

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

ETSI Standard

Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3;

Part 1: TTCN-3 Core Language

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 2

Reference
RES/MTS-00111-1 T3 ed421 core

Keywords
methodology, MTS, testing, TTCN

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).

In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2010.

All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM, TIPHONTM, the TIPHON logo and the ETSI logo are Trade Marks of ETSI registered
for the benefit of its Members.

3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.
LTE™ is a Trade Mark of ETSI currently being registered

for the benefit of its Members and of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 3

Contents

Intellectual Property Rights .. 11

Foreword ... 11

1 Scope .. 12

2 References .. 12

2.1 Normative references ... 12

2.2 Informative references .. 13

3 Definitions and abbreviations ... 14

3.1 Definitions .. 14

3.2 Abbreviations ... 17

4 Introduction .. 17

4.1 The core language and presentation formats .. 18

4.2 Unanimity of the specification ... 19

4.3 Conformance .. 19

5 Basic language elements .. 19

5.1 Identifiers and keywords .. 20

5.2 Scope rules ... 20

5.2.1 Scope of formal parameters .. 23

5.2.2 Uniqueness of identifiers .. 23

5.3 Ordering of language elements ... 24

5.4 Parameterization ... 24

5.4.1 Formal parameters .. 24

5.4.1.1 Formal parameters of kind value ... 25

5.4.1.2 Formal parameters of kind template .. 27

5.4.1.3 Formal parameters of kind timer ... 28

5.4.1.4 Formal parameters of kind port ... 29

5.4.2 Actual parameters ... 29

5.5 Cyclic Definitions... 32

6 Types and values .. 32

6.1 Basic types and values .. 33

6.1.0 Simple basic types and values... 33

6.1.1 Basic string types and values .. 34

6.1.1.1 Accessing individual string elements .. 36

6.1.2 Subtyping of basic types ... 36

6.1.2.1 Lists of values ... 36

6.1.2.2 Lists of types ... 36

6.1.2.3 Ranges ... 37

6.1.2.4 String length restrictions ... 37

6.1.2.5 Pattern subtyping of character string types ... 38

6.1.2.6 Mixing subtyping mechanisms .. 38

6.1.2.6.1 Mixing patterns, lists and ranges ... 38

6.1.2.6.2 Using length restriction with other constraints .. 39

6.2 Structured types and values .. 39

6.2.1 Record type and values ... 41

6.2.1.1 Referencing fields of a record type ... 42

6.2.1.2 Optional elements in a record.. 42

6.2.1.3 Nested type definitions for field types .. 42

6.2.2 Set type and values ... 43

6.2.2.1 Referencing fields of a set type ... 43

6.2.2.2 Optional elements in a set ... 43

6.2.2.3 Nested type definition for field types .. 43

6.2.3 Records and sets of single types ... 43

6.2.3.1 Nested type definitions .. 45

6.2.3.2 Referencing elements of record of and set of types .. 45

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 4

6.2.4 Enumerated type and values ... 46

6.2.5 Unions ... 47

6.2.5.1 Referencing fields of a union type .. 47

6.2.5.2 Option and union ... 47

6.2.5.3 Nested type definition for field types .. 47

6.2.6 The anytype .. 47

6.2.7 Arrays ... 48

6.2.8 The default type .. 49

6.2.9 Communication port types .. 50

6.2.10 Component types .. 51

6.2.10.1 Component type definition .. 51

6.2.10.2 Reuse of component types .. 52

6.2.11 Component references .. 54

6.2.12 Addressing entities inside the SUT ... 56

6.2.13 Subtyping of structured types ... 57

6.2.13.1 Length subtyping of record ofs and set ofs ... 57

6.2.13.2 List subtyping of structured types and anytype ... 57

6.2.13.3 Subtyping of the iterated type of record ofs and set ofs .. 59

6.2.13.4 Mixing subtyping mechanisms .. 61

6.3 Type compatibility ... 61

6.3.1 Type compatibility of non-structured types .. 61

6.3.2 Type compatibility of structured types ... 62

6.3.2.1 Type compatibility of enumerated types ... 62

6.3.2.2 Type compatibility of record and record of types ... 62

6.3.2.3 Type compatibility of set and set of types ... 64

6.3.2.4 Type compatibility of union types .. 65

6.3.2.5 Type compatibility of anytype types ... 65

6.3.2.6 Compatibility between sub-structures ... 66

6.3.3 Type compatibility of component types.. 66

6.3.4 Type compatibility of communication operations .. 66

6.3.5 Type conversion .. 67

6.4 Type synonym .. 67

7 Expressions ... 67

7.1 Operators .. 68

7.1.1 Arithmetic operators ... 69

7.1.2 List operator .. 70

7.1.3 Relational operators .. 70

7.1.4 Logical operators .. 72

7.1.5 Bitwise operators .. 72

7.1.6 Shift operators ... 73

7.1.7 Rotate operators .. 74

7.2 Field references and list elements ... 74

8 Modules .. 75

8.1 Definition of a module ... 75

8.2 Module definitions part .. 76

8.2.1 Module parameters ... 76

8.2.2 Groups of definitions .. 78

8.2.3 Importing from modules ... 79

8.2.3.1 General format of import .. 79

8.2.3.2 Importing single definitions .. 84

8.2.3.3 Importing groups ... 84

8.2.3.4 Importing definitions of the same kind ... 85

8.2.3.5 Importing all definitions of a module .. 86

8.2.3.6 Import definitions from other TTCN-3 editions and from non-TTCN-3 modules 87

8.2.3.7 Importing of import statements from TTCN-3 modules ... 89

8.2.3.8 Compatibility of language specifications in imports ... 90

8.2.4 Definition of friend modules ... 90

8.2.5 Visibility of definitions ... 91

8.3 Module control part .. 92

9 Port types, component types and test configurations ... 93

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 5

9.1 Communication ports ... 94

9.2 Test system interface .. 96

10 Declaring constants .. 98

11 Declaring variables ... 98

11.1 Value variables ... 99

11.2 Template variables ... 99

12 Declaring timers ... 100

13 Declaring messages .. 101

14 Declaring procedure signatures .. 102

15 Declaring templates .. 103

15.1 Declaring message templates ... 104

15.2 Declaring signature templates .. 105

15.3 Global and local templates ... 106

15.4 In-line Templates .. 107

15.5 Modified templates ... 108

15.6 Referencing elements of templates or template fields .. 110

15.6.1 Referencing individual string elements... 110

15.6.2 Referencing record and set fields ... 111

15.6.3 Referencing record of and set of elements .. 112

15.7 Template matching mechanisms .. 114

15.7.1 Specific values .. 115

15.7.2 Special symbols that can be used instead of values .. 115

15.7.3 Special symbols that can be used inside values .. 116

15.7.4 Special symbols which describe attributes of values .. 116

15.8 Template Restrictions ... 117

15.9 Match Operation ... 119

15.10 Valueof Operation .. 120

15.11 Concatenating templates of string and list types .. 120

16 Functions, altsteps and testcases .. 121

16.1 Functions .. 121

16.1.1 Invoking functions .. 123

16.1.2 Predefined functions ... 124

16.1.3 External functions ... 126

16.1.4 Invoking functions from specific places ... 126

16.2 Altsteps ... 127

16.2.1 Invoking altsteps ... 128

16.3 Test cases.. 130

17 Void .. 131

18 Overview of program statements and operations ... 131

19 Basic program statements ... 133

19.1 Assignments ... 134

19.2 The If-else statement .. 134

19.3 The Select case statement ... 135

19.4 The For statement ... 136

19.5 The While statement ... 136

19.6 The Do-while statement ... 137

19.7 The Label statement ... 137

19.8 The Goto statement .. 138

19.9 The Stop execution statement ... 139

19.10 The Return statement .. 139

19.11 The Log statement .. 140

19.12 The Break statement ... 142

19.13 The Continue statement .. 142

19.14 Statement block .. 143

20 Statement and operations for alternative behaviours .. 143

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 6

20.1 The snapshot mechanism .. 144

20.2 The Alt statement ... 144

20.3 The Repeat statement ... 148

20.4 The Interleave statement .. 149

20.5 Default Handling .. 150

20.5.1 The default mechanism ... 151

20.5.2 The Activate operation .. 151

20.5.3 The Deactivate operation .. 152

21 Configuration Operations ... 153

21.1 Connection Operations ... 154

21.1.1 The Connect and Map operations ... 154

21.1.2 The Disconnect and Unmap operations .. 155

21.2 Test case operations.. 156

21.2.1 Test case stop operation .. 156

21.3 Test Component Operations ... 157

21.3.1 The Create operation ... 157

21.3.2 The Start test component operation .. 158

21.3.3 The Stop test behaviour operation .. 159

21.3.4 The Kill test component operation .. 160

21.3.5 The Alive operation .. 161

21.3.6 The Running operation ... 162

21.3.7 The Done operation .. 162

21.3.8 The Killed operation ... 164

21.3.9 Summary of the use of any and all with components ... 165

22 Communication operations... 165

22.1 The communication mechanisms ... 166

22.1.1 Principles of message-based communication.. 166

22.1.2 Principles of procedure-based communication ... 166

22.1.3 Principles of unicast, multicast and broadcast communication ... 167

22.1.4 General format of communication operations .. 167

22.1.4.1 General format of the sending operations ... 167

22.1.4.2 General format of the receiving operations ... 168

22.2 Message-based communication .. 169

22.2.1 The Send operation ... 169

22.2.2 The Receive operation .. 170

22.2.3 The Trigger operation ... 172

22.3 Procedure-based communication .. 174

22.3.1 The Call operation .. 174

22.3.2 The Getcall operation.. 178

22.3.3 The Reply operation.. 179

22.3.4 The Getreply operation ... 180

22.3.5 The Raise operation .. 182

22.3.6 The Catch operation .. 183

22.4 The Check operation .. 185

22.5 Controlling communication ports ... 186

22.5.1 The Clear port operation ... 186

22.5.2 The Start port operation .. 187

22.5.3 The Stop port operation .. 187

22.5.4 The Halt port operation ... 188

22.6 Use of any and all with ports .. 188

23 Timer operations .. 189

23.1 The timer mechanism ... 189

23.2 The Start timer operation .. 189

23.3 The Stop timer operation .. 190

23.4 The Read timer operation ... 191

23.5 The Running timer operation.. 191

23.6 The Timeout operation ... 191

23.7 Summary of use of any and all with timers .. 192

24 Test verdict operations ... 192

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 7

24.1 The Verdict mechanism .. 193

24.2 The Setverdict operation .. 194

24.3 The Getverdict operation .. 194

25 External actions .. 195

26 Module control ... 195

26.1 The Execute statement .. 196

26.2 The Control part ... 197

27 Specifying attributes ... 199

27.1 The Attribute mechanism ... 199

27.1.1 Scope of attributes .. 200

27.1.2 Overwriting rules for attributes ... 200

27.1.2.1 Additional overwriting rules for variant attributes .. 201

27.1.3 Changing attributes of imported language elements ... 202

27.2 The With statement .. 202

27.3 Display attributes .. 203

27.4 Encoding attributes ... 204

27.5 Variant attributes .. 205

27.6 Extension attributes .. 206

27.7 Optional attributes .. 207

Annex A (normative): BNF and static semantics .. 209

A.1 TTCN-3 BNF ... 209

A.1.1 Conventions for the syntax description .. 209

A.1.2 Statement terminator symbols .. 209

A.1.3 Identifiers ... 209

A.1.4 Comments... 209

A.1.5 TTCN-3 terminals .. 210

A.1.5.1 Use of whitespaces and newlines .. 211

A.1.6 TTCN-3 syntax BNF productions .. 212

A.1.6.0 TTCN-3 module .. 212

A.1.6.1 Module definitions part ... 212

A.1.6.1.0 General .. 212

A.1.6.1.1 Typedef definitions ... 213

A.1.6.1.2 Constant definitions .. 214

A.1.6.1.3 Template definitions.. 214

A.1.6.1.4 Function definitions .. 216

A.1.6.1.5 Signature definitions ... 216

A.1.6.1.6 Testcase definitions ... 217

A.1.6.1.7 Altstep definitions ... 217

A.1.6.1.8 Import definitions .. 217

A.1.6.1.9 Group definitions .. 218

A.1.6.1.10 External function definitions ... 218

A.1.6.1.11 External constant definitions ... 218

A.1.6.1.12 Module parameter definitions ... 218

A.1.6.1.13 Friend module definitions ... 219

A.1.6.2 Control part ... 219

A.1.6.2.0 General .. 219

A.1.6.2.1 Variable instantiation .. 219

A.1.6.2.2 Timer instantiation .. 219

A.1.6.2.3 Component operations .. 219

A.1.6.2.4 Port operations .. 220

A.1.6.2.5 Timer operations ... 221

A.1.6.3 Type .. 222

A.1.6.4 Value ... 222

A.1.6.5 Parameterization ... 223

A.1.6.6 With statement .. 223

A.1.6.7 Behaviour statements .. 224

A.1.6.8 Basic statements .. 225

A.1.6.9 Miscellaneous productions ... 227

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 8

Annex B (normative): Matching incoming values ... 228

B.1 Template matching mechanisms .. 228

B.1.1 Matching specific values .. 228

B.1.2 Matching mechanisms instead of values .. 228

B.1.2.1 Value list ... 228

B.1.2.2 Complemented value list .. 229

B.1.2.3 Any value .. 229

B.1.2.4 Any value or none ... 229

B.1.2.5 Value range ... 229

B.1.2.6 SuperSet .. 230

B.1.2.7 SubSet ... 230

B.1.2.8 Omitting optional fields .. 231

B.1.3 Matching mechanisms inside values .. 231

B.1.3.1 Any element .. 231

B.1.3.1.1 Using single character wildcards ... 232

B.1.3.2 Any number of elements or no element .. 232

B.1.3.2.1 Using multiple character wildcards ... 232

B.1.3.3 Permutation ... 232

B.1.4 Matching attributes of values ... 233

B.1.4.1 Length restrictions .. 233

B.1.4.2 The IfPresent indicator .. 234

B.1.5 Matching character pattern ... 234

B.1.5.1 Set expression ... 236

B.1.5.2 Reference expression .. 237

B.1.5.3 Match expression n times ... 238

B.1.5.4 Match a referenced character set ... 238

B.1.5.5 Type compatibility rules for patterns .. 239

Annex C (normative): Pre-defined TTCN-3 functions ... 240

C.0 General exception handling procedures ... 240

C.1 Integer to character ... 240

C.2 Integer to universal character ... 240

C.3 Integer to bitstring .. 240

C.4 Integer to hexstring ... 241

C.5 Integer to octetstring ... 241

C.6 Integer to charstring.. 241

C.7 Integer to float .. 241

C.8 Float to integer ... 242

C.9 Character to integer .. 242

C.10 Character to octetstring .. 242

C.11 Universal character to integer ... 242

C.12 Bitstring to integer .. 243

C.13 Bitstring to hexstring .. 243

C.14 Bitstring to octetstring .. 243

C.15 Bitstring to charstring ... 244

C.16 Hexstring to integer .. 244

C.17 Hexstring to bitstring .. 244

C.18 Hexstring to octetstring .. 245

C.19 Hexstring to charstring ... 245

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 9

C.20 Octetstring to integer .. 245

C.21 Octetstring to bitstring .. 245

C.22 Octetstring to hexstring .. 246

C.23 Octetstring to character string .. 246

C.24 Octetstring to character string, version II ... 246

C.25 Charstring to integer ... 247

C.26 Character string to hexstring .. 247

C.27 Character string to octetstring .. 247

C.28 Character string to float .. 248

C.29 Length of strings and lists .. 248

C.30 Number of elements in a structured value .. 250

C.31 The IsPresent function .. 250

C.32 The IsChosen function.. 252

C.33 The Regexp function .. 253

C.34 The Substring function ... 254

C.35 The Replace function.. 255

C.36 The random number generator function ... 255

C.37 Enumerated to integer .. 256

C.38 The IsValue function .. 256

C.39 The encoding function .. 258

C.40 The decoding function .. 258

C.41 The testcasename function ... 258

Annex D (normative): Preprocessing macros .. 260

D.1 Preprocessing macro __MODULE__... 260

D.2 Preprocessing macro __FILE__ ... 260

D.3 Preprocessing macro __BFILE__ .. 260

D.4 Preprocessing macro __LINE__ .. 260

D.5 Preprocessing macro __SCOPE__ ... 261

Annex E (informative): Library of Useful Types .. 263

E.1 Limitations ... 263

E.2 Useful TTCN-3 types ... 263

E.2.1 Useful simple basic types ... 263

E.2.1.0 Signed and unsigned single byte integers ... 263

E.2.1.1 Signed and unsigned short integers ... 263

E.2.1.2 Signed and unsigned long integers ... 264

E.2.1.3 Signed and unsigned longlong integers .. 264

E.2.1.4 IEEE 754 floats .. 264

E.2.2 Useful character string types .. 265

E.2.2.0 UTF-8 character string "utf8string" .. 265

E.2.2.1 BMP character string "bmpstring" .. 265

E.2.2.2 UTF-16 character string "utf16string" .. 265

E.2.2.3 ISO/IEC 8859-1 character string "iso8859string" ... 265

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 10

E.2.3 Useful structured types ... 266

E.2.3.0 Fixed-point decimal literal .. 266

E.2.4 Useful atomic string types .. 266

E.2.4.1 Single ISO/IEC 646 character type ... 266

E.2.4.2 Single universal character type ... 266

E.2.4.3 Single bit type ... 266

E.2.4.4 Single hex type ... 267

E.2.4.5 Single octet type ... 267

Annex F (informative): Operations on TTCN-3 active objects .. 268

F.1 Test components ... 268

F.1.1 Test component references ... 268

F.1.2 Dynamic behaviour of PTCs .. 269

F.1.3 Dynamic behaviour of the MTC ... 270

F.2 Timers... 271

F.3 Ports .. 271

F.3.1 Configuration Operations ... 271

F.3.2 Port Controlling Operations ... 272

F.3.3 Communication Operations .. 273

Annex G (informative): Deprecated language features ... 274

G.1 Group style definition of module parameters ... 274

G.2 Recursive import .. 274

G.3 Using all in port type definitions ... 274

G.4 sizeof for length of lists .. 274

G.5 sizeoftype predefined function ... 274

G.6 Mixed ports .. 274

G.7 External constants .. 275

Annex H (informative): Bibliography ... 276

History .. 277

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 11

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This ETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and Specification
(MTS), and is now submitted for the ETSI standards Membership Approval Procedure.

The present document is part 1 of a multi-part deliverable covering the Testing and Test Control Notation version 3, as
identified below:

Part 1: "TTCN-3 Core Language";

Part 2: "TTCN-3 Tabular presentation Format (TFT)";

Part 3: "TTCN-3 Graphical presentation Format (GFT)";

Part 4: "TTCN-3 Operational Semantics";

Part 5: "TTCN-3 Runtime Interface (TRI)";

Part 6: "TTCN-3 Control Interface (TCI)";

Part 7: "Using ASN.1 with TTCN-3";

Part 8: "The IDL to TTCN-3 Mapping";

Part 9: "Use XML with TTCN-3";

Part 10: "TTCN-3 Documentation Comment Specification".

http://webapp.etsi.org/IPR/home.asp

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 12

1 Scope
The present document defines the Core Language of TTCN-3. TTCN-3 can be used for the specification of all types of
reactive system tests over a variety of communication ports. Typical areas of application are protocol testing (including
mobile and Internet protocols), service testing (including supplementary services), module testing, testing of CORBA
based platforms, APIs, etc. TTCN-3 is not restricted to conformance testing and can be used for many other kinds of
testing including interoperability, robustness, regression, system and integration testing. The specification of test suites
for physical layer protocols is outside the scope of the present document.

TTCN-3 is intended to be used for the specification of test suites which are independent of test methods, layers and
protocols. Various presentation formats are defined for TTCN-3 such as a tabular presentation format
(ES 201 873-2 [i.1]) and a graphical presentation format (ES 201 873-3 [i.2]). The specification of these formats is
outside the scope of the present document.

While the design of TTCN-3 has taken the eventual implementation of TTCN-3 translators and compilers into
consideration the means of realization of Executable Test Suites (ETS) from Abstract Test Suites (ATS) is outside the
scope of the present document.

2 References
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
reference document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee
their long term validity.

2.1 Normative references
The following referenced documents are necessary for the application of the present document.

[1] ETSI ES 201 873-4: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 4: TTCN-3 Operational Semantics".

[2] ISO/IEC 10646: "Information technology - Universal Multiple-Octet Coded Character Set (UCS)".

[3] ISO/IEC 9646-3 (1998): "Information technology - Open Systems Interconnection - Conformance
testing methodology and framework - Part 3: The Tree and Tabular Combined Notation (TTCN)".

[4] ISO/IEC 646 (1991): "Information technology - ISO 7-bit coded character set for information
interchange".

[5] ISO/IEC 6429 (1992): "Information technology - Control functions for coded character sets".

[6] ISO/IEC 9646-1: "Information technology - Open Systems Interconnection -Conformance testing
methodology and framework; Part 1: General concepts".

[7] IEEE 754: "IEEE Standard for Floating-Point Arithmetic".

2.2 Informative references
The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] ETSI ES 201 873-2: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 2: TTCN-3 Tabular presentation Format (TFT)".

http://docbox.etsi.org/Reference

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 13

[i.2] ETSI ES 201 873-3: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 3: TTCN-3 Graphical presentation Format (GFT)".

[i.3] ETSI ES 201 873-5: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 5: TTCN-3 Runtime Interface (TRI)".

[i.4] ETSI ES 201 873-6: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 6: TTCN-3 Control Interface (TCI)".

[i.5] ETSI ES 201 873-7: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 7: Using ASN.1 with TTCN-3".

[i.6] ETSI ES 201 873-8: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 8: The IDL to TTCN-3 Mapping".

[i.7] ETSI ES 201 873-9: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 9: Use XML with TTCN-3".

[i.8] ETSI ES 201 873-10: "Methods for Testing and Specification (MTS); The Testing and Test
Control Notation version 3; Part 10: TTCN-3 Documentation Comment Specification".

[i.9] ITU-T Recommendation T.50 (1992): "International Reference Alphabet (IRA) (Formerly
International Alphabet No. 5 or IA5) - Information technology - 7-bit coded character set for
information interchange".

[i.10] ISO/IEC 8859-1 (1998): "Information technology - 8-bit single-byte coded graphic character sets -
Part 1: Latin alphabet No. 1".

[i.11] Object Management Group (OMG) (2001): "The Common Object Request Broker: Architecture
and Specification - IDL Syntax and Semantics". Version 2.6, FORMAL/01-12-01 .

[i.12] ETSI Draft ETSI ES 202 781: "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; TTCN-3 Language Extensions: Configuration and Deployment
Support".

[i.13] ETSI ES 202 784: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions: Advanced Parameterization".

[i.14] ETSI ES 202 785: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions: Behaviour Types".

[i.15] ETSI ES 202 782: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions: TTCN-3 Performance and Real Time Testing".

3 Definitions and abbreviations

3.1 Definitions
For the purposes of the present document, the terms and definitions given in ISO/IEC 9646-1 [6], ISO/IEC 9646-3 [3]
and the following apply:

actual parameter: value, expression, template or name reference (identifier) to be passed as parameter to the invoked
entity (function, test case, altstep, etc.) as defined at the place of invoking

basic types: set of predefined TTCN-3 types described in clauses 6.1.0 and 6.1.1 of the present document

NOTE: Basic types are referenced by their names.

communication port: abstract mechanism facilitating communication between test components

NOTE: A communication port is modelled as a FIFO queue in the receiving direction. Ports can be
message-based or procedure-based.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 14

compatible type: TTCN-3 is not strongly typed but the language does require type compatibility

NOTE: Variables, constants, templates, etc. have compatible types if conditions in clause 6.3 are met.

completely initialized: values and templates of simple types are completely initialized if they are partially initialized

NOTE: Values and templates of structured types and arrays are completely initialized if all their fields and
elements are completely initialized. In case of record of, set of, and array values and templates, this means
at least the first n elements shall be initialized, where n is the minimal length imposed by the type length
restriction or array definition (thus in case of n equals 0, the value "{}" also completely initializes a
record of, a set of or an array).

data types: common name for simple basic types, basic string types, structured types, the special data type anytype and
all user defined types based on them (see table 3 of the present document)

defined types (defined TTCN-3 types): set of all predefined TTCN-3 types (basic types, all structured types, the type
anytype, the address, port and component types and the default type) and all user-defined types declared either in the
module or imported from other TTCN-3 modules

dynamic parameterization: form of parameterization, in which actual parameters are dependent on run-time events;
e.g. the value of the actual parameter is a value received during run-time or depends on a received value by a logical
relation

exception: in cases of procedure-based communication, an exception (if defined) is raised by an answering entity if it
cannot answer a remote procedure call with the normal expected response

formal parameter: typed name or typed template reference (identifier) not resolved at the time of the definition of an
entity (function, test case, altstep, etc.) but at the time of invoking it

NOTE: Actual values or templates (or their names) to be used at the place of formal parameters are passed from
the place of invoking the entity (see also the definition of actual parameter).

global visibility: attribute of an entity (module parameter, constant, template, etc.) that its identifier can be referenced
anywhere within the module where it is defined including all functions, test cases and altsteps defined within the same
module and the control part of that module

Implementation Conformance Statement (ICS): See ISO/IEC-9646-1 [6].

Implementation eXtra Information for Testing (IXIT): See ISO/IEC-9646-1 [6].

Implementation Under Test (IUT): See ISO/IEC-9646-1 [6].

in parameterization: kind of parameterization where the value of the actual parameter (the argument) is bound to the
formal parameter when the parameterized object is invoked, but the value of the formal parameter is not passed back to
the actual parameter when the invoked object completes

NOTE 1: The arguments are evaluated before the parameterized object is entered.

NOTE 2: Only the values of the arguments are passed and changes to the arguments within the invoked object have
no effect on the arguments as seen by the invoking object.

inout parameterization: kind of parameterization where the actual parameter is bound to the formal parameter when
the parameterized object is invoked

NOTE 1: The invoked object uses the actual parameter directly, so that all changes made on the formal parameter
become immediately effective on the actual parameter.

NOTE 2: Inout parameters can be used for functions, altsteps, and test cases only.

known types: set of all TTCN-3 predefined types, types defined in a TTCN-3 module and types imported into that
module from other TTCN-3 modules or from non-TTCN-3 modules

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 15

left hand side (of assignment): value or template variable identifier or a field name of a structured type value or
template variable (including array index if any), which stands left to an assignment symbol (:=)

NOTE: A constant, module parameter, timer, structured type field name or a template header (including template
type, name and formal parameter list) standing left of an assignment symbol (:=) in declarations and or a
modified template definitions are out of the scope of this definition as not being part of an assignment.

local visibility: attribute of an entity (constant, variable, etc.) that its identifier can be referenced only within the
function, test case or altstep where it is defined

Main Test Component (MTC): See ISO/IEC 9646-3 [3].

out parameterization: kind of parameterization where the value of the actual parameter (the argument) is not bound to
the formal parameter when the parameterized object is invoked, but the value of the formal parameter is passed back to
the actual parameter when the invoked object completes

NOTE 1: Out parameters can be used for functions, altsteps, and test cases only.

NOTE 2: An out formal parameter is uninitialized (unbound) when the invoked object is entered.

NOTE 3: The value is passed back to the actual parameter only if within the invoked object a value is assigned to it.
If no value is assigned, the actual parameter remains unchanged when the invoked object completes.

Parallel Test Component (PTC): See ISO/IEC 9646-3 [3].

partially initialized: values are partially initialized if a concrete value has been assigned to it or to at least one of its
fields or elements

NOTE 1: A template variable is initialized if a matching mechanism has been assigned to it or to at least one of its
fields or elements, directly or indirectly via expansion (see clause 15.6). A template is initialized if a
matching mechanism has been assigned to it, directly or indirectly via expansion (see clause 15.6).

NOTE 2: Thus, constants and templates are always initialized at declaration. Variables (both value and template)
are initialized if they, or at least one of their fields or elements has been used on the left hand side of an
assignment (including initial value assignment at declaration). Module parameters are initialized either at
declaration or by the test system before test execution.

port parameterization: ability to pass a port as an actual parameter into a parameterized object via a port parameter

NOTE: This actual port parameter is added to the specification of that object and may complete it.

qualified name: TTCN-3 elements can be identified unambiguously by qualified names

NOTE: For modules, the qualified name is the <module name>. For global definitions such as testcases,
functions, etc., the qualified name is <module name>.<definition name>. For control, the qualified name
is <module name>.control. For local definitions, such as variables, local templates, etc. within a global
definition, the qualified name is <module name>.<global definition name>.<local definition name>.

right hand side (of assignment): expression, template reference or signature parameter identifier which stands right to
an assignment symbol (:=)

NOTE: Expressions and template references standing right of an assignment symbol (:=) in constant, module
parameter, timer, template or modified template declarations are out of the scope of this definition as not
being part of an assignment.

root type: root types of types derived from TTCN-3 basic types are the respective basic types

NOTE 1: The root type of user defined record types is record, the root type of user defined record of and array
types is record of, the root type of user defined set types is set, the root type of user defined set of
types is set of. The root type of user defined union types is union and the root type of anytypes is
anytype. The root types of special configuration types are default or component, respectively.
Port types do not have a root type.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 16

NOTE 2: As address is more a predefined type name than a distinct type with its own properties, the root type of
an address type and all of its derivatives are the same, as the root type was, if the type was defined
with a name different from address.

static parameterization: form of parameterization, in which actual parameters are independent of run-time events;
i.e. known at compile time or in case of module parameters are known by the start of the test suite execution

NOTE 1: A static parameter is to be known from the test suite specification, (including imported definitions), or the
test system is aware of its value before execution time.

NOTE 2: All types are known at compile time, i.e. are statically bound.

strong typing: strict enforcement of type compatibility by type name equivalence with no exceptions

System Under Test (SUT): See ISO/IEC-9646-1 [6].

template: TTCN-3 templates are specific data structures for testing; used to either transmit a set of distinct values or to
check whether a set of received values matches the template specification

template parameterization: ability to pass a template as an actual parameter into a parameterized object via a template
parameter

NOTE 1: This actual template parameter is added to the specification of that object and may complete it.

NOTE 2: Values passed to template formal parameters are considered to be in-line templates (see clause 15.4).

test behaviour: (or behaviour) test case or a function started on a test component when executing an execute or a
start component statement and all functions and altsteps called recursively

NOTE: During a test case execution each test components have its own behaviour and hence several test
behaviour may run concurrently in the test system (i.e. a test case can be seen as a collection of test
behaviours).

test case: See ISO/IEC-9646-1 [6].

test case error: See ISO/IEC-9646-1 [6].

test suite: set of TTCN-3 modules that contains a completely defined set of test cases, optionally supplemented with
one or more TTCN-3 control parts

test system: See ISO/IEC-9646-1 [6].

test system interface: test component that provides a mapping of the ports available in the (abstract) TTCN-3 test
system to those offered by the SUT

timer parameterization: ability to pass a timer as an actual parameter into a parameterized object via a timer
parameter

NOTE: This actual timer parameter is added to the specification of that object and may complete it.

type compatibility: language feature that allows to use values, expressions or templates of a given type as actual values
of another type (e.g. at assignments, as actual parameters at calling a function, referencing a template, etc. or as a return
value of a function)

unqualified name: the unqualified name of a TTCN-3 element is its name without any qualification

user-defined type: type that is defined by subtyping of a basic type or declaring a structured type

NOTE: User-defined types are referenced by their identifiers (names).

value notation: notation by which an identifier is associated with a given value or range of a particular type

NOTE: Values may be constants or variables.

value parameterization: ability to pass a value as an actual parameter into a parameterized object via a value
parameter

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 17

NOTE: This actual value parameter is added to the specification of that object and may complete it.

3.2 Abbreviations
For the purposes of the present document, the following abbreviations apply:

API Application Programming Interface
ATS Abstract Test Suite
BMP Basic Multilingual Plane
BNF Backus-Nauer Form
CORBA Common Object Request Broker Architecture
ETS Executable Test Suite
FIFO First In First Out
ICS Implementation Conformance Statement
IRV International Reference Version
IUT Implementation Under Test
IXIT Implementation eXtra Information for Testing
MTC Main Test Component
PTC Parallel Test Component
SUT System Under Test
TSI Test System Interface
TTCN-3 Testing and Test Control Notation version 3

4 Introduction
TTCN-3 is a flexible and powerful language applicable to the specification of all types of reactive system tests over a
variety of communication interfaces. Typical areas of application are protocol testing (including mobile and Internet
protocols), service testing (including supplementary services), module testing, testing of CORBA based platforms, API
testing, etc. TTCN-3 is not restricted to conformance testing and can be used for many other kinds of testing including
interoperability, robustness, regression, system and integration testing.

TTCN-3 includes the following essential characteristics:

• the ability to specify dynamic concurrent testing configurations;

• operations for procedure-based and message-based communication;

• the ability to specify encoding information and other attributes (including user extensibility);

• the ability to specify data and signature templates with powerful matching mechanisms;

• value parameterization;

• the assignment and handling of test verdicts;

• test suite parameterization and test case selection mechanisms;

• combined use of TTCN-3 with other languages;

• well-defined syntax, interchange format and static semantics;

• different presentation formats (e.g. tabular and graphical presentation formats);

• a precise execution algorithm (operational semantics).

NOTE: The present document uses the following pattern of concept description: concepts, principles and
mechanisms are explained in (introductory) text at the beginning of a clause. For every concept having
concrete syntax, the syntactical structure of that concept is presented afterwards. The syntactical structure
follows the conventions for the TTCN-3 syntax description in clause A.1.1 and uses rules of the TTCN-3
BNF given in clause A.1. A semantic description follows the syntactic structure. The restrictions on the
concept are listed subsequently. Finally, examples on the usage of the concept are given.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 18

In case of a contradiction between the body of the present document (clauses 5 to 27) and annex A of the present
document, annex A has the priority.

4.1 The core language and presentation formats
The TTCN-3 specification is separated into several parts (see figure 1).

The first part, defined in the present document, is the core language.

The second part, defined in ES 201 873-2 [i.1], is the tabular presentation format.

The third part, defined in ES 201 873-3 [i.2], is the graphical presentation format.

The fourth part, ES 201 873-4 [1], contains the operational semantics of the language.

The fifth part, ES 201 873-5 [i.3], defines the TTCN-3 Runtime Interface (TRI).

The sixth part, ES 201 873-6 [i.4], defines the TTCN-3 Control Interfaces (TCI).

The seventh part, ES 201 873-7 [i.5], specifies the use of ASN.1 definitions with TTCN-3.

The eight part, ES 201 873-8 [i.6], specifies the use of IDL definitions with TTCN-3.

The ninth part, ES 201 873-9 [i.7] specifies the use of XML definitions with TTCN-3.

The tenth part, ES 201 873-10 [i.8] specifies documentation tags for TTCN-3.

The core language serves three purposes:

a) as a generalized text-based test language in its own right;

b) as a standardized interchange format of TTCN-3 test suites between TTCN-3 tools;

c) as the semantic basis (and where relevant, the syntactical basis) for various presentation formats.

The core language may be used independently of the presentation formats. However, neither the tabular format nor the
graphical format can be used without the core language. Use and implementation of these presentation formats shall be
done on the basis of the core language.

The tabular format and the graphical format are the first in an anticipated set of different presentation formats. These
other formats may be standardized presentation formats or they may be proprietary presentation formats defined by
TTCN-3 users themselves. These additional formats are not defined in the present document.

TTCN-3 may optionally be used with TTCN-3 packages, which define additional concepts for specific purposes.

TTCN-3 may optionally be used with other type-value notations in which case definitions in other languages may be
used as an alternative data type and value syntax. Other parts of the TTCN-3 standard specify use of some other
languages with TTCN-3. The support of other languages is not limited to those specified in the 201 873 series of
documents but to support languages for which combined use with TTCN-3 is defined, rules given in the present
document shall apply.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 19

TTCN-3
Core
Language

Presentation
format m

TTCN-3 User

Graphical
format

The shaded boxes are not
defined in this document

Tabular
format

ASN.1 Types
& Values

Other Types
& Values n

IDL Types

XML Types

Deployment
and
Configuration
Support

Advanced
Parameteri-
zation

Behavior
Types

TTCN-3
Packages k

…

Figure 1: User's view of the core language, its packages and the various presentation formats

The core language is defined by a complete syntax (see annex A) and operational semantics (ES 201 873-4 [1]). It
contains minimal static semantics (provided in the body of the present document and in annex A) which do not restrict
the use of the language due to some underlying application domain or methodology.

