Final draft ETS| ES 201 873-4 V3.2.1 (2006-12)

ETSI Standard

Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3;
Part 4: TTCN-3 Operational Semantics

D

2 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

Reference
RES/MTS-00090-4[2] ttcn3 o0s

Keywords

interoperability, methodology, MTS, testing,
TTCN

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2006.
All rights reserved.

DECT™, PLUGTESTS ™ and UMTS™ are Trade Marks of ETSI registered for the benefit of its Members.

TIPHON™ and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members.
3GPP™is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

ETSI

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

3 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

Contents

Intellectual Property RIGNES.........oo et 7
0 Yo (o SRS 7
1 o010 SRS 8
2 REFEIBINCES ...ttt sttt e et et et e e e bt e bt e bt s b e se e be st e st e st e benbenbeneenbentenees 8
3 Definitions and @DBreVIBLiONS...........coveieiieiiee e 8
31 DEFINITIONS. ...ttt b e R Rt R R R et R Rt R e R et r e 8
3.2 ABDIEVIBLIONS ..ottt e et n R n et n e 8
4 gLl [N o1 o] o SRRSO 8
5 Structure of the PreSENt AOCUMENTcoveieieiee e nn e s 9
6 = o 0] S 9
7 Replacement Of SNOM fOMMSooiiicc e et sae s re e e reere s 10
7.1 Order Of rEPIBCEMENT SLEIS......ceiirieeieerieeeeesese e seeste ettt e et e s e e te e te e teesteeseesaeesseesseeseeseenseensenseesneessenssns 10
7.2 Replacement of global constants and Module ParameELErS..........ccuveceece e iee s 11
7.3 Embedding single receiving operations into alt StALEMENES..........cccvirieiririeirieerees s 11
7.4 Embedding stand-alone altstep callSinto alt SEAEMENLS.........ccoiieiiiiciree s 11
7.5 Replacement Of iNterlEave STAIEMENESccoi e 12
7.6 Replacement Of trigger OPEIAIONS..........cveiriieeeeriee ettt bbbt e e b e sa s e 25
7.7 Replacement Of SEleCt-CaSe STAIEMENES........coi it 25
8 Flow graph semantiCS Of TTCN-3........ooiiiiiiiiee et e e s be e s reene e reereas 26
8.1 L 10T =T 27
8.1.1 L L0V A o= N == 27
8.1.2 L L0V A o o] 8 o (=P 27
8121 S 100 (== PRRRRSRSN 27
8.1.22 [0 1 000 (=SOSR 27
8.1.2.3 [ST ol oo L= SO RPRSR 27
8.1.24 REFEIENCE NOTES ...ttt sttt e e st e et st e neene e e seesbesaeeneeeensebeseeseesneeneeneans 28
81241 OR combination Of referenCe NOUESceieeieeee et neen 28
8.1.24.2 Multiple occurrences Of referenCe NOUES..........ceiirecirieree e 28
8.1.3 FLOW TINES ...ttt e et R e et R et r e nn et r e s n e nr e r e 29
8.14 FIOW Graph SEOMENESeeieeiece ettt ettt et e e e e e s see s aeesaeesaeeseenseenseeneasseenteesseenseenseeneesneennes 29
8.1.5 L0001 01007 0T P T 30
8.1.6 Handling of flow graph deSCriptions............cccciciiiiiiiecees et ae e e e 31
8.2 Flow graph representation of TTCN-3 BENAVIOUNccuviiiiiiieeceeece e 31
821 Flow graph CONSLIUCION PrOCEOUNEcoiiieiieie ettt sttt bbbt b et sb e 31
822 Flow graph representation of MOdulE CONEIOLcoieiririiiereree e 32
823 Flow graph representation Of TESE CASESooii it 33
824 Flow graph representation Of TUNCHIONS ..ot e 34
8.25 Flow graph representation Of alTSIEPScccoi e e 34
8.2.6 Flow graph representation of component type definitions...........cooeoviireiennnenee e 36
8.2.7 Retrieval of start NOdes Of FIOW QrapiS.........cocv it 36
8.3 State definitions for TTCN-3 MOUUIEScccoiiiiiiieee et 36
8.3.1 IMOTUIE SEBLE.ttt ettt r e s et r e st r e et R et e r e s n et r e re e r e r s 37
8311 ACCESSING the MOAUIE STALEecei et e et te s e saeesneesneeseenneens 37
8.3.2 ENEITY SEAEES. ... ettt bbb R et R Rt R et e et bt 38
8321 ACCESSING ENLILY SIALES ...evveieeeieeeste e ee st e e e e e e e s e e te e teeaeeeseeste e seestesssesseesneesneesneesseeseensenns 39
8322 Data state and variabl @ DINAINGc.coiieiiiree e b e eb e 41
8323 ACCESSING TALA SLALES. ...ttt sttt sttt b ettt b et b e e e it b e e et b et e st ebese et eb e et s b e nn e e 41
8324 Timer state and timer DINGINGc.eiirieiie bbb 42
8.3.25 ACCESSING TIMEE SEALES ...ttt ettt sttt b et b e e bt eb e e et b et benn e 43
8.3.26 Port references and POrt DINGINGceiiiiiriie bbb neene 44
8.3.2.7 ACCESSING PO FEFEIENCES ... veieeiee e eees et e et e et e et e st e e e e teestesntesneessnesneesseenseanseans 45

ETSI

4 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

8.3.3 0 = (=SSO 45
8331 Handling of CONNECLIONS @MONG POIES.......cciieiieiieie et eee st es e eee e sreesreesaeeee e e sneessaessaesseesaens 46
8.3.3.2 HaNdliNG Of PO SLALESccveeieeiecie et e te s ee s e sreesaeesseeseenseenseenaesnaesseenenns 46
834 General functions for the handling of MOAUIE STALESccueeieiiecie e 47
84 Messages, procedure calls, replies and EXCEPLIONS..........ccviireieeieere e et e e ee e snes 48
84.1 S 0 PRSPPSO 48
842 Procedure CallS aNd FEPIIESc.oiuice bbbt bbb e 48
84.3 O ONS... .ttt b et b bbb e R R R R e Rt b e Rt bRt bRt b bbb 49
8.4.4 Construction of messages, procedure calls, replies and EXCEPLIONS...........coveerereereneeeneseee e 49
8.4.5 Matching of messages, procedure calls, replies and EXCEPLIONScoeererrerennereeee e 49
8.4.6 Retrieval of information from reCelVed ItBMS..........c.ooi e 50
8.5 Call records for functions, altStePS and LESE CASES........cviuiiierieieeie e re e e st e e sreesnees 50
85.1 [P00 | TN o o) o= = o T 50
8.6 The evaluation procedure for a TTCN-3 MOUUIEccueeiur e sree e 51
8.6.1 Y T 0] 0] = P 51
8.6.1.1 Phase |2 INITTAIIZAETON. ..o bbbt b e bt b e e neneen 51
8.6.1.2 Phase [1: UPOEEE.........oieeieieiieieie ettt sttt sttt st sttt se st eseeseebeseeseebesbe e ebesaeneesesbeneenens 52
8.6.1.3 Phase [1: SEIECHION ...ttt ettt et e st e e seesbesaeenee e e nsesbeseeeseeneenseneans 52
8.6.14 PhEase [V: EXECULION......ccueiiiiiieeieiee ettt ettt ettt st et e e eseeseesbesaeseeeneeneeneensesteseeesesneenseneans 52
8.6.2 (€1l o 7= I 1T (o PSR 52
9 Flow graph segmentS for TTCN-3 CONSIIUCESeiueivirieieieieisesie et 53
9.1 ACTION SEEEMENT.......e ettt sttt e bt b e a e bt et e e eeee e bt s bt e b e e heeae e s e e ne e b e saeeh e e aeenbe e e nbenbeebeene e e ennenes 53
9.2 ACHIVALE SEBEEIMIENT ...ttt ettt bbbt bt ae e e e e et e sb e e bt eb e e heeh e e aeen s e e eh e e aeene e e e nbenbeeneene e e ennenee 54
9.2a AlIVE COMPONENE OPEIBLIONc.veeveeee e eeeete et e e e e saeseeeseesteeseeeesseesseeseesseessesseesseesseesseesseanseenseessenneessenssens 55
9.2al Flow graph segment <aliVe-COMP-BCEScciiiieiicie et e st e et teeeeeneesneesnes 56
9.2a.2 Flow graph segment <aliVe-COMP-SNAD>ccveiieiiiiiesiesee e estesee e s esaeesteeeeeaessaessaesteenseenseentesneesneesnes 57
9.3 L = 1= 0 1= o | S 57
931 Flow graph segment <take-SNERSNOSooiiiiiiiii it 58
932 Flow graph segment <reCaiViNg-DranCh™coooiiiiiinie e 59
9.33 Flow graph segment <altstep-call-branch>............cccooiieiiiicii e 60
9.34 Flow graph segment <elSe-Dranch> ... e 61
9.35 Flow graph segment <default-EVOCEHIONS>.........cccerieiierieiseeee e sttt a e 62
94 N L= o o SRS 63
9.5 ASSIGNMENE SEALEIMENT......ecueeeee e cee st et eeeee et e s e e e s e e ee st e sreesse e te e teeseesseesseesseeseensesneesseesseenseenseanseensensenssnns 63
9.6 (0= 0] = = 11 oo TSRS 63
9.6.1 Flow graph segment <nb-Call-With-ONE-rECEIVEI>..........ccceiiereee et 65
9.6.1a Flow graph segment <nb-call-with-multiple-rECaIVEIS>.........cco e 66
9.6.2 Flow graph segment <nb-Call-WithOUL-TECEIVE>..........ccue et 68
9.6.3 Flow graph segment <b-call-WithoUt-dUrationcccooiiiiiiiiene e 69
9.6.4 Flow graph segment <b-Call-With-dUration>coooiririinn e 70
9.6.5 Flow graph segment <Call-reCeptioN-Part>ccoo et nee e 71
9.6.6 Flow graph segment <catCh-timeOUL-EXCEPLIONS..........ccoii it neens 72
9.7 102 (01 o] o< = (0] 0 EEN OSSOSO STU TSRV TSR PROR 72
9.8 (011 o1 1qa] o 1< =110 1 15 SRS 73
981 Flow graph segment <CheCK-WIth-SENAEr>ccoiieiieiieceese et 74
9.8.2 Flow graph segment <CheCK-WithOUL-SENAEI>............cooieiieiiee e 75
9.9 LO11=7= T o0 0] 7= 110 o 1SS 76
9.10 (0011 o100 0= = 11 o SRS 76
9.11 CONSLANE AEFINITTON ...ttt b e bt a e e e e e besh e eb e s bt eh e e e e b e besbe e b e eneenee e ennas 77
9.12 1@< (=X o] o < = (0] TSSO PSP RVPT SR PROR 78
9.13 DEBCHIVALE SLBEEMIBNT.eeeteeteeee et e ettt et e e st e eestesbesbesseeaeene e eeneessebeseeebeeneensenseaseseesneenenneanseseens 80
9.131 Flow graph segment <deactivate-one-default>............cooiiiiiiiire e 80
9.13.2 Flow graph segment <deactivate-all-defalltS>coeiiiriiiie e 81
9.14 DR o] g0 (< o o 0= = 1Ko o OSSPSR PT SR PROR 81
9.15 DO-WHITE SEAEEIMENL. ...ttt sttt ae e e et e seeseesbesaeeaeeneeneenaessesbesaeeneeneanseneens 82
9.16 DONE COMPONENE OPEIGLION.eiveeieeeieeeteeeeeeeeeteastees e e e ssteseesseesreesseesseasseasseaseeaseesseesseeseensessensneesssessnensennsenns 83
9.17 EXECULE SLALEIMIENLttt ettt s e s e e e s Rt e st e n e ea e e she e s Re e Ee e besanesneesanesneesneenreenneens 85
9.17.1 Flow graph segment <exeCute-WithOUL-tiIMEOULSccoieeiieieeie et 85
9.17.2 Flow graph segment <EXECULE-TIMEOULS............ccciiiirieceeseese e se e te e e e st et e e te e teeteeneesneesnes 86
9.18 1= o PSS 88
9.18.1 Flow graph segment KHE-VaAIUESc.oo ettt ettt e be e teeteenesneesnes 88

ETSI

9.18.2
9.18.3
9.18.4
9.185
9.19
9.20
9.20a
9.20b
9.21
9.22
9.23
9.24
9.24.1
9.24.2
9.24.3
9.24.3a
9.24.4
9.24.5
9.25
9.26
9.27
9.28
9.29
9.29a
9.29a.1
9.29a.2
9.29a.3
9.29b
9.29b.1
9.29c
9.30
9.31
9.32
9.33
9.34
9.35
9.35.1
9.35.1a
9.35.2
9.36
9.37
9.37.1
9.37.2
9.37.3
9.38
9.39
9.39.1
9.39.1a
9.39.2
9.40
9.40.1
9.40.2
9.41
9.41.1
9.41.2
9.42
9.43
9.44
9.44.1
9.44.1a
9.44.2
9.45

5 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

Flow graph SEgMENt SVAr-VBIUESccoceiiieie et sae et eeae et e s e st e te e be e teeteennesnnennes 89
Flow graph segment <FUNC-0P-Call>.........cooieiiee ettt e e e e s 89
Flow graph segment <OPErator-apPl>ccviciiiieiiesee ettt e reeteeeesneeenes 90
Flow graph segment <AYNAMIC-EITOIScuiiieieeeeie e see e s seeste et e e saeesre e te e e etessesneesreesaeesseeseenseans 90
Flow graph segment <finalize-CoOmMPONENE-iNIT>cccceiiiiiieri et se e e e e e ens 92
Flow graph segment <init-COMPONENT-SCOPEScueiieieeieeieseeseeseesteesteeteseesreesree e esteensesneesneesseesseenseesenns 92
Flow graph segment <init-SCOPE-WIth-TUNS-0N>cceiiiirieiiieere bbb 93
Flow graph segment <init-SCOPE-WItNOUE-TUNS-0N>ccoiuiieiiiieisieie s 93
Flow graph segment <parameter-nandling™...........ccooiiieieionere et neens 94
Flow graph segment <statement-DIOCK™ooi i 94
FFOP SEAEEIMENT ...ttt e e s bt e e ae e e s et e e sae e e s ab e e eas e e sat e e emn e e sabeeemneesabeesnneesneesnreean 95
FUNCEION CBIL ...ttt bttt e bbb s bt s bt bt et e e e e e eb e s ke sbeebe e e eneennens 96
Flow graph segment <value-par-Cal CUlaLiON>.............ccovcueieeiiere et 97
Flow graph segment <ref-par-Var-CalC> ... ettt snee s 98
Flow graph segment <ref-par-timer-CalC>cveuiiiiiieiec e 99
Flow graph segment <ref-par-port-CalC>oocuiiiiiierieece ettt ae e ee e 99
Flow graph segment <user-def-fUNC-Call> ... e 100
Flow graph segment <predef-ext-fuNC-Call>............cccovieiiiiieiciie e 100
L€1c (or=] I o]0 < = o] NPT SO TR R PR 101
€1 17 o A o o< = o] o OSSOSO USSP 101
€1 AV o (ool o = =\ (oo H TSSOSO PP UT SRR 101
(GOLO SLBLEIMIENL.ottt ettt et e e et st saeesae et eae e eaeesh e et e e m b e embesaeesaeesaeeeae e et emeeemseemeeeseesbeesbeenbeenseeneeanes 102
R B o = <001 o SRS 102
Kill COMPONENE OPEFELIONcueeieeesie ettt e et se et e e e s e s re e te e teessesseesseesseeseesseenseenseenseansensansnens 103
Flow graph segment SKilI-MIECS.........ooiiiieeccces e et e e s e sreesneenseeneens 105
Flow graph segment <Kill-COMPONENE>c.ooiiiiiiee et e e e nreeneens 106
Flow graph segment <Kill-all-ComMP>........ccui i sne e reeneens 107
Kl EXECULION SEBLEIMIENLeeuieieeeeie ettt et bttt e e bbbt bt e bt ebe e e e e et e sbeebeeneense e enee e 107
Flow graph segment <Kill-CONEIOI>couieiiiieie e sneesneenreeneens 108
Killed COMPONENT OPEFALTONcovieeiiiteieiirt ettt b e b bbbt b et sb et b e nn e ens 109
(IS o T= IS = 1< 011 o | SR 110
L O SEAIEIMENT ... e h e e e 111
= o X o o = = (o o OO P PP 111
A oR o] o/ = 1o o OSSR PE TP 112
Lo g e (= == o] o TR U TP UROTPPP 112
LRSI 0] 1= 1o o S 113
Flow graph segment <rai Se-With-0Ne-FECEIVEI-0P™>.........cccieiueieeieeseesieeieeeesae e steesteesaesaeseesseenseensenns 114
Flow graph segment <raise-With-muUltiple-reCEIVEIrS-0P>.......cciveieericie e 115
Flow graph segment <rai Se-WithOUL-TECEIVEI-0>cceeiieiieeieeseeseesteeieeee e see e e e e saeeaeseesneeseeneens 117
LR e o I U T= e o= (o] o S 117
RECEIVE OPEIGLION ...ttt ettt bbbt bt h bt e b bt e e bt bt b bbbt e bt e e e bt et e e n e e enis 119
Flow graph segment <reCelVe-WIth-SENUEr>..........cccooiiiiiiii e e 119
Flow graph segment <reCeiVe-WithOUE-SENOEI>...........ccoiiiiriiiee e 120
Flow graph segment <reCEiVE-assi GNIMENTS..........ccoerueiieieeereeeeseseeesesse e esae e ssessesessessesessessesessessesens 122
REPEEL SLALEMEIL ... e s e e e e e e e 122
REDIY OPEIELION ...ttt bbbt h bbbt e b bt e bt E e bt bbbt bt e e s bt bt n e ns 123
Flow graph segment <reply-With-0Ne-reCEIVEIr-0P>cccoeiiueiieeieese e ee e see e se e saesee e e saeenseeneens 123
Flow graph segment <reply-with-multiple-reCeIVErS-0p>cccvcviiieiieiiee e 124
Flow graph segment <reply-WithOUL-FECEIVEr-0D>cccecieiieeieeseese et esee et e e ee e sreenreeneens 126
RELUM SEBEEIMENT ...ttt et r e n et e s e s b e e s b e e R e e s e e e e sae e she e sne e neenreennennnennnennees 126
Flow graph segment <return-With-VaIUES.............ccooiiiiiie et 127
Flow graph segment <return-WithOUL-VaIUE>oooiiieiii i 129
RUNNING COMPONENT OPEILION ...ttt b bbb bbbt e sb et nn e 130
Flow graph segment <running-COMP-8CE>ciiiiieierere et st ene e e e 131
Flow graph segment <running-COMP-SNaD>ccciieuerrierieriereestereeseeseeseeseeseestesseeseeseesseseessessesseeneseenseses 132
RUNNING HMET OPEIELION.ttt ettt b ettt e b e bbb e bbb st bbbt b e e e seeb e st e e e s e nn e e enis 132
SEIT OPEIBLION ...ttt bbb R R b e b e Rt b b ne b bbb 134
= 10 [T o 1= =1 o) o 1 134
Flow graph segment <send-With-0Ne-reECEIVEr-0P>ccociiiii e 135
Flow graph segment <send-with-multiple-reCeIVErS-0P>ccceiiieii e 135
Flow graph segment <send-WithOUL-FECEIVEI-0P>ccceieieiieeieere e e ee e ee e e saeenreeeeens 137
TS V7= (0 [Tt f 0] 0= = 11 o o T 138

ETSI

6 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

9.46 Start COMPONENT OPEIALION.eeeteesieeieeeree e st e steerteee e et e s e e e e teesaesseesseesseesseessesneesseesseeasanssensseesseesesnenanes 139
9.47 e A 00 0] o 1o o 1 141
9.48 e T 0= 0] 0T = 1o o 141
9.48.1 Flow graph segment <start-timer-op-default™ ..o e 142
9.48.2 Flow graph segment <start-timer-op-dUration™c.ccevieeiieeeiieesieese e ese e e e seenreeneens 143
9.49 S o] el0] g0 0] 1= 0 0] 1= 11 (o) 1 143
9.49.1 RV oo TR 145
9.49.2 Flow graph segment <sStop-aliVe-COMPONENES.........cciirieiiirieeriesieesie et 145
9.49.3 Flow graph segment <StOp-all-COMP> ..ot e e e 146
9.50 SLOP EXECULION SLALEITIENE ...ttt ettt b bbbt bbb e bt b e e st b et s b b 146
9.50.1 RV o o RSP SROSRUSRPR 148
9.51 S0 o] oo 0] 0= = 1 oo S 148
9.52 S 0] U 00T= e o< = (o) 148
9.53 YL 110] 1= 1o 1 S 149
9.54 THMEY AECIAIEIION ...ttt ettt h et et et b e bt e b e ae e e e b se e eb e s et eb e et et e besbenbeeaeenee e entes 149
9.54.1 Flow graph segment <timer-decl-default>.............cccoreie e 150
9.54.2 Flow graph segment <timer-deCl-NO-0Ef> ..o e 150
9.55 TIMEOUL tIMEY OPEIELION ...ttt ettt sttt b et b e bbb et bt b et bt b e st eb e b e st e b e s b e ebe b 151
9.56 (Wl gTg = ool o< = 1 o] o [OOSR PS 151
9.57 V2= L= o L= L= o = T 1o o S 152
9.57.1 Flow graph segment <var-declaration-iNit>..........coooeiiiriee e 152
9.57.2 Flow graph segment <var-declaration-Undef>............cccoiiiiiniee e 153
9.58 WHIT@ SEBLEMIENL ...ttt ettt ettt et e st et e e et e s aeese e e e eeseeseeebesaeeaeeneeneesensesbeseesaeeneeneeneeneas 154
10 Listsof operational SemantiC COMPONENTSciuerieriereeirerierese e see st see et e s seeneeneens 155
10.1 FUNCLIONS @NO SEALES. ... ettt bbb e bbb e b se b e et e bt et e e et e sbeebeeaees e e e e e ee 155
10.2 0T o = =Y AT Lo o S 156
10.3 Flow graphs of TTCN-3 behaviour deSCriptioNS..........coeiiirieirieree s 157
104 FLOW QI SEOIMENTS. ...ttt ettt b bt bbbt e e bt b e bt b e b b e s st b e e e e eb et se st nb e e ens 157
(o 11 (TP 160

ETSI

7 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards’, which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web

server (http://webapp.etsi.org/| PR/home.asp).

Pursuant to the ETSI IPR Palicy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

ThisETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and Specification
(MTS), and is now submitted for the ETSI standards Membership Approval Procedure.

The present document is part 4 of amulti-part deliverable. Full details of the entire series can be found in part 1 [1].

ETSI

http://webapp.etsi.org/IPR/home.asp

8 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

1 Scope

The present document defines the operational semantics of TTCN-3. The present document is based on the TTCN-3
core language defined in ES 201 873-1 [1].

2 References

The following documents contain provisions which, through reference in thistext, constitute provisions of the present
document.

. References are either specific (identified by date of publication and/or edition number or version number) or
non-specific.

. For a specific reference, subsequent revisions do not apply.
. For anon-specific reference, the latest version applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

NOTE: While any hyperlinksincluded in this clause were valid at the time of publication ETSI cannot guarantee
their long term validity.

[1] ETSI ES 201 873-1: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language".

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present documents, the terms and definitions given in ES 201 873-1 [1] apply.

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

BNF Backus-Nauer Form

MTC Master Test Component

SUT System Under Test

TTCN Testing and Test Control Notation
4 Introduction

This clause defines the meaning of TTCN-3 behaviour in an intuitive and unambiguous manner. The operational
semantics is not meant to be formal and therefore the ability to perform mathematical proofs based on this semanticsis
very limited.

This operational semantics provides a state oriented view on the execution of a TTCN module. Different kinds of states
are introduced and the meaning of the different TTCN-3 constructs is described by:

. (1) using state information to define the preconditions for the execution of a construct; and

. (2) defining how the execution of a construct will change a state.

ETSI

http://docbox.etsi.org/Reference

9 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

The operational semanticsis restricted to the meaning of behaviour in TTCN-3, i.e. functions, altsteps, test cases,
module control and language constructs for defining test behaviour, e.g. send and r ecei ve operations, i f -el se-, or
whi | e- statements. The meaning of some TTCN-3 constructs is explained by replacing them with other language
constructs. For example, i nt er | eave statements are short forms for series of nested al t statements and the meaning
of eachi nt er | eave statement is explained by its replacement with a corresponding series of nested alt statements.

In most cases, the definition of the semantics of alanguage is based on an abstract syntax tree of the code that shall be
described. This semantics does not work on an abstract syntax tree but requires a graphical representation of TTCN-3
behaviour descriptions in form of flow graphs. A flow graph describes the flow of control in afunction, alt step, test
case or the module control. The mapping of TTCN-3 behaviour descriptions onto flow graphsis straightforward.

NOTE: The mapping of TTCN-3 statements onto flow graphsis an informal step and is not defined by using the

BNF rulesin ES 201 873-1 [1]. The reason for thisisthat the BNF rules are not optimal for an intuitive
mapping because several static semantic rules are coded into BNF rulesin order to allow static semantic
checks during the syntax check.

5

Structure of the present document

The present document is structured into four parts:

1)

2)

3)

4)

Thefirst part (see clause 6) describes restrictions of the operational semantics, i.e. issues related to the
semantics, which are not covered by the present document.

The second part (see clause 8) defines the meaning of TTCN-3 short cut and macro notations by their
replacement with other TTCN-3 language constructs. These replacementsin a TTCN-3 module can be seen as
pre-processing step before the module can be interpreted according to the following operational semantics
description.

The third part (see clause 9) describes the operational semantics of TTCN-3 by means of flow graph
interpretation and state modification.

The fourth part (see clause 10) specifies the mapping of the different TTCN-3 statements onto flow graph
segments, which provide the building blocks for flow graphs representing functions, alt steps, test cases and
module control.

6

Restrictions

The operational semantics only covers behavioural aspects of TTCN-3, i.e. it describes the meaning of statements and
operations. It does not provide:

a)

b)

A semantics for the data aspects of TTCN-3. Thisincludes aspects like encoding, decoding and the usage of
data imported from non-TTCN-3 specifications.

A semantics for the grouping mechanism. Grouping is related to the definitions part of a TTCN-3 module and
has no behavioural aspects.

A semanticsfor thei nport statement. The import of definitions has to be done in the definitions part of a
TTCN-3 module. The operational semantics handlesimported definitions as if they are defined in the
importing module.

ETSI

10 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

7 Replacement of short forms

Short forms have to be expanded by the corresponding complete definitions on a textual level before this operational
semantics can be used for the explanation of TTCN-3 behaviour.

TTCN-3 short forms are:
. lists of module parameter, constant and variabl e declarations of the same type and lists of timer declarations;
. stand-alone receiving operations;
. stand-alone altsteps calls;
. tri gger operations,
. missing r et ur n and st op statements at the end of function and test case definitions;
. missing st op execution statements;
. i nterl eave statements; and
. sel ect - case statements.

In addition to the handling of short forms, the operational semantics requires a special handling for module parameters
and global constants, i.e. constants that are defined in the module definitions part. All references to module parameters
and global constants shall be replaced by concrete values. This means, it is assumed that the value of module parameters
and global constants can be determined before the operational semantics becomes relevant.

NOTE 1: The handling of module parameters and global constants in the operational semantics will be different
from their handling in a TTCN-3 compiler. The operational semantics describes the meaning of TTCN-3
behaviour and is not a guideline for the implementation of a TTCN-3 compiler.

NOTE 2: The operational semantics handles parameters of and local constants in test components, test cases,
functions and module control like variables. The wrong usage of local constantsor i n, out andi nout
parameters has to be checked statically.

7.1 Order of replacement steps

The textua replacements of short forms, global constants and modul e parameters have to be done in the following
order:

1) replacement of lists of module parameter, constant, variable and timer declarations with individual
declarations;

2) replacement of global constants and module parameters by concrete val ues;

3) replacement of all sel ect - case statements by equivalent nested i f - el se statements;

4) embedding stand-alone receiving operationsinto al t statements,

5) embedding stand-alone altstep callsinto al t statements;

6) expansionofi nterl eave statements;

7) replacement of al t ri gger operationsby equivalentr ecei ve operationsand r epeat statements;

8) addingr et ur n at the end of functions without r et ur n statement, adding sel f .st op operations at the end
of testcase definitions without a stop statement.

9) adding st op at the end a module control part without stop statement.

NOTE: Without keeping this order of replacement steps, the result of the replacements would not represent the
defined behaviour.

ETSI

11 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

7.2 Replacement of global constants and module parameters

Constants declared in the module definitions part are global for module control and all test components that are created
during the execution of a TTCN-3 module. Module parameters are meant to be global constants at run-time.

All references to global constants and module parameters shall be replaced by the actual values before the operational
semantics starts the interpretation of the module. If the value of a constant or module parameter is given in form of an
expression, the expression has to be evaluated. Then, the result of the evaluation shall replace al references of the
constant or module parameter.

7.3 Embedding single receiving operations into alt statements

TTCN-3 receiving operations are: r ecei ve, tri gger,getcal | ,getrepl y,catch,check,ti meout, and
done.

NOTE: Theoperationsr ecei ve,trigger,getcall,getreply,catchandcheck operate on portsand
they allow branching due to the reception of messages, procedure calls, replies and exceptions. The
operationst i meout and done are not real receiving operations, but they can be used in the same
manner as receiving operations, i.e. asalternativesin al t statements. Therefore, the operational
semantics handlest i neout and done like receiving operations.

A receiving operation can be used as stand-al one statement in afunction, an atstep or atest case. Thet i neout
operation can also be used as stand a one statement in modul e control. In such a case the receiving operation as
considered to be shorthand for an al t statement with only one aternative defined by the receiving operation. For the
operational semanticsan al t statement in which the receiving statement is embedded shall replace al stand-alone
occurrences of receiving operations.

EXAMPLE:

/'l The stand-al one occurrence of

WO_. trigger(MType: ?);

/1 shall be replaced by

al't {
} [l ™CL.trigger (MType:?) { }

Il or

WPTC. done;

/1 shall be replaced by

ait {
[l MPTC done { }
}

7.4 Embedding stand-alone altstep calls into alt statements

TTCN-3 alowsto call atsteps like functions in functions, altsteps, test cases and module control. The meaning of a
stand-alone call of an altstep isgiven by anal t statement with one branch only that callsthe altstep. The al t
statement is responsible for the snapshot that is eval uated within the altstep and for the invocation of the default
mechanism if none of the alternativesin the altstep can be chosen.

NOTE: Analtsteps used in module control can only include aternativeswitht i neout operationsand an el se
branch.

ETSI

12 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

EXAMPLE:
/1 The stand-al one occurrence of

@N tstep(MyParlval);

/1 shall be replaced by

ait {
[T nyAtstep(MParlval) { }
}

7.5 Replacement of interleave statements

Themeaning of ani nt er | eave statement is defined by its replacement by a series of nested al t statements that has
the same meaning. The algorithm for the construction of the replacement for ani nt er | eave statement is described in
this clause. The replacement shall be made on a syntactical level.

Withinani nt er| eave statement it is not allowed:

1) tousethecontrol transfer statementsf or , whi | e, do-whi | e, got 0, acti vat e, deact i vat e, st op,
repeat andreturn;

2) tocal atsteps,

3) tocal user-defined functions which include communication operations;

4) toguard branches of thei nt er | eave statement with Boolean expressions; and
5) to specify el se branches.

Due to these restrictions, all not mentioned stand-alone statements (e.g. assignment, | og, send or r epl y), blocking
call operations and the compound statementsi nt er | eave, i f-el se andal t canbeused withinani nt erl| eave
statement.

NOTE 1: Blockingcal | operationsandi f - el se statements can be treated like stand-alone statementsiif they
have no embedded al t statements. In case of embedded al t statements, the alternatives contribute to
thei nt er | eave statement and need a specia handling. For simplicity, the algorithm below does not
distinguish between these two cases.

NOTE 2: Non-blocking cal | operations are also allowed in interleave statements, they are considered to be
stand-alone statements.

The algorithm described in this clause only works for i nt er | eave statements without embedded i nt er | eave
statements. In case of ani nt er | eave statement that has embedded i nt er | eave statements, the embedded
i nt erl eave statements have to be replaced before the algorithm can be applied.

NOTE 3: Dueto therestrictions 1-5, it is always possible to find finite replacements for nested embeddings of
i nt erl eave statements.

The replacement algorithm works on a graph representation of an interleave statement and transformsit into a
semantically equivalent tree structure describing a series of nested al t statements. For this, a graph representation of
stand-al one statements, the compound statementsi f - el se, blockingcal | ,alt andi nt erl eave isneeded.

ETSI

13 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

A stand-alone statement is described by a node with the statement as inscription. A sequence of stand-alone statements
is described by a set of nodes connected by aflow lines. Thisis shownin figure 1.

P1. send(MyVar);

P1. send(MyVar);

(a) TTCN-3 stand-alone statement

(b) graph representation of (a)

P1. send(MyVar);
X =7 + 5

P1. send(MyVar);

(c) Sequence of TTCN-3 stand-alone statements

(d) graph representation of (c)

Figure 1: Graph representation of TTCN-3 stand-alone statements

The graph representation of ani f - el se statement isshown in figure 2. Ani f - el se statement is represented by an
IF node with two flow lines connected to the first statement in the two aternatives. Ani f - el se statement without

EL SE branch is represented in the same manner, if there are statements following thei f - el se statement. In this case
the flow line representing the el se branch is connected to the first statement following thei f - el se statement. An

i f-el se statement without EL SE branch and without following statementsiis represented by an IF node with one flow

line only.

NOTE 4: Theinscriptions on the flow linesin figure 1 are introduced for readability purposes only. The algorithm
only uses the relation expressed by the flow line and not the inscription.

if (x <7) {

P1. send(MyVar);
el se {

X =7+ 5
}
X =X * 2

(a) TTCN-3 if-else statement (b) Graph representation of (a)
(x <7)

if (x <7) {

P1. send(MyVar);
}

X =X * 2

P1. send(MyVar);

(c) TTCN-3 if-else statement without else branch

(d) Graph representation of (c)

Figure 2: Graph representation of TTCN-3 if-else statements

ETSI

14 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

The graph representation of ablocking cal | statement is shown infigure 3. A blocking cal | statement is represented
by aBLOCKING-CALL node with flow lines connected to the get r epl y and cat ch statements of the different
alternatives.

