ETSIES 201 873-1 va.7.1 (2015-06)

<. —

ETSI STANDARD

Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3;
Part 1: TTCN-3 Core Language

2 ETSI ES 201 873-1 V4.7.1 (2015-06)

Reference
RES/MTS-201873-1 T3ed471

Keywords
language, methodology, testing, TTCN-3

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any
existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the
print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying
and microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2015.
All rights reserved.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPP™and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

ETSI

http://www.etsi.org/standards-search
http://portal.etsi.org/tb/status/status.asp
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

3 ETSI ES 201 873-1 V4.7.1 (2015-06)

Contents

Intellectual Property RIGILSc..cciiriiiiiiiiiciieiee ettt ere et r e s e e re e essbessaessaessnessnennns 11
FOTE@WOT. ...ttt ettt ettt e et e e h e et e e bt e m e e et e st et e saees e et e sbeeneeseeneeneenne 11
Modal Verbs terMINOLOZYeeeuiiiiieiieiieiie ettt ettt ettt ettt e bt e s bt e eateebe e beesbeesaeeeaeeeaee 11
1 1o 1RSSR 12
2 RETETEICES ...ttt ettt ettt ettt e e et e bt et e bt eae et e s aeeneenaeeneensens 12
2.1 NOIMALIVE TETETEIICESnveeeiiiieitiete ettt ettt ettt ettt e st ettt et e e st e et e e bt e bt enteeseesaeesaeesaeenneeseeneeans 12
2.2 INfOrMAtIVE TETRIEIICES. ... ceeitietieeeee ettt ettt sttt et et e at e e et et e b enbeenteeneeeneeeee 13
3 Definitions and abbreViations.ccueerierieeiie ettt sttt st et ae e 13
3.1 DIETINITIONS 1.ttt et ettt b e s bt b et e st et et bbbt e bt e bt e st et et sa e bt eat et eneen 13
3.2 AADDIEVIALIONS ...ttt sttt ettt ettt h e s bbbt eb et e e e b e st e bt e bt eh e e st e st et e st e e bt e bt ebeest et et e saeebe s bt eaneneennen 18
4 INETOAUCTION ..ottt ettt ettt s bt et et e e st e e e bt et e st eneeeesaeeneeneeeneensens 19
4.1 The core language and presentation fOrMALSc..ccvirierieriieriieieeieseeseeie et se e eae e sseesseessaensees 20
4.2 Unanimity of the SPeCIfICAtIONocuiiiiiiiiiiieiee ettt ettt et 21
43 CONTOTIMANCE ...ttt ettt ettt h e bt et e e bt e at e e st e eb e e et e et e eabeemteemeesaeesaeeseenteenteeneeeneesseennean 21
5 Basic [anguage ClEMENLScoc.ieiuiiiiiiieeiee ettt ettt et ettt st sttt e be e s naeenaeas 21
5.1 Tdentifiers and KEYWOIASc.coouiiiiiiieiie ettt ettt eteeste e be e s e esseessensaesseensesnsennnesnns 22
5.2 SCOPE TULES ...evevieiieiieie ettt ettt et et e et et e st eeate bt e st esseesbeessessseeseesseesseesseassesssesssesseesseanseassenssenssensaensenn 22
5.2.1 Scope of fOrmal PATAMETETSccveiuieiieieeiecieee ettt ettt esta e teesbeesseessessaesseesseenseensenes 25
52.2 Uniqueness Of IAENTITIETSecviiriieriiieieiie ittt ettt et e e seesaeesaeeseesseesaesssessaenseensees 25
53 Ordering of 1anguage ClEMENLS.ccveiiiiiierieiieie ettt e e esee e e aeesseesseesseesaessaenseas 26
54 ParamEteIIZAtIONeeuieiiteiti ettt ettt b e bt ettt b e bt b et a et ettt b et eat et eneen 26
54.1 FOIrmal PAramiEtersooiuieiiiieie ettt ettt ettt et e et e sttt et e e et e e st st e et et et eneeeeee 26
54.1.1 Formal parameters of Kind value. ..o 27
54.1.2 Formal parameters of kind template............ccccoeriiiiiiiiiiieeeeee e 30
54.13 Formal parameters of Kind tImMer..........ccoiiiiiiiiiiiiiieeee e 32
54.14 Formal parameters of Kind Port...........oooiiiiiiiiiii e 32
54.2 ACHUAL PATAIMEGLETS ..ottt ettt et et et et e et e e st e et e e bt e beeaeeeaeeeseessee st enteenteenseeseenseenseenseeneesneeseee 33
5.5 (037 T Te B I 1Y 1 (o) 1 TSRS PUS PR 37
6 TYPES ANA VAIUECSecvvieeiiciiieiieiietesteste ettt e st e st e e be e e e seessbessseesseessaessaesssessseesseesseesseesseessens 37
6.1 Basic tyPes and VAIUCS.........ccieriieeiiiieiieriece ettt ettt et e et et e ssae s e e s aeesseesseenbeeseeeteensa e baenbeenseensennnenees 38
6.1.0 Simple basic types and VALUES.........ocuiiiiiiieieiiee ettt et en 38
6.1.1 Basic String types and VAIUEScoouiiiiiiiiiiieieee ettt et e 39
6.1.1.1 Accessing individual String €leMENtSccoueriiiieiiiiiee e 41
6.1.2 SUDLYPING OF DASIC LYPES ...veenvieniieiieiie ettt ettt ettt ettt et e s st e s bt e bt e beeteeeesbeesseeneeeneeens 41
6.1.2.1 LiStS OF tEMPIALESeeeieeiei ettt ettt ettt ettt b ettt et sae e ae e e et ens 41
6.1.2.2 LISt OF YIS ettt ettt ettt ettt ettt ettt e h e h e bt e bt et et saeeeaeente e teenteens 41
6.1.2.3 RANEES ..ttt ettt et et et e ettt et e e bt e et e e bt e e ate e beeetteebaeenaneene 42
6.1.2.4 Sring 1eNGth TESIIICLIONSeeuvieiiiiieriieiieete ettt et ettt et e eeaestaesreesseessesssesseesseesseessesssesssenseensens 43
6.1.2.5 Pattern subtyping of character String tYPeSeccvveeverviriieieriieiieie e eee et sae e esaeesaesae e 43
6.1.2.6 Mixing SUbtyping MEChANISINS.cccveriiiriieriieie ettt eteeaesteseesaeesaeeseesseenseesaenseesseees 43
6.1.2.6.1 Mixing patterns, lists and FANZEScceeeverierierieiiete e ceeete sttt e e eeae e e ree e ebeenseseneees 43
6.1.2.6.2 Using length restriction with other CONSIraintscccoeoeroeiierieniee e 44
6.2 Structured types and VAIUEScc.eiiiiiiiie ettt ettt sttt ettt et ene e b e aeennean 44
6.2.1 Record type and VAIUESoouiiiiiiiiee ettt e 46
6.2.1.1 Referencing fields 0f @ r€COIA tYPEveeueieuiiiieiieie et 48
6.2.1.2 Optional elements N @ TECOTA.eouiiitieiieiiee ettt ettt ettt seteseeesbeesaeeeeeeeeneeens 49
6.2.1.3 Nested type definitions for field tYPeseereeiiiierieieee e 49
6.2.2 SEt tYPE ANA VAIUCS ..vveeeiieiiiieiiciieeteeie ettt ettt e s e e bt e b e e b e ssaessa e seenbeessesssesasessaenseenseenseans 50
6.2.2.1 Referencing fields 0f @ SEt tYPEcuieriieiieiiiie ettt sseeae s e 50
6.2.2.2 Optional €lEMENLS TN & SEL ...vievieiieieeiieiierieeteeie e see st eteesteesteeseesseesseessesssessaesseesseesseesseenseesseans 50
6.2.2.3 Nested type definition for field tyPes......c.evierierieiiieiecieeeceee et 50
6.2.3 Records and Sets Of SINGIE tYPES ...vieviiiiiieiieiiecte ettt ettt saeesaeesseesseesbeessessaenseensees 50
6.2.3.1 Nested type defINItIONS.ciierieriieii ettt ettt steeaeeaeseesaeesaeeseesseessessaesseenseensens 53
6.2.3.2 Referencing elements of record of and set Of tYPesceeeveeiiriirieiieieeeee e 53

ETSI

4 ETSI ES 201 873-1 V4.7.1 (2015-06)

6.2.4 Enumerated type and VAIUESoooiiiiiiiieeee et 54
6.2.5 UTHOIIS ..ttt ettt h ettt ettt e et e e e bt et e em e em e e ee e e es e e ee e e abe e et e st emeeemeees e e s e eebeenseenseenseenaeeneeenee 55
6.2.5.1 Referencing fields of @ UNION TYPE ...c..eeviiiirieiieie et 56
6.2.5.2 OPHON AN UNTION ...ttt ettt et e bt e e et e es e eseesseesbeenbeenseeneeeneesaeenseenseenneans 57
6.2.5.3 Nested type definition for field t¥Pescoeerieiiiiieeeee e 57
6.2.6 3T 1) o TSRS 57
6.2.7 AATTAYS eveeeite ettt ettt ettt ettt ettt ettt ettt ettt et b e ettt e ht e e bt e e at e e bt e e ab e e bt e e eab e e hteeaateeehteebeeenbaeebeeebbeennneenn 57
6.2.8 The ULt LYPE ...eevieiieiieieeeee ettt ettt ta et e et e e b e et e sseesaeesseeseenseesseessensaenseensens 59
6.2.9 COMMUNICALION POTT LYPES eveuvrenrierrieririerreiterteesseesteesseassessaesseesseessessesssesseesseesseessesssessseessessessseessees 59
6.2.10 COMPONECIL LYPES 1.vveeritieiteeiiiieeteestteettesteeeteesbeesateesabeesaseesabeesaseesaseesnseesseesnseessseesseesssesnsseessseennses 61
6.2.10.1 Component type defiNItiON........c.ccvierieriieiiieiiet ettt ettt e e e esbeesbessaessaessesnsesnneeees 61
6.2.10.2 Reuse Of COMPONEIL EYPES ..oouveeeieiieiieieeie ettt ettt ettt sttt e st sbe et et e et ebeeeeeneeens 62
6.2.11 COMPONENE TEIBTEIICESeeuviitietientieiie ettt ettt ettt e et e bt et e e e eaeeeaeesaeesbeesbeeeeemeeeneeeneeeseanseensean 64
6.2.12 Addressing entities inSide the SUTcooiiiiiiiiieiee e e 66
6.2.13 Subtyping of StrUCTUIEd EYPES ...eeuveeuiieiieetieetietiete ettt ettt ettt ettt ettt e ee e eesbeesaeeeeeeeens 68
6.2.13.1 Length subtyping of record ofs and Set OfSccoeriiiiiiiiiii e 68
6.2.13.2 List subtyping of structured types and anytypecccceveereereeieeienieeieseese e 69
6.2.13.3 Subtyping of the iterated type of record ofs and set 0fS..........cccceevirvieiciiicevieree e 71
6.2.13.4 Mixing Subtyping MEChANISINS.ccvervieriieiieiie ettt et ete st e e esbeeaessaesseesaeesseenseesseans 73
6.3 TYPE COMPALIDIIILY ...euvieniieiiiiieiie ettt ettt et et ae s te e beebeesaessaeesaesseesseesseessessaensaensaensesnsennsennns 73
6.3.1 Compatibility of NON-StrUCTUIEd tYPES ...veervieiieiiieiieetieiieie et ete ettt ee st seesae e esa e s e s seesaenseensees 73
6.3.2 Compatibility Of SrUCTUIEA tYPES.....eiuviriiiriiiiieiieieetieit et ettt e e s e saeesseeseesaeeseesssensaenseenseas 75
6.3.2.1 Compatibility Of eNUMETAtEd LYPES ...cvvervreriieriieiieie et eteeeeie ettt eae e seesreesseeaeesaeeseessaesseesneens 75
6.3.2.2 Compatibility of record and record Of tYPeScooveriiiiiiieiieieeee e 75
6.3.23 Compatibility of set and SEt OF tYPEScueeiirieiieiieiiert et 76
6.3.24 Compatibility Of UNION LY PES....eeueieuieieieitieitierie ettt ettt st e sttt e ae e e esteeeeeneeens 77
6.3.2.5 Compatibility Of ANYLYPE EYPES «.uveeueeenieiiieitieitt ettt ettt ettt et st esaeeae e ens 77
6.3.2.6 Compatibility between SUD-StIUCTUIEScoouiiriiiiiiierieeete ettt s ne 78
633 Compatibility 0f COMPONENL EYPES...c.veieiiiieiieiieeiieettee ettt st see ettt e e e e e beeeeas 78
6.3.4 Type compatibility of communication and connection OPErationsccvevveeveeverreerieesreecvesnennens 79
6.3.5 TYPE CONMVEISION.uvieuiieeiietieetieteesteeteetesaesttesseesseesseesseasseasseasaessaesseesseessesssesssesssenseessensseessensaenseensens 79
6.4 BN TSI 110] 11 44 DU TRTRPPRRTP 79
7 25 Q8] (N 10] 1 1 SRR 79
7.1 L031S ¢ 110 £SO P T TSR PSR T PP PR PRPPRRPP 80
7.1.1 ATTTRMETIC OPEIATOLS ...uvieutieiieeiie ittt ettt ettt et et e bt e b e et e e stesaeesete bt e et e et enteeneeeseesseenseenseeneesneeenee 82
7.1.2 |5) 1S3 1) PR UUSUS 82
7.13 REIAtioNAl OPETALOTSeeutiiiieiiieieie ettt ettt ettt ettt st e b et e e et et e e st e es e e bt ete e be e teenaeeneeeneeeeee 83
7.1.4 e (o] B e) o1 ¢ 1103 PR UUSUS 85
7.1.5 BIEWISE OPETALOTSvevveeeieetieetietieieetestesetesttesseesseesseesseasseessessaesseesseesseessesssesssesssenseensensseessensaenseensens 85
7.1.6 SHITE OPETALOTS. .. e evveeiieitieiie ittt e e st et et et e et e ste e te e seessesssesssessaesseesseesseessenseesssesasessaesseenseensenns 86
7.1.7 ROLALE OPEIALOTS ..eevieiiiieeiiie ettt st e st e st e e st e e sabeesabeesateesabeenateesaseensseesaseennses 87
7.2 Field references and liSt leMENLS.........c..evueriiriiiiiiieieieee ettt 88
8 IMIOAUIES -ttt ettt ettt et et st et e bt e et et e ea e e e e sbeeme e bt est et e e st et e et e ene et eeaeeneentens 88
8.1 Definition 0f @ MOAUIEcc.ooviiiiiiiiici ettt 88
8.2 Module defINItIONS PALTeeiuieiiiiieie ettt et ettt ettt e st e e st e e et et e s e ea e e sae e beenbeenseeneesneeenes 89
8.2.1 MOAUIE PATAIMELETSeeeuieeeieeiieitieitee sttt ettt et e st e bt e bt eaeeeetesaeesaeeseee bt e et enseeseeeseeeseebeenteenseeneesneennee 90
8.2.2 Groups OF AETINTIONSc.eieuiiiiiiitiee ettt ettt ettt e e et ente et eeneeeseesbeenean 91
823 IMpOorting from MOAUIEScoeeiiiieiieieee ettt e et esaeessee s e esbeessessaenseenseas 92
8.2.3.1 General format Of TMPOTTccviiiieieiieieie ettt ae e ste e s e esseesbeesaessaeseenseesseens 92
8.2.3.2 Importing siNGle defINItIONSccvieiieiieiieiieie et e ste et eaeesbeessesseeseesneens 98
8.2.33 TINPOTEING GIOUPS ..eeuvientieiieiiieieeiteeit et et eteetestesttesaeesteeseesseesseesseesaessaesseesseesseansesseesseesseesenssenns 99
8.2.34 Importing definitions of the same Kindcccccvevieriieiiieciieiecieceeee e 100
8.2.35 Importing all definitions of @ MOAUIE...........cceriiiiiiieiee e 101
8.2.3.6 Import definitions from other TTCN-3 editions and from non-TTCN-3 modules..................... 101
8.2.3.7 Importing of import statements from TTCN-3 modulescccceereeriiiiiiiinienieeeeee e, 103
8.2.3.8 Compatibility of language specifications in IMPOITS.........ccceerueererrierieiienienieeee e sieeneeeeen 104
8.2.4 Definition of friend MOAUIES.........cc.eiiiiiiiiiiieeee e s 105
8.2.5 ViSIbility Of defINITIONSeetieiieiiieiieet ettt sttt ettt s esaeesbeenteeneeens 105
8.3 MOAUIE CONELOL PATL.....ecuiieeietieiieiiete et st ste ettt et e et e e e e s te e teesbeesseessessaesseesseesseenseansensseessesssensaensens 107
9 Port types, component types and test CONfIGUIAtIONScc.eeruereriereriereneeie e 107

ETSI

5 ETSI ES 201 873-1 V4.7.1 (2015-06)

9.1 COMMUNICALION POTESeeeieiietteteeiieette et ieetee it ee e eeteeseesueestee st enteemeeeseeeseenseanseenteenseeseeaseenseesseesseenseenseans 108
9.2 TSt SYSTEM INEEITACEeeueieietieit ettt ettt b et et et et eeaeeeae e bt enteeneeeneeeneesseennean 110
10 DeClaring CONSTANEScc.eieiieiietiertiesiie ettt et e st te st e eteebeesteesteesaeeenbeeabeebeesstesseesneesnneenseenseans 112
11 DeClaring VAriabIeS........c.eeevieeiierierieiie et et esieesteestesteesreesbeesseesseesssessseesseessaessaesssesssesssesssensseanns 112
11.1 ValUE VATIADIES ...ttt ettt b e et b st b et be e bt et e e e 113
11.2 TemPIAte VATIADIESeociieiieiieieiieceese ettt ettt e eaestaeste e beesbeesbessaesseesseenseesseasseessenssenseensees 114
12 DECLATING tIMETSveeuvieeieieriiteeteeieeseestesteesbeesteesteesseesssesssaasseesseesseesssesssesssessseessessssesseesssensseanns 115
13 DECIArING MESSAZES ...uveevieuieeiiieieetteette st te et et et esteesttesateeate e bt e bt esseessteenteenbeeseenseesseesaneenseenseans 116
14 Declaring procedure SIZNATUTESccververveerieerieerieeseesreeseaseesseesseesssessseesseessessssessessssesssesssennns 116
15 Declaring teMPIALES......ceecviiciieiierieeseeseeeteeteere e e et e saesebeesbeeseesseessaesssessseesseesseesseesseenssensseanns 118
15.1 Declaring message teMPLALESc.ooiiiieriieieeieee ettt ettt sttt ettt st seee ettt et eeae e s e seeennean 119
15.2 Declaring signature teMPIALEScccueiieruieiieie ettt ettt ettt saeesee ettt e eneeeneesneeanean 120
15.3 Global and 10Cal tEMPIALEScecueiiiiieiieti ettt ettt et sttt et e eneeeneeebeennean 122
15.4 IN-1NE TOMPIALES.eeneieiieiieeee ettt ettt e ettt e et st ea e e steenteeneeenseeneeeneeaneas 122
15.5 MOAIfIEA tEMPLALESveevieeiieeieetieieetiete et et e st et et e et e e teestaesbeebeesseessessaesseesseesseesseessenssesssenssenseensens 123
15.6 Referencing elements of templates or template fields.........cceevveeiiiciiiiinieniec e 127
15.6.1 Referencing individual String €lements..........c.cccverierieriieciieieeieseeie et ere e seesae e ereeesesseenseens 127
15.6.2 Referencing r €COr d and St fleldS.......c.ooieieieiiiiiiiiciceeceee et 127
15.6.3 Referencing r ecor d of and set Of elementscooieieieiieiiiieiceeeee e 128
15.6.4 Referencing Signature PAramETerS.cuveruiervierureireeiereereesseesseesseesseessesssesseesseesseessesssesssesseessesssenns 131
15.6.5 Referencing UNi ON alterNatiVES.o.eeuiiieieieiesie ettt ee sttt eee et e e sbeseessesneeseeseeneenseneens 132
15.7 Template matching MECRANISINSccceevuiiriieiieiieiesteee et eie ettt ste e aeeseesteesseesseenseessensaesseensees 133
15.7.1 SPECITIC VAIUCS ...ttt ettt ettt e st e st esaeesseesseesbeesseessessaenseensaensesnsesnsesnsenens 134
15.7.2 Special symbols that can be used instead of VAlUESccceevieiiiiiiiiieiceeeeeee e 135
15.7.3 Special symbols that can be used inSide VAIUESccceevieriieriiiiicieeieeeeee e e 136
15.7.4 Special symbols which describe attributes of ValUuescc.ccveviieiieiieiiieeeeee e 136
15.8 TemPlate RESIIICTIONSeeuiieiiiieieitieiti ettt ettt ettt et e sa e s et e bt enteemeeeneeeneeseeennean 137
15.9 A N0 (O 0T 1510 s EO TSRS 139
15.10 AV 108 (103 A0 313 2 o) SRS 139
15.11 Concatenating templates of string and liSt tyPEseooueeiiriiiieiieeeee e 140
16 Functions, altsteps and tESICASESeeruiiruiiriieiiieiierite ettt ettt ettt e ettt et e sate et e et e e e e sbeeeeens 142
16.1 FUNCHIONS ...ttt ettt b e bt e b e ea e ea et et e b s bt e b e bt eb e es s et e b sbeebeebeennentens 142
16.1.1 INVOKING FUNCHIONS ...eovtieiiieiieeiiecieeie ettt ettt e e esbeesaesseeese e seenseenseesbessaensaenseensesnsennns 144
16.1.2 Predefined fUNCHIONSoo.eiiiiiieietee ettt ettt eeens 145
16.1.3 EXEErNal fUNCHIONSeviiiieiiiieitiet ettt sttt e b ettt st s s et bt ebe e enseneens 147
16.1.4 Invoking functions from SPeCIific PlaCESeevuieiiriieiiiieiee e 148
16.2 F N L] 1<) o1 PRSPPI 149
16.2.1 INVOKING QIESEEPS ..ottt ettt ettt ettt ettt et e at e et e bt et e e et e b e eteenaeeneeenes 150
16.3 TS CASES. . nuteeitteiit ettt ettt e bt e s et e st e st eeab e s ab e ea bt e s bt e bt e st e e bt e bt e e bt e s bt e e bt e ebaeebeeenne 152
17 V00t ettt et e e e e e tb e et b e e e tbeeebe e e taeeabeeebaeeteeeraeeareeenrraens 153
18 Overview of program statements and OPETALIONSccuverererreereerreereesresresseesseesseesseessesseenns 153
19 BasiC Program StAtEIMENES.........eecutertiertieriiteteeiteerteesttesiteeateeteesteesseesateenbeebeesbeesseesneeenseeseenseeseans 155
19.1 F NS F 411 10 1S) 4L TP 156
19.2 The If-€1SE STATEIMIENEeeuiieietieitiete ettt ettt ettt et st esaeesbe e bt e et eneeemeeeneeeseenseennean 157
19.3 The SEIECT STATEIMIEIILSeeutieeeeiieeiie it ettt et ettt et ettt e bt e bt et e e tesaeesbeenbe e et enteeneeeneeeneesseennean 157
19.3.1 The Select Case StALEINENEc.eeiuiriiriiriiitiiieeieet ettt sttt ettt et sbe e easeneens 157
19.3.2 The Select UNTON SLALETIIENEceetiriiriiitiriieiiet ettt ettt et ettt see b saeenseneens 159
19.4 The FOT SEALEIMENEeeuiiiiiiitiiteeieet ettt ettt ettt b e bttt et et e st et e b sbeebeeneennenaens 159
19.5 The WHRILe StAtEIMENT.......ccuertiitiiiieiieiietet ettt sttt et s et e e bt e st st ebeebeennenaens 160
19.6 The Do-While STAEIMENEc..eitiiiiiiiiiiiieierr ettt eb et et be bbb e e 160
19.7 The Label STATEIMENLocuiieeiiitietieie ettt ettt ettt et eeteeseesbeesbe e bt enteemteemteeneeeneeeneesneennean 161
19.8 The GOLO STATEIIIENIEecueieuiitietieti ettt sttt ettt ettt et et e bt et e esteeseesbeesbe e bt enteemeeemteemeeeneeeneesneennean 161
19.9 The Stop eXECULION STALEIMENLc.eeitieiieie ittt ettt ettt et e et ee s eeseeeseeeste e bt enteeneeeneeeneesseenneas 162
19.10 The REtUrn STALEIMENL.eeueieeieitieitiete ettt ettt ettt e bttt e et eeseesee e bt enteemeeeneeeneeseeennean 163
19.11 QST BT 31113 L PSR SPU S PS 164

ETSI

6 ETSI ES 201 873-1 V4.7.1 (2015-06)

19.12 The Break STAtEMENLc.oiitiiiieiieie ettt ettt et et et et et eseeeseeebe et e eneeeneeeneesneennean 165
19.13 The CONtINUE STATETIIENLcc.eeitietieieeie ettt ettt ettt et et e st e b e et e eseesseesaeesseesaeenseeneeeneeeseeeneesseennean 166
19.14 N1 13101571 Ul o) (o TSP 167
20 Statement and operations for alternative behaviours............ccovieriiiiiiiieiiiiee e 167
20.1 The SNapshot MECRANISIN.........ccuiiiiieiieiieie sttt saesaeesseesseesseessessseessessaenseenseas 168
20.2 The AL SEATBIIIENE ...ttt ettt b et eb et et et b s bt bt s bt ebt et et e b sbeebeeaeennenaens 168
20.3 The RePeat STALEIMENLeevieeiieiieiiieieeteeiestesee st ettt e eete et esteesteesbeesseessessaesseesseenseessessseasseessenssesseensens 172
20.4 The INterleave SLATEINENT ..c..cc.eruiiieiiiiterieet ettt ettt ettt st b et et et be bbbt enneneens 173
20.5 Default HANAIINGccvviiieiieiicie ettt ettt ettt st staebeesseesbessaesseesseenseenseasseessenssesssensens 175
20.5.1 The default MEChANISINcoiiiiiiie ettt e 175
20.5.2 The ACtIVALE OPEIATION. ... ccueeitieitietieie ettt ettt ettt e bt et e e st esae et e e et emteentesseebeenneeneeeneeenes 176
20.5.3 The DeactiVate OPETAtIONcc.eeiuieriieieeie ettt ettt et et et e eete et e see e bt et e eneessee bt enteenteeneeeneeeneeenes 177
21 Configuration OPETALIONScecueertieruieriieieeteesteestte ettt eteesteesteesueesateeaseebeesbeesseesneeenseenseenseeseens 178
21.1 CONNECLION OPEIALIONS ...c.vvevrerierierieeteetieettesteeteeseesessesseesseesseesseasseessesssessaessesssesssesssesssesseesseessesssenns 179
21.1.1 The Connect and Map OPETALIONSeevverrieriierieteeteriesteesseeseeeesresseesseesseesseessesssesseesseessesssennns 179
21.1.2 The Disconnect and Unmap OPEIAtIONScceerveeeveeiverieriierieesieeseeereesesseesseesseessessesssesseessessaesens 181
21.2 TESt CASE OPCIATIONS.ecuvieeierietieteeteetestesetesteesseeseesseesseesseasaesaenseesseessesssesseesseesseenseansenssenssesssenseenses 182
21.2.1 TESt CASE STOP OPCTALIONvieuiieeieeiieetieitieteeteeteeeteeteesteeteesseessesssesseessseseenseassenssenssessaenseensesnsennsennns 183
21.3 Test CoOMPONENE OPETATIONSuveeueiruiieiieitieitiesteerte et eteetteeteestee bt e teenteeseesseesseesseenseenseeneeeneeeneeeseenseenneas 183
21.3.1 The Create OPETAtION.ccueeitieiteeieeie ettt ettt ettt et e bt e b e et eeaeesatesae e bt et e eneeeseesbe e beeneeeneeeneeenes 183
21.3.2 The Start test COMPONENt OPETALIONeeruieruieiiieiieieetieetiet ettt ettt e be e e eaeeeeeeseeeeeee 184
2133 The Stop test BehavioUr OPEIAtIONc..eiiuierieiieieeie ettt et eeee s 185
2134 The Kill test COMPONENT OPEIATION.eevieuiieeieetiertieieeteeiie ettt e seee st e et et eseeeseesbeeteeneeeneeeneeenes 187
2135 The AlIVE OPETALION .. .ottt ettt ettt ettt ee e sae e s bt e bt et et ese e e bt ebe e beeneeenaeeneeenes 187
21.3.6 The RUNNING OPETALIONc.vveiieiieieeieiieitesit et et ebe et e eaestaesteesseesseesseesseesaesseeseesseessessenssesssesssesnns 188
21.3.7 The DONE OPETALIONevvevieniieiieieetesteette st et et eeteestestaesteeseesseessesssesseesseenseenseessesssenseessesnsennsennns 190
21.3.8 The Killed OPEIationccueeveiieriieriieie et eieeteesieeteetesaesaesteesseesseesseessessaenseenseessesssenseessenssesnsennns 192
21.3.9 Summary of the use of any and all with COMPONENLScceevierierieriieiieieeie et 194
22 COMMUNICALION OPETATIONS.vieeriereeeeerererereesreesseesseesssessseasseesseessessssssssessseessesssessssesssesssesssesssenns 194
22.1 The communication MECRANISIIISccuiiiuiiiiiieiiete ettt ettt et et seee e e saeesneeseeenneas 195
22.1.1 Principles of message-based COMMUNICALION.c.eeuiriiiierieiieie ettt 195
22.1.2 Principles of procedure-based COMMUNICATIONeeuuiruiiiieriieiieie et 195
22.1.3 Principles of unicast, multicast and broadcast comMMmMUNICALION..........cecueeirrierierieiieie e 196
22.1.4 General format of cOMMUNICAtION OPETALIONSveeevieereriieiieieeieeie e eteesreereereereesteesseesesnsesenenes 196
22.1.4.1 General format of the sending OPErationsccceevvieeiieiieienieseeseee e ere s esee b ereeeaeeeaennees 196
22.14.2 General format of the receiVIng OPEIatioNS.........cccvevvieriieeririerieseeseesreeeeereeteesseereeseeesesesesees 197
22.2 Message-based COMMUNICALION........c.eccverrerrertiertierteeteeteetesteesseeseessesssessaesseesseesseessesssesseesseesseesseensees 198
22.2.1 The SeNd OPEIAtIONeeuvieiieeiieiieeie et ete sttt et ettt e ete et e e b e esbessaeseeesseeseenseesseessesseenseensesnsesssennns 198
2222 The RECEIVE OPEIALIONevieiieiieiieieciieeite et et ettt e ettesttestaeseesseesaesseesseeseenseesseessesssenseensennsesnsennns 199
22.2.3 BT B ot o) o1 1510 o BTSSP 203
223 Procedure-based COMMUNICALION.ccueiiiiieitiertieie ettt ettt ettt eteseesaeesaeesee e bt enteemeeeneesneenseennean 205
22.3.1 The Call OPETALIONcueiieiieiieetiee ettt ettt ettt et e bt em e e st e sbe et e enteenaeeneeenes 205
2232 The Geteall OPETAtION. ... oottt ettt et sttt et e et en e e st e sbe e beenteemaeeneeenes 209
2233 The RePLY OPEIatiON.ccuiiiieiieiieie ettt ettt sttt e sttt et e e st et e e enaeemeeenes 212
22.3.4 The Getreply OPEIALIONc.eevvieivieiieie e eteete ettt ettt et e e et e ebessaeseeesseesseenseasseessesssenseensesnsennsennns 213
22.3.5 The RAISE OPEIALIONeviieiieiieieeieetestestte st ete et e et e e teesteesbeessesssesseesaeesseenseenseesseassenseensaessennsesssennns 215
22.3.6 The CatCh OPETALION.........ecieeiieiieieeie ettt ettt e e s beseesaeesseenseesseesseessesseenseensesnsesnsennns 216
22.4 The ChEeCK OPEIATIONeeeviereieiieiieteeteeteste st e st eteesteestesseesseesseesseesseessesssesseesseesseenseensenssesssesssenseenses 220
22.5 Controlling COMMUNICATION POTS......eccveerierrierieereeteetertesseesseesesresseesseesseesseessesssesseessesssesseesseessessseens 222
22.5.1 The Clear POIt OPEIATIONccvieieeeieriiertierteeteetestesttesteesteesseessesssesseesseesseassesssesssenseesseessessesnsesssennns 222
22.5.2 The Start POIT OPEIATIONeeitieitieiieie ettt ettt ettt site st e e et e bt et e e aeeesee st ente e beeneeeneeeneeenes 222
2253 The StOP POIt OPETALIONeetiiitiiiieie ettt ettt sttt et e et e e e st e sse et e enteenaeeneeenes 223
2254 The Halt POIt OPEIATION.eeitieiiiitieie ittt ettt sttt ettt e et esae et et et e eteenaeeneeenes 223
2255 The Checkstate POIt OPEIATIONc..eiuiiitieitiete ettt ettt ettt see e bt ettt eae e et esbe e teeneeenaeeneeenes 224
22.6 Use of any and all With POTTSeeiiriiiieiiee ettt et et eneeseeenaeas 225
23 TIMET OPEIATIONS eouveetieruiieiieeteeeteestteette et et ebeesttestteesteeabe e bt esbeesaeesateeabeebeeaseesneeenseensesneesnseenseans 226
23.1 The tiMer MECHANISINeiuiitiitiitiit ittt ettt ettt be bt eb et ea et et e b b ebeebeenneaens 226
23.2 The Start timMer OPETAtION.ccverieerteerteeteetestesttesteeteetesseesseeseesseessesssessaesseesesssesssesssenssesssesssesseensees 226
23.3 The StOP tIMET OPEIATIONecuveetieriietierieeteeteeeteetesteesseeseessesssesssessaesseesseesseassesssesssesseensenssesssesssesseessees 227

ETSI

7 ETSI ES 201 873-1 V4.7.1 (2015-06)

23.4 The Read timer OPETAtIONeeiuiiitiiiiiie ettt ettt ettt ettt e st e es e see e st et e eneeeneeeneesseenneas 228
23.5 The RUNNING tIMET OPETALION. ... eeutieiiiiiieitieitieitie sttt ettt ettt et e st et e eeeteseeesaeeseee bt eteeneeeseeeneenseenneas 228
23.6 The TIMEOUL OPEIATIONeveitietieiieie ettt ettt et e et et et et et e esteebeesb e e beebeenteemeesneeemeeeneeeneenseennean 229
23.7 Summary of use of any and all With tIMErSccooiiiiiiiiii e 230
24 TeSt VETAICt OPETALIONSeeuveetieiiieeiieeie ettt ettesttestte et e e e bt esteesueesateeabeeabe e bt esseesneesnsesneeenseenseens 230
24.1 The Verdict MECRANISIIL.c.iiuiiiiiiiiieteet ettt ettt ettt e e st ebeebeenne e 230
24.2 The SetvVerdiCt OPETALIONccveiuieriieriieieeiesteete st este et eteettesteeteeseessesssessaesseesseessesssessseassenssesssesseenses 231
24.3 The GetVerdiCt OPETALION......cueiuieiiertierieeteeteeteettesteeteebeeaeetaessaesteesseessesssesseesseesseenseensenssesssenssesseenses 232
25 EXEEINAL ACHIOMS .eoutitieiiitieiete ettt ettt sttt et e ettt e e bt e st et e ese et e ebe et e sseeneeneesseeneenees 233
20 MOAUIE CONLIOL ...ttt et ettt e st e et e bt e bt e sbtesaeeeneesaeeenteenseens 233
26.1 The EXECULE STALEIMENL. ...c..etiitiitiiiieiiiieiertert ettt ettt ettt et be st eb st eb b et et et sbeebeebeenneneens 234
26.2 THE CONLIOL PATTevieiieeieeiietiete ettt ettt et e et e et e et esseesteesseesseessesssessaessaesseesseenseenseassenssenssenssensens 236
27 SPECIHTYING ALIIDULESccuviiiieiieiieierteete ettt et et e steebeesteesseesteessseasseesseesseesssesssesssesssensseessenns 238
27.1 The Attribute MECHANISIILocueiitiitiiiiee ettt ettt et st sae e et e bttt et eemeeeneeeneeseeenneas 238
27.1.1 SCOPE OF ALIIDULESeeueiiieeiie ettt ettt ettt e st e et ebe et e enteenaeeneeeees 238
27.1.2 Overwriting rules fOr attriDULES.coouiiiiiieiee ettt 239
27.1.2.1 Additional overwriting rules for variant attributesccccoovieiirinienieeeeee e 240
27.1.3 Changing attributes of imported language elementsceveereeriiiriieiieieieeee e 241
27.2 The With STATEIIIENEco.eiiuiiiiiitieie ettt ettt ettt et e s b e s bt e bt ebeemte et e eneeeneeeneesneennean 241
27.3 DISPIAY QUITDULES. .. .eevvieiiieeieeeieeiierieeieete et estestte st e st esbeesbeesaeesaessaesseesseesseessesssesseesseenseanseassenssenssenssensens 242
27.4 ENCOING AtITDULESveeiiieiieeiieciieiteie et ettt et e et estaeste e beesseessesssessaesseesseenseenseasseessesssessaensens 243
27.5 VAT ANt QEITDULESceueeuietertiitieteei ettt ettt b e sh e eb e eb e ea et e st e b sb e eb e s bt ebtes b et e b sbeebeeseennenaens 244
27.6 EXEENSION AHIIDULESeutiieiiitieiceeieet ettt ettt b e bbbttt e b e bbbt eaeennenaens 245
27.7 OPHIONAL AUITDULESveevieiieetieiieetieeieete et ete et e st este e st eaeeeaesseesseeseesseesseessessaesseesseessesssesssesseesseesesnsenns 246
Annex A (normative): BNF and static SEMantiCS........cccevveevieiiieese e 248
N I 0 B 1 0 PSR 248
A.l.l Conventions for the SyNtax deSCIIPTIONcc.eeuiriuieiieie ettt ettt e et saeeseeeeeeneeens 248
A.l2 Statement terminator SYMDOLSc..eoiuiiiiiiie ettt ettt este et e st e be e e e te e e eneeenes 248
Al3 0 (<3015 U <) TR PSRS 248
Al4 COIMMEIES. ...ttt ettt ettt ettt et e bt e s bt e bt e sat e e s bt e e sa bt e s et e e eaaeesateeeabeesabeeebae e bt e esabeenbaeesaneenares 248
A.l5 TTCN-3 tEIIMNINALS ...ttt ettt ettt ettt et et e et e e et st e sseesae e teenteeneeeneeeneesseennean 249
A.15.1 Use of whitespaces and NEWIINES.c.evvierierieciieieeiecieeeie e see e steesre s eeseesaestaesseesesssessnenens 251
A.1.6 TTCN-3 syntax BNF ProdUCHIONSc.cccverieriieriieiiiieeieseesieeieereeteseaestaesseesseeseessesssesssesssesssesseesses 251
A.1.6.0 TTON-3 MOAUIC....c..etiitiiiieiieee ettt ettt ettt e b e st et et bt sbe e eaneneens 251
A.l1.6.1 Module defiNItiONS PATt........cccieriieriieiieieeiestese et e e stestesee st esbeesseebessbessaesseesseessesseesseesseesseeseens 251
A.1.6.1.0 GEINETAL ...ttt b bt ettt b e bbbt s et sa e bt b e ea et 251
A.1.6.1.1 TyPedef dEfINItIONSieiieeiieiieciieieeie et ettt et besseesaeesbeesseessessseesaensaenseas 252
A.1.6.1.2 ConStant AEINTHIONSccueeiieiiiitieitiee ettt sttt ettt et es e e b et e eneeeneeeneenneas 253
A.1.6.13 Template defINItIONS.eoueetieie ettt ettt se ettt et e e e e enneas 254
A.1.6.1.4 Function definitionscoeiiiiiiiiiiee ettt ettt 256
A.1.6.1.5 SIgNATUTE AETINITIONS ..envieuiieiiieiieet ettt ettt et ettt et e bt e bt ebeeateseeesbeesaeeseeneeans 257
A.1.6.1.6 TeStCASE AETINITIONS ..e.uvieueieiieeeieetcet ettt ettt ettt et ettt et e st e sace et et e enteeneeeneeeneenneas 257
A.1.6.1.7 ASEED AETINITIONS ...ttt ettt et ettt e sttt et e et e satesae e bt eneeeneeeneeeneenneas 257
A.1.6.1.8 TMPOTt AETINTEIONSiiviieiiieeiieiieie ettt sttt et e st e e be e beesbeensesseessseessenssenssenseas 257
A.1.6.1.9 GrOUP AETINTEHIONSvieiiieiiieeiieiietieie ettt ettt e e st e e esbeessessbesseesseesseesseessenssenssenssenseas 258
A.1.6.1.10 External function defiNItionSeeeiieiiriinieneric ettt 258
A.1.6.1.11 External constant defINItionSceeeieiiriiriiniiinercee ettt 258
A.1.6.1.12 Module parameter defiNItIONSccveeevireieiierierieie et eee et se e ae e seresseesseeseesseesaessaensees 258
A.1.6.1.13 Friend module definitionscoceeeriiiiriiniineiie ettt 258
A.1.6.2 L0703 113 (o) 150 1 PSPPSR 258
A.1.63 L0Cal AETINILIONS ...ttt ettt sttt ettt et e bt e bt e b e e e eeeesaeesaeesneenneenneens 259
A.1.63.1 Variable INStANTIATIONoo.eiitieiieie ettt ettt ettt e st e bt e bt e e e teenteeneeenes 259
A.1.63.2 TIMEL INSEANTIATION ..eentieiiieiiieeieet ettt ettt et ettt e b e bt et e et e eaeesaee bt enteeneeeneeeneenneas 259
A.1.6.4 L0353 218 (o) 1 1SS 259
A.1.64.1 COMPONENE OPETALIONSvevierierienreetertestesttesseesseesseaseessessaesseesseesseessesssesssesseesseessesssesssesseensens 259
A.1.64.2 POTT OPEIALIONSveevvieiiieiiieeieeitete ettt e ete st et e bt ebe et e eeeeeteesteesseesseessesssesseesseenseasseessenssesssenseensens 260
A.1.643 TIMEL OPEIATIONSvvivvieeieeeieeitesteeteeteeteseteseeesaeesseesseesseessessseseeseesseassesssesssesssensenssenssenssenseesses 262
A.1.6.44 TESECASE OPEIALIONuvieueieeiettetieteeteeetesttesteesteeteesseesteeseesseesseesseessesssesseesseenseassesssesssenssenseensens 262

ETSI

8 ETSI ES 201 873-1 V4.7.1 (2015-06)

A.1.6.5 5 o TSSO 262
A.1.6.6 V21 L OSSPSR 263
A.1.6.7 ParameteriZatiONeeiuiiiiiii ettt ettt ettt ettt b ettt a e e bt sae et e saeesheenaeeteeneens 263
A.1.6.8 STALCITIEIIES ...ttt ettt et ettt e b e sb et e bt e e bt e bt e e bt e e s bt e eabeesabeeebeeenbbeennteenae 264
A.1.6.8.1 AU B 21 153 1433 LTRSS 264
A.1.6.8.2 Behaviour STAtEIMENEScceiiuieiieiieie ettt ettt et et e b e et et eneeeneesaeenneas 264
A.1.6.8.3 BaSIC STALBIMENLSe.etitieiieiietete ettt ettt st b e bt b ettt se e bbbttt ne 265
A.1.6.9 MiSCEllaneous PrOQUCLIONSoveruirtirteriieiieteterte ettt ettt ettt ettt ebe st ess et et sbesbeebeebesbeeaeenseneens 268
Annex B (normative): MaLChiNG VAIUES ... 269
B.1 Template matching MECRANISINSc.eevviiriieiieiieeieerieereesreeteereeteeseesereseseesseeseessaessseesseesseens 269
B.1.1 MatChing SPECITIC VAIUESeevvieiieiiiiiiieieeie ettt ettt ettt et essaesseesseesseenseessessseessesssenseensees 269
B.1.2 Matching mechanisms instead Of VAIUEScccevieriieiiieiieiieieeeeee et 269
B.1.2.1 TEMPLALE LISt ...ttt ettt et a ettt en et e bt et e e teete e e enes 269
B.1.2.2 Complemented temPlate LIStoeeiiiiiiiieeiee e ettt 270
B.1.2.33 ANY VAIUC ..ttt ettt ettt ettt e et ettt et en e e e h e e eheenteenteeaeeeneeeaeenteeteen 271
B.1.2.4 ANY VAIUE OF TONEC ...ttt ettt ettt ettt st ate s ae e s te et e enteeaeeeseesbe e beeseeneesmeesaeenseeseenneans 271
B.1.2.5 1 LT 1 1 V(RS RSUSRSSR 272
B.1.2.6 SUPEISEL ...ttt et e sa e e a bt e s at e e s bt e s bt e e s abeesbteesabeesb et e bt e eabeeenateeae 273
B.1.2.7 SUDSEL ..ttt bbb b bbbt a et h e bt b et a et beshe bt et et nee 274
B.1.2.8 Omitting OPtioNal fIEIASevieiiiiieiicie ettt et te e nreenseenaeees 275
B.1.2.9 Matching deCOded CONLENL........ccuieriieiieiieieeiereete e ete et st e st ste e e b e esae s e e sseesseesseessesseesseesseenseens 276
B.1.3 Matching mechanisms inSIAe VAIUESc.eccvirieiieriieiieie ettt esa e e seaesseensaesees 277
B.1.3.1 ANY CIOIMCIILeoviieiiieieeie ettt ettt et e st e s bt et e ebessaesstesseesseessaesseesseassesssesseessesssesssesssesseenseensenns 277
B.1.3.1.1 Using single character WildCards............coeeviviirierieniieiieieciesteesie et sseenees 277
B.1.3.2 Any number of elements O N0 EleMENTeeiuiiiuiiiiiie ettt ene 277
B.1.3.2.1 Using multiple character WildCards..........cooeeiiieiiiiiiiiiee e 278
B.1.33 POIMULATION ...ttt et ettt ettt e et e st e et e e e emteesteeseesbeesaeemeesaeesneesaeenseanneans 278
B.1.4 Matching attributes OF VAIUEScc.oeiuiiiiiiiiiie ettt ettt enaees 279
B.1.4.1 Length T@SIIICTIONS ...eeutieiiiiiii ettt ettt ettt e st ettt e ae e et e et e bt e teeseesseesaeesseeseeeteeneeens 280
B.1.4.2 The TPresent INAICALOT.oiuiiiiieiie ettt sttt et st e st e b ettt e beeaeeneeeneeenes 280
B.1.5 MatcChing CharaCter PATLEIIL..........ccveruierieeieete e eeeett et et e et e eaeeteesteebeessesssesseesssesseenseessesssesssesssenseensens 281
B.1.5.1 SOt EXPIESSION ..cuvveuvieuteeeieeetesetesttesteesseesseestesseesseesseesseessesssesssesseessaesseansesssesssesssenseensaensennsennsesnsesnsenses 283
B.1.5.2 RETEIENCE CXPIESSION ...euvieviieeiiieieiiiesiieriteie et et e et e e taestee s st e seesseessessaessaeseesseesseessesssesssesssesseenseenseans 284
B.1.5.3 MatCh XPIreSSION N LIIMIES ...veivieeieiietieieeieettesteesteestestestesseesseesseesseessesssesseeseessesssesssesseesseesseensenns 285
B.1.5.4 Match a referenced ChAraCter SEL..........eiieiiriirieriiriirierteet ettt sb e 286
B.1.5.5 Type compatibility rules fOr PAttEINSeeuieiieeieitieie ettt e 286
B.1.5.6 Case insensitive pattern MAatChiNg.........ccoooiiiiiiiiiiee et 286
Annex C (nor mative): Predefined TTCN-3 fUNCLIONS.......cccooeieirireieeeee e 288
C.0 General exception handling ProCEAUIESc.eevvereiriieeiieeiierieseeeteereereesreeseeesresressseesaessaens 288
C.1 CONVEISION fUNCHOMS. ...eutieiiieitteitiestieeiie ettt et et e stteseteeteeteebeesbeesueeeuteembeenseebeeaseesseesaeeenseeseens 288
C.1.1 INEEEET 10 CRATACTET ... ieiieiiieeiecie ettt ettt ettt st e aeesbeesseesseeseenseesseesseesseessensaensees 288
C.1.2 Integer t0 UNIVEISAl CRATACLETovvieiieieiie ettt st esreesaeesseesbeesaeessensaessaensees 288
C.1.3 INEEEET 10 DILSIIING ...eovvieiiieeiieeieetiecitete ettt e st et et e et e et e ssaeesaesteeseesseensesssesssesseenseenseasseessenssenseenseas 288
C.14 INtEEET 10 CNUMETALEAcuieeeieiieiieieeie ettt et et et e et eeeaestaesteesseesseesseesseasseessesssesseassenssesssesseensens 289
C.1.5 INEEEET 10 NEXSIIING.ieuiieiieeiietieieete ettt sttt et et e et e et estaestaesseeseesseessessseessanseesseasseassenssesssensees 289
C.1.6 3 LTS (oI o Lo 1]] 10 10U PSSR 289
C.1.7 INtEEET 0 CRATSIIING.ceeitietieti ettt ettt et ettt st eeaeesa e e bt enteeneeeneeeneeeneenneas 290
C.1.8 3 LTS o (o1 (012 USRS 290
C.1.9 LS (o T R 3B 1117 {<) TSP SPS 290
(O U0 (O I O o - ¢ To7) G {0 0 11T {(<) (SR UU PR 290
(OF U0 B N O o - ¢ To7) {0 0 o1 £ 1123 1 =R S SRS 290
C.1.12 Universal CharacCter t0 INTEZET........c.veeverierierieerieeteeeesteesteeseessesssesseesseessesssesssesseesseessesssesssenssenssesssessees 291
C.1.13 BitStrNG t0 INTCZET....ecviiuieseietieieeeteettesteeteesteetestesteesseesseassesseessaesseesseessesssenseessessseeseensesssenssenssesssessees 291
C.1.14 BitString t0 NEXSIIINEZ ...eeovieiieiieiieeieeiesteeieesteetesteseesteeteesseesbeessessaesseesseesseessesssesssesseenseensenssenssesssessens 291
C.1.15 BitString t0 OCTEISIIINGeeeuieiieiieieeteeiesieesteeteestestesteesseesseesseessesssesaessesssesssesssesssenseesseessenssenssesssesses 291
C.1.16 BitString t0 CRATSIIINZeeivieiieiieiieeiiesiieieeteeteeteseesteesteesbeesbeesaeesaessaesseesseessesssesssenseenseensenssenssesssensens 292
C.L.17 HEXSIING 10 INEEZET ..evveevveerierieiieieetesttesteesteeseetesseesseesseesseessesssesssessaessesssesssesssesssesseesseessesssenssesssessees 292
C.1.18 HEeXSIING t0 DILSTIINE....cueitiiiieiieiieet ettt ettt ce sttt ettt et e bt et e e e eeeeeaeesneesaeebe e bt eneeeneeeneesneesneas 292

ETSI

9 ETSI ES 201 873-1 V4.7.1 (2015-06)

C.1.19 HeXSING t0 OCTEISIIINE . eeveetietieiieeiieetiert ettt et e eeee st e et et e e et teeb e et e e bt emteeneesaeesaeenseenbeeneeeneeeneesseenneas 293
C.1.20 HeXString t0 CHATSIIINE ... coouiitieiieeiee ettt ettt ettt e bt e bt et e et e et esaeesteenbeeneeeneeeneeseeenneas 293
(O 0720 B O To7) 13 0 08Tl {0 0 L) (<) USRS 293
C.1.22 OCtEtSIING t0 DIESIIINE . .c.eetietieieeiieeiie ettt ettt ettt e st e e e st e et e et e e beenteemeesaeesseebeenteeneeeneeennesneenneas 293
C.1.23 OCtetString t0 NEXSIIINE ...coueitieiieiieie ettt ettt e et esetesaeeseeesae e et et e eseembeeneeeneeeneeseeenneas 294
C.1.24 OctetString t0 CharaCter STIINEecueeiueiieiiieitierte ettt et ettt et e st e st e ste e bt et e eseesseesteeaeeeneeeneesneenneas 294
C.1.25 Octetstring to character string, Version IL............cccoevieiiiriiiiienieicie ettt seees 294
C.1.26 CRArSIIING t0 INTEZCTeovvevierietieeteeetesttesteesteessesssesetesseesseesseessesssesssesssesseesseessesssesssesseesseessesssesssesssessens 295
C.1.27 Character String t0 NEXSIIINGccveeieriieriieiiiiieiteseesteesteeteeveeeaeetaesseesseesseesseessesssesseessesssesssesssesssesses 295
C.1.28 Character String t0 OCIESIIINEccververeieriierieeieesteeteetesteesseeseesesssesssesseesseesseessesssesseessesssesssesssesseessens 295
C.1.29 Character String t0 flOAt.........c.oeciiriiirieiieiieie e etesee sttt ettt eete st e staesteesseesseesseessesseesseenseessesssenssessens 296
C.1.30 ENUMEIated t0 INEEEETeetieiieiieiieeeieet ettt ettt ettt e st et e e e es e et e e sb e e sbe e be e st emeeemeeeseenbeemeeeneeeneesneenneas 296
C.1.31 Octetstring to universal Character StIINEZcooieitieiiriertieiee ettt e st e e s e seeeneeas 297
C.1.32 Universal character String t0 OCtELSIIINEeeruieiieiieieetiete ettt ettt ettt e e e seeeneeas 297
C.1.33 Value or template to universal CharString..........coooeiiirierieiieeee et 298
C.2 Length/SiZe fUNCLIONSc.eiiiieiieitieeiie ettt ettt et e st e sate e be e bt e s bt e sateenteenbeeneeeaseenseens 298
C.2.1 Length of Strings and JISTSc..ooueiiriiiiieiei ettt st bbbt 298
C22 Number of elements in @ StrUCtUIEd VAIUEc..evviiuiriiiieiiiiere e 300
C.3 Presence checking fUNCHONScccvevvieriiiiiiiieitiesieeste e ete e e seesetesbeesbeesseessaesssessseesseeseessaens 301
C3.1 The ISPIESENt fUNCHIONecuiiitiiitietieie ettt ettt ettt et st sae e bt e bt e et eneeeneeeneeseeenneas 301
C3.2 The ISChOSEN fUNCHION.ctiitieiieie ettt ettt st see ettt et e ene e e st enteeneeeneeeneenseenean 302
C33 The ISValue fUNCHIONeiiuiiiieiieee ettt ettt ettt e bt et e e eneeeneeseeenneas 303
C34 The ISBOUNA fUNCHIONeotiiiieiieie ettt ettt st e sae e st e sttt e eneeeneeeneeseeennean 304
C3.5 Matching mechaniSm deteCtIONeiiuiiiuiiiieie ettt ettt et eeeesneeseeenaeas 305
C.4 String/list handling fUNCHONSecverieieiieieieeee ettt sttt et st ees 306
C4.1 The REZEXP fUNCLION ...ecuvieiiieeiiciieiicieeie ettt ettt e s ta et esbeesbeesseesbessaesseesseenseenseasseessenssesseensens 306
C4.2 The SUDSLIING FUNCHONevviieieiieiiieciieie ettt ettt st et s e ss e esbeesbessaesssesteeseessessseessesssenseensens 308
C43 The Replace fUNCHION.ccuiiiiiiiiiei ettt ettt e et ettt e et eseeeneeseeenneas 309
C.5 COAEC TUNCLIONScueeiiiieiiieie ettt ettt ettt sttt et e et e et e e steeeateeateeabe e bt esbeesneesseesaeesnseenseens 309
C5.1 The enCOAING FUNCHIONouiiitietiei ettt ettt ettt ettt ea e b enteeneeeeeeeneeseeenneas 309
C5.2 The decodiNg fUNCHIONc.eiitiiiieieee ettt ettt ettt ettt et ea e b enteeneeeneeeneeeneennean 310
CS5.3 The encoding to universal charstring fUNCHONccvieviieiirieieieeie e 310
Cs54 The decoding from universal charstring funCtion............ccoecuivcierieriieniee e 311
C.S5.5 Retrieving the type of String NCOINGccveviirieiieiieiieieeieeee sttt teebeesaessaessaensees 312
C.5.6 Removing BOMSs of UCS encoding SChEMES.............ccueeieriirieniieiieieeiesteseesieeseeeseesseseeesseesseesseessees 312
(O I @1 1<) i 11713 10 4 LTSRS 313
C.6.1 The random number generator fUNCHIONcoouiiiiiiieie et aeas 313
C.6.2 The testcasename fUNCHIONc.eiiiiiiiiieie ettt ettt et s e saeesee e bt enteeneeeneeeneesseenneas 313
C.6.3 The hoStIA fUNCLION ..ottt ettt ettt ettt et eee e bt et emeeeseeeneeseeenneas 314
Annex D (nor mative): PreproCESSING MACT 0S.......ccveiviierieieieeeeese st seen e sne e 315
D.1 Preprocessing macro MODULE ..ottt 315
D.2 Preprocessing macro FILE ..ottt ens 315
D.3 Preprocessing macro BFILE ..o 315
D.4 Preprocessing macro LINE .o 315
D.5 Preprocessing macro SCOPE ...t 316
Annex E (informative): Library of USeful TYPESoceeiiceeeceeere e 318
LS O 5101121 510231 TSRS 318
E.2 USCIUL TTON-=3 tYPCS cuveeuvieiieiiieiieeieeteesieesieestessreseseesstesseesseesssesssessseesseessessssssssesssesssesssesssesssanns 318
E2.1 USe Ul SIMPLE DASIC LYPES ..eeuvientietieteeie ettt ettt ettt et et et esteeseesbeesbeesbeenteemeeenteeneeeneeeneeeneennean 318
E.2.1.0 Signed and unsigned Single DYLe INTEEEISeeueruieiieiieiieit ettt s 318
E2.1.1 Signed and unsigned ShOTt INEEEETS........eoouiriirieitieiiee ettt st see e 318
E2.1.2 Signed and unsigned LONG INLEZETScc.eeuieiieieitieitieie ettt ettt seee e e saeeneeeneeenes 318

ETSI

10 ETSI ES 201 873-1 V4.7.1 (2015-06)

E2.13 Signed and unsigned [ongloNg INEGELSc.eevuieiiiiiiieiiiieiere e e 319
E2.14 020) S T i o TSP 319
E2.2 Useful Character StING tYPES ...cc.eeiueeruieieeie ittt ettt ettt ee et e st e sbe e et e eesmeesaeeseee bt eteeneeeneesseesseennean 319
E.2.2.0 UTF-8 character String "Utf8StIING"c.ooouiiiiiiiiieie ettt eae 319
E2.2.1 BMP character string "DIMpPStringc.ooiiiiiiieiiee ettt st 320
E2.22 UTF-16 character string "UtflOStrING"ooiiiiiiieiee e 320
E.2.2.3 ISO/IEC 10646 character string "iSO88S59SIIING"ceevvieiieieiieiierteie ettt re e ees 320
E2.24 Status values fOr TTCN=-3 ODJECLS.....c.ceierieriieieeierie e rtertt et ere ettt e ta e e e sbeesseesbessaessaessesssessnenens 320
E.2.2.5 Template kinds 0f TTCN-3 ODJECLSecviriieieriieiieiieie ettt ebeesaesraesseensesanesens 321
E.2.3 USETUL SEIUCTUIEA tYPES .vevvieiieiieiieeieeieetieete ettt et este e teesaeessessaeesaesseesseessesssesssesssesssesseesseenseensenns 321
E.2.3.0 Fixed-point decimal TIteral..........c.ccveeiieriieiiieieciescese ettt ettt eeaeseaesteessaesseesseensaens 321
E24 USEfUl QtOMIC SIIINE LYPES -veuvtetietieteeteete et et eeette et et et e st e et et ebeenbeeseesseesseesseenseenseeneeeneeeneeeneesseennean 322
E2.4.1 Single Recommendation ITU-T T.50 character tyPecccvereerierienieniieeeieeeeee e 322
E2.42 Single universal Character TYPEeeiierieriietiee ettt ettt be e e e eees 322
E.2.43 SHNEIE DL EYPE - vvveeeeeeereeeeeeeeseeeeeeseeeeeeeeeeeeeseeeeseeseeeeesseeeeess e eseseeeseseeeseesseseeeeseeeeesseeeeeseeeesseeeeeeee 322
E2.44 NS 0Ted (S 155 ' 1RSSR 322
E2.45 NS08 Ted (ST £ A o TSRO 322
Annex F (informative): Operationson TTCN-3 active ObjeCtS......ccccvvveeeieceece e 323
F.1 TSt COMPONENLS. ...ttt ettt ettt ettt ettt ettt e et e e bt e e sabeesabeeesabeeeabaeenbteesabeeenabeenas 323
F.1.1 Test COMPONENT TEIETEICESevievieeiieeieetieeieeie et et etestesee st e bt esseesbeesaessaesseesaesseessesssesseesseesseenseenseans 323
F.1.2 Dynamic behavioUr OFf PTCScciiiiiiiiieiiiie ettt sttt ae e ssseetaeesaestaesesssessaessaensees 324
F.1.3 Dynamic behaviour 0f the MTC.........ccoiiiiiiiiieriecieie ettt steeseesbeesseesaessaessaensees 325
S I 11 ¢TSRS 326
| B o0 £ O OO OO O OO U SO RO PPOTUTPPRPPURROTPINt 326
F3.1 Configuration OPEIATIONSce.eeeuiertieiteeieete ettt et et et e e eteestee et enteesteeseeeseesbeeseeseeneesseesseesseeseenneans 326
F3.2 Port Controlling OPEIAtIONSccuevverieriiertieieeieetesteesteeseesessessaesseesseesseassesssesssesseessenssesssesssesseessees 327
F3.3 ComMmUNICAtION OPEIATIONS.......veetietieiietieterteseerteesseesseeseestesseesseesseesseessessaessassseessesssesssesseesseessessseens 328
Annex G (informative): Deprecated language features.............ccovevvveinnrciinceeeceae 329
G.1 Group style definition of MOAUIE PATAMELETS.........ccveerieeireiieiierierte e ere et ree e ereeereesaeseeens 329
G.2 RECUISIVE TIMIPOTTE ...ttt ettt ettt ettt s ae e e te et e bt ese e e e e bt eneeseeestenbesseeneesneeneeneesneeneenees 329
G.3 Using al | in port type defiNitionS.........c.ecueieieieieiiicieseseee ettt ese s 329
G4 SIZEOT fOr IeNZth OF LSS ..ueeviieiieiieiieiierie ettt et e s ee st e s b e et e e teessaeesseessessseessaessaens 329
G.5 sizeoftype predefined fUNCHIONocueiiiiiiieiee e 329
GO MIXEA POTES ..eeeeiuieeiieitie ettt ettt et ettt et et et e sb e e shteea e e e bt e bt e sbeesaeeeateeabeeabeeabeasseesneesseesaeeenseenseens 329
G.7 EXTEINal CONSTANLS ...cocuiiiiiiiiieiieitest ettt ettt ettt et e st e sate et e e be e bt e sbeesmeeemtesateenseenseens 330
G.8 Prefixing enumerated VAIUEScooeeieiiiieiieiiee ettt sttt 330
G.9 Record of/arrays not compatible to record; set of not compatible with set.............ccocererrieeneens 330
G.10 The "UCS-2" predefined variant attribute String..........cceevveereerieenienieeieeieeseesee st 330
G.11 Prefixing identifiers of local definitions with module identifiers...........cccoceevererieriiniencncene, 330
Annex H (informative): Bibliography ..o 331
3 1) 2SS 332

ETSI

11 ETSI ES 201 873-1 V4.7.1 (2015-06)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI membersand non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards', which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web

server (http:/ipr.etsi.org).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

This ETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and Specification
(MTS).

The present document is part 1 of a multi-part deliverable covering the Testing and Test Control Notation version 3, as
identified below:

Part 1: "TTCN-3 CorelLanguage";

Part2: "TTCN-3 Tabular presentation Format (TFT)";
Part 3: "TTCN-3 Graphical presentation Format (GFT)";
Part4: "TTCN-3 Operational Semantics";

Part 5: "TTCN-3 Runtime Interface (TRI)";

Part 6: "TTCN-3 Control Interface (TCI)";

Part 7: "Using ASN.1 with TTCN-3";

Part 8: "The IDL to TTCN-3 Mapping";

Part9: "Using XML schema with TTCN-3";

Part 10: "TTCN-3 Documentation Comment Specification".

Modal verbs terminology

In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

ETSI

http://webapp.etsi.org/IPR/home.asp
http://portal.etsi.org/Help/editHelp!/Howtostart/ETSIDraftingRules.aspx

12 ETSI ES 201 873-1 V4.7.1 (2015-06)

1 Scope

The present document defines the Core Language of TTCN-3. TTCN-3 can be used for the specification of all types of
reactive system tests over a variety of communication ports. Typical areas of application are protocol testing (including
mobile and Internet protocols), service testing (including supplementary services), module testing, testing of CORBA
based platforms, APIs, etc. TTCN-3 is not restricted to conformance testing and can be used for many other kinds of
testing including interoperability, robustness, regression, system and integration testing. The specification of test suites
for physical layer protocols is outside the scope of the present document.

TTCN-3 is intended to be used for the specification of test suites which are independent of test methods, layers and
protocols. In addition to the textual format defined in the present document, while GFT (ETSI ES 201 873-3 [i.2])
defines a graphical presentation format for TTCN-3. The specification of these formats is outside the scope of the
present document.

While the design of TTCN-3 has taken the eventual implementation of TTCN-3 translators and compilers into
consideration the means of realization of Executable Test Suites (ETS) from Abstract Test Suites (ATS) is outside the
scope of the present document.

2 References

2.1 Normative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
reference document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.ctsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee
their long term validity.

The following referenced documents are necessary for the application of the present document.

[1] ETSI ES 201 873-4: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 4: TTCN-3 Operational Semantics".

2] ISO/TIEC 10646 (2014): "Information technology -- Universal Coded Character Set (UCS)".

[3] Recommendation ITU-T X.292: "OSI conformance testing methodology and framework for
protocol Recommendations for ITU-T applications - The Tree and Tabular Combined Notation
(TTCN)".

NOTE: The corresponding ISO/IEC standard is ISO/IEC 9646-3: "Information technology -- Open Systems
Interconnection -- Conformance testing methodology and framework -- Part 3: The Tree and Tabular
Combined Notation (TTCN)".

[4] Recommendation ITU-T T.50: "International Reference Alphabet (IRA) (Formerly International
Alphabet No. 5 or IAS) - Information technology - 7-bit coded character set for information
interchange".

NOTE: The corresponding ISO/IEC standard is ISO/IEC 646: "Information technology -- ISO 7-bit coded
character set for information interchange".

[5] Recommendation ITU-T X.290: "OSI conformance testing methodology and framework for
protocol Recommendations for ITU-T applications - General concepts".

NOTE: The corresponding ISO/IEC standard is ISO/IEC 9646-1: "Information technology -- Open Systems
Interconnection -- Conformance testing methodology and framework; Part 1: General concepts".

[6] IEEE™ 754: "IEEE Standard for Floating-Point Arithmetic".

ETSI

http://docbox.etsi.org/Reference

13 ETSI ES 201 873-1 V4.7.1 (2015-06)

2.2 Informative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
reference document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] Void.

[i.2] ETSI ES 201 873-3: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 3: TTCN-3 Graphical presentation Format (GFT)".

[1.3] ETSI ES 201 873-5: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 5: TTCN-3 Runtime Interface (TRI)".

[1.4] ETSI ES 201 873-6: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 6: TTCN-3 Control Interface (TCI)".

[i.5] ETSI ES 201 873-7: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 7: Using ASN.1 with TTCN-3".

[1.6] ETSI ES 201 873-8: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 8: The IDL to TTCN-3 Mapping".

[i.7] ETSI ES 201 873-9: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 9: Using XML schema with TTCN-3".

[1.8] ETSI ES 201 873-10: "Methods for Testing and Specification (MTS); The Testing and Test
Control Notation version 3; Part 10: TTCN-3 Documentation Comment Specification".

[i.9] Void.

[i.10] Object Management Group (OMG) (2001): "The Common Object Request Broker: Architecture
and Specification - IDL Syntax and Semantics". Version 2.6, FORMAL/01-12-01.

[i.11] ETSI ES 202 781: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions: Configuration and Deployment Support".

[1.12] ETSI ES 202 784: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions: Advanced Parameterization".

[1.13] ETSI ES 202 785: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions: Behaviour Types".

[i.14] ETSI ES 202 782: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions: TTCN-3 Performance and Real Time Testing".

[1.15] ISO/TEC 10646 (2003): "Information technology -- Universal Coded Character Set (UCS)".

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in Recommendation ITU-T X.290 [5],
Recommendation ITU-T X.292 [3] and the following apply:

actual parameter: value, expression, template or name reference (identifier) to be passed as parameter to the invoked
entity (function, test case, altstep, etc.) as defined at the place of invoking

ETSI

14 ETSI ES 201 873-1 V4.7.1 (2015-06)

assignment notation: notation that can be used for record, set, record of and set of values, where the fields or the
elemens to which a value is assigned are identified explicitly within a pair of curly brackets ("{" and "}") by the field
names or the positions of the elements

basic types: set of predefined TTCN-3 types described in clauses 6.1.0 and 6.1.1 of the present document
NOTE: Basic types are referenced by their names.
communication port: abstract mechanism facilitating communication between test components

NOTE: A communication port is modelled as a FIFO queue in the receiving direction. Ports can be
message-based or procedure-based.

compatibletype: TTCN-3 is not strongly typed but the language does require type compatibility
NOTE: Variables, constants, templates, etc. have compatible types if conditions in clause 6.3 are met.
completely initialized: values and templates of simple types are completely initialized if they are partially initialized

NOTE: Values and templates of structured types and arrays are completely initialized if all their fields and
elements are completely initialized. In case of record of, set of, and array values and templates, this means
at least the first n elements are initialized, where n is the minimal length imposed by the type length
restriction or array definition (thus in case of n equals 0, the value "{}" also completely initializes a
record of, a set of or an array).

component constant: constant defined in a component type
component port: port defined in a component type
component template: template defined in a component type
component timer: timer defined in a component type
component variable: variable defined in a component type

data types: common name for simple basic types, basic string types, structured types, the special data type anytype and
all user defined types based on them

NOTE: See table 3 of the present document.

defined types (defined TTCN-3 types): set of all predefined TTCN-3 types (basic types, all structured types, the type
anytype, the address, port and component types and the default type) and all user-defined types declared either in the
module or imported from other TTCN-3 modules

deter ministic function: function that for the same input in the in and inout parameters always yields the same output
both for the return result as well as the inout and out parameters

NOTE 1: A non-deterministic function is one that is not deterministic.

NOTE 2: In general, it cannot be decided if a function is deterministic or not. However, a function can be specified
to be deterministic, i.e. the function is supposed to be deterministic. In this case, a violation of the
determinism can be detected and handled accordingly. The handling however is tool-specific.

dynamic parameterization: form of parameterization, in which actual parameters are dependent on runtime events

EXAMPLE: The value of the actual parameter is a value received during runtime or depends on a received
value by a logical relation.

exception: in cases of procedure-based communication, an exception (if defined) is raised by an answering entity if it
cannot answer a remote procedure call with the normal expected response

formal parameter: typed name or typed template reference (identifier) not resolved at the time of the definition of an
entity (function, test case, altstep, etc.) but at the time of invoking it

NOTE: Actual values or templates (or their names) to be used at the place of formal parameters are passed from
the place of invoking the entity (see also the definition of actual parameter).

ETSI

15 ETSI ES 201 873-1 V4.7.1 (2015-06)

fuzzy value or template: If a value or template instance is declared to be fuzzy, the expression, initializing or partly
initializing it (including actual parameters passed to in formal parameters), is subject to lazy evaluation. During
execution, this expression is re-evaluated each time when the fuzzy object is referenced, except when at the left hand
side of an assignment or passing it to a fuzzy or lazy formal parameters. The result of this (re)evaluation is used as the
actual value or template of the fuzzy instance. When new content is assigned to a fuzzy instance or to its subpart, the
right hand side of the assignment is subject to lazy evaluation again.

global visibility: attribute of an entity (module parameter, constant, template, etc.) that its identifier can be referenced
anywhere within the module where it is defined including all functions, test cases and altsteps defined within the same
module and the control part of that module

Implementation Confor mance Statement (ICS): See Recommendation ITU-T X.290 [5].
Implementation eXtra Information for Testing (IXIT): See Recommendation ITU-T X.290 [5].
Implementation Under Test (IUT): See Recommendation ITU-T X.290 [5].

in parameterization: kind of parameterization where the value of the actual parameter (the argument) is assigned to the
formal parameter when the parameterized object is invoked, but the value of the formal parameter is not passed back to
the actual parameter when the invoked object completes

NOTE 1: Ini n parameterization, parameters are passed by value.
NOTE 2: The arguments are evaluated before the parameterized object is entered.

NOTE 3: Only the values of the arguments are passed and changes to the arguments within the invoked object have
no effect on the arguments as seen by the invoking object.

index notation: notation to access individual elements of record of, set of, array and string values or templates, where
the element to be accessed is identified explicitly by an index value enclosed in square brackets ("[" and "]") which
specifies the position of that element within the referenced value or template and the index value is either an integer
value, array of integers or record of integers

NOTE: Integer values used for indexing (either directly or as elements of the record of or array values) always lie
within the index range of the type of the referenced value or template. Except for those arrays which are
defined with an explicit index range, the index range always has 0 as the index for the first element.

inout parameterization: kind of parameterization that uses passing by reference, i.e. when the parameterized object is
invoked, the formal parameter is linked with the actual parameter and gets direct access to the same data content that is
currently represented by the actual parameter

NOTE 1: The invoked object uses the actual parameter directly, so that all changes made in the formal parameter
become immediately effective on the actual parameter. If the same actual parameter is passed to two
distinct formal parameters, a change in one formal parameter becomes immediately effective in the other
one (and in the actual parameter).

NOTE 2: Inout parameters can be used for functions, altsteps, and test cases only, if not restricted by further rules,
e.g. altsteps activated as defaults.

known types: set of all TTCN-3 predefined types, types defined in a TTCN-3 module and types imported into that
module from other TTCN-3 modules or from non-TTCN-3 modules

lazy evaluation: Lazy evaluation means that evaluation of an expression is delayed during execution until the value or
template instance, to which the result of the evaluation should have been assigned or passed to as actual parameter, is
first referenced at an other place than the left hand side of an assignment or an actual parameter passed to a fuzzy or
lazy formal parameter. During execution, this delayed evaluation is carried out at the first actual reference, even when
the result is to be used in an expression that is also subject to lazy evaluation. For the evaluation the actual values at the
time of the evaluation to be used (not the actual values at the time of the assignment or parameter passing). This implies
that components of the expression may be uninitialized at the time, when execution reaches the assignment or parameter
passing, but may be initialized by the time of the evaluation that can lead to successful evaluation. If, by the time of the
evaluation, execution has left the scope unit, in which one or more components of the expression is defined, the actual
values of the component(s) at the time of leaving the scope unit are to be stored for the purpose of the delayed
evaluation (but only for that, i.e. the values are not accessible for the user).

ETSI

16 ETSI ES 201 873-1 V4.7.1 (2015-06)

lazy value or template: A value or template instance is called lazy, when the expression, initializing or partly
initializing it (including actual parameters passed to in formal parameters), is subject to lazy evaluation. When, during
execution, the delayed (lazy) evaluation is taking place, its result is stored in the lazy value or template and the lazy
instance is used further on like ordinary values and templates, until the next use of the lazy variable or parameter on the
left hand side of an assignment. When a new content is assigned to a lazy instance or to its subpart, the right hand side
of the assignment is subject to lazy evaluation again. If, during execution, no expression referencing the lazy object is
evaluated, the lazy value or template instance is never evaluated.

left hand side (of assignment): value or template variable identifier or a field name of a structured type value or
template variable (including array index if any), which stands left to an assignment symbol (:=)

NOTE: A constant, module parameter, timer, structured type field name or a template header (including template
type, name and formal parameter list) standing left of an assignment symbol (:=) in declarations and or a
modified template definitions are out of the scope of this definition as not being part of an assignment.

local visibility: attribute of an entity (constant, variable, etc.) that its identifier can be referenced only within the
function, test case or altstep where it is defined

Main Test Component (MTC): See Recommendation ITU-T X.292 [3].

out parameterization: kind of parameterization where the actual parameter's content (the argument) is not passed to
the formal parameter when the parameterized object is invoked, but the value of the formal parameter is passed back to
the actual parameter when the invoked object completes

NOTE 1: In out parameterization, parameters are passed by value.

NOTE 2: Out parameters can be used for functions, altsteps, and test cases only, if not restricted by further rules,
e.g. al t st eps activated as defaults.

NOTE 3: Anout formal parameter is uninitialized (unbound) when the invoked object is entered.

NOTE 4: The value is passed back to the actual parameter only if within the invoked object a value is assigned to it.
If no value is assigned, the actual parameter remains unchanged when the invoked object completes.

Parallel Test Component (PTC): See Recommendation ITU-T X.292 [3].

partially initialized: values are partially initialized if a concrete value has been assigned to it or to at least one of its
fields or elements

NOTE 1: A template variable is initialized if a matching mechanism has been assigned to it or to at least one of its
fields or elements, directly or indirectly via expansion (see clause 15.6). A template is initialized if a
matching mechanism has been assigned to it, directly or indirectly via expansion (see clause 15.6).

NOTE 2: TTCN-3 data objects (both value and template) are initialized if they or at least one of their fields or
elements have been used on the left hand side of an assignment (including initial value assignment at
declaration), except of uninitialized r ecor ds and set s, when the assignment does not change any of its
fields. Note that for example an empty pair of curly brackets used for a record value may change the
optional fields of the value via the implicit omit mechanism (see clause 27.7).

passing by reference: ability to link an actual parameter with a formal parameter of a function, altstep or test case and
to control its actual value within the function, altstep or test case by using the formal parameter reference, i.e. no copy
of the data content is made and the actual and formal parameters share the same data content

passing by value: ability to make a copy of a data content of an actual or formal parameter before passing it to a formal
or actual parameter, i.e the actual and formal parameters do not share the same data content

port parameterization: ability to pass a port as an actual parameter into a parameterized object via a port parameter

NOTE: This actual port parameter is added to the specification of that object and may complete it.

ETSI

17 ETSI ES 201 873-1 V4.7.1 (2015-06)

qualified name: TTCN-3 elements can be identified unambiguously by qualified names

NOTE: For modules, the qualified name is the <module name>. For global definitions such as testcases,
functions, etc., the qualified name is <module name>.<definition name>. For control, the qualified name
is <module name>.control. For local definitions, such as variables, local templates, etc. within a global
definition, the qualified name is <module name>.<global definition name>.<local definition name>.

right hand side (of assignment): expression, template reference or signature parameter identifier which stands right to
an assignment symbol (:=)

NOTE: Expressions and template references standing right of an assignment symbol (:=) in constant, module
parameter, timer, template or modified template declarations are out of the scope of this definition as not
being part of an assignment.

root type: root types of types derived from TTCN-3 basic types are the respective basic types

NOTE 1: The root type of user defined record types is r ecor d, the root type of user defined record of and array
types is r ecor d of , the root type of user defined set types is Set , the root type of user defined set of
types is set of . The root type of user defined union types is union and the root type of anytypes is
anyt ype. The root types of special configuration types are def aul t or conponent, respectively.
Port types do not have a root type.

NOTE 2: As addr ess is more a predefined type name than a distinct type with its own properties, the root type of
an addr ess type and all of its derivatives are the same, as the root type was, if the type was defined
with a name different from addr ess.

static parameterization: form of parameterization, in which actual parameters are independent of runtime events;
i.e. known at compile time or in case of module parameters are known by the start of the test suite execution

NOTE 1: A static parameter is to be known from the test suite specification, (including imported definitions), or the
test system is aware of its value before execution time.

NOTE 2: All types are known at compile time, i.e. are statically bound.
strong typing: strict enforcement of type compatibility by type name equivalence with no exceptions
System Under Test (SUT): See Recommendation ITU-T X.290 [5].

template: TTCN-3 data objects are values or templates by definition. A TTCN-3 template identifies a subset of the
values of its type (where the subset may contain a single instance of the type, several instances or all instances) or the
matching mechanism oni t . Templates are defined by global and local templates, template variable definitions, or
formal template parameters. Any of those are templates from the point of view of their usage, irrespective of their actual
content; for example, a template variable containing a specific value is a template.

template parameterization: ability to pass a template as an actual parameter into a parameterized object via a template
parameter

NOTE 1: This actual template parameter is added to the specification of that object and may complete it.
NOTE 2: Values passed to formal template parameters are considered to be in-line templates (see clause 15.4).

test behaviour: (or behaviour) test case or a function started on a test component when executing an execut e or a
st art component statement and all functions and altsteps called recursively

NOTE: During a test case execution each test component has its own behaviour and hence several test behaviours
may run concurrently in the test system (i.e. a test case can be seen as a collection of test behaviours).

test case: See Recommendation ITU-T X.290 [5].
test caseerror: See Recommendation ITU-T X.290 [5].

test suite: set of TTCN-3 modules that contains a completely defined set of test cases, optionally supplemented with
one or more TTCN-3 control parts

test system: See Recommendation ITU-T X.290 [5].

ETSI

18 ETSI ES 201 873-1 V4.7.1 (2015-06)
test system interface: test component that provides a mapping of the ports available in the (abstract) TTCN-3 test
system to those offered by the SUT

timer parameterization: ability to pass a timer as an actual parameter into a parameterized object via a timer
parameter

NOTE: This actual timer parameter is added to the specification of that object and may complete it.

type compatibility: language feature that allows to use values, expressions or templates of a given type as actual values
of another type

EXAMPLE: At assignments, as actual parameters at calling a function, referencing a template, etc. or as a
return value of a function.

type context: "In the context of a type" means that at least one object involved in the given TTCN-3 action (an
assignment, operation, parameter passing, etc.) identifies a concrete type unambiguously

NOTE: Either directly (e.g. an in-line template) or by means of a typed TTCN-3 object (e.g. via a constant,
variable, formal parameter, etc.).

unqualified name: unqualified name of a TTCN-3 element is its name without any qualification
user -defined type: type that is defined by subtyping of a basic type or declaring a structured type
NOTE: User-defined types are referenced by their identifiers (names).
value: TTCN-3 data objects are values or templates by definition. A TTCN-3 value is an instance of its type

NOTE: Values are defined by module parameters, constants, value variables, or formal value parameters. Any of
those are value objects from the point of view of their usage. A template containing only specific value
matching - though referring to a single instance of its type - is not a value object, but is a template object.

value list notation: notation that can be used for record, set, record of and set of values, where the values of the
subsequent fields or elements are listed within a pair of curly brackets ("{" and "}"), without an explicit identification of
the field name or element position

value notation: notation by which an identifier is associated with a given value or range of a particular type
NOTE: Values may be constants or variables.

value parameterization: ability to pass a value as an actual parameter into a parameterized object via a value
parameter

NOTE: This actual value parameter is added to the specification of that object and may complete it.

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

API Application Programming Interface
ASN Abstract Syntax Notation
ASP Abstract Service Primitive

NOTE: See Recommendation ITU-T X.290 [5].

ATS Abstract Test Suite

BER Basic Encoding Rules

BMP Basic Multilingual Plane

BNF Backus-Nauer Form

BOM Byte Order Mark

CORBA Common Object Request Broker Architecture
ETS Executable Test Suite

FIFO First In First Out

GFT Graphical presentation Format

ICS Implementation Conformance Statement
IDL Interface Definition Language

ETSI

19 ETSI ES 201 873-1 V4.7.1 (2015-06)

IRV International Reference Version

ITU-T International Telecommunication Union Telecommunication Standardization Sector
IuT Implementation Under Test

IXIT Implementation eXtra Information for Testing

LHS Left Hand Side (of assignment)

MTC Main Test Component

PDU Protocol Data Unit

NOTE: See Recommendation ITU-T X.290 [5].

PTC Parallel Test Component

RHS Right Hand Side (of assignment)

SDL Specification and Description Language

SUT System Under Test

TCI TTCN-3 Control Interfaces

TE TTCN-3 Executable (see also ES 201 873-5 [1.3])
TFT Tabular presentation Format

TRI TTCN-3 Runtime Interfaces

TSI Test System Interface

TTCN-3 Testing and Test Control Notation version 3
UCS Universal Character Set

UID Short identifier for character code point (see ISO/IEC 10646 [2], clauses 6.5 and 6.6)
USI UCS Short Identifier

UTF UCS Transformation Format

UTF-8 Unicode Transformation Format-8

UTF-16 Unicode Transformation Format-16

UTF-16BE Unicode Transformation Format-16 big-endian
UTF-16LE Unicode Transformation Format-16 little-endian
UTF-32 Unicode Transformation Format-32

UTF-32BE Unicode Transformation Format-32 big-endian
UTF-32LE Unicode Transformation Format-32 little-endian
XML eXtensible Markup Language

4 Introduction

TTCN-3 is a flexible and powerful language applicable to the specification of all types of reactive system tests over a
variety of communication interfaces. Typical areas of application are protocol testing (including mobile and Internet
protocols), service testing (including supplementary services), module testing, testing of CORBA based platforms, API
testing, etc. TTCN-3 is not restricted to conformance testing and can be used for many other kinds of testing including
interoperability, robustness, regression, system and integration testing.

TTCN-3 includes the following essential characteristics:
e the ability to specify dynamic concurrent testing configurations;
. operations for procedure-based and message-based communication;
. the ability to specify encoding information and other attributes (including user extensibility);
. the ability to specify data and signature templates with powerful matching mechanisms;
. value parameterization;
e the assignment and handling of test verdicts;
. test suite parameterization and test case selection mechanisms;
. combined use of TTCN-3 with other languages;
. well-defined syntax, interchange format and static semantics;

. different presentation formats (e.g. tabular and graphical presentation formats);

ETSI

20 ETSI ES 201 873-1 V4.7.1 (2015-06)

. a precise execution algorithm (operational semantics).

NOTE: The present document uses the following model of concept description: concepts, principles and
mechanisms are explained in (introductory) text at the beginning of a clause. For every concept having
concrete syntax, the syntactical structure of that concept is presented afterwards. The syntactical structure
follows the conventions for the TTCN-3 syntax description in clause A.1.1 and uses rules of the TTCN-3
BNF given in clause A.1. A semantic description follows the syntactic structure. The restrictions on the
concept are listed subsequently. Finally, examples on the usage of the concept are given.

In case of a contradiction between the body of the present document (clauses 5 to 27) and annex A of the present
document, annex A has the priority.

4.1 The core language and presentation formats

The TTCN-3 specification is separated into several parts (see figure 1).
The first part, defined in the present document, is the core language.
The third part, defined in ETSI ES 201 873-3 [i.2], is the graphical presentation format.
The fourth part, ETSI ES 201 873-4 [1], contains the operational semantics of the language.
The fifth part, ETSI ES 201 873-5 [i.3], defines the TTCN-3 Runtime Interface (TRI).
The sixth part, ETST ES 201 873-6 [i.4], defines the TTCN-3 Control Interfaces (TCI).
The seventh part, ETSI ES 201 873-7 [i.5], specifies the use of ASN.1 definitions with TTCN-3.
The eight part, ETSI ES 201 873-8 [i.6], specifies the use of IDL definitions with TTCN-3.
The ninth part, ETSI ES 201 873-9 [1.7] specifies the use of XML definitions with TTCN-3.
The tenth part, ETSI ES 201 873-10 [i.8] specifies documentation tags for TTCN-3.
The core language serves three purposes:
a) as a generalized text-based test language in its own right;
b) asa standardized interchange format of TTCN-3 test suites between TTCN-3 tools;
c) as the semantic basis (and where relevant, the syntactical basis) for various presentation formats.

The core language may be used independently of the presentation formats. However, neither the tabular format nor the
graphical format can be used without the core language. Use and implementation of these presentation formats will be
done on the basis of the core language.

The tabular format and the graphical format are the first in an anticipated set of different presentation formats. These
other formats may be standardized presentation formats or they may be proprietary presentation formats defined by
TTCN-3 users themselves. These additional formats are not defined in the present document.

TTCN-3 may optionally be used with TTCN-3 packages, which define additional concepts for specific purposes.

TTCN-3 may optionally be used with other type-value notations in which case definitions in other languages may be
used as alternative data type and value syntax. Other parts of the TTCN-3 standard specify use of some other languages
with TTCN-3. The support of other languages is not limited to those specified in the ETSI ES 201 873 series of
documents but to support languages for which combined use with TTCN-3 is defined, rules given in the present
document apply.

ETSI

21 ETSI ES 201 873-1 V4.7.1 (2015-06)

Deployment Advanced Behavior TTCN-3
and Parameteri- Types o Packages
Configuration zation
TTCN-3 &

ASN.1 Types .| Core A
& Values | Language Tabular

format B
IDL Types R

Graphical
XML Types > format <«

- TTCN-3 User

Other Types R Presentation | The shaded boxes are not
& Values, > format < defined in this document

Figure 1. User's view of the core language, its packages and the various presentation formats

The core language is defined by a complete syntax (see annex A) and operational semantics (ETSI ES 201 873-4 [1]). It
contains minimal static semantics (provided in the body of the present document and in annex A) which do not restrict
the use of the language due to some underlying application domain or methodology.

4.2 Unanimity of the specification

The language is specified syntactically and semantically in terms of a textual description in the body of the present
document (clauses 5 to 27) and in a formalized way in annex A. In each case, when the textual description is not
exhaustive, the formal description completes it. If the textual and the formal specifications are contradictory, the latter
shall take precedence.

4.3 Conformance

For an implementation claiming to conform to this version of the language, all features specified in the present
document shall be implemented consistently with the requirements given in the present document and in
ETSI ES 201 873-4 [1].

5 Basic language elements

The top-level unit of TTCN-3 is a module. A module cannot be structured into sub-modules. A module can import
definitions from other modules. Modules can have module parameters to allow test suite parameterization.

A module consists of a definitions part and a control part. The definitions part of a module defines test components,
communication ports, data types, constants, test data templates, functions, signatures for procedure calls at ports, test
cases, etc.

The control part of a module calls the test cases and controls their execution. The control part may also declare (local)
variables, etc. Program statements (such as i f -el se and do- whi | e) can be used to specify the selection and
execution order of individual test cases. The concept of global variables is not supported in TTCN-3.

TTCN-3 has a number of predefined basic data types as well as structured types such as records, sets, unions,
enumerated types and arrays.

A special kind of data structure called a template provides parameterization and matching mechanisms for specifying
test data to be sent or received over the test ports. The operations on these ports provide both message-based and
procedure-based communication capabilities. Procedure calls may be used for testing implementations which are not
message based.

ETSI

ETSI ES 201 873-1 V4.7.1 (2015-06)

Dynamic test behaviour is expressed as test cases. TTCN-3 program statements include powerful behaviour description
mechanisms such as alternative reception of communication and timer events, interleaving and default behaviour. Test
verdict assignment and logging mechanisms are also supported.

Finally, TTCN-3 language elements may be assigned attributes such as encoding information and display attributes. It is
also possible to specify (non-standardized) user-defined attributes.

The TTCN-3 language elements are summarized in table 1.

Table 1: Overview of TTCN-3 language elements

Language element Associated | Specified in | Specified in | Specified in | Specified in
keyword module module functions/ test
definitions control altsteps/ test| component
cases type
TTCN-3 module definition module
Import of definitions from other module |import Yes
Grouping of definitions group Yes
Data type definitions type Yes
Communication port definitions port Yes
Test component definitions component Yes
Signature definitions signature Yes
External function definitions external Yes
Constant definitions const Yes Yes Yes Yes
Data/signature template definitions template Yes Yes Yes Yes
Function definitions function Yes
Altstep definitions altstep Yes
Test case definitions testcase Yes
Value variable declarations var Yes Yes Yes
Template variable declarations var template Yes Yes Yes
Timer declarations timer Yes Yes Yes
NOTE: The notions "definition" and "declaration" of variables, constants, types and other language elements are
used interchangeably throughout the present document. The distinction between both notions is useful only
for implementation purposes, as it is the case in programming languages like C and C++. On the level of
TTCN-3, the notions have equal meaning.

5.1

Identifiers and keywords

TTCN-3 identifiers are case sensitive. TTCN-3 keywords shall be written in all lowercase letters (see annex A).
TTCN-3 keywords shall neither be used as identifiers of TTCN-3 objects nor as identifiers of objects imported from
modules of other languages. The same rules apply to names of predefined TTCN-3 functions (see annex C).

Special TTCN-3 modifiers are identifiers prefixed with the @-symbol (see annex A). They modify the default
semantics of the language element they are applied to in the specified way. If more than one modifier is applied to a
language element, they may be applied in any order.

NOTE:

These modifiers are useful for refining or modifying existing language features, for example in the

context of the optional extension packages of TTCN-3 since they cannot lead to backward incompabilities

with existing reserved keywords or identifiers.

5.2 Scope rules

TTCN-3 provides nine basic units of scope:

a) module definitions part;
b) control part of a module;
¢c) component types;

d) functions;

e) altsteps;

ETSI

23 ETSI ES 201 873-1 V4.7.1 (2015-06)

f) testcases;

g) statement blocks;

h) templates;

i) user defined named types.

NOTE 1: Additional scoping rule for groups is given in clause 8.2.2.

NOTE 2: Additional scoping rule for counters of f or loops is given in clause 19.4.

NOTE 3: Statement blocks may include declarations. They may occur as stand-alone statement blocks, embedded
in another statement block or within compound statements, e.g. as body of a while loop.

NOTE 4: Builtin TTCN-3 types like i nt eger, char stri ng, anyt ype, etc. are not scope units, but all named
user defined types are scope units, independent of their kinds.

Each unit of scope consists of (optional) declarations. The scope units: control part of a module, functions, test cases,
altsteps and statement blocks may additionally specify some form of behaviour by using the TTCN-3 program
statements and operations (see clause 18).

Definitions made in the module definitions part but outside of other scope units are globally visible, i.e. may be used
elsewhere in the module, including all functions, test cases and altsteps defined within the module and the control part.
Identifiers imported from other modules are also globally visible throughout the importing module.

Definitions made in the module control part have local visibility, i.e. can be used within the control part only.

Definitions made in a test component type may be used in a component type extending this component type definition,
and in functions, test cases and altsteps referencing that component type or a compatible test component type (see
clause 6.3.3) by ar uns on clause.

Test cases, altsteps and functions are individual scope units without any hierarchical relation between them,

i.e. declarations made at the beginning of their body have local visibility and shall only be used in the given test case,
altstep or function (e.g. a declaration made in a test case is not visible in a function called by the test case or in an
altstep used by the test case).

Stand-alone statement blocks and statements within compound statements, like e.g. i f - el se, whi | e, do- whi | e, or
al t statements may be used within the control part of a module, test cases, altsteps, functions, or may be embedded in
other statement blocks or compound statements, e.g. ani f - el se statement that is used within a whi | e loop.

Statement blocks and embedded statement blocks have a hierarchical relation both to the scope unit including the given
statement block and to any embedded statement block. Declarations made within a statement block have local visibility.

The hierarchy of scope units is shown in figure 2. Declarations of a scope unit at a higher hierarchical level are visible
in all units at lower levels within the same branch of the hierarchy. Declarations of a scope unit in a lower level of
hierarchy are not visible to those units at a higher hierarchical level.

ETSI

24 ETSI ES 201 873-1 V4.7.1 (2015-06)

module
definitions part

function without altstep without user defined

runs on-clause runs on-clause

module

component type template

named type

control part

statement block statement block statement block

testcase with

runs on-clause
and optional

system-clause

function with
runs on-clause

altstep with
runs on-clause

nested
statement block

nested
statement block

nested
statement block

statement block statement block statement block

nested nested nested

statement block statement block statement block

Figure 2: Hierarchy of scope units

EXAMPLE 1: Local scopes

modul e MyModul e

{ :
const integer MyConst := 0; // MyConst is visible to MyBehavi our A and MyBehavi ourB
functi on MyBehavi our A()
{ :
const integer A :=1; /1 The constant Ais only visible to MyBehavi ourA
}
functi on MyBehavi our B()
{ :
const integer B := 1; /1 The constant Bis only visible to MyBehavi ourB
}
}

EXAMPLE 2: Component type scopes

type conponent MyConponent Type {
const integer MyConst := 1;

}

type conponent M/Ext endedConponent Type extends MyConponent Type {
var integer MyVar:= 2 * MyConst; // using My/Const of MyConponent Type

ETSI

25 ETSI ES 201 873-1 V4.7.1 (2015-06)

5.2.1 Scope of formal parameters

The scope of formal parameters in a parameterized object (e.g. in a function definition) shall be restricted to the
definition in which the parameters appear and to the lower levels of scope in the same scope hierarchy. That is they
follow the scope rules for local definitions (see clause 5.2).

5.2.2 Uniqueness of identifiers

TTCN-3 requires uniqueness of identifiers, i.e. all identifiers in the same scope hierarchy shall be distinctive. This
means that a declaration in a lower level of scope shall not re-use the same identifier as a declaration in a higher level of
scope in the same branch of the scope hierarchy.

The identifier of a module (its module name) or of an imported module belongs to the scope unit of the module and
cannot be used as identifier for other definitions inside this module. Identifiers for fields of structured types, enumerated
values and groups do not have to be globally unique, however in the case of enumerated values the identifiers shall only
be reused for enumerated values within other enumerated types. The rules of identifier uniqueness shall also apply to
identifiers of formal parameters.

EXAMPLE 1: Nested scopes

modul e MyModul e

{ :
const integer A := 1;
functi on MyBehavi our A()
{ :
const integer A:=1; // |s NOT allowed: clash with global constant A
i£(.)
{ = _
const boolean A := true; // |Is NOT allowed: clash with local constant A
}
}
}

EXAMPLE 2: Independent scopes

/1 The following IS allowed as the constants are not declared in the sane scope hierarchy
/1 (assuming there is no declaration of A in nodul e header)
functi on MyBehavi our A()

{ :const integer A := 1,
} :

functi on MyBehavi our B()

{ .const integer A :=1;
}

EXAMPLE 3: Module scopes

nodul e MyModul eB {
import from MyModul eA { ...}

function MyFunction() {
var integer MyModuleB:= 1; // Is NOT allowed: class with nodul e nane

}

type bool ean MyModul eA; // |Is NOT allowed: class with inported nodul e nane

ETSI

26 ETSI ES 201 873-1 V4.7.1 (2015-06)

5.3 Ordering of language elements

Generally, the order in which declarations can be made is arbitrary. Inside a statement block, such as a function body or
abranch of ani f - el se statement, all declarations (if any), shall be made at the beginning of the statement block only.

EXAMPLE:
/1 This is a legal mxing of TTCN-3 decl arations
;/ar MyVar Type MyVar 2 :

const integer MyConst:
if (MyVar2+MyConst > 10)

3,
1;

var integer MyVarl:= 1;

MyVar 1: = MyVarl + 10;

Declarations in the module definitions part and in a component type definition may be made in any order. However
inside the module control part, test case definitions, functions, altsteps, and statement blocks, all required declarations
shall be given beforechand. This means in particular, local variables, local timers, and local constants shall never be used
before they are declared. The only exceptions to this rule are labels. Forward references to a label may be used in got 0
statements before the label occurs (see clause 19.8).

5.4 Parameterization

TTCN-3 allows to parameterize modules, templates, functions, altsteps and testcases. Values, templates, timers, and
ports may be used as actual parameters. A summary of which language elements can be parameterized and what can be
passed to them as parameters is given in table 2.

NOTE: Type parameterization for TTCN-3 is defined in the optional package [i.12].

Table 2: Overview of parameterizable TTCN-3 objects

Keyword Allowed kind of Allowed form of Allowed types in formal parameter lists
Parameterization Parameterization
module Value parameterization Static at start of runtime |all basic types, all user-defined types and addr ess
type.
template Value and template Dynamic at runtime |all basic types, all user-defined types, addr ess type
parameterization and t enpl at e.
function Value, template, port and Dynamic at runtime |all basic types, all user-defined types, addr ess
timer parameterization type, conponent type, port type, def aul t,
tenplateandti ner.
altstep Value, template, port and Dynamic at runtime |all basic types, all user-defined types, addr ess
timer parameterization type, conponent type, port type, def aul t,
tenmplate andtiner.
testcase Value, template, port and Dynamic at runtime |all basic types and of all user-defined types,
timer parameterization address type and tenpl at e.

NOTE: Signatures are not shown in the table, because a signature declares parameters only. The templates for the
sighatures can be parameterized, however.

54.1 Formal parameters

TTCN-3 modules, structured types, templates, functions, altsteps, and testcases may be defined incompletely, i.e. some
entities (variables, templates, ports, timers, etc.) used by the above objects may not be resolved in the definition of the
object. These objects are called parameterized objects. Formal entities replacing the unresolved entities in the
parameterized object's definition are called formal parameters.

Formal parameters of parameterized templates, functions, altsteps, and testcases are defined in formal parameter lists.
Formal parameters of modules are defined in module parameter definitions (see clause 8.2.1).

ETSI

27 ETSI ES 201 873-1 V4.7.1 (2015-06)

Formal parameters shall be i n, i nout or out parameters (see definitions in clause 3.1). If not stated otherwise, a
formal parameter is an i n parameter. For all these three sorts of parameter passing, the formal parameters can both be
read and set (i.e. get new values being assigned) within the parameterized object. Formal parameters can be used
directly as actual parameters for other parameterized objects, e.g. as actual parameters in function invocations or as
actual parameters in template instances.

If parameters are passed by value (i.e. in case of i N and out parameters), type compatibility rules specified in
clause 6.3 apply. When parameters are passed by reference, strong typing is required. Both the actual and formal
parameter shall be of the same type.

Formal i n parameters may have default values. This default value is used when no actual parameter is provided.

NOTE 1: Although out parameters can be read within the parameterized object, they do not inherit the value of
their actual parameter; i.e. they should be set before they are read.

Formal value or template parameters may be declared lazy using the @lazy modifier. The behaviour of lazy parameters
is defined in clause 3.1, definition of lazy values or templates. See examples in clause 5.4.1.1.

Formal value or template parameters may be declared fuzzy using the @fuzzy modifier. The behaviour of lazy
parameters is defined in clause 3.1, definition of fuzzy values or templates. See examples in clause 5.4.1.1.

NOTE 2: The actual values of component variables used in the delayed evaluation of a lazy or fuzzy parameter may
differ from their values at the time, when the parameterized function or alstep was called.

Assigning default values for lazy and fuzzy formal parameters does not change the parameters' semantics: when the
default values are used as actual values for the parameters, they shall be evaluated the same way (i.e. delayed) as if an
actual parameter was provided.

Lazy and fuzzy properties are valid only in the scope, where the parameters' names are visible. For example, if a fuzzy
parameter is passed to a formal parameter declared without a modifier, it losts its fuzzy feature inside the called
function. Similarly, if it is passed to a lazy formal parameter, it becomes lazy within the called function.

54.1.1 Formal parameters of kind value

Values of all basic types, all user-defined types, address type, component type, and default can be passed as value
parameters.

Syntactical Structure

[(in] inout | out)] [@azy | @uzzy] Type ValueParldentifier [":=" (Expression -ty]
Semantic Description

Value formal parameters can be used within the parameterized object the same way as values, for example in
expressions.

Value formal parameters may be in, inout or out parameters. The default for value formal parameters is i n
parameterization which may optionally be denoted by the keyword i n. Using of inout or out kind of parameterization
shall be specified by the keywords i nout or out respectively.

In parameters may have a default value, which is given by an expression assigned to the parameter. Formal parameters
of modified templates may inherit the default values from the corresponding parameters of their parent templates; this
shall explicitly be denoted by using a dash (don't change) symbol at the place of the modified template parameters'
default value.

TTCN-3 supports value parameterization according to the following rules:

. the language element modul e allows static value parameterization to support test suite parameters, i.e. this
parameterization may or may not be resolvable at compile-time but shall be resolved by the commencement of
runtime (i.e. static at runtime). This means that, at runtime, module parameter values are globally visible but
not changeable (see more details in clause 8.2);

e the language elementst enpl at e, t est case, al t st ep and f unct i on support dynamic value
parameterization (i.e. this parameterization shall be resolved at runtime).

ETSI

28 ETSI ES 201 873-1 V4.7.1 (2015-06)

NOTE: Component and default references are also handled as value parameters. In the case of component
references, the corresponding component type is the type of the formal parameter. In the case of default
references the TTCN-3 type def aul t is the type of the formal parameter.

Restrictions

a) Language elements which cannot be parameterized are: const ,var, tiner,control, record of,
set of, enunerated, port, conponent and subtype definitions, gr oup andi nport.

b) Formal value parameters of templates, and of altsteps activated as defaults (see clause 20.5.2) shall always be
i N parameters.

¢) Restrictions on module parameters are given in clause 8.2.
d) Default values can be provided for i n parameters only.

e) The expression of the formal parameters' default value has to be compatible with the type of the parameter.
The expression shall not refer to elements of the component type of the optional r uns on clause. The
expression shall not refer to other parameters of the same parameter list. The expression shall not contain the
invocation of functions with a r uns on clause.

f) Default values of component type formal parameters shall be one of the special valuesnul | , ntc, self,
or system

g) Default values of default type formal parameters shall be the special value nul | .

h) The dash (don't change) symbol shall be used with formal parameters of modified templates only (see also
clause 15.5).

i) For formal value parameters of templates the restrictions specified in clause 15 shall apply.
j) Only in parameters can be declared lazy or fuzzy.

k) When parameters are referenced (e.g. in assignments, expressions, template bodies, etc.), the rules for
variables shall apply.

Examples

EXAMPLE 1: In, out and inout formal parameters

function MyFunctionl(in bool ean MyReferenceParaneter){ ...};
/'l MyReferenceParaneter is an in value paraneter. The paraneter can be read. It can al so be set
/1 within the function, however, the assignnent is local to the function only

function MyFunction2(inout bool ean MyReferenceParaneter){ ...};
/'l MyReferenceParaneter is an inout value paraneter. The paraneter can be read and set
/1 within the function - the assignnent is not |ocal

function MyFunction3(out tenplate bool ean MyRef erenceParaneter){ ...};
/'l MyReferenceParaneter is an out value paraneter. The paraneter can be set within the function,
I/ the assignnent is not local. It can also be read, but only after it has been set.

EXAMPLE 2: Reading and setting parameters

type record MyMessage {
integer f1,
integer f2

}

function f_MyMessage (integer p_int) return MyMessage {
var integer f1, f2;
fl:=f_milt2 (p_int);
/] paraneter p_int is passed on; as the paraneter of the called function f_mult2 is
/1 defined as an inout paraneter, it passes back the changed value for p_int,
f2 := p_int;
return {f1, f2};

ETSI

29 ETSI ES 201 873-1 V4.7.1 (2015-06)

function f_nult2 (inout integer p_integer) return integer {
p_integer := 2 * p_integer;
/'l the value of the formal paranmeter is changed; this new value is passed back when
/1 f_mult2 conpletes
return p_integer-1

}
testcase tc_01 () runs on MIC _PT {

Pl.send (f_M/Message(5))
/1 the value sent is { f1:=9, f2 := 10}

}
EXAMPLE 3: Function with default value for parameter
function f_conp (in integer p_intl, ininteger p_int2 := 3) return integer {
var integer v := p_intl + p_int2;
return V;
}

function f () {
var integer w,

f_conp(1); /'l sanme as calling f_conp(1,3);
f_conp(1,2); // value 2 is taken for paraneter p_int2 and not its default value 3

W
W
}

EXAMPLE 4: Direct passing of formal parameters to functions

function f_MyFunc2(in bitstring p_refParl, inout integer p_refPar2) return integer {

function f_MyFuncl(inout bitstring p_refParl, out integer p_refPar2) return integer {
return f_MyFunc2(p_refParl, p_refPar2);

/1 p_refParl and p_refPar2 can be passed directly to a function invocation
EXAMPLE 5: Lazy and fuzzy parameters
type conponent MyConp { var integer v_int }

function f_MLazyFuzzy(in @azy integer p_lazy, in @uzzy integer p_fuzzy) runs on MyConp {
//When called from MyCal I'i ng:

v_int :=1;

log(p_lazy); //will log 2 as function double with actual paraneter v_int equals 1 is called
/lhere; 2 is stored in p_lazy (also, function double stores 2 in v_int)

log(p_lazy); //will log 2 again as p_lazy is not re-eval uated

log(p_fuzzy);//will log 4 as function double with actual paraneter v_int equals 2 is called
/1 here (also, function double stores 4 in v_int)

log(p_fuzzy) //will log 8 as function double is re-evaluated with actual paraneter 4

}

function double (in integer p_in) runs on MyConp return integer{
p_in :=2* p_in;

v_int 1= p_in

return p_in
}
testcase tc_MCalling() runs on MyConp {
v_int :=0;
f _MyLazyFuzzy (doubl e(v_int), double(v_int))
}

ETSI

30 ETSI ES 201 873-1 V4.7.1 (2015-06)

EXAMPLE 6: Difference between passing by value and passing by reference

function f_byValue (in integer p_intl, in integer p_int2) {
p_int2 :=p_int2 + 1;
log(p_intl);
log(p_int2);

function f_byReference (inout integer p_intl, inout integer p_int2) {
p_int2 :=p_int2 + 1;
log(p_intl);
log(p_int2);

function f () {
var integer v_int := 1,
f_byvalue(v_int, v_int); // prints 1 and 2
log(v_int); // prints 1
f_byReference(v_int, v_int); // prints 2 and 2
log(v_int); // prints 2

54.1.2 Formal parameters of kind template
Template kind parameters are used to pass templates into parameterizable objects.

Syntactical Structure

[in] inout | out] tenplate [Restriction] Type Val ueParldentifier
":=" (Tenplatelnstance | "-")]

Semantic Description
Templates parameters can be defined for templates, functions, altsteps, and test cases.

To enable a parameterized object to accept templates or matching symbols as actual parameters, the extra keyword

t enpl at e shall be added before the type field of the corresponding formal parameter. This makes the parameter a
template parameter and in effect extends the allowed actual parameters for the associated type to include the appropriate
set of matching attributes (see annex B) as well as the normal set of values.

Formal template parameters can be used within the parameterized object the same way as templates and template
variables.

Formal template parameters may be in, inout or out parameters. The default for formal template parameters is i n
parameterization.

In parameters may have a default template, which is given by a template instance assigned to the parameter. Formal
template parameters of modified templates may inherit their default templates from the corresponding parameters of
their parent templates; this shall explicitly be denoted by using a dash (don't change) symbol at the place of the
modified template parameter's default template.

Formal template parameters can be restricted to accept actual parameters containing a restricted set of matching
mechanisms only. Such limitations can be expressed by the restrictions omi t , pr esent , and val ue. The restriction
tenpl ate (omt) canbe replaced by the shorthand notation omi t . The meaning of the restrictions is explained in
clause 15.8.