4.2 Unanimity of the specification
The language is specified syntactically and semantically in terms of a textual description in the body of the present
document (clauses 5 to 27) and in a formalized way in annex A. In each case, when the textual description is not
exhaustive, the formal description completes it. If the textual and the formal specifications are contradictory, the latter
shall take precedence.

4.3 Conformance
For an implementation claiming to conform to this version of the language, all features specified in the present
document shall be implemented consistently with the requirements given in the present document and in
ES 201 873-4 [1].

5 Basic language elements
The top-level unit of TTCN-3 is a module. A module cannot be structured into sub-modules. A module can import
definitions from other modules. Modules can have module parameters to allow test suite parameterization.

A module consists of a definitions part and a control part. The definitions part of a module defines test components,
communication ports, data types, constants, test data templates, functions, signatures for procedure calls at ports, test
cases, etc.

The control part of a module calls the test cases and controls their execution. The control part may also declare (local)
variables, etc. Program statements (such as if-else and do-while) can be used to specify the selection and
execution order of individual test cases. The concept of global variables is not supported in TTCN-3.

TTCN-3 has a number of pre-defined basic data types as well as structured types such as records, sets, unions,
enumerated types and arrays.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 20

A special kind of data structure called a template provides parameterization and matching mechanisms for specifying
test data to be sent or received over the test ports. The operations on these ports provide both message-based and
procedure-based communication capabilities. Procedure calls may be used for testing implementations which are not
message based.

Dynamic test behaviour is expressed as test cases. TTCN-3 program statements include powerful behaviour description
mechanisms such as alternative reception of communication and timer events, interleaving and default behaviour. Test
verdict assignment and logging mechanisms are also supported.

Finally, TTCN-3 language elements may be assigned attributes such as encoding information and display attributes. It is
also possible to specify (non-standardized) user-defined attributes.

The TTCN-3 language elements are summarized in table 1.

Table 1: Overview of TTCN-3 language elements

Language element Associated
keyword

Specified in
module

definitions

Specified in
module
control

Specified in
functions/

altsteps/ test
cases

Specified in
test

component
type

TTCN-3 module definition module
Import of definitions from other module import Yes
Grouping of definitions group Yes
Data type definitions type Yes
Communication port definitions port Yes
Test component definitions component Yes
Signature definitions signature Yes
External function definitions external Yes
Constant definitions const Yes Yes Yes Yes
Data/signature template definitions template Yes Yes Yes Yes
Function definitions function Yes
Altstep definitions altstep Yes
Test case definitions testcase Yes
Value variable declarations var Yes Yes Yes
Template variable declarations var template Yes Yes Yes
Timer declarations timer Yes Yes Yes
NOTE: The notions "definition" and "declaration" of variables, constants, types and other language elements are

used interchangeably throughout the present document. The distinction between both notions is useful only
for implementation purposes, as it is the case in programming languages like C and C++. On the level of
TTCN-3, the notions have equal meaning.

5.1 Identifiers and keywords
TTCN-3 identifiers are case sensitive. TTCN-3 keywords shall be written in all lowercase letters (see annex A).
TTCN-3 keywords shall neither be used as identifiers of TTCN-3 objects nor as identifiers of objects imported from
modules of other languages. The same rules apply to names of predefined TTCN-3 functions (see annex C).

5.2 Scope rules
TTCN-3 provides nine basic units of scope:

a) module definitions part;

b) control part of a module;

c) component types;

d) functions;

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 21

e) altsteps;

f) test cases;

g) statement blocks;

h) templates;

i) user defined named types.

NOTE 1: Additional scoping rule for groups is given in clause 8.2.2.

NOTE 2: Additional scoping rule for counters of for loops is given in clause 19.4.

NOTE 3: Statement blocks may include declarations. They may occur as stand-alone statement blocks, embedded
in another statement block or within compound statements, e.g. as body of a while loop.

NOTE 4: Built in TTCN-3 types like integer, charstring, anytype, etc. are not scope units, but all named
user defined types are scope units, independent of their kinds.

Each unit of scope consists of (optional) declarations. The scope units: control part of a module, functions, test cases,
altsteps and statement blocks may additionally specify some form of behaviour by using the TTCN-3 program
statements and operations (see clause 18).

Definitions made in the module definitions part but outside of other scope units are globally visible, i.e. may be used
elsewhere in the module, including all functions, test cases and altsteps defined within the module and the control part.
Identifiers imported from other modules are also globally visible throughout the importing module.

Definitions made in the module control part have local visibility, i.e. can be used within the control part only.

Definitions made in a test component type may be used in a component type extending this component type definition,
and in functions, test cases and altsteps referencing that component type or a compatible test component type (see
clause 6.3.3) by a runs on-clause.

Test cases, altsteps and functions are individual scope units without any hierarchical relation between them,
i.e. declarations made at the beginning of their body have local visibility and shall only be used in the given test case,
altstep or function (e.g. a declaration made in a test case is not visible in a function called by the test case or in an
altstep used by the test case).

Stand-alone statement blocks and statements within compound statements, like e.g. if-else, while, do-while, or
alt statements may be used within the control part of a module, test cases, altsteps, functions, or may be embedded in
other statement blocks or compound statements, e.g. an if-else statement that is used within a while loop.

Statement blocks and embedded statement blocks have a hierarchical relation both to the scope unit including the given
statement block and to any embedded statement block. Declarations made within a statement block have local visibility.

The hierarchy of scope units is shown in figure 2. Declarations of a scope unit at a higher hierarchical level are visible
in all units at lower levels within the same branch of the hierarchy. Declarations of a scope unit in a lower level of
hierarchy are not visible to those units at a higher hierarchical level.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 22

module
control part

statement block

nested
statement block

user defined
named type

testcase with
runs on-clause

and optional
system-clause

module
definitions part

function with
runs on-clause

altstep with
runs on-clause

component type function without
runs on-clause

altstep without
runs on-clause

statement block statement block statement block

statement block statement block

nested
statement block

nested
statement block

nested
statement block

nested
statement block

nested
statement block

template

Figure 2: Hierarchy of scope units

EXAMPLE 1: Local scopes

 module MyModule
 { :
 const integer MyConst := 0; // MyConst is visible to MyBehaviourA and MyBehaviourB
 :
 function MyBehaviourA()
 { :
 const integer A := 1; // The constant A is only visible to MyBehaviourA
 :
 }

 function MyBehaviourB()
 { :
 const integer B := 1; // The constant B is only visible to MyBehaviourB
 :

 }
 }

EXAMPLE 2: Component type scopes

 type component MyComponentType {
 const integer MyConst := 1;
 ...
 }

 type component MyExtendedComponentType extends MyComponentType {
 var integer MyVar:= 2 * MyConst; // using MyConst of MyComponentType

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 23

 ...
 }

5.2.1 Scope of formal parameters

The scope of formal parameters in a parameterized object (e.g. in a function definition) shall be restricted to the
definition in which the parameters appear and to the lower levels of scope in the same scope hierarchy. That is they
follow the scope rules for local definitions (see clause 5.2).

5.2.2 Uniqueness of identifiers

TTCN-3 requires uniqueness of identifiers, i.e. all identifiers in the same scope hierarchy shall be distinctive. This
means that a declaration in a lower level of scope shall not re-use the same identifier as a declaration in a higher level of
scope in the same branch of the scope hierarchy.

The identifier of a module (its module name) or of an imported module belongs to the scope unit of the module and
cannot be used as identifier for other definitions inside this module. Identifiers for fields of structured types,
enumeration values and groups do not have to be globally unique, however in the case of enumeration values the
identifiers shall only be reused for enumeration values within other enumerated types. The rules of identifier uniqueness
shall also apply to identifiers of formal parameters.

EXAMPLE 1: Nested scopes

 module MyModule
 { :
 const integer A := 1;
 :
 function MyBehaviourA()
 { :
 const integer A := 1; // Is NOT allowed: clash with global constant A
 :
 if(…)
 { :
 const boolean A := true; // Is NOT allowed: clash with local constant A
 :
 }
 }
 }

EXAMPLE 2: Independent scopes

 // The following IS allowed as the constants are not declared in the same scope hierarchy
 // (assuming there is no declaration of A in module header)
 function MyBehaviourA()
 { :
 const integer A := 1;
 :
 }

 function MyBehaviourB()
 { :
 const integer A := 1;
 :
 }

EXAMPLE 3: Module scopes

 module MyModuleB {
 import from MyModuleA { … }

 function MyFunction() {
 var integer MyModuleB:= 1; // Is NOT allowed: class with module name
 :
 }

 type boolean MyModuleA; // Is NOT allowed: class with imported module name
 }

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 24

5.3 Ordering of language elements
Generally, the order in which declarations can be made is arbitrary. Inside a statement block, such as a function body or
a branch of an if-else statement, all declarations (if any), shall be made at the beginning of the statement block only.

EXAMPLE:

 // This is a legal mixing of TTCN-3 declarations
 :
 var MyVarType MyVar2 := 3;
 const integer MyConst:= 1;
 if (MyVar2+MyConst > 10)
 {
 var integer MyVar1:= 1;
 :
 MyVar1:= MyVar1 + 10;
 :
 }
 :

Declarations in the module definitions part may be made in any order. However inside the module control part, test case
definitions, functions, altsteps, and statement blocks, all required declarations must be given beforehand. This means in
particular, local variables, local timers, and local constants shall never be used before they are declared. The only
exception to this rule are labels. Forward references to a label may be used in goto statements before the label occurs
(see clause 19.8).

5.4 Parameterization
TTCN-3 allows to parameterize modules, templates, functions, altsteps and testcases. Values, templates, timers, and
ports may be used as actual parameters. A summary of which language elements can be parameterized and what can be
passed to them as parameters is given in table 2.

NOTE: Type parameterization for TTCN-3 is defined in the optional package [i.13].

Table 2: Overview of parameterizable TTCN-3 objects

Keyword Allowed kind of
Parameterization

Allowed form of
Parameterization

Allowed types in formal parameter lists

module Value parameterization Static at start of run-time all basic types, all user-defined types and address
type.

template Value and template
parameterization

Dynamic at run-time all basic types, all user-defined types, address type
and template.

function Value, template, port and
timer parameterization

Dynamic at run-time all basic types, all user-defined types, address
type, component type, port type, default,
template and timer.

altstep Value, template, port and
timer parameterization

Dynamic at run-time all basic types, all user-defined types, address
type, component type, port type, default,
template and timer.

testcase Value, template, port and
timer parameterization

Dynamic at run-time all basic types and of all user-defined types,
address type and template.

NOTE: Signatures are not shown in the table, because a signature declares parameters only. The templates for the
signatures can be parameterized, however.

5.4.1 Formal parameters

TTCN-3 modules, structured types, templates, functions, altsteps, and testcases may be defined incompletely, i.e. some
entities (variables, templates, ports, timers, etc.) used by the above objects may not be resolved in the definition of the
object. These objects are called parameterized objects. Formal entities replacing the unresolved entities in the
parameterized object's definition are called formal parameters.

Formal parameters of parameterized templates, functions, altsteps, and testcases are defined in formal parameter lists.
Formal parameters of modules are defined in module parameter definitions (see clause 8.2.1).

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 25

Formal parameters shall be in, inout or out parameters (see definitions in clause 3.1). If not stated otherwise, a
formal parameter is an in parameter. For all these three sorts of parameter passing, the formal parameters can both be
read and set (i.e. get new values being assigned) within the parameterized object. Formal parameters can be used
directly as actual parameters for other parameterized objects, e.g. as actual parameters in function invocations or as
actual parameters in template instances.

Formal in parameters may have default values. This default value is used when no actual parameter is provided.

NOTE: Although out parameters can be read within the parameterized object, they do not inherit the value of
their actual parameter; i.e. they should be set before they are read.

5.4.1.1 Formal parameters of kind value

Values of all basic types, all user-defined types, address type, component type, and default can be passed as value
parameters.

Syntactical Structure

[(in | inout | out)] Type ValueParIdentifier [":=" (Expression | "-")]

Semantic Description

Value formal parameters can be used within the parameterized object the same way as values, for example in
expressions.

Value formal parameters may be in, inout or out parameters. The default for value formal parameters is in
parameterization which may optionally be denoted by the keyword in. Using of inout or out kind of parameterization
shall be specified by the keywords inout or out respectively.

In parameters may have a default value, which is given by an expression assigned to the parameter. Formal parameters
of modified templates may inherit the default values from the corresponding parameters of their parent templates; this
shall explicitly be denoted by using a dash (don't change) symbol at the place of the modified template parameters'
default value.

TTCN-3 supports value parameterization according to the following rules:

• the language element module allows static value parameterization to support test suite parameters, i.e. this
parameterization may or may not be resolvable at compile-time but shall be resolved by the commencement of
run-time (i.e. static at run-time). This means that, at run-time, module parameter values are globally visible but
not changeable (see more details in clause 8.2);

• the language elements template, testcase, altstep and function support dynamic value
parameterization (i.e. this parameterization shall be resolved at run-time).

NOTE: Component and default references are also handled as value parameters. In the case of component
references, the corresponding component type is the type of the formal parameter. In the case of default
references the TTCN-3 type default is the type of the formal parameter.

Restrictions

a) Language elements which cannot be parameterized are: const, var, timer, control, record of,
set of, enumerated, port, component and subtype definitions, group and import.

b) Formal value parameters of templates, and of altsteps activated as defaults (see clause 20.5.2) shall always be
in parameters.

c) Restrictions on module parameters are given in clause 8.2.

d) Default values can be provided for in parameters only.

e) The expression of the default value has to be compatible with the type of the parameter. The expression shall
not refer to elements of the component type of the optional runs on clause. The expression shall not refer to
other parameters of the same parameter list. The expression shall not contain the invocation of functions with a
runs on clause.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 26

f) Default values of component type formal parameters shall be one of the special values null, mtc, self,
or system.

g) Default values of default type formal parameters shall be the special value null.

h) The dash (don't change) symbol shall be used with formal parameters of modified templates only (see also
clause 15.5).

i) For formal value parameters of templates the restrictions specified in clause 15 shall apply.

Examples

EXAMPLE 1: In, out and inout formal parameters

 function MyFunction1(in boolean MyReferenceParameter){ … };
 // MyReferenceParameter is an in value parameter. The parameter can be read. It can also be set
 // within the function, however, the assignment is local to the function only

 function MyFunction2(inout boolean MyReferenceParameter){ … };
 // MyReferenceParameter is an inout value parameter. The parameter can be read and set
 // within the function - the assignment is not local

 function MyFunction3(out template boolean MyReferenceParameter){ … };
 // MyReferenceParameter is an out value parameter. The parameter can be set within the function,
 // the assignment is not local. It can also be read, but only after it has been set.

EXAMPLE 2: Reading and setting parameters

 type record MyMessage {
 integer f1,
 integer f2
 }

 function f_MyMessage (integer p_int) return MyMessage {
 var integer f1, f2;
 f1 := f_mult2 (p_int);
 // parameter p_int is passed on; as the parameter of the called function f_mult2 is
 // defined as an inout parameter, it passes back the changed value for p_int,
 f2 := p_int;
 return {f1, f2};

 }

 function f_mult2 (inout integer p_integer) return integer {
 p_integer := 2 * p_integer;
 // the value of the formal parameter is changed; this new value is passed back when
 // f_mult2 completes
 return p_integer-1
 }

 testcase tc_01 () runs on MTC_PT {
 ...
 P1.send (f_MyMessage(5))
 // the value sent is { f1 := 9 , f2 := 10 }
 ...
 }

EXAMPLE 3: Function with default value for parameter

 function f_comp (in integer p_int1, in integer p_int2 := 3) return integer {
 var integer v := p_int1 + p_int2;
 :
 return v;
 }

 function f () {
 var integer w;
 …
 w := f_comp(1); // same as calling f_comp(1,3);
 w := f_comp(1,2); // value 2 is taken for parameter p_int2 and not its default value 3
 …
 }

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 27

EXAMPLE 4: Direct passing of formal parameters to functions

 function f_MyFunc2(in bitstring p_refPar1, inout integer p_refPar2) return integer {
 :
 }
 function f_MyFunc1(inout bitstring p_refPar1, out integer p_refPar2) return integer {
 :
 return f_MyFunc2(p_refPar1, p_refPar2);
 }
 // p_refPar1 and p_refPar2 can be passed directly to a function invocation

5.4.1.2 Formal parameters of kind template

Template kind parameters are used to pass templates into parameterizable objects.

Syntactical Structure

[in | inout | out] template [restriction] Type ValueParIdentifier
 [":=" (TemplateInstance | "-")]

Semantic Description

Templates parameters can be defined for templates, functions, altsteps, and test cases.

To enable a parameterized object to accept templates or matching symbols as actual parameters, the extra keyword
template shall be added before the type field of the corresponding formal parameter. This makes the parameter a
template parameter and in effect extends the allowed actual parameters for the associated type to include the appropriate
set of matching attributes (see annex B) as well as the normal set of values.

Formal template parameters can be used within the parameterized object the same way as templates and template
variables.

Formal template parameters may be in, inout or out parameters. The default for formal template parameters is in
parameterization.

In parameters may have a default template, which is given by a template instance assigned to the parameter. Formal
template parameters of modified templates may inherit their default templates from the corresponding parameters of
their parent templates; this shall explicitly be denoted by using a dash (don't change) symbol at the place of the
modified template parameter's default template.

Formal template parameters can be restricted to accept actual parameters containing a restricted set of matching
mechanisms only. Such limitations can be expressed by the restrictions omit, present, and value. The restriction
template (omit) can be replaced by the shorthand notation omit. The meaning of the restrictions are explained in
clause 15.8.

Restrictions

a) Only function, testcase, altstep and template definitions may have formal template parameters.

b) Formal template parameters of templates, of functions started as test component behaviour
(see clause 21.2.2) and of altsteps activated as defaults (see clause 20.5.2) shall always be in parameters.

c) Default templates can be provided for in parameters only.

d) The default template instance has to be compatible with the type of the parameter. The template instance shall
not refer to elements of the component type in a runs on clause. The template instance shall not refer to other
parameters in the same parameter list. The template instance shall not contain the invocation of functions with
a runs on clause.

e) Default templates of component type formal parameters shall be built from the special values null, mtc,
self, or system.

f) Restrictions specified in clause 15 shall apply.

g) The dash (don't change) symbol shall be used with formal parameters of modified templates only (see also
clause 15.5).

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 28

Examples

EXAMPLE 1: Template with template parameter

 // The template
 template MyMessageType MyTemplate (template integer MyFormalParam):=
 { field1 := MyFormalParam,
 field2 := pattern "abc*xyz",
 field3 := true
 }

 // could be used as follows
 pco1.receive(MyTemplate(?));
 // Or as follows
 pco1.receive(MyTemplate(omit)); // provided that field1 is declared in MyMessageType as optional

EXAMPLE 2: Function with template parameter

 function MyBehaviour(template MyMsgType MyFormalParameter)
 runs on MyComponentType
 { :
 pco1.receive(MyFormalParameter);
 :
 }

EXAMPLE 3: Template with restricted parameter

 // The template
 template MyMessageType MyTemplate1 (template (omit) integer MyFormalParam):=
 { field1 := MyFormalParam,
 field2 := pattern "abc*xyz",
 field3 := true
 }

 // could be used as follows
 pco1.send(MyTemplate1(omit));
 // but not as follows
 pco1.receive(MyTemplate1(?)); // AnyValue is not within the restriction

 // the same template can be written shorter as
 template MyMessageType MyTemplate2 (omit integer MyFormalParam):=
 { field1 := MyFormalParam,
 field2 := pattern "abc*xyz",
 field3 := true
 }

5.4.1.3 Formal parameters of kind timer

Functions and altsteps can be parameterized with timers.

Syntactical Structure

[inout] timer TimerParIdentifier

Semantic Description

Timers passed into a parameterized object are known inside the behaviour definition of that object. Timer parameters
can be used within the parameterized object like any other timer, i.e. they need not to be declared inside the
parameterized object.

Timer parameters shall preserve there current state, i.e. only the timer is made known within the parameterized object.
For example, also a started timer continues to run, i.e. it is not stopped implicitly. Thereby, possible timeout events can
be handled inside the function or altstep to which the timer is passed.

Formal timer parameters are identified by the keyword timer.

Restrictions

a) Formal timer parameters shall be inout parameters, which can optionally be indicated by the keyword inout.

b) Only function - with the exception of functions started as test component behaviour (see clause 21.2.2) -
and altstep definitions may have formal timer parameters.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 29

Examples

 // Function definition with a timer in the formal parameter list
 function MyBehaviour (timer MyTimer)
 { :
 MyTimer.start;
 :
 }

 // could be used as follows
 function MyBehaviour2 ()
 { :
 timer t;
 MyBehaviour(t);
 :
 }

5.4.1.4 Formal parameters of kind port

Functions and altsteps can be parameterized with ports.

Syntactical Structure

[inout] PortTypeIdentifier PortParIdentifier

Semantic Description

Ports passed into a parameterized object are known inside the behaviour definition of that object. Port parameters can be
used within the parameterized object like any other port, i.e. they need not to be made visible by a runs on clause.

Ports passed in as parameters shall preserve there current state, only the port is made known within the parameterized
object's body. For example, a started port continues to send/receive messages, i.e. it is not stopped implicitly; thereby,
possible port events can be handled inside the function or altstep to which the port is passed to.

Restrictions

a) Formal port parameters shall be inout parameters, which can optionally be indicated by the keyword inout.

b) Only function - with the exception of functions started as test component behaviour (see clause 21.2.2) -
and altstep definitions may have formal port parameters.

Examples

 // Altstep definition with a port in the formal parameter list
 altstep MyBehaviour (MyPortType MyPort)
 { :
 [] MyPort.receive { setverdict(fail); stop; }
 :
 }

5.4.2 Actual parameters

Values, templates, timers and/or ports can be passed into parameterized TTCN-3 objects as actual parameters. Actual
parameters can be provided both as a list in the same order as the formal parameters as well as in an assignment
notation explicitly using the associated formal parameter names.

Syntactical Structure

(Expression | // for value parameter
 TemplateInstance | // for template parameter
 TimerRef | // for timer parameter
 Port | // for port parameter
 "-") | // to skip a parameter with default
 ParameterId ":=" (Expression | TemplateInstance | TimerRef | Port))

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 30

Semantic Description

Actual parameters that are passed by value to in formal value parameters shall be variables, literal values, module
parameters, constants, variables, value returning (external) functions, formal value parameters (of in, inout or out
parameterization) of the current scope or expressions composed of the above.

Actual parameters that are passed to inout or out formal value parameters shall be variables or formal value
parameters (of in, inout or out parameterization).

Actual parameters that are passed to in formal template parameters shall be literal values, module parameters,
constants, variables, value or template returning (external) functions, formal value parameters (of in, inout or out
parameterization) of the current scope or expressions composed of the above, as well as templates, template variables or
formal template parameters (of in, inout or out parameterization) of the current scope.

Actual parameters that are passed to inout or out formal template parameters shall be variables, template variables,
formal value or template parameters (of in, inout or out parameterization) of the current scope.

Actual parameters that are passed to formal timer parameters shall be component timers, local timers or formal timer
parameters of the current scope.

Actual parameters that are passed to formal port parameters shall be component ports or formal port parameters of the
current scope.

When a formal parameter has been defined with a default value or template, respectively, then it is not necessary to
provide an actual parameter. The actual parameters are evaluated in the order of their appearance. If for some formal
parameters, no actual parameter has been provided, their default values are taken and evaluated in the order of the
formal parameter list.

The empty brackets for instances of parameterized templates that have only parameters with default values are optional
when no actual parameters are provided, i.e. all formal parameters use their default values.

Restrictions

a) When using list notation, the order of elements in the actual parameter list shall be the same as their order in
the corresponding formal parameter list. For each formal parameter without a default there shall be an actual
parameter. The actual parameter of a formal parameter with default value can be skipped by using dash "-" as
actual parameter. An actual parameter can also be skipped by just leaving it out if no other actual parameter
follows in the actual parameter list – either because the parameter is last or because all following formal
parameters have default values and are left out.

b) Either list notation or assignment notation shall be used in a single parameter list. They shall not be mixed.

c) When using assignment notation, each formal parameter shall be assigned an actual parameter at most once.
For each formal parameter without default value, there shall be an actual parameter. In order to use the default
value of a formal parameter, no assignment for this specific parameter shall be provided.

d) The type of each actual parameter shall be compatible with the type of each corresponding formal parameter.

e) Actual parameters passed to restricted formal template parameters shall obey the restrictions given in
clause 15.8.

f) All parameterized entities specified as an actual parameter shall have their own parameters resolved in the
top-level actual parameter list.

g) If the formal parameter list of TTCN-3 objects function, testcase, signature, altstep or
external function is empty, then the empty parentheses shall be included both in the declaration and in
the invocation of that object. In all other cases the empty parentheses shall be omitted.

h) Restrictions on the use of signature parameters are given in clauses 15.2 and 22.3.

i) Restrictions on parameters passed to altsteps are given in clauses 16.2.1 and 20.5.2.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 31

Examples

EXAMPLE 1: Formal and actual parameter lists have to match

 // A function definition with a formal parameter list
 function MyFunction(integer FormalPar1, boolean FormalPar2, bitstring FormalPar3) { … }

 // A function call with an actual parameter list
 MyFunction(123, true,'1100'B);

 // A function call with assignment notation for actual parameters
 MyFunction(FormalPar1 := 123, FormalPar3 := '1100'B, FormalPar2 := true);

EXAMPLE 2: In parameters

 function MyFunction(in template MyTemplateType MyValueParameter){ … };
 // MyValueParameter is in parameter, the in keyword is optional

 // A function call with an actual parameter
 MyFunction(MyGlobalTemplate);

EXAMPLE 3: Inout and out parameters

 function MyFunction(inout boolean MyReferenceParameter){ … };
 // MyReferenceParameter is an inout parameter

 // A function call with an actual parameter
 MyFunction(MyBooleanVariable);
 // The actual parameter can be read and set within the function

 function MyFunction(out template boolean MyReferenceParameter){ … };
 // MyReferenceParameter is an out parameter

 // A function call with an actual parameter
 MyFunction(MyBooleanVariable);
 // The actual parameter is initially unbound, but can be set and read within the function.

EXAMPLE 4: Empty parameter lists

 // A function definition with an empty parameter list shall be written as
 function MyFunction(){ … }

 // and shall be called as
 MyFunction();

 // A record definition with an empty parameter list shall be written as
 type record MyRecord { … }

 // and shall be used as
 template MyRecord Mytemplate := { … }

EXAMPLE 5: Nested parameter lists

 // Given the message definition
 type record MyMessageType
 {
 integer field1,
 charstring field2,
 boolean field3
 }

 // A message template might be
 template MyMessageType MyTemplate(integer MyValue) :=
 {
 field1 := MyValue,
 field2 := pattern "abc*xyz",
 field3 := true
 }

 // A test case parameterized with a template might be

testcase TC001(template MyMessageType RxMsg) runs on PTC1 system TS1 {
 :
 MyPCO.receive(RxMsg);

 }

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 32

 // When the test case is called in the control part and the parameterized template is
 // passed as an actual parameter, the template's actual parameters must be provided
 control
 { :
 execute(TC001(MyTemplate(7)));
 :
 }

5.5 Cyclic Definitions
Direct and indirect cylic definitions are not allowed with the exception of the following cases:

a) for recursive type definitions (see clause 6.2);

b) function and altstep definitions (i.e. recursive function or altstep calls);

c) cyclic import definitions, if the imported definitions only form allowed cyclic definitions.

NOTE 1: Indirect cyclic definitions may be a result of imports of definitions that are needed for the usage of a
definition but do not need to be known in the importing module (see clause 8.2.3.1).

NOTE 2: For the detection of cycles only the main identifiers of the definition are used. For example, field
identifiers are not used.

Examples

EXAMPLE 1: Module with cyclic constant definition that is not allowed

 module MyModule {
 :
 type record ARecordType { integer a, integer b };
 :
 // The following two lines include a cycle that is not allowed
 const ARecordType cConst := { 1 , dConst.b}; // cConst refers to dConst
 const ARecordType dConst := { 1 , cConst.b}; // dConst refers to cConst
 }

EXAMPLE 2: Modules with cyclic import that is allowed

 module MyModuleA {
 import from MyModuleB { type MyInteger }
 type record of MyInteger MyIntegerList;
 }

 module MyModuleB {
 type integer MyInteger;
 import from MyModuleA { type MyIntegerList }
 }

6 Types and values
TTCN-3 supports a number of predefined basic types. These basic types include ones normally associated with a
programming language, such as integer, boolean and string types, as well as some TTCN-3 specific ones such as
verdicttype. Structured types such as record types, set types and enumerated types can be constructed from
these basic types.

The special data type anytype is defined as the union of all known data types and the address type within a module.

Special types associated with test configurations such as address, port and component may be used to define the
architecture of the test system (see clause 21).

The special type default may be used for the default handling (see clause 20.5).

The TTCN-3 types are summarized in table 3.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 33

Table 3: Overview of TTCN-3 types

Class of type Keyword Subtype
Simple basic types integer range, list

float range, list
boolean list
verdicttype list

Basic string types bitstring list, length
hexstring list, length
octetstring list, length
charstring range, list, length, pattern
universal charstring range, list, length, pattern

Structured types record list (see note)
record of list (see note), length
set list (see note)
set of list (see note), length
enumerated list (see note)
union list (see note)

Special data type anytype list
Special configuration types address

port
component

Special default type default
NOTE: List subtyping of these types is possible when defining a new constrained type

from an already existing parent type but not directly at the declaration of the first
parent type.

NOTE: Behaviour types for TTCN-3 are defined in the optional package [i.14].

6.1 Basic types and values

6.1.0 Simple basic types and values

TTCN-3 supports the following basic types:

a) integer: a type with distinguished values which are the positive and negative whole numbers, including
zero.

 Values of integer type shall be denoted by one or more digits; the first digit shall not be zero unless the
value is 0; the value zero shall be represented by a single zero.

b) float: a type to describe floating-point numbers and special float values.

 In general, floating point numbers can be defined as:<mantissa> × <base><exponent>,

 where <mantissa> is a positive or negative integer, <base> a positive integer (in most cases 2, 10 or 16)
and <exponent> a positive or negative integer.

 In TTCN-3, the floating-point number value notation is restricted to a base with the value of 10. Floating
point values can be expressed by using two forms of value notations:

� the decimal notation with a dot in a sequence of numbers like, 1.23 (which represents 123×10-2),
2.783 (i.e. 2783 × 10-3) or -123.456789 (which represents -123 456 789 × 10-6); or

� by two numbers separated by E where the first number specifies the mantissa and the second
specifies the exponent, for example 12.3E4 (which represents 123 × 103) or -12.3E-4 (which
represents -123 × 10-5).

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 34

NOTE 1: In contrast to the general definition of float values, the mantissa of in theTTCN-3 value notation, beside
integers, allows decimal numbers as well.

 The special values of the float type consist of infinity (positive infinity), -infinity (negative
infinity) and the value not_a_number. For the ordering of special values see clauses 7.1.1 and 7.1.3.

NOTE 2: - not_a_number (i.e. minus not a number) is not to be used.

c) boolean: a type consisting of two distinguished values.

 Values of boolean type shall be denoted by true and false.

d) verdicttype: a type for use with test verdicts consisting of 5 distinguished values. Values of
verdicttype shall be denoted by pass, fail, inconc, none and error.

6.1.1 Basic string types and values

TTCN-3 supports the following basic string types:

NOTE 1: The general term string or string type in TTCN-3 refers to bitstring, hexstring, octetstring,
charstring and universal charstring.

a) bitstring: a type whose distinguished values are the ordered sequences of zero, one, or more bits.

 Values of type bitstring shall be denoted by an arbitrary number (possibly zero) of the bit digits:
0 1, preceded by a single quote (') and followed by the pair of characters 'B.

EXAMPLE 1: '01101'B.

b) hexstring: a type whose distinguished values are the ordered sequences of zero, one, or more hexadecimal
digits, each corresponding to an ordered sequence of four bits.

 Values of type hexstring shall be denoted by an arbitrary number (possibly zero) of the hexadecimal
digits (uppercase and lowercase letters can equally be used as hex digits):

 0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

 preceded by a single quote (') and followed by the pair of characters 'H; each hexadecimal digit is used to
denote the value of a semi-octet using a hexadecimal representation.

EXAMPLE 2: 'AB01D'H
'ab01d'H
'Ab01D'H

c) octetstring: a type whose distinguished values are the ordered sequences of zero or a positive even
number of hexadecimal digits (every pair of digits corresponding to an ordered sequence of eight bits).

 Values of type octetstring shall be denoted by an arbitrary, but even, number (possibly zero) of the
hexadecimal digits (uppercase and lowercase letters can equally be used as hex digits):

 0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

 preceded by a single quote (') and followed by the pair of characters 'O; each hexadecimal digit is used to
denote the value of a semi-octet using a hexadecimal representation.

EXAMPLE 3: 'FF96'O
'ff96'O
'Ff96'O

d) charstring: are types whose distinguished values are zero, one, or more characters of the version of
ISO/IEC 646 [4] complying with the International Reference Version (IRV) as specified in clause 8.2 of
ISO/IEC 646 [4].

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 35

NOTE 2: The IRV version of ISO/IEC 646 [4] is equivalent to the IRV version of the International Reference
Alphabet (former International Alphabet No.5 - IA5), described in ITU-T Recommendation T.50 [i.9].

 Values of charstring type shall be denoted by an arbitrary number (possibly zero) of non-control
characters from the relevant character set, preceded and followed by double quote ("). Graphical characters
include the range from SP(32) to TILDE (126). Values of charstring type can also be calculated using the
predefined conversion function int2char with the positive integer value of their encoding as argument (see
clause C.1).

NOTE 3: The predefined conversion function is able to return single-character-length values only.

 In cases where it is necessary to define strings that include the character double quote (") the character is
represented by a pair of double quotes on the same line with no intervening space characters.

EXAMPLE 4: The charstring "ab"cd" is written in TTCN-3 code as in the following constant declaration. Each of
the 3 quote characters that are part of the string is preceeded by an extra quote character and the
whole character string is delimited by quote characters, e.g.
var charstring vl_char:= """ab""cd""";

e) The character string type preceded by the keyword universal denotes types whose distinguished values are
zero, one, or more characters from ISO/IEC 10646 [2].

 universal charstring values can also be denoted by an arbitrary number (possibly zero) of
characters from the relevant character set, preceded and followed by double quote ("), calculated using a
predefined conversion function (see clause C.2) with the positive integer value of their encoding as
argument or by a "quadruple".

NOTE 4: The predefined conversion function is able to return single-character-length values only.

 In cases where it is necessary to define strings that include the character double quote (") the character is
represented by a pair of double quotes on the same line with no intervening space characters.

 The "quadruple" is only capable to denote a single character and denotes the character by the decimal
values of its group, plane, row and cell according to ISO/IEC 10646 [2], preceded by the keyword char
included into a pair of brackets and separated by commas (e.g. char (0, 0, 1, 113) denotes the
Hungarian character "ű"). In cases where it is necessary to denote the character double quote (") in a
string assigned according to the first method (within double quotes), the character is represented by a pair
of double quotes on the same line with no intervening space characters. The two methods may be mixed
within a single notation for a string value by using the concatenation operator.

EXAMPLE 5: The assignment : "the Braille character" & char (0, 0, 40, 48) & "looks like this" represents the
literal string: the Braille character looks like this.

NOTE 5: Control characters can be denoted by using the predefined conversion function or the quadruple form.

 By default, universal charstring shall conform to the UCS-4 coded representation form
specified in clause 14.2 of ISO/IEC 10646 [2].

NOTE 6: UCS-4 is an encoding format, which represents any UCS character on a fixed, 32 bits-length field.

 This default encoding can be overridden using the defined variant attributes (see clause 27.5). The
following useful character string types utf8string, bmpstring, utf16string and iso8859string using these
attributes are defined in annex E.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 36

6.1.1.1 Accessing individual string elements

Individual elements in a string type may be accessed using an array-like syntax. Only single elements of the string may
be accessed.

Units of length of different string type elements are indicated in table 4.

Indexing shall begin with the value zero (0). The index shall be between zero and the length of the string minus one for
retrieving an element from a string. For assigning an element to the end of a string, the length of the string should be
used as index.

EXAMPLE 1: Accessing an existing element

 // Given
 MyBitString := '11110111'B;
 // Then doing
 MyBitString[4] := '1'B;
 // Results in the bitstring '11111111'B

EXAMPLE 2: Specific cases

 var bitstring MyBitStringA, MyBitStringB, MyBitStringC;
 MyBitStringA := '010'B;
 MyBitStringA[1] := '11'B; //causes an error as only individual elements can be accessed

 MyBitStringB := '1'B;
 MyBitStringB[4] := '1'B; //causes an error as the index is larger than the length of the lhs

 MyBitStringC := ''B;
 MyBitStringC[0] := '1'B; // value of MyBitStringC is '1'B
 MyBitStringC[1] := '0'B; // value of MyBitStringC is '10'B

6.1.2 Subtyping of basic types

User-defined types shall be denoted by the keyword type. With user-defined types it is possible to create subtypes
(such as lists, ranges and length restrictions) on basic types, structured types and anytype according to table 3.

