

ETSI ES 201 873-1 V4.14.1 (2022-05)

Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3;

Part 1: TTCN-3 Core Language

ETSI STANDARD

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)2

Reference
RES/MTS-201873-1v4.14.1

Keywords
language, methodology, testing, TTCN-3

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - APE 7112B

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° w061004871

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

If you find a security vulnerability in the present document, please report it through our
Coordinated Vulnerability Disclosure Program:

https://www.etsi.org/standards/coordinated-vulnerability-disclosure

Notice of disclaimer & limitation of liability

The information provided in the present deliverable is directed solely to professionals who have the appropriate degree of
experience to understand and interpret its content in accordance with generally accepted engineering or

other professional standard and applicable regulations.
No recommendation as to products and services or vendors is made or should be implied.

No representation or warranty is made that this deliverable is technically accurate or sufficient or conforms to any law
and/or governmental rule and/or regulation and further, no representation or warranty is made of merchantability or fitness

for any particular purpose or against infringement of intellectual property rights.
In no event shall ETSI be held liable for loss of profits or any other incidental or consequential damages.

Any software contained in this deliverable is provided "AS IS" with no warranties, express or implied, including but not

limited to, the warranties of merchantability, fitness for a particular purpose and non-infringement of intellectual property
rights and ETSI shall not be held liable in any event for any damages whatsoever (including, without limitation, damages

for loss of profits, business interruption, loss of information, or any other pecuniary loss) arising out of or related to the use
of or inability to use the software.

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and
microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2022.

All rights reserved.

http://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx
https://www.etsi.org/standards/coordinated-vulnerability-disclosure

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)3

Contents

Intellectual Property Rights .. 13

Foreword ... 13

Modal verbs terminology .. 14

1 Scope .. 15

2 References .. 15

2.1 Normative references .. 15

2.2 Informative references ... 15

3 Definition of terms, symbols and abbreviations ... 17

3.1 Terms ... 17

3.2 Symbols ... 23

3.3 Abbreviations .. 23

4 Introduction .. 24

4.0 General .. 24

4.1 The core language and presentation formats ... 25

4.2 Unanimity of the specification .. 26

4.3 Conformance ... 26

5 Basic language elements .. 27

5.0 General .. 27

5.1 Identifiers and keywords ... 28

5.2 Scope rules .. 28

5.2.0 General ... 28

5.2.1 Scope of formal parameters ... 30

5.2.2 Uniqueness of identifiers ... 30

5.3 Ordering of language elements .. 31

5.4 Parameterization .. 31

5.4.0 General ... 31

5.4.1 Formal parameters ... 32

5.4.1.0 General ... 32

5.4.1.1 Formal parameters of kind value .. 33

5.4.1.2 Formal parameters of kind template ... 36

5.4.2 Actual parameters .. 38

5.5 Cyclic Definitions.. 43

6 Types and values .. 44

6.0 General .. 44

6.1 Basic types and values ... 45

6.1.0 Simple basic types and values.. 45

6.1.1 Basic string types and values ... 45

6.1.1.0 General ... 45

6.1.1.1 Accessing individual string elements ... 48

6.1.2 Subtyping of basic types .. 48

6.1.2.0 General ... 48

6.1.2.1 Lists of templates ... 49

6.1.2.2 Lists of types .. 49

6.1.2.3 Ranges .. 49

6.1.2.4 String length restrictions .. 50

6.1.2.5 Pattern subtyping of character string types .. 50

6.1.2.6 Mixing subtyping mechanisms ... 51

6.1.2.6.1 Mixing patterns, lists and ranges .. 51

6.1.2.6.2 Using length restriction with other constraints ... 51

6.2 Structured types and values ... 52

6.2.0 General ... 52

6.2.1 Record type and values .. 53

6.2.1.0 General ... 53

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)4

6.2.1.1 Referencing fields of a record type .. 56

6.2.1.2 Optional elements in a record... 57

6.2.1.3 Nested type definitions for field types ... 58

6.2.2 Set type and values .. 58

6.2.2.0 General ... 58

6.2.2.1 Referencing fields of a set type .. 58

6.2.2.2 Optional elements in a set .. 58

6.2.2.3 Nested type definition for field types ... 59

6.2.3 Records and sets of single types .. 59

6.2.3.0 General ... 59

6.2.3.1 Nested type definitions ... 61

6.2.3.2 Referencing elements of record of and set of types ... 62

6.2.4 Enumerated type and values .. 62

6.2.5 Unions .. 64

6.2.5.0 General ... 64

6.2.5.1 Referencing fields of a union type ... 66

6.2.5.2 Option and union .. 67

6.2.5.3 Nested type definition for field types ... 67

6.2.6 The anytype ... 67

6.2.7 Arrays .. 68

6.2.8 The default type ... 69

6.2.9 Communication port types ... 70

6.2.10 Component types ... 72

6.2.10.1 Component type definition ... 72

6.2.10.2 Reuse of component types ... 73

6.2.11 Component references ... 75

6.2.12 Addressing entities inside the SUT .. 77

6.2.13 Subtyping of structured types .. 79

6.2.13.0 General ... 79

6.2.13.1 Length subtyping of record ofs and set ofs .. 79

6.2.13.2 List subtyping of structured types and anytype .. 80

6.2.13.3 Subtyping of the iterated type of record ofs and set ofs ... 82

6.2.13.4 Mixing subtyping mechanisms ... 84

6.2.14 The timer type .. 84

6.2.15 Map types .. 84

6.2.15.0 General ... 84

6.2.15.1 Map Type Definition .. 84

6.2.15.2 Indexed Assignment Notation .. 84

6.2.15.3 Unmapping Keys .. 85

6.2.15.4 Index Notation .. 85

6.2.15.5 Accessing the Keys of a Map ... 86

6.2.15.6 Accessing the Values of a Map .. 86

6.2.15.7 Referencing of Elements of a Map ... 87

6.2.15.8 Nested type definitions ... 87

6.2.16 The open type .. 87

6.3 Type compatibility .. 88

6.3.0 General ... 88

6.3.1 Compatibility of non-structured types ... 88

6.3.2 Compatibility of structured types ... 90

6.3.2.0 General ... 90

6.3.2.1 Compatibility of enumerated types .. 90

6.3.2.2 Compatibility of record and record of types .. 91

6.3.2.3 Compatibility of set and set of types .. 92

6.3.2.4 Compatibility of union types .. 92

6.3.2.5 Compatibility of anytype types .. 93

6.3.2.6 Compatibility between sub-structures .. 94

6.3.2.7 Compatibility of the open type ... 94

6.3.3 Compatibility of component types ... 95

6.3.4 Type compatibility of communication and connection operations .. 95

6.3.5 Type conversion ... 96

6.3.6 Type compatibility of port types .. 96

6.3.7 Type compatibility of timer types .. 96

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)5

6.3.8 Type Compatibility of Map Types ... 96

6.4 Type synonym ... 96

7 Expressions ... 96

7.0 General .. 96

7.1 Operators ... 97

7.1.0 General ... 97

7.1.1 Arithmetic operators .. 99

7.1.2 List operator ... 99

7.1.3 Relational operators ... 100

7.1.4 Logical operators ... 103

7.1.5 Bitwise operators ... 103

7.1.6 Shift operators .. 104

7.1.7 Rotate operators ... 104

7.1.8 Presence checking operators .. 105

7.1.8.0 General ... 105

7.1.8.1 The ispresent operator .. 106

7.1.8.2 The ischosen operator .. 107

7.1.8.3 The isvalue operator ... 108

7.1.8.4 The isbound operator.. 110

7.2 Field references and list elements .. 111

7.3 Decoded field reference ... 111

8 Modules .. 112

8.0 General .. 112

8.1 Definition of a module .. 112

8.2 Module definitions part ... 113

8.2.0 General ... 113

8.2.1 Module parameters .. 114

8.2.2 Groups of definitions ... 115

8.2.3 Importing from modules .. 116

8.2.3.0 General ... 116

8.2.3.1 General format of import ... 116

8.2.3.2 Importing single definitions ... 123

8.2.3.3 Importing groups .. 124

8.2.3.4 Importing definitions of the same kind .. 125

8.2.3.5 Importing all definitions of a module ... 125

8.2.3.6 Import definitions from other TTCN-3 editions and from non-TTCN-3 modules 126

8.2.3.7 Importing of import statements from TTCN-3 modules .. 128

8.2.3.8 Compatibility of language specifications in imports .. 129

8.2.4 Definition of friend modules .. 130

8.2.5 Visibility of definitions .. 130

8.3 Module control part ... 132

9 Port types, component types and test configurations ... 133

9.0 General .. 133

9.1 Communication ports .. 133

9.2 Test system interface ... 136

10 Declaring constants .. 138

11 Declaring variables ... 138

11.0 General .. 138

11.1 Value variables .. 139

11.2 Template variables .. 140

12 Declaring timers ... 141

13 Declaring messages .. 142

14 Declaring procedure signatures .. 143

15 Declaring templates .. 144

15.0 General .. 144

15.1 Declaring message templates .. 145

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)6

15.2 Declaring signature templates ... 147

15.3 Global and local templates .. 148

15.4 In-line Templates ... 149

15.5 Modified templates .. 150

15.6 Referencing elements of templates or template fields ... 155

15.6.0 General ... 155

15.6.1 Referencing individual string elements.. 155

15.6.2 Referencing record and set fields .. 158

15.6.3 Referencing record of and set of elements ... 159

15.6.4 Referencing signature parameters .. 162

15.6.5 Referencing union alternatives .. 163

15.7 Template matching mechanisms ... 164

15.7.0 General ... 164

15.7.1 Specific values ... 165

15.7.2 Special symbols that can be used instead of values ... 166

15.7.3 Special symbols that can be used inside values ... 167

15.7.4 Special symbols which describe attributes of values ... 167

15.8 Template Restrictions .. 168

15.8.1 Explicit restrictions .. 168

15.8.2 Implicit restrictions for template fields, alternatives and elements .. 171

15.9 Match Operation .. 171

15.10 Valueof Operation ... 172

15.11 Concatenating templates of string and list types ... 173

15.12 The omit operation .. 176

15.13 The present operation .. 176

15.14 Presentness conversion .. 177

15.15 The Value Extraction ... 178

16 Functions, altsteps and testcases .. 178

16.0 General .. 178

16.1 Functions ... 178

16.1.0 General ... 178

16.1.1 Invoking functions ... 181

16.1.2 Predefined functions .. 181

16.1.3 External functions .. 184

16.1.4 Invoking functions from specific places .. 184

16.1.5 Explicit control functions ... 186

16.2 Altsteps .. 186

16.2.0 General ... 186

16.2.1 Invoking altsteps .. 188

16.3 Test cases... 190

17 Void .. 191

18 Overview of program statements and operations ... 191

19 Basic program statements ... 193

19.0 General .. 193

19.1 Assignments .. 193

19.2 The If-else statement ... 195

19.3 The Select statements .. 195

19.3.1 The Select case statement .. 195

19.3.2 The Select union statement .. 197

19.4 The For statement .. 198

19.5 The While statement .. 198

19.6 The Do-while statement .. 199

19.7 The Label statement .. 199

19.8 The Goto statement ... 200

19.9 The Stop execution statement .. 201

19.10 The Return statement ... 201

19.11 The Log statement ... 202

19.12 The Break statement .. 204

19.13 The Continue statement ... 204

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)7

19.14 Statement block ... 205

20 Statement and operations for alternative behaviours .. 205

20.0 General .. 205

20.1 The snapshot mechanism ... 206

20.2 The Alt statement .. 206

20.3 The Repeat statement .. 211

20.4 The Interleave statement ... 211

20.5 Default Handling ... 214

20.5.0 General ... 214

20.5.1 The default mechanism .. 214

20.5.2 The Activate operation ... 214

20.5.3 The Deactivate operation ... 216

21 Configuration Operations ... 217

21.0 General .. 217

21.1 Connection Operations .. 218

21.1.0 General ... 218

21.1.1 The Connect and Map operations .. 218

21.1.2 The Disconnect and Unmap operations ... 220

21.2 Test case operations... 222

21.2.0 General ... 222

21.2.1 Test case stop operation ... 222

21.3 Test Component Operations .. 222

21.3.0 General ... 222

21.3.1 The Create operation .. 223

21.3.2 The Start test component operation ... 224

21.3.3 The Stop test behaviour operation ... 225

21.3.4 The Kill test component operation ... 226

21.3.5 The Alive operation ... 227

21.3.6 The Running operation .. 228

21.3.7 The Done operation ... 229

21.3.8 The Killed operation .. 231

21.3.9 Summary of the use of any and all with components .. 234

21.3.10 The Call test component behaviour operation ... 234

22 Communication operations... 236

22.0 General .. 236

22.1 The communication mechanisms .. 236

22.1.0 General ... 236

22.1.1 Principles of message-based communication... 236

22.1.2 Principles of procedure-based communication .. 237

22.1.3 Principles of unicast, multicast and broadcast communication .. 237

22.1.4 General format of communication operations ... 238

22.1.4.0 General ... 238

22.1.4.1 General format of the sending operations .. 238

22.1.4.2 General format of the receiving operations .. 239

22.2 Message-based communication ... 240

22.2.0 General ... 240

22.2.1 The Send operation .. 240

22.2.2 The Receive operation ... 241

22.2.3 The Trigger operation .. 245

22.3 Procedure-based communication ... 248

22.3.0 General ... 248

22.3.1 The Call operation ... 248

22.3.2 The Getcall operation... 252

22.3.3 The Reply operation... 255

22.3.4 The Getreply operation .. 256

22.3.5 The Raise operation ... 259

22.3.6 The Catch operation ... 260

22.4 The Check operation ... 264

22.5 Controlling communication ports .. 266

22.5.0 General ... 266

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)8

22.5.1 The Clear port operation .. 266

22.5.2 The Start port operation ... 267

22.5.3 The Stop port operation ... 267

22.5.4 The Halt port operation .. 268

22.5.5 The Checkstate port operation ... 268

22.6 Use of any and all with ports ... 270

23 Timer operations .. 270

23.0 General .. 270

23.1 The timer mechanism .. 271

23.2 The Start timer operation ... 271

23.3 The Stop timer operation ... 272

23.4 The Read timer operation .. 272

23.5 The Running timer operation... 273

23.6 The Timeout operation .. 274

23.7 Summary of use of any and all with timers ... 275

24 Test verdict operations ... 275

24.0 General .. 275

24.1 The Verdict mechanism ... 275

24.2 The Setverdict operation ... 276

24.3 The Getverdict operation ... 277

25 External actions .. 278

26 Module control ... 278

26.0 General .. 278

26.1 The Execute statement ... 279

26.2 Test suite execution ... 280

27 Specifying attributes ... 282

27.0 General .. 282

27.1 The Attribute mechanism .. 282

27.1.0 General ... 282

27.1.1 Scope of attributes ... 283

27.1.2 Overwriting rules for attributes .. 284

27.1.2.0 General ... 284

27.1.2.1 Additional default overwriting rules for variant attributes ... 286

27.1.2.2 Overwriting rules for multiple encoding .. 287

27.1.3 Changing attributes of imported language elements .. 287

27.2 The With statement ... 288

27.3 Display attributes ... 289

27.4 Encoding attributes .. 290

27.5 Variant attributes ... 291

27.6 Extension attributes ... 293

27.7 Optional attributes ... 293

27.8 Retrieving attribute values ... 295

27.9 Dynamic configuration of encoding used by ports .. 296

Annex A (normative): BNF and static semantics .. 298

A.1 TTCN-3 BNF ... 298

A.1.0 General .. 298

A.1.1 Conventions for the syntax description ... 298

A.1.2 Statement terminator symbols ... 298

A.1.3 Identifiers .. 298

A.1.4 Comments.. 298

A.1.5 TTCN-3 terminals ... 299

A.1.5.0 General ... 299

A.1.5.1 Use of whitespaces and newlines ... 301

A.1.6 TTCN-3 syntax BNF productions ... 302

A.1.6.0 TTCN-3 module ... 302

A.1.6.1 Module definitions part .. 302

A.1.6.1.0 General ... 302

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)9

A.1.6.1.1 Typedef definitions .. 302

A.1.6.1.2 Constant definitions ... 304

A.1.6.1.3 Template definitions... 304

A.1.6.1.4 Function definitions ... 306

A.1.6.1.5 Signature definitions .. 307

A.1.6.1.6 Testcase definitions .. 307

A.1.6.1.7 Altstep definitions .. 307

A.1.6.1.8 Import definitions ... 307

A.1.6.1.9 Group definitions ... 308

A.1.6.1.10 External function definitions .. 308

A.1.6.1.11 Void.. 308

A.1.6.1.12 Module parameter definitions .. 308

A.1.6.1.13 Friend module definitions .. 308

A.1.6.2 Module control function .. 309

A.1.6.3 Local definitions .. 309

A.1.6.3.1 Variable instantiation ... 309

A.1.6.3.2 Timer instantiation ... 309

A.1.6.4 Operations .. 309

A.1.6.4.1 Component operations ... 309

A.1.6.4.2 Port operations ... 310

A.1.6.4.3 Timer operations .. 312

A.1.6.4.4 Testcase operation .. 312

A.1.6.5 Type ... 312

A.1.6.6 Value .. 313

A.1.6.7 Parameterization .. 314

A.1.6.8 Statements .. 314

A.1.6.8.1 With statement ... 314

A.1.6.8.2 Behaviour statements ... 314

A.1.6.8.3 Basic statements ... 315

A.1.6.9 Miscellaneous productions .. 317

Annex B (normative): Matching values ... 319

B.1 Template matching mechanisms .. 319

B.1.0 General .. 319

B.1.1 Matching specific values ... 319

B.1.2 Matching mechanisms instead of values ... 319

B.1.2.0 General ... 319

B.1.2.1 Template list .. 319

B.1.2.2 Complemented template list .. 320

B.1.2.3 Any value ... 321

B.1.2.4 Any value or none .. 322

B.1.2.5 Value range .. 323

B.1.2.6 SuperSet ... 323

B.1.2.7 SubSet .. 324

B.1.2.8 Omitting optional fields ... 326

B.1.2.9 Matching decoded content ... 326

B.1.2.10 Matching enumerated value with value list ... 328

B.1.3 Matching mechanisms inside values ... 328

B.1.3.0 General ... 328

B.1.3.1 Any element ... 328

B.1.3.1.0 General ... 328

B.1.3.1.1 Using single character wildcards .. 328

B.1.3.2 Any number of elements or no element ... 329

B.1.3.2.0 General ... 329

B.1.3.2.1 Using multiple character wildcards .. 329

B.1.3.3 Permutation .. 329

B.1.4 Matching attributes of values .. 331

B.1.4.0 General ... 331

B.1.4.1 Length restrictions ... 331

B.1.4.2 The IfPresent indicator ... 332

B.1.5 Matching character pattern .. 333

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)10

B.1.5.0 General ... 333

B.1.5.1 Set expression .. 335

B.1.5.2 Reference expression ... 336

B.1.5.3 Match expression n times .. 337

B.1.5.4 Match a referenced character set .. 337

B.1.5.5 Type compatibility rules for patterns ... 338

B.1.5.6 Case insensitive pattern matching .. 338

Annex C (normative): Predefined TTCN-3 functions ... 339

C.0 General exception handling procedures ... 339

C.1 Conversion functions .. 339

C.1.1 Integer to character .. 339

C.1.2 Integer to universal character .. 339

C.1.3 Integer to bitstring ... 339

C.1.4 Integer to enumerated .. 340

C.1.5 Integer to hexstring .. 340

C.1.6 Integer to octetstring .. 340

C.1.7 Integer to charstring... 341

C.1.8 Integer to float ... 341

C.1.9 Float to integer .. 341

C.1.10 Character to integer ... 341

C.1.11 Character to octetstring ... 341

C.1.12 Universal character to integer .. 342

C.1.13 Bitstring to integer ... 342

C.1.14 Bitstring to hexstring ... 342

C.1.15 Bitstring to octetstring ... 342

C.1.16 Bitstring to charstring .. 343

C.1.17 Hexstring to integer ... 343

C.1.18 Hexstring to bitstring ... 343

C.1.19 Hexstring to octetstring ... 344

C.1.20 Hexstring to charstring .. 344

C.1.21 Octetstring to integer ... 344

C.1.22 Octetstring to bitstring ... 344

C.1.23 Octetstring to hexstring ... 345

C.1.24 Octetstring to character string ... 345

C.1.25 Octetstring to character string, version II .. 345

C.1.26 Charstring to integer .. 346

C.1.27 Character string to hexstring ... 346

C.1.28 Character string to octetstring ... 346

C.1.29 Character string to float ... 347

C.1.30 Enumerated to integer ... 347

C.1.31 Octetstring to universal character string .. 348

C.1.32 Universal character string to octetstring .. 348

C.1.33 Value or template to universal charstring .. 349

C.2 Length/size functions ... 350

C.2.1 Length of strings and lists ... 350

C.2.2 Number of elements in a structured value ... 351

C.3 Presence checking functions .. 352

C.3.1 Void ... 352

C.3.2 Void ... 352

C.3.3 Void ... 352

C.3.4 Void ... 352

C.3.5 Matching mechanism detection ... 352

C.4 String/list handling functions ... 354

C.4.1 The Regexp function ... 354

C.4.2 The Substring function .. 355

C.4.3 The Replace function ... 357

C.5 Codec functions .. 358

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)11

C.5.1 The encoding function ... 358

C.5.2 The decoding function ... 358

C.5.3 The encoding to universal charstring function .. 359

C.5.4 The decoding from universal charstring function .. 360

C.5.5 The encoding to octetstring function ... 361

C.5.6 The decoding from octetstring function .. 362

C.5.7 Retrieving the type of string encoding .. 362

C.5.8 Removing BOMs of UCS encoding schemes .. 362

C.6 Other functions ... 363

C.6.1 The random number generator function .. 363

C.6.2 The testcasename function .. 363

C.6.3 The hostId function ... 364

Annex D (normative): Preprocessing macros .. 366

D.0 General ... 366

D.1 Preprocessing macro __MODULE__... 366

D.2 Preprocessing macro __FILE__ ... 366

D.3 Preprocessing macro __BFILE__ .. 366

D.4 Preprocessing macro __LINE__ .. 366

D.5 Preprocessing macro __SCOPE__ ... 367

Annex E (informative): Library of Useful Types .. 369

E.1 Limitations ... 369

E.2 Useful TTCN-3 types ... 369

E.2.1 Useful simple basic types .. 369

E.2.1.0 Signed and unsigned single byte integers .. 369

E.2.1.1 Signed and unsigned short integers .. 369

E.2.1.2 Signed and unsigned long integers .. 370

E.2.1.3 Signed and unsigned longlong integers ... 370

E.2.1.4 IEEE 754 floats .. 370

E.2.2 Useful character string types ... 371

E.2.2.0 UTF-8 character string "utf8string" ... 371

E.2.2.1 BMP character string "bmpstring" ... 371

E.2.2.2 UTF-16 character string "utf16string" ... 371

E.2.2.3 ISO/IEC 10646 character string "iso8859string" ... 371

E.2.2.4 Status values for TTCN-3 objects .. 372

E.2.2.5 Template kinds of TTCN-3 objects ... 372

E.2.3 Useful structured types .. 372

E.2.3.0 Fixed-point decimal literal ... 372

E.2.4 Useful atomic string types ... 373

E.2.4.1 Single Recommendation ITU-T T.50 character type ... 373

E.2.4.2 Single universal character type .. 373

E.2.4.3 Single bit type .. 373

E.2.4.4 Single hex type .. 373

E.2.4.5 Single octet type .. 373

Annex F (informative): Operations on TTCN-3 active objects .. 374

F.0 General ... 374

F.1 Test components ... 374

F.1.1 Test component references .. 374

F.1.2 Dynamic behaviour of PTCs ... 375

F.1.3 Dynamic behaviour of the MTC .. 377

F.2 Timers... 377

F.3 Ports .. 378

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)12

F.3.0 General .. 378

F.3.1 Configuration Operations .. 378

F.3.2 Port Controlling Operations .. 379

F.3.3 Communication Operations ... 380

Annex G (informative): Deprecated language features ... 381

G.1 Group style definition of module parameters ... 381

G.2 Void .. 381

G.3 Using all in port type definitions ... 381

G.4 sizeof for length of lists .. 381

G.5 Void .. 381

G.6 Mixed ports .. 381

G.7 Void .. 381

G.8 Void .. 382

G.9 Void .. 382

G.10 Void .. 382

G.11 Void .. 382

G.12 Void .. 382

G.13 Assignment of less restrictive templates to more restrictive templates .. 382

G.14 Mixing case and case else branches in select statements ... 382

G.15 Partially initialized global and local templates ... 383

G.16 Template modification of less restrictive templates to more restrictive templates 383

G.17 Unrestricted template fields, alternatives and elements ... 383

Annex H (informative): Bibliography ... 384

History .. 385

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)13

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations
pertaining to these essential IPRs, if any, are publicly available for ETSI members and non-members, and can be
found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to
ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the
ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI Directives including the ETSI IPR Policy, no investigation regarding the essentiality of IPRs,
including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not
referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become,
essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its
Members. 3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and of the 3GPP
Organizational Partners. oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and of the
oneM2M Partners. GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

Foreword
This ETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and Specification
(MTS).

The present document is part 1 of a multi-part deliverable covering the Testing and Test Control Notation version 3, as
identified below:

Part 1: "TTCN-3 Core Language";

Part 3: "TTCN-3 Graphical presentation Format (GFT)";

Part 4: "TTCN-3 Operational Semantics";

Part 5: "TTCN-3 Runtime Interface (TRI)";

Part 6: "TTCN-3 Control Interface (TCI)";

Part 7: "Using ASN.1 with TTCN-3";

Part 8: "The IDL to TTCN-3 Mapping";

Part 9: "Using XML schema with TTCN-3";

Part 10: "TTCN-3 Documentation Comment Specification";

Part 11: "Using JSON with TTCN-3".

NOTE 1: Part 2: "TTCN-3 Tabular presentation Format (TFT)" of this multi-part deliverable is in status
"historical".

NOTE 2: Part 3 of this multi-part deliverable is not maintained.

https://ipr.etsi.org/

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)14

Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)15

1 Scope
The present document defines the Core Language of TTCN-3. TTCN-3 can be used for the specification of all types of
reactive system tests over a variety of communication ports. Typical areas of application are protocol testing (including
mobile and Internet protocols), service testing (including supplementary services), module testing, testing of CORBA®
based platforms, APIs, etc. TTCN-3 is not restricted to conformance testing and can be used for many other kinds of
testing including interoperability, robustness, regression, system and integration testing. The specification of test suites
for physical layer protocols is outside the scope of the present document.

TTCN-3 is intended to be used for the specification of test suites which are independent of test methods, layers and
protocols. In addition to the textual format defined in the present document, while GFT (ETSI ES 201 873-3 [i.2])
defines a graphical presentation format for TTCN-3. The specification of these formats is outside the scope of the
present document.

While the design of TTCN-3 has taken the eventual implementation of TTCN-3 translators and compilers into
consideration the means of realization of Executable Test Suites (ETS) from Abstract Test Suites (ATS) is outside the
scope of the present document.

2 References

2.1 Normative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
https://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee
their long term validity.

The following referenced documents are necessary for the application of the present document.

[1] ETSI ES 201 873-4: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 4: TTCN-3 Operational Semantics".

[2] ISO/IEC 10646: "Information technology -- Universal Coded Character Set (UCS)".

[3] Void.

[4] Recommendation ITU-T T.50: "International Reference Alphabet (IRA) (Formerly International
Alphabet No. 5 or IA5) - Information technology - 7-bit coded character set for information
interchange".

NOTE: The corresponding ISO/IEC standard is ISO/IEC 646: "Information technology -- ISO 7-bit coded
character set for information interchange".

[5] Void.

[6] IEEE 754™: "IEEE Standard for Floating-Point Arithmetic".

2.2 Informative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

https://docbox.etsi.org/Reference

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)16

NOTE: While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] Void.

[i.2] ETSI ES 201 873-3: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 3: TTCN-3 Graphical presentation Format (GFT)".

[i.3] ETSI ES 201 873-5: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 5: TTCN-3 Runtime Interface (TRI)".

[i.4] ETSI ES 201 873-6: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 6: TTCN-3 Control Interface (TCI)".

[i.5] ETSI ES 201 873-7: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 7: Using ASN.1 with TTCN-3".

[i.6] ETSI ES 201 873-8: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 8: The IDL to TTCN-3 Mapping".

[i.7] ETSI ES 201 873-9: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 9: Using XML schema with TTCN-3".

[i.8] ETSI ES 201 873-10: "Methods for Testing and Specification (MTS); The Testing and Test
Control Notation version 3; Part 10: TTCN-3 Documentation Comment Specification".

[i.9] Void.

[i.10] Object Management Group (OMG) (2001): "The Common Object Request Broker: Architecture
and Specification - IDL Syntax and Semantics". Version 2.6, FORMAL/01-12-01.

[i.11] ETSI ES 202 781: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions: Configuration and Deployment Support".

[i.12] ETSI ES 202 784: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions: Advanced Parameterization".

[i.13] ETSI ES 202 785: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions: Behaviour Types".

[i.14] ETSI ES 202 782: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions: TTCN-3 Performance and Real Time Testing".

[i.15] Void.

[i.16] Void.

[i.17] ETSI ES 201 873-1 (V1.1.2): "Methods for Testing and Specification (MTS); The Tree and
Tabular Combined Notation version 3; Part 1: TTCN-3 Core Language", 2001.

[i.18] ETSI ES 201 873-1 (V2.2.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 1: TTCN-3 Core Language", 2003.

[i.19] ETSI ES 201 873-1 (V3.1.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 1: TTCN-3 Core Language", 2005.

[i.20] ETSI ES 201 873-1 (V3.2.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 1: TTCN-3 Core Language", 2007.

[i.21] ETSI ES 201 873-1 (V3.3.2): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 1: TTCN-3 Core Language", 2008.

[i.22] ETSI ES 201 873-1 (V3.4.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 1: TTCN-3 Core Language", 2008.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)17

[i.23] ETSI ES 201 873-1 (V4.1.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 1: TTCN-3 Core Language", 2009.

[i.24] ETSI ES 201 873-1 (V4.2.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 1: TTCN-3 Core Language", 2010.

[i.25] ETSI ES 201 873-1 (V4.3.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 1: TTCN-3 Core Language", 2011.

[i.26] ETSI ES 201 873-1 (V4.4.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 1: TTCN-3 Core Language", 2012.

[i.27] ETSI ES 201 873-1 (V4.5.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 1: TTCN-3 Core Language", 2013.

[i.28] ETSI ES 201 873-1 (V4.6.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 1: TTCN-3 Core Language", 2014.

[i.29] ETSI ES 201 873-1 (V4.7.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 1: TTCN-3 Core Language", 2015.

[i.30] ETSI ES 201 873-1 (V4.8.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 1: TTCN-3 Core Language", 2016.

[i.31] ETSI ES 201 873-1 (V4.9.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 1: TTCN-3 Core Language", 2017.

[i.32] ETSI ES 201 873-1 (V4.10.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 1: TTCN-3 Core Language", 2018.

[i.33] ETSI ES 201 873-1 (V4.11.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 1: TTCN-3 Core Language", 2019.

[i.34] ETSI ES 201 873-1 (V4.12.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 1: TTCN-3 Core Language", 2020.

[i.35] ETSI ES 202 786: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions: Support of interfaces with continuous signals".

[i.36] ETSI ES 203 022: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language extension: Advanced Matching".

[i.37] ETSI ES 203 790: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions: Object-Oriented Features".

[i.38] Recommendation ITU-T X.292: "OSI conformance testing methodology and framework for
protocol Recommendations for ITU-T applications - The Tree and Tabular Combined Notation
(TTCN)".

[i.39] Recommendation ITU-T X.290: "OSI conformance testing methodology and framework for
protocol Recommendations for ITU-T applications - General concepts".

3 Definition of terms, symbols and abbreviations

3.1 Terms
For the purposes of the present document, the terms given in Recommendation ITU-T X.290 [i.39], Recommendation
ITU-T X.292 [i.38] and the following apply:

actual parameter: value, expression, template or name reference (identifier) to be passed as parameter to the invoked
entity (function, test case, altstep, etc.) as defined at the place of invoking

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)18

assignment notation: notation that can be used for record, set, record of and set of values, where the fields or the
elements to which a value is assigned are identified explicitly within a pair of curly brackets ("{" and "}") by the field
names or the positions of the elements

basic types: set of predefined TTCN-3 types described in clauses 6.1.0 and 6.1.1 of the present document

NOTE: Basic types are referenced by their names.

behaviour definition: dynamic test behaviour, which is either a testcase, a function, or an altstep definition

communication port: abstract mechanism facilitating communication between test components

NOTE: A communication port is modelled as a FIFO queue in the receiving direction. Ports can be
message-based or procedure-based.

compatible type: TTCN-3 is not strongly typed but the language does require type compatibility

NOTE: Variables, constants, templates, etc. have compatible types if conditions in clause 6.3 are met.

completely initialized: value or template is completely initialized if it is not uninitialized and, if its type is a structured
type, all its required parts are completely initialized

NOTE 1: Additionally, templates are completely initialized if they are assigned a matching mechanism all parts of
which are completely initialized. If a value or template is completely initialized, it fulfils the requirement
of being "at least partially initialized".

NOTE 2: A value or template of a simple, component or default type is completely initialized if anything but
the unchanged symbol "-" has been assigned to it.
A value or template of a union or anytype type is completely initialized if one of its variants has been
completely initialized.
A value or template of a record or set type with only optional fields and the optional
"implicit omit" attribute attached, is completely initialized if the value "{}" is assigned, as all
fields are implicitly set to omit.
A value or template of a record or set type with no fields is completely initialized with assignment of
the value "{}".
A value or template of a record of, set of or array type is completely initialized if at least the first n
elements are completely initialized, where n is the minimal length imposed by the type length restriction
or array definition. Thus in case of n equals 0, the assignment of the value "{}" also completely initializes
such a record of, set of or array.

component constant: constant defined in a component type

component data types: collection of all data types, component types and structured types whose sub-elements are
component data types

component port: port defined in a component type

component template: template defined in a component type

component timer: timer defined in a component type

component variable: variable defined in a component type

control behaviour: collection of module control functions with the name control and functions and altsteps called by
control directly or through other control functions or altsteps, and are used for the dynamic execution of test cases

NOTE: Such functions and altsteps are called control functions and control altsteps respectively. Module control
functions can be used as an entry point of executing a test suite. Declaring functions or altsteps with the
modifier @control explicitly allows to distinguish them from test case behaviour definitions in their
special role. Module control functions and behaviour definitions with the @control modifier are called
explicit control behaviour definitions, i.e explicit control functions and explicit control altsteps.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)19

data types: all types whose values or sub-elements cannot contain object references

NOTE: Data types include simple basic types, basic string types, and the special data type anytype. Data types
also include all structured types where all their sub-elements are of a data type. All user defined types
based on a data type are data types as well. See more details in table 3 of the present document.

defined types (defined TTCN-3 types): set of all predefined TTCN-3 types (basic types, all structured types, the type
anytype, the address, port and component types and the default type) and all user-defined types declared either in the
module or imported from other TTCN-3 modules

deterministic function: function that for the same input in the in and inout parameters always yields the same output
both for the return result as well as the inout and out parameters

NOTE 1: A non-deterministic function is one that is not deterministic.

NOTE 2: In general, it cannot be decided if a function is deterministic or not. However, a function can be specified
to be deterministic, i.e. the function is supposed to be deterministic. In this case, a violation of the
determinism can be detected and handled accordingly. The handling however is tool-specific.

dynamic parameterization: form of parameterization, in which actual parameters are dependent on runtime events

EXAMPLE: The value of the actual parameter is a value received during runtime or depends on a received
value by a logical relation.

exception: in cases of procedure-based communication, an exception (if defined) is raised by an answering entity if it
cannot answer a remote procedure call with the normal expected response

formal parameter: typed name or typed template reference (identifier) not resolved at the time of the definition of an
entity (function, test case, altstep, etc.) but at the time of invoking it

NOTE: Actual values or templates (or their names) to be used at the place of formal parameters are passed from
the place of invoking the entity (see also the definition of actual parameter).

fuzzy value or template: value or template instance that is declared to be fuzzy and consequently the expression,
initializing or partly initializing it (including actual parameters passed to in formal parameters), is subject to lazy
evaluation

NOTE: During execution, this expression is re-evaluated each time when the fuzzy object is referenced, except
when at the left hand side of an assignment or passing it to a fuzzy or lazy formal parameters. The result
of this (re)evaluation is used as the actual value or template of the fuzzy instance. When new content is
assigned to a fuzzy instance or to its subpart, the right hand side of the assignment is subject to lazy
evaluation again.

global visibility: attribute of an entity (module parameter, constant, template, etc.) whose identifier can be referenced
anywhere within the module where it is defined including all functions, test cases and altsteps defined within the same
module

Implementation Conformance Statement (ICS): See Recommendation ITU-T X.290 [i.39].

Implementation eXtra Information for Testing (IXIT): See Recommendation ITU-T X.290 [i.39].

Implementation Under Test (IUT): See Recommendation ITU-T X.290 [i.39].

in parameterization: kind of parameterization where the value of the actual parameter (the argument) is assigned to the
formal parameter when the parameterized object is invoked, but the value of the formal parameter is not passed back to
the actual parameter when the invoked object completes

NOTE 1: In in parameterization, parameters are passed by value.

NOTE 2: The arguments are evaluated before the parameterized object is entered.

NOTE 3: Only the values of the arguments are passed and changes to the arguments within the invoked object have
no effect on the arguments as seen by the invoking object.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)20

index notation: notation to access individual elements of record of, set of, array and string values or templates, where
the element to be accessed is identified explicitly by an index value enclosed in square brackets ("[" and "]") which
specifies the position of that element within the referenced value or template and the index value is either an integer
value, array of integers or record of integers

NOTE: Integer values used for indexing (either directly or as elements of the record of or array values) always lie
within the index range of the type of the referenced value or template. Except for those arrays which are
defined with an explicit index range, the index range always has 0 as the index for the first element.

initialization: value or template, or a value or template field is initialized when a content is first assigned to it

NOTE: The assignment may be explicit at the declaration of the given object, in which case the same restrictions
apply as for the right-hand side of the assignment operation, or at first use on the left-hand side of an
assignment, or may be implicit. Implicit initialization occurs when a yet uninitialized object is passed as
actual parameter to an out formal parameter of a directly called testcase, function or altstep returns with a
non-uninitialized value or template that is assigned to the actual parameter; or when module parameters
not initialized in the TTCN-3 code get their runtime values before test suite execution.

inout parameterization: kind of parameterization that uses passing by reference, i.e. when the parameterized object is
invoked, the formal parameter is linked with the actual parameter and gets direct access to the same data content that is
currently represented by the actual parameter

NOTE 1: The invoked object uses the actual parameter directly, so that all changes made in the formal parameter
become immediately effective on the actual parameter. If the same actual parameter is passed to two
distinct formal parameters, a change in one formal parameter becomes immediately effective in the other
one (and in the actual parameter).

NOTE 2: Inout parameters can be used for functions, altsteps, and test cases only, if not restricted by further rules,
e.g. altsteps activated as defaults.

invalid expressions/operations: expression or operation is invalid if it does not follow the conditions and restrictions
of the present document and should cause a dynamic error during execution when they are evaluated, or might cause a
static error when they are statically analysed or possibly could be warned about during static analysis

known types: set of all TTCN-3 predefined types, types defined in a TTCN-3 module and types imported into that
module from other TTCN-3 modules or from non-TTCN-3 modules

lazy evaluation: evaluation of an expression, delayed during execution until the value or template instance, to which
the result of the evaluation should have been assigned or passed to as actual parameter, is first referenced at another
place than the left hand side of an assignment or an actual parameter passed to a fuzzy or lazy formal parameter

NOTE: During execution, this delayed evaluation is carried out at the first actual reference, even when the result
is to be used in an expression that is also subject to lazy evaluation. For the evaluation the actual values at
the time of the evaluation are to be used (not the actual values at the time of the assignment or parameter
passing). This implies that components of the expression may be uninitialized at the time, when execution
reaches the assignment or parameter passing, but may be initialized by the time of the evaluation that can
lead to successful evaluation. If, by the time of the evaluation, execution has left the scope unit, in which
one or more components of the expression is defined, the actual values of the component(s) at the time of
leaving the scope unit are to be stored for the purpose of the delayed evaluation (but only for that, i.e. the
values are not accessible for the user).

lazy value or template: value or template instance for which the expression, initializing or partly initializing it
(including actual parameters passed to in formal parameters), is subject to lazy evaluation

NOTE: When, during execution, the delayed (lazy) evaluation is taking place, its result is stored in the lazy value
or template and the lazy instance is used further on like ordinary values and templates, until the next use
of the lazy variable or parameter on the left hand side of an assignment. When a new content is assigned
to a lazy instance or to its subpart, the right hand side of the assignment is subject to lazy evaluation
again. If, during execution, no expression referencing the lazy object is evaluated, the lazy value or
template instance is never evaluated.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)21

left hand side (of assignment): value or template variable identifier or a field name of a structured type value or
template variable (including array index if any), which stands left to an assignment symbol (:=)

NOTE: A constant, module parameter, timer, structured type field name or a template header (including template
type, name and formal parameter list) standing left of an assignment symbol (:=) in declarations and or a
modified template definitions are out of the scope of this definition as not being part of an assignment.

local visibility: attribute of an entity (constant, variable, etc.) that its identifier can be referenced only within the
function, test case or altstep where it is defined

Main Test Component (MTC): See Recommendation ITU-T X.292 [i.38].

object: instance of one of the object types (component, default, port and timer)

NOTE: Objects of type default, port or timer, which are owned by the component that instantiated them, are local
objects while objects of type component are global objects. Global objects can be referenced from other
component scopes while references to local objects can only be used by the component they are bound to.

object reference: special kind of value used for instances of component, default, port and timer types which represents
a reference to an existing entity in the TE

NOTE: When used in assignments or parameter passing, only the reference to the entity is copied, but not the
entity itself. An object reference can also be initialized with the special value null in which case it does
not reference an object.

out parameterization: kind of parameterization where the actual parameter's content (the argument) is not passed to
the formal parameter when the parameterized object is invoked, but the content of the formal parameter is passed back
to the actual parameter when the invoked object completes, if the formal parameter has been initialized during the
invocation and the actual parameter is the reference evaluated at the time of the invocation

NOTE 1: In out parameterization, parameters are passed by value.

NOTE 2: Out parameters can be used for functions, altsteps, and test cases only, if not restricted by further rules,
e.g. altsteps activated as defaults.

NOTE 3: Formal an out parameters are uninitialized (unbound) when the invoked object is entered.

Parallel Test Component (PTC): See Recommendation ITU-T X.292 [i.38].

partially initialized: value or template is partially initialized if initialization has taken place on it or to at least one of its
fields or elements

NOTE: A template variable is initialized if a matching mechanism has been assigned to it or to at least one of its
fields or elements, directly or indirectly via expansion (see clause 15.6). A template is initialized if a
matching mechanism has been assigned to it, directly or indirectly via expansion (see clause 15.6).

passing by reference: ability to link an actual parameter with a formal parameter of a function, altstep or test case and
to control its actual value within the function, altstep or test case by using the formal parameter reference, i.e. no copy
of the data content is made and the actual and formal parameters share the same data content

passing by value: ability to make a copy of a data content of an actual or formal parameter before passing it to a formal
or actual parameter, i.e. the actual and formal parameters do not share the same data content

NOTE: When passing object references by value, a new reference is created, but the referenced entity remains the
same.

qualified name: TTCN-3 elements can be identified unambiguously by qualified names

NOTE: For modules, the qualified name is the <module name>. For global definitions such as testcases,
functions, etc. the qualified name is <module name>.<definition name>. For control, the qualified name
is <module name>.control. For local definitions, such as variables, local templates, etc. within a global
definition, the qualified name is <module name>.<global definition name>.<local definition name>.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)22

right hand side (of assignment): expression, template reference or signature parameter identifier which stands right to
an assignment symbol (:=)

NOTE: Expressions and template references standing right of an assignment symbol (:=) in constant, module
parameter, timer, template or modified template declarations are out of the scope of this definition as not
being part of an assignment.

root type: root types of types derived from TTCN-3 basic types are the respective basic types

NOTE 1: The root type of user defined record types is record, the root type of user defined record of and array
types is record of, the root type of user defined set types is set, the root type of user defined set of
types is set of. The root type of user defined union types is union and the root type of anytypes is
anytype. The root types of special configuration types are default or component, respectively.
Port types do not have a root type.

NOTE 2: As address is more a predefined type name than a distinct type with its own properties, the root type of
an address type and all of its derivatives are the same as the root type was, if the type was defined with
a name different from address.

static parameterization: form of parameterization, in which actual parameters are independent of runtime events;
i.e. known at compile time or in case of module parameters are known by the start of the test suite execution

NOTE 1: A static parameter is to be known from the test suite specification, (including imported definitions), or the
test system is aware of its value before execution time.

NOTE 2: All types are known at compile time, i.e. are statically bound.

strong typing: strict enforcement of type compatibility by type name equivalence with no exceptions

System Under Test (SUT): See Recommendation ITU-T X.290 [i.39].

template: TTCN-3 data objects are values or templates by definition. A TTCN-3 template identifies a subset of the
values of its type (where the subset may contain a single instance of the type, several instances or all instances) or the
matching mechanism omit

NOTE: Templates are defined by global and local templates, template variable definitions, or formal template
parameters. Any of those are templates from the point of view of their usage, irrespective of their actual
content; for example, a template variable containing a specific value is a template.

template parameterization: ability to pass a template as an actual parameter into a parameterized object via a template
parameter

NOTE 1: This actual template parameter is added to the specification of that object and may complete it.

NOTE 2: Values passed to formal template parameters are considered to be in-line templates (see clause 15.4).

test behaviour: (or behaviour) test case, function or altstep started on a test component when executing an execute
or a start component statement and all functions and altsteps called recursively

NOTE: During a test case execution each test component has its own behaviour and hence several test behaviours
may run concurrently in the test system (i.e. a test case can be seen as a collection of test behaviour).

test case: See Recommendation ITU-T X.290 [i.39].

test case error: See Recommendation ITU-T X.290 [i.39].

test suite: set of TTCN-3 modules that contains a completely defined set of test cases, optionally supplemented with
one or more TTCN-3 control functions

test system: See Recommendation ITU-T X.290 [i.39].

test system interface: test component that provides a mapping of the ports available in the (abstract) TTCN-3 test
system to those offered by the SUT

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)23

type compatibility: language feature that allows to use values, expressions or templates of a given type as actual values
of another type

EXAMPLE: At assignments, as actual parameters at calling a function, referencing a template, etc. or as a
return value of a function.

type context: "In the context of a type" means that at least one object involved in the given TTCN-3 action (an
assignment, operation, parameter passing, etc.) identifies a concrete type unambiguously

NOTE: Either directly (e.g. an in-line template) or by means of a typed TTCN-3 object (e.g. via a constant,
variable, formal parameter, etc.).

uninitialized: value or template is uninitialized as long as no initialization of it or at least one of its parts has occurred

unqualified name: unqualified name of a TTCN-3 element is its name without any qualification

user-defined type: type that is defined by subtyping of a basic type or declaring a structured type

NOTE: User-defined types are referenced by their identifiers (names).

valid expressions/operations: expression or operation that follow the conditions and restrictions of the present
document and can be safely compiled and executed

value: TTCN-3 data objects are values or templates by definition. A TTCN-3 value is an instance of its type

NOTE: Values are defined by module parameters, constants, value variables, or formal value parameters. Any of
those are value objects from the point of view of their usage. A template containing only specific value
matching - though referring to a single instance of its type - is not a value object, but is a template object.

value list notation: notation that can be used for record, set, record of and set of values, where the values of the
subsequent fields or elements are listed within a pair of curly brackets ("{" and "}"), without an explicit identification of
the field name or element position

value notation: notation by which an identifier is associated with a given value or range of a particular type

NOTE: Values may be constants or variables.

value parameterization: ability to pass a value as an actual parameter into a parameterized object via a value
parameter

NOTE: This actual value parameter is added to the specification of that object and may complete it.

3.2 Symbols
Void.

3.3 Abbreviations
For the purposes of the present document, the following abbreviations apply:

API Application Programming Interface
ASN Abstract Syntax Notation
ASP Abstract Service Primitive

NOTE: See Recommendation ITU-T X.290 [i.39].

ATS Abstract Test Suite
BER Basic Encoding Rules
BMP Basic Multilingual Plane
BNF Backus-Nauer Form
BOM Byte Order Mark
CORBA® Common Object Request Broker Architecture
ETS Executable Test Suite
FIFO First In First Out

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)24

GFT Graphical presentation Format
ICS Implementation Conformance Statement
IDL Interface Definition Language
IRV International Reference Version
ITU-T International Telecommunication Union - Telecommunication standardization sector
IUT Implementation Under Test
IXIT Implementation eXtra Information for Testing
JSON JavaScript Object Notation
MCC Main Control Component
MTC Main Test Component
PCC Parrallel Control Component
PDU Protocol Data Unit

NOTE: See Recommendation ITU-T X.290 [i.39].

PTC Parallel Test Component
RHS Right Hand Side (of assignment)
SDL Specification and Description Language
SUT System Under Test
TCI TTCN-3 Control Interfaces
TE TTCN-3 Executable

NOTE: See also ETSI ES 201 873-5 [i.3].

TFT Tabular presentation Format
TRI TTCN-3 Runtime Interfaces
TSI Test System Interface
TTCN-3 Testing and Test Control Notation version 3
UCS Universal Character Set
UID Short identifier for character code point

NOTE: See ISO/IEC 10646 [2], clauses 6.5 and 6.6.

USI UCS Short Identifier
UTF UCS Transformation Format
UTF-16 Unicode Transformation Format-16
UTF-16BE Unicode Transformation Format-16 big-endian
UTF-16LE Unicode Transformation Format-16 little-endian
UTF-32 Unicode Transformation Format-32
UTF-32BE Unicode Transformation Format-32 big-endian
UTF-32LE Unicode Transformation Format-32 little-endian
UTF-8 Unicode Transformation Format-8
XML eXtensible Markup Language

4 Introduction

4.0 General
TTCN-3 is a flexible and powerful language applicable to the specification of all types of reactive system tests over a
variety of communication interfaces. Typical areas of application are protocol testing (including mobile and Internet
protocols), service testing (including supplementary services), module testing, testing of CORBA® based platforms,
API testing, etc. TTCN-3 is not restricted to conformance testing and can be used for many other kinds of testing
including interoperability, robustness, regression, system and integration testing.

NOTE 1: CORBA® is the trade name of a product supplied by Object Management Group®. This information is
given for the convenience of users of the present document and does not constitute an endorsement by
ETSI of the product named. Equivalent products should be used if they can be shown to lead to the same
results.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)25

TTCN-3 includes the following essential characteristics:

• the ability to specify dynamic concurrent testing configurations;

• operations for procedure-based and message-based communication;

• the ability to specify encoding information and other attributes (including user extensibility);

• the ability to specify data and signature templates with powerful matching mechanisms;

• value parameterization;

• the assignment and handling of test verdicts;

• test suite parameterization and test case selection mechanisms;

• combined use of TTCN-3 with other languages;

• well-defined syntax, interchange format and static semantics;

• different presentation formats (e.g. tabular and graphical presentation formats);

• a precise execution algorithm (operational semantics).

NOTE 2: The present document uses the following model of concept description: concepts, principles and
mechanisms are explained in (introductory) text at the beginning of a clause. For every concept having
concrete syntax, the syntactical structure of that concept is presented afterwards. The syntactical structure
follows the conventions for the TTCN-3 syntax description in clause A.1.1 and uses rules of the TTCN-3
BNF given in clause A.1. A semantic description follows the syntactic structure. The restrictions on the
concept are listed subsequently. Finally, examples on the usage of the concept are given.

In case of a contradiction between the body of the present document (clauses 5 to 26.2) and annex A of the present
document, annex A has the priority.

4.1 The core language and presentation formats
The TTCN-3 specification is separated into several parts (see figure 1).

The first part, defined in the present document, is the core language.

The third part, defined in ETSI ES 201 873-3 [i.2], is the graphical presentation format.

The fourth part, ETSI ES 201 873-4 [1], contains the operational semantics of the language.

The fifth part, ETSI ES 201 873-5 [i.3], defines the TTCN-3 Runtime Interface (TRI).

The sixth part, ETSI ES 201 873-6 [i.4], defines the TTCN-3 Control Interfaces (TCI).

The seventh part, ETSI ES 201 873-7 [i.5], specifies the use of ASN.1 definitions with TTCN-3.

The eighth part, ETSI ES 201 873-8 [i.6], specifies the use of IDL definitions with TTCN-3.

The ninth part, ETSI ES 201 873-9 [i.7] specifies the use of XML definitions with TTCN-3.

The tenth part, ETSI ES 201 873-10 [i.8] specifies documentation tags for TTCN-3.

The core language serves three purposes:

a) as a generalized text-based test language in its own right;

b) as a standardized interchange format of TTCN-3 test suites between TTCN-3 tools;

c) as the semantic basis (and where relevant, the syntactical basis) for various presentation formats.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)26

The core language may be used independently of the presentation formats. However, neither the tabular format nor the
graphical format can be used without the core language. Use and implementation of these presentation formats will be
done on the basis of the core language.

The tabular format and the graphical format are the first in an anticipated set of different presentation formats. These
other formats should be standardized presentation formats or they may be proprietary presentation formats defined by
TTCN-3 users themselves. These additional formats are not defined in the present document.

TTCN-3 may optionally be used with TTCN-3 packages, which define additional concepts for specific purposes.

TTCN-3 may optionally be used with other type-value notations in which case definitions in other languages may be
used as alternative data type and value syntax. Other parts of the TTCN-3 standard specify use of some other languages
with TTCN-3. The support of other languages is not limited to those specified in the ETSI ES 201 873 series of
documents but to support languages for which combined use with TTCN-3 is defined, rules given in the present
document apply.

Figure 1: User's view of the core language, its packages and the various presentation formats

The core language is defined by a complete syntax (see annex A) and operational semantics (ETSI ES 201 873-4 [1]). It
contains minimal static semantics (provided in the body of the present document and in annex A) which do not restrict
the use of the language due to some underlying application domain or methodology.

4.2 Unanimity of the specification
The language is specified syntactically and semantically in terms of a textual description in the body of the present
document (clauses 5 to 26.2) and in a formalized way in annex A. In each case, when the textual description is not
exhaustive, the formal description completes it. If the textual and the formal specifications are contradictory, the latter
should take precedence.

4.3 Conformance
For an implementation claiming to conform to this version of the language, all features specified in the present
document should be implemented consistently with the requirements given in the present document and in ETSI
ES 201 873-4 [1].

Behavior
Types

Continuous
signals

OO
Features

Advanced
Parameteri-
zation

Advanced
Matching

… TTCN-3
Packages

TTCN-3
Core
Language

TTCN-3 User

Other types &
values

JSON types
& values

The shaded boxes are not
defined in the present
document

Performance
and Real
Time Testing

Configuration
and deploy-
ment support

XML types

IDL types

ASN.1 types
and values

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)27

5 Basic language elements

5.0 General
The top-level unit of TTCN-3 is a module. A module cannot be structured into sub-modules. A module can import
definitions from other modules. Modules can have module parameters to allow test suite parameterization.

A module consists of a set of definitions that define test components, communication ports, other kinds of types (see
clause 6), constants, test data templates, functions including the module control function, signatures for procedure calls
at ports, test cases, etc.

The module control function calls the test cases and controls their execution. The control function may also declare
(local) variables, etc. Program statements (such as if-else and do-while) can be used to specify the selection and
execution order of individual test cases. The concept of global variables is not supported in TTCN-3.

TTCN-3 has a number of predefined data types that include basic types (such as integer, float, boolean,
verdicttyte and string types) as well as structured types (such as records, sets, unions, enumerated and map types
and arrays).

A special kind of data structure called a template provides parameterization and matching mechanisms for specifying
test data to be sent or received over the test ports. The operations on these ports provide both message-based and
procedure-based communication capabilities. Procedure calls may be used for testing implementations which are not
message based.

Dynamic test behaviour is expressed as test cases. TTCN-3 program statements include powerful behaviour description
mechanisms such as alternative reception of communication and timer events, interleaving and default behaviour. Test
verdict assignment and logging mechanisms are also supported.

Finally, TTCN-3 language elements may be assigned attributes such as encoding information and display attributes. It is
also possible to specify (non-standardized) user-defined attributes.

The TTCN-3 language elements are summarized in table 1.

Table 1: Overview of TTCN-3 language elements

Language element Associated
keyword

Specified in
module

definitions

Specified in
module
control

Specified in
functions/

altsteps/test
cases

Specified in
test

component
type

TTCN-3 module definition module
Import of definitions from other module import Yes
Grouping of definitions group Yes
Data type definitions type Yes
Communication port definitions port Yes
Test component definitions component Yes
Signature definitions signature Yes
External function definitions external Yes
Constant definitions const Yes Yes Yes Yes
Data/signature template definitions template Yes Yes Yes Yes
Function definitions function Yes
Altstep definitions altstep Yes
Test case definitions testcase Yes
Value variable declarations var Yes Yes Yes
Template variable declarations var template Yes Yes Yes
Timer declarations timer Yes Yes Yes
NOTE: The notions "definition" and "declaration" of variables, constants, types and other language elements are

used interchangeably throughout the present document. The distinction between both notions is useful only
for implementation purposes, as it is the case in programming languages like C and C++. On the level of
TTCN-3, the notions have equal meaning.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)28

5.1 Identifiers and keywords
TTCN-3 identifiers are case sensitive. TTCN-3 keywords shall be written in all lowercase letters (see annex A).
TTCN-3 keywords shall neither be used as identifiers of TTCN-3 objects nor as identifiers of objects imported from
modules of other languages. The same rules apply to names of predefined TTCN-3 functions (see annex C).

Special TTCN-3 modifiers are identifiers prefixed with the @-symbol (see annex A). They modify the default
semantics of the language element they are applied to in the specified way. If more than one modifier is applied to a
language element, they may be applied in any order.

NOTE: These modifiers are useful for refining or modifying existing language features, for example in the
context of the optional extension packages of TTCN-3 since they cannot lead to backward incompabilities
with existing reserved keywords or identifiers.

5.2 Scope rules

5.2.0 General

TTCN-3 provides the following basic units of scope:

a) module definitions part;

b) component types;

c) functions;

d) altsteps;

e) test cases;

f) statement blocks;

g) templates;

h) user defined named types;

i) port types.

NOTE 1: Additional scoping rule for groups is given in clause 8.2.2.

NOTE 2: Additional scoping rule for counters of for loops is given in clause 19.4.

NOTE 3: Statement blocks may include declarations. They may occur as stand-alone statement blocks, embedded
in another statement block or within compound statements, e.g. as body of a while loop.

NOTE 4: Built in TTCN-3 types like integer, charstring, anytype, etc. are not scope units, but all named
user defined types are scope units, independent of their kinds.

Each unit of scope consists of (optional) declarations. The scope units: functions (including the module control
function), test cases, altsteps and statement blocks may additionally specify some form of behaviour by using the
TTCN-3 program statements and operations (see clause 18).

Definitions made in the module definitions part but outside of other scope units are globally visible, i.e. may be used
elsewhere in the module, including all functions, test cases and altsteps defined within the module. Identifiers imported
from other modules are also globally visible throughout the importing module.

Definitions made in a test component type may be used in a component type extending this component type definition,
and in functions, test cases and altsteps referencing that component type or a compatible test component type (see
clause 6.3.2.7) by a runs on clause.

Test cases, altsteps and functions are individual scope units without any hierarchical relation between them,
i.e. declarations made inside their body have local visibility and shall only be used in the given test case, altstep or
function (e.g. a declaration made in a test case is not visible in a function called by the test case or in an altstep used by
the test case).

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)29

Stand-alone statement blocks and statements within compound statements, like e.g. if-else, while, do-while, or
alt statements may be used within test cases, altsteps, functions, or may be embedded in other statement blocks or
compound statements, e.g. an if-else statement that is used within a while loop.

Statement blocks and embedded statement blocks have a hierarchical relation both to the scope unit including the given
statement block and to any embedded statement block. Declarations made within a statement block have local visibility.

The hierarchy of scope units is shown in figure 2. Declarations of a scope unit at a higher hierarchical level are visible
in all units at lower levels within the same branch of the hierarchy. Declarations of a scope unit in a lower level of
hierarchy are not visible to those units at a higher hierarchical level.

module
control part

statement block

nested
statement block

user defined
named type

testcase with
runs on-clause

and optional
system-clause

module
definitions part

function with
runs on-clause

altstep with
runs on-clause

component type function without
runs on-clause

altstep without
runs on-clause

statement block statement block statement block

statement block statement block

nested
statement block

nested
statement block

nested
statement block

nested
statement block

nested
statement block

template

Figure 2: Hierarchy of scope units

EXAMPLE 1: Local scopes

 module MyModule
 { :
 const integer c_myConst := 0; // c_myConst is visible to f_myBehaviourA and f_myBehaviourB
 :
 function f_myBehaviourA()
 { :
 const integer c_a := 1; // The constant c_a is only visible to f_myBehaviourA
 :
 }

 function f_myBehaviourB()
 { :
 const integer c_b := 1; // The constant c_b is only visible to f_myBehaviourB
 :

 }
 }

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)30

EXAMPLE 2: Component type scopes

 type component MyComponentType {
 const integer cc_myConst := 1;
 ...
 }

 type component MyExtendedComponentType extends MyComponentType {
 var integer vc_myVar:= 2 * cc_myConst; // using cc_myConst of MyComponentType
 ...
 }

5.2.1 Scope of formal parameters

The scope of formal parameters in a parameterized object (e.g. in a function definition) shall be restricted to the
definition in which the parameters appear and to the lower levels of scope in the same scope hierarchy. That is they
follow the scope rules for local definitions (see clause 5.2).

5.2.2 Uniqueness of identifiers

TTCN-3 requires uniqueness of identifiers, i.e. all identifiers in the same scope hierarchy shall be distinctive. This
means that a declaration in a lower level of scope shall not re-use the same identifier as a declaration in a higher level of
scope in the same branch of the scope hierarchy.

The identifier of a module (its module name) or of an imported module belongs to the scope unit of the module and
cannot be used as identifier for other definitions inside this module. Identifiers for fields of structured types, enumerated
values and groups do not have to be globally unique, however in the case of enumerated values the identifiers, within
the same module, they shall only be reused for enumerated values within other enumerated types or as identifiers for
fields of structured types. In addition, enumeration values shall not be used as names of value or template definitions of
imported enumeration types, defining the given enumeration value (see also clause 8.2.3.1, example 4). The rules of
identifier uniqueness shall also apply to identifiers of formal parameters.

EXAMPLE 1: Nested scopes

 module MyModule
 { :
 const integer c_a := 1;
 :
 function f_myBehaviourA()
 { :
 const integer c_a := 1; // Is NOT allowed: clash with global constant c_a
 :
 if(…)
 { :
 const boolean c_a := true; // Is NOT allowed: clash with local constant c_a
 :
 }
 }
 }

EXAMPLE 2: Independent scopes

 // The following IS allowed as the constants are not declared in the same scope hierarchy
 // (assuming there is no declaration of c_a in module header)
 function f_myBehaviourA()
 { :
 const integer c_a := 1;
 :
 }

 function f_myBehaviourB()
 { :
 const integer c_a := 1;
 :
 }

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)31

EXAMPLE 3: Module scopes

 module MyModuleB {
 import from MyModuleA { … }

 function f_myFunction() {
 var integer MyModuleB := 1; // Is NOT allowed: clashing with module name
 :
 }

 type boolean MyModuleA; // Is NOT allowed: clashing with imported module name
 }

5.3 Ordering of language elements
Generally, the order in which declarations can be made is arbitrary. Inside a statement block, such as a function body or
a branch of an if-else statement, declarations (if any) can occur at any place where a statement can occur.

EXAMPLE:

 // This is a legal mixing of TTCN-3 declarations
 :
 var MyVarType v_myVar2 := 3;
 const integer c_myConst:= 1;
 if (v_myVar2+c_myConst > 10)
 {
 var integer v_myVar1:= 1;
 :
 v_myVar1:= v_myVar1 + 10;
 var integer v_myVar2:= 2*v_myVar1;
 :
 }
 :

Declarations in the module definitions part and in a component type definition may be made in any order. However
inside test case definitions, functions, altsteps, and statement blocks, all required declarations shall be given before their
first place of usage. This means in particular, local variables, local timers, and local constants shall never be used before
they are declared. The only exceptions to this rule are labels. Forward references to a label may be used in goto
statements before the label occurs (see clause 19.8).

5.4 Parameterization

5.4.0 General

TTCN-3 allows to parameterize modules, templates, functions, altsteps and testcases. Values, templates, timers, and
ports may be used as actual parameters. A summary of which language elements can be parameterized and what can be
passed to them as parameters is given in table 2.

NOTE: Type parameterization for TTCN-3 is defined in the optional package [i.12].

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)32

Table 2: Overview of parameterizable TTCN-3 objects

Keyword Allowed kind of
Parameterization

Allowed form of
Parameterization

Allowed types in formal parameter lists

module Value parameterization Static at start of runtime all basic types, all user-defined types and address
type.

template Value and template
parameterization

Dynamic at runtime all basic types, all user-defined types, address type
and template.

function Value and template
parameterization

Dynamic at runtime all basic types, all user-defined types, address
type, component type, port type, default,
template and timer.

altstep Value and template
parameterization

Dynamic at runtime all basic types, all user-defined types, address
type, component type, port type, default,
template and timer.

testcase Value and template
parameterization

Dynamic at runtime all basic types and of all user-defined types,
address type, component type and template.

NOTE: Signatures are not shown in the table, because a signature declares parameters only. The templates for the
signatures can be parameterized, however.

5.4.1 Formal parameters

5.4.1.0 General

TTCN-3 modules, structured types, templates, functions, altsteps, and testcases may be defined incompletely, i.e. some
entities (variables, templates, ports, timers, etc.) used by the above objects may not be resolved in the definition of the
object. These objects are called parameterized objects. Formal entities replacing the unresolved entities in the
parameterized object's definition are called formal parameters.

Formal parameters of parameterized templates, functions, altsteps, and testcases are defined in formal parameter lists.
Formal parameters of modules are defined in module parameter definitions (see clause 8.2.1).

Formal parameters shall be in, inout or out parameters (see terms in clause 3.1). If not stated otherwise, a formal
parameter is an in parameter. For all these three sorts of parameter passing, the formal parameters can both be read and
set (i.e. get new values being assigned) within the parameterized object. Formal parameters can be used directly as
actual parameters for other parameterized objects, e.g. as actual parameters in function invocations or as actual
parameters in template instances.

If parameters are passed by value (i.e. in case of in and out parameters), type compatibility rules specified in
clause 6.3 apply. When parameters are passed by reference, strong typing is required. Both the actual and formal
parameter shall be of the same type.

Formal in parameters may have default values. This default value is used when no actual parameter is provided.

NOTE 1: Although out parameters can be read within the parameterized object, they do not inherit the value of
their actual parameter; i.e. they should be set before they are read.

Formal value or template parameters may be declared lazy using the @lazy modifier. The behaviour of fuzzy
parameters is defined in clause 3.1, definition of lazy values or templates. See examples in clause 5.4.1.1.

Formal value or template parameters may be declared fuzzy using the @fuzzy modifier. The behaviour of lazy
parameters is defined in clause 3.1, definition of fuzzy values or templates. See examples in clause 5.4.1.1.

Formal value or template parameters that are declared lazy or fuzzy can be additionally declared deterministic using the
@deterministic modifier.

NOTE 2: The actual values of component variables used in the delayed evaluation of a lazy or fuzzy parameter may
differ from their values at the time, when the parameterized function or alstep was called.

Assigning default values for lazy and fuzzy formal parameters does not change the parameters' semantics: when the
default values are used as actual values for the parameters, they shall be evaluated the same way (i.e. delayed) as if an
actual parameter was provided.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)33

Lazy and fuzzy properties are valid only in the scope, where the parameters' names are visible. For example, if a fuzzy
parameter is passed to a formal parameter declared without a modifier, it loses its fuzzy feature inside the called
function. Similarly, if it is passed to a lazy formal parameter, it becomes lazy within the called function.

5.4.1.1 Formal parameters of kind value

Values of all basic and user-defined types, address, component, port and timer types, and the default type can be passed
as value parameters.

Syntactical Structure

[(in | inout | out)] [(@lazy | @fuzzy) [@deterministic]]
Type ValueParIdentifier [ArrayDef] [":=" (Expression | "-")]

Semantic Description

Value formal parameters can be used within the parameterized object the same way as values, for example in
expressions.

Value formal parameters may be in, inout or out parameters. The default for value formal parameters is in
parameterization which may optionally be denoted by the keyword in. Using of inout or out kind of parameterization
shall be specified by the keywords inout or out respectively.

In parameters may have a default value, which is given by an expression assigned to the parameter. Formal parameters
of modified templates may inherit the default values from the corresponding parameters of their parent templates; this
shall explicitly be denoted by using a dash (don't change) symbol at the place of the modified template parameters'
default value.

NOTE 1: If functions are used for the initialization of default values of in parameters, it is strongly advised to
avoid side effects during the evaluation of default values. Side effects may cause non-deterministic test
executions. They can be avoided, e.g. by adhering to the rules defined in clause 16.1.4.

TTCN-3 supports value parameterization according to the following rules:

• the language element module allows static value parameterization to support test suite parameters, i.e. this
parameterization may or may not be resolvable at compile-time but shall be resolved by the commencement of
runtime (i.e. static at runtime). This means that, at runtime, module parameter values are globally visible but
not changeable (see more details in clause 8.2);

• the language elements template, testcase, altstep and function support dynamic value
parameterization (i.e. this parameterization shall be resolved at runtime).

NOTE 2: Component and default references are also handled as value parameters. In the case of component
references, the corresponding component type is the type of the formal parameter. In the case of default
references the TTCN-3 type default is the type of the formal parameter.

Restrictions

a) Language elements which cannot be parameterized are: const, var, timer, control, record of,
set of, enumerated, port, component and subtype definitions, group and import.

b) Formal value parameters of templates, and of altsteps activated as defaults (see clause 20.5.2) shall always be
in parameters.

c) Restrictions on module parameters are given in clause 8.2.

d) Default values can be provided for in parameters only.

e) The expression of formal parameter's default value has to be compatible with the type of the parameter. The
expression may be any expression that is well-defined at the beginning of the scope of the parameterized
entity, but shall not refer to other parameters of the same parameter list.

f) Default values of component type formal parameters shall be one of the special values null, mtc, self,
or system.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)34

g) Default values of port, timer or default type formal parameters shall be the special value null.

h) The dash (don't change) symbol shall be used with formal parameters of modified templates only (see also
clause 15.5).

i) For formal value parameters of templates the restrictions specified in clause 15 shall apply.

j) Only in parameters can be declared lazy or fuzzy.

k) When parameters are referenced (e.g. in assignments, expressions, template bodies, etc.), the rules for
variables shall apply.

l) Only function and altstep definitions with the exception of functions or altsteps started as test
component behaviour (see clause 21.3.2) may have formal parameters of a port, timer or default type or of a
type that contains a direct or indirect element or field of a port, default or timer type.

m) Only function, altstep and testcase definitions may have formal parameters of a component type or
of a type that contains a direct or indirect element or field of a component type.

n) If a lazy or fuzzy value parameter is used in deterministic contexts (i.e. during the evaluation of a snapshot or
initialization of global non-fuzzy templates), it shall be declared @deterministic.

Examples

EXAMPLE 1: In, out and inout formal parameters

 function f_myFunction1(in boolean p_myReferenceParameter){ … };
 // p_myReferenceParameter is an in value parameter. The parameter can be read. It can also be
 // set within the function, however, the assignment is local to the function only

 function f_myFunction2(inout boolean p_myReferenceParameter){ … };
 // p_myReferenceParameter is an inout value parameter. The parameter can be read and set
 // within the function - the assignment is not local

 function f_myFunction3(out template boolean p_myReferenceParameter){ … };
 // p_myReferenceParameter is an out value parameter. The parameter can be set within the
 // function, the assignment is not local. It can also be read, but only after it has been set.

EXAMPLE 2: Reading and setting parameters

 type record MyMessage {
 integer f1,
 integer f2
 }

 function f_myMessage (integer p_int) return MyMessage {
 var integer v_f1, v_f2;
 v_f1 := f_mult2 (p_int);
 // parameter p_int is passed on; as the parameter of the called function f_mult2 is
 // defined as an inout parameter, it passes back the changed value for p_int,
 v_f2 := p_int;
 return {v_f1, v_f2};

 }

 function f_mult2 (inout integer p_integer) return integer {
 p_integer := 2 * p_integer;
 // the value of the formal parameter is changed; this new value is passed back when
 // f_mult2 completes
 return p_integer-1
 }

 testcase TC_01 () runs on MTC_PT {
 ...
 p1.send (f_myMessage(5))
 // the value sent is { f1 := 9 , f2 := 10 }
 ...
 }

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)35

EXAMPLE 3: Function with default value for parameter

 function f_comp (in integer p_int1, in integer p_int2 := 3) return integer {
 var integer v_v := p_int1 + p_int2;
 return v_v;
 }

 function f_f () {
 var integer v_w;
 v_w := f_comp(1); // same as calling f_comp(1,3);
 v_w := f_comp(1,2); // value 2 is taken for parameter p_int2 and not its default value 3
 …
 }

 type component Comp { var integer i := 0 }

 function g(integer x := f_comp(i)) runs on Comp return integer {
 // reference to i from Comp is allowed in default value of parameter x
 return x;
 }

 function h(integer y := g()+i) runs on Comp {
 // reference to g is allowed because it has a compatible runs on clause as h
 }

EXAMPLE 4: Direct passing of formal parameters to functions

 function f_myFunc2(in bitstring p_refPar1, inout integer p_refPar2) return integer {
 :
 }
 function f_myFunc1(inout bitstring p_refPar1, out integer p_refPar2) return integer {
 :
 return f_myFunc2(p_refPar1, p_refPar2);
 }
 // p_refPar1 and p_refPar2 can be passed directly to a function invocation

EXAMPLE 5: Lazy and fuzzy parameters

 type component MyComp { var integer vc_int }

 function f_MyLazyFuzzy(in @lazy integer p_lazy, in @fuzzy integer p_fuzzy) runs on MyComp {
 //When called from MyCalling:
 vc_int := 1;
 log(p_lazy); //will log 2 as function double with actual parameter vc_int equals 1 is called
 //here; 2 is stored in p_lazy (also, function double stores 2 in vc_int)
 log(p_lazy); //will log 2 again as p_lazy is not re-evaluated
 log(p_fuzzy);//will log 4 as function double with actual parameter vc_int equals 2 is called
 // here (also, function double stores 4 in vc_int)
 log(p_fuzzy) //will log 8 as function double is re-evaluated with actual parameter 4
 }

 function f_double (in integer p_in) runs on MyComp return integer{
 p_in := 2* p_in;
 vc_int := p_in;
 return p_in
 }

 testcase TC_MyCalling() runs on MyComp {
 vc_int := 0;
 f_myLazyFuzzy (f_double(vc_int), f_double(vc_int))
 }

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)36

EXAMPLE 6: Difference between passing by value and passing by reference

 function f_byValue (in integer p_int1, in integer p_int2) {
 p_int2 := p_int2 + 1;
 log(p_int1);
 log(p_int2);
 }

 function f_byReference (inout integer p_int1, inout integer p_int2) {
 p_int2 := p_int2 + 1;
 log(p_int1);
 log(p_int2);
 }

 function f_f () {
 var integer v_int := 1;
 f_byValue(v_int, v_int); // prints 1 and 2
 log(v_int); // prints 1
 f_byReference(v_int, v_int); // prints 2 and 2
 log(v_int); // prints 2
 }

5.4.1.2 Formal parameters of kind template

Template kind parameters are used to pass templates into parameterizable objects.

Syntactical Structure

[in | inout | out] TemplateModifier [(@lazy | @fuzzy) [@deterministic]]
Type ValueParIdentifier [ArrayDef] [":=" (TemplateInstance | "-")]

Semantic Description

Template parameters can be defined for templates, functions, altsteps, and test cases.

To enable a parameterized object to accept templates or matching symbols as actual parameters, the extra keyword
template shall be added before the type field of the corresponding formal parameter. This makes the parameter a
template parameter and in effect extends the allowed actual parameters for the associated type to include the appropriate
set of matching attributes (see annex B) as well as the normal set of values.

Formal template parameters can be used within the parameterized object the same way as templates and template
variables.

Formal template parameters may be in, inout or out parameters. The default for formal template parameters is in
parameterization.

In parameters may have a default template, which is given by a template instance assigned to the parameter. Formal
template parameters of modified templates may inherit their default templates from the corresponding parameters of
their parent templates; this shall explicitly be denoted by using a dash (don't change) symbol at the place of the
modified template parameter's default template. If a default template is used, it is evaluated in the scope of the
parameterized entity, not the scope of the actual parameter list.

Formal template parameters can be restricted to accept actual parameters containing a restricted set of matching
mechanisms only. Such limitations can be expressed by the restrictions omit, present, and value. The restriction
template (omit) can be replaced by the shorthand notation omit. The meaning of the restrictions is explained in
clause 15.8.

Restrictions

a) Only function, testcase, altstep and template definitions may have formal template parameters.

b) Formal template parameters of templates and of altsteps activated as defaults (see clause 20.5.2) shall
always be in parameters.

c) Default templates can be provided for in parameters only.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)37

d) The default template instance has to be compatible with the type of the parameter. The template instance may
be any template expression that is well-defined at the beginning of the scope of the parameterized entity, but
shall not refer to other parameters in the same parameter list.

e) Default templates of component type formal parameters shall be built from the special values null, mtc,
self, or system.

f) Restrictions specified in clause 15 shall apply.

g) The dash (don't change) symbol shall be used with formal parameters of modified templates only (see also
clause 15.5).

h) Only in template parameters can be declared lazy or fuzzy.

i) When template parameters are referenced (e.g. in assignments, expressions, template bodies, etc.), the rules for
template variables shall apply.

j) If a lazy or fuzzy template parameter is used in deterministic contexts (i.e. during the evaluation of a snapshot
or initialization of global non-fuzzy templates), it shall be declared @deterministic.

Examples

EXAMPLE 1: Template with template parameter

 // The template
 template MyMessageType mw_myTemplate (template integer p_myFormalParam):=
 { field1 := p_myFormalParam,
 field2 := pattern "abc*xyz",
 field3 := true
 }

 // could be used as follows
 pco1.receive(mw_myTemplate(?));
 // or as follows
 pco1.receive(mw_myTemplate(omit)); // provided that field1 is declared in MyMessageType as
 // optional

EXAMPLE 2: Function with template parameter

 function f_myBehaviour(template MyMsgType p_myFormalParameter)
 runs on MyComponentType
 { :
 pco1.receive(p_myFormalParameter);
 :
 }

EXAMPLE 3: Template with restricted parameter

 // The template
 template MyMessageType mw_myTemplate1 (template (omit) integer p_myFormalParam):=
 { field1 := p_myFormalParam,
 field2 := pattern "abc*xyz",
 field3 := true
 }

 // could be used as follows
 pco1.receive(mw_myTemplate1(omit));
 // but not as follows
 pco1.receive(mw_myTemplate1(?)); // AnyValue is not within the restriction

 // the same template can be written shorter as
 template MyMessageType mw_myTemplate2 (omit integer p_myFormalParam):=
 { field1 := p_myFormalParam,
 field2 := pattern "abc*xyz",
 field3 := true
 }

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)38

5.4.2 Actual parameters

Values, templates, timers and/or ports can be passed into parameterized TTCN-3 objects as actual parameters. Actual
parameters can be provided both as a list in the same order as the formal parameters as well as in an assignment
notation explicitly using the associated formal parameter names or in a mixed notation where the first parameters are
given in list notation and additional parameters in assignment notation.

Syntactical Structure

(Expression | // for value parameter
 TemplateInstance | // for template parameter
 "-") | // to skip a parameter with default
 ParameterId ":=" (Expression | TemplateInstance | TimerRef | Port))

Semantic Description

Actual parameters that are passed by value to in formal value parameters shall be variables, literal values, module
parameters, constants, value variables, invocations of value returning (external) functions, formal value parameters (of
in, inout or out parameterization) of the current scope or expressions composed of the above.

Actual parameters that are passed to out formal value parameters shall be (template) variables, formal (template)
parameters (of in, inout or out parameterization) or references to elements of (template) variables or formal (template)
parameters of structured types. Furthermore it is allowed to use the dash symbol "-" as an actual out parameter,
signifying that a possible result for that parameter will not be passed back.

Actual parameters that are passed to inout formal value parameters shall be variables or formal value parameters (of
in, inout or out parameterization) or references to elements of variables or formal value parameters of structured types.

NOTE 1: Reference to a string element cannot be passed by reference as string types are not structured types.

Actual parameters that are passed to in formal template parameters shall be literal values, module parameters,
constants, variables, invocations of value or template returning (external) functions, formal value parameters (of in,
inout or out parameterization) of the current scope or expressions composed of the above, as well as templates, template
variables or formal template parameters (of in, inout or out parameterization) of the current scope.

Actual parameters that are passed to out formal template parameters shall be template variables, formal template
parameters or references to elements of template variables or formal template parameters of structured types.
Furthermore it is allowed to use the dash symbol "-" as an actual out parameter, signifying that a possible result for
that parameter will not be passed back.

Actual parameters that are passed to inout formal template parameters shall be template variables or formal template
parameters (of in, inout or out parameterization) of the current scope or references to elements of template variables or
formal template parameters of structured types.

When actual parameters that are passed to in formal value or template parameters contain a value or template
reference, rules for using references on the right hand side of assignments apply. When actual parameters that are
passed to inout and out formal value or template parameters contain a value or template reference, rules for using
references on the left hand side of assignments apply.

The values of out formal parameters are passed to the actual parameters in the same order as is the order of formal
parameters in the definition of the parameterized TTCN-3 object. The value is passed back to the actual parameter only
if within the invoked object a value is assigned to it. If no value is assigned, the actual parameter remains unchanged
when the invoked object completes.

It is allowed to pass elements of structured values or templates (record, set, record of, set of, union and anytype values
or templates) by reference. Modification of parameters passed this way affects the original structured value or template.
Before passing the actual parameter, the rules for referencing the element on the left hand side of assignments are
applied, expanding the structured value so that the referenced element becomes accessible (see clauses 6.2 and 15.6 for
more details).

NOTE 2: Because inout parameters are passed by reference and component variables are effectively also accessed
by reference within a called function or altstep, passing parts of a structured component variable as an
actual inout parameter may have confusing effects inside the parameterized behaviour: changing either
the inout parameter or the component variable may also change the other simultaneously, which might
break the intended algorithm. For this reason, such situations should be avoided.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)39

When a formal parameter is an out parameter or has been defined with a default value or template, respectively, then it
is not necessary to provide an actual parameter. In such a case the default value or template is taken as actual parameter.

The actual parameters are evaluated in the order of their appearance. If for some formal parameters, no actual parameter
has been provided, if they are out parameters, the dash symbol "-" and for in parameters their default values are taken.
Default values are evaluated after the evaluation of the actual parameters and the order of their evaluation corresponds
to their order in the formal parameter list.

NOTE 3: If assignment notation has been used for the actual parameter list, the order of the evaluation of actual
parameters may differ from the order of the parameters in the formal parameter list.

The empty brackets for instances of parameterized templates that have only parameters with default values are optional
when no actual parameters are provided, i.e. all formal parameters use their default values.

Restrictions

a) When using list notation, the order of elements in the actual parameter list shall be the same as their order in
the corresponding formal parameter list. For each formal inout parameter and for each in parameter without
a default there shall be an actual parameter. The actual parameter of a formal out parameter or in parameter
with default value can be skipped by using dash "-" as actual parameter. An actual parameter can also be
skipped by just leaving it out if no other actual parameter follows in the actual parameter list - either because
the parameter is last or because all following formal parameters are out parameters or have default values and
are left out. The number of actual parameters in the list notation shall not exceed the number of parameters in
the formal parameter list.

b) Void.

c) When using assignment notation, each formal parameter shall be assigned an actual parameter at most once.
For each assigned actual parameter there shall exist a corresponding formal parameter of the same name. For
each formal parameter without default value, there shall be an actual parameter. In order to use the default
value of a formal parameter, no assignment for this specific parameter shall be provided.

d) For in formal parameters, the type of the actual parameter shall be compatible with the type of the formal
parameter. For out formal parameters, the type of the formal parameter shall be compatible with the type of
the actual parameter. Strong typing is required for inout formal (parameters passed by reference). For in
formal template parameters, the template restriction of the actual parameter shall not be less restrictive than the
one of the formal parameter. For out formal template parameters, the template restriction of the actual
parameter shall not be more restrictive than the one of the formal parameter. For inout formal template
parameters, the template restriction of the actual and the formal parameter shall be the same.

e) Actual parameters passed to restricted formal template parameters shall obey the restrictions given in
clause 15.8.

f) All parameterized entities specified as an actual parameter shall have their own parameters resolved in the
top-level actual parameter list.

g) If the formal parameter list of TTCN-3 objects function, testcase, altstep or external
function is empty, then the empty parentheses shall be included both in the declaration and in the
invocation of that object. In all other cases the empty parentheses shall be omitted.

NOTE 4: signature objects also have formal parameters, see clauses 15.2 and 22.3 for their handling.

h) Void.

i) Restrictions on parameters passed to altsteps are given in clauses 16.2.1 and 20.5.2.

j) Unless specified differently in the relevant clause(s), actual parameters passed to in or inout formal
parameters shall be at least partially initialized (for an exemption see e.g. clause 16.1.2).

k) Functions, called by actual parameters passed to fuzzy or lazy formal parameters of the calling function, shall
not have inout or out formal parameters. The called functions may use other functions with inout or out
parameters internally.

l) Actual parameters passed to out and inout parameters shall not be references to lazy or fuzzy variables.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)40

m) Whenever a value or template of a record, set, union, record of, set of, array and anytype type is passed as an
actual parameter to an inout parameter, none of the fields or elements of this structured value or template shall
be passed as an actual parameter to another inout parameter of the same parameterized TTCN-3 object. This
restriction applies recursively to all sub-elements of the structured value or template in any level of nesting.

n) If two or more actual parameters passed to inout parameters of the same parameterized TTCN-3 object
contain a reference to distinct alternatives of the same union or anytype value, an error shall be produced.

o) If the mixed notation is used, no value list notation shall be used following the first assignment notation and
the parameters given in assignment notation shall not assign parameters that already have an actual parameter
given in list notation.

p) Actual parameters passed to @deterministic fuzzy or lazy formal parameters shall fulfill the restrictions
imposed on content of functions used in special places given in clause 16.1.4.

Examples

EXAMPLE 1: Formal and actual parameter lists have to match

 // A function definition with a formal parameter list
 function f_myFunction(integer p_formalPar1, boolean p_formalPar2, bitstring p_formalPar3) { … }

 // A function call with an actual parameter list
 f_myFunction(123, true,'1100'B);

 // A function call with assignment notation for actual parameters
 f_myFunction(p_formalPar1 := 123, p_formalPar3 := '1100'B, p_formalPar2 := true);

EXAMPLE 2: In parameters

 function f_myFunction(in template MyTemplateType p_myValueParameter){ … };
 // p_myValueParameter is in parameter, the in keyword is optional

 // A function call with an actual parameter
 f_myFunction(m_myGlobalTemplate);

EXAMPLE 3: Inout and out parameters

 function f_myFunction(inout boolean p_myReferenceParameter){ … };
 // p_myReferenceParameter is an inout parameter

 // A function call with an actual parameter
 f_myFunction(v_myBooleanVariable);
 // The actual parameter can be read and set within the function

 function f_myFunction(out template boolean p_myReferenceParameter){ … };
 // p_myReferenceParameter is an out parameter

 // A function call with an actual parameter
 f_myFunction(v_myBooleanVariable);
 // The actual parameter is initially unbound, but can be set and read within the function.
 f_myFunction(-); // the outcoming value is not assigned to a variable

 type record of integer RoI;

 function f_swapElements (inout integer p_int1, inout integer p_int2) {
 var integer v_tmp := p_int1;
 p_int1 := p_int2;
 p_int2 := v_tmp;
 }

 function f_testReferences (inout RoI p_roi, inout integer p_elem) { … }
 :
 var RoI v_roi := { 0, 1, 2, 3, 4, 5 };
 f_swapElements(v_roi[0], v_roi[5]); // after the function call, v_roi is { 5, 1, 2, 3, 4, 0 }
 f_testReferences(v_roi, v_roi[2]); // produces an error as elements of v_roi are not allowed
 // to be passed by reference if the parent structure (v_roi) is passed by reference too.

 function f_changeAndIncrement(out integer p_e, in integer p_v, inout integer p_i) {
 p_i := p_i + 1;
 p_e := p_v;
 }
 :

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)41

 var integer v_i := 0;
 f_changeAndIncrement(v_roi[v_i], 3, v_i); // increments p_i, but still assigns 3 to v_roi[0]

EXAMPLE 4: A side effect caused by passing part of a component variable as inout parameter

 type component MyComp {
 var ROI v_rec := { 0, 1 }
 }

 testcase TC() runs on MyComp {
 f_test(v_rec[1]) // passing 2nd element of component variable as inout parameter
 log(v_rec); //will log { 2 , 2 }
 }

 function f_test(inout integer p_int) runs on MyComp {
 v_rec := { 2 }; // now, isbound(p_int) == false
 p_int := 2; // now, v_rec == { 2, 2 }
 }

EXAMPLE 5: Empty parameter lists

 // A function definition with an empty parameter list shall be written as
 function f_myFunction(){ … }

 // and shall be called as
 f_myFunction();

 // A template definition with a default value for a formal parameter written as
 template MyRecord m_mytemplate (integer p_myValue:= 1):= { … }

 // may be used without actual parameter list (i.e. the default value is used)
 myPCO.send(m_mytemplate)

EXAMPLE 6: Nested parameter lists

 // Given the message definition
 type record MyMessageType
 {
 integer field1,
 charstring field2,
 boolean field3
 }

 // A message template might be
 template MyMessageType mw_myTemplate(integer p_myValue) :=
 {
 field1 := p_myValue,
 field2 := pattern "abc*xyz",
 field3 := true
 }

 // A test case parameterized with a template might be

testcase TC_001(template MyMessageType p_rxMsg) runs on PTC1 system TS1 {
 :
 myPCO.receive(p_rxMsg);

 }

 // When the test case is called in the control function and the parameterized template is
 // passed as an actual parameter, the template's actual parameters shall be provided
 control
 { :
 execute(TC_001(mw_myTemplate(7)));
 :
 }

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)42

EXAMPLE 7: A typical use case for lazy parameterization

 modulepar boolean PX_LOG_MESSAGE := true;

 function f_logMsg(@lazy charstring p_complex) {
 if (PX_LOG_MESSAGE) {
 log(p_complex);
 }
 }

 function f_computeComplexMessage() return charstring {
 // some complicated computation
 }

 f_logMsg(f_computeComplexMessage()); // f_computeComplexMessage() is only invoked if
 // PX_LOG_MESSAGE is true

EXAMPLE 8: Actual parameters passed to lazy and fuzzy formal parameters

 type record MyMessage { integer id, float number }

 type port MyPortType message { inout MyMessage }

 type component MyMTC {
 var integer vc_id;
 port MyPortType p;
 }

 testcase TC_shootingMessages () runs on MyMTC {
 connect(self:p,self:p);
 f_sendLazy({vc_id, rnd()}); //note that at this point vc_id is unintialized yet
 f_sendFuzzy({vc_id, rnd()})
 }

 function f_sendLazy(@lazy MyMessage p_pdu) runs on MyMTC {
 for (vc_id := 1; vc_id<9; vc_id:=vc_id+1){
 p.send(p_pdu); // the actual parameter passed to the formal parameter p_pdu is evaluated only
 // in the first loop;let say rnd() returns 0.924946;
 // the message { 1, 0.924946 } is sent out 8 times
 }
 setverdict(pass,"messages has been sent out")
 }

 function f_sendFuzzy(@fuzzy MyMessage p_pdu) runs on MyMTC {
 for (vc_id := 1; vc_id<9; vc_id:=vc_id+1){
 p.send(pdu); // the actual parameter passed to the formal parameter p_pdu is evaluated in each
 // loop; let say rnd() returns 0.924946, 0.680497, 0.630836, 0.648681, 0.428501,
 // 0.262539, 0.646990, 0.265262 in subsequent calls; the messages 1, 0.924946 },
 // {{ 2, 0.680497 }, { 3, 0.630836 }, { 4, 0.648681 }, { 5, 0.428501 },
 // { 6, 0.262539 }, { 7, 0.646990 } and { 8, 0.265262 } are sent out in sequence
 }
 setverdict(pass,"messages has been sent out")
 }

EXAMPLE 9: Order of out parameters

 function f_initValues (out integer p_par1, out integer p_par2) {
 p_par1 := 1;
 p_par2 := 2;
 }

 function f_f(){
 var integer v_var1;
 f_initValues(p_par2 := v_var1, p_par1 := v_var1);
 // After this function call, v_var1 will contain 2, as parameters are assigned in
 // the same order as in the definition of the f_initValues function. Thus p_par1 is
 // assigned first to v_var1 and p_par2 after that overwriting the previous value.
 }

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)43

EXAMPLE 10: Skipped actual parameters

 function f_skip (out integer p_par1, in integer p_par2 := 2) {
 p_par1 := 1 + p_par2;
 }

 function f_f(){
 // the following statements all have the same semantics :
 f_skip (-,-); // p_par2 is initialized with default value 2 and
 // the result of p_par1 is not assigned to any variable
 f_skip (p_par1 := -, p_par2 := -);
 f_skip (p_par2 := -); // skip p_par1
 f_skip (-) ; // skip p_par2 because it is the last
 f_skip () ; // skip p_par1 because all following are also skipped
 }

EXAMPLE 11: Mixed notation

 function f_mixed (out integer p_par1, in integer p_par2 := 2, inout integer p_par3) {
 p_par1 := 1 + p_par2;
 }

 function f_f(){
 var integer v := 0;
 // the following statements all have the same semantics:
 f_mixed(-,2,v);
 f_mixed(-,p_par2 := 2, p_par3 := v);
 f_mixed(-,-,p_par3 := v);
 f_mixed(-,p_par3 := v, p_par2 := 2);

 // not allowed:
 f_mixed(-,2,p_par3 := v, p_par2 := 5); // p_par2 is already assigned in list notation
 }

5.5 Cyclic Definitions
Direct and indirect cyclic definitions are not allowed with the exception of the following cases:

a) for recursive type definitions (see clause 6.2);

b) function and altstep definitions (i.e. recursive function or altstep calls);

c) cyclic import definitions, if the imported definitions only form allowed cyclic definitions.

NOTE 1: Indirect cyclic definitions may be a result of imports of definitions that are needed for the usage of a
definition but do not need to be known in the importing module (see clause 8.2.3.1).

NOTE 2: For the detection of cycles only the main identifiers of the definition are used. For example, field
identifiers are not used.

Examples

EXAMPLE 1: Module with cyclic constant definition that is not allowed

 module MyModule {
 :
 type record ARecordType { integer a, integer b };
 :
 // The following two lines include a cycle that is not allowed
 const ARecordType c_cConst := { 1 , c_dConst.b}; // c_cConst refers to c_dConst
 const ARecordType c_dConst := { 1 , c_cConst.b}; // c_dConst refers to c_cConst
 }

EXAMPLE 2: Modules with cyclic import that is allowed

 module MyModuleA {
 import from MyModuleB { type MyInteger }
 type record of MyInteger MyIntegerList;
 }

 module MyModuleB {
 type integer MyInteger;
 import from MyModuleA { type MyIntegerList }

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)44

 }

6 Types and values

6.0 General
TTCN-3 supports a number of predefined basic types. These basic types include ones normally associated with a
programming language, such as integer, boolean and string types, as well as some TTCN-3 specific ones such as
verdicttype. Structured types such as record types, set types and union types can be constructed from these
basic types. enumerated types are specific structured types being constructed of enumerated values.

The special data type anytype is defined as the union of all known data types and the address type defined within a
TTCN-3 module. In any specific module context, only the known types can be accessed in a value or template of type
anytype.

Special types associated with test configurations such as address, port and component may be used to define the
architecture of the test system (see clause 21).

The special type default may be used for the default handling (see clause 20.5).

The TTCN-3 types are summarized in table 3.

Table 3: Overview of TTCN-3 types

Class of type Keyword Subtype
Simple basic types integer range, list

float range, list
boolean List
verdicttype List

Basic string types bitstring list, length
hexstring list, length
octetstring list, length
charstring range, list, length, pattern
universal charstring range, list, length, pattern

Structured types record list (see note)
record of list (see note), length
set list (see note)
set of list (see note), length
enumerated list (see note)
union list (see note)

Special data type anytype list
Special configuration types address

port
component

Special default type default
Array notation [] list (see note)
NOTE: List subtyping of these types is possible when defining a new constrained type

from an already existing parent type but not directly at the declaration of the first
parent type.

NOTE: Behaviour types for TTCN-3 are defined in the optional package [i.13].

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)45

6.1 Basic types and values

6.1.0 Simple basic types and values

TTCN-3 supports the following basic types:

a) integer: a type with distinguished values which are the positive and negative whole numbers, including
zero:

 Values of integer type shall be denoted by one or more digits; the first digit shall not be zero unless the
value is 0; the value zero shall be represented by a single zero.

b) float: a type to describe floating-point numbers and special float values:

 In general, floating point numbers can be defined as:<mantissa> × <base><exponent>,

 where <mantissa> is a positive or negative integer, <base> a positive integer (in most cases 2, 10 or 16)
and <exponent> a positive or negative integer.

 In TTCN-3, the floating-point number value notation is restricted to a base with the value of 10. Floating
point values can be expressed by using two forms of value notations:

 the decimal notation with a dot in a sequence of numbers like, 1,23 (which represents 123 × 10-2),
2,783 (i.e. 2 783 × 10-3) or -123,456789 (which represents -123 456 789 × 10-6); or

 by two numbers separated by E where the first number specifies the mantissa and the second
specifies the exponent, for example 12.3E4 (which represents 123 × 103) or -12.3E-4 (which
represents -123 × 10-5).

NOTE 1: In contrast to the general definition of float values, the mantissa of in theTTCN-3 value notation, beside
integers, allows decimal numbers as well.

The special values of the float type consist of infinity (positive infinity), -infinity (negative infinity) and the
value not_a_number. For the ordering of special values see clauses 7.1.1 and 7.1.3.

NOTE 2: -not_a_number (i.e. minus not a number) is not to be used.

c) boolean: a type consisting of two distinguished values:

 Values of boolean type shall be denoted by true and false.

d) verdicttype: a type for use with test verdicts consisting of 5 distinguished values. Values of
verdicttype shall be denoted by pass, fail, inconc, none and error.

6.1.1 Basic string types and values

6.1.1.0 General

TTCN-3 supports the following basic string types:

a) bitstring: a type whose distinguished values are the ordered sequences of zero, one, or more bits:

 Values of type bitstring shall be denoted by an arbitrary number (possibly zero) of the bit digits:
0 1, preceded by a single quote (') and followed by the pair of characters 'B.

Within the quotes any number of whitespaces or any sequence of the following C0 control characters: LF(10),
VT(11), FF(12), CR(13) which constitutes a newline (see Recommendation ITU-T T.50 [4]) (jointly called
newline characters, see clause A.1.5.1) may be included. The newline shall be preceded by a backslash ("\").
Such whitespaces, control characters and backslash will be ignored for the value and length calculation.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)46

EXAMPLE 1: '01101'B
'0110 1001'B
'0110\
 1001'B

b) hexstring: a type whose distinguished values are the ordered sequences of zero, one, or more hexadecimal
digits, each corresponding to an ordered sequence of four bits:

 Values of type hexstring shall be denoted by an arbitrary number (possibly zero) of the hexadecimal
digits (uppercase and lowercase letters can equally be used as hex digits):

 0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

 preceded by a single quote (') and followed by the pair of characters 'H; each hexadecimal digit is used
to denote the value of a semi-octet using a hexadecimal representation.

 Within the quotes any number of whitespaces or any sequence of the following C0 control characters: LF(10),
VT(11), FF(12), CR(13) which constitutes a newline (see Recommendation ITU-T T.50 [4]) (jointly called
newline characters, see clause A.1.5.1) may be included. The newline shall be preceded by a backslash ("\").
Such whitespaces, control characters and backslash will be ignored for the value and length calculation.

EXAMPLE 2: 'AB01D'H
'ab01d'H
'Ab01D'H
'Ab 01 D'H
'Ab\
 01\
 D'H

c) octetstring: a type whose distinguished values are the ordered sequences of zero or a positive even
number of hexadecimal digits (every pair of digits corresponding to an ordered sequence of eight bits):

 Values of type octetstring shall be denoted by an arbitrary, but even, number (possibly zero) of the
hexadecimal digits (uppercase and lowercase letters can equally be used as hex digits):

 0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

 preceded by a single quote (') and followed by the pair of characters 'O; each hexadecimal digit is used
to denote the value of a semi-octet using a hexadecimal representation.

Within the quotes any number of whitespaces or any sequence of the following C0 control characters: LF(10),
VT(11), FF(12), CR(13) which constitutes a newline (see Recommendation ITU-T T.50 [4]) (jointly called
newline characters, see clause A.1.5.1) may be included. The newline shall be preceded by a backslash ("\").
Such whitespaces, control characters and backslash will be ignored for the value and length calculation.

EXAMPLE 3: 'FF96'O
'ff96'O
'Ff96'O
'Ff 96'O
'Ff\
 96'O

d) charstring: are types whose distinguished values are zero, one, or more characters of the version of
Recommendation ITU-T T.50 [4] complying with the International Reference Version (IRV) as specified in
clause 8.2 of Recommendation ITU-T T.50 [4].

NOTE 1: The IRV version of Recommendation ITU-T T.50 [4] is equivalent to the IRV version of the International
Reference Alphabet (former International Alphabet No.5 - IA5), described in Recommendation ITU-T
T.50 [4].

 Values of charstring type shall be denoted by an arbitrary number (possibly zero) of non-control
characters from the relevant character set, preceded and followed by double quote ("). Graphical characters
include the range from SP(32) to TILDE (126). Values of charstring type can also be calculated using the
predefined conversion function int2char with the positive integer value of their encoding as argument (see
clause C.1).

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)47

NOTE 2: The predefined conversion function is able to return single-character-length values only.

 In cases where it is necessary to define strings that include the character double quote (") the character is
represented by a pair of double quotes on the same line with no intervening space characters.

EXAMPLE 4: The charstring "ab"cd" is written in TTCN-3 code as in the following constant declaration. Each of
the 3 quote characters that are part of the string is preceded by an extra quote character and the
whole character string is delimited by quote characters, e.g.
const charstring c_char:= """ab""cd""";

e) The character string type preceded by the keyword universal denotes types whose distinguished values are
zero, one, or more characters from ISO/IEC 10646 [2].

universal charstring values can also be denoted by an arbitrary number (possibly zero) of characters
from the relevant character set, preceded and followed by double quote ("), calculated using a predefined
conversion function (see clause C.1.2) with the positive integer value of their encoding as argument, by a
"quadruple" or using the USI-like notation.

NOTE 3: If applying the double quote format all characters from any character set defined in ISO/IEC 10646 [2]
are allowed. Users should be aware of the character set capabilities of their editing tool and the TTCN-3
module transfer syntax UTF-8 (see clause 8).

NOTE 4: The predefined conversion function is able to return single-character-length values only.

In cases where it is necessary to define strings that include the character double quote (") the character is
represented by a pair of double quotes on the same line with no intervening space characters.

The "quadruple" is only capable to denote a single character and denotes the character by the decimal values of
its group, plane, row and cell according to ISO/IEC 10646 [2], preceded by the keyword char included into a
pair of brackets and separated by commas (e.g. char (0, 0, 1, 113) denotes the Latin small letter u with double
acute: "ű"). In cases where it is necessary to denote the character double quote (") in a string assigned
according to the first method (within double quotes), the character is represented by a pair of double quotes on
the same line with no intervening space characters. The two methods may be mixed within a single notation for
a string value by using the concatenation operator.

EXAMPLE 5: The expression: "the Braille character" & char (0, 0, 40, 48) & "looks like this" represents the
literal string: the Braille character looks like this.

The UCS sequence identifier-like (USI-like) notation (see also clause 6.6 of ISO/IEC 10646 [2]) can be used to
denote 1..N characters, using their short identifiers of code point (similar to UIDs described in clause 6.5 of
ISO/IEC 10646 [2]). The USI-like notation is composed of the keyword char followed by parentheses. The
parentheses enclose a comma-separated list of short identifiers . Each short identifier represents a single
character and it shall be composed of a letter U or u followed by an optional "+" PLUS SIGN character,
followed by 1..8 hexadecimal digits. The hexadecimal digits represent the numeric code point of the character.
(e.g. char(U0171) denotes the Latin small letter u with double acute: "ű"). In the USI-like notation, the
leading zeroes can be omitted, (i.e. char(U171)is equal to char(U0171)).

EXAMPLE 6: The expression: char (U4E2D, U56FD) represents the literal string: 中国.

NOTE 5: Control characters can be denoted by using the predefined conversion function, the quadruple form or the
USI-like notation.

By default, universal charstring shall conform to the UTF-32 encoding specified in clause 9.3 of
ISO/IEC 10646 [2].

NOTE 6: UTF-32 is an encoding format, which represents any UCS character on a fixed, 32 bits-length field.

This default encoding can be overridden using the defined variant attributes (see clause 27.5). The useful
character string types utf8string, bmpstring, utf16string and iso8859string using these attributes are defined in
annex E.

The general term string or string type in TTCN-3 refers to bitstring, hexstring, octetstring,
charstring and universal charstring.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)48

The general term binary string or binary string type in TTCN-3 refers to bitstring, hexstring, octetstring.

The general term character string or character string type in TTCN-3 refers to charstring and universal
charstring.

6.1.1.1 Accessing individual string elements

Individual elements in a string type may be accessed using an array-like syntax.

Units of length of different string type elements are indicated in table 4.

For accessing individual string elements the following rules apply:

• Only single elements of the string may be accessed. Trying to assign strings with length 0 or more than 1 to a
string element using the array-like syntax shall cause an error.

• Indexing shall begin with the value zero (0).

• The index shall be between zero and the length of the string minus one for retrieving an element from a string.
Trying to retrieve an element from a string with an index outside this range shall cause an error.

• For assigning an element to the end of a string, the length of the string should be used as index. Trying to
assign an element to the end of a string with an index larger than the length of the string shall cause an error.

• For initializing an uninitialized string with a single element, the index value zero (0) can be used as index.
Trying to assign a single element to an uninitialized string with an index which is not zero (0) shall cause an
error.

EXAMPLE 1: Accessing an existing element

 // Given
 v_myBitString := '11110111'B;
 // Then doing
 v_myBitString[4] := '1'B;
 // Results in the bitstring '11111111'B

EXAMPLE 2: Specific cases

 var bitstring v_myBitStringA, v_myBitStringB, v_myBitStringC, v_myBitStringD;
 v_myBitStringA := '010'B;
 v_myBitStringA[1] := '11'B; //causes an error as only individual elements can be accessed

 v_myBitStringB := '1'B;
 v_myBitStringB[4] := '1'B; //causes an error index is larger than the length of v_myBitStringB

 v_myBitStringC := ''B;
 v_myBitStringC[0] := '1'B; // value of v_myBitStringC is '1'B
 v_myBitStringC[1] := '0'B; // value of v_myBitStringC is '10'B

 // v_myBitStringD is not initialized
 v_myBitStringD[0] := '0'B; // value of v_myBitStringD is '0'B

 v_myBitStringD[1] := '1'B; // value of v_myBitStringD is '01'B

 var charstring v_myCharString;
 v_myCharString[0] := "a" //initializing v_myCharString with a single character
 v_myCharString[1] := "" //causes an error as the length of the to-be-assigned string is 0
 v_myCharString[1] := "bc" //causes an error as the length of the to-be-assigned string is
 //more than 1

6.1.2 Subtyping of basic types

6.1.2.0 General

User-defined types shall be denoted by the keyword type. With user-defined types it is possible to create subtypes
(such as lists, ranges and length restrictions) on basic types, structured types and anytype according to table 3.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)49

6.1.2.1 Lists of templates

TTCN-3 permits the specification of a list of distinguished templates as listed in table 3. The templates in the list shall
be instances of the type being constrained and the set of values matching at least one of these templates shall be a subset
of the values defined by the type being constrained. The subtype defined by this list restricts the allowed values of the
subtype to those values matching at least one of the templates in the list. The templates in the list shall only (directly or
indirectly) reference other templates or constant expressions. Constant expressions used (directly or indirectly) in the
template expressions shall meet with the restrictions in clause 10 for constant expressions used in type definitions.

EXAMPLE:

 type bitstring MyListOfBitStrings ('01'B, '10'B, '11'B);
 type float PI (3.1415926);
 type charstring MyStringList ("abcd", "rgy", "xyz");
 type universal charstring SpecialLetters
 (char(0, 0, 1, 111), char(0, 0, 1, 112), char(0, 0, 1, 113));

6.1.2.2 Lists of types

TTCN-3 permits the specification of a list of subtypes as listed in table 3 for value lists. The types in the list shall be
subtypes of the root type. The subtype defined by this list restricts the allowed values of the subtype to the union of the
values of the referenced subtypes.

EXAMPLE:

 type bitstring BitStrings1 ('0'B, '1'B);
 type bitstring BitStrings2 ('00'B, '01'B, '10'B, '10'B);
 type bitstring BitStrings_1_2 (Bitstrings1, Bitstrings2);

6.1.2.3 Ranges

TTCN-3 permits the specification of range constraints for the types integer, charstring, universal
charstring and float (or derivations of these types). For integer and float, the subtype defined by the
range restricts the allowed values of the subtype to the values in the range including or excluding the lower boundary
and/or the upper boundary. The upper boundary shall be greater than or equal to the lower boundary.

In order to specify an infinite integer range, the keyword -infinity or infinity can be used instead of a value
indicating that there is no lower or upper boundary; -infinity shall not be used as the upper bound and infinity
shall not be used as the lower bound for integer ranges.

Also for float, -infinity or infinity can be used as the bounds in range restrictions. Using the special
value -infinity as the lower bound shall indicate that the allowed numerical values are not restricted downward and
the special value -infinity is also included. If both the lower and upper bounds denote -infinity, no numerical
values are included, only the special value -infinity. Using the special value infinity as the upper bound shall
indicate that the allowed numerical values are not restricted upward and the special value infinity is also included.
If both the lower and upper bounds denote infinity, no numerical values are included, only the special value
infinity. If exclusive bounds (!infinity or !-infinity) is used instead, only the respective numerical float
values are included in the range. In case of float, the special value not_a_number is not allowed in a range
constraint.

In the case of charstring and universal charstring types, the range restricts the allowed values for each
separate character in the strings. The boundaries shall evaluate to valid character positions according to the coded
character set table(s) of the type (e.g. the given position shall not be empty). Empty positions between the lower and the
upper boundaries are not considered to be valid values of the specified range.

Constants used in the constant expressions defining the values shall meet with the restrictions in clause 10.

EXAMPLE 1:

 type integer MyIntegerRange (0 .. 255); // range from 0..255
 // (with inclusive boundaries)
 type integer MyIntegerRange (0 .. !256); // the same range as above (with left
 // inclusive and right exclusive boundary)
 type integer MyIntegerRange (!-1 .. 255); // the same range as above(with left
 // exclusive and right inclusive boundary)

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)50

 type integer MyIntegerRange (!-1 .. !256); // the same range as above
 // (with exclusive boundaries)
 type integer MyIntegerRange (-infinity .. -1); // all negative integer numbers

 type float PiRange (3.14 .. 3142E-3);
 type float LessThanPi (-infinity .. 3142E-3);
 type float Numbers (-infinity .. infinity); //includes all float values but not_a_number
 type float Wrong (-infinity .. not_a_number); // causes an error as not_a_number is not
 // allowed in range subtyping

EXAMPLE 2:

type charstring MyCharString ("a" .. "z");
// Defines a string type of any length with each character within the specified range
type universal charstring MyUCharString1 ("a" .. !"z");
// Defines a string type of any length with each character within the range from a to y
// (character codes from 97 to 121), like "abxy";
// strings containing any other character (including control characters), like
// "abc2" are disallowed.
type universal charstring MyUCharString2 (char(0, 0, 1, 111) .. char(0, 0, 1, 113));
// Defines a string type of any length with each character within the range specified using
// the quadruple notation

6.1.2.4 String length restrictions

TTCN-3 permits the specification of length restrictions on string types. The length boundaries are based on different
units depending on the string type with which they are used. In all cases, these boundaries shall be inclusive boundaries
only and evaluate to non-negative integer values (or derived integer values).

EXAMPLE:

 type bitstring MyByte length(8); // Exactly length 8
 type bitstring MyByte length(8 .. 8); // Exactly length 8
 type bitstring MyNibbleToByte length(4 .. 8); // Minimum length 4, maximum length 8

Table 4 specifies the units of length for different string types.

Table 4: Units of length used in field length specifications

Type Units of Length
bitstring bits
hexstring hexadecimal digits
octetstring octets
character strings characters

For the upper bound the keyword infinity should also be used to indicate that there is no upper limit for the length.
The upper boundary shall be greater than or equal to the lower boundary.

6.1.2.5 Pattern subtyping of character string types

TTCN-3 allows using character patterns specified in clause B.1.5 to constrain permitted values of charstring and
universal charstring types. The type constraint shall use the pattern keyword followed by a character
pattern. All values denoted by the pattern shall be a subset of the type being sub typed. Constants used in the constant
expressions defining the values shall meet with the restrictions in clause 10.

NOTE: Pattern subtyping can be seen as a special form of list constraint, where members of the list are not
defined by listing specific character strings but via a mechanism generating elements of the list.

EXAMPLE:

 type charstring MyString (pattern "abc*xyz");
 // all permitted values of MyString have prefix abc and postfix xyz

 type charstring MyStringCaseAgnostic (pattern @nocase "abc*xyz");
 // all permitted values of MyStringCaseAgnostic have a
 // prefix abc or Abc or aBc or abC or ABc or aBC or AbC or ABC, and a
 // postfix xyz or Xyz or xYz or xyZ or XYz or xYZ or XyZ or XYZ;

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)51

 type universal charstring MyUString (pattern "*\r\n")
 // all permitted values of MyUString are terminated by CR/LF

 type charstring MyString2 (pattern "abc?\q{0,0,1,113}");
 // causes an error because the character denoted by the quadruple {0,0,1,113} is not a
 // legal character of the TTCN-3 charstring type

 type MyString MyString3 (pattern "d*xyz");
 // causes an error because the type MyString does not contain a value starting with the
 // character d

6.1.2.6 Mixing subtyping mechanisms

6.1.2.6.1 Mixing patterns, lists and ranges

Within integer and float (or derivations of these types) subtype definitions it is allowed to mix lists and ranges. It
is possible to mix both template list and type list subtyping with each other and with range subtyping. Overlapping of
different constraints is not an error.

EXAMPLE 1:

 type integer MyIntegerRange (1, 2, 3, 10 .. !20, 99, 100);
 type float LessThanPiAndNaN (-infinity .. 3142E-3, not_a_number);

Within charstring and universal charstring subtype definitions it is not allowed to mix pattern, template
list, type list, or range constraints.

EXAMPLE 2:

 type charstring MyCharStr0 ("gr", "xyz");
 // contains character strings gr and xyz;

 type charstring MyCharStr1 ("a".."z");
 // contains character strings of arbitrary length containing characters a to z.

 type charstring MyCharStr2 (pattern "[a-z]#(3,9)");
 // contains character strings of length from 3 to 9 characters containing characters a to z

6.1.2.6.2 Using length restriction with other constraints

Within bitstring, hexstring, octetstring subtype definitions lists and length restriction may be mixed in
the same subtype definition.

