if (portld == 'any port') {
port := ALL- PORT-STATES.first();
result := false;
while (port !'= NWL and result == fal se) {
if (port.OANNER == Entity) {
if (port.STATUS == checkState) result := true;
}
port := ALL- PORT- STATES next ();
}
el se {
port := Entity. portld.COVP-PORT- NAME
if (port == NJLL) {
*** DYNAM C- ERROR* ** /] port cannot be retrieved
el se{
if (port.STATUS == checkState) result :=true;
if (port.STATUS != checkState) result := fal se
}

Enti ty. VALUE STAXK. push(resul t);

}
Entity.NEXT- CONTROL(true);
RETURN;

Figure 58b: Flow graph segment <check-port-status>

9.8a.2 Flow graph segment <check-port-connection>

The flow graph segment <check- port - connecti on> in figure 58c describes the execution of the checkst at e
component operation by investigating the CONNECTIONS-LIST in port states (cf. clause 8.3.3).

ETSI

81 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

segment

<check- port - connecti on>

check- port-connecti on

let { // local scope

var portld; /1 for storing the portld

var checkstate-par; // checkstate paraneter to be checked for
var result; /'l Boolean for internedi ate results

var isNotLinked := false; // Boolean for internmediate results
var isMapped : = fal se; // Boolean for internediate results
var isConnected : = false; // Boolean for intermediate results
var singl eport :=false; // Boolean for internediate results
var port;

portld := Entity.VALUE STACK. top();
Entity. VALUE STACK. pop() ;

checkstate-par : = Entity. VALUE-STACK top();
Enti ty. VALUE STAK. pop();

if (portld =="'any port' or portld = "all port"') {
singl eport : = fal se;
port := ALL- PORT- STATES first();

}

el se {

si ngl eport : = true
port := Entity. portld. GOVP- PORT- NAMVE;

\}Nhile (port != NULL) {
if (port.OMNER == Entity) ({
if (port.GONNECTI ONS- LI ST == NULL) ({
isNot Li nked : = true; /1 unlinked port

}
if (port.GONNECTIONS-LIST.length() == 1) {
if (GET- EMOTE PORT(Entity, port, NONE) == SYSTEN ({
i sMapped : = true; /1 mepped port

el se {
i sConnected : = true; I/l connected port
}
else { // nore than one connection
i sConnected : = true; I/l connected port
}
}
if (singleport == false) port := ALL-PORT-STATES. next ();
if (singleport == true) port := NULL;
}
if (portld == "any port') {
if (checkstate-par == "Connected') result := isconnected,
if (checkstate-par == "Mapped") result :=ismapped;
if (checkstate-par == "Linked") result := (isnapped or isconnected);

}
else { // portld is a single port or "all port'

if (checkstate-par == "Connected') {

result := (isconnected and not (i smapped or isNotLinked));
el se if (checkstate-par == "Mapped") {

result := (isnmapped and not (i sconnected or isNotLinked));
el se { // checkstate-par == "Linked"

result := (isnmapped or isconnected) and not (i sNotLi nked);
}

}
Entity. VALUE- STACK push(result);

}
Entity. NEXT-CONTROL(t rue);
RETURN;

Figure 58c: Flow graph segment <check-port-connection>

ETSI

9.9

The syntactical structure of the cl ear port operation is:

Clear port operation

<portld>.cl ear

82 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

The flow graph segment <clear-port-op> in figure 59 defines the execution of the cl ear port operation.

Figure 59: Flow grap

9.10

The syntactical structure of the connect operation is:

Connect operation

segnent <cl ear-port-op>
\ let { // Begin of |ocal scope
A var portRef := NULL
var portState := NULL;
clear-port-op Y.
(portld) if (portid == “all port”) {
portState := ALL- PORT- STATES.first();
while (portState !'= NULL) {
if (portState. ONNER == Entity) ({
port St at e. VALUE- QUEUE. cl ear () ;
portState :=
ALL- PORT- STATES. next (port State);
}
el se {
portRef := Entity. portld. COVP- PORT- NAME;
GET- PORT(Entity, portRef).clear();
} /1 End of socpe
Entity. NEXT- CONTROL(tr ue);
RETURN,
v

h segment <clear-port-op>

connect (<component - expr essi on,>: <portldl>, <conponent -expression,>: <port|d2>)

The identifiers <por t | d1> and <por t | d2> are consi

dered to be port identifiers of the corresponding test

components. The components to which the ports belong are referenced by means of the component references
<component - expr essi on,> and <conmponent - expr essi on,>. The references may be stored in variables or

is returned by a function, i.e. they are expressions, which evaluate to component references. The value stack is used for

storing the component references.

The execution of the connect operation is defined by the flow graph segment <connect - op> shown in figure 60.
In the flow graph description the first expression to be evaluated refers to <conponent - expr essi on;> and the

second expression to <conponent - expr essi on,>,

value stack when the connect - op node is executed.

i.e. the <conponent - expr essi on,> is on top of the

ETSI

83

Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

segnment <connect-op>

<expressi on>

(portldl, portld2)

RETURN,

let { /1 begin of a l|ocal scope

v var portOne, portTwo; // voriables for ports
<expr essi on> var conmp2 := Entity. VALUE- STACK. top();
Enti ty. VALUE- STACK. pop();
var conpl := Entity. VALUE- STACK. top();
Entity. VALUE- STACK. pop();
v if (compl == Entity) {

portOne : = conpl. port|dl. COVP- PORT- NANE;

el se {
portOne : = portldi;
}
A 4 if (comp2 == Entity) {
connect - op portTwo : = conp2. portld2. COVP- PORT- NAVE;

el se {
port Two : = portld2;

}

ADD- CON(conpl, portOne, conp2, portTwo);

ADD- CON(conp2, portTwo, conpl, portOne);
} /1 end of

Entity. NEXT- CONTROL(true);

| ocal scope

Figure 60: Flow graph segment <connect-op>

9.11 Constant definition

The syntactical structure of a constant definition is:

const <const Type> <const|d> : = <const Type- expr essi on>

The value of a constant is considered to be an expression that evaluates to a value of the type of the constant.

NOTE: Global constants are replaced by their values in a pre-processing step before this semantics is applied
(see clause 9.2). Local constants are treated like variable declarations with initialization. The correct
usage of constants, i.e. constants should never occur on the left side of an assignment, should be checked
during the static semantics analysis of a TTCN-3 module.

The flow graph segment <constant-definition> in figure 61 defines the execution of a constant declaration where the

value of the constant is provided in form of an expression.

ETSI

84 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

segment <constant-definition>

v

/'l The expression shall evaluate
/1 to a value of the type of the
/'l constant that is defined.

<expressi on>

/1 NOTE: A constant definition is treated like a
/1 variable with inititialisation value

Entity.| NI T-VAR(constld, Entity.VALUE-STACK. top());
var-decl aration-init Entity. VALUE- STACK. pop();
(const|d)

Entity. NEXT- CONTROL(true);
RETURN;

Figure 61: Flow graph segment <constant-definition>

9.12 Create operation

The syntactical structure of the cr eat e operation is:

<conponent Typel d>. create [alive]

A present al i ve clause indicates that the created component can be restarted after it has been stopped. Presence and
absence of the alive clause is handled as a Boolean flag in the operational semantics (see al i ve parameter of the basic
flow graph node cr eat e- op in figure 62).

The flow graph segment <cr eat e- op> in figure 62 defines the execution of the cr eat e operation.

ETSI

85 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

segnent <cr eat e- op>

create-op
(conponent Typel d, alive)

let { /'l Local scope
var newkntity := NEWENTITY(conmponent Typel D, ali ve);
/'l Qeation of the entity state for the
/'l new entity.

I/l The reference to the new entity is pushed onto the val ue stack of the
/] ‘father' entity.

Entity. VALUE- STACK. push(newEntity);

/I The identifier of the 'father' entity is pushed onto the value stack of the
I/l newentity. The identifier is needed to restore the status of the 'father'
/] entity after conpletion of the entity creation. The 'father' entity is

I/ bl ocked until all ports, variables, timers specified in the conponent type
/] definition are instantiated. This instantiation is done by executing the

Il flow graph that represents 'conmponentTypelD by the newentity.

newEnti ty. VALUE- STAXK. push(Entity);

// The newentity is put into the nodul e state

ALL- ENTI TY-STATES. append(newEntity);

} // End local scope

/'l The actual status of the 'father' entity is saved and the 'father' entity goes
/1 into a blocking state. Note the restoration of the status of the father entity
/'l is described in fl owgraph segnent <finalize-conponent-init>.

Entity. VALUE- STACK. push(Entity. STATUS); // Saving the actual status
Entity. STATUS := BLQOCKED

Entity. NEXT- CONTROL(true); // Return of control
RETURN,

Figure 62: Flow graph segment <create-op>

9.13 Deactivate statement
9.13.0 General

The syntactical structure of a deact i vat e statement is:

deactivate [(<default-expression>)]

The deact i vat e statement specifies the deactivation of one or all active defaults of the entity that executes the
deact i vat e statement. If one default shall be deactivated, the optional <def aul t - expr essi on> shall evaluate
to a default reference which identifies the default to be deactivated. The call of a deact i vat e statement without
<def aul t - expr essi on> deactivates all active defaults.

The execution of a deact i vat e statement is defined by the flow graph segment <deact i vat e- st nt > in
figure 63a.

ETSI

86 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

segnment <deactivate-stmt>

A
<deacti vat e- one-def aul t >

/'l A deactivate statement deactivates
/'l one or all active defaults

oRrR
<deactivate-al |l -defaul t s>

v

Figure 63a: Flow graph segment <deactivate-stmt>

9.13.1 Flow graph segment <deactivate-one-default>

The flow graph segment <deact i vat e- one- def aul t > in figure 63b specifies the deactivation of one active
default. The value of the expression <def aul t - expr essi on> shall evaluate to a default reference. The expression
may be provided in form of a variable value or value returning function. The deact i vat e statement removes the
specified default from the DEFAULT-LIST of the entity that executes the deact i vat e statement.

segnment
<deacti vat e- one-def aul t >

. /] The expression shall evaluate to a
<expression> /1 default reference, which is pushed
/1 pushed onto the val ue stack.

Entity. DEFAULT- LI ST. del et e(Entity. VALUE- STACK. top());
Entity. VALUE- STACK. pop(); // clean val ue stack

deactivate-one-default) Entity. NEXT- CONTROL(true);
RETURN,

v

Figure 63b: Flow graph segment <deactivate-one-default>

9.13.2 Flow graph segment <deactivate-all-defaults>

The flow graph segment <deactivate-all-defaults> in figure 63c specifies the deactivation of all active defaults. The
deactivate statement clears the DEFAULT-LIST of the entity that executes the deact i vat e statement.

segnment
<deactivate-all-defaul ts>

deactivate-all-defaults) Entity. DEFAULT- LI ST : = NULL;
RETURN,

v

Figure 63c: Flow graph segment <deactivate-all-defaults>

ETSI

87 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.14 Disconnect operation
9.14.0 General

The syntactical structure of the di sconnect operation is:

di sconnect (<component - expr essi on,>: <portldl> [, <component -expression,>: <portld2>])
<conponent - expr essi on,>: <port | d2>)

The identifiers <por t | d1> and <port | d2> are considered to be port identifiers of the corresponding test
components. The components to which the ports belong are referenced by means of the component references
<conponent - expr essi on;>and <conponent - expr essi on,>. The references may be stored in variables or
are returned by functions, i.e. they are expressions, which evaluate to component references. The value stack is used for
storing the component references.

The di sconnect operation can be used with one parameter pair and with two parameters pairs. The usage of the

di sconnect operation with one parameter pair may disconnect connections for one component or, if executed by the
MTC for all components. The usage of the di sconnect operation with two parameter pairs allows to disconnect
specific connections.

Both usages are distinguished in the flow graph segment <di sconnect - op> shown in figure 64, which defines the
execution of the di sconnect operation.

segnent <di sconnect - op>
A 4
<di sconnect - one- par - pai r > /1 Distinction due to the usage of
) - /1 disconnect with one paraneter pair
<di sconnect -t wo- par pairs> /1 and its usage with two paraneter
/'l pairs.
v

Figure 64: Flow graph segment <disconnect-op>

9.14.1 Flow graph segment <disconnect-one-par-pair>

The flow graph segment <disconnect-one-par-pair> shown in figure 64a defines the execution of the di sconnect
operation with one parameter pair. In the flow graph segment three cases are distinguished:

1) the nt c disconnects all connections of all components;
2) all connections of one component are disconnected; and

3) all connections of one port of one component are disconnected. In the flow graph segment the expression to be
evaluated refers to <conponent - expr essi on;> (see syntactical structure of the di sconnect

operation in clause 9.14).

ETSI

88

Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

segnent
<di sconnect - one- par - pai r >

<expr essi on>

di sconnect - one
(portld)

true
fal se
<disconnect-al | >
A
deci si on
true
fal se
<di sconnect - conp>
A

/'l The Expression shall eval uate
/1 to a conmponent reference. The
/1l result is pushed onto VALUE- STACK
if (Entity.VALUE-STACK.top() == “all conponent”) {
if ((Entity '= MIC) OR
(Entity == MIC && portld != “all port”)) {
*** DYNAM C- ERROR** *
}
el se {
Entity. VALUE- STACK. pop();
Entity. NEXT- CONTROL(true);
}
el se {
Entity. VALUE- STACK. push(portld);
Entity. NEXT- CONTROL(fal se) ;
}
RETURN;
if (Entity. VALUE-STAXK.top() == “all port”) {
Entity. VALUE- STACK. pop()
Entity. NEXT- CONTROL(true);
}
else {
Entity. NEXT- CONTROL(fal se);
}
RETURN;

<di sconnect -port>

v

v

Figure 64a: Flow graph segment <disconnect-one-par-pair>

ETSI

89

Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.14.2 Flow graph segment <disconnect-all>

The flow segment <di sconnect - al | > defines the disconnection of all components at all connected ports.

segnment

<di sconnect-al | >

di sconnect -al |

let { // local scope

var port := ALL- PORT- STATES.first();
var connection;

while (port !'= NULL) {
connection : = port. CONNECTI ONS. first();
whil e (connection !'= NULL) {
if (connection. REMOTE- ENTI TY == systen) {
connection : = NULL; /1 mapped port

el se {
port. CONNECTI ONS. del et e(connecti on);
connection := port. CONNECTI ONS. first();

}
port := ALL- PORT- STATES. next (port);

}
} // End of local scope

Entity. NEXT- CONTROL(true);
RETURN;

Figure 64b: Flow graph segment <disconnect-all>

ETSI

90 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.14.3 Flow graph segment <disconnect-comp>

The flow segment <di sconnect - conp> defines the disconnection of all ports of a specified component.

segnment <di sconnect - conp>

di sconnect - conp

let { // local scope
var conp := Entity. VALUE- STACK. top();
var connection;
var port := ALL- PORT- STATES.first();

while (port !'= NULL) {
connection : = port. CONNECTI ONS. first();
whil e (connection !'= NULL) {
if (connection. REMOTE- ENTI TY == systen) {
connection : = port. CONNECTI ONS. next (connecti on);

}
el se if (connection. REMOTE- ENTI TY == conp
or (port. OMER == conp) {
port . CONNECTI ONS. del et e(connecti on);
connection : = port. CONNECTI ONS. first();

el se {
connection := port. CONNECTI ONS. next (connecti on);
}
}

port := ALL- PORT- STATES. next (port);

}
Entity. VALUE- STACK. pop(); /1 clear value stack
} // End of local scope

Entity. NEXT- CONTROL(true);
RETURN;

Figure 64c: Flow graph segment <disconnect-comp>

ETSI

91

9.14.4 Flow graph segment <disconnect-port>

The flow segment <di sconnect - por t > defines the disconnection of a specified port.

Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

segment <di sconnect - port >

di sconnect - port

let { // local scope
var portld, rPortld;
var conp, r Conp;

var port;

portld := Entity.VALUE- STACK.top();
Entity. VALUE- STACK. pop();

conp : = Entity. VALUE- STACK. top();
Entity. VALUE- STAKK. pop() ;

port : = GET- PORT(conp, portld);

var connection
whi le (connection !'= NULL) {
if (connection. REMOTE- ENTI TY
*** DYNAM C- ERROR** *

}

el se {
rConp : =
rPortld :=
DEL- GON(conp, portld,
DEL - QON(r Conp,
connecti on

r Conp,
rPortld, conp,

;= port. CONNECTI ONS. first();
SYSTEM {
/1 port

connect i on. REMOTE- ENTI TY;
connect i on. REMOTE- PORT- NAME;
rPortld);

;= port. CONNECTI ONS. first();

is not a connected port

portld);

}

} /1 End of local scope
Entity. NEXT- CONTROL(true);

RETURN,

Figure 64d: Flow graph segment <disconnect-port>

9.14.5 Flow graph segment <disconnect-two-par-pairs>

The flow graph segment <disconnect-two-par-pairs> shown in figure 64e defines the execution of the di sconnect
operation with two parameter pairs which disconnects specific connections. In the flow graph segment the first
expression to be evaluated refers to <conmponent - expr essi on,> (see syntactical structure of the

di sconnect operation in clause 9.14) and the second expression to <conmponent - expr essi on,>, i.e. the
<conponent - expr essi on,> is on top of the value stack when the di sconnect -t wo node is executed.

ETSI

92

<expr essi on>

A

<expressi on>

di sconnect-two
(portldl,portld2)

}

segnent
<digsconnect-two- par - pairs> let { /'l begin of a I ocal scope
var portOne, portTwo; // voriables for ports
Y var conp2 := Entity.VALUE STAKK top();

Entity. VALUE- STACK. pop();

var conpl := Entity.VALUE STAK. top();
Entity. VALUE- STACK. pop();

if (compl = SYSTEM {

*** DYNAM C- ERROR * * /1 mapped port

el se {

port One : = conpl. portldl. GOMP- PORT- NAME;
}
if (comp2 = SYSTEM {

*** DYNAM C- ERROR * * /1 mapped port
el se {

port Two : = conp2. portl d2. GOVP- PORT- NAME;

}

CEL- CON(conpl, port One,
CEL- CON(conp2, port Two,
I/ end of local scope

conp2, portTwo);
conpl, portOne);

Entity. NEXT- CONTROL(t rue);
RETURN,

v

Figure 64e: Flow graph segment <disconnect-two-par-pairs>

9.15 Do-while statement

The syntactical structure of the do-whi | e statement is:

do <statenent - bl ock>
whi | e (<bool ean- expr essi on>)

The execution of a do-whi | e statement is defined by the flow graph segment <do- whi | e- st nt > shown in

figure 65.

segnment <do-whil e-stnt>

) 4

<st at enent - bl ock>

>

Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

/'l The expression shall evaluate to

<expressi on>

/1 a Bool ean val ue.

true

@D

if (Entity.VALUE- STACK top()) {
Entity. NEXT- CONTROL(true);

el se {
Entity. NEXT- CONTROL(f al se);

}
Enti ty. VALUE- STACK. pop();
RETURN;

v

Figure 65: Flow graph segment <do-while-stmt>

ETSI

93 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.16 Done component operation
9.16.0 General

The syntactical structure of the done component operation is:

<conponent - expr essi on>. done [-> <assi gnment Part >]

The done component operation checks whether a component is running or has stopped. Depending on whether a
checked component is running or has stopped the done operation decides how the flow of control continues. Using a
component reference identifies the component to be checked. The reference may be stored in a variable or be returned
by a function, i.e. it is an expression. For simplicity, the keywords "al | conmponent " and "any conponent " are
considered to be special expressions.

The optional <assi gnnent Part > allows the retrieval of the local verdict of the addressed component at the time of
its stopping. The assignment part identifies a variable of type verdicttype to which the retrieved verdict is assigned.

The flow graph segment <done- op> in figure 66 defines the execution of the done component operation.