Pl.call (MProc:{-, true}, 20E-3) {
[T Pl.getreply(MyProc:{?,-} {
setverdi ct (pass);

[1 Ll. catch(My/Proc, MyException) {}

[1 Pl.catch(tineout) {
setverdict(fail);
}

X =7+ 5;

(a) TTCN-3 blocking call statement
BLOCKI NG CALL
Pl.call (MyProc: {-,true}, 20E-3)

?,-1)

P1. catch(ti neout)

P1. getrepl y(M/Proc:

4

1. catch(M/Proc, M/Exception)

set verdi ct (pass); setverdict(fail);

(b) Graph representation of (a)

Figure 3: Graph representation of a TTCN-3 blocking call statement

ETSI

15 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

The graph representation of an al t statement isshown infigure4. Anal t statement is represented by an alt-node
with several flow lines connected to the different alternatives.

alt {
[x<5] P1l.receive(M/MssageOne} ({
setverdi ct (pass);

}
[T Pl.receive(M/MessageTwo) {}

[1 Ti.tinmeout {
setverdict(fail);
}

}
X :=7 +5;

(a) TTCN-3 alt statement

e —

[x<5]

P1. recei ve(MyMessageOne)
Pl.recei ve(MyMessageTwo)

setverdict(fail);

setverdi ct (pass);

(b) Graph representation of (a)

Figure 4: Graph representation of a TTCN-3 alt statement

ETSI

16 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

In general, the graph representations of i f - el se, blockingcal | andal t statements are directed graphs without
loops where the flow lines of the different alternatives join when leaving the statement. By means of duplication, it is
possible to transform such directed graphs into a semantically equivalent tree representations. Thisis shown in figure 5
for the alt statement in figure 4. The algorithm described below will construct such tree representations.

alt {

[x<5] P1l.receive(M/MessageOne} {
setverdi ct (pass);
X =7 + 5

}
[1 Pl.receive(M/MessageTwo) {
X =7 + 5

}
[1 Ti.tinmeout {
setverdict(fail);
X =7+ 5;

(a) TTCN-3 alt statement that is semantically equivalent to figure 4(a)

— AT I —

P1.recei ve(MyMessageOne) T1.ti meout

P1. recei ve(MyMessageTwo)
setverdi ct (pass); setverdict(fail);

(b) Graph representation of (a) (semantically equivalent to figure 4(b))

Figure 5: Graph representation of a TTCN-3 alt statement

ETSI

17

Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

Ani nt er | eave statement can be described by a graph that consists of a set of directed sub-graphs, each of whichis
constructed by means of stand-alone statements and the compound statementsi f - el se, blockingcal | andal t . The
directed sub-graphs describe the interleaved flows of control. An example is shown in figure 6. The node inscriptionsin

figure 6 (b) refer to the labels of the TTCN-3 statementsin figure 6 (a).

interl eave {

[1 Pl.receive(M} ({ /1 L1
alt { /1 ALT
[1 Pl.receive(M) ({ /Il L2
setverdi ct (pass); /1 L3
}
[T Ti.tineout { } /1 L4
} .
[1 P2.receive(M) ({ /1 L5
if (x <5){ Il 1F
alt { /1 ALT
[1 P2.receive(M) { /1 L6
setverdi ct (pass); /1 L7
}
[T Conpl.done { } // L8
X =7+ 5 /1 L9
el se {
P3.cal I (M/ProcTenpl, 20E-3) ({ /'l BC
[1 P3.getreply(ReplyTenpl) { /1 L10
alt { /1 ALT
[T P2.receive(Ms) { } /1 L11
[1 P2.receive(Ms) { } [/ L12
}
}
[1 P3.catch(tineout) { /1 L13
setverdict(fail); /1 L14

}

(= BLOCKI NG CALL)

(a) TTCN-3 interleave statement

Q

)
(9
(%)
9 &3
(L7 S
@ @

(b) Graph representation of (a)

Figure 6: Graph representation of a TTCN-3 interleave statement

ETSI

18 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

Formally, ani nt er | eave statement can be described by a graph Gl = (S, F) where:
St isthe set of allowed TTCN-3 statements; and
FO(St X St) describes the flow relation.
The term allowed TTCN-3 statements refers to the static restrictions 1-5 above.
For the construction algorithm the following functions need to be defined:
. The REACHABLE function returns all statements that are reachable from a statement sin agraph Gl = (St, F):

REACHABLE (s, Gl)={s} [
{ stmt | stmt O St O S = X4, Xo, ... , X, = Stmt) where x; O St,
i O{1...n} O(X;, Xj+)0 F}

. The SUCCESSORS function returns all successors of a statement sinagraph Gl = (St, F):
SUCCESSORS (s, Gl) ={ stmt | stmt 0 St (s, stmt) O F}

. The ENABLED function returns all statements of a graph Gl = (St, F) which have no predecessors:
ENABLED (Gl)={ stmt |stmt O St O(F n (S % {s}) =0)}

. The KIND function returns the kind or type of a TTCN-3 statement in a graph representing ani nt er | eave
statement.

. The DISCARD function deletes a statement s or a set of statements S from a graph Gl = (St, F) and returns the
resulting graph GI'= (St', F'):

For single nodes:

DISCARD (s, Gl) = GI" where: GI' = (St', F'), with St' = St\{ s} and
F'=F n (St{s} X St\{s}).

For sets of nodes:
DISCARD (S, Gl) = GI' where: GI' = (St', F'), with St' =St\Sand F' = F n (St\S X $t\S).
. The RECEIVING function takes a set of statements of a graph Gl and returns all receiving statements:

RECEIVING (9§ ={ stmt | stmt O S OKIND(stmt) O { receive, trigger, getcall, getreply, catch, check,
done, timeout} }

. The RANDOM function selects randomly an element s from a given set Sand returns s.
RANDOM (S) =swheres0 S
The construction algorithm (see figure 7) of the tree is arecursive procedure where in each recursive call the successor

nodes for a given node is constructed. The procedure is provided in a C-like pseudo-code notation that uses the
functions defined above and some additional mathematical notation.

ETSI

19 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

CONSTRUCT- SUCCESSORS (st at ement Type *predecessor, graphType G) {
/1 - statenent Type refers to the type of a node of the tree that is constructed
/1 - *predecessor refers to the |last node that has been created
/1 - graphType denotes type of the graph of TTCN-3 statenents
// - d is called by value and refers to the subgraph consisting of all renmaining TTCN- 3
/1 statenents that have to be taken into consideration

var graphType nyG aph;

var statement Type i, nyStnt;

var statement Type *newStnt, *firstlnBranch; // pointers for new statenment nodes in the
/1 tree that is constructed recursively

/'l Retrieving sets of TTCN-3 statenents that have no predecessors in 'Qd"

var statenmentSet enabStnts := ENABLED(Q); // all statements w thout predecessor

var statenent Set enabRecStnts : = RECEIVING enabStnts); // receiving statenents in 'enabStnts'
var statenent Set enabNonRecStnts : = enabStnts\enabRecStnts;

/1 non receiving statenents in 'enabStnts'

if (@d.st ==0) { [/ W assune that G .St refers to the set of statenents in @
return; // No statenments are left, termnation criterion of Recursion
}

el seif (enabNonRecStnts != [0) {// Handling of non receiving statements in 'enabStnts'

nyStm = RANDOM enabNonRecSt nt s) ;
/1 There can only be one statenent in 'enabNonRec', because the Al gorithm
/1 continues the construction until there is a branch that contributes to
/1 the interlave statenent.

newStnt := create(nyStnt, predecessor);
/1 Creation of a new tree node representing 'nyStnt' in the tree
/1 and update of pointers in 'newStnt' and 'predecessor’.

if (KIND(nyStnt) == IF || KIND(nyStnt) == BLOCKI NG CALL) {
for each i in SUCCESSORS(nyStnt, d) {

firstlnBranch := create(i, newStmnt);
// Creation of a second node for the first statement of in a branch due to
/!l an if-else statenent.
/!l Note, this create statenent will be used to create tree nodes
/] representing the receiving statenents in blocking call operations.

myGraph := DISCARD({i, nyStnt} O REACHABLE(nyStnt, G)\REACHABLE(i, G))
// Rermoval of i, nmyStnt and all statenments that are reachable from
/1 nmyStm but not reachable fromi. The latter considers the branching of
/1 a flow of control in a subgraph of Q.

CONSTRUCT- SUCCESSORS(fi rst I nBranch, nyGraph); /1 NEXT RECURSI ON STEP
}

}
elseif (KIND(nmyStnt) == ALT) {
for each (i in SUCCESSORS(nyStnt, d) {

CONSTRUCT- SUCCESSORS(nyst nmt, DI SCARD(REACHABLE(nmyStnt, G)\ REACHABLE(i, G)));
/1 NEXT RECURSI ON STEP, the DI SCARD(REACHABLE(nmyStnt, G)\REACHABLE(i, G))
/1 argunent considers the branching of a flow of control due to different
/'l receiving events.

}

el se { /1 nystnt is a stand-al one statenent
CONSTRUCT- SUCCESSORS(newSonNode, DI SCARD(nyStnt, G));
/1 NEXT RECURSI ON STEP

}
else { // Handling of receiving events that interleave
if (KIND(predecessor) != ALT) { // an alt node is mssing and has to be created, if the
/1 interleaving is not influenced by an enbedded alt statenent

predecessor : = create(ALT, predecessor);

}

for each i in enabRecStnts) {
newStnt := create(i, predecessor); /1 New tree node
CONSTRUCT- SUCCESSORS(newst mt, DI SCARD(i, G)); // NEXT RECURSI ON STEP(S)

}

Figure 7: Replacement algorithm for TTCN-3 interleave statements

ETSI

20 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

Initialy, the CONSTRUCT-SUCCESSORS function (see figure 7) will be called with aroot node of an empty tree and
the graph of TTCN-3 statements describing thei nt er | eave statement that shall be replaced. After termination, the
root node can be used to access the constructed tree.

The application of the CONSTRUCT-SUCCESSORS function to thei nt er | eave statement shown in figure 6 leads
to the tree shown in figure 8. The labels refer to the statementsin figure 6(a). Multiple labels are the result of the
duplication of code. The TTCN-3 code that correspondsto the tree in figure 8 is shown in figure 9.

NOTE 5: The example for the application of the algorithm in figures 7 (see figures 6, 8 and 9) is very
comprehensive. This example is provided in order to show most of the special situations, i.e. branching
and joining of flow lines, an embedded al t statement, ablocking cal | statementandani f - el se
statement.

ETSI

Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

21

T
< il
DO mie L o

€92 6) NS,
<t » 1
PP ErE) € - :

LS
) 4
I F

Figure 8: Result of applying the algorithm in figure 7 to the interleave statement in figure 6
ETSI

22 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

alt { /1 ALT
[T Pl.receive(M} { /1 L1
alt { /1 ALT
[T Pl.receive(M) ({ Il L2
setverdi ct (pass); /Il L3
alt { /1 ALT
[T P2.receive(M) { Il L5
if (x <5){ Il 1F
alt { /1 ALT
[T P2.receive(M) { Il L6
setverdi ct (pass); Il L7
X :=7 + 5 /1 L9
}
[1 Conpl.done { /1 L8
X =7 +5; /1 L9
P }
el se {
P3.cal | (MyProcTenpl, 20E-3) { // BC (= BLOCKI NG CALL)
[T P3.getreply(ReplyTenpl) { /1 L10
alt { /1 ALT
[T P2.receive(M) { } /1 L11
[1 P2.receive(M) { } /1 L12
Pl
[T P3.catch(tineout) { /1 L13
setverdict(fail); /1 L14
b} D }
[T Ti.tineout { /Il L4
alt { /1 ALT
[T P2.receive(M) ({ /1 L5
if (x <5){ Il 1F
alt { /1 ALT
[T P2.receive(M) { /Il L6
setverdi ct (pass); Il L7
X :=7 + 5 /1 L9
}
[1 Conpl.done { /1 L8
X :=7 + 5 /1 L9
P }
el se {
P3.cal | (MyProcTenpl, 20E-3) { // BC (= BLOCKI NG CALL)
[T P3.getreply(ReplyTenpl) { /1 L10
alt { /1 ALT
[1 P2.receive(M) { } /1 L11
[1 P2.receive(M) { } /1 L12
P
[T P3.catch(timeout) { /1 L13
setverdict(fail); /1 L14
)}y Y Y) }
[T P2.receive(M) ({ /1 L5
if (x <5){ Il 1F
alt { /1 ALT
[T P2.receive(M) { Il L6
setverdi ct (pass); Il L7
X =7+ 5; /1 L9
alt { /1 ALT
[T Pl.receive(M) ({ Il L2
setverdi ct (pass); /1 L3
}
[T Ti.tineout { } /1 L4
ool
[1 Conpl.done { /1 L8
X :=7 + 5 /1 L9
alt { /1 ALT
[T Pl.receive(M) ({ /1 L2
setverdi ct (pass); /1 L3
}
[T Ti.tineout { } /1 L4
Py
[T Pl.receive(M) ({ /Il L2
setverdi ct (pass); /1 L3
alt { /1 ALT
[T P2.receive(M) { Il L6
setverdi ct (pass); Il L7
X :=7+5; /1 L9
}
[T Conpl.done { /1 L8
X =7 +5; /1 L9
P} }

ETSI

23 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

[T Ti.tineout { /1 L4
alt { /1 ALT
[T P2.receive(M) ({ /1 L6
setverdi ct (pass); /Il L7
X :=7 + 5 /1 L9
}
[T Conpl.done { /1 L8
X :=7+5; /1 L9
Pl P }
el se {
P3.cal I (M/ProcTenpl, 20E-3) ({ /1 BC (= BLOCKI NG CALL)

[T P3.getreply(ReplyTenpl) { /1 L10

alt { /1 ALT
[T Pl.receive(M) ({ Il L2
setverdi ct (pass); /Il L3
alt { /1 ALT
[T P2.receive(M) { } /1 L11
[1 P2.receive(M) { } /1 L12
Py
[T Ti.tineout { /1 L4
alt { /1 ALT
[1 P2.receive(M) { } /1 L11
[1 P2.receive(M) { } /1 L12
P
[T P2.receive(M) ({ /1 L11
alt { /1 ALT
[T Pl.receive(M) ({ /Il L2
setverdi ct (pass); /1 L3
}
[T Ti.tineout { } /1 L4
Pl
[T P2.receive(M) { /1 L12
alt { /1 ALT
[T Pl.receive(M) ({ Il L2
setverdi ct (pass); /1 L3
}
[T Ti.tineout { } /1 L4
I Y)

[T P3.catch(tineout) { /1 L13
setverdict(fail); /1 L14
alt { /1 ALT

[T Pl.receive(M) ({ /1 L2
setverdi ct (pass); /1 L3
}
[T Ti.tineout { } /1 L4
Py Py P
[T P2.receive(M) { /Il L5
if (x <5) { /1 1F
alt { /1 ALT

[T P2.receive(M) ({ Il L6
setverdi ct (pass); Il L7
X =7 +5; /1 L9
alt { /1 ALT

[T Pl.receive(M} ({ /1 L1
alt { /1 ALT

[T Pl.receive(M) ({ Il L2
setverdi ct (pass); /Il L3
}
[T Ti.tineout { } /1 L4
ool Py

[T Conpl.done { /1 L8
X :=7 + 5 /1 L9
alt { /1 ALT

[T Pl.receive(M} { /1 L1
alt { /1 ALT

[T Pl.receive(M) ({ /1 L2
setverdi ct (pass); /1 L3
}
[T Ti.tineout { } /1 L4
P P}

[T Pl.receive(M) ({ /1 L2
setverdi ct (pass); /1 L3
alt { /1 ALT

[T P2.receive(M) ({ /1 L6
setverdi ct (pass); /Il L7
X =7 +5; /1 L9

}
[Conpl.done { /1 L8

ETSI

24 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

X =7+ 5 /1 L9
b} }
[T Ti.tineout { /1 L4
alt { /1 ALT
[T P2.receive(M) ({ /1 L6
setverdi ct (pass); Il L7
X =7+ 5 /1 L9

}
[T Compl.done { /1 L8
X := 7 + b; /1 L9
P} }
el se {

P3. cal | (MyProcTenpl, 20E-3) { /1 BC (= BLOCKI NG CALL)
[T P3.getreply(ReplyTenpl) { /1 L10
alt {

[T P2.receive(M) ({ /1 L11
alt { /1 ALT

[T Pl.receive(M} { /1 L1
alt { /1 ALT

[T Pl.receive(M) ({ Il L2

setverdi ct (pass); /1 L3

}

[T Ti.tineout { } /1 L4
oy)

[T P2.receive(M) ({ /1 L12
alt { /1 ALT
[T Pl.receive(M} { /1 L1
alt { /1 ALT
[T Pl.receive(M) ({ /1 L2
setverdi ct (pass); /1 L3

}
[T Ti.tineout { } /1 L4
oy Y)
[T Pl.receive(M} ({ /1 L1
alt { /1 ALT
[T Pl.receive(M) ({ /1 L2
setverdi ct (pass); /1 L3

[1 P2.receive(M) { } /1 L11
[1 P2.receive(M) { } /1 L12

] P2.receive(M) { } /1 L11
] P2.receive(M) { } /] L12

[] P2.r]écei ve(M) { /] L11

[T Pl.receive(M) ({ /Il L2
setverdi ct (pass); /1 L3

[] }I'l.timeout {1} /1 L4

}
[T P2.receive(M) ({ /1 L12
alt { /1 ALT
[T Pl.receive(M) ({ /Il L2
setverdi ct (pass); /1 L3

}
[T Ti.tineout { } /1 L4
b})) b}

[T P3.catch(tineout) { /1 L13
setverdict(fail); /1 L14
alt { /1 ALT

[T Pl.receive(M} { /1 L1
alt { /1 ALT
[T Pl.receive(M) ({ Il L2
setverdi ct (pass); /1 L3
}

[] Titimeout { } Il L4

y o 0y 0} }

Figure 9: Semantically equivalent TTCN-3 code for the interleave statement in figure 6

ETSI

25 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

7.6 Replacement of trigger operations

Thet ri gger operation filters messages with a certain matching criterion from a stream of messages on a given port.
The semantics of thet r i gger operation can be described by its replacement with two r ecei ve operationsand a
got o statement. The operational semantics assumes that this replacement is done on the syntactical level.

EXAMPLE 1:
/1 The follow ng trigger operation ...

alt {
} [1 MCL.trigger (MType:?) { }

/1 shall be replaced by ...

alt {
[T MCL.receive (MType:?) { }
[T MCL.receive {
r epeat
}
}

If thet ri gger statement isused in amore complex al t statement, the replacement is done in the same manner.

EXAMPLE 2:
/1 The following alt statement includes a trigger statement ...

alt {
[T PCX.receive {
st op;

}
M/CL. trigger (MType:?) { }
PCCB. cat ch {
setverdict(fail);
st op;

—_——
[E—

}
/1 which will be replaced by

alt {
[T PCR.receive {
st op;
}

MyCL. receive (M/Type:?) { }
M/CL. recei ve {
repeat;

—_——
—_——

}
[] PCG.catch {
setverdict(fail);
st op;

7.7 Replacement of select-case statements

Thesel ect - case statement isan aternative to using aset of nested i f - el se statemensts when comparing avalue
to one or several other values. Therefore, semantics of asel ect - case statement can be described by its replacement
with aset of nested i f - el se statemensts. The operational semantics assumes that this replacement is done on the
syntactical level.

ETSI

26 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

Schematically the sel ect - case statement looks as follows:

sel ect (<expression>) {

case (<tenplatelnst,> .., <tenplatelnsti>)
<st at enent bl ock;>
case (<tenplatel nsty>, .., <tenplatelnst,,>)

<st at ement bl ock,>

case (<tenplatel nsty,>, .., <tenplatelnsty,>)
<st at ement bl ocky>
case el se
<st at emrent bl ocky+1>
}

The syntactical replacement of the schematic sel ect - case statement by nested i f - el se statemensts |ooks as
follows:

if (match(<expression>, <tenplatelnst;,>) or ..or match(<expression> <tenplatelnsti,>))
<st at ement bl ock,>
el se {
if (match(<expression>, <tenplatelnst,,>) or ...or match(<expression> <tenplatelnst,,>))
<st at ement bl ock,>
el se {

if (match(<expression> <tenplatelnsty,>) or ...or match(<expression> <tenplatelnst,,>))
<st at ement bl ocky>

el se
<st at ement bl ocky.;>

EXAMPLE:
/1 The follow ng sel ect-case statenent:
sel ect (MyModul ePar) { // where MyMddul ePar is of charstring type

case ("firstValue") {
log ("The first branch is selected");

}
case (MyCharstingVar, MyCharstringConst) ({
log ("The second branch is selected");
}

case el se {
log ("The else branch is selected");
}

}
/1 is semantically equivalent to:

if (match(M/Modul ePar, "“firstValue")) {
log ("The first branch is selected");

el se {
if (match(M/Mdul ePar, MyCharstingVar) or nmatch(M/Mdul ePar, M/CharstingConst)) {
log ("The second branch is selected");

el se {

}

log ("The else branch is selected");

8 Flow graph semantics of TTCN-3

The operational semantics of TTCN-3 is based on the interpretation of flow graphs. In this clause flow graphs are
introduced (see clause 8.1), the construction of flow graphs representing TTCN-3 module control, test cases, altsteps,
functions and component type definitionsis explained (see clause 8.2), module and component states for the description
of the execution states of a TTCN-3 module are defined (see clause 8.3), the handling of messages, remote procedure
cals, replies to remote procedure calls and exceptionsis described (see clause 8.4) and the evaluation procedure of
module control and test cases is explained (see clause 8.6).

ETSI

27 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

8.1 Flow graphs

A flow graph is a directed graph that consists of labelled nodes and labelled edges. Traversing a flow graph describes
the possible flow of control during the execution of a represented behaviour description.

8.1.1 Flow graph frame

A flow graph shall be put into aframe defining the border of the flow graph. The name of flow graph follows the
keywords flow graph (these are not TTCN-3 core language keywords) and shall be put into the upper left corner of the
flow graph. As convention it is assumed that the flow graph name refersto the TTCN behaviour description represented
by the flow graph. A ssimple flow graph is shown in figure 10.

fl ow graph
M/Si npl eFl owG aph

Figure 10: A simple flow graph

8.1.2 Flow graph nodes

Flow graphs consist of start nodes, end nodes, basic nodes and reference nodes.

8.1.2.1 Start nodes

Start nodes describe the starting point of aflow graph. A flow graph shall only have one start node. A start nodeis
shown in figure 11(a).

h 4 A

(a) Flow graph start node (b) Flow graph end node

Figure 11: Start and end nodes

8.1.2.2 End nodes

End nodes describe end points of a flow graph. A flow graph may have several end nodes or in case of loops no end
node. Basic nodes (see clause 8.1.2.3) and reference nodes (see clause 8.1.2.4) that have no successor nodes shall be
connected to an end node to indicate that they describe the last action of a path through a flow graph. An end nodeis
shown in figure 11(b).

8.1.2.3 Basic nodes

A basic node describes an execution unit, i.e. it is executed in one step. A basic node has atype and, depending on the
type, may have an associated list of attributes. Two basic nodes are shown in figure 12.

In the inscription of a basic node the attributes of a node follow the node type and are put into round parentheses. Type
and attributes are used to determine the action to be performed during execution of the represented language construct.
The attributes describe information to be retrieved from the corresponding TTCN-3 construct.

ETSI

28 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

Attributes have values and the operational semantics will retrieve these values by referring to the attribute name. If
required, it is alowed to assign explicit values in basic hodes by using assignment ":=". An example is shown in
figure 12(b).

node-type
(attrq, attro, ...,
attrp)

(@ (b)

Figure 12: Basic nodes with attributes

8.1.24 Reference nodes

Reference nodes refer to flow graph segments (see clause 8.1.4) that are sub-flow graphs. The meaning of areference
node is defined by its replacement by the referenced flow graph segment in the flow graph. The node inscription of the
reference node provides the reference to a flow graph segment. A reference node is shown in figure 13(a).

segnent - ref erence;
OR

segnent -ref erence segnent -(f]gf erence;

segnent -r ef erence;

(a) Single reference node (b) OR combination of three reference nodes

Figure 13: Reference node

8.1.24.1 OR combination of reference nodes

In some cases severa flow graph segments may replace a reference node. For these cases an OR operator may be used
to refer to several flow graph segments (see figure 13(b)). In the actual flow graph representing the module control, a
test case or afunction, one aternative is determined by the represented construct.

8.1.2.4.2 Multiple occurrences of reference nodes

In some cases the same kind of reference node may occur zero, one or more timesin aflow graph. In regular
expressions the possible repetition of parts of aregular expression is described by using the operator symbols '+' (one or
more repetitions) and *' (zero or more repetitions). As shown in figure 14, these operators have been adopted to flow
graphs by introducing double-framed reference nodes with associated operator symbols. A single flow (see clause 8.1.3)
line shall replace a reference node, in case of zero occurrences (using a double-framed reference node with "*'-operator).

B B

segnent - r ef erence segnent - r ef erence

Figure 14: Repetition of reference nodes
An upper bound of possible repetitions of areference node can be given in form of an integer number in round

parenthesis following the ** or '+ symbol in the double framed reference node. The segment reference shown in
figure 15 may occur from zero up to 5 times.

ETSI

29 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

Q

segnent -r ef erence

Figure 15: Restricted repetition of a reference node

8.1.3 Flow lines

Flow lines are represented by means of arrows. A flow line has an inscription of true or false which indicates a
condition under which the flow line is chosen during the flow graph interpretation. As a short hand notation it is
allowed to omit the true inscription. Examples of flow lines are shown below:

false

>

true

> which isidentical to >

To support the joining of several flow linesinto one flow line on a graphical level, a special join node isintroduced.
Thejoin node and an example for its usage are shown below:

join node: o

™

usage of join node: >Q® >

/'

Drawing long flow linesin big diagrams asit is, for example, necessary to model the TTCN-3 constructsgot o and
| abel , isawkward. For this purpose, labels for outgoing and incoming flow lines can be used. Examples are shown
below:

Incoming flow line with label: in-label ——
Outgoing flow line with label: — out-label

An outgoing flow line with alabel is connected with an incoming flow line with alabel, if the labels areidentical. The
flow line labels for the incoming flow lines shall be unique. If there are several outgoing flow lines with the same label,
thisis considered to be ajoin of lines to the incoming flow line with an identical |abel.

8.1.4 Flow graph segments

Flow graph segments are sub-flow graphs. They are referenced in reference nodes and define the meaning of that
reference node. Flow graph segments may include further reference nodes.

Asshownin figure 16, flow graph segments have precise interfaces that consist of incoming and outgoing flow lines.
Thereis only one unlabeled incoming and one or none unlabeled outgoing flow lines. In addition there might exist
severa labelled incoming and outgoing flow lines. For example, the labelled incoming and outgoing flow lines are
needed to describe the meaning of TTCN-3 statementsgot o andal t .

ETSI

30 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

Flow graph segments are put into aframe and the name of the flow graph segment shall follow the keyword segnent
followed by the segment name in the upper left corner of the frame. The flow lines describing the flow graph segment
interface shall cross the flow graph segment frame.

segment Segnment Narrei

LI, >

LO LG ... LOy

Figure 16: Structure of a flow graph segment description

8.1.5 Comments

To improve readability and coherence a special comment symbol can be used to associate comments to flow graph
nodes and flow lines. The comment symbol and its usage are shown in figure 17.

1
!
E Comment related to
flow line

A 4

i nscription Ve bca(’sﬁnir(‘jtere'ated o
Thisisacomment in
........................ acomment symbol
]
]
(@) Comment symbol (b) Usage of comment symbols

Figure 17: Flow graph representation of comments

ETSI

31 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

8.1.6 Handling of flow graph descriptions

The evaluation procedure of the operational semantics traverses flow graphs that only consist of basic nodes, i.e. all
reference nodes have to be expanded by the corresponding flow graph segment definitions. The NEXT functionis
required to support this traversal. NEXT is defined in the following manner:

actualNodeRef NEXT(bool) := successor NodeRef where:
. actualNodeRef isthe reference of abasic flow graph node;
. successorNodeRef isthe reference of a successor node of the node referenced by actual NodeRef;

. bool is a Boolean specifying whether the true or the fal se successor is returned
(see clause 8.1.3).

8.2 Flow graph representation of TTCN-3 behaviour

The operational semantics assumes that TTCN-3 behaviour descriptions are provided in form of a set of flow graphs,
i.e. for each TTCN-3 behaviour description a separate flow graph has to be constructed.

The operational semantics interprets the following kinds of TTCN-3 definitions as behaviour descriptions:
a) module control;
b) test case definitions;
c) function definitions;
d) atstep definitions,
€) component type definitions.

The module control specifies the test campaign, i.e. the execution order (possibly repetitious) of the actual test cases.
Test case definitions define the behaviour of the MTC. Functions structure behaviour. They are executed by the module
control or by the test components. Altsteps are used for the definition of default behaviour or in a function-like manner
to structure behaviour. Component type definitions are assumed to be behaviour descriptions because they specify the
creation, declaration and initialization of ports, constants, variables and timers during the creation of an instance of a
component type.

8.2.1 Flow graph construction procedure

The flow graphs presented in the figures 18 to 22 and the flow graph segments presented in clause 8 are only templates.
They include placeholders for information that has to be provided in order to produce a concrete flow graph or flow
graph segment. The placeholders are marked with '<’ and "> parenthesis.

The construction of a flow graph representation of a TTCN-3 module is done in three steps:

1) For each TTCN-3 statement in module control, test cases, altsteps, functions and component type definitions a
concrete flow graph segment is constructed.

2) For the module control and for each test case, altstep, function and component type definition a concrete flow
graph (with reference nodes) is constructed.

3) Inastepwise procedure all reference nodesin the concrete flow graphs are replaced by corresponding flow
graph segment definitions until all flow graphs only include one start node, end nodes and basic flow graph
nodes.

NOTE 1: Basic flow graph nodes describe basic indivisible execution units. The operational semantics for TTCN-3
behaviour is based on the interpretation of basic flow graph nodes. Clause 8.6 presents execution methods
for basic flow graph nodes only.

ETSI

32 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

The replacement of a reference node by the corresponding flow graph segment definition may lead to unconnected parts
in aflow graph, i.e. parts which cannot be reached from the start node by traversing through the flow graph aong the
flow lines. The operational semantics will ignore unconnected parts of a flow graph.

NOTE 2: An unconnected part of aflow graph isaresult of the mechanical replacement procedure. For the
construction of an optimal flow graph representation the different combinations of TTCN-3 statements
also hasto be taken into consideration. However, the goal of the present document is to provide a correct
and complete semantics, not an optimal flow graph representation.

8.2.2 Flow graph representation of module control

Schematically, the syntactical structure of a TTCN-3 moduleis:

nmodul e <identifier> <nmodul e-definitions-part> control <statemnent-block>

For the flow graph behaviour representation the following information is relevant only:

nodul e <identifier> <statenent-bl ock>

Thisis comparable to afunction definition and therefore the flow graph representation of module control is similar to

the flow graph representation of afunction (see clause 8.2.4). The semantics will access the flow graph representing the
module control by using the module name.

NOTE: The meaning of the module definitions part is outside the scope of this operational semantics. Module
parameters are defined as global constants at run-time. References to module parameters have to be
replaced by their concrete values on a syntactical level (see clause 8.3).

The scheme of the flow graph representation of the module control is shown in figure 18. The flow graph name
cont r ol identifiesthe flow graph representing the module control. The nodes of the flow graph have associated
comments describing the meaning of the different nodes. The reference node <st op- ent i t y- op> coversthe case

where no explicit st op operation is specified, i.e. the operational semantics assumesthat ast op operation is
implicitly added.

fl ow graph control

/1 The nodul e control behaves like a
<i ni t- component - scope> /1 conponent and therefore, its scope
/1 has to be initialised.

A

// The body of the nodule control
<st at ement - bl ock> /'l specifies the statenents to be
/'l executed.

* (1) /1 For the case that an explicit stop
/!l operation is missing at the end of
/'l nodul e control

<stop-entity-op>

A

Figure 18: Flow graph representation of module control

ETSI

33 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

8.2.3 Flow graph representation of test cases

Schematically, the syntactical structure of a TTCN-3 test case definitioniis:

testcase <identifier> (<paraneter>) <testcase-interface> <statenent-bl ock>

The<t est case-i nt er f ace> above refersto the (mandatory) r uns on and the (optional) syst emclausesin the
test case definition. The flow graph description of atest case describes the behaviour of the MTC. Variables, timers and
constants defined and declared in the component type definition are made visible to the MTC behaviour by ther uns

on clauseinthe<t est case-i nterface>. Thesyst emclauseis not relevant for the MTC and is therefore not
represented in the flow graph representation of atest case.

The scheme of the flow graph representation of atest case is shown in figure 19. The flow graph name
<i denti fi er > refersto the name of the represented test case. The nodes of the flow graph have associated
comments describing the meaning of the different nodes. The reference node <st op- ent i t y- op> coversthe case

where no explicit st op operation for the MTC is specified, i.e. the operational semantics assumesthat ast op
operation isimplicitly added.

fl ow graph <identifier>

/1 Considers scope infornmation provided
<init-scope-wth-runs-on> /1 by the runs-on clause in the
Il interface of the test case.

v /1 - Actual paraneter values are
11 assumed to be in the value stack
. /11
<paramet er - handl i ng> /'l - Formal paraneters are handl ed
11 l'i ke | ocal variables and |ocal

11 tinmers

\4

/1 The body of the test case specifies
<st at enent - bl ock> /1l the statenents to be executed
/1 by the MIC

* (1) /1 For the case that an explicit stop
I/ operation is missing at the end of
/1

the test case
<stop-ntc>

A

Figure 19: Flow graph representation of test cases

ETSI

34 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

8.2.4 Flow graph representation of functions

Schematically, the syntactical structure of a TTCN-3 functionis:

function <identifier> (<paranmeter>) [<function-interface>] <statenent-bl ock>

The optional <f uncti on-i nt er f ace> above refersto the (optional) r uns on and the (optiona) r et ur n clauses
in the function definition.

The scheme of the flow graph representation of a function is shown in figure 20. The flow graph name

<i denti fi er> refersto the name of the represented function. Variables, timers, constants and ports defined and
declared in the component type definition are made visible to within the function by ther uns on clause in the
<function-interface>. Amissingruns on clause means that definitions within the component type definition
are not known within the scope of the function. The operational semantics distinguishes these two cases by the
reference nodes<i ni t - scope-wi t h-runs-on>and<i nit-scope-w t hout -runs-on>. Thereference
node <r et ur n-wi t hout - val ue> coversthe case where no explicit r et ur n statement is specified, i.e. the
operational semantics assumesthat ar et ur n statement isimplicitly added.

fl ow graph <identifier>

)

. i th /1 Considers the cases where either
<l n|t-scope-(\;v|?t -runs-on= // a runs-on clause is present or
/'l absent.

<init-scope-w thout-runs-on>

/1 - Actual paraneter values are

A 4 /1 assumed to be in the value stack
I
<par anet er - handl i ng> /1 - Formal paraneters are handl ed
11 li ke local variables and | ocal
11 tinmers

v

/1 The body of the function specifies
<st at ement - bl ock> /1 the statenents to be executed
/1 by the conponent.

* (1) ||
/1 For the case that an explicit
/1

return statenent is missing at the
<return-w thout-val ue> /1 end of the function.

A

Figure 20: Flow graph representation of functions

8.2.5 Flow graph representation of altsteps

Schematically, the syntactical structure of a TTCN-3 atstep is:

altstep <identifier> (<paranmeter>) [<altstep-interface>]
<constant-vari abl e-ti mer-decl arati ons>
{ <receiving-branch> | <else-branch> }*

NOTE: Only the alternatives up to the first else branch and the first else branch are taken into consideration.
Branches following the first el se branch are unreachable.

The optional <al t st ep-i nt er f ace> above refersto ther uns on clausein the altstep definition.

ETSI

35 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

The scheme of the flow graph representation of an altstep is shown in figure 21. The flow graph name

<i dentifi er> refersto the name of the represented altstep. Variables, timers, constants and ports defined and
declared in the component type definition are made visible to within the function by the r uns on clause in the
<function-interface>. Amissingruns on clause meansthat definitions made within the component type
definition are not known within the scope of the function. The operational semantics distingui shes these two cases by
the reference nodes<i ni t - scope-w t h-runs- on>and <i ni t - scope-wi t hout - r uns- on>. Thereference
node <r et ur n- wi t hout - val ue> coversthe case where no else-branch is specified and none of the alternatives
can be selected.

flow graph <identifier>

)

<init ith N /'l Considers the cases where either
Init-scope-wih-runs-on /1 a runs-on clause is present or
OR
-) /] absent.
<i ni t - scope-wi t hout - r uns-
\ 4 /'l - Actual paraneter values are
11 assunmed to be in the value stack
<par anet er - handl i ng> 1
// - Formal paraneters are handl ed
11 l'i ke local variables and | ocal
/1 timers

<const ant -definiti on>
oR

) . Il

<vari abl e- decl arat i on> /]
xR

<tinmer-declaration>

Constants, variables and tiners
may be declared and initialised

A /1l Alternative

<r ecei vi ng- branch> OR /'l branches
<al tstep-call -branch>
OR <el se- branch>

* (1) /1 For the case where no el se branch

/1 is specified and none of the
<return-without - val ue> /1 alternatives can be sel ected.

i

Figure 21: Flow graph representation of altsteps

ETSI

36 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

8.2.6 Flow graph representation of component type definitions

Schematically, the syntactical structure of a TTCN-3 component type definitioniis:
type conponent <identifier> <port-constant-variabl e-tinmer-declarations>
The semantics will access flow graphs representing types by using the component type names.

