Final draft ETS| ES 201 873-4 V2.2.1 (2002-10)

ETSI Standard

Methods for Testing and Specification (MTS);
Testing and Test Control Notation version 3;
Part 4: TTCN-3 Operational Semantics

D

2 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

Reference
DES/MTS-00063-4 [2]

Keywords

TTCN, interoperability, testing, MTS,
methodology

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, send your comment to:

editor@etsi.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2002.
All rights reserved.

DECT™, PLUGTESTS ™ and UMTS™ are Trade Marks of ETSI registered for the benefit of its Members.

TIPHON™ and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members.
3GPP™is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

ETSI

mailto:editor@etsi.org
http://portal.etsi.org/tb/status/status.asp
http://www.etsi.org/

3 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

Contents

Intellectual Property RIGNES.........oo et 7
0 Yo (o SRS 7
1 o010 SRS 8
2 REFEIBINCES ...ttt sttt e et et et e e e bt e bt e bt s b e se e be st e st e st e benbenbeneenbentenees 8
3 Definitions and aDbrEVIBLIONS.........c.viieie ettt e e e tesreeeesneeneeseesneeneeseeenes 8
31 DEFINITIONS. ...ttt b e R Rt R R R et R Rt R e R et r e 8
3.2 ABDIEVIBLIONS ..ottt e et n R n et n e 8
4 gLl [N o1 o] o SRRSO 9
5 Structure of the PreSENt AOCUMENTcoveieieiee e nn e s 9
6 == L ox o] RSP 10
7 Replacement Of SNOM fOMMSooiiicc e et sae s re e e reere s 10
7.1 Order Of rEPIBCEMENT SLEIS......ceiirieeieerieeeeesese e seeste ettt e et e s e e te e te e teesteeseesaeesseesseeseeseenseensenseesneessenssns 10
7.2 Replacement of global constants and Module ParameELErS..........ccuveceece e iee s 11
7.3 Embedding single receiving operations into alt StALEMENES..........cccvirieiririeirieerees s 11
7.4 Embedding stand-alone altstep callSinto alt SEAEMENLS.........ccoiieiiiiciree s 11
7.5 Replacement Of iNterlEave STAIEMENESccoi e 12
7.6 Replacement Of trigger OPEIAIONS..........cveiriieeeeriee ettt bbbt e e b e sa s e 27
8 Flow graph semantiCS Of TTCN-3..... .o 27
8.1 L L0 =T L 27
8.1.1 L L0 LT A 0= N = =P 28
8.1.2 L L0V A o =T 8 o (=P 28
8121 RS 01010 L= TSP PP PTPRN 28
8.1.22 [0 000 (=PSRRI 28
8.1.2.3 [ST ol g0 L= OO RRPRSR 28
8.1.24 REFEIENCE NOTES ...ttt e s ee bt s bt st et e ne e e seeebesaeeneeeenseseeseeseesneeneeneans 29
81241 OR combination Of referenCe NOUESeieeieeee et een 29
8.1.24.2 Multiple occurrences Of referenCe NOUES..........ceiirieiriieree s 29
8.1.3 FLOW TINES .. ettt ettt et et et e e e e e be et es e e e emeeseeseeeEesaeebeeneeneeneeseeseesnesseeneenseseens 30
8.14 FIOW Qraph SEOMENESceiieieeiece ettt et e st e e e e s see s seesaeesaeeseenseeneeeseanseasteeseeseenseeneesneennes 30
8.1.5 L0001 01007 TP PP 31
8.1.6 Handling of flow graph deSCriptions............cccciiiiiiiciecees et te e e s 32
8.2 Flow graph representation of TTCN-3 BENAVIOUNcccuviiiiiiicceeece e 32
821 Flow graph CONSLIUCLION PrOCEAUNEccueeiuieieeie e etees e e e e e see e s saeesee e e seesreasse e teenteeseenseeneenneeenes 32
822 Flow graph representation of MOdulE CONEIOLcoiiiririirireree e 33
823 Flow graph representatiion Of TESE CASES ..ottt 34
824 Flow graph representation Of TUNCHIONS ..ot 34
8.25 Flow graph representation Of @lTSIEPScvoi i 35
8.2.6 Flow graph representation of component type definitions...........cooeoririiennenee e 37
8.27 Retrieval of start Nodes of FIOW graphs.........ccooi e 37
8.3 State definitions for TTCN-3 MOUUIESccoiiiiiiiieii e et 38
8.3.1 IMOTUIE SEBLE. ...ttt ettt e e R et r e et e r e sn et r e s et r e e e r e r s 38
8311 ACCESSING the MOAUIE STALE.......ecei et e et e te s e e saeesneesneenseenneens 38
8.3.2 ENEITY SEAEES. ... ettt bbb e Rt R R e R e Rt et n et 39
8321 ACCESSING ENLILY SIALES ...eueeieeiieeesie et e st te e e e e s e e eeeeeeaeeeseesbe e seensesssesseesneesnensneesseanseensenns 40
8.3.2.2 Datastate and variabl € DIiNAINGcceeiieii i 41
8323 ACCESSING TALA SLALES. ...ttt sttt sttt ettt b et b e it st e s bbb e se e st eb e st et eb e e et e b e nn e 42
8324 Timer state and timer DINGINGc.eivirieiiie bbb 42
8.3.25 ACCESSING TIMEE SEALES ...ttt ettt et b e st b et b et e bt b e et eb e e et b nn e 43
8.3.3 PO SLALES. ...ttt b et e bt e s et e h et e e ae e e R et e e R e e e aRe e e e R e e eRn e e ear e e anr e e sneennreeeneenares 44
8331 Handling of CONNECEIONS @MONQ POITS........eiveueiririeeeterieeete et sb et sb e e sbe e e b sreseenens 45
8.3.3.2 HaNdliNG Of PO SLALESccveeieeiecie et e te s ee s e sreesaeesseeseenseenseenaesnaesseenenns 45

ETSI

4 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

834 General functions for the handling of MOAUIE SLALESccuveieiieiiece e s 46
84 Messages, procedure calls, replies and EXCEPLIONS..........ccviireieereese e et e e eeesneesees 47
84.1 S 0 PRSPPSO 47
8.4.2 Procedure CallS @and FEPIIESc.veeeee et e st et e s te et e e reeteenesneeenes 47
8.4.3 (0T 0] TS 48
84.4 Construction of messages, procedure calls, replies and eXCEPLIONS..........cccvccveveeriereece e 48
8.4.5 Matching of messages, procedure calls, replies and EXCEPLIONSccceerererereieneseere e 48
8.4.6 Retrieval of information from reCelVed ItEMS............ooi it 49
8.5 Call records for functions, altStePs aNd tESE CASES.........corvererrererere ettt see e neeneas 49
851 HaNAIING OF CAll FECOITS. ...ttt bbbt b et b e bbb 49
8.6 The evaluation procedure for A TTCN-3 MOTUIEc.oiiiiiiiieeieeee e b 50
8.6.1 Y T 0] 0] = P 50
8.6.1.1 Phase |2 INITTAIIZAETON.o.eeeieeeeie e bbbt b e bt sb e e e e 50
8.6.1.2 Phase [1: UPOEEE.........evueieiirieieeie ettt sttt sttt e st s e bese e st beseeseebesbe e ebesaeneesesbeneenens 51
8.6.1.3 PRESE T2 SEIECTION ...t ettt se e eb e bt st e e e e e besbeebe s e enneneen 51
8.6.14 PRESE TV1 EXECULION......ciiieeititeiee ettt ettt s h e bttt e s e be et eb e e st e ae e e e s e besbesbe e e enneneen 51
8.6.2 GlODE FUNCLIONS.......c ettt bbbttt et b e bt bt et et et e sbeebesneene e e ennas 51
9 Flow graph segmentS for TTCN-3 CONSIUCESeiuerieieieieieiseeie st 52
9.1 F o 0 R (| 52
9.2 F e A o = =00 0| 52
9.3 L = 1= 0 1= o | S 53
931 Flow graph segment <take-SNAPSNOL>c.ccoiiiiiiiiiiesees e sae et e st e te e teeseeeteeneesneesnes 54
9.3.2 Flow graph segment <reCeiViNG-branCh>cocuiiiie i 55
9.3.3 Flow graph segment <altstep-call-bBranch>.............ccooor e 56
9.34 Flow graph segment <elSe-Dranch> ... e e 57
9.35 Flow graph segment <default-eVOCaiON>...........ccocciiiieiiesie e e et 58
9.4 ATESEEP CAIL. ..ttt h bbbt b b st b bt b e b e bR e bt R et bt Rt b e bt ebenre e ene s 59
9.5 ASSIGINIMENTE SEAEEMENT. ...ttt b ettt bt b b e bt s b e e eb e b e e e b e s b e e eb e s b e e eb e s b et eb e se et ebesbe e ebeebeneenens 59
9.6 102 1 Il 1< = o] o IO SO SU TSPV PSPPI 59
9.6.1 Flow graph segment <nb-Call-With-TECEIVEr>ccooiiiii e 61
9.6.2 Flow graph segment <nb-call-WithOUL-TECEIVEI>..........ccoiiiiiiiee e 62
9.6.3 Flow graph segment <b-call-WithoUt-dUIrationc.cccooiiriiiiie e 63
9.64 Flow graph segment <b-Call-With-dUration>cccoeiiiiieneeie e 64
9.6.5 Flow graph segment <Call-reCeption-Part™ccccvierieiiieieeie e et ae e ae e ne e e 65
9.6.6 Flow graph segment <catCh-ti MEOUL-EXCEPLIONSc.cccueiieiierie et enes 66
9.7 (0% ox 0 e 07 = 1 o o SRR 66
9.8 (011 o1 1q] o 1< =110 o 15 SRS 67
98.1 Flow graph segment <CheCK-WIth-SENAEr>coiiiiieiiereere e 68
9.8.2 Flow graph segment <CheCK-WithOUL-SENAEI...........ccoiiiriiiie e e 69
9.9 ClEAI POt OPEIBEIION. ...ttt sttt sttt sttt st et be bt b e b et b e s e e e e bt s b et eb e s R et e bt e b et e bt e b e s e e st ebese et eb e s b et ebenbe e e 70
9.10 L600] 010 1< o le 0= £ 1o o T OO USSP PR 70
9.11 (00015 a1 o =111 o o 1SS 71
9.12 1@< (=X o] o< = 0] E TS ST STV PRPR 72
9.13 DEACTIVALE SEALEIMIENE.c.eeteteiee ettt sttt eh ettt sttt b b e bt ehe e st e e e e e se e ke sbeeb e et ens e s e abeabesbeebeeneennennens 73
9.14 (D11 o] 0= ot o o= (o) o 1SS 73
9.15 DO-WHITE SEAEEIMENL. ...ttt bbbt b e sb e bt s bt bt et e e e e e ebenbesbeebe e e ennennen 75
9.16 DONE COMPONENE OPEIGLION.eiveeieeeieeeteeeeeeeeeteastees e e e ssteseesseesreesseesseasseasseaseeaseesseesseeseensessensneesssessnensennsenns 76
9.17 EXECULE SLALEIMIENLttt sttt s e s bt e e Rt e st e n e eas e es e e s Re e b e e beeanesnnesanesneenneenreenneens 77
9.17.1 Flow graph segment <exeCute-WithOUL-tiIMEOULSceieeiirieeie et 78
9.17.2 Flow graph Segment <EXECULE-TIMEOULS.........ccoiueiriirieieie ettt sb e et 79
9.18 0= o o TS OO PP U STV UROR 81
9.18.1 Flow graph Segment KHE-VAIUES ..ot bbb 81
9.18.2 FIOW graph SEgMENT SVAI-VBIUEScoiiiiiiiiireeete sttt sttt 82
9.18.3 Flow graph segment <FUNC-0P-Call> ..ot s neen 82
9.184 Flow graph Segment <OPErator-aPl™>........cocceierieirieieee ettt sttt bbb et sb e 83
9.19 Flow graph segment <finalize-CoOmMPONENE-iNIt>cccceiiiiieii e sae e e e 83
9.20 Flow graph segment <init-COMPONENT-SCOPEScveiieiieieeiteseeseeseesteesteeteseesreesree e e teensesseesneesseesseeseensenns 84
9.21 Flow graph segment <parameter-handling>...........ccceiiiiiriie i se e e sae e e neens 84
9.22 Flow graph segment <statement-BIOCK>cco e 85
9.23 FFOP SLBEEIMEIL ...ttt s e e s he e s R e e se e e st e e e eae e eRe e e R e e R e e R e et e eanenaeesaeesreenne e reennean 86
9.24 FUNCEION CBIL ...ttt bttt e bbb s bt s bt bt et e e e e e eb e s ke sbeebe e e eneennens 87

ETSI

9.24.1
9.24.2
9.24.3
9.24.4
9.245
9.25
9.26
9.27
9.28
9.29
9.30
9.31
9.32
9.33
9.34
9.35
9.35.1
9.35.2
9.36
9.37
9.37.1
9.37.2
9.37.3
9.38
9.39
9.39.1
9.39.2
9.40
9.40.1
9.40.2
9.41
9411
9412
9.42
9.43
9.44
9.44.1
9.44.2
9.45
9.46
9.47
9.48
9.48.1
9.48.2
9.49
9.49.1
9.49.2
9.49.3
9.50
9.50.1
9.51
9.52
9.53
9.54
9.54.1
9.54.2
9.55
9.56
9.57
9.57.1
9.57.2
9.58

5 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

Flow graph segment <value-par-Cal CUlaLiON>.............ccovoueieeiieieee et 88
Flow graph segment <ref-par-Var-CalC>cvccv ettt snee s 89
Flow graph segment <ref-par-timer-CalC>ccuouiiiiiiesee et 90
Flow graph segment <user-def-fUNC-Call>...........c.oouriie e e 90
Flow graph segment <predef-ext-fUNC-Call>.............ccooiieiiiii it 91
LT or= | oo < = 1) PSSR 91
€1 17 o A e 1< = 1 o] o TSP OO TSRV PROR 92
€1 Y= o (ool o = = (o H TSR U STR PRSP PRPR 92
(GOLO SLBLEIMIENL. ...ttt ettt ettt e et et e s ee s aeesaeesae e et eaeeeaeeeseeeb e e beembeembeeaeesaeesaeesaeeaaeenbeambeenbeeneesnsesaeesanas 93
[F-E1SE SEALEIMIENLottt ettt e e st sa e e b st e st et e e e teseeebesmeeneeneeeeseesaesseeneeneeneeneees 94
(IS o T= IS = 1= 011 o | SRR 95
[0 [= =1 1 | PP PUPR 95
Y = I o 1= = 1 o] o PSSR 96
Y (00 = 1 o o SR 96
POIT AECIAIBLION ...ttt bbbt b et ae e e b e s et eb e eb e e bt eb e et e s e e e e ebenbeebeere e e eneennens 97
LTI 0] 1= 1o o SRS 97
Flow graph segment <rai SE-With-reCEIVEIr-0P>ccceiieieerierieeie e seesee s e ste e aesraesrae e e steeaesneeenes 98
Flow graph segment <rai Se-WithOUL-FECEIVEI-0P>ccoiiiiiiiirieene e 99
REBA LIMEF OPEIBLION ...ttt b et b bbb st b bbb e bt e b e et b et et nbe b 99
RECEIVE OPEIGLION ...ttt ettt b bbbtk b e b b e bt bt e e bt bt e e bt e bt e e s e sb et e e nenn e enis 101
Flow graph segment <reCelVe-WIth-SENUEr>..........cccooiiiiiie e e 102
Flow graph segment <reCeiVe-WithOUE-SENOEI>...........ccoiiiiiiiieeee e 103
Flow graph segment <reCeiVE-assi GNIMENTS..........ccieieirereeeseseeeseseeesesse e esse e ssessesessessesessessesessessesens 104
RS 0 S < 0 01 | PSPPSR 104
Lz o] A a o< = (] o USSP 105
Flow graph segment <reply-With-r€CEIVEr-0D>ccceiiiiieiie e s eee e ae e e e saeenreeneens 106
Flow graph segment <reply-WithOUL-TECEIVEr-0D>ccecieiieeieeseere et esee s ae e ee e e e nreeneens 107
RELUM SEBLEIMENT ...ttt r e n et e s e sr e e st e e R e e e e e e e sae e sheesne e neenreennennnenrnennees 108
Flow graph segment <return-With-VaIUE>.............ccoo it 109
Flow graph segment <return-WithOUE-VEIUES ..o e 110
RUNNING COMPONENT OPEILION ...ttt b bbb bbbt bbbt n s ens 111
Flow graph segment <running-COMP-8CE>ooiiiieieiee ettt st s ene e enee e 112
Flow graph segment <running-COMP-SNaD>cccieruereerieriereeseseeseereeseeseesressesseeseeseeseeseessessesseenesneenseses 113
RUNNING HMET OPEIELION.ttt ettt bbb bbb s bt b e e e bbb st b e s e seeb et e e e nenn e e enis 114
TS 0 0= = 1) 115
= 10 [T o 1= = 1 o) o 1 115
Flow graph segment <send-With-reCEaIVEr-0P>ccviiiiieie e 116
Flow graph segment <send-WithOUL-FECEIVEI-0P>ccceieiieeiieseere e eee s rae e s e e e nreeeeens 117
TS V7= £ [Tt i 0] 0= = 11 o o T 118
Start COMPONENT OPEIALION.eeiteeiteeeeesieesee st e steeste e e ee e st e e e e e estesseesseesseeseassesseesseasseeasenssensseessenseensennes 119
SEAMT POIT OPEFBLION.......c.ceetieetetee ettt ettt b et b bbbt h b et b b e e bt b e e bt e b e s e st e b e bt et e b 121
SEAME TIMEN OPEIGLIONttt bbbt et b bbb et b et et e b bt 121
Flow graph segment <start-timer-op-0defallt>cccoieiiiiiierieiseree e 122
Flow graph segment <start-timer-op-adUration............coecririieinineeeese e 123
SLOP COMPONENE OPEIBEION.......eveueetiteieetertee ettt ettt b bbb bbbt b e e e bt b e e st s b e b eae e b e s e st e b e b st s be b e 123
Flow graph SEgment SSEOP-MECSoiuiiieiee ettt st ae e e seesbesaeene e e et es 125
Flow graph segment <SLOP-COMPONENES...........cciuereerieieeeseeseeseesreeeeeaesseesseesseetesssessaesseesaeesseenseensenns 126
Flow graph segment <SEOP-all-COMPcviiiiiieciceese e ae e s e e e saeenreenneens 127
StOP EXECULTION SLBLEIMIENTc..eeieeieiee et sie et et et e e te e s e e e s te e teeseesseesaeesseeneeenseeneansaesseesseesseenseennennns 127
Flow graph segment <SEOP-CONEIOISociiiieeieec e sreesneenreeneens 128
S0 o] oo 0] 0= = 1 oo S 129
S o o U 00T= e o< = (o) 129
SYSEEIM OPEIELTON ...tttk b e bbbt h b b £ bR e e bt b e e e st b e e e bt e b et e bt e b e e st b r et e 130
QLI 0= (=t =T (oo 130
Flow graph segment <timer-decl-Aefault>.............ccooeeiiiieiiiiicee e 131
Flow graph segment <timer-deCl-NO-0Ef>ccoeiiiiiiiiises e 131
TIMEOUL tIMEY OPEIELION.....cveeeieete ettt sttt et bbb et b e s e et b e b et bt b et eb e b et ebe s b e e ebe b e 132
L0007z 10] o]0 1= (0] o SR 133
VarTahl € AECIArEIION ..ot bbb et b e et e b et e st et et e b sbesbeeae e e neenas 134
Flow graph segment <var-declaration-iNit>............cccccceiieieeii i 134
Flow graph segment <var-declaration-Undef>...............cccoviiiiici e 135
WWHIT@ SEBEEIMIEIL ...ttt e bbbt h e b e e b e sb e bt s bt bt et e s e e e et e besreebeeneenneneenees 135

ETSI

6 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

10 Listsof operational SemantiC COMPONENESccoeiviiuieiiiieeie s ccee et e e et re e be e eesre e e sreenes 136
10.1 FUNCEIONS BNO SLAEES........ccveveeeierree ettt e s e n e n e nr e n e nenn e enn 136
10.2 0T o = =Y AT Lo o S 137
10.3 Flow graphs of TTCN-3 behaviour deSCriptioNS..........ccceiiirieirireerer e 138
104 FLOW QI SEOIMENTS.ccvitiietiiteeet ettt bbbt b et e bt b et bt b e e b b e e bt b et e e eb et e st b ennenis 138
(o T (O P PP TRTR 141

ETSI

7 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards', which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web

server (http://webapp.etsi.org/| PR/home.asp).

Pursuant to the ETSI IPR Palicy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

ThisETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and Specification
(MTS), and is now submitted for the ETSI standards Membership Approval Procedure.

The present document is part 4 of a multi-part deliverable covering the Testing and Test Control Notation version 3, as
identified below:

Part 1: "TTCN-3 Core Language";
Part2: "TTCN-3 Tabular presentation Format (TFT)";
Part 3: "TTCN-3 Graphical presentation Format (GFT)";

Part 4. "TTCN-3 Operational Semantics'.

ETSI

http://webapp.etsi.org/IPR/home.asp

8 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

1 Scope

The present document defines the operational semantics of TTCN-3. This part of ES 201 873 is based on the TTCN-3
core language defined in ES 201 873-1 [1].

2 References

The following documents contain provisions, which, through reference in this text, constitute provisions of the present
document.

. References are either specific (identified by date of publication and/or edition number or version number) or
non-specific.

. For a specific reference, subsequent revisions do not apply.
. For anon-specific reference, the latest version applies.

[1] ETSI ES 201 873-1: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language".

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present documents, the terms and definitions given in ES 210 873-1 [1] apply.

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

API Application Programming Interface

ASN.1 Abstract Syntax Notation One

ASP Abstract Service Primitive

ATS Abstract Test Suite

BNF Backus-Nauer Form

CORBA Common Object Request Broker Architecture

ETS Executable Test Suite

FIFO First In First Out

IDL Interface Description Language

IuT Implementation Under Test

MTC Master Test Component

PDU Protocol Data Unit

PTC Parallel Test Component

PIcs (Protocol) Implementation Conformance Statement
PIXIT (Protocol) Implementation eXtra Information for Testing
SUT System Under Test

TTCN Testing and Test Control Notation

ETSI

9 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

4 Introduction

This clause defines the meaning of TTCN-3 behaviour in an intuitive and unambiguous manner. The operational
semantics is not meant to be formal and therefore the ability to perform mathematical proofs based on this semanticsis
very limited.

This operational semantics provides a state oriented view on the execution of a TTCN module. Different kinds of states
are introduced and the meaning of the different TTCN-3 constructsis described by (1) using state information to define
the preconditions for the execution of a construct and by (2) defining how the execution of a construct will change a
state.

The operational semanticsis restricted to the meaning of behaviour in TTCN-3, i.e. functions, altsteps, test cases,
module control and language constructs for defining test behaviour, e.g., send and r ecei ve operations, i f -el se-,
or whi | e- statements. The meaning of some TTCN-3 constructs is explained by replacing them with other language
constructs. For example, i nt er | eave statements are short forms for series of nested al t statements and the meaning
of eachi nt er | eave statement is explained by its replacement with a corresponding series of nested alt statements.

In most cases, the definition of the semantics of alanguage is based on an abstract syntax tree of the code that shall be
described. This semantics does not work on an abstract syntax tree but requires a graphical representation of TTCN-3
behaviour descriptions in form of flow graphs. A flow graph describes the flow of control in afunction, alt step, test
case or the module control. The mapping of TTCN-3 behaviour descriptions onto flow graphsis straightforward.

NOTE: The mapping of TTCN-3 statements onto flow graphsis an informal step and is not defined by using the
BNF rulesin[1]. The reason for thisis that the BNF rules are not optimal for an intuitive mapping
because several static semantic rules are coded into BNF rulesin order to allow static semantic checks
during the syntax check.

5 Structure of the present document

The present document is structured into four parts:

1) Thefirst part (see clause 6) describes restrictions of the operational semantics, i.e. issues related to the
semantics, which are not covered by the present document.

2) Thesecond part (see clause 8) defines the meaning of TTCN-3 short cut and macro notations by their
replacement with other TTCN-3 language constructs. These replacementsin a TTCN-3 module can be seen as
pre-processing step before the module can be interpreted according to the following operational semantics
description.

3) Thethird part (see clause 9) describes the operational semantics of TTCN-3 by means of flow graph
interpretation and state modification.

4) Thefourth part (see clause 10) specifies the mapping of the different TTCN-3 statements onto flow graph
segments, which provide the building blocks for flow graphs representing functions, alt steps, test cases and
module control.

ETSI

10 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

6 Restrictions

The operational semantics only covers behavioural aspects of TTCN-3, i.e. it describes the meaning of statements and
operations. It does not provide:

a) asemanticsfor the data aspects of TTCN-3. Thisincludes aspects like encoding, decoding and the usage of
data imported from non-TTCN-3 specifications;

b) asemantics for the grouping mechanism. Grouping is related to the definitions part of a TTCN-3 module and
has no behavioural aspects;

c) asemanticsforthei nmport statement. The import of definitions hasto be done in the definitions part of a
TTCN-3 module. The operational semantics handlesimported definitions asif they are defined in the
importing module;

d) asemanticsfor the parameterization of ports.

7 Replacement of short forms

Short forms have to be expanded by the corresponding complete definitions on a textual level before this operational
semantics can be used for the explanation of TTCN-3 behaviour.

TTCN-3 short forms are:
. stand-alone receiving operations;
. tri gger operations,
. missing r et ur n and st op statements at the end of function and test case definitions;
. st op execution statements; and
. i nterl eave statements.

In addition to the handling of short forms, the operational semantics requires a special handling for module parameters
and global constants, i.e. constants that are defined in the module definitions part. All references to module parameters
and global constants shall be replaced by concrete values. This means, it is assumed that the value of module parameters
and global constants can be determined before the operational semantics becomes relevant.

NOTE 1. The handling of module parameters and global constants in the operational semantics will be different
from their handling in a TTCN-3 compiler. The operational semantics describes the meaning of TTCN-3
behaviour and is not a guideline for the implementation of a TTCN-3 compiler.

NOTE 2: The operational semantics handles parameters of and local constants in test components, test cases,
functions and module control like variables. The wrong usage of local constantsor i n, out andi nout
parameters has to be checked statically.

7.1 Order of replacement steps

The textua replacements of short forms, global constants and modul e parameters have to be done in the following
order:

1) replacement of global constants and module parameters by concrete values;
2) embedding stand-alone receiving operationsinto al t statements;

3) embedding stand-alone altstep callsinto al t statements;

4) expansion of i nt er | eave statements;

5) replacement of all t ri gger operations by equivalent r ecei ve operationsand got o statements;

ETSI

11 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

NOTE: Without keeping this order of replacement steps, the result of the replacements would not represent the
defined behaviour.

7.2 Replacement of global constants and module parameters

Constants declared in the module definitions part are global for module control and all test components that are created
during the execution of a TTCN-3 module. Module parameters are meant to be global constants at run-time.

All references to global constants and module parameters shall be replaced by the actual values before the operational
semantics starts the interpretation of the module. If the value of a constant or module parameter is given in form of an
expression, the expression has to be evaluated. Then, the result of the evaluation shall replace al references of the
constant or module parameter.

7.3 Embedding single receiving operations into alt statements

TTCN-3 receiving operations are: r ecei ve, tri gger,getcal | ,getrepl y,catch,check,ti meout, and
done.

NOTE: Theoperationsr ecei ve,tri gger,getcall,getreply,catch andcheck operate on portsand
they allow branching due to the reception of messages, procedure calls, replies and exceptions. The
operationst i meout and done are not real receiving operations, but they can be used in the same
manner as receiving operations, i.e. asalternativesinal t statements. Therefore, the operational
semantics handlest i neout and done like receiving operations.

A receiving operation can be used as stand-alone statement in a function, an altstep or atest case. Thet i neout
operation can also be used as stand alone statement in modul e control. In such a case the receiving operation as
considered to be shorthand for an al t statement with only one aternative defined by the receiving operation. For the
operational semanticsan al t statement in which the receiving statement is embedded shall replace all stand-alone
occurrences of receiving operations.

EXAMPLE:
/1 The stand-al one occurrence of

M/CL. trigger(MType: *);

/1 shall be replaced by

al't {
} [l ™CL.trigger (MType:*) { }

/1l or

WPTC. done;

/1 shall be replaced by

al't {
[l MPTC done { }
}

7.4 Embedding stand-alone altstep calls into alt statements

TTCN-3 alowsto call atsteps like functionsin functions, altsteps, test cases and module control. The meaning of a
stand-alone call of an atstepisgiven by anal t statement with one branch only that callsthe atstep. The al t
statement is responsible for the snapshot that is eval uated within the altstep and for the invocation of the default
mechanism if none of the alternativesin the altstep can be chosen.

NOTE: Analtsteps used in module control can only include aternativeswitht i meout operationsand anel se
branch.

ETSI

12 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

EXAMPLE:
/1 The stand-al one occurrence of

@N tstep(MyParlval);

/1 shall be replaced by

ait {
[T nyAtstep(MParlval) { }
}

7.5 Replacement of interleave statements

Themeaning of ani nt er | eave statement is defined by its replacement by a series of nested al t statements that has
the same meaning. The algorithm for the construction of the replacement for ani nt er | eave statement is described in
this clause. The replacement shall be made on a syntactical level.

Withinani nt er| eave statement it is not allowed:

1) to usethe control transfer statementsf or , whi | e, do-whi | e, got o0, acti vat e, deact i vat e, st op,
repeat andreturn;

2) tocall atsteps,

3) to call user-defined functions which include communication operations,

4) to guard branches of thei nt er | eave statement with Boolean expressions; and
5) to specify el se branches.

Due to these restrictions, al not mentioned stand-alone statements (e.g., assignment, | og, send or r epl y), blocking
call operations and the compound statementsi nt er | eave, i f-el se andal t canbeused withinani nt erl eave
statement.

NOTE 1: Blocking cal | operationsandi f - el se statements can be treated like stand-alone statementsiif they
have no embedded al t statements. In case of embedded al t statements, the alternatives contribute to
thei nt er | eave statement and need a specia handling. For simplicity, the algorithm below does not
distinguish between these two cases.

NOTE 2: Non-blocking cal | operations are also allowed in interleave statements, they are considered to be
stand-alone statements.