ETSI

94 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

segnent <done-op>

'

/| The Expression shall eval uate
/1l to a conponent reference. The
/1 result is pushed ont o VALUE- STACK

<expression>

done- comrponent - op

fal se

true

<done- assi gnnent >

cl ean- val ue-stack

let { // local scope

var aliveN : = Entity.SNAP-ALI VE |ength();

var doneN := Entity. SNAP-DONE. T engt ;

var killedNr := Entity. SNAP- Kl LLED. I'engt h() ;

var nonWaitingN : = aliveNN — doneNr — kill edN;
/'l nunmber of alive entities which are executi ng a behaviour
/1 or neither have stopped and nor have ter m nat ed.

var doneEntity : = Entity. VALUE- STACK t op();

var doneVerdi ct := none; -

if (doneEntity == "all conponent') {
if (Entity !'= MQ {
*** DYNAM G ERROR*** [/ "all conponent' is not allowed

}

elseif (nonWaitingN == 1) { /1 MICis only active Entity
Entity. NEXT- CONTROL(t rue);
Entity. STATUS : = ACTI VE; // DONE is successful
Entity. VALUE- STACK. push(error);

}
else {
Entity. NEXT- CONTROL(f al se);
) }
elseif (doneEntity == "any conponent') {

if (Entity I'= MQ {
*** DYNAM G ERROR*** [/ 'any conponent' not al | owed

}

elseif (doneN >0) {
Entity. NEXT- CONTROL(t rue);
Entity.STATUS := ACTI VE; // DONE is successful
Entity. VALUE- STACK. push(error) ;

}
else {

Entity. NEXT- CONTROL(f al se);
}

}
else i f(Entity. SNAP-DONE menber ((doneEntity,-))) {
Entity. NEXT- CONTROL(t rue) ;
Entity.STATUS : = ACII VE; // DONE is successful
doneVerdict : =
Ent i ty. SNAP- DONE. r andom((doneEnti ty, -)). FI N- VERDI CT;
Entity. VALUE STACK. push(doneVerdi ct);

}

else {
Entity. NEXT- CONTROL(f al se);

} 1/ end of |ocal scope
RETURN;

/1 optional verdict

/'l assignnent

Entity. VALUE- STAKK. pop(); // renoval of doneVerdict
Entity. VALUE- STAXK. pop(); // rermoval of expression
Entity. NEXT- CONTROL(T rue) ;

RETURN;

Figure 66: Flow graph segment <done-op>

ETSI

95 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.16.1 Flow graph segment <done-assignment>

The flow graph segment <r ecei ve- assi gnment > in figure 66a defines the retrieval of information from received
messages and their assignment to variables.

segnent <done-assi gnment >

i f (Entity. VALUE-STACK top() ==error) {
*** DYNAM G ERROR*** [/ usage with any or al |l component

else {
f— Entity. VAR SET(assignnent Part, Entity. VALUE- STACK top())
/1 assuming that assignmentPart denotes a variable

}
Entity. NEXT- CONTROL(t rue);
RETURN;

done- assi gnnent
(assignment Part)

Figure 66a: Flow graph segment <receive-assignment>

9.17 Execute statement
9.17.0 General

The syntactical structure of the execut e statement is:

execut e(<t est Casel d>([<act-par,> .., <act-par >)]) [, <float-expression>])

The execut e statement describes the execution of a test case <t est Casel d> with the (optional) actual parameters
<act-par,>, ..., <act-par > Optionally the execute statement may be guarded by a duration provided in form

of an expression that evaluates to a f | oat . If within the specified duration the test case does not return a verdict, a
timeout exception occurs, the test case is stopped and an er r or verdict is returned.

NOTE: The operational semantics models the stopping of the test case by a stop of the MTC. In reality, other
mechanisms may be more appropriate.

If no timeout exception occurs, the MTC is created, the control instance (representing the control part of the TTCN-3
module) is blocked until the test case terminates, and for the further test case execution the flow of control is given to
the MTC. The flow of control is given back to the control instance when the MTC terminates.

The flow graph segment <execut e- st nt > in figure 67 defines the execution of an execut e statement.

segnent <execute-stnt> l

<execut e-w t hout -ti meout >
OoR /1 An execute statenent may or nmay
<execute-timeout> [T /1 not be guarded by a tineout

\4

Figure 67: Flow graph segment <execute-stmt>

ETSI

96

Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.17.1 Flow graph segment <execute-without-timeout>

The execution of a test case starts with the creation of the nt ¢. Then the mtc is started with the behaviour defined in the
test case definition. Afterwards, the module control waits until the test case terminates. The creation and the start of the

MTC can be described by using cr eat e and st art statements:

var nmtcType MYMIC : = ntcType. create;
M/MIC. st art (Test CaseNane(P1..Pn));

The flow graph segment <execut e- wi t hout - t i meout > in figure 68 defines the execution of an execut e
statement without the occurrence of a timeout exception by using the flow graph segments of the operations cr eat e

and the st art.

segment <execute-w thout-ti meout > i

<cr eat e- op>

init-test-case-state

<start - conponent - op>

/1 Creation of the MIC

MIC : = Entity. VALUE- STACK. top();
TC- VERDI CT : = none;
DONE : = NULL;

Entity. NEXT- CONTROL(true);
RETURN,

wait-for-termnation

/] Start of MIC

Entity. STATUS : = BLOCKED;

/1 MIC will set status to ACTIVE
/1 before it termnates
Entity. NEXT- CONTROL(true);
RETURN;

v

Figure 68: Flow graph segment <execute-without-timeout>

ETSI

97

Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.17.2 Flow graph segment <execute-timeout>

The flow graph segment <execut e-t i meout > in figure 69 defines the execution of an execut e statement that is
guarded by a timeout value. The flow graph segment also models the creation and start of the MTC by acr eat e and a
st art operation. In addition, TIMER-GUARD guards the termination.

segnent <execute -ti meout >

A

hl

<expr essi on>

/1l The Expression shall evaluate to a
/1 a float value. This value defines
/1 the duration of TIMER GUARD

set-tima@

A

<cr eat e- op>

y
init-test-@

A

<start - conponent - op>

\ 4

pr epar e- wai t

active-waiting

A 4

stop-or-timeout

true fal se

A

<dynam c-error>

/* Stop test case */

Entity. TI MER- GUARD. STATUS : = | DLE;

Entity. TI MER- GUARD. ACT- DURATI ON : =
Entity. VALUE- STACK. top() ;

Enti ty. VALUE- STACK. pop();

Entity. NEXT- CONTROL(true);
RETURN,

/1 Creation of the MIC

MIC : = Entity. VALUE- STACK. t op();
TC- VERDI CT : = none;
DONE : = NULL;

Entity. NEXT- CONTROL(true);
RETURN,

/1l Start of MIC

Entity. STATUS : = SNAPSHOT;

/1 MICwill set status to ACTIVE

/1 before it term nates

Entity. TI MER- GUARD. STATUS : = RUNNI NG,
Entity. NEXT- CONTROL(true);

RETURN;

if (Entity. STATUS == SNAPSHOT and
Entity. TI MER- GUARD. STATUS ! = TI NEQUT) {
/1 Control waits
Entity. NEXT- CONTROL(true);

else { // Test case term nated or
// timer guard tinmed out
Entity. NEXT- CONTROL(true);
}
RETURN,

if (Entity.STATUS != SNAPSHOT) {
// normal termnation
Entity. TI MER- GUARD. STATUS : = | DLE;
Entity. NEXT- CONTROL(tr ue);

else { // guarding timer timed out
Entity. NEXT- CONTROL(f al se);
}

RETURN,

Figure 69: Flow graph segment

!

ETSI

<execute-timeout>

98 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.17.3 Flow graph segment <dynamic-error>

In case of a dynamic error the flow graph segment <dynami c- er r or > is invoked by the test system. In addition, the
flow graph segment <dynami c- er r or > is also used for describing the behaviour of the test case stop operation
(clause 9.53a). All resources allocated to the test case are cleared and the error verdict is assigned to the test case.
Control is given to the statement in the control part following the execute statement in which the error occurred.

The flow graph segment <dynami c- err or > is invoked by the module control in case that a test case does not

terminate within the specified time limit (clause 9.17.2).

segnent <dynamic-error>

dynanic-error Y-

/'l Reset of configuration

ALL- ENTI TY- STATES : = NUJLL;
ALL- PORT- STATES := NULL;

MIC : = NULL;
TC-VERD CT := error;
DONE : = NULL;

KILLED : = NUL,;

state

/'l Update of the entity state of npdul e control

Control . TI MER GUARD. STATUS := | OLE;

Cont r ol . STATWS : = ACTI

/1 Push error verdict

VE;

(result of test case execution) onto

/'l the stack of modul e control

Cont r ol . VALUE STAXK. push(error);

Enti ty. NEXT-CONTROL(t rue) ;
RETURN;

Figure 69a: Flow graph segment <dynamic-error>

9.18 Expression
9.18.0 General

For the handling of expressions, the following four cases have to be distinguished:

a) the expression is a literal value (or a constant);

b) the expression is a variable;

c) the expression is an operator applied to one or more operands;

d) the expression is a function or operation call.

NOTE: The cases b), ¢) and d) may require lazy or fuzzy evaluation. This operational semantics does not model

lazy and fuzzy evalution. It assumes that the correct evaluation is done implicitly.

The syntactical structure of an expression is:

<lit-val > |

<var-val > | <func-op-call> |

<oper and- appl >

ETSI

where:

<lit-val >
<var -val >

<func-op-call >

99 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

denotes a literal value;
denotes a variable value;

denotes a function or operation call;

<oper at or - appl > denotes the application of arithmetic operators like +, -, not , etc.

The execution of an expression is defined by the flow graph segment <expr essi on> shown in figure 70.

9.18.1

segnment <expression> ¢
<lit-val ue>
OR /1 The four alternatives
<var-val ue> /1 describe the four
R /] possibilities for
<func-op-cal | > /] expressions as
R /1 described in this
<oper at or - appl > /1 section.
v

Figure 70: Flow graph segment <expression>

Flow graph segment <lit-value>

The flow graph segment <I i t - val ue> in figure 71 pushes a literal value onto the value stack of an entity.

segment <lit-val ue>

Entity. VALUE- STACK. push(val ue);

it-val ue .
Entity. NEXT- CONTROL(true);
(val ue) RETURN

\4

Figure 71: Flow graph segment <lit-value>

9.18.2 Flow graph segment <var-value>

The flow graph segment <var - val ue> in figure 72 pushes the value of a variable onto the value stack of an entity.

segment <var-val ue>

(var - nane)

Entity. VALUE- STACK. push(Entity. var-nane. VALUE) ;

var-value =~ | Enti ty. NEXT- CONTROL(tr ue);

RETURN;

\4

Figure 72: Flow graph segment <var-value>

ETSI

100 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.18.3 Flow graph segment <func-op-call>

The flow graph segment <f unc- op- cal | > in figure 73 refers to calls of functions and operations, which return a
value that is pushed onto the value stack of an entity. All these calls are considered to be expressions.

segnment <func-op-call> ¢

<activate-stnt> OR <create-op> OR
<function-call> OR <ntc-op> OR
<read-timer-op> OR <running-timer-op> OR
<r unni ng- conponent - op> OR
<sel f-op> OR <system op> OR
<verdi ct.get-op> OR <execute-stnt>

v

Figure 73: Flow graph segment <func-op-call>

9.18.4 Flow graph segment <operator-appl>

The flow graph representation in figure 74 directly refers to the assumption that reverse polish notation is used to
evaluate operator expressions. The operands of the operator are calculated and pushed onto the evaluation stack. For the
application of the operator, the operands are popped from the evaluation stack and the operator is applied. The result of
the operator application is finally pushed onto the evaluation stack. Both, the popping of operands and the pushing the
result are considered to be part of the operator application (Ent i t y. APPLY- OPERATOR(oper at or) statement in
figure 74), i.e. are not modelled by the operational semantics.