The scheme of the flow graph representation of a component type definition is shown in figure 22. The flow graph
name<i denti fi er > refersto the name of the represented component type.

flow graph <identifier>

/1l The conponent scope is initialised

<i ni t-conponent - scope>

* ||
<port-decl arati on>

R

/!l Ports are created

<const ant -definition>
R))
<vari abl e-decl arati on> /1 Constants, variables and tiners
R /1 are declared and initialised

<timer-declarati on>

/1 The 'father' conponent waits for the
/1 conpletion of the conponent creation,

v Il i.e., is in a 'blocking state.
<final i se-conponent -i nit> /1 The created conponent gives the
/1 control back to the 'father' conponent.
/1 The new conponent goes into a
/ "blocking' state and waits to be
/1 started.

Figure 22: Flow graph representation of component type definitions

8.2.7 Retrieval of start nodes of flow graphs
For the retrieval of the start node reference of aflow graph the following function is required:
The GET- FLOM GRAPH functi on: GET- FLOM GRAPH (f 1 ow graph-identifier)

The function returns a reference to the start node of aflow graph with the name flow-graph-identifier. The
flow-graph-identifier refers to the module name for the control, to test case names, to function names and to component
type definitions.

8.3 State definitions for TTCN-3 modules

During the interpretation of flow graphs representing TTCN-3 behaviour, module states are manipulated. A module
state is a structured state that consists of several sub-states describing the states of test components and ports. Module
states, component states and port states are introduced in this clause. In addition, functions to retrieve information from
and to manipulate states are defined.

ETSI

37 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

8.3.1 Module state

As shown in figure 23 amodule state is structured into ALL-ENTITY-STATES, ALL-PORT-STATES MTC, TC-
VERDICT, DONE and KILLED. ALL-ENTITY-STATES describes the state of the module control and during the
execution of atest case the states of the instantiated test components. ALL-PORT-STATES the MTC reference and the
TC-VERDICT are only relevant during test case execution. ALL-PORT-STATES describes the states of the different
ports. MTC provides areference to the Main Test Component (MTC), TC-VERDICT stores the actual global test verdict
of atest case, DONE isalist of al currently stopped test components during test case execution and KILLED isalist of
all terminated test components during test case execution.

NOTE 1: The number of updates of TC-VERDICT isidentical to the number of test components that have
terminated.

NOTE 2: An dive-type test component is put into the DONE list each time when it is stopped and removed from
the DONE list each time when it is started. It is put into the KILL and the DONE list when it iskilled.

The behaviour of module control (M-CONTROL in figure 23) is handled like a normal test component and its state is
thefirst element in ALL-ENTITY-STATES of a module state.

ALL-ENTITY-STATES ALL-PORT-STATES | MTC | TC-VERDICT | DONE | KILLED
[M-CONTROL[ES|...[ESp[| [Py | =] Pn |

Figure 23: Structure of a module state

NOTE 3: Port states may be considered to be part of the entity states. By connect and nap ports are made visible
for other components and therefore, this operational semantics handles ports on the top level of amodule
state.

8.3.1.1 Accessing the module state

The MTC and TC-VERDICT are parts of amodule state are handled like global variables, i.e. the keywords MTC and
TC-VERDICT can be used to retrieve and to change the values of the corresponding module state.

NOTE 1. There only exists one module state during the interpretation of a TTCN-3 module. Therefore the
keywords MTC and TC-VERDICT can be considered as globally unique identifiers for the evaluation
procedure.

For the handling of lists, e.g. ALL-ENTITY-STATES, ALL-PORT-STATES, DONE and KILLED in module states, the list
operations add, append, delete, member, first, last, length, next, random and change can be used. They have the
following meaning:

. myList.add(item) adds item as first element into the list myList and myList.add(sublist) adds the list sublist to
list myList, i.e., add can be used to add single elements or liststo lists;

. myL.ist.append(item) appends item as last element into the list myList and myList.append(sublist) appends the
list sublist to list myList, i.e., append can be used to append single elements or lists to lists;

. myList.delete(item) deletes item from the list myList;

. myList.member (item) returnst r ue if itemis an element of the list myList, otherwisef al se;

. myList.first() returnsthe first element of myList;

. myList.last() returns the last element of myList;

. myList.length() returns the length of myList;

. myList.next(item) returns the element that followsitemin myList, or NULL if itemisthe last element in myList;

. myList.random(< condition>) returns randomly an element of myList, which fulfils the Boolean condition
<condition> or NULL, if no element of myList fulfils <condition>;

. myL ist.change(<operation>) allows to apply <operation> on all elements of myL.ist.

ETSI

38 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

NOTE 2: The operations random and change are not common list operations. They are introduced to explain the
meaning of the keywordsal | and any in TTCN-3 operations.

Additionally, a general copy operation is available. The copy operation copies and returns an item instead of returning a
reference to an item:

. copy(item) returns a copy of item.

8.3.2 Entity states

Entity states are used to describe the actual states of module control and test components. In the module state, entity
states are handled in the list ALL-ENTITY-STATES. The structure of an entity state is shown in figure 24.

<identifier>

STATUS

CONTROL-STACK

DEFAULT-LIST

DEFAULT-POINTER

VALUE-STACK

E-VERDICT

TIMER-GUARD

DATA-STATE

TIMER-STATE

PORT-REF

SNAP-ALIVE

SNAP-DONE

SNAP-KILLED

KEEP-ALIVE

Figure 24: Structure of an entity state

The <identifier> isaunique identifier of an entity, i.e. module control of test component, in the test system. Such
unique identifiers are created implicitly for the module control, the it ¢ and the test sy st emwhen a module starts
execution or atest case is executed by means of the execut e statement. The identifier is used to identify and address
entities in the test system, e.g. in case of send operationswitht o clausesor r ecei ve operations with f r omclauses.

The STATUS describes whether the module control or atest component is ACTI VE, SNAPSHOT, REPEAT or
BLOCKED. Module control is blocked during the execution of atest case. Test components are blocked during the
creation of other test components, i.e. when they call acr eat e operation, and when they wait for being started. The
status SNAPSHOT indicates that the component is active, but in the eval uation phase of a snapshot. The status REPEAT
denotes that the component isactiveand inan al t statement that should be re-evaluated dueto ar epeat statement.

The CONTROL-STACK isastack of flow graph node references. The top element in CONTROL-STACK isthe flow
graph node that hasto be interpreted next. The stack is required to model function calls in an adequate manner.

The DEFAULT-LIST isalist of activated defaults, i.e. itisalist of pointers that refer to the start nodes of activated
defaults. Thelist isin the reverse order of activation, i.e. the default that has been activated first is the last element in
thelist.

During the execution of the default mechanism, the DEFAULT-POINTER refers to the next default that has to be
evaluated if the actual default terminates unsuccessfully.

ETSI

39 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

The VALUE-STACK isastack of values of al possible types that allows an intermediate storage of final or intermediate
results of operations, functions and statements. For example, the result of the eval uation of an expression or the result of
the nt ¢ operation will be pushed onto the VALUE-STACK. In addition to the values of all datatypes knownin a
module we define the specia value MARK to be part of the stack alphabet. When leaving a scope unit, the MARK is used
to clean VALUE-STACK.

The E-VERDICT stores the actua local verdict of atest component. The E-VERDICT isignored if an entity state
represents the module control.

The TIMER-GUARD represents the special timer, which is necessary to guard the execution time of test cases and the
duration of call operations. The TIMER-GUARD is modelled as atimer binding (see clause 8.3.2.4 and figure 28).

The DATA-STATE is considered to be alist of lists of variable bindings. The list of lists structure reflects nested scope
units due to nested function and altstep calls. Each list in the list of lists of variable bindings describes the variables
declared in a certain scope unit and their values. Entering or leaving a scope unit corresponds to adding or deleting alist
of variable bindings from the DATA-STATE. A description of the DATA-STATE part of an entity state can be found in
clause 8.3.2.2.

The TIMER-STATE is considered to be alist of lists of timer bindings. The list of lists structure reflects nested scope
units due to nested function and altstep calls. Each list in the list of lists of timer bindings describes the known timers
and their statusin a certain scope unit. Entering or leaving a scope unit corresponds to adding or deleting alist of timer
bindings from the TIMER-STATE. A description of the TIMER-STATE part of an entity state can be found in

clause 8.3.2.4.

The PORT-REF is considered to be alist of lists of port bindings. The list of lists structure reflects nested scope units
due to nested function and altstep calls. Nested scope units for ports are the result of port parametersin functions and
atsteps. Each list inthelist of lists of port bindings identifies the known ports in a certain scope unit. Entering or
leaving a scope unit corresponds to adding or deleting alist of port bindings from the PORT-REF. A description of the
PORT-REF part of an entity state can be found in clause 8.3.2.6.

NOTE: The TTCN-3 semantics administrates ports globally in the module state. Due to port parameterization, a
test component may access a port by using different names in different scopes. The PORT-REF part of an
entity state is used to identify port states uniquely in the module state.

The SNAP-ALIVE supports the snapshot semantics of test components. When a snapshot is taken, a copy of the ALL-
ENTITY-STATES list of the module state will be assigned to SNAP-ALIVE, i.e. SNAP-ALIVE includes all entities (test
components and test control) which are alive in the test system.

The SNAP-DONE supports the snapshot semantics of test components. When a snapshot is taken, a copy of the DONE
list of the module state will be assigned to SNAP-DONE, i.e. SNAP-DONE isalist of component identifiers of stopped
components.

The SNAP-KILLED supports the snapshot semantics of test components. When a snapshot is taken, a copy of the
KILLED list of the module state will be assigned to SNAP-KILL, i.e. SNAP-DONE isalist of component identifiers of
terminated components.

The KEEP-ALIVE field indicates whether the entity can be restarted after its termination or not. It is set to true if the
entity can be restarted. Otherwiseit is set to false.

8.3.2.1 Accessing entity states

The <identifier> is the unique identifier of an entity state, which can be used to access the component represented by
entity state and the different parts of the entity state.

The STATUS, DEFAULT-POINTER, E-VERDICT and TIMER-GUARD parts of an entity state are handled like
variablesthat are globally visible, i.e. the values of STATUS, DEFAULT-POINTER and E-VERDICT can be retrieved or
changed by using the "dot" notation, e.g. myEntity.STATUS, myEntity. DEFAULT-POINTER and myEntity.E-VERDICT,
where myEntity refers to an entity state.

NOTE: Inthe following, we assume that we can use the "dot" notation by using references and unique identifiers.
For example, in myEntity. STATUS, myEntityState may be pointer to an entity state or be the value of the
<identifier> field.

ETSI

40 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

The CONTROL-STACK, DEFAULT-LIST and VALUE-STACK of an entity state myEntity can be addressed by using the
'dot' notation myEntity. CONTROL-STACK, myEntity. DEFAULT-LIST and myEntity. VALUE-STACK.

CONTROL-STACK and VALUE-STACK can be accessed and manipulated by using the stack operations push, pop, top,
clear and clear-until. The stack operations have the following meaning:

. myStack.push(item) pushes item onto myStack;

. myStack.pop() pops the top item from myStack;

. myStack.top() returns the top element of myStack or NULL if myStack is empty;

. myStack.clear() clears myStack, i.e. pops al items from myStack;

. myStack.clear-until(item) popsitems from myStack until item isfound or myStack is empty.

DEFAULT-LIST can be accessed and manipulated by using the list operations add, append, delete, member, first,
length, next, random and change. The meaning of these list operationsis defined in clause 8.3.1.1.

For the creation of a new entity state the function NEW-ENTITY is assumed to be available:
. NEW-ENTITY (entityldentifier, flow-graph-node-reference, keep-alive);

creates a new entity state and returns its reference. The components of the new entity state have the following values:
. <identifier> is set to entityldentifier and shall be a globally unique identifier;
. STATUS s set to ACTI VE;

. flow-graph-node-reference is the only (top) element in CONTROL-STACK;

. DEFAULT-LIST isan empty list;

. DEFAULT-POINTER has the value NULL;

. VALUE-STACK isan empty stack;
. E-VERDICT is set to none;

. TIMER-GUARD is anew timer binding (see clause 8.3.2.4) with name GUARD, status | DL E and no default
duration;

. DATA-STATE isan empty list;

. TIMER-STATE is an empty list;

. PORT-REF isan empty list;

« SNAP-ALIVE isan empty list;

. SNAP-DONE is an empty list;

. SNAP-KILLED isan empty list;

. KEEP-ALIVE is set to the value of the keep-alive parameter.

During the traversal of aflow graph the CONTROL-STACK changes its value often in the same manner: the top element
is popped from and the successor node of the popped node is pushed onto CONTROL-STACK. This series of stack
operations is encapsulated in the NEXT-CONTROL function:

nyEnti ty. NEXT- CONTROL(nyBool) {
successor Node : = nyEntity. CONTROL- STACK. NEXT(nmyBool). top();
nyEntity. CONTROL- STACK. pop();
myEnt i ty. CONTROL- STACK. push(successor Node) ;

ETSI

41 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

8.3.2.2 Data state and variable binding

Asshown in figure 25, the data state DATA-STATE of an entity state isalist of lists of variable bindings. Each list of
variable bindings defines the variable bindingsin a certain scope unit. Adding anew list of variable bindings
corresponds to entering a new scope unit, e.g. afunction is called. Deleting alist of variable bindings corresponds to
leaving a scope unit, e.g. a function executesar et ur n statement.

VariableBinding, VariableBinding,

v v
v v

VariableBinding, VariableBinding,

Figure 25: Structure of the DATA-STATE part of an entity state

The structure of avariable binding is shown in figure 26. A variable has a name, a<location> and a VALUE.
VAR NAME identifies a variable in a scope unit. The <location> isaunique identifier of the storage location of the
value of the variable. The VALUE part of a variable binding describes the actual value of avariable.

NOTE: Unique location identifiers shall be provided automatically when avariable is declared.

VAR-NAME <location> VALUE

Figure 26: Structure of a variable binding

The distinction between variable name and location has been made to model function calls and the execution of test
cases with value and reference parameterization in an appropriate manner:

a) A parameter passed in by value is handled like the declaration of a new variable, i.e. anew variable binding is
appended to the list of variable bindings of the scope of the called function or executed test case. The new
variable binding uses the formal parameter name as VAR-NAME, receives a new |ocation and gets the value
that is passed into the function or test case.

b) A parameter passed in by reference also leads to a new variable binding in the scope of the called function or
executed test case. The new variable binding also uses the formal parameter name as VAR-NAME, but receives
no new location and no new value. The new variable binding gets a copy of <location> and VALUE of the
variable that is passed in by reference.

When updating a variable value, e.g. in case of an assignment to a variable, the variable nameis used to identify a
location and al variable bindings with the same location are updated at the same time. Thus, when leaving the scope
unit, the list of variables belonging to this scope unit can be deleted without further update. Due to the update
procedure, variables passed in by reference automatically have the correct value.

8.3.2.3 Accessing data states

The value of avariable can be retrieved by using the "dot" notation myEntity.myVar.VALUE, where myEntity refersto
an entity state and myVar isthe name of avariable.

ETSI

42 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

For the handling of variables and variable scope the following functions are considered to be defined:

a)

b)

©)

d)

The VAR-SET function: myEntity. VAR-SET (myVar, myValue)

sets the VALUE part of variable myVar in the actual scope of an entity myEntity to myVal. In addition, the
VALUE part of al variables with the same location as variable myVar will also be set to myVal.

The INIT-VAR function: myEntity.INIT-VAR (myVar, myVal)

creates a new variable binding for avariable myVar with the initial value myVal in the actual scope unit of an
entity myEntity. Using the keyword NONE as myVal means that a variable with undefined initial valueis
created. A new and unique <location> value is automatically created.

The GET-VAR-LOC function: myEntity. GET-VAR-LOC (myVar)
retrieves the location of variable myVar owned by myEntity.
The INIT-VAR-LOC function: myEntity.INIT-VAR-LOC (myVar,myLoc)

creates a new variable binding for a variable myVar with the location myLoc in the actual scope unit of
myEntity. The variable will be initialized with the value of another variable with the location myLoc.

NOTE: Variableswith the same location are aresult of parameterization by reference. Due to the handling of

f)

8.3.24

reference parameters as described in clause 8.3.2.2 all variables with the same location will have identical
values during their lifetime.

The INIT-VAR-SCOPE function: myEntity.INI T-VAR-SCOPE ()

initializes a new variable scope in the data state of entity myEntity, i.e. an empty list isadded asfirst list in the
list of lists of variable bindings.

The DEL-VAR-SCOPE function: myEntity. DEL-VAR-SCOPE ()

deletes a variable scope of the data state of myEntity, i.e. the first list in the list of lists of variable bindingsis
deleted.

Timer state and timer binding

As shown in figures 27 and 25 the timer state TIMER-STATE and the data state DATA-STATE of an entity state are
comparable. Both are alist of lists of bindings and each list of bindings defines the valid bindings in a certain scope.
Adding anew list corresponds to entering a new scope unit and deleting a list of bindings corresponds to leaving a
scope unit.

TimerBinding, TimerBinding,

v v
v v

TimerBinding, TimerBinding,

Figure 27: Structure of the TIMER-STATE part of an entity state

The structure of atimer binding is shown in figure 28. The meaning of TIMER-NAME and <location> is similar to the
meaning of VAR-NAME and <location> for a variable binding (figure 26).

ETSI

43 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

TIMER-NAME | <location> | STATUS | DEF-DURATION | ACT-DURATION | TIME-LEFT | SNAP-VALUE | SNAP-STATUS

Figure 28: Structure of a timer binding

STATUS denotes whether atimer is active, inactive or has timed out. The corresponding STATUSvaluesare | DLE,
RUNNI NGand TI MEQUT. DEF-DURATION describes the default duration of atimer. ACT-DURATION stores the
actual duration with which arunning timer has been started. TIME-LEFT describes the actual duration that a running
timer has to run before it times out.

NOTE: DEF-DURATION isundefined if atimer is declared without default duration. ACT-DURATION and
TIME-LEFT are set to 0.0 if atimer is stopped or times out. If atimer is started without duration, the
value of DEF-DURATION is copied into ACT-DURATION. A dynamic error occursif atimer is started
without a defined duration.

SNAP-VALUE and SNAP-STATUS are needed to support the snapshot semantics of TTCN-3. When taking a snapshoat,
SNAP-VALUE gets the actual value of ACT-DURATION — TIME-LEFT. And SNAP-STATUS gets the same value as
STATUS The evaluation of a snapshot will only be based on the values in SNAP-VALUE and SNAP-STATUS.

Timer can be only passed by reference into functions, i.e. the mechanism is similar to the mechanism for variables
described in clause 8.3.2.2. This means a new timer binding (with the formal parameter name) is created which gets
copies of <location>, STATUS DEF-DURATION, ACT-DURATION, TIME-LEFT, SNAP-VALUE and SNAP-STATUS
from the timer that is passed in by reference. When updating atimer all timer bindings with the same <location> value
are updated at the same time.

8.3.25 Accessing timer states

The values of STATUS DEF-DURATION, ACT-DURATION, TIME-LEFT, SNAP-VALUE and SNAP-STATUS of a
timer myTimer can be retrieved by using the dot notation:

. myEntity.myTimer.STATUS;

« myEntity.myTimer.DEF-DURATION;

. myEntity.myTimer ACT-DURATION;

. myEntity.myTimer. TIME-LEFT;
. myEntity.myTimer. SNAP-VALUE;
. myEntity.myTimer.SNAP-STATUS.

The myEntity in the dot notation refersto an entity state representing the state of atest component or module control
that owns the timer myTimer.

For changing the values of STATUS DEF-DURATION, ACT-DURATION, TIME-LEFT, SNAP-VALUE and SNAP-
STATUS of atimer timer-name, the generic TIMER-SET operation has to be used, for example:

. myEntity. TIMER-SET(myTimer, STATUS, myVal).

sets the STATUS value of timer myTimer in the actual scope of myEntity to the value myVal. In addition, the STATUS of
al timers with the same location as timer myTimer will also be set to myVal. The TIMER-SET function can also be used
to change the values of DEF-DURATION, ACT-DURATION, TIME-LEFT, SNAP-VALUE and SNAP-STATUS.

ETSI

44 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

For the handling of timers, timer scope and snapshot the following functions have to be defined:

a)

b)

©)

The INIT-TIMER function: myEntity.INIT-TIMER (myTimer, myDuration)

creates a new timer binding for atimer myTimer with the default duration myDuration in the actual scope of an
entity myEntity. Using the keyword NONE as myDuration means that a timer without default duration is
created.

The GET-TIMER-LOC function: myEntity. GET-TIMER-LOC (myTimer)

retrieves the location of timer myTimer owned by myEntity.
The INIT-TIMER-LOC function: myEntity. INIT-TIMER-LOC (myTimer, myLocation)

creates a new timer binding for atimer myTimer with the location myLocation in the actual scope unit of
myEntity. The timer will beinitialized with the values of STATUS DEF-DURATION, ACT-DURATION and
TIME-LEFT of another timer with the location <location>.

NOTE: Timerswith the samelocation are aresult of parameterization by reference. Due to the handling of timer

d)

f)

8.3.2.6

reference parameters as described in clause 8.3.2.3 all timers with the same location will have identical
values for STATUS, DEF-DURATION, ACT-DURATION and TIME-LEFT during their lifetime.

The INIT-TIMER-SCOPE function: myEntity.INIT-TIMER-SCOPE ()

initializes a new timer scope in the timer state of entity myEntity, i.e. an empty list isadded asfirst list in the
list of lists of timer bindings.

The DEL-TIMER-SCOPE function: myEntity. DEL-TIMER-SCOPE ()

deletes atimer scope of the timer state of entity myEntity, i.e. thefirst list in the list of lists of timer bindingsis
deleted.

The SNAP-TIMER function: myEntity. SNAP-TIMER ()
makes an update of SNAP-VALUE and SNAP-STATUS, in all timers owned by myEntity , i.e.:

nyEntity. SNAP-TI MERS () {
for all nyTimer in TI MER STATE {
nyEntity. nyTi mer. SNAP- VALUE : = nyEntity. nyTi mer. ACT- DURATI ON —
nyEntity. myTi mer. Tl ME- LEFT;
nmyEntity. myTi mer. SNAP- STATUS : = nyEntity. myTi mer. STATUS,;

Port references and port binding

Asshown in figures 28a, 27 and 25 the port references PORT-REF, the timer state TIMER-STATE and the data state
DATA-STATE of an entity state are comparable. All threeare alist of lists of bindings and each list of bindings defines
the valid bindingsin a certain scope. Adding a new list corresponds to entering a new scope unit and deleting alist of
bindings corresponds to leaving a scope unit.

root . :? > P occcccscses

PortBinding: PortBinding:

{ {
| |

PortBindingn PortBindingx

Figure 28a: Structure of the PORT-REF part of an entity state

ETSI

45 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

The structure of a port binding is shown in figure 28b. A port has two names. PORT-NAME identifies aport in a scope
unit. COMP-PORT-NAME is the port name given in the component type to a port.

PORT-NAME|COMP-PORT-NAME

Figure 28b: Structure of a port binding

NOTE: PORT-NAME and COMP-PORT-NAME are equal directly after the creation of a component.

Ports can be only passed by reference into functions and altesteps, i.e. the mechanismis similar to the mechanism for
variables described in clause 8.3.2.2. This means a new port binding (with the formal parameter name) is created which
gets a copy of COMP-PORT-NAME from the port that is passed in by reference. When accessing a port which is passed
in by reference, the corresponding port binding is used to retrieve the port name declared in the component type
definition.

8.3.2.7 Accessing port references

The value of COMP-PORT-NAME can be retrieved by using the dot notation:

. myEntity.myport. COMP-PORT-NAME;

The myEntity in the dot notation refers to an entity state representing the state of a test component that owns the port
myPort.

For the handling of port parameters and port scopes the following functions have to be defined:
a ThelINIT-PORT function: myEntity.INIT-PORT (myPort, myCompPortName)

creates a new port binding for a port myPort with myCompPortName as value for COMP-PORT-NAME in the
actual scope of an entity myEntity.

b) ThelNIT-PORT-SCOPE function: myEntity.INIT-PORT-SCOPE ()

initializes a new port scope in the port references of entity myEntity, i.e. an empty list isadded asfirst list in
thelist of lists of port bindings.

¢) TheDEL-PORT-SCOPE function: myEntity.DEL -PORT-SCOPE ()

deletes a port scope of the port references of entity myEntity, i.e. the first list in the list of lists of port bindings
is deleted.

8.3.3 Port states

Port states are used to describe the actual states of ports. Within a module state, the port states are handled in the
ALL-PORT-STATES ist (see figure 23). The structure of a port state is shown in figure 29. The COMP-PORT-NAME
refers to the port name that is used to declare the port in the component type definition of the test component OWNER
that owns the port. STATUS provides the actua status of the port. A port may either be STARTED or STOPPED.

NOTE: A portinatest system is uniquely identified by the owning test component and by the port name used in
the component type definition to declare the port.

The CONNECTIONS-LIST of aport state keeps track of the connections between the different portsin the test system.
The mechanismis explained in clause 8.3.3.1.

The VALUE-QUEUE in a port state stores the messages, calls, replies and exceptions that are received at this port but
have not yet been consumed.

The SNAP-VALUE supports the TTCN-3 snapshot mechanism. When a snapshot is taken, the first element in
VALUE-QUEUE is copied into SNAP-VALUE. SNAP-VALUE will get the value NULL if VALUE-QUEUE is empty or
STATUSIis STOPPED.

ETSI

46 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

COMP-PORT-NAME OWNER STATUS CONNECTIONS-LIST | VALUE-QUEUE | SNAP-VALUE

Figure 29: Structure of a port state

8.3.3.1 Handling of connections among ports

A connection between two test components is made by connecting two of their ports by means of aconnect
operation. Thus, a component can afterwards use itslocal port name to address the remote queue. As shown in

figure 30, connection is represented in the states of both connected queues by a pair of REMOTE-ENTITY and
REMOTE-PORT-NAME. The REMOTE-ENTITY is the unique identifier of the test component that owns the remote
port. The REMOTE-PORT-NAME refers to the port name that is used to declare the port in the component type
definition of the test component REMOTE-ENTITY. TTCN-3 supports one-to-many connections of ports and therefore
al connections of a port are organized in alist.

NOTE 1: Connections made by nap operations are also handled in the list of connections. The map operation:
map (PTC1:MyPort, syst emPCO1) leadsto a new connection (syst em PCOL1) in the port state of
MyPort owned by PTC1. The remote side to which PCO1 is connected to, residesinside the SUT. Its
behaviour is outside the scope of this semantics.

NOTE 2: The operational semantics handles the keyword sy st emas a symbolic address. A connection
(syst em myPort) inthe list of connections of a port it indicates that the port is mapped onto the port
myPort in the test system interface.

REMOTE-ENTITY REMOTE-PORT-NAME

Figure 30: Structure of a connection

8.3.3.2 Handling of port states

The queue of valuesin a port state can be accessed and manipulated by using the known queue operations enqueue,
dequeue, first and clear. Using a GET-PORT or a GET-REMOTE-PORT function references the queue that shall be
accessed.

NOTE 1: The queue operations enqueue, degqueue, first and clear have the following meaning:
L] myQueue.engqueue(item) putsitem as last item into myQueue;
" myQueue.dequeue() deletes the first item from myQueue;
L] myQueue.first() returns the first item in myQueue or NULL if myQueue is empty;
" myQueue.clear() removes al elements from myQueue.
The handling of port statesis supported by the following functions:
a The NEW-PORT function: NEW-PORT (myEntity, myPort)

creates a new port and returns its reference. The OWNER entry of the new port is set to myEntity and COMP-
PORT-NAME has the value myPort. The status of the new port is STARTED. The CONNECTIONS-LIST and the
VALUE-QUEUE are empty. The SNAP-VALUE has the value NULL (i.e. the input queue of the new port is

empty).
b) The GET-PORT function: GET-PORT (myEntity, myPort)

returns a reference to the port identified by OWNER myEntity and COMP-PORT-NAME myPort.

¢) The GET-REMOTE-PORT function: GET-REMOTE-PORT (myEntity, myPort, myRemoteEntity)

ETSI

a7 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

returns the reference to the port that is owned by test component myRemoteEntity and connected to a port
identified by OWNER myEntity and COMP-PORT-NAME myPort. The symbolic address SY STEM s returned,
if the remote port is mapped onto a port in the test system interface.

NOTE 2: GET-REMOTE-PORT returns NULL if there is no remote port or if the remote port cannot be identified
uniquely. The special value NONE can be used as value for the myRemoteEntity parameter if the remote
entity is not known or not required, i.e. there exits only a one-to-one connection for this port.

d) TheSTATUSof aport ishandled like avariable. It can be addressed by qualifying STATUS with a GET-PORT
call:

GET-PORT(myEntity, myPort).STATUS
€) The ADD-CON function: ADD-CON (myEntity, myPort, myRemoteEntity, myRemotePort)

adds a connection (myRemoteEntity, myRemotePort) to the list of connections of the port identified by
OWNER myEntity and COMP-PORT-NAME myPort.

f) The DEL-CON function: DEL-CON (myEntity, myPort, myRemoteEntity, myRemotePort)

removes a connection (myRemoteEntity, myRemotePort) from the list of connections of the port identified by
OWNER myEntity and COMP-PORT-NAME myPort.

g) The SNAP-PORTSfunction: SNAP-PORTS (myEntity)
updates SNAP-VALUE for all ports owned by myEntity, i.e.

SNAP- PORTS (nyEntity) {
for all ports p /* in the nodule state */ {
if (p. ONER == nyEntity) {
i f (p. STATUS == STOPPED) {
p. SNAP- VALUE : = NULL;

el se {
p. SNAP-VALUE := p.first()
}

8.3.4 General functions for the handling of module states
The operational semantics assumes the existence of the following functions for the handling of module states.

NOTE 1: During the interpretation of a TTCN-3 module, there only exists one module state. It is assumed that the
components of the module state are stored in global variables and not in a complex data object. Thus, the
following functions are assumed to work on global variables and do not address a specific module state
object.

ad) TheDEL-ENTITY function: DEL-ENTITY(myEntity)
deletes an entity with the unique identifier myEntity. The deletion comprises:
- the deletion of the entity state of myEntity;
- deletion of all ports owned by myEntity;
- deletion of al connections in which myEntity isinvolved.

b) The UPDATE-REMOTE-REFERENCES function:

UPDATE-REMOTE-REFERENCES (source, target)

the UPDATE-REMOTE-REFERENCES updates variables and timers with the same location in both entities.
The values that will be used for the update are the values of variables and timers owned by source.

NOTE 2: The UPDATE-REMOTE-REFERENCES s used during the termination of test cases. It alows updating of
variables of module control, which are passed as reference parameters to test cases.

ETSI

48 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

8.4 Messages, procedure calls, replies and exceptions

The exchange of information among test components and between test components and the SUT isrelated to messages,
procedure calls, replies to procedure calls and exceptions. For communication purposes these items have to be
constructed, encoded and decoded. The concrete encoding, i.e. mapping of TTCN-3 data types to bits and bytes, and
decoding, i.e. mapping of bits and bytes to TTCN-3 data types, is outside the scope of the operational semantics. In the
present document messages, procedure calls, replies to procedure calls and exceptions are handled on a conceptual
level.

8.4.1 Messages

M essages are related to message-based communication. Vaues of all (pre- and user-defined) data types can be
exchanged among the entities that communicate. As shown in figure 31, the operational semantics handles a message as
structured object that consist of a sender atype and avalue part. The sender part identifies the sender entity of a
message, the type part specifies the type of a message and the value part defines the message value.

sender type value

Figure 31: Structure of a message

NOTE: The operational semantics only presents a model for the concepts of TTCN-3. Whether and how the
sender information is or has to be sent and/or received depends on the implementation of the test system,
e.g. in some cases the sender information may be part of the value part of a message and therefore is no
separate part of the message structure.

8.4.2 Procedure calls and replies

Procedure calls and replies to procedures are related to procedure-based communication. They are defined like val ues of
arecord with components representing the parameters. The operational semantics also handles procedure calls and
replies to procedure cals like values in structured types. The structure of a procedure call and the structure of areply
are presented in figures 32 and 33.

The sender and the procedure-reference parts have the same meaning in both figures. The sender part refersto the
sender entity of acall or the reply to a procedure call. The procedure-reference refers to the procedure to which call and
reply belong. The parameter-part of the procedure call in figure 32 refersto thei n parametersand i nout parameters
and the parameter- part of the reply in figure 33 refersto thei nout parameters and out parameters of the procedure
to which call and reply belong. In addition, the reply has a value part for the return values in the reply to a procedure.

NOTE 1: Asstated in the previous note, the operational semantics only presents a model for the concepts of
TTCN-3. Whether and how the information described in figures 32 and 33 is or has to be sent and/or
received depends on the implementation of the test system.

NOTE 2: For aprocedure call, out parameters are of no relevance and are omitted in figure 32. For areply to a
procedure call, i n parameters are of no relevance and are omitted in figure 33.

NOTE 3: Thetypes of parameters and the type of the return value can always be derived unanimously from the
related signature definition.

sender procedure-reference parameter-part

in-or-inout-parameter, | ... | in-or-inout-parameter

Figure 32: Structure of a procedure call

ETSI

49 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

sender | procedure-reference parameter-part value

inout-or-out-parameterl inout-or-out-parametern

Figure 33: Structure of a reply to a procedure call

8.4.3 Exceptions

Exceptions are also related to procedure-based communication. The structure of an exception is shown in figure 34. It
consists of four parts. The sender part identifies the sender of the exception; the procedure-reference part refersto the
procedure to which the exception belongs, the type part identifies the type of the exception and the value part provides
the value of the exception. The procedure signature referred to in the procedure reference part defines the list of alowed
types of exceptions. A received exception shall comply with one of the listed types. In general it can be of any pre- or
user-defined TTCN-3 data type.

sender procedure-reference type value

Figure 34: Structure of an exception

8.4.4 Construction of messages, procedure calls, replies and exceptions

The operations for sending a message, a procedure call, areply to a procedure call or an exception aresend, cal | ,
reply andr ai se. All these sending operations are built up in the same manner:

<port - name>. <sendi ng- oper ati on>(<send- speci fi cation>) [to <receiver>]

The <port-name> and <sending-operation> define port and operation used for sending an item. In case of one-to-many
connections a <receiver> entity needs to be specified. The item to be sent is constructed by using the
<send-specification>. The send specification may use concrete values, template references, variable values, constants,
expressions, functions, etc. to construct and encode the item to be sent.

The operational semantics assumes that there exists a generic CONSTRUCT-ITEM function:

CONSTRUCT-ITEM (myEntity, <sending-operation>, <send-specification>)

returns a message, a procedure call, areply to a procedure call or an exception depending on the

<sendi ng- oper at i on> and the<send- speci fi cati on> (both, <sendi ng- oper at i on> and the
<send- speci fi cati on> refer to the corresponding partsin the TTCN-3 sending operation). The entity
reference myEntity is the sender of the item to be sent. This sender information is also assumed to be part of
the item to be sent (figures 31 to 34).

8.4.5 Matching of messages, procedure calls, replies and exceptions

The operations for receiving a message, a procedure call, areply to aprocedure call or an exception arer ecei ve,
getcal | ,get repl y and cat ch. All these receiving operations are built up in the same manner:

<port-name>. <recei vi ng- oper ati on>(<mat chi ng-part>) [from <sender>] [<assi gnment-part>]

The<port - nanme> and <r ecei vi ng- oper at i on> define port and operation used for the reception of anitem. In
case of one-to-many connections af r omclause can be used to select a specific sender entity <sender >. Theitem to
be received has to fulfil the conditions specified in the <mat chi ng- part >, i.e. it hasto match. The <nat chi ng-
par t > may use concrete values, template references, variable values, constants, expressions, functions, etc. to specify
the matching conditions.

The operational semantics assumes that there exists a generic MATCH-ITEM function:
MATCH-ITEM (myltem, <rmat chi ng- part >, <sender >)

returnst r ue if myltem fulfils the conditions of <mat chi ng- part > and if myltem has been sent by
<sender >, otherwiseit returnsf al se.

ETSI

50 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

8.4.6 Retrieval of information from received items

Information from received messages, procedure calls, replies to procedure calls and exceptions can be retrieved in the
<assi gnnent - par t > (see clause 8.4.5) of thereceiving functionsr ecei ve, get cal | ,getrepl y and cat ch.
The<assi gnnent - par t > describes how the parameters of procedure calls and replies, return values encoded in
replies, messages, exceptions and the identifier of the <sender > entity are assigned to variables.