The algorithm described in this clause only works for i nt er | eave statements without embedded i nt er | eave
statements. In case of ani nt er | eave statement that has embedded i nt er | eave statements, the embedded
i nt erl| eave statements have to be replaced before the algorithm can be applied.

NOTE 3: Dueto therestrictions 1-5, it is always possible to find finite replacements for nested embeddings of
i nt erl eave statements.

The replacement algorithm works on a graph representation of an interleave statement and transformsit into a
semantically equivalent tree structure describing a series of nested al t statements. For this, a graph representation of
stand-al one statements, the compound statementsi f - el se, blockingcal | ,alt andi nt erl| eave isneeded.

A stand-alone statement is described by a node with the statement as inscription. A sequence of stand-alone statements
is described by a set of nodes connected by aflow lines. Thisis shownin figure 1.

ETSI

13

Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

Pl.send(MyVar);

P1. send(MyVar);

(a) TTCN-3 stand-alone statement

(b) graph representation of (a)

P1.send(MyVar);
X:=7+5;

P1. send(MyVar);

(c) Sequence of TTCN-3 stand-alone statements

(d) graph representation of (c)

Figure 1. Graph representation of TTCN-3 stand-alone statements

The graph representation of ani f - el se statement isshown in figure 2. Ani f - el se statement is represented by an
IF node with two flow lines connected to the first statement in the two alternatives. Ani f - el se statement without

EL SE branch is represented in the same manner, if there are statements following thei f - el se statement. In this case
the flow line representing the else branch is connected to the first statement following thei f - el se statement. An

i f-else statement without ELSE branch and without following statements is represented by an IF node with one flow

lineonly.

NOTE:

Theinscriptions on the flow linesin figure 1 are introduced for readability purposes only. The algorithm

only uses the relation expressed by the flow line and not the inscription.

if (x<7){
Pl.send(MyVar);

else {
X :=7+05;
}

X=X *2

(x <7)

P1. send(MyVar);

ELSE

(a) TTCN-3 if-else statement

(b) Graph representation of (a)

if (x<7){
Pl.send(MyVar);
}

X =X *2

(x <7

P1. send(MyVar);

(c) TTCN-3 if-else statement without else branch

(d) Graph representation of (c)

Figure 2: Graph representation of TTCN-3 if-else statements

ETSI

14

Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

The graph representation of ablocking cal | statement is shown infigure 3. A blocking cal | statement is represented

by aBLOCKING-CALL node with flow lines connected to the get r epl y and cat ch statements of the different
alternatives.

P1l.call (MyProc:{-, true}, 20E-3) {
[] P1.getreply(MyProc:{?,-} {
setverdict(pass);

}
[] P1.catch(MyProc, MyExeception) {}

[] P1.catch(timeout) {
setverdict(fail);

}
X:=7+05;

(a) TTCN-3 blocking call statement

BLOCKI NG CALL
Pl.call (MyProc: {-,true}, 20E-3)

P1. getrepl y(M/Proc:{?,-})
\ 4
1. catch(M/Proc, M/Exception)

set verdi ct (pass); setverdict(fail);

(b) Graph representation of (a)

Figure 3: Graph representation of a TTCN-3 blocking call statement

ETSI

15 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

The graph representation of an al t statement isshown infigure4. Anal t statement is represented by an alt-node
with several flow lines connected to the different alternatives.

alt {
[x<5] Pl.receive(MyMessageOne} {
setverdict(pass);

[] P1l.receive(MyMessageTwo) {}

[] T1.timeout {
setverdict(fail);

}
X:=7+5;

(a) TTCN-3 alt statement

e —

[x<5]

P1. recei ve(MyMessageOne)

Pl.recei ve(MyMessageTwo)

setverdi ct (pass);

setverdict(fail);

(b) Graph representation of (a)

Figure 4: Graph representation of a TTCN-3 alt statement

ETSI

16 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

In general, the graph representations of i f - el se, blockingcal | andal t statements are directed graphs without
loops where the flow lines of the different alternatives join when leaving the statement. By means of duplication, it is
possible to transform such directed graphs into a semantically equivalent tree representations. Thisis shown in figure 5
for the alt statement in figure 4. The algorithm described below will construct such tree representations.

alt {
[x<5] P1l.receive(MyMessageOne} {
setverdict(pass);
X:=7+5;

[] Pl.receive(MyMessageTwo) {
X:=7+5;
}
[] T1l.timeout {
setverdict(fail);
X:=7+5;
}
}

(a) TTCN-3 alt statement that is semantically equivalent to figure 4(a)

— AT I

P1. recei ve(MyMessageOne)

Pl.recei ve(MyMessageTwo)
setverdi ct (pass); setverdict(fail);

(b) Graph representation of (a) (semantically equivalent to figure 4xx9.5-4xxx(b))

T1.ti meout

Figure 5: Graph representation of a TTCN-3 alt statement

ETSI

17

Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

Ani nt er | eave statement can be described by a graph that consists of a set of directed sub-graphs, each of whichis
constructed by means of stand-alone statements and the compound statementsi f - el se, blockingcal | andal t . The

directed sub-graphs describe the interleaved flows of control. An example is shown in figure 6. The node inscriptionsin

figure 6 (b) refer to the labels of the TTCN-3 statementsin figure 6 (a).

interleave {
[] Pl.receive(M1} {

alt {
[] P1l.receive(M3){
setverdict(pass);

}
[] T1.timeout {}
}
}
[1 P2.receive(M2) {
if (x<5){
alt {

[] P2.receive(M4) {

}
[] Compl.done {}
}
X:=7+5;
}
else {

P3.call(MyProcTempl, 20E-3) {

alt {

}

}
[] P3.catch(timeout) {

setverdict(fail);

}
}
}
}
}

setverdict(pass);

/I BC (= BLOCKING CALL)
[] P3.getreply(ReplyTempl) {

[] P2.receive(M5) {} //L11
[1 P2.receive(M6) {} //L12

/L1
/I ALT

/L2
II'L3

IIL4

/L5
IME
/I ALT
/L6
/.7

/L8

/L9

//'L10
Il ALT

/I'L13
/I'L14

(a) TTCN-3 interleave statement

ETSI

18 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

A

(b) Graph representation of (a)

Figure 6: Graph representation of a TTCN-3 interleave statement

Formally, ani nt er | eave statement can be described by a graph Gl = (S, F) where:
St isthe set of allowed TTCN-3 statements; and
F O (St X St)describes the flow relation.
The term allowed TTCN-3 statements refers to the static restrictions 1-5 above.
For the construction algorithm the following functions need to be defined:
. The REACHABLE function returns all statements that are reachable from a statement sin agraph Gl = (St, F):

REACHABLE (s, Gl)= {s} O
{ stmt | stmt O St O S= Xy, X, ... , Xy =Stmt) wherex; O St, i O {1...n} O(x;, X+1)0O F}

. The SUCCESSORS function returns all successors of a statement sinagraph Gl = (St, F):
SUCCESSORS(s, Gl) ={ stmt | stmt O St O (s, stmt) O F}

. The ENABLED function returns all statements of agraph Gl = (St, F) which have no predecessors:
ENABLED(GI) = { stmt |stmt O St O(F n (S X {s}) = 0)}

. The KIND function returns the kind or type of a TTCN-3 statement in a graph representingani nt er | eave
statement.

. The DISCARD function deletes a statement s or a set of statements S from agraph Gl = (S, F) and returnsthe
resulting graph GI'= (St', F'):

For single nodes:
DISCARD(s, GI) =Gl' where: GI' = (St', F'), with St' =St\{s} and F'=F n (St\{s} X St\{s}).
For sets of nodes:

DISCARD(S, Gl) = GlI' where: GI' = (St', F'), with St' =St\Sand F'=F n (St\S X SX\S).

ETSI

19 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

* The RECEIVING function takes a set of statements of agraph Gl and returns all receiving statements:

RECEIVING(S) = { stmt | stmt O St OKIND(stmt) [0 {r ecei ve, trigger, getcall,
getreply, catch, check, done, timeout}}

¢ The RANDOM function selects randomly an element s from a given set S and returnss.
RANDOM(S)=s wheresO S

The construction algorithm (see figure 7) of the tree is a recursive procedure where in each recursive call the successor
nodes for a given node is constructed. The procedure is provided in a C-like pseudo-code notation that uses the
functions defined above and some additional mathematical notation.

ETSI

20 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

CONSTRUCT-SUCCESSORS (statementType *predecessor, graphType GlI) {
/I - statementType refers to the type of a node of the tree that is constructed
/I - *predecessor refers to the last node that has been created
/I - graphType denotes type of the graph of TTCN-3 statements
/I - Glis called by value and refers to the subgraph consisting of all remaining TTCN-3

/I statements that have to be taken into consideration

var graphType myGraph;
var statementType i, myStmt;
var statementType *newStmt, *firstinBranch;// pointers for new statement nodes in the

Il tree that is constructed recursively

/I Retrieving sets of TTCN-3 statements that have no predecessors in 'GI'
var statementSet enabStmts = ENABLED(GI); /I all statements without predecessor
var statementSet enabRecStmts = RECEIVING(enabStmts); // receiving statements in 'enabStmts’
var statementSet enabNonRecStmts = enabStmts\enabRecStmts;

/I non receiving statements in 'enabStmts’

if (GL.St==0){ // We assume that GI.St refers to the set of statements in Gl
return; /I No statements are left, termination criterion of Recursion

}

elseif (enabNonRecStmts !=0){ // Handling of non receiving statements in 'enabStmts’

myStmt := RANDOM(enabNonRecStmts);
/l There can only be one statement in 'enabNonRec’, because the Algorithm
/I continues the construction until there is a branch that contributes to
/[the interlave statement.
newStmt := create(myStmt, predecessor);
/I Creation of a new tree node representing 'myStmt' in the tree

/I and update of pointers in 'newStmt' and 'predecessor’.

ETSI

21 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

if (KIND(myStmt) == IF || KIND(myStmt) == BLOCKING_CALL) {

for each i in SUCCESSORS(myStmt, GI) {

firstinBranch = create(i, newStmt);
/I Creation of a second node for the first statement of in a branch due to
/l an if-else statement.
I/l Note, this create statement will be used to create tree nodes

/I representing the receiving statements in blocking call operations.

myGraph = DISCARD({i, myStmt} 0 REACHABLE(myStmt, GI)\REACHABLE(, Gl))
/I Removal of i, myStmt and all statements that are reachable from
/ myStmt but not reachable from i. The latter considers the branching of

/l a flow of control in a subgraph of GI.

CONSTRUCT-SUCCESSORS(firstinBranch, myGraph); /I NEXT RECURSION STEP

}
}
elseif (KIND(myStmt) == ALT) {

for each (i in SUCCESSORS(myStmt, Gl) {

CONSTRUCT-SUCCESSORS(mystmt, DISCARD(REACHABLE(myStmt,
GI)\REACHABLE(i, GI)));

/I NEXT RECURSION STEP, the DISCARD(REACHABLE(myStmt, GI)\REACHABLE(,
Gl))

/I argument considers the branching of a flow of control due to different
/l receiving events.
}
}

else{ /I mystmtis a stand-alone statement

CONSTRUCT-SUCCESSORS(newSonNode, DISCARD(myStmt, GI)); / NEXT RECURSION

ETSI

22 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

STEP

}

else {// Handling of receiving events that interleave
if (KIND(predecessor) !=ALT){ //an alt node is missing and has to be created, if the
/I interleaving is not influenced by an embedded alt statement

predecessor = create(ALT, predecessor);

}

for each i in enabRecStmts) {
newStmt := create(i, predecessor); /I New tree node

CONSTRUCT-SUCCESSORS(newStmt, DISCARD(i, GI)); // NEXT RECURSION STEP(S)

}

Figure 7: Replacement algorithm for TTCN-3 interleave statements

Initially, the CONSTRUCT-SUCCESSORS function (see figure 7) will be called with aroot node of an empty tree and
the graph of TTCN-3 statements describing thei nt er | eave statement that shall be replaced. After termination, the
root node can be used to access the constructed tree.

The application of the CONSTRUCT-SUCCESSORS function to thei nt er | eave statement shown in figure 6 leads
to the tree shown in figure 8. The labels refer to the statementsin figure 6(a). Multiple labels are the result of the
duplication of code. The TTCN-3 code that correspondsto the tree in figure 8 is shown in figure 9.

NOTE: The example for the application of the algorithm in figures 7 (see figures 6, 8 and 6) is very
comprehensive. This example is provided in order to show most of the special situations, i.e. branching
and joining of flow lines, an embedded al t statement, ablocking cal | statementandani f - el se
statement.

ETSI

Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

23

L5
) 4
IF

Figure 8: Result of applying the algorithm in figure 7 to the interleave statement in figure 6

ETSI

24 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

alt { /1 ALT
[T Pl.receive(M} { /1 L1
alt { /1 ALT
[T Pl.receive(M) ({ Il L2
setverdi ct (pass); /Il L3
alt { /1 ALT
[T P2.receive(M) { Il L5
if (x <5){ Il 1F
alt { /1 ALT
[T P2.receive(M) { Il L6
setverdi ct (pass); Il L7
X :=7 + 5 /1 L9
}
[1 Conpl.done { /1 L8
X =7 +5; /1 L9
P }
el se {
P3.cal | (MyProcTenpl, 20E-3) { // BC (= BLOCKI NG CALL)
[T P3.getreply(ReplyTenpl) { /1 L10
alt { /1 ALT
[T P2.receive(M) { } /1 L11
[1 P2.receive(M) { } /1 L12
Pl
[T P3.catch(tineout) { /1 L13
setverdict(fail); /1 L14
b} D }
[T Ti.tineout { /Il L4
alt { /1 ALT
[T P2.receive(M) ({ /1 L5
if (x <5){ Il 1F
alt { /1 ALT
[T P2.receive(M) { /Il L6
setverdi ct (pass); Il L7
X :=7 + 5 /1 L9
}
[1 Conpl.done { /1 L8
X :=7 + 5 /1 L9
P }
el se {
P3.cal | (MyProcTenpl, 20E-3) { // BC (= BLOCKI NG CALL)
[T P3.getreply(ReplyTenpl) { /1 L10
alt { /1 ALT
[1 P2.receive(M) { } /1 L11
[1 P2.receive(M) { } /1 L12
P
[T P3.catch(timeout) { /1 L13
setverdict(fail); /1 L14
)}y Y Y) }
[T P2.receive(M) ({ /1 L5
if (x <5){ Il 1F
alt { /1 ALT
[T P2.receive(M) { Il L6
setverdi ct (pass); Il L7
X =7+ 5; /1 L9
alt { /1 ALT
[T Pl.receive(M) ({ Il L2
setverdi ct (pass); /1 L3
}
[T Ti.tineout { } /1 L4
ool
[1 Conpl.done { /1 L8
X :=7 + 5 /1 L9
alt { /1 ALT
[T Pl.receive(M) ({ /1 L2
setverdi ct (pass); /1 L3
}
[T Ti.tineout { } /1 L4
Py
[T Pl.receive(M) ({ /Il L2
setverdi ct (pass); /1 L3
alt { /1 ALT
[T P2.receive(M) { Il L6
setverdi ct (pass); Il L7
X :=7+5; /1 L9
}
[T Conpl.done { /1 L8
X =7 +5; /1 L9
P} }

ETSI

25 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

[T Ti.tineout { /1 L4
alt { /1 ALT
[T P2.receive(M) ({ /1 L6
setverdi ct (pass); /Il L7
X :=7 + 5 /1 L9
}
[T Conpl.done { /1 L8
X :=7+5; /1 L9
Pl P }
el se {
P3.cal I (M/ProcTenpl, 20E-3) ({ /1 BC (= BLOCKI NG CALL)

[T P3.getreply(ReplyTenpl) { /1 L10

alt { /1 ALT
[T Pl.receive(M) ({ Il L2
setverdi ct (pass); /Il L3
alt { /1 ALT
[T P2.receive(M) { } /1 L11
[1 P2.receive(M) { } /1 L12
Py
[T Ti.tineout { /1 L4
alt { /1 ALT
[1 P2.receive(M) { } /1 L11
[1 P2.receive(M) { } /1 L12
P
[T P2.receive(M) ({ /1 L11
alt { /1 ALT
[T Pl.receive(M) ({ /Il L2
setverdi ct (pass); /1 L3
}
[T Ti.tineout { } /1 L4
Pl
[T P2.receive(M) { /1 L12
alt { /1 ALT
[T Pl.receive(M) ({ Il L2
setverdi ct (pass); /1 L3
}
[T Ti.tineout { } /1 L4
I Y)

[T P3.catch(tineout) { /1 L13
setverdict(fail); /1 L14
alt { /1 ALT

[T Pl.receive(M) ({ /1 L2
setverdi ct (pass); /1 L3
}
[T Ti.tineout { } /1 L4
Py Py P
[T P2.receive(M) { /Il L5
if (x <5) { /1 1F
alt { /1 ALT

[T P2.receive(M) ({ Il L6
setverdi ct (pass); Il L7
X =7 +5; /1 L9
alt { /1 ALT

[T Pl.receive(M} ({ /1 L1
alt { /1 ALT

[T Pl.receive(M) ({ Il L2
setverdi ct (pass); /Il L3
}
[T Ti.tineout { } /1 L4
ool Py

[T Conpl.done { /1 L8
X :=7 + 5 /1 L9
alt { /1 ALT

[T Pl.receive(M} { /1 L1
alt { /1 ALT

[T Pl.receive(M) ({ /1 L2
setverdi ct (pass); /1 L3
}
[T Ti.tineout { } /1 L4
P P}

[T Pl.receive(M) ({ /1 L2
setverdi ct (pass); /1 L3
alt { /1 ALT

[T P2.receive(M) ({ /1 L6
setverdi ct (pass); /Il L7
X =7 +5; /1 L9

}
[Conpl.done { /1 L8

ETSI

26 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

X =7+ 5 /1 L9
b} }
[T Ti.tineout { /1 L4
alt { /1 ALT
[T P2.receive(M) ({ /1 L6
setverdi ct (pass); Il L7
X =7+ 5 /1 L9

}
[T Compl.done { /1 L8
X := 7 + b; /1 L9
P} }
el se {

P3. cal | (MyProcTenpl, 20E-3) { /1 BC (= BLOCKI NG CALL)
[T P3.getreply(ReplyTenpl) { /1 L10
alt {

[T P2.receive(M) ({ /1 L11
alt { /1 ALT

[T Pl.receive(M} { /1 L1
alt { /1 ALT

[T Pl.receive(M) ({ Il L2

setverdi ct (pass); /1 L3

}

[T Ti.tineout { } /1 L4
oy)

[T P2.receive(M) ({ /1 L12
alt { /1 ALT
[T Pl.receive(M} { /1 L1
alt { /1 ALT
[T Pl.receive(M) ({ /1 L2
setverdi ct (pass); /1 L3

}
[T Ti.tineout { } /1 L4
oy Y)
[T Pl.receive(M} ({ /1 L1
alt { /1 ALT
[T Pl.receive(M) ({ /1 L2
setverdi ct (pass); /1 L3

[1 P2.receive(M) { } /1 L11
[1 P2.receive(M) { } /1 L12

] P2.receive(M) { } /1 L11
] P2.receive(M) { } /] L12

[] P2.r]écei ve(M) { /] L11

[T Pl.receive(M) ({ /Il L2
setverdi ct (pass); /1 L3

[] }I'l.timeout {1} /1 L4

}
[T P2.receive(M) ({ /1 L12
alt { /1 ALT
[T Pl.receive(M) ({ /Il L2
setverdi ct (pass); /1 L3

}
[T Ti.tineout { } /1 L4
b})) b}

[T P3.catch(tineout) { /1 L13
setverdict(fail); /1 L14
alt { /1 ALT

[T Pl.receive(M} { /1 L1
alt { /1 ALT

[T Pl.receive(M) ({ Il L2

setverdi ct (pass); /1 L3

[] Titimeout { } Il L4

Figure 9: Semantically equivalent TTCN-3 code for the interleave statement in figure 6

ETSI

27 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

7.6 Replacement of trigger operations

Thet ri gger operation filters messages with a certain matching criterion from a stream of messages on a given port.
The semantics of thet r i gger operation can be described by its replacement with two r ecei ve operationsand a
got o statement. The operational semantics assumes that this replacement is done on the syntactical level.

EXAMPLE 1:
/1 The follow ng trigger operation ...

alt {
) [1 MCL.trigger (MType:*);

/1 shall be replaced by ...

alt {
[T MCL.receive (MType:*);
[T MCL.receive {
goto alt
}
}

If thet ri gger statement isused in amore complex al t statement, the replacement is done in the same manner.

EXAMPLE 2:
/1 The following alt statement includes a trigger statement ...

alt {
[T PCX.receive {
st op;

}

M/CL. trigger (MType:*);

PCCB. cat ch {
verdict.set(fail);
st op;

,_,,_
[E—

}
/1 which will be replaced by

alt {
[T PCR.receive {
st op;
}

M/CL.receive (MyType: *);
M/CL. recei ve {
goto alt;

—_——
[—p—

}
[] PCG.catch {
verdict.set(fail);
st op;

8 Flow graph semantics of TTCN-3

The operational semantics of TTCN-3 is based on the interpretation of flow graphs. In this clause flow graphs are
introduced (see clause 8.1), the construction of flow graphs representing TTCN-3 module control, test cases, functions
and component type definitions is explained (see clause 8.2), module and component states for the description of the
execution states of a TTCN-3 module are defined (see clause 8.3), the handling of messages, remote procedure calls,
replies to remote procedure calls and exceptions is described (see clause 8.4) and the eval uation procedure of module
control and test casesis explained (see clause 8.6).

8.1 Flow graphs

A flow graph is a directed graph that consists of labelled nodes and labelled edges. Traversing a flow graph describes
the possible flow of control during the execution of a represented behaviour description.

ETSI

28 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

8.1.1 Flow graph frame

A flow graph shall be put into aframe defining the border of the flow graph. The name of flow graph follows the
keywords flow graph (these are not TTCN-3 core language keywords) and shall be put into the upper left corner of the
flow graph. As convention it is assumed that the flow graph name refers to the TTCN behaviour description represented
by the flow graph. A simple flow graph is shown in figure 10.

fl ow graph
M/Si npl eFl owGr aph

Figure 10: A simple flow graph

8.1.2 Flow graph nodes

Flow graphs consist of start nodes, end nodes, basic nodes and reference nodes.

8.1.2.1 Start nodes

Start nodes describe the starting point of aflow graph. A flow graph shall only have one start node. A start nodeis
shown in figure 11a

h 4 A

(a) Flow graph start node (b) Flow graph end node

Figure 11: Start and end nodes

8.1.2.2 End nodes

End nodes describe end points of a flow graph. A flow graph may have several end nodes or in case of loops no end
node. Basic nodes (see clause 8.1.2.3) and reference nodes (see clause 8.1.2.4) that have no successor nodes shall be
connected to an end node to indicate that they describe the last action of a path through a flow graph. An end nodeis
shown in figure 11b.

8.1.2.3 Basic nodes

A basic node describes an execution unit, i.e. it is executed in one step. A basic node has a type and, depending on the
type, may have an associated list of attributes. Two basic nodes are shown in figure 12.

In the inscription of a basic node the attributes of a node follow the node type and are put into round parentheses. Type
and attributes are used to determine the action to be performed during execution of the represented language construct.
The attributes describe information to be retrieved from the corresponding TTCN-3 construct.

Attributes have values and the operational semantics will retrieve these values by referring to the attribute name. If
required, it is alowed to assign explicit values in basic nodes by using assignment '=". An example is shown in
figure 12b.

ETSI

29 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

node-type
(attrq, attro, ...,
attry)

node-type
(attro =7, ...,
attr, = 8.0)

(@) (b)

Figure 12: Basic nodes with attributes

8.1.2.4 Reference nodes

Reference nodes refer to flow graph segments (see clause 8.1.4) that are sub-flow graphs. The meaning of a reference
node is defined by its replacement by the referenced flow graph segment in the flow graph. The node inscription of the
reference node provides the reference to a flow graph segment. A reference node is shown in figure 13a.

segnent -ref erence;
R

segnent -ref erence segnent -ref erence;
R

segnent -r ef erences

(a) Single reference node (b) OR combination of three reference nodes

Figure 13: Reference node

8.1.2.4.1 OR combination of reference nodes

In some cases severa flow graph segments may replace a reference node. For these cases an OR operator may be used
to refer to several flow graph segments (see figure 13b). In the actua flow graph representing the module control, a test
case or afunction, one aternative is determined by the represented construct.

8.1.2.4.2 Multiple occurrences of reference nodes

In some cases the same kind of reference node may occur zero, one or more timesin aflow graph. In regular
expressions the possibl e repetition of parts of aregular expression is described by using the operator symbols '+' (one or
more repetitions) and ** (zero or more repetitions). As shown in figure 14, these operators have been adopted to flow
graphs by introducing double-framed reference nodes with associated operator symbols. A single flow (see clause 8.1.3)
line shall replace areference node, in case of zero occurrences (using a double-framed reference node with **'-operator).

B B

segnent - r ef erence segnent - r ef erence

Figure 14: Repetition of reference nodes
An upper bound of possible repetitions of areference node can be given in form of an integer number in round

parenthesis following the *' or '+' symbol in the double framed reference node. The segment reference shown in
figure 15 may occur from zero up to 5 times.

ETSI

30 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

Q

segnent -r ef erence

Figure 15: Restricted repetition of a reference node

8.1.3 Flow lines

Flow lines are represented by means of arrows. A flow line has an inscription of true or false which indicates a
condition under which the flow line is chosen during the flow graph interpretation. As a short hand notation it is
allowed to omit the true inscription. Examples of flow lines are shown below:

false

>

true

> which isidentical to >

To support the joining of several flow linesinto one flow line on a graphical level, a special join node isintroduced.
Thejoin node and an example for its usage are shown below:

join node: o

™

usage of join node: >Q® >

/'

Drawing long flow linesin big diagrams asit is, for example, necessary to model the TTCN-3 constructsgot o and
| abel , isawkward. For this purpose, labels for outgoing and incoming flow lines can be used. Examples are shown
below.

Incoming flow line with label: in-label ——
Outgoing flow line with label: — out-label

An outgoing flow line with alabel is connected with an incoming flow line with alabel, if the labels areidentical. The
flow line labels for the incoming flow lines shall be unique. If there are several outgoing flow lines with the same label,
thisis considered to be ajoin of lines to the incoming flow line with an identical |abel.

8.1.4 Flow graph segments

Flow graph segments are sub-flow graphs. They are referenced in reference nodes and define the meaning of that
reference node. Flow graph segments may include further reference nodes.

Asshownin figure 16, flow graph segments have precise interfaces that consist of incoming and outgoing flow lines.
Thereis only one unlabeled incoming and one or none unlabeled outgoing flow lines. In addition there might exist
severa labelled incoming and outgoing flow lines. For example, the labelled incoming and outgoing flow lines are
needed to describe the meaning of TTCN-3 statementsgot o andal t .

ETSI

31 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

Flow graph segments are put into aframe and the name of the flow graph segment shall follow the keyword segnent
followed by the segment name in the upper left corner of the frame. The flow lines describing the flow graph segment
interface shall cross the flow graph segment frame.

segment Segnment Narrei

LI, >

LO LG ... LOy

Figure 16: Structure of a flow graph segment description

8.1.5 Comments

To improve readability and coherence a special comment symbol can be used to associate comments to flow graph
nodes and flow lines. The comment symbol and its usage are shown in figure 17.

Comment related to
flow line

Thisisacomment in
......................... a comment symbol

Comment related to
basic node

(@) Comment symbol (b) Usage of comment symbols

Figure 17: Flow graph representation of comments

ETSI

32 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

8.1.6 Handling of flow graph descriptions

The evaluation procedure of the operational semantics traverses flow graphs that only consist of basic nodes, i.e. all
reference nodes have to be expanded by the corresponding flow graph segment definitions. The NEXT functionis
required to support this traversal. NEXT is defined in the following manner:

actualNodeRef NEXT(bool) = successor NodeRef where:
. actualNodeRef is the reference of abasic flow graph node;
. successor NodeRef is the reference of a successor node of the node referenced by actualNodeRef;

. bool is a Boolean specifying whether the true or the false successor is returned (see clause 8.1.3).

8.2 Flow graph representation of TTCN-3 behaviour

The operational semantics assumes that TTCN-3 behaviour descriptions are provided in form of a set of flow graphs,
i.e. for each TTCN-3 behaviour description a separate flow graph has to be constructed.

The operational semantics interprets the following kinds of TTCN-3 definitions as behaviour descriptions:
a) module control;
b) test case definitions;
¢) function definitions;
d) atstep definitions;
€) component type definitions.

The module control specifies the test campaign, i.e. the execution order (possibly repetitious) of the actual test cases.
Test case definitions define the behaviour of the MTC. Functions structure behaviour. They are executed by the module
control or by the test components. Altsteps are used for the definition of default behaviour or in a function-like manner
to structure behaviour. Component type definitions are assumed to be behaviour descriptions because they specify the
creation, declaration and initialization of ports, constants, variables and timers during the creation of an instance of a
component type.

8.2.1 Flow graph construction procedure

The flow graphs presented in the figures 18, 19, 20, 21 and 22 and the flow graph segments presented in clause 8 are
only templates. They include placeholders for information that has to be provided in order to produce a concrete flow
graph or flow graph segment. The placeholders are marked with '<' and "> parenthesis.

The construction of a flow graph representation of a TTCN-3 module is done in three steps:

1) For each TTCN-3 statement in module control, test cases, functions and component type definitions a concrete
flow graph segment is constructed.

2) For the module control and for each test case, function and component type definition a concrete flow graph
(with reference nodes) is constructed.

3) Inastepwise procedure all reference nodesin the concrete flow graphs are replaced by corresponding flow
graph segment definitions until all flow graphs only include one start node, end nodes and basic flow graph
nodes.

NOTE 1: Basic flow graph nodes describe basic indivisible execution units. The operational semantics for TTCN-3
behaviour is based on the interpretation of basic flow graph nodes. Clause B.4 presents execution
methods for basic flow graph nodes only.

The replacement of a reference node by the corresponding flow graph segment definition may lead to unconnected parts
in aflow graph, i.e. parts which cannot be reached from the start node by traversing through the flow graph aong the
flow lines. The operational semantics will ignore unconnected parts of a flow graph.