segment <oper at or - appl > i
/1 For an n-nary operator,
+ /1 n operands in form of
~~~~~~~~~~~~~~~~~~~~~~~~~ /] eval uat ed expressions have
/1 to be pushed onto the
<expressi on> /'l val ue stack

Entity. APPLY- OPERATOR( oper at or) ;

oper at or - appl Enti ty. NEXT- CONTROL(tr ue);
(operator) RETURN:

\ 4

Figure 74: Flow graph segment <operator-appl>

ETSI



101 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.19 Flow graph segment <finalize-component-init>

The flow graph segment <f i nal i ze- component - i ni t > is part of the flow graph representing the behaviour of a
component type definition. Its execution is defined in figure 75.

segment
<final i se-conmponent-init> v
finalise-conponent-init e
/1 The status of the father entity is restored. The identifier of the 'father’
/1 entity is deleted fromthe VALUE- STACK.
Entity. VALUE- STACK. t op(). STATUS : = Entity. VALUE- STACK. t op() . VALUE- STACK. t op();
Entity. VALUE- STACK. t op() . VALUE- STACK. pop();
Entity. VALUE- STACK. pop();
/1 A mark is pushed on the value stack, the entity goes into a blocking state,
/1 i.e.,waits for being started) and control is given back to the nodul e
/1 eval uation procedure
Entity. VALUE- STACK. push( MARK) ;
Entity. STATUS : = BLOCKED;
Entity. NEXT- CONTROL(true);
RETURN
v

Figure 75: Flow graph segment <finalize-component-init>

9.20 Flow graph segment <init-component-scope>

The flow graph segment <i ni t - component - scope> is part of the flow graph representing the behaviour of a
component type definition. Its execution is defined in figure 76.

segment <init-component - scope>

/'l New scopes for variables, tiners
/1 and ports are created

Entity. | N T- VAR SCOPE() ;

................. Entity. N T- TI MER- SCOPE();
Entity. | NI T- PORT- SCOPE() ;

i nit-conponent-scope

Entity. NEXT- CONTROL(true);
RETURN,

v

Figure 76: Flow graph segment <init-component-scope>

ETSI



102 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.20a Flow graph segment <init-scope-with-runs-on>

The flow graph segment <i ni t - scope-w t h- r uns- on> is part of the flow graph representing the behaviour of
function and altstep definitions. It creates new scopes for variables, timers and ports, which include the names and
values declared in the component type definition referred to in the r uns on-clause. The execution of the flow graph
segment is defined in figure 76a.

segnment <init-scope-wth-runs-on>

let { /1 local scope
var actVar Scope : = copy(Entity. DATA- STATE. first());
var act Ti mer Scope : = copy(Entity. TI MER- STATE. first());
var act PORTScope := copy(Entity. PORT-REF.first());

"""""" Entity. | N T- VAR SCOPE() ;

Entity. DATA- STATE. first (). add(act Var Scope) ;

Entity. NI T- TI NER- SCOPE() ;

Entity. DATA-TIMER first (). add(act Ti mer Scope);

Entity. | NI T- PORT- SCOPE() ;

Entity. PORT-REF. first().add(actPortScope)

Entity. VALUE- STACK. push( MARK) ;

}

Entity. NEXT- CONTROL(true);
RETURN,

Figure 76a: Flow graph segment <init-scope-with-runs-on>

9.20b Flow graph segment <init-scope-without-runs-on>

The flow graph segment <i ni t - scope-w t hout - r uns- on> is part of the flow graph representing the behaviour
of function and altstep definitions. It creates new empty scopes for variables, timers and ports. Functions and altsteps
without r uns on-clause do not know the names and values declared in the component type definition of the invoking
component. The execution of the flow graph segment is defined in figure 76b.

segnment <init-scope-w thout-runs-on>

Entity. | N T- VAR- SCOPE() ;
Entity. | N T- TI MER- SOOPE() ;
Entity. | NI T- PORT- SOOPE( ) ;

----------- Entity. VALUE- STACK. push( MARK) ;

Entity. NEXT- CONTROL(true);
RETURN;

v

Figure 76b: Flow graph segment <init-scope-without-runs-on>

9.21 Flow graph segment <parameter-handling>

The flow graph-segment <par amet er - handl i ng> is used in the beginning of flow graphs representing test cases,
altsteps and functions. It initializes a new scope and creates variables and timers for the handling of parameters. The
flow graph-segment <par amet er - handl i ng> assumes that the call record of the called test case, altstep or function
is the top of the value stack.

NOTE: Parameters may be declared to be lazy or fuzzy. This operational semantics does not model lazy and
fuzzy evalution. It assumes that the correct evaluation of such parameters is done internally.

ETSI



103 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

The execution of flow graph-segment <par anet er - handl i ng> is shown in figure 77.

segment
<par anet er - handl i ng> Entity. | NI T- CALL- RECORD( VALUE- STACK. top());

/| paraneters are initialized
Entity. VALUE- STACK. pop(); // renoval of call record
v Entity. VALUE- STACK. push(MARK) ; // for scope

Entity. NEXT- CONTROL(true);

paraneter-handling ).
RETURN,

v

Figure 77: Flow graph segment <parameter-handling>

9.22  Flow graph segment <statement-block>

The syntactical structure of a statement block is:

{ <statement > ..; <statement >}

A statement block is a scope unit. When entering a scope unit, new scopes for variables, timers and the value stack have
to be initialized. When leaving a scope unit, all variables, timers and stack values of this scope have to be destroyed.

NOTE 1: A Statement block can be embedded in another statement blocks or can occur as body of functions,
altsteps, test cases and module control, and within compound statements, e.g. al t,i f - el se or
do-whi | e.

NOTE 2: Receiving operations and altstep calls cannot appear in statement blocks, they are embedded in al t
statements or cal | operations.

NOTE 3: The operational semantics also handles operations and declarations like statements, i.e. they are allowed
in statement blocks.

NOTE 4: Some TTCN-3 functions, like e.g. Syst emor sel f, are considered to be expressions, which are not
useful as stand-alone statements in statement blocks. Their flow graph representations are not listed in
figure 78.

The flow graph segment <st at enment - bl ock> in figure 78 defines the execution of a statement block.

ETSI



104 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

segnment <st at ement - bl ock>

let { /1 local scope
var actVar Scope : = copy(Entity. DATA- STATE.first());
var act Ti mer Scope : = copy(Entity. TI MER-STATE.first());
Entity. | N T- VAR- SCOPE() ;
Entity. DATA- STATE. first (). add(act Var Scope) ;
Entity. NI T- TI MER- SCOPE() ;
Entity. DATA-TIMER first().add(act Ti mer Scope) ;
Entity. VALUE- STACK. push( MARK) ;

A 4

enter-scope-unit }
Entity. NEXT- CONTROL(true);
RETURN;

|| * ||
<constant-definition> OR /1 List of flow graph segnents
<timer-declaration> OR 11

representing defintions
<vari abl e-decl arati on> /'l and decl arati ons.

L]

<action-stnm> OR <activate-stnt> OR <alt-stnt>
OR <assi gnment-stm > OR <cal | -op> OR
<cl ear-port-op> OR <connect-op> OR <create-op>

OR <deactivate-stnmt> OR <di sconnect-op> OR /] List of flow graph segnents
<do-whi | e-stmt > OR <execute-stnt> OR <for-stmnt> /'l representing all possible
OR <function-call > OR <getverdict-op> OR /'l statenments and operations
<goto-stnt> OR <if-else-stnt> OR

<ki |l - conponent -op> OR <kill-exec-stm> OR
<l abel -stm > OR <l og-stnt> OR <map-op> OR
<rai se-op> OR <repeat-stnmt> OR <reply-op> OR
<return-stnt> OR <send-op> OR <setverdict-op>
OR <start-conponent-op> OR <start-port-op> OR
<start-timer-op> OR <stop-conmponent-op> OR
<st op- exec-stnmt > OR <stop-port-op> OR

<stop-tiner-op> OR <unmap-op> OR <whi |l e-stnt > Entity. DEL- VAR- SCOPE() ;
OR <st at enent - bl ock> Entity. DEL- TI MER- SCOPE() ;
Entity. VALUE- STACK. cl ear-unti | (MARK);
v Entity. NEXT- CONTROL(t rue);
RETURN,

exit-scope-unit )

v

Figure 78: Flow graph segment <statement-block>

9.23 For statement

The syntactical structure of the f or -st at enent is:

for (<assignment>|<vari abl e-decl arati on>, <bool ean_expressi on>, <assi gnnment>) <statenent-bl ock>

The initialization of the index variable and the corresponding manipulation of the index variable are considered to be
assignments to the index variable. It is also allowed to declare and initialize the index variable directly in the f or
statement. The <bool ean- expr essi on> describes the termination criterion of the loop specified by the

f or -st at ement and the <st at enment - bl ock> describes the loop body.

ETSI



105 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

The execution of the f or statement is defined by the flow graph segment <f or - st nt > shown in figure 79. The initial
<assi gnnent > or alternative variable declaration with assignment <var - decl arati on-i ni t >

(see clause 9.57.1) describes the initialization of the index variable. The <assi gnment > in the t r ue branch of the
deci si on node describes the manipulation of the index variable. The f or statement is a scope unit for a newly
declared index variable, this is modelled by means of the nodes ent er - var - scope and exi t - var - scope.

segment <for-stnt>

h 4 Entity. | N T- VAR- SOOPE() ;
Entity. VALUE- STACK. push( MARK) ;

enter-var-scope Ve
Entity. NEXT- CONTROL(true);

RETURN,
4 /1 The index variable is only
<assi gnment > /1 initialised (<assignnent>)
OR /1 or declared and initialised
<var-decl aration-init> /1 (<var-declaration-init>)

v

<expressi on>

if (Entity.VALUE- STACK.top()== true) {

Entity. NEXT- CONTROL(true);
y el se {
Entity. NEXT- CONTROL(f al se);
decision = N }
true Entity. VALUE- STACK. pop():
RETURN,
Y fal se
<st at ement - bl ock>
A Entity. DEL- VAR- SCOPE() ;
. Entity. VALUE- STACK. cl ear -unti | (MARK);
<assi gnnent >
v Entity. NEXT- CONTROL(t rue);
RETURN;
exit-var-scope Y

v

Figure 79: Flow graph segment <for-stmt>

9.24 Function call
9.24.0 General

The syntactical structure of a function call is:

<function-name>([ <act - par-desc,> ..., <act-par-desc >])

The <function-name> denotes to the name of a function and <act - par - descr >, ..., <act - par-descr >
describe the description of the actual parameter values of the function call.

ETSI



106 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

NOTE 1: A function call and an altstep call are handled in the same manner. Therefore, the altstep call
(see clause 9.4) refers to this clause.

It is assumed that for each <act - par - desc > the corresponding formal parameter identifier <f - par - I d,> is

known, i.e. the syntactical structure above can be extended to:

<functi on-name>((<f-par-1d,> <act-par-desc,>), .., (<f-par-1d >, <act-par-desc >))

The flow graph segment <function-call> in figure 80 defines the execution of a function call. The execution is
structured into three steps. In the first step a call record for the function <f unct i on- name> is created. In the second
step the values of the actual parameter are calculated and assigned to the corresponding field in the call record. In the
third step, two situations have to be distinguished: the called function is a user-defined function

(<user - def - func- cal | >), i.e. there exists a flow graph representation for the function, or the called function is a
pre-defined or external function (<pr edef - ext - f unc- cal | >). In case of a user-defined function call, the control is
given to the called function. In case of a pre-defined or external function, it is assumed that the call record can be used
to execute the function in one step. The correct handling of reference parameters and return value (has to be pushed
onto the value stack) is in the responsibility of the called function, i.e. is outside the scope of this operational semantics.

NOTE 2: Ifthe function call models an altstep call, only the <user - def - f unc- cal | > branch will be chosen,
because there exists a flow graph representation of the called altstep.

NOTE 3: The <f uncti on cal | > segment is also used to describe the start of the MTC in an execut e
statement. In this case, a call record for the test case is constructed and only the
<user - def - f unc- cal | > branch will be chosen.

segnent
<function call>

Entity. VALUE- STACK. push( NEW CALL- RECORD(f uncti on- nane));
Entity. NEXT- CONTROL(true);

construct-call-record

(function-name) )7 RETURN;
* /'l For each pair (<f-par-ldi> <act-paraneter-desc;>) the
/1 value of <act-paraneter-desc; is cal culated and
.. /] assigned to the corresponding field <f-par-1d;>
<val ue- par-cal cul ati on> // in the call record. The call record is assunmed to be

/1 the top elenent in the val ue stack.

v

* |
/'l Retrieves the locations for variables and tiners
.| /] used as reference paraneters and decl ared nanes of
<ref-var-par-calc> CR // port paraneters
<ref-timer-par-calc> OR

<ref-port-par-cal c>

A 4
<pr edef - ext -func-cal | >
(O S S /1 The called function nay either be an external or
<user - def -func-cal | > /1 predefined function, or a user-defined function.
v

Figure 80: Flow graph segment <function-call>

ETSI



107 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.24.1 Flow graph segment <value-par-calculation>

The flow graph-segment <val ue- par - cal cul ati on> is used to calculate actual parameter values and to assign
them to the corresponding fields in call records for functions, altsteps and test cases.

It is assumed that a call record is the top element of the value stack and that a pair of:

(<f-par-1d;> <act-paraneter-desc,;>)

has to be handled. <act - par anet er - desc; > that has to be evaluated and <f - par - | d; > is the identifier of a

formal parameter that has a corresponding field in the call record in the value stack.

The execution of flow graph-segment <val ue- par - cal cul ati on> is shown in figure 81.

segment
<val ue- par - cal cul ati on>

/1 The expression represents <act-paraneter-desc;>
/'l The result of the evaluation of the expression
/1 is pushed onto the val ue stack.

<expr essi on>

let { // scope unit for parVal
var parVal = Entity. VALUE- STACK. top();
/1 parVal is a local variable that
/] stores the value of the expression

par anet er - assi gnment
(f-par-1d)

Entity. VALUE- STACK. pop() ;
/'l Rermoval of expression val ue.
I/l Afterwards the call record is
/1 again top of the value stack

Entity. VALUE- STACK. top().f-par-1d := parVal;
/1 Val ue assignnent to call record
} // end of scope for parVal

Entity. NEXT- CONTROL(true);
RETURN,

\ 4

Figure 81: Flow graph segment <value-par-calculation>

9.24.2 Flow graph segment <ref-par-var-calc>

The flow graph-segment <r ef - par - var - cal ¢> is used to retrieve the locations of variables used as actual
reference parameters and to assign them to the corresponding fields in call records for functions, altsteps and test cases.

It is assumed that a call record is the top element of the value stack and that a pair of:

(<f-par-1d;> <act-par;>)

has to be handled. <act-par;> is the actual paraneter for which the location has to be retrieved and
<f - par - | d; > is the identifier of a formal parameter that has a corresponding field in the call record in the value

stack.

The execution of flow graph-segment <r ef - par - var - cal ¢> is shown in figure 82.

ETSI



108 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

segment
<ref - par-var-cal c>

// Value assignnent to call record
Entity. VALUE- STACK. top().f-par-1d : =
Entity. GET- VAR- LOCATI ON(act - par) ;

par anet er - assi gnment
(f-par-1d, act-par)

Entity. NEXT- CONTROL(true);
RETURN,

Figure 82: Flow graph segment <ref-par-var-calc>

9.24.3 Flow graph segment <ref-par-timer-calc>

The flow graph-segment <r ef - par -t i mer - cal ¢> is used to retrieve the locations of timers used as actual
reference parameters and to assign them to the corresponding fields in call records for functions, altsteps and test cases.

It is assumed that a call record is the top element of the value stack and that a pair of:

(<f-par-1d;> <act-par;>)

has to be handled. <act-par;> is the actual parameter for which the location has to be retrieved and
<f - par - | d; > is the identifier of a formal parameter that has a corresponding field in the call record in the value
stack.

The execution of flow graph-segment <r ef - par - t i mer - cal ¢> is shown in figure 83.

segment
<ref-par-tiner-calc>

/1 Val ue assignnent to call record
v Entity. VALUE- STACK. top().f-par-Id : =
Entity. GET- TI MER- LOCATI ON( act - par) ;

par anet er - assi gnnment
(f-par-1d, act-par)

Entity. NEXT- CONTROL(tr ue);
RETURN,

Figure 83: Flow graph segment <ref-par-timer-calc>

9.24.3a Flow graph segment <ref-par-port-calc>

The flow graph-segment <r ef - par - port - cal ¢> is used to retrieve the names of ports used as in the component
type definitions for the declaration of the port and to assign them to the corresponding fields in call records for
functions and altsteps.

It is assumed that a call record is the top element of the value stack and that a pair of:

(<f-par-1d;> <act-par;>)

has to be handled. <act - par; > is the actual parameter for which the location has to be retrieved and
<f - par - | d; > is the identifier of a formal parameter that has a corresponding field in the call record in the value
stack.

The execution of flow graph-segment <r ef - par - t i mer - cal ¢> is shown in figure 83a.

ETSI



109 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

segment
<ref - par-port-cal c>

par anet er - assi gnment
(f-par-1d, act-par)

/1 Val ue assignnent to call record
Entity. VALUE- STACK. top().f-par-1d : =
Entity. act - par. COVP- PORT- NAME;

Entity. NEXT- CONTROL(true);
RETURN,

Figure 83a: Flow graph segment <ref-par-port-calc>

9.24.4 Flow graph segment <user-def-func-call>

The flow graph-segment <user - def - f unc- cal | > (figure 84) describes the transfer of control to a called

user-defined function.

segnment <user-def-func-call>

user - def - func-cal |
(function-nane)

/] Storage of return address

Entity. NEXT- CONTROL(true);

/1 Control is transferred to called function

Entity. CONTROL- STACK. push( GET- FLOW GRAPH( f unct i on- nane) ) ;

RETURN,

Figure 84: Flow graph segment <user-def-func-call>

9.24.5 Flow graph segment <predef-ext-func-call>

The flow graph-segment <pr edef - ext - f unc- cal | > (figure 85) describes the call of a pre-defined or external

function.

segnment <predef-ext-func-call>

<pr edef - ext -func-cal | >
(function-nane)

let { // scope for argument variable
var argunent := Entity.VALUE- STACK top();
Entity. VALUE- STACK pop(); // removal of call record
/1 Application of function-nane
function-nane(argunent);
} // end of scope for argunent
Entity. NEXT- CONTROL(true);
RETURN;

Figure 85: Flow graph segment <predef-ext-func-call>

ETSI




110 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.25  Getcall operation

The syntactical structure of the getcall operation is:

<portld>. getcall (<matchingSpec>) [from <conponent_expression>] -> [<assignnentPart>]

Apart from the get cal | keyword this syntactical structure is identical to the syntactical structure of the r ecei ve
operation. Therefore, the operational semantics handles the get cal | operation in the same manner as the r ecei ve
operation. This is also shown in the flow graph segment <get cal | - op> (see figure 86), which defines the execution
ofaget cal | operation. The figure refers to flow graph segments related to the r ecei ve operation (see clause 9.37).

I
segment <getcal | - op> l

<recei ve-wi t h- sender >
R /1 Distinction due to the optional
<recei ve-wi t hout-sender> [ /1 fromclause

\ 4

Figure 86: Flow graph segment <getcall-op>

9.26  Getreply operation

The syntactical structure of the get r epl y operation is:

<portld>. getreply (<matchingSpec>) [from <conponent-expression>] [-> <assignmentPart>]

Apart from the get r epl y keyword this syntactical structure is identical to the syntactical structure of the r ecei ve
operation. Therefore, the operational semantics handles the get r epl y operation in the same manner as the r ecei ve
operation. This is also shown in the flow graph segment <get r epl y- op> (see figure 87), which defines the
execution of a get r epl y operation. The figure refers to flow graph segments related to the r ecei ve operation

(see clause 9.37).

|
segnment <getreply-op> l

<recei ve-wi t h- sender >
OoR /1 Distinction due to the optional
<recei ve-wi thout-sender> [ /1 fromclause

v

Figure 87: Flow graph segment <getreply-op>

9.27  Getverdict operation

The syntactical structure of the get ver di ct operation is:
getverdi ct

The flow graph segment <get ver di ct - op> in figure 88 defines the execution of the get ver di ct operation.

ETSI



111 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

segment <getverdi ct - op>
/1 E-VERDICT is pushed onto VALUE- STACK
Entity. VALUE- STACK. push(Entity. E- VERD CT);
getverdict-op V) Entity. NEXT- CONTROL(t rue);

RETURN,

\4

Figure 88: Flow graph segment <getverdict-op>

90.28 Goto statement

The syntactical structure of the got 0 statement is:

goto <l abel | d>

The flow graph segment <got 0- St nt > in figure 89 defines the execution of the got 0 statement.

segnment <got o-stnt>

/1 ‘nop’ neans ‘no operation’
Entity. NEXT- CONTROL(true);
nop Ve RETURN:

<l abel | d>

Figure 89: Flow graph segment <goto-stmt>