The operational semantics assumes that there exists a generic RETRIEVE-INFO function:

RETRIEVE-INFO (myltem, <assi gnnent - part >)

al vauesto be retrieved according to the <assi gnnent - par t > are retrieved and assigned to the variables
listed in the assignment part. Assignments are done by means of the VAR-SET operation, i.e. variables with the
same location are updated at the same time.

8.5 Call records for functions, altsteps and test cases

Functions, altsteps and test cases are called (or executed) by their name and a list of actual parameters. The actual
parameters provide references for reference parameter and concrete values for the value parameter as defined by the
formal parametersin the corresponding function, altstep or test case definition. The operational semantics handles calls
of functions, altsteps and test cases by using call records as shown in figure 35. The value of BEHAVIOUR-ID isthe
name of afunction or test case, value parameters provide concrete values <parld,> ... <parld> for the formal

parameters <parld,> ... <parld,>. Variable and timer reference parameters provide references to locations of existing

variables and timers. Port reference parameters provide the port names declared in the component type definition of the
test component that calls the function or atstep. Before a function or test case can be executed an appropriate call
record has to be constructed.

NOTE: Port reference parameters can only appear in functions and altsteps which are executed on a test

component.
behaviour-id value-parameters variable and timer port
reference-parameters reference-parameters
parld, |...|parld parld, |...| parld, parldg |...| parld,
value, |...|value, loc, |...| loc, nameg |...| name,

Figure 35: Structure of a call record

8.5.1 Handling of call records

The function, altstep or test case name and the actual parameter values can be retrieved by using the dot notation,
e.g. myCallRecord.parld,, or myCallRecord.behaviour-id where myCallRecord is a pointer to acall record.

For the construction of acall the function NEW-CALL-RECORD is assumed to be available:

NEW-CALL-RECORD(myBehaviour)

creates anew call record for function, altstep or test case myBehaviour and returns a pointer to the new record.
The parameter fields of the new call record have undefined values.

ETSI

51 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

myEntity.INIT-CALL-RECORD (myCallRecord)

creates variables, timers and port references for the handling of value and reference parameters in the actual
scope of the test component or module control myEntity. The variables for the handling of value parameters
areinitialized with the corresponding values provided in the call record. The variables and timers for the
handling of reference parameters get the provided location. In addition, they get a value of an existing variable
or timer in another scope unit of the component in which the call record was created. Port references get the
provided name as value for the COMP-PORT-NAME field.

8.6 The evaluation procedure for a TTCN-3 module

8.6.1 Evaluation phases
The evauation procedure for a TTCN-3 module is structured into:
(1) initialization phase;
(2) update phase;
() selection phase; and
(4) execution phase.

The phases (2), (3) and (4) are repeated until module control terminates. The evaluation procedure is described by
means of a mixture of informal text, pseudo-code and the functions introduced in the previous clauses.

8.6.1.1 Phase [: Initialization
The initialization phase includes the following actions:
a) Declaration and initialization of variables:

- INIT-FLOW-GRAPHY); // Initialization of flow graph handling. INIT-FLOW-GRAPHS is
/I explained in clause 8.6.2

- Entity := NULL; /1 Entity will be used to refer to an entity state. An entity state either
/I represents module control or atest component.

NOTE: Thefollowing global variables ALL-ENTITY-STATES, ALL-PORT-STATES MTC, TC-VERDICT, DONE,
KILLED and SNAP-ACTIVE form the module state that is manipulated during the interpretation of a
TTCN-3 module (see clause 8.3.1).

- ALL-ENTITY-STATES:= NULL;

- ALL-PORT-STATES:= NULL;

- MTC := NULL;
- TC-VERDICT := none;
- DONE := NULL;
- KILLED := NULL;
b) Creation and initialization of module control:

- Entity:= NEW-ENTITY (GET-UNIQUE-ID(),GET-FLOW-GRAPH (<moduleld>), false);
Il A new entity state is created and initialized with the start node of
/1 the flow graph representing the behaviour of the control of the
/I module with the name <moduleld>. GET-UNIQUE-ID is
Il explained in clause 8.6.2. The Boolean parameter indicates that
/I module control cannot be restarted after it is stopped.

- Entity.INIT-VAR-SCOPE(); /I New variable scope

ETSI

52 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

- Entity.INIT-TIMER-SCOPE(); /l New timer scope

- Entity.VALUE-STACK.push(MARK); // A mark is pushed onto the value stack

- ALL-ENTITY-STATES.append(Entity); // The new entity is put into the module state.

8.6.1.2 Phase II: Update

The update phase is related to all actions that are outside the scope of the operational semantics but influence the
interpretation of a TTCN-3 module. The update phase comprises the following actions:

a Timeprogress: All running timers are updated, i.e. the TIME-LEFT values of running timers are (possibly)
decreased, and if due to the update a timer expires, the corresponding timer bindings are updated,
i.e. TIME-LEFT isset to 0.0 and STATUS s set to TI MEQUT,;

NOTE 1. The update of timersincludes the update of al running TIMER-GUARD timers in module states.
TIMER-GUARD timers are used to guard the execution of test cases and call operations.

b) Behaviour of the SUT: Messages, remote procedure cals, replies to remote procedure calls and exceptions
(possibly) received from the SUT are put into the port queues at which the corresponding receptions shall take
place.

NOTE 2: This operational semantics makes no assumptions about time progress and the behaviour of the SUT.

8.6.1.3 Phase IlI: Selection
The selection phase consists of the following two actions:
a) Selection: Select anon-blocked entity, i.e. an entity that has the STATUSvalue ACTIVE or SNAPSHOT;

b) Storage: Storetheidentifier of the selected entity in the global variable Entity.

8.6.1.4 Phase IV: Execution
The execution phase consists of the following two actions:

a) Execution step of the selected entity: Execute the top flow graph node in the CONTROL-STACK of Entity;

b) Check termination criterion: Stop execution if module control has terminated, i.e. the list of entity statesis
empty, otherwise continue with Phase 1.

NOTE: The execution step of the selected entity can be seen as a procedure call. The check of the termination
criterion is done when the execution step terminates, i.e. returns the control.

8.6.2 Global functions

The evaluation procedure uses the global functions INIT-FLOW-GRAPHS and GET-UNIQUE-ID:

a) INIT-FLOW-GRAPHS s assumed to be the function that initializes the flow graph handling. The handling may
include the creation of the flow graphs and the handling of the pointers to the flow graphs and flow graph
nodes.

b) GET-UNIQUE-ID isassumed to be a function that returns a unique identifier each timeit is called. The unique
identifier may be implemented in form of a counter variable that isincreased and returned each time
GET-UNIQUE-ID iscalled.

The pseudo-code used the following clauses to describe execution of flow graph nodes use the functions
CONTINUE-COMPONENT, RETURN, * ** DYNAM C- ERROR* * * ;

c) CONTINUE-COMPONENT the actual test component continues its execution with the node lying on top of
the control stack, i.e. the control is not given back to the module evaluation procedure described in this clause.

d) RETURN returnsthe control back to the module evaluation procedure described in this clause. The RETURN is
the last action of the 'execution step of the selected entity' of the execution phase.

ETSI

53 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

e ***DYNAM C- ERROR* ** refersto the occurrence of adynamic error. The error handling procedure itself is
outside the scope of the operational semantics. If adynamic error occurs al following behaviour of the test
case is meant to be undefined. In this case resources allocated to the test case shall be cleared and the error
verdict is assigned to the test case. Control is given to the statement in the control part following the execute
statement in which the error occurred. Thisis modelled by the flow graph segment <dynamic-error>
(clause 9.18.5).

NOTE: The occurrence of adynamic error isrelated to test behaviour. A dynamic error as specified by the
operational semantics denotes a problem in the usage of TTCN-3, e.g. wrong usage or race condition.

f) APPLY- OPERATOR used as generic function for describing the eval uation of operators (e.g. +, *,/ or -) in
expressions (see clause 9.18.4).

9 Flow graph segments for TTCN-3 constructs

The operational semantics represents TTCN-3 behaviour in form of flow graphs. The construction algorithm for the
flow graphs representing behaviour is described in clause 8.2. It is based on templates for flow graphs and flow graph
segments that have to be used for the construction of concrete flow graphs for module control, test cases, altsteps,
functions and component type definitions defined in a TTCN-3 module. The definitions of the templates for the flow
graph segments can be found in this clause. They are presented in an a phabetical order and not in alogical order.

The flow graph segment definitions are provided in the form of figures. The flow graph nodes are presented on the |eft
side of the figures and comments associated to nodes and flow lines are shown on the right side. Descriptive comments
are presented for reference nodes and comments in form of pseudo-code are associated to basic nodes. The pseudo-code
describes how abasic node isinterpreted, i.e. changes the module state. It makes use of the functions defined in clause 8
and the global variables declared and initialized in the evaluation procedure for TTCN-3 modules (see clause 8.6). An
overall view of all functions and keywords used by the pseudo-code can be found in clause 8.

9.1 Action statement

The syntactical structure of anact i on statement is:

action (<informal description>)

The flow graph segment <action-stmt> in figure 36 defines the execution of theact i on statement.

/1 inscription ‘nop’ neans ‘no operation’

Ent i ty. NEXT- CONTROL(t 1 ue) ;
,,,,,,,,,,,,,,,,,,,,,,,,, RETURN,

NOTE: The <informal description> parameter of the act i on statement has no meaning for the operational
semantics and is therefore not represented in the flow graph segment.

segnment <action-stnt>

Figure 36: Flow graph segment <action-stmt>

ETSI

54 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

9.2 Activate statement

The syntactical structure of theact i vat e statement is:

activat e(<al t st ep- name>([<act - par-desc,>, ..., <act-par-desc>]))

The <altstep-name> denotes to the name of an altstep that is activated as default behaviour, and
<act - par -descr >, ..., <act - par - descr > describe the actual parameter values of the altstep at the time of

its activation.

It is assumed that for each <act - par - desc > the corresponding formal parameter identifier <f - par -1 d;>is
known, i.e. we can extend the syntactical structure above to:

activat e(<al t st ep- name>((<f-par-1d, >, <act-par-desc,>), .., (<f-par-ld >, <act-par-desc>)))

The flow graph segment <act i vat e- st mt > in figure 37 defines the execution of the activate statement. The
execution is structured into three steps. In the first step, a call record for the altstep <f unct i on- nanme> iscreated. In
the second step the values of the actual parameter are calculated and assigned to the corresponding field in the call
record. In the third step, the call record is put as first element in the DEFAULT-LIST of the entity that activates the
defauilt.

NOTE: For altsteps that are activated as default behaviour, only value parameters are allowed. In figure 37, the
handling of the value parametersis described by the flow graph segment <value-par-cal culation>, which
isdefined in clause 9.24.1.

segment
<activate-stnt>

Entity. VALUE- STACK. push(NEW CALL- RECORD(f uncti on- nane));
Entity. NEXT- CONTROL(true);

construct-call-record

(altstep-name)) RETURN;
* /'l For each pair (<f-par-1di> <act-paraneter-desc;>) the
/1 value of <act-paraneter-desc; is cal culated and
»»»»» /1 assigned to the corresponding field <f-par-Id>
<val ue- par - cal cul ati on> // in the call record. The call record is assunmed to be
// the top elenent in the val ue stack.

Entity. DEFAULT- LI ST. add(Entity. VALUE- STACK. top());

/1 W assune that only a reference to the call record has
/1 been pushed onto the value stack. This reference has
“““ /1 not been renoved fromthe value stack. It is the result
/1 of the activate statenent.

Entity. NEXT- CONTROL(true);

RETURN;

activate-default

Figure 37: Flow graph segment <activate-stmt>

ETSI

55 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

9.2a Alive component operation

The syntactical structure of theal i ve component operation is:

<conponent - expr essi on>. al i ve

Theal i ve component operation checks whether a component has been created and is ready to execute or is aready
executing a behaviour function. The component to be checked isidentified by a component reference, which may be
provided in form of avariable or value returning function, i.e. is an expression. For simplicity, the keywords ‘al |
conponent 'and'any conponent ' are considered to be special expressions.

Theal i ve component operation distinguishes between its usage in a Boolean guard of an al t statement or blocking
cal | operation and all other cases. If used in aBoolean guard, the result of al i ve component operation is based on
the actual snapshot. In all other casestheal i ve component operation evaluates directly the module state information.

Theresult of theal i ve component operation is pushed onto the value stack of the entity, which called the operation.

The flow graph segment <alive-component-op> in figure 111 defines the execution of the r unni ng component
operation.

segnent
<al i ve- conponent - op>

/1 The expression shall evaluate
. — /1 to a conmponent reference. The
<expressi on> /1 result is pushed onto VALUE- STACK

if (Entity.STATUS == ACTIVE) {
Entity. NEXT- CONTROL(tr ue);

else { // Entity is in a snapshot
Entity. NEXT- CONTROL(f al se);
}

RETURN,

deci si on

<al i ve- conp- act > <al i ve- conp- snap>

'

Figure 37a: Flow graph segment <alive-component-op>

ETSI

56 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

9.2a.1 Flow graph segment <alive-comp-act>

The flow graph segment <al i ve- conp- act > infigure 37b describes the execution of the al i ve component
operation outside a snapshot, i.e. the entity isin the status ACTI VE.

segment
<al i ve- conp- act >

al i ve- conp- act

if (Entity.VALUE-STACK top() == "all conponent') {
if (Entity !'= MIQ {
DYNAM G ERROR [/ 'all conponent' is not allowed

}
el se {
if (KILLED.length() == 0) { // no entity has term nated
Entity. VALUE- STACK. push(true);
else { // at |east one conponent has terninated
Entity. VALUE- STACK. push(fal se);
}
}
}
el se {
if (Entity.VALUE- STACK top() == "any conponent') {
if (Entity !'= MIQ {
*** DYNAM C- ERROR*** [/ 'any conponent' is not allowed
}
el se {
i f (ALL- ENTI TY- STATES. l ength() > 2) {
/'l at least one PTCis alive
Entity. VALUE- STACK. push(true);
el se {
Entity. VALUE- STACK. push(fal se);
}
}
}
el se {
i f (ALL- ENTI TY- STATES. nenber (Enti ty. VALUE- STACK. top())) {
/1 Specified conponent is alive
Entity. VALUE- STACK. push(true);
}
el se {
Entity. VALUE- STACK. push(fal se);
}
} }
Entity. NEXT- CONTROL(true);
RETURN,

Figure 37b: Flow graph segment <alive-comp-act>

ETSI

57 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

9.2a.2 Flow graph segment <alive-comp-snap>

The flow graph segment <al i ve- conp- snap> in figure 37c describes the execution of the al i ve component
operation during the evaluation of a snapshot, i.e. the entity isin the status SNAPSHOT .

segnent
<a|gi ve- conp- snap> if (Entity.VALUE-STACK top() == "all component') ({
if (Entity !'= MIQ) {
DYNAM C- ERROR // 'all conponent' is not allowed
}
el se {
if (Entity.SNAP-KILLED.|ength() == 0) {
Entity. VALUE- STACK. push(true);
. el se {
alive-conp-snap) Entity. VALUE- STACK. push(fal se);
}
}
}
el se {
if (Entity.VALUE-STACK top() == '"any component') {
if (Entity != MIQ) {
*** DYNAM C- ERROR*** [/ 'any conponent' is not allowed
}
el se {
if (Entity.SNAP-ALIVE.length() > 2) {
I/l at least one PTC was alive when the
/'l snapshot has been taken
Entity. VALUE- STACK. push(true);
el se {
Entity. VALUE- STACK. push(fal se);
}
}
el se {
if (Entity.SNAP-ALIVE. menber (Entity. VALUE- STACK. top())) {
/'l Component was alive when the snapshot was taken
Entity. VALUE- STACK. push(true);
}
el se {
/'l Component was not alive when the snapshot was taken
Entity. VALUE- STACK. push(true);
}
} }
Entity. NEXT- CONTROL(true);
RETURN,
v

Figure 37c: Flow graph segment <alive-comp-snap>

9.3 Alt statement

Theal t statement isthe most complicated and important statement of TTCN-3. It implements the snapshot semantics

and specifies the branching due to the reception of messages, replies, calls and exceptions, due to the occurrence of
timeouts and due to the termination of components. In addition, the evocation of the TTCN-3 default mechanism is also
related totheal t statement.

The flow graph representation of the al t statement in figure 38. The different alternatives due to the reception of

messages, replies, calls and exceptions, due to the occurrence of timeouts and due to the termination of components are
hidden in the flow graph segment <r ecei vi ng- br anch>.

ETSI

58

Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

segment <al t-stnt>

>
<t ake- snapshot > /1 A snapshot is taken
Bl
/1 The different alternatives
<recei vi ng- branch> OR /] are eval uated
<al t step-cal | - branch>
OR <el se-branch>
¢ /1 The default nechani sm nay
/'l be evoked.
<def aul t - evocati on>
if (Entity.STATUS == ACTIVE) {
Entity. NEXT- CONTROL(true);
else { // A new snapshot needs to be taken, the
// status of the entity is SNAPSHOT (none
/1 of the alternatives could be sel ected
) /1 and executed) or REPEAT (due to a
alt-exit /1l repeat statenent)
fal se K Enti ty. NEXT- CONTROL(f al se) ;
true RETURN;

Figure 38: Flow graph segment <alt-stmt>

9.3.1

Flow graph segment <take-snapshot>

The flow graph segment <t ake- snapshot > in figure 39 describes the procedure of taking a snapshot. The snapshot

records values of ports, timers and stopped components.

segnent <take-snapshot>

/1 Take Snapshot

A 4

SNAP- PORTS(Entity); /'l Ports

Entity. SNAP-TI MER(); [l Timer

Entity. SNAP- ALI VE : = copy(ALL- ENTI TY- STATES); // ALIVE
Entity. SNAP- DONE : = copy(DONE) ; /1 DONE

Entity. SNAP-KILLED : = copy(KILLED); // KILLED

t ake- snapshot

RETURN,

Entity. STATUS : = SNAPSHOT;
Entity. DEFAULT- PO NTER : =

Entity. NEXT- CONTROL(true);

/1 new conponent status
Entity. DEFAULT- LI ST.first();

v

Figure 39: Flow graph segment <take-snapshot>

ETSI

9.3.2

59

Flow graph segment <receiving-branch>

The execution of the flow graph segment <r ecei vi ng- br anch> isshown in figure 40.

segnment <recei vi ng- branch>

/1 The receiving branch is only eval uated,
/1 if the entity is in status SNAPSHOT
if (Entity.STATUS == SNAPSHOT) {

Entity. NEXT- CONTROL(true);

el se {
Entity. NEXT- CONTROL(f al se);

}
RETURN,;

<expr essi on>

/1 Bool ean expression that

/1 guards a branch

fal se
true

Enti ty. NEXT- CONTROL(Enti ty. VALUE- STACK. t op());
Entity. VALUE- STACK. pop();
RETURN;

Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

/1 The operations nmay change the status of

<recei ve-op> OR
<getcal | -op> OR
<getreply-op> OR
<cat ch-op> OR
<timeout-op> OR
<check-op> OR
<done- conmponent - op>

fal se

/1 Entity, if the operation is successful.

<st at enent - bl ock>

true

v

Figure 40: Flow graph segment <receiving-branch>

ETSI

9.3.3

60

Flow graph segment <altstep-call-branch>

Theinvocation of an altstep withinan al t statement is described by the flow graph segment

<al t st ep-cal | - branch>infigure 41.

segment
<al t step-cal | - branch>

/1 The branch is only eval uated,

/1 if the entity is in status SNAPSHOT

if (Entity.STATUS == SNAPSHOT) {
Entity. NEXT- CONTROL(true);

el se {
Entity. NEXT- CONTROL(f al se);

}
RETURN,;

/1 Bool ean expression that

<expressi on>

/] guards a branch

fal se

<al tstep-call >

Entity. NEXT- CONTROL(Entity. VALUE- STACK top());
Entity. VALUE- STACK. pop() ;
RETURN;

Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

11
/1
/1

The altstep is called, the status of the
entity may be changed inside the altstep

by the different alternatives in the

/1 altstep.

\4

Figure 41: Flow graph segment <altstep-call-branch>

ETSI

9.3.4

61

Flow graph segment <else-branch>

Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

The execution of an el se branchwithinan al t statement is described by the flow graph segment <el se- br anch>

infigure 42.

segnent <el se-branch>

el se-part

/1 The branch is only eval uated,

/1 if the entity is in status SNAPSHOT

if (Entity.STATUS == SNAPSHOT) {
Entity. NEXT- CONTROL(true);

el se {
Entity. NEXT- CONTROL(f al se);

}
RETURN,;

/1l An el se-branch is always selected, i.e.
/] status of Entity will be set of ACTIVE
Entity. STATUS : = ACTI VE;

<st at enent - bl ock>

/'l The statenent
11

bl ock in an el se branch
i s al ways execut ed.

\4

Figure 42: Flow graph segment <else-branch>

ETSI

62 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

9.35 Flow graph segment <default-evocation>

The evocation of defaults behaviour at the end of al t statementsis described by the flow graph segment
<def aul t - evocat i on> infigure 43.

segnment <defaul t-evocati on>

default-in

/1 A default is only evoked, if the
/1l entity is in status SNAPSHOT

if (Entity.STATUS == SNAPSHOT) {

v Entity. NEXT- CONTROL(t rue);

decision Ve el se {

Entity. NEXT- CONTROL(fal se);
fal se } -

true RETURN,

A 4

cal I -record-handl i Ng Y

fal se
true

/1 A call record in DEFAULT-LIST, identified by

/1 DEFAULT- PO NTER i s pushed onto the VALUE- STACK of

/1 Entity. Afterwards DEFAULT-PO NTER is updated, i.e.,
// will point to the next record in DEFAULT-LIST. If

/1 DEFAULT-PO NTER is NULL, the Entity status will not
/1 change and, thus, a new SNAPSHOT will be initiated in
/1 <alt-stm>

if (Entity.DEFAULT-PO NTER == NULL) {
Entity. NEXT- CONTROL(fal se);

el se {
Entity. VALUE- STACK. push(Entity. DEFAULT- PO NTER) ;
Entity. DEFAULT- PO NTER : =
Entity. DEFAULT- LI ST. next (Entity. DEFAULT- POl NTER) ;
Entity. NEXT- CONTROL(true);

}
RETURN;

\ 4

The actual default altstep is invoked
or called like a user defined function.

—~—
~—

<user-def-func-call >

/1 Junp back to the beginning of the segnent
/Il to check if the next default behaviour has
// to be invoked.

v
default-in

;

Figure 43: Flow graph segment <default-evocation>

ETSI

63 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

9.4 Altstep call

Asshown in figure 44, the call of an altstep is handled like a function call.

segment <al tstep-call>

/'l Reference to the flow graph segnent

<function-call > /1 describing the function cal

\4

Figure 44: Flow graph segment <altstep-call>

9.5 Assignment statement

The syntactical structure of anassi gnment statement is:

<var | d> : = <expressi on>

The value of the expression <expr essi on> isassigned to variable <var | d>. The execution of an assignment
statement is defined by the flow graph segment <assi gnment - st nt > in figure 45.

segment <assi gnment - st nt >

/'l The expression is evaluated and the
/1 result is pushed onto the val ue stack

<expressi on>

Entity. VAR-SET(varld, Entity. VALUE- STACK top())
Enti ty. VALUE- STACK. pop() ;

assi gnment - st nt
(varld))} Entity. NEXT- CONTROL(true)

RETURN

\4

Figure 45: Flow graph segment <assignment-stmt>

9.6 Call operation

The syntactical structure of the call operation is:

<portld>.call (<call Spec> [<blocking-info>]) [to <receiver-spec>] [<call-reception-part>]

The optional <bl ocki ng- i nf 0> consists of either the keyword nowai t or aduration for atimeout exception. The
optional <r ecei ver - spec> inthet o clauserefersto the receivers of the cal. In case of a one-to one
communication, the <r ecei ver - spec> addresses a single entity (including the SUT or an entity within the SUT). In
case of multicast or broadcast communication, the <r ecei ver - spec> specifiesaset or al test components

connected via the specified port with the calling component.The optional <call-reception-part> denotes the alternative
receptions in case of ablocking cal | operation.

ETSI

64 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

The operational semantics distinguishes between blocking and non-blocking cal | operations. A cal | isnon-blocking
if the keyword nowai t isusedinthecal | operation, or if the called procedure is nonblocking, i.e. defined by using
the keyword nobl ock. A blockingcal | hasa<cal | -recepti on-part >.

The flow graph segment <cal | - op> in figure 46 defines the execution of acal | operation. It reflects the distinction
between blocking and non-blocking calls.

segnment <cal | - op> l

<bl ocki ng-cal | - op>

/1 A call operation may be bl ocking

(03
<non- bl ocki ng-cal | - op> /1 or non-bl ocking

\4

Figure 46: Flow graph segment <call-op>

For blocking and non-blocking call operations areceiver entity may be specified in form of an expression. The
possibilities are shown in figures 47 and 48.

segnment <bl ocki ng-cal | - op> l
/1 A blocking call may or may not
<b-cal | -wi thout-duration> [/1 be supervised by TI MER- GUARD
oR
<b-cal | -wi t h-duration>

\4

Figure 47: Flow graph segment <blocking-call-op>

segment <non- bl ocki ng-cal | - op>

A\ 4
<nb-cal | -wi t h-one-receiver> OR
<nb-cal |l -wi th-mul tipl e-recei vers> OR
<nb-cal | -wi t hout - recei ver >

/1 A non-bl ocking call nay address one,

/1 multiple (rmulticast and broadcast) or
/1 no receiver entities.

v

Figure 48: Flow graph segment <non-blocking-call-op>

ETSI

65 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

9.6.1 Flow graph segment <nb-call-with-one-receiver>

The flow graph segment <nb- cal | - wi t h- one-r ecei ver > in figure 49 defines the execution of a non-blocking
cal | operation where one receiver is specified in form of an expression.

segnment <nb-cal |l -w th-one-receiver>

/1 The expression shall evaluate
/1 to a conponent reference

<expressi on>

nb-cal | -wi t h- one-recei ver
(portld, call Spec)

let {
var receiver := Entity.VALUE- STACK. top();
var renotePort :=
GET- REMOTE- PORT(Entity, Entity.portld. COWP- PORT- NAME, receiver);

if (remotePort == NULL) {
*** DYNAM C- ERROR***; // Renote port cannot be found

}

if (remotePort == SYSTEM {
/1 Port is napped onto a port of the test system
Il reception of the reply by the SUT is outside
/'l the scope of the operational semantics

else { // sending of call
renot ePort. enqueue(CONSTRUCT- | TEM Entity, call, call Spec));

} // end of scope of receiver and renotePort
Entity. VALUE- STACK. pop(); /'l clean val ue stack

Entity. NEXT- CONTROL(true);
RETURN,

Figure 49: Flow graph segment <nb-call-with-receiver>

ETSI

66 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

9.6.1a Flow graph segment <nb-call-with-multiple-receivers>

The flow graph segment <nb-cal | -wi t h-rrul t i pl e-r ecei ver s> in figure 49a defines the execution of a non-
blocking cal | operation where multiple receiverst are addressed. In case of broadcast communication the keyword

al I conponent isused asreceiver specification. In case of multicast communication alist of expressionsis
provided which shall evaluate to component references.

The component references of the addressed entities (or the keyword al | component) are pushed onto the value
stack of the calling entity. The number of references stored in the value stack is considered to be known, i.e. it isthe
parameter nunber of the basic flow graph nodenb-cal | -wi t h-mul ti pl e-recei vers inFigure 49a. The
nunber parameter is1in case of broadcast communication, i.e., thekeyword al | conmponent istop element inthe
value stack.

ETSI

67 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

segment <nb-call-w th-multiple-receivers>

| +(nunber) |

<expressi on>

/'l Each expression shall evaluate
/1 to a conponent reference

nb-call-with-multiple-recei
(portld, call Spec,

numrber)

vers

let {
var
var
var
var

ifo(

el se

}
} /1 end

RETURN,

/1

i; Il loop counter variable

connection; // variable for connections in port states
receiver; /1 variable for receiver conponent references
| ocal Port, renmotePort; // variables for port references

| ocal Port := Entity.portld. COWP- PORT-NAME; // |ocal port

Entity. VALUE- STACK. top() == all conponent) {

connection := | ocal Port. CONNECTI ONS- LI ST. next (connecti on);
whil e (connection !'= NULL) ({
renmot ePort : = connecti on. REMOTE- PORT- NAME;

if (remotePort == SYSTEM {
/1 Port is napped onto a port of the test system
Il reception of the reply by the SUT is outside
/1 the scope of the operational semantics

else { // sending of call

renot ePort . enqueue(CONSTRUCT- | TEM Entity, call, call Spec));

}
connection : = | ocal Port. CONNECTI ONS- LI ST. next (connecti on);
}
1 . o
for (i == 1; i <= nunber; i :=i+1)
receiver := Entity. VALUE- STACK. top();
Entity. VALUE- STACK. pop(); /'l clean val ue stack
remot ePort := CGET- REMOTE- PORT(Entity, |ocal Port, receiver);
if (remotePort == NULL) {
*** DYNAM C- ERROR***; // Renote port cannot be found
}
if (remtePort == SYSTEM {
/1 Port is napped onto a port of the test system
Il reception of the reply by the SUT is outside
/1 the scope of the operational semantics
else { // sending of call
renot ePort . enqueue(CONSTRUCT- | TEM Entity, call, call Spec));
}
}
of local scope

Entity. NEXT- CONTROL(true);

Figure 49a: Flow graph segment <nb-call-with-multiple-receivers>

ETSI

68 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

9.6.2 Flow graph segment <nb-call-without-receiver>

The flow graph segment <nb- cal | - wi t hout - r ecei ver > infigure 50 defines the execution of a non-blocking
cal | operation without at o-clause.

segnment <nb-cal | -w t hout -recei ver-op>

nb-cal | -wi t hout - recei ver- op
(portld, call Spec)

let {
var renotePort :=

GET- REMOTE- PORT(Entity, Entity.portld. COVP- PORT- NAVE, NONE);

if (remotePort == NULL) {
*** DYNAM C- ERROR***; // Renote port cannot be found

}

if (remotePort == SYSTEM {
// Port is mapped onto a port of the test system
/'l reception of the reply by the SUT is outside
/'l the scope of the operational semantics

else { // sending of call
renot ePort. enqueue(CONSTRUCT- | TEM Entity, call, call Spec));

} // end of scope of renotePort

Entity. NEXT- CONTROL(tr ue);
RETURN,

Figure 50: Flow graph segment <nb-call-without-receiver>

ETSI

69 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

9.6.3 Flow graph segment <b-call-without-duration>

Blocking calls are modelled by a non-blocking call followed by the body of the call, which handles the replies and
exceptions. The flow graph segment <b- cal | - wi t hout - dur at i on> shown in figure 51 describes the execution
of ablocking call without a given duration as time guard.

segnent <b-call-w thout-duration>

v
<nb-cal | -wi t h-one-receiver> OR
<nb-cal |l -with-multiple-receivers> OR |.. /1 Call of renote procedure
<nb-cal | -w t hout -r ecei ver >

A 4

/ Handling of replies and
/| exceptions of the called
/] procedure.

<cal | -reception-part>

Figure 51: Flow graph segment <b-call-without-duration>

ETSI

70 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

9.6.4 Flow graph segment <b-call-with-duration>

The flow graph segment <b- cal | - wi t h- dur at i on> (seefigure 52) describes the execution of a blocking call with
aduration as time guard.

segnent <b-call-wi th-duration>

/1 The expression shall evaluate

A 4 /1l to a float value which defines
<expr essi on> H :ihﬁe[rj.urat ion of the guarding
Entity. TI MER- GUARD. STATUS : = | DLE;
Entity. TI MER- GUARD. ACT- DURATI ON : =
4 Entity. VALUE- STACK. top();

set-timer-guard Entity. VALUE- STACK. pop();

Entity. NEXT- CONTROL(true);

RETURN;
\4
<nb-cal | -wi t h-one-receiver> OR
<nb-call-with-multiple-receivers> OR | | /1 Call of renpote procedure

<nb-cal | -wi t hout - recei ver >

Entity. TI MER- GUARD. STATUS : = RUNNI NG

A 4 Enti ty. VALUE- STACK. pop() ;
start-timer-guard N\ Entity. NEXT- CONTROL(tr ue);
RETURN;
\ 4

/1 Handling of replies and
/] exceptions of the called
/1 procedure.

<cal | -reception-part>

v

Figure 52: Flow graph segment <b-call-with-duration>

ETSI

71 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

9.6.5 Flow graph segment <call-reception-part>

The flow graph segment <cal | - r ecept i on- part > (see figure 53) describes the handling of replies, exceptions
and the timeout exception of ablocking cal | operation.

segment <cal |l -reception-part>
<t ake- snapshot > /1 A snapshot is taken
+ /1 Branches with getcall and catch
/'l operations related to the call and
| /1 a timeout exception (if the call is
<recei vi ng-branch> OR /Il guarded by a duration) are handl ed
<cat ch-ti meout - excepti on> /1 by this node
if
Entity. STATUS == ACTI VE) {
Entity. NEXT- CONTROL(true);
/1 To assure a defined state of Entity
Entity. TI MER- GUARD. STATUS : = | DLE;
v else { // A new snapshot needs to be taken, the
/— _ /1 status of the entity i s SNAPSHOT (none
b-call -eXit Y] /] of the alternatives could be sel ected
fal se /1 and execut ed)
Entity. NEXT- CONTROL(f al se);
}
RETURN,

;

Figure 53: Flow graph segment <call-reception-part>

ETSI

72 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

9.6.6 Flow graph segment <catch-timeout-exception>

The flow graph segment <cat ch- t i neout - except i on> (seefigure 54) isfor the handling of atimeout exception
of ablocking call operation that is guarded by a duration.

segment <catch-tinmeout - excepti on>

A 4 if (Entity. Tl MER- GUARD. STATUS == TI MEQUT) {
Entity. NEXT- CONTROL(true);

check-guard Yo I/ To assure a defined state of Entity
Entity. STATUS : = ACTI VE;

fal se
true else { // continue evaluation

Entity. NEXT- CONTROL(fal se);
}

RETURN,;

A 4

/]l To be executed, if the
It

<st at ement - bl ock> i meout exception occured

!

Figure 54: Flow graph segment <catch-timeout-exception>

9.7 Catch operation

The syntactical structure of the catch operationis:

<portld>. catch (<matchingSpec>) [from <conponent_expression>] -> [<assignmentPart>]

Apart from the cat ch keyword this syntactical structure isidentical to the syntactical structure of ther ecei ve
operation. Therefore, the operational semantics handlesthe cat ch operation in the same manner asther ecei ve
operation. Thisis also shown in the flow graph segment <cat ch- op> (figure 55), which defines the execution of a
cat ch operation. The figure refers to flow graph segments related to ther ecei ve operation (see clause 9.37).

|
segnent <cat ch-op> i

<recei ve-wi t h- sender >
oR /1 Distinction due to the optional
<recei ve-wi t hout-sender> [/1 fromclause

\4

Figure 55: Flow graph segment <catch-op>

ETSI

73 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

9.8 Check operation

The syntactical structure of thecheck operation is:

<portld>. check(receive|getcall|catch|getreply (<matchi ngSpec>)
[from <conponent - expressi on>]) [-> <assignment Part >]

The optional <conponent - expr essi on> inthef r omclause refers to the sender entity. It may be provided in
form of a variable value or the return value of afunction, i.e. it is assumed to be an expression. The optional

<assi gnnent Part > denotes the assignment of received information if the received information matches to the
matching specification <nmat chi ngSpec> and to the (optional) f r omclause.

The operational semantics handles the operationsr ecei ve, get cal | , cat ch and get r epl y in the same manner,
i.e. they are described by referencing the same flow graph segments<r ecei ve- wi t h- sender > and

<recei ve-w t hout - sender >. The check operation a so handles the different operations in the same manner.
Thus the flow graph segment <check- op> in figure 56, which defines the execution of the check operation, also
references only two flow graph segments. The only difference to the flow graph segments

<receive-w t h-sender>and<recei ve-w t hout - sender > isthat the received items are not deleted after
the match.