ETSI

33 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

NOTE 2: An unconnected part of aflow graphisaresult of the mechanical replacement procedure. For the
construction of an optimal flow graph representation the different combinations of TTCN-3 statements
a so has to be taken into consideration. However, the goal of this annex isto provide a correct and
complete semantics, not an optimal flow graph representation.

8.2.2 Flow graph representation of module control

Schematically, the syntactical structure of a TTCN-3 moduleis:
nmodul e <identifier> (<paraneter>) <nmodul e-definitions-part> control <statemnent-block>

For the flow graph behaviour representation the following information is relevant only:

nmodul e <identifier> <statenent-bl ock>

Thisis comparable to afunction definition and therefore the flow graph representation of module control is similar to
the flow graph representation of afunction (see clause 8.2.4). The semantics will access the flow graph representing the
module control by using the module name.

NOTE: The meaning of the module definitions part is outside the scope of this operational semantics. Module
parameters are defined as global constants at run-time. References to module parameters have to be
replaced by their concrete values on a syntactical level (see clause 8.3).

The scheme of the flow graph representation of the module control is shown in figure 18. The flow graph name
cont r ol identifiesthe flow graph representing the module control. The nodes of the flow graph have associated
comments describing the meaning of the different nodes. The reference node <st op- ent i t y- op> coversthe case

where no explicit st op operation is specified, i.e. the operational semantics assumesthat ast op operation is
implicitly added.

fl ow graph control

/1 The nodul e control behaves |like a
<i ni t - conponent - scope> /1 conponent and therefore, its scope

/1 has to be initialised.
/1 The body of the nodule control
<st at ement - bl ock> /] specifies the statenments to be
/'] execut ed.

* (1) /'l For the case that an explicit stop
/] operation is mssing at the end of
/11

nodul e control
<stop-entity-op>

X

Figure 18: Flow graph representation of module control

ETSI

34 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

8.2.3 Flow graph representation of test cases

Schematically, the syntactical structure of a TTCN-3 test case definitioniis:

testcase <identifier> (<paraneter>) <testcase-interface> <statenent-bl ock>

The<t est case-i nt er f ace> above refersto the (mandatory) r uns on and the (optional) syst emclausesin the
test case definition. The flow graph description of atest case describes the behaviour of the MTC. The information
provided by the <t est case- i nt er f ace> isnot relevant for the MTC. It will be used by theexecut e statement,

but needs not to be represented in the flow graph representation of atest case. Thus, for the flow graph representation
the following information is relevant only:

testcase <identifier> (<parameter>) <statenent-bl ock>

The scheme of the flow graph representation of atest case is shown in figure 19. The flow graph name

<i denti fi er > refersto the name of the represented test case. The nodes of the flow graph have associated
comments describing the meaning of the different nodes. The reference node <st op- ent i t y- op> coversthe case
where no explicit st op operation for the MTC is specified, i.e. the operational semantics assumesthat ast op
operation isimplicitly added.

flow graph <identifier>

/'l - Actual paraneter values are
/1 assuned to be in the value stack

<par anet er - handl i ng> /1 - Formal paraneters are handl ed
11 i ke local variables and | ocal

i /1 tiners

/ The body of the test case specifies
<st at enent - bl ock> /1 the statenents to be executed
/ by the MIC.

* (1) /1 For the case that an explicit stop
/1 operation is mssing at the end of
/'l the test case

<stop-ntc>

X

Figure 19: Flow graph representation of test cases

8.2.4 Flow graph representation of functions
Schematically, the syntactical structure of a TTCN-3 functionis:
function <identifier> (<paranmeter>) [<function-interface>] <statenent-bl ock>

The optional <f uncti on-i nt er f ace> abovereferstother uns on andther et ur n clausesin the function
definition. The information provided by the <f unct i on-i nt er f ace> isnot relevant for the behaviour description.
It will be used for static semantics checks, but needs not to be represented in the flow graph. Thus, for the flow graph
representation the following information is relevant only:

function <identifier> (<parameter>) <statenent-bl ock>

The semantics will access flow graphs representing functions by using the function names.

ETSI

35 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

The scheme of the flow graph representation of a function is shown in figure 20. The flow graph name
<i denti fi er> refersto the name of the represented function. The reference node <r et ur n- wi t hout - val ue>

covers the case where no explicit r et ur n statement is specified, i.e. the operational semantics assumesthat ar et ur n
statement isimplicitly added.

fl ow graph <identifier>

/1 - Actual paraneter values are
11 assumed to be in the value stack

/11
<par anet er - handl i ng> /1 - Formal paraneters are handl ed
/1 l'i ke local variables and |ocal

i 11 tinmers

/ The body of the function specifies
<st at enent - bl ock> /1 the statements to be executed
/1 by the conponent.

* (1) /1 For the case that an explicit
/] return statenent is missing at the
/11

end of the function.
<return-wthout-val ue>

X

Figure 20: Flow graph representation of functions

8.2.5 Flow graph representation of altsteps

Schematically, the syntactical structure of a TTCN-3 altstepis:

altstep <identifier> (<paraneter>) [<altstep-interface>]
<constant-variabl e-ti ner-decl arti ons>
{ <receiving-branch> }*
[<el se-branch>]

The optional <al t st ep-i nt er f ace> above refersto ther uns on clause in the atstep definition. The information
provided by the<al t st ep-i nt er f ace> isnot relevant for the behaviour description. It will be used for static

semantics checks, but needs not to be represented in the flow graph. Thus, for the flow graph representation the
following information is relevant only:

altstep <identifier> (<paranmeter>) [<altstep-interface>]
<constant-variabl e-timer-declartions>
{ <receiving-branch> }*
[<el se-branch>]

The semantics will access flow graphs representing altsteps by using the altstep names.

The scheme of the flow graph representation of an altstep is shown in figure 21. The flow graph name

<i denti fi er > refersto the name of the represented altstep. The reference node

<successful -al t st ep-term nati on> coversthe case where the altstep terminates after the selection and
execution of an alternative. The reference node <unsuccessf ul - al t st ep-t er ni nat i on> specifies the case
where no aternative of the atstep has been executed.

ETSI

36 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

flow graph <identifier>

<par anet er - handl i ng>

l

*
" <const ant -definition>

R

/1 - Actual paraneter values are
11 assuned to be in the val ue stack

/1
// - Formal paraneters are handl ed
/1 i ke local variables and | oca

/1 timers

<vari abl e-decl arati on>
R
<ti ner-decl arati on>

Bl

Constants, variables and tiners
mab be declared and initialised

~—
~—

<recei vi ng- branch> OR
<al tstep-cal |l - branch>
OR <el se-branch>

/1l Aternative
/1 branches

<return-wthout-val ue>

X

/'l For case where no else branch is
/1 specified and none of the
/1 alternatives can be sel ected.

Figure 21: Flow graph representation of altsteps

ETSI

37 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

8.2.6 Flow graph representation of component type definitions
Schematically, the syntactical structure of a TTCN-3 component type definitioniis:

type conponent <identifier> <port-constant-variable-tiner-declartions>
The semantics will access flow graphs representing types by using the component type names.

The scheme of the flow graph representation of a component type definition is shown in figure 22. The flow graph
name<i denti fi er > refersto the name of the represented component type.

fl ow graph <identifier>

/1 The conponent scope is initialised

<i ni t - component - scope>

+
<port-decl arati on>

oRrR

<const ant - defi ni ti on> Il Ports are created
oRrR

<vari abl e-decl ar ati on> /1 Constants, variables and tiners
R /1 are declared and initialised

<ti mer-decl aration>

/1 The 'father' conponent waits for the
/1 conpletion of the conponent creation,
/1 i.e., is in a 'blocking state.

/1 The created conponent gives the
/1 control back to the 'father' conponent.

<finalise-conmponent-init>

/1 The new conponent goes into a
/1 'blocking' state and waits to be
/1 started.

Figure 22: Flow graph representation of component type definitions

8.2.7 Retrieval of start nodes of flow graphs
For the retrieval of the start node reference of aflow graph the following function is required:

The GET-FLOW-GRAPH function: GET-FLOW-GRAPH (flow-graph-identifier)

The function returns a reference to the start node of aflow graph with the name flow-graph-identifier. The
flow-graph-identifier refers to the module name for the control, to test case names, to function names and to component
type definitions.

ETSI

38 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

8.3 State definitions for TTCN-3 modules

During the interpretation of flow graphs representing TTCN-3 behaviour, module states are manipulated. A module
gtate is a structured state that consists of several sub-states describing the states of test components and ports. Module
states, component states and port states are introduced in this clause. In addition, functions to retrieve information from
and to manipulate states are defined.

8.3.1 Module state

As shown in figure 23 amodule state is structured into ALL-ENTITY-STATES, ALL-PORT-STATES MTC, TC-
VERDICT, DONE and SNAP-ACTIVE. ALL-ENTITY-STATES describes the state of the module control and during the
execution of atest case the states of the instantiated test components. ALL-PORT-STATES, the MTC reference and the
TC-VERDICT are only relevant during test case execution. ALL-PORT-STATES describes the states of the different
ports. MTC provides areference to the Main Test Component (MTC), TC-VERDICT stores the actual global test verdict
of atest case, DONE isalist of all stopped test components during test execution and SNAP-ACTIVE is used as part of
the snapshot of the MTC. SNAP-ACTIVE stores the number of active test components when the MTC takes a snapshot.
Itisused for the evaluation of the operationsal I conponent .done andal | conponent .r unni ng.

NOTE 1: The number of updates of TC-VERDICT isidentical to the number of test components that have
terminated.

The behaviour of module control (M-CONTROL in figure 23) is handled like a normal test component and its state is
the first element in ALL-ENTITY-STATES of a module state.

ALL-ENTITY-STATES ALL-PORT-STATES |MTC TC- DONE| SNAP-
VERDICT ACTIVE

M-CONTROL ES: | ... | ESn P1 .. | Pn

Figure 23: Structure of a module state

NOTE 2: Port states may be considered to be part of the entity states. By connect and map ports are made visible
for other components and therefore, this operational semantics handles ports on the top level of amodule
state.

8.3.1.1 Accessing the module state

The MTC, TC-VERDICT and SNAP-ACTIVE are parts of amodule state are handled like global variables, i.e. the
keywords MTC and TC-VERDICT can be used to retrieve and to change the values of the corresponding module state.

NOTE 1: There only exists one module state during the interpretation of a TTCN-3 module. Therefore the
keywords MTC and TC-VERDICT can be considered as globally unique identifiers for the evaluation
procedure.

For the handling of thelists ALL-ENTITY-STATES, ALL-PORT-STATES and DONE the list operations add, append,
delete, member, first, length, next, random and change can be used. They have the following meaning:

. myList.add(item) adds item as first element into the list myList;
. myList.append(item) appendsitem as last element into the list myList;
. myList.delete(item) deletes item from the list myList;

. myList.member(item) returnst r ue if itemisan element of the list myList, otherwisef al se;

. myList.first() returnsthe first element of myList;
. myList.length() returns the length of myList;

. myList.next(item) returns the element that followsitemin myList, or NULL if itemisthe last element in myList;

ETSI

39 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

. MyList.random(<condition>) returns randomly an element of myList, which fulfils the Boolean condition
<condition> or NULL, if no element of myList fulfils <condition>;

. MyL.ist.change(< operation>) allows to apply <operation> on al elements of myList.
NOTE 2: The operations random and change are not common list operations. They are introduced to explain the
meaning of the keywordsal | and any in TTCN-3 operations.

8.3.2 Entity states

Entity states are used to describe the actual states of module control and test components. In the module state, entity
states are handled in the list ALL-ENTITY-STATES. The structure of an entity state is shown in figure 23.

<identifier>| STATUS |[CONTROL | DEFAULT- | DEFAULT- | VALUE- E- TIMER- DATA- TIMER- SNAP-
-STACK LIST POINTER | STACK | VERDICT | GUARD STATE STATE DONE

Figure 24: Structure of an entity state

The <identifier> is a unique identifier of an entity, i.e. module control of test component, in the test system. Such
unique identifiers are created implicitly for the module control, the nt ¢ and the test sy st emwhen a module starts
execution or atest case is executed by means of the execut e statement. The identifier is used to identify and address
entitiesin the test system, e.g., in case of send operationswitht o clausesor r ecei ve operations with f r omclauses.

The STATUS describes whether the module control or atest component is ACTI VE, SNAPSHOT, REPEAT or
BLOCKED. Module control is blocked during the execution of atest case. Test components may be blocked during the
creation of other test components, i.e. during the execution of acr eat e operation. The status SNAPSHOT indicates
that the component is active, but in the evaluation phase of a snapshot. The status REPEAT denotes that the component
isactive and in an alt statement that should be re-evaluated dueto ar epeat statement.

The CONTROL-STACK isastack of flow graph node references. The top element in CONTROL-STACK isthe flow
graph node that has to be interpreted next. The stack is required to model function callsin an adequate manner.

The DEFAULT-LIST isalist of activated defaults, i.e. itisalist of pointers that refer to the start nodes of activated
defaults. Thelist isin the reverse order of activation, i.e. the default that has been activated first isthe last element in
thelist.

During the execution of the default mechanism, the DEFAULT-POINTER refers to the next default that hasto be
evaluated if the actual default terminates unsuccessfully.

The VALUE-STACK isastack of values of al possible types that allows an intermediate storage of final or intermediate
results of operations, functions and statements. For example, the result of the eval uation of an expression or the result of
the nt ¢ function will be pushed onto the VALUE-STACK. In addition to the values of all data types known in a module
we define the specia value MARK to be part of the stack a phabet. When leaving a scope unit, the MARK is used to clean
VALUE-STACK.

The E-VERDICT stores the actual local verdict of atest component. The E-VERDICT isignored if an entity state
represents the module control.

The TIMER-GUARD represents the special timer, which is necessary to guard the execution time of test cases and the
duration of call operations. The TIMER-GUARD is modelled as atimer binding (see clause 8.3.2.4 and figure 28).

The DATA-STATE is considered to be alist of lists of variable bindings. The list of lists structure reflects nested scope
units due to nested function calls. Each list in thelist of lists of variable bindings describes the known variables and
their valuesin a certain scope unit. Entering or leaving a scope unit corresponds to adding or deleting alist of variable
bindings from the DATA-STATE. A description of the DATA-STATE part of an entity state can be found in

clause 8.3.2.2.

The TIMER-STATE is considered to be alist of lists of timer bindings. The list of lists structure reflects nested scope
units due to nested function calls. Each list in the list of lists of timer bindings describes the known timers and their
status in a certain scope unit. Entering or leaving a scope unit corresponds to adding or deleting alist of timer states
from the timer state. A description of the timer state part of an entity state can be found in clause 8.3.2.3.

ETSI

40 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

The SNAP-DONE supports the snapshot semantics of test components. When a snapshot is taken, a copy of the DONE
list of the module state will be assigned to SNAP-DONE, i.e. SNAP-DONE isalist of component identifiers of stopped
components.

8.3.2.1 Accessing entity states

The <identifier> is the unique identifier of an entity state, which can be used to access the component represented by
entity state and the different parts of the entity state.

The STATUS DEFAULT-POINTER, E-VERDICT and TIMER-GUARD parts of an entity state are handled like
variablesthat are globally visible, i.e. the values of STATUS DEFAULT-POINTER and E-VERDICT can be retrieved or
changed by using the "dot" notation, e.g., entityState.STATUS entityState DEFAULT-POINTER and
myEntity.E-VERDICT, where myEntity refers to an entity state.

NOTE: Inthe following, we assume that we can use the "dot" notation by using references and unique identifiers.
For example, in myEntity. STATUS the entityState may be pointer to an entity state or the value of the
<identifier> field.

The CONTROL-STACK, DEFAULT-LIST and VALUE-STACK of an entity state myEntity can be addressed by using the
'dot' notation myEntity. CONTROL-STACK, myEntity. DEFAULT-LIST and myEntity. VALUE-STACK.

CONTROL-STACK and VALUE-STACK can be accessed and manipulated by using the stack operations push, pop, top,
clear and clear-until. The stack operations have the following meaning:

. myStack.push(item) pushes item onto myStack;

. myStack.pop() pops the top item from myStack;

. myStack.top() returns the top element of myStack or NULL if myStack is empty;

. myStack.clear() clears myStack, i.e. pops al items from myStack;

. myStack.clear-until(item) popsitems from myStack until item isfound or myStack is empty.

DEFAULT-LIST can be accessed and manipulated by using the list operations add, append, delete, member, first,
length, next, random and change. The meaning of these list operationsis defined in clause 8.3.1.1.

For the creation of a new entity state the function NEW-ENTITY is assumed to be available:
NEW-ENTITY (entityl dentifier, flow-graph-node-reference)
creates a new entity state and returns its reference. The components of the new entity state have the following values:
e <identifier> is set to entityldentifier and shall be a globally unique identifier;
¢ STATUSisset to ACTI VE;

¢ flow-graph-node-referenceis the only (top) element in CONTROL-STACK;

e DEFAULT-LIST isan empty list;

e« DEFAULT-POINTER has the value NULL ;

¢ VALUE-STACK isan empty stack;
e E-VERDICT issettonone;

e TIMER-GUARD isanew timer binding (see clause 8.3.2.4) with name GUARD, status | DL E and no default
duration;

e DATA-STATE isan empty list;
e TIMER-STATE isan empty list;

e SNAP-DONE isan empty list;

ETSI

41 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

During the traversal of aflow graph the CONTROL-STACK changes its value often in the same manner: the top element
is popped from and the successor node of the popped node is pushed onto CONTROL-STACK. This series of stack
operations is encapsulated in the NEXT-CONTROL function:

myEntity. NEXT-CONTROL (myBool) {
successor Node := myEntity. CONTROL-STACK.NEXT(myBool).top();
myEntity. CONTROL-STACK.pop();
myEntity. CONTROL -STACK .push(successorNode);

8.3.2.2 Data state and variable binding

Asshown in figure 25, the data state DATA-STATE of an entity state isalist of lists of variable bindings. Each list of
variable bindings defines the variable bindings in a certain scope unit. Adding a new list of variable bindings
corresponds to entering a new scope unit, e.g., afunction is called. Deleting alist of variable bindings corresponds to
leaving a scope unit, e.g. afunction executesar et ur n statement.

VariableBinding, VariableBinding,

v v
v v

VariableBinding, VariableBinding,

Figure 25: Structure of the DATA-STATE part of an entity state

The structure of avariable binding is shown in figure 26. A variable has a name, a<location> and a VALUE.
VAR NAME identifies a variable in a scope unit. The <location> isaunique identifier of the storage location of the
value of the variable. The VALUE part of avariable binding describes the actual value of a variable.

NOTE: Uniquelocation identifiers shall be provided automatically when a variable is declared.

VAR-NAME <location> VALUE

Figure 26: Structure of a variable binding

The distinction between variable name and location has been made to model function calls and the execution of test
cases with value and reference parameterization in an appropriate manner:

a) aparameter passed in by value is handled like the declaration of anew variable, i.e. anew variable binding is
appended to the list of variable bindings of the scope of the called function or executed test case. The new
variable binding uses the formal parameter name as VAR-NAME, receives a new location and gets the value that
is passed into the function or test case;

b) aparameter passed in by reference also leads to a new variable binding in the scope of the called function or
executed test case. The new variable binding also uses the formal parameter name as VAR-NAME, but receives
no new location and no new value. The new variable binding gets a copy of <location> and VALUE of the
variable that is passed in by reference.

When updating a variable value, e.g., in case of an assignment to a variable, the variable name is used to identify a
location and al variable bindings with the same location are updated at the same time. Thus, when leaving the scope
unit, the list of variables belonging to this scope unit can be deleted without further update. Due to the update
procedure, variables passed in by reference automatically have the correct value.

ETSI

42 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

8.3.2.3 Accessing data states

The value of avariable can be retrieved by using the "dot" notation entityState.var-name.VALUE, where myEntity refers
to an entity state and myVar is the name of avariable.

For the handling of variables and variable scope the following functions are considered to be defined:
a) The VAR-SET function: myEntity. VAR-SET (myVar, myValue)

sets the VALUE part of variable myVar in the actual scope of an entity myEntity to myVal. In addition, the
VALUE part of all variables with the same location as variable myVar will aso be set to myVal.

b) The INIT-VAR function: myEntity.INIT-VAR (myVar, myVal)

creates a new variable binding for avariable myVar with the initial value myVal in the actual scope unit of an
entity myEntity. Using the keyword NONE as myVal means that a variable with undefined initial valueis created.
A new and unique <location> value is automatically created.

€) The GET-VAR-LOC function: myEntity. GET-VAR-LOCATION (myVar)
retrieves the location of variable myVar owned by myEntity.
d) ThelINIT-VAR-LOC function: myEntity.INIT-VAR-LOC (myVar,myLoc)

creates anew variable binding for a variable myVar with the location myLoc in the actual scope unit of myEntity.
The variable will beinitialized with the value of another variable with the location myLoc.

NOTE: Variableswith the samelocation are aresult of parameterization by reference. Due to the handling of
reference parameters as described in clause 8.3.2.2 all variables with the same location will have identical
values during their lifetime.

e) The INIT-VAR-SCOPE function: myEntity.INI T-VAR-SCOPE ()

initializes a new variable scope in the data state of entity myEntity, i.e. an empty list is appended asfirst listin
thelist of lists of variable bindings.

f) The DEL-VAR-SCOPE function: myEntity.DEL-VAR-SCOPE ()

Deletes a variable scope of the data state of myEntity, i.e. the first list in the list of lists of variable bindingsis
deleted.

8.3.2.4 Timer state and timer binding

As shown in figures 27 and 25 the timer state TIMER-STATE and the data state DATA-STATE of an entity state are
comparable. Both are alist of lists of bindings and each list of bindings defines the valid bindings in a certain scope.
Adding anew list corresponds to entering a new scope unit and deleting a list of bindings correspondsto leaving a

scope unit.

TimerBinding, TimerBinding,

v v
v v

TimerBinding, TimerBinding,

Figure 27: Structure of the TIMER-STATE part of an entity state

ETSI

43 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

The structure of atimer binding is shown in figure 28. The meaning of TIMER-NAME and <location> is similar to the
meaning of VAR-NAME and <location> for a variable binding (figure 26).

TIMER-NAME | <location> | STATUS | DEF-DURATION | ACT-DURATION | TIME-LEFT | SNAP-VALUE | SNAP-STATUS

Figure 28: Structure of a timer binding

STATUS denotes whether atimer is active, inactive or has timed out. The corresponding STATUSvaluesare | DLE,
RUNNI NGand TI MEQUT. DEF-DURATION describes the default duration of atimer. ACT-DURATION stores the
actual duration with which arunning timer has been started. TIME-LEFT describes the actual duration that a running
timer has to run before it times out.

NOTE: DEF-DURATION isundefined if atimer is declared without default duration. ACT-DURATION and
TIME-LEFT are set to 0.0 if atimer is stopped or times out. If atimer is started without duration, the
value of DEF-DURATION is copied into ACT-DURATION. A dynamic error occursif atimer is started
without a defined duration.

NAP-VALUE and SNAP-STATUS are needed to support the snapshot semantics of TTCN-3. When taking a snapshot,
NAP-VALUE gets the actual value of ACT-DURATION — TIME-LEFT. And SNAP-STATUS gets the same value as
STATUS The evaluation of a snapshot will only be based on the values in SNAP-VALUE and SNAP-STATUS.

Timer can be only passed by reference into functions, i.e. the mechanism is similar to the mechanism for variables
described in clause 8.3.2.2. This means a new timer binding (with the formal parameter name) is created which gets
copies of <location>, STATUS, DEF-DURATION, ACT-DURATION, TIME-LEFT, SNAP-VALUE and SNAP-STATUS
from the timer that is passed in by reference. When updating atimer all timer bindings with the same <location> value
are updated at the same time.

8.3.2.5 Accessing timer states

The values of STATUS, DEF-DURATION, ACT-DURATION, TIME-LEFT, SNAP-VALUE and SNAP-STATUS of a
timer myTimer can be retrieved by using the dot notation:

. myEntity.myTimer.STATUS;

. myEntity.myTimer. DEF-DURATION;

« myEntity.myTimer. ACT-DURATION;

. myEntity.myTimer. TIME-LEFT;
. myEntity.myTimer. SNAP-VALUE;
. myEntity.myTimer.SNAP-STATUS.

The myEntity in the dot notation refers to an entity state representing the state of atest component or module control
that owns the timer myTimer.

For changing the values of STATUS DEF-DURATION, ACT-DURATION, TIME-LEFT, SNAP-VALUE and SNAP-
STATUS of atimer timer-name, the generic TIMER-SET operation has to be used, for example:

myEntity. TIMER-SET(myTimer, STATUS, myVal)

sets the STATUS value of timer myTimer in the actual scope of myEntity to the value myVal. In addition, the STATUS of
all timers with the same location as timer myTimer will also be set to myVal. The TIMER-SET function can aso be used
to change the values of DEF-DURATION, ACT-DURATION, TIME-LEFT, SNAP-VALUE and SNAP-STATUS of

ETSI

44 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

For the handling of timers, timer scope and snapshot the following functions have to be defined:
a) TheINIT-TIMER function: myEntity.INIT-TIMER (myTimer, myDuration)

creates a new timer binding for a timer myTimer with the default duration myDuration in the actual scope of an
entity myEntity. Using the keyword NONE as myDuration means that a timer without default duration is created.

b) The GET-TIMER-LOC function: myEntity. GET-TIMER-LOCATION (myTimer)

retrieves the location of timer myTimer owned by myEntity.

¢) TheINIT-TIMER-LOC function: myEntity.INIT-TIMER-LOC (myTimer, myLocation)

creates a new timer binding for atimer myTimer with the location myLocation in the actual scope unit of
myEntity. The timer will beinitialized with the values of STATUS DEF-DURATION, ACT-DURATION and
TIME-LEFT of another timer with the location <location>.

NOTE: Timerswith the same location are aresult of parameterization by reference. Due to the handling of timer
reference parameters as described in clause 8.3.2.3 all timers with the same location will have identical
values for STATUS, DEF-DURATION, ACT-DURATION and TIME-LEFT during their lifetime.

d) The INIT-TIMER-SCOPE function: myEntity.INIT-TIMER-SCOPE ()

initializes a new timer scope in the timer state of entity myEntity, i.e. an empty list is appended asfirst list in the
list of lists of timer bindings.

e) The DEL-TIMER-SCOPE function: myEntity.DEL-TIMER-SCOPE ()

deletes atimer scope of the timer state of entity myEntity, i.e. thefirst list in the list of lists of timer bindingsis
deleted.

f) The SNAP-TIMER function: myEntity. SNAP-TIMER ()
makes an update of INAP-VALUE and SNAP-STATUS, in all timers owned by myEntity , i.e.

myEntity. SNAP-TIMERS () {
for all myTimeri n TIMER-STATE {
myEntity.myTimer. SNAP-VALUE = myEntity.myTimer ACT-DURATION — myEntity.myTimer TIME-LEFT;
myEntity.myTimer. SNAP-STATUS = myEntity.myTimer . STATUS,
}

8.3.3 Port states

Port states are used to describe the actual states of ports. Within a module state, the port states are handled in the
ALL-PORT-STATES ist (see figure 23). The structure of a port state is shown in figure 29. The PORT-NAME refersto
the port name that is used to identify the port by the test component OWNER that owns the port. STATUS provides the
actua status of the port. A port may either be STARTED or STOPPED.

NOTE: A portinatest systemisuniquely identified by the owning test component <owner> and by the port
name <port-name> local to <owner>.

The CONNECTIONS-LIST of aport state keeps track of the connections between the different portsin the test system.
The mechanism is explained in clause 8.3.2.1.

The VALUE-QUEUE in a port state stores the messages, calls, replies and exceptions that are received at this port but
have not yet been consumed.

The SNAP-VALUE supports the TTCN-3 snapshot mechanism. When a snapshot is taken, the first element in
VALUE-QUEUE is copied into SNAP-VALUE. SNAP-VALUE will get the value NULL if VALUE-QUEUE is empty or
STATUSis STOPPED.

ETSI

45 Final draft ETSI ES 201 873-4 VV2.2.1 (2002-10)

PORT-NAME

OWNER STATUS

CONNECTIONS- |VALUE-QUEUE
LIST

SNAP-VALUE

Figure 29: Structure of a port state

8.3.3.1 Handling of connections among ports

A connection between two test components is made by connecting two of their ports by means of aconnect

operation. Thus, acomponent can afterwards use itsloca port name to address the remote queue. As shown in
figure 30, connection is represented in the states of both connected queues by a pair of REMOTE-ENTITY and
REMOTE-PORT-NAME. The REMOTE-ENTITY is the unique identifier of the test component that owns the remote

port. The REMOTE-PORT-NAME refers to the local name used by the REMOTE-ENTITY to address the queue.

TTCN-3 supports one-to-many connections of ports and therefore all connections of a port are organized in alist.

NOTE 1. Connections made by map operations are also handled in the list of connections. The map operation:
map(PTC1l:MyPort, syst emPCOL) leads to a new connection (syst em PCO1) in the port state of
MyPort owned by PTCL1. The remote side to which PCOL is connected to, resides inside the SUT. Its
behaviour is outside the scope of this semantics.

NOTE 2: The operational semantics handles the keyword sy st emas a symbolic address. A connection
(syst em myPort) in the list of connections of a port it indicates that the port is mapped onto the port

myPor

t in the test system interface.

REMOTE-ENTITY

REMOTE-PORT-NAME

Figure 30: Structure of a connection

8.3.3.2 Handling of port states

The queue of valuesin a port state can be accessed and manipulated by using the known queue operations enqueue,

dequeueg, first and clear. Using a GET-PORT or a GET-REMOTE function references the queue that shall be accessed.

NOTE 1. The queue operations enqueue, dequeue, first and_clear have the following meaning:

myQueue.enqueue(item) putsitem as last item into myQueue;

myQueue.dequeue() deletes the first item from myQueue;

myQueue first() returns the first item in myQueue or NULL if myQueue is empty;

myQueue.clear() removes al elements from myQueue.

The handling of port states is supported by the following functions:

a) The NEW-PORT function:

creates a new port and returns its reference. The new port is owned by myEntity and has the name myPort to the

NEW-PORT (myEntity, myPort)

port identified by the test component myEntity and the port name myPort. The status of the new port is
STARTED and both, CONNECTIONSLIST and the VALUE-QUEUE are empty.

b) The GET-PORT function: GET-PORT (myEntity, myPort)

returns a reference to the port identified by the test component myEntity that owns the port and the port name

myPort.