NOTE: The <labelld> parameter of the got 0 statement indicates the transfer of control to the place at which a
label <l abel | d> is defined (see also clause 9.30).

9.28a Halt port operation

The syntactical structure of the hal t port operation is:

<portld>. halt

The flow graph segment <hal t - port - op> in figure 89a defines the execution of the hal t port operation.

ETSI



112 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

segnment <hal t-port-op>
let { // Begin of |ocal scope
var portRef := NJLL
\ var portState := NULL;
if (portld == “all port”) {
halt-port-op  Jen portState := ALL- PORT- STATES. first();
(portld) while (portState '= NULL) {
if (portState. OMER == Entity) {
portState. STATUS : = HALTED,;
portState. enqueue( HALT- MARKER) ;
}
port St ate : =
ALL-PORT- STATES. next ( port State);
}
el se {
port Ref := Entity. portl d COWP-PCRT- NAME;
GET- PORT(Entity, portRef). STATUS : = HALTED;
GET- PORT(Entity, portRef).enqueue(HALT- MARKER) ;
}
} // End of socpe
Enti ty. NEXT- CONTROL(tr ue) ;
RETURN,;
v

Figure 89a: Flow graph segment <halt-port-op>
NOTE: The HALT- MARKER that is put by a hal t operation into the port queue is removed by the SNAP-PORTS

function (see clause 8.3.3.2) when the marker is reached, i.e. all messages preceding the marker have
been processed. The SNAP-PORTS function is called when taking a snapshot.

9.29 If-else statement

The syntactical structure of the i f -el se statement is:

i f (<bool ean-expression>) <statenent-bl ock,>
[el se <statement-bl ock,>]

The else part of the i f -el se statement is optional.

The flow graph segment <i f - el se- st nt > in figure 90 defines the execution of the i f - el se statement.

ETSI



113 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

segnment <if-wth-el se-branch>

A

<expr essi on>

if (Entity.VALUE- STACK top()) {
Entity. NEXT- CONTROL(true);

el se {
Entity. NEXT- CONTROL(f al se);

A
o }
0 decision N . Enti ty. VALUE- STACK. pop() ;
RETURN;

true fal se
Y

<st at enent - bl ock>

* (1) ||
/1 Optional else part

<stat ement - bl ock>  H.......

;

Figure 90: Flow graph segment <if-else-stmt>

9.29a Kill component operation
9.29a.0 General

The syntactical structure of the Ki | | component statement is:
<conponent - expr essi on>. ki | |

The ki | | component operation stops the specified component and removes it from the test system. All test
components will be stopped and removed from the test system, i.e. the test case terminates, if the MTC is killed
(e.g.nt c. ki l'I')orkills itself (e.g. sel f. ki | |'). The MTC may kill all parallel test components by using the al |
keyword, i.e. al | conponent kill .

A component to be killed is identified by a component reference provided as expression, e.g. a value or value returning
function. For simplicity, the keyword "al | component " is considered to be special values of
<conponent - expr essi on>. The operations Nt ¢ and sel f are evaluated according to clauses 9.33 and 9.43.

ETSI



114 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

The flow graph segment <ki | | - conponent - op> in figure 90a defines the execution of the ki | | component
operation.
segment <kill -conponent - op>

\ 4

/'l The Expression shall evaluate

<expressi on>

// to a conponent reference. The
----- /1 result is pushed onto VALUE- STACK

A 4
deci sion
true
fal se
<kill-all-conmp>
v

deci sion

true

<kill-nmtc>

............ el se {

........... Entity. NEXT- CONTROL(t rue);

if (Entity.VALUE- STACK.top() == "all component') ({
Entity. VALUE- STACK. pop(); // clean value stack
if (Entity !'= MIQ) {

***DYNAM C- ERROR*** [/ "all' not all owed

Entity. NEXT- CONTROL(true);
{

el se {
Entity. NEXT- CONTRCOL( f al se)

}
RETURN;

if (Entity.VALUE-STACK. top() == MIQ) {
Entity. VALUE- STACK pop(); // clean val ue stack

el se {
Entity. NEXT- CONTROL(f al se);

}
RETURN;

fal se

prepare-Kki |

i f (ALL- ENTI TY- STATES. menber (Ent i ty. VALUE- STACK. top())) {

el se {

Entity. NEXT- CONTROL(f al se)
true }
el se {
<ki || - conponent > /1 conponent id has not been allocated
*** DYNAM C- ERROR* * *
{
}
RETURN,

Entity. NEXT- CONTRCL(true)

if (KILLED. menber (Entity. VALUE- STACK. top())){
/1 NULL operation, conponent already terninated
Entity. VALUE- STACK pop(); // clean val ue stack

Figure 90a: Flow graph segment <kill-component-op>

ETSI



115 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.29a.1 Flow graph segment <kill-mtc>

The <ki | | - nt ¢> flow graph segment in figure 90b describes the killing of the MTC. The effect is that the test case
terminates, i.e. the final verdict is calculated and pushed onto the value stack of module control, all resources are
released, the KILLED and DONE lists of the module state are emptied and all test components including the MTC are
removed from the test system.

segnent <kill-ntc>

kill-ntc Y}

let { // local scope for variables

var myEntity : = ALL- ENTI TY- STATES. first();

/1 Update test case verdict and del eti on of conponents
while (nyEntity !'= NULL) {
if (nyEntitiy.E-VERDICT == fail or TC-VERDICT == fail) {
TC-VERDICT : = fail;

}
el se {
if (nyEntity.E-VERDICT = inconc or TC-VERDICT = inconc) {
TC- VERDI CT : = i nconc;
el se {
if (nyEntity. E-VERDICT == pass or TC-VERDI CT == pass) {
TG VERD CT := pass;
}
}

nyEntity : = ALL- ENTI TY- STATES. next (nyEntity);
}

/'l TC-VERDICT is the result of the execute operation
CONTROL. VALUE- STAKK. push( TC-VERD CT) ;

/1 Update of test case reference paraneters
UPDATE- REMOTE- LOCATI ONS( MTC, CONTRQOL);

/'l Del etion of test conponents, release of resources, clearing lists
ALL- ENTITY- STATES : = NUWL; // Deletion of Entity states
ALL- PORT- STATES : = NULL;

DONE : = NULL;

KILLED := NULL;

TC-VERDICT : = none;

MIC : = NULL; /1 Deletion of the last reference to the MIC

CONTROL. STATWS : = ACTI VE; // Control continues
} /1 End of local scope
RETURN,;

Figure 90b: Flow graph segment <kill-mtc-op>

ETSI



116

Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.29a.2 Flow graph segment <kill-component>

The <ki | | - conponent > flow graph segment in figure 90c describes the stopping of a parallel test component

(i.e. not the MTC or module control) and its removal from the test system. The effect is that the test case verdict
TC-VERDICT and the lists of stopped and killed test components (DONE, and KILLED) are updated and that the
component is deleted from the module state. The <ki | | - conponent > flow graph assumes that the identifier of the

component to be stopped is on top of the value stack of the component that executes the segment.

segnent <kill -conponent >

kil | -component

let { // local
var nyEntity :=

for test continuation,

(Entity !'= nyEntity()) {
Entity. VALUE- STACK. pop();
Entity. NEXT- CONTROL(T rue);

11
if

}

/1 Updat e test case verdi ct
if (nyEntitiy.E VERD CT == fail
TG VERDICT : = fail;

}

else {
if (nyEntity. EEVERD CT ==

TG VERD CT : = Inconc;
else {
TG VERD CT : = pass;

}

}

/1 Deletion of test component

} // End of I ocal
RETURN;

scope

scope for variable nmyEnti
Entity. VALUE- STACK t

if kill

ty
top();

i s execut ed by anot her component

/'l clean value stack

or TGCVERD CT == fail) {

inconc or TC-VERDICT == inconc) {

if (nyEntity. EEVERD CT == pass or TG VERD CT == pass) ({

DONE. append((nyEntity, E-VERD CT)); /| Updat e of DONE
KI'LLED. append((nmyEntity, E-VERD CT)); /' Wdat e of KILLED
DEL-ENTT TY(nyEntity); /] Deletion of entity

Figure 90c: Flow graph segment <kill-component>

ETSI




117 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.29a.3 Flow graph segment <kill-all-comp>

The <ki I | - al | - conp> flow graph segment in figure 90d describes the termination of all parallel test components of
a test case.
|
segnent <kill -al |- conp>

kill-all-conp

let { // local scope for variable myEntity
var nyEntity := ALL-ENTITY- STATES. next (MIQ ;

/1 Updat e test case verdi ct

while (nyEntity !'= NULL) {
if (nyEntitiy.EEVERDCT == fail or TG VERDOCT == fail) {

TG VERDI CT : = fail,

}
else {
if (nyEntity. E-VERD CT == inconc or TC-VERDICT == inconc) {
TG VERD CI : = Inconc;
}
else {
if (nyEntity. E-VERD CT == pass or TG VERD CT == pass) {
TG VERD CT : = pass;
}

}
nyEnti ty := ALL- ENTI TY- STATES. next (nyEntity);

}

/1 Deletion of test conponents
nyEnti ty := ALL- ENTI TY- STATES. next ( MIC) ;
while (myEntity T= NULL) { _

DONE. append((nyEntity, TC-VERDICT)); /1 Update of DONE
KILLED. append(nyEntity. TG VERDCT)); /1 Uddate of K LLED
DEL-ENTI TY( nyEntity); /1l Deletion of entity

myEntity := ALL- ENTITY- STATES. next (MIC); // Next conponent to del ete

} // End of | ocal scope

Entity. NEXT- CONTROL(t rue) ;
RETURN:

Figure 90d: Flow graph segment <stop-all-comp>

9.29b Kill execution statement
9.29b.0 General

The syntactical structure of the ki | | execution statement is:
kil'l
The effect of the ki | | execution statement depends on the entity that executes the Ki | | execution statement:
a) Ifkill is performed by the module control, the test campaign ends, i.e. all test components and the module

control disappear from the module state.

b) Ifthekil | isexecuted by the MTC, all parallel test components and the MTC stop execution. The global test
case verdict is updated and pushed onto the value stack of the module control. Finally, control is given back to
the module control and the MTC terminates.

ETSI



118 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

c) Iftheki || is executed by a test component, the global test case verdict TC-VERDICT and the global DONE
and KILLED lists are updated. Then the component disappears from the module.

The flow graph segment <kill-exec-stmt> in figure 90e describes the execution of the kill statement.

segnment <kill-exec-stnt>
A if (Entity == CONTROL {
Entity.NEXT-CONTROL(true);
decision  }..._...._ ... -
el se {
true Entity.NEXT-CONTROL(fal se);
fal se }
RETURN
<kill-control>

if (Entity == MIQ) {
Entity.NEXT-CONTROL(true);

el se {
Entity.VALUE STACK. push(Entity);
Entity.NEXT-CONTROL(fal se);

}
decision V... RETURN

true fal se

<ki Il -nmc> <ki Il - conponent >

Figure 90e: Flow graph segment <kill-exec-stmt>

9.29b.1 Flow graph segment <kill-control>

The <ki | | - cont r ol > flow graph segment in figure 90f describes the stopping of module control. The effect is that
CONTROL is set to NULL, i.e. the termination condition of the module evaluation procedure (see clause 8.6) is fulfilled.

segnent <kill-control >

\

CONTROL : = NULL;
kill-control  }..... RETURN;

v

Figure 90f: Flow graph segment <kill-control>

ETSI



119 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.29c¢ Killed component operation

The syntactical structure of the Ki | | ed component operation is:

<conponent - expressi on>. kil |l ed [-> <assi gnnment Part >]

The Ki | | ed component operation checks whether a component is alive or has been removed from the test system.
Depending on whether a checked component is alive or has been removed from the test system, the Ki | | ed operation
decides how the flow of control continues. Using a component reference identifies the component to be checked. The
reference may be stored in a variable or be returned by a function, i.e. it is an expression. For simplicity, the keywords
"al' | conponent " and "any conponent " are considered to be special expressions.

The optional <assi gnnent Part > allows the retrieval of the local verdict of the addressed component at the time
when the component was killed. The assignment part identifies a variable of type verdicttype to which the retrieved
verdict is assigned.

The flow graph segment <ki | | ed- op> in figure 90g defines the execution of the ki | | ed component operation.

ETSI



120 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

segnent <ki || ed- op>

'

/| The Expression shall eval uate
/1l to a conponent reference. The

/1 result is pushed ont o VALUE- STACK

<expression>

kil |l ed-conponent -op

fal

se

true

<done- assi gnnent >

cl ean- val ue-stack

let { // local scope
var killedEntity :=Entity. VALUE- STAXK.top();
var kill edVerdict := none; _

if (killedEntity =="all conponent') {
if (Entity I'= MIQ {
*** DYNAM G ERROR*** // "all conponent' is not allowed

}else if (Entity. SNAP-ALIVE lenght() == 1) { // MICis alive
Entity. NEXT- CONTROL(t r ue)
Entity.STATUS := ACTI VE; // K LLED is successful
Entity. VALUE- STACK. push(error);

}
else {
Entity. NEXT- CONTROL(f al se);
) }
elseif (killedEntity == "any component') {

if (Entity !'= MO {
*** DYNAM G ERROR*** // 'any conponent' not al | owed

izlse if (Entity. SNAP-KI LLED length() > 0) {
Entity. NEXT-CONTROL(t rue);
Entity. STATUS := ACTI VE; // K LLED is successful
Entity. VALUE- STACK. push(error);

}
else {

Entity. NEXT- CONTROL(f al se);
}

}

else i f(Entity. SNAP-KILLED menber ((kil | edEntity,-))) {
Entity. NEXT- CONTROL(t rue);
Entity.STATUS := ACTI VE; // K LLED is successful

kil ledVerdict :=
Entity. SNAP-kill ed.random((kil |l edEntity, -)).FIN VERD CT;
Entity. VALUE- STACK. pus ill edVerdict);

else {
Entity. NEXT- CONTROL(f al se);

} 1/ end of |ocal scope
RETURN;

/1 optional verdict

/'l assignnent

Entity. VALUE- STAKK. pop(); // renoval of killedVerdict
Entity. VALUE- STAXK. pop(); // rermoval of expression
Entity. NEXT- CONTROL(T rue) ;

RETURN;

Figure 90g: Flow graph segment <killed-op>

ETSI




121 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.30 Label statement

The syntactical structure of the | abel statement is:

| abel <l abel | d>
The flow graph segment <| abel - st nt > in figure 91 defines the execution of the | abel statement.

NOTE: The <I abel | d> parameter of the label statement indicates the possibility that a label can be the target
for a jump by means of a got 0 statement (see also clause 9.28).

segnent <l abel -stnt >

<l abel | d> »‘

/1 ‘nop’ neans ‘no operation’
Entity. NEXT- CONTROL(tr ue);
nop Y RETURN,

v

Figure 91: Flow graph segment <label-stmt>

9.31 Log statement

The syntactical structure of the | 0g statement is:
I og (<informal-description>)
The flow graph segment <I 0g- st nt > in figure 92 defines the execution of the | 0g statement.

NOTE: The<informal descri ption> parameter of the | 0g statement has no meaning for the operational
semantics and is therefore not represented in the flow graph segment.

segment <l og-stnt>

/1 inscription ‘nop’ neans ‘no operation’
Entity. NEXT- CONTROL(true);
[910] < T W RETURN;

v

Figure 92: Flow graph segment <log-stmt>

ETSI



122 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.32  Map operation

The syntactical structure of the map operation is:

map( <conponent - expressi on>: <port|dl>, system <portl|d2>)

The identifiers <por t | d1> and <port | d2> are considered to be port identifiers of the corresponding test component
and test system interface. The component to which the <portld1> belongs is referenced by means of the component
reference <conponent - expr essi on>. The reference may be stored in variables or is returned by a function, i.e. it
is an expression, which evaluates to a component reference. The value stack is used for storing the component
reference.

NOTE: The map operation does not care whether the Sy st em<portld> statement appears as first or as second
parameter. For simplicity, it is assumed that it is always the second parameter.

The execution of the map operation is defined by the flow graph segment <map- op> shown in figure 93.

segnent <map- op>
let { /'l begin of a local scope
v var portRef;
var conpl := Entity. VALUE- STACK top();
Entity. VALUE- STACK. pop();
if (conmpl == Entity) {
portRef := Entity. portldl. COWP- PORT- NAME;

<expressi on>

A 4

el se {
nmap- op port Ref := portldl;
(portldl, portld2) e }
ADD- CO\( conpl, portRef, system portld2);
} /1 end of |ocal scope

Entity. NEXT- CONTROL(true);
RETURN;

Figure 93: Flow graph segment <map-op>

9.33  Mtc operation

The syntactical structure of the nt ¢ operation is:

nc

The flow graph segment <nt c- op> in figure 94 defines the execution of the nt ¢ operation.

segnment <ntc-op>

Entity. VALUE- STACK. push(MIC);
MC-0P o] Entity. NEXT- CONTROL(true);
RETURN,

Figure 94: Flow graph segment <mtc-op>

ETSI



123 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.34 Port declaration

The syntactical structure of a port declaration is:

<port Type> <port Nanme>

Port declarations can be found in component type definitions. The effect of a port declaration is the creation of a new
port when a new component of the corresponding type is created. Furthermore, a port reference is created in the actual
scope of the test component. In the newly created port reference, the values PORT-NAME and COMP-PORT-NAME are
equal. The flow graph segment <por t - decl ar at i on> in figure 95 defines the execution of a port declaration.

segnment <port-decl arati on>

/1 A new port state and a port reference
/] are created

port-decl aration )
(portNane) ) ALL- PORT- STATES. append( NEW PORT(Entity, portNane);

Entity.| N T- PORT(port Nane, port Nane);

Entity. NEXT- CONTROL(true);
RETURN,

v

Figure 95: Flow graph segment <port-declaration>

9.35 Raise operation
9.35.0 General

The syntactical structure of the r ai Se operation is:

<portld>.rai se (<exceptSpec>) [to < receiver-spec>]

The optional <r ecei ver - spec> inthet 0 clause refers to the receivers of the exception. In case of a one-to one
communication, the <r ecei ver - spec> addresses a single entity (including the SUT or an entity within the SUT). In
case of multicast or broadcast communication, the <r ecei ver - spec> specifies a set or all test components
connected via the specified port with the calling component.

The flow graph segment <r ai se- op> in figure 96 defines the execution of a r ai se operation.

segnment <rai se-op>
A 4
<rai se-wi t h-one-receiver-op> OR /1 A raise operation nmay adress one,
<rai se-wi th-nmul tipl e-receivers-op> OR /1 multiple (nulticast and broadcast)
<rai se-wi t hout - recei ver - op> /] or no receiver entities.
v

Figure 96: Flow graph segment <raise-op>

ETSI



124

9.35.1

Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

Flow graph segment <raise-with-one-receiver-op>

The flow graph segment <r ai se-wi t h- one-r ecei ver - op> in figure 97 defines the execution ofar ai se

operation where the receiver is specified in form of an expression.

segment <raise-w th-one-receiver-op>

/1 The expression shall
/! to a conponent
/] address val ue.

<expr essi on>

ref erence or

eval uat e

rai se-with-one-receiver-op
(portld, exceptSpec)

let {
var receiver := Entity. VALUE- STACK. top();
var portRef := Entity. portld. COVP- PORT- NANE;
var renotePort := GET- REMOTE- PORT(Entity,

if (renotePort NULL) {

*** DYNAM C- ERROR* * *;
if (remotePort ==
/1l Port is

SYSTEM {

else { // sending of exception

/1 Renpote port cannot be found

mapped onto a port of the test system
Il reception of the reply by the SUT is outside
/1 the scope of the operational

renot ePort. enqueue( CONSTRUCT- | TEM Entity,

portref, receiver);

semanti cs

rai se, exceptSpec));

} // end of scope of
Entity. VALUE- STACK. pop();

Entity. NEXT- CONTROL(tr ue);
RETURN,

recei ver and renotePort

/'l clean val ue stack

Figure 97: Flow graph segment <raise-with-one-receiver-op>

9.35.1a Flow graph segment <raise-with-multiple-receivers-op>

The flow graph segment <r ai se-wi t h-rul ti pl e-recei ver s- op> in figure 97a defines the execution of a
r ai se operation where multiple receivers are addressed. In case of broadcast communication the keyword al |
conmponent is used as receiver specification. In case of multicast communication a list of expressions is provided

which shall evaluate to component references or address values.

The component references or address values of the addressed entities (or the keyword al |

conmponent ) are pushed

onto the value stack of the calling entity. The number of references stored in the value stack is considered to be known,
i.e. it is the parameter nunber of the basic flow graph node r ai se-wi t h-ul ti pl e-recei vers-op in

figure 97a. The nuber parameter is 1 in case of broadcast communication, i.e. the keyword al |

element in the value stack.

ETSI

component is top



125 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

segnent <raise-w th-nultiple-receivers-op>

/1 Each expression shall eval uate
// to a conponent reference or
// an address val ue.

rai se-with-multiple-receivers-op
(portld, exceptSpec, nunber)

let { I
var i; [/ loop counter variable
var connection; // variable for connections in port states
var receiver; // variable for receiver conponent references

var local Port, renptePort; // variables for port references
local Port := Entity.portld. COW-PORT-NAME; // |ocal port

if (Entity.VALUE-STACK. top() == all conponent) {

connection := | ocal Port. CONNECTI ONS- LI ST. next (connecti on);
while (connection !'= NULL) {
renot ePort := connecti on. REMOTE- PORT- NAVE;

if (remotePort == SYSTEM {
/1 Port is mapped onto a port of the test system
/'l reception of the reply by the SUT is outside
/1 the scope of the operational semantics

else { // sending of call
renot ePort . enqueue( CONSTRUCT- | TEM Entity, raise, exceptSpec));

}