I
segment <check- op> i

<check-wi t h- sender >

R /1 Distinction due to the optional
<check-wi t hout - sender> [/1 fromcl ause

v

Figure 56: Flow graph segment <check-op>

ETSI

74 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

9.8.1 Flow graph segment <check-with-sender>

The flow graph segment <check- wi t h- sender > in figure 57 defines the execution of acheck operation where
the sender is specified in form of an expression.

segnment

<check-wi t h- sender > A 4

/1 The Expression shall evaluate
/1 to a conponent reference. The
// result is pushed onto VALUE- STACK

<expr essi on>

let { // local scope for portRef and sender

var portRef := NULL;
var sender := Entity.VALUE- STACK. top(); /1 Sender
Entity. VALUE- STACK. pop(); /1 dean val ue stack
if (portID == "any port") {
port Ref := ALL-PORT- STATES. r andon(MATCH- | TEM SNAP- VALUE, mat chi ngSpec, sender));
if (portRef == NULL) { // no 'matching' port found
Entity. NEXT- CONTROL(fal se);
RETURN
}
el se {
portRef := GET-PORT(Entity, Entity.portld. COWP- PORT- NAME) /1 Specified port
}
/1 MATCHI NG
if (PortRef.first() == NULL) { // Port queue is enpty, no match
Entity. NEXT- CONTROL(f al se);
RETURN
el se {

if (MATCH | TEM port Ref. SNAP- VALUE, mat chi ngSpec, sender)) {
/'l The nessage in the queue natches
Entity. VALUE- STACK. push(port Ref); /1 Saving port reference
Entity. STATUS : = ACTI VE; /'l successful match, Entity status is changed
/1 from SNAPSHOT to ACTI VE

Entity. NEXT- CONTROL(true);

el se { // The top itemin the queue does not natch
Entity. NEXT- CONTROL(f al se);

}
RETURN;

}
} /1 End of scope of portRef and sender

recei ve-wi t h- sender

(portld, natchingSpec)
true

' // optional value
*(1) /1 assignent

<recel ve- assi gnnent >

v Entity. VALUE- STACK. pop();

Entity. NEXT- CONTROL(true);
cl ean-val ue-stack ... RETURN,;

fal se true
v v

Figure 57: Flow graph segment <check-with-sender>

ETSI

75 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

9.8.2 Flow graph segment <check-without-sender>

The flow graph segment <check- wi t hout - sender > in figure 58 defines the execution of acheck operation
without af r omclause.

segnment <check-w t hout - sender >

let { // local scope for portRef

var portRef := NULL;
if (portlD == "any port')
port Ref := ALL-PORT- STATES. r andon(MATCH | TEM SNAP- VALUE, mat chi ngSpec, NONE));
if (portRef == NULL) { // no 'nmtching' port found
Entity. NEXT- CONTROL(fal se);
RETURN;
}
el se {
portRef := GET-PORT(Entity, Entity.portld. COVP- PORT- NAME) /1 Specified port
}
/1 MATCHI NG
if (PortRef.first() == NULL) { // Port queue is enpty, no match
Entity. NEXT- CONTROL(f al se);
RETURN;
}
el se {

if (MATCH | TEM port Ref. SNAP- VALUE, mat chi ngSpec, NONE)) {
/1 The nessage in the queue matches
Entity. VALUE- STACK. push(port Ref); /1 Saving port reference
Entity. STATUS : = ACTI VE; /'l successful match, Entity status is changed
/1 from SNAPSHOT to ACTI VE

Entity. NEXT- CONTROL(true);

el se { /1 The first itemin the queue does not match
Entity. NEXT- CONTROL(fal se);

}
RETURN,

}
\ } /1 End of scope of portRef and sender

recei ve-w t h- sender

(portld, matchingSpec)
,/<‘ true
/1 optional value
*(1) /] assignent
<r ecel ve- assi gnnent >

v Entity. VALUE- STACK. pop();

Entity. NEXT- CONTROL(true);
cl ean-val ue-stack Mo RETURN.

fal se true
v v

Figure 58: Flow graph segment <check-without-sender>

ETSI

76 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

9.9 Clear port operation

The syntactical structure of thecl ear port operationis:

<portld>. clear

The flow graph segment <clear-port-op> in figure 59 defines the execution of the cl ear port operation.

segnment <cl ear - port - op>

\ 4 GET- PORT(Entity, Entity.portld. COMP- PORT- NAME) . cl ear ;
clear-port-op .| Entity. NEXT- CONTROL(true);
(portld) —_
RETURN;

Figure 59: Flow graph segment <clear-port-op>

9.10 Connect operation

The syntactical structure of atheconnect operationis:

connect (<component - expr essi on,>: <portldl>, <conponent-expression,>: <port|d2>)

Theidentifiers<port | d1> and <port | d2> are considered to be port identifiers of the corresponding test
components. The components to which the ports belong are referenced by means of the component references
<conponent - expr essi on;> and <conponent - expr essi on,>. The references may be stored in variables or

isreturned by afunction, i.e. they are expressions, which evaluate to component references. The value stack is used for
storing the component references.

The execution of theconnect operation is defined by the flow graph segment <connect - op> shown in figure 60.
In the flow graph description the first expression to be evaluated refersto <conponent - expr essi on,> and the

second expressionto <conponent - expr essi on,>, i.e. the<conponent - expr essi on,> isontop of the
value stack when the connect - op nodeis executed.

ETSI

77 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

segnent <connect - op>

let { /1 begin of a local scope

A 4 var portOne, portTwo; // voriables for ports
<expr essi on> var conp2 := Entity. VALUE- STACK. top();
Entity. VALUE- STACK. pop();

var conpl := Entity. VALUE- STACK. top();
Entity. VALUE- STACK. pop();

v if (compl == Entity) {

portOne : = conpl. portldl. COVP- PORT- NAVE;

<expr essi on>

el se {
portOne : = portldl,;

}

if (comp2 == Entity) {

connect - op portTwo : = conp2. portld2. COVP- PORT- NAME;

...................... el se {
port Two : = portld2;

}

ADD- CON(conpl, portOne, conp2, portTwo);

ADD- CON(conp2, portTwo, conpl, portOne);
} /1 end of |ocal scope

Entity. NEXT- CONTROL(true);
RETURN;

Figure 60: Flow graph segment <connect-op>

9.11 Constant definition

The syntactical structure of a constant definitioniis:
const <const Type> <const|d> : = <const Type- expr essi on>
The value of a constant is considered to be an expression that evaluates to a value of the type of the constant.

NOTE: Global constants are replaced by their values in a pre-processing step before this semanticsis applied
(see clause 9.2). Local constants are treated like variable declarations with initialization. The correct
usage of constants, i.e. constants shall never occur on the left side of an assignment, shall be checked
during the static semantics analysis of a TTCN-3 module.

The flow graph segment <constant-definition> in figure 61 defines the execution of a constant declaration where the
value of the constant is provided in form of an expression.

ETSI

78 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

segnment <constant-definition>

v

<expr essi on>

/'l The expression shall evaluate
// to a value of the type of the
/1 constant that is defined.

/1 NOTE: A constant definition is treated like a
/1 variable with inititialisation value

Entity.| NI T-VAR(constld, Entity.VALUE- STACK. top());
var-decl aration-init Entity. VALUE- STACK. pop();
(const1d)

Entity. NEXT- CONTROL(true);
RETURN,

Figure 61: Flow graph segment <constant-definition>

9.12 Create operation

The syntactical structure of thecr eat e operationis:

<conponent Typel d>. create [alive]

A present al i ve clause indicates that the created component can be restarted after it has been stopped. Presence and
absence of the alive clause is handled as a Boolean flag in the operational semantics (seeal i ve parameter of the basic
flow graph node cr eat e- op in figure 62).

ETSI

79 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

The flow graph segment <cr eat e- op> in figure 62 defines the execution of the cr eat e operation.

segment <cr eat e- op>

A 4

creatm
(component Typel d, alive)

/1
/1
/1

let { /1 Local scope for newEntitylD and newEntityState

var newentiylD := GET-UNIQUE-1D(); [/ Creation of a uniquie identifier
/1 for the new entity.

var newentityState := NEWENTITY(newkEntityl D, component Typel D, alive);
I/l Creation of the entity state for the
/'l new entity.

/1 The identifier of the newentity is pushed onto the value stack of the
/1 ‘father' entity. This identifier is the result of the create operation.

Entity. VALUE- STACK. push(newEntityl D);

/1 The identifier of the 'father' entity is pushed onto the value stack of the
/1l new entity. The identifier is needed to restore the status of the 'father’

/1 entity after conpletion of the entity creation. The 'father' entity is

/1 blocked until all ports, variables, tiners specified in the conponent type
/1 definition are instantiated. This instantiation is done by executing the

/1 flow graph that represents 'conponent TypelD by the new entity.

newentitySt ate. VALUE- STACK. push(Entity);

/1 The new entity is put into the nodule state

ALL- ENTI TY- STATES. append(newentityState);

} /1 End local scope

The actual status of the 'father' entity is saved and the 'father' entity goes
into a blocking state. Note the restoration of the status of the father entity
is described in flow graph segnment <finalize-conponent-init>.

Entity. VALUE- STACK. push(Entity. STATUS); // Saving the actual status
Entity. STATUS : = BLOCKED;

Entity. NEXT- CONTROL(true); // Return of control
RETURN;

Figure 62: Flow graph segment <create-op>

ETSI

80 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

9.13 Deactivate statement

The syntactical structure of adeact i vat e statement is:

deactivate [(<default-expression>)]

Thedeact i vat e statement specifies the deactivation of one or all active defaults of the entity that executes the
deact i vat e statement. If one default shall be deactivated, the optional <def aul t - expr essi on> shall evaluate
to adefault reference which identifies the default to be deactivated. The call of adeact i vat e statement without
<def aul t - expr essi on> deactivates all active defaults.

The execution of adeact i vat e statement is defined by the flow graph segment <deact i vat e- st nt > in
figure 63a.

segnent <deactivate-stnt>

A

<deacti vat e- one- def aul t >
R Il A deactivate statenment deactivates
<deactivate-al |l -defaults> [™ /1l one or all active defaults

v

Figure 63a: Flow graph segment <deactivate-stmt>

9.13.1 Flow graph segment <deactivate-one-default>

The flow graph segment <deact i vat e- one- def aul t > in figure 63b specifies the deactivation of one active
default. The value of the expression <def aul t - expr essi on> shall evaluate to a default reference. The expression
may be provided in form of avariable value or value returning function. Thedeact i vat e statement removes the
specified default from the DEFAULT-LIST of the entity that executesthe deact i vat e statement.

segment
<deacti vat e- one-def aul t >

/'l The expression shall evaluate to a
/1 default reference, which is pushed
/1 pushed onto the val ue stack.

<expressi on>

Entity. DEFAULT-LI ST. del ete(Entity. VALUE- STACK. top());
Entity. VALUE- STACK. pop(); // clean val ue stack

deacti vat e-one-default) Entity. NEXT- CONTROL(true);
RETURN;

v

Figure 63b: Flow graph segment <deactivate-one-default>

ETSI

81 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

9.13.2 Flow graph segment <deactivate-all-defaults>

The flow graph segment <deactivate-all-defaults> in figure 63c specifies the deactivation of all active defaults. The
deactivate statement clears the DEFAULT-LIST of the entity that executesthe deact i vat e statement.

segment
<deactivate-all-defaul t s>

deactivate-all-defaults) Entity. DEFAULT- LI ST := NULL;
RETURN,;

v

Figure 63c: Flow graph segment <deactivate-all-defaults>

9.14 Disconnect operation

The syntactical structure of athedi sconnect operationis:

di sconnect (<conmponent - expr essi on,>: <port|dl>,
<conponent - expr essi on,>: <port | d2>)

Theidentifiers<port | d1> and <port | d2> are considered to be port identifiers of the corresponding test
components. The components to which the ports belong are referenced by means of the component references
<component - expr essi on,> and <conmponent - expr essi on,>. The references may be stored in variables or

are returned by functions, i.e., they are expressions, which evaluate to component references. The value stack is used for
storing the component references.

The execution of thedi sconnect operation is defined by the flow graph segment <di sconnect - op> shownin
figure 64. In the flow graph segment the first expression to be evaluated refersto <conponent - expr essi on>

and the second expression to <conponent - expr essi on,>, i.e. the <conponent - expr essi on,> ison top of
the value stack when the di sconnect - op nodeis executed.

ETSI

82 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

segnent <di sconnect - op>

let { /1 begin of a local scope

\ 4 var portOne, portTwo; // voriables for ports
<expr essi on> var comp2 := Entity. VALUE- STACK. top();
Entity. VALUE- STACK. pop();

var conpl := Entity. VALUE- STACK. top();
Entity. VALUE- STACK. pop();

v if (conpl == Entity) {

portOne : = conpl. portldl. COVP- PORT- NAMVE;

<expressi on>

el se {
portOne : = portldi;

}
v if (conp2 == Entity) {
portTwo : = conp2. portld2. COVP- PORT- NAVE;

di sconnect - op
(portldl, portld2)

el se {
port Two : = portld2;

DEL- CON(conpl, portOne, conp2, portTwo);
DEL- CON(conp2, portTwo, conpl, portOne);
} /1 end of |ocal scope

Entity. NEXT- CONTROL(true);
RETURN;

v

Figure 64: Flow graph segment <disconnect-op>

9.15 Do-while statement

The syntactical structure of thedo-whi | e statement is:

do <statenent - bl ock>
whi | e (<bool ean- expr essi on>)

ETSI

83 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

The execution of ado-whi | e statement is defined by the flow graph segment <do- whi | e- st nt > shown in
figure 65.

segnent <do-whil e-stnt>

) 4

<st at enent - bl ock>

y /1 The expression shall evaluate to
.............. /1 a Bool ean val ue.

<expressi on>

if (Entity.VALUE- STACK top()) {
Entity. NEXT- CONTROL(true);
true 4 !

/—— el se {
deci MD Enti ty. NEXT- CONTROL(f al se) ;
N~ }

Entity. VALUE- STACK. pop();
fal se RETURN:

v

Figure 65: Flow graph segment <do-while-stmt>

9.16 Done component operation

The syntactical structure of the done component operationis:

<conponent - expr essi on>. done

The done component operation checks whether a component is running or has stopped. Depending on whether a
checked component is running or has stopped the done operation decides how the flow of control continues. Using a
component reference identifies the component to be checked. The reference may be stored in a variable or be returned
by afunction, i.e. it is an expression. For simplicity, the keywords'al | conponent "and'any conponent'are
considered to be special expressions.

The flow graph segment <done- op> in figure 66 defines the execution of the done component operation.

ETSI

84 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

segnent <done- op>

/1 The Expression shall evaluate
... // to a conponent reference. The
// result is pushed onto VALUE- STACK

<expressi on>

let { // local scope
var aliveNr := Entity. SNAP-ALIVE. | ength();
var doneNr := Entity. SNAP- DONE. | engt h();
var killedNr := Entity. SNAP-KILLED. | ength();
var nonWaitingNr := aliveNr — doneNr — KkilledNr;
done- conponent-op)~ /1 nonWaitingNr is the number of entities which are
/'l alive and are executing a behaviour or neither have
/| stopped and nor have terninated.

if (Entity.VALUE-STACK. top() == "all component') ({
if (Entity = MO {
DYNAM C- ERROR // 'all conponent' is not allowed
}

el se {
if (nonWaitingNr == 2) { /] MIC and Control are the
/1 only Entities in the test system
Entity. NEXT- CONTROL(true);
Entity. STATUS := ACTIVE, // DONE is successful

el se {
Entity. NEXT- CONTROL(f al se);
}

}
}
el se {
if (Entity.VALUE- STACK. top() == 'any component') {
if (Entity !'= MIQ {
*** DYNAM C- ERROR*** [/ 'any conponent' not all owed
}

el se {
if (doneNr > 0) {
Entity. NEXT- CONTROL(true);
Entity. STATUS : = ACTIVE; // DONE is successful

}

el se {
Entity. NEXT- CONTROL(f al se);
}

}
}
el se {
if (Entity. SNAP-DONE. nenber (Entity. VALUE- STACK. top())) {
Entity. NEXT- CONTROL(true);
Entity. STATUS : = ACTIVE; // DONE is successful

el se {
Entity. NEXT- CONTROL(f al se);
}

}
} /1 end of |ocal scope

Entity. VALUE- STACK. pop(); // clean value stack
RETURN,

Figure 66: Flow graph segment <done-op>

ETSI

85 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

9.17 Execute statement

The syntactical structure of theexecut e statement is:

execut e(<t est Casel d>([<act-par,> .., <act-par >)]) [, <float-expression>])

The execut e statement describes the execution of atest case <t est Casel d> with the (optional) actual parameters
<act-par >, ..., <act-par ,>. Optionally the execute statement may be guarded by aduration provided in form
of an expression that evaluatesto af | oat . If within the specified duration the test case does not return averdict, a
timeout exception occurs, the test caseis stopped and an er r or verdict is returned.

NOTE: The operational semantics models the stopping of the test case by a stop of the MTC. In redlity, other
mechanisms may be more appropriate.

If no timeout exception occurs, the MTC is created, the control instance (representing the control part of the TTCN-3
module) is blocked until the test case terminates, and for the further test case execution the flow of control is given to
the MTC. The flow of control is given back to the control instance when the MTC terminates.

The flow graph segment <execut e- st nt > in figure 67 defines the execution of an execut e statement.

segnent <execute-stnt> l

<execute-w t hout -ti meout >
oR /1 An execute statenent nay or nay
<execute-tinmeout> [T /1 not be guarded by a tineout

\4

Figure 67: Flow graph segment <execute-stmt>

9.17.1 Flow graph segment <execute-without-timeout>

The execution of atest case starts with the creation of the mt ¢. Then the mtc is started with the behaviour defined in the
test case definition. Afterwards, the module control waits until the test case terminates. The creation and the start of the
MTC can be described by using cr eat e and st art statements:

var ntcType MYMIC : = ntcType. create;
M/MIC. st art (Test CaseNane(P1..Pn));

ETSI

86

Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

The flow graph segment <execut e- wi t hout - t i meout > in figure 68 defines the execution of an execut e
statement without the occurrence of atimeout exception by using the flow graph segments of the operationscr eat e

andthest art.

segnment <execute-w t hout -ti neout > i

<creat e-op>

/!l Creation of the MIC

init-test-case-state

<start - conponent - op>

MIC : = Entity. VALUE- STACK. top();
TC- VERDI CT : = none;
DONE : = NULL;

Entity. NEXT- CONTROL(true);
RETURN,

wai t-for-termnation

/] Start of MIC

Entity. STATUS : = BLOCKED;

/1 MIC will set status to ACTIVE
/1 before it termnates
Entity. NEXT- CONTROL(true);
RETURN;

\4

Figure 68: Flow graph segment <execute-without-timeout>

9.17.2 Flow graph segment <execute-timeout>

The flow graph segment <execut e- t i meout > in figure 69 defines the execution of an execut e statement that is
guarded by atimeout value. The flow graph segment also models the creation and start of the MTC by acr eat e and a
st art operation. In addition, TIMER-GUARD guards the termination.

ETSI

87 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

segment <execute -timeout>

A

«

/'l The Expression shall evaluate to a
< Cons /1l a float value. This value defines
expression /!l the duration of TIMER- GUARD

Entity. TI MER- GUARD. STATUS : = | DLE;
set-ti mer- guar d Enti ty. TI MER- GUARD. ACT- DURATI ON : =
........... Entity. VALUE- STACK. top() ;
Entity. VALUE- STACK. pop();

Entity. NEXT- CONTROL(true);
A RETURN,;

<cr eat e- op>

/!l Creation of the MIC

A
MIC : = Entity. VALUE- STACK. top();
init-test-case-state Yo TC- VERDI CT : = none;
DONE : = NULL;

Entity. NEXT- CONTROL(tr ue);
A RETURN;

<start - conponent - op>

/] Start of MIC

\ 4

Entity. STATUS : = SNAPSHOT;
prepare-wait e [/ MIC will set status to ACTIVE

/1l before it term nates

Entity. TI MER- GUARD. STATUS : = RUNNI NG
Entity. NEXT- CONTROL(true);

RETURN,

if (Entity. STATUS == SNAPSHOT and

Entity. TI MER GUARD. STATUS ! = TI MEQUT) {
/1 Control waits

........... Entity. NEXT- CONTROL(true);

active-waiting

else { // Test case term nated or
fal se /1 timer guard tined out
Entity. NEXT- CONTROL(true);

A }
RETURN;
st op-or-timeout
™| if (Entity.STATUS !'= SNAPSHOT) {

true fal se /1 normal termnation
Entity. TI MER- GUARD. STATUS : = | DLE;
\ Entity. NEXT- CONTROL(true);
<dynam c-error> else { // guarding timer tinmed out
/* Stop test case */ Entity. NEXT- CONTROL(f al se);
}
RETURN,;

;

Figure 69: Flow graph segment <execute-timeout>

ETSI

88 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

9.18 Expression
For the handling of expressions, the following four cases have to be distinguished:
a) theexpressionisaliteral value (or aconstant);
b) theexpressionisavariable;
c) theexpressionisan operator applied to one or more operands;
d) theexpressionisafunction or operation call.

The syntactical structure of an expressionis:

<lit-val> | <var-val > | <func-op-call> | <operand-appl >
where;

<lit-val > denotes a literal value;

<var-val > denotes a variable value;

<func-op-cal |l > denotes a function or operation call;

<oper at or - appl > denotes the application of arithmetic operators like +, -, not , etc.

The execution of an expression is defined by the flow graph segment <expr essi on> shownin figure 70.

segment <expression> ¢
<lit-val ue>
R /1l The four alternatives
<var - val ue> /'l describe the four
R // possibilities for
<func-op-cal | > /'l expressions as
R /1 described in this
<oper at or - appl > /1 section.
v

Figure 70: Flow graph segment <expression>

9.18.1 Flow graph segment <lit-value>

The flow graph segment <l i t - val ue> infigure 71 pushes aliteral value onto the value stack of an entity.

segment <lit-val ue> Entity. VALUE- STACK. push(val ue) ;

' '(f/a}’ﬁ'e;w Enti ty. NEXT- CONTROL(t r ue);
RETURN:

v

Figure 71: Flow graph segment <lit-value>

ETSI

89 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

9.18.2 Flow graph segment <var-value>

The flow graph segment <var - val ue> infigure 72 pushes the value of a variable onto the value stack of an entity.

segment <var-val ue> Entity. VALUE- STACK. push(Entity. var-nane. VALUE) ;

var - val ue

(var-nanme))" Entity. NEXT- CONTROL(true);

RETURN,

v

Figure 72: Flow graph segment <var-value>

9.18.3 Flow graph segment <func-op-call>

The flow graph segment <f unc- op- cal | > infigure 73 refersto calls of functions and operations, which return a
value that is pushed onto the value stack of an entity. All these calls are considered to be expressions.

segnment <func-op-call> ¢

<activate-stnt> OR <create-op> OR
<function-call> OR <ntc-op> OR
<read-timer-op> OR <running-timer-op> OR
<runni ng- conponent - op> OR
<sel f-op> OR <system op> OR
<verdi ct. get-op> OR <execute-stnt>

\4

Figure 73: Flow graph segment <func-op-call>

ETSI

90 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

9.18.4 Flow graph segment <operator-appl>

The flow graph representation in figure 74a directly refers to the assumption that reverse polish notation is used to
evaluate operator expressions. The operands of the operator are calculated and pushed onto the evaluation stack. For the
application of the operator, the operands are popped from the evaluation stack and the operator is applied. The result of
the operator application is finally pushed onto the evaluation stack. Both, the popping of operands and the pushing the
result are considered to be part of the operator application (Ent i t y. APPLY- OPERATOR(oper at or) statementin
figure 74a), i.e. are not modelled by the operational semantics.

segnent <oper at or - appl > i
/1 For an n-nary operator,
N /1 n operands in form of
»»»»»»»»»»»»»»»»»»»»»»»»» /] eval uat ed expressions have
/1 to be pushed onto the
<expr essi on> /'l val ue stack

Entity. APPLY- OPERATOR(oper ator);

oper at or - appl Enti ty. NEXT- CONTROL(t r ue);
(operator) RETURN.

v

Figure 74a: Flow graph segment <operator-appl>

9.18.5 Flow graph segment <dynamic-error>
In case of adynamic error the flow graph segment <dynani c- er r or > isinvoked by the test system. All resources

allocated to the test case are cleared and the error verdict is assigned to the test case. Control is given to the statement
in the control part following the execute statement in which the error occurred.

ETSI

91 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

The flow graph segment <dynani c- er r or > isinvoked by the module control in case that atest case does not
terminate within the specified time limit (clause 9.17.2).

segnent <dynam c-error>

dynam C-error e

let { // local scope for variable Control

var Control := ALL-ENTITY-STATES.first(); // nodule control

/1 Reset of nmpdule state

ALL- ENTI TY- STATES : = NULL,
ALL- PORT- STATES : = NULL;

MIC : = NULL;
TG VERDICT := error;
DONE : = NULL;

SNAP- DONE : = 0;
/! Re-insert nmodule control into the nodul e state

ALL- ENTI TY- STATES. append(Control)

/1 Update of the entity state of nodul e control

Control . TI MER- GUARD. STATUS : = | DLE;
Control . STATUS : = ACTI VE;

/1 Push error verdict (result of test case execution) onto
/1 the stack of npbdul e control

Cont r ol . VALUE- STACK. push(error);

} // End of |ocal scope
Entity. NEXT- CONTROL(true);
RETURN,

Figure 74b: Flow graph segment <dynamic-error>

ETSI

92 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

9.19 Flow graph segment <finalize-component-init>

The flow graph segment <f i nal i ze- conponent - i ni t > ispart of the flow graph representing the behaviour of a
component type definition. Its execution is defined in figure 75.

segnent
<finalise-conponent-init>

finalise-conmponent-init

/1 The status of the father entity is restored. The identifier of the 'father’
// entity is deleted fromthe VALUE- STACK.

Entity. VALUE- STACK. t op(). STATUS : = Entity. VALUE- STACK. t op() . VALUE- STACK. t op() ;
Entity. VALUE- STACK. t op() . VALUE- STACK. pop();
Entity. VALUE- STACK. pop();

/1 A mark is pushed on the value stack, the entity goes into a blocking state,
I/l i.e.,waits for being started) and control is given back to the nodul e
/'l eval uation procedure

Entity. VALUE- STACK. push(MARK) ;
Entity. STATUS : = BLOCKED;
Entity. NEXT- CONTROL(true);
RETURN;

Figure 75: Flow graph segment <finalize-component-init>

9.20 Flow graph segment <init-component-scope>

The flow graph segment <i ni t - conmponent - scope> is part of the flow graph representing the behaviour of a
component type definition. Its execution is defined in figure 76.