Restrictions
a) Onlyfunction,testcase,altstepandtenplate definitions may have formal template parameters.

b) Formal template parameters of t enpl at es, of f unct i ons started as test component behaviour
(see clause 21.3.2) and of al t st eps activated as defaults (see clause 20.5.2) shall always be i n parameters.

¢) Default templates can be provided for in parameters only.

ETSI

31 ETSI ES 201 873-1 V4.7.1 (2015-06)

d) The default template instance has to be compatible with the type of the parameter. The template instance shall
not refer to elements of the component type in a runs on clause. The template instance shall not refer to other
parameters in the same parameter list. The template instance shall not contain the invocation of functions with
a runs on clause.

e) Default templates of component type formal parameters shall be built from the special values nul |, mntc,
sel f,orsystem

f) Restrictions specified in clause 15 shall apply.

g) The dash (don't change) symbol shall be used with formal parameters of modified templates only (see also
clause 15.5).

h) Only in template parameters can be declared lazy or fuzzy.

1) When template parameters are referenced (e.g. in assignments, expressions, template bodies, etc.), the rules for
template variables shall apply.

Examples

EXAMPLE 1: Template with template parameter

/1 The tenplate
tenpl ate MyMessageType MyTenpl ate (tenplate integer MyFormal Param: =

{ fieldl := MyFor mal Par am
field2 := pattern "abc*xyz",
field3 := true

}

/1 could be used as follows

pcol. recei ve(M/Tenpl ate(?));

/Il O as foll ows

pcol.recei ve(M/Tenpl ate(onit)); // provided that fieldl is declared in MyMessageType as opti onal

EXAMPLE 2: Function with template parameter

function MyBehavi our (tenpl ate MyMsgType MyFor mal Par anet er)
runs on MyConponent Type
{ .

pcol. recei ve(MyFor mal Par anet er) ;

}
EXAMPLE 3: Template with restricted parameter

/1 The tenplate
tenpl ate MyMessageType MyTenpl atel (tenplate (omit) integer MyFormal Param: =
{ fieldl : = MyFor nal Param

field2 := pattern "abc*xyz",

field3 := true

}

/1l could be used as follows

pcol. send(M/ Tenpl atel(onit));

/1 but not as follows

pcol.recei ve(M/Tenpl atel(?)); // AnyValue is not within the restriction

/1 the same tenplate can be witten shorter as
tenpl ate MyMessageType MyTenpl ate2 (omit integer MyFormal Param: =
{ fieldl : = MyFor nal Param

field2 := pattern "abc*xyz",

field3 := true

ETSI

32 ETSI ES 201 873-1 V4.7.1 (2015-06)

5.4.1.3 Formal parameters of kind timer
Functions and altsteps can be parameterized with timers.

Syntactical Structure
[inout] tiner TinerParldentifier
Semantic Description

Timers passed into a parameterized object are known inside the behaviour definition of that object. Timer parameters
can be used within the parameterized object like any other timer, i.e. they need not to be declared inside the
parameterized object.

Timer parameters shall preserve their current state, i.e. only the timer is made known within the parameterized object.
For example, also a started timer continues to run, i.e. it is not stopped implicitly. Thereby, possible timeout events can
be handled inside the function or altstep to which the timer is passed.

Formal timer parameters are identified by the keyword t i nmer .
Restrictions
a) Formal timer parameters shall be inout parameters, which can optionally be indicated by the keyword i nout .

b) Onlyfuncti on - with the exception of functions started as test component behaviour (see clause 21.3.2) -
and al t st ep definitions may have formal timer parameters.

Examples

/1 Function definition with a timer in the formal parameter |ist
function MyBehavi our (timer MyTiner)

M/Ti mer.start;

}

/1 could be used as follows
function MyBehaviour2 ()

{ t iner t;
MyBehavi our (t);
.
5414 Formal parameters of kind port

Functions and altsteps can be parameterized with ports.

Syntactical Structure

[inout] PortTypeldentifier PortParldentifier
Semantic Description

Ports passed into a parameterized object are known inside the behaviour definition of that object. Port parameters can be
used within the parameterized object like any other port, i.e. they need not to be made visible by a r uns on clause.

Ports passed in as parameters shall preserve their current state, only the port is made known within the parameterized
object's body. For example, a started port continues to send/receive messages, i.e. it is not stopped implicitly; thereby,
possible port events can be handled inside the function or altstep to which the port is passed to.

Restrictions
a) Formal port parameters shall be inout parameters, which can optionally be indicated by the keyword i nout .

b) Onlyfuncti on - with the exception of functions started as test component behaviour (see
clause 21.3.2) - and al t st ep definitions may have formal port parameters.

ETSI

33 ETSI ES 201 873-1 V4.7.1 (2015-06)

Examples

/1 Altstep definition with a port in the formal paranmeter |ist
al t step MyBehavi our (MyPortType MyPort)

t] M/Port.receive { setverdict(fail); stop; }

5.4.2 Actual parameters

Values, templates, timers and/or ports can be passed into parameterized TTCN-3 objects as actual parameters. Actual
parameters can be provided both as a list in the same order as the formal parameters as well as in an assignment
notation explicitly using the associated formal parameter names.

Syntactical Structure

(Expression | /1 for val ue paraneter
Tenpl at el nst ance | /1 for tenplate paraneter
Ti mer Ref | /1 for timer paraneter
Por t | // for port paraneter
-t /1 to skip a paraneter with default
Parameterld ":=" (Expression | Tenplatelnstance | TimerRef | Port))

Semantic Description

Actual parameters that are passed by value to i n formal value parameters shall be variables, literal values, module
parameters, constants, variables, value returning (external) functions, formal value parameters (of in, inout or out
parameterization) of the current scope or expressions composed of the above.

Actual parameters that are passed to i nout formal value parameters shall be variables or formal value parameters (of
in, inout or out parameterization) or references to elements of variables or formal value parameters of structured types.

NOTE: Reference to a string element cannot be passed by reference as string types are not structured types.

Actual parameters that are passed to i n formal template parameters shall be literal values, module parameters,
constants, variables, value or template returning (external) functions, formal value parameters (of in, inout or out
parameterization) of the current scope or expressions composed of the above, as well as templates, template variables or
formal template parameters (of in, inout or out parameterization) of the current scope.

Actual parameters that are passed to out formal template parameters shall be variables, template variables, formal
value parameters, formal template parameters or references to elements of variables, template variables, formal value
parameters or formal template parameters of structured types.

Actual parameters that are passed to i hout formal template parameters shall be variables, template variables, formal
value or template parameters (of in, inout or out parameterization) of the current scope or references to elements of
(template) variables or formal (template) parameters of structured types.

When actual parameters that are passed to i N formal value or template parameters contain a value or template
reference, rules for using references on the right hand side of assignments apply. When actual parameters that are
passed to i nout and out formal value or template parameters contain a value or template reference, rules for using
references on the left hand side of assignments apply.

The values of out formal parameters are passed to the actual parameters in the same order as is the order of formal
parameters in the definition of the parameterized TTCN-3 object.

Actual parameters that are passed to formal timer parameters shall be component timers, local timers or formal timer
parameters of the current scope.

Actual parameters that are passed to formal port parameters shall be component ports or formal port parameters of the
current scope.

ETSI

34 ETSI ES 201 873-1 V4.7.1 (2015-06)

It is allowed to pass elements of structured values or templates (record, set, record of, set of, union and anytype values
or templates) by reference. Modification of parameters passed this way affects the original structured value or template.
Before passing the actual parameter, the rules for referencing the element on the left hand side of assignments are
applied, expanding the structured value so that the referenced element becomes accessible (see clauses 6.2 and 15.6 for
more details).

When a formal parameter has been defined with a default value or template, respectively, then it is not necessary to
provide an actual parameter. The actual parameters are evaluated in the order of their appearance. If for some formal
parameters, no actual parameter has been provided, their default values are taken and evaluated in the order of the
formal parameter list.

The empty brackets for instances of parameterized templates that have only parameters with default values are optional
when no actual parameters are provided, i.e. all formal parameters use their default values.

Restrictions

a) When using list notation, the order of elements in the actual parameter list shall be the same as their order in
the corresponding formal parameter list. For each formal parameter without a default there shall be an actual
parameter. The actual parameter of a formal parameter with default value can be skipped by using dash "-" as
actual parameter. An actual parameter can also be skipped by just leaving it out if no other actual parameter
follows in the actual parameter list - either because the parameter is last or because all following formal
parameters have default values and are left out.

b) Either list notation or assignment notation shall be used in a single parameter list. They shall not be mixed.

¢) When using assignment notation, each formal parameter shall be assigned an actual parameter at most once.
For each formal parameter without default value, there shall be an actual parameter. In order to use the default
value of a formal parameter, no assignment for this specific parameter shall be provided.

d) The type of each actual parameter shall be compatible with the type of each corresponding formal parameter.
Strong typing is required for parameters passed by reference.

e) Actual parameters passed to restricted formal template parameters shall obey the restrictions given in
clause 15.8.

f) All parameterized entities specified as an actual parameter shall have their own parameters resolved in the
top-level actual parameter list.

g) Ifthe formal parameter list of TTCN-3 objects f uncti on,t est case,si gnature, altstepor
ext ernal functi on is empty, then the empty parentheses shall be included both in the declaration and in
the invocation of that object. In all other cases the empty parentheses shall be omitted.

h) Restrictions on the use of signature parameters are given in clauses 15.2 and 22.3.
i) Restrictions on parameters passed to altsteps are given in clauses 16.2.1 and 20.5.2.

j) Unless specified differently in the relevant clause(s), actual parameters passed to i n or i nout formal
parameters shall be at least partially initialized (for an exemption see e.g. clause 16.1.2 of the present
document).

k) Functions, called by actual parameters passed to fuzzy or lazy formal parameters of the calling function, shall
not have inout or out formal parameters. The called functions may use other functions with inout or out
parameters internally.

1) Actual parameters passed to out and inout parameters shall not be references to lazy or fuzzy variables.

m) Whenever a value or template of a record, set, union, record of, set of, array and anytype type is passed as an
actual parameter to an inout parameter, none of the fields or elemens of this structured value or template shall
be passed as an actual parameter to another inout parameter of the same parameterized TTCN-3 object. This
restriction applies recursively to all sub-elements of the structured value or template in any level of nesting.

n) If two or more actual parameters passed to i nout parameters of the same parameterized TTCN-3 object
contain a reference to distinct alternatives of the same union or anytype value, an error shall be produced.

ETSI

35 ETSI ES 201 873-1 V4.7.1 (2015-06)

Examples

EXAMPLE 1: Formal and actual parameter lists have to match

/1 A function definition with a formal paraneter |ist
function MyFunction(integer Formal Parl, bool ean Formal Par2, bitstring Formal Par3) { ...}

/1 A function call with an actual parameter |ist
MyFunction(123, true,'1100' B);

/1 A function call with assignnent notation for actual paraneters
MyFunction(Formal Par1 := 123, Fornal Par3 := '1100'B, Formal Par2 := true);

EXAMPLE 2: In parameters

function MyFunction(in tenplate MyTenpl ateType MyVal ueParaneter){ ...};
/'l MyVal ueParaneter is in paraneter, the in keyword is optional

/1 A function call with an actual paraneter
MyFunct i on(Myd obal Tenpl ate) ;

EXAMPLE 3: Inout and out parameters

function MyFunction(inout bool ean MyReferenceParaneter){ ...};
/'l MyRef erenceParaneter is an inout paraneter

/1 A function call with an actual paraneter
MyFunct i on(MyBool eanVari abl e) ;
/'l The actual paraneter can be read and set within the function

functi on MyFunction(out tenplate bool ean M/Ref erenceParaneter){ ...};
/'l MyRef erenceParaneter is an out paraneter

/1 A function call with an actual paraneter
MyFunct i on(MyBool eanVari abl e) ;
/Il The actual paraneter is initially unbound, but can be set and read within the function.

type record of integer Rol;
function f_swapEl ements (inout integer p_intl, inout integer p_int2) {
var integer v_tnp := p_intl;
p_intl := p_int2;
p_int2 := p_tnp;
function f_testReferences (inout Rol p_roi, inout integer p_elem { ...}
;/ar Rol v_roi :={ 0, 1, 2, 3, 4, 51};
f _swapEl ements(v_roi[0], v_roi[5]); // after the function call, v_roi is { 5 1, 2, 3, 4, 0}

f _testReferences(v_roi, v_roi[2]); // produces an error as elenents of v_roi are not allowed
/1l to be passed by reference if the parent structure (v_roi) is passed by reference too.

EXAMPLE 4: Empty parameter lists

/1 A function definition with an enpty paraneter list shall be witten as
function MyFunction(){ ...}

/1 and shall be called as
MyFunction();
/Il Arecord definition with an enpty paraneter list shall be witten as

type record M/Record { ...}

/1 and shall be used as
tenpl ate M/Record Mytenplate :={ ...}

EXAMPLE 5: Nested parameter lists

/1 G ven the nessage definition
type record MyMessageType
{

i nt eger fieldl,
charstring field2,
bool ean field3

ETSI

36 ETSI ES 201 873-1 V4.7.1 (2015-06)

/1 A nessage tenplate mght be
tenpl ate MyMessageType MyTenpl ate(i nteger MyVal ue) : =

fieldl := MyVal ue,
field2 := pattern "abc*xyz",
field3 := true

}

/'l A test case paraneterized with a tenplate night be
testcase TCOO1(tenpl ate MyMessageType RxMsg) runs on PTClL system TS1 {

M/PCO recei ve(RxMsQ) ;
}

/1 When the test case is called in the control part and the paraneterized tenplate is
/1 passed as an actual paraneter, the tenplate's actual paraneters shall be provided
control

{ :execut e(TCO01(MyTenpl ate(7)));
} :

EXAMPLE 6: A typical use case for lazy parameterization
modul epar bool ean | ogMessage : = true;

function | ogMsg(@azy charstring conpl ex) {
if (1 ogMessage) {
| og(conpl ex) ;
}

}

function conput eConpl exMessage() return charstring {
/] sone conplicated conputation
}

| ogMsg(comput eConpl exMessage()); // conputeConpl exMessage() is only invoked if
/1 1ogMessage is fal se

EXAMPLE 7: Actual parameters passed to lazy and fuzzy formal parameters
type record M/Message { integer id, float nunber }
type port MyPort Type nessage { inout MyMessage }

type conponent MyMIC {
var integer v_id;
port MyPortType P;

testcase TC shooti ngMessages () runs on MyMIC {
connect (sel f: P, sel f: P);
sendLazy({v_id, rnd()}); //note that at this point v_id is unintialized yet
sendFuzzy({v_id, rnd()})

function sendLazy(@azy MyMessage pdu) runs on MyMIC {
for (v_id :=1; v_id<9; v_id:=v_id+1){
P.send(pdu); // the actual paraneter passed to the fornal paraneter pdu is evaluated only in
/1 the first loop;let say rnd() returns 0.924946; the nessage { 1, 0.924946 } is
/1 sent out 8 tines

setverdi ct (pass, "nmessages has been sent out")

}

function sendFuzzy(@uzzy MyMessage pdu) runs on MyMIC {
for (v_id :=1; v_id<9; v_id:=v_id+1){
P.send(pdu); // the actual paraneter passed to the fornal paraneter pdu is evaluated in each
/1 loop; let say rnd() returns 0.924946, 0.680497, 0.630836, 0.648681, 0.428501,
/1 0.262539, 0.646990, 0.265262 in subsuent calls; the nmessages 1, 0.924946 },
/1 {{ 2, 0.680497 }, { 3, 0.630836 }, { 4, 0.648681 }, { 5, 0.428501 },
/1 { 6, 0.262539 }, { 7, 0.646990 } and { 8, 0.265262 } are sent out in sequence

setverdi ct (pass, "nmessages has been sent out")

}

ETSI

37 ETSI ES 201 873-1 V4.7.1 (2015-06)

EXAMPLE 8: Order of out parameters
function f_i
p_parl :
p_par2 :

ni tVal ues (out integer p_parl, out integer p_par2) {
1;
2;

function f(){
var integer v_varl,
f_initValues(p_par2 := v_varl, p_parl := v_varl);
/1l After this function call, v_varl will contain 2, as paraneters are assigned in
/'l the same order as in the definition of the f_initValues function. Thus p_parl is
/'l assigned first to v_varl and p_par2 after that ovewiting the previous val ue.

5.5 Cyclic Definitions
Direct and indirect cyclic definitions are not allowed with the exception of the following cases:
a) for recursive type definitions (see clause 6.2);
b) function and altstep definitions (i.e. recursive function or altstep calls);
¢) cyclic import definitions, if the imported definitions only form allowed cyclic definitions.

NOTE 1: Indirect cyclic definitions may be a result of imports of definitions that are needed for the usage of a
definition but do not need to be known in the importing module (see clause 8.2.3.1).

NOTE 2: For the detection of cycles only the main identifiers of the definition are used. For example, field
identifiers are not used.

Examples
EXAMPLE 1: Module with cyclic constant definition that is not allowed
modul e MyModul e {
iype record ARecordType { integer a, integer b };
I/ The following two lines include a cycle that is not allowed

const ARecordType cConst :={ 1, dConst.b}; // cConst refers to dConst
const ARecordType dConst :={ 1, cConst.b}; // dConst refers to cConst

}
EXAMPLE 2: Modules with cyclic import that is allowed

nmodul e MyModul eA {
import from MyModul eB { type Myl nteger }
type record of Myl nteger Myl ntegerlList;

}

nmodul e MyModul eB {
type integer Myl nteger;
import from MyModul eA { type Myl ntegerlList }

6 Types and values

TTCN-3 supports a number of predefined basic types. These basic types include ones normally associated with a
programming language, such as i nt eger, bool ean and string types, as well as some TTCN-3 specific ones such as
ver di ct t ype. Structured types such as r ecor d types, set types and uni on types can be constructed from these
basic types. enuner at ed types are specific structured types being constructed of enumerated values.

The special data type anyt ype is defined as the union of all known data types and the address type within a module.

Special types associated with test configurations such as addr ess, port and conponent may be used to define the
architecture of the test system (see clause 21).

ETSI

38 ETSI ES 201 873-1 V4.7.1 (2015-06)

The special type def aul t may be used for the default handling (see clause 20.5).
The TTCN-3 types are summarized in table 3.
Table 3: Overview of TTCN-3 types

Class of type Keyword Subtype
Simple basic types integer range, list
float range, list
boolean list
verdicttype list
Basic string types bitstring list, length
hexstring list, length
octetstring list, length
charstring range, list, length, pattern
universal charstring range, list, length, pattern
Structured types record list (see note)
record of list (see note), length
set list (see note)
set of list (see note), length
enumerated list (see note)
union list (see note)
Special data type anytype list
Special configuration types address
port
component
Special default type default
NOTE: List subtyping of these types is possible when defining a new constrained type
from an already existing parent type but not directly at the declaration of the first
parent type.

NOTE: Behaviour types for TTCN-3 are defined in the optional package [i.13].
6.1 Basic types and values

6.1.0 Simple basic types and values

TTCN-3 supports the following basic types:

a) i nteger: atype with distinguished values which are the positive and negative whole numbers, including
Zero.

Values of integer type shall be denoted by one or more digits; the first digit shall not be zero unless the
value is 0; the value zero shall be represented by a single zero.

b) fl oat: atype to describe floating-point numbers and special float values.

In general, floating point numbers can be defined as:<mantissa> x <base> <exponent>

where <mantissa> is a positive or negative integer, <base> a positive integer (in most cases 2, 10 or 16)
and <exponent> a positive or negative integer.

In TTCN-3, the floating-point number value notation is restricted to a base with the value of 10. Floating
point values can be expressed by using two forms of value notations:

" the decimal notation with a dot in a sequence of numbers like, 1.23 (which represents 123x10-2),
2.783 (i.e. 2783 x 1073) or -123.456789 (which represents -123 456 789 x 107); or

] by two numbers separated by E where the first number specifies the mantissa and the second
specifies the exponent, for example 12.3E4 (which represents 123 x 103) or -12.3E-4 (which
represents -123 x 107).

NOTE 1: In contrast to the general definition of float values, the mantissa of in theTTCN-3 value notation, beside
integers, allows decimal numbers as well.

ETSI

39 ETSI ES 201 873-1 V4.7.1 (2015-06)

The special values of the float type consist of i nfi ni ty (positive infinity), - i nfi ni ty (negative infinity) and the
value not _a_nunber . For the ordering of special values see clauses 7.1.1 and 7.1.3.

NOTE 2: - not _a_nunber (i.e. minus not a number) is not to be used.
¢) bool ean: atype consisting of two distinguished values.
Values of boolean type shall be denoted by t r ue and f al se.

d) verdi cttype: atype for use with test verdicts consisting of 5 distinguished values. Values of
ver di ct t ype shall be denoted by pass,fail,i nconc,none anderror.

6.1.1 Basic string types and values

TTCN-3 supports the following basic string types:

NOTE 1: The general term string or string type in TTCN-3 refers to bi t st ri ng, hexstri ng, octetstri ng,
charstring anduni versal charstring.

a) bitstring: atype whose distinguished values are the ordered sequences of zero, one, or more bits.

Values of type bi t st ri ng shall be denoted by an arbitrary number (possibly zero) of the bit digits:
0 1, preceded by a single quote (') and followed by the pair of characters 'B.

EXAMPLE 1: 'o01101'B

b) hexstri ng: atype whose distinguished values are the ordered sequences of zero, one, or more hexadecimal
digits, each corresponding to an ordered sequence of four bits.

Values of type hexst r i ng shall be denoted by an arbitrary number (possibly zero) of the hexadecimal
digits (uppercase and lowercase letters can equally be used as hex digits):

0123456789abcdefABCDEF

preceded by a single quote (') and followed by the pair of characters 'H; each hexadecimal digit is used to
denote the value of a semi-octet using a hexadecimal representation.

EXAMPLE 2: ' ABO1D H
' ab0ld' H
' AbO1D H

c) octetstring: atype whose distinguished values are the ordered sequences of zero or a positive even
number of hexadecimal digits (every pair of digits corresponding to an ordered sequence of eight bits).

Values of type oct et st ri ng shall be denoted by an arbitrary, but even, number (possibly zero) of the
hexadecimal digits (uppercase and lowercase letters can equally be used as hex digits):

0123456789abcdefABCDEF

preceded by a single quote (') and followed by the pair of characters ' O, each hexadecimal digit is used to
denote the value of a semi-octet using a hexadecimal representation.

EXAMPLE 3: ' FF96' O
"ff96' O
' Ff96' O

d) charstring: are types whose distinguished values are zero, one, or more characters of the version of
Recommendation ITU-T T.50 [4] complying with the International Reference Version (IRV) as specified in
clause 8.2 of Recommendation ITU-T T.50 [4].

NOTE 2: The IRV version of Recommendation ITU-T T.50 [4] is equivalent to the IRV version of the International
Reference Alphabet (former International Alphabet No.5 - IAS), described in Recommendation ITU-T
T.50 [4].

ETSI

40 ETSI ES 201 873-1 V4.7.1 (2015-06)

Values of char st ri ng type shall be denoted by an arbitrary number (possibly zero) of non-control
characters from the relevant character set, preceded and followed by double quote ("). Graphical characters
include the range from SP(32) to TILDE (126). Values of char st ri ng type can also be calculated using the
predefined conversion function int2char with the positive integer value of their encoding as argument (see
clause C.1).

NOTE 3: The predefined conversion function is able to return single-character-length values only.

In cases where it is necessary to define strings that include the character double quote (") the character is
represented by a pair of double quotes on the same line with no intervening space characters.

EXAMPLE 4: The charstring "ab"cd" is written in TTCN-3 code as in the following constant declaration. Each of

the 3 quote characters that are part of the string is preceded by an extra quote character and the

whole character string is delimited by quote characters, e.g.
var charstring vl_char:= """ab""cd""";

The character string type preceded by the keyword uni ver sal denotes types whose distinguished values are
zero, one, or more characters from ISO/IEC 10646 [2].

uni ver sal char st ri ng values can also be denoted by an arbitrary number (possibly zero) of characters
from the relevant character set, preceded and followed by double quote ("), calculated using a predefined
conversion function (see clause C.1.2) with the positive integer value of their encoding as argument, by a
"quadruple" or using the USI-like notation.

NOTE 4: If applying the double quote format all characters from any character set defined in ISO/IEC 10646 [2]

are allowed. Users should be aware of the character set capabilities of their editing tool and the TTCN-3
module transfer syntax UTF-8 (see clause 8).

NOTE 5: The predefined conversion function is able to return single-character-length values only.

In cases where it is necessary to define strings that include the character double quote (") the character is
represented by a pair of double quotes on the same line with no intervening space characters.

The "quadruple" is only capable to denote a single character and denotes the character by the decimal values of
its group, plane, row and cell according to ISO/IEC 10646 [2], preceded by the keyword char included into a
pair of brackets and separated by commas (e.g. char (0, 0, 1, 113) denotes the Latin small letter u with
double acute: "{i"). In cases where it is necessary to denote the character double quote (") in a string assigned
according to the first method (within double quotes), the character is represented by a pair of double quotes on
the same line with no intervening space characters. The two methods may be mixed within a single notation for
a string value by using the concatenation operator.

EXAMPLE 5: The expression: "the Braille character" & char (0, 0, 40, 48) & "looks like this" represents the

literal string: the Braille character £ looks like this.

The UCS sequence identifier-like (USI-like) notation (see also clause 6.6 of ISO/IEC 10646 [2]) can be used to
denote 1..N characters, using their short identifiers of code point (similar to UIDs described in clause 6.5 of
ISO/IEC 10646 [2]). The USI-like notation is composed of the keyword char followed by parentheses. The
parentheses enclose a comma-separated list of short identifiers . Each short identifier represents a single
character and it shall be composed of a letter U or u followed by an optional "+" PLUS SIGN character,
followed by 1..8 hexadecimal digits. The hexadecimal digits represent the numeric code point of the character.
(e.g. char (U0171) denotes the Latin small letter u with double acute: "i"). In the USI-like notation, the
leading zeroes can be omitted, (i.e. char (U171) is equal to char (U0171)).

EXAMPLE 6: The expression: char (U4E2D, U56FD) represents the literal string: "' [E.

NOTE 6: Control characters can be denoted by using the predefined conversion function, the quadruple form or the

USI-like notation.

By default, uni ver sal char st ri ng shall conform to the UTF-32 encoding specified in clause 9.3 of
ISO/IEC 10646 [2].

ETSI

41 ETSI ES 201 873-1 V4.7.1 (2015-06)

NOTE 7: UTF-32 is an encoding format, which represents any UCS character on a fixed, 32 bits-length field.

This default encoding can be overridden using the defined variant attributes (see clause 27.5). The useful
character string types utf8string, bmpstring, utfl6string and is08859string using these attributes are defined in
annex E.

6.1.1.1 Accessing individual string elements

Individual elements in a string type may be accessed using an array-like syntax. Only single elements of the string may
be accessed.

Units of length of different string type elements are indicated in table 4.

Indexing shall begin with the value zero (0). The index shall be between zero and the length of the string minus one for
retrieving an element from a string. For assigning an element to the end of a string, the length of the string should be
used as index.

EXAMPLE 1: Accessing an existing element

/1 Gven

M/BitString := '11110111' B;
/1 Then doi ng
MyBitString[4] :="'1"B;

// Results in the bitstring '11111111'B

EXAMPLE 2: Specific cases

var bitstring MyBitStringA MBitStringB, MBIitStringC

M/BitStringA := '010' B;
MyBitStringA[1] := "'11'B; //causes an error as only individual elenents can be accessed
MyBitStringB :="'1'B;

no=

MyBi t Stri ngB[4] '"1'B; //causes an error as the index is larger than the length of the |hs
MyBitStringC :="'B
MyBi t String(0]
MBI t Stringd 1]

:1'B; /1 value of MyBitStringCis '"1'B
'0'B; // value of MyBitStringCis '10'B

6.1.2 Subtyping of basic types

User-defined types shall be denoted by the keyword t ype. With user-defined types it is possible to create subtypes
(such as lists, ranges and length restrictions) on basic types, structured types and anytype according to table 3.

6.1.2.1 Lists of templates

TTCN-3 permits the specification of a list of distinguished templates as listed in table 3. The templates in the list shall
be instances of the type being constrained and the set of values matching at least one of these templates shall be a subset
of the values defined by the type being constrained. The subtype defined by this list restricts the allowed values of the
subtype to those values matching at least one of the templates in the list. The templates in the list shall only (directly or
indirectly) reference other templates or constant expressions. Constant expressions used (directly or indirectly) in the
template expressions shall meet with the restrictions in clause 10 for constant expressions used in type definitions.

EXAMPLE:

type bitstring MListOFBitStrings ('01'B, '10'B, '11' B);
type float pi (3.1415926);
type charstring MyStringList ("abcd", "rgy", "xyz");
type universal charstring Special Letters
(char(0, 0, 1, 111), char(O, O, 1, 112), char(0, 0, 1, 113));

6.1.2.2 Lists of types

TTCN-3 permits the specification of a list of subtypes as listed in table 3 for value lists. The types in the list shall be
subtypes of the root type. The subtype defined by this list restricts the allowed values of the subtype to the union of the
values of the referenced subtypes.

ETSI

42 ETSI ES 201 873-1 V4.7.1 (2015-06)

EXAMPLE:

type bitstring BitStringsl ('0'B, '1'B);
type bitstring BitStrings2 ('00'B, '01'B, '10'B, '10'B);
type bitstring BitStrings_1 2 (Bitstringsl, Bitstrings2);

6.1.2.3 Ranges

TTCN-3 permits the specification of range constraints for the types i nt eger, charstring, uni versal
charstringandfl oat (orderivations of these types). For i nt eger and f | oat, the subtype defined by the
range restricts the allowed values of the subtype to the values in the range including or excluding the lower boundary
and/or the upper boundary. The upper boundary shall be greater than or equal to the lower boundary.

In order to specify an infinite integer range, the keyword -i nfi ni ty ori nfi ni ty can be used instead of a value
indicating that there is no lower or upper boundary; - i nf i ni ty shall not be used as the upper bound and i nfi ni ty
shall not be used as the lower bound for integer ranges.

Also forfl oat,-infinityorinfinity canbe used as the bounds in range restrictions. Using the special

value - i nf i ni ty as the lower bound shall indicate that the allowed numerical values are not restricted downward and
the special value - i nfi ni ty is also included. If both the lower and upper bounds denote - i nf i ni ty, no numerical
values are included, only the special value - i nf i ni t y. Using the special value i nfi ni ty as the upper bound shall
indicate that the allowed numerical values are not restricted upward and the special value i nfi ni ty is also included.
If both the lower and upper bounds denote i nf i ni t y, no numerical values are included, only the special value

i nfinity.Ifexclusive bounds (i nfinityor!-infinity) isused instead, only the respective numerical float
values are included in the range. In case of f | 0oat , the special value not _a_nunber is not allowed in a range
constraint.

In the case of char st ri ng and uni ver sal charstri ng types, the range restricts the allowed values for each
separate character in the strings. The boundaries shall evaluate to valid character positions according to the coded
character set table(s) of the type (e.g. the given position shall not be empty). Empty positions between the lower and the
upper boundaries are not considered to be valid values of the specified range.

Constants used in the constant expressions defining the values shall meet with the restrictions in clause 10.

EXAMPLE 1:
type integer Myl ntegerRange (0 .. 255); /'l range fromO..255

/1 (with inclusive boundaries)
type integer MylntegerRange (-infinity .. -1); /1 all negative integer nunbers
type integer Myl ntegerRange (0 .. !256); /1 the same range as above (with left

/1 inclusive and right exclusive boundary)
type integer MylntegerRange (!-1 .. 255); /'l the same range as above(wi th |eft

/1 exclusive and right inclusive boundary)
type integer MylntegerRange (!-1 .. !256); /1 the sanme range as above

/1 (wth exclusive boundari es)
type float piRange (3.14 .. 3142E-3);
type float LessThanPi (-infinity .. 3142E-3);
type float Nunbers (-infinity .. infinity); /lincludes all float values but not_a_nunber
type float Wong (-infinity .. not_a_nunber); /] causes an error as not_a_nunber is not
/1 allowed in range subtyping

EXAMPLE 2:

type charstring MyCharString ("a" .. "z");

/1 Defines a string type of any length with each character within the specified range
type universal charstring MyUCharStringl ("a" .. !"z");

/] Defines a string type of any length with each character within the range froma to y
/'l (character codes from97 to 121), I|ike "abxy";

/1 strings containing any other character (including control characters), like

/1 "abc2" are disall owed.

type universal charstring MyUCharString2 (char(0, 0, 1, 111) .. char(0, 0, 1, 113));

/Il Defines a string type of any length with each character within the range specified using
/1 the quadruple notation

ETSI

43 ETSI ES 201 873-1 V4.7.1 (2015-06)

6.1.2.4 String length restrictions

TTCN-3 permits the specification of length restrictions on string types. The length boundaries are based on different
units depending on the string type with which they are used. In all cases, these boundaries shall be inclusive boundaries
only and evaluate to non-negative i nt eger values (or derived i nt eger values).

EXAMPLE:

type bitstring MyByte | ength(8); /1 Exactly length 8

type bitstring MyByte length(8 .. 8); /1 Exactly length 8

type bitstring M/N bbl eToByte I ength(4 .. 8); /1 Mnimmlength 4, naxi numlength 8

Table 4 specifies the units of length for different string types.

Table 4: Units of length used in field length specifications

Type Units of Length
bitstring bits
hexstring hexadecimal digits
octetstring octets
character strings characters

For the upper bound the keyword i nfi ni ty may also be used to indicate that there is no upper limit for the length.
The upper boundary shall be greater than or equal to the lower boundary.

6.1.2.5 Pattern subtyping of character string types

TTCN-3 allows using character patterns specified in clause B.1.5 to constrain permitted values of char st ri ng and
uni ver sal char st ri ng types. The type constraint shall use the pat t er n keyword followed by a character
pattern. All values denoted by the pattern shall be a subset of the type being sub typed. Constants used in the constant
expressions defining the values shall meet with the restrictions in clause 10.

NOTE: Pattern subtyping can be seen as a special form of list constraint, where members of the list are not
defined by listing specific character strings but via a mechanism generating elements of the list.

EXAMPLE:

type charstring MyString (pattern "abc*xyz");
/1 all permitted values of MyString have prefix abc and postfix xyz

type charstring MyStringCaseAgnostic (pattern @ocase "abc*xyz");
/1 all permitted values of MyStringCaseAgnostic have a
/1 prefix abc or Abc or aBc or abC or ABc or aBC or AbC or ABC, and a
/] postfix xyz or Xyz or xYz or xyZ or XYz or XYZ or XyZ or XYZ

type universal charstring MUString (pattern "*\r\n")
/1 all permitted values of MyUString are termi nated by CR/ LF

type charstring MyString2 (pattern "abc?\q{0,0, 1, 113}");
/] causes an error because the character denoted by the quadruple {0,0,1,113} is not a
/1 legal character of the TTCN-3 charstring type

type MyString MyString3 (pattern "d*xyz");

/'l causes an error because the type MyString does not contain a value starting with the
/'l character d

6.1.2.6 Mixing subtyping mechanisms
6.1.2.6.1 Mixing patterns, lists and ranges

Within i nt eger and f | oat (or derivations of these types) subtype definitions it is allowed to mix lists and ranges. It
is possible to mix both template list and type list subtyping with each other and with range subtyping. Overlapping of
different constraints is not an error.

ETSI

44 ETSI ES 201 873-1 V4.7.1 (2015-06)

EXAMPLE 1I:

type integer MylntegerRange (1, 2, 3, 10 .. 120, 99, 100);
type float |essThanPi AndNaN (-infinity .. 3142E-3, not_a_nunber);

Within char string and uni versal charstri ng subtype definitions it is not allowed to mix pattern, template
list, type list, or range constraints.

EXAMPLE 2:

type charstring MyCharStrO ("gr", "xyz");
/1 contains character strings gr and xyz;

type charstring M/CharStrl ("a".."z");
/1 contains character strings of arbitrary length containing characters a to z.

type charstring M/CharStr2 (pattern "[a-z]#(3,9)");
/1 contains character strings of length from3 to 9 characters containing characters a to z

6.1.2.6.2 Using length restriction with other constraints

Within bi t st ri ng, hexstring, oct et string subtype definitions lists and length restriction may be mixed in
the same subtype definition.

Within char string and uni versal charstri ng subtype definitions it is allowed to add a length restriction
to constraints containing list, range or pattern subtyping in the same subtype definition.

When mixed with other constraints the length restriction shall be the last element of the subtype definition. The length
restriction takes effect jointly with other subtyping mechanisms (i.e. the value set of the type consists of the common
subset of the value sets identified by the list, range or pattern subtyping and the length restriction).

EXAMPLE:

type charstring MyCharStr5 ("gr", "xyz") length (1..9);
/1 contains the character strings gr and xyz;

type charstring MyCharStr6 ("a".."z") length (3..9);
/'l contains character strings of length from3 to 9 characters and containing characters

/Il atoz
type charstring M/CharStr7 (pattern "[a-z]#(3,9)") length (1..9);
/1 contains character strings of length from3 to 9 characters containing characters
/Il atoz
type charstring M/CharStr8 (pattern @ocase "[a-z]#(3,9)") length (1..8);
/1 contains character strings of length from3 to 8 characters containing characters
/Il atoz and Ato Z
type charstring MyCharStr9 (pattern "[a-z]#(1,8)") length (1..9);
/1 contains any character strings of length from1l to 8 characters containing characters
/Il atoz

type charstring MyCharStr10 ("gr", "xyz") length (4);
/1 causes an error as it contains no val ue

6.2 Structured types and values

The t ype keyword is also used to specify structured types such as r ecor d types, r ecor d of types, set types, set
of types, enuner at ed types and uni on types.

Values of these types may be given using an explicit assignment notation or a short-hand value list notation.

ETSI

45 ETSI ES 201 873-1 V4.7.1 (2015-06)

EXAMPLE 1I:

const MyRecor dType MyRecor dVal ue: /l assi gnnent notation

fieldl :="11001' B,
field2 := true,
field3 := "A string"
}
/1 O
const MyRecordType MyRecordVal ue: = {'11001'B, true, "A string"} //value list notation

The assignment notation can be used for record, record of,set,set of and uni on value notations and for
arrays. The value list notation can be used forr ecord, record of,set and set of value notations and for
arrays. The index notation can be used for r ecor d of and set of value notations and for arrays. See more details in
the subsequent clauses.

EXAMPLE 2:
var MyRecordType MyVari abl e: = // assignnent notation
{
fieldl :="11001' B,
/1 field2 inmplicitly unspecified
field3 := "A string"
}
/Il O
var MyRecordType MyVari abl e: = // assi gnnent notation
{
fieldl :="11001' B,
field2 := -, /] field2 explicitly unspecified
field3 := "A string"
}
/1 O
var MyRecordType MyVariable:= {'11001'B, -, "A string"} //value list notation

It is not allowed to mix the two value notations in the same (immediate) context.

EXAMPLE 3:

/1 This is disallowed
const MyRecordType MyRecordVal ue: = { M/l ntegerValue, field2 := true, "A string"}

Where applicable TTCN-3 type definitions may be recursive. The user, however, shall ensure that all type recursion is
resolvable and that no infinite recursion occurs.

In case of record and set types, to avoid infinite recursion, fields referencing to its own type, shall be optional.

EXAMPLE 4:

/1 Valid recursive record type definition
type record MyRecordl

Fi el dTypel field1,
M/Recor d1 field2 optional,
Fi el dType3 field3

}

/1 Invalid recursive record type definition causing an error
type record MyRecord2

Fi el dTypel field1,

MyRecor d2 field2,
Fi el dType3 field3

}

In case of union types, to avoid infinite recursion, at least one of the alternatives shall not reference its own type.

EXAMPLE 5:

/1 Valid recursive union type definition
type uni on MyUni onl
{

ETSI

46 ETSI ES 201 873-1 V4.7.1 (2015-06)

MyUni onl choi cel,
charstring choice2

}

/1 Invalid recursive union type definition causing an error
type uni on MyUni on2

MyUni on2 choi cel,
MyUni on2 choi ce2

6.2.1 Record type and values

TTCN-3 supports ordered structured types known as r ecor d. The elements of a r ecor d type may be any of the basic
types or user-defined data types (such as other records, sets or arrays). The values of a r ecor d shall be compatible
with the types of the r ecor d fields. The element identifiers are local to the r ecor d and shall be unique within the
recor d (but do not have to be globally unique).

EXAMPLE I:

type record MyRecordType
{

i nt eger fieldl,
M/Q her RecordType fiel d2 optional,
charstring field3

}
type record MyQ her Recor dType

bitstring fieldl,
bool ean field2

}

Records may be defined with no fields, i.e. as empty records.
EXAMPLE 2:
type record MyEnptyRecord {}

A recor d value is assigned on an individual element basis. The order of field values in the value list notation shall be
the same as the order of fields in the related type definition.

EXAMPLE 3:
var integer MylntegerValue := 1;

const MyQt her Recor dType MyQt her Recor dVal ue: =

fieldl :="11001' B,
field2 := true
}
var MyRecordType MyRecordVal ue : =
{
fieldl : = Myl ntegerVal ue,
field2 := MO her Recor dVal ue,
field3 := "A string"
}

The same value specified with a value list.
EXAMPLE 4:
M/Recor dVal ue: = { Myl nt eger Val ue, {'11001'B, true}, "A string"};

When the assignment notation is used for r ecor d-s, fields wished to be changed shall be identified explicitly and a
value, the not used symbol "-" or the o t keyword can be associated with them. The omi t keyword shall only be
used for optional fields. Its result is that the given field is not present in the given value.

ETSI

a7 ETSI ES 201 873-1 V4.7.1 (2015-06)

NOTE: Please note the difference between omitted and uninitialized fields. Omitted optional fields are not
present in the record or set value intentionally, i.e. the field is initialized and it does not prevent the whole
record or set from being completely initialized.

When the assignment notation is used in a scope, where the opt i onal attribute is implicitly or explicitly set to
"explicit omt", fields, not explicitly referred to in the notation, shall remain unchanged. In particular, when
specifying partial values (i.e. setting the value of only a subset of the fields) using the assignment notation, for example,
at initialization, only the fields or elements to be assigned values shall be specified. Fields or elements not mentioned
are implicitly left uninitialized. It is also possible to leave fields explicitly unspecified using the not used symbol "-".
When re-assigning a previously initialized value, using the not used symbol or just skipping a field or element in an
assignment notation, will cause that field or element to remain unchanged.

EXAMPLE 5:

var MyRecordType MyVariable :=

{
fieldl :="111'B
field2 := fal se,
field3 := -

}

MyVariable := { '10111'B, -, - };

// after this, MyVariable contains:
/1 { '10111'B, false /* unchanged */, <undefined> /* unchanged */ }

MyVari able : =
field2 := true

/Il after this, MyVariable contains:
/1 { '10111' B /* unchanged */, true, <undefined> /* unchanged */ }

MyVari able : =

{
fieldl := -,
field2 := fal se,
field3d := -

/1 after this, MyVariabl e contains:
/1 { '10111' B /* unchanged */, fal se, <undefined> /* unchanged */}

When the assignment notation is used in a scope, where the opt i onal attribute is setto"i nplicit omt",
optional fields, not directly referred to in the notation, shall implicitly be set to omit, while mandatory fields shall
remain unchanged (see also clause 27.7).

When using the value list notation, all fields in the structure shall be specified either with a value, the not used symbol
"-" or the om t keyword. The omi t keyword shall only be used for optional fields. Its result is that the given field is
not present in the given value. The first component of the list (a value, a "-" or oni t) is associated with the first field,
the second list component is associated with the second field, etc. No empty assignment is allowed (i.e. two commas,
the second immediately following the first or only with white space between them). Fields or elements to be left
unchanged shall be explicitly skipped in the list by using the not-used-symbol "-".

When the value list notation is used in a scope, where the opt i onal attribute is implicitly or explicitly set to
"explicit omt,already initialized fields or elements left without an associated component in a value list notation
(i.e. at the end of a value) are becoming uninitialized. In this way, a value with initialized fields or elements can be
made empty by using an empty pair of curly brackets (" {}").

When using value list notation in a scope where the opt i onal attribute is setto " i npl i cit om t", optional fields
wished to be omitted by the implicit mechanism, but followed by fields to which a value or template is assigned
explicitly, shall be skipped by using the not used symbol "-". When all remaining fields at the end of the type definition
are optional and they are wished to be omitted by the implicit mechanism, either the not used symbol "-" can be used for
some or all of them or they can simply be left out from the notation.

ETSI

48 ETSI ES 201 873-1 V4.7.1 (2015-06)

EXAMPLE 6:

type record R {
integer f1,
integer f2 optional,
i nteger f3,
integer f4 optional,
integer f5 optional

}

var Rx :={ 1, -, 2} with { optional "inplicit omt" }

/1 after the assignnent x contains { 1, onmit, 2, omt, omt }

var Rx2 :={ 1, 2} with { optional "inplicit omt" }

/Il after the assignnent x2 contains { 1, 2, <undefined> omt, omt }

6.2.1.1 Referencing fields of a record type

Elements of a r ecor d shall be referenced by the dot notation Typel dOr Expr essi on. El enent | d, where
Typel dOr Expr essi on resolves to the name of a structured type or an expression of a structured type such as
variable, formal parameter, module parameter, constant, template, or function invocation. El ermrent | d shall resolve to
the name of a field in the structured type. Fields of record type definitions shall not reference themselves.

EXAMPLE 1:
MyVarl : = MyRecordl. nyEl enent 1;

/1 1f arecord is nested within another type then the reference may |l ook like this
MyVar 2 : = MyRecordl. nyEl enent 1. nyEl enent 2;

EXAMPLE 2:
type record MyType
{
integer fieldl,
My Type. fi el d2 field2 optional, // this circular reference is NOT ALLONED

bool ean fiel d3

}

If a field in a record type or a subtype of a record type is referenced by the dot notation, the resulting type is the set of
values allowed for that field imposed by the constraints of the field declaration itself (i.e. any constraints applied to the
record type itself are ignored).

EXAMPLE 3:
type record MyType2
{

integer fieldl (1 .. 10),
charstring field2 optional

}

type WType2 MyType3 ({1, onmit}, {2, "foo"}, {3, "bar"}) ;

type MyType3.fieldl MyType4; /'l MyTyped is the integer type constrained to
/1 the values 1..10

type MyType3.field2 MyType5; /Il MyType5 is the charstring type

type MyType2.fieldl MyType6; /1l MyType6 is the integer type constrained to
/1 the values 1..10

type MyType2.field2 MyType7; /'l MyType7 is the charstring type

Referencing a subfield of an uninitialized or omitted record field or value on the right hand side of an assignment shall
cause an error.

EXAMPLE 4:
type record MyType4d
{

integer fieldl optional,
record
{
i nteger subfieldl,
i nteger subfield2
} field2 optional

ETSI

49 ETSI ES 201 873-1 V4.7.1 (2015-06)

var MTyped v_rec :={ fieldl :=1, field2 := omt }
var integer v_int := v_rec.field2. subfieldi;
/] causes an error as v_rec.field2 is onitted

When referencing a field of an uninitialized record value or field or omitted field (including omitting a field at a higher
level of the embedding hierarchy) on the left hand side of an assignment, the reference shall recursively be expanded up
to and including the depth of the referenced subfield as follows:

a) When expanding a value or value field of record type, the subfield referenced in the dot notation shall be set to
present and all unreferenced mandatory subfields shall be left uninitialized; when the assignment is used in a
scope where the opt i onal attribute is equal to "explicit omt", all unreferenced optional subfields
shall be left undefined. When the assignment is used in a scope where the optional attribute is equal to
"inplicit omit",all unreferenced optional subfields shall be set to oni t .

b) Expansion ofrecord of/set of/array,uni on and set values and intermediate fields shall follow the
rules of item a) in clauses 6.2.3 and 6.2.5.1, and clause 6.2.2.1 correspondingly.

At the end of the expansion, the value at the right hand side of the assignment shall be assigned to the referenced
subfield.

EXAMPLE 5:
var MyTyped v_rec;
v_rec.field2.subfieldl :=5;

I/ after the assignnent v_rec is { fieldl := <undefined> field2 := { subfieldl :=5,
/1 subfield2 := <undefined> } }

6.2.1.2 Optional elements in a record
Optional elements in a r ecor d shall be specified using the opt i onal keyword.

EXAMPLE 1:
type record MyMessageType

Fi el dTypel fieldi,
Fi el dType2 field2 optional,

Fiel dTypeN fiel dN
}

Optional fields shall be omitted using the omit symbol.

EXAMPLE 2:
M/Recor dVval ue: = { Myl nt eger Val ue, omit , "A string"};

/1 Note that this is not the sane as witing,
/'l MyRecordVal ue: = { Myl ntegerValue, -, "A string"};
/1 which would nean the value of field2 is unchanged

6.2.1.3 Nested type definitions for field types

TTCN-3 supports the definition of types for record fields nested within the r ecor d definition. Both the definition of
new structured types (r ecor d, set , enuner at ed, set of ,record of ,and uni on) and the specification of
subtype constraints are possible.

EXAMPLE:

I/l record type with nested structured type definitions
type record MyNest edRecor dType

record
{
i nt eger nestedFi el d1,
fl oat nestedFiel d2
} outerFieldl,
enunerated {
nest edEnunt,
nest edEnung

ETSI

50 ETSI ES 201 873-1 V4.7.1 (2015-06)

} outerField2,
record of bool ean outerField3

}

/1 record type with nested subtype definitions
type record MyRecor dTypeW t hSubt ypedFi el ds

i nt eger fieldl (1 .. 100),
charstring field2 length (2 .. 255)

6.2.2 Set type and values

TTCN-3 supports unordered structured types known as set . Set types and values are similar to records except that the
ordering of the set fields is not significant.

EXAMPLE:
type set M/Set Type
{
i nt eger fieldl,
charstring field2
}

The field identifiers are local to the set and shall be unique within the set (but do not have to be globally unique).

NOTE: When the value list notation is used for values of set types, the values are assigned to the fields in the
sequential order of the fields in the type definition.

6.2.2.1 Referencing fields of a set type

Elements of a set shall be referenced by the dot notation (see clause 6.2.1.1). Elements of set type definitions shall not
reference themselves. For referencing field types of set types, the same rules apply as in clause 6.2.1.1 for fields of
record types.

EXAMPLE:

MyVar3 : = MySet 1. nyEl enent 1;

/1 1f a set is nested in another type then the reference may | ook like this

MyVar4 : = MyRecordl. nyEl enent 1. nyEl enent 2;

/1 Note, that the set type, of which the field with the identifier 'nyElenent2' is referenced,
/l is enbedded in a record type

6.2.2.2 Optional elements in a set

Optional elements in a Set shall be specified using the opt i onal keyword.

6.2.2.3 Nested type definition for field types

TTCN-3 supports the definition of types for set fields nested within the set definition, similar to the mechanism for
record types described in clause 6.2.1.3.

6.2.3 Records and sets of single types

TTCN-3 supports the specification of records and sets whose elements are all of the same type. These are denoted using
the keyword of . These records and sets do not have element identifiers and can be considered similar to an ordered
array and an unordered collection respectively.

NOTE 1: Subtyping of record of and set of types see in clause 6.2.13.

EXAMPLE 1:

type set of boolean MySetOf Type; // is an unlinited set of bool ean val ues

ETSI

51 ETSI ES 201 873-1 V4.7.1 (2015-06)

When the assignment notation is used for r ecord of -sand set of -s, elements wished to be changed are identified
explicitly and either a value or the not used symbol "-" can be assigned to them. Other fields, not referred to in the
notation, shall remain unchanged. In particular, when specifying partial values (i.e. setting the value of only a subset of
the fields) using the assignment notation, for example, at initialization, only the elements to be assigned values shall be
specified: elements not mentioned are implicitly left uninitialized. It is also possible to leave fields explicitly
unspecified using the not used symbol "-". When re-assigning a previously initialized value, using the not used symbol
or just skipping a field or element in an assignment notation, will cause that field or element to remain unchanged.

EXAMPLE 2:

var MyRecordOf Type MyVariable : = {
[0] '111' B,
[1] '101' B,
[2] -

}

MyVariable := { '10111'B, -, - };
/] after this, MyVariable contains:
/1 { '10111'B, '101'B /* unchanged */, <undefined> /* unchanged */ }

MyVari able : =

{
[1] := '010' B,

/] after this, MyVariable contains:
/1 { '10111' B/ * unchanged */, '010'B, <undefined>/* unchanged */ }

MyVari able : =
{
[0]
[1]
[2]

/] after this, MyVariable contains:
/1 { '10111' B/ * unchanged */, '001' B, <undefined> /* unchanged */}

' 001' B,

When using the value list notation, all elements in the structure shall be specified either with a value or the not used
symbol "-". The first member of the list is assigned to the first element, the second list member is assigned to the second
element, etc. No empty assignment is allowed (e.g. two commas, the second immediately following the first or only
with white space between them). Elements to be left out of the assignment shall be explicitly skipped in the list by use
of the not-used-symbol "-". Already initialized elements left without a corresponding list member in a value list notation
(i.e. at the end of a list) are becoming uninitialized. In this way, a value with initialized elements can be made empty by
using the empty value list notation (" {}").

Index notations can be used on both the right-hand side and left-hand side of assignments. For nested record of or set of
types, an array or record of integer restricted to a single size can be used as a short-hand notation for a nested index
notation. The index notation, when used on the right hand side, refers to the value of the identified element of a
record of oraset of.When itisused at the left hand side, only the value of the identified single element is
changed, values assigned to other elements already remain unchanged. The index of the first element shall be zero and
the index value shall not exceed the limitation placed by length subtyping.

If the value of the element indicated by the index at the right-hand of an assignment is undefined (uninitialized), this
shall cause a semantic or runtime error. Referencing an identified element of an uninitialized or omitted record of or set
of field or value on the right hand side of an assignment shall cause an error.

If an indexing operator at the left-hand side of an assignment refers to a non-existent element, the value at the right-
hand side is assigned to the element and all elements with an index smaller than the actual index and without assigned
value are created with an uninitialized value.

When referencing an element of an uninitialized record of or set of value or field or omitted field (including omitting a
field at a higher level of the embedding hierarchy) on the left hand side of an assignment, the reference shall recursively
be expanded up to and including the depth of the referenced element as follows:

a) When expanding a value or value field of r ecor d of orset of type, the element referenced by the index
notation shall be set to present and all elements with a smaller index shall be created with an uninitialized
value.

b) Expansion of r ecor d, uni on and set values and intermediate fields shall follow the rules of item a) in
clauses 6.2.1.1 and 6.2.5.1, and clause 6.2.2.1 correspondingly.

ETSI

¢)

52 ETSI ES 201 873-1 V4.7.1 (2015-06)

At the end of the expansion, the value at the right hand side of the assignment shall be assigned to the
referenced element.

Uninitialized elements are permitted only in transient states (while the value remains invisible). Sending a r ecor d of
or set of value with uninitialized elements shall cause an error.

NOTE 2: When using on the right hand side of an assignment for r ecor d of - s or set of - s, the assignment

notation and the indexed notation have similar effect, with the exception that the assignment notation is
able to address multiple elements in one notation, while the index notation is able to address a single
element only.

EXAMPLE 3:

/1 Gven
type record of integer MyRecorddf;
type record of MyRecordO RoRol;

var

i nteger MyVar;

/1 Using the value list notation

var

M/RecordOX MyRecordOFvVar := { 0, 1, 2, 3, 4 };

/'l The sane record of, defined with the assignnent notation

var

}s

val

M/Recor dOf MyRecor dOFf Var Assi gnnent @ = {

N
(RRTRTRNTINT
rWNPRO

RoRol v_recof;

/1 Using an index notation
MyVar = MyRecordOfVar[O0]; // the first element of the "record of" value (integer 0)

/1

/1 is assigned to MyVar

I ndex notations are permtted on the |left-hand side of assignnments as well:

M/RecordOFVar[1] := MyVar; // MyVar is assigned to the second el enent

/1 value of MyRecordOfVar is { 0, 0, 2, 3, 4}

/1 The assi gnnment

M/RecordOvVar :={ 0, 1, -, 2 };

/1l will change the value of MyRecordOfVar to{ 0, 1, 2 <unchanged>, 2};

/1 Note, that the 3¢ el ement woul d be undefined if had no previous assigned val ue.

/1 The assi gnment
MyRecordOF Var [6] : = 6;
/1 will change the value of MyRecordOf Var to

/1

{0, 1, 2, 2, <uninitialized> <uninitialized> 6 };

/1 Note the 5'" and 6!" elenments (with indexes 4 and 5) had no assigned val ue before this

/1

| ast assignnent and are therefore undefined.

M/RecordCf Var[4] := 4; MyRecordCfVar[5] := 5;
/1 will conplete MyfRecordOfVar to the fully defined value { 0, 1, 2, 2, 4, 5, 6 };

/1 Expansion of uninitialized record of val ue:
v_recof[1][2] := O;

/Il after the assignnent v_recof is { <undefined> { <undefined> <undefined> 0 } }

/1 Pls. Note the difference between the two i ndex assignment notations the follow ng exanpl e:

var
i x

MyRecordOf ix :={ 0,1,2 }

= { [3] = 2%ix[2]+1 }

/1 the value of ixis: {0, 1, 2, 5}

/1 The sane result can be achi eved by using an index notation on the left hand side of
/1 the assignnent:

var

M/Recorddr ix :={ 0,1,2 }

ix[3] :=2*ix[2]+1
/1 the value of ix is: {0, 1, 2, 5}

NOTE 3: The index notation makes it possible e.g. to copy r ecor d of values element by element in a for loop.

For example, the function below reverses the elements of ar ecor d of value:

function reverse(in M/Recordd src) return MyRecordOf

var
var

MyRecor dOF dest ;
integer i, srcLength := Il engthof (src);

ETSI

53 ETSI ES 201 873-1 V4.7.1 (2015-06)

for(i :=0; i < srcLength; i =i + 1) {
dest[srcLength - 1 - i] :=src[i];

}

return dest;

}

Embedded r ecord of and set of types will result in a data structure similar to multidimensional arrays
(see clause 6.2.7).

EXAMPLE 4:

/1l Gven
type record of integer MyBasicRecordO Type;
type record of MyBasi cRecordO Type My2DRecordCf Type;

/'l Then, the variable nyRecordOfArray will have similar attributes to a two-dinensional array:
var My2DRecor dOf Type nyRecordOf Array;

/1 and reference to a particular element would | ook like this

/1 (value of the second el enent of the third ' MyBasi cRecordOf Type' construct)

nyRecordOr Array [2][1] := 1,

/1w th

var integer i[2] :={ 1, 2 };

nyRecordOr Array [i] := 2;

/1l is the sane as assigning el enent nyRecordOf Array[i[O]][i[1]]

6.2.3.1 Nested type definitions

TTCN-3 supports the definition of the aggregated type nested with the r ecor d of orset of definition. Both the
definition of new structured types (r ecor d, set , enuner at ed, set of and r ecor d of) and the specification of
subtype constraints are possible.

EXAMPLE:

type record of enunerated { red, green, blue } ColorlList;
type record length (10) of record length (10) of integer Matrix;
type set of record { charstring id, charstring val } GenericParaneters;

6.2.3.2 Referencing elements of record of and set of types

It is also allowed to reference the inner type of r ecor d of and set of types by using the index notation but with a
dash. The notation Typel d[-], where Typel d resolves to the name of ar ecord of orset of type, references
the inner type of Typel d. If the type definition restricts the element type of the record of or set of type, referencing
the inner type of that type yields a type which contains all values from the constrained type.

EXAMPLE:

/1 Provided the definitions bel ow
type record of integer MyRecordOf I nt;
type record of record {

integer f1,

set { integer s1, boolean s2 } f2
} MyRecor dOFf Recor d;
type record of record of integer MyRecordO RecordOf I nt;
type record of record {

integer f1,

record of boolean f2
} MyRecor dOf Recor d2;

/'l Referencing the inner integer type
type MyRecordOfInt[-] Ml nteger;
const MyRecordOfInt[-] c_Mylnteger:=5;

/'l Referencing the nested record type
type MyRecordOf Record[-] Myl nnerRecord;
const MyRecordORecord[-] ¢c_MRecord :={ f1 =5; f2 :={ s1 :=0; s2 :=true }}

/'l Referencing the set type nested in the inner record

type MyRecordOf Record[-].f2 MyNestedSet;
const MyRecordORecord[-].f2 c_MWSet :={ s1 :=0; s2 :=true }

ETSI

54 ETSI ES 201 873-1 V4.7.1 (2015-06)

/'l Referencing the innernost bool ean
type MyRecordOf Record[-].f2.s2 MyBool ean;
const MyRecordOf Record[-].f2.s2 ¢c_MyBool := fal se;

/'l Referencing the inner record of
type MyRecordOf RecordOf I nt[-] Myl nnerRecordOf I nt;
const MyRecordO RecordOfInt[-] c_MylnnerRecordOfInt :={ 0, 1, 2, 3 };

/'l Referencing the integer type within the inner record of
type M/RecordOf RecordOf Int[-]1[-]1 Ml nteger2;
const MyRecordOf RecordOfInt[-][-] c_Mylnteger2 := 1;

/'l Referencing the boolean type within the nested record
type MyRecordOf Record2[-].f2[-] Ml nnernost Bool ean;
const MyRecordO Record2[-].f2[-] c_MylnnernostBool ean : = true ;

type record length (5) of record of integer Constrai nedRecordOfInt (1 .. 10);

type Constrai nedRecordOf I nt[-] Constrainedlnt;
// defines the type record of integer, where the integer values are restricted
// to the range 1 .. 10 but the record of has no length restriction

6.2.4 Enumerated type and values

TTCN-3 supports enumner at ed types. Enumerated types are used to model types that take only a distinct named set of
values. Such distinct values are called enumerated values. Each enumerated value shall have an identifier. Operations
on enumerated types shall only use these identifiers and are restricted to assignment, equivalence and ordering
operators. The identifiers of enumerated values shall be unique within the enumerated type (but do not have to be
globally unique) and are consequently visible in the context of the given type only. The identifiers of enumerated values
shall only be reused within other structured type definitions and shall not be used for identifiers of local or global
visibility at the same or a lower level of the same branch of the scope hierarchy (see scope hierarchy in clause 5.2).

EXAMPLE 1: Declaration of enumerated types and values

type enunerated MyFirstEnuniType {
Monday, Tuesday, Wednesday, Thursday, Friday
b

type i nteger Mnday;
/1 This definition does not clash with the previous one
/1 as Monday in MyFirstEnunType is of |ocal scope

type enunerated MySecondEnuniType {
Sat urday, Sunday, Monday
b

/1 This definition is legal as it reuses the Monday identifier within
/1 a different enunerated type

type record MyRecordType {
i nt eger Monday

/} This definition is legal as it reuses the Monday identifier within
I/l a distinct structured type as identifier of a given field of this type

type record MyNewRecordType {
M/Fi rst Enunifype firstField,
i nt eger secondFi el d

}

var MyNewRecor dType newRecordVal ue : = { Monday, 0 }
/1 MyFirstEnunType is inplicitly referenced via the firstField el enent of MyNewRecordType

Each enumerated value may optionally have a user-assigned integer value, which is defined after the name of the
enumerated value in parenthesis. Each user-assigned integer number shall be distinct within a single enuner at ed
type. For each enumerated value without an assigned integer value, the system successively associates an integer
number in the textual order of the enumerated values, starting at the left-hand side, beginning with zero, by step 1 and
skipping any number occupied by any of the enumerated values with a manually assigned value. These values are only
used by the system to allow the use of relational operators. The user shall not directly use associated integer values but
can access them and convert integer values into enumerated values by using the predefined functions enun®i nt and

i nt 2enum (see clauses 16.1.2, C.1.30 and C.1.4).

ETSI

55 ETSI ES 201 873-1 V4.7.1 (2015-06)

NOTE 1: The integer value also may be used by the system to encode/decode enumerated values. This, however is
outside the scope of the present document (with the exception that TTCN-3 allows the association of
encoding attributes to TTCN-3 items).

For any instantiation or value reference of an enuner at ed type, the given type shall be implicitly or explicitly
referenced.

NOTE 2: If the enumerated type is an element of a user defined structured type, the enumerated type is implicitly
referenced via the given element (i.e. by the identifier of the element or the position of the value in a
value list notation) at value assignment, instantiation, etc.

EXAMPLE 2: Using enumerated types (see also example 4 of clause 8.2.3.1)

/1 Valid instantiations of MyFirstEnunType and MySecondEnunType woul d be
var MyFirst EnunType Today := Tuesday;
var MySecondEnunilype Tonorrow : = Mnday;

/1 The followi ng statenents however cause an error as the two variables are instances
/1 of different enuneration types

Today := Tonorrow,

Today == Tonorrow,

/1 The follow ng operation is correct

if (Today == Monday) {...}

/1 the type of variable Today identifies the type context of MFirstEnunlype for the
/1 equality operator

/1 But the foll ow ng causes an error

if (Tuesday == Wednesday) {...}

/1 there is no TTCN-3 type(d) object to establish the type context for the equality operator
/] Please note that the values Tuesday and Wednesday are defined within the type

/'l MyFirstEnunType only, but this is not sufficient to establish the type context

When a TTCN-3 module parameter, formal parameter, constant, variable, non-parameterized template or parameterized
template with all formal parameters having default values of an imported enumerated type is defined, the name of that
definition shall not be the same as any of the enumerated values of that type.

6.2.5 Unions

TTCN-3 supports the uni on type. The uni on type is a collection of alternatives, each one identified by an identifier.
Only one of the specified alternatives will ever be present in an actual union value. Union types are useful to model data
which can take one of a finite number of known types.

EXAMPLE:
type uni on MyUni onType

i nt eger nunber,
charstring string

}s

/1 Avalid instantiation of MyUnionType woul d be
var MyUni onType age, oneYeard der;
var integer agel nMont hs;

age. nunber := 34; /1 value notation by referencing the field. Note, that this
/'l notation nmakes the given field to be the chosen one
oneYear A der : = {nunber := age. nunber +1};

agel nMont hs : = age. nunber * 12;

The assignment notation shall be used for uni on-s, and the notation shall assign a value to one field only. This field
becomes the chosen field. Neither the not used symbol "-" nor omi t is allowed in union value notations.

The value list notation shall not be used for setting values of uni on types.

ETSI

56 ETSI ES 201 873-1 V4.7.1 (2015-06)

6.25.1 Referencing fields of a union type

Alternatives of a uni on type shall be referenced by the dot notation Typel dOr Expr essi on. Al ternati vel d,
where Typel dOr Expr essi on resolves to the name of a union type or an expression of a union type such as variable,
formal parameter, module parameter, constant, template, or function invocation. Al t er nat i vel d shall resolve to the
name of an alternative in the union type. Alternatives of union type definitions shall not reference themselves.

EXAMPLE I:

MyVar5 : = MyUni onl. nyChoi cel;

/1 If a union type is nested in another type then the reference nay look like this

MyVar6 : = MyRecordl. nyEl enent 1. nyChoi ce2;

/1 Note, that the union type, of which the field with the identifier 'nyChoice2' is referenced,
/] is enbedded in a record type

If an alternative in a union type or a subtype of a union type is referenced by the dot notation, the resulting type is the
set of values allowed for that alternative imposed by the constraints of the alternative declaration itself (i.e. any
constraints applied to the union type itself are ignored).

When an alternative of a union type is referenced on the right hand side of an assignment an error shall occur if the
referenced alternative is not the currently chosen alternative or if the referenced union field or value is omitted or
uninitialized.

EXAMPLE 2:
type uni on MyUni on2

i nt eger choi cel,
charstring choice2

}
type record MyRecor dEnbedsUni on
{
MyUni on2 fieldl optional
}
var MyUnion2 v_un2 := { choicel := 1}
var charstring v_char := v_un2.choice2; // causes an error as v_un.choice2 is not chosen
var MyRecor dEnbedsUnion v_rec := { fieldl := omt }
var integer v_int := v_rec.fieldl.choicel; // causes an error as v_rec.fieldl is omtted

When referencing an alternative of a union type on the left hand side of an assignment, the referenced alternative shall
become the chosen one. This rule shall apply recursively if the reference contains alternatives of nested unions,
choosing all the referenced alternatives.

When referencing an alternative of an uninitialized union value or field or omitted field (including omitting a field at a
higher level of the embedding hierarchy) on the left hand side of an assignment, the reference shall recursively be
expanded up to and including the depth of the referenced alternative as follows:

a) When expanding a value or value field of uni on type, the alternative referenced in the dot notation becomes
the chosen one.

b) Expansionofrecord,record of,set,set of,and array values and intermediate fields shall follow
the rules of item a) in clauses 6.2.1.1 and 6.2.3, and clause 6.2.2.1 correspondingly.

c) At the end of the expansion, the value at the right hand side of the assignment shall be assigned to the
referenced alternative.

EXAMPLE 3:
type uni on MyUni on3

i nt eger choi cel,
uni on

bitstring subchoicel,
charstring subchoi ce2
} choice2

}

var MyUnion3 v_un3 :={ choicel :=1 1}
var MyRecor dEnbedsUnion v_rec2 := { fieldl := onmit }

ETSI

57 ETSI ES 201 873-1 V4.7.1 (2015-06)

v_un3. choi ce2. subchoice2 := "Hello!";
/1 after the assignnment v_un3 equals to { choice2 := { subchoice2 := "Hello!" } }
v_rec2.fieldl.choicel := 10; // after the assignnment v_rec2 equals to

/1 { fieldl := { choicel := 10 } }

6.2.5.2 Option and union

Optional fields are not allowed for the uni on type, which means that the opt i onal keyword shall not be used with
uni on types.

6.2.5.3 Nested type definition for field types

TTCN-3 supports the definition of types for union alternatives nested within the union definition, similar to the
mechanism for record types described in clause 6.2.1.3.

6.2.6 The anytype

The special type anyt ype is defined as a shorthand for the union of all known data types and the address type in a
TTCN-3 module. The definition of the term known types is given in clause 3.1, i.e. the anytype shall comprise all the
known data types but not the port, component, and default types. The address type shall be included if it has been
explicitly defined within that module.

The fieldnames of the anyt ype shall be uniquely identified by the corresponding type names.

NOTE 1: As a result of this requirement imported types with clashing names (either with an identifier of a
definition in the importing module or with an identifier imported from a third module) cannot be reached
via the anytype of the importing module.

EXAMPLE:

/1 A valid usage of anytype woul d be
var anytype MyVar One, MyVar Two;
var integer MyVarThree;

MyVar One. i nteger : = 34,
M/Var Two : = {integer := MyVarOne.integer + 1};

MyVar Three : = MyVar One. i nteger * 12;

The anyt ype is defined locally for each module and (like the other predefined types) cannot be directly imported by
another module. However, a user defined type of the type anyt ype can be imported by another module. The effect of
this is that all types of that module are imported.

NOTE 2: The user-defined type of anyt ype "contains" all types imported into the module where it is declared.
Importing such a user-defined type into a module may cause side effects and hence due caution should be
given to such cases.

6.2.7 Arrays

Arrays can be used in TTCN-3 as a shorthand notation to specify record of types. They may be specified also at the
point of a variable declaration. Arrays may be declared as single or multi-dimensional. Array dimensions shall be
specified using constant expressions, which shall evaluate to a positive i nt eger values. Constants used in the
constant expressions shall meet with the restrictions in clause 10.

EXAMPLE I:

type integer MArrayTypel[3]; /1 Atype with 3 integer elenents
type record length (3) of integer MyRecordOf Typel; // The correspondi ng record of

var MArrayTypel al:={ 7, 8, 9 };
var MyRecordOf Typel rl:= al; /'l MyArrayTypel and MyRecordOf Typel are conpati bl e

var integer nyArrayl[3]:=r1; /1 Instantiates an integer array of 3 elenents
/1 with the index 0 to 2
/1 being conpatible to MArrayTypel and MyRecor dOf Typel

var integer nyArray2[2][3]; // Instantiates a two-dinensional integer array of 2 x 3 elenents
/1 with indexes from(0,0) to (1,2)

ETSI

58 ETSI ES 201 873-1 V4.7.1 (2015-06)

Array elements are accessed by means of the index notation ([]), which shall specify a valid index within the array's
range. Individual elements of multi-dimensional arrays can be accessed by repeated use of the index notation. An array
or record of integer restricted to a single size can be used in the index notation as a short-hand for the repeated index
notation. Accessing elements outside the array's range will cause a compile-time or test case error.

EXAMPLE 2:

M/Arrayl[1] := 5;
MArray2[1]1[2] := 12;

MArrayl[4] = 12; /] ERROR index shall be between 0 and 2
M/Array2[3][2] := 15; // ERROR first index shall be 0 or 1

Array dimensions may also be specified using ranges (with inclusive boundaries only). In such cases, the lower and
upper values of the range define the lower and upper index values. Such an array is corresponding to a record of with a
fixed length restriction computed as the difference between upper and lower index bound plus 1 and indexing starting
from the lower bound of the array definition.

EXAMPLE 3:

type integer MyArrayType2[2 .. 5]; // Atype with 4 integer elenents, indices starting with 2
type record length (4) of integer MyRecordOf Type2; // The correspondi ng record of

var integer MJArray3[1 .. 5]; /1 Instantiates an integer array of 5 elenents
/1l with the index 1 to 5

M/Array3[1] := 10; // Lowest index
M/Array3[5] := 50; // Highest index
var integer MJArray4[1 .. 5][2 .. 3]; [// Instantiates a two-dinensional integer array of

/1 5 x 2 elements with indexes from(1,2) to (5,3)

NOTE: It is not possible to define an array type with a variable amount of elements. Neither is it possible to
define an unlimited array with a lower bound on the array index.

The values of array elements shall be compatible with the corresponding variable or type declaration. Values may be
assigned individually by a value list notation or index notation or more than one or all at once by a value list notation or
index assignment notation. When the value list notation is used, the first value of the list is assigned to the first element
of the array (the element with index 0 or the lower bound if an index range has been given), the second value to the next
element, etc. Elements to be left out from the assignment shall be explicitly skipped in the list by using dash. For using
the assignment notation for arrays, the rules described in clause 6.2.3 are valid for arrays as well.

Index notation can be used on both the right-hand side and left-hand side of assignments. The index of the first element
shall be zero or the lower bound if an index range has been given. The index shall not exceed the limitations given by
either the length or the upper bound of the index. If the value of the element indicated by the index at the right-hand of
an assignment is undefined or if the index notation is applied to an uninitialized or omitted array value on the right hand
side of an assignment, error shall be caused. Sending an array value with undefined elements shall cause an error. All
elements in an array value that are not set explicitly are undefined. When referencing an element of an uninitialized
array value or field or omitted field on the left hand side of an assignment, the rules for record of values specified in
clause 6.2.3 apply.

For assigning values to multi-dimensional arrays, each dimension that is assigned shall resolve to a set of values
enclosed in curly braces. When specifying values for multi-dimensional arrays, the leftmost dimension corresponds to
the outermost structure of the value, and the rightmost dimension to the innermost structure. The use of array slices of
multi-dimensional arrays, i.e. when the number of indexes of the array value is less than the number of dimensions in
the corresponding array definition, is allowed. Indexes of array slices shall correspond to the dimensions of the array
definition from left to right (i.e. the first index of the slice corresponds to the first dimension of the definition). Slice
indexes shall conform to the related array definition dimensions.

EXAMPLE 4:
M/Arrayl[0] : = 10;
M/Arrayl[1] : = 20;
M/Arrayl[3]: = 30;

/1 or using an value |ist
M/Arrayl: = {10, 20, -, 30};

ETSI

59 ETSI ES 201 873-1 V4.7.1 (2015-06)

WArray4: = {{1, 2}, {3, 4}, {5, 6}, {7, 8, {9, 10}};
/1 the array value is conpletely defined

var integer MArray5[2][3][4] :=

{
{
{1, 2, 3, 4}, /I assigns a value to M/Array5 slice [0][0]
{5, 6, 7, 8}, // assigns a value to M/Array5 slice [0][1]
{9, 10, 11, 12} // assigns a value to M/Array5 slice [0][2]
}, I/ end assignnents to M/Array5 slice [0]
{13, 14, 15, 16}, {17, 18, 19, 20}, {21, 22, 23, 24}
} /1 assigns a value to M/Array5 slice [1]
H

M/Array4[2] := {20, 20};
/1 yields {{1, 2}, {3, 4}, {20, 20}, {7, 8}, {9, 10}};
WArray5[1] :={ {0, 0, 0, 0}, {O, O, O, O}, {O, O, O, O}};
/1 yields {{{1, 2, 3, 4}, {5 6, 7, 8, {9, 10, 11, 12}},
/1 {{o, o, o, 0}, {0, O, O, 0}, {O, O, O, O}}};

M/Array5[0][2] := {3, 3, 3, 3};
Il yields {{{1, 2, 3, 4}, {5, 6, 7, 8}, {3, 3, 3, 3}}
I 0, 0, 0}}

{{o, o, o, 0}, {0, 0, 0, 0}, {O, O, O, }

var integer M/Arraylnvalid[2][2];
M/Arraylnvalid := { 1, 2, 3, 4}

/1l causes an error as the dinension of the value notation

/1 does not correspond to the dinmensions of the definition
M/Arraylnvalid[f2] :={ 1, 2}

/] causes an error as the index of the slice should be 0 or 1

6.2.8 The default type

TTCN-3 allows the activation of altsteps (see clause 16.2) as defaults to capture recurring behaviour. Default references
are unique references to activated defaults. Such a unique default reference is generated by a test component when an
altstep is activated as a default, i.e. a default reference is the result of an act i vat e operation (see clause 20.5.2).

Default references have the special and predefined type def aul t . Variables of type def aul t can be used to handle
activated defaults in test components. The special value nul | represents an unspecific default reference, e.g. can be
used for the initialization of variables of default type.

Default references are used in deact i vat e operations (see clause 20.5.3) in order to identify the default to be
deactivated.

Default references have meaning only within the test component instances they are activated, i.e. a default reference
assigned to a default variable in test component instance "al" of type "A" has no meaning in test component instance
"azﬂ Oftype HAH

The actual data representation of the def aul t type shall be resolved externally by the test system. This allows abstract
test cases to be specified independently of any real TTCN-3 runtime environment, in other words TTCN-3 does not
restrict the implementation of a test system with respect to the handling and identification of defaults.

6.2.9 Communication port types

Ports facilitate communication between test components and between test components and the test system interface.

TTCN-3 supports message-based and procedure-based ports. Each port shall be defined as being message-based or
procedure-based. Message-based ports shall be identified by the keyword message and procedure-based ports shall be
identified by the keyword pr ocedur e within the associated port type definition.

Ports are bidirectional. The directions are specified by the keywords i n (for the in direction), out (for the out
direction) and i hout (for both directions). Directions shall be seen from the point of view of the test component
owning the port with the exception of the test system interface, where i n identifies the direction of message sending or
procedure call and out identifies the direction of message receive, get reply or catch exception from the point of view
of the test component connected to the test system interface port.

ETSI

60 ETSI ES 201 873-1 V4.7.1 (2015-06)

Each port type definition shall have one or more lists indicating the allowed collection of (message) types or procedure
signatures together with the allowed communication direction.

For configuration purposes the port type may have one map param and one unmap param declaration indicating the
allowed additional parameters for the respective operation. These formal parameters shall be value parameters.

Whenever a signature (see also clause 14) is defined in the out direction of a procedure-based port, the types of all its

i nout and out parameters, its return type and its exception types are automatically part of the i n direction of this
port. Whenever a signature is defined in the i n direction for a procedure-based port, the types of all its i hout and out
parameters, its return type and its exception types are automatically part of the out direction of this port.

Ports used for the communication with the SUT may need to address specific entities within the SUT. In addition,
several address schemes may be supported by one SUT at different ports. To support such addressing schemes, TTCN-3
allows to bind an addr ess type to a port. Values of this type may be used for addressing purposes in communication
operations (see clause 22.1) and be stored in variables. The handling of address types bound to different ports by means
of the dot notation is explained in clause 6.2.12.

Syntactical Structure

Message-based port:

type port PortTypeldentifier message "{"
{ (address Type ";") |

(map param " (" { Formal ValuePar [","] }+ ")") |
(unmap param " (" { Formal Val uePar [","] }+ ")") |
((in] out | inout) { MessageType [","] }+";") }
"y
Procedure-based port:
type port PortTypeldentifier procedure "{"
{ (address Type ";") |
(map param " (" { Formal ValuePar [","] }+ ")") |
(unmap param " (" { Formal ValuePar [","] }+ ")") |
((in | out | inout) { Signature [","] }+ ";") }
"y
Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) At most one address type should be bound to a port type.
b) At most one map parameter list should be defined for a port type.
c¢) At most one unmap parameter list should be defined for a port type.

d) Formal parameters of map param and unmap param declarations shall be value parameters and not be of
port, component, timer or default type or of structured types having fields of port, component, timer or
default type.

e) MessageType shall be a data type as defined in clause 3.1.
Examples

EXAMPLE 1: Message-based port

/1 Message-based port which allows types MsgTypel and MsgType2 to be received at, MsgType3 to be
/1 sent via and any integer value to be send and received over the port

type port MyMessagePort TypeOne message

{

in MsgTypel, MsgTypeZ2;
out MsgType3;
i nout i nt eger

ETSI

61 ETSI ES 201 873-1 V4.7.1 (2015-06)

EXAMPLE 2: Procedure-based port

/'l Procedure-based port which allows the renote call of the procedures Procl, Proc2 and Proc3.
/1 Note that Procl, Proc2 and Proc3 are defined as signatures

type port MyProcedurePort Type procedure

{

out Procl, Proc2, Proc3

}
EXAMPLE 3: Message-based port with address type definition
type port MyMessagePort TypeTwo nessage

address integer; /1 if addressing is used on ports of type MyMessagePort TypeTwo
/1 the addresses have to be of type integer
i nout MsgTypel, MsgTypez;
}

NOTE: The term message is used to mean both messages as defined by templates and actual values resulting
from expressions. Thus, the list restricting what may be used on a message-based port is simply a list of
type names.

EXAMPLE 4: Usage of param in port declaration

/1 Message based port which allows MsgType4 to be send and received over the port
/1 and MsgType5 and MsgType6 as configuration paraneter type

type port MyMessagePort Type nessage

{

i nout MsgType4;
map param (in MsgType5 pl, out MsgType6 p2);

/'l Procedure based port which allows the renote call of the procedure Procl
/1 and MsgType5 as configuration paraneter type

type port MyProcedurePort Type procedure

{

out Procl;
unmap param (MsgType5 pl);

6.2.10 Component types
6.2.10.1 Component type definition

The component type defines which ports are associated with a component (see figure 3). The port names in a
component type definition are local to that component type, i.e. another component type may have ports with the same
names. Port names in the same component type definition shall all have unique names.

PCO2 PCO3
MyMTC MyPTC [—
/I of MyMTCType f— Il of MyPTCType —
PCO4
pPCO1 PCO1

Figure 3: Typical components

It is also possible to declare constants, variables, templates and timers local to a particular component type. These
declarations are visible to all testcases, functions and altsteps that run on an instance of the given component type. This
shall be explicitly stated using the r uns on keyword (see clause 16) in the testcase, function or altstep header.
Component type definitions are associated with the component instance and follow the scope rules defined in

clause 5.2. Each new instance of a component type will thus have its own set of constants, variables, templates and
timers as specified in the component type definition (including any initial values, if stated). Constants used in the
constant expressions of type declarations for variables, constants or ports shall meet with the restrictions in clause 10,
however constants used in the constant expressions of initial values for variables, constants, templates or timers do not
have to obey these restrictions.

ETSI

62 ETSI ES 201 873-1 V4.7.1 (2015-06)

Syntactical Structure

type conponent Conponent Typeldentifier "{"
{ (Portlnstance
| Varlnstance
| Tinerlnstance
| Const Def
| Tenpl ateDef) }

"y
Semantic Description

Component type definitions specify the creation, declaration and initialization of ports and component constants,
variables, templates and timers during the creation of an instance of a component type. These instances can be used as
the main test component, as the test system interface or as a parallel test component. Every instance of a component
type has its own fresh copy of the port, constant, variable, template and timer instances defined in the component type
definition.

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.
Examples

EXAMPLE 1: Component type with port instances only
type conponent M/PTCType
{

port MyMessagePort Type PCOL, PCO4;
port M/ProcedurePort Type PCC2;
port M/AI | MesssagesPort Type PCO3

}
EXAMPLE 2: Component type with variable, timer and port instance
type conponent MyMICType

var integer MyLocal | nteger;
timer MyLocal Ti ner;
port MyMessagePort Type PCOL

}
EXAMPLE 3: Component type with port instance arrays

type conponent MyConpType
{

port MyMessagel nterfaceType PCJO 3]

port M/Procedurel nterfaceType PCO 3][3]

/1 Defines a conponent type which has an array of 3 nessage ports and a two-di nensi onal
/Il array of 9 procedure ports.

6.2.10.2 Reuse of component types
It is possible to define component types as the extension of other component types, using the ext ends keyword.

Syntactical Structure

type conponent Conponent Typel dentifier extends Conponent Typel dentifier
{ "," ConponentTypeldentifier} "{"
{ (Portlnstance
| Varlnstance
| Tinerlnstance
| Const Def
| Tenpl ateDef) }

"y
Semantic Description

In such a definition, the new type definition is referred to as the extended type, and the type definition following the
ext ends keyword is referred to as the parent type. The effect of this definition is that the extended type will implicitly
also contain all definitions from the parent type. It is called the effective type definition.

ETSI

63 ETSI ES 201 873-1 V4.7.1 (2015-06)

It is allowed to have one component type extending several parent types in one definition, which have to be specified as
a comma-separated list of types in the definition. Any of the parent types may also be defined by means of extension.
The effective component type definition of the extended type is obtained as the collection of all constant, variable,
template, timer and port definitions contributed by the parent types (determined recursively if a parent type is also
defined by means of an extension) and the definitions declared in the extended type directly. The effective component
type definition shall be name clash free.

NOTE 1: It is not considered to be a different declaration and hence causes no error if a specific definition is
contributed to the extended type by different parent types (via different extension paths).

The semantics of component types with extensions are defined by simply replacing each component type definition by
its effective component type definition as a pre-processing step prior to using it.

NOTE 2: For component type compatibility, this means that a component reference ¢ of type CT1, which extends
CT2, is compatible with CT2, and test cases, functions and altsteps specifying CT2 in their r uns on
clauses can be executed on ¢ (see clause 6.3.3).

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) When defining component types by extension, there shall be no name clash between the definitions being
taken from the parent type and the definitions being added in the extended type, i.e. there shall not be a port,
variable, constant or timer identifier that is declared both in the parent type (directly or by means of extension)
and the extended type. It is not considered to be a name clash if a specific definition is contributed to the
extended type via different extension paths.

b) When defining component types by extending more than one parent type, there shall be no name clash
between the definitions of the different parent types, i.e. there shall not be a port, variable, constant or timer
identifier that is declared in any two of the parent types (directly or by means of extension). It is not
considered to be a name clash if a specific definition is contributed to the extended type via different extension
paths.

¢) Itis allowed to extend component types that are defined by means of extension, as long as no cyclic chain of
definition is created.

Examples

EXAMPLE 1: A component type extension and its effective type definition
type conponent MyMICType

var integer MyLocal | nteger;

timer MyLocal Ti ner;

port MyMessagePort Type PCOL
}

type conponent MyExt endedMICType ext ends MyMICType

var float MyLocal Fl oat;
timer MyQtherLocal Ti ner;
port MyMessagePort Type PCQO2;

/1 effectively, the above definition is equivalent to this one:
type conponent MyExt endedMICType
{

/* the definitions from MyMICType */
var integer MyLocal | nteger;

timer MyLocal Ti ner;

port MyMessagePort Type PCOL

/* the additional definitions */
var float MyLocal Fl oat;

timer MyQxherLocal Ti ner;

port MyMessagePort Type PCQ2;

ETSI

64 ETSI ES 201 873-1 V4.7.1 (2015-06)

EXAMPLE 2: A component type extension chain and forbidden cyclic extensions

type conponent MICTypeA extends MICTypeB { /* ...*/ };
type conponent MICTypeB extends MICTypeC { /* ...*/ };
type conponent MICTypeC extends MICTypeA { /* ..*/ }; [/ ERROR - cyclic extension
type conponent MICTypeD extends MICTypeD { /* ..*/ }; [/ ERROR - cyclic extension

EXAMPLE 3: Component type extensions with name clashes
type conponent MyExt endedMICType ext ends MyMICType
{

var integer MyLocal Integer; // ERROR - already defined in MyMICType (see above)
var float MyLocal Tiner; /] ERROR - tiner with that nane exists in MyMICType
port MyQt her MessagePort Type PCOL; // ERROR - port with that name exists in MyMICType

type conponent MyBaseConponent { tiner MyLocal Tiner };
type conponent Myl nterinConponent extends MyBaseConponent { tiner MyQ herTiner };
type conponent M/Ext endedConponent extends Myl nteri mConponent

timer MyLocal Tiner; // ERROR - already defined in Myl nterinConponent via extension
}

EXAMPLE 4: Component type extension from several parent types

type conponent MyConpB { tiner T };
type conponent MyConpC { var integer T };
type conponent MyConpD extends MyCompB, MyConmpC {}
/1 ERROR - nane clash between MyConpB and MyConpC

/1 MyConpB is defined above

type conponent MyConpE extends MyConpB {
var integer MyVarl := 10;

}

type conponent MyConpF extends MyConpB {
var float MyVar2 := 1.0;
}

type conponent MyConpG extends MyCompB, MyConmpE, MyConpF {
/1 No nane cl ash.
/1 Al three parent types of MyConpG have a tiner T, either directly or via extension of
/1 MyConpB; as all these stem (directly or via extension) fromtiner T declared in MyConpB,
/1 which make this formof collision |egal.
/* additional definitions here */

6.2.11 Component references

Component references are unique references to the test components created during the execution of a test case.

Syntactical Structure

system| ntc | self | VariableRef | Functionlnstance
Semantic Description

A unique component reference is generated by the test system at the time when a component is created. It is the result of
a cr eat e operation (see clause 21.2.1). In addition, component references are returned by the predefined operations
syst em(returns the component reference of the test system interface, which is automatically created when testcase
execution is started), m ¢ (returns the component reference of the MTC, which is automatically created when testcase
execution started) and sel f (returns the component reference of the component in which sel f is called).

Component references are used in the configuration operations such as connect , map and st art (see clause 21) to
set-up test configurations and in the f r om t 0 and sender parts of communication operations of ports connected to
test components other than the test system interface for addressing purposes (see clause 22 and figure 6).

In addition, the special value nul | is available to indicate an undefined component reference, e.g. for the initialization
of variables to handle component references.

ETSI

65 ETSI ES 201 873-1 V4.7.1 (2015-06)

The actual data representation of component references shall be resolved externally by the test system. This allows
abstract test cases to be specified independently of any real TTCN-3 runtime environment, in other words TTCN-3 does
not restrict the implementation of a test system with respect to the handling and identification of test components.

A component reference includes component type information. This means, for example, that a variable for handling
component references shall use the corresponding component type name in its declaration.

The configuration operations (see clause 21) do not work directly on arrays of components. Instead a specific element
of the array shall be provided as the parameter to these operations. For components, the effect of an array is achieved by
using an array of component references and assigning the relevant array element to the result of the cr eat e operation.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) The only operations allowed on component references are assignment, equality and non-equality.

b) The variable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance shall be of component type.

Examples

EXAMPLE 1: Component references with component type variables

/1 A conponent type definition

type conponent MyConpType {
port Port TypeOne PCOL;
port PortTypeTwo PCO2

}

/1 Declaring one variable for the handling of references to conponents of type MyConpType
/1 and creating a conponent of this type
var MyConpType MyConplnst := MyConpType.create;

EXAMPLE 2: Usage of component references in configuration operations

/1 referring to the conponent created above

connect (sel f: MyPCOL, MyConpl nst: PCOL) ;

map(MyConpl nst: PCO2, system Ext PCOL) ;

MyConpl nst . start (MyBehavior(self)); // self is passed as a paraneter to MyBehavi or

EXAMPLE 3: Usage of component references in from- and to- clauses
M/PCQOL. r ecei ve from MyConpl nst ;
l\/:yPC@. receive(integer:?) -> sender MyConpl nst;
lVi/PCOl. recei ve(My/Tenpl ate) from MyConpl nst;
l\/:yPC(I. send(integer:5) to MyConpl nst;
EXAMPLE 4: Usage of component references in one-to-many connections

/1 The followi ng exanpl e expl ains the case of a one-to-many connection at a Port PCOL

/1 where values of type ML can be received fromseveral conponents of the different types
/1 ConpTypel, ConpType2 and ConpType3 and where the sender has to be retrieved.

/1 In this case the followi ng schene nay be used:

var ML MyMessage, MyResul t;
var MyConpTypel Mylnstl := null;
var MyConpType2 Mylnst2 := null;
var MyConpType3 Mylnst3 := null;
alt {
[] PCOL.receive(M:?) fromMlnstl -> val ue MyMessage sender Mylnstl {}

[T PCOL.receive(M:?) fromM/Inst2 -> value MyMessage sender Mylnst2 {}
[T PCOL.receive(M:?) fromM/Inst3 -> value MyMessage sender Mylnst3 {}

}

WResult : = MyMessageHandl i ng(MyMessage) ; /1 some result is retrieved froma function

i].‘ (MyInstl I'= null) {PCOL. send(M/Result) to Mylnst1};
if (MlInst2 !'=null) {PCOL send(M/Result) to Myl nst2};

ETSI

66 ETSI ES 201 873-1 V4.7.1 (2015-06)

if (MInst3 !'= null) {PCOL. send(M/Result) to Ml nst3};

EXAMPLE 5: Usage of self

var MyConponent Type MyAddress;
M/Address : = self; // Store the current conponent reference

EXAMPLE 6: Usage of component arrays

/1 This exanpl e shows how to nodel the effect of creating, connecting and running arrays of
/1 conmponents using a |loop and by storing the created conponent reference in an array of
/1 conponent references.

testcase MyTest Case() runs on MM cType system MyTest System nterface
{

vér integer i;

var MyPTCTypel MPtc[11];

for (i:= 0: i<=10; i:=i+1)

{
MyPtc[i] := My/PTCTypel. create;
connect (sel f: Pt cCoordi nati on, MyPtc[i]: M cCoordi nation);
MyPtc[i].start(M/PtcBehaviour());

6.2.12 Addressing entities inside the SUT

An SUT may consist of several entities which can be addressed individually. The global address data type may be used
if only one data type is needed. If several data types at different ports are needed for addressing SUT entities, the type
used for addressing via a port instance shall be declared in the corresponding port type definition.

Syntactical Structure

Tenpl at el nst ance
Semantic Description

The actual data representation of the global addr ess type is resolved either by an explicit global address type
definition within the test suite, address type definitions within port definitions, or externally by the test system (i.e. the
addr ess type is left as an open type within the TTCN-3 specification). This allows abstract test cases to be specified
independently of any real address mechanism specific to the SUT.

If an addr ess type is bound to a port type definition, addressing of SUT instances (i.e. t 0- and f r omdirectives in
communication operations) via instances of that port type shall be restricted to values of the bound addr ess type.

If several address types exist within a test suite, ambiguities shall be resolved by means of the dot notation. For
example, a type reference within a variable definition used to store an SUT address may be prefixed by a port type
identifier or a module identifier. If both a global address type definition and port definitions with an address type
definition exist in a module, the global address type shall only affect ports without an explicit address type definition.
The consistent use of explicit address type definitions within port definitions is recommended over the use of global
address type definitions.

Explicit SUT addresses for a globally defined address type shall only be generated inside a TTCN-3 module if the type
is defined inside the module itself. If the type is not defined inside the module, explicit SUT addresses for a global
address type shall only be passed in as parameters or be received in message fields or as parameters of remote
procedure calls.

In addition, the special value nul | is available for the addr ess type to indicate an undefined address, e.g. for the
initialization of variables of the address type.

If a port type definition includes the declaration of a type that shall be used for addressing SUT entities, only values of
that type shall be used in t 0, f r omand sender parts of receive and send operations of port instances of that type
mapped to the test system interface.

ETSI

67 ETSI ES 201 873-1 V4.7.1 (2015-06)

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Templatelnstance shall be of type addr ess or of the type of the address declaration in a port type definition.
If Templatelnstance is of type addr ess, it and can be an address type value, an address type variable, etc.

b) For addressing purposes, the addr ess data type shall only be used in the t 0, f r omand sender parts of
receive and send operations of ports mapped to the test system interface.

¢) The addr ess data type shall not be used in the t 0, f r omand sender parts of receive and send operations
of connected ports, i.e, ports used for the communication among test components.

Examples

EXAMPLE 1: Global address type

/1 Associates the type integer to the open type address
type integer address;

/) new address variable initialized with null
var address MySUTentity := null;

/) recei ving an address value and assigning it to variable MySUTentity
PCO. recei ve(address: ?) -> value M/SUTentity;

/) usage of the received address for sending tenplate M/Result
PCO send(M/Result) to MySUTentity;

/] usage of the received address for receiving a confirnation tenplate
PCO. recei ve(MyConfirmation) from MySUTentity;

EXAMPLE 2: Port type-specific address type

type record MyAddressType { /'l user-defined type
integer fieldi;
bool ean fiel d2;

type port MyPort Type nessage {
address MyAddr essType; /1 address decl aration
i nout i nt eger;

}
type conponent MyConponent Type
port MyPort Type PCG,
function nyFunction () runs on MyConponent Type {
var MyAddressType SUT_Address := { 5, true}; /] address value for addressing via ports
/1 of MyPort Type
iDCO. send(integer: 5) to SUT_Address; /1 use of address value in to

iDCO. receive(integer: ?) from SUT_Address; /'l use of address value in from

}
EXAMPLE 3: Elaborated address example
type AddressTypel address; /'l address type definition on nodule I|evel

type port MyPort Typel nessage {
i nout MsgTypel;
}

/] address types bound to port types
type port MyPortType2 nessage {
addr ess AddressType2; /1 val ues of type AddressType2 can be
/] used to address SUT entities.
i nout MsgType2;

}
type port MyMessagePort3 nessage {
address AddressType3; /'l values of type AddressType3 can be
/1 used to address SUT entities.
i nout MsgTypes3;
}

ETSI

68 ETSI ES 201 873-1 V4.7.1 (2015-06)

/] conponent type definition
type conponent MyConponent Type

port MyPort Typel PCQOL,;
port MyPort Type2 PCO2;
port MyPort Type3 PCC3

/1l The follow ng behaviour is considered to be executed on an instance of MyConponent Type.
/'l Furthernore, it is considered that the ports PCOL, PCO2 and PCO3 are napped ports, i.e.
/1 used for the communication with the SUT.

/1l new address variable initialized with null

var address MySUTentityl := null; /1 type of MySUTentityl is AddressTypel
var MyPort Type2. address MySUTentity2 := null; /1 type of MySUTentity2 is AddressType2
var MyPort Type3. address MySUTentity3 := null; /1 type of MySUTentity3 is AddressType3

/'l receiving an address val ues and assigning themto variabl es
PCOL. recei ve(MsgTypel: ?) from address:? -> sender MySUTentityl;
/1 Address type of nodul e scope,
/1 no prefix needed
PCQ2. recei ve(MsgType2: ?) from MyPort Type2. address: ? -> sender MySUTentity2;
/! Resolution of address type
/1 by neans of a prefix
PC33. recei ve(MsgType3: ?) from MyPort Type3. address: ? -> sender MySUTentitys3;

/) usage of the received address val ues for addressing purposes
PCOL. send(M/Result) to MySUTentityl;

PCOZ. receive(MyConfirmation) from MySUTentity2;

PCOB. send(M/Request) to MySUTentitys3;

6.2.13 Subtyping of structured types

TTCN-3 allows subtyping of structured types as given in table 3.

6.2.13.1 Length subtyping of record ofs and set ofs
TTCN-3 permits constraining the number of elements in instances of r ecor d of and set of types.

The | engt h keyword followed by a value or a range (with inclusive boundaries only) within brackets and used
between the r ecord orset and the of keywords, restricts the allowed lengths of the given r ecor d of or set

of type. The value or the bounds within the brackets shall be non-negative integer values, except when the i nfinity
keyword is used at the place of the upper bound, in which case the maximum number of the elements is not constrained.

Record of and set of type definitions may be used to define new r ecord of orset of subtypes. In this case the
rules of the previous paragraph apply, except that the | engt h keyword and the value or range defining the allowed
number of iterations (within brackets) shall be placed following the identifier of the new type.

Constants used in the constant expressions of length subtyping shall meet with the restrictions in clause 10.

EXAMPLE 1: Length restrictions of record of and set of types

type record | ength(10) of integer MyRecordOf TypelO;
/Il is arecord of exactly 10 integers

type record | ength(0..10) of integer MyRecordOf TypeO_10;
/1 is a record of a maxi numof 10 integers

type record | ength(10..infinity) of integer M/RecordOf TypelOup;
/1 record of at least 10 integers

type record length(O..infinity) of integer M/RecordO TypeOup;
/1 an unrestricted record of integer type

EXAMPLE 2: Length subtyping of referenced record of types

type record of charstring StringArray;
// is an unlimted record of, each elenent shall be a charstring

type StringArray StringArray34 length(4 .. 5);
I/l is arecord of 4 or 5 elenents, each elenent is a charstring

ETSI

69 ETSI ES 201 873-1 V4.7.1 (2015-06)

/1 it is equivalent to
/1 type record length(4 .. 5) of charstring StringArray34a;

type StringArray34 StringArray34again length(4 .. 5);
/'l the same as StringArray34

type StringArray34 StringArray6 | ength(6);
/] causes an error as record ofs with 6 el ements are not |egal values of StringArray34

EXAMPLE 3: Length subtyping of referenced set of types

type record MyCapsul e {
set of integer nySetOf I nt

}

type MyCapsul e.nySetOf I nt MySet Of I nt Sub | engt h(5..10);
/1 unordered list of 5 to 10 integers

6.2.13.2 List subtyping of structured types and anytype

List subtyping is possible when defining a new type based on an existing parent type, but not directly at the declaration
of the first parent type (see table 3).

Subtypes defined by a list subtyping restrict the allowed values of the subtype to the values matched by at least one of
the constraints in the list. In case of list subtyping of r ecor d, set ,record of,set of,uni onandanytype
types, the list may contain both subtypes and possibly partial templates of the parent types. Subtype references shall be
resolved in a recursive way: the collection of templates denoted by the subtype(s) referenced in the list become
members of the new subtype definition with an expanded list containing only possibly partial templates. When
constraining r ecor d of ,set of, uni on and anyt ype types, all templates of the expanded list (i.e. after
resolving the subtype references) shall be valid (i.e. complete) templates of the first parent type. When constraining
record and set types, templates of the expanded list defined using the value list notation shall be valid (i.e.
complete) templates, while templates of the expanded list defined using the field assignment notation may be partial
(i.e. incomplete). In the latter case, the fields that are not explicitly present shall be considered as containing AnyValue
for mandatory fields and AnyValueOrNone for optional fields.

NOTE: Users should assign new values to single fields of values/templates based on types using list subtyping
cautiously: it may happen that the new field value would be valid with other combination(s) of the rest of
the fields but causes an erroneous record/set value, when combining with the actual values of the other
fields. See example 1 below.

In case of enumner at ed types, the template list subtyping shall contain only values of the parent type.

EXAMPLE 1: List subtyping of record types

type record MyRecord {
i nt eger f1 optional,
charstring f2,
charstring f3

}

type MyRecord MyRecordSubl (
{ fl1:=omt, f2 := "user", f3 := "password" },
{ f1:=1, f2 := "User", f3 := "Password" }

) /1 a valid subtype of MyRecord containing 2 val ues

type M/Record MyRecordSub2 (

MyRecor dSub1,
{ f1:=2, f2 := "unane", f3 := "pswd" },
{ f1:=3, f2 := "Uname", f3 := "Pswd" }

) // a valid subtype of MyRecord, containing 4 values; notice that val ues of
/1 MyRecordSubl are identified by referencing M/RecordSubl

type MyRecordSubl MyRecordSub3 (

{ fl1:=1, f2 := "user", f3 := "password" },
{fl1:=1, f2 :="User", f3 := "Password" }
) // invalid type as { f1 :=1, f2 := "user", f3 := "password" } is not a |legal value of

/'l MyRecordSubl (notice field f1)
type MyRecord MyRecordSub4 (

{ f2 := "user", f3 := "password" },
{ f2 := "User", f3 := "Password" }

ETSI

70 ETSI ES 201 873-1 V4.7.1 (2015-06)

) // any valid value of MyRecord, where the conbination of f2 and f3 is
/] f2 := "user" AND f3 := "password" or f2 := "User" AND f3 : = "Password"
I/l i.e. field flis considered as if it was present and contai ned AnyVal ueOr None

type MyRecord MyRecordSub5 (
{ f2 := "user", f3 := pattern "password| Password" },
{fl1:=(1.. 10), f2 := "User" }

) /1 a valid subtype of MyRecord containing all values which match one of the given
/1 tenpl ates

/I { f1:=* f2 :="user", f3 := pattern "password| Password" } or
/r{f1:=(1.. 10), f2 := "User", f3 := 721}

type record R { integer k, integer i, integer j }

type RR2 ({ ki=1, i :=2}, { k=2, i :=3})

function inc(inout integer p) {
p:=p+1

function f() {
var R x :={ 1, 2, 5}
x.k :=2; /] error, as the value {2,2,5} is not allowed
inc(x.i); // error, as the value {1,3,5} is not allowed
/'l (previous erroneous assignment is ignored here)
inc(x.j); // allowed

EXAMPLE 2: List subtyping of record of types
type record of charstring StringArray;

type StringArray StringArrayListl (
{ "aa" },
{ "bbb", "cc" },
{ "ddd", "ee", "ff" }

); /1 valid subtype of StringArray

type StringArrayListl StringArrayList2 (
{ "aa" },
{ "bbb", "cc" }

); /1 valid subtype of StringArraylListl

type StringArrayListl StringArrayList3 (
StringArrayli st 2,
{ "ddd", "ee", "ff" }

); // valid, but equivalent to StringArraylListl

type StringArrayListl StringArrayList4 (
StringArraylList2,
{ "ddd", "ee", "fff" }

); Il enpty type as { "ddd", "ee", "fff" } is not a value of StringArrayListl
/1 (notice the extra character f in the third el enent)

EXAMPLE 3: List subtyping of union types

type uni on MyUnion {
i nt eger cl,
charstring c2,
charstring c3

b

type MyUni on MyUni onSubl (
{ cl:=01},
{cl:=1}

); // a valid subtype of MyUnion containing tw val ues

type MyUni on MyUni onSub2 (

MyUni onSub1,
{ c2 :="mne" },
{ ¢3 :="yours" }

); // a valid subtype of MyUnion containing four values; notice that val ues of
/1 MyUnionSubl are identified by referenci ng M/Uni onSubl

type MyUni onSubl MyUni onSub3 (

{ cl1:=01},
{cl:=21}
); I/ causes an error as { cl :=2} is not a value of MyUnionSubl

ETSI

71 ETSI ES 201 873-1 V4.7.1 (2015-06)

EXAMPLE 4: List subtyping of enumerated types
type enunerated MyEnum{ first, second, third, fourth, fifth };

type MyEnum Enuntubl (first, second, third);
// a valid subtype of MyEnum

type EnunBubl EnuntBub2 (first, second);
/1 a valid subtype of Enunfubl

type EnunBSubl EnuntSub3 (first, second, fourth);
/1 causes an error as fourth is not a value of EnunSubl

type MyEnum EnuntBub4 (Enunfubl, fourth);

/] causes an error as type references are not allowed in the tenplate |ist
/1 of enumerated types

EXAMPLE 5: List subtyping of anytype

type anytype MyAnySubl (
{ integer := 51},

{ boolean := false },
{ bitstring := "'0011'B },
{ charstring := "mne" },

{ MJEnum := first }
); // a valid subtype of anytype, consisting of 5 values

type MyAnySubl MyAnySub2 (
{ integer := 5},
{ boolean := false },
{ bitstring := '0011'B }
); /1 a valid subtype of MyAnySubl, consisting of 3 val ues

type anytype MyAnySub3 (
MyAny Sub2,
{ octetstring := "FF O}

); /1l a valid subtype of anytype, consisting of 4 values, 3 of which are defined
/1 by referring to M/AnySub2

type MyAnySubl MyAnySub4 (
{ integer 51},
{ boolean := false },
{ MyEnum : = second }
); I/ causes an error as { MyEnum:= second } is not a value of MyAnySubl

type M/AnySubl MyAnySub5 (

MyAny Sub3,
{ MYEnum : = first }
); I/ causes an error as { octetstring :="'FF O} (defined via referencing M/AnySub3) is

/1 not a value of MyAnySubl

type record R{ integer k, integer i, integer j }
type RR2 ({ ki=1, i :=2}, { ki=2, i :=3})

function g() {
var R x :={ 1, 2}
x.k :=2;, Il error

}

6.2.13.3 Subtyping of the iterated type of record ofs and set ofs

A type restriction following the identifier of a newly defined r ecor d of orset of type (i.e. when the keywords
record and of orset and of are used in the definition) shall constrain the innermost type. The newly defined
iterated type shall be a subset of the innermost type. If the innermost type is a basic type, the subtyping rules in

clause 6.1.2 shall apply. If the innermost type is referencing a structured type or anyt ype, the rules in clauses 6.2.13.1
and 6.2.13.2 shall apply.