connection := | ocal Port. CONNECTI ONS- LI ST. next (connecti on);
}
el se {
for (i == 1; i <= nunber; i :=i+1) {
receiver := Entity. VALUE- STACK. top();
Entity. VALUE- STACK. pop(); /'l clean val ue stack
renotePort := GET- REMOTE- PORT(Entity, |ocal Port, receiver);
if (remotePort == NULL) {
*** DYNAM C- ERROR***; // Renote port cannot be found
}
if (remotePort == SYSTEM {
/1 Port is mapped onto a port of the test system
/'l reception of the reply by the SUT is outside
/'l the scope of the operational senantics
else { // sending of call
renot ePort . enqueue( CONSTRUCT- | TEM Entity, raise, exceptSpec));
}
}

} /1 end of local scope

Entity. NEXT- CONTROL(true);
RETURN,;

v

Figure 97a: Flow graph segment <raise-with-multiple-receivers-op>

ETSI



126 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.35.2 Flow graph segment <raise-without-receiver-op>

The flow graph segment <r ai se-w t hout - r ecei ver - op> in figure 98 defines the execution of a raise operation
without t 0-clause.

segnment <rai se-w thout-receiver-op>

rai se-w t hout -recei ver-op
(portld, exceptSpec)

let {
var portRef := Entity. portld. COVP- PORT- NANE;
var renotePort := GET- REMOTE- PORT(Entity, portRef, NONE);

if (remotePort == NULL) {
*** DYNAM C- ERROR***; // Renote port cannot be found

}

if (remotePort == SYSTEM {
/!l Port is napped onto a port of the test system
/1 reception of the reply by the SUT is outside
/'l the scope of the operational semantics

else { // sending of exception
renot ePort . enqueue( CONSTRUCT- | TEM Entity, raise, exceptSpec));

} /1 end of scope of renotePort

Entity. NEXT- CONTROL(true);
RETURN;

Figure 98: Flow graph segment <raise-without-receiver-op>

9.36 Read timer operation

The syntactical structure of the r ead timer operation is:

<timerld>. read
The flow graph segment <r ead- t i mer - op> in figure 99 defines the execution of the r ead timer operation.

The r ead timer operation distinguishes between its usage in a Boolean guard of an al t statement or blocking cal |
operation and all other cases. If used in a Boolean guard, the result of the r ead timer operation is based on the actual
snapshot, i.e. the SNAP-STATUS and SNAP-VALUE entries of the timer binding, in all other cases, the STATUS
ACT-DURATION and TIME-LEFT entries of the timer binding determine the result of the operation.

ETSI



127 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

segnent <read-ti mer-op>

read-ti ner-op
(tinmerld)

let { // local scope for variable nyVal ue
var float nyVal ue;
if (Entity.STATUS == SNAPSHOT) {

if (Entity.timerld. SNAP-STATUS == RUNNI NG {
nyValue := Entity.tinerld. SNAP- VALUE;

el se {
myVal ue := 0.0;
}

el se {
if (Entity.timerld. STATUS == RUNNING) {
nyValue := Entity.tinmerld. ACT-DURATION — Entity.timerld. Tl ME-LEFT;

el se {
nyVal ue : = 0.0;
}

}
Entity. VALUE- STACK. push(myVal ue);

} // end |ocal scope

Entity. NEXT- CONTROL(true);
RETURN;

Figure 99: Flow graph segment <read-timer-op>

ETSI




128 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.37 Receive operation
9.37.0 General

The syntactical structure of the r ecei ve operation is:

<portld>.receive (<matchingSpec>) [from <conponent-expression>] [-> <assignmentPart>]

The optional <conponent - expr essi on> in the f r omclause refers to the sender entity. It may be provided in
form of a variable value or the return value of a function, i.e. it is assumed to be an expression. The optional

<assi gnnent Par t > denotes the assignment of received information if the received message matches to the
matching specification <mat chi ngSpec> and to the (optional) f r omclause.

The flow graph segment <r ecei ve- op> in figure 100 defines the execution of a r ecei ve operation.

segnent <receive-op> i
<recei ve-w t h- sender >
R /1 Distinction due to the optional
<recei ve-w t hout -sender> [ /1 from cl ause
\

Figure 100: Flow graph segment <receive-op>

9.37.1 Flow graph segment <receive-with-sender>

The flow graph segment <r ecei ve-w t h- sender > in figure 101 defines the execution of a r ecei ve operation
where the sender is specified in form of an expression.

ETSI



129 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

segnent
<recei ve-w t h- sender >

A 4 //

The Expression shall evaluate
<expressi on> /1l to a conponent reference or an
p /] address value. The result is

/'l pushed onto the VALUE- STACK.

let { // local scope for portRef and sender

var portRef := NULL;

var sender := Entity.VALUE- STACK top(); /'l Sender

Entity. VALUE- STACK. pop(); /1 Cean val ue stack
if (portlD == “any port”)

port Ref := ALL- PORT- STATES. r andon{ MATCH- | TEM SNAP- VALUE, nat chi ngSpec, sender)
&& OMNNER == Entity);

if (portRef == NULL) { // no 'matching' port found
Entity. NEXT- CONTROL(f al se);
RETURN,
}
el se {
portRef := GET-PORT(Entity, Entity.portld. COMP- PORT-NAME); // Specified port
}
/1 MATCHI NG
if (PortRef.first() == NULL) { // Port queue is enpty, no natch
Entity. NEXT- CONTROL(f al se);
RETURN;
}
el se {

if ( MATCH I TEM port Ref . SNAP- VALUE, mat chi ngSpec, sender)) ({
/1 The nessage in the queue natches
Entity. VALUE- STACK. push(port Ref); /1 Saving port reference
Entity. STATUS : = ACTI VE; /'l successful match, Entity status is changed
/1 from SNAPSHOT to ACTI VE

Entity. NEXT- CONTROL(true);

el se { // The top itemin the queue does not match
Entity. NEXT- CONTROL(f al se);

}
RETURN,

}
\ } /'l End of scope of portRef and sender

recei ve-wit h-sender

(portld, matchingSpec)
true
/'l optional value

|
*(1) /] assignent
<recel ve- assi gnnment >

/1 Rermoval of received itemfrom port

v Entity. VALUE- STACK. t op() . dequeue();
remove-from port Entity. VALUE- STACK. pop() ;
........... Entity. NEXT- CONTROL(true);
RETURN;

fal se true
v v

Figure 101: Flow graph segment <receive-with-sender>

ETSI



130 Final draft ETSI ES 201 873-4 V4.

9.37.2 Flow graph segment <receive-without-sender>

5.1 (2016-05)

The flow graph segment <r ecei ve-w t hout - sender > in figure 102 defines the execution ofa r ecei ve

operation without a f r omclause.

segnent <receive-w thout-sender>

let { // local scope
var portRef := NULL;
if (portID == "“any port”) {
port Ref := ALL- PORT- STATES. r andon{ MATCH | TEM SNAP- VALUE, nat chi ngSpec,
&& OMNNER == Entity);

if ( MATCH | TEM port Ref . SNAP- VALUE, mat chi ngSpec, NONE)) ({
/'l The nessage in the queue natches
Entity. VALUE- STACK. push(port Ref); /1 Saving port reference

/1 from SNAPSHOT to ACTI VE
Entity. NEXT- CONTROL(true);

el se { /] The first itemin the queue does not natch
Entity. NEXT- CONTROL(f al se);

}
RETURN,

}
\ } /1 End of scope

NONE)

if (portRef == NULL) { // no 'nmtching" port found
Entity. NEXT- CONTROL(f al se);
RETURN,
}
el se {
portRef := GET-PORT(Entity, Entity.portld. COWP-PORT-NAME); // Specified port
}
/1 MATCHI NG
if (PortRef.first() == NULL) { // Port queue is enpty, no match
Entity. NEXT- CONTROL(f al se);
RETURN,
}
el se {

Entity. STATUS : = ACTI VE; /'l successful match, Entity status is changed

recei ve-wi t hout - sender

(port 1D, natchi ngSpec)
/<’ true
// optional value

*(1) /1 assignemt

<recel ve- assi gnnent >

/!l Renoval of received itemfrom port
v Entity. VALUE- STACK. t op() . dequeue();
renove-from port Enti ty. VALUE- STACK. pop() ;
........... Entity. NEXT- CONTROL(true);
RETURN;
fal se true
v v

Figure 102: Flow graph segment <receive-without-sender>

ETSI




131 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.37.3 Flow graph segment <receive-assignment>

The flow graph segment <r ecei ve- assi gnment > in figure 103 defines the retrieval of information from received
messages and their assignment to variables.

segnment <recei ve-assi gnnent >

RETRI EVE- | NFQ(Entity. VALUE- STACK. top().first(), assignnentPart, Entity);

Entity. NEXT- CONTROL(true);
RETURN,

recei ve- assi gnnent
(assi gnment Part)

Figure 103: Flow graph segment <receive-assignment>

9.38 Repeat statement

The syntactical structure of the r epeat statement is:

r epeat

Basically, the r epeat statement is a r et ur n statement without return value, which also changes the entity status to
REPEAT. The status REPEAT will force the re-evaluation of the al t statement in which the repeat statement has been
executed. The flow graph segment <r epeat - st nt > shown in figure 104 defines the execution of the r epeat
statement.

segment <repeat - st nt>

Entity. STATUS( REPEAT) ;
r epeat -stmt Ve RETURN;

<return-w thout-val ue>

v

Figure 104: Flow graph segment <repeat-stmt>

ETSI



132 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.39 Reply operation
9.39.0 General

The syntactical structure of the r epl y operation is:

<portld>reply (<replySpec>) [to <receiver-spec>]

The optional <r ecei ver - spec> inthet 0 clause refers to the receivers of the reply. In case of a one-to one
communication, the <r ecei ver - spec> addresses a single entity (including the SUT or an entity within the SUT). In
case of multicast or broadcast communication, the <r ecei ver - spec> specifies a set or all test components or
entities in the SUT connected via the specified port with the calling component.

The flow graph segment <r epl y- op> in figure 105 defines the execution of a r epl y operation.

segnment <reply-op>

\ 4
<repl y-w t h-one-recei ver-op> OR /1 Areply operation nay adress one,
<reply-with-nul tiple-receivers-op> OR /1l multiple (multicast and broadcast)
<repl y-w t hout - recei ver - op> /1 or no receiver entities.

v

Figure 105: Flow graph segment <reply-op>

ETSI



133 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.39.1 Flow graph segment <reply-with-one-receiver-op>

The flow graph segment <r epl y- wi t h- one-r ecei ver - op> in figure 106 defines the execution of ar epl y
operation where the receiver is specified in form of an expression.

segnent <reply-w th-one-receiver-op>

/1 The expression shall evaluate

< Cans // to a conponent reference or an
expression> | /| address val ue.

repl y-wi t h-one-recei ver-op
(portld, replySpec) A .

let {
var receiver := Entity. VALUE- STACK. top();
var portRef := Entity.portld. COVW- PORT- NAVME;
var renotePort := GET- REMOTE- PORT(Entity, portRef, receiver);

if (remotePort == NULL) {
***DYNAM C- ERROR***; // Renote port cannot be found

}

if (remptePort == SYSTEM ({
/1 Port is mapped onto a port of the test system
// reception of the reply by the SUT is outside
/1 the scope of the operational semantics

else { // sending of reply
renot ePort . enqueue( CONSTRUCT- | TEM Entity, reply, replySpec));

} // end of scope of receiver and renotePort
Entity. VALUE- STACK. pop(); /1 clean val ue stack

Enti ty. NEXT- CONTROL(t r ue) ;
RETURN;

v

Figure 106: Flow graph segment <reply-with-one-receiver-op>

9.39.1a Flow graph segment <reply-with-multiple-receivers-op>

The flow graph segment <r epl y-wi t h-mul ti pl e-recei ver s- op> in figure 106a defines the execution of a
r epl y operation where multiple receivers are addressed. In case of broadcast communication the keyword al |
component is used as receiver specification. In case of multicast communication a list of expressions is provided
which shall evaluate to component references or address values.

The component references or address values of the addressed entities (or the keyword al | conponent ) are pushed
onto the value stack of the calling entity. The number of component references or address values stored in the value
stack is considered to be known, i.e. it is the parameter nunber of the basic flow graph node
reply-with-multiple-receivers-op in figure 106a. The nunber parameter is 1 in case of broadcast
communication, i.e. the keyword al I conmponent is top element in the value stack.

ETSI



134 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

segment <reply-w th-nultiple-receivers-op>

/1 Each expression shall evaluate
/1 to a conponent reference or an
// address val ue.

reply-w th-nultiple-receivers-op
(portld, replySpec, nunber)

let { 11
var i; // loop counter variable
var connection; // variable for connections in port states
var receiver; /1 variable for receiver conponent references or

/] address val ues
var |ocal Port, renotePort; // variables for port references
local Port := Entity.portld. COWP-PORT-NAME; // local port

if (Entity.VALUE-STACK top() == all conponent) {

connection : = |ocal Port. CONNECTI ONS- LI ST. next (connecti on);
while (connection !'= NULL) {
renotePort := connecti on. REMOTE- PORT- NAVE;

if (renotePort == SYSTEM {
/1 Port is mapped onto a port of the test system
Il reception of the reply by the SUT is outside
/'l the scope of the operational semantics

else { // sending of call
renot ePort. enqueue( CONSTRUCT- | TEM Entity, reply, replySpec));

}
connection := | ocal Port. CONNECTI ONS- LI ST. next (connecti on);
}
}
el se {
for (i == 1; i <= nunber; i :=i+l)
receiver := Entity.VALUE- STACK top();
Entity. VALUE- STACK. pop(); /1 cl ean val ue stack
renotePort := GET- REMOTE-PORT(Entity, local Port, receiver);
if (renmotePort == NULL) {
*** DYNAM G- ERROR***: [/ Renote port cannot be found
}
if (renotePort == SYSTEM {
/1 Port is mapped onto a port of the test system
Il reception of the reply by the SUT is outside
// the scope of the operational senantics
else { // sending of call
renot ePort. enqueue( CONSTRUCT- | TEM Entity, reply, replySpec));
}
}

} /1 end of |ocal scope

Entity. NEXT- CONTROL(true);
RETURN,

v

Figure 106a: Flow graph segment <reply-with-multiple-receivers-op>

ETSI



135 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.39.2 Flow graph segment <reply-without-receiver-op>

The flow graph segment <r epl y- wi t hout - r ecei ver - op> in figure 107 defines the execution of a reply
operation without t 0-clause.

segnment <reply-
-receiver-op>

reply-w thout-receiver-op
(portld, replySpec)

let {
var portRef := Entity. portld. COVP- PORT- NANE;
var renotePort := GET- REMOTE- PORT(Entity, portRef, NONE);

if (remotePort == NULL) {
*** DYNAM C- ERROR***; // Renote port cannot be found

}

if (remotePort == SYSTEM {
/1 Port is nmapped onto a port of the test system
/1 reception of the reply by the SUT is outside
/1 the scope of the operational semantics

else { // sending of reply
renot ePort . enqueue( CONSTRUCT- | TEM Entity, reply, replySpec));

} /1 end of scope of renotePort

Entity. NEXT- CONTROL(true);
RETURN;

Figure 107: Flow graph segment <reply-without-receiver-op>

9.40 Return statement
9.40.0 General

The syntactical structure of the return statement is:

return [ <expression>]

The optional <expr essi on> describes a possible return value of a function. The execution of a return statement
means that the control leaves the actual scope unit, i.e. variables and timers only known in this scope have to be deleted
and the value stack has to be updated. A r et ur n statement has the effect of a St 0p component operation, if it is the
last statement in a behaviour description.

NOTE: Test cases and module control will always end with a St op component operation. This is due to their

flow graph representation (see clause 8.2). Only other test components may terminate with a r et ur n
statement.

ETSI



136 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

The flow graph segment <r et ur n- st nt > in figure 108 defines the execution of a r et ur n statement.

segnent <retun-stnt> l
<return-wth-val ue>
R /1 A return statenment nmay or nmay
<return-wthout-val ue> /1 not return a val ue
v

Figure 108: Flow graph segment <return-stmt>

ETSI



9.40.1

137 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

Flow graph segment <return-with-value>

The flow graph segment <r et ur n- wi t h- val ue> in figure 109 defines the execution of a r et ur n that returns a

value specified in form of an expression.

segnment <return-wth-val ue>

<expressi on>

/'l The expression shall
/1 to the return val ue

eval uat es

return-with-val ue

true

let {
var return-value := Entity. VALUE- STACK. top();
Entity. DEL- VAR- SCOPE() ;
Entity. DEL- TI MER- SCOPE() ;
Entity. DEL- PORT- SCOPE();
Entity. VALUE- STACK. cl ear-unti | ( MARK);
Entity. VALUE- STACK. push(return-val ue);

} /1 end of scope of return-val ue

Entity. CONTROL- STACK. pop();
/1

/1 return address
is lying on the control stack

if (Entity. CONTROL- STACK. t op() NULL) {
Il return is stop or
Entity. VALUE- STACK. push(Entity);

Entity. NEXT- CONTROL(f al se);

kil

}
RETURN,

if (Entity.VALUE- STACK. t op().KEEP-ALI VE == true)) {
Entity. NEXT- CONTROL(tr ue);

}
el se {
decision = Y } Entity. NEXT- CONTROL(f al s€);
RETURN,
true fal se
\ 4
<stop-al i ve- conponent > <ki |l - conponent >

Figure 109: Flow graph segment <return-with-value>

ETSI



138 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.40.2 Flow graph segment <return-without-value>

The flow graph segment <r et ur n-wi t hout - val
that returns no value.

ue> in figure 110 defines the execution of a r et ur n statement

segnment <return-w thout-val ue>

. /1 The ex
<expr essi on>

/1 to the return val ue

pression shall eval uates

return-wthout-val ue

}

if

true

let {

Entity. CONTROL- STACK. pop(); /] return address

}
RETURN,;

var return-value := Entity. VALUE- STACK. top();

Entity. DEL- VAR- SCOPE() ;

Entity. DEL- TI MER- SCOPE() ;

Entity. DEL- PORT- SCOPE();

Entity. VALUE- STACK. cl ear-unti | ( MARK);
/1 end of scope of return-value

/1 is lying on the control stack

(Entity. CONTROL- STACK. top() == NULL) {

/1l return is stop or Kill
Entity. VALUE- STACK. push(Entity);
Entity. NEXT- CONTROL(f al se);

if (Entity.VALUE- STACK. t op().KEEP-ALI VE == true)) {
Entity. NEXT- CONTROL(tr ue);

}
el se {
decision = Y } Entity. NEXT- CONTROL(f al s€);
RETURN,
true fal se
\ 4
<stop-al i ve- conponent > <ki |l - conponent >

Figure 110: Flow graph segment <return-without-value>

ETSI




139 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.41 Running component operation
9.41.0 General

The syntactical structure of the r unni ng component operation is:

<conponent - expr essi on>. runni ng

The r unni ng component operation checks whether a component is running or has either stopped or terminated and
been removed from the test system. The component to be checked is identified by a component reference, which may be
provided in form of a variable or value returning function, i.e. is an expression. For simplicity, the keywords "al |
conmponent "and "any conponent " are considered to be special expressions.

The r unni ng component operation distinguishes between its usage in a Boolean guard of an al t statement or
blocking cal | operation and all other cases. If used in a Boolean guard, the result of r unni ng component operation
is based on the actual snapshot. In all other cases evaluates directly the state information.

The result of the r unni ng component operation is pushed onto the value stack of the entity, which called the
operation.

The flow graph segment <running-component-op> in figure 111 defines the execution of the r unni ng component
operation.

|
segment #

<runni ng- conponent - op>

/1 The expression shall eval uate
. /1 to a conponent reference. The
<expressi on> /1 result is pushed onto VALUE- STACK

if (Entity.STATUS == ACTIVE) {
Entity. NEXT- CONTROL(true);

else { // Entity is in a snapshot
Entity. NEXT- CONTROL(f al se);
}

RETURN,

<runni ng- conp- act > <runni ng- conp- snap>

v

Figure 111: Flow graph segment <running-component-op>

ETSI



140 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.41.1 Flow graph segment <running-comp-act>

The flow graph segment <r unni ng- conp- act > in figure 112 describes the execution of the r unni Ng component

operation outside a snapshot, i.e. the component is in the status ACT| VE.

segnent
<runni ng- conp- act > let { // local scope
var conp; /1 for storing a conponent reference
var deci sion; /1 Bool ean
if (Entity.VALUE-STACK. top() == "all conponent') {
if (Entity !'= MO {
v ***DYNAM C- ERROR*** // 'al | conponent' is not allowed
mg'-corrp- act el se {
""" if (DONE.length() == 0) { // all conponents are running
Entity. VALUE- STACK. push(true);
else { // at least one conponent has been stopped
Entity. VALUE- STACK. push(fal se);
}
}
}
el se {
if (Entity.VALUE- STACK. top() == 'any conponent') {
if (Entity !'= MO {
*** DYNAM C- ERROR*** [/ 'any conponent' not all owed
el se {
conmp : = ALL- ENTI TY- STATES. next (MIC) ;
while (comp !'= NULL and decision == false) {
if (conp. STATUS == ACTI VE) {
decision : = true;
}
conp : = ALL-ENTI TY- STATES. next (conp) ;
}
Entity. VALUE- STACK. push(deci si on);
}
}
el se {
i f (ALL- ENTI TY- STATES. menber (Entity. VALUE- STACK. top())) {
/1 Specified conponent is alive
Entity. VALUE- STACK. push(true);
}
el se {
Entity. VALUE- STACK. push(fal se);
}
}
}
Entity. NEXT- CONTROL(true);
RETURN,

Figure 112: Flow graph segment <running-comp-act>

ETSI




141 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.41.2 Flow graph segment <running-comp-snap>

The flow graph segment <r unni ng- conp- snap> in figure 113 describes the execution of the r unni ng component
operation during the evaluation of a snapshot, i.e. the component is in the status SNAPSHOT.

segment

<runni ng- conp- snap>

A\ 4

m-'cowp- snap

let { // local scope
var conp; /1 for storing a conponent reference