¢) The GET-REMOTE-PORT function:

GET-REMOTE-PORT (myEntity, myPort, myRemoteEntity)

returns the reference to the port that is owned by test component myRemoteEntity and connected to a port
identified by myEntity and myPort. The symbolic address SYSTEM isreturned, if the remote port is mapped

onto aportin

the test system interface.

ETSI

46 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

NOTE 2: GET-REMOTE-PORT returns NULL if there is no remote port or if the remote port cannot be identified
uniquely. The specia value NONE can be used as value for the myRemoteEntity parameter if the remote
entity is not known or not required, i.e. there exits only a one-to-one connection for this port.

d) The STATUSof aport is handled like avariable. It can be addressed by qualifying STATUS with a GET-PORT
call:

GET-PORT(myEntity, myPort).STATUS

€) The ADD-CON function: ADD-CON (myEntity, myPort, myRemoteEntity, myRemotePort)
adds a connection (myRemoteEntity, myRemotePort) to the list of connections of port myPort owned by
myEntity.

f) The DEL-CON function: DEL-CON (myEntity, myPort, myRemoteEntity, myRemotePort)
adds a connection (myRemoteEntity, myRemotePort) to the list of connections of port myPort owned by
myEntity.

g) The SNAP-PORTSfunction: SNAP-PORTS (myEntity)

updates SNAP-VALUE for all ports owned by myEntity, i.e.

SNAP-PORTS (myEntity) {
for all ports p /* in the nodule state */ {
i f (p.OWNER == myEntity) {
i f (p.STATUS== STOPPED) {
p. SNAP-VALUE = NULL;
}

el se{
p._SNAP-VALUE = p.first()

8.3.4 General functions for the handling of module states
The operational semantics assumes the existence of the following functions for the handling of module states.

NOTE 1: During theinterpretation of a TTCN-3 module, there only exists one module state. It is assumed that the
components of the module state are stored in global variables and not in a complex data object. Thus, the
following functions are assumed to work on global variables and do not address a specific module state
object.

a) TheDEL-ENTITY function: = DEL-ENTITY(myEntity)
deletes an entity with the unique identifier myEntity. The deletion comprises:
- the deletion of the entity state of myEntity;
- deletion of all ports owned by myEntity;
- deletion of all connectionsin which myEntity isinvolved.

b) The UPDATE-REMOTE-REFERENCES function:

UPDATE-REMOTE-REFERENCES (source, target)

the UPDATE-REMOTE-REFERENCES updates variables and timers with the same location in both entities. The
values that will be used for the update are the values of variables and timers owned by source.

ETSI

a7 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

NOTE 2: The UPDATE-REMOTE-REFERENCES s used during the termination of test cases. It alows updating of
variables of module control, which are passed as reference parameters to test cases.

8.4 Messages, procedure calls, replies and exceptions

The exchange of information among test components and between test components and the SUT is related to messages,
procedure calls, replies to procedure calls and exceptions. For communication purposes these items have to be
constructed, encoded and decoded. The concrete encoding, i.e. mapping of TTCN-3 data types to bits and bytes, and
decoding, i.e. mapping of bits and bytes to TTCN-3 data types, is outside the scope of the operational semantics. In the
present document messages, procedure calls, replies to procedure calls and exceptions are handled on a conceptual
level.

8.4.1 Messages

Messages are related to message-based communication. Values of all (pre- and user-defined) data types can be
exchanged among the entities that communicate. As shown in figure 31, the operational semantics handles a message as
structured object that consist of a sender and avalue part. The sender part identifies the sender entity of a message and
the value part defines the message value.

sender value

Figure 31: Structure of a message

NOTE: The operational semantics only presents a model for the concepts of TTCN-3. Whether and how the
sender information is or has to be sent and/or received depends on the implementation of the test system,
e.g., in some cases the sender information may be part of the value part of a message and therefore is no
separate part of the message structure.

8.4.2 Procedure calls and replies

Procedure calls and replies to procedures are related to procedure-based communication. They are defined like val ues of
arecord with components representing the parameters. The operational semantics also handles procedure calls and
repliesto procedure calls like valuesin structured types. The structure of a message call and the structure of areply are
presented in figure 32 and figure 34.

The sender and the procedure-reference parts have the same meaning in both figures. The sender part refersto the
sender entity of acall or the reply to a procedure call. The procedure-reference refers to the procedure to which call and
reply belong. The parameter-part of the procedure call in figure 32 refersto thei n parametersand i nout parameters
and the paramete- part of the reply in figure 33 refersto thei nout parametersand out parameters of the procedure to
which call and reply belong. In addition, the reply has avalue part for the return valuesin the reply to a procedure.

NOTE 1. Asstated in the previous note, the operational semantics only presents a model for the concepts of
TTCN-3. Whether and how the information described in figure 32 and figure 33 is or has to be sent
and/or received depends on the implementation of the test system.

NOTE 2: For aprocedure call, out parameters are of no relevance and are omitted in figure 32. For areply to a
procedure call, i n parameters are of no relevance and are omitted in figure 33.

sender procedure-reference parameter-part

in-or-inout-parameter; in-or-inout-parameter,

Figure 32: Structure of a procedure call

ETSI

48 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

sender procedur-reference parameter-part value

inout-or-out-parameter; inout-or-out-parameter,

Figure 33: Structure of a reply to a procedure call

8.4.3 Exceptions

Exceptions are also related to procedure-based communication. The structure of an exception is shown in figure 34. It
consists of three parts. The sender part identifies the sender of the exception; the procedure-reference part refers to the
procedure to which the exception belongs and the value part provides the value of the exception. The type of the value
of an exception is defined in the signature of the procedure referred to in the procedure reference part. In general it can
be of any pre- or user-defined TTCN-3 data type.

sender procedure-reference value

Figure 34: Structure of an exception

8.4.4 Construction of messages, procedure calls, replies and exceptions

The operations for sending a message, a procedure call, areply to a procedure call or an exception aresend, cal | ,
reply andrai se. All these sending operations are built up in the same manner:

<port-name>. <sendi ng- oper ati on>(<send-speci fication>) [to <receiver>]

The <port-name> and <sending-operation> define port and operation used for sending an item. In case of one-to-many
connections a <receiver> entity needs to be specified. The item to be sent is constructed by using the
<send-specification>. The send specification may use concrete values, template references, variable values, constants,
expressions, functions, etc. to construct and encode the item to be sent.

The operational semantics assumes that there exists a generic CONSTRUCT-ITEM function:

CONSTRUCT-ITEM (myEntity, <sendi ng- oper ati on>, <send- speci fi cati on>)

returns a message, a procedure call, areply to a procedure call or an exception depending on the

<sendi ng- oper at i on> and the<send- speci fi cat i on> (both, <sendi ng- oper at i on> and the
<send- speci fi cat i on> refer to the corresponding partsin the TTCN-3 sending operation). The entity
reference myEntity is the sender of the item to be sent. This sender information is also assumed to be part of the
item to be sent (figures 31 to 34).

8.4.5 Matching of messages, procedure calls, replies and exceptions

The operations for receiving a message, a procedure call, areply to a procedure call or an exception arer ecei ve,
getcal | ,getrepl y and cat ch. All these receiving operations are built up in the same manner:

<port-name>. <r ecei vi ng- oper ati on>(<mat chi ng- part>) [from <sender>] [<assignhment-part>]

The<port - nane> and <r ecei vi ng- oper at i on> define port and operation used for the reception of anitem. In
case of one-to-many connections af r omclause can be used to select a specific sender entity <sender >. Theitem to
be received has to fulfil the conditions specified in the <nmat chi ng- part >, i.e. it hasto match. The <nat chi ng-
par t > may use concrete values, template references, variable values, constants, expressions, functions, etc. to specify
the matching conditions.

The operational semantics assumes that there exists a generic MATCH-ITEM function:
MATCH-ITEM (myltem, <mat chi ng- part >, <sender >)

returnst r ue if myltem fulfils the conditions of <mat chi ng- part > and if <i t em t 0- check> hasbeen
sent by <sender >, otherwiseit returnsf al se.

ETSI

49 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

8.4.6 Retrieval of information from received items

Information from received messages, procedure calls, replies to procedure calls and exceptions can be retrieved in the
<assi gnnent - par t > (see clause 8.4.5) of thereceiving functionsr ecei ve, get cal | ,getrepl y and cat ch.
The<assi gnnent - par t > describes how the parameters of procedure calls and replies, return values encoded in
replies, messages, exceptions and the identifier of the <sender > entity are assigned to variables.

The operational semantics assumes that there exists a generic RETRIEVE-INFO function:

RETRIEVE-INFO (myltem, <assi gnnent - part >)

al vauesto be retrieved according to the <assi gnment - par t > are retrieved and assigned to the variables
listed in the assignment part. Assignments are done by means of the VAR-SET operation, i.e. variables with the
same location are updated at the same time.

8.5 Call records for functions, altsteps and test cases

Functions, altsteps and test cases are called (or executed) by their name and allist of actual parameters. The actual
parameters provide references for reference parameter and concrete values for the value parameter as defined by the
formal parametersin the function or test case definition. The operational semantics handles function calls and calls of
test cases by using call records as shown in figure 35. The value of BEHAVIOUR-ID is the name of afunction or test
case, value parameters provide concrete values <parld;> ... <parld,> for the formal parameters <parld,> ... <parld,>.
Reference parameters provide references to locations of existing variables and timers. Before a function or test case can
be executed an appropriate call record has to be constructed.

behaviour-id value-par ameter reference-parameter
parld, parld, parld, |...| parld,
value; value, locy loc,

Figure 35: Structure of a call record

8.5.1 Handling of call records

The function or test case name and the actual parameter values can be retrieved by using the dot notation, e.g.,
myCallRecord.par|d, or myCallRecord.behaviour-id where myCallRecord is a pointer to acall record.

For the construction of acall the function NEW-CALL-RECORD is assumed to be available:

NEW-CALL-RECORD (myBehaviour).

creates a new call record for function or test case myBehaviour and returns a pointer to the new record. The
parameter fields of the new call record have undefined values.

myEntity.INIT-CALL-RECORD (myCallRecord).

creates variables and timers for the handling of value and reference parameters in the actual scope of the test
component or module control myEntity. The variables for the handling of value parameters are initialized with
the corresponding values provided in the call record. The variables and timers for the handling of reference
parameters get the provided location. In addition, they get a value of an existing variable or timer in another
scope unit of the component in which the call record was created.

ETSI

50 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

8.6 The evaluation procedure for a TTCN-3 module

8.6.1 Evaluation phases

The evauation procedure for a TTCN-3 module is structured into (1) initialization phase, (2) update phase, (3)
selection phase and (4) execution phase. The phases (2), (3) and (4) are repeated until module control terminates. The
evaluation procedure is described by means of a mixture of informal text, pseudo-code and the functions introduced in
the previous clauses.

8.6.1.1 Phase I: Initialization

The initialization phase includes the following actions:

a) Declaration and initialization of variables:

- INIT-FLOW-GRAPHY); // Initialization of flow graph handling. INIT-FLOW-GRAPHS s
/I explained in clause 8.6.2

- Entity := NULL; /I Entity will be used to refer to an entity state. An entity state either
/I represents module control or atest component.

NOTE: Thefollowing global variables ALL-ENTITY-STATES ALL-PORT-STATES MTC, TC-VERDICT and
DONE form the modul e state that is manipulated during the interpretation of a TTCN-3 module (see
clause 8.3.1).

- ALL-ENTITY-STATES:= NULL;

- ALL-PORT-STATES:= NULL;

- MTC :=NULL;
- TC-VERDICT := none;
- DONE := NULL;
- SNAP-DONE = 0;
b) Creation and initialization of module control

- Entity:= NEW-ENTITY (GET-UNIQUE:-ID(), GET-FLOW-GRAPH (<moduleld>));
Il A new entity state is created and initialized with the start node of

the
/I flow graph representing the behaviour of the control of the
module
I/ with the name <moduleld>. GET-UNIQUE-ID isexplained in
/I clause 8.6.2.
- Entity.INIT-VAR-SCOPE(); /I New variable scope
- Entity.INIT-TIMER-SCOPE(); /I New timer scope

- Entity.VALUE-STACK.push(MARK); /[A mark is pushed onto the value stack

- AllEntities.append(Entity); /I The new entity is put into the modul e state.

ETSI

51 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

8.6.1.2 Phase Il: Update

The update phase is related to al actions that are outside the scope of the operational semantics but influence the
interpretation of a TTCN-3 module. The update phase comprises the following actions:

a) Timeprogress: All running timers are updated, i.e. the TIME-LEFT values of running timers are (possibly)
decreased, and if due to the update a timer expires, the corresponding timer bindings are updated,
i.e. TIME-LEFT is set to 0.0 and STATUSis set to TI MEQOUT;

NOTE 1. The update of timersincludes the update of al running TIMER-GUARD timers in module states.
TIMER-GUARD timers are used to guard the execution of test cases and call operations.

b) Behaviour of the SUT: Messages, remote procedure calls, replies to remote procedure calls and exceptions
(possibly) received from the SUT are put into the port queues at which the corresponding receptions shall take
place.

NOTE 2: This operational semantics makes no assumptions about time progress and the behaviour of the SUT.

8.6.1.3 Phase lll: Selection
The selection phase consists of the following two actions:
a) Selection: Select anon-blocked entity, i.e. an entity that has the STATUSvalue ACTIVE or SNAPSHOT;

b) Storage: Storetheidentifier of the selected entity in the global variable Entity.

8.6.1.4 Phase IV: Execution
The execution phase consists of the following two actions:

a) Execution step of the selected entity: Execute the top flow graph node in the CONTROL-STACK of Entity;

b) Check termination criterion: Stop execution if module control has terminated, i.e. the list of entity statesis
empty, otherwise continue with Phase I1.

NOTE: The execution step of the selected entity can be seen as a procedure call. The check of the termination
criterion is done when the execution step terminates, i.e. returns the control.

8.6.2 Global functions
The evauation procedure uses the global functions INIT-FLOW-GRAPHS and GET-UNIQUE-ID:

a) INIT-FLOW-GRAPHS s assumed to be the function that initializes the flow graph handling. The handling may
include the creation of the flow graphs and the handling of the pointers to the flow graphs and flow graph nodes.

b) GET-UNIQUE-ID isassumed to be a function that returns a unique identifier each timeit is called. The unique
identifier may be implemented in form of a counter variable that isincreased and returned each time
GET-UNIQUE-ID iscalled.

The pseudo-code used the following clauses to describe execution of flow graph nodes use the functions
CONTINUE-COMPONENT, RETURN, *** DYNAM C- ERROR* * * ;

c¢) CONTINUE-COMPONENT the actual test component continues its execution with the node lying on top of the
control stack, i.e. the control is not given back to the module evaluation procedure described in this clause.

d) RETURN returns the control back to the module evaluation procedure described in this clause. The RETURN is
the last action of the 'execution step of the selected entity' of the execution phase.

e) ***DYNAM C- ERROR*** refersto the occurrence of adynamic error. The error handling procedureitself is
outside the scope of the operational semantics. If adynamic error occurs all following behaviour of the moduleis
meant to be undefined.

NOTE: The occurrence of adynamic error isrelated to test behaviour. A dynamic error as specified by the
operational semantics denotes a problem in the usage of TTCN-3, e.g. wrong usage or race condition.

ETSI

52 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

f) APPLY- OPERATCR used as generic function for describing the evaluation of operators (e.g., +, *,/or -) in
expressions (see clause 9.18.4).

9 Flow graph segments for TTCN-3 constructs

The operational semantics represents TTCN-3 behaviour in form of flow graphs. The construction algorithm for the
flow graphs representing behaviour is described in clause 8.2. It is based on templates for flow graphs and flow graph
segments that have to be used for the construction of concrete flow graphs for module control, test cases, functions and
component type definitions defined in a TTCN-3 module. The definitions of the templates for the flow graph segments
can be found in this clause. They are presented in an aphabetical order and not in alogical order.

The flow graph segment definitions are provided in the form of figures. The flow graph nodes are presented on the |eft
side of the figures and comments associated to nodes and flow lines are shown on the right side. Descriptive comments
are presented for reference nodes and commentsin form of pseudo-code are associated to basic nodes. The pseudo-code
describes how a basic node is interpreted, i.e. changes the module state. It makes use of the functions defined in clause 8
and the global variables declared and initialized in the evaluation procedure for TTCN-3 modules (see clause 8.6). An
overall view of all functions and keywords used by the pseudo-code can be found in clause 8.

9.1 Action statement

The syntactical structure of anact i on statement is:
action (<informal description>)

The flow graph segment <action-stmt> in figure 36 defines the execution of theact i on statement.

segnment <action-stnt>

[/ inscription ‘nop’ neans ‘no operation’
Entity. NEXT- CONTROL(true);
(310] T W—— RETURN:

\4

Figure 36: Flow graph segment <action-stmt>

NOTE: The <informal description> parameter of theact i on statement has no meaning for the operational
semantics and is therefore not represented in the flow graph segment.

9.2 Activate statement

The syntactical structure of theact i vat e statement is:

activate(<al t step-name>([<act-par-desc;> ..., <act-par-descy,>]))

The <altstep-name> denotes to the name of an altstep that is activated as default behaviour, and <act - par - descr >,
.., <act - par - descr ,> describe the actual parameter values of the atstep at the time of its activation.

It isassumed that for each <act - par - desc > the corresponding formal parameter identifier <f - par -1 d;>is
known, i.e. we can extend the syntactical structure above to:

activat e(<al t st ep- name>((<f - par-1d;>, <act - par-desc:>), ..., (<f-par-1d,> <act-par-desc,>)))

ETSI

53 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

The flow graph segment <act i vat e- st mt > in figure 37 defines the execution of the activate statement. The
execution is structured into three steps. In the first step, a call record for the altstep <f unct i on- nanme> iscreated. In
the second step the values of the actual parameter are calculated and assigned to the corresponding field in the call
record. In the third step, the call record is put asfirst element in the DEFAULT-LIST of the entity that activates the
default.

NOTE: For atstepsthat are activated as default behaviour, only value parameters are allowed. In figure 37, the
handling of the value parametersis described by the flow graph segment <value-par-cal culation>, which
isdefined in clause 9.24.1.

segnent
<activate-stnt>

Entity. VALUE- STACK. push(NEW CALL- RECORD(f uncti on- nane));
Entity. NEXT- CONTROL(true);

construct-call-record

(altstep-name)) RETURN;
* /'l For each pair (<f-par-ldi> <act-paraneter-desc;>) the
/'l val ue of <act-paraneter-desc; is cal cul ated and
»»»»» /1 assigned to the corresponding field <f-par-Id;>
<val ue- par - cal cul ati on> /1 in the call record. The call record is assumed to be
/1 the top elenent in the val ue stack.

Entity. DEFAULT- LI ST. add(Entity. VALUE- STACK. top());

/1 We assune that only a reference to the call record has
/1 been pushed onto the value stack. This reference has
/'l not been renoved fromthe value stack. It is the result
/1 of the activate statenent.

Entity. NEXT- CONTROL(true);

RETURN;

activate-defaul t

Figure 37: Flow graph segment <activate-stmt>

9.3 Alt statement

Theal t statement isthe most complicated and important statement of TTCN-3. It implements the snapshot semantics
and specifies the branching due to the reception of messages, replies, calls and exceptions, due to the occurrence of
timeouts and due to the termination of components. In addition, the evocation of the TTCN-3 default mechanism is also
related totheal t statement.

The flow graph representation of theal t statement in figure 38. The different alternatives due to the reception of
messages, replies, calls and exceptions, due to the occurrence of timeouts and due to the termination of components are
hidden in the flow graph segment <r ecei vi ng- br anch>.

ETSI

54 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)
segment <al t-stmt>
>
<t ake- snapshot > /1 A snapshot is taken
Bl
/1 The different alternatives
<recei vi ng- branch> OR /] are eval uated
<al t step-cal | -branch>
OR <el se-branch>
¢ /1 The default nechani sm nay
/'l be evoked.
<def aul t - evocati on>
if (Entity.STATUS == ACTIVE) {
Entity. NEXT- CONTROL(true);
else { // A new snapshot needs to be taken, the
// status of the entity is SNAPSHOT (none
/1 of the alternatives could be sel ected
) /1 and executed) or REPEAT (due to a
alt-exit /1l repeat statenent)
fal se K Enti ty. NEXT- CONTROL(f al se) ;
true RETURN;

Figure 38: Flow graph segment <alt-stmt>

9.3.1

Flow graph segment <take-snapshot>

The flow graph segment <t ake- snapshot > in figure 39 describes the procedure of taking a snapshot. The snapshot

records values of ports, timers and stopped components.

segnment <t ake- snapshot >

/1 Take Snapshot

SNAP- PORTS(Entity);

Entity. SNAP- TI MER() ;

Entity. SNAP- DONE : = copy(DONE);

/Il Ports
/1 Timer
/| DONE

/1

t ake- snapshot

/1 MIC specific snapshot
'any conponent'
if (Entity == MIQ

SNAP- ACTI VE : = ALL- ENTI TY- STATES. | engt h();

information for the usage of
and 'all conponent'’

}

Entity. STATUS : = SNAPSHOT;
Entity. DEFAULT- PO NTER : =

/'l new conponent st atus
Entity. DEFAULT- LI ST.first();

RETURN,

Entity. NEXT- CONTROL(true);

v

Figure 39: Flow graph segment <take-snapshot>

ETSI

9.3.2

55

Flow graph segment <receiving-branch>

The execution of the flow graph segment <r ecei vi ng- br anch> isshown in figure 40.

segnment <recei vi ng- branch>

/1 The receiving branch is only eval uated,

/1 if the entity is in status SNAPSHOT

if (Entity.STATUS == SNAPSHOT) {
Entity. NEXT- CONTROL(true);

el se {
Entity. NEXT- CONTROL(f al se);

}
RETURN,;

<expr essi on>

/1 Bool ean expression that

/1 guards a branch

fal se
true

Enti ty. NEXT- CONTROL(Enti ty. VALUE- STACK. t op());
Entity. VALUE- STACK. pop();
RETURN;

Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

/1 The operations nmay change the status of

<recei ve-op> OR
<getcal | -op> OR
<getreply-op> OR
<cat ch-op> OR
<timeout-op> OR
<check-op> OR
<done- conmponent - op>

fal se

/1 Entity, if the operation is successful.

<st at enent - bl ock>

true

v

Figure 40: Flow graph segment <receiving-branch>

ETSI

9.3.3

56

Flow graph segment <altstep-call-branch>

Theinvocation of an altstep withinan al t statement is described by the flow graph segment

<al t st ep-cal | - branch>infigure 41.

segment
<al t step-cal | - branch>

/1 The branch is only eval uated,

/1 if the entity is in status SNAPSHOT

if (Entity.STATUS == SNAPSHOT) {
Entity. NEXT- CONTROL(true);

el se {
Entity. NEXT- CONTROL(f al se);

}
RETURN,;

/1 Bool ean expression that

<expressi on>

// guards a branch

fal se

<al tstep-call >

Entity. NEXT- CONTROL(Entity. VALUE- STACK top());
Enti ty. VALUE- STACK. pop() ;
RETURN;

Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

11
/1
/1

The altstep is called, the status of the
entity may be changed inside the altstep

by the different alternatives in the

/1 altstep.

\4

Figure 41: Flow graph segment <altstep-call-branch>

ETSI

9.3.4

57

Flow graph segment <else-branch>

Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

The execution of an el se branchwithinan al t statement is described by the flow graph segment <el se- br anch>

infigure 42.

segnent <el se-branch>

el se-part

/1 The branch is only eval uated,

/1 if the entity is in status SNAPSHOT

if (Entity.STATUS == SNAPSHOT) {
Entity. NEXT- CONTROL(true);

el se {
Entity. NEXT- CONTROL(f al se);

}
RETURN,;

/1l An el se-branch is always selected, i.e.
/] status of Entity will be set of ACTIVE
Entity. STATUS : = ACTI VE;

<st at enent - bl ock>

/'l The statenent
11

bl ock in an el se branch
i s al ways execut ed.

\4

Figure 42: Flow graph segment <else-branch>

ETSI

58 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.35 Flow graph segment <default-evocation>

The evocation of defaults behaviour at the end of al t statementsis described by the flow graph segment
<def aul t - evocat i on> infigure 43.

fal se

segnment <def aul t - evocati on>

default-in

cal |l -record-handl i ng

/1 A default is only evoked, if the

/] entity is in status SNAPSHOT

if (Entity.STATUS == SNAPSHOT) {
Entity. NEXT- CONTROL(true);

,,,,,,,,,,, el se {
Entity. NEXT- CONTROL(f al se);
}

RETURN,

/1 A call record in DEFAULT-LI ST, identified by
/] DEFAULT- PO NTER i s pushed onto the VALUE- STACK of
/] Entity. Afterwards DEFAULT-PO NTER is updated, i.e.,
/1 will point to the next record in DEFAULT-LIST. |f
/1 DEFAULT-PO NTER is NULL, the Entity status will not
/1 change and, thus, a new SNAPSHOT will be initiated in
/1l <alt-stnt>
if (Entity. DEFAUL- POINTER == NULL) {
Entity. NEXT- CONTROL(f al se);
el se {
Entity. VALUE- STACK. push(Entity. DEFAULT- PO NTER) ;
Entity. DEFAULT- PO NTER : =
Entity. DEFAULT- LI ST. next (Enti ty. DEFAULT- PO NTER) ;
Entity. NEXT- CONTROL(true);
}
RETURN;

\ 4

<user - def-func-cal | >

The actual default altstep is invoked
or called like a user defined function.

~—
~—

/1 Junp back to the beginning of the segnent
/Il to check if the next default behavi our has

v

default-in

>

/1 to be invoked.

v

Figure 43: Flow graph segment <default-evocation>

ETSI

59 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.4 Altstep call

Asshown in figure 44, the call of an altstep is handled like a function call.

segment <al tstep-call>

/'l Reference to the flow graph segnent
/1 describing the function call

<function-call>

\4

Figure 44: Flow graph segment <altstep-call>

9.5 Assignment statement
The syntactical structure of anassi gnment statement is:
<varl d> : = <expression>

The value of the expression <expr essi on> isassigned to variable <var | d>. The execution of an assignment
statement is defined by the flow graph segment <assi gnment - st nt > in figure 45.

segment <assi gnment - st nt >

/'l The expression is evaluated and the
/1 result is pushed onto the val ue stack

<expressi on>

Entity. VAR-SET(varld, Entity.VALUE-STACK top());
Enti ty. VALUE- STACK. pop() ;

assi gnment - st nt
(varld))} Entity. NEXT- CONTROL(true);

RETURN,

\4

Figure 45: Flow graph segment <assignment-stmt>

9.6 Call operation

The syntactical structure of the call operationis:

<portld>. call (<call Spec> [<blocking-info>]) [to <conponent-expressi on>]
[<cal I -reception-part >]

The optional <bl ocki ng-i nf 0> consists of either the keyword nowai t or aduration for atimeout exception. The
optional <conponent - expr essi on> inthet o clause refersto the receiver entity. It may be provided in form of a
variable value or the return value of afunction. The optional <call-reception-part> denotes the aternative receptionsin
case of ablocking cal | operation.

ETSI

60

Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

The operational semantics distinguishes between blocking and a non-blocking cal | operations. A cal | is
non-blocking if the keyword nowai t isusedinthecal | operation, or if the called procedure is nonblocking,
i.e. defined by using the keyword nobl ock. A blockingcal | hasa<cal | -recepti on-part >.

The flow graph segment <cal | - op> in figure 46 defines the execution of acal | operation. It reflects the distinction

between blocking and non-blocking calls.

segnment <cal | - op> l

<bl ocki ng-cal | - op>

OR
<non- bl ocki ng-cal | - op>

/1 A call operation may be bl ocking

/1 or non-bl ocki ng

\4

Figure 46: Flow graph segment <call-op>

For blocking and non-blocking call operations areceiver entity may be specified in form of an expression. The

possibilities are shown in figure 47 and figure 48.

segnment <bl ocki ng-cal | - op> l

<b-cal | -wi t hout - dur ati on>
orR
<b-cal |l -wi t h-durati on>

/1 A blocking call may or may not
/1 be supervised by TI MER- GUARD

\4

Figure 47: Flow graph segment <blocking-call-op>

I
segment <non- bl ocki ng-cal | - op> i

<nb-cal | -wi t h-recei ver >
orR
<nb-cal | -wi t hout -recei ver >

/1 A non-bl ocking call
/1 not have a receiver
/'l specification

may or may

\4

Figure 48: Flow graph segment <non-blocking-call-op>

ETSI

61 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.6.1 Flow graph segment <nb-call-with-receiver>

The flow graph segment <nb- cal | - wi t h-r ecei ver > in figure 49 defines the execution of a non-blocking cal |
operation where the receiver is specified in form of an expression.

segnment <nb-cal |l -w th-receiver>

v

<expr essi on>

/1 The expression shall evaluate
/1 to a conponent reference

nb-cal | -w t h-recei ver
(portld, call Spec)

let {
var receiver := Entity. VALUE- STACK. top();
var renotePort := CGET- REMOTE- PORT(Entity, portld, receiver);

if (remptePort == NULL) ({
*** DYNAM C- ERROR***; // Renote port cannot be found

}

if (remotePort == SYSTEM {
/l Port is mapped onto a port of the test system
Il reception of the reply by the SUT is outside
/'l the scope of the operational senantics

else { // sending of call
renmot ePort. enqueue(CONSTRUCT- | TEM Entity, call, call Spec));

} /1 end of scope of receiver and renotePort
Entity. VALUE- STACK. pop(); /1 clean val ue stack

Entity. NEXT- CONTROL(true);
RETURN;

Figure 49: Flow graph segment <nb-call-with-receiver>

ETSI

62 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.6.2 Flow graph segment <nb-call-without-receiver>

The flow graph segment <nb- cal | - wi t hout - r ecei ver > infigure 50 defines the execution of a non-blocking
cal | operation without at o-clause.

segnment <nb-cal | -w t hout -recei ver - op>

nb-cal | - wi t hout - r ecei ver - op
(portld, call Spec)

let {
var renotePort := GET- REMOTE- PORT(Entity, portld, NONE);

if (remptePort == NULL) ({
*** DYNAM C- ERROR***; // Renote port cannot be found

}

if (renptePort == SYSTEM ({
// Port is mapped onto a port of the test system
/'l reception of the reply by the SUT is outside
/1 the scope of the operational senantics

else { // sending of call
renot ePort. enqueue(CONSTRUCT- | TEM Entity, send, call Spec));

} // end of scope of renotePort
Entity. VALUE- STACK. pop(); /'l clean val ue stack

Entity. NEXT- CONTROL(true);
RETURN;

v

Figure 50: Flow graph segment <nb-call-without-receiver>

ETSI

63 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.6.3 Flow graph segment <b-call-without-duration>

Blocking calls are modelled by a non-blocking call followed by the body of the call, which handles the replies and
exceptions. The flow graph segment <b- cal | - wi t hout - dur at i on> shown in figure 51 describes the execution
of ablocking call without a given duration as time guard.

segnent <b-call-wi thout-duration> i

<nb-cal | -wi th-receiver>

R I /'l Call of renote procedure
<nb-cal | -wi t hout - recei ver >

: /1 Handling of replies and
<call-reception-part> /1 exceptions of the called
/'l procedure.