Within charstring and universal charstring subtype definitions it is allowed to add a length restriction
to constraints containing list, range or pattern subtyping in the same subtype definition.

When mixed with other constraints the length restriction shall be the last element of the subtype definition. The length
restriction takes effect jointly with other subtyping mechanisms (i.e. the value set of the type consists of the common
subset of the value sets identified by the list, range or pattern subtyping and the length restriction).

EXAMPLE:

 type charstring MyCharStr5 ("gr", "xyz") length (1..9);
 // contains the character strings gr and xyz;

 type charstring MyCharStr6 ("a".."z") length (3..9);
 // contains character strings of length from 3 to 9 characters and containing characters
 // a to z

 type charstring MyCharStr7 (pattern "[a-z]#(3,9)") length (1..9);
 // contains character strings of length from 3 to 9 characters containing characters
 // a to z

 type charstring MyCharStr8 (pattern @nocase "[a-z]#(3,9)") length (1..8);
 // contains character strings of length from 3 to 8 characters containing characters
 // a to z and A to Z

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)52

 type charstring MyCharStr9 (pattern "[a-z]#(1,8)") length (1..9);
 // contains any character strings of length from 1 to 8 characters containing characters
 // a to z

 type charstring MyCharStr10 ("gr", "xyz") length (4);
 // causes an error as it contains no value

6.2 Structured types and values

6.2.0 General

The type keyword is also used to specify structured types such as record types, record of types, set types, set
of types, enumerated types and union types.

Values of these types may be given using an explicit assignment notation or a short-hand value list notation or in a
mixed list and assignment notation.

EXAMPLE 1:

 const MyRecordType c_myRecordValue:= //assignment notation
 {
 field1 := '11001'B,
 field2 := true,
 field3 := "A string"
 }

 // Or
 const MyRecordType c_myRecordValue:= {'11001'B, true, "A string"} //value list notation

 // Or
 Const MyRecordType c_myRecordValue := {'11001'B, field3 := "A string", field2 := true}
 // mixed notation

The assignment and the mixed notation can be used for record, record of, set and set of value notations
and for arrays. In these notations each assigned field or index shall not appear more than once and assignments to fields
or indexes given in list notation are not allowed. The assignment notation can also be used for union values. The value
list notation can be used for record, record of, set and set of value notations and for arrays. The index
notation as part of an assignment or mixed notation can be used as the left-hand side of element assignments for
record of and set of value notations and for arrays. In this notation each index shall not appear more than once
and shall conform to the range of indices allowed by the type definition. See more details in the subsequent clauses.

EXAMPLE 2:

 var MyRecordType v_myVariable:= //assignment notation
 {
 field1 := '11001'B,
 // field2 implicitly unspecified
 field3 := "A string"
 }

 // or
 var MyRecordType v_myVariable:= //assignment notation
 {
 field1 := '11001'B,
 field2 := -, // field2 explicitly unspecified
 field3 := "A string"
 }

 // or
 var MyRecordType v_myVariable:= {'11001'B, -, "A string"} //value list notation

It is allowed to mix the two value notations in the same (immediate) context only in such a way that elements in list
notation do not follow elements in assignment notation.

EXAMPLE 3:

 // This is disallowed
 const MyRecordType c_myRecordValue:= {c_myIntegerValue, field2 := true, "A string"}

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)53

Where applicable TTCN-3 type definitions may be recursive. The user, however, shall ensure that all type recursion is
resolvable and that no infinite recursion occurs.

In case of record and set types, to avoid infinite recursion, fields referencing to its own type, shall be optional.

EXAMPLE 4:

 // Valid recursive record type definition
 type record MyRecord1
 {
 FieldType1 field1,
 MyRecord1 field2 optional,
 FieldType3 field3
 }

 // Invalid recursive record type definition causing an error
 type record MyRecord2
 {
 FieldType1 field1,
 MyRecord2 field2,
 FieldType3 field3
 }

In case of union types, to avoid infinite recursion, at least one of the alternatives shall not reference its own type.

EXAMPLE 5:

 // Valid recursive union type definition
 type union MyUnion1
 {
 MyUnion1 choice1,
 charstring choice2
 }

 // Invalid recursive union type definition causing an error
 type union MyUnion2
 {
 MyUnion2 choice1,
 MyUnion2 choice2
 }

6.2.1 Record type and values

6.2.1.0 General

TTCN-3 supports ordered structured types known as record. The fields of a record type may be of any TTCN-3
type. The values of a record shall be compatible with the types of the record fields. The field identifiers are local to
the record and shall be unique within the record (but do not have to be globally unique).

EXAMPLE 1:

 type record MyRecordType
 {
 integer field1,
 MyOtherRecordType field2 optional,
 charstring field3
 }

 type record MyOtherRecordType
 {
 bitstring field1,
 boolean field2
 }

Records may be defined with no fields, i.e. as empty records.

EXAMPLE 2:

 type record MyEmptyRecord {}

A record value is assigned on an individual field basis. The order of field values in the value list notation shall be the
same as the order of fields in the related type definition.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)54

EXAMPLE 3:

 var integer v_myIntegerValue := 1;

 const MyOtherRecordType c_myOtherRecordValue:=
 {
 field1 := '11001'B,
 field2 := true
 }

 var MyRecordType v_myRecordValue :=
 {
 field1 := v_myIntegerValue,
 field2 := c_myOtherRecordValue,
 field3 := "A string"
 }

The same value specified with a value list.

EXAMPLE 4:

 v_myRecordValue:= {v_myIntegerValue, {'11001'B, true}, "A string"};

When the assignment notation is used for record-s, fields wished to be changed shall be identified explicitly and a
value, the not used symbol "-" or the omit keyword can be associated with them. The omit keyword shall only be
used for optional fields. Its result is that the given field is not present in the given value. Mandatory fields, not explicitly
referred to in the notation or explicitly unspecified using the not used symbol "-", shall remain unchanged. In particular,
when specifying partial values (i.e. setting the value of only a subset of the fields) using the assignment notation, at
initialization, only the fields to be assigned values shall be specified. Fields not mentioned are implicitly left
uninitialized. When re-assigning a previously initialized value, using the not used symbol or just skipping a field in an
assignment notation, will cause that field to remain unchanged. Even when specifying partial values each field shall not
appear more than once.

NOTE 1: The difference can be seen between omitted and uninitialized fields. Omitted optional fields are not
present in the record or set value intentionally, i.e. the field is initialized and it does not prevent the whole
record or set from being completely initialized.

EXAMPLE 5:

 type record MyRecordType
 {
 bitstring field1,
 boolean field2 optional,
 charstring field3
 }

 var MyRecordType v_myVariable :=
 {
 field1 := '111'B,
 field2 := false,
 field3 := -
 }

 v_myVariable := { '10111'B, -, - };
 // after this, v_myVariable contains:
 // { '10111'B, false /* unchanged */, <undefined> /* unchanged */ }

 v_myVariable :=
 {
 field2 := true
 }
 // after this, v_myVariable contains:
 // { '10111'B /* unchanged */, true, <undefined> /* unchanged */ }

 v_myVariable :=
 {
 field1 := -,
 field2 := false,
 field3 := -
 }
 // after this, v_myVariable contains:
 // { '10111'B /* unchanged */, false, <undefined> /* unchanged */}

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)55

When the assignment notation is used in a scope, where the optional attribute is implicitly or explicitly set to
"explicit omit", optional and mandatory fields, not directly referred to in the notation shall remain unchanged.
When optional fields of variables are not assigned explicitly, they are uninitialized (i.e. the optional attribute shall not
have any effect on variables as described in clause 27.7 restriction a)).

When the assignment notation is used in a scope, where the optional attribute is set to "implicit omit",
optional fields, not directly referred to in the notation, shall implicitly be set to omit, while mandatory fields shall
remain unchanged (see also clause 27.7).

EXAMPLE 6:

 type record MyRecordType
 {
 bitstring field1,
 boolean field2 optional,
 charstring field3
 }

 const MyRecordType c_myConst1 :=
 {
 field1 := '111'B,
 field3 := "A string"
 } // { '10111'B, <undefined>, "A string"}

 const MyRecordType c_myConst2 :=
 {
 field1 := '111'B,
 field3 := "A string"
 } with { optional "implicit omit" }
 // { '10111'B, omit /* because of the optional attribute */, "A string"}

When using the value list notation, all fields listed in the notation shall be specified either with a value, the not used
symbol "-" or the omit keyword. The omit keyword shall only be used for optional fields. Its result is that the given
field is not present in the given value. The first component of the list (a value, a "-" or omit) is associated with the first
field, the second list component is associated with the second field, etc. No empty assignment is allowed (i.e. two
commas, the second immediately following the first or only with white space between them). Fields to be left
unchanged, but followed by fields to which a value or template is assigned explicitly, shall be skipped by using the not
used symbol "-".

When using value list notation in a scope where the optional attribute is implicitly or explicitly set to "explicit
omit", all remaining fields at the end of the type definition, missing from the value list notation, are left unchanged.

When using value list notation in a scope where the optional attribute is set to "implicit omit", optional fields
wished to be omitted by the implicit mechanism, but followed by fields to which a value or template is assigned
explicitly, shall be skipped by using the not used symbol "-". When all remaining fields at the end of the type definition
are optional and they are wished to be omitted by the implicit mechanism, either the not used symbol "-" can be used for
some or all of them or they can simply be left out from the notation.

EXAMPLE 7:

 type record R {
 integer f1,
 integer f2 optional,
 integer f3,
 integer f4 optional,
 integer f5 optional
 }

 const R c_x := { 1, -, 2 } with { optional "implicit omit" }
 // after the assignment v_x contains { 1, omit, 2, omit, omit }
 constR c_x2 := { 1, 2, 3, - } with { optional "implicit omit" }
 // after the assignment v_x2 contains { 1, 2, 3, omit, omit }

When using direct assignment notation in a scope where the optional attribute is set to "implicit omit", the
uninitialized optional fields in the referenced value, shall implicitly be set to omit after the assignment in the new value,
while mandatory fields shall remain unchanged (see also clause 27.7).

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)56

EXAMPLE 8:

 const R c_x3 := { 1, -, 2 }
 // after the assignment c_x3 contains { 1, <undefined>, 2, <undefined>, <undefined>}
 const R c_x4 := c_x3 with { optional "implicit omit" }
 // after the assignment c_x4 contains { 1, omit, 2, omit, omit }

A field assignment in a record value or template can be prefixed by the @fuzzy modifier to declare that the right hand
side of the assignment shall only be evaluated when used in a matching, receiving or sending operation, as a non-lazy or
non-fuzzy operand to an expression, as a non-lazy or non-fuzzy actual parameter or on the right-hand-side of an
assignment to a non-lazy or non-fuzzy variable, template variable or template.

NOTE 2: The rules on using @fuzzy field modifiers are described in clause 15.5.

EXAMPLE 9:

type record R2 {
 integer num,
 charstring str
}

template R2 m_msg := { num := 5, @fuzzy str := testcasename() }

testcase TC_01() runs on C {
 p.send(m_msg); // the sent value is { num := 5, str := "TC_01" };
}

testcase TC_02() runs on C {
 p.send(m_msg); // the sent value is { num := 5, str := "TC_02" };
}

6.2.1.1 Referencing fields of a record type

Elements of a record shall be referenced by the dot notation TypeIdOrExpression.ElementId, where
TypeIdOrExpression resolves to the name of a structured type or an expression of a structured type such as
variable, formal parameter, module parameter, constant, template, or function invocation. ElementId shall resolve to
the name of a field in the structured type. Fields of record type definitions shall not reference themselves.

EXAMPLE 1:

 v_myVar1 := v_myRecord1.myElement1;
 // If a record is nested within another type then the reference may look like this
 v_myVar2 := v_myRecord1.myElement1.myElement2;

EXAMPLE 2:

 type record MyType
 {
 integer field1,
 MyType.field2 field2 optional, // this circular reference is NOT ALLOWED
 boolean field3
 }

If a field in a record type or a subtype of a record type is referenced by the dot notation, the resulting type is the set of
values allowed for that field imposed by the constraints of the field declaration itself (i.e. any constraints applied to the
record type itself are ignored).

EXAMPLE 3:

 type record MyType2
 {
 integer field1 (1 .. 10),
 charstring field2 optional
 }

 type MyType2 MyType3 ({1, omit}, {2, "foo"}, {3, "bar"}) ;

 type MyType3.field1 MyType4; // MyType4 is the integer type constrained to
 // the values 1..10
 type MyType3.field2 MyType5; // MyType5 is the charstring type
 type MyType2.field1 MyType6; // MyType6 is the integer type constrained to
 // the values 1..10

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)57

 type MyType2.field2 MyType7; // MyType7 is the charstring type

Referencing a subfield of an uninitialized or omitted record field or value on the right hand side of an assignment shall
cause an error.

EXAMPLE 4:

 type record MyType4
 {
 integer field1 optional,
 record
 {
 integer subfield1,
 integer subfield2
 } field2 optional
 }
 ...
 var MyType4 v_rec := { field1 := 1, field2 := omit }
 var integer v_int := v_rec.field2.subfield1;
 // causes an error as v_rec.field2 is omitted

When referencing a field of an uninitialized record value or field or omitted field (including omitting a field at a higher
level of the embedding hierarchy) on the left hand side of an assignment, the reference shall recursively be expanded up
to and including the depth of the referenced subfield as follows:

a) When expanding a value or value field of record type, the subfield referenced in the dot notation shall be set to
present and all unreferenced mandatory subfields shall be left uninitialized; when the assignment is used in a
scope where the optional attribute is equal to "explicit omit", all unreferenced optional subfields
shall be left undefined. When the assignment is used in a scope where the optional attribute is equal to
"implicit omit", all unreferenced optional subfields shall be set to omit.

b) Expansion of record of/set of/array, union and set values and intermediate fields shall follow the
rules of item a) in clauses 6.2.7 and 6.2.5.1 and clause 6.2.2.1 correspondingly.

At the end of the expansion, the value at the right hand side of the assignment shall be assigned to the referenced
subfield.

EXAMPLE 5:

 var MyType4 v_rec;
 v_rec.field2.subfield1 := 5;
 // after the assignment v_rec is { field1 := <undefined>, field2 := { subfield1 := 5,
 // subfield2 := <undefined> } }

6.2.1.2 Optional elements in a record

Optional elements in a record shall be specified using the optional keyword.

EXAMPLE 1:

 type record MyMessageType
 {
 FieldType1 field1,
 FieldType2 field2 optional,
 :
 FieldTypeN fieldN
 }

Optional fields shall be omitted using the omit symbol.

EXAMPLE 2:

 v_myRecordValue:= {v_myIntegerValue, omit , "A string"};

 // Note that this is not the same as writing,
 // v_myRecordValue:= {v_myIntegerValue, -, "A string"};
 // which would mean the value of field2 is unchanged

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)58

6.2.1.3 Nested type definitions for field types

TTCN-3 supports the definition of types for record fields nested within the record definition. Both the definition of
new structured types (record, set, enumerated, set of, record of, union and map) and the specification of
subtype constraints are possible.

EXAMPLE:

 // record type with nested structured type definitions
 type record MyNestedRecordType
 {
 record
 {
 integer nestedField1,
 float nestedField2
 } outerField1,
 enumerated {
 nestedEnum1,
 nestedEnum2
 } outerField2,
 record of boolean outerField3,
 map from charstring to charstring outerfield4
 }

 // record type with nested subtype definitions
 type record MyRecordTypeWithSubtypedFields
 {
 integer field1 (1 .. 100),
 charstring field2 length (2 .. 255)
 }

6.2.2 Set type and values

6.2.2.0 General

TTCN-3 supports unordered structured types known as set. Set types and values are similar to records except that the
ordering of the set fields is not significant.

EXAMPLE:

 type set MySetType
 {
 integer field1,
 charstring field2
 }

The field identifiers are local to the set and shall be unique within the set (but do not have to be globally unique).

NOTE: When the value list notation is used for values of set types, the values are assigned to the fields in the
sequential order of the fields in the type definition.

6.2.2.1 Referencing fields of a set type

Elements of a set shall be referenced by the dot notation (see clause 6.2.1.1). Elements of set type definitions shall not
reference themselves. For referencing field types of set types, the same rules apply as in clause 6.2.1.1 for fields of
record types.

EXAMPLE:

 v_myVar3 := v_mySet1.myElement1;
 // If a set is nested in another type then the reference may look like this
 v_myVar4 := v_myRecord1.myElement1.myElement2;
 // Note, that the set type, of which the field with the identifier 'myElement2' is referenced,

 // is embedded in a record type

6.2.2.2 Optional elements in a set

Optional elements in a set shall be specified using the optional keyword.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)59

6.2.2.3 Nested type definition for field types

TTCN-3 supports the definition of types for set fields nested within the set definition, similar to the mechanism for
record types described in clause 6.2.1.3.

6.2.3 Records and sets of single types

6.2.3.0 General

TTCN-3 supports the specification of records and sets whose elements are all of the same type. These are denoted using
the keyword of. These records and sets do not have element identifiers and can be considered similar to an ordered
array and an unordered collection respectively.

NOTE 1: For the subtyping of record of and set of types see in clause 6.2.13.

EXAMPLE 1:

 type set of boolean MySetOfType; // is an unlimited set of boolean values

When the assignment notation is used for record of-s and set of-s, elements wished to be changed are identified
explicitly and either a value or the not used symbol "-" can be assigned to them. Other elements, not referred to in the
notation, shall remain unchanged. In particular, when specifying partial values (i.e. setting the value of only a subset of
the fields) using the assignment notation, for example, at initialization, only the elements to be assigned values shall be
specified: elements not mentioned are implicitly left uninitialized. It is also possible to leave fields explicitly
unspecified using the not used symbol "-". When re-assigning a previously initialized value, using the not used symbol
or just skipping a field or element in an assignment notation, will cause that field or element to remain unchanged.

EXAMPLE 2:

 var MyRecordOfType v_myVariable := {
 [0] := '111'B,
 [1] := '101'B,
 [2] := -
 }

 v_myVariable := { '10111'B, -, - };
 // after this, v_myVariable contains:
 // { '10111'B, '101'B /* unchanged */, <undefined> /* unchanged */ }

 v_myVariable :=
 {
 [1] := '010'B,
 }
 // after this, v_myVariable contains:
 // { '10111'B/* unchanged */, '010'B, <undefined>/* unchanged */ }

 v_myVariable :=
 {
 [0] := -,
 [1] := '001'B,
 [2] := -
 }
 // after this, v_myVariable contains:
 // { '10111'B/* unchanged */, '001'B, <undefined> /* unchanged */}

When using the value list notation, all elements in the structure shall be specified either with a value or the not used
symbol "-". The first member of the list is assigned to the first element, the second list member is assigned to the second
element, etc. No empty assignment is allowed (e.g. two commas, the second immediately following the first or only
with white space between them). Elements to be left out of the assignment shall be explicitly skipped in the list by use
of the not-used-symbol "-". Already initialized elements left without a corresponding list member in a value list notation
(i.e. at the end of a list) are becoming uninitialized. In this way, a value with initialized elements can be made empty by
using the empty value list notation ("{}").

Index notation can be used on both the right-hand side and left-hand side of assignments. The index notation, when used
on the right-hand side, refers to the value of the identified element of a record of or a set of. When it is used at
the left-hand side, only the value of the identified single element is changed, values assigned to other elements already
remain unchanged. The index of the first element shall be zero and the index value shall not exceed the limitation
placed by length subtyping.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)60

If the value of the element indicated by the index at the right-hand of an assignment is undefined (uninitialized), this
shall cause a semantic or runtime error. Referencing an identified element of an uninitialized or omitted record of or set
of field or value on the right-hand side of an assignment shall cause an error.

If an indexing operator at the left-hand side of an assignment refers to a non-existent element, the value at the
right-hand side is assigned to the element and all elements with an index smaller than the actual index and without
assigned value are created with an uninitialized value.

For nested record of or set of types, an array or record of integer restricted to a single size can be used as a short-hand
notation for a nested index notation.

When referencing an element of an uninitialized record of or set of value or field or omitted field (including omitting a
field at a higher level of the embedding hierarchy) on the left-hand side of an assignment, the reference shall recursively
be expanded up to and including the depth of the referenced element as follows:

a) When expanding a value or value field of record of or set of type, the element referenced by the index
notation shall be set to present and all elements with a smaller index shall be created with an uninitialized
value.

b) Expansion of record, union and set values and intermediate fields shall follow the rules of item a) in
clauses 6.2.1.1 and 6.2.5.1 and clause 6.2.2.1 correspondingly.

c) At the end of the expansion, the value at the right-hand side of the assignment shall be assigned to the
referenced element.

Uninitialized elements are permitted only in transient states (while the value remains invisible). Sending a record of
or set of value with uninitialized elements shall cause an error.

NOTE 2: When using on the right-hand side of an assignment for record of-s or set of-s, the assignment
notation and the indexed notation have similar effect, with the exception that the assignment notation is
able to address multiple elements in one notation, while the index notation is able to address a single
element only.

EXAMPLE 3:

 // Given
 type record of integer MyRecordOf;
 type record of MyRecordOf RoRoI;
 var integer v_myVar;
 // Using the value list notation
 var MyRecordOf v_myRecordOfVar := { 0, 1, 2, 3, 4 };

 // The same record of, defined with the assignment notation
 var MyRecordOf v_myRecordOfVarAssignment := {
 [0] := 0,
 [1] := 1,
 [2] := 2,

 [3] := 3,
 [4] := 4
 };
 var RoRoI v_recof;

 // Using an index notation
 v_myVar := v_myRecordOfVar[0]; // the first element of the "record of" value (integer 0)
 // is assigned to v_myVar

 // Index notations are permitted on the left-hand side of assignments as well:
 v_myRecordOfVar[1] := v_myVar; // v_myVar is assigned to the second element
 // value of v_myRecordOfVar is { 0, 0, 2, 3, 4 }

 // The assignment
 v_myRecordOfVar := { 0, 1, -, 2 };
 // will change the value of v_myRecordOfVar to{ 0, 1, 2 <unchanged>, 2};
 // Note, that the 3rd element would be undefined if had no previous assigned value.

 // The assignment
 v_myRecordOfVar[6] := 6;

 // will change the value of v_myRecordOfVar to
 // { 0, 1, 2 , 2, <uninitialized>, <uninitialized>, 6 };
 // Note the 5th and 6th elements (with indexes 4 and 5) had no assigned value before this
 // last assignment and are therefore undefined.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)61

 v_myRecordOfVar[4] := 4; v_myRecordOfVar[5] := 5;
 // will complete v_myRecordOfVar to the fully defined value { 0, 1, 2 , 2, 4 , 5 , 6 };

 // Expansion of uninitialized record of value:
 v_recof[1][2] := 0;
 // after the assignment v_recof is { <undefined>, { <undefined>, <undefined>, 0 } }

 // Pls. Note the difference between the two index assignment notations in
 // the following example:
 var MyRecordOf v_ix := { 0,1,2 }
 v_ix := { [3] := 2*v_ix[2]+1 }
 // the value of v_ix is: { 0, 1, 2, 5 }

 // The same result can be achieved by using an index notation on the left hand side of
 // the assignment:
 var MyRecordOf v_ix := { 0,1,2 }
 v_ix[3] := 2*v_ix[2]+1
 // the value of v_ix is: { 0, 1, 2, 5 }

NOTE 3: The index notation makes it possible e.g. to copy record of values element by element in a for loop.
For example, the function below reverses the elements of a record of value:

 function reverse(in MyRecordOf p_src) return MyRecordOf
 {
 var MyRecordOf v_dest;
 var integer v_i, v_srcLength := lengthof (p_src);
 for(v_i := 0; v_i < v_srcLength; v_i := v_i + 1) {
 v_dest[v_srcLength - 1 - v_i] := p_src[v_i];
 }
 return v_dest;
 }

Embedded record of and set of types will result in a data structure similar to multidimensional arrays
(see clause 15.8.2).

EXAMPLE 4:

 // Given
 type record of integer MyBasicRecordOfType;
 type record of MyBasicRecordOfType My2DRecordOfType;

 // Then, the variable myRecordOfArray will have similar attributes to a two-dimensional array:
 var My2DRecordOfType v_myRecordOfArray;
 // and reference to a particular element would look like this
 // (value of the second element of the third 'MyBasicRecordOfType' construct)
 v_myRecordOfArray [2][1] := 3;

 //with the short-hand notation this could also have been written as
 var integer v_i[2] := { 2, 1 };
 v_myRecordOfArray [v_i] := 3;
 // is the same as assigning element v_myRecordOfArray[v_i[0]][v_i[1]]

6.2.3.1 Nested type definitions

TTCN-3 supports the definition of the aggregated type nested with the record of or set of definition. Both the
definition of new structured types (record, set, enumerated, set of and record of) and the specification of
subtype constraints are possible.

EXAMPLE:

 type record of enumerated { red, green, blue } ColorList;
 type record length (10) of record length (10) of integer Matrix;
 type set of record { charstring id, charstring val } GenericParameters;

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)62

6.2.3.2 Referencing elements of record of and set of types

It is also allowed to reference the inner type of record of and set of types by using the index notation but with a
dash. The notation TypeId[-], where TypeId resolves to the name of a record of or set of type, references
the inner type of TypeId. If the type definition restricts the element type of the record of or set of type, referencing
the inner type of that type yields a type which contains all values from the constrained type.

EXAMPLE:

 //Provided the definitions below
 type record of integer MyRecordOfInt;
 type record of record {
 integer f1,
 set { integer s1, boolean s2 } f2
 } MyRecordOfRecord;
 type record of record of integer MyRecordOfRecordOfInt;
 type record of record {
 integer f1,
 record of boolean f2
 } MyRecordOfRecord2;

 // Referencing the inner integer type
 type MyRecordOfInt[-] MyInteger;
 const MyRecordOfInt[-] c_MyInteger:= 5;

 // Referencing the nested record type
 type MyRecordOfRecord[-] MyInnerRecord;
 const MyRecordOfRecord[-] c_MyRecord := { f1 = 5; f2 := { s1 := 0; s2 := true }}

 // Referencing the set type nested in the inner record
 type MyRecordOfRecord[-].f2 MyNestedSet;
 const MyRecordOfRecord[-].f2 c_MySet := { s1 := 0; s2 := true }

 // Referencing the innermost boolean
 type MyRecordOfRecord[-].f2.s2 MyBoolean;
 const MyRecordOfRecord[-].f2.s2 c_MyBool := false;

 // Referencing the inner record of
 type MyRecordOfRecordOfInt[-] MyInnerRecordOfInt;
 const MyRecordOfRecordOfInt[-] c_MyInnerRecordOfInt := { 0, 1, 2, 3 };

 // Referencing the integer type within the inner record of
 type MyRecordOfRecordOfInt[-][-] MyInteger2;
 const MyRecordOfRecordOfInt[-][-] c_MyInteger2 := 1;

 // Referencing the boolean type within the nested record
 type MyRecordOfRecord2[-].f2[-] MyInnermostBoolean;
 const MyRecordOfRecord2[-].f2[-] c_MyInnermostBoolean := true ;

 type record length (5) of record of integer ConstrainedRecordOfInt (1 .. 10);
 type ConstrainedRecordOfInt[-] ConstrainedInt;
 // defines the type record of integer, where the integer values are restricted
 // to the range 1 .. 10 but the record of has no length restriction

6.2.4 Enumerated type and values

TTCN-3 supports enumerated types. Enumerated types are used to model types that take only a distinct named set of
values. Such distinct values are called enumerated values. Each enumerated value shall have an identifier and
referencing the values shall only use these identifiers. References to enumerated values can occur in two forms:
unqualified and qualified. The unqualified form uses only the identifier of the enumerated value. The qualified form
consists of the enumerated type reference, followed by a dot and the enumerated value identifier. The identifiers of
enumerated values shall be unique within the enumerated type (but do not have to be globally unique) and are
consequently visible in the context of the given type only. This means that for any instantiation or value reference of an
enumerated type, the given type shall be implicitly or explicitly identified.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)63

NOTE 1: For example, if the enumerated type is an element or field of a user defined structured type, the
enumerated type is implicitly referenced via the given element/field (i.e. by the identifier of the field or
the position of the value in a value list notation) at value assignment, instantiation, etc. Another example
is passing an enumerated value as actual parameter, in which case the type of the corresponding formal
parameter establishes the type context needed to make the enumeration value visible. The third example
is the comparison operators: if the type of one of the operands is uniquely identified, it is used as a type
context for the other operand (see example 2 below). The fourth example is the match operation, where
the type of the template parameter establishes the type context for the operation, if the type of the value
parameter is not identified (see example 2 in clause 15.8.2).

The identifiers of enumerated values, within the same module, shall only be reused within other structured type
definitions and shall not be used for identifiers of local or global visibility at the same or a lower level of the same
branch of the scope hierarchy (see scope hierarchy in clause 5.2).

EXAMPLE 1: Declaration of enumerated types and values:

 type enumerated MyFirstEnumType {
 Monday, Tuesday, Wednesday, Thursday, Friday
 };

 type integer Monday;
 // This definition does not clash with the previous one
 // as Monday in MyFirstEnumType is of local scope

 type enumerated MySecondEnumType {
 Saturday, Sunday, Monday
 };
 // This definition is legal as it reuses the Monday identifier within
 // a different enumerated type

 type record MyRecordType {
 integer Monday
 };
 // This definition is legal as it reuses the Monday identifier within
 // a distinct structured type as identifier of a given field of this type

 type record MyNewRecordType {
 MyFirstEnumType firstField,
 integer secondField
 };

 var MyNewRecordType v_newRecordValue := { Monday, 0 }
 // MyFirstEnumType is implicitly referenced via the firstField element of MyNewRecordType

EXAMPLE 2: Using enumerated types (see also example 5 of clause 8.2.3.1):

 // Valid instantiations of MyFirstEnumType and MySecondEnumType would be
 var MyFirstEnumType v_today := Tuesday;
 var MySecondEnumType v_tomorrow := Monday;

 // The following statements however cause an error as the two variables are instances
 // of different enumeration types
 v_today := v_tomorrow;
 v_today == v_tomorrow;

 // The following operation is correct
 if (v_today == Monday) {...}
 // the type of variable v_today identifies the type context of MyFirstEnumType for the
 // equality operator

 // But the following causes an error
 if (Tuesday == Wednesday) {...}
 // there is no TTCN-3 type(d) object to establish the type context for the equality operator
 // Please note that the values Tuesday and Wednesday are defined within the type
 // MyFirstEnumType only, but this is not sufficient to establish the type context
 // This kind of error can be fixed using the qualified form for one of the enumerated values.
 // The type referenced in the qualified form will provide the required type context as shown
 // in the following condition
 if (MyFirstEnumType.Tuesday == Wednesday) {...}

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)64

Each enumerated value may optionally have a user-assigned integer expression or non-empty list of integer literal
values or ranges of integer literal values, which is defined after the name of the enumerated value in parenthesis. Each
user assigned expression shall be statically bound, known in compilation time, and evaluate to an integer value. Each
user-assigned integer value shall be distinct within a single enumerated type, all ranges of all the values lists shall be
disjoint and shall not include any of the used single integer values. For each enumerated value without an assigned
integer value, the system successively associates an integer number in the textual order of the enumerated values,
starting at the left-hand side, beginning with zero, by step 1 and skipping any number occupied by any of the
enumerated values with a manually assigned value or value list. These values are only used by the system to allow the
use of relational operators. Enumerated names with an associated value list shall only be used as values together with a
specific integer value, which shall be one from the associated list, in parenthesis after the name. They can be used as a
template of the enumerated type by adding a list of integer template(s) and ranges in parenthesis after the name. For
enumerated values with no value assigned or with a specific integer value assigned, the user shall not directly use
associated integer values, but can access them and convert integer values into enumerated values by using the
predefined functions enum2int and int2enum (see clauses 16.1.2, C.1.30 and C.1.4).

NOTE 2: The integer value also may be used by the system to encode/decode enumerated values. This, however is
outside the scope of the present document (with the exception that TTCN-3 allows the association of
encoding attributes to TTCN-3 items).

EXAMPLE 3: Enumeration example with associated integers:

 type enumerated MyThirdEnumType {
 Blue(0),
 Yellow(1),
 Green(3),
 Other(2, 4..255)
 }

 var MyThirdEnumType v_color := Other(5);
 if (v_color == Other(4)) { // is false
 }
 if (v_color > Other(4)) { // is true
 }
 if (match(v_color, Other(?))) { // is true
 }
 if (match(v_color, Other(6..10))) { // is false
 }
 if (match(v_color, Other((6..10), 15, 20..25))) { // is false
 }
 v_color := Blue(0) //causes an error as enumerated values with a specific integer value assigned
 //shall not use the associated integer value

type enumerated MyEnum {
 e_num (1),
 e_expr (2+2), // same as e_expr (4)
 e_bin_conv (bit2int('0111'B)), // same as e_bin_conv(7)
 e_oct_conv (oct2int('34'O)), // same as e_oct_conv(52)
 e_hex_conv (hex2int('AC'H)) // same as e_hex_conv(172)
}

When a TTCN-3 module parameter, formal parameter, constant, variable, non-parameterized template or parameterized
template with all formal parameters having default values of an imported enumerated type is defined, the name of that
definition shall not be the same as any of the enumerated values of that type.

6.2.5 Unions

6.2.5.0 General

TTCN-3 supports the union type. The union type is a collection of alternatives, each one identified by an identifier.
Only one of the specified alternatives will ever be present in an actual union value. Union types are useful to model data
which can take one of a finite number of known types.

EXAMPLE 1:

 type union MyUnionType
 {
 integer number,
 charstring string
 };

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)65

 // A valid instantiation of MyUnionType would be
 var MyUnionType v_age, v_oneYearOlder;
 var integer v_ageInMonths;

 v_age.number := 34; // value notation by referencing the field. Note, that this
 // notation makes the given field to be the chosen one
 v_oneYearOlder := {number := v_age.number+1};

 v_ageInMonths := v_age.number * 12;

The assignment notation shall be used for union-s, and the notation shall assign a value to one field only. This field
becomes the chosen field. Neither the not used symbol "-" nor omit is allowed in union value notations.

The value list notation shall not be used for setting values of union types.

At most one of the union alternatives can be declared as the default alternative by using the @default modifier before
the type of the alternative. For unions with a default alternative, special type compatibility rules apply (see
clause 6.3.2.4) which allow using the union value as compatible with the type of the default alternative. Therefore, the
assignment notation does not have to be used to denote a value of the union type if the union's default alternative is to
be chosen. Also, the default alternative selection does not have to be used to access the default alternative, if it is
chosen.

The list of effective fields of a union contains all alternative identifiers of the union. In addition to that, if the union
contains a default alternative of a record or set type, the list of effective fields contains all field identifiers of that type
and if the union contains a default alternative of a union type, the list of effective fields contains the effective list of that
type.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) All identifiersin the list of effective fields shall be distinct.

b) The @default alternative shall not be of the anytype.

EXAMPLE 2:

 type union MyDefaultUnionType
 {
 @default integer number,
 charstring string
 };

 // A valid instantiation of MyDefaultUnionType would be
 var MyDefaultUnionType v_age, v_oneYearOlder;

 v_age := 34; // implicit usage of the default alternative: the integer type is
 // compatible with the default alternative; this is a shorthand notation
 // for v_age.number := 34 or v_age := { number := 34 }

 v_oneYearOlder := v_age+1; // implicit selection of the default alternative: the union
 // default alternative is compatible with integer, so that it
 // can be used as an integer expression; this is equivalent to:
 // v_oneYearOlder.number := v_age.number+1;

 type union MyDefaultUnionType2 {
 @default
 MyDefaultUnionType ageInYears,
 integer ageInDays
 }

 var MyDefaultUnionType2 v_age2 := 3; // nested default usage: 3 is compatible with
 // both alternatives, but only alternative ageInYears
 // has @default, so this is equivalent to
 // v_age2 := { ageInYears := 3 } which is equivalent

 // to v_age2 := { ageInYears := { number := 3 } }
 var integer v_result := v_age + v_age2; // v_result is 37 as the expression is equivalent
 // to v_age.number + v_age2.ageInYears
 v_age := {string := "I feel young"};
 v_result := v_age + v_age2; // test case error: v_age would be treated as
 // v_age.number, which is not the selected alternative

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)66

 type union MyUnionTypeWithDefaultErr
 {
 @default
 MyDefaultUnionType2 ageInYears,
 charstring string // produces an error as the identifier "string"
 }; // is in the list of effective fields of
 // the default alternative
 // from the type of the default alternative of
 // MyDefaultUnionType2

6.2.5.1 Referencing fields of a union type

Alternatives of a union type shall be referenced by the dot notation TypeIdOrExpression.AlternativeId,
where TypeIdOrExpression resolves to the name of a union type or an expression of a union type such as variable,
formal parameter, module parameter, constant, template, or function invocation. AlternativeId shall resolve to the
name of an alternative in the union type or in case of an anytype value or template AlternativeId shall resolve to
a known type name or a known type name qualified with a module name. Alternatives of union type definitions shall
not reference themselves.

EXAMPLE 1:

 v_myVar5 := v_myUnion1.myChoice1;
 // If a union type is nested in another type then the reference may look like this
 v_myVar6 := v_myRecord1.myElement1.myChoice2;
 // Note, that the union type, of which the field with the identifier 'myChoice2' is referenced,
 // is embedded in a record type

If an alternative in a union type or a subtype of a union type is referenced by the dot notation, the resulting type is the
set of values allowed for that alternative imposed by the constraints of the alternative declaration itself (i.e. any
constraints applied to the union type itself are ignored).

When an alternative of a union type is referenced on the right hand side of an assignment an error shall occur if the
referenced alternative is not the currently chosen alternative or if the referenced union field or value is omitted or
uninitialized.

EXAMPLE 2:

 type union MyUnion2
 {
 integer choice1,
 charstring choice2
 }
 type record MyRecordEmbedsUnion
 {
 MyUnion2 field1 optional
 }
 ...
 var MyUnion2 v_un2 := { choice1 := 1 }
 var charstring v_char := v_un2.choice2; // causes an error as v_un.choice2 is not chosen
 var MyRecordEmbedsUnion v_rec := { field1 := omit }
 var integer v_int := v_rec.field1.choice1; // causes an error as v_rec.field1 is omitted

When referencing an alternative of a union type on the left hand side of an assignment, the referenced alternative shall
become the chosen one. This rule shall apply recursively if the reference contains alternatives of nested unions,
choosing all the referenced alternatives.

When referencing an alternative of an uninitialized union value or field or omitted field (including omitting a field at a
higher level of the embedding hierarchy) on the left hand side of an assignment, the reference shall recursively be
expanded up to and including the depth of the referenced alternative as follows:

a) When expanding a value or value field of union type, the alternative referenced in the dot notation becomes
the chosen one.

b) Expansion of record, record of, set, set of, and array values and intermediate fields shall follow
the rules of item a) in clauses 6.2.1.1 and 6.2.7, and clause 6.2.2.1 correspondingly.

c) At the end of the expansion, the value at the right hand side of the assignment shall be assigned to the
referenced alternative.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)67

EXAMPLE 3:

 type union MyUnion3
 {
 integer choice1,
 union
 {
 bitstring subchoice1,
 charstring subchoice2
 } choice2
 }
 ...
 var MyUnion3 v_un3 := { choice1 := 1 };
 var MyRecordEmbedsUnion v_rec2 := { field1 := omit };
 v_un3.choice2.subchoice2 := "Hello!";
 // after the assignment v_un3 equals to { choice2 := { subchoice2 := "Hello!" } }
 v_rec2.field1.choice1 := 10; // after the assignment v_rec2 equals to
 // { field1 := { choice1 := 10 } }

6.2.5.2 Option and union

Optional fields are not allowed for the union type, which means that the optional keyword shall not be used with
union types.

6.2.5.3 Nested type definition for field types

TTCN-3 supports the definition of types for union alternatives nested within the union definition, similar to the
mechanism for record types described in clause 6.2.1.3.

6.2.6 The anytype

The special type anytype is defined as a shorthand for the union of all known data types and the address type in a
TTCN-3 module. The definition of the term data type and known types is given in clause 3.1. The address type shall be
included if it has been explicitly defined within that module.

The fieldnames of the anytype shall be uniquely identified by the corresponding type names.

NOTE 1: As a result of this requirement imported types with clashing names (either with an identifier of a
definition in the importing module or with an identifier imported from a third module) cannot be reached
via the anytype of the importing module.

EXAMPLE:

 // A valid usage of anytype would be
 var anytype v_myVarOne, v_myVarTwo;
 var integer v_myVarThree;

 v_myVarOne.integer := 34;
 v_myVarTwo := {integer := v_myVarOne.integer + 1};

 v_myVarThree := v_myVarOne.integer * 12;

The anytype is defined locally for each module and (like the other predefined types) cannot be directly imported by
another module. However, a user defined type of the type anytype can be imported by another module. The effect of
this is that all types of that module are imported.

NOTE 2: The user-defined type of anytype "contains" all types imported into the module where it is declared.
Importing such a user-defined type into a module may cause side effects and hence due caution should be
given to such cases.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)68

6.2.7 Arrays

Arrays can be used in TTCN-3 as a shorthand notation to specify record of types. They may be specified also at the
point of a variable, formal parameter or function return value declaration. Arrays may be declared as single or
multi-dimensional. Array dimensions shall be specified using constant expressions, which shall evaluate to a positive
integer values. Constants used in the constant expressions shall meet with the restrictions in clause 10.

EXAMPLE 1:

 type integer MyArrayType1[3]; // A type with 3 integer elements
 type record length (3) of integer MyRecordOfType1; // The corresponding record of

 var MyArrayType1 v_a1:= { 7, 8, 9 };
 var MyRecordOfType1 v_r1:= v_a1; // MyArrayType1 and MyRecordOfType1 are compatible

 var integer v_myArray1[3]:= v_r1; // Instantiates an integer array of 3 elements
 // with the index 0 to 2
 // being compatible to MyArrayType1 and MyRecordOfType1

 var integer v_myArray2[2][3]; // Instantiates a two-dimensional integer array of 2 × 3
 // elements with indexes from (0,0) to (1,2)

Array elements are accessed by means of the index notation ([]), which shall specify a valid index within the array's
range. Individual elements of multi-dimensional arrays can be accessed by repeated use of the index notation. An array
or record of integer restricted to a single size can be used in the index notation as a short-hand for the repeated index
notation. Accessing elements outside the array's range will cause a compile-time or test case error.

EXAMPLE 2:

 v_myArray1[1] := 5;
 v_myArray2[1][2] := 12;

 v_myArray1[4] := 12; // ERROR: index shall be between 0 and 2
 v_myArray2[3][2] := 15; // ERROR: first index shall be 0 or 1

Array dimensions may also be specified using ranges (with inclusive boundaries only). In such cases, the lower and
upper values of the range syntax define the lower and upper index values. The upper value shall not be lesser than the
corresponding lower value. Such an array is corresponding to a record of with a fixed length restriction computed as the
difference between upper and lower index bound plus 1 and indexing starting from the lower bound of the array
definition.

EXAMPLE 3:

 type integer MyArrayType2[2 .. 5]; // A type with 4 integer elements, indices starting with 2
 type record length (4) of integer MyRecordOfType2; // The corresponding record of

 var integer v_myArray3[1 .. 5]; // Instantiates an integer array of 5 elements
 // with the index 1 to 5
 v_myArray3[1] := 10; // Lowest index
 v_myArray3[5] := 50; // Highest index

 var integer v_myArray4[1 .. 5][2 .. 3]; // Instantiates a two-dimensional integer array of
 // 5 × 2 elements with indexes from (1,2) to (5,3)

NOTE: It is not possible to define an array type with a variable amount of elements. Neither is it possible to
define an unlimited array with a lower bound on the array index.

The values of array elements shall be compatible with the corresponding variable or type declaration. Values may be
assigned individually by a value list notation or index notation or more than one or all at once by a value list notation or
index assignment notation. For using the value list or assignment notation for arrays, the rules described in clause 6.2.3
are valid for arrays as well.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)69

Index notation can be used on both the right-hand side and left-hand side of assignments. The index of the first element
shall be zero or the lower bound if an index range has been given. The index shall not exceed the limitations given by
either the length or the upper bound of the index. If the value of the element indicated by the index at the right-hand of
an assignment is undefined or if the index notation is applied to an uninitialized or omitted array value on the right hand
side of an assignment, error shall be caused. Sending an array value with undefined elements shall cause an error. All
elements in an array value that are not set explicitly are undefined. When referencing an element of an uninitialized
array value or field or omitted field on the left hand side of an assignment, the rules for record of values specified in
clause 6.2.3 apply.

For assigning values to multi-dimensional arrays, each dimension that is assigned shall resolve to a set of values
enclosed in curly braces. When specifying values for multi-dimensional arrays, the leftmost dimension corresponds to
the outermost structure of the value, and the rightmost dimension to the innermost structure. The use of array slices of
multi-dimensional arrays, i.e. when the number of indexes of the array value is less than the number of dimensions in
the corresponding array definition, is allowed. Indexes of array slices shall correspond to the dimensions of the array
definition from left to right (i.e. the first index of the slice corresponds to the first dimension of the definition). Slice
indexes shall conform to the related array definition dimensions.

EXAMPLE 4:

 v_myArray1[0]:= 10;
 v_myArray1[1]:= 20;
 v_myArray1[3]:= 30;

 // or using an value list
 v_myArray1:= {10, 20, -, 30};

 v_myArray4:= {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}};
 // the array value is completely defined

 var integer v_myArray5[2][3][4] :=
 {
 {
 {1, 2, 3, 4}, // assigns a value to v_myArray5 slice [0][0]
 {5, 6, 7, 8}, // assigns a value to v_myArray5 slice [0][1]
 {9, 10, 11, 12} // assigns a value to v_myArray5 slice [0][2]
 }, // end assignments to v_myArray5 slice [0]
 {
 {13, 14, 15, 16}, {17, 18, 19, 20}, {21, 22, 23, 24}
 } // assigns a value to v_myArray5 slice [1]
 };

 v_myArray4[2] := {20, 20};
 // yields {{1, 2}, {3, 4}, {20, 20}, {7, 8}, {9, 10}};
 v_myArray5[1] := { {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}};
 // yields {{{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}},
 // {{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}}};

 v_myArray5[0][2] := {3, 3, 3, 3};
 // yields {{{1, 2, 3, 4}, {5, 6, 7, 8}, {3, 3, 3, 3}},
 // {{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}}};

 var integer v_myArrayInvalid[2][2];
 v_myArrayInvalid := { 1, 2, 3, 4 }
 // causes an error as the dimension of the value notation
 // does not correspond to the dimensions of the definition
 v_myArrayInvalid[2] := { 1, 2 }
 // causes an error as the index of the slice should be 0 or 1

6.2.8 The default type

TTCN-3 allows the activation of altsteps (see clause 16.1.5) as defaults to capture recurring behaviour. Default
references are unique references to activated defaults. Such a unique default reference is generated by a test component
when an altstep is activated as a default, i.e. a default reference is the result of an activate operation (see
clause 20.5.2).

Default references have the special and predefined type default. Variables of type default can be used to handle
activated defaults in test components. The special value null represents an unspecific default reference, e.g. can be
used for the initialization of variables of default type.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)70

Default references are used in deactivate operations (see clause 20.5.3) in order to identify the default to be
deactivated.

Default references have meaning only within the test component instances they are activated, i.e. a default reference
assigned to a default variable in test component instance "a1" of type "A" has no meaning in test component instance
"a2" of type "A".

The actual data representation of the default type shall be resolved externally by the test system. This allows abstract
test cases to be specified independently of any real TTCN-3 runtime environment, in other words TTCN-3 does not
restrict the implementation of a test system with respect to the handling and identification of defaults.

Values of the default type are object references and follow specific rules for this kind of values.

6.2.9 Communication port types

Ports facilitate communication between test components and between test components and the test system interface.

TTCN-3 supports message-based and procedure-based ports. Each port shall be defined as being message-based or
procedure-based. Message-based ports shall be identified by the keyword message and procedure-based ports shall be
identified by the keyword procedure within the associated port type definition.

Ports are bidirectional. The directions are specified by the keywords in (for the in direction), out (for the out
direction) and inout (for both directions). Operations allowed on a procedure present in the incoming port list are
getcall, reply and raise. Operations allowed on a procedure present in the outcoming port list are call,
getreply and catch. Directions shall be seen from the point of view of the test component owning the port with the
exception of the test system interface, where directions shall be seen from the point of view of the test component port
mapped to the test system interface port. The in list of the test system interface port contains message or procedure for
which the mapped test component port allows the following operations: receive, trigger, getcall, reply or
raise. The out list of the test system interface port contains message or procedure for which the mapped test
component port allow the folowing operations: send, call, getreplay or catch.

Each port type definition shall have one or more lists indicating the allowed collection of (message) types or procedure
signatures together with the allowed communication direction.

For configuration purposes the port type may have one map param and one unmap param declaration indicating the
allowed additional parameters for the respective operation. These formal parameters shall be value parameters.

Whenever a signature (see also clause 14) is defined in the out direction of a procedure-based port, the types of all its
inout and out parameters, its return type and its exception types are automatically part of the in direction of this
port. Whenever a signature is defined in the in direction for a procedure-based port, the types of all its inout and out
parameters, its return type and its exception types are automatically part of the out direction of this port.

Ports used for the communication with the SUT may need to address specific entities within the SUT. In addition,
several address schemes may be supported by one SUT at different ports. To support such addressing schemes, TTCN-3
allows to bind an address type to a port. Values of this type may be used for addressing purposes in communication
operations (see clause 22.1) and be stored in variables. The handling of address types bound to different ports by means
of the dot notation is explained in clause 6.2.12.

Syntactical Structure

Message-based port:

type port PortTypeIdentifier message "{"
 { (address Type ";") |
 (map param "(" { FormalValuePar [","] }+ ")") |
 (unmap param "(" { FormalValuePar [","] }+ ")") |
 ((in | out | inout) { MessageType [","] }+ ";") }
"}"

Procedure-based port:

type port PortTypeIdentifier procedure "{"
 { (address Type ";") |
 (map param "(" { FormalValuePar [","] }+ ")") |
 (unmap param "(" { FormalValuePar [","] }+ ")") |

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)71

 ((in | out | inout) { Signature [","] }+ ";") }
"}"

TTCN-3 allows to define constants, variables and parameters of a port type. These constants, variables or parameters
can contain a reference to an existing component port or a special value null. The special value null represents an
unspecified port reference, i.e. it can be used to explicitly allow the referencing of no port.

Port type values are object references and follow specific rules for this kind of values.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) At most one address type shall be bound to a port type.

b) At most one map parameter list shall be defined for a port type.

c) At most one unmap parameter list shall be defined for a port type.

d) Formal parameters of map param and unmap param declarations shall be value parameters of a data type.

e) MessageType shall be a reference to a data type.

Examples

EXAMPLE 1: Message-based port

 // Message-based port which allows types MsgType1 and MsgType2 to be received at, MsgType3 to be
 // sent via and any integer value to be send and received over the port
 type port MyMessagePortTypeOne message
 {
 in MsgType1, MsgType2;
 out MsgType3;
 inout integer
 }

EXAMPLE 2: Procedure-based port

 // Procedure-based port which allows the remote call of the procedures Proc1, Proc2 and Proc3.
 // Note that Proc1, Proc2 and Proc3 are defined as signatures
 type port MyProcedurePortType procedure
 {
 out Proc1, Proc2, Proc3
 }

EXAMPLE 3: Message-based port with address type definition

 type port MyMessagePortTypeTwo message
 {
 address integer; // if addressing is used on ports of type MyMessagePortTypeTwo
 // the addresses have to be of type integer
 inout MsgType1, MsgType2;
 }

NOTE: The term message is used to mean both messages as defined by templates and actual values resulting
from expressions. Thus, the list restricting what may be used on a message-based port is simply a list of
type names.

EXAMPLE 4: Usage of param in port declaration

 // Message based port which allows MsgType4 to be send and received over the port
 // and MsgType5 and MsgType6 as configuration parameter type
 type port MyMessagePortType message
 {
 inout MsgType4;
 map param (in MsgType5 p_p1, out MsgType6 p_p2);
 }

 // Procedure based port which allows the remote call of the procedure Proc1
 // and MsgType5 as configuration parameter type
 type port MyProcedurePortType procedure
 {
 out Proc1;

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)72

 unmap param (MsgType5 p_p1);
 }

6.2.10 Component types

6.2.10.1 Component type definition

The component type defines which ports are associated with a component (see figure 3). The port names in a
component type definition are local to that component type, i.e. another component type may have ports with the same
names. Port names in the same component type definition shall all have unique names. If not stated otherwise, ports
have the same semantics as constants of a port type.

MyMTC

// of MyMTCType

PCO1

PCO3

PCO1

PCO2
MyPTC

// of MyPTCType

PCO4

Figure 3: Typical components

It is also possible to declare constants, variables, templates and timers local to a particular component type. These
declarations are visible to all testcases, functions and altsteps that run on an instance of the given component type. This
shall be explicitly stated using the runs on keyword (see clause 15.12) in the testcase, function or altstep header.
Component type definitions are associated with the component instance and follow the scope rules defined in
clause 5.2. Each new instance of a component type will thus have its own set of constants, variables, templates and
timers as specified in the component type definition (including any initial values, if stated). Constants used in the
constant expressions of type declarations for variables, constants or ports shall meet with the restrictions in clause 10,
however constants used in the constant expressions of initial values for variables, constants, templates or timers do not
have to obey these restrictions.

Syntactical Structure

type component ComponentTypeIdentifier "{"
 { (PortInstance
 | VarInstance
 | TimerInstance
 | ConstDef
 | TemplateDef) }
"}"

Semantic Description

Component type definitions specify the creation, declaration and initialization of ports and component constants,
variables, templates and timers during the creation of an instance of a component type. These instances can be used as
the main test component, as the test system interface or as a parallel test component. Every instance of a component
type has its own new instances of the ports, constants, variables, templates and timers defined in the component type
definition.

Component instances are object references and follow specific rules for this kind of values.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

EXAMPLE 1: Component type with port instances only

 type component MyPTCType
 {
 port MyMessagePortType pCO1, pCO4;
 port MyProcedurePortType pCO2
 }

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)73

EXAMPLE 2: Component type with variable, timer and port instance

 type component MyMTCType
 {
 var integer vc_myLocalInteger;
 timer tc_myLocalTimer;
 port MyMessagePortType pCO1
 }

EXAMPLE 3: Component type with port instance arrays

 type component MyCompType
 {
 port MyMessagePortType pCOm[3];
 port MyProcedurePortType pCOp[3][3]
 // Defines a component type which has an array of 3 message ports and a two-dimensional
 // array of 9 procedure ports.
 }

6.2.10.2 Reuse of component types

It is possible to define component types as the extension of other component types, using the extends keyword.

Syntactical Structure

type component ComponentTypeIdentifier extends ComponentTypeIdentifier
 { "," ComponentTypeIdentifier} "{"
 { (PortInstance
 | VarInstance
 | TimerInstance
 | ConstDef
 | TemplateDef) }
"}"

Semantic Description

In such a definition, the new type definition is referred to as the extended type, and the type definition following the
extends keyword is referred to as the parent type. The effect of this definition is that the extended type will implicitly
also contain all definitions from the parent type. It is called the effective type definition.

It is allowed to have one component type extending several parent types in one definition, which have to be specified as
a comma-separated list of types in the definition. Any of the parent types may also be defined by means of extension.
The effective component type definition of the extended type is obtained as the collection of all constant, variable,
template, timer and port definitions contributed by the parent types (determined recursively if a parent type is also
defined by means of an extension) and the definitions declared in the extended type directly. The effective component
type definition shall be name clash free.

NOTE 1: It is not considered to be a different declaration and hence causes no error if a specific definition is
contributed to the extended type by different parent types (via different extension paths).

The semantics of component types with extensions are defined by simply replacing each component type definition by
its effective component type definition as a pre-processing step prior to using it.

NOTE 2: For component type compatibility, this means that a component reference c of type CT1, which extends
CT2, is compatible with CT2, and test cases, functions and altsteps specifying CT2 in their runs on
clauses can be executed on c (see clause 6.3.2.7).

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) When defining component types by extension, there shall be no name clash between the definitions being
taken from the parent type and the definitions being added in the extended type, i.e. there shall not be a port,
variable, constant or timer identifier that is declared both in the parent type (directly or by means of extension)
and the extended type. It is not considered to be a name clash if a specific definition is contributed to the
extended type via different extension paths.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)74

b) When defining component types by extending more than one parent type, there shall be no name clash
between the definitions of the different parent types, i.e. there shall not be a port, variable, constant or timer
identifier that is declared in any two of the parent types (directly or by means of extension). It is not
considered to be a name clash if a specific definition is contributed to the extended type via different extension
paths.

c) It is allowed to extend component types that are defined by means of extension, as long as no cyclic chain of
definition is created.

Examples

EXAMPLE 1: A component type extension and its effective type definition

 type component MyMTCType
 {
 var integer vc_myLocalInteger;
 timer tc_myLocalTimer;
 port MyMessagePortType pCO1
 }

 type component MyExtendedMTCType extends MyMTCType
 {
 var float vc_myLocalFloat;
 timer tc_myOtherLocalTimer;
 port MyMessagePortType pCO2;
 }

 // effectively, the above definition is equivalent to this one:
 type component MyExtendedMTCType
 {
 /* the definitions from MyMTCType */
 var integer vc_myLocalInteger;
 timer tc_myLocalTimer;
 port MyMessagePortType pCO1

 /* the additional definitions */
 var float vc_myLocalFloat;
 timer tc_myOtherLocalTimer;
 port MyMessagePortType pCO2;
 }

EXAMPLE 2: A component type extension chain and forbidden cyclic extensions

 type component MTCTypeA extends MTCTypeB { /* … */ };
 type component MTCTypeB extends MTCTypeC { /* … */ };
 type component MTCTypeC extends MTCTypeA { /* … */ }; // ERROR - cyclic extension
 type component MTCTypeD extends MTCTypeD { /* … */ }; // ERROR - cyclic extension

EXAMPLE 3: Component type extensions with name clashes

 type component MyExtendedMTCType extends MyMTCType
 {
 var integer vc_myLocalInteger; // ERROR - already defined in MyMTCType (see above)
 var float tc_myLocalTimer; // ERROR - timer with that name exists in MyMTCType
 port MyOtherMessagePortType pCO1; // ERROR - port with that name exists in MyMTCType
 }

 type component MyBaseComponent { timer tc_myLocalTimer };
 type component MyInterimComponent extends MyBaseComponent { timer tc_myOtherTimer };
 type component MyExtendedComponent extends MyInterimComponent
 {
 timer tc_myLocalTimer; // ERROR - already defined in MyInterimComponent via extension
 }

EXAMPLE 4: Component type extension from several parent types

 type component MyCompB { timer tc_t };
 type component MyCompC { var integer tc_t };
 type component MyCompD extends MyCompB, MyCompC {}
 // ERROR - name clash between MyCompB and MyCompC

 // MyCompB is defined above
 type component MyCompE extends MyCompB {
 var integer vc_myVar1 := 10;
 }

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)75

 type component MyCompF extends MyCompB {
 var float vc_myVar2 := 1.0;
 }

 type component MyCompG extends MyCompB, MyCompE, MyCompF {
 // No name clash.
 // All three parent types of MyCompG have a timer tc_t, either directly or via extension of
 // MyCompB; as all these stem (directly or via extension) from timer tc_t declared in
 // MyCompB, which make this form of collision legal.
 /* additional definitions here */
 }

6.2.11 Component references

Component references are unique references to the test components created during the execution of a test case.

Syntactical Structure

system | mtc | self | ObjectReference

Semantic Description

A unique component reference is generated by the test system at the time when a component is created. It is the result of
a create operation (see clause 21.2.1). In addition, component references are returned by the predefined operations
system (returns the component reference of the test system interface, which is automatically created when testcase
execution is started), mtc (returns the component reference of the MTC, which is automatically created when testcase
execution started) and self (returns the component reference of the component in which self is called).

Component references are used in the configuration operations such as connect, map and start (see clause 21) to
set-up test configurations and in the from, to and sender parts of communication operations of ports connected to
test components other than the test system interface for addressing purposes (see clause 22 and figure 6).

In addition, the special value null is available to indicate an undefined component reference, e.g. for the initialization
of variables to handle component references.

The actual data representation of component references shall be resolved externally by the test system. This allows
abstract test cases to be specified independently of any real TTCN-3 runtime environment, in other words TTCN-3 does
not restrict the implementation of a test system with respect to the handling and identification of test components.

A component reference includes component type information. This means, for example, that a variable for handling
component references shall use the corresponding component type name in its declaration.

The configuration operations (see clause 21) do not work directly on arrays of components. Instead a specific element
of the array shall be provided as the parameter to these operations. For components, the effect of an array is achieved by
using an array of component references and assigning the relevant array element to the result of the create operation.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The only operations allowed on component references are assignment, equality and non-equality.

b) The ObjectReference shall be of a component type and shall not resolve to a template.

Examples

EXAMPLE 1: Component references with component type variables

 // A component type definition
 type component MyCompType {
 port PortTypeOne pCO1;
 port PortTypeTwo pCO2
 }

 // Declaring one variable for the handling of references to components of type MyCompType
 // and creating a component of this type
 var MyCompType v_myCompInst := MyCompType.create;

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)76

EXAMPLE 2: Usage of component references in configuration operations

 // referring to the component created above
 connect(self:myPCO1, v_myCompInst:pCO1);
 map(myCompInst:pCO2, system:extPCO1);
 myCompInst.start(f_myBehavior(self)); // self is passed as a parameter to f_myBehavior

EXAMPLE 3: Usage of component references in from- and to- clauses

 MyPCO1.receive from v_myCompInst;
 :
 MyPCO2.receive(integer:?) -> sender v_myCompInst;
 :
 MyPCO1.receive(mw_myTemplate) from v_myCompInst;
 :
 MyPCO2.send(integer:5) to v_myCompInst;

EXAMPLE 4: Usage of component references in one-to-many connections

 // The following example explains the case of a one-to-many connection at a Port PCO1
 // where values of type M1 can be received from several components of the different types
 // MyCompType1, MyCompType2 and MyCompType3 and where the sender has to be retrieved.
 // In this case the following scheme may be used:
 :
 var M1 v_myMessage, v_myResult;
 var MyCompType1 v_myInst1 := null;
 var MyCompType2 v_myInst2 := null;
 var MyCompType3 v_myInst3 := null;
 :
 alt {
 [] pCO1.receive(M1:?) from MyCompType1:? -> value v_myMessage sender v_myInst1 {}
 [] pCO1.receive(M1:?) from MyCompType1:? -> value v_myMessage sender v_myInst2 {}
 [] pCO1.receive(M1:?) from MyCompType1:? -> value v_myMessage sender v_myInst3 {}
 }
 :
 v_myResult := f_myMessageHandling(v_myMessage); // some result is retrieved from a function
 :
 if (v_myInst1 != null) {pCO1.send(v_myResult) to v_myInst1};
 if (v_myInst2 != null) {pCO1.send(v_myResult) to v_myInst2};
 if (v_myInst3 != null) {pCO1.send(v_myResult) to v_myInst3};
 :

EXAMPLE 5: Usage of self

 var MyComponentType v_myAddress;
 v_myAddress := self; // Store the current component reference

EXAMPLE 6: Usage of component arrays

 // This example shows how to model the effect of creating, connecting and running arrays of
 // components using a loop and by storing the created component reference in an array of
 // component references.

 testcase TC_MyTestCase() runs on MyMtcType system MyTestSystemInterface
 {
 :
 var integer v_i;
 var MyPTCType1 v_myPtc[11];
 :
 for (v_i:= 0; v_i<=10; v_i:= v_i+1)
 {
 v_myPtc[v_i] := MyPTCType1.create;
 connect(self:ptcCoordination, v_myPtc[v_i]:mtcCoordination);
 v_myPtc[v_i].start(MyPtcBehaviour());
 }
 :
 }

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)77

6.2.12 Addressing entities inside the SUT

An SUT may consist of several entities which can be addressed individually. The global address type may be used if
only one type is needed. If several types at different ports are needed for addressing SUT entities, the type used for
addressing via a port instance shall be declared in the corresponding port type definition.

Syntactical Structure

TemplateInstance

Semantic Description

The actual data representation of the global address type is resolved either by an explicit global address type
definition within the test suite, address type definitions within port definitions, or externally by the test system (i.e. the
address type is left as an open type within the TTCN-3 specification). This allows abstract test cases to be specified
independently of any real address mechanism specific to the SUT.

If an address type is bound to a port type definition, addressing of SUT instances (i.e. to- and from-directives in
communication operations) via instances of that port type shall be restricted to values of the bound address type.

If several address types exist within a test suite, ambiguities shall be resolved by means of the dot notation. For
example, a type reference within a variable definition used to store an SUT address may be prefixed by a port type
identifier or a module identifier. If both a global address type definition and port definitions with an address type
definition exist in a module, the global address type shall only affect ports without an explicit address type definition.
The consistent use of explicit address type definitions within port definitions is recommended over the use of global
address type definitions.

Explicit SUT addresses for a globally defined address type shall only be generated inside a TTCN-3 module if the type
is defined inside the module itself. If the type is not defined inside the module, explicit SUT addresses for a global
address type shall only be passed in as parameters or be received in message fields or as parameters of remote
procedure calls.

In addition, the special value null is available for the address type to indicate an undefined address, e.g. for the
initialization of variables of the address type.

If a port type definition includes the declaration of a type that shall be used for addressing SUT entities, only values of
that type shall be used in to, from and sender parts of receive and send operations of port instances of that type
mapped to the test system interface.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) TemplateInstance shall be of type address or of the type of the address declaration in a port type definition.
If TemplateInstance is of type address, it may be an address type value, an address type variable, etc.

b) For addressing purposes, the address type shall only be used in the to, from and sender parts of receive
and send operations of ports mapped to the test system interface.

c) The address type shall not be used in the to, from and sender parts of receive and send operations of
connected ports, i.e. ports used for the communication among test components.

Examples

EXAMPLE 1: Global address type

 // Associates the type integer to the open type address
 type integer address;
 :
 // new address variable initialized with null
 var address v_mySUTentity := null;
 :
 // receiving an address value and assigning it to variable MySUTentity
 pCO.receive(address:?) -> value v_mySUTentity;
 :
 // usage of the received address for sending template m_myResult
 pCO.send(m_myResult) to v_mySUTentity;

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)78

 :
 // usage of the received address for receiving a confirmation template
 pCO.receive(mw_myConfirmation) from v_mySUTentity;

EXAMPLE 2: Port type-specific address type

 type record MyAddressType { // user-defined type
 integer field1;
 boolean field2;
 }
 type port MyPortType message {
 address MyAddressType; // address declaration
 inout integer;
 }
 type component MyComponentType
 {
 port MyPortType pCO;
 }
 function f_myFunction () runs on MyComponentType {
 var MyPortType.address v_sUT_Address := {5, true}; // address value for addressing
 // via ports of MyPortType
 :
 pCO.send(integer: 5) to v_sUT_Address; // use of address value in to
 :
 pCO.receive(integer: ?) from v_sUT_Address; // use of address value in from
 :
 }

EXAMPLE 3: Elaborated address example

 type AddressType1 address; // address type definition on module level

 type port MyPortType1 message {
 inout MsgType1;
 }

 // address types bound to port types
 type port MyPortType2 message {
 address AddressType2; // values of type AddressType2 can be
 // used to address SUT entities.
 inout MsgType2;
 }
 type port MyMessagePort3 message {
 address AddressType3; // values of type AddressType3 can be
 // used to address SUT entities.
 inout MsgType3;
 }
 // component type definition
 type component MyComponentType
 {
 port MyPortType1 pCO1;
 port MyPortType2 pCO2;
 port MyPortType3 pCO3
 }
 // The following behaviour is considered to be executed on an instance of MyComponentType.
 // Furthermore, it is considered that the ports PCO1, PCO2 and PCO3 are mapped ports, i.e.
 // used for the communication with the SUT.
 :
 // new address variable initialized with null
 var MyPortType1.address v_mySUTentity1 := null; // type of v_mySUTentity1 is AddressType1
 var MyPortType2.address v_mySUTentity2 := null; // type of v_mySUTentity2 is AddressType2
 var MyPortType3.address v_mySUTentity3 := null; // type of v_mySUTentity3 is AddressType3
 :
 // receiving address values and assigning them to variables
 pCO1.receive(MsgType1:?) from address:? -> sender v_mySUTentity1;
 // Address type of module scope,
 // no prefix needed
 pCO2.receive(MsgType2:?) from MyPortType2.address:? -> sender v_mySUTentity2;
 // Resolution of address type
 // by means of a prefix
 pCO3.receive(MsgType3:?) from MyPortType3.address:? -> sender v_mySUTentity3;
 :
 // usage of the received address values for addressing purposes
 pCO1.send(v_myResult) to v_mySUTentity1;
 :
 pCO2.receive(mw_myConfirmation) from v_mySUTentity2;
 :
 pCO3.send(m_myRequest) to v_mySUTentity3;

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)79

 :

6.2.13 Subtyping of structured types

6.2.13.0 General

TTCN-3 allows subtyping of structured types as given in table 3.

6.2.13.1 Length subtyping of record ofs and set ofs

TTCN-3 permits constraining the number of elements in instances of record of and set of types.

The length keyword followed by a value or a range (with inclusive boundaries only) within brackets and used
between the record or set and the of keywords, restricts the allowed number of elements for the given record
of or set of type. The value or the bounds within the brackets shall be non-negative integer values, except when the
infinity keyword is used at the place of the upper bound, in which case the maximum number of the elements is not
constrained. In case of the range syntax the upper bound shall not be lesser than the lower bound value.

Record of and set of type definitions may be used to define new record of or set of subtypes. In this case the
rules of the previous paragraph apply, except that the length keyword and the value or range defining the allowed
number of iterations (within brackets) shall be placed following the identifier of the new type.

Constants used in the constant expressions of length subtyping shall meet with the restrictions in clause 10.

EXAMPLE 1: Length restrictions of record of and set of types:

 type record length(10) of integer MyRecordOfType10;
 // is a record of exactly 10 integers

 type record length(0..10) of integer MyRecordOfType0_10;
 // is a record of a maximum of 10 integers

 type record length(10..infinity) of integer MyRecordOfType10up;
 // record of at least 10 integers

 type record length(0..infinity) of integer MyRecordOfType0up;
 // an unrestricted record of integer type

EXAMPLE 2: Length subtyping of referenced record of types:

 type record of charstring StringArray;
 // is an unlimited record of, each element shall be a charstring

 type StringArray StringArray34 length(4 .. 5);
 // is a record of 4 or 5 elements, each element is a charstring
 // it is equivalent to
 // type record length(4 .. 5) of charstring StringArray34a;

 type StringArray34 StringArray34again length(4 .. 5);
 // the same as StringArray34

 type StringArray34 StringArray6 length(6);
 // causes an error as record ofs with 6 elements are not legal values of StringArray34

EXAMPLE 3: Length subtyping of referenced set of types:

 type record MyCapsule {
 set of integer mySetOfInt
 }

 type MyCapsule.mySetOfInt MySetOfIntSub length(5..10);
 // unordered list of 5 to 10 integers

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)80

6.2.13.2 List subtyping of structured types and anytype

List subtyping is possible when defining a new type based on an existing parent type, but not directly at the declaration
of the first parent type (see table 3).

Subtypes defined by a list subtyping restrict the allowed values of the subtype to the values matched by at least one of
the constraints in the list. In case of list subtyping of record, set, record of, set of, union and anytype
types, and arrays, the list may contain both subtypes and possibly partial templates of the parent types. Subtype
references shall be resolved in a recursive way: the collection of templates denoted by the subtype(s) referenced in the
list become members of the new subtype definition with an expanded list containing only possibly partial templates.
When constraining record of, set of, union and anytype types, and arrays, all templates of the expanded list
(i.e. after resolving the subtype references) shall be valid (i.e. complete) templates of the first parent type. When
constraining record and set types, templates of the expanded list defined using the value list notation shall be valid
(i.e. complete) templates, while templates of the expanded list defined using the field assignment notation may be
partial (i.e. incomplete). In the latter case, the fields that are not explicitly present shall be considered as containing
AnyValue for mandatory fields and AnyValueOrNone for optional fields.

NOTE: Users should assign new values to single fields of values/templates based on types using list subtyping
cautiously: it may happen that the new field value would be valid with other combination(s) of the rest of
the fields but causes an erroneous record/set value, when combining with the actual values of the other
fields. See example 1 below.

In case of enumerated types, the template list subtyping shall contain only values of the parent type.

EXAMPLE 1: List subtyping of record types:

 type record MyRecord {
 integer f1 optional,
 charstring f2,
 charstring f3
 }

 type MyRecord MyRecordSub1 (
 { f1 := omit, f2 := "user", f3 := "password" },
 { f1 := 1, f2 := "User", f3 := "Password" }
) // a valid subtype of MyRecord containing 2 values

 type MyRecord MyRecordSub2 (
 MyRecordSub1,
 { f1 := 2, f2 := "uname", f3 := "pswd" },
 { f1 := 3, f2 := "Uname", f3 := "Pswd" }
) // a valid subtype of MyRecord, containing 4 values; notice that values of
 // MyRecordSub1 are identified by referencing MyRecordSub1

 type MyRecordSub1 MyRecordSub3 (
 { f1 := 1, f2 := "user", f3 := "password" },
 { f1 := 1, f2 := "User", f3 := "Password" }
) // invalid type as { f1 := 1, f2 := "user", f3 := "password" } is not a legal value of
 // MyRecordSub1 (notice field f1)

 type MyRecord MyRecordSub4 (
 { f2 := "user", f3 := "password" },
 { f2 := "User", f3 := "Password" }
) // any valid value of MyRecord, where the combination of f2 and f3 is
 // f2 := "user" AND f3 := "password" or f2 := "User" AND f3 := "Password"
 // i.e. field f1 is considered as if it was present and contained AnyValueOrNone

 type MyRecord MyRecordSub5 (
 { f2 := "user", f3 := pattern "password|Password" },
 { f1 := (1 .. 10), f2 := "User" }
) // a valid subtype of MyRecord containing all values which match one of the given
 // templates
 // { f1 := *, f2 := "user", f3 := pattern "password|Password" } or
 // { f1 := (1 .. 10), f2 := "User", f3 := ? }

 type record R { integer k, integer i, integer j }
 type R R2 ({ k:= 1, i := 2}, { k:= 2, i := 3})

 function f_inc(inout integer p_p) {
 p_p := p_p + 1;
 }

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)81

 function f() {
 var R2 v_x := { 1, 2, 5 }
 v_x.k := 2; // error, as the value {2,2,5} is not allowed
 inc(v_x.i); // error, as the value {1,3,5} is not allowed
 // (previous erroneous assignment is ignored here)
 inc(v_x.j); // allowed
 }

EXAMPLE 2: List subtyping of record of types:

 type record of charstring MyRecordOf;

 type MyRecordOf MyRecordOfSub1(
 { "aa" },
 { "bbb", "cc" },
 { "ddd", "ee", "ff" }
); // valid subtype of MyRecordOf

 type MyRecordOfSub1 MyRecordOfSub2(
 { "aa" },
 { "bbb", "cc" }
); // valid subtype of MyRecordOfSub1

 type MyRecordOfSub1 MyRecordOfSub3(
 MyRecordOfSub2,
 { "ddd", "ee", "ff" }
); // valid, but equivalent to MyRecordOfSub1

 type MyRecordOfSub1 MyRecordOfSub4(
 MyRecordOfSub2,
 { "ddd", "ee", "fff" }
); // empty type as { "ddd", "ee", "fff" } is not a value of MyRecordOfSub1
 // (notice the extra character f in the third element)

EXAMPLE 3: List subtyping of union types:

 type union MyUnion {
 integer c1,
 charstring c2,
 charstring c3
 };

 type MyUnion MyUnionSub1 (
 { c1 := 0 },
 { c1 := 1 }
); // a valid subtype of MyUnion containing two values

 type MyUnion MyUnionSub2 (
 MyUnionSub1,
 { c2 := "mine" },
 { c3 := "yours" }
); // a valid subtype of MyUnion containing four values; notice that values of
 // MyUnionSub1 are identified by referencing MyUnionSub1

 type MyUnionSub1 MyUnionSub3 (
 { c1 := 0 },
 { c1 := 2 }
); // causes an error as { c1 := 2 } is not a value of MyUnionSub1

EXAMPLE 4: List subtyping of enumerated types:

 type enumerated MyEnum { e_first, e_second, e_third, e_fourth, e_fifth };

 type MyEnum EnumSub1 (e_first, e_second, e_third);
 // a valid subtype of MyEnum

 type EnumSub1 EnumSub2 (e_first, e_second);
 // a valid subtype of EnumSub1

 type EnumSub1 EnumSub3 (e_first, e_second, e_fourth);
 // causes an error as e_fourth is not a value of EnumSub1

 type MyEnum EnumSub4 (EnumSub1, e_fourth);
 // causes an error as type references are not allowed in the template list
 // of enumerated types

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)82

EXAMPLE 5: List subtyping of anytype:

 type anytype MyAnySub1 (
 { integer := 5 },
 { boolean := false },
 { bitstring := '0011'B },
 { charstring := "mine" },
 { MyEnum := first }
); // a valid subtype of anytype, consisting of 5 values

 type MyAnySub1 MyAnySub2 (
 { integer := 5 },
 { boolean := false },
 { bitstring := '0011'B }
); // a valid subtype of MyAnySub1, consisting of 3 values

 type anytype MyAnySub3 (
 MyAnySub2,
 { octetstring := 'FF'O }
); // a valid subtype of anytype, consisting of 4 values, 3 of which are defined
 // by referring to MyAnySub2

 type MyAnySub1 MyAnySub4 (
 { integer := 5 },
 { boolean := false },
 { MyEnum := second }
); // causes an error as { MyEnum := second } is not a value of MyAnySub1

 type MyAnySub1 MyAnySub5 (
 MyAnySub3,
 { MyEnum := first }
); // causes an error as { octetstring := 'FF'O } (defined via referencing MyAnySub3) is
 // not a value of MyAnySub1

EXAMPLE 6: List subtyping of arrays:

 type charstring MyArray[1 .. 2];

 type MyArray MyArraySub1 (
 { "aa", "cc" },
 { "bb", "cc" }
); // valid subtype of MyArray

 type MyArraySub1 MyArraySub2 (
 { "aa", "cc" }
); // valid subtype of MyArraySub1

 type MyArrayList1 MyArraySub3 (
 MyArraySub2,
 { "bb", "cc" }
); // valid, also equivalent to MyArraySub1

 type MyArraySub1 MyArraySub4 (
 MyArraySub2,
 { "dd", "cc" }
); // empty type as { "dd", "cc" } is not a value of MyArraySub1
 // (notice the dd in the first element)

6.2.13.3 Subtyping of the iterated type of record ofs and set ofs

A type restriction following the identifier of a newly defined record of or set of type (i.e. when the keywords
record and of or set and of are used in the definition) shall constrain the innermost type. The newly defined
iterated type shall be a subset of the innermost type. If the innermost type is a basic type, the subtyping rules in
clause 6.1.2 shall apply. If the innermost type is referencing a structured type or anytype, the rules in clauses 6.2.13.1
and 6.2.13.2 shall apply.

EXAMPLE 1: Subtyping of basic innermost types of record ofs and set ofs

 type record of charstring String23Array length(2 .. 3);
 // is an unlimited record of, each element shall be a charstring of 2 or 3 characters

 type record length(0..10) of charstring String12Array10 length(12);
 // is a record of a maximum of 10 strings each with exactly 12 characters

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)83

 type record of record of charstring String12Array2D length(12);
 // is a two-dimensional unlimited array of strings each with exactly 12 characters

 type set length(5) of set length(6) of charstring String23Array2D56 length(2..3);
 // is an unordered two-dimensional array of the size 5*6 strings, each composed
 // of 2 or 3 characters

 const String23Array c_str23arr_a := { "aa", "bbb", "cc", "ddd", "ee", "ff" };
 // valid, all charstrings are 2 or 3 characters long

 const String23Array c_str23arr_b := { "a", "bbbb", "cc", "ddd", "ee", "ff" };
 // causes an error as "a" and "bbbb" are not 2 or 3 characters long

 const String23Array2D56 c_str12arr2D56_a := {
 { "aa", "aaa", "bb", "bbb", "cc", "ccc" },
 { "dd", "ddd", "ee", "eee", "ff", "fff" },
 { "gg", "ggg", "hh", "hhh", "ii", "iii" },
 { "jj", "jjj", "kk", "kkk", "ll", "lll" },
 { "mm", "mmm", "nn", "nnn", "oo", "ooo" }
 }; // valid, a 5*6 matrix of charstrings being 2 or 3 characters long

 const String23Array2D56 c_str12arr2D56_b := {
 { "a", "aaa", "bb", "bbbb", "cc", "ccc" },
 { "dd", "ddd", "ee", "eee", "ff", "fff" },
 { "gg", "ggg", "hh", "hhh", "ii", "iii" },
 { "jj", "jjj", "kk", "kkk", "ll", "lll" },
 { "mm", "mmm", "nn", "nnn", "oo", "ooo", "pp" }
 }; // causes an error as "a" and "bbbb" are not 2 or 3 characters long and
 // the 5th inner record of has 7 elements

EXAMPLE 2: Length subtyping of structured innermost types of record ofs

 type record of String23Array String23Array45 length(4 .. 5);
 // is a two-dimensional array, the first dimension is unlimited,
 // the second dimension is restricted to 4 or 5 elements and each element
 // is a charstring of 2 or 3 characters. It is equivalent to:
 // type record of record length(4 .. 5) of charstring String23Array45 length(2 .. 3);

 const String23Array45 c_str23arr45_a := {
 { "aa", "bbb", "cc", "ddd" },
 { "ee", "fff", "gg", "hhh", "ii" }
 }; // valid, 4 or 5 elements in the inner record of, all containing 2 or 3 characters

 const String23Array45 c_str23arr45_b := {
 { "aa" , "bbb", "cc" }
 }; //causes an error as there are only 3 elements in the inner record of

 const String23Array45 c_str23arr45_c := {
 { "aa", "bbbb", "cc", "dd" }
 }; //causes an error as "bbbb" contains 4 characters

 type record length(0 .. 1) of String23Array String23Array0145 length(4 .. 5);
 // is a two-dimensional array, the first dimension is limited to 0 or 1 elements,
 // the second dimension is restricted to 4 or 5 elements, each element is a
 // charstring of 2 or 3 characters.

 const String23Array0145 c_str23arr0145_a := {
 { "aa", "bbb", "cc", "ddd" },
 }; // a valid 1*4 array of charstrings, each of 2 or 3 characters

 const String23Array0145 c_str23arr0145_a := {
 { "aa", "bbb", "cc", "ddd" },
 { "ee", "fff", "gg", "hhh", "ii" }
 }; // causes an error as there are two elements in the outer record of

 const String23Array0145 c_str23arr0145_b := {
 { "aa" , "bbb", "cc" }
 }; // causes an error as there are only 3 elements in the inner record of

 const String23Array0145 c_str23arr0145_c := {
 { "aa", "bbbb", "cc", "dd" }
 }; // causes an error as "bbbb" contains 4 characters

 type record of String23Array45 String23Array6 length(6);
 // empty type as String23Array45 is restricted to 4 or 5 elements,
 // thus length restriction 6 is outside the allowed range

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)84

6.2.13.4 Mixing subtyping mechanisms

In the case of structured types and the special type anytype, it is forbidden to mix different subtyping mechanisms
(e.g. list and length) in the same definition.

6.2.14 The timer type

TTCN-3 allows to define timer constants, variables and parameters. These constants, variables or parameters can
contain a reference to an existing timer or a special value null. The special value null represents an unspecified
timer reference, i.e. can be used for variables to explicitly reference no timer.

Timer references have meaning only within the test component instances where the timer is defined, i.e. a timer
reference assigned to a timer variable in a test component instance "a1" of type "A" has no meaning in a test component
instance "a2" of type "A".

The values of timer type are object references and follow specific rules for this kind of values.

6.2.15 Map types

6.2.15.0 General

TTCN-3 supports the specification of map types that map from a set of unique keys to a set of values in such a way that
each value in the set of key is associated with exactly one value in the set of values.

6.2.15.1 Map Type Definition

Syntactical Structure

type map from Type to Type Identifier

Semantical Description

The Type following the from keyword is the type of the keys of the map type. The Type following the to keyword is
the type of the values of the map type.

Restrictions

a) Templates of the map type or any structured type containing a field or element of the map type on any level of
nesting are not allowed.

b) Operands of expressions shall not be of the map type or any structured type containing a field or element of the
map type on any level of nesting.

Examples

EXAMPLE:

 type record Connection { IPadress addr, integer portNr }
 type record Client { charstring name }
 type map from Connection to Client ConnectedClients; // associate each connection with a client

6.2.15.2 Indexed Assignment Notation

Syntactical Structure

"{" { "[" Index "]" ":=" Value "," } "}"

Semantic Description

Values of type map can be denoted with the indexed assignment notation where the indices are values of the key type of
the map type and the right hand sides are values of the value type.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)85

When using the indexed assignment notation on the right hand side of an assignment, elements for keys to be changed
are identified explicitly and either a value or the not used symbol "-" can be assigned to them. Other elements, not
referred to by keys in the notation, shall remain unchanged. Re-assigning a previously initialized value, using the not
used symbol or just skipping a field or element in an assignment notation, will cause that field or element to remain
unchanged.

Restrictions

a) In the index assignment notation, every index expression shall evaluate to a different value than all the other
ones.

Examples

EXAMPLE:

 var ConnectedClients v_ myVariable:= {
 [connection0] := client0,
 [connection1] := client1,
 [connection2] := client2
 }

 v_myVariable :=
 {
 [connection1] := client3,
 }
 // after this, v_myVariable contains:
 // { [connection0] := client0 /* unchanged */,
 [connection1] := client3,
 [connection2] := client2 /* unchanged */ }

 v_myVariable :=
 {
 [connection0] := -,
 [connection1] := client2,
 [connection2] := -
 }
 // after this, v_myVariable contains:
 // { [connection0] := client0 /* unchanged */,
 [connection1] := client2,
 [connection2] := client2 /* unchanged */ }

6.2.15.3 Unmapping Keys

Syntactical Structure

unmap "(" ValueRef "," SingleExpression ")"

Semantic Description

To remove a mapping from a key to its associated value in a variable of type map, the unmap statement may be used. If
the map variable did not associate the given key with a value, the operation has no effect.

Restrictions

a) ValueRef shall be an initialized variable of map type and SingleExpression shall be a value compatible with
the key type of the map type of ValueRef.

6.2.15.4 Index Notation

Syntactical Structure

ValueRef "[" Index "]"

Semantic Description

Index notation can be used on both the right-hand side and left-hand side of assignments.

The index notation, when used on the right-hand side, refers to the value element that the map associates with the key
given as the index.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)86

When it is used at the left-hand side, only the value associated with the index key is changed, values with other keys
remain unchanged. Using the index notation on the left hand side of an assignment with a key that already has a value
associated with it causes the key to be mapped to the newly assigned value.

Presence of a mapping for a key can be checked by using the isbound, isvalue or ispresent with an index
notation as its argument.

Restrictions

a) The index expression used for index notation and index assignment notation shall be completely initialized and
compatible with the from type of the map type.

b) When an index operation of a map value is used as the left-hand side of an assignment, the assigned value shall
be compatible with the to type of the map type.

c) An index notation used on the right hand side with a key that has no associated value shall result in an error.

Examples

EXAMPLE:

 if (not isbound(v_myVariable[connection0])) {
 v_myVariable[connection0] := newClient; // adds mapping for connection0 to the map
 }
 if (isbound(v_myVariable[connection0])) {
 unmap(v_myVariable, connection0); // deletes mapping for connection0 from the map
 f(v_myVariable[connection0]); // results in a testcase error
 }

6.2.15.5 Accessing the Keys of a Map

The set of keys that the map associates with a value can be accessed using the from selector.

Syntactical Structure

MapValue "." from

MapValueType "." from

Semantic Description

If the MapValue is a value of type MapValueType defined as map from A to B then MapValue.from yields a result
compatible with type set of A that contains all the key values from MapValue. This type can also be referenced as
MapValueType.from.

Since there is at most one value mapped to each key in a map value, the values in the set of keys will be unique. The
length of the map value is equal to the length of the set of keys.

NOTE: It is unspecified in which order the keys of a map type value are enumerated.

EXAMPLE: Iterating over the keys of a map.

 var MapValueType v_map;
 var MapValueType.from v_keys := v_map.from;
 for (var integer i := 0; i < lengthof(v_keys); i := i + 1) {
 // do something with v_map[v_keys[i]];
 }

6.2.15.6 Accessing the Values of a Map

The set of values that the map contains can be accessed using the to selector.

Syntactical Structure

MapValue "." to

MapValueType "." to

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)87

Semantic Description

If MapValue is a value of type MapValueType defined as map from A to B then MapValue.to yields a result
compatible with type set of B that contains all the values from MapValue. This type can also be referenced as
MapValueType.to;

Since two different keys might be mapped to the same value in a map value, the values in the set of values might not be
unique. The set of values will contain one value for each key value pair in the map. The length of the map value is equal
to the length of the set of values.

NOTE: It is unspecified in which order the values of a map type value are enumerated.

EXAMPLE 1: Iterating over the values of a map

 var MapValueType v_map;
 var MapValueType.to v_values := v_map.to;
 for (var integer i := 0; i < lengthof(v_values); i := i + 1) {
 // do something with v_values[i];
 }

EXAMPLE 2: Contents of the set of values

 Type map from charstring to integer MapValueType;
 var MapValueType v_map := { ["a"] := 0, ["b"] := 0, ["c"] := 1 };
 var MapValueType.to v_values := v_map.to;
 match(v_values, {0,1,0}) // yields true

6.2.15.7 Referencing of Elements of a Map

When referencing an element of an uninitialized map value or field or omitted field (including omitting a field at a
higher level of the embedding hierarchy) on the left-hand side of an assignment, the reference shall recursively be
expanded up to and including the depth of the referenced element as follows:

a) When expanding a value or value field of map type, the element referenced by the index notation shall be set to
present.

b) Expansion of record, record of and set of , union and set values and intermediate fields shall follow the rules of
item a) in clauses 6.2.1.1, 6.2.3.0 and 6.2.5.1 and clause 6.2.2.1 correspondingly.

c) At the end of the expansion, the value at the right-hand side of the assignment shall be assigned to the
referenced element.

6.2.15.8 Nested type definitions

TTCN-3 supports the definition of map types with nested structured types for the to part. The usage of structured types
(record, set, enumerated, set of, record of, union and map) is allowed.

NOTE: It is strongly recommended that only base types are used for the keys of map types.

EXAMPLE:

 type map from charstring to map from charstring to charstring MapType;

6.2.16 The open type

The open type is represented by the keyword any. It shall only be used in formal parameters of external and predefined
functions. Values of all types can be directly passed as actual parameters to formal parameters of the open type without
the need to explicitly specify a type context.

Restrictions

a) The open type shall be used only in formal parameter of predefined or external functions.

NOTE: The open type is forbidden in all other TTCN-3 statements, e.g. in:

 Type declarations

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)88

 Variable declarations

 Template declarations

 Constant declarations

 Module parameter declarations

 Formal parameters of templates, test cases, altsteps, non-external functions, map and unmap
operations

 Return clauses of functions

EXAMPLE:

 external function fx_printf(charstring p_format, any p_data);
 ...
 fx_printf("Numeric value: %d", 1);

6.3 Type compatibility

6.3.0 General

Generally, TTCN-3 requires type compatibility of values at assignments, instantiations and comparison.

For the purpose of this clause the actual value to be assigned, passed as parameter, etc. is called value "b". The type of
value "b" is called type "B". The type of the formal parameter, which is to obtain the actual value of value "b" is called
type "A".

NOTE: As address is more a predefined type name than a distinct type with its own properties, the same type
compatibility rules apply to an address type and to its derivatives as the rules were if the type was
defined with a name different from address.

6.3.1 Compatibility of non-structured types

For variables, constants, templates, etc. of simple basic types and basic string types the value "b" is compatible to type
"A" if type "B" resolves to the same root type as type "A" (e.g. integer) and it does not violate subtyping
(e.g. ranges, length restrictions) of type "A". Compatibility between charstring and universal charstring is defined
below.

EXAMPLE 1: Compatibility of integers:

 // Given
 type integer MyInteger(1 .. 10);
 :
 var integer v_x;
 var MyInteger v_y;

 // Then
 v_y := 5; // is a valid assignment

 v_x := v_y;
 // is a valid assignment, because v_y has the same root type as v_x and no subtyping is violated

 v_x := 20; // is a valid assignment
 v_y := v_x;
 // is NOT a valid assignment, because the value of v_x is out of the range of MyInteger

 v_x := 5; // is a valid assignment
 v_y := v_x;
 // is a valid assignment, because the value of v_x is now within the range of MyInteger

EXAMPLE 2: Compatibility of floats:

 // Given
 type float PositiveFloats(0.0 .. infinity);
 :
 var PositiveFloats v_x;

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)89

 var float v_y;

 // Then
 v_y := 5.0; // is a valid assignment
 v_x := v_y;
 // is a valid assignment, because v_y has the same root type as v_x and no subtyping is violated

 v_y := -20.0; // is a valid assignment
 v_x := v_y;
 // causes an error, because the value of v_y is out of the range of PositiveFloats

 v_y := not_a_number; // is a valid assignment
 v_x := v_y;
 // causes an error, because the value not_a_number is out of the range of PositiveFloats

EXAMPLE 3: Compatibility of charstrings:

 //Given
 type charstring MyChar length (1);
 type charstring MySingleChar length (1);
 var MyChar v_myCharacter;
 var charstring v_myCharString;
 var MySingleChar v_mySingleCharString := "B";

 //Then
 v_myCharString := v_mySingleCharString;
 //is a valid assignment as charstring restricted to length 1 is compatible with charstring.
 v_myCharacter := v_mySingleCharString;
 //is a valid assignment as two single-character-length charstrings are compatible.

 //Given
 v_myCharString := "abcd";

 //Then
 v_myCharacter := v_myCharString[1];
 //is valid as the r.h.s. notation addresses a single element from the string

 //Given
 var charstring v_myCharacterArray [5] := {"A", "B", "C", "D", "E"}

 //Then
 v_myCharString := v_myCharacterArray[1];
 //is valid and assigns the value "B" to v_myCharString;

For variables, constants, templates, etc. of charstring type, value 'b' is compatible with a universal
charstring type 'A' unless it violates any type constraint specification (range, list or length) of type "A".

For variables, constants, templates, etc. of universal charstring type, value 'b' is compatible with a
charstring type 'A' if all characters used in value 'b' have their corresponding characters (i.e. the same control or
graphical character using the same character code) in the type charstring and it does not violate any type constraint
specification (range, list or length) of type "A".

EXAMPLE 4: Compatibility of character and universal character strings:

 //Given
 type charstring MyChar length (1);
 ...
 var MyChar v_myCharacter;
 var charstring v_myCharString;
 var universal charstring v_myUnivCharString;

 // Given
 v_myCharString := "abcd";

 // Then
 v_myUnivCharString := v_myCharString
 //is valid as charstring and universal charstring are compatible
 v_myCharacter := v_myUnivCharString [1];
 // is valid as the r.h.s. notation addresses a single element of the string,
 // containing a character compatible with charstring

 // Given
 v_myUnivCharString := "bet" & char (0, 0, 1, 113);

 // Then
 v_myCharString := v_myUnivCharString;

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)90

 // is invalid as v_myUnivCharString contains a character not in ISO 646.

 // Given
 var charstring v_myCharacterArray [5] := {"A", "B", "C", "D", "E"}

 // Then
 v_myCharString := v_myCharacterArray[1];
 // is valid and assigns the value "B" to v_myCharString;

6.3.2 Compatibility of structured types

6.3.2.0 General

This clause defines compatibility rules for structured types. In subsequent clauses, "value "b"" is called the value to be
assigned, e.g. when passed as parameter, to an object of type "A".

6.3.2.1 Compatibility of enumerated types

Enumerated types are only compatible with other enumerated types. An enumerated value "b" of an enumerated type
"B" is compatible with enumerated type "A" if the identifier of the value "b" is also defined in "A" and the integer(s)
associated with value "b" are also associated with the same identifier in "A".

EXAMPLE: Assigning enumerated values:

// Given
type enumerated EWeekDays {
 Mon, Tue, Wed, Thu, Fri, Sat, Sun
};

type enumerated EWorkDays {
 Mon, Tue, Wed, Thu, Fri
};

type enumerated EDesWeekDays {
 Tue, Wed, Thu, Fri, Sat, Sun, Mon
};

type enumerated EComplexValues {
 e_num (1),
 e_expr (2+2),
 e_bin_conv (bit2int('0111'B)),
 e_oct_conv (oct2int('34'O)),
 e_hex_conv (hex2int('AC'H))
}
type enumerated ESimpleValues {
 e_num (1),
 e_expr (4),
 e_bin_conv (7),
 e_oct_conv (52),
 e_hex_conv (172)
}

var EWeekDays v_myWeekDayMon := Mon
var EWeekDays v_myWeekDaySun := Sun
var EWorkDays v_myWorkDayMon := Mon
var EDesWeekDays v_myDesWeekDayMon := Mon
var EComplexValues v_myComplexValuedEnum := e_bin_conv;
var ESimpleValues v_mySimpleValuedEnum := e_bin_conv;

v_myWorkDayMon := v_myWeekDayMon
 // works
v_mySimpleValuedEnum := v_myComplexValuedEnum;
 // works
v_myWorkDayMon := v_myWeekDaySun
 // causes an error as Sun is not a member of EWorkDays
v_myDesWeekDayMon := v_myWeekDayMon
 // causes an error as Mon in EDesWeekDays and EWeekDays have different associated
 // numbers; since this is true for all enumerated values in EWeekDays, these two
 // types are fully incompatible

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)91

6.3.2.2 Compatibility of record and record of types

record types are compatible if the number, and optional aspect of the fields in the textual order of definition are
identical, the types of each field are compatible and the value of each existing field of the value "b" is compatible with
the type of its corresponding field in type "A". The value of each field in the value "b" is assigned to the corresponding
field in the value of type "A".

EXAMPLE 1:

// Given
type record AType {
 integer a(0..10) optional,
 integer b(0..10) optional,
 boolean c
}

type record BType {
 integer a optional,
 integer b(0..10) optional,
 boolean c
}

type record CType { // type with different field names
 integer d optional,
 integer e optional,
 boolean f

}

type record DType { // type with field c optional
 integer a optional,
 integer b optional,
 boolean c optional
}

type record EType { // type with an extra field d
 integer a optional,
 integer b optional,
 boolean c,

 float d optional
}

 var AType v_myVarA := { -, 1, true};
 var BType v_myVarB := { omit, 2, true};
 var CType v_myVarC := { 3, omit, true};
 var DType v_myVarD := { 4, 4, true};
 var EType v_myVarE := { 5, 5, true, omit};

 // Then

 v_myVarA := v_myVarB; // is a valid assignment,
 // new value of MyVarA is (a :=omit, b:= 2, c:= true)
 v_myVarC := v_myVarB; // is a valid assignment
 // new value of MyVarC is (d :=omit, e:= 2, f:= true)
 v_myVarA := v_myVarD; // is NOT a valid assignment because the optionality of fields does not
 // match
 v_myVarA := v_myVarE; // is NOT a valid assignment because the number of fields does not match

 v_myVarC := { d:= 20 }; // actual value of MyVarC is { d:=20, e:=2,f:= true }
 v_myVarA := v_myVarC // is NOT a valid assignment because field 'd' of MyVarC violates
 // subtyping of field 'a' of AType

record of types and arrays are compatible if their element types are compatible and value "b" does not violate any
length subtyping of the record of type "A" or dimensions of the array type. Values of elements of the value "b" shall
be assigned sequentially to the instance of type "A", including undefined elements.

Two array types are compatible if their corresponding record of types are compatible.

EXAMPLE 2:

 // Given

 type record of integer IType;

 type record of float HType;

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)92

 var HType v_myVarH := { 1.0, omit, 2.0 };
 var IType v_myVarI;
 var integer v_myArrayVar[2];

 // Then

 v_myVarI := { 3, 4 };
 v_myArrayVar := v_myVarI;
 // is a valid assignment as element types are compatible and the assigned value
 // doesn't violate length restriction set by array dimension

 v_myVarI2 := v_myArrayVar;
 // is a valid assignment as element types are compatible and the target variable type has
 // no length restriction

 v_myVarI[2] := 5; // the value of v_myVarI is { 3, 4, 5 } now
 v_myArrayVar := v_myVarI;
 // is NOT a valid assignment as v_myVarI contains more elements than the array dimension
 // allows

 v_myVarH := v_myVarI;
 // is NOT a valid assignment as element types are not compatible

6.3.2.3 Compatibility of set and set of types

set types are only compatible with other set types and set of types are only compatible with other set of types.
For set types the same compatibility rules shall apply as to record types and for set of types the same
compatibility rules shall apply as to record of types.

NOTE 1: This implies that though the order of elements at sending and receipt is unknown, when determining type
compatibility for set types, the textual order of the fields in the type definition is decisive.

NOTE 2: In set values the order of fields may be arbitrary, however this does not affect type compatibility as field
names unambiguously identify, which fields of the related set type correspond to which set value
fields.

EXAMPLE:

 // Given
 type set FType {
 integer a optional,
 integer b optional,
 boolean c
 }

 type set GType {
 integer d optional,
 integer e optional,
 boolean f
 }

 var FType v_myVarF := { a:=1, c:=true };
 var GType v_myVarG := { f:=true, d:=7};

 // Then

 v_myVarF := v_myVarG; // is a valid assignment as types FType and GType are compatible

 v_myVarF := v_myVarA; // is NOT a valid assignment as v_myVarA is a record type

6.3.2.4 Compatibility of union types

The compatibility rules for union types are the following:

• A union value "b" of union type "B" is compatible with union type "A" if the alternative selected in "b" has a
corresponding alternative with identical name in "A" and the value of the selected alternative in "b" is
compatible to the type of the corresponding alternative in "A".

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)93

• Otherwise, the following rules apply. A union value "b" of union type "B" with a default alternative of type
"C" is compatible with an arbitrary type "A" if the alternative selected in "b" is the default alternative and the
value of the default alternative is compatible to "A". A value "a" of an arbitrary type "A" is compatible with a
union type "B" with a default alternative of type "C" if value "a" is compatible to "C".

When considering the compatibility of two union types, initially the first rule (which is not dependent on the existence
of a default alternative) shall be applied. The second rule shall only be used to check compatibility, when - using the
first rule - no compatibility has been determined. This order shall avoid ambiguity in case that a default alternative
would otherwise also be compatible with the union itself.

NOTE 1: It is possible to have nested unions with default alternatives. The rules above make type compatibility
along the default alternatives transitive, i.e. the outermost union type is compatible with the type of the
innermost default union alternative if all containing alternatives are also default alternatives.

NOTE 2: When a union with a default alternative is used in an expression it will be resolved to its long notation,
before the expression is evaluated.

EXAMPLE 1:

 type union U1 {integer i};
 type union U2 {integer i, boolean b};

 var U1 v_u1 := {i := 1};
 var U2 v_u2 := v_u1; // correct as all alternatives of U1 exist in U2
 v_u1:= v_u2; // correct as the alternative i is selected in v_u2 and is
 // compatible to i in U1
 v_u2:= {b := true};
 v_u1:= v_u2; // incorrect as v_u1 has no alternative b
 var anytype v_x := v_u1; // incorrect as the anytype is not a union type.

EXAMPLE 2: Using union values of unions with default alternatives

 type union U3 { @default integer i, boolean b }
 type union U4 { integer i, @default boolean b }
 var U3 v_u3 := 3 // correct as i in U3 is declared with @default
 v_u3 := v_u2; // correct because all alternatives in U2 exist in U3
 // and are compatible
 v_u2 := 3; // incorrect as 3 is not of a union type and there is
 // no field in U2 declared with @default
 v_u2 := v_u3; // also correct
 v_u2 := v_u1.i; // incorrect as U2 has no default alternative
 v_u3 := v_u1.i; // correct as the default alternative in U3 is compatible with U1.i

 var integer v_int := v_u3 * 2 // v_int is 6 as v_u3 is treated as v_u3.i

 var U3 v_u32 := {b := true};
 var U4 v_u4 := true;
 v_int := v_u4 *2; // incorrect as v_u4 is treated as a boolean, and cannot be multiplied
 v_int := v_u32 *2; // incorrect as "v_u32" would be treated as v_u32.i,
 // which is not the selected alternative
 log(v_u4); // results in "{ b:=true }" logged; for backward compatibility when
 // a union value is used in a log statement directly, no conversion
 // is performed.

6.3.2.5 Compatibility of anytype types

anytype types are only compatible with other anytype types. An anytype value "b" of anytype type "B" is compatible
with anytype type "A" if the alternative selected in "b" is also contained in "A".

NOTE: Only anytype types that are constrained to a fixed set of types via list subtyping can be a potential cause
for anytype incompatibility, i.e. if the set of types contained in type "A" does not contain the type selected
in "b".

EXAMPLE:

 module A {
 type integer I (0..2);
 type float F;
 type anytype Atype ({I:=?},{F:=?},{integer:=?});
 //anytype composed of TTCN-3 built-in basic type integer, I, and F
 }

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)94

 module B {
 type integer I (0..2);
 type anytype Atype ({I:=?},{integer:=?},{float:=?});
 }

 module C {
 import from A all;
 import from B all;
 type union U {
 integer I (0..2)
 }
 control {
 var A.Atype v_aa;
 var A.Atype v_aaI := { A.I := 1 } // type I is imported from A and B
 var A.Atype v_aaF := { F := 1.0 } // type F is only imported from A
 var B.Atype v_ba := { integer := 1 }
 var B.Atype v_baI := { B.I := 1 } // type I is imported from A and B
 var U v_u := { I := 1 } // I is a field name in U

 v_aa := v_ba; // correct, the value of aa1 becomes { integer := 1 }
 v_aa := v_baI; // incorrect, type B.I is not present in the anytype A.Atype
 v_aa := v_u; // incorrect, type of u is not anytype but a user defined union type

 v_ba := { float := 1.0 }; // correct, assigning a literal value
 v_ba := v_aaI; // incorrect, type A.I is not present in the anytype B.Atype
 v_ba := v_aaF; // incorrect, type A.F is not present in the anytype B.Atype
 }
 }

6.3.2.6 Compatibility between sub-structures

The rules defined in this clause for structured types compatibility are also valid for the sub-structure of such types.

EXAMPLE:

 // Given
 type record JType {
 AType a,
 integer b optional,
 integer c
 }

 var JType v_myVarJ;

 // If considering the declarations in clause 6.3.2.2, EXAMPLE 1 above, then

 v_myVarJ.a := v_myVarA;
 // is a valid assignment as the type of field a of JType and AType are compatible

 v_myVarB := v_myVarJ.a;
 // is a valid assignment as BType and the type of field a of JType are compatible

6.3.2.7 Compatibility of the open type

Values of all existing TTCN-3 types are compatible with the open type occurring in the left hand side of an assignment.
Values of open type occurring on the right hand side of an assignment are compatible with a value "a" of a type "A", if
the actual value contained in the open type value is compatible with "A".

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)95

6.3.3 Compatibility of component types

Type compatibility of component types has to be considered in different conditions:

1) Compatibility of a component reference value with a component type (e.g. when passing a component
reference as an actual parameter to a function or an altstep or when assigning a component reference value to a
variable of different component type): a component reference "b" of component type "B" is compatible with
component type "A" if all definitions of "A" have identical definitions in "B".

2) Runs on compatibility: a function or altstep referring to component type "A" in its runs on clause may be
called or started on a component instance of type 'B' if all the definitions of "A" have identical definitions in
"B".

3) Mtc compatibility: a function or altstep referring to component type "A" in its mtc clause may be called or
started in any context that has a mtc clause of type "B" or a testcase with a runs on clause of type "B" if all the
port definitions of "A" have identical definitions in "B". If the type of the mtc is unknown in the calling
function, this can lead to runtime errors if the component type "A" is not mtc-compatible with the type of the
running mtc.

4) System compatibility: a function or altstep referring to component type "A" in its system clause may be called
or started in any context that has a system clause of type "B" or a test case with a runs on clause of type "B"
and no system clause if all the port definitions of "A" have identical definitions in "B". If the type of the
system is unknown in the calling function, this can lead to runtime errors if the component type "A" is not
system-compatible with the type of the system the current test case was started on.

Identity of definitions in "A" with definitions of "B" is determined based on the following rules:

a) For port instances, both the type and the identifier shall be identical.

b) For timer instances, identifiers shall be identical and either both shall have identical initial durations or both
shall have no initial duration.

c) For variable instances and constant definitions, the identifiers, the types and initialization values shall be
identical (in case of variables this means that either the values are missing in both definitions or are the same).

d) For local template definitions, the identifiers, the types, the formal parameter lists and the assigned template or
template field values shall be identical.

6.3.4 Type compatibility of communication and connection operations

The communication operations (see clause 22) send, receive, trigger, call, getcall, reply, getreply
and raise and connection operations connect, map, disconnect and unmap (see clause 21.1) are exceptions
to the weaker rule of type compatibility and require strong typing. The types of values or templates directly used as
parameters of the operations send, receive and trigger shall also be explicitly defined in the associated port type
definition. The signature type of the parameter list given to the operations call, getcall, reply, getreply and
the signature type given to the operations catch and raise shall also be explicitly defined in the associated port type
definition. The types of values or templates directly used as exceptions to the operations catch and raise shall be
explicitly defined in the exceptions part of the definition of the signature given to the operation.

EXAMPLE:

type record MyRec {...} // user defined type
type MyRec MyRecAlias; // a type alias

type port MyPort message { inout MyRec, MyRecAlias; } // port that can transport both types
type component MyComponent { port MyPort p; }

template MyRecAlias m_myRecAlias:= {...} // a template of the alias type

var MyComponent v_myComp1 := MyComponent.create, v_myComp2 := MyComponent.create;
connect (v_myComp1:p, v_myComp2:p) // two connected PTCs via ports that can
 // transport the user-defined and the alias type

// in v_myComp1:
p.send (m_myRecAlias); // sending of template of alias type

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)96

// in v_myComp2:
p.receive (MyRec:?);
// shall not match as the transmitted template is of the alias type and
// not of the user-defined type

// in v_myComp2:
var MyRec v_x;
p.receive (MyRecAlias:?) -> value v_x;
// shall not cause an error since storing the value requires no strong typing

6.3.5 Type conversion

If it is necessary to convert values of one type to values of another type, because their types have different root types,
then either one of the predefined conversion functions defined in clause 16.1.2 or a user defined function shall be used.

EXAMPLE:

 // To convert an integer value to a hexstring value use the predefined function int2hex
 MyHstring := int2hex(123, 4);

6.3.6 Type compatibility of port types

For variables, constants and parameters of port types, the reference to a port "b" of type "B" is compatible to type "A" if
type "B" and type "A" are equal or synonym types.

6.3.7 Type compatibility of timer types

For variables, constants and parameters of timer types, the reference to a timer is compatible with any other timer
reference.

6.3.8 Type Compatibility of Map Types

map types are only compatible with other map types. A value "b" of a map type "B" is compatible with a map type "A"
if the from type of "A" is compatible with the from type of "B" and the to type of "B" is compatible with the to
type of "A".

EXAMPLE:

 type map from charstring to universal charstring Map1;
 type map from universal charstring to charstring Map2;
 // every value of Map2 can be used in a variable of Map1 but access to values
 // associated with keys that are not charstring values is not possible

6.4 Type synonym
A type can be defined as a synonym to another type. Type synonyms can be defined for all kinds of types. Synonym
types are compatible.

EXAMPLE:

 type MyType1 MyType2; // MyType2 is synonym to MyType1

7 Expressions

7.0 General
TTCN-3 allows the specification of expressions. TTCN-3 expressions may be template references, value references or
literals (i.e. no operation is involved), and may be composed of the operators defined in clause 7.1.

NOTE: Templates can be used at the RHS of assignment, parameter passing and (predefined) functions where
template passing is explicitly allowed.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)97

Syntactical Structure

SingleExpression |
"{" { (FieldReference ":=" (Expression | "-")) [","] } "}" | // compound expression
"{" [{ (Expression | "-") [","] }] "}" // compound expression

Semantic Description

Expressions may be built from other (simple) expressions. Functions used in expressions shall have a return clause. The
operands of the operators used in an expression shall be values and their root types shall be the types specified for the
appropriate operator in the subsequent clauses.

Assignment or list notations are used for expressions of record, set, record of, set of, array, union and anytype types.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) At the point, when an expression is evaluated, the evaluated values of the operands used in expressions shall
be completely initialized except where explicitly stated otherwise in the specific clause of the operator.

b) The root types of the operands shall be the types specified for the appropriate operand.

c) With the exception of the equality and non-equality operators, the special value null shall not be used as an
operand of expressions (see clause 7.1.3).

This means also that all fields and elements of structured types referenced in an expression shall contain completely
initialized values, while other fields and elements, not used in the expression, may be uninitialized or contain omit.

Examples

 (c_x + c_y – f_increment(c_z))*3 // single expression
 { a:= 1, b:= true } // compound expression, assignment notation
 { 1, true } // compound expression, list notation

7.1 Operators

7.1.0 General

TTCN-3 supports a number of predefined operators that may be used in the terms of TTCN-3 expressions. The
predefined operators fall into seven categories:

a) arithmetic operators;

b) list operator;

c) relational operators;

d) logical operators;

e) bitwise operators;

f) shift operators;

g) rotate operators;

h) presence checking operators.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) When an expression is evaluated, the evaluated values used as the operands of operators shall be completely
initialized, except for those operands for which it is explicitly allowed to be partially initialized (see
clause 11.1).

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)98

These operators are listed in table 5.

Table 5: List of TTCN-3 operators

Category Operator Symbol or Keyword
Arithmetic operators addition +

subtraction -
multiplication *
division /
modulo mod
remainder rem

String operators concatenation &
Relational operators equal ==

less than <
greater than >
not equal !=
greater than or equal >=
less than or equal <=

Logical operators logical not not
logical and and
logical or or
logical xor xor

Bitwise operators bitwise not not4b
bitwise and and4b
bitwise or or4b
bitwise xor xor4b

Shift operators shift left <<
shift right >>

Rotate operators rotate left <@
rotate right @>

Presence checking operators field presence check ispresent
chosen alternative check ischosen
value check isvalue
bound check isbound

The precedence of these operators is shown in table 6. Within any row in this table, the listed operators have equal
precedence. If more than one operator of equal precedence appears in an expression, the operations are evaluated from
left to right. Parentheses may be used to group operands in expressions, in which case a parenthesized expression has
the highest precedence for evaluation.

Table 6: Precedence of Operators

Priority Operator type Operator
highest

Lowest

Unary
Unary
Binary
Binary
Unary
Binary
Binary
Binary
Binary
Binary
Binary
Unary
Binary
Binary
Binary

(…)
ispresent, ischosen, isvalue, isbound
+, -
*, /, mod, rem
+, -, &
not4b
and4b
xor4b
or4b
<<, >>, <@, @>
<, >, <=, >=
==, !=
not
and
xor
or

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)99

NOTE: Dot notation ("."), index notation (" [] ") and the decoding notation (" => ") should be evaluated from
left to right, just after the evaluation of the parentheses (" () ") operator and before the evaluation of the
ispresent, ischosen, isvalue, isbound operators.
That is: a.b[x].d=>e.f is equivalent to ((((a.b)[x]).d)=>e).f

7.1.1 Arithmetic operators

The arithmetic operators represent the operations of addition, subtraction, multiplication, division, modulo and
remainder. Operands of these operators shall be of integer values (including derivations of integer) or
floating-point numbers (including derivations of float, containing numeric values only), except for mod and rem
which shall be used with integer (including derivations of integer) types only.