var deci sion; /1 Bool ean
if (Entity.VALUE-STACK. top() == "all conponent') {
if (Entity !'= MO {
***DYNAM C- ERROR*** [/ "all conponent' is not allowed
el se {
""" if (Entity.SNAP-DONE. | ength() == 0) {
Entity. VALUE- STACK. push(true);
else { // at least one conponent has been stopped
Entity. VALUE- STACK. push(fal se);
}
}
}
el se {
if (Entity.VALUE- STACK. top() == 'any conponent') {
if (Entity !'= MO {
*** DYNAM C- ERROR*** [/ 'any conponent' not all owed
el se {
conp : = Entity. SNAP-ALI VE. next (MIQ);
while (comp !'= NULL and decision == false) {
if (conp. STATUS == ACTI VE) {
decision : = true;
}
conp : = ALL-ENTI TY- STATES. next (conp) ;
}
Entity. VALUE- STACK. push(deci si on);
}
}
el se {
if (Entity.SNAP-ALIVE. mermber (Entity. VALUE- STACK. top())) {
/] Specified conponent is alive
Entity. VALUE- STACK. push(true);
}
el se {
Entity. VALUE- STACK. push(fal se);
}
}
}
Entity. NEXT- CONTROL(true);
RETURN,

Figure 113: Flow graph segment <running-comp-snap>

ETSI




142 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.42  Running timer operation

The syntactical structure of the r unni ng timer operation is:
<timer!|d>.running

The flow graph segment <r unni ng-ti mer - op> in figure 114 defines the execution of the r unni ng timer
operation.

The r unni ng timer operation distinguishes between its usage in a Boolean guard of an al t statement or blocking
cal | operation and all other cases. If used in a Boolean guard, the result of r unni ng timer operation is based on the
actual snapshot, i.e. the SNAP-STATUS entry of the timer binding, in all other cases, the STATUS entry of the timer
binding determines the result of the operation.

The any keyword is handled as a special value of t i mer | d.

segnent <running-ti mer-op>

runni ng-timer-op
(timerld)

let { // local scope for variables nyStatus and nyTi merLi st

var myStatus; /1 for storing status values of tiners
var rmyTi nerList; /1 for storing a list of timer Bindings
if (timerld == “any timer”) {

nyTimerList := Entity. TI MER-STATE. first();
timerld := NULL;
if (Entity.STATUS) == SNAPSHOT) {
while (nyTinerList !'= NULL & timerld == NULL) {
timerld := nyTimerList.randon SNAP- STATUS == RUNNI NG) ;

myTinmerList := Entity.TlI MER- STATE. next (myTi mer Li st);
{
}
el se {
while (nyTinerList !'= NULL & timerld == NULL) {
timerld : = nyTinerList.randon{ STATUS == RUNNI NG);
myTinerList := Entity.TlI MER- STATE. next (myTi mer Li st);
{
}

}

if (timerld !'= NULL) {
nyStatus := Entity.timerld. STATUS;
if (Entity.STATUS == SNAPSHOT) {
nyStatus := Entity.timerld. SNAP- STATUS;
}

if (nyStatus == RUNNING ({
Entity. VALUE- STACK. push(true);

}
el se {
Entity. VALUE- STACK. push(fal se);
}
el se {

Entity. VALUE- STACK. push(fal se);

} // end local scope

Entity. NEXT- CONTROL(true);
RETURN,

Figure 114: Flow graph segment <running-timer-op>

ETSI



143 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.43  Self operation

The syntactical structure of the sel f operation is:

sel f

The flow graph segment <sel f - op> in figure 115 defines the execution of the sel f operation.

segnent <sel f-op>

Entity. VALUE- STACK. push(Entity);
self-op Y Entity. NEXT- CONTROL(true);
RETURN,;

Figure 115: Flow graph segment <self-op>

9.44  Send operation
9.44.0 General

The syntactical structure of the send operation is:

<portld>.send (<send-spec>) [to <receiver-spec>]

The optional <r ecei ver - spec> inthet 0 clause refers to the receivers of the message. In case of a one-to one
communication, the <r ecei ver - spec> addresses a single entity (including the SUT or an entity within the SUT). In
case of multicast or broadcast communication, the <r ecei ver - spec> specifies a set or all test components or
entities in the SUT connected via the specified port with the calling component.

The flow graph segment <send-op> in figure 116 defines the execution of a send operation.

segnent <send- op>
A 4
<send-w t h- one-recei ver-op> OR
<send-w th-nul ti pl e-recei vers-op> OR /1 A send operation nay address one,
<send-w t hout - r ecei ver - op> /1 multiple (multicast and broadcast)
/1 or no receiver entities.
v

Figure 116: Flow graph segment <send-op>

ETSI



9.44.1

The flow graph segment <send- w t h- one-r ecei ver - op> in figure 117 defines the execution of a send

144 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

Flow graph segment <send-with-one-receiver-op>

operation where the receiver is specified in form of an expression.

segment <send-w t h-one-receiver-op>

<expr essi on>

/1 The expression shall evaluate
/1 to a conponent reference or
/1] an address val ue.

(portld,

send-w t h- one-recei ver-op
sendSpec)

Entity. VALUE- STACK. pop();

let {

var receiver := Entity.VALUE- STACK. top();
var portRef := Entity.portld. COVP- PORT- NANE;
var renotePort := GET- REMOTE- PORT(Entity, portRef, receiver);

if (remptePort == NULL) {
***DYNAM C- ERROR***; // Renpte port cannot be found

}

if (remotePort == SYSTEM {
// Port is mapped onto a port of the test system
/'l reception of the reply by the SUT is outside
/'l the scope of the operational senmantics

else { // sending of nessage
renot ePort. enqueue( CONSTRUCT- | TEM Entity, send, sendSpec));

} /1 end of scope of receiver and renotePort

/'l clean val ue stack

RETURN;

Entity. NEXT- CONTROL(true);

Figure 117: Flow graph segment <send-with-one-receiver-op>

9.44.1a Flow graph segment <send-with-multiple-receivers-op>

The flow graph segment <send-w t h- nul ti pl e-recei ver s- op> in figure 117a defines the execution of a
send operation where multiple receivers are addressed. In case of broadcast communication the keyword al |
conponent is used as receiver specification. In case of multicast communication a list of expressions is provided

which shall evaluate to component references or address values.

The component references or address values of the addressed entities (or the keyword al |

conmponent ) are pushed

onto the value stack of the calling entity. The number of references stored in the value stack is considered to be known,
i.e. it is the parameter nunber of the basic flow graph node send-wi t h-nul ti pl e-recei vers-op in

figure 117a. The nunmber parameter is 1 in case of broadcast communication, i.e. the keyword al |

top element in the value stack.

ETSI

conmponent is



145 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

segnment <send-with-nultiple-receivers-op>

/| Each expression shall
/1 to a conponent reference or an
/] address val ue.

eval uat e

send-w th-nul ti pl e-recei vers-op
(portld, sendSpec, nunber)

let { I
var i; I/

| ocal Port

RETURN,

| oop counter variable
var connection; // variable for connections in port states
var receiver;

var | ocal Port,
Entity. portld. COWP- PORT-NAME; // local port

if (Entity.VALUE-STACK top() == all

connection := | ocal Port. CONNECTI ONS- LI ST. next (connecti on);
while (connection !'= NULL) {
remotePort := connection. REMOTE- PORT- NAME;

if (remotePort == SYSTEM {
/1 Port is mapped onto a port of the test system
/1
/1 the scope of the operational

else { // sending of call
renot ePort. enqueue( CONSTRUCT- | TEM Entity, send, sendSpec));
}
connection := | ocal Port. CONNECTI ONS- LI ST. next (connecti on);
}
el se {
for (i ;I <= nunber; i :=i+1) {
receiver := Entity.VALUE- STACK. top();
Entity. VALUE- STACK. pop(); /'l clean val ue stack
renmotePort := GET- REMOTE- PORT(Entity, |ocal Port, receiver);
if (remptePort == NULL) ({
*** DYNAM G- ERROR***; // Renote port cannot be found
}
if (remptePort == SYSTEM ({
/1 Port is nmapped onto a port of the test system
reception of the reply by the SUT is outside
/1 the scope of the operational senantics
else { // sending of call
renot ePort. enqueue( CONSTRUCT- | TEM Entity, send, sendSpec));
}
}

} /1 end of |ocal

Entity. NEXT- CONTROL(true);

/1 variable for receiver conponent references
/1 or receiver address val ues
remotePort; // variables for port references

conponent) {

reception of the reply by the SUT is outside
semantics

scope

v

Figure 117a: Flow graph segment <send-with-multiple-receivers-op>

ETSI



146 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.44.2 Flow graph segment <send-without-receiver-op>

The flow graph segment <send- wi t hout - r ecei ver - op> in figure 118 defines the execution of a send
operation without t 0-clause.

segnment <send-w t hout -recei ver - op>

send-w t hout - recei ver-op
(portld, sendSpec)

let {
var portRef := Entity. portld. COVP- PORT- NANE;
var renotePort := GET- REMOTE- PORT(Entity, portRef, NONE);

if (remotePort == NULL) {
*** DYNAM C- ERROR***; // Renote port cannot be found

}

if (remotePort == SYSTEM {
/1 Port is nmapped onto a port of the test system
/1 reception of the reply by the SUT is outside
/1 the scope of the operational semantics

else { // sending of nessage
renot ePort . enqueue( CONSTRUCT- | TEM Entity, send, sendSpec));

} /1 end of scope of renotePort

Entity. NEXT- CONTROL(true);
RETURN;

Figure 118: Flow graph segment <send-without-receiver-op>

9.45  Setverdict operation

The syntactical structure of the set ver di ct operation is:

setverdi ct(<verdi cttype-expression> [ , <verdict-reason>])

The <ver di ctt ype- expr essi on> parameter of the set ver di ct operation is an expression that shall evaluate
to a value of type ver di ct t ype, i.e. none, pass, i nconc or f ai | . The expression is evaluated before the
set ver di ct operation is applied.

The second optional parameter allows specifying a reason for setting a verdict. This reason does not contribute to the
test behaviour and is therefore not considered in the operational semantics.

The flow graph segment <set ver di ct - op> in figure 119 defines the execution of the set ver di ct operation.

ETSI



147 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

segnment <setverdict-op>

A /1 The expression shall evaluate to a val ue
/1 of type verdicttype.
<expression> /1 The result of the evaluation is pushed
/1 onto the VALUE- STACK of Entity

if ( Entity. E-VERDI CT == fail or
A 4 Entity. VALUE- STACK. top() == fail) {
Entity. E-VERDICT : = fail;

setverdict-op \ }
el se {
if ( Entity. VALUE- STACK. top() == inconc or
Entity. E- VERDI CT == i nconc) {
Entity. E- VERDI CT : = inconc;
}
el se {

if ( Entity. VALUE- STACK. top() == pass or
Entity. E- VERDI CT == pass) {
Entity. E-VERDI CT : = pass;

}

}

Entity. VALUE- STACK. pop() // clear VALUE-STACK
Entity. NEXT- CONTROL(tr ue);

RETURN,

Figure 119: Flow graph segment <setverdict-op>

9.46  Start component operation

The syntactical structure of the St art component operation is:

<conponent - expressi on>. start (<functi on- name>( <act - par - desc,>, .., <act-par-desc, >))

The st art component operation starts a component. Using a component reference identifies the component to be
started. The reference may be stored in a variable or be returned by a function, i.e. it is an expression that evaluates to a
component reference.

The <f unct i on- nanme> denotes to the name of the function that defines the behaviour of the new component and
<act - par -descr >, ..., <act - par - descr > provide the description of the actual parameter values of

<functi on- nanme>. The descriptions of the actual parameters are provided in form of expressions that have to be
evaluated before the call can be executed. The handling of formal and actual value parameters is similar to their
handling in function calls (see clause 9.24).

The flow graph segment <start-component-op> in figure 120 defines the execution of the St art component operation.
The start component operation is executed in four steps. In the first step a call record is created. In the second step the
actual parameter values are calculated. In the third step the reference of the component to be started is retrieved, and, in
the fourth step, control and call record are given to the new component.

NOTE: The flow graph segment in figure 120 includes the handling of reference parameters
(<r ef - var - par - cal ¢>). Reference parameters are needed to explain reference parameters of test
cases. The operational semantics assumes that these parameters are handled by the MTC.

ETSI



148 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

segment <start-conponent - op>

Entity. VALUE- STACK. push( NEW CALL- RECORD( f uncti on- nane));
Entity. NEXT- CONTROL(true);
RETURN,

construct-call-record
(function-nane)

/! For each pair (<f-par-ldi> <act-paraneter-desci>) the
/1 value of <act-paraneter-desci is calculated and

-| /] assigned to the corresponding field <f-par-Idi>

<val ue- par - cal cul ati on> /1 in the call record. The call record is assumed to be
/1 the top element in the value stack.

* /1 This flow graph segnent is also used to explain

/'l the execute statemmt. Test cases are allowed to have
/'l reference paraneters. The operational senmantics
<ref-var-par-cal c> !/ assumes that these paranmeters are owned (and updat ed)
/1 by the MIC

A 4

The expression shall evaluate to a conponent reference.

<expression> It refers to the conponent to be started

control -trans-to-conmponent
(function-nane)

let {
var toBeStarted := Entity. VALUE- STACK. top();
/1l toBeStarted is a local variable that stores the
/1 identifier of the conmponent to be started

Entity. VALUE- STACK. pop();
/'l Renoval of conponent reference. Afterwards the
/1 call record is on top of the value stack

toBeSt art ed. VALUE- STACK. push(Entity. VALUE- STACK. t op();
/1 Call record is transferred to toBeStarted.

Entity. VALUE- STACK. pop();
/1 Renoval of the call record fromthe val ue stack
/1 of the starting conponent (= Entity).

toBeSt art ed. CONTROL- STACK. push( GET- FLOW GRAPH( f unct i on- nane) ) ;
/1 Control stack of toBeStarted is set to
/'l the start node of its behaviour.

toBeStarted. STATUS : = ACTI VE;
/1 Control is given to toBeStarted

if (DONE. menber(toBeStarted)) { // Update DONE I|i st
DONE. del et e(toBeSt arted);
}

} I/ end of scope for variable toBeStarted

Entity. NEXT- CONTROL(true);

Figure 120: Flow graph segment <start-component-op>

ETSI



149 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.47  Start port operation

The syntactical structure of the St ar t port operation is:

<portld>. start

The flow graph segment <start-port-op> in figure 121 defines the execution of the St art port operation.

segnent <start-port-op>

v let { // Begin of l|ocal scope
var portRef := NULL
var portState := NULL;
start-port-op V.
(portld) if (portid == “all port”) {
portState := ALL- PORT- STATES.first();
while (portState !'= NULL) {
if (portState. OONER == Entity) ({

port St ate. VALUE- QUEUE. cl ear () ;
port State. STATUS : = STARTED

portState :=
ALL- PORT- STATES. next (port State);

}

el se {
portRef := Entity.portld. COVP- PORT- NAVE;
CET- PORT(Entity, portRef).clear();
GET- PORT(Entity, portRef).STATUS : = STARTED;
} /1 End of socpe

Entity. NEXT- CONTROL(tr ue);
RETURN,

v

Figure 121: Flow graph segment <start-port-op>

9.48  Start timer operation
9.48.0 General

The syntactical structure of the St art timer operation is:
<timerld> start [(<float-expression>)]

The optional <float-expression> parameter of the timer St ar t operation denotes the actual duration of the timer. If it is
not provided, the default duration will be used by the st ar t operation. The expression that shall evaluate to a value of
type f | oat . If provided, the expression shall be evaluated before the St art operation is applied. The result of the
evaluation is pushed onto the VALUE-STACK of Entity.

The flow graph segment <st art -t i mer - op> in figure 122 defines the execution of the St art timer operation.

segnent <start-timer-op>

y
<start-timer-op-defaul t>

OoR /1 A tinmer can be started with
<start-tinmer-op-duration> /1 a default duration, or with
/1 a given duration.

v

Figure 122: Flow graph segment <start-timer-op>

ETSI



150 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.48.1 Flow graph segment <start-timer-op-default>

The flow graph segment <st art - ti mer - op- def aul t > in figure 123 defines the execution of the St art timer
operation with the default value.

segment <start-tiner-op-default>

Start_tin«er_op_default ...................................
(timerld)

/1 The tiner reference <tinerld> is copied into the node
/] attribute'tinerld

if (Entity.tinmerld. DEF- DURATI ON == NONE) {

*** DYNAM C- ERROR* * * /'l Timer has no default duration

}

el se {
Entity. TI MER-SET(tinerld, ACT-DURATION, Entity.timerld. DEF- DURATI ON);
Entity. TIMER- SET(tinerld, TINE-LEFT, Entity.timerld. DEF- DURATI ON);
Entity. TI MER-SET(tinerld, STATUS, RUNN NG ;

}

Entity. NEXT- CONTROL(tr ue);

RETURN;

Figure 123: Flow graph segment <start-timer-op-default>

ETSI



151 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.48.2 Flow graph segment <start-timer-op-duration>

The flow graph segment <st art - ti mer - op- dur ati on> in figure 124 defines the execution of the St art timer
operation with a provided duration.

segment <start-tiner-op-duration>

/'l The expression shall evaluate
// to a float. The result is pushed
/1 onto VALUE- STACK.

<expressi on>

Start_t|n-er_op_durat|0n ...................................
(timerld)

/1 The timer reference <tinmerld> is copied into the node
/] attribute ‘timerld

Entity. TI MER SET(timerid, ACT-DURATION, Entity.VALUE- STACK. top());
Entity. TIMER SET(timerld, TINE-LEFT, Entity.VALUE- STACK top());
Entity. TI MER-SET(tinmerld, STATUS, RUNNI NG);

Entity. VALUE- STACK. pop(); /1 clean VALUE- STACK

Entity. NEXT- CONTROL(true);
RETURN,

Figure 124: Flow graph segment <start-timer-op-duration>

9.49  Stop component operation
9.49.0 General

The syntactical structure of the St Op component statement is:
<conponent - expr essi on>. st op

The st op component operation stops the specified component. All test components will be stopped, i.e. the test case
terminates, if the MTC is stopped (e.g. nt c. St op) or stops itself (e.g. sel f . st op). The MTC may stop all parallel
test components by using the al | keyword, i.e. al | conmponent .st op.

Stopped components created with an al i ve clause in the cr eat e operation are not removed from the test system.
They can be restarted by using a St art statement. Variables, ports, constants and timers owned by such a component,
i.e. declared and defined in the corresponding component type definition, keep their status. A St op operation for a
component created without an al i ve clause is semantically equivalent to a Ki | | operation. The component is
removed from the test system.

A component to be stopped is identified by a component reference provided as expression, e.g. a value or value
returning function. For simplicity, the keyword "al | component " is considered to be special values of
<conponent - expr essi on>. The operations Nt ¢ and sel f are evaluated according to clauses 9.33 and 9.43.

ETSI



152 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

The flow graph segment <st op- conponent - op> in figure 125 defines the execution of the St Op component
operation.

segnent <stop-conmponent - op>

/1 The Expression shall evaluate
v /1 to a component reference. The
..... /] result is pushed onto VALUE- STACK

<expressi on>

if (Entity.VALUE-STACK top() == "all conponent') {
Entity. VALUE- STACK pop(); // clean value stack
if (Entity !'= MO {

v *** DYNAM C-ERROR*** [/ "all' not al | owed
decision Ve LI se {
Entity. NEXT- CONTROL(true);
true {
fal se }
el se {
Entity. NEXT- CONTROL( f al se);
<stop-all - conp> }
— RETURN;
v if (Entity.VALUE- STACK. top() == MICQ) {

Entity. VALUE- STACK. pop(); // clean value stack
........... Entity. NEXT- CONTROL(true);

}

true el se {

Entity. NEXT- CONTROL( f al se);

deci si on

}
RETURN;

<kill-ntc>

i f (ALL- ENTI TY- STATES. nenber (Entity. VALUE- STACK. top())) {
Entity. NEXT- CONTROL(true);

}
el se {
if (DONE. menmber (Entity. VALUE- STACK. top())){
prepar e-stop /1 NULL operation, conmponent already stopped
fal se /1 or killed.
Entity. VALUE- STACK. pop(); // clean value stack
true Entity. NEXT- CONTROL(f al se);
el se {
/1 conponent id has not been all ocated
*** DYNAM C- ERROR* * *
{
}
RETURN,

if (Entity.VALUE- STACK. top().KEEP-ALIVE == true)) {
Entity. NEXT- CONTROL(true); // Conponent is not
/1 renoved fromthe

/] test system

el se {
v Entity. NEXT- CONTROL(fal se); // Conponent is killed
}
deci si on RETURN;

true fal se

A 4
<stop-al i ve- conponent >

<ki |l - conponent >

'

Figure 125: Flow graph segment <stop-component-op>

ETSI



9.49.1 Void

153 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.49.2 Flow graph segment <stop-alive-component>

The <st op- al i ve- conponent > flow graph segment in figure 126 describes the stopping of a parallel test
component, i.e. not the MTC or module control, which has been created with an al i ve clause. The effect is that the
test case verdict TC-VERDICT and the list of terminated test components (DONE) are updated and that the component
changes its status to BLOCKED. The <st op- al i ve- conmponent > flow graph assumes that the identifier of the

component to be stopped is on top of the value stack of the component that executes the segment.