\4

Figure 51: Flow graph segment <b-call-without-duration>

ETSI

64 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.6.4 Flow graph segment <b-call-with-duration>

The flow graph segment <b- cal | - wi t h- dur at i on> (seefigure 52) describes the execution of ablocking call
with aduration as time guard.

segnent <b-call-with-duration> l

/'l The expression shall evaluate
/1 to a float value which defines

<expr essi on> H Eihfre(rjuratl on of the guarding

Entity. TI MER- GUARD. STATUS : = | DLE;
Entity. TI MER- GUARD. ACT- DURATI ON : =

Entity. VALUE- STACK. top();
Entity. VALUE- STACK. pop();

set-tinmer-guard

Entity. NEXT- CONTROL(true);
RETURN;

<nb-cal | -wi t h-recei ver >
oR /1 Call of renote procedure
<nb-cal | -w t hout -recei ver >

Entity. TI MER- GUARD. STATUS : = RUNNI NG
Entity. VALUE- STACK. pop();

start-tiner-guard N] Entity. NEXT- CONTROL(true);

RETURN,

/1 Handling of replies and
/] exceptions of the called
/| procedure.

<cal | -recepti on-part>

\4

Figure 52: Flow graph segment <b-call-with-duration>

ETSI

9.6.5

The flow graph segment <cal | - r ecept i on- part > (see figure 53) describes the handling of replies, exceptions

and the timeout exception of ablocking cal | operation.

65

Flow graph segment <call-reception-part>

segment <cal | -reception-part>

>

<t ake- snapshot > I

A snapshot is taken

/1
/1
/1
/1

.
]

<recei vi ng- branch>

Only branches with getcall and catch
operations related to the call handl ed
by this reception part are allowed
here.

Ti meout exception if the call is

guarded by a duration.

v
ﬂ

<cat ch-ti meout - excepti on>

b-cal |l -exit

fal se

true }

el se {

(Entity. STATUS == ACTIVE) {

Entity. NEXT- CONTROL(true);

/1 To assure a defined state of Entity
Entity. TI MER- GUARD. STATUS : = | DLE;
Entity. STATUS : = ACTI VE;

/'l A new snapshot needs to be taken, the
status of the entity is SNAPSHOT (none
of the alternatives could be sel ected
and execut ed)

. NEXT- CONTROL(f al se);

v

Figure 53: Flow graph segment <call-reception-part>

ETSI

Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

66

9.6.6

Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

Flow graph segment <catch-timeout-exception>

The flow graph segment <cat ch- t i neout - except i on> (seefigure 54) isfor the handling of atimeout exception

of ablocking call operation that is guarded by a duration.

segnment <catch-ti meout - excepti on>

check- guard

}
RETURN,;

if (Entity.TI MER- GUARD. STATUS == TI MEQUT) {

Entity. NEXT- CONTROL(true);
/1 To assure a defined state of Entity
Entity. TI MER- GUARD. STATUS : = | DLE;

Entity. STATUS : = ACTI VE;

else { // continue eval uation
Entity. NEXT- CONTROL(f al se);

<st at enent - bl ock>

/1 To be executed,
/1 tinmeout exception occured

if the

v

Figure 54: Flow graph segment <catch-timeout-exception>

9.7

The syntactical structure of the catch operationis:

Catch operation

<portld>. catch (<matchingSpec>) [from <conponent _expression>] -> [<assignment Part >]

Apart from the cat ch keyword this syntactical structure isidentical to the syntactical structure of ther ecei ve
operation. Therefore, the operational semantics handlesthe cat ch operation in the same manner asther ecei ve
operation. Thisis also shown in the flow graph segment <get r epl y- op> (figure 55), which defines the execution of
acat ch operation. The figure refers to flow graph segmentsrelated to ther ecei ve operation (see clause 9.37).

|
segnent <catch-op> i

<recei ve-wi t h- sender >
orR
<recei ve-wi t hout - sender >

/1 Distinction due to the optional
/1 fromclause

\4

Figure 55: Flow graph segment <catch-op>

ETSI

67 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.8 Check operation

The syntactical structure of ther ecei ve operationis:

<portld>. check(receive|getcall|catch|getreply (<matchi ngSpec>)
[from <conponent - expressi on>]) [-> <assignment Part >]

The optional <conponent - expr essi on> inthef r omclause refers to the sender entity. It may be provided in
form of avariable value or the return value of a function, i.e. it is assumed to be an expression. The optional

<assi gnnent Par t > denotes the assignment of received information if the received information matchesto the
matching specification <mat chi ngSpec> and to the (optional) f r omclause.

The operational semantics handles the operationsr ecei ve, get cal | , cat ch and get r epl y in the same manner,
i.e. they are described by referencing the same flow graph segments<r ecei ve- wi t h- sender > and

<recei ve-w t hout - sender >. The check operation a so handles the different operations in the same manner.
Thus the flow graph segment <check- op> in figure 56, which defines the execution of the check operation, also
references only two flow graph segments. The only difference to the flow graph segments <r ecei ve- wi t h-
sender > and <r ecei ve- wi t hout - sender > isthat the received items are not deleted after the match.

|
segnent <check- op> l

<check-wi t h- sender >
oR /1 Distinction due to the optional
<check-w t hout - sender> [/1 fromclause

\4

Figure 56: Flow graph segment <check-op>

ETSI

9.8.1

68 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

Flow graph segment <check-with-sender>

The flow graph segment <check- wi t h- sender > in figure 57 defines the execution of acheck operation where

the sender i

s specified in form of an expression.

segnent
<check-

v

<expr essi on>

wi t h- sender > -
/1l The Expression shall evaluate

/!l to a conponent reference. The
/1 result is pushed onto VALUE- STACK

let { // local scope for portRef and sender
var portRef := NULL;
var sender := Entity.VALUE- STACK. top(); /1 Sender
Entity. VALUE- STACK. pop(); /'l dean val ue stack
if (portID == "any port') {
port Ref := ALL- PORT- STATES. r andon{ MATCH | TEM SNAP- VALUE, mat chi ngSpec, sender));
if (portRef == NULL) { // no 'matching" port found
Entity. NEXT- CONTROL(f al se);

RETURN,
}
el se {
port Ref := GET-PORT(Entity, portld) // Specified port
}
/1 MATCH NG
if (PortRef.first() == NULL) { // Port queue is enpty, no nmatch
Entity. NEXT- CONTROL(f al se);
RETURN,
}
el se {

if (MATCH | TEM port Ref . SNAP- VALUE, nat chi ngSpec, sender)) {
/1 The nessage in the queue natches
Entity. VALUE- STACK. push(port Ref); /1 Saving port reference
Entity. STATUS : = ACTI VE; /'l successful match, Entity status is changed
/1 from SNAPSHOT to ACTI VE

Entity. NEXT- CONTROL(true);

el se { // The top itemin the queue does not match
Entity. NEXT- CONTROL(f al se);

}
RETURN;

}
} /1 End of scope of portRef and sender

recei ve-w t h- sender
(port! D, matchi ngSpec)

true

/1 optional value
*(1) /] assignent

<recei ve- assi gnnent >

Enti ty. VALUE- STACK. pop();

Entity. NEXT- CONTROL(true);

cl ean-val ue-stack ... RETURN;

fal se true

v \4

Figure 57: Flow graph segment <check-with-sender>

ETSI

69

9.8.2 Flow graph segment <check-without-sender>

Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

The flow graph segment <check- wi t hout - sender > in figure 58 defines the execution of acheck operation

without af r omclause.

segnment <check-wi t hout - sender >

let { // local scope for portRef
var portRef := NULL;
if (portlD == "any port')
port Ref := ALL- PORT- STATES. r andon(MATCH | TEM SNAP- VALUE, mat chi ngSpec,
if (portRef == NULL) { // no 'matching' port found
Entity. NEXT- CONTROL(fal se);
RETURN,
}
el se {
portRef := GET-PORT(Entity, portld) // Specified port
}
/1 MATCHI NG
if (PortRef.first() == NULL) { // Port queue is enpty, no match
Entity. NEXT- CONTROL(fal se);
RETURN,
}
el se {
i f (MATCH | TEM port Ref . SNAP- VALUE, mat chi ngSpec, NONE)) {

/1 The nessage in the queue natches
Entity. VALUE- STACK. push(port Ref);
Entity. STATUS : = ACTI VE;

/1 Saving port reference
/'l successful

/1 from SNAPSHOT to ACTI VE

Entity. NEXT- CONTROL(true);

el se { /1 The first itemin the queue does not natch
Entity. NEXT- CONTROL(fal se);

}

RETURN,

/1 End of scope of portRef and sender

NONE)) ;

match, Entity status is changed

¥ }

recei ve-w t h- sender
(port! D, matchi ngSpec)

true
val ue

/1 optional
/1 assignemt

*(1)

<recei ve- assi gnnent >

Enti ty. VALUE- STACK. pop();

Entity. NEXT- CONTROL(true);

cl ean-val ue- st ack RETURN;

fal se true

Figure 58: Flow graph segment <check-without-sender>

ETSI

70 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.9 Clear port operation

The syntactical structure of thecl ear port operationis:
<portld>. clear

The flow graph segment <clear-port-op> in figure 59 defines the execution of the cl ear port operation.

segment <cl ear - port-op>

GET-PORT(Entity, portld).clear;

clear-port-op ... Entity. NEXT- CONTROL(true);
(portld) -

RETURN,

v

Figure 59: Flow graph segment <clear-port-op>

9.10 Connect operation

The syntactical structure of atheconnect operationis:

connect (<conponent - expr essi on;>. <port | dl>, <conponent-expression,>. <portl| d2>)

Theidentifiers<port | d1> and <port | d2> are considered to be port identifiers of the corresponding test
components. The components to which the ports belong are referenced by means of the component references
<conponent - expr essi on;> and <conponent - expr essi on,>. The references may be stored in variables or
isreturned by afunction, i.e, they are expressions, which evaluate to component references. The value stack is used for
storing the component references.

The execution of theconnect operation is defined by the flow graph segment <connect - op> shown in figure 60.
In the flow graph description the first expression to be evaluated refersto <conponent - expr essi on,> and the
second expressionto <conponent - expr essi on,>, i.e. the<conponent - expr essi on,> isontop of the
value stack when theconnect - op nodeis executed.

segnent <connect - op> l

let { /1 begin of a local scope unit, needed for
/1 the local variables conpl und conp2

<expr essi on> .
var conp2 = Entity. VALUE- STACK. top();

Entity. VALUE- STACK. pop() ;
L var conpl = Entity. VALUE- STACK. top();

Entity. VALUE- STACK. pop();

<expr essi on> ADD- CON(conpl, portldl, comp2, portld2);
ADD- CO\(conp2, portld2, conpl, portldl);

} /1 end of local scope

Entity. NEXT- CONTROL(true);

connect - op RETURN

(portldi, portld2)

Figure 60: Flow graph segment <connect-op>

ETSI

71 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.11 Constant definition

The syntactical structure of a constant definitioniis:
const <const Type> <constld> : = <const Type- expr essi on>
The value of a constant is considered to be an expression that evaluates to a value of the type of the constant.

NOTE: Global constants are replaced by their values in a pre-processing step before this semanticsis applied
(see clause 9.2). Local constants are treated like variable declarations with initialization. The correct
usage of constants, i.e. constants shall never occur on the left side of an assignment, shall be checked
during the static semantics analysis of a TTCN-3 module.

The flow graph segment <constant-definition> in figure 61 defines the execution of a constant declaration where the
value of the constant is provided in form of an expression.

segnent <constant-definition>

v

/'l The expression shall evaluate
I/l to a value of the type of the
/1 constant that is defined.

<expressi on>

/1 NOTE: A constant definition is treated like a
/1 variable with inititialisation value

Entity. | NIT-VAR(constld, Entity.VALUE- STACK. top());
var-decl aration-init Entity. VALUE- STACK. pop();
(const|d)

Entity. NEXT- CONTROL(true);
RETURN;

Figure 61: Flow graph segment <constant-definition>

ETSI

72 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.12 Create operation

The syntactical structure of thecr eat e operationis:

<conponent Typel d>. creat e

The flow graph segment <cr eat e- op> in figure 62 defines the execution of the cr eat e operation.

segment <creat e- op>

create-op
(conponent Typel d)

/1 The identifier for the newentity is created and pushed onto the val ue stack
/1 of the 'father' entity. Note, this identifier is the result of the create
/] operation.

Entity. VALUE- STACK. push(GET- UNI QUE- 1 X)) ;

/1 New entity state is created and pushed onto the value stack of the
/1 'father' entity

Entity. VALUE- STACK. push(NEW ENTI TY(Entity. VALUE- STACK. top(), conponent TypelD));

/1 The identifier of the 'father' entity is pushed onto the
/1 value stack of the new entity

Entity. VALUE- STACK. t op() . VALUE- STACK. push(Entity);

/1 The new entity is put into the nodule state (AllEntities is a global variable)

ALL- ENTI TY- STATES. append() . Ent i ty. VALUE- STACK. t op() ;

/1 The new entity state is renmoved fromthe value stack of the 'father' entity
/1 The 'father' entity goes into a blocking state and the control is returned
/1 to the nodul e eval uation procedure

Entity. VALUE- STACK. pop();

Entity. VALUE- STACK. push(Entity. STATUS); // Saving the actual status
Entity. STATUS : = BLOCKED,

Entity. NEXT- CONTROL(true);

RETURN,

Figure 62: Flow graph segment <create-op>

ETSI

73 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.13 Deactivate statement

The syntactical structure of adeact i vat e statement is:
deacti vat e(<def aul t - expressi on>)

The value of the expression <def aul t - expr essi on> shall evaluate to a default reference. It may be provided in
form of avariable value or value returning function. The deact i vat e statement removes the specified default from
the DEFAULT-LIST of the entity that executesthe deact i vat e statement. The execution of adeact i vat e
statement is defined by the flow graph segment <deact i vat e- st nt > infigure 63.

segnent
<deacti vat e-stnt >

/1 The expression shall evaluate to a
/1 default reference, which is pushed
/1 pushed onto the val ue stack.

<expr essi on>

Entity. DEFAULT-LI ST. del ete(Entity. VALUE- STACK. top());
Entity. VALUE- STACK. pop(); // clean value stack

deactivate-stnt Entity. NEXT- CONTROL(true);
RETURN,

Figure 63: Flow graph segment <deactivate-stmt>

9.14 Disconnect operation

The syntactical structure of athedi sconnect operationis:

di sconnect (<conponent - expr essi on,>. <portl dl>,
<conponent - expr essi on,>. <portl d2>)

ETSI

Theidentifiers<port | d1> and <port | d2> are considered to be port identifiers of the corresponding test
components. The components to which the ports belong are referenced by means of the component references
<conponent - expr essi on;> and <conponent - expr essi on,>. The references may be stored in variables or
are returned by functions, i.e, they are expressions, which evaluate to component references. The value stack is used for

storing the component references.

The execution of thedi sconnect operation is defined by the flow graph segment <di sconnect - op> shownin
figure 64. In the flow graph segment the first expression to be evaluated refersto <conponent - expr essi on;>
and the second expressionto <component - expr essi on,>, i.e. the<conponent - expr essi on,> ison top of

74

the value stack when the di sconnect - op nodeis executed.

segnent <di sconnect - op> l

<expressi on>

v

<expressi on>

di sconnect - op
(portldl, portld2)

| et

{ /1 begin of a local
/1 the | ocal

scope,

var conp2 = Entity. VALUE- STACK. top();
Entity. VALUE- STACK. pop();
var conpl = Entity. VALUE- STACK top();
Entity. VALUE- STACK. pop();

DEL- CON(conpl, portldl, conp2, portld2);
DEL- CON(conp2, portld2, conpl, portldl);

} /1 end of local scope
Entity. NEXT- CONTROL(true);
RETURN;

v

Figure 64: Flow graph segment <disconnect-op>

ETSI

Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

needed for
vari abl es conpl und conp2

9.15

The syntactical structure of the do-whi | e statement is:

Do-while statement

do <st at enent - bl ock>

whi | e (<bool ean- expr essi on>)

75

Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

The execution of ado-whi | e statement is defined by the flow graph segment <do- whi | e- st nt > shown in

figure 65.

segnment <do-whil e-stnt>

<st at ement - bl ock>

i

<expressi on>

/1 The expression shall
/'l a Bool ean val ue.

evaluate to

if (Entity.VALUE- STACK. top() == true) {

Entity. NEXT- CONTROL(true);

true el se {
decision N\ Entity. NEXT- CONTROL(true);
}
Entity. VALUE- STACK. pop();
fal se RETURN; 7
v

Figure 65: Flow graph segment <do-while-stmt>

ETSI

76 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.16 Done component operation

The syntactical structure of the done component operation is:
<conponent - expr essi on>. done

The done component operation checks whether a component is running or has stopped. Depending on whether a
checked component is running or has stopped the done operation decides how the flow of control continues. Using a
component reference identifies the component to be checked. The reference may be stored in avariable or be returned
by afunction, i.e. it is an expression. For simplicity, the keywords'al | conponent "and'any conponent'are
considered to be special expressions.

The flow graph segment <done- op> in figure 66 defines the execution of the done component operation.

segnent <done- op>
¢ /1 The Expression shall evaluate
AAA /] to a Con‘ponent reference. The
) /1 result is pushed onto VALUE- STACK
<expr essi on>
if (Entity.VALUE-STACK top() == 'all conponent') {
if (Entity '= MIQ {
DYNAM C- ERROR [/ 'all conponent' is not allowed
}
el se {
done- conponent -op) if (SNAP-ACTIVE == 2) { // only MIC and Control are running
Entity. NEXT- CONTROL(true);
Entity. STATUS : = ACTIVE; // DONE is successful
el se {
Entity. NEXT- CONTROL(fal se);
}
}
}
el se {
if (Entity.VALUE- STACK. top() == 'any conponent') ({
if (Entity I'= MIQ {
*** DYNAM C- ERROR*** // 'any conponent' is not all owed
el se {
if (Entity.SNAP-DONE. | ength() > 0) {
Entity. NEXT- CONTROL(true);
Entity. STATUS := ACTIVE; // DONE is successful
el se {
Entity. NEXT- CONTROL(fal se);
}
}
el se {
if (Entity.SNAP-DONE. menber (Entity. VALUE- STACK. top())) {
Entity. NEXT- CONTROL(true);
Entity. STATUS : = ACTIVE; // DONE is successful
el se {
Entity. NEXT- CONTROL(fal se);
}
}
.
Entity. VALUE- STACK. pop(); // clean value stack
RETURN,

ltrue Lfalse

Figure 66: Flow graph segment <done-component-op>

ETSI

77 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.17 Execute statement

The syntactical structure of the execut e statement is:
execut e(<t est Casel d>([<act-par,>, ..., <act-par >)]) [, <float_ expression>])

The execut e statement describes the execution of atest case <t est Casel d> with the (optional) actual parameters
<act-par.> ..., <act-par,>. Optionaly the execute statement may be guarded by a duration provided in form
of an expression that evaluatesto af | oat . If within the specified duration the test case does not return averdict, a
timeout exception occurs, the test caseis stopped and an er r or verdict is returned.

NOTE: The operational semantics models the stopping of the test case by a stop of the MTC. In redlity, other
mechanisms may be more appropriate.

If no timeout exception occurs, the MTC is created, the control instance (representing the control part of the TTCN-3
module) is blocked until the test case terminates, and for the further test case execution the flow of control is given to
the MTC. The flow of control is given back to the control instance when the MTC terminates.

The flow graph segment <execut e- st nt > in figure 67 defines the execution of an execut e statement.

segnent <execute-stnt> l

<execute-w t hout -ti meout >
oR /1 An execute statenent nay or nay
<execute-tineout> [T /1 not be guarded by a tineout

\4

Figure 67: Flow graph segment <execute-stmt>

ETSI

78

Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.17.1 Flow graph segment <execute-without-timeout>

The execution of atest case starts with the creation of the nt ¢. Then the mtc is started with the behaviour defined in the
test case definition. Afterwards, the module control waits until the test case terminates. The creation and the start of the

MTC can be described by using cr eat e and st art statements:

var nmcType MyMIC : = ntcType. create;

MyMTC. st art (Test CaseNane(P1..Pn);

The flow graph segment <execut e- wi t hout - t i meout > in figure 68 defines the execution of an execut e
statement without the occurrence of atimeout exception by using the flow graph segments of the operationscr eat e

andthest art.

segnment <execute-w t hout -ti neout > i

<creat e-op>

/!l Creation of the MIC

init-test-case-state

<start - conponent - op>

MIC : = Entity. VALUE- STACK. top();
TC VERDI CT : = none;
DONE : = NULL;

Entity. NEXT- CONTROL(true);
RETURN,

wai t-for-termnation

/] Start of MIC

Entity. STATUS : = BLOCKED;

/1 MIC will set status to ACTIVE
/1 before it termnates
Entity. NEXT- CONTROL(true);
RETURN;

\4

Figure 68: Flow graph segment <execute-without-timeout>

ETSI

79 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.17.2 Flow graph segment <execute-timeout>

The flow graph segment <execut e- t i neout > in figure 69 defines the execution of an execut e statement that is
guarded by atimeout value. The flow graph segment also models the creation and start of the MTC by acr eat e anda
st art operation. In addition, TIMER-GUARD guards the termination.

ETSI

Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

segnent <execute -t i meout > ¢

<expressi on>

/1 The Expression shall
/1 a float val ue.
/1 the duration of TIMER GUARD

evaluate to a
Thi s val ue defi nes

set-timer-guard

<cr eat e- op>

init-test-case-state

<start - conponent - op>

active-waiting

true

true

st op-or-tinmeout

fal se

Entity. TI MER- GUARD. STATUS : = | DLE;
Entity. TI MER- GUARD. ACT- DURATI ON : =

Entity. VALUE- STACK. t op();
Entity. VALUE- STACK. pop();

Entity. NEXT- CONTROL(true);
RETURN,

/1 Creation of the MIC

<stop-ntc>

/* Stop test case */

MIC : = Entity. VALUE- STACK. top();
TC- VERDI CT : = none;
DONE : = NULL;

Entity. NEXT- CONTROL(true);
RETURN,

/] Start of MIC

Entity. STATUS : = SNAPSHOT;

Entity. TI MER- GUARD. STATUS : = RUNNI NG
/1 MIC will set status to ACTIVE

/1 before it termnates

Entity. NEXT- CONTROL(true);

RETURN,;

if (Entity. STATUS == SNAPSHOT &&
Entity. TI MER. GUARD. STATUS | = TI MEQUT) {
/1 Control waits
Entity. NEXT- CONTROL(true);

/'l Test case termi nated or
/1 timer guard tinmed out
Entity. NEXT- CONTROL(true);

el se {

}
RETURN,;

if (Entity.STATUS != SNAPSHOT) ({
/1 normal termnation
Entity. NEXT- CONTROL(true);

else { // guarding tiner tinmed out
Entity. NEXT- CONTROL(f al se);

/1 To assure a defined state of Entity
Entity. TI MER- GUARD. STATUS : = | DLE;
Entity. STATUS : = ACTI VE;

RETURN,

Entity. VALUE- STACK. pop(); //renove verdict
Entiy. VALUE- STACK. push(error);

Entity. NEXT- CONTROL(true);
RETURN;

v

Figure 69: Flow graph segment <execute-timeout>

ETSI

81 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.18 Expression
For the handling of expressions, the following four cases have to be distinguished:
a) theexpressionisaliteral value (or aconstant);
b) theexpressionisavariable
c) theexpression isan operator applied to one or more operands,
d) theexpressionisafunction or operation call.
The syntactical structure of an expression is:
<lit-val> | <var-val> | <func-op-call> | <operand-appl>
where;
<lit-val > denotes a literal value;
<var-val > denotes a variable value;
<func-op-cal | > denotesafunction or operation call;
<oper at or - appl > denotes the application of arithmetic operatorslike +, -, not , etc.

The execution of an expression is defined by the flow graph segment <expr essi on> shownin figure 70.

segment <expressi on> ¢
<lit-val ue>
R /1l The four alternatives
<var - val ue> /'l describe the four
R /] possibilities for
<func-op-cal | > /'l expressions as
R /1 described in this
<oper at or - appl > /1 section.
v

Figure 70: Flow graph segment <expression>

9.18.1 Flow graph segment <lit-value>

The flow graph segment <l i t - val ue> infigure 71 pushes aliteral value onto the value stack of an entity.

segment <lit-value> Entity. VALUE- STACK. push(val ue) ;

vl aey ENt i ty. NEXT- CONTROL(t1 ue)
RETURN;

v

Figure 71: Flow graph segment <lit-value>

ETSI

82 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.18.2 Flow graph segment <var-value>

The flow graph segment <var - val ue> infigure 72 pushes the value of a variable onto the value stack of an entity.

segment <var-val ue> Entity. VALUE- STACK. push(Entity. var-nane. VALUE) ;

var - val ue

(var-nanme))7 Entity. NEXT- CONTROL(true);

RETURN,

v

Figure 72: Flow graph segment <var-value>

9.18.3 Flow graph segment <func-op-call>

The flow graph segment <f unc- op- cal | > infigure 73 refersto calls of functions and operations, which return a
value that is pushed onto the value stack of an entity. All these calls are considered to be expressions.

segnment <func-op-call> ¢

<activate-stnt> OR <create-op> OR
<function-call> OR <ntc-op> OR
<read-timer-op> OR <running-timer-op> OR
<runni ng- conponent - op> OR
<sel f-op> OR <system op> OR
<verdi ct. get-op> OR <execute-stnt>

\4

Figure 73: Flow graph segment <func-op-call>

ETSI

83 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.18.4 Flow graph segment <operator-appl>

The flow-graph representation in figure 74 directly refers to the assumption that reverse polish notation is used to
evaluate operator expressions. The operands of the operator are calculated and pushed onto the evaluation stack. For the
application of the operator, the operands are popped from the evaluation stack and the operator is applied. The result of
the operator application is finally pushed onto the evaluation stack. Both, the popping of operands and the pushing the
result are considered to be part of the operator application (Ent i t y. APPLY- OPERATOR(oper at or) statementin
figure 74), i.e. are not modelled by the operational semantics.

segment <operat or - appl > i
/1 For an n-nary operator,
N /1 n operands in form of
/] eval uat ed expressions have
/1 to be pushed onto the
<expr essi on> /1 val ue stack

Entity. APPLY- OPERATOR(oper at or);

oper at or - appl Enti ty. NEXT- CONTROL(t r ue);
(operator) RETURN:

v

Figure 74: Flow graph segment <operator-appl>

9.19 Flow graph segment <finalize-component-init>

The flow graph segment <f i nal i ze- conponent -i ni t > ispart of the flow graph representing the behaviour of a
component type definition. Its execution is defined in figure 75.

segnent
<finalise-conmponent-init>

finalise-conmponent-init

/1 The status of the father entity is restored. The identifier of the 'father’
/1 entity is deleted fromthe VALUE- STACK.

Entity. VALUE- STACK. top() . STATUS : = Enti ty. VALUE- STACK. t op() . VALUE- STACK. t op() ;
Entity. VALUE- STACK. t op() . VALUE- STACK. pop();
Entity. VALUE- STACK. pop();

p

/1 A mark is pushed on the value stack, the entity goes into a bl ocking state,
/1 i.e.,waits for being started) and control is given back to the nodul e
/1 eval uation procedure

Entity. VALUE- STACK. push(MARK) ;
Entity. STATUS : = BLOCKED;
RETURN,

Figure 75: Flow graph segment <finalize-component-init>

ETSI

84 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.20 Flow graph segment <init-component-scope>

The flow graph segment <i ni t - component - scope> is part of the flow graph representing the behaviour of a
component type definition. Its execution is defined in figure 76.

segnment <init-conponent - scope>

/1 A new variable scope and a new
// timer scope are created
Entity. | N T- VAR SCOPE();

I nit-conponent-scope Y | Ent i ty. TNl T- TI NER- S(I]DE() :

Entity. NEXT- CONTROL(true);
RETURN,

\4

Figure 76: Flow graph segment <init-component-scope>

9.21 Flow graph segment <parameter-handling>

The flow graph-segment <par anet er - handl i ng> isused in the beginning of flow graphs representing test cases,
atsteps and functions. It initializes a new scope and creates variables and timers for the handling of parameters. The
flow graph-segment <par amet er - handl i ng> assumes that the call record of the called test case, altstep or function
isthe top of the value stack.

The execution of flow graph-segment <par amet er - handl i ng> isshown in figure 77.

|

segment
<par amet er - handl i ng> Entity. | NI T- VAR- SCOPE(); // new variable scope
Entity. INIT-TI MER-SCOPE(); // new timer scope
Entity. N T- CALL- RECORD(VALUE- STACK. top()) ;

/] paraneters are initialized
Entity. VALUE- STACK. pop(); // renoval of call record
par anet er - handl i ng Entity. VALUE- STACK. push(MARK); // for scope

Entity. NEXT- CONTROL(true);
RETURN,

\4

Figure 77: Flow graph segment <parameter-handling>

ETSI

85 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.22 Flow graph segment <statement-block>

The syntactical structure of a statement block is:

{ <statenent.> ...; <statement,> }

A statement block is a scope unit. When entering a scope unit, new scopes for variables, timers and the value stack have
to beinitialized. When leaving a scope unit, al variables, timers and stack values of this scope have to be destroyed.

NOTE 1. The statement block is not an ‘official' TTCN-3 concept. Statement blocks only occur as body of
functions, altsteps, test cases and module control, and within compound statements, e.g.,al t ,i f - el se
ordo- whi | e.