The usage of the special float values infinity, -infinity and not_a_number in arithmetic operators shall
follow the rules defined in IEEE 754 [6].

With integer types, the result type of arithmetic operations is integer. With float types, the result type of
arithmetic operations is float.

In the case where plus (+) or minus (-) is used as the unary operator the rules for operands apply as well. The result of
using the minus operator is the negative value of the operand if it was positive and vice versa. The result of using the
plus operator is the value of the operand, i.e. a positive value if the operand value was positive and a negative value if
the operand value was negative.

The result of performing the division operation (/) on two:

a) integer values gives the whole integer part of the value resulting from dividing the first integer by
the second (i.e. fractions are discarded);

b) numeric float values gives the float value resulting from dividing the first float by the second
(i.e. fractions are not discarded).

The operators rem and mod compute on operands of type integer and have a result of type integer. The
operations x rem y and x mod y compute the rest that remains from an integer division of x by y. Therefore, they
are only defined for non-zero operands y. For positive x and y, both x rem y and x mod y have the same result but for
negative arguments they differ.

Formally, mod and rem are defined as follows:

 x rem y = x - y * (x/y)
 x mod y = x rem |y| when x >= 0
 = 0 when x < 0 and x rem |y| = 0
 = |y| + x rem |y| when x < 0 and x rem |y| < 0

Table 7 illustrates the difference between the mod and rem operator.

Table 7: Effect of mod and rem operator

x -3 -2 -1 0 1 2 3
x mod 3 0 1 2 0 1 2 0
x rem 3 0 -2 -1 0 1 2 0

7.1.2 List operator

The predefined list operator (&) performs concatenation of values of string types, record of, set of, or array of
the same root types. The operation is a simple concatenation from left to right. No form of arithmetic addition is
implied. The result type is the root type of the operands.

NOTE 1: In case of the list types, both the outer type (i.e. record of, set of or array) and the iterated inner
type need to have the same root type in a recursive manner.

NOTE 2: It is also possible to concatenate two or more value list notation expressions if the result is to be used as a
record of or array of the same root type as the concatenated expressions.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)100

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) When the list concatenation operator is used for record of-s, set of-s and arrays, its operands shall be at least
partially initialized.

EXAMPLE:

 '1111'B & '0000'B & '1111'B gives '111100001111'B
 {1,2} & {3,4} & {5,6} gives the following record of integer {1,2,3,4,5,6}

7.1.3 Relational operators

The predefined relational operators are equality (==), less than (<), greater than (>), non-equality to (!=), greater than
or equal to (>=) and less than or equal to (<=). The result type of all these operations is boolean.

The relational operators less than (<), greater than (>), greater than or equal to (>=), and less than or equal to (<=) shall
have only operands of type integer (including derivations of integer), float (including derivations of float),
or instances of the same enumerated type. It is not allowed to compare instances of different root types.

The address type is allowed for the equality (==) and non-equality (!=) operators, independent of its actual type, but
when its actual type differs from the types specified above, it can be compared to the literal special value null only.

Operands of equality (==) and non-equality (!=) shall be completely initialized values or field references, and with the
exception of enumerated types, shall be of compatible root types. The values or field references being compared
shall obey the following rules. This implies that instances of types not mentioned below shall not be operands of
equality and non-equality:

• Two field references are equal if the referenced fields are both optional fields and both fields are set to
omit or if both referenced fields (regardless if they are optional or not) are initialized with values and these
values are equal. A field reference is equal to a value if the referenced field is initialized with a value and both
values are equal.

• Two integer values are equal if and only if they contain the same value. Otherwise, normal mathematical
ordering is applied.

• Enumerated values of the same, or different types can be compared. In the case of different enumerated
types, expression "b" of type "B" can be compared with expression "a" of type "A" if the two types "A" and
"B" can be merged to a consistent larger enumerated type (i.e. where numbers are not associated with different
identifiers, see also clause 6.3.2.1). Two enumerated values are equal if and only if both their identifiers and
associated integer values (associated either explicitly or implicitly, see clause 6.2.4) are the same.

• Two floating-point numbers are equal if and only if they contain the same value. The values minus zero and
plus zero are two distinct values (e.g. they are encoded differently in some standardized languages) and minus
zero is less than plus zero, which represents zero. Otherwise, normal mathematical ordering is applied. The
special values -infinity, infinity and not_a_number are equal to themselves only. The special
value -infinity is less than any other float value. The special value infinity is greater than any
numerical float values and -infinity. The special value not_a_number is greater than any other float
value (including infinity).

• Two charstring or two universal charstring values are equal if and only if they have equal lengths and the
characters at all positions are the same.

• For values of bitstring, hexstring or octetstring types, the same equality rule applies as for charstring values
with the exception, that fractions which shall equal at all positions are bits, hexadecimal digits or pairs of
hexadecimal digits accordingly.

• Two record values, or set values are equal respectively if and only if they are mutually compatible with the
type of the other operand (see clause 6.3.2.2), the actual values of all present fields are equal to their
corresponding fields and all fields corresponding to omitted fields are also omitted in the peer value.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)101

• Two record of values, set of values or array values, respectively, are equal if and only if they are mutually
compatible with the type of the other operand (see clause 6.3.2.3), they both have the same length, and each
element of one value is equal to the corresponding element of the other value. Record of values and array
values may also be compared, in which case the corresponding record of type of the array is being considered.

• Values of the same union type, and values of different union types in which at least one of the alternatives is
compatible with the other type (see clause 6.3.2.4) can be compared (independent if a compatible alternative is
the selected one or not). Two values of union types are equal if and only if in both values the name of the
selected alternative is identical, they are compatible with the type of the other value, and the actual values of
the chosen fields are equal.

• Values of the same or any two anytype types can be compared. For anytype values the same rule apply as to
union values, with the addition that names of user-defined types defined with the same name in different
modules do not denote the same type name of the selected alternatives.

• Two default, two port, two timer or two component values are equal if and only if they both are initialized with
the special value null or they both contain a reference to the same entity (i.e. they designate the same default,
port, timer or test component, independent of the actual state of the denoted object).

• It is also possible to use compound expressions (field assignment or value list notation) directly as operands of
comparison operations of structured types. If there is a compound expression on both sides of the comparison
operator, they shall both be value list notation expressions where the elements shall be of the same root type
and they shall be compared like record of values with elements of that root type. If only one operand of the
comparison operation is a compound expression it shall be compatible with the root type of the other operand
and they shall be compared like values of that root type.

EXAMPLE 1: Comparing enumerated values

// Given
type enumerated EWeekDays {
 Mon, Tue, Wed, Thu, Fri, Sat, Sun
};

type enumerated EWorkDays {
 Mon, Tue, Wed, Thu, Fri
};

type enumerated EDesWeekDays {
 Tue, Wed, Thu, Fri, Sat, Sun, Mon
};

var EWeekDays v_myWeekDayMon := Mon
var EWeekDays v_myWeekDaySun := Sun
var EWorkDays v_myWorkDayMon := Mon
var EDesWeekDays v_myDesWeekDayMon := Mon

// Then

v_myWeekDayMon == v_myWorkDayMon;
 // returns true
v_myWeekDaySun == v_myWorkDayMon;
 // returns false, because Sun is not a possible value in EworkDays
v_myDesWeekDayMon == v_myWeekDayMon;
 // returns false: though the identifiers in both enumerated types are the same,
 // but the integer values associated with the identifiers are different

EXAMPLE 2: Comparing values of other structured types

 // Given
 type set S1 {
 integer a1 optional,
 integer a2 optional,
 integer a3 optional
 };

 type set S2 {
 integer b1 optional,
 integer b2 optional,
 integer b3 optional
 };

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)102

 type set S3 {
 integer c1 optional,
 integer c2 optional,
 };

 type set of integer SI;

 type union U1 {
 integer d1,
 integer d2,
 };

 type union U2 {
 integer e1,
 integer e2,
 };

 type union U3 {
 integer d1,
 integer d2,
 boolean d3
 };

 // And
 const S1 c_s1 := { a1 := 0, a2 := omit, a3 := 2 };
 // Notice that the order of defining values of the fields does not matter
 const S2 c_s2a := { b1 := 0, b3 := 2, b2 := omit };
 const S2 c_s2b := { b2 := 0, b3 := 2, b1 := omit };
 const S3 c_s3 := { c1 := 0, c2 :=2 };
 var SI v_si:= { 0, -, 2 };
 const SI c_si := { 0, 2 };
 const U1 c_u1 := { d1:= 0 };
 const U2 c_u2 := { e1:= 0 };
 const U3 c_u3; := { d1:= 0 };

 // Then
 c_s1 == c_s2a;
 // returns true
 c_s1 == c_s2b;
 // returns false, because neither a1 nor a2 are equal to their counterparts
 // (the corresponding element is not omitted)
 c_s1 == c_s3;
 // returns false, because the effective value structures of s1 and s3 are not compatible
 c_s1 == v_si;
 // causes test case error as v_si is not completely initialized
 // (2nd element is left uninitialized)
 c_s1 == c_si;
 // returns false, as the counterpart of the omitted a2 is 2,
 // but the counterpart of a3 is undefined
 c_s3 == c_si;
 // returns true
 c_u1 == c_u2;
 // causes error as U1 and U2 have no common subset of alternatives
 c_u1 == c_u3;
 // returns true, as alternatives with the same names are chosen and
 // the actual values in the selected alternatives are equal
 { 0, omit, 2 } == c_s1;
 // returns true
 c_s2a == { b1 := 0, b2:= omit, b3 := 2 };
 // returns true
 { c_s1, c_s2b } == { c_s2a, c_s1 };
 // returns false because c_s2b != c_s1
 { c_s1, c_s2b, c_s2a } == { c_s1 };
 // returns false because of different length
 c_s1.a1 == c_s2a.b1;
 // returns true, both fields are initialized with values and the values are equal
 c_s1.a2 == c_s2a.b2;
 // returns true, both fields are omit
 c_s1.a1 == c_s2a.b2;
 // returns false, value vs. omit
 c_s1.a1 == omit;
 // error, omit is neither a value nor a field reference
 c_s1.a2 == 3;
 // false, omit vs. value

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)103

7.1.4 Logical operators

The predefined boolean operators perform the operations of negation, logical and, logical or and logical xor. Their
operands shall be of root type boolean. The result type of logical operations is boolean.

The logical not is the unary operator that returns the value true if its operand was of value false and returns the
value false if the operand was of value true.

The logical and returns the value true if both its operands are true; otherwise it returns the value false.

The logical or returns the value true if at least one of its operands is true; it returns the value false only if both
operands are false.

The logical xor returns the value true if one of its operands is true; it returns the value false if both operands are
false or if both operands are true.

Short circuit evaluation for boolean expressions is used, i.e. the evaluation of operands of logical operators is stopped
once the overall result is known: in the case of the and operator, if the left argument evaluates to false, then the right
argument is not evaluated and the whole expression evaluates to false. In the case of the or operator, if the left
argument evaluates to true, then the right argument is not evaluated and the whole expression evaluates to true.

7.1.5 Bitwise operators

The predefined bitwise operators perform the operations of bitwise not, bitwise and, bitwise or and bitwise xor.
These operators are known as not4b, and4b, or4b and xor4b respectively.

NOTE: To be read as "not for bit", "and for bit", etc.

Their operands shall be of root type bitstring, hexstring or octetstring. In the case of and4b, or4b and
xor4b the operands shall be of the same root types.The result type of the bitwise operators shall be the root type of the
operands.

The bitwise not4b unary operator inverts the individual bit values of its operand. For each bit in the operand a 1 bit is
set to 0 and a 0 bit is set to 1. That is:

 not4b '1'B gives '0'B
 not4b '0'B gives '1'B

EXAMPLE 1:

 not4b '1010'B gives '0101'B
 not4b '1A5'H gives 'E5A'H
 not4b '01A5'O gives 'FE5A'O

The bitwise and4b operator accepts two operands of equal length. For each corresponding bit position, the resulting
value is a 1 if both bits are set to 1, otherwise the value for the resulting bit is 0. That is:

 '1'B and4b '1'B gives '1'B
 '1'B and4b '0'B gives '0'B
 '0'B and4b '1'B gives '0'B
 '0'B and4b '0'B gives '0'B

EXAMPLE 2:

 '1001'B and4b '0101'B gives '0001'B
 'B'H and4b '5'H gives '1'H
 'FB'O and4b '15'O gives '11'O

The bitwise or4b operator accepts two operands of equal length. For each corresponding bit position, the resulting
value is 0 if both bits are set to 0, otherwise the value for the resulting bit is 1. That is:

 '1'B or4b '1'B gives '1'B
 '1'B or4b '0'B gives '1'B
 '0'B or4b '1'B gives '1'B
 '0'B or4b '0'B gives '0'B

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)104

EXAMPLE 3:

 '1001'B or4b '0101'B gives '1101'B
 '9'H or4b '5'H gives 'D'H
 'A9'O or4b 'F5'O gives 'FD'O

The bitwise xor4b operator accepts two operands of equal length. For each corresponding bit position, the resulting
value is 0 if both bits are set to 0 or if both bits are set to 1, otherwise the value for the resulting bit is 1. That is:

 '1'B xor4b '1'B gives '0'B
 '0'B xor4b '0'B gives '0'B
 '0'B xor4b '1'B gives '1'B
 '1'B xor4b '0'B gives '1'B

EXAMPLE 4:

 '1001'B xor4b '0101'B gives '1100'B
 '9'H xor4b '5'H gives 'C'H
 '39'O xor4b '15'O gives '2C'O

7.1.6 Shift operators

The predefined shift operators perform the shift left (<<) and shift right (>>)operations. Their left-hand operand shall
be of root type bitstring, hexstring or octetstring. Their right-hand operand shall be a non-negative
integer. The result type of these operators shall be the same as the root type of the left operand.

The shift operators behave differently based upon the type of their left-hand operand. If the type of the left-hand
operand is:

a) bitstring then the shift unit applied is 1 bit;

b) hexstring then the shift unit applied is 1 hexadecimal digit;

c) octetstring then the shift unit applied is 1 octet.

The shift left (<<) operator accepts two operands. It shifts the left-hand operand by the number of shift units to the left
as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits or octets) are discarded. For each
shift unit shifted to the left, a zero ('0'B, '0'H, or '00'O determined according to the type of the left-hand operand) is
inserted from the right-hand side of the left operand.

EXAMPLE 1:

 '111001'B << 2 gives '100100'B
 '12345'H << 2 gives '34500'H
 '1122334455'O << (1+1) gives '3344550000'O

The shift right (>>)operator accepts two operands. It shifts the left-hand operand by the number of shift units to the
right as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits or octets) are discarded. For
each shift unit shifted to the right, a zero ('0'B, '0'H, or '00'O determined according to the type of the left-hand operand)
is inserted from the left-hand side of the left operand.

EXAMPLE 2:

 '111001'B >> 2 gives '001110'B
 '12345'H >> 2 gives '00123'H
 '1122334455'O >> (1+1) gives '0000112233'O

7.1.7 Rotate operators

The predefined rotate operators perform the rotate left (<@) and rotate right (@>) operators. Their left-hand operand
shall be of root type bitstring, hexstring, octetstring, charstring, universal charstring,
record of, or set of. Their right-hand operand shall be a non-negative integer. The result type of these
operators shall be the same as the root type of the left-hand operand.

NOTE 1: Note that the root types of arrays is record of, therefore arrays are allowed as left-hand operands of
rotate operators.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)105

The rotate operators behave differently based upon the type of their left-hand operand. If the type of the left-hand
operand is:

a) bitstring then the rotate unit applied is 1 bit;

b) hexstring then the rotate unit applied is 1 hexadecimal digit;

c) octetstring then the rotate unit applied is 1 octet;

d) charstring or universal charstring then the rotate unit applied is one character;

e) record of, set of, or array then the rotate unit applied is one element.

The rotate left (<@) operator accepts two operands. It rotates the left-hand operand by the number of shift units to the
left as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits, octets, characters, or elements)
are re-inserted into the left-hand operand from its right-hand side.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) When the rotate operator is used for record of-s, set of-s and arrays, its left hand operand shall be at
least partially initialized.

NOTE 2: Note that for the right hand operand restriction a) in clause 7 further on applies.

EXAMPLE 1:

 '101001'B <@ 2 gives '100110'B
 '12345'H <@ 2 gives '34512'H
 '1122334455'O <@ (1+2) gives '4455112233'O
 "abcdefg" <@ 3 gives "defgabc"

The rotate right (@>) operator accepts two operands. It rotates the left-hand operand by the number of shift units to the
right as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits, octets, characters, or elements)
are re-inserted into the left-hand operand from its left-hand side.

EXAMPLE 2:

 '100001'B @> 2 gives '011000'B
 '12345'H @> 2 gives '45123'H
 '1122334455'O @> (1+2) gives '3344551122'O
 "abcdefg" @> 3 gives "efgabcd"

7.1.8 Presence checking operators

7.1.8.0 General

The presence checking operators include ispresent, ischosen, isvalue and isbound operators. The result
type of the presence checking operators is boolean. The operand of these operators can be of any type.

Specific rules apply if the operand of a presence checking operator is a data object reference, function instance,
template instance or a result of the valueof operation followed by an ExtendedFieldReference. In these cases, if
resolving dot notation, index notation (see clause 7.2) or decoded field references (see clause 7.3) included in the
ExtendedFieldReference would produce an error (e.g. if an index is out of range, when referencing a sub-field of an
omitted field etc.), the following happens:

• No error is produced.

• Evaluation of all remaining unresolved fields in the ExtendedFieldReference is stopped. All remaining parts of
the ExtendedFieldReference that are located right from the operation that would normally produce an error up
to the end of the presence checking operator are not evaluated.

• The presence checking operator yields the value false.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)106

The rule on special handling of dot notation, index notation and decoded field references is not applied recursively.
Errors occurring during resolving a value of an index inside index notation or a value of an encoding format parameter
of a decoded field reference are not affected by this rule.

7.1.8.1 The ispresent operator

The ispresent operator checks whether a referenced field is present in a data object.

Syntactical Structure

ispresent "(" TemplateInstance ")"

Semantic Description

The ispresent operator returns:

• the value true if the operand fulfils the (present) template restriction as described in clause 15.8;

• the value false otherwise.

NOTE 1: When the argument of ispresent is a subfield of a template field to which the "?" (AnyValue) matching
is assigned, the extension mechanism specified in clause 15.6.2 applies.

NOTE 2: This means that whenever ispresent(m_myTemplate) returns true:

 m_myTemplate can safely be assigned to a non-optional field of the type of the template in a
template variable;

 m_myTemplate can safely be used as an actual template(present) parameter or assigned to a variable
of kind template(present).

Restrictions

General static rules of TTCN-3 given in clause 5 apply.

Examples

EXAMPLE:

 // Given
 type record MyRecord
 {
 record {
 boolean innerField1 optional,
 integer innerField2 optional,
 MyRecord innerField3 optional
 } field1 optional,
 integer field2
 }

 var MyRecord v_myRecord := { field1 := {}, field2 := 5 }
 // type of field1 is record with fields, therefore field1 remains uninitialized
 // after this assignment (no value is assigned to any of the fields of vl_MyRecord.field1)

 var boolean v_checkResult := ispresent(v_myRecord.field1) // yields false

 v_myRecord.field1 := omit

 v_checkResult := ispresent(v_myRecord.field1) // yields false
 // and therefore, v_myRecord.field1.innerField1 is an inaccessible reference

 v_checkResult := ispresent(v_myRecord.field1.innerField3.field2) // yields false because
 // innerField3 is unintialized and therefore, v_myRecord.field1.innerField3.field2 is an
 // inaccessible reference

 v_checkResult := ispresent(v_myRecord.field1.innerField1) // yields false because field1
 // is omitted

 var template MyRecord v_myRecordT := { field1 := ?, field2 := 5 }

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)107

 v_checkResult := ispresent(v_myRecordT.field1) // yields true

 v_checkResult := ispresent(v_myRecordT.field1.innerField1) // yields false because field1 is
 // AnyValue (pls. note, that at expansion of field1 the optional field innerField1 obtains "*"

 // that can match both a present and an omitted field

 type record R { integer f1 optional, integer f2 optional }
 template R mw_t1 := {f1 := 1, f2 :=(2 .. 4) }
 template R mw_t2 := { f1 := omit, f2 := (5, 7) ifpresent }
 template R mw_t3 := {f1 := *, f2 :=? }

 v_checkResult := ispresent(mw_t1.f1) // yields true

 v_checkResult := ispresent(mw_t1.f2) // yields true

 v_checkResult := ispresent(mw_t2.f1) // yields false

 v_checkResult := ispresent(mw_t2.f2) // yields false

 v_checkResult := ispresent(mw_t3.f1) // yields false

 v_checkResult := ispresent(mw_t3.f2) // yields true

7.1.8.2 The ischosen operator

The ischosen operator checks whether a referenced alternative is present in a data object.

Syntactical Structure

ischosen "(" TemplateInstance ")"

Semantic Description

This operator is allowed for data objects of all data types that are a union-field-reference or a type alternative of an
anytype. The operator returns:

• the value true if and only if the data object reference specifies the variant of the union type or the type
alternative of the anytype that is actually selected for the given data object;

• in all other cases false.

The ischosen operator is applicable to data objects of union types or of anytype containing a specific value or a
value list. In case of a value list, the operator returns true if all data objects present in the value list have the given
alternative selected. The result is false if there is another alternative of the union type or anytype on which
ischosen would return true.

NOTE: Note that in case of anytype-s, no type compatibility is considered when determining the selected
alternative; i.e. at the evaluation only the exact type chosen for the given value will satisfy the above
criteria.

Restrictions

General static rules of TTCN-3 given in clause 5 apply.

Examples

EXAMPLE 1: Using ischosen for union types

 // inside module M:
 type union U { integer f1, octetstring f2 }
 template U m_u1 := {f1 := 1}
 template U mw_u2 := {f2 := ?}
 template U mw_u3 := ?
 template U m_u4 := ({ f1 := 2 }, {f2 := 'AB'O })
 template U mw_u5 := ({ f2 := '12?'O }, { f2 := '*34'O length(2) })

 var boolean v_checkResult := ischosen(m_u1.f1) // returns true

 v_checkResult := ischosen(m_u1.f2) // yields false

 v_checkResult := ischosen(mw_u2.f1) // yields false

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)108

 v_checkResult := ischosen(mw_u2.f2) // yields true

 v_checkResult := ischosen(mw_u3.f1) // yields false

 v_checkResult := ischosen(mw_u3.f2) // yields false

 v_checkResult := ischosen(m_u4.f1) // yields false

 v_checkResult := ischosen(m_u4.f2) // yields false

 v_checkResult := ischosen(mw_u5.f1) // yields false

 v_checkResult := ischosen(mw_u5.f2) // yields true

 type record R { U u optional }
 template R m_r1 := { omit }

 var boolean v_checkResult := ischosen(m_r1.u.f1) // yields false

EXAMPLE 2: Using ischosen for anytype

 template anytype mw_a1 := { U := mw_u5 }
 template anytype mw_a2 := { M.U := { f1 := m_u1.f1 } }
 var boolean v_checkResult := ischosen(mw_a1.U) // yields true
 v_checkResult := ischosen(mw_a1.M.U) // yields true
 v_checkResult := ischosen(mw_a1.integer) // yields false
 v_checkResult := ischosen(mw_a2.U) // yields true

EXAMPLE 3:

 // Given
 type union MyUnion
 { PDU_type1 p1,
 PDU_type2 p2,
 PDU_type p3
 }

 // and given that mw_myPDU is a template of MyUnion type
 // and v_receivedPDU is also of MyUnion type
 // then
 myPort.receive(mw_myPDU) -> value v_receivedPDU
 var boolean v_checkResult := ischosen(v_receivedPDU.p2)
 // yields true if the actual instance of mw_myPDU carries a PDU of the type PDU_type2

7.1.8.3 The isvalue operator

The isvalue operator checks whether a referenced data object is a specific value.

Syntactical Structure

isvalue "(" TemplateInstance ")"

Semantic Description

The isvalue operator yields true, if the operand is completely initialized and resolves to a specific value. If the
operand is of record or set type, omitted optional fields shall be considered as initialized, i.e. the operator shall also
yield true if optional fields of the operand are set to omit. The operator shall yield false otherwise.

The specific value null is considered as concrete value.

Restrictions

General static rules of TTCN-3 given in clause 5 apply.

Examples

EXAMPLE 1: Simple types:

 template charstring m_char0 := "ABCD"; //template containing a specific value matching
 template charstring m_char1 := "AB?D"; //template containing a specific value matching
 //note, that "?" is not a matching symbol in this case

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)109

 template charstring mw_char2 := pattern "ABCD"; // a pattern matching a single value only
 template charstring mw_char3 := pattern "AB?D"; // pattern matching
 template charstring m_char4 := ("ABCD"); // template containing a specific value (expression)
 template charstring mw_char5 := ("ABCD","EFGH"); // a value list matching a single value only

 var boolean v_checkResult := isvalue(m_char0); // yields true
 v_checkResult := isvalue(m_char1); // yields true
 v_checkResult := isvalue(mw_char2); // yields false
 v_checkResult := isvalue(mw_char3); // yields false
 v_checkResult := isvalue(m_char4); // yields true
 v_checkResult := isvalue(mw_char5); // yields false

EXAMPLE 2: Special types:

 var default v_default := null;
 var boolean v_checkResult := isvalue(v_default); // yields true

EXAMPLE 3: Record/set types:

 type record MyRec {
 integer f1 optional,
 integer f2 optional
 }

 var MyRec v_myRec;
 var template MyRec v_myRecT;

 var boolean_checkResult := isvalue(v_myRec); // yields false
 v_checkResult := isvalue(v_myRecT); // yields false

 v_myRec := { f1 := 5, f2 := omit }
 v_myRecT := { f1 := ?, f2 := 5 }

 v_checkResult := isvalue(v_myRec); // yields true
 v_checkResult := isvalue(v_myRec.f2); // yields false;
 v_checkResult := isvalue(v_myRecT); // yields false
 v_checkResult := isvalue(v_myRecT.f1); // yields false
 v_checkResult := isvalue(v_myRecT.f2); // yields true

 v_myRecT.f2 := omit;

 v_checkResult := isvalue(v_myRecT.f2); // yields false

EXAMPLE 4: Union types:

 type union MyUnion {
 integer ch1,
 integer ch2
 }

 template MyUnion m_myUnion := { ch1 := 5 }
 template MyUnion mw_myUnion := { ch1 := ? }

 var boolean v_checkResult := isvalue(m_myUnion); // yields true
 v_checkResult := isvalue(mw_myUnion); // yields false
 v_checkResult := isvalue(mw_myUnion.ch1); // yields false
 // note, this is different from ischosen(mw_myUnion.ch1) as isvalue checks the content of the
 // choice ch1, while ischosen is checking if ch1 has been selected or not
 v_checkResult := isvalue(mw_myUnion.ch2); // yields false

EXAMPLE 5: Nested types:

 type record MyRecord {
 MyUnion u optional
 }

 template MyRecord m_myRecord := { u := m_myUnion }
 template MyRecord mw_myRecord := { u := mw_myUnion }
 template MyRecord m_myRecord2 := { u := omit }

 var boolean v_checkResult := isvalue(m_myRecord.u.ch1); // yields true
 v_checkResult := isvalue(mw_myRecord.u.ch1); // yields false
 v_checkResult := isvalue(mw_myRecord.u.ch2); // yields false
 v_checkResult := isvalue(m_myRecord.u.ch2); // yields false

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)110

7.1.8.4 The isbound operator

The isbound operator checks whether a referenced data object is at least partially initialized.

Syntactical Structure

isbound "(" TemplateInstance ")"

Semantic Description

The isbound operator yields true, if the operand is at least partially initialized. If the operand is of a record or
set type, omitted optional fields shall be considered as initialized, i.e. the operator shall also yield true if at least one
optional field of the operand is set to omit. The operator shall yield false otherwise. Inaccessible fields (e.g.
non-selected alternatives of union types, subfields of omitted record and set types or subfields of non-selected union
fields) shall be considered as uninitialized, i.e. isbound shall yield for them false.

The specific value null is considered as concrete value.

Examples

EXAMPLE 1: Simple types

 var template charstring v_char;
 var boolean_checkResult := isbound(v_char); // yields false as v_char is uninitialized

 v_char := "AB?D"; // template containing a specific value
 checkResult := isbound(v_char); // yields true

 v_char := pattern "AB?D"; // template containing a pattern matching
 checkResult := isbound(v_char); // yields true

EXAMPLE 2: Special types

 var default v_default := null;
 var boolean_checkResult := isbound(v_default); // yields true

EXAMPLE 3: Record/set types

 type record MyRec {
 integer f1,
 MyRec f2 optional
 }

 var MyRec v_myRec;
 var boolean_checkResult := isbound(v_myRec); // yields false

 v_myRec.f2 := omit;
 checkResult := isbound(v_myRec); // yields true as v_myRec is partially initialized,
 // field f2 is set to omit

 v_myRec := { f1 := 5, f2 := omit }
 checkResult := isbound(v_myRec); // yields true as v_myRec is completely initialized
 checkResult := isbound(v_myRec.f2.f1); // yields false as v_myRec.f2.f1 is inaccessible
 checkResult := isbound(v_myRec.f1/0); // shall cause an error already during evaluating the
 // operand because the operand is not a reference and division by
 // zero causes a runtime error

 type union MyUnion {
 integer ch1,
 MyRec ch2
 }

 var template MyUnion v_myUnion;
 checkResult := isbound(v_myUnion); // yields false, as v_myUnion is uninitialized
 checkResult := isbound(v_myUnion.ch1); // yields false, as alternative ch1 is uninitialized

 v_myUnion := { ch1 := 5 };
 checkResult := isbound(v_myUnion); // yields true
 checkResult := isbound(v_myUnion.ch1); // yields true
 checkResult := isbound(v_myUnion.ch2); // yields false as the ch2 alternative is not selected
 checkResult := isbound(v_myUnion.ch2.f1); // yields false as the field f1 is inaccessible
 checkResult := isbound(v_myUnion.ch1/0); // shall cause an error already during evaluating the
 // operand because the operand is not a reference and division by
 // zero causes a runtime error

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)111

7.2 Field references and list elements
Within expressions, fields of record and set types are referenced with the dot notation ".field". Elements of record
of, set of, array and string types are referenced with the index notation "[index]". Dot and brackets have the same
binding power. Field references and list elements are evaluated from left to right.

7.3 Decoded field reference
Decoded field reference is a specific notation called decoding notation that can be applied to expressions of
bitstring, hexstring, octetstring, charstring or universal charstring types. It is used for
accessing content of implicitly decoded payload fields.

Syntactical Structure

ReferencedValue "=>" (PredefinedType | TypeIdentifier |
 ("(" Type ["," Expression] ")"))

The ReferencedValue preceding the => symbol in a decoding notation shall be decoded into a value of the type
following the => symbol. Failure of this decoding shall cause a test case error. In case the ReferencedValue is of the
universal charstring type and the extended syntax with parentheses is used, the Type can be followed by an
optional parameter defining the encoding format. The parameter shall be of the charstring type and it shall contain
one of the strings allowed for the decvalue_unichar function (specified in clause C.5.4). Any other value shall
cause an error. In case the ReferencedValue is not a universal charstring, the optional parameter shall not be
present.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) If the type following the => symbol is not enclosed into parentheses, only a built-in type or a type reference
consisting of a single identifier can be used. Extended type references shall always use the extended syntax
with parentheses.

EXAMPLE:

 type record PDU {
 PduHeader header,
 bitstring outerPayload
 }

 type record OuterPayload {
 OuterPayloadHeader header,
 universal charstring innerPayload
 }

 type record InnerPayload {
 integer data1,
 charstring data2
 }

 ...
 var PDU v_pdu;
 var InnerPayload v_inner;
 ... // v_pdu is filled with data;
 v_inner := v_pdu.outerPayload=>OuterPayload.innerPayload=>(InnerPayload, "UTF-8");
 // v_pdu.outerPayload field is first decoded into a value of the OuterPayload type
 // the innerPayload field of the decoding result is subsequently decoded into a value
 // of the InnerPayload type (using UTF-8 format for conversion into a bitstring)

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)112

8 Modules

8.0 General
The principal building blocks of TTCN-3 are modules. A module may define a fully executable test suite or just a
library. A module may refer to the TTCN-3 language version and to package versions being used. A module contains
definitions.

NOTE: The term test suite is synonymous with a complete set of TTCN-3 modules containing test cases and a
control function.

The transfer syntax of TTCN-3 modules shall be UTF-8, i.e. each character of the module shall be individually encoded
and decoded according to the UCS Transformation Format 8 (UTF-8) as defined in annex R of ISO/IEC 10646 [2] and
no characters not corresponding to any character of the module shall be present.

8.1 Definition of a module
A module is defined with the keyword module.

NOTE 1: The treatment of TTCN-3 modules in files, repositories and alike is outside the scope of the present
document.

Syntactical Structure

module ModuleIdentifier [language FreeText { "," FreeText }] "{"
 [ModuleDefinitionsPart]

"}"

Semantic Description

A TTCN-3 module groups a set of (typically cohesive) TTCN-3 definitions. TTCN-3 modules have an explicit import
interface to use definitions from other TTCN-3 or non-TTCN-3 modules. It is possible to hide definitions in a TTCN-3
module (see clause 8.2.5). TTCN-3 modules can be compiled/interpreted separately. They are reusable and
parameterizable.

Module names are of the form of a TTCN-3 identifier.

NOTE 2: The module identifier is the informal text name of the module.

In addition, a module specification can carry an optional attribute identified by the language keyword that identifies
the edition of the TTCN-3 language, in which the module is specified. The following language strings are to be used:

 "TTCN-3:2001" - to be used with modules complying with V1.1.2 [i.17] of the present document.
 "TTCN-3:2003" - to be used with modules complying with V2.2.1 [i.18] of the present document.
 "TTCN-3:2005" - to be used with modules complying with V3.1.1 [i.19] of the present document.
 "TTCN-3:2007" - to be used with modules complying with V3.2.1 [i.20] of the present document.
 "TTCN-3:2008" - to be used with modules complying with V3.3.2 [i.21] of the present document.
 "TTCN-3:2008 Amendment 1" - to be used with modules complying with V3.4.1 [i.22] of the present document.
 "TTCN-3:2009" - to be used with modules complying with V4.1.1 [i.23] of the present document.
 "TTCN-3:2010" - to be used with modules complying with V4.2.1 [i.24] of the present document.
 "TTCN-3:2011" - to be used with modules complying with V4.3.1 [i.25] of the present document.
 "TTCN-3:2012" - to be used with modules complying with V4.4.1 [i.26] of the present document.
 "TTCN-3:2013" - to be used with modules complying with V4.5.1 [i.27] of the present document.
 "TTCN-3:2014" - to be used with modules complying with V4.6.1 [i.28] of the present document.
 "TTCN-3:2015" - to be used with modules complying with V4.7.1 [i.29] of the present document.
 "TTCN-3:2016" - to be used with modules complying with V4.8.1 [i.30] of the present document.
 "TTCN-3:2017" - to be used with modules complying with V4.9.1 [i.31] of the present document.
 "TTCN-3:2018" - to be used with modules complying with V4.10.1 [i.32] of the present document.
 "TTCN-3:2019" - to be used with modules complying with V4.11.1 [i.33] of the present document.
 "TTCN-3:2020" - to be used with modules complying with V4.12.1 [i.34] of the present document.
 "TTCN-3:2021" - to be used with modules complying with the present document.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)113

Furthermore, the optional attribute identified by the language keyword may identify package versions being used by
this module. The package tags are defined in ETSI ES 202 781 [i.11], ETSI ES 202 782 [i.14], ETSI ES 202 784 [i.12],
ETSI ES 202 785 [i.13], ETSI ES 202 786 [i.35], ETSI ES 203 022 [i.36], and ETSI ES 203 790 [i.37]. The language
identifier and the package identifier are to be written as a comma-separated list.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) At most one language string per module shall be given to define the core language version in which the
module is defined.

b) Per extension package, at most one extension package string of that extension package shall be used by a
module.

Examples

 module MyTestSuite language "TTCN-3:2003"
 { … }

8.2 Module definitions part

8.2.0 General

The module definitions part specifies the top-level definitions of the module and may import visible identifiers from
other modules. Visibility rules are given in clause 8.2.5. Scope rules for declarations made in the module definitions
part and imported declarations are given in clause 5.3. Those language elements which may be defined in a TTCN-3
module are listed in table 1. Every definition can be associated with attributes using the with statement defined in
clause 27. Visible module definitions may be imported by other modules.

Syntactical Structure

 {
 [Visibility] (
 TypeDef |
 ConstDef |
 TemplateDef |
 ModuleParDef |
 FunctionDef |
 SignatureDef |
 TestcaseDef |
 AltstepDef |
 ImportDef |
 GroupDef |
 ExtFunctionDef |
 FriendDef |
 ModuleControlDef
) [WithStatement]
 [";"]
 }+

Semantic Description

Definitions in the module definitions part may be made in any order.

Module definitions can be evaluated at runtime and can be evaluated in any order. A definition shall be evaluated latest
before the first reference to it.

NOTE: If a definition is not used, it may not be evaluated at all.

Such definitions, i.e. top-level definitions outside of other scope units, are globally visible within the module. They may
be used elsewhere in the module. This includes identifiers imported from other modules.

Declarations of dynamic language elements such as variables or timers shall only be made in test cases, functions,
altsteps or component types.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)114

TTCN-3 does not support the declaration of variables in the module definitions part, i.e. global variables cannot be
defined in TTCN-3. However, variables defined in a test component type may be used by all test cases, functions, etc.
running on components of that component type.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

 module MyModule
 { // This module contains definitions only
 :
 const integer MyConstant := 1;
 type record MyMessageType { … }
 :
 function TestStep(){ … }
 :
 }

8.2.1 Module parameters

Module parameters are values or templates that may be supplied by the test environment at runtime. Module parameters
do not change during test execution. They can be used on the right hand side of assignments, in expressions, in actual
parameters, and in template definitions, but not within type definitions.

Syntactical Structure

[Visibility] modulepar [TemplateModifier]
 Type

 { Identifier [":=" TemplateBody] "," }
 Identifier [":=" TemplateBody] ";"

Semantic Description

Module parameters behave as global constants or unparameterized templates at runtime. For module parameterization,
TTCN-3 only supports value parameterization which has to be resolved static at start of runtime.

Module parameters allow to customize a TTCN-3 test suite for a specific IUT, test setup or test campaign.

It is allowed to specify a default value or template for each module parameter as part of the modulepar declaration.

If the test system does not provide an actual runtime value or template for a module parameter, the given default value
or template shall be used during test execution, otherwise the actual value or template provided by the test system.

If functions are used for the initialization of module parameters, it is strongly advised to adhere to the rules defined in
clause 16.1.4. Not following these rules may cause non-deterministic test executions.

Visible module parameters can be imported.

Optional fields of record and set module parameters or module parameter fields can be initialized explicitly or
implicitly. For implicit initialization of the optional fields of a module parameter or a module parameter field, an
optional attribute with the value "implicit omit" (see clause 27.7) shall be associated with it either directly or
via the attribute distribution (scoping) mechanism (see clause 27.1.1).

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) During test execution module parameters shall not be used as target of assignments or as actual out or inout
parameters.

b) Module parameters shall not be of port, default, timer or component type and shall not be of a structured type
that contains a sub-element of port or timer type at any level of nesting.

c) A module parameter shall only be of type address if the address type is explicitly defined within the associated
module.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)115

d) Module parameters shall be declared within the module definition part only.

e) More than one occurrence of module parameters declaration is allowed but each parameter shall be declared
only once (i.e. redefinition of the module parameter is not allowed).

f) The TemplateBody of a module parameter shall respect the limitations given in clause 16.1.4. and shall be
compatible with the Type of the declaration and conform to the given TemplateModifier. If no
TemplateModifier is present, the TemplateBody shall resolve to a value.

g) Module parameters shall not be used in type or array definitions.

h) All sub-elements of component or default type of a default value of a module parameter shall be
initialized with the special value null.

Examples

 module MyTestSuiteWithParameters
 {
 // single type, single module parameter, which is per default public
 modulepar boolean PX_Par0 := true;

 // single type, multiple module parameters with an explicit public visibility
 public modulepar integer PX_Par1, PX_Par2 := 1 + char2int("a");

 ...
 }

8.2.2 Groups of definitions

In the module definitions part, definitions can be collected in named groups. Grouping is done to aid readability and to
add logical structure to the module if required. If necessary, the dot notation shall be used to identify sub-groups within
the group hierarchy uniquely, e.g. for the import of a specific sub-group.

Syntactical Structure

[public] group GroupIdentifier "{"
 { ModuleDefinition [";"] }
"}"

Semantic Description

A group of definitions can be specified wherever a single definition is allowed. Groups may be nested, i.e. groups may
contain other groups. This allows the test suite specifier to structure, among other things, collections of test data or
functions describing test behaviour.

Groups and nested groups have no scoping. However, attributes given to a group by an associated with statement apply
to all elements of a group (see clause 27). Import statements may import groups so that all visible elements of a group
are imported (see clause 8.2.3.3).

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Group identifiers across the whole module need not necessarily be unique. However, top-level group
identifiers and all group identifiers of subgroups of a single group shall be unique.

b) Only public visibility can be defined for groups as they are always public.

Examples

 module MyModule {
 :
 // A collection of definitions
 group myGroup {
 const integer c_myConst:= 1;
 :
 type record MyMessageType { … };
 group myGroup1 { // Sub-group with definitions
 type record AnotherMessageType { … };

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)116

 const boolean c_myBoolean := false
 }
 }

 // A group of altsteps
 group myStepLibrary {
 group myGroup1 { // Sub-group with the same name as the sub-group with definitions
 altstep a_myStep11() { … }
 altstep a_myStep12() { … }
 :
 altstep a_myStep1n() { … }
 }
 group myGroup2 {
 altstep a_myStep21() { … }
 altstep a_myStep22() { … }
 :
 altstep a_myStep2n() { … }
 }
 }
 :
 }

 // An import statement that imports myGroup1 within myStepLibrary
 import from MyModule {
 group myStepLibrary.myGroup1
 }

8.2.3 Importing from modules

8.2.3.0 General

It is possible to re-use visible definitions specified in different modules using the import statement. Every definition
in a TTCN-3 module has an associated visibility, which is by default public (see clause 8.2.5).

NOTE: Groups are public only. Importing a group means that only the visible elements of the group are being
imported.

8.2.3.1 General format of import

An import statement can be used anywhere in the module definitions part.

Syntactical Structure

[Visibility] import from ModuleId [-> LocalModuleName]
 (
 (all [except "{" ExceptSpec "}"])
 |
 ("{" ImportSpec "}")
)
[";"]

Semantic Description

TTCN-3 supports the import of the following definitions: module parameters, user defined types, signatures, constants,
data templates, signature templates, functions, external functions, altsteps and test cases. Each definition has a name
(defines the identifier of the definition, e.g. a function name), a specification (e.g. a type specification or a signature of a
function) and in the case of functions, altsteps and test cases an associated behaviour description. In addition, import
statements of one module can be explicitly imported by another module (see clause 8.2.3.7). Only definitions or import
statements visible from the importing module can be imported (see clause 8.2.5).

In contrast to module definitions, which are by default public, import statements are by default private.

EXAMPLE 1a:

 Name Specification Behaviour description
function f_myFunction (inout MyType1 p_myPar) return MyType2

runs on MyCompType
{
 const MyType3 c_myConst := …;
 : // further behaviour
}

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)117

 Specification Name Specification
type record MyRecordType {

 MyType4 field1,
 integer field2
}

 Specification Name Specification
template MyType5 m_myTemplate := {

 field1 := 1,
 field2 := c_myConst, // c_myConst is a module constant
 field3 := PX_ModulePar // PX_ModulePar is module parameter
}

Behaviour descriptions have no effect on the import mechanism, because their internals are considered to be invisible to
the importer when the corresponding functions, altsteps or test cases are imported. Thus, they are not considered in the
following descriptions.

The specification part of an importable definition contains local definitions (e.g. field names of structured type
definitions or values of enumerated types) and referenced definitions (e.g. references to type definitions, templates,
constants or module parameters). For the examples above, this means:

 Name Local definitions Referenced definitions
function f_myFunction p_myPar MyType1, MyType2, MyCompType
type MyRecordType field1, field2 MyType4, integer
template m_myTemplate MyType5, field1, field2, field3, c_myConst, PX_ModulePar

NOTE 1: The local definitions column refers to identifiers only that are newly defined in the importable definition.
Values assigned to individual fields of importable definitions, e.g. in template definitions, may also be
considered as local definitions, but they are not important for the explanation of the import mechanism.

NOTE 2: The referenced definitions field1, field2 and field3 of template MyTemplate are the field names of
MyType5, i.e. they are referenced via MyType5.

Referenced definitions are also importable definitions, i.e. the source of a referenced definition can again be structured
into a name and a specification part and the specification part also contains local and referenced definitions. In other
words, an importable definition may be built up recursively from other importable definitions.

The TTCN-3 import mechanism is related to the local and referenced definitions used in the specification part of the
importable definitions. Table 8 specifies the possible local and referenced definitions of importable definitions.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)118

Table 8: Possible local and referenced definitions of importable definitions

Importable Definition Possible Local Definitions Possible Referenced Definitions
Module parameter Module parameter type
User-defined type (for all)

• enumerated type Concrete values
• structured type Field names, nested type

definitions
Field types

• port type Message types, signatures
• component type Constant names, variable names,

timer names and port names
Constant types, variable types, port types

Signature Parameter names Parameter types, return type, types of exceptions
Constant Constant type
Data Template Parameter names Template type, parameter types, constants, module

parameters, functions
Signature template Signature definition, constants, module parameters

functions
Function Parameter names Parameter types, return type, component type

(runs on clause)
External function Parameter names Parameter types, return type
Altstep Parameter names Parameter types, component type (runs

on clause)
Test case Parameter names Parameter types, component types (runs on- and

system clause)
NOTE 1: For the import of import statements see clause 8.2.3.7.
NOTE 2: For the import of groups see clause 8.2.3.3.

The TTCN-3 import mechanism distinguishes between the identifier of a referenced definition and the information
necessary for the usage of a referenced definition within the imported definition. For the usage, the identifier of a
referenced definition is not required and therefore not imported automatically.

EXAMPLE 1b: Differentiation between information necessary for the usage and the identifier

 module A {
 type record MyRec1 {
 integer field1,
 charstring field2
 }
 }

 module B {
 import from A all;
 type record MyRec2 {
 MyRec1 myField1,
 // "myField1" is the local definition, "MyRec1" is a referenced definition;
 // the name "MyRec1" shall be imported in this case as is directly referenced
 boolean myField2
 }
 }

 module C {
 import from B all;
 const MyRec2 c_myRec2 := {
 myField1 := { field1 := 5, field2 := "A" },
 // to define myField1 of MyRec2 the name "MyRec1" is not needed, the
 // information necessary for the usage is its type information,
 // i.e. names and types of its fields field1 and field2
 // which is embeddded in the imported definition of MyRec2
 myField2 := true
 }
 }

If an imported definition has attributes (defined by means of a with statement) then the attributes shall also be
imported. The mechanism to change attributes of imported definitions is explained in clause 27.1.3.

NOTE 3: If the module has global attributes they are associated to definitions without these attributes.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)119

The use of import on single definitions, groups of definitions, definitions of the same kind, etc. may lead to situations
where the same definition is referred to more than once. Such cases shall be resolved by the system and definitions shall
be imported only once.

NOTE 4: The mechanisms to resolve such ambiguities, e.g. overwriting and sending warnings to the user, are
outside the scope of the present document and should be provided by TTCN-3 tools.

All import statements and definitions within import statements are considered to be treated independently one after
the other in the order of their appearance.

All TTCN-3 modules shall have their own name space in which all definitions shall be uniquely identified. Name
clashes may occur due to import, e.g. import from different modules. Name clashes shall be resolved using qualified
name(s) for the imported definition(s), i.e. prefixing the imported definition (which causes the name clash) by the
identifier of the module in which it has been defined; the prefix and the identifier shall be separated by a dot ("."). If the
type of the component referenced in a connection operation is known (either when the component reference is a
variable or value returned from a function or the type is defined the runs on, mtc or system clause of the calling
function), the referenced port declaration shall be present in this component type.

There is one exception to this rule: when in the context of an enumerated type (see clause 6.2.4), an enumerated value
is clashing with the name of a definition in the importing module, the enumerated value shall take precedence and the
definition in the importing module shall be referenced by using its qualified name (see example 5 below in this clause).

In cases where there are no ambiguities the prefixing need not (but may) be present when the imported definitions are
used. When the definition is referenced in the same module where it is defined, the module identifier of the module (the
current module) also may be used for prefixing the identifier of the definition. For the latter case, prefixing shall only be
used for definitions with global visibility for the module.

It is allowed to rename a module name during its import. The new name will be visible only in the importing module.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) An import statement shall only be used in the module definitions part and not be used within a function
definition and alike.

b) Only top-level visible definitions of a module may be imported. Definitions which are top-level but invisible
to the importing module or which occur at a lower scope (e.g. local constants defined in a function) shall not
be imported.

c) A definition is imported together with its name and all local definitions.

NOTE 5: A local definition, e.g. a field name of a user-defined record type or an enumerated value, has only
meaning in the context of the definitions in which it is defined, e.g. a field name of a record type can only
be used to access a field of the record type and not outside this context.

 In particular, importing an enumerated type does not impose the restriction given in clause 6.2.4 on global
names defined in the importing module.

d) A definition is imported together with all information of referenced definitions that are necessary for the usage
of the imported definition, independent of the visibility of the referenced definitions (see clause 8.2.5).

NOTE 6: If module C imports a definition from module B that uses a type reference defined in module A, the
corresponding information necessary for the usage of that type is automatically imported into module C
(see example 6 below in this clause). Identifiers of referenced definitions are not automatically imported.

 In particular, if module C imports global value or template definitions (e.g. constants, module parameters,
templates) or local definitions (e.g. formal parameters of templates, functions, etc. or constants and
variables of component types) of an enumerated type from module B, the enumerated values of this type
(i.e. the identifiers) are implicitly and automatically imported to module C. That is, the enumerated values
are known when an enumerated value or template is used in module C (e.g. when an actual parameter is
passed or a value is assigned to a component variable). Note that this implicit importing does not impose
the restriction given in clause 6.2.4 on global names defined in module C.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)120

e) If the referenced definitions are wished to be used in the importing module, they shall be explicitly imported
either directly from its source module or indirectly by importing the import statements of a module importing
it (see clause 8.2.3.7).

f) When importing a function, altstep or test case the corresponding behaviour specifications and all definitions
used inside the behaviour specifications remain invisible for the importing module.

g) The language specification (see clause 8.1) of the import statement shall not override the language
specification of the importing module.

h) The language specification of the import statement shall be identical to the language specification of the source
module from which definitions are imported (see clause 8.2.3.8) provided a language specification is defined
in the source module. If not, the language specification in the import statement is taken as the language
specification of the source module. If the source module uses however language concepts not being part of that
language specification, this causes an error for the import statement.

i) If an imported module is renamed in the import clause, the original module name is not imported and cannot
be used for referencing the imported module. The imported module can be referenced using the new local
name only.

j) If an imported module is renamed in the import clause, the new local name of the module shall be unique in
the scope of the importing module.

Examples

EXAMPLE 1: Selected import examples:

module MyModuleA
{ :
 // Scope of the imported definitions is global to MyModuleA
 import from MyModuleB all; // import of all definitions from MyModuleB
 import from MyModuleC { // import of selected definitions from MyModuleC
 type MyType1, MyType2; // import of types MyType1 and MyType2
 template all // import of all templates
 }
 :

 function f_myBehaviourC()
 {
 // import cannot be used here
 :
 }
 :
 control

{
 // import cannot be used here
 :

 }
}

EXAMPLE 2: Use of imported definitions and visibility of definitions referenced by them:

 module ModuleONE {

 modulepar integer ModPar1 := …;

 type record RecordType_T1 {
 integer Field1_T1,
 :
 }

 type record RecordType_T2 {
 RecordType_T1 Field1_T2,
 :
 }

 const integer c_myConst := …;

 template RecordType_T2 m_t2 (RecordType_T1 p_tempParT2):= { // parameterized template
 Field1_T2 := …,
 :
 }

 } // end module ModuleONE

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)121

 module ModuleTWO {

 import from ModuleONE {
 template m_t2
 }

 // Only the names m_T2 and p_tempParT2 will be visible in ModuleTWO. Please note, that

 // the identifier p_tempParT2 can only be used when modifying m_t2. All information
 // necessary for the usage of m_t2, e.g. for type checking purposes, are imported
 // for the referenced definitions RecordType_T1, Field1_T2, etc., but their identifiers are
 // not visible in ModuleTWO.
 // This means, e.g. it is not possible to use the constant c_myConst or to declare a
 // variable of type RecordType_T1 or RecordType_T2 in ModuleTWO without explicitly importing
 // these types.

 import from ModuleONE {
 modulepar ModPar2
 }

 // The module parameter ModPar2 of ModuleONE is imported from ModuleONE and
 // can be used like an integer constant

 } // end module ModuleTWO

 module ModuleTHREE {

 import from ModuleONE all; // imports all definitions from ModuleONE

 type port MyPortType message {
 inout RecordType_T2 // Reference to a type defined in ModuleONE
 }

 type component MyCompType {
 var integer v_myComponentVar := ModPar2;
 // Reference to a module parameter of ModuleONE
 :
 }

 function f_myFunction () return integer {
 return c_myConst // Reference to a module constant of ModuleONE
 }

 testcase TC_MyTestCase (out RecordType_T2 p_myPar) runs on MyCompType {

 :
 MyPort.send(m_t2); // Sending a template defined in ModuleONE
 :

 }

 } // end ModuleTHREE

 module ModuleFOUR {

 import from ModuleTHREE {
 testcase TC_MyTestCase
 }

 // Only the name TC_MyTestCase will be visible and usable in ModuleFOUR.
 // Type information for RecordType_T2 is imported via ModuleTHREE from ModuleONE and
 // Type information for MyCompType is imported from ModuleTHREE. All definitions
 // used in the behaviour part of TC_MyTestCase remain hidden for the user of ModuleFOUR.

 } // end ModuleFOUR

EXAMPLE 3: Handling of name clashes:

 module MyModuleA {
 :
 type bitstring MyTypeA;

 import from SomeModuleC {
 type MyTypeA, // Where MyTypeA is of type character string
 MyTypeB // Where MyTypeB is of type character string
 }

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)122

 :
 control {
 :
 var SomeModuleC.MyTypeA v_myVar1 := "Test String"; // Prefix shall be used
 var MyTypeA v_myVar2 := '10110011'B; // This is the original MyTypeA
 :
 var MyTypeB v_myVar3 := "Test String"; // Prefix need not be used …
 var SomeModuleC.MyTypeB v_myVar3 := "Test String"; // … but it can be if wished
 :
 }
 }

NOTE 7: Definitions with the same name defined in different modules are always assumed to be different, even if
the actual definitions in the different modules are identical. For example, importing a type that is already
defined locally, even with the same name, would lead to two different types being available in the
module.

EXAMPLE 4: Renaming imported module:

 module MyModuleA {
 import from VeryLongModuleNameB -> ShortNameB {
 type MyTypeA, // Where MyTypeA is of type character string
 }
 :
 control {
 :
 var ShortNameB.MyTypeA v_myVar1 := "Test String"; // Is correct
 var VeryLongModuleNameB MyTypeA v_myVar2 := "Test String"; // Causes an error
 // as the original module name cannot be used for referencing if the
 // imported module has been renamed.
 }
 }

EXAMPLE 5: Name clash between enumerated values and global definitions:

 module A {
 type enumerated MyEnumType {enumX, enumY}
 type enumerated MyEnumType2 {enumY, enumZ}
 }

 module B {
 import from A all;
 const MyEnumType enumY := enumX; // this is not allowed as enumerated values restrict
 // global names (see clause 6.2.4)

 const MyEnumType2 enumX := enumY;// this is allowed as MyEnumtype2 does not contain enumX

 const MyEnumType enumZ := enumX; // allowed as MyEnumType does not contain enumZ
 }

 module C {
 import from A all;
 import from B all;

 const integer enumZ := 0;
 const integer enumY := 1;
 const MyEnumType2 enumX := enumY;

 modulepar MyEnumType PX_MyModulePar1 := enumY
 // the default value of the module parameter will be the value enumY, as the type of
 // PX_MyModulePar1 creates the context of MyEnumType and in this context enumerated values
 // take precedence over global definition names; note that for the same context reason there
 // is no name clash between the enumerated values defined in MyEnumType and in MyEnumType2

 modulepar MyEnumType PX_MyModulePar2 := B.enumZ
 // the default value of the module parameter will be the value enumX, as the prefix
 // identifies the constant definition enumZ unambiguously, which has the value enumX

 modulepar integer PX_IntegerPar := enumZ;
 // the default value of the module parameter will be 0 as this assignment is not in the
 // context of an enumerated type, hence no name clash occurs

 modulepar MyEnumType PX_MyModulePar3 := C.enumX
 // causes an error as PX_MyModulePar3 and the constant enumX in module C has different types
 }

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)123

EXAMPLE 6: Importing local definitions transitively:

 module A {
 type enumerated MyEnumType { enumX, enumY, enumZ}
 type record MyRec { integer a, integer b }
 type component MyComp { var MyRec v_rec := { a := 5 } }
 }

 module B {
 import from A all;
 modulepar MyEnumType PX_MyModulePar := enumY;
 type component MyCompUser extends MyComp {}
 }

 module C {
 import from B all;
 testcase TC() runs on MyCompUser {
 if (PX_MyModulePar == enumY) {
 // the enumerated value enumY is known in C without explicitly importing it from A
 setverdict(pass)
 }
 if (v_rec.a == 5) {
 v_rec.b := v_rec.a;
 // Both the variable name v_rec and the record field names are known in C without
 // explicitly importing them from A
 setverdict (pass)
 }
 }
 }

8.2.3.2 Importing single definitions

Single visible definitions can be imported by referring to the definition kind and the definition name(s). The import of
single definitions can be used in combination with imports of groups (see clause 8.2.3.3), with imports of definitions of
the same kind (see clause 8.2.3.4), and with imports of import statements (see clause 8.2.3.7).

Syntactical Structure

[Visibility] import from ModuleId "{"
 {
 (
 (type { TypeDefIdentifier [","] }) |
 (template { TemplateIdentifier [","] }) |
 (const { ConstIdentifier [","] }) |
 (testcase { TestcaseIdentifier [","] }) |
 (altstep { AltstepIdentifier [","] }) |
 (function { FunctionIdentifier [","] }) |
 (signature { SignatureIdentifier [","] }) |
 (modulepar { ModuleParIdentifier [","] })
)
 [";"]
 }
"}" [";"]

Semantic Description

See clause 8.2.3. Import of an invisible definition shall cause an error.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The definition to be imported shall be defined in the module from which it is to be imported and shall be
visible to the importing module.

b) See the restrictions given in clause 8.2.3.

Examples

 import from MyModuleA {
 type MyType1 // imports one type definition from MyModuleA only
 }

 import from MyModuleB {

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)124

 type MyType2, Mytype3, MyType4; // imports three types,
 template m_myTemplate1; // imports one template, and
 const c_myConst1, c_myConst2 // imports two constants
 }

8.2.3.3 Importing groups

Groups of definitions may be imported. The import of groups can be used in combination with imports of single
definitions (see clause 8.2.3.2), with imports of definitions of the same kind (see clause 8.2.3.4), and with imports of
import statements (see clause 8.2.3.7).

It is allowed to import sub-groups (i.e. a group which is defined within another group) directly, i.e. without the groups
in which the sub-group is embedded. If the name of a sub-group that should be imported is identical to the name of
another sub-group in the same module (see clause 8.2.2), the dot notation shall be used to identify the sub-group to be
imported uniquely.

If some visible definitions of a group are wished not to be imported, their kinds and identifiers shall be listed in the
exception list within a pair of curly brackets following the except keyword. The all keyword is also allowed to be
used in the exception list; this will exclude all definitions of the same kind from the import statement.

Syntactical Structure

[Visibility] import from ModuleId "{"
 {
 (group { QualifiedIdentifier [except "{" ExceptSpec "}"] [","] })
 [";"]
 }
"}" [";"]

Semantic Description

The effect of importing a group is identical to an import statement that lists all visible definitions (including
sub-groups) of this group except of those that are listed in the except specification. See also clause 8.2.3. Import
statements contained in the group or in its subgroups are not part of this list, only definitions are.

It is important to point out, that the except statement does not exclude the definitions listed from being imported in
general; all statements importing definitions of the same kind can be seen as a shorthand notation for an equivalent list
of identifiers of single definitions. The except statement excludes definitions from this single list only.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The group to be imported shall be defined in the module from which it is to be imported.

b) See the restrictions given in clause 8.2.3.

Examples

 import from MyModule { group myGroup } // includes all visible definitions from myGroup

 import from MyModule {
 group myGroup except {
 type MyType3, MyType5; // excludes the two types from the import statement,
 template all // excludes all templates defined in myGroup
 // from the import statement
 // but imports all other visible definitions of myGroup
 }
 }

 import from MyModule {
 group myGroup
 except { type MyType3 };// imports all visible types of myGroup except MyType3
 type MyType3 // imports MyType3 explicitly
 }

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)125

8.2.3.4 Importing definitions of the same kind

The all keyword may be used to import all visible definitions of the same kind of a module. The all keyword used
with the constant keyword identifies all visible constants declared in the definitions part of the module the import
statement refers to. Similarly the all keyword used with the function keyword identifies all visible functions, all
visible external functions defined and the visible module control function in the module the import statement denotes.

If some visible declarations of a kind are wished to be excluded from the given import statement, their identifiers shall
be listed following the except keyword.

The import of visible definitions of the same kind can be used in combination with imports of single visible definitions
(see clause 8.2.3.2), with imports of groups (see clause 8.2.3.3), and with imports of import statements (see
clause 8.2.3.7).

Syntactical Structure

[Visibility] import from ModuleId "{"
 {
 (
 (type all [except { TypeDefIdentifier [","] }]) |
 (template all [except { TemplateIdentifier [","] }]) |
 (const all [except { ConstIdentifier [","] }]) |
 (testcase all [except { TestcaseIdentifier [","] }]) |
 (altstep all [except { AltstepIdentifier [","] }]) |
 (function all [except { FunctionIdentifier [","] }]) |
 (signature all [except { SignatureIdentifier [","] }]) |
 (modulepar all [except { ModuleParIdentifier [","] }])
)
 [";"]
 }
"}" [";"]

Semantic Description

The effect of importing definitions of the same kind is identical to an import statement that lists all visible definitions
of that kind except of those that are listed in the except specification. See also clause 8.2.3.

NOTE: If the list of all visible definitions of that kind except of those that are listed in the except specification
is empty, the import statement has no effect. This case does not lead to an error.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) See the restrictions given in clause 8.2.3.

Examples

 import from MyModule {
 type all; // imports all types of MyModule
 template all // imports all templates of MyModule
 }

 import from MyModule {
 type all except MyType3, MyType5; // imports all types except MyType3 and MyType5
 template all // imports all templates defined in Mymodule
 }

8.2.3.5 Importing all definitions of a module

All visible definitions of a module definitions part may be imported using the all keyword next to the module name.

If some visible definitions are wished not to be imported, their kinds and identifiers shall be listed in the exception list
within a pair of curly brackets following the except keyword. The all keyword is also allowed to be used in the
exception list; this will exclude all visible declarations of the same kind from the import statement.

NOTE 1: If the list of all visible definitions of a module except of those that are listed in the except specification
is empty, the import statement has no effect. This case does not lead to an error.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)126

NOTE 2: Importing all definitions of a module imports only definitions declared directly in that module including
the address type and module control function (if they are specified), but does not import the import
statements of that module (see also clause 8.2.3.7).

Syntactical Structure

[Visibility] import from ModuleId
 all
 [
 {
 except "{"
 (group { QualifiedIdentifier [","] } | all) |
 (type { TypeDefIdentifier [","] } | all) |
 (template { TemplateIdentifier [","] } | all) |
 (const { ConstIdentifier [","] } | all) |
 (testcase { TestcaseIdentifier [","] } | all) |
 (altstep { AltstepIdentifier [","] } | all) |
 (function { FunctionIdentifier [","] } | all) |
 (signature { SignatureIdentifier [","] } | all) |
 (modulepar { ModuleParIdentifier [","] } | all)
 "}"
 [";"]
 }
]
[";"]

Semantic Description

The effect of importing all visible definitions of a module is identical to an import statement that lists all importable
definitions of that module except of those that are listed in the except specification. See also clause 8.2.3.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) If all visible definitions of a module are imported by using the all keyword, no other form of import (import of
single definitions, import of the same kind, etc.) shall be used for the same import statement.

b) In the set of except statements for an all import, only one except statement per kind of definition (i.e. for a
group, type, etc.) is allowed.

Examples

 import from MyModule all; // includes all definitions from MyModule

 import from MyModule all except {
 type MyType3, MyType5; // excludes these two types from the import statement and
 template all // excludes all templates declared in MyModule,
 // from the import statement
 // but imports all other definitions of MyModule
 }

8.2.3.6 Import definitions from other TTCN-3 editions and from non-TTCN-3 modules

In cases when visible definitions are imported from modules from other TTCN-3 editions or from other sources than
TTCN-3 modules, the language specification (see clause 8.1) shall be used to denote the language (may be together
with a version number) of the source (e.g. module, package, library or even file) from which definitions are imported. It
consists of the language keyword and a subsequent textual declaration of the denoted language.

The use of the language specification is optional when importing from a TTCN-3 module of the same edition as the
importing module. The TTCN-3 language identifiers defined in clause 8.1 are to be used. Package identifiers from ETSI
ES 202 781 [i.11], ETSI ES 202 782 [i.14], ETSI ES 202 784 [i.12] and ETSI ES 202 785 [i.13] can be used in addition.
Identifiers for other languages are defined in the language mapping parts of TTCN-3, i.e. in ETSI ES 201 873-7 [i.5],
ETSI ES 201 873-8 [i.6] and ETSI ES 201 873-9 [i.7].

When an incompatibility is discovered between the language and/or package identification (including implicit
identification by omitting the language specification) and the syntax of the module from which definitions are imported,
tools shall provide reasonable effort to resolve the conflict.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)127

Syntactical Structure

[Visibility] import from ModuleIdentifier [LanguageSpec] … [";"]

Semantic Description

TTCN-3 supports the referencing of elements defined in other TTCN-3 editions (versioned elements) or other languages
(foreign elements) from within TTCN-3 modules. Such elements can be used in a TTCN-3 module of a given edition
only if they have a TTCN-3 view in that TTCN-3 edition. The term TTCN-3 view can be best explained by considering
the case when the definition of a TTCN-3 element is based on another TTCN-3 element, the information content of the
referenced element shall be available and is used for the new definition. For example, when a template is defined based
on a structured type, the identifiers and types of fields of the base type shall be accessible and are used for the template
definition. In a similar way, when a base type is a versioned or foreign element it shall provide the same information
content as would be required from a TTCN-3 type declaration. The versioned or foreign element, naturally, may contain
more information than required by TTCN-3. The TTCN-3 view of a versioned or foreign element means that part of the
information carried by that element, which is necessary to use it in TTCN-3. Obviously, the TTCN-3 view of a
versioned or foreign element may be the full set or a subset of the information content of that element but never a
superset. There may be versioned or foreign element without a TTCN-3 view (zero TTCN-3 view), i.e. for some reason
no TTCN-3 definition in the given edition could be based on them.

To make declarations of versioned or foreign element visible in TTCN-3 modules, their names shall be imported just
like definitions in other TTCN-3 modules of the given edition. When imported, only the TTCN-3 view of the versioned
or foreign element will be seen from the importing TTCN-3 module. There are two main differences between importing
TTCN-3 elements of the same editions and versioned or foreign elements:

• To import from a TTCN-3 module of another edition or from a non-TTCN-3 module, the import statement
shall contain an appropriate language identifier string.

• Only versioned or foreign elements with a TTCN-3 view of a given edition are importable into a TTCN-3
module of that edition.

Importing can be done automatically using the all directive, in which case all importable objects shall automatically be
selected by the testing tool, or done manually by listing names of elements to be imported. Naturally, in the second case
only importable elements are allowed in the list.

When importing definitions from a non-TTCN-3 language, two principle approaches exist:

• With an implicit language mapping, non-TTCN-3 definitions are mapped internally in the TTCN-3 tool to the
respective TTCN-3 definitions as defined by the language mapping; the importing module works with the
internal representations of the imported definitions.

• With an explicit language mapping, non-TTCN-3 definitions are mapped directly to separate TTCN-3
definitions; the importing module imports the generated TTCN-3 and works with the mapped TTCN-3
definitions.

These lead to three options when using non-TTCN-3 language modules in a TTCN-3 specification:

• The import statement imports the non-TTCN-3 module; the tool uses the internal representation of the implicit
mapping of the non-TTCN-3 module's definitions according to the language mapping specification of that
language.

• The import statement imports the non-TTCN-3 module; the tool imports from a TTCN-3 module which is an
explicit mapping of the non-TTCN-3 module's definitions according to the language mapping specification of
that language.

• The import statement imports the explicit TTCN-3 representation of the non-TTCN-3 module; the tool imports
the TTCN-3 module which is an explicit mapping of the non-TTCN-3 module according to the language
mapping specification of that language.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The language specification should only be omitted if the referenced module contains TTCN-3 notation and the
TTCN-3 version is known.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)128

b) Definitions imported from non-TTCN-3 language sources have by default public visibility provided that no
other rules are defined in the respective language mapping (see ETSI ES 201 873-7 [i.5], ETSI
ES 201 873-8 [i.6] or ETSI ES 201 873-9 [i.7], respectively).

Examples

 module MyNewModule {
 import from MyOldModule language "TTCN-3:2003" {
 type MyType
 }
 }

 module MyNewestModule {
 import from MyNewModule language "TTCN-3:2010" { import all };
 // the language specifications shall be identical, see clause 8.2.3.8
 }

NOTE: The import mechanism is designed to allow the re-use of definitions from other TTCN-3 editions or from
other non-TTCN-3 language sources. The rules for importing definitions from specifications written in
other languages, e.g. SDL packages, may follow the TTCN-3 rules or may have to be defined separately.

8.2.3.7 Importing of import statements from TTCN-3 modules

Visible import statements of TTCN-3 modules can be imported by other TTCN-3 modules.

Syntactical Structure

[Visibility] import from ModuleIdentifier [LanguageSpec]
 "{" import all [";"] "}" [";"]

Semantic Description

TTCN-3 supports importing of visible import statements from other TTCN-3 modules. This means that import
statements of the module, from which the import statements are imported, are re-imported to the importing module. For
example, if module B imports the import statements of module A, everything that is imported by A using import
statements visible for module B, is also imported by B. If another module C imports all import statements from B, then
C imports all what A is importing - provided that the import statements are visible to modules B and C.

It is not possible to import individual import statements of another module.

The import of import statements can be used in combination with imports of single definitions (see clause 8.2.3.2), with
imports of groups (see clause 8.2.3.3), and with imports of definitions of the same kind (see clause 8.2.3.4).

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The restrictions given in clause 8.2.3.1 apply.

b) The restrictions given in clause 8.2.3.6 apply.

c) Importing of import statements is only possible from other TTCN-3 modules, i.e. the language specification
(see clause 8.1) shall denote a TTCN-3 edition only, not a non-TTCN-3 language.

Examples

EXAMPLE: Importing of visible import statements

module A {
 type integer T1;
 type integer T2;
 template T1 mw_t1 := ?;
 template T2 mw_t2 := *;
 :
}
module B {
 public import from A { type T1 }
 type charstring T2;
 template T1 m_t1 := (1, 2, 3);
 :

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)129

}
module C {
 public import from B { import all } // imports the import statements only
 public import from B { type T2 } // imports the type B.T2
 import from A { template all }
 :
}
module D {
 private import from C { import all } // imports the import statements only
 :
}
module E {
 import from D { import all }
 :
}

// yields the following
// module A knows
// A.T1 (defined)
// A.T2 (defined)
// A.mw_t1 (defined)
// A.mw_t2 (defined)
//
// module B knows
// A.T1 (imported)
// B.T2 (defined)
// B.m_t1 (defined)
//
// module C knows
// A.T1 (imported from B importing it from A)
// B.T2 (imported)
// A.mw_t1 (imported)
// A.mw_t2 (imported)
//
// module D knows
// A.T1 (imported from C importing it from B importing it from A)
// B.T2 (imported from C importing it from B)
// A.mw_t1 and A.mw_t2 are not imported as their imports are private to C
//
// module E "knows" nothing
// as the imports of D are private and not visible to E

8.2.3.8 Compatibility of language specifications in imports

When importing into a TTCN-3 module, the language specification (see clause 8.1) of the importing module, the
language specification of the import statement and the language specification of the source module, where the imported
definitions are defined, have to be compatible according to the following rules.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) A TTCN-3 module of any TTCN-3 edition can import from a non-TTCN-3 language source provided that a
TTCN-3 view for the non-TTCN-3 language exists (see clause 8.2.3.6).

b) Definitions or import statements are imported according to the language specification in which the definition
or the import statement is defined. If no language specification is given in this module, the language
specification of the import statement with which those definitions or import statements are to be imported, is
used instead. If the module, within which the definitions or the import statements are defined, and the import
statement for these definitions or import statements provide both a language specification, then they shall be
identical. If none of the two has a language specification, the language specification has to be known from
other sources, which is tool specific.

c) A TTCN-3 module shall only import from earlier or same editions of TTCN-3 but not from later editions,
e.g. the TTCN-3 language specification in an import statement has to be lower or equal to the TTCN-3
language specification of the importing module.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)130

8.2.4 Definition of friend modules

Modules can define other modules to be friends.

Syntactical Structure

[private] friend module ModuleIdentifier { "," ModuleIdentifier } ";"

Semantic Description

Friendship to modules is defined by the exporting module (the module that declares the definitions) not by the
importing module (the module that uses the module definitions of another module). Friendship can be cyclic.

If a module is friend to a module from which it imports top-level definitions, all top-level definitions with public and
friend visibility are visible to the friend module. For non-friend modules, public top-level definitions are visible only.

Missing friend modules shall not cause an error.

NOTE: Friend modules can be checked by tools, however at most warning are to be issued if a friend module is
missing.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Only private visibility can be defined for friend definitions as they are always private.

Examples

module MyModuleA {
 friend module MyModuleB,MyModuleC;
}
// MyModuleB and MyModuleC are friends of MyModuleA

module MyModuleB {
 friend module MyModuleA;
}
// MyModuleA is friend of MyModuleB

module MyModuleC {
}

8.2.5 Visibility of definitions

Top-level module definitions and import statements have a visibility, which can be explicitly set. They are by default
public except for imported and friend definitions. Import definitions are by default private. Friend definitions are
private only. Group definitions are public only.

Syntactical Structure

[public | friend | private]

Semantic Description

The visibility controls whether a top-level definition or an import statement is importable by another module.

Three visibilities are distinguished:

• A top-level definition or an import statement with public visibility is importable by any other module.

• A top-level definition or an import statement with friend visibility is importable by friend modules only
(see clause 8.2.4).

• A top-level definition or an import statement with private visibility cannot be imported at all.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)131

NOTE: As specified in restriction e) of clause 8.2.3.1, this means that importable definitions are imported
together with all information of referenced definitions that are necessary for the usage of the importable
definition, even if the referenced definition is private. Only the identifier of the referenced definition is
not visible in the importing TTCN-3 module.

The visibility of groups is always public. The visibility of imported definitions is by default private. All other
module definitions are by default public.

The visibility of a top-level definition or an import statement defines their importability by another module. If the
top-level definition or the import statement is part of a group, this has no effect on the importability of the module
definition. The importability of a top-level definition by another module is summarized in table 9, the importability of
import statements in table 10.

Table 9: Visibility and import of module definitions

Visibility of
module definition

Module definition
importable

directly by a
non-friend

module

Module definition
importable

directly by a
friend module

Module definition
importable via

group import by a
non-friend

module

Module definition
importable via

group import by a
friend module

public yes yes yes yes
friend no yes no yes
private no no no no

Table 10: Visibility and import of import statements

Visibility of
import

Import imported
by a non-friend

module

Import imported
by a friend

module
public yes yes
friend no yes
private no no

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

module MyModuleA {
 friend module MyModuleC;
 private type integer MyInteger;
 // MyInteger is not visible to other modules
 friend type charstring MyString;
 // MyString is visible to friend modules
 public type boolean MyBoolean;
 // MyBoolean is visible to all modules
}
module MyModuleB {
 import from MyModuleA all;
 // MyString and MyInteger are not visible and are not imported
 // MyBoolean is imported
}
module MyModuleC {
 import from MyModuleA all;
 // MyInteger is not visible and is not imported
 // MyString and MyBoolean are imported
}

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)132

8.3 Module control part
The module control part is a shorthand notation to define a module control function.

Syntactical Structure

control StatementBlock

Semantic Description

The shorthand notation is equivalent to a module control function with the same statement block, no parameters, no
runs on clause and no return clause (see clause 16.1). It is equal to the following syntax:

EXAMPLE 1:

 control {
 execute(TC_01());
 }

 // is equal to:

 function control () {
 execute(TC_01());
 }

NOTE: As the control part is a short hand notation of a control function with the name "control", at most 1
control part can be defined in a TTCN-3 module.

When not used as an entry point for execution of the test suite, the module control function can be invoked explicitly in
a similar way as a standard function, using the control keyword instead of the identifier. In this case, the control
keyword may be optionally prefixed with a module identifier followed by a dot. If the referenced module control
function does not have any parameters, the parameter list may also be omitted at the place of invocation.

The rules for declaring and use of the module control function are described in clause 16.1. The mechanism of module
control is explained in more detail in clause 26.

EXAMPLE 2:

 module MyTestSuite
 { // This module contains definitions …

 :
 const integer c_myConstant := 1;
 type record MyMessageType { … }
 template MyMessageType m_myMessage := { … }
 :
 function f_myFunction1() { … }
 function f_myFunction2() { … }
 :

testcase TC_MyTestcase1() runs on MyMTCType { … }
testcase TC_MyTestcase2() runs on MyMTCType { … }

 :
 // … the module control function provides an entry point for test suite execution
 control
 {
 var boolean v_myVariable; // local control variable
 :

 execute(TC_MyTestCase1()); // sequential execution of test cases
 execute(TC_MyTestCase2());
 :

 }
 }

EXAMPLE 3:

 function control(integer p_par) return integer {
 execute(TC_01(p_par)); // typical use: test case execution
 MyTestSuite.control(); // explicit execution of a control function from an imported
 // module
 MyTestSuite.control; // shorthand call notation for control parts without parameters
 return -1;
 };

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)133

9 Port types, component types and test configurations

9.0 General
TTCN-3 allows the (dynamic) specification of concurrent test configurations (or configuration for short).
A configuration consists of a set of inter-connected test components with well-defined communication ports and an
explicit test system interface which defines the borders of the test system (see figure 4).

NOTE: Additional configuration and deployment support for TTCN-3 is defined in the optional package [i.11].

SUT

Abstract Test System Interface

Real Test System Interface

MTC PTC1

TTCN Test system

PTC2

Figure 4: Conceptual view of a typical TTCN-3 test configuration

Within every configuration there shall be one (and only one) Main Test Component (MTC). Test components that are
not MTCs are called parallel test components or PTCs. The MTC shall be created by the system automatically at the
start of each test case execution. The behaviour defined in the body of the test case shall execute on this component.
During execution of a test case, other components can be created dynamically by the explicit use of the create
operation.

Test case execution shall end when the MTC terminates. All other PTCs are treated equally i.e. there is no explicit
hierarchical relationship among them and the termination of a single PTC terminates neither other components nor the
MTC. When the MTC terminates, the test system has to stop all PTCs not terminated by the moment when the test case
execution is ended.

Communication between test components and between the components and the test system interface is achieved via
communication ports (see clause 9.1).

Test component types and port types, denoted by the keywords component and port, shall be defined in the module
definitions part. The actual configuration of components and the connections between them is achieved by performing
create and connect operations within the test case behaviour. The component ports are connected to the ports of
the test system interface by means of the map operation (see clause 21.1.1).

9.1 Communication ports
Test components are connected via their ports, i.e. connections among components and between a component and the
test system interface are port-oriented. Each port is modelled as an infinite FIFO queue which stores the incoming
messages or procedure calls until they are processed by the component owning that port (see figure 5).

NOTE: While TTCN-3 ports are infinite in principle in a real test system they may overflow. This is to be treated
as a test case error (see clause 24.1).

MTC PTC

Figure 5: The TTCN-3 communication port model

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)134

TTCN-3 connections are port-to-port and port-to-test system interface connections (see figure 6). There are no
restrictions on the number of connections a component may maintain. One-to-many connections are also allowed
(e.g. figure 6 (g) or (h)).

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The following connections are not allowed (see figure 7):

- A port owned by a component A shall not be connected with two or more ports owned by the same
component (figure 7 (a) and (e)).

- A port of a test system interface cannot have connection with more than one port owned by a
component A. This means, connections as shown in figure 7 (b) are not allowed.

- A port owned by a component A shall not be connected with two or more ports owned by a component B
(see figure 7 (c)).

- A port owned by a component A can only have a one-to-one connection with the test system interface.
This means, connections as shown in figure 7 (d) are not allowed.

- Connections within the test system interface are not allowed (see figure 7 (f)).

- A port that is connected shall not be mapped and a port that is mapped shall not be connected (see
figure 7 (g)).

b) Since TTCN-3 allows dynamic configurations and addresses, the restrictions on connections cannot always be
checked at compile-time. The checks shall be made at runtime and shall lead to a test case error when failing.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)135

test component
A

test component
B

test component
A

test component
A

test system test component
A

test system interface

test component
A

test component
B

test system test component
A

test system interface

test component
A

test component
B

test component
C

test system test component
A

test system interface

test component
B

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6: Allowed connections

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)136

 test system
 test component

A

test system interface

test component
B

(g)

test component
A

test component
B

test system test component
A

test system interface

test system test component
A

test system interface

test component
A

test component
A

test system

test system interface

(e) (f)

(c) (d)

(a) (b)

Figure 7: NOT allowed connections

9.2 Test system interface
TTCN-3 is used to test implementations. The object being tested is known as the Implementation Under Test or IUT.
The IUT may offer direct interfaces for testing or it may be part of system in which case the tested object is known as a
System Under Test or SUT. In the minimal case the IUT and the SUT are equivalent. In the present document the term
SUT is used in a general way to mean either SUT or IUT.

In a real test environment test cases need to communicate with the SUT. However, the specification of the real physical
connection is outside the scope of TTCN-3. Instead, a well defined (but abstract) test system interface shall be
associated with each test case. A test system interface definition is identical to a component definition, i.e. it is a list of
all possible communication ports through which the test case is connected to the SUT.

The test system interface statically defines the number and type of the port connections to the SUT during a test run.
However, the connections between the test system interface and the TTCN-3 test components are dynamic in nature and
may be modified during a test run by using map and unmap operations (see clause 21.1).

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)137

A component type definition is used to define the test system interface because, conceptually, component type
definitions and test system interface definitions have the same form (both are collections of ports defining possible
connection points). When used as test system interfaces, components cannot make use of any constants, variables and
timers declared in the component type.

Syntactical Structure

The same as a component type definition (see clause 6.2.10.1).

Semantic Description

Generally, a component type reference defining the test system interface shall be associated with every test case using
more than one test component. The ports of the test system interface shall automatically be instantiated by the system
together with the MTC when the test case execution starts.

The operation returning the component reference of the test system interface is system. This shall be used to address
the ports of the test system.

In the case where the MTC is the only component that is instantiated during test execution, a test system interface need
not be associated to the test case. In this case, the component type definition associated with the MTC implicitly defines
the corresponding test system interface.

Variables, timers and constants declared in component types, which are used as test system interfaces will have no
effect.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The same as for component type definitions (see clause 6.2.10.1).

Examples

EXAMPLE 1: Explicit definition of a test system interface:

 type component MyMTCType
 {
 var integer vc_myLocalInteger;
 timer tc_myLocalTimer;
 port MyMessagePortType pCO1
 }

 type component MyTestSystemInterface
 {
 port MyMessagePortType pCO1, pCO2;
 port MyProcedurePortType pCO3
 }

 // MyTestSystemInterface is the test system interface
 testcase TC_MyTestcase1 () runs on MyMTCType system MyTestSystemInterface {
 // establishing the port connections
 map(mtc:pCO1, system:pCO2);
 // the testcase behaviour
 // …
 }

EXAMPLE 2: Implicit definition of a test system interface:

 // MyMTCType is the test system interface
 testcase TC_MyTestcase2 () runs on MyMTCType {
 // map statements are not needed
 // the testcase behaviour
 // …
 }

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)138

10 Declaring constants
TTCN-3 constants are runtime constants. After value assignment, they do not change their value during test execution.
They can be used on the right hand side of assignments, in expressions, in actual parameters, and in template
definitions. Constants used within type definitions have to have values known at compile-time.

Syntactical Structure

const Type { ConstIdentifier [ArrayDef] ":=" ConstantExpression [","] } [";"]

Semantic Description

A constant assigns a name to a fixed value. A value is assigned only once to a constant, at the place of its declaration.
The constant does not change its value during test execution. The constant is defined only once, but can be referenced
multiple times in a TTCN-3 module.

If functions are used for the initialization of constants, it is strongly advised to adhere to the rules defined in
clause 16.1.4. Not following these rules may cause non-deterministic test executions.

Optional fields of record and set constants or constant fields can be initialized explicitly or implicitly. For implicit
initialization of the optional fields of a constant or a constant field, an optional attribute with the value "implicit
omit" (see clause 27.7) shall be associated with it either directly or via the attribute distribution (scoping) mechanism
(see clause 27.1.1).

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Void.

b) Constant expressions initializing constants, which are used in type and array definitions, shall only contain
literals, predefined functions except of rnd (see clause 16.1.2), operators specified in clause 7.1, and other
constants obeying the limitations of this clause.

NOTE: The only value that can be assigned to global constants of default, component, port or timer type or
component constants of default or component types is the special value null.

c) Using the dot notation (see clauses 6.2.1.1, 6.2.2.1 and 6.2.5.1) and index notation (see clauses 6.2.7 and
6.2.3.0) for referencing a field, alternative or element of an address value, which actual value is null shall
cause an error.

d) The right-hand side of the assignment that initializes a constant shall evaluate to an object that is at least
partially initialized.

Examples

 const integer c_myConst1 := 1;
 const boolean c_myConst2 := true, c_myConst3 := false;

11 Declaring variables

11.0 General
TTCN-3 variables are statically typed variables. Variables are either value variables to store values or template
variables to store templates.

Variables can be of simple basic types, basic string types, structured types, special data types (including subtypes
derived from these types) as well as address, component or default, port or timer types.

Variables can be declared and used in test cases, functions and altsteps. Additionally, variables can be declared in
component type definitions. These variables can be used in test cases, altsteps and functions which are running on a
given component type.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)139

Variables can be declared lazy using the @lazy modifier.

Alternatively, variables can be declared fuzzy using the @fuzzy modifier.

If a variable is declared fuzzy or lazy they can additionally declared with the @deterministic modifier to indicate
that when used in a deterministic evaluation context, any evaluation of the variable would have no side effect and would
yield the same result.

Lazy and fuzzy features are valid only in the scope, where the variables' names are visible. For example, if a fuzzy
variable is passed to a formal parameter declared without a modifier, it loses its fuzzy feature inside the called function.
Similarly, if it is passed to a lazy formal parameter, it becomes lazy within the called function.

Whenever a lazy or fuzzy variable is assigned, the TE is required to save the lexical environment (the set of directly or
indirectly referenced values and templates) valid at the time of the assignment, so that it is possible to resolve the
expression at the time of evaluation of the lazy or fuzzy value or template. If the assignment was made on a lower scope
than the evaluation, saving the lexical environment extends lifetime of the referenced variables defined on that lower
scope.

Examples

 var @fuzzy integer v_fuzzy := 1;
 var integer v_var;
 var boolean v_condition := true;
 if (v_condition) {
 var integer v_local := 0;
 v_fuzzy := v_local;
 v_local := 10;
 }
 // although v_local is no longer valid at this point, v_fuzzy still evaluates to 10 because
 // the lexical environment is available to the fuzzy variable:
 v_var := v_fuzzy;

11.1 Value variables
A TTCN-3 value variable stores values. It is declared by the var keyword followed by a type identifier and a variable
identifier. An initial value can be assigned at variable declaration.

It may be used at the right hand side as well as at the left hand side of assignments, in expressions, following the
return keyword in bodies of functions with a return clause in their headers and may be passed to both value and
template-type formal parameters.

Syntactical Structure

var [(@lazy | @fuzzy) [@deterministic]] Type
 { VarIdentifier [ArrayDef] [":=" Expression] [","] }+ [";"]

Semantic Description

A value variable associates a name with the location of a value. A value variable may change its value during test
execution several times. A value can be assigned several times to a value variable. The value variable can be referenced
multiple times in a TTCN-3 module.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Expression shall be of type Type.

b) Value variables shall store values only.

c) Value variables shall not be declared or used in a module definitions part (i.e. global variables are not
supported in TTCN-3).

d) Use of uninitialized value variables at other places than the left hand side of assignments, in return statements,
or as actual parameters passed to formal parameters shall cause an error.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)140

e) The initialization or assignment of a fuzzy or lazy variable shall not contain function calls of functions with
inout or out parameters. The called functions may use other functions with inout or out parameters internally.

f) If a lazy or fuzzy value variable is used in deterministic contexts (i.e. during the evaluation of a snapshot or
initialization of global non-fuzzy templates), it shall be declared @deterministic and the expression assigned to
the variable shall fulfill the restrictions imposed on content of functions used in special places given in
clause 16.1.4.

g) The expression assigned to a lazy or fuzzy variable might contain a direct or indirect reference to this variable.
Evaluation of such an expression shall cause a dynamic error.

h) Using the dot notation (see clauses 6.2.1.1, 6.2.2.1 and 6.2.5.1) and index notation (see clauses 6.2.7 and
6.2.3.0) for referencing a field, alternative or element of an address value, which actual value is null shall
cause an error.

i) The expression shall evaluate to a value, which is at least partially initialized.

Examples

 var integer v_myVar0;
 var integer v_myVar1 := 1;
 var boolean v_myVar2 := true, v_myVar3 := false;
 var @lazy integer v_myLazyVar1 := v_myVar1+1;
 var timer v_timer1;
 timer t_myTimer1; v_myVar1 := 2;
 v_myVar1 := v_myLazyVar1; // v_myLazyVar1 evaluates to 2 + 1
 v_myLazyVar1 := v_myLazyVar1 + 1;
 v_myVar1 := v_myLazyVar1; // causes an error as v_myLazyVar1 references itself
 v_timer1 := t_myTimer1;

11.2 Template variables
A TTCN-3 template variable stores templates. They are declared by the var template keyword followed by a type
identifier and a variable identifier. An initial content can be assigned at declaration. In addition to values, template
variables may also store matching mechanisms (see clause 15.7).

Template variables may be used on the right hand side as well as on the left hand side of assignments, following the
return keyword in bodies of functions defining a template-type return value in their headers and may be passed as
actual parameters to template-type formal parameters. It is also allowed to assign a template instance to a template
variable or a template variable field.

Syntactical Structure

var TemplateModifier [(@lazy | @fuzzy) [@deterministic]]
 Type { VarIdentifier [ArrayDef] ":=" TemplateBody [","] }+ [";"]

Semantic Description

A template variable associates a name with the location of a template or a value (as every value is also a template).
A template variable may change its template during test execution several times. A template or value can be assigned
several times to a template variable. The template variable can be referenced multiple times in a TTCN-3 module.

The content of a template variable can be restricted to the matching mechanisms specific value and omit in the same
way as formal template parameters, see clause 5.4.1.2. The restriction template (omit) can be replaced by the shorthand
notation omit.

NOTE 1: String and list type templates can be concatenated, see clause 15.11.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Template variables shall not be declared or used in a module definitions part (i.e. global variables are not
supported in TTCN-3).

b) When used on the right hand side of assignments template variables shall not be operands of TTCN-3
operators (see clause 7.1) and the variable on the left hand side shall be a template variable too.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)141

c) When accessing element of template variables either on the left hand side or on the right hand side of
assignments, the rules given in clause 15.6 shall apply.

NOTE 2: While it is not allowed to directly apply TTCN-3 operations to template variables, it is allowed to use the
dot notation and the index notation to inspect and modify template variable fields.

d) Use of uninitialized template variables at other places than the left hand side of assignments, in return
statements, or as actual parameters passed to formal parameters shall cause an error.

e) Void.

f) If the template variable is restricted, then the template used to initialize it shall contain only the matching
mechanisms as described in clause 15.8.

g) Template variables, similarly to global and local templates, shall be fully specified in order to be used in
sending and receiving operations.

h) Restrictions on templates in clause 15 shall apply.

i) The initialization or assignment of a fuzzy or lazy variable shall not contain function calls of functions with
inout or out parameters. The called functions may use other functions with inout or out parameters internally.

j) If a lazy or fuzzy template variable is used in deterministic contexts (i.e. during the evaluation of a snapshot or
initialization of global non-fuzzy templates), it shall be declared @deterministic and the template body
assigned to the variable shall fulfill the restrictions imposed on content of functions used in special places
given in clause 16.1.4.

k) Using the dot notation (see clauses 6.2.1.1, 6.2.2.1 and 6.2.5.1) and index notation (see clause 6.2.7) for
referencing a field, alternative or element of an address value, which actual value is null shall cause an
error.

l) The template body at the right-hand side of the assignment symbol shall evaluate to a value or template,
which is type compatible with the variable being declared.

m) The template body at the right-hand side of the assignment symbol shall evaluate to an object that is at least
partially initialized.

Examples

 var template integer v_myVarTemp1 := ?;
 var template MyRecord v_myVarTemp2 := { field1 := true, field2 := * },
 v_myVarTemp3 := { field1 := ?, field2 := v_myVarTemp1 };
 var template @fuzzy float v_fuzzTemp1 := rnd(); // evaluated on every usage
 var template @fuzzy MyRecord v_fuzzTemp2 := { rnd() < 0.5, float2int(rnd()) };
 var template @lazy float LazyTemp1 := v_fuzzTemp1; // evaluates v_fuzzTemp1
 var template @lazy MyRecord v_lazyTemp2 :=
 { v_lazyTemp1 < 0.5, float2int(v_fuzzTemp1) }; // evaluates v_lazyTemp1 and v_fuzzTemp1
 v_lazyTemp2.field1 := true; // evaluates v_lazyTemp2 and overwrites field1 with true

12 Declaring timers
TTCN-3 provides a timer mechanism. Timers can be declared and used in test cases, functions and altsteps.
Additionally, timers can be declared in component type definitions. These timers can be used in test cases, functions
and altsteps which are running on the given component type.

A timer declaration may have an optional default duration value assigned to it. The timer shall be started with this value
if no other value is specified. The timer value shall be a non-negative float value (i.e. greater than or equal to 0.0)
where the base unit is seconds.

In addition to single timer instances, timer arrays can also be declared. Default duration(s) of the elements of a timer
array shall be assigned using a value array. Default duration(s) assignment shall use the array value notation as specified
in clause 15.8.2. If the default duration assignment is wished to be skipped for some element(s) of the timer array, it
shall explicitly be declared by using the not used symbol ("-").

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)142

Syntactical Structure

timer { TimerIdentifier [ArrayDef] ":=" TimerValue [","] } [";"]

Semantic Description

Timers are local to components. A component can start and stop a timer, check if a timer is running, read the elapsed
time of a running timer and process timeout events after timer expiration. The timer value is interpreted with a base unit
of seconds.

A timer declared and started in scope units such as functions ceases to exist when the scope unit is left unless there is a
constant, variable or parameter defined in the current or higher scope unit or in an activated altstep that contains a
reference to it. In this case, the timer is kept as long as at least one constant, variable or parameter of the current or
higher scope unit or an activated altstep contain a reference to it. If a timer ceases to exist, it stops running, will never
timeout and cannot be referenced via the any timer or all timer constructs.

If not stated otherwise, timers have the same semantics as constants of a timer type.

NOTE: Timers that ceased to exist do not contribute to the test behaviour.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) In case of a single timer, the default duration value shall resolve to a non-negative numerical float value
(i.e. the value shall be greater or equal 0.0, infinity and not_a_number are disallowed).

b) In case of a timer array, it shall resolve to an array of float values obeying to restriction a) above of the same
size as the size of the timer array.

Examples

EXAMPLE 1: Single timer

 timer t_myTimer1 := 5E-3;
 // declaration of the timer t_myTimer1 with the default value of 5ms

 timer t_myTimer2; // declaration of t_myTimer2 without a default timer value i.e. a value has
 // to be assigned when the timer is started

EXAMPLE 2: Timer array

 timer t_mytimer1[5] := { 1.0, 2.0, 3.0, 4.0, 5.0 }
 // all elements of the timer array get a default duration.

 timer t_mytimer2[5] := { 1.0, -, 3.0, 4.0, 5.0 }
 // the second timer (t_mytimer2[1]) is left without a default duration.

13 Declaring messages
One of the key elements of TTCN-3 is the ability to send and receive simple or complex messages over message-based
ports defined by the test configuration (see clauses 9 and 21). These messages may be those explicitly concerned with
testing the SUT or with the internal co-ordination and control messages specific to the relevant test configuration.

Messages are instances of types declared in the in/out/inout clauses of message port type definition.

Any type can be declared as type of a message in a message port type definition, i.e. values of any basic or structured
type (see clauses 6.1 and 6.2) can be sent or received. Received messages can also be declared as a combination of
value and matching mechanisms (see clause 15.5). Instances of messages can be declared by global, local or in-line
templates (see clause 15) or being constructed and passed via variables or template variables (see clause 11) and
parameters or template parameters (see clause 5.4).

Syntactical Structure

See syntactical structure of types (see clause 6).

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)143

Semantic Description

See semantic description of types (see clause 6).

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

 // a structured, ordered message with two fields
 type record ARecord { integer i, float f }

14 Declaring procedure signatures
Procedure signatures (or signatures for short) are needed for procedure-based communication. Procedure-based
communication may be used for the communication within the test system, i.e. among test components, or for the
communication between the test system and the SUT. In the latter case, a procedure may either be invoked in the SUT
(i.e. the test system performs the call) or in the test system (i.e. the SUT performs the call).

Syntactical Structure

signature SignatureIdentifier
"(" { [in | inout | out] Type ValueParIdentifier [","] } ")"
[(return Type) | noblock]
[exception "(" ExceptionTypeList ")"]

Semantic Description

For all used procedures, i.e. procedures used for the communication among test components, procedures called from the
SUT and procedures called from the test system, a procedure signature shall be defined in the TTCN-3 module.

TTCN-3 supports blocking and non-blocking procedure-based communication. By default, signature definitions without
the noblock keyword are assumed to be used for blocking procedure-based communication.

Signature definitions may have parameters. Parameters shall be of data type only, i.e. of a basic type, a structured type
thereof or a subtype thereof. Within a signature definition the parameter list may include parameter identifiers,
parameter types and their direction, i.e. in, out, or inout. The direction inout and out indicate that these
parameters are used to retrieve information from the remote procedure.

NOTE 1: The direction of the parameters is as seen by the called party rather than the calling party.

A remote procedure may return a value after its termination. The type of the return value shall be of data type only and
shall be specified by means of a return clause in the corresponding signature definition.

Exceptions that may be raised by remote procedures are represented in TTCN-3 as values of a specific type. Therefore
templates and matching mechanisms can be used to specify or check return values of remote procedures.

NOTE 2: The conversion of exceptions generated by or sent to the SUT into the corresponding TTCN-3 type or
SUT representation is tool and system specific and therefore beyond the scope of the present document.

The exceptions are defined in the form of an exception list included in the signature definition. This list defines all
the possible different types associated with the set of possible exceptions (the meaning of exceptions themselves will
usually only be distinguished by specific values of these types).

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Signature definitions for non-blocking communication shall use the noblock keyword, shall only have in
parameters and shall have no return value but may raise exceptions.

b) Signature parameters and the return type shall be of a data type.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)144

Examples

 signature MyRemoteProcOne (); // MyRemoteProcOne will be used for blocking
 // procedure-based communication. It has neither
 // parameters nor a return value.

 signature MyRemoteProcTwo () noblock; // MyRemoteProcTwo will be used for non blocking
 // procedure-based communication. It has neither
 // parameters nor a return value.

 signature MyRemoteProcThree (in integer Par1, out float Par2, inout integer Par3);
 // MyRemoteProcThree will be used for blocking procedure-based communication. The procedure
 // has three parameters: Par1 an in parameter of type integer, Par2 an out parameter of
 // type float and Par3 an inout parameter of type integer.

 signature MyRemoteProcFour (in integer Par1) return integer;
 // MyRemoteProcFour will be used for blocking procedure-based communication. The procedure
 // has the in parameter Par1 of type integer and returns a value of type integer after its
 // termination

 signature MyRemoteProcFive (inout float Par1) return integer
 exception (ExceptionType1, ExceptionType2);
 // MyRemoteProcFive will be used for blocking procedure-based communication. It returns a
 // float value in the inout parameter Par1 and an integer value, or may raise exceptions of
 // type ExceptionType1 or ExceptionType2

 signature MyRemoteProcSix (in integer Par1) noblock
 exception (integer, float);
 // MyRemoteProcSix will be used for non-blocking procedure-based communication. In case of
 // an unsuccessful termination, MyRemoteProcSix raises exceptions of type integer or float.

15 Declaring templates

15.0 General
Templates are used to either transmit a set of distinct values or to test whether a set of received values matches the
template specification. Templates can be defined globally or locally.

Templates provide the following possibilities:

a) they are a way to organize and to re-use test data, including a simple form of inheritance;

b) they can be parameterized;

c) they allow matching mechanisms;

d) they can be used with either message-based or procedure-based communications.

Within a template values, ranges and matching attributes can be specified and then used in both message-based and
procedure-based communications. Templates may be specified for any TTCN-3 type or procedure signature. The
type-based templates are used for message-based communications and the signature templates are used in
procedure-based communications.

A template can be declared fuzzy using the @fuzzy modifier.

NOTE: Using a fuzzy template from a non-fuzzy template causes evaluation of the fuzzy template. Thus, for
unparameterized non-fuzzy templates, the result of the used fuzzy templates will stay the same for every
usage.

A fuzzy template can be declared deterministic using the @deterministic modifier. A deterministic template shall be
evaluated to the same result in the same deterministic evaluation context whenever it is evaluated.

A modified template declaration (see clause 15.5) specifies only the fields to be changed from the base template, i.e. it
is a partial specification.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)145

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Templates shall be specified only for component data types and procedure signatures.

b) Void.

c) The expression or template body initializing a template shall evaluate to a value or template, which is type
compatible with the template being declared.

d) The expression or template body initializing a template shall evaluate to a value or a template that is at least
partially initialized or to a matching mechanism.

e) The body of a fuzzy template shall not contain function calls of functions with inout or out parameters. The
called functions may use other functions with inout or out parameters internally.

f) Fuzzy features are valid only in the scope, where the templates' names are visible. For example, if a fuzzy
template is passed to a formal template parameter declared without a modifier, it loses its fuzzy feature inside
the called function.

g) For a fuzzy template that is declared deterministic the template body shall fulfill the restrictions imposed on
content of functions used in special places given in clause 16.1.4.

Examples

 type record MyRecord {
 default def
 }
 type union MyUnion {
 integer choice1,
 MyRecord choice2
 }
 template MyUnion m_integerChosen := { choice1 := 5 }
 // shall cause an error as the type MyUnion contains MyRecord, which includes
 // a field of default type.

 external function fx_garble(charstring p_str) return p_str;
 template @fuzzy charstring m_fuzzy := fx_garble("foobar"); // every usage of m_fuzzy re-
 // evaluates the function call

15.1 Declaring message templates
Instances of messages with actual values may be specified using templates. A template can be thought of as being a set
of instructions to build a message for sending or to match a received message.

Syntactical Structure

See syntactical structure of global and local templates (see clause 15.3) and of in-line templates (see clause 15.4).

Semantic Description

A template used in a send operation defines a complete set of field values comprising the message to be transmitted
over a port.

NOTE: For sending templates, omitting an optional field is considered to be a value notation rather than a
matching mechanism.

A template used in a receive, trigger or check operation defines a data template against which an incoming
message is to be matched. Matching mechanisms, as defined in clauses 15.7 and 15.8 and in annex B, may be used in
receive templates. No binding of the incoming values to the template shall occur.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)146

Restrictions

In addition to restrictions in clause 15.0, the following restrictions apply:

a) At the time of a send operation, the used template shall be completely initialized and all fields shall resolve to
actual values or to omit and no other matching mechanisms shall be used in the template fields, neither directly
nor indirectly.

At the time of a receiving operation, the matching template shall be completely initialized.

b) Optional fields of record and set templates or template fields can be initialized explicitly or implicitly. For
implicit initialization of the optional fields of a template or a template field, an optional attribute with the
value "implicit omit" (see clause 27.7) shall be associated with it either directly or via the attribute
distribution (scoping) mechanism (see clause 27.1.1).

Examples

EXAMPLE 1: Template for sending messages

 // Given the message definition
 type record MyMessageType
 {
 integer field1 optional,
 charstring field2,
 boolean field3
 }

 // a message template could be
 template MyMessageType m_myTemplate:=
 {
 field1 := omit,
 field2 := "My string",
 field3 := true
 }

 // and a corresponding send operation could be
 myPCO.send(m_myTemplate);

EXAMPLE 2: Template for receiving messages

 // Given the message definition
 type record MyMessageType
 {
 integer field1 optional,
 charstring field2,
 boolean field3
 }

 // a message template might be
 template MyMessageType mw_myTemplate:=
 {
 field1 := ?,
 field2 := pattern "abc*xyz",
 field3 := true
 }

 // and a corresponding receive operation could be
 myPCO.receive(mw_myTemplate);

EXAMPLE 3: Template for receiving messages

 // When used in a receiving operation this template will match any integer value
 template integer mw_myTemplate := ?;

 // This template will match only the integer values 1, 2 or 3
 template integer mw_myTemplate := (1, 2, 3);

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)147

15.2 Declaring signature templates
Instances of procedure parameter lists with actual values may be specified using templates. Templates may be defined
for any procedure by referencing the associated signature definition.

Syntactical Structure

See syntactical structure of global and local templates (see clause 15.3) and of in-line templates (see clause 15.4).

Semantic Description

A signature template defines the values and matching mechanisms of the procedure parameters only, but not the return
value. The values or matching mechanisms for a return have to be defined within the reply (see clause 22.3.3) or
getreply operation (see clause 22.3.4).

A template used in a call or reply operation defines a complete set of field values for all in and inout
parameters. At the time of the call operation, all in and inout parameters in the template shall resolve to actual
values, no matching mechanisms shall be used in these fields, either directly or indirectly. Any template specification
for out parameters is simply ignored, therefore it is allowed to specify matching mechanisms for these fields, or to
omit them (see annex B).

A template used in a getcall operation defines a data template against which the incoming parameter fields are
matched. Matching mechanisms, as defined in annex B, may be used in any templates used by this operation. No
binding of incoming values to the template shall occur. Any out parameters shall be ignored in the matching process.

Restrictions

In addition to restrictions in clause 15.0, the following restrictions apply:

a) At the time of a call, reply and raise operation, the used template shall be completely initialized and all
in/inout parameters in a call, all out/inout parameters in a reply or raise operation shall resolve
to specific values or to omit and no other matching mechanisms shall be used for these parameters, neither
directly nor indirectly.

b) The NotUsedSymbol shall only be used in signature templates for parameters which are not relevant and in
modified template declarations and modified in-line templates to indicate no change for the specified field or
element.

At the time of a getcall, getreply and catch operation, the matching template shall be completely initialized.

c) Optional fields of record and set parameters or parameter fields can be initialized explicitly or implicitly. For
implicit initialization of a parameter or a parameter field, an optional attribute with the value "implicit
omit" (see clause 27.7) shall be associated with it either directly or via the attribute distribution (scoping)
mechanism (see clause 27.1.1).

Examples

EXAMPLE 1: Templates for invoking and accepting procedures:

 // signature definition for a remote procedure
 signature RemoteProc(in integer Par1, out integer Par2, inout integer Par3) return integer;

 // example templates associated to defined procedure signature
 template RemoteProc s_template1:=
 {
 Par1 := 1,
 Par2 := 2,
 Par3 := 3
 }

 template RemoteProc s_template2:=
 {
 Par1 := 1,
 Par2 := ?,
 Par3 := 3
 }

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)148

 template RemoteProc s_template3:=
 {
 Par1 := 1,
 Par2 := ?,
 Par3 := ?
 }

 template RemoteProc s_template4:=?;

EXAMPLE 2: In-line templates for invoking procedures:

 // Given example 1 in this clause

 // Valid invocation since all in and inout parameters have a distinct value
 myPCO.call(RemoteProc:s_template1);

 // Valid invocation since all in and inout parameters have a distinct value
 myPCO.call(RemoteProc:s_template2);

 // Invalid invocation causing an error
 // since the inout parameter Par3 has a matching attribute not a value
 myPCO.call(RemoteProc:s_template3);

 // Templates never return values. In the case of Par2 and Par3 the values returned by the
 // call operation shall be retrieved using an assignment clause at the end of the call statement

EXAMPLE 3: In-line templates for accepting procedure invocations:

 // Given example 1 in this clause

 // Valid getcall, it will match if Par1 == 1 and Par3 == 3
 myPCO.getcall(RemoteProc:s_template1);

 // Valid getcall, it will match if Par1 == 1 and Par3 == 3
 myPCO.getcall(RemoteProc:s_template2);

 // Valid getcall, it will match on Par1 == 1 and Any value of Par3
 myPCO.getcall(RemoteProc:s_template3);

EXAMPLE 4: In-line templates for accepting procedure replies:

 // Given example 1 in this clause

 // Valid getreply, in parameters will be ignored, matches if return value is 4
 myPCO.getreply(RemoteProc:s_template2 value 4);

 // Valid getreply, accepting any reply for RemoteProc
 myPCO.getreply(RemoteProc:?);

 // Valid getreply, also accepting any reply for RemoteProc
 myPCO.getcall(RemoteProc:s_template4 value ?);

15.3 Global and local templates
TTCN-3 allows defining global templates and local templates.

Syntactical Structure

template [TemplateRestriction] [@fuzzy] [@deterministic] [@abstract] Type
TemplateIdentifier
["(" TemplateFormalParList ")"] [modifies TemplateRef] ":=" BaseTemplateBody

NOTE 1: The optional restriction part is covered by clause 15.8.

Semantic Description

Global templates shall be defined in the module definitions part. Local templates shall be defined in testcases, functions,
altsteps or statement blocks. Both global and local templates shall adhere to the scoping rules specified in clause 5.

Both global and local templates can be parameterized. The actual parameters of a template can include values and
templates. The rules for formal and actual parameter lists shall be followed as defined in clause 5.2.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)149

Both global and local templates are initialized at the place of their declaration. This means, all template fields which are
not affected by parameterization shall receive a value or matching mechanism. Template fields affected by
parameterization are initialized at the time of template use.

If functions are used for the initialization of module parameters, it is strongly advised to adhere to the rules defined in
clause 16.1.4. Not following these rules may cause non-deterministic test executions.

At the time of their use (e.g. in communication operations send, receive, call, getcall, etc.), it is allowed to
change template fields by in-line modified templates, to pass in values via value parameters as well as to pass in
templates via template parameters. The effects of these changes on the values of the template fields do not persist in the
template subsequent to the corresponding communication event.

Restrictions

In addition to restrictions in clause 15.0, the following restrictions apply:

a) The dot notation such as myTemplateId.fieldId shall not be used to set or retrieve values in templates in
communication events. The "->" symbol shall be used for this purpose (see clause 23).

b) Restrictions on referencing elements of templates or template fields are described in clause 15.6.

c) There exist a number of restrictions on the functions used in expressions when specifying templates or
template fields; these are specified in clause 16.1.4.

d) After completing initialization, global and local message templates that do not contain the @abstract
modifier shall be fully initialized.

e) After completing initialization, global and local signature templates that do not contain the @abstract
modifier shall fulfil at least one of the following conditions:

• All procedure parameters are fully initialized.

• All in and inout procedure parameters are completely initialized and all out procedure parameters are
either unitialized or marked as not relevant using the NotUsedSymbol. Templates declared this way are safe
to be used in call and getcall operations, but they shall not be used in reply and getreply
operations.

• All out and inout procedure parameters are completely initialized and all in procedure parameters are either
unitialized or marked as not relevant using the NotUsedSymbol. Templates declared this way are safe to be
used in reply and getreply operations, but they shall not be used in call and getcall operations.

NOTE 2: Initialization of templates without parameters is completed at the place of their declaration. Initialization
of parameterized templates is completed at the time of their use.

Examples

 // The template
 template MyMessageType mw_myTemplate (integer p_myFormalParam):=
 {
 field1 := p_myFormalParam,
 field2 := pattern "abc*xyz",
 field3 := true
 }

 // could be used as follows
 pco1.receive(mw_myTemplate(123));

15.4 In-line Templates
Templates can be specified directly at the place they are used. Such templates are called in-line templates.

Syntactical Structure

[Type ":"] TemplateBody

NOTE 1: An in-line template is an argument of a communication operation or an actual parameter of a testcase,
function or altstep call, i.e. it is always placed within parenthesis and potentially separated with a comma.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)150

Semantic Description

In-line templates can be defined directly at the place of its use.

In-line templates do not have names, therefore they cannot be referenced or reused. The lifetime of in-line templates is
the TTCN-3 statement (an assignment, a testcase/function/alstep invocation, a return from a function, a communication
operation), where they are defined.

Restrictions

In addition to restrictions in clause 15.0, the following restrictions apply:

a) Void.

b) The type field should only be omitted when the type is implicitly unambiguous.

NOTE 2: For literal in-line templates, the following types may be omitted: integer, float, boolean,
bitstring, hexstring, octetstring.

NOTE 3: Types of constants, parameters and variables of the actual scope are always unambiguous and can hence
always be omitted.

c) In-line templates containing instead of values or inside values matching mechanisms (see clause 15.7) can only
be defined in arguments of receiving communication operations (i.e. receive, trigger, check,
getcall, getreply and catch), in arguments of the match and select case operations, in actual
template parameters, at the right hand side of assignments (when there is a template variable at the left hand
side of the assignment) and in return statements of template returning functions. In-line templates not
containing matching mechanisms can be defined wherever values are allowed.

d) When used in communication operations, the type of the in-line template shall be in the port list over which
the template is sent or received. In the case where there is an ambiguity between the listed type and the type of
the value provided (e.g. through subtyping) then the type name of the in-line template shall be included in the
communication operation.

e) There exist a number of restrictions on the functions used in expressions when specifying templates or
template fields; these are specified in clause 16.1.4.

Examples

 myPCO.receive(charstring:"abcxyz");

15.5 Modified templates
In cases where small changes are needed to specify a new template, it is possible to specify a modified template.
A modified template specifies modifications to particular fields of the original template, either directly or indirectly.
As well as creating explicitly named modified templates, TTCN-3 allows the definition of in-line modified templates.

Syntactical Structure

Global or local modified template:

template [TemplateRestriction] [@fuzzy] [@deterministic] [@abstract]
 Type TemplateIdentifier
 ["(" TemplateFormalParList ")"] modifies (TemplateRef | BaseTemplateBody) ":="
BaseTemplateBody

NOTE 1: The optional restriction part is covered by clause 15.8.

In-line modified template:

modifies BaseTemplateBody ":=" BaseTemplateBody

Semantic Description

The modifies keyword denotes the parent template from which the new modified template shall be derived. This
parent template may be either an original template or a modified template or also a matching mechanism.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)151

In case that the BaseTemplateBody on the right hand side of the modified template contains references to variables,
these are evaluated before the modification and any uninitialized fields or elements in these variables are treated as
unspecified, i.e. as if specified with the not used symbol "-" for the following modification algorithm.