segment <init-conponent - scope>

/1 New scopes for variables, tiners
/1 and ports are created

Entity. | N T- VAR SCOPE();

~~~~~~~~~~~~~~~~~ Entity. NI T- TI MER- SCOPE() ;

Entity. N T- PORT- SCOPE() ;

i ni t-conponent - scope

Entity. NEXT- CONTROL(true);
RETURN;

v

Figure 76: Flow graph segment <init-component-scope>

ETSI



93 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

9.20a Flow graph segment <init-scope-with-runs-on>

The flow graph segment <i ni t - scope-wi t h- r uns- on> is part of the flow graph representing the behaviour of
function and altstep definitions. It creates new scopes for variables, timers and ports, which include the names and
values declared in the component type definition referred to inther uns on-clause. The execution of the flow graph
segment is defined in figure 76a.

segnment <init-scope-wth-runs-on>

let { /'l local scope
var act Var Scope : = copy(Entity. DATA- STATE.first());
var act Ti mer Scope : = copy(Entity. TI MER-STATE. first());
var act PORTScope : = copy(Entity. PORT-REF.first());

-------- Entity. | N T- VAR SCOPE() ;

Entity. DATA- STATE. first (). add(act Var Scope) ;

Entity. N T- TI MER- SCOPE() ;

Entity. DATA-TI MER first().add(act Ti mer Scope);

Entity. | NI T- PORT- SCOPE() ;

Entity. PORT- REF. first().add(actPort Scope)

Entity. VALUE- STACK. push( MARK) ;

}

Entity. NEXT- CONTROL(true);
RETURN;

Figure 76a: Flow graph segment <init-scope-with-runs-on>

9.20b Flow graph segment <init-scope-without-runs-on>

The flow graph segment <i ni t - scope-wi t hout - r uns- on> is part of the flow graph representing the behaviour
of function and altstep definitions. It creates new empty scopes for variables, timers and ports. Functions and altsteps
without r uns on-clause do not know the names and values declared in the component type definition of the invoking
component. The execution of the flow graph segment is defined in figure 76b.

segment <init-scope-w thout-runs-on>

Entity. | N T- VAR- SCOPE();
Entity. | N T- Tl MER- SCOPE() ;
Entity. | N T- PORT- SCOPE() ;

........... Entity. VALUE- STACK. push( MARK) ;

Entity. NEXT- CONTROL(true);
RETURN,

v

Figure 76b: Flow graph segment <init-scope-without-runs-on>

ETSI



94 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

9.21 Flow graph segment <parameter-handling>

The flow graph-segment <par anet er - handl i ng> isused in the beginning of flow graphs representing test cases,
atsteps and functions. It initializes a new scope and creates variables and timers for the handling of parameters. The
flow graph-segment <par anet er - handl i ng> assumes that the call record of the called test case, altstep or function
isthe top of the value stack.

The execution of flow graph-segment <par anet er - handl i ng> isshown infigure 77.

segnent
<par anet er - handl i ng> Entity. | N T- CALL- RECORD( VALUE- STACK. top());

/] paraneters are initialized
Entity. VALUE- STACK pop(); // renoval of call record
\ 4 Entity. VALUE- STACK. push(MARK) ; // for scope

Entity. NEXT- CONTROL(true);

paranmeter-handling ).
RETURN,

v

Figure 77: Flow graph segment <parameter-handling>

9.22  Flow graph segment <statement-block>

The syntactical structure of a statement block is:

{ <statement > ..; <statement >}

A statement block is a scope unit. When entering a scope unit, new scopes for variables, timers and the value stack have
to beinitialized. When leaving a scope unit, all variables, timers and stack values of this scope have to be destroyed.

NOTE 1. The statement block is not an ‘official' TTCN-3 concept. Statement blocks only occur as body of
functions, altsteps, test cases and module control, and within compound statements, e.g.al t ,i f - el se
or do- whi | e.

NOTE 2: Receiving operations and altstep calls cannot appear in statement blocks, they are embedded in al t
statementsor cal | operations.

NOTE 3: The operational semantics also handles operations and declarations like statements, i.e. they are allowed
in statement blocks.

NOTE 4: Some TTCN-3 functions, like e.g. syst emor sel f, are considered to be expressions, which are not
useful as stand-alone statements in statement blocks. Their flow graph representations are not listed in
figure 78.

The flow graph segment <st at enent - bl ock> in figure 78 defines the execution of a statement block.

ETSI



95 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

segnent <statenent-bl ock>

let { /1 local scope
var actVar Scope : = copy(Entity. DATA- STATE.first());
var act Ti mer Scope := copy(Entity. TI MER-STATE. first());
Entity. | N T- VAR- SCOPE() ;
Entity. DATA- STATE. first (). add(act Var Scope) ;
Entity. | N T- TI MER- SCOPE() ;
Entity. DATA-TIMER first().add(actTi mer Scope);
Entity. VALUE- STACK. push( MARK) ;

A 4

ent er-scope-unit }
Entity. NEXT- CONTROL(true);
RETURN,;

*
|| || <constant-definition> OR /1 List of flow graph segnents
<tinmer-declaration> OR /1

representing defintions
<vari abl e- decl arati on> /1 and decl arati ons.

[

<action-stnt> OR <activate-stnt> OR <alt-stnt>
OR <assignnent-stnt> OR <cal | -op> OR
<cl ear-port-op> OR <connect-op> COR <creat e-op>

OR <deactivate-stnt> OR <di sconnect-op> OR /1 List of flow graph segnents
<do-whi |l e-stnt > OR <execute-stnmt> OR <for-stnt> /'l representing all possible
OR <function-call> OR <getverdict-op> OR /'l statements and operations
<goto-stm> OR <if-else-stm> OR

<ki || - conponent-op> OR <kill-exec-stnt> OR
<| abel -stnt> OR <l og-stnt> OR <map-op> CR
<rai se-op> OR <repeat-stnt> OR <reply-op> OR
<return-stnt> OR <send-op> OR <setverdict-op>
OR <start-conmponent-op> OR <start-port-op> OR
<start-timer-op> OR <stop-conmponent-op> OR
<st op- exec-stnt> OR <stop-port-op> OR
<stop-timer-op> OR <unmap-op> OR <whil e-stnt> Entity. DEL- VAR- SCOPE() ;
Entity. DEL- TI MER- SCOPE() ;
Entity. VALUE- STACK. cl ear-until ( MARK) ;

v Entity. NEXT- CONTROL(tr ue);

RETURN,
exit-scope-unit VM

v

Figure 78: Flow graph segment <statement-block>

9.23 For statement

The syntactical structure of thef or -st at emrent is:

for (<assignment>|<vari abl e-decl arati on>, <bool ean_expressi on>, <assignment>) <statement-bl ock>

Theinitialization of the index variable and the corresponding manipulation of the index variable are considered to be
assignmentsto the index variable. It is also allowed to declare and initialize the index variable directly in thef or
statement. The <bool ean- expr essi on> describes the termination criterion of the loop specified by the

f or-st at enent andthe<st at enent - bl ock> describes the loop body.

ETSI



96 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

The execution of thef or statement is defined by the flow graph segment <f or - st nt > shown in figure 79. The initia
<assi gnnent > or dternative variable declaration with assignment <var - decl arati on-i nit>

(see clause 9.57.1) describes the initialization of the index variable. The <assi gnment > inthet r ue branch of the
deci si on node describes the manipulation of the index variable. The f or statement is a scope unit for a newly
declared index variable, thisis modelled by means of the nodesent er - var - scope andexi t - var - scope.

segment <for-stnt>
v Entity. | N T- VAR- SCOPE() ;
Entity. VALUE- STACK. push( MARK) ;

enter-var-scope e
Entity. NEXT- CONTROL(true);

RETURN;
4 /1 The index variable is only
<assi gnment > /1 initialised (<assignnent>)
OR /1 or declared and initialised
<var-decl aration-init> /'l (<var-declaration-init>)

v

?

<expr essi on>

if (Entity.VALUE- STACK top()== true) {
Entity. NEXT- CONTROL(true);
}

el se {
Entity. NEXT- CONTROL(f al se);

decision N

}
true Entity. VALUE- STACK. pop();
RETURN,

X fal se

<st at ement - bl ock>

A Entity. DEL- VAR- SCOPE() ;
Entity. VALUE- STACK. cl ear-unti | ( MARK);

<assi gnnment >

h 4 Entity. NEXT- CONTROL(tr ue);
RETURN;

exi t-var-scope

v

Figure 79: Flow graph segment <for-stmt>

9.24  Function call
The syntactical structure of afunction call is:

<functi on-name>([ <act - par-desc,> ..., <act-par-desc >])

The <function-name> denotes to the name of afunction and <act - par - descr >, ..., <act - par-descr >
describe the description of the actual parameter values of the function call.

NOTE 1: A function call and an atstep call are handled in the same manner. Therefore, the altstep call
(see clause 9.4) refersto this clause.

ETSI



97 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

It is assumed thet for each <act - par - desc > the corresponding formal parameter identifier <f - par - 1d;>is
known, i.e. we can extend the syntactical structure above to:

<function-name>((<f-par-1d,> <act-par-desc,>), .., (<f-par-1d > <act-par-desc >))

The flow graph segment <function-call> in figure 80 defines the execution of a function call. The execution is
structured into three steps. In the first step a call record for the function <f unct i on- nane> iscreated. In the second
step the values of the actual parameter are calculated and assigned to the corresponding field in the call record. In the
third step, two situations have to be distinguished: the called function is a user-defined function

(<user - def - func- cal | >), i.e. there exists aflow graph representation for the function, or the called functionisa
pre-defined or external function (<pr edef - ext - f unc- cal | >). In case of a user-defined function call, the control is
given to the called function. In case of a pre-defined or external function, it is assumed that the call record can be used
to execute the function in one step. The correct handling of reference parameters and return value (has to be pushed

onto the value stack) isin the responsibility of the called function, i.e. is outside the scope of this operational semantics.

NOTE 2: If the function call models an atstep call, only the<user - def - f unc- cal | > branch will be chosen,
because there exists a flow graph representation of the called altstep.

NOTE 3: The<functi on cal | > segment isalso used to describe the start of the MTC inan execut e
statement. In this case, acall record for the test case is constructed and only the
<user - def - f unc- cal | > branch will be chosen.

segnment
<function call>

Entity. VALUE- STACK. push(NEW CALL- RECORD(f uncti on- nane));
Entity. NEXT- CONTROL(true);

construct-call-record

(function-name) ) RETURN;
* /'l For each pair (<f-par-Idi> <act-paraneter-desc;>) the
/1 val ue of <act-paraneter-desc; is calcul ated and
..| /] assigned to the corresponding field <f-par-1d;>
<val ue- par - cal cul ati on> /1 in the call record. The call record is assuned to be

/1 the top elenent in the val ue stack.

v

* |
/'l Retrieves the locations for variables and tiners
--| /] used as reference paraneters and decl ared nanes of
<ref-var-par-calc> OR

/] port paraneters

<ref-timer-par-calc> OR
<ref-port-par-cal c>

A 4

<pr edef - ext-func-cal | >
R e
<user - def -func-cal | >

~

The call ed function may either be an external or
predefined function, or a user-defined function.

~
~

Figure 80: Flow graph segment <function-call>

9.24.1 Flow graph segment <value-par-calculation>

The flow graph-segment <val ue- par - cal cul at i on> isused to calculate actual parameter values and to assign
them to the corresponding fieldsin call records for functions, altsteps and test cases.

ETSI



98 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

It isassumed that a call record is the top element of the value stack and that a pair of:

(<f-par-1d;> <act-paraneter-desc,>)

hasto be handled. <act - par anet er - desc; > that hasto be evaluated and <f - par - | d; > istheidentifier of a
formal parameter that has a corresponding field in the call record in the value stack.

The execution of flow graph-segment <val ue- par - cal cul ati on>isshownin figure 81.

segment
<val ue- par-cal cul ati on>

/1 The expression represents <act-paraneter-desc;>
/1 The result of the evaluation of the expression
/1 is pushed onto the val ue stack.

<expr essi on>

let { // scope unit for parVal
var parVal = Entity. VALUE- STACK. top();
/1 parVal is a local variable that
/'l stores the value of the expression

par anmet er - assi gnment
(f-par-1d)

Entity. VALUE- STACK. pop();
/1 Renoval of expression val ue.
/1 Afterwards the call record is
// again top of the value stack

Entity. VALUE- STACK. top().f-par-1d := parVal;
/1 Val ue assignnent to call record
} /1 end of scope for parVal

Entity. NEXT- CONTROL(true);
RETURN,

\4

Figure 81: Flow graph segment <value-par-calculation>

9.24.2 Flow graph segment <ref-par-var-calc>

The flow graph-segment <r ef - par - var - cal ¢> isused to retrieve the locations of variables used as actual
reference parameters and to assign them to the corresponding fields in call records for functions, altsteps and test cases.

It isassumed that a call record is the top element of the value stack and that a pair of:

(<f-par-ld;,> <act-par;>)

hasto be handled. <act - par;> is the actual paraneter forwhichthelocation hasto beretrieved and
<f - par - 1 d; > istheidentifier of aformal parameter that has a corresponding field in the call record in the value
stack.

The execution of flow graph-segment <r ef - par - var - cal ¢> isshown in figure 82.

ETSI



99 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

segnent
<ref - par-var-cal c>

v /1 Val ue assignnment to call record
Entity. VALUE- STACK. top().f-par-1d : =
Entity. GET- VAR- LOCATI ON(act - par) ;

par anet er - assi gnment
(f-par-1d, act-par)

Entity. NEXT- CONTROL(true);
RETURN;

Figure 82: Flow graph segment <ref-par-var-calc>

9.24.3 Flow graph segment <ref-par-timer-calc>

The flow graph-segment <r ef - par - t i mer - cal ¢> isused to retrieve the locations of timers used as actual
reference parameters and to assign them to the corresponding fields in call records for functions, altsteps and test cases.

It isassumed that a call record is the top element of the value stack and that a pair of:

(<f-par-1d;> <act-par;>)

hasto be handled. <act - par;> is the actual paraneter forwhichthelocation hasto beretrieved and
<f - par - 1 d; > istheidentifier of aformal parameter that has a corresponding field in the call record in the value
stack.

The execution of flow graph-segment <r ef - par -t i mer - cal ¢> isshown infigure 83.

segment
<ref-par-tinmer-cal c>

/1 Val ue assignnment to call record
Entity. VALUE- STACK. top().f-par-1d : =
Entity. GET- TI MER- LOCATI ON(act - par) ;

par amet er - assi gnnent
(f-par-1d, act-par)

Entity. NEXT- CONTROL(true);
RETURN;

v

Figure 83: Flow graph segment <ref-par-timer-calc>

9.24.3a Flow graph segment <ref-par-port-calc>

The flow graph-segment <r ef - par - por t - cal ¢> isused to retrieve the names of ports used as in the component
type definitions for the declaration of the port and to assign them to the corresponding fields in call records for
functions and altsteps.

It is assumed that a call record is the top element of the value stack and that a pair of:

(<f-par-1d;> <act-par;>)

has to be handled. <act - par ; > isthe actual parameter for which the location has to be retrieved and <f - par -
| d; > istheidentifier of aformal parameter that has a corresponding field in the call record in the value stack.

ETSI



100 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

The execution of flow graph-segment <r ef - par-ti mer - cal ¢> isshown in figure 83a.

segment
<ref-par-port-cal c>

/1 Val ue assignnment to call record
v Entity. VALUE- STACK. top().f-par-1d : =
Entity. act - par. COVP- PORT- NAME;

par anet er - assi gnment
(f-par-1d, act-par)

Entity. NEXT- CONTROL(true);
RETURN;

Figure 83a: Flow graph segment <ref-par-port-calc>

9.24.4 Flow graph segment <user-def-func-call>

The flow graph-segment <user - def - f unc- cal | > (figure 84) describes the transfer of control to a called
user-defined function.

segnment <user-def-func-call>

/] Storage of return address

Entity. NEXT- CONTROL(true);

[/l Control is transferred to called function

Entity. CONTROL- STACK. push( GET- FLOW GRAPH( f unct i on- nane) ) ;

user - def - func-cal |
(function-nane)

RETURN,

Figure 84: Flow graph segment <user-def-func-call>

9.24.5 Flow graph segment <predef-ext-func-call>

The flow graph-segment <pr edef - ext - f unc- cal | > (figure 85) describes the call of a pre-defined or external
function.

segnment <predef-ext-func-call>

let { // scope for argument variable
var argunent := Entity.VALUE- STACK top();
Entity. VALUE- STACK pop(); // removal of call record
/1 Application of function-nane
»»»»» function-nane(argunent);
} /1 end of scope for argunent
Entity. NEXT- CONTROL(true);
RETURN;

<pr edef - ext -func-cal | >
(function-name)

Figure 85: Flow graph segment <predef-ext-func-call>

ETSI



101 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

9.25 Getcall operation

The syntactical structure of the getcall operation is:

<portld>. getcall (<matchingSpec>) [from <conponent_expression>] -> [<assignnentPart>]

Apart fromthe get cal | keyword this syntactical structure isidentical to the syntactical structure of ther ecei ve
operation. Therefore, the operational semantics handlesthe get cal | operation in the same manner asther ecei ve
operation. Thisis aso shown in the flow graph segment <get cal | - op> (see figure 86), which defines the execution
of aget cal | operation. The figure refersto flow graph segments related to the r ecei ve operation (see clause 9.37).

I
segment <getcal | - op> l

<recei ve-wi t h- sender >

(03 /1 Distinction due to the optional
<recei ve-wi t hout-sender> [ /1 fromclause

\4

Figure 86: Flow graph segment <getcall-op>

9.26  Getreply operation

The syntactical structure of theget r epl y operationis:

<portld>. getreply (<matchingSpec>) [from <conponent-expression>] [-> <assignmentPart>]

Apart fromtheget r epl y keyword this syntactical structureisidentical to the syntactical structure of ther ecei ve
operation. Therefore, the operational semantics handlesthe get r epl y operation in the same manner asther ecei ve
operation. Thisis aso shown in the flow graph segment <get r epl y- op> (see figure 87), which defines the
execution of aget r epl y operation. The figure refersto flow graph segmentsrelated to ther ecei ve operation

(see clause 9.37).

I
segment <getreply-op> i

<recei ve-wi t h- sender >

oR /1 Distinction due to the optional
<recei ve-wi t hout-sender> [ /1 fromclause

v
Figure 87: Flow graph segment <getreply-op>

9.27  Getverdict operation

The syntactical structure of theget ver di ct operationis:

getverdi ct

The flow graph segment <get ver di ct - op> in figure 88 defines the execution of the get ver di ct operation.

ETSI



102 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

segment <getverdict-op>

// E-VERDICT is pushed onto VALUE- STACK
Entity. VALUE- STACK. push(Entity. E- VERDI CT);
getverdi ct-0p ) Entity. NEXT- CONTROL(t rue);

RETURN,

\4

Figure 88: Flow graph segment <getverdict-op>

9.28 Goto statement

The syntactical structure of the got o statement is:

goto <l abel | d>

The flow graph segment <got o- st it > in figure 89 defines the execution of the got o statement.

segnment <got o-stnt >

/1 ‘nop’ neans ‘no operation’
Entity. NEXT- CONTROL(true);
(9107 TR W RETURN;

<l abel | d>

Figure 89: Flow graph segment <goto-stmt>
NOTE: The<labelld> parameter of the got o statement indicates the transfer of control to the place at which a
label <l abel | d> isdefined (see aso clause 9.30).

9.29 If-else statement

The syntactical structure of thei f -el se statement is:

i f (<bool ean-expression>) <statenent-bl ock,>
[el se <statement-bl ock,>]

ETSI



103 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

The else part of thei f -el se statement isoptional.

The flow graph segment <i f - el se- st nt > in figure 90 defines the execution of thei f - el se statement.

segnment <if-wth-el se-branch>

A

<expr essi on>

if (Entity.VALUE- STACK top()) {
Entity. NEXT- CONTROL(tr ue);

el se {
A Entity. NEXT- CONTRO.(f al se);
- }
0 decision N . Entity. VALUE- STACK. pop();
RETURN;

true fal se
\ 4

<st at ement - bl ock>

*(1) ||
/1 Optional else part

<st at ement - bl ock> H........

;

Figure 90: Flow graph segment <if-else-stmt>

9.29a Kill component operation

The syntactical structure of theki | | component statement is:
<conponent - expr essi on>. ki | |

Theki | | component operation stops the specified component and removes it from the test system. All test
components will be stopped and removed from the test system, i.e. the test case terminates, if the MTC iskilled
(eg.nmtc.kill)orkillsitself (e.g.sel f. kill). TheMTC may kill al parallel test components by using the al |
keyword, i.e.al | conponent kill.

A component to be killed is identified by a component reference provided as expression, e.g. avalue or value returning
function. For simplicity, the keyword 'al | conponent 'is considered to be specia values of
<conponent - expr essi on>. The operationsnt ¢ and sel f are evaluated according to clauses 9.33 and 9.43.

ETSI



104 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)
The flow graph segment <ki | | - conmponent - op> in figure 90a defines the execution of the ki | | component
operation.
segnment <kill - component - op>

v

<expr essi on>

A 4

true

<kill-all-conmp>

true

<kill-ntc>

prepare-Kkil
fal se

true

deci sion

deci si on

fal se

/1 The Expression shall eval uate
/1 to a conponent reference. The
// result is pushed onto VALUE- STACK
if (Entity.VALUE- STACK.top() == "all conponent') ({
Entity. VALUE- STACK. pop(); // clean value stack
if (Entity !I'= MIQ {
***DYNAM C- ERROR*** // 'all' not all owed
el se {
Entity. NEXT- CONTROL(true);
{
}
el se {
Entity. NEXT- CONTROL(f al se);
}
RETURN;

if (Entity. VALUE- STACK. t op

() = M9 {
Entity. VALUE- STACK. pop(

; I/ clean val ue stack
)

)
)
e

Entity. NEXT- CONTROL(tru
el se {
Entity. NEXT- CONTROL(f al se);
}
RETURN,

i f (ALL- ENTI TY- STATES. nenber (Ent i ty. VALUE- STACK. top())) {

el se {

<ki || - component >

Entity. NEXT- CONTROL(true);

i f (KILLED. menber (Entity. VALUE- STACK. t op())){

/1 NULL operation, conponent already terninated
Entity. VALUE- STACK. pop(); // clean value stack
Entity. NEXT- CONTROL(f al se);

}
el se {
/1 conponent id has not been allocated
*** DYNAM C- ERROR* * *
{
}
RETURN,

Figure 90a: Flow graph segment <kill-component-op>

ETSI




105 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

9.29a.1 Flow graph segment <kill-mtc>

The<ki | | - mt ¢> flow graph segment in figure 90b describes the killing of the MTC. The effect is that the test case
terminates, i.e. the final verdict is calculated and pushed onto the value stack of module control, al resources are
released, the KILLED and DONE lists of the module state are emptied and all test components including the MTC are
removed from the test system.

segment <kill-mtc>

Kill-mc Yo

let { // local scope for variables

var Control := copy(ALL-ENTITY-STATES.first()); // copy of nodule control
var nmyEntity := ALL- ENTI TY- STATES. next (ALL- ENTI TY- STATES. first());

/1 Update test case verdict and del eti on of conponents
while (nyEntity !'= NULL) {
if (nyEntitiy. E-VERDICT == fail or TG VERDICT == fail) {
TG VERDICT : = fail;

}
el se {
if (nyEntity. E-VERDI CT == inconc or TC VERDI CT == inconc) ({
TC- VERDI CT : = inconc;
}
el se {

if (nyEntity. E-VERD CT == pass or TC-VERDI CT == pass) {
TG VERDI CT : = pass;
}

}
nyEntity := ALL- ENTI TY- STATES. next (nyEntity);

}

/1 TC-VERDICT is the result of the execute operation
Control . VALUE- STACK. push(TC VERDI CT) ;

/'l Update of test case reference paraneters
UPDATE- REMOTE- LOCATI ONS(MIC, Control ) ;

/'l Deletion of test conponents, release of resources, clearing lists
ALL- ENTI TY- STATES := NULL; // Deletion of Entity states

ALL- ENTI TY- STATES. append(Control); // re-introduction of Control
ALL- PORT- STATES : = NULL;

DONE : = NULL;

KILLED : = NULL;

TG VERDI CT : = none;

MIC : = NULL; /'l Deletion of the last reference to the MIC

Control . STATUS := ACTIVE; // Control continues
} // End of local scope
RETURN;

Figure 90b: Flow graph segment <kill-mtc-op>

ETSI



106 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

9.29a.2 Flow graph segment <kill-component>

The<ki | | - conponent > flow graph segment in figure 90c describes the stopping of a parallel test component

(i.e. not the MTC or module control) and its removal from the test system,. The effect isthat the test case verdict
TC-VERDICT and the lists of stopped and killed test components (DONE, and KILLED) are updated and that the
component is deleted from the module state. The <ki | | - conponent > flow graph assumes that the identifier of the
component to be stopped is on top of the value stack of the component that executes the segment.

segnent <kill-conponent >

A 4

ki ll-component Y}

let { // local scope for variable nyEntity
var nyEntity := Entity. VALUE- STACK. top();

/1 for test continuation, if Kkill is executed by another conponent
if (Entity !'= nyEntity()) {

Entity. VALUE- STACK. pop(); /1 clean val ue stack

Entity. NEXT- CONTROL(true);
}

/'l Update test case verdict
if (nyEntitiy. E-VERDICT == fail or TC-VERDICT == fail) {
TC-VERDICT : = fail;

}
el se {
if (nyEntity. E-VERDI CT == inconc or TC VERDI CT == inconc) {
TC-VERDI CT : = inconc;
el se {
if (nyEntity. E-VERDI CT == pass or TC VERDI CT == pass) {
TC VERDI CT : = pass;
}
}
/1 Deletion of test conponent
DONE. append(nyEntity); /1 Update of DONE
KI LLED. append(nyEntity); /1 Update of KILLED
DEL- ENTI TY(nyEntity); /1 Deletion of entity

} /1 End of l|ocal scope
RETURN;

Figure 90c: Flow graph segment <kill-component>

ETSI



107 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

9.29a.3 Flow graph segment <kill-all-comp>

The<ki |l | -al | - conmp> flow graph segment in figure 90d describes the termination of all parallel test components of
atest case.

segnment <kill-all-conmp>

A 4

kill-all-comp Y

let { // local scope for variable nmyEntity
var nyEntity := ALL-ENTITY- STATES. next (MIQ);

/1 Update test case verdict
while (nyEntity !'= NULL) {
if (nyEntitiy. E-VERDICT == fail or TG VERDICT == fail) {
TC-VERDICT : = fail;
}

el se {
if (nyEntity. E-VERDI CT == inconc or TC VERDI CT == inconc) ({
TG VERDI CT : = inconc;
}
el se {

if (nyEntity. E-VERDI CT == pass or TC VERDICT == pass) {
TC VERDI CT : = pass;
}

}
nyEntity := ALL- ENTI TY- STATES. next (nyEntity);

}

/1 Deletion of test components
nyEntity := ALL-ENTI TY- STATES. next (MIC);
while (nyEntity !'= NULL) ({

DONE. append(nyEntity); /'l Update of DONE
KI LLED. append(nmyEntity); /'l Update of KILLED
DEL- ENTI TY(nyEntity); /1 Deletion of entity

nyEntity := ALL- ENTI TY- STATES. next (MIC); // Next conponent to del ete

} // End of local scope

Entity. NEXT- CONTROL(true);
RETURN,

Figure 90d: Flow graph segment <stop-all-comp>

9.29b Kill execution statement
The syntactical structure of theki | | execution statement is:
kil l
The effect of theki | | execution statement depends on the entity that executestheki | | execution statement:

a Ifkill isperformed by the module control, the test campaign ends, i.e. al test components and the module
control disappear from the module state.

b) Ifthekill isexecuted by the MTC, all parallel test components and the MTC stop execution. The global test
case verdict is updated and pushed onto the val ue stack of the module control. Finally, control is given back to
the module control and the MTC terminates.

c) Ifthekill isexecuted by atest component, the global test case verdict TC-VERDICT and the global DONE
and KILLED lists are updated. Then the component disappears from the module.

ETSI



108 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

The flow graph segment <kill-exec-stmt> in figure 90e describes the execution of the kill statement.

segnent <kill-exec-stnt>

A 4 if (Entity == All-ENTITY-STATES.first()) {
Entity. NEXT- CONTROL(true);
decision = Ve }
el se {
true Entity. NEXT- CONTRCL(f al se);
fal se }
RETURN,
<kill-control >

if (Entity == MIQ {
Entity. NEXT- CONTROL( t r ue) ;

el se {
Entity. VALUE- STACK. push(Entity);
Entity. NEXT- CONTROL(f al se);

}
RETURN,

<kill-mtc> <ki | | - component >

Figure 90e: Flow graph segment <kill-exec-stmt>

9.29b.1 Flow graph segment <kill-control>

The<ki I'| - cont r ol > flow graph segment in figure 90f describes the stopping of module control. The effect isthat
ALL-ENTITY-STATES s set to NULL, i.e. the termination condition of the module evaluation procedure (see clause 8.6)
isfulfilled.

segnent <kill-control > v

ALL- ENTI TY- STATES : = NULL;
kill-control Y RETURN;

v

Figure 90f: Flow graph segment <kill-control>

ETSI



109 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

9.29c¢ Killed component operation

The syntactical structure of theki | | ed component operation is:

<conponent - expressi on>. kil | ed

Theki | | ed component operation checks whether a component is alive or has been removed from the test system.
Depending on whether a checked component is alive or has been removed from the test system, theki | | ed operation
decides how the flow of control continues. Using a component reference identifies the component to be checked. The
reference may be stored in avariable or be returned by a function, i.e. it is an expression. For simplicity, the keywords
‘al | component 'and'any conponent ' are considered to be special expressions.

The flow graph segment <ki | | ed- op> in figure 90g defines the execution of the ki | | ed component operation.

ETSI



110 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

segment <kil | ed- op>
h 4 /'l The Expression shall evaluate
............................................... // to a conponent reference. The
) /1 result is pushed onto VALUE- STACK
<expressi on>
if (Entity.VALUE-STACK top() == "all component') ({
if (Entity !'= MIQ) {
***DYNAM C- ERROR*** // 'all conponent' is not allowed
}
) el se {
ki |l ed-conponent-op )-- if (Entity.SNAP-ALIVE. lenght() == 2) { // MIC and Control
/] are alive
Entity. NEXT- CONTROL(true);
Entity. STATUS : = ACTIVE; // KILLED is successful
}
el se {
Entity. NEXT- CONTROL( f al se);
}
}
}
el se {
if (Entity.VALUE-STACK top() == 'any component') {
if (Entity = MIQ {
***DYNAM C- ERROR*** [/ '"any conponent' is not allowed
}
el se {
if (Entity.SNAP-KILLED. | ength() > 0) {
Entity. NEXT- CONTROL(true);
Entity. STATUS : = ACTIVE; // KILLED is successful
el se {
Entity. NEXT- CONTROL( f al se);
}
}
}
el se {
if (Entity.SNAP-DONE. nerber (Entity. VALUE- STACK. top())) {
Entity. NEXT- CONTROL(true);
Entity. STATUS : = ACTIVE; // KILLED is successful
el se {
Entity. NEXT- CONTROL( f al se);
}
}
}
Entity. VALUE- STACK. pop(); // clean val ue stack
RETURN,

ltrue lfalse

Figure 90g: Flow graph segment <killed-op>

9.30 Label statement

The syntactical structure of thel abel statementis:

| abel <l abel | d>

ETSI



111 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

The flow graph segment <I abel - st nt > in figure 91 defines the execution of thel abel statement.

segnment <l abel -stnt>

<l abel | d> "

/1 ‘nop’ neans ‘no operation’
Entity. NEXT- CONTROL(true);
nop Y. RETURN,

\4

Figure 91: Flow graph segment <label-stmt>

NOTE: The<lI abel | d> parameter of the label statement indicates the possibility that alabel can be the target
for ajump by means of agot o statement (see also clause 9.28).

9.31 Log statement

The syntactical structure of thel og statement is:

I og (<informal-description>)

The flow graph segment <I og- st nt > in figure 92 defines the execution of the| og statement.

segment <l og-stnt>

[/ inscription ‘nop’ neans ‘no operation’
Entity. NEXT- CONTROL(true);
(3107« T W RETURN;

v

Figure 92: Flow graph segment <log-stmt>

NOTE: The<informal descri ption> parameter of thel og statement has no meaning for the operational
semantics and is therefore not represented in the flow graph segment.

9.32  Map operation

The syntactical structure of athe map operation is:

map( <conponent - expr essi on>: <portldl>, system <portld2>)

Theidentifiers<port | d1> and <port | d2> are considered to be port identifiers of the corresponding test component
and test system interface. The components to which the <portld1> belongsis referenced by means of the component
reference <conponent - expr essi on>. The reference may be stored in variables or is returned by afunction, i.e. it
is an expressions, which evaluates to a component reference. The value stack is used for storing the component
reference.

NOTE: Themap operation does not care whether the syst em<portld> statement appears asfirst or as second
parameter. For simplicity, it is assumed that it is aways the second parameter.

The execution of the map operation is defined by the flow graph segment <nap- op> shown in figure 93.

ETSI



112 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

segnent <map- op>

let { /1 begin of a local scope
A 4 var portRef;
var compl := Entity. VALUE- STACK. t op();
Entity. VALUE- STACK. pop();
if (conpl == Entity) {
portRef := Entity.portldl. COVP- PORT- NAVE;

<expr essi on>

v el se {

map- op portRef := portldi;
(portldl, portld2) Y }
ADD- CON(conpl, portRef, system portld2);
} /1 end of local scope

Entity. NEXT- CONTROL(true);
RETURN,

Figure 93: Flow graph segment <map-op>

9.33  Mtc operation

The syntactical structure of thent ¢ operationis:

nc

The flow graph segment <nt c¢- op> in figure 94 defines the execution of the it ¢ operation.

segnent <ntc-op>

Entity. VALUE- STACK. push(MIC);
MC-0p Vo] Entity. NEXT- CONTROL(true);
RETURN,

Figure 94: Flow graph segment <mtc-op>

9.34 Port declaration

The syntactical structure of a port declarationis:

<port Type> <port Name>

Port declarations can be found in component type definitions. The effect of a port declaration is the creation of a new
port when a new component of the corresponding type is created. Furthermore, a port reference is created in the actual
scope of the test component. In the newly created port reference, the values PORT-NAME and COMP-PORT-NAME are
equal. The flow graph segment <port - decl ar at i on> infigure 95 defines the execution of a port declaration.

ETSI



113 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

segnment <port-decl aration>

/1 A new port state and a port reference
/|l are created

port-decl aration
(portName) ) ALL- PORT- STATES. append( NEW PORT(Entity, port Nane);

Entity.| N T- PORT(port Name, portNane);

Entity. NEXT- CONTROL(true);
RETURN,

v

Figure 95: Flow graph segment <port-declaration>

9.35 Raise operation

The syntactical structure of ther ai se operationis:

<portld>.raise (<exceptSpec>) [to < receiver-spec>]

Theoptional <r ecei ver - spec> inthet o clause refersto the receivers of the exception. In case of a one-to one
communication, the <r ecei ver - spec> addresses a single entity (including the SUT or an entity within the SUT). In
case of multicast or broadcast communication, the<r ecei ver - spec> specifiesaset or all test components
connected via the specified port with the calling component.

The flow graph segment <r ai se- op> in figure 96 defines the execution of ar ai se operation.

segnent <rai se-op>

A 4

<rai se-w t h-one-recei ver-op> OR /1 A raise operation nay adress one,
<rai se-w th-nul tipl e-receivers-op> OR /1 mltiple (nulticast and broadcast)
<rai se-w t hout -recei ver - op> /1l or no receiver entities.

v

Figure 96: Flow graph segment <raise-op>

ETSI



114 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

9.35.1 Flow graph segment <raise-with-one-receiver-op>

The flow graph segment <r ai se-wi t h- one-r ecei ver - op> infigure 97 defines the execution of ar ai se
operation where the receiver is specified in form of an expression.

segnment <rai se-w th-one-receiver-op>

/1 The expression shall evaluate
/'l to a conponent reference

<expressi on>

rai se-with-one-recei ver-op
(portld, exceptSpec)

let {
var receiver := Entity.VALUE- STACK. top();
var portRef := Entity. portld. COVP- PORT- NANE;

var renotePort := CGET- REMOTE- PORT(Entity, portref, receiver);

if (remotePort == NULL) {
*** DYNAM C- ERROR***; // Renote port cannot be found

}

if (remotePort == SYSTEM {
// Port is mapped onto a port of the test system
/'l reception of the reply by the SUT is outside
/1 the scope of the operational senmantics

else { // sending of exception
renot ePort. enqueue( CONSTRUCT- | TEM Entity, raise, exceptSpec));

} // end of scope of receiver and renotePort
Entity. VALUE- STACK. pop(); /'l clean val ue stack

Entity. NEXT- CONTROL(true);
RETURN;

Figure 97: Flow graph segment <raise-with-one-receiver-op>

ETSI



115 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

9.35.1a Flow graph segment <raise-with-multiple-receivers-op>

The flow graph segment <r ai se-wi t h-rrul t i pl e-r ecei ver s- op> infigure 97a defines the execution of a
r ai se operation where multiple receiverst are addressed. In case of broadcast communication the keyword al |
conponent isused as receiver specification. In case of multicast communication alist of expressionsis provided
which shall evaluate to component references.

The component references of the addressed entities (or the keywordal | conponent ) are pushed onto the value
stack of the calling entity. The number of references stored in the value stack is considered to be known, i.e., it isthe
parameter nunber of the basic flow graph noder ai se-wi t h-nul ti pl e-recei ver s-op inFigure 97a The
nunber parameter is 1 in case of broadcast communication, i.e., the keyword al | conponent istop element inthe
value stack.

ETSI



116 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

segment <raise-w th-multiple-receivers-op>

| +( nunber ) |

<expressi on>

/'l Each expression shall evaluate
/1 to a conponent reference

(portld, exceptSpec,

raise-with-multiple-receivers-op
numrber)

let { I
var i;

el se {
for

}
}
} /1 end of

RETURN,

/1 | oop counter variable