NOTE 2: Receiving operations cannot appear in statement blocks, they are embedded inal t statementsor cal |
operations.

NOTE 3: The operational semantics also handles operations and declarations like statements, i.e. they are allowed
in statement blocks.

NOTE 4: Some TTCN-3 functions, like e.g., syst emor sel f, are considered to be expressions, which are not
useful as stand-alone statements in statement blocks. Their flow graph representations are not listed in
figure 78.

The flow graph segment <st at enent - bl ock> in figure 78 defines the execution of a statement block.

segnment <stat enment - bl ock>

enter-scope-unit Entity. | N T- VAR- SCOPE() ;
Entity. N T- TI MER- SCOPE() ;
Entity. VALUE- STACK. push(MARK) ;

Entity. NEXT- CONTROL(true);

RETURN;
L
<action-stnt> OR <activate-stnt> OR
<alt-stm> OR <altstep-call> OR <call-op> OR
<assi gnment -stnt> OR <cl ear-port-op> OR /1 List of flow graph segnents
<connect - op> OR <constant-definition> OR /'l representing all possible
<creat e-op> OR <deactivate-stnt> OR /]l statements, operations,
<di sconnect - op> OR <do-whi | e-stnt> OR /1 defintions and decl arati ons.
<done- op> OR <execute-stnt> OR <for-stnt> OR
<function-call > OR <getverdi ct-op> OR
<goto-stm> OR <if-else-stm> OR
<l abel -stnt> OR <l og-stnt> OR <map-op> OR
<rai se-op> OR <repeat-stnt> OR <reply-op> OR
<return-stnt> OR <send-op> OR <setverdict-op>
OR <start-conponent-op> OR <start-port-op> OR
<start-timer-op> OR <stop-conponent-op> OR
<st op- exec-stnt> OR <stop-port-op> OR
<stop-tinmer-op> OR <tiner-declarati on> OR
<unmap- op> OR <vari abl e-decl arati on> OR Entity. DEL- VAR- SCOPE() ;
<whi | e-stmnt> Entity. DEL- TI MER- SCOPE() ;
Entity. VALUE- STACK. cl ear-unti | (MARK) ;

¢ Entity. NEXT- CONTROL(true);
RETURN;

exit-scope-unit

v

Figure 78: Flow graph segment <statement-block>

ETSI

86 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.23 For statement

The syntactical structure of thef or -st at ermrent is:

for (<assignment>|<variabl e-decl arati on>, <bool ean_expressi on>, <assignment>)
<st at enent - bl ock>

The initialization of the index variable and the corresponding manipulation of the index variable are considered to be
assignments to the index variable. It is aso allowed to declare and initialize the index variable directly in thef or
statement. The <bool ean- expr essi on> describes the termination criterion of the loop specified by thef or -

st at ement and the <st at enment - bl ock> describes the loop body.

The execution of thef or statement is defined by the flow graph segment <f or - st nt > shown in figure 79. Theinitial
<assi gnnent > or alternative variable declaration with assignment <var - decl ar at i on-i ni t > (see

clause 9.57.1) describes theinitialization of the index variable. The<assi gnment > inthet r ue branch of the

deci si on node describes the manipulation of the index variable. The f or statement is a scope unit for a newly
declared index variable, thisis modelled by means of the nodesent er - var - scope andexi t - var - scope.

segment <for-stmt>

Entity. | NI T- VAR- SOOPE() ;
Entity. VALUE- STACK. push(MARK) ;

ent er -var - scope

Entity. NEXT- CONTROL(true);
RETURN,

/1 The index variable is only

<assi gnment > /1 initialised (<assignnent>)
OR /1 or declared and initialised
<var-decl aration-init> /'l (<var-declaration-init>)

¢

<expressi on>

if (Entity.VALUE- STACK. top()== true) {
Entity. NEXT- CONTROL(true);

el se {
Entity. NEXT- CONTROL(true);

deci sion

true Entity. VALUE- STACK. pop();
RETURN,
<st at errent - bl ock>
l Entity. DEL- VAR- SCOPE();
<assi gnment > Entity. VALUE- STACK. cl ear - uni t| (MARK);
Entity. NEXT- CONTROL(true);

RETURN,

exit-var-scope Ve

v

Figure 79: Flow graph segment <for-stmt>

ETSI

87 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.24 Function call

The syntactical structure of afunction call is:
<functi on- name>([<act - par -desc,>, ..., <act-par-desc,>])

The <function-name> denotes to the name of afunction and <act - par - descr >, ..., <act - par-descr >
describe the description of the actual parameter val ues of the function call.

NOTE 1: A function call and an atstep call are handled in the same manner. Therefore, the atstep call (see
clause 9.xxxaltstep-callxxx) refersto this clause.

It isassumed that for each <act - par - desc ;> the corresponding formal parameter identifier <f - par-1d,>is
known, i.e. we can extend the syntactical structure above to:

<functi on- name>((<f-par-1d;> <act-par-desc;>), .., (<f-par-1d,> <act-par-desc,>))

The flow graph segment <function-call> in figure 80 defines the execution of a function call. The execution is
structured into three steps. In the first step a call record for the function <f unct i on- nane> iscreated. In the second
step the values of the actual parameter are calculated and assigned to the corresponding field in the call record. In the
third step, two situations have to be distinguished: the called function is a user-defined function

(<user - def - func- cal | >), i.e. there exists a flow graph representation for the function, or the called functionisa
pre-defined or external function (<pr edef - ext - f unc- cal | >). In case of a user-defined function call, the control is
given to the called function. In case of a pre-defined or external function, it is assumed that the call record can be used
to execute the function in one step. The correct handling of reference parameters and return value (has to be pushed

onto the value stack) isin the responsibility of the called function, i.e. is outside the scope of this operational semantics.

NOTE 2: If the function call models an atstep call, only the<user - def - f unc- cal | > branch will be chosen,
because there exists a flow graph representation of the called altstep.

NOTE 3: The<functi on cal | > segment isalso used to describe the start of the MTC inan execut e
statement. In this case, acall record for the test case is constructed and only the
<user - def - f unc- cal | > branch will be chosen.

ETSI

88 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

segnment
<function call>

Entity. VALUE- STACK. push(NEW CALL- RECORD(f uncti on- nane));
Entity. NEXT- CONTROL(true);

construct-call-record

(function-name))7 RETURN;
* /1 For each pair (<f-par-1di> <act-paraneter-desc;>) the
/1 value of <act-paraneter-desc; is cal culated and
- Il assigned to the corresponding field <f-par-1di>
<val ue- par-cal cul ati on> // in the call record. The call record is assuned to be

// the top elenent in the value stack.

v

* || Retrieves the locations for variables and tiners
used as reference paraneters

<ref-var-par-cal c> OR

<ref-timer-par-cal c>

v

<pr edef - ext -func-cal | >
R e
<user - def -func-cal | >

~—
—~—

~

The called function may either be an external or
predefined function, or a user-defined function.

~
~

Figure 80: Flow graph segment <function-call>

9.24.1 Flow graph segment <value-par-calculation>

The flow graph-segment <val ue- par - cal cul at i on> isused to calculate actual parameter values and to assign
them to the corresponding fieldsin call records for functions and test cases.

It is assumed that acall record is the top element of the value stack and that a pair of:
(<f-par-1d;> <act-paraneter-desc;>)

hasto be handled. <act - par anet er - desc; > that hasto be evaluated and <f - par - | d; > isthe identifier of a
formal parameter that has a corresponding field in the call record in the value stack.

The execution of flow graph-segment <val ue- par - cal cul at i on>isshownin figure 81.

ETSI

89 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

segment

<val ue- par - cal cul ati on>

<exp

ressi on>

/] The expression represents <act- paraneter-desc;>
/1 The result of the evaluation of the expression
/1 is pushed onto the val ue stack.

par anet e
(f-

r-assi gnment
par-1d)

let { // scope unit for parVal
var parVal = Entity. VALUE- STACK. top();
/1 parVal is a local variable that
/1 stores the value of the expression
Entity. VALUE- STACK. pop();
/'l Rermoval of expression val ue.
/1 Afterwards the call record is
/1 again top of the value stack

Entity. VALUE- STACK. top().f-par-1d := parVal;
/1 Val ue assignnent to call record
} // end of scope for parVal

Entity. NEXT- CONTROL(true);
RETURN;

\4

Figure 81: Flow graph segment <value-par-calculation>

9.24.2 Flow graph segment <ref-par-var-calc>

The flow graph-segment <r ef - par - var - cal ¢> isused to retrieve the locations of variables used as actual
reference parameters and to assign them to the corresponding fieldsin call records for functions and test cases.

It isassumed that a call record is the top element of the value stack and that a pair of:

(<f-par-1d;>,

<act - par;>)

hasto be handled. <act - par;> i s the actual parameter forwhichthelocation hasto beretrieved and
<f - par - | d; > isthe identifier of aformal parameter that has a corresponding field in the call record in the value stack.

The execution of flow graph-segment <r ef - par - var - cal ¢> isshown in figure 82.

segment

<ref-par-var-cal c>

par anet er -
(f-par-1d,

assi gnnent
act - par)

let { // scope unit for location variable
var location := Entity. GET- VAR- LOCATI ON(act - par) ;

Entity. VALUE- STACK. top().f-par-1d := location;
/1 Val ue assignnent to call record
} /1 end of scope for |ocation

Entity. NEXT- CONTROL(true);
RETURN;

\4

Figure 82: Flow graph segment <ref-par-var-calc>

ETSI

90 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.24.3 Flow graph segment <ref-par-timer-calc>

The flow graph-segment <r ef - par - t i ner - cal ¢> isused to retrieve the locations of timers used as actual
reference parameters and to assign them to the corresponding fields in call records for functions and test cases.

It is assumed that a call record is the top element of the value stack and that a pair of:
(<f-par-1d;> <act-par;>)

hasto be handled. <act - par;> i s the actual paraneter forwhichthelocation hasto be retrieved and
<f - par - | d; > isthe identifier of aformal parameter that has a corresponding field in the call record in the value stack.

The execution of flow graph-segment <r ef - par-ti mer - cal ¢>isshownin figure 83.

segment
<ref-par-tiner-cal c>

let { // scope unit for location variable
var location := Entity. GET- TI MER- LOCATI ON(act - par) ;

Entity. VALUE- STACK. top().f-par-1d := location;
/1 Val ue assignnent to call record

par anet er - assi gnnent i
“““ } /1 end of scope for |ocation

(f-par-1d, act-par)

Entity. NEXT- CONTROL(true);
RETURN;

v

Figure 83: Flow graph segment <ref-par-timer-calc>

9.24.4 Flow graph segment <user-def-func-call>

The flow graph-segment <user - def - f unc- cal | > (figure 84) describes the transfer of control to a called
user-defined function.

segnment <user-def-func-call>

/] Storage of return address

Entity. NEXT- CONTROL(true);

I/l Control is transferred to called function

Entity. CONTROL- STACK. push(GET- FLOW GRAPH(f unct i on- nane)) ;

user - def - func-cal |
(function-nane)

RETURN,

Figure 84: Flow graph segment <user-def-func-call>

ETSI

91 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.24.5 Flow graph segment <predef-ext-func-call>

The flow graph-segment <pr edef - ext - f unc- cal | > (figure 85) describes the call of a pre-defined or external
function.

segnment <predef-ext-func-call>

let { // scope for argument variable
var argunent := Entity.VALUE- STACK top();
Entity. VALUE- STACK pop(); // removal of call record
/1 Application of function-nane
»»»»» functi on-nane(argunent);
} /1 end of scope for argunent
Entity. NEXT- CONTROL(true);
RETURN;

<pr edef - ext -func-cal | >
(function-namne)

Figure 85: Flow graph segment <predef-ext-func-call>

9.25 Getcall operation

The syntactical structure of the getcall operation is:

<portld>.getcall (<nmatchingSpec>) [from <conponent_expression>] -> [<assignnmentPart>]

Apart fromthe get cal | keyword this syntactical structure isidentical to the syntactical structure of ther ecei ve
operation. Therefore, the operational semantics handlesthe get cal | operation in the same manner asther ecei ve
operation. Thisis aso shown in the flow graph segment <get r epl y- op> (see figure 86), which defines the
execution of aget cal | operation. The figure refersto flow graph segments related to ther ecei ve operation

(see clause 9.37).

I
segment <getcal | - op> l

<recei ve-wi t h- sender >
oR /1 Distinction due to the optional
<recei ve-wi t hout-sender> [/1 fromclause

\4

Figure 86: Flow graph segment <getcall-op>

ETSI

92 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.26 Getreply operation

The syntactical structure of theget r epl y operationis:

<portld>. getreply (<matchingSpec>) [from <conponent-expression>] [-> <assignnentPart>]

Apart fromtheget r epl y keyword this syntactical structureisidentical to the syntactical structure of ther ecei ve
operation. Therefore, the operational semantics handlesthe get r epl y operation in the same manner asther ecei ve
operation. Thisis also shown in the flow graph segment <get r epl y- op> (see figure 87), which defines the
execution of aget r epl y operation. The figure refersto flow graph segmentsrelated to ther ecei ve operation

(see clause 9.37).

I
segment <getreply-op> i

<recei ve-wi t h- sender >
oR /1 Distinction due to the optional
<recei ve-wi t hout-sender> [/1 fromclause

\4

Figure 87: Flow graph segment <getreply-op>

9.27 Getverdict operation

The syntactical structure of theget ver di ct operationis:

get ver di ct

The flow graph segment <get ver di ct - op> in figure 88 defines the execution of the get ver di ct operation.

segment <getverdict-op>
// E-VERDICT is pushed onto VALUE- STACK
Entity. VALUE- STACK. push(Entity. E- VERDI CT);
getverdi ct-0p) Entity. NEXT- CONTROL(t rue);

RETURN,

\4

Figure 88: Flow graph segment <getverdict-op>

ETSI

93 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.28 Goto statement

The syntactical structure of the got o statement is:
goto <labelld>

The flow graph segment <got o- st nt > in figure 89 defines the execution of the got o statement.

segnment <got o- st nt >

/1 *nop’ means ‘no operation’
Entity. NEXT- CONTROL(true);
(3107« T W RETURN:

<| abel | d>

Figure 89: Flow graph segment <goto-stmt>

NOTE: The <labelld> parameter of the got o statement indicates the transfer of control to the place at which a
label <l abel | d> isdefined (see also clause 9.30).

ETSI

94 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.29 If-else statement
The syntactical structure of thei f -el se statement is:
if (<boolean-expression>) <statement-block,>
[el se <statenent-bl ock,>]
The else part of thei f -el se statement isoptional.

The flow graph segment <i f - el se- st nt > in figure 90 defines the execution of thei f - el se statement.

segnent <if-wth-else-branch> l

<expr essi on>

if (Entity.VALUE- STACK top()== true) {
Entity. NEXT- CONTROL(true);

el se {
Entity. NEXT- CONTROL(true);

}
»»»»»»»»»»»»» Entity. VALUE- STACK. pop();
RETURN;

true fal se

<st at enent - bl ock>

* (1) ||
/1 Optional else part

<st at ement - bl ock> ||

:

Figure 90: Flow graph segment <if-else-stmt>

ETSI

95 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.30 Label statement

The syntactical structure of thel abel statementis:
| abel <l abel | d>

The flow graph segment <I abel - st nt > in figure 91 defines the execution of thel abel statement.

segnment <l abel -stnt>

<l abel | d> "

/1 ‘nop’ neans ‘no operation’
Entity. NEXT- CONTROL(true);
nop Y. RETURN,

\4

Figure 91: Flow graph segment <label-stmt>

NOTE: The<l abel | d> parameter of the label statement indicates the possibility that alabel can be the target
for ajump by means of agot o statement (see also clause 9.28).

9.31 Log statement
The syntactical structure of thel og statement is:
| og (<informal -description>)

The flow graph segment <I og- st nt > in figure 92 defines the execution of the| og statement.

segment <l og-stnt>

// inscription ‘nop’ neans ‘no operation’
Entity. NEXT- CONTROL(true);
(3107« T W RETURN;

v

Figure 92: Flow graph segment <log-stmt>

NOTE: The<i nfornmal descri ption> parameter of thel og statement has no meaning for the operational
semantics and is therefore not represented in the flow graph segment.

ETSI

96 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.32 Map operation

The syntactical structure of athe map operation is:
map(<conponent - expressi on>. <portldl>, system <portl d2>)

Theidentifiers<port | d1> and <port | d2> are considered to be port identifiers of the corresponding test component
and test system interface. The components to which the <portld1> belongsis referenced by means of the component
reference <conponent - expr essi on>. The reference may be stored in variables or isreturned by a function, i.e. it
is an expressions, which evaluates to a component reference. The value stack is used for storing the component
reference.

NOTE: Thenmap operation does not care whether the sy st em<portld> statement appears asfirst or as second
parameter. For simplicity, it is assumed that it is always the second parameter.

The execution of the map operation is defined by the flow graph segment <nap- op> shown in figure 93.

segnent <map- op> l

let { /1 begin of a |ocal scope unit, needed for
/1 the local variable conmpl
var conpl = Entity. VALUE- STACK top();
Entity. VALUE- STACK. pop() ;
ADD- CON(conpl, portldl, system portld2);
} /1 end of local scope

<expr essi on>

Entity. NEXT- CONTROL(true);

map- op
(portldl, port!ld2)) RETURN,

Figure 93: Flow graph segment <map-op>

9.33 Mtc operation

The syntactical structure of thent ¢ operationis:
nc

The flow graph segment <nt ¢- op> in figure 94 defines the execution of the it ¢ operation.

segnent <nt c- op>

Entity. VALUE- STACK. push(MIC);
MC-0p Vo] Entity. NEXT- CONTROL(true);
RETURN,

Figure 94: Flow graph segment <mtc-op>

ETSI

97

9.34 Port declaration

The syntactical structure of a port declaration is:

<port Type> <port Nanme>

Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

Port declarations can be found in component type definitions. The effect of a port declaration is the creation of a new
port when a new component of the corresponding typeis created. The flow graph segment <port - decl ar ati on>

in figure 95 defines the execution of a port declaration.

segnment <port-decl arati on>

port-decl aration
(port Nane)

/1 The port nane <portNane> is copied
/1 into the node attribute ‘portNane’

""" ALL- PORT- STATES. append(NEW PORT(Entity, portNane);

RETURN,

Entity. NEXT- CONTROL(true);

v

Figure 95: Flow graph segment <port-declaration>

9.35 Raise operation

The syntactical structure of ther ai se operationis:

<portld>.rai se (<exceptSpec>) [to <conponent-expressi on>]

The optional <conponent - expr essi on> intheto clause refersto the receiver entity. It may be provided in form

of avariable value or the return value of a function.

The flow graph segment <r ai se- op> in figure 96 defines the execution of ar ai se operation.

segnent <rai se-op> i

<rai se-w th-receiver-op>
oR
<rai se-w t hout - recei ver - op>

/1 A raise operation may or may not
/'l have a receiver description.

\4

Figure 96: Flow graph segment <raise-op>

ETSI

98 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.35.1 Flow graph segment <raise-with-receiver-op>

The flow graph segment <r ai se-wi t h-r ecei ver - op> infigure 97 defines the execution of ar ai se operation
where the receiver is specified in form of an expression.

segnment <raise-w th-receiver-op>

v

<expr essi on>

/1 The expression shall evaluate
/1 to a conponent reference

rai se-wi th-receiver-op
(portld, exceptSpec)

let {
var receiver := Entity. VALUE- STACK. top();
var renotePort := CGET- REMOTE- PORT(Entity, portld, receiver);

if (remptePort == NULL) ({
*** DYNAM C- ERROR***; // Renote port cannot be found

}

if (remotePort == SYSTEM {
/l Port is mapped onto a port of the test system
Il reception of the reply by the SUT is outside
/'l the scope of the operational senantics

else { // sending of exception
renmot ePort. enqueue(CONSTRUCT- | TEM Entity, raise, exceptSpec));

} /1 end of scope of receiver and renotePort
Entity. VALUE- STACK. pop(); /1 clean val ue stack

Entity. NEXT- CONTROL(true);
RETURN;

Figure 97: Flow graph segment <raise-with-receiver-op>

ETSI

99 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.35.2 Flow graph segment <raise-without-receiver-op>

The flow graph segment <r ai se-wi t hout - r ecei ver - op> in figure 98 defines the execution of araise operation
without t o-clause.

segnment <rai se-w thout-receiver-op>

rai se-w thout -receiver-op
(portld, exceptSpec)

let {
var renotePort := GET- REMOTE- PORT(Entity, portld, NONE);

if (remptePort == NULL) ({
*** DYNAM C- ERROR***; // Renote port cannot be found

}

if (renptePort == SYSTEM ({
// Port is mapped onto a port of the test system
/'l reception of the reply by the SUT is outside
/1 the scope of the operational senantics

else { // sending of exception
renot ePort. enqueue(CONSTRUCT- | TEM Entity, raise, exceptSpec));

} // end of scope of renotePort
Entity. VALUE- STACK. pop(); /'l clean val ue stack

Entity. NEXT- CONTROL(true);
RETURN;

v

Figure 98: Flow graph segment <raise-without-receiver-op>

9.36 Read timer operation
The syntactical structure of ther ead timer operation is:
<tinmerld>. read
The flow graph segment <r ead- t i mer - op> in figure 99 defines the execution of the r ead timer operation.

Ther ead timer operation distinguishes between its usage in a Boolean guard of anal t statement or blocking cal |
operation and all other cases. If used in a Boolean guard, the result of the r ead timer operation is based on the actual
snapshoat, i.e. the NAP-STATUS and SNAP-VALUE entries of the timer binding, in al other cases, the STATUS,
ACT-DURATION and TIME-LEFT entries of the timer binding determine the result of the operation.

ETSI

100 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

segnment <read-ti mer-op>

read-ti mer-op
(timerld)

let { // local scope for variable nyVal ue
var float mnyVal ue;
if (Entity.STATUS == SNAPSHOT) ({

if (Entity.tinerld. SNAP-STATUS == RUNNING) {
nyVal ue := Entity.timerld. SNAP- VALUE;

el se {
nmyVal ue : = 0.0;
}
}
el se {
if (Entity.timerld.STATUS == RUNNING) {
nyValue := Entity.timerld. ACT-DURATION — Entity.timerld. Tl ME- LEFT;
el se {
nyVal ue : = 0.0;
}
}

Entity. VALUE- STACK. push(nyVal ue);

} // end local scope

Entity. NEXT- CONTROL(true);
RETURN;

Figure 99: Flow graph segment <read-timer-op>

ETSI

101 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.37 Receive operation

The syntactical structure of ther ecei ve operationis:

<portld>.receive (<matchingSpec>) [from <conponent-expression>] [-> <assignnmentPart>]

The optional <conponent - expr essi on> inthef r omclause refers to the sender entity. It may be provided in
form of avariable value or the return value of a function, i.e. it is assumed to be an expression. The optional

<assi gnnent Part > denotes the assignment of received information if the received message matches to the
matching specification <mat chi ngSpec> and to the (optional) f r omclause.

The flow graph segment <r ecei ve- op> in figure 100 defines the execution of ar ecei ve operation.

segnment <recej ve-op> l

<recei ve-wi t h- sender >
oR // Distinction due to the optional
<recei ve-wi t hout-sender> [/1 fromclause

\4

Figure 100: Flow graph segment <receive-op>

ETSI

102 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.37.1 Flow graph segment <receive-with-sender>

The flow graph segment <r ecei ve- wi t h- sender > in figure 101 defines the execution of ar ecei ve operation
where the sender is specified in form of an expression.

segnment #

<recei ve-wi t h- sender >

/1l The Expression shall evaluate
/!l to a conponent reference. The
/1 result is pushed onto VALUE- STACK

<expr essi on>

let { // local scope for portRef and sender
var portRef := NULL;
var sender := Entity.VALUE- STACK. top(); /1 Sender
Entity. VALUE- STACK. pop(); /'l dean val ue stack
if (portID == "any port') {
port Ref := ALL- PORT- STATES. r andon{ MATCH | TEM SNAP- VALUE, mat chi ngSpec, sender));
if (portRef == NULL) { // no 'matching" port found
Entity. NEXT- CONTROL(f al se);

RETURN,
}
el se {
port Ref := GET-PORT(Entity, portld) // Specified port
}
/1 MATCH NG
if (PortRef.first() == NULL) { // Port queue is enpty, no nmatch
Entity. NEXT- CONTROL(f al se);
RETURN,
}
el se {

if (MATCH | TEM port Ref . SNAP- VALUE, nat chi ngSpec, sender)) {
/1 The nessage in the queue natches
Entity. VALUE- STACK. push(port Ref); /1 Saving port reference
Entity. STATUS : = ACTI VE; /'l successful match, Entity status is changed
/1 from SNAPSHOT to ACTI VE

Entity. NEXT- CONTROL(true);

el se { // The top itemin the queue does not match
Entity. NEXT- CONTROL(f al se);

}
RETURN;

}
\ } /1 End of scope of portRef and sender

recei ve-w t h- sender
(port! D, matchi ngSpec)

true

/1 optional value
*(1) /] assignent

<recei ve- assi gnnent >

/1 Rermoval of received itemfrom port
Entity. VALUE- STACK. t op() . dequeue();
Entity. VALUE- STACK. pop();

444444444444 Entity. NEXT- CONTROL(true);

RETURN;

renove-from port

fal se true

v \4

Figure 101: Flow graph segment <receive-with-sender>

ETSI

103

9.37.2 Flow graph segment <receive-without-sender>

Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

The flow graph segment <r ecei ve- wi t hout - sender > infigure 102 defines the execution of ar ecei ve

operation without af r omclause.

segnment <receive-w t hout - sender >

let { // local scope for portRef
var portRef := NULL;
if (portlD == "any port')
port Ref := ALL- PORT- STATES. r andon(MATCH | TEM SNAP- VALUE, mat chi ngSpec,
if (portRef == NULL) { // no 'matching' port found
Entity. NEXT- CONTROL(fal se);
RETURN,
}
el se {
portRef := GET-PORT(Entity, portld) // Specified port
}
/1 MATCHI NG
if (PortRef.first() == NULL) { // Port queue is enpty, no match
Entity. NEXT- CONTROL(fal se);
RETURN,
}
el se {
i f (MATCH | TEM port Ref . SNAP- VALUE, mat chi ngSpec, NONE)) {

/1 The nessage in the queue natches
Entity. VALUE- STACK. push(port Ref);
Entity. STATUS : = ACTI VE;

/1 Saving port reference
/'l successful

/1 from SNAPSHOT to ACTI VE

Entity. NEXT- CONTROL(true);

el se { /1 The first itemin the queue does not natch
Entity. NEXT- CONTROL(fal se);

}

RETURN,

}
/1 End of scope of portRef and sender

NONE)) ;

match, Entity status is changed

¥ }

recei ve-w t h- sender
(port! D, matchi ngSpec)

true
val ue

/1 optional
/1 assignemt

*(1)

<recei ve- assi gnnent >

/1 Renoval of
Entity. VALUE- STACK. t op() . dequeue();

renove-from port

Entity. VALUE- STACK. pop();
Entity. NEXT- CONTROL(true);

RETURN,

recei ved itemfrom port

fal se true

Figure 102: Flow graph segment <receive-without-sender>

ETSI

104 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.37.3 Flow graph segment <receive-assignment>

The flow graph segment <r ecei ve- assi gnnent > in figure 103 defines the retrieval of information from received
messages and their assignment to variables.

segnment <recei ve-assi gnnent >

RETRI EVE- I NFQ(Enti ty. VALUE- STACK. top().first(), assignnentPart, Entity);

Entity. NEXT- CONTROL(true);
RETURN;

recei ve- assi gnnment
(assi gnment Part)

Figure 103: Flow graph segment <receive-assignment>

9.38 Repeat statement

The syntactical structure of ather epeat statement is:
r epeat

Basically, ther epeat statementisar et ur n statement without return value, which also changes the entity status to
REPEAT. The status REPEAT will force the re-evaluation of theal t statement in which the repeat statement has been
executed. The flow graph segment <r epeat - st nt > shown in figure 104 defines the execution of the r epeat
statement.

segnent <repeat - st nt >

Entity. STATUS(REPEAT) ;
repeat-stnt ey RETURN;

<return-w thout -val ue>

v

Figure 104: Flow graph segment <repeat-stmt>

ETSI

105 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.39 Reply operation
The syntactical structure of ther epl y operation is:
<portld>.reply (<replySpec>) [to <component-expression>]

The optional <conponent _expr essi on> intheto clause refersto the receiver entity. It may be provided in form
of avariable value or the return value of afunction.

The flow graph segment <r epl y- op> in figure 105 defines the execution of ar epl y operation.

segment <reply-op> l

<reply-w th-receiver-op>
(034 /'l Areply operation nay or nay not
/'l have a receiver description.

<reply-w thout-receiver-op>

v

Figure 105: Flow graph segment <reply-op>

ETSI

106 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.39.1 Flow graph segment <reply-with-receiver-op>

The flow graph segment <r epl y-wi t h-r ecei ver - op> infigure 106 defines the execution of ar epl y operation
where the receiver is specified in form of an expression.

segnment <reply-w th-receiver-op>

v

<expr essi on>

/1 The expression shall evaluate
/1 to a conponent reference

reply-wth-receiver-op
(portld, replySpec)

let {
var receiver := Entity. VALUE- STACK. top();
var renotePort := CGET- REMOTE- PORT(Entity, portld, receiver);

if (remptePort == NULL) ({
*** DYNAM C- ERROR***; // Renote port cannot be found

}

if (remotePort == SYSTEM {
/l Port is mapped onto a port of the test system
Il reception of the reply by the SUT is outside
/'l the scope of the operational senantics

}
else { // sending of reply
renot ePort. enqueue(CONSTRUCT- | TEM Entity, reply, replySpec));

} /1 end of scope of receiver and renotePort
Entity. VALUE- STACK. pop(); /1 clean val ue stack

Entity. NEXT- CONTROL(true);
RETURN;

Figure 106: Flow graph segment <reply-with-receiver-op>

ETSI

107 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.39.2 Flow graph segment <reply-without-receiver-op>

The flow graph segment <r epl y-wi t hout - r ecei ver - op> in figure 107 defines the execution of areply
operation without t o-clause.

segment <reply-w thout-receiver-op>

reply-w thout-receiver-op
(portld, replySpec)

let {
var renotePort := GET- REMOTE- PORT(Entity, portld, NONE);

if (remptePort == NULL) ({
*** DYNAM C- ERROR***; // Renote port cannot be found

}

if (renptePort == SYSTEM ({
// Port is mapped onto a port of the test system
/'l reception of the reply by the SUT is outside
/1 the scope of the operational senantics

else { // sending of reply
renot ePort. enqueue(CONSTRUCT- | TEM Entity, reply, replySpec));

} // end of scope of renotePort
Entity. VALUE- STACK. pop(); /'l clean val ue stack

Entity. NEXT- CONTROL(true);
RETURN;

v

Figure 107: Flow graph segment <reply-without-receiver-op>

ETSI

108 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.40 Return statement

The syntactical structure of the return statement is:
return [<expressi on>]

The optional <expr essi on> describes a possible return value of afunction. The execution of areturn statement
means that the control leaves the actual scope unit, i.e. variables and timers only known in this scope have to be deleted
and the value stack hasto be updated. A r et ur n statement has the effect of ast op component operation, if it isthe
last statement in a behaviour description.