EXAMPLE 1: Subtyping of basic innermost types of record ofs and set ofs

type record of charstring String23Array length(2 .. 3);
/1 is an unlinmted record of, each elenent shall be a charstring of 2 or 3 characters

type record | ength(0..10) of charstring Stringl2Arrayl10 | ength(12);
/1 is a record of a maximumof 10 strings each with exactly 12 characters

ETSI

72 ETSI ES 201 873-1 V4.7.1 (2015-06)

type record of record of charstring Stringl2Array2D | engt h(12);
/1 is a two-dinensional unlimted array of strings each with exactly 12 characters

type set length(5) of set length(6) of charstring Stringl2Array2D56 |ength(12);
/1 is an unordered two-dinensional array of the size 5*6 strings, each with
/1 exactly 12 characters

const String23Array c_str23arr_a := { "aa", "bbb", "cc", "ddd", "ee", "ff" };
// valid, all charstrings are 2 or 3 characters |ong

const String23Array c_str23arr_b := { "a", "bbbb", "cc", "ddd", "ee", "ff" };
/] causes an error as "a" and "bbbb" are not 2 or 3 characters |ong

const Stringl2Array2D56 c_strl2arr2D56_a : = {

{ "aa", "aaa", "bb", "bbb", "cc", "ccc" },

{ "dd", "ddd", "ee", "eee", "ff", "fff" },

{ "gg", "ggg", "hh", "hhh", "ii", "iii" },

{"jj N T S ¢ {: S I I N Y B 3

{"m, "mm, “nn", "nnn", "o00", "o000" }
}; /1 valid, a 5*6 matrix of charstrings being 2 or 3 characters |ong
const Stringl2Array2D56 c_strl2arr2D56_b := {

{ "a", "aaa", "bb", "bbbb", "cc", "ccc" }
{ "dd", "ddd", "ee", "eee", "ff", "fff" }
{ "gg", "ggg", "hh", "hhh", "ii", "iii" }
ity "iii", "kk", "KKK",otLEt,otHEETM O}
{"m, "mm, "nn", "nnn", "o00", "oo00", "pp" }

}; /1 causes an error as "a" and "bbbb" are not 2 or 3 characters |ong and
/1 the 5th inner record of has 7 el enents

EXAMPLE 2: Length subtyping of structured innermost types of record ofs

type record of String23Array String23Array45 length(4 .. 5);

/1 is a two-dinensional array, the first dinension is unlimted,

/1 the second dinmension is restricted to 4 or 5 el ements and each el ement

I/l is a charstring of 2 or 3 characters. It is equivalent to:

/'l type record of record length(4 .. 5) of charstring String23Array45 length(2 .. 3);

const String23Array45 c_str23arr45_a : = {
{ "aa", "bbb", "cc", "ddd" },
{ "ee", "fff", "gg", "hhh", "ii" }
}; /1 valid, 4 or 5 elenents in the inner record of, all containing 2 or 3 characters

const String23Array45 c_str23arr45 b :={
{ "aa" , "bbb", "cc" }
}; //lcauses an error as there are only 3 elenents in the inner record of

const String23Array45 c_str23arr45 c = {
{ "aa", "bbbb", "cc", "dd" }
}; //causes an error as "bbbb" contains 4 characters

type record length(O .. 1) of String23Array String23Array0145 length(4 .. 5);

/1 is a two-dinensional array, the first dimension is limted to O or 1 el ements,
/1 the second dinmension is restricted to 4 or 5 elenents, each elenent is a

/1 charstring of 2 or 3 characters.

const String23Array0145 c_str23arr0145_a : = {
{ "aa", "bbb", "cc", "ddd" },
}; /1 avalid 1*4 array of charstrings, each of 2 or 3 characters

const String23Array0145 c_str23arr0145_a : = {
{ "aa", "bbb", "cc", "ddd" },
{ "ee", "fff". "gg". "hhh", "ii" }
}; I/ causes an error as there are two elenents in the outer record of

const String23Array0145 c_str23arr0145_b : = {
{ "aa" , "bbb", "cc" }
}; /1 causes an error as there are only 3 elenents in the inner record of
const String23Array0145 c_str23arr0145_c : = {
{ "aa", "bbbb", "cc", "dd" }
}; I/ causes an error as "bbbb" contains 4 characters
type record of String23Array45 String23Array6 | ength(6);

/] enpty type as String23Array45 is restricted to 4 or 5 elenents,
/1 thus length restriction 6 is outside the allowed range

ETSI

73 ETSI ES 201 873-1 V4.7.1 (2015-06)

6.2.134 Mixing subtyping mechanisms

In the case of structured types and the special type anyt ype, it is forbidden to mix different subtyping mechanisms
(e.g. list and length) in the same definition.

6.3 Type compatibility
Generally, TTCN-3 requires type compatibility of values at assignments, instantiations and comparison.

For the purpose of this clause the actual value to be assigned, passed as parameter, etc., is called value "b". The type of
value "b" is called type "B". The type of the formal parameter, which is to obtain the actual value of value "b" is called
type "A".

NOTE: Asaddress is more a predefined type name than a distinct type with its own properties, the same type
compatibility rules apply to an addr ess type and to its derivatives as the rules were if the type was
defined with a name different from addr ess.

6.3.1 Compatibility of non-structured types

For variables, constants, templates, etc. of simple basic types and basic string types the value "b" is compatible to type
"A" if type "B" resolves to the same root type as type "A" (e.g. i nt eger) and it does not violate subtyping

(e.g. ranges, length restrictions) of type "A". Compatibility between charstring and universal charstring is defined
below.

EXAMPLE 1: Compatibility of integers

/1 Gven
type integer Mylnteger(1l .. 10);

var integer Xx;
var Mylnteger y;

/1 Then
y :=5; /] is a valid assignnment
X 1=y,

/1 is a valid assignnent, because y has the sane root type as x and no subtyping is viol ated

x
1

20; // is a valid assignnent
1= X
/ is NOT a valid assignnment, because the value of x is out of the range of M nteger

<
|

=5; // is a valid assignment
= X
i

X
/ s a valid assignnent, because the value of x is now within the range of Ml nteger

/
EXAMPLE 2: Compatibility of floats

/1 Gven
type float PositiveFloats(0.0 .. infinity);

var PositiveFloats x;
var float vy;

/1 Then

y :=5.0; // is a valid assignnent

X 1=y,

/1 is a valid assignnent, because y has the sane root type as x and no subtyping is violated

:=-20.0; // is a valid assignnent
HER
| causes an error, because the value of y is out of the range of PositiveFloats

X<

not _a_nunber; // is a valid assignnent

X<

| causes an error, because the value not_a_nunber is out of the range of PositiveFloats

ETSI

74 ETSI ES 201 873-1 V4.7.1 (2015-06)

EXAMPLE 3: Compatibility of charstrings

/1 G ven

type charstring MyChar length (1);

type charstring MySingleChar length (1);
var MyChar nyCharacter;

var charstring nyCharString;

var MySi ngl eChar nySingl eCharString := "B";

/1 Then

myChar String : = nySingl eChar Stri ng;

/lis a valid assignnent as charstring restricted to length 1 is conpatible with charstring.
nyCharacter := nySingleCharString;

/lis a valid assignnent as two single-character-length charstrings are conpati bl e.

/1 G ven
myChar String : = "abcd";

/1 Then
myCharacter := nmyCharString[1];
/lis valid as the r.h.s. notation addresses a single element fromthe string

/1 G ven
var charstring nmyCharacterArray [5] := {"A", "B", "C', "D', "E"}

/1 Then
nyChar String : = nyCharacterArray[1];
/lis valid and assigns the value "B" to nyCharString;

For variables, constants, templates, etc. of char st ri ng type, value 'b' is compatible with a uni ver sal
char st ri ng type 'A' unless it violates any type constraint specification (range, list or length) of type "A".

For variables, constants, templates, etc. of uni ver sal char st ri ng type, value 'b' is compatible with a

char st ri ng type 'A"if all characters used in value 'b' have their corresponding characters (i.e. the same control or
graphical character using the same character code) in the type char st ri ng and it does not violate any type constraint
specification (range, list or length) of type "A".

EXAMPLE 4: Compatibility of character and universal character strings

/1 G ven
type charstring MyChar length (1);

var MyChar nyCharacter;
var charstring nyCharString;
var universal charstring nyUni vChar Stri ng;

/1 Gven
myChar String : = "abcd";

/1 Then

myUni vChar String := nmyChar String

/lis valid as charstring and universal charstring are conpatible
nyCharacter := nyUnivCharString [1];

/1l is valid as the r.h.s. notation addresses a single elenent of the string,
/1 containing a character conpatible with charstring

/1 Gven
myUni vChar String := "bet" & char (0, 0, 1, 113);

/1 Then
myChar String : = nyUni vChar Stri ng;
/] is invalid as nyUnivCharString contains a character not in | SO 646.

/1 Gven
var charstring nmyCharacterArray [5] := {"A", "B", "C', "D', "E"}

/1 Then

myChar String : = nyCharacterArray[1];
// is valid and assigns the value "B" to nyCharString;

ETSI

75 ETSI ES 201 873-1 V4.7.1 (2015-06)

6.3.2 Compatibility of structured types

This clause defines compatibility rules for structured types. In subsequent clauses, "value "b"" is called the value to be
assigned, e.g. when passed as parameter, to an object of type "A".

6.3.2.1 Compatibility of enumerated types

Enumerated types are only compatible to synonym types (see clause 6.4) and not compatible with other basic or
structured types.

6.3.2.2 Compatibility of record and record of types

r ecor d types are compatible if the number, and optional aspect of the fields in the textual order of definition are
identical, the types of each field are compatible and the value of each existing field of the value "b" is compatible with
the type of its corresponding field in type "A". The value of each field in the value "b" is assigned to the corresponding
field in the value of type "A".

EXAMPLE 1:
/1l Gven
type record AType {
i nt eger a(0..10) optional ,
i nt eger b(0..10) optional ,
bool ean c
}
type record BType {
i nt eger a optional ,
i nt eger b(0..10) optional ,
bool ean c
}
type record CType { /1 type with different field names
i nt eger d optional,
i nt eger e optional,
bool ean f
}
type record DType { /Il type with field c optional
i nteger a optional ,
i nt eger b optional,
bool ean c optional
}
type record EType { /'l type with an extra field d
i nt eger a optional,
i nt eger b optional ,
bool ean c,
f | oat d opti onal
}
var AType MyVarA := { -, 1, true};
var BType MyVarB := { omt, 2, true};
var CType MyVarC := { 3, omt, true};
var DType MyVarD := { 4, 4, true};
var EType MyVarE := { 5, 5, true, omt};

/1 Then

MyVar A : = MyVar B; /1 is a valid assignnent,
/1 new value of MyVarAis (a :=onitted, b:
MyVar C : = MyVar B; /1 is a valid assignnment
/1 new value of M\VarCis (d :=omtted, e:= 2, f:= true)
MyVar A : = MyVar D; /1 is NOT a valid assignment because the optionality of fields does not
/1 match

2, c:=true)

MyVar A : = MyVarE; /1 is NOT a valid assignnent because the nunber of fields does not natch
MVarC := { d:= 20 };// actual value of MyVarCis { d:=20, e:=2,f:=true }
MyVar A : = MyVar C /1 is NOT a valid assignment because field 'd of MyVarC violates subtyping

/1 of field 'a" of AType

ETSI

76 ETSI ES 201 873-1 V4.7.1 (2015-06)

recor d of types and arrays are compatible if their element types are compatible and value "b" does not violate any
length subtyping of the r ecor d of type "A" or dimensions of the array type. Values of elements of the value "b" shall
be assigned sequentially to the instance of type "A", including undefined elements.

Two array types are compatible if their corresponding r ecor d of types are compatible.

EXAMPLE 2:

/1 Gven

type record HType {
i nteger a,
integer b optional,
integer c

}

type record of integer |Type

var HType MyVarH := { 1, onit, 2};
var | Type MyVarl;

var integer MArrayVar[2];

/1 Then

M/ArrayVar := MyVarH;
/1 is NOT a valid assignnent as type of MyArrayVar and HType are inconpatible

MyVarl := MyVarH,

/1 is NOT a valid assignment as the types are inconpatible
MyVarl = { 3, 4 };

MyVarH : = MyVarl ;

/1 is NOT a valid assignment as the mandatory field 'c' of Htype receives no val ue

6.3.2.3 Compatibility of set and set of types

set types are only compatible with other Set types and set of types are only compatible with other set of types.
For set types the same compatibility rules shall apply as to r ecor d types and for set of types the same
compatibility rules shall apply as to r ecor d of types.

NOTE 1: This implies that though the order of elements at sending and receipt is unknown, when determining type
compatibility for set types, the textual order of the fields in the type definition is decisive.

NOTE 2: Inset values the order of fields may be arbitrary, however this does not affect type compatibility as field
names unambiguously identify, which fields of the related set type correspond to which set value
fields.

EXAMPLE:

/1 Gven

type set FType {
integer a optional,
integer b optional,
bool ean ¢

}

type set Glype {
integer d optional ,
integer e optional,
bool ean f

}

var FType MyVar

F :=1, c:=true };
var GIype MyVarG : =

‘=true, d:=7};
/1 Then
MyVarF : = MyVar G /1 is a valid assignnent as types FType and GIype are conpatible

MyVar F : = MyVar A; /1 is NOT a valid assignnent as M/VarA is a record type

ETSI

77 ETSI ES 201 873-1 V4.7.1 (2015-06)

6.3.2.4 Compatibility of union types

union types are only compatible with other union types. A union value "a" of union type "A" is compatible with union
type "B" if the alternative selected in "a" has a corresponding alternative with identical name in "B" and the value of the

selected alternative in "a" is compatible to the type of the corresponding alternative in "B".

EXAMPLE:

type union Ul {integer i};
type union W2 {integer i, boolean b};

var Ul ul := {i := 1};
var U2 u2 := ul; /1 correct
ul: = u2; /] correct as the alternative i is selected in u2 and is conpatible
/1l toi in Ul
u2: = {b := true};
ul: = u2; /1 incorrect as ul has no alternative b
var anytype x := ul; /1 incorrect as the anytype is not a union type.
6.3.2.5 Compatibility of anytype types

anytype types are only compatible with other anytype types. An anytype value "a" of anytype type "A" is compatible
with anytype type "B" if the alternative selected in "a" has a corresponding alternative with identical name in "B" and
the value of the selected alternative in "a" is compatible to the type of the corresponding alternative in "B". Identical
alternative names in this case mean the name of a TTCN-3 basic type or the name of the same user defined type

definition (considering also the module in which the type is defined).

EXAMPLE:

nmodul e A {
type integer | (0..2);
type float F;

type anytype Atype //anytype conposed of TTCN-3 built-in basic types, |, and F
}
modul e B {
type integer | (0..2);
type anytype Atype
}
nodul e C {
import fromA all;
import fromB all;
type union U {
integer | (0..2)
control {
var A Atype aa;
var A Atype aal :={ | :=1}
var A Atype aaF :={ F:= 1.0}
var B.Atype ba :={ integer :=11}
var B.Atype bal :={ 1 :=11}
var Uu:={ 1 :=1}
aa : = ba; Il correct, the value of aal becones { integer := 1}
aa : = bal; /'l incorrect, type B.l is not present in the anytype A Atype
aa ;= u; Il incorrect, type of u is not anytype but a user defined union type
ba :={ float := 1.0 }; // correct, assigning a literal value
ba : = aal; /'l incorrect, type Al is not present in the anytype B. Atype
ba : = aaF; /1 incorrect, type A.F is not present in the anytype B. Atype
}
}

ETSI

78 ETSI ES 201 873-1 V4.7.1 (2015-06)

6.3.2.6 Compatibility between sub-structures
The rules defined in this clause for structured types compatibility are also valid for the sub-structure of such types.
EXAMPLE:
/1 Gven
type record JType {
HType H,
integer b optional,
integer c
}
var JType MyVarJ
/1 If considering the declarations above, then

MyVarJ. H : = MyVar H;

I/l is a valid assignnent as the type of field H of JType and HType are conpati bl e
MyVarl = MyVarJ. H
/1 is a valid assignnent as | Type and the type of field H of JType are conpati bl e

6.3.3

Compatibility of component types

Type compatibility of component types has to be considered in different conditions:

1)

2)

3)

4)

Compatibility of a component reference value with a component type (e.g. when passing a component
reference as an actual parameter to a function or an altstep or when assigning a component reference value to a
variable of different component type): a component reference "b" of component type "B" is compatible with
component type "A" if all definitions of "A" have identical definitions in "B".

Runs on compatibility: a function or altstep referring to component type "A" in its runs on clause may be
called or started on a component instance of type 'B' if all the definitions of "A" have identical definitions in
HBH'

Mtc compatibility: a function or altstep referring to component type "A" in its mtc clause may be called or
started in any context that has a mtc clause of type "B" or a testcase with a runs on clause of type "B" if all the
port definitions of "A" have identical definitions in "B". If the type of the mtc is unknown in the calling
function, this can lead to runtime errors if the component type "A" is not mtc-compatible with the type of the
running mtc.

System compatibility: a function or altstep referring to component type "A" in its system clause may be called
or started in any context that has a system clause of type "B" or a test case with a runs on clause of type "B"
and no system clause if all the port definitions of "A" have identical definitions in "B". If the type of the
system is unknown in the calling function, this can lead to runtime errors if the component type "A" is not
system-compatible with the type of the system the current test case was started on.

Identity of definitions in "A" with definitions of "B" is determined based on the following rules:

a)
b)

¢)

d)

For port instances, both the type and the identifier shall be identical.

For timer instances, identifiers shall be identical and either both shall have identical initial durations or both
shall have no initial duration.

For variable instances and constant definitions, the identifiers, the types and initialization values shall be
identical (in case of variables this means that either the values are missing in both definitions or are the same).

For local template definitions, the identifiers, the types, the formal parameter lists and the assigned template or
template field values shall be identical.

ETSI

79 ETSI ES 201 873-1 V4.7.1 (2015-06)

6.3.4 Type compatibility of communication and connection operations

The communication operations (see clause 22) send, r ecei ve,tri gger,call, getcal |l ,reply,getreply
and r ai se and connection operations connect, map, di sconnect and unmap (see clause 21.1) are exceptions
to the weaker rule of type compatibility and require strong typing. The types of values or templates directly used as
parameters to these operations shall also be explicitly defined in the associated port type definition. Strong typing also
applies to storing the received value, address or component reference during a r ecei ve ort ri gger operation.

EXAMPLE:
type record MRec {...} /'l user defined type
type MyRec MyRecAli as; /1 a type alias

type port MyPort nessage { inout M/Rec, MyRecAlias; } /1 port that can transport both types
type conponent MyConponent { port MyPort P; }

tenpl ate MyRecAlias t_M/RecAlias:= {...} /1 a tenplate of the alias type
var MyConponent mnyConpl : = MyConponent.create, nyConp2 := MyConponent.create;

connect (nyConpl: P, myComp2: P) /1 two connected PTCs via ports that can
/1 transport the user-defined and the alias type

/1 in nyConpl:
P.send (t_M/RecAli as); /'l sending of tenplate of alias type
/1 in nyConp2:

P.receive (MRec:?);

/1 shall not match as the transmitted tenplate is of the alias type and

/1l not of the user-defined type

/1 in nyConp2:

var MyRec Xx;

P.receive (M/RecAlias:?) -> value x;

/1 shall cause an error since also storing the value requires strong typing

6.3.5 Type conversion

If it is necessary to convert values of one type to values of another type, because their types have different root types,
then either one of the predefined conversion functions defined in clause 16.1.2 or a user defined function shall be used.

EXAMPLE:

I/l To convert an integer value to a hexstring value use the predefined function int2hex
M/Hstring : = int2hex(123, 4);

6.4 Type synonym

A type can be defined as a synonym to another type. Type synonyms can be defined for all kinds of types. Synonym
types are compatible.

EXAMPLE:

type My Typel MyType2; // MyType2 is synonymto M/Typel

7 Expressions

TTCN-3 allows the specification of expressions. TTCN-3 expressions may be template references, value references or
literals (i.e. no operation is involved), and may be composed of the operators defined in clause 7.1.

NOTE: Templates can be used at the RHS of assignment, parameter passing and (predefined) functions where
template passing is explicitly allowed.

ETSI

80 ETSI ES 201 873-1 V4.7.1 (2015-06)

Syntactical Structure

Si ngl eExpression |

"{" { (FieldReference ":=" (Expression | "-")) [","] } "}" | [/ conpound expression

“{" [{ (Expression | "-") [","] } 1 "}" /| conpound expression
Semantic Description

Expressions may be built from other (simple) expressions. Functions used in expressions shall have a return clause. The
operands of the operators used in an expression shall be values and their root types shall be the types specified for the
appropriate operator in the subsequent clauses.

Compound expressions are used for expressions of array, record, record of and set of types.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) At the point, when an expression is evaluated, the evaluated values of the operands used in expressions shall
be completely initialized except where explicitly stated otherwise in the specific clause of the operator.

b) The root types of the operands shall be the types specified for the appropriate operand.

¢) With the exception of the equality and non-equality operators, the special value nul | shall not be used as an
operand of expressions (see clause 7.1.3).

This means also that all fields and elements of structured types referenced in an expression shall contain completely
initialized values, while other fields and elements, not used in the expression, may be uninitialized or contain omi t .

Examples
(x +y - increment(z))*3 /1 single expression
{ aa=1, b:=true} /1 conpound expression, field expression |ist
{ 1, true} /1 conpound expression, value |ist

7.1 Operators

TTCN-3 supports a number of predefined operators that may be used in the terms of TTCN-3 expressions. The
predefined operators fall into seven categories:

a) arithmetic operators;
b) list operator;
c) relational operators;
d) logical operators;
e) Dbitwise operators;
f) shift operators;
g) rotate operators.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) When an expression is evaluated, the evaluated values used as the operands of operators shall be completely
initialized, except for those operands for which it is explicitly allowed to be partially initialized (see
clause 11.1).

These operators are listed in table 5.

ETSI

81 ETSI ES 201 873-1 V4.7.1 (2015-06)

Table 5: List of TTCN-3 operators

Category Operator Symbol or Keyword
Arithmetic operators addition +
subtraction -
multiplication *
division /
modulo mod
remainder rem
String operators concatenation &
Relational operators equal ==
less than <
greater than >
not equal =
greater than or equal >=
less than or equal <=
Logical operators logical not not
logical and and
logical or or
logical xor xor
Bitwise operators bitwise not not4b
bitwise and and4b
bitwise or ordb
bitwise xor xor4b
Shift operators shift left <<
shift right >>
Rotate operators rotate left <@
rotate right @>

The precedence of these operators is shown in table 6. Within any row in this table, the listed operators have equal
precedence. If more than one operator of equal precedence appears in an expression, the operations are evaluated from
left to right. Parentheses may be used to group operands in expressions, in which case a parenthesized expression has
the highest precedence for evaluation.

Table 6: Precedence of Operators

Priority Operator type Operator
highest (...)
Unary +, -
Binary * [, mod, rem
Binary + - &
Unary not4b
Binary and4b
Binary xordb
Binary ordb
Binary <<, >> <@, @>
Binary <, >, <=, >=
Binary ==, 1=
Unary not
Binary and
Binary xor
Lowest |Binary or

ETSI

82 ETSI ES 201 873-1 V4.7.1 (2015-06)

7.1.1 Arithmetic operators

The arithmetic operators represent the operations of addition, subtraction, multiplication, division, modulo and
remainder. Operands of these operators shall be of i nt eger values (including derivations of i nt eger) or
floating-point numbers (including derivations of f | 0at , containing numeric values only), except for nod and r em
which shall be used with i nt eger (including derivations of i nt eger) types only.

The usage of the special float valuesi nfinity,-infinityandnot_a_nunber in arithmetic operators shall
follow the rules defined in IEEE 754 [6].

With i nt eger types, the result type of arithmetic operations is i nt eger . With float types, the result type of
arithmetic operations is f | oat .

In the case where plus (+) or minus (-) is used as the unary operator the rules for operands apply as well. The result of
using the minus operator is the negative value of the operand if it was positive and vice versa. The result of using the
plus operator is the value of the operand, i.e. a positive value if the operand value was positive and a negative value if
the operand value was negative.

The result of performing the division operation (/) on two:

a) i nteger values gives the whole i nt eger part of the value resulting from dividing the first i nt eger by
the second (i.e. fractions are discarded);

b) numeric f | oat values gives the f | oat value resulting from dividing the first f | oat by the second
(i.e. fractions are not discarded).

The operators r emand nod compute on operands of type i nt eger and have a result of type i nt eger . The
operations X remy and X nmod y compute the rest that remains from an integer division of X by y. Therefore, they
are only defined for non-zero operands y. For positive X and y, both X r emy and X nod y have the same result but for
negative arguments they differ.

Formally, mod and r emare defined as follows:

X remy =x -y * (xly)

x mod y = x rem|y| when x >= 0
=0 when Xx <0 and xrem]|y|l =0
= |yl +xrem]y| when x <0 and x rem|y| <O

Table 7 illustrates the difference between the mod and rem operator:

Table 7: Effect of mod and rem operator

X -3 -2 -1 0 1 2 3
x mod 3 0 1 2 0 1 2 0
x rem 3 0 -2 -1 0 1 2 0

7.1.2 List operator

The predefined list operator (&) performs concatenation of values of string types, r ecord of ,set of,orarray of
the same root types. The operation is a simple concatenation from left to right. No form of arithmetic addition is
implied. The result type is the root type of the operands.

NOTE 1: In case of the list types, both the outer type (i.e. r ecord of ,set of orarray) and the iterated inner
type need to have the same root type in a recursive manner.

NOTE 2: It is also possible to concatenate two or more value list notation expressions if the result is to be used as a
record of orarray ofthe same root type as the concatenated expressions.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) When the list concatenation operator is used for record of-s, set of-s and arrays, its operands shall be at least
partially initialized.

ETSI

83 ETSI ES 201 873-1 V4.7.1 (2015-06)

EXAMPLE:

"1111'B & '0000'B & '1111'B gives '111100001111'B
{1,2} & {3,4} & {5,6} gives the followi ng record of integer {1,2,3,4,5,6}

7.1.3 Relational operators

The predefined relational operators are equality (==), less than (<), greater than (>), non-equality to (! =), greater than
or equal to (>=) and less than or equal to (<=). The result type of all these operations is bool ean.

The relational operators less than (<), greater than (>), greater than or equal to (>=), and less than or equal to (<=) shall
have only operands of type i nt eger (including derivations of i nt eger), f | oat (including derivations of f | oat),
or instances of the same enumer at ed type. It is not allowed to compare instances of different root types.

The addr ess type is allowed for the equality (==) and non-equality (!=) operators, independent of its actual type, but
when its actual type differs from the types specified above, it can be compared to the literal special value nul | only.

Operands of equality (==) and non-equality (!=) shall be completely initialized values or field references of type
compatible root types and the values or field references being compared shall obey the following rules. This implies that
instances of types not mentioned below shall not be operands of equality and non-equality.

. Two field references are equal if the referenced fields are both opt i onal fields and both fields are set to
om t or if both referenced fields (regardless if they are optional or not) are initialized with values and these
values are equal. A field reference is equal to a value if the referenced field is initialized with a value and both
values are equal.

. Two integer values are equal if and only if they contain the same value. Otherwise, normal mathematical
ordering is applied.

. Two floating-point numbers are equal if and only if they contain the same value. The values minus zero and
plus zero are two distinct values (e.g. they are encoded differently in some standardized languages) and minus
zero is less than plus zero, which represents zero. Otherwise, normal mathematical ordering is applied. The
special values-i nfinity, i nfinityandnot_a nunber are equal to themselves only. The special
value - i nfi ni ty is less than any other float value. The special value i nf i ni ty is greater than any
numerical float values and - i nf i ni ty. The special value not _a_nunber is greater than any other float
value (including i nfi ni ty).

. Two charstring or two universal charstring values are equal if and only if they have equal lengths and the
characters at all positions are the same.

. For values of bitstring, hexstring or octetstring types, the same equality rule applies as for charstring values
with the exception, that fractions which shall equal at all positions are bits, hexadecimal digits or pairs of
hexadecimal digits accordingly.

. Two record values, or set values are equal respectively if and only if they are mutually compatible with the
type of the other operand (see clause 6.3), the actual values of all present fields are equal to their
corresponding fields and all fields corresponding to omitted fields are also omitted in the peer value.

. Two record of values, set of values or array values, respectively, are equal if and only if they are mutually
compatible with the type of the other operand (see clause 6.3), they both have the same length, and and each
element of one value is equal to the corresponding element of the other value. Record of values and array
values may also be compared, in which case the corresponding record of type of the array is being considered.

. Values of the same union type, and values of different union types in which at least one of the alternatives is
compatible with the other type (see clause 6.3.2.4) can be compared (independent if a compatible alternative is
the selected one or not). Two values of union types are equal if and only if in both values the name of the
selected alternative is identical, they are compatible with the type of the other value, and the actual values of
the chosen fields are equal.

. Values of the same or any two anytype types can be compared. For anytype values the same rule apply as to
union values, with the addition that names of types defined with the same name in different modules do not
denote the same name of the selected alternatives.

ETSI

. Two default or two component values are equal if and only if they contain the same value (i.e. they designate

84

ETSI ES 201 873-1 V4.7.1 (2015-06)

the same default or test component, independent of the actual state of the denoted object).

. It is also possible to use compound expressions (field assignment or value list notation) directly as operands of
comparison operations of structured types. If there is a compound expression on both sides of the comparison
operator, they shall both be value list notation expressions where the elements shall be of the same root type
and they shall be compared like record of values with elements of that root type. If only one operand of the
comparison operation is a compound expression it shall be compatible with the root type of the other operand

and they shall be compared like values of that root type.

EXAMPLE:
/1 Gven
type set S1 {
integer al optional,
integer a2 optional,
integer a3 optional
b
type set S2 {
integer bl optional,
integer b2 optional,
integer b3 optional
b
type set S3 {
integer c1 optional,
integer c2 optional,
h
type set of integer SI;
type uni on Ul {
i nteger di,
i nteger d2,
b
type uni on U2 {
i nteger el,
i nteger e2,
b
type uni on U3 {
i nteger di,
i nteger d2,
bool ean d3
H
/1 And
const S1 s1 := { al :=0, a2 :=omt, a3 :=2
/1 Notice that the order of defining values of
const S2 s2a:= { bl:=0, b3 :=2, b2 :=ont };
const S2 s2b:= { b2:=0, b3 :=2, bl :=onmt };
const S3 s3 = {cl:=0, c2:=21},
var Sl v.si:= {0 -, 2},
const Sl si = {0 2}%;
const Ul ul = { di:=0 };
const U2 u2 = { el:=0};
const U3 u3; := { di:= 0 };
/'l Then
sl == s2a;
/1l returns true
sl == s2b;
/'l returns fal se, because neither al nor a2 are equal
/1 (the corresponding elenent is not onitted)
sl == s3;
/'l returns fal se,
sl == v_si;

/] causes test case error as v_si

/1 (2nd el ement

sl == si;

/1

returns fal se,

is left uninitialized)

/1 but the counterpart of a3 is undefined

s3 == si;

/1

returns true

ETSI

}
the fields does not matter
}

to their counterparts

because the effective value structures of sl and s3 are not conpatible

is not conpletely initialized

as the counterpart of the onmtted a2 is 2,

85 ETSI ES 201 873-1 V4.7.1 (2015-06)

ul == u2;
/1 causes error as UL and U2 have no common subset of alternatives
ul == u3;

/1 returns true, as alternatives with the sane nanmes are chosen and
// the actual values in the selected alternatives are equal
{ 0, omt, 2} == sl
/'l returns true
s2a == { bl :=0, b2:=omt, b3 :=2};
/] returns true
{ s1, s2b } == { s2a, sl };
/1l returns fal se because s2b != sl
{ s1, s2b, s2a } == { sl };
/'l returns fal se because of different |ength
sl.al == s2a.bi,;
Il returns true, both fields are initialized with values and the val ues are equal
sl.a2 == s2a.b2;
/'l returns true, both fields are om't
sl.al == s2a.b2;
/1l returns false, value vs. omt

sl.al == onit;
/'l error, omt is neither a value nor a field reference
sl.a2 == 3;

/1 false, omt vs. value

7.1.4 Logical operators

The predefined bool ean operators perform the operations of negation, logical and, logical or and logical xor . Their
operands shall be of root type bool ean. The result type of logical operations is bool ean.

The logical not is the unary operator that returns the value t r ue if its operand was of value f al se and returns the
value f al se if the operand was of value t r ue.

The logical and returns the value t r ue if both its operands are t r ue; otherwise it returns the value f al se.

The logical or returns the value t r ue if at least one of its operands is t r ue; it returns the value f al se only if both
operands are f al se.

The logical xor returns the value t r ue if one of its operands is t r ue; it returns the value f al se if both operands are
fal se orifboth operands are t r ue.

Short circuit evaluation for boolean expressions is used, i.e. the evaluation of operands of logical operators is stopped
once the overall result is known: in the case of the and operator, if the left argument evaluates to f al se, then the right
argument is not evaluated and the whole expression evaluates to f al se. In the case of the or operator, if the left
argument evaluates to t r ue, then the right argument is not evaluated and the whole expression evaluates to t r ue.

7.1.5 Bitwise operators

The predefined bitwise operators perform the operations of bitwise not , bitwise and, bitwise or and bitwise XO0r .
These operators are known as not 4b, and4b, or 4b and xor 4b respectively.

NOTE: To be read as "not for bit", "and for bit", etc.

Their operands shall be of root type bi t st ri ng, hexstring oroct et stri ng. In the case of and4b, or 4b and
Xor 4b the operands shall be of the same root types.The result type of the bitwise operators shall be the root type of the
operands.

The bitwise not 4b unary operator inverts the individual bit values of its operand. For each bit in the operand a 1 bit is
set to 0 and a 0 bit is set to 1. That is:

not4b '1'B gives '0'B
not4b '0'B gives '1'B
EXAMPLE 1:

not4b '1010'B gives '0101'B
not4b '1A5'H gives 'E5A'H
not4b ' 01A5' O gives ' FESA' O

ETSI

86 ETSI ES 201 873-1 V4.7.1 (2015-06)

The bitwise and4b operator accepts two operands of equal length. For each corresponding bit position, the resulting
value is a 1 if both bits are set to 1, otherwise the value for the resulting bit is 0. That is:

'"1'B and4b '"1'B gives '1'B

'"1'B and4b '0'B gives '0'B

'0'B and4b '1'B gives '0'B

'0'"B and4b '0'B gives '0'B
EXAMPLE 2

'1001' B and4b '0101'B gives '0001'B

"B'Hand4b '5'H gives '1'H

"FB'O and4b '15'O gives '11'0O
The bitwise or 4b operator accepts two operands of equal length. For each corresponding bit position, the resulting
value is 0 if both bits are set to 0, otherwise the value for the resulting bit is 1. That is:

'"1'Bor4b "1'B gives '1'B
'"1'Bor4b '0'B gives '1'B
'0'Bordb "1'Bgives '1'B
'0'Bordb '0'Bgives '0'B
EXAMPLE 3:

'1001' B or4b '0101'B gives '1101'B

"9'Hor4b '5'Hgives 'DH

"A9'O or4b '"F5'Ogives 'FD O
The bitwise XOr 4b operator accepts two operands of equal length. For each corresponding bit position, the resulting
value is 0 if both bits are set to 0 or if both bits are set to 1, otherwise the value for the resulting bit is 1. That is:

1'B xor4b "1'B gives '0'B
'0'"B xor4b '0'B gives '0'B
'"0'B xor4b '"1'B gives 1'B
1'B xor4b '0'B gives 1'B

EXAMPLE 4:
'1001' B xor4b '0101'B gives '1100'B
"9"H xor4b '5'H gives 'CH
'39'0O xor4b '15' O gives '2C O

7.1.6 Shift operators

The predefined shift operators perform the shift left (<<) and shift right (>>) operations. Their left-hand operand shall
be of root type bi t string, hexstringoroctetstring. Their right-hand operand shall be a non-negative
i nt eger . The result type of these operators shall be the same as the root type of the left operand.

The shift operators behave differently based upon the type of their left-hand operand. If the type of the left-hand
operand is:

a) bi tstring then the shift unit applied is 1 bit;
b) hexstri ng then the shift unit applied is 1 hexadecimal digit;
c) octet string then the shift unit applied is 1 octet.

The shift left (<<) operator accepts two operands. It shifts the left-hand operand by the number of shift units to the left
as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits or octets) are discarded. For each
shift unit shifted to the left, a zero ('0'B, '0'H, or '00'O determined according to the type of the left-hand operand) is
inserted from the right-hand side of the left operand.

EXAMPLE I:
'111001'B << 2 gives '100100'B

'12345'H << 2 gives '34500'H
'1122334455' O << (1+41) gives '3344550000'O

ETSI

87 ETSI ES 201 873-1 V4.7.1 (2015-06)

The shift right (>>) operator accepts two operands. It shifts the left-hand operand by the number of shift units to the
right as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits or octets) are discarded. For
each shift unit shifted to the right, a zero ('0'B, '0'H, or '00'O determined according to the type of the left-hand operand)
is inserted from the left-hand side of the left operand.

EXAMPLE 2:
'111001'B >> 2 gives '001110'B

'12345'H >> 2 gives '00123'H
'1122334455' O >> (1+1) gives '0000112233'0O

7.1.7 Rotate operators

The predefined rotate operators perform the rotate left (<@ and rotate right (@) operators. Their left-hand operand
shall be of root type bi t st ri ng, hexstri ng,octetstring,charstring,universal charstring,
record of,orset of. Their right-hand operand shall be a non-negative i nt eger . The result type of these
operators shall be the same as the root type of the left-hand operand.

NOTE 1: Please note that the root types of arrays isr ecor d of , therefore arrays are allowed as left-hand
operands of rotate operators.

The rotate operators behave differently based upon the type of their left-hand operand. If the type of the left-hand
operand is:

a) bitstring then the rotate unit applied is 1 bit;

b) hexstri ng then the rotate unit applied is 1 hexadecimal digit;

c) oct et string then the rotate unit applied is 1 octet;

d) charstringoruniversal charstring then the rotate unit applied is one character;
e) record of, set of, or array then the rotate unit applied is one element.

The rotate left (<@ operator accepts two operands. It rotates the left-hand operand by the number of shift units to the
left as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits, octets, characters, or elements)
are re-inserted into the left-hand operand from its right-hand side.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) When the rotate operator is used for r ecord of -s, set of -s and arrays, its left hand operand shall be at
least partially initialized.

NOTE 2: Please note that for the right hand operand restriction a) in clause 7 further on applies.

EXAMPLE I:

'101001'B <@2 gives '100110'B

'12345'H <@2 gives '34512'H

'1122334455' O <@ (1+2) gives '4455112233' 0
"abcdefg" <@3 gives "defgabc"

The rotate right (@) operator accepts two operands. It rotates the left-hand operand by the number of shift units to the
right as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits, octets, characters, or elements)
are re-inserted into the left-hand operand from its left-hand side.

EXAMPLE 2:

'100001'B @ 2 gives '011000'B

'12345'H @ 2 gives '45123'H

'1122334455' O @ (1+2) gives '3344551122'0
"abcdefg" @ 3 gives "efgabcd"

ETSI

88 ETSI ES 201 873-1 V4.7.1 (2015-06)

7.2 Field references and list elements

Within expressions, fields of record and set types are referenced with the dot notation " . f i el d". Elements of record
of, set of, array and string types are referenced with the index notation " [i ndex] " . Dot and brackets have the same
binding power. Field references and list elements are evaluated from left to right.

8 Modules

The principal building blocks of TTCN-3 are modules. A module may define a fully executable test suite or just a
library. A module may refer to the TTCN-3 language version and to package versions being used. A module consists of
a (optional) definitions part, and a (optional) module control part.

NOTE: The term test suite is synonymous with a complete TTCN-3 module containing test cases and a control
part.

The transfer syntax of TTCN-3 modules shall be UTF-8, i.e. each character of the module shall be individually encoded
and decoded according to the UCS Transformation Format 8 (UTF-8) as defined in annex R of ISO/IEC 10646 [2] and
no characters not corresponding to any character of the module shall be present.

8.1 Definition of a module
A module is defined with the keyword module.

NOTE 1: The treatment of TTCN-3 modules in files, repositories and alike is outside the scope of the present
document.

Syntactical Structure

modul e Modul el dentifier [|anguage FreeText { "," FreeText }] "{"
[Modul eDefinitionsPart]
[Modul eControl Part]

"y
Semantic Description

A TTCN-3 module groups a set of (typically cohesive) TTCN-3 definitions. TTCN-3 modules have an explicit import
interface to use definitions from other TTCN-3 or non-TTCN-3 modules. It is possible to hide definitions in a TTCN-3
module (see clause 8.2.5). TTCN-3 modules can be compiled/interpreted separately. They are reusable and
parameterizable.

Module names are of the form of a TTCN-3 identifier.
NOTE 2: The module identifier is the informal text name of the module.

In addition, a module specification can carry an optional attribute identified by the | anguage keyword that identifies
the edition of the TTCN-3 language, in which the module is specified. The following language strings are to be used:

"TTCN- 3: 2001" - to be used with modules complying with version 1.1.2 of the present document (see annex H).
"TTCN- 3: 2003" - to be used with modules complying with version 2.2.1 of the present document (see annex H).
"TTCN- 3: 2005" - to be used with modules complying with version 3.1.1 of the present document (see annex H).
"TTCN- 3: 2007" - to be used with modules complying with version 3.2.1 of the present document (see annex H).
"TTCN- 3: 2008" - to be used with modules complying with version 3.3.2 of the present document (see annex H).
"TTCN-3: 2008 Amendnent 1" -to be used with modules complying with version 3.4.1 of the present document

(see annex H).
"TTCN- 3: 2009" - to be used with modules complying with version 4.1.1 of the present document (see annex H).
"TTCN- 3: 2010" - to be used with modules complying with version 4.2.1 of the present document (see annex H).
"TTCN- 3: 2011" - to be used with modules complying with version 4.3.1 of the present document (see annex H).
"TTCN- 3: 2012" - to be used with modules complying with version 4.4.1 of the present document (see annex H).
"TTCN- 3: 2013" - to be used with modules complying with version 4.5.1 of the present document (see annex H).
"TTCN- 3: 2014" - to be used with modules complying with version 4.6.1 of the present document (see annex H).
"TTCN- 3: 2015" - to be used with modules complying with the present document.

ETSI

89 ETSI ES 201 873-1 V4.7.1 (2015-06)

Furthermore, the optional attribute identified by the | anguage keyword may identify package versions being used by
this module. The package tags are defined in ETSI ES 202 781 [i.11], ETSI ES 202 782 [i.14], ETSI ES 202 784 [i.12],
and ETSI ES 202 785 [i.13]. The language identifier and the package identifier are to be written as a comma-separated
list.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) At most one language string per module shall be given to define the core language version in which the
module is defined.

b) Per extension package, at most one extension package string of that extension package shall be used by a
module.

Examples

modul e MyTest Sui te | anguage "TTCN 3: 2003"
{ .1

8.2 Module definitions part

The module definitions part specifies the top-level definitions of the module and may import visible identifiers from
other modules. Visibility rules are given in clause 8.2.5. Scope rules for declarations made in the module definitions
part and imported declarations are given in clause 5.3. Those language elements which may be defined in a TTCN-3
module are listed in table 1. Every definition can be associated with attributes using the with statement defined in
clause 27. Visible module definitions may be imported by other modules.

Syntactical Structure

[Visibility] (
TypeDef |
Const Def |
Tenpl at eDef |
Modul ePar Def |
Functi onDef |
Si gnat ur eDef |
Test caseDef |
Al t st epDef |
I mpor t Def |
G oupDef |
Ext Functi onDef |
Fri endDef

) [WthStatenent]

["]

1+

Semantic Description
Definitions in the module definitions part may be made in any order.

Such definitions, i.e. top-level definitions outside of other scope units, are globally visible within the module. They may
be used elsewhere in the module. This includes identifiers imported from other modules.

Declarations of dynamic language elements such as variables or timers shall only be made in the control part, test cases,
functions, altsteps or component types.

TTCN-3 does not support the declaration of variables in the module definitions part, i.e. global variables cannot be
defined in TTCN-3. However, variables defined in a test component type may be used by all test cases, functions, etc.
running on components of that component type and variables defined in the control part provide the ability to keep their
values independently of test case execution.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

ETSI

90 ETSI ES 201 873-1 V4.7.1 (2015-06)

Examples

modul e MyModul e
{ /1 This nodul e contains definitions only

.const i nteger MyConstant := 1;
type record MyMessageType { ...}

functi on TestStep(){ ...}

8.2.1 Module parameters

Module parameters define a set of values that are supplied by the test environment at runtime. Module parameters do
not change their value during test execution. They can be used on right hand side of assignments, in expressions, in
actual parameters, and in template definitions, but not within type definitions.

Syntactical Structure

Single type, single module parameter form:

[Visibility] nodul epar Mdul ePar Type Mdul eParldentifier [":=" Constant Expression] ";"

Single type, multiple module parameter form:

[Visibility] nodul epar Mdul ePar Type
{ Modul eParldentifier [":=" ConstantExpression] "," }
Modul ePar |l dentifier [":=" Constant Expression] ";"

Semantic Description

Module parameters behave as global constants at runtime. For module parameterization, TTCN-3 only supports value
parameterization which has to be resolved static at start of runtime.

Module parameters allow to customize a TTCN-3 test suite for a specific IUT, test setup or test campaign. Module
parameters are declared by specifying the type and listing their identifiers following the keyword nodul epar .

It is allowed to specify default values for module parameters. This shall be done by an assignment in the module
parameter list. A default value can merely be assigned at the place of the declaration of the module parameter.

If the test system does not provide an actual runtime value for a module parameter, the default value shall be used
during test execution, otherwise the actual value provided by the test system. Actual runtime values shall be literals
only.

If functions are used for the initialization of module parameters, it is strongly advised to adhere to the rules defined in
clause 16.1.4. Not following these rules may cause non-deterministic test executions.

Visible module parameters can be imported.

Optional fields of record and set module parameters or module parameter fields can be initialized explicitly or
implicitly. For implicit initialization of the optional fields of a module parameter or a module parameter field, an

opt i onal attribute with the value "i npl i cit omit" (see clause 27.7) shall be associated with it either directly or
via the attribute distribution (scoping) mechanism (see clause 27.1.1).

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) During test execution these values shall be treated as constants.
b) Module parameters shall not be of port type, default type or component type.

¢) A module parameter shall only be of type address if the address type is explicitly defined within the associated
module.

d) Module parameters shall be declared within the module definition part only.

ETSI

91 ETSI ES 201 873-1 V4.7.1 (2015-06)

e) More than one occurrence of module parameters declaration is allowed but each parameter shall be declared
only once (i.e. redefinition of the module parameter is not allowed).

f) The constant expression for the default value of a module parameter shall respect the limitations given in
clause 16.1.4.

g) Module parameters shall not be used in type or array definitions.

Examples
modul e MyTest Sui t eWt hPar aneters

/'l single type, single nodule paraneter, which is per default public
nodul epar bool ean TS Par0 : = true;

/'l single type, multiple nodule paranmeters with an explicit public visibility
public nodul epar integer TS Parl, TS Par2 := 1 + char2int("a");

8.2.2 Groups of definitions

In the module definitions part, definitions can be collected in named groups. Grouping is done to aid readability and to
add logical structure to the module if required. If necessary, the dot notation shall be used to identify sub-groups within
the group hierarchy uniquely, e.g. for the import of a specific sub-group.

Syntactical Structure

[public] group Goupldentifier "{"
{ Modul eDefinition [";"] }
"y

Semantic Description

A group of definitions can be specified wherever a single definition is allowed. Groups may be nested, i.e. groups may
contain other groups. This allows the test suite specifier to structure, among other things, collections of test data or
functions describing test behaviour.

Groups and nested groups have no scoping. Please note however, attributes given to a group by an associated with
statement apply to all elements of a group (see clause 27). Import statements may import groups so that all visible
elements of a group are imported (see clause 8.2.3.3).

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Group identifiers across the whole module need not necessarily be unique. However, top-level group
identifiers and all group identifiers of subgroups of a single group shall be unique.

b) Only publ i ¢ visibility can be defined for groups as they are always public.

Examples
nmodul e MyModul e {

)/ A coll ection of definitions

group MyG oup {
const integer MyConst:= 1;

type record MyMessageType { ...};

group MyG oupl { /1 Sub-group with definitions
type record Anot her MessageType { ...};
const bool ean MyBool ean : = fal se

}

/1 A group of altsteps
group MyStepLibrary {
group MG oupl { /] Sub-group with the sane nane as the sub-group with definitions
altstep MyStepl1() { ...}

ETSI

92 ETSI ES 201 873-1 V4.7.1 (2015-06)

altstep MyStep12() { ...}
aitstep MyStepin() { ...}
}
group MyG oup2 {
altstep MyStep21() { ...}
altstep MyStep22() { ...}

éltstep M/Step2n() { ...}

}

/] An inport statenent that inports M/Goupl within M/StepLibrary
import from MyMudul e {
group MyStepLibrary. MyG oupl

8.2.3 Importing from modules

It is possible to re-use visible definitions specified in different modules using the i nmport statement. Every definition
in a TTCN-3 module has an associated visibility, which is by default publ i ¢ (see clause 8.2.5).

NOTE: Groups are publ i ¢ only. Importing a group means that only the visible elements of the group are being
imported.

8.2.3.1 General format of import
An import statement can be used anywhere in the module definitions part.

Syntactical Structure
[Visibility] inport from Mduleld
(

(all [except "{" ExceptSpec "}"])
I("{" lnportSpec "}")

[";")]
Semantic Description

TTCN-3 supports the import of the following definitions: module parameters, user defined types, signatures, constants,
data templates, signature templates, functions, external functions, altsteps and test cases. Each definition has a name
(defines the identifier of the definition, e.g. a function name), a specification (e.g. a type specification or a signature of a
function) and in the case of functions, altsteps and test cases an associated behaviour description. In addition, import
statements of one module can be explicitly imported by another module (see clause 8.2.3.7). Only definitions or import
statements visible from the importing module can be imported (see clause 8.2.5).

In contrast to module definitions, which are by default public, import statements are by default private.

EXAMPLE la:
Name Specification Behaviour description
function M/Function |[(inout MyTypel MyPar) return MyType2 {
runs on MyConpType const MyType3 MyConst := ..;
: [/l further behaviour
}
Specification Name Specification

type record M/Recor dType [{
M/ Type4d fiel di,
integer field2

}

ETSI

93 ETSI ES 201 873-1 V4.7.1 (2015-06)

Specification Name Specification
tenmpl ate |MyTypeb M/Tenpl ate |:= {
fieldl := 1,
field2 := MConst, // MConst is a nodul e constant
field3 := Modul ePar // Mdul ePar is nodul e paraneter
}

Behaviour descriptions have no effect on the import mechanism, because their internals are considered to be invisible to
the importer when the corresponding functions, altsteps or test cases are imported. Thus, they are not considered in the
following descriptions.

The specification part of an importable definition contains local definitions (e.g. field names of structured type
definitions or values of enumerated types) and referenced definitions (e.g. references to type definitions, templates,
constants or module parameters). For the examples above, this means:

Name Local definitions Referenced definitions
function |MyFunction MyPar MyTypel, MyType2, MyCompType
type MyRecordType |[fieldl, field2 MyType4, integer
tenplate |MyTemplate MyType5, fieldl, field2, field3, MyConst, ModulePar

NOTE 1: The local definitions column refers to identifiers only that are newly defined in the importable definition.
Values assigned to individual fields of importable definitions, e.g. in template definitions, may also be
considered as local definitions, but they are not important for the explanation of the import mechanism.

NOTE 2: The referenced definitions field1, field2 and field3 of template MyTemplate are the field names of
MyType5, i.e. they are referenced via MyType5.

Referenced definitions are also importable definitions, i.e. the source of a referenced definition can again be structured
into a name and a specification part and the specification part also contains local and referenced definitions. In other
words, an importable definition may be built up recursively from other importable definitions.

The TTCN-3 import mechanism is related to the local and referenced definitions used in the specification part of the
importable definitions. Table 8 specifies the possible local and referenced definitions of importable definitions.

Table 8: Possible local and referenced definitions of importable definitions

Importable Definition Possible Local Definitions Possible Referenced Definitions
Module parameter Module parameter type
User-defined type (for all)
e enumerated type Concrete values
e structured type Field names, nested type Field types
definitions
e port type Message types, signatures
e component type Constant names, variable names, |Constant types, variable types, port types
timer names and port names
Signature Parameter names Parameter types, return type, types of exceptions
Constant Constant type
Data Template Parameter names Template type, parameter types, constants, module
parameters, functions
Signature template Signature definition, constants, module parameters
functions
Function Parameter names Parameter types, return type, component type
(runs on clause)
External function Parameter names Parameter types, return type
Altstep Parameter names Parameter types, component type (r uns
on clause)
Test case Parameter names Parameter types, component types (r uns on- and
syst emclause)

NOTE 1: For the import of import statements see clause 8.2.3.7.
NOTE 2: For the import of groups see clause 8.2.3.3.

ETSI

94 ETSI ES 201 873-1 V4.7.1 (2015-06)

The TTCN-3 import mechanism distinguishes between the identifier of a referenced definition and the information
necessary for the usage of a referenced definition within the imported definition. For the usage, the identifier of a
referenced definition is not required and therefore not imported automatically.

EXAMPLE 1b: Differentiation between information necessary for the usage and the identifier.

nodul e A {
type record MyRecl {
i nt eger fieldl,
charstring field2
}
}
nodul e B {

import fromA all;
type record MyRec2 {
M/Recl nyFiel d1,
/1 "nyFieldl" is the local definition, "M/Recl" is a referenced definition;
/'l the name "M/Recl" shall be inmported in this case as is directly referenced
bool ean nyFi el d2

}
}
nodul e C {
import fromB all;
const MyRec2 t_MyRec2 : = {
nyFieldl :={ fieldl :=5, field2 :="A" },
/1 to define nyFieldl of M/Rec2 the nane "MyRecl" is not needed, the
/1 information necessary for the usage is its type infornation,
/1 i.e. names and types of its fields fieldl and field2
/1 which is enbeddded in the inported definition of M/Rec2
nyField2 := true
}
}

If an imported definition has attributes (defined by means of a Wi t h statement) then the attributes shall also be
imported. The mechanism to change attributes of imported definitions is explained in clause 27.1.3.

NOTE 3: If the module has global attributes they are associated to definitions without these attributes.

The use of i mport on single definitions, groups of definitions, definitions of the same kind, etc. may lead to situations
where the same definition isreferred to more than once. Such cases shall be resolved by the system and definitions shall
be imported only once.

NOTE 4: The mechanisms to resolve such ambiguities, e.g. overwriting and sending warnings to the user, are
outside the scope of the present document and should be provided by TTCN-3 tools.

Alli mport statements and definitions within import statements are considered to be treated independently one after
the other in the order of their appearance.

All TTCN-3 modules shall have their own name space in which all definitions shall be uniquely identified. Name
clashes may occur due to import, e.g. import from different modules. Name clashes shall be resolved using qualified
name(s) for the imported definition(s), i.e. prefixing the imported definition (which causes the name clash) by the
identifier of the module in which it has been defined; the prefix and the identifier shall be separated by a dot ("."). If the
type of the component referenced in a connection operation is known (either when the component reference is a
variable or value returned from a function or the type is defined the runs on, mtc or system clause of the calling
function), the referenced port declaration shall be present in this component type.

There is one exception to this rule: when in the context of an enumerated type (see clause 6.2.4), an enumerated value
is clashing with the name of a definition in the importing module, the enumerated value shall take precedence and the
definition in the importing module shall be referenced by using its qualified name (see example 4 below in this clause).

In cases where there are no ambiguities the prefixing need not (but may) be present when the imported definitions are
used. When the definition is referenced in the same module where it is defined, the module identifier of the module (the
current module) also may be used for prefixing the identifier of the definition. For the latter case, prefixing shall only be
used for definitions with global visibility for the module.

ETSI

95 ETSI ES 201 873-1 V4.7.1 (2015-06)

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a)

b)

¢)

An import statement shall only be used in the module definitions part and not be used within a control part,
function definition, and alike.

Only top-level visible definitions of a module may be imported. Definitions which are top-level but invisible
to the importing module or which occur at a lower scope (e.g. local constants defined in a function) shall not
be imported.

A definition is imported together with its name and all local definitions.

NOTE 5: A local definition, e.g. a field name of a user-defined record type or an enumerated value, has only

d)

meaning in the context of the definitions in which it is defined, e.g. a field name of a record type can only
be used to access a field of the record type and not outside this context.

In particular, importing an enumerated type does not impose the restriction given in clause 6.2.4 on global
names defined in the importing module.

A definition is imported together with all information of referenced definitions that are necessary for the usage
of the imported definition, independent of the visibility of the referenced definitions (see clause 8.2.5).

NOTE 6: If module C imports a definition from module B that uses a type reference defined in module A, the

2

h)

corresponding information necessary for the usage of that type is automatically imported into module C
(see example 5 below in this clause). Identifiers of referenced definitions are not automatically imported.

In particular, if module C imports global value or template definitions (e.g. constants, module parameters,
templates) or local definitions (e.g. formal parameters of templates, functions, etc., or constants and
variables of component types) of an enumerated type from module B, the enumerated values of this type
(i.e. the identifiers) are implicitly and automatically imported to module C. That is, the enumerated values
are known when an enumerated value or template is used in module C (e.g. when an actual parameter is
passed or a value is assigned to a component variable). Note that this implicit importing does not impose
the restriction given in clause 6.2.4 on global names defined in module C.

If the referenced definitions are wished to be used in the importing module, they shall be explicitly imported
either directly from its source module or indirectly by importing the import statements of a module importing
it (see clause 8.2.3.7).

When importing a function, altstep or test case the corresponding behaviour specifications and all definitions
used inside the behaviour specifications remain invisible for the importing module.

The language specification (see clause 8.1) of the import statement shall not override the language
specification of the importing module.

The language specification of the import statement shall be identical to the language specification of the source
module from which definitions are imported (see clause 8.2.3.8) provided a language specification is defined
in the source module. If not, the language specification in the import statement is taken as the language
specification of the source module. If the source module uses however language concepts not being part of that
language specification, this causes an error for the import statement.

Examples

EXAMPLE 1: Selected import examples

nodul e MyModul eA

{

)/ Scope of the inported definitions is global to MyMdul eA

inmport from MyModuleB all; // inport of all definitions from MyMdul eB

i mport from MyMddul eC { /1 inport of selected definitions from M/Mdul eC
type MyTypel, MyType2; // inport of types MyTypel and MyType2
tenplate all /] inport of all tenplates

}
functi on MyBehavi our C()

[/ inport cannot be used here

ETSI

96 ETSI ES 201 873-1 V4.7.1 (2015-06)

!
éontrol

/1 inport cannot be used here
}

}
EXAMPLE 2: Use of imported definitions and visibility of definitions referenced by them
nmodul e Modul eONE {
nodul epar integer MddParl := ..

type record RecordType_T1 {
integer Fieldl_T1,

}

type record RecordType_T2 {
RecordType_T1 Field1_T2,

}
const integer MyConst := .,

tenpl ate RecordType_T2 Tenpl ate_T2 (RecordType_T1 TenpPar_T2):= { // parameterized tenplate
Fieldl T2 := .,

}
} /1 end nodul e Modul eONE

nmodul e Modul eTWO {

i mport from Modul eONE {
tenpl ate Tenplate T2

/1 Only the nanes Tenplate_T2 and TenpPar_T2 will be visible in Mdul eTWD. Please note, that
/1 the identifier TenpPar_T2 can only be used when nodifying Tenplate_T2. Al infornation

/'l necessary for the usage of Tenplate T2, e.g. for type checking purposes, are inported

/1 for the referenced definitions RecordType_T1, Fieldl T2, etc., but their identifiers are
/1 not visible in Mdul eTWD

/1 This neans, e.g. it is not possible to use the constant MyConst or to declare a

/1 variable of type RecordType T1 or RecordType_T2 in Mdul eTWD wi thout explicitly inporting
/'l these types.

i mport from Modul eONE {
nmodul epar MbdPar 2
}
/1 The nodul e parameter MdPar2 of Mdul eONE is inported from Mddul eONE and

/1 can be used |like an integer constant

} // end nodul e Modul eTWO

nodul e Mbdul eTHREE {

import from Modul eONE all; // inports all definitions from Mdul eONE
type port MyPort Type nessage {

i nout RecordType_T2 /!l Reference to a type defined in Mbdul eONE
}
type conponent MyConpType {

var integer MyConponentVar := ModPar2;

/'l Reference to a nodul e paraneter of Mdul eONE

}
function MyFunction () return integer {

return MyConst /1 Reference to a nodul e constant of Mdul eONE
}

ETSI

97 ETSI ES 201 873-1 V4.7.1 (2015-06)
testcase MyTest Case (out RecordType_T2 MyPar) runs on MyConpType {
M/Port .send(Tenpl ate_T2); // Sending a tenplate defined in Mdul eONE

}
} /1 end Modul eTHREE

modul e Modul eFOUR {
i mport from Mydul eTHREE {
testcase MyTest Case

/'l Only the nane MyTestCase will be visible and usable in Mdul eFOUR

/'l Type information for RecordType_T2 is inported via Mdul eTHREE from Mbdul eONE and
/1 Type information for MyCompType is inported from Mbdul eTHREE. All definitions

/1 used in the behaviour part of M/TestCase renmain hidden for the user of Mydul eFOUR

} /1 end Modul eFOUR

EXAMPLE 3: Handling of name clashes
nmodul e MyModul eA {
type bitstring M/TypeA

i mport from SoneMdul eC {

type M/ TypeA, /1 Where MyTypeA is of type character string
M/ TypeB /1 Where MyTypeB is of type character string
}
cbntrol {
vér SonmeModul eC. MyTypeA MyVarl : = "Test String"; // Prefix shall be used
var MyTypeA MyVar2 : = '10110011' B; /1 This is the original MTypeA
vér M/ TypeB MyVar3 := "Test String"; /'l Prefix need not be used ...
var SoneModul eC. MyTypeB MyVar3 : = "Test String"; // ..but it can be if wi shed
}

NOTE 7: Definitions with the same name defined in different modules are always assumed to be different, even if
the actual definitions in the different modules are identical. For example, importing a type that is already
defined locally, even with the same name, would lead to two different types being available in the
module.

EXAMPLE 4: Name clash between enumerated values and global definitions

nodul e A {
type enunerated MyEnuniType {enunX, enuny, enunt}
type enunerated MyEnuniType2 {enunX, enuny, enuni}

nodul e B {
import fromA all;
const MyEnunilype enun¥ := enunX; // this is not allowed as enunerated val ues restrict
/1 gl obal nanes (see clause 6.2.4)

const MyEnunilype2 enunX : = enunX;// this is |likew se not all owed
const integer enun¥Z := 0;

nodul epar MyEnunTType px_M/Mdul ePar1l : = enun¥Y

/1 the default value of the nodule paraneter will be the value enun¥, as the type of

/'l px_MyModul eParl creates the context of MyEnuniType and in this context enunerated val ues
/'l take precedence over global definition names; note that for the same context reason there
/1 in no nane clash between the enunerated val ues defined in MyEnunType and in MyEnunType2

nmodul epar MyEnuniType px_M/Modul ePar2 : = B. enun¥

/1 the default value of the nbdul e paraneter will be the value enunX, as the prefix
// identifies the constant definition enun¥ unanbi guously, which has the val ue enunX

ETSI

98 ETSI ES 201 873-1 V4.7.1 (2015-06)

nodul epar integer px_|ntegerPar := enuny;
/1 the default value of the nodule paraneter will be O as this assignnent is not in the
/1 context of an enunerated type, hence no nane clash occurs

nodul epar MyEnunType px_M/Mdul ePar 3 : = B. enunX
/] causes an error as px_M/Modul ePar3 and the constant enunX has different types

}
EXAMPLE 5: Importing local definitions transitively

nmodul e A {
type enunerated M/Enum Type { enunX, enun¥, enunt}
type record M/Rec { integer a, integer b}
type conponent MyConp { var MJRec v_Rec := { a:=51} }
}

nodul e B {
import fromA all;
modul epar MyEnum Type px_M/Modul ePar : = enun;
type conponent MyConpUser extends MyConp {}

modul e C {
import fromB all;
testcase TC() runs on MyConpUser {
if (px_MyModul ePar == enun¥) {
/1 the enunerated value enunY¥ is knowin C w thout explicitly inmporting it fromA
set verdi ct (pass)

}
if (v_Rec.a == 5) {
V_Rec.b := v_Rec. a;
/1 Both the variable name v_Rec and the record field names are known in C w thout
/1l explicitly inmporting themfromA
setverdi ct (pass)

8.2.3.2 Importing single definitions

Single visible definitions can be imported by referring to the definition kind and the definition name(s). The import of
single definitions can be used in combination with imports of groups (see clause 8.2.3.3), with imports of definitions of
the same kind (see clause 8.2.3.4), and with imports of import statements (see clause 8.2.3.7).

Syntactical Structure

[Visibility] inport from Mduleld "{"
{

(

(type { TypeDef!|dentifier ["1 1}) |
(template { Tenplateldentifier [""11) 1
(const { Constldentifier ["1 31) |
(testcase { Testcaseldentifier [""131) 1
(altstep { Altstepldentifier [""1131) 1
(function { Functionldentifier [""" 1 3r)I
(signature { Signatureldentifier ["," 1 1}) |
(nodul epar { Modul ePar |l dentifier [""11)

)

["]

}
IS

Semantic Description

See clause 8.2.3. Import of an invisible definition shall cause an error.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The definition to be imported shall be defined in the module from which it is to be imported and shall be visible
to the importing module.

ETSI

99 ETSI ES 201 873-1 V4.7.1 (2015-06)

b) See the restrictions given in clause 8.2.3.

Examples
i mport from MyModul eA {
type MyTypel /1 inports one type definition from M/Mddul eA only
}
import from MyModul eB {
type My Type2, Mtype3, MType4; /1 inports three types,
tenpl ate MyTenpl at el; [/ inports one tenplate, and
const MyConst1, MConst2 /] inports two constants
}
8.2.3.3 Importing groups

Groups of definitions may be imported. The import of groups can be used in combination with imports of single
definitions (see clause 8.2.3.2), with imports of definitions of the same kind (see clause 8.2.3.4), and with imports of
import statements (see clause 8.2.3.7).

It is allowed to import sub-groups (i.e. a group which is defined within another group) directly, i.e. without the groups
in which the sub-group is embedded. If the name of a sub-group that should be imported is identical to the name of
another sub-group in the same module (see clause 8.2.2), the dot notation shall be used to identify the sub-group to be
imported uniquely.

If some visible definitions of a group are wished not to be imported, their kinds and identifiers shall be listed in the
exception list within a pair of curly brackets following the except keyword. The al | keyword is also allowed to be
used in the exception list; this will exclude all definitions of the same kind from the import statement.

Syntactical Structure
[Visibility] inport from Mduleld "{"
{

(group { Qualifiedldentifier [except "{" ExceptSpec "}" 1 ["," 1 })
["]

B A
Semantic Description

The effect of importing a group is identical to an i mport statement that lists all visible definitions (including
sub-groups) of this group except of those that are listed in the except specification. See also clause 8.2.3. Import
statements contained in the group or in its subgroups are not part of this list, only definitions are.

It is important to point out, that the except statement does not exclude the definitions listed from being imported in
general; all statements importing definitions of the same kind can be seen as a shorthand notation for an equivalent list
of identifiers of single definitions. The except statement excludes definitions from this single list only.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) The group to be imported shall be defined in the module from which it is to be imported.
b) See the restrictions given in clause 8.2.3.
Examples
import from MyModule { group MyGroup } // includes all visible definitions from MG oup
i nport from MyMddul e {
group MyGroup except {
type My Type3, MyType5; [/ excludes the two types fromthe inport statenent,
tenplate all /'l excludes all tenplates defined in M/G oup

/1 fromthe inport statenent
/1 but inports all other visible definitions of M/G oup

ETSI

100 ETSI ES 201 873-1 V4.7.1 (2015-06)

import from MyModul e {

group MyG oup
except { type MyType3 };// inports all visible types of MG oup except MyType3
type MyType3 /] inports MyType3 explicitly

8.2.3.4 Importing definitions of the same kind

The al | keyword may be used to import all visible definitions of the same kind of a module. The al | keyword used
with the const ant keyword identifies all visible constants declared in the definitions part of the module the import
statement refers to. Similarly the al | keyword used with the f unct i on keyword identifies all visible functions and
all visible external functions defined in the module the import statement denotes.

If some visible declarations of a kind are wished to be excluded from the given import statement, their identifiers shall
be listed following the except keyword.

The import of visible definitions of the same kind can be used in combination with imports of single visible definitions
(see clause 8.2.3.2), with imports of groups (see clause 8.2.3.3), and with imports of import statements (see
clause 8.2.3.7).

Syntactical Structure

[Visibility] inport from Mduleld "{"
{
(

(type all [except { TypeDefldentifier [“TrY1) 1
(tenplate all [except { Tenplateldentifier ["1Y1) 1
(const all [except { Constldentifier [“1r1) 1
(testcase all [except { Testcaseldentifier """ 1%y1) 1
(altstep all [except { Altstepldentifier [""1%Yy1) 1
(function all [except { Functionldentifier [""1%ry1) 1
(signature all [except { Signatureldentifier [13111
(nmodul epar all [except { Mdul eParldentifier [131 1)

["]

Semantic Description

The effect of importing definitions of the same kind is identical to an i nport statement that lists all visible definitions
of that kind except of those that are listed in the except specification. See also clause 8.2.3.

NOTE: Ifthe list of all visible definitions of that kind except of those that are listed in the except specification
is empty, the import statement has no effect. This case does not lead to an error.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) See the restrictions given in clause 8.2.3.

Examples
import from MyModul e {
type all; /1 inmports all types of MyMdul e
tenpl ate all /1 inmports all tenplates of MyMdul e

}
import from MyMoudul e {

type all except MyType3, M/Type5; /1 inports all types except MyType3 and MyTypeb
tenplate all Il inports all tenplates defined in Mynodul e

ETSI

101 ETSI ES 201 873-1 V4.7.1 (2015-06)

8.2.3.5 Importing all definitions of a module
All visible definitions of a module definitions part may be imported using the al | keyword next to the module name.

If some visible definitions are wished not to be imported, their kinds and identifiers shall be listed in the exception list
within a pair of curly brackets following the except keyword. The al | keyword is also allowed to be used in the
exception list; this will exclude all visible declarations of the same kind from the import statement.

NOTE 1: If the list of all visible definitions of a module except of those that are listed in the except specification
is empty, the import statement has no effect. This case does not lead to an error.

NOTE 2: Importing all definitions of a module imports only definitions declared directly in that module, but does
not import the import statements of that module (see also clause 8.2.3.7).

Syntactical Structure

[Visibility] inport from Mduleld

al |
[
{
except "{"
(group { Qualifiedldentifier [", 13}] al)|
(type { TypeDefldentifier [", 13}] al)|
(tenplate { Tenplateldentifier """ 131 al)|
(const { Constldentifier """ 1%}l al)|
(testcase { Testcaseldentifier """ 131 al)|
(altstep { Altstepldentifier [", 131 al)|
(function { Functionldentifier [", 1%} al)|
(signature { Signatureldentifier """ 1%} al)|
(modul epar { Modul eParldentifier [","1%}| al)
"y
["]
}

]
["]

Semantic Description

The effect of importing all visible definitions of a module is identical to an i mport statement that lists all importable
definitions of that module except of those that are listed in the except specification. See also clause 8.2.3.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Ifall visible definitions of a module are imported by using the all keyword, no other form of import (import of
single definitions, import of the same kind, etc.) shall be used for the same import statement.

b) In the set of except statements for an all import, only one except statement per kind of definition (i.e. for a
group, type, etc.) is allowed.

Examples
import from MyModul e al | ; /1 includes all definitions from M/Mdul e

inmport from MyModul e all except {
type M Type3, MyType5; [/ excludes these two types fromthe inport statenent and
tenplate all /1 excludes all tenplates declared in M/Mdul e,
/1 fromthe inport statemnent
/1 but inports all other definitions of MyMdule

8.2.3.6 Import definitions from other TTCN-3 editions and from non-TTCN-3 modules

In cases when visible definitions are imported from modules from other TTCN-3 editions or from other sources than
TTCN-3 modules, the language specification (see clause 8.1) shall be used to denote the language (may be together
with a version number) of the source (e.g. module, package, library or even file) from which definitions are imported. It
consists of the | anguage keyword and a subsequent textual declaration of the denoted language.

ETSI

102 ETSI ES 201 873-1 V4.7.1 (2015-06)

The use of the language specification is optional when importing from a TTCN-3 module of the same edition as the
importing module. The TTCN-3 language identifiers defined in clause 8.1 are to be used. Package identifiers from ETSI
ES 202 781 [i.11], ETSI ES 202 782 [i.14], ETSI ES 202 784 [i.12] and ETSI ES 202 785 [i.13] can be used in addition.
Identifiers for other languages are defined in the language mapping parts of TTCN-3, i.e. in ETSI ES 201 873-7 [i.5],
ETSI ES 201 873-8 [i.6] and ETSI ES 201 873-9 [i.7].

When an incompatibility is discovered between the language and/or package identification (including implicit
identification by omitting the language specification) and the syntax of the module from which definitions are imported,
tools shall provide reasonable effort to resolve the conflict.

Syntactical Structure

[Visibility] inport from Mdul eldentifier [LanguageSpec] ...[";"]
Semantic Description

TTCN-3 supports the referencing of elements defined in other TTCN-3 editions (versioned elements) or other languages
(foreign elements) from within TTCN-3 modules. Such elements can be used in a TTCN-3 module of a given edition
only if they have a TTCN-3 view in that TTCN-3 edition. The term TTCN-3 view can be best explained by considering
the case when the definition of a TTCN-3 element is based on another TTCN-3 element, the information content of the
referenced element shall be available and is used for the new definition. For example, when a template is defined based
on a structured type, the identifiers and types of fields of the base type shall be accessible and are used for the template
definition. In a similar way, when a base type is a versioned or foreign element it shall provide the same information
content as would be required from a TTCN-3 type declaration. The versioned or foreign element, naturally, may contain
more information than required by TTCN-3. The TTCN-3 view of a versioned or foreign element means that part of the
information carried by that element, which is necessary to use it in TTCN-3. Obviously, the TTCN-3 view of a
versioned or foreign element may be the full set or a subset of the information content of that element but never a
superset. There may be versioned or foreign element without a TTCN-3 view (zero TTCN-3 view), i.e. for some reason
no TTCN-3 definition in the given edition could be based on them.

To make declarations of versioned or foreign element visible in TTCN-3 modules, their names shall be imported just
like definitions in other TTCN-3 modules of the given edition. When imported, only the TTCN-3 view of the versioned
or foreign element will be seen from the importing TTCN-3 module. There are two main differences between importing
TTCN-3 elements of the same editions and versioned or foreign elements:

. to import from a TTCN-3 module of another edition or from a non-TTCN-3 module, the import statement shall
contain an appropriate language identifier string;

. only versioned or foreign elements with a TTCN-3 view of a given edition are importable into a TTCN-3
module of that edition.

Importing can be done automatically using the all directive, in which case all importable objects shall automatically be
selected by the testing tool, or done manually by listing names of elements to be imported. Naturally, in the second case
only importable elements are allowed in the list.

When importing definitions from a non-TTCN-3 language, two principle approaches exist:

. With an implicit language mapping, non-TTCN-3 definitions are mapped internally in the TTCN-3 tool to the
respective TTCN-3 definitions as defined by the language mapping; the importing module works with the
internal representations of the imported definitions.

. With an explicit language mapping, non-TTCN-3 definitions are mapped directly to separate TTCN-3
definitions; the importing module imports the generated TTCN-3 and works with the mapped TTCN-3
definitions.

These lead to three options when using non-TTCN-3 language modules in a TTCN-3 specification:

. The import statement imports the non-TTCN-3 module; the tool uses the internal representation of the implicit
mapping of the non-TTCN-3 module's definitions according to the language mapping specification of that
language.

. The import statement imports the non-TTCN-3 module; the tool imports from a TTCN-3 module which is an
explicit mapping of the non-TTCN-3 module's definitions according to the language mapping specification of
that language.

ETSI

103 ETSI ES 201 873-1 V4.7.1 (2015-06)

. The import statement imports the explicit TTCN-3 representation of the non-TTCN-3 module; the tool imports
the TTCN-3 module which is an explicit mapping of the non-TTCN-3 module according to the language
mapping specification of that language.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The language specification may only be omitted if the referenced module contains TTCN-3 notation and the
TTCN-3 version is known.

b) Definitions imported from non-TTCN-3 language sources have by default public visibility provided that no
other rules are defined in the respective language mapping (see ETSI ES 201 873-7 [1.5],
ETSI ES 201 873-8 [1.6] or ETSI ES 201 873-9 [1.7], respectively).

Examples

nodul e MyNewivbdul e {
import from Myd dMbdul e | anguage "TTCN 3: 2003" {

type M/Type
}

nodul e MyNewest Modul e {
i mport from MyNewhbdul e | anguage "TTCN 3: 2010" { inport all };
/'l the Il anguage specifications shall be identical, see clause 8.2.3.8

}

NOTE: The import mechanism is designed to allow the re-use of definitions from other TTCN-3 editions or from
other non-TTCN-3 language sources. The rules for importing definitions from specifications written in
other languages, e¢.g. SDL packages, may follow the TTCN-3 rules or may have to be defined separately.

8.2.3.7 Importing of import statements from TTCN-3 modules
Visible import statements of TTCN-3 modules can be imported by other TTCN-3 modules.

Syntactical Structure

[Visibility] inmport from Mddul eldentifier [LanguageSpec]
(" import all [it] Uyt [t]

Semantic Description

TTCN-3 supports importing of visible import statements from other TTCN-3 modules. This means that import
statements of the module, from which the import statements are imported, are re-imported to the importing module. For
example, if module B imports the import statements of module A, everything that is imported by A using import
statements visible for module B, is also imported by B. If another module C imports all import statements from B, then
C imports all what A is importing - provided that the import statements are visible to modules B and C.

It is not possible to import individual import statements of another module.

The import of import statements can be used in combination with imports of single definitions (see clause 8.2.3.2), with
imports of groups (see clause 8.2.3.3), and with imports of definitions of the same kind (see clause 8.2.3.4).

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) The restrictions given in clause 8.2.3.1 apply.
b) The restrictions given in clause 8.2.3.6 apply.

c¢) Importing of import statements is only possible from other TTCN-3 modules, i.e. the language specification
(see clause 8.1) shall denote a TTCN-3 edition only, not a non-TTCN-3 language.

ETSI

104 ETSI ES 201 873-1 V4.7.1 (2015-06)

Examples

EXAMPLE: Importing of visible import statements

nodul e A {
type integer T1;
type integer T2;
template T1 t1 :
tenplate T2 t2 : ;

* -

modul e B {
public inport fromA { type T1 }
type charstring T2;
template T1 t1 :=(1, 2, 3);

}

nodul e C {
public inmport fromB { inport all } // inports the inport statenents only
public inmport fromB { type T2 } /1 inmports the type B. T2

import fromA { tenplate all }

}
nmodul e D {
private inport fromC { inport all } // inports the inport statenents only

nmodul e E {
import fromD{ inport all }

/1 yields the follow ng
/1 rmodul e A knows

/1 ATL (defined)

Il A T2 (defi ned)

I Atl (defined)

11 At2 (defi ned)

/1

/1 modul e B knows

Il ATl (i mported)

/1 B.T2 (defi ned)

/1 B.tl (defi ned)

/1

/1 modul e C knows

Il ATL (inmported fromB inporting it fromA)
/Il B.T2 (i mport ed)

Il Atl (i mported)

Il At2 (i mported)

/1

/1 nodul e D knows

/1 ATl (inmported fromC inporting it fromB inporting it fromA)
/1l B.T2 (inmported fromC inporting it from B)
/1 At2 and A't2 are not inported as their inports are private to C
/1

/1 nodul e E "knows" not hi ng
/1 as the inmports of D are private and not visible to E

8.2.3.8 Compatibility of language specifications in imports

When importing into a TTCN-3 module, the language specification (see clause 8.1) of the importing module, the
language specification of the import statement and the language specification of the source module, where the imported
definitions are defined, have to be compatible according to the following rules.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) A TTCN-3 module of any TTCN-3 edition can import from a non-TTCN-3 language source provided that a
TTCN-3 view for the non-TTCN-3 language exists (see clause 8.2.3.6).

ETSI

105 ETSI ES 201 873-1 V4.7.1 (2015-06)

b) Definitions or import statements are imported according to the language specification in which the definition
or the import statement is defined. If no language specification is given in this module, the language
specification of the import statement with which those definitions or import statements are to be imported, is
used instead. If the module, within which the definitions or the import statements are defined, and the import
statement for these definitions or import statements provide both a language specification, then they shall be
identical. If none of the two has a language specification, the language specification has to be known from
other sources, which is tool specific.

¢) A TTCN-3 module shall only import from earlier or same editions of TTCN-3 but not from later editions,
e.g. the TTCN-3 language specification in an import statement has to be lower or equal to the TTCN-3
language specification of the importing module.

8.2.4 Definition of friend modules
Modules can define other modules to be friends.
Syntactical Structure
[private] friend nodul e Modul eldentifier { "," Mduleldentifier } ";"
Semantic Description

Friendship to modules is defined by the exporting module (the module that declares the definitions) not by the
importing module (the module that uses the module definitions of another module). Friendship can be cyclic.

If a module is friend to a module from which it imports top-level definitions, all top-level definitions with public and
friend visibility are visible to the friend module. For non-friend modules, public top-level definitions are visible only.

Missing friend modules shall not cause an error.

NOTE: Friend modules can be checked by tools, however at most warning are to be issued if a friend module is
missing.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Only private visibility can be defined for friend definitions as they are always private.

Examples

nmodul e MyModul eA {
friend nodul e MyModul eB, MyModul eC;

}
/1 MyModul eB and MyModul eC are friends of MyMdul eA

modul e MyModul eB {
friend nodul e MyModul eA;

}
/1l MyModul eA is friend of MyMdul eB

nmodul e MyModul eC {
}

8.2.5 Visibility of definitions

Top-level module definitions and import statements have a visibility, which can be explicitly set. They are by default
publ i ¢ except for imported and friend definitions. Import definitions are by default pri vat e. Friend definitions are
pri vat e only. Group definitions are publ i ¢ only.

Syntactical Structure

[public | friend | private]
Semantic Description

The visibility controls whether a top-level definition or an import statement is importable by another module.

ETSI

106 ETSI ES 201 873-1 V4.7.1 (2015-06)

Three visibilities are distinguished:

NOTE:

A top-level definition or an import statement with publ i ¢ visibility is importable by any other module.

A top-level definition or an import statement with f r i end visibility is importable by friend modules only
(see clause 8.2.4).

A top-level definition or an import statement with pr i vat e visibility cannot be imported at all.

As specified in restriction e) of clause 8.2.3.1, this means that importable definitions are imported
together with all information of referenced definitions that are necessary for the usage of the importable
definition, even if the referenced definition is private. Only the identifier of the referenced definition is
not visible in the importing TTCN-3 module.

The visibility of groups is always publ i ¢. The visibility of imported definitions is by default pri vat e. All other
module definitions are by default publ i c.

The visibility of a top-level definition or an import statement defines their importability by another module. If the
top-level definition or the import statement is part of a group, this has no effect on the importability of the module
definition. The importability of a top-level definition by another module is summarized in table 9, the importability of
import statements in table 10.

Table 9: Visibility and import of module definitions

Visibility of Module definition | Module definition | Module definition [Module definition
module definition importable importable importable via importable via
directly by a directly by a |group import by algroup import by a
non-friend friend module non-friend friend module
module module
public yes yes yes yes
friend no yes no yes
private no no no no
Table 10: Visibility and import of import statements
Visibility of Import imported | Import imported
import by a non-friend by a friend
module module
public yes yes
friend no yes
private no no
Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

nmodul e MyModul eA {

friend nodul e MyModul eC;

private type integer M/ nteger;
/'l Mylnteger is not visible to other nodul es
friend type charstring MyString;
/1 MyString is visible to friend nodul es
public type bool ean MyBool ean;

/1 MyBoolean is visible to all

}
nmodul e MyModul eB {

import from MyModul eA al | ;
/1l MyString and Myl nteger are not visible and are not inported

/1 MyBoolean is i

}
nodul e MyModul eC {

nmported

import from MyModul eA al | ;
/'l Mylnteger is not visible and is not inported
/'l MyString and MyBool ean are inported

nodul es

ETSI

107 ETSI ES 201 873-1 V4.7.1 (2015-06)

8.3 Module control part

The module control part may contain local definitions (i.e. constants or templates), local instances (i.e. variables or
timers) and describe the selection, parameterization and execution order (possibly repetitive) of the actual test cases. A
test case shall be defined in the module definitions part or imported from another module, and called in the control part.

The control part of a module calls the test cases with actual parameters and controls their execution. Program statements
can be used to specify the selection and execution order of the test cases. Definitions made in the module control part
have local visibility, i.e. can be used within the control part only.

This is explained in more detail in clause 26.

EXAMPLE:

nodul e MyTest Suite
{ /1 This nodul e contains definitions ...

é:onst i nteger MyConstant := 1;
type record MyMessageType { ...}
tenpl ate MyMessageType MyMessage := { ...}

function MyFunctionl() { ...}
function MyFunction2() { ...}

iestcase MyTest casel() runs on MyMICType { ...}
testcase MyTestcase2() runs on MyMICType { ...}

// ...and a control part so it is executable
control

var bool ean MyVariable; // local control variable

éxecute(M/Test Casel()); // sequential execution of test cases
execute(MyTest Case2());

9 Port types, component types and test configurations

TTCN-3 allows the (dynamic) specification of concurrent test configurations (or configuration for short).
A configuration consists of a set of inter-connected test components with well-defined communication ports and an
explicit test system interface which defines the borders of the test system (see figure 4).

NOTE: Additional configuration and deployment support for TTCN-3 is defined in the optional package [i.11].

TTCN Test system

«—»
MTC PTC,

‘l_, PTC, —T

+ Abstract Test System Interface V*

_/
Real Test System Interface

SUT

Figure 4: Conceptual view of atypical TTCN-3 test configuration

ETSI

108 ETSI ES 201 873-1 V4.7.1 (2015-06)

Within every configuration there shall be one (and only one) Main Test Component (MTC). Test components that are
not MTCs are called parallel test components or PTCs. The MTC shall be created by the system automatically at the
start of each test case execution. The behaviour defined in the body of the test case shall execute on this component.
During execution of a test case, other components can be created dynamically by the explicit use of the cr eat e
operation.

Test case execution shall end when the MTC terminates. All other PTCs are treated equally i.e. there is no explicit
hierarchical relationship among them and the termination of a single PTC terminates neither other components nor the
MTC. When the MTC terminates, the test system has to stop all PTCs not terminated by the moment when the test case
execution is ended.

Communication between test components and between the components and the test system interface is achieved via
communication ports (see clause 9.1).

Test component types and port types, denoted by the keywords conponent and por t, shall be defined in the module
definitions part. The actual configuration of components and the connections between them is achieved by performing
creat e and connect operations within the test case behaviour. The component ports are connected to the ports of
the test system interface by means of the map operation (see clause 21.1.1).

9.1 Communication ports

Test components are connected via their ports, i.e. connections among components and between a component and the
test system interface are port-oriented. Each port is modelled as an infinite FIFO queue which stores the incoming
messages or procedure calls until they are processed by the component owning that port (see figure 5).

NOTE: While TTCN-3 ports are infinite in principle in a real test system they may overflow. This is to be treated
as a test case error (see clause 24.1).

<—
—]]]]]lﬂ_

Figure 5: The TTCN-3 communication port model

TTCN-3 connections are port-to-port and port-to-test system interface connections (see figure 6). There are no
restrictions on the number of connections a component may maintain. One-to-many connections are also allowed

(e.g. figure 6 (g) or (h)).

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) The following connections are not allowed (see figure 7):

- A port owned by a component A shall not be connected with two or more ports owned by the same
component (figure 7 (a) and (e)).

- A port of a test system interface cannot have connection with more than one port owned by a
component A. This means, connections as shown in figure 7 (b) are not allowed.

- A port owned by a component A shall not be connected with two or more ports owned by a component B
(see figure 7(c)).

- A port owned by a component A can only have a one-to-one connection with the test system interface.
This means, connections as shown in figure 7 (d) are not allowed.

- Connections within the test system interface are not allowed (see figure 7 (f)).

- A port that is connected shall not be mapped and a port that is mapped shall not be connected (see
figure 7 (g)).

b) Since TTCN-3 allows dynamic configurations and addresses, the restrictions on connections cannot always be
checked at compile-time. The checks shall be made at runtime and shall lead to a test case error when failing.

ETSI

test component

A

Il

@)

test component

(©

test component

i

(e)

test component

el

(9)

test component
B

test component

B

—

test component

] B

test component

C

109

ETSI ES 201 873-1 V4.7.1 (2015-06)

test system

test component

test system interface

(b)

test system

test component

test system interface

(d)

I

test component

A

test system

®
test component | | test component
A B
1 —]

=

test system interface

;i(
~y

Figure 6: Allowed connections

ETSI

(h)

110 ETSI ES 201 873-1 V4.7.1 (2015-06)

test system

test component
test component P

A

test system interface

(a) (b)
test system test component
test component est compone
test component] B A
A
[]

i N

test system interface

(c) (d)

test system

test component

A

~

test system interface A A_\

(e) ()

test system
4 test component test component

1] »
NI =

test system interface //
—/

(9)

Figure 7: NOT allowed connections

9.2 Test system interface

TTCN-3 is used to test implementations. The object being tested is known as the Implementation Under Test or IUT.
The IUT may offer direct interfaces for testing or it may be part of system in which case the tested object is known as a
System Under Test or SUT. In the minimal case the IUT and the SUT are equivalent. In the present document the term
SUT is used in a general way to mean either SUT or IUT.

In a real test environment test cases need to communicate with the SUT. However, the specification of the real physical
connection is outside the scope of TTCN-3. Instead, a well defined (but abstract) test system interface shall be
associated with each test case. A test system interface definition is identical to a component definition, i.e. it is a list of
all possible communication ports through which the test case is connected to the SUT.

The test system interface statically defines the number and type of the port connections to the SUT during a test run.
However, the connections between the test system interface and the TTCN-3 test components are dynamic in nature and
may be modified during a test run by using map and unmap operations (see clause 21.1).

ETSI

111 ETSI ES 201 873-1 V4.7.1 (2015-06)

A component type definition is used to define the test system interface because, conceptually, component type
definitions and test system interface definitions have the same form (both are collections of ports defining possible
connection points). When used as test system interfaces, components cannot make use of any constants, variables and
timers declared in the component type.

Syntactical Structure
The same as a component type definition (see clauses 6.2.10 and 6.2.10.1).
Semantic Description

Generally, a component type reference defining the test system interface shall be associated with every test case using
more than one test component. The ports of the test system interface shall automatically be instantiated by the system
together with the MTC when the test case execution starts.

The operation returning the component reference of the test system interface is Syst em This shall be used to address
the ports of the test system.

In the case where the MTC is the only component that is instantiated during test execution, a test system interface need
not be associated to the test case. In this case, the component type definition associated with the MTC implicitly defines
the corresponding test system interface.

Variables, timers and constants declared in component types, which are used as test system interfaces will have no
effect.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) The same as for component type definitions (see clauses 6.2.10 and 6.2.10.1).

Examples

EXAMPLE 1: Explicit definition of a test system interface
type conponent MyMICType
{

var integer MyLocal | nteger;
timer MyLocal Tiner;
port MyMessagePort Type PCOL

}

type conponent MyTest System nterface

port MyMessagePort Type PCOL, PCQO2;
port M/ProcedurePort Type PCC3

/'l MyTestSystem nterface is the test systeminterface
testcase MyTestcasel () runs on M/MICType system MyTest System nterface {
/'l establishing the port connections
map(ntc: PCOL, system PCQ2);
/1 the testcase behaviour
/1

}
EXAMPLE 2: Implicit definition of a test system interface

/'l MyMICType is the test systeminterface
testcase MyTestcase2 () runs on MyMICType {
/'l map statenents are not needed
/'l the testcase behavi our
/1

ETSI

112 ETSI ES 201 873-1 V4.7.1 (2015-06)

10 Declaring constants

TTCN-3 constants are runtime constants. After value assignment, they do not change their value during test execution.
They can be used on the right hand side of assignments, in expressions, in actual parameters, and in template
definitions. Constants used within type definitions have to have values known at compile-time.

Syntactical Structure

const Type { Constldentifier [ArrayDef] ":=" ConstantExpression [","] } [";"]
Semantic Description

A constant assigns a name to a fixed value. A value is assigned only once to a constant, at the place of its declaration.
The constant does not change its value during test execution. The constant is defined only once, but can be referenced
multiple times in a TTCN-3 module.

If functions are used for the initialization of constants, it is strongly advised to adhere to the rules defined in
clause 16.1.4. Not following these rules may cause non-deterministic test executions.

Optional fields of record and set constants or constant fields can be initialized explicitly or implicitly. For implicit
initialization of the optional fields of a constant or a constant field, an opt i onal attribute with the value "i npl i ci t
om t" (see clause 27.7) shall be associated with it either directly or via the attribute distribution (scoping) mechanism
(see clause 27.1.1).

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Constants shall not be of port type.

NOTE: The only value that can be assigned to global constants or component constants of default or component
types is the special value nul | .

b) Constant expressions initializing constants, which are used in type and array definitions, shall only contain
literals, predefined functions except of r nd (see clause 16.1.2), operators specified in clause 7.1, and other
constants obeying the limitations of this clause.

c¢) Using the dot notation (see clauses 6.2.1.1, 6.2.2.1 and 6.2.5.1) and index notation (see clauses 6.2.3 and 6.2.7)
for referencing a field, alternative or element of an addr ess value, which actual value is nul | shall cause an
error.

Examples

1:

const integer MyConst1l : ;
true, MyConst3 : = fal se;

const bool ean MyConst2 :

11 Declaring variables

TTCN-3 variables are statically typed variables. Variables are either value variables to store values or template
variables to store templates.

Variables can be of simple basic types, basic string types, structured types, special data types (including subtypes
derived from these types) as well as address, component or default types.

Variables can be declared and used in the module control part, test cases, functions and altsteps. Additionally, variables
can be declared in component type definitions. These variables can be used in test cases, altsteps and functions which
are running on a given component type.

Variables can be declared lazy using the @lazy modifier.

Alternatively, variables can be declared fuzzy using the @fuzzy modifier.

ETSI

113 ETSI ES 201 873-1 V4.7.1 (2015-06)

Lazy and fuzzy features are valid only in the scope, where the variables' names are visible. For example, if a fuzzy
variable is passed to a formal parameter declared without a modifier, it loses its fuzzy feature inside the called function.
Similarly, if it is passed to a lazy formal parameter, it becomes lazy within the called function.

Whenever a lazy or fuzzy variable is assigned, the TE is required to save the lexical environment (the set of directly or
indirectly referenced values and templates) valid at the time of the assignment, so that it is possible to resolve the
expression at the time of evaluation of the lazy or fuzzy value or template. If the assignment was made on a lower scope
than the evaluation, saving the lexical environment extends lifetime of the referenced variables defined on that lower
scope.

Example

var @uzzy integer v_fuzzy := 1,
var integer v_var;
var bool ean v_condition := true;
if (v_condition) {
var boolean v_local := 0;
v_fuzzy := v_local;
v_local := 10;

/1 although v_local is no longer valid at this point, v_fuzzy still evaluates to 10 because

/1 the lexical environnent is available to the fuzzy vari able:
v_var := v_fuzzy;

11.1 Value variables

A TTCN-3 value variable stores values. It is declared by the var keyword followed by a type identifier and a variable
identifier. An initial value can be assigned at variable declaration.

It may be used at the right hand side as well as at the left hand side of assignments, in expressions, following the
r et ur n keyword in bodies of functions with a return clause in their headers and may be passed to both value and
template-type formal parameters.

Syntactical Structure

var [@azy | @uzzy] Type Varldentifier [ArrayDef] [":=" Expression]
{[","] Varldentifier [ArrayDef] [":=" Expression] } [";"]
Semantic Description

A value variable associates a name with the location of a value. A value variable may change its value during test
execution several times. A value can be assigned several times to a value variable. The value variable can be referenced
multiple times in a TTCN-3 module.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Expression shall be of type Type.
b) Value variables shall store values only.

¢) Value variables shall not be declared or used in a module definitions part (i.e. global variables are not
supported in TTCN-3).

d) Use of uninitialized value variables at other places than the left hand side of assignments, in return statements,
or as actual parameters passed to formal parameters shall cause an error.

e) The initialization or assignment of a fuzzy or lazy variable shall not contain function calls of functions with
inout or out parameters. The called functions may use other functions with inout or out parameters internally.

f) Iflazy or fuzzy value variables are used in deterministic contexts (i.e. during the evaluation of a snapshot or
initialization of global non-fuzzy templates), the same restrictions apply to all functions used in the value
assigned to the variable as for functions described in clause 16.1.4.

g) The expression assigned to a lazy or fuzzy variable might contain a direct or indirect reference to this variable.
Evaluation of such an expression shall cause a dynamic error.

ETSI

114 ETSI ES 201 873-1 V4.7.1 (2015-06)

h) Using the dot notation (see clauses 6.2.1.1, 6.2.2.1 and 6.2.5.1) and index notation (see clauses 6.2.3 and 6.2.7)
for referencing a field, alternative or element of an addr ess value, which actual value is nul | shall cause an
error.

Examples

var integer MyVarO;
var integer MyVarl : = 1;

var boolean MyVar2 := true, My/Var3 : = fal se;
var @azy integer MyLazyVarl := MyVar1l+1,;
MyVarl : = 2;

MyVar2 := MyLazyVarl; // MLazyVarl evaluates to 2 + 1
MyLazyVarl := MyLazyVarl + 1,
MyVar2 := MyLazyVarl; // causes an error as MyLazyVarl references itself

11.2 Template variables

A TTCN-3 template variable stores templates. They are declared by the var t enpl at e keyword followed by a type
identifier and a variable identifier. An initial content can be assigned at declaration. In addition to values, template
variables may also store matching mechanisms (see clause 15.7).

Template variables may be used on the right hand side as well as on the left hand side of assignments, following the
r et ur n keyword in bodies of functions defining a template-type return value in their headers and may be passed as
actual parameters to template-type formal parameters. It is also allowed to assign a template instance to a template
variable or a template variable field.

Syntactical Structure

var tenplate [@azy | @uzzy] [restriction] Type Varldentifier [ArrayDef] ":=" Tenpl at eBody
{ [",] Varldentifier [ArrayDef] ":=" TenplateBody } [";"]

Semantic Description

A template variable associates a name with the location of a template or a value (as every value is also a template).
A template variable may change its template during test execution several times. A template or value can be assigned
several times to a template variable. The template variable can be referenced multiple times in a TTCN-3 module.

The content of a template variable can be restricted to the matching mechanisms specific value and omit in the same
way as formal template parameters, see clause 5.4.1.2. The restriction template (omit) can be replaced by the shorthand
notation omit.

NOTE 1: String and list type templates can be concatenated, see clause 15.11.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Template variables shall not be declared or used in a module definitions part (i.e. global variables are not
supported in TTCN-3).

b) When used on the right hand side of assignments template variables shall not be operands of TTCN-3
operators (see clause 7.1) and the variable on the left hand side shall be a template variable too.

¢) When accessing element of template variables either on the left hand side or on the right hand side of
assignments, the rules given in clause 15.6 shall apply.

NOTE 2: While it is not allowed to directly apply TTCN-3 operations to template variables, it is allowed to use the
dot notation and the index notation to inspect and modify template variable fields.

d) Use of uninitialized template variables at other places than the left hand side of assignments, in return
statements, or as actual parameters passed to formal parameters shall cause an error.

e) Void

f) If the template variable is restricted, then the template used to initialize it shall contain only the matching
mechanisms as described in clause 15.8.

ETSI

115 ETSI ES 201 873-1 V4.7.1 (2015-06)

g) Template variables, similarly to global and local templates, shall be fully specified in order to be used in
sending and receiving operations.

h) Restrictions on templates in clause 15 shall apply.

i) The initialization or assignment of a fuzzy or lazy variable shall not contain function calls of functions with
inout or out parameters. The called functions may use other functions with inout or out parameters internally.

J) Iflazy or fuzzy template variables are used in deterministic contexts (i.e. during the evaluation of a snapshot or
initialization of global non-fuzzy templates), the same restrictions apply to all functions used in the template
body assigned to the variable as for functions described in clause 16.1.4.

k) Using the dot notation (see clauses 6.2.1.1, 6.2.2.1 and 6.2.5.1) and index notation (see clauses 6.2.3 and 6.2.7)
for referencing a field, alternative or element of an addr ess value, which actual value is nul | shall cause an
error.

Examples

var tenplate integer MVarTenpl := ?;
var tenplate M/Record MyVarTenp2 := { fieldl := true, field2 :=* },
MyVar Tenp3 := { fieldl :=?, field2 := MyVarTenpl };
var tenplate @uzzy float FuzzTenpl := rnd(); // evaluated on every usage
var tenplate @uzzy MyRecord FuzzTemp2 := { rnd() < 0.5, float2int(rnd()) }
var tenplate @azy float LazyTenpl := FuzzTenpl; // evaluates FuzzTenpl
var tenplate @azy MyRecord LazyTenp2 : =
{ LazyTenpl < 0.5, float2int(FuzzTenpl) } // evaluates LazyTenpl and FuzzTenpl
LazyTenp2.fieldl := true; // evaluates LazyTenp2 and overwites fieldl with true

12 Declaring timers

TTCN-3 provides a timer mechanism. Timers can be declared and used in the module control part, test cases, functions
and altsteps. Additionally, timers can be declared in component type definitions. These timers can be used in test cases,
functions and altsteps which are running on the given component type.

A timer declaration may have an optional default duration value assigned to it. The timer shall be started with this value
if no other value is specified. The timer value shall be a non-negative f | oat value (i.e. greater than or equal to 0.0)
where the base unit is seconds.

In addition to single timer instances, timer arrays can also be declared. Default duration(s) of the elements of a timer
array shall be assigned using a value array. Default duration(s) assignment shall use the array value notation as specified
in clause 6.2.7. If the default duration assignment is wished to be skipped for some element(s) of the timer arrayj, it shall
explicitly be declared by using the not used symbol ("-").

Syntactical Structure

timer { Tinmerldentifier [ArrayDef] ":=" TimerValue ["," 1 } [";" 1]
Semantic Description

Timers are local to components. A component can start and stop a timer, check if a timer is running, read the elapsed
time of a running timer and process timeout events after timer expiration. The timer value is interpreted with a base unit
of seconds.

NOTE 1: Timers declared and started in scope units such as functions cease to exist when the scope unit is left.
They do not contribute to the test behaviour once the scope unit is left.

NOTE 2: It is not possible to define a timer array as type.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) In case of a single timer, the default duration value shall resolve to a non-negative numerical float value
(i.e. the value shall be greater or equal 0.0, infinity and not a_number are disallowed).

ETSI

116 ETSI ES 201 873-1 V4.7.1 (2015-06)

b) Incase of a timer array, it shall resolve to an array of float values obeying to restriction a) above of the same
size as the size of the timer array.

Examples

EXAMPLE 1: Single timer

timer MyTinerl := 5E-3;
/1 declaration of the tinmer MyTinerl with the default value of 5ns

timer MyTinmer2; // declaration of MyTiner2 without a default tiner value i.e. a value has
/1 to be assigned when the tinmer is started

EXAMPLE 2: Timer array

timer t_Mytinerl[5] :={ 1.0, 2.0, 3.0, 4.0, 5.0}
/1 all elenents of the tiner array get a default duration.

timer t_Mytinmer2[5] :={ 1.0, -, 3.0, 4.0, 5.0}
/1 the second timer (t_Mytiner2[1]) is left without a default duration.

13 Declaring messages

One of the key elements of TTCN-3 is the ability to send and receive simple or complex messages over message-based
ports defined by the test configuration (see clauses 9 and 21). These messages may be those explicitly concerned with
testing the SUT or with the internal co-ordination and control messages specific to the relevant test configuration.

Messages are instances of types declared in the in/out/inout clauses of message port type definition.

Any type can be declared as type of a message in a message port type definition, i.e. values of any basic or structured
type (see clauses 6.1 and 6.2) can be sent or received. Received messages can also be declared as a combination of
value and matching mechanisms (see clause 15.5). Instances of messages can be declared by global, local or in-line
templates (see clause 15) or being constructed and passed via variables or template variables (see clause 11) and
parameters or template parameters (see clause 5.4).

Syntactical Structure

See syntactical structure of types (see clause 6).

Semantic Description

See semantic description of types (see clause 6).

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

/1 a structured, ordered nessage with two fields
type record ARecord { integer i, float f }

14 Declaring procedure signatures

Procedure signatures (or signatures for short) are needed for procedure-based communication. Procedure-based
communication may be used for the communication within the test system, i.e. among test components, or for the
communication between the test system and the SUT. In the latter case, a procedure may either be invoked in the SUT
(i.e. the test system performs the call) or in the test system (i.e. the SUT performs the call).

Syntactical Structure

signature Signatureldentifier

"(" { [in] inout | out] Type ValueParldentifier [","] } ")"
[(return Type) | noblock]

[exception "(" ExceptionTypelList ")"]

ETSI

117 ETSI ES 201 873-1 V4.7.1 (2015-06)

Semantic Description

For all used procedures, i.e. procedures used for the communication among test components, procedures called from the
SUT and procedures called from the test system, a procedure Si gnat ur e shall be defined in the TTCN-3 module.

TTCN-3 supports blocking and non-blocking procedure-based communication. By default, signature definitions without
the nobl ock keyword are assumed to be used for blocking procedure-based communication.

Signature definitions may have parameters. Parameters shall be of data type only, i.e. of a basic type, a structured type
thereof or a subtype thereof. Within a Si gnat ur e definition the parameter list may include parameter identifiers,
parameter types and their direction, i.e. i n, out , ori nout . The direction i nout and out indicate that these
parameters are used to retrieve information from the remote procedure.

NOTE 1: The direction of the parameters is as seen by the called party rather than the calling party.

A remote procedure may return a value after its termination. The type of the return value shall be specified by means of
ar et ur n clause in the corresponding signature definition.

Exceptions that may be raised by remote procedures are represented in TTCN-3 as values of a specific type. Therefore
templates and matching mechanisms can be used to specify or check return values of remote procedures.

NOTE 2: The conversion of exceptions generated by or sent to the SUT into the corresponding TTCN-3 type or
SUT representation is tool and system specific and therefore beyond the scope of the present document.

The exceptions are defined in the form of an exception list included in the Si gnat ur e definition. This list defines all
the possible different types associated with the set of possible exceptions (the meaning of exceptions themselves will
usually only be distinguished by specific values of these types).

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Signature definitions for non-blocking communication shall use the nobl ock keyword, shall only have i n
parameters and shall have no return value but may raise exceptions.

b) Signature parameters shall not be of port, component, timer or default type or of structured types having fields
of port, component, timer or default type.

Examples
si gnature MyRenoteProcOne (); /'l MyRenoteProcOne will be used for bl ocking
/'l procedure-based comunication. It has neither
/] paraneters nor a return val ue.
si gnature MyRenoteProcTwo () nobl ock; /1 MyRenoteProcTwo will be used for non bl ocking

/] procedure-based comunication. It has neither
/] paraneters nor a return val ue.

signature MyRenoteProcThree (in integer Parl, out float Par2, inout integer Par3);

/! MyRenoteProcThree will be used for bl ocking procedure-based conmuni cation. The procedure
/1 has three paraneters: Parl an in paraneter of type integer, Par2 an out paraneter of

/1 type float and Par3 an inout paraneter of type integer.

si gnature MyRenoteProcFour (in integer Parl) return integer;

/1 MyRenot eProcFour will be used for bl ocking procedure-based conmuni cation. The procedure
/1 has the in parameter Parl of type integer and returns a value of type integer after its
/] termination

si gnature MyRenoteProcFive (inout float Parl) return integer

exception (ExceptionTypel, ExceptionType2);
/1 MyRenoteProcFive will be used for bl ocking procedure-based communication. It returns a
/1 float value in the inout paraneter Parl and an integer value, or may raise exceptions of
/1 type ExceptionTypel or ExceptionType2

signature MyRenoteProcSix (in integer Parl) nobl ock

exception (integer, float);
/1 MyRenoteProcSix will be used for non-bl ocking procedure-based comruni cation. In case of
/1 an unsuccessful termnation, M/RenoteProcSix raises exceptions of type integer or float.

ETSI

118 ETSI ES 201 873-1 V4.7.1 (2015-06)

15 Declaring templates

Templates are used to either transmit a set of distinct values or to test whether a set of received values matches the
template specification. Templates can be defined globally or locally.

Templates provide the following possibilities:
a) they are a way to organize and to re-use test data, including a simple form of inheritance;
b) they can be parameterized;
c) they allow matching mechanisms;
d) they can be used with either message-based or procedure-based communications.

Within a template values, ranges and matching attributes can be specified and then used in both message-based and
procedure-based communications. Templates may be specified for any TTCN-3 type or procedure signature. The
type-based templates are used for message-based communications and the signature templates are used in
procedure-based communications.

A template can be declared fuzzy using the @fuzzy modifier.

NOTE 1: Using a fuzzy template from a non-fuzzy template causes evaluation of the fuzzy template. Thus, for
unparameterized non-fuzzy templates, the result of the used fuzzy templates will stay the same for every
usage.

A modified template declaration (see clause 15.5) specifies only the fields to be changed from the base template, i.e. it
is a partial specification.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Templates shall not be of def aul t or port type.

b) Templates shall not be of a structured type that contains fields of def aul t or port type on any level of
nesting.

NOTE 2: The anyt ype type does not include the def aul t type nor port types (see clause 6.2.6), so that
restriction b) does not apply to anytype templates.

¢) The body of a fuzzy template shall not contain function calls of functions with inout or out parameters. The
called functions may use other functions with inout or out parameters internally.

d) Fuzzy features are valid only in the scope, where the templates' names are visible. For example, if a fuzzy
template is passed to a formal template parameter declared without a modifier, it loses its fuzzy feature inside
the called function.

Examples

type record MyRecord {
defaul t def
}

type uni on MyUnion {
i nt eger choicel,
MyRecord choi ce2

}

tenpl ate MyUnion t_integerChosen := { choicel :=5}
/1 shall cause an error as the type MyUnion contains MyRecord, which includes
/1l a field of default type.

external function garble(charstring str) return str;

tenplate @uzzy charstring t_fuzzy := garble("foobar"); // every usage of t_fuzzy re-eval uates
/1 the function call

ETSI

119 ETSI ES 201 873-1 V4.7.1 (2015-06)

15.1 Declaring message templates

Instances of messages with actual values may be specified using templates. A template can be thought of as being a set
of instructions to build a message for sending or to match a received message.

Syntactical Structure
See syntactical structure of global and local templates (see clause 15.3) and of in-line templates (see clause 15.4).
Semantic Description

A template used in a Send operation defines a complete set of field values comprising the message to be transmitted
over a port.

NOTE: For sending templates, omitting an optional field is considered to be a value notation rather than a
matching mechanism.

A template used inar ecei ve,t ri gger or check operation defines a data template against which an incoming
message is to be matched. Matching mechanisms, as defined in clauses 15.7 and 15.8 and in annex B, may be used in
receive templates. No binding of the incoming values to the template shall occur.

Restrictions
In addition to restrictions in clause 15, the following restrictions apply:

a) Atthe time of a send operation, the used template shall be completely initialized and all fields shall resolve to
actual values or to omit and no other matching mechanisms shall be used in the template fields, neither directly
nor indirectly.

At the time of a r ecei vi ng operation, the matching template shall be completely initialized.

b) Optional fields of record and set templates or template fields can be initialized explicitly or implicitly. For
implicit initialization of the optional fields of a template or a template field, an opt i onal attribute with the
value "i nplicit omt" (seeclause27.7) shall be associated with it either directly or via the attribute
distribution (scoping) mechanism (see clause 27.1.1).