6.1.2.1 Lists of values

TTCN-3 permits the specification of a list of distinguished values as listed in table 3. The values in the list shall be
instances of the type being constrained and shall be a subset of the values defined by the type being constrained. The
subtype defined by this list restricts the allowed values of the subtype to those values in the list. Constants used in the
constant expressions defining the values shall meet with the restrictions in clause 10.

EXAMPLE:

 type bitstring MyListOfBitStrings ('01'B, '10'B, '11'B);
 type float pi (3.1415926);
 type charstring MyStringList ("abcd", "rgy", "xyz");
 type universal charstring SpecialLetters
 (char(0, 0, 1, 111), char(0, 0, 1, 112), char(0, 0, 1, 113));

6.1.2.2 Lists of types

TTCN-3 permits the specification of a list of subtypes as listed in table 3 for value lists. The types in the list shall be
subtypes of the root type. The subtype defined by this list restricts the allowed values of the subtype to the union of the
values of the referenced subtypes.

EXAMPLE:

 type bitstring BitStrings1 ('0'B, '1'B);
 type bitstring BitStrings2 ('00'B, '01'B, '10'B, '10'B);
 type bitstring BitStrings_1_2 (Bitstrings1, Bitstrings2);

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 37

6.1.2.3 Ranges

TTCN-3 permits the specification of range constraints for the types integer, charstring, universal
charstring and float (or derivations of these types). For integer and float, the subtype defined by the
range restricts the allowed values of the subtype to the values in the range including or excluding the lower boundary
and/or the upper boundary. In order to specify an infinite integer or float range, the keyword infinity may be used
instead of a value indicating that there is no lower or upper boundary. The upper boundary shall be greater than or equal
to the lower boundary. In case of float, the special value not_a_number is not allowed in a range constraint.

NOTE: The "value" for infinity is implementation dependent. Use of this feature may lead to portability
problems.

In the case of charstring and universal charstring types, the range restricts the allowed values for each
separate character in the strings. The boundaries shall evaluate to valid character positions according to the coded
character set table(s) of the type (e.g. the given position shall not be empty). Empty positions between the lower and the
upper boundaries are not considered to be valid values of the specified range.

Constants used in the constant expressions defining the values shall meet with the restrictions in clause 10.

EXAMPLE 1:

 type integer MyIntegerRange (0 .. 255);); // range from 0..255
 // (with inclusive boundaries)
 type integer MyIntegerRange (-infinity .. -1); // all negative integer numbers
 type integer MyIntegerRange (0 .. !256); // the same range as above (with left
 // inclusive and right exclusive boundary)
 type integer MyIntegerRange (!-1 .. 255); // the same range as above(with left
 // exclusive and right inclusive boundary)
 type integer MyIntegerRange (!-1 .. !256); // the same range as above
 // (with exclusive boundaries)
 type float piRange (3.14 .. 3142E-3);
 type float LessThanPi (-infinity .. 3142E-3);
 type float Numbers (-infinity .. infinity); //includes all float values but not_a_number
 type float Wrong (-infinity .. not_a_number); // causes an error as not_a_number is not
 // allowed in range subtyping

EXAMPLE 2:

type charstring MyCharString ("a" .. "z");
// Defines a string type of any length with each character within the specified range
type universal charstring MyUCharString1 ("a" .. !"z");
// Defines a string type of any length with each character within the range from a to y
// (character codes from 97 to 121), like "abxy";
// strings containing any other character (including control characters), like
// "abc2" are disallowed.
type universal charstring MyUCharString2 (char(0, 0, 1, 111) .. char(0, 0, 1, 113));
// Defines a string type of any length with each character within the range specified using
// the quadruple notation

6.1.2.4 String length restrictions

TTCN-3 permits the specification of length restrictions on string types. The length boundaries are based on different
units depending on the string type with which they are used. In all cases, these boundaries shall be inclusive boundaries
only and evaluate to non-negative integer values (or derived integer values).

EXAMPLE:

 type bitstring MyByte length(8); // Exactly length 8
 type bitstring MyByte length(8 .. 8); // Exactly length 8
 type bitstring MyNibbleToByte length(4 .. 8); // Minimum length 4, maximum length 8

Table 4 specifies the units of length for different string types.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 38

Table 4: Units of length used in field length specifications

Type Units of Length
bitstring bits
hexstring hexadecimal digits
octetstring octets
character strings characters

For the upper bound the keyword infinity may also be used to indicate that there is no upper limit for the length.
The upper boundary shall be greater than or equal to the lower boundary.

6.1.2.5 Pattern subtyping of character string types

TTCN-3 allows using character patterns specified in clause B.1.5 to constrain permitted values of charstring and
universal charstring types. The type constraint shall use the pattern keyword followed by a character
pattern. All values denoted by the pattern shall be a subset of the type being subtyped. Constants used in the constant
expressions defining the values shall meet with the restrictions in clause 10.

NOTE: Pattern subtyping can be seen as a special form of list constraint, where members of the list are not
defined by listing specific character strings but via a mechanism generating elements of the list.

EXAMPLE:

 type charstring MyString (pattern "abc*xyz");
 // all permitted values of MyString have prefix abc and postfix xyz

 type universal charstring MyUString (pattern "*\r\n")
 // all permitted values of MyUString are terminated by CR/LF

 type charstring MyString2 (pattern "abc?\q{0,0,1,113}");
 // causes an error because the character denoted by the quadruple {0,0,1,113} is not a
 // legal character of the TTCN-3 charstring type

 type MyString MyString3 (pattern "d*xyz");
 // causes an error because the type MyString does not contain a value starting with the
 // character d

6.1.2.6 Mixing subtyping mechanisms

6.1.2.6.1 Mixing patterns, lists and ranges

Within integer and float (or derivations of these types) subtype definitions it is allowed to mix lists and ranges. It
is possible to mix both value list and type list subtyping with each other and with range subtyping. Overlapping of
different constraints is not an error.

EXAMPLE 1:

 type integer MyIntegerRange (1, 2, 3, 10 .. 20, 99, 100);
 type float lessThanPiAndNaN (-infinity .. 3142E-3, not_a_number);

Within charstring and universal charstring subtype definitions it is not allowed to mix pattern, value
list, type list, or range constraints.

EXAMPLE 2:

 type charstring MyCharStr0 ("gr", "xyz");
 // contains character strings gr and xyz;

 type charstring MyCharStr1 ("a".."z");
 // contains character strings of arbitrary length containing characters a to z.

 type charstring MyCharStr2 (pattern "[a-z]#(3,9)");
 // contains character strings of length form 3 to 9 characters containing characters a to z

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 39

6.1.2.6.2 Using length restriction with other constraints

Within bitstring, hexstring, octetstring subtype definitions lists and length restriction may be mixed in
the same subtype definition.

Within charstring and universal charstring subtype definitions it is allowed to add a length restriction
to constraints containing list, range or pattern subtyping in the same subtype definition.

When mixed with other constraints the length restriction shall be the last element of the subtype definition. The length
restriction takes effect jointly with other subtyping mechanisms (i.e. the value set of the type consists of the common
subset of the value sets identified by the list, range or pattern subtyping and the length restriction).

EXAMPLE:

 type charstring MyCharStr5 ("gr", "xyz") length (1..9);
 // contains the character strings gr and xyz;

 type charstring MyCharStr6 ("a".."z") length (3..9);
 // contains character strings of length from 3 to 9 characters and containing characters
 // a to z

 type charstring MyCharStr7 (pattern "[a-z]#(3,9)") length (1..9);
 // contains character strings of length form 3 to 9 characters containing characters a to z

 type charstring MyCharStr8 (pattern "[a-z]#(3,9)") length (1..8);
 // contains character strings of length form 3 to 8 characters containing characters a to z

 type charstring MyCharStr9 (pattern "[a-z]#(1,8)") length (1..9);
 // contains any character strings of length form 1 to 8 characters containing characters
 // a to z

 type charstring MyCharStr10 ("gr", "xyz") length (4);
 // causes an error as it contains no value

6.2 Structured types and values
The type keyword is also used to specify structured types such as record types, record of types, set types, set
of types, enumerated types and union types.

Values of these types may be given using an explicit assignment notation or a short-hand value list notation.

EXAMPLE 1:

 const MyRecordType MyRecordValue:= //assignment notation
 {
 field1 := '11001'B,
 field2 := true,
 field3 := "A string"
 }

 // Or
 const MyRecordType MyRecordValue:= {'11001'B, true, "A string"} //value list notation

When specifying partial values (i.e. setting the value of only a subset of the fields of a structured variable) using the
assignment notation only the fields to be assigned values must be specified. Fields not mentioned are implicitly left
unspecified. It is also possible to leave fields explicitly unspecified using the not used symbol "-". Using the value list
notation all fields in the structure shall be specified either with a value, the not used symbol "-" or the omit keyword.

EXAMPLE 2:

 var MyRecordType MyVariable:= //assignment notation
 {
 field1 := '11001'B,
 // field2 implicitly unspecified
 field3 := "A string"
 }

 // Or
 var MyRecordType MyVariable:= //assignment notation
 {

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 40

 field1 := '11001'B,
 field2 := -, // field2 explicitly unspecified
 field3 := "A string"
 }

 // Or
 var MyRecordType MyVariable:= {'11001'B, -, "A string"} //value list notation

It is not allowed to mix the two value notations in the same (immediate) context.

EXAMPLE 3:

 // This is disallowed
 const MyRecordType MyRecordValue:= {MyIntegerValue, field2 := true, "A string"}

In both the assignment notation and value list notation, optional fields shall be omitted by using the explicit omit value
for the relevant field. The omit keyword shall not be used for mandatory fields. When re-assigning a previously
initialized value, using the not used symbol or skipping a field in assignment notation will cause the relevant fields to
remain unchanged.

EXAMPLE 4:

 var MyRecordType MyVariable :=
 {
 field1 := '111'B,
 field2 := false,
 field3 := -
 }

 MyVariable := { '10111'B, -, - };
 // after this, MyVariable contains { '10111'B, false /* unchanged */, <undefined> }

 MyVariable :=
 {
 field2 := true
 }
 // after this, MyVariable contains { '10111'B, true, <undefined> }

 MyVariable :=
 {
 field1 := -,
 field2 := false,
 field3 := -
 }
 // after this, MyVariable contains { '10111'B, false, <undefined> }

Where applicable TTCN-3 type definitions may be recursive. The user, however, shall ensure that all type recursion is
resolvable and that no infinite recursion occurs.

In case of record and set types, to avoid infinite recursion, fields referencing to its own type, shall be optional.

EXAMPLE 5:

 // Valid recursive record type definition
 type record MyRecord1
 {
 FieldType1 field1,
 MyRecord1 field2 optional,
 FieldType3 field3
 }

 // Invalid recursive record type definition causing an error
 type record MyRecord2
 {
 FieldType1 field1,
 MyRecord2 field2,
 FieldType3 field3
 }

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 41

In case of union types, to avoid infinite recursion, at least one of the alternatives shall not reference its own type.

EXAMPLE 6:

 // Valid recursive union type definition
 type union MyUnion1
 {
 MyUnion1 choice1,
 charstring choice2
 }

 // Invalid recursive union type definition causing an error
 type union MyUnion2
 {
 MyUnion2 choice1,
 MyUnion2 choice2
 }

6.2.1 Record type and values

TTCN-3 supports ordered structured types known as record. The elements of a record type may be any of the basic
types or user-defined data types (such as other records, sets or arrays). The values of a record shall be compatible
with the types of the record fields. The element identifiers are local to the record and shall be unique within the
record (but do not have to be globally unique).

EXAMPLE 1:

 type record MyRecordType
 {
 integer field1,
 MyOtherRecordType field2 optional,
 charstring field3
 }

 type record MyOtherRecordType
 {
 bitstring field1,
 boolean field2
 }

Records may be defined with no fields, i.e. as empty records.

EXAMPLE 2:

 type record MyEmptyRecord {}

A record value is assigned on an individual element basis. The order of field values in the value list notation shall be
the same as the order of fields in the related type definition.

EXAMPLE 3:

 var integer MyIntegerValue := 1;

 const MyOtherRecordType MyOtherRecordValue:=
 {
 field1 := '11001'B,
 field2 := true
 }

 var MyRecordType MyRecordValue :=
 {
 field1 := MyIntegerValue,
 field2 := MyOtherRecordValue,
 field3 := "A string"
 }

The same value specified with a value list.

EXAMPLE 4:

 MyRecordValue:= {MyIntegerValue, {'11001'B, true}, "A string"};

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 42

6.2.1.1 Referencing fields of a record type

Elements of a record shall be referenced by the dot notation TypeIdOrExpression.ElementId, where
TypeIdOrExpression resolves to the name of a structured type or an expression of a structured type such as
variable, formal parameter, module parameter, constant, template, or function invocation. ElementId shall resolve to
the name of a field in the structured type. Fields of record type definitions shall not reference themselves.

EXAMPLE 1:

 MyVar1 := MyRecord1.myElement1;
 // If a record is nested within another type then the reference may look like this
 MyVar2 := MyRecord1.myElement1.myElement2;

EXAMPLE 2:

 type record MyType
 {
 integer field1,
 MyType.field2 field2 optional, // this circular reference is NOT ALLOWED
 boolean field3
 }

6.2.1.2 Optional elements in a record

Optional elements in a record shall be specified using the optional keyword.

EXAMPLE 1:

 type record MyMessageType
 {
 FieldType1 field1,
 FieldType2 field2 optional,
 :
 FieldTypeN fieldN
 }

Optional fields shall be omitted using the omit symbol.

EXAMPLE 2:

 MyRecordValue:= {MyIntegerValue, omit , "A string"};

 // Note that this is not the same as writing,
 // MyRecordValue:= {MyIntegerValue, -, "A string"};
 // which would mean the value of field2 is unchanged

6.2.1.3 Nested type definitions for field types

TTCN-3 supports the definition of types for record fields nested within the record definition. Both the definition of
new structured types (record, set, enumerated, set of, record of, and union) and the specification of
subtype constraints are possible.

EXAMPLE:

 // record type with nested structured type definitions
 type record MyNestedRecordType
 {
 record
 {
 integer nestedField1,
 float nestedField2
 } outerField1,
 enumerated {
 nestedEnum1,
 nestedEnum2
 } outerField2,
 record of boolean outerField3
 }

 // record type with nested subtype definitions
 type record MyRecordTypeWithSubtypedFields

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 43

 {
 integer field1 (1 .. 100),
 charstring field2 length (2 .. 255)
 }

6.2.2 Set type and values

TTCN-3 supports unordered structured types known as set. Set types and values are similar to records except that the
ordering of the set fields is not significant.

EXAMPLE:

 type set MySetType
 {
 integer field1,
 charstring field2
 }

The field identifiers are local to the set and shall be unique within the set (but do not have to be globally unique).

The value list notation for setting values shall not be used for values of set types.

6.2.2.1 Referencing fields of a set type

Elements of a set shall be referenced by the dot notation (see clause 6.2.1.1). Elements of set type definitions shall not
reference themselves.

EXAMPLE:

 MyVar3 := MySet1.myElement1;
 // If a set is nested in another type then the reference may look like this
 MyVar4 := MyRecord1.myElement1.myElement2;
 // Note, that the set type, of which the field with the identifier 'myElement2' is referenced,

 // is embedded in a record type

6.2.2.2 Optional elements in a set

Optional elements in a set shall be specified using the optional keyword.

6.2.2.3 Nested type definition for field types

TTCN-3 supports the definition of types for set fields nested within the set definition, similar to the mechanism for
record types described in clause 6.2.1.3.

6.2.3 Records and sets of single types

TTCN-3 supports the specification of records and sets whose elements are all of the same type. These are denoted using
the keyword of. These records and sets do not have element identifiers and can be considered similar to an ordered
array and an unordered collection respectively.

NOTE 1: Subtyping of record of and set of types see in clause 6.2.13.

EXAMPLE 1:

 type set of boolean MySetOfType; // is an unlimited set of boolean values

The value notation for record of and set of can be both the value list notation and the assignment notation
(usable to address multiple elements) or an indexed notation (usable to address an individual element), which is the
same value notation as for arrays (see clause 6.2.7). There is one exception from this general rule: in the case of
defining modified templates, the assignment notation is also allowed to be used (see clause 15.5).

When the value list notation is used, the first value in the list is assigned to the first element, the second list value is
assigned to the second element, etc. No empty assignment is allowed (e.g. two commas, the second immediately
following the first or only with white space between them). Elements to be left out of the assignment shall be explicitly
skipped in the list by use of the not-used-symbol "-".

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 44

Indexed value notations can be used on both the right-hand side and left-hand side of assignments. The index of the first
element shall be zero and the index value shall not exceed the limitation placed by length subtyping. If the value of the
element indicated by the index at the right-hand of an assignment is undefined, this shall cause a semantic or run-time
error. If an indexing operator at the left-hand side of an assignment refers to a non-existent element, the value at the
right-hand side is assigned to the element and all elements with an index smaller than the actual index and without
assigned value are created with an undefined value. Undefined elements are permitted only in transient states (while the
value remains invisible). Sending a record of or set of value with undefined elements shall cause a dynamic
testcase error.

EXAMPLE 2:

 // Given
 type record of integer MyRecordOf;
 var integer MyVar;
 // Using the value list notation
 var MyRecordOf MyRecordOfVar := { 0, 1, 2, 3, 4 };

 // The same record of, defined with the assignment notation
 var MyRecordOf MyRecordOfVarAssignment := {
 [0] := 0,
 [1] := 1,
 [2] := 2,

 [3] := 3,
 [4] := 4
 };

 //Using an indexed notation
 MyVar := MyRecordOfVar[0]; // the first element of the "record of" value (integer 0)
 // is assigned to MyVar

 // Indexed values are permitted on the left-hand side of assignments as well:
 MyRecordOfVar[1] := MyVar; // MyVar is assigned to the second element
 // value of MyRecordOfVar is { 0, 0, 2, 3, 4 }

 // The assignment
 MyRecordOfVar := { 0, 1, -, 2 };
 // will change the value of MyRecordOfVar to{ 0, 1, 2 <unchanged>, 2};
 // Note, that the 3rd element would be undefined if had had no previous assigned value.

 // The assignment
 MyRecordOfVar[6] := 6;

 // will change the value of MyRecordOfVar to{ 0, 1, 2 , 2, <undefined>, <undefined>, 6 };
 // Note the 5th and 6th elements (with indexes 4 and 5) had no assigned value before this
 // last assignment and are therefore undefined.

 MyRecordOfVar[4] := 4; MyRecordOfVar[5] := 5;
 // will complete MyRecordOfVar to the fully defined value { 0, 1, 2 , 2, 4 , 5 , 6 };

NOTE 2: The index notation makes it possible e.g. to copy record of values element by element in a for loop.
For example, the function below reverses the elements of a record of value:

 function reverse(in MyRecordOf src) return MyRecordOf
 {
 var MyRecordOf dest;
 var integer i, srcLength := lengthof (src);
 for(i := 0; i < srcLength; i:= i + 1) {
 dest[srcLength - 1 - i] := src[i];
 }
 return dest;
 }

Embedded record of and set of types will result in a data structure similar to multidimensional arrays
(see clause 6.2.7).

EXAMPLE 3:

 // Given
 type record of integer MyBasicRecordOfType;
 type record of MyBasicRecordOfType My2DRecordOfType;

 // Then, the variable myRecordOfArray will have similar attributes to a two-dimensional array:
 var My2DRecordOfType myRecordOfArray;
 // and reference to a particular element would look like this

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 45

 // (value of the second element of the third 'MyBasicRecordOfType' construct)
 myRecordOfArray [2][1] := 1;

6.2.3.1 Nested type definitions

TTCN-3 supports the definition of the aggregated type nested with the record of or set of definition. Both the
definition of new structured types (record, set, enumerated, set of and record of) and the specification of
subtype constraints are possible.

EXAMPLE:

 type record of enumerated { red, green, blue } ColorList;
 type record length (10) of record length (10) of integer Matrix;
 type set of record { charstring id, charstring val } GenericParameters;

6.2.3.2 Referencing elements of record of and set of types

It is also allowed to reference the inner type of record of and set of types by using the index notation but with a
dash. The notation TypeId[-], where TypeId resolves to the name of a record of or set of type, references
the inner type of TypeId.

EXAMPLE:

 //Provided the definitions below
 type record of integer MyRecordOfInt;
 type record of record {
 integer f1,
 set { integer s1, boolean s2 } f2
 } MyRecordOfRecord;
 type record of record of integer MyRecordOfRecordOfInt;
 type record of record {
 integer f1,
 record of boolean f2
 } MyRecordOfRecord2;

 // Referencing the inner integer type
 type MyRecordOfInt[-] MyInteger;
 const MyRecordOfInt[-] c_MyInteger:= 5;

 // Referencing the nested record type
 type MyRecordOfRecord[-] MyInnerRecord;
 const MyRecordOfRecord[-] c_MyRecord := { f1 = 5; f2 := { s1 := 0; s2 := true }}

 // Referencing the set type nested in the inner record
 type MyRecordOfRecord[-].f2 MyNestedSet;
 const MyRecordOfRecord[-].f2 c_MySet := { s1 := 0; s2 := true }

 // Referencing the innermost boolean
 type MyRecordOfRecord[-].f2.s2 MyBoolean;
 const MyRecordOfRecord[-].f2.s2 c_MyBool := false;

 // Referencing the inner record of
 type MyRecordOfRecordOfInt[-] MyInnerRecordOfInt;
 const MyRecordOfRecordOfInt[-] c_MyInnerRecordOfInt := { 0, 1, 2, 3 };

 // Referencing the integer type within the inner record of
 type MyRecordOfRecordOfInt[-][-] MyInteger2;
 const MyRecordOfRecordOfInt[-][-] c_MyInteger2 := 1;

 // Referencing the boolean type within the nested record
 type MyRecordOfRecord2[-].f2[-] MyInnermostBoolean;
 const MyRecordOfRecord2[-].f2[-] c_MyInnermostBoolean := true ;

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 46

6.2.4 Enumerated type and values

TTCN-3 supports enumerated types. Enumerated types are used to model types that take only a distinct named set of
values. Such distinct values are called enumerations. Each enumeration shall have an identifier. Operations on
enumerated types shall only use these identifiers and are restricted to assignment, equivalence and ordering operators.
Enumeration identifiers shall be unique within the enumerated type (but do not have to be globally unique) and are
consequently visible within the context of the given type only. Enumeration identifiers shall only be reused within other
structured type definitions and shall not be used for identifiers of local or global visibility at the same or a lower level of
the same branch of the scope hierarchy (see scope hierarchy in clause 5.2).

EXAMPLE 1:

 type enumerated MyFirstEnumType {
 Monday, Tuesday, Wednesday, Thursday, Friday
 };

 type integer Monday;
 // This definition causes an error as the name of the type has local or global visibility

 type enumerated MySecondEnumType {
 Saturday, Sunday, Monday
 };
 // This definition is legal as it reuses the Monday enumeration identifier within
 // a different enumerated type

 type record MyRecordType {
 integer Monday
 };
 // This definition is legal as it reuses the Monday enumeration identifier within
 // a distinct structured type as identifier of a given field of this type

 type record MyNewRecordType {
 MyFirstEnumType firstField,
 integer secondField
 };

 var MyNewRecordType newRecordValue := { Monday, 0 }
 // MyFirstEnumType is implicitly referenced via the firstField element of MyNewRecordType

 const integer Monday := 7
 // This definition causes an error as it reuses the Monday enumeration identifier for a
 // different TTCN-3 object within the same scope unit

Each enumeration may optionally have a user-assigned integer value, which is defined after the name of the
enumeration in parenthesis. Each user-assigned integer number shall be distinct within a single enumerated type. For
each enumeration without an assigned integer value, the system successively associates an integer number in the textual
order of the enumerations, starting at the left-hand side, beginning with zero, by step 1 and skipping any number
occupied in any of the enumerations with a manually assigned value. These values are only used by the system to allow
the use of relational operators. The user shall not directly use associated integer values but can access them by using the
enum2int predefined function (see clauses 16.1.2 and C.37).

NOTE 1: The integer value also may be used by the system to encode/decode enumerated values. This, however is
outside the scope of the present document (with the exception that TTCN-3 allows the association of
encoding attributes to TTCN-3 items).

For any instantiation or value reference of an enumerated type, the given type shall be implicitly or explicitly
referenced.

NOTE 2: If the enumerated type is an element of a user defined structured type, the enumerated type is implicitly
referenced via the given element (i.e. by the identifier of the element or the position of the value in a
value list notation) at value assignment, instantiation etc.

EXAMPLE 2:

 // Valid instantiations of MyFirstEnumType and MySecondEnumType would be
 var MyFirstEnumType Today := Tuesday;
 var MySecondEnumType Tomorrow := Monday;

 // The following statement however causes an error as the two enumeration types
 // are not compatible
 Today := Tomorrow;

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 47

6.2.5 Unions

TTCN-3 supports the union type. The union type is a collection of alternatives, each one identified by an identifier.
Only one of the specified alternatives will ever be present in an actual union value. Union types are useful to model data
which can take one of a finite number of known types.

EXAMPLE:

 type union MyUnionType
 {
 integer number,
 charstring string
 };

 // A valid instantiation of MyUnionType would be
 var MyUnionType age, oneYearOlder;
 var integer ageInMonths;

 age.number := 34; // value notation by referencing the field. Note, that this
 // notation makes the given field to be the chosen one
 oneYearOlder := {number := age.number+1};

 ageInMonths := age.number * 12;

The value list notation for setting values shall not be used for values of union types.

6.2.5.1 Referencing fields of a union type

Alternatives of a union type shall be referenced by the dot notation (see clause 6.2.1.1). Alternatives of union type
definitions shall not reference themselves.

EXAMPLE:

 MyVar5 := MyUnion1.myChoice1;
 // If a union type is nested in another type then the reference may look like this
 MyVar6 := MyRecord1.myElement1.myChoice2;
 // Note, that the union type, of which the field with the identifier 'myChoice2' is referenced,
 // is embedded in a record type

6.2.5.2 Option and union

Optional fields are not allowed for the union type, which means that the optional keyword shall not be used with
union types.

6.2.5.3 Nested type definition for field types

TTCN-3 supports the definition of types for union alternatives nested within the union definition, similar to the
mechanism for record types described in clause 6.2.1.3.

6.2.6 The anytype

The special type anytype is defined as a shorthand for the union of all known data types and the address type in a
TTCN-3 module. The definition of the term known types is given in clause 3.1, i.e. the anytype shall comprise all the
known data types but not the port, component, and default types. The address type shall be included if it has been
explicitly defined within that module.

The fieldnames of the anytype shall be uniquely identified by the corresponding type names.

NOTE 1: As a result of this requirement imported types with clashing names (either with an identifier of a
definition in the importing module or with an identifier imported from a third module) can not be reached
via the anytype of the importing module.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 48

EXAMPLE:

 // A valid usage of anytype would be
 var anytype MyVarOne, MyVarTwo;
 var integer MyVarThree;

 MyVarOne.integer := 34;
 MyVarTwo := {integer := MyVarOne.integer + 1};

 MyVarThree := MyVarOne.integer * 12;

The anytype is defined locally for each module and (like the other predefined types) cannot be directly imported by
another module. However, a user defined type of the type anytype can be imported by another module. The effect of
this is that all types of that module are imported.

NOTE 2: The user-defined type of anytype "contains" all types imported into the module where it is declared.
Importing such a user-defined type into a module may cause side effects and hence due caution should be
given to such cases.

6.2.7 Arrays

Arrays can be used in TTCN-3 as a shorthand notation to specify record of types.They may be specified also at the
point of a variable declaration. Arrays may be declared as single or multi-dimensional. Array dimensions shall be
specified using constant expressions, which shall evaluate to a positive integer values. Constants used in the constant
expressions shall meet with the restrictions in clause 10.

EXAMPLE 1:

 type integer MyArrayType1[3]; // A type with 3 integer elements
 type record length (3) of integer MyRecordOfType1; // The corresponding record of

 var MyArrayType1 a1:= { 7, 8, 9 };
 var MyRecordOfType1 r1:= a1; // MyArrayType1 and MyRecordOfType1 are compatible

 var integer myArray1[3]:= r1; // Instantiates an integer array of 3 elements
 // with the index 0 to 2
 // being compatible to MyArrayType1 and MyRecordOfType1

 var integer myArray2[2][3]; // Instantiates a two-dimensional integer array of 2 × 3 elements
 // with indexes from (0,0) to (1,2)

Array elements are accessed by means of the index notation ([]), which must specify a valid index within the array's
range. Individual elements of multi-dimensional arrays can be accessed by repeated use of the index notation.
Accessing elements outside the array's range will cause a compile-time or test case error.

EXAMPLE 2:

 MyArray1[1] := 5;
 MyArray2[1][2] := 12;

 MyArray1[4] := 12; // ERROR: index must be between 0 and 2
 MyArray2[3][2] := 15; // ERROR: first index must be 0 or 1

Array dimensions may also be specified using ranges. In such cases the lower and upper values of the range define the
lower and upper index values. Such an array is corresponding to a record of with a fixed length restriction computed as
the difference between upper and lower index bound plus 1 and indexing starting from the lower bound of the array
definition.

EXAMPLE 3:

 type integer MyArrayType2[2 .. 5]; // A type with 4 integer elements, indices starting with 2
 type record length (4) of integer MyRecordOfType2; // The corresponding record of

 var integer MyArray3[1 .. 5]; // Instantiates an integer array of 5 elements
 // with the index 1 to 5
 MyArray3[1] := 10; // Lowest index
 MyArray3[5] := 50; // Highest index

 var integer MyArray4[1 .. 5][2 .. 3]; // Instantiates a two-dimensional integer array of
 // 5 × 2 elements with indexes from (1,2) to (5,3)

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 49

NOTE: It is not possible to define an array type with a variable amount of elements. Neither is it possible to
define an unlimited array with a lower bound on the array index.

The values of array elements shall be compatible with the corresponding variable or type declaration. Values may be
assigned individually by a value list notation or indexed notation or more than one or all at once by a value list notation.
When the value list notation is used, the first value of the list is assigned to the first element of the array (the element
with index 0 or the lower bound if an index range has been given), the second value to the next element, etc. Elements
to be left out from the assignment shall be explicitly skipped in the list by using dash.

Indexed value notation can be used on both the right-hand side and left-hand side of assignments. The index of the first
element shall be zero or the lower bound if an index range has been given. The index shall not exceed the limitations
given by either the length or the upper bound of the index. If the value of the element indicated by the index at the right-
hand of an assignment is undefined, this shall cause an error. Sending an array value with undefined elements shall
cause an error. All elements in an array value that are not set explicitly, are undefined.

For assigning values to multi-dimensional arrays, each dimension that is assigned shall resolve to a set of values
enclosed in curly braces. When specifying values for multi-dimensional arrays, the leftmost dimension corresponds to
the outermost structure of the value, and the rightmost dimension to the innermost structure. The use of array slices of
multi-dimensional arrays, i.e. when the number of indexes of the array value is less than the number of dimensions in
the corresponding array definition, is allowed. Indexes of array slices shall correspond to the dimensions of the array
definition from left to right (i.e. the first index of the slice corresponds to the first dimension of the definition). Slice
indexes shall conform to the related array definition dimensions.

EXAMPLE 4:

 MyArray1[0]:= 10;
 MyArray1[1]:= 20;
 MyArray1[3]:= 30;

 // or using an value list
 MyArray1:= {10, 20, -, 30};

 MyArray4:= {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}};
 // the array value is completely defined

 var integer MyArray5[2][3][4] :=
 {
 {
 {1, 2, 3, 4}, // assigns a value to MyArray5 slice [0][0]
 {5, 6, 7, 8}, // assigns a value to MyArray5 slice [0][1]
 {9, 10, 11, 12} // assigns a value to MyArray5 slice [0][2]
 }, // end assignments to MyArray5 slice [0]
 {
 {13, 14, 15, 16}, {17, 18, 19, 20}, {21, 22, 23, 24}
 } // assigns a value to MyArray5 slice [1]
 };

 MyArray4[2] := {20, 20};
 // yields {{1, 2}, {3, 4}, {20, 20}, {7, 8}, {9, 10}};
 MyArray5[1] := { {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}};
 // yields {{{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}},
 // {{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}}};

 MyArray5[0][2] := {3, 3, 3, 3};
 // yields {{{1, 2, 3, 4}, {5, 6, 7, 8}, {3, 3, 3, 3}},
 // {{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}}};

 var integer MyArrayInvalid[2][2];
 MyArrayInvalid := { 1, 2, 3, 4 }
 // causes an error as the dimension of the value notation
 // does not correspond to the dimensions of the definition
 MyArrayInvalid[2] := { 1, 2 }
 // causes an error as the index of the slice should be 0 or 1

6.2.8 The default type

TTCN-3 allows the activation of altsteps (see clause 16.2) as defaults to capture recurring behaviour. Default references
are unique references to activated defaults. Such a unique default reference is generated by a test component when an
altstep is activated as a default, i.e. a default reference is the result of an activate operation (see clause 20.5.2).

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 50

Default references have the special and predefined type default. Variables of type default can be used to handle
activated defaults in test components. The special value null represents an unspecific default reference, e.g. can be
used for the initialization of variables of default type.

Default references are used in deactivate operations (see clause 20.5.3) in order to identify the default to be
deactivated.

Default references have meaning only within the test component instances they are activated, i.e. a default reference
assigned to a default variable in test component instance "a1" of type "A" has no meaning in test component instance
"a2" of type "A".

The actual data representation of the default type shall be resolved externally by the test system. This allows abstract
test cases to be specified independently of any real TTCN-3 runtime environment, in other words TTCN-3 does not
restrict the implementation of a test system with respect to the handling and identification of defaults.

6.2.9 Communication port types

Ports facilitate communication between test components and between test components and the test system interface.

TTCN-3 supports message-based and procedure-based ports. Each port shall be defined as being message-based or
procedure-based. Message-based ports shall be identified by the keyword message and procedure-based ports shall be
identified by the keyword procedure within the associated port type definition.

Ports are bidirectional. The directions are specified by the keywords in (for the in direction), out (for the out
direction) and inout (for both directions). Directions shall be seen from the point of view of the test component
owning the port with the exception of the test system interface, where in identifies the direction of message sending or
procedure call and out identifies the direction of message receive, get reply or catch exception from the point of view
of the test component connected to the test system interface port.

Each port type definition shall have one or more lists indicating the allowed collection of (message) types or procedure
signatures together with the allowed communication direction.

Whenever a signature (see also clause 14) is defined in the out direction of a procedure-based port, the types of all its
inout and out parameters, its return type and its exception types are automatically part of the in direction of this
port. Whenever a signature is defined in the in direction for a procedure-based port, the types of all its inout and out
parameters, its return type and its exception types are automatically part of the out direction of this port.

Syntactical Structure

Message-based port:

type port PortTypeIdentifier message "{"
 { (in | out | inout) { MessageType [","] }+ ";" }
"}"

Procedure-based port:

type port PortTypeIdentifier procedure "{"
 { (in | out | inout) { Signature [","] }+ ";" }
"}"

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

EXAMPLE 1: Message-based port

 // Message-based port which allows types MsgType1 and MsgType2 to be received at, MsgType3 to be
 // sent via and any integer value to be send and received over the port
 type port MyMessagePortType message
 {
 in MsgType1, MsgType2;
 out MsgType3;
 inout integer
 }

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 51

EXAMPLE 2: Procedure-based port

 // Procedure-based port which allows the remote call of the procedures Proc1, Proc2 and Proc3.
 // Note that Proc1, Proc2 and Proc3 are defined as signatures
 type port MyProcedurePortType procedure
 {
 out Proc1, Proc2, Proc3
 }

NOTE: The term message is used to mean both messages as defined by templates and actual values resulting from
expressions. Thus, the list restricting what may be used on a message-based port is simply a list of type
names.

6.2.10 Component types

6.2.10.1 Component type definition

The component type defines which ports are associated with a component (see figure 3). The port names in a
component type definition are local to that component type, i.e. another component type may have ports with the same
names. Port names in the same component type definition shall all have unique names.