The modifications occur in a linked fashion, eventually tracing back to the original template:

a) In case of templates, template fields or list elements of simple types, union and enumerated types, the
matching mechanism specified in the modified template is simply replacing its corresponding content in its
parent.

b) For templates, template fields and elements of record and set types, if a record or set field and its
corresponding matching mechanism is specified in the modified template, then the specified matching
mechanism replaces the one specified in the corresponding field of the parent template. If a record or set
field or its corresponding matching mechanism is – implicitly or explicitly by using the not used symbol "-" -
left unspecified in the modified template, then the matching mechanism in the corresponding field of the
parent template shall be used. When the field to be modified is nested within a template field which is a
structured field itself, no other field of the structured field is changed apart from the explicitly denoted one(s).

c) For templates, template fields and elements of record of and set of types, the above rules specified for
records and sets apply with the following deviations:

- if the value list notation is used, only the number of elements listed in the modified template is inherited
from the parent (i.e. the list is truncated at the last element of the list notation in the modified template);

- when individual values of a modified template or a modified template field of record of or set of
type wished to be changed, and only in these cases, the index assignment notation may also be used,
where the left hand side of the assignment is the index of the element to be altered.

In case of record of and set of types first apply rule (c) to the complete structure (e.g. truncation) than apply
further rules for the remaining individual type structure elements (see example 3).

Formal value or template parameters of modified templates inherit the default value or respectively template of the
corresponding parameter of their parent templates only, if this is denoted by the dash (don't change) symbol at the place
of the parameters' default value or respectively template.

Modified templates may also be restricted. Template restrictions are specified in clause 15.8.

A modified template or fields of a modified record or set template may also be declared fuzzy using the @fuzzy
modifier. A modified field with the @fuzzy modifier becomes fuzzy even if it wasn’t fuzzy in the base template and
will be evaluated for fuzzy fields described in the clause 6.2.1.0. A modified field without the @fuzzy modifier that
was marked @fuzzy in the base template loses fuzzy evaluation and the template on the right hand side of and
assignment shall be evaluated just once when the assignment is evaluated for the first time.

NOTE 2: If a fuzzy modified template modifies a non-fuzzy unparameterized template, the inherited fields before
modification will be the same for every evaluation of the fuzzy template.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) A modified template shall not refer to itself, either directly or indirectly, i.e. recursive derivation is not
allowed.

b) If a base template has a formal parameter list, the following rules apply to all modified templates derived from
that base template, whether or not they are derived in one or several modification steps:

1) the derived template shall not omit parameters and change types or names of parameters defined at any
of the modification steps between the base template and the actual modified template;

2) a template parameter restriction of a derived template specified at any of the modification steps between
the base template and the actual modified template can be changed to a stricter one (see table 13A in
clause 15.8);

3) a derived template can have additional (appended) parameters if wished;

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)152

4) if the dash (don't change) symbol is used at the place of a default value or default template, the
corresponding parameter of the parent template shall have a valid default value or default template, either
assigned directly or inherited. If not, this shall cause an error.

c) Restrictions on referencing elements of templates or template fields are described in clause 15.6: for modified
templates the rules for the left hand side of assignments apply.

d) Limitations on template restrictions described in clause 15.8 shall apply.

e) After completing initialization, modified global and local templates that do not contain the @abstract
modifier shall be fully initialized.

f) If the base template has a restriction, the modified template derived from it shall have the same or less strict
template restriction (see table 13B in clause 15.8). If the base template does not have a template restriction, the
modified template derived from it shall not have a template restriction.

NOTE 3: Initialization of modified templates without parameters is completed at the place of their declaration.
Initialization of modified parameterized templates is completed at the time of their use.

Examples

EXAMPLE 1: Modifying record templates (non-embedded case):

 // Modifying records
 type record MyRecordType
 {
 integer field1 optional,
 charstring field2,
 boolean field3
 }
 template MyRecordType m_myRecTemplate1 :=
 {
 field1 := 123,
 field2 := "A string",
 field3 := true
 }
 // then writing
 template MyRecordType m_myRecTemplate2 modifies m_myRecTemplate1 :=
 {
 field1 := omit, // field1 is optional but present in m_myTemplate1
 field2 := "A modified string"
 // field3 is unchanged
 }
 // is the same as writing
 // template MyRecordType m_myRecTemplate2 :=
 // {
 // field1 := omit,
 // field2 := "A modified string",
 // field3 := true
 // }

 template MyRecordType m_myRecTemplate3 modifies m_myRecTemplate1 := {omit, "A modified string"}
 //field3 is implicitly left unchanged;
 //m_myRecTemplate3 has the same content as m_myRecTemplate2

 template MyRecordType m_myRecTemplate4 modifies m_myRecTemplate1 := {omit,"A modified string",-}
 //field3 is explicitly left unchanged;
 //m_myRecTemplate4 has the same content as m_myRecTemplate2 and m_myRecTemplate3

EXAMPLE 2: Modifying record of templates (non-embedded case):

 type record of integer MyRecordOfType;

 template MyRecordOfType m_myBaseTemplate := { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

 template MyRecordOfType m_myRecOfTemplate1 modifies m_myBaseTemplate :=
 { -, -, 3, 2, -, -, -, -, -, - };
 // m_myRecOfTemplate1 contains { 0, 1, 3, 2, 4, 5, 6, 7, 8, 9 }

 template MyRecordOfType m_myRecOfTemplate2 modifies m_myBaseTemplate := { -, -, 3, 2 };
 // m_myRecOfTemplate2 replaces m_myBaseTemplate with: { 0, 1, 3, 2 };
 // elements 5 to 10 of m_myBaseTemplate are truncated

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)153

 template MyRecordOfType m_myRecOfTemplate3 modifies m_myBaseTemplate := { [2] := 3, [3] := 2 };
 // m_myRecOfTemplate3 has the same content as m_myMod1Template: { 0, 1, 3, 2, 4, 5, 6, 7, 8, 9 }

EXAMPLE 3: Modifying embedded record and record of templates:

 //Modifying a record embedded in a record of
 type record of record {
 integer a,
 integer b
 } MyListType

 template MyListType mw_myBaseListTemplate := { ?, { a := 1, b := 2 }, ?, { a := 3, b := 4 } }

 template MyListType mw_myListTemplate1 modifies mw_myBaseListTemplate := { [1] := { a := 42 } }
 //Content of field ″a″ of the second element is modified,
 //the content of mw_myListTemplate1 is: { ?, { a := 42, b := 2 }, ?, { a := 3, b := 4 } }

 template MyListType mw_myListTemplate2 modifies mw_myBaseListTemplate := { -, { a := 42 } ,- }
 //Content of field ″a″ of the second element is modified, and the
 //record of is truncated after the third element: { ?, { a := 42, b := 2 }, ? }

EXAMPLE 4: Modified in-line template:

 // Given
 template MyRecordType m_setup :=
 {
 field1 := 75,
 field2 := "abc",
 field3 := true
 }

 // Could be used to define an in-line modified template of Setup
 // pco1.send (modifies m_setup := {field1:= 76});

EXAMPLE 5: Modified parameterized template:

 // Given
 template MyRecordType m_myTemplate1(integer p_myPar):=
 {
 field1 := p_myPar,
 field2 := "A string",
 field3 := true
 }

 // then a modification could be
 template MyRecordType m_myTemplate2(integer p_myPar) modifies m_myRecTemplate1 :=
 // field1 is parameterized in m_myTemplate1 and remains also parameterized in m_myTemplate2
 {
 field2 := "A modified string"
 }

EXAMPLE 6: Default values of modified parameterized templates:

 // Given
 template MyRecordType m_myTemplate11 (integer p_int := 5):=
 // p_int has the default value 5
 {
 field1 := p_int,
 field2 := "A string",
 field3 := true
 }

 // then possible template modifications are
 template MyRecordType m_myTemplate12(integer p_int) modifies m_myTemplate11 :=
 // p_int had a default value in m_myTemplate11 but has none in this template
 {
 field2 := "B string"
 }

 template MyRecordType m_myTemplate13(integer p_int := 0) modifies m_myTemplate12 := { }
 // p_int has the default value 0
 // no change is made to the template's content, but only to the default value of p_int

 template MyRecordType m_myTemplate14(integer p_int := -) modifies m_myTemplate13 :=
 // p_int inherits the default value 0 from its parent m_myTemplate13
 {
 field2 := "C string"

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)154

 }

 template MyRecordType m_myTemplate15(integer p_int := -) modifies m_myTemplate14 :=
 // p_int inherits the default value 0 from m_myTemplate13 via m_myTemplate14
 {
 field2 := "D string"
 }

 template MyRecordType m_myTemplate16(integer p_int) modifies m_myTemplate15 := { }
 // p_int has no default value; no change in the template's content

 template MyRecordType m_myTemplate17(integer p_int := -) modifies m_myTemplate16 :=
 // causes an error as p_int has no default value in the parent template m_myTemplate16
 {
 field2 := "E string"
 }

EXAMPLE 7: Modifies with variables:

 var template MyRecordType v_modification :=
 {
 field2 := "G string" // field1/field3 are uninitialized
 }
 var template MyRecordType v_myTemplate := modifies m_myTemplate1(5) := v_modification;
 // no modification of field1/field3
 // results in { field1 := 5, field2 := "G string", field3 := true }

EXAMPLE 8: Modifies with restricted templates:

 template MyRecordType m_myUnrestrictedRecTemplate1 :=
 {
 field1 := 123,
 field2 := "A string",
 field3 := true
 }
 template(value) MyRecordType m_myValueRecTemplate1 :=
 {
 field1 := 123,
 field2 := "A string",
 field3 := true
 }

 template MyRecordType m_myUnrestrictedRecTemplate2 modifies m_myUnrestrictedRecTemplate1 :=
 {
 field2 := "A modified string" // field1, field3 is unchanged
 }

 template(value) MyRecordType m_myValueRecTemplate2 modifies m_myUnrestrictedRecTemplate1 :=
 {
 field2 := "A modified string" // field1, field3 is unchanged
 } // ERROR the modified template has different restriction from the base template

 template(value) MyRecordType m_myValueRecTemplate3 modifies m_myValueRecTemplate1 :=
 {
 field2 := "A modified string" // field1, field3 is unchanged
 }

 template MyRecordType m_myUnrestrictedRecTemplate3 modifies m_myValueRecTemplate1 :=
 {
 field2 := "A modified string" // field1, field3 is unchanged
 } // Allowed modification as the modified template is less restrictive than the base template

EXAMPLE 9:

 // Modifying records
 type record R2
 {
 integer num
 charstring str
 }

 template R2 m_base := { num := 0, @fuzzy str := testcasename(); }

 template R2 m_modifiedR modifies m_base := { num := 5 } // m_modifiedR.str is still fuzzy

 template R2 m_modifiedR2 modifies m_base := { str := "foobar" } // m_modifiedR2.str is not fuzzy

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)155

 template R2 m_modifiedR3 modifies m_base :=
 { str := m_base.str & "_used" } // m_base.str is used in an expression in non-fuzzy assignment
 // so the right hand side of m_base.str is evaluated just once

 template R2 m_modifiedR4 modifies m_base :=
 { @fuzzy str := m_base.str & "_used" } // here, m_base.str would only be evaluated
 // whenever m_modifiedR4.str is evaluated
 // (fuzzy field assignment overridden by new fuzzy assignment)

15.6 Referencing elements of templates or template fields

15.6.0 General

This clause defines rules and restrictions for referencing elements of templates or template fields in case of unrestricted
templates or templates with the present restriction. When referencing elements of templates or templates fields with the
value or omit restriction, the rules for referencing elements of values are used.

15.6.1 Referencing individual string elements

It is allowed to reference individual string elements inside templates or template fields if any of the following
conditions is fulfilled:

• The template is of a character string type and it contains either a specific value, pattern or AnyValue or when
occurring on the left hand AnyValueOrNone. In case of patterns, metacharacters described in clause B.1.5.0 are
treated as a single item the for indexing purposes according to the rules specified in table B.1.

• The template is of a binary string type and it contains either a specific value, matching mechanism inside
values, AnyValue or AnyValueOrNone. If the referenced binary string contains a matching mechanism inside a
value, this matching mechanism is treated as a single item for indexing purposes.

• The template is of a binary string type and it contains a combined template. In this case, individual items of the
combined template are concatenated and the reference is applied to the result of this concatenation using the
rules described in this clause.

• In any of the cases mentioned above, the reference template might contain ifpresent and length
matching attributes.

When the reference occurs on the right hand side of an assignment, the result of the reference is always a template with
the following content:

a) A specific value containing a single element if the referenced template is of a binary or character string type to
which a specific value is assigned and the index in non-negative and less than the number of items in the
specific value. The value can contain either a single item of the string type (bit, hex, octet or character) or a
matching mechanism inside a value (such as AnyElement or AnyElementOrNone).

b) A pattern containing either a single character or a single metacharacter, if the referenced template is of a
character sting type to which a pattern is assigned and the index is non-negative and less than the number of
characters and indexable metacharacters inside the pattern.

c) A specific value containing a single AnyElement matching mechanism if the referenced template is of a binary
string type to which the AnyValue matching mechanism is assigned.

d) A specific value containing a single AnyElement matching mechanism with the ifpresent matching
attribute attached to it if the referenced template is of a binary string type to which the AnyValueOrNone
matching mechanism is assigned.

e) A pattern containing a single ? metacharacter if the referenced template is of a character string type and
contains the AnyValue matching mechanism.

f) A pattern containing a single ? metacharacter with the ifpresent matching attribute attached to it if the
referenced template is of a character string type and contains the AnyValueOrNone matching mechanism.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)156

g) If the referenced template contains a length matching attribute, the reference shall be resolved only if the
referenced element is less than the maximum allowed length. The result of the reference shall be without the
length attribute.

h) If the referenced template contains the ifpresent matching attribute, the result of the reference shall
contain this attribute as well.

i) If the referenced template has the present restriction, a matching symbol that fulfills the requirements of the
present restriction or if the referenced field is unrestricted and represents a mandatory field of a record or
set or any field of a union, anytype, record of, set of or array, the result shall have the present
restriction.

j) If the referenced template has the value or omit restriction, the result shall have the value restriction.

When the reference occurs on the left hand side of an assignement, the right hand side of the assignment shall contain
either a string value or specific value of a compatible type or a pattern. Both string value and specific value shall
contain exactly one indexable item (either a bit, hex, octet, character or matching mechanism inside a value). The result
of the assignment is as follows:

a) When referencing an item of a binary string template to which a specific value is assigned, if the index is
non-negative and less than the number of items in the specific value, the referenced item shall be replaced with
the item from the right hand sign of the assignment.

b) When referencing an item at the index n of a binary string template to which a specific value is assigned, if the
index is greater than or equal to the number of items in the specific value, first as many AnyElement matching
symbols shall be appended to the specific value as is the difference between n and the number of items in the
specific value and then the item from the right hand side of the assignment shall be appended to the specific
value on the left hand side.

c) When referencing an item of a character string template to which a specific value is assigned, if the index is
non-negative and less than the length of the specific value and the right hand side contains a specific value, the
referenced item shall be replaced with the item from the right hand sign of the assignment.

d) When referencing an item of a character string template to which a specific value is assigned, if the index is
equal to the length of the specific value and the right hand side contains a specific value, the character from the
right hand side of the assignment shall be appended to the specific value on the left hand side.

e) In all other cases of referencing an item of a character string template to which a specific value is assigned
using a non-negative index (i.e. the index is greater than the string length or the item on the right hand side of
the assignment is a pattern), the specific value shall be converted into a pattern that matches precisely the
specific value (i.e. automatically escaping the characters that would otherwise have a metacharacter meaning
by prefixing them with a backslash symbol). Then the rules for referencing an item of a pattern on the left
hand side of an assignment shall be applied to assign the right hand side of the assignmend to this pattern. The
modified pattern is then assigned to the referenced template.

f) When referencing an item of a character string template to which a pattern is assigned, if the index is
non-negative and less than the number of items in the pattern, the referenced character or metacharacter shall
be replaced with the item from the right hand side of the assignment.

g) When referencing an item at the index n of a character string template to which a pattern is assigned, if the
index is greater than or equal to the number of items in the pattern, first as many ? metacharacters shall be
appended to the pattern as is the difference between n and the number of items in the pattern and then the item
from the right hand sign of the assignment shall be appended to the pattern.

h) If the right hand side of the assignment described in point e), f) and g) contains a pattern with more than one
item, this pattern shall be implicitly converted into a single group metacharacter (by enclosing it to
parentheses) before the assignment.

i) When referencing an item of a binary string template to which the AnyValue or AnyValueOrNone matching
symbol is assigned using a non-negative index, a binary string with length 0 is assigned to the referenced
template and procedures described in the point b are applied to finish the assignment. Then, if the referenced
template contained the AnyValueOrNone matching symbol, the ifpresent matching attribute shall be added
to the referenced template if it does not contain it.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)157

j) When referencing an item of a character string template to which the AnyValue or AnyValueOrNone matching
symbol is assigned using a non-negative index, a pattern with length 0 is assigned to the referenced template
and procedures described in the point g are applied to finish the assignment. Then, if the referenced template
contained the AnyValueOrNone matching symbol, the ifpresent matching attribute shall be added to the
referenced template if it does not contain it.

k) If the referenced template contains a length matching attribute and the index is greater or equal to the
maximum allowed length, the maximum allowed length shall be changed to the value of the index + 1.

l) If the referenced template contains the ifpresent matching attribute, the attribute is not removed by the
assignment.

An error shall be issued in all other cases, i.e.:

• If the referenced template (on the left hand side or right hand side) contains any other matching symbol than
those listed above, such as Omit, template list or a complemented template list.

• If the index is a negative number.

• If the index is used on the right hand side of an assignment and is greater than or equal to the maximum
allowed length.

If the index is used on the left hand side of an assignment and the right hand side contains a binary string value or
specific template with not exactly one indexable item.

EXAMPLE:

 var template charstring v_char1 := "MYCHAR",
 v_char2,
 v_char3 := pattern "abc?[a-z]";

 v_char2 := v_char1[1]; // v_char2 will be equal to "Y" after the assignment
 v_char2 := v_char3[3]; // v_char2 will be equal to pattern "?" after the assignment
 v_char2 := v_char3[4]; // v_char2 will be equal to pattern "[a-z]" after the assignment
 v_char3 := ?;
 v_char2 := v_char3[0]; // v_char2 will contain pattern "?" after the assignment
 v_char3 := pattern "abc?[a-z]";
 v_char3[6] := pattern "x+"; // v_char3 will contain pattern "abc?[a-z]?x+" after the assignment
 v_char3 := "abc";
 v_char3[4] := pattern "[a-f][g-k]"; // v_char3 will change to pattern "abc([a-f][g-k])"
 v_char3[2] := "test"; // will produce an error as the character string contains more than one
 // character

 var template octetstring v_oct1 := '01234567890ABCDEF'O,
 v_oct2,
 v_oct3 := '01??AB*'O;
 v_oct2 := v_oct1[1]; // v_oct2 will be equal to '23'O after the assignment
 v_oct2 := v_oct3[2]; // v_oct2 will be equal to '?'O after the assignment
 v_oct3 := *;
 v_oct2 := v_oct3[0]; // v_oct2 will contain '?'O ifpresent after the assignment
 v_oct1[2] := '?'O; // v_oct1 will contain '0123?67890ABCDEF'O after the assignment
 v_oct3 := '0123'O;
 v_oct3[4] := 'FF'O; // v_oct3 will change to '0123??FF'O
 v_oct1 := 'FFFF'O;
 v_oct2 := v_oct1[10] // will produce an error as the index is greater than the length of v_oct1_

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)158

15.6.2 Referencing record and set fields

Both templates and template variables allow referencing sub-fields inside a template definition using the dot notation.
However, the referenced field may be a subfield of a structured field to which a matching mechanism is assigned. This
clause provides rules for such cases:

a) Omit, AnyValueOrNone, template lists and complemented lists: referencing a subfield within a structured field
to which Omit, AnyValueOrNone, a template list or a complemented list is assigned, at the right hand side of
an assignment, shall cause an error.
When referencing a subfield within a structured field to which AnyValueOrNone or omit is assigned, at the left
hand side of an assignment, the structured field is implicitly set to be present, it is expanded recursively up to
and including the depth of the referenced subfield. During this expansion an AnyValue shall be assigned to
mandatory subfields and AnyValueOrNone shall be assigned to optional subfields. After this expansion the
value or matching mechanism at the right hand side of the assignment shall be assigned to the referenced
subfield.
When referencing a subfield within a structured field to which template lists or complemented template lists
are assigned, at the left hand side of an assignment, shall cause an error.

EXAMPLE 1:

 type record R1 {
 integer f1 optional,
 R2 f2 optional
 }
 type record R2 {
 integer g1,
 R2 g2 optional
 }

 :
 var template R1 v_r1 := {
 f1 := 5,
 f2 := omit
 }
 var template R2 v_r2 := v_r1.f2.g2;
 // causes an error as omit is assigned to v_r1.f2
 v_r1.f2 := *;
 v_r2 := v_r1.f2.g2;
 // causes an error as * is assigned to v_r1.f2

 v_r1 := ({f1:=omit, f2:={g1:=0, g2:=omit}},{f1:=5, f2:={g1:=1, g2:={g1:=2, g2:=omit}}});

 v_r2 := v_r1.f2;
 v_r2 := v_r1.f2.g2;
 v_r2 := v_r1.f2.g2.g2;
 // all these assignments cause error as a template list is assigned to v_r1

 v_r1 :=
 complement({f1:=omit, f2:={g1:=0, g2:=omit}},{f1:=5, f2:={g1:=1, g2:={g1:=2, g2:=omit}}});

 v_r2 := v_r1.f2;
 v_r2 := v_r1.f2.g2;
 v_r2 := v_r1.f2.g2.g2;
 // all these assignments cause errors as a complemented list is assigned to v_r1

b) AnyValue: when referencing a subfield within a structured field to which AnyValue is assigned, at the right
hand side of an assignment, AnyValue shall be returned for mandatory subfields and AnyValueOrNone shall be
returned for optional subfields.
When referencing a subfield within a structured field to which AnyValue is assigned, at the left hand side of an
assignment, the structured field is implicitly expanded recursively up to and including, the depth of the
referenced subfield. During this expansion an AnyValue shall be assigned to mandatory subfields and
AnyValueOrNone shall be assigned to optional subfields. After this expansion the value or matching
mechanism at the right hand side of the assignment shall be assigned to the referenced subfield.

EXAMPLE 2:

 v_r1 := {f1:=0, f2:=?}
 v_r2 := v_r1.f2.g2;
 // after the assignment v_r2 will be {g1:=?, g2:=*}
 v_r1.f2.g2.g2 := ({g1:=1, g2:=omit},{g1:=2, g2:=omit});

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)159

 // first the field v_r1.f2 has hypothetically be expanded to {g1:=?,g2:={g1:=?,g2:=*}}
 // thus after the assignment v_r1 will be:
 // {f1:=0, f2:={g1:=?,g2:={g1:=?,g2:=({g1:=1, g2:=omit},{g1:=2, g2:=omit})}}}

c) Ifpresent attribute: referencing a subfield within a structured field to which the ifpresent attribute is attached,
shall cause an error (irrespective of the value or the matching mechanism to which ifpresent is appended).

d) Special value null: referencing a field of an address type, which actual value is null shall cause an error.

15.6.3 Referencing record of and set of elements

Both templates and template variables allow referencing elements of a record of, array or set of template or field
using the index notation. However, a matching mechanism may be assigned to the template or field within which the
element is referenced. This clause provides rules on handling such cases:

a) Omit: referencing an element within a record of, set of or array field to which omit is assigned shall follow the
rules specified in clause 6.2.3.

b) Template lists, complemented lists, subset and superset: referencing an element within a record of or set of
field to which a complemented list, a subset or a superset is assigned, shall cause an error.

EXAMPLE 1:

 type record of integer RoI;
 :
 var template RoI v_roI;
 var template integer v_int;
 v_roI := ({},{0},{0,0},{0,0,0});
 v_int := t_RoI[0];
 // shall cause an error as template list is assigned to v_roI

c) AnyValue: when referencing an element of a record of or set of template or field to which AnyValue is
assigned (without a length attribute), at the right hand side of an assignment, AnyValue shall be returned. If a
length attribute is attached to the AnyValue , the index of the reference shall not violate the length attribute.
When referencing an element within a record of or set of template or field to which AnyValue is
assigned (without a length attribute), at the left hand side of an assignment, the value or matching mechanism
at the right hand side of the assignment shall be assigned to the referenced element, AnyElement shall be
assigned to all elements before the referenced one (if any) and a single AnyElementsOrNone shall be added at
the end. When a length attribute is attached to AnyValue, the attribute shall be conveyed to the new template or
field transparently. The index shall not violate type restrictions in any of the above cases.

EXAMPLE 2:

 type record of integer RoI;
 type record of RoI RoRoI;
 :
 var template RoI v_roI;
 var template RoRoI v_roRoI;
 var template integer v_int;
 :
 v_roI := ?;
 v_int := v_roI[5];
 // after the assignment v_int will be AnyValue(?);

 v_roRoI := ?;
 v_roI := v_roRoI[5];
 // after the assignment v_roI will be AnyValue(?);
 v_int := v_roRoI[5].[3];
 // after the assignment v_int will be AnyValue(?);

 v_roI := ? length (2..5);
 v_int := v_roI[3];
 // after the assignment v_int will be AnyValue(?);
 v_int := v_roI[5];
 // shall cause an error as the referenced index is outside the length attribute
 // (note that index 5 would refer to the 6th element);

 v_roRoI[2] := {0,0};
 // after the assignment v_roRoI will be {?,?,{0,0},*};
 v_roRoI[4] := {1,1};
 // after the assignment v_roRoI will be {?,?,{0,0},?,{1,1},*};

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)160

 v_roI[0] := -5;
 // after the assignment v_roI will be {-5,*} length(2..5);
 v_roI := ? length (2..5);
 v_roI[1] := 1;
 // after the assignment v_roI will be {?,1,*} length(2..5);
 v_roI[3] := ?;
 // after the assignment v_roI will be {?,1,?,?,*} length(2..5);
 v_roI[5] := 5;
 // after the assignment v_roI will be {?,1,?,?,?,5,*} length(2..5); note that v_roI
 // becomes an empty set but that shall cause no error;

d) AnyValueOrNone: referencing an element within a record of, set of or array field to which AnyValueOrNone
with or without a length attribute is assigned on the right hand side of an assignment shall cause an error.
When referencing an element within a record of, set of or array field to which AnyValueOrNone is assigned on
the left hand side of an assignment, the rules for AnyValue shall apply (see item c) for more details).

EXAMPLE 3:

 type record of integer RoI;
 type record R
 {
 RoI field1 optional
 }
 :
 var template R mw_t1 := { field1 := * };
 var template integer mw_t2;
 mw_t1.field1[2] := 2; // after the assignment, mw_t1 will be { field1 := { ?, ?, 2, * } }
 mw_t1.field1 := *;
 mw_t2 := mw_t1.field1[0];
 // shall cause an error as mw_t1.field1 contains AnyValueOrNone

e) Permutation: when referencing an element of a record of template or field, which is located inside a
permutation (based on its index), this shall cause an error. Indexes of elements sheltered by a permutation shall
be determined based on the number of permutation elements. AnyElementsOrNone as a permutation element
causes that the permutation shelters all record of element indexes.

EXAMPLE 4:

 v_roI:= {permutation(0,1,3,?),2,?};
 v_int := v_roI[5];
 // after the assignment v_int will be AnyValue(?)

 v_roI:= {permutation(0,1,3,?),2,*};
 v_int := v_roI[5];
 // after the assignment v_int will be * (AnyValueOrNone)
 v_int := v_roI[2];
 // causes error as the third element (with index 2) is inside permutation

 v_roI:= {permutation(0,1,3,*),2,?};
 v_int := v_roI[5];
 // causes error as the permutation contains AnyValueOrNone(*) that is able to
 // cover any record of indexes

f) Ifpresent attribute: referencing an element within a record of or set of field to which the ifpresent
attribute is attached, shall cause an error (irrespective of the value or the matching mechanism to which
ifpresent is appended).

g) AnyElementsOrNone: when referencing an element of a record of or set of template or field that contains
AnyElementsOrNone, the result of an operation is dependent on the position of AnyElementsOrNone, the
referenced index and length attributes attached to AnyElementsOrNone.

When resolving the reference, a transformed form of the record of or set of template is used. The transformed
form is equal to the original value where all occurrences of AnyElementsOrNone with a length restriction are
replaced with a sequence of AnyElements of the same size as the lower bound. If the lower bound is greater
than the upper bound, the sequence shall be followed by a single AnyElementsOrNone symbol with a length
restriction. The lower bound of this restriction is zero and the upper bound is the difference between the lower
and upper bound of the original restriction.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)161

EXAMPLE 5:

type record of integer RoI;
template RoI mw_roI := {1, * length(2), 5}; // transformed form: {1, ?, ?, 5}
template RoI mw_roI := {1, * length(1..3), 5}; // transformed form: {1, ?, * length(0..2), 5}

h) Special value null: referencing an element of an address type, which actual value is null shall cause an
error.

When the reference is used at the right hand side of the assignment, the following applies:

- If positions of all AnyElementsOrNone matching symbols in the transformed form are greater than the
position of the referenced item, rules from the clause 6.2.3.2 are used for resolving the reference.

EXAMPLE 6:

type record of integer RoI;
:
var template RoI v_roI := {1, 2, * length(2), 5};
 // transformed form: {1, 2, ?, ?, 5}
var template integer v_int;
v_int := v_roI[1]; // after the assignment, v_int will be 2
v_int := v_roI[2]; // after the assignment, v_int will be ?

- If the position of the referenced item is greater or equal to the position of any AnyElementsOrNone
symbol in the transformed template, an error is generated.

EXAMPLE 7:

type record of integer RoI;
:
var template RoI v_roI := {1, 2, *, 5};
var template integer v_int := v_roI[3]; // produces an error

v_roI := {1, 2, *};
v_int := v_roI[2]; // produces an error

When the reference is used at the left hand side of the assignment, the following applies:

- If positions of all AnyElementsOrNone matching symbols in the transformed form are greater than the
position of the referenced item the following rules are used. If the referenced item is not a result of
transformation, the value or matching symbol at the right hand side of the assignment shall replace the
referenced symbol in the original template. If the referenced element was a result of transformation, then
the AnyValueOrNone symbol in the original template is replaced with its transformed form and the
assignment is performed afterwards.

EXAMPLE 8:

type record of integer RoI;
:
var template RoI v_roI := {1, 2, * length(2), 5};
 // transformed form: {1, 2, ?, ?, 5}
v_roI [1] := 10; // after the assignment, t_RoI will be {1, 10, * length(2), 5}
v_roI [2] := 3; // after the assignment, t_RoI will be {1, 10, 3, ?, 5}

- If the position of the referenced item is greater or equal to the position of any AnyElementsOrNone
symbol in the transformed form and this AnyElementsOrNone symbol is not the last element in the
template, an error is generated.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)162

EXAMPLE 9:

type record of integer RoI;
:
var template RoI v_roI:= {1, 2, *, 5};
v_roI[3] := 4; // produces an error

- If the position of the referenced item is greater or equal to the position of an AnyElementsOrNone
symbol in the transformed form and this AnyElementsOrNone is the last symbol in the template, the
value or matching symbol at the right hand side of the assignment shall be assigned to the referenced
element. Then the AnyElementsOrNone symbol and all unbound values between it and the referenced
symbol shall be replaced with AnyElement symbols. If the AnyElementsOrNone symbol had a length
restriction, only as many AnyElement symbols can be added as is the value of the upper bound of the
restriction. As the last step, an AnyElementsOrNone symbol can be appended to the end of the template.
The symbol is always appended if the original AnyElementsOrNone symbol was unrestricted. If the
original AnyElementsOrNone had a length restriction, the symbol is appended only if the restriction
included items beyond the referenced item. In such a case, the appended symbol contains the original
length restriction adjusted by the difference between the size of the template before and after assignment.

EXAMPLE 10:

type record of integer RoI;
:
var template RoI v_roI := {1, 2, * };
v_roI[4] := 5; // {1, 2, ?, ?, 5, *};

v_roI := {1, * length(1..2)};
v_roI[4] := 5; // {1, ?, ?, -, 5};
 // short length restriction: only two ? symbols added and no * at the end

v_roI := {1, * length(1..5)};
v_roI[2] := 3; // {1, ?, 3, * length(0..3)};
 // adjusted length restriction at the end

The index of the referenced item shall not violate type restrictions in any of the above cases.

15.6.4 Referencing signature parameters

While signature templates do not allow referencing their parameters directly (e.g. using dot notation), such a reference
is possible when modifying a signature template. However, there can be a matching mechanism assigned to the
signature template. This clause provides rules for such cases.

a) Value lists and complemented lists: referencing a parameter of a signature template to which a value list or a
complemented list is assigned, at the left hand side of an assignment, shall cause an error.

EXAMPLE 1:

signature MySignature(in integer par1, in integer par2);
template MySignature s_mySign1 := ({ par1 := 1, par2 := 2 }, { par1 := 2, par2 := 1 });
template MySignature s_mySign2 modifies s_mySign1 := { par1 := ? };
// shall cause an error as s_mySign1 contains a value list template

b) AnyValue: when referencing a parameter within a signature to which AnyValue is assigned, at the left hand
side of an assignment, the signature template is implicitly expanded to the parameter level. During this
expansion an AnyValue shall be assigned to all parameters of the template. After this expansion the value or
matching mechanism at the right hand side of the assignment shall be assigned to the referenced parameter.

EXAMPLE 2:

template MySignature s_mySign3 := ?;
template MySignature s_mySign4 modifies s_mySign3 := { par1 := 3 };
// s_mySign3 is expanded to { par1 := ?, par2 := ? }, then 3 is assigned to par1,
// thus s_mySign4 will be { par1 := 3, par2 := ? }

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)163

15.6.5 Referencing union alternatives

Both templates and template variables allow referencing alternatives inside a union template definition using the dot
notation. However, the referenced alternative may belong to template field containing a matching mechanism. This
clause provides rules for such cases.

a) Omit, AnyValueOrNone, template lists and complemented lists: referencing an alternative of a union template
or template field to which Omit, AnyValueOrNone, a template list or a complemented list is assigned, at the
right hand side of an assignment, shall cause an error.
When referencing an alternative of a union template or template field to which AnyValueOrNone or Omit is
assigned, at the left hand side of an assignment, the template field is implicitly set to be present and the
referenced alternative becomes the chosen one. If the referenced alternative is not the last element of the dot
notation, rules in clause 15.6.2 valid for AnyValue shall apply recursively for further expansion. After this
expansion the value or matching mechanism at the right hand side of the assignment shall be assigned to the
referenced subfield.
Referencing an alternative of a union template field to which template lists or complemented template lists are
assigned, at the left hand side of an assignment, shall cause an error.

EXAMPLE 1:

 type record R1 {
 integer f1,
 integer f2
 }
 type union U {
 integer c1,
 R1 c2
 }
 type record R2 {
 integer g1,
 U g2 optional
 }
 :
 var template R2 v_t1 := {
 g1 := 5,
 g2 := *
 }
 var template integer v_t2;
 v_t1.g2.f1 := 1;
 // after the assignment v_t2.g2 is { g2 := { f1 := 1, f2 := ? } }
 v_t1.g2 := omit;
 v_t2 := v_t1.g2.c1;
 // causes an error as omit is assigned to v_t1.g2
 var template U v_u := {c1 := omit}; //causes an error as union alternatives can not be omitted
 var template U v_u2 := omit; // after the assignment v_u2 will be omit

b) AnyValue: when referencing an alternative of a union template or template field to which AnyValue is
assigned, at the right hand side of an assignment, AnyValue shall be returned.
When referencing an alternative of a union template or template field to which AnyValue is assigned, at the left
hand side of an assignment, the referenced alternative becomes the chosen one. If the referenced alternative is
not the last element of the dot notation, rules in clause 15.6.2 valid for AnyValue shall apply recursively for
further expansion. After this expansion the value or matching mechanism at the right hand side of the
assignment shall be assigned to the referenced subfield.

EXAMPLE 2:

 var template U v_t3 := ?;
 v_t2 := v_t3.c1;
 // after the assignment v_t2 will be ?
 v_t3.c1.f1 := 1;
 // after the assignment v_t3 will be { c1 := { f1 := 1, f2 := ? } }

c) Ifpresent attribute: referencing an alternative of a union template field to which the ifpresent attribute is
attached, shall cause an error (irrespective of the value or the matching mechanism to which ifpresent is
appended).

d) Special value null: referencing an alternative of an address type, which actual value is null shall cause
an error.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)164

15.7 Template matching mechanisms

15.7.0 General

Generally, matching mechanisms are used to replace values of single template fields or to replace even the entire
contents of a template. Matching mechanisms may also be used in-line (see clause 15.4).

Matching mechanisms are arranged in four groups:

• specific values;

• special symbols that can be used instead of values;

• special symbols that can be used inside values;

• special symbols which describe attributes of values.

Some of the mechanisms may be used in combination.

The supported matching mechanisms and their associated symbols (if any) and the scope of their application are shown
in table 11. The left-hand column of this table lists all the TTCN-3 types to which these matching mechanisms apply. A
full description of each matching mechanism can be found in annex B.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) All other applications of matching mechanisms than the ones allowed in table 11 are forbidden.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)165

Table 11: TTCN-3 Matching Mechanisms

Used with values
of

Value Instead of values Inside values Attributes

 S
p
e
c
i
f
i
c
V
a
l
u
e

O
m
i
t

C
o
m
p
l
e
m
e
n
t
e
d
L
i
s
t

T
e
m
p
l
a
t
e
L
i
s
t

A
n
y
V
a
l
u
e

(?)

A
n
y
V
a
l
u
e
O
r
N
o
n
e
(*)

R
a
n
g
e

S
u
p
e
r
s
e
t

S
u
b
s
e
t

P
a
t
t
e
r
n

M
a
t
c
h

d
e
c
o
d
e
d

c
o
n
t
e
n
t

A
n
y
E
l
e
m
e
n
t

(?)

A
n
y
E
l
e
m
e
n
t
s
O
r
N
o
n
e
(*)

P
e
r
m
u
t
a
t
i
o
n

L
e
n
g
t
h
R
e
s
t
r
i
c
t
i
o
n

I
f
P
r
e
s
e
n
t

boolean Yes Yes1 Yes Yes Yes Yes1 Yes1
integer Yes Yes1 Yes Yes Yes Yes1 Yes Yes1
float Yes Yes1 Yes Yes Yes Yes1 Yes Yes1
bitstring Yes Yes1 Yes Yes Yes Yes1 Yes Yes Yes Yes Yes1
octetstring Yes Yes1 Yes Yes Yes Yes1 Yes Yes Yes Yes Yes1
hexstring Yes Yes1 Yes Yes Yes Yes1 Yes Yes Yes Yes Yes1
character strings Yes Yes1 Yes Yes Yes Yes1 Yes Yes Yes Yes2 Yes2 Yes Yes1
record Yes Yes1 Yes Yes Yes Yes1 Yes1
record of Yes Yes1 Yes Yes Yes Yes1 Yes Yes Yes Yes Yes1
array Yes Yes1 Yes Yes Yes Yes1 Yes Yes Yes Yes Yes1
set Yes Yes1 Yes Yes Yes Yes1 Yes1
set of Yes Yes1 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes1
enumerated Yes Yes1 Yes Yes Yes Yes1 Yes1
union Yes Yes1 Yes Yes Yes Yes1 Yes1
anytype Yes Yes1 Yes Yes Yes Yes1 Yes1
NOTE 1: Can be assigned to templates of any type as a whole or to optional fields of record and set templates. However

when matching, it shall be applied to optional fields of record and set types only (without restriction on the type of
that field).

NOTE 2: Have matching mechanism meaning within character patterns only.

15.7.1 Specific values

Specific values are the basic matching mechanism of TTCN-3 templates. Specific values in templates are expressions
which do not contain any matching mechanisms.

Syntactical Structure

SingleExpression

Semantic Description

The matching mechanism for a specific value is an expression that evaluates to a specific value.

For further details, refer to clause 6 and to annex B.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)166

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) See the restrictions given in table 11 and in annex B.

Examples

 myPCO.receive(charstring:"abcxyz");
 myPCO.receive('AAAA'O);

15.7.2 Special symbols that can be used instead of values

These matching mechanisms can be used to characterize a set of values.

Syntactical Structure

omit |
"(" { (TemplateInstance | all from TemplateInstance) [","] } ")" |
complement "(" { (TemplateInstance | all from TemplateInstance) [","] } ")" |
"?" |
" *" |
"(" (ConstantExpression | -infinity) ".." (ConstantExpression | infinity) ")" |
superset "(" { (TemplateInstance | all from TemplateInstance) [","] } ")" |
subset "(" { (TemplateInstance | all from TemplateInstance) [","] } ")" |
pattern [@nocase] Cstring
decmatch ["(" Expression]")"] TemplateInstance
EnumValueIdentifier "(" TemplateBody {"," TemplateBody} ")"

Semantic Description

The matching mechanisms for special symbols that can be used instead of values are:

• omit: the optional field, in which it is used, is not present;

NOTE 1: omit can be assigned to templates of any type as a whole or to optional fields of record and set types.
omit can only be used for matching optional fields.

• (…): a list of values or templates;

• complement (…): complement of a list of values or templates;

• ?: wildcard for any value;

• *: wildcard for any value or no value at all, i.e. the field is not present;

NOTE 2: * can be assigned to templates of any type as a whole or to optional fields of record and set types. * can
only be used for matching optional fields.

• (lowerBound .. upperBound): a range of integer or float values between and including the lower- and upper
bounds;

• superset: at least all of the elements listed, i.e. possibly more;

• subset: at most the elements listed, i.e. possibly less;

• pattern: a charstring or universal charstring that matches this format;

• decmatch: used for matching of encoded payload fields;

• EnumValueIdentifier with list of templates: used for matching of enumerated values with associated value
list.

The matching mechanisms list, complemented list, subset, and superset can use the elements of a template using the all
from clause.

For further details, refer to annex B.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)167

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) See the restrictions given in table 11 and in annex B.

b) All templates and values used in the matching mechanisms above (including the referenced ones, e.g. within a
pattern) shall be completely initialized.

Examples

 myPCO.receive (integer:complement(1, 2, 3));

15.7.3 Special symbols that can be used inside values

These matching mechanisms allow to characterize value sets by varying values inside. The template containing a
matching mechanism inside a value notation syntax is called a combined template.

Syntactical Structure

… "?"… |
… "*"… |
… permutation "(" { (TemplateBody | "?" | "*" | all from TemplateInstance)[","] } ")" …

Semantic Description

The matching mechanisms for special symbols that can be used inside values are:

• ?: wildcard for any single element in a string, array, record of or set of;

• *: wildcard for any number of consecutive elements in a string, array, record of or set of, or no
element at all (i.e. an omitted element);

• permutation: all of the elements listed but in an arbitrary order (note, that ? and * are also allowed as
elements of the permutation list and all elements of a template can be added to permutation using the all from
clause).

For further details, refer to annex B.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) See the restrictions given in table 11 and in annex B.

b) All templates or values used in the permutation matching mechanism shall be completely initialized.

Examples

 template bitstring mw_b := '10???'B; // where each "?" may either be 0 or 1
 type record of integer RI;
 template RI mw_ri := {1, ?, 3} // where ? may be any integer value

15.7.4 Special symbols which describe attributes of values

These matching mechanisms define properties of values.

Syntactical Structure

length "(" ConstantExpression [".." (ConstantExpression | infinity)] ")" [ifpresent] |
ifpresent

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)168

Semantic Description

The matching mechanisms which describe attributes of values are:

• length: restrictions for string length of string types and the number of elements for record of, set of
and arrays;

• ifpresent: for matching of optional field values (if not omitted).

NOTE 1: ifpresent can be assigned to templates of any type as a whole or to optional fields of record and set types.
ifpresent can only be used for matching optional fields.

NOTE 2: Assigning ifpresent to a template that already matches the special value omit (i.e. it is either omit, an
ifpresent template or AnyValueOrNone) has no effect; the resulting template will match the same set of
values and the special value omit as the template the ifpresent is assigned to.

For further details, refer to annex B.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) See the restrictions given in table 11 and in annex B.

b) All values used in the length matching attribute shall be completely initialized.

Examples

 type record R {
 record of integer ri optional
 }
 template R mw_r:=
 {
 ri := * length (1 .. 6) ifpresent // any value containing 1, 2, 3, 4,
 // 5 or 6 elements, provided it is present
 }

15.8 Template Restrictions

15.8.1 Explicit restrictions

Template restrictions allow to restrict the matching mechanisms that can be used with a template. Template restrictions
are applicable to template definitions and template variables, formal template parameters, and return template types of
functions. Template restrictions can be applied equally to message and signature templates.

Syntactical Structure

template "(" (omit | present | value) ")" Type

Semantic Description

The restrictions mean in case of:

• (omit) the template shall resolve to a value matching mechanism (i.e. the fields of it shall resolve to a
specific value or omit, and the whole template may also resolve to omit). Such a template can be used to define
a field of a record and set template and the latter one could still be used in a send statement.

• (value) the template shall resolve to a specific value (i.e. the fields of it shall resolve to a specific value or
omit, but the whole template shall not resolve to omit). It can be used to define a mandatory field of a record or
set template and the latter one could still be used in a send statement.

• (present) the template as a whole shall not resolve to matching mechanisms that match omit (i.e. its fields
may contain any of the matching mechanisms or matching attributes). Such a template can be used to define a
mandatory field of a record or set template.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)169

NOTE: Template restrictions allow TTCN-3 tools to check more easily at compile time whether templates and
matching expressions are used correctly. Whether the checks are performed at compile time and invalid
code is rejected or whether the checks are performed at execution time and dynamic errors are raised, is
outside the scope of the present document.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Matching mechanisms can be used within restricted templates according to table 12.

Table 12: Using matching mechanisms with restricted templates

Used with
template

restriction
Value Instead of values Inside values Attributes

 S
p
e
c
i
f
i
c
V
a
l
u
e

O
m
i
t

C
o
m
p
l
e
m
e
n
t
e
d
L
i
s
t

T
e
m
p
l
a
t
e
L
i
s
t

A
n
y
V
a
l
u
e

(?)

A
n
y
V
a
l
u
e
O
r
N
o
n
e
(*)

R
a
n
g
e

S
u
p
e
r
s
e
t

S
u
b
s
e
t

P
a
t
t
e
r
n

M
a
t
c
h

d
e
c
o
d
e
d

c
o
n
t
e
n
t

A
n
y
E
l
e
m
e
n
t

(?)

A
n
y
E
l
e
m
e
n
t
s
O
r
N
o
n
e
(*)

P
e
r
m
u
t
a
t
i
o
n

L
e
n
g
t
h
R
e
s
t
r
i
c
t
i
o
n

I
f
P
r
e
s
e
n
t

omit Yes Yes
value Yes Note

1

present Yes Note
1

Yes Yes Yes Note
1

Yes Yes Yes Yes Note
2

Yes Yes Yes Yes Note
1

NOTE 1: It is allowed to use the matching mechanism in fields of the template, but the template as a whole shall not
resolve to this matching mechanism.

NOTE 2: The matching mechanism is allowed only if the template following the decmatch keyword is fulfilling the given
restriction.

b) Restricted and unrestricted templates maybe used as actual parameters of formal template parameters or
assigned to templates or template variables according to table 13.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)170

Table 13: Restrictions of formal and actual template parameters

 Actual
parameter/right
hand side of an

assignment

Value Template
(omit)

Template
(value)

Template
(present)

Template

Formal
parameter/-
left hand
side of an
assignment

template(omit) Yes Yes Yes No No
template(value) Yes Rule 1 Yes No No
template(present) Yes No Yes Yes No
Template Yes Yes Yes Yes Yes
Rule 1: Not allowed with one exception: a template with an omit restriction is allowed to be used on the

right hand side of an assignment if the left hand side resolves into an optional field of a template
with a value restriction.

c) A formal template parameter of a modified template may have a stricter restriction than the same formal
parameter of the base template according to table 13A.

Table 13A: Changing restriction of formal parameters of modified templates

Parameter restriction in
base template

Allowed parameter restrictions in modified template
Template

(omit)
Template

(value)
Template
(present)

Template

template(omit) Yes Yes No No
template(value) No Yes No No
template(present) No Yes Yes No
Template Yes Yes Yes Yes

d) A modified template may have a less strict restriction than the base template according to table 13B.

Table 13B: Changing restriction of modified templates

Restriction of base template
Allowed restrictions of modified template

Template
(omit)

Template
(value)

Template
(present)

Template

template(omit) Yes No No Yes
template(value) Yes Yes Yes Yes
template(present) No No Yes Yes
Template No No No Yes

Examples

 // definitions of restricted templates
 type record ExampleType {
 integer a,
 boolean b optional
 }

 template(omit) ExampleType m_exampleOmit := omit;
 template(omit) ExampleType m_exampleOmitValue:= { 1, true };
 template(omit) ExampleType mw_exampleOmitAny := ?; // incorrect

 template(value) ExampleType m_exampleValueomit := omit; // incorrect
 template(value) ExampleType m_exampleValue := { 1, true };
 template(value) ExampleType m_exampleValueOptional := { 1, omit };
 // omit assigned to a field is correct

 template(present) ExampleType mw_examplePresent := {1, ?};
 template(present) ExampleType mw_examplePresentIfpresent := { 1, true } ifpresent;
 // incorrect
 template(present) ExampleType mw_examplePresentAny := ?;

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)171

 // restricted template usage
 var template (omit) ExampleType v_omit;
 var template (present) ExampleType v_present;
 var template (value) ExampleType v_value;

 v_omit := m_exampleOmit;
 v_omit := m_exampleValueOptional;
 v_omit := mw_examplePresentAny; // incorrect, not a specific value

 v_present := m_exampleOmit; // incorrect, shall not be omit
 v_present := mw_examplePresent;

 v_value := m_exampleOmit; // incorrect, shall not be omit
 v_value := mw_examplePresentAny; // incorrect, shall be a single value

15.8.2 Implicit restrictions for template fields, alternatives and elements

When referencing template fields, alternatives and elements using dot notation and indexes, the referenced item shall
have an implicit template restriction according to the table 13C. All rules for templates with an explicit restriction
specified in the clause 15.8.1 are valid for template fields, alternatives and elements with an implicit restriction as well.

Table 13C: Implicit restrictions

Referenced field, alternative or
element

Restriction of the parent template, field, alternative or
element

template
(omit)

template
(value)

template
(present)

template

Mandatory field of a record or set,
alternative of an union or anytype,
element of a record of, set of or array

template
(value)

template
(value)

template
(present)

template
(present)

Optional field of a record or set template
(omit)

template
(omit)

template template

15.9 Match Operation
The match operation allows to compare a value (specified in form of an expression) with a template.

Syntactical Structure

match "(" Expression "," TemplateInstance ")"

Semantic Description

The match operation returns a boolean value. It matches an expression, which shall denote a value or a field of a value
against a template instance. Types of the expression and the template instance shall be compatible (see clause 6.2.15).
The return value of the match operation indicates whether the expression matches the specified template instance. In
the special case, matching a non-optional value expression (e.g. a value variable or non-optional field of a value) with a
template instance that matches an omitted field (i.e. one of the matching mechanisms Omit, AnyValueOrNone,
IfPresent) shall be allowed and shall be treated as if the value expression were an optional field. Thus, matching a value
expression against a template instance which evaluates to the omit matching mechanism shall return false.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The expression-parameter of the match operation shall evaluate to a value or shall denote an omitted optional
field, i.e. the match operation cannot be used to compare two templates.

b) The operands of the match operation shall be completely initialized.

c) The type of the template instance-parameter shall be unambiguously identified. If the expression-parameter
evaluates to a literal value without explicit or implicit identification of its type, the type of the template
instance-parameter shall be used as the type governor for the expression-parameter.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)172

NOTE: In case of in-line templates, see restriction b) in clause 15.4.

Examples

EXAMPLE 1: Using the match operation

 template integer mw_lessThan10 := (-infinity..9);
 :
 myPort.receive(integer:?) -> value v_rxValue;
 if(match(v_rxValue, mw_lessThan10)) { … }
 // true if the actual value of v_rxvalue is less than 10 and false otherwise
 :

 type record R { integer a, integer b optional, integer c optional }
 const R c_r := { a := 1, b := omit, c := 1 }
 const integer c_c := 1;
 :
 function f_f(template(omit) integer p_o) {
 :
 match(c_c, omit) // returns false
 match(5, omit) // returns false
 match(c_c, *) // returns true
 match(c_r, c_c) // error (different types)
 match(c_r.a, p_o) // returns true if p_o evaluates to 1, false, otherwise
 match(c_r.b, p_o) // returns true, if p_o is not present, false, otherwise
 match(c_r.c, p_o) // returns true, if p_o evaluates to 1, false, otherwise
 match(c_c, p_o) // returns true, if p_o evaluates to 1, false, otherwise
 match(c_c, 1) // returns true (the syntax of the template parameter implicitly
 // identifies its type, see clause 15.4)
 }

EXAMPLE 2: Using the match operation with enumerated types

 type enumerated MyFirstEnumType { Monday, Tuesday, Wednesday, Thursday, Friday };

 type enumerated MySecondEnumType { Saturday, Sunday, Monday };

 control {
 var MyFirstEnumType v_today := Tuesday;
 match (v_today, Sunday) // causes an error, as the value Sunday alone does not specifies
 // the type context of the template instance-parameter
 match (v_today, MySecondEnumType:Sunday) // returns false
 match (Monday, v_today)
 //returns false; in this case v_today is governing the type context for the match operation
 //(MyFirstEnumType), but its actual value is different from Monday
 }

15.10 Valueof Operation
The valueof operation allows to return the value specified within a template. The returned value can be assigned to a
variable, may be used in expressions, as an actual value parameter, etc.

Syntactical Structure

valueof "(" TemplateInstance ")"

Semantic Description

The valueof operation returns the value of a template instance.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The template shall be completely initialized and resolve to a specific value.

Examples

EXAMPLE 1:

 type record ExampleType
 {

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)173

 integer field1,
 boolean field2
 }

 template ExampleType m_setupTemplate :=
 {
 field1 := 1,
 field2 := true
 }

 :
 var ExampleType v_rxValue := valueof(m_setupTemplate);

EXAMPLE 2:

 function MyFunc() {
 var template integer v_tInt := omit;
 //is ok, but to be used for optional record or set fields only
 var integer v_int := valueof(v_tInt)
 //causes an error as omit is not a value and shall not be an argument of valueof
 :
 }

15.11 Concatenating templates of string and list types
Templates of string and list types (bitstring, octetstring, hexstring, charstring, universal charstring, record of, set of, and
array) can be concatenated from several single (in-line) templates using the concatenation operation. With the exception
of charstring and universal charstring templates, each single template shall have the same root type.

The single templates of binary string types shall evaluate only to the matching mechanisms specific value, combined
template, AnyValue without a length modifier, AnyValue or AnyValueOrNone, both constrained to a fixed length.

The concatenation of templates of binary string types results in the sequential concatenation of the single templates
from left to right, with two exceptions: matching symbol AnyValue without a length modifier shall be replaced by a
single AnyElementsOrNone matching symbol before concatenation and matching symbols AnyValue and
AnyValueOrNone that are each constrained to a fixed length N shall be replaced by N AnyElement matching symbols
before concatenation.

The single templates of list types shall evaluate only to the matching mechanisms specific value, combined template,
AnyValue with or without a length modifier, AnyValueOrNone with a length modifier.

The concatenation of templates of list types results in the sequential concatenation of the single templates from left to
right, with two exceptions: before concatenation, an AnyValue matching symbol without a length modifier shall be
replaced by a single AnyElementsOrNone matching symbol and AnyValue and AnyValueOrNone matching symbols
with a length modifier shall be replaced by an AnyElementsOrNone matching mechanism with the same length
modifier.

Single templates of charstring and universal charstring types shall evaluate only to specific values, AnyValue with or
without a length modifier, AnyValueOrNone with a length modifier or pattern. When concatenating templates of
charstring and universal charstring types, each single template shall be either of the charstring or universal charstring
type. When templates of charstring and universal charstring type are both present in the concatenation, the charstring
values are implicitly converted to universal charstring values according to the rules specified in clause 6.3.1 before
concatenation and the resulting template is of the universal charstring type.

The concatenation of templates of character string types results in the sequential concatenation of the single templates
from left to right. In case all operands are specific values, the result of concatenation will be a specific value. In all other
cases, if possible, a pattern will be produced. When producing the pattern, the templates are first transformed to a
character string according to table 14. In the next step, the strings are concatenated and a pattern is created from the
concatenation result. If one of the single templates is a pattern with the @nocase modifier, then all other single
templates shall also be patterns with the @nocase modifier and the resulting pattern will also have the @nocase
modifier.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)174

Table 14: Transformation of character string templates before concatenation

Concatenation operand Transformed string
Specific values (character strings) The character string is escaped by inserting the "\"

character before each of the following characters: "#", "(",
")", "*", "+", "-", "?", "[", "\", "]", "^", "{", "|", "}".

?, ? length(0..infinity) or * length(0..infinity) *
? length(0) or * length(0) empty string
? length(1) or * length(1) "?"

? length(1 .. infinity) or * length(1 .. infinity) "?+"
? length(n) or * length(n) "?#(n)"

? length(n .. infinity) or * length(n .. infinity) "?#(n,)"
? length(n .. m) or * length(n .. m) "?#(n,m)"

pattern "content" "content"

Concatenation of character strings in a pattern definition is described in clause B.1.5. Concatenation of character strings
in a pattern definition always takes precedence over concatenation of templates. If it is necessary to concatenate a
pattern definition with a following character string according to the template concatenation rules (thus automatically
escaping the string), the pattern definition shall be enclosed into parentheses.

The concatenation shall be performed completely before using the resulting template (e.g. for assignment or matching)
and the result shall be type-compatible with the place of its use.

The length matching attribute shall not follow a template or template field produced by concatenation directly, but in
this case the concatenation shall be placed within a pair of parentheses.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) All operands of the concatenation operation shall be at least partially initialized.

EXAMPLE 1: Composing templates of binary string types:

 template bitstring mw_mybit := '010'B & ? & '1'B & ? length(1) & '1'B;
 // results in the template '010*1?1'B
 // note that & ? & turns to * within the resulting bitstring as the original ?
 // stands for a bitstring of any length

 template bitstring mw_mybit2 := '010'B & * length(2);
 // results in the template '010??'B
 // note that the ability of the AnyValueOrNone matching symbol to match omitted
 // values is lost during concatenation

 type bitstring ConstrainedBitString length(3);
 // values of this type are always exactly 3 bits long

 template ConstrainedBitString mw_mybit3 := ?;

 template bitstring mw_mybit4 := '010'B & mw_mybit3;
 // results in the template '010*'B
 // note that the type constraint of the mw_mybit3 template has no impact on the
 // concatenation operation; the AnyValue symbol without a length modifier is always
 // replaced with a single AnyElementsOrNone

 template octetstring mw_myoct1 := 'ABCD'O & 'EF'O & ? & ? length(1) & 'EF'O;
 // results in the template 'ABCDEF*?EF'O
 // note that & ? & turns to * within the resulting octetstring as the original ?
 // stands for an octetstring of any length

 template octetstring mw_myoct2 := 'ABCD'O & ? length (2) & 'EF'O;
 // results in the template 'ABCD??EF'O
 // (i.e. a 5 octets i.e. 10 hexadecimal digits long value)

 template octetstring mw_myoctWrong := 'ABCD'O & ? length(2) length (4);
 // causes an error, no length matching attribute shall directly follow a concatenation

 template octetstring mw_myoct3 := ('ABCD'O & ? length(2)) length (4);
 // results in the template 'ABCD??'O

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)175

 template hexstring mw_myhexPar (integer N):=
 'ABC'H & ? length(N) & 'E'H & ? length(1) & 'F'H;
 function f_myFunc() runs on MyCompType {
 var integer v_int := 3;
 var template hexstring v_hstring;
 :
 v_hstring := 'ABC'H & ? length(v_int) & 'E'H & ? length(1) & 'F'H;
 //results in the template 'ABC???E?F'H
 p.receive (mw_myhexPar(4));
 //actual content of mw_myhexPar is 'ABC????E?F'H
 }

EXAMPLE 2: Composing templates of list types:

 type record of charstring RecofChar;
 type set of integer SetofInt;

 template RecofChar mw_myRecofChar := {"ABC"} & {"D?", "EF"};
 // results in the template {"ABC", "D?", "EF" }

 template SetofInt mw_mySetofInt := { 1, 2 } & ? length(2) & { 3, 4 };
 // results in the template {1, 2, * length(2), 3, 4 }

 template RecofInt mw_myRecofInt := { 1, 2 } & { * length(1..2), 3, 4 };
 // results in the template {1, 2, * length(1..2), 3, 4 }

 template RecofChar mw_myRecofCharPar (integer N):= { "ABC" } & ? & * length(N) & { "EF" };
 function myFunc2() runs on MyCompType{
 var integer v_int := 3;
 var template RecofChar v_recofChar;
 :
 v_recofChar := { "ABC" } & ? length(v_int) & { "EF" };
 //results in the template { "ABC", * length(3), "EF" }
 p.receive (mw_myRecofCharPar(3));
 //actual content of mw_myRecofCharPar is { "ABC", *, * length(3), "EF" }
 }

EXAMPLE 3: Composing templates of character string types:

 template charstring mw_mychar1 := "ABC" & "DE*" & "F?";
 // results in the template "ABCDE*F?"
 // please note that "*" and "?" denote the characters "*" and "?"

 template charstring mw_mychar2 := "ABC" & ? & "EF";
 // results in the template pattern "ABC*EF"

 template charstring mw_mychar3 := "ABC" & * length(1 .. infinity) & "EF";
 // results in the template pattern "ABC?+EF"

 template charstring mw_mychar4 := "ABC" & * length(2 .. 5) & "EF";
 // results in the template pattern "ABC?#(2,5)EF"

 template charstring mw_mychar5 := pattern "ABC" & "?EF";
 // results in the template pattern "ABC?EF"

 template charstring mw_mychar6 := (pattern "ABC") & "?EF";
 // results in the template pattern "ABC\?EF"

 template charstring mw_mycharPar (integer p_val):=
 "ABC" & ? length(p_val) & "E" & ? length(1..10) & "F";
 // the parameterized template is used inside the following function;
 // concatenation to a pattern is performed during instantiation of the
 // template when all actual parameter values as known

 function f_myFunc3() runs on MyCompType {
 var integer v_int := 3;
 var template charstring v_cstring;
 :
 v_cstring := "ABC" & ? length(v_int .. v_int + 2) & "E" & ? length(1) & "F";
 //results in the template pattern "ABC?#(3,5)E?F"
 p.receive (mw_mycharPar(4));
 //actual content of mw_mycharPar is pattern "ABC?#4E?#(1,10)F"
 }

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)176

15.12 The omit operation
The omit operation checks if a template instance fullfils conditions of the omit restriction.

Syntactical Structure

omit "(" TemplateInstance ")"

Semantic Description

The omit operation returns:

• A template with the omit restriction and with the same content as the operand, if the operand fulfils conditions
of the omit template restriction as described in clause 15.8.

• Any other situation shall cause an error.

NOTE: This means that the result of omit(m_myTemplate) can be safely assigned to templates with the omit
restriction.

Restrictions

General static rules of TTCN-3 given in clause 5 apply.

EXAMPLE:

 // definitions of restricted templates
 type record ExampleType {
 integer a,
 boolean b optional
 }

 template ExampleType m_originalOmit := omit;
 template ExampleType m_originalValue := { 1, true};
 template ExampleType m_originalAny := ?;

 template(omit) ExampleType m_targetOmit := omit(m_originalOmit);

 template(omit) ExampleType m_targetValue:= omit(m_originalValue);
 template(omit) ExampleType m_targetAny := omit(m_originalAny); // causes error

15.13 The present operation
The present operation checks if a template fullfils conditions of the present restriction.

Syntactical Structure

present "(" TemplateInstance ")"

Semantic Description

The present operation returns:

• A template with the present restriction and with the same content as the operand, if the operand fulfils
conditions of the present template restriction as described in clause 15.8.

• Any other situation shall cause an error.

NOTE: This means that the result of present(m_myTemplate) can be safely assigned to templates with the
present restriction.

Restrictions

General static rules of TTCN-3 given in clause 5 apply.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)177

EXAMPLE:

 // definitions of restricted templates
 type record ExampleType {
 integer a,
 boolean b optional
 }

 template ExampleType m_originalOmit := omit;
 template ExampleType m_originalValue := { 1, true};
 template ExampleType m_originalAny := ?;

 template(present) ExampleType m_targetOmit := present(m_riginalOmit); //causes error
 template(present) ExampleType m_targetValue:= present(m_originalValue);
 template(present) ExampleType m_targetAny := present(m_originalAny); // causes error

15.14 Presentness conversion
The conversion of a general (unrestricted) template to a template with the present restriction can be achieved by
applying the .present notation to the template.

Syntactical Structure

TemplateInstance "." present

Applying the presentness conversion to a template expression with no restriction yields a template with the present
restriction with the following content:

• AnyValue if the referenced template contained AnyValueOrNone.

• Matching mechanism without the ifpresent attribute if the referenced template had this attribute attached
to it.

• TemplateList where all the alternatives that evaluate to omit are removed and the presentness conversion is
applied to all other alternatives.

• Unchanged template in all other cases.

NOTE: Other matching attributes such as length are unaffected by the conversion, e.g. * length(2..10)
would be converted to ? length(2..10)

Applying the presentness conversion to a template expression that has the present or value restriction yields the
same template with the same template restriction.

Applying the presentness conversion to a template expression with the omit template restriction yields the same
template with the value restriction.

Restrictions

a) Applying the presentness conversion to a template that only matches the special value omit shall result in an
error.

Examples

 type record ExampleType {
 integer a,
 boolean b optional
 }

 template ExampleType m_example := { 1, *}; // unrestricted
 var template(present) boolean v_field := m_example.b.present; // m_field is set to ?
 v_field := m_example.b; // causes and error as assignment of an unrestricted template to
 // a template with the present restriction is not allowed

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)178

15.15 The Value Extraction
The extraction of the underlying value from a charstring pattern matching mechanism or a template with the omit
restriction can be achieved with the .value notation applied to a TemplateInstance.

Syntactical Structure

TemplateInstance "." value

Semantic Description

Applying this extraction to a pattern matching mechanism of the form pattern StringValue will yield the value
StringValue. If the pattern contains any matching attribute, the attribute shall be removed by the extraction.

Applying this extraction to a template that evaluates to Value ifpresent will yield the value Value.

Applying this extraction to a template that contains a value will yield that value.

Restrictions

a) Applying the value extraction to a template that contains neither a pattern nor a value template with an
ifpresent matching attribute nor a value shall result in an error.

Examples

 var template charstring v_pattern := pattern "ab\?#(1,1)";
 v_pattern.value // yields "ab\?#(1,1)"
 var template charstring v_ifpresent := "abc" ifpresent;
 v_ifpresent.value // yields "abc"
 var template charstring v_any := ?;
 v_any.value // shall result in an error

16 Functions, altsteps and testcases

16.0 General
In TTCN-3, functions, altsteps and testcases are used to specify and structure test behaviour, define default behaviour
and to structure computation in a module, etc. as described in the following clauses.

16.1 Functions

16.1.0 General

Functions are used in TTCN-3 to express test behaviour, to organize test execution or to structure computation in a
module, for example, to calculate a single value, to initialize a set of variables or to check some condition.

Syntactical Structure

function [@deterministic | @control] (FunctionIdentifier | control)
"(" [{ (FormalValuePar | FormalTemplatePar) [","] }] ")"
[runs on ComponentType]
[mtc ComponentType]
[system ComponentType]
[return [TemplateModifier] Type [ArrayDef]]
StatementBlock

Semantic Description

Functions are portions of TTCN-3 behaviour, which perform a specific task and are relatively independent of the
remaining behaviour.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)179

Functions may return a value or a template. Value return is denoted by the return keyword followed by a type
expression. Template return is denoted by the return keywords followed by a TemplateModifier and a type
expression. Execution of a return statement in the body of the function causes evaluation of the return value or
template, the function to terminate and to return the result to the location of the call of the function.

The behaviour of a function can be defined by using statements and operations described in clauses 18 to 26.

Functions may be parameterized.

Functions may have an mtc clause. If a function has an mtc clause, the type referenced by this clause shall be mtc-
compatible (see clause 6.3.2.7) with the type of the mtc component reference. If the mtc clause is not present, the type
of the mtc component reference is unknown in the scope of this function.

Functions may have a system clause. If a function has a system clause, the type referenced by this clause shall be
system-compatible (see clause 6.3.2.7) with the type of the system component reference. If the system clause is not
present, the type of the system component reference is unknown in the scope of this function.

Using the @deterministic modifier, a function can be declared to be deterministic. Deterministic functions are safe
to be used when called from specific places where non-determinism could lead to unexpected side effects (see
clause 16.1.4).

NOTE 0: The determination of determinism of a function is a semi-decidable problem and as such can and will not
be exhaustively checked. As such, the annotation deterministic is mainly used for informational purposes
and for allowing certain functions to be used during snapshot evaluation. Principally, a function can be
seen as deterministic if it does not violate any of the restrictions from clause 16.1.4 which does not mean
that violation of these restriction automatically leads to non-determinism.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) A function without runs on clause shall never invoke a function or altstep or activate an altstep as default
with a runs on clause locally.

b) Functions started by using the start test component operation shall always have a runs on clause
(see clause 22.5) and are considered to be invoked in the component to be started, i.e. not locally. However,
the start test component operation may be invoked within behaviour without a runs on clause.

NOTE 1: The restrictions concerning the runs on clause are only related to functions and altsteps and not to test
cases.

c) Functions called directly or indirectly from a module control function shall have no mtc or system clause.

NOTE 2: Nevertheless, functions called directly or indirectly from the module control function are allowed to
execute test cases.

d) The rules for formal parameter lists shall be followed as defined in clause 5.4.

e) For return TemplateModifier statements the restrictions specified in clause 15 shall apply.

f) Template return can be restricted to the matching mechanisms specific value and omit, see clause 5.4.1.2.

g) A return statement in a value returning function shall always have a value expression compatible to the type
specified in the function header return clause.

h) A return statement in a template returning function shall always have a template reference (including
calling a value or template returning function)or template instance compatible to the type specified in the
function header return clause. If the return clause has a template restriction, this restriction shall be adhered
to by the returned template.

i) If the function header includes a return clause, the function, when terminating, shall do so by executing a
return statement. The function will cause a test case error if it terminates (i.e. reaches the end of the
function body) without executing a return statement.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)180

j) If a function references the names of definitions that are defined inside a component type definition, the
component type shall be referenced using the runs on keywords in the function header. The one exception to
this rule is if all the necessary component-wide information is passed in the function as parameters.

k) The additional restrictions in clause 16.1.5 shall apply to all explicit control functions.The list of statements
and operations that are allowed to be used by control functions is provided by table 15.

Examples

EXAMPLE 1: Function with return:

 // Definition of f_myFunction which has no parameters
 function f_myFunction() return integer
 {

 return 7; // returns the integer value 7 when the function terminates
 }

EXAMPLE 2: Function with template return:

 // Definition of functions which may return matching symbols or templates
 function f_myFunction2() return template integer
 {
 :
 return ?; // returns the matching mechanism AnyValue
 }
 function f_myFunction3() return template octetstring
 {
 :
 return 'FF??FF'O; // returns an octetstring with AnyValue inside it
 }

EXAMPLE 3: Function with runs on clause:

 function f_myFunction3() runs on MyPTCType {
 // f_myFunction3 does not return a value, but
 var integer v_myVar := 5; // does make use of the port operation
 pCO1.send(v_myVar); // send and therefore requires a runs on

 // clause to resolve the port identifiers
 } // by referencing a component type

EXAMPLE 4: Parameterized function:

 function f_myFunction2(inout integer p_myPar1) {
 // f_myFunction2 does not return a value
 p_myPar1 := 10 * p_myPar1; // but changes the value of p_myPar1 which
 } // is passed in by reference

EXAMPLE 5: Function without return statement:

 function f_myFunction5(inout integer p_myPar1) return integer {
 if (p_myPar1 > 5) {
 p_myPar1 := 5;
 return p_myPar1;
 }
 // in case of p_myPar1 <= 5, f_myFunction5 does not terminate in a return statement
 // and will cause a test case error
 }

EXAMPLE 6: Function with system and mtc:

 type component MtcType { ... }
 type component SystemType { ... }

 function f_myFunction6() runs on MyPtcType mtc MtcType system SystemType {
 var MtcType v_mtc := mtc;
 var SystemType v_system := system;
 f_myFunction3(); // allowed, f_myFunction3() has no mtc and system clause
 f_myFunction6(); // allowed, f_myFunction6() has compatible mtc and system clause
 }
 function f_myFunction7() runs on MyPtcType system SystemType {
 var MtcType v_mtc := mtc; // not allowed, mtc type unknown
 f_myFunction6(); // possible runtime error, no mtc clause of f_myFunction7
 }
 function MyFunction8() runs on MyPtcType mtc MtcType {

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)181

 var SystemType v_system := system; // not allowed, system type unknown
 f_myFunction6(); // possible runtime error, no system clause of f_myFunction8
 }

16.1.1 Invoking functions

A function is invoked by referring to its name and providing the actual list of parameters.

Syntactical Structure

FunctionRef "(" [{ ActualPar [","] }] ")"

Semantic Description

A function invocation results in the execution of the statement block of the invoked function. The invoked function is
performed by the test component invoking it. Actual parameters are passed into the statement block. If the function
returns (upon termination and potentially with a return value), the test components continues its behaviour right after
the function invocation.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Functions that do not return values shall be invoked directly. Functions that return values may be invoked
directly or inside expressions.

b) The rules for actual parameter lists shall be followed as defined in clause 5.4.

c) Special restrictions apply to functions bound to test components using the start test component operation.
These restrictions are described in clause 21.3.2.

d) When invoking a function, the compatibility to the test component type of the invoking test component as
described in clause 6.3.2.7 need to be fulfilled.

e) Restrictions on invoking functions from specific places are described in clause 16.1.4.

f) When invoking a function, the mtc and system compatibility of the mtc and system components of the invoked
function with the actual mtc and system types of the running test case as described in clause 6.3.2.7 need to be
fulfilled.

g) Invoking a function that returns an uninitialized value is allowed only if the function is invoked directly as a
statement of a statement block or as the return value of a return statement. In any other place, invoking a
function that returns an uninitialized value shall cause an error (e.g. in an expression, as an actual parameter or
on the right hand side of an assignment).

Examples

 v_myVar := f_myFunction4(); // The value returned by f_myFunction4 is assigned to v_myVar.
 // The types of the returned value and v_myVar have to be compatible

 f_myFunction2(v_myVar2); // f_myFunction2 does not return a value and is called with the
 // actual parameter v_myVar2, which may be passed in by reference

 v_myVar3 := f_myFunction6(4) + f_myFunction7(v_myVar3); // Functions used in expressions

16.1.2 Predefined functions

TTCN-3 contains a number of predefined (built-in) functions that need not be declared before use. These are
summarized in table 15.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)182

Table 15: List of TTCN-3 predefined functions

Category Function Keyword
Conversion functions Convert integer value to charstring value int2char

Convert integer value to universal charstring value int2unichar

Convert integer value to bitstring value int2bit

Convert integer value to enumerated value int2enum

Convert integer value to hexstring value int2hex

Convert integer value to octetstring value int2oct

Convert integer value to charstring value int2str

Convert integer value to float value int2float

Convert float value to integer value float2int

Convert charstring value to integer value char2int

Convert charstring value to octetstring value char2oct

Convert universal charstring value to octetstring value unichar2oct

Convert universal charstring value to integer value unichar2int

Convert bitstring value to integer value bit2int

Convert bitstring value to hexstring value bit2hex

Convert bitstring value to octetstring value bit2oct

Convert bitstring value to charstring value bit2str

Convert hexstring value to integer value hex2int

Convert hexstring value to bitstring value hex2bit

Convert hexstring value to octetstring value hex2oct

Convert hexstring value to charstring value hex2str

Convert octetstring value to integer value oct2int

Convert octetstring value to bitstring value oct2bit

Convert octetstring value to hexstring value oct2hex

Convert octetstring value to charstring value oct2str

Convert octetstring value to charstring value, version II oct2char

Convert octetstring value to universal charstring value oct2unichar

Convert charstring value to integer value str2int

Convert charstring value to hexstring value str2hex

Convert charstring value to octetstring value str2oct

Convert charstring value to float value str2float

Convert enumerated value to integer value enum2int

Convert value or template to universal charstring value any2unistr

Length/size functions Return the length of a value or template of any string type, record
of, set of or array

lengthof

Return the number of elements in a value or a template of a record
or set

sizeof

Presence checking
functions

Determine if a template contains certain matching mechanism istemplatekind

String/list handling
functions

Returns part of the input string matching the specified pattern group
within a character pattern

regexp

Returns the specified portion of the input string/list value or template substr
Replaces a substring of a string with or inserts the input string into a
string, and similarly for lists

replace

Codec functions Encode a value into a bitstring encvalue

Decode a bitstring into a value decvalue

Encode a value into a universal charstring encvalue_unichar

Decode a universal charstring into a value decvalue_unichar

Encode a value into a octetstring encvalue_o

Decode a octetstring into a value decvalue_o

Retrieve the type of string encoding get_stringencoding

Remove BOMs of UCS encoding schemes remove_bom

Other functions Generate a random float number rnd

Returns the name of the currently executing test case testcasename

Returns the host id of the test component or module hostid

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)183

Syntactical Structure

int2char "(" SingleExpression ")" |
int2unichar "(" SingleExpression ")" |
int2bit "(" SingleExpression "," SingleExpression ")" |
int2enum "(" SingleExpression "," SingleExpression ")" |
int2hex "(" SingleExpression "," SingleExpression ")" |
int2oct "(" SingleExpression "," SingleExpression ")" |
int2str "(" SingleExpression ")" |
int2float "(" SingleExpression ")" |
float2int "(" SingleExpression ")" |
char2int "(" SingleExpression ")" |
char2oct "(" SingleExpression ")" |
unichar2int "(" SingleExpression ")" |
unichar2oct "(" SingleExpression ["," SingleExpression] ")" |
bit2int "(" SingleExpression ")" |
bit2hex "(" SingleExpression ")" |
bit2oct "(" SingleExpression ")" |
bit2str "(" SingleExpression ")" |
hex2int "(" SingleExpression ")" |
hex2bit "(" SingleExpression ")" |
hex2oct "(" SingleExpression ")" |
hex2str "(" SingleExpression ")" |
oct2int "(" SingleExpression ")" |
oct2bit "(" SingleExpression ")" |
oct2hex "(" SingleExpression ")" |
oct2str "(" SingleExpression ")" |
oct2char "(" SingleExpression ")" |
oct2unichar "(" SingleExpression ["," SingleExpression] ")" |
str2int "(" SingleExpression ")" |
str2hex "(" SingleExpression ")" |
str2oct "(" SingleExpression ")" |
str2float "(" SingleExpression ")" |
enum2int "(" SingleExpression ")" |
any2unistr "(" SingleExpression ["," SingleExpression] ")" |
lengthof "(" TemplateInstance ")" |
sizeof "(" TemplateInstance ")" |
istemplatekind "(" TemplateInstance "," TemplateInstance ")" |
regexp [@nocase] "(" TemplateInstance"," TemplateInstance"," SingleExpression ")" |
substr "(" TemplateInstance "," SingleExpression "," SingleExpression ")" |
replace "(" SingleExpression "," SingleExpression "," SingleExpression "," SingleExpression ")" |
encvalue "(" TemplateInstance ["," SingleExpression] ["," SingleExpression] ")" |
decvalue "(" SingleExpression "," SingleExpression
 ["," SingleExpression] ["," SingleExpression] ["," SingleExpression] ")" |
encvalue_unichar "(" TemplateInstance ["," SingleExpression]
 ["," SingleExpression] ["," SingleExpression] ")" |
decvalue_unichar "(" SingleExpression "," SingleExpression
 ["," SingleExpression] ["," SingleExpression] ["," SingleExpression] ")" |
encvalue_o "(" TemplateInstance ["," SingleExpression] ["," SingleExpression] ")" |
decvalue_o "(" SingleExpression "," SingleExpression ["," SingleExpression]
 ["," SingleExpression] ")" |
get_stringencoding "(" SingleExpression ")" |
remove_bom(" SingleExpression ") |
rnd "(" [SingleExpression] ")" |
testcasename "()" |
hostid "(" [SingleExpression] ")"

Semantic Description

The description of predefined functions is given in annex C.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) When a predefined function is invoked:

1) the number of the actual parameters shall be the same as the number of the formal parameters; and

2) each actual parameter shall evaluate to an element of its corresponding formal parameter's type; and

3) all actual in and inout parameters shall be initialized with the following exceptions:

 any parameters of the functions lengthof, substr and replace may be partially initialized;

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)184

 the invalue parameter of the any2unistr function may be uninitialized or partially initialized;

 the encoded_value parameter of the decvalue and decvalue_unichar function may be
uninitialized.

b) Restrictions on invoking functions from specific places are described in clause 16.1.4.

Examples

 var hexstring v_h:= bit2hex ('111010111'B);
 var octetstring v_o:= substr ('01AB23CD'O, 1, 2);

16.1.3 External functions

A function may be defined within a module or be declared as being defined externally (i.e. external).

Syntactical Structure

external function [@deterministic | @control] ExtFunctionIdentifier
"(" [{ (FormalValuePar | FormalTemplatePar) [","] }] ")"
[return [TemplateModifier] Type]

Semantic Description

For an external function only the function interface has to be provided in the TTCN-3 module. The realization of the
external function is outside the scope of the present document.

Using the @deterministic modifier, an external function can be declared to be deterministic. Deterministic
functions are safe to be used when called from specific places where non-determinism could lead to unexpected side
effects (see clause 16.1.4).

The @control modifier is used in the same way as described in the clause 16.1.5.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Restrictions on invoking functions from specific places are described in clause 16.1.4.

NOTE: External functions should only exchange information with the test system via return values and parameter
passing. Side-effects that change the status of the test system and may influence the test outcome should
be avoided. Such side-effects can occur if an external function contains default handling, configuration,
communication or timer operations.

Examples

 external function fx_myFunction4() return integer; // External function without parameters
 // which returns an integer value

 external function fx_initTestDevices(); // An external function which only has an
 // effect outside the TTCN-3 module

16.1.4 Invoking functions from specific places

If value returning functions are called in receiving communication operations (in templates, template fields, in-line
templates as actual parameters or when evaluating the port expression), in timeout operations (when evaluating the
timer expression), in test component operations (in guards or events of alt statements or altsteps, see clause 20.2), or in
initializations of altstep local definitions (see clause 16.1.5), the following operations shall not be present in functions
called in the cases specified above, in order to avoid side effects that cause changing the state of the component or the
actual snapshot and to prevent different results of subsequent evaluations on an unchanged snapshot:

a) All component operations, i.e. create, start (component), stop (component), kill,
running (component), alive, done and killed (see notes 1, 3, 4 and 6).

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)185

b) All port operations, i.e. start (port), stop (port), halt, clear, checkstate, send, receive,
trigger, call, getcall, reply, getreply, raise, catch, check, connect, disconnect,
map and unmap (see notes 1, 2, 3, 4 and 6).

c) The action operation (see notes 2 and 6).

d) All timer operations, i.e. start (timer), stop (timer), running (timer), read, timeout (see notes 4
and 6).

e) Calling non-deterministic external functions, i.e. external functions where the resulting values for actual inout
or out parameters or the return value may differ for different invocations with the same actual in and inout
parameters (see notes 4 and 6).

f) Calling the rnd predefined function (see notes 4 and 6).

g) Changing of component variables, i.e. using component variables on the left-hand side of assignments, and in
the instantiation of out and inout parameters (see notes 4 and 6).

h) Calling the setverdict operation (see notes 4 and 6).

i) Activation and deactivation of defaults, i.e. the activate and deactivate statements (see notes 5 and 6).

j) Calling functions and deterministic external functions with out or inout parameters (see notes 7 and 8).

k) Calling functions and external functions with @fuzzy formal parameters and variables (see notes 4 and 9).

l) The setencode operation (see note 8 and clause 27.9).

m) Referencing lazy or fuzzy variables, parameters or templates that have not been declared deterministic.

NOTE 1: The execution of the operations start, stop, done, killed, halt, clear, receive, trigger,
getcall, getreply, catch and check can cause changes to the current snapshot.

NOTE 2: The use of operations send, call, reply, raise, and action causes an error, i.e. all
communication are to be made explicit and not as a side effect of another communication operation or the
evaluation of a snapshot.

NOTE 3: The use of operations map, unmap, connect, disconnect, create will lead to an error, i.e. all
configuration operations are to be made explicit, and not as a side effect of a communication operation or
the evaluation of a snapshot.

NOTE 4: Calling of non-deterministic external functions, rnd, running, alive, read, checkstate,
setverdict, referencing fuzzy objects and writing to component variables causes an error because this
may lead to different results of subsequent evaluations of the same snapshot, thus, e.g. rendering deadlock
detection impossible.

NOTE 5: The use of operations activate and deactivate causes an error because they modify the set of
defaults that is considered during the evaluation of the current snapshot.

NOTE 6: Restrictions except the limitation on the use of out or inout parameterization in restriction j) apply
recursively, i.e. it is disallowed to use them directly, or via an arbitrary long chain of function
invocations.

NOTE 7: The restriction of calling functions and deterministic external functions with out or inout parameters
does not apply recursively, i.e. calling functions that themselves call functions with out or inout
parameters is legal.

NOTE 8: Using out or inout parameters and the setencode operation causes an error because this may lead
to different results of subsequent evaluations of the same snapshot.

NOTE 9: Calling functions and external functions with @fuzzy parameters causes an error, because fuzzy objects
are re-evaluated each time referenced and this may lead to different results of subsequent evaluations of
the same snapshot.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)186

16.1.5 Explicit control functions

Explicit control functions are declared either by use of the name control or by use of the @control modifier.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and the general restrictions on functions given in
clause 16.1, the following restrictions apply to explicit control functions:

a) No system and no mtc clause shall be declared.

b) The component type referenced in the runs on clause shall not contain any port definitions.

c) Parameters and the return type shall not be of a port type and shall not be of a structured type that contains
fields of a port type on any level of nesting.

d) Parameters and the return type of module control functions shall not be of a default type and shall not be of a
structured type that contais fields of a default type on any level of nesting.

e) The restrictions on the use of statements and operations usable in control functions given in table 15 shall be
followed.

f) Module control functions used as an execution entry point shall have public visibility.

g) When invoking a module control function explicitly, the compatibility to the test component type of the
invoking control component as described in clause 6.3.2.7 need to be fulfilled.

16.2 Altsteps

16.2.0 General

TTCN-3 uses altsteps to specify default behaviour or to structure the alternatives of an alt statement.

Syntactical Structure

altstep [@control] [interleave] AltstepIdentifier
"(" [{ (FormalValuePar | FormalTemplatePar) [","] }] ")"
[runs on ComponentType]
[mtc ComponentType]
[system ComponentType]
"{"
 { (VarInstance | TimerInstance | ConstDef | TemplateDef) [";"] }
 AltGuardList
"}"

Semantic Description

Altsteps are scope units similar to functions. The altstep body defines an optional set of local definitions and a set of
alternatives, the so-called top alternatives, that form the altstep body. The syntax rules of the top alternatives are
identical to the syntax rules of the alternatives of alt statements.

An altstep can also be used to define a named interleave statement by usage of the interleave keyword. In this case, the
syntax rules of the top alternatives are identical to the syntax rules of the alternatives of the interleave statements.

NOTE: As an interleave statement is semantically equivalent with the expanded alt statement, there are no further
restrictions on usages of interleave altsteps than on usages of normal altsteps. They can both be used as
activated default alternatives and as top-level alternatives in other alt statement blocks. The behaviour of
an altstep can be defined by using the program statements and operations summarized in clause 18.
Altsteps may invoke functions and altsteps or activate altsteps as defaults.

Altsteps may be parameterized as defined in clause 5.4.

Altsteps may have an mtc clause. If an altstep has an mtc clause, the type referenced by this clause shall be mtc-
compatible (see clause 6.3.2.7) with the type of the mtc component reference. If the mtc clause is not present, the type
of the mtc component reference is unknown in the scope of this altstep.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)187

Altsteps may have a system clause. If an altstep has a system clause, the type referenced by this clause shall by
system-compatible (see clause 6.3.2.7) with the type of the system component reference. If the system clause is not
present, the type of the system component reference is unknown in the scope of this altstep.

Altsteps with the @control modifier are allowed to be executed only on the control component (see clause 26). The
restrictions specified for functions with the @control modifier (see clause 16.1.5) are valid for these altsteps as well.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The local definitions of an altstep shall be defined before the set of alternatives.

b) The evaluation of formal parameters' default values and initialization of local definitions by calling value
returning functions may have side effects. To avoid side effects that cause an inconsistency between the actual
snapshot and the state of the component, and to prevent different results of subsequent evaluations on an
unchanged snapshot, restrictions given in clause 16.1.4 shall apply to the formal parameters' default values and
the initialization of local definitions.

c) If an altstep includes port operations or uses component variables, constants or timers the associated
component type shall be referenced using the runs on keywords in the altstep header. The one exception to
this rule is if all ports, variables, constants and timers used within the altstep are passed in as parameters.

d) An altstep without a runs on clause shall never invoke a function or altstep or activate an altstep as default
with a runs on clause locally.

e) An altstep that is activated as a default shall only have in value or template parameters. An altstep that is only
invoked as an alternative in an alt statement or as stand-alone statement in a TTCN-3 behaviour description
may have in, out and inout parameters. The rules for formal parameter lists shall be followed as defined in
clause 5.4.

f) Altsteps started by using the start test component operation shall always have a runs on clause (see
clause 22.5) and are considered to be invoked in the component to be started, i.e. not locally. However, the
start test component operation may be invoked within behaviour without a runs on clause.

g) If the altstep is an interleave alstep, all restrictions of the interleave statement (see clause 20.4) apply to the top
alternatives of the altstep as well.

Examples

EXAMPLE 1: Parameterized altstep with runs on clause:

 // Given
 type component MyComponentType {
 var integer vc_myIntVar := 0;
 timer tc_myTimer;
 port myPortTypeOne pCO1, pCO2;
 port myPortTypeTwo pCO3;
 }

 // Altstep definition using pCO1, pCO2, vc_myIntVar and tc_myTimer of MyComponentType
 altstep a_altSet_A(in integer p_myPar1) runs on MyComponentType {
 [] pCO1.receive(mw_myTemplate(p_myPar1, vc_myIntVar)) {
 setverdict(inconc);
 }
 [] pCO2.receive {
 if (p_myPar1 != 0) {
 repeat
 }
 else {
 break
 }
 }
 [] tc_myTimer.timeout {
 setverdict(fail);
 stop
 }
 }

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)188

EXAMPLE 2: Altstep with local definitions:

 altstep a_anotherAltStep(in integer p_myPar1) runs on MyComponentType {
 var integer v_myLocalVar := f_myFunction(); // local variable
 const float c_myFloat := 3.41; // local constant
 [] pCO1.receive(MyTemplate(p_myPar1, v_myLocalVar)) {
 setverdict(inconc);
 }
 [] pCO2.receive {
 repeat
 }
 }

EXAMPLE 3: Interleave Altstep:

 altstep interleave a_interleaveAltStep(in integer p_myPar1, in integer p_myPar2)
 runs on MyComponentType {
 var integer v_myLocalVar := f_myFunction(); // local variable
 [] pCO1.receive(MyTemplate(p_myPar1, v_myLocalVar)) {}
 [] pCO1.receive(MyTemplate(p_myPar2, v_myLocalVar)) {}
 }

 //can be viewed as a shorthand for
 altstep a_interleaveAltStep(in integer p_myPar1, in integer p_myPar2)
 runs on MyComponentType {
 var integer v_myLocalVar := f_myFunction(); // local variable
 [] pCO1.receive(MyTemplate(p_myPar1, v_myLocalVar)) {
 alt {
 [] pCO1.receive(MyTemplate(p_myPar2, v_myLocalVar))
 }
 }
 [] pCO1.receive(MyTemplate(p_myPar2, v_myLocalVar)) {
 alt {
 [] pCO1.receive(MyTemplate(p_myPar1, v_myLocalVar))
 }
 }

 }

16.2.1 Invoking altsteps

The invocation of an altstep is always related to an alt statement. The invocation may be done either implicitly by the
default mechanism (see clause C.5) or explicitly by a direct call within an alt statement (see clause 20.2).

Syntactical Structure

[@nodefault] AltstepRef "(" [{ ActualPar [","] }] ")"

Semantic Description

The invocation of an altstep causes no new snapshot and the evaluation of the top alternatives of an altstep is done by
using the actual snapshot of the alt statement from which the altstep was called.

NOTE 1: A new snapshot within an altstep will of course be taken, if within a selected top alternative a new alt
statement is specified and entered.

For an implicit invocation of an altstep by means of the default mechanism, the altstep shall be activated as a default by
means of an activate statement before the place of the invocation is reached.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)189

An explicit call of an altstep within an alt statement looks syntactically like a function invocation as an alternative.
When an altstep is called explicitly within an alt statement, the next alternative to be checked is the first alternative of
the altstep. The alternatives of the altstep are checked and executed the same way as alternatives of an alt
statement (see clause 20.1) with the exception that no new snapshot is taken when entering the altstep. An
unsuccessful termination of the altstep (i.e. all top alternatives of the altstep have been checked and no matching
branch is found) causes the evaluation of the next alternative or invocation of the default mechanism (if the explicit call
is the last alternative of the alt statement). A successful termination may cause either the termination of the test
component, i.e. the altstep ends with a stop statement, or a new snapshot and re-evaluation of the alt statement,
i.e. the altstep ends with repeat (see clause 20.2) or a continuation immediately after the alt statement, i.e. the
execution of the selected top alternative of the altstep ends with a break statement (see clause 19.12) or without
explicit repeat or stop.

NOTE 2: Due to the possibility of defining dynamic test configurations, an alternative in an explicitly invoked
altstep may refer to a disconnected or unmapped port at the time of its evaluation. In TTCN-3, ports
belong to the receiving component and matching is related to the top elements in the port queues.
Dynamically unmapped and disconnected ports contribute to a snapshot in the same manner as mapped
and connected ports. This means, an explicitly invoked altstep may execute receiving operations that
empty the queues of unmapped and disconnected ports without causing a test case error.

An altstep can also be called as a stand-alone statement in a TTCN-3 behaviour description. In this case, the call of
the altstep can be interpreted as shorthand for an alt statement with only one alternative describing the explicit call
of the altstep. If the @nodefault modifier is placed before a stand-alone altstep call, the implicit alt
statement also contains the @nodefault modifier.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) When invoking an altstep, the compatibility of the test component type of the invoking test component and of
the altstep runs on clause (as described in clause 6.3.2.7) need to be fulfilled.

b) Further restrictions on invoking altsteps in the activate statement are given in clause 20.5.2.

c) When invoking an altstep, the mtc and system compatibility of the mtc and system components of the invoked
altstep with the actual mtc and system types of the running test case as described in clause 6.3.2.7 need to be
fulfilled.

Examples

EXAMPLE 1: Implicit invocation of an altstep via a default activation

 :
 var default v_myDefVarTwo := activate(a_mySecondAltStep()); // Activation of an altstep as
 // default
 :

EXAMPLE 2: Explicit invocation of an altstep within an alt statement

 :
 alt {
 [] pCO3.receive {
 …
 }
 [] a_anotherAltStep(); // explicit call of altstep a_anotherAltStep as an alternative
 // of an alt statement
 [] t_myTimer.timeout {}
 }

EXAMPLE 3: Explicit, stand-alone invocation of an altstep

 // The statement
 a_anotherAltStep(); // a_anotherAltStep is assumed to be a correctly defined altstep

 //is a shorthand for

 alt {
 [] a_anotherAltStep();
 }

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)190

16.3 Test cases
A test case is complete and independent specification of the actions required to achieve a specific test purpose. It
typically starts in a stable testing state and ends in a stable testing state. It may involve one or more consecutive or
concurrent connections to the SUT. The test case shall be complete in the sense that it is sufficient to enable a test
verdict to be assigned unambiguously to each potentially observable test outcome (i.e. sequence of test events). The test
case shall be independent in the sense that it shall be possible to execute the derived executable test case in isolation
from other such test cases.

In TTCN-3, test cases are a special kind of function. Test cases define the behaviour, which have to be executed to
check whether the SUT passes a test or not. This behaviour is performed by the MTC which is automatically created
when a test case is being executed.

Syntactical Structure

testcase TestcaseIdentifier
"(" [{ (FormalValuePar | FormalTemplatePar) [","] }] ")"
[runs on ComponentType]
[system ComponentType]
StatementBlock

Semantic Description

A test case is considered to be a self-contained and complete specification that checks a test purpose. The result of a test
case execution is a test verdict.

A test case header has two parts:

a) interface part (optional): denoted by the keyword runs on which references the required component type for
the MTC and makes the associated port names visible within the MTC behaviour. In case the runs on clause
is missing, the MTC created by the test case has no ports, and no component constants and variables; and

b) test system part (optional): denoted by the keyword system which references the component type which
defines the required ports for the test system interface. The test system part shall only be omitted if, during test
execution, only the MTC is instantiated. In this case, the MTC type defines the test system interface ports
implicitly if the runs on clause is present. If both runs on and system clauses are missing, the test system
interface has no ports;

c) all formal parameter types of the test case shall be of a data type.

The behaviour of a test case can be defined by using the program statements and operations described in clause 18.

Test cases may be parameterized as described in clause 5.4. Test cases can be executed from control behaviour
definitions (see clause 26).

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The rules for formal parameter lists shall be followed as defined in clause 5.4.

b) Test cases may only be invoked with an execute statement in a function or altstep running on a control
component as defined in clause 26.

Examples

 testcase TC_MyTestCaseOne()
 runs on MyMtcType1 // defines the type of the MTC
 system MyTestSystemType // makes the port names of the TSI visible to the MTC
 {
 : // The behaviour defined here executes on the mtc when the test case invoked
 }

 // or, a test case where only the MTC is instantiated
 testcase TC_MyTestCaseTwo() runs on MyMtcType2
 {
 : // The behaviour defined here executes on the mtc when the test case invoked
 }

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)191

17 Void

18 Overview of program statements and operations
The fundamental program elements of test cases, functions and altsteps are expressions, basic program statements such
as assignments, loop constructs, etc. behavioural statements such as sequential behaviour, alternative behaviour,
interleaving, defaults, etc. and operations such as send, receive, create, etc.

Statements can be either single statements (which do not include other program statements) or compound statements
(which may include other statements and statement blocks).

Statements shall be executed in the order of their appearance, i.e. sequentially, as illustrated in figure 8.

 S1

S1; S2; S3;S2

S3

Figure 8: Illustration of sequential behaviour

The individual statements in the sequence shall be separated by the delimiter ";".

EXAMPLE:

 MyPort.send(Mymessage); MyTimer.start; log("Done!");

The specification of an empty statement block, i.e. {}, may be found in compound statements, e.g. a branch in an alt
statement, and implies that no actions are taken.

Table 16 gives an overview of the TTCN-3 expressions, statements and operations and restrictions on their usage.

Table 16: Overview of TTCN-3 expressions, statements and operations

Statement Associated keyword or
symbol

Can be
invoked by

control
behaviour

Can be invoked
by test behaviour

Can be directly
or indirectly

invoked from
specific places

(see note 1)
Expressions (…) Yes Yes Yes
Basic program statements
Assignments := Yes Yes Yes (see note 3)
If-else if (…) {…} else {…} Yes Yes Yes
Select case select case (…) { case

(…) {…} case else {…}}
Yes Yes Yes

For loop for (…) {…} Yes Yes Yes
While loop while (…) {…} Yes Yes Yes
Do while loop do {…} while (…) Yes Yes Yes
Label and Goto label / goto Yes Yes Yes
Stop execution stop Yes Yes
Returning control return Yes (see note 4) Yes
Leaving a loop, alt, altstep or
interleave

break Yes Yes Yes

Next iteration of a loop continue Yes Yes Yes
Logging log Yes Yes Yes
Statements and operations for alternative behaviour
Alternative behaviour alt {…} Yes

(see note 2)
Yes

Re-evaluation of alternative behaviour repeat Yes Yes

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)192

Statement Associated keyword or
symbol

Can be
invoked by

control
behaviour

Can be invoked
by test behaviour

Can be directly
or indirectly

invoked from
specific places

(see note 1)
Interleaved behaviour interleave {…} Yes

(see note 2)
Yes

Activate a default activate Yes Yes
Deactivate a default deactivate Yes Yes
Configuration operations
Create parallel test component create Yes
Connect component port to
component port

connect Yes

Disconnect two component ports disconnect Yes
Map port to test interface map Yes
Unmap port from test system interface unmap Yes
Get MTC component reference value mtc Yes Yes
Get test system interface component
reference value

system Yes Yes

Get own component reference value self Yes Yes
Start execution of test component
behaviour

start Yes

Stop execution of test component
behaviour

stop Yes

Terminating the testcase with an error
verdict

testcase.stop Yes Yes

Remove a test component from the
system

kill Yes

Check termination of a PTC behaviour running Yes
Check if a PTC exists in the test
system

alive Yes

Wait for termination of a PTC
behaviour

done Yes

Wait a PTC cease to exist killed Yes
Communication operations
Send message send Yes
Invoke procedure call call Yes
Reply to procedure call from remote
entity

reply Yes

Raise exception (to an accepted call) raise Yes
Receive message receive Yes
Trigger on message trigger Yes
Accept procedure call from remote
entity

getcall Yes

Handle response from a previous call getreply Yes
Catch exception (from called entity) catch Yes
Check (current) message/call
received

check Yes

Clear port queue clear Yes
Clear queue and enable sending &
receiving at a to port

start Yes

Disable sending and disallow
receiving operations to match at a port

stop Yes

Disable sending and disallow
receiving operations to match new
messages/calls

halt Yes

Check the state of a port checkstate Yes
Timer operations
Start timer start Yes Yes
Stop timer stop Yes Yes
Read elapsed time read Yes Yes
Check if timer running running Yes Yes
Timeout event timeout Yes Yes
Verdict operations
Set local verdict setverdict Yes
Get local verdict getverdict Yes Yes

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)193

Statement Associated keyword or
symbol

Can be
invoked by

control
behaviour

Can be invoked
by test behaviour

Can be directly
or indirectly

invoked from
specific places

(see note 1)
External actions
Stimulate an (SUT) action externally action Yes Yes
Execution of test cases
Execute test case execute Yes
NOTE 1: Specific places are defined in clause 16.1.4. Only operations that do not have any potential side effects on

snapshot evaluation are allowed.
NOTE 2: Can be used to control timer operations only.
NOTE 3: Changing of component variables is disallowed.
NOTE 4: Can be used in functions and altsteps but not in test cases.

19 Basic program statements

19.0 General
Table 17 provides an overview of the TTCN-3 basic program statements.

Table 17: Overview of TTCN-3 basic program statements

Basic program statements
Statement Associated keyword or symbol

Assignments :=
If-else if (…) {…} else {…}
Select case select case (…) { case (…) {…} case

else {…}}
For loop for (…) {…}
While loop while (…) {…}
Do while loop do {…} while (…)
Label and Goto label / goto
Stop execution stop
Returning control return
Leaving a loop, alt, altstep or
interleave

break

Next iteration of a loop continue
Logging log

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Unless specified differently in the relevant clause, all values and templates used in a basic program statement
shall be completely initialized (for exemption see e.g. clause 19.1).

NOTE: Note that the restriction applies to component of statements defined in the present document, like the
boolean condition of if statements, but not to the content of statement blocks embedded into the
statements.

19.1 Assignments
Values or templates may be assigned to variables or template variables (see clause 11). This is indicated by the symbol
":=".

Syntactical Structure

ValueRef ":=" (Expression | TemplateBody)

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)194

Semantic Description

During execution of an assignment, the right-hand side of the assignment shall evaluate to a value or template that is at
least partially initialized. The effect of an assignment is to bind the variable to the value of the expression or to a
template. Assignments use the rules of passing by value. If the variable being assigned is of a type whose values are
object references, only the reference is copied, but the referenced object (e.g. component, timer or port) is not. In all
other cases, the content being assigned shall be a copy of the evaluated right-hand side.

Assignments are processed from left to right, i.e. expressions in the left hand side are evaluated before those in the right
hand side. The evaluations obey the operator precedence defined in table 6. Unless the assignment is to a lazy or fuzzy
variable or parameter, the right hand side is evaluated completely before the resulting value or template is bound to the
evaluated left-hand side of the assignment. Whenever assignments are used within the right hand side of an assignment
(due to assignment notation), these rules apply recursively.

A structured value on the right-hand side of the assignment shall be assigned completely to the variable on the left-hand
side of the assignment, If a partially initialized value is assigned to a completely initialized variable, fields uninitialized
at the right-hand side of the assignment shall also become uninitialized at the left-hand side.

When a direct or indirect element or field of a lazy or fuzzy variable is assigned, the variable is also evaluated as much
as necessary before assignment, i.e. if an ancestor of that element or field is initialized with a function call, it shall be
evaluated. Thus, if the variable is fully assigned, it does not need to be evaluated before assignment.

NOTE: If a sub-field or sub-element of a fuzzy variable is assigned that has an ancestor which was formerly
assigned a function call, this function call will be evaluated once before the assignment and replaced by
its result inside the variable. Thus, the other sub-fields and sub-elements of that ancestor, apart from the
field or element being assigned become non-fuzzy.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) The right-hand side of an assignment shall evaluate to a value, template, port or timer which is type compatible
with the variable at the left-hand side of the assignment.

b) When the right-hand side of the assignment evaluates to a template (global or local template, in-line template,
template variable or a matching mechanism), the variable at the left hand side shall be a template variable.

c) The right-hand side of an assignment shall evaluate to an object that is at least partially initialized.

d) If the left-hand side of the assignment is a reference to a non-optional value object (i.e. a value definition, a
mandatory field, a record/set of/array element, a union alternative, a value parameter), the right-hand side shall
not be a reference to an omitted field or the omit symbol.

e) Using a reference to an omitted field in the right-hand side of the assignment has the same effect as using the
omit keyword.

Examples

EXAMPLE 1:

 v_myVariable := (c_x + c_y – f_increment(c_z))*3;

EXAMPLE 2:

 type record MyRecord {
 record { float x, float y } c,
 integer a
 }
 var @lazy MyRecord v_r := {
 c := f_computeC(),
 a := f_computeA()
 } // not evaluated here
 v_r.c.x := f_computeX(); // first replaces field c with result of f_computeC(),
 // then replaces field c.x with unevaluated f_computeX()
 // field while c.y remains fixed; field a remains unevaluated

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)195

EXAMPLE 3:

 type record MyRecord {
 charstring field1,
 charstring field2,
 charstring field3
 }

 var MyRecord v_myList1, v_myList2, v_myList3;

 v_myList1 := {"value1", "value2", "value3" }; // v_myList1 is completely initialized
 v_myList2 := v_myList1; // v_myList2 is equal to {"value1", "value2",
 // "value3" }
 v_myList2.field1 := "missing"; // only v_myList2 value changes to
 // {"missing", "value2", "value3" };
 // v_myList1 still contains {"value1", "value2",
 // "value3" } after the assignment

 v_myList3.field2 := "newvalue"; // v_myList3 is partially initialized
 // field1 and field3 remain uninitialized

 v_myList1 := v_myList3; // v_myList1 become partially initialized,
 // field2 has the value "newvalue"
 // field1 and field3 are uninitialized

19.2 The If-else statement
The if-else statement, also known as the conditional statement, is used to denote branching in the control flow.

Syntactical Structure

if "(" BooleanExpression ")" StatementBlock
{ else if "(" BooleanExpression ")" StatementBlock }
[else StatementBlock]

NOTE: else if "(" BooleanExpression ")" StatementBlock [else StatementBlock] is a shorthand notation for
else "{" if "(" BooleanExpression ")" StatementBlock [else StatementBlock] "}".

Semantic Description

The branching of the control flow is decided upon the value of the Boolean expressions - the condition. A statement
block - and only one - will be executed, if its condition evaluates to true. The optional else specifies a statement block
that will be executed if all the "if" and "else if" conditions before are false.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16.

Examples

 if (v_date == "1.1.2005") { return (fail); }

 if (v_myVar < 10) { v_myVar := v_myVar * 10; log ("v_myVar < 10"); }
 else { v_myVar := v_myVar/5; }

19.3 The Select statements

19.3.1 The Select case statement

The select case statement is an alternative syntactic form of the if-else statement.

Syntactical Structure

select "(" SingleExpression ")" "{"
 { case "(" { TemplateInstance[","] } ")" StatementBlock }+
 [case else StatementBlock]
"}"

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)196

Semantic Description

The select case statement is an alternative to using if .. else if .. else statements when comparing a value to
one or several other values. The statement contains a header part and one or more branches. Never more than one of the
branches is executed.

In the header part of the select case statement an expression shall be given. Each branch starts with the case
keyword followed by a list of templateInstance (a list branch, which may also contain a single element) or in the last
branch the case keyword may be followed by the else keyword (an else branch) and a statement block.

All templateInstance in all list branches shall be of a type compatible with the type of the expression in the header.
A list branch is selected and the statement block of the selected branch is executed only, if any of the templateInstance
matches the value of the expression in the header of the statement. On executing the statement block of the selected
branch (i.e. not jumping out by a goto statement), execution continues with the statement following the select case
statement.

The statement block of an else branch is always executed if no other branch textually preceding the else branch has
been selected.

Branches are evaluated in their textual order. If none of the templateInstance-s matches the value of the expression in
the header and the statement contains no else branch, execution continues without executing any of the select case
branches.

NOTE 1: In general, it cannot be decided if templateInstances overlap or not. However, it is advised to use in the
branches templateInstances that don't overlap. In such situations tools might provide better runtime
performance. The handling however is tool-specific.

NOTE 2: When more than one branch could be selected (the templateInstances overlap) the textually first will be
selected. For this reason overlapping is discouraged, handling however is tool-specific.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) The select SingleExpression and the case TemplateInstance-s shall be type compatible.

b) When all templateInstances of all branches can be statically evaluated in compile time to specific values or
value ranges no two branches shall match the same value.

Examples

 select (PX_MyModulePar) // where PX_MyModulePar is of charstring type
 {
 case (charstring:"firstValue")
 {
 log ("The first branch is selected");
 }
 case (v_myCharVar, c_myCharConst)
 {
 log ("The second branch is selected");
 }
 case else
 {
 log ("The value of the module parameter PX_MyModulePar is selected");
 }
 }

 // the above select statement is equivalent to the following nested if-else statement.
 // Note: the following textual replacement of the select-case statement is described in
 // the operational semantics of TTCN-3.
 {
 var charstring v_myLocalVar := PX_MyModulePar;
 if (match(v_myLocalVar , charstring:"firstValue")
 {
 log ("The first branch is selected");
 }
 else if (match(v_myLocalVar , v_myCharVar) or match(v_myLocalVar , c_myCharConst))
 {
 log ("The second branch is selected");

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)197

 }
 else
 {
 log ("The value of the module parameter PX_MyModulePar is selected");
 }
 }

19.3.2 The Select union statement

To allow easier usage of the select statement for values of union types or anytype, a special form of the select statement
exists.

Syntactical Structure

select union "(" SingleExpression ")" "{"
 { case "(" ({ Identifier [","] } | { TypeIdentifier [","] }) ")" StatementBlock }+
 [case else StatementBlock]
"}"

Semantic Description

The statement contains a header part and one or more branches. Never more than one of the branches is executed.

In the header part of the select union statement a template instance of union type or anytype shall be given. If
the template instance has a union type, each branch shall start with the case keyword followed by one or more
identifiers of the alternatives (fields) of the union type (a list branch) or in the last branch the case keyword may be
followed by the else keyword (an else branch) and a statement block. If the template instance has type anytype,
each branch shall start with the case keyword followed by one or more type names (a list branch) or in the last branch
the case keyword may be followed by the else keyword (an else branch) and a statement block. The StatementBlock
of the list branch containing the identifier or type identifier of the chosen alternative is executed. If no case exists for the
chosen alternative, the StatementBlock of the else branch, if it is present, is executed. Otherwise, the select union
statement has no effect.

Restrictions

a) The SingleExpression in the header of the select union statement shall be of a union type. It shall be at
least partially initialized.

b) Every Identifier in a case of the select union statement shall be an identifier of an alternative of the
union type of the template instance given to the statement's header.

c) No two cases in a select union statement shall have the same case Identifier or TypeIdentifier.

Examples

 type union Messages {
 MyMessageType1 msg1,
 MyMessageType2 msg2,
 MyMessageType3 msg3,
 MyMessageType4 msg4,
 MyMessageType5 msg5
 }

 function f_f(in Messages p_msg) {
 select union (p_msg) {
 case (msg1) { log(p_msg.msg1); }
 case (msg2) { log(p_msg.msg2); }
 case (msg3, msg4) { log("either msg3 or msg4"); }
 case else { log("unhandled variant"); }
 }

 function f_g(in anytype p_msg) {
 select union (p_msg) {
 case (integer) { log(p_msg.integer); }
 case (Messages) { f_f(p_msg.Messages); }
 case else { log("unhandled anytype variant"); }
 }
 }

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)198

19.4 The For statement
The for statement defines a counter loop.

Syntactical Structure

for "(" (VarInstance | Assignment) ";" BooleanExpression ";" Assignment ")"
 StatementBlock

Semantic Description

The for statement contains two assignments and a boolean expression. The first assignment is necessary to initialize
the index (or counter) variable of the loop. The boolean expression terminates the loop and the second assignment is
used to manipulate the index variable.

The value of the index variable is increased, decreased or manipulated in such a manner that after a certain number of
execution loops a termination criteria is reached.

The termination criterion of the loop shall be expressed by a boolean expression. It is checked at the beginning of
each new loop iteration. If it evaluates to true, the execution continues with the statement block in the for statement,
if it evaluates to false, the execution continues with the statement which immediately follows the for loop. If a
break statement is executed that is not within the body of an enclosed loop, alt, alststep or interleave, then the
loop is terminated, too.

The index variable of a for loop can be declared before being used in the for statement or can be declared and
initialized in the for statement header. If the index variable is declared and initialized in the for statement header, the
scope of the index variable is limited to the loop body, i.e. it is only visible inside the loop body.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16.

Examples

 var integer v_j; // Declaration of integer variable v_j
 for (v_j:=1; v_j<=10; v_j:= v_j+1) { … } // Usage of variable v_j as index variable of the
 // for loop

 for (var float v_i:=1.0; v_i<7.9; v_i:= v_i*1.35) { … } // Index variable v_i is declared and
 // initialized in the for loop header. Variable
 // v_i only is visible in the loop body.

19.5 The While statement
A while statement defines a loop that is executed as long as the loop condition holds.

Syntactical Structure

while "(" BooleanExpression ")" StatementBlock

Semantic Description

The loop condition shall be checked at the beginning of each new loop iteration. If the loop condition does not hold,
then the loop is exited and execution shall continue with the statement, which immediately follows the while loop. If a
break statement is executed that is not within the body of an enclosed loop, alt, alststep or interleave, then the
loop is terminated, too.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16.

Examples

 while (v_j<10){ … }

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)199

19.6 The Do-while statement
A do-while statement defines a loop that is executed up until the loop condition does not hold.

Syntactical Structure

do StatementBlock while "(" BooleanExpression ")"

Semantic Description

The do-while loop is identical to a while loop with the exception that the loop condition shall be checked at the end
of each loop iteration. This means when using a do-while loop the behaviour is executed at least once before the loop
condition is evaluated for the first time. If a break statement is executed that is not within the body of an enclosed
loop, alt, alststep or interleave, then the loop is terminated, too.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16.