Examples

EXAMPLE 1: Template for sending messages

/1 Gven the nessage definition
type record MyMessageType

i nt eger fieldl optional,
charstring field2,
bool ean field3

}

/1 a message tenplate coul d be
tenpl ate MyMessageType MyTenpl ate: =

fieldl := omt,
field2 := "M string",
field3 := true

}

/1 and a correspondi ng send operation could be
M/PCO. send(MyTenpl at e) ;

EXAMPLE 2: Template for receiving messages

/1 G ven the nessage definition
type record MyMessageType

{
i nt eger fieldl optional,
charstring field2,
bool ean field3

}

ETSI

120 ETSI ES 201 873-1 V4.7.1 (2015-06)

/1 a nessage tenplate mght be
tenpl ate MyMessageType MyTenpl ate: =

fieldl := 2,
field2 := pattern "abc*xyz",
field3 :=true

}

/1 and a corresponding receive operation could be
M/PCO. r ecei ve(MyTenpl at e) ;

EXAMPLE 3: Template for receiving messages

/1 When used in a receiving operation this tenplate will natch any integer val ue
tenplate integer Mtenplate := ?;

/1 This tenplate will natch only the integer values 1, 2 or 3
tenpl ate integer Mytenplate := (1, 2, 3);

15.2 Declaring signature templates

Instances of procedure parameter lists with actual values may be specified using templates. Templates may be defined
for any procedure by referencing the associated signature definition.

Syntactical Structure
See syntactical structure of global and local templates (see clause 15.3) and of in-line templates (see clause 15.4).
Semantic Description

A signature template defines the values and matching mechanisms of the procedure parameters only, but not the return
value. The values or matching mechanisms for a return have to be defined within the reply (see clause 22.3.3) or
getreply operation (see clause 22.3.4).

A template used ina cal | orr epl y operation defines a complete set of field values for all i n and i nout
parameters. At the time of the cal | operation, all i n and i nout parameters in the template shall resolve to actual
values, no matching mechanisms shall be used in these fields, either directly or indirectly. Any template specification
for out parameters is simply ignored, therefore it is allowed to specify matching mechanisms for these fields, or to
omit them (see annex B).

A template used in a get cal | operation defines a data template against which the incoming parameter fields are
matched. Matching mechanisms, as defined in annex B, may be used in any templates used by this operation. No
binding of incoming values to the template shall occur. Any out parameters shall be ignored in the matching process.

Restrictions
In addition to restrictions in clause 15, the following restrictions apply:

a) Atthetimeofacall,reply andrai se operation, the used template shall be completely initialized and all
i n/i nout parameters ina cal | , all out /i nout parametersinar eply orrai se operation shall resolve
to specific values or to omit and no other matching mechanisms shall be used for these parameters, neither
directly nor indirectly.

b) The NotUsedSymbol shall only be used in signature templates for parameters which are not relevant and in
modified template declarations and modified in-line templates to indicate no change for the specified field or
element.

At the time of aget cal | , get r epl y and cat ch operation, the matching template shall be completely initialized.

¢) Optional fields of record and set parameters or parameter fields can be initialized explicitly or implicitly. For
implicit initialization of a parameter or a parameter field, an opt i onal attribute with the value "i npl i ci t
om t" (see clause 27.7) shall be associated with it either directly or via the attribute distribution (scoping)
mechanism (see clause 27.1.1).

ETSI

121 ETSI ES 201 873-1 V4.7.1 (2015-06)

Examples

EXAMPLE 1: Templates for invoking and accepting procedures

/] signature definition for a renote procedure
signature RenoteProc(in integer Parl, out integer Par2, inout integer Par3) return integer;

/] exanple tenplates associated to defined procedure signature
tenpl ate RenoteProc Tenpl atel: =

Parl := 1,
Par2 := 2,
Par3 := 3
}
tenpl ate RenoteProc Tenpl ate2: =
Parl := 1,
Par2 := 72,
Par3 := 3
}
tenpl ate RenoteProc Tenpl ate3: =
Parl := 1,
Par2 := ?,
Par3 := ?

}
tenpl ate RenoteProc Tenpl at e4: =?;

EXAMPLE 2: In-line templates for invoking procedures
/1l Gven exanple 1 in this clause

/1 Valid invocation since all in and inout paraneters have a distinct val ue
M/PCO. cal | (Renot eProc: Tenpl at el) ;

/1 Valid invocation since all in and inout paraneters have a distinct val ue
M/PCO. cal | (Renpt eProc: Tenpl at e2) ;

/1 Invalid invocation causing an error
/'l since the inout paraneter Par3 has a natching attribute not a val ue
M/PCO. cal | (Renot eProc: Tenpl at e3) ;

/] Tenpl ates never return values. In the case of Par2 and Par3 the values returned by the
/1 call operation shall be retrieved using an assignnent clause at the end of the call statenent

EXAMPLE 3: In-line templates for accepting procedure invocations
/1l Gven exanple 1 in this clause

// Valid getcall, it will match if Parl == 1 and Par3 ==
M/PCO. get cal | (Renot eProc: Tenpl at el);

// Valid getcall, it will match if Parl == 1 and Par3 ==
M/PCO. get cal | (Renot eProc: Tenpl at e2) ;

/1 Valid getcall, it will natch on Parl == 1 and Any val ue of Par3
M/PCO. get cal | (Renot eProc: Tenpl at e3) ;

EXAMPLE 4: In-line templates for accepting procedure replies
/1l Gven exanple 1 in this clause

/1 Valid getreply, in paraneters will be ignored, matches if return value is 4
M/PCO. get r epl y(Renot eProc: Tenpl at e2 val ue 4);

/1 Valid getreply, accepting any reply for RenoteProc
M/PCO. get r epl y(Renot eProc: ?);

/1 Valid getreply, also accepting any reply for RenoteProc
M/PCO. get cal | (Renot eProc: Tenpl ate4 val ue ?);

ETSI

122 ETSI ES 201 873-1 V4.7.1 (2015-06)

15.3 Global and local templates

TTCN-3 allows defining global templates and local templates.

Syntactical Structure

tenplate [restriction] [@uzzy] Type Tenplateldentifier ["(" Tenpl ateFornal ParList ")"]
[nodifies TenplateRef] ":=" Tenpl at eBody

NOTE: The optional restriction part is covered by clause 15.8.
Semantic Description

Global templates shall be defined in the module definitions part. Local templates shall be defined in module control,
testcases, functions, altsteps or statement blocks. Both global and local templates shall adhere to the scoping rules
specified in clause 5.

Both global and local templates can be parameterized. The actual parameters of a template can include values and
templates. The rules for formal and actual parameter lists shall be followed as defined in clause 5.2.

Both global and local templates are initialized at the place of their declaration. This means, all template fields which are
not affected by parameterization shall receive a value or matching mechanism. Template fields affected by
parameterization are initialized at the time of template use.

If functions are used for the initialization of module parameters, it is strongly advised to adhere to the rules defined in
clause 16.1.4. Not following these rules may cause non-deterministic test executions.

At the time of their use (e.g. in communication operations send, r ecei ve, cal | ,getcal |, etc.), it is allowed to
change template fields by in-line modified templates, to pass in values via value parameters as well as to pass in
templates via template parameters. The effects of these changes on the values of the template fields do not persist in the
template subsequent to the corresponding communication event.

Restrictions
In addition to restrictions in clause 15, the following restrictions apply:

a) The dot notation such as MyTemplateld.Fieldld shall not be used to set or retrieve values in templates in
communication events. The "->" symbol shall be used for this purpose (see clause 23).

b) Restrictions on referencing elements of templates or template fields are described in clause 15.6.

¢) There exist a number of restrictions on the functions used in expressions when specifying templates or
template fields; these are specified in clause 16.1.4.

Examples

/1 The tenplate
tenpl ate MyMessageType MyTenpl ate (i nteger MyFormal Param: =

fieldl := MyFor mal Par am
field2 := pattern "abc*xyz",
field3 := true

}

/1 could be used as foll ows
pcol. send(My Tenpl at e(123));

15.4 In-line Templates

Templates can be specified directly at the place they are used. Such templates are called in-line templates.

Syntactical Structure

[Type ":"] [nodifies TenplateRef WthParList ":="] Tenpl at eBody

NOTE 1: An in-line template is an argument of a communication operation or an actual parameter of a testcase,
function or altstep call, i.e. it is always placed within parenthesis and potentially separated with a comma.

ETSI

123 ETSI ES 201 873-1 V4.7.1 (2015-06)

Semantic Description
In-line templates can be defined directly at the place of its use.

In-line templates do not have names, therefore they cannot be referenced or reused. The lifetime of in-line templates is
the TTCN-3 statement (an assignment, a testcase/function/alstep invocation, a return from a function, a communication
operation), where they are defined.

Restrictions
In addition to restrictions in clause 15, the following restrictions apply:

a) Templates may be specified for any TTCN-3 type defined in table 3 and for any procedure signature except for
port and def aul t types.

b) The type field may only be omitted when the type is implicitly unambiguous.

NOTE 2: For literal in-line templates, the following types may be omitted: i nt eger, f | oat, bool ean,
bitstring,hexstring,octetstring.

NOTE 3: Types of constants, parameters and variables of the actual scope are always unambiguous and can hence
always be omitted.

c¢) In-line templates containing instead of values or inside values matching mechanisms (see clause 15.7) can only
be defined in arguments of receiving communication operations (i.e. r ecei ve, tri gger, check,
get cal | ,get repl y and cat ch), in arguments of the mat ch and sel ect case operations, in actual
template parameters, at the right hand side of assignments (when there is a template variable at the left hand
side of the assignment) and in return statements of template returning functions. In-line templates not
containing matching mechanisms can be defined wherever values are allowed.

d) When used in communication operations, the type of the in-line template shall be in the port list over which
the template is sent or received. In the case where there is an ambiguity between the listed type and the type of
the value provided (e.g. through subtyping) then the type name of the in-line template shall be included in the
communication operation.

e) There exist a number of restrictions on the functions used in expressions when specifying templates or
template fields; these are specified in clause 16.1.4.

Examples

M/PCO. r ecei ve(charstring: "abcxyz");

15.5 Modified templates

Normally, a template specifies a set of base or default values or matching symbols for each and every field defined in
the appropriate type or signature definition. In cases where small changes are needed to specify a new template, it is
possible to specify a modified template. A modified template specifies modifications to particular fields of the original
template, either directly or indirectly. As well as creating explicitly named modified templates, TTCN-3 allows the
definition of in-line modified templates.

Syntactical Structure

Global or local modified template:

tenplate [restriction] [@uzzy] Type Tenplateldentifier ["(" Tenpl ateFornal ParList ")"]
nmodi fi es Tenpl ateRef ":=" Tenpl at eBody

NOTE 1: The optional restriction part is covered by clause 15.8.

In-line modified template:

[Type ":"] nodifies Tenpl ateRef WthParList ":=" Tenpl at eBody

ETSI

124 ETSI ES 201 873-1 V4.7.1 (2015-06)

Semantic Description

The nodi fi es keyword denotes the parent template from which the new, or modified template shall be derived. This
parent template may be either an original template or a modified template.

The modifications occur in a linked fashion, eventually tracing back to the original template.

a) In case of templates, template fields or list elements of simple types, uni on and enurmer at ed types, the
matching mechanism specified in the modified template is simply replacing its corresponding content in its
parent.

b) For templates, template fields and elements of r ecor d and set types, ifarecord or set field and its
corresponding matching mechanism is specified in the modified template, then the specified matching
mechanism replaces the one specified in the corresponding field of the parent template. If ar ecor d or set
field or its corresponding matching mechanism is — implicitly or explicitly by using the not used symbol "-" -
left unspecified in the modified template, then the matching mechanism in the corresponding field of the
parent template shall be used. When the field to be modified is nested within a template field which is a
structured field itself, no other field of the structured field is changed apart from the explicitly denoted one(s).

¢) For templates, template fields and elements of r ecor d of and set of types, the above rules specified for
r ecor dsand set sapply with the following deviations:

- if the value list notation is used, only the number of elements listed in the modified template is inherited
from the parent (i.e. the list is truncated at the last element of the list notation in the modified template);

- when individual values of a modified template or a modified template field of r ecor d of orset of
type wished to be changed, and only in these cases, the index assignment notation may also be used,
where the left hand side of the assignment is the index of the element to be altered.

In case of record of and set of types first apply rule (c) to the complete structure (e.g. truncation) than apply
further rules for the remaining individual type structure elements (see example 3).

Formal value or template parameters of modified templates inherit the default value or respectively template of the
corresponding parameter of their parent templates only, if this is denoted by the dash (don't change) symbol at the place
of the parameters' default value or respectively template.

Modified templates may also be restricted. Template restrictions are specified in clause 15.8.
A modified template may also be declared fuzzy using the @fuzzy modifier.

NOTE 2: If a fuzzy modified template modifies a non-fuzzy unparameterized template, the inherited fields before
modification will be the same for every evaluation of the fuzzy template.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) A modified template shall not refer to itself, either directly or indirectly, i.e. recursive derivation is not
allowed.

b) Ifa base template has a formal parameter list, the following rules apply to all modified templates derived from
that base template, whether or not they are derived in one or several modification steps:

1) the derived template shall not omit parameters and change types or names of parameters defined at any
of the modification steps between the base template and the actual modified template;

2) atemplate parameter restriction of a derived template specified at any of the modification steps between
the base template and the actual modified template can be changed to a stricter one (see clause 15.8);

3) aderived template can have additional (appended) parameters if wished;

4) if the dash (don't change) symbol is used at the place of a default value or default template, the
corresponding parameter of the parent template shall have a valid default value or default template, either
assigned directly or inherited. If not, this shall cause an error.

ETSI

125 ETSI ES 201 873-1 V4.7.1 (2015-06)

c¢) Restrictions on referencing elements of templates or template fields are described in clause 15.6: for modified
templates the rules for the left hand side of assignments apply.

d) Limitations on template restrictions described in clause 15.8 shall apply.
Examples

EXAMPLE 1: Modifying record templates (non-embedded case)

/1 Modifying records

type record MyRecordType

{
integer fieldl optional,
charstring field2,
bool ean fiel d3

}
tenpl ate M/RecordType MyRecTenpl atel : =

fieldl := 123,
field2 := "A string",
field3 := true

/1 then writing
tenpl ate MyRecordType MyRecTenpl ate2 nodifies MyRecTenpl atel : =

fieldl :
field2 :

omt, // fieldl is optional but present in My/Tenplatel
"A nodified string"

/1 field3 is unchanged

/1 is the sane as witing
/1 tenplate MyRecordType MyRecTenpl ate2 : =

I {

/1 fieldl := omt,

/1 field2 := "A nodified string",
/1 field3 := true

I}

tenpl ate MyRecordType MyRecTenpl ate3 nodifies M/RecTenplatel :={ onmit, "A nodified string" }
//field3 is inplicitly left unchanged;
/I MyRecTenpl at e3 has the sane content as MyRecTenpl at e2

tenpl ate MyRecordType MyRecTenpl ate4 nodifies M/RecTenplatel :={ onmt, "A nodified string", - }
//field3 is explicitly left unchanged;
/I MyRecTenpl at e4 has the sane content as MyRecTenpl ate2 and MyRecTenpl at e3

EXAMPLE 2: Modifying record of templates (non-embedded case)
type record of integer MyRecordOf Type;
tenpl ate MyRecordOf Type MyBaseTenplate :={ 0, 1, 2, 3, 4, 5 6, 7, 8 9 };

tenpl ate MyRecordOf Type MyRecOf Tenpl at el nodi fies MyBaseTenplate := { -, -, 3, 2, -, -, -, -, -,

’// M/RecOf Tenpl atel contains { O, 1, 3, 2, 4, 5, 6, 7, 8 9}

tenpl ate MyRecordOf Type MyRecOf Tenpl at e2 nodi fi es MyBaseTenplate :={ -, -, 3, 2 };
/'l MyRecOr Tenpl at e2 repl aces MyBaseTenplate with: { 0, 1, 3, 2 };
/lelements 5 to 10 of MyBaseTenpl ate are truncated

tenpl ate MyRecordOf Type MyRecOf Tenpl at e3 nodi fi es MyBaseTenplate := { [2] := 3, : ;
Il MyRecOr Tenpl at e3 has the same content as MyMbdlTenplate: { O, 1, 3, 2, 4, 5 6, 7, 8, 9}

EXAMPLE 3: Modifying embedded record and record of templates

/1 Modifying a record enbedded in a record of
type record of record {

i nteger a,

integer b
} MyLi st Type

tenpl ate MyLi st Type MyBaseListTenplate :={ ?, { a:=1, b:=2}, ?, { a:=3, b:=41}}
tenpl ate MyLi st Type MyLi st Tenpl atel nodifi es MyBaselLi st Tenplate := { [1] :=

/1 Content of field "a" of the second el enent is nodified,

{ a:=421} }
//the content of MyListTenplatel is: { ?, { a:=42, b:=2}, ?, { a:=3, b:=41}}

ETSI

126 ETSI ES 201 873-1 V4.7.1 (2015-06)

tenpl ate MyLi st Type MyLi st Tenpl ate2 nodi fi es MyBaseListTenplate :={ -, { a:=42} ,- }
//Content of field "a" of the second elenent is nodified, and the
/lrecord of is truncated after the third elenent: { ?, { a:=42, b:=21}, ?}

EXAMPLE 4: Modified in-line template

/1l Gven

tenpl ate MyRecordType Setup : =
fieldl := 75,
field2 := "abc",
field3 := true

}

/1 Could be used to define an in-line nodified tenplate of Setup
/1 pcol.send (nodifies Setup := {fieldl:= 76});

EXAMPLE 5: Modified parameterized template

/1 Gven

tenpl ate MyRecordType MyTenpl at el(i nteger MyPar): =
fieldl := MyPar,
field2 := "A string",
field3 := true

}

/1 then a nodification could be
tenpl ate MyRecordType MyTenpl at e2(i nteger MyPar) nodifies M/RecTenpl atel : =
I/l fieldl is paraneterized in Tenplatel and renmins al so paraneterized in Tenpl at e2

field2 := "A nodified string"
}

EXAMPLE 6: Default values of modified parameterized templates
/1 Gven

tenpl ate MyRecordType MyTenpl atell (integer p_int :=5):=
/1 p_int has the default value 5

fieldl := p_int,
field2 := "A string",
field3 := true

}

/1 then possible tenplate nodifications are
tenpl ate M/RecordType MyTenpl atel2(integer p_int) nodifies MyTenpl atell : =
/1 p_int had a default value in MyTenpl atell but has none in this tenplate

field2 := "B string"
}

tenpl ate MyRecordType MyTenpl atel3(integer p_int := 0) nmodifies MTenplatel2 := { }
/1 p_int has the default value O
/1 no change is nmade to the tenplate's content, but only to the default value of p_int

tenpl ate MyRecordType MyTenpl atel4(integer p_int := -) nodifies MTenplatel3 : =
/1 p_int inherits the default value O fromits parent MyTenpl atel3
field2 := "C string"

}

tenpl ate MyRecordType MyTenpl atel5(integer p_int := -) nodifies MTenplateld : =

/1 p_int inherits the default value 0 from MyTenpl atel3 via M/Tenpl at el4

field2 := "D string"
}

tenpl ate MyRecordType MyTenpl atel6(integer p_int) nodifies MyTenplatel5 := { }
/1 p_int has no default value; no change in the tenplate’ s content

tenpl ate MyRecordType MyTenpl atel7(integer p_int := -) nodifies MyTenpl atel6 : =
/1 causes an error as p_int has no default value in the parent tenplate M/Tenpl at el6

field2 := "E string"
}

ETSI

127 ETSI ES 201 873-1 V4.7.1 (2015-06)

15.6 Referencing elements of templates or template fields

This clause defines rules and restrictions for referencing elements of templates or template fields in case of unrestricted
templates or templates with the present restriction. When referencing elements of templates or templates fields with the
value or omit restriction, the rules for referencing elements of values are used.

15.6.1 Referencing individual string elements

It is not allowed to reference individual string elements inside templates or template fields. Instead, the subst r
function (see clause C.4.2) shall be used.

EXAMPLE:

var tenplate charstring t_Charl := "MCHAR';
var tenplate charstring t_Char2;

t_Char2 :=t_Charl[1];
/1 shall cause an error as referencing individual string elenents is not allowed

15.6.2 Referencingrecord and set fields

Both templates and template variables allow referencing sub-fields inside a template definition using the dot notation.
However, the referenced field may be a subfield of a structured field to which a matching mechanism is assigned. This
clause provides rules for such cases.

a) Omit, AnyValueOrNone, template lists and complemented lists: referencing a subfield within a structured field
to which Omit, AnyValueOrNone, a template list or a complemented list is assigned, at the right hand side of
an assignment, shall cause an error.

When referencing a subfield within a structured field to which AnyValueOrNone or omit is assigned, at the
left hand side of an assignment, the structured field is implicitly set to be present, it is expanded recursively up
to and including the depth of the referenced subfield. During this expansion an AnyValue shall be assigned to
mandatory subfields and AnyValueOrNone shall be assigned to optional subfields. After this expansion the
value or matching mechanism at the right hand side of the assignment shall be assigned to the referenced
subfield.

When referencing a subfield within a structured field to which template lists or complemented template lists
are assigned, at the left hand side of an assignment, shall cause an error.

EXAMPLE I:

type record RL {
integer f1 optional,

R2 f2 optional
}
type record R2 {
i nteger g1,
R2 g2 optional
}
;/ar template R1 t _Rl := {
fl1:=5,
f2 := omt

}
var tenplate R2 t_R2 :=t_R1.f2.92;
/] causes an error as omt is assigned to t_R1.f2
f2 :=*;
= t_R1.f2.g2;
/] causes an error as * is assigned tot_R1.f2

t_
t_

8e

t_ Rl := ({fl:=omt, f2:={gl:=0, g2:=omit}}, {f1l:=5 f2:={gl:=1, g2:={gl:=2, g2:=omit}}});
t_ R :=t RL.f2
t_ R :=t R1L.f2. 92;
t_R2 :=t_R1.f2.92.92;
/1 all these assignnents cause error as a tenplate list is assigned to t_R1
t_ Rl :=

conpl ement ({f1:=om t, f2:={gl:=0, g2:=omt}},{f1:=5 f2:={gl:=1, g2:={gl:=2, g2:=omt}}});

ETSI

128 ETSI ES 201 873-1 V4.7.1 (2015-06)

b) AnyValue: when referencing a subfield within a structured field to which AnyValue is assigned, at the right
hand side of an assignment, AnyValue shall be returned for mandatory subfields and AnyValueOrNone shall
be returned for optional subfields.

When referencing a subfield within a structured field to which AnyValue is assigned, at the left hand side of an
assignment, the structured field is implicitly expanded recursively up to and including, the depth of the
referenced subfield. During this expansion an AnyValue shall be assigned to mandatory subfields and
AnyValueOrNone shall be assigned to optional subfields. After this expansion the value or matching
mechanism at the right hand side of the assignment shall be assigned to the referenced subfield.

EXAMPLE 2:

t_RL := {f1:=0, f2:=?}
t_R2 :=t_R1.f2.g2;
/] after the assignment t_R2 will be {gl:=?, g2:=*}
t_ R1.f2.92.92 := ({gl:=1, g2:=onmit},{gl:=2, g2:=omt});
/1 first the field t_R1.f2 has hypothetically be expanded to {gl:=?,9g2: ={gl:=?,92: =*}}
/1 thus after the assignnent t_Rl will be:
I/ {f1:=0, f2:={gl:=?,92:={gl:=?,02:=({gl: =1, g2:=omit},{gl:=2, g2:=omit})}}}

c) Ifpresent attribute: referencing a subfield within a structured field to which the ifpresent attribute is attached,
shall cause an error (irrespective of the value or the matching mechanism to which i f pr esent is appended).

d) Special value nul | : referencing a field of an addr ess type, which actual value is nul | shall cause an error.

15.6.3 Referencing record of and set of elements

Both templates and template variables allow referencing elements of ar ecor d of , array or set of template or field
using the index notation. However, a matching mechanism may be assigned to the template or field within which the
element is referenced. This clause provides rules on handling such cases.

a) Omit: referencing an element within a record of, set of or array field to which omit is assigned shall follow the
rules specified in clause 6.2.3.

b) Template lists, complemented lists, subset and superset: referencing an element within a record of or set of
field to which a complemented list, a subset or a superset is assigned, shall cause an error.

EXAMPLE 1:
type record of integer Rol;

var tenplate Rol t_Rol;
var tenplate integer t_Int;
t_Rol := ({},{0},{0,0},{0,0,0});
t_Int :=t_Rol[O0];
/1 shall cause an error as tenplate list is assigned to t_Rol

¢) AnyValue: when referencing an element of ar ecor d of orset of template or field to which AnyValue is
assigned (without a length attribute), at the right hand side of an assignment, AnyValue shall be returned. If a
length attribute is attached to the AnyValue , the index of the reference shall not violate the length attribute.
When referencing an element within ar ecord of orset of template or field to which AnyValue is
assigned (without a length attribute), at the left hand side of an assignment, the value or matching mechanism
at the right hand side of the assignment shall be assigned to the referenced element, AnyElement shall be
assigned to all elements before the referenced one (if any) and a single AnyElementsOrNone shall be added at
the end. When a length attribute is attached to AnyValue, the attribute shall be conveyed to the new template
or field transparently. The index shall not violate type restrictions in any of the above cases.

ETSI

129 ETSI ES 201 873-1 V4.7.1 (2015-06)

EXAMPLE 2:

type record of integer Rol;
type record of Rol RoRol;

var tenplate Rol t_Rol;
var tenplate RoRol t_RoRol;
var tenplate integer t_Int;

i_RoI =2
t_Int :=t_Rol[5];
/1 after the assignnent t_Int will be AnyVal ue(?);

t _RoRol := 72;
t_Rol :=t_RoRol[5];

/1 after the assignnent t_Rol wll be AnyVal ue(?);
t_Int :=t_RoRol[5].[3];

/1 after the assignnent t_Int will be AnyVal ue(?);

t _Rol ? length (2..5);

t_Int t_Rol[3];
/1 after the assignnent t_Int will be AnyVal ue(?);

t_Int :=1t_Rol[5];
/'l shall cause an error as the referenced index is outside the length attribute
/1 (note that index 5 would refer to the 6'" el enment);

t_RoRol[2] := {0, 0};

/1 after the assignnent t_RoRol will be {?,?, {0,0},*};
t_RoRol[4] := {1,1};

/Il after the assignnent t_RoRol will be {?,?,{0,0},?, {1, 1}, *};

t_Rol[0] := -5
/1 after the assignnent t_Rol will be {-5*} length(2..5);
t_Rol :=? length (2..5);

t_Rol[1] :=1;
// after the assignnent t_Rol will be {?,1,*} length(2..5);
t_Rol[3] := 72
/] after the assignnent t_Rol will be {?,1,?,?,*} length(2..5);
t_Rol[5] :=5;
// after the assignnent t_Rol will be {?,1,?,?,?,5 *} length(2..5); note that t_Rol
/'l becones an enpty set but that shall cause no error;

d) AnyValueOrNone: referencing an element within a record of, set of or array field to which AnyValueOrNone
with or without a length attribute is assigned on the right hand side of an assignment shall cause an error.
When referencing an element within a record of, set of or array field to which AnyValueOrNone is assigned
on the left hand side of an assignment, the rules for AnyValue shall apply (see item c) for more details).

EXAMPLE 3:

type record of integer Rol;
type record R
{

'

var tenplate Rmv t1 :={ fieldl :=* };
var tenplate integer_nw t2;
nv tl.fieldl[2] := 2; // after the assignnent, mnwtl will be { fieldl :={ ?, ?2, 2, * } }
mv tl.fieldl := *;
mv t2 :=mv tl. fieldl[O];
/1 shall cause an error as nw_ tl.fieldl contains AnyVal ueOr None

Rol fieldl optional

e) Permutation: when referencing an element ofar ecor d of template or field, which is located inside a
permutation (based on its index), this shall cause an error. Indexes of elements sheltered by a permutation shall
be determined based on the number of permutation elements. AnyElementsOrNone as a permutation element
causes that the permutation shelters all record of element indexes.

EXAMPLE 4:

t_Rol := {pernutation(O0,1,3,?),2,7?};
t_Int :=t_Rol[5];
// after the assignment t_Int will be AnyVal ue(?)

t_Rol := {pernutation(O0,1,3,?),2,*};

t_Int :=t_Rol[5];
/1 after the assignnent t_Int will be * (AnyVal ueO None)

ETSI

130 ETSI ES 201 873-1 V4.7.1 (2015-06)

t_Int :=t_Rol[2];
/] causes error as the third elenment (with index 2) is inside pernutation

t_Rol := {pernutation(O0,1,3,*),2,?};

t_Int :=t_Rol[5];
/] causes error as the pernutation contains AnyVal ueOrNone(*) that is able to
/] cover any record of indexes

f) Ifpresent attribute: referencing an element withina r ecor d of orset of field to which thei f pr esent
attribute is attached, shall cause an error (irrespective of the value or the matching mechanism to which
i f present is appended).

g) AnyElementsOrNone: when referencing an element of a record of or set of template or field that contains
AnyElementsOrNone, the result of an operation is dependent on the position of AnyElementsOrNone, the
referenced index and length attributes attached to AnyElementsOrNone.

When resolving the reference, a transformed form of the record of or set of template is used. The transformed
form is equal to the original value where all occurrences of AnyElementsOrNone with a length restriction are
replaced with a sequence of AnyElements of the same size as the lower bound. If the lower bound is greater
than the upper bound, the sequence shall be followed by a single AnyElementsOrNone symbol with a length
restriction. The lower bound of this restriction is zero and the upper bound is the difference between the lower
and upper bound of the original restriction.

EXAMPLE 5:

type record of interger Rol;

tenplate Rol t_Rol := {1, * length(2), 5}; // transforned form {1, ?, ?, 5}

tenplate Rol t_Rol := {1, * length(1..3), 5};// transformed form {1, ?, * length(0..2), 5}

h) Special value nul | : referencing an element of an addr ess type, which actual value is nul | shall cause an
€rTor.

When the reference is used at the right hand side of the assignment, the following applies:

- If positions of all AnyElementsOrNone matching symbols in the transformed form are greater than the
position of the referenced item, rules from the clause 6.2.3.2 are used for resolving the reference.

EXAMPLE 6:

type record of interger Rol;

var tenplate Rol t_Rol := {1, 2, * length(2), 5};
/l transformed form {1, 2, ?, ?, 5}

var tenplate integer t_Int;

t_Int :=t_Rol[1]; // after the assignnent, t_Int will be 2
t_Int :=t_Rol[2]; // after the assignnent, t_Int will be ?

- If the position of the referenced item is greater or equal to the position of any AnyElementsOrNone
symbol in the transformed template, an error is generated.

EXAMPLE 7:

type record of interger Rol;

;/ar tenplate Rol t_Rol := {1, 2, *, 5};

var tenplate integer t_Int :=t_Rol[3]; // produces an error
t_Rol := {1, 2, *};

t_Int :=t_Rol[2]; [/ produces an error

When the reference is used at the left hand side of the assignment, the following applies:

- If positions of all AnyElementsOrNone matching symbols in the transformed form are greater than the
position of the referenced item the following rules are used. If the referenced item is not a result of
transformation, the value or matching symbol at the right hand side of the assignment shall replace the
referenced symbol in the original template. If the referenced element was a result of transformation, then
the AnyValueOrNone symbol in the original template is replaced with its transformed form and the
assignment is performed afterwards.

ETSI

131 ETSI ES 201 873-1 V4.7.1 (2015-06)

EXAMPLE 8:

type record of interger Rol;

var tenplate Rol t_Rol := {1, 2, * length(2), 5};

/l transformed form {1, 2, ?, ?, 5}
t_Rol[1] := 10; [/ after the assignment, t_Rol will be {1, 10, * length(2), 5}
t_Rol[2] :=3; [// after the assignment, t_Rol wll be {1, 10, 3, ?, 5}

- If the position of the referenced item is greater or equal to the position of any AnyElementsOrNone
symbol in the transformed form and this AnyElementsOrNone symbol is not the last element in the
template, an error is generated.

EXAMPLE 9:
type record of interger Rol;

var tenplate Rol t_Rol := {1, 2, *, 5};
t_Rol[3] :=4; // produces an error

- If the position of the referenced item is greater or equal to the position of an AnyElementsOrNone
symbol in the transformed form and this AnyElementsOrNone is the last symbol in the template, the
value or matching symbol at the right hand side of the assignment shall be assigned to the referenced
element. Then the AnyElementsOrNone symbol and all unbound values between it and the referenced
symbol shall be replaced with AnyElement symbols. If the AnyElementsOrNone symbol had a length
restriction, only as many AnyElement symbols can be added as is the value of the upper bound of the
restriction. As the last step, an AnyElementsOrNone symbol can be appended to the end of the template.
The symbol is always appended if the original AnyElementsOrNone symbol was unrestricted. If the
original AnyElementsOrNone had a length restriction, the symbol is appended only if the restriction
included items beyond the referenced item. In such a case, the appended symbol contains the original
length restriction adjusted by the difference between the size of the template before and after assignment.

EXAMPLE 10:

type record of interger Rol;

;/ar tenplate Rol t_Rol := {1, 2, * };
t_Rol[4] :=5; /] {1, 2, ?, 2, 5 *};
t_Rol := {1, * length(l..2)};
t_Rol[4] :=5; /I {1, 2, 2, -, b5};

/1 short length restriction: only two ? synbols added and no * at the end

t_Rol := {1, * length(1l..5)};
t_Rol[2] :=3; /1 {1, ?, 3, * length(0..3)};
/1 adjusted length restriction at the end

The index of the referenced item shall not violate type restrictions in any of the above cases.

15.6.4 Referencing signature parameters

While signature templates do not allow referencing their parameters directly (e.g. using dot notation), such a reference
is possible when modifying a signature template. However, there can be a matching mechanism assigned to the
signature template. This clause provides rules for such cases.

a) Value lists and complemented lists: referencing a parameter of a signature template to which a value list or a
complemented list is assigned, at the left hand side of an assignment, shall cause an error.

EXAMPLE 1:

signature MySignature(in integer parl, in integer par2);

tenplate MySignature t_nySignl := ({ parl := 1, par2 := 2}, { parl := 2, par2 :=11});
tenplate MySignature t_nySign2 nodifies t_nySignl := { parl := ? };

/1 shall cause an error as t_nySignl contains a value list tenplate

b) AnyValue: when referencing a parameter within a signature to which AnyValue is assigned, at the left hand
side of an assignment, the signature template is implicitly expanded to the parameter level. During this
expansion an AnyValue shall be assigned to all parameters of the template. After this expansion the value or
matching mechanism at the right hand side of the assignment shall be assigned to the referenced parameter.

ETSI

132 ETSI ES 201 873-1 V4.7.1 (2015-06)

EXAMPLE 2:

tenplate MySignature t_nySign3 := ?;

tenplate MySignature t_nySign4 nodifies t_nySign3 := { parl := 3 };

/1 t_nySign3 is expanded to { parl := ?, par2 := ? }, then 3 is assigned to parl,
/1 thus t_nySignd will be { parl := 3, par2 := ? }

15.6.5 Referencing uni on alternatives

Both templates and template variables allow referencing alternatives inside a union template definition using the dot
notation. However, the referenced alternative may belong to template field containing a matching mechanism. This
clause provides rules for such cases.

a) Omit, AnyValueOrNone, template lists and complemented lists: referencing an alternative of a union template
or template field to which Omit, AnyValueOrNone, a template list or a complemented list is assigned, at the
right hand side of an assignment, shall cause an error.

When referencing an alternative of a union template or template field to which AnyValueOrNone or omit is
assigned, at the left hand side of an assignment, the template field is implicitly set to be present and the
referenced alternative becomes the chosen one. If the referenced alternative is not the last element of the dot
notation, rules in clause 15.6.2 valid for AnyValue shall apply recursively for further expansion. After this
expansion the value or matching mechanism at the right hand side of the assignment shall be assigned to the
referenced subfield.

Referencing an alternative of a union template field to which template lists or complemented template lists are
assigned, at the left hand side of an assignment, shall cause an error.

EXAMPLE 1:
type record Rl {
integer f1,
integer f2
}
type union U {
i nteger cl,
R1 c2
}
type record R2 {
i nteger g1,
U g2 optional
}
var tenplate R2 mv t1l := {
gl := 5,
g2 :=*

var tenplate integer nmw_ t2;
mv tl.g2.f1 :=1;
/1 after the assignment mwt2.g2 is { g2 :={ fl1:=1, f2:=?21}1}
mvtl.g2 := onit;
mv_t2 = mv_1.g2.cl,
/] causes an error as omt is assigned to mv_1.g2

b) AnyValue: when referencing an alternative of a union template or template field to which AnyValue is
assigned, at the right hand side of an assignment, AnyValue shall be returned.
When referencing an alternative of a union template or template field to which AnyValue is assigned, at the
left hand side of an assignment, the referenced alternative becomes the chosen one. If the referenced
alternative is not the last element of the dot notation, rules in clause 15.6.2 valid for AnyValue shall apply
recursively for further expansion. After this expansion the value or matching mechanism at the right hand side
of the assignment shall be assigned to the referenced subfield.

EXAMPLE 2:
var tenplate Unwt3 := ?;
mv t2 1= mv t3.cl;
/Il after the assignnent nwt2 will be ?

mv t3.cl.fl1 :=1;
[/ after the assignment mw t3 will be { c1:={ fl1l:=1, f2:=7?1}}

ETSI

133 ETSI ES 201 873-1 V4.7.1 (2015-06)

c) Ifpresent attribute: referencing an alternative of a union template field to which the ifpresent attribute is
attached, shall cause an error (irrespective of the value or the matching mechanism to which i f present is

appended).

d) Special value nul | : referencing an alternative of an addr ess type, which actual value is nul | shall cause

an error.

15.7 Template matching mechanisms

Generally, matching mechanisms are used to replace values of single template fields or to replace even the entire
contents of a template. Matching mechanisms may also be used in-line (see clause 15.4).

Matching mechanisms are arranged in four groups:
. specific values;
. special symbols that can be used instead of values;
. special symbols that can be used inside values;
. special symbols which describe attributes of values.

Some of the mechanisms may be used in combination.

The supported matching mechanisms and their associated symbols (if any) and the scope of their application are shown
in table 11. The left-hand column of this table lists all the TTCN-3 types to which these matching mechanisms apply. A

full description of each matching mechanism can be found in annex B.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) All other applications of matching mechanisms than the ones allowed in table 11 are forbidden.

ETSI

134 ETSI ES 201 873-1 V4.7.1 (2015-06)

Table 11: TTCN-3 Matching Mechanisms

Used with values|Value Instead of values Inside values Attributes
of
S O C T A A R S S P M A A P L |
p m o] e n n a u u a a n n e e f
e i m m y y n p b t t y Y r n P
c t p p \% \% g e S t c E E m g r
i I I a a e r e e h | I u t e
f e a | | s t r e e t h S
i m t u u e n d m m a R e
c e e e e t e e e t e n
\% n L | O c n n i S t
a t i r 0 t t 0 t
| e S N d (?) S n r
u d t o] e O i
e L n d r c
i e N t
S * c o] i
t o n o
n e n
t *)
e
n
t
boolean Yes | Yes! | Yes | Yes | Yes |Yes? Yes'
integer Yes | Yes! | Yes | Yes | Yes | Yes!| Yes Yes?t
float Yes | Yes! | Yes | Yes | Yes | Yes!| Yes Yes?t
bitstring Yes | Yes! | Yes | Yes | Yes |ves! Yes | Yes | Yes Yes | Yes?
octetstring Yes | Yes! | Yes | Yes | Yes |ves! Yes | Yes | Yes Yes | Yes?
hexstring Yes | Yes! | Yes | Yes | Yes |ves! Yes | Yes | Yes Yes | Yes?
character strings | Yes | Yes! | Yes | Yes | Yes | Yes!| Yes Yes | Yes | Yes? | Yes? Yes | Yes!
record Yes | Yes! | Yes | Yes | Yes |Yes? Yes'
record of Yes | Yes! | Yes | Yes | Yes |ves! Yes | Yes | Yes | Yes | Yes'
array Yes | Yes! | Yes | Yes | Yes |ves! Yes | Yes | Yes | Yes | Yes'
set Yes | Yes! | Yes | Yes | Yes |Yes! Yes?t
set of Yes | Yes! | Yes | Yes | Yes | Yes Yes | Yes Yes | Yes Yes | Yes?!
enumerated Yes | Yes! | Yes | Yes | Yes |Yes? Yes?!
union Yes | Yes! | Yes | Yes | Yes |Yes! Yes?t
anytype Yes | Yes! | Yes | Yes | Yes |Yes! Yes!

NOTE 1: Can be assigned to templates of any type as a whole or to optional fields of record and set templates. However
when matching, it shall be applied to optional fields of record and set types only (without restriction on the type of

that field).
NOTE 2: Have matching mechanism meaning within character patterns only.

15.7.1 Specific values

Specific values are the basic matching mechanism of TTCN-3 templates. Specific values in templates are expressions

which do not contain any matching mechanisms.

Syntactical Structure

Si ngl eExpr essi on
Semantic Description
The matching mechanism for a specific value is an expression that evaluates to a specific value.
For further details please refer to clause 6 and to annex B.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) See the restrictions given in table 11 and in annex B.

ETSI

135 ETSI ES 201 873-1 V4.7.1 (2015-06)

Examples

M/PCO. recei ve(charstring: "abcxyz");
M/PCO. recei ve(' AAAA O) ;

15.7.2 Special symbols that can be used instead of values

These matching mechanisms can be used to characterize a set of values.

Syntactical Structure

omt |

"(" { (Tenplatelnstance | all from Tenpl atelnstance) [","] } ")" |

conmpl ement "(" { (Tenplatelnstance | all from Tenpl atelnstance) [","] } ")" |

e

"wxn |

"(" (ConstantExpression | -infinity) ".." (ConstantExpression | infinity) ")" |
superset "(" { (Tenplatelnstance | all from Tenpl atelnstance) [","] } ")" |
subset "(" { (Tenplatelnstance | all from Tenplatelnstance) [","] } ")" |
pattern [@ocase] Cstring

decmatch ["(" Expression]")"] InlineTenplate

Semantic Description
The matching mechanisms for special symbols that can be used instead of values are:
° omit: the optional field, in which it is used, is not present;

NOTE 1: omit can be assigned to templates of any type as a whole or to optional fields of record and set types.
omit can only be used for matching optional fields.

(...): alist of values or templates;

complement (...): complement of a list of values or templates;
. ?: wildcard for any value;
. *: wildcard for any value or no value at all, i.e. the field is not present;

NOTE 2: * can be assigned to templates of any type as a whole or to optional fields of record and set types. * can
only be used for matching optional fields.

. (lowerBound . . upperBound): a range of integer or float values between and including the lower- and upper
bounds;

. super set: at least all of the elements listed, i.e. possibly more;

. subset: at most the elements listed, i.e. possibly less;

. pattern: a charstring or universal charstring that matches this format;
. decmatch: used for matching of encoded payload fields.

The matching mechanisms list, complemented list, subset, and superset can use the elements of a template using the all
from clause.

For further details please refer to annex B.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) See the restrictions given in table 11 and in annex B.

b) All templates and values used in the matching mechanisms above (including the referenced ones, e.g. within a
pattern) shall be completely initialized.

ETSI

136 ETSI ES 201 873-1 V4.7.1 (2015-06)

Examples

M/PCO. recei ve (integer:conplenent(1l, 2, 3));

15.7.3 Special symbols that can be used inside values

These matching mechanisms allow to characterize value sets by varying values inside.

Syntactical Structure

R

SR

.pernutation "(" { (Tenpl ateBody | "?" "*" | all from Tenpl atel nstance)[","] } ")"
Semantic Description
The matching mechanisms for special symbols that can be used inside values are:

. ?: wildcard for any single element in a string, array, record of orset of;

. *: wildcard for any number of consecutive elements in a string, array, record of orset of,orno
element at all (i.e. an omitted element);

. permutation: all of the elements listed but in an arbitrary order (note, that ? and * are also allowed as
elements of the permutation list and all elements of a template can be added to permutation using the all from
clause).

For further details please refer to annex B.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) See the restrictions given in table 11 and in annex B.

b) All templates or values used in the permutation matching mechanism shall be completely initialized.

Examples
tenplate bitstring b :='10???' B; /1 where each "?" nay either be 0 or 1
type record of integer R ;
tenplate Rl ri := {1, ?, 3} /1 where ? nay be any integer val ue

15.7.4 Special symbols which describe attributes of values

These matching mechanisms define properties of values.

Syntactical Structure

length "(" ConstantExpression [".." (ConstantExpression | infinity)] ")" [ifpresent] |
i fpresent

Semantic Description
The matching mechanisms which describe attributes of values are:

e length: restrictions for string length of string types and the number of elements for r ecord of ,set of
and arrays;

. ifpresent: for matching of optional field values (if not omitted).

NOTE 1: ifpresent can be assigned to templates of any type as a whole or to optional fields of record and set types.
ifpresent can only be used for matching optional fields.

NOTE 2: Assigning ifpresent to a template that already matches the special value omit (i.e. it is either omit, an
ifpresent template or AnyValueOrNone) has no effect; the resulting template will match the same set of
values and the special value omit as the template the ifpresent is assigned to.

ETSI

137 ETSI ES 201 873-1 V4.7.1 (2015-06)

For further details please refer to annex B.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) See the restrictions given in table 11 and in annex B.
b) All values used in the length matching attribute shall be completely initialized.

Examples

type record R {
record of integer ri optional

tenplate Rr:=

{
ri :=* length (1 .. 6) ifpresent /1 any value containing 1, 2, 3, 4,

/1 5 or 6 elenents, provided it is present

15.8 Template Restrictions

Template restrictions allow to restrict the matching mechanisms that can be used with a template. Template restrictions
are applicable to template definitions and template variables, formal template parameters, and return template types of
functions. Template restrictions can be applied equally to message and signature templates.

Syntactical Structure

tenplate "(" (omt | present | value) ")" Type
Semantic Description
The restrictions mean in case of:

. (om t) the template shall resolve to a value matching mechanism (i.e. the fields of it shall resolve to a
specific value or omit, and the whole template may also resolve to omit). Such a template can be used to define
a field of a record and set template and the latter one could still be used in a send statement.

. (val ue) the template shall resolve to a specific value (i.e. the fields of it shall resolve to a specific value or
omit, but the whole template shall not resolve to omit). It can be used to define a mandatory field of a record or
set template and the latter one could still be used in a send statement.

. (present) the template as a whole shall not resolve to matching mechanisms that match omit (i.e. its fields
may contain any of the matching mechanisms or matching attributes). Such a template can be used to define a
mandatory field of a record or set template.

NOTE: Template restrictions allow TTCN-3 tools to check more easily at compile time whether templates and
matching expressions are used correctly. Whether the checks are performed at compile time and invalid
code is rejected or whether the checks are performed at execution time and dynamic errors are raised, is
outside the scope of the present document.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Matching mechanisms can be used within restricted templates according to table 12.

ETSI

138

ETSI ES 201 873-1 V4.7.1 (2015-06)

Table 12: Using matching mechanisms with restricted templates
Used with
template Value Instead of values Inside values Attributes
restriction
S o C T A A R S S P M A A P L |
p m o] e n n a u u a a n n e e f
e i m m y y n p b t t y y r n P
c t p p \% \% g e S t c E E m g r
i I I a a e r e e h I | u t e
f e a | | s t r e e t h s
i m t u u e n d m m a R e
c e |eL| e e t e e e t e n
\% n i ? o c n n i S t
a t s r 0 t t 0 t
| e t N d (?) s n r
u d 0 e o i
e L n d r c
i e N t
s *) c 0] i
t o} n 0
n e n
t *)
e
n
t
omit Yes | Yes
value Yes | Note
1
present Yes | Note | Yes | Yes | Yes |Note | Yes | Yes | Yes | Yes |Note| Yes | Yes | Yes | Yes | Note
1 1 2 1
NOTE 1: Itis allowed to use the matching mechanism in fields of the template, but the template as a whole shall not

NOTE 2:

resolve to this matching mechanism.
The matching mechanism is allowed only if the template following the decmatch keyword is fulfilling the given

restriction.

b) Restricted and unrestricted templates can be used as actual parameters of formal template parameters or
assigned to template variables according to table 13.
Table 13: Restrictions of formal and actual template parameters
Actual value template template template template
parameter/right (omit) (value) (present)
hand side of an
expression
Formal
parameter/-
left hand
side of an
expression
template(omit) Yes Yes Yes (see note) (see note)
template(value) Yes (see note) Yes (see note) (see note)
template(present) Yes (see note) Yes Yes (see note)
template Yes Yes Yes Yes Yes
NOTE: These restrictions are related to the content of the actual parameter or right hand side expression
and not to the definition of the entities used. Which cases are checked at compile time and which
ones at runtime is a tool implementation issue.
Examples

/1 definitions of

type record Exanpl eType {

i nteger a,

bool ean b optional

restricted tenpl ates

ETSI

139 ETSI ES 201 873-1 V4.7.1 (2015-06)

tenpl ate(omit) Exanpl eType exanpleOnit := onmit;
tenpl ate(omit) Exanpl eType exanpl eOmitValue:= { 1, true };

tenpl ate(onit) Exanpl eType exanpleOnitAny := ?; /1 incorrect
tenpl at e(val ue) Exanpl eType exanpl eVal ueonit := onit; /'l incorrect
tenpl at e(val ue) Exanpl eType exanpleValue := { 1, true };

tenpl at e(val ue) Exanpl eType exanpl eVal ueOptional := { 1, omt };

/'l omt assigned to a field is correct

tenpl at e(present) Exanpl eType exanpl ePresent := {1, ?};

tenpl at e(present) Exanpl eType exanpl ePresent|fpresent := { 1, true } ifpresent;
/'l incorrect

tenpl at e(present) Exanpl eType exanpl ePresent Any : = ?;

Il restricted tenpl ate usage

var tenplate (omt) ExanpleType v_omit;

var tenplate (present) Exanpl eType v_present;
var tenplate (val ue) Exanpl eType v_val ue;

v_omt := exanpleOnit;

v_omit := exanpl eVal ueOptional ;

v_omit := exanpl ePresent Any; /1 incorrect, not a specific value
v_present := exanpleOnit; /'l incorrect, shall not be omt
v_present := exanpl ePresent;

v_val ue : = exanpl eOnit; /'l incorrect, shall not be omt

v_val ue : = exanpl ePr esent Any; /'l incorrect, shall be a single value

15.9 Match Operation

The mat ch operation allows to compare a value (specified in form of an expression) with a template.
Syntactical Structure

match " (" Expression "," Tenpl atel nstance ")"
Semantic Description

The mat ch operation returns a boolean value. If the types of the template and the value (specified in form of an
expression) are not compatible (see clause 6.3) the operation returns f al se. If the types are compatible, the return
value of the mat ch operation indicates whether the value matches the specified template.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The expression-parameter of the mat ch operation shall evaluate to a value, i.e. the mat ch operation cannot
be used to compare two templates.

b) The operands of the mat ch operation shall be completely initialized.
Examples
tenplate integer LessThanlO := (-infinity..9);

M/Port .receive(integer:?) -> value RxVal ue;
if(match(RxVal ue, LessThanl0)) { ...}
/1 true if the actual value of Rxvalue is less than 10 and fal se otherw se

15.10 Valueof Operation

The val ueof operation allows to return the value specified within a template. The returned value can be assigned to a
variable, may be used in expressions, as an actual value parameter, etc.

Syntactical Structure

val ueof "(" Tenpl atel nstance ")"

ETSI

140 ETSI ES 201 873-1 V4.7.1 (2015-06)

Semantic Description

The val ueof operation returns the value of a template instance.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) The template shall be completely initialized and resolve to a specific value.

Examples

EXAMPLE 1:
type record Exanpl eType

integer fieldl,
bool ean fi el d2

}

tenpl ate Exanpl eType SetupTenpl ate : =
fieldl := 1,
field2 := true

}

var Exanpl eType RxVal ue : = val ueof (Set upTenpl ate);

EXAMPLE 2:

function MyFunc() {
var tenplate integer vt_int := omit;
//is ok, but to be used for optional record or set fields only
var integer v_int := valueof (vt_int)
//causes an error as onmt is not a value and shall not be an argunent of val ueof

15.11 Concatenating templates of string and list types

Templates of string and list types (bitstring, octetstring, hexstring, charstring, universal charstring, record of, set of, and
array) can be concatenated from several single (in-line) templates using the concatenation operation. With the exception
of charstring and universal charstring templates, each single template shall have the same root type. The single
templates of binary string and list types shall contain only the matching mechanisms specific values, AnyValue without
a length modifier, AnyValue or AnyValueOrNone, both constrained to a fixed length, AnyElement or
AnyElementsOrNone possibly constrained with a length attribute for list types. The length matching attribute shall not
follow a template or template field produced by concatenation directly, but in this case the concatenation shall be placed
within a pair of parentheses.

Single templates of charstring and universal charstring types shall contain specific values only. When concatenating
templates of charstring and universal charstring types, each single template shall be either of the charstring or universal
charstring type. When templates of charstring and universal charstring type are both present in the concatenation, the
charstring values are implicitly converted to universal charstring values according to the rules specified in clause 6.3.1
before concatenation and the resulting template is of the universal charstring type.

The concatenation results in the sequential concatenation of the single templates from left to right, with two exceptions:
matching symbol AnyValue without a length modifier shall be replaced by a single AnyElementsOrNone matching
symbol before concatenation and matching symbols AnyValue and AnyValueOrNone that are each constrained to a
fixed length N shall be replaced by N AnyElement matching symbols before concatenation. The concatenation shall be
performed completely before using the resulting template (e.g. for assignment or matching) and the result shall be type-
compatible with the place of its use.

NOTE: See also concatenation of character string patterns in clause B.1.5.

ETSI

141 ETSI ES 201 873-1 V4.7.1 (2015-06)

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) All operands of the concatenation operation shall be at least partially initialized.

EXAMPLE 1: Composing templates of string types

tenpl ate charstring t_Mycharl := "ABC' & "DE*" & "F?";
/1 results in the tenpl ate " ABCDE*F?"
/'l please note that "*" and "?" denote the characters "*" and "?"

tenpl ate charstring t_Mychar2 := "ABC' & * length(2) & "EF";
/Il causes an error as for character string types only
/1 specific values are allowed

tenplate bitstring t_Mbit :='010'B & ? & '1'B & ? length(1l) & '1'B;
I/l results in the tenplate '010*1?71'B
I/l note that & ? & turns to * within the resulting bitstring as the original ?
/'l stands for a bitstring of any length

tenpl ate octetstring t_Myoctl := "ABCDO & '"EFF O & ? & ? length(1l) & 'EF G
/1 results in the tenplate ' ABCDEF* ?EF' O
/1l note that & ? & turns to * within the resulting octetstring as the original ?
/'l stands for an octetstring of any length

tenpl ate octetstring t_Myoct2 := "ABCD O & ? length (2) & 'EF O
/1 results in the tenplate ' ABCD??EF O
/1 (i.e. a5 octets i.e. 10 hexadecimal digits |ong val ue)

tenpl ate octetstring t_MyoctWong := "ABCD O & ? length(2) length (4);
/1 causes an error, no length matching attribute shall directly follow a concatenation

tenpl ate octetstring t_Myoct3 := ("ABCD O & ? length(2)) length (1..3);
/1 However, this is correct but will not match any val ue;

tenpl ate hexstring t_MhexPar (integer N:=
"ABCH&? length(N) & "EH & ? length(l) & 'F H;
function MyFunc() runs on MyConmpType {
var integer v_int := 3;
var tenplate hexstring vt_hstring;

vt_hstring := "ABCH & ? length(v_int) & "' EH&? length(l) &' 'F H
/lresults in the tenplate ' ABC???E?F H
P.receive (t_MyhexPar(4));
/lactual content of t_MyhexPar is ' ABC????E?F H
}

EXAMPLE 2: Composing templates of list types

type record of charstring Recof Char;
type set of integer Setoflnt;

tenpl ate Recof Char t_MyRecof Char := {"ABC'} & {"D?", "EF'};
I/l results in the tenplate {"ABC', "D?", "EF" }

tenplate SetofInt t_MSetofint :={ 1, 2} &? length(2) &{ 3, 4 };
I/l results in the tenplate {1, 2, ?, ?, 3, 4}

tenpl ate RecofInt t_MRecofint :={ 1, 2} &{ * length(2), 3, 4 };
I/l results in the tenplate {1, 2, ?, ?, 3, 4}

tenpl ate Recof Char t_M/Recof CharWong: = {"ABC'} & ? length(1l..2) & {"EF"};
/1 causes an error, the length attribute shall denote a fixed |length

tenpl ate Recof Char t_MyRecof CharPar (integer N):= { "ABC' } & ? & * length(N & { "EF" };
functi on MyFunc() runs on MyConmpType{

var integer v_int := 3;

var tenpl ate Recof Char vt_recof Char;

vt _recofChar := { "ABC' } & ? length(v_int) & { "EF" };
/lresults in the tenplate { "ABC', ?, ?, ?, "EF" }
P.receive (t_M/Recof CharPar(3));
/lactual content of t_MyRecof CharPar is { "ABC', ?, ?, ?, ?, "EF" }

ETSI

142 ETSI ES 201 873-1 V4.7.1 (2015-06)

16 Functions, altsteps and testcases

In TTCN-3, functions, altsteps and testcases are used to specify and structure test behaviour, define default behaviour
and to structure computation in a module, etc. as described in the following clauses.

16.1 Functions

Functions are used in TTCN-3 to express test behaviour, to organize test execution or to structure computation in a
module, for example, to calculate a single value, to initialize a set of variables or to check some condition.

Syntactical Structure

function [@leterministic] Functionldentifier

"(" [{ (Formal Val uePar | Fornmal Ti merPar | Fornmal Tenpl atePar | Formal PortPar) [","] }] ")"
[runs on Conponent Type]

[ntc Conponent Type]

[system Conponent Type]

[return [tenplate] Type]

St at erent Bl ock

Semantic Description

Functions are portions of TTCN-3 behaviour, which perform a specific task and are relatively independent of the
remaining behaviour.

Functions may return a value or a template. Value return is denoted by the r et ur n keyword followed by a type
expression. Template return is denoted by the r et ur n t enpl at e keywords followed by an optional restriction and a
type expression. Execution of a r et ur n statement in the body of the function causes evaluation of the return value or
template, the function to terminate and to return the result to the location of the call of the function.

The behaviour of a function can be defined by using statements and operations described in clauses 18 to 26.
Functions may be parameterized.

Functions may have an mtc clause. If a function has an mtc clause, the type referenced by this clause shall be mtc-
compatible (see clause 6.3.3) with the type of the mtc component reference. If the mtc clause is not present, the type of
the mtc component reference is unknown in the scope of this function.

Functions may have a system clause. If a function has a system clause, the type referenced by this clause shall be
system-compatible (see clause 6.3.3) with the type of the system component reference. If the system clause is not
present, the type of the system component reference is unknown in the scope of this function.

Using the @deterministic modifier, a function can be declared to be deterministic. Deterministic functions are safe to be
used when called from specific places where non-determinism could lead to unexpected side effects (see clause 16.1.4).

NOTE 0: The determination of determinism of a function is a semi-decidable problem and as such can and will not
be exhaustively checked. As such, the annotation deterministic is mainly used for informational purposes
and for allowing certain functions to be used during snapshot evaluation. Principally, a function can be
seen as deterministic if it does not violate any of the restrictions from clause 16.1.4 which does not mean
that violation of these restriction automatically leads to non-determinism.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) A function without r uns on clause shall never invoke a function or altstep or activate an altstep as default
with a r uns on clause locally.

b) Functions started by using the St ar t test component operation shall always have a r uns on clause
(see clause 22.5) and are considered to be invoked in the component to be started, i.e. not locally. However,
the st ar t test component operation may be invoked in functions without a r uns on clause.

NOTE 1: The restrictions concerning the r uns on clause are only related to functions and altsteps and not to test
cases.

ETSI

143 ETSI ES 201 873-1 V4.7.1 (2015-06)

c¢) Functions used in the control part of a TTCN-3 module shall have no r uns on, nt ¢ or syst emclause.
NOTE 2: Nevertheless, functions used in the control part are allowed to execute test cases.

d) The rules for formal parameter lists shall be followed as defined in clause 5.4.

e) Forreturn tenpl at e statements the restrictions specified in clause 15 shall apply.

f) Template r et ur n can be restricted to the matching mechanisms specific value and om t , see clause 5.4.1.2.

g) Areturn statement in a value returning function shall always have a value expression compatible to the type
specified in the function header return clause.

h) Areturn statement in a template returning function shall always have a template reference (including
calling a value or template returning function)or template instance compatible to the type specified in the
function header return clause. If the r et ur n clause has a template restriction, this restriction shall be adhered
to by the returned template. The return statement shall return a template that is at least partially initialized.

i) Ifthe function header includes a r et ur n clause the function, when terminating, shall do so by executing a
r et ur n statement. The function will cause a test case error if it terminates (i.e. reaches the end of the
function body) without executing a r et ur n statement.

j) Ifa function references the names of definitions that are defined inside a component type definition, the
component type shall be referenced using the r uns on keywords in the function header. The one exception to
this rule is if all the necessary component-wide information is passed in the function as parameters.

Examples

EXAMPLE 1: Function with return

/1 Definition of MyFunction which has no paraneters
function M/Function() return integer

{

return 7, /1 returns the integer value 7 when the function term nates

}
EXAMPLE 2: Function with template return
/1 Definition of functions which nay return natching synbols or tenplates
function MyFunction2() return tenpl ate integer
{
. return ?; /'l returns the natching nechani sm AnyVal ue

function MyFunction3() return tenplate octetstring
{
return ' FF??FF O /1 returns an octetstring with AnyValue inside it

}
EXAMPLE 3: Function with runs on clause

function MyFunction3() runs on MyPTCType {

lo /1 MyFunction3 does not return a val ue, but
var integer MyVar := 5; /1 does nake use of the port operation
PCOL. send(MyVar) ; /1 send and therefore requires a runs on
// clause to resolve the port identifiers
} /1 by referencing a conponent type

EXAMPLE 4: Parameterized function

function MyFunction2(inout integer MyParl) {
/1 MyFunction2 does not return a val ue
MyParl := 10 * MyParl; // but changes the value of MyParl which
} /1 is passed in by reference

ETSI

144 ETSI ES 201 873-1 V4.7.1 (2015-06)

EXAMPLE 5: Function without return statement

function MyFunction5(i nout integer MyParl) return integer {
if (MParl > 5) {
MWParl :=5;
return MyPar1;
}

/1 in case of MyParl <= 5, MFunction5 does not terminate in a return statemnent
/1 and will cause a test case error

}
EXAMPLE 6: Function with system and mtc

type conponent McType { ... }
type conponent Systeniype { ... }

function MyFunction6() runs on M/PtcType ntc McType system Systeniype {
var McType v_ntc := ntc;
var SystenlType v_system:= system
MyFunction3(); // allowed, M/Function3() has no ntc and system cl ause
M/Function6(); // allowed, MyFunction6() has conpatible ntc and system cl ause

functi on MyFunction7() runs on MyPtcType system Systeniype {
var McType v_ntc := ntc; // not allowed, ntc type unknown
M/Function6(); // possible runtine error, no ntc cl ause

}
function MyFunction8() runs on M/PtcType ntc McType {

var Systenilype v_system:= system // not allowed, systemtype unknown
MyFunction6(); // possible runtine error, no systemclause

16.1.1 Invoking functions
A function is invoked by referring to its name and providing the actual list of parameters.

Syntactical Structure

FunctionRef "(" [{ ActualPar [","] }] ")"
Semantic Description

A function invocation results in the execution of the statement block of the invoked function. The invoked function is
performed by the test component invoking it. Actual parameters are passed into the statement block. If the function
returns (upon termination and potentially with a return value), the test components continues its behaviour right after
the function invocation.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Functions that do not return values shall be invoked directly. Functions that return values may be invoked
directly or inside expressions.

b) The rules for actual parameter lists shall be followed as defined in clause 5.4.

¢) Special restrictions apply to functions bound to test components using the St ar t test component operation.
These restrictions are described in clause 21.3.2.

d) When invoking a function, the compatibility to the test component type of the invoking test component as
described in clause 6.3.3 need to be fulfilled.

e) Restrictions on invoking functions from specific places are described in clause 16.1.4.

f) When invoking a function, the mtc and system compatibility of the mtc and system components of the invoked
function with the actual mtc and system types of the running test case as described in clause 6.3.3 need to be
fulfilled.

ETSI

145 ETSI ES 201 873-1 V4.7.1 (2015-06)

Examples

MyVar := MyFunction4(); // The value returned by M/Function4 is assigned to MyVar.
/1 The types of the returned value and MyVar have to be conpatible

MyFunct i on2(MyVar 2) ; /'l MyFunction2 does not return a value and is called with the
[/ actual paraneter MyVar2, which nay be passed in by reference

MyVar3 : = MyFunction6(4) + MyFunction7(M/Var3); // Functions used in expressions

16.1.2 Predefined functions

TTCN-3 contains a number of predefined (built-in) functions that need not be declared before use. These are
summarized in table 14.

Table 14: List of TTCN-3 predefined functions

Category Function Keyword

Conversion functions |Convert integer value to charstring value i nt 2char
Convert integer value to universal charstring value i nt 2uni char
Convert integer value to bitstring value i nt 2bi t
Convert integer value to enumerated value i nt 2enum
Convert integer value to hexstring value i nt 2hex
Convert integer value to octetstring value i nt 2oct
Convert integer value to charstring value int2str
Convert integer value to float value i nt 2f | oat
Convert float value to integer value float2int
Convert charstring value to integer value char 2i nt
Convert charstring value to octetstring value char 2oct
Convert universal charstring value to octetstring value uni char 2oct
Convert universal charstring value to integer value uni char 2i nt
Convert bitstring value to integer value bi t 2i nt
Convert bitstring value to hexstring value bi t 2hex
Convert bitstring value to octetstring value bi t 2oct
Convert bitstring value to charstring value bit2str
Convert hexstring value to integer value hex2i nt
Convert hexstring value to bitstring value hex2bi t
Convert hexstring value to octetstring value hex2oct
Convert hexstring value to charstring value hex2str
Convert octetstring value to integer value oct 2i nt
Convert octetstring value to bitstring value oct 2bi t
Convert octetstring value to hexstring value oct 2hex
Convert octetstring value to charstring value oct2str
Convert octetstring value to charstring value, version I oct 2char
Convert octetstring value to universal charstring value oct 2uni char
Convert charstring value to integer value str2int
Convert charstring value to hexstring value str2hex
Convert charstring value to octetstring value str2oct
Convert charstring value to float value str2fl oat
Convert enumerated value to integer value enun®i nt
Convert value or template to universal charstring value any2uni str

Length/size functions [Return the length of a value or template of any string type, | engt hof
record of, set of or array
Return the number of elements in a value or a template of a si zeof
record or set

Presence checking Determine if an optional field in a record or set value or template|i spr esent

functions is present
Determine which choice has been selected in a union value or | schosen
template
Determine if a template evaluates to a concrete value i sval ue
Determine if a template is uninitialized or not i sbound
Determine if a template contains certain matching mechanism __|i st enpl at eki nd

String/list handling Returns part of the input string matching the specified pattern regexp

functions group within a character pattern
Returns the specified portion of the input string/list value or substr
template

ETSI

146 ETSI ES 201 873-1 V4.7.1 (2015-06)

Category Function Keyword

Replaces a substring of a string with or inserts the input string repl ace
into a string, and similarly for lists

Codec functions Encode a value into a bitstring encval ue
Decode a bitstring into a value decval ue
Encode a value into a universal charstring encval ue_uni char
Decode a universal charstring into a value decval ue_uni char
Retrieve the type of string encoding get stringencodi

ng

Remove BOMs of UCS encoding schemes remove_bom

Other functions Generate a random float number rnd
Returns the name of the currently executing test case test casenanme
Returns the host id of the test component or module hosti d

Syntactical Structure

nt 2char " (" Singl eExpression ")" |
nt 2uni char " (" Singl eExpression ")" |

nt2bit "(" SingleExpression "," SingleExpression ")" |
nt 2enum " (" Si ngl eExpression "," Singl eExpression ")" |
nt 2hex "(" SingleExpression "," SingleExpression ")" |
nt2oct " (" Singl eExpression "," SingleExpression ")" |

nt2str "(" Singl eExpression ")" |
nt2float "(" SingleExpression ")" |
float2int "(" SingleExpression ")" |
char2int "(" SingleExpression ")" |
char2oct " (" SingleExpression ")" |
uni char2int "(" SingleExpression ")" |
uni char2oct " (" Singl eExpression [, SingleExpression] ")" |
bit2int "(" SingleExpression ")"

oct 2hex " Si ngl eExpression "
oct2str "(" SingleExpression "
oct2char "(" SingleExpression ")" |
oct 2uni char " (" Singl eExpression [,
str2int "(" SingleExpression ")" |
I
I

%
bit2hex "(" Singl eExpression ")" |
bit2oct "(" SingleExpression ")" |
bit2str "(" SingleExpression ")" |
hex2int " (" SingleExpression ")" |
hex2bit "(" Singl eExpression ")" |
hex2oct " (" Singl eExpression ")" |
hex2str " (" Singl eExpression ")" |
oct2int "(" SingleExpression ")" |
oct2bit "(" SingleExpression ")" |

()"
()"

Si ngl eExpression] ")" |

str2hex "(" SingleExpression ")"
str2oct "(" SingleExpression ")"
str2float "(" SingleExpression ")" |
enunRint "(" SingleExpression ")" |
any2uni str "(" SingleExpression ")" |
| engt hof "(" Tenpl atel nstance ")" |
si zeof "(" Tenpl atelnstance ")" |

i spresent " (" Tenplatelnstance ")" |
i schosen " (" Tenpl atel nstance ")" |
isvalue "(" Tenplatelnstance ")" |

i sbound " (" Tenpl atel nstance ")" |

i stenpl atekind "(" Tenplatelnstance "," Tenpl atel nstance ")" |

regexp [@ocase] "(" Tenplatel nstance"," Tenpl atel nstance"," Singl eExpression ")" |

substr " (" Tenplatelnstance "," SingleExpression "," SingleExpression ")" |

replace "(" SingleExpression "," SingleExpression "," SingleExpression "," SingleExpression ")" |
encval ue "(" Tenpl atel nstance ")" |

decval ue "(" SingleExpression "," SingleExpression ")" |

encval ue_uni char "(" Tenpl atelnstance [, SingleExpression] ")" |

decval ue_uni char " (" Singl eExpression "," Singl eExpression [, SingleExpression]")" |

get _stringencodi ng(" Singl eExpression ")
renmove_bon(" Singl eExpression ")

rnd "(" [SingleExpression] ")" |
testcasenane "()"

hostid "(" [SingleExpression] ")"

Semantic Description

The description of predefined functions is given in annex C.

ETSI

147 ETSI ES 201 873-1 V4.7.1 (2015-06)

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) When a predefined function is invoked:
1) the number of the actual parameters shall be the same as the number of the formal parameters; and
2) each actual parameter shall evaluate to an element of its corresponding formal parameter's type; and
3) allactuali nandi nout parameters shall be initialized with the following exceptions:

" the actual i n parameter passed to the predefined functions i sval ue, i schosen,i spresent
and i shound may be uninitialized or even contain non-evaluable reference expressions;

" any_string_or_sequence_t ype parameters of the functions | engt hof , subst r and
r epl ace may be partially initialized,

" the i nval ue parameter of the any2uni st r function may be uninitialized or partially initialized;

" the encoded_val ue parameter of the decval ue and decval ue_uni char function may be
uninitialized.

b) Restrictions on invoking functions from specific places are described in clause 16.1.4.

Examples

var hexstring h:

= bit2hex ('111010111' B);
var octetstring o:=

substr ('01AB23CD O 1, 2);

16.1.3 External functions

A function may be defined within a module or be declared as being defined externally (i.e. ext er nal).

Syntactical Structure

external function [@etermnistic] ExtFunctionldentifier
"(" [{ (Formal Val uePar | Formal Ti merPar | Fornmnal Tenpl atePar | Formal PortPar) [","] }] ")"
[return Type]

Semantic Description

For an external function only the function interface has to be provided in the TTCN-3 module. The realization of the
external function is outside the scope of the present document.

Using the @deterministic modifier, an external function can be declared to be deterministic. Deterministic functions are
safe to be used when called from specific places where non-determinism could lead to unexpected side effects (see
clause 16.1.4).

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Void.
b) External functions are not allowed to return templates.
¢) Restrictions on invoking functions from specific places are described in clause 16.1.4.

NOTE: External functions should only exchange information with the test system via return values and parameter
passing. Side-effects that change the status of the test system and may influence the test outcome should
be avoided. Such side-effects can occur if an external function contains default handling, configuration,
communication or timer operations.

ETSI

148 ETSI ES 201 873-1 V4.7.1 (2015-06)

Examples

external function MyFunction4() return integer; // External function w thout paraneters
/1 which returns an integer val ue

external function InitTestDevices(); /1 An external function which only has an
I/ effect outside the TTCN-3 nodul e

16.1.4 Invoking functions from specific places

If value returning functions are called in receiving communication operations (in templates, template fields, in-line
templates, or as actual parameters), in guards or events of alt statements or altsteps (see clause 20.2), or in initializations
of altstep local definitions (see clause 16.2), the following operations shall not be used in functions called in the cases
specified above, in order to avoid side effects that cause changing the state of the component or the actual snapshot and
to prevent different results of subsequent evaluations on an unchanged snapshot:

a) All component operations, i.e. Cr eat e, start (component), St op (component), Kill,
runni ng (component), al i ve, done and ki | | ed (see notes 1, 3, 4 and 6).

b) All port operations, i.e. St art (port), st op (port), hal t, cl ear,send,recei ve,trigger,call,
getcall,reply,getreply,raise,catch,check, connect, map (see notes 1, 2, 3 and 6).

¢) Theacti on operation (see notes 2 and 6).

d) All timer operations, i.e. St art (timer), St op (timer), r unni ng (timer), r ead, t i neout (see notes 4
and 6).

e) Calling non-deterministic external functions, i.e. external functions where the resulting values for actual inout
or out parameters or the return value may differ for different invocations with the same actual in and inout
parameters (see notes 4 and 6).

f) Calling the r nd predefined function (see notes 4 and 6).

g) Changing of component variables, i.e. using component variables on the left-hand side of assignments, and in
the instantiation of out and i nout parameters (see notes 4 and 6).

h) Calling the set ver di ct operation (see notes 4 and 6).
i) Activation and deactivation of defaults, i.e. the act i vat e and deact i vat e statements (see notes 5 and 6).
j) Calling functions and deterministic external functions with out or i hout parameters (see notes 7 and 8).

NOTE 1: The execution of the operations st art , st op, done, ki | | ed, hal t,cl ear,recei ve,tri gger,
getcal | ,getreply, catchand check can cause changes to the current snapshot.

NOTE 2: The use of operations send, cal | ,repl y,rai se,and act i on causes an error, i.e. all
communication are to be made explicit and not as a side effect of another communication operation or the
evaluation of a snapshot.

NOTE 3: The use of operations map, unmap, connect , di sconnect , cr eat e causes an error, i.e. all
configuration operations are to be made explicit, and not as a side effect of a communication operation or
the evaluation of a snapshot.

NOTE 4: Calling of non-deterministic external functions, r nd, r unni ng, al i ve, r ead, set verdi ct, and
writing to component variables causes an error because this may lead to different results of subsequent
evaluations of the same snapshot, thus, e.g. rendering deadlock detection impossible.

NOTE 5: The use of operations act i vat e and deact i vat e causes an error because they modify the set of
defaults that is considered during the evaluation of the current snapshot.

NOTE 6: Restrictions except the limitation on the use of out or i nout parameterization in restriction j) apply
recursively, i.e. it is disallowed to use them directly, or via an arbitrary long chain of function
invocations.

ETSI

149 ETSI ES 201 873-1 V4.7.1 (2015-06)

NOTE 7: The restriction of calling functions and deterministic external functions with out or i nout parameters
does not apply recursively, i.e. calling functions that themselves call functions with out ori nout
parameters is legal.

NOTE 8: Using out ori nout parameters causes an error because this may lead to different results of subsequent
evaluations of the same snapshot.

16.2 Altsteps

TTCN-3 uses altsteps to specify default behaviour or to structure the alternatives of an al t statement.

Syntactical Structure

altstep Altstepldentifier

"(" [{ (Formal Val uePar | Formal Ti merPar | Fornmal Tenpl atePar | Formal PortPar) [","] }] ")"

[runs on Conponent Type]

[nmtc Conponent Type]

[system Conponent Type]

ng
{ (Varlnstance | Tinerlnstance | ConstDef | TenplateDef) [";"] }
Al t Guar dLi st

"y
Semantic Description

Altsteps are scope units similar to functions. The altstep body defines an optional set of local definitions and a set of
alternatives, the so-called top alternatives, that form the altstep body. The syntax rules of the top alternatives are
identical to the syntax rules of the alternatives of al t statements.

The behaviour of an altstep can be defined by using the program statements and operations summarized in clause 18.
Altsteps may invoke functions and altsteps or activate altsteps as defaults.

Altsteps may be parameterized as defined in clause 5.4.

Altsteps may have an mtc clause. If an altstep has an mtc clause, the type referenced by this clause shall be mtc-
compatible (see clause 6.3.3) with the type of the mtc component reference. If the mtc clause is not present, the type of
the mtc component reference is unknown in the scope of this altstep.

Altsteps may have a system clause. If an altstep has a system clause, the type referenced by this clause shall by
system-compatible (see clause 6.3.3) with the type of the system component reference. If the system clause is not
present, the type of the System component reference is unknown in the scope of this altstep.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) The local definitions of an altstep shall be defined before the set of alternatives.

b) The initialization of local definitions by calling value returning functions may have side effects. To avoid side
effects that cause an inconsistency between the actual snapshot and the state of the component, and to prevent
different results of subsequent evaluations on an unchanged snapshot, restrictions given in clause 16.1.4 shall
apply to the initialization of local definitions.

¢) Ifan altstep includes port operations or uses component variables, constants or timers the associated
component type shall be referenced using the r uns on keywords in the altstep header. The one exception to
this rule is if all ports, variables, constants and timers used within the altstep are passed in as parameters.

d) An altstep without a r uns on clause shall never invoke a function or altstep or activate an altstep as default
with aruns on clause locally.

e) Analtstep that is activated as a default shall only have i n value or template parameters, port parameters, and
timer parameters. An altstep that is only invoked as an alternative in an al t statement or as stand-alone
statement in a TTCN-3 behaviour description may have i n, out and i nout parameters. The rules for formal
parameter lists shall be followed as defined in clause 5.4.

ETSI

150 ETSI ES 201 873-1 V4.7.1 (2015-06)

Examples

EXAMPLE 1: Parameterized altstep with runs on clause

/1 Gven
type conponent MyConponent Type {
var integer MyIntVar := O;

timer MyTi mer;
port MyPort TypeOne PCOL, PCQOZ2;
port MyPort TypeTwo PCCB;

/1 Atstep definition using PCOl, PCO2, MylntVar and MyTi ner of MyConponent Type
altstep AltSet _A(in integer MyParl) runs on MyConponent Type {
[T PCOL. receive(MTenpl ate(MyParl, MylntVar) {
setverdi ct (i nconc);

}
[1] PCR.receive {
if (MParl !'=0) {
r epeat
el se {
br eak
}

}
[1 MTiner.timeout {
setverdict(fail);
st op

}
EXAMPLE 2: Altstep with local definitions
altstep AnotherAltStep(in integer MyParl) runs on MyConponent Type {
var integer MyLocal Var := MyFunction(); /1 local variable
const float MyFloat := 3.41; /1 local constant
[1 PCOL.recei ve(MyTenpl ate(MyPar1l, MLocal Var) {
setverdi ct (i nconc);

}
[1] PCX.receive {
r epeat
}

16.2.1 Invoking altsteps

The invocation of an altstep is always related to an al t statement. The invocation may be done either implicitly by the
default mechanism (see clause 20.5.3) or explicitly by a direct call within an al t statement (see clause 20.2).

Syntactical Structure
AltstepRef "(" [{ ActualPar [","] }] ")"
Semantic Description

The invocation of an altstep causes no new snapshot and the evaluation of the top alternatives of an altstep is done by
using the actual snapshot of the al t statement from which the altstep was called.

NOTE 1: A new snapshot within an altstep will of course be taken, if within a selected top alternative a new al t
statement is specified and entered.

For an implicit invocation of an altstep by means of the default mechanism, the altstep shall be activated as a default by
means of an act i vat e statement before the place of the invocation is reached.

ETSI

151 ETSI ES 201 873-1 V4.7.1 (2015-06)

An explicit call of an altstep within an al t statement looks syntactically like a function invocation as an alternative.
When an altstep is called explicitly within an al t statement, the next alternative to be checked is the first alternative of
the al t st ep. The alternatives of the al t St ep are checked and executed the same way as alternatives of an al t
statement (see clause 20.1) with the exception that no new snapshot is taken when entering the al t st ep. An
unsuccessful termination of the altstep (i.e. all top alternatives of the al t st ep have been checked and no matching
branch is found) causes the evaluation of the next alternative or invocation of the default mechanism (if the explicit call
is the last alternative of the al t statement). A successful termination may cause either the termination of the test
component, i.e. the altstep ends with a St Op statement, or a new snapshot and re-evaluation of the al t statement,

i.e. the altstep ends with r epeat (see clause 20.2) or a continuation immediately after the al t statement, i.e. the
execution of the selected top alternative of the altstep ends with a br eak statement (see clause 19.12) or without
explicit r epeat or st op.

NOTE 2: Due to the possibility of defining dynamic test configurations, an alternative in an explicitly invoked
altstep may refer to a disconnected or unmapped port at the time of its evaluation. In TTCN-3, ports
belong to the receiving component and matching is related to the top elements in the port queues.
Dynamically unmapped and disconnected ports contribute to a snapshot in the same manner as mapped
and connected ports. This means, an explicitly invoked al t st ep may execute receiving operations that
empty the queues of unmapped and disconnected ports without causing a test case error.

An al t st ep can also be called as a stand-alone statement in a TTCN-3 behaviour description. In this case, the call of
the al t st ep can be interpreted as shorthand for an al t statement with only one alternative describing the explicit call
ofthe al t st ep.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) When invoking an altstep, the compatibility of the test component type of the invoking test component and of
the altstep runs on clause (as described in clause 6.3.3) need to be fulfilled.

b) Further restrictions on invoking altsteps in the activate statement are given in clause 20.5.2.

¢) When invoking an altstep, the mtc and system compatibility of the mtc and system components of the invoked
altstep with the actual mtc and system types of the running test case as described in clause 6.3.3 need to be
fulfilled.

Examples

EXAMPLE 1: Implicit invocation of an altstep via a default activation

vér default MyDef Var Two : = activate(M/SecondAltStep()); // Activation of an altstep as default

EXAMPLE 2: Explicit invocation of an altstep within an alt statement

ait {
[T PC®.receive {

}
[1 AnotherAltStep(); /1 explicit call of altstep AnotherAltStep as an alternative
/1 of an alt statenent
[T MyTinmer.timeout {}

EXAMPLE 3: Explicit, stand-alone invocation of an altstep

/1 The statenent
Another Al tStep(); // AnotherAltStep is assuned to be a correctly defined altstep

/lis a shorthand for

alt {
[T AnotherAltStep();
}

ETSI

152 ETSI ES 201 873-1 V4.7.1 (2015-06)

16.3 Test cases

A test case is complete and independent specification of the actions required to achieve a specific test purpose. It
typically starts in a stable testing state and ends in a stable testing state. It may involve one or more consecutive or
concurrent connections to the SUT. The test case shall be complete in the sense that it is sufficient to enable a test
verdict to be assigned unambiguously to each potentially observable test outcome (i.e. sequence of test events). The test
case shall be independent in the sense that it shall be possible to execute the derived executable test case in isolation
from other such test cases.

In TTCN-3, test cases are a special kind of function. Test cases define the behaviours, which have to be executed to
check whether the SUT passes a test or not. This behaviour is performed by the MTC which is automatically created
when a test case is being executed.

Syntactical Structure

testcase Testcaseldentifier

(" [{ (Formal Val uePar | Fornal TenplatePar) [","] }] ")"
runs on Conponent Type

[system Conponent Type]

St at enent Bl ock

Semantic Description

A test case is considered to be a self-contained and complete specification that checks a test purpose. The result of a test
case execution is a test verdict.

A test case header has two parts:

a) interface part (mandatory): denoted by the keyword r uns on which references the required component type
for the MTC and makes the associated port names visible within the MTC behaviour; and

b) test system part (optional): denoted by the keyword syst emwhich references the component type which
defines the required ports for the test system interface. The test system part shall only be omitted if, during test
execution, only the MTC is instantiated. In this case, the MTC type defines the test system interface ports
implicitly.

The behaviour of a test case can be defined by using the program statements and operations described in clause 18.

Test cases may be parameterized as described in clause 5.4. Test cases can be executed in the control part of a module
(see clause 26).

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) The rules for formal parameter lists shall be followed as defined in clause 5.4.

b) Test cases may only be invoked with an execute statement in a module control part as defined in clause 26.

Examples
testcase MyTest CaseOne()
runs on MyM cTypel /1 defines the type of the MIC
system MyTest Syst enilype /1 makes the port nanes of the TSI visible to the MIC

/1 The behavi our defined here executes on the ntc when the test case invoked

}

/1 or, a test case where only the MIC is instantiated
testcase MyTest CaseTwo() runs on MyM cType2

/1 The behavi our defined here executes on the nmc when the test case invoked

ETSI

153

ETSI ES 201 873-1 V4.7.1 (2015-06)

17
18

Void

Overview of program statements and operations

The fundamental program elements of test cases, functions, altsteps and the control part of TTCN-3 modules are
expressions, basic program statements such as assignments, loop constructs, etc., behavioural statements such as
sequential behaviour, alternative behaviour, interleaving, defaults, etc., and operations such as send, r ecei ve,

creat e, etc.

Statements can be either single statements (which do not include other program statements) or compound statements
(which may include other statements and statement blocks).

Statements shall be executed in the order of their appearance, i.e. sequentially, as illustrated in figure 8.

S1

S2

S3

:> s1;

S2; S3;

The individual statements in the sequence shall be separated by the delimiter ";".

EXAMPLE:

MyPort . send(Mynessage) ;

MyTi mer. start;

| og(" Done!");

Figure 8: lllustration of sequential behaviour

The specification of an empty statement block, i.e. { } , may be found in compound statements, e.g. a branch in an al t
statement, and implies that no actions are taken.

Table 15 gives an overview of the TTCN-3 expressions, statements and operations and restrictions on their usage.

Table 15: Overview of TTCN-3 expressions, statements and operations

Statement Associated keyword or Can be Can be invoked | Can be directly
symbol directly or |by functions, test| or indirectly
indirectly cases and invoked from
invoked by | altsteps running | specific places
module on test (see note 1)
control, but components
not by test
components
Expressions (...) Yes Yes Yes
Basic program statements
Assignments = Yes Yes Yes (see note 4)
If-else if (...){...}else{...} Yes Yes Yes
Select case select case (...) { case Yes Yes Yes
(..){.}caseelse{..}}
For loop for (..){...} Yes Yes Yes
While loop while (...) {...} Yes Yes Yes
Do while loop do {...} while (...) Yes Yes Yes
Label and Goto label / goto Yes Yes Yes
Stop execution stop Yes Yes
Returning control return Yes (see note 5) Yes
Leaving a loop, alt, altstep or break Yes Yes Yes
interleave
Next iteration of a loop continue Yes Yes Yes
Logging log Yes Yes Yes

ETSI

154 ETSI ES 201 873-1 V4.7.1 (2015-06)
Statement Associated keyword or Can be Can be invoked | Can be directly
symbol directly or |by functions, test| or indirectly
indirectly cases and invoked from
invoked by | altsteps running | specific places
module on test (see note 1)
control, but components
not by test
components
Statements and operations for alternative behaviours
Alternative behaviour alt{...} Yes Yes
(see note 2)
Re-evaluation of alternative behaviour |repeat Yes Yes
Interleaved behaviour interleave {...} Yes Yes
(see note 2)
Activate a default activate Yes Yes
Deactivate a default deactivate Yes Yes
Configuration operations
Create parallel test component create Yes
Connect component port to connect Yes
component port
Disconnect two component ports disconnect Yes
Map port to test interface map Yes
Unmap port from test system interface|junmap Yes
Get MTC component reference value |mtc Yes Yes
Get test system interface component |system Yes Yes
reference value
Get own component reference value |self Yes Yes
Start execution of test component start Yes
behaviour
Stop execution of test component stop Yes
behaviour
Terminating the testcase with an error |testcase.stop Yes Yes
verdict
Remove a test component from the |kill Yes
system
Check termination of a PTC behaviour|running Yes
Check if a PTC exists in the test alive Yes
system
Wait for termination of a PTC done Yes
behaviour
Wait a PTC cease to exist killed Yes
Communication operations
Send message send Yes
Invoke procedure call call Yes
Reply to procedure call from remote |reply Yes
entity
Raise exception (to an accepted call) |raise Yes
Receive message receive Yes
Trigger on message trigger Yes
Accept procedure call from remote getcall Yes
entity
Handle response from a previous call |getreply Yes
Catch exception (from called entity) |catch Yes
Check (current) message/call check Yes
received
Clear port queue clear Yes
Clear queue and enable sending & start Yes
receiving at a to port
Disable sending and disallow stop Yes
receiving operations to match at a port
Disable sending and disallow halt Yes
receiving operations to match new
messages/calls
Check the state of a port checkstate Yes
Timer operations
Start timer [start Yes Yes

ETSI

155 ETSI ES 201 873-1 V4.7.1 (2015-06)
Statement Associated keyword or Can be Can be invoked | Can be directly
symbol directly or |by functions, test| or indirectly
indirectly cases and invoked from
invoked by | altsteps running | specific places
module on test (see note 1)
control, but components
not by test
components
Stop timer stop Yes Yes
Read elapsed time read Yes Yes
Check if timer running running Yes Yes
Timeout event timeout Yes Yes
Verdict operations
Set local verdict setverdict Yes
Get local verdict getverdict Yes Yes
External actions
Stimulate an (SUT) action externally [action | Yes | Yes
Execution of test cases
Execute test case execute Yes Yes

(see note 3)

NOTE 1:

shapshot evaluation are allowed.

NOTE 2:
NOTE 3:
NOTE 4:
NOTE 5:

Can be used to control timer operations only.

Can only be used in functions and altsteps that are used in module control.
Changing of component variables is disallowed.

Can be used in functions and altsteps but not in test cases.

Specific places are defined in clause 16.1.4. Only operations that do not have any potential side effects on

19

Basic program statements

Table 16 provides an overview of the TTCN-3 basic program statements.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

Table 16: Overview of TTCN-3 basic program statements

Basic program statements
Statement Associated keyword or symbol
Assignments =
If-else if (..){.}else{..}
Select case select case (...) { case (...) {...} case
else{...}}
For loop for (..){...}
While loop while (...) {...}
Do while loop do {...} while (...)
Label and Goto label / goto
Stop execution stop
Returning control return
Leaving a loop, alt, altstep or |break
interleave
Next iteration of a loop continue
Logging log

a) Unless specified differently in the relevant clause, all values and templates used in a basic program statement
shall be completely initialized (for exemption see e.g. clause 19.1).

NOTE:

Note that the restriction applies to component of statements defined in the present document, like the

boolean condition of i f statements, but not to the content of statement blocks embedded into the

statements.

ETSI

156 ETSI ES 201 873-1 V4.7.1 (2015-06)

19.1 Assignments

Values or templates may be assigned to variables or template variables (see clause 11). This is indicated by the symbol

—n

Syntactical Structure

Variabl eRef ":=" (Expression | Tenpl at eBody)
Semantic Description

During execution of an assignment, the right-hand side of the assignment shall evaluate to a value or template. The
effect of an assignment is to bind the variable to the value of the expression or to a template. The expression shall
contain no unbound variables. Assignments are processed from left to right, i.e. expressions in the left hand side are
evaluated before those in the right hand side. The evaluations obey the operator precedence defined in table 6. Unless
the assignment is to a lazy or fuzzy variable or parameter, the right hand side is evaluated completely before the
resulting value or template is bound to the evaluated left-hand side of the assignment. Whenever assignments are used
within the right hand side of an assignment (due to assignment notation), these rules apply recursively.

A structured value on the right-hand side of the assignment shall be assigned completely to the variable on the left-hand
side of the assignment, If a partially initialized value is assigned to a completely initialized variable, fields uninitialized
at the right-hand side of the assignment shall also become uninitialized at the left-hand side.

When a direct or indirect element or field of a lazy or fuzzy variable is assigned, the variable is also evaluated as much
as necessary before assignment, i.e. if an ancestor of that element or field is initialized with a function call, it shall be
evaluated. Thus, if the variable is fully assigned, it does not need to be evaluated before assignment.

NOTE: Ifa sub-field or sub-element of a fuzzy variable is assigned that has an ancestor which was formerly
assigned a function call, this function call will be evaluated once before the assignment and replaced by
its result inside the variable. Thus, the other sub-fields and sub-elements of that ancestor, apart from the
field or element being assigned become non-fuzzy.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:

a) The right-hand side of an assignment shall evaluate to a value or template, which is type compatible with the
variable at the left-hand side of the assignment.

b) When the right-hand side of the assignment evaluates to a template (global or local template, in-line template,
template variable or a matching mechanism), the variable at the left hand side shall be a template variable.

c) Ifthe left-hand side of the assignment is a reference to a non-optional value object (i.e. a value definition, a
mandatory field, a record/set of/array element, a union alternative, a value parameter), the right-hand side shall
not be a reference to an omitted field or the omit symbol.

d) Using a reference to an omitted field in the right-hand side of the assignment has the same effect as using the

om t keyword.
Examples
EXAMPLE 1:
M/Variable := (x + y - increnent(z))*3;
EXAMPLE 2:

type record M/Record {
record { float x, float y } c,
integer a
}
var @azy MyRecord r := {
c := conmputeC(),
a : = comput eA()
} // not evaluated here
r.c.x := conputeX(); /1 first replaces field c with result of conputeC(),
/1 then replaces field c.x with uneval uated conputeX()

ETSI

157 ETSI ES 201 873-1 V4.7.1 (2015-06)

// field while c.y renains fixed; field a renai ns uneval uat ed
EXAMPLE 3:
type record M/Record {
charstring fieldi,

charstring field2,
charstring field3

}

var MyRecord v_MLi st 1;
var MyRecord v_MLi st 2;

v_MyListl := {"valuel", "value2", "value3" }; // v_MListl is conpletely initialized

v_MList2.field2 := "newal ue"; /1l v_MyList2 is partilly initialized
/1 fieldl and field3 remain uninitialized

v_MListl := v_MList2; /1 v_MyListl becone partially initialized,
/1l field2 has the val ue "newal ue"
/1 fieldl and field3 are uninitialized

19.2 The If-else statement

Thei f - el se statement, also known as the conditional statement, is used to denote branching in the control flow.

Syntactical Structure

if "(" Bool eanExpression ")" StatenentBl ock
{ else if "(" Bool eanExpression ")" StatenentBl ock }
[el se StatemnentBl ock]

NOTE: else if "("BooleanExpression")" SatementBlock [else StatementBlock] is a shorthand notation for
el se "{"if "("BooleanExpression")" StatementBlock [else SatementBlock] "}".

Semantic Description

The branching of the control flow is decided upon the value of the Boolean expressions - the condition. A statement
block - and only one - will be executed, if its condition evaluates to true. The optional else specifies a statement block
that will be executed if all the "if" and "else if" conditions before are false.

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15.

Examples
if (date == "1.1.2005") { return (fail); }

if (MVar < 10) { MyVar := MyVar * 10; log ("MVar < 10"); }
else { M/Var := M/Var/5; }

19.3 The Select statements

19.3.1 The Select case statement
The sel ect case statement is an alternative syntactic form of the i f - el se statement.

Syntactical Structure
sel ect "(" SingleExpression ")" "{"

{ case "(" { SingleExpression [","] } ")" StatenentBlock }
[case else StatementBl ock]

ETSI

158 ETSI ES 201 873-1 V4.7.1 (2015-06)

Semantic Description

The sel ect case statement is an alternative to usingi f .. el se i f .. el se statements when comparing a value to
one or several other values. The statement contains a header part and zero or more branches. Never more than one of the
branches is executed.

In the header part of the sel ect case statement an expression shall be given. Each branch starts with the case
keyword followed by a list of templateInstance (a list branch, which may also contain a single element) or the el se
keyword (an else branch) and a statement block.

All templatelnstance in all list branches shall be of a type compatible with the type of the expression in the header.

A list branch is selected and the statement block of the selected branch is executed only, if any of the templatelnstance
matches the value of the expression in the header of the statement. On executing the statement block of the selected
branch (i.e. not jumping out by a go to statement), execution continues with the statement following the select case
statement.

The statement block of an else branch is always executed if no other branch textually preceding the else branch has
been selected.

Branches are evaluated in their textual order. If none of the templatelnstance-s matches the value of the expression in
the header and the statement contains no else branch, execution continues without executing any of the sel ect case
branches.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:
a) The sel ect SngleExpression and the case SngleExpression-s shall be type compatible.

Examples

sel ect (MyModul ePar) // where MyMddul ePar is of charstring type

case ("firstVal ue")
{Iog ("The first branch is selected");

case}(M/CharVar, My Char Const)

{I og ("The second branch is selected");
case} el se

{I og ("The value of the nodul e paranmeter MyMddul ePar is sel ected");
, }
/1 the above select statenent is equivalent to the follow ng nested if-else statenent.
/1l Note: the follow ng textual replacenent of the select-case statement is described in
/'l the operational semantics of TTCN 3.

{
var charstring nyTenpVar := MyModul ePar ;

if (match(nyTenpVar, "firstVal ue")
log ("The first branch is selected");
el se}if (mat ch(nmyTenpVar, MCharVar) or match(nyTenpVar, MCharConst))
log ("The second branch is selected");
el se

log ("The value of the nodul e paraneter MyMddul ePar is selected");

{
}
{
}

ETSI

159 ETSI ES 201 873-1 V4.7.1 (2015-06)

19.3.2 The Select union statement

To allow easier usage of the select statement for values of union types, a special form of the select statement exists.

Syntactical Structure

sel ect union "(" Tenpl atel nstance ")" "{"
{ case "(" { Ildentifier [","] } ")" StatenentBl ock }
[case el se StatenentBl ock]

"y
Semantic Description
The statement contains a header part and zero or more branches. Never more than one of the branches is executed.

In the header part of the sel ect uni on statement a template instance of union type shall be given. Each branch shall
start with the case keyword followed by one or more identifiers of the alternatives (fields) of the union type (a list
branch) or the el se keyword (an else branch) and a statement block. The StatementBlock of the list branch containing
the identifier of the chosen alternative is executed. If no case exists for the chosen alternative, the StatementBlock of the
else branch, if it is present, is executed. Otherwise, the sel ect uni on statement has no effect.

Restrictions

a) The Templatel nstance in the header of the sel ect uni on statement shall be of a uni on type. It shall be at
least partially initialized.

b) Every Identifier in a case of the sel ect uni on statement shall be an identifier of an alternative of the
uni on type of the template instance given to the statement's header.

¢) Notwo casesinasel ect uni on statement shall have the same case Identifier.

Examples

type uni on Messages {
M/MessageTypel nsgl,
M/MessageType2 nsg2,
M/MessageType3 nsg3,
M/MessageTyped nmsg4,
MyMessageType5 nsg5
}
function f(in Messages nsg) {
sel ect union (nsg) {
case (nmsgl) { |og(nsg.nsgl); }
case (msg2) { log(nsg.nsg2); }
case (msg3, nmsg4) { log("either msg3 or nsg4"); }
case el se { log("unhandl ed variant"); }

19.4 The For statement

The f or statement defines a counter loop.

Syntactical Structure

for "(" (Varlnstance | Assignment) ";" Bool eanExpression ";" Assignment ")"
St at erent Bl ock

Semantic Description

The f or statement contains two assignments and a bool ean expression. The first assignment is necessary to initialize
the index (or counter) variable of the loop. The bool ean expression terminates the loop and the second assignment is
used to manipulate the index variable.

The value of the index variable is increased, decreased or manipulated in such a manner that after a certain number of
execution loops a termination criteria is reached.

ETSI

160 ETSI ES 201 873-1 V4.7.1 (2015-06)

The termination criterion of the loop shall be expressed by a bool ean expression. It is checked at the beginning of
each new loop iteration. If it evaluates to t r ue, the execution continues with the statement block in the f or statement,
if it evaluates to f al se, the execution continues with the statement which immediately follows the f or loop. If a

br eak statement is executed that is not within the body of an enclosed loop, al t , alststep or i nt er | eave, then the
loop is terminated, too.

The index variable of a f or loop can be declared before being used in the f or statement or can be declared and
initialized in the f or statement header. If the index variable is declared and initialized in the f or statement header, the
scope of the index variable is limited to the loop body, i.e. it is only visible inside the loop body.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15.

Examples
var integer j; /1 Declaration of integer variable j
for (j:=1; j<=10; j:=j+1) { ..} /] Usage of variable j as index variable of the for Ioop
for (var float i:=1.0; i<7.9; i:=1i*1.35) { ..} // Index variable i is declared and initialized

/1 in the for |oop header. Variable i only is
/1 visible in the | oop body.

19.5 The While statement

A whi | e statement defines a loop that is executed as long as the loop condition holds.
Syntactical Structure

while "(" Bool eanExpression ")" StatenentBl ock
Semantic Description

The loop condition shall be checked at the beginning of each new loop iteration. If the loop condition does not hold,
then the loop is exited and execution shall continue with the statement, which immediately follows the whi | e loop. If a
br eak statement is executed that is not within the body of an enclosed loop, al t , alststep or i nt er | eave, then the
loop is terminated, too.

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15.

Examples

while (j<10){ ...}

19.6 The Do-while statement

A do- whi | e statement defines a loop that is executed up until the loop condition does not hold.

Syntactical Structure
do StatenentBl ock while "(" Bool eanExpression ")"
Semantic Description

The do- whi | e loop is identical to a whi | e loop with the exception that the loop condition shall be checked at the end
of each loop iteration. This means when using a do- whi | e loop the behaviour is executed at least once before the loop
condition is evaluated for the first time. If a br eak statement is executed that is not within the body of an enclosed
loop, al t, alststep or i nt er | eave, then the loop is terminated, too.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15.

ETSI

161 ETSI ES 201 873-1 V4.7.1 (2015-06)

Examples

do { ..} while (j<10);

19.7 The Label statement

The | abel statement allows the specification of labels in test cases, functions, altsteps and the control part of a
module.

Syntactical Structure

| abel Label I dentifier
Semantic Description

Al abel marks a statement. The label is used by the got 0 statement (see clause 19.8) to transfer control to a labelled
statement.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:

a) Al abel statement can be used freely like other TTCN-3 behavioural program statements according to the
syntax rules defined in annex A. It can be used before or after a TTCN-3 statement but not as the first
statement of an alternative or top alternative in an al t statement, i nt er | eave statement or al t st ep.

b) Labels used following the | abel keyword shall be unique among all labels defined in the same test case,
function, altstep or control part.

Examples
| abel MyLabel; /1 Defines the | abel MyLabel
/1 The labels L1, L2 and L3 are defined in the following TTCN-3 code fragment
I abel L1; /1 Definition of |abel L1
al t{
[1 PCOL. receive(M/Sigl)
{ | abel L2; /1 Definition of Iabel L2
PCOL. send(MySi g2) ;
PCOL. r ecei ve(MySi g3)
}
[T PCR.receive(MSig4)
{ PCX2. send(MySi g5) ;
PCX2. send(MySi gb) ;

| abel L3; /1 Definition of |abel L3
PCQ2. recei ve(MW/Si g7) ;

19.8 The Goto statement

A got o statement performs a jump to a | abel .

Syntactical Structure

goto Label I dentifier
Semantic Description

The got o statement can be used in functions, test cases, altsteps and the control part of a TTCN-3 module to transfer
control to a labelled statement.

ETSI

162 ETSI ES 201 873-1 V4.7.1 (2015-06)

The got o statement provides the possibility to jump freely, i.e. forwards and backwards, within a sequence of
statements, to jump out of a single compound statement (e.g. a whi | e loop) and to jump over several levels out of
nested compound statements (e.g. nested alternatives).

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:

a) Itis not allowed to jump out of or into functions, test cases, altsteps and the control part of a TTCN-3 module.

b) Itis not allowed to jump into a sequence of statements defined in a compound statement (i.e. al t statement,
whi | e loop, for loop, i f -el se statement, do- whi | e loop and the i nt er | eave statement).

¢) Itis not allowed to use the got 0 statement within an i nt er | eave statement.

Examples

/1 The followi ng TTCN-3 code fragnent includes

iabel L1; /1 ...the definition of |abel L1,
MyVar = 2 * MyVar;
if (MyVar < 2000) { goto L1; } [/l ...a junp backward to L1,

MyVar2 : = Myfunction(M/Var);

if (MVar2 > MyVar) { goto L2; } [/l ..a junp forward to L2,
PCOL. send(MyVar) ;

PCOL. r ecei ve;

| abel L2; /1 ..the definition of label L2,
PCX2. send(i nteger: 21);
alt {

[T PCOL.receive { }
[] PCX2.receive(integer: 67) {

| abel L3; /1 ..the definition of I|abel L3,
PC2. send(MyVar) ;
alt {

[T PCOL.receive { }
[T PCR2.receive(integer: 90) {
PCO2. send(i nteger: 33);
PCQ2. recei ve(integer: 13);
goto L4; /1 ..a junmp forward out of two nested alt statenents,

}
[T PCR2.receive(MError) {
goto L3; /1 ...a junmp backward out of the current alt statenent,

[1 any port.receive {
goto L2; /1 ...a junp backward out of two nested alt statenents,
}

}

[1 any port.receive {
goto L2; /1 ...and a long junp backward out of an alt statenent.
}

}
| abel L4;

19.9 The Stop execution statement

The st op statement terminates execution of test components, a test case or a test control.
Syntactical Structure

stop
Semantic Description

The st op statement terminates execution in different ways depending on the context in which it is executed. When
executed in the control part of a module or in a function called by the control part of a module, it terminates the
execution of the module control part. When invoked in a test case, altstep or function that are executed on a test
component, it terminates the relevant test component.

ETSI

163 ETSI ES 201 873-1 V4.7.1 (2015-06)

NOTE: The semantics of a St Op statement that terminates a test component is identical to the stop component
operation sel f. st op (see clause 21.3.3).

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15.
Examples
nodul e MyModul e {
: [/ Module definitions

téstcase M/Test Case() runs on MyMICType system MySyst eniType{
var MyPTCType ptc: = MyPTCType. create€; /1 PTC creation

ptc.start(M/Function()); /1 start PTC execution
: /'l test case behaviour continued
st op /1 stops the MIC, all PTCs and the whol e test case

}
function MyFunction() runs on M/PTCType {
sfop /1 stops the PTC only, the test case continues
control {
/] test execution
st op /] stops the test canpaign

} /1 end control
} 1/ end nodul e

19.10 The Return statement

The r et ur n statement terminates execution of functions or altsteps.
Syntactical Structure

return [Expression | Tenpl atel nstance]
Semantic Description

The r et ur n statement terminates execution of a function or altstep and returns control to the point from which the
function or altstep was called. When used in functions, a r et ur n statement may be optionally associated with a return
value or template.

TTCN-3 allows optional statement blocks that may follow altstep calls within al t statements. If there is a statement
block, the r et ur n statement returns control to the beginning of this statement block and the statement block is
executed before the al t statement is left. If there is no statement block, test execution continues with the first statement
following the al t statement.

The return value or template is first evaluated before returning.
Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:

a) The return statement shall not be used in testcase definitions.

Examples

function MyFunction() return bool ean {

i f (date == "1.1.2005") {
return fal se; /] execution stops on the 1.1.2000 and returns the bool ean fal se
}
.return true; /1 true is returned
}
functi on MyTenpl at eFunction() return tenplate charstring {
if (date == "1.1.2005") {
return "2005"; // the string of the year is returned

ETSI

164 ETSI ES 201 873-1 V4.7.1 (2015-06)

!

return ?; /1 the any tenplate is returned

}

function MyBehaviour() return verdicttype {

if (MFunction()) {

setverdict(pass); // use of MyFunction in an if statenent

}
el se {

setverdi ct (i nconc);
}

return getverdict; // explicit return of the verdict

19.11 The Log statement

The | 0g statement provides the means to write logging information to some logging device. The information that can
be logged is summarized in table 17.

Table 17: TTCN-3 language elements that can be logged

Used in a log statement

What is logged

Comment

module parameter identifier actual value
literal value value This includes also free text.
data constant identifier actual value

template instance

actual template or field
values and matching
symbols

data type variable identifier

actual value
or "UNINITIALIZED"

See notes 3 and 4.

sel f,ntc, systemor
component type variable
identifier

actual value and if
assigned the component
instance name
or "UNINITIALIZED"

On logging actual values see notes 2 to
4. Actual component states shall be
logged according to note 5.

running operation
(component or timer)

return value

true orf al se. In case of component or
timer arrays, array element specification
shall be included.

alive operation
(component)

return value

true or f al se. In case of arrays, array
element specifications shall be included.

port instance

actual state

Port states shall be logged according to
note 6.

default type variable identifier

actual state
or "UNINITIALIZED"

Default states shall be logged according
to note 7. See also notes 2 to 4.

timer name

actual state

Timer states shall be logged according to
note 8.

read operation

return value

See clause 24.3.

match operation

return value

getverdict operation

return value

none, pass, i nconc, or f ai |

predefined functions

return value

See annex C.

function instance

return value

Only functions with return clause are
allowed.

external function instance

return value

Only external functions with return clause
are allowed.

ETSI

165 ETSI ES 201 873-1 V4.7.1 (2015-06)

Used in a log statement What is logged Comment

formal parameter identifier see comment column Logging of actual parameters shall follow

rules specified for the language elements

they are substituting. In case of value

parameters the actual parameter value,

in case of template-type parameters the

actual template or field values and

matching symbols, in case of component

type parameters the actual component

reference, etc. shall be logged. For timer

parameters also the use of the read

operation and for component type and

timer parameters the use of the running

operation are allowed.

NOTE 1: Actual value/actual template is the value/template at the moment of the execution of the log
statement.

NOTE 2: The type of the logged value is tool dependent.

NOTE 3: In case of array identifiers without array element specification, actual values and for
component references names of all array elements shall be logged.

NOTE 4: The string "UNINITIALIZED" is logged only if the log item is unbound (uninitialized).

NOTE 5: Component states that can be logged are: Inactive, Running, Stopped and Killed (for further
details see annex F).

NOTE 6: Port states that can be logged are: Started and Stopped (for further details see annex F).

NOTE 7: Default states that can be logged are: Activated and Deactivated.

NOTE 8: Timer states that can be logged are: Inactive, Running and Expired (for further details see
annex F).

Syntactical Structure
log “(" { (FreeText | Tenplatelnstance) [","] } ")"
Semantic Description

The | og statement provides the means to write one or more log items to some logging device associated with the test
control or the test component in which the statement is used. Items to be logged shall be identified by a
comma-separated list in the argument of the log statement. Log items may be individual language elements specified in
table 17 or expressions composed of such log items.