MyMTC

// of MyMTCType

PCO1

PCO3

PCO1

PCO2
MyPTC

// of MyPTCType

PCO4

Figure 3: Typical components

It is also possible to declare constants, variables and timers local to a particular component type. These declarations are
visible to all testcases, functions and altsteps that run on an instance of the given component type. This shall be
explicitly stated using the runs on keyword (see clause 16) in the testcase, function or altstep header. Component type
definitions are associated with the component instance and follow the scope rules defined in clause 5.2. Each new
instance of a component type will thus have its own set of constants, variables and timers as specified in the component
type definition (including any initial values, if stated). Constants used in the constant expressions of type declarations
for variables, constants or ports shall meet with the restrictions in clause 10, however constants used in the constant
expressions of initial values for variables, constants or timers do not have to obey these restrictions.

Syntactical Structure

type component ComponentTypeIdentifier "{"
 { (PortInstance
 | VarInstance
 | TimerInstance
 | ConstDef) }
"}"

Semantic Description

Component type definitions specify the creation, declaration and initialization of ports and component constants,
variables and timers during the creation of an instance of a component type. These instances can be used as the main
test component, as the test system interface or as a parallel test component. Every instance of a component type has its
own fresh copy of the port, constant, variable, and timer instances defined in the component type definition.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 52

Examples

EXAMPLE 1: Component type with port instances only

 type component MyPTCType
 {
 port MyMessagePortType PCO1, PCO4;
 port MyProcedurePortType PCO2;
 port MyAllMesssagesPortType PCO3
 }

EXAMPLE 2: Component type with variable, timer and port instance

 type component MyMTCType
 {
 var integer MyLocalInteger;
 timer MyLocalTimer;
 port MyMessagePortType PCO1
 }

EXAMPLE 3: Component type with port instance arrays

 type component MyCompType
 {
 port MyMessageInterfaceType PCO[3]
 port MyProcedureInterfaceType PCOm[3][3]
 // Defines a component type which has an array of 3 message ports and a two-dimensional
 // array of 9 procedure ports.
 }

6.2.10.2 Reuse of component types

It is possible to define component types as the extension of other component types, using the extends keyword.

Syntactical Structure

type component ComponentTypeIdentifier extends ComponentTypeIdentifier "{"
 { (PortInstance
 | VarInstance
 | TimerInstance
 | ConstDef) }
"}"

Semantic Description

In such a definition, the new type definition is referred to as the extended type, and the type definition following the
extends keyword is referred to as the parent type. The effect of this definition is that the extended type will implicitly
also contain all definitions from the parent type. It is called the effective type definition.

It is allowed to have one component type extending several parent types in one definition, which have to be specified as
a comma-separated list of types in the definition. Any of the parent types may also be defined by means of extension.
The effective component type definition of the extended type is obtained as the collection of all constant, variable, timer
and port definitions contributed by the parent types (determined recursively if a parent type is also defined by means of
an extension) and the definitions declared in the extended type directly. The effective component type definition shall
be name clash free.

NOTE 1: It is not considered to be a different declaration and hence causes no error if a specific definition is
contributed to the extended type by different parent types (via different extension paths).

The semantics of component types with extensions are defined by simply replacing each component type definition by
its effective component type definition as a pre-processing step prior to using it.

NOTE 2: For component type compatibility, this means that a component reference c of type CT1, which extends
CT2, is compatible with CT2, and test cases, functions and altsteps specifying CT2 in their runs on
clauses can be executed on c (see clause 6.3.3).

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 53

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) When defining component types by extension, there shall be no name clash between the definitions being
taken from the parent type and the definitions being added in the extended type, i.e. there shall not be a port,
variable, constant or timer identifier that is declared both in the parent type (directly or by means of extension)
and the extended type. It is not considered to be a name clash if a specific definition is contributed to the
extended type via different extension paths.

b) When defining component types by extending more than one parent type, there shall be no name clash
between the definitions of the different parent types, i.e. there shall not be a port, variable, constant or timer
identifier that is declared in any two of the parent types (directly or by means of extension). It is not
considered to be a name clash if a specific definition is contributed to the extended type via different extension
paths.

c) It is allowed to extend component types that are defined by means of extension, as long as no cyclic chain of
definition is created.

Examples

EXAMPLE 1: A component type extension and its effective type definition

 type component MyMTCType
 {
 var integer MyLocalInteger;
 timer MyLocalTimer;
 port MyMessagePortType PCO1
 }

 type component MyExtendedMTCType extends MyMTCType
 {
 var float MyLocalFloat;
 timer MyOtherLocalTimer;
 port MyMessagePortType PCO2;
 }

 // effectively, the above definition is equivalent to this one:
 type component MyExtendedMTCType
 {
 /* the definitions from MyMTCType */
 var integer MyLocalInteger;
 timer MyLocalTimer;
 port MyMessagePortType PCO1

 /* the additional definitions */
 var float MyLocalFloat;
 timer MyOtherLocalTimer;
 port MyMessagePortType PCO2;
 }

EXAMPLE 2: A component type extension chain and forbidden cyclic extensions

 type component MTCTypeA extends MTCTypeB { /* … */ };
 type component MTCTypeB extends MTCTypeC { /* … */ };
 type component MTCTypeC extends MTCTypeA { /* … */ }; // ERROR - cyclic extension
 type component MTCTypeD extends MTCTypeD { /* … */ }; // ERROR - cyclic extension

EXAMPLE 3: Component type extensions with name clashes

 type component MyExtendedMTCType extends MyMTCType
 {
 var integer MyLocalInteger; // ERROR - already defined in MyMTCType (see above)
 var float MyLocalTimer; // ERROR - timer with that name exists in MyMTCType
 port MyOtherMessagePortType PCO1; // ERROR - port with that name exists in MyMTCType
 }

 type component MyBaseComponent { timer MyLocalTimer };
 type component MyInterimComponent extends MyBaseComponent { timer MyOtherTimer };
 type component MyExtendedComponent extends MyInterimComponent
 {
 timer MyLocalTimer; // ERROR - already defined in MyInterimComponent via extension
 }

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 54

EXAMPLE 4: Component type extension from several parent types

 type component MyCompB { timer T };
 type component MyCompC { var integer T };
 type component MyCompD extends MyCompB, MyCompC {}
 // ERROR - name clash between MyCompB and MyCompC

 // MyCompB is defined above
 type component MyCompE extends MyCompB {
 var integer MyVar1 := 10;
 }

 type component MyCompF extends MyCompB {
 var float MyVar2 := 1.0;
 }

 type component MyCompG extends MyCompB, MyCompE, MyCompF {
 // No name clash.
 // All three parent types of MyCompG have a timer T, either directly or via extension of
 // MyCompB; as all these stem (directly or via extension) from timer T declared in MyCompB,
 // which make this form of collision legal.
 /* additional definitions here */
 }

6.2.11 Component references

Component references are unique references to the test components created during the execution of a test case.

Syntactical Structure

system | mtc | self | VariableRef | FunctionInstance

Semantic Description

A unique component reference is generated by the test system at the time when a component is created. It is the result of
a create operation (see clause 21.2.1). In addition, component references are returned by the predefined operations
system (returns the component reference of the test system interface, which is automatically created when testcase
execution is started), mtc (returns the component reference of the MTC, which is automatically created when testcase
execution started) and self (returns the component reference of the component in which self is called).

Component references are used in the configuration operations such as connect, map and start (see clause 21) to
set-up test configurations and in the from, to and sender parts of communication operations of ports connected to
test components other than the test system interface for addressing purposes (see clause 22 and figure 6).

In addition, the special value null is available to indicate an undefined component reference, e.g. for the initialization
of variables to handle component references.

The actual data representation of component references shall be resolved externally by the test system. This allows
abstract test cases to be specified independently of any real TTCN-3 runtime environment, in other words TTCN-3 does
not restrict the implementation of a test system with respect to the handling and identification of test components.

A component reference includes component type information. This means, for example, that a variable for handling
component references must use the corresponding component type name in its declaration.

The configuration operations (see clause 21) do not work directly on arrays of components. Instead a specific element
of the array shall be provided as the parameter to these operations. For components, the effect of an array is achieved by
using an array of component references and assigning the relevant array element to the result of the create operation.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The only operations allowed on component references are assignment, equality and non-equality.

b) The variable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with FunctionInstance must be of component type.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 55

Examples

EXAMPLE 1: Component references with component type variables

 // A component type definition
 type component MyCompType {
 port PortTypeOne PCO1;
 port PortTypeTwo PCO2
 }

 // Declaring one variable for the handling of references to components of type MyCompType
 // and creating a component of this type
 var MyCompType MyCompInst := MyCompType.create;

EXAMPLE 2: Usage of component references in configuration operations

 // referring to the component created above
 connect(self:MyPCO1, MyCompInst:PCO1);
 map(MyCompInst:PCO2, system:ExtPCO1);
 MyCompInst.start(MyBehavior(self)); // self is passed as a parameter to MyBehavior

EXAMPLE 3: Usage of component references in from- and to- clauses

 MyPCO1.receive from MyCompInst;
 :
 MyPCO2.receive(integer:?) -> sender MyCompInst;
 :
 MyPCO1.receive(MyTemplate) from MyCompInst;
 :
 MyPCO2.send(integer:5) to MyCompInst;

EXAMPLE 4: Usage of component references in one-to-many connections

 // The following example explains the case of a one-to-many connection at a Port PCO1
 // where values of type M1 can be received from several components of the different types
 // CompType1, CompType2 and CompType3 and where the sender has to be retrieved.
 // In this case the following scheme may be used:
 :
 var M1 MyMessage, MyResult;
 var MyCompType1 MyInst1 := null;
 var MyCompType2 MyInst2 := null;
 var MyCompType3 MyInst3 := null;
 :
 alt {
 [] PCO1.receive(M1:?) from MyInst1 -> value MyMessage sender MyInst1 {}
 [] PCO1.receive(M1:?) from MyInst2 -> value MyMessage sender MyInst2 {}
 [] PCO1.receive(M1:?) from MyInst3 -> value MyMessage sender MyInst3 {}
 }
 :
 MyResult := MyMessageHandling(MyMessage); // some result is retrieved from a function
 :
 if (MyInst1 != null) {PCO1.send(MyResult) to MyInst1};
 if (MyInst2 != null) {PCO1.send(MyResult) to MyInst2};
 if (MyInst3 != null) {PCO1.send(MyResult) to MyInst3};
 :

EXAMPLE 5: Usage of self

 var MyComponentType MyAddress;
 MyAddress := self; // Store the current component reference

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 56

EXAMPLE 6: Usage of component arrays

 // This example shows how to model the effect of creating, connecting and running arrays of
 // components using a loop and by storing the created component reference in an array of
 // component references.

 testcase MyTestCase() runs on MyMtcType system MyTestSystemInterface
 {
 :
 var integer i;
 var MyPTCType1 MyPtc[11];
 :
 for (i:= 0; i<=10; i:=i+1)
 {
 MyPtc[i] := MyPTCType1.create;
 connect(self:PtcCoordination, MyPtc[i]:MtcCoordination);
 MyPtc[i].start(MyPtcBehaviour());
 }
 :
 }

6.2.12 Addressing entities inside the SUT

An SUT may consist of several entities which can be addressed individually by use of the address data type. This is the
type to use with port operations in order to address SUT entities.

Syntactical Structure

TemplateInstance

Semantic Description

The actual data representation of address is resolved either by an explicit type definition within the test suite or
externally by the test system (i.e. the address type is left as an open type within the TTCN-3 specification). This
allows abstract test cases to be specified independently of any real address mechanism specific to the SUT.

Explicit SUT addresses shall only be generated inside a TTCN-3 module if the type is defined inside the module. If the
type is not defined inside the module, explicit SUT addresses shall only be passed in as parameters or be received in
message fields or as parameters of remote procedure calls.

In addition, the special value null is available to indicate an undefined address, e.g. for the initialization of variables
of the address type.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) TemplateInstance shall be of address type and can be an address type value, an address type variable, etc.

b) The address data type shall only be used in the to, from and sender parts of receive and send operations of
ports mapped to the test system interface.

Examples

EXAMPLE:

 // Associates the type integer to the open type address
 type integer address;
 :
 // new address variable initialized with null
 var address MySUTentity := null;
 :
 // receiving an address value and assigning it to variable MySUTentity
 PCO.receive(address:*) -> value MySUTentity;
 :
 // usage of the received address for sending template MyResult
 PCO.send(MyResult) to MySUTentity;
 :
 // usage of the received address for receiving a confirmation template
 PCO.receive(MyConfirmation) from MySUTentity;

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 57

6.2.13 Subtyping of structured types

TTCN-3 allows subtyping of structured types as given in table 3.

6.2.13.1 Length subtyping of record ofs and set ofs

TTCN-3 permits constraining the number of elements in instances of record of and set of types.

The length keyword followed by a value or a range within brackets and used between the record or set and the
of keywords, restricts the allowed lengths of the given record of or set of type. The value or the bounds within
the brackets shall be non-negative integer values, except when the infinity keyword is used at he place of the upper
bound, in which case the maximum number of the elements is not constrained.

Record of and set of type definitions may be used to define new record of or set of subtypes. In this case the
rules of the previous paragraph apply, except that the length keyword and the value or range defining the allowed
number of iterations (within brackets) shall be placed following the identifier of the new type.

Constants used in the constant expressions of length subtyping shall meet with the restrictions in clause 10.

EXAMPLE 1: Length restrictions of record of and set of types

 type record length(10) of integer MyRecordOfType10;
 // is a record of exactly 10 integers

 type record length(0..10) of integer MyRecordOfType0_10;
 // is a record of a maximum of 10 integers

 type record length(10..infinity) of integer MyRecordOfType10up;
 // record of at least 10 integers

 type record length(0..infinity) of integer MyRecordOfType0up;
 // an unrestricted record of integer type

EXAMPLE 2: Length subtyping of referenced record of types

 type record of charstring StringArray;
 // is an unlimited record of, each element shall be a charstring

 type StringArray StringArray34 length(4 .. 5);
 // is a record of 4 or 5 elements, each element is a charstring
 // it is equivalent to
 // type record length(4 .. 5) of charstring StringArray34a;

 type StringArray34 StringArray34again length(4 .. 5);
 // the same as StringArray34

 type StringArray34 StringArray6 length(6);
 // causes an error as record ofs with 6 elements are not legal values of StringArray34

EXAMPLE 3: Length subtyping of referenced set of types

 type record MyCapsule {
 set of integer mySetOfInt
 }

 type MyCapsule.mySetOfInt MySetOfIntSub length(5..10);
 // unordered list of 5 to 10 integers

6.2.13.2 List subtyping of structured types and anytype

List subtyping is possible when defining a new type based on an existing parent type, but not directly at the declaration
of the first parent type (see table 3).

Subtypes defined by a list subtyping restrict the allowed values of the subtype to the values in the list. In case of list
subtyping of record, set, record of, set of, union and anytype types, the list may contain both values and
subtypes of the parent types of the type being constrained. The collection of values denoted by the type(s) referenced in
the list become instances of the new subtype. All values of the expanded list (i.e. after resolving the type references)
shall be valid values of the first parent type.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 58

In case of enumerated types, the value list subtyping shall contain only values of the parent type.

EXAMPLE 1: List subtyping of record types

 type record MyRecord {
 integer f1 optional,
 charstring f2,
 charstring f3
 }

 type MyRecord MyRecordSub1 (
 { f1 := omit, f2 := "user", f3 := "password" },
 { f1 := 1, f2 := "User", f3 := "Password" }
) // a valid subtype of MyRecord containing 2 values

 type MyRecord MyRecordSub2 (
 MyRecordSub1,
 { f1 := 2, f2 := "uname", f3 := "pswd" },
 { f1 := 3, f2 := "Uname", f3 := "Pswd" }
) // a valid subtype MyRecord containing 4 values; notice that values of
 // MyRecordSub1 are identified by referencing MyRecordSub1

 type MyRecordSub1 MyRecordSub3 (
 { f1 := 1, f2 := "user", f3 := "password" },
 { f1 := 1, f2 := "User", f3 := "Password" }
) // empty type as { f1 := 1, f2 := "user", f3 := "password" } is not a legal value of
 // MyRecordSub1 (notice field f1)

EXAMPLE 2: List subtyping of record of types

 type record of charstring StringArray;

 type StringArray StringArrayList1 (
 { "aa" },
 { "bbb", "cc" },
 { "ddd", "ee", "ff" }
); // valid subtype of StringArray

 type StringArrayList1 StringArrayList2 (
 { "aa" },
 { "bbb", "cc" }
); // valid subtype of StringArrayList1

 type StringArrayList1 StringArrayList3 (
 StringArrayList2,
 { "ddd", "ee", "ff" }
); // valid, but equivalent to StringArrayList1

 type StringArrayList1 StringArrayList4 (
 StringArrayList2,
 { "ddd", "ee", "fff" }
); // empty type as { "ddd", "ee", "fff" } is not a value of StringArrayList1
 // (notice the extra character f in the third element)

EXAMPLE 3: List subtyping of union types

 type union MyUnion {
 integer c1,
 charstring c2,
 charstring c3
 };

 type MyUnion MyUnionSub1 (
 { c1 := 0 },
 { c1 := 1 }
); // a valid subtype of MyUnion containing two values

 type MyUnion MyUnionSub2 (
 MyUnionSub1,
 { c2 := "mine" },
 { c3 := "yours" }
); // a valid subtype of MyUnion containing four values; notice that values of
 // MyUnionSub1 are identified by referencing MyUnionSub1

 type MyUnionSub1 MyUnionSub3 (
 { c1 := 0 },
 { c1 := 2 }

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 59

); // causes an error as { c1 := 2 } is not a value of MyUnionSub1

EXAMPLE 4: List subtyping of enumerated types

 type enumerated MyEnum { first, second, third, fourth, fifth };

 type MyEnum EnumSub1 (first, second, third);
 // a valid subtype of MyEnum

 type EnumSub1 EnumSub2 (first, second);
 // a valid subtype of EnumSub1

 type EnumSub1 EnumSub3 (first, second, fourth);
 // causes an error as fourth is not a value of EnumSub1

 type MyEnum EnumSub4 (EnumSub1, fourth);
 // causes an error as type references are not allowed in the value list of enumerated types

EXAMPLE 5: List subtyping of anytype

 type anytype MyAnySub1 (
 { integer := 5 },
 { boolean := false },
 { bitstring := '0011'B },
 { charstring := "mine" },
 { MyEnum := first }
); // a valid subtype of anytype, consisting of 5 values

 type MyAnySub1 MyAnySub2 (
 { integer := 5 },
 { boolean := false },
 { bitstring := '0011'B }
); // a valid subtype of MyAnySub1, consisting of 3 values

 type anytype MyAnySub3 (
 MyAnySub2,
 { octetstring := 'FF'O }
); // a valid subtype of anytype, consisting of 4 values, 3 of which are defined
 // by referring to MyAnySub2

 type MyAnySub1 MyAnySub4 (
 { integer := 5 },
 { boolean := false },
 { MyEnum := second }
); // causes an error as { MyEnum := second } is not a value of MyAnySub1

 type MyAnySub1 MyAnySub5 (
 MyAnySub3,
 { MyEnum := first }
); // causes an error as { octetstring := 'FF'O } (defined via referencing MyAnySub3) is
 // not a value of MyAnySub1

6.2.13.3 Subtyping of the iterated type of record ofs and set ofs

A type restriction following the identifier of a newly defined record of or set of type (i.e. when the keywords
record and of or set and of are used in the definition) shall constrain the innermost type. The newly defined
iterated type shall be a subset of the innermost type. If the innermost type is a basic type, the subtyping rules in clause
6.1.2 shall apply. If the innermost type is referencing a structured type or anytype, the rules in clauses 6.2.13.1 and
6.2.13.2 shall apply.

EXAMPLE 1: Subtyping of basic innermost types of record ofs and set ofs

 type record of charstring String23Array length(2 .. 3);
 // is an unlimited record of, each element shall be a charstring of 2 or 3 characters

 type record length(0..10) of charstring String12Array10 length(12);
 // is a record of a maximum of 10 strings each with exactly 12 characters

 type record of record of charstring String12Array2D length(12);
 // is a two-dimensional unlimited array of strings each with exactly 12 characters

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 60

 type set length(5) of set length(6) of charstring String12Array2D56 length(12);
 // is an unordered two-dimensional array of the size 5*6 strings, each with
 // exactly 12 characters

 const String23Array c_str23arr_a := { "aa", "bbb", "cc", "ddd", "ee", "ff" };
 // valid, all charstrings are 2 or 3 characters long

 const String23Array c_str23arr_b := { "a", "bbbb", "cc", "ddd", "ee", "ff" };
 // causes an error as "a" and "bbbb" are not 2 or 3 characters long

 const String12Array2D56 c_str12arr2D56_a := {
 { "aa", "aaa", "bb", "bbb", "cc", "ccc" },
 { "dd", "ddd", "ee", "eee", "ff", "fff" },
 { "gg", "ggg", "hh", "hhh", "ii", "iii" },
 { "jj", "jjj", "kk", "kkk", "ll", "lll" },
 { "mm", "mmm", "nn", "nnn", "oo", "ooo" }
 }; // valid, a 5*6 matrix of charstrings being 2 or 3 characters long

 const String12Array2D56 c_str12arr2D56_b := {
 { "a", "aaa", "bb", "bbbb", "cc", "ccc" },
 { "dd", "ddd", "ee", "eee", "ff", "fff" },
 { "gg", "ggg", "hh", "hhh", "ii", "iii" },
 { "jj", "jjj", "kk", "kkk", "ll", "lll" },
 { "mm", "mmm", "nn", "nnn", "oo", "ooo", "pp" }
 }; // causes an error as "a" and "bbbb" are not 2 or 3 characters long and
 // the 5th inner record of has 7 elements

EXAMPLE 2: Length subtyping of structured innermost types of record ofs

 type record of String23Array String23Array45 length(4 .. 5);
 // is a two-dimensional array, the first dimension is unlimited,
 // the second dimension is restricted to 4 or 5 elements and each element
 // is a charstring of 2 or 3 characters. It is equivalent to:
 // type record of record length(4 .. 5) of charstring String23Array45 length(2 .. 3);

 const String23Array45 c_str23arr45_a := {
 { "aa", "bbb", "cc", "ddd" },
 { "ee", "fff", "gg", "hhh", "ii" }
 }; // valid, 4 or 5 elements in the inner record of, all containing 2 or 3 charecters

 const String23Array45 c_str23arr45_b := {
 { "aa" , "bbb", "cc" }
 }; //causes an erroras there are only 3 elements in the inner record of

 const String23Array45 c_str23arr45_c := {
 { "aa", "bbbb", "cc", "dd" }
 }; //causes an erroras "bbbb" contains 4 characters

 type record length(0 .. 1) of String23Array String23Array0145 length(4 .. 5);
 // is a two-dimensional array, the first dimension is limited to 0 or 1 elements,
 // the second dimension is restricted to 4 or 5 elements, each element is a
 // charstring of 2 or 3 characters.

 const String23Array0145 c_str23arr0145_a := {
 { "aa", "bbb", "cc", "ddd" },
 }; // a valid 1*4 array of charstrings, each of 2 or 3 charecters

 const String23Array0145 c_str23arr0145_a := {
 { "aa", "bbb", "cc", "ddd" },
 { "ee", "fff", "gg", "hhh", "ii" }
 }; // causes an error as there are two elements in the outer record of

 const String23Array0145 c_str23arr0145_b := {
 { "aa" , "bbb", "cc" }
 }; // causes an error as there are only 3 elements in the inner record of

 const String23Array0145 c_str23arr0145_c := {
 { "aa", "bbbb", "cc", "dd" }
 }; // causes an error as "bbbb" contains 4 characters

 type record of String23Array45 String23Array6 length(6);
 // empty type as String23Array45 is restricted to 4 or 5 elements,
 // thus length restriction 6 is outside the allowed range

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 61

6.2.13.4 Mixing subtyping mechanisms

In the case of structured types and the special type anytype, it is forbidden to mix different subtyping mechanisms
(e.g. list and length) in the same definition.

6.3 Type compatibility
Generally, TTCN-3 requires type compatibility of values at assignments, instantiations and comparison.

For the purpose of this clause the actual value to be assigned, passed as parameter, etc., is called value "b". The type of
value "b" is called type "B". The type of the formal parameter, which is to obtain the actual value of value "b" is called
type "A".

NOTE: As address is more a predefined type name than a distinct type with its own properties, the same type
compatibility rules apply to an address type and to its derivatives as the rules were if the type was
defined with a name different from address.

6.3.1 Type compatibility of non-structured types

For variables, constants, templates, etc. of simple basic types and basic string types the value "b" is compatible to type
"A" if type "B" resolves to the same root type as type "A" (e.g. integer) and it does not violate subtyping (e.g.
ranges, length restrictions) of type "A".

EXAMPLE 1: Compatibility of integers

 // Given
 type integer MyInteger(1 .. 10);
 :
 var integer x;
 var MyInteger y;

 // Then
 y := 5; // is a valid assignment

 x := y;
 // is a valid assignment, because y has the same root type as x and no subtyping is violated

 x := 20; // is a valid assignment
 y := x;
 // is NOT a valid assignment, because the value of x is out of the range of MyInteger

 x := 5; // is a valid assignment
 y := x;
 // is a valid assignment, because the value of x is now within the range of MyInteger

EXAMPLE 2: Compatibility of floats

 // Given
 type float PositiveFloats(0.0 .. infinity);
 :
 var PositiveFloats x;
 var float y;

 // Then
 y := 5.0; // is a valid assignment
 x := y;
 // is a valid assignment, because y has the same root type as x and no subtyping is violated

 y := -20.0; // is a valid assignment
 x := y;
 // causes an error, because the value of y is out of the range of PositiveFloats

 y := not_a_number; // is a valid assignment
 x := y;
 // causes an error, because the value not_a_number is out of the range of PositiveFloats

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 62

EXAMPLE 3: Compatibility of charstrings

 //Given
 type charstring MyChar length (1);
 type charstring MySingleChar length (1);
 var MyChar myCharacter;
 var charstring myCharString;
 var MySingleChar mySingleCharString := "B";

 //Then
 myCharString := mySingleCharString;
 //is a valid assignment as charstring restricted to length 1 is compatible with charstring.
 myCharacter := mySingleCharString;
 //is a valid assignment as two single-character-length charstrings are compatible.

 //Given
 myCharString := "abcd";

 //Then
 myCharacter := myCharString[1];
 //is valid as the r.h.s. notation addresses a single element from the string

 //Given
 var charstring myCharacterArray [5] := {"A", "B", "C", "D", "E"}

 //Then
 myCharString := myCharacterArray[1];
 //is valid and assigns the value "B" to myCharString;

For variables, constants, templates etc. of charstring type, value 'b' is compatible with a universal
charstring type 'A' unless it violates any type constraint specification (range, list or length) of type "A".

For variables, constants, templates etc. of universal charstring type, value 'b' is compatible with a
charstring type 'A' if all characters used in value 'b' have their corresponding characters (i.e. the same control or
graphical character using the same character code) in the type charstring and it does not violate any type constraint
specification (range, list or length) of type "A".

6.3.2 Type compatibility of structured types

In the case of structured types (except the enumerated type) a value "b" of type "B" is compatible with type "A", if
the effective value structures of type "B" and type "A" are compatible, in which case assignments, instantiations and
comparisons are allowed.

6.3.2.1 Type compatibility of enumerated types

Enumerated types are only compatible to synonym types (see clause 6.4) and not compatible with other basic or
structured types.

6.3.2.2 Type compatibility of record and record of types

For record types the effective value structures are compatible if the number, and optional aspect of the fields in the
textual order of definition are identical, the types of each field are compatible and the value of each existing field of the
value "b" is compatible with the type of its corresponding field in type "A". The value of each field in the value "b" are
assigned to the corresponding field in the value of type "A".

EXAMPLE 1:

// Given
type record AType {
 integer a(0..10) optional,
 integer b(0..10) optional,
 boolean c
}

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 63

type record BType {
 integer a optional,
 integer b(0..10) optional,
 boolean c
}

type record CType { // type with different field names
 integer d optional,
 integer e optional,
 boolean f

}

type record DType { // type with field c optional
 integer a optional,
 integer b optional,
 boolean c optional
}

type record EType { // type with an extra field d
 integer a optional,
 integer b optional,
 boolean c,

 float d optional
}

 var AType MyVarA := { -, 1, true};
 var BType MyVarB := { omit, 2, true};
 var CType MyVarC := { 3, omit, true};
 var DType MyVarD := { 4, 4, true};
 var EType MyVarE := { 5, 5, true, omit};

 // Then

 MyVarA := MyVarB; // is a valid assignment,
 // new value of MyVarA is (a :=omitted, b:= 2, c:= true)
 MyVarC := MyVarB; // is a valid assignment
 // new value of MyVarC is (d :=omitted, e:= 2, f:= true)
 MyVarA := MyVarD; // is NOT a valid assignment because the optionality of fields does not
 // match
 MyVarA := MyVarE; // is NOT a valid assignment because the number of fields does not match

 MyVarC := { d:= 20 };// actual value of MyVarC is { d:=20, e:=2,f:= true }
 MyVarA := MyVarC // is NOT a valid assignment because field 'd' of MyVarC violates subtyping
 // of field 'a' of AType

For record of types and arrays the effective value structures are compatible if their component types are compatible
and value "b" of type "B" does not violate any length subtyping of the record of type or dimension of the array of
type "A". Values of elements of the value "b" shall be assigned sequentially to the instance of type "A", including
undefined elements.

Two array types are compatible if their corresponding record of types are compatible.

record of types and single-dimension arrays are compatible with record types if their effective value structures are
compatible and the number of elements of value "b" of the record of type "B" or the dimension of array "b" is
exactly the same as the number of elements of the record type "A". Optionality of the record type fields has no
importance when determining compatibility, i.e. it does not affect the counting of fields (which means that optional
fields shall always be included in the count). Assignment of the element values of the record of type or array to the
instance of a record type shall be in the textual order of the corresponding record type definition, including
undefined elements. If an element with an undefined value is assigned to an optional element of the record, this will
cause the optional element to be omitted. An attempt to assign an element with undefined value to a mandatory element
of the record shall cause an error.

NOTE: If the record of type has no length restriction or the length restriction exceeds the number of elements
of the compared record type and the index of any defined element of the record of value is less or
equal than the number of elements of the record type minus one, than the compatibility requirement is
always fulfilled.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 64

Values of a record type can also be assigned to an instance of a record of type or a single-dimension array if no
length restriction of the record of type is violated or the dimension of the array is more than or equal to the number
of elements of the record type. Optional elements missing in the record value shall be assigned as elements with
undefined values.

EXAMPLE 2:

// Given
type record HType {
 integer a,
 integer b optional,
 integer c
}

type record of integer IType

 var HType MyVarH := { 1, omit, 2};
 var IType MyVarI;
 var integer MyArrayVar[2];

 // Then

 MyArrayVar := MyVarH;
 // is a valid assignment as type of MyArrayVar and HType are compatible

 MyVarI := MyVarH;
 // is a valid assignment as the types are compatible and no subtyping is violated

 MyVarI := { 3, 4 };
 MyVarH := MyVarI;
 // is NOT a valid assignment as the mandatory field 'c' of Htype receives no value

6.3.2.3 Type compatibility of set and set of types

set types are only type compatible with other set types and set of types. For set types and for set of types the
same compatibility rules shall apply as to record and record of types.

NOTE 1: This implies that though the order of elements at sending and receipt is unknown, when determining type
compatibility for set types, the textual order of the fields in the type definition is decisive.

NOTE 2: In set values the order of fields may be arbitrary, however this does not effect type compatibility as field
names unambiguously identify, which fields of the related set type correspond to which set value
fields.

EXAMPLE:

 // Given
 type set FType {
 integer a optional,
 integer b optional,
 boolean c
 }

 type set GType {
 integer d optional,
 integer e optional,
 boolean f
 }

 var FType MyVarF := { a:=1, c:=true };
 var GType MyVarG := { f:=true, d:=7};

 // Then

 MyVarF := MyVarG; // is a valid assignment as types FType and GType are compatible

 MyVarF := MyVarA; // is NOT a valid assignment as MyVarA is a record type

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 65

6.3.2.4 Type compatibility of union types

union types are only type compatible with other union types. A union value "a" of union type "A" is compatible with
union type "B" if the alternative selected in "a" has a corresponding alternative with identical name in "B" and the value
of the selected alternative in "a" is compatible to the type of the corresponding alternative in "B".

EXAMPLE:

 type union U1 {integer i};
 type union U2 {integer i, boolean b};

 var U1 u1 := {i := 1};
 var U2 u2 := u1; // correct
 u1:= u2; // correct as the alternative i is selected in u2 and is compatible
 // to i in U1
 u2:= {b := true};
 u1:= u2; // incorrect as u1 has no alternative b
 var anytype x := u1; // incorrect as the anytype is not a union type.

6.3.2.5 Type compatibility of anytype types

anytype types are only type compatible with other anytype types. An anytype value "a" of anytype type "A" is
compatible with anytype type "B" if the alternative selected in "a" has a corresponding alternative with identical name
in "B" and the value of the selected alternative in "a" is compatible to the type of the corresponding alternative in "B".
Identical alternative names in this case mean the name of a TTCN-3 basic type or the name of the same user defined
type definition (considering also the module in which the type is defined).

EXAMPLE:

 module A {
 type integer I (0..2);
 type float F;
 type anytype Atype //anytype composed of TTCN-3 built-in basic types, I, and F
 }

 module B {
 type integer I (0..2);
 type anytype Atype
 }

 module C {
 import from A all;
 import from B all;
 type union U {
 integer I (0..2)
 }
 control {
 var A.Atype aa;
 var A.Atype aaI := { I := 1 }
 var A.Atype aaF := { F := 1.0 }
 var B.Atype ba := { integer := 1 }
 var B.Atype baI := { I := 1 }
 var U u := { I := 1 }

 aa := ba; // correct, the value of aa1 becomes { integer := 1 }
 aa := baI; // incorrect, type B.I is not present in the anytype A.Atype
 aa := u; // incorrect, type of u is not anytype but a user defined union type

 ba := { float := 1.0 }; // correct, assigning a literal value
 ba := aaI; // incorrect, type A.I is not present in the anytype B.Atype
 ba := aaF; // incorrect, type A.F is not present in the anytype B.Atype
 }
 }

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 66

6.3.2.6 Compatibility between sub-structures

The rules defined in this clause for structured types compatibility are also valid for the sub-structure of such types.

EXAMPLE:

 // Given
 type record JType {
 HType H,
 integer b optional,
 integer c
 }

 var JType MyVarJ

 // If considering the declarations above, then

 MyVarJ.H := MyVarH;
 // is a valid assignment as the type of field H of JType and HType are compatible

 MyVarI := MyVarJ.H;
 // is a valid assignment as IType and the type of field H of JType are compatible

6.3.3 Type compatibility of component types

Type compatibility of component types has to be considered in two different conditions:

1) Compatibility of a component reference value with a component type (e.g. when passing a component
reference as an actual parameter to a function or an altstep or when assigning a component reference value to a
variable of different component type): a component reference "b" of component type "B" is compatible with
component type "A" if all definitions of "A" have identical definitions in "B".

2) Runs on compatibility: a function or altsteps referring to component type "A" in its runs on clause may be
called or started on a component instance of type 'B' if all the definitions of "A" have identical definitions in
"B".

Identity of definitions in "A" with definitions of "B" is determined based on the following rules:

a) For port instances, both the type and the identifier shall be identical.

b) For timer instances, identifiers shall be identical and either both shall have identical initial durations or both
shall have no initial duration.

c) For variable instances and constant definitions, the identifiers, the types and initialization values shall be
identical (in case of variables this means that either the values are missing in both definitions or are the same).

d) For local template definitions, the identifiers, the types, the formal parameter lists and the assigned template or
template field values shall be identical.

6.3.4 Type compatibility of communication operations

The communication operations (see clause 22) send, receive, trigger, call, getcall, reply, getreply
and raise are exceptions to the weaker rule of type compatibility and require strong typing. The types of values or
templates directly used as parameters to these operations must also be explicitly defined in the associated port type
definition. Strong typing also applies to storing the received value, address or component reference during a receive
or trigger operation.

EXAMPLE:

type record MyRec {...} // user defined type
type MyRec MyRecAlias; // a type alias

template MyRecAlias t_MyRecAlias:= {...} // a template of the alias type

connect (myComp:P1 myComp:P2) // two connected PTCs via ports that can transport
 // the user-defined and the alias type

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 67

P1.send (t_MyRecAlias); // sending of template of alias type

P2.receive (MyRec:?);
// shall cause an error as the transmitted template is of the alias type and
// not of the user-defined type

var MyRec r;
P2.receive (MyRecAlias:?) -> value x;
// shall cause an error as also storing the value requires strong typing

6.3.5 Type conversion

If it is necessary to convert values of one type to values of another type, because their types have different root types,
then either one of the predefined conversion functions defined in clause 16.1.2 or a user defined function shall be used.