NOTE: Test cases and module control will always end with ast op component operation. Thisis dueto their
flow graph representation (see clause 8.2). Only other test components may terminate with ar et ur n
statement.

The flow graph segment <r et ur n- st m > in figure 108 defines the execution of ar et ur n statement.

segment <retun-stmnt> l
<return-w th-val ue>
oR /1 A return statenent nay or nay
<return-wthout-val ue> /1 not return a val ue
v

Figure 108: Flow graph segment <return-stmt>

ETSI

109 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.40.1 Flow graph segment <return-with-value>

The flow graph segment <r et ur n- wi t h- val ue> in figure 109 defines the execution of ar et ur n that returnsa
value specified in form of an expression.

segment <return-wth-val ue>

v

/1 The expression shall eval uates

<expressi on>

/1 to the return val ue

return-wth-val ue

let {

var return-value := Entity. VALUE- STACK. top();

Entity. DEL- VAR- SCOPE(); // The actual variable scope is deleted
Entity. DEL- TI MER- SCOPE(); // The actual timer scope is deleted
Entity. VALUE- STACK. cl ear-unti | (MARK);
Entity. VALUE- STACK. push(r et urn-val ue);

} /1 end of scope of return-value

Entity. CONTROL- STACK. pop(); Il return address is lying on the

if (Entity. CONTROL- STACK. top() == NULL) { // return is a stop
/1 Update of test case verdict
if (Entitiy.E-VERDICT == fail or TG VERDICT == fail) {
TG VERDICT := fail; }

/'l control stack

el se {
if (Entity.E-VERD CT == inconc or TC VERDI CT == inconc) {
TG VERDI CT : = inconc; }
el se {
if (Entity.E-VERD CT == pass or TC VERDI CT == pass) {
TG VERDI CT : = pass;
}
} }
DONE. append(Entity); /1 update of gl obal DONE variable
ALL- ENTI TY- STATES. del ete(Entity);
DEL- ENTI TY(Entity); /1 Deletion of Entity
}
RETURN,

Figure 109: Flow graph segment <return-with-value>

ETSI

110

Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.40.2 Flow graph segment <return-without-value>

The flow graph segment <r et ur n- wi t hout - val ue> infigure 110 defines the execution of ar et ur n statement

that returns no value.

segnment <return-w thout-val ue>

return-w th-val ue

Entity. DEL- VAR- SCOPE();
Entity. DEL- TI MER- SCOPE() ;

/1 The
/1 Th

Entity. VALUE- STACK. cl ear-unti | (MARK);

}
}

if (Entity.E-VERD CT == pass or TC VERDI CT == pass) {

}

Entity. CONTROL- STACK. pop();

if (Entity. CONTROL- STACK. top()
/1 Update of test case verdict

if (Entitiy.E-VERDICT == fail
TG VERDICT := fail; }

el se {
if (Entity.E-VERDICT ==
TG VERDI CT : = incon
el se {

TC-VERDICT : = p

DONE. append(Entity); 11
ALL- ENTI TY- STATES. del ete(Entity);

}

RETURN,

DEL- ENTI TY(Entity);

actual variable scope is deleted
e actual timer scope is deleted

/1 return address is lying on the
/'l control stack
== NULL) { // return is a stop

or TG VERDICT == fail) {

i nconc) {

i nconc or TC VERDI CT
c, }

ass;

updat e of gl obal DONE variable

/1 Deletion of Entity

Figure 110: Flow graph segment <return-without-value>

ETSI

111 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.41 Running component operation

The syntactical structure of ther unni ng component operation is:
<conponent - expr essi on>. runni ng

Ther unni ng component operation checks whether a component is running or has stopped. The component to be
checked is identified by a component reference, which may be provided in form of a variable or value returning
function, i.e. isan expression. For ssimplicity, the keywords'al | conponent 'and'any conponent'are
considered to be special expressions.

Ther unni ng component operation distinguishes between its usage in a Boolean guard of anal t statement or
blocking cal | operation and al other cases. If used in a Boolean guard, the result of r unni ng component operation
is based on the actual snapshot. In al other cases evaluates directly the state information.

Theresult of ther unni ng component operation is pushed onto the value stack of the entity, which called the
operation.

The flow graph segment <running-component-op> in figure 111 defines the execution of the r unni ng component
operation.

|
segment #

<runni ng- conponent - op>

/'l The expression shall evaluate
. /1 to a conmponent reference. The
<expression> /! result is pushed onto VALUE- STACK

if (Entity.STATUS == ACTIVE) {
Entity. NEXT- CONTROL(true);

else { // Entity is in a snapshot
Entity. NEXT- CONTROL(f al se);

}
RETURN,;

<runni ng- conp- act > <runni ng- conp- snap>

v

Figure 111: Flow graph segment <running-component-op>

ETSI

112 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.41.1 Flow graph segment <running-comp-act>

The flow graph segment <r unni ng- conp- act > infigure 112 describes the execution of ther unni ng component
operation outside a snapshot, i.e. the entity isin the status ACTI VE.

segnent - - \ .
<runni ng- conp- act > if (Entity.VALUE-STACK. top() == "all component') {
if (Entity !'= MIQ {
*** DYNAM C- ERROR*** // 'all conponent' is not allowed
}
el se {
if (DONE.length() == 0) { // no entity has been stopped
Entity. VALUE- STACK. push(true);
. else { // at least one conponent has already been stopped
runni ng- conp- act Entity. VALUE- STACK. push(fal se);
}
}
el se {
if (Entity.VALUE-STACK top() == 'any conponent') {
if (Entity I'= MIQ {
DYNAM C- ERROR [/ 'any conponent' is not allowed
}
el se {
i f (ALL- ENTI TY- STATES. | ength() > 2) {
/1 at least one PTC is running
Entity. VALUE- STACK. push(true);
el se {
Entity. VALUE- STACK. push(f al se);
}
}
}
el se {
i f (ALL- ENTI TY- STATES. nenber (Enti ty. VALUE- STACK. top())) {
/1 Specified conponent is alive
Entity. VALUE- STACK. push(true);
}
el se {
Entity. VALUE- STACK. push(fal se);
}
} }
Entity. NEXT- CONTROL(true);
RETURN,

Figure 112: Flow graph segment <running-comp-act>

ETSI

113 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.41.2 Flow graph segment <running-comp-snap>

The flow graph segment <r unni ng- conp- snap> in figure 113 describes the execution of the r unni ng component
operation during the evaluation of a snapshot, i.e. the entity isin the status SNAPSHOT .

segnent
<runni ng- conp- snap>

runni ng- conp- snap

if (Entity.VALUE-STACK. top() == 'all conponent') ({
if (Entity I'= MIQ {
*** DYNAM C- ERROR*** // 'all conponent' is not allowed
}
el se {
if (Entity.SNAP-DONE.|ength() == 0) {
Entity. VALUE- STACK. push(true);
el se {
Entity. VALUE- STACK. push(fal se);
}
}
el se {
if (Entity.VALUE-STACK top() == 'any conponent') {
if (Entity '= MIQ {
DYNAM C- ERROR [/ 'any conponent' is not allowed
}
el se {
i f (SNAP-ACTIVE. length() > 2) {
/1 at |east one PTC was runni ng when the
/1 snapshot has been taken
Entity. VALUE- STACK. push(true);
el se {
Entity. VALUE- STACK. push(fal se);
}
}
}
el se {
if (Entity.SNAP-DONE. menber (Entity. VALUE- STACK. top())) {
/1 Specified entity has stopped
Entity. VALUE- STACK. push(f al se);
}
el se {
/1 Specified entity is considered to be alive
Entity. VALUE- STACK. push(true);
}
} }
Entity. NEXT- CONTROL(true);
RETURN,

Figure 113: Flow graph segment <running-comp-snap>

ETSI

114 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.42 Running timer operation

The syntactical structure of ther unni ng timer operation is:

<ti merld>. running

The flow graph segment <r unni ng- ti mer - op> in figure 114 defines the execution of ther unni ng timer
operation.

Ther unni ng timer operation distinguishes between its usage in a Boolean guard of an al t statement or blocking
cal | operation and all other cases. If used in a Boolean guard, the result of r unni ng timer operation is based on the
actual snapshot, i.e. the SNAP-STATUS entry of the timer binding, in al other cases, the STATUS entry of the timer
binding determines the result of the operation.

The any keyword ishandled asa special valueof ti ner | d.

segnent <running-ti mer-op>

runni ng-ti ner-op
(timerld)

let { // local scope for variable nyStatus

var statusType nyStatus; /] statusType is a synbolic type for the
/] status val ues of tinmers.

if (timerld == “any tiner’) {
if (Entity.STATUS) == SNAPSHOT) {
timerld := Entity. TI MER- STATE. first.randon(SNAP- STATUS == RUNNI NG ;

el se {
timerld := Entity. TI MER- STATE. first.randon(STATUS == RUNNI NG ;
}

}

if (timerld !'= NULL) {
nyStatus := Entity.timerld. STATUS,
if (Entity.STATUS == SNAPSHOT) {
nyStatus := Entity.timerld. SNAP- STATUS;
}

if (nyStatus == RUNNING ({
Entity. VALUE- STACK. push(true);

el se {
Entity. VALUE- STACK. push(fal se);
}

el se {
Entity. VALUE- STACK. push(fal se);

} /1 end local scope

Entity. NEXT- CONTROL(true);
RETURN;

Figure 114: Flow graph segment <running-timer-op>

ETSI

115 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.43 Self operation

The syntactical structure of thesel f operationis:
sel f

The flow graph segment <sel f - op> in figure 115 defines the execution of the sel f operation.

segment <sel f - op>

Entity. VALUE- STACK. push(Entity);
self-op Ve Entity. NEXT- CONTROL(true);
RETURN,

Figure 115: Flow graph segment <self-op>

9.44 Send operation

The syntactical structure of the send operationiis:
<portld>.send (<send-spec>) [to <component-expression>]

The optional <conmponent - expr essi on> intheto clause refersto the receiver entity. It may be provided in form
of avariable value or the return value of afunction.

The flow graph segment <send-op> in figure 116 defines the execution of asend operation.

segnment <send- op> l
<send-wi t h-recei ver-op>
oR /1 A send operation may or may not
<send-wi t hout - r ecei ver - op> /'l have a receiver description.
v

Figure 116: Flow graph segment <send-op>

ETSI

116 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.44.1 Flow graph segment <send-with-receiver-op>

The flow graph segment <send- wi t h- r ecei ver - op> in figure 117 defines the execution of asend operation
where the receiver is specified in form of an expression.

segnment <send-w th-receiver-op>

v

<expr essi on>

/1 The expression shall evaluate
/1 to a conponent reference

send-w t h-recei ver-op
(portld, sendSpec)

let {
var receiver := Entity. VALUE- STACK. top();
var renotePort := CGET- REMOTE- PORT(Entity, portld, receiver);

if (remptePort == NULL) ({
*** DYNAM C- ERROR***; // Renote port cannot be found

}

if (remotePort == SYSTEM {
/l Port is mapped onto a port of the test system
Il reception of the reply by the SUT is outside
/'l the scope of the operational senantics

else { // sending of message
renmot ePort. enqueue(CONSTRUCT- | TEM Entity, send, sendSpec));

} /1 end of scope of receiver and renotePort
Entity. VALUE- STACK. pop(); /1 clean val ue stack

Entity. NEXT- CONTROL(true);
RETURN;

Figure 117: Flow graph segment <send-with-receiver-op>

ETSI

117 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.44.2 Flow graph segment <send-without-receiver-op>

The flow graph segment <send- wi t hout - r ecei ver - op> in figure 118 defines the execution of asend
operation without t o-clause.

segnment <send-w t hout -recei ver - op>

send-w t hout - r ecei ver - op
(portld, sendSpec)

let {
var renotePort := GET- REMOTE- PORT(Entity, portld, NONE);

if (remptePort == NULL) ({
*** DYNAM C- ERROR***; // Renote port cannot be found

}

if (renptePort == SYSTEM ({
// Port is mapped onto a port of the test system
/'l reception of the reply by the SUT is outside
/1 the scope of the operational senantics

else { // sending of nessage
renot ePort. enqueue(CONSTRUCT- | TEM Entity, send, sendSpec));

} // end of scope of renotePort
Entity. VALUE- STACK. pop(); /'l clean val ue stack

Entity. NEXT- CONTROL(true);
RETURN;

v

Figure 118: Flow graph segment <send-without-receiver-op>

ETSI

118

9.45 Setverdict operation

The syntactical structure of theset ver di ct operationis:

verdi ct. set (<verdi cttype-expressi on>)

Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

The<verdi ctt ype- expr essi on> parameter of theset ver di ct operation isan expression that shall evaluate
toavalueof typever di ctt ype,i.e.none, pass,i nconc orfai | . The expression is evaluated before the

set verdi ct operationisapplied.

The flow graph segment <set ver di ct - op> in figure 119 defines the execution of the set ver di ct operation.

segment <setverdict-op>

l /1 The expression shall evaluate to a val ue
/1 of type verdicttype.
<expression> /1 The result of the evaluation is pushed
/1 onto the VALUE- STACK of Entity

RETURN,

if(Entity. E-VERDICT == fail or
Entity. VALUE- STACK. top() == fail) {
Entity. E-VERDICT : = fail;

setverdict-op \ }
el se {
if(Entity. VALUE- STACK. top() == inconc or
Entity. E- VERDI CT == inconc) {
Entity. E-VERDI CT : = inconc;
}
el se {
if (Entity. VALUE- STACK. top() == pass or
Entity. E- VERDI CT == pass) {
Entity. E- VERDI CT : = pass;
}
}

}
Entity. VALUE- STACK. pop() // clear VALUE- STACK
Entity. NEXT- CONTROL(true);

Figure 119: Flow graph segment <setverdict-op>

ETSI

119 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.46 Start component operation

The syntactical structure of thest art component operation is:
<component-expression>.star t(<function-name>(<act-par-desc,>, ..., <act-par-desc,>))

Thest art component operation starts a newly created component. Using a component reference identifies the
component to be started. The reference may be stored in a variable or be returned by afunction, i.e. it is an expression
that evaluates to a component reference.

The<f unct i on- nanme> denotes to the name of the function that defines the behaviour of the new component and
<act - par - descr >, ..., <act - par - descr ,> provide the description of the actual parameter values of

<functi on- nane>. Infunctionsreferenced in st art component operations only value parameters are allowed. The
descriptions of the actual parameters are provided in form of expressions that have to be evaluated before the call can be
executed. The handling of formal and actual value parametersis similar to their handling in function calls (see

clause 9.24).

The flow graph segment <start-component-op> in figure 120 defines the execution of the st ar t component operation.
The start component operation is executed in four steps. In thefirst step acall record is created. In the second step the
actual parameter values are calculated. In the third step the reference of the component to be started is retrieved, and, in
the fourth step, control and call record are given to the new component.

NOTE: The flow graph segment in figure 120 includes the handling of reference parameters
(<ref -var - par - cal c>). Reference parameters are needed to explain reference parameters of test
cases. The operational semantics assumes that these parameters are handled by the MTC.

ETSI

120 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

segnent <start-conponent - op>

Entity. VALUE- STACK. push(NEW CALL- RECORD(f unct i on- nane));
Entity. NEXT- CONTROL(true);
RETURN;

construct-call-record
(function-nane)

/'l For each pair (<f-par-1di>, <act-paraneter-desci>) the
/1 value of <act-paraneter-desci is calculated and
»»»»» /'l assigned to the corresponding field <f-par-Idi>
<val ue-par-cal cul ati on> /1 in the call record. The call record is assuned to be
* // the top elenent in the value stack.