It is strongly recommended that the execution of the | 0g statement has no effect on the test behaviour. In particular,
functions used in a log statement should not (explicitly or implicitly) change component variable values, port or timer
status, and should not change the value of any of its inout or out parameters.

NOTE: It is outside the scope of the present document to define complex logging and trace capabilities which
may be tool dependent.

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15.

Examples

var integer nyVar:= 1,

log("Line 248 in PTC A ", nyVar, " (actual value of nyVar)");

/'l The string "Line 248 in PTC_ A 1 (actual value of nyVar)" is witten to sone |og device
/1 of the test system

19.12 The Break statement

A br eak statement causes the exit from a loop, from an altstep or froman al t ori nt er | eave statement.

Syntactical Structure

br eak

ETSI

166 ETSI ES 201 873-1 V4.7.1 (2015-06)

Semantic Description

On executing a br eak statement the innermost, currently executed loop, al t statement or i nt er | eave statement is
left. Execution continues with the statement following the construct which is left. Using br eak outside the body of a
loop (f or ,whi | e, do-whi | e) or an alternative of an al t or i nt er | eave statement shall cause an error.

Altsteps are always executed within a surrounding al t statement. If the execution of a top alternative of an altstep (see
clause 16.2) ends with a br eak statement, the altstep and the surrounding al t statement are left. Execution continues
with the statement following the surrounding al t statement.

NOTE: TTCN-3 allows optional statement blocks that may follow altstep calls within al t statements. These
statement blocks are not executed when the altstep is left by executing a br eak statement. Ar et ur n
statement has to be used, if such an optional statement block has to be executed (see clause 19.10).

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15.

Examples
do {
if (condl) {
br eak; /1 the do-while loop is left
}
flér (var integer j:=1; j<=10; j:=j+1) {
if (cond2) {
br eak; /1 the for-loop is left but the do-while [oop is continued
}
}
oo
whil e (j<10);

19.13 The Continue statement

A cont i nue statement causes the start of the next iteration of a loop.
Syntactical Structure

continue
Semantic Description

On executing a cont i nue statement, the subsequent statements of the body of the innermost, currently executed loop
are skipped and the next iteration starts. Using cont i nue outside the body of a loop (f or , whi | e, do-whi | e) shall
cause an error.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15.

Examples
do {
i f (cond) {
conti nue; /] execution continues with the next iteration of the do-while-Ioop
}
for (var integer j:=l1; j<=10; j:= j+1) {
if (cond2) {
conti nue; /1 continues with the next iteration of the for-1oop
}

ETSI

167 ETSI ES 201 873-1 V4.7.1 (2015-06)

}
while (j<10);

19.14 Statement block

Statement blocks can be used like basic program statements to introduce a local scope in the flow of control of TTCN-3
behaviour. The declarations and statements in a statement block are executed in the order of their appearance,
i.e. sequentially.

Syntactical Structure

"{" { LocalDefinition | Statenent } "}"
Semantic Description
A statement block defines a local scope unit. Scoping rules for TTCN-3 are defined in clause 5.2.
Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15.

Examples
var integer aVar:= O; /1 aVar is declared
{ /] start of a statenent bl ock
var integer nyVar:= 2; /'l nyVar is declared
avVar := 5 + nyVar, /1 nyVar is used in an assignment
} /1 end of statenent bl ock
/1 after leaving the statenent block aVar is still known, but nyVar is not known anynore.

20 Statement and operations for alternative behaviours

Test behaviour cannot only be expressed sequentially, but also as a set of alternatives or combinations of both. An
interleaving operator allows the specification of interleaved sequences or alternatives. Table 18 summarizes the
statements and operations for alternative behaviours.

Table 18: Overview of TTCN-3 statements and operations for alternative behaviours

Statements and operations for alternative behaviours
Statement/Operation Associated keyword or symbol
Alternative behaviour alt{...}
Re-evaluation of alt statements |repeat
Interleaved behaviour interleave { ... }
Activate a default activate
Deactivate a default deactivate

ETSI

20.1

168 ETSI ES 201 873-1 V4.7.1 (2015-06)

The snapshot mechanism

A more complex form of behaviour is where sequences of statements are expressed as sets of possible alternatives to
form a tree of execution paths, as illustrated in figure 9.

S,
S1 alt {
[1 s2{
alt {
[] s4{ s7}
[1 s5{
S8;
alt {
[1 SO {}
[1 S10 {}
}
}
}
}
[1 s3{ s6}

Figure 9: lllustration of alternative behaviour

This is done with the al t statement.

When entering an al t statement, a snapshot is taken. A snapshot is considered to be a partial state of a test component
that includes all information necessary to evaluate the Boolean conditions that guard alternative branches, all relevant
stopped test components, all relevant timeout events and the top messages, calls, replies and exceptions in the relevant
incoming port queues. Any test component, timer and port which is referenced in at least one alternative in the al t
statement, or in a top alternative of an altstep that is invoked as an alternative in the al t statement or activated as
default is considered to be relevant. A detailed description of the snapshot semantics is given in the operational
semantics of TTCN-3 (part 4 of the TTCN-3 standard - ETSI ES 201 873-4 [1]).

NOTE 1:

NOTE 2:

20.2

Snapshots are only a conceptual means for describing the behaviour of the al t statement. The concrete
algorithms for the snapshot handling can be found in part 4 of the TTCN-3 standard
(ETSIES 201 873-4 [1]).

The TTCN-3 semantics assumes that taking a snapshot is instantaneous, i.e. has no duration. In a real
implementation, taking a snapshot may take some time and race conditions may occur. The handling of
such race conditions is outside the scope of the present document.

The Alt statement

An alt statement expresses sets of possible alternatives that form a tree of possible execution paths.

Syntactical Structure

alt "{"

{
"[" [Bool eanExpression] "]"
((TimeoutStatenent |
Recei veSt at enent |
Trigger Statenment |
Get Cal | St at enent |
Cat chSt at enent |
CheckSt at enent |
CGet Repl ySt at emrent |
DoneSt at enent |
Ki |l edStatenment) StatenentBlock)

|
(Altsteplnstance [StatenentBlock])

["[" else "]" StatenentBl ock]

ETSI

169 ETSI ES 201 873-1 V4.7.1 (2015-06)

Semantic Description

The al t statement denotes branching of test behaviour due to the reception and handling of communication and/or
timer events and/or the termination of parallel test components, i.e. it is related to the use of the TTCN-3 operations
receive,trigger,getcall,getreply,catch,check,timeout, doneandkill ed.Thealt statement
denotes a set of possible events that are to be matched against a particular snapshot.

Execution of alternative behaviour:
When entering an al t statement, a snapshot is taken.

The alternative branches in the al t statement and the top alternatives of invoked altsteps and altsteps that are activated
as defaults are processed in the order of their appearance. If several defaults are active, the reverse order of their
activation determines the evaluation order of the top alternatives in the defaults. The alternative branches in active
defaults are reached by the default mechanism described in clause 20.5.

The individual alternative branches are either branches that may be guarded by a Boolean expression or else-branches,
i.e. alternative branches starting with [el se] .

Else-branches are always chosen and executed when they are reached (see below).

Branches that may be guarded by a Boolean expressions either invoke an altstep (altstep-branch), or start with a done
operation (done-branch), a ki | | ed operation (killed-branch), t i meout operation (timeout-branch) or a receiving
operation (receiving-branch), i.e.r ecei ve, tri gger,getcal |l ,getreply, catch oracheck operation. The
evaluation of the Boolean guards shall be based on the snapshot. The Boolean guard is considered to be fulfilled if no
Boolean guard is defined, or if the Boolean guard evaluates to t r ue. The branches are processed and executed in the
following manner.

An altstep-branch is selected if the Boolean guard is fulfilled. The selection of an altstep-branch causes the invocation
of the referenced altstep, i.e. the altstep is invoked and the evaluation of the snapshot continues within the altstep.
Altstep-branches may contain an optional statement block. The optional statement block shall be executed only, if an
alternative of the altstep referenced in the altstep-branch has been selected and executed.

A done-branch is selected if the Boolean guard is fulfilled and if the specified test component is in the list of stopped
components of the snapshot. The selection causes the execution of the statement block following the done operation.
The done operation itself has no further effect.

A killed-branch is selected if the Boolean guard is fulfilled and if the specified test component is in the list of killed
components of the snapshot. The selection causes the execution of the statement block following the ki | | ed
operation. The ki | | ed operation itself has no further effect.

A timeout-branch is selected if the Boolean guard is fulfilled and if the specified timeout event is in the timeout-list of
the snapshot. The selection causes execution of the specified t i meout operation, i.e. removal of the timeout event
from the timeout-list, and the execution of the statement block following the t i meout operation.

A receiving-branch is selected if the Boolean guard is fulfilled and if the matching criteria of receiving operation is
fulfilled by one of the messages, calls, replies or exceptions in the snapshot. The selection causes execution of the
receiving operation, i.e. removal of the matching message, call, reply or exception from the port queue, maybe an
assignment of the received information to a variable and the execution of the statement block following the receiving
operation. In the case of the t r i gger operation the top message of the queue is also removed if the Boolean guard is
fulfilled but the matching criteria is not. In this case the statement block of the given alternative is not executed.

NOTE 1: The TTCN-3 semantics describe the evaluation of a snapshot as a series of indivisible actions of a test
component. The semantics do not assume that the evaluation of a snapshot has no duration. During the
evaluation of a snapshot, test components may stop, timers may timeout and new messages, calls, replies
or exceptions may enter the port queues of the component However, these events do not change the actual
snapshot and thus, are not considered for the snapshot evaluation.

NOTE 2: Due to the possibility of defining dynamic test configurations, a receiving branch may refer to a
disconnected or unmapped port at the time of its evaluation. In TTCN-3, ports belong to the receiving
component and matching is related to the top elements in the port queues. Dynamically unmapped and
disconnected ports contribute to a snapshot in the same manner as mapped and connected ports. This
means, the execution of receiving operations may empty the queues of unmapped and disconnected ports
without causing a test case error.

ETSI

170 ETSI ES 201 873-1 V4.7.1 (2015-06)

If none of the alternative branches in the al t statement and top alternatives in the invoked altsteps and active defaults
can be selected and executed, the al t statement shall be executed again, i.e. a new snapshot is taken and the evaluation
of the alternative branches is repeated with the new snapshot. This repetitive procedure shall continue until either an
alternative branch is selected and executed, or the test case is stopped by another component or by the test system

(e.g. because the MTC is stopped) or with a dynamic error.

The test case shall stop and indicate a dynamic error if a test component is completely blocked. This means none of the
alternatives can be chosen, no relevant test component is running, no relevant timer is running and all relevant ports
contain at least one message, call, reply or exception that do not match.

NOTE 3: The repetitive procedure of taking a complete snapshot and re-evaluate all alternatives is only a
conceptual means for describing the semantics of the al t statement. The concrete algorithm that
implements this semantics is outside the scope of the present document.

Selecting/deselecting an alter native:

If necessary, it is possible to enable/disable an alternative by means of a Boolean expression placed between the
("[...]") brackets of the alternative.

Else branch in alternatives:

Any branch in an al t statement can be defined as an else branch by including the el se keyword between the opening
and closing brackets at the beginning of the alternative. The statement block of the else branch is always executed if no
other alternative textually preceding the else branch has proceeded.

Default mechanism:

It should be noted that the default mechanism (see clause 20.5) is always invoked at the end of all alternatives. If an
el se branch is defined, the default mechanism will never be called, i.e. active defaults will never be entered.

NOTE 4: 1t is also possible to use el se in altsteps.
NOTE 5: 1Itis allowed to use a r epeat statement within an el se branch.

NOTE 6: It is allowed to define more than one else branch in an alt statement or in an altstep, however always only
the first else branch is executed.

Re-evaluation of alt statements:
The re-evaluation of an al t statement can be specified by using a r epeat statement (see clause 20.3).
Invocation of altsteps as alter natives:

TTCN-3 allows the invocation of altsteps as alternatives in al t statements (see clause 16.2.1). When an altstep is
explicitly invoked as an alternative, the optional statement block following the altstep call shall also be executed.

Continue execution after the alt statement:

Behaviour execution continues with the statement following the al t statement when one of the branches of the al t or
invoked defaults is selected and completely executed, or a branch of an al t St ep used in an altsteps-branch is selected
and the branch and the optional statement block following the invoked altstep are completely executed.

Execution also continues with the statement following the al t statement if a br eak statement is reached in the
statement block of the selected branch of an al t statement, of an al t St ep used in an altstep-branch, or of an
al t st ep invoked as default.

The al t statement can also be left by using a got 0 statement in the selected branch of the al t (i.e. no branches of
altsteps and defaults can be considered in this case), and execution continues with the statement following the label,
got o0 is pointing to.

ETSI

171 ETSI ES 201 873-1 V4.7.1 (2015-06)

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:

a) The open and close square brackets ("[...]") shall be present at the start of each alternative, even if they are
empty. This not only aids readability but also is necessary to syntactically distinguish one alternative from
another.

b) The evaluation of a Boolean expression guarding an alternative shall not have side effects. To avoid side
effects that cause an inconsistency between the actual snapshot and the state of the component, the same
restrictions as the restrictions for the initialization of local definitions within altsteps shall apply (clause 16.2).
Also, the guard expression shall not use of the operations create, running, alive and activate.

¢) The evaluation of the event of an alt branch shall not have side effects. To avoid side effects that cause an
inconsistency between the actual snapshot and the state of the component or introduce indeterminism in the
evaluation of the following alt branches or the re-evalutaion of the same alt branch, the same restrictions as for
function calls as in clause 16.1.4 shall apply to all function calls in the event part. Also, the event operation
shall not use the operations create, running, alive and activate.

d) The evaluation of an altstep invoked from an alt branch, if none of the alternatives in the altstep is chosen,
shall not have side effects. To avoid side effects the same restrictions as for function calls as in clause 16.1.4
shall apply to all function calls used in the actual parameters of the invoked altstep. Also, the altstep invocation
parameters shall not use the operations create, running, alive and activate.

e) The else branch shall not contain any of the actions allowed in branches guarded by a boolean expression
(i.e.anal t step calloradone,akil |l ed,ati nmeout orareceiving operation).

f) Analt statement used within the module control part shall only contain t i meout statements.
Examples

EXAMPLE 1: Nested alternatives

alt {
[T MyPort.receive (M/Message) {

setverdi ct (pass);

M/Tiner.start;

alt {

[T MyPort.receive (MySecondMessage) {

M/ Ti mer . st op;
setverdict (pass);

}
[T MyTiner.tineout {
MyPort.send (M/Repeat);
M/Ti mer. start;
alt {
[T MyPort.receive (MySecondMessage) {
M/ Ti ner . st op;
setverdict (pass)

[T MyTiner.tineout { setverdict (inconc) }
[T MyPort.receive { setverdict (fail) }

}

[T MyPort.receive { setverdict (fail) }

}

}
[T MyTimer.timeout { setverdict (inconc) }
[T MyPort.receive { setverdict (fail) }

}
EXAMPLE 2: Alt statement with guards

alt {
[x>1] L2.receive { /1 Bool ean guar d/ expression
setverdi ct (pass);
[x<=1] L2.receive { /1 Bool ean guard/ expression
setverdi ct (i nconc);
}
}

ETSI

172 ETSI ES 201 873-1 V4.7.1 (2015-06)

EXAMPLE 3: Alt statement with else branch

/1 Use of alternative with Bool ean expressions (or guard) and el se branch

alt {
tel se] { /1 el se branch
MyEr ror Handl i ng() ;
setverdict(fail);
st op;
}
}
EXAMPLE 4: Re-evaluation with repeat
alt {
[] PC3X®.receive {
count := count + 1,
repeat /] usage of repeat

}
[] Ti.timeout { }
[T any port.receive {
setverdict(fail);

st op;
}
}
EXAMPLE 5: Alt statement with explicitly invoked altstep
alt {
[T PC3.receive { }
[1 AnotherAltStep() { /1 Explicit call of altstep AnotherAltStep as alternative.

setverdict(inconc) // Statement bl ock executed if an alternative within
/1 altstep Another AltStep has been sel ected and execut ed.

}
[T MTinmer.timout { }

EXAMPLE 6: Alt statement with forbidden function calls

alt {
[1 getPort().receive(t(p())) { } // forbidden if getPort, t or p has side effects
[1 AnotherAltStep(f()); /] forbidden if f has side effects

[T MTiner[i(p())].tineout { } /'l forbidden if i or p has side effects
[g()] get Conponent (p()).done {} /Il forbidden if g, getConponent or p has side effects

}

20.3 The Repeat statement

The r epeat statement is used for a re-evaluation of an al t statement.
Syntactical Structure

r epeat
Semantic Description

The r epeat statement, when used in the statement block of alternatives of al t statements, causes the re-evaluation of
the al t statement, i.e. a new snapshot is taken and the alternatives of the al t statement are evaluated in the order of
their specification.

When used in statement blocks of the response and exception handling parts of blocking procedure calls, the repeat
statement causes the re-evaluation of the response and exception handling part of the call (see clause 22.3.1).

Ifar epeat statement is used in a top alternative in an altstep definition, it causes a new snapshot and the
re-evaluation of the al t statement from which the altstep has been called. The call of the altstep may either be done
implicitly by the default mechanism (see clause 20.5.1) or explicitly in the al t statement (see clause 20.2).

ETSI

173 ETSI ES 201 873-1 V4.7.1 (2015-06)

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:

a) Therepeat statement shall only be used within al t statements, cal | statements or altsteps.
Examples

EXAMPLE 1: Usage of repeat in an alt statement

alt {
[T PC3B.receive {
count := count + 1,
r epeat /'l usage of repeat

}

[T Til.timeout { }

[1 any port.receive {
setverdict(fail);
st op;

}
}

EXAMPLE 2: Usage of repeat in an altstep

al tstep AnotherAl tStep() runs on MyConponent Type {
[1 PCOL.receive{
setverdi ct (i nconc);
repeat /'l usage of repeat

[1 }IE’COZ receive {}

20.4 The Interleave statement

The i nt er | eave statement allows to specify the interleaved occurrence and handling of receiving events including
done,kill ed,ti meout,receive,trigger,getcall,getreply,catchandcheck.

Syntactical Structure

interleave "{"

{ "[1" (Tinmeout Statenent
Recei veSt at enent
Trigger St at ement
Get Cal | St at emrent
Cat chSt at ement |
CheckSt at ement |
CGet Repl ySt at emrent |
DoneSt at enent |
Ki |l edStatenent) StatenentBl ock

"y
Semantic Description

The i nt er | eave statement allows to specify the interleaved occurrence and handling of the statements done,
killed,timeout,receive,trigger,getcall,getreply,catchandcheck.

Interleaved behaviour can always be replaced by an equivalent set of nested al t statements. The procedures for this
replacement and the operational semantics of interleaving are described in part 4 of the TTCN-3 standard
(ETSI ES 201 873-4 [1]).

The rules for the evaluation of an interleaving statement are the following:

a) Whenever a reception statement is executed, the following non-reception statements are subsequently executed
until the next reception statement is reached, a br eak statement is reached, or the interleaved sequence ends.

ETSI

174 ETSI ES 201 873-1 V4.7.1 (2015-06)

NOTE 1: Reception statements are TTCN-3 statements which may occur in sets of alternatives, i.e. r ecei ve,
check,trigger,getcall,getreply,catch,done, killedandti meout.Non-reception
statements denote all other non-control-transfer statements which can be used within the i nt er | eave
statement.

b) Ifnone of the alternatives of the i nt er | eave statement can be executed, the default mechanism will be
invoked. This means, according to the semantics of the default mechanism, the actual snapshot will be used to
evaluate those altsteps that have been activated before entering the i nt er | eave statement.

NOTE 2: The complete semantics of the default mechanism within an i nt er | eave statement is given by
replacing the i nt er | eave statement by an equivalent set of nested al t statements. The default
mechanism applies for each of these al t statements.

¢) The evaluation then continues by taking the next snapshot if no br eak statement was encountered.

d) The evaluation of the i nt er | eave statement is terminated if a br eak statement is executed.
The operational semantics of interleaving are fully defined in part 4 of the TTCN-3 standard (ETSI ES 201 873-4 [1]).
Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:

a) Control transfer statements f or , whi | e, do- whi | e, got 0, acti vat e, deacti vat e, st op, r epeat,
r et ur n, direct call of altsteps as alternatives and (direct and indirect) calls of user-defined functions, which
include reception statements, shall not be used ini nt er | eave statements.

b) In addition, it is not allowed to guard branches of an i nt er | eave statement with Boolean expressions
(i.e. the '[]' shall always be empty). It is also not allowed to specify el se branches in interleaved behaviour.

¢) Ani nterl eave statement used within the module control part shall only contain t i meout statements.

Examples

/1 The followi ng TTCN-3 code fragnent
interl eave {
[PCOL. receive(MSigl) {

PCOL. send(M/Si g2) ;

PCOL. recei ve(MySi g3) ;

}
[l PCR.receive(MSig4) {
PCO2. send(M/Si g5) ;
PCO2. send(M/Si g6) ;
PC2. recei ve(M/Si g7) ;

}
}
/1 is a shorthand for
alt {

[T PCOL. receive(MSigl) {
PCOL. send(M/Si g2) ;
alt {
[T PCOL. receive(MSig3) {
alt {
[T PCR.receive(MSig4) {
PC®2. send(M/Si g5) ;
PCO2. send(MySi g6) ;
PCQ2. recei ve(MW/Si g7)

}

}
[T PCR.receive(MSig4) {
PCO2. send(M/Si g5) ;
PCO2. send(M/Si g6) ;
alt {
[T PCOL. receive(MSig3) {
PC2. recei ve(M/Si g7) ;

}
[T PCX.receive(MSig7) {
PCOL. recei ve(M/Si g3) ;

ETSI

175 ETSI ES 201 873-1 V4.7.1 (2015-06)

}

}
[1] PCR.receive(MSig4) {

PCX2. send(MySi g5) ;

PCO2. send(M/Si g6) ;

alt {

[1] PCOL.receive(MySigl) {
PCOL. send(MySi g2) ;
alt {
[T PCOL. receive(MSig3) {

PCX2. recei ve(M/Si g7) ;

[1 LC@ recei ve(M/Si g7) {
PCOL. recei ve(M/Si g3) ;
}

}

}
[T PCR.receive(MSig7) {
alt {
[T PCOL. receive(MSigl) {
PCOL. send(M/Si g2) ;
PCOL. recei ve(M/Si g3) ;

20.5 Default Handling

TTCN-3 allows the activation of altsteps (see clause 16.2) as defaults. For each test component the defaults,

i.e. activated altsteps, are stored as an ordered list. The defaults are listed in the reversed order of their activation i.e. the
last activated default is the first element in the list of active defaults. The TTCN-3 operations act i vat e

(see clause 20.5.2) and deact i vat e (see clause 20.5.3) operate on the list of defaults. An act i vat e puts a new
default as the first element into the list and a deact i vat e removes a default from the list. A default in the default list
can be identified by means of default reference that is generated as a result of the corresponding act i vat e operation.

20.5.1 The default mechanism

The default mechanism is evoked at the end of each al t statement, if due to the actual snapshot none of the specified
alternatives could be executed. An evoked default mechanism invokes the first altstep in the list of defaults, i.e. the last
activated default, and waits for the result of its termination. The termination can be successful or unsuccessful.
Unsuccessful means that none of the top alternatives of the al t st ep (see clause 16.2) defining the default behaviour
could be selected, successful means that one of the top alternatives of the default has been selected and executed.

NOTE 1: Ani nt er| eave statement is semantically equivalent to a nested set of al t statements and the default
mechanism also applies to each of these al t statements. This means, the default mechanism also applies
toi nt er | eave statements. Furthermore, the restrictions imposed on interleave statements in
clause 20.4 do not apply to altsteps that are activated as default behaviour for interleave statements.

NOTE 2: Due to the possibility of defining dynamic test configurations, an alternative in an altstep activated as
default may refer to a disconnected or unmapped port at the time of its evaluation. In TTCN-3, ports
belong to the receiving component and matching is related to the top elements in the port queues.
Dynamically unmapped and disconnected ports contribute to a snapshot in the same manner as mapped
and connected ports. This means, an al t St ep invoked as default may execute receiving operations that
empty the queues of unmapped and disconnected ports without causing a test case error.

In the case of an unsuccessful termination, the default mechanism invokes the next default in the list. If the last default
in the list has terminated unsuccessfully, the default mechanism will return to the place in the al t statement in which it
has been invoked, i.e. at the end of the al t statement, and indicate an unsuccessful default execution. An unsuccessful
default execution will also be indicated if the list of defaults is empty.

ETSI

176 ETSI ES 201 873-1 V4.7.1 (2015-06)

An unsuccessful default execution may cause a new snapshot or a dynamic error if the test component is blocked
(see clause 20.1).

In the case of a successful termination, the default may either stop the test component by means of a St Op statement, or
the main control flow of the test component will continue immediately after the al t statement from which the default
mechanism was called or the test component will take new snapshot and re-evaluate the al t statement. The latter has
to be specified by means of a r epeat statement (see clause 20.3). If the execution of the selected top alternative of the
default ends with a br eak statement or without a r epeat statement the control flow of the test component will
continue immediately after the al t statement.

NOTE 3: TTCN-3 does not restrict the implementation of the default mechanism. It may for example be
implemented in form of a process that is implicitly called at the end of each al t statement or in form of a
separate thread that is only responsible for the default handling. The only requirement is that defaults are
called in the reverse order of their activation when the default mechanism has been invoked.

20.5.2 The Activate operation
The act i vat e operation is used to activate altsteps as defaults.

Syntactical Structure

activate "(" AtstepRef "(" [{ ActualPar [","] }] ")" ")"
Semantic Description

An act i vat e operation will put the referenced altstep as the first element into the list of defaults and return a default
reference. The default reference is a unique identifier for the default and may be used in a deact i vat e operation for
the deactivation of the default.

The effect of an act i vat e operation is local to the test component in which it is called. This means, a test component
cannot activate a default in another test component.

The act i vat e operation can be called without saving the returned default reference. This form is useful in test cases
which do not require explicit deactivation of the activated default, i.e. deactivation of a default is done implicitly at
MTC termination.

The actual parameters of a parameterized altstep (see clause 16.2.1) that should be activated as a default, shall be
provided in the corresponding act i vat e statement. This means the actual parameters are bound to the default at the
time of its activation (and not e.g. at the time of its invocation by the default mechanism).

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:

a) For altsteps activated on test components, all timer instances in the actual parameter list shall be declared as
component type local timers (see clause 6.2.10.1).

b) For altsteps activated in module control or in functions or altsteps invoked directly or indirectly from module
control, all timer instances in the actual parameter list shall be declared in the highest scope of the module
control part (see clause 26.2). Timers from lower scopes of the module control part (i.e. from the nested
statement blocks) are not allowed to occur in the actual parameter list.

¢) An altstep that is activated as a default shall only have i n parameters, port parameters, or timer parameters.
Examples

EXAMPLE 1: Activation where the default reference is kept

/1 Declaration of a variable for the handling of defaults
var default MyDefaultVar := null;

/) Decl aration of a default reference variable and activation of an altstep as default
var default MyDefVarTwo := activate(M/SecondAltStep());

/) Activation of altstep MJAItStep as a defaul t

ETSI

177 ETSI ES 201 873-1 V4.7.1 (2015-06)

MyDef aul t Var := activate(MAItStep()); // MAtStep is activated as default

/) Usage of MyDefaultVar for the deactivation of default M/DefAltStep
deactivat e(MyDef aul t Var) ;

EXAMPLE 2: Simple activation

/1 Activation of an altstep as a default, without assignnent of default reference
activat e(MyCommonDef aul t());

EXAMPLE 3: Activation of a parameterized altstep

altstep MYAltStep2 (integer par _val uel, MyType par_val ue2,
MyPor t Type par _port, timer par_timer)
{

}
function MyFunc () runs on MyConpType
{:
var default MyDefaultVar := null;
MyDef aul t Var : = activate(MAltStep2(5, nyVar, nyConpPort, nyConpTiner);
/1 MYAltStep2 is activated as default with the actual paraneters 5 and

/1 the value of myVar. A change of nyVar before a call of M/AtStep2 by
/1 the default nechanismwi |l not change the actual paraneters of the call.

20.5.3 The Deactivate operation

The deact i vat e operation is used to deactivate defaults, i.e. previously activated altsteps.

Syntactical Structure

deactivate ["(" VariableRef | Functionlnstance ")"]
Semantic Description
A deact i vat e operation will remove the referenced default from the list of defaults.

The effect of a deact i vat e operation is local to the test component in which it is called. This means, a test
component cannot deactivate a default in another test component.

A deact i vat e operation without parameter deactivates all defaults of a test component.

Calling a deact i vat e operation with the special value nul | has no effect. Calling a deact i vat e operation with
an undefined default reference, e.g. an old reference to a default that has already been deactivated or an uninitialized
default reference variable, shall cause a runtime error.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:

a) The variable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance shall be of default type.

Examples
var default MyDefaultVar := null;
var default MyDefVarTwo : = activate(M/SecondAltStep());
var default MyDefVarThree := activate(M/ThirdAltStep());
M/DefauItVar := activate(MA tStep());
déact ivate(MyDefaultVar); // deactivates M/AltStep

déactivate; /'l deactivates all other defaults, i.e. in this case M/SecondAlt Step
/1 and MyThirdAlt Step

ETSI

178

ETSI ES 201 873-1 V4.7.1 (2015-06)

21

Configuration Operations

Configuration operations are used to set up and control test components and their connections. They are summarized in

table 19.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

- functions invoked directly or indirectly from a test case or from the function started on a ptc; and

- altsteps invoked directly or indirectly from a test case or from the function started on a ptc.

a) These operations shall only be used in:
- TTCN-3 test cases;
b) They shall not be used in:

- the module control part;

- functions or altsteps invoked directly or indirectly from the module control part;

- declarations inside component type definitions; or

- functions invoked directly or indirectly from declarations inside component type definitions.

Table 19: Overview of TTCN-3 configuration operations

Operation

Explanation

Syntax Examples

Connection Operations

connect

Connects the port of one test
component to the port of another test

connect (ptcl: pl, ptc2:p2);

component

disconnect Disconnects two or more connected di sconnect (ptcl:pl, ptc2:p2);
ports

map Maps the port of one test component to [Mp(ptcl: g, systemsutPort1);
the port of the test system interface

unmap Unmaps two or more mapped ports unmap(ptcl: g, systemsutPortl);

Test Component Operations

create

Creation of a normal or alive test
component, the distinction between
normal and alive test components is
made during creation

(MTC behaves as a normal test
component)

Non-alive test components:

var PTCType c¢ := PTCType. create;
Alive test components:
var PTCType c := PTCType.create alive;

start

Starting test behaviour on a test
component, starting a behaviour does
not affect the status of component
variables, timers or ports

c.start (PTCBehaviour());

stop

Stopping test behaviour on a test
component

c.stop;

kill

Causes a test component to cease to
exist

c.kill;

alive

Returns true if the test component has
been created and is ready to execute
or is executing already a behaviour;
otherwise returns false

if (c.alive)

running

Returns true as long as the test
component is executing a behaviour;
otherwise returns false

if (c.running)

done

Checks whether the function running
on a test component has terminated

c. done;

killed

Checks whether a test component has
ceased to exist

c.killed { ..]

ETSI

179 ETSI ES 201 873-1 V4.7.1 (2015-06)

Operation | Explanation Syntax Examples
Test Case Operations
stop Terminates the test case with the test |testcase.stop (...);
verdict error

Reference Operations

mtc Gets the reference to the MTC connect(ntc:p, ptc:p);

system Gets the reference to the test system |[mp(c:p, systemsutPort);
interface

self Gets the reference to the test sel f. stop;

component that executes this operation

21.1 Connection Operations

The ports of a test component can be connected to other components or to the ports of the test system interface

(see figure 10). In the case of connections between two test components, the connect operation shall be used. When
connecting a test component to a test system interface the map operation shall be used. The connect operation
directly connects one port to another with the i n side connected to the out side and vice versa. The map operation on
the other hand can be seen purely as a name translation defining how communications streams can be referenced.

Test system Connected Ports

I N

>
out I'N
aut I'N
Mapped Ports 4
Abstract Test System Interface auT ¢ | I'N
O—C——

Real Test System Interface

SUT

Figure 10: lllustration of the connect and map operations

21.1.1 The Connect and Map operations

The connect operation and the map operation are used to setup connections to the SUT or between test components.
Syntactical Structure

connect "(" ConmponentRef ":" Port "," ConmponentRef ":" Port ")"

map " (" ConponentRef ":" Port "," ConponentRef ":" Port ")"
[param"(" [{ ActualPar [","] }+ 1 ")"]

Semantic Description

With both the connect operation and the map operation, the ports to be connected are identified by the component
references of the components to be connected and the names of the ports to be connected.

The operation nt ¢ identifies the MTC, the operation Sy st emidentifies the test system interface and the operation
sel f identifies the test component in which sel f has been called (see clause 6.2.11). All these operations can be used
for identifying and connecting ports.

Both the connect and map operations can be called from any behaviour definition except for the control part of a
module. However before either operation is called, the components to be connected shall have been created and their
component references shall be known together with the names of the relevant ports.

ETSI

180 ETSI ES 201 873-1 V4.7.1 (2015-06)
Both the map and connect operations allow the connection of a port to more than one other port. It is not allowed to
connect to a mapped port or to map to a connected port.

Applying a map or connect operation to ports which are already mapped or connected has no effect on the test
behaviour or test configuration, i.e. test execution continues as if the operation has not been invoked.

NOTE: Please note that also triMap or tciConnect respectively will not be invoked in such a case.

The map operation provides an optional parameter list for configuration purposes. This allows to pass values needed for
dynamic runtime configuration. If a parameter list is present, the actual parameters shall conform to the map param
clause of the port type declaration of the system port used.

Restrictions

In addition to the general static rules of TTCN-3 given in clauses 5 and 21 and shown in table 15, the following
restrictions apply:

a) For both the connect and map operations, only consistent connections are allowed.
Assuming the following:
1) ports PORT1 and PORT?2 are the ports to be connected;
2) inlist-PORT1 defines the messages or procedures of the in-direction of PORT1;
3) outlist-PORT1defines the messages or procedures of the out-direction of PORT1;
4) inlist-PORT?2 defines the messages or procedures of the in-direction of PORT2; and
5) outlist-PORT2 defines the messages or procedures of the out-direction of PORT2.
b) The connect operation is allowed if and only if:
outlist-PORT1 < inlist-PORT?2 and outlist-PORT2 < inlist-PORT]1.

c¢) The map operation (assuming PORT?2 is the test system interface port) is allowed if and only if:

outlist-PORT1 < outlist-PORT?2 and inlist-PORT2 c inlist-PORT1.
d) Inall other cases, the operations shall not be allowed.

e) Since TTCN-3 allows dynamic configurations and addresses, not all of these consistency checks can be made
statically at compile-time. All checks, which could not be made at compile-time, shall be made at runtime and
shall lead to a test case error when failing.

f) In addition, the restrictions on allowed and disallowed connections described in clause 9.1 apply.

g) Inmap operations, par amclauses are optional. If in a map operation a par amclause is present, exactly one
of the components referenced by the operation shall be the Syst emcomponent reference, the type of the
system component shall be known in the context of the operation either via a Syst emclause or viaa r uns
on clause in at est case without Syst emclause, the type of the system port to which the operation is
applied shall include a map par amdeclaration, and the actual parameters shall conform to the map param
clause of the port type declaration of the system port used.

h) If'the type of the component referenced in a connection operation is known (either when the component
reference is a variable or value returned from a function or the type is defined in the runs on, mtc or system
clause of the calling function), the referenced port declaration shall be present in this component type.

Examples

EXAMPLE 1: Simple map and connect

/1 It is assuned that the ports Portl, Port2, Port3 and PCOL are properly defined and decl ared
/1 in the corresponding port type and conponent type definitions

v;ar MyConmponent Type M/NewPTC;
My/NewPTC : = MyConponent Type. cr eat e;

ETSI

181 ETSI ES 201 873-1 V4.7.1 (2015-06)

cbnnect (MyNewPTC: Port1, ntc:Port3);
map(MyNewPTC: Port 2, system PCOL);

/1 I'n this exanple a new conponent of type MyConponent Type is created and its reference stored
/1 in variable M/NewPTC. Afterwards in the connect operation, Portl of this new conponent

I/l is connected with Port3 of the MIC. By neans of the map operation, Port2 of the new conponent
/1 is then connected to port PCOL of the test systeminterface

EXAMPLE 2: Parameterized map

vér MyConfi gType MyConfig := { option := 1, lock := fal se};
rrﬁp(ntc: Port4, system PCO2) param (My/Config);

/) In this exanple by neans of the nap operation, Port4 of the MIC is connected to the port PCO2
/1 of the test systeminterface, and additionally a paraneter containing configuration options
/1 for the connection is passed.

EXAMPLE 3: Port visibility

type port P nessage { inout integer; }
type conponent Cl1 { port P pl; }
type conponent C2 { port P pl, p2; }

testcase TC runs on Cl system Cl

{

var Cl v_ptc := C2.create; // valid assignnent, instance of C2 is conpatible with Cl type
connect (self:pl, v_ptc:pl); // valid, pl is present in Cl type definition

di sconnect (self:pl, v_ptc:pl);

connect (self:pl, v_ptc:p2); // invalid, although the real instance in v_ptc is of the

/Il C2 type, the variable itself is of the Cl type neking the p2 port invisible to the

/1 connection operation

21.1.2 The Disconnect and Unmap operations
The di sconnect and unmap operations are the opposite operations of connect and map.

Syntactical Structure

di sconnect [(“(" ConponentRef ":" Port “," ComponentRef ":" Port ")") |
("(" PortRef ")") |
("(" ComponentRef ":" all port ")") |
("(" all component ":" all port ")")]
unmap [("(" ComponentRef ":" Port "," ConponentRef ":" Port ")"
[param"(" [{ ActualPar [","] }+1 ")" 1) |
("(" PortRef ")" [param"(" [{ ActualPar [","] }+1 ")" 1) |
("(" ComponentRef ":" all port ")")
("(" all conponent ":" all port ")")]

Semantic Description

The di sconnect and unmap operations perform the disconnection (of previously connected) ports of test
components and the unmapping of (previously mapped) ports of test components and ports in the test system interface.

Both, the di sconnect and unmap operations can be called from any component if the relevant component references
together with the names of the relevant ports are known. A di Sconnect or unmap operation has only an effect if the
connection or mapping to be removed has been created beforehand.

To ease di sconnect and unmap operations related to all connections and mappings of a component or a port, it is
allowed to use di sconnect and unmap operations with one argument only. This one argument specifies one side of
the connections to be disconnected or unmapped. The al | port keyword can be used to denote all ports of a
component.

The usage of a di sconnect or unmap operation without any parameters is a shorthand form for using the operation
with the parameter sel f: al | port. It disconnects or unmaps all ports of the component that calls the operation.

ETSI

182 ETSI ES 201 873-1 V4.7.1 (2015-06)

The al | conponent keyword shall only be used in combination with the al | port keyword, i.e. al |
conponent :al | port, and shall only be used by the MTC. Furthermore, the al | conponent:all port
argument shall be used as the one and only argument of a di Sconnect or unmap operation and it allows to release
all connections and mappings of the test configuration.

Similar to the map operation, unmap provides an optional parameter list for configuration purposes. If a parameter list
is present, the actual parameters shall conform to the unmap param clause of the port type declaration of the system
port used. It allows to pass values needed for dynamic runtime configuration.

Restrictions

In addition to the general static rules of TTCN-3 given in clauses 5 and 21 and shown in table 15, the following
restrictions apply:

a) Inan unmap operation, a par amclause shall only be present if the system port to which the par amclause
belongs to is explicitly referenced.

b) Inunmap operations, par amclauses are optional. If in an unmap operation a par amclause is present,
exactly one of the components referenced by the operation shall be the Syst emcomponent reference, the type
of the system component shall be known in the context of the operation either via a Syst emclause or via a
runs on clause in at est case without Syst emclause, the type of the system port to which the operation
is applied shall include an unmap param declaration and the actual parameters shall conform to the unmap
param clause of the port type declaration of the system port used.

c) Ifthe type of the component referenced in a connection operation is known (either when the component
reference is a variable or value returned from a function or the type is defined the runs on, mtc or system
clause of the calling function), the referenced port declaration shall be present in this component type.

Examples

EXAMPLE 1: Disconnect/unmap for specific connections

connect (MyNewConponent : Port1, ntc:Port3);
map(MyNewConponent : Port 2, system PCOL) ;

di sconnect (MyNewConponent : Port1, mntc:Port3); /1 disconnect previously nade connection
unmap(MyNewConponent : Port 2, system PCOL); /1 unmap previously nade napping

EXAMPLE 2: Disconnect/unmap for a component

di sconnect (MyNewConponent : Port 1) ; /1 disconnects all connections of Portl, which
/1 is owned by conponent MyNewConponent .
unmap(MyNewConponent: al | port); /1 unmaps all ports of conponent MyNewConponent

EXAMPLE 3: Disconnect/unmap for "self"
di sconnect; /1 is a shorthand form for
di sconnect (self:all port); /1 which disconnects all ports of the conponent
/1 that called the operation
uhmap; /1 is a shorthand formfor

unmap(sel f:all port); /1 which unmaps all ports of the conponent
/1 that called the operation

EXAMPLE 4: Disconnect/unmap for "all component"

di sconnect (all component:all port); /1 the MIC di sconnects all ports of all
/] conponents in the test configuration.

uhmap(all conmponent:all port); /1 the MIC unnmaps all ports of all
/] conponents in the test configuration.

21.2 Test case operations

Test case operations address the entire test case by using the keyword testcase. Currently, the test case stop operation is
the only test case operation. It specifies an immediate stop of the test case behaviour with an error verdict.

ETSI

183 ETSI ES 201 873-1 V4.7.1 (2015-06)

21.2.1 Test case stop operation

The testcase stop operation defines a user defined immediate termination of a test case with the test verdict er r or and
an (optional) associated reason for the termination. Such an immediate stop of a test case is required for cases where a
user defined behaviour that does not contribute to the test outcome behaves in an unexpected manner which leads to a
situation where the continuation of the test case makes no more sense.

Syntactical Structure

testcase "." stop ["(" { (FreeText | Tenplatelnstance) [","] } ")"]
Semantic Description

The test case stop operation causes an immediate stop of the entire test case behaviour with the verdicter r or . In
addition, the test case stop operation provides the means to specify the reason for the immediate termination of a test
case by writing one or more items to some logging device associated with the test control or the test component in
which the operation is used. Items to be logged shall be identified by a comma-separated list in the argument of the test
case stop operation. The argument of the test case stop operation shall follow the same restrictions as the argument of
the log statement (see clause 19.11).

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15.

Examples

t est case. st op(" Unexpected Term nation");
/1 The test case stops the an error verdict and the string "Unexpected Termi nation"
I/l is witten to sone |og device of the test system

21.3 Test Component Operations

Test component operations are used to create, start, stop and kill test components. They can also be used to check if test
components are alive, running, done or killed.

21.3.1 The Create operation

The cr eat e operation is used to create test components.

Syntactical Structure

Conponent Type "." create ["(" Expression ["," Expression] ")"] [alive]
Semantic Description

The MTC is the only test component, which is automatically created when a test case starts. All other test components
(the PTCs) shall be created explicitly during test execution by Cr eat e operations. A component is created with its full
set of ports of which the input queues are empty and with its full set of constants, variables and timers. Furthermore, if a
port is defined to be of the type i n ori nout it shall be in a listening state ready to receive traffic over the connection.

All component variables and timers are reset to their initial value (if any) and all component constants are reset to their
assigned values when the component is explicitly or implicitly created.

Two types of PTCs are distinguished: a PTC that can execute a behaviour function only once and a PTC that is kept
alive after termination of a behaviour function and can be therefore reused to execute another function. The latter is
created using the additional al i ve keyword. An alive-type PTC shall be destroyed explicitly using the ki | | operation
(see clause 21.3.4), whereas a non-alive PTC is destroyed implicitly after its behaviour function terminates. Termination
of a test case, i.e. the MTC, terminates all PTCs that still exist, if any.

Since all test components and ports are implicitly destroyed at the termination of each test case, each test case shall
completely create its required configuration of components and connections when it is invoked.

The cr eat e operation shall return the unique component reference of the newly created instance. The unique
reference to the component will typically be stored in a variable (see clause 6.2.10.1) and can be used for connecting
instances and for communication purposes such as sending and receiving.

ETSI

184 ETSI ES 201 873-1 V4.7.1 (2015-06)

Optionally, a name can be associated with the newly created component instance. The test system shall associate the
names 'MTC' to the MTC and 'SYSTEM ' to the test system interface automatically at creation. Associated component
names are not required to be unique.

The component instance name is used for logging purposes (see clause 19.11) only and shall not be used to refer to the
component instance (the component reference shall be used for this purpose) and has no effect on matching.

Also optionally, a host id can be associated with the newly created component instance. If a host id is provided, the
Cr eat e operation shall cause a test case error, if the component cannot be deployed on the specified host.

Components can be created at any point in a behaviour definition providing full flexibility with regard to dynamic
configurations (i.e. any component can create any other PTC). The visibility of component references shall follow the
same scope rules as that of variables and in order to reference components outside their scope of creation the component
reference shall be passed as a parameter or as a field in a message.

Restrictions

In addition to the general static rules of TTCN-3 given in clauses 5 and 21 and shown in table 15, the following
restrictions apply:

a) The name given by the first Expression shall be a charstring value and when assigned it shall appear as the
first argument of the cr eat e function.

b) The host id given by the second Expression shall be a char string value and, when assigned, it shall appear as
the second argument of the cr eat e function.

Examples

/1 This exanpl e decl ares variabl es of type MyConponent Type, which is used to store the

/1 references of newy created conponent instances of type MyConponent Type which is the

/1 result of the create operations. An associated nane is allocated to sone of the created
/'l conponent instances.

var MyConponent Type MyNewConponent;

var MyConponent Type MyNewest Conponent ;

var MyConponent Type MyAl i veConponent ;

var MyConponent Type MyAnot her Al i veConponent ;

var MyConponent Type MyDepl oyedConponent ;
MyNewConponent : = MyConponent Type. cr eat e;

MyNewest Conponent : = MyConponent Type. creat e(" Newest");
M/Al i veComponent : = MyConmponent Type. create ali ve;

MyAnot her Al i veConponent : = MyConponent Type. creat e(" Anot her Alive") alive;
MyDepl oyedConponent := MyConponent Type.create(-, "Host4");

21.3.2 The Start test component operation

The start operation is used to associate a test behaviour to a test component, which is then being executed by that test
component.

Syntactical Structure
(Variabl eRef | Functionlnstance) "." start "(" Functionlnstance ")"
Semantic Description

Once a PTC has been created and connected, behaviour has to be bound to this PTC and the execution of its behaviour
has to be started. This is done by using the St ar t operation (as PTC creation does not start execution of the
component behaviour). The reason for the distinction between cr eat e and st art is to allow connection operations to
be done before actually running the test component.

The st art operation shall bind the required behaviour to the test component. This behaviour is defined by reference to
an already defined function.

ETSI

185 ETSI ES 201 873-1 V4.7.1 (2015-06)

An alive-type PTC may perform several behaviour functions in sequential order. Starting a second behaviour function
on a non-alive PTC or starting a function on a PTC that is still running results in a test case error. If a function is started
on an alive-type PTC after termination of a previous function, it uses variable values, timers, ports, and the local verdict
as they were left after termination of the previous function. In particular, if a timer was started in the previous function,
the subsequent function should be enabled to handle a possible timeout event. In contrast to that, all active defaults are
deactivated when the behaviour of an alive-type PTC is stopped. This means no default is activated when a new
behaviour is started on an alive-type PTC.

NOTE 1: The lifetime of variables and timers is bound to the scope in which they are declared. When an alive-type
component is stopped, only the component scope is left. This means only variable values and timers
declared in the component type definition of an alive-type PTC can be accessed by a function with a
corresponding r uns on-clause that is started on an alive-type PTC.

Restrictions

In addition to the general static rules of TTCN-3 given in clauses 5 and 21 and shown in table 15, the following
restrictions apply:

a) The variable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance shall be of component type.

b) The function invoked in a St ar t test component operation shall have a r uns on definition referencing a
component type that is compatible with the newly created component (see clause 6.3.3).

c) Ports, defaults and timers shall not be passed into a function invoked in a St ar t test component operation.
All formal parameter types of the function shall neither be of port or default type or should contain a direct or
indirect element or field of port or default type.

NOTE 2: Possible return values of a function invoked in a St art test component operation, i.e. templates denoted
by r et ur n keyword or i nout and out parameters, have no effect when the started test component
terminates.

NOTE 3: Asinandi nout ports starts listening when the component is created, at the moment, when it starts
execution there may be messages in the incoming queues of such ports already waiting to be processed.

Examples

function MyFirstBehaviour() runs on MyConponent Type { ...}
function MySecondBehavi our() runs on MyConponent Type { ...}

Var MyConponent Type MyNewPTC;
var MyConponent Type M/Ali vePTC,

M/NewPTC : = MyConponent Type. creat e; I/l Creation of a new non-alive test conponent.

M/Al'i vePTC : = MyConponent Type.create alive; // Creation of a new alive-type test conponent
M/NewPTC. start (MyFi rst Behaviour()); /1 Start of the non-alive conponent.

M/NewPTC. done; /1 Wit for termnation

M/NewPTC. st art (MySecondBehavi our ()); /] Test case error

M/AI i vePTC. start (MyFi r st Behavi our()); /1 Start of the alive-type conponent

M/Al i vePTC. done; /1 Wait for termination

M/Al i vePTC. st art (MySecondBehavi our ()); /] Start of the next function on the sane conponent

21.3.3 The Stop test behaviour operation

The stop test behaviour operation is used to stop the execution of a test component by itself or by another test
component.

Syntactical Structure

stop |
((VariableRef | Functionlnstance | ntc | self) "." stop) |
(all conponent "." stop)

ETSI

186 ETSI ES 201 873-1 V4.7.1 (2015-06)

Semantic Description

By using the St op test component statement a test component can stop the execution of its own currently running test
behaviour or the execution of the test behaviour running on another test component. If a component does not stop its
own behaviour, but the behaviour running on another test component in the test system, the component to be stopped
has to be identified by using its component reference. A component can stop its own behaviour by using a simple St op
execution statement (see clause 19.9) or by addressing itself in the St op operation, e.g. by using the sel f operation.

NOTE 1: While the cr eat e, st art, runni ng, done and ki | | ed operations can be used for PTC(s) only, the
St op operation can also be applied to the MTC.

Stopping a test component is the explicit form of terminating the execution of the currently running behaviour. A test
component behaviour terminates also by completing its execution upon reaching the end of the testcase or function that
is started on this component or by an explicit r et ur n statement. This termination is also called implicit stop. The
implicit stop has the same effects as an explicit stop, i.e. the global verdict is updated with the local verdict of the
stopped test component (see clause 24).

If the stopped test component is the MTC, resources of all existing PTCs shall be released, the PTCs shall be removed
from the test system and the test case shall terminate (see clause 26.1).

Stopping a non-alive-type test component (implicitly or explicitly) shall destroy it and all resources associated with the
test component shall be released.

Stopping an alive-type component shall stop the currently running behaviour only but the component continues to exist
and can execute new behaviour (started on it using the St ar t operation). Stopping an alive-type component means that
all variables, timers and ports declared in the component type definition of the alive-type component keep their value,
contents or state. Furthermore, the local verdict of the component keeps its value. In contrast to that, all active defaults
are automatically deactivated when the alive-type component is stopped. The component shall be left in a consistent
state after stopping its behaviour.

For example, if the behaviour of an alive-type component is stopped during assigning a new value to an already bound
variable, the variable shall remain bound after the component is stopped (with the old or the new value). Similarly, if
the component is stopped during re-starting an already running timer, the timer shall be left in the running state after
termination of the behaviour.

The al | keyword can be used by the MTC only in order to stop all running PTCs but the MTC itself.
NOTE 2: A PTC can stop the test case execution by stopping the MTC.
NOTE 3: The concrete mechanism for stopping PTCs is outside the scope of the present document.
Restrictions

In addition to the general static rules of TTCN-3 given in clauses 5 and 21 and shown in table 15, the following
restrictions apply:

a) The variable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance shall be of component type.

Examples

EXAMPLE 1: Stopping another test component and a test component by itself

var MyConponent Type MyConp : = MyConponent Type. cr eat €; /1 A new test conponent is created

MyConp. st art (ConpBehavi our ()); /1 The new conponent is started
if (date == "1.1.2005") {
My Conp. st op; /1 The conponent "MConp" is stopped
}
if (a<b) {
sélf.stop; /1 The test conponent that is currently executing stops its own behavi our
}
étop /1 The test conponent stops its own behavi our

ETSI

187 ETSI ES 201 873-1 V4.7.1 (2015-06)

EXAMPLE 2: Stopping all PTCs by the MTC

al | component . st op /1 The MIC stops all PTCs of the test case but not itself.

21.3.4 The Kill test component operation

The Ki | | test component operation is used to destroy a test component by itself or by another test component. Kill and
stop on a non-alive component have the same results, while they differ for alive components: stopping an alive
components stops the test behaviour only, the test component continues to exist. Killing a test component destroys the
test component.

Syntactical Structure

kill |
((VariableRef | Functionlnstance | ntc | self) "." kill) |
(all component "." kill)

Semantic Description

The Ki | | operation applied on a test component stops the execution of the currently running behaviour - if any - of
that component and frees all resources associated to it (including all port connections of the killed component) and
removes the component from the test system. The Ki | | operation can be applied on the current test component itself
by a simple ki | | statement or by addressing itself using the sel f operation in conjunction with the kill operation. The
Ki I | operation can also be applied to another test component. In this case the component to be killed shall be
addressed using its component reference. If the Ki | | operation is applied on the MTC, e.g. nt c. ki | | | it terminates
the test case.

The al | keyword can be used by the MTC only in order to stop and kill all running PTCs but the MTC itself.
Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and 21 and shown in table 15, the following
restrictions apply:

a) The variable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance shall be of component type.

Examples

EXAMPLE 1: Killing another test component and a test component by itself

var PTCType MyAliveConp : = PTCType.create alive; /]l Create an alive-type test conponent
M/Al i veConp. st art (MyFi r st Behavi our()); /1 The new conponent is started

M/Al i veConp. done; /1 Wait for termnation

M/Al i veConp. st art (MySecondBehavi or ()); /1 Start the conponent a 2™ tine

M/Al i veConp. done; /1 Wit for termination

M/Al'i veConp. ki I I ; /1 Free its resources

EXAMPLE 2: Killing all PTCs by the MTC

all component.kill; /1 The MIC stops all (alive-type and normal) PTCs of the test case first
/1 and frees their resources.

21.3.5 The Alive operation

The al i ve operation is a Boolean operation that checks whether a test component has been created and is ready to
execute or is executing already a behaviour function.

Syntactical Structure

(Vari abl eRef |

Functi onl nst ance |

any conponent |

al | conmponent |

any from Conponent ArrayRef) "." alive
["->" @ndex val ue Variabl eRef]

ETSI

188 ETSI ES 201 873-1 V4.7.1 (2015-06)

Semantic Description

Applied on a normal test component, the al i ve operation returns true if the component is inactive or running a
function and false otherwise. Applied on an alive-type test component, the operation returns true if the component is
inactive, running or stopped. It returns false if the component has been killed.

The al i ve operation can be used similar to the r unni ng operation on PTCSs only (see clause 21.3.6). In particular,
in combination with the al | keyword it returns true if all (alive-type or normal) PTCs are alive.

The al i ve operation used in combination with the any keyword returns true if at least one PTC is alive.

When the any from component array notation is used, the components from the referenced array are iterated over and
individually checked for being inactive or running a function from innermost to outermost dimension from lowest to
highest index for each dimension. The first component to be found being inactive or running a function causes the alive
operation to return the t r ue value. The index of the first component found alive can optionally be assigned to an
integer variable for single-dimensional component arrays or to an integer array or record of integer variable for
multi-dimensional component arrays.

Restrictions

In addition to the general static rules of TTCN-3 given in clauses 5 and 21 and shown in table 15, the following
restrictions apply:

a) The variable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance shall be of component type.

b) The ComponentArrayRef shall be a reference to a completely initialized component array.

¢) The index redirection shall only be used when the operation is used on an any from component array
construct.

d) If the index redirection is used for single-dimensional component arrays, the type of the integer variable shall
allow storing the highest index of the respective array.

e) Ifthe index redirection is used for multi-dimensional component arrays, the size of the integer array or record
of integer type shall exactly be the same as the dimension of the respective array, and its type shall allow
storing the highest index (from all dimensions) of the array.

f) Ifavariable referenced in the @ ndex clause is a lazy or fuzzy variable, the expression assigned to this
variable is equal to the result produced by the al i ve operation, i.e. later evaluation of the lazy or fuzzy
variable does not lead to repeated invocation of the al i ve operation.

Examples
PTCL1. done; /1 Waits for term nation of the conponent
if (PTCL.alive) { /1 If the conponent is still alive ...
PTCL1. st art (Anot her Function()); /1 ...execute another function on it.
}

21.3.6 The Running operation

The r unni ng operation is a Boolean operation that checks whether a test component is executing already a behaviour
function.

Syntactical Structure

(Variabl eRef |

Functi onl nst ance |

any conponent |

al | conponent |

any from Conponent ArrayRef) "." running
["->" @ndex val ue Vari abl eRef]

ETSI

189 ETSI ES 201 873-1 V4.7.1 (2015-06)

Semantic Description

The r unni ng operation allows behaviour executing on a test component to ascertain whether behaviour running on a
different test component has completed. The r unni ng operation can be used for PTCs only. The running operation
returns t r ue for PTCs that have been started but not yet terminated or stopped. It returns f al se otherwise. The

r unni ng operation is considered to be a bool ean expression and, thus, returns a bool ean value to indicate
whether the specified test component (or all test components) has terminated. In contrast to the done operation, the

r unni ng operation can be used freely in bool ean expressions.

When the al | keyword is used with the r unni ng operation, it will return t r ue if all PTCs started but not stopped
explicitly by another component are executing their behaviour. Otherwise it returns f al se.

NOTE: The difference between the r unni ng operation applied to a single ptc and the usage of the al | keyword
leads to the situation that pt ¢. r unni ng is f al se if the ptc has never been started but al |
conponent . runni ng ist r ue at the same time as it considers only those components that ever have
been started.

When the any keyword is used with the r unni ng operation, it will return t r ue if at least one PTC is executing its
behaviour. Otherwise it returns f al se.

When the any from component array notation is used, the components from the referenced array are iterated over and
individually checked for executing currently from innermost to outermost dimension from lowest to highest index for
each dimension. The first component to be found executing causes the running operation to succeed. The index of the
matched component can optionally be assigned to an integer variable for single-dimensional arrays or to an integer
array or record of integer variable for multi-dimensional component arrays.

Restrictions

In addition to the general static rules of TTCN-3 given in clauses 5 and 21 and shown in table 15, the following
restrictions apply:

a) The variable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance shall be of component type.

b) The ComponentArrayRef shall be a reference to a completely initialized component array.

¢) The index redirection shall only be used when the operation is used on an any from component array
construct.

d) Ifthe index redirection is used for single-dimensional component arrays, the type of the integer variable shall
allow storing the highest index of the respective array.

e) Ifthe index redirection is used for multi-dimensional component arrays, the size of the integer array or record
of integer type shall exactly be the same as the dimension of the respective array, and its type shall allow
storing the highest index (from all dimensions) of the array.

f) Ifavariable referenced in the @ ndex clause is a lazy or fuzzy variable, the expression assigned to this
variable is equal to the result produced by the r unni ng operation. Later evaluation of the lazy or fuzzy
variable does not lead to repeated invocation of the r unni ng operation.

Examples

if (PTCL. running) /1 usage of running in an if statenent

/1 do sonet hi ng!

}

while (all conponent.running != true) { // usage of running in a |oop condition
MySpeci al Functi on()

ETSI

190 ETSI ES 201 873-1 V4.7.1 (2015-06)

21.3.7 The Done operation

The done operation allows behaviour executing on a test component to ascertain whether the behaviour running on a
different test component has completed. In addition, the done operation allows to retrieve the final local verdict of
completed test components, i.e., the value of the local verdict at the time of test component completion.

Syntactical Structure

(Vari abl eRef |
Functi onl nst ance |
any conponent |
all component |
any from Conponent ArrayRef) "." done
["->" [value VariableRef] [@ndex value Variabl eRef]]

Semantic Description

The done operation shall be used in the same manner as a receiving operation or at i meout operation. This means it
shall not be used in a bool ean expression, but it can be used to determine an alternative in an al t statement or as
stand-alone statement in a behaviour description. In the latter case a done operation is considered to be a shorthand for
an al t statement with the done operation as the only alternative.

When the done operation is applied to a PTC, it matches only if the behaviour of that PTC has been stopped (implicitly
or explicitly) or the PTC has been killed. Otherwise, the match is unsuccessful.

NOTE 1: The execution of a done operation does not change the state of the test component. Consecutive done
operations applied to the same test component will give the same result as long as the test component
does not change its state (see clause F.1.2).

When the done operation is applied to a PTC and matches, the final local verdict of the PTC can be retrieved and
stored in variable of the type ver di ct t ype. This is denoted by the symbol '- >' the keyword value followed by the
name of the variable into which the verdict is stored.

When the al | keyword is used with the done operation, it matches if no one PTC is executing its behaviour. It also
matches if no PTC has been created.

NOTE 2: The difference between the done operation applied to a single ptc and the usage of the al | keyword
leads to the situation that pt c. done does not match if the ptc has never been started but al |
conmponent . done matches at the same time as it considers only those components that ever have been
started.

When the any keyword is used with the done operation, it matches if at least the behaviour of one PTC has been
stopped or killed. Otherwise, the match is unsuccessful.

NOTE 3: Stopping the behaviour of a non-alive component also results in removing that component from the test
system, while stopping an alive-type component leaves the component alive in the test system. In both
cases the done operation matches.

When the any from component array notation is used, the components from the referenced array are iterated over and
individually checked for being stopped or killed from innermost to outermost dimension from lowest to highest index

for each dimension. The first component to be found stopped or killed causes done operation to succeed. The index of
the matched component can optionally be assigned to an integer variable for single-dimensional arrays or to an integer
array or record of integer variable for multi-dimensional component arrays.

Restrictions

In addition to the general static rules of TTCN-3 given in clauses 5 and 21 and shown in table 15, the following
restrictions apply:

a) The done operation can be used for PTCs only.

b) The variable or the return type associated with Functionlnstance followed by the done keyword, i.e. used for
identifying a specific PTC, shall be of component type.

¢) The ComponentArrayRef shall be a reference to a completely initialized component array.

ETSI

191 ETSI ES 201 873-1 V4.7.1 (2015-06)

d) The variable used in the (optional) val ue clause for storing the final local verdict of a PTC shall be of the
type ver di ct t ype.

e) The (optional) val ue clause for storing the final local verdict of a PTC shall not be used in combination with
al | conponent orany conponent.

f) The index redirection shall only be used when the operation is used on an any from component array
construct.

g) Ifthe index redirection is used for single-dimensional component arrays, the type of the integer variable shall
allow storing the highest index of the respective array.

h) If'the index redirection is used for multi-dimensional component arrays, the size of the integer array or record
of integer type shall exactly be the same as the dimension of the respective array, and its type shall allow
storing the highest index (from all dimensions) of the array.

i) Ifa variable referenced in the @ ndex clause is a lazy or fuzzy variable, the expression assigned to this
variable is equal to the result produced by the done operation. Later evaluation of the lazy or fuzzy variable
does not lead to repeated invocation of the done operation.

Examples

/1 Use of done in alternatives
alt {
[T MPTC. done {
setverdi ct (pass)

}
[T any port.receive {
r epeat
}

}

var MyConp ¢ := MyConp.create alive;
c.start (M/PTCBehavi our());

.c. done;

/1l matches as soon as the functi on MyPTCBehavi our (or function/altstep called by it) stops
c. done;

/1 matches the end of MyPTCBehavi our (or function/altstep called by it) too
if(c.running) {c.done}

/'l done here matches the end of the next behaviour only

/1 the followi ng done as stand-al one statenent:
al | conponent. done;

/1 has the follow ng neaning:
alt {
[T all conponent.done {}

/1 and thus, blocks the execution until all parallel test conponents have terni nated

/'l Retrieving and using the final |ocal verdict of a conpleted PTC
var MyConp MyPTC : = MyPTC.create alive;

var verdi cttype MyPTCverdict := none;

M/PTC. st art (MyPTCBehavi our ());

alt {
[T MPTC. done -> value MyPTCverdict ({
if (MyPTCverdict == fail) {
setverdict(fail);

st op;
el se {
setverdict (pass);
}
}
[1 any port.receive {
r epeat
}

ETSI

192 ETSI ES 201 873-1 V4.7.1 (2015-06)

21.3.8 The Killed operation

The Ki | | ed operation allows to ascertain whether a different test component is alive or has been removed from the
test system. In addition, the ki | | ed operation allows to retrieve the final local verdict of killed test components, i.e.,
the value of the local verdict at the time when the test component was killed.

Syntactical Structure

(Vari abl eRef |
Functi onl nst ance |
any conponent |
all component |
any from Conponent ArrayRef) "." killed
["->" [value VariableRef] [@ndex value Variabl eRef]]

Semantic Description

The Ki | | ed operation shall be used in the same manner as receiving operations. This means it shall not be used in
bool ean expressions, but it can be used to determine an alternative in an al t statement or as a stand-alone statement
in a behaviour description. In the latter case a ki | | ed operation is considered to be a shorthand for an al t statement
with the Ki | | ed operation as the only alternative.

NOTE 1: When checking normal test components a killed operation matches if it stopped (implicitly or explicitly)
the execution of its behaviour or has been Ki | | ed explicitly, i.e. the operation is equivalent to the done
operation (see clause 21.3.7). When checking alive-type test components, however, the ki | | ed
operation matches only if the component has been killed using the Ki | | operation. Otherwise the
ki | | ed operation is unsuccessful.

NOTE 2: The execution of a ki | | ed operation does not change the state of the test component. Consecutive
ki | | ed operations applied to the same test component will give the same result as long as the test
component does not change its state (see clause F.1.2).

When the al | keyword is used with the ki | | ed operation, it matches if all PTCs of the test case have ceased to exist.
It also matches if no PTC has been created.

When the ki | | ed operation is applied to a PTC and matches, the final local verdict of the PTC can be retrieved and
stored in a variable of the type ver di ct t ype. This is denoted by the symbol - >' the keyword value followed by the
name of the variable into which the verdict is stored.

When the any keyword is used with the ki | | ed operation, it matches if at least one PTC ceased to exist. Otherwise,
the match is unsuccessful.

When the any from component array notation is used, the components from the referenced array are iterated over and
individually checked for being killed from innermost to outermost dimension from lowest to highest index for each
dimension. The first component to be found killed causes the killed operation to succeed. The index of the matched
component can optionally be assigned to an integer variable for single-dimensional component arrays or to an integer
array or record of integer variable for multi-dimensional component arrays.

Restrictions

In addition to the general static rules of TTCN-3 given in clauses 5 and 21 and shown in table 15, the following
restrictions apply:

a) Theki | | ed operation can be used for PTCs only.

b) The variable or the return type associated with Functionlnstance followed by the ki | | ed keyword, i.e. used
for identifying a specific PTC, shall be of a component type.

¢) The ComponentArrayRef shall be a reference to a completely initialized component array.

d) The variable used in the (optional) val ue clause for storing the final local verdict of a PTC shall be of the
type ver di ctt ype.

e) The (optional) val ue clause for storing the final local verdict of a PTC shall not be used in combination with
al |l conponent orany conponent.

ETSI

ETSI ES 201 873-1 V4.7.1 (2015-06)

The index redirection shall only be used when the operation is used on an any from component array

If the index redirection is used for single-dimensional component arrays, the type of the integer variable shall

If the index redirection is used for multi-dimensional component arrays, the size of the integer array or record
of integer type shall exactly be the same as the dimension of the respective array, and its type shall allow

If a variable referenced in the @ ndex clause is a lazy or fuzzy variable, the expression assigned to this
variable is equal to the result produced by the ki | | ed operation i.e. later evaluation of the lazy or fuzzy

create an alive-type test conponent
create a tiner

start the tiner

start executing a function on the PTC

if the PTC was killed during execution ...
...stop the timer and ...

...set the verdict to 'inconclusive'

if the PTCtermnated regularly ..

...stop the timer and ...

...start another function on the PTC

if the timeout occurs before the PTC stopped

...kill the PTC and ...

...set the verdict to '"fail"

a killed PTC

expected term nation

M/PTC kil l ed before verdict assingnent

further analysis is needed

193
f)
construct.
g)
allow storing the highest index of the respective array.
h)
storing the highest index (from all dimensions) of the array.
)
variable does not lead to repeated invocation of the ki | | ed operation.
Examples

var M/PTCType ptc := MyPTCType.create alive; I/

timer T:= 10.0; I

T.start; 11

ptc.start (MTest Behavior()); /1

alt {

[1 ptc.killed { /1
T. st op; I/
setverdi ct (i nconc); /1

}

[1 ptc.done { I
T. st op; I
ptc. start (Anot her Function()); /1

}

[1 T.tinmeout { /1
ptc.kill; /1
setverdict(fail); 11

}

}

/1 Retrieving and using the final |ocal verdict of

var MyConp MyPTC : = MyPTC.create alive;

var verdi cttype MyPTCverdict := none;

M/PTC. st art (MyPTCBehavi our ());

alt {

[T MPTC. done { 11
setverdict (pass);
, }
[T MPTC Killed -> value MyPTCverdict {
if (MyPTCverdi ct == none) { I/
setverdict(fail);
st op;
el se {
setverdi ct (inconc); I/
st op;
}
} .
[1 any port.receive {
r epeat
}
}

ETSI

194

ETSI ES 201 873-1 V4.7.1 (2015-06)

21.3.9 Summary of the use of any and all with components

The keywords any and al | may be used with configuration operations as indicated in table 20.

Table 20: Any and All with components

Operation Allowed Example Comment
any (see note) | al | (see note)
create
start
runni ng Yes but from Yes but from any conponent.running; [Isthere any PTC performing test
MTC only MTC only behaviour?
all conponent.running; |Are all PTCs performing test
behaviour?
alive Yes but from |Yes but from any conponent. al i ve; Is there any alive PTC?
MTC only MTC only all conponent. alive; Are all PTCs alive?
done Yes but from Yes but from any conponent . done; Is there any PTC that completed
MTC only MTC only execution?
all conponent. done; Did all PTCs complete their
execution?
killed Yes but from |Yes but from any conponent.killed; |[Isthere any PTC that ceased to exist?
MTC only MTC only all conponent.killed; |Didall PTCs cease to exist?
stop Yes but from al'l conponent. st op; Stop the behaviour on all PTCs.
MTC only
kill Yes but from all component. kill; Kill all PTCs, i.e. they cease to exist.
MTC only
NOTE: any andal | referto PTCs only, i.e. the MTC is not considered.

22

Communication operations

TTCN-3 supports message-based and procedure-based unicast, multicast and broadcast communication. Furthermore,
TTCN-3 allows to examine the top element of incoming port queues and to control the access to ports by means of
controlling operations. The communication operations and restrictions on their usage are summarized in table 21.

Table 21: Overview of TTCN-3 communication operations

Communication operations
Communication operation Keyword Can be used at Can be used at
message-based ports | procedure-based ports
Message-based communication
Send message send Yes
Receive message receive Yes
Trigger on message trigger Yes
Procedure-based communication
Invoke procedure call call Yes
Accept procedure call from remote entity getcall Yes
Reply to procedure call from remote entity |reply Yes
Raise exception (to an accepted call) raise Yes
Handle response from a previous call getreply Yes
Catch exception (from called entity) catch Yes
Examine top element of incoming port queues
Check msg/call/exception/reply received [check Yes Yes
Controlling operations
Clear port queue clear Yes Yes
Clear queue and enable sending and start Yes Yes
receiving at a port
Disable sending and disallow receiving stop Yes Yes
operations to match at a port
Disable sending and disallow receiving halt Yes Yes
operations to match new messages/calls
Check the state of a port checkstate Yes Yes

ETSI

195 ETSI ES 201 873-1 V4.7.1 (2015-06)

22.1 The communication mechanisms

This clause explains the principles of TTCN-3 communication for message-based communication (see clause 22.1.1),
for procedure-based communication (see clause 22.1.2), for unicast, multicast, and broadcast communication (see
clause 22.1.3), as well as the general format of sending and receiving operations (see clause 22.1.4).

22.1.1 Principles of message-based communication

Message-based communication is communication based on an asynchronous message exchange. Message-based
communication is non-blocking on the send operation, as illustrated in figure 11, where processing in the SENDER
continues immediately after the send operation occurs. The RECEIVER is blocked on the r ecei ve operation until it
processes the received message.

In addition to the r ecei ve operation, TTCN-3 provides at ri gger operation that filters messages with certain
matching criteria from a stream of received messages on a given incoming port. Messages at the top of the queue that
do not fulfil the matching criteria are removed from the port without any further action.

send receive or trigger

SENDER » RECEIVER

Figure 11: Illustration of the asynchronous send and receive

22.1.2 Principles of procedure-based communication

The principle of procedure-based communication is to call procedures in remote entities. TTCN-3 supports blocking
and non-blocking procedure-based communication. Blocking procedure-based communication is blocking on the calling
and the called side, whereas non-blocking procedure-based communication is only blocking on the called side.
Signatures of procedures that are used for non-blocking procedure-based communication shall be specified according to
the rules in clause 13.

The communication scheme of blocking procedure-based communication is shown in figure 12. The CALLER calls a
remote procedure in the CALLEE by using the cal | operation. The CALLEE accepts the call by means of a

get cal | operation and reacts by either using a r epl y operation to answer the call or by raising (r ai Se operation)
an exception. The CALLER handles the reply or exception by using get r epl y or cat ch operations. In figure 12, the
blocking of CALLER and CALLEE is indicated by means of dashed lines.

call getcal
: >
CALLER | ! { | CALLEE
:4 i
getreply or reply or
cat ch exception rai se exception

Figure 12: lllustration of blocking procedure-based communication

The communication scheme of non-blocking procedure-based communication is shown in figure 13. The CALLER
calls a remote procedure in the CALLEE by using the cal | operation and continues its execution, i.e. does not wait for
a reply or exception. The CALLEE accepts the call by means of a get cal | operation and executes the requested
procedure. If the execution is not successful, the CALLEE may raise an exception to inform the CALLER. The
CALLER may handle the exception by using a cat ch operation in an al t statement. In figure 13, the blocking of the
CALLEE until the end of the call handling and possible raise of an exception is indicated by means of a dashed line.

ETSI

196 ETSI ES 201 873-1 V4.7.1 (2015-06)

call getcal |
g
CALLER | | CALLEE
< H
cat ch exception rai se exception

Figure 13: lllustration of non-blocking procedure-based communication

22.1.3 Principles of unicast, multicast and broadcast communication
TTCN-3 supports unicast, multicast and broadcast communication:

e Unicast communication means one sender to one receiver.

. Multicast communication is from one sender to a list of receivers.

. Broadcast communication is from one sender to all receivers (being connected or mapped to the sender).

The terms unicast, multicast and broadcast communication are related to port communication. This means, it is only
possible to address one, several or all test components that are connected to the specified port. Unicast, multicast and
broadcast can also be used for mapped ports. In this case, one, several or all entities within the SUT can be reached via
the specified mapped port.

22.1.4 General format of communication operations

Operations such as send and cal | are used for the exchange of information among test components and between an
SUT and test components. For explaining the general format of these operations, they can be structured into two groups:

a) atest component sends a message (Send operation), calls a procedure (cal | operation), or replies to an
accepted call (r epl y operation) or raises an exception (r ai se operation). These actions are collectively
referred to as sending operations;

b) acomponent receives a message (I ecei ve operation), awaits a message (t r i gger operation),accepts a
procedure call (get cal | operation), receives a reply for a previously called procedure (get r epl y
operation) or catches an exception (cat ch operation). These actions are collectively referred to as receiving
operations.

22141 General format of the sending operations

Sending operations consist of a send part and, in the case of a blocking procedure-based cal | operation, a response
and exception handling part.

The send part:
. specifies the port at which the specified operation shall take place;
. defines the message or procedure call to be transmitted;

. gives an (optional) address part that uniquely identifies one or more communication partners to which a
message, call, reply or exception shall be send.

The port name, operation name and value shall be present in all sending operations. The address part (denoted by the t 0
keyword) is optional and need only be specified in cases of one-to-many connections where:

. unicast communication is used and one receiving entity shall be explicitly identified;
. multicast communication is used and a set of receiving entities has to be explicitly identified;

. broadcast communication is used and all entities connected to the specified port have to be addressed.

ETSI

197 ETSI ES 201 873-1 V4.7.1 (2015-06)

EXAMPLE 1:
Send part (Optional) response
and exception
Port and operation Value part (Optional) address part handling part
M/P1. send (MyVariabl e + YourVariable - 2) to MyPartner;

Response and exception handling is only needed in cases of procedure-based communication. The response and
exception handling part of the cal | operation is optional and is required for cases where the called procedure returns a
value or has out ori nout parameters whose values are needed within the calling component and for cases where the
called procedure may raise exceptions which need to be handled by the calling component.

The response and exception handling part of the call operation makes use of get r epl y and cat ch operations to
provide the required functionality.

EXAMPLE 2:
Send part (Optional) response and exception handling part
Port and Value part (Optional)
operation address part
MyP1. cal | (MyProc: { MyVar 1}) {
[T MyPl.getreply(MProc: {MVar2}) {}
[T MyP1l.catch(MProc, ExceptionOne) {}
}
22.1.4.2 General format of the receiving operations

A receiving operation consists of a receive part and an (optional) assignment part.
The receive part:
a) specifies the port at which the operation shall take place;
b) defines a matching part which specifies the acceptable input which will match the statement;

c) gives an (optional) address expression that uniquely identifies the communication partner (in case of
one-to-many connections).

The port name, operation name and value part of all receiving operations shall be present. The identification of the
communication partner (denoted by the f r omkeyword) is optional and need only be specified in cases of one-to-many
connections where the receiving entity needs to be explicitly identified.

The assignment part in a receiving operation is optional. For message-based ports it is used when it is required to store
received messages. In the case of procedure-based ports it is used for storing the i n and i hout parameters of an
accepted call, for storing the return value or for storing exceptions. For the assignment part strong typing is required,
e.g. the variable used for storing a message shall have the same type as the incoming message.

In addition, the assignment part may also be used to assign the sender address of a message, exception, r epl y or
cal | to a variable. This is useful for one-to-many connections where, for example, the same message or call can be
received from different components, but the message, reply or exception shall be sent back to the original sending
component.

For receiving operations using the any port from a port array construction (see clause 22.2.2), the assignment part may
also be used to store the indices that identify the specific port instance where the receiving operation matched.

EXAMPLE:
Receive part (Optional) assignment part
Port and operation Matching part (Optional) (Optional) (Optional) (Optional) sender
address value parameter |value assignment
expression assignment value
assignment
M/P1. getreply (AProc: {?} val ue 5) -> param (V1) sender APeer

ETSI

198 ETSI ES 201 873-1 V4.7.1 (2015-06)
Receive part (Optional) assignment part
Port and operation Matching part (Optional) (Optional) value (Optional) (Optional)
address assignment parameter |sender value
expression value assignment
assignment
MyP2.recei ve (MyTenpl ate(5, 7)) from APeer -> |val ue MyVar
Receive part (Optional) assignment part
Port and operation Matching part (Optional) (Optional) | (Optional) | (Optional) (Optional)
address value parameter sender port index
expression assignment value value assignment
assighment |assignment
any fromP.receive |[(MyTenplate(5,7)) -> @ ndex
val ue |

22.2

The operations for message-based communication via asynchronous ports are summarized in table 22.

Message-based communication

Table 22: Overview of TTCN-3 message-based communication

Communication operation Keyword
Send message send
Receive message receive
Trigger on message trigger
Check message received check

22.2.1 The Send operation

The send operation is used to place a message on an outgoing message port.

Syntactical Structure

Port "." send " ("
[to Address]

Tenpl at el nstance ")"

NOTE: Address may be an AddressRef, a list of AddressRef-s or "all component".
Semantic Description

The send operation places a message on an outgoing message port. The message may be specified by referencing a
defined template or can be defined as an in-line template.

Sending unicast, multicast or broadcast

Unicast, multicast and broadcast communication can be determined by the optional t 0 clause in the Send operation. A
t 0 clause can be omitted in case of a one-to-one connection where unicast communication is used and the message
receiver is uniquely determined by the test system structure.

Unicast communication is specified, if the t 0 clause addresses one communication partner only. Multicast
communication is used, if the t 0 clause includes a list of communication partners. Broadcast is defined by using the t 0
clause with al | conmponent keyword.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:

a) The Templatelnstance (and all parts of it) shall have a specific value i.e. the use of matching mechanisms such
as AnyValue is not allowed.

b) When defining the message in-line, the optional type part shall be used if there is ambiguity of the type of the
message being sent.

ETSI

199 ETSI ES 201 873-1 V4.7.1 (2015-06)

¢) The send operation shall only be used on message-based ports and the type of the template to be sent shall be
in the list of outgoing types of the port type definition.

d) At o clause shall be present in case of one-to-many connections.

e) AddressRef shall be of type addr ess, comrponent or of the type provided in the address declaration of the
port type of the port instance referenced in the send operation. No AddressRef shall contain the special value
nul | at the time of the operation.

f) Applying a send operation to an unmapped or disconnected port shall cause a test case error.

Examples
EXAMPLE 1: Simple send (receiver is determined from the test configuration)

MyPort . send(M/Tenpl at e(5, MyVar)); /] Sends the tenplate MyTenpl ate with the actual
/] paraneters 5 and MyVar via MyPort.

MyPort . send(5); /1 Sends the integer value 5 (which is an in-line tenplate)

EXAMPLE 2: Sending with explicit to clause

M/Port.send(charstring: "My string") to MyPartner;
/1 Sends the string "My string" to a conponent with a
/] conponent reference stored in variable MyPartner

M/PCO. send(MyVari abl e + YourVariable - 2) to MyPartner;
/'l Sends the result of the arithnetic expression to MyPartner.

M/PCX2. send(MyTenpl ate) to (M/Peer One, MyPeer Two);
/'l Specifies a multicast conmunication, where the val ue of
/1l MyTenplate is sent to the two conponent references stored
/1 in the variables M/PeerOne and MyPeer Two.

M/PCO3. send(MyTenpl ate) to all conponent;
/'l Broadcast conmmunication: the value of Mytenplate is send to
/1 all components which can be addressed via this port. If
/'l MPCO3 is a napped port, the conponents nay reside inside
/1 the SUT.

22.2.2 The Receive operation
The r ecei ve operation is used to receive a message from an incoming message port queue.

Syntactical Structure

(Port | any port | any fromPortArrayRef) "." receive
["(" Tenplatelnstance ")"]
[from Address]
["->" [value (Variabl eRef |
("(" { VariableRef [":=" [@ecoded ["(" Expression ")"]]
Fi el dO TypeReference 1[","] } ")")

)]
[sender Variabl eRef]
[@ndex val ue VariableRef]]

NOTE 1: Address may be an AddressRef, a list of AddressRef-s or "any component".
Semantic Description

Ther ecei ve operation is used to receive a message from an incoming message port queue. The message may be
specified by referencing a defined template or can be defined as an in-line template.

The r ecei ve operation removes the top message from the associated incoming port queue if, and only if, that top
message satisfies all the matching criteria associated with the r ecei ve operation.

If the match is not successful, the top message shall not be removed from the port queue i.e. if the r ecei ve operation
is used as an alternative of an al t statement and it is not successful, the execution of the test case shall continue with
the next alternative of the al t statement.

ETSI

200 ETSI ES 201 873-1 V4.7.1 (2015-06)

Matching criteria

The matching criteria are related to the type and value of the message to be received. The type and value of the message
to be received are determined by the argument of the r ecei ve operation, i.e. may either be derived from the defined
template or be specified in-line. An optional type field in the matching criteria to the r ecei ve operation shall be used
to avoid any ambiguity of the type of the value being received.

NOTE 2: Encoding attributes also participate in matching in an implicit way, by preventing the decoder to produce
an abstract value from the received message encoded in a different way than specified by the attributes.

Receiving from a specific sender

In the case of one-to-many connections the r ecei ve operation may be restricted to a certain communication partner.
This restriction shall be denoted using the f r omkeyword.

Storing the received message and parts of the received message

If the match is successful, the value removed from the port queue and/or parts of this value can be stored in variables or
formal parameters. This is denoted by the symbol '->' and the keyword val ue.

When the keyword val ue is followed by a name of a variable or formal parameter, the whole received message shall
be stored in the variable or formal parameter. The variable or formal parameter shall be type compatible with the
received message.

When the keyword val ue is followed by an assignment list enframed by a pair of parentheses, the whole received
message and/or one or more parts of it can be stored. In a single assignment within the list, on the left hand side of the
assignment symbol (":=") a field of the template type shall be referenced, on the right hand side the name of the variable
or a formal parameter, in which the value shall be stored. The variable or formal parameter shall be type compatible
with the type on the left hand side of the assignment symbol. As a special case the field reference can be absent to
indicate that the whole message shall be stored in a variable.

When assigning individual fields of a message, encoded payload fields can be decoded prior to assignment using the
@lecoded modifier. In this case, the referenced field on the right hand sided of the assignment shall be one of the
bitstring,hexstring,octetstring,charstringoruniversal charstring types. It shall be
decoded into a value of the same type as the variable on the left hand side of the assignment. Failure of this decoding
shall cause a test case error. In case the referenced field is of the uni ver sal char stri ng type, the @ecoded
clause can contain an optional parameter defining the encoding format. The parameter shall be of the char st ri ng
type and it shall contain one of the strings allowed for the decval ue_uni char function (specified in clause C.5.4).
Any other value shall cause an error. In case the referenced field is not a uni ver sal charstring, the optional
parameter shall not be present.

NOTE 3: The model of the behaviour of this implicit decoding is defined in clause B.1.2.9.

NOTE 4: The @lecoded clause is typically used together with the decnat ch matching mechanism in the
matching part of the receive statement. Since the decoding procedures for assignment and matching are
virtually the same, TTCN-3 tools can be optimized in such a way that only one call to the decoder is
made when the receiving statement contains both decmat ch matching mechanism and @ecoded
assignment for the same payload field.

Storing the sender

It is also possible to retrieve and store the component reference or address of the sender of a message. This is denoted
by the keyword sender .

When the message is received on a connected port, only the component reference is stored in the following the sender
keyword, but the test system shall internally store the component name too, if any (to be used in logging).

Receive any message

A'recei ve operation with no argument list for the type and value matching criteria of the message to be received shall
remove the message on the top of the incoming port queue (if any) if all other matching criteria are fulfilled.

ETSI

201 ETSI ES 201 873-1 V4.7.1 (2015-06)

Receive on any port
Tor ecei ve a message on any port, use the any port keywords.
Receive on any port from a port array

Tor ecei ve a message on any port from a specific port array, use the any from Port ArrayRef syntax where
PortArrayRef shall be a reference to a port array identifier. It is also possible to store the index of a port in a single-
dimensional port array at which the operation was successful to a variable of type integer or, in case of
multi-dimensional port arrays the index of the successful port to an integer array or record of integer variable. When
checking the port array for matching messages, the port indices to be checked are iterated from lowest to highest. If the
port array is multi-dimensional, then the ports are iterated over from innermost to outermost array dimension from
lowest to highest index for each dimension, e.g. [0][0], [0][1], [1][0], [1][1]. The first port which matches all the criteria
will cause the operation to be successful even if other ports in the array would also meet the criteria.

Stand-alonereceive

The r ecei ve operation can be used as a stand-alone statement in a behaviour description. In this latter case the
r ecei ve operation is considered to be shorthand for an al t statement with the r ecei ve operation as the only
alternative.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:
a) When defining the message in-line, the optional type part shall be present whenever the type of the message

being received is ambiguous.

b) Ther ecei ve operation shall only be used on message-based ports and the type of the value to be received
shall be included in the list of incoming types of the port type definition.

¢) No binding of the incoming values to the terms of the expression or to the template shall occur.
d) A message received by receive any message shall not be stored, i.e. the value clause shall not be present.

e) Type mismatch at storing the received value or parts of the received value and storing the sender shall cause an
error.

f) AddressRef for retrieving the sending entity shall be of type addr ess, conponent or of the type provided
in the address declaration of the port type of the port instance referenced in the r ecei ve operation. No
AddressRef shall contain the special value nul | at the time of the operation.

g) The PortArrayRef shall be a reference to a completely initialized port array.
h) The index redirection shall only be used when the operation is used on an any from port array construct.

i) If the index redirection is used for single-dimensional port arrays, the type of the integer variable shall allow
storing the highest index of the respective array.

j) Ifthe index redirection is used for multi-dimensional port arrays, the size of the integer array or record of
integer type shall exactly be the same as the dimension of the respective array, and its type shall allow storing
the highest index (from all dimensions) of the array.

k) Ifa variable referenced in the val ue, sender or @ ndex clause is a lazy or fuzzy variable, the expression
assigned to this variable is equal to the result produced by the r ecei ve operation i.e. later evaluation of the
lazy or fuzzy variable does not lead to repeated invocation of the r ecei ve operation.

1) Iftherecei ve operation contains both f r omand sender clause, the variable or parameter referenced in
the sender clause shall be type compatible with the template in the f r omclause.

m) When assigning implicitly decoded message fields (by using the @decoded modifier) in cases where the value
or template to be matched uses the MatchDecodedContent (decmatch) matching for the field to be stored, the
type of the template in the MatchDecodedContent matching shall be type-compatible to the type of the
variable the decoded field is stored into.

ETSI

202 ETSI ES 201 873-1 V4.7.1 (2015-06)

Examples

EXAMPLE 1: Basic receive

M/Port.recei ve(M/Tenpl ate(5, MyVar)); /1 Matches a nessage that fulfils the conditions
/1 defined by tenplate MyTenpl ate at port MyPort.

MyPort . recei ve(A<B); /1 Matches a Bool ean val ue that depends on the outcone of A<B

M/Port.receive(integer: MVar); [/ Mtches an integer value with the value of MyVar
/1 at port MyPort

MyPort.receive(M/Var); /1 I's an alternative to the previous exanple
EXAMPLE 2: Receiving from a sender, storing the message, parts of the message or the sender

type MyPayl oadType record {

i nt eger nmessagel d,
Cont ent Type cont ent

}

type M/Type2 record {
Header header,
octetstring payl oad

}

tenpl ate MyType MyTenpl ate : = {
messagel d : = 42,
content := ?

}

var MyPayl oadType MyVar;

var integer MyMessagel dVar, M/l ntegerVar;
var charstring MyCharstringVar;

var address MyPeer;

var octetstring MyVarOne := '00ff'Q

MyPort.receive(charstring:"Hello")from MyPeer; // Mtches charstring "Hello" from MyPeer

MyPort.recei ve(M/Type: ?) -> value MyVar; /1 The val ue of the received nessage is
/'l assigned to MyVar.

MyPort.recei ve(MyType: ?) -> value (MyVar, MyMessagel dVar:= M/Type. nessagel d)
/1 The val ue of the received nessage is stored in the variable
/1 MyVar and the value of the messageld field of the received
/'l message is stored in the variable MyMessagel dVar.

MyPort.recei ve(anytype: ?) -> value (Ml ntegerVar := integer)
/Il 1f the received value is an integer, it is stored in the variable
/1l MylntegerVar, a test case error otherw se.

M/Port.receive(charstring:?) -> value (M/CharstringVar)
/'l The received value is stored in the variable M/CharstringVar;
/! Note that it is the sane as to wite "value MyCharstringVar"

M/Port.recei ve(A<B) -> sender MyPeer; /1 The address of the sender is assigned to MyPeer

M/Port.recei ve(M/Type: {5, My/VarOne}) -> value MyVar sender MyPeer;

/'l The received nessage value is stored in M/VarTwo and the sender address is stored in MyPeer.
MyPort.recei ve(M/Type2: { header := ?, payload := decmatch MyTenplate })

-> value (MyVar := @lecoded payl oad);

/1 The encoded payl oad field of the received nessage is decoded and natched with

/1 MyTenplate; if the matching is successful the decoded payload is stored in My/Var.

EXAMPLE 3: Receive any message

My/Port . receive; /1 Renoves the top value from MyPort.

MyPort.receive from MPeer; /'l Rermoves the top nessage from MyPort if its sender is
My Peer

MyPort.receive -> sender MySender Var; /'l Renoves the top nessage from MyPort and assigns

/1 the sender address to MySender Var

EXAMPLE 4: Receive on any port

any port.recei ve(MyMessage) ;

ETSI

203 ETSI ES 201 873-1 V4.7.1 (2015-06)

EXAMPLE 5: Receive on any port from a port array

type port MyPort nmessage { inout integer }
type conponent MyConponent {

port MyPort p[10][10];
}

var integer i[2];

any fromp.receive(M/Message) -> @ndex val ue i;

/'l checking receiving M/Message on any port of the port array p and storing the index of the
/1 port on which the matching was successful first; if, for exanple M/Message is matched first
/1 on p[4,2], the content of i will be {4,2}

22.2.3 The Trigger operation

The t ri gger operation is used to await a specific message on an incoming port queue.

Syntactical Structure

(Port | any port | any from PortArrayRef) "." trigger
["(" Tenplatelnstance ")"]
[from Address]
["->" [value (Variabl eRef |
("(" { VariableRef [":=" [@ecoded ["(" Expression ")"]]
Fi el dO TypeReference 1[","] } ")")

) 1
[sender Variabl eRef]
[@ndex val ue Variabl eRef]]

NOTE: Address may be an AddressRef, a list of AddressRef-s or "any component".
Semantic Description

The t ri gger operation removes the top message from the associated incoming port queue. If that top message meets
the matching criteria, the t r i gger operation behaves in the same manner as a r ecei ve operation. If that top
message does not fulfil the matching criteria, it shall be removed from the queue without any further action.

The t ri gger operation requires the port name, matching criteria for type and value, an optional f r omrestriction
(i.e. selection of communication partner) and an optional assignment of the matching message and sender component to
variables.

Matching criteria
The matching criteria as defined in clause 22.2.2 apply also to the t r i gger operation.
Trigger on any message

Atrigger operation with no argument list shall trigger on the receipt of any message. Thus, its meaning is identical
to the meaning of receive any message.

Trigger on any port
Totrigger onamessage at any port, use the any port keywords.
Trigger on any port from aport array

To trigger on a message at any port from a specific port array, use the any from Port ArrayRef syntax where
PortArrayRef shall be a reference to a port array identifier. It is also possible to store the index of a port in a
single-dimensional port array at which the operation was successful to a variable of type integer or, in case of
multi-dimensional port arrays the index of the successful port to an integer array or record of integer variable. When
checking the port array for matching messages, the port indices to be checked are iterated from lowest to highest. If the
port array is multi-dimensional, then the ports are iterated over from innermost to outermost array dimension from
lowest to highest index for each dimension, e.g. [0][0], [0][1], [1][0], [1][1]. The first port which matches all the criteria
will cause the operation to be successful even if other ports in the array would also meet the criteria.

If any port in the port array which is checked for matching contains a message that does not match, this message is
removed and the containing al t statement is re-evalutated, regardless of whether or not other ports in the port array
would meet the trigger criteria.

ETSI

204 ETSI ES 201 873-1 V4.7.1 (2015-06)

Stand-alone trigger

The t ri gger operation can be used as a stand-alone statement in a behaviour description. In this latter case the
trigger operation is considered to be shorthand for an al t statement with two alternatives (one alternative expecting
the message and another alternative consuming all other messages and repeating the alt statement, see

ETSI ES 201 873-4 [1]).

Storing the received message, parts of the received message or the sender
Rules in clause 22.2.2 shall apply.
Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:

a) Thetrigger operation shall only be used on message-based ports and the type of the value to be received
shall be included in the list of incoming types of the port type definition.

b) A message received by TriggerOnAnyMessage shall not be assigned to a variable.

c¢) Type mismatch at storing the received value or parts of the received value and storing the sender shall cause an
error.

d) AddressRef for retrieving the sending entity shall be of type addr ess, component or of the type provided
in the address declaration of the port type of the port instance referenced in the t r i gger operation. No
AddressRef shall contain the special value nul | at the time of the operation.

e) The PortArrayRef shall be a reference to a completely initialized port array .
f) The index redirection shall only be used when the operation is used on an any from port array construct.

g) Ifthe index redirection is used for single-dimensional port arrays, the type of the integer variable shall allow
storing the highest index of the respective array.

h) If'the index redirection is used for multi-dimensional port arrays, the size of the integer array or record of
integer type shall exactly be the same as the dimension of the respective array, and its type shall allow storing
the highest index (from all dimensions) of the array.

i) Ifavariable referenced in the val ue, sender or @ ndex clause is a lazy or fuzzy variable, the expression
assigned to this variable is equal to the result produced by the t ri gger operation, i.e. later evaluation of the
lazy or fuzzy variable does not lead to repeated invocation of the t r i gger operation.

j) Ifthetri gger operation contains both f r omand sender clause, the variable or parameter referenced in
the sender clause shall be type compatible with the template in the f r omclause.

Examples
EXAMPLE 1: Basic trigger

MyPort.trigger(MType: ?);
/1 Specifies that the operation will trigger on the reception of the first message observed of
/1 the type MyType with an arbitrary value at port MyPort.

EXAMPLE 2: Trigger from a sender and with storing message or sender

MyPort.trigger(MType:?) from MyPartnner;
/1 Triggers on the reception of the first nessage of type MyType at port MyPort
/'l received from MyPartner.

MyPort.trigger(MType:?) from M/Partner -> val ue MyRecMessage;
/1 This exanple is alnost identical to the previous exanple. In addition, the nessage which
/] triggers i.e. all matching criteria are net, is stored in the variable M/RecMessage.

MyPort.trigger(MType:?) -> sender MyPartner;

/1 This exanple is alnost identical to the first exanple. In addition, the reference of the
/1 sender conponent will be retrieved and stored in variable M/Partner.

ETSI

205 ETSI ES 201 873-1 V4.7.1 (2015-06)

MyPort.trigger(integer:?) -> value My/Var sender MyPartner;
/1 Trigger on the reception of an arbitrary integer value which afterwards is stored in
/1 variable MyVar. The reference of the sender conponent will be stored in variable M/Partner.

EXAMPLE 3: Trigger on any message
MyPort.trigger;
MyPort.trigger from MyPartner;
MyPort.trigger -> sender MySender Var;
EXAMPLE 4: Trigger on any port

any port.trigger

EXAMPLE 5: Trigger on any port from port array

type port MyPort message { inout integer }
type conponent MyConponent {

port MyPort p[10][10];
}

var integer i[2];
any fromp.trigger(M/Message) -> @ndex value i;
/1 Checking if MyMessage has been received on any port of the port array p; if yes, the index

/1 of the port on which the matching was first successful is stored in the array i; if no port
/'l succeeds, the top nessages are renoved and the port array is re-checked.

22.3 Procedure-based communication

The operations for procedure-based communication via synchronous ports are summarized in table 23.

Table 23: Overview of procedure-based communication

Communication operation Keyword
Invoke procedure call call
Accept procedure call from remote entity getcall
Reply to procedure call from remote entity |reply
Raise exception (to an accepted call) raise
Handle response from a previous call getreply
Catch exception (from called entity) catch
Check call/exception/reply received check

22.3.1 The Call operation

The cal | operation specifies the call of a remote operation on another test component or within the SUT.

Syntactical Structure

Port "." call "(" Tenplatelnstance ["," CallTimervValue] ")"
[to Address]

NOTE 1: Address may be an AddressRef, a list of AddressRef-s or "all component".
Semantic Description
The cal | operation is used to specify that a test component calls a procedure in the SUT or in another test component.

The information to be transmitted in the send part of the cal | operation is a signature that may either be defined in the
form of a signature template or be defined in-line.

Handling responses and exceptionsto a call

In case of non-blocking procedure-based communication the handling of exceptions to cal | operations is done by
using cat ch (see clause 22.3.6) operations as alternatives in al t statements.

If the nowai t option is used, the handling of responses or exceptions to cal | operations is done by using get r epl y
(see clause 22.3.4) and cat ch (see clause 22.3.6) operations as alternatives in al t statements.

ETSI

206 ETSI ES 201 873-1 V4.7.1 (2015-06)

In case of blocking procedure-based communication, the handling of responses or exceptions to a call is done in the
response and exception handling part of the cal | operation by means of get r epl y (see clause 22.3.4) and cat ch
(see clause 22.3.6) operations.

The response and exception handling part of a cal | operation looks similar to the body of an al t statement. It defines
a set of alternatives, describing the possible responses and exceptions to the call.

If necessary, it is possible to enable/disable an alternative by means of a bool ean expression placed between the "[]"
brackets of the alternative.

The response and exception handling part of a call operation is executed like an al t statement without any active
default. This means a corresponding snapshot includes all information necessary to evaluate the (optional) Boolean
guards, may include the top element (if any) of the port over which the procedure has been called and may include a
timeout exception generated by the (optional) timer that supervises the call.

Handling timeout exceptionsto a call

The cal | operation may optionally include a timeout. This is defined as an explicit value or constant of f | oat type
and defines the length of time after the cal | operation has started that at i meout exception shall be generated by the
test system. If no timeout value part is present in the cal | operation, no t i meout exception shall be generated.

Nowait calls of blocking procedures

Using the keyword nowai t instead of a timeout exception value in a cal | operation allows calling a procedure to
continue without waiting either for a response or an exception raised by the called procedure or a timeout exception.

If the nowai t keyword is used, a possible response or exception of the called procedure has to be removed from the
port queue by using a get r epl y or a cat ch operation in a subsequent al t statement.

Calling blocking procedureswithout return value, out parameters, inout parameter s and exceptions

A blocking procedure may have no return values, no out and inout parameters and may raise no exception. The call
operation for such a procedure shall also have a response and exception handling part to handle the blocking in a
uniform manner.

Calling non-blocking procedures

A non-blocking procedure has no out and inout parameters, no return value and the non-blocking property is indicated
in the corresponding signature definition by means of a nobl ock keyword.

Possible exceptions raised by non-blocking procedures have to be removed from the port queue by using cat ch
operations in subsequent al t ori nt er | eave statements.

Unicast, multicast and broadcast calls of procedures

Like for the send operation, TTCN-3 also supports unicast, multicast and broadcast calls of procedures. This can be
done in the same manner as described in clause 22.2.1, i.e. the argument of the t 0 clause ofa cal | operation is for
unicast calls the address of one receiving entity (or can be omitted in case of one-to-one connections), for multicast calls
a list of addresses of a set of receivers and for broadcast calls the al | conponent keyword. In case of one-to-one
connections, the t 0 clause may be omitted, because the receiving entity is uniquely identified by the system structure.

The handling of responses and exceptions for a blocking or non-blocking unicast cal | operation has been explained in
this clause under "Handling timeout exceptions to a call". A multicast or broadcast cal | operation may cause several
responses and exceptions from different communication partners.

In case of a multicast or broadcast cal | operation of a non-blocking procedure, all exceptions which may be raised
from the different communication partners can be handled in subsequent cat ch, al t ori nt er| eave statements.

In case of a multicast or broadcast cal | operation of a blocking procedure, two options exist. Either, only one response
or exception is handled in the response and exception handling part of the cal | operation. Then, further responses and
exceptions can be handled in subsequent al t ori nt er | eave statements. Or, several responses or exceptions are
handled by the use of repeat statements in one or more of the statement blocks of the response and exception handling
part of the call operation: the execution of a repeat statement causes the re-evaluation of the call body.

ETSI

207 ETSI ES 201 873-1 V4.7.1 (2015-06)

NOTE 2: In the second case, the user needs to handle the number of repetitions.
Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:

a) Thecal | operation shall only be used on procedure-based ports. The type definition of the port at which the
call operation takes place shall include the procedure name in its out or i nout list i.e. it shall be allowed to
call this procedure at this port.

b) Allinandi nout parameters of the signature shall have a specific value i.e. the use of matching mechanisms
such as AnyValue is not allowed.

¢) Only out parameters may be omitted or specified with a matching attribute.

d) The signature arguments of the cal | operation are not used to retrieve variable names for out and i nout
parameters. The actual assignment of the procedure return value and out and i nout parameter values to
variables shall explicitly be made in the response and exception handling part of the cal | operation by means
of get r epl y and cat ch operations. This allows the use of signature templates in cal | operations in the
same manner as templates can be used for types.

e) At o clause shall be present in case of one-to-many connections.

f) AddressRef shall be of type addr ess, conmponent or of the type provided in the address declaration of the
port type of the port instance referenced in the cal | operation. No AddressRef shall contain the special value
nul | at the time of the operation.

g) CallTimerValue shall be of type float.

h) The selection of the alternatives to a call shall only be based on get r epl y and cat ch operations for the
called procedure. Unqualified get r epl y and cat ch operations shall only treat replies from and exceptions
raised by the called procedure. The use of el se branches and the invocation of altsteps is not allowed.

i) The evaluation of the Boolean expressions guarding the alternatives in the response and exception handling
part may have side effects. In order to avoid unexpected side effects, the same rules as for the Boolean guards
inal t statements shall be applied (see clause 20.2).

j) The call operation for a blocking procedures without return value, out parameters, inout parameters and
exceptions shall also have a response and exception handling part to handle the blocking in a uniform manner.

k) In case of a multicast or broadcast cal | operation of a blocking procedure, where the nowai t keyword is
used, all responses and exceptions have to be handled in subsequent al t ori nt er | eave statements.

1) Thecal | operation for a non-blocking procedure shall have no response and exception handling part, shall
raise no timeout exception and shall not use the nowai t keyword.

m) Applyinga cal | operation to an unmapped or disconnected port shall cause a test case error.
Examples

EXAMPLE 1: Blocking call with getreply

/1 Gven ..
signature MyProc (out integer MyParl, inout bool ean MyPar?2);

/) a call of MyProc
MyPort.call (MProc:{ -, MyVar2}) { /1 in-line signature tenplate for the call of M/Proc

[T MyPort.getreply(MProc:{?, ?}) { }

// ...and another call of MProc
MyPort.cal | (MyProcTenpl ate) { /] using signature tenplate for the call of M/Proc

[T MyPort.getreply(MProc:{?, ?}) { }

MyPort.cal |l (MProcTenpl ate) to MyPeer { /1 calling M/Proc at MyPeer

ETSI

208 ETSI ES 201 873-1 V4.7.1 (2015-06)

[T MyPort.getreply(MProc:{?, ?}) { }

EXAMPLE 2: Blocking call with getreply and catch
/1 Gven

signature MyProc3 (out integer MyParl, inout bool ean MyPar2) return MyResult Type
exception (ExceptionTypeOne, ExceptionTypeTwo);

/1 Call of MyProc3
MyPort.call (MProc3:{ -, true }) to MyPartner {

[T MyPort.getreply(MProc3:{?, ?}) -> value MyResult param (MyPar1Var, MyPar2Var) { }
[T MyPort.catch(M/Proc3, MExceptionOne) {

setverdict(fail);

st op;

}
[T MyPort.catch(M/Proc3, ExceptionTypeTwo : ?) {
setverdi ct (i nconc);

}
[MyCondi tion] MyPort.catch(M/Proc3, M/ExceptionThree) { }

EXAMPLE 3: Blocking call with timeout exception
MyPort.call (M/Proc: {5, MyVar}, 20E-3) {

[T MyPort.getreply(MProc:{?, ?}) { }

[T MyPort.catch(tineout) { /1 timeout exception after 20ns
setverdict(fail);
st op;
}

}
EXAMPLE 4: Nowait call

MyPort.call (MProc: {5 MVar}, nowait); /1 The calling test conponent will continue
/] its execution without waiting for the
// term nation of MyProc

EXAMPLE 5: Blocking call without return value, out parameters, inout parameters and exceptions

/1 Gven ..
signature MyBl ockingProc (in integer MyParl, in bool ean MyPar?2);

/) a call of MBI ocki ngProc
MyPort.cal | (MyBl ockingProc:{ 7, false }) {

[1 MyPort.getreply(MBIl ockingProc:{ -, - }) { }
}

EXAMPLE 6: Broadcast call

var boolean first:= true;
MyPort.call (MyProc: {5 MyVar}, 20E-3) to all conponent { // Broadcast call of M/Proc
/1 Handl es the response from MyPeer One
[first] MyPort.getreply(MProc:{?, ?}) from MyPeerOne {
if (first) { first := false; repeat; }

/1 Handl es the response from MyPeer Two
[first] MyPort.getreply(M/Proc:{?, ?}) from MyPeer Two {

if (first) { first := false; repeat; }
[T MyPort.catch(tineout) { /1 timeout exception after 20ns
setverdict(fail);
st op;
}
}
alt {
[T MyPort.getreply(MProc:{?, ?}) { /1 Handles all other responses to the broadcast call
r epeat

}

ETSI

209 ETSI ES 201 873-1 V4.7.1 (2015-06)

}

EXAMPLE 7: Multicast call
MyPort.cal |l (MProc: {5 M/Var}, nowait) to (M/Peerl, MPeer2); /1 Multicast call of MyProc
interleave {

[T MyPort.getreply(MProc:{?, ?}) fromMPeerl { } /1 Handl es the response of MyPeerl
[T MyPort.getreply(MProc:{?, ?}) from MWPeer2 { } /1 Handl es the response of MyPeer2

}

22.3.2 The Getcall operation

The get cal | operation is used to accept calls.

Syntactical Structure

(Port | any port | any from PortArrayRef) "." getcall
["(" Tenplatelnstance ")"]

[from Address]

[

"->" [param"(" { (VariableRef ":=" [@ecoded ["(" Expression ")"]]
Parameterldentifier) "," } |
{ (VariableRef | "-") "," }

[sender Vari abl eRef]
[@ndex value VariableRef]]

NOTE: Address may be an AddressRef, a list of AddressRef-s or "any component".
Semantic Description

The get cal | operation is used to specify that a test component accepts a call from the SUT, or another test
component.

The get cal | operation shall remove the top call from the incoming port queue, if, and only if, the matching criteria
associated to the get cal | operation are fulfilled. These matching criteria are related to the signature of the call to be
processed and the communication partner. The matching criteria for the signature may either be specified in-line or be
derived from a signature template.

The assignment of i N and i nout parameter values to variables shall be made in the assignment part of the get cal |
operation. This allows the use of signature templates in get cal | operations in the same manner as templates are used
for types.

A get cal | operation may be restricted to a certain communication partner in case of one-to-many connections. This
restriction shall be denoted by using the f r omkeyword.

The (optional) assignment part of the get cal | operation comprises the assignment of i n and i nout parameter
values to variables and the retrieval of the address of the calling component. The keyword par amis used to retrieve the
parameter values of a call.