EXAMPLE:

 // To convert an integer value to a hexstring value use the predefined function int2hex
 MyHstring := int2hex(123, 4);

6.4 Type synonym
A type can be defined as a synonym to another type. Type synonyms can be defined for all kinds of types. Synonym
types are compatible.

EXAMPLE:

 type MyType1 MyType2; // MyType2 is synonym to MyType1

7 Expressions
TTCN-3 allows the specification of expressions using the operators defined in clause 7.1.

Syntactical Structure

SingleExpression |
"{" { (FieldReference ":=" (Expression | "-")) [","] } "}" | // compound expression
"{" [{ (Expression | "-") [","] }] "}" // compound expression

Semantic Description

Expressions may be built from other (simple) expressions. Functions used in expressions shall have a return clause. The
operands of the operators used in an expression shall be values and their root types shall be the types specified for the
appropriate operator in the subsequent clauses.

Compound expressions are used for expressions of array, record, record of and set of types.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Operands of operators used in expressions shall be completely initialized.

b) The root types of the operands shall be the types specified for the appropriate operand.

This means also that all fields and elements of structured types referenced in an expression shall contain completely
initialized values, while other fields and elements, not used in the expression, may be uninitialized or contain omit.

Examples

 (x + y - increment(z))*3 // single expression
 { a:= 1, b:= true } // compound expression, field expression list
 { 1, true } // compound expression, value list

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 68

7.1 Operators
TTCN-3 supports a number of predefined operators that may be used in the terms of TTCN-3 expressions. The
predefined operators fall into seven categories:

a) arithmetic operators;

b) list operator;

c) relational operators;

d) logical operators;

e) bitwise operators;

f) shift operators;

g) rotate operators.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Values used in operators shall be completely initialized.

These operators are listed in table 5.

Table 5: List of TTCN-3 operators

Category Operator Symbol or Keyword
Arithmetic operators addition +

subtraction -
multiplication *
division /
modulo mod
remainder rem

String operators concatenation &
Relational operators equal ==

less than <
greater than >
not equal !=
greater than or equal >=
less than or equal <=

Logical operators logical not not
logical and and
logical or or
logical xor xor

Bitwise operators bitwise not not4b
bitwise and and4b
bitwise or or4b
bitwise xor xor4b

Shift operators shift left <<
shift right >>

Rotate operators rotate left <@
rotate right @>

The precedence of these operators is shown in table 6. Within any row in this table, the listed operators have equal
precedence. If more than one operator of equal precedence appears in an expression, the operations are evaluated from
left to right. Parentheses may be used to group operands in expressions, in which case a parenthesized expression has
the highest precedence for evaluation.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 69

Table 6: Precedence of Operators

Priority Operator type Operator
highest

Lowest

Unary
Binary
Binary
Unary
Binary
Binary
Binary
Binary
Binary
Binary
Unary
Binary
Binary
Binary

(…)
+, -
*, /, mod, rem
+, -, &
not4b
and4b
xor4b
or4b
<<, >>, <@, @>
<, >, <=, >=
==, !=
not
and
xor
or

7.1.1 Arithmetic operators

The arithmetic operators represent the operations of addition, subtraction, multiplication, division, modulo and
remainder. Operands of these operators shall be of integer values (including derivations of integer) or floating-
point numbers (including derivations of float, containing numeric values only), except for mod and rem which shall
be used with integer (including derivations of integer) types only.

NOTE: The special float values infinity, -infinity and not_a_number are not to be used with
arithmetic operators.

With integer types, the result type of arithmetic operations is integer. With float types, the result type of
arithmetic operations is float.

In the case where plus (+) or minus (-) is used as the unary operator the rules for operands apply as well. The result of
using the minus operator is the negative value of the operand if it was positive and vice versa. The result of using the
plus operator is the value of the operand, i.e. a positive value if the operand value was positive and a negative value if
the operand value was negative.

The result of performing the division operation (/) on two:

a) integer values gives the whole integer part of the value resulting from dividing the first integer by
the second (i.e. fractions are discarded);

b) numeric float values gives the float value resulting from dividing the first float by the second (i.e.
fractions are not discarded).

The operators rem and mod compute on operands of type integer and have a result of type integer. The
operations x rem y and x mod y compute the rest that remains from an integer division of x by y. Therefore, they
are only defined for non-zero operands y. For positive x and y, both x rem y and x mod y have the same result but for
negative arguments they differ.

Formally, mod and rem are defined as follows:

 x rem y = x - y * (x/y)
 x mod y = x rem |y| when x >= 0
 = 0 when x < 0 and x rem |y| = 0
 = |y| + x rem |y| when x < 0 and x rem |y| < 0

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 70

Table 7 illustrates the difference between the mod and rem operator:

Table 7: Effect of mod and rem operator

x -3 -2 -1 0 1 2 3
x mod 3 0 1 2 0 1 2 0
x rem 3 0 -2 -1 0 1 2 0

7.1.2 List operator

The predefined list operator (&) performs concatenation of values of string types, record of, set of, or array of
the same root types. The operation is a simple concatenation from left to right. No form of arithmetic addition is
implied. The result type is the root type of the operands.

NOTE: In case of the list types, both the outer type (i.e. record of, set of or array) and the iterated inner
type need to have the same root type in a recursive manner.

EXAMPLE:

 '1111'B & '0000'B & '1111'B gives '111100001111'B

7.1.3 Relational operators

The predefined relational operators are equality (==), less than (<), greater than (>), non-equality to (!=), greater than
or equal to (>=) and less than or equal to (<=). The result type of all these operations is boolean.

The relational operators less than (<), greater than (>), greater than or equal to (>=), and less than or equal to (<=) shall
have only operands of type integer (including derivations of integer), float (including derivations of float),
or instances of the same enumerated type. It is not allowed to compare instances of different root types.

Operands of equality (==) and non-equality (!=) shall be values of the same root type and the values being compared
shall obey the following rules. This implies that instances of types not mentioned below shall not be operands of
equality and non-equality.

NOTE: As address is more a predefined type name than a distinct type with its own properties, the same rules
apply to an address type and to its derivatives as the rules were if the type was defined with a name
different from address.

• Two integer values are equal if and only if they contain the same value. Otherwise, normal mathematical
ordering is applied.

• Two floating-point numbers are equal if and only if they contain the same value. The values minus zero and
plus zero are two distinc values (e.g. they are encoded differently in some standardized languages) and minus
zero is less than plus zero, which represents zero. Otherwise, normal mathematical ordering is applied. The
special values -infinity, infinity and not_a_number are equal to themselves only. The special
value -infinity is less than any other foat value. The special value infinity is greater than any
numerical float values and -infinity. The special value not_a_number is greater than any other float
value (including infinity).

• Two charstring or two universal charstring values are equal if and only if they have equal lengths and the
characters at all positions are the same.

• For values of bitstring, hexstring or octetstring types, the same equality rule applies as for charstring values
with the exception, that fractions which shall equal at all positions are bits, hexadecimal digits or pairs of
hexadecimal digits accordingly.

• Two record values, set values, record of values or set of values are equal if and only if their effective value
structures are compatible (see clause 6.3) and the actual values of all corresponding fields are equal. record
values may also be compared to record of values and set values to set of values. In these cases the same rule
applies as for comparing two record or set values.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 71

• Values of the same union type, and values of different union types in which at least one of the alternatives is
compatible with the other type (see clause 6.3.2.4) can be compared (independent if a compatible alternative is
the selected one or not). Two values of union types are equal if and only if in both values the name of the
selected alternative is identical, they are compatible with the type of the other value, and the actual values of
the chosen fields are equal.

• Values of the same or any two anytype types can be compared. For anytype values the same rule apply as to
union values, with the addition that names of types defined with the same name in different modules do not
denote the same name of the selected alternatives.

• Two default or two component values are equal if and only if they contain the same value (i.e. they designate
the same default or test component, independent of the actual state of the denoted object).

EXAMPLE:

 // Given
 type set S1 {
 integer a1 optional,
 integer a2 optional,
 integer a3 optional
 };

 type set S2 {
 integer b1 optional,
 integer b2 optional,
 integer b3 optional
 };

 type set S3 {
 integer c1 optional,
 integer c2 optional,
 };

 type set of integer SI;

 type union U1 {
 integer d1,
 integer d2,
 };

 type union U2 {
 integer e1,
 integer e2,
 };

 type union U3 {
 integer d1,
 integer d2,
 boolean d3
 };

 // And
 const S1 s1 := { a1 := 0, a2 := omit, a3 := 2 };
 // Notice that the order of defining values of the fields does not matter
 const S2 s2a := { b1 := 0, b3 := 2, b2 := omit };
 const S2 s2b := { b2 := 0, b3 := 2, b1 := omit };
 const S3 s3 := { c1 := 0, c2 :=2 };
 var SI v_si:= { 0, -, 2 };
 const SI si := { 0, 2 };
 const U1 u1 := { d1:= 0 };
 const U2 u2 := { e1:= 0 };
 const U3 u3; := { d1:= 0 };

 // Then
 s1 == s2a;
 // returns true
 s1 == s2b;
 // returns false, because neither a1 nor a2 are equal to their counterparts
 // (the corresponding element is not omitted)
 s1 == s3;
 // returns false, because the effective value structures of s1 and s3 are not compatible
 s1 == v_si;
 // causes test case error as v_si is not completely initialized
 // (2nd element is left uninitialized)
 s1 == si;

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 72

 // returns false, as the counterpart of the omitted a2 is 2,
 // but the counterpart of a3 is undefined
 s3 == si;
 // returns true
 u1 == u2;
 // causes error as U1 and U2 have no common subset of alternatives
 u1 == u3;
 // returns true, as alternatives with the same names are chosen and
 // the actual values in the selected alternatives are equal

7.1.4 Logical operators

The predefined boolean operators perform the operations of negation, logical and, logical or and logical xor. Their
operands shall be of root type boolean. The result type of logical operations is boolean.

The logical not is the unary operator that returns the value true if its operand was of value false and returns the
value false if the operand was of value true.

The logical and returns the value true if both its operands are true; otherwise it returns the value false.

The logical or returns the value true if at least one of its operands is true; it returns the value false only if both
operands are false.

The logical xor returns the value true if one of its operands is true; it returns the value false if both operands are
false or if both operands are true.

Short circuit evaluation for boolean expressions is used, i.e. the evaluation of operands of logical operators is stopped
once the overall result is known: in the case of the and operator, if the left argument evaluates to false, then the right
argument is not evaluated and the whole expression evaluates to false. In the case of the or operator, if the left
argument evaluates to true, then the right argument is not evaluated and the whole expression evaluates to true.

7.1.5 Bitwise operators

The predefined bitwise operators perform the operations of bitwise not, bitwise and, bitwise or and bitwise xor.
These operators are known as not4b, and4b, or4b and xor4b respectively.

NOTE: To be read as "not for bit", "and for bit" etc.

Their operands shall be of root type bitstring, hexstring or octetstring. In the case of and4b, or4b and
xor4b the operands shall be of the same root types.The result type of the bitwise operators shall be the root type of the
operands.

The bitwise not4b unary operator inverts the individual bit values of its operand. For each bit in the operand a 1 bit is
set to 0 and a 0 bit is set to 1. That is:

 not4b '1'B gives '0'B
 not4b '0'B gives '1'B

EXAMPLE 1:

 not4b '1010'B gives '0101'B
 not4b '1A5'H gives 'E5A'H
 not4b '01A5'O gives 'FE5A'O

The bitwise and4b operator accepts two operands of equal length. For each corresponding bit position, the resulting
value is a 1 if both bits are set to 1, otherwise the value for the resulting bit is 0. That is:

 '1'B and4b '1'B gives '1'B
 '1'B and4b '0'B gives '0'B
 '0'B and4b '1'B gives '0'B
 '0'B and4b '0'B gives '0'B

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 73

EXAMPLE 2:

 '1001'B and4b '0101'B gives '0001'B
 'B'H and4b '5'H gives '1'H
 'FB'O and4b '15'O gives '11'O

The bitwise or4b operator accepts two operands of equal length. For each corresponding bit position, the resulting
value is 0 if both bits are set to 0, otherwise the value for the resulting bit is 1. That is:

 '1'B or4b '1'B gives '1'B
 '1'B or4b '0'B gives '1'B
 '0'B or4b '1'B gives '1'B
 '0'B or4b '0'B gives '0'B

EXAMPLE 3:

 '1001'B or4b '0101'B gives '1101'B
 '9'H or4b '5'H gives 'D'H
 'A9'O or4b 'F5'O gives 'FD'O

The bitwise xor4b operator accepts two operands of equal length. For each corresponding bit position, the resulting
value is 0 if both bits are set to 0 or if both bits are set to 1, otherwise the value for the resulting bit is 1. That is:

 '1'B xor4b '1'B gives '0'B
 '0'B xor4b '0'B gives '0'B
 '0'B xor4b '1'B gives '1'B
 '1'B xor4b '0'B gives '1'B

EXAMPLE 4:

 '1001'B xor4b '0101'B gives '1100'B
 '9'H xor4b '5'H gives 'C'H
 '39'O xor4b '15'O gives '2C'O

7.1.6 Shift operators

The predefined shift operators perform the shift left (<<) and shift right (>>)operations. Their left-hand operand shall
be of root type bitstring, hexstring or octetstring. Their right-hand operand shall be a non-negative
integer. The result type of these operators shall be the same as the root type of the left operand.

The shift operators behave differently based upon the type of their left-hand operand. If the type of the left-hand
operand is:

a) bitstring then the shift unit applied is 1 bit;

b) hexstring then the shift unit applied is 1 hexadecimal digit;

c) octetstring then the shift unit applied is 1 octet.

The shift left (<<) operator accepts two operands. It shifts the left-hand operand by the number of shift units to the left
as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits or octets) are discarded. For each
shift unit shifted to the left, a zero ('0'B, '0'H, or '00'O determined according to the type of the left-hand operand) is
inserted from the right-hand side of the left operand.

EXAMPLE 1:

 '111001'B << 2 gives '100100'B
 '12345'H << 2 gives '34500'H
 '1122334455'O << (1+1) gives '3344550000'O

The shift right (>>)operator accepts two operands. It shifts the left-hand operand by the number of shift units to the
right as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits or octets) are discarded. For
each shift unit shifted to the right, a zero ('0'B, '0'H, or '00'O determined according to the type of the left-hand operand)
is inserted from the left-hand side of the left operand.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 74

EXAMPLE 2:

 '111001'B >> 2 gives '001110'B
 '12345'H >> 2 gives '00123'H
 '1122334455'O >> (1+1) gives '0000112233'O

7.1.7 Rotate operators

The predefined rotate operators perform the rotate left (<@) and rotate right (@>) operators. Their left-hand operand
shall be of root type bitstring, hexstring, octetstring, charstring, universal charstring,
record of, or set of. Their right-hand operand shall be a non-negative integer. The result type of these
operators shall be the same as the root type of the left-hand operand.

NOTE: Please note that the root types of arrays is record of, therefore arrays are allowed as left-hand
operands of rotate operators.

The rotate operators behave differently based upon the type of their left-hand operand. If the type of the left-hand
operand is:

a) bitstring then the rotate unit applied is 1 bit;

b) hexstring then the rotate unit applied is 1 hexadecimal digit;

c) octetstring then the rotate unit applied is 1 octet;

d) charstring or universal charstring then the rotate unit applied is one character;

e) record of, set of, or array then the rotate unit applied is one element.

The rotate left (<@) operator accepts two operands. It rotates the left-hand operand by the number of shift units to the
left as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits, octets, characters, or elements)
are re-inserted into the left-hand operand from its right-hand side.

EXAMPLE 1:

 '101001'B <@ 2 gives '100110'B
 '12345'H <@ 2 gives '34512'H
 '1122334455'O <@ (1+2) gives '4455112233'O
 "abcdefg" <@ 3 gives "defgabc"

The rotate right (@>) operator accepts two operands. It rotates the left-hand operand by the number of shift units to the
right as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits, octets, characters, or elements)
are re-inserted into the left-hand operand from its left-hand side.

EXAMPLE 2:

 '100001'B @> 2 gives '011000'B
 '12345'H @> 2 gives '45123'H
 '1122334455'O @> (1+2) gives '3344551122'O
 "abcdefg" @> 3 gives "efgabcd"

7.2 Field references and list elements
Within expressions, fields of record and set types are referenced with the dot notation ".field". Elements of record
of, set of, array and string types are referenced with the index notation "[index]". Dot and brackets have the same
binding power. Field references and list elements are evaluated from left to right.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 75

8 Modules
The principal building blocks of TTCN-3 are modules. A module may define a fully executable test suite or just a
library. A module may refer to the TTCN-3 language version and to package versions being used. A module consists of
a (optional) definitions part, and a (optional) module control part.

NOTE: The term test suite is synonymous with a complete TTCN-3 module containing test cases and a control
part.

The transfer syntax of TTCN-3 modules shall be UTF-8, i.e. each character of the module shall be individually encoded
and decoded according to the UCS Transformation Format 8 (UTF-8) as defined in annex R of ISO/IEC 10646 [2] and
no characters not corresponding to any character of the module shall be present.

8.1 Definition of a module
A module is defined with the keyword module.

NOTE 1: The treatment of TTCN-3 modules in files, repositories and alike is outside the scope of the present
document.

Syntactical Structure

module ModuleIdentifier [language FreeText { "," FreeText }] "{"
 [ModuleDefinitionsPart]
 [ModuleControlPart]

"}"

Semantic Description

A TTCN-3 module groups a set of (typically cohesive) TTCN-3 definitions. TTCN-3 modules have an explicit import
interface to use definitions from other TTCN-3 or non-TTCN-3 modules. It is possible to hide definitions in a TTCN-3
module (see clause 8.2.5). TTCN-3 modules can be compiled/interpreted separately. They are reusable and
parameterizable.

Module names are of the form of a TTCN-3 identifier.

NOTE 2: The module identifier is the informal text name of the module.

In addition, a module specification can carry an optional attribute identified by the language keyword that identifies
the edition of the TTCN-3 language, in which the module is specified. The following language strings are to be used:

 "TTCN-3:2001" - to be used with modules complying with version 1.1.2 of the present document (see annex H).
 "TTCN-3:2003" - to be used with modules complying with version 2.2.1 of the present document (see annex H).
 "TTCN-3:2005" - to be used with modules complying with version 3.1.1 of the present document (see annex H).
 "TTCN-3:2007" - to be used with modules complying with version 3.2.1 of the present document (see annex H).
 "TTCN-3:2008" - to be used with modules complying with version 3.3.2 of the present document (see annex H).
 "TTCN-3:2008 Amendment 1" - to be used with modules complying with version 3.4.1 of the present document
 (see annex H).
 "TTCN-3:2009" - to be used with modules complying with version 4.1.1 of the present document (see annex H).
 "TTCN-3:2010" - to be used with modules complying with the present document.

Furthermore, the optional attribute identified by the language keyword may identify package versions being used by
this module. The package tags are defined in ES 202 781 [i.12], ES 202 782 [i.15], ES 202 784 [i.13], and
ES 202 785 [i.14]. The language identifier and the package identifier are to be written as a comma-separated list.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

 module MyTestSuite language "TTCN-3:2003"
 { … }

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 76

8.2 Module definitions part
The module definitions part specifies the top-level definitions of the module and may import visible identifiers from
other modules. Visibility rules are given in clause 8.2.5. Scope rules for declarations made in the module definitions
part and imported declarations are given in clause 5.3. Those language elements which may be defined in a TTCN-3
module are listed in table 1. Every definition can be associated with attributes using the with statement defined in
clause 27. Visible module definitions may be imported by other modules.

Syntactical Structure

 {
 [Visibility] (
 TypeDef |
 ConstDef |
 TemplateDef |
 ModuleParDef |
 FunctionDef |
 SignatureDef |
 TestcaseDef |
 AltstepDef |
 ImportDef |
 GroupDef |
 ExtFunctionDef |
 FriendDef
) [WithStatement]
 [";"]
 }+

Semantic Description

Definitions in the module definitions part may be made in any order.

Such definitions, i.e. top level definitions outside of other scope units, are globally visible within the module. They may
be used elsewhere in the module. This includes identifiers imported from other modules.

Declarations of dynamic language elements such as variables or timers shall only be made in the control part, test cases,
functions, altsteps or component types.

TTCN-3 does not support the declaration of variables in the module definitions part, i.e. global variables cannot be
defined in TTCN-3. However, variables defined in a test component type may be used by all test cases, functions etc.
running on components of that component type and variables defined in the control part provide the ability to keep their
values independently of test case execution.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

 module MyModule
 { // This module contains definitions only
 :
 const integer MyConstant := 1;
 type record MyMessageType { … }
 :
 function TestStep(){ … }
 :
 }

8.2.1 Module parameters

Module parameters define a set of values that are supplied by the test environment at run-time. Module parameters do
not change their value during test execution. They can be used on right hand side of assignments, in expressions, in
actual parameters, and in template definitions, but not within type definitions.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 77

Syntactical Structure

Single type, single module parameter form:

[Visibility] modulepar ModuleParType ModuleParIdentifier [":=" ConstantExpression] ";"

Single type, multiple module parameter form:

[Visibility] modulepar ModuleParType
 { ModuleParIdentifier [":=" ConstantExpression] "," }
 ModuleParIdentifier [":=" ConstantExpression] ";"

Semantic Description

Module parameters behave as global constants at run-time.

Module parameters allow to customize a TTCN-3 test suite for a specific IUT, test setup or test campaign. Module
parameters are declared by specifying the type and listing their identifiers following the keyword modulepar.

It is allowed to specify default values for module parameters. This shall be done by an assignment in the module
parameter list. A default value can merely be assigned at the place of the declaration of the module parameter.

If the test system does not provide an actual run-time value for a module parameter, the default value shall be used
during test execution, otherwise the actual value provided by the test system. Actual run-time values shall be literals
only.

Visible module parameters can be imported.

Optional fields of record and set module parameters or module parameter fields can be initialized explicitly or
implicitly. For implicit initialization of the optional fields of a module parameter or a module parameter field, an
optional attribute with the value "implicit omit" (see clause 27.7) shall be associated with it either directly or
via the attribute distribution (scoping) mechanism (see clause 27.1.1).

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) During test execution these values shall be treated as constants.

b) Module parameters shall not be of port type, default type or component type.

c) A module parameter shall only be of type address if the address type is explicitly defined within the associated
module.

d) Module parameters shall be declared within the module definition part only.

e) More than one occurrence of module parameters declaration is allowed but each parameter shall be declared
only once (i.e. redefinition of the module parameter is not allowed).

f) The constant expression for the default value of a module parameter shall respect the limitations given in
clause 16.1.4.

g) Module parameters shall not be used in type or array definitions.

Examples

 module MyTestSuiteWithParameters
 {
 // single type, single module parameter, which is per default public
 modulepar boolean TS_Par0 := true;

 // single type, multiple module parameters with an explicit public visibility
 public modulepar integer TS_Par1, TS_Par2 := 1 + char2int("a");

 ...
 }

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 78

8.2.2 Groups of definitions

In the module definitions part, definitions can be collected in named groups. Grouping is done to aid readability and to
add logical structure to the module if required. If necessary, the dot notation shall be used to identify sub-groups within
the group hierarchy uniquely, e.g. for the import of a specific sub-group.

Syntactical Structure

[public] group GroupIdentifier "{"
 { ModuleDefinition [";"] }
"}"

Semantic Description

A group of definitions can be specified wherever a single definition is allowed. Groups may be nested, i.e. groups may
contain other groups. This allows the test suite specifier to structure, among other things, collections of test data or
functions describing test behaviour.

Groups and nested groups have no scoping. Please note however, attributes given to a group by an associated with
statement apply to all elements of a group (see clause 27). Import statements may import groups so that all visible
elements of a group are imported (see clause 8.2.3.3).

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Group identifiers across the whole module need not necessarily be unique. However, top-level group
identifiers and all group identifiers of subgroups of a single group shall be unique.

b) Only public visibility can be defined for groups as they are always public.

Examples

 module MyModule {
 :
 // A collection of definitions
 group MyGroup {
 const integer MyConst:= 1;
 :
 type record MyMessageType { … };
 group MyGroup1 { // Sub-group with definitions
 type record AnotherMessageType { … };
 const boolean MyBoolean := false
 }
 }

 // A group of altsteps
 group MyStepLibrary {
 group MyGroup1 { // Sub-group with the same name as the sub-group with definitions
 altstep MyStep11() { … }
 altstep MyStep12() { … }
 :
 altstep MyStep1n() { … }
 }
 group MyGroup2 {
 altstep MyStep21() { … }
 altstep MyStep22() { … }
 :
 altstep MyStep2n() { … }
 }
 }
 :
 }

 // An import statement that imports MyGroup1 within MyStepLibrary
 import from MyModule {
 group MyStepLibrary.MyGroup1
 }

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 79

8.2.3 Importing from modules

It is possible to re-use visible definitions specified in different modules using the import statement. Every definition
in a TTCN-3 module has an associated visibility, which is by default public (see clause 8.2.5).

NOTE: Groups are public only. Importing a group means that only the visible elements of the group are being
imported.

8.2.3.1 General format of import

An import statement can be used anywhere in the module definitions part.

Syntactical Structure

[Visibility] import from ModuleId
 (
 (all [except "{" ExceptSpec "}"])
 |
 ("{" ImportSpec "}")
)
[";"]

Semantic Description

TTCN-3 supports the import of the following definitions: module parameters, user defined types, signatures, constants,
data templates, signature templates, functions, external functions, altsteps and test cases. Each definition has a name
(defines the identifier of the definition, e.g. a function name), a specification (e.g. a type specification or a signature of a
function) and in the case of functions, altsteps and test cases an associated behaviour description. In addition, import
statements of one module can be explicitly imported by another module (see clause 8.2.3.7). Only definitions or import
statements visible from the importing module can be imported (see clause 8.2.5).

In contrast to module definitions, which are by default public, import statements are by default private.

EXAMPLE 1a:

 Name Specification Behaviour description
function MyFunction (inout MyType1 MyPar) return MyType2

runs on MyCompType
{
 const MyType3 MyConst := …;
 : // further behaviour
}

 Specification Name Specification
type record MyRecordType {

 field1 MyType4,
 field2 integer
}

 Specification Name Specification
template MyType5 MyTemplate := {

 field1 := 1,
 field2 := MyConst, // MyConst is a module constant
 field3 := ModulePar // ModulePar is module parameter
}

Behaviour descriptions have no effect on the import mechanism, because their internals are considered to be invisible to
the importer when the corresponding functions, altsteps or test cases are imported. Thus, they are not considered in the
following descriptions.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 80

The specification part of an importable definition contains local definitions (e.g. field names of structured type
definitions or values of enumerated types) and referenced definitions (e.g. references to type definitions, templates,
constants or module parameters). For the examples above, this means:

 Name Local definitions Referenced definitions
function MyFunction MyPar MyType1, MyType2, MyCompType
type MyRecordType field1, field2 MyType4, integer
template MyTemplate MyType5, field1, field2, field3, MyConst, ModulePar

NOTE 1: The local definitions column refers to identifiers only that are newly defined in the importable definition.
Values assigned to individual fields of importable definitions, e.g. in template definitions, may also be
considered as local definitions, but they are not important for the explanation of the import mechanism.

NOTE 2: The referenced definitions field1, field2 and field3 of template MyTemplate are the field names of
MyType5, i.e. they are referenced via MyType5.

Referenced definitions are also importable definitions, i.e. the source of a referenced definition can again be structured
into a name and a specification part and the specification part also contains local and referenced definitions. In other
words, an importable definition may be built up recursively from other importable definitions.

The TTCN-3 import mechanism is related to the local and referenced definitions used in the specification part of the
importable definitions. Table 8 specifies the possible local and referenced definitions of importable definitions.

Table 8: Possible local and referenced definitions of importable definitions

Importable Definition Possible Local Definitions Possible Referenced Definitions
Module parameter Module parameter type
User-defined type (for all)

• enumerated type Concrete values
• structured type Field names, nested type

definitions
Field types

• port type Message types, signatures
• component type Constant names, variable names,

timer names and port names
Constant types, variable types, port types

Signature Parameter names Parameter types, return type, types of exceptions
Constant Constant type
Data Template Parameter names Template type, parameter types, constants, module

parameters, functions
Signature template Signature definition, constants, module parameters

functions
Function Parameter names Parameter types, return type, component type

(runs on-clause)
External function Parameter names Parameter types, return type
Altstep Parameter names Parameter types, component type (runs

on-clause)
Test case Parameter names Parameter types, component types (runs on- and

system- clause)
NOTE 1: For the import of import statements see clause 8.2.3.7.
NOTE 2: For the import of groups see clause 8.2.3.3.

The TTCN-3 import mechanism distinguishes between the identifier of a referenced definition and the information
necessary for the usage of a referenced definition within the imported definition. For the usage, the identifier of a
referenced definition is not required and therefore not imported automatically.

EXAMPLE 1b: Differentiation between information necessary for the usage and the identifier

 module A {
 type record MyRec1 {
 integer field1,
 charstring field2
 }
 }

 module B {
 import from A all;

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 81

 type record MyRec2 {
 MyRec1 myField1,
 // "myField1" is the local definition, "MyRec1" is a referenced definition;
 // the name "MyRec1" shall be imported in this case as is directly referenced
 boolean myField2
 }
 }

 module C {
 import from B all;
 const MyRec2 t_MyRec2 := {
 myField1 := { field1 := 5, field2 := "A" },
 // to define myField1 of MyRec2 the name "MyRec1" is not needed, the
 // information necessary for the usage is its type information,
 // i.e. names and types of its fields field1 and field2
 // which is embeddded in the imported definition of MyRec2
 myField2 := true
 }
 }

If an imported definition has attributes (defined by means of a with statement) then the attributes shall also be
imported. The mechanism to change attributes of imported definitions is explained in clause 27.1.3.

NOTE 3: If the module has global attributes they are associated to definitions without these attributes.

The use of import on single definitions, groups of definitions, definitions of the same kind, etc. may lead to situations
where the same definition is referred to more than once. Such cases shall be resolved by the system and definitions shall
be imported only once.

NOTE 4: The mechanisms to resolve such ambiguities, e.g. overwriting and sending warnings to the user, are
outside the scope of the present document and should be provided by TTCN-3 tools.

All import statements and definitions within import statements are considered to be treated independently one after
the other in the order of their appearance.

All TTCN-3 modules shall have their own name space in which all definitions shall be uniquely identified. Name
clashes may occur due to import, e.g. import from different modules. Name clashes shall be resolved using qualified
name(s) for the imported definition(s), i.e. prefixing the imported definition (which causes the name clash) by the
identifier of the module in which it has been defined; the prefix and the identifier shall be separated by a dot (".").

In cases where there are no ambiguities the prefixing need not (but may) be present when the imported definitions are
used. When the definition is referenced in the same module where it is defined, the module identifier of the module (the
current module) also may be used for prefixing the identifier of the definition.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) An import statement shall only be used in the module definitions part and not be used within a control part,
function definition, and alike.

b) Only top-level visible definitions of a module may be imported. Definitions which are top-level but invisible
to the importing module or which occur at a lower scope (e.g. local constants defined in a function) shall not
be imported.

c) A definition is imported together with its name and all local definitions.

NOTE 5: A local definition, e.g. a field name of a user-defined record type, has only meaning in the context of the
definitions in which it is defined, e.g. a field name of a record type can only be used to access a field of
the record type and not outside this context.

d) A definition is imported together with all information of referenced definitions that are necessary for the usage
of the imported definition, independent of the visibility of the referenced definitions (see clause 8.2.5).

NOTE 6: If a module A imports a definition from module B that uses a type reference defined in module C, the
corresponding information necessary for the usage of that type is automatically imported into module A.
Identifiers of referenced definitions are not automatically imported.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 82

e) If the referenced definitions are wished to be used in the importing module, they shall be explicitly imported
either directly from its source module or indirectly by importing the import statements of a module importing
it (see clause 8.2.3.7).

f) When importing a function, altstep or test case the corresponding behaviour specifications and all definitions
used inside the behaviour specifications remain invisible for the importing module.

g) The language specification of the import statement shall not override the language specification of the
importing module.

h) The language specification of the import statement shall be identical to the language specification of the source
module from which definitions are imported (see clause 8.2.3.8) provided a language specification is defined
in the source module. If not, the language specification in the import statement is taken as the language
specification of the source module. If the source module uses however language concepts not being part of that
language specification, this causes an error for the import statement.

Examples

EXAMPLE 1: Selected import examples

module MyModuleA
{ :
 // Scope of the imported definitions is global to MyModuleA
 import from MyModuleB all; // import of all definitions from MyModuleB
 import from MyModuleC { // import of selected definitions from MyModuleC
 type MyType1, MyType2; // import of types MyType1 and MyType2
 template all // import of all templates
 }
 :

 function MyBehaviourC()
 {
 // import cannot be used here
 :
 }
 :
 control

{
 // import cannot be used here
 :

 }
}

EXAMPLE 2: Use of imported definitions and visibility of definitions referenced by them

 module ModuleONE {

 modulepar integer ModPar1 := …;

 type record RecordType_T1 {
 integer Field1_T1,
 :
 }

 type record RecordType_T2 {
 RecordType_T1 Field1_T2,
 :
 }

 const integer MyConst := …;

 template RecordType_T2 Template_T2 (RecordType_T1 TempPar_T2):= { // parameterized template
 Field1_T2 := …,
 :
 }

 } // end module ModuleONE

 module ModuleTWO {

 import from ModuleONE {
 template Template_T2
 }

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 83

 // Only the names Template_T2 and TempPar_T2 will be visible in ModuleTWO. Please note, that
 // the identifier TempPar_T2 can only be used when modifying Template_T2. All information

 // necessary for the usage of Template_T2, e.g. for type checking purposes, are imported
 // for the referenced definitions RecordType_T1, Field1_T2, etc., but their identifiers are
 // not visible in ModuleTWO.
 // This means, e.g. it is not possible to use the constant MyConst or to declare a
 // variable of type RecordType_T1 or RecordType_T2 in ModuleTWO without explicitly importing
 // these types.

 import from ModuleONE {
 modulepar ModPar2
 }

 // The module parameter ModPar2 of ModuleONE is imported from ModuleONE and
 // can be used like an integer constant

 } // end module ModuleTWO

 module ModuleTHREE {

 import from ModuleONE all; // imports all definitions from ModuleONE

 type port MyPortType {
 inout RecordType_T2 // Reference to a type defined in ModuleONE
 }

 type component MyCompType {
 var integer MyComponentVar := ModPar2;
 // Reference to a module parameter of ModuleONE
 :
 }

 function MyFunction () return integer {
 return MyConst // Reference to a module constant of ModuleONE
 }

 testcase MyTestCase (out RecordType_T2 MyPar) runs on MyCompType {

 :
 MyPort.send(Template_T2); // Sending a template defined in ModuleONE
 :

 }

 } // end ModuleTHREE

 module ModuleFOUR {

 import from ModuleTHREE {
 testcase MyTestCase
 }

 // Only the name MyTestCase will be visible and usable in ModuleFOUR.
 // Type information for RecordType_T2 is imported via ModuleTHREE from ModuleONE and
 // Type information for MyCompType is imported from ModuleTHREE. All definitions
 // used in the behaviour part of MyTestCase remain hidden for the user of ModuleFOUR.

 } // end ModuleFOUR

EXAMPLE 3: Handling of name clashes

 module MyModuleA {
 :
 type bitstring MyTypeA;

 import from SomeModuleC {
 type MyTypeA, // Where MyTypeA is of type character string
 MyTypeB // Where MyTypeB is of type character string
 }
 :
 control {
 :
 var SomeModuleC.MyTypeA MyVar1 := "Test String"; // Prefix must be used
 var MyTypeA MyVar2 := '10110011'B; // This is the original MyTypeA
 :

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 84

 var MyTypeB MyVar3 := "Test String"; // Prefix need not be used …
 var SomeModuleC.MyTypeB MyVar3 := "Test String"; // … but it can be if wished
 :
 }
 }

NOTE 7: Definitions with the same name defined in different modules are always assumed to be different, even if
the actual definitions in the different modules are identical. For example, importing a type that is already
defined locally, even with the same name, would lead to two different types being available in the
module.

8.2.3.2 Importing single definitions

Single visible definitions can be imported by referring to the definition kind and the definition name(s). The import of
single definitions can be used in combination with imports of groups (see clause 8.2.3.3), with imports of definitions of
the same kind (see clause 8.2.3.4), and with imports of import statements (see clause 8.2.3.7).