* /1 This flow graph segnent is also used to explain
/] the execute statemmt. Test cases are allowed to have
~~~~~ /'l reference paraneters. The operational senantics
<ref-var-par-cal c> /] assumes that these paraneters are owned (and updated)
¢ /1 by the MIC

<expr essi on>

~

The expression shall evaluate to a conponent reference.
It refers to the conponent to be started

~
~—

control -trans-to-conponent
(function-name)
T

let {
var toBeStarted = Entity. VALUE- STACK. top();
/] toBeStarted is a local variable that stores the
/1 identifier of the conponent to be started

Enti ty. VALUE- STACK. pop();
/1 Rernoval of conponent reference. Afterwards the
/1 call record is on top of the value stack

toBeSt art ed. VALUE- STACK. push(Entity. VALUE- STACK. t op();
/1 Call record is transferred to toBeStarted.

Entity. VALUE- STACK. pop();
/'l Rermoval of the call record fromthe val ue stack
/1 of the starting conponent (= Entity).

t oBeSt art ed. CONTROL- STACK. push( GET- FLOW¥ GRAPH( f unct i on- nane) ) ;
/'l Control stack of toBeStarted is set to
/1 the start node of its behaviour.

toBeStart ed. STATUS : = ACTI VE;
/1 Control is given to toBeStarted

} // end of scope for variable toBeStarted

Entity. NEXT- CONTROL(true);
RETURN;

v

Figure 120: Flow graph segment <start-component-op>

ETSI



121 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.47  Start port operation
The syntactical structure of thest ar t port operation is:
<portld>.start

The flow graph segment <start-port-op> in figure 121 defines the execution of the st ar t port operation.

segnent <start-port-op>

GET- PORT(Entity, portld).clear;
GET- PORT(Entity, portld). STATUS : = STARTED;

start-port-op
(portld) Enti ty. NEXT- CONTROL(tr ue);

RETURN,

v

Figure 121: Flow graph segment <start-port-op>

9.48  Start timer operation

The syntactical structure of thest art timer operationis:
<timerld> start [(<float-expression>)]

The optional <float-expression> parameter of the timer st ar t operation denotes the actual duration of the timer. If it is
not provided, the default duration will be used by the st art operation. The expression that shall evaluate to a value of
typef | oat . If provided, the expression shall be evaluated before the st ar t operation is applied. The result of the
evaluation is pushed onto the VALUE-STACK of Entity.

The flow graph segment <st ar t - t i mer - op> in figure 122 defines the execution of the st art timer operation.

segnment <start-timer-op> l

start-tinmer-op-default

OoR /1 Atimer can be started with
start-tinmer-op-duration /1 a default duration, or with
/1 a given duration.

v

Figure 122: Flow graph segment <start-timer-op>

ETSI



122 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.48.1 Flow graph segment <start-timer-op-default>

The flow graph segment <st ar t - t i ner - op- def aul t > infigure 123 defines the execution of the st art timer
operation with the default value.

segment <start-timer-op-defaul t>

start-timer-op-default
(timerld)

/1 The tinmer reference <tinerld> is copied into the node
/] attribute'timerld

if (Entity.tinerld. DEF- DURATI ON == NONE) ({

*** DYNAM C- ERROR* * * /1 Timer has no default duration
}
el se {
Entity. TI MER- SET(tinerld, STATUS, RUNNING);
Entity. TIMER SET(tinmerid, ACI-DURATION, Entity.tiner|d. DEF- DURATI ON);
Entity. TI MER-SET(tinerld, TIMe-LEFT, Entity.tinerld. DEF- DURATI ON);
}
Entity. NEXT- CONTROL(true);
RETURN;

Figure 123: Flow graph segment <start-timer-op-default>

ETSI



123 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.48.2 Flow graph segment <start-timer-op-duration>

The flow graph segment <st art - t i ner - op- dur at i on> in figure 124 defines the execution of the st ar t timer
operation with a provided duration.

segment <start-timer-op-duration>

v

/1 The expression shall evaluate
/1l to a float. The result is pushed
/1 onto VALUE- STACK.

<expressi on>

Start_tl anr_op_duratlon ....................................
(timerld)

/1 The tinmer reference <tinerld> is copied into the node
/] attribute ‘timerld

Entity. TI MER SET(tinerld, STATUS, RUNNING);
Entity. TIMER SET(tinerld, ACT-DURATION, Entity.VALUE- STACK. top());
Entity. TI MER-SET(tinerld, TIMe-LEFT, Entity.VALUE- STACK top());

Entity. VALUE- STACK. pop(); /1 clean VALUE- STACK

Entity. NEXT- CONTROL(true);
RETURN;

Figure 124: Flow graph segment <start-timer-op-duration>

9.49  Stop component operation

The syntactical structure of the st op execution statement is:
<conponent - expr essi on>. st op

The st op component operation stops the specified component. All test components will be stopped, i.e. the test case
terminates, if the MTC is stopped (e.g., nt ¢c. st op) or stopsitself (e.g., sel f. st op). The MTC may stop al paralel
test components by usingtheal | keyword, i.e.al | conponent .st op., or any parale test component by using the
any keyword, i.e. any conponent .st op.

A component to be stopped is identified by a component reference provided as expression, e.g. avalue or value
returning function. For simplicity, the keywords'al | conponent 'and'any conponent ' are considered to be
specia values of <conponent - expr essi on>.

The flow graph segment <st op- conmponent - op> in figure 125 defines the execution of the st op component
operation.

ETSI



124

segment <st op- conponent - op>

v

Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

/1 The Expression shall evaluate

<expr essi on>

to a conponent
result

reference. The

/1 i s pushed onto VALUE- STACK

A 4

deci si on

true

<stop-all - conp>

true

<st op-ntc>

pr epar e- st op

A

deci si on

<st op- conponent >

fal se

== "all conponent') {

(Entity. VALUE- STACK. t op()
(); /1 clean value stack

Entity. VALUE- STACK. pop
if (Entity '= MIOQ {
***DYNAM G- ERROR*** [/

"all' not all owed

el se {
Entity. NEXT- CONTROL(tr ue);
{

el se {
Entity. NEXT- CONTROL(f al se);
}

RETURN,

i f (Entity.VALUE- STACK. top() == MIQ {

Entity. VALUE- STACK. pop(); // clean value stack
............ Entity. NEXT- CONTROL(true);
el se {

Ent
}

RETURN,

i ty. NEXT- CONTROL(f al se);

if (Entity.VALUE- STACK. top() ==

Entity. VALUE- STACK. pop(

if (Entity 1= MO {
*%* DYNAM G ERROR*** /|

"any conponent') {
; Il clean val ue stack

~—

"all' not all owed

else { // Random sel ection of a PTC and pushing its
/'l reference onto the value stack
Entity. VALUE- STACK. push( ALL- ENTI TY- STATES. r andom
not (MIC) && not (ALL- ENTI TY- STATES.first()));
if (Entity.VALUE- STACK. t op() NULL) {
*** DYNAM G ERROR*** [/ No PTC runni ng
}
}

el se {
/1 a conponent

is the top element in the val ue stack

Entity. NEXT- CONTROL(true);
RETURN,

;

Figure 125: Flow graph segment <stop-component-op>

ETSI




125 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.49.1 Flow graph segment <stop-mtc>

The<st op- mt ¢> flow graph segment in figure 126 describes the stopping of an MTC of atest case. The effect is that
the test case terminates, i.e. the final verdict is calculated and pushed onto the value stack of module control and all test
components including the MTC are terminated.

segnent <stop-ntc>

Stop-mc Ve

let { // local scope for variable nyEntity
var nyEntity := ALL-ENTI TY- STATES. next (MIC);
/1 for test continuation, if stop-ntc is executed by nodul e control
if (Entity == ALL- ENTI TY- STATES.first()) {
Entity. NEXT- CONTROL(tr ue);
}

/1 Update test case verdict

while (nmyEntity !'= NULL) {
if (nyEntitiy. E-VERDICT == fail or TG VERDICT == fail) {

TG VERDICT : = fail;

}
el se {
if (nyEntity. E-VERDI CT == inconc or TC VERD CT == inconc) {
TC- VERDI CT : = inconc;
}
el se {
if (nyEntity. E-VERDI CT == pass or TC VERDI CT == pass) {
TC VERDI CT : = pass;
}
}

nyEntity := ALL- ENTI TY- STATES. next (nmyEntity);

}

/1 Deletion of test conponents

nyEntity := ALL- ENTI TY- STATES. next (MIC);

while (nmyEntity !'= NULL) {
ALL- ENTI TY- STATES. del et e(nyEntity); /1 Deletion of reference
DEL- ENTI TY(nyEntity); /1 Deletion of entity
nyEntity := ALL- ENTI TY- STATES. next (MIC); // Next conponent to delete

}

/1 Update of reference paraneters

UPDATE- REMOTE- LOCATI ONS( MIC, ALL- ENTI TY- STATES. first());

/] Deletion of MIC

ALL- ENTI TY- STATES. del ete(MIC); // Deletion of MIC reference
DEL- ENTI TY(MTC) ; /1 Deletion of MIC

MIC == NULL;

/!l TC-VERDICT is the result of the execute operation

ALL- ENTI TY- STATES. first (). VALUE- STACK. push(TC- VERDI CT) ;

ALL- ENTI TY- STATES. first (). STATUS : = ACTIVE; // Control continues
} // End of local scope
RETURN,

Figure 126: Flow graph segment <stop-mtc-op>

ETSI



126 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.49.2 Flow graph segment <stop-component>

The<st op- conponent > flow graph segment in figure 127 describes the stopping of a parallel test component,

i.e. not the MTC or module control. The effect is that the test case verdict TC-VERDICT and the list of terminated test
components (DONE) are updated and that the component is deleted from the module state. The <st op- conponent >
flow graph assumes that the identifier of the component to be stopped is on top of the value stack of the component that
executes the segment.

segnent <st op- conponent >

A 4

st op-conponent e .

let { // local scope for variable nyEntity
var nyEntity := Entity.VALUE- STACK top();

// for test continuation, if stop is executed by another conponent
if (BEntity !'= nmyEntity()) {

Entity. VALUE- STACK. pop(); // clean value stack

Entity. NEXT- CONTROL(true);
}

/1 Update test case verdict
if (nyEntitiy. E-VERDICT == fail or TC-VERDICT == fail) {
TC-VERDICT : = fail;

}
el se {
if (nyEntity. E-VERDI CT == inconc or TC-VERDI CT == inconc) {
TC- VERDI CT : = inconc;
}
el se {
if (myEntity.E-VERDICT == pass or TC VERDI CT == pass) {
TC- VERDI CT : = pass;
}
}
/1 Deletion of test conponent
DONE : = DONE. append(nyEntity); /1 Update of DONE
ALL- ENTI TY- STATES. del ete(nyEntity); /1 Deletion of reference
DEL- ENTI TY(nyEntity); /1 Deletion of entity

nyEntity := ALL- ENTI TY- STATES. next (MIC); // Next conponent to delete

} // End of local scope
RETURN;

Figure 127: Flow graph segment <stop-component>

ETSI



127 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.49.3 Flow graph segment <stop-all-comp>

The<st op- al | - conp> flow graph segment in figure 128 describes the stopping of all parallel test components of a
test case.

segnent <stop-all-conmp>

A 4

stop-al | -conp Yo

let { // local scope for variable nyEntity
var nyEntity := ALL- ENTI TY- STATES. next (MIC);

/1 Update test case verdict
while (nyEntity !'= NULL) {
if (nyEntitiy. E-VERDICT == fail or TG VERDICT == fail) {
TC VERDICT : = fail;
}

el se {

if (nyEntity. E-VERDI CT == inconc or TC VERD CT == inconc) {
TC VERDI CT : = inconc;

}

el se {
if (nyEntity. E-VERDI CT == pass or TC VERDI CT == pass) {

TG VERDI CT : = pass;
}

}
nyEntity := ALL- ENTI TY- STATES. next (nyEntity);

}

/1 Deletion of test conponents
nyEntity := ALL- ENTI TY- STATES. next (MIC);
while (myEntity !'= NULL) {

DONE : = DONE. append(nyEntity); /1 Update of DONE
ALL- ENTI TY- STATES. del et e(nyEntity); /1 Deletion of reference
DEL- ENTI TY(nyEntity); /'l Deletion of entity

nyEntity := ALL- ENTI TY- STATES. next (MIC); // Next conponent to delete

} // End of local scope

Entity. NEXT- CONTROL(true);
RETURN,

Figure 128: Flow graph segment <stop-all-comp>

9.50  Stop execution statement
The syntactical structure of the st op execution statement is:
stop
The effect of the st op execution statement depends on the entity that executes the st op execution statement:

a) If st op isperformed by the module control, the test campaign ends, i.e. all test components and the module
control disappear from the module state.

b) If thest op isexecuted by the MTC, al parallel test components and the MTC stop execution. The global test
case verdict is updated and pushed onto the value stack of the module control. Finally, control is given back to
the module control and the MTC terminates.

c) Ifthest op isexecuted by atest component, the global test case verdict TC-VERDICT and the global DONE
list are updated. Then the component disappears completely from the module.

ETSI



128

Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

The flow graph segment <stop-exec-stmt> in figure 129 describes the execution of the stop statement.

segnent <stop-exec-stnt>

true

<stop-control >

<st op-ntc>

deci si on

fal se

if (Entity == All-ENTITY-STATES.first()) {
Entity. NEXT- CONTROL(true);

el se {

}
RETURN,

Entity. NEXT- CONTROL(f al se);

if (Entity == MIC.first()) {
Entity. NEXT- CONTROL(true);

el se {

Entity. VALUE- STACK. push(Entity);
Entity. NEXT- CONTROL(f al se);

}
RETURN;

<st op- conponent >

Figure 129: Flow graph segment <stop-exec-stmt>

9.50.1 Flow graph segment <stop-control>

The <st op- cont r ol > flow graph segment in figure 130 describes the stopping of module control. The effect is that
ALL-ENTITY-STATESis set NULL, i.e. the termination condition of the module evaluation procedure (see clause 8.6) is

fulfilled.

segnent <stop-control >

A

y

st op-control

ALL- ENTI TY- STATES : = NULL;
RETURN,

\

4

Figure 130: Flow graph segment <stop-control-op>

ETSI



129 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.51  Stop port operation
The syntactical structure of the st op port operation is:
<portld>.stop

The flow graph segment <st op- por t - op> in figure 131 defines the execution of the st op port operation.

segnment <stop-port-op>

GET- PORT(Entity, portld). STATUS : = STOPPED;

stop-port-op Entity. NEXT- CONTROL(true);
(portld) -

RETURN,

v

Figure 131: Flow graph segment <stop-port-op>

9.52  Stop timer operation

The syntactical structure of the st op timer operationiis:
<tinmerld>. stop

The flow graph segment <st op-ti mer - op> in figure 132 defines the execution of the st op timer operation.

Theal | keyword ishandled asa specia valueof ti mer | d.

segment <stop-timer-op>

/1 The timer reference <tinerld> is copied
) /1 into the node attribute ‘tinmerld

stop-ti ner-op
(timerld)

if (timerld == “all tiner’) {
Entity. TI MER- STATE. first.change( Tl MER- SET(, STATUS, |IDLE));
Entity. TI MER- STATE. first. change(TlI MER- SET(, ACT-DURATIQN, 0.0);
Entity. TI MER- STATE. first. change( TI MER- SET(, TIME-LEFT, 0.0);
/1 Note, the first paranmeter of the TIMER-SET function is
/] ommitted, because it is applied to all tiners in the
/'l actual scope unit.

el se {
Entity. TI MER- SET(tinerld, STATUS, |DLE);
Entity. TI MER-SET(tinerld, ACT-DURATION, 0.0);
Entity. TI MER-SET(tinerld, TIMeLEFT, 0.0);

}

Entity. NEXT- CONTROL(true);
RETURN;

Figure 132: Flow graph segment <stop-timer-op>

ETSI



130 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.53  System operation

The syntactical structure of the syst emoperationiis:
system

The flow graph segment <syst em op> in figure 133 defines the execution of the syst emoperation.

segnent <system op>

Entity. VALUE- STACK. push(systen);
SyStemop e, Enti ty. NEXT- CO\ITRO_(true);
RETURN,

v

Figure 133: Flow graph segment <system-op>

9.54  Timer declaration
The syntactical structure of atimer declarationiis:
timer <timerld> [:= <float-expressi on>]

The effect of atimer declaration is the creation of anew timer binding. The declaration of a default duration is optional.
The default value is considered to be an expression that evaluates to avalue of thetypef | oat .

The flow graph segment <t i ner - decl ar at i on> in figure 134 defines the execution of atimer declaration.

<timer-decl-defaul t>
oR
<ti mer - decl - no- def >

i

Figure 134: Flow graph segment <timer-declaration>

segment <timer-decl arati on>

A tinmer nay be declared with
or without a default duration

/1
/1

ETSI



9.54.1 Flow graph seg

131 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

ment <timer-decl-default>

The flow graph segment <t i ner - decl - def aul t > infigure 135 defines the execution of atimer declaration where
adefault duration in form of an expression is provided.

segnent <ti mer-decl-defaul t>

v

<expressi on>

/1 The expression shall evaluate

/1 to a value of type float

timer-decl -defaul t
(timerld)

Entity. INIT-TIMER(tinerld, Entity.VALUE- STACK top());
Entity. VALUE- STACK. pop(); /1 cl ean VALUE- STACK

Entity. NEXT- CONTROL(true);
RETURN;

Figure 1

35: Flow graph segment <timer-decl-default>

9.54.2 Flow graph segment <timer-decl-no-def>

The flow graph segment <t i ner - decl - no- def > in figure 136 defines the execution of atimer declaration where
no default duration is provided, i.e. the default duration of the timer is undefined.

segment <ti mer-decl - no- def >

Entity. | N T-TIMER(ti merld, NONE);

ti mer-decl - no- def Entity. NEXT- CONTROL(true);
(timerld) RETURN,

\ 4

Figure 136: Flow graph segment <timer-decl-no-def>

ETSI



132 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.55 Timeout timer operation
The syntactical structure of thet i meout timer operationis:
<tinmerld> tinmeout

The flow graph segment <t i meout - t i mer - op> infigure 137 defines the execution of thet i neout timer
operation.

segment <timeout-timer-op>

timeout-timer-op
(timerld)

/1 The timer reference <timerld> is copied
// into the node attribute ‘tinmerld

if (tinerld == “any tiner’) {
timerld := Entity. TI MER- STATE. first.random( SNAP- STATUS == TI MECQUT) ;
}

if (tinmerld !'= NULL & Entity.tinerld. SNAP- STATUS == TI MEQUT) {
Entity. TI MER SET(tinerid, STATUS, IDLE);
Entity. TI MER- SET(tinerld, ACT-DURATION, 0.0);
Entity. TIMER SET(tinerid, TIME LEFT, 0.0);
Entity. STATUS : = ACTI VE;
Entity. NEXT- CONTROL(true);

el se {
Entity. NEXT- CONTROL(f al se);
}

RETURN,

true fal se

Figure 137: Flow graph segment <timeout-timer-op>

NOTE 1: Atineout operationisembeddedinanal t statement. Its evaluation is based on the actual snapshot,
i.e. the decision is based on the SNAP-STATUS entry in the timer binding. If the timeout operation is
successful, i.e. SNAP-STATUS == TIMEOUT, the timer is set into an IDLE state and the component state
changes from SNAPSHOT to ACTIVE.

NOTE 2: Whenthet i neout evaluatestotr ue orf al se, either execution continues with the statement that
followsthet i meout operation (t r ue branch), or the next alternativeinthe al t statement hasto be
checked (f al se branch).

NOTE 3: Theany keyword istreated like as special valueof t i mer | d.

ETSI



133 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.56 Unmap operation

The syntactical structure of athe unnmap operationis:
unmap( <conponent _expressi on>. <portldl>, system <port|d2>)

Theidentifiers<port | d1> and <port | d2> are considered to be port identifiers of the corresponding test component
and test system interface. The components to which the <portld1> belongsis referenced by means of the component
reference <conponent - expr essi on>. The reference may be stored in variables or isreturned by a function, i.e. it
is an expressions, which evaluates to a component reference. The value stack is used for storing the component
reference.

NOTE: Theunmap operation does not care whether the sy st em<portld> statement appears asfirst or as second
parameter. For simplicity, it is assumed that it is always the second parameter.

The execution of the unmap operation is defined by the flow graph segment <unmap- op> shown in figure 138.

segnent <unnap- op> i

let { /1 begin of a local scope unit, needed for
/1 the local variable conpl
var conpl = Entity. VALUE- STACK. top();
Entity. VALUE- STACK. pop();
DEL- CON(conpl, portldl, system portld2);
} /1 end of |ocal scope

<expr essi on>

unmap- op

Entity. NEXT- CONTROL(true);
(portldl, portld2) —

) BN RE'I'URN,

Figure 138: Flow graph segment <unmap-op>

ETSI



134 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.57 Variable declaration

The syntactical structure of avariable declaration is:
var <varType> <varld> [:= <varType- expressi on>]

The initialization of avariable by providing an initial value (in form of an expression) isoptional. Theinitial valueis
considered to be an expression that eval uates to a value of the type of the variable.

The flow graph segment <var i abl e- decl ar at i on> infigure 139 defines the execution of the declaration of a
variable.

segment <vari abl e- decl arati on> v

<var-decl aration-init>
R /1 A variable nay be declared with
<var - decl ar ati on- undef > // or without initial value

Figure 139: Flow graph segment <variable-declaration>

9.57.1 Flow graph segment <var-declaration-init>

The flow graph segment <var - decl ar ati on-i ni t > infigure 140 defines the execution of a variable declaration
where aninitial value in form of an expression is provided.

segnent <var-declaration-init>

v

/1 The expression shall evaluate
I/l to a value of the type of the
/1 variable that is declared.

<expr essi on>

Entity. | NI T-VAR(varld, Entity.VALUE-STACK top());

Entity. VALUE- STACK. pop(); /'l clean VALUE- STACK;
var-declaration-init
(varld) Entity. NEXT- CONTROL(true);
RETURN;

Figure 140: Flow graph segment <var-declaration-init>

ETSI



135 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

9.57.2 Flow graph segment <var-declaration-undef>

The flow graph segment <var-declaration-undef> in figure 141 defines the execution of a variable declaration where no
initial valueis provided, i.e. the value of the variable is undefined.

segnent <var-decl arati on-undef >

Entity. | N T- VAR(var|d, NONE);

var - decl ar ati on- undef Entity. NEXT- CONTROL(true);
(varld) RETURN,

\4

Figure 141: Flow graph segment < var-declaration-undef >

9.58 While statement

The syntactical structure of thewhi | e statement is;
whi | e (<bool ean- expressi on>) <st at enent - bl ock>

The execution of awhi | e statement is defined by the flow graph segment <whi | e- st nt > shown in figure 140.

segment <whil e-stmnt>

) /'l The expression shall evaluate to
<expressi on> /1 a Bool ean val ue.

- if (Entity.VALUE- STACK. top() == true)
deci si on - —

Entity. NEXT- CONTROL(true);

true ol se |
Entity. NEXT- CONTROL(true);
}
<st at enent - bl ock> gg'u% VALUE- STACK. pop() ;
v

Figure 140: Flow graph segment <while-stmt>

ETSI



136 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

10 Lists of operational semantic components

10.1

Functions and states

Name Description Clause
ACT-DURATION Duration with which an active timer has been started 8.3.24
add List operation: adds an item as first element to a list 8.3.1.1
ADD-CON Adds a connection to a port state 8.3.3.2
ALL-ENTITY-STATES Component states in module state 8.3.1
ALL-PORT-STATES Port states in module state 8.3.1
append List operation: appends an item as last element to a list 8.3.1.1
APPLY-OPERATOR Application of operators like +, - or / 8.6.2
change List operation: changes all elements of a list 8.3.1.1
clear Stack operation 'clear": clears a stack 8.3.2.1
clear Queue operation 'clear': removes all elements from a queue 8.3.3.2
clear-until Stack operation ‘clear-until': pops items until a specific item is top element 8.3.2.1
in the stack.
CONNECTIONS-LIST List of connections of a port 8.3.3
CONSTRUCT-ITEM Constructs an item to be sent 8.4.4
CONTINUE- The actual component continues its execution 8.6.2
COMPONENT
CONTROL-STACK Stack of flow graph nodes denoting the actual control state of an entity 8.3.2
DATA-STATE Data state in an entity state 8.3.2
DEF-DURATION Default Duration of a timer 8.3.24
DEFAULT-LIST List of active defaults in an entity state 8.3.2
DEFAULT-POINTER Points to the actual default during the default evaluation. 8.3.2
DEL-CON Deletes a connection from a port state 8.3.3.2
DEL-ENTITY Deletes an entity from a module state 8.3.4
DEL-TIMER-SCOPE Deletes a timer scope 8.3.25
DEL-VAR-SCOPE Deletes a variable scope 8.3.2.3
delete List operation: deletes an item from a list 8.3.1.1
dequeue Queue operation: deletes the first element from a queue 8.3.3.2
DONE Identifiers of terminated test components (part of module state) 8.3.1
E-VERDICT Local test verdict of a test component 8.3.2
enqueue Queue operation: puts an item as last element into a queue 8.3.3.2
first Queue operation 'first': returns the first element of a queue 8.3.3.2
first List operation: returns the first element of a list 8.3.11
GET-FLOW-GRAPH Retrieves the start node of a flow graph 8.2.7
GET-PORT Retrieves a port reference 8.3.3.2
GET-REMOTE-PORT Retrieves the reference of a remote port 8.3.3.2
GET-TIMER-LOC Retrieves location of a timer 8.3.25
GET-UNIQUE-ID Returns a new unique identifier when it is called 8.6.2
GET-VAR-LOC Retrieves location of a variable 8.3.2.3
INIT-CALL-RECORD | Initializes variables for parameters for procedure-based communication in 8.5.1
the actual scope unit of the test component
INIT-FLOW-GRAPHS Initializes the flow graph handling 8.6.2
INIT-TIMER Creates a new timer binding 8.3.25
INIT-TIMER-LOC Creates a new timer binding with an existing location 8.3.25
INIT-TIMER-SCOPE Initializes a new timer scope 8.3.25
INIT-VAR Creates a new variable binding 8.3.2.3
INIT-VAR-LOC Creates a new variable hinding with an existing location 8.3.2.3
INIT-VAR-SCOPE Initializes a new variable scope 8.3.2.3
length List operation: returns the length of a list 8.3.1.1
M-CONTROL Identifier of module control in module state 8.3.1
MATCH-ITEM Checks if a received message, call, reply or exception matches with a 8.4.5
receiving operation
member List operation: checks if an item is element of a list 8.3.11
MTC Reference to MTC in module state 8.3.1
NEW-CALL-RECORD Creates a call record for a function call 8.5.1
NEW-ENTITY Creates a new entity state 8.3.2.1
NEW-PORT Creates a new port 8.3.3.2
NEXT Retrieves the successor node of a given node in a flow graph. 8.1.6
next List operation: returns next element in a list 8.3.11

ETSI




137

Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

Name Description Clause
NEXT-CONTROL Pops the top flow graph node from the control stack and pushes the next 8.3.2.1
flow graph node onto the control stack.

OWNER Owner of a port 8.3.3

pop Stack operation 'pop': pops an item from a stack 8.3.2.1
PORT-NAME Name of a port. 8.3.3
push Stack operation 'push'’: pushes an item onto a stack 8.3.2.1
random List operation: returns randomly an element of a list 8.3.1.1
REMOTE-ENTITY Remote entity in a connection in a port state 8.33.1
REMOTE-PORT-NAME Name of a port in a connection in a port state 8.3.3.1
RETRIEVE-INFO Retrieves information from a received message, call, reply or exception 8.4.6
RETURN Returns the control to the module evaluation procedure 8.6.2
SNAP-ACTIVE Number of active test components when the MTC takes a snapshot (part of 8.3.1
module state)
SNAP-DONE List of terminated test components at the time when a shapshot is taken 8.3.2
SNAP-PORTS Provides the snapshot functionality, i.e. updates the SNAP-VALUE 8.3.3.2
SNAP-STATUS Snapshot status of a timer 8.3.24
SNAP-TIMER Provides the snapshot functionality and updates SNAP-VALUE and SNAP- 8.3.25
STATUS
SNAP-VALUE Snapshot value of a timer 8.3.24
SNAP-VALUE For snapshot semantics, updated when a snapshot is taken 8.3.3

STATUS Status (ACTIVE, SNAPSHOT, REPEAT or BLOCKED) of module control 8.3.2

or a test component

STATUS Status (IDLE, RUNNING or TIMEOUT) of a timer 8.3.2.4

STATUS Status (STARTED or STOPPED) of a port 8.3.3

TC-VERDICT Test case verdict in module state 8.3.1
TIME-LEFT Time a running timer has left to run before a it times out 8.3.24
TIMER-GUARD Timer that guards execut e statements and cal | operations 8.3.2
TIMER-NAME Name of a timer 8.3.24
TIMER-SET Setting values of a timer 8.3.25
TIMER-STATE Timer state in an entity state 8.3.2
top Stack operation 'top': returns the top item from a stack 8.3.2.1
UPDATE-REMOTE- Updates timers and variables with the same location in different entities to 8.34
REFERENCES the same value.

VALUE Value of a variable. 8.3.2.2
VALUE-QUEUE Port queue 8.3.3
VALUE-STACK Stack of values for the storage of results of expressions, operands, 8.3.2

operations and functions.
VAR-NAME Name of a variable. 8.3.2.2
VAR-SET Setting the value of a variable 8.3.2.3
**DYNAMIC-ERROR*** Describes the occurrence of a dynamic error 8.6.2
<identifier> Unique identifier of a test component 8.3.2
<location> Supports scope units, reference and timer parameters. Represents a 8.3.2.2,8.3.24
storage location for timers and variables.
10.2  Special keywords
Keyword Description Clause
ACTIVE STATUS of an entity state 8.3.2
BLOCKED STATUS of an entity state 8.3.2
IDLE STATUS of a timer state 8.3.24
MARK Used as mark for VALUE-STACK 8.3.2
NONE Used to describe an undefined value 8.3.2.3,8.3.2.5,8.3.3.2
NULL Symbolic value for pointer and pointer-like types to indicate that nothing 8.3.1.1, 8.3.2.1, 8.3.3,
is addressed 8.3.3.2,86.1.1
REPEAT STATUS of an entity state 8.3.2
RUNNING STATUS of a timer state 8.3.24
SNAPSHOT, STATUS of an entity state 8.3.2
STARTED STATUS of a port 8.3.3
STOPPED STATUS of a port 8.3.3
TIMEOUT STATUS of a timer state 8.3.24

ETSI




138 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

10.3  Flow graphs of TTCN-3 behaviour descriptions

Reference
Figure Clause
Module control 18 8.2.2
Test cases 19 8.2.3
Functions 20 8.24
Altsteps 21 8.2.5
Component type definitions 22 8.2.6
10.4  Flow graph segments
Identifier Related TTCN-3 construct Reference
Figure Clause
<action-stmt> act i on statement 36 9.1
<activate-stmt> act i vat e statement 37 9.2
<alt-stmt> al t statement 38 9.3
<altstep-call> invocation of an altstep 44 9.4
<altstep-call-branch> al t statement 41 9.3.3
<assignment-stmt> assignment 45 9.5
<b-call-with-duration> cal | operation 52 9.6.4
<b-call-without-duration> cal | operation 51 9.6.3
<blocking-call-op> cal | operation 47 9.6
<call-op> cal | operation 46 9.6
<call-reception-part> cal | operation 53 9.6.5
<catch-op> cat ch operation 55 9.7
<catch-timeout-exception> cal | operation 54 9.6.6
<check-op> check operation 56 9.8
<check-with-sender> check operation 57 9.8.1
<check-without-sender> check operation 58 9.8.2
<clear-port-op> cl ear port operation 59 9.9
<connect-op> connect operation 60 9.10
<constant-definition> constant definition 61 9.11
<create-op> cr eat e operation 62 9.12
<deactivate-stmt> deact i vat e statement 63 9.13
<default-evocation> al t statement 43 9.3.5
<disconnect-op> di sconnect operation 64 9.14
<do-while-stmt> do- whi | e statement 65 9.15
<done-component-op> done component operation 66 9.16
<else-branch> al t statement 42 9.3.4
<execute-stmt> execut e statement 67 9.17
<execute-timeout> execut e statement 69 9.17.2
<execute-without-timeout> execut e statement 68 9.17.1
<expression> expression 70 9.18
<finalize-component-init> used in component type definitions 75 9.19
<for-stmt> f or statement 79 9.23
<func-op-call> expression 73 9.18.3
<function-call> call of a function 80 9.24
<getcall-op> get cal | operation 86 9.25
<getreply-op> get r epl y operation 87 9.26
<getverdict-op> get verdi ct operation 88 9.27
<goto-stmt> got o statement 89 9.28
<if-else-stmt> i f-el se statement 90 9.29
<init-component-scope> used in component type definitions 76 9.20
<label-stmt> | abel statement 91 9.30
<lit-value> expression 71 9.18.1
<log-stmt> | og statement 92 9.31
<map-op> map operation 93 9.32
<mtc-op> nt ¢ operation 94 9.33
<nb-call-without-receiver> cal | operation 50 9.6.2

ETSI




139 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)
Identifier Related TTCN-3 construct Reference
Figure Clause
<nb-call-with-receiver> cal | operation 49 9.6.1
<non-blocking-call-op> cal | operation 48 9.6
<operator-appl> expression 74 9.184
<parameter-handling> handling of parameters of functions, altsteps 77 9.21
and test cases
<port-declaration> port declaration 95 9.34
<predef-ext-func-call> call of a function (call of a pre-defined or 85 9.24.5
external function)
<raise-op> rai se operation 96 9.35
<raise-with-receiver-op> rai se operation 97 9.35.1
<raise-without-receiver-op> rai se operation 98 9.35.2
<read-timer-op> r ead timer operation 99 9.36
<receive-assignment> recei ve operation 103 9.37.3
<receive-op> recei ve operation 100 9.37
<receive-with-sender> recei ve operation 101 9.37.1
<receive-without-sender> recei ve operation 102 9.37.2
<receiving-branch> al t statement 40 9.3.2
<ref-par-var-calc> call of a function (handling of reference 82 9.24.2
parameters)
<ref-par-timer-calc> call of a function (handling of timer parameters) 83 9.24.3
<repeat-stmt> r epeat statement 104 9.38
<reply-op> repl y operation 105 9.39
<reply-with-receiver-op> r epl y operation 106 9.39.1
<reply-without-receiver-op> repl y operation 107 9.39.2
<return-stmt> r et ur n statement 108 9.40
<return-with-value> r et ur n statement 109 9.40.1
<return-without-value> r et ur n statement 110 9.40.2
<running-component-op> component r unni ng operation 111 9.41
<running-comp-act> component r unni ng operation 112 9.41.1
<running-comp-snap> component r unni ng operation 113 9.41.2
<running-timer-op> timer r unni ng operation 114 9.42
<self-op> sel f operation 115 9.43
<send-op> send operation 116 9.44
<send-with-receiver-op> send operation 117 9.44.1
<send-without-receiver-op> send operation 118 9.44.2
<setverdict-op> setver di ct operation 119 9.45
<start-component-op> st art component operation 120 9.46
<start-port-op> start port operation 121 9.47
<start-timer-op> st art timer operation 122 9.48
<start-timer-op-default> st art timer operation 123 9.48.1
<start-timer-op-duration> st art timer operation 124 9.48.2
<statement-block> block of statements in compound statements 78 9.22
<stop-component-op> st op component operation 125 9.49
<stop-mtc> st op component operation (stop MTC) 126 9.49.1
<stop-component> st op component operation (stop single test 127 9.49.2
component)
<stop-all-comp> st op component operation (all 128 9.49.3
component.stop)
<stop-exec-stmt> st op execution statement 129 9.50
<stop-control> st op execution statement (stop of module 130 9.50.1
control)
<stop-port-op> st op port operation 131 9.51
<stop-timer-op> st op timer operation 132 9.52
<system-op> syst emoperation 133 9.53
<take-snapshot> al t statement 39 9.3.1
<timeout-timer-op> ti meout operation 137 9.55
<timer-declaration> timer declaration 134 9.54
<timer-decl-default> timer declaration 135 9.54.1
<timer-decl-no-def> timer declaration 136 9.54.2
<timeout-timer-op> ti meout operation 137 9.55

ETSI




140 Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

Identifier Related TTCN-3 construct Reference

Figure Clause

<unmap-op> unnap operation 138 9.56
<user-def-func-call> call of a function (call of a user-defined function) 84 9.24.4
<value-par-calculation> call of a function (handling of value parameters) 81 9.24.1
<var-declaration-init> variable declaration 140 9.57.1
<var-declaration-undef> variable declaration 141 9.57.2
<var-value> expression 72 9.18.2

<variable-declaration> variable declaration 139 9.57

<while-stmt> whi | e statement 140 9.58

ETSI




141

Final draft ETSI ES 201 873-4 V2.2.1 (2002-10)

History

Document history

V221

October 2002

Membership Approval Procedure

MV 20021220: 2002-10-22 to 2002-12-20

ETSI



	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Introduction
	5 Structure of the present document
	6 Restrictions
	7 Replacement of short forms
	7.1 Order of replacement steps
	7.2 Replacement of global constants and module parameters
	7.3 Embedding single receiving operations into alt statements
	7.4 Embedding stand-alone altstep calls into alt statements
	7.5 Replacement of interleave statements
	7.6 Replacement of trigger operations

	8 Flow graph semantics of TTCN-3
	8.1 Flow graphs
	8.1.1 Flow graph frame
	8.1.2 Flow graph nodes
	8.1.2.1 Start nodes
	8.1.2.2 End nodes
	8.1.2.3 Basic nodes
	8.1.2.4 Reference nodes
	8.1.2.4.1 OR combination of reference nodes
	8.1.2.4.2 Multiple occurrences of reference nodes


	8.1.3 Flow lines
	8.1.4 Flow graph segments
	8.1.5 Comments
	8.1.6 Handling of flow graph descriptions

	8.2 Flow graph representation of TTCN-3 behaviour
	8.2.1 Flow graph construction procedure
	8.2.2 Flow graph representation of module control
	8.2.3 Flow graph representation of test cases
	8.2.4 Flow graph representation of functions
	8.2.5 Flow graph representation of altsteps
	8.2.6 Flow graph representation of component type definitions
	8.2.7 Retrieval of start nodes of flow graphs

	8.3 State definitions for TTCN-3 modules
	8.3.1 Module state
	8.3.1.1 Accessing the module state

	8.3.2 Entity states
	8.3.2.1 Accessing entity states
	8.3.2.2 Data state and variable binding
	8.3.2.3 Accessing data states
	8.3.2.4 Timer state and timer binding
	8.3.2.5 Accessing timer states

	8.3.3 Port states
	8.3.3.1 Handling of connections among ports
	8.3.3.2 Handling of port states

	8.3.4 General functions for the handling of module states

	8.4 Messages, procedure calls, replies and exceptions
	8.4.1 Messages
	8.4.2 Procedure calls and replies
	8.4.3 Exceptions
	8.4.4 Construction of messages, procedure calls, replies and exceptions
	8.4.5 Matching of messages, procedure calls, replies and exceptions
	8.4.6 Retrieval of information from received items

	8.5 Call records for functions, altsteps and test cases
	8.5.1 Handling of call records

	8.6 The evaluation procedure for a TTCN-3 module
	8.6.1 Evaluation phases
	8.6.1.1 Phase I: Initialization
	8.6.1.2 Phase II: Update
	8.6.1.3 Phase III: Selection
	8.6.1.4 Phase IV: Execution

	8.6.2 Global functions


	9 Flow graph segments for TTCN-3 constructs
	9.1 Action statement
	9.2 Activate statement
	9.3 Alt statement
	9.3.1 Flow graph segment <take-snapshot>
	9.3.2 Flow graph segment <receiving-branch>
	9.3.3 Flow graph segment <altstep-call-branch>
	9.3.4 Flow graph segment <else-branch>
	9.3.5 Flow graph segment <default-evocation>

	9.4 Altstep call
	9.5 Assignment statement
	9.6 Call operation
	9.6.1 Flow graph segment <nb-call-with-receiver>
	9.6.2 Flow graph segment <nb-call-without-receiver>
	9.6.3 Flow graph segment <b-call-without-duration>
	9.6.4 Flow graph segment <b-call-with-duration>
	9.6.5 Flow graph segment <call-reception-part>
	9.6.6 Flow graph segment <catch-timeout-exception>

	9.7 Catch operation
	9.8 Check operation
	9.8.1 Flow graph segment <check-with-sender>
	9.8.2 Flow graph segment <check-without-sender>

	9.9 Clear port operation
	9.10 Connect operation
	9.11 Constant definition
	9.12 Create operation
	9.13 Deactivate statement
	9.14 Disconnect operation
	9.15 Do-while statement
	9.16 Done component operation
	9.17 Execute statement
	9.17.1 Flow graph segment <execute-without-timeout>
	9.17.2 Flow graph segment <execute-timeout>

	9.18 Expression
	9.18.1 Flow graph segment <lit-value>
	9.18.2 Flow graph segment <var-value>
	9.18.3 Flow graph segment <func-op-call>
	9.18.4 Flow graph segment <operator-appl>

	9.19 Flow graph segment <finalize-component-init>
	9.20 Flow graph segment <init-component-scope>
	9.21 Flow graph segment <parameter-handling>
	9.22 Flow graph segment <statement-block>
	9.23 For statement
	9.24 Function call
	9.24.1 Flow graph segment <value-par-calculation>
	9.24.2 Flow graph segment <ref-par-var-calc>
	9.24.3 Flow graph segment <ref-par-timer-calc>
	9.24.4 Flow graph segment <user-def-func-call>
	9.24.5 Flow graph segment <predef-ext-func-call>

	9.25 Getcall operation
	9.26 Getreply operation
	9.27 Getverdict operation
	9.28 Goto statement
	9.29 If-else statement
	9.30 Label statement
	9.31 Log statement
	9.32 Map operation
	9.33 Mtc operation
	9.34 Port declaration
	9.35 Raise operation
	9.35.1 Flow graph segment <raise-with-receiver-op>
	9.35.2 Flow graph segment <raise-without-receiver-op>

	9.36 Read timer operation
	9.37 Receive operation
	9.37.1 Flow graph segment <receive-with-sender>
	9.37.2 Flow graph segment <receive-without-sender>
	9.37.3 Flow graph segment <receive-assignment>

	9.38 Repeat statement
	9.39 Reply operation
	9.39.1 Flow graph segment <reply-with-receiver-op>
	9.39.2 Flow graph segment <reply-without-receiver-op>

	9.40 Return statement
	9.40.1 Flow graph segment <return-with-value>
	9.40.2 Flow graph segment <return-without-value>

	9.41 Running component operation
	9.41.1 Flow graph segment <running-comp-act>
	9.41.2 Flow graph segment <running-comp-snap>

	9.42 Running timer operation
	9.43 Self operation
	9.44 Send operation
	9.44.1 Flow graph segment <send-with-receiver-op>
	9.44.2 Flow graph segment <send-without-receiver-op>

	9.45 Setverdict operation
	9.46 Start component operation
	9.47 Start port operation
	9.48 Start timer operation
	9.48.1 Flow graph segment <start-timer-op-default>
	9.48.2 Flow graph segment <start-timer-op-duration>

	9.49 Stop component operation
	9.49.1 Flow graph segment <stop-mtc>
	9.49.2 Flow graph segment <stop-component>
	9.49.3 Flow graph segment <stop-all-comp>

	9.50 Stop execution statement
	9.50.1 Flow graph segment <stop-control>

	9.51 Stop port operation
	9.52 Stop timer operation
	9.53 System operation
	9.54 Timer declaration
	9.54.1 Flow graph segment <timer-decl-default>
	9.54.2 Flow graph segment <timer-decl-no-def>

	9.55 Timeout timer operation
	9.56 Unmap operation
	9.57 Variable declaration
	9.57.1 Flow graph segment <var-declaration-init>
	9.57.2 Flow graph segment <var-declaration-undef>

	9.58 While statement

	10 Lists of operational semantic components
	10.1 Functions and states
	10.2 Special keywords
	10.3 Flow graphs of TTCN-3 behaviour descriptions
	10.4 Flow graph segments

	History