When assigning individual parameters of a call, encoded parameters can be decoded prior to assignment using the
@ecoded modifier. In this case, the referenced parameter on the right hand sided of the assignment shall be one of
the bi t string, hexstring,octetstring,charstringoruniversal charstring types. It shall be
decoded into a value of the same type as the variable on the left hand side of the assignment. Failure of this decoding
shall cause a test case error. In case the referenced field is of the uni ver sal char stri ng type, the @ecoded
clause can contain an optional parameter defining the encoding format. The parameter shall be of the char st ri ng
type and it shall contain one of the strings allowed for the decval ue_uni char function (specified in clause C.5.4).
Any other value shall cause an error. In case the referenced field is not a uni ver sal charstring, the optional
parameter shall not be present.

The keyword sender is used when it is required to retrieve the address of the sender (e.g. for addressingar epl y or
exception to the calling party in a one-to-many configuration).

ETSI

210 ETSI ES 201 873-1 V4.7.1 (2015-06)

Accepting any call

A get cal | operation with no argument list for the signature matching criteria will remove the call on the top of the
incoming port queue (if any) if all other matching criteria are fulfilled.

Getcall on any port
To get cal | on any port is denoted by the any keyword.
Getcall on any port from a port array

To get cal | on any port from a specific port array, use the any from Port ArrayRef syntax where
PortArrayRef shall be a reference to a port array identifier. It is also possible to store the index of a port in a single-
dimensional port array at which the operation was successful to a variable of type integer or, in case of
multi-dimensional port arrays the index of the successful port to an integer array or record of integer variable. When
checking the port array for matching calls, the port indices to be checked are iterated from lowest to highest. If the port
array is multi-dimensional, then the ports are iterated over from innermost to outermost array dimension from lowest to
highest index for each dimension, e.g. [0][0], [0][1], [1][0], [1][1]. The first port which matches all the criteria will
cause the operation to be successful even if other ports in the array would also meet the criteria.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:

a) Thegetcal |l operation shall only be used on procedure-based ports and the signature of the procedure call to
be accepted shall be included in the list of allowed incoming procedures of the port type definition.

b) The signature argument of the get cal | operation shall not be used to pass in variable names for i n and
i nout parameters.

¢) The Parameterldentifiers shall be from the corresponding signature definition.
d) The value assignment part shall not be used with the getcall operation.

e) Parameters of calls accepted by accepting any call shall not be assigned to a variable, i.e. the param clause
shall not be present.

f) AddressRef for retrieving the sending entity shall be of type addr ess, conponent or of the type provided
in the address declaration of the port type of the port instance referenced in the get cal | operation. No
AddressRef shall contain the special value nul | at the time of the operation.

g) The PortArrayRef shall be a reference to a completely initialized port array.
h) The index redirection shall only be used when the operation is used on an any from port array construct.

i) Ifthe index redirection is used for single-dimensional port arrays, the type of the integer variable shall allow
storing the highest index of the respective array.

j) If the index redirection is used for multi-dimensional port arrays, the size of the integer array or record of
integer type shall exactly be the same as the dimension of the respective array, and its type shall allow storing
the highest index (from all dimensions) of the array.

k) If avariable referenced in the par am sender or @ ndex clause is a lazy or fuzzy variable, the expression
assigned to this variable is equal to the result produced by the get cal | operation, i.e. later evaluation of the
lazy or fuzzy variable does not lead to repeated invocation of the get cal | operation.

1) Iftheget cal | operation contains both f r omand sender clause, the variable or parameter referenced in
the sender clause shall be type compatible with the template in the f r omclause.

m) When assigning implicitly decoded parameters (by using the @decoded modifier) in cases where the value or
template to be matched uses the MatchDecodedContent (decmatch) matching for the parameter to be stored,
the type of the template in the MatchDecodedContent matching shall be type-compatible to the type of the
variable the decoded field is stored into.

ETSI

211 ETSI ES 201 873-1 V4.7.1 (2015-06)

Examples

EXAMPLE 1: Basic getcall
M/Port. getcal | (M/Proc: MyProcTenpl ate(5, MVar)); /1 accepts a call of MyProc at MyPort

MyPort.getcal | (M/Proc: {5, MyVar}) from MyPeer; // accepts a call of MyProc at MyPort from MyPeer

EXAMPLE 2: Getcall with matching and assignments of parameter values to variables

M/Port.getcal | (MProc: {?, ?}) from M/Partner -> param (M/Par1Var, M/Par2Var);
/1 The in or inout paraneter values of My/Proc are assigned to MyParlVar and MyPar2Var.

M/Port.getcal | (MProc: {5, MVar}) -> sender MySender Var;
Il Accepts a call of MyProc at M/Port with the in or inout paraneters 5 and MyVar.
/1 The address of the calling party is retrieved and stored in MySender Var.

/1 The follow ng getcall exanples show the possibilities to use natching attributes
/1 and onmit optional parts, which may be of no inportance for the test specification.

MyPort.getcal | (MProc: {5, MVar}) -> paran{M/Varl, MVar2) sender MySender Var;
MyPort.getcal | (M/Proc: {5, ?}) -> param(MyVarl, MVar?2);

MyPort.getcal | (MProc:{?, MVar}) -> paran{ - , M\Var2);
/1 The value of the first inout paraneter is not inportant or not used

/1 The followi ng exanples shall explain the possibilities to assign in and inout paraneter
/1 values to variables. The followi ng signature is assuned for the procedure to be call ed:

signature MyProc2(in integer A integer B, integer C, out integer D, inout integer E);
M/Port.getcal | (MProc2:{?, ?, 3, - , ?}) -> param (M/VarA, MVarB, - , -, M\VarE);

/'l The paraneters A B, and E are assigned to the variables MyVarA, MVarB, and

/'l MyVarE. The out paranmeter D needs not to be considered.

MyPort.getcal | (M/Proc2:{?, ?, 3, -, ?}) -> param (MyVarA:= A, MyVarB:= B, M/VarE: = E);

/1l Alternative notation for the val ue assignment of in and inout paranmeter to variables. Note,
/1 the nanes in the assignnent list refer to the nanes used in the signature of M/Proc2

MyPort.getcal | (M/Proc2:{1, 2, 3, -, *}) -> param (MyVarE = E);
/1 Only the inout paranmeter value is needed for the further test case execution

/1 The followi ng exanpl e denobnstrates the use of encoded paraneters:
signature MyProc3(in integer paranlype, octetstring encodedParan;
tenplate integer mint := ?;

var integer v_nyVarX;

MyPort. getcal | (MProc3: {1, decnatch mint}) -> param (v_nyVarX := @ecoded encodedParan);
/1 The paraneters encodedParamis decoded into an integer and assigned to v_nyVarX

EXAMPLE 3: Accepting any call
MyPort . getcall; /'l Renoves the top call from MyPort.
MyPort.getcall from WPartner; // Renoves a call from MyPartner from port MyPort

MyPort.getcall -> sender MySender Var; /1 Renoves a call from M/Port and retrieves
/'l the address of the calling entity

EXAMPLE 4: Getcall on any port

any port.getcall (M/Proc:?)

EXAMPLE 5: Getcall on any port from port array

type port MyPort procedure { inout MyProc }
type conponent MyConponent {

port MyPort p[10][10];
}

var integer i[2];

any fromp.getcall (M/Proc:?) -> @ndex val ue i;

/1 checking for an incomng call of the type M/Proc on any port of the port array p and storing
/1 the index of the port on which the matching was successful first

ETSI

212 ETSI ES 201 873-1 V4.7.1 (2015-06)

22.3.3 The Reply operation
The r epl y operation is used to reply to a call.

Syntactical Structure

Port "." reply "(" Tenpl atel nstance [value Expression] ")"
[to Address]

NOTE 1: Address may be an AddressRef, a list of AddressRef-s or "all component".
Semantic Description
The r epl y operation is used to reply to a previously accepted call according to the procedure signature.

NOTE 2: The relation between an accepted call and ar epl y operation cannot always be checked statically. For
testing it is allowed to specify a r epl y operation without an associated get cal | operation.

The value part of the r epl y operation consists of a signature reference with an associated actual parameter list and
(optional) return value. The signature may either be defined in the form of a signature template or it may be defined
in-line.

Responses to one or more cal | operations may be sent to one, several or all peer entities connected to the addressed
port. This can be specified in the same manner as described in clause 22.2.1. This means, the argument of the t 0 clause
of ar epl y operation is for unicast responses the address of one receiving entity, for multicast responses a list of
addresses of a set of receivers and for broadcast responses the al | conmponent keywords.

In case of one-to-one connections, the t 0 clause may be omitted, because the receiving entity is uniquely identified by
the system structure.

A return value shall be explicitly stated with the val ue keyword.
Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:

a) Areply operation shall only be used at a procedure-based port. The type definition of the port shall include
the name of the procedure to which the r epl y operation belongs.

b) Allout andi nout parameters of the signature shall have a specific value i.e. the use of matching
mechanisms such as AnyValue is not allowed.

c¢) At o clause shall be present in case of one-to-many connections.

d) AddressRef shall be of type addr ess, component or of the type provided in the address declaration of the
port type of the port instance referenced in the r epl y operation. No AddressRef shall contain the special
value nul | at the time of the operation.

e) Ifavalue is to be returned to the calling party, this shall be explicitly stated using the val ue keyword.
f) Applying ar epl y operation to an unmapped or disconnected port shall cause a test case error.

Examples

MyPort . repl y(MProc2:{ ,5}); /! Replies to an accepted call of MProc2.

MyPort.reply(MyProc2:{ - ,5}) to MyPeer; // Replies to an accepted call of MyProc2 from MyPeer

MyPort.reply(MProc2:{ ,5}) to (MyPeerl, MyPeer2); // Milticast reply to M/Peerl and MyPeer2

MyPort.reply(MyProc2:{ - ,5}) to all conponent; // Broadcast reply to all entities connected
/1 to MyPort

MyPort.repl y(M/Proc3: {5, MyVar} val ue 20); /'l Replies to an accepted call of M/Proc3.

ETSI

213 ETSI ES 201 873-1 V4.7.1 (2015-06)

22.3.4 The Getreply operation
The get r epl y operation is used to handle replies from a previously called procedure.

Syntactical Structure

(Port | any port | any fromPortArrayRef) "." getreply
["(" Tenplatelnstance [val ue Tenplatelnstance]")"]
[from Address]
["->" [value (Variabl eRef |
("(" { VariableRef [":=" [@ecoded ["(" Expression ")"]]
Fi el dOr TypeReference 1[","] } ")")

)]
[param"(" { (VariableRef ":=" [@lecoded ["(" Expression ")"]]
Paraneterldentifier) "," } |
{ (VariableRef | "-") "," }

")
[sender Variabl eRef]
[@ndex value Variabl eRef]]

NOTE: Address may be an AddressRef, a list of AddressRef-s or "any component".
Semantic Description
The get r epl y operation is used to handle replies from a previously called procedure.

The get r epl y operation shall remove the top reply from the incoming port queue, if, and only if, the matching
criteria associated to the get r epl y operation are fulfilled. These matching criteria are related to the signature of the
procedure to be processed and the communication partner. The matching criteria for the signature may either be
specified in-line or be derived from a signature template.

Matching against a received return value can be specified by using the val ue keyword.

A get r epl y operation may be restricted to a certain communication partner in case of one-to-many connections. This
restriction shall be denoted by using the f r omkeyword.

The assignment of out and i nout parameter values to variables shall be made in the assignment part of the
get r epl y operation. This allows the use of signature templates in get r epl y operations in the same manner as
templates are used for types.

The (optional) assignment part of the get r epl y operation comprises the assignment of out and i nout parameter
values to variables and the retrieval of the address of the sender of the reply. The keyword val ue is used to retrieve
return values and the keyword par amis used to retrieve the parameter values of a reply. The keyword sender is used
when it is required to retrieve the address of the sender.

When assigning individual parameters of a reply, encoded parameters can be decoded prior to assignment using the
@lecoded modifier. In this case, the referenced parameter on the right hand sided of the assignment shall be one of
the bi t string, hexstring,octetstring,charstringoruniversal charstring types. It shall be
decoded into a value of the same type as the variable on the left hand side of the assignment. Failure of this decoding
shall cause a test case error. In case the referenced field is of the uni ver sal char st ri ng type, the @ecoded
clause can contain an optional parameter defining the encoding format. The parameter shall be of the char st ri ng
type and it shall contain one of the strings allowed for the decval ue_uni char function (specified in clause C.5.4).
Any other value shall cause an error. In case the referenced field is not a uni ver sal char string, the optional
parameter shall not be present.

Get any reply

A getr epl y operation with no argument list for the signature matching criteria shall remove the reply message on the
top of the incoming port queue (if any) if all other matching criteria are fulfilled.

If GetAnyReply is used in the response and exception handling part of a cal | operation, it shall only treat replies from
the procedure invoked by the cal | operation.

Get areply on any port

To get a reply on any port, use the any port keywords.

ETSI

214 ETSI ES 201 873-1 V4.7.1 (2015-06)

Get areply on any port from a port array

To get a reply on any port from a specific port array, use the any from Port ArrayRef syntax where
PortArrayRef shall be a reference to a port array identifier. It is also possible to store the index of a portin a
single-dimensional port array at which the operation was successful to a variable of type integer or, in case of
multi-dimensional port arrays the index of the successful port to an integer array or record of integer variable. When
checking the port array for matching replies, the port indices to be checked are iterated from lowest to highest. If the
port array is multi-dimensional, then the ports are iterated over from innermost to outermost array dimension from
lowest to highest index for each dimension, e.g. [0][0], [0][1], [1][0], [1][1]. The first port which matches all the criteria
will cause the operation to be successful even if other ports in the array would also meet the criteria.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:
a) A getreply operation shall only be used at a procedure-based port. The type definition of the port shall
include the name of the procedure to which the get r epl y operation belongs.

b) The signature argument of the get r epl y operation shall not be used to pass in variable names for out and
i nout parameters.

c) Parameters or return values of responses accepted by get any reply shall not be assigned to a variable, i.e. the
param and value clause shall not be present.

d) AddressRef for retrieving the sending entity shall be of type addr ess, conponent or of the type provided
in the address declaration of the port type of the port instance referenced in the get r epl y operation. No
AddressRef shall contain the special value nul | at the time of the operation.

e) The PortArrayRef shall be a reference to a completely initialized port array .
f) The index redirection shall only be used when the operation is used on an any from port array construct.

g) Ifthe index redirection is used for single-dimensional arrays, the type of the integer variable shall allow
storing the highest index of the respective port array.

h) Ifthe index redirection is used for multi-dimensional arrays, the size of the integer array or record of integer
type shall exactly be the same as the dimension of the respective port array, and the its type shall allow storing
the highest index (from all dimensions) of the port array.

i) Ifavariable referenced in the val ue, par am sender or @ ndex clause is a lazy or fuzzy variable, the
expression assigned to this variable is equal to the result produced by the get r epl y operation, i.e. later
evaluation of the lazy or fuzzy variable does not lead to repeated invocation of the get r epl y operation.

j) Ifthe getr epl y operation contains both f r omand sender clause, the variable or parameter referenced in
the sender clause shall be type compatible with the template in the f r omclause.

k) When assigning implicitly decoded parameters (by using the @decoded modifier) in cases where the value or
template to be matched uses the MatchDecodedContent (decmatch) matching for the parameter to be stored,
the type of the template in the MatchDecodedContent matching shall be type-compatible to the type of the
variable the decoded field is stored into.

Examples

EXAMPLE 1: Basic getreply

M/Port. getreply(MProc: {5, ?} value 20); /1 Accepts a reply of M/Proc with two out or
/'l inout paraneters and a return value of 20

MyPort.getreply(MyProc2:{ - , 5}) from MPeer; // Accepts a reply of MyProc2 from MyPeer
EXAMPLE 2: Getreply with storing inout/out parameters and return values in variables
MyPort.getreply(M/Procl:{?, ?} value ?) -> value My/RetVal ue paran({MPar 1, MyPar 2) ;

/] The returned value is assigned to variable M/RetVal ue and the val ue
/1 of the two out or inout paraneters are assigned to the variables M/Parl and MyPar 2.

ETSI

215 ETSI ES 201 873-1 V4.7.1 (2015-06)

M/Port.getrepl y(MProcl: {?, ?} value ?) -> value M/RetValue paran{ - , M/Par2) sender M/Sender;
/1 The value of the first paranmeter is not considered for the further test execution and
/1 the address of the sender conponent is retrieved and stored in the variable M/Sender.

/1 The follow ng exanpl es describe sone possibilities to assign out and inout paraneter val ues
/l to variables. The followi ng signature is assuned for the procedure which has been called

signature MyProc2(in integer A integer B, integer C, out integer D, inout integer E);
M/Port. getrepl y(ATenpl ate) -> paran{ - , - , - , M/VarQutl, MVarlnoutl);

MyPort. getrepl y(ATenpl ate) -> paran(M/VarQut 1: =D, MyVar Qut 2: =E) ;
MyPort.getreply(MProc2:{ - , - , - , 3, ?}) -> paran{M/Varl nout 1: =E);

/1 The followi ng exanpl e denpnstrates the use of encoded paraneters:

signature MyProc3(out integer paranflype, out octetstring encodedParam ;

tenplate integer mint := ?;

\./.ér i nteger v_nyVarX;

MyPort. getrepl y(MyProc3: {1, decmatch mint}) -> param (v_nyVarX : = @ecoded encodedParan;
/'l The paraneters encodedParamis decoded into an integer and assigned to v_nyVarX

EXAMPLE 3: Get any reply
M/Port . getreply; /1 Renoves the top reply from MyPort.
M/Port.getreply from MyPeer; /1 Renoves the top reply received from M/Peer from M/Port.

M/Port.getreply -> sender MySenderVar; // Renoves the top reply from M/Port and retrieves the
/1 address of the sender entity

EXAMPLE 4: Get a reply on any port
any port.getreply(Mproc:?)
EXAMPLE 5: Get a reply on any port from port array
type port MyPort procedure { inout MyProc }
type conponent MyConponent {
port MyPort p[10][10];
var integer i[2];
any fromp.getreply(M/Proc:?) -> @ndex value i;

/] Cetting a reply of the type M/Proc on any port of the port array p and
/] storing the index of the port on which the matching was successful first

22.3.5 The Raise operation

Exceptions are raised with the r ai Se operation.

Syntactical Structure

Port "." raise "(" Signature "," Tenpl atelnstance ")"
[to Address]

NOTE 1: Address may be an AddressRef, a list of AddressRef-s or "all component".
Semantic Description
The r ai se operation is used to raise an exception.

NOTE 2: The relation between an accepted call and a r ai Se operation cannot always be checked statically. For
testing it is allowed to specify a r ai se operation without an associated get cal | operation.

The value part of the r ai se operation consists of the signature reference followed by the exception value.

Exceptions are specified as types. Therefore the exception value may either be derived from a template or be the value
resulting from an expression (which of course can be an explicit value). The optional type field in the value
specification to the r ai se operation shall be used in cases where it is necessary to avoid any ambiguity of the type of
the value being sent.

ETSI

216 ETSI ES 201 873-1 V4.7.1 (2015-06)

Exceptions to one or more cal | operations may be sent to one, several or all peer entities connected to the addressed
port. This can be specified in the same manner as described in clause 22.2.1. This means, the argument of the t 0 clause
of arai se operation is for unicast exceptions the address of one receiving entity, for multicast exceptions a list of
addresses of a set of receivers and for broadcast exceptions the al | conmponent keywords.

In case of one-to-one connections, the t 0 clause may be omitted, because the receiving entity is uniquely identified by
the system structure.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:

a) An exception shall only be raised at a procedure-based port. An exception is a reaction to an accepted
procedure call the result of which leads to an exceptional event.

b) The type of the exception shall be specified in the signature of the called procedure. The type definition of the
port shall include in its list of accepted procedure calls the name of the procedure to which the exception
belongs.

c¢) At o clause shall be present in case of one-to-many connections.

d) AddressRef shall be of type addr ess, conponent or of the type provided in the address declaration of the
port type of the port instance referenced in the r ai se operation. No AddressRef shall contain the special
value nul | at the time of the operation.

e) Applyingar ai se operation to an unmapped or disconnected port shall cause a test case error.

Examples
MyPort.rai se(M/Si gnature, MyVariable + YourVariable - 2);
/'l Raises an exception with a value which is the result of the arithnetic expression
/1 at MyPort
MyPort . rai se(M/Proc, integer:5}); /'l Raises an exception with the integer value 5 for M/Proc
M/Port.raise(MSignature, "My string") to MyPartner;
/] Raises an exception with the value "My string" at MyPort for M/Signature and
// send it to MyPartner
M/Port.raise(MSignature, "My string") to (M/PartnerOne, M/PartnerTwo);
/] Raises an exception with the value "My string" at MyPort and sends it to MyPartnerOne and
/1 MyPartnerTwo (i.e. multicast communication)
M/Port.raise(MSignature, "My string") to all conponent;

/] Raises an exception with the value "My string" at M/Port for MySignature and sends it
// to all entites connected to MyPort (i.e. broadcast communication)

22.3.6 The Catch operation

The cat ch operation is used to catch exceptions.

Syntactical Structure

(Port | any port | any fromPortArrayRef) "." catch

["(" (Signature "," Tenplatelnstance) | Ti meoutKeyword ")"]
[from Address]

["->" [value (Variabl eRef |

("(" { VariableRef [":=" [@ecoded ["(" Expression ")"]]
Fi el dO TypeReference 1[","] } ")")

]
[sender Vari abl eRef]
[@ndex val ue Variabl eRef]]

NOTE: Address may be an AddressRef, a list of AddressRef-s or "any component".

ETSI

217 ETSI ES 201 873-1 V4.7.1 (2015-06)

Semantic Description

The cat ch operation is used to catch exceptions raised by a test component or the SUT as a reaction to a procedure
call. Exceptions are specified as types and thus, can be treated like messages, e.g. templates can be used to distinguish
between different values of the same exception type.

The cat ch operation removes the top exception from the associated incoming port queue if, and only if, that top
exception satisfies all the matching criteria associated with the cat ch operation.

A cat ch operation may be restricted to a certain communication partner in case of one-to-many connections. This
restriction shall be denoted by using the f r omkeyword.

The (optional) redirection part of the cat ch operation comprises of storing the exception value and/or one or more
parts of it and the retrieval of the address of the calling component. The keyword val ue is used to retrieve the value of
an exception and/or the parts of it and the keyword sender is used when it is required to retrieve the address of the
sender.

When assigning individual fields of an exception, encoded payload fields can be decoded prior to assignment using the
@ecoded modifier. In this case, the referenced field on the right hand sided of the assignment shall be one of the
bitstring,hexstring,octetstring,charstringoruniversal charstring types.Itshall be
decoded into a value of the same type as the variable on the left hand side of the assignment. Failure of this decoding
shall cause a test case error. In case the referenced field is of the uni ver sal char st ri ng type, the @ecoded
clause can contain an optional parameter defining the encoding format. The parameter shall be of the char stri ng
type and it shall contain one of the strings allowed for the decval ue_uni char function (specified in clause C.5.4).
Any other value shall cause an error. In case the referenced field is not a uni ver sal charstring, the optional
parameter shall not be present.

The cat ch operation may be part of the response and exception handling part of a cal | operation or be used to
determine an alternative in an al t statement. If the cat ch operation is used in the accepting part of a cal | operation,
the information about port name and signature reference to indicate the procedure that raised the exception is redundant,
because this information follows from the cal | operation. However, for readability reasons (e.g. in case of complex
cal | statements) this information shall be repeated.

The Timeout exception

There is one special t i meout exception that can be caught by the cat ch operation. The t i meout exception is an
emergency exit for cases where a called procedure neither replies nor raises an exception within a predetermined time
(see clause 22.3.1).

Catch any exception

A cat ch operation with no argument list allows any valid exception to be caught. The most general case is without
using the f r omkeyword. CatchAnyException will also catch the t i meout exception.

Catch on any port
To cat ch an exception on any port use the any keyword.
Catch on any port from a port array

To cat ch an exception on any port from a specific port array, indices use the any from Port ArrayRef syntax
where PortArrayRef shall be a reference to a port array identifier. It is also possible to store the index of a port in a
single-dimensional port array at which the operation was successful to a variable of type integer or, in case of
multi-dimensional port arrays the index of the successful port to an integer array or record of integer variable. When
checking the port array for matching exceptions, the port indices to be checked are iterated from lowest to highest. If the
port array is multi-dimensional, then the ports are iterated over from innermost to outermost array dimension from
lowest to highest index for each dimension, e.g. [0][0], [0][1], [1][0], [1][1]. The first port which matches all the criteria
will cause the operation to be successful even if other ports in the array would also meet the criteria.

The catch on any port from a port array operation can not be used to catch a call timeout.

ETSI

218 ETSI ES 201 873-1 V4.7.1 (2015-06)

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:

a) The cat ch operation shall only be used at procedure-based ports. The type of the caught exception shall be
specified in the signature of the procedure that raised the exception.

b) No binding of the incoming values to the terms of the expression or to the template shall occur. The
assignment of the exception values to variables shall be made in the assignment part of the cat ch operation.

¢) Catchingti meout exceptions shall be restricted to the exception handling part of a call. No further matching
criteria (including a f r ompart) and no assignment part is allowed for a cat ch operation that handles a
ti meout exception.

d) Exception values accepted by catch any exception shall not be assigned to a variable, i.e. the value clause shall
not be present.

e) If CatchAnyException is used in the response and exception handling part of a cal | operation, it shall only
treat exceptions raised by the procedure invoked by the cal | operation.

f) AddressRef for retrieving the sending entity shall be of type addr ess, conponent or of the type provided
in the address declaration of the port type of the port instance referenced in the cat ch operation. No
AddressRef shall contain the special value nul | at the time of the operation.

g) The PortArrayRef shall be a reference to a completely initialized port array.

h) The index redirection shall only be used when the operation is used on an any from port array construct.

i) Ifthe index redirection is used for single-dimensional arrays, the type of the integer variable shall allow
storing the highest index of the respective port array.

j) If the index redirection is used for multi-dimensional arrays, the size of the integer array or record of integer
type shall exactly be the same as the dimension of the respective port array, and the its type shall allow storing
the highest index (from all dimensions) of the port array.

k) Ifavariable referenced in the val ue, sender or @ ndex clause is a lazy or fuzzy variable, the expression
assigned to this variable is equal to the result produced by the cat ch operation, i.e. later evaluation of the
lazy or fuzzy variable does not lead to repeated invocation of the cat ch operation.

1) Ifthe cat ch operation contains both f r omand sender clause, the variable or parameter referenced in the
sender clause shall be type compatible with the template in the f r omclause.

m) When assigning implicitly decoded exception fields (by using the @decoded modifier) in cases where the
value or template to be matched uses the MatchDecodedContent (decmatch) matching for the parameter to be
stored, the type of the template in the MatchDecodedContent matching shall be type-compatible to the type of
the variable the decoded field is stored into.

Examples

EXAMPLE 1: Basic catch

MyPort . catch(M/Proc, integer: MyVar); /] Catches an integer exception of value

/'l MyVar raised by MyProc at port MyPort.
MyPort . catch(M/Proc, MyVar); /1 I's an alternative to the previous exanple.
M/Port . catch(M/Proc, A<B); /] Catches a bool ean exception

MyPort. catch(M/Proc, MyType: {5 MVar}); // In-line tenplate definition of an exception val ue.

MyPort . catch(M/Proc, charstring:"Hello")from M/Peer; /'l Catches "Hello" exception from MyPeer

ETSI

219 ETSI ES 201 873-1 V4.7.1 (2015-06)

EXAMPLE 2: Catch with storing value and/or sender in variables

MyPort . catch(M/Proc, MyType:?) from MyPartner -> value MyVar;
/] Catches an exception from M/Partner and assigns its value to MyVar.

M/Port . catch(M/Proc, MyTenpl ate(5)) -> value MyVar Two sender MyPeer;
/Il Catches an exception, assigns its value to M/VarTwo and retrieves the
/1 address of the sender.

MyPort . catch(M/Proc, MyTenpl ate(5)) -> value (M/VarThree:= f1)
sender MyPeer;

/] Catches an exception, assigns the value of its field f1 to MyVarThree and retrieves the
/1 address of the sender.

/1 Handling encoded exception payl oad:

type MyException record {

}

type ConmonException record {
i nt eger exceptionl d,
octetstring payl oad

}

signature S() exception (ComonException);

var MyException v_nyVar;

MyPort.catch (S, CommonException:{exceptionld := 25, payload := decmatch MyException:? })

-> value (v_nyVar := @ecoded payl oad);
/'l The encoded payl oad field of the caught exception is decoded and matched with m excTenpl at e;
/1 if the matching is successful the decoded payload is stored in v_nyVar.

EXAMPLE 3: The Timeout exception

MyPort.call (M/Proc: {5, MyVar}, 20E-3) {
[T MyPort.getreply(MProc:{?, ?}) { }

[T MyPort.catch(tineout) { /1 tinmeout exception after 20ns
setverdict(fail);
st op;
}

}

EXAMPLE 4: Catch any exception
MyPort . cat ch;
MyPort.catch from MyPart ner;

M/Port.catch -> sender MySender Var;

EXAMPLE 5: Catch on any port

any port.catch;

EXAMPLE 6: Catch on any port from port array

type port MyPort procedure { inout MyProc }
type conponent MyConponent {
port MyPort p[10][10];
}
var integer i[2];
any fromp.catch(M/Proc, MyType:?) -> @ndex val ue i;
/1 Catching an incoming exception of type MyType on any port in the port array p and
/] storing the index of the port on which the matching was successful first

ETSI

220 ETSI ES 201 873-1 V4.7.1 (2015-06)

22.4 The Check operation

The check operation allows reading the top element of a message-based or procedure-based incoming port queue.

Syntactical Structure

(Port | any port | any from PortArrayRef) "." check

[
(PortReceiveOQp | PortGetCall Op | PortGetReplyQp | PortCatchQp) |

([from Address]
["->" [sender Variabl eRef]
[@ndex value VariableRef]])
")

NOTE 1: Address may be an AddressRef, a list of AddressRef-s or "any component".
Semantic Description

The check operation is a generic operation that allows read access to the top element of message-based and
procedure-based incoming port queues without removing the top element from the queue. The check operation has to
handle values of a certain type at message-based ports and to distinguish between calls to be accepted, exceptions to be
caught and replies from previous calls at procedure-based ports.

The receiving operations r ecei ve, get cal | , get r epl y and cat ch together with their matching and value, sender
or parameter storing parts, are used by the check operation to define the conditions that have to be checked and the
information to be optionally extracted.

It is the top element of an incoming port queue that shall be checked (it is not possible to look into the queue). If the
queue is empty the check operation fails. If the queue is not empty, a copy of the top element is taken and the
receiving operation specified in the check operation is performed on the copy. The check operation fails if the
receiving operation fails i.e. the matching criteria are not fulfilled. In this case the copy of the top element of the queue
is discarded and test execution continues in the normal manner, i.e. the statement or alternative next to the check
operation is evaluated. The check operation is successful if the receiving operation is successful. In this case, the
value, sender or parameter storing parts of the receiving operation, if any, are executed, i.e. the message and/or a part of
it, the sender's address or component reference, the parameter(s) of the call or reply or the value of the exception are
stored in the associated variables.

If check is used as a stand-alone statement, it is considered to be a shorthand for an al t statement with the check
operation as the only alternative.

Check any operation

A check operation with no argument list allows checking whether something waits for processing in an incoming port
queue. The check any operation allows to distinguish between different senders (in case of one-to-many connections)
by using a f r omclause and to retrieve the sender by using a shorthand assignment part with a sender clause.

Check on any port
To check on any port, use the any port keywords.
Check on any port from a port array

To check on any port from a specific port array, indicesindices use the any from Port ArrayRef syntax where
PortArrayRef shall be a reference to a port array identifier. It is also possible to store the index of a port in a
single-dimensional port array at which the operation was successful to a variable of type integer or, in case of
multi-dimensional port arrays the index of the successful port to an integer array or record of integer variable. When
checking the port array for a matching message, call, reply or exception, the port indices to be checked are iterated from
lowest to highest. If the port array is multi-dimensional, then the ports are iterated over from innermost to outermost
array dimension from lowest to highest index for each dimension, e.g. [0][0], [0][1], [1][0], [1][1]. The first port which
matches all the criteria will cause the operation to be successful even if other ports in the array would also meet the
criteria.

ETSI

221 ETSI ES 201 873-1 V4.7.1 (2015-06)

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:

a) Using the check operation in a wrong manner, e.g. check for an exception at a message-based port shall
cause a test case error.

b) AddressRef for retrieving the sending entity shall be of type addr ess, conponent or of the type provided
in the address declaration of the port type of the port instance referenced in the check operation. No
AddressRef shall contain the special value nul | at the time of the operation.

¢) The PortArrayRef shall be a reference to a completely initialized port array.
d) The index redirection shall only be used when the operation is used on an any from port array construct.

e) Ifthe index redirection is used for single-dimensional arrays, the type of the integer variable shall allow
storing the highest index of the respective port array.

f) If the index redirection is used for multi-dimensional arrays, the size of the integer array or record of integer
type shall exactly be the same as the dimension of the respective port array, and the its type shall allow storing
the highest index (from all dimensions) of the port array.

g) Ifavariable referenced in the sender or @ ndex clause is a lazy or fuzzy variable, the expression assigned
to this variable is equal to the result produced by the check operation, i.e. later evaluation of the lazy or fuzzy
variable does not lead to repeated invocation of the check operation.

h) Ifthe check operation contains both f r omand sender clause, the variable or parameter referenced in the
sender clause shall be type compatible with the template in the f r omclause.

NOTE 2: In most cases the correct usage of the check operation can be checked statically, i.e. before/during
compilation.

Examples

EXAMPLE 1: Basic check
M/Port 1. check(receive(5)); [/ Checks for an integer nessage of value 5.

MyPort 1. check(recei ve(charstring:?) -> value MyChar Var);
/1 Checks for a charstring nessage and stores the nessage if the nessage type is charstring

MyPort 2. check(getcal I (MProc: {5, MyVvar}) from M/Partner);
/1 Checks for a call of MyProc at port MyPort2 from MyPartnner

MyPort 2. check(getrepl y(MProc: {5, MyVar} value 20));
/1 Checks for a reply fromprocedure M/Proc at MyPort2 where the returned value is 20 and
// the values of the two out or inout paraneters are 5 and the value of MVar.
MyPor t 2. check(catch(M/Proc, MyTenpl ate(5, MVar)));
MyPort 2. check(getrepl y(MProcl: {?, My/Var} value *) -> value M/ReturnVal ue paranm{MParl,-));
MyPort . check(getcal | (MyProc: {5, My/Var}) from MyPartner -> param (M/Par1Var, M/Par2Var));
MyPort. check(getcal | (MProc: {5, MyVar}) -> sender MySender Var);

EXAMPLE 2: Check any operation
MyPort . check;

MyPort . check(from MyPart ner);

MyPort . check(-> sender MySender Var);

EXAMPLE 3: Check on any port

any port.check;

ETSI

222 ETSI ES 201 873-1 V4.7.1 (2015-06)

EXAMPLE 4: Check on any port from port array

type port MyPort procedure { inout MyProc }
type conponent MyConponent {
port MyPort p[10][10];
}
var integer i[2];
any from p.check(catch(M/Proc, MyType:?)) -> @ndex value i;
/1 Checking for an incomi ng exception of the type M/Type on any port of the port array p and
/1 storing the index of the port on which the matching was successful first

22.5 Controlling communication ports

TTCN-3 operations for controlling message-based and procedure-based ports are presented in table 24.

Table 24: Overview of TTCN-3 port operations

Port operations
Statement Associated keyword or symbol
Clear port clear
Start port start
Stop port stop
Halt port halt
Check the state of a port checkstate

22.5.1 The Clear port operation
The cl ear port operation empties incoming port queues.

Syntactical Structure

(Port | (all port)) "." clear
Semantic Description

The cl ear operation removes the contents of the incoming queue of the specified port or of all ports of the test
component performing the cl ear operation.

If a port queue is already empty then this operation shall have no action on that port.
Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15.

Examples

MyPort. cl ear; /'l clears port MyPort

22.5.2 The Start port operation

The st art operation enables sending and receiving operations on the port(s).

Syntactical Structure

(Port | (all port)) "." start
Semantic Description

If a port is defined as allowing receiving operations such as r ecei ve, get cal | , etc., the st art operation clears
the incoming queue of the named port and starts listening for traffic over the port. If the port is defined to allow sending
operations then the operations such as send, cal | , r ai se, etc., are also allowed to be performed at that port.

By default, all ports of a component shall be started implicitly when a component is created. The start port operation
will cause unstopped ports to be restarted by removing all messages waiting in the incoming queue.

ETSI

223 ETSI ES 201 873-1 V4.7.1 (2015-06)

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15.

Examples

MyPort.start; /] starts MyPort

22.5.3 The Stop port operation

The st op operation disables sending and disallow receiving operations to match at the port(s).

Syntactical Structure

(Port | (all port)) "." stop
Semantic Description

If a port is defined as allowing receiving operations such as r ecei ve and get cal | , the St op operation causes
listening at the named port to cease. If the port is defined to allow sending operations then St op port disallows the
operations such as send, cal | , r ai se, etc., to be performed.

To cease listening at the port means that all receiving operations defined before the stop operation shall be completely
performed before the working of the port is suspended.

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15.

Examples

M/Port.receive (MTenpl atel) -> val ue RecPDY,
/1 the received value is decoded, matched agai nst
/1 MyTenpl atel and the matching value is stored
/1 in the variabl e RecPDU
MyPort . st op; /1 No receiving operation defined follow ng the stop
/] operation is executed (unless the port is restarted
/1 by a subsequent start operation)
M/Port.receive (M/Tenpl ate2); /] This operation does not nmatch and will block (assuning
/1 that no default is activated)

22.5.4 The Halt port operation

The hal t operation is comparable to the St op operation, but allows entries being already in the queue to be processed
with receiving operations.

Syntactical Structure

(Port | (all port)) "." halt
Semantic Description

If a port allows receiving operations such as r ecei ve, tri gger and get cal |, the hal t operation disallows
receiving operations to succeed for messages and procedure call elements that enter the port queue after performing the
hal t operation at that port. Messages and procedure call elements that were already in the queue before the hal t
operation can still be processed with receiving operations. If the port allows sending operations then hal t port
immediately disallows sending operations such as send, cal | , r ai se, etc. to be performed. Subsequent halt
operations have no effect on the state of the port or its queue.

NOTE 1: The port hal t operation virtually puts a marker after the last entry in the queue received when the
operation is performed. Entries ahead of the marker can be processed normally. After all entries in the
queue ahead of the marker have been processed, the state of the port is equivalent to the stopped state.

NOTE 2: Ifa port St op operation is performed on a halted port before all entries in the queue ahead of the marker
have been processed, further receive operations are disallowed immediately (i.e. the marker is virtually
moved to the top of the queue).

ETSI

224 ETSI ES 201 873-1 V4.7.1 (2015-06)
NOTE 3: A portstart operation on a halted port clears all entries in the queue irrespectively if they arrived
before or after performing the port hal t operation. It also removes the marker.

NOTE 4: A portcl ear operation on a halted port clears all entries in the queue irrespectively if they arrived
before or after performing the port hal t operation. It also virtually puts the marker at the top of the
queue.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15.

Examples
MyPort . hal t; /1 No sending allowed on Myport fromthis nonent on;
/'l processing of nessages in the queue still possible.
MyPort.receive (MyTenpl atel); /1 1f a nessage was already in the queue before the halt

/1 operation and it natches MyTenplatel, it is processed,
/1 otherw se the receive operation bl ocks.

22.5.5 The Checkstate port operation
The checkst at e port operation allows to check the state of a port.

Syntactical Structure

(Port | (all port) | (any port)) "." checkstate "(" SingleExpression ")"
Semantic Description

The checkst at e port operation allows to examine the state of a port. If a port is in the state specified by the
parameter, the checkst at e operation returns the Boolean value t r ue. If the port is not in the specified state, the
checkst at e operation returns the Boolean value f al se. Calling the checkst at e operation with an invalid
argument leads to an error.

The checkstate operation allows to check for different dimensions of a port state. It allows to check if a port is Started,
Halted or Stopped, but also if a port is Connected, Mapped or Linked (i.e. Connected or Mapped).

NOTE 1: The states Started, Halted and Stopped refer to the port states defined in the clauses F.3.1 and F.3.2. The
states Connected, Mapped and Linked are related to the application of the connection operations
connect, di sconnect, map and unnmap as defined in clause 21.1.

The checkst at e port operation can be used withal | port and any port . Using the checkst at e operation
with any port allows to test if at least one port of a test component is in the specified state. Using the checkst at e
operation with al | port allows to check if all ports of a component are in the specified state.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:

a) The parameter of the checkst at e operation shall be of type char st ri ng and shall have one of the
following values:

a) "Started"
b) "Halted"
c) "Stopped"

d) "Connected"
e) "Mapped"

f) "Linked"

ETSI

225 ETSI ES 201 873-1 V4.7.1 (2015-06)

NOTE 2: Clause E.2.2.4 includes the type definition obj St at e and the constant definitions STARTED, HALTED,
STOPPED, CONNECTED, MAPPED, and LI NKED. It is recommended to use the checkst at e operation
in combination with this type and these constants to ease the checking of correct usage and to improve the
readability of test specs.

b) Calling the checkst at e operation with a char st r i ng parameter not listed in a) shall lead to an error.

Examples
type conponent MyMICType // Conponent type definition for an MIC

port MyPort Type PCOL, PCO2

type conponent MyTest Systeminterface // Conponent type definition for a test systeminterface
port MyPort Type PCO3, PCO4, PCOx;
/1 Test case definition
testcase MyTestcasel () runs on M/MICType system MyTest System nterface {
var bool ean nyPort St ate;
nyPortState := all port.checkstate("Started"); // checkstate returns true, because all
/] ports of a conponent are started after

/1 conmponent creation and start

nyPortState : = any port.checkstate("Linked"); /'l checkstate returns false, no port is
/] either connected nor napped

map(ntc: PCOL, system PCO3);

nyPort State : = PCOL. checkstate("Li nked"); /'l checkstate returns true, PCOL is napped
myPort State : = PCOL. checkst at e(" Mapped") ; /'l checkstate returns true, PCOL is mapped
nyPort State : = PCOL. checkst at e(" Connected"); /'l checkstate returns false, PCOL is napped

/1 and not connected
myPort State := any port.checkstate("Mpped"); /'l checkstate returns true, PCOL is mapped
all port.stop;

myPortState := all port.checkstate("Started"); // checkstate returns false, all ports
/] are stopped

nmyPort State : = PCOL. checkst at e(" St opped") ; Il checkstate returns true, PCOL is stopped

/1 further testcase behavi our
I

22.6 Use of any and all with ports

The keywords any and al | may be used with configuration and communication operations as indicated in table 25.

Table 25: Any and All with ports

Operation Allowed Example
any all
receive, trigger, getcall, getreply, catch, check) |yes any port.receive
connect / map
di sconnect / unmap yes unmap(self : all port)
start, stop, clear, halt yes all port.start
checkstate yes yes any port.checkstate("Started")
al | port.checkstate("Connected")

ETSI

226 ETSI ES 201 873-1 V4.7.1 (2015-06)

NOTE: Ports are owned by test components and instantiated when a component is created. The keywords any
port andal I port address all ports owned by a test component and not only the ports known in the
scope of the function or altstep that is executed on the component.

23 Timer operations

TTCN-3 supports a number of timer operations as given in table 26. These operations may be used in test cases,
functions, altsteps and module control.

Table 26: Overview of TTCN-3 timer operations

Timer operations
Statement Associated keyword or symbol
Start timer start
Stop timer stop
Read elapsed time read
Check if timer running running
Timeout event timeout

23.1 The timer mechanism

It is assumed that each test component and the module control maintain their own running-timerslist and timeout-list,
i.e. a list of all timers that are actually running and a list of all timers that have timed out. The timeout-lists are part of
the snapshots that are taken when a test case is executed. The running-timers list and timeout-list of a component or
module control are updated if a timer of the component or module control is started, is stopped, times out or the
component or module control executes at i meout operation.

NOTE 1: The running-timers list and the timeout-list are only a conceptual lists and do not restrict the
implementation of timers. Other data structures like a set, where the access to timeout events is not
restricted by, e.g. the order in which the timeout events have happened, may also be used.

NOTE 2: Conceptually, each test component and module control maintain one running-timers list and one timeout-
list only. However, within a given scope unit only timers known in the scope unit can be accessed
individually, i.e. timers that are declared in the scope unit, passed in as parameters to the scope unit or
known via a runs-on clause. In some special cases (e.g. for re-establishing a test component during a test
run), it can be necessary to stop timers local to other scope units or to check if timers local to other scope
units are running or have already timed out. This can be done by using the keywords al | and any in
combination with the timer operations St op, t i meout and r unni ng. Allowed combinations are
defined in clause 23.7.

When a timer expires, the timer becomes immediately inactive. A timeout event is placed in the timeout-list and the
timer is removed from the running-timer list of the test component or module control for which the timer has been
declared. Only one entry for any particular timer may appear in the timeout-list and running-timer list of the test
component or module control for which the timer has been declared.

All running timers shall automatically be cancelled when a test component is explicitly or implicitly stopped.

23.2 The Start timer operation

The st art timer operation is used to indicate that a timer shall start running.

Syntactical Structure

((Timerldentifier | TimerParldentifier) { "[" SingleExpression "]" })
" start ["(" TimerValue ")"]

ETSI

227 ETSI ES 201 873-1 V4.7.1 (2015-06)

Semantic Description
When a timer is started, its name is added to the list of running timers (for the given scope unit).

The optional timer value parameter shall be used if no default duration is given, or if it is desired to override the default
value specified in the timer declaration. When a timer duration is overridden, the new value applies only to the current
instance of the timer, any later St ar t operations for this timer, which do not specify a duration, shall use the default

duration.

Starting a timer with the timer value 0.0 means that the timer times out immediately. Starting a timer with a negative
timer value, e.g. the timer value is the result of an expression, or without a specified timer value shall cause a runtime
error.

The timer clock runs from the float value zero (0.0) up to maximum stated by the duration parameter.

The st art operation may be applied to a running timer, in which case the timer is stopped and re-started. Any entry in
a timeout-list for this timer shall be removed from the timeout-list.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:

a) Timer value shall be a non-negative numerical f | oat number (i.e. the value shall be greater or equal 0.0,
infinity and not_a number are disallowed).

Examples

M/Tinerl.start; /'l MyTinmerl is started with the default duration
M/Tiner2.start(20E-3); // MTiner2 is started with a duration of 20 ns

/1 Elenents of timer arrays may also be started in a |loop, for exanple
timer t_Mytiner [5];
var float v_tinerValues [5];

for (var integer i := 0; i<=4; i:=i+1)
{ v_tinmerValues [i] := 1.0}

for (var integer i := 0; i<=4; i:=i+1)
{t_Mytiner [i].start (v_tinerValues [i])}

23.3 The Stop timer operation

The St op operation is used to stop a running timer.

Syntactical Structure

(((Timerldentifier | TimerParldentifier) { "[" SingleExpression "]" }) |
all timer)
' stop
Semantic Description

A st op operation removes a running timer from the list of running timers. A stopped timer becomes inactive and its
elapsed time is set to the float value zero (0.0).

Stopping an inactive timer is a valid operation, although it does not have any effect. Stopping an expired timer causes
the entry for this timer in the timeout-list to be removed.

The al | keyword may be used to stop all timers that have been started on a component or module control.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15.

ETSI

228 ETSI ES 201 873-1 V4.7.1 (2015-06)

Examples
M/Ti ner 1. st op; /] stops MyTinerl
all tinmer.stop; /1 stops all running tiners

23.4 The Read timer operation

The r ead operation is used to retrieve the time that has elapsed since the specified timer was started.

Syntactical Structure

((Timerldentifier | TimerParldentifier) { "[" SingleExpression "]" })
"." read

Semantic Description

The r ead operation returns the time that has elapsed since the specified timer was started. The returned value shall be
of type f | oat .

Applying the r ead operation on an inactive timer, i.e. on a timer not listed on the running-timer list, will return the
float value zero (0.0).

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15.

Examples

var float Myvar;
MyVar := MyTinerl.read; // assign to MyVar the tine that has el apsed since MyTinerl was started

23.5 The Running timer operation

The r unni ng timer operation is used to check whether a timer is in the running-timer list.

Syntactical Structure

(((Tinerldentifier | TimerParldentifier) { "[" SingleExpression "]" }) |
any timer |
any from Ti mer ArrayRef)
" runni ng
["->" @ndex value Variabl eRef]

Semantic Description

The r unni ng timer operation is used to check whether a specific timer visible in the given scope unit is listed on the
running-timer list or not (i.e. that it has been started and has neither timed out nor been stopped). The operation returns
the value t r ue if the timer is listed on the list, f al se otherwise.

The any keyword may be used to check if any timer started on a component or module control is running.

When the any from Ti mer Ar r ayRef notation is used, where TimerArrayRef shall be a timer array identifier, the
timers from the referenced array are iterated over and their states are checked individually, from innermost to outermost
dimension from lowest to highest index for each dimension. The first timer to be found in the running state causes the
operation returning with the t r ue value. If no running timer is found in the array, the operation returns with the

f al se value. The index of the first timer found running can optionally be stored in an integer variable for a
single-dimensional array, or to an integer array or record of integer variable for multi-dimensional timer arrays.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:

a) TimerArrayRef shall be a reference to a completely initialized timer array.

b) The index redirection shall only be used for any from timer array running operations.

ETSI

229 ETSI ES 201 873-1 V4.7.1 (2015-06)

c) Ifthe index redirection is used for single-dimensional timer arrays, the type of the integer variable shall allow
storing the highest index of the respective timer array.

d) Ifthe index redirection is used for multi-dimensional timer arrays, the size of the integer array or record of
integer type shall exactly be the same as the dimension of the respective timer array, and its type shall allow
storing the highest index (from all dimensions) of the timer array.

Examples

EXAMPLE 1: Checking if a specific timer is running

if (MTinmerl.running) { ...}

EXAMPLE 2: Checking if an arbitrary timer is running

if (any tinmer.running) { ...}

EXAMPLE 3: Checking if an arbitrary timer from a timer array is running

timer MyTinerArray[2][2];

var integer i[2];

if (any from MyTinerArray.running -> @ndex value i;) { ...}
/1 checks if any tiner fromarray is running

/1 assigns index of nmatched tiner to i

23.6 The Timeout operation

The t i meout operation allows to check the expiration of timers.

Syntactical Structure

(((Tinerldentifier | TimerParldentifier) { "[" SingleExpression "]" }) |
any timer |
any from Ti mer ArrayRef)
" timeout
["->" @ndex val ue Vari abl eRef]

Semantic Description

The t i meout operation allows to check the expiration of a specific timer in the scope unit of a test component or
module control in which the timeout operation has been called or of any timer that has been started on a test component
or module control before entering the scope in which the t i meout operation has been called.

When at i neout operation is processed, if a timer name is indicated, the timeout-list is searched according to the
TTCN-3 scope rules. If there is a timeout event matching the timer name, that event is removed from the timeout-list,
and the t i meout operation succeeds.

The t i meout can be used to determine an alternative in an al t statement or as stand-alone statement in a behaviour
description. In the latter case at i meout operation is considered to be shorthand for an al t statement with the
ti meout operation as the only alternative.

The any keyword used with the t i meout operation succeeds if the timeout-list is not empty. In this case a randomly
chosen timeout event is removed from the timeout-list.

When the any from Ti mer Ar r ayRef notation is used, where TimerArrayRef shall be a timer array identifier, the
timers from the referenced array are iterated over and individually checked for timeout from innermost to outermost
dimension from lowest to highest index for each dimension. The first timer to be found in the timeout-list causes that
timer to be removed from the list and the timeout operation succeeds. The index of the matched timer can be optionally
stored in an integer variable for single-dimensional arrays or to an integer array or record of integer variable for mult--
dimensional timer arrays.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:

a) Theti meout shall not be used in a bool ean expression.

ETSI

230 ETSI ES 201 873-1 V4.7.1 (2015-06)

b) TimerArrayRef shall be a reference to a completely initialized timer array.
¢) The index redirection shall only be used for any from timer array timeout operations.

d) If the index redirection is used for single-dimensional timer arrays, the type of the integer variable shall allow
storing the highest index of the respective timer array.

e) Ifthe index redirection is used for multi-dimensional timer arrays, the size of the integer array or record of
integer type shall exactly be the same as the dimension of the respective timer array, and its type shall allow
storing the highest index (from all dimensions) of the timer array.

Examples
EXAMPLE 1: Timeout of a specific timer
M/ Ti mer 1. ti neout ; /1 checks for the tineout of the previously started timer MTinerl
EXAMPLE 2: Timeout of an arbitrary timer
any timer.timeout; // checks for the timeout of any previously started tiner

EXAMPLE 3: Timeout of a timer from a timer array
timer MyTinerArray[2][2];
var integer i[2];
any from MyTinmerArray.timeout -> @ndex val ue i;

/'l checks for the tineout of any timer from array
/1 assigns index of nmatched tiner to i

23.7 Summary of use of any and all with timers

The keywords any and al | may be used with timer operations as indicated in table 27.

Table 27: Any and All with Timers

Operation Allowed Example
any all
start
stop yes all timer.stop
read
running yes if (any timer.running) {...}
timeout yes any timer.timeout

24 Test verdict operations

Verdict operations given in table 28 allow to set and retrieve verdicts. These operations shall only be used in test cases,
altsteps and functions.

Table 28: Overview of TTCN-3 test verdict operations

Test verdict operations
Statement Associated keyword or symbol
Set local verdict setverdict
Get local verdict getverdict

24.1 The Verdict mechanism

Each test component of the active configuration shall maintain its own local verdict. The local verdict is an object
which is created for each test component at the time of its creation. It is used to track the individual verdict in each test
component (i.e. in the MTC and in each and every PTC).

ETSI

231 ETSI ES 201 873-1 V4.7.1 (2015-06)

Additionally, there is a global test case verdict instantiated and handled by the test system that is updated when each test
component (i.e. the MTC and each and every PTC) terminates execution (see figure 14). This verdict is not accessible
to the get ver di ct and set ver di ct operations. The value of this verdict shall be returned by the test case when it
terminates execution. If the returned verdict is not explicitly saved in the control part (e.g. assigned to a variable) then it
is lost.

Verdict returned v :
by_thetes_tcase
when it terminates
MIC PTCL [PTCh [y

Figure 14: lllustration of the relationship between verdicts

NOTE 1: TTCN-3 does not specify the actual mechanisms that perform the updating of the local and test case
verdicts. These mechanisms are implementation dependent.

The verdict can have five different values: pass, fail ,i nconc, none and err or , i.e. the distinguished values of
the ver di ctt ype (see clause 6.1).

NOTE 2: i nconc means an inconclusive verdict.
When a test component is instantiated, its local verdict object is created and set to the value none.

When changing the value of the local verdict (i.e. using the set ver di ct operation) the effect of this change shall
follow the overwriting rules listed in table 29. The test case verdict is implicitly updated on the termination of a test
component. The effect of this implicit operation shall also follow the overwriting rules listed in table 29.

Table 29: Overwriting rules for the verdict

Current value of New verdict assignment value
Verdict pass inconc fail none
None pass inconc fail none
Pass pass inconc fail pass
Inconc inconc inconc fail inconc
Fail fail fail fail fail

The er r or verdict is special in that it is set by the test system to indicate that a test case (i.e. runtime) error has
occurred. It shall not be set by the set ver di ct operation and will not be returned by the getverdict operation. No
other verdict value can override an er r or verdict. This means that an er r or verdict can only be a result of an
execut e test case operation.

Together with the local test verdict, each test component shall also maintain an implicit char st r i ng variable to store
information about the reasons for assigning the verdict. The implicit char st ri ng variable shall have no effect on the
overwriting rules and on the calculation of the final test case verdict. On the termination of the test component, the local
verdict of the test component shall be logged together with the implicit char st r i ng variable. The implicit

char st ri ng variable cannot be retrieved and read by any TTCN-3 function, it only provides additional information
for logging.

24.2 The Setverdict operation

The local verdict is set with the set ver di ct operation.

Syntactical Structure

setverdict "(" SingleExpression { "," (FreeText | Tenplatelnstance) } ")"

ETSI

232 ETSI ES 201 873-1 V4.7.1 (2015-06)

Semantic Description

The value of the local verdict is changed with the set ver di ct operation. The effect of this change shall follow the
overwriting rules listed in table 29.

The optional parameters allow to provide information that explain the reasons for assigning the verdict. This
information is composed to a string and stored in an implicit char st r i ng variable. On termination of the test
component, the actual local verdict is logged together with the implicit char st r i ng variable. Since the optional
parameters can be seen as log information, the same rules and restrictions as for the parameters of the log statement
(clause 19.11) apply.

As the result of the setverdict operation, the implicit char st r i ng variable is overwritten whenever the local verdict
of a test component is overwritten. A set ver di ct operation with a verdict only that overwrites the current local
verdict, will also clear the implicit char st ri ng variable. This means previously stored information gets lost.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:

a) Thesetverdi ct operation shall only be used with the values pass, f ai | ,i nconc and none. It shall not
be used to assign the value error, this is set by the test system only to indicate runtime errors.

b) SingleExpression shall resolve to a value of type verdict.

¢) For FreeText and Templatelnstance, the same rules and restrictions apply as for the parameters of the | 0g
statement. Table 17 lists all language elements that can be used in a setverdict operation.

Examples
EXAMPLE 1:
setverdi ct (pass); /'l the local verdict is set to pass
éetverdict(fail); /1 until this line is executed, which will result in the val ue
/1 of the local verdict being overwitten to fail
/1 When the ptc terminates the test case verdict is set to fail
EXAMPLE 2:

var integer nyVar:= 1;

MyPort.receive(integer: MVar); [// Matches an integer value with the value of M/Var
// at port MyPort

setverdi ct(pass, "Value received: ", nyVar); // Provided the actual test component verdict is
/1 none: local verdict is set to pass, the inplicit
/1 charstring variable is set to "Value received: 5"

st op; /'l The test conponent terminates. The local test verdict and
[/ inplicit charstring variable are | ogged

24.3 The Getverdict operation

The value of the local verdict may be retrieved using the get ver di ct operation.

Syntactical Structure

getverdi ct
Semantic Description
The get ver di ct operation returns the actual value of the local verdict.
Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15.

ETSI

233 ETSI ES 201 873-1 V4.7.1 (2015-06)

Examples

M/Result := getverdict; // Were M/Result is a variable of type verdicttype

25 External actions

In some testing situations some interface(s) to the SUT may be missing or unknown a priori (e.g. management
interface) but it may be necessary that the SUT is stimulated to carry out certain actions (e.g. send a message to the test
system). Also certain actions may be required from the test executing personnel (e.g. to change the environmental
conditions of testing like the temperature, voltage of the power feeding, etc.).

The required action may be described as a string expression, i.e. the use of literal strings, string typed variables and
parameters, etc. and any concatenation thereof are allowed.

Syntactical Structure
action "(" { (FreeText | Expression) ["&'] } ")"
Semantic Description
External actions can be used in test cases, functions, altsteps and module control.

There is no specification of what is done to or by the SUT to trigger this action, only an informal description of the
required action itself.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:

a) Expression shall have the base type charstring or universal charstring.
Examples
var charstring nyString:=" now."

action("Send MyTenpl ate on | ower PCO'" & nyString); // Informal description of the
/] external action

26 Module control

Test cases are defined in the module definitions part while the module control part manages their execution. The
statements and operations that can be used in the module control are summarized in table 30.

Table 30: Overview of TTCN-3 statements and operations in module control

Statement Associated keyword or symbol

Assignments =

If-else if (..){..}else{..}

Select case select case (...) { case (...){...}
caseelse{...}}

For loop for (..){...}

While loop while (...) {...}

Do while loop do {...} while (...)

Label and Goto label / goto

Stop execution stop

Leaving a loop, alt or interleave break

Next iteration of a loop continue

Logging log

ETSI

234 ETSI ES 201 873-1 V4.7.1 (2015-06)

Statement Associated keyword or symbol
Alternative behaviour (see note) alt {...}
Re-evaluation of alternative behaviour |[repeat
(see note)
Interleaved behaviour (see note) interleave {...}
Activate a default (see note) activate
Deactivate a default (see note) deactivate
Start timer start
Stop timer stop
Read elapsed time read
Check if timer running running
Timeout event timeout
Stimulate an (SUT) action externally action
Execute test case execute
NOTE: Can be used to control timer operations only.

26.1 The Execute statement

Test cases are executed with an execut e statement in the module control.
Syntactical Structure

execute "(" TestcaseRef "(" [{ ActualPar [","] }] "™)" ["," TimerValue ["," Hostld]] ")"
Semantic Description

In the module control part the execut e statement is used to start test cases (see clause 27.1). The result of an executed
test case is always a value of type ver di ct t ype. Every test case shall contain one and only one MTC the type of
which is referenced in the header of the test case definition. The behaviour defined in the test case body is the behaviour
of the MTC.

When a test case is invoked the MTC is created, the ports of the MTC and the test system interface are instantiated and
the behaviour specified in the test case definition is started on the MTC. All these actions shall be performed implicitly
i.e. without explicit cr eat e and st art operations.

Test case start

A test case is called using an execut e statement. As the result of the execution of a test case, a test case verdict of
either none, pass, i nconc,fail orerror shall be returned and may be assigned to a variable for further
processing.

Optionally, the execut e statement allows supervision of a test case by means of a timer duration.

Also optionally, the execute statement allows deployment of the MTC to a specific host before starting the execution.
The host is identified by means of a host id.

Test case parameterization and configuration

All variables (if any) defined in the control part of a module shall be passed into the test case by parameterization if
they are to be used in the behaviour definition of that test case, i.e. TTCN-3 does not support global variables of any
kind.

At the start of each test case, the test configuration shall be reset. This means that all components and ports conducted
by cr eat e, connect , etc. operations in a previous test case were destroyed when that test case was stopped (hence
are not "visible" to the new test case).

Test case ter mination

A test case terminates with the termination of the MTC. On termination of the MTC (explicitly or implicitly), all
running parallel test components shall be removed by the test system.

NOTE 1: The concrete mechanism for stopping all PTCs is tool specific and therefore outside the scope of the
present document.

ETSI

235 ETSI ES 201 873-1 V4.7.1 (2015-06)

The final verdict of a test case is calculated based on the final local verdicts of the different test components according
to the rules defined in clause 24.1. The actual local verdict of a test component becomes its final local verdict when the
test component terminates itself or is stopped by itself, another test component or by the test system.

NOTE 2: To avoid race conditions for the calculation of test verdicts due to the delayed stopping of PTCs, the
MTC should ensure that all PTCs have stopped (by means of the done or ki | | ed statement) before it
stops itself.

Test casetimer

Timer may be used to supervise the execution of a test case. This may be done using an explicit timeout in the
execut e statement. If the test case does not end within this duration, the result of the test case execution shall be an
error verdict and the test system shall terminate the test case. The timer used for test case supervision is a system timer
and need not be declared or started.

Host id

A host id can be used to give a specific deployment location to the test system where the MTC shall be started and
execute its behaviour. If a host id is provided, the execute statement shall end with a test case error if the MTC cannot
be deployed on the specified host.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:

a) The TimerValue shall resolve to a non-negative numerical float value (i.e. the value shall be greater or
equal 0.0, infinity and not_a_number are disallowed).

b) When the corresponding formal parameter is not of template type Templatelnstance shall resolve to an
Expression.

¢) The execute statement shall not be called from within an existing executing testcase or function chain called
from a test case, i.e. test cases can only be executed from the control part or from functions called from the
control part.

d) The Hostld parameter shall resolve to a charstring value.
Examples

EXAMPLE 1: Test case execution without keeping the test case verdict

execut e(MyTest Casel()); /'l executes MyTestCasel, without storing the
I/ returned test verdict and without tine
/'l supervision

EXAMPLE 2: Test case execution with keeping the test case verdict

MyVerdict : = execut e(M/Test Case2()); /] executes MyTestCase2 and stores the resulting
/1 verdict in variable My/Verdict

EXAMPLE 3: Test case timer

MyVerdi ct : = execut e(MyTest Case3(), 5E-3); /] executes MyTestCase3 and stores the resulting
[/ verdict in variable M/Verdict. If the test case
/] does not terminate within 5ns, MyVerdict will
/1 get the value '"error’'

M/ReturnVal := execute (MTestCase(), 7E-3);

/1 Where the return verdict will be error if M/TestCase does not conplete execution
/1 within 7ns

EXAMPLE 4: Host id
MyVerdict : = execute(MyTest Case3(), -, "Hostl");

/'l executes MyTestCase3 with unlinmted tine
/1 with MIC deployed to 'Host1'

ETSI

236 ETSI ES 201 873-1 V4.7.1 (2015-06)

26.2 The Control part

The control part defines, in which order, sequence, loop, under which preconditions, and with which parameters test
cases are to be executed.

Syntactical Structure

control "{"
{ (ConstDef |
Tenpl at eDef |
Var | nst ance |
Ti mer | nstance |
Ti mer St atenents |
Basi cStatenents |
Behavi our St at enent s |
SUTSt at emrent s |

g stop) [":"] }
[WthStatenment] [";"]

Semantic Description
Sequence of test cases

Program statements specify such things like the order in which test cases are to be executed or the number of times a
test case should run.

If no programming statements are used then, by default, the test cases are executed in the sequential order in which they
appear in the module control.

NOTE: This does not preclude the possibility that certain tools may wish to override this default ordering to allow
a user or tool to select a different execution order.

Timer operations may also be used explicitly to control test case execution.
Selection/deselection of test cases
The selection and deselection of test cases can also be used to control the execution of test cases.

There are different ways in TTCN-3 to select and deselect test cases. For example, boolean expressions may be used to
select and deselect which test cases are to be executed. This includes, of course, the use of functions that return a
bool ean value.

Another way to execute test cases as a group is to collect them in a function and execute that function from the module
control.

As a test case returns a single value of type ver di ct t ype, it is also possible to control the order of test case
execution depending on the outcome of a test case. The use of the TTCN-3 verdicttype is another way to select test
cases.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 15, the following restrictions
apply:

a) Configuration statements such as connect and map (with the exception of stop execution, which is allowed),
communication statements such as send and receive and verdict statements such as setverdict shall not be
invoked by module control.

b) Statements for alternative behaviours shall only be used to control timer behaviours.

c¢) The restrictions on the use of statements in the control part are given in table 15.

ETSI

237 ETSI ES 201 873-1 V4.7.1 (2015-06)

Examples

EXAMPLE 1: Test case execution in a loop
nodul e MyTestSuite () {
cbnt rol {

/1 Do this test 10 tines

count : =0;

whil e (count < 10)

{ execute (MSi npl eTest Casel());
count := count+1;

}

}

EXAMPLE 2: Test case execution controlled by a timer and a counter

/] Exanple of the use of the running tiner operation
while (Tl.running or x<10) // Wiere Tl is a previously started tiner
{ execut e(MyTest Case()) ;
X 1= X+1;
}

/'l Exanple of the use of the start and tineout operations
timer T1 := 1.0;

execut e(MyTest Casel());

Tl.start;

T1.timeout; // Pause before executing the next test case
execut e(MyTest Case2());

EXAMPLE 3: Selection/deselection of test cases with Boolean expressions
nodul e MyTestSuite () {
cbnt rol {

if (MySel ectionExpressionl()) {
execut e(MySi npl eTest Casel());
execut e(MySi npl eTest Case2());
execut e(MySi npl eTest Case3());

}

if (MySel ecti onExpression2())
execut e(M/Si npl eTest Case4(
execut e(MySi npl eTest Case5(
execut e(MySi npl eTest Case6(

{
)
)
)

}
EXAMPLE 4: Selection/deselection of test cases with functions

functi on MyTest CaseG oupl()

{ execut e(MySi npl eTest Casel());
execut e(MySi npl eTest Case2());
execut e(MySi npl eTest Case3());

}

function MyTest CaseG oup2()

{ execut e(MySi npl eTest Case4());
execut e(MySi npl eTest Case5());
execut e(MySi npl eTest Case6());

}
control

{ if (MySel ectionExpressionl()) { MyTestCaseG oupl(); }
if (MySel ectionExpression2()) { MyTestCaseG oup2(); }

ETSI

238 ETSI ES 201 873-1 V4.7.1 (2015-06)

EXAMPLE 5: Selection/deselection of test cases based on test case verdicts

if (execute (MySinpleTestCase()) == pass)
{ execute (MyGoOnTest Case()) }

el se
{ execute (MErrorRecoveryTestCase()) };

27 Specifying attributes

TTCN-3 uses attributes to give special characterization/meaning to language elements such as specific presentation
format, specific encoding and encoding variants, and user-defined properties.

27.1 The Attribute mechanism

Attributes can be associated with TTCN-3 language elements by means of the with statement. The with statement can
be applied to modules, global module definitions and to local definitions in control, test cases, functions, altsteps,
statement blocks and in component type definitions.

27.1.1 Scope of attributes

A Wi t h statement may associate attributes to a single language element or to elements or fields of structured types (in a
recursive way) or to members of component or port types, the same way as specified in clauses 6.2.1.1 and 6.2.3.2. It is
also possible to associate attributes to a number of language elements by, e.g. listing fields of a structured type in an
attribute statement associated with a single type definition or associating a Wi t h statement to the surrounding scope
unit or gr oup of language elements. A Wi t h statement can follow any module, any global definition inside module
and group declarations as well as any local definition in component types and statement blocks inside behaviour
definitions or the control part.

EXAMPLE 1: // attributes for single language elements and groups

/1 MyPDUL will be displayed as PDU
type record WPDUL { ...} with { display "PDU'}

/1 MyPDU2 will be displayed as PDU with the application specific extension attribute M/Rule
type record WPDW2 { ...}
w th

di splay "PDU';
extensi on "M/Rul e"

}

/1 The following group definition ...
group MyPDUs {

type record WPDU3 { ...}

type record WPDW { ...}

}
with {display "PDU'} /1 Al types of group M/PDUs wi |l be displayed as PDU

/1 is identical to
group MyPDUs {
type record WPDU3 { ...} with { display "PDU'}
type record WPDW { ...} with { display "PDU'}
}

EXAMPLE 2: // attributes for fields and elements

type record MyRec {
integer fieldl,
record {
i nteger eFieldl,
bool ean eFi el d2
} field2

}
with { display (field2.eFieldl) "col our blue" }
/'l the enbedded field eFieldl is displayed blue

type record of integer MyRecOr | nt eger

with { display ([-]) "colour green"
/1 all integer elenents are displayed green

ETSI

239 ETSI ES 201 873-1 V4.7.1 (2015-06)

type record of integer M/RecOf I nt eger 2
with { display ([-]) "colour red" }
/1 integer elenents are displayed red

const MyRecOf I nteger ¢c_M/RecordOInt := {0, 1, 2, 3}
with { display ([0]) "col our blue" }
/1 the first elenent is displayed blue, the other elenents are displayed red

27.1.2 Overwriting rules for attributes

An attribute definition in a lower scope unit will override a general attribute definition in a higher scope. Additional
overwriting rules for variant attributes are defined in clause 27.1.2.1.

EXAMPLE 1I:

type record MyRecordA
{

} with { encode "Rul eA" }

/1 In the follow ng, M/RecordA is encoded according to Rul eA and not according to Rul eB
type record MyRecordB
{

M/RecordA field
} with { encode "Rul eB" }

A Wi t h statement that is placed inside the scope of another Wi t h statement shall override the outermost Wi t h. This
shall also apply to the use of the wi t h statement with groups. Care should be taken when the overwriting scheme is
used in combination with references to single definitions. The general rule is that attributes shall be assigned and
overwritten according to the order of their occurrence.

/] Exanple of the use of the overwiting scheme of the with statenent
group MyPDUs
{

type record MyPDUL { ...}

type record WPDU2 { ...}

group MySpeci al PDUs

{
type record MPDU3 { ...}
type record WPDW { ...}

}
wi th {extension "MSpecial Rul e"} /1 MyPDU3 and MyPDUW4 wi |l have the application
/'l specific extension attribute M/Special Rul e

}
with
{
di splay "PDU'; /1 Al types of group MyPDUs wi |l be displayed as PDU and
extension "MyRule"; // (if not overwitten) have the extension attribute M/Rule
}
// is identical to ...
group MyPDUs
{
type record MPDUL { ...} with {display "PDU'; extension "MRule" }
type record MPDU2 { ...} with {display "PDU'; extension "MRule" }
group MySpeci al PDUs {
type record MWPDU3 { ...} with {display "PDU'; extension "M/Special Rule" }
type record MWPDU4 { ...} with {display "PDU'; extension "MSpecial Rule" }
}
}

An attribute definition in a lower scope can be overwritten in a higher scope by using the over ri de directive.

EXAMPLE 2:

type record MyRecordA
{

} with{ encode "Rul eA" }

ETSI

240 ETSI ES 201 873-1 V4.7.1 (2015-06)

/1 In the followi ng, fieldA of a M/RecordB instance is encoded according to Rul eB
type record MyRecordB

{

WRecordA fieldA
} with { encode override (fieldA) "RuleB" }

The over ri de directive forces all contained types at all lower scopes to be forced to the specified attribute.

An attribute definition for a field or element of a structured type overrides the corresponding attribute of the structured
type, as regards the identified field or element. The attribute definition for a field or element of a structured type can
however be overridden with the override directive in the attribute definition of the structured type.

In case of nested override directives, the override directive of the highest scope shall take precedence. Override
directives of definitions at the same scope level do not effect each other.

EXAMPLE 3:

/1 An instance of MyRecordA is encoded according to Rul eA
type record MyRecor dA

{
} with { encode override "Rul eA" }
/1 In the followi ng, fieldA of a M/RecordB instance is encoded according to Rul eB.
type record MyRecordB
M/RecordA fieldA
} with { encode override (fieldA) "RuleB" }
/1 In the follow ng, both rules "RuleA" and "Rul eB" are overriden by "Rul eC' of the group.

group MG oup {
type record MyRecor dA
{

} with { encode override "Rul eA" }

type record MyRecordB
{

M/RecordA fieldA
} with { encode override (fieldA) "RuleB" }
} with { encode override "Rul eC' }

27.1.2.1 Additional overwriting rules for variant attributes

Avari ant attribute is always related to an encode attribute. Whereas a variant of an encoding may change, an
encoding shall not change without overwriting all current variant attributes.

The present document defines the default rules for variant attributes. Extension packages of TTCN-3, for example
specifying language mappings, may define their own overwriting rules for variant attributes. For variant attributes the
following default overwriting rules apply:

. avari ant attribute overwrites an current var i ant attribute according to the rules defined in clause 27.1.2;

. an encodi ng attribute, which overwrites a current encodi ng attribute according to the rules defined in
clause 27.1.2, also overwrites a corresponding current var i ant attribute, i.e. no new var i ant attribute is
provided, but the current var i ant attribute becomes inactive;

e anencodi ng attribute, which changes a current encodi ng attribute of an imported language element
according to the rules defined in clause 27.1.3, also changes a corresponding current var i ant attribute,
i.e. nonew vari ant attribute is provided, but the current var i ant attribute becomes inactive.

EXAMPLE:
nodul e MyVar i ant Encodi nghbdul e {
iype charstring MyType; // Normally encoded according to "Encoding 1"

Qroup MyVari ant sOne {

ETSI

241 ETSI ES 201 873-1 V4.7.1 (2015-06)

iype record MyPDUone

{
i nt eger fieldl, // fieldl will be encoded according to "Encoding 2" only.
/1 "Encoding 2" overwites "Encoding 1" and variant "Variant 1"
M/ Type field3 // field3 will be encoded according to "Encoding 1" with

/1 variant "Variant 1".

}
with { encoding (fieldl) "Encoding 2" }

with { variant "Variant 1" }

group MyVari ant sTwo

{ :
type record MyPDU wo
{
i nt eger fieldl, // fieldl will be encoded according to "Encoding 3"
/1 using encoding variant "Variant 3"
M/ Type field3 // field3 will be encoded according to "Encoding 3"

/'l using encoding variant "Variant 2"

}
with { variant (fieldl) "Variant 3" }
with { encode "Encoding 3"; variant "Variant 2"}

with { encode "Encoding 1" }

27.1.3 Changing attributes of imported language elements

In general, a language element is imported together with its attributes. In some cases these attributes may have to be
changed when importing the language element, e.g. a type may be displayed in one module as ASP, then it is imported
by another module where it should be displayed as PDU. For such cases it is allowed to change attributes on the

i mport statement.

NOTE: [Ifawi t h statement is added to an import of a definition where a local definition also has awi t h
statement, the local definition's attributes overwrite the attributes added to the import statement in the
normal way. Thus, if the attributes of a local definition shall be changed via the import statement, the
override directive needs to be used.

EXAMPLE:
import from MyModul e {
type My/Type
with { display "ASP" } /1 MyType will be displayed as ASP

import from MyModul e {
group MyG oup

with {
di splay "PDU'; /1 By default all types will be displayed as PDU
extensi on "M/Rul "

27.2 The With statement

The with statement is used to associate attributes to TTCN-3 language elements (and sets thereof).

Syntactical Structure

wi th
{ (encode | variant | display | extension | optional)
[override]
["(" DefinitionRef | FieldReference | AllRef ")"]
FreeText [";"] }
ny

ETSI

242 ETSI ES 201 873-1 V4.7.1 (2015-06)

Semantic Description
There are five kinds of attributes that can be associated to language elements:
a) di spl ay: allows the specification of display attributes related to specific presentation formats;
b) encode: allows references to specific encoding rules;
¢) vari ant: allows references to specific encoding variants;
d) extension: allows the specification of user-defined attributes;
e) optional: allows the implicit setting of optional fields in records and sets to omit.
The syntax for the argument of the Wi t h statement (i.e. the actual attributes) is defined as a free text string.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) DéfinitionRef and FieldReference shall refer to a definition or field respectively which is within the module,
group or definition to which the with statement is associated.

Examples
type record MyService {
integer i,
float f
}
with { display "ServiceCall" } /1l MyRecord will be displayed as a ServiceCall

27.3 Display attributes
Display attributes allow the specification of display attributes related to specific presentation formats.
Syntactical Structure
di spl ay
Semantic Description

All TTCN-3 language elements can have di spl ay attributes to specify how particular language elements shall be
displayed in, for example, a tabular format.

Special attribute strings related to the display attributes for the graphical presentation format can be found in ETSI
ES 201 873-3 [i.2].

Other di spl ay attributes may be defined by the user.

NOTE: Because user-defined attributes are not standardized, the interpretation of these attributes may differ
between tools or even may not be supported.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples
type record MyService {
integer i,
float f
}
with { display "ServiceCall" } /1 MyRecord will be displayed as a ServiceCall

ETSI

243 ETSI ES 201 873-1 V4.7.1 (2015-06)

27.4 Encoding attributes

In TTCN-3, general or particular encoding rules can be specified by using encode and var i ant attributes. Encoding
attributes allow references to specific encoding rules.

Syntactical Structure
encode
Semantic Description

Encoding rules define how a particular value, template, etc. shall be encoded and transmitted over a communication
por t and how received signals shall be decoded. TTCN-3 does not have a default encoding mechanism. This means
that encoding rules or encoding directives are defined in some external manner to TTCN-3.

The encode attribute allows the association of some referenced encoding rule or encoding directive to be made to a
TTCN-3 definition.

The manner in which the actual encoding rules are defined (e.g. prose, functions, etc.) is outside the scope of the present
document. If no specific rules are referenced then encoding shall be a matter for individual implementation.

In most cases encoding attributes will be used in a hierarchical manner. The top-level is the entire module, the next
level is a group and the lowest is an individual type or definition:

a) nodul e: encoding applies to all types defined in the module, including TTCN-3 types (built-in types);
b) group: encoding applies to a group of user-defined type definitions;
¢) type or definition: encoding applies to a single user-defined type or definition;
d) fiel d: encoding applies to a field inar ecor d or set type ort enpl at e.
Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

modul e MyFi r st nodul e

{ :

i mport from MySecondMbdul e {
type MyRecord

}
with { encode "MyRule 1" } // Instances of MyRecord will be encoded according to M/Rule 1

iype charstring MyType; // Normally encoded according to the 'd obal encoding rule

Qroup MyRecor ds
{ :
type record MyPDUL
{

i nt eger fieldl, /1 fieldl will be encoded according to "Rule 3"
bool ean field2, /] field2 will be encoded according to "Rule 3"
M/t ype field3 /] field3 will be encoded according to "Rule 2"

with { encode (fieldl, field2) "Rule 3" }
13
with { encode "Rule 2" }

with { encode "d obal encoding rule" }

ETSI

244 ETSI ES 201 873-1 V4.7.1 (2015-06)

27.5 Variant attributes

In TTCN-3, general or particular encoding rules can be specified by using encode and var i ant attributes. Variant
attributes allow references to specific encoding variants.

Syntactical Structure

vari ant
Semantic Description

To specify a refinement of the currently specified encoding scheme instead of its replacement, the var i ant attribute
shall be used. The variant attributes are different from other attributes, because they are closely related to encode
attributes. Therefore, for variant attributes, additional overwriting rules apply (see clause 27.1.2.1).

Special variant strings:

The following strings are the predefined (standardized) var i ant attributes for simple basic types (see clause E.2.1):

a) "8 bit"and"unsigned 8 bit" mean, when applied to integer and enumerated types, that the integer
value or the integer numbers associated with enumerated values shall be handled as it was represented on
8-bits (single byte) within the system.

b) "16 bit"and"unsi gned 16 bit" mean, when applied to integer and enumerated types, that the integer
value or the integer numbers associated with enumerated values shall be handled as it was represented on
16-bits (two bytes) within the system.

¢) "32 bit"and"unsi gned 32 bit" mean, when applied to integer and enumerated types, that the integer
value or the integer numbers associated with enumerated values shall be handled as it was represented on
32-bits (four bytes) within the system.

d) "64 bit"and"unsi gned 64 bit" mean, when applied to integer and enumerated types, that the integer
value or the integer numbers associated with enumerated values shall be handled as it was represented on
64-bits (eight bytes) within the system.

e) "I EEE754 float","l| EEE7T54 doubl e", "I EEE754 extended fl oat" and
"I EEE754 ext ended doubl e" mean, when applied to a float type, that the value shall be encoded and
decoded according to the standard IEEE 754 [6] (see annex E).

The following strings are the predefined (standardized) var i ant attributes for char st ri ng and uni ver sal
charstring (seeclause E.2.2):

a) "UTF- 8" means, when applied to the universal charstring type, that the value shall be encoded and decoded
according to the UCS encoding scheme UTF-8 as defined in clause 10.1 of ISO/IEC 10646 [2].

b) "UTF- 16" means, when applied to the universal charstring type, that the value shall be encoded and decoded
according to the UCS encoding scheme UTF-16 as defined in clause 10.4 of ISO/IEC 10646 [2].

¢) "UTF- 16LE" means, when applied to the universal charstring type, that each character of the value shall be
individually encoded and decoded according to the UCS Encoding scheme UTF-16LE as defined in
clause 10.3 of ISO/IEC 10646 [2].

d) "UTF- 16BE" means, when applied to the universal charstring type, that the value shall be encoded and
decoded according to the UCS Encoding scheme UTF-16BE as defined in clause 10.2 of ISO/IEC 10646 [2].

e) "UTF-32" means, when applied to the universal charstring type, that the value shall be encoded and decoded
according to the UCS Encoding scheme UTF-32 as defined in clause 10.7 of ISO/IEC 10646 [2].

f) "UTF-32LE" means, when applied to the universal charstring type, that the value shall be encoded and
decoded according to the UCS Encoding scheme UTF-32LE as defined in clause 10.6 of ISO/IEC 10646 [2].

g) "UTF-32BE" means, when applied to the universal charstring type, that the value shall be encoded and
decoded according to the UCS Encoding scheme UTF-32BE as defined in clause 10.5 of ISO/IEC 10646 [2].

ETSI

245 ETSI ES 201 873-1 V4.7.1 (2015-06)

h) "8 Dbit" means, when applied to charstring and universal charstring types, that each character of the value
shall be individually encoded and decoded according to the coded representation as specified in
ISO/IEC 10646 [2] (an 8-bit coding).

NOTE: The UCS Encoding schemes allow an optional signature (also known as byte order mark, BOM) to be
present in encoded character strings. The above UCS encoding scheme variant attributes does not specify,
if signatures are present in the encoded values or not, this is an option for the encoder. It is expected that
decoders are able to process signatures in the decoding process.

The following strings are the predefined (standardized) var i ant attributes for structured types (see clause E.2.2.4):

a) "IDL:fixed FORMAL/01-12-01 v.2.6" means, when applied to a record type, that the value shall be
handled as an IDL fixed point decimal value (see annex E).

These variant attributes can be used in combination with the more general encode attributes specified at a higher level.
For example a uni ver sal char st ri ng specified with the var i ant attribute "UTF-8" within a module which
itself has a global encoding attribute "BER:1997" (see clause 12.2 of ETSI ES 201 873-7 [i.5]) will cause each character
of the values within the string to first be encoded following the UTF-8 rules and then this UTF-8 value will be encoded
following the more global BER rules.

Invalid encodings

If it is desired to specify invalid encoding rules then these shall be specified in a referenceable source external to the
module in the same way that valid encoding rules are referenced.

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

modul e MyTTCNnmodul el
{ iype charstring MyType; // Normally encoded according to the "d obal encoding rule"
Qroup MyRecor ds

iype record MyPDUL
{

i nteger fieldl, /1 fieldl will be encoded according to "Rule 2"
/1 using encoding variant "length form 3"
M/t ype field3 // field3 will be encoded according to "Rule 2"

/1 using any possible | ength encodi ng format

}

with { variant (fieldl) "length form3" }
b
with { encode "Rule 2" }

with { encode "d obal encoding rule" }

27.6 Extension attributes

Extension attributes can be used for proprietary extensions to TTCN-3.

Syntactical Structure

ext ensi on
Semantic Description
All TTCN-3 language elements can have ext ensi on attributes specified by the user.

NOTE: Because user-defined attributes are not standardized the interpretation of these attributes between tools
supplied by different vendors may differ or even not be supported.

ETSI

246 ETSI ES 201 873-1 V4.7.1 (2015-06)

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

testcase MyTestcase() runs on MICType {

with { extension "Test Purpose: This test case is used to check .." }

27.7 Optional attributes

The opt i onal attribute can be used to indicate that optional fields of constants, module parameters or templates of
record and set types are implicitly set to om t .

Syntactical Structure

optional
Semantic Description

TTCN-3 constants, module parameters, and templates can have an opt i onal attribute. Also, TTCN-3 language
elements that contain such definitions, i.e. module, group, function, altstep, test case, control, and component type
definitions can have an opt i onal attribute. When an opt i onal attribute is associated to a function, altstep, test
case, control or component type definitions, it shall have effect on all the constants, module parameters, and templates
declared within these definitions and not on the enframing definition itself.

Special optional strings:
The following strings are the predefined (standardized) opt i onal attributes.

a) "inplicit om t" means that all optional fields, that have no assigned value definition in the statement on
which the attribute operates, are set to omit. This applies recursively to the optional fields of the entity and to
subfields of the mandatory fields.

b) "explicit omt" means that all optional fields, that have no assigned value definition in the statement on
which the attribute operates, are left undefined. This applies recursively to the optional fields of the entity and
to subfields of the mandatory fields.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Data type, port type, procedure signature and variable definitions and import statements shall not have an
opti onal attribute associated to them directly. When an opt i onal attribute is associated to module,
group, function, altstep, test case, control or component type containing such definitions, it shall not have any
effect on the included data type, port type, procedure signature, variable or import statement.

Examples

type record MyRecordl {
i nteger a,
bool ean b optional

}

type record MyRecord2 {
M/Recordl m

}

Il reference tenplates with explicitly set f
tenpl ate M/Recordl MyTenplatel :={ a :=
tenpl ate M/Record2 MyTenplate2 :={ m:=
Il reference tenplates

tenpl ate MyRecordl MyTenpl atel

? } // b is undefined
tenpl ate MyRecordl MyTenpl atel ?

? } with {optional "explicit omt"} // b is undefined

[o 2]
Inn
~~———
SV
Inn

ETSI

247 ETSI ES 201 873-1 V4.7.1 (2015-06)

/ mand its subfields are undefined

tenpl ate M/Record2 MyTenpl ate2a := {} /
={ m:={ a:=72}}; // mb is undefined

tenpl ate MyRecord2 MyTenpl at e2b :
/] tenplates with attribute

tenpl ate M/Recordl MyTenplatell :={ a :=? } with {optional "inplicit omt"}
/'l same as MyTenplatel, b is set to onit

tenpl ate MyRecord2 MyTenplate2l :={ m:={ a := ?}} with {optional "inplicit omt"}
/'l same as MyTenpl ate2, by recursive application of the attribute

tenmpl ate MyRecord2 MyTenpl ate22 := { m:= MyTenplatela } with {optional "inplicit omt"}
/1 sane as MyTenpl ate2, by recursive application of the attribute

tenpl ate MyRecord2 MyTenpl ate23 := {} with {optional "inplicit omt"}
/1l same as MyTenpl ate2a, mremai ns undefi ned

tenpl ate MyRecord2 MyTenplate24 := { m:= MyTenplatelb } with {optional "inplicit omt"}
/1 same as MyTenpl ate2b, the attribute on the | ower scope is not overwitten

tenmpl ate MyRecord2 MyTenpl ate25 := { m:= MyTenpl atelb }
with {optional override "inplicit omt"}
/! same as MyTenpl ate2, the attribute on the |ower scope is overwitten

ETSI

248 ETSI ES 201 873-1 V4.7.1 (2015-06)

Annex A (normative):
BNF and static semantics

A.1 TTCN-3 BNF

This annex defines the syntax of TTCN-3 using extended BNF (henceforth just called BNF).

A.1.1 Conventions for the syntax description

Table A.1 defines the metanotation used to specify the extended BNF grammar for TTCN-3.

Table A.1: The syntactic metanotation

R is defined to be definition of non-terminal
abc xyz abc followed by xyz concatenation

[alternative alternative

[abc] 0 or 1 instances of abc optional

{abc} 0 or more instances of abc repetition 1

{abc}+ 1 or more instances of abc repetition 2

{abc}#(n, m) n to m instances of abc repetition 3

(...) textual grouping grouping

Abc the non-terminal symbol abc [non-terminal

"abc" a terminal symbol abc terminal

NOTE: The metanotation defined in table A.1 is parsed from left to right. The metanotation operators have the
following precedence, from highest (binding tightest) at the top, to lowest (loosest) at the bottom:

- Repetition, Optional
- Grouping

- Concatenation

- Alternative

- Definition

A.1.2 Statement terminator symbols

In general all TTCN-3 language constructs (i.e. definitions, declarations, statements and operations) are terminated with
a semi-colon (;). The semi-colon is optional if the language construct ends with a right-hand curly brace (}) or the
following symbol is a right-hand curly brace (}), i.e. the language construct is the last statement in a statement block.

A.1.3 Identifiers

TTCN-3 identifiers are case sensitive and may only contain lowercase letters (a-z) uppercase letters (A-Z) and numeric
digits (0-9). Use of the underscore (_) symbol is also allowed. An identifier shall begin with a letter (i.e. not with a
number and not an underscore).

A.1.4 Comments

Comments written in free text may appear anywhere in a TTCN-3 specification. Comments may contain any graphical
character defined in ISO/IEC 10646 [2]. Block comments shall be opened by the symbol pair /* and closed by the
symbol pair */.

EXAMPLE 1:

/* This is a bl ock comrent
spread over two |ines */

Block comments shall not be nested.

ETSI

249

/* This is not /* a legal */ coment */

ETSI ES 201 873-1 V4.7.1 (2015-06)

Line comments shall be opened by the symbol pair // and closed by a <newline>.

EXAMPLE 2:

/1 This is a line coment
/] spread over two |ines

EXAMPLE 3:

/1 The followi ng is not I|egal
const // This is MyConst integer MyConst := 1;
/1 A block comment should have been used i nstead
const /* This is MyConst */ integer MyConst := 1;
/1 Aline comment like this works as well
const // This is MConst

i nteger MyConst := 1;

A.1.5 TTCN-3 terminals

TTCN-3 terminal symbols and reserved words are listed in tables A.2 and A.3.

Table A.2: List of TTCN-3 special terminal symbols

Begin/end block symbols { 1}
Begin/end list symbols ()

Element specifier symbols []

Range symbol .

Line and block comments *ox
Statement separator symbol ;

Arithmetic operator symbols + - *
Concatenation operator symbol &

Relational operator symbols I= == >= <= < >
Shift operator symbols << >>

Rotate operator symbols <@ @>
String enclosure symbols " '
Wildcard/matching symbols ?*
Assignment symbol =
Communication operation assignment ->

Bitstring, hexstring and Octetstring values B H O
Float exponent E

List element separator symbol ,

The predefined function identifiers defined in table 14 and described in annex C shall also be treated as reserved words.

ETSI

250

ETSI ES 201 873-1 V4.7.1 (2015-06)

Table A.3: List of TTCN-3 terminals which are reserved words

action
activate
addr ess
alive
al |

alt

al tstep
and
and4b
any
anyt ype

bitstring
bool ean
br eak

case
cal

catch

char
charstring
check

cl ear

conpl ement
conponent
connect
const

conti nue
control
create

deactivate
decmat ch
def aul t

di sconnect
di spl ay

do

done

el se
encode
enuner at ed
error
except
exception
execut e
ext ends
ext ensi on
ext erna

f ai

fal se

fl oat
for
friend
from
function

getverdi ct
getcall
getreply
goto

group

hal t
hexstring

i f

i fpresent
i mport

in

i nconc
infinity
i nout

i nteger

i nterl eave

| abel

| anguage
I ength

| og

mep

mat ch
nmessage
m xed
nod

nodi fies
nodul e
nmodul epar
ntc

nobl ock
none
not

not 4b
nowai t
nul |

octetstring
of

om t

on

opti ona

or

or 4b

out

override

par am
pass
pattern
pernutation
port

present
private

pr ocedure
public

rai se
read
receive
record

recursive
rem

r epeat
reply
return
runni ng
runs

sel ect
sel f

send
sender
set
setverdi ct
si gnature
start
stop
subset
super set
system

tenpl ate
t est case
ti meout
timer

to
trigger
true

type

uni on
uni ver sal
unnap

val ue

val ueof

var

vari ant
verdicttype

whi | e
Wi th

xor
xor 4b

The TTCN-3 terminals listed in table A.3 shall not be used as identifiers in a TTCN-3 module. These terminals shall be
written in all lowercase letters.

Additionally, there are special TTCN-3 terminals consisting of an @-symbol, directly followed by an identifier. These

terminals shall also be written in all lowercase letters.

NOTE: These terminals can be used in combination with the @-symbol, which results in a specific semantics for
the annotated language element. They can also be used like any other identifier without any special

meaning.

Table A.4: List of TTCN-3 terminals which are modifiers

@lecoded
@letermni stic

@uzzy

@ ndex

@azy
@ocase

ETSI

251 ETSI ES 201 873-1 V4.7.1 (2015-06)

A.1.5.1 Use of whitespaces and newlines

The elements of the TTCN-3 syntax (reserved words, identifiers, terminal symbols and literal values) shall be separated
by whitespace or by special terminal symbols listed in table A.2 according to the TTCN-3 syntax.

In representing whitespace, any one or more of the following characters of the CO set of Recommendation
ITU-T T.50 [4] and of annex A of Recommendation ITU-T T.50 [4] may be used in any combination:

e HT-HORIZONTAL TABULATION (9)
e LF-LINEFEED (10)

e VT -VERTICAL TABULATION (11)

e FF-FORM FEED (12)

e CR-CARRIAGE RETURN (13)

e SP-SPACE (32)

The characters of the CO set of Recommendation ITU-T T.50 [4] and of annex A of Recommendation ITU-T T.50 [4]
below are denoting newline (end of line). A single CR(13) character directly followed by an LF(10) character denote a
single end of line (i.e. the sequence CRLFCRLFVT denotes 3 lines):

e LF-LINE FEED (10)
o VT - VERTICAL TABULATION (11)
e FF-FORM FEED (12)
e CR-CARRIAGE RETURN (13)
Any character or character sequence that is a valid newline is also a valid whitespace.

NOTE: It is recommended that for newline only the CR and LF and for whitespace only the HT, LF, CR and SP
control characters are used as the VT and FF characters may cause problems with some conventional text
editors.