Examples

 do { … } while (v_j<10);

19.7 The Label statement
The label statement allows the specification of labels in test cases, functions and altsteps.

Syntactical Structure

label LabelIdentifier

Semantic Description

A label marks a statement. The label is used by the goto statement (see clause 19.8) to transfer control to a labelled
statement.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) A label statement can be used freely like other TTCN-3 behavioural program statements according to the
syntax rules defined in annex A. It can be used before or after a TTCN-3 statement but not as the first
statement of an alternative or top alternative in an alt statement, interleave statement or altstep.

b) Labels used following the label keyword shall be unique among all labels defined in the same test case,
function or altstep.

Examples

 label MyLabel; // Defines the label MyLabel

 // The labels L1, L2 and L3 are defined in the following TTCN-3 code fragment
 :
 label L1; // Definition of label L1
 alt{
 [] pCO1.receive(mw_mySig1)
 { label L2; // Definition of label L2
 pCO1.send(m_mySig2);
 pCO1.receive(mw_ySig3)
 }
 [] pCO2.receive(mw_mySig4)
 { pCO2.send(m_mySig5);
 pCO2.send(m_mySig6);
 label L3; // Definition of label L3
 pCO2.receive(mw_mySig7);
 }
 }

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)200

 :

19.8 The Goto statement
A goto statement performs a jump to a label.

Syntactical Structure

goto LabelIdentifier

Semantic Description

The goto statement can be used in functions, test cases and altsteps to transfer control to a labelled statement.

The goto statement provides the possibility to jump freely, i.e. forwards and backwards, within a sequence of
statements, to jump out of a single compound statement (e.g. a while loop) and to jump over several levels out of
nested compound statements (e.g. nested alternatives).

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) It is not allowed to jump out of or into functions, test cases and altsteps.

b) It is not allowed to jump into a sequence of statements defined in a compound statement (i.e. alt statement,
while loop, for loop, if-else statement, do-while loop and the interleave statement).

c) It is not allowed to use the goto statement within an interleave statement.

Examples

 // The following TTCN-3 code fragment includes
 :
 label L1; // … the definition of label L1,
 m_myVar := 2 * m_myVar;
 if (m_myVar < 2000) { goto L1; } // … a jump backward to L1,
 m_myVar2 := f_myFunction(m_myVar);
 if (m_myVar2 > m_myVar) { goto L2; } // … a jump forward to L2,
 pCO1.send(m_myVar);
 pCO1.receive;
 label L2; // … the definition of label L2,
 pCO2.send(integer: 21);
 alt {
 [] pCO1.receive { }
 [] pCO2.receive(integer: 67) {
 label L3; // … the definition of label L3,
 pCO2.send(m_myVar);
 alt {
 [] pCO1.receive { }
 [] pCO2.receive(integer: 90) {
 pCO2.send(integer: 33);
 pCO2.receive(integer: 13);
 goto L4; // … a jump forward out of two nested alt statements,
 }
 [] pCO2.receive(mw_myError) {
 goto L3; // … a jump backward out of the current alt statement,
 }
 [] any port.receive {
 goto L2; // … a jump backward out of two nested alt statements,
 }
 }
 }
 [] any port.receive {
 goto L2; // … and a long jump backward out of an alt statement.
 }
 }
 label L4;
 :

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)201

19.9 The Stop execution statement
The stop statement terminates execution of test components, a test case or a test control.

Syntactical Structure

stop

Semantic Description

The stop statement terminates execution in different ways depending on the context in which it is executed. When
executed in a control behaviour, it terminates the execution of the control component. When invoked in a test case,
altstep or function that are executed on a test component, it terminates the relevant test component.

NOTE: The semantics of a stop statement that terminates a test component is identical to the stop component
operation self.stop (see clause 21.3.3).

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16.

Examples

 module MyModule {
 : // Module definitions
 testcase TC_MyTestCase() runs on MyMTCType system MySystemType{
 var MyPTCType v_ptc:= MyPTCType.create; // PTC creation
 v_ptc.start(f_myFunction()); // start PTC execution
 : // test case behaviour continued
 stop // stops the MTC, all PTCs and the whole test case
 }
 function f_myFunction() runs on MyPTCType {
 :
 stop // stops the PTC only, the test case continues
 }
 control {
 : // test execution
 stop // stops the test campaign
 } // end control
 } // end module

19.10 The Return statement
The return statement terminates execution of functions or altsteps.

Syntactical Structure

return [Expression | TemplateInstance]

Semantic Description

The return statement terminates execution of a function or altstep and returns control to the point from which the
function or altstep was called. When used in functions, a return statement may be optionally associated with a return
value or template.

TTCN-3 allows optional statement blocks that may follow altstep calls within alt statements. If there is a statement
block, the return statement returns control to the beginning of this statement block and the statement block is
executed before the alt statement is left. If there is no statement block, test execution continues with the first statement
following the alt statement.

The return value or template is first evaluated before returning.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)202

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) The return statement shall not be present in testcase definitions.

Examples

 function f_myFunction() return boolean {
 :
 if (v_date == "1.1.2005") {
 return false; // execution stops on the 1.1.2005 and returns the boolean false
 }
 :
 return true; // true is returned
 }

 function f_myTemplateFunction() return template charstring {
 :
 if (v_date == "1.1.2005") {
 return "2005"; // the string of the year is returned
 }
 :
 return ?; // the any template is returned
 }

 function f_myBehaviour() return verdicttype {
 :
 if (f_myFunction()) {
 setverdict(pass); // use of f_myFunction in an if statement
 }
 else {
 setverdict(inconc);
 }
 :
 return getverdict; // explicit return of the verdict
 }

19.11 The Log statement
The log statement provides the means to write logging information to some logging device. The information that can
be logged is summarized in table 18.

Table 18: TTCN-3 language elements that can be logged

Used in a log statement What is logged Comment
module parameter identifier actual value
literal value value This includes also free text.
data constant identifier actual value
template instance actual template or field

values and matching
symbols

variable identifier actual value
or "UNINITIALIZED"

See notes 3 and 4.

self, mtc, system or
component type variable
identifier

actual value and if
assigned the component

instance name
otherwise

"UNINITIALIZED"

On logging actual values see notes 2
to 4. Actual component states shall be
logged according to note 5.

create operation actual state and the
component instance

name

The actual state is always set to Inactive.

running operation
(component or timer)

return value true or false. In case of component or
timer arrays, array element specification
shall be included.

alive operation
(component)

return value true or false. In case of arrays, array
element specifications shall be included.

checkstate operation return value true or false.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)203

Used in a log statement What is logged Comment
port instance actual state Port states shall be logged according to

note 6.
default type variable identifier actual state

or "UNINITIALIZED"
Default states shall be logged according
to note 7. See also notes 2 to 4.

activate operation activate operation The actual state is always set to
activated.

timer name actual state Timer states shall be logged according to
note 8.

read operation return value See clause 23.4.
match operation return value true or false.
valueof operation return value
getverdict operation return value none, pass, inconc, or fail.
predefined functions return value See annex C.
function instance return value Only functions with return clause are

allowed.
external function instance return value Only external functions with return clause

are allowed.
formal parameter identifier see comment column Logging of actual parameters shall follow

rules specified for the language elements
they are substituting. In case of value
parameters the actual parameter value,
in case of template-type parameters the
actual template or field values and
matching symbols, in case of component
type parameters the actual component
reference, etc. shall be logged.

NOTE 1: Actual value/actual template is the value/template at the moment of the execution of the log
statement.

NOTE 2: The type of the logged value is tool dependent.
NOTE 3: In case of array identifiers without array element specification, actual values and for

component references names of all array elements shall be logged.
NOTE 4: The string "UNINITIALIZED" is logged only if the log item is unbound (uninitialized).
NOTE 5: Component states that can be logged are: Inactive, Running, Stopped and Killed (for further

details see annex F).
NOTE 6: Port states that can be logged are: Started and Stopped (for further details see annex F).
NOTE 7: Default states that can be logged are: Activated and Deactivated.
NOTE 8: Timer states that can be logged are: Inactive, Running and Expired (for further details see

annex F).
NOTE 9: As the logging of the fields of structured values and templates is not standardized, tools

supplied by different vendors may differ in the logged information.

Syntactical Structure

log "(" { (FreeText | TemplateInstance) [","] } ")"

Semantic Description

The log statement provides the means to write one or more log items to some logging device associated with the test
control or the test component in which the statement is used. Items to be logged shall be identified by a
comma-separated list in the argument of the log statement. Log items may be individual language elements specified in
table 18 or expressions composed of such log items.

It is strongly recommended that the execution of the log statement has no effect on the test behaviour. In particular,
functions used in a log statement should not (explicitly or implicitly) change component variable values, port or timer
status, and should not change the value of any of its inout or out parameters.

NOTE: It is outside the scope of the present document to define complex logging and trace capabilities which
may be tool dependent.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)204

Examples

 var integer v_myVar:= 1;
 log("Line 248 in PTC_A: ", v_myVar, " (actual value of v_myVar)");
 // The string "Line 248 in PTC_A: 1 (actual value of v_myVar)" is written to some log device
 // of the test system

19.12 The Break statement
A break statement causes the exit from a loop, from an altstep or from an alt or interleave statement.

Syntactical Structure

break

Semantic Description

On executing a break statement the innermost, currently executed loop, alt statement or interleave statement is
left. Execution continues with the statement following the construct which is left. Using break outside the body of a
loop (for, while, do-while) or an alternative of an alt or interleave statement shall cause an error.

Altsteps are always executed within a surrounding alt statement. If the execution of a top alternative of an altstep (see
clause 16.1.5) ends with a break statement, the altstep and the surrounding alt statement are left. Execution
continues with the statement following the surrounding alt statement.

NOTE: TTCN-3 allows optional statement blocks that may follow altstep calls within alt statements. These
statement blocks are not executed when the altstep is left by executing a break statement. A return
statement has to be used, if such an optional statement block has to be executed (see clause 19.10).

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16.

Examples

 do {
 …
 if (v_cond1) {
 break; // the do-while loop is left
 }
 …
 for (var integer v_j:=1; v_j<=10; v_j:= v_j+1) {
 …
 if (v_cond2) {
 break; // the for-loop is left but the do-while loop is continued
 }
 …
 }
 …
 }
 while (v_j<10);

19.13 The Continue statement
A continue statement causes the start of the next iteration of a loop.

Syntactical Structure

continue

Semantic Description

On executing a continue statement, the subsequent statements of the body of the innermost, currently executed loop
are skipped and the next iteration starts. Using continue outside the body of a loop (for, while, do-while) shall
cause an error.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)205

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16.

Examples

 do {
 …
 if (v_cond) {
 continue; // execution continues with the next iteration of the do-while-loop
 }
 …
 …
 for (var integer v_j:=1; v_j<=10; v_j:= v_j+1) {
 …
 if (v_cond2) {
 continue; // continues with the next iteration of the for-loop
 }
 …
 }
 …
 }
 while (v_j<10);

19.14 Statement block
Statement blocks can be used like basic program statements to introduce a local scope in the flow of control of TTCN-3
behaviour. The declarations and statements in a statement block are executed in the order of their appearance,
i.e. sequentially.

Syntactical Structure

"{" { LocalDefinition | Statement } "}"

Semantic Description

A statement block defines a local scope unit. Scoping rules for TTCN-3 are defined in clause 5.2.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16.

Examples

 var integer v_aVar:= 0; // v_aVar is declared

 { // start of a statement block
 var integer v_myVar:= 2; // v_myVar is declared
 v_aVar := 5 + v_myVar; // v_myVar is used in an assignment
 } // end of statement block
 // after leaving the statement block, v_aVar is still known, but v_myVar is not known anymore.

20 Statement and operations for alternative behaviours

20.0 General
Test behaviour cannot only be expressed sequentially, but also as a set of alternatives or combinations of both. An
interleaving operator allows the specification of interleaved sequences or alternatives. Table 19 summarizes the
statements and operations for alternative behaviours.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)206

Table 19: Overview of TTCN-3 statements and operations for alternative behaviours

Statements and operations for alternative behaviours
Statement/Operation Associated keyword or symbol

Alternative behaviour alt { … }
Re-evaluation of alt statements repeat
Interleaved behaviour interleave { … }
Activate a default activate
Deactivate a default deactivate

20.1 The snapshot mechanism
A more complex form of behaviour is where sequences of statements are expressed as sets of possible alternatives to
form a tree of execution paths, as illustrated in figure 9.

S1

S3

S6

S2

S4

S7

S5

S8

S9 S10

S1;
alt {
 [] S2 {
 alt {
 [] S4 { S7 }
 [] S5 {
 S8;
 alt {
 [] S9 {}
 [] S10 {}
 }
 }
 }
 }
 [] S3 { S6 }
}

Figure 9: Illustration of alternative behaviour

This is done with the alt statement.

When entering an alt statement, a snapshot is taken. A snapshot is considered to be a partial state of a test component
that includes all information necessary to evaluate the Boolean conditions that guard alternative branches, all relevant
stopped test components, all relevant timeout events and the top messages, calls, replies and exceptions in the relevant
incoming port queues. Any test component, timer and port which is referenced in at least one alternative in the alt
statement, or in a top alternative of an altstep that is invoked as an alternative in the alt statement or activated as
default is considered to be relevant. A detailed description of the snapshot semantics is given in the operational
semantics of TTCN-3 (part 4 of the TTCN-3 standard - ETSI ES 201 873-4 [1]).

NOTE 1: Snapshots are only a conceptual means for describing the behaviour of the alt statement. The concrete
algorithms for the snapshot handling can be found in part 4 of the TTCN-3 standard (ETSI
ES 201 873-4 [1]).

NOTE 2: The TTCN-3 semantics assumes that taking a snapshot is instantaneous, i.e. has no duration. In a real
implementation, taking a snapshot may take some time and race conditions may occur. The handling of
such race conditions is outside the scope of the present document.

20.2 The Alt statement
An alt statement expresses sets of possible alternatives that form a tree of possible execution paths.

Syntactical Structure

alt [@nodefault] "{"
 { (VarInstance | TimerInstance | ConstDef | TemplateDef) [";"] }
 {
 "[" [BooleanExpression] "]"
 ((TimeoutStatement |
 ReceiveStatement |
 TriggerStatement |

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)207

 GetCallStatement |
 CatchStatement |
 CheckStatement |
 GetReplyStatement |
 DoneStatement |
 KilledStatement) StatementBlock)
 |
 (AltstepInstance [StatementBlock])
 }
 ["[" else "]" StatementBlock]
"}"

Semantic Description

The alt statement denotes branching of test behaviour due to the reception and handling of communication and/or
timer events and/or the termination of parallel test components, i.e. it is related to the use of the TTCN-3 operations
receive, trigger, getcall, getreply, catch, check, timeout, done and killed. The alt statement
denotes a set of possible events that are to be matched against a particular snapshot.

An alt statement may define some local definitions before its alternative branches. These can be used by all the
branches.

Execution of alternative behaviour:

When entering an alt statement, a snapshot is taken. If the alt statement contains local definitions before its first
branch, these are evaluated before the snapshot is taken. When the alt statements executes the repeat operation, the
whole alt statement, including the local definitions, is re-evaluated.

The alternative branches in the alt statement and the top alternatives of invoked altsteps and altsteps that are activated
as defaults are processed in the order of their appearance. If several defaults are active, the reverse order of their
activation determines the evaluation order of the top alternatives in the defaults. The alternative branches in active
defaults are reached by the default mechanism described in clause 20.5. If the alt statement contains the
@nodefault modifier, all active default alternatives are ignored for the execution of this alt statement.

The individual alternative branches are either branches that may be guarded by a Boolean expression or else-branches,
i.e. alternative branches starting with [else].

Else-branches are always chosen and executed when they are reached (see below).

Branches that may be guarded by boolean expressions either invoke an altstep (altstep-branch), or start with a done
operation (done-branch), a killed operation (killed-branch), timeout operation (timeout-branch) or a receiving
operation (receiving-branch), i.e. receive, trigger, getcall, getreply, catch or a check operation. The
evaluation of the Boolean guards shall be based on the snapshot. The Boolean guard is considered to be fulfilled if no
Boolean guard is defined, or if the Boolean guard evaluates to true. The branches are processed and executed in the
following manner.

An altstep-branch is selected if the Boolean guard is fulfilled. The selection of an altstep-branch causes the invocation
of the referenced altstep, i.e. the altstep is invoked and the evaluation of the snapshot continues within the altstep. An
altstep-branch may contain an optional statement block. The optional statement block shall be executed only, if an
alternative of the altstep referenced in the altstep-branch has been selected and executed.

A done-branch is selected if the Boolean guard is fulfilled and if the specified test component is in the list of stopped
components of the snapshot. The selection causes the execution of the statement block following the done operation.
The done operation itself has no further effect.

A killed-branch is selected if the Boolean guard is fulfilled and if the specified test component is in the list of killed
components of the snapshot. The selection causes the execution of the statement block following the killed
operation. The killed operation itself has no further effect.

A timeout-branch is selected if the Boolean guard is fulfilled and if the specified timeout event is in the timeout-list of
the snapshot. The selection causes execution of the specified timeout operation, i.e. removal of the timeout event
from the timeout-list, and the execution of the statement block following the timeout operation.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)208

A receiving-branch is selected if the Boolean guard is fulfilled and if the matching criteria of receiving operation is
fulfilled by one of the messages, calls, replies or exceptions in the snapshot. The selection causes execution of the
receiving operation, i.e. removal of the matching message, call, reply or exception from the port queue, maybe an
assignment of the received information to a variable and the execution of the statement block following the receiving
operation. In the case of the trigger operation the top message of the queue is also removed if the Boolean guard is
fulfilled but the matching criteria is not. In this case the statement block of the given alternative is not executed.

NOTE 1: The TTCN-3 semantics describe the evaluation of a snapshot as a series of indivisible actions of a test
component. The semantics do not assume that the evaluation of a snapshot has no duration. During the
evaluation of a snapshot, test components may stop, timers may timeout and new messages, calls, replies
or exceptions may enter the port queues of the component However, these events do not change the actual
snapshot and thus, are not considered for the snapshot evaluation.

NOTE 2: Due to the possibility of defining dynamic test configurations, a receiving branch may refer to a
disconnected or unmapped port at the time of its evaluation. In TTCN-3, ports belong to the receiving
component and matching is related to the top elements in the port queues. Dynamically unmapped and
disconnected ports contribute to a snapshot in the same manner as mapped and connected ports. This
means, the execution of receiving operations may empty the queues of unmapped and disconnected ports
without causing a test case error.

If none of the alternative branches in the alt statement and top alternatives in the invoked altsteps and active defaults
can be selected and executed, the alt statement shall be executed again, i.e. a new snapshot is taken and the evaluation
of the alternative branches is repeated with the new snapshot. This repetitive procedure shall continue until either an
alternative branch is selected and executed, or the test case is stopped by another component or by the test system
(e.g. because the MTC is stopped) or with a dynamic error.

The test case shall stop and indicate a dynamic error if a test component is completely blocked. This means none of the
alternatives can be chosen, no relevant test component is running, no relevant timer is running and all relevant ports
contain at least one message, call, reply or exception that do not match.

NOTE 3: The repetitive procedure of taking a complete snapshot and re-evaluate all alternatives is only a
conceptual means for describing the semantics of the alt statement. The concrete algorithm that
implements this semantics is outside the scope of the present document.

Selecting/deselecting an alternative:

If necessary, it is possible to enable/disable an alternative by means of a Boolean expression placed between the
("[…]") brackets of the alternative.

Else branch in alternatives:

Any branch in an alt statement can be defined as an else branch by including the else keyword between the opening
and closing brackets at the beginning of the alternative. The statement block of the else branch is always executed if no
other alternative textually preceding the else branch has proceeded.

Default mechanism:

It should be noted that the default mechanism (see clause 20.5) is always invoked at the end of all alternatives unless the
@nodefault modifier is present. If an else branch is defined, the default mechanism will never be called, i.e. active
defaults will never be entered.

NOTE 4: It is also possible to use else in altsteps.

NOTE 5: It is allowed to use a repeat statement within an else branch.

NOTE 6: It is allowed to define more than one else branch in an alt statement or in an altstep, however always only
the first else branch is executed.

Re-evaluation of alt statements:

The re-evaluation of an alt statement can be specified by using a repeat statement (see clause 20.3).

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)209

Invocation of altsteps as alternatives:

TTCN-3 allows the invocation of altsteps as alternatives in alt statements (see clause 16.2.1). When an altstep is
explicitly invoked as an alternative, the optional statement block following the altstep call shall also be executed.

Continue execution after the alt statement:

Behaviour execution continues with the statement following the alt statement when one of the branches of the alt or
invoked defaults is selected and completely executed, or a branch of an altstep used in an altsteps-branch is selected
and the branch and the optional statement block following the invoked altstep are completely executed.

Execution also continues with the statement following the alt statement if a break statement is reached in the
statement block of the selected branch of an alt statement, of an altstep used in an altstep-branch, or of an
altstep invoked as default.

The alt statement can also be left by using a goto statement in the selected branch of the alt (i.e. no branches of
altsteps and defaults can be considered in this case), and execution continues with the statement following the label,
goto is pointing to.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) The open and close square brackets ("[…]") shall be present at the start of each alternative, even if they are
empty. This not only aids readability but also is necessary to syntactically distinguish one alternative from
another.

b) The evaluation of a Boolean expression guarding an alternative shall not have side effects. To avoid side
effects that cause an inconsistency between the actual snapshot and the state of the component, the same
restrictions as the restrictions for the initialization of local definitions within altsteps (clause 16.1.5) and the
restrictions imposed on the contents of functions called from special places (clause 16.1.4) shall apply.

c) The evaluation of the event of an alt branch shall not have side effects. To avoid side effects that cause an
inconsistency between the actual snapshot and the state of the component or introduce indeterminism in the
evaluation of the following alt branches or the re-evaluation of the same alt branch, the restrictions imposed on
the contents of functions called from special places (clause 16.1.4) shall apply to expressions occurring in the
matching part of an alternative.

d) The evaluation of an altstep invoked from an alt branch, if none of the alternatives in the altstep is chosen,
shall not have side effects. To avoid side effects the restrictions imposed on the contents of functions called
from special places (clause 16.1.4) shall apply to the actual parameters of the invoked altstep.

e) Void.

f) An alt statement used inside control behaviour shall only contain timeout statements.

Examples

EXAMPLE 1: Nested alternatives:

 alt {
 [] myPort.receive (mw_myMessage) {
 setverdict (pass);
 t_myTimer.start;
 alt {
 [] myPort.receive (mw_mySecondMessage) {
 t_myTimer.stop;
 setverdict (pass);
 }
 [] t_myTimer.timeout {
 myPort.send (m_myRepeat);
 t_myTimer.start;
 alt {
 [] myPort.receive (mw_mySecondMessage) {
 t_myTimer.stop;
 setverdict (pass)
 }

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)210

 [] t_myTimer.timeout { setverdict (inconc) }
 [] myPort.receive { setverdict (fail) }
 }
 }
 [] myPort.receive { setverdict (fail) }
 }
 }
 [] t_myTimer.timeout { setverdict (inconc) }
 [] myPort.receive { setverdict (fail) }
 }

EXAMPLE 2: Alt statement with guards:

 alt {
 [v_x>1] l2.receive { // Boolean guard/expression
 setverdict(pass);
 }
 [v_x<=1] l2.receive { // Boolean guard/expression
 setverdict(inconc);
 }
 }

EXAMPLE 3: Alt statement with else branch:

 // Use of alternative with Boolean expressions (or guard) and else branch
 alt {
 :
 [else] { // else branch
 f_myErrorHandling();
 setverdict(fail);
 stop;
 }
 }

EXAMPLE 4: Re-evaluation with repeat:

 alt {
 [] pCO3.receive {
 v_count := v_count + 1;
 repeat // usage of repeat
 }
 [] t_t1.timeout { }
 [] any port.receive {
 setverdict(fail);
 stop;
 }
 }

EXAMPLE 5: Alt statement with explicitly invoked altstep:

 alt {
 [] pCO3.receive { }
 [] a_anotherAltStep() { // Explicit call of altstep a_anotherAltStep as alternative.
 setverdict(inconc) // Statement block executed if an alternative within
 // altstep AnotherAltStep has been selected and executed.
 }
 [] t_myTimer.timeout { }
 }

EXAMPLE 6: Alt statement with forbidden function calls:

 alt {
 [] f_getPort().receive(t(p())) { } // forbidden if f_getPort, t or p has side effects
 [] a_anotherAltStep(f()); // forbidden if f has side effects
 [] t_myTimer[i(p())].timeout { } // forbidden if i or p has side effects
 [f_g()] f_getComponent(p()).done {} // forbidden if f_g, f_getComponent or p has side effects
 }

EXAMPLE 7: Alt statement with local definition:

 alt {
 var integer currentTime := f_getCurrentTime();
 [] p.receive(Message:{ ..., ts := (currentTime-10 .. currentTime+10) }) { ... }
 ...
 }

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)211

20.3 The Repeat statement
The repeat statement is used for a re-evaluation of an alt statement.

Syntactical Structure

repeat

Semantic Description

The repeat statement, when used in the statement block of alternatives of alt statements, causes the re-evaluation of
the alt statement, i.e. a new snapshot is taken and the alternatives of the alt statement are evaluated in the order of
their specification.

When used in statement blocks of the response and exception handling parts of blocking procedure calls, the repeat
statement causes the re-evaluation of the response and exception handling part of the call (see clause 22.3.1).

If a repeat statement is used in a top alternative in an altstep definition, it causes a new snapshot and the
re-evaluation of the alt statement from which the altstep has been called. The call of the altstep may either be done
implicitly by the default mechanism (see clause 20.5.1) or explicitly in the alt statement (see clause 20.2).

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) The repeat statement shall only be used within alt statements, call statements or altsteps.

Examples

EXAMPLE 1: Usage of repeat in an alt statement:

 alt {
 [] pCO3.receive {
 v_count := v_count + 1;
 repeat // usage of repeat
 }
 [] t_t1.timeout { }
 [] any port.receive {
 setverdict(fail);
 stop;
 }
 }

EXAMPLE 2: Usage of repeat in an altstep:

 altstep a_anotherAltStep() runs on MyComponentType {
 [] pCO1.receive{
 setverdict(inconc);
 repeat // usage of repeat
 }
 [] pCO2.receive {}
 }

20.4 The Interleave statement
The interleave statement allows to specify the interleaved occurrence and handling of receiving events including
done, killed, timeout, receive, trigger, getcall, getreply, catch and check.

Syntactical Structure

interleave [@nodefault] "{"
 { "[]" (TimeoutStatement |
 ReceiveStatement |
 TriggerStatement |
 GetCallStatement |
 CatchStatement |
 CheckStatement |
 GetReplyStatement |

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)212

 DoneStatement |
 KilledStatement) StatementBlock
 }
"}"

Semantic Description

The interleave statement allows to specify the interleaved occurrence and handling of the statements done,
killed, timeout, receive, trigger, getcall, getreply, catch and check.

Interleaved behaviour can always be replaced by an equivalent set of nested alt statements. The procedures for this
replacement and the operational semantics of interleaving are described in part 4 of the TTCN-3 standard (ETSI
ES 201 873-4 [1]).

The rules for the evaluation of an interleaving statement are the following:

a) Whenever a reception statement is executed, the following non-reception statements are subsequently executed
until the next reception statement is reached, a break statement is reached, or the interleaved sequence ends.

NOTE 1: Reception statements are TTCN-3 statements which may occur in sets of alternatives, i.e. receive,
check, trigger, getcall, getreply, catch, done, killed and timeout. Non-reception
statements denote all other non-control-transfer statements which can be used within the interleave
statement.

b) If none of the alternatives of the interleave statement can be executed, the default mechanism will be
invoked. This means, according to the semantics of the default mechanism, the actual snapshot will be used to
evaluate those altsteps that have been activated before entering the interleave statement. If the
interleave statement contains the @nodefault modifier, all active default alternatives are ignored for
the execution of this interleave statement.

NOTE 2: The complete semantics of the default mechanism within an interleave statement is given by
replacing the interleave statement by an equivalent set of nested alt statements. If the
interleave statement contains the @nodefault modifier, it is equivalent with all replacement alt
statement having the @nodefault modifier. The default mechanism applies for each of these alt
statements.

c) The evaluation then continues by taking the next snapshot if no break statement was encountered.

d) The evaluation of the interleave statement is terminated if a break statement is executed.

The operational semantics of interleaving are fully defined in part 4 of the TTCN-3 standard (ETSI ES 201 873-4 [1]).

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) Control transfer statements activate, deactivate, repeat, all calls of altsteps and (direct and
indirect) calls of user-defined functions, which include reception statements, shall not be present in
interleave statements.

b) In addition, it is not allowed to guard branches of an interleave statement with Boolean expressions
(i.e. the '[]' shall always be empty). It is also not allowed to specify else branches in interleaved behaviour.

c) An interleave used inside control behaviour shall only contain timeout statements in the event parts of
the alternatives.

d) The restricted use of the control transfer statements for, while, do-while, and goto within
interleave statements is allowed under the following conditions:

- The loop statements for, while, and do-while can be used within statements blocks that do not
contain reception statements.

- The goto statement can be used for defining jumps with statements blocks that do not contain reception
statements and for specifying jumps out of interleave statements.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)213

EXAMPLE:

 // The following TTCN-3 code fragment
 interleave {
 [] pCO1.receive(mw_mySig1) {
 PCO1.send(m_mySig2);
 PCO1.receive(mw_mySig3);
 }
 [] pCO2.receive(mw_mySig4) {
 pCO2.send(m_mySig5);
 pCO2.send(m_mySig6);
 pCO2.receive(mw_mySig7);
 }
 }

 // is a shorthand for
 alt {
 [] PCO1.receive(mw_mySig1) {
 PCO1.send(m_mySig2);
 alt {
 [] PCO1.receive(mw_mySig3) {
 alt {
 [] PCO2.receive(mw_mySig4) {
 PCO2.send(m_mySig5);
 PCO2.send(m_mySig6);
 PCO2.receive(mw_mySig7)
 }
 }
 }
 [] PCO2.receive(mw_mySig4) {
 PCO2.send(m_mySig5);
 PCO2.send(m_mySig6);
 alt {
 [] PCO1.receive(mw_mySig3) {
 PCO2.receive(mw_mySig7);
 }
 [] PCO2.receive(mw_mySig7) {
 PCO1.receive(mw_mySig3);
 }
 }
 }
 }
 }
 [] pCO2.receive(mw_mySig4) {
 pCO2.send(m_mySig5);
 pCO2.send(m_mySig6);
 alt {
 [] pCO1.receive(mw_mySig1) {
 pCO1.send(m_mySig2);
 alt {
 [] pCO1.receive(mw_mySig3) {
 pCO2.receive(mw_mySig7);
 }
 [] pCO2.receive(mw_mySig7) {
 pCO1.receive(mw_mySig3);
 }
 }
 }
 [] pCO2.receive(mw_mySig7) {
 alt {
 [] pCO1.receive(mw_mySig1) {
 pCO1.send(m_mySig2);
 pCO1.receive(mw_mySig3);
 }
 }
 }
 }
 }
 }

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)214

20.5 Default Handling

20.5.0 General

TTCN-3 allows the activation of altsteps (see clause 16.1.5) as defaults. For each test component the defaults,
i.e. activated altsteps, are stored as an ordered list. The defaults are listed in the reversed order of their activation i.e. the
last activated default is the first element in the list of active defaults. The TTCN-3 operations activate (see
clause 20.5.2) and deactivate (see clause 20.5.3) operate on the list of defaults. An activate puts a new default
as the first element into the list and a deactivate removes a default from the list. A default in the default list can be
identified by means of default reference that is generated as a result of the corresponding activate operation.

20.5.1 The default mechanism

The default mechanism is evoked at the end of each alt statement not annotated with the @nodefault modifier, if due
to the actual snapshot none of the specified alternatives could be executed. An evoked default mechanism invokes the
first altstep in the list of defaults, i.e. the last activated default, and waits for the result of its termination. The
termination can be successful or unsuccessful. Unsuccessful means that none of the top alternatives of the altstep
(see clause 16.1.5) defining the default behaviour could be selected, successful means that one of the top alternatives of
the default has been selected and executed.

NOTE 1: An interleave statement is semantically equivalent to a nested set of alt statements and the default
mechanism also applies to each of these alt statements. This means, the default mechanism also applies
to interleave statements. Furthermore, the restrictions imposed on interleave statements in
clause 20.4 do not apply to altsteps that are activated as default behaviour for interleave statements.

NOTE 2: Due to the possibility of defining dynamic test configurations, an alternative in an altstep activated as
default may refer to a disconnected or unmapped port at the time of its evaluation. In TTCN-3, ports
belong to the receiving component and matching is related to the top elements in the port queues.
Dynamically unmapped and disconnected ports contribute to a snapshot in the same manner as mapped
and connected ports. This means, an altstep invoked as default may execute receiving operations that
empty the queues of unmapped and disconnected ports without causing a test case error.

In the case of an unsuccessful termination, the default mechanism invokes the next default in the list. If the last default
in the list has terminated unsuccessfully, the default mechanism will return to the place in the alt statement in which it
has been invoked, i.e. at the end of the alt statement, and indicate an unsuccessful default execution. An unsuccessful
default execution will also be indicated if the list of defaults is empty.

An unsuccessful default execution may cause a new snapshot or a dynamic error if the test component is blocked (see
clause 20.1).

In the case of a successful termination, the default may either stop the test component by means of a stop statement, or
the main control flow of the test component will continue immediately after the alt statement from which the default
mechanism was called or the test component will take new snapshot and re-evaluate the alt statement. The latter has
to be specified by means of a repeat statement (see clause 20.3). If the execution of the selected top alternative of the
default ends with a break statement or without a repeat statement the control flow of the test component will
continue immediately after the alt statement.

NOTE 3: TTCN-3 does not restrict the implementation of the default mechanism. It may for example be
implemented in form of a process that is implicitly called at the end of each alt statement or in form of a
separate thread that is only responsible for the default handling. The only requirement is that defaults are
called in the reverse order of their activation when the default mechanism has been invoked.

20.5.2 The Activate operation

The activate operation is used to activate altsteps as defaults.

Syntactical Structure

activate "(" AltstepRef "(" [{ ActualPar [","] }] ")" | ObjectReference ")"

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)215

Semantic Description

An activate operation if it is called with an AltstepRef will put the referenced altstep as the first element into the list
of defaults and return a default reference. The default reference is a unique identifier for the default and may be used in
a deactivate operation for the deactivation of the default. The actual parameters of a parameterized altstep (see
clause 16.2.1) that should be activated as a default, shall be provided in the corresponding activate statement. This
means, the actual parameters are bound to the default at the time of its activation (and not e.g. at the time of its
invocation by the default mechanism).

If the activate operation is called with an ObjectReference, it will re-activate the referenced default which was
previously suspended by a deactivate operation. In this case the referenced default shall remain in the same place in
the list of defaults as it was before the activate operation, and the activate operation shall return with the same
ObjectReference as it received at calling.

The effect of an activate operation is local to the test component in which it is called. This means, a test component
cannot activate a default in another test component.

The activate operation can be called without saving the returned default reference. This form is useful in test cases
which do not require explicit deactivation of the activated default, i.e. deactivation of a default is done implicitly at
MTC termination.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) Void.

b) Void.

c) An altstep that is activated as a default shall only have in parameters.

d) The ObjectReference shall be of default type.

e) The ObjectReference shall refer to a default that is marked as suspended in the list of defaults.

Examples

EXAMPLE 1: Activation where the default reference is kept

 // Declaration of a variable for the handling of defaults
 var default v_myDefaultVar := null;
 :
 // Declaration of a default reference variable and activation of an altstep as default
 var default v_myDefVarTwo := activate(a_mySecondAltStep());
 :
 // Activation of altstep MyAltStep as a default
 v_myDefaultVar := activate(a_myAltStep()); // a_myAltStep is activated as default
 :
 // Usage of v_myDefaultVar for the deactivation of default a_myDefAltStep
 deactivate(v_myDefaultVar);

EXAMPLE 2: Simple activation

 // Activation of an altstep as a default, without assignment of default reference
 activate(a_myCommonDefault());

EXAMPLE 3: Activation of a parameterized altstep

 altstep a_myAltStep2 (integer p_value1, MyType p_value2,
 MyPortType p_port, timer p_timer)
 {
 :
 }
 function f_myFunc () runs on MyCompType
 { :
 var default v_myDefaultVar := null;

 v_myDefaultVar := activate(a_myAltStep2(5, v_myVar, vc_myCompPort, tc_myCompTimer);
 // MyAltStep2 is activated as default with the actual parameters 5 and

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)216

 // the value of v_myVar. A change of v_myVar before a call of a_myAltStep2 by
 // the default mechanism will not change the actual parameters of the call.
 :
 }

EXAMPLE 4: Re-activation of a previously suspended default

 var default v_def1 := activate(a_myDefaultBehaviour1());
 var default v_def2 := activate(a_myDefaultBehaviour2());
 var default v_def3 := activate(a_myDefaultBehaviour3());
 ...
deactivate(v_def2, true); // suspend the default temporarily, with a second optional argument
alt {...} // alt block without the suspended default v_def2

 //active defaults that are referred by v_def3, v_def1
 activate(v_def2); // re-activate the default v_def2
 //active defaults that are referred by v_def3, v_def2, v_def1

20.5.3 The Deactivate operation

The deactivate operation is used to deactivate or suspend defaults, i.e. previously activated altsteps.

Syntactical Structure

deactivate ["(" ObjectReference ["," Expression] ")"]

Semantic Description

A deactivate operation will remove the referenced default from the list of defaults if the optional Expression
evaluates to false, otherwise it marks the referenced default in the list of defaults as suspended.

NOTE: A suspended default can be re-activated by an activate operation.

The effect of a deactivate operation is local to the test component in which it is called. This means, a test
component cannot deactivate or suspend a default in another test component.

A deactivate operation without parameter deactivates all defaults of a test component.

Calling a deactivate operation with the special value null as its ObjectReference has no effect. Calling a
deactivate operation with an undefined default reference, e.g. an old reference to a default that has already been
deactivated or an uninitialized default reference variable, shall cause a runtime error.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) The ObjectReference shall be of default type.

b) The optional Expression shall be of boolean type and shall not resolve to a template. Its default value is false.

c) The optional Expression shall evaluate to a value, which is initialized.

Examples

EXAMPLE 1: Simple deactivation

 var default v_myDefaultVar := null;
 var default v_myDefVarTwo := activate(a_mySecondAltStep());
 var default v_myDefVarThree := activate(a_myThirdAltStep());
 :
 v_myDefaultVar := activate(a_myAltStep());
 :
 deactivate(v_myDefaultVar); // deactivates a_myAltStep
 deactivate(v_myDefaultVar, false); // same as above

 :
 deactivate; // deactivates all other defaults, i.e. in this case a_mySecondAltStep
 // and a_myThirdAltStep

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)217

EXAMPLE 2: Suspension of a default

 deactivate(v_myDefaultVar, true); // suspends the default referred by v_myDefaultVar;
 // which can be re-activated
 activate(v_myDefaultVar);

21 Configuration Operations

21.0 General
Configuration operations are used to set up and control test components and their connections. They are summarized in
table 20.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) These operations shall only be used in:

- TTCN-3 test cases;

- behaviour invoked directly or indirectly from a test case or from behaviour started on a ptc.

b) They shall not be present in:

- control behaviour;

- declarations inside component type definitions; or

- functions invoked directly or indirectly from declarations inside component type definitions.

Table 20: Overview of TTCN-3 configuration operations

Operation Explanation Syntax Examples
Connection Operations
Connect Connects the port of one test

component to the port of another test
component

connect(ptc1:p1, ptc2:p2);

Disconnect Disconnects two or more connected
ports

disconnect(ptc1:p1, ptc2:p2);

Map Maps the port of one test component to
the port of the test system interface

map(ptc1:q, system:sutPort1);

Unmap Unmaps two or more mapped ports unmap(ptc1:q, system:sutPort1);

Test Component Operations
Create Creation of a normal or alive test

component, the distinction between
normal and alive test components is
made during creation
(MTC behaves as a normal test
component)

Non-alive test components:
var PTCType c := PTCType.create;

Alive test components:
var PTCType c := PTCType.create alive;

Start Starting test behaviour on a test
component, starting behaviour does
not affect the status of component
variables, timers or ports

c.start(PTCBehaviour());

Stop Stopping test behaviour on a test
component

c.stop;

Kill Causes a test component to cease to
exist

c.kill;

Alive Returns true if the test component has
been created and is ready to execute
or is already executingbehaviour;
otherwise returns false

if (c.alive) …

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)218

Operation Explanation Syntax Examples
Running Returns true as long as the test

component is executing behaviour;
otherwise returns false

if (c.running) …

Done Checks whether the function running
on a test component has terminated

c.done;

Killed Checks whether a component has
ceased to exist

c.killed { … }

Test Case Operations
Stop Terminates the test case with the test

verdict error
testcase.stop (…);

Reference Operations
Mtc Gets the reference to the MTC connect(mtc:p, ptc:p);

System Gets the reference to the test system
interface

map(c:p, system:sutPort);

Self Gets the reference to the test
component that executes this operation

self.stop;

21.1 Connection Operations

21.1.0 General

The ports of a test component can be connected to ports of other components or to the ports of the test system interface
(see figure 10). In the case of connections between two test components, the connect operation shall be used. When
connecting a test component to a test system interface the map operation shall be used. The connect operation
directly connects one port to another with the in side connected to the out side and vice versa. The map operation on
the other hand can be seen purely as a name translation defining how communications streams can be referenced.

Connected Ports

 OUT IN

 IN OUT

 MTC PTC

IN OUT

SUT

Abstract Test System Interface

Real Test System Interface

Mapped Ports

IN OUT

Test system

Figure 10: Illustration of the connect and map operations

21.1.1 The Connect and Map operations

The connect operation is used to setup connections between test components. The map operation are used to setup
connections to the SUT.

Syntactical Structure

connect "(" ComponentRef ":" Port "," ComponentRef ":" Port ")"

map "(" ComponentRef ":" Port "," ComponentRef ":" Port ")"
 [param "(" [{ ActualPar [","] }+] ")"]

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)219

Semantic Description

With both the connect operation and the map operation, the ports to be connected are identified by the component
references of the components to be connected and the names of the ports to be connected.

The operation mtc identifies the MTC, the operation system identifies the test system interface and the operation
self identifies the test component in which self has been called (see clause 6.2.11). All these operations can be used
for identifying and connecting ports.

Both the connect and map operations shall be only invoked from places specified in clause 21.0. Before either
operation is called, the components to be connected shall have been created and their component references shall be
known together with the names of the relevant ports.

Applying a map or connect operation to ports which are already mapped or connected has no effect on the test
behaviour or test configuration, i.e. test execution continues as if the operation has not been invoked.

NOTE 1: Note that also triMap or tciConnect respectively will not be invoked in such a case.

The map operation provides an optional parameter list for configuration purposes. This allows to pass values needed for
dynamic runtime configuration. If a parameter list is present, the actual parameters shall conform to the map param
clause of the port type declaration of the system port used.

Restrictions

In addition to the general static rules of TTCN-3 given in clauses 5 and 21 and shown in table 16, the following
restrictions apply:

a) For both the connect and map operations, only consistent connections are allowed.

 Assuming the following:

1) ports PORT1 and PORT2 are the ports to be connected or mapped;

2) inlist-PORT1 defines the messages or procedures of the in-direction of PORT1;

3) outlist-PORT1defines the messages or procedures of the out-direction of PORT1;

4) inlist-PORT2 defines the messages or procedures of the in-direction of PORT2; and

5) outlist-PORT2 defines the messages or procedures of the out-direction of PORT2.

b) The connect operation is allowed if and only if:

1) outlist-PORT1 ⊆ inlist-PORT2 and outlist-PORT2 ⊆ inlist-PORT1; and

2) neither PORT1 nor PORT2 are system port references; and

3) atleast one of outlist-PORT1 or outlist-PORT2 is not empty.

c) The map operation is allowed if and only if:

1) PORT1 is a component port reference and PORT2 is a system port reference; and

2) outlist-PORT1 ⊆ outlist-PORT2 and inlist-PORT2 ⊆ inlist-PORT1; and

3) at least one of outlist-PORT1 or inlist-PORT2 is not empty.

NOTE 2: Note that PORT1 and PORT2 can occur in any order, thus the system adapter port can be either the first
or the second operand of the map operation.

d) In all other cases, the operations shall not be allowed.

e) Since TTCN-3 allows dynamic configurations and addresses, not all of these consistency checks can be made
statically at compile-time. All checks, which could not be made at compile-time, shall be made at runtime and
shall lead to a test case error when failing.

f) In addition, the restrictions on allowed and disallowed connections described in clause 9.1 apply.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)220

g) In map operations, param clauses are optional. If in a map operation a param clause is present, exactly one
of the components referenced by the operation shall be the system component reference, the type of the
system component shall be known in the context of the operation either via a system clause or via a runs
on clause in a testcase without system clause, the type of the system port to which the operation is
applied shall include a map param declaration, and the actual parameters shall conform to the map param
clause of the port type declaration of the system port used.

h) If the type of the component referenced in a connection operation is known (either when the component
reference is a variable or value returned from a function or the type is defined in the runs on, mtc or system
clause of the calling function), the referenced port declaration shall be present in this component type.

Examples

EXAMPLE 1: Simple map and connect:

 // It is assumed that the ports Port1, Port2, Port3 and PCO1 are properly defined and declared
 // in the corresponding port type and component type definitions
 :
 var MyComponentType v_myNewPTC;
 v_myNewPTC := MyComponentType.create;
 :
 connect(v_myNewPTC:port1, mtc:port3);
 map(v_myNewPTC:port2, system:pCO1);
 :
 // In this example a new component of type MyComponentType is created and its reference stored
 // in variable v_myNewPTC. Afterwards in the connect operation, port1 of this new component
 // is connected with port3 of the MTC. By means of the map operation, port2 of the new component
 // is then connected to port pCO1 of the test system interface

EXAMPLE 2: Parameterized map:

 :
 var MyConfigType v_myConfig := { option := 1, lock := false};
 :
 map(mtc:port4, system:pCO2) param (v_myConfig);
 :
 // In this example by means of the map operation, port4 of the MTC is connected to the port pCO2
 // of the test system interface, and additionally a parameter containing configuration options
 // for the connection is passed.

EXAMPLE 3: Port visibility:

 type port P message { inout integer; }
 type component C1 { port P p1; }
 type component C2 { port P p1, p2; }

 testcase TC runs on C1 system C1
 {
 var C1 v_ptc := C2.create; // valid assignment, instance of C2 is compatible with C1 type
 connect (self:p1, v_ptc:p1); // valid, p1 is present in C1 type definition
 disconnect (self:p1, v_ptc:p1);
 connect (self:p1, v_ptc:p2); // invalid, although the real instance in v_ptc is of the
 // C2 type, the variable itself is of the C1 type making the p2 port invisible to the
 // connection operation
 connect (v_ptc:p1, system:p1); // invalid, connect parameters shall not contain
 // a system port reference
 }

21.1.2 The Disconnect and Unmap operations

The disconnect and unmap operations are the opposite operations of connect and map.

Syntactical Structure

disconnect [("(" ComponentRef ":" Port "," ComponentRef ":" Port ")") |
 ("(" PortRef ")") |
 ("(" ComponentRef ":" all port ")") |
 ("(" all component ":" all port ")")]

unmap [("(" ComponentRef ":" Port "," ComponentRef ":" Port ")"
 [param "(" [{ ActualPar [","] }+] ")"]) |

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)221

 ("(" PortRef ")" [param "(" [{ ActualPar [","] }+] ")"]) |
 ("(" ComponentRef ":" all port ")") |
 ("(" all component ":" all port ")")]

Semantic Description

The disconnect and unmap operations perform the disconnection (of previously connected) ports of test
components and the unmapping of (previously mapped) ports of test components and ports in the test system interface.

Both, the disconnect and unmap operations can be called from any component if the relevant component references
together with the names of the relevant ports are known. A disconnect or unmap operation has only an effect if the
connection or mapping to be removed has been created beforehand.

To ease disconnect and unmap operations related to all connections and mappings of a component or a port, it is
allowed to use disconnect and unmap operations with one argument only. This one argument specifies one side of
the connections to be disconnected or unmapped. The all port keyword can be used to denote all ports of a
component.

The usage of a disconnect or unmap operation without any parameters is a shorthand form for using the operation
with the parameter self:all port. It disconnects or unmaps all ports of the component that calls the operation.

The all component keyword shall only be used in combination with the all port keyword, i.e. all
component:all port, and shall only be used by the MTC. Furthermore, the all component:all port
argument shall be used as the one and only argument of a disconnect or unmap operation and it allows to release
all connections and mappings of the test configuration.

Similar to the map operation, unmap provides an optional parameter list for configuration purposes. If a parameter list
is present, the actual parameters shall conform to the unmap param clause of the port type declaration of the system
port used. It allows to pass values needed for dynamic runtime configuration.

Restrictions

In addition to the general static rules of TTCN-3 given in clauses 5 and 21 and shown in table 16, the following
restrictions apply:

a) In an unmap operation, a param clause shall only be present if the system port to which the param clause
belongs to is explicitly referenced.

b) In unmap operations, param clauses are optional. If in an unmap operation a param clause is present,
exactly one of the components referenced by the operation shall be the system component reference, the type
of the system component shall be known in the context of the operation either via a system clause or via a
runs on clause in a testcase without system clause, the type of the system port to which the operation
is applied shall include an unmap param declaration and the actual parameters shall conform to the unmap
param clause of the port type declaration of the system port used.

c) If the type of the component referenced in a connection operation is known (either when the component
reference is a variable or value returned from a function or the type is defined the runs on, mtc or system
clause of the calling function), the referenced port declaration shall be present in this component type.

d) The disconnect operation parameters shall not contain a system port reference.

Examples

EXAMPLE 1: Disconnect/unmap for specific connections:

 connect(myNewComponent:port1, mtc:port3);
 map(myNewComponent:port2, system:pCO1);
 :
 disconnect(myNewComponent:port1, mtc:port3); // disconnect previously made connection
 unmap(myNewComponent:port2, system:pCO1); // unmap previously made mapping

EXAMPLE 2: Disconnect/unmap for a component:

 disconnect(myNewComponent:port1); // disconnects all connections of Port1, which
 // is owned by component myNewComponent.
 unmap(myNewComponent:all port); // unmaps all ports of component myNewComponent

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)222

EXAMPLE 3: Disconnect/unmap for "self":

 disconnect; // is a shorthand form for …
 disconnect(self:all port); // which disconnects all ports of the component
 // that called the operation
 :
 unmap; // is a shorthand form for …
 unmap(self:all port); // which unmaps all ports of the component
 // that called the operation

EXAMPLE 4: Disconnect/unmap for "all component":

 disconnect(all component:all port); // the MTC disconnects all ports of all
 // components in the test configuration.
 :
 unmap(all component:all port); // the MTC unmaps all ports of all
 // components in the test configuration.

21.2 Test case operations

21.2.0 General

Test case operations address the entire test case by using the keyword testcase. Currently, the test case stop operation is
the only test case operation. It specifies an immediate stop of the test case behaviour with an error verdict.

21.2.1 Test case stop operation

The testcase stop operation defines a user defined immediate termination of a test case with the test verdict error and
an (optional) associated reason for the termination. Such an immediate stop of a test case is required for cases where a
user defined behaviour that does not contribute to the test outcome behaves in an unexpected manner which leads to a
situation where the continuation of the test case makes no more sense.

Syntactical Structure

testcase "." stop ["(" { (FreeText | TemplateInstance) [","] } ")"]

Semantic Description

The test case stop operation causes an immediate stop of the entire test case behaviour with the verdict error. In
addition, the test case stop operation provides the means to specify the reason for the immediate termination of a test
case by writing one or more items to some logging device associated with the test control or the test component in
which the operation is used. Items to be logged shall be identified by a comma-separated list in the argument of the test
case stop operation. The argument of the test case stop operation shall follow the same restrictions as the argument of
the log statement (see clause 19.11).

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16.

Examples

 testcase.stop("Unexpected Termination");
 // The test case stops the an error verdict and the string "Unexpected Termination"
 // is written to some log device of the test system

21.3 Test Component Operations

21.3.0 General

Test component operations are used to create, start, stop and kill test components. They can also be used to check if test
components are alive, running, done or killed.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)223

21.3.1 The Create operation

The create operation is used to create test components.

Syntactical Structure

ComponentType "." create ["(" Expression ["," Expression] ")"] [alive]

Semantic Description

The MTC is the only test component, which is automatically created when a test case starts. All other test components
(the PTCs) shall be created explicitly during test execution by create operations. A component is created with its full
set of ports of which the input queues are empty and with its full set of constants, variables and timers. Furthermore, if a
port is defined to be of the type in or inout it shall be in a listening state ready to receive traffic over the connection.

All component variables and timers are reset to their initial value (if any) and all component constants are reset to their
assigned values when the component is explicitly or implicitly created.

Two types of PTCs are distinguished: a PTC that can execute a behaviour only once and a PTC that is kept alive after
termination of a behaviour and can be therefore reused to execute another behaviour. The latter is created using the
additional alive keyword. An alive-type PTC shall be destroyed explicitly using the kill operation (see
clause 21.3.4), whereas a non-alive PTC is destroyed implicitly after its behaviour terminates. Termination of a test
case, i.e. the MTC, terminates all PTCs that still exist, if any.

Since all test components and ports are implicitly destroyed at the termination of each test case, each test case shall
completely create its required configuration of components and connections when it is invoked.

The create operation shall return the unique component reference of the newly created instance. The unique
reference to the component will typically be stored in a variable (see clause 6.2.10.1) and can be used for connecting
instances and for communication purposes such as sending and receiving.

Optionally, a name can be associated with the newly created component instance. The test system shall associate the
names 'MTC' to the MTC and 'SYSTEM' to the test system interface automatically at creation. Associated component
names are not required to be unique.

The component instance name is used for logging purposes (see clause 19.11) only and shall not be used to refer to the
component instance (the component reference shall be used for this purpose) and has no effect on matching.

Also optionally, a host id can be associated with the newly created component instance. If a host id is provided, the
create operation shall cause a test case error, if the component cannot be deployed on the specified host.

Components can be created at any point in a behaviour definition providing full flexibility with regard to dynamic
configurations (i.e. any component can create any other PTC). The visibility of component references shall follow the
same scope rules as that of variables and in order to reference components outside their scope of creation the component
reference shall be passed as a parameter or as a field in a message.

Restrictions

In addition to the general static rules of TTCN-3 given in clauses 5 and 21 and shown in table 16, the following
restrictions apply:

a) The name given by the first Expression shall be a charstring value and when assigned it shall appear as the
first argument of the create function.

b) The host id given by the second Expression shall be a charstring value and, when assigned, it shall appear as
the second argument of the create function.

Examples

 // This example declares variables of type MyComponentType, which is used to store the
 // references of newly created component instances of type MyComponentType which is the
 // result of the create operations. An associated name is allocated to some of the created
 // component instances.
 :
 var MyComponentType v_myNewComponent;
 var MyComponentType v_myNewestComponent;
 var MyComponentType v_myAliveComponent;

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)224

 var MyComponentType v_myAnotherAliveComponent;
 var MyComponentType v_myDeployedComponent;
 :
 v_myNewComponent := MyComponentType.create;
 v_myNewestComponent := MyComponentType.create("Newest");
 v_myAliveComponent := MyComponentType.create alive;
 v_myAnotherAliveComponent := MyComponentType.create("Another Alive") alive;
 v_myDeployedComponent := MyComponentType.create(-, "Host4");

21.3.2 The Start test component operation

The start operation is used to associate a test behaviour to a test component, which is then being executed by that test
component.

Syntactical Structure

ObjectReference "." start "(" (FunctionInstance | AltstepInstance) ")"

Semantic Description

Once a PTC has been created and connected, behaviour has to be bound to this PTC and the execution of its behaviour
has to be started. This is done by using the start operation (as PTC creation does not start execution of the
component behaviour). The reason for the distinction between create and start is to allow connection operations to
be done before actually running the test component.

The start operation shall bind the required behaviour to the test component. This behaviour is defined by reference to
an already defined function or altstep.

An alive-type PTC may perform several behaviours in sequential order. Starting a second behaviour on a non-alive PTC
or starting a behaviour on a PTC that is still running results in a test case error. If a behaviour is started on an alive-type
PTC after termination of a previous behaviour, it uses variable values, timers, ports, and the local verdict as they were
left after termination of the previous behaviour. In particular, if a timer was started in the previous behaviour, the
subsequent behaviour should be enabled to handle a possible timeout event. In contrast to that, all active defaults are
deactivated when the behaviour of an alive-type PTC is stopped. This means no default is activated when a new
behaviour is started on an alive-type PTC.

NOTE 1: The lifetime of variables and timers is bound to the scope in which they are declared. When an alive-type
component is stopped, only the component scope is left. This means only variable values and timers
declared in the component type definition of an alive-type PTC can be accessed by a behaviour with a
corresponding runs on-clause that is started on an alive-type PTC.

Actual inout parameters will be passed to the function by value, i.e. like in-parameters.

If the function's formal parameter list includes any out parameter the actual parameter list may omit actual out
parameters using the dash symbol ("-") or be omitted in the same manner as for actual in parameters with default values
(see clause 5.4.2), i.e. they can be omitted in the list notation if all following actual parameters are also omitted and
their assignment can be omitted altogether in assignment notation. If a variable is given as an actual out parameter, it
will remain unchanged by the started behaviour, even if the behaviour changes the formal parameter during its
execution.

Possible return values of a function invoked in a start test component operation, i.e. templates denoted by return
keyword or inout and out parameters, have no effect when the started test component terminates.

Restrictions

In addition to the general static rules of TTCN-3 given in clauses 5 and 21 and shown in table 16, the following
restrictions apply:

a) The ObjectReference shall be of component type and shall not resolve to a template.

b) The function or altstep invoked in a start test component operation shall have a runs on definition
referencing a component type that is compatible with the newly created component (see clause 6.3.2.7).

c) All formal parameters of the function or altstep invoked in a start test component operation shall be of a
component data type.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)225

NOTE 2: As in and inout ports starts listening when the component is created, at the moment, when it starts
execution there may be messages in the incoming queues of such ports already waiting to be processed.

Examples

 function f_myFirstBehaviour() runs on MyComponentType { … }
 function f_mySecondBehaviour() runs on MyComponentType { … }
 function f_myThirdBehaviour(out integer p_p1, inout integer p_p2) runs on MyComponentType { … }
 altstep a_myFourthBehaviour() runs on MyComponentType { ... }
 :
 var MyComponentType v_myNewPTC;
 var MyComponentType v_myAlivePTC;
 var integer v_int := 0;
 :
 v_myNewPTC := MyComponentType.create; // Creation of a new non-alive test component.
 v_myAlivePTC := MyComponentType.create alive; // Creation of a new alive-type test component
 :
 v_myNewPTC.start(f_myFirstBehaviour()); // Start of the non-alive component.
 v_myNewPTC.done; // Wait for termination
 v_myNewPTC.start(f_mySecondBehaviour()); // Test case error
 :
 v_myAlivePTC.start(f_myFirstBehaviour()); // Start of the alive-type component
 v_myAlivePTC.done; // Wait for termination
 v_myAlivePTC.start(f_mySecondBehaviour()); // Start of the next function on the same component
 :
 v_myAlivePTC.start(f_myThirdBehaviour(-,v_int)); // v_int will not be changed by the function
 v_myAlivePTC.done;
 v_myAlivePTC.start(a_myFourthBehaviour()); // Direct start of an altstep behaviour<>

21.3.3 The Stop test behaviour operation

The stop test behaviour operation is used to stop the execution of a test component by itself or by another test
component.

Syntactical Structure

stop |
((ObjectReference | mtc | self) "." stop) |
(all component "." stop)

Semantic Description

By using the stop test component statement a test component can stop the execution of its own currently running test
behaviour or the execution of the test behaviour running on another test component. If a component does not stop its
own behaviour, but the behaviour running on another test component in the test system, the component to be stopped
has to be identified by using its component reference. A component can stop its own behaviour by using a simple stop
execution statement (see clause 19.9) or by addressing itself in the stop operation, e.g. by using the self operation.

NOTE 1: While the create, start, running, done and killed operations can be used for PTC(s) only, the
stop operation can also be applied to the MTC.

Stopping a test component is the explicit form of terminating the execution of the currently running behaviour. A test
component behaviour terminates also by completing its execution upon reaching the end of the test behaviour that is
started on this component or by an explicit return statement. This termination is also called implicit stop. The
implicit stop has the same effects as an explicit stop, i.e. the global verdict is updated with the local verdict of the
stopped test component (see clause 24).

If the stopped test component is the MTC, resources of all existing PTCs shall be released, the PTCs shall be removed
from the test system and the test case shall terminate (see clause 26.1).

Stopping a non-alive-type test component (implicitly or explicitly) shall destroy it and all resources associated with the
test component shall be released.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)226

Stopping an alive-type component shall stop the currently running behaviour only but the component continues to exist
and can execute new behaviour (started on it using the start operation). Stopping an alive-type component means that
all variables, timers and ports declared in the component type definition of the alive-type component keep their value,
contents or state. Furthermore, the local verdict of the component keeps its value. In contrast to that, all active defaults
are automatically deactivated when the alive-type component is stopped. The component shall be left in a consistent
state after stopping its behaviour.

For example, if the behaviour of an alive-type component is stopped during assigning a new value to an already bound
variable, the variable shall remain bound after the component is stopped (with the old or the new value). Similarly, if
the component is stopped during re-starting an already running timer, the timer shall be left in the running state after
termination of the behaviour.

The all keyword can be used by the MTC only in order to stop all running PTCs but the MTC itself.

NOTE 2: A PTC can stop the test case execution by stopping the MTC.

NOTE 3: The concrete mechanism for stopping PTCs is outside the scope of the present document.

Restrictions

In addition to the general static rules of TTCN-3 given in clauses 5 and 21 and shown in table 16, the following
restrictions apply:

a) The ObjectReference shall be of component type and shall not resolve to a template.

Examples

EXAMPLE 1: Stopping another test component and a test component by itself

 var MyComponentType v_myComp := MyComponentType.create; // A new test component is created
 v_myComp.start(f_compBehaviour()); // The new component is started
 :
 if (v_date == "1.1.2005") {
 v_myComp.stop; // The component "v_myComp" is stopped
 }

 :
 if (v_a < v_b) {
 :
 self.stop; // The test component that is currently executing stops its own behaviour
 }
 :
 stop // The test component stops its own behaviour

EXAMPLE 2: Stopping all PTCs by the MTC

 all component.stop // The MTC stops all PTCs of the test case but not itself.

21.3.4 The Kill test component operation

The kill test component operation is used to destroy a component by itself or by another test component. Kill and
stop on a non-alive component have the same results, while they differ for alive components: stopping an alive
components stops the test behaviour only, the test component continues to exist. Killing a test component destroys the
test component.

Syntactical Structure

kill |
((ObjectReference | mtc | self) "." kill) |
(all component "." kill)

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)227

Semantic Description

The kill operation applied on a test component stops the execution of the currently running behaviour - if any - of
that component and frees all resources associated to it (including all port connections of the killed component) and
removes the component from the test system. The kill operation can be applied on the current test component itself
by a simple kill statement or by addressing itself using the self operation in conjunction with the kill operation. The
kill operation can also be applied to another test component. In this case the component to be killed shall be
addressed using its component reference. If the kill operation is applied on the MTC, e.g. mtc.kill, it terminates
the test case.

The all keyword can be used by the MTC only in order to stop and kill all running PTCs but the MTC itself.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and 21 and shown in table 16, the following
restrictions apply:

a) The ObjectReference shall be of component type and shall not resolve to a template.

Examples

EXAMPLE 1: Killing another test component and a test component by itself

 var PTCType v_myAliveComp := PTCType.create alive; // Create an alive-type test component
 v_myAliveComp.start(f_myFirstBehaviour()); // The new component is started
 v_myAliveComp.done; // Wait for termination
 v_myAliveComp.start(f_mySecondBehavior()); // Start the component a 2nd time
 v_myAliveComp.done; // Wait for termination
 v_myAliveComp.kill; // Free its resources

EXAMPLE 2: Killing all PTCs by the MTC

 all component.kill; // The MTC stops all (alive-type and normal) PTCs of the test case first
 // and frees their resources.

21.3.5 The Alive operation

The alive operation is a Boolean operation that checks whether a test component has been created and is ready to
execute or is executing already a behaviour.

Syntactical Structure

(ObjectReference |
any component |
all component |
any from ComponentArrayRef) "." alive

["->" @index value ValueRef]

Semantic Description

Applied on a normal parallel test component, the alive operation returns true if the component is inactive or running a
behaviour and false otherwise. Applied on an alive-type parallel component, the operation returns true if the component
is inactive, running or stopped. It returns false if the component has been killed. Applied on the mtc the operation
returns true.

The alive operation can be used similar to the running operation (see clause 21.3.6). In particular, in combination
with the all keyword it returns true if all (alive-type or normal) PTCs are alive.

The alive operation used in combination with the any keyword returns true if at least one PTC is alive.

When the any from component array notation is used, the components from the referenced array are iterated over and
individually checked for being inactive or running a function from innermost to outermost dimension from lowest to
highest index for each dimension. The first component to be found being inactive or running a behaviour causes the
alive operation to return the true value. The index of the first component found alive can optionally be assigned to an
integer variable for single-dimensional component arrays or to an integer array or record of integer variable for
multi-dimensional component arrays.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)228

Restrictions

In addition to the general static rules of TTCN-3 given in clauses 5 and 21 and shown in table 16, the following
restrictions apply:

a) The ObjectReference shall be of component type and shall not resolve to a template.

b) The ComponentArrayRef shall be a reference to a completely initialized component array.

c) The index redirection shall only be used when the operation is used on an any from component array
construct.

d) If the index redirection is used for single-dimensional component arrays, the type of the integer variable shall
allow storing the highest index of the respective array.

e) If the index redirection is used for multi-dimensional component arrays, the size of the integer array or record
of integer type shall exactly be the same as the dimension of the respective array, and its type shall allow
storing the highest index (from all dimensions) of the array.

f) If a variable referenced in the @index clause is a lazy or fuzzy variable, the expression assigned to this
variable is equal to the result produced by the alive operation, i.e. later evaluation of the lazy or fuzzy
variable does not lead to repeated invocation of the alive operation.

Examples

 pTC1.done; // Waits for termination of the component
 if (pTC1.alive) { // If the component is still alive …
 pTC1.start(f_anotherFunction()); // … execute another function on it.

21.3.6 The Running operation

The running operation is a Boolean operation that checks whether a test component is already executing a behaviour.

Syntactical Structure

(ObjectReference |
any component |
all component |
any from ComponentArrayRef) "." running

["->" @index value ValueRef]

Semantic Description

The running operation allows behaviour executing on a test component to ascertain whether behaviour running on a
different component has completed. The running operation returns true for the mtc and PTCs that have been started
but not yet terminated or stopped. It returns false otherwise. The running operation is considered to be a boolean
expression and, thus, returns a boolean value to indicate whether the specified test component (or all test
components) has terminated. In contrast to the done operation, the running operation can be used freely in
boolean expressions.

When the all keyword is used with the running operation, it will return true if all PTCs started but not stopped
explicitly by another component are executing their behaviour. Otherwise it returns false.

NOTE: The difference between the running operation applied to a single ptc and the usage of the all keyword
leads to the situation that ptc.running is false if the ptc has never been started but all
component.running is true at the same time as it considers only those components that ever have
been started.

When the any keyword is used with the running operation, it will return true if at least one PTC is executing its
behaviour. Otherwise it returns false.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)229

When the any from component array notation is used, the components from the referenced array are iterated over and
individually checked for executing currently from innermost to outermost dimension from lowest to highest index for
each dimension. The first component to be found executing causes the running operation to succeed. The index of the
matched component can optionally be assigned to an integer variable for single-dimensional arrays or to an integer
array or record of integer variable for multi-dimensional component arrays.

Restrictions

In addition to the general static rules of TTCN-3 given in clauses 5 and 21 and shown in table 16, the following
restrictions apply:

a) The ObjectReference shall be of component type and shall not resolve to a template.

b) The ComponentArrayRef shall be a reference to a completely initialized component array.

c) The index redirection shall only be used when the operation is used on an any from component array
construct.

d) If the index redirection is used for single-dimensional component arrays, the type of the integer variable shall
allow storing the highest index of the respective array.

e) If the index redirection is used for multi-dimensional component arrays, the size of the integer array or record
of integer type shall exactly be the same as the dimension of the respective array, and its type shall allow
storing the highest index (from all dimensions) of the array.

f) If a variable referenced in the @index clause is a lazy or fuzzy variable, the expression assigned to this
variable is equal to the result produced by the running operation. Later evaluation of the lazy or fuzzy
variable does not lead to repeated invocation of the running operation.

Examples

 if (pTC1.running) // usage of running in an if statement
 {
 // do something!
 }

 while (all component.running != true) { // usage of running in a loop condition
 f_mySpecialFunction()
 }

21.3.7 The Done operation

The done operation allows behaviour executing on a test component to ascertain whether the behaviour running on a
different test component has completed. In addition, the done operation allows to retrieve the final local verdict of
completed test components, i.e. the value of the local verdict at the time of test component completion.

Syntactical Structure

[@nodefault] (ObjectReference |
any component |
all component |
any from ComponentArrayRef) "." done

["->" [value ValueRef] [@index value ValueRef]]

Semantic Description

The done operation shall be used in the same manner as a receiving operation or a timeout operation. This means it
shall not be used in a boolean expression, but it can be used to determine an alternative in an alt statement or as
stand-alone statement in a behaviour description. In the latter case a done operation is considered to be a shorthand for
an alt statement with the done operation as the only alternative. If the @nodefault modifier is placed before a
stand-alone done operation, the implicit alt statement also contains the @nodefault modifier.

When the done operation is applied to a PTC, it matches only if the behaviour of that PTC has been stopped (implicitly
or explicitly) or the PTC has been killed. Otherwise, the match is unsuccessful.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)230

NOTE 1: The execution of a done operation does not change the state of the test component. Consecutive done
operations applied to the same test component will give the same result as long as the test component
does not change its state (see clause F.1.2).

When the done operation is applied to a PTC and matches, the final local verdict of the PTC can be retrieved and
stored in a variable of the type verdicttype. This is denoted by the symbol '->' the keyword value followed by the
name of the variable into which the verdict is stored.

When the all keyword is used with the done operation, it matches if no one PTC is executing its behaviour. It also
matches if no PTC has been created.

NOTE 2: The difference between the done operation applied to a single ptc and the usage of the all keyword
leads to the situation that ptc.done does not match if the ptc has never been started but all
component.done matches at the same time as it considers only those components that ever have been
started.

When the any keyword is used with the done operation, it matches if at least the behaviour of one PTC has been
stopped or killed. Otherwise, the match is unsuccessful.

NOTE 3: Stopping the behaviour of a non-alive component also results in removing that component from the test
system, while stopping an alive-type component leaves the component alive in the test system. In both
cases the done operation matches.

When the any from component array notation is used, the components from the referenced array are iterated over and
individually checked for being stopped or killed from innermost to outermost dimension from lowest to highest index
for each dimension. The first component to be found stopped or killed causes done operation to succeed. The index of
the matched component can optionally be assigned to an integer variable for single-dimensional arrays or to an integer
array or record of integer variable for multi-dimensional component arrays.

Restrictions

In addition to the general static rules of TTCN-3 given in clauses 5 and 21 and shown in table 16, the following
restrictions apply:

a) The done operation can be used for PTCs only.

b) The ObjectReference followed by the done keyword, i.e. used for identifying a specific PTC, shall be of a
component type and shall not resolve to a template.

c) The ComponentArrayRef shall be a reference to a completely initialized component array.

d) The variable used in the (optional) value clause for storing the final local verdict of a PTC shall be of the
type verdicttype.

e) The (optional) value clause for storing the final local verdict of a PTC shall not be used in combination with
all component or any component.

f) The index redirection shall only be used when the operation is used on an any from component array
construct.

g) If the index redirection is used for single-dimensional component arrays, the type of the integer variable shall
allow storing the highest index of the respective array.

h) If the index redirection is used for multi-dimensional component arrays, the size of the integer array or record
of integer type shall exactly be the same as the dimension of the respective array, and its type shall allow
storing the highest index (from all dimensions) of the array.

i) If a variable referenced in the @index clause is a lazy or fuzzy variable, the expression assigned to this
variable is equal to the result produced by the done operation. Later evaluation of the lazy or fuzzy variable
does not lead to repeated invocation of the done operation.

j) The @nodefault modifier is allowed only in stand-alone done statements.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)231

Examples

 // Use of done in alternatives
 alt {
 [] myPTC.done {
 setverdict(pass)
 }

 [] any port.receive {
 repeat
 }
 }

 var MyComp v_c := MyComp.create alive;
 v_c.start(f_myPTCBehaviour());
 :
 v_c.done;
 // matches as soon as the function f_myPTCBehaviour (or function/altstep called by it) stops
 v_c.done;
 // matches again, even if the component has not been started again
 if(v_c.running) {v_c.done}
 // in case that some other component has started v_c in the meantime
 // done here matches the end of the next behaviour only, not the previous one

 // the following done as stand-alone statement:
 @nodefault all component.done;

 // has the following meaning:
 alt @nodefault {
 [] all component.done {}
 }
 // and thus, blocks the execution until all parallel test components have terminated while
 // ignoring all activated default alternatives

 // Retrieving and using the final local verdict of a completed PTC
 var MyComp v_myPTC := MyPTC.create alive;
 var verdicttype v_myPTCverdict := none;
 v_myPTC.start(f_myPTCBehaviour());
 :
 alt {
 [] v_myPTC.done -> value v_myPTCverdict {
 if (v_myPTCverdict == fail) {
 setverdict(fail);
 stop;
 }
 else {
 setverdict (pass);
 }
 }

 [] any port.receive {
 repeat
 }
 }

21.3.8 The Killed operation

The killed operation allows to ascertain whether a different test component is alive or has been removed from the
test system. In addition, the killed operation allows to retrieve the final local verdict of killed test components, i.e.
the value of the local verdict at the time when the test component was killed.

Syntactical Structure

[@nodefault] (ObjectReference |
any component |
all component |
any from ComponentArrayRef) "." killed

 ["->" [value ValueRef] [@index value ValueRef]]

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)232

Semantic Description

The killed operation shall be used in the same manner as receiving operations. This means it shall not be used in
boolean expressions, but it can be used to determine an alternative in an alt statement or as a stand-alone statement
in a behaviour description. In the latter case a killed operation is considered to be a shorthand for an alt statement
with the killed operation as the only alternative. If the @nodefault modifier is placed before a stand-alone
killed operation, the implicit alt statement also contains the @nodefault modifier.

NOTE 1: When checking normal test components a killed operation matches if it stopped (implicitly or explicitly)
the execution of its behaviour or has been killed explicitly, i.e. the operation is equivalent to the done
operation (see clause 21.3.7). When checking alive-type test components, however, the killed
operation matches only if the component has been killed using the kill operation. Otherwise the
killed operation is unsuccessful.

NOTE 2: The execution of a killed operation does not change the state of the test component. Consecutive
killed operations applied to the same test component will give the same result as long as the test
component does not change its state (see clause F.1.2).

When the all keyword is used with the killed operation, it matches if all PTCs of the test case have ceased to exist.
It also matches if no PTC has been created.

When the killed operation is applied to a PTC and matches, the final local verdict of that PTC can be retrieved and
stored in a variable of the type verdicttype. This is denoted by the symbol '->' the keyword value followed by the
name of the variable into which the verdict is stored.

When the any keyword is used with the killed operation, it matches if at least one PTC ceased to exist. Otherwise,
the match is unsuccessful.

When the any from component array notation is used, the components from the referenced array are iterated over and
individually checked for being killed from innermost to outermost dimension from lowest to highest index for each
dimension. The first component to be found killed causes the killed operation to succeed. The index of the matched
component can optionally be assigned to an integer variable for single-dimensional component arrays or to an integer
array or record of integer variable for multi-dimensional component arrays.

Restrictions

In addition to the general static rules of TTCN-3 given in clauses 5 and 21 and shown in table 16, the following
restrictions apply:

a) The killed operation can be used for PTCs only.

b) The ObjectReference followed by the killed keyword, i.e. used for identifying a specific PTC, shall be of a
component type and shall not resolve to a template.

c) The ComponentArrayRef shall be a reference to a completely initialized component array.

d) The variable used in the (optional) value clause for storing the final local verdict of a PTC shall be of the
type verdicttype.

e) The (optional) value clause for storing the final local verdict of a PTC shall not be used in combination with
all component or any component.

f) The index redirection shall only be used when the operation is used on an any from component array
construct.

g) If the index redirection is used for single-dimensional component arrays, the type of the integer variable shall
allow storing the highest index of the respective array.

h) If the index redirection is used for multi-dimensional component arrays, the size of the integer array or record
of integer type shall exactly be the same as the dimension of the respective array, and its type shall allow
storing the highest index (from all dimensions) of the array.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)233

i) If a variable referenced in the @index clause is a lazy or fuzzy variable, the expression assigned to this
variable is equal to the result produced by the killed operation i.e. later evaluation of the lazy or fuzzy
variable does not lead to repeated invocation of the killed operation.

j) The @nodefault modifier is allowed only in stand-alone killed statements.

Examples

 var MyPTCType v_ptc := MyPTCType.create alive; // create an alive-type test component
 timer t_T:= 10.0; // create a timer
 t_T.start; // start the timer
 v_ptc.start(f_myTestBehavior()); // start executing a function on the PTC
 alt {
 [] v_ptc.killed { // if the PTC was killed during execution …
 t_T.stop; // … stop the timer and …
 setverdict(inconc); // … set the verdict to 'inconclusive'
 }
 [] v_ptc.done { // if the PTC terminated regularly …
 t_T.stop; // … stop the timer and …
 v_ptc.start(f_anotherFunction()); // … start another function on the PTC
 }
 [] t_T.timeout { // if the timeout occurs before the PTC stopped
 v_ptc.kill; // … kill the PTC and …
 setverdict(fail); // … set the verdict to 'fail'
 }
 }

 // Retrieving and using the final local verdict of a killed PTC
 var MyComp v_myPTC := MyPTC.create alive;
 var verdicttype v_myPTCverdict := none;
 v_myPTC.start(f_myPTCBehaviour());
 :
 alt {
 [] v_myPTC.done { // expected termination
 setverdict (pass);
 }
 }
 [] v_myPTC.killed -> value v_myPTCverdict {
 if (v_MyPTCverdict == none) { // v_myPTC killed before verdict assignment
 setverdict(fail);
 stop;
 }
 else {
 setverdict (inconc); // further analysis is needed
 stop;
 }
 }
 [] any port.receive {
 repeat
 }
 }

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)234

21.3.9 Summary of the use of any and all with components

The keywords any and all may be used with configuration operations as indicated in table 21.

Table 21: Any and All with components

Operation Allowed Example Comment
 any (see note) all (see note)
create
start
running Yes but from

MTC only
Yes but from
MTC only

any component.running;

all component.running;

Is there any PTC performing test
behaviour?
Are all PTCs performing test
behaviour?

alive Yes but from
MTC only

Yes but from
MTC only

any component.alive;
all component.alive;

Is there any alive PTC?
Are all PTCs alive?

done Yes but from
MTC only

Yes but from
MTC only

any component.done;

all component.done;

Is there any PTC that completed
execution?
Did all PTCs complete their
execution?

killed Yes but from
MTC only

Yes but from
MTC only

any component.killed;
all component.killed;

Is there any PTC that ceased to exist?
Did all PTCs cease to exist?

stop Yes but from
MTC only

all component.stop; Stop the behaviour on all PTCs.

kill Yes but from
MTC only

all component.kill; Kill all PTCs, i.e. they cease to exist.

NOTE: any and all refer to PTCs only, i.e. the MTC is not considered.

21.3.10 The Call test component behaviour operation

The call operation is used start a test behaviour on a test component and wait until that behaviour has terminated.

Syntactical Structure

ObjectReference "." call "(" (FunctionInstance | AltstepInstance)
["," SimpleExpression] ")"
["->" [value Ref] [verdict Ref]]
[catch "(" timeout ")" StatementBlock]
[catch "(" stop ")" StatementBlock]

Semantic Description

Similar to the start operation on test components which is not blocking, the blocking call operation implicitly uses a
start operation, but waits until either the started behaviour has terminated or some timeout has occurred.

A timeout duration in seconds can be given explicitly in the form of a SimpleExpression as an additional parameter to
the call operation. If no timeout duration is given, an infinite timeout duration is used.

The actions taken by the call operation are dependent on whether the execution of the started behaviour is complete or
incomplete. Complete execution occurs when the started function is terminated by executing a return statement or if it
reaches the end of the function body. If the started behaviour is terminated for any other reason, the execution is
incomplete.

If the incomplete execution occurs because the called component was stopped or killed and a catch stop clause is
added to the call operation, the StatementBlock of that clause is executed before the call operation terminates.

If the started behaviour does not terminate in the given timeout duration and a catch timout clause is added to the
call operation, the called component is implicitly stopped and the StatementBlock of the catch timeout clause is
executed before the call operation terminates.

In all other cases when the execution is incomplete, the call operation ends with a test case error.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)235

After complete execution of the started behaviour, the out and inout actual parameters given to the actual parameter
list of the called function or altstep instance will be updated in the same manner as if it was a normal function/altstep
invocation.

Additionally, a redirect clause can be added to the operation which allows assignment of the return result (in case that
the called function has a return clause) to a variable via the value clause and also the assignment of the termination
verdict of the called component via the verdict clause.

In all cases of incomplete execution, the variables referenced in the value and verdict clause or in out and inout
actual parameters will stay unchanged and no assignment will be made.

If the called component is not created alive and has already been started or called once or if it has been killed, additional
call operations are not allowed.

Restrictions

In addition to the general static rules of TTCN-3 given in clauses 5 and 21 and shown in table 16, the following
restrictions apply:

a) The ObjectReference shall be of a component type.

b) The function or altstep invoked in a call test component operation shall have a runs on definition
referencing a component type to which the called component is compatible (see clause 6.3.2.7).

c) All formal parameters of the function or altstep invoked in a call test component operation shall be of a
component data type.

d) The return value of the function invoked from a call test component operation shall be of a component data
type.

e) The optional SimpleExpression representing the timer value shall be of a float type.

f) The optional catch timeout clause may be present only if the timeout value has been defined.

g) The variable in the value clause shall be compatible with the return value of the invoked function.

h) The variable in the verdict clause shall be of type verdicttype.

Examples

 function f_myFirstBehaviour() runs on MyComponentType { … }
 function f_mySecondBehaviour() runs on MyComponentType { … }
 function f_myThirdBehaviour(out integer p_p1, inout integer p_p2)
 runs on MyComponentType
 return integer { … }
 altstep a_myFourthBehaviour() runs on MyComponentType { ... }
 :
 var MyComponentType v_myNewPTC;
 var MyComponentType v_myAlivePTC;
 var integer v_out, v_inout := 0, v_result;
 :
 v_myNewPTC := MyComponentType.create; // Creation of a new non-alive test component.
 v_myAlivePTC := MyComponentType.create alive; // Creation of a new alive-type test component
 :
 v_myNewPTC.call(f_myFirstBehaviour()); // Call to the non-alive component.
 v_myNewPTC.call(f_mySecondBehaviour()); // Test case error
 :
 v_myAlivePTC.call(f_myFirstBehaviour()); // Call to the alive-type component
 v_myAlivePTC.call(f_mySecondBehaviour()); // Another call to the same component
 :
 v_myAlivePTC.call(f_myThirdBehaviour(v_out,v_inout)) // v_out/v_inout can be changed

-> value v_result verdict v_verdict; // v_result/v_verdict are assigned on successful
 // termination

v_myAlivePTC.call(a_myFourthBehaviour()); // Direct call of an altstep behaviour

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)236

22 Communication operations

22.0 General
TTCN-3 supports message-based and procedure-based unicast, multicast and broadcast communication. Furthermore,
TTCN-3 allows to examine the top element of incoming port queues and to control the access to ports by means of
controlling operations. The communication operations and restrictions on their usage are summarized in table 22.

Table 22: Overview of TTCN-3 communication operations

Communication operations
Communication operation Keyword Can be used at

message-based ports
Can be used at

procedure-based ports
Message-based communication
Send message send Yes
Receive message receive Yes
Trigger on message trigger Yes
Procedure-based communication
Invoke procedure call call Yes
Accept procedure call from remote entity getcall Yes
Reply to procedure call from remote entity reply Yes
Raise exception (to an accepted call) raise Yes
Handle response from a previous call getreply Yes
Catch exception (from called entity) catch Yes
Examine top element of incoming port queues
Check msg/call/exception/reply received check Yes Yes
Controlling operations
Clear port queue clear Yes Yes
Clear queue and enable sending and
receiving at a port

start Yes Yes

Disable sending and disallow receiving
operations to match at a port

stop Yes Yes

Disable sending and disallow receiving
operations to match new messages/calls

halt Yes Yes

Check the state of a port checkstate Yes Yes

22.1 The communication mechanisms

22.1.0 General

This clause explains the principles of TTCN-3 communication for message-based communication (see clause 22.1.1),
for procedure-based communication (see clause 22.1.2), for unicast, multicast, and broadcast communication (see
clause 22.1.3), as well as the general format of sending and receiving operations (see clause 22.1.4).

22.1.1 Principles of message-based communication

Message-based communication is communication based on an asynchronous message exchange. Message-based
communication is non-blocking on the send operation, as illustrated in figure 11, where processing in the SENDER
continues immediately after the send operation occurs. The RECEIVER is blocked on the receive operation until it
processes the received message.

In addition to the receive operation, TTCN-3 provides a trigger operation that filters messages with certain
matching criteria from a stream of received messages on a given incoming port. Messages at the top of the queue that
do not fulfil the matching criteria are removed from the port without any further action.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)237

RECEIVER

send

SENDER

receive or trigger

Figure 11: Illustration of the asynchronous send, receive and trigger

22.1.2 Principles of procedure-based communication

The principle of procedure-based communication is to call procedures in remote entities. TTCN-3 supports blocking
and non-blocking procedure-based communication. Blocking procedure-based communication is blocking on the calling
and the called side, whereas non-blocking procedure-based communication is only blocking on the called side.
Signatures of procedures that are used for non-blocking procedure-based communication shall be specified according to
the rules in clause 13.

The communication scheme of blocking procedure-based communication is shown in figure 12. The CALLER calls a
remote procedure in the CALLEE by using the call operation. The CALLEE accepts the call by means of a
getcall operation and reacts by either using a reply operation to answer the call or by raising (raise operation)
an exception. The CALLER handles the reply or exception by using getreply or catch operations. In figure 12, the
blocking of CALLER and CALLEE is indicated by means of dashed lines.

CALLER CALLEE

call getcall

getreply or
catch exception

reply or
raise exception

Figure 12: Illustration of blocking procedure-based communication

The communication scheme of non-blocking procedure-based communication is shown in figure 13. The CALLER
calls a remote procedure in the CALLEE by using the call operation and continues its execution, i.e. does not wait for
a reply or exception. The CALLEE accepts the call by means of a getcall operation and executes the requested
procedure. If the execution is not successful, the CALLEE may raise an exception to inform the CALLER. The
CALLER may handle the exception by using a catch operation in an alt statement. In figure 13, the blocking of the
CALLEE until the end of the call handling and possible raise of an exception is indicated by means of a dashed line.

CALLER CALLEE

call getcall

raise exception catch exception

Figure 13: Illustration of non-blocking procedure-based communication

22.1.3 Principles of unicast, multicast and broadcast communication

TTCN-3 supports unicast, multicast and broadcast communication:

• Unicast communication means one sender to one receiver.

• Multicast communication is from one sender to a list of receivers.

• Broadcast communication is from one sender to all receivers (being connected or mapped to the sender).

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)238

The terms unicast, multicast and broadcast communication are related to port communication. This means, it is only
possible to address one, several or all test components that are connected to the specified port. Unicast, multicast and
broadcast can also be used for mapped ports. In this case, one, several or all entities within the SUT can be reached via
the specified mapped port.

22.1.4 General format of communication operations

22.1.4.0 General

Operations such as send and call are used for the exchange of information among test components and between an
SUT and test components. For explaining the general format of these operations, they can be structured into two groups:

a) a test component sends a message (send operation), calls a procedure (call operation), or replies to an
accepted call (reply operation) or raises an exception (raise operation). These actions are collectively
referred to as sending operations;

b) a component receives a message (receive operation), awaits a message (trigger operation),accepts a
procedure call (getcall operation), receives a reply for a previously called procedure (getreply
operation) or catches an exception (catch operation). These actions are collectively referred to as receiving
operations.

22.1.4.1 General format of the sending operations

Sending operations consist of a send part and, in the case of a blocking procedure-based call operation, a response
and exception handling part.

The send part:

• specifies the port at which the specified operation shall take place;

• defines the message or procedure call to be transmitted;

• gives an (optional) address part that uniquely identifies one or more communication partners to which a
message, call, reply or exception shall be sent.

The port name, operation name and value shall be present in all sending operations. The address part (denoted by the to
keyword) is optional and need only be specified in cases of one-to-many connections where:

• unicast communication is used and one receiving entity shall be explicitly identified;

• multicast communication is used and a set of receiving entities has to be explicitly identified;

• broadcast communication is used and all entities connected to the specified port have to be addressed.

EXAMPLE 1:

Send part (Optional) response
and exception

Port and operation Value part (Optional) address part handling part
myP1.send (v_myVariable + v_yourVariable - 2) to v_myPartner;

Response and exception handling is only needed in cases of procedure-based communication. The response and
exception handling part of the call operation is optional and is required for cases where the called procedure returns a
value or has out or inout parameters whose values are needed within the calling component and for cases where the
called procedure may raise exceptions which need to be handled by the calling component.

The response and exception handling part of the call operation makes use of getreply and catch operations to
provide the required functionality.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)239

EXAMPLE 2:

Send part (Optional) response and exception handling part
Port and
operation

Value part (Optional)
address part

myP1.call (MyProc:{s_myVar1}) {
 [] myP1.getreply(MyProc:{s_myVar2}) {}
 [] myP1.catch(MyProc, ExceptionOne) {}
}

22.1.4.2 General format of the receiving operations

A receiving operation consists of a receive part and an (optional) assignment part.

The receive part:

a) specifies the port at which the operation shall take place;

b) defines an optional matching part which specifies the acceptable input which will match the statement;

c) gives an optional address expression that uniquely identifies the communication partner (in case of
one-to-many connections).

The port name and operation name shall be present. The matching part needs only be present if the content of the
received communication shall be restricted. The identification of the communication partner (denoted by the from
keyword) is optional and need only be specified in cases of one-to-many connections where the receiving entity needs
to be explicitly identified.

The assignment part in a receiving operation is optional. For message-based ports it is used when it is required to store
received messages. In the case of procedure-based ports it is used for storing the in and inout parameters of an
accepted call, for storing the return value or for storing exceptions. For the message or parameter value assignment part
strong typing is not required, e.g. the variable used for storing a message shall be type-compatible to the type of the
incoming message.

In addition, the assignment part may also be used to assign the sender address of a message, exception, reply or
call to a variable. This is useful for one-to-many connections where, for example, the same message or call can be
received from different components, but the message, reply or exception shall be sent back to the original sending
component.

For receiving operations using the any port from a port array construction (see clause 22.2.2), the assignment part may
also be used to store the indices that identify the specific port instance where the receiving operation matched.

If a receiving operation is used as a stand-alone statement, the @nodefault modifier can be placed before it to
indicate that the implicit alt statement containing the operation as an alternative shall have the @nodefault modifier.

EXAMPLE:

Receive part (Optional) assignment part
Port and
operation

(Optional)
Matching part

(Optional)
address

expression

 (Optional)
value

assignment

(Optional)
parameter

value
assignment

(Optional) sender
value assignment

myP1.getreply (AProc:{?} value 5) -> param (v_v1) sender v_aPeer

Receive part (Optional) assignment part
Port and
operation

(Optional)
Matching part

(Optional)
address

expression

 (Optional) value
assignment

(Optional)
parameter

value
assignment

(Optional)
sender value
assignment

myP2.receive (mw_myTemplate(5,7)) from v_aPeer -> value v_myVar

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)240

Receive part (Optional) assignment part
Port and
operation

(Optional)
Matching part

(Optional)
address

expression

 (Optional)
value

assignment

(Optional)
parameter

value
assignment

(Optional)
sender
value

assignment

(Optional)
port index

assignment

any from
p.receive

(mw_myTemplate(5,7)) -> @index
value v_i

22.2 Message-based communication

22.2.0 General

The operations for message-based communication via asynchronous ports are summarized in table 23.

Table 23: Overview of TTCN-3 message-based communication

Communication operation Keyword
Send message send
Receive message receive
Trigger on message trigger
Check message received check

22.2.1 The Send operation

The send operation is used to place a message on an outgoing message port.

Syntactical Structure

ObjectReference "." send "(" TemplateInstance ")"
[to Address]

NOTE: Address may be an AddressRef, a list of AddressRef-s or "all component".

Semantic Description

The send operation places a message on an outgoing message port. The message may be specified by referencing a
defined template or can be defined as an in-line template.

Sending unicast, multicast or broadcast

Unicast, multicast and broadcast communication can be determined by the optional to clause in the send operation.
A to clause can be omitted in case of a one-to-one connection where unicast communication is used and the message
receiver is uniquely determined by the test system structure.

Unicast communication is specified, if the to clause addresses one communication partner only. Multicast
communication is used, if the to clause includes a list of communication partners. Broadcast is defined by using the to
clause with all component keyword.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) The TemplateInstance (and all parts of it) shall have a specific value i.e. the use of matching mechanisms such
as AnyValue is not allowed.

b) When defining the message in-line, the optional type part shall be used if there is ambiguity of the type of the
message being sent.

c) The send operation shall only be used on message-based ports and the type of the template to be sent shall be
in the list of outgoing types of the port type definition.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)241

d) A to clause shall be present in case of one-to-many connections.

e) All AddressRef items in the to clause shall be of type address, component or of the address type bound to
the port type (see clause 6.2.9) of the port instance referenced in the send operation. No AddressRef in the to
clause shall contain the special value null at the time of the operation.

f) Applying a send operation to an unmapped or disconnected port shall cause a test case error.

g) The ObjectReference shall be of a port type.

h) TemplateInstance shall be of a data type.

Examples

EXAMPLE 1: Simple send (receiver is determined from the test configuration)

 myPort.send(m_myTemplate(5,v_myVar)); // Sends the template m_myTemplate with the actual
 // parameters 5 and v_myVar via myPort.

 myPort.send(5); // Sends the integer value 5 (which is an in-line template)

EXAMPLE 2: Sending with explicit to clause

 myPort.send(charstring:"My string") to v_myPartner;
 // Sends the string "My string" to a component with a
 // component reference stored in variable v_myPartner

 myPCO.send(v_myVariable + v_yourVariable - 2) to v_myPartner;
 // Sends the result of the arithmetic expression to v_myPartner.

 myPCO2.send(m_myTemplate) to (v_myPeerOne, v_myPeerTwo);
 // Specifies a multicast communication, where the value of
 // m_myTemplate is sent to the two component references stored
 // in the variables v_myPeerOne and v_myPeerTwo.

 myPCO3.send(m_myTemplate) to all component;
 // Broadcast communication: the value of m_mytemplate is sent to
 // all components which can be addressed via this port. If
 // myPCO3 is a mapped port, the components may reside inside
 // the SUT.

22.2.2 The Receive operation

The receive operation is used to receive a message from an incoming message port queue.

Syntactical Structure

[@nodefault] (ObjectReference | any port | any from PortArrayRef) "." receive
["(" TemplateInstance ")"]
[from Address]
["->" [value (ValueRef|
 ("(" { ValueRef[":=" [@decoded ["(" Expression ")"]]
 FieldOrTypeReference][","] } ")")
)]
 [sender ValueRef]
 [@index value ValueRef]]

NOTE 1: Address may be an AddressRef, a list of AddressRef-s or "any component".

Semantic Description

The receive operation is used to receive a message from an incoming message port queue. The message may be
specified by referencing a defined template or can be defined as an in-line template.

The receive operation removes the top message from the associated incoming port queue if, and only if, that top
message satisfies all the matching criteria associated with the receive operation.

If the match is not successful, the top message shall not be removed from the port queue i.e. if the receive operation
is used as an alternative of an alt statement and it is not successful, the execution of alt statement shall continue with
its next alternative.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)242

Matching criteria

The matching criteria are related to the type and value of the message to be received. The type and value of the message
to be received are determined by the argument of the receive operation, i.e. may either be derived from the defined
template or be specified in-line. An optional type field in the matching criteria to the receive operation shall be used
to avoid any ambiguity of the type of the value being received.

NOTE 2: Encoding attributes also participate in matching in an implicit way, by preventing the decoder to produce
an abstract value from the received message encoded in a different way than specified by the attributes.

Receiving from a specific sender

In the case of one-to-many connections the receive operation may be restricted to a certain communication partner.
This restriction shall be denoted using the from keyword followed by a specification of an address or component
reference, a list of address or component references or any component.

NOTE 3: The one-to-one connection is considered to be a simple case of the one-to-many connections and allows
the usage of the from-clause.

Storing the received message and parts of the received message

If the match is successful, the value is removed from the port queue and/or parts of this value can be stored in variables
or formal parameters. This is denoted by the symbol '->' and the keyword value.

When the keyword value is followed by a name of a variable or formal parameter, the whole received message shall
be stored in the variable or formal parameter. The variable or formal parameter shall be type compatible with the
received message.

When the keyword value is followed by a list enframed by a pair of parentheses, the whole received message and/or
one or more parts of it can be stored. For each list element that consists only of a variable or formal parameter name the
whole message shall be stored in that variable or formal parameter. The type of the variable or formal parameter shall
be compatible with the type of the message. Each assignment notation member of the list allows storing the value of the
field or element of the received message, which is referenced on the right hand side of the assignment notation (:=), in
the variable or formal parameter on the left hand side. The variable or formal parameter shall be type compatible with
the type of the referenced field or element.

When assigning individual fields of a message, encoded payload fields can be decoded prior to assignment using the
@decoded modifier. In this case, the referenced field on the right hand side of the assignment shall be one of the
bitstring, hexstring, octetstring, charstring or universal charstring types. It shall be
decoded into a value of the same type as the variable on the left hand side of the assignment. Failure of this decoding
shall cause a test case error. In case the referenced field is of the universal charstring type, the @decoded
clause can contain an optional parameter defining the encoding format. The parameter shall be of the charstring
type and it shall contain one of the strings allowed for the decvalue_unichar function (specified in clause C.5.4).
Any other value shall cause an error. In case the referenced field is not a universal charstring, the optional
parameter shall not be present.

NOTE 4: The model of the behaviour of this implicit decoding is defined in clause B.1.2.9.

NOTE 5: The @decoded clause is typically used together with the decmatch matching mechanism in the
matching part of the receive statement. Since the decoding procedures for assignment and matching are
virtually the same, TTCN-3 tools can be optimized in such a way that only one call to the decoder is
made when the receiving statement contains both decmatch matching mechanism and @decoded
assignment for the same payload field.

Storing the sender

It is also possible to retrieve and store the component reference or address of the sender of a message. This is denoted
by the keyword sender.

When the message is received on a connected port, only the component reference is stored in the following the sender
keyword, but the test system shall internally store the component name too, if any (to be used in logging).

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)243

Receive any message

A receive operation with no argument list for the type and value matching criteria of the message to be received shall
remove the message on the top of the incoming port queue (if any) if all other matching criteria are fulfilled.

Receive on any port

To receive a message on any port, use the any port keywords.

Receive on any port from a port array

To receive a message on any port from a specific port array, use the any from PortArrayRef syntax where
PortArrayRef shall be a reference to a port array identifier. It is also possible to store the index of a port in a single-
dimensional port array at which the operation was successful to a variable of type integer or, in case of
multi-dimensional port arrays the index of the successful port to an integer array or record of integer variable. When
checking the port array for matching messages, the port indices to be checked are iterated from lowest to highest. If the
port array is multi-dimensional, then the ports are iterated over from innermost to outermost array dimension from
lowest to highest index for each dimension, e.g. [0][0], [0][1], [1][0], [1][1]. The first port which matches all the criteria
will cause the operation to be successful even if other ports in the array would also meet the criteria.

Stand-alone receive

The receive operation can be used as a stand-alone statement in a behaviour description. In this latter case the
receive operation is considered to be shorthand for an alt statement with the receive operation as the only
alternative.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) When defining the message in-line, the optional type part shall be present whenever the type of the message
being received is ambiguous.

b) The receive operation shall only be used on message-based ports and the type of the value to be received
shall be included in the list of incoming types of the port type definition.

c) No binding of the incoming values to the terms of the expression or to the template shall occur.

d) A message received by receive any message shall not be stored, i.e. the value clause shall not be present.

e) Type mismatch at storing the received value or parts of the received value and storing the sender shall cause an
error.

NOTE 6: An error due to a type mismatch may happen if the types in the receive part are not compatible to the
types in the assignment part or, if the from clause is missing, but the type of the sender can be
determined and it is not type compatible with the type in the sender clause.

f) All AddressRef items in the from clause and all ValueRef items in the sender clause shall be of type
address, component or of the address type bound to the port type (see clause C.5) of the port instance
referenced in the receive operation. No AddressRef in the from clause shall contain the special value
null at the time of the operation.

g) The PortArrayRef shall be a reference to a completely initialized port array.

h) The index redirection shall only be used when the operation is used on an any from port array construct.

i) If the index redirection is used for single-dimensional port arrays, the type of the integer variable shall allow
storing the highest index of the respective array.

j) If the index redirection is used for multi-dimensional port arrays, the size of the integer array or record of
integer type shall exactly be the same as the dimension of the respective array, and its type shall allow storing
the highest index (from all dimensions) of the array.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)244

k) If a variable referenced in the value, sender or @index clause is a lazy or fuzzy variable, the expression
assigned to this variable is equal to the result produced by the receive operation i.e. later evaluation of the
lazy or fuzzy variable does not lead to repeated invocation of the receive operation.

l) If the receive operation contains both from and sender clause, the variable or parameter referenced in
the sender clause shall be type compatible with the template in the from clause.

m) When assigning implicitly decoded message fields (by using the @decoded modifier) in cases where the
value or template to be matched uses the MatchDecodedContent (decmatch) matching for the field to be
stored, the type of the template in the MatchDecodedContent matching shall be type-compatible to the type of
the variable the decoded field is stored into.

n) The referenced value associated with ValueRef or the return type associated with FunctionInstance followed
by the receive keyword, shall be of a port type.

o) TemplateInstance shall be of a data type.

p) The @nodefault modifier is allowed only in stand-alone receive statements.

Examples

EXAMPLE 1: Basic receive

 myPort.receive(mw_myTemplate(5, v_myVar)); // Matches a message that fulfils the conditions
 // defined by template mw_myTemplate at port myPort.

 myPort.receive(v_a<v_b); // Matches a Boolean value that depends on the outcome of v_a<v_b

 myPort.receive(integer:v_myVar); // Matches an integer value with the value of v_myVar
 // at port myPort

 myPort.receive(v_myVar); // Is an alternative to the previous example

EXAMPLE 2: Receiving from a sender, storing the message, parts of the message or the sender

 type MyPayloadType record {
 integer messageId,
 ContentType content
 }
 type MyType2 record {
 Header header,
 octetstring payload
 }

 template MyType mw_myTemplate := {
 messageId := 42,
 content := ?
 }
 ...
 var MyPayloadType v_myVar;
 var integer v_myMessageIdVar, v_myIntegerVar;
 var charstring v_myCharstringVar;
 var address v_myPeer;
 var octetstring v_myVarOne := '00ff'O;

 MyPort.receive(charstring:"Hello")from v_myPeer; // Matches charstring "Hello" from MyPeer

 MyPort.receive(MyType:?) -> value v_myVar; // The value of the received message is
 // assigned to v_myVar.

 MyPort.receive(MyType:?) -> value (v_myVar, v_myMessageIdVar:= messageId)
 // The value of the received message is stored in the variable
 // v_myVar and the value of the messageId field of the received
 // message is stored in the variable v_myMessageIdVar.

 MyPort.receive(anytype:?) -> value (v_myIntegerVar:= integer)
 // If the received value is an integer, it is stored in the variable
 // v_myIntegerVar, a test case error otherwise.

 MyPort.receive(charstring:?) -> value (v_myCharstringVar)
 // The received value is stored in the variable v_myCharstringVar;
 // Note that it is the same as to write "value v_myCharstringVar"

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)245

 MyPort.receive(A<B) -> sender v_myPeer; // The address of the sender is assigned to v_myPeer

 MyPort.receive(MyType:{5, v_myVarOne }) -> value v_myVar sender v_myPeer;
 // The received message value is stored in v_myVar and the sender address is stored in
 // v_myPeer.
 MyPort.receive(MyType2:{header := ?, payload := decmatch mw_myTemplate})
 -> value (v_myVar := @decoded payload);
 // The encoded payload field of the received message is decoded and matched with
 // mw_myTemplate; if the matching is successful the decoded payload is stored in v_myVar.

EXAMPLE 3: Receive any message

 myPort.receive; // Removes the top value from myPort.

 myPort.receive from myPeer; // Removes the top message from myPort if its sender is
 // myPeer

 myPort.receive -> sender v_mySenderVar; // Removes the top message from myPort and assigns
 // the sender address to v_mySenderVar

EXAMPLE 4: Receive on any port

 any port.receive(mw_myMessage);

EXAMPLE 5: Receive on any port from a port array

 type port MyPort message { inout integer }
 type component MyComponent {
 port MyPort p[10][10];
 }
 var integer v_i[2];
 any from p.receive(mw_myMessage) -> @index value v_i;
 // checking receiving mw_myMessage on any port of the port array p and storing the index of the
 // port on which the matching was successful first; if, for example MyMessage is matched first
 // on p[4,2], the content of i will be {4,2}

22.2.3 The Trigger operation

The trigger operation is used to await a specific message on an incoming port queue.

Syntactical Structure

[@nodefault] (ObjectReference | any port | any from PortArrayRef) "." trigger
["(" TemplateInstance ")"]
[from Address]
["->" [value (ValueRef|
 ("(" { ValueRef[":=" [@decoded ["(" Expression ")"]]
 FieldOrTypeReference][","] } ")")
)]
 [sender ValueRef]
 [@index value ValueRef]]

NOTE 1: Address may be an AddressRef, a list of AddressRef-s or "any component".

Semantic Description

The trigger operation removes the top message from the associated incoming port queue. If that top message meets
the matching criteria, the trigger operation behaves in the same manner as a receive operation. If that top
message does not fulfil the matching criteria, it shall be removed from the queue without any further action.

The trigger operation requires the port name, matching criteria for type and value, an optional from restriction
(i.e. selection of communication partner) and an optional assignment of the matching message and sender component to
variables.

Matching criteria

The matching criteria as defined in clause 22.2.2 apply also to the trigger operation.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)246

Trigger from a specific sender

In the case of one-to-many connections the trigger operation may be restricted to a certain communication partner.
This restriction shall be denoted using the from keyword followed by a specification of an address or component
reference, a list of address or component references or any component.

NOTE 2: The one-to-one connection is considered to be a simple case of the one-to-many connections and allows
the usage of the from-clause.

Trigger on any message

A trigger operation with no argument list shall trigger on the receipt of any message. Thus, its meaning is identical
to the meaning of receive any message.

Trigger on any port

To trigger on a message at any port, use the any port keywords.

Trigger on any port from a port array

To trigger on a message at any port from a specific port array, use the any from PortArrayRef syntax where
PortArrayRef shall be a reference to a port array identifier. It is also possible to store the index of a port in a
single-dimensional port array at which the operation was successful to a variable of type integer or, in case of
multi-dimensional port arrays the index of the successful port to an integer array or record of integer variable. When
checking the port array for matching messages, the port indices to be checked are iterated from lowest to highest. If the
port array is multi-dimensional, then the ports are iterated over from innermost to outermost array dimension from
lowest to highest index for each dimension, e.g. [0][0], [0][1], [1][0], [1][1]. The first port which matches all the criteria
will cause the operation to be successful even if other ports in the array would also meet the criteria.

If any port in the port array which is checked for matching contains a message that does not match, this message is
removed and the containing alt statement is re-evaluated, regardless of whether or not other ports in the port array
would meet the trigger criteria.

Stand-alone trigger

The trigger operation can be used as a stand-alone statement in a behaviour description. In this latter case the
trigger operation is considered to be shorthand for an alt statement with two alternatives (one alternative expecting
the message and another alternative consuming all other messages and repeating the alt statement, see ETSI
ES 201 873-4 [1]).

Storing the received message, parts of the received message or the sender

Rules in clause 22.2.2 shall apply.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) The trigger operation shall only be used on message-based ports and the type of the value to be received
shall be included in the list of incoming types of the port type definition.

b) A message received by TriggerOnAnyMessage shall not be assigned to a variable.

c) Type mismatch at storing the received value or parts of the received value and storing the sender shall cause an
error.

NOTE 3: An error due to a type mismatch may happen if the types in the receive part are not compatible to the
types in the assignment part or, if the from clause is missing, but the type of the sender can be
determined and it is not type compatible with the type in the sender clause.

d) All AddressRef items in the from clause and all ValueRef items in the sender clause shall be of type
address, component or of the address type bound to the port type (see clause C.5) of the port instance
referenced in the trigger operation. No AddressRef in the from clause shall contain the special value
null at the time of the operation.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)247

e) The PortArrayRef shall be a reference to a completely initialized port array.

f) The index redirection shall only be used when the operation is used on an any from port array construct.

g) If the index redirection is used for single-dimensional port arrays, the type of the integer variable shall allow
storing the highest index of the respective array.

h) If the index redirection is used for multi-dimensional port arrays, the size of the integer array or record of
integer type shall exactly be the same as the dimension of the respective array, and its type shall allow storing
the highest index (from all dimensions) of the array.

i) If a variable referenced in the value, sender or @index clause is a lazy or fuzzy variable, the expression
assigned to this variable is equal to the result produced by the trigger operation, i.e. later evaluation of the
lazy or fuzzy variable does not lead to repeated invocation of the trigger operation.

j) If the trigger operation contains both from and sender clause, the variable or parameter referenced in
the sender clause shall be type compatible with the template in the from clause.

k) The ObjectReference shall be of a port type.

l) TemplateInstance shall be of a data type.

m) The @nodefault modifier is allowed only in stand-alone trigger statements.

Examples

EXAMPLE 1: Basic trigger

 myPort.trigger(MyType:?);
 // Specifies that the operation will trigger on the reception of the first message observed of
 // the type MyType with an arbitrary value at port myPort.

EXAMPLE 2: Trigger from a sender and with storing message or sender

 myPort.trigger(MyType:?) from myPartner;
 // Triggers on the reception of the first message of type MyType at port myPort
 // received from myPartner.

 myPort.trigger(MyType:?) from myPartner -> value v_myRecMessage;
 // This example is almost identical to the previous example. In addition, the message which
 // triggers i.e. all matching criteria are met, is stored in the variable v_myRecMessage.

 myPort.trigger(MyType:?) -> sender myPartner;
 // This example is almost identical to the first example. In addition, the reference of the
 // sender component will be retrieved and stored in variable myPartner.

 myPort.trigger(integer:?) -> value v_myVar sender v_myPartner;
 // Trigger on the reception of an arbitrary integer value which afterwards is stored in
 // variable v_myVar. The reference of the sender component will be stored in variable MyPartner.

EXAMPLE 3: Trigger on any message

 myPort.trigger;

 myPort.trigger from myPartner;

 myPort.trigger -> sender v_mySenderVar;

EXAMPLE 4: Trigger on any port

 any port.trigger

EXAMPLE 5: Trigger on any port from port array

 type port MyPort message { inout integer }
 type component MyComponent {
 port MyPort p[10][10];
 }
 var integer v_i[2];

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)248

 any from p.trigger(mw_myMessage) -> @index value v_i;
 // Checking if mw_myMessage has been received on any port of the port array p; if yes, the index
 // of the port on which the matching was first successful is stored in the array v_i; if no port
 // succeeds, the top messages are removed and the port array is re-checked.

22.3 Procedure-based communication

22.3.0 General

The operations for procedure-based communication via synchronous ports are summarized in table 24.

Table 24: Overview of procedure-based communication

Communication operation Keyword
Invoke procedure call call
Accept procedure call from remote entity getcall
Reply to procedure call from remote entity reply
Raise exception (to an accepted call) raise
Handle response from a previous call getreply
Catch exception (from called entity) catch
Check call/exception/reply received check

22.3.1 The Call operation

The call operation specifies the call of a remote operation on another test component or within the SUT.

Syntactical Structure

ObjectReference "." call "(" TemplateInstance ["," (CallTimerValue | nowait)] ")"
[to Address]

NOTE: Address may be an AddressRef, a list of AddressRef-s or "all component".

Semantic Description

The call operation is used to specify that a test component calls a procedure in the SUT or in another test component.

The information to be transmitted in the send part of the call operation is a signature that may either be defined in the
form of a signature template or be defined in-line.

Handling responses and exceptions to a call

In case of non-blocking procedure-based communication the handling of exceptions to call operations is done by
using catch (see clause 22.3.6) operations as alternatives in alt statements.

If the nowait option is used, the handling of responses or exceptions to call operations is done by using getreply
(see clause 22.3.4) and catch (see clause 22.3.6) operations as alternatives in alt statements.

In case of blocking procedure-based communication, the handling of responses or exceptions to a call is done in the
response and exception handling part of the call operation by means of getreply (see clause 22.3.4) and catch
(see clause 22.3.6) operations.

The response and exception handling part of a call operation looks similar to the body of an alt statement. It defines
a set of alternatives, describing the possible responses and exceptions to the call.

If necessary, it is possible to enable/disable an alternative by means of a boolean expression placed between the "[]"
brackets of the alternative.

The response and exception handling part of a call operation is executed like an alt statement without any active
default. This means a corresponding snapshot includes all information necessary to evaluate the (optional) Boolean
guards, may include the top element (if any) of the port over which the procedure has been called and may include a
timeout exception generated by the (optional) timer that supervises the call.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)249

Handling timeout exceptions to a call

The call operation may optionally include a timeout. This is defined as an explicit value or constant of float type
and defines the length of time after the call operation has started that a timeout exception shall be generated by the
test system. If no timeout value part is present in the call operation, no timeout exception shall be generated.

Nowait calls of blocking procedures

Using the keyword nowait instead of a timeout exception value in a call operation allows calling a procedure to
continue without waiting either for a response or an exception raised by the called procedure or a timeout exception.

If the nowait keyword is used, a possible response or exception of the called procedure has to be removed from the
port queue by using a getreply or a catch operation in a subsequent alt statement.

Calling blocking procedures without return value, out parameters, inout parameters and exceptions

A blocking procedure may have no return values, no out and inout parameters and may raise no exception. The call
operation for such a procedure shall also have a response and exception handling part to handle the blocking in a
uniform manner.

Calling non-blocking procedures

A non-blocking procedure has no out and inout parameters, no return value and the non-blocking property is indicated
in the corresponding signature definition by means of a noblock keyword.

Possible exceptions raised by non-blocking procedures have to be removed from the port queue by using catch
operations in subsequent alt or interleave statements.

Unicast, multicast and broadcast calls of procedures

Like for the send operation, TTCN-3 also supports unicast, multicast and broadcast calls of procedures. This can be
done in the same manner as described in clause 22.2.1, i.e. the argument of the to clause of a call operation is for
unicast calls the address of one receiving entity (or can be omitted in case of one-to-one connections), for multicast calls
a list of addresses of a set of receivers and for broadcast calls the all component keyword. In case of one-to-one
connections, the to clause may be omitted, because the receiving entity is uniquely identified by the system structure.