Syntactical Structure

[Visibility] import from ModuleId "{"
 {
 (
 (type { TypeDefIdentifier [","] }) |
 (template { TemplateIdentifier [","] }) |
 (const { ConstIdentifier [","] }) |
 (testcase { TestcaseIdentifier [","] }) |
 (altstep { AltstepIdentifier [","] }) |
 (function { FunctionIdentifier [","] }) |
 (signature { SignatureIdentifier [","] }) |
 (modulepar { ModuleParIdentifier [","] })
)
 [";"]
 }
"}" [";"]

Semantic Description

See clause 8.2.3. Import of an invisible definition shall cause an error.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The definition to be imported shall be defined in the module from which it is to be imported and shall be visible
to the importing module.

b) See the restrictions given in clause 8.2.3.

Examples

 import from MyModuleA {
 type MyType1 // imports one type definition from MyModuleA only
 }

 import from MyModuleB {
 type MyType2, Mytype3, MyType4; // imports three types,
 template MyTemplate1; // imports one template, and
 const MyConst1, MyConst2 // imports two constants
 }

8.2.3.3 Importing groups

Groups of definitions may be imported. The import of groups can be used in combination with imports of single
definitions (see clause 8.2.3.2), with imports of definitions of the same kind (see clause 8.2.3.4), and with imports of
import statements (see clause 8.2.3.7).

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 85

It is allowed to import sub-groups (i.e. a group which is defined within another group) directly, i.e. without the groups
in which the sub-group is embedded. If the name of a sub-group that should be imported is identical to the name of
another sub-group in the same module (see clause 8.2.2), the dot notation shall be used to identify the sub-group to be
imported uniquely.

If some visible definitions of a group are wished not to be imported, their kinds and identifiers shall be listed in the
exception list within a pair of curly brackets following the except keyword. The all keyword is also allowed to be
used in the exception list; this will exclude all definitions of the same kind from the import statement.

Syntactical Structure

[Visibility] import from ModuleId "{"
 {
 (group { FullGroupIdentifier [except "{" ExceptSpec "}"] [","] })
 [";"]
 }
"}" [";"]

Semantic Description

The effect of importing a group is identical to an import statement that lists all visible definitions (including
sub-groups) of this group except of those that are listed in the except specification. See also clause 8.2.3. Import
statements contained in the group or in its subgroups are not part of this list, only definitions are.

It is important to point out, that the except statement does not exclude the definitions listed from being imported in
general; all statements importing definitions of the same kind can be seen as a shorthand notation for an equivalent list
of identifiers of single definitions. The except statement excludes definitions from this single list only.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The group to be imported shall be defined in the module from which it is to be imported.

b) See the restrictions given in clause 8.2.3.

Examples

 import from MyModule { group MyGroup } // includes all visible definitions from MyGroup

 import from MyModule {
 group MyGroup except {
 type MyType3, MyType5; // excludes the two types from the import statement,
 template all // excludes all templates defined in MyGroup
 // from the import statement
 // but imports all other visible definitions of MyGroup
 }
 }

 import from MyModule {
 group MyGroup
 except { type MyType3 };// imports all visible types of MyGroup except MyType3
 type MyType3 // imports MyType3 explicitly
 }

8.2.3.4 Importing definitions of the same kind

The all keyword may be used to import all visible definitions of the same kind of a module. The all keyword used
with the constant keyword identifies all visible constants declared in the definitions part of the module the import
statement refers to. Similarly the all keyword used with the function keyword identifies all visible functions and
all visible external functions defined in the module the import statement denotes.

If some visible declarations of a kind are wished to be excluded from the given import statement, their identifiers shall
be listed following the except keyword.

The import of visible definitions of the same kind can be used in combination with imports of single visible definitions
(see clause 8.2.3.2), with imports of groups (see clause 8.2.3.3), and with imports of import statements (see
clause 8.2.3.7).

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 86

Syntactical Structure

[Visibility] import from ModuleId "{"
 {
 (
 (type all [except { TypeDefIdentifier [","] }]) |
 (template all [except { TemplateIdentifier [","] }]) |
 (const all [except { ConstIdentifier [","] }]) |
 (testcase all [except { TestcaseIdentifier [","] }]) |
 (altstep all [except { AltstepIdentifier [","] }]) |
 (function all [except { FunctionIdentifier [","] }]) |
 (signature all [except { SignatureIdentifier [","] }]) |
 (modulepar all [except { ModuleParIdentifier [","] }])
)
 [";"]
 }
"}" [";"]

Semantic Description

The effect of importing definitions of the same kind is identical to an import statement that lists all visible definitions
of that kind except of those that are listed in the except specification. See also clause 8.2.3.

NOTE: If the list of all visible definitions of that kind except of those that are listed in the except specification
is empty, the import statement has no effect. This case does not lead to an error.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) See the restrictions given in clause 8.2.3.

Examples

 import from MyModule {
 type all; // imports all types of MyModule
 template all // imports all templates of MyModule
 }

 import from MyModule {
 type all except MyType3, MyType5; // imports all types except MyType3 and MyType5
 template all // imports all templates defined in Mymodule
 }

8.2.3.5 Importing all definitions of a module

All visible definitions of a module definitions part may be imported using the all keyword next to the module name.

If some visible definitions are wished not to be imported, their kinds and identifiers shall be listed in the exception list
within a pair of curly brackets following the except keyword. The all keyword is also allowed to be used in the
exception list; this will exclude all visible declarations of the same kind from the import statement.

NOTE 1: If the list of all visible definitions of a module except of those that are listed in the except specification
is empty, the import statement has no effect. This case does not lead to an error.

NOTE 2: Importing all definitions of a module imports only definitions declared directly in that module, but does
not import the import statements of that module (see also clause 8.2.3.7).

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 87

Syntactical Structure

[Visibility] import from ModuleId
 all
 [
 {
 except "{"
 (group { FullGroupIdentifier [","] } | all) |
 (type { TypeDefIdentifier [","] } | all) |
 (template { TemplateIdentifier [","] } | all) |
 (const { ConstIdentifier [","] } | all) |
 (testcase { TestcaseIdentifier [","] } | all) |
 (altstep { AltstepIdentifier [","] } | all) |
 (function { FunctionIdentifier [","] } | all) |
 (signature { SignatureIdentifier [","] } | all) |
 (modulepar { ModuleParIdentifier [","] } | all)
 "}"
 [";"]
 }
]
[";"]

Semantic Description

The effect of importing all visible definitions of a module is identical to an import statement that lists all importable
definitions of that module except of those that are listed in the except specification. See also clause 8.2.3.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) If all visible definitions of a module are imported by using the all keyword, no other form of import (import of
single definitions, import of the same kind, etc.) shall be used for the same import statement.

b) In the set of except statements for an all import, only one except statement per kind of definition (i.e. for a
group, type, etc.) is allowed.

Examples

 import from MyModule all; // includes all definitions from MyModule

 import from MyModule all except {
 type MyType3, MyType5; // excludes these two types from the import statement and
 template all // excludes all templates declared in MyModule,
 // from the import statement
 // but imports all other definitions of MyModule
 }

8.2.3.6 Import definitions from other TTCN-3 editions and from non-TTCN-3 modules

In cases when visible definitions are imported from modules from other TTCN-3 editions or from other sources than
TTCN-3 modules, the language specification shall be used to denote the language (may be together with a version
number) of the source (e.g. module, package, library or even file) from which definitions are imported. It consists of the
language keyword and a subsequent textual declaration of the denoted language.

The use of the language specification is optional when importing from a TTCN-3 module of the same edition as the
importing module. The TTCN-3 language identifiers defined in clause 8.1 are to be used. Package identifiers from
ES 202 781 [i.12], ES 202 782 [i.15], ES 202 784 [i.13] and ES 202 785 [i.14] can be used in addition. Identifiers for
other languages are defined in the language mapping parts of TTCN-3, i.e. in ES 201 873-7 [i.5], ES 201 873-8 [i.6]
and ES 201 873-9 [i.7].

When an incompatibility is discovered between the language and/or package identification (including implicit
identification by omitting the language specification) and the syntax of the module from which definitions are imported,
tools shall provide reasonable effort to resolve the conflict.

Syntactical Structure

[Visibility] import from ModuleIdentifier [LanguageSpec] … [";"]

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 88

Semantic Description

TTCN-3 supports the referencing of elements defined in other TTCN-3 editions (versioned elements) or other languages
(foreign elements) from within TTCN-3 modules. Such elements can be used in a TTCN-3 module of a given edition
only if they have a TTCN-3 view in that TTCN-3 edition. The term TTCN-3 view can be best explained by considering
the case when the definition of a TTCN-3 element is based on another TTCN-3 element, the information content of the
referenced element shall be available and is used for the new definition. For example, when a template is defined based
on a structured type, the identifiers and types of fields of the base type shall be accessible and are used for the template
definition. In a similar way, when a base type is a versioned or foreign element it shall provide the same information
content as would be required from a TTCN-3 type declaration. The versioned or foreign element, naturally, may contain
more information than required by TTCN-3. The TTCN-3 view of a versioned or foreign element means that part of the
information carried by that element, which is necessary to use it in TTCN-3. Obviously, the TTCN-3 view of a
versioned or foreign element may be the full set or a subset of the information content of that element but never a
superset. There may be versioned or foreign element without a TTCN-3 view (zero TTCN-3 view), i.e. for some reason
no TTCN-3 definition in the given edition could be based on them.

To make declarations of versioned or foreign element visible in TTCN-3 modules, their names shall be imported just
like definitions in other TTCN-3 modules of the given edition. When imported, only the TTCN-3 view of the versioned
or foreign element will be seen from the importing TTCN-3 module. There are two main differences between importing
TTCN-3 elements of the same editions and versioned or foreign elements:

• to import from a TTCN-3 module of another edition of from a non-TTCN-3 module the import statement shall
contain an appropriate language identifier string;

• only versioned or foreign elements with a TTCN-3 view of a given edition are importable into a TTCN-3
module of that edition.

Importing can be done automatically using the all directive, in which case all importable objects shall automatically be
selected by the testing tool, or done manually by listing names of elements to be imported. Naturally, in the second case
only importable elements are allowed in the list.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The language specification may only be omitted if the referenced module contains TTCN-3 notation and the
TTCN-3 version is known.

b) Definitions imported from non-TTCN-3 language sources have by default public visibility provided that no
other rules are defined in the respective language mapping (see ES 201 873-7 [i.5], ES 201 873-8 [i.6] or
ES 201 873-9 [i.7], respectively).

Examples

 module MyNewModule {
 import from MyOldModule language "TTCN-3:2003" {
 type MyType
 }
 }
 module MyNewestModule {
 import from MyNewModule { import all } language "TTCN-3:2003";
 // the language specifications shall be identical, see clause 8.2.3.8
 }

NOTE: The import mechanism is designed to allow the re-use of definitions from other TTCN-3 editions or from
other non-TTCN-3 language sources. The rules for importing definitions from specifications written in
other languages, e.g. SDL packages, may follow the TTCN-3 rules or may have to be defined separately.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 89

8.2.3.7 Importing of import statements from TTCN-3 modules

Visible import statements of TTCN-3 modules can be imported by other TTCN-3 modules.

Syntactical Structure

[Visibility] import from ModuleIdentifier [LanguageSpec]
 "{" import all [";"] "}" [";"]

Semantic Description

TTCN-3 supports importing of visible import statements from other TTCN-3 modules. This means that import
statements of the module, from which the import statements are imported, are re-imported to the importing module. For
example, if module B imports the import statements of module A, everything that is imported by A using import
statements visible for module B, is also imported by B. If another module C imports all import statements from B, then
C imports all what A is importing - provided that the import statements are visible to modules B and C.

It is not possible to import individual import statements of another module.

The import of import statements can be used in combination with imports of single definitions (see clause 8.2.3.2), with
imports of groups (see clause 8.2.3.3), and with imports of definitions of the same kind (see clause 8.2.3.4).

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The restrictions given in clause 8.2.3.1 apply.

b) The restrictions given in clause 8.2.3.6 apply.

c) Importing of import statements is only possible from other TTCN-3 modules, i.e. the language specification
shall denote a TTCN-3 edition only, not a non-TTCN-3 language.

Examples

EXAMPLE: Importing of visible import statements

module A {
 type integer T1;
 type integer T2;
 template T1 t1 := ?;
 template T2 t2 := *;
 :
}
module B {
 public import from A { type T1 }
 type charstring T2;
 template T1 t1 := (1, 2, 3);
 :
}
module C {
 public import from B { import all } // imports the import statements only
 public import from B { type T2 } // imports the type B.T2
 import from A { template all }
 :
}
module D {
 private import from C { import all } // imports the import statements only
 :
}
module E {
 import from D { import all }
 :
}

// yields the following
// module A knows
// A.T1 (defined)
// A.T2 (defined)
// A.t1 (defined)
// A.t2 (defined)
//

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 90

// module B knows
// A.T1 (imported)
// B.T2 (defined)
// B.t1 (defined)
//
// module C knows
// A.T1 (imported from B importing it from A)
// B.T2 (imported)
// A.t1 (imported)
// A.t2 (imported)
//
// module D knows
// A.T1 (imported from C importing it from B importing it from A)
// B.T2 (imported from C importing it from B)
// A.t2 and A.t2 are not imported as their imports are private to C
//
// module E "knows" nothing
// as the imports of D are private and not visible to E

8.2.3.8 Compatibility of language specifications in imports

When importing into a TTCN-3 module, the language specification of the importing module, the language specification
of the import statement and the language specification of the source module, where the imported definitions are defined,
have to be compatible according to the following rules.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) A TTCN-3 module of any TTCN-3 edition can import from a non-TTCN-3 language source provided that a
TTCN-3 view for the non-TTCN-3 language exists (see clause 8.2.3.6).

b) Definitions or import statements are imported according to the language specification in which the definition
or the import statement is defined. If no language specification is given in this module, the language
specification of the import statement with which those definitions or import statements are to be imported, is
used instead. If the module, within which the definitions or the import statements are defined, and the import
statement for these definitions or import statements provide both a language specification, then they shall be
identical. If none of the two has a language specification, the language specification has to be known from
other sources, which is tool specific.

c) The TTCN-3 language specification in an import statement shall be lower or equal to the TTCN-3 language
specification of the importing module, i.e. a TTCN-3 module can only import from earlier or same editions of
TTCN-3 but not from later editions.

8.2.4 Definition of friend modules

Modules can define other modules to be friends.

Syntactical Structure

[private] friend module ModuleIdentifier { "," ModuleIdentifier } ";"

Semantic Description

Friendship to modules is defined by the exporting module (the module that declare the definitions) not by the importing
module (the module that uses the module definitions of another module). Friendship can be cyclic.

If a module is friend to a module from which it imports top-level definitions, all top-level definitions with public and
friend visibility are visible to the friend module. For non-friend modules, public top-level definitions are visible only.

Missing friend modules shall not cause an error.

NOTE: Friend modules can be checked by tools, however at most warning are to be issued if a friend module is
missing.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 91

Restrictions

In addition to the general static rules of TTCN 3 given in clause 5, the following restrictions apply:

a) Only private visibility can be defined for friend definitions as they are always private.

Examples

module MyModuleA {
 friend module MyModuleB,MyModuleC;
}
// MyModuleB and MyModuleC are friends of MyModuleA

module MyModuleB {
 friend module MyModuleA;
}
// MyModuleA is friend of MyModuleB

module MyModuleC {
}

8.2.5 Visibility of definitions

Top-level module definitions and import statements have a visibility, which can be explicitly set. They are by default
public except for imported and friend definitions. Import definitions are by default private. Friend definitions are
private only. Group definitions are public only.

Syntactical Structure

[public | friend | private]

Semantic Description

The visibility controls whether a top-level definition or an import statement is importable by another module.

Three visibilities are distinguished:

• A top-level definition or an import statement with public visibility is importable by any other module.

• A top-level definition or an import statement with friend visibility is importable by friend modules only (see
clause 8.2.4).

• A top-level definition or an import statement with private visibility cannot be imported at all.

NOTE: As specified in restriction e) of clause 8.2.3.1, this means that importable definitions are imported
together with all information of referenced definitions that are necessary for the usage of the importable
definition, even if the referenced definition is private. Only the identifier of the referenced definition is
not visible in the importing TTCN-3 module.

The visibility of groups is always public. The visibility of imported definitions is by default private. All other
module definitions are by default public.

The visibility of a top-level definition or an import statement defines their importability by another module. If the top-
level definition or the import statement is part of a group, this has no effect on the importability of the module
definition. The importability of a top-level definition by another module is summarized in table 9, the importability of
import statements in table 10.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 92

Table 9: Visibility and import of module definitions

Visibility of
module definition

Module definition
importable

directly by a
non-friend

module

Module definition
importable

directly by a
friend module

Module definition
importable via

group import by a
non-friend

module

Module definition
importable via

group import by a
friend module

public yes yes yes yes
friend no yes no yes
private no no no no

Table 10: Visibility and import of import statements

Visibility of
import

Import imported
by a non-friend

module

Import imported
by a friend

module
public yes yes
friend no yes
private no no

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

module MyModuleA {
 friend module MyModuleC;
 private type integer MyInteger;
 // MyInteger is not visible to other modules
 friend type charstring MyString;
 // MyString is visible to friend modules
 public type boolean MyBoolean;
 // MyBoolean is visible to all modules
}
module MyModuleB {
 import from MyModuleA all;
 // MyString and MyInteger are not visible and are not imported
 // MyBoolean is imported
}
module MyModuleC {
 import from MyModuleA all;
 // MyInteger is not visible and is not imported
 // MyString and MyBoolean are imported
}

8.3 Module control part
The module control part may contain local definitions (i.e. constants or templates), local instances (i.e. variables or
timers) and describe the selection, parameterization and execution order (possibly repetitive) of the actual test cases. A
test case shall be defined in the module definitions part or imported from another module, and called in the control part.

The control part of a module calls the test cases with actual parameters and controls their execution. Program statements
can be used to specify the selection and execution order of the test cases. Definitions made in the module control part
have local visibility, i.e. can be used within the control part only.

This is explained in more detail in clause 26.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 93

EXAMPLE:

 module MyTestSuite
 { // This module contains definitions …

 :
 const integer MyConstant := 1;
 type record MyMessageType { … }
 template MyMessageType MyMessage := { … }
 :
 function MyFunction1() { … }
 function MyFunction2() { … }
 :

testcase MyTestcase1() runs on MyMTCType { … }
testcase MyTestcase2() runs on MyMTCType { … }

 :
 // … and a control part so it is executable
 control
 {
 var boolean MyVariable; // local control variable
 :

 execute(MyTestCase1()); // sequential execution of test cases
 execute(MyTestCase2());
 :

 }
 }

9 Port types, component types and test configurations
TTCN-3 allows the (dynamic) specification of concurrent test configurations (or configuration for short). A
configuration consists of a set of inter-connected test components with well-defined communication ports and an
explicit test system interface which defines the borders of the test system (see figure 4).

NOTE: Additional configuration and deployment support for TTCN-3 is defined in the optional package [i.12].

SUT

Abstract Test System Interface

Real Test System Interface

MTC PTC1

TTCN Test system

PTC2

Figure 4: Conceptual view of a typical TTCN-3 test configuration

Within every configuration there shall be one (and only one) Main Test Component (MTC). Test components that are
not MTCs are called parallel test components or PTCs. The MTC shall be created by the system automatically at the
start of each test case execution. The behaviour defined in the body of the test case shall execute on this component.
During execution of a test case, other components can be created dynamically by the explicit use of the create
operation.

Test case execution shall end when the MTC terminates. All other PTCs are treated equally i.e. there is no explicit
hierarchical relationship among them and the termination of a single PTC terminates neither other components nor the
MTC. When the MTC terminates, the test system has to stop all PTCs not terminated by the moment when the test case
execution is ended.

Communication between test components and between the components and the test system interface is achieved via
communication ports (see clause 9.1).

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 94

Test component types and port types, denoted by the keywords component and port, shall be defined in the module
definitions part. The actual configuration of components and the connections between them is achieved by performing
create and connect operations within the test case behaviour. The component ports are connected to the ports of
the test system interface by means of the map operation (see clause 21.1.1).

9.1 Communication ports
Test components are connected via their ports, i.e. connections among components and between a component and the
test system interface are port-oriented. Each port is modelled as an infinite FIFO queue which stores the incoming
messages or procedure calls until they are processed by the component owning that port (see figure 5).

NOTE: While TTCN-3 ports are infinite in principle in a real test system they may overflow. This is to be treated
as a test case error (see clause 24.1).

MTC PTC

Figure 5: The TTCN-3 communication port model

TTCN-3 connections are port-to-port and port-to-test system interface connections (see figure 6). There are no
restrictions on the number of connections a component may maintain. One-to-many connections are also allowed
(e.g. figure 6(g) or figure 6(h)).

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The following connections are not allowed (see figure 7):

- A port owned by a component A shall not be connected with two or more ports owned by the same
component (figures 7 (a) and 7(e)).

- A port owned by a component A shall not be connected with two or more ports owned by a component B
(see figure 7(c)).

- A port owned by a component A can only have a one-to-one connection with the test system interface.
This means, connections as shown in figures 7(b) and 7(d) are not allowed.

- Connections within the test system interface are not allowed (see figure 7(f)).

- A port that is connected shall not be mapped and a port that is mapped shall not be connected (see
figure 7(g)).

b) Since TTCN-3 allows dynamic configurations and addresses, the restrictions on connections cannot always be
checked at compile-time. The checks shall be made at run-time and shall lead to a test case error when failing.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 95

test component
A

test component
B

test component
A

test component
A

test system
test component

A

test system interface

test component
A

test component
B

test system
test component

A

test system interface

test component
A

test component
B

test component
C

test system
test component

A

test system interface

test component
B

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6: Allowed connections

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 96

test component
A

test component
B

test system
test component

A

test system interface

test system
test component

A

test system interface

test component
A

test component
A

test system

test system interface

(e) (f)

(c) (d)

(a) (b)

 test system
 test component

A

test system interface

test component
B

(g)

Figure 7: NOT allowed connections

9.2 Test system interface
TTCN-3 is used to test implementations. The object being tested is known as the Implementation Under Test or IUT.
The IUT may offer direct interfaces for testing or it may be part of system in which case the tested object is known as a
System Under Test or SUT. In the minimal case the IUT and the SUT are equivalent. In the present document the term
SUT is used in a general way to mean either SUT or IUT.

In a real test environment test cases need to communicate with the SUT. However, the specification of the real physical
connection is outside the scope of TTCN-3. Instead, a well defined (but abstract) test system interface shall be
associated with each test case. A test system interface definition is identical to a component definition, i.e. it is a list of
all possible communication ports through which the test case is connected to the SUT.

The test system interface statically defines the number and type of the port connections to the SUT during a test run.
However, the connections between the test system interface and the TTCN-3 test components are dynamic in nature and
may be modified during a test run by using map and unmap operations (see clause 21.1).

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 97

A component type definition is used to define the test system interface because, conceptually, component type
definitions and test system interface definitions have the same form (both are collections of ports defining possible
connection points). When used as test system interfaces, components cannot make use of any constants, variables and
timers declared in the component type.

Syntactical Structure

The same as a component type definition (see clauses 6.2.11 and 6.2.11.2).

Semantic Description

Generally, a component type reference defining the test system interface shall be associated with every test case using
more than one test component. The ports of the test system interface shall automatically be instantiated by the system
together with the MTC when the test case execution starts.

The operation returning the component reference of the test system interface is system. This shall be used to address
the ports of the test system.

In the case where the MTC is the only component that is instantiated during test execution, a test system interface need
not be associated to the test case. In this case, the component type definition associated with the MTC implicitly defines
the corresponding test system interface.

Variables, timers and constants declared in component types, which are used as test system interfaces will have no
effect.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The same as for component type definitions (see clauses 6.2.11 and 6.2.11.2).

Examples

EXAMPLE 1: Explicit definition of a test system interface

 type component MyMTCType
 {
 var integer MyLocalInteger;
 timer MyLocalTimer;
 port MyMessagePortType PCO1
 }

 type component MyTestSystemInterface
 {
 port MyMessagePortType PCO1, PCO2;
 port MyProcedurePortType PCO3
 }

 // MyTestSystemInterface is the test system interface
 testcase MyTestcase1 () runs on MyMTCType system MyTestSystemInterface {
 // establishing the port connections
 map(mtc:PCO1, system:PCO2);
 // the testcase behaviour
 // …
 }

EXAMPLE 2: Implicit definition of a test system interface

 // MyMTCType is the test system interface
 testcase MyTestcase2 () runs on MyMTCType {
 // map statements are not needed
 // the testcase behaviour
 // …
 }

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 98

10 Declaring constants
TTCN-3 constants are run-time constants. After value assignment, they do not change their value during test execution.
They can be used on the right hand side of assignments, in expressions, in actual parameters, and in template
definitions. Constants used within type definitions have to have values known at compile-time.

Syntactical Structure

const Type { ConstIdentifier [ArrayDef] ":=" ConstantExpression [","] } [";"]

Semantic Description

A constant assigns a name to a fixed value. A value is assigned only once to a constant, at the place of its declaration.
The constant does not change its value during test execution. The constant is defined only once, but can be referenced
multiple times in a TTCN-3 module.

Optional fields of record and set constants or constant fields can be initialized explicitly or implicitly. For implicit
initialization of the optional fields of a constant or a constant field, an optional attribute with the value "implicit
omit" (see clause 27.7) shall be associated with it either directly or via the attribute distribution (scoping) mechanism
(see clause 27.1.1).

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Constants shall not be of port type.

NOTE: The only value that can be assigned to constants of default and component types is the special value
null.

b) Constant expressions initializing constants, which are used in type and array definitions, shall only contain
literals, predefined functions except of rnd (see clause 16.1.2), operators specified in clause 7.1, and other
constants obeying the limitations of this paragraph.

Examples

 const integer MyConst1 := 1;
 const boolean MyConst2 := true, MyConst3 := false;

11 Declaring variables
TTCN-3 variables are statically typed variables. Variables are either value variables to store values or template
variables to store templates.

Variables can be of simple basic types, basic string types, structured types, special data types (including subtypes
derived from these types) as well as address, component or default types.

Variables can be declared and used in the module control part, test cases, functions and altsteps. Additionally, variables
can be declared in component type definitions. These variables can be used in test cases, altsteps and functions which
are running on a given component type.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 99

11.1 Value variables
A TTCN-3 value variable stores values. It is declared by the var keyword followed by a type identifier and a variable
identifier. An initial value can be assigned at variable declaration.

It may be used at the right hand side as well as at the left hand side of assignments, in expressions, following the
return keyword in bodies of functions with a return clause in their headers and may be passed to both value and
template-type formal parameters.

Syntactical Structure

var Type VarIdentifier [ArrayDef] [":=" Expression]
 { [","] VarIdentifier [ArrayDef] [":=" Expression] } [";"]

Semantic Description

A value variable associates a name with the location of a value. A value variable may change its value during test
execution several times. A value can be assigned several times to a value variable. The value variable can be referenced
multiple times in a TTCN-3 module.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Expression shall be of type Type.

b) Value variables shall store values only.

c) Value variables shall not be declared or used in a module definitions part (i.e. global variables are not
supported in TTCN-3).

d) Use of uninitialized or not completely initialized value variables at other places than the left hand side of
assignments or as actual parameters passed to inout or out formal parameters shall cause an error.

Examples

 var integer MyVar0;
 var integer MyVar1 := 1;
 var boolean MyVar2 := true, MyVar3 := false;

11.2 Template variables
A TTCN-3 template variable stores templates. They are declared by the var template keyword followed by a type
identifier and a variable identifier. An initial content can be assigned at declaration. In addition to values, template
variables may also store matching mechanisms (see clause 15.7).

Template variables may be used on the right hand side as well as on the left hand side of assignments, following the
return keyword in bodies of functions defining a template-type return value in their headers and may be passed as
actual parameters to template-type formal parameters. It is also allowed to assign a template instance to a template
variable or a template variable field.

Syntactical Structure

var template [restriction] Type VarIdentifier [ArrayDef] ":=" TemplateBody
 { [","] VarIdentifier [ArrayDef] ":=" TemplateBody } [";"]

Semantic Description

A template variable associates a name with the location of a template or a value (as every value is also a template).
A template variable may change its template during test execution several times. A template or value can be assigned
several times to a template variable. The template variable can be referenced multiple times in a TTCN-3 module.

The content of a template variable can be restricted to the matching mechanisms specific value and omit in the same
way as formal template parameters, see clause 5.4.1.2. The restriction template (omit) can be replaced by the shorthand
notation omit.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 100

NOTE 1: String and list type templates can be concatenated, see clause 15.11.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Template variables shall not be declared or used in a module definitions part (i.e. global variables are not
supported in TTCN-3).

b) When used on the right hand side of assignments template variables shall not be operands of TTCN-3
operators (see clause 7.1) and the variable on the left hand side shall be a template variable too.

c) When accessing element of template variables either on the left hand side or on the right hand side of
assignments, the rules given in clause 15.6 shall apply.

NOTE 2: While it is not allowed to directly apply TTCN-3 operations to template variables, it is allowed to use the
dot notation and the index notation to inspect and modify template variable fields.

d) Use of uninitialized or not completely initialized template variables at other places than the left hand side of
assignments or as actual parameters passed to out formal parameters shall cause an error.

e) If the template variable is restricted, then the template used to initialize it shall contain only the matching
mechanisms as described in clause 15.8.

f) Template variables, similarly to global and local templates, shall be fully specified in order to be used in
sending and receiving operations.

g) Restrictions on templates in clause 15 shall apply.

Examples

 var template integer MyVarTemp1 := ?;
 var template MyRecord MyVarTemp2 := { field1 := true, field2 := * },
 MyVarTemp3 := { field1 := ?, field2 := MyVarTemp1 };

12 Declaring timers
TTCN-3 provides a timer mechanism. Timers can be declared and used in the module control part, test cases, functions
and altsteps. Additionally, timers can be declared in component type definitions. These timers can be used in test cases,
functions and altsteps which are running on the given component type.

A timer declaration may have an optional default duration value assigned to it. The timer shall be started with this value
if no other value is specified. The timer value shall be a non-negative float value (i.e. greater than or equal to 0.0)
where the base unit is seconds.

In addition to single timer instances, timer arrays can also be declared. Default duration(s) of the elements of a timer
array shall be assigned using a value array. Default duration(s) assignment shall use the array value notation as specified
in clause 6.2.7. If the default duration assignment is wished to be skipped for some element(s) of the timer array, it shall
explicitly be declared by using the not used symbol ("-").

Syntactical Structure

timer { TimerIdentifier [ArrayDef] ":=" TimerValue [","] } [";"]

Semantic Description

Timers are local to components. A component can start and stop a timer, check if a timer is running, read the elapsed
time of a running timer and process timeout events after timer expiration. The timer value is interpreted with a base unit
of seconds.

NOTE 1: Timers declared and started in scope units such as functions cease to exist when the scope unit is left.
They do not contribute to the test behaviour once the scope unit is left.

NOTE 2: It is not possible to define a timer array as type.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 101

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) In case of a single timer, the default duration value shall resolve to a non-negative numerical float value (i.e.
the value shall be greater or equal 0.0, infinity and not_a_number are disallowed).

b) In case of a timer array, it shall resolve to an array of float values obeying to restriction a) above of the same
size as the size of the timer array.

Examples

EXAMPLE 1: Single timer

 timer MyTimer1 := 5E-3;
 // declaration of the timer MyTimer1 with the default value of 5ms

 timer MyTimer2; // declaration of MyTimer2 without a default timer value i.e. a value has
 // to be assigned when the timer is started

EXAMPLE 2: Timer array

 timer t_Mytimer1[5] := { 1.0, 2.0, 3.0, 4.0, 5.0 }
 // all elements of the timer array get a default duration.

 timer t_Mytimer2[5] := { 1.0, -, 3.0, 4.0, 5.0 }
 // the second timer (t_Mytimer2[1]) is left without a default duration.

13 Declaring messages
One of the key elements of TTCN-3 is the ability to send and receive simple or complex messages over message-based
ports defined by the test configuration (see clauses 9 and 21). These messages may be those explicitly concerned with
testing the SUT or with the internal co-ordination and control messages specific to the relevant test configuration.

Messages are instances of types declared in the in/out/inout clauses of message port type definition.

Any type can be declared as type of a message in a message port type definition, i.e. values of any basic or structured
type (see clauses 6.1 and 6.2) can be sent or received. Received messages can also be declared as a combination of
value and matching mechanisms (see clause 15.5). Instances of messages can be declared by global, local or in-line
templates (see clause 15) or being constructed and passed via variables or template variables (see clause 11) and
parameters or template parameters (see clause 5.4).

Syntactical Structure

See syntactical structure of types (see clause 6).

Semantic Description

See semantic description of types (see clause 6).

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

 // a structured, ordered message with two fields
 type record ARecord { integer i, float f }

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 102

14 Declaring procedure signatures
Procedure signatures (or signatures for short) are needed for procedure-based communication. Procedure-based
communication may be used for the communication within the test system, i.e. among test components, or for the
communication between the test system and the SUT. In the latter case, a procedure may either be invoked in the SUT
(i.e. the test system performs the call) or in the test system (i.e. the SUT performs the call).

Syntactical Structure

signature SignatureIdentifier
"(" { [in | inout | out] Type ValueParIdentifier [","] } ")"
[(return Type) | noblock]
[exception "(" ExceptionTypeList ")"]

Semantic Description

For all used procedures, i.e. procedures used for the communication among test components, procedures called from the
SUT and procedures called from the test system, a procedure signature shall be defined in the TTCN-3 module.

TTCN-3 supports blocking and non-blocking procedure-based communication. By default, signature definitions without
the noblock keyword are assumed to be used for blocking procedure-based communication.

Signature definitions may have parameters. Parameters shall be of data type only, i.e. of a basic type, a structured type
thereof or a subtype thereof. Within a signature definition the parameter list may include parameter identifiers,
parameter types and their direction, i.e. in, out, or inout. The direction inout and out indicate that these
parameters are used to retrieve information from the remote procedure.

NOTE 1: The direction of the parameters is as seen by the called party rather than the calling party.

A remote procedure may return a value after its termination. The type of the return value shall be specified by means of
a return clause in the corresponding signature definition.

Exceptions that may be raised by remote procedures are represented in TTCN-3 as values of a specific type. Therefore
templates and matching mechanisms can be used to specify or check return values of remote procedures.

NOTE 2: The conversion of exceptions generated by or sent to the SUT into the corresponding TTCN-3 type or
SUT representation is tool and system specific and therefore beyond the scope of the present document.

The exceptions are defined in the form of an exception list included in the signature definition. This list defines all
the possible different types associated with the set of possible exceptions (the meaning of exceptions themselves will
usually only be distinguished by specific values of these types).

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Signature definitions for non-blocking communication shall use the noblock keyword, shall only have in
parameters and shall have no return value but may raise exceptions.

b) Signature parameters shall not be of port, component or default type or of structured types having fields of
port, component or default type.

Examples

 signature MyRemoteProcOne (); // MyRemoteProcOne will be used for blocking
 // procedure-based communication. It has neither
 // parameters nor a return value.

 signature MyRemoteProcTwo () noblock; // MyRemoteProcTwo will be used for non blocking
 // procedure-based communication. It has neither
 // parameters nor a return value.

 signature MyRemoteProcThree (in integer Par1, out float Par2, inout integer Par3);
 // MyRemoteProcThree will be used for blocking procedure-based communication. The procedure
 // has three parameters: Par1 an in parameter of type integer, Par2 an out parameter of
 // type float and Par3 an inout parameter of type integer.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 103

 signature MyRemoteProcFour (in integer Par1) return integer;
 // MyRemoteProcFour will be used for blocking procedure-based communication. The procedure
 // has the in parameter Par1 of type integer and returns a value of type integer after its
 // termination

 signature MyRemoteProcFive (inout float Par1) return integer
 exception (ExceptionType1, ExceptionType2);
 // MyRemoteProcFive will be used for blocking procedure-based communication. It returns a
 // float value in the inout parameter Par1 and an integer value, or may raise exceptions of
 // type ExceptionType1 or ExceptionType2

 signature MyRemoteProcSix (in integer Par1) noblock
 exception (integer, float);
 // MyRemoteProcSix will be used for non-blocking procedure-based communication. In case of
 // an unsuccessful termination, MyRemoteProcSix raises exceptions of type integer or float.

15 Declaring templates
Templates are used to either transmit a set of distinct values or to test whether a set of received values matches the
template specification. Templates can be defined globally or locally.

Templates provide the following possibilities:

a) they are a way to organize and to re-use test data, including a simple form of inheritance;

b) they can be parameterized;

c) they allow matching mechanisms;

d) they can be used with either message-based or procedure-based communications.