A.1.6 TTCN-3 syntax BNF productions
A.1.6.0 TTCN-3 module

1. TTCN3Modul e :: = TTCN3Mbdul eKeyword Modul eld "{" [Mdul eDefinitionsList]
[Modul eControl Part] "}" [WthStatenent] [Seni Col on]

2. TTCN3Modul eKeyword :: = "nodul e"

3. Mduleld ::= Identifier [LanguageSpec]

4. LanguageSpec ::= LanguageKeyword FreeText {"," FreeText}

5. LanguageKeyword ::= "| anguage"

A.1.6.1 Module definitions part
A.1.6.1.0 General

6. Modul eDefini tionsList ::= {Mdul eDefinition [Sem Col on]}+
7. Modul eDefinition ::= (([Visibility] (TypeDef |

Const Def |

Tenpl at eDef |

Modul ePar Def |

Functi onDef |

Si gnat ur eDef |

Test caseDef |

Al tstepDef |

| mpor t Def |
Ext Functi onDef |

Ext Const Def

)) |
(["public"] G oupDef) |

ETSI

252 ETSI ES 201 873-1 V4.7.1 (2015-06)

(["private"] FriendMbdul eDef)
) [WthStatenent
8.Visibility ::= "public" |
"friend" |
"private"

A.1.6.1.1 Typedef definitions

9. TypeDef ::= TypeDef Keyword TypeDef Body
10. TypeDef Body ::= StructuredTypeDef | SubTypeDef
11. TypeDef Keyword ::= "type"
12. Struct uredTypeDef ::= RecordDef |
Uni onDef |
Set Def |
Recor dOf Def |
Set O Def |
EnunDef |
Por t Def |
Conponent Def
13. RecordDef ::= RecordKeyword Struct Def Body
14. Recor dkeyword ::= "record"

15. StructDefBody ::= (ldentifier | AddressKeyword) "{" [StructFiel dDef

{"," StructFiel dDef}]

"y
16. Struct Fi el dDef ::= (Type | NestedTypeDef) ldentifier [ArrayDef] [SubTypeSpec]
[Opti onal Keywor d]
17. Nest edTypeDef ::= Nest edRecordDef |
Nest edUni onDef |
Nest edSet Def |

Nest edRecor dOf Def |
Nest edSet Of Def |
Nest edEnunDef

18. Nest edRecor dDef ::= RecordKeyword "{" [StructFieldDef {"," StructFieldDef}]

DY
19. Nest edUni onDef ::= Uni onKeyword "{" Uni onFi el dDef {"," UnionFi el dDef}
20. Nest edSet Def ::= Set Keyword "{" [StructFi el dDef {"," StructFiel dDef}]
21. Nest edRecor dOf Def ::= RecordKeyword [StringLength] O Keyword (Type |

Nest edTypeDef)
22. Nest edSet Of Def ::= Set Keyword [StringlLength] O Keyword (Type | NestedTypeDef)
23. Nest edEnunDef ::= EnunKeyword "{" EnunerationList "}"
24. Optional Keyword ::= "optional"
25. Uni onDef ::= Uni onKeyword Uni onDef Body
26. Uni onKeyword ::= "union"
27. Uni onDefBody ::= (ldentifier | AddressKeyword) "{" UnionFieldDef {","
Uni onFi el dDef }
ny

28. Uni onFi el dDef ::= (Type | NestedTypeDef) Identifier [ArrayDef] [SubTypeSpec]
29. Set Def ::= Set Keyword Struct Def Body
30. Set Keyword ::= "set"
31. RecordOf Def ::= RecordKeyword [StringlLength] O Keyword Struct O Def Body
32. O Keyword ::= "of"
33. Struct O Def Body ::= (Type | NestedTypeDef) (ldentifier | AddressKeyword)

[SubTypeSpec]
34.Set Of Def ::= SetKeyword [StringLength] O Keyword Struct O Def Body
35. EnunDef ::= EnunKeyword (ldentifier | AddressKeyword) "{" EnunerationLi st

DY
36. Enunkeyword ::= "enurer at ed”
37. EnunerationList ::= Enunmeration {"," Enuneration}
38. Enuneration ::= ldentifier ["(" [Mnus] Number ")"]
39. SubTypeDef ::= Type (ldentifier | AddressKeyword) [ArrayDef] [SubTypeSpec]
40. SubTypeSpec ::= Al owedVal uesSpec [StringLength] | StringlLength
/* STATI C SEMANTI CS - Al | owedVal ues shall be of the same type as the field being subtyped */
41. Al | onedVal uesSpec ::= "(" ((Tenpl ateOrRange {"," Tenpl ateOr Range}) |
Char Stringhvatch) ")*"

42. Tenpl at eOr Range :: = RangeDef |

Tenpl at eBody |

Type

/* STATI C SEMANTI CS - RangeDef production shall only be used with integer, charstring, universal
charstring or float based types */

/* STATI C SEMANTI CS - When subtyping charstring or universal charstring range and val ues shall not
be mixed in the sane SubTypeSpec */

ETSI

253 ETSI ES 201 873-1 V4.7.1 (2015-06)

43. RangeDef ::= Bound ".." Bound
44. Stringlength ::= LengthKeyword " (" Singl eExpression [".."(Singl eExpression | InfinityKeyword)]
"y

/* STATI C SEMANTICS - StringLength shall only be used with String types or to lint set of and
record of. SingleExpression and Bound shall evaluate to non-negative integer values (in case of
Bound including infinity) */

45. Lengt hKkeyword ::= "l engt h"

46. Port Def ::= PortKeyword Port Def Body

47. PortDefBody ::= ldentifier PortDefAttribs
48. Port Keyword ::= "port"

49. Port Def Attribs ::= MessageAttribs |

ProcedureAttribs |
M xedAttri bs
50. MessageAttribs ::= MessageKeyword "{" {(AddressDecl |
MessagelLi st |
Conf i gPar anDef
) [Sem Colon]}+ "}"
51. Conf i gPar anDef = MapPar anDef | UnnmapPar anDef
52. MapPar anDef ::= MapKeyword ParanKeyword " (" Fornmal Val uePar {"," For nmal Val uePar}

)
53. UnmapPar anDef ::= UnmapKeyword ParanKeyword " (" Fornal Val uePar {","
For nal Val uePar}

"y
54. Addr essDecl Addr essKeyword Type
55. Messageli st Direction Al O TypelLi st
56.Direction ::= | nParKeyword |

Qut Par Keywor d |

| nQut Par Keywor d

57. MessageKeyword ::= "message"
58. ALl O TypeList ::= Al Keyword | Typeli st
/* NOTE: The use of Al Keyword in port definitions is deprecated */
59. Al | Keyword ::= "all"
60. TypelList ::= Type {"," Type}
61. ProcedureAttribs ::= ProcedureKeyword "{" {(AddressDecl |
Procedureli st |
Conf i gPar anDef
) [Semi Colon]}+ "}"
62. Procedur eKeyword ::= "procedure"
63. ProcedureList ::= Direction All O Signatureli st
64. Al OrSignatureList ::= Al Keyword | Signatureli st
65. Si gnatureList ::= Signature {"," Signature}
66. M xedAttribs ::= M xedKeyword "{" {(AddressDecl |
M xedLi st |
Conf i gPar anDef
) [Semi Colon]}+ "}"
67. M xedKeyword ::= "m xed"
68. M xedLi st ::= Direction ProcO Typeli st
69. ProcOr TypeList ::= Al Keyword | (ProcOrType {"," ProcO Type})
70. ProcOr Type ::= Signature | Type
71. Conmponent Def ::= Conponent Keyword | dentifier [ExtendsKeyword Conponent Type

{"," Component Type}] "{"
[Conponent Def Li st] "}"

72. Conponent Keyword ::= "conmponent"

73. Ext endsKeyword ::= "extends"

74. Component Type ::= Extendedldentifier

75. Conmponent Def Li st ::= {Conponent El ement Def [WthStatenment] [Seni Col on]}
76. Conponent El ement Def ::= Portlnstance |

Var | nst ance |
Ti mer | nst ance |

Const Def |

Tenpl at eDef
77.Portlnstance ::= PortKeyword Extendedldentifier PortEl enent {"," PortEl enent}
78.PortEl ement ::= ldentifier [ArrayDef]

A.16.1.2 Constant definitions

79. Const Def ::= ConstKeyword Type ConstLi st

80. ConstList ::= SingleConstDef {"," SingleConstDef}

81. Singl eConstDef ::= Identifier [ArrayDef] AssignnmentChar Constant Expression
82. Const Keyword ::= "const"

ETSI

254 ETSI ES 201 873-1 V4.7.1 (2015-06)

A.1.6.1.3 Template definitions

83. Tenpl at eDef ::= Tenpl at eKeyword [Tenpl at eRestriction] [FuzzyModifier]

BaseTenpl ate [DerivedDef] Assignnent Char Tenpl at eBody
84. BaseTenpl ate ::= (Type | Signature) ldentifier ["(" Tenpl at eO Val ueFor nal Par Li st

")

85. Tenpl at eKeyword ::= "tenpl ate"
86. DerivedDef ::= ModifiesKeyword Extendedldentifier
87. Modi fiesKeyword ::= "nodifies"
88. Tenpl at eOr Val ueFor mal Par Li st ::= Tenpl at eOr Val ueFormal Par {"," Tenpl at eOr Val ueFor mal Par }
89. Tenpl at eOr Val ueFor mal Par ::= Formal Val uePar | For mal Tenpl at ePar

/* STATI C SEMANTI CS - Fornal Val uePar shall resolve to an in paraneter */
90. Tenpl at eBody :: = (Sinpl eSpec |
Fi el dSpeclLi st |
ArrayVal ueOrAttrib
) [ExtraMatchi ngAttri butes]

/* STATIC SEMANTICS - Wthin Tepl ateBody the ArrayVal ueOAttrib can be used for array, record,
record of and set of types. */

91. Si npl eSpec ::= (Singl eExpression ["&" SinpleTenpl ateSpec]) | Sinpl eTenpl at eSpec
92. Si npl eTenpl at eSpec :: = Singl eTenpl at eExpression ["&" Si npl eSpec]
93. Si ngl eTenpl at eExpression ::= Matchi ngSynbol | (Tenpl ateRef Wt hPar Li st
[Ext endedFi el dRef er ence])

94. Fi el dSpecList ::= "{" FieldSpec {"," FieldSpec} "}"
95. Fi el dSpec ::= Fi el dRef erence Assi gnnment Char (Tenpl ateBody | M nus)
96. Fi el dRef erence ::= StructFi el dRef |

ArrayOrBit Ref |

Par Ref
97. StructFieldRef ::= Identifier |

Predefi nedType |
TypeRef erence

/* STATI C SEMANTI CS - PredefinedType and TypeReference shall be used for anytype val ue notation
only. PredefinedType shall not be AnyTypeKeyword. */
98. ParRef ::= ldentifier

/* STATIC SEMANTICS - Identifier in ParRef shall be a fornal paraneter identifier fromthe
associ ated signature definition */
99. ArrayOBitRef ::="[" FieldOBitNunber "]"

/* STATIC SEMANTICS - ArrayRef shall be optionally used for array types and TTCN-3 record of and set
of . The same notation can be used for a Bit reference inside an TTCN-3 charstring, universal
charstring, bitstring, octetstring and hexstring type */

100. Fi el dOr Bi t Nunmber ::= Si ngl eExpression

/* STATI C SEMANTICS - Singl eExpression will resolve to a value of integer type */
101. ArrayVal ueOrAttrib ::= "{" [ArrayEl enent SpecLi st] "}"

102. Arr ayEl enent SpecLi st ::= ArrayEl enent Spec {"," ArrayEl enent Spec}

103. ArrayEl ement Spec ::= M nus |

Per nut ati onMat ch |
Tenpl at eBody
104. Mat chi ngSynbol ::= Conpl ement |
(AnyVal ue [W | dcardLengt hMatch]) |
(AnyOrOnit [WIdcardLengt hMatch]) |
Li st O Tenpl ates |
Range |
BitStringhWatch |

HexStri nghMatch |
Cctet StringMatch |

Char Stri nghvat ch |

Subset Mat ch |

Super set Mat ch |

DecodedCont ent Mat ch
105. DecodedCont ent Mat ch :: = DecodedMat chKeyword ["(" Expression] ")"] InlineTenplate
105. DencodedMat chKeyword :: = "decnat ch"

/* STATI C SEMANTI C — W | dcardLengt hMat ch shal |l be used when Mat chi ngSynbol is used in fractions of a
concatenated string or list (see clause 15.11) and shall not be used in other cases. In this case,
the Conpl enent, ListO Tenpl ates, Range, BitStringMvatch, HexStringMatch, CctetStringhatch,
Char Stri ngvat ch, Subset Mat ch and Superset Match productions shall not be used. */
106. ExtraMat chingAttributes ::= StringlLength |
| f Present Keyword |
(StringLength |fPresent Keyword)
B"

107.BitStringMatch ::= """ {BinO Match} """ "
108. BinOrMatch ::= Bin |
yVal ue |

ETSI

255 ETSI ES 201 873-1 V4.7.1 (2015-06)

AnyOr Oni t
109. HexStringhatch ::= """ {HexOrMatch} "'" "H'
110. HexOrMatch :: = Hex |
AnyVal ue |
AnyOrOmi t
111. Cctet Stringhatch ::= """ {Cct O Match} "'* "O
112. CctOrMatch = Cct |
AnyVal ue |
AnyOrOmi t
113. Char StringMatch ::= PatternkKeyword [Casel nsenhbdifier] PatternParticle {"& PatternParticle}
114. PatternParticle ::= Pattern | ReferencedVal ue
115. Patt ernKeyword ::= "pattern"
116. Pattern ::= """ {PatternEl enent}
117. PatternEl enent ::= (("\" ("2" | "*" | "\" | "[(" | "1 "{" | "}" |
S B G D B I I B
"Wttt) "n"] "r"] "s" | "b"
D I O G I R S I A
) | ("[" ["~"] [{Patternd assChar ["-"

Patternd assChar]}]

1) |
("{" ["\"] Referencedvalue "}") |

("\" "N
(Ref erencedVal ue |
Type) "}"
(e ") I
("(" PatternElenment ")") |
("#" (Num |
(" NurTber [NurTber] 3" |
("(m ", " Nunber ")") |
)(([""T ")") Num)"
) | PatternChar
118. PatternChar ::= NonSpeci al PatternChar | PatternQuadruple
/* STATICSEI\/AI\ITICS Characters "?2", "*" t\" [t U]t,ot{t, tRt,otttYLOUtY,ot(t, M)yt t#, U+,
"d", "~", "N' have special semantics — they are net acharacters for the defi n|t|on of pattern

elements — only if they follow the BNF as defined above, if not they are interpreted |ike nornmal
characters */
119. NonSpeci al Patt ernChar ::= Char
120. PatternC assChar ::= NonSpeci al PatternC assChar |
Pat t er nQuadr upl e |
"\" EscapedPatt er nC assChar
121. NonSpeci al Patt ernd assChar ::= Char

/* STATI C SEMANTI CS: Characters "[", "-", "A" ~"]" "\" "q", "have special semantics — they are
met acharacters for the definition of pattern cI ass characters — only if they follow the BNF as
defined above, if not they are |nterpret ed |li ke normal characters */

122. EscapedPatternd assChar ::= "[" | "-" | "A" | "]"

123. PatternQuadruple ::= "\" "qg" "(" Nunber "," Nunber "," Nunber ","
Nunber ")"

124. Conpl ement ::= Conpl enent Keyword Li st Of Tenpl at es

125. Conpl enent Keyword :: = "conpl enent "

126. Li stOf Tenpl ates ::= "(" TenplatelListltem{"," TenplatelListlten} ")"

127. Tenpl atelLi stltem ::= Tenpl ateBody | AllEl enentsFrom

128. Al l El enent sFrom :: = Al | Keyword FronKeyword Tenpl at eBody

129. Subset Mat ch :: = Subset Keyword Li st Of Tenpl at es

130. Subset Keyword ::= "subset"

131. Superset Match ::= Superset Keyword Li st Of Tenpl at es

132. Super set Keyword ::= "superset"

133. Permut ati onMat ch :: = Pernutati onKeyword ListOf Tenpl ates

/* STATI C SEMANTICS: Restrictions on the content of Tenpl ateBody within the ListOf Tenpl ates are
given in clause B.1.3.3. */

134. Per nut at i onKeyword ::= "pernutation"

135. AnyVval ue ::= "?"

136. AnyOrQmt .= "*"

137. Wl dcardLengt hvat ch :: = Lengt hKeyword " (" Singl eExpression ")"

/* STATI C SEMANTI CS: Singl eExpression shall evaluate to type integer */
138. | fPresent Keyword ::= "ifpresent"

139. Present Keyword ::= "present"

140. Range ::= "(" Bound ".." Bound ")"

141.Bound ::= (["!"] SingleExpression) | ([Mnus] |nfinityKeyword)

/* STATI C SEMANTI CS - Bounds shall evaluate to types integer, charstring, universal charstring or
float. In case they evaluate to types charstring or universal charstring, the string I ength shall be
1. infinity as |lower bound and —infinity as upper bound are allowed for float types only. */

142. InfinityKeyword ::= "infinity"

ETSI

256 ETSI ES 201 873-1 V4.7.1 (2015-06)

143. Tenpl at el nst anceAssi gnnment ::= ldentifier ":=" |nLineTenplate

/* STATIC SEMANTICS — if a value paraneter is used, the inlinein-line tenplate shall evaluate to a
val ue */
144. Tenpl at eRef Wt hPar Li st ::= Extendedldentifier [TenplateActual ParList]
145. I nLi neTenpl ate ::= [(Type | Signature) Colon] [DerivedRef WthParLi st
Assi gnnent Char] Tenpl at eBody
Modi fi esKeyword Tenpl at eRef Wt hPar Li st
"(" [(Tenpl at el nst anceActual Par {"," Tenpl at el nst anceActual Par}) |
(Tenpl at el nst anceAssi gnnent {"," Tenpl at el nst anceAssi gnnent})]

146. Der i vedRef Wt hPar Li st
147. Tenpl at eAct ual Par Li st

148. Tenpl at el nst anceActual Par ::= | nLineTenplate | M nus

/* STATI C SEMANTI CS - When the corresponding fornal paraneter is not of tenplate type the
Tenpl at el nstance production shall resolve to one or nore Singl eExpressions */

149. Tenpl ateCps ::= MatchOp | Val ueof Op

150. Mat chOp ::= MatchKeyword " (" Expression "," InLineTenplate ")"
151. Mat chKeyword ::= "nmatch"

152. Val ueof Op ::= Val ueof Keyword " (" |nLineTenplate ")"

153. Val ueof Keyword :: = "val ueof "

A.16.1.4 Function definitions

154. Functi onDef ::= FunctionKeyword [Deterninistichdifier] ldentifier
"(" [FunctionFormal ParList] ")" [RunsOnSpec] [M cSpec]
[Syst enSpec] [ReturnType] StatenentBl ock

155. Functi onKeyword ::= "function"
156. Funct i onFor mal Par Li st ::= FunctionFornal Par {"," Functi onFor nal Par}
157. Functi onFor mal Par ::= For mal Val uePar |

For nal Ti ner Par |
For nal Tenpl at ePar |
For nal Port Par

158. Ret urnType ::= ReturnKeyword [Tenpl at eKeyword | RestrictedTenpl at e]
Type

159. Ret urnKeyword ::= "return"

160. RunsOnSpec :: = RunsKeyword OnKeyword Conponent Type

161. RunsKeyword ::= "runs"

162. OnKeyword ::= "on"

163. M cSpec ::= MICKeyword Conponent Type

164. MTCKeyword ::= "ntc"

165. Statenent Bl ock ::= "{" [FunctionDeflList] [FunctionStatenentlList] "}"

166. Functi onDef Li st ::= {(FunctionLocal Def | FunctionLocallnst) [WthStatenent]

[Seni Col on] } +

167. FunctionStatenentLi st ::= {FunctionStatenent [Seni Colon]}+

168. Functi onLocal I nst ::= Varlnstance | Tinerlnstance

169. Functi onLocal Def ::= ConstDef | Tenpl at eDef

170. FunctionStatenment ::= ConfigurationStatenents |

Ti ner St atenents |

Conmuni cati onStatenents |
Basi cSt atenents |

Behavi our St at enent s |

Set Local Verdict |

SUTSt at enent s |

Test caseQper ati on

171. Functionl nstance ::= FunctionRef "(" [FunctionActual ParlList] ")"
172. FunctionRef ::= [ldentifier Dot] (ldentifier | PreDefFunctionldentifier)
173. PreDef Functionldentifier ::= ldentifier [CaselnsenMdifier]

/* STATIC SEMANTICS - The Identifier shall be one of the pre-definedpredefined TTCN-3 function
identifiers fromAnnex C of ES 201 873-1. Casel nsenMdifier shall be present only if ldentifier is
"regexp". */
174. Functi onAct ual ParLi st ::= (FunctionActual Par {"," FunctionActual Par}) |
(Functi onAct ual Par Assi gnnent {"," Functi onAct ual Par Assi gnnent})
175. Functi onActual Par ::= ArrayldentifierRef |
I nLi neTenpl ate |

Conponent Ref |
M nus

/* STATI C SEMANTI CS - When the corresponding fornal paraneter is not of tenplate type the
Tenpl at el nst ance production shall resolve to one or nore Singl eExpressions i.e. equivalent to the
Expr essi on production */
176. Functi onAct ual Par Assi gnnment :: = Tenpl at el nst anceAssi gnnent |
Conponent Ref Assi gnnent |
Arrayl dentifi er Ref Assi gnnent
177. Arrayl dentifierRef Assignment ::= ldentifier ":=" ArrayldentifierRef

ETSI

257 ETSI ES 201 873-1 V4.7.1 (2015-06)

A.1.6.1.5 Signature definitions

178. Si gnatureDef ::= SignatureKeyword ldentifier "(" [SignatureFornal ParlList]
")" [ReturnType | NoBl ockKeyword] [Excepti onSpec]

179. Si gnat ur eKeyword ::= "signature"

180. Si gnat ur eFor nal Par Li st ::= Formal Val uePar {"," Formal Val uePar}

181. Excepti onSpec ::= ExceptionKeyword "(" TypeList ")"

182. Excepti onKeyword ::= "exception"

183. Signature ::= Extendedldentifier

184. NoBl ockKeyword ::= "nobl ock"

A.1.6.1.6 Testcase definitions

185. Test caseDef ::= TestcaseKeyword ldentifier "(" [TenplateO Val ueFor mal ParLi st]
")" ConfigSpec StatenentBl ock
186. Test caseKeyword ::= "testcase"
187. Confi gSpec ::= RunsOnSpec [Syst enfspec]
188. Syst enfSpec :: = Syst enKeyword Conponent Type
189. Syst enKeyword ::= "systent
190. Test casel nstance ::= ExecuteKeyword " (" Extendedldentifier "(" [TestcaseActual ParlList]
"Y' ["," (Expression | Mnus) ["," SingleExpression]]
191. Execut eKeyword :: = "execute"
192. Test caseAct ual Par Li st ::= (Tenpl at el nst anceActual Par {"," Tenpl at el nst anceAct ual Par}) |
(Tenpl at el nst anceAssi gnnent {"," Tenpl at el nst anceAssi gnnent })

/* STATI C SEMANTI CS - When the corresponding fornal paraneter is not of tenplate type the
Tenpl at el nst ance production shall resolve to one or nore Singl eExpressions i.e. equivalent to the
Expression production */

A.1.6.1.7 Altstep definitions

193. Al tstepDef ::= AltstepKeyword ldentifier "(" [FunctionFornal ParlList]
")" [RunsOnSpec] [M cSpec] [SystentBpec] "{" AltstepLocal DeflLi st
At GuardList "}"

194. Al t st epKeyword ::= "al tstep"
195. Al tstepLocal DefList ::= {Al tsteplLocal Def [WthStatenent] [Sen Col on]}
196. Al t st epLocal Def ::= Varlnstance |
Ti nerl nstance |
Const Def |
Tenpl at eDef
197. Al tstepl nstance ::= Extendedldentifier "(" [FunctionActual ParlList]
DE

A.1.6.1.8 Import definitions

198. I nportDef ::= |nportKeyword |nportFronfSpec (Al |IWthExcepts | ("{"
| mpor t Spec
"))

199. I nport Keyword ::= "inport"

200. Al |l Wt hExcepts ::= Al | Keyword [Except sDef]

201. Except sDef ::= Except Keyword "{" ExceptSpec "}"

202. Except Keyword ::= "except"

203. Except Spec ::= {Except El ement [Semni Col on]}

204. Except El emrent :: = Except G oupSpec |

Except TypeDef Spec |
Except Tenpl at eSpec |
Except Const Spec |
Except Test caseSpec |
Except Al t st epSpec |
Except Functi onSpec |
Except Si gnat ur eSpec |
Except Modul ePar Spec

205. Except GroupSpec ::= G oupKeyword (QualifiedldentifierList | AllKeyword)
206. I dentifierListOAl ::= IldentifierList | AlKeyword

207. Except TypeDef Spec ::= TypeDef Keyword IdentifierListOAll
208. Except Tenpl at eSpec ::= Tenpl at eKeyword I dentifierListOAll
209. Except Const Spec :: = Const Keyword I dentifierListOAll

210. Except Test caseSpec ::= TestcaseKeyword IdentifierListOAll
211. Except Al t stepSpec ::= Al tstepKeyword IdentifierListOAll
212. Except Functi onSpec ::= Functi onKeyword |dentifierListOAll
213. Except Si gnatureSpec ::= SignatureKeyword IdentifierListOAll
214. Except Modul ePar Spec :: = Mdul ePar Keyword | dentifierListOAll
215. I mport Spec ::= {l nportEl ement [Seni Col on]}

ETSI

258 ETSI ES 201 873-1 V4.7.1 (2015-06)

216. | mport El ement :: = | nport G oupSpec |
| npor t TypeDef Spec |
| npor t Tenpl at eSpec |
| npor t Const Spec |
| nport Test caseSpec |
| nport Al t st epSpec |
| npor t Funct i onSpec |
| npor t Si gnat ur eSpec |
| npor t Modul ePar Spec |
| npor t | nport Spec

217. | mpor t FronSpec :: = FronKeyword Modul el d [Recursi veKeywor d]

218. Recur si veKeyword ::= "recursive"

219. | mport GroupSpec ::= G oupKeyword (G oupRefListWthExcept | Al G oupsWthExcept)
220. GroupRef Li st Wt hExcept ::= QualifiedldentifierWthExcept {"," QualifiedldentifierWthExcept}
221. Al l GroupsW t hExcept ::= Al Keyword [Except Keyword Qualifi edl dentifierlList]

222. QualifiedldentifierWthExcept ::= Qualifiedldentifier [ExceptsDef]

223. ldentifierListOOA I WthExcept ::= ldentifierList | AlWthExcept

224. | mport TypeDef Spec :: = TypeDef Keyword ldentifierListO A |WthExcept

225. ALl WthExcept ::= Al Keyword [Except Keyword | dentifierlList]

226. | nport Tenpl at eSpec :: = Tenpl at eKeyword | dentifierListO A lWthExcept

227. | mport Const Spec ::= ConstKeyword |dentifierListO A |WthExcept

228. I mport Al tstepSpec ::= AltstepKeyword ldentifierListO Al |lWthExcept

229. | mport Test caseSpec ::
230. | nport Functi onSpec ::

Test caseKeyword ldentifierListO A |WthExcept
Functi onKeyword I dentifierListO Al WthExcept
231. I nport Si gnatureSpec ::= SignatureKeyword ldentifierListOA|lWthExcept
232. | mpor t Modul ePar Spec :: = Mdul ePar Keyword | dentifierListO A |WthExcept
233. I mport !l nmportSpec ::= | nportKeyword Al |l Keyword

A.1.6.1.9 Group definitions

234. GoupDef ::= G oupKeyword ldentifier "{" [Mdul eDefinitionsList] "}"
235. GroupKeyword ::= "group"

A.1.6.1.10 External function definitions

236. Ext Functi onDef ::= Ext Keyword Functi onKeyword [Determ nistichbdifier]
Identifier "(" [FunctionFornal ParList] ")" [ReturnType]
237. Ext Keyword ::= "external"

A.1.6.1.11 External constant definitions

238. Ext Const Def ::= Ext Keyword Const Keyword Type ldentifierlList

A.1.6.1.12 Module parameter definitions

239. Modul ePar Def ::= Mdul ePar Keyword (Mdul ePar | ("{" MiltitypedMbdul ePar Li st
"))
240. Modul ePar Keyword :: = "nodul epar”
241. Mul titypedModul ePar Li st ::= {Mdul ePar [Sem Col on]}
242. Modul ePar ::= Type Mdul ePar Li st
243. Modul ePar List ::= ldentifier [AssignnentChar ConstantExpression] {","
I dentifier

[Assi gnnment Char
Const ant Expr essi on] }

A.1.6.1.13 Friend module definitions

244. Fri endModul eDef ::= "friend" "nodul e" IdentifierList [Sem Col on]

A.1.6.2 Control part

245. Modul eControl Part ::= Control Keyword "{" Mbddul eControl Body "}" [WthStatenent]
[Seni Col on
246. Control Keyword ::= "control"
247. Modul eControl Body ::= [Control Statement O Def Li st]
248. Control Stat ement O Def Li st ::= {Control Statenment O Def [Sem Col on]}+
249. Control Statement Or Def ::= (FunctionLocal Def | FunctionLocal Inst) [WthStatenment] |
Cont r ol St at enment
250. Control Statenent ::= TinerStatenents |

Basi cSt atenents |
Behavi our St at enent s |

ETSI

259 ETSI ES 201 873-1 V4.7.1 (2015-06)

SUTSt at enent s |
St opKeywor d

A.1.6.3 Local definitions
A.1.6.3.1 Variable instantiation

251. Varl nstance ::= VarKeyword (([LazyModifier | FuzzyModifier] Type Varlist) |
((Tenpl at eKeyword | RestrictedTenpl ate)
[LazyModi fier | FuzzyModifier] Type TenpVarlist))
252. VarList ::= SingleVarlnstance {"," SingleVarlnstance}
253.Singl eVarlnstance ::= Identifier [ArrayDef] [AssignmentChar Expression]
254. Var Keyword ::= "var"
255. TempVar Li st ::= Singl eTenpVarlnstance {"," SingleTenpVarl nstance}
256. Si ngl eTenpVar I nstance ::= ldentifier [ArrayDef] [Assignnment Char Tenpl at eBody]
257. Variabl eRef ::= ldentifier [ExtendedFi el dRef erence]

A.1.6.3.2 Timer instantiation

258. Timer| nstance ::= Ti mer Keyword VarLi st
259. Ti mer Keyword ::= "timer"
260. ArrayldentifierRef ::= Identifier {ArrayOBitRef}

A.1.6.4 Operations

A.16.4.1 Component operations

261. ConfigurationStatenments ::= Connect St atenent |
MapSt at enent |
Di sconnect St at enent |
UnmapSt at enent |
DoneSt at enent |
Ki | | edSt at enent |
Start TCSt at enent |
St opTCSt at enent |
Ki I | TCSt at enent

262. ConfigurationOps ::= CreateQp |

Sel fOp |
Syst enKeyword |
MICKeywor d |
Runni ngQ |
AliveOp
263. CreateQp ::= Conponent Type Dot CreateKeyword ["(" (SingleExpression |
Mnus) ["," SingleExpression]
")"] [AiveKeyword
264.Sel fQp ::= "sel f"
265. DoneSt at ement :: = Conponent Or Any Dot DoneKeyword [Port Redirect Synbol

[ValueStoreSpec] [I ndexSpec] 1]
| *STATI C SEMANTICS — |If PortRedirectSynbol is present, at |east one of ValueStoreSpec and | ndexSpec
shall be present*/
266. Component Or Any :: = Conponent O Def aul t Ref erence |

(AnyKeyword (Conmponent Keyword | FronKeyword Vari abl eRef)) |

(Al Keyword Conponent Keywor d)

267. Val ueSt oreSpec ::= Val ueKeyword Vari abl eRef

268. | ndexAssi gnnment ::= PortRedirect Synbol | ndexSpec

269. | ndexSpec ::= | ndexMdifier Val ueStoreSpec

270.Ki | | edStat enent ::= Conponent Or Any Dot Kill edkeyword [Port Redirect Synbol

[ValueStoreSpec] [|ndexSpec]]
| *STATI C SEMANTICS — |If PortRedirectSynbol is present, at |east one of ValueStoreSpec and | ndexSpec
shal | be present*/

271. DoneKeyword ::= "done"

272.Ki |l | edKeyword ::= "killed"

273. Runni ngOp ::= Conponent O Any Dot Runni ngKeyword [| ndexAssi gnnent]
274. Runni ngKeyword ::= "runni ng"

275. AliveQp ::= Conponent Or Any Dot AliveKeyword [ndexAssignment]
276. CreateKeyword ::= "create"

277. AliveKeyword ::= "alive"

278. Connect St at ement :: = Connect Keyword Si ngl eConnecti onSpec

279. Connect Keyword ::= "connect"

280. Si ngl eConnectionSpec ::= "(" PortRef "," PortRef ")"

281. Port Ref ::= ConponentRef Colon ArrayldentifierRef

282. Conponent Ref ::= Conponent O Def aul t Ref erence |

Syst enKeyword |

ETSI

260 ETSI ES 201 873-1 V4.7.1 (2015-06)

Sel fp |

MrCKeywor d
283. Conponent Ref Assi gnnment ::= ldentifier ":=" Conponent Ref

284. Di sconnect St at ement :: = Di sconnect Keyword [Si ngl eConnecti onSpec |
Al | Connecti onsSpec |

Al | PortsSpec |
Al | ConpsAl | Port sSpec

]
285. Al | ConnectionsSpec ::= "(" PortRef ")"
286. Al | PortsSpec ::= "(" ConponentRef ":" Al Keyword PortKeyword ")"
287. Al |l ConpsAl | PortsSpec ::= "(" Al Keyword Conponent Keyword ":" Al | Keyword
Port Keyword ")"
288. Di sconnect Keyword ::= "di sconnect"
289. MapSt at ement :: = MapKeyword Si ngl eConnecti onSpec [ParanC ause]
290. Par anCl ause ::= ParanKeyword FunctionActual ParLi st
291. MapKeyword ::= "map"
292. UnmapSt at ement @ : = UnmapKeyword [Si ngl eConnecti onSpec [ParanC ause] |
Al | Connecti onsSpec [ParanC ause] |

Al | PortsSpec |
Al | ConpsAl | Port sSpec

]
293. UnmapKeyword ::= "unmap"
294. Start TCStaterment ::= Conponent O Def aul t Ref erence Dot St art Keywor d
"(" Functionlnstance ")"
295. Start Keyword ::= "start"
296. St opTCSt at ement :: = St opKeyword | (Conponent ReferenceO Literal | Al Keyword
Conponent Keywor d) Dot St opKeywor d
297. Component Ref erenceOrLiteral ::= Conponent O Def aul t Ref erence |
MICKeywor d |
Sel f Op
298. Kill TCStatenment ::= Kill Keyword | ((ConponentReferenceO Literal |
Al | Keyword Conponent Keywor d) Dot
Ki I | Keywor d)
299. Conponent O Def aul t Ref erence :: = Variabl eRef | Functionl nstance
300.Ki | | Keyword ::= "kill"

A.1.6.4.2 Port operations

301. Conmruni cati onStatements :: = SendSt at ement |

Cal | St atenent |
Repl ySt at enent |
Rai seSt at enent |
Recei veSt at enent |
Trigger St atement |
Get Cal | St at enent |
Get Repl ySt at enent |
Cat chSt at enent |
CheckSt at enent |
Cl ear Statenent |

|

Start St at enent

St opSt at enent |

Hal t St at enent |
ChecksSt at eSt at enent

302. SendStatement ::= ArrayldentifierRef Dot PortSendQOp

303. Port SendQ ::= SendOpKeyword "(" InLineTenplate ")" [Tod ause]
304. SendOpKeyword :: = "send"

305. ToCl ause ::= ToKeyword (InLineTenplate |

Addr essRef Li st |
Al | Keywor d Conponent Keywor d

)
306. AddressRefList ::= "(" InLineTenplate {"," |nLineTenplate} ")"
307. ToKeyword ::= "to"
308. Cal | St at enent = ArrayldentifierRef Dot PortCall Qp [Port Cal | Body]
309. PortCall O ::= Call OpKeyword "(" Call Paranmeters ")" [Tod ause]
310. Cal | OpKeyword ::= "cal |"
311. Cal | Paraneters ::= |InLineTenplate ["," CallTi merVal ue]
312. Cal | Ti mer Val ue ::= Expression | Nowai t Keyword
313. Nowai t Keyword ::= "nowait"
314. PortCal | Body ::= "{" CallBodyStatenentList "}"
315. Cal | BodySt at ement Li st :: = {Cal | BodySt at ement [Sem Col on] } +
316. Cal | BodySt at ement :: = Cal | BodyGuard St at ement Bl ock
317. Cal | BodyGuard ::= At GuardChar Cal | BodyOps
318. Cal | BodyQps ::= CGetRepl yStatenment | CatchStat enent
319. ReplyStatenment ::= ArrayldentifierRef Dot PortReplyQp
320. Port Repl yOp :: = Repl yKeyword " (" InLineTenpl ate [ReplyValue] ")" [Tod ause
321. Repl yKeyword ::= "reply"

ETSI

261 ETSI ES 201 873-1 V4.7.1 (2015-06)

322. Repl yVal ue :: = Val ueKeywor d Expression
323. Rai seStatenment ::= ArrayldentifierRef Dot PortRai seQp
324. Port Rai se(p ::= RaiseKeyword "(" Signature "," |nLineTenplate ")"
[Tod ause]
325. Rai seKeyword ::= "raise"
326. Recei veStatement ::= PortOrAny Dot PortRecei veQp
327.PortOrAny ::= ArrayldentifierRef | (AnyKeyword (PortKeyword | FronKeyword
Var i abl eRef))
328. Port Recei veQp ::= Recei veOpKeyword ["(" InLineTenplate ")"] [FronC ause]
[Port Redi r ect
329. Recei veOpKeyword ::= "receive"
330. FronCl ause ::= FronKeyword (InLineTenplate |

Addr essRef Li st |
AnyKeywor d Conponent Keywor d

331. FronKeyword ::= "front
332. Port Redi rect ::= PortRedirectSynbol ((ValueSpec [SenderSpec] [IndexSpec]) |

(Sender Spec [| ndexSpec]) |

| ndexSpec

)
333. Port Redi rect Synbol ::= "->"
334. Val ueSpec ::= Val ueKeyword (VariableRef | ("(" SingleValueSpec {"," SingleValueSpec} ")"))
335. Si ngl eVal ueSpec ::= Vari abl eRef [Assignnment Char [DecodedModifier ["(" Expression] ")"]]

Fi el dRef er ence Ext endedFi el dRef er ence]

| * STATI C SEMANTI CS — Fi el dRef erence shall not be ParRef and ExtendedFi el dRef erence shall not be
TypeDef | dentifier*/

336. Val ueKeyword :: = "val ue"

337. Sender Spec ::= Sender Keyword Vari abl eRef

338. Sender Keyword ::= "sender"

339. TriggerStatement ::= PortOrAny Dot PortTrigger Op

340. PortTriggerQp ::= Trigger QpKeyword ["(" InLineTenplate ")"] [FronC ause
[Port Redirect]

341. Tri gger OpKeyword ::= "trigger"
342. Get Cal | Statement ::= PortOrAny Dot PortGet Cal | Op
343. PortCGetCal | Op ::= CetCal | QpKeyword ["(" InLineTenplate ")"] [FronC ause
[Port Redi rect Wt hPar ani
344. Get Cal | OpKeyword ::= "getcal "
345. Port Redi rect Wt hParam : : = Port Redi rect Synbol Redirect Wt hPar anSpec
346. Redi rect Wt hPar anSpec :: = (ParanBSpec [Sender Spec] [IndexSpec]) |
(Sender Spec [ndexSpec]) |

| ndexSpec
347. Par anSpec ::= ParanKeyword ParanmAssi gnnent Li st
348. Par anKeyword ::= "parant
349. Par amAssi gnment List ::= "(" (AssignmentlList | VariableList) ")"
350. Assi gnment Li st ::= Variabl eAssignment {"," Variabl eAssi gnnent}
351. Vari abl eAssi gnnment ::= Vari abl eRef Assi gnnment Char [DecodedModifier ["(" Expression] ")"]
I dentifier
352. Variabl eList ::= VariableEntry {"," Variabl eEntry}
353. Variabl eEntry ::= Variabl eRef | M nus
354. Get Repl yStatement ::= PortOrAny Dot Port Get Repl yOp
355. Port Get Repl yOp :: = Get Repl yOpKeyword [" (" InLineTenpl ate [Val ueMat chSpec]

")"] [FronC ause] [PortRedirectWthVal ueAndPar anj
Por t Redi r ect Synbol Redirect Wt hVal ueAndPar anSpec
(Val ueSpec [Paranftspec] [Sender Spec]
[ndexSpec]) | Redirect WthParanSpec

356. Port Redi rect Wt hVal ueAndParam : :
357. Redi rect Wt hVal ueAndPar anSpec : :

358. Get Repl yOpKeyword ::= "getreply"
359. Val ueMat chSpec : Val ueKeyword | nLi neTenpl at e
360. CheckSt at enment Port Or Any Dot Port CheckOp

361. Port CheckQp ::= CheckOpKeyword ["(" CheckParaneter ")"]
362. CheckOpKeyword ::= "check"
363. CheckPar anet er CheckPort OpsPresent |

FronC ausePresent |

Redi r ect Present

T

364. FronCl ausePresent ::= FronC ause [Port RedirectSynbol ((Sender Spec
[ndexSpec]) |
| ndexSpec)]
365. Redirect Present ::= PortRedirectSynbol ((SenderSpec [IndexSpec]) |
| ndexSpec)
366. CheckPort OpsPresent ::= PortReceive® |
Port Get Cal | Op |
Port Get Repl yOp |
Port Cat chOp
367. CatchStatenent ::= PortOrAny Dot Port Cat chQp
368. Port CatchQp ::= CatchOQpKeyword ["(" CatchQpParaneter ")"] [FronC ause]
[Port Redi r ect
369. Cat chOpKeyword ::= "catch"
370. Cat chQpPar aneter ::= Signature "," |nLineTenplate | TinmeoutKeyword

ETSI

262 ETSI ES 201 873-1 V4.7.1 (2015-06)

371.C earStatenent ::= Port O All Dot d ear OpKeyword

372.PortOAll ::= ArrayldentifierRef | Al Keyword PortKeyword

373. Cl ear OpKeyword ::= "clear"

374. StartStatenment ::= Port O All Dot StartKeyword

375. StopStatement ::= PortOr All Dot StopKeyword

376. St opKeyword ::= "stop"

377.HaltStatement ::= PortOrAll Dot HaltKeyword

378. Hal t Keyword ::= "halt"

379. AnyKeyword ::= "any"

380. CheckStateStatenent ::= PortOr All Any Dot CheckStat eKeyword "(" Singl eExpression
DE

381. Port O All Any ::= Port O All | AnyKeyword Port Keyword

382. CheckSt at eKeyword :: = "checkstate"

A.1.6.4.3 Timer operations

383. TinerStatenments ::= StartTi ner Statenent |
St opTi ner St at enent |
Ti neout St at emrent

384. Timer Ops ::= ReadTinmer O | Runni ngTi mer Op

385. StartTinerStatenent ::= ArrayldentifierRef Dot StartKeyword ["(" Expression
386. StopTimerStatenent ::= TinerRef O All Dot StopKeyword

387. TimerRef O All ::= ArrayldentifierRef | Al Keyword Ti mer Keywor d

388. ReadTimerQp ::= ArrayldentifierRef Dot ReadKeyword

389. ReadKeyword ::= "read"

390. Runni ngTi merOp :: = TinmerRef O Any Dot Runni ngKeyword [ndexAssi gnment]

391. Ti meout St aterment ::= Timer Ref O Any Dot Ti meout Keyword [I ndexAssi gnrent]

392. TimerRef O Any ::= ArrayldentifierRef |

(AnyKeyword Ti nmer Keyword) |
(AnyKeyword FronKeyword ldentifier)
393. Ti meout Keyword ::= "timeout"

A.1.6.4.4 Testcase operation

394. TestcaseQperation ::= TestcaseKeyword "." StopKeyword ["(" {(FreeText |
I nLi neTenpl at e)
"1t
")
A.1.6.5 Type
395. Type ::= PredefinedType | ReferencedType
396. Predefi nedType ::= BitStri ngkeyword |

Bool eanKeyword |

Char St ri ngKeyword |
Uni versal CharString |
| nt eger Keyword |
Cctet StringKeyword |
HexSt ri ngKeyword |
Ver di ct TypeKeyword |
Fl oat Keyword |

Addr essKeywor d |
Def aul t Keyword |

AnyTypeKeywor d
397.BitStringKeyword ::= "bitstring"
398. Bool eanKeyword :: = "bool ean"
399. I ntegerKeyword ::= "integer"
400. Cctet StringKeyword ::= "octetstring"
401. HexStri ngKeyword ::= "hexstring"
402. Ver di ct TypeKeyword ::= "verdi cttype"
403. Fl oat Keyword ::= "float"
404. Addr essKeyword ::= "address"
405. Def aul t Keyword ::= "defaul t"
406. AnyTypeKeyword ::= "anytype"
407. Char Stri ngKeyword ::= "charstring"
408. Uni versal Char String ::= Universal Keyword Char St ri ngKeyword
409. Uni ver sal Keyword ::= "universal"
410. Ref erencedType ::= Extendedl dentifier [ExtendedFi el dRef erence]
411. TypeReference ::= ldentifier
412. ArrayDef ::= {"[" SingleExpression [".." Singl eExpression] "]"}+

/* STATI C SEMANTICS - ArrayBounds will resolve to a non negative value of integer type */

ETSI

263 ETSI ES 201 873-1 V4.7.1 (2015-06)

A.1.6.6 Value

413. Val ue ::= PredefinedVal ue | ReferencedVal ue
414. PredefinedVal ue ::= Bstring |
Bool eanVal ue |
Char Stri ngVal ue |
Nunber | /* |IntegerValue */
GCstring |
Hstring |
Ver di ct TypeVal ue |
Identifier | /* EnuneratedVal ue */

Fl oat Val ue |
Addr essVal ue |
Oni t Keyword
415. Bool eanVal ue ::= "true" | "fal se"
416. Ver di ct TypeVal ue ::= "pass" |
"fail" |
"inconc" |
"none" |
"error"
417. Char StringValue ::= Cstring | Quadruple | USIIikeNotation
418. Quadrupl e ::= CharKeyword " (" Nunber "," Nunber "," Nunber "," Nunber ")"
419. USIli keNotation ::= CharKeyword "(" UDike { "," UDike } ")"
420.UDike ::= (Yu) {"+"} {Hex}#(1,8)
421. Char Keyword ::= "char"
422. Fl oat Val ue ::= Fl oat Dot Not ati on |
Fl oat ENot ati on |
NaNKeywor d
423. NaNKeyword ::= "not _a_nunber"
424. Fl oat Dot Not ation ::= Number Dot Deci mal Nunber
425. Fl oat ENot ati on ::= Nunber [Dot Deci nal Nunber] Exponential [M nus]
Nurber
426. Exponential ::="E"
427. Ref erencedVal ue :: = Extendedl dentifier [ExtendedFi el dRef erence]
428. Nunmber ::= (NonZeroNum{NurT}) | "o"
429. NonZer oNum : "itpot2") 3" | "4" | "5" | "“e" | "7 | "8 | "9"
430. Deci nal Nunber o= {Nun +
431. Num::= "0" | NonZer oNum
432.Bstring ::= """ {Bin} "'" "B"
433.Bin ::="0" | "1"
434. Hstring ::= " {Hex} H
435.Hex ::= Num| "A" | "B" | "C" | "D" | "E' | "F" | "a" | "b" | "c" |
dt] "e" | "f"
436.Ostring ::= """ {Cct} "'" "O
437. Cct ::= Hex Hex
438.Cstring ::= " {Char}
439. Char ::=/* REFERENCE - A character defined by the relevant CharacterString type. For charstring

a character fromthe character set defined in ITUT T.50. For universal charstring a character from
any character set defined in | SO |EC 10646 */

440. | dentifier ::= A pha {A phaNum | Underscore}
441. Al pha ::= Upper Al pha | Lower Al pha
442. Al phaNum ::= Al pha | Num
443. UpperAlpha ::="A" | "B" | "C" | "D'" | "E" | "F" | "G | "H | "I" |
T UK LML UNC MO P Q] R
[S M R I R U A IR VA IR VIV D S I A B4
444, Lower Alpha ::="a" | "b" | "c¢" | "d" | “e“ ["f"] "g" | "h" | "i" |
S0 T e I O T A T A B
s | L Ll] e |y]
445. Ext endedAl phaNum : : = /* REFERENCE - A graphi cal character fromthe BASIC LATIN or fromthe
LATI N-1 SUPPLEMENT character sets defined in 1SQ | EC 10646 (characters fromchar (0,0,0,32) to char
(0,0,0,126), fromchar (0,0,0,161) to char (0,0,0,172) and fromchar (0,0,0,174) to char (0,0, 0, 255)
*/
446. FreeText ::= """ {Ext endedAl phaNunt """
447. AddressValue ::= "nul "
448. Omi t Keyword ::= "omt"

A.1.6.7 Parameterization

449. | nPar Keyword ::= "in"
450. Qut Par Keyword ::= "out"
451. | nQut Par Keyword ::= "inout"
452. For mal Val uePar ::= [(| nPar Keyword |

| nQut Par Keyword |

Qut Par Keywor d

)] [LazyModi fier | FuzzyMdifier] Type ldentifier
[":=" (Expression | Mnus)]

ETSI

264 ETSI ES 201 873-1 V4.7.1 (2015-06)

453. Formal Port Par ::= [l nQut Par Keyword] ldentifier ldentifier

/* The first Identifier refers to the port type. The second ldentifier refers to the port paraneter
identifier */

454. Formal Ti mer Par ::= [l nQut Par Keyword] Ti mer Keyword |dentifier
455. For mal Tenpl atePar ::= [(| nParKeyword |

Qut Par Keywor d |
| nQut Par Keywor d

)] (Tenpl at eKeyword | RestrictedTenpl ate) [LazyModifier |
FuzzyModi fi er

Type ldentifier [":=" (lnLineTenplate | M nus)]
456. RestrictedTenplate ::= OritKeyword | (Tenpl ateKeyword Tenpl at eRestriction)
457. Tenpl ateRestriction ::= "(" (OnmtKeyword |

Val ueKeyword |
Pr esent Keywor d

) ")
A.1.6.8 Statements
A.1.6.8.1 With statement
458. WthStatement ::= WthKeyword WthAttribLi st
459. Wt hKeyword ::= "with"
460. WthAttribList ::="{" MiltiWthAttrib "}"
461. Multi WthAttrib ::= {SingleWthAttrib [Sem Col on]}
462. Singl eWthAttrib ::= Attri bKeyword [Overri deKeyword] [AttribQualifier]
FreeText
463. Attri bKeyword ::= EncodeKeyword |

Var i ant Keyword |

Di spl ayKeyword |
Ext ensi onKeyword |

Opt i onal Keywor d
464. EncodeKeyword :: = "encode"

465. Vari ant Keyword ::= "variant"

466. Di spl ayKeyword ::= "displ ay"

467. Ext ensi onKeyword ::= "extension"

468. Overri deKeyword ::= "override"

469. AttribQualifier ::="(" DefOFieldRefList ")"

470. Def O Fiel dRef List ::= Def O FieldRef {"," Def O Fi el dRef}

471. Def O Fiel dRef ::= Qualifiedldentifier |
((FieldReference | "[" Mnus "]") [ExtendedFi el dRef erence]) |
Al | Ref

472. Qualifiedldentifier ::= {ldentifier Dot} Identifier

473. Al Ref ::= (G oupKeyword Al | Keyword [Except Keyword "{" QualifiedldentifierlList

"1"1) | ((TypeDef Keyword |
Tenpl at eKeywor d |

Const Keyword |
Al t st epKeyword |
Test caseKeyword |
Functi onKeyword |
Si gnat ur eKeywor d |
Mbdul ePar Keywor d
) Al Keyword [Except Keywor d
"{" ldentifierlList

")

A.1.6.8.2 Behaviour statements

474. Behavi our St atenent s :: = Test casel nstance |
Functi onl nst ance |
Ret ur nSt at enent |
Al t Construct |
I nterl eavedConstruct |
Label St at enent |
Got oSt at enent |
Repeat St at enent |
Deacti vat eSt at enent |
Al t st epl nstance |
ActivateQp |
Br eakSt at enent |
Cont i nueSt at enment

475. Set Local Verdi ct ::= SetVerdi ct Keyword "(" Singl eExpression {"," Logltent

)
476. Set Verdi ct Keyword ::= "setverdict"
477. Get Local Verdict ::= "getverdict"

ETSI

265 ETSI ES 201 873-1 V4.7.1 (2015-06)

478. SUTSt atenments ::= ActionKeyword " (" ActionText {StringQOp ActionText}
479. ActionKeyword ::= "action"

480. ActionText ::= FreeText | Expression

481. ReturnStatement ::= ReturnKeyword [Expression | |nLineTenplate]

/* STATI C SEMANTI CS - Expression shall evaluate to a value of a type conpatible with the return type
for functions returning a value. It shall evaluate to a value, tenplate (literal or tenplate
instance), or a matching mechani smconpatible with the return type for functions returning a

tenpl ate. */
482. AltConstruct ::= Al tKeyword "{" AltGuardList "}"
483. Al t Keyword ::= "alt"
484. Al t GuardLi st ::= {CGuardStatenment | El seStatenent [Semn Col on]}
485. GuardStatenment ::= Al tCGuardChar (Al tsteplnstance [StatenentBl ock] |
GuardOp St at enent Bl ock)
486. El seStatement ::= "[" El seKeyword "]" StatenentBl ock
487. Al t GuardChar ::= "[" [Bool eanExpression] "]"
488. GuardQp :: = Ti neout St at ement |
Recei veSt at enent |
Trigger St at ement |
CGet Cal | St at ement |
Cat chSt at enent |
CheckSt at enent |
Cet Repl ySt at enent |
DoneSt at enent |
Ki | | edSt at enent
489. I nterl eavedConstruct ::= Interl eavedKeyword "{" |nterl eavedGuardLi st
490. I nterl eavedKeyword ::= "interl eave"
491. I nterl eavedQuardLi st ::= {Interl eavedGar dEl enent [Sem Col on] } +
492. I nterl eavedGuar dEl enent ::= Interl eavedGuard Statenent Bl ock
493. Interl eavedGuard ::= "[" "]" GuardQp
494. Label Statenment ::= Label Keyword |dentifier
495. Label Keyword ::= "l abel "
496. Got oSt at enent :: = CGotoKeyword ldentifier
497. Got oKeyword ::= "goto"
498. Repeat Statenent ::= "repeat"
499. ActivateQp ::= ActivateKeyword "(" Al tsteplnstance ")"
500. ActivateKeyword ::= "activate"
501. DeactivateStatenment ::= DeactivateKeyword ["(" Conponent O Def aul t Ref erence
my
502. Deact i vat eKeyword ::= "deactivate"
503. BreakSt at ement ::= "break"
504. Conti nueStatenent ::= "continue"

A.1.6.8.3 Basic statements

505. Basi cStatements :: = Assignment |

LogSt at enent |

LoopConstruct |
Condi ti onal Construct |

Sel ect CaseConstruct |
St at enent Bl ock
506. Expression ::= Singl eExpression | ConpoundExpressi on
507. ConpoundExpression ::= Fi el dExpressionList | ArrayExpression

/* STATI C SEMANTI CS - Wt hin ConmpoundExpression the ArrayExpression can be used for Arrays, record,
record of and set of types. */

508. Fi el dExpressionList ::= "{" Fiel dExpressionSpec {"," Fi el dExpressi onSpec}
"y

509. Fi el dExpressi onSpec :: = Fi el dRef erence Assi gnnment Char Not UsedOr Expr essi on

510. ArrayExpression ::= "{" [ArrayEl enent ExpressionList] "}"

511. ArrayEl ement Expr essi onLi st ::= Not UsedOr Expression {"," Not UsedOr Expressi on}

512. Not UsedOr Expressi on ::= Expression | Mnus

513. Const ant Expressi on :: = Singl eExpressi on | ConpoundConst Expr essi on

514. Bool eanExpressi on :: = Singl eExpression

/* STATI C SEMANTI CS - Bool eanExpression shall resolve to a Value of type Bool ean */
515. ConpoundConst Expressi on :: = Fi el dConst Expressi onLi st | ArrayConst Expression

/* STATI C SEMANTI CS - W thin ConpoundConst Expression the ArrayConst Expression can be used for
arrays, record, record of and set of types. */

516. Fi el dConst ExpressionList ::= "{" Fi el dConst ExpressionSpec {"," Fi el dConst Expressi onSpec}
ny

517. Fi el dConst Expr essi onSpec :: = Fi el dRef erence Assi gnnment Char Const ant Expr essi on

518. ArrayConst Expression ::= "{" [ArrayEl ement Const ExpressionList] "}"

519. Arr ayEl ement Const Expr essi onLi st ::= Const ant Expression {"," Constant Expressi on}

ETSI

266 ETSI ES 201 873-1 V4.7.1 (2015-06)

520. Assi gnnment ::= Variabl eRef Assignnent Char (Expression | Tenpl at eBody)

/* STATI C SEMANTICS - The Expression on the right hand side of Assignnent shall evaluate to an
explicit value of a type conpatible with the type of the left hand side for value variabl es and
shall evaluate to an explicit value, tenplate (literal or a tenplate instance) or a matching
nmechani sm conpatible with the type of the left hand side for tenplate variables. */

521. Si ngl eExpression ::= Xor Expression {"or" Xor Expression}

/* STATIC SEMANTICS - |If nore than one Xor Expression exists, then the Xor Expressions shall eval uate
to specific values of conpatible types */

522. Xor Expression ::= AndExpression {"xor" AndExpression}

/* STATIC SEMANTICS - |If nore than one AndExpression exists, then the AndExpressions shall eval uate
to specific values of conpatible types */

523. AndExpression ::= Not Expression {"and" Not Expressi on}

/* STATIC SEMANTICS - If nore than one Not Expression exists, then the Not Expressions shall eval uate
to specific values of conpatible types */
524. Not Expression ::= ["not"] Equal Expression

/* STATI C SEMANTI CS - Operands of the not operator shall be of type bool ean or derivatives of type
Bool ean. */
525. Equal Expression :: = Rel Expressi on {Equal Op Rel Expression}

/* STATIC SEMANTICS - If nore than one Rel Expression exists, then the Rel Expressions shall eval uate
to specific values of conpatible types. If only one Rel Expression exists, it shall not derive to a
ConmpoundExpr essi on. */

526. Rel Expression ::= ShiftExpression [Rel Op ShiftExpression] | ConpoundExpression

/* STATIC SEMANTICS - If both ShiftExpressions exist, then each ShiftExpression shall evaluate to a
specific integer, Enunerated or float Value or derivatives of these types */
527. Shift Expression ::= Bit O Expression {ShiftOp BitO Expression}

/* STATI C SEMANTICS - Each Result shall resolve to a specific Value. If nore than one Result exists
the right-hand operand shall be of type integer or derivatives and if the shift opis "<<" or ">>"
then the | eft-hand operand shall resolve to either bitstring, hexstring or octetstring type or
derivatives of these types. If the shift opis " */

528. Bi t Or Expression ::= BitXor Expressi on {"or4b" Bit Xor Expressi on}

/* STATIC SEMANTICS - If nore than one Bit Xor Expression exists, then the BitXor Expressi ons shal
evaluate to specific values of conpatible types */
529. Bi t Xor Expressi on ::= Bi t AndExpressi on {"xor4b" Bit AndExpressi on}

/* STATIC SEMANTICS - If nore than one BitAndExpression exists, then the BitAndExpressions shal
evaluate to specific values of conpatible types */
530. Bi t AndExpressi on ::= BitNot Expression {"and4b" Bit Not Expression}

/* STATIC SEMANTICS - If nore than one BitNot Expression exists, then the BitNot Expressions shal
evaluate to specific values of conpatible types */
531. Bi t Not Expression ::= ["not4b"] AddExpression

/* STATIC SEMANTICS - If the not4b operator exists, the operand shall be of type bitstring
octetstring or hexstring or derivatives of these types. */
532. AddExpression ::= Ml Expressi on {AddOp Mil Expressi on}

/* STATI C SEMANTI CS - Each Mul Expression shall resolve to a specific Value. If nore than one

Mul Expression exists and the AddOp resolves to StringOp then the Ml Expressions shall be valid
operands for StringQ. |f nore than one Mul Expression exists and the AddOp does not resolve to
StringOp then the Mil Expression shall both resolve to type integer or float or derivatives of these
types. If only one Mul Expression exists, it shall not derive to a ConpoundExpression. */

533. Mul Expression ::= UnaryExpression {MiltiplyQp UnaryExpression} | ConpoundExpression

/* STATI C SEMANTI CS - Each UnaryExpression shall resolve to a specific Value. If nore than one
Unar yExpr essi on exi sts then the UnaryExpressions shall resolve to type integer or float or
derivatives of these types. */

534. UnaryExpression ::= [UnaryOQp] Primary

/* STATIC SEMANTICS - Primary shall resolve to a specific Value of type integer or float or
derivatives of these types.*/

535.Primary ::= pCall |
Val ue
"(" Singl eExpression ")"
536. Ext endedFi el dReference ::= {(Dot (ldentifier | PredefinedType)) |

ArrayOr Bi t Ref
("[" Mnus "T")

ETSI

267 ETSI ES 201 873-1 V4.7.1 (2015-06)

1+

/* STATIC SEMANTIC - The Identifier refers to a type definition if the type of the Varlnstance or
Ref erencedVal ue in whi ch the ExtendedFi el dReference is used is anytype. ArrayOrBitRef shall be used
when referencing el enents of values or arrays. The square brackets with dash shall be used when
referencing inner types of a record of or set of type. */
537. pCal | ::= ConfigurationQOps |

Cet Local Verdict |

Ti ner Ops |

Test casel nst ance |

(Functionl nst ance [Ext endedFi el dRef erence]) |

(Tenpl at eOps [Ext endedFi el dRef erence]) |

ActivateOp
538. AddOp ::= "+" |
e
StringOp
/* STATI C SEMANTICS - QOperands of the "+" or "-" operators shall be of type integer or float or
derivations of integer or float (i.e. subrange) */
539. MultiplyQo ::="*" | "/" | "mod" | "renf

/* STATI C SEMANTICS - Qperands of the "*", "/", remor nod operators shall be of type integer or
float or derivations of integer or float (i.e. subrange) */

540. UnaryQp ::= "+" | "-

/* STATI C SEMANTICS - QOperands of the "+" or "-" operators shall be of type integer or float or
derivations of integer or float (i.e. subrange) */

541.Rel Qp ::= "<" | ">" | ">=" | "<="

/* STATI C SEMANTI CS - the precedence of the operators is defined in Table 6 */

542. Equal Op ::= "==" | "I="

543.Stringdp ::= "&"

/* STATI C SEMANTI CS - Operands of the |list operator shall be bitstring, hexstring, octetstring,
(universal) character string, record of, set of, or array types, or derivates of these types */

544. ShiftQp ::= "<<" | ">>" | "<@ | "@"

545. LogSt at ement ::= LogKeyword "(" Logltem{"," Loglten} ")"
546. LogKeyword ::= "l 0g"

547. Logltem ::= FreeText | InLineTenplate

548. LoopConstruct ::= For Statenent |

Wi | eSt at enent |
DoWhi | eSt at enent

549. For Statenment ::= ForKeyword "(" Initial Sem Col on Bool eanExpressi on
Seni Col on Assignnent ")" StatenentBl ock
550. For Keyword ::= "for"
551.Initial ::= Varlnstance | Assignnent
552. Wil eStatenment ::= Wil eKeyword "(" Bool eanExpression ")" StatenentBl ock
553. Wi | eKeyword ::= "while"
554. DoWhi | eSt at ement :: = DoKeyword St atenent Bl ock Wil eKeyword " (" Bool eanExpressi on
DE
555. DoKeyword ::= "do"
556. Condi ti onal Construct ::= |fKeyword "(" Bool eanExpression ")" StatenentBl ock
{El sel fd ause} [El sed ause]
557. | f Keyword ::= "if"
558. El sel fCl ause ::= El seKeyword | fKeyword "(" Bool eanExpression ")" StatenentBl ock
559. El seKeyword ::= "el se"
560. El seC ause ::= El seKeyword St at ement Bl ock
561. Sel ect CaseConstruct ::= Sel ect Keyword [Uni onKeyword] " (" Singl eExpression ")" Sel ect CaseBody
562. Sel ect Keyword ::= "sel ect"
563. Sel ect CaseBody ::= "{" {Sel ect Case}+ "}"
564. Sel ect Case ::= CaseKeyword (" (" InLineTenplate {"," |nLineTenplate}

)" | El seKeyword) StatenentBl ock
[** STATI C SEMANTI CS | nLi neTenpl ate-s shall be Identifier-s if the UnionKeyword is present in the
surroundi ng Sel ect CaseConstruct (see clause 19.3.2)*/

565. CaseKeyword ::= "case"

566. Extendedl dentifier ::= [ldentifier Dot] Identifier

567.ldentifierList ::= Ildentifier {"," ldentifier}

568. QualifiedldentifierList ::= Qualifiedldentifier {"," Qualifiedldentifier}

ETSI

A.1.6.9 Miscellaneous productions

569.
570.
.Sem Colon ::=";"
572. :
573.
574.
575.
576.
577.
578.
579.
580.

571

Dot ::="."
Mnus ::="-"

Colon ::=":"
Underscore ::="_"

Assignnent Char ::= ":="

I ndexMbdi fier ::= "@ndex"
DetermnistichWodifier ::= "@eternmnistic"
LazyModifier ::= "@azy"

FuzzyModifier ::= "@uzzy"

Casel nsenhbdi fier ::= "@uocase"

DecodedModi fier ::= "@ecoded"

268

ETSI

ETSI ES 201 873-1 V4.7.1 (2015-06)

269 ETSI ES 201 873-1 V4.7.1 (2015-06)

Annex B (normative):
Matching values

B.1 Template matching mechanisms

This annex specifies the matching mechanisms that may be used in TTCN-3 templates (and only in templates).

B.1.1 Matching specific values

Specific values are the basic matching mechanism of TTCN-3 templates. Specific values in templates are expressions
which do not contain any matching mechanisms or wildcards.

Unless otherwise specified, a template field matches the corresponding field value if, and only if, the field value has
exactly the same value as the value to which the expression in the template evaluates.

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

/1 Gven the nessage type definition
type record MyMessageType

i nt eger fieldl,
charstring field2,

bool ean field3 optional,
i nt eger field4[4]

}

/1l A message tenpl ate using specific values could be
tenpl ate MyMessageType MyTenpl ate: =

fieldl := 3+2, /'l specific value of integer type
field2 := "My string", [/ specific value of charstring type
field3 := true, /'l specific value of bool ean type
fieldd :={1,2,3, 4} /] specific value of integer array

B.1.2 Matching mechanisms instead of values

The following matching mechanisms may be used in place of explicit values.

B.1.2.1 Template list

Template lists specify lists of acceptable values. It can be used on values of all types. A template list may also contain
templates.

A template field that uses a template list matches the corresponding field if, and only if, the field value matches any one
of the values or templates in the template list. Each value or template in the template list shall be of the type declared
for the template field in which this mechanism is used.

Besides specifying individual values, it is also possible to add all elements of an existing r ecord of orset of
template into a template list usingan al | f r omclause.

Restrictions

a) The type of the template list and the member type of the template in the al | f r omclause shall be
compatible.

b) The template in the al | fr omclause as a whole shall not resolve into a matching mechanism (i.e. its
elements may contain any of the matching mechanisms or matching attributes with the exception of those
described in the following restriction).

ETSI

270 ETSI ES 201 873-1 V4.7.1 (2015-06)
¢) Individual fields of the template in the al | f r omclause shall not resolve to any of the following matching
mechanisms: AnyElementsOrNone, permutation.

d) Each value or template in the template list shall be of the type declared for the template field in which this
mechanism is used.

Examples

EXAMPLE I:

tenpl ate MyMessage MyTenpl ate: =

fieldl := (2,4,6), /1 list of integer val ues
field2 := ("Stringl", "String2"), /1 list of charstring val ues
}
EXAMPLE 2:

type record of integer Rol;
tenplate Rol t_Roll := {1, 2, (6..9)};

tenplate Rol t_Rol2 := {1, *, 3};

template integer t_il := (all fromt_Rol1, 100);
I/l results in (1, 2, (6..9), 100)

tenplate integer t_i2 := (0, all fromt_Rol2);
/] causes an error because t_Rol 2 contains AnyEl ement sO None

tenplate Rol t_Rol3 := (all fromt_Rol1);
/] causes an error because nenber type of t_Rol1 (integer)
/1 is not conpatible with the list tenplate type (Rol)

tenplate Rol t_Rol4 := ?;

tenplate Rol t_Rol5 := (all fromt_Rol4);
/'l causes an error, because t_Rol4 resolves into a nmatchi ng mechani sm

B.1.2.2 Complemented template list

The keyword conpl enent denotes a list of values that will not be accepted as values (i.e. it is the complement of a
template list). It can be used on all values of all types. A complemented value list may also contain templates.

A template field that uses complement matches the corresponding field if and only if the corresponding field's value
does not match any of the values or templates listed in the template list. The template list may be a single value, of
course.

Besides specifying individual values, it is possible to add all elements of an existing r ecor d of orset of template
into a complement template list using an al | f r omclause.

Restrictions

a) The type of the complemented template list and the member type of the template in the al | f r omclause
shall be compatible.

b) The template in the al | fr omclause as a whole shall not resolve into a matching mechanism (i.e. its
elements may contain any of the matching mechanisms or matching attributes with the exception of those
described in the following restriction).

¢) Individual fields of the template in the al | f r omclause shall not resolve to any of the following matching
mechanisms: AnyElementsOrNone, permutation.

d) Each value or template in the list shall be of the type declared for the template field in which the complement
is used.

e) The complement of a template list shall not match om t .

ETSI

271 ETSI ES 201 873-1 V4.7.1 (2015-06)

Examples

EXAMPLE I:

tenpl ate MyMessage MyTenpl ate: =

fieldl := conplenent (1,3,5), /1 1ist of unacceptable integer values
1:‘ield3::not(true) /1 will match false

} :

EXAMPLE 2:

type record of integer Rol;
tenplate Rol t_Roll := {1, 2, (6..9)};

tenplate Rol t_Rol2 := {1, *, 3};

tenplate integer t_il := conplenment(all fromt_Rol1, 100);
I/l results in (1, 2, (6..9), 100)

tenplate integer t_i2 := conplement (0, all fromt_Rol 2);
/] causes an error because t_Rol 2 contains AnyEl ement sO None

tenplate Rol t_Rol3 := conplenent(all fromt_Rol1);
/] causes an error because nenber type of t_Roll (integer) is not conpatible
/1 with the conplenmented list tenplate type (Rol)

tenplate Rol t_Rol4 := ?;

tenplate Rol t_Rol5 := conplenment (all fromt_Rol4);
/] causes an error because t_Rol4 resolves into a matchi ng nechani sm

B.1.2.3 Any value

The matching symbol "?" (AnyValue) matches any value of the specified type. It can be used on values of all types.

A template field that uses the any value mechanism matches the corresponding field if, and only if, the field evaluates to
a single element of the specified type.

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

tenpl ate MyMessage MyTenpl ate: =

fieldl := 2, /1 will match any integer

field2 := 2, /1 will match any non-enpty charstring val ue
field3 := 2, /1 will match true or false

fieldd :=7? /1 will match any sequence of integers

B.1.2.4 Any value or none

The matching symbol "*" (AnyValueOrNone) is used to indicate that any valid value and the omission of the given
optional field are acceptable. It can be assigned to templates of any type as a whole or to optional fields of set or
r ecor d templates. At the time of matching, it shall be applied to optional fields of r ecor d and set templates only.

A template field that uses this symbol matches the corresponding field if, and only if; either the field evaluates to any
element of the specified type, or if the field is absent.

Restrictions
a) It can be assigned to templates of any type as a whole or to optional fields of set orr ecor d templates.

b) At the time of matching, it shall be applied to optional fields of record and set templates only.

ETSI

272 ETSI ES 201 873-1 V4.7.1 (2015-06)

Examples
type record MyMessage
{
i nt eger fieldl,
MyRecor dof field2 optional,
bool ean fiel d3 optional
}
tenpl ate MyMessage MyMessageTenpl ate: =
{
field3:=* /'l matches true or false or onmtted field3
}
tenpl ate MyMessage MyMessageTenpl at e2: =
fieldl : = *, /l causes an error as fieldl is nandatory
}
tenpl ate MyRecordof MyRecof Tenplate : = *; /1 this assignnent is allowed
tenpl ate bool ean MyBool Tenpl ate : = *; /1 this assignnent is allowed as well

tenpl ate MyMessage MyMessageTenpl at e3: =

fieldl : = 42,
field2 : = MyRecof Tenpl at e,

/1l matches any valid value allowed by M/Recordof of absent field2
field3 := MyBool Tenpl ate

/'l matches true or false or onmtted field3

}

Mybool eanVar := match ({}, MyRecof Tenpl ate);
/] causes an error as a record of tenplate shall not be AnyVal ueO None
/1 at the tinme of matching

Mybool eanVar := match ({42,omt,true}, MyMessageTenpl at e3);
/1 matches and returns true

B.1.2.5 Value range

Ranges indicate a bounded range of acceptable values, including or excluding the boundaries.

A template field that uses a range matches the corresponding field if, and only if, the field value is equal to one of the
values in the range.

Restrictions

a) When used for values of i nt eger orfl oat types (and integer or float subtypes), a boundary value shall be
either:

1) infinity or -infinity;
2) anexpression that evaluates to a specific integer or float value.

b) The lower boundary shall be put on the left side of the range, the upper boundary at the right side. The lower
boundary shall be less than the upper boundary.

¢) When used in templates or template fields of charstring or universal charstring types, the boundaries shall
evaluate to valid character positions according to the coded character set table(s) of the type (e.g. the given
position shall not be empty).

d) Empty positions between the lower and the upper boundaries are not considered to be valid values of the
specified range.

ETSI

273 ETSI ES 201 873-1 V4.7.1 (2015-06)

Examples
tenpl ate MyMessage MyTenpl ate: =

fieldl := (1 .. !6), /1 range of integer type from1l to 5

/1 other entries for fieldl mght be (-infinity to 8) or (112 to infinity)

B.1.2.6 SuperSet

SuperSet is denoted by the keyword super set . SuperSet matches a set of values if, and only if, the set of values
contains at least all of the elements defined within the SuperSet, and may contain more. The successful match shall be
produced only if there exists such a one-to-one mapping from the SuperSet elements to the elements of the set of values
where each SuperSet element matches the element of set of values it is mapped to. The SuperSet matching mechanism
may contain templates (including template variables) and matching mechanisms with the restrictions given below.
However, the length matching attribute may be attached to the SuperSet itself.

NOTE: The SuperSet matching mechanism imposes an implicit length restriction on the matched set of values:
the set of values shall contain at least as many elements as the SuperSet template in order to produce a
successful match.

Besides specifying individual values, it is possible to add all elements of ar ecord of orset of template into
SuperSets using an al | f r omclause.

Restrictions
a) SuperSet is an operation for matching that shall be used only on values of set of types.
b) Individual members of the SuperSet's argument shall be of the type replicated by the set of .

¢) The member type of the set of associated with the SuperSet template and the member type of the template in
the al I fr omclause shall be compatible.

d) Thetemplateinthe al | fr omclause as a whole shall not resolve into a matching mechanism (i.e. its
elements may contain any of the matching mechanisms or matching attributes with the exception of those
described in the following restriction).

e) The individual members of the SuperSet's argument and the elements of the template in the al | f r omclause
shall not be the matching mechanisms omit, SuperSet, SubSet and the matching attributes (length restriction
and ifpresent). In addition, the individual members shall not resolve to AnyValueOrNone and individual
elements of the template in the al | f r omclause shall not resolve to AnyElementsOrNone or permutation.

f) If the length matching attribute is attached to the SuperSet, the minimal length allowed by the length attribute
shall not be less than the number of the elements in the SuperSet.

Examples

EXAMPLE 1:
type set of integer MySetOf Type (0 .. 10);

tenpl ate MySet O Type MyTenpl atel : = superset (1, 2, 3);
/1l matches any sequence of integers which contains at |east one occurrences of the nunbers
/1 1, 2 and 3 in any order and position

tenpl ate MySet Of Type MyTenpl at e2_AnyVal ue : = superset (1, 2, ?);

/1 matches any sequence of integers which contains at |east one occurrences of the nunbers

/1 1, 2 and at |east one nore valid integer value (i.e. between 0 and 10, inclusively), in any
/1 order and position

tenpl ate MySet O Type MyTenpl ate3 : = superset (1, 2, (3, 4));

/1 matches any sequence of integers which contains at |east one occurrences of the nunbers
/1 1, 2 and a nunber with the value 3 or 4, in any order and position

ETSI

274 ETSI ES 201 873-1 V4.7.1 (2015-06)

tenpl ate MySet Of Type MyTenpl ate4 : = superset (1, 2, conplenent(3, 4));
/1 any sequence of integers natches which contains at |east one occurrences of the nunbers
/1 1, 2 and a valid integer value which is not 3 or 4, in any order and position

tenpl ate MySet O Type MyTenpl ate6 : = superset (1, 2, 3) length (7);
/'l matches any sequence of 7 integers which contains at |east one occurrences of the nunbers
/1 1, 2 and 3 in any order and position

tenpl ate MySet Of Type MyTenpl ate7 : = superset (1, 2, ?) length (7 .. infinity);
/'l matches any sequence of at least 7 integers which contains at |east one occurrences of the
/'l nunbers 1, 2 and 3 in any order and position

tenpl ate MySet Of Type MyTenpl ate8 : = superset (1, 2, 3) length (2 .. 7);
/1 causes an error, the lower bound of the length attribute contradicts to the m ni mum nunber
/1 of elenents inposed by the superset argunent

EXAMPLE 2:

type record of integer Rol;
type set of integer Sol;
tenplate Rol t_Roll := {1, 2, ?};

tenplate Sol t_Soll := superset(all fromt_Rol1);
/1 results in superset(1, 2, ?)

B.1.2.7 SubSet

SubSet is denoted by the keyword subset . SubSet matches a set of values if, and only if, the set of values contains
only elements defined within the SubSet, and may contain less. The successful match shall be produced only if there
exists such a one-to-one mapping from the elements of the set of values to the SubSet elements where each element of
the set of values is matched by the SubSet element it is mapped to. The SubSet matching mechanism may contain
templates (including template variables) and matching mechanisms with the restrictions given below. However, the
length matching attribute may be attached to the SubSet itself.

NOTE: The SubSet matching mechanism imposes an implicit length restriction on the matched set of values: the
set of values shall contain at most as many elements as the SubSet template in order to produce a
successful match.

Besides specifying individual values, it is possible to add all elements of ar ecor d of orset of template into
SubSets using an al | f r omclause.

Restrictions
a) SubSet is an operation for matching that can be used only on values of set of types.
b) Individual members of the SubSet's argument shall be of the type replicated by the set of .

¢) The member type of the set of type associated with the SubSet and the member type of the template in the al |
f r omclause shall be compatible.

d) Thetemplate inthe al | fr omclause as a whole shall not resolve into a matching mechanism (i.e. its
elements may contain any of the matching mechanisms or matching attributes with the exception of those
described in the following restriction).

e) The individual members of the SubSet's argument and the elements of the template in the al | f r omclause
shall not be the matching mechanisms omit, SuperSet, SubSet and the matching attributes (length restriction
and ifpresent). In addition, individual members shall not resolve to AnyValueOrNone and individual fields of
the template in the al | f r omclause shall not resolve to AnyElementsOrNone or permutation.

f) If the length matching attribute is attached to the SubSet, the maximum length allowed by the length attribute
shall not exceed the number of the elements in the SubSet.

Examples
EXAMPLE 1:
tenpl ate MySet Of Type MyTenpl atel: = subset (1, 2, 3);

/1 matches any sequence of integers which contains zero or one occurrences of the nunbers
/1 1, 2 and 3 in any order and position

ETSI

275 ETSI ES 201 873-1 V4.7.1 (2015-06)

tenpl ate MySet O0f Type MyTenpl atel: = subset (1, 2, ?);
/1 matches any sequence of integers which contains zero or one occurrences of the nunbers
/1 1, 2 and a valid integer value (i.e. between 0 and 10, inclusive) in any order and position

tenpl ate MySet Of Type MyTenpl atel: = subset (1, 2, (3, 4));

/1 matches any sequence of integers which contains zero or one occurrences of the nunbers
/1 1, 2 and one of the nunbers 3 or 4, in any order and position

tenpl ate MySet Of Type MyTenpl atel: = subset (1, 2, conplenent (3, 4));

/1 matches any sequence of integers which contains zero or one occurrences of the nunbers
/1 1, 2 and a valid integer nunber which is not 3 or 4, in any order and position

tenpl ate MySet Of Type MyTenpl atel: = subset (1, 2, 3) length (2);

/1 matches any sequence of two integers which contains zero or one occurrences of

/1 the nunmbers 1, 2 and 3, in any order and position

tenpl ate MySet O0f Type MyTenpl atel: = subset (1, 2, ?) length (0 .. 2);

/1 matches any sequence of zero, one or two integers which contains zero or one occurrences of
/1 the numbers 1, 2 and of a valid integer value, in any order and position

tenpl ate MySet O Type MyTenpl atel: = subset (1, 2, 3) length (0 .. 4);

/1 causes an error, the upper bound of length attribute contradicts to the maxi num nunber of
/1 elenents inposed by the subset argunent

EXAMPLE 2:

type record of integer Rol;
type set of integer Sol;
tenplate Rol t_Roll := {1, 2, ?};

tenplate Sol t_Soll := subset(all fromt_Rol1);
/1 results in subset(1l, 2, ?)

B.1.2.8 Omitting optional fields

The keyword oni t denotes that an optional field shall be absent. If used as a matching mechanism, it matches an
optional field if and only if it is absent.

Restrictions
a) It can be assigned to templates of any type as a whole or to optional fields of set or r ecor d templates.
b) At the time of matching, it shall be applied to optional fields of r ecor d and set templates only.

Examples

type record MyMessage

i nt eger fieldl,
MyRecor dof field2 optional,
bool ean field3 optional

}
tenpl ate MyMessage MyMessageTenpl ate: =

fieIdS::orrit /] omts the optional field field3

}
tenpl ate MyMessage MyMessageTenpl at e2: =
fieldl := omt, /] causes an error as fieldl is nandatory
}
tenpl ate MyRecordof MyRecof Tenplate := onit; /1 this assignnent is allowed
tenpl at e bool ean MyBool Tenpl ate := om t; /1 this assignnent is allowed as well

tenpl ate MyMessage MyMessageTenpl at e3: =
fieldl := 42,

field2 : = MyRecof Tenpl at e,
/1 matches if field2 is absent

ETSI

276 ETSI ES 201 873-1 V4.7.1 (2015-06)

field3 : = MyBool Tenpl at e
/1 matches if field3 is absent
}

Mybool eanVar := match ({}, MyRecof Tenpl at e)
/Il causes an error as a record of tenplate shall not be "onmit" at the tine of natching

Mybool eanVar : = match ({42,omt,onit}, MyMessageTenpl at e3)
/1 matches and returns true

B.1.2.9 Matching decoded content

The matching symbol MatchDecodedContent decat chis used for checking encoded payload fields. The matching
symbol is composed of the decmat ch keyword, an optional encoding format parameter and a mandatory template
instance called decoding target.

A template field that uses this symbol matches the corresponding field if, and only if, the field can be successfully
decoded as an instance of the same type as the decoding target and if the decoded instance can be successfully matched
by the decoding target.

The optional encoding format parameter may specify one of the UCS encoding formats (see clause C.5.4) that shall be
used for the decoding trial, i.e. it overrides any variant attribute attached to the decoding target or the type of the
decoding target (for example, for predefined variant attributes see clause 27.5).

Restrictions

a) It can be assigned to templates and template fields of bi t st ri ng, hexstring,octetstring,
charstringanduni versal charstring types.

b) The decoding target can be a template of any data type.

¢) The optional encoding format parameter can be used only for fields of r uni ver sal char st ri ng types.
The parameter value shall be of the char st ri ng type and it shall contain one of the strings allowed for the
decval ue_uni char predefined function (specified in clause C.5.4). Any other value shall cause an error.

d) Ifthe template field is of char st ri ng type or is of uni ver sal char stri ng type and the encoding
format is missing, the default value "UTF-8" shall be used.

NOTE: The model of the behaviour of this implicit decoding is the following. At first, hexst ri ng and
oct et st ri ng values are implicitly converted to a bi t st ri ng value using the predefined hex2bi t
and oct 2bi t functions (specified in clauses C.1.18 and C.1.22) and char st r i ng values are implicitly
converted to uni ver sal char st ri ng values. Prior to decoding, the bi t st ri ng and uni ver sal
char st ri ng values are stored into a temporary anonymous variable. Decoding is then performed by
implicitly calling the predefined decval ue function (specified in clause C.5.2) for bi t st ri ng values
and decval ue_uni char function for uni versal charstring val ues. The anonymous
variable containing the encoded value is passed as the first parameter to the function, the second
parameter contains another temporary variable called decoded instance. The decoded instance is of the
same type as the decoding target. If the optional encoding format parameter is present, it is passed as the
third parameter to the decval ue_uni char function. Decoding is successful only if the decoding
function returns 0 and the first parameter contains an empty string (i.e. the whole encoded value has been
successfully decoded). The matching mechanism will generate an unsuccessful match if decoding hasn't
succeeded.

Examples

type record MyBi naryMessage
{

octetstring pay! oad

}

type record MyText Message
{

uni versal charstring payl oad

}

ETSI

277 ETSI ES 201 873-1 V4.7.1 (2015-06)

type record MyPayl oad
{

i nt eger fieldl,

i nt eger field2
}
tenpl ate MyBi naryMessage mwv t1 : =
{

)/ The payl oad field can be matched only if it contains an encoded val ue of the MyPayl oad
/1 type and if the fieldl of the decoded value is equal to 1.
payl oad : = decrmatch MyPayl oad: {fieldl :=1, field2 :=?}

}

tenpl ate MyText Message mwv t2 : =

)/ The payl oad field can be matched only if it contains an encoded val ue of the MyPayl oad
/1 type in the UTF-8 format and if the fieldl of the decoded value is equal to 2 or 3.
payl oad : = decmatch("UTF-8") MyPayl oad: {fieldl := (2, 3), field2 :=?}

B.1.3 Matching mechanisms inside values

The following matching mechanisms may be used inside explicit values of strings, records, records of] sets, sets of and
arrays.

B.1.3.1 Any element

The matching symbol "?" (AnyElement) is used to indicate that it replaces single elements of a string (except character
strings, see table 4 for the lengths of the units being matched by "?" in a string), ar ecord of ,aset of oran array.

Restrictions
a) It shall be used only within values of string types, r ecor d of types, set of types and arrays.

Examples

tenpl ate MyMessage MyTenpl ate: =

fiel d2 := "abcxyz",
field3 :='10???' B, /1 where each "?" nay either be 0 or 1
fieldd := {1, 2, 3} /1 where ? nay be any integer val ue

}

NOTE: The"?"infi el d4 can be interpreted as AnyValue as an integer value, or AnyElement inside ar ecor d
of ,set of orarray. Since both interpretations lead to the same match no problem arises.

B.1.3.1.1 Using single character wildcards

If it is required to express the "?" wildcard in character strings it shall be done using character patterns
nn

(see clause B.1.5). For example: "abcdxyz", "abeexyz", "abexxyz" etc. will all match pat t er n "abc?xyz". However,
"abexyz", "abedefxyz", etc. will not.

B.1.3.2 Any number of elements or no element

The matching symbol "*" (AnyElementsOrNone) is used to indicate that it replaces none or any number of consecutive
elements of a string (except character strings), ar ecord of ,aset of oran array. The "*" symbol matches the
longest sequence of elements possible, according to the pattern as specified by the symbols surrounding the "*".

If a "*" appears at the highest level inside a string, ar ecor d of , set of or array, it shall be interpreted as
AnyElementsOrNone.

NOTE: This rule prevents the otherwise possible interpretation of "*" as AnyValueOrNone that replaces an
element inside a string, r ecor d of ,set of or array.

ETSI

278 ETSI ES 201 873-1 V4.7.1 (2015-06)

Restrictions

a) It shall be used only within values of string types, r ecor d of types, set of types and arrays and inside
the permutation matching mechanism.

Examples
tenpl ate Mynessage MyTenpl ate: =

field2 :

= "abcxyz",
field3 :='10*11' B, /1 where "*" may be any sequence of bits (possibly enpty)
fieldd : = {*, 2, 3} /1 where "*"nmay be any nunber of integer values or onitted

}

var charstring MyStrings[4];
M/PCO. recei ve(My/Stri ngs: {"abyz", *, "abc" });

B.1.3.2.1 Using multiple character wildcards

If it is required to expressed the "*" wildcard in character strings it shall be done using character patterns

(see clause B.1.5). For example: "abcxyz", "abcdefxyz" "abcabexyz" ete. will all match patt er n "abc*xyz".

B.1.3.3 Permutation

Permutation is an operation for matching that shall be used only on values of r ecor d of and array types. Permutation
is denoted by the keyword per rmut at i on. Expressions, templates and AnyElement and AnyElementsOrNone are
allowed as permutation elements. Permutation elements shall obey the restrictions given below.

A permutation without AnyElementsOrNone in place of a single record of element means that any series of elements is
acceptable provided that there is a one to one mapping between elements in the record of and in the permutation list
such that each element matches its corresponding element in the permutation list.

AnyElementsOrNone used inside permutation (directly or via reference) replaces none or any number of elements
within the segment of the record of value matched by permutation. The permutation matching is successful, if a subset
of the elements in the record of matches the permutation list without the AnyElementsOrNone. If both permutation and
AnyElementsOrNone are used in a record of template, they shall be evaluated jointly.

NOTE 1: AnyElementsOrNone used inside permutation has a different effect as AnyElementsOrNone used in
conjunction with permutation as in the latter AnyElementsOrNone replaces consecutive elements only.
For example, {per mut at i on(1,2,*)} is equivalent to ({*,1,*,2,*},{*,2,*,1,*}), while
{per mut at i on(1,2),*} is equivalent to ({1,2,*},{2,1,*}).

NOTE 2: When AnyElementsOrNone is inside a permutation, a length attribute may be applied to
AnyElementsOrNone to restrict the number of elements matched by AnyElementsOrNone (see also
clause B.1.4.1).

Besides specifying all individual values, it is possible to add all elements of ar ecor d of orset of template into
permutations using an al | f r omclause.

Restrictions

a) Each individual member listed in the permutation shall be of the type replicated by the r ecor d of or array
type.

b) The member type of the permutation and the member type of the template in the al | f r omclause shall be
compatible.

¢) Thetemplateinthe al | fromclause as a whole shall not resolve into a matching mechanism other than a
FoecificValue (see clause B.1.1), and its elements may resolve to the matching mechanisms SpecificValue,
AnyElement and AnyElementsOrNone only.

d) Individual members of a permutation and elements of the template in the al | f r omclause shall only be
expressions, templates obeying to restriction c¢) above, and the AnyElement and AnyElementsOrNone matching
mechanisms.

ETSI

279 ETSI ES 201 873-1 V4.7.1 (2015-06)

Examples

EXAMPLE 1:

type record of integer MySequenceO Type;

tenpl ate MySequenceOf Type MyTenplatel := { pernutation (1, 2, 3)
/'l matches any of the followi ng sequences of 4 integers: 1,2,3,5;
/1 2,3,/1,5 3,1,2,5 or 3,2,1,5

tenpl ate MySequenceOf Type MyTenpl ate2 := { pernutation (1, 2, ?), 5 };

/1 matches any sequence of 4 integers that ends with 5 and contains 1 and 2 at |east once in
/1 other positions

tenpl ate MySequenceOf Type MyTenpl ate3 := { pernutation (1, 2, 3), * };
/1 matches any sequence of integers starting with 1,2,3; 1,3,2; 2,1,3; 2,3,1; 3,1,2 or 3,2,1

tenpl ate MySequence™f Type MyTenplate4 := { *, pernutation (1, 2, 3)};
/'l matches any sequence of integers ending with 1,2,3; 1,3,2; 2,1,3; 2,3,1; 3,1,2 or 3,2,1

tenpl ate MySequenceXf Type MyTenplate5 := { *, pernutation (1, 2, 3),* };

/1 matches any sequence of integers containing any of the followi ng substrings at any position:

/1 1,2,3 1,3,2; 2,1,3; 2,3,1;, 3,1,20or 3,2,1

tenpl ate MySequenceO Type MyTenpl ate6 := { pernutation (1, 2, *), 5 };
/1 matches any sequence of integers that ends with 5 and containing 1 and 2 at least once in
/1 other positions

tenpl ate MySequenceOf Type MyTenpl ate7 := { pernutation (1, 2, 3), * length (0..5)};
/'l matches any sequence of three to eight integers starting with 1,2,3; 1,3,2; 2,1,3; 2,3,1;
/1 3,1,2 or 3,2,1

tenplate integer MyIntl :
tenplate integer MyInt2 :
tenplate integer MyInt3 :
tenpl ate integer MyInt4 : ;

tenpl ate MySequenceOf Type MyTenpl atel0 := { pernutation (MyIntl1, 2, 3), 5 };
/1 matches any of the sequences of 4 integers:

/1 1,3,2,5; 2,1,3,5; 2,3,1,5; 3,1,2,5; or 3,2,1,5;
/1 2,3,2,5; 2,2,3,5; 2,3,2,5; 3,2,2,5; or 3,2,2,5;
I 3,3,2,5; 2,3,3,5; 2,3,3,5; 3,3,2,5; or 3,2,3,5;

tenpl ate MySequenceXf Type MyTenpl atell := { pernutation (M/Int2, 2, 3), 51};
/1 matches any sequence of 4 integers that ends with 5 and contains 2 and 3 at |east once in
/] other positions

tenpl ate MySequenceXf Type MyTenpl atel2 := { pernutation (M/Int3, 2, 3), 51};

/'l matches any sequence of 4 integers that ends with 5 and contains 2 and 3 at |east once in
/'l other positions

tenpl ate MySequenceOf Type MyTenpl atel3 := { pernutation (MyInt4, 2, 3), 5 1};

/1 matches any sequence of integers that ends with 5 and containing 2 and 3 at |east once in
/1 other positions

tenpl ate MySequenceOf Type MyTenpl ateld4 := { pernutation (MyInt3, 2, ?), 5 1};

/1 matches any sequence of 4 integers that ends with 5 and contains 2 at |east once in

/Il other positions

tenpl ate MySequenceOf Type MyTenpl atel5 := { pernutation (MyInt4, 2, *), 5 1};

/1 matches any sequence of integers that ends with 5 and contains 2 at |east once in
/1 other positions

EXAMPLE 2:

type record of integer Rol;
tenplate Rol t_Roll := {1, 2, *};

tenplate Rol t_Rol2 := {pernutation(0, all fromt_Rol1l), 4, 5};
I/l results in {pernutation(0, 1, 2, *), 4, 5}

B.1.4 Matching attributes of values

The following attributes may be associated with matching mechanisms.

ETSI

280 ETSI ES 201 873-1 V4.7.1 (2015-06)

B.1.4.1 Length restrictions

The | engt h restriction attribute is used to restrict the length of string values matching the template or the number of
elements in a set of ,recor d of or array structure.

It can also be used in conjunction with the i f pr esent matching attribute. The syntax for | engt h can be found in
clause 6.2.3.

NOTE: When the | engt h attribute is used with a template list, elements of the list may be disabled by the
attribute.

The units of length are to be interpreted according to table 4 in the main body of the present document in the case of
string values. For set of , record of types and arrays the unit of length is the replicated type.

A template field that uses length as an attribute of a symbol matches the corresponding field if, and only if; the field
matches both the symbol and its associated attribute. The length attribute matches if the length of the field is greater
than or equal to the specified lower bound and less than or equal to the upper bound. In the case of a single length value
the length attribute matches only if the length of the received field is exactly the specified value.

It is allowed to use a length restriction in conjunction with the special value oni t , however in this case the length
attribute has no effect (i.e. with om t it is redundant). With AnyValueOrNoneand i f pr esent it places a restriction
on the value, if any.

Restrictions

a) The length restriction shall be used only as an attribute of the following matching mechanisms: template list,
complemented template list, AnyValue, AnyValueOrNone, AnyElement, AnyElementsOrNone, superset, subset,
and pattern.

b) It shall not be used directly with templates and template fields produced by concatenation (see clause 15.11). If
the length of a template or template field produced by concatenation is wished to be restricted, the
concatenation shall be enclosed into a pair of parentheses.

¢) The boundaries of the length restriction shall be denoted by expressions which resolve to specific non-negative
i nt eger values. Alternatively, the keyword i nfi ni ty can be used as a value for the upper boundary in
order to indicate that there is no upper limit of length.

d) The length specifications for the template shall not conflict with the length for restrictions (if any) of the
corresponding type.

e) When both the complement and the length restriction matching mechanisms are used for a template or
template field, restrictions implied by them shall apply to the template or template field independently.

Examples
tenpl ate Mymessage MyTenpl ate: =
{
fieldl := conplenent ({4,5},{1,4,8,9}) length (1 .. 6), // any value containing 1, 2, 3, 4,
/1 5 or 6 elements is accepted provided it is not {4,5} or {1,4,8,9}
field2 := "ab*ab" |ength(5), /1 matches the character string "ab*ab" only
field3 := "ab*ab" length(13), // never natches as the specific value is of length 5
/1 and not of length 13
field4 := pattern "ab*ab" | ength(13),
/1 max | ength of the AnyEl enentsOrNone string is 9 characters
}

B.1.4.2 The IfPresent indicator

Thei f present indicates that a match may be made if an optional field is present (i.e. not omitted).

A template field that uses i f pr esent matches the corresponding field if, and only if, the field matches according to
the associated matching mechanism, or if the field is absent.

ETSI

281 ETSI ES 201 873-1 V4.7.1 (2015-06)

Restrictions

a) This IfPresent indicator shall be used only for matching mechanisms in templates of any type as a whole or for
optional fields of set orr ecor d templates.

b) At the time of matching, it shall be applied to optional fields of r ecor d and set templates only.

Examples

type record MyMessage
{

i nt eger fieldl,
MyRecor dof field2 optional,
bool ean field3 optional

}

tenpl ate MyMessage MyMessageTenpl ate: =

%ieldz :={ 1, 2, 3} ifpresent, /1l matches { 1, 2, 3} if not onmitted
} :
tenpl ate MyMessage MyMessageTenpl at e2: =
fieldl := 1 ifpresent, /'l causes an error as fieldl is nandatory
}
tenpl ate MyRecordof MyRecof Tenplate := { 1, 2, 3 } ifpresent; // this assignnment is allowed
tenpl ate bool ean MyBool Tenplate := true ifpresent; // this assignnent is also allowed
tenpl ate MyMessage MyMessageTenpl at e3: =
fieldl := 42,
field2 : = MyRecof Tenpl at e,
/1 if field2 is not absent, it matches the value { 1, 2, 3}

fiel d3 : = MyBool Tenpl ate
/1 if field3 is not absent, it matches the val ue true
}

Mybool eanVar := match ({}, MyRecof Tenpl ate);
/'l causes an error as a record of tenplate shall not contain ifpresent
/1 at the tinme of matching

Mybool eanVar := match ({42,onmit,true}, MyMessageTenpl at e3) ;
/1 matches and returns true

NOTE: AnyValueOrNone has exactly the same meaning as ? i f present .

B.1.5 Matching character pattern

Character patterns can be used in templates to define the format of a required character string to be received. Character
patterns can be used to match char st ri ng and uni versal char stri ng values. In addition to literal characters,
character patterns allow the use of meta-characters (e.g. ? and * within a character pattern means matching any
character and any number of any character respectively).

EXAMPLE I:

tenpl ate charstring M/Tenpl ate: = pattern "ab??xyz*0";

This template would match any character string that consists of the characters "ab", followed by any two characters,
followed by the characters "xyz", followed by any number of any characters (including any number of "0"-s) before the
closing character "0".

If it is required to interpret any metacharacter literally it shall be preceded with the metacharacter "\".

EXAMPLE 2:

tenpl ate charstring My/Tenpl ate: = pattern "ab?\ ?xyz*";

ETSI

282 ETSI ES 201 873-1 V4.7.1 (2015-06)
This template would match any character string which consists of the characters "ab", followed by any character,
followed by the characters "?xyz", followed by any number of any characters.

The list of meta characters for TTCN-3 patterns is shown in table B.1. Metacharacters shall not contain whitespaces
except a whitespace preceded by a newline character before or inside a set expression.

Table B.1: List of TTCN-3 pattern metacharacters

Metacharacter Description
? Match any character (see notes 1 and 2)
* Match any character zero or more times; shall match the longest possible number of
characters (see example 1 above) (see notes 1 and 2)
\ Cause the following metacharacter to be interpreted as a literal (see note 3). When

preceding a character without defined metacharacter meaning "\" and the character
together match the character following the "\" (see note 4)

[] Match any character within the specified set, see clause B.1.5.1 for more details

- Has a metacharacter meaning in a set expression. It allows to specify a range of
characters; see clause B.1.5.1 for more details

n Has a metacharacter meaning in a set expression. It causes to match any character
complementing the set of characters following this metacharacter;

see clause B.1.5.1 for more details

\g{group,plane,row,cell} or |Match one or more universal character. Both the quadruple and the USI-like syntaxes

\g{Uxxxx, UXxx} specified in clause 6.1.1 can be used.
{reference} Insert the referenced user defined string and interpret it as a regular expression.
See clause B.1.5.2 for more details
{\reference} Insert the referenced user defined string and interpret it as a set of literals.
See clause B.1.5.2 for more details
\ N{reference} Matches a single character from the (sub)set of characters denoted; see clause B.1.5.4
for more details
\d Match any numerical digit (equivalent to [0-9])
\w Match any alphanumeric character (equivalent to [0-9a-zA-Z])
\t Match the CO control character HT(9) (see Recommendation ITU-T T.50 [4])
\n Match any of the following CO control characters: LF(10), VT(11), FF(12), CR(13) (see
Recommendation ITU-T T.50 [4]) (jointly called newline characters, see clause A.1.5.1)
\r Match the CO control character CR (see Recommendation ITU-T T.50 [4])
\s Match any one of the following CO control characters: HT(9), LF(10), VT(11), FF(12),

CR(13), SP(32) (see Recommendation ITU-T T.50 [4]) (jointly called white-space
characters, see clause A.1.5.1)

\b Match a word boundary (any graphical character except SP or DEL is preceded or
followed by any of the whitespace or newline characters)

\" Match the double guote character

Match the double guote character

| Used to denote two alternative expressions

@) Used to group an expression
#(n, m) Match the preceding expression at least n times but no more than m times (postfix).
See clause B.1.5.3 for more details
#n Match the previous expression exactly n times (where n is a single digit) (postfix); the
same as #(n). See clause B.1.5.3 for more details
+ Match the preceding expression one or several times (postfix); the same as #(1,). See

clause B.1.5.3 for more details

NOTE 1: Metacharacters ? and * are able to match any characters of the character set of the root type of the
template or template field in which they are used (i.e. not considering type constraints applied). However,
it shall not be forgotten, that receiving operations require type checking of the received message before
attempting to match it. Therefore received values not complying with the subtype specification of the
template or template field are never provided for matching.

NOTE 2: In some other languages/notations ? and * has different meaning as metacharacters. However in
TTCN-3 these characters are traditionally used for matching in the sense as specified in this table.

NOTE 3: Consequently the backslash character can be matched by a pair of backslash characters without space
between them (\\), e.g. the pattern "\\d" will match the string "\d"; opening or closing square brackets can
be matched by "\[" and "\]" respectively, etc.

NOTE 4: Such use of the metacharacter "\" is deprecated as further metacharacters can be defined later.

The symbols that can appear as lexical marks in metacharacter definitions are called metacharacter symbols.They
include the following CharaCteI'S: l‘#"’ l‘("’ ")"’ ll*"’ |l+", "_ll’ ll?"’ "[ll’ ll\"’ "]"’ Yl/\Yl’ ll{"’lllll’ll}ll. When any Ofthe
metacharacter symbols are present in a pattern, but do not form a valid metacharacter, they retain their literal value.

ETSI

283 ETSI ES 201 873-1 V4.7.1 (2015-06)

NOTE: This rule assures that no format error can occur during pattern template instantiation. However, errors
caused by invalid references can still appear (see clauses B.1.5.2 and B.1.5.4 for more details).

Character patterns may be composed from several fragments using the concatenation operation. The fragments of the
pattern shall be concatenated before any evaluation of the pattern expression. See also the shorthand notation for
referenced definitions at concatenation in clause B.1.5.2.

EXAMPLE 3:

tenpl ate charstring My/Tenpl ate: = pattern "ab?\?" & "xyz*"; // results in the sane pattern as
/1 in exanple 2

Pattern definitions may contain references to values or templates. The referred value or template shall be of the
charstring or universal charstring type and it shall contain either a specific value or pattern. When the referenced
template contains a pattern, the character pattern definition of this pattern is used as a fragment for creating the new
pattern.

EXAMPLE 4:
tenpl ate charstring tenplatel := "ab?";
tenpl ate charstring tenplate2 := pattern "?xyz*0";
tenpl ate charstring tenplate3 := ?;
tenplate charstring tenplate4 := pattern tenplatel & tenpl ate2;
/'l the sane tenplate as in exanple 1, i.e. pattern "ab??xyz*0Q"

tenpl ate charstring tenplate5 := pattern tenpl ate3
/1 produces as error as mtenpl ate3 doesn't contain a value or pattern

B.1.5.1 Set expression

A list of characters enclosed by a pair of "[" and "]" matches any single character in that list. The set expression is
delimited by the "[" "]" symbols. In addition to character literals, it is possible to specify character ranges using the
hyphen "-" as separator. The range consist of the character immediately before the separator, the character immediately
after it and all characters with a character code between the codes of the two bordering characters. A hyphen character
"-" inside the list but without preceding or following character loses its special meaning.

The set expression can also be negated by placing the caret """ character as the first character after the opening square
bracket. Negation takes precedence over character ranges. Therefore a hyphen "-" immediately following a negating
caret """ shall be processed as a literal character.

An empty list and an empty negated list are not allowed. Therefore a closing square bracket "]" immediately following
an opening square bracket "[" or a caret following the opening square bracket "[" and immediately followed by a
closing square bracket "]" shall be processed as literal characters.

All metacharacters, except those listed below, lose their special meaning inside the list:

. "1" not at the first position and not immediately following a """ at the first position;
. "-" not at the first or last positions in the list;
. "A" at the first position in the list except when immediately followed by a closing square bracket;

° "\", "\d"’ H\t‘l’ "\W", "\rH’ H\nﬂ’ U\S" and "\b";
. "\q{group,plane,row,cell}";
. "\N {reference}".

NOTE 1: Embedded lists are not allowed. For example in pattern "[ab[r-z]]" the second "[" denotes a literal "[", the
first "]" closes the list and the second "]" retains its literal value as no related opening bracket precedes it
in the pattern. The pattern will match character strings containing two elements, with the first element
equal to "a", "b", "[" or anything in the range "r"-"z" and the second character equal to "]".

ETSI

284 ETSI ES 201 873-1 V4.7.1 (2015-06)

NOTE 2: To include a literal caret character """, place it anywhere except in the first position or precede it with a
backslash. To include a literal hyphen "- ", place it first or last in the list, or precede it with a backslash.
To include a literal closing square bracket "] ", place it first or precede it with a backslash. If the first
character in the list is the caret """, then the characters "- " and "] " also match themselves when they
immediately follow that caret.

EXAMPLE:
tenpl ate charstring RegExpl:= pattern "[a-z]"; // this will nmatch any character froma to z
tenpl ate charstring RegExp2: = pattern "["a-z]"; [/ this will natch any character except a to z

tenpl ate charstring RegExp3:= pattern "[AC-E][0-9][0-9][0-9] YKE";

/1 RegExp3 will match a string which starts with the letter A or a letter between
/1 Cand E (but not e.g. B) then has three digits and the letters YKE

B.1.5.2 Reference expression

In addition to direct string values, it is also possible within the pattern to use references to templates, constants,
variables, formal parameters, module parameters, or to their fields, containing either a character string value or pattern
matching. The reference shall be enclosed within the "{" "}" characters and reference shall resolve a compatible
character string type. The opening bracket can be optionally followed by a backslash.

If the backslash character is missing, the referenced character string or pattern shall be inserted into the pattern being
constructed and shall be handled as a regular expression. Each expression shall be dereferenced only once, before the
insertion (i.e. the expression dereferenced and inserted into the referencing pattern shall not be dereferenced again).

If the backslash character is present, the referenced item shall contain a character string value in this case. The character
string is inserted into the pattern being constructed so that it all characters contained in it can keep their literal value
(i.e. all metacharacter symbols are automatically escaped).

If the reference cannot be resolved or if the referenced symbol does not fulfil the requirements set by this clause, an
error shall be generated.

EXAMPLE 1:
const charstring MyString: = "ab?";

tenpl ate charstring MyTenpl ate: = pattern "{MString}";
/I matches any character string that consists of the characters "ab" foll owed by any character

tenpl atecharstring MyTenpl ate2: = pattern "{\MString}";
//resolves into pattern "ab\?" and natches the string"ab?" only

tenpl ate universal charstring MyTenpl ate3: = pattern "{MString}de\q{1, 1, 13, 7}";

/I mat ches any character string which consists of the characters "ab", foll owed by any
//character, followed by the characters "de", followed by the character in |S0OL0646-1 with
//group=1, plane=1, row=13 and cel |l =7.

If a referenced definition or field of a definition contains one or more reference expressions, then these references shall
recursively be dereferenced before inserting their contents into the referencing pattern.

If a fragment of a pattern contains a single reference only, it is allowed, as a shorthand notation, to reference the
definition or the field of the definition directly, i.e. leave out double quotes (" ") and the pair of curly brackets ({ }).

EXAMPLE 2:

const charstring MyConst2 := "ab";

tenpl ate charstring RegExpl := pattern "{M/Const2}";
/1 matches the string "ab"

tenpl ate charstring RegExpla := pattern MyConst 2;
/1 the same as above, matches the string "ab"

tenpl ate charstring RegExp2 : = pattern "{RegExpl}{RegExpl}";
/1 matches the string "abab"

tenpl ate charstring RegExp2a : = pattern "{RegExpl}" & "{RegExpl}";
/1 the same as above, matches the string "abab"

tenpl ate charstring RegExp2b : = pattern RegExpl & RegExpl;
/1 the sane as above, matches the string "abab"

tenpl ate charstring RegExp3 : = pattern "c{RegExp2}d";

ETSI

285 ETSI ES 201 873-1 V4.7.1 (2015-06)

/1 matches the string "cababd"

tenpl ate charstring RegExp4 := pattern "{Reg";

tenpl ate charstring RegExp5 : = pattern "Expl}";

tenpl ate charstring RegExp6 := pattern "{RegExp4}{RegExp5}";
/1 matches the string "{RegExpl}" only (i.e. shall not be handled as a reference expression
/1 after insertion)

tenpl ate charstring RegExp7 := pattern "{Reg" & "Expl}";
/'l note the difference to the previous exanple; in this case the fragments of the

/] pattern are joined before any evaluation, i.e. this tenplate will natch the string "ab"
EXAMPLE 3:
tenpl ate charstring RefO:= "My String";
tenpl ate charstring Refl:= "{Re";
tenplate charstring Ref2:= "f0}";

tenpl ate charstring Ref3:
//this matches "{Ref0}"
/li.e. there is no further dereferencing
/las Refl and Ref2 do not contain a reference

“{Ref 1} {Ref 2} ":

tenpl ate charstring Ref4:
tenpl ate charstring Ref5: ;
tenmpl ate charstring Ref6:= "{Ref4}{Ref5}";
//this matches "My String" — here RefO is dereferenced, because Ref4 contains
//the reference expression {Ref0} with the reference RefO

"{Ref0}";

EXAMPLE 4:

type record M/Record {
integer i,
charstring c

}

const MyRecord referencedRecord: = {1,"this"}

const charstring referencedConstant : = referencedRecord. c;

tenpl ate charstring referencingPattern := pattern "{referencedConstant}"

//this matches "this" as the referencedConstant is dereferenced

B.1.5.3 Match expression n times

To specify that the preceding expression should be matched a number of times one of the following syntaxes shall be
used: "#(n’ m)", H#(n’)H’ H#(s m)", H#(n)’l’ H#nl” "#(’)H’ H#()’l Or H+"‘

The form "#(n, m)" specifies that the preceding expression shall be matched at least n times but not more than m times.

The metacharacter postfix "#(n,)" specifies that the preceding expression shall be matched at least n times while
"#(, m)" indicates that the preceding expression shall be matched not more than m times.

Metacharacters (postfixes) "#(n)" and "#n" specify that the preceding expression shall be matched exactly n times (they
are equivalent to "#(n, n)"). In the form "#n" n shall be a single digit.

The forms "#(,)" and "#()" are shorthand notations for "#(0,)", i.e. matches the preceding expression any number of
times.

The metacharacter postfix "+" denotes that the preceding expression shall be matched at least 1 time (equivalent to

HLY').
EXAMPLE:

tenpl ate charstring RegExp4: = pattern "[a-z]#(9, 11)"; // nmatch at least 9 but no nore than 11
/1l characters froma to z

tenpl ate charstring RegExp5a: = pattern "[a-z]#(9)"; /1 match exactly 9
/1 characters froma to z
tenpl ate charstring RegExp5b: = pattern "[a-z]#9"; /1 match exactly 9

/1 characters froma to z
tenpl ate charstring RegExp6:= pattern "[a-z]#(9,)"; [// match at least 9
/1 characters froma to z
pattern "[a-z]#(, 11)"; // match no nore than 11
/1 characters froma to z
tenpl ate charstring RegExp8:= pattern "[a-z]+"; /1l match at least 1
/'l characters froma to z,

tenpl ate charstring RegExp7:

ETSI

286 ETSI ES 201 873-1 V4.7.1 (2015-06)

B.1.5.4 Match a referenced character set

A notation of the form "\ N{ reference} " , where reference is denoting a one-character-length template, constant,
variable, formal parameter or module parameter, matches the character in the referenced value or template.

If the reference cannot be resolved or if the referenced symbol is anything else than a template, constant, variable,
formal parameter or module parameter containing a character string of length 1, an error shall be generated.

A notation of the form "\ N{ typereference} ", where "typereference" is a reference to a char st ri ng or uni ver sal
char st ri ng type, matches any character of the character set denoted by the referenced type.

NOTE 1: Cases when the referenced set of characters is not a subset of values allowed by the type definition of the
template or template field for which the character pattern is used, are not be treated as an error (but e.g.
matching never can occur if the two sets do not overlap).

NOTE 2: \N{char stri ng} is equivalent to ? when the latter is applied to a template or template field of
char stri ng type and \W{uni ver sal char stri ng} is equivalent to ? when the latter is applied to
a template or template field of uni ver sal char st ri ng type (but causes an error if applied to a
template or template field of char st ri ng type).

EXAMPLE:

type charstring MyChar Range ("a".."z");
type charstring MyCharlList ("a", "z");
const MyChar Range nyCharR := "r";

tenpl ate charstring nyTenpPattl := pattern "\N{nyCharR}";
/1 nmyTenpPattl shall match the string "r" only

tenpl ate charstring nyTenpPatt2 : = pattern "\ N{ MyChar Range}";
/'l nyTenpPatt2 shall nmatch any string containing a single character froma to z

tenpl ate MyChar Range nyTenpPatt3 := pattern "\N{ MyCharList}";
/1 nyTenpPatt3 shall natch strings "a" or "z" only

B.1.5.5 Type compatibility rules for patterns

For the purpose of referenced patterns (see clause B.1.5.2) and references character sets (see clause B.1.5.3) specific
type compatibility rules apply: a referenced type, template, constant, variable or module parameter of the type

char st ri ng always can be used in the pattern specification of a template or template field of uni ver sal

char st ri ng type; a referenced type, template or value of the type uni ver sal char stri ng can be used in the
pattern specification of a template or template field of char st ri ng type if all characters used in the referenced
template or value and the character set allowed by the referenced type has their corresponding characters in the

char st ri ng type (see definition of corresponding characters in clause 6.3.1).

B.1.5.6 Case insensitive pattern matching

When the "@ocase" modifier is used after the pattern keyword, the matching is evaluated in a case insensitive way,
i.e. at positions, where without the "@ocase" modifier a small letter alphabethical character would be matched, with
the "@ocase" modifier also capital letter counterpart — but only that - shall be accepted. For example, at positions
where the pattern matches the character & (LATIN SMALL LETTER D WITH STROKE), also its counterpart B (LATIN
CAPITAL LETTER D WITH STROKE) shall be accepted, but the similarly looking graphical characters D (LATIN
CAPITAL LETTER ETH) and D (LATIN CAPITAL LETTER AFRICAN D) shall not.

EXAMPLE I:

tenpl ate charstring MyTenpl at eNoCase: = pattern @ocase "ab??xyz*0";

//This tenplate would match any character string that start with the characters "ab" or "Ab"
/lor "aB" or "AB", followed by any two characters, followed by the characters "xyz" or "Xyz"
[lor "xYz" or "xyZ" or "XYz" or "xYZ' or "XyZ' or "XYZ', followed by any nunber of any
//characters (including any nunber of "0"-s) before the closing character "0".

ETSI

287 ETSI ES 201 873-1 V4.7.1 (2015-06)

When referencing a pattern from inside another pattern (see clause B.1.5.2), the case sensitivity property of the
referenced pattern is not inherited. I.e. - after dereferencing, possibly recursively - only the resulting string part of the
referenced pattern is inserted into the referencing pattern. The whole resulting pattern is always evaluated according to
the case-sensitivity of the referencing pattern.

EXAMPLE 2:
const charstring MyString: = "ab?";

tenpl ate charstring MyTenpl ate: = pattern @ocase "{M/String}";
/I matches any character string that consists of the characters "ab" or "Ab" or "aB" or "AB",
/1 followed by any character

tenpl ate universal charstring MyTenpl ate3: = pattern "{MTenpl ate}de\g{1, 1, 13, 7}";

/I matches any character string which consists of the characters "ab", followed by any
//character, followed by the characters "de", followed by the character in |1S0OL0646-1 with
/1 group=1, plane=1, row=13 and cell =7 (.

ETSI

288 ETSI ES 201 873-1 V4.7.1 (2015-06)

Annex C (normative):
Predefined TTCN-3 functions

This annex defines the TTCN-3 predefined functions.

C.0 General exception handling procedures

When the general restrictions specified in clause 16.1.2 are not met, this shall cause a compile time or runtime error.
Error situations for which no explicit exception-handling rule is defined in the relevant clauses of this annex shall cause
a TTCN-3 compile-time or runtime error. Which error situation causes compile-time and which one runtime error is a
tool implementation option.

C.1 Conversion functions

C.1.1 Integer to character

int2char(in integer invalue) return charstring

This function converts an i Nt eger value in the range of 0 to 127 (8-bit encoding) into a single-character-length
char st ri ng value. The integer value describes the 8-bit encoding of the character.

In addition to the general error causes in clause 16.1.2, error causes are:

. i nval ue is less than 0 or greater than 127.

C.1.2 Integer to universal character

i nt2uni char (in integer invalue) return universal charstring

This function converts an i Nt eger value in the range of 0 to 2 147 483 647 (32-bit encoding) into a
single-character-length uni ver sal char stri ng value. The integer value describes the 32-bit encoding of the
character.

In addition to the general error causes in clause 16.1.2, error causes are:

. i nval ue is less than 0 or greater than 2147483647.

C.1.3 Integer to bitstring

int2bit(in integer invalue, in integer length) return bitstring

This function converts a single i nt eger value to a single bi t st ri ng value. The resulting string is | engt h bits
long.

For the purposes of this conversion, a bi t st ri ng shall be interpreted as a positive base 2 i nt eger value. The
rightmost bit is least significant, the leftmost bit is the most significant. The bits 0 and 1 represent the decimal values 0
and 1 respectively. If the conversion yields a value with fewer bits than specified in the | engt h parameter, then the
bi t st ri ng shall be padded on the left with zeros.

In addition to the general error causes in clause 16.1.2, error causes are:
. i nval ue is less than zero;

e the conversion yields a return value with more bits than specified by | engt h.

ETSI

289 ETSI ES 201 873-1 V4.7.1 (2015-06)

C.1.4 Integer to enumerated
int2enum (in integer inpar, out Enunerated_type outpar)

This function converts an integer value into an enumerated value of a given enumerated type. The integer value shall be
provided as in parameter and the result of the conversion shall be stored in an out parameter. The type of the out
parameter determines the type into which the in parameter is converted.

The general error causes in clause 16.1.2 apply.

EXAMPLE:

type enunerated MyFirstEnunType {
Monday, Tuesday, Wednesday, Thursday, Friday
s

type enunerated MySecondEnuniType {
Saturday(-3), Sunday (0), Monday
b

//wi thin a dynamic | anguage el enent:
var MyFirst EnunType first Enum : = Tuesday;
var MySecondEnunilype secondEnum : = Sunday;

int2enun(0, firstEnun) // firstEnum == Monday
i nt 2enun(1, secondEnun) // secondEnum == Monday

C.1.5 Integer to hexstring

int2hex(in integer invalue, in integer length) return hexstring

This function converts a single i Nt eger value to a single hexst ri ng value. The resulting string is | engt h
hexadecimal digits long.

For the purposes of this conversion, a hexst r i ng shall be interpreted as a positive base 16 i nt eger value. The
rightmost hexadecimal digit is least significant, the leftmost hexadecimal digit is the most significant. The hexadecimal
digits 0 to F represent the decimal values 0 to 15 respectively. If the conversion yields a value with fewer hexadecimal
digits than specified in the | engt h parameter, then the hexst r i ng shall be padded on the left with zeros.

In addition to the general error causes in clause 16.1.2, error causes are:
° i nval ue is less than zero;

. the conversion yields a return value with more hexadecimal characters than specified by | engt h.

C.1.6 Integer to octetstring

int2oct(in integer invalue, in integer length) return octetstring

This function converts a single i Nt eger value to a single oct et st ri ng value. The resulting string is | engt h
octets long.

For the purposes of this conversion, an oct et st r i ng shall be interpreted as a positive base 16 i nt eger value. The
rightmost hexadecimal digit is least significant, the leftmost hexadecimal digit is the most significant. The number of
hexadecimal digits provided shall be multiples of 2 since one octet is composed of two hexadecimal digits. The
hexadecimal digits 0 to F represent the decimal values 0 to 15 respectively. If the conversion yields a value with fewer
hexadecimal digits than specified in the | engt h parameter, then the hexst r i ng shall be padded on the left with
ZEeros.

In addition to the general error causes in clause 16.1.2, error causes are:
° i nval ue is less than zero;

e the conversion yields a return value with more octets than specified by | engt h.

ETSI

290 ETSI ES 201 873-1 V4.7.1 (2015-06)

C.1.7 Integer to charstring
int2str(in integer invalue) return charstring
This function converts the integer value into its string equivalent (the base of the return string is always decimal).

The general error causes in clause 16.1.2 apply.

EXAMPLE:

int2str(66) /1 will return the charstring value "66"
int2str(-66) /1 will return the charstring value "-66"
int2str(0) /1 will return the charstring value "0"

C.1.8 Integer to float

int2float(in integer invalue) return float
This function converts an i nt eger value into a f | oat value.
The general error causes in clause 16.1.2 apply.

EXAMPLE:

int2float(4) = 4.0

C.1.9 Float to integer

float2int(in float invalue) return integer

This function converts a f | oat value into an i nt eger value by removing the fractional part of the argument and
returning the resulting i nt eger .

In addition to the general error causes in clause 16.1.2, error causes are:
. invalueisinfinity,-infinityornot_a_nunber.

EXAMPLE:

f1oat 2i nt (3. 12345E2) = fl oat 2i nt (312. 345) = 312

C.1.10 Character to integer

char2int(in charstring invalue) return integer

This function converts a single-character-length char st r i ng value into an integer value in the range of 0 to 127. The
integer value describes the 8-bit encoding of the character.

In addition to the general error causes in clause 16.1.2, error causes are:

. length of i nval ue does not equal 1.

C.1.11 Character to octetstring
char2oct (in charstring invalue) return octetstring

This function converts a char stri ngi nval ue to an oct et st ri ng. Each octet of the oct et st ri ng will
contain the Recommendation ITU-T T.50 [4] codes (according to the IRV) of the appropriate characters of i nval ue.

The general error causes in clause 16.1.2 apply.

ETSI

291 ETSI ES 201 873-1 V4.7.1 (2015-06)

EXAMPLE:

char 2oct (" Tinky-Wnky") = ' 54696E6B792D57696E6B79' O

C.1.12 Universal character to integer
uni char 2i nt (i n uni versal charstring invalue) return integer

This function converts a single-character-length uni ver sal char st ri ng value into an integer value in the range of
0 to 2 147 483 647. The integer value describes the 32-bit encoding of the character.

In addition to the general error causes in clause 16.1.2, error causes are:

. length of i nval ue does not equal 1.

C.1.13 Bitstring to integer
bit2int(in bitstring invalue) return integer
This function converts a single bi t St ri ng value to a single i nt eger value.

For the purposes of this conversion, a bi t st ri ng shall be interpreted as a positive base 2 i nt eger value. The
rightmost bit is least significant, the leftmost bit is the most significant. The bits 0 and 1 represent the decimal values 0
and 1 respectively.