var connection; // variable for connections in port states
var receiver; /1 variable for receiver conponent references
var | ocal Port, renotePort; // variables for port references
| ocal Port := Entity.portld. COMP- PORT- NAME; // local port

if (Entity.VALUE- STACK. top() == all conponent) {
connection : = | ocal Port. CONNECTI ONS- LI ST. next (connecti on);
whil e (connection !'= NULL) {

remotePort := connection. REMOTE- PORT- NAVE;

if (remptePort == SYSTEM {
/1 Port is nmapped onto a port of the test system
/1 reception of the reply by the SUT is outside
/'l the scope of the operational semantics

else { // sending of call
renot ePort. enqueue( CONSTRUCT- I TEM Entity, raise, exceptSpec));

}

connection : = | ocal Port. CONNECTI ONS- LI ST. next (connecti on);
(i ==1; i <= nunber; i :=i+1)

receiver := Entity.VALUE- STACK top();

Entity. VALUE- STACK. pop(); /'l clean val ue stack

renot ePort := GET- REMOTE- PORT(Entity, |ocal Port, receiver);
if (renptePort == NULL) ({
*** DYNAM C- ERROR***; // Renpbte port cannot be found

}

if (rembtePort == SYSTEM {
/1 Port is nmapped onto a port of the test system
/'l reception of the reply by the SUT is outside
/'l the scope of the operational senmantics

else { // sending of call
renot ePort. enqueue( CONSTRUCT- I TEM Entity, raise, exceptSpec));
}

| ocal scope

Entity. NEXT- CONTROL(true);

Figure 97a: Flow graph segment <raise-with-multiple-receivers-op>

ETSI




117 Final draft ETSI ES 201 873-4 VV3.2.1 (2006-12)

9.35.2 Flow graph segment <raise-without-receiver-op>

The flow graph segment <r ai se-wi t hout - r ecei ver - op> in figure 98 defines the execution of araise operation
without t o-clause.

segnment <rai se-w thout-receiver-op>

rai se-w t hout -recei ver-op
(portld, exceptSpec)

let {
var portRef := Entity. portl|d. COVP- PORT- NANE;
var renotePort := GET- REMOTE- PORT(Entity, portRef, NONE);

if (remotePort == NULL) {
*** DYNAM C- ERROR***; // Renote port cannot be found

}

if (remotePort == SYSTEM {
// Port is mapped onto a port of the test system
Il reception of the reply by the SUT is outside
/'l the scope of the operational semantics

else { // sending of exception
renot ePort. enqueue( CONSTRUCT- I TEM Entity, raise, exceptSpec));

} // end of scope of renotePort

Entity. NEXT- CONTROL(true);
RETURN,

Figure 98: Flow graph segment <raise-without-receiver-op>

9.36 Read timer operation

The syntactical structure of ther ead timer operation is:

<tinerld> read
The flow graph segment <r ead- t i mer - op> in figure 99 defines the execution of ther ead timer operation.

Ther ead timer operation distinguishes between its usage in a Boolean guard of an al t statement or blocking cal |
operation and all other cases. If used in a Boolean guard, the result of the r ead timer operation is based on the actual
snapshoat, i.e. the SNAP-STATUS and SNAP-VALUE entries of the timer binding, in al other cases, the STATUS,
ACT-DURATION and TIME-LEFT entries of the timer binding determine the result of the operation.

ETSI



118 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

segnment <read-ti mer-op>

read-ti mer-op
(timerld)

let { // local scope for variable nyVal ue
var float myVal ue;
if (Entity.STATUS == SNAPSHOT) ({

if (Entity.tinerld. SNAP-STATUS == RUNNING) {
nyVal ue := Entity.timerld. SNAP- VALUE;

el se {
nmyVal ue : = 0.0;
}
}
el se {
if (Entity.timerld.STATUS == RUNNING {
nyValue := Entity.tinmerld. ACT-DURATION — Entity.timerld. Tl ME- LEFT;
el se {
nyVal ue : = 0.0;
}
}

Entity. VALUE- STACK. push( nyVal ue);

} // end local scope

Entity. NEXT- CONTROL(true);
RETURN;

Figure 99: Flow graph segment <read-timer-op>

ETSI




119 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

9.37 Receive operation

The syntactical structure of ther ecei ve operationis:

<portld>. receive (<matchingSpec>) [from <conponent-expression>] [-> <assignnentPart>]
The optional <conponent - expr essi on> inthef r omclause refersto the sender entity. It may be provided in
form of a variable value or the return value of afunction, i.e. it is assumed to be an expression. The optional

<assi gnnent Part > denotes the assignment of received information if the received message matches to the
matching specification <nmat chi ngSpec> and to the (optional) f r omclause.

The flow graph segment <r ecei ve- op> infigure 100 defines the execution of ar ecei ve operation.

segnent <receive-op> i

<recei ve-wi t h- sender >
R /1 Distinction due to the optional
<recei ve-wi t hout-sender> [ /1 fromclause

v

Figure 100: Flow graph segment <receive-op>
9.37.1 Flow graph segment <receive-with-sender>

The flow graph segment <r ecei ve- wi t h- sender > in figure 101 defines the execution of ar ecei ve operation
where the sender is specified in form of an expression.

ETSI



120 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

segnment

. . Y
<recei ve-wi t h- sender >

/1 The Expression shall evaluate
/1 to a conponent reference. The
// result is pushed onto VALUE- STACK

<expr essi on>

let { // local scope for portRef and sender

var portRef := NULL;
var sender := Entity.VALUE- STACK. top(); /1 Sender
Entity. VALUE- STACK. pop(); /1 dean val ue stack
if (portID == "any port") {
port Ref := ALL-PORT- STATES. r andon( MATCH- | TEM SNAP- VALUE, mat chi ngSpec, sender));
if (portRef == NULL) { // no 'matching' port found
Entity. NEXT- CONTROL(fal se);
RETURN
}
el se {
portRef := GET-PORT(Entity, Entity.portld. COWP-PORT-NAME); // Specified port
}
/1 MATCHI NG
if (PortRef.first() == NULL) { // Port queue is enpty, no match
Entity. NEXT- CONTROL(f al se);
RETURN
}
el se {

if ( MATCH | TEM port Ref. SNAP- VALUE, mat chi ngSpec, sender)) {
/1 The nessage in the queue natches
Entity. VALUE- STACK. push( port Ref); /'l Saving port reference
Entity. STATUS : = ACTI VE; /'l successful match, Entity status is changed
/1 from SNAPSHOT to ACTI VE

Entity. NEXT- CONTROL(true);

el se { // The top itemin the queue does not natch
Entity. NEXT- CONTROL(f al se);

}
RETURN;

}
} /1 End of scope of portRef and sender

recei ve-wi t h- sender

(portld, natchingSpec)
true

' // optional value

*(1) /'l assignent
<recel ve- assi gnnent >

v /1 Reroval of received itemfrom port

Entity. VALUE- STACK top() . dequeue();
remove- from port Entity. VALUE- STACK. pop();
........... Entity. NEXT- CONTROL(tr ue);
RETURN,

fal se true
v v

Figure 101: Flow graph segment <receive-with-sender>
9.37.2 Flow graph segment <receive-without-sender>

The flow graph segment <r ecei ve- wi t hout - sender > infigure 102 defines the execution of ar ecei ve
operation without af r omclause.

ETSI



121 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

segnment <receive-w thout - sender >

let { // local scope for portRef

var portRef := NULL;
if (portID == "any port"') {
port Ref := ALL-PORT- STATES. r andon( MATCH | TEM SNAP- VALUE, mat chi ngSpec, NONE));
if (portRef == NULL) { // no 'matching' port found
Entity. NEXT- CONTROL(f al se);
RETURN;
}
el se {
portRef := GET-PORT(Entity, Entity.portld. COWP-PORT-NAME); // Specified port
}
/1 MATCHI NG
if (PortRef.first() == NULL) { // Port queue is enpty, no match
Entity. NEXT- CONTROL(f al se);
RETURN;
}
el se {

if ( MATCH | TEM port Ref. SNAP- VALUE, mat chi ngSpec, NONE)) {
/1 The nessage in the queue matches
Entity. VALUE- STACK. push( port Ref); /'l Saving port reference
Entity. STATUS : = ACTI VE; /'l successful match, Entity status is changed
/1 from SNAPSHOT to ACTI VE

Entity. NEXT- CONTROL(true);

}

el se { /1 The first itemin the queue does not match
Entity. NEXT- CONTROL(fal se);

}

RETURN;

}
\ } /1 End of scope of portRef and sender

recei ve-w t h- sender

(port! D, matchi ngSpec)
,/<‘ true
/1 optional value

*(1) /] assignent

<recel ve- assi gnnent >

v /1 Reroval of received itemfrom port

Enti ty. VALUE- STACK. t op() . dequeue() ;
renmove-from port Entity. VALUE- STACK. pop();
........... Entity. NEXT- CONTROL(true);
RETURN;

fal se true
v v

Figure 102: Flow graph segment <receive-without-sender>

ETSI



122 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

9.37.3 Flow graph segment <receive-assignment>

The flow graph segment <r ecei ve- assi gnnent > in figure 103 defines the retrieval of information from received
messages and their assignment to variables.

segnment <recei ve-assi gnnent >

RETRI EVE- I NFQ(Enti ty. VALUE- STACK. top().first(), assignnentPart, Entity);

Entity. NEXT- CONTROL(true);
RETURN;

recei ve- assi gnnent
(assi gnment Part)

Figure 103: Flow graph segment <receive-assignment>

9.38 Repeat statement

The syntactical structure of ather epeat statement is:
r epeat

Basically, ther epeat statementisar et ur n statement without return value, which also changes the entity status to
REPEAT. The status REPEAT will force the re-evaluation of theal t statement in which the repeat statement has been
executed. The flow graph segment <r epeat - st nt > shown in figure 104 defines the execution of ther epeat
Statement.

segnment <repeat-stnt>

Entity. STATUS( REPEAT) ;
repeat-stm Ve RETURN,;

<return-wthout -val ue>

v

Figure 104: Flow graph segment <repeat-stmt>

ETSI



123 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

9.39 Reply operation

The syntactical structure of ther epl y operationis:

<portld>reply (<replySpec>) [to <receiver-spec>]

Theoptional <r ecei ver - spec> inthet o clause refersto the receivers of the reply. In case of a one-to one
communication, the <r ecei ver - spec> addresses asingle entity (including the SUT or an entity within the SUT). In
case of multicast or broadcast communication, the<r ecei ver - spec> specifiesaset or al test components
connected via the specified port with the calling component.

The flow graph segment <r epl y- op> in figure 105 defines the execution of ar epl y operation.

segment <reply-op>

A 4

<reply-w t h-one-recei ver-op> OR /1 A reply operation nay adress one,
<reply-w th-mul tiple-receivers-op> OR /1 multiple (nulticast and broadcast)
<repl y-w t hout - r ecei ver - op> /1 or no receiver entities.

v

Figure 105: Flow graph segment <reply-op>

9.39.1 Flow graph segment <reply-with-one-receiver-op>

The flow graph segment <r epl y-wi t h- one-r ecei ver - op> infigure 106 defines the execution of ar epl y
operation where the receiver is specified in form of an expression.

ETSI



124 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

segnment <reply-w th-one-receiver-op>

. /'l The expression shall evaluate
<expression> - // to a conponent reference

repl y-wi t h-one-recei ver-op
(portld, replySpec) A== .

let {
var receiver := Entity.VALUE- STACK top();
var portRef := Entity. portld. COWP- PORT- NANE;
var renotePort := CGET- REMOTE- PORT(Entity, portRef, receiver);

if (remotePort == NULL) {
*** DYNAM C- ERROR***; // Renote port cannot be found

}

if (remotePort == SYSTEM {
/1 Port is napped onto a port of the test system
/'l reception of the reply by the SUT is outside
/'l the scope of the operational senantics

}
else { // sending of reply
renot ePort . enqueue( CONSTRUCT- | TEM Entity, reply, replySpec));

} // end of scope of receiver and renotePort
Entity. VALUE- STACK. pop(); /1 clean val ue stack

Entity. NEXT- CONTROL(true);
RETURN;

v

Figure 106: Flow graph segment <reply-with-one-receiver-op>

9.39.1a Flow graph segment <reply-with-multiple-receivers-op>

The flow graph segment <r epl y-wi t h-mul ti pl e-r ecei ver s- op> in figure 106a defines the execution of a
r epl y operation where multiple receiverst are addressed. In case of broadcast communication the keyword al |
component isused as receiver specification. In case of multicast communication alist of expressionsis provided
which shall evaluate to component references.

The component references of the addressed entities (or the keyword al |  component ) are pushed onto the value
stack of the calling entity. The number of references stored in the value stack is considered to be known, i.e., it isthe
parameter nunber of the basic flow graph noder epl y-wi t h-rmul ti pl e-recei ver s- op in Figure 106a. The
nunber parameter is 1 in case of broadcast communication, i.e., the keyword al | conponent istop element inthe
value stack.

ETSI



125 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

segment <reply-w th-multiple-receivers-op>

| +( nunber ) |

<expressi on>

/'l Each expression shall evaluate
/1 to a conponent reference

(portld, replySpec,

reply-with-multiple-receivers-op
numrber)

let { I
var i;

el se {
for

}
}
} /1 end of

RETURN,

/1 | oop counter variable

var connection; // variable for connections in port states
var receiver; /1 variable for receiver conponent references
var | ocal Port, renotePort; // variables for port references
| ocal Port := Entity.portld. COMP- PORT- NAME; // local port

if (Entity.VALUE- STACK. top() == all conponent) {
connection : = | ocal Port. CONNECTI ONS- LI ST. next (connecti on);
whil e (connection !'= NULL) {

remotePort := connection. REMOTE- PORT- NAVE;

if (remptePort == SYSTEM {
/1 Port is nmapped onto a port of the test system
/1 reception of the reply by the SUT is outside
/'l the scope of the operational semantics

else { // sending of call
renot ePort. enqueue( CONSTRUCT- | TEM Entity, reply, replySpec));

}

connection : = | ocal Port. CONNECTI ONS- LI ST. next (connecti on);
(i ==1; i <= nunber; i :=i+1)

receiver := Entity.VALUE- STACK top();

Entity. VALUE- STACK. pop(); /'l clean val ue stack

renot ePort := GET- REMOTE- PORT(Entity, |ocal Port, receiver);
if (renptePort == NULL) ({
*** DYNAM C- ERROR***; // Renpbte port cannot be found

}

if (rembtePort == SYSTEM {
/1 Port is nmapped onto a port of the test system
/'l reception of the reply by the SUT is outside
/'l the scope of the operational senmantics

else { // sending of call
renot ePort . enqueue( CONSTRUCT- I TEM Entity, reply, replySpec));
}

| ocal scope

Entity. NEXT- CONTROL(true);

Figure 106a: Flow graph segment <reply-with-multiple-receivers-op>

ETSI




126 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

9.39.2 Flow graph segment <reply-without-receiver-op>

The flow graph segment <r epl y-wi t hout - r ecei ver - op> in figure 107 defines the execution of areply
operation without t o-clause.

segnment <reply-
-recei ver-op>

reply-w thout-receiver-op
(portld, replySpec)

let {
var portRef := Entity. portld. COVP- PORT- NANE;
var renotePort := CGET- REMOTE- PORT(Entity, portRef, NONE);

if (remotePort == NULL) {
*** DYNAM C- ERROR***; // Renote port cannot be found

}

if (remotePort == SYSTEM {
// Port is mapped onto a port of the test system
Il reception of the reply by the SUT is outside
/1 the scope of the operational semantics

}
else { // sending of reply
renot ePort. enqueue( CONSTRUCT- I TEM Entity, reply, replySpec));

} // end of scope of renotePort

Entity. NEXT- CONTROL(true);
RETURN,

Figure 107: Flow graph segment <reply-without-receiver-op>

9.40 Return statement

The syntactical structure of the return statement is:

return [<expression>]

The optional <expr essi on> describes a possible return value of afunction. The execution of a return statement
means that the control leaves the actual scope unit, i.e. variables and timers only known in this scope have to be deleted
and the value stack hasto be updated. A r et ur n statement has the effect of ast op component operation, if it isthe
last statement in a behaviour description.

NOTE: Test cases and module control will always end with ast op component operation. Thisis dueto their
flow graph representation (see clause 8.2). Only other test components may terminate with ar et ur n
statement.

The flow graph segment <r et ur n- st nt > in figure 108 defines the execution of ar et ur n statement.

ETSI



127 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

segnment <retun-stnt> i

<return-w th-val ue>
R

/1 A return statenent nay or nay
<return-w t hout - val ue> I

not return a val ue

\4

Figure 108: Flow graph segment <return-stmt>

9.40.1 Flow graph segment <return-with-value>

The flow graph segment <r et ur n- wi t h- val ue> in figure 109 defines the execution of ar et ur n that returnsa
value specified in form of an expression.

ETSI



128 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

segment <return-w th-val ue>

<expressi on>

/'l The expression shall
/1 to the return val ue

eval uat es

return-w th-val ue

true

deci si on

let {
var return-value := Entity. VALUE- STACK top();
Entity. DEL- VAR- SCOPE() ;
Entity. DEL- TI MER- SCOPE() ;
Entity. DEL- PORT- SCOPE() ;
Entity. VALUE- STACK. cl ear-unti | ( MARK);
Entity. VALUE- STACK. push(return-val ue);

} /1 end of scope of return-val ue

Entity. CONTROL- STACK. pop() ;
I

/1l return address
is lying on the control stack
if (Entity.CONTROL- STACK top() == NULL) {

Il return is stop or
Entity. VALUE- STACK. push(Entity);
Entity. NEXT- CONTROL(f al se);

kill

}
RETURN,;

if (Entity.VALUE- STACK. top().KEEP-ALIVE == true)) {
Entity. NEXT- CONTROL(true);

el se {
Entity. NEXT- CONTROL(f al se);

}
RETURN,;

fal se

A 4

<st op-al i ve- conponent >

<ki | | - component >

A

6

Figure 109: Flow graph segment <return-with-value>

ETSI



129

9.40.2 Flow graph segment <return-without-value>

The flow graph segment <r et ur n- wi t hout - val ue> infigure 110 defines the execution of ar et ur n statement

that returns no value.

segment <return-w thout-val ue>

<expressi on>

/1 The expression shall
/1 to the return val ue

eval uat es

return-w thout -val ue

true

deci si on

let {
var return-val ue :

Entity. VALUE- STACK. t op();

Entity. DEL- VAR- SCOPE() ;

Entity. DEL- TI NER- SCOPE() ;

Entity. DEL- PORT- SCOPE() ;

Entity. VALUE- STACK. cl ear-unti | ( MARK);
} /1 end of scope of return-val ue

Entity. CONTROL- STACK. pop();
/1

/'l return address
is lying on the control stack

if (Entity. CONTROL- STACK. top() == NULL) {
/1 return is stop or kill
Entity. VALUE- STACK. push(Entity);

Entity. NEXT- CONTROL(f al se);

}
RETURN;

if (Entity.VALUE- STACK. top().KEEP-ALI VE == true)) {
Entity. NEXT- CONTROL(true);

el se {
Entity. NEXT- CONTROL(f al se);

}
RETURN,;

true

fal se

A 4

<st op-al i ve- conponent >

<ki | | - component >

Figure 110: Flow graph segment <return-without-value>

ETSI

Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)




130 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

9.41 Running component operation

The syntactical structure of ther unni ng component operation is:
<conponent - expr essi on>. runni ng

Ther unni ng component operation checks whether a component is running or has either stopped or terminated and
been removed from the test system. The component to be checked isidentified by a component reference, which may be
provided in form of avariable or value returning function, i.e. is an expression. For simplicity, the keywords ‘al |
conponent 'and'any conponent ' are considered to be special expressions.

The r unni ng component operation distinguishes between its usage in a Boolean guard of an al t statement or
blocking cal | operation and all other cases. If used in a Boolean guard, the result of r unni ng component operation
is based on the actual snapshot. In all other cases evaluates directly the state information.

Theresult of ther unni ng component operation is pushed onto the value stack of the entity, which called the
operation.

The flow graph segment <running-component-op> in figure 111 defines the execution of ther unni ng component
operation.

segnment ¢

<runni ng- conponent - op>

/1 The expression shall eval uate
. /] to a conponent reference. The
<expressi on> // result is pushed onto VALUE- STACK

if (Entity.STATUS == ACTIVE) {
Entity. NEXT- CONTROL(true);

else { // Entity is in a snapshot
Entity. NEXT- CONTROL( f al se);

}
RETURN,;

<runni ng- conp- act > <runni ng- conp- snap>

v

Figure 111: Flow graph segment <running-component-op>

ETSI



131 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

9.41.1 Flow graph segment <running-comp-act>

The flow graph segment <r unni ng- conp- act > infigure 112 describes the execution of ther unni ng component
operation outside a snapshoat, i.e. the component isin the status ACTI VE.

segment
<runni ng- conp- act >

A 4

mg’-conp- act

let { // local scope
var conp; /1 for storing a conponent reference
var deci sion; /1 Bool ean
if (Entity.VALUE- STACK. top() == "all component') ({
if (Entity !'= MIC) {
*** DYNAM C- ERROR*** [/ "all conponent' is not allowed
el se {
if (DONE.length() == 0) { // all conponents are running
Entity. VALUE- STACK. push(true);
else { // at |least one conponent has been stopped
Entity. VALUE- STACK. push(fal se);
}
}
}
el se {
if (Entity.VALUE- STACK. top() == 'any component') {
if (Entity !'= MIQ {
*** DYNAM C- ERROR*** [/ 'any conponent' not all owed
el se {
conp : = ALL- ENTI TY- STATES. next (MIQ) ;
while (conp !'= NULL and decision == false) {
if (conp. STATUS == ACTI VE) {
decision : = true;
}
conmp : = ALL- ENTI TY- STATES. next (conp) ;
}
Entity. VALUE- STACK. push(deci si on);
}
}
el se {
i f (ALL- ENTI TY- STATES. menber (Entity. VALUE- STACK. top())) {
/'l Specified conponent is alive
Entity. VALUE- STACK. push(true);
el se {
Entity. VALUE- STACK. push(fal se);
}
} }
Entity. NEXT- CONTROL(true);
RETURN;

Figure 112: Flow graph segment <running-comp-act>

ETSI



132 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

9.41.2 Flow graph segment <running-comp-snap>

The flow graph segment <r unni ng- conp- snap> in figure 113 describes the execution of the r unni ng component
operation during the evaluation of a snapshot, i.e. the component isin the status SNAPSHOT.

segnent
<runni ng- conp- snap>

A 4

mconp- snap

let { // local scope

var conp; /1 for storing a conponent reference
var deci sion; /1 Bool ean
if (Entity.VALUE- STACK. top() == "all component') ({

if (Entity [= MO {

el se {

}
}
}
el se {
if (Entity.VALUE- STACK. top() == 'any component') {
if (Entity !'= MIQ {
*** DYNAM C- ERROR*** [/ 'any conponent' not all owed
el se {
conp : = Entity. SNAP- ALI VE. next (MIQ) ;
while (conp !'= NULL and decision == fal se) {
if (conp. STATUS == ACTI VE) {
deci sion := true;
}
conp : = ALL- ENTI TY- STATES. next (conp) ;
}
Entity. VALUE- STACK. push(deci si on);
}
}
el se {
if (Entity.SNAP-ALIVE. nermber (Entity. VALUE- STACK top())) {
/'l Specified conponent is alive
Entity. VALUE- STACK. push(true);
el se {
Entity. VALUE- STACK. push(fal se);
}
}

}
Entity. NEXT- CONTROL(true);

RETURN,

*** DYNAM C- ERROR*** [/ "all conponent' is not allowed

if (Entity.SNAP-DONE. | ength() == 0) {
Entity. VALUE- STACK. push(true);

else { // at |least one conponent has been stopped
Entity. VALUE- STACK. push(fal se);

Figure 113: Flow graph segment <running-comp-snap>

9.42  Running timer operation

The syntactical structure of ther unni ng timer operationis:

<timer!|d>.running

The flow graph segment <r unni ng- t i nmer - op> infigure 114 defines the execution of ther unni ng timer

operation.

ETSI



133 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

Ther unni ng timer operation distinguishes between its usage in a Boolean guard of an al t statement or blocking
cal | operation and all other cases. If used in a Boolean guard, the result of r unni ng timer operation is based on the

actual snapshot, i.e. the SNAP-STATUS entry of the timer binding, in al other cases, the STATUS entry of the timer
binding determines the result of the operation.

The any keyword is handled asa special valueof ti ner | d.

segnent <running-ti mer-op>

runni ng-ti ner-op
(timerld)

}

RETURN,

let { // local scope for variable nyStatus

var statusType nyStatus;

if (timerld == “any tiner’') {

if (timerlid '= NULL) {

el se {

} /1 end local scope

Entity. NEXT- CONTROL(true);

/1 statusType is a synbolic type for the
/] status values of tinmers.

if (Entity.STATUS) == SNAPSHOT) {
timerld := Entity. TI MER- STATE. fi rst.randon( SNAP- STATUS == RUNNI NG ;

el se {

timerld := Entity. TI MER- STATE. first.randon( STATUS == RUNNI NG) ;
}

nyStatus := Entity.timerld. STATUS,
if (Entity.STATUS == SNAPSHOT) {

nyStatus := Entity.timerld. SNAP- STATUS;
}

if (nyStatus == RUNNING ({
Entity. VALUE- STACK. push(true);

el se {
Entity. VALUE- STACK. push(fal se);
}

Entity. VALUE- STACK. push(fal se);

Figure 114: Flow graph segment <running-timer-op>

ETSI



134 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

9.43  Self operation

The syntactical structure of thesel f operationis:

sel f

The flow graph segment <sel f - op> in figure 115 defines the execution of the sel f operation.

segment <sel f - op>

Entity. VALUE- STACK. push(Entity);
self-op Yoo Entity. NEXT- CONTROL(true);
RETURN,

Figure 115: Flow graph segment <self-op>

9.44  Send operation

The syntactical structure of the send operationis:

<portld>.send (<send-spec>) [to <receiver-spec>]

Theoptional <r ecei ver - spec> inthet o clause refersto the receivers of the message. In case of a one-to one
communication, the <r ecei ver - spec> addresses a single entity (including the SUT or an entity within the SUT). In
case of multicast or broadcast communication, the <r ecei ver - spec> specifiesaset or al test components
connected via the specified port with the calling component.

The flow graph segment <send-op> in figure 116 defines the execution of asend operation.

segnent <send- op>

\ 4
<send-w t h- one-recei ver-op> OR
<send-w th-nul tipl e-recei vers-op> OR /1 A send operation nay address one,
<send-wi t hout - r ecei ver - op> /1 multiple (rmulticast and broadcast)
/1 or no receiver entities.

Figure 116: Flow graph segment <send-op>

ETSI



135 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

9.44.1 Flow graph segment <send-with-one-receiver-op>

The flow graph segment <send- wi t h- one-r ecei ver - op> in figure 117 defines the execution of asend
operation where the receiver is specified in form of an expression.

segnment <send-w t h- one-recei ver-op>

. /1 The expression shall evaluate
<expr essi on> // to a conponent reference

send-w t h- one-recei ver - op
(portld, sendSpec)

let {
var receiver := Entity.VALUE- STACK. top();
var portRef := Entity. portld. COVP- PORT- NANE;
var renotePort := CGET- REMOTE- PORT(Entity, portRef, receiver);

if (remotePort == NULL) {
*** DYNAM C- ERROR***; // Renote port cannot be found

}

if (remotePort == SYSTEM {
// Port is mapped onto a port of the test system
/'l reception of the reply by the SUT is outside
/1 the scope of the operational senmantics

else { // sending of message
renot ePort. enqueue( CONSTRUCT- | TEM Entity, send, sendSpec));

} // end of scope of receiver and renotePort
Entity. VALUE- STACK. pop(); /'l clean val ue stack

Entity. NEXT- CONTROL(true);
RETURN;

Figure 117: Flow graph segment <send-with-one-receiver-op>

9.44.1a Flow graph segment <send-with-multiple-receivers-op>

The flow graph segment <send-wi t h- mul t i pl e-recei ver s- op> in figure 117a defines the execution of a
send operation where multiple receiverst are addressed. In case of broadcast communication the keyword al |
component isused as receiver specification. In case of multicast communication alist of expressionsis provided
which shall evaluate to component references.

The component references of the addressed entities (or the keyword al | component ) are pushed onto the value
stack of the calling entity. The number of references stored in the value stack is considered to be known, i.e., it isthe
parameter nunber of the basic flow graph nodesend-wi t h- mul ti pl e-recei vers- op inFigure 117a. The
nunber parameter is1in case of broadcast communication, i.e., thekeyword al | conmponent istop element inthe
value stack.

ETSI



136 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

segment <send-w th-mul tipl e-receivers-op>

| +( nunber ) |

<expressi on>

/'l Each expression shall evaluate
/1 to a conponent reference

send-w th-mul ti pl e-recei
(portld, sendSpec, nu

vers-op
nmber)

if

let { /1
var i; // loop counter variable
var connection; // variable for connections in port states
var receiver; /1 variable for receiver conponent references
var | ocal Port, renotePort; // variables for port references

| ocal Port := Entity.portld. COMP- PORT- NAME; // local port

(Entity. VALUE- STACK. top() == all component) {
connection : = | ocal Port. CONNECTI ONS- LI ST. next (connecti on);
whil e (connection !'= NULL) {
remotePort := connection. REMOTE- PORT- NAVE;
if (remptePort == SYSTEM {
/1 Port is nmapped onto a port of the test system
/1 reception of the reply by the SUT is outside
/'l the scope of the operational semantics

else { // sending of call
renot ePort . enqueue( CONSTRUCT- | TEM Entity, send, sendSpec));

}
connection : = | ocal Port. CONNECTI ONS- LI ST. next (connecti on);
}
el se {
for (i == 1; i <= nunber; i :=i+l)
receiver := Entity. VALUE- STACK. top();
Entity. VALUE- STACK. pop(); /'l clean val ue stack
renot ePort := GET- REMOTE- PORT(Entity, |ocal Port, receiver);
if (renptePort == NULL) ({
*** DYNAM C- ERROR***; // Renpbte port cannot be found
}
if (renptePort == SYSTEM {
/1 Port is nmapped onto a port of the test system
/'l reception of the reply by the SUT is outside
/'l the scope of the operational senmantics
else { // sending of call
renot ePort. enqueue( CONSTRUCT- | TEM Entity, send, sendSpec));
}
}
}
} /1 end of local scope
Entity. NEXT- CONTROL(true);
RETURN,
v
Figure 117a: Flow graph segment <send-with-multiple-receivers-op>

ETSI




137 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

9.44.2 Flow graph segment <send-without-receiver-op>

The flow graph segment <send- wi t hout - r ecei ver - op> in figure 118 defines the execution of asend
operation without t o-clause.

segnment <send-w t hout - recei ver - op>

send-w t hout - recei ver-op
(portld, sendSpec)

let {
var portRef := Entity. portl|d. COVP- PORT- NANE;
var renotePort := CGET- REMOTE- PORT(Entity, portRef, NONE);

if (remotePort == NULL) {
*** DYNAM C- ERROR***; // Renote port cannot be found

}

if (remotePort == SYSTEM {
// Port is mapped onto a port of the test system
Il reception of the reply by the SUT is outside
/1 the scope of the operational semantics

else { // sending of message
renot ePort. enqueue( CONSTRUCT- | TEM Entity, send, sendSpec));

} // end of scope of renotePort

Entity. NEXT- CONTROL(true);
RETURN,

Figure 118: Flow graph segment <send-without-receiver-op>

ETSI



138

9.45  Setverdict operation

The syntactical structure of theset ver di ct operationis:

setverdi ct (<verdi cttype-expressi on>)

Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

The<ver di ctt ype- expr essi on> parameter of theset ver di ct operation is an expression that shall evaluate
toavalueof typever di ctt ype,i.e.none, pass,i nconc orf ai | . The expression is evaluated before the

set verdi ct operationisapplied.

The flow graph segment <set ver di ct - op> in figure 119 defines the execution of the set ver di ct operation.

segment <setverdict-op>

A /'l The expression shall evaluate to a val ue
/1 of type verdicttype.
<expression> /1 The result of the evaluation is pushed
/1 onto the VALUE- STACK of Entity

RETURN;

if ( Entity. E-VERDICT == fail or
A 4 Entity. VALUE- STACK. top() == fail) {
Entity. E-VERDICT := fail;

setverdict-op \ }
el se {
if ( Entity. VALUE- STACK. top() == inconc or
Entity. E- VERDI CT == inconc) ({
Entity. E- VERDI CT : = inconc;
}
el se {
if ( Entity. VALUE- STACK. top() == pass or
Entity. E- VERDI CT == pass) {
Entity. E- VERDI CT : = pass;
}
}

}
Entity. VALUE- STACK pop() // clear VALUE- STACK
Entity. NEXT- CONTROL(true);

Figure 119: Flow graph segment <setverdict-op>

ETSI



139 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

9.46  Start component operation

The syntactical structure of thest art component operation is:

<conponent - expressi on>. start (<functi on- name>( <act - par - desc,>, .., <act-par-desc, >))

Thest art component operation starts a component. Using a component reference identifies the component to be
started. The reference may be stored in a variable or be returned by afunction, i.e. it is an expression that evaluatesto a
component reference.

The<f unct i on- nanme> denotes to the name of the function that defines the behaviour of the new component and
<act - par - descr >, ..., <act - par-descr > provide the description of the actual parameter values of

<functi on- nane>. Infunctionsreferenced in st art component operations only value parameters are allowed. The
descriptions of the actual parameters are provided in form of expressions that have to be evaluated before the call can be
executed. The handling of formal and actual value parametersis similar to their handling in function calls

(see clause 9.24).

The flow graph segment <start-component-op> in figure 120 defines the execution of the st ar t component operation.
The start component operation is executed in four steps. In thefirst step acall record is created. In the second step the
actual parameter values are calculated. In the third step the reference of the component to be started is retrieved, and, in
the fourth step, control and call record are given to the new component.

NOTE: The flow graph segment in figure 120 includes the handling of reference parameters
(<ref -var - par - cal c>). Reference parameters are needed to explain reference parameters of test
cases. The operational semantics assumes that these parameters are handled by the MTC.

ETSI



140 Final draft ETSI ES 201 873-4 VV3.2.1 (2006-12)

segment <start-conponent - op>

Entity. VALUE- STACK. push( NEW CALL- RECORD( f uncti on- nane));
Entity. NEXT- CONTROL(true);
RETURN;

construct-call-record
(function-nane)

/1 For each pair (<f-par-Idi> <act-paraneter-desci>) the
/1 val ue of <act-paraneter-desci is calculated and

.| /| assigned to the corresponding field <f-par-Idi>

<val ue- par - cal cul ati on> I/ in the call record. The call record is assunmed to be
/1 the top elenent in the val ue stack.

* /1 This flow graph segnent is also used to explain

/] the execute statemmt. Test cases are allowed to have
/'l reference paraneters. The operational senmantics
<ref-var-par-cal c> /] assumes that these paraneters are owned (and updat ed)
/1 by the MTC.

A\ 4

/'l The expression shall evaluate to a conponent reference.

<expression> | /1 It refers to the conponent to be started

control -trans-to-conmponent
(function-nane)

let {
var toBeStarted := Entity. VALUE- STACK top();
/] toBeStarted is a local variable that stores the
/1 identifier of the conmponent to be started

Entity. VALUE- STACK. pop();
/'l Renoval of conponent reference. Afterwards the
/1 call record is on top of the value stack

t oBeSt art ed. VALUE- STACK. push(Entity. VALUE- STACK. t op();
/1 Call record is transferred to toBeStarted.

Entity. VALUE- STACK. pop();
/1 Renoval of the call record fromthe val ue stack
/1 of the starting conponent (= Entity).

t oBeSt ar t ed. CONTROL- STACK. push( GET- FLOW GRAPH( f unct i on- nane) ) ;
/1 Control stack of toBeStarted is set to
/'l the start node of its behaviour.

toBeSt art ed. STATUS : = ACTI VE;
/1 Control is given to toBeStarted

if (DONE. menber(toBeStarted)) { // Update DONE I|i st
DONE. del et e(t oBeSt art ed);
}

} // end of scope for variable toBeStarted

Entity. NEXT- CONTROL(true);

Figure 120: Flow graph segment <start-component-op>

ETSI



141 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

9.47  Start port operation

The syntactical structure of thest ar t port operation is:

<portld>. start

The flow graph segment <start-port-op> in figure 121 defines the execution of the st ar t port operation.

segnent <start-port-op>

let { // Begin of |ocal scope

A 4 var portRef := Entity.portl|d. COVP- PORT- NAVE;
start-port-op ). GET- PORT(Entity, portRef).clear;
(portld) GET- PORT(Entity, portRef).STATUS : = STARTED;

} /1 End of socpe

Entity. NEXT- CONTROL(true);
RETURN,;

v

Figure 121: Flow graph segment <start-port-op>

9.48  Start timer operation

The syntactical structure of thest art timer operationis:

<timerld> start [(<float-expression>)]

The optional <float-expression> parameter of the timer st ar t operation denotes the actual duration of the timer. If it is
not provided, the default duration will be used by the st ar t operation. The expression that shall evaluate to a value of
typef | oat . If provided, the expression shall be evaluated beforethe st art operation is applied. The result of the
evaluation is pushed onto the VALUE-STACK of Entity.

The flow graph segment <st ar t - t i ner - op> in figure 122 defines the execution of the st art timer operation.

segnment <start-tinmer-op>

y

<start-timer-op-defaul t>

R /1l Atinmer can be started with
<start-tiner-op-duration> /] a default duration, or with
/1 a given duration.

v

Figure 122: Flow graph segment <start-timer-op>

ETSI



142 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

9.48.1 Flow graph segment <start-timer-op-default>

The flow graph segment <st ar t - t i ner - op- def aul t > infigure 123 defines the execution of the st art timer
operation with the default value.

segment <start-timer-op-defaul t>

Start_tin-er_op_default ...................................
(timerld)

/1 The tiner reference <tinerld> is copied into the node
/] attribute'timerld

if (Entity.tinerld. DEF- DURATI ON == NONE) {
*** DYNAM C- ERROR* * * /1 Tinmer has no default duration
}

el se {

Entity. TI MER-SET(ti merld, ACT-DURATION, Entity.timerld. DEF- DURATI ON);
Entity. TI MER-SET(tinmerld, TIME-LEFT, Entity.timerld. DEF- DURATI ON);
Entity. TIMER SET(tinerld, STATUS, RUNNING ;

}

Entity. NEXT- CONTROL(tr ue);
RETURN,

Figure 123: Flow graph segment <start-timer-op-default>

ETSI



143 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

9.48.2 Flow graph segment <start-timer-op-duration>

The flow graph segment <st art - t i ner - op- dur at i on> in figure 124 defines the execution of the st ar t timer
operation with a provided duration.

segment <start-timer-op-duration>

/1 The expression shall evaluate