Within a template values, ranges and matching attributes can be specified and then used in both message-based and
procedure-based communications. Templates may be specified for any TTCN-3 type or procedure signature. The
type-based templates are used for message-based communications and the signature templates are used in
procedure-based communications.

A modified template declaration (see clause 15.5) specifies only the fields to be changed from the base template, i.e. it
is a partial specification.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Templates shall not be of default type.

b) Structured type or signature templates shall not include a field of default type, neither directly, nor by
nesting or referencing a structured type or signature that contains a default field.

NOTE: The anytype type does not include the default type (see clause 6.2.6), so that restriction b) does not
apply to anytype templates.

Examples

 type record MyRecord {
 default def
 }
 type union MyUnion {
 integer choice1,
 MyRecord choice2
 }
 template MyUnion t_integerChosen := { choice1 := 5 }
 // shall cause an error as the type MyUnion contains MyRecord, which includes
 // a field of default type.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 104

15.1 Declaring message templates
Instances of messages with actual values may be specified using templates. A template can be thought of as being a set
of instructions to build a message for sending or to match a received message.

Syntactical Structure

See syntactical structure of global and local templates (see clause 15.3) and of in-line templates (see clause 15.4).

Semantic Description

A template used in a send operation defines a complete set of field values comprising the message to be transmitted
over a port.

NOTE: For sending templates, omitting an optional field is considered to be a value notation rather than a
matching mechanism.

A template used in a receive, trigger or check operation defines a data template against which an incoming
message is to be matched. Matching mechanisms, as defined in clauses 15.7 and 15.8 and in annex B, may be used in
receive templates. No binding of the incoming values to the template shall occur.

Restrictions

In addition to restrictions in clause 15, the following restrictions apply:

a) At the time of a send operation, the used template shall be completely initialized and all fields shall resolve to
actual values or to omit and no other matching mechanisms shall be used in the template fields, neither directly
nor indirectly.

At the time of a receiving operation, the matching template shall be completely initialized.

b) Optional fields of record and set templates or template fields can be initialized explicitly or implicitly. For
implicit initialization of the optional fields of a template or a template field, an optional attribute with the
value "implicit omit" (see clause 27.7) shall be associated with it either directly or via the attribute
distribution (scoping) mechanism (see clause 27.1.1).

Examples

EXAMPLE 1: Template for sending messages

 // Given the message definition
 type record MyMessageType
 {
 integer field1 optional,
 charstring field2,
 boolean field3
 }

 // a message template could be
 template MyMessageType MyTemplate:=
 {
 field1 := omit,
 field2 := "My string",
 field3 := true
 }

 // and a corresponding send operation could be
 MyPCO.send(MyTemplate);

EXAMPLE 2: Template for receiving messages

 // Given the message definition
 type record MyMessageType
 {
 integer field1 optional,
 charstring field2,
 boolean field3
 }

 // a message template might be

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 105

 template MyMessageType MyTemplate:=
 {
 field1 := ?,
 field2 := pattern "abc*xyz",
 field3 := true
 }

 // and a corresponding receive operation could be
 MyPCO.receive(MyTemplate);

EXAMPLE 3: Template for receiving messages

 // When used in a receiving operation this template will match any integer value
 template integer Mytemplate := ?;

 // This template will match only the integer values 1, 2 or 3
 template integer Mytemplate := (1, 2, 3);

15.2 Declaring signature templates
Instances of procedure parameter lists with actual values may be specified using templates. Templates may be defined
for any procedure by referencing the associated signature definition.

Syntactical Structure

See syntactical structure of global and local templates (see clause 15.3) and of in-line templates (see clause 15.4).

Semantic Description

A signature template defines the values and matching mechanisms of the procedure parameters only, but not the return
value. The values or matching mechanisms for a return have to be defined within the reply (see clause 22.3.3) or
getreply operation (see clause 22.3.4).

A template used in a call or reply operation defines a complete set of field values for all in and inout
parameters. At the time of the call operation, all in and inout parameters in the template shall resolve to actual
values, no matching mechanisms shall be used in these fields, either directly or indirectly. Any template specification
for out parameters is simply ignored, therefore it is allowed to specify matching mechanisms for these fields, or to
omit them (see annex B).

A template used in a getcall operation defines a data template against which the incoming parameter fields are
matched. Matching mechanisms, as defined in annex B, may be used in any templates used by this operation. No
binding of incoming values to the template shall occur. Any out parameters shall be ignored in the matching process.

Restrictions

In addition to restrictions in clause 15, the following restrictions apply:

a) At the time of a call, reply and raise operation, the used template shall be completely initialized and all
in/inout parameters in a call, all out/inout parameters in a reply or raise operation shall resolve
to specific values or to omit and no other matching mechanisms shall be used for these parameters, neither
directly nor indirectly.

b) The NotUsedSymbol shall only be used in signature templates for parameters which are not relevant and in
modified template declarations and modified in-line templates to indicate no change for the specified field or
element.

At the time of a getcall, getreply and catch operation, the matching template shall be completely initialized.

c) Optional fields of record and set parameters or parameter fields can be initialized explicitly or implicitly. For
implicit initialization of a parameter or a parameter field, an optional attribute with the value "implicit
omit" (see clause 27.7) shall be associated with it either directly or via the attribute distribution (scoping)
mechanism (see clause 27.1.1).

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 106

Examples

EXAMPLE 1: Templates for invoking and accepting procedures

 // signature definition for a remote procedure
 signature RemoteProc(in integer Par1, out integer Par2, inout integer Par3) return integer;

 // example templates associated to defined procedure signature
 template RemoteProc Template1:=
 {
 Par1 := 1,
 Par2 := 2,
 Par3 := 3
 }

 template RemoteProc Template2:=
 {
 Par1 := 1,
 Par2 := ?,
 Par3 := 3
 }

 template RemoteProc Template3:=
 {
 Par1 := 1,
 Par2 := ?,
 Par3 := ?
 }

EXAMPLE 2: In-line templates for invoking procedures

 // Given example 1 in this clause

 // Valid invocation since all in and inout parameters have a distinct value
 MyPCO.call(RemoteProc:Template1);

 // Valid invocation since all in and inout parameters have a distinct value
 MyPCO.call(RemoteProc:Template2);

 // Invalid invocation causing an error
 // since the inout parameter Par3 has a matching attribute not a value
 MyPCO.call(RemoteProc:Template3);

 // Templates never return values. In the case of Par2 and Par3 the values returned by the
 // call operation must be retrieved using an assignment clause at the end of the call statement

EXAMPLE 3: In-line templates for accepting procedure invocations

 // Given example 1 in this clause

 // Valid getcall, it will match if Par1 == 1 and Par3 == 3
 MyPCO.getcall(RemoteProc:Template1);

 // Valid getcall, it will match if Par1 == 1 and Par3 == 3
 MyPCO.getcall(RemoteProc:Template2);

 // Valid getcall, it will match on Par1 == 1 and Any value of Par3
 MyPCO.getcall(RemoteProc:Template3);

15.3 Global and local templates
TTCN-3 allows defining global templates and local templates.

Syntactical Structure

template [restriction] Type TemplateIdentifier ["(" TemplateFormalParList ")"]
[modifies TemplateRef] ":=" TemplateBody

NOTE: The optional restriction part is covered by clause 15.8.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 107

Semantic Description

Global templates can be defined in the module definitions part. Local templates can be defined in module control,
testcases, functions, altsteps or statement blocks. Both global and local templates scoping rules specified in clause 5
apply.

Both global and local templates can be parameterized. The actual parameters of a template can include values and
templates. The rules for formal and actual parameter lists shall be followed as defined in clause 5.2.

At the time of their use (e.g. in communication operations send, receive, call, getcall, etc.), it is allowed to
change template fields by in-line modified templates, to pass in values via value parameters as well as to pass in
templates via template parameters.. The effects of these changes on the values of the template fields do not persist in the
template subsequent to the corresponding communication event.

Restrictions

In addition to restrictions in clause 15, the following restrictions apply:

a) The dot notation such as MyTemplateId.FieldId shall not be used to set or retrieve values in templates in
communication events. The "->" symbol shall be used for this purpose (see clause 23).

b) Restrictions on referencing elements of templates or template fields are described in clause 15.6.

c) There exist a number of restrictions on the functions used in expressions when specifying templates or
template fields; these are specified in clause 16.1.4.

Examples

 // The template
 template MyMessageType MyTemplate (integer MyFormalParam):=
 {
 field1 := MyFormalParam,
 field2 := pattern "abc*xyz",
 field3 := true
 }

 // could be used as follows
 pco1.send(MyTemplate(123));

15.4 In-line Templates
Templates can be specified directly at the place they are used. Such templates are called in-line templates.

Syntactical Structure

[Type ":"] [modifies TemplateRefWithParList ":="] TemplateBody

NOTE 1: An in-line template is an argument of a communication operation or an actual parameter of a testcase,
function or altstep call, i.e. it is always placed within parenthesis and potentially separated with a comma.

Semantic Description

In-line templates can be defined directly at the place of its use.

In-line templates do not have names, therefore they can not be referenced or reused. The lifetime of in-line templates is
the TTCN-3 statement (an assignment, a testcase/function/alstep invocation, a return from a function, a communication
operation), where they are defined.

Restrictions

In addition to restrictions in clause 15, the following restrictions apply:

a) Templates may be specified for any TTCN-3 type defined in table 3 and for any procedure signature except for
port and default types.

b) The type field may only be omitted when the type is implicitly unambiguous.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 108

NOTE 2: For literal in-line templates, the following types may be omitted: integer, float, boolean,
bitstring, hexstring, octetstring.

NOTE 3: Types of constants, parameters and variables of the actual scope are always unambiguous and can hence
always be omitted.

c) In-line templates containing instead of values or inside values matching mechanisms (see clause 15.7) can only
be defined in arguments of receiving communication operations (i.e. receive, trigger, check,
getcall, getreply and catch), in arguments of the match and select case operations, in actual
template parameters, at the right hand side of assignments (when there is a template variable at the left hand
side of the assignment) and in return statements of template returning functions. In-line templates not
containing matching mechanisms can be defined wherever values are allowed.

d) When used in communication operations, the type of the in-line template shall be in the port list over which
the template is sent or received. In the case where there is an ambiguity between the listed type and the type of
the value provided (e.g. through subtyping) then the type name of the in-line template shall be included in the
communication operation.

e) There exist a number of restrictions on the functions used in expressions when specifying templates or
template fields; these are specified in clause 16.1.4.

Examples

 MyPCO.receive(charstring:"abcxyz");

15.5 Modified templates
Normally, a template specifies a set of base or default values or matching symbols for each and every field defined in
the appropriate type or signature definition. In cases where small changes are needed to specify a new template, it is
possible to specify a modified template. A modified template specifies modifications to particular fields of the original
template, either directly or indirectly. As well as creating explicitly named modified templates, TTCN-3 allows the
definition of in-line modified templates.

Syntactical Structure

Global or local modified template:

template [restriction] Type TemplateIdentifier ["(" TemplateFormalParList ")"]
modifies TemplateRef ":=" TemplateBody

NOTE: The optional restriction part is covered by clause 15.8.

In-line modified template:

[Type ":"] modifies TemplateRefWithParList ":=" TemplateBody

Semantic Description

The modifies keyword denotes the parent template from which the new, or modified template shall be derived. This
parent template may be either an original template or a modified template.

The modifications occur in a linked fashion eventually tracing back to the original template. If a template field and its
corresponding value or matching symbol is specified in the modified template, then the specified value or matching
symbol replaces the one specified in the parent template. If a template field and its corresponding value or matching
symbol is not specified in the modified template, then the value or matching symbol in the parent template shall be
used. When the field to be modified is nested within a template field which is a structured field itself, no other field of
the structured field is changed apart from the explicitly denoted one(s).

When individual values of a modified template or a modified template field of record of type wished to be changed,
and only in these cases, the value assignment notation may also be used, where the left hand side of the assignment is
the index of the element to be altered.

Formal value or template parameters of modified templates inherit the default value or respectively template of the
corresponding parameter of their parent templates only, if this is denoted by the dash (don't change) symbol at the place
of the parameters' default value or respectively template.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 109

Modified templates may also be restricted. Template restrictions are specified in clause 15.8.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) A modified template shall not refer to itself, either directly or indirectly, i.e. recursive derivation is not
allowed.

b) If a base template has a formal parameter list, the following rules apply to all modified templates derived from
that base template, whether or not they are derived in one or several modification steps:

1) the derived template shall not omit parameters defined at any of the modification steps between the base
template and the actual modified template;

2) a derived template can have additional (appended) parameters if wished;

3) the formal parameter list shall follow the template name for every modified template;

4) if the dash (don't change) symbol is used at the place of a default value or default template, the
corresponding parameter of the parent template shall have a valid default value or default template, either
assigned directly or inherited. If not, this shall cause an error.

c) Restrictions on referencing elements of templates or template fields are described in clause 15.6: for modified
templates the rules for the left hand side of assignments apply.

d) Limitations on template restrictions described in clause 15.8 shall apply.

Examples

EXAMPLE 1:

 // Given
 type record MyRecordType
 {
 integer field1 optional,
 charstring field2,
 boolean field3
 }
 template MyRecordType MyTemplate1 :=
 {
 field1 := 123,
 field2 := "A string",
 field3 := true
 }
 // then writing
 template MyRecordType MyTemplate2 modifies MyTemplate1 :=
 {
 field1 := omit, // field1 is optional but present in MyTemplate1
 field2 := "A modified string"
 // field3 is unchanged
 }
 // is the same as writing
 template MyRecordType MyTemplate2 :=
 {
 field1 := omit,
 field2 := "A modified string",
 field3 := true
 }

EXAMPLE 2: Modified record of template

 template MyRecordOfType MyBaseTemplate := { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
 template MyRecordOfType MyModifTemplate modifies MyBaseTemplate := { [2] := 3, [3] := 2 };
 // MyModifTemplate shall match the sequence of values { 0, 1, 3, 2, 4, 5, 6, 7, 8, 9 }

EXAMPLE 3: Modified in-line template

 // Given
 template MyMessageType Setup :=
 { field1 := 75,
 field2 := "abc",
 field3 := true

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 110

 }

 // Could be used to define an in-line modified template of Setup
 pco1.send (modifies Setup := {field1:= 76});

EXAMPLE 4: Modified parameterized template

 // Given
 template MyRecordType MyTemplate1(integer MyPar):=
 {
 field1 := MyPar,
 field2 := "A string",
 field3 := true
 }

 // then a modification could be
 template MyRecordType MyTemplate2(integer MyPar) modifies MyTemplate1 :=
 { // field1 is parameterized in Template1 and remains also parameterized in Template2
 field2 := "A modified string"
 }

EXAMPLE 5: Default values of modified parameterized templates

 // Given
 template MyRecordType MyTemplate11 (integer p_int := 5):= {
 // p_int has the default value 5
 field1 := p_int,
 field2 := "A string",
 field3 := true
 }

 // then possible template modifications are
 template MyRecordType MyTemplate12(integer p_int) modifies MyTemplate11 := {
 // p_int had a default value in MyTemplate11 but has none in this template
 field2 := "B string"
 }

 template MyRecordType MyTemplate13(integer p_int := 0) modifies MyTemplate12 := {
 // p_int has the default value 0
 // no change is made to the template's content, but only to the default value of p_int
 }

 template MyRecordType MyTemplate14(integer p_int := -) modifies MyTemplate13 := {
 // p_int inherits the default value 0 from its parent MyTemplate13
 field2 := "C string"
 }

 template MyRecordType MyTemplate15(integer p_int := -) modifies MyTemplate14 := {
 // p_int inherits the default value 0 from MyTemplate13 via MyTemplate14
 field2 := "D string"
 }

 template MyRecordType MyTemplate16(integer p_int) modifies MyTemplate15 := {
 // p_int has no default value
 }

 template MyRecordType MyTemplate17(integer p_int := -) modifies MyTemplate16 := {
 // causes an error as p_int has no default value in the parent template MyTemplate16
 field2 := "E string"
 }

15.6 Referencing elements of templates or template fields
This clause defines rules and restrictions when referencing elements of templates or template fields.

15.6.1 Referencing individual string elements

It is not allowed to reference individual string elements inside templates or template fields. Instead, the substr
function (see clause C.34) shall be used.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 111

EXAMPLE:

 var template charstring t_Char1 := "MYCHAR";
 var template charstring t_Char2;

 t_Char2 := t_Char1[1];
 // shall cause an error as referencing individual string elements is not allowed

15.6.2 Referencing record and set fields

Both templates and template variables allow referencing sub-fields inside a template definition using the dot notation.
However, the referenced field may be a subfield of a structured field to which a matching mechanism is assigned. This
clause provides rules for such cases.

a) Omit, AnyValueOrNone, value lists and complemented lists: referencing a subfield within a structured field
to which Omit, AnyValueOrNone, a value list or a complemented list is assigned, at the right hand side of an
assignment, shall cause an error.
When referencing a subfield within a structured field to which AnyValueOrNone or omit is assigned, at the
left hand side of an assignment, the structured field is implicitly set to be present, it is expanded recursively
up to and including the depth of the referenced subfield. During this expansion an AnyValue shall be
assigned to mandatory subfields and AnyValueOrNone shall be assigned to optional subfields. After this
expansion the value or matching mechanism at the right hand side of the assignment shall be assigned to the
referenced subfield.
When referencing a subfield within a structured field to which value lists or complemented value lists are
assigned, at the left hand side of an assignment, shall cause an error.

EXAMPLE 1:

 type record R1 {
 integer f1 optional,
 R2 f2 optional
 }
 type record R2 {
 integer g1,
 R2 g2 optional
 }

 :
 var template R1 t_R1 := {
 f1 := 5,
 f2 := omit
 }
 var template R2 t_R2 := t_R1.f2.g2;
 // causes an error as omit is assigned to t_R1.f2
 t_R1. f2 := *;
 t_R2 := t_R1.f2.g2;
 // causes an error as * is assigned to t_R1.f2

 t_R1 := ({f1:=omit, f2:={g1:=0, g2:=omit}},{f1:=5, f2:={g1:=1, g2:={g1:=2, g2:=omit}}});

 t_R2 := t_R1.f2;
 t_R2 := t_R1.f2.g2;
 t_R2 := t_R1.f2.g2.g2;
 // all these assignments cause error as a value list is assigned to t_R1

 t_R1 :=
 complement({f1:=omit, f2:={g1:=0, g2:=omit}},{f1:=5, f2:={g1:=1, g2:={g1:=2, g2:=omit}}});

 t_R2 := t_R1.f2;
 t_R2 := t_R1.f2.g2;
 t_R2 := t_R1.f2.g2.g2;
 // all these assignments cause errors as a complemented list is assigned to t_R1

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 112

b) AnyValue: when referencing a subfield within a structured field to which AnyValue is assigned, at the right
hand side of an assignment, AnyValue shall be returned for mandatory subfields and AnyValueOrNone shall
be returned for optional subfields.
When referencing a subfield within a structured field to which AnyValue is assigned, at the left hand side of an
assignment, the structured field is implicitly expanded recursively up to and including, the depth of the
referenced subfield. During this expansion an AnyValue shall be assigned to mandatory subfields and
AnyValueOrNone shall be assigned to optional subfields. After this expansion the value or matching
mechanism at the right hand side of the assignment shall be assigned to the referenced subfield.

EXAMPLE 2:

 t_R1 := {f1:=0, f2:=?}
 t_R2 := t_R1.f2.g2;
 // after the assignment t_R2 will be {g1:=?, g2:=*}
 t_R1.f2.g2.g2 := ({g1:=1, g2:=omit},{g1:=2, g2:=omit});
 // first the field t_R1.f2 has hypothetically be expanded to {g1:=?,g2:={g1:=?,g2:=*}}
 // thus after the assignment t_R1 will be:
 // {f1:=0, f2:={g1:=?,g2:={g1:=?,g2:=({g1:=1, g2:=omit},{g1:=2, g2:=omit})}}}

c) Ifpresent attribute: referencing a subfield within a structured field to which the ifpresent attribute is attached,
shall cause an error (irrespective of the value or the matching mechanism to which ifpresent is appended).

15.6.3 Referencing record of and set of elements

Both templates and template variables allow referencing elements of a record of or set of template or field using
the index notation. However, a matching mechanism may be assigned to the template or field within which the element
is referenced. This clause provides rules on handling such cases.

a) Omit, AnyValueOrNone, value lists, complemented lists, subset and superset: referencing an element within a
record of or set of field to which Omit, AnyValueOrNone with or without a length attribute, a value list, a
complemented list, a subset or a superset is assigned, shall cause an error.

EXAMPLE 1:

 type record of integer RoI;
 type record of RoI RoRoI;

 :
 var template RoI t_RoI;
 var template RoRoI t_RoRoI;
 var template integer t_Int;
 :
 t_RoRoI := ({},{0},{0,0},{0,0,0});
 t_RoI := t_RoRoI[0];
 // shall cause an error as value list is assigned to t_RoRoI;

b) AnyValue: when referencing an element of a record of or set of template or field to which AnyValue is
assigned (without a length attribute), at the right hand side of an assignment, AnyValue shall be returned. If a
length attribute is attached to the AnyValue , the index of the reference shall not violate the length attribute.
When referencing an element within a record of or set of template or field to which AnyValue is
assigned (without a length attribute), at the left hand side of an assignment, the value or matching mechanism
at the right hand side of the assignment shall be assigned to the referenced element, AnyElement shall be
assigned to all elements before the referenced one (if any) and a single AnyElementsOrNone shall be added at
the end. When a length attribute is attached to AnyValue, the attribute shall be conveyed to the new template
or field transparently. The index shall not violate type restrictions in any of the above cases.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 113

EXAMPLE 2:

 type record of integer RoI;
 type record of RoI RoRoI;

 :
 var template RoI t_RoI;
 var template RoRoI t_RoRoI;
 var template integer t_Int;
 :
 t_RoI := ?;
 t_Int := t_RoI[5];
 // after the assignment t_Int will be AnyValue(?);

 t_RoRoI := ?;
 t_RoI := t_RoRoI[5];
 // after the assignment t_RoI will be AnyValue(?);
 t_Int := t_RoRoI[5].[3];
 // after the assignment t_Int will be AnyValue(?);

 t_RoI := ? length (2..5);
 t_Int := t_RoI[3];
 // after the assignment t_Int will be AnyValue(?);
 t_Int := t_RoI[5];
 // shall cause an error as the referenced index is outside the length attribute
 // (note that index 5 would refer to the 6th element);

 t_RoRoI[2] := {0,0};
 // after the assignment t_RoRoI will be {?,?,{0,0},*};
 t_RoRoI[4] := {1,1};
 // after the assignment t_RoRoI will be {?,?,{0,0},?,{1,1},*};
 t_RoI[0] := -5;
 // after the assignment t_RoI will be {-5,*} length(2..5);
 t_RoI := ? length (2..5);
 t_RoI[1] := 1;
 // after the assignment t_RoI will be {?,1,*} length(2..5);
 t_RoI[3] := ?
 // after the assignment t_RoI will be {?,1,?,?,*} length(2..5);
 t_RoI[5] := 5
 // after the assignment t_RoI will be {?,1,?,?,?,5,*} length(2..5); note that t_RoI
 // becomes an empty set but that shall cause no error;

c) Permutation: when referencing an element of a record of template or field, which is located inside a
permutation (based on its index), this shall cause an error. Indexes of elements sheltered by a permutation shall
be determined based on the number of permutation elements. AnyValueOrNone as a permutation element
causes that the permutation shelters all record of element indexes.

EXAMPLE 3:

 t_RoI := {permutation(0,1,3,?),2,?}
 t_Int := t_RoI[5];
 // after the assignment t_Int will be AnyValue(?)

 t_RoI := {permutation(0,1,3,?),2,*}
 t_Int := t_RoI[5];
 // after the assignment t_Int will be * (AnyValueOrNone)
 t_Int := t_RoI[2];
 // causes error as the third element (with index 2) is inside permutation

 t_RoI := {permutation(0,1,3,*),2,?}
 t_Int := t_RoI[5];
 // causes error as the permutation contains AnyValueOrNone(*) that is able to
 // cover any record of indexes

d) Ifpresent attribute: referencing an element within a record of or set of field to which the ifpresent
attribute is attached, shall cause an error (irrespective of the value or the matching mechanism to which
ifpresent is appended).

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 114

15.7 Template matching mechanisms
Generally, matching mechanisms are used to replace values of single template fields or to replace even the entire
contents of a template. Matching mechanisms may also be used in-line (see clause 15.4).

Matching mechanisms are arranged in four groups:

• specific values;

• special symbols that can be used instead of values;

• special symbols that can be used inside values;

• special symbols which describe attributes of values;

Some of the mechanisms may be used in combination.

The supported matching mechanisms and their associated symbols (if any) and the scope of their application are shown
in table 11. The left-hand column of this table lists all the TTCN-3 types to which these matching mechanisms apply.
A full description of each matching mechanism can be found in annex B.

Table 11: TTCN-3 Matching Mechanisms

Used with values
of

Value Instead of values Inside values Attributes

 S
p
e
c
i
f
i
c
V
a
l
u
e

O
m
i
t

C
o
m
p
l
e
m
e
n
t
e
d
L
I
s
t

V
a
l
u
e
L
I
S
t

A
n
y
V
a
l
u
e

(?)

A
n
y
V
a
l
u
e
O
r
N
o
n
e
(*)

R
a
n
g
e

S
u
p
e
r
s
e
t

S
u
b
s
e
t

P
a
t
t
e
r
n

A
n
y
E
l
e
m
e
n
t

(?)

A
n
y
E
l
e
m
e
n
t
s
O
r
N
o
n
e
(*)

P
e
r
m
u
t
a
t
i
o
n

L
e
n
g
t
h
R
e
s
t
r
i
c
t
i
o
n

I
f
P
r
e
s
e
n
t

boolean Yes Yes1 Yes Yes Yes Yes1 Yes1
integer Yes Yes1 Yes Yes Yes Yes1 Yes Yes1
float Yes Yes1 Yes Yes Yes Yes1 Yes Yes1
bitstring Yes Yes1 Yes Yes Yes Yes1 Yes Yes Yes Yes1
octetstring Yes Yes1 Yes Yes Yes Yes1 Yes Yes Yes Yes1
hexstring Yes Yes1 Yes Yes Yes Yes1 Yes Yes Yes Yes1
character strings Yes Yes1 Yes Yes Yes Yes1 Yes Yes Yes2 Yes2 Yes Yes1
record Yes Yes1 Yes Yes Yes Yes1 Yes1
record of Yes Yes1 Yes Yes Yes Yes1 Yes Yes Yes Yes Yes1
array Yes Yes1 Yes Yes Yes Yes1 Yes Yes Yes Yes1
set Yes Yes1 Yes Yes Yes Yes1 Yes1
set of Yes Yes1 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes1
enumerated Yes Yes1 Yes Yes Yes Yes1 Yes1
union Yes Yes1 Yes Yes Yes Yes1 Yes1
anytype Yes Yes1 Yes Yes Yes Yes1 Yes1
NOTE 1: Can be assigned to templates, however when used shall be applied to optional fields of record and set types

only (without restriction on the type of that field).
NOTE 2: Have matching mechanism meaning within character patterns only.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 115

15.7.1 Specific values

Specific values are the basic matching mechanism of TTCN-3 templates. Specific values in templates are expressions
which do not contain any matching mechanisms.

Syntactical Structure

SingleExpression

Semantic Description

The matching mechanism for a specific value is an expression that evaluates to a specific value.

For further details please refer to clause 6 and to annex B.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) See the restrictions given in table 11 and in annex B.

Examples

 MyPCO.receive(charstring:"abcxyz");
 MyPCO.receive('AAAA'O);

15.7.2 Special symbols that can be used instead of values

These matching mechanisms can be used to characterize a set of values.

Syntactical Structure

omit |
"(" { TemplateInstance [","] } ")" |
complement "(" { TemplateInstance [","] } ")" |
"?" |
" *" |
"(" (ConstantExpression | -infinity) ".." (ConstantExpression | infinity) ")" |
superset "(" { ConstantExpression [","] } ")" |
subset "(" { ConstantExpression [","] } ")" |
pattern Cstring

Semantic Description

The matching mechanisms for special symbols that can be used instead of values are:

• omit: the optional field, in which it is used, is not present;

• (…): a list of values or templates;

• complement (…): complement of a list of values or templates;

• ?: wildcard for any value;

• *: wildcard for any value or no value at all, i.e. the field is not present;

• (lowerBound .. upperBound): a range of integer or float values between and including the lower- and upper
bounds;

• superset: at least all of the elements listed, i.e. possibly more;

• subset: at most the elements listed, i.e. possibly less;

• pattern: a charstring or universal charstring that matches this format.

For further details please refer to annex B.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 116

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) See the restrictions given in table 11 and in annex B.

Examples

 MyPCO.receive (integer:complement(1, 2, 3));

15.7.3 Special symbols that can be used inside values

These matching mechanisms allow to characterize value sets by varying values inside.

Syntactical Structure

… "?"… |
… "*"… |
… permutation "(" { (TemplateBody | "?" | "*")[","] } ")"…

Semantic Description

The matching mechanisms for special symbols that can be used inside values are:

• ?: wildcard for any single element in a string, array, record of or set of;

• *: wildcard for any number of consecutive elements in a string, array, record of or set of, or no
element at all (i.e. an omitted element);

• permutation: all of the elements listed but in an arbitrary order (note, that ? and * are also allowed as
elements of the permutation list).

For further details please refer to annex B.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) See the restrictions given in table 11 and in annex B.

Examples

 template bitstring b := '10???'B; // where each "?" may either be 0 or 1
 type record of integer RI;
 template RI ri := {1, ?, 3} // where ? may be any integer value

15.7.4 Special symbols which describe attributes of values

These matching mechanisms define properties of values.

Syntactical Structure

length "(" ConstantExpression [".." (ConstantExpression | infinity)] ")" [ifpresent] |
ifpresent

Semantic Description

The matching mechanisms which describe attributes of values are:

• length: restrictions for string length of string types and the number of elements for record of, set of
and arrays;

• ifpresent: for matching of optional field values (if not omitted).

For further details please refer to annex B.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 117

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) See the restrictions given in table 11 and in annex B.

Examples

 type record R {
 record of integer ri optional
 }
 template R r:=
 {
 ri := * length (1 .. 6) ifpresent // any value containing 1, 2, 3, 4,
 // 5 or 6 provided it is present
 }

15.8 Template Restrictions
Template restrictions allow to restrict the matching mechanisms that can be used with a template. Template restrictions
are applicable to template definitions and template variables, formal template parameters, and return template types of
functions. Template restrictions can be applied equally to message and signature templates.

Syntactical Structure

template "(" (omit | present | value) ")" Type

Semantic Description

The restrictions mean in case of:

• (omit) the template shall resolve to a value matching mechanism (i.e. the fields of it shall resolve to a
specific value or omit, and the whole template may also resolve to omit). Such a template can be used to define
a field of a record and set template and the latter one could still be used in a send statement.

• (value) the template shall resolve to a specific value (i.e. the fields of it shall resolve to a specific value or
omit, but the whole template shall not resolve to omit). It can be used to define a mandatory field of a record or
set template and the latter one could still be used in a send statement.

• (present) the template as a whole shall not resolve to matching mechanisms that match omit (i.e. its fields
may contain any of the matching mechmisms or matching attributes). Such a template can be used to define a
mandatory field of a record or set template.

NOTE: Template restrictions allow TTCN-3 tools to check more easily at compile time whether templates and
matching expressions are used correctly. Whether the checks are performed at compile time and invalid
code is rejected or whether the checks are performed at execution time and dynamic errors are raised, is
outside the scope of the present document.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Matching mechanisms can be used within restricted templates according to table 12.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 118

Table 12: Using matching mechanisms with restricted templates

Used with
template

restriction
Value Instead of values Inside values Attributes

 S
p
e
c
i
f
i
c
V
a
l
u
e

O
m
i
t
V
a
l
u
e

C
o
m
p
l
e
m
e
n
t
e
d
L
I
s
t

V
a
l
u
e
L
I
S
t

A
n
y
V
a
l
u
e

(?)

A
n
y
V
a
l
u
e
O
r
N
o
n
e
(*)

R
a
n
g
e

S
u
p
e
r
s
e
t

S
u
b
s
e
t

P
a
t
t
e
r
n

A
n
y
E
l
e
m
e
n
t

(?)

A
n
y
E
l
e
m
e
n
t
s
O
r
N
o
n
e
(*)

P
e
r
m
u
t
a
t
i
o
n

L
e
n
g
t
h
R
e
s
t
r
i
c
t
i
o
n

I
f
P
r
e
s
e
n
t

omit Yes Yes
value Yes Note
present Yes Note Yes Yes Note Yes Yes Yes Yes Yes Yes Yes Yes Note
NOTE: It is allowed to use the matching mechanism in fields of the template, but the template as a whole shall not

resolve to this matching mechanism.

b) Restricted and unrestricted templates can be used as actual parameters of formal template parameters or
assigned to template variables according to table 13.

Table 13: Restrictions of formal and actual template parameters

 Actual
parameter/right
hand side of an

expression

value template
(omit)

template
(value)

template
(present)

template

Formal
parameter/-
left hand
side of an
expression

template(omit) Yes Yes Yes (see note) (see note)
template(value) Yes (see note) Yes (see note) (see note)
template(present) Yes (see note) Yes Yes (see note)
template Yes Yes Yes Yes Yes
NOTE: These restrictions are related to the content of the actual parameter or right hand side expression

and not to the definition of the entities used. Which cases are checked at compile time and which
ones at runtime is a tool implementation issue.

c) A restricted, modified template has to have the same or more restrictive restriction as the base template. A
restricted parameter of a modified template has to have the same or a more restrictive restriction as the
corresponding parameter of the base template. The allowed restrictions are listed in table 14.

Table 14: Restricting modified templates

Restriction in base template Allowed restrictions in modified template
template template, template(present), template(omit), template(value)
template(present) template(present), template(value)
template(omit) template(omit), template(value)
template(value) template(value)

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 119

Examples

 // definitions of restricted templates
 type record ExampleType {
 integer a,
 boolean b optional
 }

 template(omit) ExampleType exampleOmit := omit;
 template(omit) ExampleType exampleOmitValue:= { 1, true };
 template(omit) ExampleType exampleOmitAny := ?; // incorrect

 template(value) ExampleType exampleValueomit := omit; // incorrect
 template(value) ExampleType exampleValue := { 1, true };
 template(value) ExampleType exampleValueOptional := { 1, omit };
 // omit assigned to a field is correct

 template(present) ExampleType examplePresent := {1, ?};
 template(present) ExampleType examplePresentIfpresent := { 1, true } ifpresent;
 // incorrect
 template(present) ExampleType examplePresentAny := ?;

 // restricted template usage
 var template ExampleType (omit) v_omit;
 var template ExampleType (present) v_present;
 var template ExampleType (value) v_value;

 v_omit := exampleOmit;
 v_omit := exampleValueOptional;
 v_omit := examplePresentAny; // incorrect, not a specific value

 v_present := exampleOmit; // incorrect, must not be omit
 v_present := examplePresent;

 v_value := exampleOmit; // incorrect, must not be omit
 v_value := examplePresentAny; // incorrect, must be a single value

 // template modification
 template (present) ExampleType exampleBase(template (omit) boolean p) := { ?, p };

 //correct, template and its parameter are more restrictive
 template (value) ExampleType exampleModified(template (value) boolean p)
 modifies exampleBase := { a := 1 };
 //incorrect, modified template is less restrictive
 template ExampleType exampleModified(template (value) boolean p)
 modifies exampleBase := { a := 1 };
 //incorrect, parameter of modified template is less restrictive
 template (present) ExampleType exampleModified(template (present) boolean p)
 modifies exampleBase := { a := 1 };

15.9 Match Operation
The match operation allows to compare a value (specified in form of an expression) with a template.

Syntactical Structure

match "(" Expression "," TemplateInstance ")"

Semantic Description

The match operation returns a boolean value. If the types of the template and the value (specified in form of an
expression) are not compatible (see clause 6.3) the operation returns false. If the types are compatible, the return
value of the match operation indicates whether the value matches the specified template.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The expression-parameter of the match operation shall not evaluate to a template, i.e. the match operation
cannot be used to compare two templates.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 120

Examples

 template integer LessThan10 := (-infinity..9);
 :
 MyPort.receive(integer:?) -> value RxValue;
 if(match(RxValue, LessThan10)) { … }
 // true if the actual value of Rxvalue is less than 10 and false otherwise
 :

15.10 Valueof Operation
The valueof operation allows to return the value specified within a template. The returned value can be assigned to a
variable, may be used in expressions, as an actual value parameter, etc.