segnent

<st op- al i ve- conponent >

stop-ali ve- conponent

let { // local scope
var nyEntity := Entity. VALUE- STACK top();
var conpVar Scope : = copy(nyEntity. DATA-STATE first());
var conpTimer Scope := copy(nmyEntity. TT NER STATE first());
var conpPortScope := copy(nyEntity. PORT- REF.first());

/ for test continuation, if stop i s executed by anot her component
if (Entity !'= nyEntity()) {

Entity. VALUE- STAK. pop(); /'l clean value stack

Entity. NEXT- CONTROL(T rue) ;

}

/| Wdate test case verdict

if (nyEntitiy.EVERDICT ==fail or TGVERD CT == fail) {
TG VERD CT = fail;

else {
if (nyEntity. EEVERD CT == inconc or TC-VERDICT == inconc) {
TG VERD CT : = I nconc;
else {
if (nyEntity. E-VERD CT == pass or TG VERD CT == pass) {
TG VERD CT : = pass;
}
}
/1 Updat e of DCONE
DONE. append(( nyEntity, E- VERD CT)); /1 Updat e of DONE

/'l Wpdat e of component state

myEnti ty. STATUS : = BLOCKED,

nyEnti ty. CONTRCL- STACK : = NULL;

myEnti ty. DEFAULT-LIST : = NULL;

nyEnti ty. VALUE- STAXK : = NULL;

myEnti ty. VALUE- STACK. push( MARK) ; /1 for conponent scope
nyEnti ty. TT MER GUARD. STATUS : = | DLE;
nyEnti ty. DATA- STATE : = NULL

nyEnti ty. DATA- STATE add(conpVar Scope) ;
nyEnti ty. TT MER STATE : = NULL;

nyEnti ty. TT MER STATE. add( conpTi mer Scope) ;
myEnti ty. PORT- REF := NULL

nmyEnti ty. PORT- REF. add(conpPort Scope);
nyEnti ty. SNAP-ALTVE : = NULL;

nmyEnti ty. SNAP-DONE : = NULL;

myEnti ty. SNAP-KI LLED : = NULL;

} // End of |ocal scope
RETURN;

Figure 126: Flow graph segment <stop-alive-component>

ETSI




154 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.49.3 Flow graph segment <stop-all-comp>

The <st op- al | - conp> flow graph segment in figure 127 describes the stopping of all parallel test components of a

test case.
segnent
<stop-all - conp> let { // local scope
h 4 var nyEntity := ALL- ENTI TY- STATES. next (MO ;
prepare-stop e Entity. VALUE- STACK. push( MARK)
while (nyEntity !'= NULL) {
Entity. VALUE- STACK. push(nyEntity);
nyEntity := ALL- ENTI TY- STATES. next (nyEntity);
} // End of local scope
Entity. NEXT- CONTROL(true);
RETURN,
) 4 -
if (Entity.VALUE- STACK top().KEEP-ALIVE == true) {
Entity. NEXT- CONTROL(true);
}
el se {
Entity. NEXT- CONTROL( f al se);
Y } -
stop-or-Kill )] RETURN;
true
A 4
<st op- al i ve- conponent > <ki | I - corponent >
g /
if (Entity.VALUE- STACK. top() == MARK) ({
Stop-0r-Kill  Yeeceessesnssnens Entity. VALUE- STACK. pop(); /'l clean stack
fal se Entity. NEXT- CONTROL(true); // end of |oop
true el se {
Entity. NEXT- CONTRCL(f al se);
}
RETURN,

Figure 127: Flow graph segment <stop-all-comp>

ETSI




155 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.50  Stop execution statement

The syntactical structure of the St Op execution statement is:

stop
The effect of the St Op execution statement depends on the entity that executes the St Op execution statement:

a) If st op is performed by the module control, the test campaign ends, i.e. all test components and the module
control disappear from the module state. This is semantically similar to the execution of a ki | | statement by
the module control.

b) Ifthe st op is executed by the MTC, the test case ends. All parallel test components and the MTC stop and are
removed from the test system. The global test case verdict is updated and pushed onto the value stack of the
module control. Control is given back to the module control. This is semantically similar to the execution of a
ki || statement by the MTC.

c) Ifthe st op is executed by a test component, the global test case verdict TC-VERDICT and the global DONE
list are updated. If the test component is created with an alive clause. The status of the component is set to
BLOCKED and it may be started again. Otherwise the component is removed from the test system.

The flow graph segment <st op- exec- st nt > in figure 128 describes the execution of the St op statement.

segnment <stop-exec-stnt>

A if (Entity == CONTROL) {
Entity.NEXT-CONTROL(true);
decision  }..........
el se {
true Entity. NEXT- CONTROL( fal se);
fal se }
RETURN

<kill-control>

if (Entity == MIC) {
Entity.NEXT-CONTROL(true);

}
el se {
Entity.NEXT-CONTROL(fal se);

}
RETURN
deci si on

true
Entity. VALLE- STACK. push(Entity);
if (Entity.KEEP-ALIVE == true) {
Entity. NEXT-CONTROL(true);
<kill-mc> }
‘‘‘‘‘‘‘‘‘ el se {
Entity.NEXT-CONTROL(fal se);
}
RETURN
<ki Il - conponent > <st op-al i ve- conponent>

® hd
|

Figure 128: Flow graph segment <stop-exec-stmt>

ETSI



156 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.51  Stop port operation
The syntactical structure of the St op port operation is:
<portld>. stop

The flow graph segment <st op- port - op> in figure 129 defines the execution of the St op port operation.

segnment <stop-port-op>

v let { // Begin of |ocal scope
var portRef := NULL
var portState := NULL;
stop-port-op Ve
(portld) if (portid == “all port”) {
portState := ALL- PORT- STATES.first();
while (portState !'= NULL) {
if (portState. ONNER == Entity) ({
port State. STATUS : = STOPPED

portState : =
ALL- PORT- STATES. next (port State);

}

el se {
portRef := Entity. portld. COVP- PORT- NAME;
GET- PORT(Entity, portRef).STATUS : = STOPPED;
} /1 End of socpe

Entity. NEXT- CONTROL(tr ue);
RETURN,

v

Figure 129: Flow graph segment <stop-port-op>

ETSI



157 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.52  Stop timer operation

The syntactical structure of the St Op timer operation is:

<tinerld>. stop
The flow graph segment <st op-t i nmer - op> in figure 130 defines the execution of the St Op timer operation.

The al | keyword is handled as a special value of t i ner | d.

segnment <stop-tiner-op>

4 /! The timer reference <tinerld> is copied
) /1 into the node attribute ‘tinerld
stop-tiner-op ...
(timerld) if (timerid == ‘all timer') {

Entity. TI MER- STATE. change. change( Tl MER- SET(, STATUS, |DLE));
Entity. TI MER- STATE. change. change( Tl MER- SET(, ACT- DURATI ON, 0.0);
Entity. TI MER- STATE. change. change( Tl MER- SET(, TI ME-LEFT, 0.0);

/'l Note, the first paraneter of the TIMER-SET function is

/] ommitted, because it is applied to all tiners in the

/1 actual scope unit.

el se {
Entity. TI MER-SET(timerld, STATUS, |DLE);
Entity. TI MER- SET(tinerld, ACT-DURATION, 0.0);
Entity. TI MER-SET(tinerld, TIMeLEFT, 0.0);

}

Entity. NEXT- CONTROL(true);
RETURN,;

Figure 130: Flow graph segment <stop-timer-op>

9.53  System operation

The syntactical structure of the Syst emoperation is:

system

The flow graph segment <Syst em op> in figure 131 defines the execution of the SySt emoperation.

segnment <system op>

Entity. VALUE- STACK. push(systemn;
systemop Vo Entity. NEXT- CONTROL(true);
RETURN;

v

Figure 131: Flow graph segment <system-op>

ETSI



158 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.53a Test case stop operation

The syntactical structure of the test case stop operation is:

testcase. stop (<informal -description>)

The behaviour of the test case stop operation is identical to the execution of a log statement (clause 9.31) followed by a
dynamic error (clause 9.17.3). Flow graph segment <t est - case- st op- op> in figure 131a defines the execution of
the test case stop operation.

segment <test - case- st op- op>

\

<log-stm >

A

<dynamic-error>

Figure 131a: Flow graph segment <test-case-stop-op>

9.54  Timer declaration
9.54.0 General

The syntactical structure of a timer declaration is:
timer <tinerld> [:= <float-expression>]

The effect of a timer declaration is the creation of a new timer binding. The declaration of a default duration is optional.
The default value is considered to be an expression that evaluates to a value of the type f | oat .

The flow graph segment <t i nmer - decl ar at i on> in figure 132 defines the execution of a timer declaration.

segnent <timer-declaration> ¢

<tiner-decl -defaul t>
OR /1 A tinmer nay be declared with
<ti mer - decl - no- def > /1 or without a default duration

Figure 132: Flow graph segment <timer-declaration>

ETSI



159 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.54.1 Flow graph segment <timer-decl-default>

The flow graph segment <t i ner - decl - def aul t > in figure 133 defines the execution of a timer declaration where
a default duration in form of an expression is provided.

segnment <ti mer-decl -defaul t>

v

<expressi on>

/1 The expression shall evaluate

/1 to a value of type float

ti mer-decl -defaul t
(timerld)

Entity. INIT-TIMER(tinerld, Entity.VALUE-STACK top());
Entity. VALUE- STACK. pop(); /1 clean VALUE- STACK

Entity. NEXT- CONTROL(true);
RETURN;

Figure 133: Flow graph segment <timer-decl-default>

9.54.2 Flow graph segment <timer-decl-no-def>

The flow graph segment <t i mer - decl - no- def > in figure 134 defines the execution of a timer declaration where
no default duration is provided, i.e. the default duration of the timer is undefined.

segnent <ti mer-decl - no-def >

Entity. NI T-TINMER(ti merld, NONE);

ti mer - decl - no- def Entity. NEXT- CONTROL(true);
(tinerld) RETURN,

\4

Figure 134: Flow graph segment <timer-decl-no-def>

ETSI



160

9.55

The syntactical structure of the t i meout timer operation is:

Timeout timer operation

<timerld> tinmeout

Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

The flow graph segment <t i meout -t i mer - op> in figure 135 defines the execution of the t i meout timer

operation.

segment <timeout-timer-op>
A 4
timeout-tiner-op
(timerld) i
. /1 The tiner reference <tinerld> is copied
// into the node attribute ‘tinmerld
let { // local scope for variable nyTinmerlList
var nyTi nerList; /!l to store a list of timer Bindings
if (timerld == “any tiner’) {
nyTinerList := Entity. TI MER-STATE. first();
timerld := NULL;
while (nyTinmerList !'= NULL & tinerld == NULL) {
timerld := nmyTinerList.randon( SNAP- STATUS == TI MEOUT) ;
nyTi nerList := Entity. TI MER STATE. next (nyTi merList);
{
}
if (timerid !'= NULL &% Entity.timerld. SNAP- STATUS == TI MEOUT) {
Entity. TI MER- SET(tinerld, STATUS, IDLE);
Entity. TI MER-SET(tinmerld, ACT-DURATION, 0.0);
Entity. TI MER-SET(timerld, TIMe-LEFT, 0.0);
Entity. STATUS : = ACTI VE;
Entity. NEXT- CONTROL(true);
true fal se }
el se {
Entity. NEXT- CONTROL(f al se);
}
} /1 end of |ocal scope
RETURN,
JV v

NOTE 1: Ati meout operation is embedded in an al t statement. Its evaluation is based on the actual snapshot,
i.e. the decision is based on the SNAP-STATUS entry in the timer binding. If the timeout operation is
successful, i.e. SNAP-STATUS == TIMEOUT, the timer is set into an IDLE state and the component state

changes from SNAPSHOT to ACTIVE.
NOTE 2:

When the t i neout evaluatestotrue orf al se, either execution continues with the statement that

follows the t i meout operation (t r ue branch), or the next alternative in the al t statement has to be

checked (f al se branch).

NOTE 3: The any keyword is treated like as special value of timerld.

Figure 135: Flow graph segment <timeout-timer-op>

ETSI



161 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.56 Unmap operation
9.56.0 General

The syntactical structure of the unmap operation is:

unmap( <conponent _expressi on>: <port|dl> [, system <portl|d2>])

The identifiers <por t | d1> and <port | d2> are considered to be port identifiers of the corresponding test component
and test system interface. The components to which the <portld1> belongs is referenced by means of the component
reference <conponent - expr essi on>. The reference may be stored in variables or is returned by a function, i.e. it
is an expression, which evaluates to a component reference. The value stack is used for storing the component
reference.

The unmap operation can be used with one parameter pair and with two parameters pairs. The usage of the unmap
operation with one parameter pair may unmap port mappings for one component or, if executed by the MTC for all
components. The usage of the unmap operation with two parameter pairs allows to unmap one specific mapped port.

The operational semantics does not model the ports in the abstract test system interface. Therefore, only the parameter
pair that identifies the component (or components, if the all component keyword is used) and the corresponding port (or
ports, if the all port keyword is used) has to be considered here.

In the flow graph segment three cases are distinguished:
1)  the nt ¢ unmaps all mapped ports of all components;
2) all mapped ports of one component are unmapped; and

3)  one port of one component is unmapped.

ETSI



162 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

The execution of the unmap operation is defined by the flow graph segment <unmap- op> shown in figure 136.

segment

<unmap- op>

A

<expr essi on>

/1
/1
11

The Expression shall eval uate
to a conponent reference. The
result is pushed onto VALUE- STACK

true

A

unmap- deci sion
(portld)

fal se

<unmap-al | >

true

deci si on

fal se

<unnap- conp>

A

el se {

}
RETURN;

(Entity. VALUE- STAXK. top() == “all conponent”) {
if ( (BEntity I'= MIC) OR
(Entity == MIC && portld != “all port”) ) {
*** DYNAM C- ERROR** *
}
el se {
Entity. VALUE- STACK. pop();
Entity. NEXT- CONTROL(tr ue);

Entity. VALUE- STACK. push( portld);
Entity. NEXT- CONTROL( fal se) ;

if

el se {

}
RETLRN;

(Entity. VALUE-STACK.top() !'= “all port”) {
Entity. VALUE- STACKK. pop();
Entity. NEXT- CONTROL(true);

Entity. NEXT- CONTROL(fal se);

<unmap- port>

v

v

Figure 136: Flow graph segment <unmap-op>

ETSI



9.56.1

163

Flow graph segment <unmap-all>

Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

The flow segment <unmap- al | > defines the unmapping of all components at all mapped ports.

segment <unmap-al | >
A 4
unmap-al |l Yo
let { // local scope
var port := ALL- PORT- STATES.first();
var connection;
while (port !'= NULL) {
connection : = port. CONNECTI ONS. first();
whil e (connection !'= NULL) {
if (connection. REMOTE- ENTI TY == systen) {
port . CONNECTI ONS. del et e( connection);
connection := port. CONNECTI ONS. first();
el se {
connection : = NULL; /1 connected port
}
port := ALL- PORT- STATES. next (port)
}
} /1 End of local scope
Entity. NEXT- CONTROL(true);
RETURN;
v

Figure 136a: Flow graph segment <unmap-all>

ETSI



164 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

9.56.2 Flow graph segment <unmap-comp>

The flow segment <unmap- conp> defines the unmapping of all mapped ports of a specified component.

segment <unnap- conp>

UNMBP-CONMP  Yorrnsen

let { // local scope
var conp := Entity.VALUE- STACK top();
var connection;
var port := ALL- PORT- STATES.first();

while (port !'= NULL) {
if (port. OMNER == conp) { /1 port of conp
connection := port. CONNECTI ONS. first();

port . CONNECTI ONS. del et e(connecti on);

}
}
port := ALL- PORT- STATES. next (port);

}
Entity. VALUE- STACK. pop(); /'l clear value stack
} /1 End of |ocal scope

Entity. NEXT- CONTROL(true);
RETURN;

if (connection. REMOTE- ENTITY == system) { // mapped port

of conp

Figure 136b: Flow graph segment <unmap-comp>

ETSI




9.56.3 Flow graph segment <unmap-port>

165

Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

The flow segment <unmap- por t > defines the unmap operation for a specific mapped port.

segment <unmap- port >

unnap- por t W—

let { /
var
var
var
var

por
Ent

Ent
por

Entity.
RETURN,;

connection

else { ) // do nothing,
} /1 End of local scope

/ | ocal scope
portld;

conp;

port;
connecti on;

tld := Entity.VALUE- STACK. top();

ity. VALUE- STAK. pop();

conp : = Entity. VALUE- STACK. top();

ity. VALUE- STAK. pop();

t := GET-PORT(conp, portld);

:= port. CONNECTI ONS. first();

if (connection. REMOTE-ENTI TY ! = SYSTEM) {
*** DYNAM C- ERROR** * /1 port

else if (connection !'= NUWL){
port. CONNECTI ONS. del et e( connecti on);

NEXT- CONTROL(true);

is not a napped port

port is neither connected nor mapped

9.57 Variable
9.57.0 General

Figure 136¢: Flow graph segment <unmap-port>

declaration

The syntactical structure of a variable declaration is:

var <var Type> <varl d>

[:= <var Type- expressi on>]

The initialization of a variable by providing an initial value (in form of an expression) is optional. The initial value is
considered to be an expression that evaluates to a value of the type of the variable.

NOTE: Variables may be declared to be lazy or fuzzy. This operational semantics does not model lazy and fuzzy
evalution. It assumes that the correct evaluation of such variables is done internally.

ETSI



166 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

The flow graph segment <var i abl e- decl ar ati on> in figure 137 defines the execution of the declaration of a
variable.

segnment <vari abl e- decl arati on> v

<var-declaration-init>

R /1 A variable may be declared with
<var - decl ar ati on- undef > // or without initial value

Figure 137: Flow graph segment <variable-declaration>

9.57.1 Flow graph segment <var-declaration-init>

The flow graph segment <var - decl ar ati on-i ni t > in figure 138 defines the execution of a variable declaration
where an initial value in form of an expression is provided.

segnment <var-decl aration-init>

v

/1 The expression shall evaluate
I/l to a value of the type of the
/1 variable that is declared.

<expr essi on>

Entity. | NI T-VAR(varld, Entity.VALUE-STACK top());

Enti ty. VALUE- STACK. pop() ; /1 clean VALUE- STACK;
var-decl arati on-init
(varld) Entity. NEXT- CONTROL(true);
RETURN;

Figure 138: Flow graph segment <var-declaration-init>

9.57.2 Flow graph segment <var-declaration-undef>

The flow graph segment <var-declaration-undef> in figure 139 defines the execution of a variable declaration where no

ETSI



initial value is provided, i.e. the value of the variable is undefined.

167

Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

segnent <var-decl arati on-undef >

var - decl ar ati on- undef
(varld)

Entity. | N T- VAR(var|ld, NONE);

Entity. NEXT- CONTROL(true);
RETURN,

v

Figure 139: Flow graph segment < var-declaration-undef >

9.58 While statement

The syntactical structure of the whi | e statement is:

whi | e (<bool ean- expr essi on>) <st at ement - bl ock>

The execution of a whi | e statement is defined by the flow graph segment <whi | e- st mt > shown in figure 140.

segment <whil e-stnt>

<expressi on>

deci si on

true

<st at enent - bl ock>

/1 The expression shall evaluate to
/'l a Bool ean val ue.

if (Entity.VALUE- STACK. top() == true)
Entity. NEXT- CONTROL(true);

el se {
Entity. NEXT- CONTROL(true);

}
Entity. VALUE- STACK. pop() ;
RETURN;

v

Figure 140: Flow graph segment <while-stmt>

ETSI



168 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

10 Lists of operational semantic components

10.1

Functions and states

Table 1
Name Description Clause

ACT-DURATION Duration with which an active timer has been started 8.3.24
add List operation: adds an item as first element to a list 8.3.1a.1
ADD-CON Adds a connection to a port state 8.3.3.2
ALL-ENTITY-STATES  |Component states in module state 8.3.1
ALL-PORT-STATES Port states in module state 8.3.1
append List operation: appends an item as last element to a list 8.3.1a.1
APPLY-OPERATOR Application of operators like +, - or / 8.6.2
change List operation: changes all elements of a list 8.3.1a.1
clear Stack operation "clear": clears a stack 8.3.2.1
clear Queue operation "clear": removes all elements from a queue 8.3.3.2
clear-until Stack operation "clear-until": pops items until a specific item is top element 8.3.2.1

in the stack
CONNECTIONS-LIST  |List of connections of a port 8.3.3
CONSTRUCT-ITEM Constructs an item to be sent 8.4.4
CONTINUE- The actual component continues its execution 8.6.2
COMPONENT
CONTROL-STACK Stack of flow graph nodes denoting the actual control state of an entity 8.3.2
DATA-STATE Data state in an entity state 8.3.2
DEF-DURATION Default Duration of a timer 8.3.24
DEFAULT-LIST List of active defaults in an entity state 8.3.2
DEFAULT-POINTER Points to the actual default during the default evaluation 8.3.2
DEL-CON Deletes a connection from a port state 8.3.3.2
DEL-ENTITY Deletes an entity from a module state 8.3.4
DEL-TIMER-SCOPE Deletes a timer scope 8.3.25
DEL-VAR-SCOPE Deletes a variable scope 8.3.2.3
delete List operation: deletes an item from a list 8.3.1a.1
dequeue Queue operation: deletes the first element from a queue 8.3.3.2
DONE Identifiers of terminated test components (part of module state) 8.3.1
E-VERDICT Local test verdict of a test component 8.3.2
enqueue Queue operation: puts an item as last element into a queue 8.3.3.2
first Queue operation "first": returns the first element of a queue 8.3.3.2
first List operation: returns the first element of a list 8.3.1a.1
GET-FLOW-GRAPH Retrieves the start node of a flow graph 8.2.7
GET-PORT Retrieves a port reference 8.3.3.2
GET-REMOTE-PORT Retrieves the reference of a remote port 8.3.3.2
GET-TIMER-LOC Retrieves location of a timer 8.3.25
GET-UNIQUE-ID Returns a new unigue identifier when it is called 8.6.2
GET-VAR-LOC Retrieves location of a variable 8.3.2.3
INIT-CALL-RECORD Initializes variables for parameters for procedure-based communication in 8.5.1

the actual scope unit of the test component
INIT-FLOW-GRAPHS Initializes the flow graph handling 8.6.2