/'l to a float. The result is pushed
/1 onto VALUE- STACK.

<expr essi on>

start-timer-op-duration
(timerld)

/1 The timer reference <tinerld> is copied into the node
/] attribute ‘tinerld

Entity. TI MER-SET(timerld, ACT-DURATION, Entity.VALUE- STACK. top());
Entity. TI MER-SET(timerld, TIM:LEFT, Entity. VALUE- STACK. top());
Entity. TIMER- SET(timerld, STATUS, RUNNI NG ;

Entity. VALUE- STACK. pop(); /1 cl ean VALUE- STACK

Entity. NEXT- CONTROL(true);
RETURN,

Figure 124: Flow graph segment <start-timer-op-duration>

9.49  Stop component operation

The syntactical structure of the st op component statement is:

<conponent - expr essi on>. st op

The st op component operation stops the specified component. All test components will be stopped, i.e. the test case
terminates, if the MTC is stopped (e.g. nt c. st op) or stopsitself (e.g. sel f. st op). The MTC may stop all parallel
test components by using theal | keyword, i.e.al | conmponent .st op.

Stopped components created withan al i ve clausein the cr eat e opration are not removed from the test system.
They can berestarted by using ast ar t statement. Variables, ports, constants and timers owned by such a component,
i.e., declared and defined in the corresponding component type definition, keep their status. A st op operation for a
component created without an al i ve clauseis semantically equivalent to aki | | operation. The component is
removed from the test system.

A component to be stopped isidentified by a component reference provided as expression, e.g. avalue or value
returning function. For simplicity, the keyword 'al | conponent 'isconsidered to be specia val ues of
<conponent - expr essi on>. Theoperationsnt ¢ and sel f are evaluated according to clauses 9.33 and 9.43.

The flow graph segment <st op- conmponent - op> in figure 125 defines the execution of the st op component
operation.

ETSI



144 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

segnent <stop-conponent - op>

/'l The Expression shall evaluate
A 4 /1 to a conponent reference. The
..... /1 result is pushed onto VALUE- STACK

<expressi on>

if (Entity.VALUE-STACK. top() == "all conponent') {
Entity. VALUE- STACK pop(); // clean value stack
if (Entity !'= MIC) {

v ***DYNAM C-ERROR*** // "all' not all owed
decision ) }el se {
Entity. NEXT- CONTROL(t rue);
true {
fal se }
el se {
Entity. NEXT- CONTROL(f al se);
<stop-all -conp> }
RETURN;
v if (Entity.VALUE- STACK top() == MIQ) {

Entity. VALUE- STACK. pop(); // clean value stack

decision ) Enti ty. NEXT- CONTROL(tr ue)

true el se {
Entity. NEXT- CONTROL(f al se);

}
RETURN,

<kill-ntc>

if (ALL- ENTITY- STATES. nenber (Entity. VALUE- STACK. top())) {
Entity. NEXT- CONTROL(tr ue);

}
el se {
i f (DONE. menber (Entity. VALUE- STACK. top())){
prepare-stop ). /1 NULL operation, conponent already stopped
fal se Il or killed.
Entity. VALUE- STACK pop(); // clean val ue stack
true Entity. NEXT- CONTROL(f al se) ;
}
el se {
/1 conmponent id has not been allocated
*** DYNAM C- ERROR* * *
{
}
RETURN;

if (Entity. VALUE- STACK top().KEEP-ALIVE == true)) {
Entity. NEXT- CONTROL(true); // Conponent is not
/1 renoved fromthe

I/ test system

el se {
4 Entity. NEXT- CONTROL(fal se); // Conponent is killed
}
decision ). RETURN;

true fal se

v
<st op-al i ve- conponent >

<ki || - conponent >

A

'

Figure 125: Flow graph segment <stop-component-op>

ETSI



9.49.1 Void

145 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

9.49.2 Flow graph segment <stop-alive-component>

The<st op- al i ve- conponent > flow graph segment in figure 126 describes the stopping of a parallel test
component, i.e. not the MTC or module control, which has been created with an al i ve clause. The effect isthat the
test case verdict TC-VERDICT and the list of terminated test components (DONE) are updated and that the component
changesits statusto BLOCKED. The <st op- al i ve- conponent > flow graph assumes that the identifier of the

component to be stopped is on top of the value stack of the component that executes the segment.

segment

<stop-al i ve- conponent >

st op-al i ve- conponent

let { // local scope
var nyEntity := Entity. VALUE- STACK top();
var conpVar Scope : = copy(nyEntity. DATA- STATE.first());
var conpTi mer Scope : = copy(nmyEntity. TI MER-STATE. first());
var conpPort Scope := copy(nyEntity. PORT-REF.first());

/1 for test continuation, if stop is executed by another conponent
if (Entity !'= nyEntity()) {
Entity. VALUE- STACK. pop(); // clean val ue stack

Entity. NEXT- CONTROL(true);
}
/] Update test case verdict

if (myEntitiy. E-VERDICT == fail or TC-VERDICT == fail) {
TC-VERDI CT : = fail;

}
el se {
if (nyEntity.E-VERDI CT == inconc or TC VERDI CT == inconc) {
TC- VERDI CT : = inconc;
el se {
if (nyEntity.E-VERDI CT == pass or TC VERDI CT == pass) {
TC VERDI CT : = pass;
}
}
/1 Update of DONE
DONE. append(nyEntity); /1 Update of DONE

/1 Update of conponent state

nyEntity. STATUS : = BLOCKED;

nyEntity. CONTROL- STACK : = NULL;

nyEntity. DEFAULT- LI ST : = NULL;

nyEntity. VALUE- STACK : = NULL;

nyEntity. VALUE- STACK. push( MARK) ; /1 for conponent scope
nmyEntity. TI MER- GUARD. STATUS : = | DLE;
myEnt i ty. DATA- STATE : = NULL

nyEnt i ty. DATA- STATE. add( conmpVar Scope) ;
myEntity. TI MER- STATE : = NULL;

nyEntity. TI MER- STATE. add( conpTi mer Scope) ;
nyEntity. PORT- REF : = NULL

nyEnt i ty. PORT- REF. add( conpPor t Scope) ;
nmyEntity. SNAP- ALI VE : = NULL;

nmyEntity. SNAP- DONE : = NULL;

nmyEntity. SNAP-KI LLED : = NULL;

} /1 End of local scope
RETURN,

Figure 126: Flow graph segment <stop-component>

ETSI




146 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

9.49.3 Flow graph segment <stop-all-comp>

The<st op-al | - conp> flow graph segment in figure 127 describes the stopping of all parallel test components of a
test case.

segnent
<stop-al |l - comp> let { // local scope
h 4 var nyEntity := ALL- ENTI TY- STATES. next (MIC);

prepare-stop ) Entity. VALUE- STACK. push( MARK)
while (nyEntity !'= NULL) {
Entity. VALUE- STACK. push(nyEntity);
nyEntity := ALL- ENTITY- STATES. next (nmyEntity);

} // End of l|ocal scope

Entity. NEXT- CONTROL(true);
RETURN,

if (Entity.VALUE- STACK. top(). KEEP-ALI VE == true) ({
Entity. NEXT- CONTROL(true);

el se {
Entity. NEXT- CONTROL( f al se);
}

................. RETURN,

<
l

stop-or-kill

true

v
<st op-al i ve- conponent > <ki | I - corponent >

\ 4
/ if (Entity.VALUE- STACK top() == MARK) {

StOP-0r-Kill e Entity. VALUE- STACK. &() : /] clean stack
fal se Entity. NEXT- CONTROL(true); // end of |oop

true el se {
Entity. NEXT- CONTROL(f al se);
}

RETURN,;

Figure 127: Flow graph segment <stop-all-comp>

9.50  Stop execution statement
The syntactical structure of the st op execution statement is:
stop
The effect of the st op execution statement depends on the entity that executesthe st op execution statement:

a) If st op isperformed by the module control, the test campaign ends, i.e. al test components and the module
control disappear from the module state. Thisis semantically similar to the execution of aki | | statement by
the module control.

ETSI



147 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

b) If thest op isexecuted by the MTC, the test case ends. All parallel test components and the MTC stop and are
removed from the test system. The global test case verdict is updated and pushed onto the value stack of the
module control. Control is given back to the module control. Thisis semantically similar to the execution of a
kill statement by the MTC.

c) Ifthest op isexecuted by atest component, the global test case verdict TC-VERDICT and the global DONE
list are updated. If the test component is created with an alive clause. The status of the compent is set to
BLOCKED and it may be started again. Otherwise the component is removed from the test system.

The flow graph segment <st op- exec- st nt > in figure 128 describes the execution of the st op statement.

segnent <stop-exec-stnt>

v if (Entity == All-ENTITY-STATES. first()) {

\ Entity. NEXT- CONTROL(t rue);
deci si on }

‘/ el se {
true Entity. NEXT- CONTRCL(f al se);

fal se

}
RETURN;

<kill-control >

if (Entity == MIQ) {
Entity. NEXT- CONTROL( t r ue) ;

el se {
Entity. NEXT- CONTRCL(f al se);

}
RETURN;

true

Entity. VALUE- STACK. push(Entity);
if (Entity.KEEP-ALIVE == true) {
Entity. NEXT- CONTROL(true);

<kill-mtc>
............ else{
Entity. NEXT- CONTROL(f al se);

}
RETURN,

<ki | | - conponent > <stop-al i ve- conponent >

) 4
@ '®

Figure 128: Flow graph segment <stop-exec-stmt>

ETSI



148 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)
9.50.1 Void

9.51  Stop port operation

The syntactical structure of the st op port operation is:

<portld>.stop

The flow graph segment <st op- port - op> in figure 129 defines the execution of the st op port operation.

segnment <stop-port-op>

let { // Begin of l|local scope
var portRef := Entity.portl|d. COVP- PORT- NAVE;

stop-port-op CGET- PORT(Entity, portRef).STATUS : = STOPPED;
(portid) } // End of scope
Entity. NEXT- CONTROL(true);
RETURN;

v

Figure 129: Flow graph segment <stop-port-op>

9.52  Stop timer operation

The syntactical structure of the st op timer operationiis:

<timerld>. stop
The flow graph segment <st op-t i mer - op> in figure 130 defines the execution of the st op timer operation.

Theal | keyword ishandled asaspecial valueof ti ner | d.

ETSI



149 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

segnment <stop-timer-op>

/1 The tinmer reference <tinerld> is copied
/] into the node attribute ‘tinerld

stop-timer-op
(timerld)

if (tinerld == “all tiner’) {
Entity. TI MER- STATE. first.change( Tl MER- SET(, STATUS, |IDLE));
Entity. TI MER- STATE. first.change( Tl MER- SET(, ACT- DURATI ON, 0.0);
Entity. TI MER- STATE. first.change( Tl MER- SET(, TI ME-LEFT, 0.0);
/Il Note, the first paraneter of the TIMER SET function is
/] ommitted, because it is applied to all tiners in the
/] actual scope unit.

el se {
Entity. TI MER- SET(tinerld, STATUS, |DLE);
Entity. TI MER- SET(tinerld, ACT-DURATIQN, 0.0);
Entity. TI MER- SET(tinerld, TIME-LEFT, 0.0);

}

Entity. NEXT- CONTROL(true);
RETURN;

Figure 130: Flow graph segment <stop-timer-op>

9.53  System operation

The syntactical structure of thesyst emoperationis:

system

The flow graph segment <syst em op> in figure 131 defines the execution of the syst emoperation.

segnment <system op>

Entity. VALUE- STACK. push(systen);
Entity. NEXT- CONTROL(true);
RETURN,

syst em op

v

Figure 131: Flow graph segment <system-op>

9.54 Timer declaration

The syntactical structure of atimer declarationiis:

timer <tinerld> [:= <float-expression>]

The effect of atimer declaration isthe creation of a new timer binding. The declaration of a default duration is optional.
The default value is considered to be an expression that evaluates to a value of the typef | oat .

The flow graph segment <t i ner - decl ar at i on> in figure 132 defines the execution of atimer declaration.

ETSI



150 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

segnent <ti mer-declaration> $

<ti ner-decl -defaul t >

R /1 Atiner may be declared with
<ti ner-decl - no- def > /1 or without a default duration

i

Figure 132: Flow graph segment <timer-declaration>

9.54.1 Flow graph segment <timer-decl-default>

The flow graph segment <t i mer - decl - def aul t > in figure 133 defines the execution of atimer declaration where
adefault duration in form of an expression is provided.

segnent <timer-decl-default

>

v

/1 The expression shall evaluate

<expressi on>

/1 to a value of type float

timer-decl -defaul t
(timerld)

Entity. INIT-TIMER(tinerld, Entity.VALUE- STACK top());
Entity. VALUE- STACK. pop(); /1 cl ean VALUE- STACK

Entity. NEXT- CONTROL(true);
RETURN;

Figure 133: Flow graph segment <timer-decl-default>

9.54.2 Flow graph segment <timer-decl-no-def>

The flow graph segment <t i ner - decl - no- def > in figure 134 defines the execution of atimer declaration where
no default duration is provided, i.e. the default duration of the timer is undefined.

segnment <ti mer-decl - no- def >

Entity. | N T-TIMER(ti merld, NONE);

ti mer-decl - no- def Entity. NEXT- CONTROL(true);
(timerld) RETURN;

\ 4

Figure 134: Flow graph segment <timer-decl-no-def>

ETSI



151 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

9.55 Timeout timer operation

The syntactical structure of thet i meout timer operationis:

<tinerld> tinmeout

The flow graph segment <t i meout - t i mer - op> in figure 135 defines the execution of thet i meout timer
operation.

segment <timeout-timer-op>

timeout-timer-op
(timerld)

/1 The timer reference <timerld> is copied
/1 into the node attribute ‘timerld

if (tinerld == “any tiner’) {
timerld := Entity. TI MER- STATE. first.random( SNAP- STATUS == TI MECUT) ;
}

if (tinmerld !'= NULL & Entity.tinerld. SNAP- STATUS == TI MEQUT) ({
Entity. TI MER SET(tinerid, STATUS, IDLE);
Entity. TI MER- SET(tinerld, ACT-DURATION, 0.0);
Entity. TIMER SET(tinerid, TIME LEFT, 0.0);
Entity. STATUS : = ACTI VE;
Entity. NEXT- CONTROL(true);

el se {
Entity. NEXT- CONTROL(f al se);

}
RETURN;

true fal se

NOTE 1: Ati meout operation is embedded in an al t statement. Its evaluation is based on the actual snapshot,
i.e. the decision is based on the SNAP-STATUS entry in the timer binding. If the timeout operation is
successful, i.e. SNAP-STATUS == TIMEOUT, the timer is set into an IDLE state and the component state
changes from SNAPSHOT to ACTIVE.

NOTE 2: Whentheti neout evaluatestotrue orf al se, either execution continues with the statement that
follows the t i meout operation (t r ue branch), or the next alternative in the al t statement has to be
checked (f al se branch).

NOTE 3: The any keyword is treated like as special value of timerld.

Figure 135: Flow graph segment <timeout-timer-op>

9.56 Unmap operation

The syntactical structure of athe unnmap operationis:

unmap( <conponent _expressi on>: <port|dl>, system <port| d2>)

The identifiers<port | d1> and <por t | d2> are considered to be port identifiers of the corresponding test component
and test system interface. The components to which the <portld1> belongsis referenced by means of the component
reference <conponent - expr essi on>. The reference may be stored in variables or isreturned by a function, i.e. it
is an expressions, which evaluates to a component reference. The value stack is used for storing the component
reference.

NOTE: Theunmap operation does not care whether the sy st em<portld> statement appears asfirst or as
second parameter. For simplicity, it is assumed that it is always the second parameter.

ETSI



152 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

The execution of the unmap operation is defined by the flow graph segment <unmap- op> shownin figure 136.

segnment <unmap- op>

v let { // begin of a local scope
var portRef;
var compl : = Entity. VALUE- STACK. top();
Entity. VALUE- STACK. pop();
if (compl == Entity) {
portRef := Entity.portldl. COVWP- PORT- NAME;

<expressi on>

A 4

unnmap- op el se {
(port1dl, portld2) Jemees portRef := portldi;

}
DEL- CON(conpl, portRef, system portld2);
} /1 end of |ocal scope

Entity. NEXT- CONTROL(tr ue);
RETURN,

Figure 136: Flow graph segment <unmap-op>

9.57 Variable declaration

The syntactical structure of avariable declaration is:

var <varType> <varld> [:= <var Type-expressi on>]

Theinitialization of avariable by providing an initial value (in form of an expression) isoptional. Theinitial valueis
considered to be an expression that eval uates to a value of the type of the variable.

The flow graph segment <var i abl e- decl ar at i on> infigure 137 defines the execution of the declaration of a
variable.

segnent <vari abl e-decl arati on> v
<var-declaration-init>
OR /1 A variable nay be declared with
<var - decl ar ati on- undef > /1 or without initial value

Figure 137: Flow graph segment <variable-declaration>
9.57.1 Flow graph segment <var-declaration-init>

The flow graph segment <var - decl ar ati on-i ni t > infigure 138 defines the execution of a variable declaration
where aninitial value in form of an expression is provided.

ETSI



153 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

segnent <var-declaration-init>

v

/1 The expression shall evaluate

<expr essi on>

I/l to a value of the type of the
/'l variable that is declared.

var-declaration-init
(varld)

Entity. | NI T-VAR(varld, Entity.VALUE-STACK top());
Entity. VALUE- STACK. pop(); /'l clean VALUE- STACK;

Entity. NEXT- CONTROL(true);
RETURN;

Figure 138: Flow graph segment <var-declaration-init>

9.57.2 Flow graph segment <var-declaration-undef>

The flow graph segment <var-declaration-undef> in figure 139 defines the execution of a variable declaration where no
initial value is provided, i.e. the value of the variable is undefined.

segnment <var - decl arati on- undef >

var - decl ar at i on- undef Entity. NEXT- CONTROL(true);

Entity. | N T- VAR(varld, NONE);

(varld) RETURN,

\ 4

Figure 139: Flow graph segment < var-declaration-undef >

ETSI



154 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

9.58 While statement

The syntactical structure of thewhi | e statement is:

whi | e (<bool ean- expr essi on>) <st at ement - bl ock>

The execution of awhi | e statement is defined by the flow graph segment <whi | e- st nt > shown in figure 140.

segment <whil e-stnt>

) /'l The expression shall evaluate to
<expr essi on> /'l a Bool ean val ue.

T if (Entity.VALUE- STACK. top() == true)
deci si on -

Entity. NEXT- CONTROL(true);
true el se {
Entity. NEXT- CONTROL(true);

}
R Entity. VALUE- STACK. pop();
<st at ement - bl ock> RETURN.

v

Figure 140: Flow graph segment <while-stmt>

ETSI



155 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

10 Lists of operational semantic components

10.1

Functions and states

Name Description Clause
ACT-DURATION Duration with which an active timer has been started 8.3.24
add List operation: adds an item as first element to a list 8.3.1.1
ADD-CON Adds a connection to a port state 8.3.3.2
ALL-ENTITY-STATES  |Component states in module state 8.3.1
ALL-PORT-STATES Port states in module state 8.3.1
append List operation: appends an item as last element to a list 8.3.1.1
APPLY-OPERATOR Application of operators like +, - or / 8.6.2
change List operation: changes all elements of a list 8.3.1.1
clear Stack operation 'clear": clears a stack 8.3.2.1
clear Queue operation 'clear': removes all elements from a queue 8.3.3.2
clear-until Stack operation 'clear-until': pops items until a specific item is top element 8.3.2.1

in the stack.
CONNECTIONS-LIST List of connections of a port 8.3.3
CONSTRUCT-ITEM Constructs an item to be sent 8.4.4
CONTINUE- The actual component continues its execution 8.6.2
COMPONENT
CONTROL-STACK Stack of flow graph nodes denoting the actual control state of an entity 8.3.2
DATA-STATE Data state in an entity state 8.3.2
DEF-DURATION Default Duration of a timer 8.3.24
DEFAULT-LIST List of active defaults in an entity state 8.3.2
DEFAULT-POINTER Points to the actual default during the default evaluation. 8.3.2
DEL-CON Deletes a connection from a port state 8.3.3.2
DEL-ENTITY Deletes an entity from a module state 8.3.4
DEL-TIMER-SCOPE Deletes a timer scope 8.3.25
DEL-VAR-SCOPE Deletes a variable scope 8.3.2.3
delete List operation: deletes an item from a list 8.3.1.1
dequeue Queue operation: deletes the first element from a queue 8.3.3.2
DONE Identifiers of terminated test components (part of module state) 8.3.1
E-VERDICT Local test verdict of a test component 8.3.2
enqueue Queue operation: puts an item as last element into a queue 8.3.3.2
first Queue operation 'first": returns the first element of a queue 8.3.3.2
first List operation: returns the first element of a list 8.3.1.1
GET-FLOW-GRAPH Retrieves the start node of a flow graph 8.2.7
GET-PORT Retrieves a port reference 8.3.3.2
GET-REMOTE-PORT Retrieves the reference of a remote port 8.3.3.2
GET-TIMER-LOC Retrieves location of a timer 8.3.25
GET-UNIQUE-ID Returns a new unigue identifier when it is called 8.6.2
GET-VAR-LOC Retrieves location of a variable 8.3.2.3
INIT-CALL-RECORD Initializes variables for parameters for procedure-based communication in 8.5.1

the actual scope unit of the test component
INIT-FLOW-GRAPHS Initializes the flow graph handling 8.6.2
INIT-TIMER Creates a new timer binding 8.3.2.5
INIT-TIMER-LOC Creates a new timer binding with an existing location 8.3.25
INIT-TIMER-SCOPE Initializes a new timer scope 8.3.25
INIT-VAR Creates a new variable binding 8.3.2.3
INIT-VAR-LOC Creates a new variable binding with an existing location 8.3.2.3
INIT-VAR-SCOPE Initializes a new variable scope 8.3.2.3
length List operation: returns the length of a list 83.11
M-CONTROL Identifier of module control in module state 8.3.1
MATCH-ITEM Checks if a received message, call, reply or exception matches with a 8.4.5

receiving operation
member List operation: checks if an item is element of a list 8.3.1.1
MTC Reference to MTC in module state 8.3.1
NEW-CALL-RECORD  |Creates a call record for a function call 8.5.1
NEW-ENTITY Creates a new entity state 8.3.2.1
NEW-PORT Creates a new port 8.3.3.2
NEXT Retrieves the successor node of a given node in a flow graph. 8.1.6
next List operation: returns next element in a list 83.11

ETSI




156 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)
Name Description Clause
NEXT-CONTROL Pops the top flow graph node from the control stack and pushes the next 8.3.2.1
flow graph node onto the control stack.
OWNER Owner of a port 8.3.3
pop Stack operation 'pop': pops an item from a stack 8.3.2.1
PORT-NAME Name of a port. 8.3.3
push Stack operation 'push’; pushes an item onto a stack 8.3.2.1
random List operation: returns randomly an element of a list 8.3.1.1
REMOTE-ENTITY Remote entity in a connection in a port state 8.33.1
REMOTE-PORT-NAME |Name of a port in a connection in a port state 8.33.1
RETRIEVE-INFO Retrieves information from a received message, call, reply or exception 8.4.6
RETURN Returns the control to the module evaluation procedure 8.6.2
SNAP-ACTIVE Number of active test components when the MTC takes a snapshot (part of 8.3.1
module state)
SNAP-DONE List of terminated test components at the time when a shapshot is taken 8.3.2
SNAP-PORTS Provides the shapshot functionality, i.e. updates the SNAP-VALUE 8.3.3.2
SNAP-STATUS Snapshot status of a timer 8.3.24
SNAP-TIMER Provides the snapshot functionality and updates SNAP-VALUE and SNAP- 8.3.25
STATUS
SNAP-VALUE Snapshot value of a timer 8.3.24
SNAP-VALUE For snapshot semantics, updated when a snapshot is taken 8.3.3
STATUS Status (ACTIVE, SNAPSHOT, REPEAT or BLOCKED) of module control 8.3.2
or a test component
STATUS Status (IDLE, RUNNING or TIMEOUT) of a timer 8.3.2.4
STATUS Status (STARTED or STOPPED) of a port 8.3.3
TC-VERDICT Test case verdict in module state 8.3.1
TIME-LEFT Time a running timer has left to run before a it times out 8.3.24
TIMER-GUARD Timer that guards execut e statements and cal | operations 8.3.2
TIMER-NAME Name of a timer 8.3.24
TIMER-SET Setting values of a timer 8.3.25
TIMER-STATE Timer state in an entity state 8.3.2
top Stack operation 'top": returns the top item from a stack 8.3.2.1
UPDATE-REMOTE- Updates timers and variables with the same location in different entities to 8.3.4
REFERENCES the same value.
VALUE Value of a variable. 8.3.2.2
VALUE-QUEUE Port queue 8.3.3
VALUE-STACK Stack of values for the storage of results of expressions, operands, 8.3.2
operations and functions.
VAR-NAME Name of a variable. 8.3.2.2
VAR-SET Setting the value of a variable 8.3.2.3
**DYNAMIC-ERROR*** |Describes the occurrence of a dynamic error 8.6.2
<identifier> Unique identifier of a test component 8.3.2
<location> Supports scope units, reference and timer parameters. Represents a 8.3.2.2,8.3.24
storage location for timers and variables.
10.2  Special keywords
Keyword Description Clause
ACTIVE STATUS of an entity state 8.3.2
BLOCKED STATUS of an entity state 8.3.2
IDLE STATUS of a timer state 8.3.24
MARK Used as mark for VALUE-STACK 8.3.2
NONE Used to describe an undefined value 8.3.2.3,8.3.2.5,8.3.3.2
NULL Symbolic value for pointer and pointer-like types to indicate that nothing 8.3.1.1, 8.3.2.1, 8.3.3,
is addressed 8.3.3.2,8.6.1.1
REPEAT STATUS of an entity state 8.3.2
RUNNING STATUS of a timer state 8.3.24
SNAPSHOT, STATUS of an entity state 8.3.2
STARTED STATUS of a port 8.3.3
STOPPED STATUS of a port 8.3.3
TIMEOUT STATUS of a timer state 8.3.24

ETSI




10.3

157

Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

Flow graphs of TTCN-3 behaviour descriptions

Reference
Figure Clause

Module control 18 8.2.2

Test cases 19 8.2.3

Functions 20 8.24

Altsteps 21 8.2.5

Component type definitions 22 8.2.6
10.4  Flow graph segments

Identifier Related TTCN-3 construct Reference
Figure Clause

<action-stmt> act i on statement 36 9.1
<activate-stmt> act i vat e statement 37 9.2
<alt-stmt> al t statement 38 9.3
<altstep-call> invocation of an altstep 44 9.4
<altstep-call-branch> al t statement 41 9.3.3
<assignment-stmt> assignment 45 9.5
<b-call-with-duration> cal | operation 52 9.6.4
<b-call-without-duration> cal | operation 51 9.6.3
<blocking-call-op> cal | operation 47 9.6
<call-op> cal | operation 46 9.6
<call-reception-part> cal | operation 53 9.6.5
<catch-op> cat ch operation 55 9.7
<catch-timeout-exception> cal | operation 54 9.6.6
<check-op> check operation 56 9.8
<check-with-sender> check operation 57 9.8.1
<check-without-sender> check operation 58 9.8.2
<clear-port-op> cl ear port operation 59 9.9
<connect-op> connect operation 60 9.10
<constant-definition> constant definition 61 9.11
<create-op> cr eat e operation 62 9.12
<deactivate-stmt> deact i vat e statement 63 9.13
<default-evocation> al t statement 43 9.3.5
<disconnect-op> di sconnect operation 64 9.14
<do-while-stmt> do- whi | e statement 65 9.15
<done-component-op> done component operation 66 9.16
<else-branch> al t statement 42 9.3.4
<execute-stmt> execut e statement 67 9.17
<execute-timeout> execut e statement 69 9.17.2
<execute-without-timeout> execut e statement 68 9.17.1
<expression> expression 70 9.18
<finalize-component-init> used in component type definitions 75 9.19
<for-stmt> f or statement 79 9.23
<func-op-call> expression 73 9.18.3
<function-call> call of a function 80 9.24
<getcall-op> get cal | operation 86 9.25
<getreply-op> get r epl y operation 87 9.26
<getverdict-op> get ver di ct operation 88 9.27
<goto-stmt> got o statement 89 9.28
<if-else-stmt> i f-el se statement 90 9.29
<init-component-scope> used in component type definitions 76 9.20
<label-stmt> | abel statement 91 9.30
<lit-value> expression 71 9.18.1
<log-stmt> | og statement 92 9.31

ETSI




158 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

Identifier Related TTCN-3 construct Reference
Figure Clause
<map-op> map operation 93 9.32
<mtc-op> nt ¢ operation 94 9.33
<nb-call-without-receiver> cal | operation 50 9.6.2
<nb-call-with-receiver> cal | operation 49 9.6.1
<non-blocking-call-op> cal | operation 48 9.6
<operator-appl> expression 74 0.18.4
<parameter-handling> handling of parameters of functions, altsteps and test cases 77 9.21
<port-declaration> port declaration 95 9.34
<predef-ext-func-call> call of a function (call of a pre-defined or external function) 85 9.24.5
<raise-op> rai se operation 96 9.35
<raise-with-receiver-op> rai se operation 97 9.35.1
<raise-without-receiver-op> |r ai se operation 98 9.35.2
<read-timer-op> r ead timer operation 99 9.36
<receive-assignment> recei ve operation 103 9.37.3
<receive-op> recei ve operation 100 9.37
<receive-with-sender> recei ve operation 101 9.37.1
<receive-without-sender> recei ve operation 102 9.37.2
<receiving-branch> al t statement 40 9.3.2
<ref-par-var-calc> call of a function (handling of reference parameters) 82 9.24.2
<ref-par-timer-calc> call of a function (handling of timer parameters) 83 9.24.3
<repeat-stmt> r epeat statement 104 9.38
<reply-op> repl y operation 105 9.39
<reply-with-receiver-op> r epl y operation 106 9.39.1
<reply-without-receiver-op> |r epl y operation 107 9.39.2
<return-stmt> r et ur n statement 108 9.40
<return-with-value> r et ur n statement 109 9.40.1
<return-without-value> r et ur n statement 110 9.40.2
<running-component-op> component r unni ng operation 111 9.41
<running-comp-act> component r unni ng operation 112 9.41.1
<running-comp-snap> component r unni ng operation 113 9.41.2
<running-timer-op> timer r unni ng operation 114 9.42
<self-op> sel f operation 115 9.43
<send-op> send operation 116 9.44
<send-with-receiver-op> send operation 117 9.44.1
<send-without-receiver-op> |[send operation 118 9.44.2
<setverdict-op> setver di ct operation 119 9.45
<start-component-op> st art component operation 120 9.46
<start-port-op> st art port operation 121 9.47
<start-timer-op> st art timer operation 122 9.48
<start-timer-op-default> start timer operation 123 9.48.1
<start-timer-op-duration> st art timer operation 124 9.48.2
<statement-block> block of statements in compound statements 78 9.22
<stop-component-op> st op component operation 125 9.49
<stop-mtc> st op component operation (stop MTC) 126 9.49.1
<stop-component> st op component operation (stop single test component) 127 9.49.2
<stop-all-comp> st op component operation (all component.stop) 128 9.49.3
<stop-exec-stmt> st op execution statement 129 9.50
<stop-control> st op execution statement (stop of module control) 130 9.50.1
<stop-port-op> st op port operation 131 9.51
<stop-timer-op> st op timer operation 132 9.52
<system-op> syst emoperation 133 9.53
<take-snapshot> al t statement 39 9.3.1
<timeout-timer-op> ti nmeout operation 137 9.55
<timer-declaration> timer declaration 134 9.54
<timer-decl-default> timer declaration 135 9.54.1
<timer-decl-no-def> timer declaration 136 9.54.2
<timeout-timer-op> ti meout operation 137 9.55

ETSI




159 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

Identifier Related TTCN-3 construct Reference
Figure Clause
<unmap-op> unmap operation 138 9.56
<user-def-func-call> call of a function (call of a user-defined function) 84 9.24.4
<value-par-calculation> call of a function (handling of value parameters) 81 9.24.1
<var-declaration-init> variable declaration 140 9.57.1
<var-declaration-undef> variable declaration 141 9.57.2
<var-value> expression 72 9.18.2
<variable-declaration> variable declaration 139 9.57
<while-stmt> whi | e statement 140 9.58

ETSI



160 Final draft ETSI ES 201 873-4 V3.2.1 (2006-12)

History
Document history
V221 February 2003 Publication
V3.1.1 June 2005 Publication
V321 December 2006 | Membership Approval Procedure MV 20070216: 2006-12-19 to 2007-02-16

ETSI



	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Introduction
	5 Structure of the present document
	6 Restrictions
	7 Replacement of short forms
	7.1 Order of replacement steps
	7.2 Replacement of global constants and module parameters
	7.3 Embedding single receiving operations into alt statements
	7.4 Embedding stand-alone altstep calls into alt statements
	7.5 Replacement of interleave statements
	7.6 Replacement of trigger operations
	7.7 Replacement of select-case statements

	8 Flow graph semantics of TTCN-3
	8.1 Flow graphs
	8.1.1 Flow graph frame
	8.1.2 Flow graph nodes
	8.1.2.1 Start nodes
	8.1.2.2 End nodes
	8.1.2.3 Basic nodes
	8.1.2.4 Reference nodes
	8.1.2.4.1 OR combination of reference nodes
	8.1.2.4.2 Multiple occurrences of reference nodes


	8.1.3 Flow lines
	8.1.4 Flow graph segments
	8.1.5 Comments
	8.1.6 Handling of flow graph descriptions

	8.2 Flow graph representation of TTCN-3 behaviour
	8.2.1 Flow graph construction procedure
	8.2.2 Flow graph representation of module control
	8.2.3 Flow graph representation of test cases
	8.2.4 Flow graph representation of functions
	8.2.5 Flow graph representation of altsteps
	8.2.6 Flow graph representation of component type definitions
	8.2.7 Retrieval of start nodes of flow graphs

	8.3 State definitions for TTCN-3 modules
	8.3.1 Module state
	8.3.1.1 Accessing the module state

	8.3.2 Entity states
	8.3.2.1 Accessing entity states
	8.3.2.2 Data state and variable binding
	8.3.2.3 Accessing data states
	8.3.2.4 Timer state and timer binding
	8.3.2.5 Accessing timer states
	8.3.2.6 Port references and port binding
	8.3.2.7 Accessing port references

	8.3.3 Port states
	8.3.3.1 Handling of connections among ports
	8.3.3.2 Handling of port states

	8.3.4 General functions for the handling of module states

	8.4 Messages, procedure calls, replies and exceptions
	8.4.1 Messages
	8.4.2 Procedure calls and replies
	8.4.3 Exceptions
	8.4.4 Construction of messages, procedure calls, replies and exceptions
	8.4.5 Matching of messages, procedure calls, replies and exceptions
	8.4.6 Retrieval of information from received items

	8.5 Call records for functions, altsteps and test cases
	8.5.1 Handling of call records

	8.6 The evaluation procedure for a TTCN-3 module
	8.6.1 Evaluation phases
	8.6.1.1 Phase I: Initialization
	8.6.1.2 Phase II: Update
	8.6.1.3 Phase III: Selection
	8.6.1.4 Phase IV: Execution

	8.6.2 Global functions


	9 Flow graph segments for TTCN-3 constructs
	9.1 Action statement
	9.2 Activate statement
	9.2a Alive component operation
	9.2a.1 Flow graph segment <alive-comp-act>
	9.2a.2 Flow graph segment <alive-comp-snap>

	9.3 Alt statement
	9.3.1 Flow graph segment <take-snapshot>
	9.3.2 Flow graph segment <receiving-branch>
	9.3.3 Flow graph segment <altstep-call-branch>
	9.3.4 Flow graph segment <else-branch>
	9.3.5 Flow graph segment <default-evocation>

	9.4 Altstep call
	9.5 Assignment statement
	9.6 Call operation
	9.6.1 Flow graph segment <nb-call-with-one-receiver>
	9.6.1a Flow graph segment <nb-call-with-multiple-receivers>
	9.6.2 Flow graph segment <nb-call-without-receiver>
	9.6.3 Flow graph segment <b-call-without-duration>
	9.6.4 Flow graph segment <b-call-with-duration>
	9.6.5 Flow graph segment <call-reception-part>
	9.6.6 Flow graph segment <catch-timeout-exception>

	9.7 Catch operation
	9.8 Check operation
	9.8.1 Flow graph segment <check-with-sender>
	9.8.2 Flow graph segment <check-without-sender>

	9.9 Clear port operation
	9.10 Connect operation
	9.11 Constant definition
	9.12 Create operation
	9.13 Deactivate statement
	9.13.1 Flow graph segment <deactivate-one-default>
	9.13.2 Flow graph segment <deactivate-all-defaults>

	9.14 Disconnect operation
	9.15 Do-while statement
	9.16 Done component operation
	9.17 Execute statement
	9.17.1 Flow graph segment <execute-without-timeout>
	9.17.2 Flow graph segment <execute-timeout>

	9.18 Expression
	9.18.1 Flow graph segment <lit-value>
	9.18.2 Flow graph segment <var-value>
	9.18.3 Flow graph segment <func-op-call>
	9.18.4 Flow graph segment <operator-appl>
	9.18.5 Flow graph segment <dynamic-error>

	9.19 Flow graph segment <finalize-component-init>
	9.20 Flow graph segment <init-component-scope>
	9.20a Flow graph segment <init-scope-with-runs-on>
	9.20b Flow graph segment <init-scope-without-runs-on>
	9.21 Flow graph segment <parameter-handling>
	9.22 Flow graph segment <statement-block>
	9.23 For statement
	9.24 Function call
	9.24.1 Flow graph segment <value-par-calculation>
	9.24.2 Flow graph segment <ref-par-var-calc>
	9.24.3 Flow graph segment <ref-par-timer-calc>
	9.24.3a Flow graph segment <ref-par-port-calc>
	9.24.4 Flow graph segment <user-def-func-call>
	9.24.5 Flow graph segment <predef-ext-func-call>

	9.25 Getcall operation
	9.26 Getreply operation
	9.27 Getverdict operation
	9.28 Goto statement
	9.29 If-else statement
	9.29a Kill component operation
	9.29a.1 Flow graph segment <kill-mtc>
	9.29a.2 Flow graph segment <kill-component>
	9.29a.3 Flow graph segment <kill-all-comp>

	9.29b Kill execution statement
	9.29b.1 Flow graph segment <kill-control>

	9.29c Killed component operation
	9.30 Label statement
	9.31 Log statement
	9.32 Map operation
	9.33 Mtc operation
	9.34 Port declaration
	9.35 Raise operation
	9.35.1 Flow graph segment <raise-with-one-receiver-op>
	9.35.1a Flow graph segment <raise-with-multiple-receivers-op>
	9.35.2 Flow graph segment <raise-without-receiver-op>

	9.36 Read timer operation
	9.37 Receive operation
	9.37.1 Flow graph segment <receive-with-sender>
	9.37.2 Flow graph segment <receive-without-sender>
	9.37.3 Flow graph segment <receive-assignment>

	9.38 Repeat statement
	9.39 Reply operation
	9.39.1 Flow graph segment <reply-with-one-receiver-op>
	9.39.1a Flow graph segment <reply-with-multiple-receivers-op>
	9.39.2 Flow graph segment <reply-without-receiver-op>

	9.40 Return statement
	9.40.1 Flow graph segment <return-with-value>
	9.40.2 Flow graph segment <return-without-value>

	9.41 Running component operation
	9.41.1 Flow graph segment <running-comp-act>
	9.41.2 Flow graph segment <running-comp-snap>

	9.42 Running timer operation
	9.43 Self operation
	9.44 Send operation
	9.44.1 Flow graph segment <send-with-one-receiver-op>
	9.44.1a Flow graph segment <send-with-multiple-receivers-op>
	9.44.2 Flow graph segment <send-without-receiver-op>

	9.45 Setverdict operation
	9.46 Start component operation
	9.47 Start port operation
	9.48 Start timer operation
	9.48.1 Flow graph segment <start-timer-op-default>
	9.48.2 Flow graph segment <start-timer-op-duration>

	9.49 Stop component operation
	9.49.1 Void
	9.49.2 Flow graph segment <stop-alive-component>
	9.49.3 Flow graph segment <stop-all-comp>

	9.50 Stop execution statement
	9.50.1 Void

	9.51 Stop port operation
	9.52 Stop timer operation
	9.53 System operation
	9.54 Timer declaration
	9.54.1 Flow graph segment <timer-decl-default>
	9.54.2 Flow graph segment <timer-decl-no-def>

	9.55 Timeout timer operation
	9.56 Unmap operation
	9.57 Variable declaration
	9.57.1 Flow graph segment <var-declaration-init>
	9.57.2 Flow graph segment <var-declaration-undef>

	9.58 While statement

	10 Lists of operational semantic components
	10.1 Functions and states
	10.2 Special keywords
	10.3 Flow graphs of TTCN-3 behaviour descriptions
	10.4 Flow graph segments

	History