The handling of responses and exceptions for a blocking or non-blocking unicast call operation has been explained in
this clause under "Handling timeout exceptions to a call". A multicast or broadcast call operation may cause several
responses and exceptions from different communication partners.

In case of a multicast or broadcast call operation of a non-blocking procedure, all exceptions which may be raised
from the different communication partners can be handled in subsequent catch, alt or interleave statements.

In case of a multicast or broadcast call operation of a blocking procedure, responses and exceptions can be handled in
several ways: one possibility is to handle only one response or exception in the response and exception handling part of
the call operation. All further responses and exceptions are handled in subsequent alt or interleave statements.
Alternatively, several or all responses and exceptions are processed in the response and exception handling part of the
call operation by means of nested alt statements or by using the repeat operation causing the re-evaluation of the
call body. A further possibility is to use the nowait directive and to handle all responses and exceptions in subsequent
alt or interleave statements.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) The call operation shall only be used on procedure-based ports. The type definition of the port shall include
the name of the procedure to which the call operation belongs in its out or inout list i.e. it shall be allowed
to call this procedure at this port.

b) All in and inout parameters of the signature shall have a specific value i.e. the use of matching mechanisms
such as AnyValue is not allowed.

c) Only out parameters may be omitted or specified with a matching attribute.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)250

d) The signature arguments of the call operation are not used to retrieve variable names for out and inout
parameters. The actual assignment of the procedure return value and out and inout parameter values to
variables shall explicitly be made in the response and exception handling part of the call operation by means
of getreply and catch operations. This allows the use of signature templates in call operations in the
same manner as templates can be used for types.

e) A to clause shall be present in case of one-to-many connections.

f) All AddressRef items in the to clause shall be of type address, component or of the address type bound to
the port type (see clause 6.2.9) of the port instance referenced in the call operation. No AddressRef in the to
clause shall contain the special value null at the time of the operation.

g) CallTimerValue shall be of type float.

h) The selection of the alternatives to a call shall only be based on getreply and catch operations for the
called procedure. Unqualified getreply and catch operations shall only treat replies from and exceptions
raised by the called procedure. The use of else branches and the invocation of altsteps is not allowed.

i) The evaluation of the Boolean expressions guarding the alternatives in the response and exception handling
part may have side effects. In order to avoid unexpected side effects, the same rules as for the Boolean guards
in alt statements shall be applied (see clause 20.2).

j) The call operation for a blocking procedures without return value, out parameters, inout parameters and
exceptions shall also have a response and exception handling part to handle the blocking in a uniform manner.

k) In case of a multicast or broadcast call operation of a blocking procedure, where the nowait keyword is
used, all responses and exceptions have to be handled in subsequent alt or interleave statements.

l) The call operation for a non-blocking procedure shall have no response and exception handling part, shall
raise no timeout exception and shall not use the nowait keyword.

m) Applying a call operation to an unmapped or disconnected port shall cause a test case error.

n) The ObjectReference shall be of a port type.

Examples

EXAMPLE 1: Blocking call with getreply:

 // Given …
 signature MyProc (out integer MyPar1, inout boolean MyPar2);
 :
 // a call of MyProc
 myPort.call(MyProc:{ -, v_myVar2}) { // in-line signature template for the call of MyProc
 [] myPort.getreply(MyProc:{?, ?}) { }
 }

 // … and another call of MyProc
 myPort.call(s_myProcTemplate) { // using signature template for the call of MyProc
 [] myPort.getreply(MyProc:{?, ?}) { }
 }

 myPort.call(s_myProcTemplate) to myPeer { // calling MyProc at myPeer
 [] myPort.getreply(MyProc:{?, ?}) { }
 }

EXAMPLE 2: Blocking call with getreply and catch:

 // Given
 signature MyProc3 (out integer MyPar1, inout boolean MyPar2) return MyResultType
 exception (ExceptionTypeOne, ExceptionTypeTwo);
 :

 // Call of MyProc3
 myPort.call(MyProc3:{ -, true }) to myPartner {

 [] myPort.getreply(MyProc3:{?, ?}) -> value v_myResult param (v_myPar1Var,v_myPar2Var) { }

 [] myPort.catch(MyProc3, MyExceptionOne) {
 setverdict(fail);

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)251

 stop;
 }
 [] myPort.catch(MyProc3, ExceptionTypeTwo : ?) {
 setverdict(inconc);
 }
 [MyCondition] myPort.catch(MyProc3, MyExceptionThree) { }
 }

EXAMPLE 3: Blocking call with timeout exception:

 myPort.call(MyProc:{5,v_myVar}, 20E-3) {

 [] myPort.getreply(MyProc:{?, ?}) { }

 [] myPort.catch(timeout) { // timeout exception after 20ms
 setverdict(fail);
 stop;
 }
 }

EXAMPLE 4: Nowait call:

 myPort.call(MyProc:{5, v_myVar}, nowait); // The calling test component will continue
 // its execution without waiting for the
 // termination of MyProc

EXAMPLE 5: Blocking call without return value, out parameters, inout parameters and exceptions:

 // Given …
 signature MyBlockingProc (in integer MyPar1, in boolean MyPar2);
 :
 // a call of MyBlockingProc
 myPort.call(MyBlockingProc:{ 7, false }) {
 [] myPort.getreply(MyBlockingProc:{ -, - }) { }
 }

EXAMPLE 6: Broadcast call, accepting the first response only from certain communication partners:

 var boolean v_allPeersHandled := false;
 myPort.call(MyProc:{5,v_myVar}, 20E-3) to all component { // Broadcast call of MyProc
 // Handles the response from myPeerOne
 [] myPort.getreply(MyProc:{?, ?}) from myPeerOne {
 }
 // Handles the response from myPeerTwo
 [] myPort.getreply(MyProc:{?, ?}) from myPeerTwo {
 }
 [] myPort.catch(timeout) { // timeout exception after 20ms
 setverdict(inconc);
 stop;
 }
 }

 alt {
 [] myPort.getreply(MyProc:{?, ?}) { // Handles all other responses to the broadcast call
 :
 if (not(v_allPeersHandled)) {
 repeat
 }
 }
 }

EXAMPLE 7: Multicast call:

 myPort.call(MyProc:{5,v_myVar}, nowait) to (myPeer1, myPeer2); // Multicast call of MyProc

 interleave {
 [] myPort.getreply(MyProc:{?, ?}) from myPeer1 { } // Handles the response of myPeer1
 [] myPort.getreply(MyProc:{?, ?}) from myPeer2 { } // Handles the response of myPeer2
 }

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)252

22.3.2 The Getcall operation

The getcall operation is used to accept calls.

Syntactical Structure

[@nodefault] (ObjectReference | any port | any from PortArrayRef) "." getcall
["(" TemplateInstance ")"]
[from Address]
["->" [param "(" { (ValueRef":=" [@decoded ["(" Expression ")"]]
 ParameterIdentifier) "," } |
 { (ValueRef| "-") "," }
 ")"]
 [sender ValueRef]
 [@index value ValueRef]]

NOTE 1: Address may be an AddressRef, a list of AddressRef-s or "any component".

Semantic Description

The getcall operation is used to specify that a test component accepts a call from the SUT, or another test
component.

The getcall operation shall remove the top call from the incoming port queue, if, and only if, the matching criteria
associated to the getcall operation are fulfilled. These matching criteria are related to the signature of the call to be
processed and the communication partner. The matching criteria for the signature may either be specified in-line or be
derived from a signature template.

The assignment of in and inout parameter values to variables shall be made in the assignment part of the getcall
operation. This allows the use of signature templates in getcall operations in the same manner as templates are used
for types.

A getcall operation may be restricted to a certain communication partner in case of one-to-many connections. This
restriction shall be denoted by using the from keyword followed by a specification of an address or component
reference, a list of address or component references or any component.

NOTE 2: The one-to-one connection is considered to be a simple case of the one-to-many connections and allows
the usage of the from-clause.

The (optional) assignment part of the getcall operation comprises the assignment of in and inout parameter
values to variables and the retrieval of the address of the calling component. The keyword param is used to retrieve the
parameter values of a call.

When assigning individual parameters of a call, encoded parameters can be decoded prior to assignment using the
@decoded modifier. In this case, the referenced parameter on the right hand sided of the assignment shall be one of
the bitstring, hexstring, octetstring, charstring or universal charstring types. It shall be
decoded into a value of the same type as the variable on the left hand side of the assignment. Failure of this decoding
shall cause a test case error. In case the referenced field is of the universal charstring type, the @decoded
clause can contain an optional parameter defining the encoding format. The parameter shall be of the charstring
type and it shall contain one of the strings allowed for the decvalue_unichar function (specified in clause C.5.4).
Any other value shall cause an error. In case the referenced field is not a universal charstring, the optional
parameter shall not be present.

The keyword sender is used when it is required to retrieve the address of the sender (e.g. for addressing a reply or
exception to the calling party in a one-to-many configuration).

Accepting any call

A getcall operation with no argument list for the signature matching criteria will remove the call on the top of the
incoming port queue (if any) if all other matching criteria are fulfilled.

Getcall on any port

To getcall on any port is denoted by the any keyword.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)253

Getcall on any port from a port array

To getcall on any port from a specific port array, use the any from PortArrayRef syntax where
PortArrayRef shall be a reference to a port array identifier. It is also possible to store the index of a port in a single-
dimensional port array at which the operation was successful to a variable of type integer or, in case of
multi-dimensional port arrays the index of the successful port to an integer array or record of integer variable. When
checking the port array for matching calls, the port indices to be checked are iterated from lowest to highest. If the port
array is multi-dimensional, then the ports are iterated over from innermost to outermost array dimension from lowest to
highest index for each dimension, e.g. [0][0], [0][1], [1][0], [1][1]. The first port which matches all the criteria will
cause the operation to be successful even if other ports in the array would also meet the criteria.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) The getcall operation shall only be used on procedure-based ports. The type definition of the port shall
include the name of the procedure to which the getcall operation belongs in its in or inout list.

b) The signature argument of the getcall operation shall not be used to pass in variable names for in and
inout parameters.

c) The ParameterIdentifiers shall be from the corresponding signature definition.

d) The value assignment part shall not be used with the getcall operation.

e) Parameters of calls accepted by accepting any call shall not be assigned to a variable, i.e. the param clause
shall not be present.

f) All AddressRef items in the from clause and all ValueRef items in the sender clause shall be of type
address, component or of the address type bound to the port type (see clause C.5) of the port instance
referenced in the getcall operation. No AddressRef in the from clause shall contain the special value
null at the time of the operation.

g) The PortArrayRef shall be a reference to a completely initialized port array.

h) The index redirection shall only be used when the operation is used on an any from port array construct.

i) If the index redirection is used for single-dimensional port arrays, the type of the integer variable shall allow
storing the highest index of the respective array.

j) If the index redirection is used for multi-dimensional port arrays, the size of the integer array or record of
integer type shall exactly be the same as the dimension of the respective array, and its type shall allow storing
the highest index (from all dimensions) of the array.

k) If a variable referenced in the param, sender or @index clause is a lazy or fuzzy variable, the expression
assigned to this variable is equal to the result produced by the getcall operation, i.e. later evaluation of the
lazy or fuzzy variable does not lead to repeated invocation of the getcall operation.

l) If the getcall operation contains both from and sender clause, the variable or parameter referenced in
the sender clause shall be type compatible with the template in the from clause. If the operation contains a
sender clause but no from clause, the sender shall be type compatible with the type of the variable or
parameter referenced in the sender clause.

NOTE 3: An error due to a type mismatch may happen if the types in the receive part are not compatible to the
types in the assignment part or, if the from clause is missing, but the type of the sender can be
determined and it is not type compatible with the type in the sender clause.

m) When assigning implicitly decoded parameters (by using the @decoded modifier) in cases where the value or
template to be matched uses the MatchDecodedContent (decmatch) matching for the parameter to be stored,
the type of the template in the MatchDecodedContent matching shall be type-compatible to the type of the
variable the decoded field is stored into.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)254

n) The ObjectReference shall be of a port type.

o) The @nodefault modifier is allowed only in stand-alone getcall statements.

Examples

EXAMPLE 1: Basic getcall:

 myPort.getcall(MyProc: s_myProcTemplate(5, v_myVar)); // accepts a call of MyProc at myPort

 myPort.getcall(MyProc:{5, v_myVar}) from myPeer; // accepts a call of MyProc at myPort from
 // myPeer

EXAMPLE 2: Getcall with matching and assignments of parameter values to variables:

 myPort.getcall(MyProc:{?, ?}) from myPartner -> param (v_myPar1Var, v_myPar2Var);
 // The in or inout parameter values of MyProc are assigned to v_myPar1Var and v_myPar2Var.

 myPort.getcall(MyProc:{5, v_myVar}) -> sender v_mySenderVar;
 // Accepts a call of MyProc at myPort with the in or inout parameters 5 and v_myVar.
 // The address of the calling party is retrieved and stored in v_mySenderVar.

 // The following getcall examples show the possibilities to use matching attributes
 // and omit optional parts, which may be of no importance for the test specification.

 myPort.getcall(MyProc:{5, v_myVar}) -> param(v_myVar1, v_myVar2) sender v_mySenderVar;

 myPort.getcall(MyProc:{5, ?}) -> param(v_myVar1, v_myVar2);

 myPort.getcall(MyProc:{?, v_myVar}) -> param(- , v_myVar2);
 // The value of the first inout parameter is not important or not used

 // The following examples shall explain the possibilities to assign in and inout parameter
 // values to variables. The following signature is assumed for the procedure to be called:

 signature MyProc2(in integer A, integer B, integer C, out integer D, inout integer E);

 myPort.getcall(MyProc2:{?, ?, 3, - , ?}) -> param (v_myVarA, v_myVarB, - , -, v_myVarE);
 // The parameters A, B, and E are assigned to the variables v_myVarA, v_myVarB, and
 // v_myVarE. The out parameter D needs not to be considered.

 myPort.getcall(MyProc2:{?, ?, 3, -, ?}) -> param (v_myVarA:= A, v_myVarB:= B, v_myVarE:= E);
 // Alternative notation for the value assignment of in and inout parameter to variables. Note,
 // the names in the assignment list refer to the names used in the signature of MyProc2

 myPort.getcall(MyProc2:{1, 2, 3, -, *}) -> param (v_myVarE:= E);
 // Only the inout parameter value is needed for the further test case execution

 // The following example demonstrates the use of encoded parameters:
 signature MyProc3(in integer paramType, octetstring encodedParam);
 template integer mw_int := ?;
 …
 var integer v_myVarX;
 myPort.getcall(MyProc3:{1, decmatch mw_int}) -> param (v_myVarX := @decoded encodedParam);
 // The parameters encodedParam is decoded into an integer and assigned to v_myVarX.

EXAMPLE 3: Accepting any call:

 myPort.getcall; // Removes the top call from myPort.

 myPort.getcall from myPartner; // Removes a call from myPartner from port myPort

 myPort.getcall -> sender v_mySenderVar; // Removes a call from myPort and retrieves
 // the address of the calling entity

EXAMPLE 4: Getcall on any port:

 any port.getcall(MyProc:?)

EXAMPLE 5: Getcall on any port from port array:

 type port MyPort procedure { inout MyProc }
 type component MyComponent {
 port MyPort p[10][10];
 }
 var integer v_i[2];

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)255

 any from p.getcall(MyProc:?) -> @index value v_i;
 // checking for an incoming call of the type MyProc on any port of the port array p and storing
 // the index of the port on which the matching was successful first

22.3.3 The Reply operation

The reply operation is used to reply to a call.

Syntactical Structure

ObjectReference "." reply "(" TemplateInstance [value TemplateBody] ")"
[to Address]

NOTE 1: Address may be an AddressRef, a list of AddressRef-s or "all component".

Semantic Description

The reply operation is used to reply to a previously accepted call according to the procedure signature.

NOTE 2: The relation between an accepted call and a reply operation cannot always be checked statically. For
testing it is allowed to specify a reply operation without an associated getcall operation.

The value part of the reply operation consists of a signature reference with an associated actual parameter list and
(optional) return value. The signature may either be defined in the form of a signature template or it may be defined
in-line.

Responses to one or more call operations may be sent to one, several or all peer entities connected to the addressed
port. This can be specified in the same manner as described in clause 22.2.1. This means, the argument of the to clause
of a reply operation is for unicast responses the address of one receiving entity, for multicast responses a list of
addresses of a set of receivers and for broadcast responses the all component keywords.

In case of one-to-one connections, the to clause may be omitted, because the receiving entity is uniquely identified by
the system structure.

A return value or template shall be explicitly stated with the value keyword and is first evaluated before returning.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) A reply operation shall only be used at a procedure-based port. The type definition of the port shall include
the name of the procedure to which the reply operation belongs in its in or inout list.

b) The TemplateInstance in the reply operation shall identify the signature definition and all signature
parameters of the procedure to which the reply operation belongs.

c) All out and inout parameters of the signature shall have a specific value i.e. the use of matching
mechanisms such as AnyValue is not allowed.

d) A to clause shall be present in case of one-to-many connections.

e) All AddressRef items in the to clause shall be of type address, component or of the address type bound to
the port type (see clause 6.2.9) of the port instance referenced in the reply operation. No AddressRef in the
to clause shall contain the special value null at the time of the operation.

f) The optional value clause for a return value shall only be present if the signature definition of the procedure
to which the reply operation belongs defines a return type.

g) The TemplateBody in the value clause shall conform to the template(value) restriction and it shall be
type-compatible with the return type specified in the signature of the procedure to which the reply operation
belongs.

h) Applying a reply operation to an unmapped or disconnected port shall cause a test case error.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)256

i) The ObjectReference shall be of a port type.

Examples

 myPort.reply(MyProc2:{ - ,5}); // Replies to an accepted call of MyProc2.

 myPort.reply(MyProc2:{ - ,5}) to myPeer; // Replies to an accepted call of MyProc2 from myPeer

 myPort.reply(MyProc2:{ - ,5}) to (myPeer1, myPeer2); // Multicast reply to myPeer1 and myPeer2

 myPort.reply(MyProc2:{ - ,5}) to all component; // Broadcast reply to all entities connected
 // to myPort

 myPort.reply(MyProc3:{5, v_myVar} value 20); // Replies to an accepted call of MyProc3.

22.3.4 The Getreply operation

The getreply operation is used to handle replies from a previously called procedure.

Syntactical Structure

[@nodefault] (ObjectReference | any port | any from PortArrayRef) "." getreply
["(" TemplateInstance [value TemplateInstance]")"]
[from Address]
["->" [value (ValueRef|
 ("(" { ValueRef[":=" [@decoded ["(" Expression ")"]]
 FieldOrTypeReference][","] } ")")
)]
 [param "(" { (ValueRef":=" [@decoded ["(" Expression ")"]]
 ParameterIdentifier) "," } |
 { (ValueRef| "-") "," }
 ")"]
 [sender ValueRef]
 [@index value ValueRef]]

NOTE 1: Address may be an AddressRef, a list of AddressRef-s or "any component".

Semantic Description

The getreply operation is used to handle replies from a previously called procedure.

The getreply operation shall remove the top reply from the incoming port queue, if, and only if, the matching
criteria associated to the getreply operation are fulfilled. These matching criteria are related to the signature of the
procedure to be processed and the communication partner. The matching criteria for the signature may either be
specified in-line or be derived from a signature template.

Matching against a received return value can be specified by using the value keyword.

A getreply operation may be restricted to a certain communication partner in case of one-to-many connections. This
restriction shall be denoted by using the from keyword followed by a specification of an address or component
reference, a list of address or component references or any component.

NOTE 2: The one-to-one connection is considered to be a simple case of the one-to-many connections and allows
the usage of the from-clause.

The assignment of out and inout parameter values to variables shall be made in the assignment part of the
getreply operation. This allows the use of signature templates in getreply operations in the same manner as
templates are used for types.

The (optional) assignment part of the getreply operation comprises the assignment of out and inout parameter
values to variables and the retrieval of the address of the sender of the reply. The keyword value is used to retrieve
return values and the keyword param is used to retrieve the parameter values of a reply. The keyword sender is used
when it is required to retrieve the address of the sender.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)257

When assigning individual parameters or referenced fields of the return value of a reply, encoded parameters can be
decoded prior to assignment using the @decoded modifier. In this case, the referenced parameter or field of the return
value on the right hand sided of the assignment shall be one of the bitstring, hexstring, octetstring,
charstring or universal charstring types. It shall be decoded into a value of the same type as the variable
on the left hand side of the assignment. Failure of this decoding shall cause a test case error. In case the parameter or
referenced field of the return value is of the universal charstring type, the @decoded clause can contain an
optional parameter defining the encoding format. The parameter shall be of the charstring type and it shall contain
one of the strings allowed for the decvalue_unichar function (specified in clause C.5.4). Any other value shall
cause an error. In case the parameter or referenced field of the return value is not a universal char string, the
optional parameter shall not be present.

Get any reply

A getreply operation with no argument list for the signature matching criteria shall remove the reply message on the
top of the incoming port queue (if any) if all other matching criteria are fulfilled.

If GetAnyReply is used in the response and exception handling part of a call operation, it shall only treat replies from
the procedure invoked by the call operation.

Get a reply on any port

To get a reply on any port, use the any port keywords.

Get a reply on any port from a port array

To get a reply on any port from a specific port array, use the any from PortArrayRef syntax where
PortArrayRef shall be a reference to a port array identifier. It is also possible to store the index of a port in a
single-dimensional port array at which the operation was successful to a variable of type integer or, in case of
multi-dimensional port arrays the index of the successful port to an integer array or record of integer variable. When
checking the port array for matching replies, the port indices to be checked are iterated from lowest to highest. If the
port array is multi-dimensional, then the ports are iterated over from innermost to outermost array dimension from
lowest to highest index for each dimension, e.g. [0][0], [0][1], [1][0], [1][1]. The first port which matches all the criteria
will cause the operation to be successful even if other ports in the array would also meet the criteria.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) A getreply operation shall only be used at a procedure-based port. The type definition of the port shall
include the name of the procedure to which the getreply operation belongs.

b) The signature argument of the getreply operation shall not be used to pass in variable names for out and
inout parameters.

c) Parameters or return values of responses accepted by get any reply shall not be assigned to a variable, i.e. the
param and value clause shall not be present.

d) All AddressRef items in the from clause and all ValueRef items in the sender clause shall be of type
address, component or of the address type bound to the port type (see clause 6.2.9) of the port instance
referenced in the getreply operation. No AddressRef in the from clause shall contain the special value
null at the time of the operation.

e) The PortArrayRef shall be a reference to a completely initialized port array.

f) The index redirection shall only be used when the operation is used on an any from port array construct.

g) If the index redirection is used for single-dimensional arrays, the type of the integer variable shall allow
storing the highest index of the respective port array.

h) If the index redirection is used for multi-dimensional arrays, the size of the integer array or record of integer
type shall exactly be the same as the dimension of the respective port array, and the its type shall allow storing
the highest index (from all dimensions) of the port array.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)258

i) If a variable referenced in the value, param, sender or @index clause is a lazy or fuzzy variable, the
expression assigned to this variable is equal to the result produced by the getreply operation, i.e. later
evaluation of the lazy or fuzzy variable does not lead to repeated invocation of the getreply operation.

j) If the getreply operation contains both from and sender clause, the variable or parameter referenced in
the sender clause shall be type compatible with the template in the from clause. If the operation contains a
sender clause but no from clause, the sender shall be type compatible with the variable or parameter
referenced in the sender clause.

NOTE 3: An error due to a type mismatch may happen if the types in the receive part are not compatible to the
types in the assignment part or, if the from clause is missing, but the type of the sender can be
determined and it is not type compatible with the type in the sender clause.

k) When assigning implicitly decoded parameters or referenced fields of the return value (by using the
@decoded modifier) in cases where the value or template to be matched uses the MatchDecodedContent
(decmatch) matching for the parameter to be stored, the type of the template in the MatchDecodedContent
matching shall be type-compatible to the type of the variable the decoded field is stored into.

l) The ObjectReference shall be of a port type.

m) The @nodefault modifier is allowed only in stand-alone getreply statements.

Examples

EXAMPLE 1: Basic getreply:

 myPort.getreply(MyProc:{5, ?} value 20); // Accepts a reply of MyProc with two out or
 // inout parameters and a return value of 20

 myPort.getreply(MyProc2:{ - , 5}) from myPeer; // Accepts a reply of MyProc2 from myPeer

EXAMPLE 2: Getreply with storing inout/out parameters and return values in variables:

 myPort.getreply(MyProc1:{?, ?} value ?) -> value v_myRetValue param(v_myPar1, v_myPar2);
 // The returned value is assigned to variable v_myRetValue and the value
 // of the two out or inout parameters are assigned to the variables v_myPar1 and v_myPar2.

 myPort.getreply(MyProc1:{?, ?} value ?)-> value v_myRetValue param(- ,v_myPar2) sender mySender;
 // The value of the first parameter is not considered for the further test execution and
 // the address of the sender component is retrieved and stored in the variable mySender.

 // The following examples describe some possibilities to assign out and inout parameter values
 // to variables. The following signature is assumed for the procedure which has been called

 signature MyProc2(in integer A, integer B, integer C, out integer D, inout integer E);

 myPort.getreply(s_aTemplate) -> param(- , - , - , v_myVarOut1, v_myVarInout1);

 myPort.getreply(s_aTemplate) -> param(v_myVarOut1:=D, v_myVarOut2:=E);

 myPort.getreply(MyProc2:{ - , - , - , 3, ?}) -> param(v_myVarInout1:=E);

 // The following example demonstrates the use of encoded parameters:
 signature MyProc3(out integer paramType, out octetstring encodedParam);
 template integer mw_int := ?;
 …
 var integer v_myVarX;
 myPort.getreply(MyProc3:{1, decmatch mw_int}) -> param (v_myVarX := @decoded encodedParam);
 // The parameters encodedParam is decoded into an integer and assigned to v_myVarX.

EXAMPLE 3: Get any reply:

 myPort.getreply; // Removes the top reply from myPort.

 myPort.getreply from myPeer; // Removes the top reply received from myPeer from myPort.

 myPort.getreply -> sender v_mySenderVar; // Removes the top reply from myPort and retrieves
 // the address of the sender entity

EXAMPLE 4: Get a reply on any port:

 any port.getreply(Myproc:?)

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)259

EXAMPLE 5: Get a reply on any port from port array:

 type port MyPort procedure { inout MyProc }
 type component MyComponent {
 port MyPort p[10][10];
 }
 var integer v_i[2];
 any from p.getreply(MyProc:?) -> @index value v_i;
 // Getting a reply of the type MyProc on any port of the port array p and
 // storing the index of the port on which the matching was successful first

22.3.5 The Raise operation

Exceptions are raised with the raise operation.

Syntactical Structure

ObjectReference "." raise "(" Signature "," TemplateInstance ")"
[to Address]

NOTE 1: Address may be an AddressRef, a list of AddressRef-s or "all component".

Semantic Description

The raise operation is used to raise an exception.

NOTE 2: The relation between an accepted call and a raise operation cannot always be checked statically. For
testing it is allowed to specify a raise operation without an associated getcall operation.

The value part of the raise operation consists of the signature reference followed by the exception value.

Exceptions are specified as types. Therefore the exception value may either be derived from a template conforming to
the template(value) restriction or be the value resulting from an expression (which of course can be an explicit value).
The optional type field in the value specification to the raise operation shall be used in cases where it is necessary to
avoid any ambiguity of the type of the value being sent.

Exceptions to one or more call operations may be sent to one, several or all peer entities connected to the addressed
port. This can be specified in the same manner as described in clause 22.2.1. This means, the argument of the to clause
of a raise operation is for unicast exceptions the address of one receiving entity, for multicast exceptions a list of
addresses of a set of receivers and for broadcast exceptions the all component keywords.

In case of one-to-one connections, the to clause may be omitted, because the receiving entity is uniquely identified by
the system structure.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) An exception shall only be raised at a procedure-based port. An exception is a reaction to an accepted
procedure call the result of which leads to an exceptional event.

b) The type of the exception shall be specified in the signature of the called procedure. The type definition of the
port shall include in its in or inout list the name of the procedure to which the exception belongs.

c) A to clause shall be present in case of one-to-many connections.

d) All AddressRef items in the to clause shall be of type address, component or of the address type bound to the
port type (see clause 6.2.9) of the port instance referenced in the raise operation. No AddressRef in the to
clause shall contain the special value null at the time of the operation.

e) Applying a raise operation to an unmapped or disconnected port shall cause a test case error.

f) The TemplateInstance shall conform to the template(value) restriction (see clause 15.8).

g) The ObjectReference shall be of a port type.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)260

Examples

 myPort.raise(MySignature, v_myVariable + v_yourVariable - 2);
 // Raises an exception with a value which is the result of the arithmetic expression
 // at myPort

 myPort.raise(MyProc, integer:5}); // Raises an exception with the integer value 5 for MyProc

 myPort.raise(MySignature, "My string") to myPartner;
 // Raises an exception with the value "My string" at myPort for MySignature and
 // send it to myPartner

 myPort.raise(MySignature, "My string") to (myPartnerOne, myPartnerTwo);
 // Raises an exception with the value "My string" at myPort and sends it to myPartnerOne and
 // myPartnerTwo (i.e. multicast communication)

 myPort.raise(MySignature, "My string") to all component;
 // Raises an exception with the value "My string" at myPort for MySignature and sends it
 // to all entities connected to myPort (i.e. broadcast communication)

22.3.6 The Catch operation

The catch operation is used to catch exceptions.

Syntactical Structure

[@nodefault] (ObjectReference | any port | any from PortArrayRef) "." catch
["(" (Signature ["," TemplateInstance]) | TimeoutKeyword ")"]
[from Address]
["->" [value (ValueRef|
 ("(" { ValueRef[":=" [@decoded ["(" Expression ")"]]
 FieldOrTypeReference][","] } ")")
)]
 [sender ValueRef]
 [@index value ValueRef]]

NOTE 1: Address may be an AddressRef, a list of AddressRef-s or "any component".

Semantic Description

The catch operation is used to catch exceptions raised by a test component or the SUT as a reaction to a procedure
call. Exceptions are specified as types and thus, can be treated like messages, e.g. templates can be used to distinguish
between different values of the same exception type. If a Signature is given in the parameter list, it is possible to omit
the TemplateInstance part if the catch operation shall match any exception value of any of the exception types
declared in the definition of the referenced Signature.

The catch operation removes the top exception from the associated incoming port queue if, and only if, that top
exception satisfies all the matching criteria associated with the catch operation.

A catch operation may be restricted to a certain communication partner in case of one-to-many connections. This
restriction shall be denoted by using the from keyword followed by a specification of an address or component
reference, a list of address or component references or any component.

NOTE 2: The one-to-one connection is considered to be a simple case of the one-to-many connections and allows
the usage of the from-clause.

The (optional) redirection part of the catch operation comprises of storing the exception value and/or one or more
parts of it and the retrieval of the address of the calling component. The keyword value is used to retrieve the value of
an exception and/or the parts of it and the keyword sender is used when it is required to retrieve the address of the
sender.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)261

When assigning individual fields of an exception, encoded payload fields can be decoded prior to assignment using the
@decoded modifier. In this case, the referenced field on the right hand sided of the assignment shall be one of the
bitstring, hexstring, octetstring, charstring or universal charstring types. It shall be
decoded into a value of the same type as the variable on the left hand side of the assignment. Failure of this decoding
shall cause a test case error. In case the referenced field is of the universal charstring type, the @decoded
clause can contain an optional parameter defining the encoding format. The parameter shall be of the charstring
type and it shall contain one of the strings allowed for the decvalue_unichar function (specified in clause C.5.4).
Any other value shall cause an error. In case the referenced field is not a universal charstring, the optional
parameter shall not be present.

The catch operation may be part of the response and exception handling part of a call operation or be used to
determine an alternative in an alt statement. If the catch operation is used in the accepting part of a call operation,
the information about port name and signature reference to indicate the procedure that raised the exception is redundant,
because this information follows from the call operation. However, for readability reasons (e.g. in case of complex
call statements) this information shall be repeated.

The Timeout exception

There is one special timeout exception that can be caught by the catch operation. The timeout exception is an
emergency exit for cases where a called procedure neither replies nor raises an exception within a predetermined time
(see clause 22.3.1).

Catch any exception

A catch operation with no argument list allows any valid exception to be caught. The most general case is without
using the from keyword. CatchAnyException will also catch the timeout exception.

Catch any exception for specific signature

A catch operation using only a Signature reference in the argument list allows any valid exception for that signature
to be caught.

Catch on any port

To catch an exception on any port use the any keyword.

Catch on any port from a port array

To catch an exception on any port from a specific port array, indices use the any from PortArrayRef syntax
where PortArrayRef shall be a reference to a port array identifier. It is also possible to store the index of a port in a
single-dimensional port array at which the operation was successful to a variable of type integer or, in case of
multi-dimensional port arrays the index of the successful port to an integer array or record of integer variable. When
checking the port array for matching exceptions, the port indices to be checked are iterated from lowest to highest. If the
port array is multi-dimensional, then the ports are iterated over from innermost to outermost array dimension from
lowest to highest index for each dimension, e.g. [0][0], [0][1], [1][0], [1][1]. The first port which matches all the criteria
will cause the operation to be successful even if other ports in the array would also meet the criteria.

The catch on any port from a port array operation cannot be used to catch a call timeout.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) The catch operation shall only be used at procedure-based ports. The type of the caught exception shall be
specified in the signature of the procedure that raised the exception.

b) The type definition of the port shall include in its out or inout list the name of the procedure to which the
exception belongs.

c) No binding of the incoming values to the terms of the expression or to the template shall occur. The
assignment of the exception values to variables shall be made in the assignment part of the catch operation.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)262

d) Catching timeout exceptions shall be restricted to the exception handling part of a call. No further matching
criteria (including a from part) and no assignment part is allowed for a catch operation that handles a timeout
exception.

e) Exception values accepted by catch any exception shall not be assigned to a variable, i.e. the value clause shall
not be present.

f) If CatchAnyException is used in the response and exception handling part of a call operation, it shall only treat
exceptions raised by the procedure invoked by the call operation.

g) All AddressRef items in the from clause and all ValueRef items in the sender clause shall be of type address,
component or of the address type bound to the port type (see clause 6.2.9) of the port instance referenced in the
catch operation. No AddressRef in the from clause shall contain the special value null at the time of the
operation.

h) The PortArrayRef shall be a reference to a completely initialized port array.

i) The index redirection shall only be used when the operation is used on an any from port array construct.

j) If the index redirection is used for single-dimensional arrays, the type of the integer variable shall allow
storing the highest index of the respective port array.

k) If the index redirection is used for multi-dimensional arrays, the size of the integer array or record of integer
type shall exactly be the same as the dimension of the respective port array, and the its type shall allow storing
the highest index (from all dimensions) of the port array.

l) If a variable referenced in the value, sender or @index clause is a lazy or fuzzy variable, the expression
assigned to this variable is equal to the result produced by the catch operation, i.e. later evaluation of the lazy
or fuzzy variable does not lead to repeated invocation of the catch operation.

m) If the catch operation contains both from and sender clause, the variable or parameter referenced in the sender
clause shall be type compatible with the template in the from clause. If the operation contains a sender clause
but no from clause, the sender shall be type compatible with the variable or parameter referenced in the sender
clause.

NOTE 3: An error due to a type mismatch may happen if the types in the receive part are not compatible to the
types in the assignment part or, if the from clause is missing, but the type of the sender can be determined
and it is not type compatible with the type in the sender clause.

n) When assigning implicitly decoded exception fields (by using the @decoded modifier) in cases where the
value or template to be matched uses the MatchDecodedContent (decmatch) matching for the parameter to be
stored, the type of the template in the MatchDecodedContent matching shall be type-compatible to the type of
the variable the decoded field is stored into.

o) The referenced value associated with Ref or the return type associated with FunctionInstance followed by the
catch keyword, shall be of a port type.

p) If no TemplateInstance is provided in the parameter list, then also no value clause shall be present in the
redirection part.

q) The @nodefault modifier is allowed only in stand-alone catch statements.

Examples

EXAMPLE 1: Basic catch:

 myPort.catch(MyProc, integer: v_myVar); // Catches an integer exception of value
 // v_myVar raised by MyProc at port myPort.

 myPort.catch(MyProc, v_myVar); // Is an alternative to the previous example.

 myPort.catch(MyProc, v_a<v_b); // Catches a boolean exception

 myPort.catch(MyProc, MyType:{5, v_myVar}); // In-line template definition of an exception value.

 myPort.catch(MyProc, charstring:"Hello")from myPeer; // Catches "Hello" exception from myPeer

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)263

EXAMPLE 2: Catch with storing value and/or sender in variables:

 myPort.catch(MyProc, MyType:?) from myPartner -> value v_myVar;
 // Catches an exception from myPartner and assigns its value to v_myVar.

 myPort.catch(MyProc, s_myTemplate(5)) -> value v_myVarTwo sender myPeer;
 // Catches an exception, assigns its value to v_myVarTwo and retrieves the
 // address of the sender.

 myPort.catch(MyProc, s_myTemplate(5)) -> value (v_myVarThree:= f1)
 sender myPeer;
 // Catches an exception, assigns the value of its field f1 to v_myVarThree and retrieves the
 // address of the sender.

 // Handling encoded exception payload:

 type MyException record {
 ...
 }
 type CommonException record {
 integer exceptionId,
 octetstring payload
 }

 signature S() exception (CommonException);
 ...

 var MyException v_myVar;

 myPort.catch (S, CommonException:{exceptionId := 25, payload := decmatch MyException:? })
 -> value (v_myVar := @decoded payload);
 // The encoded payload field of the caught exception is decoded and matched with m_excTemplate;
 // if the matching is successful the decoded payload is stored in v_myVar.

EXAMPLE 3: The Timeout exception:

 myPort.call(MyProc:{5, v_myVar}, 20E-3) {
 [] myPort.getreply(MyProc:{?, ?}) { }
 [] myPort.catch(timeout) { // timeout exception after 20ms
 setverdict(fail);
 stop;
 }
 }

EXAMPLE 4: Catch any exception:

 myPort.catch;

 myPort.catch from myPartner;

 myPort.catch -> sender v_mySenderVar;

 myPort.catch(MyProc); // catch any exception raised by procedure MyProc

EXAMPLE 5: Catch on any port:

 any port.catch;

EXAMPLE 6: Catch on any port from port array:

 type port MyPort procedure { inout MyProc }
 type component MyComponent {
 port MyPort p[10][10];
 }
 var integer v_i[2];
 any from p.catch(MyProc, MyType:?) -> @index value v_i;
 // Catching an incoming exception of type MyType on any port in the port array p and
 // storing the index of the port on which the matching was successful first

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)264

22.4 The Check operation
The check operation allows reading the top element of a message-based or procedure-based incoming port queue.

Syntactical Structure

[@nodefault] (ObjectReference | any port | any from PortArrayRef) "." check
["("
 (PortReceiveOp | PortGetCallOp | PortGetReplyOp | PortCatchOp) |
 ([from Address]
 ["->" [sender ValueRef]
 [@index value ValueRef]])
 ")"]

NOTE 1: Address may be an AddressRef, a list of AddressRef-s or "any component".

Semantic Description

The check operation is a generic operation that allows read access to the top element of message-based and
procedure-based incoming port queues without removing the top element from the queue. The check operation has to
handle values of a certain type at message-based ports and to distinguish between calls to be accepted, exceptions to be
caught and replies from previous calls at procedure-based ports.

The receiving operations receive, getcall, getreply and catch together with their matching and value, sender
or parameter storing parts, are used by the check operation to define the conditions that have to be checked and the
information to be optionally extracted.

It is the top element of an incoming port queue that shall be checked (it is not possible to look into the queue). If the
queue is empty the check operation fails. If the queue is not empty, a copy of the top element is taken and the
receiving operation specified in the check operation is performed on the copy. The check operation fails if the
receiving operation fails i.e. the matching criteria are not fulfilled. In this case the copy of the top element of the queue
is discarded and test execution continues in the normal manner, i.e. the statement or alternative next to the check
operation is evaluated. The check operation is successful if the receiving operation is successful. In this case, the
value, sender or parameter storing parts of the receiving operation, if any, are executed, i.e. the message and/or a part of
it, the sender's address or component reference, the parameter(s) of the call or reply or the value of the exception are
stored in the associated variables.

If check is used as a stand-alone statement, it is considered to be a shorthand for an alt statement with the check
operation as the only alternative.

Check from a specific sender

In the case of one-to-many connections the check operation may be restricted to a certain communication partner. This
restriction shall be denoted using the from keyword followed by a specification of an address or component reference,
a list of address or component references or any component.

NOTE 2: The one-to-one connection is considered to be a simple case of the one-to-many connections and allows
the usage of the from-clause.

Check any operation

A check operation with no argument list allows checking whether something waits for processing in an incoming port
queue. The check any operation allows to distinguish between different senders (in case of one-to-many connections)
by using a from clause and to retrieve the sender by using a shorthand assignment part with a sender clause.

Check on any port

To check on any port, use the any port keywords.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)265

Check on any port from a port array

To check on any port from a specific port array, indices use the any from PortArrayRef syntax where
PortArrayRef shall be a reference to a port array identifier. It is also possible to store the index of a port in a
single-dimensional port array at which the operation was successful to a variable of type integer or, in case of
multi-dimensional port arrays the index of the successful port to an integer array or record of integer variable. When
checking the port array for a matching message, call, reply or exception, the port indices to be checked are iterated from
lowest to highest. If the port array is multi-dimensional, then the ports are iterated over from innermost to outermost
array dimension from lowest to highest index for each dimension, e.g. [0][0], [0][1], [1][0], [1][1]. The first port which
matches all the criteria will cause the operation to be successful even if other ports in the array would also meet the
criteria.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) Using the check operation in a wrong manner, e.g. check for an exception at a message-based port shall
cause a test case error.

b) All AddressRef items in the from clause and all ValueRef items in the sender clause shall be of type
address, component or of the address type bound to the port type (see clause C.5) of the port instance
referenced in the check operation. No AddressRef in the from clause shall contain the special value null at
the time of the operation.

c) The PortArrayRef shall be a reference to a completely initialized port array.

d) The index redirection shall only be used when the operation is used on an any from port array construct.

e) If the index redirection is used for single-dimensional arrays, the type of the integer variable shall allow
storing the highest index of the respective port array.

f) If the index redirection is used for multi-dimensional arrays, the size of the integer array or record of integer
type shall exactly be the same as the dimension of the respective port array, and the its type shall allow storing
the highest index (from all dimensions) of the port array.

g) If a variable referenced in the sender or @index clause is a lazy or fuzzy variable, the expression assigned
to this variable is equal to the result produced by the check operation, i.e. later evaluation of the lazy or fuzzy
variable does not lead to repeated invocation of the check operation.

h) If the check operation contains both from and sender clause, the variable or parameter referenced in the
sender clause shall be type compatible with the template in the from clause. If the operation contains a
sender clause but no from clause, the sender shall be type compatible with the variable or parameter
referenced in the sender clause.

i) The ObjectReference shall be of a port type.

j) The @nodefault modifier is allowed only in stand-alone check statements.

NOTE 3: In most cases the correct usage of the check operation can be checked statically, i.e. before/during
compilation.

NOTE 4: An error due to a type mismatch may happen if the types in the receive part are not compatible to the
types in the assignment part or, if the from clause is missing, but the type of the sender can be determined
and it is not type compatible with the type in the sender clause.

Examples

EXAMPLE 1: Basic check:

 myPort1.check(receive(5)); // Checks for an integer message of value 5.

 myPort1.check(receive(charstring:?) -> value v_myCharVar);
 // Checks for a charstring message and stores the message if the message type is charstring

 myPort2.check(getcall(MyProc:{5, v_myVar}) from myPartner);

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)266

 // Checks for a call of MyProc at port myPort2 from myPartner

 myPort2.check(getreply(MyProc:{5, v_myVar} value 20));
 // Checks for a reply from procedure MyProc at myPort2 where the returned value is 20 and
 // the values of the two out or inout parameters are 5 and the value of v_myVar.

 myPort2.check(catch(MyProc, s_myTemplate(5, v_myVar)));

 myPort2.check(getreply(MyProc1:{?, v_myVar} value *)-> value v_myReturnValue param(v_myPar1,-));

 myPort.check(getcall(MyProc:{5, v_myVar}) from myPartner -> param (v_myPar1Var, v_myPar2Var));

 myPort.check(getcall(MyProc:{5, v_myVar}) -> sender v_mySenderVar);

EXAMPLE 2: Check any operation:

 myPort.check;

 myPort.check(from myPartner);

 myPort.check(-> sender v_mySenderVar);

EXAMPLE 3: Check on any port:

 any port.check;

EXAMPLE 4: Check on any port from port array:

 type port MyPort procedure { inout MyProc }
 type component MyComponent {
 port MyPort p[10][10];
 }
 var integer v_i[2];
 any from p.check(catch(MyProc, MyType:?)) -> @index value v_i;
 // Checking for an incoming exception of the type MyType on any port of the port array p and
 // storing the index of the port on which the matching was successful first

22.5 Controlling communication ports

22.5.0 General

TTCN-3 operations for controlling message-based and procedure-based ports are presented in table 25.

Table 25: Overview of TTCN-3 port operations

Port operations
Statement Associated keyword or symbol

Clear port clear
Start port start
Stop port stop
Halt port halt
Check the state of a port checkstate

22.5.1 The Clear port operation

The clear port operation empties incoming port queues.

Syntactical Structure

(ObjectReference | (all port)) "." clear

Semantic Description

The clear operation removes the contents of the incoming queue of the specified port or of all ports of the test
component performing the clear operation.

If a port queue is already empty then this operation shall have no action on that port.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)267

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) The ObjectReference shall be of a port type.

Examples

 myPort.clear; // clears port MyPort

22.5.2 The Start port operation

The start operation enables sending and receiving operations on the port(s).

Syntactical Structure

(ObjectReference | (all port)) "." start

Semantic Description

If a port is defined as allowing receiving operations such as receive, getcall, etc. the start operation clears the
incoming queue of the named port and starts listening for traffic over the port. If the port is defined to allow sending
operations then the operations such as send, call, raise, etc. are also allowed to be performed at that port.

By default, all ports of a component shall be started implicitly when a component is created. The start port operation
will cause unstopped ports to be restarted by removing all messages waiting in the incoming queue.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) The ObjectReference shall be of a port type.

Examples

 myPort.start; // starts myPort

22.5.3 The Stop port operation

The stop operation disables sending and disallow receiving operations to match at the port(s).

Syntactical Structure

(ObjectReference | (all port)) "." stop

Semantic Description

If a port is defined as allowing receiving operations such as receive and getcall, the stop operation causes
listening at the named port to cease. If the port is defined to allow sending operations then stop port disallows the
operations such as send, call, raise, etc. to be performed.

To cease listening at the port means that all receiving operations defined before the stop operation shall be completely
performed before the working of the port is suspended.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) The ObjectReference shall be of a port type.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)268

Examples

 myPort.receive (mw_myTemplate1) -> value v_recPDU;
 // the received value is decoded, matched against
 // MyTemplate1 and the matching value is stored
 // in the variable v_recPDU
 myPort.stop; // No receiving operation defined following the stop
 // operation is executed (unless the port is restarted
 // by a subsequent start operation)
 myPort.receive (mw_myTemplate2); // This operation does not match and will block (assuming
 // that no default is activated)

22.5.4 The Halt port operation

The halt operation is comparable to the stop operation, but allows entries being already in the queue to be processed
with receiving operations.

Syntactical Structure

(ObjectReference | (all port)) "." halt

Semantic Description

If a port allows receiving operations such as receive, trigger and getcall, the halt operation disallows
receiving operations to succeed for messages and procedure call elements that enter the port queue after performing the
halt operation at that port. Messages and procedure call elements that were already in the queue before the halt
operation can still be processed with receiving operations. If the port allows sending operations then halt port
immediately disallows sending operations such as send, call, raise, etc. to be performed. Subsequent halt
operations have no effect on the state of the port or its queue.

NOTE 1: The port halt operation virtually puts a marker after the last entry in the queue received when the
operation is performed. Entries ahead of the marker can be processed normally. After all entries in the
queue ahead of the marker have been processed, the state of the port is equivalent to the stopped state.

NOTE 2: If a port stop operation is performed on a halted port before all entries in the queue ahead of the marker
have been processed, further receive operations are disallowed immediately (i.e. the marker is virtually
moved to the top of the queue).

NOTE 3: A port start operation on a halted port clears all entries in the queue irrespectively if they arrived
before or after performing the port halt operation. It also removes the marker.

NOTE 4: A port clear operation on a halted port clears all entries in the queue irrespectively if they arrived
before or after performing the port halt operation. It also virtually puts the marker at the top of the
queue.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) The ObjectReference shall be of a port type.

Examples

 myPort.halt; // No sending allowed on myPort from this moment on;
 // processing of messages in the queue still possible.
 myPort.receive (mw_myTemplate1); // If a message was already in the queue before the halt
 // operation and it matches mw_myTemplate1, it is processed;
 // otherwise the receive operation blocks.

22.5.5 The Checkstate port operation

The checkstate port operation allows to check the state of a port.

Syntactical Structure
(ObjectReference | (all port) | (any port)) "." checkstate "(" SingleExpression ")"

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)269

Semantic Description

The checkstate port operation allows to examine the state of a port. If a port is in the state specified by the
parameter, the checkstate operation returns the Boolean value true. If the port is not in the specified state, the
checkstate operation returns the Boolean value false. Calling the checkstate operation with an invalid
argument leads to an error.

The checkstate operation allows to check for different dimensions of a port state. It allows to check if a port is Started,
Halted or Stopped, but also if a port is Connected, Mapped or Linked (i.e. Connected or Mapped).

NOTE 1: The states Started, Halted and Stopped refer to the port states defined in the clauses F.3.1 and F.3.2. The
states Connected, Mapped and Linked are related to the application of the connection operations
connect, disconnect, map and unmap as defined in clause 21.1.

The checkstate port operation can be used with all port and any port. Using the checkstate operation
with any port allows to test if at least one port of a test component is in the specified state. Using the checkstate
operation with all port allows to check if all ports of a component are in the specified state.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) The parameter of the checkstate operation shall be of type charstring and shall have one of the
following values:

1) "Started"

2) "Halted"

3) "Stopped"

4) "Connected"

5) "Mapped"

6) "Linked"

NOTE 2: Clause E.2.2.4 includes the type definition objState and the constant definitions STARTED, HALTED,
STOPPED, CONNECTED, MAPPED, and LINKED. It is recommended to use the checkstate operation
in combination with this type and these constants to ease the checking of correct usage and to improve the
readability of test specs.

b) Calling the checkstate operation with a charstring parameter not listed in a) shall lead to an error.

c) The ObjectReference shall be of a port type.

Examples

 type component MyMTCType // Component type definition for an MTC
 {
 port MyPortType pCO1, pCO2
 }

 type component MyTestSystemInterface // Component type definition for a test system interface
 {
 port MyPortType pCO3, pCO4, pCO5;
 }

 // Test case definition
 testcase TC_MyTestcase1 () runs on MyMTCType system MyTestSystemInterface {

 var boolean v_myPortState;

 myPortState := all port.checkstate("Started"); // checkstate returns true, because all
 // ports of a component are started after
 // component creation and start

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)270

 v_myPortState := any port.checkstate("Linked"); // checkstate returns false, no port is
 // either connected nor mapped

 map(mtc:pCO1, system:pCO3);

 v_myPortState := pCO1.checkstate("Linked"); // checkstate returns true, pCO1 is mapped
 v_myPortState := pCO1.checkstate("Mapped"); // checkstate returns true, pCO1 is mapped

 v_myPortState := pCO1.checkstate("Connected"); // checkstate returns false, pCO1 is mapped
 // and not connected

 v_myPortState := any port.checkstate("Mapped"); // checkstate returns true, pCO1 is mapped

 all port.stop;

 v_myPortState := all port.checkstate("Started");// checkstate returns false, all ports
 // are stopped

 v_myPortState := pCO1.checkstate("Stopped"); // checkstate returns true, pCO1 is stopped

 // further testcase behaviour
 // …
 }

22.6 Use of any and all with ports
The keywords any and all may be used with configuration and communication operations as indicated in table 26.

Table 26: Any and All with ports

Operation Allowed Example
 any all
receive, trigger, getcall, getreply, catch, check) yes any port.receive
connect / map
disconnect / unmap yes unmap(self : all port)
start, stop, clear, halt yes all port.start
Checkstate yes yes any port.checkstate("Started")

all port.checkstate("Connected")

NOTE: Ports are owned by test components and instantiated when a component is created. The keywords any
port and all port address all ports owned by a test component and not only the ports known in the
scope of the function or altstep that is executed on the component.

23 Timer operations

23.0 General
TTCN-3 supports a number of timer operations as given in table 27. These operations may be used in test cases,
functions and altsteps.

Table 27: Overview of TTCN-3 timer operations

Timer operations
Statement Associated keyword or symbol

Start timer start
Stop timer stop
Read elapsed time read
Check if timer running running
Timeout event timeout

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)271

23.1 The timer mechanism
It is assumed that each test component and control component maintain their own running-timers list and timeout-list,
i.e. a list of all timers that are actually running and a list of all timers that have timed out. The timeout-lists are part of
the snapshots that are taken when a test case is executed. The running-timers list and timeout-list are updated if a timer
of the component is started, is stopped, times out or the component executes a timeout operation.

NOTE 1: The running-timers list and the timeout-list are only a conceptual lists and do not restrict the
implementation of timers. Other data structures like a set, where the access to timeout events is not
restricted by, e.g. the order in which the timeout events have happened, may also be used.

NOTE 2: Conceptually, each test and control component maintain one running-timers list and one timeout-list only.
However, within a given scope unit only timers known in the scope unit can be accessed individually, i.e.
timers that are declared in the scope unit, passed in as parameters to the scope unit or known via a runs-on
clause. In some special cases (e.g. for re-establishing a test component during a test run), it can be
necessary to stop timers local to other scope units or to check if timers local to other scope units are
running or have already timed out. This can be done by using the keywords all and any in combination
with the timer operations stop, timeout and running. Allowed combinations are defined in
clause 23.7.

When a timer expires, the timer becomes immediately inactive. A timeout event is placed in the timeout-list and the
timer is removed from the running-timer list of the component for which the timer has been declared. Only one entry for
any particular timer may appear in the timeout-list and running-timer list of the component for which the timer has been
declared.

All running timers shall automatically be cancelled when a test component is explicitly or implicitly stopped.

23.2 The Start timer operation
The start timer operation is used to indicate that a timer shall start running.

Syntactical Structure

ObjectReference "." start ["(" ObjectReference ")"]

Semantic Description

When a timer is started, its name is added to the list of running timers (for the given scope unit).

The optional timer value parameter shall be used if no default duration is given, or if it is desired to override the default
value specified in the timer declaration. When a timer duration is overridden, the new value applies only to the current
instance of the timer, any later start operations for this timer, which do not specify a duration, shall use the default
duration.

Starting a timer with the timer value 0.0 means that the timer times out immediately. Starting a timer with a negative
timer value, e.g. the timer value is the result of an expression, or without a specified timer value shall cause a runtime
error.

The timer clock runs from the float value zero (0.0) up to maximum stated by the duration parameter.

The start operation may be applied to a running timer, in which case the timer is stopped and re-started.

The start operation may be applied to a timer that has already expired; in this case, any entry in the timeout list for
this timer shall be removed.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) The SingleExpression representing the timer value shall be a non-negative numerical float number (i.e. the
value shall be greater than or equal to 0.0; infinity and not_a_number are disallowed).

b) The ObjectReference shall be of the timer type.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)272

Examples

 t_myTimer1.start; // t_myTimer1 is started with the default duration
 t_myTimer2.start(20E-3); // t_myTimer2 is started with a duration of 20 ms

 // Elements of timer arrays may also be started in a loop, for example
 timer t_myTimer [5];
 var float v_timerValues [5];

 for (var integer v_i := 0; v_i<=4; v_i:=v_i+1)
 { v_timerValues [v_i] := 1.0 }

 for (var integer v_i := 0; v_i<=4; v_i:=v_i+1)
 {t_myTimer [v_i].start (v_timerValues [v_i])}

23.3 The Stop timer operation
The stop operation is used to stop a running timer.

Syntactical Structure

(ObjectReference |
 all timer) "." stop

Semantic Description

A stop operation removes a running timer from the list of running timers. A stopped timer becomes inactive and its
elapsed time is set to the float value zero (0.0).

Stopping an inactive timer is a valid operation, although it does not have any effect. Stopping an expired timer causes
the entry for this timer in the timeout-list to be removed.

The all keyword may be used to stop all timers that have been started on a test component or control component.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) The ObjectReference shall be of the timer type.

Examples

 t_myTimer1.stop; // stops t_myTimer1
 all timer.stop; // stops all running timers

23.4 The Read timer operation
The read operation is used to retrieve the time that has elapsed since the specified timer was started.

Syntactical Structure

ObjectReference "." read

Semantic Description

The read operation returns the time that has elapsed since the specified timer was started. The returned value shall be
of type float.

Applying the read operation on an inactive timer, i.e. on a timer not listed on the running-timer list, will return the
float value zero (0.0).

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)273

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) The ObjectReference shall be of the timer type.

Examples

 var float v_myVar;
 v_myVar := t_myTimer1.read; // assign to v_myVar the time that has elapsed since t_myTimer1
 // was started

23.5 The Running timer operation
The running timer operation is used to check whether a timer is in the running-timer list.

Syntactical Structure

(ObjectReference) | any timer | any from TimerArrayRef) "." running
["->" @index value ValueRef]

Semantic Description

The running timer operation is used to check whether a specific timer visible in the given scope unit is listed on the
running-timer list or not (i.e. that it has been started and has neither timed out nor been stopped). The operation returns
the value true if the timer is listed on the list, false otherwise.

The any keyword may be used to check if any timer started on a test component or control component is running.

When the any from TimerArrayRef notation is used, where TimerArrayRef shall be a timer array identifier, the
timers from the referenced array are iterated over and their states are checked individually, from innermost to outermost
dimension from lowest to highest index for each dimension. The first timer to be found in the running state causes the
operation returning with the true value. If no running timer is found in the array, the operation returns with the
false value. The index of the first timer found running can optionally be stored in an integer variable for a
single-dimensional array, or to an integer array or record of integer variable for multi-dimensional timer arrays.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) TimerArrayRef shall be a reference to a completely initialized timer array.

b) The index redirection shall only be used for any from timer array running operations.

c) If the index redirection is used for single-dimensional timer arrays, the type of the integer variable shall allow
storing the highest index of the respective timer array.

d) If the index redirection is used for multi-dimensional timer arrays, the size of the integer array or record of
integer type shall exactly be the same as the dimension of the respective timer array, and its type shall allow
storing the highest index (from all dimensions) of the timer array.

e) The ObjectReference shall be of the timer type.

Examples

EXAMPLE 1: Checking if a specific timer is running:

 if (t_myTimer1.running) { … }

EXAMPLE 2: Checking if an arbitrary timer is running:

 if (any timer.running) { … }

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)274

EXAMPLE 3: Checking if an arbitrary timer from a timer array is running:

 timer t_myTimerArray[2][2];
 var integer v_i[2];
 if (any from t_myTimerArray.running -> @index value v_i;) { … }
 // checks if any timer from array is running
 // assigns index of matched timer to v_i

23.6 The Timeout operation
The timeout operation allows to check the expiration of timers.

Syntactical Structure

[@nodefault] (ObjectReference | any timer | any from TimerArrayRef) "." timeout
["->" @index value ValueRef]

Semantic Description

The timeout operation allows to check the expiration of a specific timer in the scope unit of a test component or
control component in which the timeout operation has been called or of any timer that has been started on a test
component or control component before entering the scope in which the timeout operation has been called.

When a timeout operation is processed, if a timer name is indicated, the timeout-list is searched according to the
TTCN-3 scope rules. If there is a timeout event matching the timer name, that event is removed from the timeout-list,
and the timeout operation succeeds.

The timeout can be used to determine an alternative in an alt statement or as stand-alone statement in a behaviour
description. In the latter case a timeout operation is considered to be shorthand for an alt statement with the
timeout operation as the only alternative. If the @nodefault modifier is placed before a stand-alone timeout
operation, the implicit alt statement also contains the @nodefault modifier.

The any keyword used with the timeout operation succeeds if the timeout-list is not empty. In this case a randomly
chosen timeout event is removed from the timeout-list.

When the any from TimerArrayRef notation is used, where TimerArrayRef shall be a timer array identifier, the
timers from the referenced array are iterated over and individually checked for timeout from innermost to outermost
dimension from lowest to highest index for each dimension. The first timer to be found in the timeout-list causes that
timer to be removed from the list and the timeout operation succeeds. The index of the matched timer can be optionally
stored in an integer variable for single-dimensional arrays or to an integer array or record of integer variable for multi-
dimensional timer arrays.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) The timeout operation does not return any value and therefore shall not be used in an expression.

b) TimerArrayRef shall be a reference to a completely initialized timer array.

c) The index redirection shall only be used for any from timer array timeout operations.

d) If the index redirection is used for single-dimensional timer arrays, the type of the integer variable shall allow
storing the highest index of the respective timer array.

e) If the index redirection is used for multi-dimensional timer arrays, the size of the integer array or record of
integer type shall exactly be the same as the dimension of the respective timer array, and its type shall allow
storing the highest index (from all dimensions) of the timer array.

f) The ObjectReference shall be of the timer type.

g) The @nodefault modifier is allowed only in stand-alone timeout statements.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)275

Examples

EXAMPLE 1: Timeout of a specific timer:

 t_myTimer1.timeout; // checks for the timeout of the previously started timer MyTimer1

EXAMPLE 2: Timeout of an arbitrary timer:

 any timer.timeout; // checks for the timeout of any previously started timer

EXAMPLE 3: Timeout of a timer from a timer array:

 timer t_myTimerArray[2][2];
 var integer v_i[2];
 any from t_myTimerArray.timeout -> @index value v_i;
 // checks for the timeout of any timer from array
 // assigns index of matched timer to v_i

23.7 Summary of use of any and all with timers
The keywords any and all may be used with timer operations as indicated in table 28.

Table 28: Any and All with Timers

Operation Allowed Example
 any all

start

stop yes all timer.stop
read
running yes if (any timer.running) {…}
timeout yes any timer.timeout

24 Test verdict operations

24.0 General
Verdict operations given in table 29 allow to set and retrieve verdicts. These operations shall only be used in test cases,
altsteps and functions.

Table 29: Overview of TTCN-3 test verdict operations

Test verdict operations
Statement Associated keyword or symbol

Set local verdict setverdict
Get local verdict getverdict

24.1 The Verdict mechanism
Each test component of the active configuration shall maintain its own local verdict. The local verdict is an object
which is created for each test component at the time of its creation. It is used to track the individual verdict in each test
component (i.e. in the MTC and in each and every PTC).

Additionally, there is a global test case verdict instantiated and handled by the test system that is updated when each test
component (i.e. the MTC and each and every PTC) terminates execution (see figure 14). This verdict is not accessible
to the getverdict and setverdict operations. The value of this verdict shall be returned by the test case when it
terminates execution. If the returned verdict is not explicitly saved in the control component (e.g. assigned to a variable)
then it is lost.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)276

Verdict returned
by the test case

when it terminates

MTC
V PTC1 V PTCn V

V

Figure 14: Illustration of the relationship between verdicts

NOTE 1: TTCN-3 does not specify the actual mechanisms that perform the updating of the local and test case
verdicts. These mechanisms are implementation dependent.

The verdict can have five different values: pass, fail, inconc, none and error, i.e. the distinguished values of
the verdicttype (see clause 6.1).

NOTE 2: inconc means an inconclusive verdict.

When a test component is instantiated, its local verdict object is created and set to the value none.

When changing the value of the local verdict (i.e. using the setverdict operation) the effect of this change shall
follow the overwriting rules listed in table 30. The test case verdict is implicitly updated on the termination of a test
component. The effect of this implicit operation shall also follow the overwriting rules listed in table 30.

Table 30: Overwriting rules for the verdict

Current value of New verdict assignment value
Verdict pass inconc fail none

None pass inconc fail none
Pass pass inconc fail pass
Inconc inconc inconc fail inconc
Fail fail fail fail fail

The error verdict is special in that it is set by the test system to indicate that a test case (i.e. runtime) error has
occurred. It shall not be set by the setverdict operation and will not be returned by the getverdict operation. No
other verdict value can override an error verdict. This means that an error verdict can only be a result of an
execute test case operation.

Together with the local test verdict, each test component shall also maintain an implicit charstring variable to store
information about the reasons for assigning the verdict. The implicit charstring variable shall have no effect on the
overwriting rules and on the calculation of the final test case verdict. On the termination of the test component, the local
verdict of the test component shall be logged together with the implicit charstring variable. The implicit
charstring variable cannot be retrieved and read by any TTCN-3 function, it only provides additional information
for logging.

24.2 The Setverdict operation
The local verdict is set with the setverdict operation.

Syntactical Structure

setverdict "(" SingleExpression { "," (FreeText | TemplateInstance) } ")"

Semantic Description

The value of the local verdict is changed with the setverdict operation. The effect of this change shall follow the
overwriting rules listed in table 30.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)277

The optional parameters allow to provide information that explain the reasons for assigning the verdict. This
information is composed to a string and stored in an implicit charstring variable. On termination of the test
component, the actual local verdict is logged together with the implicit charstring variable. Since the optional
parameters can be seen as log information, the same rules and restrictions as for the parameters of the log statement
(clause 19.11) apply.

As the result of the setverdict operation, the implicit charstring variable is overwritten whenever the local verdict
of a test component is overwritten (i.e. a new value, which is different to the previous one is assigned to it). A
setverdict operation with a verdict only that overwrites the current local verdict, will also clear the implicit
charstring variable. This means previously stored information gets lost.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) The setverdict operation shall only be used with the values pass, fail, inconc and none. It shall not
be used to assign the value error, this is set by the test system only to indicate runtime errors.

b) SingleExpression shall resolve to a value of type verdict.

c) For FreeText and TemplateInstance, the same rules and restrictions apply as for the parameters of the log
statement. Table 18 lists all language elements that can be used in a setverdict operation.

Examples

EXAMPLE 1:

 setverdict(pass); // the local verdict is set to pass
 :
 setverdict(fail); // until this line is executed, which will result in the value
 // of the local verdict being overwritten to fail
 // When the ptc terminates the test case verdict is set to fail

EXAMPLE 2:

 var integer v_myVar:= 1;
 :
 myPort.receive(integer:v_myVar);// Matches an integer value with the value of v_myVar
 // at port myPort
 setverdict(pass, "Value received: ", v_myVar); // Provided the actual test component verdict is
 // none: local verdict is set to pass, the implicit
 // charstring variable is set to "Value received: 5"
 stop; // The test component terminates. The local test verdict and
 // implicit charstring variable are logged

EXAMPLE 3:

 setverdict(fail, "Reason one"); // the local verdict is set to fail,
 // the local charstring is set to "Reason one"

 :
 setverdict(fail, "Reason two"); // the local verdict does not change,

 // therefore the local charstring remains "Reason one"

 setverdict(pass, "Reason three"); // the local verdict does not change,

 // therefore the local charstring remains "Reason one"

24.3 The Getverdict operation
The value of the local verdict may be retrieved using the getverdict operation.

Syntactical Structure

getverdict

Semantic Description

The getverdict operation returns the actual value of the local verdict.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)278

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16.

Examples

 v_myResult := getverdict; // Where v_myResult is a variable of type verdicttype

25 External actions
In some testing situations some interface(s) to the SUT may be missing or unknown a priori (e.g. management
interface) but it may be necessary that the SUT is stimulated to carry out certain actions (e.g. send a message to the test
system). Also certain actions may be required from the test executing personnel (e.g. to change the environmental
conditions of testing like the temperature, voltage of the power feeding, etc.).

The action statement provides the means to write one or more log items e.g. to some displaying device. Items to be
displayed shall be identified by a comma-separated list in the argument of the action statement. Items may be
individual language elements specified in table 18 or expressions composed of such items.

Syntactical Structure

action "(" { (FreeText | TemplateInstance) [","] } ")"

Semantic Description

External actions can be used in test cases, functions and altsteps.

There is no specification of what is done to or by the SUT to trigger this action, only an informal description of the
required action itself.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16.

Examples

 var charstring v_myString:= " now."
 var integer v_myInt:= 1
 action("Send ", v_myInt, " on lower PCO", v_myString); // Informal description of
 // the external action
 // Send 1 on lower PCO now. – will be displayed

26 Module control

26.0 General
Test cases are defined in the module definitions part while the control functions manage their execution. The statements
and operations that can be used in control behaviour are summarized in table 31.

Table 31: Overview of TTCN-3 statements and operations in module control

Statement Associated keyword or symbol
Assignments :=
If-else if (…) {…} else {…}
Select case select case (…) { case (…) {…}

case else {…}}
For loop for (…) {…}
While loop while (…) {…}
Do while loop do {…} while (…)
Label and Goto label / goto
Stop execution stop
Leaving a loop, alt or interleave break

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)279

Statement Associated keyword or symbol
Next iteration of a loop continue
Logging log
Alternative behaviour (see note) alt {…}
Re-evaluation of alternative behaviour
(see note)

repeat

Interleaved behaviour (see note) interleave {…}
Activate a default (see note) activate
Deactivate a default (see note) deactivate
Start timer start
Stop timer stop
Read elapsed time read
Check if timer running running
Timeout event timeout
Stimulate an (SUT) action externally action
Execute test case execute
NOTE: Can be used to control timer operations only.

26.1 The Execute statement
Test cases are executed with an execute statement in the module control.

Syntactical Structure

execute "(" TestcaseRef "(" [{ ActualPar [","] }] ")" ["," TimerValue ["," HostId]] ")"

Semantic Description

The execute statement is used to start test cases (see clause 27.1) in control behaviour. The result of an executed test
case is always a value of type verdicttype. Every test case shall contain one and only one MTC the type of which is
referenced in the header of the test case definition. The behaviour defined in the test case body is the behaviour of the
MTC.

When a test case is invoked the MTC is created, the ports of the MTC and the test system interface are instantiated and
the behaviour specified in the test case definition is started on the MTC. All these actions shall be performed implicitly
i.e. without explicit create and start operations.

Test case start

A test case is called using an execute statement. As the result of the execution of a test case, a test case verdict of
either none, pass, inconc, fail or error shall be returned and may be assigned to a variable for further
processing.

Optionally, the execute statement allows supervision of a test case by means of a timer duration.

Also optionally, the execute statement allows deployment of the MTC to a specific host before starting the execution.
The host is identified by means of a host id.

Test case parameterization and configuration

All variables (if any) visible in the scope unit where the execute statement is used shall be passed into the test case by
parameterization if they are to be used in the behaviour definition of that test case, i.e. TTCN-3 does not support global
variables of any kind.

At the start of each test case, the test configuration shall be reset. This means that all components and ports conducted
by create, connect, etc. operations in a previous test case were destroyed when that test case was stopped (hence
are not "visible" to the new test case).

Test case termination

A test case terminates with the termination of the MTC. On termination of the MTC (explicitly or implicitly), all
running parallel test components shall be removed by the test system.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)280

NOTE 1: The concrete mechanism for stopping all PTCs is tool specific and therefore outside the scope of the
present document.

The final verdict of a test case is calculated based on the final local verdicts of the different test components according
to the rules defined in clause 24.1. The actual local verdict of a test component becomes its final local verdict when the
test component terminates itself or is stopped by itself, another test component or by the test system.

NOTE 2: To avoid race conditions for the calculation of test verdicts due to the delayed stopping of PTCs, the
MTC should ensure that all PTCs have stopped (by means of the done or killed statement) before it
stops itself.

Test case timer

Timer may be used to supervise the execution of a test case. This may be done using an explicit timeout in the
execute statement. If the test case does not end within this duration, the result of the test case execution shall be an
error verdict and the test system shall terminate the test case. The timer used for test case supervision is a system timer
and need not be declared or started.

Host id

A host id can be used to give a specific deployment location to the test system where the MTC shall be started and
execute its behaviour. If a host id is provided, the execute statement shall end with a test case error if the MTC cannot
be deployed on the specified host.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) The TimerValue shall resolve to a non-negative numerical float value (i.e. the value shall be greater or
equal 0.0, infinity and not_a_number are disallowed).

b) When the corresponding formal parameter is not of template type TemplateInstance shall resolve to an
Expression.

c) The execute statement shall not be called from within an existing executing test behaviour chain called from a
test case, i.e. test cases can only be executed from a control behaviour.

d) The HostId parameter shall resolve to a charstring value.

Examples

EXAMPLE 1: Test case execution without keeping the test case verdict:

 execute(TC_MyTestCase1()); // executes TC_MyTestCase1, without storing the
 // returned test verdict and without time supervision

EXAMPLE 2: Test case execution with keeping the test case verdict:

 v_myVerdict := execute(TC_MyTestCase2()); // executes TC_MyTestCase2 and stores the resulting
 // verdict in variable v_myVerdict

EXAMPLE 3: Test case timer:

 v_myVerdict := execute(TC_MyTestCase3(),5E-3);
 // executes TC_MyTestCase3 and stores the resulting verdict in variable v_myVerdict.
 // If the test case does not terminate within 5ms, v_myVerdict will get the value 'error'

EXAMPLE 4: Host id:

 v_myVerdict := execute(TC_MyTestCase3(), -, "Host1");
 // executes TC_MyTestCase3 with unlimited time with MTC deployed to 'Host1'

26.2 Test suite execution
TTCN-3 test suite execution is controlled by the the module control function. The module control function defines, in
which order, sequence, loop, under which preconditions, and with which parameters test cases are to be executed.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)281

Execution and control component

The module control function is an entry point for execution of a TTCN-3 test suite. If the function contains formal
parameters, their actual values shall be provided. When the control function is started, the TE creates a test component
called control component. The component contains variables, constants, templates and timers important for controlling
of the execution of the test suite. The created control component is of the type specified in the runs on clause of the
module control function. If the runs on clause is missing, an empty control component is created.

Sequence of test cases

Program statements specify such things like the order in which test cases are to be executed or the number of times a
test case should run.

If no programming statements are used then, by default, the test cases are executed in the sequential order in which they
appear in the module control function.

NOTE: This does not preclude the possibility that certain tools may wish to override this default ordering to allow
a user or tool to select a different execution order.

Timer operations may also be used explicitly to control test case execution.

Selection/deselection of test cases

The selection and deselection of test cases can also be used to control the execution of test cases.

There are different ways in TTCN-3 to select and deselect test cases. For example, boolean expressions may be used to
select and deselect which test cases are to be executed. This includes, of course, the use of functions that return a
boolean value.

Another way to execute test cases as a group is to collect them in a control function and invoke that function from the
module control function.

As a test case returns a single value of type verdicttype, it is also possible to control the order of test case
execution depending on the outcome of a test case. The use of the TTCN-3 verdicttype is another way to select test
cases.

Examples

EXAMPLE 1: Test case execution in a loop:

 module MyTestSuite () {
 :
 control {
 :
 // Do this test 10 times
 v_count:=0;
 while (v_count < 10)
 { execute (TC_MySimpleTestCase1());
 V_count := v_count+1;
 }
 }
 }

EXAMPLE 2: Test case execution controlled by a timer and a counter:

 // Example of the use of the running timer operation
 while (t_t1.running or v_x<10) // Where t_t1 is a previously started timer
 { execute(TC_MyTestCase());
 v_x := v_x+1;
 }

 // Example of the use of the start and timeout operations

 timer t_t1:= 1.0;
 :
 execute(TC_MyTestCase1());
 t_t1.start;
 t_t1.timeout; // Pause before executing the next test case
 execute(TC_MyTestCase2());

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)282

EXAMPLE 3: Selection/deselection of test cases with Boolean expressions:

 module MyTestSuite () {
 :
 control {
 :
 if (f_mySelectionExpression1()) {
 execute(TC_MySimpleTestCase1());
 execute(TC_MySimpleTestCase2());
 execute(TC_MySimpleTestCase3());
 }
 if (f_mySelectionExpression2()) {
 execute(TC_MySimpleTestCase4());
 execute(TC_MySimpleTestCase5());
 execute(TC_MySimpleTestCase6());
 }
 :
 }
 }

EXAMPLE 4: Selection/deselection of test cases with functions:

 function f_myTestCaseGroup1()
 { execute(TC_MySimpleTestCase1());
 execute(TC_MySimpleTestCase2());
 execute(TC_MySimpleTestCase3());
 }
 function f_myTestCaseGroup2()
 { execute(TC_MySimpleTestCase4());
 execute(TC_MySimpleTestCase5());
 execute(TC_MySimpleTestCase6());
 }
 :
 control
 { if (f_mySelectionExpression1()) { f_myTestCaseGroup1(); }
 if (f_mySelectionExpression2()) { f_myTestCaseGroup2(); }
 :
 }

EXAMPLE 5: Selection/deselection of test cases based on test case verdicts:

 if (execute (TC_MySimpleTestCase()) == pass)
 { execute (TC_MyGoOnTestCase()) }
 else
 { execute (TC_MyErrorRecoveryTestCase()) };

27 Specifying attributes

27.0 General
TTCN-3 uses attributes to give special characterization/meaning to language elements such as specific presentation
format, specific encoding and encoding variants, and user-defined properties.

27.1 The Attribute mechanism

27.1.0 General

Attributes can be associated with TTCN-3 language elements by means of the with statement. The with statement can
be applied to modules, global module definitions and to local definitions in control, test cases, functions, altsteps,
statement blocks and in component type definitions.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)283

27.1.1 Scope of attributes

A with statement may associate attributes to a single language element or to elements or fields of structured types (in a
recursive way) or to members of component or port types, the same way as specified in clauses 6.2.1.1 and 6.2.3.2. It is
also possible to associate attributes to a number of language elements by, e.g. listing fields of a structured type in an
attribute statement associated with a single type definition or associating a with statement to the surrounding scope
unit or group of language elements.

A with statement can follow any module, any global definition inside module and group declarations as well as any
local definition in component types and statement blocks inside behaviour definitions.

Attributes can be attached to synonym types (clause 6.4). If the synonym type is a structured type, attributes in the
with statement may reference fields or elements of this structured type.

EXAMPLE 1: // attributes for single language elements and groups:

 // MyPDU1 will be displayed as PDU
 type record MyPDU1 { … } with { display "PDU"}

 // MyPDU2 will be displayed as PDU with the application specific extension attribute MyRule
 type record MyPDU2 { … }
 with
 {
 display "PDU";
 extension "MyRule"
 }

 // The following group definition …
 group myPDUs {
 type record MyPDU3 { … }
 type record MyPDU4 { … }
 }
 with {display "PDU"} // All types of group MyPDUs will be displayed as PDU

 // is identical to
 group myPDUs {
 type record MyPDU3 { … } with { display "PDU"}
 type record MyPDU4 { … } with { display "PDU"}
 }

EXAMPLE 2: // attributes for fields and elements:

 type record MyRec {
 integer field1,
 record {
 integer eField1,
 boolean eField2
 } field2
 }
 with { display (field2.eField1) "colour blue" }
 // the embedded field eField1 is displayed blue

 type record of integer MyRecOfInteger
 with { display ([-]) "colour green"
 // all integer elements are displayed green

 type record of integer MyRecOfInteger2
 with { display ([-]) "colour red" }
 // integer elements are displayed red

 const MyRecOfInteger c_MyRecordOfInt := {0, 1, 2, 3}
 with { display ([0]) "colour blue" }
 // the first element is displayed blue, the other elements are displayed green

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)284

27.1.2 Overwriting rules for attributes

27.1.2.0 General

An attribute definition that is directly attached to a lower scope unit will override a general attribute definition in a
higher scope and a type-specific attribute inherited from a type reference. Attributes inherited from a type reference will
override general attributes from a higher scope unit containing the type reference. Additional overwriting rules for
variant attributes are defined in clause 27.1.2.1.

EXAMPLE 1:

 type record MyRecordA
 {
 :
 } with { encode "RuleA" }

 // In the following, MyRecordA is encoded according to "RuleA" and not according to
 // "RuleB" because the attribute from the referenced type MyRecordA overrides
 // the attribute from higher scope unit (surrounding MyRecordB type).

 type record MyRecordB
 {
 :
 MyRecordA field
 } with { encode "RuleB" }

A with statement that is placed inside the scope of another with statement shall override the outermost with. This
shall also apply to the use of the with statement with groups. If multiple attributes of the same type are allowed, all of
them are overridden unless specified otherwise.

EXAMPLE 2:

 // Example of the use of the overwriting scheme of the with statement
 group myPDUs
 {
 type record MyPDU1 { … }
 type record MyPDU2 { … }

 group mySpecialPDUs
 {
 type record MyPDU3 { … }
 type record MyPDU4 { … }
 }
 with {extension "MySpecialRule"} // MyPDU3 and MyPDU4 will have the application
 // specific extension attribute MySpecialRule
 }
 with
 {
 display "PDU"; // All types of group myPDUs will be displayed as PDU and
 extension "MyRule"; // (if not overwritten) have the extension attribute MyRule
 }

 // is identical to …
 group myPDUs
 {
 type record MyPDU1 { … } with {display "PDU"; extension "MyRule" }
 type record MyPDU2 { … } with {display "PDU"; extension "MyRule" }
 group mySpecialPDUs {
 type record MyPDU3 { … } with {display "PDU"; extension "MySpecialRule" }
 type record MyPDU4 { … } with {display "PDU"; extension "MySpecialRule" }
 }
 }

Attributes defined for a synonym type do not override existing attributes of fields or elements of this synonym type. The
attributes are applied to the fields or elements of synonym types only if the fields or elements have no valid attributes.

EXAMPLE 3:

 // Example of the use of attributes in synonym types
 type record SourceType1 {
 integer field1,
 integer field2
 } // neither the record nor its fields have a valid attribute

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)285

 type record SourceType2 {
 integer field1,
 integer field2
 } with { encode "Rule1" }
 // the record and its fields have a valid encode attribute "Rule1"

 type SourceType1 SynonymType1 with { encode "Rule2" }
 // SynonymType1 and all its fields will be encoded with Rule2

 type SourceType2 SynonymType2 with { encode "Rule3" }
 // SynonymType2 will be encoded with Rule3, but field1 and field2 will be encoded with
 // Rule1 as SourceType2 definition already specifies the encode attribute of these fields

Attributes with the @local modifier override attributes from higher scope, but they are valid for the associated
language element only. They do not affect definitions inside the associated language element as the @local attribute is
completely transparent to lower scopes. Attributes from higher scope will still affect attributes in lower scopes even if
the @local attribute is between them.

NOTE: Attributes with the @local modifier associated to modules and groups are valid, but do not affect the
definitions inside them.

EXAMPLE 4:

 module M {
 type record MyRec {
 integer field1,
 integer field1,
 } with { encode @local "CodecB" }
 // the record type MyRec will be encoded with CodecB, but its fields with CodecA,
 // because the local attribute CodecB doesn't affect fields of the MyRec type.
 } with { encode "CodecA" }

An attribute definition in a lower scope or those inherited from a referenced type can be overwritten in a higher scope
by using the override directive.

EXAMPLE 5:

 type record MyRecordA
 {
 :
 } with { encode "RuleA" }

 // In the following, fieldA of a MyRecordB instance is encoded according to RuleB
 type record MyRecordB
 {
 :
 MyRecordA fieldA
 } with { encode override (fieldA) "RuleB" }

The override directive overrides the specified attribute for all declarations at all lower scopes that do not also declare
the specified attribute. If the override directive is applied to a type reference, it does not affect the attributes of the
original referenced type.

An attribute definition directly attached to a field or element of a structured type overrides the corresponding attribute
of the structured type, as regards the identified field or element. Override attribute applied to a synonym type
(clause 6.4) overrides attributes of all fields or elements of the synonym type unless the synonym type definition
contains an explicit attribute definition for the field or element.

EXAMPLE 6:

 // An instance of MyRecordA is encoded according to RuleA.
 type record MyRecordA
 {
 :
 } with { encode override "RuleA" }

 // In the following, fieldA of a MyRecordB instance (and all its sub-fields) is encoded
 // according to "RuleB".
 type record MyRecordB
 {
 :

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)286

 MyRecordA fieldA
 } with { encode override "RuleB" }

 // The following template will use "RuleA" as the override directive for MyRecordB affects only
 // MyRecordB.fieldA, but not the original MyRecordA.
 template MyRecordA mw_msg;

 // In the following, rule "RuleB" is overridden by "RuleC" for fieldC, but it is
 // not overridden by "RuleA" of the group because the direct attachment to fieldC and
 // MyRecordC override the encode of the outer scope.
 group myGroup {
 type record MyRecordC
 {
 :
 } with { encode override "RuleB" }

 type record MyRecordD
 {
 :
 MyRecordC fieldC
 } with { encode override (fieldC) "RuleC" }
 } with { encode override "RuleA" }

 // In the following, the template mw_msg will be encoded with "RuleB", because the
 // override directive doesn't override the encode attribute in references. However,
 // all fields of the mw_msg template will be encoded with "RuleA", because the attributes
 // from the references have higher precedence than attributes from a higher scope.
 type record MyRecordE
 {
 :
 } with { encode override "RuleA" }

 template MyRecordE mw_msg :=
 {
 :
 } with { encode "RuleB" }

 // MyRecordG and its "field1" member will be encoded with "RuleB", but its field2 member
 // will be encoded with "RuleA", because there's an encode attribute explicitly declared
 // for this field.
 type record MyRecordF {
 integer field1,
 integer field2
 } with { encode "RuleA" }

 type MyRecordF MyRecordG with {
 encode override "RuleB";
 encode(field2) "RuleA"
 }

27.1.2.1 Additional default overwriting rules for variant attributes

A variant attribute is always related to an encode attribute. Whereas a variant of an encoding may change, an
encoding shall not change without overwriting all current variant attributes.

The present document defines the default rules for variant attributes. Extension packages of TTCN-3, for example
specifying language mappings, may define their own overwriting rules for variant attributes. For variant attributes the
following default overwriting rules apply:

• a variant attribute overwrites a current variant attribute according to the rules defined in clause 27.1.2;

• an encoding attribute, which overwrites a current encoding attribute according to the rules defined in
clause 27.1.2, also overwrites a corresponding current variant attribute, i.e. no new variant attribute is
provided, but the current variant attribute becomes inactive;

• an encoding attribute, which changes a current encoding attribute of an imported language element
according to the rules defined in clause 27.1.3, also changes a corresponding current variant attribute,
i.e. no new variant attribute is provided, but the current variant attribute becomes inactive.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)287

EXAMPLE:

 module MyVariantEncodingModule {
 :
 type charstring MyType; // Normally encoded according to "Encoding 1"
 :
 group myVariantsOne {
 :
 type record MyPDUone
 {
 integer field1, // field1 will be encoded according to "Encoding 2" only.
 // "Encoding 2" overwrites "Encoding 1" and variant "Variant 1"
 MyType field3 // field3 will be encoded according to "Encoding 1" with
 // variant "Variant 1".
 }
 with { encode (field1) "Encoding 2" }
 :
 }
 with { variant "Variant 1" }

 group myVariantsTwo
 { :
 type record MyPDUtwo
 {
 integer field1, // field1 will be encoded according to "Encoding 3"
 // using encoding variant "Variant 3"
 MyType field3 // field3 will be encoded according to "Encoding 1"
 // using encoding variant "Variant 2"
 }
 with { variant (field1) "Variant 3" }
 :
 }
 with { encode "Encoding 3"; variant "Variant 2"}

 }
 with { encode "Encoding 1" }

27.1.2.2 Overwriting rules for multiple encoding

Explicitly listed encode attributes that occur on the higher scope and are not overwritten will retain all variants related
to them.

An encoding related variant will overwrite only variants related to the same encoding.

EXAMPLE:

 type integer Int with {
 encode "CodecA"; variant "CodecA"."Rule1";
 encode "CodecB"; variant "CodecB"."Rule2";
 }

 // Modifying list of allowed encodings
 type Int Int2 with {
 encode "CodecA"; // variant "CodecA"."Rule1" is kept
 encode "CodecC"; variant "CodecC"."Rule6"; // new encoding and related variant
 // "CodecB" encoding together with its variant are discarded as "CodecB" is not
 // explicitly referenced
 }

 // Overwriting variant with an encoding reference
 type Int Int3 with {
 variant "CodecB"."Rule4"; // new variant for encoding "CodecB" overwrites
 // the original variant "CodecB"."Rule2"
 // Variant "CodecA"."Rule1" is unchanged as this definition contains no reference
 // to "CodecB"
 }

27.1.3 Changing attributes of imported language elements

In general, a language element is imported together with its attributes. In some cases these attributes may have to be
changed when importing the language element, e.g. a type may be displayed in one module as ASP, then it is imported
by another module where it should be displayed as PDU. For such cases it is allowed to change attributes on the
import statement.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)288

When resolving the attributes, the import statement works as an additional higher scope unit on the top of the
imported module. Attributes set in the import statement are valid only within the importing module.

NOTE 1: The import statement occurs inside an importing module and sometimes inside a group. Because of the
scope rules, attributes of these scope units apply to the imported module too.

NOTE 2: If a with statement is added to an import of a definition where a local definition also has a with
statement, the local definition's attributes overwrite the attributes added to the import statement in the
normal way. Thus, if the attributes of a local definition is to be changed via the import statement, the
override directive needs to be used.

EXAMPLE:

 import from MyModule {
 type MyType
 }
 with { display "ASP" } // MyType will be displayed as ASP

 import from MyModule {
 group myGroup
 }
 with {
 display "PDU"; // By default all types will be displayed as PDU
 extension "MyRule"
 }

27.2 The With statement
The with statement is used to associate attributes to TTCN-3 language elements (and sets thereof).

Syntactical Structure

with "{"
 { (encode | variant | display | extension | optional)
 [override | @local]
 ["(" DefinitionRef | FieldReference | AllRef ")"]
 [(FreeText | ("{" FreeText { "," FreeText } "}")) "."] FreeText [";"] }
"}"

Semantic Description

There are five kinds of attributes that can be associated to language elements:

a) display: allows the specification of display attributes related to specific presentation formats;

b) encode: allows references to specific encoding rules;

c) variant: allows references to specific encoding variants;

d) extension: allows the specification of user-defined attributes;

e) optional: allows the implicit setting of optional fields in records and sets to omit.

The syntax for the argument of the with statement (i.e. the actual attributes) is defined as a free text string.

DefinitionRef and FieldReference identify a definition or field respectively which is within the module, group or
definition to which the with statement is associated.

AllRef can be used to apply attributes to multiple language elements defined within the scope to which the with
statement is associated. AllRef provides a flexible mechanism to select all language elements or all language elements of
a certain kind defined in a given scope. Individual language elements that are not affected by an attribute can be
excluded from a set of selected language elements in the except clause.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)289

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) DefinitionRef and FieldReference shall refer to a definition or field respectively which is within the module,
group or definition to which the with statement is associated.

b) In case multiple attributes of the same type are allowed, all of them shall be without an additional modifier
(override, @local) or the modifier shall be the same for all attributes.

c) Dot notation in the FreeText part is allowed for variant attributes only.

EXAMPLE:

 type record MyService {
 integer i,
 float f
 }
 with { display "ServiceCall" } // MyRecord will be displayed as a ServiceCall

 group G {
 ...
 } with { encode(template all except {mw_msg1}) "Rule1" }
 // with the exception of mw_msg1, all templates defined in this group will be encoded
 // using the "Rule1" encoding

27.3 Display attributes
Display attributes allow the specification of display attributes related to specific presentation formats.

Syntactical Structure

display

Semantic Description

All TTCN-3 language elements can have display attributes to specify how particular language elements shall be
displayed in, for example, a tabular format.

Special attribute strings related to the display attributes for the graphical presentation format can be found in ETSI
ES 201 873-3 [i.2].

Other display attributes may be defined by the user.

NOTE: Because user-defined attributes are not standardized, the interpretation of these attributes may differ
between tools or even may not be supported.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) At most one display attribute shall be applied to each definition, each individual field reference or language
element to which a with statement is associated.

EXAMPLE:

 type record MyService {
 integer i,
 float f
 }
 with { display "ServiceCall" } // MyRecord will be displayed as a ServiceCall

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)290

27.4 Encoding attributes
In TTCN-3, general or particular encoding rules can be specified by using encode and variant attributes. Encoding
attributes allow references to specific encoding rules.

Syntactical Structure

encode

Semantic Description

Encoding rules define how a particular value, template, etc. shall be encoded and transmitted over a communication
port and how received signals shall be decoded. TTCN-3 does not have a default encoding mechanism. This means
that encoding rules or encoding directives are defined in some external manner to TTCN-3.

The encode attribute allows the association of some referenced encoding rule or encoding directive to be made to a
TTCN-3 definition.

The manner in which the actual encoding rules are defined (e.g. prose, functions, etc.) is outside the scope of the present
document. If no specific rules are referenced then encoding shall be a matter for individual implementation.

In most cases encoding attributes will be used in a hierarchical manner. The top-level is the entire module, the next
level is a group and the lowest is an individual type or definition:

a) module: encoding applies to all types defined in the module, including TTCN-3 types (built-in types);

b) group: encoding applies to a group of user-defined type definitions;

c) type or definition: encoding applies to a single user-defined type or definition;

d) field: encoding applies to a field in a record or set type or template.

The with statement may contain more than one encode attribute. In this case, multiple encodings are supported in the
context where the attribute is used. The encoding used in the encoding and decoding operations can be selected
dynamically by using the setencode operation (clause C.5), as a parameter of predefined codec functions
(clause C.5) or inside the codec implementation.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

EXAMPLE:

 module MyFirstmodule
 { :
 import from MySecondModule {
 type MyRecord
 }
 with { encode "MyRule 1" } // Instances of MyRecord will be encoded according to MyRule 1

 :
 type charstring MyType; // Normally encoded according to the "Global encoding rule"
 :
 group myRecords
 { :
 type record MyPDU1
 {
 integer field1, // field1 will be encoded according to "Rule 3"
 boolean field2, // field2 will be encoded according to "Rule 3"
 Mytype field3 // field3 will be encoded according to "Rule 2"
 }
 with { encode (field1, field2) "Rule 3" }
 :
 }
 with { encode "Rule 2" }

 }
 with { encode "Global encoding rule" }

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)291

27.5 Variant attributes
In TTCN-3, general or particular encoding rules can be specified by using encode and variant attributes. Variant
attributes allow references to specific encoding variants.

Syntactical Structure

variant

Semantic Description

To specify a refinement of the currently specified encoding scheme instead of its replacement, the variant attribute
shall be used. The variant attributes are different from other attributes, because they are closely related to encode
attributes. Therefore, for variant attributes, additional overwriting rules apply (see clause 27.1.2.1).

Special variant strings:

The following strings are the predefined (standardized) variant attributes for simple basic types (see clause E.2.1):

a) "8 bit" and "unsigned 8 bit" mean, when applied to integer and enumerated types, that the integer
value or the integer numbers associated with enumerated values shall be handled as it was represented on
8-bits (single byte) within the system.

b) "16 bit" and "unsigned 16 bit" mean, when applied to integer and enumerated types, that the integer
value or the integer numbers associated with enumerated values shall be handled as it was represented on
16-bits (two bytes) within the system.

c) "32 bit" and "unsigned 32 bit" mean, when applied to integer and enumerated types, that the integer
value or the integer numbers associated with enumerated values shall be handled as it was represented on
32-bits (four bytes) within the system.

d) "64 bit" and "unsigned 64 bit" mean, when applied to integer and enumerated types, that the integer
value or the integer numbers associated with enumerated values shall be handled as it was represented on
64-bits (eight bytes) within the system.

e) "IEEE754 float","IEEE754 double", "IEEE754 extended float" and
"IEEE754 extended double" mean, when applied to a float type, that the value shall be encoded and
decoded according to the standard IEEE 754 [6] (see annex E).

The following strings are the predefined (standardized) variant attributes for charstring and universal
charstring (see clause E.2.2):

a) "UTF-8" means, when applied to the universal charstring type, that the value shall be encoded and decoded
according to the UCS encoding scheme UTF-8 as defined in clause 10.1 of ISO/IEC 10646 [2].

b) "UTF-16" means, when applied to the universal charstring type, that the value shall be encoded and decoded
according to the UCS encoding scheme UTF-16 as defined in clause 10.4 of ISO/IEC 10646 [2].

c) "UTF-16LE" means, when applied to the universal charstring type, that each character of the value shall be
individually encoded and decoded according to the UCS Encoding scheme UTF-16LE as defined in
clause 10.3 of ISO/IEC 10646 [2].

d) "UTF-16BE" means, when applied to the universal charstring type, that the value shall be encoded and
decoded according to the UCS Encoding scheme UTF-16BE as defined in clause 10.2 of ISO/IEC 10646 [2].

e) "UTF-32" means, when applied to the universal charstring type, that the value shall be encoded and decoded
according to the UCS Encoding scheme UTF-32 as defined in clause 10.7 of ISO/IEC 10646 [2].

f) "UTF-32LE" means, when applied to the universal charstring type, that the value shall be encoded and
decoded according to the UCS Encoding scheme UTF-32LE as defined in clause 10.6 of ISO/IEC 10646 [2].

g) "UTF-32BE" means, when applied to the universal charstring type, that the value shall be encoded and
decoded according to the UCS Encoding scheme UTF-32BE as defined in clause 10.5 of ISO/IEC 10646 [2].

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)292

h) "8 bit" means, when applied to charstring and universal charstring types, that each character of the value
shall be individually encoded and decoded according to the coded representation as specified in
ISO/IEC 10646 [2] (an 8-bit coding).

NOTE: The UCS Encoding schemes allow an optional signature (also known as Byte Order Mark, BOM) to be
present in encoded character strings. The above UCS encoding scheme variant attributes does not specify,
if signatures are present in the encoded values or not, this is an option for the encoder. It is expected that
decoders are able to process signatures in the decoding process.

The following strings are the predefined (standardized) variant attributes for structured types (see clause E.2.2.4):

a) "IDL:fixed FORMAL/01-12-01 v.2.6" means, when applied to a record type, that the value shall be
handled as an IDL fixed point decimal value (see annex E).

These variant attributes can be used in combination with the more general encode attributes specified at a higher level.
For example a universal charstring specified with the variant attribute "UTF-8" within a module which
itself has a global encoding attribute "BER:1997" (see clause 12.2 of ETSI ES 201 873-7 [i.5]) will cause each character
of the values within the string to first be encoded following the UTF-8 rules and then this UTF-8 value will be encoded
following the more global BER rules.

Invalid encodings

If it is desired to specify invalid encoding rules then these shall be specified in a referenceable source external to the
module in the same way that valid encoding rules are referenced.

Multiple encodings

If multiple encodings (see clause 27.4) are used, the variant attribute value shall be composed of two parts separated
by a dot. Such variant attributes are called encoding related variant attributes. The first part of the attribute specifies the
encodings the variant is related to. There are two possible notations: either a simple string when the variant is related to
a single encode attribute or a comma separated list of strings enclosed in curly brackets if the variant is related to
multiple encodings. The second part of the attribute (following the dot symbol) is a simple string that specifies the
variant value.

The encoding related attributes are valid only when the related encoding is selected.

It is not allowed to define variant attributes with no encoding reference if multiple encodings are used.

Multiple variants

The with statement can contain any number of variant attributes.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 , the following restrictions apply:

a) When dot notation is used in the variant attribute value for an element, the strings preceding the dot symbol
shall resolve into one of the encode attribute values associated with the same element.

EXAMPLE:

 module MyTTCNmodule1
 { :
 type charstring MyType; // Normally encoded according to the "Global encoding rule"
 :
 group myRecords
 { :
 type record MyPDU1
 {
 integer field1, // field1 will be encoded according to "Rule 2"
 // using encoding variant "length form 3"
 MyType field3 // field3 will be encoded according to
 // "Global encoding rule" using any possible length
 // encoding format
 }
 with { variant (field1) "length form 3" }
 :
 }
 with { encode "Rule 2" }

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)293

 type charstring Multi with {
 encode "Codec1"; variant "Codec1"."Rule1";
 encode "Codec2"; variant "Codec2"."Rule3";
 }; // multiple encodings ("Codec1", "Codec2"), the variant "Rule1" is valid
 // for the "Codec1" encoding only, while the variant "Rule3" applies only
 // for the "Codec2" encoding

 type charstring Multi2 with {
 encode "Codec1"; encode "Codec2";
 variant {"Codec1","Codec2"}."Rule1";
 }; // multiple encodings ("Codec1", "Codec2"), variant "Rule1" applies to both of them

 type charstring Multi3 with {
 encode "Codec1"; encode "Codec2";
 variant "Rule1";
 } // the statement will produce an error as there are multiple encodings and the
 // variant attribute doesn't specify encoding reference
 }
 with { encode "Global encoding rule" }

27.6 Extension attributes
Extension attributes can be used for proprietary extensions to TTCN-3. The with statement may contain any number
of extension attributes.

Syntactical Structure

extension

Semantic Description

All TTCN-3 language elements can have extension attributes specified by the user.

NOTE: Because user-defined attributes are not standardized the interpretation of these attributes between tools
supplied by different vendors may differ or even not be supported.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

 testcase TC_MyTestcase() runs on MTCType {
 :
 }
 with { extension "Test Purpose: This test case is used to check …" }

27.7 Optional attributes
The optional attribute can be used to indicate that optional fields of constants, module parameters, templates,
variables and template variables of record and set types are implicitly set to omit.

Syntactical Structure

optional

Semantic Description

TTCN-3 constants, module parameters, templates, variables and template variables can have an optional attribute.
Also, TTCN-3 language elements that contain such definitions, i.e. module, group, function, altstep, test case, control,
and component type definitions can have an optional attribute. When an optional attribute is associated to a
function, altstep, test case, control or component type definitions, it shall have effect on all the constants, module
parameters, templates, variables and template variables declared within these definitions and not on the enframing
definition itself.

When no value of the optional attribute is excplicitly specified for a definition (either directly or inherited from the
surrounding scope), the value of the optional attribute is implicitly set to "explicit omit" for that definition.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)294

Special optional strings:

The following strings are the predefined (standardized) optional attributes:

a) "implicit omit" means that all optional fields, that have no assigned value definition in the statement on
which the attribute operates, are set to omit. This applies recursively to the optional fields of the entity and to
subfields of the mandatory fields.

b) "explicit omit" means that all optional fields, that have no assigned value definition in the statement on
which the attribute operates, are left undefined. This applies recursively to the optional fields of the entity and
to subfields of the mandatory fields.

For variables and template variables associated with an "implicit omit" optional attribute, recursive procedure is
applied to their optional fields after each assignment or usage as out or inout actual parameter in the scope of their
declaration (e.g.after re-assigning parts or all of a variable's value) setting all optional fields that have no assigned value
definition to omit.

NOTE: Assigning the "implicit omit" attribute to a variable can have a negative runtime performance
impact. Tool vendors are encouraged to identify and optimize particular cases where these operations are
not needed (e.g. where it is possible to decide statically that no optional fields of the structure could have
become undefined).

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Data type, port type, procedure signature and import statements shall not have an optional attribute
associated to them directly. When an optional attribute is associated to module, group, function, altstep,
test case, control or component type containing such definitions, it shall not have any effect on the included
data type, port type, procedure signature or import statement.

b) At most one optional attribute shall be applied to each definition, each individual field reference or language
element to which a with statement is associated.

EXAMPLE:

 type record MyRecord1 {
 integer a,
 boolean b optional
 }
 type record MyRecord2 {
 MyRecord1 m
 }

 // reference templates with explicitly set fields
 template MyRecord1 mw_myTemplate1 := { a := ?, b := omit }
 template MyRecord2 mw_myTemplate2 := { m := { a := ?, b := omit }}

 // reference templates
 template MyRecord1 mw_myTemplate1a := {a := ? } // b is undefined
 template MyRecord1 mw_myTemplate1b := {a := ? } with {optional "explicit omit"} // b is
 undefined

 template MyRecord2 mw_myTemplate2a := {} // m and its subfields are undefined
 template MyRecord2 mw_myTemplate2b := { m := { a := ?}}; // m.b is undefined

 // templates with attribute

 template MyRecord1 mw_myTemplate11 := { a := ? } with {optional "implicit omit"}
 // same as mw_myTemplate1, b is set to omit

 template MyRecord2 mw_myTemplate21 := { m := { a := ?}} with {optional "implicit omit"}
 // same as mw_myTemplate2, by recursive application of the attribute
 template MyRecord2 mw_myTemplate22 := { m := mw_myTemplate1a } with {optional "implicit omit"}
 // same as mw_myTemplate2, by recursive application of the attribute

 template MyRecord2 mw_myTemplate23 := {} with {optional "implicit omit"}
 // same as mw_myTemplate2a, m remains undefined

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)295

 template MyRecord2 mw_myTemplate24 := { m := mw_myTemplate1b } with {optional "implicit omit"}
 // same as mw_myTemplate2b, the attribute on the lower scope is not overwritten
 template MyRecord2 mw_myTemplate25 := { m := MyTemplate1b }
 with {optional override "implicit omit"}
 // same as mw_myTemplate2, the attribute on the lower scope is overwritten

 // implicitly omitted fields stay omitted after assignment
 template MyRecord1 mw_myTemplate3a := mw_myTemplate1a with {optional "implicit omit"}
 // same as mw_myTemplate1, b is set to omit
 template MyRecord1 mw_myTemplate3b := mw_myTemplate3a;
 // same as mw_myTemplate1, b is set to omit, by implicit omit attribute of mw_myTemplate3a
 template MyRecord1 mw_myTemplate3c := mw_myTemplate3a with {optional "explicit omit"}
 // same as mw_myTemplate1, b is set to omit, by implicit omit attribute of mw_myTemplate3a

 // implicitly omitted fields stay omitted after assignment
 template MyRecord1 mw_myTemplate3a := mw_myTemplate1a with {optional "implicit omit"}
 // same as mw_myTemplate1, b is set to omit
 template MyRecord1 mw_myTemplate3b := mw_myTemplate3a;
 // same as mw_myTemplate1, b is set to omit, by implicit omit attribute of mw_myTemplate3a
 template MyRecord1 mw_myTemplate3c := mw_myTemplate3a with {optional "explicit omit"}
 // same as mw_myTemplate1, b is set to omit, by implicit omit attribute of mw_myTemplate3a

 function f_helper1() return MyRecord1 {
 var MyRecord1 v_temp := { 1, true };
 return v_temp;
 }

 function f_helper2(out MyRecord1 p_par) {
 p_par := { 1 };
 // p_par is { 1, <undefined> }, no implicit omit attribute is in effect here
 ...
 }

 function f_function() {
 var MyRecord2 v_var1;
 v_var1.m.a := 5;
 // at this time v_var1.m.b is set to omit for the "implicit omit" attribute

 v_var1.m := f_helper1();
 // v_var1.m.b is true, checking of v_var1 might be skipped given strong static checks

 f_helper2(v_var1.m);
 // at this time v_var1.m.b is set to omit for the "implicit omit" attribute
 ...
 } with {optional "implicit omit"}

27.8 Retrieving attribute values
TTCN-3 provides a set of operations that can be used for retrieving attribute values associated with a type, template,
variable, constant or module parameter.

Syntactical Structure

(Type | TemplateInstance) "." (display | encode | variant | extension | optional)
["(" Expression ")"]

Semantic Description

The operation returns the actual value of an attribute associated with the type, template, variable, constant or module
parameter that precedes the dot symbol. The value preceding the dot symbol may be unitialized. The attribute kind is
denoted by the keyword following the dot symbol.

The return value of the operations for retrieving attribute values is of a universal charstring type in case of
attributes that can be present only once (display, optional) . If such an attribute is not defined, the operation
returns an empty string. If the attribute can occur multiple times (encode, variant, extension), the operation
returns a record of universal charstring type. If such an attribute is not present, the operation returns an
empty record of value.

The operation for getting a variant attribute value may be followed by an optional parameter. If no parameter is
present, the operation returns only variants that are not bound to any particular encoding. If the parameter is present, the
returned value will containt variants that are bound to the encoding referenced by the parameter.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)296

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The optional parameter of the operation shall be used only for getting variant attributes.

b) The Expression in optional parameter of the operation shall be of the universal charstring type.

c) An error shall be produced if the Expression in the optional parameters is not one of the valid encode
attributes.

EXAMPLE:

 // MyPDU1 will be displayed as PDU
 type record MyPDU1 { ... } with {
 display "blue";
 encode "Codec1";
 variant "Codec1"."Rule1A";
 variant "Codec1"."Rule1B";
 encode "Codec2";
 variant "Codec2"."Rule2A";
 variant "Codec2"."Rule2B";
 }
 type record of universal charstring RUC;
 control {
 var MyPDU1 v_pdu;
 var universal charstring v_display;
 var RUC v_encoding, v_variants;
 v_display := MyPDU1.display; // v_display will contain "blue"
 v_display := v_variants.display; // v_display will contain "" as no display attribute is
 // defined for v_variants
 v_encoding := v_pdu.encode; // v_encoding will contain { "Codec1", "Codec2" }
 v_variants := v_pdu.variant; // v_variants will contain {} as all variants are bound
 // to encode attributes

 // retrieve variants for all defined encodings
 for (var integer i := 0; i < sizeof(v_encoding); i := i + 1) {
 v_variants := v_pdu.variant(v_encoding[i]);
 ...
 }
 v_variants := v_variants.encode; // v_variants will contain {} as no encode attribute is
 // defined for v_variants
 v_variants := v_pdu.variant("UnknownCodec"); // produces an error as there is no such
 // encode attribute as "UnknownCodec"
 }

27.9 Dynamic configuration of encoding used by ports
The setencode operation can be used on a port or set of ports to dynamically select for the affected ports a single
encode attribute value to be used for a type that has multiple encode attributes attached to it.

Syntactical Structure

(SingleExpression | (all port) | self) "." setencode"(" Type "," SingleExpression ")"

Semantic Description

The setencode operation dynamically restricts the number of encode attribute values of a referenced type or its fields
or elements to a single value. Dependent on the language element preceding the dot, the encoding configuration is valid
either for all sending and receiving operations of a single port (single port reference), sending and receiving operations
of all ports of the current component (all port notation) or for all codec functions and communication operations of
the current component (self keyword).

If the referenced type contains multiple encode attributes and the expression provided in the setencode operation is
equal to one of these encode attribute values, the statement reduces the list of encode attributes to the selected one. The
procedure is applied recursively to all elements and fields or the referenced type. After executing the operation, all other
encode attributes and variants related to them are dynamically disabled and invisible to the codec.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)297

Repeated call of the setencode operation always uses the static attributes that are valid for the referenced type.
Previous calls of the setencode operation referencing the type are not considered in this case. This way it is possible
to change the encoding during test execution using different encodings.

It is allowed to reference a field or element of a type using an extended type reference in the setencode operation.
This operation is useful for payload fields of container protocols and allows dynamic configuration of the proper
encoding for payload fields. If the extended type reference is used, following calls of the setencode operation for the
whole type or any element that contains the the referenced payload field won't change the encoding that was
dynamically configured for this field or element (and its sub-fields).

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) If the setencode operation is applied to a single port, the referenced type shall be either listed in the in or
out type list of the related port type or it shall be a reference to a field or element on any level of nesting of a
type listed in the in or out type list of the related port type.

b) The SingleExpression used in the second parameter of the setencode operation shall be compatible with the
universal charstring type.

c) If present, the SingleExpression preceding the setencode keyword shall be of a port type.

EXAMPLE:

 type port P message {
 inout PDU;
 }

 type component C {
 port P p;
 }

 // Payload type with two encoding options
 type record Payload {
 ...
 } with { encode "PayloadCodec1"; encode "PayloadCodec2" }

 // PDU type with two encoding options
 type record PDU {
 charstring source,
 charstring destination,
 Payload payload
 } with { encode "PduCodec1"; encode "PduCodec2" }

 template PDU m_msg := {
 source := "source address",
 destination := "destination address",
 payload := { ... }
 }

 testcase TC01() runs on C {
 p.setencode(PDU.payload, "PayloadCodec2");
 p.setencode (PDU, "PduCodec1");
 p.send(m_msg); // m_msg will be sent with its encode attribute set to "PduCodec1"
 // and its payload field will have its encode attribute set to "PayloadCodec2"
 }

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)298

Annex A (normative):
BNF and static semantics

A.1 TTCN-3 BNF

A.1.0 General
This annex defines the syntax of TTCN-3 using extended BNF (henceforth just called BNF).

A.1.1 Conventions for the syntax description
Table A.1 defines the metanotation used to specify the extended BNF grammar for TTCN-3.

Table A.1: The syntactic metanotation

::= is defined to be definition of non-terminal
abc xyz abc followed by xyz concatenation
| alternative alternative
[abc] 0 or 1 instances of abc optional
{abc} 0 or more instances of abc repetition 1
{abc}+ 1 or more instances of abc repetition 2
{abc}#(n, m) n to m instances of abc repetition 3
(...) textual grouping grouping
Abc the non-terminal symbol abc non-terminal
"abc" a terminal symbol abc terminal
NOTE: The metanotation defined in table A.1 is parsed from left to right. The

metanotation operators have the following precedence, from highest
(binding tightest) at the top, to lowest (loosest) at the bottom:

 Repetition, Optional
 Grouping
 Concatenation
 Alternative
 Definition

A.1.2 Statement terminator symbols
In general all TTCN-3 language constructs (i.e. definitions, declarations, statements and operations) are terminated with
a semi-colon (;). The semi-colon is optional if the language construct ends with a right-hand curly brace (}) or the
following symbol is a right-hand curly brace (}), i.e. the language construct is the last statement in a statement block.

A.1.3 Identifiers
TTCN-3 identifiers are case sensitive and shall only contain lowercase letters (a-z) uppercase letters (A-Z), numeric
digits (0-9) and the underscore (_) symbol. An identifier shall begin with a letter (i.e. not with a number and not an
underscore).

A.1.4 Comments
Comments written in free text may appear anywhere in a TTCN-3 specification. Comments may contain any graphical
character defined in ISO/IEC 10646 [2]. Block comments shall be opened by the symbol pair /* and closed by the
symbol pair */.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)299

EXAMPLE 1:

 /* This is a block comment
 spread over two lines */

Block comments shall not be nested.

 /* This is not /* a legal */ comment */

Line comments shall be opened by the symbol pair // and closed by a <newline> or <end-of-file>.

EXAMPLE 2:

 // This is a line comment
 // spread over two lines

EXAMPLE 3:

 // The following is not legal
 const // This is MyConst integer c_myConst := 1;
 // A block comment should have been used instead
 const /* This is MyConst */ integer c_myConst := 1;
 // A line comment like this works as well
 const // This is MyConst
 integer c_myConst := 1;

A.1.5 TTCN-3 terminals

A.1.5.0 General

TTCN-3 terminal symbols and reserved words are listed in tables A.2, A.3 and A.5.

Table A.2: List of TTCN-3 special terminal symbols

Begin/end block symbols { }
Begin/end list symbols ()
Element specifier symbols []
Range symbol ..
Line and block comments /* */ //
Statement separator symbol ;
Arithmetic operator symbols + / - *
Concatenation operator symbol &
Relational operator symbols != == >= <= < >
Shift operator symbols << >>
Rotate operator symbols <@ @>
String enclosure symbols " '
Wildcard/matching symbols ? *
Assignment symbol :=
Communication operation assignment ->
Bitstring, hexstring and Octetstring values B H O
Float exponent E
List element separator symbol ,
Field reference .
Decoded field reference =>

The predefined function identifiers defined in table 15 and described in annex C shall also be treated as reserved words.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)300

Table A.3: List of TTCN-3 terminals which are reserved words

action
activate
address
alive
all
alt
altstep
and
and4b
any
anytype

bitstring
boolean
break

case
call
catch
char
charstring
check
clear
complement
component
connect
const
continue
control
create

deactivate
decmatch
default
disconnect
display
do
done

else
encode
enumerated
error
except
exception
execute
extends
extension
external

fail
false
float
for
friend
from
function

getverdict
getcall
getreply
goto
group

halt
hexstring

if
ifpresent
import
in
inconc
infinity
inout
integer
interleave
isbound
ischosen
ispresent
isvalue

kill
killed

label
language
length
log

map
match
message
mixed
mod
modifies
module
modulepar
mtc

noblock
none
not
not_a_number
not4b
nowait
null

octetstring
of
omit
on
optional
or
or4b
out
override

param
pass
pattern
permutation
port
present
private
procedure
public

raise
read
receive
record
recursive
rem
repeat
reply
return
running
runs

select
self
send
sender
set
setencode
setverdict
signature
start
stop
subset
superset
system

template
testcase
timeout
timer
to
trigger
true
type

union
universal
unmap

value
valueof
var
variant
verdicttype

while
with

xor
xor4b

The TTCN-3 terminals listed in table A.3 shall not be used as identifiers in a TTCN-3 module. These terminals shall be
written in all lowercase letters.