INIT-TIMER Creates a new timer binding 8.3.2.5
INIT-TIMER-LOC Creates a new timer binding with an existing location 8.3.25
INIT-TIMER-SCOPE Initializes a new timer scope 8.3.25
INIT-VAR Creates a new variable binding 8.3.2.3
INIT-VAR-LOC Creates a new variable binding with an existing location 8.3.2.3
INIT-VAR-SCOPE Initializes a new variable scope 8.3.2.3
length List operation: returns the length of a list 8.3.1a.1
M-CONTROL Identifier of module control in module state 8.3.1
MATCH-ITEM Checks if a received message, call, reply or exception matches with a 8.4.5

receiving operation
member List operation: checks if an item is element of a list 8.3.1a.1
MTC Reference to MTC in module state 8.3.1
NEW-CALL-RECORD  |Creates a call record for a function call 8.5.1
NEW-ENTITY Creates a new entity state 8.3.2.1
NEW-PORT Creates a new port 8.3.3.2

ETSI




169 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)
Name Description Clause
NEXT Retrieves the successor node of a given node in a flow graph 8.1.6
next List operation: returns next element in a list 8.3.1a.1
NEXT-CONTROL Pops the top flow graph node from the control stack and pushes the next 8.3.2.1
flow graph node onto the control stack
OWNER Owner of a port 8.3.3
pop Stack operation "pop": pops an item from a stack 8.3.2.1
PORT-NAME Name of a port 8.3.3
push Stack operation "push": pushes an item onto a stack 8.3.2.1
random List operation: returns randomly an element of a list 8.3.1a.1
REMOTE-ENTITY Remote entity in a connection in a port state 8.3.3.1
REMOTE-PORT-NAME |Name of a port in a connection in a port state 8.3.3.1
RETRIEVE-INFO Retrieves information from a received message, call, reply or exception 8.4.6
RETURN Returns the control to the module evaluation procedure 8.6.2
SNAP-DONE List of terminated test components at the time when a snapshot is taken 8.3.2
SNAP-PORTS Provides the snapshot functionality, i.e. updates the SNAP-VALUE 8.3.3.2
SNAP-STATUS Snapshot status of a timer 8.3.24
SNAP-TIMER Provides the snapshot functionality and updates SNAP-VALUE and SNAP- 8.3.25
STATUS
SNAP-VALUE Snapshot value of a timer 8.3.24
SNAP-VALUE For snapshot semantics, updated when a snapshot is taken 8.3.3
STATUS Status (ACTIVE, BREAK, SNAPSHOT, REPEAT or BLOCKED) of module 8.3.2
control or a test component
STATUS Status (IDLE, RUNNING or TIMEOUT) of a timer 8.3.2.4
STATUS Status (STARTED, HALTED or STOPPED) of a port 8.3.3
TC-VERDICT Test case verdict in module state 8.3.1
TIME-LEFT Time a running timer has left to run before it times out 8.3.24
TIMER-GUARD Timer that guards execut e statements and cal | operations 8.3.2
TIMER-NAME Name of a timer 8.3.24
TIMER-SET Setting values of a timer 8.3.2.5
TIMER-STATE Timer state in an entity state 8.3.2
top Stack operation "top": returns the top item from a stack 8.3.2.1
UPDATE-REMOTE- Updates timers and variables with the same location in different entities to 8.3.4
REFERENCES the same value
VALUE Value of a variable. 8.3.2.2
VALUE-QUEUE Port queue 8.3.3
VALUE-STACK Stack of values for the storage of results of expressions, operands, 8.3.2
operations and functions
VAR-NAME Name of a variable 8.3.2.2
VAR-SET Setting the value of a variable 8.3.2.3
**DYNAMIC-ERROR*** |Describes the occurrence of a dynamic error 8.6.2
<identifier> Unique identifier of a test component 8.3.2
<location> Supports scope units, reference and timer parameters. Represents a 8.3.2.2,8.3.24
storage location for timers and variables
10.2  Special keywords
Table 2
Keyword Description Clause
ACTIVE STATUS of an entity state 8.3.2
BLOCKED STATUS of an entity state 8.3.2
BREAK STATUS of an entity state 8.3.2
HALTED STATUS of a port 8.3.3
HALT-MARKER Used as marker in a port queue 8.3.3,9.28a
IDLE STATUS of a timer state 8.3.24
MARK Used as mark for VALUE-STACK 8.3.2
NONE Used to describe an undefined value 8.3.2.3,8.3.25,8.3.3.2
NULL Symbolic value for pointer and pointer-like types to indicate that nothing 8.3.1a.1, 8.3.2.1, 8.3.3,
is addressed 8.3.3.2,8.6.1.1
REPEAT STATUS of an entity state 8.3.2
RUNNING STATUS of a timer state 8.3.24
SNAPSHOT, STATUS of an entity state 8.3.2
STARTED STATUS of a port 8.3.3

ETSI




170 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

Keyword Description Clause
STOPPED STATUS of a port 8.3.3
TIMEOUT STATUS of a timer state 8.3.24

10.3  Flow graphs of TTCN-3 behaviour descriptions

Table 3
Reference
Figure Clause

Module control 18 8.2.2

Test cases 19 8.2.3

Functions 20 8.24

Altsteps 21 8.2.5

Component type definitions 22 8.2.6
10.4  Flow graph segments

Table 4
Identifier Related TTCN-3 construct Reference
Figure Clause

<action-stmt> act i on statement 36 9.1
<activate-stmt> acti vat e statement 37 9.2
<alive-component-op> al i ve component operation 37a 9.2a
<alive-comp-act> al i ve component operation 37b 9.2a.1
<alive-comp-snap> al i ve component operation 37c 9.2a.2
<alt-stmt> al t statement 38 9.3
<altstep-call> invocation of an altstep 44 9.4
<altstep-call-branch> al t statement 41 9.3.3
<assignment-stmt> assignment 45 9.5
<b-call-with-duration> cal | operation 52 9.6.4
<b-call-without-duration> cal | operation 51 9.6.3
<blocking-call-op> cal | operation 47 9.6
<break-altstep-stmt> br eak statement (leaving an altstep) 45a 9.5a
<call-op> cal | operation 46 9.6
<call-reception-part> cal | operation 53 9.6.5
<catch-op> cat ch operation 55 9.7
<catch-timeout-exception> cal | operation 54 9.6.6
<check-op> check operation 56 9.8
<check-with-sender> check operation 57 9.8.1
<check-without-sender> check operation 58 9.8.2
<checkstate-port-op> checkstate operation 58a 9.8a
<check-port-status> checkstate operation 58b 9.8a.1
<check-port-connection> checkstate operation 58c 9.8a.2
<clear-port-op> cl ear port operation 59 9.9
<connect-op> connect operation 60 9.10
<constant-definition> constant definition 61 9.11
<create-op> cr eat e operation 62 9.12
<deactivate-all-defaults> deact i vat e statement 63c 9.13.2
<deactivate-one-default> deact i vat e statement 63b 9.13.1
<deactivate-stmt> deact i vat e statement 63a 9.13
<default-evocation> al t statement 43 9.3.5
<disconnect-op> di sconnect operation 64 9.14
<disconnect-one-par-pair> di sconnect operation 64a 9.14.1
<disconnect-all> di sconnect operation 64b 9.14.2
<disconnect-comp> di sconnect operation 64c 9.14.3
<disconnect-port> di sconnect operation 64d 9.14.4
<disconnect-two-par-pairs>  |di sconnect operation 64e 9.14.5
<do-while-stmt> do- whi | e statement 65 9.15

ETSI




171 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

Identifier Related TTCN-3 construct Reference
Figure Clause
<done-op> done component operation 66 9.16
<dynamic-error> execut e statement 69a 9.17.3
<else-branch> al t statement 42 9.3.4
<execute-stmt> execut e statement 67 9.17
<execute-timeout> execut e statement 69 9.17.2
<execute-without-timeout> execut e statement 68 9.17.1
<expression> expression 70 9.18
<finalize-component-init> used in component type definitions 75 9.19
<for-stmt> f or statement 79 9.23
<func-op-call> expression 73 9.18.3
<function-call> call of a function 80 9.24
<getcall-op> get cal | operation 86 9.25
<getreply-op> get r epl y operation 87 9.26
<getverdict-op> get ver di ct operation 88 9.27
<goto-stmt> got o statement 89 9.28
<hal t-port-op> hal t port operation 89a 9.28a
<if-else-stmt> i f-el se statement 90 9.29
<init-component-scope> used in component type definitions 76 9.20
<init-scope-with-runs-on> used in function and altstep definitions 76a 9.20a
<init-scope-without-runs-on> |used in function and altstep definitions 76b 9.20b
<kill-all-comp> ki Il component operation 90d 9.29a.3
<kill-component> kil | component operation 90c 9.29%a.2
<kill-component-op> ki Il component operation 90a 9.29a
<kill-control> ki |l execution statement 90f 9.29b.1
<kill-exec-stmt> ki |l execution statement 90e 9.29b
<kill-mtc> kil | component operation 90b 9.2%a.1
<killed-op> ki Il ed component operation 90g 9.29c
<label-stmt> | abel statement 91 9.30
<lit-value> expression 71 9.18.1
<log-stmt> | og statement 92 9.31
<map-op> map operation 93 9.32
<mtc-op> nt ¢ operation 94 9.33
<nb-call-without-receiver> cal | operation 50 9.6.2
<nb-call-with-one-receiver> cal | operation 49 9.6.1
<nb-call-with-multiple- cal | operation 49a 9.6.1a
receivers>
<non-blocking-call-op> cal | operation 48 9.6
<operator-appl> expression 74 9.18.4
<parameter-handling> handling of parameters of functions, altsteps and test cases 77 9.21
<port-declaration> port declaration 95 9.34
<predef-ext-func-call> call of a function (call of a pre-defined or external function) 85 9.24.5
<raise-op> rai se operation 96 9.35
<raise-with-one-receiver-op> |r ai se operation 97 9.35.1
<raise-with-multiple-receivers- |r ai se operation 97a 9.35.1a
op>
<raise-without-receiver-op> |r ai se operation 98 9.35.2
<read-timer-op> r ead timer operation 99 9.36
<receive-assignment> recei ve operation 103 9.37.3
<receive-op> recei ve operation 100 9.37
<receive-with-sender> recei ve operation 101 9.37.1
<receive-without-sender> recei ve operation 102 9.37.2
<receiving-branch> al t statement 40 9.3.2
<ref-par-port-calc> call of a function (handling of port parameters) 83a 9.24.3.a
<ref-par-timer-calc> call of a function (handling of timer parameters) 83 9.24.3
<ref-par-var-calc> call of a function (handling of reference parameters) 82 9.24.2
<repeat-stmt> repeat statement 104 9.38
<reply-op> r epl y operation 105 9.39
<reply-with-one-receiver-op> |r epl y operation 106 9.39.1
<reply-with-multiple-receivers- |r epl y operation 106a 9.39.1a
op>
<reply-without-receiver-op> |r epl y operation 107 9.39.2

ETSI




172 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)
Identifier Related TTCN-3 construct Reference

Figure Clause
<return-stmt> r et ur n statement 108 9.40
<return-with-value> r et ur n statement 109 9.40.1
<return-without-value> r et ur n statement 110 9.40.2
<running-component-op> component r unni ng operation 111 9.41
<running-comp-act> component r unni ng operation 112 9.41.1
<running-comp-snap> component r unni ng operation 113 9.41.2
<running-timer-op> timer r unni ng operation 114 9.42
<self-op> sel f operation 115 9.43
<send-op> send operation 116 9.44
<send-with-one-receiver-op> |send operation 117 9.44.1
<send-with-multiple-receivers- [send operation 117a 9.44.1a
op>
<send-without-receiver-op> |send operation 118 9.44.2
<setverdict-op> setverdi ct operation 119 9.45
<start-component-op> st art component operation 120 9.46
<start-port-op> st art port operation 121 9.47
<start-timer-op> st art timer operation 122 9.48
<start-timer-op-default> start timer operation 123 9.48.1
<start-timer-op-duration> st art timer operation 124 9.48.2
<statement-block> block of statements in compound statements 78 9.22
<stop-component-op> st op component operation 125 9.49
<stop-alive-component> st op component operation 126 9.49.2
<stop-all-comp> st op component operation (all component.stop) 127 9.49.3
<stop-exec-stmt> st op execution statement 128 9.50
<stop-port-op> st op port operation 129 9.51
<stop-timer-op> st op timer operation 130 9.52
<system-op> syst emoperation 131 9.53
<take-snapshot> al t statement 39 9.3.1
<test-case-stop-op> test case stop operation 131a 9.53a
<timer-declaration> timer declaration 132 9.54
<timer-decl-default> timer declaration 133 9.54.1
<timer-decl-no-def> timer declaration 134 9.54.2
<timeout-timer-op> ti meout operation 135 9.55
<unmap-op> unmap operation 136 9.56
<unmap-all> unnap operation 136a 9.56.1
<unmap-comp> unmap operation 136b 9.56.2
<unmap-port> unnap operation 136¢ 9.56.3
<user-def-func-call> call of a function (call of a user-defined function) 84 9.24.4
<value-par-calculation> call of a function (handling of value parameters) 81 9.24.1
<var-declaration-init> variable declaration 138 9.57.1
<var-declaration-undef> variable declaration 139 9.57.2
<var-value> expression 72 9.18.2
<variable-declaration> variable declaration 137 9.57
<while-stmt> whi | e statement 140 9.58

ETSI



173 Final draft ETSI ES 201 873-4 V4.5.1 (2016-05)

History
Document history

V2.2.1 February 2003 Publication

V3.1.1 June 2005 Publication

V3.2.1 February 2007 Publication

V3.3.1 April 2008 Publication

V3.4.1 September 2008 | Publication

V4.1.1 June 2009 Publication

V4.2.1 July 2010 Publication

V4.4.1 April 2012 Publication

V4.5.1 May 2016 Membership Approval Procedure MV 20160715: 2016-05-16 to 2016-07-15

ETSI



	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Introduction
	5 Structure of the present document
	6 Restrictions
	7 Replacement of short forms
	7.0 General
	7.1 Order of replacement steps
	7.2 Replacement of global constants and module parameters
	7.3 Embedding single receiving operations into alt statements
	7.4 Embedding stand-alone altstep calls into alt statements
	7.5 Replacement of interleave statements
	7.6 Replacement of trigger operations
	7.7 Replacement of select-case statements
	7.8 Replacement of simple break statements
	7.9 Replacement of continue statements
	7.10 Adding default parameters to disconnect and unmap operations without parameters
	7.11 Adding default values of parameters

	8 Flow graph semantics of TTCN-3
	8.0 General
	8.1 Flow graphs
	8.1.0 General
	8.1.1 Flow graph frame
	8.1.2 Flow graph nodes
	8.1.2.0 General
	8.1.2.1 Start nodes
	8.1.2.2 End nodes
	8.1.2.3 Basic nodes
	8.1.2.4 Reference nodes
	8.1.2.4.0 General
	8.1.2.4.1 OR combination of reference nodes
	8.1.2.4.2 Multiple occurrences of reference nodes


	8.1.3 Flow lines
	8.1.4 Flow graph segments
	8.1.5 Comments
	8.1.6 Handling of flow graph descriptions

	8.2 Flow graph representation of TTCN-3 behaviour
	8.2.0 General
	8.2.1 Flow graph construction procedure
	8.2.2 Flow graph representation of module control
	8.2.3 Flow graph representation of test cases
	8.2.4 Flow graph representation of functions
	8.2.5 Flow graph representation of altsteps
	8.2.6 Flow graph representation of component type definitions
	8.2.7 Retrieval of start nodes of flow graphs

	8.3 State definitions for TTCN-3 modules
	8.3.0 General
	8.3.1 Module state
	8.3.1.0 General
	8.3.1.1 Accessing the module state

	8.3.1a Configuration state
	8.3.1a.0 Genral
	8.3.1a.1 Accessing the configuration state

	8.3.2 Entity states
	8.3.2.0 General
	8.3.2.1 Accessing entity states
	8.3.2.2 Data state and variable binding
	8.3.2.3 Accessing data states
	8.3.2.4 Timer state and timer binding
	8.3.2.5 Accessing timer states
	8.3.2.6 Port references and port binding
	8.3.2.7 Accessing port references

	8.3.3 Port states
	8.3.3.0 General
	8.3.3.1 Handling of connections among ports
	8.3.3.2 Handling of port states

	8.3.3a Component verdict states
	8.3.4 General functions for the handling of module states

	8.4 Messages, procedure calls, replies and exceptions
	8.4.0 General
	8.4.1 Messages
	8.4.2 Procedure calls and replies
	8.4.3 Exceptions
	8.4.4 Construction of messages, procedure calls, replies and exceptions
	8.4.5 Matching of messages, procedure calls, replies and exceptions
	8.4.6 Retrieval of information from received items

	8.5 Call records for functions, altsteps and test cases
	8.5.0 General
	8.5.1 Handling of call records

	8.6 The evaluation procedure for a TTCN-3 module
	8.6.1 Evaluation phases
	8.6.1.0 General
	8.6.1.1 Phase I: Initialization
	8.6.1.2 Phase II: Update
	8.6.1.3 Phase III: Selection
	8.6.1.4 Phase IV: Execution

	8.6.2 Global functions


	9 Flow graph segments for TTCN-3 constructs
	9.0 General
	9.1 Action statement
	9.2 Activate statement
	9.2a Alive component operation
	9.2a.0 General
	9.2a.1 Flow graph segment <alive-comp-act>
	9.2a.2 Flow graph segment <alive-comp-snap>

	9.3 Alt statement
	9.3.0 General
	9.3.1 Flow graph segment <take-snapshot>
	9.3.2 Flow graph segment <receiving-branch>
	9.3.3 Flow graph segment <altstep-call-branch>
	9.3.4 Flow graph segment <else-branch>
	9.3.5 Flow graph segment <default-evocation>

	9.4 Altstep call
	9.5 Assignment statement
	9.5a Break statements in altsteps
	9.6 Call operation
	9.6.0 General
	9.6.1 Flow graph segment <nb-call-with-one-receiver>
	9.6.1a Flow graph segment <nb-call-with-multiple-receivers>
	9.6.2 Flow graph segment <nb-call-without-receiver>
	9.6.3 Flow graph segment <b-call-without-duration>
	9.6.4 Flow graph segment <b-call-with-duration>
	9.6.5 Flow graph segment <call-reception-part>
	9.6.6 Flow graph segment <catch-timeout-exception>

	9.7 Catch operation
	9.8 Check operation
	9.8.0 General
	9.8.1 Flow graph segment <check-with-sender>
	9.8.2 Flow graph segment <check-without-sender>

	9.8a Checkstate port operation
	9.8a.0 General
	9.8a.1 Flow graph segment <check-port-status>
	9.8a.2 Flow graph segment <check-port-connection>

	9.9 Clear port operation
	9.10 Connect operation
	9.11 Constant definition
	9.12 Create operation
	9.13 Deactivate statement
	9.13.0 General
	9.13.1 Flow graph segment <deactivate-one-default>
	9.13.2 Flow graph segment <deactivate-all-defaults>

	9.14 Disconnect operation
	9.14.0 General
	9.14.1 Flow graph segment <disconnect-one-par-pair>
	9.14.2 Flow graph segment <disconnect-all>
	9.14.3 Flow graph segment <disconnect-comp>
	9.14.4 Flow graph segment <disconnect-port>
	9.14.5 Flow graph segment <disconnect-two-par-pairs>

	9.15 Do-while statement
	9.16 Done component operation
	9.16.0 General
	9.16.1 Flow graph segment <done-assignment>

	9.17 Execute statement
	9.17.0 General
	9.17.1 Flow graph segment <execute-without-timeout>
	9.17.2 Flow graph segment <execute-timeout>
	9.17.3 Flow graph segment <dynamic-error>

	9.18 Expression
	9.18.0 General
	9.18.1 Flow graph segment <lit-value>
	9.18.2 Flow graph segment <var-value>
	9.18.3 Flow graph segment <func-op-call>
	9.18.4 Flow graph segment <operator-appl>

	9.19 Flow graph segment <finalize-component-init>
	9.20 Flow graph segment <init-component-scope>
	9.20a Flow graph segment <init-scope-with-runs-on>
	9.20b Flow graph segment <init-scope-without-runs-on>
	9.21 Flow graph segment <parameter-handling>
	9.22 Flow graph segment <statement-block>
	9.23 For statement
	9.24 Function call
	9.24.0 General
	9.24.1 Flow graph segment <value-par-calculation>
	9.24.2 Flow graph segment <ref-par-var-calc>
	9.24.3 Flow graph segment <ref-par-timer-calc>
	9.24.3a Flow graph segment <ref-par-port-calc>
	9.24.4 Flow graph segment <user-def-func-call>
	9.24.5 Flow graph segment <predef-ext-func-call>

	9.25 Getcall operation
	9.26 Getreply operation
	9.27 Getverdict operation
	9.28 Goto statement
	9.28a Halt port operation
	9.29 If-else statement
	9.29a Kill component operation
	9.29a.0 General
	9.29a.1 Flow graph segment <kill-mtc>
	9.29a.2 Flow graph segment <kill-component>
	9.29a.3 Flow graph segment <kill-all-comp>

	9.29b Kill execution statement
	9.29b.0 General
	9.29b.1 Flow graph segment <kill-control>

	9.29c Killed component operation
	9.30 Label statement
	9.31 Log statement
	9.32 Map operation
	9.33 Mtc operation
	9.34 Port declaration
	9.35 Raise operation
	9.35.0 General
	9.35.1 Flow graph segment <raise-with-one-receiver-op>
	9.35.1a Flow graph segment <raise-with-multiple-receivers-op>
	9.35.2 Flow graph segment <raise-without-receiver-op>

	9.36 Read timer operation
	9.37 Receive operation
	9.37.0 General
	9.37.1 Flow graph segment <receive-with-sender>
	9.37.2 Flow graph segment <receive-without-sender>
	9.37.3 Flow graph segment <receive-assignment>

	9.38 Repeat statement
	9.39 Reply operation
	9.39.0 General
	9.39.1 Flow graph segment <reply-with-one-receiver-op>
	9.39.1a Flow graph segment <reply-with-multiple-receivers-op>
	9.39.2 Flow graph segment <reply-without-receiver-op>

	9.40 Return statement
	9.40.0 General
	9.40.1 Flow graph segment <return-with-value>
	9.40.2 Flow graph segment <return-without-value>

	9.41 Running component operation
	9.41.0 General
	9.41.1 Flow graph segment <running-comp-act>
	9.41.2 Flow graph segment <running-comp-snap>

	9.42 Running timer operation
	9.43 Self operation
	9.44 Send operation
	9.44.0 General
	9.44.1 Flow graph segment <send-with-one-receiver-op>
	9.44.1a Flow graph segment <send-with-multiple-receivers-op>
	9.44.2 Flow graph segment <send-without-receiver-op>

	9.45 Setverdict operation
	9.46 Start component operation
	9.47 Start port operation
	9.48 Start timer operation
	9.48.0 General
	9.48.1 Flow graph segment <start-timer-op-default>
	9.48.2 Flow graph segment <start-timer-op-duration>

	9.49 Stop component operation
	9.49.0 General
	9.49.1 Void
	9.49.2 Flow graph segment <stop-alive-component>
	9.49.3 Flow graph segment <stop-all-comp>

	9.50 Stop execution statement
	9.51 Stop port operation
	9.52 Stop timer operation
	9.53 System operation
	9.53a Test case stop operation
	9.54 Timer declaration
	9.54.0 General
	9.54.1 Flow graph segment <timer-decl-default>
	9.54.2 Flow graph segment <timer-decl-no-def>

	9.55 Timeout timer operation
	9.56 Unmap operation
	9.56.0 General
	9.56.1 Flow graph segment <unmap-all>
	9.56.2 Flow graph segment <unmap-comp>
	9.56.3 Flow graph segment <unmap-port>

	9.57 Variable declaration
	9.57.0 General
	9.57.1 Flow graph segment <var-declaration-init>
	9.57.2 Flow graph segment <var-declaration-undef>

	9.58 While statement

	10 Lists of operational semantic components
	10.1 Functions and states
	10.2 Special keywords
	10.3 Flow graphs of TTCN-3 behaviour descriptions
	10.4 Flow graph segments

	History