NOTE: On real test systems the integer interpretation of i nval ue may lead to an overflow problem that causes
compile time or runtime error. However, this is out of the scope of the present document.

The general error causes in clause 16.1.2 apply.

C.1.14 Bitstring to hexstring

bi t 2hex(in bitstring invalue) return hexstring

This function converts a single bi t st ri ng value to a single hexst ri ng. The resulting hexst ri ng represents the
same value as the bi t stri ng.

For the purpose of this conversion, a bitstring shall be converted into a hexstring, where the bitstring is divided into
groups of four bits beginning with the rightmost bit. Each group of four bits is converted into a hex digit as follows:

'0000'B — '0'H, '0001'B — 'I'H, '0010'B — 2'H, '0011'B — '3'H, '0100'B — '4'H, '0101'B — '5'H,
'0110'B - '6'H, '0111'B —'7'H, '1000'B — '8'H, '1001'B — '9'H, '1010'B — 'A'H, '1011'B — 'B'H,
'1100B - 'C'H, '1101'B— 'D'H, '1110'B — 'E'H, and '1111'B — 'F'H.

When the leftmost group of bits does contain less than 4 bits, this group is filled with '0'B from the left until it contains
exactly 4 bits and is converted afterwards. The consecutive order of hex digits in the resulting hexstring is the same as
the order of groups of 4 bits in the bitstring.

The general error causes in clause 16.1.2 apply.

EXAMPLE:

bi t 2hex ('111010111'B)= '1D7'H

C.1.15 Bitstring to octetstring

bit2oct(in bitstring invalue) return octetstring

This function converts a single bi t St ri ng value to a single oct et st ri ng. The resulting oct et stri ng
represents the same value as the bi t st ri ng.

For the conversion the following holds: bit2oct(value)=hex2oct(bit2hex(value)).

The general error causes in clause 16.1.2 apply.

ETSI

292 ETSI ES 201 873-1 V4.7.1 (2015-06)

EXAMPLE:

bit2oct (' 111010111' B)= ' 01D7' O

C.1.16 Bitstring to charstring
bit2str(in bitstring invalue) return charstring

This function converts a single bi t st ri ng value to a single char st ri ng. The resulting char stri ng has the
same length as the bi t st ri ng and contains only the characters '0' and '1'.

For the purpose of this conversion, a bi t st ri ng shall be converted into a char st ri ng. Each bit of the
bi t string isconverted into a character '0' or '1' depending on the value 0 or 1 of the bit. The consecutive order of
characters in the resulting char st ri ng is the same as the order of bits in the bi t st ri ng.

The general error causes in clause 16.1.2 apply.

EXAMPLE:

bit2str('1110101'B) will return "1110101"

C.1.17 Hexstring to integer
hex2i nt (i n hexstring invalue) return integer
This function converts a single hexst ri ng value to a single i nt eger value.

For the purposes of this conversion, a hexst r i ng shall be interpreted as a positive base 16 i nt eger value. The
rightmost hexadecimal digit is least significant, the leftmost hexadecimal digit is the most significant. The hexadecimal
digits 0 to F represent the decimal values 0 to 15 respectively.

NOTE: On real test systems the integer interpretation of i nval ue may lead to an overflow problem that causes
compile time or runtime error. However, this is out of the scope of the present document.

The general error causes in clause 16.1.2 apply.

C.1.18 Hexstring to bitstring

hex2bit (in hexstring invalue) return bitstring

This function converts a single hexst ri ng value to a single bi t st ri ng. The resulting bi t st ri ng represents the
same value as the hexstri ng.

For the purpose of this conversion, a hexst ri ng shall be converted into a bi t St ri ng, where the hex digits of the
hexst ri ng are converted in groups of bits as follows:

'0'H — '0000'B, 'I'H—'0001'B, 2'H—'0010'B, '3'H—"'0011'B, '4'H— '0100'B, 'S'H — '0101'B,
'6'H—'0110'B, '7TH—"'0111'B, '8'H — '1000'B, '9'H — '1001'B, 'A'H — '1010'B, 'B'H — '1011'B,
'C'H — '1100'B, 'D'H — '1101'B, 'E'H — '1110'B, and 'F'H — '1111'B.

The consecutive order of the groups of 4 bits in the resulting bi t St ri ng is the same as the order of hex digits in the
hexstring.

The general error causes in clause 16.1.2 apply.

EXAMPLE:

hex2bit (' 1D7' H = '000111010111' B

ETSI

293 ETSI ES 201 873-1 V4.7.1 (2015-06)

C.1.19 Hexstring to octetstring

hex2oct (i n hexstring invalue) return octetstring

This function converts a single hexst ri ng value to a single oct et st ri ng. The resulting oct et st ri ng
represents the same value as the hexstri ng.

For the purpose of this conversion, a hexst ri ng shall be converted into a oct et st ri ng, where the

oct et st ri ng contains the same sequence of hex digits as the hexst r i ng when the length of the hexst ri ng
modulo 2 is 0. Otherwise, the resulting oct et St ri ng contains 0 as leftmost hex digit followed by the same sequence
of hex digits as in the hexst ri ng.

The general error causes in clause 16.1.2 apply.

EXAMPLE:

hex2oct (' 1D7' Hy= ' 01D7' O

C.1.20 Hexstring to charstring
hex2str(in hexstring invalue) return charstring

This function converts a single hexstring value to a single charstring. The resulting charstring has the same length as the
hexstring and contains only the characters '0' to '9'and 'A' to 'F'.

For the purpose of this conversion, a hexst r i ng shall be converted into a char st r i ng. Each hex digit of the
hexst ri ng is converted into a character '0' to '9' and 'A' to 'F' depending on the value 0 to 9 or A to F of the hex digit.
The consecutive order of characters in the resulting char st r i ng is the same as the order of digits in the

hexstri ng.

The general error causes in clause 16.1.2 apply.

EXAMPLE:

hex2str (' AB801'H) will return "AB801"

C.1.21 Octetstring to integer
oct2int(in octetstring invalue) return integer
This function converts a single oct et st ri ng value to a single i nt eger value.

For the purposes of this conversion, an oct et st r i ng shall be interpreted as a positive base 16 i nt eger value. The
rightmost hexadecimal digit is least significant, the leftmost hexadecimal digit is the most significant. The number of
hexadecimal digits provided shall be multiples of 2 since one octet is composed of two hexadecimal digits. The
hexadecimal digits 0 to F represent the decimal values 0 to 15 respectively.

NOTE: On real test systems the integer interpretation of i nval ue may lead to an overflow problem that causes
compile time or runtime error. However, this is out of the scope of the present document.

The general error causes in clause 16.1.2 apply.

C.1.22 Octetstring to bitstring

oct2bit(in octetstring invalue) return bitstring

This function converts a single oct et st ri ng value to a single bi t st ri ng. The resulting bi t st ri ng represents
the same value as the oct et st ri ng.

For the conversion the following holds: oct2bit(value)=hex2bit(oct2hex(value)).

The general error causes in clause 16.1.2 apply.

ETSI

294 ETSI ES 201 873-1 V4.7.1 (2015-06)

EXAMPLE:

oct2bit ('01D7' O ='0000000111010111' B

C.1.23 Octetstring to hexstring
oct 2hex(in octetstring invalue) return hexstring

This function converts a single oct et st ri ng value to a single hexst ri ng. The resulting hexst r i ng represents
the same value as the oct et st ri ng.

For the purpose of this conversion, a oct et st ri ng shall be converted into a hexst ri ng containing the same
sequence of hex digits as the oct et st ri ng.

The general error causes in clause 16.1.2 apply.

EXAMPLE:

oct 2hex(' 1D74' O = ' 1D74' H

C.1.24 Octetstring to character string

oct2str(in octetstring invalue) return charstring

This function converts an oct et st ri ng i nval ue to an char st ri ng representing the string equivalent of the
input value. The resulting char st ri ng shall have the same length as the incoming oct et st ri ng.

For the purpose of this conversion each hex digit of i nval ue is converted into a character '0', '1', '2', '3','4",'5', 6", '7',
'8','9",'A", 'B', 'C', 'D', 'E' or 'F' echoing the value of the hex digit. The consecutive order of characters in the resulting
char string is the same as the order of hex digits in the oct et st ri ng.

The general error causes in clause 16.1.2 apply.

EXAMPLE:

oct 2str (' 4469707379' O) = "4469707379"

C.1.25 Octetstring to character string, version Il

oct2char(in octetstring invalue) return charstring

This function converts an oct et st ri ng i nval ue to achar st ri ng. The input parameter i nval ue shall not
contain octet values higher than 7F. The resulting char st r i ng shall have the same length as the input

oct et st ri ng. The octets are interpreted as Recommendation ITU-T T.50 [4] codes (according to the IRV) and the
resulting characters are appended to the returned value.

The general error causes in clause 16.1.2 apply.

EXAMPLE:

oct 2char (' 4469707379' O = "Di psy"

NOTE: The character string returned may contain non-graphical characters, which cannot be presented between
the double quotes.

ETSI

295 ETSI ES 201 873-1 V4.7.1 (2015-06)

C.1.26 Charstring to integer

str2int(in charstring invalue) return integer
This function converts a char st r i ng representing an i nt eger value to the equivalent i nt eger .
In addition to the general error causes in clause 16.1.2, error causes are:
. i nval ue contains characters other than "0", "1", "2", "3", "4" "5" "6","7","8","9" and "-".
. i nval ue contains the character "-" at another position than the leftmost one.

NOTE: On real test systems the integer interpretation of i nval ue may lead to an overflow problem that causes
compile time or runtime error. However, this is out of the scope of the present document.

EXAMPLE:

str2int("66") /1 will return the integer value 66
str2int("-66") // wll return the integer value -66
str2int("6-6") // wll cause an error
str2int("abc") // wll cause an error

str2int("0") /1l will return the integer value O

C.1.27 Character string to hexstring

str2hex(in charstring invalue) return hexstring
This function converts a string of the type char st ri ng to a hexstri ng. The string i nval ue shall contain the
"0"’ "1”, HZH’ ‘73‘7’ "4", HSH’ H6H’ "7"’ "8"’ H9"’ "a"’ "b”, HCH’ Hd”, VleH Hf‘” HAH’ HBH’ "C"’ "D"’ HE" Or HFH graphical
characters only. Each character of i nval ue shall be converted to the corresponding hexadecimal digit. The resulting
hexst ri ng will have the same length as the incoming char st ri ng.

In addition to the general error causes in clause 16.1.2, error cause is:

. i nval ue contains characters other than specified above.

EXAMPLE:

str2hex("54696E6B792D57696E6B7") = ' 54696E6B792D57696E6B7' H

C.1.28 Character string to octetstring

str2oct(in charstring invalue) return octetstring
This function converts a string of the type char stri ng to anoct et stri ng. The string i nval ue shall contain
the HO’I "1" H2H H3H H4H HSH H6H l’7l’ "8" ’|9’| Ha" "b" HCH Hd” HeH Ylfl HAH HBH HCH HDH HE" 01. HF’I graphical
characters only. When the string i nval ue contains even number characters the resulting oct et st ri ng contains 0
as leftmost character followed by the same sequence of characters as in the char st ri ng.

| engt hof (see clause C.2.1 for the resulting oct et st ri ng) will return half of | engt hof of the incoming
char st ri ng. In addition to the general error causes in clause 16.1.2, error causes is:

. i nval ue contains characters other than specified above.

EXAMPLE:

str2oct (" 54696E6B792D57696E6B79") = ' 54696E6B792D57696E6B79' O
str2oct ("1D7")= ' 01D7' O

NOTE: The semantic of the str2oct function cause asymmetric behaviour:

oct2str(str2oct("1D7"))// results in the charstring value "01D7"

ETSI

296 ETSI ES 201 873-1 V4.7.1 (2015-06)

C.1.29 Character string to float

str2float(in charstring invalue) return float

This function converts a char st r i ng comprising a number into a f | oat value. The format of the number in the
char st ri ng shall follow rules in clause 6.1.0, items a) or b) with the following exceptions:

. leading zeros are allowed,

. leading "+" sign before positive values is allowed;

. "-0.0" is allowed;

. no numbers after the dot in the decimal notation are allowed.
In addition to the general error causes in clause 16.1.2, error causes are:

. the format of invalue is different than defined above.

NOTE: On real test systems the float interpretation of i nval ue may lead to an overflow problem that causes
compile time or runtime error. However, this is out of the scope of the present document.

EXAMPLE:

str2fl oat("12345.6") /1 is the same as str2float("123. 456E+02")
str2float("1.6") Il returns a float value equal to 1.6
str2fl oat ("+001.") Il returns a float value equal to 1.0
str2fl oat ("+001") I/l returns a float value equal to 1.0
str2float("-0.0") /1 returns a float value equal to -0.0

C.1.30 Enumerated to integer

enun®int (in Enunerated_type inpar) return integer

This function accepts an enumerated value and returns the i nt eger value associated to the enumerated value (see also
clause 6.2.4). The actual parameter passed to inpar always shall be a typed object (see clause 6.2.4 and the definition
"type context" in clause 3.1).

The general error causes in clause 16.1.2 apply.

EXAMPLE:

type enunerated MyFirstEnunType {
Monday, Tuesday, Wednesday, Thursday, Friday
b

type enunerated MySecondEnuniype {
Saturday(-3), Sunday (0), Monday
b

//within a dynam c | anguage el ement:
var MyFirst EnunType vl _First Enum : = Monday;
var MySecondEnuniType vl _SecondEnum : = Monday;

enunRint (vl _FirstEnum) // returns O
enun®i nt (vl _SecondEnum // returns 1

vl _First Enum : = Wednesday;

vl _SecondEnum : = Sat ur day;

enunRint (vl _FirstEnum // returns 2
enun®i nt (vl _SecondEnum) // returns -3

vl _First Enum : = Friday;

vl _SecondEnum : = Sunday;

enunRint (vl _FirstEnum) // returns 4
enun®i nt (vl _SecondEnum) // returns O

ETSI

297 ETSI ES 201 873-1 V4.7.1 (2015-06)

C.1.31 Octetstring to universal character string

oct2uni char (in octetstring invalue, in charstring string_encoding := "UTF-8")
return universal charstring

This function converts an oct et st ri ng i nval ue toauni versal charstring by use of the given
string_encoding. The octets are interpreted as mandated by the standardized mapping associated with the given
string_encoding and the resulting characters are appended to the returned value. If the optional string_encoding
parameter is omitted, the default value "UTF-8".

The following values (see ISO/IEC 10646 [2]) are allowed as string_encoding actual parameters (for the description of
the codepoints see clause 27.5):

a) "UTF-8"
b) "UTF-16"
¢) "UTF-16LE"
d) "UTF-16BE"
¢) "UTF-32"
f) UTF-32LE"
g) "UTF-32BE"

The i nval ue parameter shall not include the optional signature (see clause 10 of ISO/IEC 10646 [2], also known as
byte order mark).

In case of "UTF-16" and "UTF-32" big-endian ordering shall be used (as described in clauses 10.4 and 10.7 of
ISO/IEC 10646 [2]).

The general error causes in clause 16.1.2 apply.

EXAMPLE:

oct 2uni char (' C384C396C39CC3A4C3B6C3BC O) = "AdUasu";
oct 2uni char (' 00C400D600DCOOE400F600FC O, " UTF- 16LE") = " AGUadU";

NOTE: The character string returned may contain non-graphical characters, which cannot be presented between
the double quotes.

C.1.32 Universal character string to octetstring

uni char 2oct (i n uni versal charstring invalue, in charstring string_encoding := "UTF-8")
return octetstring

This function converts a uni ver sal charstringi nval ue to anoct et st ri ng. Each octet of the octetstring
will contain the octets mandated by mapping the characters of invalue using the standardized mapping associated with
the given string_encoding in the same order as the characters appear in inpar. If the optional string_encoding parameter
is omitted, the default value "UTF-8".

The following values (see ISO/IEC 10646 [2]) are allowed as string_encoding actual parameters (for the description of
the UCS encoding scheme see clause 27.5):

a) "UTF-8"
b) "UTF-16"
¢) "UTF-16LE"
d) "UTF-16BE"
¢) "UTF-32"

ETSI

298 ETSI ES 201 873-1 V4.7.1 (2015-06)

f) "UTF-32LE"
g) "UTF-32BE"
The general error causes in clause 16.1.2 apply.

EXAMPLE:

uni char 2oct (" AQUasu") = ' C384C396C39CC3A4C3B6C3BC O
uni char 2oct (" AQUaodu", "UTF- 16LE") = ' 00C400D600DCO0OE400F600FC O,

C.1.33 Value or template to universal charstring

any2uni str(in tenplate any_type invalue) return universal charstring

This function converts the content of a value or template to a single uni ver sal char st ri ng. The resulting

uni ver sal char st ri ng is the same as the string produced by the log operation containing the same operand as
the one passed to the any2uni st r function. The value or template passed as a parameter to the any2uni char
function may be uninitialized, partially or completely initialized.

The general error causes in clause 16.1.2 apply.

EXAMPLE:

var integer v_intl :=5, v_int2;

var tenplate integer vmw.intl := ?;

var tenplate integer vmw_int2 := -1 ifpresent;

var universal charstring v_chrl, v_chr2, v_chr3, v_chr4;

v_chrl := any2unistr(v_intl); // after the assignnment v_chrl will be "5"

v_chr2 := any2unistr(v_int2); // after the assignment v_chr2 will be "UN N TI ALl ZED"
v_chr3 := any2unistr(vmnv_intl); // after the assignment v_chr3 will be "?"

v_chr4 := any2unistr(vmw_int2); // after the assignment v_chr3 will be "-1 ifpresent”

C.2 Length/size functions
C.2.1 Length of strings and lists

I engthof (in tenplate (present) any_string_or_list_type inpar) return integer

This function returns the length of a value or template that is of type bi t st ri ng, hexstri ng,octetstri ng,
charstring, universal charstring, record of,set of,orarray. The units of length for each string
type are defined in table 4 in the present document.

For values or templates of r ecor d of or set of type, the value to be returned is the maximum of the minimal length
restriction value of the type, or 0 for types with no minimal length restriction, and the index of the last initialized
element plus 1.

The length value returned in case of length restricted string or list type shall be at least the minimum length according to
the type definition. In particular, the length of a fixed lengthr ecord of orset of value will always be the fixed
length according to the type definition. For array values or templates, the value to be returned is the fixed length of the
corresponding r ecor d of type.

NOTE 1: Asi n formal parameters does not allow passing in uninitialized values or templates, even in these cases
i npar will be at least partially initialized.

The length of an uni ver sal char st ri ng shall be calculated by counting each combining character and hangul
syllable character (including fillers) on its own (see ISO/IEC 10646 [2], clauses 23 and 24).

ETSI

299 ETSI ES 201 873-1 V4.7.1 (2015-06)

When the function | engt hof is applied to string-type templates, i npar shall only contain the following matching
mechanisms: specific value, value list, complemented value list, pattern, "?" (AnyValue instead of value), "*"
(AnyValueOrNone instead of value), "?" (AnyElement inside value) and "*" (AnyElementsOrNone inside value) and the
length restriction matching attribute. In case of string-type templates i npar shall match values of the same length only.
Ifi npar contains uninitialized elements, each of them shall be counted as 1 element, i.e. they shall be matched as if
they contained the "?" (AnyElement inside value) matching character in case of binary strings or as if they were a "?"
(Match any character) character pattern for textual strings.

When the function | engt hof is applied to templates of record of or set of types, i npar shall only contain the
following matching mechanisms: specific value, value list, complemented value list, "?" (AnyValue instead of value),
"*" (AnyValueOrNone instead of value), SuperSet, SubSet, "?" (AnyElement inside value) and "*"
(AnyElementsOrNone inside value), permutation and the length restriction matching attribute. The parameter i npar
shall only match values, for which the | engt hof function would give the same result. Ifi npar contains uninitialized
elements, each of them shall be counted as 1 element, i.e. they shall be matched as if they contained the "?"
(AnyElement inside value) matching character.

NOTE 2: In case of record ofs and set ofs and arrays only elements of the TTCN-3 object, which is the parameter of
the function are calculated; i.e. no elements of nested types are taken into account when determining the
return value.

In addition to the general error causes in clause 16.1.2, error causes are:

. i npar is a string-type template and it can match string values with different length or the length restriction
matching attribute contradicts the number of string elements in the template body;

. i npar is arecord of or set of type template and it can match values of different lengths or the length
restriction matching attribute contradicts the number of elements in the template body.

NOTE 3: On real test systems the length calculation of i npar may lead to an overflow problem that causes
compile time or runtime error. However, this is out of the scope of the present document.

EXAMPLE 1: Using lengthof for values
| engt hof (' 010' B) /] returns 3
| engt hof (' F3' H) /1 returns 2
I engt hof (' F2' O /'l returns 1

| engt hof (universal charstring : "Length_of _Exanple") // returns 17

/1 Gven
type record | ength(0..10) of integer MyList;
var MyList MyListvar :={ 0, 1, -, 2, - };

| engt hof (MyLi st Var);
/1 returns 4 without respect to the fact, that the elenent MyListVar[2] is not initialized

EXAMPLE 2: Using lengthof for string-type templates
| engt hof (charstring : "HELLO") /] returns 5
| engt hof (octetstring : ('12'Q '34'0) [// returns 1
| engt hof (' 1??1' B) Il returns 4
| engt hof (uni versal charstring : ? length(8)) // returns 8
I engt hof (' 1*F' H) /1 shall cause an error
I engthof (' 1*F' H l ength (8)) /] returns 8

I engthof (bitstring : ? length(2..infinity)) // shall cause an error

| engt hof (' 00*FF O | ength(1..2)) /'l returns 2
| engt hof (' 1*49' H l ength(1..2)) /1 shall cause an error
I engthof (" 1' B 1 ength(3)) /1 shall cause an error

ETSI

300 ETSI ES 201 873-1 V4.7.1 (2015-06)

| engt hof (' 1*1' B | engt h(10. . 20)) /1 shall cause an error

EXAMPLE 3:

type record of integer Rol;
tenplate Rol tr_roll :={ 1, pernutation(2, 3), ?}
*

tenplate Rol tr_rol2 := {1, *, (2, 3) }

tenplate Rol tr_rol3 :={ 1, *, 10 } length(5)
tenplate Rol tr_rol4 :={ 1, 2, 3, * } length(1..2)
tenplate Rol tr_rol5 :={ 1, 2, 3, * } length(1..3)

I engthof (tr_roll) // returns 4
I engthof (tr_rol2) // shall cause an error
I engthof (tr_rol3) // returns 5
I engthof (tr_rol4) // shall cause an error

I engthof (tr_rol5) // returns 3

C.2.2 Number of elements in a structured value
sizeof (in tenplate (present) any_record_set_type inpar) return integer
This function returns the actual number of elements of a value or template of a r ecor d or set type (see note).

The function Si zeof is applicable to templates of record and set types. The function is applicable only if the Si zeof
function gives the same result on all values that match the template.

NOTE: Only elements of the TTCN-3 object, which is the parameter of the function are calculated; i.e. no
elements of nested types/values are taken into account at determining the return value.

In addition to the general error causes in clause 16.1.2, error causes are:
e wheni npar is atemplate and it can match values of different sizes.

EXAMPLE:

/1 Gven
type record MyPDU
{ bool ean fieldl optional,
integer field2

H
tenpl ate MyPDU MyTenpl ate : =

{ fieldl := onit,

field2 :=5

h
sizeof (MyTenpl ate); // returns 1
type set S {

integer f1,

bitstring f2 optional,
charstring f3 optional

}

template Str_S1 :={ f1 := (0..99), f2 := omt, f3 := 2}

tenmplate Str_S2 :={ f3 :=*, f1:=1, f2 :='00'B ifpresent }

tenmplate Str_S3 :=({ f1:=1, f2 :=omt, f3 :="ABC' }, { f1:=2, f3 := omt, f2 :="'1'B})
=?

tenplate S tr_S4 :

sizeof (tr_S1) // returns 2
sizeof (tr_S2) // shall cause an error
sizeof (tr_S3) // returns 2
sizeof (tr_S4) // shall cause an error

ETSI

301 ETSI ES 201 873-1 V4.7.1 (2015-06)

C.3 Presence checking functions

C.3.1 The IsPresent function
ispresent(in tenplate any_ type inpar) return bool ean
This function is allowed for templates of all data types and returns:
. the value t r ue if the data object reference fulfils the (present) template restriction as described in clause 15.8;
e the value f al se otherwise.

NOTE 1: When the argument ofi spresent is a subfield of a template field to which the "?" (AnyValue) matching
is assigned, the extension mechanism specified in clause 15.6.2 applies.

NOTE 2: This means that whenever i spresent (M/Tenpl at e) returns t r ue:

- My/Tenpl at e can safely be assigned to a non-optional field of the type of the template in a template
variable;

- My/Tenpl at e can safely be used as an actual template(present) parameter or assigned to a variable of
kind template(present).

The application of the i Spr esent function to a semantically correct data object reference shall never result in an
error, even if using the reference would normally cause a runtime error when being used e.g. in an expression.

EXAMPLE:

/1 Gven
type record MyRecord

record {
bool ean innerFi el dl optional,
i nteger innerField2 optional,
M/Record i nnerFi el d3 opti onal
} fieldl optional,
integer field2
}

var MyRecord vl _M/Record := { fieldl := {}, field2 :=51}
/1 type of fieldl is record with fields, therefore fieldl remains uninitialized
/Il after this assignnment (no value is assigned to any of the fields of vl_M/Record.fieldl)

i spresent (vl _M/Record.fieldl) // returns fal se

vl _M/Record.fieldl := omt

i spresent (vl _M/Record.fieldl) // returns false
/1 and therefore, vl_MRecord.fieldl.innerFieldl is an inaccessible reference

i spresent (vl _M/Record.fieldl.innerField3.field2) // shall return fal se because innerField3 is
/1 unintialized and therefore, vl_MRecord.fieldl.innerField3.field2 is an
/1 inaccessible reference

i spresent (vl _My/Record.fieldl.innerFieldl) // shall return fal se because fieldl is onmtted
var tenplate MyRecord vlit_MRecord :={ fieldl :=?, field2 :=51}

i spresent (vlt_M/Record.fieldl) // returns true
ispresent(vlt_M/Record.fieldl.innerFieldl) // returns fal se because fieldl is AnyVal ue

Il (pls. note, that at expansion of fieldl the optional field innerFieldl obtains "*"

/1 that can match both a present and an onitted field

type record R { integer f1 optional, integer f2 optional }

tenplate Rtl1 := {f1:=1, f2 :=(2 .. 4) }

tenmplate Rt2 :={ f1 :=omt, f2 := (5, 7) ifpresent }
tenplate Rt3 := {f1 :=*, f2 :=?}

ispresent(tl1.f1) // returns true

ETSI

302 ETSI ES 201 873-1 V4.7.1 (2015-06)

ispresent(t1.f2) // returns true
ispresent(t2.f1) // returns false
ispresent(t2.f2) // returns fal se
ispresent(t3.f1) // returns fal se

ispresent(t3.f2) // returns true

C.3.2 The IsChosen function

i schosen(in tenplate any_union_type inpar) return bool ean
This function is allowed for templates of all data types that are a union-field-reference. This function returns:

e the valuet r ue if and only if the data object reference specifies the variant of the uni on type that is actually
selected for a given data object;

° in all other cases f al se.

The function i schosen is applicable to templates of union types containing a specific value or a value list. It returns
t r ue if all the values matched by i npar have the given field selected. The result is f al se if there is another field of
the union type on which i schosen would return true.

The application of the i Schosen function to a semantically correct data object reference shall never result in an error,
even if using the reference would normally cause a runtime error when being used e.g. in an expression.

EXAMPLE I:

type unio
tenpl ate
tenpl ate

n f1l, octetstring f2 }
U S
U
tenplate U
U
U

(i
_u

= _
— =~ D
N =

!

tenpl ate

U
t
t
t
t
tenplate Ut

I T T T 2

—~— .\JF"HF“-\(Q
-

W2
U3
_u
Y-

— —h
N -
Inn

34' O length(2) })

i schosen(t_Ul.f1) // returns true

schosen(t_U1.f2) // returns false

schosen(t_U2.f1) // returns false

schosen(t_UW2.f2) // returns true

schosen(t_U3.f1) // returns false

schosen(t_U3.f2) // returns false

schosen(t_U4.f1) // returns false

schosen(t_UW4.f2) // returns false

schosen(t_Us.f1) // returns false

schosen(t_U5.f2) // returns true
type record R{ U u optional }
tenmplate Rt_RL :={ omt }

i schosen(t_Rl.u.f1) // returns false
EXAMPLE 2:

/1 Gven

type uni on MyUni on

{ PDU_t ypel pl,

PDU_t ype2 p2,
PDU_t ype p3

ETSI

303 ETSI ES 201 873-1 V4.7.1 (2015-06)

/1 and given that M/PDU is a tenplate of MyUnion type

/1 and received_PDU is also of MyUnion type

/1 then

MyPort.recei ve(M/PDU) -> val ue recei ved_PDU

i schosen(recei ved_PDU. p2)

Il returns true if the actual instance of MyPDU carries a PDU of the type PDU type2

C.3.3 The IsValue function

isvalue(in tenplate any_type inpar) return bool ean;

This function is allowed for templates of all data types, component and address types and default values. The function
shall return t r ue, ifi npar is completely initialized and resolves to a specific value. If i npar is of r ecor d or set
type, omitted optional fields shall be considered as initialized, i.e. the function shall also return true if optional fields of
i npar are set to omit. The function shall return f al se otherwise.

The nul | value assigned to default and component references shall be considered as concrete values.

The application of the i Sval ue function to a semantically correct data object reference shall never result in an error,
even if using the reference would normally cause a runtime error when being used e.g. in an expression.

EXAMPLE 1: Simple types

tenpl ate charstring ts_charO :
tenpl ate charstring tr_charl :

"ABCD'; //tenplate containing a specific value matching

"AB?D'; //tenplate containing a specific value matching
/Inote, that "?" is not a matching synbol in this case

pattern "ABCD'; //a pattern matching a single value only

pattern "AB?D'; //pattern matching

("ABCD'); // tenplate containing a specific value (expression)

("ABCD',"EFGH"); //a value list matching a single value only

tenplate charstring tr_char2 :
tenpl ate charstring tr_char3 :
tenpl ate charstring tr_char4 :
tenpl ate charstring tr_char5 :

isvalue(ts_char0Q); // shall return true
i svalue(tr_charl); // shall return true
i svalue(tr_char2); // shall return false
i svalue(tr_char3); // shall return false
i svalue(tr_chard4); // shall return true simlarly to e.g. isvalue((2)) shall return true
isvalue(tr_char5); // shall return fal se

EXAMPLE 2: Special types

var default vl _default := null;
i sval ue(vl _default); // shall return true

EXAMPLE 3: Record/set types

type record M/Rec {
integer f1 optional,
integer f2 optional

}

var MyRec vl _MyRec;
var tenplate MyRec vlt_M/Rec;

i sval ue(vl _MyRec); /1 shall return false
i sval ue(vlt_M/Rec); /1 shall return false
vl _M/Rec ={ f1:=5 f2 :=onmt }
vit_MWRec :={ f1:=?2, f2:=51}

i sval ue(vl _MyRec); /1 shall return true
isvalue(vl _MyRec.f2); [/ shall return false;
i sval ue(vlt_M/Rec); /1 shall return false

i svalue(vlt_My/Rec.f1l); // shall return false
isvalue(vlt_M/Rec.f2); // shall return true

vit_MRec.f2 := onmit;

isvalue(vlt_MyRec.f2); // shall return false

ETSI

EXAMPLE 4: Union types
type union MyUnion {
i nteger chi,
i nteger ch2
}
tenplate MyUnion ts_MyUnion : =
tenplate MyUnion tr_MyUnion : =
i sval ue(ts_MyUni on); /1 shall

i sval ue(tr_M/Union);
i sval ue(tr_MUni on. chl);
/'l note,

/1 shall
/1 shall

{ chl:
{ chl :

304

-~ 01
-

return true
return fal se
return fal se
this is different fromischosen(tr_M/Union.chl) as isvalue checks the content

/1 choice chl, while ischosen is checking if chl has been sel ected or not

i sval ue(tr_MyUni on. ch2);

EXAMPLE 5: Nested types

type record M/Record {
MyUni on u opti onal
}

tenpl ate MyRecord ts_MyRecord :
tenpl ate MyRecord tr_MyRecord :
tenpl ate MyRecord ts_MyRecord2 :

i sval ue(ts_MyRecord. u.chl); //
i sval ue(tr_M/Record. u.chl); //
i sval ue(tr_M/Record. u.ch2); //
i sval ue(ts_MyRecord. u.ch2); //

/1 shall

return fal se

return true
return fal se
return fal se
return fal se

ETSI ES 201 873-1 V4.7.1 (2015-06)

of the

C.3.4 The IsBound function

i sbound(in tenplate any_type inpar)

return bool ean;

This function is allowed for templates of all data types. The function shall return t r ue, if i npar is at least partially
initialized. Ifi npar isofarecord or set type, omitted optional fields shall be considered as initialized, i.e. the
function shall also return t r ue if at least one optional field of i npar is setto omi t . The function shall return f al se
otherwise. Inaccessible fields (e.g. non-selected alternatives of uni on types, subfields of omitted record and set types
or subfields of non-selected union fields) shall be considered as uninitialized, i.e. isbound shall return for them f al se.

The nul | value assigned to default and component references shall be considered as concrete values.

The application of the i sbound function to a semantically correct template reference shall never result in an error,
even if using the reference would normally cause a runtime error when being used e.g. in an expression.

EXAMPLE 1: Simple types

var tenplate charstring vlt_char;

i sbound(vlt_char);

vlt_char := "AB?D";
i sbound(vlt_char);

vlt_char := pattern "AB?D";

i sbound(vlt_char);
EXAMPLE 2: Special types
var default vl _default :=
i sbound(vl _default);

EXAMPLE 3: Record/set types

type record M/Rec {
integer f1,
M/Rec f2 optional

nul | ;
/1 shall

/1 shall

return false as v_char is uninitialized,

/'l tenplate containing a specific value
/1 shall

return true

//tenplate containing a pattern natching
/1 shall

return true

return true

ETSI

305 ETSI ES 201 873-1 V4.7.1 (2015-06)

var MyRec vl _MyRec;
i sbound(vl _M/Rec); /1 shall return false

vl _M/Rec.f2 := onit;
i sbound(vl _M/Rec); /1 shall return true as vl_MRec is partially initialized,
/1l field f2 is set to omt

vi_MRec :={ f1:=5, f2 :=onmt }

i sbound(vl _MyRec) ; /1 shall return true as vl_MRec is conpletely initialized

i sbound(vl _MyRec.f2.f1); /1 shall return false as vl_MRec.f2.f1 is inaccessible

i sbound(vl _MyRec. f1/0); /1 shall cause an error already during eval uating the argunent

/1 as division by zero is not allowed

type uni on MyUnion {

i nteger chil,
M/Rec ch2
}
var tenplate MyUnion vlt_M/Union;
i sbound(vl t _MyUni on); /1 shall return false, as vit_MUnion is uninitialized
i sbound(vl t _MyUni on. chl); /1 shall return false, as alternative chl is uninitialized

vit_MUnion := { chl :=5 };

i sbound(vl t _MyUni on); /1 shall return true
i sbound(vl t _MyUni on. chl); /1 shall return true
i sbound(vlt_M/Uni on. ch2); /1 shall return false as the ch2 alternative is not selected

i sbound(vlt_MyUnion.ch2.f1); // shall return false as the field f1 is inaccessible
i sbound(vlt_MyUnion.chl/0); // shall cause an error already during evaluating the argument
/1 as division by zero is not allowed

C.3.5 Matching mechanism detection
istenplatekind (in tenplate any_type invalue, in charstring kind) return bool ean
This function allows to examine if a template contains a certain kind of the matching mechanisms.

If the matching mechanism kind enquired is matching a specific value (clause B.1.1), a matching mechanism instead of
values (clause B.1.2) or matching character pattern (clause B.1.5), the function shall return t r ue if the content of the
invalue parameter is of the same kind.

If the matching mechanism kind enquired is a matching mechanism inside values (clause B.1.3), the function shall
return t r ue if the template in the invalue parameter contains this kind of matching mechanism on the first level of
nesting.

If the matching mechanism kind enquired is a matching attribute (clause B.1.4), the function shall return t r ue if the
template in the invalue parameter has this kind of matching attribute attached to it directly (i.e. it doesn't count if the
attribute is attached to a field of invalue at any level of nesting).

In all other cases the function returns f al se.

The ki nd parameter shall be one of the strings listed in table C.1.

ETSI

306

ETSI ES 201 873-1 V4.7.1 (2015-06)

Table C.1: Allowed values of kind parameter

Value of kind parameter Searched matching mechanism
Name Clause reference

"value" Specific value B.1.1

"list" Template list B.1.2.1
"complement"” Complemented template list B.1.2.2
"AnyValue", "?" Any value B.1.2.3
"AnyValueOrNone", "*" Any value or none B.1.24
"range” Value range B.1.25
"superset" SuperSet B.1.2.6
"subset” SubSet B.1.2.7
"omit" Omit B.1.2.8
"@encoded" Encoded value B.1.2.9

<see CR6736>

"AnyElement" Any element B.1.3.1
"AnyElementsOrNone" Any number of elements or none B.1.3.2
"permutation” Permutation B.1.3.3
"length" Length restriction B.14.1
"ifpresent" The IfPresent indicator B.1.4.2
"pattern” Matching character pattern B.1.5

NOTE: Clause E.2.2.5 includes the type definition TemplateKind and a constant for each of the allowed values of
the kind parameter. It is recommended to use the istemplatekind function in combination with this type
and these constants to ease the checking of correct usage and to improve the readability of test specs.

Restrictions

In addition to the general error causes given in clause 16.1.2, the following restrictions apply:

a) Calling thei st enpl at eki nd function with a different second parameter than stated in table C.1 shall lead
to an error.

EXAMPLE:
type record of integer Rol;
var tenplate integer vt_1 :=?, vt_2 :=(0,1,2) ifpresent;

var tenplate Rol vt_3:= { pernutation(1, 2, 3), ?};
var bool ean v_res;

v_res := istenplatekind(vt_1, "AnyValue"); // true

v_res := istenplatekind(vt_1, "AnyValueOrNone"); // false
v_res := istenplatekind(vt_2, "conplerment"); // false
v_res := istenplatekind(vt_2, "list"); // true

v_res := istenplatekind(vt_2, "ifpresent"); // true

v_res := istenplatekind(vt_3, "pernutation"); // true
v_res := istenplatekind(vt_3, "AnyElement"); // true

CA4
C.4.1 The Regexp function

regexp [@ocase] (
in tenplate (value) any_character_string_type inpar,
in tenplate (present) any_character_string_type expression,
in integer groupno

) return any_character_string_type

String/list handling functions

This function first matches the parameter i npar (or in case i npar is a template, its value equivalent)against the
expr essi on in the second parameter according to the pattern matching specified in clause B.1.5. If expr essi on is
not a template containing a pattern matching mechanism, it shall be processed by this predefined function as if it was a
character pattern as described in clause B.1.5. If the @nocase modifier is present, this and all subsequent matchings
shall be done in a case-insensitive way, as specified in clause B.1.5.6. If i npar is a literal (i.e. type is not explicitly
given) the corresponding type shall be retrieved from the value contents.

ETSI

307 ETSI ES 201 873-1 V4.7.1 (2015-06)

If this matching is unsuccessful, an empty string shall be returned.

If this matching is successful, the substring of i npar shall be returned, which matched the gr oupno-s group of
expr essi on during the matching. Group numbers are assigned by the order of occurrences of the opening bracket of
a group and counted starting from 0 by step 1.

The parameters i npar and expr essi on shall be a value or a template of char st ri ng or uni ver sal

char st ri ng types. In case i npar is a template, it shall contain the specific value matching mechanism only. When
expr essi on is a template it shall contain the specific value or pattern matching mechanisms only. The parameter

gr oupno shall be a non-negative integer. The type of the character string returned is the root type of i npar .

NOTE: This function differs from other well-known regular expression matching implementations in that:
a) It shall match the whole inpar string instead of only a substring.

b) It starts counting groups from 0, while in some other implementations the first group is referenced
by 1 and the whole substring matched by the expression is referenced by 0.

In addition to the general error causes in clause 16.1.2, error causes are:
. when i npar is a template, it contains other matching mechanism than specific value or character pattern;

e when expr essi on is a template, it contains other matching mechanism than specific value or character
pattern;

. i npar is of charstring type and expr essi on is of universal charstring type;
. gr oupno is a negative integer;
. there is no gr oupno -s group in eXpr essi on.

EXAMPLE:

/1 Gven
var charstring nylnput :=" sinple text for a regexp example “;
var charstring nyString;

nyString := regexp(nylnput,charstring:"?+(text)?+",0);
/1 will return "text"

nyString := regexp(nylnput,charstring:"?+(text)?+",1);
/] causes an error as there is no group with index 1

nyString := regexp(nylnput,charstring:"(?+)(text)(?+)",0);
/'l will return " simple "

myString := regexp(nylnput,charstring:"(?+)(text)(?+)",2);
/1 will return " for a regexp exanple "

nmyString := regexp(nylnput,charstring:"((?+)(text)(?+))",0);
/1 will return the whole inpar, i.e. " sinple text for a regexp exanple

nyString := regexp(nylnput,charstring:"(([1+)(text)(?+))",0);
/1 will return an enpty string as expression does not matches inpar

nyString := regexp(nylnput,universal charstring:"?+(text)?+",0);
/1 will cause an error as inpar is of type charstring, while
/] expression is of type universal charstring

nylnput :=" date: 2001-10-20 ; msgno: 17; exp “;

var tenplate charstring nyPattern : =
pattern "([\t]#(0,)date:[\d\-]1#(0,);[\t]#(0,)msgno: (\d#(1,3)); (exp)#(0,1)) [\t]#(0,)";
/'l please note, that only the very first opening bracket and the bracket before "\d#(1,3)"
/1 denotes groups; "#(0,)", "#(1,3)" and "#(0,1)" denotes nmatching the precedi ng expression
/1l several tine

myString : = regexp(nylnput, nyPattern,0);

/1 will return the input string but the whitespace at the end,
/Il i.e. " date: 2001-10-20 ; nmsgno: 17; exp"

ETSI

308 ETSI ES 201 873-1 V4.7.1 (2015-06)

nyString := regexp(nylnput, nyPattern,1);
/1 will return the value "17"

/1 An exanpl e of a wapper function to count groups from1 and return the conpl ete p_inpar
[1if p_groupno equals O
function regexp0(
in tenplate charstring p_inpar,
in tenplate charstring p_expression,
in integer p_groupno)
return charstring {
var tenplate charstring extended_expr := pattern "({p expression})";
return regexp(p inpar, extended_expr, p_groupno)

C.4.2 The Substring function

substr (
in tenplate (present) any_string_or_sequence_type inpar,
in integer index,
in integer count

) return input_string_or_sequence_type

This function returns a substring or subsequence from a value that is of a binary string type (bi t st ri ng,
hexstring, oct et st ring), acharacter string type (Char stri ng, uni ver sal char stri ng), or a sequence
type (record of,set of orarray). Ifi npar is a literal (i.e. type is not explicitly given) the corresponding type
shall be retrieved from the value contents. The type of the substring or subsequence returned is the root type of the input
parameter. The starting point of substring or subsequence to return is defined by the second parameter (i ndex).
Indexing starts from zero. The third input parameter (count) defines the length of the substring or subsequence to be
returned. The units of length for string types are as defined in table 4 of the present document. For sequence types, the
unit of length is element.

NOTE: Please note that the root types of arrays isr ecor d of , therefore if i npar is an array the returned type
isrecord of. This, in some cases, may lead to different indexing in i npar and in the returned value.

When used on templates of character string types, only the inside matching mechanisms AnyElement and
AnyElementsOrNone are allowed in i npar and the function shall return the character representation of the matching
mechanisms, i.e. "?" for AnyElement and "*" for AnyElementsOrNone. When inpar is a template of binary string or
sequence type or is an array, only the specific value and AnyElement matching mechanisms are allowed and the
substring or subsequence to be returned shall not contain AnyElement.

In addition to the general error causes in clause 16.1.2, error causes are:
. i ndex is less than zero;

. count is less than zero;

. i ndex+count is greater than | engt hof (i npar);

. i npar is a template of a character string type and contains a matching mechanism other than AnyElement or
AnyElementsOrNone;

. i npar is a template of a binary string or sequence type or array and it contains other matching mechanism as

specific value and AnyElement;

. i npar is a template of a binary string or sequence type or array and the substring or subsequence to be
returned contains the AnyElement matching mechanism.

EXAMPLE:
substr('00100110' B, 3, 4) /1 returns '0011'B
substr (' ABCDEF' H, 2, 3) /1 returns 'CDE H
substr (' 01AB23CD O 1, 2) [/ returns 'AB23' O

substr("My nanme is JJ", 11, 2) // returns "JJ"

substr({ 4, 5, 6}, 1, 2) /1 returns {5, 6}

ETSI

309 ETSI ES 201 873-1 V4.7.1 (2015-06)

C.4.3 The Replace function

repl ace(
in any_string_or_sequence_type inpar,
in integer index,
in integer |en,
in any_string_or_sequence_type repl
) return any_string_or_sequence type

This function replaces the substring or subsequence of value i npar at index i ndex of length | en with the string or
sequence value r epl and returns the resulting string or sequence. i npar shall not be modified. If | en is O the string
or sequence I epl is inserted. If i ndex is O, r epl is inserted at the beginning of i npar . If i ndex is

| engt hof (i npar),repl isinserted at the end of i npar . Ifi npar is a literal (i.e. type is not explicitly given) the
corresponding type shall be retrieved from the value contents. i npar and r epl , and the returned string or sequence
shall be of the same root type. The function replace can be applied to bi t st ri ng, hexstri ng,octetstring,or
any character string, r ecor d of , set of, or arrays. Note that indexing in strings starts from zero.

NOTE: Please note that the root types of arrays is r ecor d of , therefore if i npar orrepl or both are an
array, the returned type is r ecor d of . This, in some cases, may lead to different indexing ini npar
and/or r epl and in the returned value.

In addition to the general error causes in clause 16.1.2, error causes are:

. i npar orrepl arenot of string, r ecord of,set of, orarray type;
. i npar and r epl are of different root type;

. i ndex is less than O or greater than | engt hof (i npar) ;

. | en is less than O or greater than | engt hof (i npar) ;

. i ndex+| en is greater than | engt hof (i npar).

EXAMPLE:

repl ace ('00000110'B, 1, 3, '"111'B) // returns '01110110'B

replace (' ABCDEF' H, 0, 2, '123'H) /1 returns '123CDEF H
replace ('01AB23CD O 2, 1, 'FF96' O /1 returns '01ABFF96CD O
replace ("My nane is JJ", 11, 1, "xx") [/ returns "My nane is xxJ"
replace ("My name is JJ", 11, 0, "xx") [/ returns "My nane is xxJJ"
replace ("My nanme is JJ", 2, 2, "x") /1 returns "Myxane is JJ",
replace ("My name is JJ", 12, 2, "xx") [/ produces test case error

replace ("My nane is JJ", 13, 2, "xx") [/ produces test case error

replace ("My name is JJ", 13, 0, "xx") [/ returns "My nane is JJIxx"

C.5 Codec functions

C.5.1 The encoding function

encval ue(in tenplate (value) any_type inpar) return bitstring

The encval ue function encodes a value or template into a bitstring. When the actual parameter that is passed to

i npar is a template, it shall resolve to a specific value (the same restrictions apply as for the argument of the send
statement). The returned bitstring represents the encoded value of i npar , however, the TTCN-3 test system need not
make any check on its correctness.

ETSI

310 ETSI ES 201 873-1 V4.7.1 (2015-06)

In addition to the general error causes in clause 16.1.2, error causes are:

e Encoding fails due to a runtime system problem (i.e. no encoding function exists for the actual type of
i npar).

C.5.2 The decoding function
decval ue(inout bitstring encoded_val ue, out any_type decoded_val ue) return integer

The decval ue function decodes a bitstring into a value. The test system shall suppose that the bitstring
encoded_val ue represents an encoded instance of the actual type of decoded_val ue.

If the decoding was successful, then the used bits are removed from the parameter encoded_val ue, the rest is
returned (in the parameter encoded_val ue), and the decoded value is returned in the parameter decoded_val ue.
If the decoding was unsuccessful, the actual parameters for encoded_val ue and decoded_val ue are not
changed. The function shall return an integer value to indicate success or failure of the decoding below:

. The return value 0 indicates that decoding was successful.

. The return value 1 indicates an unspecified cause of decoding failure. This value is also returned if the
encoded_val ue parameter contains an unitialized value.

. The return value 2 indicates that decoding could not be completed as encoded_val ue did not contain
enough bits.

The restrictions in clause 16.1.2 apply.

C.5.3 The encoding to universal charstring function

encval ue_uni char (i n tenplate (value) any_type inpar,
in charstring string_serialization := "UTF-8")
return universal charstring

The encval ue_uni char function encodes a value or template into a universal charstring. When the actual
parameter that is passed to i npar is a template, it shall resolve to a specific value (the same restrictions apply as for
the argument of the send statement). The returned universal charstring represents the encoded value of i npar ,
however, the TTCN-3 test system need not make any check on its correctness. If the optional string_serialization
parameter is omitted, the default value "UTF-8" is used.

The following values (see ISO/IEC 10646 [2]) are allowed as string_serialization actual parameters (for the description
of the UCS encoding scheme see clause 27.5):

a) "UTF-8"

b) "UTF-16"

¢) "UTF-16LE"
d) "UTF-16BE"
¢) "UTF-32"

f) "UTF-32LE"
g) "UTF-32BE"

The serialized bitstring shall not include the optional signature (see clause 10 of ISO/IEC 10646 [2], also known as byte
order mark).

In case of "UTF-16" and "UTF-32" big-endian ordering shall be used (as described in clauses 10.4 and 10.7 of
ISO/IEC 10646 [2]).

The specific semantics of this function are explained by the following TTCN-3 definition:

function encval ue_uni char(any_type v, charstring enc) return universal charstring {
return oct 2uni char (bit2oct (encval ue(v)), enc);

ETSI

311 ETSI ES 201 873-1 V4.7.1 (2015-06)

The encval ue_uni char function first invokes the encvalue function in order to encode the val ue
passed in the inpar paranmeter to a bitstring. The bitstring is then converted to an octetstring by
the bit2oct function and subsequently to a universal charstring using the oct2unichar function. The
string_serialization paraneter defines how the encoded octets (in fact the encoded bitstring

recei ved fromthe codec) contain the characters. The universal charstring value is then returned as
the result of the encval ue_unichar function.

In addition to the general error causes in clause 16.1.2, error causes are:

e Encoding fails due to a runtime system problem (i.e. no encoding function exists for the actual type of
i npar).

. The given string encoding is not recognized.

C.5.4 The decoding from universal charstring function

decval ue_uni char (i nout universal charstring encoded_val ue, out any_type decoded_val ue,
in charstring string_serialization:= "UTF-8")
return integer

The decval ue_uni char function decodes (part of) a universal charstring into a value. The test system shall
suppose that a prefix of the universal charstring encoded_val ue represents an encoded instance of the actual type of
decoded_val ue.

If the decoding was successful, then the characters used for decoding are removed from the parameter

encoded_val ue, the rest is returned (in the parameter encoded_val ue), and the decoded value is returned in the
parameter decoded_val ue. If the decoding was unsuccessful, the actual parameters for encoded_val ue and
decoded_val ue are not changed. The function shall return an integer value to indicate success or failure of the
decoding below:

. The return value 0 indicates that decoding was successful.

. The return value 1 indicates an unspecified cause of decoding failure. This value is also returned if the
encoded_val ue parameter contains an unitialized value.

. The return value 2 indicates that decoding could not be completed as encoded_val ue did not contain
enough bits.

If the optional string_serialization parameter is omitted, the default value "UTF-8" is used.

The following values (see ISO/IEC 10646 [2]) are allowed as string_serialization actual parameters (for the description
of the UCS encoding scheme see clause 27.5):

a) "UTF-8"

b) "UTF-16"

¢) "UTF-16LE"
d) "UTF-16BE"
¢) "UTF-32"

f) "UTF-32LE"
g) "UTF-32BE"

The serialized bitstring shall not include the optional signature (see clause 10 of ISO/IEC 10646 [2], also known as byte
order mark).

In case of "UTF-16" and "UTF-32" big-endian ordering shall be used (as described in clauses 10.4 and 10.7 of
ISO/IEC 10646 [2]).

The semantics of the function can be explained by the following TTCN-3 function:

functi on decval ue_uni char
(inout universal charstring encoded_val ue, out any_type decoded_val ue,

ETSI

312 ETSI ES 201 873-1 V4.7.1 (2015-06)

in charstring string_encoding := "UTF-8") return integer {
var bitstring str = oct2bit (unichar2oct(encoded_val ue, string_encoding));
var integer result := decvalue(str, decoded_val ue);
if (result == 0) { // success
encoded_val ue : = oct2uni char(bit2oct(str), string_encoding);

}

return result;

The decval ue_uni char function first converts the universal charstring value passed in the
encoded_val ue paraneter into an octetstring using the unichar2oct function. The string_serialization
paraneter controls how the characters are converted into octets (in fact how the bitstring sent to
the codec contains the characters). The octetstring is subsequently converted into a bitstring by
the oct2bit function. This bitstring is then passed as a paraneter to the standard decval ue function
that perforns the actual decoding. In case of successful decoding, the undecoded part of the nessage
is automatically converted frombitstring to octetstring by the bit2oct function and then to

uni versal charstring using the oct2unichar function. This universal charstring is then assigned to
the encoded_val ue paranmeter. The result of decoding is then returned to the TE, finishing the

decval ue_uni char call

The restrictions in clause 16.1.2 apply.

C.5.5 Retrieving the type of string encoding

get _stringencoding(in octetstring encoded_val ue) return charstring

The get_stringencoding function analyses the encoded value and returns the UCS encoding scheme according to
clause 10 of ISO/IEC 10646 [2] (see also clause 27.5 of the present document). The identified encoding scheme, or the
value "<unknown>", if the type of encoding cannot be determined unanimously, shall be returned as a character string.

NOTE: The initial octet sequence (also known as byte order mark, BOM), when present, allows identifying the
encoding scheme unanimously. When it is not present, other symptoms may be used to identify the
encoding scheme unanimously; for example, only UTF-8 may have odd number of octets and bit
distribution according to table 2 of clause 9.1 of ISO/IEC 10646 [2].

EXAMPLE:

mat ch (get_stringencodi ng(' 6869C3BA7A' O charstring: "UTF-8")) // true
//(the octetstring contains the UTF-8 encoding of the character sequence "hiuz")

C.5.6 Removing BOMs of UCS encoding schemes

renmove_bon(in octetstring encoded_val ue) return octetstring

The r enove_bomfunction removes the optional FEFF ZERO WIDTH NO-BREAK SPACE sequence that may be
present at the beginning of a stream of serialized (encoded) universal character strings to indicate the order of the octets
within the encoding form, as defined in clause 10 of ISO/IEC 10646 [2]. If no FEFF ZERO WIDTH NO-BREAK
SPACE sequence present in the encoded_val ue parameter, the function shall return the value of the parameter
without change.

Table C.2: Overview of initial octet sequences used for BOM

Coding scheme initial octet sequence comments

UTF-8 EF BB BF signature not required / no effect

UTF-16BE FE FF no signature meaning

UTF-16LE FF FE no signature meaning
FE FF signature

UTF-16 FF FE (default FE FF)

UTF-32BE 00 00 FE FF no signature meaning

UTF-32LE FF FE 00 00 no signature meaning
00 00 FE FF signature

UTF-32 FF FE 00 00 (default 00 00 FE FF)

EXAMPLE:

renove_bon(' FEFFO068006900FA007A O) // returns ' 0068006900FA007A" O

renove_bon('BC O) // returns 'BC O
/1 note that this octetstring doesn't contain valid UCS character

ETSI

313 ETSI ES 201 873-1 V4.7.1 (2015-06)

// exanpl e use: autonatic decoding of encoded character strings:
oct 2uni char (r emove_bon{ MyEncodedChar act er Sequence) ,
get _stringencodi ng(M/EncodedChar act er Sequence))

C.6 Other functions

C.6.1 The random number generator function

rnd([in float seed]) return float

The r nd function returns a (pseudo) random number less than 1 but greater or equal to 0. The random number
generator is initialized per test component and for the control part by means of an optional seed value (a numerical float
value). If no new seed is provided, the last generated number will be used as seed for the next random number. Without
a previous initialization a value calculated from the system time will be used as seed value whenr nd is used the first
time in a test component or the control part.

Each time the r nd function is initialized with the same seed value, it shall repeat the same sequence of random
numbers.

NOTE: For the purpose of keeping parallel testing deterministic, each test component, as well as the control part
has its own random seed. This allows for better reproduciblity of test executions. Thus, the rnd function
will always use the seed of the component or control part which calls it.

To produce a random integers in a given range, the following formula can be used:

f | oat 2i nt (i nt 2f | oat (upper bound - | owerbound +1)*rnd()) + | owerbound
/1 Here, upperbound and | ower bound denote highest and | owest nunber in range.

In addition to the general error causes in clause 16.1.2, error causes are:

. seed isinfinity,-infinityornot_a_numnber.

C.6.2 The testcasename function

testcasenane() return charstring
The t est casenane function shall return the unqualified name of the actually executing test case.
EXAMPLE 1:

modul e MyTCMWbdul e {

testcase MyTestCasel () runs on MIC system TSI

{
var charstring v_TCnane := testcasenane ();
/1 will return the charstring "MTestCasel"
}
t est case M/Test Case2 () runs on MIC system TSI
{

y

}
modul e MyTSMbdul e {

function MyStart APTC() runs on PTC {

var charstring v_TCnane : = testcasenane ();
/1l will return charstring "M/TestCasel", if the function is
/1 called by a test conmponent during the execution of M/TestCasel
/1l will return charstring "MTestCase2", if the function is

/1 called by a test conponent when M/Test Case2 is being executed

ETSI

314 ETSI ES 201 873-1 V4.7.1 (2015-06)

When the function t est casenane is called if the control part is being executed but no testcase, it shall return the
empty string.

EXAMPLE 2:

modul e MyModul e {

control

{
var charstring v_TCnane := testcasename () // will return charstring ""

}

The general error causes in clause 16.1.2 apply.

C.6.3 The hostld function

hostid(in charstring idkind := "Ipv4dorl Pv6") return charstring

The host i d function shall return the host id of the test component or module control executing the host i d function
in form of a character string. The i n parameter i dki nd allows to specify the expected id format to be returned.

Predefined i dki nd values are:

. "1 pvdor | Pv6" : The contents of the returned character string is an Ipv4 address. If no Ipv4 address, but an
Ipv6 address is available, a character string representation of the Ipv6 address is returned.

. "I pv4" : The contents of the returned character string shall be an Ipv4 address.
. "1 pv6" : The contents of the returned characterstring shall be an Ipv6 address.

The host i d function shall return the empty string, if it cannot retrieve any host id or a host id of a kind different from
the kind defined by the actual idkind parameter.

The general error causes in clause 16.1.2 apply.

EXAMPLE:
/'l assune

testcase MyTestCase () runs on MIC system TSI
{

Var charstring v_M/Hostld := hostid ("Ipv4");
/1 assune further the follow ng statement in nodul e control

execut e(MyTest Case(), -, "127.0.0.1");

/1 In this setting, v_M/Hostld will have the value "127.0.0.1" after the execution of hostid

ETSI

315 ETSI ES 201 873-1 V4.7.1 (2015-06)

Annex D (normative):
Preprocessing macros

This annex defines a set of preprocessing macros. A preprocessing macro is a macro that is replaced by a preprocessor
or a compiler with a char st ri ng ori nt eger value respectively before compilation. Preprocessing macros shall not
be replaced inside literal char st r i ng values and templates and not in TTCN-3 comments. In the TTCN-3 code, it
can be used like a char st ri ng orani nt eger value respectively.

D.1 Preprocessing macro _ MODULE__

The __ MODULE__ preprocessing macro denotes the module name in which the macro is used. A preprocessor or
compiler shall replace all occurrences of __ MODULE__ with the actual module name in form of a char st ri ng value.

D.2 Preprocessing macro __ FILE___

The __FI LE__ preprocessing macro denotes the canonical (absolute) file name, i.e. the full path and the basic file
name, in which the macro is used. A preprocessor or compiler shall replace all occurrences of __FI LE__ with the
actual canonical (absolute) file name in form of a char st ri ng value.

NOTE: The format of the canonical file name depends on the operating system and is not specified by the present
document.

EXAMPLE:

const charstring MyConst:= __FILE _;
/I MyConst is for exanple "/honme/ nyhome/ MyTest. ttcn"

D.3 Preprocessing macro _ BFILE

The __BFI LE__ preprocessing macro denotes the basic (relative) file name, i.e. without path, in which the macro is
used. A preprocessor or compiler shall replace all occurrences of __ BFI LE___ with the actual basic (relative) file name
in form of a char st ri ng value.

NOTE: The format of the basic file name depends on the operating system and is not specified by the present
document.

EXAMPLE:

const charstring MyConst:= _ BFILE__;
/1 MyConst is for exanple "MTest.ttcn"

D.4 Preprocessing macro __ LINE

The __ LI NE__ preprocessing macro denotes the line number of the file in which the macro is used. A preprocessor or
compiler shall replace each occurrence of __ LI NE__ with the actual line number in form of an i nt eger value.

A file starts with line number 1. Each newline shall increase the line number by 1 (see clause A.1.5.1). Also newlines
of commented lines shall increase the line number by 1.

ETSI

316 ETSI ES 201 873-1 V4.7.1 (2015-06)

D.5 Preprocessing macro _ SCOPE___

The __ SCOPE__ preprocessing macro denotes the unqualified name of the lowest named basic scope unit in which the
macro is used. According to clause 5.2, basic scope units of TTCN-3 are module definitions part, module control part,
component types, functions, altsteps, test cases, statement blocks, templates and user defined named types. Statement
blocks have no name and therefore, a_ SCOPE__ preprocessing macro used in a statement block refers to the next
higher named basic scope unit.

A preprocessor or compiler shall replace all occurrences of __ SCOPE___ with a char st r i ng value which includes:
a) the module name, if the lowest named scope unit is the module definitions part;
b) rcontrol ", if the lowest named scope unit is the module control part;
c) acomponent type name, if the lowest named scope unit is a component type definition;
d) atest case name, if the lowest named scope unit is a test case definition;
e) an altstep name, if the lowest named scope is an altstep definition;
f) a function name, if the lowest named scope is a function definition;
g) atemplate name, if the lowest named scope is a template definition (local or global); or
h) the type name, if the lowest named scope is a user defined named type definition.

NOTE: The __ SCOPE__ preprocessing macro cannot be used to retrieve the names of other kinds of definitions,
like for example names of groups of definitions or names of global constants.

EXAMPLE 1: Using SCOPE in constant and template definitions

modul e MyModul e

{
const charstring MyConst := _ SCOPE__; /1 MyConst contains "MNModul e"
tenpl ate charstring MyTenplate : = _ SCOPE__; /'l MyTenpl ate contains "MTenpl ate"
type record MyRecordl
{
charstring fieldl1,
charstring fieldl2
}
tenpl ate M/Recordl MyTenpl atel (charstring p := _ SCOPE__) :=
fieldll : = p,
fieldl2 := _ SCOPE__ /1 fieldl2 contains "MTenpl atel”
}

function MyFunction() {
var tenplate MyRecordl v_Myvarl := MTenpl at el;
/1 fieldll of MyTenplatel will contain the default value of paraneter p,
/1 i.e. "MyTenpl atel"
b
}

EXAMPLE 2: Using SCOPE__ in a structured type scope

type record MyRecord2 {
charstring field21,

charstring field22 ("a", "b", _ SCOPE)

[/l list constrained field: a |egal values are "a", "b" or "MRecord2"
}
tenpl ate MyRecord2 MyTenpl ate2 : = {

field2l := "a",

field22 := "M/Record2" /1 a valid specific val ue natching
}

ETSI

317 ETSI ES 201 873-1 V4.7.1 (2015-06)

tenpl ate M/Record2 MyTenpl ate3 : = {
field21 := "a",
field22 := _ SCOPE__
/] Causes an error as _ SCOPE__ is replaced with "MTenpl at e3",
/1 which is violating the list constraint of field22
}

EXAMPLE 3: Using SCOPE_ in an embedded structured type scope

type record MyRecord3 {
charstring fiel d31,

record {
charstring field321 ("a", "b", _ SCOPE _
/1 list constrained field: a |l egal value shall be "a", "b" or "MRecord3"
} field32
}
tenpl ate M/Record3 MyTenpl ated : =
field31 := "a",
field32 : =
field321 := "MyRecord3" /1 a valid specific value natching
}
}
tenpl ate M/Record3 MyTenpl ate5 : =
field31 := "a",
field32 :=
field321 := _ SCOPE__

/] Causes and error as _ _SCOPE__ is replaced with "MTenpl at e5",
/1 which is violating the list constraint of field321

ETSI

318 ETSI ES 201 873-1 V4.7.1 (2015-06)

Annex E (informative):
Library of Useful Types

E.1 Limitations

Names of types added to this library are to be unique within the whole language and within the library (i.e. are not to be
one of the names defined in annex C). Names defined in this library are not to be used by TTCN-3 users as identifiers of
other definitions than given in this annex.

NOTE: Therefore type definitions given in this annex may be repeated in TTCN-3 modules but no type distinct
from the one specified in this annex can be defined with one of the identifiers used in this annex.

E.2 Useful TTCN-3 types

E.2.1 Useful simple basic types
E.2.1.0 Signed and unsigned single byte integers

These types support integer values of the range from -128 to 127 for the signed and from 0 to 255 for the unsigned type.
The value notation for these types is the same as the value notation for the integer type. Values of these types are to be
encoded and decoded as they were represented on a single byte within the system independently from the actual
representation form used.

NOTE: Encoding of values of these types may be the same or may differ from each other and from the encoding
of the integer type (the root type of these useful types) depending on the actual encoding rules used.
Details of encoding rules are out of the scope of the present document.

Type definitions for these types are:
type integer byt e (-128 .. 127) with { variant "8 bit" };

type integer unsi gnedbyt e (0 .. 255) with { variant "unsigned 8 bit" };

E.2.1.1 Signed and unsigned short integers

These types support integer values of the range from -32 768 to 32 767 for the signed and from 0 to 65 535 for the
unsigned type. The value notation for these types is the same as the value notation for the integer type. Values of these
types are to be encoded and decoded as they were represented on two bytes within the system independently from the
actual representation form used.

NOTE: Encoding of values of these types may be the same or may differ from each other and from the encoding
of the integer type (the root type of these useful types) depending on the actual encoding rules used.
Details of encoding rules are out of the scope of the present document.

Type definitions for these types are:
type integer short (-32768 .. 32767) with { variant "16 bit" };

type integer unsi gnedshort (0 .. 65535) with { variant "unsigned 16 bit" };

E.2.1.2 Signed and unsigned long integers

These types support integer values of the range from -2 147 483 648 to 2 147 483 647 for the signed and from 0 to
4294 967 295 for the unsigned type. The value notation for these types is the same as the value notation for the integer
type. Values of these types are to be encoded and decoded as they were represented on four bytes within the system
independently from the actual representation form used.

ETSI

319 ETSI ES 201 873-1 V4.7.1 (2015-06)

NOTE: Encoding of values of these types may be the same or may differ from each other and from the encoding
of the integer type (the root type of these useful types) depending on the actual encoding rules used.
Details of encoding rules are out of the scope of the present document.

Type definitions for these types are:

type integer | ong (-2147483648 .. 2147483647)
with { variant "32 bit" };

type integer unsi gnedl| ong (0 .. 4294967295)
with { variant "unsigned 32 bit" };

E.2.1.3 Signed and unsigned longlong integers

These types support integer values of the range from -9 223 372 036 854 775 808 to 9 223 372 036 854 775 807 for the
signed and from 0 to 18 446 744 073 709 551 615 for the unsigned type. The value notation for these types is the same

as the value notation for the integer type. Values of these types are to be encoded and decoded as they were represented
on eight bytes within the system independently from the actual representation form used.

NOTE: Encoding of values of these types may be the same or may differ from each other and from the encoding
of the integer type (the root type of these useful types) depending on the actual encoding rules used.
Details of encoding rules are out of the scope of the present document.

Type definitions for these types are:

type integer | ongl ong (-9223372036854775808 .. 9223372036854775807)
with { variant "64 bit" };

type integer unsi gnedl| ongl ong (0 .. 18446744073709551615)
with { variant "unsigned 64 bit" };

E.2.1.4 |EEE 754 floats

These types support the ANSI/IEEE 754 [6] for binary floating-point arithmetic. The type IEEE 754 [6] float supports
floating-point numbers with base 10, exponent of size 8, mantissa of size 23 and a sign bit. The type IEEE 754 [6]
double supports floating-point numbers with base 10, exponent of size 11, mantissa of size 52 and a sign bit. The type
IEEE 754 [6] ext f | oat supports floating-point numbers with base 10, minimal exponent of size 11, minimal
mantissa of size 32 and a sign bit. The type IEEE 754 [6] ext doubl e supports floating-point numbers with base 10,
minimal exponent of size 15, minimal mantissa of size 64 and a sign bit.

Values of these types are to be encoded and decoded according to the IEEE 754 [6] definitions. The value notation for
these types is the same as the value notation for the float type (base 10).

NOTE: Precise encoding of values of this type depends on the actual encoding rules used. Details of encoding
rules are out of the scope of the present document.

Type definitions for these types are:

type fl oat | EEE754f | oat with { variant "|EEE754 float" };

type fl oat | EEE754doubl e with { variant "|EEE754 double" };

type fl oat | EEE754ext f | oat with { variant "|EEE754 extended float" };
type fl oat | EEE754ext doubl e with { variant "|EEE754 extended double" };

E.2.2 Useful character string types
E.2.2.0 UTF-8 character string "utf8string"

This type supports the whole character set of the TTCN-3 type uni ver sal char st ri ng (see paragraph d) of
clause 6.1.1). Its distinguished values are zero, one, or more characters from this set. Values of this type are entirely
(e.g. each character of the value individually) to be encoded and decoded according to the UCS Transformation

Format 8 (UTF-8) as defined in annex R of ISO/IEC 10646 [2]. The value notation for this type is the same as the value
notation for the uni ver sal char stri ng type.

ETSI

320 ETSI ES 201 873-1 V4.7.1 (2015-06)

The type definition for this type is:

type universal charstring utf8string with { variant "UTF-8" };

E.2.2.1 BMP character string "bmpstring"

This type supports the Basic Multilingual Plane (BMP) character set of ISO/IEC 10646 [2]. The BMP represents all
characters of plane 00 of group 00 of the Universal Multiple-octet coded Character Set. Its distinguished values are
zero, one, or more characters from the BMP. Values of this type are entirely (e.g. each character of the value
individually) to be encoded and decoded according to the UTF-16 coded representation form (see clause 9.2 of
ISO/IEC 10646 [2]). The value notation for this type is the same as the value notation for the uni ver sal

char stri ng type.

NOTE: The type "bmpstring" supports a subset of the TTCN-3 type uni ver sal charstri ng.

The type definition for this type is:

type universal charstring bnpstring (char (0,0,0,0) .. char (0,0, 255,255))
with { variant "UTF-16" };

E.2.2.2 UTF-16 character string "utf16string"

This type supports all characters of planes 00 to 16 of group 00 of the Universal Multiple-octet coded Character Set (see
ISO/IEC 10646 [2]). Its distinguished values are zero, one, or more characters from this set. Values of this type are
entirely (e.g. each character of the value individually) to be encoded and decoded according to the UCS Transformation
Format 16 (UTF-16) as defined in annex Q of ISO/IEC 10646 [2]. The value notation for this type is the same as the
value notation for the uni ver sal char stri ng type.

NOTE: The type "utfl6string" supports a subset of the TTCN-3 type uni versal charstring.

The type definition for this type is:

type universal charstring utfl6string (char (0,0,0,0) .. char (0,16, 255, 255))
with { variant "UTF-16" };

E.2.2.3 ISO/IEC 10646 character string "iso8859string"

This type supports all characters in all alphabets defined in the multiparty standard ISO/IEC 10646 [2]. Its distinguished
values are zero, one, or more characters from the ISO/IEC 10646 [2] character set. Values of this type are entirely (e.g.
each character of the value individually) to be encoded and decoded according to the coded representation as specified
in ISO/IEC 10646 [2] (an 8-bit coding). The value notation for this type is the same as the value notation for the

uni ver sal charstring type.

NOTE 1: The type "iso8859string" supports a subset of the TTCN-3 type uni ver sal charstri ng.

NOTE 2: In each ISO/IEC 10646 [2] alphabet the lower part of the character set table (positions 02/00 to 07/14) is
compatible with the Recommendation ITU-T T.50 [4] character set. Hence all extra language specific
characters are defined for the upper part of the character table only (positions 10/00 to 15/15).

The type definition for this type is:

type universal charstring iso8859string (char (0,0,0,0) .. char (0,0,0,255))
with { variant "8 bit" };

E.2.2.4 Status values for TTCN-3 objects

Type and constants defined in this clause support the secure usage of the checkstate port operation defined in
clause 22.5.5.

The type definition for this type is:

type charstring objState ("Started", "Halted", "Stopped", "Connected", "Mpped", "Linked");

ETSI

321 ETSI ES 201 873-1 V4.7.1 (2015-06)

Useful constant definitions for working with object states are:

const obj State STARTED := "Started";
const obj State HALTED : = "Hal ted";

const obj State STOPPED : = "Stopped";
const obj State CONNECTED : = "Connected";
const obj State MAPPED : = "Mapped";

const obj State LINKED : = "Linked";

E.2.2.5 Template kinds of TTCN-3 objects

Type and constants defined in this clause support the secure usage of the predefined i st enpl at eki nd function,
described in clause C.3.5.

The type definition for this type is:

type charstring Tenpl ateKind ("value", "list", "conplenent", "AnyValue", "?", "AnyVal ueOr None",
"*" . "range", "subset", "superset", "omt", "@ncoded", "AnyElement", "AnyEl ementsO None",
"permutation", "length", "ifpresent", "pattern");

Useful constant definitions for working with template kinds are:

const Tenpl ateKi nd VALUE : = "val ue";

const TenplateKind LIST := "list";

const Tenpl at eKi nd COWLEMENT : = "conpl ement";

const Tenpl at eKi nd ANY_VALUE : = "AnyVal ue";

const Tenpl at eKi nd ANY_VALUE_OR _NONE : = "AnyVal ueOr None";
const Tenpl at eKi nd RANGE : = "range";

const Tenpl at eKi nd SUBSET : = "subset";

const Tenpl at eKi nd SUPERSET : = "superset";

const TenplateKind OMT := "omt";

const Tenpl at eKi nd ENCODED : = " @ncoded";

const Tenpl at eKi nd ANY_ELEMENT : = "AnyEl ement";

const Tenpl at eKi nd ANY_ELEMENTS_COR _NONE : = "AnyEl ement sOr None";
const Tenpl at eKi nd PERMUTATI ON : = "pernutation";

const Tenpl ateKi nd LENGTH : = "l ength";

const Tenpl ateKind | FPRESENT : = "ifpresent";

const Tenpl ateKi nd PATTERN : = "pattern";

E.2.3 Useful structured types
E.2.3.0 Fixed-point decimal literal

This type supports the use of fixed-point decimal literal as defined in the IDL Syntax and Semantics version 2.6 [i.10].
It is specified by an integer part, a decimal point and a fraction part. The integer and fraction parts both consist of a
sequence of decimal (base 10) digits. The number of digits is stored in "digits" and the size of the fraction part is given
in "scale". The digits itself are stored in "value ". Value notation for this type is the same as the value notation for the
record type. Values of this type are to be encoded and decoded as IDL fixed point decimal values.

NOTE: Precise encoding of values of this type depends on the actual encoding rules used. Details of encoding
rules are out of the scope of the present document.

The type definition for this type is:
type record I DLfixed {
unsi gnedshort digits,
short scal e,
charstring value_

}
with { variant "IDL:fixed FORMVAL/01-12-01 v.2.6" };

ETSI

322 ETSI ES 201 873-1 V4.7.1 (2015-06)

E.2.4 Useful atomic string types
E.2.4.1 Single Recommendation ITU-T T.50 character type

A type whose distinguished values are single characters of the version of Recommendation ITU-T T.50 [4] complying
to the International Reference Version (IRV) as specified in clause 8.2 of Recommendation ITU-T T.50 [4] (see also
note 1 to clause 6.1.1).

The type definition for this type is:

type charstring char646 length (1);

NOTE: The special string "8 bit" defined in clause 27.5 may be used with this type to specify a given encoding
for its values. Also, other properties of the base type can be changed by using attribute mechanisms.

E.2.4.2 Single universal character type
A type whose distinguished values are single characters from ISO/IEC 10646 [2].

The type definition for this type is:

type universal charstring uchar length (1);

NOTE: Special strings defined in clause 27.5 except "8 bit" may be used with this type to specify a given
encoding for its values. Also, other properties of the base type can be changed by using attribute
mechanisms.

E.2.4.3 Single bit type

A type whose distinguished values are single binary digits.

The type definition for this type is:

type bitstring bit length (1);

E.2.4.4 Single hex type
A type whose distinguished values are single hexadecimal digits.

The type definition for this type is:

type hexstring hex length (1);

E.2.4.5 Single octet type
A type whose distinguished values are pairs of hexadecimal digits.

The type definition for this type is:

type octetstring octet length (1);

ETSI

323 ETSI ES 201 873-1 V4.7.1 (2015-06)

Annex F (informative):
Operations on TTCN-3 active objects

This annex describes in a short form the semantics of operations on active objects in TTCN-3 being test components,
timers and ports. This dynamic behaviour is written in the form of state machines with:

the states being named and identified as nodes;
. the initial state being identified by an incoming arrow;
. transitions between states connecting two states (not necessarily different states) and identified as arrows;

. transitions being marked with the enabling condition for that transition (i.e. operation or statement calls) and
the resulting condition (for example a test case error), both are separated by '/':

- operation and statement calls are the TTCN-3 operations and statements applicable to the object (written
in bold);

- error as a resulting condition means testcase error (written in bold);

- null as a resulting condition means that except of a possible state change no other results apply (written
in bold);

- match/no match refers to the matching result of a transition (written in bold);

- concrete values are boolean or float results (written in bold italics);

- all other resulting conditions are textually described (written in standard font);
. notes are used to explain further details of the state machine.

For further details, please refer to the operational semantics of TTCN-3 [1]. In case of any contradiction between this
annex and the operational semantics of TTCN-3 [1] the latter takes precedence.

F.1 Test components

F.1.1 Test component references

Variables of test component types, the sel f and nt ¢ operations are used to reference test components. The st art,
st op, done and r unni ng operations are not directly applied on test components but on component references. The
test system has to decide if the operation requested should affect the component object itself or other action is
appropriate (e.g. an error occurs when the reference of a stopped PTC is used in a component start operation). The

Cr eat e operation used to create PTCs returns a unique reference to the created PTC, which is typically bound to a
variable of component type. The behaviour related to variables of component type themselves is shown in figure F.1.

ETSI

324 ETSI ES 201 873-1 V4.7.1 (2015-06)

done/error killed/error

variable running/error alivelerror
declaration stop/error kill/error
dart/error
Uninitialized N Error
(see note)

/—‘ "assignment of the return value of cr eat e"/"references created test component"

"assignment of the return value of cr eat e"/"references created
test component" (and "looses the previous reference")

Initialized

NOTE: Whenever a test component enters its error state, the error verdict is assigned to its local verdict, the test
case terminates and the overall test case result will be error.

Figure F.1: Handling of test component references

F.1.2 Dynamic behaviour of PTCs

PTCs can be of non-alive type or alive-type. Non-alive type PTCs can be in Inactive, Running and Killed states. Their
dynamic behaviour is shown in figure F.2.

create/creation of a non-alive PTC

done/no match killed/no match

Inactive running/false alive/true

/—4 start/"component executes function"

done/no match killed/no match
running/true aliveltrue

/—¢ "run-time error"/error

Error

(see note 3)

stop/"component terminates" (se note 2a)
kill/"component terminates" (see note 2b)

Run

stop/"component terminates" (see note 1a)
kill/"component terminates" (seenote 1b) start/error
"return from function"/"component terminates"

"completion of function"/"component terminates" start/error

Killed

stop/null (seenote2a) Kill/null (seenote 2b)
done/match killed/match
running/false alive/false

NOTE 1: (a) Stop can be either a stop, self.stop or a stop from another test component.
(b) Kill can be either a Kill, self kill, a kill from another test component or a kill from the test system
(in error cases).
NOTE 2: (a) Stop can be from another test component only.
(b) Kill can be from another test component or from the test system (in error cases) only.
NOTE 3: Whenever a test component enters its error state, the error verdict is assigned to its local verdict,
the test case terminates and the overall test case result will be error.

Figure F.2: Dynamic behaviour of non-alive type PTCs

Alive-type PTCs can be in Inactive, Running, Stopped and Killed states. Their dynamic behaviour is shown in
figure F.3.

ETSI

325 ETSI ES 201 873-1 V4.7.1 (2015-06)

create alive/creation of an alive PTC

done/no match killed/no match
runningfalse aliveltrue

stop/"component stops" (see note 2a)
start/"component executes function"

ﬁ done/no match killed/no match

Kill/"component terminates" (see note 2b) +\
runningtrue aliveltrue

n s Al
Kill/"component terminates" (see note 1b) run-time error"/error

Error

(see note 3)

start/"component
executes function"

stop/"component stops" (see note 1a)
"return from function"/"component terminates"
"completion of function"/"component terminates"

stop/null (see note 22
done/match
killed/no matcl
runningfalse
aliveltrue

stop/null (see note 2a)
kill/null (see note 2b)

done/match . Stonped
Killed/match Killed) pp

running/false \1 . .

alive/false Kill/"component terminates" (see note 2b) sart/error

NOTE 1: (a) Stop can be either a stop, self.stop or a stop from another test component.
(b) Kill can be either a kill, selfkill, a kill from another test component or a kill from the test system

(in error cases).
NOTE 2: (a) Stop can be from another test component only.
(b) Kill can be from another test component or from the test system (in error cases) only.
NOTE 3: Whenever a test component enters its error state, the error verdict is assigned to its local verdict,
the test case terminates and the overall test case result will be error.

Figure F.3: Dynamic behaviour of alive-type PTCs

F.1.3 Dynamic behaviour of the MTC

The MTC can be in Running or Killed state. The dynamic behaviour of the MTC is shown in figure F.4.

execute/"creates the MTC" and "starts the testcase"

Error .
(see note 3)

stop/"component terminates" (see note 1a)
kill/"component terminates" (see note 1b)
"completing of the test case"/"component terminates"

done/no match killed/no match
running/true alive/true

start/error

stopfrom another component/error
kill from another component/error
"run-time error"/error

Killed

(see note 2)

NOTE 1: (a) Stop can be either a stop, self.stop, a stop from another test component.
(b) Kill can be either a kill, selfkill, a kill from another test component or a kill from the test system

(in error cases).
NOTE 2: All remaining PTCs are to be killed as well and the testcase terminates.
NOTE 3: Whenever the MTC enters its error state, the error verdict is assigned to its local verdict,
the test case terminates and the overall test case result will be error.

Figure F.4: Dynamic behaviour of the MTC

ETSI

326 ETSI ES 201 873-1 V4.7.1 (2015-06)

F.2 Timers

Timers can be in Inactive, Running or Expired state. The dynamic behaviour of a timer is shown in figure F.5.

Test component timers: "component created";
Other local timers: "testcase, function, altstep,
statement block entered or default activated" stop/null
running/false
read/0.0

timeout/no match

stop/stop timer
pistop start/"timer starts with non-negative duration"

AN
start/"timer restarts with non-negative duration

running/true
read/elapsed time
timeout/no match

"

timeout/match
stop/null

Running

(see note 1)

(timer expiry)/null

start/"timer starts with
non-negative duration"

running/false
read/0.0

Error

(see note 3)

(see note 2)

start with negative duration/error

NOTE 1: For any scope unit, all timers in that scope being in Running state constitute the running-timer list.

NOTE 2: For any scope unit, all timers in that scope being in Expired state constitute the timeout-list.

NOTE 3: Whenever a timer enters its error state, the test component it belongs to enters also its error state,
assigns a local error verdict, the test case terminates and the overall test case result will be error.

Figure F.5: Dynamic behaviour of timers

F.3 Ports

Ports can be in Started or Stopped state. As their behaviour is rather complex, the state machine has been split into a
state machine giving the dynamic behaviour of configuration operations (i.e. connect, disconnect, map and unmap), of
port controlling operations (i.e. start, stop and clear) and of communication operations (i.e. send, receive, call, getcall,
raise, catch, reply, getreply and check). As trigger is a shorthand for an alt together with receive it is not considered

here.

F.3.1 Configuration Operations

The port configuration operations (i.e. connect, disconnect, map and unmap) are indifferent to the state of the port. They
show the behaviour shown in figure F.6.

ETSI

327 ETSI ES 201 873-1 V4.7.1 (2015-06)

connect/if ("legal connection")
then (if ("link not yet established")
then "establish this link" else null)

disconnect/if ("link established") then "remove this link" else null
map/if ("legal connection")

then "store link to other port"

(if ("link not yet established")

then "establish this link" else null)

unmap/if ("link established") then "remove this link" else null

create/"creates

test component"
(see note 1)

connect/if ("illegal connection") then error
map/if ("illegal connection") then "store link to other port" error

Error

(see note

connect/if ("legal connection")
then (if ("link not yet established")
then "establish this link" else null)
disconnect/if ("link established") then "remove this link" else null
map/if ("legal connection")
then (if ("link not yet established")
then "establish this link" else null)
unmap/if ("link established") then "remove this link" else null

NOTE 1: When creating a PTC the ports of that PTC are created and started; when creating the MTC the ports of
the MTC and the ports of the TSI are created and started.

NOTE 2: Whenever a port enters its error state, the test component it belongs to enters also its error state, assigns
a local error verdict, the test case terminates and the overall test case result will be error.

Figure F.6: Dynamic behaviour of ports: port configuration operations

The transitions do not change the main state of the port, i.e. the port remains in the Started or Stopped state.

F.3.2 Port Controlling Operations
The results of port controlling operations are shown in figure F.7.

clear/"clears queue"
start/"clears queue"

create/"creates

test component"
(see note)

halt/"puts halt marker
at the end of the queue” stop/null
start/"clears queue" and

A start/"clears queue"
"removes halt maker"
halt/"puts halt
marker at the

top of the queue"

clear/"clears queue"
stop/null

Halted

clear/"clears queue" and
"puts halt marker at the
top of the queue"
halt/null

stop/"removes halt maker"

NOTE: When creating a PTC the ports of that PTC are created and started; when creating the MTC the ports of
the MTC and the ports of the TSI are created and started.

Figure F.7: Dynamic behaviour of ports: port controlling operations

ETSI

328 ETSI ES 201 873-1 V4.7.1 (2015-06)

F.3.3 Communication Operations

The results of the communication operations send, receive, call, getcall, raise, catch, reply, getreply, check are shown in

figure F.8.

receive/if ("top queue element is halt marker")
then no match
else if ("top queue element matches")
then match & "remove from queue"
else no match
getcall/if ("top queue element is halt marker")
then no match
else if ("top queue element matches")
then match & "remove from queue"
else no match
getreply/if ("top queue element is halt marker")
then no match
else if ("top queue element matches")
then match & "remove from queue"
else no match
catch/if ("top queue element is halt marker")
then no match
else if ("top queue element matches")
then match & "remove from queue"
else no match
check/if ("top queue element is halt marker")
then no match
else if ("top queue element matches")
then match
else no match

NOTE 1:

send/if ("unique receiver") then "transmit" (see note 2)
receive/if ("top queue element matches")
then match and "remove from queue"
else no match
call/if ("unique receiver") then "transmit" (see note 2)
getcall/if ("top queue element matches")
then match and "remove from queue"
else no match
reply/if ("unique receiver") then "transmit" (see note 2)
getreply/if ("top queue element matches")
then match and "remove from queue"
else no match
raise/if ("unique receiver") then "transmit" (see note 2)
catch/if ("top queue element matches")
then match and "remove from queue"
else no match
check/if ("top queue element matches")
then match
else no match

create/"creates
test component”
(seenote 1)

send/if ("ambiguous" or "no receiver") error (seenote 2)
call/if ("ambiguous" or "no receiver") error (see note 2)

reply/if ("ambiguous" or "no receiver") error (seenote 2)
raise/if ("ambiguous" or "no receiver") error (seenote 2)

send/error
call/error

reply/error
raiselerror

receive/no match
getcall/no match
getreply/no
match

catch/no match

When creating a PTC the ports of that PTC are created and started; when creating a MTC the ports of the

MTC and the ports of the TSI are created and started.

NOTE 2:

A unique receiver exists if there is only one link for this port or if the to address expression references a

test component whose port is linked to this port (a terminated test component is not a legal receiver).

NOTE 3:

Whenever a port enters its error state, the test component it belongs to enters also its error state, assigns

a local error verdict, the test case terminates and the overall test case result will be error.

NOTE 4:

As trigger is a shorthand for an alt together with receive it is not considered here.

Figure F.8: Dynamic behaviour of ports: communication operations

ETSI

329 ETSI ES 201 873-1 V4.7.1 (2015-06)

Annex G (informative):
Deprecated language features

G.1 Group style definition of module parameters

Previous versions of the present document (up to and including V2.2.1) required to use a group-like syntax shown in the
example below to declare module parameters. The module parameter syntax has been unified with constant and variable
declaration syntax in this version but group-like syntax is not fully removed to leave a time period for tool providers
and users to change from the old syntax to the new one. The group-like syntax of module parameter declarations may be
fully removed in a future edition of the standard.

EXAMPLE (superfluous syntax):
modul e MyModul eW t hPar anet er s

nodul epar { integer TS Par0O, TS Parl := O;
bool ean TS Par2 := true

"}
modul epar { hexstring TS Par3 };

G.2 Recursive import

Previous versions of the present document (up to and including V2.2.1) allowed to import named definitions implicitly,
via importing other definitions of the same module using them in a r ecur si ve mode. This feature is deprecated and
may be fully removed in a future edition of the present document.

G.3 Using al | in port type definitions

Previous versions of the present document (up to and including V2.2.1) allowed to use the al | keyword in port type
definitions instead of an explicit list of types and signatures allowed via the given port. This feature is deprecated and
may be fully removed in a future edition of the present document.

G.4 sizeof for length of lists

Previous versions of the present document (up to and including V3.2.2) allowed to use the built-in function si zeof to
compute the length of r ecord of ,set of, and ar r ay. This has been replaced by | engt hof . The use of
si zeof for list like types is deprecated and is planned to be fully removed in the next published version.

G.5 sizeoftype predefined function

The previous version of the present document (up to and including V3.3.1) defined the Si zeof t ype predefined
function. This feature is deprecated in this version of the standard and may be fully removed in the next published
version.

G.6 Mixed ports

Previous versions of the present document (up to and including V3.2.2) allowed to use m xed ports. This feature is
deprecated and may be fully removed in a future edition of the present document.

ETSI

330 ETSI ES 201 873-1 V4.7.1 (2015-06)

G.7 External constants

Previous versions of the present document (up to and including V3.4.1) allowed to use ext er nal const ants. This
feature is deprecated and may be fully removed in a future edition of the present document.

G.8 Prefixing enumerated values

Previous versions of the present document (up to and including V4.2.1) did not explicitly specify how to resolve name
conflicts between imported enumerated values and global names defined in the importing or in another TTCN-3
module. Some tool implementations resolved this issue by allowing prefixing enumerated values with the name of the
module in which the given enumerated type is defined. Version 4.3.1 added in clause 8.2.3.1 a rule to resolve such
name clashes, therefore prefixing enumerated values is deprecated.

G.9 Record of/arrays not compatible to record; set of not
compatible with set

Previous versions of the present document (up to and including V4.3.1) did define special cases when record of types
and single-dimension arrays would be compatible with record types. These rules are deprecated.

G.10 The "UCS-2" predefined variant attribute string

Previous versions of the present document (up to and including V4.6.1) declared the "UCS-2 variant attribute string to
support the UCS-2 coded representation form of ISO/IEC 10646:2003 [i.15] (see clause 14.1 9.2 of

ISO/IEC 10646:2003 [i.15]). The use of this string is deprecated, as it is replaced by the predefined variant attribute
string "UTF-16".

Similarly, the "UCS-2" and "UCS-4" values of st ri ng_encodi ng and serialization parameters, defined in earlier
versions of the present document for the oct 2uni char, uni char 2oct , encval ue_uni char and
decval ue_uni char predefined functions are deprecated.

G.11 Prefixing identifiers of local definitions with module
identifiers

Previous versions of the present document (up to and including V4.6.1) did not exclude the possibility to prefix
identifier of definitions without global visibility (e.g. templates defined in functions or test cases) with the local module
identifier. Prefixing identifiers of local definitions with module identifiers is deprecated and may be fully removed in a
future edition of the present document.

ETSI

331 ETSI ES 201 873-1 V4.7.1 (2015-06)

Annex H (informative):
Bibliography

. ETSI ES 201 873-1 (V1.1.2): "Methods for Testing and Specification (MTS); The Tree and Tabular Combined
Notation version 3; Part 1: TTCN-3 Core Language", 2001.

. ETSI ES 201 873-1 (V2.2.1): "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language", 2003.

. ETSI ES 201 873-1 (V3.1.1): "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language", 2005.

. ETSI ES 201 873-1 (V3.2.1): "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language", 2007.

. ETSI ES 201 873-1 (V3.3.2): "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language", 2008.

. ETSI ES 201 873-1 (V3.4.1): "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language", 2008.

. ETSI ES 201 873-1 (V4.1.1): "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language", 2009.

. ETSI ES 201 873-1 (V4.2.1): "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language", 2010.

. ETSI ES 201 873-1 (V4.3.1): "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language", 2011.

. ETSI ES 201 873-1 (V4.4.1): "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language", 2012.

. ETSI ES 201 873-1 (V4.5.1): "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language", 2013.

. ETSI ES 201 873-1 (V4.6.1): "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language", 2014.

ETSI

332 ETSI ES 201 873-1 V4.7.1 (2015-06)

History
Document history

VI.1.1 March 2001 Publication

VI.1.2 June 2001 Publication

V2.2.1 February 2003 Publication

V3.1.1 June 2005 Publication

V3.2.1 February 2007 Publication

V3.3.2 April 2008 Publication

V34.1 September 2008 | Publication

V4.1.1 June 2009 Publication

V4.2.1 July 2010 Publication

V4.3.1 June 2011 Publication

V4.4.1 April 2012 Publication

V4.5.1 April 2013 Publication

V4.6.1 June 2014 Publication

V4.7.1 March 2015 Membership Approval Procedure MV 20150524: 2015-03-25 to 2015-05-25
V4.7.1 June 2015 Publication

ETSI

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Introduction
	4.1 The core language and presentation formats
	4.2 Unanimity of the specification
	4.3 Conformance

	5 Basic language elements
	5.1 Identifiers and keywords
	5.2 Scope rules
	5.2.1 Scope of formal parameters
	5.2.2 Uniqueness of identifiers

	5.3 Ordering of language elements
	5.4 Parameterization
	5.4.1 Formal parameters
	5.4.1.1 Formal parameters of kind value
	5.4.1.2 Formal parameters of kind template
	5.4.1.3 Formal parameters of kind timer
	5.4.1.4 Formal parameters of kind port

	5.4.2 Actual parameters

	5.5 Cyclic Definitions

	6 Types and values
	6.1 Basic types and values
	6.1.0 Simple basic types and values
	6.1.1 Basic string types and values
	6.1.1.1 Accessing individual string elements

	6.1.2 Subtyping of basic types
	6.1.2.1 Lists of templates
	6.1.2.2 Lists of types
	6.1.2.3 Ranges
	6.1.2.4 String length restrictions
	6.1.2.5 Pattern subtyping of character string types
	6.1.2.6 Mixing subtyping mechanisms
	6.1.2.6.1 Mixing patterns, lists and ranges
	6.1.2.6.2 Using length restriction with other constraints

	6.2 Structured types and values
	6.2.1 Record type and values
	6.2.1.1 Referencing fields of a record type
	6.2.1.2 Optional elements in a record
	6.2.1.3 Nested type definitions for field types

	6.2.2 Set type and values
	6.2.2.1 Referencing fields of a set type
	6.2.2.2 Optional elements in a set
	6.2.2.3 Nested type definition for field types

	6.2.3 Records and sets of single types
	6.2.3.1 Nested type definitions
	6.2.3.2 Referencing elements of record of and set of types

	6.2.4 Enumerated type and values
	6.2.5 Unions
	6.2.5.1 Referencing fields of a union type
	6.2.5.2 Option and union
	6.2.5.3 Nested type definition for field types

	6.2.6 The anytype
	6.2.7 Arrays
	6.2.8 The default type
	6.2.9 Communication port types
	6.2.10 Component types
	6.2.10.1 Component type definition
	6.2.10.2 Reuse of component types

	6.2.11 Component references
	6.2.12 Addressing entities inside the SUT
	6.2.13 Subtyping of structured types
	6.2.13.1 Length subtyping of record ofs and set ofs
	6.2.13.2 List subtyping of structured types and anytype
	6.2.13.3 Subtyping of the iterated type of record ofs and set ofs
	6.2.13.4 Mixing subtyping mechanisms

	6.3 Type compatibility
	6.3.1 Compatibility of non-structured types
	6.3.2 Compatibility of structured types
	6.3.2.1 Compatibility of enumerated types
	6.3.2.2 Compatibility of record and record of types
	6.3.2.3 Compatibility of set and set of types
	6.3.2.4 Compatibility of union types
	6.3.2.5 Compatibility of anytype types
	6.3.2.6 Compatibility between sub-structures

	6.3.3 Compatibility of component types
	6.3.4 Type compatibility of communication and connection operations
	6.3.5 Type conversion

	6.4 Type synonym

	7 Expressions
	7.1 Operators
	7.1.1 Arithmetic operators
	7.1.2 List operator
	7.1.3 Relational operators
	7.1.4 Logical operators
	7.1.5 Bitwise operators
	7.1.6 Shift operators
	7.1.7 Rotate operators

	7.2 Field references and list elements

	8 Modules
	8.1 Definition of a module
	8.2 Module definitions part
	8.2.1 Module parameters
	8.2.2 Groups of definitions
	8.2.3 Importing from modules
	8.2.3.1 General format of import
	8.2.3.2 Importing single definitions
	8.2.3.3 Importing groups
	8.2.3.4 Importing definitions of the same kind
	8.2.3.5 Importing all definitions of a module
	8.2.3.6 Import definitions from other TTCN-3 editions and from non-TTCN-3 modules
	8.2.3.7 Importing of import statements from TTCN-3 modules
	8.2.3.8 Compatibility of language specifications in imports

	8.2.4 Definition of friend modules
	8.2.5 Visibility of definitions

	8.3 Module control part

	9 Port types, component types and test configurations
	9.1 Communication ports
	9.2 Test system interface

	10 Declaring constants
	11 Declaring variables
	11.1 Value variables
	11.2 Template variables

	12 Declaring timers
	13 Declaring messages
	14 Declaring procedure signatures
	15 Declaring templates
	15.1 Declaring message templates
	15.2 Declaring signature templates
	15.3 Global and local templates
	15.4 In-line Templates
	15.5 Modified templates
	15.6 Referencing elements of templates or template fields
	15.6.1 Referencing individual string elements
	15.6.2 Referencing record and set fields
	15.6.3 Referencing record of and set of elements
	15.6.4 Referencing signature parameters
	15.6.5 Referencing union alternatives

	15.7 Template matching mechanisms
	15.7.1 Specific values
	15.7.2 Special symbols that can be used instead of values
	15.7.3 Special symbols that can be used inside values
	15.7.4 Special symbols which describe attributes of values

	15.8 Template Restrictions
	15.9 Match Operation
	15.10 Valueof Operation
	15.11 Concatenating templates of string and list types

	16 Functions, altsteps and testcases
	16.1 Functions
	16.1.1 Invoking functions
	16.1.2 Predefined functions
	16.1.3 External functions
	16.1.4 Invoking functions from specific places

	16.2 Altsteps
	16.2.1 Invoking altsteps

	16.3 Test cases

	17 Void
	18 Overview of program statements and operations
	19 Basic program statements
	19.1 Assignments
	19.2 The If-else statement
	19.3 The Select statements
	19.3.1 The Select case statement
	19.3.2 The Select union statement

	19.4 The For statement
	19.5 The While statement
	19.6 The Do-while statement
	19.7 The Label statement
	19.8 The Goto statement
	19.9 The Stop execution statement
	19.10 The Return statement
	19.11 The Log statement
	19.12 The Break statement
	19.13 The Continue statement
	19.14 Statement block

	20 Statement and operations for alternative behaviours
	20.1 The snapshot mechanism
	20.2 The Alt statement
	20.3 The Repeat statement
	20.4 The Interleave statement
	20.5 Default Handling
	20.5.1 The default mechanism
	20.5.2 The Activate operation
	20.5.3 The Deactivate operation

	21 Configuration Operations
	21.1 Connection Operations
	21.1.1 The Connect and Map operations
	21.1.2 The Disconnect and Unmap operations

	21.2 Test case operations
	21.2.1 Test case stop operation

	21.3 Test Component Operations
	21.3.1 The Create operation
	21.3.2 The Start test component operation
	21.3.3 The Stop test behaviour operation
	21.3.4 The Kill test component operation
	21.3.5 The Alive operation
	21.3.6 The Running operation
	21.3.7 The Done operation
	21.3.8 The Killed operation
	21.3.9 Summary of the use of any and all with components

	22 Communication operations
	22.1 The communication mechanisms
	22.1.1 Principles of message-based communication
	22.1.2 Principles of procedure-based communication
	22.1.3 Principles of unicast, multicast and broadcast communication
	22.1.4 General format of communication operations
	22.1.4.1 General format of the sending operations
	22.1.4.2 General format of the receiving operations

	22.2 Message-based communication
	22.2.1 The Send operation
	22.2.2 The Receive operation
	22.2.3 The Trigger operation

	22.3 Procedure-based communication
	22.3.1 The Call operation
	22.3.2 The Getcall operation
	22.3.3 The Reply operation
	22.3.4 The Getreply operation
	22.3.5 The Raise operation
	22.3.6 The Catch operation

	22.4 The Check operation
	22.5 Controlling communication ports
	22.5.1 The Clear port operation
	22.5.2 The Start port operation
	22.5.3 The Stop port operation
	22.5.4 The Halt port operation
	22.5.5 The Checkstate port operation

	22.6 Use of any and all with ports

	23 Timer operations
	23.1 The timer mechanism
	23.2 The Start timer operation
	23.3 The Stop timer operation
	23.4 The Read timer operation
	23.5 The Running timer operation
	23.6 The Timeout operation
	23.7 Summary of use of any and all with timers

	24 Test verdict operations
	24.1 The Verdict mechanism
	24.2 The Setverdict operation
	24.3 The Getverdict operation

	25 External actions
	26 Module control
	26.1 The Execute statement
	26.2 The Control part

	27 Specifying attributes
	27.1 The Attribute mechanism
	27.1.1 Scope of attributes
	27.1.2 Overwriting rules for attributes
	27.1.2.1 Additional overwriting rules for variant attributes

	27.1.3 Changing attributes of imported language elements

	27.2 The With statement
	27.3 Display attributes
	27.4 Encoding attributes
	27.5 Variant attributes
	27.6 Extension attributes
	27.7 Optional attributes

	Annex A (normative): BNF and static semantics
	A.1 TTCN-3 BNF
	A.1.1 Conventions for the syntax description
	A.1.2 Statement terminator symbols
	A.1.3 Identifiers
	A.1.4 Comments
	A.1.5 TTCN-3 terminals
	A.1.5.1 Use of whitespaces and newlines

	A.1.6 TTCN-3 syntax BNF productions
	A.1.6.0 TTCN-3 module
	A.1.6.1 Module definitions part
	A.1.6.1.0 General
	A.1.6.1.1 Typedef definitions
	A.1.6.1.2 Constant definitions
	A.1.6.1.3 Template definitions
	A.1.6.1.4 Function definitions
	A.1.6.1.5 Signature definitions
	A.1.6.1.6 Testcase definitions
	A.1.6.1.7 Altstep definitions
	A.1.6.1.8 Import definitions
	A.1.6.1.9 Group definitions
	A.1.6.1.10 External function definitions
	A.1.6.1.11 External constant definitions
	A.1.6.1.12 Module parameter definitions
	A.1.6.1.13 Friend module definitions

	A.1.6.2 Control part
	A.1.6.3 Local definitions
	A.1.6.3.1 Variable instantiation
	A.1.6.3.2 Timer instantiation

	A.1.6.4 Operations
	A.1.6.4.1 Component operations
	A.1.6.4.2 Port operations
	A.1.6.4.3 Timer operations
	A.1.6.4.4 Testcase operation

	A.1.6.5 Type
	A.1.6.6 Value
	A.1.6.7 Parameterization
	A.1.6.8 Statements
	A.1.6.8.1 With statement
	A.1.6.8.2 Behaviour statements
	A.1.6.8.3 Basic statements

	A.1.6.9 Miscellaneous productions

	Annex B (normative): Matching values
	B.1 Template matching mechanisms
	B.1.1 Matching specific values
	B.1.2 Matching mechanisms instead of values
	B.1.2.1 Template list
	B.1.2.2 Complemented template list
	B.1.2.3 Any value
	B.1.2.4 Any value or none
	B.1.2.5 Value range
	B.1.2.6 SuperSet
	B.1.2.7 SubSet
	B.1.2.8 Omitting optional fields
	B.1.2.9 Matching decoded content

	B.1.3 Matching mechanisms inside values
	B.1.3.1 Any element
	B.1.3.1.1 Using single character wildcards

	B.1.3.2 Any number of elements or no element
	B.1.3.2.1 Using multiple character wildcards

	B.1.3.3 Permutation

	B.1.4 Matching attributes of values
	B.1.4.1 Length restrictions
	B.1.4.2 The IfPresent indicator

	B.1.5 Matching character pattern
	B.1.5.1 Set expression
	B.1.5.2 Reference expression
	B.1.5.3 Match expression n times
	B.1.5.4 Match a referenced character set
	B.1.5.5 Type compatibility rules for patterns
	B.1.5.6 Case insensitive pattern matching

	Annex C (normative): Predefined TTCN-3 functions
	C.0 General exception handling procedures
	C.1 Conversion functions
	C.1.1 Integer to character
	C.1.2 Integer to universal character
	C.1.3 Integer to bitstring
	C.1.4 Integer to enumerated
	C.1.5 Integer to hexstring
	C.1.6 Integer to octetstring
	C.1.7 Integer to charstring
	C.1.8 Integer to float
	C.1.9 Float to integer
	C.1.10 Character to integer
	C.1.11 Character to octetstring
	C.1.12 Universal character to integer
	C.1.13 Bitstring to integer
	C.1.14 Bitstring to hexstring
	C.1.15 Bitstring to octetstring
	C.1.16 Bitstring to charstring
	C.1.17 Hexstring to integer
	C.1.18 Hexstring to bitstring
	C.1.19 Hexstring to octetstring
	C.1.20 Hexstring to charstring
	C.1.21 Octetstring to integer
	C.1.22 Octetstring to bitstring
	C.1.23 Octetstring to hexstring
	C.1.24 Octetstring to character string
	C.1.25 Octetstring to character string, version II
	C.1.26 Charstring to integer
	C.1.27 Character string to hexstring
	C.1.28 Character string to octetstring
	C.1.29 Character string to float
	C.1.30 Enumerated to integer
	C.1.31 Octetstring to universal character string
	C.1.32 Universal character string to octetstring
	C.1.33 Value or template to universal charstring

	C.2 Length/size functions
	C.2.1 Length of strings and lists
	C.2.2 Number of elements in a structured value

	C.3 Presence checking functions
	C.3.1 The IsPresent function
	C.3.2 The IsChosen function
	C.3.3 The IsValue function
	C.3.4 The IsBound function
	C.3.5 Matching mechanism detection

	C.4 String/list handling functions
	C.4.1 The Regexp function
	C.4.2 The Substring function
	C.4.3 The Replace function

	C.5 Codec functions
	C.5.1 The encoding function
	C.5.2 The decoding function
	C.5.3 The encoding to universal charstring function
	C.5.4 The decoding from universal charstring function
	C.5.5 Retrieving the type of string encoding
	C.5.6 Removing BOMs of UCS encoding schemes

	C.6 Other functions
	C.6.1 The random number generator function
	C.6.2 The testcasename function
	C.6.3 The hostId function

	Annex D (normative): Preprocessing macros
	D.1 Preprocessing macro __MODULE__
	D.2 Preprocessing macro __FILE__
	D.3 Preprocessing macro __BFILE__
	D.4 Preprocessing macro __LINE__
	D.5 Preprocessing macro __SCOPE__

	Annex E (informative): Library of Useful Types
	E.1 Limitations
	E.2 Useful TTCN-3 types
	E.2.1 Useful simple basic types
	E.2.1.0 Signed and unsigned single byte integers
	E.2.1.1 Signed and unsigned short integers
	E.2.1.2 Signed and unsigned long integers
	E.2.1.3 Signed and unsigned longlong integers
	E.2.1.4 IEEE 754 floats

	E.2.2 Useful character string types
	E.2.2.0 UTF-8 character string "utf8string"
	E.2.2.1 BMP character string "bmpstring"
	E.2.2.2 UTF-16 character string "utf16string"
	E.2.2.3 ISO/IEC 10646 character string "iso8859string"
	E.2.2.4 Status values for TTCN-3 objects
	E.2.2.5 Template kinds of TTCN-3 objects

	E.2.3 Useful structured types
	E.2.3.0 Fixed-point decimal literal

	E.2.4 Useful atomic string types
	E.2.4.1 Single Recommendation ITU-T T.50 character type
	E.2.4.2 Single universal character type
	E.2.4.3 Single bit type
	E.2.4.4 Single hex type
	E.2.4.5 Single octet type

	Annex F (informative): Operations on TTCN-3 active objects
	F.1 Test components
	F.1.1 Test component references
	F.1.2 Dynamic behaviour of PTCs
	F.1.3 Dynamic behaviour of the MTC

	F.2 Timers
	F.3 Ports
	F.3.1 Configuration Operations
	F.3.2 Port Controlling Operations
	F.3.3 Communication Operations

	Annex G (informative): Deprecated language features
	G.1 Group style definition of module parameters
	G.2 Recursive import
	G.3 Using all in port type definitions
	G.4 sizeof for length of lists
	G.5 sizeoftype predefined function
	G.6 Mixed ports
	G.7 External constants
	G.8 Prefixing enumerated values
	G.9 Record of/arrays not compatible to record; set of not compatible with set
	G.10 The "UCS-2" predefined variant attribute string
	G.11 Prefixing identifiers of local definitions with module identifiers

	Annex H (informative): Bibliography
	History