Additionally, there are special TTCN-3 terminals consisting of an @-symbol, directly followed by an identifier. These
terminals shall also be written in all lowercase letters.

NOTE: These terminals can be used in combination with the @-symbol, which results in a specific semantics for
the annotated language element. They can also be used like any other identifier without any special
meaning.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)301

Table A.4: List of TTCN-3 terminals which are modifiers

@abstract
@control

@decoded
@default
@deterministic
@fuzzy

@index
@lazy
@local

@nocase
@nodefault

Table A.5: List of TTCN-3 terminals which are reserved words in extension packages

apply
assert
at

configuration
conjunct
cont

delta
disjunct
duration

finished

history

implies
inv

mode

notinv
now

onentry
onexit

par
prev

realtime

seq
setstate
static
stepsize
stream

timestamp

until

values

wait

The TTCN-3 terminals listed in table A.5 are used as keywords inside the TTCN-3 extension packages. These terminals
shall not be used as identifiers in a TTCN-3 module..

These terminals shall be written in all lowercase letters.

A.1.5.1 Use of whitespaces and newlines

The elements of the TTCN-3 syntax (reserved words, identifiers, terminal symbols and literal values) shall be separated
by whitespace or by special terminal symbols listed in table A.2 according to the TTCN-3 syntax.

In representing whitespace, any one or more of the following characters of the C0 set of Recommendation ITU-T
T.50 [4] and of annex A of Recommendation ITU-T T.50 [4] may be used in any combination:

• HT - HORIZONTAL TABULATION (9)

• LF - LINE FEED (10)

• VT -VERTICAL TABULATION (11)

• FF - FORM FEED (12)

• CR - CARRIAGE RETURN (13)

• SP - SPACE (32)

The characters of the C0 set of Recommendation ITU-T T.50 [4] and of annex A of Recommendation ITU-T T.50 [4]
below are denoting newline (end of line). A single CR(13) character directly followed by an LF(10) character denote a
single end of line (i.e. the sequence CRLFCRLFVT denotes 3 lines):

• LF - LINE FEED (10)

• VT - VERTICAL TABULATION (11)

• FF - FORM FEED (12)

• CR - CARRIAGE RETURN (13)

Any character or character sequence that is a valid newline is also a valid whitespace.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)302

NOTE: It is recommended that for newline only the CR and LF and for whitespace only the HT, LF, CR and SP
control characters are used as the VT and FF characters may cause problems with some conventional text
editors.

A.1.6 TTCN-3 syntax BNF productions

A.1.6.0 TTCN-3 module
1.TTCN3Module ::= TTCN3ModuleKeyword ModuleId "{" [ModuleDefinitionsList]
 "}" [WithStatement] [SemiColon]
2.TTCN3ModuleKeyword ::= "module"
3.ModuleId ::= Identifier [LanguageSpec]
4.LanguageSpec ::= LanguageKeyword FreeText {"," FreeText}
5.LanguageKeyword ::= "language"

A.1.6.1 Module definitions part

A.1.6.1.0 General

6.ModuleDefinitionsList ::= {ModuleDefinition [SemiColon]}+
7.ModuleDefinition ::= (([Visibility] (TypeDef |
 ConstDef |
 TemplateDef |
 ModuleParDef |
 FunctionDef |
 SignatureDef |
 TestcaseDef |
 AltstepDef |
 ImportDef |
 ExtFunctionDef |
 ModuleControlDef
)) |
 (["public"] GroupDef) |
 (["private"] FriendModuleDef)
) [WithStatement]
8.Visibility ::= "public" |
 "friend" |
 "private"

A.1.6.1.1 Typedef definitions

9.TypeDef ::= TypeDefKeyword TypeDefBody
10.TypeDefBody ::= StructuredTypeDef | SubTypeDef
11.TypeDefKeyword ::= "type"
12.StructuredTypeDef ::= RecordDef |
 UnionDef |
 SetDef |
 RecordOfDef |
 SetOfDef |
 EnumDef |
 PortDef |
 ComponentDef |
 MapDef
13.MapDef ::= NestedMapDef Identifier
14.RecordDef ::= RecordKeyword StructDefBody
15.RecordKeyword ::= "record"
16.StructDefBody ::= IdentifierOrAddr "{" [StructFieldDef
 {"," StructFieldDef}]
 "}"
17.StructFieldDef ::= (Type | NestedTypeDef) Identifier [ArrayDef] [SubTypeSpec]
 [OptionalKeyword]
18.NestedTypeDef ::= NestedRecordDef |
 NestedUnionDef |
 NestedSetDef |
 NestedRecordOfDef |
 NestedSetOfDef |
 NestedEnumDef |
 NestedMapDef
19.NestedRecordDef ::= RecordKeyword "{" [StructFieldDef {"," StructFieldDef}]
 "}"

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)303

20.NestedUnionDef ::= UnionKeyword "{" UnionFieldDef {"," UnionFieldDef}
 "}"
21.NestedSetDef ::= SetKeyword "{" [StructFieldDef {"," StructFieldDef}]
 "}"
22.NestedRecordOfDef ::= RecordKeyword [StringLength] OfKeyword (Type | NestedTypeDef)
23.NestedSetOfDef ::= SetKeyword [StringLength] OfKeyword (Type | NestedTypeDef)
24.NestedEnumDef ::= EnumKeyword "{" EnumerationList "}"
25.NestedMapDef ::= MapKeyword FromKeyword Type ToKeyword (Type | NestedTypeDef)
26.OptionalKeyword ::= "optional"
27.UnionDef ::= UnionKeyword UnionDefBody
28.UnionKeyword ::= "union"
29.UnionDefBody ::= IdentifierOrAddr "{" UnionFieldDef {"," UnionFieldDef} "}"
30.UnionFieldDef ::= [DefaultModifier] (Type | NestedTypeDef) Identifier [ArrayDef] [SubTypeSpec]
/* STATIC SEMANTICS - at most one UnionFieldDef of UnionDefBody or NestedUnionDef shall contain a
DefaultModifier */
31.SetDef ::= SetKeyword StructDefBody
32.SetKeyword ::= "set"
33.RecordOfDef ::= RecordKeyword [StringLength] OfKeyword StructOfDefBody
34.OfKeyword ::= "of"
35.StructOfDefBody ::= (Type | NestedTypeDef) IdentifierOrAddr [SubTypeSpec]
36.SetOfDef ::= SetKeyword [StringLength] OfKeyword StructOfDefBody
37.EnumDef ::= EnumKeyword IdentifierOrAddr "{" EnumerationList "}"
38.EnumKeyword ::= "enumerated"
39.EnumerationList ::= Enumeration {"," Enumeration}
40.Enumeration ::= Identifier ["(" IntegerValueOrRange {"," IntegerValueOrRange } ")"]
41.IntegerValueOrRange ::= IntegerValue [".." IntegerValue]
42.IntegerValue ::= [Minus] Number
43.SubTypeDef ::= Type IdentifierOrAddr [ArrayDef] [SubTypeSpec]
44.SubTypeSpec ::= AllowedValuesSpec [StringLength] | StringLength
/* STATIC SEMANTICS - AllowedValues shall be of the same type as the field being subtyped */
45.AllowedValuesSpec ::= "(" ((TemplateOrRange {"," TemplateOrRange}) |
 CharStringMatch) ")"
46.TemplateOrRange ::= RangeDef |
 TemplateBody |
 Type
/* STATIC SEMANTICS - RangeDef production shall only be used with integer, charstring, universal
charstring or float based types */

/* STATIC SEMANTICS - When subtyping charstring or universal charstring range and values shall not
be mixed in the same SubTypeSpec */
47.RangeDef ::= Bound ".." Bound
48.StringLength ::= LengthKeyword "(" SingleExpression [".."(SingleExpression | InfinityKeyword)]
 ")"
/* STATIC SEMANTICS - StringLength shall only be used with String types or to limit set of and
record of. SingleExpression and Bound shall evaluate to non-negative integer values (in case of
Bound including infinity) */
49.LengthKeyword ::= "length"
50.PortDef ::= PortKeyword PortDefBody
51.PortDefBody ::= Identifier PortDefAttribs
52.PortKeyword ::= "port"
53.PortDefAttribs ::= MessageAttribs |
 ProcedureAttribs |
 MixedAttribs
54.MessageAttribs ::= MessageKeyword "{" {(AddressDecl |
 MessageList |
 ConfigParamDef
) [SemiColon]}+ "}"
55.ConfigParamDef ::= MapParamDef | UnmapParamDef
56.MapParamDef ::= MapKeyword ParamKeyword "(" FormalValuePar {"," FormalValuePar} ")"
57.UnmapParamDef ::= UnmapKeyword ParamKeyword "(" FormalValuePar {"," FormalValuePar} ")"
58.AddressDecl ::= AddressKeyword Type
59.MessageList ::= Direction AllOrTypeList
60.Direction ::= InParKeyword |
 OutParKeyword |
 InOutParKeyword
61.MessageKeyword ::= "message"
62.AllOrTypeList ::= AllKeyword | TypeList

/* NOTE: The use of AllKeyword in port definitions is deprecated */
63.AllKeyword ::= "all"
64.TypeList ::= Type {"," Type}
65.ProcedureAttribs ::= ProcedureKeyword "{" {(AddressDecl |
 ProcedureList |
 ConfigParamDef
) [SemiColon]}+ "}"
66.ProcedureKeyword ::= "procedure"
67.ProcedureList ::= Direction AllOrSignatureList
68.AllOrSignatureList ::= AllKeyword | SignatureList

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)304

69.SignatureList ::= Signature {"," Signature}
70.MixedAttribs ::= MixedKeyword "{" {(AddressDecl |
 MixedList |
 ConfigParamDef
) [SemiColon]}+ "}"
71.MixedKeyword ::= "mixed"
72.MixedList ::= Direction ProcOrTypeList
73.ProcOrTypeList ::= AllKeyword | (ProcOrType {"," ProcOrType})
74.ProcOrType ::= Signature | Type
75.ComponentDef ::= ComponentKeyword Identifier [ExtendsKeyword ComponentType
 {"," ComponentType}] "{" [ComponentDefList] "}"
76.ComponentKeyword ::= "component"
77.ExtendsKeyword ::= "extends"
78.ComponentType ::= ExtendedIdentifier
79.ComponentDefList ::= {ComponentElementDef [WithStatement] [SemiColon]}
80.ComponentElementDef ::= PortInstance |
 VarInstance |
 TimerInstance |
 ConstDef |
 TemplateDef
81.PortInstance ::= PortKeyword ExtendedIdentifier PortElement {"," PortElement}
82.PortElement ::= Identifier [ArrayDef]

A.1.6.1.2 Constant definitions

83.ConstDef ::= ConstKeyword Type ConstList
84.ConstList ::= SingleConstDef {"," SingleConstDef}
85.SingleConstDef ::= Identifier [ArrayDef] AssignmentChar ConstantExpression
86.ConstKeyword ::= "const"

A.1.6.1.3 Template definitions

87.TemplateDef ::= TemplateKeyword [TemplateRestriction] [FuzzyModifier DeterministicModifier]]
 [AbstractModifier] BaseTemplate [DerivedDef] AssignmentChar BaseTemplateBody
88.BaseTemplate ::= (Type | Signature) Identifier ["(" TemplateOrValueFormalParList ")"]
89.TemplateKeyword ::= "template"
90.DerivedDef ::= ModifiesKeyword (ExtendedIdentifier | BaseTemplateBody)
91.ModifiesKeyword ::= "modifies"
92.TemplateOrValueFormalParList ::= TemplateOrValueFormalPar {"," TemplateOrValueFormalPar}
93.TemplateOrValueFormalPar ::= FormalValuePar | FormalTemplatePar
/* STATIC SEMANTICS - FormalValuePar shall resolve to an in parameter */
94.TemplateBody ::= DerivedTemplateBody | BaseTemplateBody
95.BaseTemplateBody ::= (SimpleSpec |
 FieldSpecList |
 ArrayValueOrAttrib
) [ExtraMatchingAttributes]

/* STATIC SEMANTICS - Within BaseTemplateBody the ArrayValueOrAttrib can be used for array, record,
record of and set of types. */
96.SimpleSpec ::= (SingleExpression ["&" SimpleTemplateSpec]) | SimpleTemplateSpec
97.SimpleTemplateSpec ::= SingleTemplateExpression ["&" SimpleSpec]
98.SingleTemplateExpression ::= MatchingSymbol |
 (TemplateRefWithParList [ExtendedFieldReference]) |
 ExtendedIdentifier EnumTemplateExtension
/* STATIC SEMANTICS - ExtendedIdentifier shall refer to an enumerated value with associated value */
99.EnumTemplateExtension ::= "(" (BaseTemplateBody | Range) {"," (BaseTemplateBody | Range) } ")"

/* STATIC SEMANTICS - each TemplateBody shall be an integer template and the limits of each Range
an integer value*/
100.FieldSpecList ::= "{" FieldSpec {"," FieldSpec} "}"
101.FieldSpec ::= [FuzzyModifier] FieldReference AssignmentChar (TemplateBody | Minus)
102.FieldReference ::= StructFieldRef |
 IndexRef |
 ParRef
103.StructFieldRef ::= Identifier |
 PredefinedType |
 TypeReference
/* STATIC SEMANTICS - PredefinedType and TypeReference shall be used for anytype value notation
only. PredefinedType shall not be AnyTypeKeyword.*/
104.ParRef ::= Identifier
/* STATIC SEMANTICS - Identifier in ParRef shall be a formal parameter identifier from the
associated signature definition */
105.IndexRef ::= "[" SingleExpression "]"
/* STATIC SEMANTICS - IndexRef shall be optionally used for array types and TTCN-3 record of, set of
and map types. The same notation can be used for a string element reference inside an TTCN-3
charstring, universal charstring, bitstring, octetstring and hexstring type */

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)305

/* STATIC SEMANTICS - SingleExpression will resolve to a value of integer type */
106.ArrayValueOrAttrib ::= "{" [ArrayElementSpecList] "}"
107.ArrayElementSpecList ::= ArrayElementSpec {"," ArrayElementSpec}
108.ArrayElementSpec ::= Minus | PermutationMatch | TemplateBody
109.MatchingSymbol ::= Complement |
 (AnyValue [WildcardLengthMatch]) |
 (AnyOrOmit [WildcardLengthMatch]) |
 ListOfTemplates |
 Range |
 BitStringMatch |
 HexStringMatch |
 OctetStringMatch |
 CharStringMatch |
 SubsetMatch |
 SupersetMatch |
 DecodedContentMatch
110.DecodedContentMatch ::= DecodedMatchKeyword ["(" [Expression] ")"] TemplateInstance
111.DecodedMatchKeyword ::= "decmatch"

/* STATIC SEMANTIC – WildcardLengthMatch shall be used when MatchingSymbol is used in fractions of a
concatenated string or list (see clause 15.11) and shall not be used in other cases. In this case,
the Complement, ListOfTemplates, Range, BitStringMatch, HexStringMatch, OctetStringMatch,
CharStringMatch, SubsetMatch and SupersetMatch productions shall not be used. */
112.ExtraMatchingAttributes ::= StringLength |
 IfPresentKeyword |
 (StringLength IfPresentKeyword)
113.BitStringMatch ::= "'" {BinOrMatch} "'" "B"
114.BinOrMatch ::= Bin |
 AnyValue |
 AnyOrOmit
115.HexStringMatch ::= "'" {HexOrMatch} "'" "H"
116.HexOrMatch ::= Hex |
 AnyValue |
 AnyOrOmit
117.OctetStringMatch ::= "'" {OctOrMatch} "'" "O"
118.OctOrMatch ::= Oct |
 AnyValue |
 AnyOrOmit
119.CharStringMatch ::= PatternKeyword [CaseInsenModifier] PatternParticle {"&" PatternParticle}
120.PatternParticle ::= Pattern | ReferencedValue
121.PatternKeyword ::= "pattern"
122.Pattern ::= """ {PatternElement} """
123.PatternElement ::= (("\" ("?" | "*" | "\" | "[" | "]" | "{" | "}" |
 """ | "|" | "(" | ")" | "#" | "+" | "d" |
 "w" | "t" | "n" | "r" | "s" | "b"
)) | ("?" | "*" | "\" | "|" | "+"
) | ("[" ["^"] [{PatternClassChar ["-"
 PatternClassChar]}]
 "]") |
 ("{" ["\"] ReferencedValue "}") | ("\" "N" "{"
 (ReferencedValue |
 Type) "}") |
 (""" """) |
 ("(" PatternElement ")") |
 ("#" (Num |
 ("(" Number "," [Number] ")") |
 ("(" "," Number ")") |
 ("(" [","] ")") Num ")"
))
) | PatternChar
124.PatternChar ::= NonSpecialPatternChar | PatternQuadruple

/* STATIC SEMANTICS - Characters "?", "*", "\", "[", "]", "{", "}", """, "|", "(", ")", "#", "+",
"d", "^", "N" have special semantics – they are metacharacters for the definition of pattern
elements – only if they follow the BNF as defined above, if not they are interpreted like normal
characters */
125.NonSpecialPatternChar ::= Char
126.PatternClassChar ::= NonSpecialPatternClassChar |
 PatternQuadruple |
 "\" EscapedPatternClassChar
127.NonSpecialPatternClassChar ::= Char

/* STATIC SEMANTICS - Characters "[", "-", "^", "]", "\", "q", ","have special semantics – they are
metacharacters for the definition of pattern class characters – only if they follow the BNF as
defined above, if not they are interpreted like normal characters */
128.EscapedPatternClassChar ::= "[" | "-" | "^" | "]"
129.PatternQuadruple ::= "\" "q" "(" Number "," Number "," Number "," Number ")"

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)306

130.Complement ::= ComplementKeyword ListOfTemplates
131.ComplementKeyword ::= "complement"
132.ListOfTemplates ::= "(" TemplateListItem {"," TemplateListItem} ")"
133.TemplateListItem ::= TemplateBody | AllElementsFrom
134.AllElementsFrom ::= AllKeyword FromKeyword TemplateBody
135.SubsetMatch ::= SubsetKeyword ListOfTemplates
136.SubsetKeyword ::= "subset"
137.SupersetMatch ::= SupersetKeyword ListOfTemplates
138.SupersetKeyword ::= "superset"
139.PermutationMatch ::= PermutationKeyword ListOfTemplates

/* STATIC SEMANTICS - Restrictions on the content of TemplateBody within the ListOfTemplates are
given in clause B.1.3.3. */
140.PermutationKeyword ::= "permutation"
141.AnyValue ::= "?"
142.AnyOrOmit ::= "*"
143.WildcardLengthMatch ::= LengthKeyword "(" SingleExpression ")"

/* STATIC SEMANTICS - SingleExpression shall evaluate to type integer */
144.IfPresentKeyword ::= "ifpresent"
145.PresentKeyword ::= "present"
146.Range ::= "(" Bound ".." Bound ")"
147.Bound ::= (["!"] SingleExpression) | ([Minus] InfinityKeyword)

/* STATIC SEMANTICS - Bounds shall evaluate to types integer, charstring, universal charstring or
float. In case they evaluate to types charstring or universal charstring, the string length shall be
infinity as lower bound and –infinity as upper bound are allowed for float types only. */
148.InfinityKeyword ::= "infinity"
149.ActualParAssignment ::= Identifier ":=" TemplateInstance
/* STATIC SEMANTICS – if a value parameter is used, an in-line template shall evaluate to a value */
150.TemplateRefWithParList ::= ExtendedIdentifier [ActualParList]
151.TemplateInstance ::= [(Type | Signature) Colon] TemplateBody
152.DerivedTemplateBody ::= ModifiesKeyword BaseTemplateBody AssignmentChar BaseTemplateBody
153.ActualParList ::= "(" [(ActualPar {"," ActualPar })
 {"," ActualParAssignment} |
 (ActualParAssignment {"," ActualParAssignment})]
 ")"
154.ActualPar ::= TemplateInstance | Minus

/* STATIC SEMANTICS - When the corresponding formal parameter is not of template type the
TemplateInstance production shall resolve to one or more SingleExpressions */
155.TemplateOps ::= MatchOp | ValueofOp | OmitOp | PresentOp
156.MatchOp ::= MatchKeyword "(" Expression "," TemplateInstance ")"
157.MatchKeyword ::= "match"
158.ValueofOp ::= ValueofKeyword "(" TemplateInstance")"
159.ValueofKeyword ::= "valueof"
160. OmitOp ::= OmitKeyword "(" TemplateInstance")"
161. PresentOp ::= PresentKeyword "(" TemplateInstance")"

A.1.6.1.4 Function definitions

162.FunctionDef ::= FunctionKeyword [DeterministicModifier | ControlModifier]
 IdentifierOrControl
 "(" [FunctionFormalParList] ")" [RunsOnSpec] [MtcSpec]
 [SystemSpec] [ReturnType] StatementBlock
163.FunctionKeyword ::= "function"
164.FunctionFormalParList ::= FunctionFormalPar {"," FunctionFormalPar}
165.FunctionFormalPar ::= FormalValuePar |
 FormalTemplatePar
166.ReturnType ::= ReturnKeyword [TemplateModifier] Type [ArrayDef]
167.ReturnKeyword ::= "return"
168.RunsOnSpec ::= RunsKeyword OnKeyword ComponentType
169.RunsKeyword ::= "runs"
170.OnKeyword ::= "on"
171.MtcSpec ::= MTCKeyword ComponentType
172.MTCKeyword ::= "mtc"
173.StatementBlock ::= "{" [FunctionDefOrStatementList] "}"
174.FunctionDefOrStatementList ::= {(FunctionBodyDef | FunctionStatement) [SemiColon]}+
175.FunctionBodyDef ::= (FunctionLocalDef | FunctionLocalInst) [WithStatement]
176.FunctionLocalInst ::= VarInstance | TimerInstance
177.FunctionLocalDef ::= ConstDef | TemplateDef
178.FunctionStatement ::= ConfigurationStatements |
 TimerStatements |
 CommunicationStatements |
 BasicStatements |
 BehaviourStatements |
 SetLocalVerdict |

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)307

 SUTStatements |
 TestcaseOperation
179.FunctionInstance ::= FunctionRef ["(" [ActualParList] ")"]
/* STATIC SEMANTICS – the part is only optional if the FunctionRef uses the ControlKeyword and the
referenced control function has no formal parameters */
180.FunctionRef ::= [Identifier Dot] (Identifier | PreDefFunctionIdentifier | ControlKeyword)
181.PreDefFunctionIdentifier ::= Identifier [CaseInsenModifier]

/* STATIC SEMANTICS - The Identifier shall be one of the pre-defined TTCN-3 function identifiers
from Annex C of ES 201 873-1. CaseInsenModifier shall be present only if Identifier is "regexp". */
/* STATIC SEMANTICS – if a value parameter is used, an in-line template shall evaluate to a value */

A.1.6.1.5 Signature definitions

182.SignatureDef ::= SignatureKeyword Identifier "(" [SignatureFormalParList]
 ")" [ReturnType | NoBlockKeyword] [ExceptionSpec]
183.SignatureKeyword ::= "signature"
184.SignatureFormalParList ::= FormalValuePar {"," FormalValuePar}
185.ExceptionSpec ::= ExceptionKeyword "(" TypeList ")"
186.ExceptionKeyword ::= "exception"
187.Signature ::= ExtendedIdentifier
188.NoBlockKeyword ::= "noblock"

A.1.6.1.6 Testcase definitions

189.TestcaseDef ::= TestcaseKeyword Identifier "(" [TemplateOrValueFormalParList]
 ")" ConfigSpec StatementBlock
190.TestcaseKeyword ::= "testcase"
191.ConfigSpec ::= [RunsOnSpec] [SystemSpec]
192.SystemSpec ::= SystemKeyword ComponentType
193.SystemKeyword ::= "system"
194.TestcaseInstance ::= ExecuteKeyword "(" ExtendedIdentifier "(" [ActualParList]
 ")" ["," (Expression | Minus) ["," SingleExpression]]
 ")"
195.ExecuteKeyword ::= "execute"

A.1.6.1.7 Altstep definitions

196.AltstepDef ::= AltstepKeyword [ControlModifier] [InterleavedKeyword] Identifier
 "(" [FunctionFormalParList] ")" [RunsOnSpec] [MtcSpec] [SystemSpec]
 "{" AltstepLocalDefList AltGuardList "}"
197.AltstepKeyword ::= "altstep"
198.AltstepLocalDefList ::= {AltstepLocalDef [WithStatement] [SemiColon]}
199.AltstepLocalDef ::= VarInstance |
 TimerInstance |
 ConstDef |
 TemplateDef
200.AltstepInstance ::= ExtendedIdentifier "(" [ActualParList] ")"

A.1.6.1.8 Import definitions

201.ImportDef ::= ImportKeyword ImportFromSpec [PortRedirectSymbol Identifier]
 (AllWithExcepts | ("{" ImportSpec "}"))
202.ImportKeyword ::= "import"
203.AllWithExcepts ::= AllKeyword [ExceptsDef]
204.ExceptsDef ::= ExceptKeyword "{" ExceptSpec "}"
205.ExceptKeyword ::= "except"
206.ExceptSpec ::= {ExceptElement [SemiColon]}
207.ExceptElement ::= ExceptGroupSpec |
 ExceptTypeDefSpec |
 ExceptTemplateSpec |
 ExceptConstSpec |
 ExceptTestcaseSpec |
 ExceptAltstepSpec |
 ExceptFunctionSpec |
 ExceptSignatureSpec |
 ExceptModuleParSpec
208.ExceptGroupSpec ::= GroupKeyword (QualifiedIdentifierList | AllKeyword)
209.IdentifierListOrAll ::= IdentifierList | AllKeyword
210.TypeIdListOrAll ::= TypeIdentifierList | AllKeyword
211.FuncIdListOrAll ::= FuncIdentifierList | AllKeyword
212.ExceptTypeDefSpec ::= TypeDefKeyword TypeIdListOrAll
213.ExceptTemplateSpec ::= TemplateKeyword IdentifierListOrAll
214.ExceptConstSpec ::= ConstKeyword IdentifierListOrAll

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)308

215.ExceptTestcaseSpec ::= TestcaseKeyword IdentifierListOrAll
216.ExceptAltstepSpec ::= AltstepKeyword IdentifierListOrAll
217.ExceptFunctionSpec ::= FunctionKeyword FuncIdListOrAll
218.ExceptSignatureSpec ::= SignatureKeyword IdentifierListOrAll
219.ExceptModuleParSpec ::= ModuleParKeyword IdentifierListOrAll
220.ImportSpec ::= {ImportElement [SemiColon]}
221.ImportElement ::= ImportGroupSpec |
 ImportTypeDefSpec |
 ImportTemplateSpec |
 ImportConstSpec |
 ImportTestcaseSpec |
 ImportAltstepSpec |
 ImportFunctionSpec |
 ImportSignatureSpec |
 ImportModuleParSpec |
 ImportImportSpec
222.ImportFromSpec ::= FromKeyword ModuleId
223.ImportGroupSpec ::= GroupKeyword (GroupRefListWithExcept | AllGroupsWithExcept)
224.GroupRefListWithExcept ::= QualifiedIdentifierWithExcept {"," QualifiedIdentifierWithExcept}
225.AllGroupsWithExcept ::= AllKeyword [ExceptKeyword QualifiedIdentifierList]
226.QualifiedIdentifierWithExcept ::= QualifiedIdentifier [ExceptsDef]
227.IdentifierListOrAllWithExcept ::= IdentifierList | AllWithExcept
228.TypeIdListOrAllWithExcept ::= TypeIdentifierList | AllTypesExcept
229.FuncIdListOrAllWithExcept ::= FuncIdentifierList | AllFunctionsExcept
230.ImportTypeDefSpec ::= TypeDefKeyword TypeIdListOrAllWithExcept
231.AllWithExcept ::= AllKeyword [ExceptKeyword IdentifierList]
232.AllTypesExcept ::= AllKeyword [ExceptKeyword TypeIdentifierList]
233.AllFunctionsExcept ::= AllKeyword [ExceptKeyword FuncIdentifierList]
234.ImportTemplateSpec ::= TemplateKeyword IdentifierListOrAllWithExcept
235.ImportConstSpec ::= ConstKeyword IdentifierListOrAllWithExcept
236.ImportAltstepSpec ::= AltstepKeyword IdentifierListOrAllWithExcept
237.ImportTestcaseSpec ::= TestcaseKeyword IdentifierListOrAllWithExcept
238.ImportFunctionSpec ::= FunctionKeyword FuncIdListOrAllWithExcept
239.ImportSignatureSpec ::= SignatureKeyword IdentifierListOrAllWithExcept
240.ImportModuleParSpec ::= ModuleParKeyword IdentifierListOrAllWithExcept
241.ImportImportSpec ::= ImportKeyword AllKeyword
242.TypeIdentifierList ::= IdentifierOrAddr {"," IdentifierOrAddr }
243.IdentifierOrAddr ::= Identifier | AddressKeyword
244.FuncIdentifierList ::= IdentifierOrControl {"," IdentifierOrControl }
245.IdentifierOrControl ::= Identifier | ControlKeyword

A.1.6.1.9 Group definitions

246.GroupDef ::= GroupKeyword Identifier "{" [ModuleDefinitionsList] "}"
247.GroupKeyword ::= "group"

A.1.6.1.10 External function definitions

248.ExtFunctionDef ::= ExtKeyword FunctionKeyword [DeterministicModifier | ControlModifier]
 Identifier "(" [FunctionFormalParList] ")" [ReturnType]
249.ExtKeyword ::= "external"

A.1.6.1.11 Void

A.1.6.1.12 Module parameter definitions

250.ModuleParDef ::= ModuleParKeyword (ModulePar | ("{" MultitypedModuleParList "}"))
251.ModuleParKeyword ::= "modulepar"
252.MultitypedModuleParList ::= {ModulePar [SemiColon]}
253.ModulePar ::= [TemplateModifier] Type ModuleParList
254.ModuleParList ::= Identifier [AssignmentChar TemplateBody] {","
 Identifier [AssignmentChar TemplateBody]}

A.1.6.1.13 Friend module definitions

255.FriendModuleDef ::= "friend" "module" IdentifierList [SemiColon]

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)309

A.1.6.2 Module control function
256.ModuleControlDef ::= ControlKeyword StatementBlock
257.ControlKeyword ::= "control"

A.1.6.3 Local definitions

A.1.6.3.1 Variable instantiation

258.VarInstance ::= VarKeyword (([(LazyModifier | FuzzyModifier) [DeterministicModifier]]
 Type VarList) | (TemplateModifier
 [(LazyModifier | FuzzyModifier) [DeterministicModifier]]
 Type TempVarList))
259.VarList ::= SingleVarInstance {"," SingleVarInstance}
260.SingleVarInstance ::= Identifier [ArrayDef] [AssignmentChar Expression]
261.VarKeyword ::= "var"
262.TempVarList ::= SingleTempVarInstance {"," SingleTempVarInstance}
263.SingleTempVarInstance ::= Identifier [ArrayDef] [AssignmentChar TemplateBody]
264.ValueRef ::= Identifier [ExtendedFieldReference]

A.1.6.3.2 Timer instantiation

265.TimerInstance ::= TimerKeyword VarList
266.TimerKeyword ::= "timer"
267.ArrayIdentifierRef ::= Identifier {IndexRef}

A.1.6.4 Operations

A.1.6.4.1 Component operations

268.ConfigurationStatements ::= ConnectStatement |
 MapStatement |
 DisconnectStatement |
 UnmapStatement |
 [NoDefaultModifier] DoneStatement |
 [NoDefaultModifier] KilledStatement |
 StartTCStatement |
 StopTCStatement |
 KillTCStatement |
 SetEncodeStatement
269.ConfigurationOps ::= CreateOp |
 SelfOp |
 SystemKeyword |
 MTCKeyword |
 RunningOp |
 AliveOp
270.CreateOp ::= ComponentType Dot CreateKeyword ["(" (SingleExpression |
 Minus) ["," SingleExpression] ")"] [AliveKeyword]
271.SelfOp ::= "self"
272.DoneStatement ::= ComponentOrAny Dot DoneKeyword [PortRedirectSymbol
 [ValueStoreSpec] [IndexSpec]]
/* STATIC SEMANTICS – If PortRedirectSymbol is present, at least one of ValueStoreSpec and IndexSpec
shall be present */
273.ComponentOrAny ::= ObjectReference |
 (AnyKeyword (ComponentKeyword | FromKeyword ValueRef)) |
 (AllKeyword ComponentKeyword)
274.ValueStoreSpec ::= ValueKeyword ValueRef
275.IndexAssignment ::= PortRedirectSymbol IndexSpec
276.IndexSpec ::= IndexModifier ValueStoreSpec
277.KilledStatement ::= ComponentOrAny Dot KilledKeyword [PortRedirectSymbol
 [ValueStoreSpec] [IndexSpec]]
/* STATIC SEMANTICS – If PortRedirectSymbol is present, at least one of ValueStoreSpec and IndexSpec
shall be present */
278.DoneKeyword ::= "done"
279.KilledKeyword ::= "killed"
280.RunningOp ::= ComponentOrAny Dot RunningKeyword [IndexAssignment]
281.RunningKeyword ::= "running"
282.AliveOp ::= ComponentOrAny Dot AliveKeyword [IndexAssignment]
283.CreateKeyword ::= "create"
284.AliveKeyword ::= "alive"
285.ConnectStatement ::= ConnectKeyword SingleConnectionSpec

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)310

286.ConnectKeyword ::= "connect"
287.SingleConnectionSpec ::= "(" PortRef "," PortRef ")"
288.PortRef ::= ComponentRef Colon ArrayIdentifierRef
289.ComponentRef ::= ObjectReference |
 SystemKeyword |
 SelfOp |
 MTCKeyword
290.DisconnectStatement ::= DisconnectKeyword [SingleConnectionSpec |
 AllConnectionsSpec |
 AllPortsSpec |
 AllCompsAllPortsSpec
]
291.AllConnectionsSpec ::= "(" PortRef ")"
292.AllPortsSpec ::= "(" ComponentRef ":" AllKeyword PortKeyword ")"
293.AllCompsAllPortsSpec ::= "(" AllKeyword ComponentKeyword ":" AllKeyword
 PortKeyword ")"
294.DisconnectKeyword ::= "disconnect"
295.MapStatement ::= MapKeyword SingleConnectionSpec [ParamClause]
296.ParamClause ::= ParamKeyword ActualParList
297.MapKeyword ::= "map"
298.UnmapStatement ::= UnmapKeyword [SingleConnectionSpec [ParamClause] |
 AllConnectionsSpec [ParamClause] |
 AllPortsSpec |
 AllCompsAllPortsSpec |
 "(" ValueRef "," SingleExpression ")"
]
299.UnmapKeyword ::= "unmap"
300.StartTCStatement ::= ObjectReference Dot StartKeyword
 "(" (FunctionInstance | AltstepInstance) ")"
301.StartKeyword ::= "start"
302.StopTCStatement ::= StopKeyword | (ComponentReferenceOrLiteral | AllKeyword
 ComponentKeyword) Dot StopKeyword
303.ComponentReferenceOrLiteral ::= ObjectReference |
 MTCKeyword |
 SelfOp
304.KillTCStatement ::= KillKeyword | ((ComponentReferenceOrLiteral |
 AllKeyword ComponentKeyword) Dot KillKeyword)
305.ObjectReference ::= ValueRef | FunctionInstance
306.KillKeyword ::= "kill"
307.SetEncodeStatement ::= (SingleExpression | (AllKeyword PortKeyword) | SelfOp) | "."
 SetEncodeKeyword "(" Type "," SingleExpression ")"
308.SetEncodeKeyword ::= "setencode"

A.1.6.4.2 Port operations

309.CommunicationStatements ::= SendStatement |
 CallStatement |
 ReplyStatement |
 RaiseStatement |
 [NoDefaultModifier] ReceivingStatement |
 ClearStatement |
 StartStatement |
 StopStatement |
 HaltStatement |
 CheckStateStatement
310.ReceivingStatement ::= ReceiveStatement |
 TriggerStatement |
 GetCallStatement |
 GetReplyStatement |
 CatchStatement |
 CheckStatement
311.SendStatement ::= ObjectReference Error! Reference source not found. Dot PortSendOp
312.PortSendOp ::= SendOpKeyword "(" TemplateInstance")" [ToClause]
313.SendOpKeyword ::= "send"
314.ToClause ::= ToKeyword (TemplateInstance|
 AddressRefList |
 AllKeyword ComponentKeyword
)
315.AddressRefList ::= "(" TemplateInstance{"," TemplateInstance} ")"
316.ToKeyword ::= "to"
317.CallStatement ::= ObjectReference Dot PortCallOp [PortCallBody]
318.PortCallOp ::= CallOpKeyword "(" CallParameters ")" [ToClause]
319.CallOpKeyword ::= "call"
320.CallParameters ::= TemplateInstance ["," CallTimerValue]
321.CallTimerValue ::= Expression | NowaitKeyword
322.NowaitKeyword ::= "nowait"
323.PortCallBody ::= "{" CallBodyStatementList "}"

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)311

324.CallBodyStatementList ::= {CallBodyStatement [SemiColon]}+
325.CallBodyStatement ::= CallBodyGuard StatementBlock
326.CallBodyGuard ::= AltGuardChar CallBodyOps
327.CallBodyOps ::= GetReplyStatement | CatchStatement
328.ReplyStatement ::= ObjectReference Dot PortReplyOp
329.PortReplyOp ::= ReplyKeyword "(" TemplateInstance [ReplyValue] ")" [ToClause]
330.ReplyKeyword ::= "reply"
331.ReplyValue ::= ValueKeyword TemplateBody
/* STATIC SEMANTICS - TemplateBody shall be type compatible with the return type. It shall evaluate
to a value or template (literal or template instance) conforming to the template(value) restriction.
*/
332.RaiseStatement ::= ObjectReference Dot PortRaiseOp
333.PortRaiseOp ::= RaiseKeyword "(" Signature "," TemplateInstance")" [ToClause]
334.NoDefaultModifier ::= "@nodefault"
335.RaiseKeyword ::= "raise"
336.ReceiveStatement ::= PortOrAny Dot PortReceiveOp
337.PortOrAny ::= ObjectReference | (AnyKeyword (PortKeyword | FromKeyword ValueRef))
338.PortReceiveOp ::= ReceiveOpKeyword ["("TemplateInstance")"] [FromClause] [PortRedirect]
339.ReceiveOpKeyword ::= "receive"
340.FromClause ::= FromKeyword (TemplateInstance |
 AddressRefList |
 AnyKeyword ComponentKeyword
)
341.FromKeyword ::= "from"
342.PortRedirect ::= PortRedirectSymbol ((ValueSpec [SenderSpec] [IndexSpec]) |
 (SenderSpec [IndexSpec]) |
 IndexSpec
)
343.PortRedirectSymbol ::= "->"
344.ValueSpec ::= ValueKeyword (ValueRef | ("(" SingleValueSpec {"," SingleValueSpec} ")"))
345.SingleValueSpec ::= ValueRef [AssignmentChar [DecodedModifier ["(" [Expression] ")"]]
 FieldReference ExtendedFieldReference]

/* STATIC SEMANTICS – FieldReference shall not be ParRef and ExtendedFieldReference shall not be
TypeDefIdentifier*/
346.ValueKeyword ::= "value"
347.SenderSpec ::= SenderKeyword ValueRef
348.SenderKeyword ::= "sender"
349.TriggerStatement ::= PortOrAny Dot PortTriggerOp
350.PortTriggerOp ::= TriggerOpKeyword ["(" TemplateInstance ")"] [FromClause] [PortRedirect]
351.TriggerOpKeyword ::= "trigger"
352.GetCallStatement ::= PortOrAny Dot PortGetCallOp
353.PortGetCallOp ::= GetCallOpKeyword ["(" TemplateInstance ")"] [FromClause]
 [PortRedirectWithParam]
354.GetCallOpKeyword ::= "getcall"
355.PortRedirectWithParam ::= PortRedirectSymbol RedirectWithParamSpec
356.RedirectWithParamSpec ::= (ParamSpec [SenderSpec] [IndexSpec]) |
 (SenderSpec [IndexSpec]) |
 IndexSpec
357.ParamSpec ::= ParamKeyword ParamAssignmentList
358.ParamKeyword ::= "param"
359.ParamAssignmentList ::= "(" (AssignmentList | VariableList) ")"
360.AssignmentList ::= VariableAssignment {"," VariableAssignment}
361.VariableAssignment ::= ValueRef AssignmentChar [DecodedModifier ["(" Expression] ")"]
 Identifier
362.VariableList ::= VariableEntry {"," VariableEntry}
363.VariableEntry ::= ValueRef | Minus
364.GetReplyStatement ::= PortOrAny Dot PortGetReplyOp
365.PortGetReplyOp ::= GetReplyOpKeyword ["(" TemplateInstance [ValueMatchSpec]
 ")"] [FromClause] [PortRedirectWithValueAndParam]
366.PortRedirectWithValueAndParam ::= PortRedirectSymbol RedirectWithValueAndParamSpec
367.RedirectWithValueAndParamSpec ::= (ValueSpec [ParamSpec] [SenderSpec]
 [IndexSpec]) | RedirectWithParamSpec
368.GetReplyOpKeyword ::= "getreply"
369.ValueMatchSpec ::= ValueKeyword TemplateInstance
370.CheckStatement ::= PortOrAny Dot PortCheckOp
371.PortCheckOp ::= CheckOpKeyword ["(" CheckParameter ")"]
372.CheckOpKeyword ::= "check"
373.CheckParameter ::= CheckPortOpsPresent |
 FromClausePresent |
 RedirectPresent
374.FromClausePresent ::= FromClause [PortRedirectSymbol ((SenderSpec
 [IndexSpec]) |
 IndexSpec)]
375.RedirectPresent ::= PortRedirectSymbol ((SenderSpec [IndexSpec]) |
 IndexSpec)
376.CheckPortOpsPresent ::= PortReceiveOp |
 PortGetCallOp |

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)312

 PortGetReplyOp |
 PortCatchOp
377.CatchStatement ::= PortOrAny Dot PortCatchOp
378.PortCatchOp ::= CatchOpKeyword ["(" CatchOpParameter ")"] [FromClause] [PortRedirect]
379.CatchOpKeyword ::= "catch"
380.CatchOpParameter ::= Signature ["," TemplateInstance] | TimeoutKeyword
381.ClearStatement ::= PortOrAll Dot ClearOpKeyword
382.PortOrAll ::= ObjectReference | AllKeyword PortKeyword
383.ClearOpKeyword ::= "clear"
384.StartStatement ::= PortOrAll Dot StartKeyword
385.StopStatement ::= PortOrAll Dot StopKeyword
386.StopKeyword ::= "stop"
387.HaltStatement ::= PortOrAll Dot HaltKeyword
388.HaltKeyword ::= "halt"
389.AnyKeyword ::= "any"
390.CheckStateStatement ::= PortOrAllAny Dot CheckStateKeyword "(" SingleExpression ")"
391.PortOrAllAny ::= PortOrAll | AnyKeyword PortKeyword
392.CheckStateKeyword ::= "checkstate"

A.1.6.4.3 Timer operations

393.TimerStatements ::= StartTimerStatement |
 StopTimerStatement |
 [NoDefaultModifier] TimeoutStatement
394.TimerOps ::= ReadTimerOp | RunningTimerOp
395.StartTimerStatement ::= ObjectReference Dot StartKeyword ["(" Expression ")"]
396.StopTimerStatement ::= TimerRefOrAll Dot StopKeyword
397.TimerRefOrAll ::= ObjectReference | AllKeyword TimerKeyword
398.ReadTimerOp ::= ObjectReference Dot ReadKeyword
399.ReadKeyword ::= "read"
400.RunningTimerOp ::= TimerRefOrAny Dot RunningKeyword [IndexAssignment]
401.TimeoutStatement ::= TimerRefOrAny Dot TimeoutKeyword [IndexAssignment]
402.TimerRefOrAny ::= ObjectReference |
 (AnyKeyword TimerKeyword) |
 (AnyKeyword FromKeyword Identifier)
403.TimeoutKeyword ::= "timeout"

A.1.6.4.4 Testcase operation

404.TestcaseOperation ::= TestcaseKeyword "." StopKeyword ["(" { LogItem [","] } ")"]

A.1.6.5 Type
405.Type ::= PredefinedType | ReferencedType
406.PredefinedType ::= BitStringKeyword |
 BooleanKeyword |
 CharStringKeyword |
 UniversalCharString |
 IntegerKeyword |
 OctetStringKeyword |
 HexStringKeyword |
 VerdictTypeKeyword |
 FloatKeyword |
 AddressKeyword |
 DefaultKeyword |
 AnyTypeKeyword |
 TimerKeyword
407.BitStringKeyword ::= "bitstring"
408.BooleanKeyword ::= "boolean"
409.IntegerKeyword ::= "integer"
410.OctetStringKeyword ::= "octetstring"
411.HexStringKeyword ::= "hexstring"
412.VerdictTypeKeyword ::= "verdicttype"
413.FloatKeyword ::= "float"
414.AddressKeyword ::= "address"
415.DefaultKeyword ::= "default"
416.AnyTypeKeyword ::= "anytype"
417.CharStringKeyword ::= "charstring"
418.UniversalCharString ::= UniversalKeyword CharStringKeyword
419.UniversalKeyword ::= "universal"
420.ReferencedType ::= ExtendedIdentifier [ExtendedTypeFieldReference]
421.TypeReference ::= ExtendedIdentifier
422.ArrayDef ::= {"[" SingleExpression [".." SingleExpression] "]"}+
423.ExtendedTypeFieldReference ::= {(Dot (Identifier | PredefinedType | FromKeyword | ToKeyword)) |
 ("[" Minus "]") }+

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)313

/* STATIC SEMANTICS - ArrayBounds will resolve to a non negative value of integer type */

A.1.6.6 Value
424.Value ::= PredefinedValue | ReferencedValue
425.PredefinedValue ::= Bstring |
 BooleanValue |
 CharStringValue |
 Number | /* IntegerValue */
 Ostring |
 Hstring |
 VerdictTypeValue |
 FloatValue |
 AddressValue |
 OmitKeyword
426.BooleanValue ::= "true" | "false"
427.VerdictTypeValue ::= "pass" |
 "fail" |
 "inconc" |
 "none" |
 "error"
428.CharStringValue ::= Cstring | Quadruple | USIlikeNotation
429.Quadruple ::= CharKeyword "(" Number "," Number "," Number "," Number ")"
430.USIlikeNotation ::= CharKeyword "(" UIDlike { "," UIDlike } ")"
431.UIDlike ::= ("U"|"u") {"+"} {Hex}#(1,8)
432.CharKeyword ::= "char"
433.FloatValue ::= FloatDotNotation |
 FloatENotation |
 NaNKeyword
434.NaNKeyword ::= "not_a_number"
435.FloatDotNotation ::= Number Dot DecimalNumber
436.FloatENotation ::= Number [Dot DecimalNumber] Exponential [Minus] Number
437.Exponential ::= "E"
438.ReferencedValue ::= (ExtendedIdentifier [ExtendedFieldReference]) | ReferencedEnumValue
/* STATIC SEMANTICS – The second option is used only for referencing enumerated values, in all other
cases, the first option is used.
439.ReferencedEnumValue ::= [ReferencedType Dot] Identifier [ExtendedTypeFieldReference]
/* STATIC SEMANTICS - ExtendedEnumReference shall be present if and only if Identifier refers to an
enumerated value with an attached value list */
440.ExtendedEnumReference ::= "(" IntegerValue ")"
441.Number ::= (NonZeroNum {Num}) | "0"
442.NonZeroNum ::= "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
443.DecimalNumber ::= { Num }+
444.Num ::= "0" | NonZeroNum
445.Bstring ::= "'" { Bin | BinSpace } "'" "B"
446.Bin ::= "0" | "1"
447.Hstring ::= "'" { Hex | BinSpace } "'" "H"
448.Hex ::= Num | "A" | "B" | "C" | "D" | "E" | "F" | "a" | "b" | "c" | "d" | "e" | "f"
449.Ostring ::= "'" { Oct | BinSpace } "'" "O"
450.Oct ::= Hex Hex
451.Cstring ::= """ {Char} """
452.Char ::= /* REFERENCE - A character defined by the relevant CharacterString type. For charstring
a character from the character set defined in ITU-T T.50. For universal charstring a character from
any character set defined in ISO/IEC 10646. */
453.Identifier ::= Alpha {AlphaNum | Underscore}
454.Alpha ::= UpperAlpha | LowerAlpha
455.AlphaNum ::= Alpha | Num
456.UpperAlpha ::= "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" |
 "J" | "K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R" |
 "S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z"
457.LowerAlpha ::= "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" |
 "j" | "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" |
 "s" | "t" | "u" | "v" | "w" | "x" | "y" | "z"
458.ExtendedAlphaNum ::= /* REFERENCE - A graphical character from BASIC LATIN or LATIN-1 SUPPLEMENT
character sets defined in ISO/IEC 10646 (characters from char (0,0,0,32) to char (0,0,0,126), from
char (0,0,0,161) to char (0,0,0,172) and from char (0,0,0,174) to char (0,0,0,255) */
459.FreeText ::= """ {ExtendedAlphaNum} """
460.AddressValue ::= "null"
461.OmitKeyword ::= "omit"
462. BinSpace ::= " " | "\" NLChar
463. NLChar ::= /* REFERENCE - Any sequence of newline characters that constitute a newline by using
the following C0 control characters: LF(10), VT(11), FF(12), CR(13) (jointly called newline
characters, see clause A.1.5.1) from the character set defined in Recommendation ITU-T T.50. */

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)314

A.1.6.7 Parameterization
464.InParKeyword ::= "in"
465.OutParKeyword ::= "out"
466.InOutParKeyword ::= "inout"
467.FormalValuePar ::= [(InParKeyword | InOutParKeyword | OutParKeyword)]
 [(LazyModifier | FuzzyModifier) [DeterministicModifier]]
 Type Identifier [ArrayDef] [":=" (Expression | Minus)]
468.FormalTemplatePar ::= [(InParKeyword | OutParKeyword | InOutParKeyword)] TemplateModifier
 [(LazyModifier | FuzzyModifier) [DeterministicModifier]]
 Type Identifier [ArrayDef] [":=" (TemplateInstance | Minus)]
469.TemplateModifier ::= TemplateKeyword | RestrictedTemplate
470.RestrictedTemplate ::= OmitKeyword | (TemplateKeyword TemplateRestriction)
471.TemplateRestriction ::= "(" (OmitKeyword |
 ValueKeyword |
 PresentKeyword
) ")"

A.1.6.8 Statements

A.1.6.8.1 With statement

472.WithStatement ::= WithKeyword WithAttribList
473.WithKeyword ::= "with"
474.WithAttribList ::= "{" MultiWithAttrib "}"
475.MultiWithAttrib ::= {SingleWithAttrib [SemiColon]}
476.SingleWithAttrib ::= StandardAttribute |
 VariantAttribute
477.StandardAttribute ::= AttribKeyword [OverrideKeyword | LocalModifier] [AttribQualifier]
 FreeText
478.VariantAttribute ::= VariantKeyword [(OverrideKeyword | LocalModifier)]
 [AttribQualifier] [RelatedEncoding "."] FreeText
479.RelatedEncoding ::= FreeText | ("{" FreeText { "," FreeText } "}")
480.AttribKeyword ::= EncodeKeyword |
 DisplayKeyword |
 ExtensionKeyword |
 OptionalKeyword
481.EncodeKeyword ::= "encode"
482.VariantKeyword ::= "variant"
483.DisplayKeyword ::= "display"
484.ExtensionKeyword ::= "extension"
485.OverrideKeyword ::= "override"
486.LocalModifier ::= "@local"
487.AttribQualifier ::= "(" DefOrFieldRefList ")"
488.DefOrFieldRefList ::= DefOrFieldRef {"," DefOrFieldRef}
489.DefOrFieldRef ::= QualifiedIdentifier |
 ((FieldReference | "[" Minus "]") [ExtendedFieldOrTypeReference]) |
 AllRef
490.QualifiedIdentifier ::= {Identifier Dot} Identifier
491.ExtendedFieldOrTypeReference ::= {(Dot (Identifier | PredefinedType)) |
 IndexRef | ("[" Minus "]") }+
/* STATIC SEMANTIC - The Identifier refers to a type definition if the type of the VarInstance or
ReferencedValue in which the ExtendedFieldOrReference is used is anytype. IndexRef shall be used
when referencing elements of values or arrays. The square brackets with dash shall be used when
referencing inner types of a record of, set of or array type. */
492.AllRef ::= (GroupKeyword AllKeyword [ExceptKeyword "{" QualifiedIdentifierList
 "}"]) | ((TypeDefKeyword |
 TemplateKeyword |
 ConstKeyword |
 AltstepKeyword |
 TestcaseKeyword |
 FunctionKeyword |
 SignatureKeyword |
 ModuleParKeyword
) AllKeyword [ExceptKeyword
 "{" IdentifierList
 "}"])

A.1.6.8.2 Behaviour statements

493.BehaviourStatements ::= TestcaseInstance |
 FunctionInstance |
 ReturnStatement |
 AltConstruct |

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)315

 InterleavedConstruct |
 LabelStatement |
 GotoStatement |
 RepeatStatement |
 DeactivateStatement |
 AltstepInstance |
 ActivateOp |
 BreakStatement |
 ContinueStatement
494.SetLocalVerdict ::= SetVerdictKeyword "(" SingleExpression {"," LogItem} ")"
495.SetVerdictKeyword ::= "setverdict"
496.GetLocalVerdict ::= "getverdict"
497.SUTStatements ::= ActionKeyword "(" ActionText {StringOp ActionText} ")"
498.ActionKeyword ::= "action"
499.ActionText ::= FreeText | Expression
500.ReturnStatement ::= ReturnKeyword [TemplateInstance]
/* STATIC SEMANTICS - TemplateInstance shall evaluate to a value of a type compatible with the
return type for functions returning a value. It shall evaluate to a value, template (literal or
template instance), or a matching mechanism compatible with the return type for functions returning
a template.*/
501.AltConstruct ::= AltKeyword [NoDefaultModifier] "{" AltstepLocalDefList AltGuardList "}"
502.AltKeyword ::= "alt"
503.AltGuardList ::= {GuardStatement | ElseStatement [SemiColon]}
504.GuardStatement ::= AltGuardChar (AltstepInstance [StatementBlock] |
 GuardOp StatementBlock)
505.ElseStatement ::= "[" ElseKeyword "]" StatementBlock
506.AltGuardChar ::= "[" [BooleanExpression] "]"
507.GuardOp ::= TimeoutStatement |
 ReceiveStatement |
 TriggerStatement |
 GetCallStatement |
 CatchStatement |
 CheckStatement |
 GetReplyStatement |
 DoneStatement |
 KilledStatement
508.InterleavedConstruct ::= InterleavedKeyword [NoDefaultModifier] "{" InterleavedGuardList "}"
509.InterleavedKeyword ::= "interleave"
510.InterleavedGuardList ::= {InterleavedGuardElement [SemiColon]}+
511.InterleavedGuardElement ::= InterleavedGuard StatementBlock
512.InterleavedGuard ::= "[" "]" GuardOp
513.LabelStatement ::= LabelKeyword Identifier
514.LabelKeyword ::= "label"
515.GotoStatement ::= GotoKeyword Identifier
516.GotoKeyword ::= "goto"
517.RepeatStatement ::= "repeat"
518.ActivateOp ::= ActivateKeyword "(" AltstepInstance ")"
519.ActivateKeyword ::= "activate"
520.DeactivateStatement ::= DeactivateKeyword ["("ObjectReference ")"]
521.DeactivateKeyword ::= "deactivate"
522.BreakStatement ::= "break"
523.ContinueStatement ::= "continue"

A.1.6.8.3 Basic statements

524.BasicStatements ::= Assignment |
 LogStatement |
 LoopConstruct |
 ConditionalConstruct |
 SelectCaseConstruct |
 StatementBlock
525.Expression ::= SingleExpression | CompoundExpression
526.CompoundExpression ::= FieldExpressionList | ArrayOrMixedExpression
/* STATIC SEMANTICS - Within CompoundExpression the ArrayOrMixedExpression can be used for Arrays,
record, record of, set and set of types.*/
527.FieldExpressionList ::= "{" FieldExpressionSpec {"," FieldExpressionSpec} "}"
528.FieldExpressionSpec ::= FieldReference AssignmentChar NotUsedOrExpression
529.ArrayOrMixedExpression ::= "{" [ArrayElementExpressionList {"," FieldExpressionSpec}] "}"
530.ArrayElementExpressionList ::= NotUsedOrExpression {"," NotUsedOrExpression}
531.NotUsedOrExpression ::= Expression | Minus
532.ConstantExpression ::= SingleExpression | CompoundConstExpression
533.BooleanExpression ::= SingleExpression
/* STATIC SEMANTICS - BooleanExpression shall resolve to a Value of type Boolean */
534.CompoundConstExpression ::= FieldConstExpressionList | ArrayConstExpression
/* STATIC SEMANTICS - Within CompoundConstExpression the ArrayConstExpression can be used for
arrays, record, record of and set of types. */
535.FieldConstExpressionList ::= "{" FieldConstExpressionSpec {"," FieldConstExpressionSpec} "}"

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)316

536.FieldConstExpressionSpec ::= FieldReference AssignmentChar ConstantExpression
537.ArrayConstExpression ::= "{" [ArrayElementConstExpressionList] "}"
538.ArrayElementConstExpressionList ::= ConstantExpression {"," ConstantExpression}
539.Assignment ::= ValueRef AssignmentChar TemplateBody
/* STATIC SEMANTICS - The TemplateBody on the right hand side of Assignment shall evaluate to an
explicit value of a type compatible with the type of the left hand side for value variables and
shall evaluate to an explicit value, template (literal or a template instance) or a matching
mechanism compatible with the type of the left hand side for template variables. */
540.SingleExpression ::= XorExpression {"or" XorExpression}
/* STATIC SEMANTICS - If more than one XorExpression exists, then the XorExpressions shall evaluate
to specific values of compatible types */
541.XorExpression ::= AndExpression {"xor" AndExpression}
/* STATIC SEMANTICS - If more than one AndExpression exists, then the AndExpressions shall evaluate
to specific values of compatible types */
542.AndExpression ::= NotExpression {"and" NotExpression}
/* STATIC SEMANTICS - If more than one NotExpression exists, then the NotExpressions shall evaluate
to specific values of compatible types */
543.NotExpression ::= ["not"] EqualExpression
/* STATIC SEMANTICS - Operands of the not operator shall be of type boolean or derivatives of type
Boolean. */
544.EqualExpression ::= RelExpression {EqualOp RelExpression}
/* STATIC SEMANTICS - If more than one RelExpression exists, then the RelExpressions shall evaluate
to specific values of compatible types. If only one RelExpression exists, it shall not derive to a
CompoundExpression. */
545.RelExpression ::= ShiftExpression [RelOp ShiftExpression] | CompoundExpression
/* STATIC SEMANTICS - If both ShiftExpressions exist, then each ShiftExpression shall evaluate to a
specific integer, Enumerated or float Value or derivatives of these types. */
546.ShiftExpression ::= BitOrExpression {ShiftOp BitOrExpression}
/* STATIC SEMANTICS - Each Result shall resolve to a specific Value. If more than one Result exists
the right-hand operand shall be of type integer or derivatives and if the shift op is "<<" or ">>"
then the left-hand operand shall resolve to either bitstring, hexstring or octetstring type or
derivatives of these types. If the shift op is " */
547.BitOrExpression ::= BitXorExpression {"or4b" BitXorExpression}
/* STATIC SEMANTICS - If more than one BitXorExpression exists, then the BitXorExpressions shall
evaluate to specific values of compatible types */
548.BitXorExpression ::= BitAndExpression {"xor4b" BitAndExpression}
/* STATIC SEMANTICS - If more than one BitAndExpression exists, then the BitAndExpressions shall
evaluate to specific values of compatible types */
549.BitAndExpression ::= BitNotExpression {"and4b" BitNotExpression}
/* STATIC SEMANTICS - If more than one BitNotExpression exists, then the BitNotExpressions shall
evaluate to specific values of compatible types */
550.BitNotExpression ::= ["not4b"] AddExpression
/* STATIC SEMANTICS - If the not4b operator exists, the operand shall be of type bitstring,
octetstring or hexstring or derivatives of these types. */
551.AddExpression ::= MulExpression {AddOp MulExpression}
/* STATIC SEMANTICS - Each MulExpression shall resolve to a specific Value. If more than one
MulExpression exists and the AddOp resolves to StringOp then the MulExpressions shall be valid
operands for StringOp. If more than one MulExpression exists and the AddOp does not resolve to
StringOp then the MulExpression shall both resolve to type integer or float or derivatives of these
types. If only one MulExpression exists, it shall not derive to a CompoundExpression. */
552.MulExpression ::= UnaryExpression {MultiplyOp UnaryExpression} | CompoundExpression
/* STATIC SEMANTICS - Each UnaryExpression shall resolve to a specific Value. If more than one
UnaryExpression exists then the UnaryExpressions shall resolve to type integer or float or
derivatives of these types. */
553.UnaryExpression ::= [UnaryOp] Primary
/* STATIC SEMANTICS - Primary shall resolve to a specific Value of type integer or float or
derivatives of these types. */
554.Primary ::= OpCall |
 PresenceCheckingOp |
 Value |
 "(" SingleExpression ")"
555.ExtendedFieldReference ::= {(Dot (Identifier | PredefinedType | FromKeyword | ToKeyword |
 PresentKeyword ValueKeyword)) |
 IndexRef |
 DecodedFieldReference
 }+
/* STATIC SEMANTIC - The Identifier refers to a type definition if the type of the VarInstance or
ReferencedValue in which the ExtendedFieldReference is used is anytype. IndexRef shall be used when
referencing elements of values or arrays. DecodedFieldReference shall not appear on the left-hand
side of assignments and in type references*/
556. DecodedFieldReference ::= "=>" DecodedFieldType
557. DecodedFieldType ::= PredefinedType |
 Identifier |
 "(" Type ["," Expression] ")"
/* STATIC SEMANTIC - The Identifier shall resolve into a type */
558.OpCall ::= ConfigurationOps |
 GetLocalVerdict |
 TimerOps |

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)317

 TestcaseInstance |
 (FunctionInstance [ExtendedFieldReference]) |
 (TemplateOps [ExtendedFieldReference]) |
 ActivateOp |
 GetAttributeOp
559.PresenceCheckingOp := ("ispresent" | "ischosen" | "isvalue" | "isbound")
 "(" TemplateInstance ")"
560.AddOp ::= "+" | "-" | StringOp
/* STATIC SEMANTICS - Operands of the "+" or "-" operators shall be of type integer or float or
derivations of integer or float (i.e. subrange) */
561.MultiplyOp ::= "*" | "/" | "mod" | "rem"
/* STATIC SEMANTICS - Operands of the "*", "/", rem or mod operators shall be of type integer or
float or derivations of integer or float (i.e. subrange) */
562.UnaryOp ::= "+" | "-"
/* STATIC SEMANTICS - Operands of the "+" or "-" operators shall be of type integer or float or
derivations of integer or float (i.e. subrange) */
563.RelOp ::= "<" | ">" | ">=" | "<="
/* STATIC SEMANTICS - the precedence of the operators is defined in Table 6 */
564.EqualOp ::= "==" | "!="
565.StringOp ::= "&"
/* STATIC SEMANTICS - Operands of the list operator shall be bitstring, hexstring, octetstring,
(universal) character string, record of, set of, or array types, or derivates of these types. */
566.ShiftOp ::= "<<" | ">>" | "<@" | "@>"
567.LogStatement ::= LogKeyword "(" LogItem {"," LogItem} ")"
568.LogKeyword ::= "log"
569.LogItem ::= FreeText | TemplateInstance
570.LoopConstruct ::= ForStatement |
 WhileStatement |
 DoWhileStatement
571.ForStatement ::= ForKeyword "(" Initial SemiColon BooleanExpression
 SemiColon Assignment ")" StatementBlock
572.ForKeyword ::= "for"
573.Initial ::= VarInstance | Assignment
574.WhileStatement ::= WhileKeyword "(" BooleanExpression ")" StatementBlock
575.WhileKeyword ::= "while"
576.DoWhileStatement ::= DoKeyword StatementBlock WhileKeyword "(" BooleanExpression
 ")"
577.DoKeyword ::= "do"
578.ConditionalConstruct ::= IfKeyword "(" BooleanExpression ")" StatementBlock
 {ElseIfClause} [ElseClause]
579.IfKeyword ::= "if"
580.ElseIfClause ::= ElseKeyword IfKeyword "(" BooleanExpression ")" StatementBlock
581.ElseKeyword ::= "else"
582.ElseClause ::= ElseKeyword StatementBlock
583.SelectCaseConstruct ::= SelectKeyword [UnionKeyword] "(" SingleExpression ")" SelectCaseBody
584.SelectKeyword ::= "select"
585.SelectCaseBody ::= "{" {SelectCase}+ [CaseElse] "}"
586.SelectCase ::= CaseKeyword ("("TemplateInstance {"," TemplateInstance}
 ")" | ElseKeyword) StatementBlock
/* STATIC SEMANTIC - TemplateInstance-s shall be Identifier-s if the UnionKeyword is present in the
surrounding SelectCaseConstruct (see clause 19.3.2) */
587.CaseElse ::= CaseKeyword ElseKeyword StatementBlock
588.CaseKeyword ::= "case"
589.ExtendedIdentifier ::= [Identifier Dot] Identifier
590.IdentifierList ::= Identifier {"," Identifier}
591.QualifiedIdentifierList ::= QualifiedIdentifier {"," QualifiedIdentifier}
592.GetAttributeOp ::= (Type | TemplateInstance) "." GetAttributeSpec
593.GetAttributeSpec ::= EncodeKeyword |
 VariantKeyword ["(" FreeText ")"] |
 DisplayKeyword |
 ExtensionKeyword |
 OptionalKeyword

A.1.6.9 Miscellaneous productions
594.Dot ::= "."
595.Minus ::= "-"
596.SemiColon ::= ";"
597.Colon ::= ":"
598.Underscore ::= "_"
599.AssignmentChar ::= ":="
600.IndexModifier ::= "@index"
601.DeterministicModifier ::= "@deterministic"
602.LazyModifier ::= "@lazy"
603.FuzzyModifier ::= "@fuzzy"
604.CaseInsenModifier ::= "@nocase"
605.DecodedModifier ::= "@decoded"

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)318

606.DefaultModifier ::= "@default"
607.ControlModifier ::= "@control"
608.AbstractModifier ::= "@abstract"

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)319

Annex B (normative):
Matching values

B.1 Template matching mechanisms

B.1.0 General
This annex specifies the matching mechanisms that may be used in TTCN-3 templates (and only in templates).

B.1.1 Matching specific values
Specific values are the basic matching mechanism of TTCN-3 templates. Specific values in templates are expressions
which do not contain any matching mechanisms or wildcards.

Unless otherwise specified, a template field matches the corresponding field value if, and only if, the field value has
exactly the same value as the value to which the expression in the template evaluates.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

 // Given the message type definition
 type record MyMessageType
 {
 integer field1,
 charstring field2,
 boolean field3 optional,
 integer field4[4]
 }

 // A message template using specific values could be
 template MyMessageType m_myTemplate:=
 {
 field1 := 3+2, // specific value of integer type
 field2 := "My string", // specific value of charstring type
 field3 := true, // specific value of boolean type
 field4 := {1,2,3,4} // specific value of integer array
 }

B.1.2 Matching mechanisms instead of values

B.1.2.0 General

The following matching mechanisms may be used in place of explicit values.

B.1.2.1 Template list

A template list denotes a list of acceptable values. It can be used for values of all types. A template list may contain
values, templates obeying the template (present) restriction (see clause 15.8), and members added by all from
clauses. An all from clause comprises all elements of an existing record of or set of template into the
template list.

A template field that uses a template list matches the corresponding field if, and only if, the field value matches any one
of the values or templates in the template list, after resolving all all from clauses. Each value or template in the
template list shall be of the type declared for the template field in which this mechanism is used.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)320

Restrictions

a) The type of the template list and the member type of the template in the all from clause shall be
compatible.

b) The template in the all from clause shall be either a specific value or combined template. Elements of the
combined template may contain any of the matching mechanisms or matching attributes with the exception of
those described in the following restriction.

c) Individual elements of the combined template in the all from clause shall not resolve to any of the
following matching mechanisms: AnyElementsOrNone, permutation.

d) Each value or template in the template list shall be of the type declared for the template field in which this
mechanism is used.

e) Templates in the template list shall obey the template (present) restriction (see clause 15.8).

Examples

EXAMPLE 1:

 template MyMessageType mw_myTemplate:=
 {
 field1 := (2,4,6), // list of integer values
 field2 := ("String1", "String2"), // list of charstring values
 :
 :
 }

EXAMPLE 2:

 type record of integer RoI;
 template RoI mw_roI1 := {1, 2, (6..9)};

 template RoI mw_roI2 := {1, *, 3};

 template integer mw_i1 := (all from mw_roI1, 100);
 // results in (1, 2, (6..9), 100)

 template integer mw_i2 := (0, all from mw_roI2);
 // causes an error because mw_roI2 contains AnyElementsOrNone

 template RoI mw_roI3 := (all from mw_roI1);
 // causes an error because member type of mw_roI1 (integer)
 // is not compatible with the list template type (RoI)

 template RoI mw_roI4 := ?;

 template RoI mw_roI5 := (all from mw_roI4);
 // causes an error, because mw_roI4 as a whole resolves into a matching mechanism

B.1.2.2 Complemented template list

The keyword complement denotes a list of values that will not be accepted as values (i.e. it is the complement of a
template list). It can be used on all values of all types. A complemented value list may also contain templates obeying
the present template restriction (see clause 15.8).

A template field that uses complement matches the corresponding field if and only if the corresponding field's value
does not match any of the values or templates listed in the template list. The template list may be a single value, of
course.

Besides specifying individual values, it is possible to add all elements of an existing record of or set of template
into a complement template list using an all from clause.

Restrictions

a) The type of the complemented template list and the member type of the template in the all from clause
shall be compatible.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)321

b) The template in the all from clause shall resolve either into a specific value or combined template.
Elements of the combined template may contain any of the matching mechanisms or matching attributes with
the exception of those described in the following restriction.

c) Individual elements of the combined template in the all from clause shall not resolve to any of the
following matching mechanisms: AnyElementsOrNone, permutation.

d) Each value or template in the list shall be of the type declared for the template field in which the complement
is used.

e) The complement of a template list shall not match omit.

f) Templates in the complement of a template list shall obey the present template restriction (see clause 15.8).

Examples

EXAMPLE 1:

 type record MyMessageType
 {
 integer field1,
 boolean field2
 }

 template MyMessageType mw_myTemplate:=
 {
 field1 := complement (1,3,5), // list of unacceptable integer values
 field2 := complement(true) // will match false
 }

EXAMPLE 2:

 type record of integer RoI;

 template RoI mw_roI1 := {1, 2, (6..9)};

 template RoI mw_roI2 := {1, *, 3};

 template integer mw_i1 := complement(all from mw_roI1, 100);
 // matches integer values different from 1, 2, 6, 7, 8, 9 and 100

 template integer mw_i2 := complement(0, all from mw_roI2);
 // causes an error because mw_roI2 contains AnyElementsOrNone

 template RoI mw_roI3 := complement(all from mw_roI1);
 // causes an error because member type of mw_roI1 (integer) is not compatible
 // with the complemented list template type (RoI)

 template RoI mw_roI4 := ?;

 template RoI mw_roI5 := complement (all from mw_roI4);
 // causes an error because mw_roI4 resolves into a matching mechanism

B.1.2.3 Any value

The matching symbol "?" (AnyValue) matches any value of the specified type. It can be used on values of all types.

A template field that uses the any value mechanism matches the corresponding field if, and only if, the field evaluates to
a single element of the specified type.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

 template MyMessageType mw_myTemplate:=
 {
 field1 := ?, // will match any integer
 field2 := ?, // will match any non-empty charstring value
 field3 := ?, // will match true or false
 field4 := ? // will match any sequence of integers

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)322

 }

B.1.2.4 Any value or none

The matching symbol "*" (AnyValueOrNone) is used to indicate that any valid value and the omission of the given
optional field are acceptable. It can be assigned to templates of any type as a whole or to optional fields of set or
record templates.

A template field that uses this symbol matches the corresponding field if, and only if, either the field evaluates to any
element of the specified type, or if the field is absent.

Restrictions

a) It can be assigned to templates of any type as a whole or to optional fields of set or record templates.

b) At the time of matching during a receiving operation, it shall be applied to optional fields of record and set
templates only.

Examples

 type record MyMessageType2
 {
 integer field1,
 MyRecordofType field2 optional,
 boolean field3 optional
 }

 type record of integer MyRecordofType;

 const MyMessageType2 c_myMessage := { {42}, omit, false }

 template MyMessageType2 mw_myMessageTemplate:=
 {
 :
 field3 := * // matches true or false or omitted field3
 }

 template MyMessageType2 mw_myMessageTemplate2:=
 {
 field1 := *, // causes an error as field1 is mandatory
 :
 }

 template MyRecordofType mw_myRecofTemplate := *; // this assignment is allowed
 template boolean mw_myBoolTemplate := *; // this assignment is allowed as well

 template MyMessageType2 mw_myMessageTemplate3:=
 {
 field1 := 42,
 field2 := mw_myRecofTemplate,
 // matches any valid value allowed by mw_myRecordof or absent field2
 field3 := mw_myBoolTemplate
 // matches true or false or omitted field3
 }

 v_mybooleanVar := match (c_myMessage.field2, mw_myRecofTemplate)
 // matches and returns true

 v_mybooleanVar := match ({},mw_myRecofTemplate);
 // matches and returns true

 v_mybooleanVar := match (false, mw_myBoolTemplate);
 // matches and returns true

 v_mybooleanVar := match ({42,omit,true},mw_myMessageTemplate3);
 // matches and returns true

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)323

B.1.2.5 Value range

Ranges indicate a bounded range of acceptable values, including or excluding the boundaries.

A template field that uses a range matches the corresponding field if, and only if, the field value is equal to one of the
values in the range.

Restrictions

a) When used for values of integer or float types (and integer or float subtypes), a boundary value shall be
either:

1) infinity or -infinity;

2) an expression that evaluates to a specific integer or float value.

b) The lower boundary shall be put on the left side of the range, the upper boundary at the right side. The lower
boundary shall be less than the upper boundary.

c) When used in templates or template fields of charstring or universal charstring types, the boundaries shall
evaluate to valid character positions according to the coded character set table(s) of the type (e.g. the given
position shall not be empty).

d) Empty positions between the lower and the upper boundaries are not considered to be valid values of the
specified range.

Examples

 template MyMessageType mw_myTemplate:=
 {
 field1 := (1 .. !6), // range of integer type from 1 to 5
 :
 :
 :
 }
 // other entries for field1 might be (-infinity to 8) or (!12 to infinity)

B.1.2.6 SuperSet

SuperSet is denoted by the keyword superset. SuperSet matches a set of values if, and only if, the set of values
contains at least all of the elements defined within the SuperSet, and may contain more. The successful match shall be
produced only if there exists such a one-to-one mapping from the SuperSet elements to the elements of the set of values
where each SuperSet element matches the element of set of values it is mapped to. The SuperSet matching mechanism
may contain templates (including template variables) obeying the present template restriction (see clause 15.8) and
matching mechanisms with the restrictions given below. However, the length matching attribute may be attached to the
SuperSet itself.

NOTE: The SuperSet matching mechanism imposes an implicit length restriction on the matched set of values.,
i.e. the set of values contains at least as many elements as the SuperSet template in order to produce a
successful match.

Besides specifying individual values, it is possible to add all elements of a record of or set of template into
SuperSets using an all from clause.

Restrictions

a) SuperSet is an operation for matching that shall be used only on values of set of types.

b) Individual members of the SuperSet's argument shall be of the type replicated by the set of.

c) The member type of the set of associated with the SuperSet template and the member type of the template in
the all from clause shall be compatible.

d) The template in the all from clause shall resolve either into a specific value or combined template.
Elements of the combined template may contain any of the matching mechanisms or matching attributes with
the exception of those described in the following restriction.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)324

e) The individual members of the SuperSet's argument and the elements of the combined template in the all
from clause shall not be the matching mechanisms omit, SuperSet, SubSet and the matching attributes (length
restriction and ifpresent). In addition, the individual members shall not resolve to AnyValueOrNone and
individual elements of the combined template in the all from clause shall not resolve to
AnyElementsOrNone or permutation.

f) If the length matching attribute is attached to the SuperSet, the minimal length allowed by the length attribute
shall not be less than the number of the elements in the SuperSet.

g) Templates in SuperSet's argument shall obey the present template restriction (see clause 15.8).

Examples

EXAMPLE 1:

 type set of integer MySetOfType (0 .. 10);

 template MySetOfType mw_myTemplate1 := superset (1, 2, 3);
 // matches any sequence of integers which contains at least one occurrences of the numbers
 // 1, 2 and 3 in any order and position

 template MySetOfType mw_myTemplate2_AnyValue := superset (1, 2, ?);
 // matches any sequence of integers which contains at least one occurrences of the numbers
 // 1, 2 and at least one more valid integer value (i.e. between 0 and 10, inclusively), in any
 // order and position

 template MySetOfType mw_myTemplate3 := superset (1, 2, (3, 4));
 // matches any sequence of integers which contains at least one occurrences of the numbers
 // 1, 2 and a number with the value 3 or 4, in any order and position

 template MySetOfType mw_myTemplate4 := superset (1, 2, complement(3, 4));
 // any sequence of integers matches which contains at least one occurrences of the numbers
 // 1, 2 and a valid integer value which is not 3 or 4, in any order and position

 template MySetOfType mw_myTemplate6 := superset (1, 2, 3) length (7);
 // matches any sequence of 7 integers which contains at least one occurrences of the numbers
 // 1, 2 and 3 in any order and position

 template MySetOfType mw_myTemplate7 := superset (1, 2, ?) length (7 .. infinity);
 // matches any sequence of at least 7 integers which contains at least one occurrences of the
 // numbers 1, 2 and at least 5 more valid integer values (i.e. between 0 and 10, inclusively) in
any order and position

 template MySetOfType mw_myTemplate8 := superset (1, 2, 3) length (2 .. 7);
 // causes an error, the lower bound of the length attribute contradicts to the minimum number
 // of elements imposed by the superset argument

EXAMPLE 2:

 type record of integer RoI;
 type set of integer SoI;
 template RoI mw_roI1 := {1, 2, ?};

 template SoI mw_soI1 := superset(all from mw_roI1);
 // results in superset(1, 2, ?)

B.1.2.7 SubSet

SubSet is denoted by the keyword subset. SubSet matches a set of values if, and only if, the set of values contains
only elements defined within the SubSet, and may contain less. The successful match shall be produced only if there
exists such a one-to-one mapping from the elements of the set of values to the SubSet elements where each element of
the set of values is matched by the SubSet element it is mapped to. The SubSet matching mechanism may contain
templates (including template variables) obeying the present template restriction (see clause 15.8) and matching
mechanisms with the restrictions given below. However, the length matching attribute may be attached to the SubSet
itself.

The SubSet matching mechanism imposes an implicit length restriction on the matched set of values: the set of values
shall contain at most as many elements as the SubSet template in order to produce a successful match.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)325

Besides specifying individual values, it is possible to add all elements of a record of or set of template into
SubSets using an all from clause.

Restrictions

a) SubSet is an operation for matching that can be used only on values of set of types.

b) Individual members of the SubSet's argument shall be of the type replicated by the set of.

c) The member type of the set of type associated with the SubSet and the member type of the template in the all
from clause shall be compatible.

d) The template in the all from clause shall resolve either into a matching mechanism or combined template.
Elements of the combined template may contain any of the matching mechanisms or matching attributes with
the exception of those described in the following restriction.

e) The individual members of the SubSet's argument and the elements of the combined template in the all
from clause shall not be the matching mechanisms omit, SuperSet, SubSet and the matching attributes (length
restriction and ifpresent). In addition, individual members shall not resolve to AnyValueOrNone and individual
elements of the combined template in the all from clause shall not resolve to AnyElementsOrNone or
permutation.

f) If the length matching attribute is attached to the SubSet, the maximum length allowed by the length attribute
shall not exceed the number of the elements in the SubSet.

g) Templates in SubSet's argument shall obey the present template restriction (see clause 15.8).

Examples

EXAMPLE 1:

 template MySetOfType mw_myTemplate1:= subset (1, 2, 3);
 // matches any sequence of integers which contains zero or one occurrences of the numbers
 // 1, 2 and 3 in any order and position

 template MySetOfType mw_myTemplate1:= subset (1, 2, ?);
 // matches any sequence of integers which contains zero or one occurrences of the numbers
 // 1, 2 and a valid integer value (i.e. between 0 and 10, inclusive) in any order and position

 template MySetOfType mw_myTemplate1:= subset (1, 2, (3, 4));
 // matches any sequence of integers which contains zero or one occurrences of the numbers
 // 1, 2 and one of the numbers 3 or 4, in any order and position

 template MySetOfType mw_myTemplate1:= subset (1, 2, complement (3, 4));
 // matches any sequence of integers which contains zero or one occurrences of the numbers
 // 1, 2 and a valid integer number which is not 3 or 4, in any order and position

 template MySetOfType mw_myTemplate1:= subset (1, 2, 3) length (2);
 // matches any sequence of two integers which contains zero or one occurrences of
 // the numbers 1, 2 and 3, in any order and position

 template MySetOfType mw_myTemplate1:= subset (1, 2, ?) length (0 .. 2);
 // matches any sequence of zero, one or two integers which contains zero or one occurrences of
 // the numbers 1, 2 and of a valid integer value, in any order and position

 template MySetOfType mw_myTemplate1:= subset (1, 2, 3) length (0 .. 4);
 // causes an error, the upper bound of length attribute contradicts to the maximum number of
 // elements imposed by the subset argument

EXAMPLE 2:

 type record of integer RoI;
 type set of integer SoI;
 template RoI mw_roI1 := {1, 2, ?};

 template SoI mw_soI1 := subset(all from mw_roI1);
 // results in subset(1, 2, ?)

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)326

B.1.2.8 Omitting optional fields

The keyword omit denotes that an optional field shall be absent. If used as a matching mechanism, it matches an
optional field if and only if it is absent.

Restrictions

a) It can be assigned to templates of any type as a whole or to optional fields of set or record templates.

b) At the time of matching during a receiving operation, it shall be applied to optional fields of record and set
templates only.

Examples

 type record MyMessageType2
 {
 integer field1,
 MyRecordofType field2 optional,
 boolean field3 optional
 }

 const MyMessageType2 c_myMessage := { 42, omit, false }

 template MyMessageType2 m_myMessageTemplate:=
 {
 :
 field3 := omit // omits the optional field field3
 }

 template MyMessageType2 m_myMessageTemplate2:=
 {
 field1 := omit, // causes an error as field1 is mandatory
 :
 }

 template MyRecordof m_myRecofTemplate := omit; // this assignment is allowed

 template boolean m_myBoolTemplate := omit; // this assignment is allowed as well

 template MyMessageType2 m_myMessageTemplate3:=
 {
 field1 := 42,
 field2 := m_myRecofTemplate,
 // matches if field2 is absent
 field3 := m_myBoolTemplate
 // matches if field3 is absent
 }

 v_myBooleanVar := match (c_myMessage.field2, m_myRecofTemplate)
 // matches and returns true

 v_myBooleanVar := match ({},m_myRecofTemplate)
 // does not match and returns false

 v_myBooleanVar := match (false, m_myBoolTemplate);
 // does not match and returns false

 v_myBooleanVar := match ({42,omit,omit},m_myMessageTemplate3)
 // matches and returns true

B.1.2.9 Matching decoded content

The matching symbol MatchDecodedContent decmatch is used for checking encoded payload fields. The matching
symbol is composed of the decmatch keyword, an optional encoding format parameter and a mandatory template
instance called decoding target.

A template field that uses this symbol matches the corresponding field if, and only if, the field can be successfully
decoded as an instance of the same type as the decoding target and if the decoded instance can be successfully matched
by the decoding target.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)327

The optional encoding format parameter may specify one of the UCS encoding formats (see clause C.5.4) that shall be
used for the decoding trial, i.e. it overrides any variant attribute attached to the decoding target or the type of the
decoding target (for example, for predefined variant attributes see clause 27.5).

Restrictions

a) It can be assigned to templates and template fields of bitstring, hexstring, octetstring,
charstring and universal charstring types.

b) The decoding target can be a template of any data type.

c) The optional encoding format parameter can be used only for fields of r universal charstring types.
The parameter value shall be of the charstring type and it shall contain one of the strings allowed for the
decvalue_unichar predefined function (specified in clause C.5.4). Any other value shall cause an error.

d) If the template field is of charstring type or is of universal charstring type and the encoding
format is missing, the default value "UTF-8" shall be used.

NOTE: The model of the behaviour of this implicit decoding is the following. At first, hexstring and
octetstring values are implicitly converted to a bitstring value using the predefined hex2bit
and oct2bit functions (specified in clauses C.1.18 and C.1.22) and charstring values are implicitly
converted to universal charstring values. Prior to decoding, the bitstring and universal
charstring values are stored into a temporary anonymous variable. Decoding is then performed by
implicitly calling the predefined decvalue function (specified in clause C.5.2) for bitstring values
and decvalue_unichar function for universal charstring values. The anonymous
variable containing the encoded value is passed as the first parameter to the function, the second
parameter contains another temporary variable called decoded instance. The decoded instance is of the
same type as the decoding target. If the optional encoding format parameter is present, it is passed as the
third parameter to the decvalue_unichar function. Decoding is successful only if the decoding
function returns 0 and the first parameter contains an empty string (i.e. the whole encoded value has been
successfully decoded). The matching mechanism will generate an unsuccessful match if decoding hasn't
succeeded.

Examples

 type record MyBinaryMessageType
 {
 ...,
 octetstring payload
 }

 type record MyTextMessageType
 {
 ...,
 universal charstring payload
 }

 type record MyPayloadType
 {
 integer field1,
 integer field2
 }

 template MyBinaryMessageType mw_t1 :=
 {
 :
 // The payload field can be matched only if it contains an encoded value of the MyPayload
 // type and if the field1 of the decoded value is equal to 1.
 payload := decmatch MyPayload:{field1 := 1, field2 := ? }
 }

 template MyTextMessageType mw_t2 :=
 {
 :
 // The payload field can be matched only if it contains an encoded value of the MyPayloadType
 // type in the UTF-8 format and if the field1 of the decoded value is equal to 2 or 3.
 payload := decmatch("UTF-8") MyPayloadType:{field1 := (2, 3), field2 := ? }
 }

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)328

B.1.2.10 Matching enumerated value with value list

To match an enumerated value with an associated value list in its definition, the enumerated value name shall be
referenced followed by a non-empty list of integer templates in parenthesis.

The template matches only those enumerated values of the same name where the associated integer values is matched
by at least one of the integer templates.

Examples

 type enumerated Days
 {
 Christmas(0), Easter(1), Other(2..365)
 }

 template integer mw_greater20 := complement(0 .. 20);
 template mw_days1 := Other(5..6, greater20); // matches Other(5), Other(6) and
 // Other(21) .. Other(365)
 template mw_days2 := Other(?); // matches Other(2) .. Other(365)

B.1.3 Matching mechanisms inside values

B.1.3.0 General

The following matching mechanisms may be used inside explicit values of strings, records, records of, sets, sets of and
arrays. The template that contains a matching mechanism inside a value is called a combined template.

B.1.3.1 Any element

B.1.3.1.0 General

The matching symbol "?" (AnyElement) is used to indicate that it replaces single elements of a string (except character
strings, see table 4 for the lengths of the units being matched by "?" in a string), a record of, a set of or an array.

Restrictions

a) It shall be used only within values of string types, record of types, set of types and arrays.

Examples

 template MyMessageType mw_myTemplate:=
 { :
 field2 := "abcxyz",
 field3 := '10???'B, // where each "?" may either be 0 or 1
 field4 := {1, ?, 3} // where ? may be any integer value
 }

NOTE: The "?" in field4 can be interpreted as AnyValue as an integer value, or AnyElement inside a record
of, set of or array. Since both interpretations lead to the same match no problem arises.

B.1.3.1.1 Using single character wildcards

If it is required to express the "?" wildcard in character strings it shall be done using character patterns (see
clause B.1.5). For example: "abcdxyz", "abccxyz", "abcxxyz" etc. will all match pattern "abc?xyz". However,
"abcxyz", "abcdefxyz", etc. will not.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)329

B.1.3.2 Any number of elements or no element

B.1.3.2.0 General

The matching symbol "*" (AnyElementsOrNone) is used to indicate that it replaces none or any number of consecutive
elements of a string (except character strings), a record of, a set of or an array. The "*" symbol matches the
longest sequence of elements possible, according to the pattern as specified by the symbols surrounding the "*".

If a "*" appears at the highest level inside a binary string, a record of, set of or array, it shall be interpreted as
AnyElementsOrNone.

NOTE: This rule prevents the otherwise possible interpretation of "*" as AnyValueOrNone that replaces an
element inside a binary string, record of, set of or array.

Restrictions

a) It shall be used only within values of binary string types, record of types, set of types and arrays and
inside the permutation matching mechanism.

Examples

 template MyMessageType mw_myTemplate:=
 { :
 field2 := "abcxyz",
 field3 := '10*11'B, // where "*" may be any sequence of bits (possibly empty)
 field4 := {*, 2, 3} // where "*"may be any number of integer values or omitted
 }

 type charstring MyStrings[4];
 myPCO.receive(MyStrings:{"abyz", *, "abc" });

B.1.3.2.1 Using multiple character wildcards

If it is required to expressed the "*" wildcard in character strings it shall be done using character patterns (see
clause B.1.5). For example: "abcxyz", "abcdefxyz" "abcabcxyz" etc. will all match pattern "abc*xyz".

B.1.3.3 Permutation

Permutation is an operation for matching that shall be used only on values of record of and array types.
Permutation is denoted by the keyword permutation. Permutation elements shall obey the restrictions given below.

A permutation without AnyElementsOrNone in place of a single record of element means that any series of elements is
acceptable provided that there is a one to one mapping between elements in the record of and in the permutation list
such that each element matches its corresponding element in the permutation list.

AnyElementsOrNone used inside permutation (directly or via reference) replaces none or any number of elements
within the segment of the record of value matched by permutation. The permutation matching is successful, if a subset
of the elements in the record of matches the permutation list without the AnyElementsOrNone. If both permutation and
AnyElementsOrNone are used in a record of template, they shall be evaluated jointly.

NOTE 1: AnyElementsOrNone used inside permutation has a different effect as AnyElementsOrNone used in
conjunction with permutation as in the latter AnyElementsOrNone replaces consecutive elements only.
For example, {permutation(1,2,*)} is equivalent to ({*,1,*,2,*},{*,2,*,1,*}), while
{permutation(1,2),*} is equivalent to ({1,2,*},{2,1,*}).

NOTE 2: When AnyElementsOrNone is inside a permutation, a length attribute may be applied to
AnyElementsOrNone to restrict the number of elements matched by AnyElementsOrNone (see also
clause B.1.4.1).

Besides specifying all individual values, it is possible to add all elements of a record of or set of template into
permutations using an all from clause.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)330

Restrictions

a) Each individual member listed in the permutation shall be of the type replicated by the record of or array
type.

b) The member type of the permutation and the member type of the template in the all from clause shall be
compatible.

c) The template referenced in the all from clause shall resolve either into specific value (see clause B.1.1) or
combined template. The combined template shall not contain permutations.

d) Void.

e) Templates except AnyElementsOrNone listed in the permutation shall obey the present template restriction
(see clause 15.8).

Examples

EXAMPLE 1:

 type record of integer MySequenceOfType;

 template MySequenceOfType mw_myTemplate1 := { permutation (1, 2, 3), 5 };
 // matches any of the following sequences of 4 integers: 1,2,3,5; 1,3,2,5; 2,1,3,5;
 // 2,3,1,5; 3,1,2,5; or 3,2,1,5

 template MySequenceOfType mw_myTemplate2 := { permutation (1, 2, ?), 5 };
 // matches any sequence of 4 integers that ends with 5 and contains 1 and 2 at least once in
 // other positions

 template MySequenceOfType mw_myTemplate3 := { permutation (1, 2, 3), * };
 // matches any sequence of integers starting with 1,2,3; 1,3,2; 2,1,3; 2,3,1; 3,1,2 or 3,2,1

 template MySequenceOfType mw_myTemplate4 := { *, permutation (1, 2, 3)};
 // matches any sequence of integers ending with 1,2,3; 1,3,2; 2,1,3; 2,3,1; 3,1,2 or 3,2,1

 template MySequenceOfType mw_myTemplate5 := { *, permutation (1, 2, 3),* };
 // matches any sequence of integers containing any of the following substrings at any position:
 // 1,2,3; 1,3,2; 2,1,3; 2,3,1; 3,1,2 or 3,2,1

 template MySequenceOfType mw_myTemplate6 := { permutation (1, 2, *), 5 };
 // matches any sequence of integers that ends with 5 and containing 1 and 2 at least once in
 // other positions

 template MySequenceOfType mw_myTemplate7 := { permutation (1, 2, 3), * length (0..5)};
 // matches any sequence of three to eight integers starting with 1,2,3; 1,3,2; 2,1,3; 2,3,1;
 // 3,1,2 or 3,2,1

 template integer mw_myInt1 := (1,2,3);
 template integer mw_myInt2 := (1,2,?);
 template integer mw_myInt3 := ?;
 template integer mw_myInt4 := *;

 template MySequenceOfType mw_myTemplate10 := { permutation (mw_myInt1, 2, 3), 5 };
 // matches any of the sequences of 4 integers:
 // 1,3,2,5; 2,1,3,5; 2,3,1,5; 3,1,2,5; or 3,2,1,5;
 // 2,3,2,5; 2,2,3,5; 2,3,2,5; 3,2,2,5; or 3,2,2,5;
 // 3,3,2,5; 2,3,3,5; 2,3,3,5; 3,3,2,5; or 3,2,3,5;

 template MySequenceOfType mw_myTemplate11 := { permutation (mw_myInt2, 2, 3), 5 };
 // matches any sequence of 4 integers that ends with 5 and contains 2 and 3 at least once in
 // other positions

 template MySequenceOfType mw_myTemplate12 := { permutation (mw_myInt3, 2, 3), 5 };
 // matches any sequence of 4 integers that ends with 5 and contains 2 and 3 at least once in
 // other positions

 template MySequenceOfType mw_myTemplate13 := { permutation (mw_myInt4, 2, 3), 5 };
 // matches any sequence of integers that ends with 5 and containing 2 and 3 at least once in
 // other positions

 template MySequenceOfType mw_myTemplate14 := { permutation (mw_myInt3, 2, ?), 5 };
 // matches any sequence of 4 integers that ends with 5 and contains 2 at least once in
 // other positions

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)331

 template MySequenceOfType mw_myTemplate15 := { permutation (mw_myInt4, 2, *), 5 };
 // matches any sequence of integers that ends with 5 and contains 2 at least once in
 // other positions

 template MySequenceOfType mw_myTemplate16 := { permutation (2, 2, 3), 5 };
 // matches any sequence of integers of length 4 that ends with 5 and contains 2 in
 // two other positions and 3 in the remaining position

EXAMPLE 2:

 type record of integer RoI;
 template RoI mw_roI1 := {1, 2, *};

 template RoI mw_roI2 := {permutation(0, all from mw_roI1), 4, 5};
 // results in {permutation(0, 1, 2, *), 4, 5}

B.1.4 Matching attributes of values

B.1.4.0 General

The following attributes may be associated with matching mechanisms.

B.1.4.1 Length restrictions

The length restriction attribute is used to restrict the length of string values matching the template or the number of
elements in a set of, record of or array structure.

It can also be used in conjunction with the ifpresent matching attribute. The syntax for length can be found in
clause 6.2.3.

NOTE: When the length attribute is used with a template list, elements of the list may be disabled by the
attribute.

The units of length are to be interpreted according to table 4 in the main body of the present document in the case of
string values. For set of, record of types and arrays the unit of length is the replicated type.

A template field that uses length as an attribute of a symbol matches the corresponding field if, and only if, the field
matches both the symbol and its associated attribute. The length attribute matches if the length of the field is greater
than or equal to the specified lower bound and less than or equal to the upper bound. In the case of a single length value
the length attribute matches only if the length of the received field is exactly the specified value.

It is allowed to use a length restriction in conjunction with the special value omit, however in this case the length
attribute has no effect (i.e. with omit it is redundant). With AnyValueOrNone and ifpresent it places a restriction
on the value, if any.

If a length restriction is added to an AnyElementsOrNone matching mechanism, it constrains the number of elements
matched by this matching mechanism. The minimum and maximum number of elements matched by the
AnyElementsOrNone matching mechanism is equal to the lower bound and upper bound of the length restriction.

Restrictions

a) The length restriction shall be used only as an attribute of the following matching mechanisms: specific value,
combined template, template list, complemented template list, AnyValue, AnyValueOrNone, AnyElement,
AnyElementsOrNone, superset, subset, and pattern.

b) It shall not be used directly with templates and template fields produced by concatenation (see clause 15.11). If
the length of a template or template field produced by concatenation is wished to be restricted, the
concatenation shall be enclosed into a pair of parentheses.

c) The boundaries of the length restriction shall be denoted by expressions which resolve to specific non-negative
integer values. Alternatively, the keyword infinity can be used as a value for the upper boundary in
order to indicate that there is no upper limit of length.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)332

d) The length specifications for the template shall not conflict with the length for restrictions (if any) of the
corresponding type.

e) When both the complement and the length restriction matching mechanisms are used for a template or
template field, restrictions implied by them shall apply to the template or template field independently.

Examples

 // Given the message type definition
 type record MyMessageType3
 {
 record of integer field1,
 record of integer field2,
 charstring field3,
 charstring field4,
 charstring field5
 }

 template MyMessageType3 mw_myTemplate:=
 {
 field1 := complement ({4,5},{1,4,8,9}) length (1 .. 6), // any value containing 1, 2, 3,
 //4, 5 or 6 elements is accepted provided it is not {4,5} or {1,4,8,9}
 field2 := { 1, * length(2), 3 } // matches the same values as {1, ?, ?, 3 }
 field3 := "ab*ab" length(5), // matches the character string "ab*ab" only
 field4 := "ab*ab" length(13), // never matches as the specific value is of length 5
 // and not of length 13
 Field5 := pattern "ab*ab" length(13),
 // max length of the AnyElementsOrNone string is 9 characters
 }

B.1.4.2 The IfPresent indicator

The ifpresent indicates that a match may be made if an optional field is present (i.e. not omitted).

A template field that uses ifpresent matches the corresponding field if, and only if, the field matches according to
the associated matching mechanism, or if the field is absent.

Restrictions

a) This IfPresent indicator shall be used only for matching mechanisms in templates of any type as a whole or for
optional fields of set or record templates.

b) At the time of matching during a receiving operation, it shall be applied to optional fields of record and set
templates only.

Examples

 type record MyMessageType2
 {
 integer field1,
 MyRecordofType field2 optional,
 boolean field3 optional
 }

 template MyMessageType2 mw_myMessageTemplate:=
 {
 :
 field2 := { 1, 2, 3 } ifpresent, // matches { 1, 2, 3 } if not omitted
 :
 }

 template MyMessageType mw_myMessageTemplate2:=
 {
 field1 := 1 ifpresent, // causes an error as field1 is mandatory
 :
 }

 template MyRecordofType mw_myRecofTemplate := { 1, 2, 3 } ifpresent; // this assignment is
 allowed

 template boolean mw_myBoolTemplate := true ifpresent; // this assignment is also allowed

 template MyMessageType2 mw_myMessageTemplate3:=

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)333

 {
 field1 := 42,
 field2 := mw_myRecofTemplate,
 // if field2 is not absent, it matches the value { 1, 2, 3 }
 field3 := mw_myBoolTemplate
 // if field3 is not absent, it matches the value true
 }

 v_mybooleanVar := match ({},mw_myRecofTemplate);
 // mayches and returns true

 v_mybooleanVar := match ({42,omit,true},mw_myMessageTemplate3);
 // matches and returns true

NOTE: AnyValueOrNone has exactly the same meaning as ? ifpresent.

B.1.5 Matching character pattern

B.1.5.0 General

Character patterns can be used in templates to define the format of a required character string to be received. Character
patterns can be used to match charstring and universal charstring values. In addition to literal characters,
character patterns allow the use of meta-characters (e.g. ? and * within a character pattern means matching any
character and any number of any character respectively).

EXAMPLE 1:

 template charstring mw_myTemplate:= pattern "ab??xyz*0";

This template will match any character string that consists of the characters "ab", followed by any two characters,
followed by the characters "xyz", followed by any number of any characters (including any number of "0"-s) before the
closing character "0".

If it is required to interpret any metacharacter literally it shall be preceded with the metacharacter "\".

EXAMPLE 2:

 template charstring mw_myTemplate:= pattern "ab?\?xyz*";

This template would match any character string which consists of the characters "ab", followed by any character,
followed by the characters "?xyz", followed by any number of any characters.

The list of meta characters for TTCN-3 patterns is shown in table B.1. Metacharacters shall not contain whitespaces
except a whitespace preceded by a newline character before or inside a set expression.

Table B.1: List of TTCN-3 pattern metacharacters

Metacharacter Indexing Description
? Match any character (see notes 1 and 2)
* Match any character zero or more times; shall match the longest possible

number of characters (see example 1 above) (see notes 1 and 2)
\ Including the

following
character

Cause the following metacharacter to be interpreted as a literal (see note
3). When preceding a character without defined metacharacter meaning "\"
and the character together match the character following the "\" (see note
4)

[] Including the
content

Match any character within the specified set, see clause B.1.5.1 for more
details

- No effect, the
surrounding set
is indexed

Has a metacharacter meaning in a set expression. It allows to specify a
range of characters; see clause B.1.5.1 for more details

^ No effect, the
surrounding set
is indexed

Has a metacharacter meaning in a set expression. It causes to match any
character complementing the set of characters following this
metacharacter;
see clause B.1.5.1 for more details

\q{group,plane,row,
cell} or

\q{Uxxxx, Uxxx ….}

Including the
content enclosed
within brackets

Match one or more universal character. Both the quadruple and the
USI-like syntaxes specified in clause 6.1.1 can be used

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)334

Metacharacter Indexing Description
{reference} Including the

reference
Insert the referenced user defined string and interpret it as a regular
expression.
See clause 27.9 for more details

{\reference} Including the
reference

Insert the referenced user defined string and interpret it as a set of literals.
See clause 27.9 for more details

\N{reference} Including the
reference

Matches a single character from the (sub)set of characters denoted; see
clause B.1.5.4 for more details

\d Match any numerical digit (equivalent to [0-9])
\w Match any alphanumeric character (equivalent to [0-9a-zA-Z])
\t Match the C0 control character HT(9) (see

Recommendation ITU-T T.50 [4])
\n Match any of the following C0 control characters: LF(10), VT(11), FF(12),

CR(13) (see Recommendation ITU-T T.50 [4]) (jointly called newline
characters, see clause A.1.5.1)

\r Match the C0 control character CR (see Recommendation ITU-T T.50 [4])
\s Match any one of the following C0 control characters: HT(9), LF(10),

VT(11), FF(12), CR(13), SP(32) (see Recommendation ITU-T T.50 [4])
(jointly called white-space characters, see clause A.1.5.1)

\b Match a word boundary (any graphical character except SP or DEL is
preceded or followed by any of the whitespace or newline characters)

\" Match the double quote character
"" Match the double quote character
| Used to denote two alternative expressions

() Including the
content

Used to group an expression

#(n, m) Including the
preceding
expression

Match the preceding expression at least n times but no more than m times
(postfix). See clause B.1.5.3 for more details

#n Including the
preceding
expression

Match the previous expression exactly n times (where n is a single digit)
(postfix); the same as #(n). See clause B.1.5.3 for more details

+ Including the
preceding
expression

Match the preceding expression one or several times (postfix); the same
as #(1,). See clause B.1.5.3 for more details

NOTE 1: Metacharacters ? and * are able to match any characters of the character set of the root type of the
template or template field in which they are used (i.e. not considering type constraints applied). However,
it shall not be forgotten, that receiving operations require type checking of the received message before
attempting to match it. Therefore received values not complying with the subtype specification of the
template or template field are never provided for matching.

NOTE 2: In some other languages/notations ? and * has different meaning as metacharacters. However inTTCN-3
these characters are traditionally used for matching in the sense as specified in this table.

NOTE 3: Consequently the backslash character can be matched by a pair of backslash characters without space
between them (\\), e.g. the pattern "\\d" will match the string "\d"; opening or closing square brackets can
be matched by "\[" and "\]" respectively, etc.

NOTE 4: Such use of the metacharacter "\" is deprecated as further metacharacters can be defined later.

The symbols that can appear as lexical marks in metacharacter definitions are called metacharacter symbols. They
include the following characters: "#", "(", ")", "*", "+", "-", "?", "[", "\", "]", "^", "{","|","}". When any of the
metacharacter symbols are present in a pattern, but do not form a valid metacharacter, they retain their literal value.

NOTE: This rule assures that no format error can occur during pattern template instantiation. However, errors
caused by invalid references can still appear (see clauses 27.9 and B.1.5.4 for more details).

Character patterns may be composed from several fragments using the concatenation operation. The fragments of the
pattern shall be concatenated before any evaluation of the pattern expression. See also the shorthand notation for
referenced definitions at concatenation in clause 27.9.

EXAMPLE 3:

 template charstring mw_myTemplate:= pattern "ab?\?" & "xyz*"; // results in the same pattern as
 // in example 2

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)335

Pattern definitions may contain references to values or templates. The referred value or template shall be of the
charstring or universal charstring type and it shall contain either a specific value or pattern. When the referenced
template contains a pattern, the character pattern definition of this pattern is used as a fragment for creating the new
pattern.

EXAMPLE 4:

 template charstring mw_template1 := "ab?";
 template charstring mw_template2 := pattern "?xyz*0";
 template charstring mw_template3 := ?;
 template charstring mw_template4 := pattern mw_template1 & mw_template2;
 // the same template as in example 1, i.e. pattern "ab??xyz*0"
 template charstring mw_template5 := pattern mw_template3
 // produces as error as mw_template3 doesn't contain a value or pattern

B.1.5.1 Set expression

A list of characters enclosed by a pair of "[" and "]" matches any single character in that list. The set expression is
delimited by the "[" "]" symbols. In addition to character literals, it is possible to specify character ranges using the
hyphen "-" as separator. The range consist of the character immediately before the separator, the character immediately
after it and all characters with a character code between the codes of the two bordering characters. A hyphen character
"-" inside the list but without preceding or following character loses its special meaning.

The set expression can also be negated by placing the caret "^" character as the first character after the opening square
bracket. Negation takes precedence over character ranges. Therefore a hyphen "-" immediately following a negating
caret "^" shall be processed as a literal character.

An empty list and an empty negated list are not allowed. Therefore a closing square bracket "]" immediately following
an opening square bracket "[" or a caret following the opening square bracket "[" and immediately followed by a
closing square bracket "]" shall be processed as literal characters.

All metacharacters, except those listed below, lose their special meaning inside the list:

• "]" not at the first position and not immediately following a "^" at the first position;

• "-" not at the first or last positions in the list;

• "^" at the first position in the list except when immediately followed by a closing square bracket;

• "\", "\d", "\t", "\w", "\r", "\n", "\s" and "\b";

• "\q{group,plane,row,cell}";

• "\N{reference}".

NOTE 1: Embedded lists are not allowed. For example in pattern "[ab[r-z]]" the second "[" denotes a literal "[", the
first "]" closes the list and the second "]" retains its literal value as no related opening bracket precedes it
in the pattern. The pattern will match character strings containing two elements, with the first element
equal to "a", "b", "[" or anything in the range "r"-"z" and the second character equal to "]".

NOTE 2: To include a literal caret character "^", place it anywhere except in the first position or precede it with a
backslash. To include a literal hyphen "-", place it first or last in the list, or precede it with a backslash.
To include a literal closing square bracket "]", place it first or precede it with a backslash. If the first
character in the list is the caret "^", then the characters "-" and "]" also match themselves when they
immediately follow that caret.

EXAMPLE:

 template charstring mw_regExp1:= pattern "[a-z]"; //this will match any character from a to z

 template charstring mw_regExp2:= pattern "[^a-z]"; //this will match any character except a to z

 template charstring mw_regExp3:= pattern "[AC-E][0-9][0-9][0-9]YKE";

 // mw_regExp3 will match a string which starts with the letter A or a letter between
 // C and E (but not e.g. B) then has three digits and the letters YKE

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)336

B.1.5.2 Reference expression

In addition to direct string values, it is also possible within the pattern to use references to templates, constants,
variables, formal parameters, module parameters, or to their fields, containing either a character string value or pattern
matching. The reference shall be enclosed within the "{" "}" characters and reference shall resolve a compatible
character string type. The opening bracket can be optionally followed by a backslash.

If the backslash character is missing, the referenced character string or pattern shall be inserted into the pattern being
constructed and shall be handled as a regular expression. Each expression shall be dereferenced only once, before the
insertion (i.e. the expression dereferenced and inserted into the referencing pattern shall not be dereferenced again).

If the backslash character is present, the referenced item shall contain a character string value in this case. The character
string is inserted into the pattern being constructed so that it all characters contained in it can keep their literal value (i.e.
all metacharacter symbols are automatically escaped).

If the reference cannot be resolved or if the referenced symbol does not fulfil the requirements set by this clause, an
error shall be generated.

EXAMPLE 1:

 const charstring c_myString:= "ab?";

 template charstring mw_myTemplate:= pattern "{c_myString}";
 //matches any character string that consists of the characters "ab" followed by any character

 template charstring mw_myTemplate2:= pattern "{\c_myString}";
 //resolves into pattern "ab\?" and matches the string"ab?" only

 template universal charstring mw_myTemplate3:= pattern "{c_myString}de\q{1, 1, 13, 7}";

 //matches any universal character string which consists of the characters "ab", followed by
 //any character, followed by the characters "de", followed by the character in ISO10646-1 with
 //group=1, plane=1, row=13 and cell=7.

If a referenced definition or field of a definition contains one or more reference expressions, then these references shall
recursively be dereferenced before inserting their contents into the referencing pattern.

If a fragment of a pattern contains a single reference only, it is allowed, as a shorthand notation, to reference the
definition or the field of the definition directly, i.e. leave out double quotes (" ") and the pair of curly brackets ({ }).

EXAMPLE 2:

 const charstring c_myConst2 := "ab";
 template charstring mw_regExp1 := pattern "{c_myConst2}";
 // matches the string "ab"
 template charstring mw_regExp1a := pattern c_myConst2;
 // the same as above, matches the string "ab"
 template charstring mw_regExp2 := pattern "{mw_regExp1}{mw_regExp1}";
 // matches the string "abab"
 template charstring mw_regExp2a := pattern "{mw_regExp1}" & "{mw_regExp1}";
 // the same as above, matches the string "abab"
 template charstring mw_regExp2b := pattern mw_regExp1 & mw_regExp1;
 // the same as above, matches the string "abab"
 template charstring mw_regExp3 := pattern "c{mw_regExp2}d";
 // matches the string "cababd"

 template charstring mw_regExp4 := pattern "{mw_reg";
 template charstring mw_regExp5 := pattern "Exp1}";
 template charstring mw_regExp6 := pattern "{mw_regExp4}{mw_regExp5}";
 // matches the string "{mw_regExp1}" only (i.e. shall not be handled as a reference
 // expression after insertion)
 template charstring mw_regExp7 := pattern "{mw_reg" & "Exp1}";
 // note the difference to the previous example; in this case the fragments of the
 // pattern are joined before any evaluation, i.e. this template will match the string "ab"

EXAMPLE 3:

 template charstring m_ref0:= "My String";
 template charstring m_ref1:= "{m_re";
 template charstring m_ref2:= "f0}";
 template charstring m_ref3:= "{m_ref1}{m_ref2}";
 //this matches "{m_ref0}"
 //i.e. there is no further dereferencing
 //as m_ref1 and m_ref2 do not contain a reference

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)337

 template charstring m_ref4:= "{m_ref0}";
 template charstring m_ref5:= "";
 template charstring m_ref6:= "{m_ref4}{m_ref5}";
 //this matches "My String" – here m_ref0 is dereferenced, because m_ref4 contains
 //the reference expression {m_ref0} with the reference m_ref0

EXAMPLE 4:

 type record MyRecordType {
 integer i,
 charstring c
 }
 const MyRecordType c_referencedRecord:= {1,"this"}
 const charstring c_referencedConstant := c_referencedRecord.c;
 template charstring m_referencingPattern := pattern "{c_referencedConstant}"
 //this matches "this" as the c_referencedConstant is dereferenced

B.1.5.3 Match expression n times

To specify that the preceding expression should be matched a number of times one of the following syntaxes shall be
used: "#(n, m)", "#(n,)", "#(, m)", "#(n)", "#n", "#(,)", "#()" or "+".

The form "#(n, m)" specifies that the preceding expression shall be matched at least n times but not more than m times.

The metacharacter postfix "#(n,)" specifies that the preceding expression shall be matched at least n times while
"#(, m)" indicates that the preceding expression shall be matched not more than m times.

Metacharacters (postfixes) "#(n)" and "#n" specify that the preceding expression shall be matched exactly n times (they
are equivalent to "#(n, n)"). In the form "#n" n shall be a single digit.

The forms "#(,)" and "#()" are shorthand notations for "#(0,)", i.e. matches the preceding expression any number of
times.

The metacharacter postfix "+" denotes that the preceding expression shall be matched at least 1 time (equivalent to
"#(1,)").

EXAMPLE:

 template charstring mw_regExp4:= pattern "[a-z]#(9, 11)"; //match at least 9 but no more than 11
 // characters from a to z
 template charstring mw_regExp5a:= pattern "[a-z]#(9)"; // match exactly 9
 // characters from a to z
 template charstring mw_regExp5b:= pattern "[a-z]#9"; // match exactly 9
 // characters from a to z
 template charstring mw_regExp6:= pattern "[a-z]#(9,)"; // match at least 9
 // characters from a to z
 template charstring mw_regExp7:= pattern "[a-z]#(, 11)"; // match no more than 11
 // characters from a to z
 template charstring mw_regExp8:= pattern "[a-z]+"; // match at least 1
 // characters from a to z,

B.1.5.4 Match a referenced character set

A notation of the form "\N{reference}", where reference is denoting a one-character-length template, constant,
variable, formal parameter or module parameter, matches the character in the referenced value or template.

If the reference cannot be resolved or if the referenced symbol is anything else than a template, constant, variable,
formal parameter or module parameter containing a character string of length 1, an error shall be generated.

A notation of the form "\N{typereference}", where "typereference" is a reference to a charstring or universal
charstring type, matches any character of the character set denoted by the referenced type.

NOTE 1: Cases when the referenced set of characters is not a subset of values allowed by the type definition of the
template or template field for which the character pattern is used, are not be treated as an error (but e.g.
matching never can occur if the two sets do not overlap).

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)338

NOTE 2: \N{charstring} is equivalent to ? when the latter is applied to a template or template field of
charstring type and \N{universal charstring} is equivalent to ? when the latter is applied to
a template or template field of universal charstring type (but causes an error if applied to a
template or template field of charstring type).

EXAMPLE:

 type charstring MyCharRangeType ("a".."z");
 type charstring MyCharListType ("a", "z");
 const MyCharRangeType c_myCharR := "r";

 template charstring mw_myTempPatt1 := pattern "\N{c_myCharR}";
 // mw_myTempPatt1 shall match the string "r" only

 template charstring mw_myTempPatt2 := pattern "\N{MyCharRange}";
 // mw_myTempPatt2 shall match any string containing a single character from a to z

 template MyCharRangeType mw_myTempPatt3 := pattern "\N{MyCharList}";
 // mw_myTempPatt3 shall match strings "a" or "z" only

B.1.5.5 Type compatibility rules for patterns

For the purpose of referenced patterns (see clause 27.9) and references character sets (see clause B.1.5.3) specific type
compatibility rules apply: a referenced type, template, constant, variable or module parameter of the type
charstring always can be used in the pattern specification of a template or template field of universal
charstring type; a referenced type, template or value of the type universal charstring can be used in the
pattern specification of a template or template field of charstring type if all characters used in the referenced
template or value and the character set allowed by the referenced type has their corresponding characters in the
charstring type (see definition of corresponding characters in clause 6.3.1).

B.1.5.6 Case insensitive pattern matching

When the "@nocase" modifier is used after the pattern keyword, the matching is evaluated in a case insensitive way,
i.e. at positions, where without the "@nocase" modifier a small letter alphabetical character would be matched, with
the "@nocase" modifier also capital letter counterpart - but only that - shall be accepted. For example, at positions

where the pattern matches the character đ (latin small letter d with stroke), also its counterpart Đ (latin capital letter d

with stroke) shall be accepted, but the similarly looking graphical characters Ð (latin capital letter eth) and Ɖ (latin
capital letter african d) shall not.

EXAMPLE 1:

 template charstring mw_myTemplateNoCase:= pattern @nocase "ab??xyz*0";
 //This template would match any character string that start with the characters "ab" or "Ab"
 //or "aB" or "AB", followed by any two characters, followed by the characters "xyz" or "Xyz"
 //or "xYz" or "xyZ" or "XYz" or "xYZ" or "XyZ" or "XYZ", followed by any number of any
 //characters (including any number of "0"-s) before the closing character "0".

When referencing a pattern from inside another pattern (see clause 27.9), the case sensitivity property of the referenced
pattern is not inherited. I.e. - after dereferencing, possibly recursively - only the resulting string part of the referenced
pattern is inserted into the referencing pattern. The whole resulting pattern is always evaluated according to the case-
sensitivity of the referencing pattern.

EXAMPLE 2:

 const charstring c_myString:= "ab?";

 template charstring mw_myTemplate:= pattern @nocase "{c_myString}";
 //matches any character string that consists of the characters "ab" or "Ab" or "aB" or "AB",
 // followed by any character

 template universal charstring mw_myTemplate3:= pattern "{mw_myTemplate}de\q{1, 1, 13, 7}";

 //matches any character string which consists of the characters "ab", followed by any
 //character, followed by the characters "de", followed by the character in ISO10646-1 with
 //group=1, plane=1, row=13 and cell=7.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)339

Annex C (normative):
Predefined TTCN-3 functions

C.0 General exception handling procedures
This annex defines the TTCN-3 predefined functions.

When the general restrictions specified in clause 16.1.2 are not met, this shall cause a compile time or runtime error.
Error situations for which no explicit exception-handling rule is defined in the relevant clauses of this annex shall cause
a TTCN-3 compile-time or runtime error. Which error situation causes compile-time and which one runtime error is a
tool implementation option.

C.1 Conversion functions

C.1.1 Integer to character
 int2char(in integer invalue) return charstring

This function converts an integer value in the range of 0 to 127 (8-bit encoding) into a single-character-length
charstring value. The integer value describes the 8-bit encoding of the character.

In addition to the general error causes in clause 16.1.2, error causes are:

• invalue is less than 0 or greater than 127.

C.1.2 Integer to universal character
 int2unichar(in integer invalue) return universal charstring

This function converts an integer value in the range of 0 to 2 147 483 647 (32-bit encoding) into a
single-character-length universal charstring value. The integer value describes the 32-bit encoding of the
character.

In addition to the general error causes in clause 16.1.2, error causes are:

• invalue is less than 0 or greater than 2147483647.

C.1.3 Integer to bitstring
 int2bit(in integer invalue, in integer length) return bitstring

This function converts a single integer value to a single bitstring value. The resulting string is length bits
long.

For the purposes of this conversion, a bitstring shall be interpreted as a positive base 2 integer value. The
rightmost bit is least significant, the leftmost bit is the most significant. The bits 0 and 1 represent the decimal values 0
and 1 respectively. If the conversion yields a value with fewer bits than specified in the length parameter, then the
bitstring shall be padded on the left with zeros.

In addition to the general error causes in clause 16.1.2, error causes are:

• invalue is less than zero;

• the conversion yields a return value with more bits than specified by length.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)340

C.1.4 Integer to enumerated
 int2enum (in integer inpar, out Enumerated_type outpar)

This function converts an integer value into an enumerated value of a given enumerated type. The integer value shall be
provided as in parameter and the result of the conversion shall be stored in an out parameter. The type of the out
parameter determines the type into which the in parameter is converted.

The general error causes in clause 16.1.2 apply.

EXAMPLE:

 type enumerated MyFirstEnumType {
 Monday, Tuesday, Wednesday, Thursday, Friday, Weekend(6..7)
 };

 type enumerated MySecondEnumType {
 Saturday(-3), Sunday (0), Monday
 };

 //within a dynamic language element:
 var MyFirstEnumType v_firstEnum := Tuesday;
 var MySecondEnumType v_secondEnum := Sunday;

 int2enum(0, v_firstEnum) // v_firstEnum == Monday
 int2enum(1, v_secondEnum) // v_secondEnum == Monday
 int2enum(6, v_firstEnum) // v_firstEnum == Weekend(6)

C.1.5 Integer to hexstring
 int2hex(in integer invalue, in integer length) return hexstring

This function converts a single integer value to a single hexstring value. The resulting string is length
hexadecimal digits long.

For the purposes of this conversion, a hexstring shall be interpreted as a positive base 16 integer value. The
rightmost hexadecimal digit is least significant, the leftmost hexadecimal digit is the most significant. The hexadecimal
digits 0 to F represent the decimal values 0 to 15 respectively. If the conversion yields a value with fewer hexadecimal
digits than specified in the length parameter, then the hexstring shall be padded on the left with zeros.

In addition to the general error causes in clause 16.1.2, error causes are:

• invalue is less than zero;

• the conversion yields a return value with more hexadecimal characters than specified by length.

C.1.6 Integer to octetstring
 int2oct(in integer invalue, in integer length) return octetstring

This function converts a single integer value to a single octetstring value. The resulting string is length
octets long.

For the purposes of this conversion, an octetstring shall be interpreted as a positive base 16 integer value. The
rightmost hexadecimal digit is least significant, the leftmost hexadecimal digit is the most significant. The number of
hexadecimal digits provided shall be multiples of 2 since one octet is composed of two hexadecimal digits. The
hexadecimal digits 0 to F represent the decimal values 0 to 15 respectively. If the conversion yields a value with fewer
hexadecimal digits than specified in the length parameter, then the hexstring shall be padded on the left with
zeros.

In addition to the general error causes in clause 16.1.2, error causes are:

• invalue is less than zero;

• the conversion yields a return value with more octets than specified by length.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)341

C.1.7 Integer to charstring
 int2str(in integer invalue) return charstring

This function converts the integer value into its string equivalent (the base of the return string is always decimal).

The general error causes in clause 16.1.2 apply.

EXAMPLE:

 int2str(66) // will return the charstring value "66"

 int2str(-66) // will return the charstring value "-66"

 int2str(0) // will return the charstring value "0"

C.1.8 Integer to float
 int2float(in integer invalue) return float

This function converts an integer value into a float value.

The general error causes in clause 16.1.2 apply.

EXAMPLE:

 int2float(4) = 4.0

C.1.9 Float to integer
 float2int(in float invalue) return integer

This function converts a float value into an integer value by removing the fractional part of the argument and
returning the resulting integer.

In addition to the general error causes in clause 16.1.2, error causes are:

• invalue is infinity, -infinity or not_a_number.

EXAMPLE:

 float2int(3.12345E2) = float2int(312.345) = 312

C.1.10 Character to integer
 char2int(in charstring invalue) return integer

This function converts a single-character-length charstring value into an integer value in the range of 0 to 127. The
integer value describes the 8-bit encoding of the character.

In addition to the general error causes in clause 16.1.2, error causes are:

• length of invalue does not equal 1.

C.1.11 Character to octetstring
 char2oct(in charstring invalue) return octetstring

This function converts a charstring invalue to an octetstring. Each octet of the octetstring will
contain the Recommendation ITU-T T.50 [4] codes (according to the IRV) of the appropriate characters of invalue.

The general error causes in clause 16.1.2 apply.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)342

EXAMPLE:

 char2oct ("Tinky-Winky") = '54696E6B792D57696E6B79'O

C.1.12 Universal character to integer
 unichar2int(in universal charstring invalue) return integer

This function converts a single-character-length universal charstring value into an integer value in the range of
0 to 2 147 483 647. The integer value describes the 32-bit encoding of the character.

In addition to the general error causes in clause 16.1.2, error causes are:

• length of invalue does not equal 1.

C.1.13 Bitstring to integer
 bit2int(in bitstring invalue) return integer

This function converts a single bitstring value to a single integer value.

For the purposes of this conversion, a bitstring shall be interpreted as a positive base 2 integer value. The
rightmost bit is least significant, the leftmost bit is the most significant. The bits 0 and 1 represent the decimal values 0
and 1 respectively.

NOTE: On real test systems the integer interpretation of invalue may lead to an overflow problem that causes
compile time or runtime error. However, this is out of the scope of the present document.

The general error causes in clause 16.1.2 apply.

C.1.14 Bitstring to hexstring
 bit2hex(in bitstring invalue) return hexstring

This function converts a single bitstring value to a single hexstring. The resulting hexstring represents the
same value as the bitstring.

For the purpose of this conversion, a bitstring shall be converted into a hexstring, where the bitstring is divided into
groups of four bits beginning with the rightmost bit. Each group of four bits is converted into a hex digit as follows:

'0000'B → '0'H, '0001'B → '1'H, '0010'B → '2'H, '0011'B → '3'H, '0100'B → '4'H, '0101'B → '5'H,

'0110'B → '6'H, '0111'B → '7'H, '1000'B → '8'H, '1001'B → '9'H, '1010'B → 'A'H, '1011'B → 'B'H,

'1100'B → 'C'H, '1101'B → 'D'H, '1110'B → 'E'H, and '1111'B → 'F'H.

When the leftmost group of bits does contain less than 4 bits, this group is filled with '0'B from the left until it contains
exactly 4 bits and is converted afterwards. The consecutive order of hex digits in the resulting hexstring is the same as
the order of groups of 4 bits in the bitstring.

The general error causes in clause 16.1.2 apply.

EXAMPLE:

 bit2hex ('111010111'B)= '1D7'H

C.1.15 Bitstring to octetstring
 bit2oct(in bitstring invalue) return octetstring

This function converts a single bitstring value to a single octetstring. The resulting octetstring
represents the same value as the bitstring.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)343

For the conversion the following holds: bit2oct(value)=hex2oct(bit2hex(value)).

The general error causes in clause 16.1.2 apply.

EXAMPLE:

 bit2oct('111010111'B)= '01D7'O

C.1.16 Bitstring to charstring
 bit2str(in bitstring invalue) return charstring

This function converts a single bitstring value to a single charstring. The resulting charstring has the
same length as the bitstring and contains only the characters '0' and '1'.

For the purpose of this conversion, a bitstring shall be converted into a charstring. Each bit of the
bitstring is converted into a character '0' or '1' depending on the value 0 or 1 of the bit. The consecutive order of
characters in the resulting charstring is the same as the order of bits in the bitstring.

The general error causes in clause 16.1.2 apply.

EXAMPLE:

 bit2str('1110101'B) will return "1110101"

C.1.17 Hexstring to integer
 hex2int(in hexstring invalue) return integer

This function converts a single hexstring value to a single integer value.

For the purposes of this conversion, a hexstring shall be interpreted as a positive base 16 integer value. The
rightmost hexadecimal digit is least significant, the leftmost hexadecimal digit is the most significant. The hexadecimal
digits 0 to F represent the decimal values 0 to 15 respectively.

NOTE: On real test systems the integer interpretation of invalue may lead to an overflow problem that causes
compile time or runtime error. However, this is out of the scope of the present document.

The general error causes in clause 16.1.2 apply.

C.1.18 Hexstring to bitstring
 hex2bit(in hexstring invalue) return bitstring

This function converts a single hexstring value to a single bitstring. The resulting bitstring represents the
same value as the hexstring.

For the purpose of this conversion, a hexstring shall be converted into a bitstring, where the hex digits of the
hexstring are converted in groups of bits as follows:

'0'H → '0000'B, '1'H → '0001'B, '2'H → '0010'B, '3'H → '0011'B, '4'H → '0100'B, '5'H → '0101'B,

'6'H → '0110'B, '7'H → '0111'B, '8'H → '1000'B, '9'H → '1001'B, 'A'H → '1010'B, 'B'H → '1011'B,

'C'H → '1100'B, 'D'H → '1101'B, 'E'H → '1110'B, and 'F'H → '1111'B.

The consecutive order of the groups of 4 bits in the resulting bitstring is the same as the order of hex digits in the
hexstring.

The general error causes in clause 16.1.2 apply.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)344

EXAMPLE:

 hex2bit('1D7'H)= '000111010111'B

C.1.19 Hexstring to octetstring
 hex2oct(in hexstring invalue) return octetstring

This function converts a single hexstring value to a single octetstring. The resulting octetstring
represents the same value as the hexstring.

For the purpose of this conversion, a hexstring shall be converted into a octetstring, where the
octetstring contains the same sequence of hex digits as the hexstring when the length of the hexstring
modulo 2 is 0. Otherwise, the resulting octetstring contains 0 as leftmost hex digit followed by the same sequence
of hex digits as in the hexstring.

The general error causes in clause 16.1.2 apply.

EXAMPLE:

 hex2oct('1D7'H)= '01D7'O

C.1.20 Hexstring to charstring
 hex2str(in hexstring invalue) return charstring

This function converts a single hexstring value to a single charstring. The resulting charstring has the same length as the
hexstring and contains only the characters '0' to '9'and 'A' to 'F'.

For the purpose of this conversion, a hexstring shall be converted into a charstring. Each hex digit of the
hexstring is converted into a character '0' to '9' and 'A' to 'F' depending on the value 0 to 9 or A to F of the hex digit.
The consecutive order of characters in the resulting charstring is the same as the order of digits in the
hexstring.

The general error causes in clause 16.1.2 apply.

EXAMPLE:

 hex2str('AB801'H) // will return "AB801"

C.1.21 Octetstring to integer
 oct2int(in octetstring invalue) return integer

This function converts a single octetstring value to a single integer value.

For the purposes of this conversion, an octetstring shall be interpreted as a positive base 16 integer value. The
rightmost hexadecimal digit is least significant, the leftmost hexadecimal digit is the most significant. The number of
hexadecimal digits provided shall be multiples of 2 since one octet is composed of two hexadecimal digits. The
hexadecimal digits 0 to F represent the decimal values 0 to 15 respectively.

NOTE: On real test systems the integer interpretation of invalue may lead to an overflow problem that causes
compile time or runtime error. However, this is out of the scope of the present document.

The general error causes in clause 16.1.2 apply.

C.1.22 Octetstring to bitstring
 oct2bit(in octetstring invalue) return bitstring

This function converts a single octetstring value to a single bitstring. The resulting bitstring represents
the same value as the octetstring.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)345

For the conversion the following holds: oct2bit(value)=hex2bit(oct2hex(value)).

The general error causes in clause 16.1.2 apply.

EXAMPLE:

 oct2bit ('01D7'O)='0000000111010111'B

C.1.23 Octetstring to hexstring
 oct2hex(in octetstring invalue) return hexstring

This function converts a single octetstring value to a single hexstring. The resulting hexstring represents
the same value as the octetstring.

For the purpose of this conversion, a octetstring shall be converted into a hexstring containing the same
sequence of hex digits as the octetstring.

The general error causes in clause 16.1.2 apply.

EXAMPLE:

 oct2hex('1D74'O)= '1D74'H

C.1.24 Octetstring to character string
 oct2str(in octetstring invalue) return charstring

This function converts an octetstring invalue to an charstring representing the string equivalent of the
input value. The resulting charstring shall have the same length as the incoming octetstring.

For the purpose of this conversion each hex digit of invalue is converted into a character '0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', 'A', 'B', 'C', 'D', 'E' or 'F' echoing the value of the hex digit. The consecutive order of characters in the resulting
charstring is the same as the order of hex digits in the octetstring.

The general error causes in clause 16.1.2 apply.

EXAMPLE:

 oct2str('4469707379'O) = "4469707379"

C.1.25 Octetstring to character string, version II
 oct2char(in octetstring invalue) return charstring

This function converts an octetstring invalue to a charstring. The input parameter invalue shall not
contain octet values higher than 7F. The resulting charstring shall have the same length as the input
octetstring. The octets are interpreted as Recommendation ITU-T T.50 [4] codes (according to the IRV) and the
resulting characters are appended to the returned value.

The general error causes in clause 16.1.2 apply.

EXAMPLE:

 oct2char('4469707379'O) = "Dipsy"

NOTE: The character string returned may contain non-graphical characters, which cannot be presented between
the double quotes.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)346

C.1.26 Charstring to integer
 str2int(in charstring invalue) return integer

This function converts a charstring representing an integer value to the equivalent integer.

In addition to the general error causes in clause 16.1.2, error causes are:

• invalue contains characters other than "0", "1", "2", "3", "4", "5", "6", "7", "8", "9" and "-".

• invalue contains the character "-" at another position than the leftmost one.

NOTE: On real test systems the integer interpretation of invalue may lead to an overflow problem that causes
compile time or runtime error. However, this is out of the scope of the present document.

EXAMPLE:

 str2int("66") // will return the integer value 66

 str2int("-66") // will return the integer value -66

 str2int("6-6") // will cause an error

 str2int("abc") // will cause an error

 str2int("0") // will return the integer value 0

C.1.27 Character string to hexstring
 str2hex(in charstring invalue) return hexstring

This function converts a string of the type charstring to a hexstring. The string invalue shall contain the
"0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e" "f", "A", "B", "C", "D", "E" or "F" graphical
characters only. Each character of invalue shall be converted to the corresponding hexadecimal digit. The resulting
hexstring will have the same length as the incoming charstring.

In addition to the general error causes in clause 16.1.2, error cause is:

• invalue contains characters other than specified above.

EXAMPLE:

 str2hex("54696E6B792D57696E6B7") = '54696E6B792D57696E6B7'H

C.1.28 Character string to octetstring
 str2oct(in charstring invalue) return octetstring

This function converts a string of the type charstring to an octetstring. The string invalue shall contain
the "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e" "f", "A", "B", "C", "D", "E" or "F" graphical
characters only. When the string invalue contains even number characters the resulting octetstring contains 0
as leftmost character followed by the same sequence of characters as in the charstring.

lengthof (see clause C.2.1 for the resulting octetstring) will return half of lengthof of the incoming
charstring. In addition to the general error causes in clause 16.1.2, error causes is:

• invalue contains characters other than specified above.

EXAMPLE:

 str2oct("54696E6B792D57696E6B79") = '54696E6B792D57696E6B79'O
 str2oct("1D7")= '01D7'O

NOTE: The semantic of the str2oct function cause asymmetric behaviour:

 oct2str(str2oct("1D7"))// results in the charstring value "01D7"

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)347

C.1.29 Character string to float
 str2float(in charstring invalue) return float

This function converts a charstring comprising a number into a float value. The format of the number in the
charstring shall follow rules in clause 6.1.0, items a) or b) with the following exceptions:

• leading zeros are allowed;

• leading "+" sign before positive values is allowed;

• "-0.0" is allowed;

• no numbers after the dot in the decimal notation are allowed.

In addition to the general error causes in clause 16.1.2, error causes are:

• the format of invalue is different than defined above.

NOTE: On real test systems the float interpretation of invalue may lead to an overflow problem that causes
compile time or runtime error. However, this is out of the scope of the present document.

EXAMPLE:

 str2float("12345.6") // is the same as str2float("123.456E+02")
 str2float("1.6") // returns a float value equal to 1.6
 str2float("+001.") // returns a float value equal to 1.0
 str2float("+001") // returns a float value equal to 1.0
 str2float("-0.0") // returns a float value equal to -0.0

C.1.30 Enumerated to integer
 enum2int(in Enumerated_type inpar) return integer

This function accepts an enumerated value and returns the integer value associated to the enumerated value (see also
clause 6.2.4). The actual parameter passed to inpar always shall be a typed object (see clause 6.2.4 and the definition
"type context" in clause 3.1).

The general error causes in clause 16.1.2 apply.

EXAMPLE:

 type enumerated MyFirstEnumType {
 Monday, Tuesday, Wednesday, Thursday, Friday, Weekend(5..6)
 };

 type enumerated MySecondEnumType {
 Saturday(-3), Sunday (0), Monday
 };

 //within a dynamic language element:
 var MyFirstEnumType v_firstEnum := Monday;
 var MySecondEnumType v_secondEnum := Monday;

 enum2int(v_firstEnum) // returns 0
 enum2int(v_secondEnum) // returns 1

 v_firstEnum := Wednesday;
 v_secondEnum := Saturday;
 enum2int(v_firstEnum) // returns 2
 enum2int(v_secondEnum) // returns -3

 v_firstEnum := Friday;
 v_secondEnum := Sunday;
 enum2int(v_firstEnum) // returns 4
 enum2int(v_secondEnum) // returns 0
 v_firstEnum := Weekend(6);
 enum2int(v_firstEnum) // returns 6

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)348

C.1.31 Octetstring to universal character string
 oct2unichar(in octetstring invalue, in charstring string_encoding := "UTF-8")
 return universal charstring

This function converts an octetstring invalue to a universal charstring by use of the given
string_encoding. The octets are interpreted as mandated by the standardized mapping associated with the given
string_encoding and the resulting characters are appended to the returned value. If the optional string_encoding
parameter is omitted, the default value "UTF-8".

The following values (see ISO/IEC 10646 [2]) are allowed as string_encoding actual parameters (for the description of
the codepoints see clause 27.5):

a) "UTF-8"

b) "UTF-16"

c) "UTF-16LE"

d) "UTF-16BE"

e) "UTF-32"

f) "UTF-32LE"

g) "UTF-32BE"

The invalue parameter shall not include the optional signature (see clause 10 of ISO/IEC 10646 [2], also known as
byte order mark).

In case of "UTF-16" and "UTF-32" big-endian ordering shall be used (as described in clauses 10.4 and 10.7 of
ISO/IEC 10646 [2]).

The general error causes in clause 16.1.2 apply.

EXAMPLE:

 oct2unichar('C384C396C39CC3A4C3B6C3BC'O) = "ÄÖÜäöü";
 oct2unichar('00C400D600DC00E400F600FC'O,"UTF-16BE") = "ÄÖÜäöü";
 oct2unichar('C400D600DC00E400F600FC00'O,"UTF-16LE") = "ÄÖÜäöü";

NOTE: The character string returned may contain non-graphical characters, which cannot be presented between
the double quotes.

C.1.32 Universal character string to octetstring
 unichar2oct(in universal charstring invalue, in charstring string_encoding := "UTF-8")
 return octetstring

This function converts a universal charstring invalue to an octetstring. Each octet of the octetstring
will contain the octets mandated by mapping the characters of invalue using the standardized mapping associated with
the given string_encoding in the same order as the characters appear in inpar. If the optional string_encoding parameter
is omitted, the default value "UTF-8".

The following values (see ISO/IEC 10646 [2]) are allowed as string_encoding actual parameters (for the description of
the UCS encoding scheme see clause 27.5):

a) "UTF-8"

b) "UTF-16"

c) "UTF-16LE"

d) "UTF-16BE"

e) "UTF-32"

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)349

f) "UTF-32LE"

g) "UTF-32BE"

The general error causes in clause 16.1.2 apply.

EXAMPLE:

 unichar2oct("ÄÖÜäöü") = 'C384C396C39CC3A4C3B6C3BC'O;
 unichar2oct("ÄÖÜäöü","UTF-16BE") = '00C400D600DC00E400F600FC'O;
 unichar2oct("ÄÖÜäöü","UTF-16LE") = 'C400D600DC00E400F600FC00'O;

C.1.33 Value or template to universal charstring
 any2unistr(in template any invalue,
 in universal charstring format := "") return universal charstring

This function converts the content of a value or template to a single universal charstring. The resulting
universal charstring is the same as the string produced by the log operation containing the same operand as
the one passed to the any2unistr function. The value or template passed as a parameter to the any2unichar
function may be uninitialized, partially or completely initialized.

The optional format parameter is used for dynamic selection of how the resulting universal charstring
should be produced from the provided invalue. When the optional format parameter is missing or is set to an empty
string the resulting universal charstring is the same as the string produced by the log operation for the same
operand. When the optional format parameter takes the value "canonical": unbound fields are represented in the
output as "-", the fields and members of structured types are represented recursively in assignment notation.

If the actual value of the format parameter is different from the empty string and "canonical", the format of the result
produced by the function is either tool-specific if the tool supports the specified custom format or it is the same as the
string produced by the log operation (i.e. the same as if the parameter value was the empty string).

The general error causes in clause 16.1.2 apply.

EXAMPLE:

 var integer v_int1 := 5, v_int2;
 var template integer mw_int1 := ?;
 var template integer mw_int2 := -1 ifpresent;
 var universal charstring v_chr1, v_chr2, v_chr3, v_chr4;
 v_chr1 := any2unistr(v_int1); // after the assignment v_chr1 will be "5"
 v_chr2 := any2unistr(v_int2); // after the assignment v_chr2 will be "UNINITIALIZED"
 v_chr3 := any2unistr(mw_int1); // after the assignment v_chr3 will be "?"
 v_chr4 := any2unistr(mw_int2); // after the assignment v_chr3 will be "-1 ifpresent"

 type record MyRecord {
 integer field1,
 integer field2
 }
 var template MyRecord t1;
 var template MyRecord t2 := {1};
 v_chr1 := any2unistr(t1); // after the assignment v_chr1 will be "UNINITIALIZED"
 v_chr1 := any2unistr(t2);
 // after the assignment v_chr1 could be "{ field1 := 1, field2 := UNINITIALIZED }"

 v_chr1 := any2unistr(t1, "canonical"); // after the assignment v_chr1 will be "-"
 v_chr1 := any2unistr(t2, "canonical");
 // after the assignment v_chr1 will be "{ fielfd1 := 1, field2 := - }"

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)350

C.2 Length/size functions

C.2.1 Length of strings and lists
 lengthof(in template (present) any inpar) return integer

This function returns the length of a value or template that is of type bitstring, hexstring, octetstring,
charstring, universal charstring, record of, set of, array or map. The units of length for each
string type are defined in table 4 in the present document.

For values or templates of record of or set of type, the value to be returned is the maximum of the minimal length
restriction value of the type, or 0 for types with no minimal length restriction, and the index of the last initialized
element plus 1.

For values of the map type, the fuction returns the number of key value pairs in the map.

The length value returned in case of length restricted string or list type shall be at least the minimum length according to
the type definition. In particular, the length of a fixed length record of or set of value will always be the fixed
length according to the type definition. For array values or templates, the value to be returned is the fixed length of the
corresponding record of type.

NOTE 1: As in formal parameters does not allow passing in uninitialized values or templates, even in these cases
inpar will be at least partially initialized.

The length of an universal charstring shall be calculated by counting each combining character and hangul
syllable character (including fillers) on its own (see ISO/IEC 10646 [2], clauses 23 and 24).

When the function lengthof is applied to string-type templates, inpar shall only contain the following matching
mechanisms: specific value, value list, complemented value list, pattern, "?" (AnyValue instead of value), "*"
(AnyValueOrNone instead of value), combined template and the length restriction matching attribute. In case of string-
type templates inpar shall match values of the same length only with the exception of specific values and patterns. In
case of these two matching mechanisms, the lengthof function returns the number of indexable items according to
the rules specified in clause 15.6.1.

When the function lengthof is applied to templates of record of or set of types, inpar shall only contain the
following matching mechanisms: specific value, value list, complemented value list, "?" (AnyValue instead of value),
"*" (AnyValueOrNone instead of value), SuperSet, SubSet, combined template, permutation and the length restriction
matching attribute. The parameter inpar shall only match values, for which the lengthof function would give the
same result. If inpar contains uninitialized elements, each of them shall be counted as 1 element, i.e. they shall be
matched as if they contained the "?" (AnyElement inside value) matching character.

NOTE 2: In case of record ofs and set ofs and arrays only elements of the TTCN-3 object, which is the parameter of
the function are calculated; i.e. no elements of nested types are taken into account when determining the
return value.

In addition to the general error causes in clause 16.1.2, error causes are:

• inpar is a string-type template and it can match string values with different length or the length restriction
matching attribute contradicts the number of string elements in the template body;

• inpar is a record of or set of type template and it can match values of different lengths or the length
restriction matching attribute contradicts the number of elements in the template body;

• the template passed to the invalue parameter is not of type bitstring, hexstring, octetstring,
charstring, universal charstring, record of, set of, or array.

NOTE 3: On real test systems the length calculation of inpar may lead to an overflow problem that causes
compile time or runtime error. However, this is out of the scope of the present document.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)351

EXAMPLE 1: Using lengthof for values

 lengthof('010'B) // returns 3

 lengthof('F3'H) // returns 2

 lengthof('F2'O) // returns 1

 lengthof (universal charstring : "Length_of_Example") // returns 17

 // Given
 type record length(0..10) of integer MyList;
 var MyList v_myListVar := { 0, 1, -, 2, - };

 lengthof(v_myListVar);

 // returns 4 without respect to the fact, that the element v_myListVar[2] is not initialized

EXAMPLE 2: Using lengthof for string-type templates

 lengthof(charstring : "HELLO") // returns 5

 lengthof(octetstring : ('12'O, '34'O)) // returns 1

 lengthof('1??1'B) // returns 4

 lengthof(universal charstring : ? length(8)) // returns 8

 lengthof('1*F'H) // shall cause an error

 lengthof('1*F'H length (8)) // returns 8

 lengthof(bitstring : ? length(2..infinity)) // shall cause an error

 lengthof('00*FF'O length(1..2)) // returns 2

 lengthof('1*49'H length(1..2)) // shall cause an error

 lengthof('1'B length(3)) // shall cause an error

 lengthof('1*1'B length(10..20)) // shall cause an error

EXAMPLE 3:

 type record of integer RoI;
 template RoI mw_roI1 := { 1, permutation(2, 3), ? }
 template RoI mw_roI2 := {1, *, (2, 3) }
 template RoI mw_roI3 := { 1, *, 10 } length(5)
 template RoI mw_roI4 := { 1, 2, 3, * } length(1..2)
 template RoI mw_roI5 := { 1, 2, 3, * } length(1..3)

 lengthof (mw_roI1) // returns 4

 lengthof (mw_roI2) // shall cause an error

 lengthof (mw_roI3) // returns 5

 lengthof (mw_roI4) // shall cause an error

 lengthof (mw_roI5) // returns 3

C.2.2 Number of elements in a structured value
 sizeof(in template (present) any inpar) return integer

This function returns the actual number of elements of a value or template of a record or set type (see note).

The function sizeof is applicable to templates of record and set types. The function is applicable only if the sizeof
function gives the same result on all values that match the template.

NOTE: Only elements of the TTCN-3 object, which is the parameter of the function are calculated; i.e. no
elements of nested types/values are taken into account at determining the return value.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)352

In addition to the general error causes in clause 16.1.2, error causes are:

• when inpar is a template and it can match values of different sizes;

• the template passed to the inpar parameter is not of a record or set type.

EXAMPLE:

 // Given
 type record MyPDU
 { boolean field1 optional,
 integer field2
 };

 template MyPDU m_myTemplate :=
 { field1 := omit,
 field2 := 5
 };

 sizeof(m_myTemplate); // returns 1

 type set S {
 integer f1,
 bitstring f2 optional,
 charstring f3 optional
 }

 template S mw_s1 := { f1 := (0..99), f2 := omit, f3 := ? }
 template S mw_s2 := { f3 := *, f1 := 1, f2 := '00'B ifpresent }
 template S mw_s3 := ({ f1 := 1, f2 := omit, f3 := "ABC" },
 { f1 := 2, f3 := omit, f2 := '1'B },
 { f3 := omit, f1 := 3, f2 := '1?1'B }
)
 template S mw_s4 := ?

 sizeof(mw_s1) // returns 2
 sizeof(mw_s2) // shall cause an error
 sizeof(mw_s3) // returns 2
 sizeof(mw_s4) // shall cause an error

C.3 Presence checking functions

C.3.1 Void

C.3.2 Void

C.3.3 Void

C.3.4 Void

C.3.5 Matching mechanism detection
 istemplatekind (in template any_type invalue, in charstring kind) return boolean

This function allows to examine if a template contains a certain kind of the matching mechanisms.

If the matching mechanism kind enquired is matching a specific value (clause B.1.1), a matching mechanism instead of
values (clause B.1.2) or matching character pattern (clause B.1.5), the function shall return true if the content of the
invalue parameter is of the same kind.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)353

If the matching mechanism kind enquired is a matching mechanism inside values (clause B.1.3), the function shall
return true if the template in the invalue parameter contains this kind of matching mechanism on the first level of
nesting.

If the matching mechanism kind enquired is a matching attribute (clause B.1.4), the function shall return true if the
template in the invalue parameter has this kind of matching attribute attached to it directly (i.e. it doesn't count if the
attribute is attached to a field of invalue at any level of nesting).

In all other cases the function returns false.

The kind parameter shall be one of the strings listed in table C.1.

Table C.1: Allowed values of kind parameter

Value of kind parameter Searched matching mechanism
Name Clause reference

"value" Specific value B.1.1
"list" Template list B.1.2.1
"complement" Complemented template list B.1.2.2
"AnyValue", "?" Any value B.1.2.3
"AnyValueOrNone", "*" Any value or none B.1.2.4
"range" Value range B.1.2.5
"superset" SuperSet B.1.2.6
"subset" SubSet B.1.2.7
"omit" Omit B.1.2.8
"decmatch" Matching decoded content B.1.2.9
"AnyElement" Any element B.1.3.1
"AnyElementsOrNone" Any number of elements or none B.1.3.2
"permutation" Permutation B.1.3.3
"length" Length restriction B.1.4.1
"ifpresent" The IfPresent indicator B.1.4.2
"pattern" Matching character pattern B.1.5

NOTE: Clause E.2.2.5 includes the type definition TemplateKind and a constant for each of the allowed values of
the kind parameter. It is recommended to use the istemplatekind function in combination with this type
and these constants to ease the checking of correct usage and to improve the readability of test specs.

Restrictions

In addition to the general error causes given in clause 16.1.2, the following restrictions apply:

a) Calling the istemplatekind function with a different second parameter than stated in table C.1 shall lead
to an error.

EXAMPLE:

type record of integer RoI;
...
var template integer v_t1 := ?, v_t2 := (0,1,2) ifpresent;
var template RoI v_t3:= { permutation(1, 2, 3), ? };
var boolean v_res;
...
v_res := istemplatekind(v_t1, "AnyValue"); // true
v_res := istemplatekind(v_t1, "AnyValueOrNone"); // false
v_res := istemplatekind(v_t2, "complement"); // false
v_res := istemplatekind(v_t2, "list"); // true
v_res := istemplatekind(v_t2, "ifpresent"); // true
v_res := istemplatekind(v_t3, "permutation"); // true
v_res := istemplatekind(v_t3, "AnyElement"); // true

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)354

C.4 String/list handling functions

C.4.1 The Regexp function
 regexp [@nocase] (
 in template (value) any inpar,
 in template (present) any expression,
 in integer groupno
) return any_character_string_type

This function first matches the parameter inpar (or in case inpar is a template, its value equivalent) against the
expression in the second parameter according to the pattern matching specified in clause B.1.5. If expression is
not a template containing a pattern matching mechanism, it shall be processed by this predefined function as if it was a
character pattern as described in clause B.1.5. If the @nocase modifier is present, this and all subsequent matchings
shall be done in a case-insensitive way, as specified in clause B.1.5.6. If inpar is a literal (i.e. type is not explicitly
given) the corresponding type shall be retrieved from the value contents.

If this matching is unsuccessful, an empty string shall be returned.

If this matching is successful, the substring of inpar shall be returned, which matched the groupno-s group of
expression during the matching. Group numbers are assigned by the order of occurrences of the opening bracket of
a group and counted starting from 0 by step 1.

The parameters inpar and expression shall be a value or a template of charstring or universal
charstring types. In case inpar is a template, it shall contain the specific value matching mechanism only. When
expression is a template it shall contain the specific value or pattern matching mechanisms only. The parameter
groupno shall be a non-negative integer. The type of the character string returned is the root type of inpar.

NOTE: This function differs from other well-known regular expression matching implementations in that:

a) It matches the whole inpar string instead of only a substring.

b) It starts counting groups from 0, while in some other implementations the first group is referenced
by 1 and the whole substring matched by the expression is referenced by 0.

In addition to the general error causes in clause 16.1.2, error causes are:

• when inpar is a template, it contains other matching mechanism than specific value or character pattern;

• when expression is a template, it contains other matching mechanism than specific value or character
pattern;

• inpar is of charstring type and expression is of universal charstring type;

• groupno is a negative integer;

• there is no groupno -s group in expression.

EXAMPLE:

 // Given
 var charstring v_myInput := " simple text for a regexp example ";
 var charstring v_myString;

 v_myString := regexp(v_myInput,charstring:"?+(text)?+",0);
 // will return "text"

 v_myString := regexp(v_myInput,charstring:"?+(text)?+",1);
 // causes an error as there is no group with index 1

 v_myString := regexp(v_myInput,charstring:"(?+)(text)(?+)",0);
 // will return " simple "

 v_myString := regexp(v_myInput,charstring:"(?+)(text)(?+)",2);
 // will return " for a regexp example "

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)355

 v_myString := regexp(v_myInput,charstring:"((?+)(text)(?+))",0);
 // will return the whole inpar, i.e. " simple text for a regexp example "

 v_myString := regexp(v_myInput,charstring:"(([]+)(text)(?+))",0);
 // will return an empty string as expression does not matches inpar

 v_myString := regexp(v_myInput,universal charstring:"?+(text)?+",0);
 // will cause an error as inpar is of type charstring, while
 // expression is of type universal charstring

 v_myInput := " date: 2001-10-20 ; msgno: 17; exp ";
 var template charstring v_myPattern :=
 pattern "([\t]#(0,)date:[\d\-]#(0,);[\t]#(0,)msgno: (\d#(1,3)); (exp)#(0,1)) [\t]#(0,)";
 // please note, that only the very first opening bracket and the bracket before "\d#(1,3)"
 // denotes groups; "#(0,)", "#(1,3)" and "#(0,1)" denotes matching the preceding expression
 // several time

 v_myString := regexp(v_myInput, v_myPattern,0);
 // will return the input string but the whitespace at the end,
 // i.e. " date: 2001-10-20 ; msgno: 17; exp"

 v_myString := regexp(v_myInput, v_myPattern,1);
 // will return the value "17"

 //An example of a wrapper function to count groups from 1 and return the complete p_inpar
 //if p_groupno equals 0
 function f_regexp0(
 in template charstring p_inpar,
 in template charstring p_expression,
 in integer p_groupno)
 return charstring {
 var template charstring v_extendedExpr := pattern "({p_expression})";
 return regexp(p_inpar, v_extendedExpr, p_groupno)
 }

C.4.2 The Substring function
 substr(
 in template (present) any inpar,
 in integer index,
 in integer count
) return input_string_or_sequence_type

This function returns a substring or subsequence from a value that is of a binary string type (bitstring,
hexstring, octetstring), a character string type (charstring, universal charstring), or a sequence
type (record of, set of or array). If inpar is a literal (i.e. type is not explicitly given) the corresponding type
shall be retrieved from the value contents. The type of the substring or subsequence returned is the root type of the input
parameter. The starting point of substring or subsequence to return is defined by the second parameter (index).
Indexing starts from zero. The third input parameter (count) defines the length of the substring or subsequence to be
returned. The units of length for string types are as defined in table 4 of the present document. For sequence types, the
unit of length is element.

NOTE: Note that the root types of arrays is record of, therefore if inpar is an array the returned type is
record of. This, in some cases, may lead to different indexing in inpar and in the returned value.

When used on templates of character and binary string types, inpar can contain any template that fulfils the
requirements for referencing individual string elements on the right hand side of an assigmnent specified in
clause 15.6.1. The rules for the indexing of string templates specified in the same section are used for interpreting the
index and count parameters, i.e. the count parameter counts indexable items. The substr function then returns a
template according to the following rules:

• A specific value is returned if the referenced template contains a specific value.

• A pattern is returned if the referenced template contains a pattern.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)356

• A specific value containing as many AnyElement symbols as is the count parameter is returned if the
referenced template if of a binary string type and contains the AnyValue or AnyValueOrNone matching
symbol. In case of the AnyValueOrNone matching symbol, the ifpresent matching attribute shall be added
to the returned value.

• A pattern containing as many ? metacharacters as is the count parameter is returned if the referenced
template if of a character string type and contains the AnyValue or AnyValueOrNone matching symbol. In case
of the AnyValueOrNone matching symbol, the ifpresent matching attribute shall be added to the returned
value.

• If inpar contains a length matching attribute, the returned value shall be without this attribute.

• If inpar contains the ifpresent matching attribute, the returned value shall contain this attribute as well.

• If inpar contains a reference to a template with the present restriction a matching symbol that fulfils the
requirements of the present restriction or a reference to an unrestricted template field that represents a
mandatory field of a record or set or any field of a union, anytype, record of, set of or array, the
returned value shall have the present restriction.

• If inpar contains a reference to a template with the value or omit restriction, the returned value shall have
the value restriction.

When inpar is a template of sequence type or is an array, only the specific value combined templates whose elements
are specific values, and AnyElement matching mechanisms or combined templates are allowed and the substring or
subsequence to be returned shall not contain AnyElement or combined template.

In addition to the general error causes in clause 16.1.2, error causes are:

• index is less than zero;

• count is less than zero;

• if inpar contains neither AnyValue nor AnyValueOrNone and index + count is greater than
lengthof(inpar);

• inpar is a template of a character or binary string type and contains a matching mechanism other than those
allowed for indexing as specified in clause 15.6.1;

• inpar is a template of a sequence type or array and it contains other matching mechanism as specific value or
combined template; or if the elements of combined template are any other matching mechanisms than specific
values, and AnyElement or combined templates;

• the template passed to the inpar parameter is not of type bitstring, hexstring, octetstring,
charstring, universal charstring, record of, set of, or array.

EXAMPLE:

 substr('00100110'B, 3, 4); // returns '0011'B

 substr('ABCDEF'H, 2, 3); // returns 'CDE'H

 substr('01AB23CD'O, 1, 2); // returns 'AB23'O

 substr("My name is JJ", 11, 2); // returns "JJ"

 substr({ 4, 5, 6 }, 1, 2); // returns {5, 6}

 var template charstring v_char1 := pattern "abc[a-z]+", v_char2 := ?;
 substr(v_char1, 2, 2); // returns pattern "c[a-z]+"
 substr(v_char2, 0, 3); // returns pattern "???"

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)357

C.4.3 The Replace function
 replace(
 in template (present) any inpar,
 in integer index,
 in integer len,
 in template (present) any repl
) return any_string_or_sequence type

This function replaces the substring or subsequence of value inpar at index index of length len with the string or
sequence value repl and returns the resulting string or sequence. inpar shall not be modified. If len is 0 the string
or sequence repl is inserted. If index is 0, repl is inserted at the beginning of inpar. If index is
lengthof(inpar), repl is inserted at the end of inpar. If inpar is a literal (i.e. type is not explicitly given) the
corresponding type shall be retrieved from the value contents. inpar and repl, and the returned string or sequence
shall be of the same root type. The function replace can be applied to bitstring, hexstring, octetstring, or
any character string, record of, set of, or arrays. Note that indexing in strings starts from zero.

NOTE 1: The root types of arrays is record of, therefore if inpar or repl or both are an array, the returned
type is record of. This, in some cases, may lead to different indexing in inpar and/or repl and in
the returned value.

The inpar parameter is allowed to contain a template. This template shall fulfil the requirements on the inpar
parameter of the substr function specified in clause C.4.2. The repl parameter is allowed to contain a template that
shall contain a specific value, pattern or AnyValue without any matching attributes attached to it. If either the inpar or
repl parameter contain a template, the replace function returns a template with the present restriction according
to the following rules:

• ? length (index..infinity) is returned when both inpar and repl contain AnyValue

• * length (index..infinity) is returned when inpar contains AnyValueOrNone and repl
contains AnyValue

• In all other cases when the AnyValue matching symbol occurs in the repl parameter, it is automatically
converted prior to resolving the function evaluation if any of the following conditions is met:

- To a compatible binary string containing a single AnyElementOrNone if inpar is of a binary string type

- To pattern "*" if inpar is of a character string type

• The replace function then returns a value that is equal to the following expression:

- substr(inpar, 0, index) & repl &

- substr(inpar, index + len, lengthof(inpar) - index - len)

If any of the substr calls in the previous point would yield a template with the ifpresent matching
attribute, this attribute is removed before concatenation and added to the final result of the concatenation.

If inpar contains a reference to a template with the present restriction, a matching symbol that fulfills the
requirements of the present restriction or a reference to an unrestricted template field that represents a
mandatory field of a record or set or any field of a union, anytype, record of, set of or array, the
returned value shall have the present restriction.

• If inpar contains a reference to a template with the value or omit restriction, the returned value shall have
the value restriction.

NOTE 2: Since the substr fuction removes length matching attributes, the template returned using the
concatenation formula will be without any length matching attribute.

In addition to the general error causes in clause 16.1.2, error causes are:

• inpar or repl are not of string, record of, set of, or array type;

• inpar and repl are of different root type;

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)358

• index is less than 0 or greater than lengthof(inpar);

• len is less than 0 or greater than lengthof(inpar);

• inpar contains neither AnyValue nor AnyValueOrNone and index+len is greater than
lengthof(inpar).

EXAMPLE:

 replace ('00000110'B, 1, 3, '111'B); // returns '01110110'B

 replace ('ABCDEF'H, 0, 2, '123'H); // returns '123CDEF'H

 replace ('01AB23CD'O, 2, 1, 'FF96'O); // returns '01ABFF96CD'O

 replace ("My name is JJ", 11, 1, "xx"); // returns "My name is xxJ"

 replace ("My name is JJ", 11, 0, "xx"); // returns "My name is xxJJ"

 replace ("My name is JJ", 2, 2, "x"); // returns "Myxame is JJ",

 replace ("My name is JJ", 12, 2, "xx"); // produces test case error

 replace ("My name is JJ", 13, 2, "xx"); // produces test case error

 replace ("My name is JJ", 13, 0, "xx"); // returns "My name is JJxx"

 var template charstring v_char1 := pattern "abc[a-z]+", v_char2 := ?;
 replace(v_char1, 2, 2, pattern "x#(1,2)"); // returns pattern "abx#(1,2)"
 replace(v_char2, 2, 2, "ab"); // returns pattern "??ab"

C.5 Codec functions

C.5.1 The encoding function
 encvalue(in template (value) any inpar,
 in universal charstring encoding_info := "",
 in universal charstring dynamic_encoding := "") return bitstring

The encvalue function encodes a value or template into a bitstring. When the actual parameter that is passed to
inpar is a template, it shall resolve to a specific value (the same restrictions apply as for the argument of the send
statement). The returned bitstring represents the encoded value of inpar, however, the TTCN-3 test system need not
make any check on its correctness. The optional encoding_info parameter is used for passing additional encoding
information to the codec and, if it is omitted, no additional information is sent to the codec.

The optional dynamic_encoding parameter is used for dynamic selection of encode attribute of the inpar value
for this single encvalue call. The rules for dynamic selection of the encode attribute are described in clause 27.9.

In addition to the general error causes in clause 16.1.2, error causes are:

• Encoding fails due to a runtime system problem (i.e. no encoding function exists for the actual type of
inpar).

C.5.2 The decoding function
 decvalue(inout bitstring encoded_value,
 out any decoded_value,
 in universal charstring decoding_info := "",
 in universal charstring dynamic_encoding := "") return integer

The decvalue function decodes a bitstring into a value. The test system shall suppose that the bitstring
encoded_value represents an encoded instance of the actual type of decoded_value. The optional
decoding_info parameter is used for passing additional decoding information to the codec and, if it is omitted, no
additional information is sent to the codec.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)359

The optional dynamic_encoding parameter is used for dynamic selection of encode attribute of the
decoded_value parameter for this single decvalue call. The rules for dynamic selection of the encode attribute
are described in clause 27.9.

If the decoding was successful, then the used bits are removed from the parameter encoded_value, the rest is
returned (in the parameter encoded_value), and the decoded value is returned in the parameter decoded_value.
If the decoding was unsuccessful, the actual parameters for encoded_value and decoded_value are not
changed. The function shall return an integer value to indicate success or failure of the decoding below:

• The return value 0 indicates that decoding was successful.

• The return value 1 indicates an unspecified cause of decoding failure. This value is also returned if the
encoded_value parameter contains an unitialized value.

• The return value 2 indicates that decoding could not be completed as encoded_value did not contain
enough bits.

The restrictions in clause 16.1.2 apply.

C.5.3 The encoding to universal charstring function
 encvalue_unichar(in template (value) any inpar,
 in charstring string_serialization := "UTF-8",
 in universal charstring encoding_info := "",
 in universal charstring dynamic_encoding := "")
 return universal charstring

The encvalue_unichar function encodes a value or template into a universal charstring. When the actual
parameter that is passed to inpar is a template, it shall resolve to a specific value (the same restrictions apply as for
the argument of the send statement). The returned universal charstring represents the encoded value of inpar,
however, the TTCN-3 test system need not make any check on its correctness. If the optional string_serialization
parameter is omitted, the default value "UTF-8" is used. The optional encoding_info parameter is used for passing
additional encoding information to the codec and, if it is omitted, no additional information is sent to the codec.

The optional dynamic_encoding parameter is used for dynamic selection of encode attribute of the inpar value
for this single encvalue_unichar call. The rules for dynamic selection of the encode attribute are described in
clause 27.9.

The following values (see ISO/IEC 10646 [2]) are allowed as string_serialization actual parameters (for the description
of the UCS encoding scheme see clause 27.5):

a) "UTF-8"

b) "UTF-16"

c) "UTF-16LE"

d) "UTF-16BE"

e) "UTF-32"

f) "UTF-32LE"

g) "UTF-32BE"

The serialized bitstring shall not include the optional signature (see clause 10 of ISO/IEC 10646 [2], also known as byte
order mark).

In case of "UTF-16" and "UTF-32" big-endian ordering shall be used (as described in clauses 10.4 and 10.7 of
ISO/IEC 10646 [2]).

The specific semantics of this function are explained by the following TTCN-3 definition:

 function encvalue_unichar(in template(value) any inpar,
 in charstring enc

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)360

 in universal charstring encoding_info := "",
 in universal charstring dynamic_encoding := "")
 return universal charstring {
 return oct2unichar(bit2oct(encvalue(inpar, encoding_info, dynamic_encoding)), enc);
 }

The encvalue_unichar function first invokes the encvalue function in order to encode the value
passed in the inpar parameter to a bitstring. The bitstring is then converted to an octetstring by
the bit2oct function and subsequently to a universal charstring using the oct2unichar function. The
string_serialization parameter defines how the encoded octets (in fact the encoded bitstring
received from the codec) contain the characters. The universal charstring value is then returned as
the result of the encvalue_unichar function.

In addition to the general error causes in clause 16.1.2, error causes are:

• Encoding fails due to a runtime system problem (i.e. no encoding function exists for the actual type of
inpar).

• The given string encoding is not recognized.

C.5.4 The decoding from universal charstring function
 decvalue_unichar(inout universal charstring encoded_value,
 out any decoded_value,
 in charstring string_serialization:= "UTF-8",
 in universal charstring decoding_info := "",
 in universal charstring dynamic_encoding := "")
 return integer

The decvalue_unichar function decodes (part of) a universal charstring into a value. The test system shall
suppose that a prefix of the universal charstring encoded_value represents an encoded instance of the actual type of
decoded_value. The optional decoding_info parameter is used for passing additional decoding information to
the codec and, if it is omitted, no additional information is sent to the codec.

The optional dynamic_encoding parameter is used for dynamic selection of encode attribute of the
decoded_value parameter for this single decvalue_unichar call. The rules for dynamic selection of the
encode attribute are described in clause 27.9.

If the decoding was successful, then the characters used for decoding are removed from the parameter
encoded_value, the rest is returned (in the parameter encoded_value), and the decoded value is returned in the
parameter decoded_value. If the decoding was unsuccessful, the actual parameters for encoded_value and
decoded_value are not changed. The function shall return an integer value to indicate success or failure of the
decoding below:

• The return value 0 indicates that decoding was successful.

• The return value 1 indicates an unspecified cause of decoding failure. This value is also returned if the
encoded_value parameter contains an unitialized value.

• The return value 2 indicates that decoding could not be completed as encoded_value did not contain
enough bits.

If the optional string_serialization parameter is omitted, the default value "UTF-8" is used.

The following values (see ISO/IEC 10646 [2]) are allowed as string_serialization actual parameters (for the description
of the UCS encoding scheme see clause 27.5):

a) "UTF-8"

b) "UTF-16"

c) "UTF-16LE"

d) "UTF-16BE"

e) "UTF-32"

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)361

f) "UTF-32LE"

g) "UTF-32BE"

The serialized bitstring shall not include the optional signature (see clause 10 of ISO/IEC 10646 [2], also known as byte
order mark).

In case of "UTF-16" and "UTF-32" big-endian ordering shall be used (as described in clauses 10.4 and 10.7 of
ISO/IEC 10646 [2]).

The semantics of the function can be explained by the following TTCN-3 function:

function decvalue_unichar (inout universal charstring encoded_value,
 out any decoded_value,
 in charstring string_encoding := "UTF-8"",
 in universal charstring decoding_info := "",

 in universal charstring dynamic_encoding := "") return integer {
 var bitstring v_str = oct2bit(unichar2oct(encoded_value, string_encoding));
 var integer v_result := decvalue(v_str, decoded_value, decoding_info, dynamic_encoding);
 if (v_result == 0) { // success
 encoded_value := oct2unichar(bit2oct(v_str), string_encoding);
 }
 return v_result;
}

The decvalue_unichar function first converts the universal charstring value passed in the encoded_value
parameter into an octetstring using the unichar2oct function. The string_encoding parameter controls how
the characters are converted into octets (in fact how the bitstring sent to the codec contains the characters). The
octetstring is subsequently converted into a bitstring by the oct2bit function. This bitstring is then passed as a
parameter to the standard decvalue function that performs the actual decoding. In case of successful decoding, the
undecoded part of the message is automatically converted from bitstring to octetstring by the bit2oct function and
then to universal charstring using the oct2unichar function. This universal charstring is then assigned to the
encoded_value parameter. The result of decoding is then returned to the TE, finishing the decvalue_unichar
call.

The restrictions in clause 16.1.2 apply.

C.5.5 The encoding to octetstring function
 encvalue_o(in template (value) any inpar,
 in universal charstring encoding_info := "",
 in universal charstring dynamic_encoding := "",
 out integer bit_length) return octetstring

The encvalue_o function encodes a value or template into an octetstring. When the actual parameter that is passed
to inpar is a template, it shall resolve to a specific value (the same restrictions apply as for the argument of the send
statement). The returned octetstring represents the encoded value of inpar, however, the TTCN-3 test system need not
make any check on its correctness. In case the encoded message is not octet-based and has a bit length not divisable by
8, the encoded message will be left-aligned in the returned octetstring and the least significant (8 - (bit length mod 8))
bits in the least significant octet will be 0. The bit length can be assigned to a variable by usage of the formal out
parameter bit_length. The optional encoding_info parameter is used for passing additional encoding
information to the codec and, if it is omitted, no additional information is sent to the codec.

The optional dynamic_encoding parameter is used for dynamic selection of encode attribute of the inpar value
for this single encvalue_o call. The rules for dynamic selection of the encode attribute are described in clause 27.9.

In addition to the general error causes in clause 16.1.2, error causes are:

• Encoding fails due to a runtime system problem (i.e. no encoding function exists for the actual type of
inpar).

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)362

C.5.6 The decoding from octetstring function
 decvalue_o(inout octetstring encoded_value,
 out any decoded_value,
 in universal charstring decoding_info := "",
 in universal charstring dynamic_encoding := "") return integer

The decvalue_o function decodes an octetstring into a value. The test system shall suppose that the octetstring
encoded_value represents an encoded instance of the actual type of decoded_value. The optional
decoding_info parameter is used for passing additional decoding information to the codec and, if it is omitted, no
additional information is sent to the codec.

The optional dynamic_encoding parameter is used for dynamic selection of encode attribute of the
decoded_value parameter for this single decvalue_o call. The rules for dynamic selection of the encode
attribute are described in clause 27.9.

If the decoding was successful, then the used octets are removed from the parameter encoded_value, the rest is
returned (in the parameter encoded_value), and the decoded value is returned in the parameter decoded_value.
If the decoding was unsuccessful, the actual parameters for encoded_value and decoded_value are not
changed. The function shall return an integer value to indicate success or failure of the decoding below:

• The return value 0 indicates that decoding was successful.

• The return value 1 indicates an unspecified cause of decoding failure. This value is also returned if the
encoded_value parameter contains an unitialized value.

• The return value 2 indicates that decoding could not be completed as encoded_value did not contain
enough octets.

The restrictions in clause 16.1.2 apply.

C.5.7 Retrieving the type of string encoding
get_stringencoding(in octetstring encoded_value) return charstring

The get_stringencoding function analyses the encoded_value and returns the UCS encoding scheme according to
clause 10 of ISO/IEC 10646 [2] (see also clause 27.5 of the present document). The identified encoding scheme, or the
value "<unknown>", if the type of encoding cannot be determined unanimously, shall be returned as a character string.

NOTE: The initial octet sequence (also known as byte order mark, BOM), when present, allows identifying the
encoding scheme unanimously. When it is not present, other symptoms may be used to identify the
encoding scheme unanimously; for example, only UTF-8 may have odd number of octets and bit
distribution according to table 2 of clause 9.1 of ISO/IEC 10646 [2].

EXAMPLE:

 match (get_stringencoding('6869C3BA7A'O),charstring:"UTF-8") // true
 //(the octetstring contains the UTF-8 encoding of the character sequence "hiúz")

C.5.8 Removing BOMs of UCS encoding schemes
 remove_bom(in octetstring encoded_value) return octetstring

The remove_bom function removes the optional FEFF ZERO WIDTH NO-BREAK SPACE sequence that may be
present at the beginning of a stream of serialized (encoded) universal character strings to indicate the order of the octets
within the encoding form, as defined in clause 10 of ISO/IEC 10646 [2]. If no FEFF ZERO WIDTH NO-BREAK
SPACE sequence present in the encoded_value parameter, the function shall return the value of the parameter
without change.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)363

Table C.2: Overview of initial octet sequences used for BOM

Coding scheme initial octet sequence comments
UTF-8 EF BB BF signature not required / no effect
UTF-16BE FE FF no signature meaning
UTF-16LE FF FE no signature meaning

UTF-16 FE FF
FF FE

signature
(default FE FF)

UTF-32BE 00 00 FE FF no signature meaning
UTF-32LE FF FE 00 00 no signature meaning

UTF-32 00 00 FE FF
FF FE 00 00

signature
(default 00 00 FE FF)

EXAMPLE:

remove_bom('FEFF0068006900FA007A'O) // returns '0068006900FA007A'O

remove_bom('BC'O)) // returns 'BC'O
// note that this octetstring doesn't contain valid UCS character

//example use: automatic decoding of encoded character strings:
oct2unichar(remove_bom(v_myEncodedCharacterSequence),
 get_stringencoding(v_myEncodedCharacterSequence))

C.6 Other functions

C.6.1 The random number generator function
 rnd([in float seed]) return float

The rnd function returns a (pseudo) random number less than 1 but greater or equal to 0. The random number
generator is initialized per test component and for the control part by means of an optional seed value (a numerical float
value). If no new seed is provided, the last generated number will be used as seed for the next random number. Without
a previous initialization a value calculated from the system time will be used as seed value when rnd is used the first
time in a test component or the control part.

Each time the rnd function is initialized with the same seed value, it shall repeat the same sequence of random
numbers.

NOTE: For the purpose of keeping parallel testing deterministic, each test component, as well as the control part
has its own random seed. This allows for better reproducibility of test executions. Thus, the rnd function
will always use the seed of the component or control part which calls it.

To produce a random integers in a given range, the following formula can be used:

 float2int(int2float(upperbound - lowerbound +1)*rnd()) + lowerbound
 // Here, upperbound and lowerbound denote highest and lowest number in range.

In addition to the general error causes in clause 16.1.2, error causes are:

• seed is infinity, -infinity or not_a_number.

C.6.2 The testcasename function
 testcasename() return charstring

The testcasename function shall return the unqualified name of the actually executing test case.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)364

EXAMPLE 1:

 module MyTCModule {
 :
 testcase TC_MyTestCase1 () runs on MTC system TSI
 {
 var charstring v_tcName := testcasename ();
 // will return the charstring "TC_MyTestCase1"
 :
 }
 :
 testcase TC_MyTestCase2 () runs on MTC system TSI
 {
 :
 }
 :
 }
 module MyTSModule {
 :
 function f_myStartAPTC() runs on PTC {
 var charstring v_tcName := testcasename ();
 // will return charstring "TC_MyTestCase1", if the function is
 // called by a test component during the execution of TC_MyTestCase1
 // will return charstring "TC_MyTestCase2", if the function is
 // called by a test component when TC_MyTestCase2 is being executed
 }
 :
 }

When the function testcasename is called if the control part is being executed but no testcase, it shall return the
empty string.

EXAMPLE 2:

 module MyModule {
 :
 control
 {
 var charstring v_tcName := testcasename () // will return charstring ""
 :
 }
 :
 }

The general error causes in clause 16.1.2 apply.

C.6.3 The hostId function
 hostid(in charstring idkind := "Ipv4orIPv6") return charstring

The hostid function shall return the host id of the test component or module control executing the hostid function
in form of a character string. The in parameter idkind allows to specify the expected id format to be returned.

Predefined idkind values are:

• "Ipv4orIPv6": The contents of the returned character string is an Ipv4 address. If no Ipv4 address, but an
Ipv6 address is available, a character string representation of the Ipv6 address is returned.

• "Ipv4": The contents of the returned character string shall be an Ipv4 address.

• "Ipv6": The contents of the returned characterstring shall be an Ipv6 address.

The hostid function shall return the empty string, if it cannot retrieve any host id or a host id of a kind different from
the kind defined by the actual idkind parameter.

The general error causes in clause 16.1.2 apply.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)365

EXAMPLE:

// assume

 testcase TC_MyTestCase () runs on MTC system TSI
 {
 :
 var charstring v_myHostId := hostid ("Ipv4");
 :
 }

// assume further the following statement in module control

 execute(TC_MyTestCase(), -, "127.0.0.1");

// In this setting, v_myHostId will have the value "127.0.0.1" after the execution of hostid

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)366

Annex D (normative):
Preprocessing macros

D.0 General
This annex defines a set of preprocessing macros. A preprocessing macro is a macro that is replaced by a preprocessor
or a compiler with a charstring or integer value respectively before compilation. Preprocessing macros shall not
be replaced inside literal charstring values and templates and not in TTCN-3 comments. In the TTCN-3 code, it
can be used like a charstring or an integer value respectively.

D.1 Preprocessing macro __MODULE__
The __MODULE__ preprocessing macro denotes the module name in which the macro is used. A preprocessor or
compiler shall replace all occurrences of __MODULE__ with the actual module name in form of a charstring value.

D.2 Preprocessing macro __FILE__
The __FILE__ preprocessing macro denotes the canonical (absolute) file name, i.e. the full path and the basic file
name, in which the macro is used. A preprocessor or compiler shall replace all occurrences of __FILE__ with the
actual canonical (absolute) file name in form of a charstring value.

NOTE: The format of the canonical file name depends on the operating system and is not specified by the present
document.

EXAMPLE:

 const charstring c_myConst:= __FILE__;
 //c_myConst is for example "/home/myhome/MyTest.ttcn"

D.3 Preprocessing macro __BFILE__
The __BFILE__ preprocessing macro denotes the basic (relative) file name, i.e. without path, in which the macro is
used. A preprocessor or compiler shall replace all occurrences of __BFILE__ with the actual basic (relative) file name
in form of a charstring value.

NOTE: The format of the basic file name depends on the operating system and is not specified by the present
document.

EXAMPLE:

 const charstring c_myConst:= __BFILE__;
 // c_myConst is for example "MyTest.ttcn"

D.4 Preprocessing macro __LINE__
The __LINE__ preprocessing macro denotes the line number of the file in which the macro is used. A preprocessor or
compiler shall replace each occurrence of __LINE__ with the actual line number in form of an integer value.

A file starts with line number 1. Each newline shall increase the line number by 1 (see clause A.1.5.1). Also newlines
of commented lines shall increase the line number by 1.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)367

D.5 Preprocessing macro __SCOPE__
The __SCOPE__ preprocessing macro denotes the unqualified name of the lowest named basic scope unit in which the
macro is used. According to clause 5.2, basic scope units of TTCN-3 are module definitions part, module control
function, component types, functions, altsteps, test cases, statement blocks, templates and user defined named types.
Statement blocks have no name and therefore, a __SCOPE__ preprocessing macro used in a statement block refers to
the next higher named basic scope unit.

A preprocessor or compiler shall replace all occurrences of __SCOPE__ with a charstring value which includes:

a) the module name, if the lowest named scope unit is the module definitions part;

b) "control", if the lowest named scope unit is the module control function;

c) a component type name, if the lowest named scope unit is a component type definition;

d) a test case name, if the lowest named scope unit is a test case definition;

e) an altstep name, if the lowest named scope is an altstep definition;

f) a function name, if the lowest named scope is a function definition;

g) a template name, if the lowest named scope is a template definition (local or global); or

h) the type name, if the lowest named scope is a user defined named type definition.

NOTE: The __SCOPE__ preprocessing macro cannot be used to retrieve the names of other kinds of definitions,
like for example names of groups of definitions or names of global constants.

EXAMPLE 1: Using __SCOPE__ in constant and template definitions:

 module MyModule
 {
 const charstring c_myConst := __SCOPE__; // c_myConst contains "MyModule"
 template charstring m_myTemplate := __SCOPE__; // m_myTemplate contains "m_myTemplate"

 type record MyRecord1
 {
 charstring field11,
 charstring field12
 }

 template MyRecord1 m_myTemplate1 (charstring p_p := __SCOPE__) :=
 {
 field11 := p_p,
 field12 := __SCOPE__ // field12 contains "m_myTemplate1"
 }

 function f_myFunction() {
 var template MyRecord1 v_myvar1 := m_myTemplate1;
 // field11 of m_myTemplate1 will contain the default value of parameter p_p,
 // i.e. "m_myTemplate1"
 };

 control {
 const charstring c_myLocalConst := __SCOPE__; // c_myLocalConst contains "control"
 }
 }

EXAMPLE 2: Using __SCOPE__ in a structured type scope:

 type record MyRecord2 {
 charstring field21,
 charstring field22 ("a", "b", __SCOPE__)
 // list constrained field: a legal values are "a", "b" or "MyRecord2"
 }

 template MyRecord2 m_myTemplate2 := {
 field21 := "a",
 field22 := "MyRecord2" // a valid specific value matching
 }

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)368

 template MyRecord2 m_myTemplate3 := {
 field21 := "a",
 field22 := __SCOPE__
 // Causes an error as __SCOPE__ is replaced with "m_myTemplate3",
 // which is violating the list constraint of field22
 }

EXAMPLE 3: Using __SCOPE__ in an embedded structured type scope:

 type record MyRecord3 {
 charstring field31,
 record {
 charstring field321 ("a", "b", __SCOPE__)
 // list constrained field: a legal value shall be "a", "b" or "MyRecord3"
 } field32
 }

 template MyRecord3 m_myTemplate4 :=
 {
 field31 := "a",
 field32 :=
 {
 field321 := "MyRecord3" // a valid specific value matching
 }
 }

 template MyRecord3 m_myTemplate5 :=
 {
 field31 := "a",
 field32 :=
 {
 field321 := __SCOPE__
 // Causes and error as __SCOPE__ is replaced with "m_myTemplate5",
 // which is violating the list constraint of field321
 }
 }

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)369

Annex E (informative):
Library of Useful Types

E.1 Limitations
Names of types added to this library are to be unique within the whole language and within the library (i.e. are not to be
one of the names defined in annex C). Names defined in this library are not to be used by TTCN-3 users as identifiers of
other definitions than given in this annex.

NOTE: Therefore type definitions given in this annex may be repeated in TTCN-3 modules but no type distinct
from the one specified in this annex can be defined with one of the identifiers used in this annex.

E.2 Useful TTCN-3 types

E.2.1 Useful simple basic types

E.2.1.0 Signed and unsigned single byte integers

These types support integer values of the range from -128 to 127 for the signed and from 0 to 255 for the unsigned type.
The value notation for these types is the same as the value notation for the integer type. Values of these types are to be
encoded and decoded as they were represented on a single byte within the system independently from the actual
representation form used.

NOTE: Encoding of values of these types may be the same or may differ from each other and from the encoding
of the integer type (the root type of these useful types) depending on the actual encoding rules used.
Details of encoding rules are out of the scope of the present document.

Type definitions for these types are:

 type integer byte (-128 .. 127) with { variant "8 bit" };

 type integer unsignedbyte (0 .. 255) with { variant "unsigned 8 bit" };

E.2.1.1 Signed and unsigned short integers

These types support integer values of the range from -32 768 to 32 767 for the signed and from 0 to 65 535 for the
unsigned type. The value notation for these types is the same as the value notation for the integer type. Values of these
types are to be encoded and decoded as they were represented on two bytes within the system independently from the
actual representation form used.

NOTE: Encoding of values of these types may be the same or may differ from each other and from the encoding
of the integer type (the root type of these useful types) depending on the actual encoding rules used.
Details of encoding rules are out of the scope of the present document.

Type definitions for these types are:

 type integer short (-32768 .. 32767) with { variant "16 bit" };

 type integer unsignedshort (0 .. 65535) with { variant "unsigned 16 bit" };

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)370

E.2.1.2 Signed and unsigned long integers

These types support integer values of the range from -2 147 483 648 to 2 147 483 647 for the signed and from 0 to
4 294 967 295 for the unsigned type. The value notation for these types is the same as the value notation for the integer
type. Values of these types are to be encoded and decoded as they were represented on four bytes within the system
independently from the actual representation form used.

NOTE: Encoding of values of these types may be the same or may differ from each other and from the encoding
of the integer type (the root type of these useful types) depending on the actual encoding rules used.
Details of encoding rules are out of the scope of the present document.

Type definitions for these types are:

 type integer long (-2147483648 .. 2147483647)
 with { variant "32 bit" };

 type integer unsignedlong (0 .. 4294967295)
 with { variant "unsigned 32 bit" };

E.2.1.3 Signed and unsigned longlong integers

These types support integer values of the range from -9 223 372 036 854 775 808 to 9 223 372 036 854 775 807 for the
signed and from 0 to 18 446 744 073 709 551 615 for the unsigned type. The value notation for these types is the same
as the value notation for the integer type. Values of these types are to be encoded and decoded as they were represented
on eight bytes within the system independently from the actual representation form used.

NOTE: Encoding of values of these types may be the same or may differ from each other and from the encoding
of the integer type (the root type of these useful types) depending on the actual encoding rules used.
Details of encoding rules are out of the scope of the present document.

Type definitions for these types are:

 type integer longlong (-9223372036854775808 .. 9223372036854775807)
 with { variant "64 bit" };

 type integer unsignedlonglong (0 .. 18446744073709551615)
 with { variant "unsigned 64 bit" };

E.2.1.4 IEEE 754 floats

These types support the IEEE 754 [6] for binary floating-point arithmetic. The type IEEE 754 [6] float supports
floating-point numbers with base 10, exponent of size 8, mantissa of size 23 and a sign bit. The type IEEE 754 [6]
double supports floating-point numbers with base 10, exponent of size 11, mantissa of size 52 and a sign bit. The type
IEEE 754 [6] extfloat supports floating-point numbers with base 10, minimal exponent of size 11, minimal
mantissa of size 32 and a sign bit. The type IEEE 754 [6] extdouble supports floating-point numbers with base 10,
minimal exponent of size 15, minimal mantissa of size 64 and a sign bit.

Values of these types are to be encoded and decoded according to the IEEE 754 [6] definitions. The value notation for
these types is the same as the value notation for the float type (base 10).

NOTE: Precise encoding of values of this type depends on the actual encoding rules used. Details of encoding
rules are out of the scope of the present document.

Type definitions for these types are:

 type float IEEE754float with { variant "IEEE754 float" };

 type float IEEE754double with { variant "IEEE754 double" };

 type float IEEE754extfloat with { variant "IEEE754 extended float" };

 type float IEEE754extdouble with { variant "IEEE754 extended double" };

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)371

E.2.2 Useful character string types

E.2.2.0 UTF-8 character string "utf8string"

This type supports the whole character set of the TTCN-3 type universal charstring (see paragraph d) of
clause 6.1.1). Its distinguished values are zero, one, or more characters from this set. Values of this type are entirely
(e.g. each character of the value individually) to be encoded and decoded according to the UCS Transformation
Format 8 (UTF-8) as defined in annex R of ISO/IEC 10646 [2]. The value notation for this type is the same as the value
notation for the universal charstring type.

The type definition for this type is:

 type universal charstring utf8string with { variant "UTF-8" };

E.2.2.1 BMP character string "bmpstring"

This type supports the Basic Multilingual Plane (BMP) character set of ISO/IEC 10646 [2]. The BMP represents all
characters of plane 00 of group 00 of the Universal Multiple-octet coded Character Set. Its distinguished values are
zero, one, or more characters from the BMP. Values of this type are entirely (e.g. each character of the value
individually) to be encoded and decoded according to the UTF-16 coded representation form (see clause 9.2 of
ISO/IEC 10646 [2]). The value notation for this type is the same as the value notation for the universal
charstring type.

NOTE: The type "bmpstring" supports a subset of the TTCN-3 type universal charstring.

The type definition for this type is:

 type universal charstring bmpstring (char (0,0,0,0) .. char (0,0,255,255))
 with { variant "UTF-16" };

E.2.2.2 UTF-16 character string "utf16string"

This type supports all characters of planes 00 to 16 of group 00 of the Universal Multiple-octet coded Character Set (see
ISO/IEC 10646 [2]). Its distinguished values are zero, one, or more characters from this set. Values of this type are
entirely (e.g. each character of the value individually) to be encoded and decoded according to the UCS Transformation
Format 16 (UTF-16) as defined in annex Q of ISO/IEC 10646 [2]. The value notation for this type is the same as the
value notation for the universal charstring type.

NOTE: The type "utf16string" supports a subset of the TTCN-3 type universal charstring.

The type definition for this type is:

 type universal charstring utf16string (char (0,0,0,0) .. char (0,16,255,255))
 with { variant "UTF-16" };

E.2.2.3 ISO/IEC 10646 character string "iso8859string"

This type supports all characters in all alphabets defined in the multiparty standard ISO/IEC 10646 [2]. Its distinguished
values are zero, one, or more characters from the ISO/IEC 10646 [2] character set. Values of this type are entirely (e.g.
each character of the value individually) to be encoded and decoded according to the coded representation as specified
in ISO/IEC 10646 [2] (an 8-bit coding). The value notation for this type is the same as the value notation for the
universal charstring type.

NOTE 1: The type "iso8859string" supports a subset of the TTCN-3 type universal charstring.

NOTE 2: In each ISO/IEC 10646 [2] alphabet the lower part of the character set table (positions 02/00 to 07/14) is
compatible with the Recommendation ITU-T T.50 [4] character set. Hence all extra language specific
characters are defined for the upper part of the character table only (positions 10/00 to 15/15).

The type definition for this type is:

 type universal charstring iso8859string (char (0,0,0,0) .. char (0,0,0,255))
 with { variant "8 bit" };

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)372

E.2.2.4 Status values for TTCN-3 objects

Type and constants defined in this clause support the secure usage of the checkstate port operation defined in
clause 22.5.5.

The type definition for this type is:

 type charstring objState ("Started", "Halted", "Stopped", "Connected", "Mapped", "Linked");

Useful constant definitions for working with object states are:

 const objState STARTED := "Started";
 const objState HALTED := "Halted";
 const objState STOPPED := "Stopped";
 const objState CONNECTED := "Connected";
 const objState MAPPED := "Mapped";
 const objState LINKED := "Linked";

E.2.2.5 Template kinds of TTCN-3 objects

Type and constants defined in this clause support the secure usage of the predefined istemplatekind function,
described in clause C.3.5.

The type definition for this type is:

 type charstring TemplateKind ("value", "list", "complement", "AnyValue", "?", "AnyValueOrNone",
 "*", "range", "subset", "superset", "omit", "decmatch", "AnyElement", "AnyElementsOrNone",
 "permutation", "length", "ifpresent", "pattern");

Useful constant definitions for working with template kinds are:

 const TemplateKind VALUE := "value";
 const TemplateKind LIST := "list";
 const TemplateKind COMPLEMENT := "complement";
 const TemplateKind ANY_VALUE := "AnyValue";
 const TemplateKind ANY_VALUE_OR_NONE := "AnyValueOrNone";
 const TemplateKind RANGE := "range";
 const TemplateKind SUBSET := "subset";
 const TemplateKind SUPERSET := "superset";
 const TemplateKind OMIT := "omit";
 const TemplateKind DECMATCH := "decmatch";
 const TemplateKind ANY_ELEMENT := "AnyElement";
 const TemplateKind ANY_ELEMENTS_OR_NONE := "AnyElementsOrNone";
 const TemplateKind PERMUTATION := "permutation";
 const TemplateKind LENGTH := "length";
 const TemplateKind IFPRESENT := "ifpresent";
 const TemplateKind PATTERN := "pattern";

E.2.3 Useful structured types

E.2.3.0 Fixed-point decimal literal

This type supports the use of fixed-point decimal literal as defined in the IDL Syntax and Semantics version 2.6 [i.10].
It is specified by an integer part, a decimal point and a fraction part. The integer and fraction parts both consist of a
sequence of decimal (base 10) digits. The number of digits is stored in "digits" and the size of the fraction part is given
in "scale". The digits itself are stored in "value_". Value notation for this type is the same as the value notation for the
record type. Values of this type are to be encoded and decoded as IDL fixed point decimal values.

NOTE: Precise encoding of values of this type depends on the actual encoding rules used. Details of encoding
rules are out of the scope of the present document.

The type definition for this type is:

 type record IDLfixed {
 unsignedshort digits,
 short scale,
 charstring value_
 }

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)373

 with { variant "IDL:fixed FORMAL/01-12-01 v.2.6" };

E.2.4 Useful atomic string types

E.2.4.1 Single Recommendation ITU-T T.50 character type

A type whose distinguished values are single characters of the version of Recommendation ITU-T T.50 [4] complying
to the International Reference Version (IRV) as specified in clause 8.2 of Recommendation ITU-T T.50 [4] (see also
note 1 to clause 6.1.1).

The type definition for this type is:

 type charstring char646 length (1);

NOTE: The special string "8 bit" defined in clause 27.5 may be used with this type to specify a given encoding
for its values. Also, other properties of the base type can be changed by using attribute mechanisms.

E.2.4.2 Single universal character type

A type whose distinguished values are single characters from ISO/IEC 10646 [2].

The type definition for this type is:

 type universal charstring uchar length (1);

NOTE: Special strings defined in clause 27.5 except "8 bit" may be used with this type to specify a given
encoding for its values. Also, other properties of the base type can be changed by using attribute
mechanisms.

E.2.4.3 Single bit type

A type whose distinguished values are single binary digits.

The type definition for this type is:

 type bitstring bit length (1);

E.2.4.4 Single hex type

A type whose distinguished values are single hexadecimal digits.

The type definition for this type is:

 type hexstring hex length (1);

E.2.4.5 Single octet type

A type whose distinguished values are pairs of hexadecimal digits.

The type definition for this type is:

 type octetstring octet length (1);

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)374

Annex F (informative):
Operations on TTCN-3 active objects

F.0 General
This annex describes in a short form the semantics of operations on active objects in TTCN-3 being test components,
timers and ports. This dynamic behaviour is written in the form of state machines with:

• the states being named and identified as nodes;

• the initial state being identified by an incoming arrow;

• transitions between states connecting two states (not necessarily different states) and identified as arrows;

• transitions being marked with the enabling condition for that transition (i.e. operation or statement calls) and
the resulting condition (for example a test case error), both are separated by '/':

- operation and statement calls are the TTCN-3 operations and statements applicable to the object (written
in bold);

- error as a resulting condition means testcase error (written in bold);

- null as a resulting condition means that except of a possible state change no other results apply (written
in bold);

- match/no match refers to the matching result of a transition (written in bold);

- concrete values are boolean or float results (written in bold italics);

- all other resulting conditions are textually described (written in standard font);

• notes are used to explain further details of the state machine.

Further details can be found in the operational semantics of TTCN-3 [1]. In case of any contradiction between this
annex and the operational semantics of TTCN-3 [1] the latter takes precedence.

F.1 Test components

F.1.1 Test component references
Variables of test component types, the self and mtc operations are used to reference test components. The start,
stop, done and running operations are not directly applied on test components but on component references. The
test system has to decide if the operation requested should affect the component object itself or other action is
appropriate (e.g. an error occurs when the reference of a stopped PTC is used in a component start operation). The
create operation used to create PTCs returns a unique reference to the created PTC, which is typically bound to a
variable of component type. The behaviour related to variables of component type themselves is shown in figure F.1.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)375

Initialized

"assignment of the return value of create"/"references created test component"

Uninitialized

done/error killed/error
running/error alive/error
stop/error kill/error
start/error

"assignment of the return value of create"/"references created
test component" (and "looses the previous reference")

Error
(see note)

variable
declaration

NOTE: Whenever a test component enters its error state, the error verdict is assigned to its local verdict, the test
case terminates and the overall test case result will be error.

Figure F.1: Handling of test component references

F.1.2 Dynamic behaviour of PTCs
PTCs can be of non-alive type or alive-type. Non-alive type PTCs can be in Inactive, Running and Killed states. Their
dynamic behaviour is shown in figure F.2.

start/"component executes function"

done/no match killed/no match
running/false alive/true

done/no match killed/no match
running/true alive/true

stop/null (see note 2a) kill/null (see note 2b)

done/match killed/match
running/false alive/false

stop/"component terminates" (se note 2a)

kill/"component terminates" (see note 2b)

create/creation of a non-alive PTC

start/error

start/error

"run-time error"/error

Inactive

Running

Killed

Error
(see note 3)

stop/"component terminates" (see note 1a)

kill/"component terminates" (see note 1b)

"return from function"/"component terminates"
"completion of function"/"component terminates"

NOTE 1: (a) Stop can be either a stop, self.stop or a stop from another test component.
 (b) Kill can be either a kill, self.kill, a kill from another test component or a kill from the test system

 (in error cases).
NOTE 2: (a) Stop can be from another test component only.
 (b) Kill can be from another test component or from the test system (in error cases) only.
NOTE 3: Whenever a test component enters its error state, the error verdict is assigned to its local verdict, the test

case terminates and the overall test case result will be error.

Figure F.2: Dynamic behaviour of non-alive type PTCs

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)376

Alive-type PTCs can be in Inactive, Running, Stopped and Killed states. Their dynamic behaviour is shown in
figure F.3.

start/"component executes function"

done/no match killed/no match
running/false alive/true

done/no match killed/no match
running/true alive/true

create alive/creation of an alive PTC

start/error

start/error

"run-time error"/error

Inactive

Stopped

stop/null (see note 2a)

kill/null (see note 2b)
done/match
killed/match
running/false
alive/false

Killed

stop/null (see note 2a)

done/match
killed/no match
running/false
alive/true

kill/"component terminates" (see note 2b)

kill/"component terminates" (see note 1b)

stop/"component stops" (see note 2a)

Running

stop/"component stops" (see note 1a)

"return from function"/"component terminates"
"completion of function"/"component terminates"

start/"component
executes function"

kill/"component terminates" (see note 2b)

Error
(see note 3)

NOTE 1: (a) Stop can be either a stop, self.stop or a stop from another test component.
 (b) Kill can be either a kill, self.kill, a kill from another test component or a kill from the test system

 (in error cases).
NOTE 2: (a) Stop can be from another test component only.
 (b) Kill can be from another test component or from the test system (in error cases) only.
NOTE 3: Whenever a test component enters its error state, the error verdict is assigned to its local verdict, the test

case terminates and the overall test case result will be error.

Figure F.3: Dynamic behaviour of alive-type PTCs

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)377

F.1.3 Dynamic behaviour of the MTC
The MTC can be in Running or Killed state. The dynamic behaviour of the MTC is shown in figure F.4.

Running

Killed
(see note 2)

stop/"component terminates" (see note 1a)

kill/"component terminates" (see note 1b)

"completing of the test case"/"component terminates"

done/no match killed/no match
running/true alive/true

execute/"creates the MTC" and "starts the testcase"

Error
(see note 3)

start/error
stopfrom another component/error
kill from another component/error
"run-time error"/error

NOTE 1: (a) Stop can be either a stop, self.stop, a stop from another test component.
 (b) Kill can be either a kill, self.kill, a kill from another test component or a kill from the test system
 (in error cases).
NOTE 2: All remaining PTCs are to be killed as well and the testcase terminates.
NOTE 3: Whenever the MTC enters its error state, the error verdict is assigned to its local verdict,the test case

terminates and the overall test case result will be error.

Figure F.4: Dynamic behaviour of the MTC

F.2 Timers
Timers can be in Inactive, Running or Expired state. The dynamic behaviour of a timer is shown in figure F.5.

‘

Inactive

Test component timers: "component created";
Other local timers: "testcase, function, altstep,
statement block entered or default activated"

Running
(see note 1)

stop/null
running/false
read/0.0
timeout/no match

Expired
(see note 2)

(timer expiry)/null

timeout/match
stop/null

running/false
read/0.0

start/"timer starts with
non-negative duration"

stop/stop timer

start/"timer restarts with non-negative duration"
running/true
read/elapsed time
timeout/no match

start/"timer starts with non-negative duration"

start with negative duration/error

Error
(see note 3)

NOTE 1: For any scope unit, all timers in that scope being in Running state constitute the running-timer list.
NOTE 2: For any scope unit, all timers in that scope being in Expired state constitute the timeout-list.
NOTE 3: Whenever a timer enters its error state, the test component it belongs to enters also its error state,assigns

a local error verdict, the test case terminates and the overall test case result will be error.

Figure F.5: Dynamic behaviour of timers

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)378

F.3 Ports

F.3.0 General
Ports can be in Started or Stopped state. As their behaviour is rather complex, the state machine has been split into a
state machine giving the dynamic behaviour of configuration operations (i.e. connect, disconnect, map and unmap), of
port controlling operations (i.e. start, stop and clear) and of communication operations (i.e. send, receive, call, getcall,
raise, catch, reply, getreply and check). As trigger is a shorthand for an alt together with receive it is not considered
here.

F.3.1 Configuration Operations
The port configuration operations (i.e. connect, disconnect, map and unmap) are indifferent to the state of the port. They
show the behaviour shown in figure F.6.

Started

Stopped

create/"creates
test component"
(see note 1)

Error
(see note 2)

connect/if ("illegal connection") then error
map/if ("illegal connection") then "store link to other port" error

Halted

connect/if ("legal connection")
 then (if ("link not yet established")
 then "establish this link" else null)
disconnect/if ("link established") then "remove this link" else null
map/if ("legal connection")
 then "store link to other port"
 (if ("link not yet established")
 then "establish this link" else null)
unmap/if ("link established") then "remove this link" else null

connect/if ("legal connection")
 then (if ("link not yet established")
 then "establish this link" else null)
disconnect/if ("link established") then "remove this link" else null
map/if ("legal connection")
 then (if ("link not yet established")
 then "establish this link" else null)
unmap/if ("link established") then "remove this link" else null

NOTE 1: When creating a PTC the ports of that PTC are created and started; when creating the MTC the ports of
the MTC and the ports of the TSI are created and started.

NOTE 2: Whenever a port enters its error state, the test component it belongs to enters also its error state, assigns
a local error verdict, the test case terminates and the overall test case result will be error.

Figure F.6: Dynamic behaviour of ports: port configuration operations

The transitions do not change the main state of the port, i.e. the port remains in the Started or Stopped state.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)379

F.3.2 Port Controlling Operations
The results of port controlling operations are shown in figure F.7.

clear/"clears queue"
stop/null

Started

Stopped

stop/null

Halted

start/"clears queue" and
"removes halt maker"

halt/"puts halt
marker at the
top of the queue"

halt/"puts halt marker
at the end of the queue"

stop/"removes halt maker" clear/"clears queue" and
"puts halt marker at the
 top of the queue"
halt/null

create/"creates
test component"
(see note)

clear/"clears queue"
start/"clears queue"

start/"clears queue"

NOTE: When creating a PTC the ports of that PTC are created and started; when creating the MTC the ports of
the MTC and the ports of the TSI are created and started.

Figure F.7: Dynamic behaviour of ports: port controlling operations

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)380

F.3.3 Communication Operations
The results of the communication operations send, receive, call, getcall, raise, catch, reply, getreply, check are shown in
figure F.8.

 send/if ("unique receiver") then "transmit" (see note 2)
receive/if ("top queue element matches")
 then match and "remove from queue"
 else no match
call/if ("unique receiver") then "transmit" (see note 2)
getcall/if ("top queue element matches")
 then match and "remove from queue"
 else no match
reply/if ("unique receiver") then "transmit" (see note 2)
getreply/if ("top queue element matches")
 then match and "remove from queue"
 else no match
raise/if ("unique receiver") then "transmit" (see note 2)
catch/if ("top queue element matches")
 then match and "remove from queue"
 else no match
check/if ("top queue element matches")
 then match
 else no match

create/"creates
test component"

(see note 1)

send/if ("ambiguous" or "no receiver") error (see note 2)
call/if ("ambiguous" or "no receiver") error (see note 2)
reply/if ("ambiguous" or "no receiver") error (see note 2)
raise/if ("ambiguous" or "no receiver") error (see note 2)

send/error
call/error
reply/error
raise/error

Started

Stopped

Halted

receive/if ("top queue element is halt marker")
 then no match
 else if ("top queue element matches")
 then match & "remove from queue"
 else no match
getcall/if ("top queue element is halt marker")
 then no match
 else if ("top queue element matches")
 then match & "remove from queue"
 else no match
getreply/if ("top queue element is halt marker")
 then no match
 else if ("top queue element matches")
 then match & "remove from queue"
 else no match
catch/if ("top queue element is halt marker")
 then no match
 else if ("top queue element matches")
 then match & "remove from queue"
 else no match
check/if ("top queue element is halt marker")
 then no match
 else if ("top queue element matches")
 then match
 else no match receive/no match

getcall/no match
getreply/no
match
catch/no match
check/no match

Error
(see note 3)

NOTE 1: When creating a PTC the ports of that PTC are created and started; when creating a MTC the ports of the
MTC and the ports of the TSI are created and started.

NOTE 2: A unique receiver exists if there is only one link for this port or if the to address expression references a
test component whose port is linked to this port (a terminated test component is not a legal receiver).

NOTE 3: Whenever a port enters its error state, the test component it belongs to enters also its error state, assigns
a local error verdict, the test case terminates and the overall test case result will be error.

NOTE 4: As trigger is a shorthand for an alt together with receive it is not considered here.

Figure F.8: Dynamic behaviour of ports: communication operations

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)381

Annex G (informative):
Deprecated language features

G.1 Group style definition of module parameters
Previous versions of the present document (up to and including V2.2.1) required to use a group-like syntax shown in the
example below to declare module parameters. The module parameter syntax has been unified with constant and variable
declaration syntax in this version but group-like syntax is not fully removed to leave a time period for tool providers
and users to change from the old syntax to the new one. The group-like syntax of module parameter declarations may be
fully removed in a future edition of the present document.

EXAMPLE (superfluous syntax):

 module MyModuleWithParameters
 {
 modulepar { integer PX_Par0, PX_Par1 := 0;
 boolean PX_Par2 := true
 };
 modulepar { hexstring PX_Par3 };
 }

G.2 Void

G.3 Using all in port type definitions
Previous versions of the present document (up to and including V2.2.1) allowed to use the all keyword in port type
definitions instead of an explicit list of types and signatures allowed via the given port. This feature is deprecated and
may be fully removed in a future edition of the present document.

G.4 sizeof for length of lists
Previous versions of the present document (up to and including V3.2.1) allowed to use the built-in function sizeof to
compute the length of record of, set of, and array. This has been replaced by lengthof. The use of
sizeof for list like types is deprecated and is planned to be fully removed in the next published version.

G.5 Void

G.6 Mixed ports
Previous versions of the present document (up to and including V3.2.1) allowed to use mixed ports. This feature is
deprecated and may be fully removed in a future edition of the present document.

G.7 Void

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)382

G.8 Void

G.9 Void

G.10 Void

G.11 Void

G.12 Void

G.13 Assignment of less restrictive templates to more
restrictive templates

Previous versions of the present document (up to and including V4.9.1) allowed assignment of less restrictive templates
to more restrictive templates and the use of less restrictive templates as actual parameters of formal parameters with
stronger template restriction if the actual content of the less restrictive template fulfilled requirements of the stronger
template restriction. This feature is deprecated and may be fully removed in the future versions of the document.

G.14 Mixing case and case else branches in select
statements

Previous versions of the present document (up to and including V4.9.1) allowed to use several case else branches
in the same select statement. It was also allowed to have case else branches in between other case statements.
Using several case else branches in the same select statement, and using a case else branch not as the textually
last branch is deprecated and may be fully removed in a future edition of the present document.

EXAMPLE (superfluous syntax):

 select (PX_MyModulePar) // where PX_MyModulePar is of charstring type
 {
 case (charstring:"firstValue")
 {
 log ("The first branch is selected");
 }
 case else
 {
 log ("This else branch would make all later branches unreachable");
 }
 case (v_myCharVar, c_myCharConst)
 {
 log ("The second branch is selected");
 }
 case else
 {
 log ("The value of the module parameter PX_MyModulePar is selected");
 }
 }

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)383

G.15 Partially initialized global and local templates
Previous versions of the present document (up to and including V4.11.1) allowed global and local templates without the
@abstract modifier to be partially initialized after their initialization has been completed. This feature is deprecated
and may be fully removed in a future edition of the present document.

G.16 Template modification of less restrictive templates to
more restrictive templates

Previous versions of the present document (up to and including V4.11.1) allowed for the modified template mechanism
(global, local and inline) the modification of less restrictive templates to yield more restrictive templates if the actual
content of the less restrictive template fulfilled requirements of the stronger template restriction.

To strengthen the semantic checking of the code this feature is deprecated and may be fully removed in the future
versions of the present document.

G.17 Unrestricted template fields, alternatives and
elements

Previous versions of the present document (up to and including V4.13.1) did not contain any rule for implicit template
restrictions resulting in all referenced template fields, alternatives and elements being unrestricted.

To strengthen the semantic checking of the code, this feature is deprecated and may be fully removed in the future
versions of the present document.

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)384

Annex H (informative):
Bibliography

• ETSI ES 201 873-2: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation
version 3; Part 2: TTCN-3 Tabular presentation Format (TFT)".

ETSI

ETSI ES 201 873-1 V4.14.1 (2022-05)385

History

Document history

V1.1.1 March 2001 Publication

V1.1.2 June 2001 Publication

V2.2.1 February 2003 Publication

V3.1.1 June 2005 Publication

V3.2.1 February 2007 Publication

V3.3.2 April 2008 Publication

V3.4.1 September 2008 Publication

V4.1.1 June 2009 Publication

V4.2.1 July 2010 Publication

V4.3.1 June 2011 Publication

V4.4.1 April 2012 Publication

V4.5.1 April 2013 Publication

V4.6.1 June 2014 Publication

V4.7.1 June 2015 Publication

V4.8.1 July 2016 Publication

V4.9.1 May 2017 Publication

V4.10.1 May 2018 Publication

V4.11.1 April 2019 Publication

V4.12.1 May 2020 Publication

V4.13.1 August 2021 Publication

V4.14.1 March 2022 Membership Approval Procedure MV 20220503: 2022-03-04 to 2022-05-03

V4.14.1 May 2022 Publication

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definition of terms, symbols and abbreviations
	3.1 Terms
	3.2 Symbols
	3.3 Abbreviations

	4 Introduction
	4.0 General
	4.1 The core language and presentation formats
	4.2 Unanimity of the specification
	4.3 Conformance

	5 Basic language elements
	5.0 General
	5.1 Identifiers and keywords
	5.2 Scope rules
	5.2.0 General
	5.2.1 Scope of formal parameters
	5.2.2 Uniqueness of identifiers

	5.3 Ordering of language elements
	5.4 Parameterization
	5.4.0 General
	5.4.1 Formal parameters
	5.4.1.0 General
	5.4.1.1 Formal parameters of kind value
	5.4.1.2 Formal parameters of kind template

	5.4.2 Actual parameters

	5.5 Cyclic Definitions

	6 Types and values
	6.0 General
	6.1 Basic types and values
	6.1.0 Simple basic types and values
	6.1.1 Basic string types and values
	6.1.1.0 General
	6.1.1.1 Accessing individual string elements

	6.1.2 Subtyping of basic types
	6.1.2.0 General
	6.1.2.1 Lists of templates
	6.1.2.2 Lists of types
	6.1.2.3 Ranges
	6.1.2.4 String length restrictions
	6.1.2.5 Pattern subtyping of character string types
	6.1.2.6 Mixing subtyping mechanisms
	6.1.2.6.1 Mixing patterns, lists and ranges
	6.1.2.6.2 Using length restriction with other constraints

	6.2 Structured types and values
	6.2.0 General
	6.2.1 Record type and values
	6.2.1.0 General
	6.2.1.1 Referencing fields of a record type
	6.2.1.2 Optional elements in a record
	6.2.1.3 Nested type definitions for field types

	6.2.2 Set type and values
	6.2.2.0 General
	6.2.2.1 Referencing fields of a set type
	6.2.2.2 Optional elements in a set
	6.2.2.3 Nested type definition for field types

	6.2.3 Records and sets of single types
	6.2.3.0 General
	6.2.3.1 Nested type definitions
	6.2.3.2 Referencing elements of record of and set of types

	6.2.4 Enumerated type and values
	6.2.5 Unions
	6.2.5.0 General
	6.2.5.1 Referencing fields of a union type
	6.2.5.2 Option and union
	6.2.5.3 Nested type definition for field types

	6.2.6 The anytype
	6.2.7 Arrays
	6.2.8 The default type
	6.2.9 Communication port types
	6.2.10 Component types
	6.2.10.1 Component type definition
	6.2.10.2 Reuse of component types

	6.2.11 Component references
	6.2.12 Addressing entities inside the SUT
	6.2.13 Subtyping of structured types
	6.2.13.0 General
	6.2.13.1 Length subtyping of record ofs and set ofs
	6.2.13.2 List subtyping of structured types and anytype
	6.2.13.3 Subtyping of the iterated type of record ofs and set ofs
	6.2.13.4 Mixing subtyping mechanisms

	6.2.14 The timer type
	6.2.15 Map types
	6.2.15.0 General
	6.2.15.1 Map Type Definition
	6.2.15.2 Indexed Assignment Notation
	6.2.15.3 Unmapping Keys
	6.2.15.4 Index Notation
	6.2.15.5 Accessing the Keys of a Map
	6.2.15.6 Accessing the Values of a Map
	6.2.15.7 Referencing of Elements of a Map
	6.2.15.8 Nested type definitions

	6.2.16 The open type

	6.3 Type compatibility
	6.3.0 General
	6.3.1 Compatibility of non-structured types
	6.3.2 Compatibility of structured types
	6.3.2.0 General
	6.3.2.1 Compatibility of enumerated types
	6.3.2.2 Compatibility of record and record of types
	6.3.2.3 Compatibility of set and set of types
	6.3.2.4 Compatibility of union types
	6.3.2.5 Compatibility of anytype types
	6.3.2.6 Compatibility between sub-structures
	6.3.2.7 Compatibility of the open type

	6.3.3 Compatibility of component types
	6.3.4 Type compatibility of communication and connection operations
	6.3.5 Type conversion
	6.3.6 Type compatibility of port types
	6.3.7 Type compatibility of timer types
	6.3.8 Type Compatibility of Map Types

	6.4 Type synonym

	7 Expressions
	7.0 General
	7.1 Operators
	7.1.0 General
	7.1.1 Arithmetic operators
	7.1.2 List operator
	7.1.3 Relational operators
	7.1.4 Logical operators
	7.1.5 Bitwise operators
	7.1.6 Shift operators
	7.1.7 Rotate operators
	7.1.8 Presence checking operators
	7.1.8.0 General
	7.1.8.1 The ispresent operator
	7.1.8.2 The ischosen operator
	7.1.8.3 The isvalue operator
	7.1.8.4 The isbound operator

	7.2 Field references and list elements
	7.3 Decoded field reference

	8 Modules
	8.0 General
	8.1 Definition of a module
	8.2 Module definitions part
	8.2.0 General
	8.2.1 Module parameters
	8.2.2 Groups of definitions
	8.2.3 Importing from modules
	8.2.3.0 General
	8.2.3.1 General format of import
	8.2.3.2 Importing single definitions
	8.2.3.3 Importing groups
	8.2.3.4 Importing definitions of the same kind
	8.2.3.5 Importing all definitions of a module
	8.2.3.6 Import definitions from other TTCN-3 editions and from non-TTCN-3 modules
	8.2.3.7 Importing of import statements from TTCN-3 modules
	8.2.3.8 Compatibility of language specifications in imports

	8.2.4 Definition of friend modules
	8.2.5 Visibility of definitions

	8.3 Module control part

	9 Port types, component types and test configurations
	9.0 General
	9.1 Communication ports
	9.2 Test system interface

	10 Declaring constants
	11 Declaring variables
	11.0 General
	11.1 Value variables
	11.2 Template variables

	12 Declaring timers
	13 Declaring messages
	14 Declaring procedure signatures
	15 Declaring templates
	15.0 General
	15.1 Declaring message templates
	15.2 Declaring signature templates
	15.3 Global and local templates
	15.4 In-line Templates
	15.5 Modified templates
	15.6 Referencing elements of templates or template fields
	15.6.0 General
	15.6.1 Referencing individual string elements
	15.6.2 Referencing record and set fields
	15.6.3 Referencing record of and set of elements
	15.6.4 Referencing signature parameters
	15.6.5 Referencing union alternatives

	15.7 Template matching mechanisms
	15.7.0 General
	15.7.1 Specific values
	15.7.2 Special symbols that can be used instead of values
	15.7.3 Special symbols that can be used inside values
	15.7.4 Special symbols which describe attributes of values

	15.8 Template Restrictions
	15.8.1 Explicit restrictions
	15.8.2 Implicit restrictions for template fields, alternatives and elements

	15.9 Match Operation
	15.10 Valueof Operation
	15.11 Concatenating templates of string and list types
	15.12 The omit operation
	15.13 The present operation
	15.14 Presentness conversion
	15.15 The Value Extraction

	16 Functions, altsteps and testcases
	16.0 General
	16.1 Functions
	16.1.0 General
	16.1.1 Invoking functions
	16.1.2 Predefined functions
	16.1.3 External functions
	16.1.4 Invoking functions from specific places
	16.1.5 Explicit control functions

	16.2 Altsteps
	16.2.0 General
	16.2.1 Invoking altsteps

	16.3 Test cases

	17 Void
	18 Overview of program statements and operations
	19 Basic program statements
	19.0 General
	19.1 Assignments
	19.2 The If-else statement
	19.3 The Select statements
	19.3.1 The Select case statement
	19.3.2 The Select union statement

	19.4 The For statement
	19.5 The While statement
	19.6 The Do-while statement
	19.7 The Label statement
	19.8 The Goto statement
	19.9 The Stop execution statement
	19.10 The Return statement
	19.11 The Log statement
	19.12 The Break statement
	19.13 The Continue statement
	19.14 Statement block

	20 Statement and operations for alternative behaviours
	20.0 General
	20.1 The snapshot mechanism
	20.2 The Alt statement
	20.3 The Repeat statement
	20.4 The Interleave statement
	20.5 Default Handling
	20.5.0 General
	20.5.1 The default mechanism
	20.5.2 The Activate operation
	20.5.3 The Deactivate operation

	21 Configuration Operations
	21.0 General
	21.1 Connection Operations
	21.1.0 General
	21.1.1 The Connect and Map operations
	21.1.2 The Disconnect and Unmap operations

	21.2 Test case operations
	21.2.0 General
	21.2.1 Test case stop operation

	21.3 Test Component Operations
	21.3.0 General
	21.3.1 The Create operation
	21.3.2 The Start test component operation
	21.3.3 The Stop test behaviour operation
	21.3.4 The Kill test component operation
	21.3.5 The Alive operation
	21.3.6 The Running operation
	21.3.7 The Done operation
	21.3.8 The Killed operation
	21.3.9 Summary of the use of any and all with components
	21.3.10 The Call test component behaviour operation

	22 Communication operations
	22.0 General
	22.1 The communication mechanisms
	22.1.0 General
	22.1.1 Principles of message-based communication
	22.1.2 Principles of procedure-based communication
	22.1.3 Principles of unicast, multicast and broadcast communication
	22.1.4 General format of communication operations
	22.1.4.0 General
	22.1.4.1 General format of the sending operations
	22.1.4.2 General format of the receiving operations

	22.2 Message-based communication
	22.2.0 General
	22.2.1 The Send operation
	22.2.2 The Receive operation
	22.2.3 The Trigger operation

	22.3 Procedure-based communication
	22.3.0 General
	22.3.1 The Call operation
	22.3.2 The Getcall operation
	22.3.3 The Reply operation
	22.3.4 The Getreply operation
	22.3.5 The Raise operation
	22.3.6 The Catch operation

	22.4 The Check operation
	22.5 Controlling communication ports
	22.5.0 General
	22.5.1 The Clear port operation
	22.5.2 The Start port operation
	22.5.3 The Stop port operation
	22.5.4 The Halt port operation
	22.5.5 The Checkstate port operation

	22.6 Use of any and all with ports

	23 Timer operations
	23.0 General
	23.1 The timer mechanism
	23.2 The Start timer operation
	23.3 The Stop timer operation
	23.4 The Read timer operation
	23.5 The Running timer operation
	23.6 The Timeout operation
	23.7 Summary of use of any and all with timers

	24 Test verdict operations
	24.0 General
	24.1 The Verdict mechanism
	24.2 The Setverdict operation
	24.3 The Getverdict operation

	25 External actions
	26 Module control
	26.0 General
	26.1 The Execute statement
	26.2 Test suite execution

	27 Specifying attributes
	27.0 General
	27.1 The Attribute mechanism
	27.1.0 General
	27.1.1 Scope of attributes
	27.1.2 Overwriting rules for attributes
	27.1.2.0 General
	27.1.2.1 Additional default overwriting rules for variant attributes
	27.1.2.2 Overwriting rules for multiple encoding

	27.1.3 Changing attributes of imported language elements

	27.2 The With statement
	27.3 Display attributes
	27.4 Encoding attributes
	27.5 Variant attributes
	27.6 Extension attributes
	27.7 Optional attributes
	27.8 Retrieving attribute values
	27.9 Dynamic configuration of encoding used by ports

	Annex A (normative): BNF and static semantics
	A.1 TTCN-3 BNF
	A.1.0 General
	A.1.1 Conventions for the syntax description
	A.1.2 Statement terminator symbols
	A.1.3 Identifiers
	A.1.4 Comments
	A.1.5 TTCN-3 terminals
	A.1.5.0 General
	A.1.5.1 Use of whitespaces and newlines

	A.1.6 TTCN-3 syntax BNF productions
	A.1.6.0 TTCN-3 module
	A.1.6.1 Module definitions part
	A.1.6.1.0 General
	A.1.6.1.1 Typedef definitions
	A.1.6.1.2 Constant definitions
	A.1.6.1.3 Template definitions
	A.1.6.1.4 Function definitions
	A.1.6.1.5 Signature definitions
	A.1.6.1.6 Testcase definitions
	A.1.6.1.7 Altstep definitions
	A.1.6.1.8 Import definitions
	A.1.6.1.9 Group definitions
	A.1.6.1.10 External function definitions
	A.1.6.1.11 Void
	A.1.6.1.12 Module parameter definitions
	A.1.6.1.13 Friend module definitions

	A.1.6.2 Module control function
	A.1.6.3 Local definitions
	A.1.6.3.1 Variable instantiation
	A.1.6.3.2 Timer instantiation

	A.1.6.4 Operations
	A.1.6.4.1 Component operations
	A.1.6.4.2 Port operations
	A.1.6.4.3 Timer operations
	A.1.6.4.4 Testcase operation

	A.1.6.5 Type
	A.1.6.6 Value
	A.1.6.7 Parameterization
	A.1.6.8 Statements
	A.1.6.8.1 With statement
	A.1.6.8.2 Behaviour statements
	A.1.6.8.3 Basic statements

	A.1.6.9 Miscellaneous productions

	Annex B (normative): Matching values
	B.1 Template matching mechanisms
	B.1.0 General
	B.1.1 Matching specific values
	B.1.2 Matching mechanisms instead of values
	B.1.2.0 General
	B.1.2.1 Template list
	B.1.2.2 Complemented template list
	B.1.2.3 Any value
	B.1.2.4 Any value or none
	B.1.2.5 Value range
	B.1.2.6 SuperSet
	B.1.2.7 SubSet
	B.1.2.8 Omitting optional fields
	B.1.2.9 Matching decoded content
	B.1.2.10 Matching enumerated value with value list

	B.1.3 Matching mechanisms inside values
	B.1.3.0 General
	B.1.3.1 Any element
	B.1.3.1.0 General
	B.1.3.1.1 Using single character wildcards

	B.1.3.2 Any number of elements or no element
	B.1.3.2.0 General
	B.1.3.2.1 Using multiple character wildcards

	B.1.3.3 Permutation

	B.1.4 Matching attributes of values
	B.1.4.0 General
	B.1.4.1 Length restrictions
	B.1.4.2 The IfPresent indicator

	B.1.5 Matching character pattern
	B.1.5.0 General
	B.1.5.1 Set expression
	B.1.5.2 Reference expression
	B.1.5.3 Match expression n times
	B.1.5.4 Match a referenced character set
	B.1.5.5 Type compatibility rules for patterns
	B.1.5.6 Case insensitive pattern matching

	Annex C (normative): Predefined TTCN-3 functions
	C.0 General exception handling procedures
	C.1 Conversion functions
	C.1.1 Integer to character
	C.1.2 Integer to universal character
	C.1.3 Integer to bitstring
	C.1.4 Integer to enumerated
	C.1.5 Integer to hexstring
	C.1.6 Integer to octetstring
	C.1.7 Integer to charstring
	C.1.8 Integer to float
	C.1.9 Float to integer
	C.1.10 Character to integer
	C.1.11 Character to octetstring
	C.1.12 Universal character to integer
	C.1.13 Bitstring to integer
	C.1.14 Bitstring to hexstring
	C.1.15 Bitstring to octetstring
	C.1.16 Bitstring to charstring
	C.1.17 Hexstring to integer
	C.1.18 Hexstring to bitstring
	C.1.19 Hexstring to octetstring
	C.1.20 Hexstring to charstring
	C.1.21 Octetstring to integer
	C.1.22 Octetstring to bitstring
	C.1.23 Octetstring to hexstring
	C.1.24 Octetstring to character string
	C.1.25 Octetstring to character string, version II
	C.1.26 Charstring to integer
	C.1.27 Character string to hexstring
	C.1.28 Character string to octetstring
	C.1.29 Character string to float
	C.1.30 Enumerated to integer
	C.1.31 Octetstring to universal character string
	C.1.32 Universal character string to octetstring
	C.1.33 Value or template to universal charstring

	C.2 Length/size functions
	C.2.1 Length of strings and lists
	C.2.2 Number of elements in a structured value

	C.3 Presence checking functions
	C.3.1 Void
	C.3.2 Void
	C.3.3 Void
	C.3.4 Void
	C.3.5 Matching mechanism detection

	C.4 String/list handling functions
	C.4.1 The Regexp function
	C.4.2 The Substring function
	C.4.3 The Replace function

	C.5 Codec functions
	C.5.1 The encoding function
	C.5.2 The decoding function
	C.5.3 The encoding to universal charstring function
	C.5.4 The decoding from universal charstring function
	C.5.5 The encoding to octetstring function
	C.5.6 The decoding from octetstring function
	C.5.7 Retrieving the type of string encoding
	C.5.8 Removing BOMs of UCS encoding schemes

	C.6 Other functions
	C.6.1 The random number generator function
	C.6.2 The testcasename function
	C.6.3 The hostId function

	Annex D (normative): Preprocessing macros
	D.0 General
	D.1 Preprocessing macro __MODULE__
	D.2 Preprocessing macro __FILE__
	D.3 Preprocessing macro __BFILE__
	D.4 Preprocessing macro __LINE__
	D.5 Preprocessing macro __SCOPE__

	Annex E (informative): Library of Useful Types
	E.1 Limitations
	E.2 Useful TTCN-3 types
	E.2.1 Useful simple basic types
	E.2.1.0 Signed and unsigned single byte integers
	E.2.1.1 Signed and unsigned short integers
	E.2.1.2 Signed and unsigned long integers
	E.2.1.3 Signed and unsigned longlong integers
	E.2.1.4 IEEE 754 floats

	E.2.2 Useful character string types
	E.2.2.0 UTF-8 character string "utf8string"
	E.2.2.1 BMP character string "bmpstring"
	E.2.2.2 UTF-16 character string "utf16string"
	E.2.2.3 ISO/IEC 10646 character string "iso8859string"
	E.2.2.4 Status values for TTCN-3 objects
	E.2.2.5 Template kinds of TTCN-3 objects

	E.2.3 Useful structured types
	E.2.3.0 Fixed-point decimal literal

	E.2.4 Useful atomic string types
	E.2.4.1 Single Recommendation ITU-T T.50 character type
	E.2.4.2 Single universal character type
	E.2.4.3 Single bit type
	E.2.4.4 Single hex type
	E.2.4.5 Single octet type

	Annex F (informative): Operations on TTCN-3 active objects
	F.0 General
	F.1 Test components
	F.1.1 Test component references
	F.1.2 Dynamic behaviour of PTCs
	F.1.3 Dynamic behaviour of the MTC

	F.2 Timers
	F.3 Ports
	F.3.0 General
	F.3.1 Configuration Operations
	F.3.2 Port Controlling Operations
	F.3.3 Communication Operations

	Annex G (informative): Deprecated language features
	G.1 Group style definition of module parameters
	G.2 Void
	G.3 Using all in port type definitions
	G.4 sizeof for length of lists
	G.5 Void
	G.6 Mixed ports
	G.7 Void
	G.8 Void
	G.9 Void
	G.10 Void
	G.11 Void
	G.12 Void
	G.13 Assignment of less restrictive templates to more restrictive templates
	G.14 Mixing case and case else branches in select statements
	G.15 Partially initialized global and local templates
	G.16 Template modification of less restrictive templates to more restrictive templates
	G.17 Unrestricted template fields, alternatives and elements

	Annex H (informative): Bibliography
	History