Syntactical Structure

valueof "(" TemplateInstance ")"

Semantic Description

The valueof operation returns the value of a template instance.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The template shall be completely initialized and resolve to a specific value.

Examples

EXAMPLE 1:

 type record ExampleType
 {
 integer field1,
 boolean field2
 }

 template ExampleType SetupTemplate :=
 {
 field1 := 1,
 field2 := true
 }

 :
 var ExampleType RxValue := valueof(SetupTemplate);

EXAMPLE 2:

 function MyFunc() {
 var template integer vt_int := omit;
 //is ok, but to be used for optional record or set fields only
 var integer v_int := valueof(vt_int)
 //causes an error as omit is not a value and shall not be an argument of valueof
 :
 }

15.11 Concatenating templates of string and list types
Templates of string and list types (bitstring, octetstring, hexstring, charstring, universal charstring, record of, set of, and
array) can be concatenated from several single (inline) templates using the concatenation operation. Each single
template shall have the same root type. The single templates shall contain only specific values, AnyValueOrNone
constrained to a fixed length, AnyElement, or AnyElementsOrNone matching mechanisms. The concatenation results in
the sequential concatenation of the single templates from left to right, with one exception: a single template that is
AnyValueOrNone constrained to a fixed length N shall be replaced by an inline template containing N AnyElement
matching symbols before concatenation. The concatenation shall be performed completely before using the resulting
template (e.g. for assignment or matching) and the result shall be type-compatible with the place of its use.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 121

NOTE 1: Inline templates used for the concatenation need not be valid templates of the result type (e.g. odd number
of hexadecimal digits are allowed in an octetstring template concatenation), but the resulting template has
to be a valid template.

NOTE 2: See also concatenation of character string patterns in clause B.1.5.

EXAMPLE 1: Composing templates of string types

 template charstring t_Mychar1 := "ABC" & "D*" & "E?F";
 // results in the template "ABCD*E?F"
 template charstring t_Mychar2 := "ABC" & * length(2) & "E?F";
 // results in the template "ABC??E?F"
 template bitstring t_Mybit := '010'B & '*'B & '1?1'B;
 // results in the template '010*1?1'B
 template octetstring t_Myoct1 := 'ABC'O & 'D*'O & '?EF'O;
 // results in the template 'ABCD*?EF'O
 template octetstring t_Myoct2 := 'ABCD'O & * length (2) & 'EF'O;
 // results in the template 'ABCD??EF'O
 // (i.e. a 5 octets i.e. 10 hexadecimal digits long value)

 template octetstring t_Myoct := 'ABCD'O & '?'O & '?E'O;
 // causes an error, the resulting template shall be a legal value
 // (if composed, 'ABCD??E'O would denote 9 hexadecimal digits, but the length should be an
 // even number of digits)
 template charstring t_MycharWrong := "ABC" & * length(1..2) & "E?F";
 // causes an error, the length attribute shall be of fixed length

 template charstring t_MycharPar (integer N):= "ABC" & * length(N) & "E?F";
 function MyFunc() runs on MyCompType {
 var integer v_int := 3;
 var template charstring vt_char;
 ...
 vt_char := "ABC" & * length(v_int) & "E?F";
 //results in the template "ABC???E?F"
 P.receive (t_MycharPar (4));
 //actual content of t_MycharPar is "ABC????E?F"
 }

EXAMPLE 2: Composing templates of list types

 type record of charstring RecofChar;
 type set of integer SetofInt;

 template RecofChar t_MyRecofChar := {"ABC"} & {"D*", "E?F"};
 // results the template {"ABC", "D*", "E?F" }
 template SetofInt t_MySetofInt := { 1, 2 } & * length(2) & { 3, 4 };
 // results the template {1, 2, ?, ?, 3, 4 }

 template RecofChar t_MyRecofCharWrong:= "ABC" & * length(1..2) & "E?F";
 // causes an error, the length attribute shall denote a fixed length

 template RecofChar t_MyRecofCharPar (integer N):= { "ABC" }, & * length(N) & { "E?F" };
 function MyFunc() runs on MyCompType{
 var integer v_int := 3;
 var template RecofChar vt_recofChar;
 ...
 vt_recofChar := { "ABC" } & * length(v_int) & { "E?F" };
 //results the template { "ABC", ?, ?, ?, "E?F" }
 P.receive (t_MyRecofCharPar(4));
 //actual content of t_MyRecofCharPar is { "ABC", ?, ?, ?, ?, "E?F" }
 }

16 Functions, altsteps and testcases
In TTCN-3, functions, altsteps and testcases are used to specify and structure test behaviour, define default behaviour
and to structure computation in a module etc. as described in the following clauses.

16.1 Functions
Functions are used in TTCN-3 to express test behaviour, to organize test execution or to structure computation in a
module, for example, to calculate a single value, to initialize a set of variables or to check some condition.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 122

Syntactical Structure

function FunctionIdentifier
"(" [{ (FormalValuePar | FormalTimerPar | FormalTemplatePar | FormalPortPar) [","] }] ")"
[runs on ComponentType]
[return [template] Type]
StatementBlock

Semantic Description

Functions are portions of TTCN-3 behaviour, which perform a specific task and are relatively independent of the
remaining behaviour.

Functions may return a value or a template. Value return is denoted by the return keyword followed by a type
identifier. Template return is denoted by the return template keywords followed by a type identifier. Template
return can be restricted to the matching mechanisms specific value and omit, see clause 5.4.1.2. The keyword return,
when used in the body of the function with a value return defined in its header, shall always be followed by an
expression representing the return value. The type of the return value shall be compatible with the return type. The
keyword return, when used in the body of the function with a template return defined in its header, shall always be
followed by an expression or a template instance representing the return template. The type of the return template shall
be compatible with the return template type. If the return template is restricted, then the return template shall either be a
specific value or omit. The return statement in the body of the function causes the function to terminate and to return the
return value to the location of the call of the function.

The behaviour of a function can be defined by using statements and operations described in clauses 18 to 25 and
clause 26. If a function uses variables, constants, timers and ports that are declared in a component type definition, the
component type shall be referenced using the runs on keywords in the function header. The one exception to this rule
is if all the necessary component-wide information is passed in the function as parameters.

Functions may be parameterized.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) A function without runs on clause shall never invoke a function or altstep or activate an altstep as default
with a runs on clause locally.

b) Functions started by using the start test component operation shall always have a runs on clause
(see clause 22.5) and are considered to be invoked in the component to be started, i.e. not locally. However,
the start test component operation may be invoked in functions without a runs on clause.

NOTE 1: The restrictions concerning the runs on clause are only related to functions and altsteps and not to test
cases.

c) Functions used in the control part of a TTCN-3 module shall have no runs on clause.

NOTE 2: Nevertheless, functions used in the control part are allowed to execute test cases.

d) The rules for formal parameter lists shall be followed as defined in clause 5.4.

e) For return template statements the restrictions specified in clause 15 shall apply.

Examples

EXAMPLE 1: Function with return

 // Definition of MyFunction which has no parameters
 function MyFunction() return integer
 {

 return 7; // returns the integer value 7 when the function terminates
 }

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 123

EXAMPLE 2: Function with template return

 // Definition of functions which may return matching symbols or templates
 function MyFunction2() return template integer
 {
 :
 return ?; // returns the matching mechanism AnyValue
 }
 function MyFunction3() return template octetstring
 {
 :
 return 'FF??FF'O; // returns an octetstring with AnyValue inside it
 }

EXAMPLE 3: Function with runs on clause

 function MyFunction3() runs on MyPTCType {
 lo // MyFunction3 doesn't return a value, but
 var integer MyVar := 5; // does make use of the port operation
 PCO1.send(MyVar); // send and therefore requires a runs on

 // clause to resolve the port identifiers
 } // by referencing a component type

EXAMPLE 4: Parameterized function

 function MyFunction2(inout integer MyPar1) {
 // MyFunction2 doesn't return a value
 MyPar1 := 10 * MyPar1; // but changes the value of MyPar1 which
 } // is passed in by reference

16.1.1 Invoking functions

A function is invoked by referring to its name and providing the actual list of parameters.

Syntactical Structure

FunctionRef "(" [{ ActualPar [","] }] ")"

Semantic Description

A function invocation results in the execution of the statement block of the invoked function. The invoked function is
performed by the test component invoking it. Actual parameters are passed into the statement block. If the function
returns (upon termination and potentially with a return value), the test components continues its behaviour right after
the function invocation.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Functions that do not return values shall be invoked directly. Functions that return values may be invoked
directly or inside expressions.

b) The rules for actual parameter lists shall be followed as defined in clause 5.4.

c) Special restrictions apply to functions bound to test components using the start test component operation.
These restrictions are described in clause 21.2.2.

d) When invoking a function, the compatibility to the test component type of the invoking test component as
described in clause 6.3.3 need to be fulfilled.

e) Restrictions on invoking functions from specific places are described in clause 16.1.4.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 124

Examples

 MyVar := MyFunction4(); // The value returned by MyFunction4 is assigned to MyVar.
 // The types of the returned value and MyVar have to be compatible

 MyFunction2(MyVar2); // MyFunction2 doesn't return a value and is called with the
 // actual parameter MyVar2, which may be passed in by reference

 MyVar3 := MyFunction6(4) + MyFunction7(MyVar3); // Functions used in expressions

16.1.2 Predefined functions

TTCN-3 contains a number of predefined (built-in) functions that need not be declared before use. These are
summarized in table 15.

Table 15: List of TTCN-3 predefined functions

Category Function Keyword
Conversion functions Convert integer value to charstring value int2char

Convert integer value to universal charstring value int2unichar

Convert integer value to bitstring value int2bit

Convert integer value to hexstring value int2hex

Convert integer value to octetstring value int2oct

Convert integer value to charstring value int2str

Convert integer value to float value int2float

Convert float value to integer value float2int

Convert charstring value to integer value char2int

Convert charstring value to octetstring value char2oct

Convert universal charstring value to integer value unichar2int

Convert bitstring value to integer value bit2int

Convert bitstring value to hexstring value bit2hex

Convert bitstring value to octetstring value bit2oct

Convert bitstring value to charstring value bit2str

Convert hexstring value to integer value hex2int

Convert hexstring value to bitstring value hex2bit

Convert hexstring value to octetstring value hex2oct

Convert hexstring value to charstring value hex2str

Convert octetstring value to integer value oct2int

Convert octetstring value to bitstring value oct2bit

Convert octetstring value to hexstring value oct2hex

Convert octetstring value to charstring value oct2str

Convert octetstring value to charstring value, version II oct2char

Convert charstring value to integer value str2int

Convert charstring value to hexstring value str2hex

Convert charstring value to octetstring value str2oct

Convert charstring value to float value str2float

Convert enumeration to integer value enum2int

Length/size functions Return the length of a value or template of any string type,
record of, set of or array

lengthof

Return the number of elements in a value or a template of a
record or set

sizeof

Presence checking functions Determine if an optional field in a record or set value or
template is present

ispresent

Determine which choice has been selected in a union value or
template

ischosen

Determine if a template evaluates to a concrete value isvalue

String/List handling functions Returns part of the input string matching the specified pattern
group within a character pattern

regexp

Returns the specified portion of the input string/list value or
template

substr

Replaces a substring of a string with or inserts the input string
into a string, and similarly for lists

replace

Codec functions Encode a value into a bitstring encvalue

Decode a bitstring into a value decvalue

Other functions Generate a random float number rnd

Returns the name of the currently executing test case testcasename

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 125

Syntactical Structure

int2char "(" SingleExpression ")" |
int2unichar "(" SingleExpression ")" |
int2bit "(" SingleExpression "," SingleExpression ")" |
int2hex "(" SingleExpression "," SingleExpression ")" |
int2oct "(" SingleExpression "," SingleExpression ")" |
int2str "(" SingleExpression ")" |
int2float "(" SingleExpression ")" |
float2int "(" SingleExpression ")" |
char2int "(" SingleExpression ")" |
char2oct "(" SingleExpression ")" |
unichar2int "(" SingleExpression ")" |
bit2int "(" SingleExpression ")" |
bit2hex "(" SingleExpression ")" |
bit2oct "(" SingleExpression ")" |
bit2str "(" SingleExpression ")" |
hex2int "(" SingleExpression ")" |
hex2bit "(" SingleExpression ")" |
hex2oct "(" SingleExpression ")" |
hex2str "(" SingleExpression ")" |
oct2int "(" SingleExpression ")" |
oct2bit "(" SingleExpression ")" |
oct2hex "(" SingleExpression ")" |
oct2str "(" SingleExpression ")" |
oct2char "(" SingleExpression ")" |
str2int "(" SingleExpression ")" |
str2hex "(" SingleExpression ")" |
str2oct "(" SingleExpression ")" |
str2float "(" SingleExpression ")" |
enum2int "(" SingleExpression ")" |
lengthof "(" TemplateInstance ")" |
sizeof "(" TemplateInstance ")" |
ispresent "(" TemplateInstance ")" |
ischosen "(" TemplateInstance ")" |
isvalue "(" TemplateInstance ")" |
regexp "(" TemplateInstance"," TemplateInstance"," SingleExpression ")" |
substr "(" TemplateInstance "," SingleExpression "," SingleExpression ")" |
replace "(" SingleExpression "," SingleExpression "," SingleExpression "," SingleExpression ")" |
encvalue "(" TemplateInstance ")" |
decvalue "(" SingleExpression "," SingleExpression ")" |
rnd "(" [SingleExpression] ")" |
testcasename "()"

Semantic Description

The description of predefined functions is given in annex C.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) When a predefined function is invoked:

1) the number of the actual parameters shall be the same as the number of the formal parameters; and

2) each actual parameter shall evaluate to an element of its corresponding formal parameter's type; and

3) all actual parameters shall be initialized with the exception of the actual parameter passed to the
isvalue predefined function, which may be uninitialized.

b) Restrictions on invoking functions from specific places are described in clause 16.1.4.

Examples

 var hexstring h:= bit2hex ('111010111'B);
 var octetstring o:= substr ('01AB23CD'O, 1, 2);

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 126

16.1.3 External functions

A function may be defined within a module or be declared as being defined externally (i.e. external).

Syntactical Structure

external function ExtFunctionIdentifier
"(" [{ (FormalValuePar | FormalTimerPar | FormalTemplatePar | FormalPortPar) [","] }] ")"
[return Type]

Semantic Description

For an external function only the function interface has to be provided in the TTCN-3 module. The realization of the
external function is outside the scope of the present document.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) External functions are not allowed to contain port, timer or default handling operations.

b) External functions are not allowed to return templates.

c) Restrictions on invoking functions from specific places are described in clause 16.1.4.

Examples

 external function MyFunction4() return integer; // External function without parameters
 // which returns an integer value

 external function InitTestDevices(); // An external function which only has an
 // effect outside the TTCN-3 module

16.1.4 Invoking functions from specific places

Value returning functions can be called during communication operations (in templates, template fields or in-line
templates) or during snapshot evaluation (in Boolean guards of alt statements or altsteps (see clause 20.2) and in
initialization of altstep local definitions (see clause 16.2). To avoid side effects that cause changing the state of the
component or the actual snapshot and to prevent different results of subsequent evaluations on an unchanged snapshot,
the following operations shall not be used in functions called in the cases specified above:

a) All component operations, i.e. create, start (component), stop (component), kill,
running (component), alive, done and killed (see notes 1, 3, 4 and 6).

b) All port operations, i.e. start (port), stop (port), halt, clear, send, receive, trigger, call,
getcall, reply, getreply, raise, catch, check, connect, map (see notes 1, 2, 3 and 6).

c) The action operation (see notes 2 and 6).

d) All timer operations, i.e. start (timer), stop (timer), running (timer), read, timeout (see notes 4
and 6).

e) Calling external functions (see notes 4 and 6).

f) Calling the rnd predefined function (see notes 4 and 6).

g) Changing of component variables, i.e. using component variables on the left-hand side of assignments, and in
the instantiation of out and inout parameters (see notes 4 and 6).

h) Calling the setverdict operation (see notes 4 and 6).

i) Activation and deactivation of defaults, i.e. the activate and deactivate statements (see notes 5 and 6).

j) Calling functions with out or inout parameters (see notes 7 and 8).

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 127

NOTE 1: The execution of the operations start, stop, done, killed, halt, clear, receive, trigger,
getcall, getreply, catch and check can cause changes to the current snapshot.

NOTE 2: The use of operations send, call, reply, raise, and action causes an error, i.e. all
communication are to be made explicit and not as a side-effect of another communication operation or the
evaluation of a snapshot.

NOTE 3: The use of operations map, unmap, connect, disconnect, create causes an error, i.e. all
configuration operations are to be made explicit, and not as a side-effect of a communication operation or
the evaluation of a snapshot.

NOTE 4: Calling of external functions, rnd, running, alive, read, setverdict, and writing to component
variables causes an error because it may lead to different results of subsequent evaluations of the same
snapshot, thus, e.g. rendering deadlock detection impossible.

NOTE 5: The use of operations activate and deactivate causes an error because they modify the set of
defaults that is considered during the evaluation of the current snapshot.

NOTE 6: Restrictions except the limitation on the use of out or inout parameterization apply recursively, i.e. it
is disallowed to use them directly, or via an arbitrary long chain of function invocations.

NOTE 7: The restriction of calling functions with out or inout parameters does not apply recursively, i.e. calling
functions that themselves call functions with out or inout parameters is legal.

NOTE 8: Using out or inout parameters causes an error because it may lead to different results of subsequent
evaluations of the same snapshot.

16.2 Altsteps
TTCN-3 uses altsteps to specify default behaviour or to structure the alternatives of an alt statement.

Syntactical Structure

altstep AltstepIdentifier
"(" [{ (FormalValuePar | FormalTimerPar | FormalTemplatePar | FormalPortPar) [","] }] ")"
[runs on ComponentType]
"{"
 { (VarInstance | TimerInstance | ConstDef | TemplateDef) [";"] }
 AltGuardList
"}"

Semantic Description

Altsteps are scope units similar to functions. The altstep body defines an optional set of local definitions and a set of
alternatives, the so-called top alternatives, that form the altstep body. The syntax rules of the top alternatives are
identical to the syntax rules of the alternatives of alt statements.

The behaviour of an altstep can be defined by using the program statements and operations summarized in clause 18.
Altsteps may invoke functions and altsteps or activate altsteps as defaults.

Altsteps may be parameterized as defined in clause 5.4.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The local definitions of an altstep shall be defined before the set of alternatives.

b) The initialization of local definitions by calling value returning functions may have side effects. To avoid side
effects that cause an inconsistency between the actual snapshot and the state of the component, and to prevent
different results of subsequent evaluations on an unchanged snapshot, restrictions given in clause 16.1.4 shall
apply to the initialization of local definitions.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 128

c) If an altstep includes port operations or uses component variables, constants or timers the associated
component type shall be referenced using the runs on keywords in the altstep header. The one exception to
this rule is if all ports, variables, constants and timers used within the altstep are passed in as parameters.

d) An altstep without a runs on clause shall never invoke a function or altstep or activate an altstep as default
with a runs on clause locally.

e) An altstep that is activated as a default shall only have in value or template parameters, port parameters, and
timer parameters. An altstep that is only invoked as an alternative in an alt statement or as stand-alone
statement in a TTCN-3 behaviour description may have in, out and inout parameters. The rules for formal
parameter lists shall be followed as defined in clause 5.4.

Examples

EXAMPLE 1: Parameterized altstep with runs on clause

 // Given
 type component MyComponentType {
 var integer MyIntVar := 0;
 timer MyTimer;
 port MyPortTypeOne PCO1, PCO2;
 port MyPortTypeTwo PCO3;
 }

 // Altstep definition using PCO1, PCO2, MyIntVar and MyTimer of MyComponentType
 altstep AltSet_A(in integer MyPar1) runs on MyComponentType {
 [] PCO1.receive(MyTemplate(MyPar1, MyIntVar) {
 setverdict(inconc);
 }
 [] PCO2.receive {
 if (MyPar1 != 0) {
 repeat
 }
 else {
 break
 }
 }
 [] MyTimer.timeout {
 setverdict(fail);
 stop
 }
 }

EXAMPLE 2: Altstep with local definitions

 altstep AnotherAltStep(in integer MyPar1) runs on MyComponentType {
 var integer MyLocalVar := MyFunction(); // local variable
 const float MyFloat := 3.41; // local constant
 [] PCO1.receive(MyTemplate(MyPar1, MyLocalVar) {
 setverdict(inconc);
 }
 [] PCO2.receive {
 repeat
 }
 }

16.2.1 Invoking altsteps

The invocation of an altstep is always related to an alt statement. The invocation may be done either implicitly by the
default mechanism (see clause 21) or explicitly by a direct call within an alt statement (see clause 20.2).

Syntactical Structure

AltstepRef "(" [{ ActualPar [","] }] ")"

Semantic Description

The invocation of an altstep causes no new snapshot and the evaluation of the top alternatives of an altstep is done by
using the actual snapshot of the alt statement from which the altstep was called.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 129

NOTE: A new snapshot within an altstep will of course be taken, if within a selected top alternative a new alt
statement is specified and entered.

For an implicit invocation of an altstep by means of the default mechanism, the altstep shall be activated as a default by
means of an activate statement before the place of the invocation is reached.

An explicit call of an altstep within an alt statement looks syntactically like a function invocation as an alternative.
When an altstep is called explicitly within an alt statement, the next alternative to be checked is the first alternative of
the altstep. The alternatives of the altstep are checked and executed the same way as alternatives of an alt
statement (see clause 20.1) with the exception that no new snapshot is taken when entering the altstep. An
unsuccessful termination of the altstep (i.e. all top alternatives of the altstep have been checked and no matching
branch is found) causes the evaluation of the next alternative or invocation of the default mechanism (if the explicit call
is the last alternative of the alt statement). A successful termination may cause either the termination of the test
component, i.e. the altstep ends with a stop statement, or a new snapshot and re-evaluation of the alt statement,
i.e. the altstep ends with repeat (see clause 20.2) or a continuation immediately after the alt statement, i.e. the
execution of the selected top alternative of the altstep ends with a break statement (see clause 19.12) or without
explicit repeat or stop.

An altstep can also be called as a stand-alone statement in a TTCN-3 behaviour description. In this case, the call of
the altstep can be interpreted as shorthand for an alt statement with only one alternative describing the explicit call
of the altstep.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) When invoking an altstep, the compatibility of the test component type of the invoking test component and of
the altstep runs on clause (as described in clause 6.3.3) need to be fulfilled.

b) Further restrictions on invoking altsteps in the activate statement are given in clause 20.5.2.

Examples

EXAMPLE 1: Implicit invocation of an altstep via a default activation

 :
 var default MyDefVarTwo := activate(MySecondAltStep()); // Activation of an altstep as default
 :

EXAMPLE 2: Explicit invocation of an altstep within an alt statement

 :
 alt {
 [] PCO3.receive {
 …
 }
 [] AnotherAltStep(); // explicit call of altstep AnotherAltStep as an alternative
 // of an alt statement
 [] MyTimer.timeout {}
 }

EXAMPLE 3: Explicit, stand-alone invocation of an altstep

 // The statement
 AnotherAltStep(); // AnotherAltStep is assumed to be a correctly defined altstep

 //is a shorthand for

 alt {
 [] AnotherAltStep();
 }

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 130

16.3 Test cases
A test case is complete and independent specification of the actions required to achieve a specific test purpose. It
typically starts in a stable testing state and ends in a stable testing state. It may involve one or more consecutive or
concurrent connections to the SUT. The test case shall be complete in the sense that it is sufficient to enable a test
verdict to be assigned unambiguously to each potentially observable test outcome (i.e. sequence of test events). The test
case shall be independent in the sense that it shall be possible to execute the derived executable test case in isolation
from other such test cases.

In TTCN-3, test cases are a special kind of function. Test cases define the behaviours, which have to be executed to
check whether the SUT passes a test or not. This behaviour is performed by the MTC which is automatically created
when a test case is being executed.

Syntactical Structure

testcase TestcaseIdentifier
"(" [{ (FormalValuePar | FormalTemplatePar) [","] }] ")"
runs on ComponentType
[system ComponentType]
StatementBlock

Semantic Description

A test case is considered to be a self-contained and complete specification that checks a test purpose. The result of a test
case execution is a test verdict.

A test case header has two parts:

a) interface part (mandatory): denoted by the keyword runs on which references the required component type
for the MTC and makes the associated port names visible within the MTC behaviour; and

b) test system part (optional): denoted by the keyword system which references the component type which
defines the required ports for the test system interface. The test system part shall only be omitted if, during test
execution, only the MTC is instantiated. In this case, the MTC type defines the test system interface ports
implicitly.

The behaviour of a test case can be defined by using the program statements and operations described in clause 18.

Test cases may be parameterized as described in clause 5.4. Test cases can be executed in the control part of a module
(see clause 26).

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The rules for formal parameter lists shall be followed as defined in clause 5.4.

b) Test cases may only be invoked with an execute statement in a module control part as defined in clause 26.

Examples

 testcase MyTestCaseOne()
 runs on MyMtcType1 // defines the type of the MTC
 system MyTestSystemType // makes the port names of the TSI visible to the MTC
 {
 : // The behaviour defined here executes on the mtc when the test case invoked
 }

 // or, a test case where only the MTC is instantiated
 testcase MyTestCaseTwo() runs on MyMtcType2
 {
 : // The behaviour defined here executes on the mtc when the test case invoked
 }

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 131

17 Void

18 Overview of program statements and operations
The fundamental program elements of test cases, functions, altsteps and the control part of TTCN-3 modules are
expressions, basic program statements such as assignments, loop constructs etc., behavioural statements such as
sequential behaviour, alternative behaviour, interleaving, defaults, etc., and operations such as send, receive,
create, etc.

Statements can be either single statements (which do not include other program statements) or compound statements
(which may include other statements and statement blocks).

Statements shall be executed in the order of their appearance, i.e. sequentially, as illustrated in figure 8.

 S1

S1; S2; S3;S2

S3

Figure 8: Illustration of sequential behaviour

The individual statements in the sequence shall be separated by the delimiter ";".

EXAMPLE:

 MyPort.send(Mymessage); MyTimer.start; log("Done!");

The specification of an empty statement block, i.e. {}, may be found in compound statements, e.g. a branch in an alt
statement, and implies that no actions are taken.

Table 16 gives an overview of the TTCN 3 expressions, statements and operations and restrictions on their usage.

Table 16: Overview of TTCN-3 expressions, statements and operations

Statement Associated keyword or
symbol

Can be used
in module

control

Can be used
in functions,

test cases and
altsteps

Can be used
in functions
called from
templates,
Boolean

guards, or
from

initialization of
altstep local
definitions

Expressions (…) Yes Yes Yes
Basic program statements
Assignments := Yes Yes Yes

(see note 3)
If-else if (…) {…} else {…} Yes Yes Yes
Select case select case (…) { case

(…) {…} case else {…}}
Yes Yes Yes

For loop for (…) {…} Yes Yes Yes
While loop while (…) {…} Yes Yes Yes
Do while loop do {…} while (…) Yes Yes Yes
Label and Goto label / goto Yes Yes Yes
Stop execution stop Yes Yes
Returning control return Yes

(see note 4)
Yes

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 132

Statement Associated keyword or
symbol

Can be used
in module

control

Can be used
in functions,

test cases and
altsteps

Can be used
in functions
called from
templates,
Boolean

guards, or
from

initialization of
altstep local
definitions

Leaving a loop, alt, altstep or interleave break Yes Yes Yes
Next iteration of a loop continue Yes Yes Yes
Logging log Yes Yes Yes
Statements and operations for alternative behaviours
Alternative behaviour alt {…} Yes

(see note 1)
Yes

Re-evaluation of alternative behaviour repeat Yes
(see note 1)

Yes

Interleaved behaviour interleave {…} Yes
(see note 1)

Yes

Activate a default activate Yes
(see note 1)

Yes

Deactivate a default deactivate Yes
(see note 1)

Yes

Configuration operations
Create parallel test component create Yes
Connect component port to component
port

connect Yes

Disconnect two component ports disconnect Yes
Map port to test interface map Yes
Unmap port from test system interface unmap Yes
Get MTC component reference value mtc Yes Yes
Get test system interface component
reference value

system Yes Yes

Get own component reference value self Yes Yes
Start execution of test component
behaviour

start Yes

Stop execution of test component
behaviour

stop Yes

Remove a test component from the
system

kill Yes

Check termination of a PTC behaviour running Yes
Check if a PTC exists in the test system alive Yes
Wait for termination of a PTC behaviour done Yes
Wait a PTC cease to exist killed Yes
Communication operations
Send message send Yes
Invoke procedure call call Yes
Reply to procedure call from remote
entity

reply Yes

Raise exception (to an accepted call) raise Yes
Receive message receive Yes
Trigger on message trigger Yes
Accept procedure call from remote
entity

getcall Yes

Handle response from a previous call getreply Yes
Catch exception (from called entity) catch Yes
Check (current) message/call received check Yes
Clear port queue clear Yes
Clear queue and enable sending &
receiving at a to port

start Yes

Disable sending and disallow receiving
operations to match at a port

stop Yes

Disable sending and disallow receiving
operations to match new
messages/calls

halt Yes

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 133

Statement Associated keyword or
symbol

Can be used
in module

control

Can be used
in functions,

test cases and
altsteps

Can be used
in functions
called from
templates,
Boolean

guards, or
from

initialization of
altstep local
definitions

Timer operations
Start timer start Yes Yes
Stop timer stop Yes Yes
Read elapsed time read Yes Yes
Check if timer running running Yes Yes
Timeout event timeout Yes Yes
Verdict operations
Set local verdict setverdict Yes
Get local verdict getverdict Yes Yes
External actions
Stimulate an (SUT) action externally action Yes Yes
Execution of test cases
Execute test case execute Yes Yes

(see note 2)

NOTE 1: Can be used to control timer operations only.
NOTE 2: Can only be used in functions and altsteps that are used in module control.
NOTE 3: Changing of component variables is disallowed.
NOTE 4: Can be used in functions and altsteps but not in test cases.

19 Basic program statements
The basic program statements presented in table 17 can be used in the control part of a module and in TTCN-3
functions, altsteps and test cases.

Table 17: Overview of TTCN-3 basic program statements

Basic program statements
Statement Associated keyword or symbol

Assignments :=
If-else if (…) {…} else {…}
Select case select case (…) { case (…) {…} case

else {…}}
For loop for (…) {…}
While loop while (…) {…}
Do while loop do {…} while (…)
Label and Goto label / goto
Stop execution stop
Returning control return
Leaving a loop, alt, altstep or
interleave

break

Next iteration of a loop continue
Logging log

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 134

19.1 Assignments
Values or templates may be assigned to variables or template variables (see clause 11). This is indicated by the symbol
":=".

Syntactical Structure

VariableRef ":=" (Expression | TemplateBody)

Semantic Description

During execution of an assignment, the right-hand side of the assignment shall evaluate to a value or template. The
effect of an assignment is to bind the variable to the value of the expression or to a template. The expression shall
contain no unbound variables. Assignments are processed from left to right, i.e expressions in the left-hand-side are
evaluated before those in the right-hand-side. The evaluations obey the operator precedence defined in table 6. The
right-hand-side is evaluated completely before the resulting value or template is bound to the evaluated left-hand side of
the assignment. Whenever assignments are used within the right-hand-side of an assignment (due to assignment
notation), these rules apply recursively.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The right-hand side of an assignment shall evaluate to a value or template, which is type compatible with the
variable at the left-hand side of the assignment.

b) When the right-hand side of the assignment evaluates to a template (global or local template, in-line template
or template variable), the variable at the left hand side shall be a template variable.

Examples

 MyVariable := (x + y - increment(z))*3;

19.2 The If-else statement
The if-else statement, also known as the conditional statement, is used to denote branching in the control flow.

Syntactical Structure

if "(" BooleanExpression ")" StatementBlock
{ else if "(" BooleanExpression ")" StatementBlock }
[else StatementBlock]

NOTE: else if "(" BooleanExpression ")" StatementBlock [else StatementBlock] is a shorthand notation for
else "{" if "(" BooleanExpression ")" StatementBlock [else StatementBlock] "}".

Semantic Description

The branching of the control flow is decided upon the value of the Boolean expressions - the condition. A statement
block - and only one - will be executed, if its condition evaluates to true. The optional else specifies a statement block
that will be executed if all the "if" and "else if" conditions before are false.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

 if (date == "1.1.2005") { return (fail); }

 if (MyVar < 10) { MyVar := MyVar * 10; log ("MyVar < 10"); }
 else { MyVar := MyVar/5; }

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 135

19.3 The Select case statement
The select case statement is an alternative syntactic form of the if-else statement.

Syntactical Structure

select "(" SingleExpression ")" "{"
 { case "(" { SingleExpression [","] } ")" StatementBlock }
 [case else StatementBlock]
"}"

Semantic Description

The select case statement is an alternative to using if .. else if .. else statements when comparing a value to
one or several other values. The statement contains a header part and zero or more branches. Never more than one of the
branches is executed.

In the header part of the select case statement an expression shall be given. Each branch starts with the case
keyword followed by a list of templateInstance (a list branch, which may also contain a single element) or the else
keyword (an else branch) and a statement block.

All templateInstance in all list branches shall be of a type compatible with the type of the expression in the header.
A list branch is selected and the statement block of the selected branch is executed only, if any of the templateInstance
matches the value of the expression in the header of the statement. On executing the statement block of the selected
branch (i.e. not jumping out by a go to statement), execution continues with the statement following the select case
statement.

The statement block of an else branch is always executed if no other branch textually preceding the else branch has
been selected.

Branches are evaluated in their textual order. If none of the templateInstance-s matches the value of the expression in
the header and the statement contains no else branch, execution continues without executing any of the select case
branches.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The select SingleExpression and the case SingleExpression-s shall be type compatible.

Examples

 select (MyModulePar) // where MyModulePar is of charstring type
 {
 case ("firstValue")
 {
 log ("The first branch is selected");
 }
 case (MyCharVar, MyCharConst)
 {
 log ("The second branch is selected");
 }
 case else
 {
 log ("The value of the module parameter MyModulePar is selected");
 }
 }

 // the above select statement is equivalent to the following nested if-else statement.
 // Note: the following textual replacement of the select-case statement is described in
 // the operational semantics of TTCN-3.
 {
 var charstring myTempVar := MyModulePar;
 if (match(myTempVar, "firstValue")
 {
 log ("The first branch is selected");
 }
 else if (match(myTempVar, MyCharVar) or match(myTempVar, MyCharConst))
 {
 log ("The second branch is selected");
 }

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 136

 else
 {
 log ("The value of the module parameter MyModulePar is selected");
 }
 }

19.4 The For statement
The for statement defines a counter loop.

Syntactical Structure

for "(" (VarInstance | Assignment) ";" BooleanExpression ";" Assignment ")"
 StatementBlock

Semantic Description

The for statement contains two assignments and a boolean expression. The first assignment is necessary to initialize
the index (or counter) variable of the loop. The boolean expression terminates the loop and the second assignment is
used to manipulate the index variable.

The value of the index variable is increased, decreased or manipulated in such a manner that after a certain number of
execution loops a termination criteria is reached.

The termination criterion of the loop shall be expressed by a boolean expression. It is checked at the beginning of
each new loop iteration. If it evaluates to true, the execution continues with the statement block in the for statement, if
it evaluates to false, the execution continues with the statement which immediately follows the for loop. If a break
statement is executed that is not within the body of an enclosed loop, alt, alststep or interleave, then the loop is
terminated, too.

The index variable of a for loop can be declared before being used in the for statement or can be declared and
initialized in the for statement header. If the index variable is declared and initialized in the for statement header, the
scope of the index variable is limited to the loop body, i.e. it is only visible inside the loop body.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

 var integer j; // Declaration of integer variable j
 for (j:=1; j<=10; j:= j+1) { … } // Usage of variable j as index variable of the for loop

 for (var float i:=1.0; i<7.9; i:= i*1.35) { … } // Index variable i is declared and initialized
 // in the for loop header. Variable i only is
 // visible in the loop body.

19.5 The While statement
A while statement defines a loop that is executed as long as the loop condition holds.

Syntactical Structure

while "(" BooleanExpression ")" StatementBlock

Semantic Description

The loop condition shall be checked at the beginning of each new loop iteration. If the loop condition does not hold,
then the loop is exited and execution shall continue with the statement, which immediately follows the while loop. If a
break statement is executed that is not within the body of an enclosed loop, alt, alststep or interleave, then the
loop is terminated, too.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 137

Examples

 while (j<10){ … }

19.6 The Do-while statement
A do-while statement defines a loop that is executed up until the loop condition does not hold.

Syntactical Structure

do StatementBlock while "(" BooleanExpression ")"

Semantic Description

The do-while loop is identical to a while loop with the exception that the loop condition shall be checked at the end
of each loop iteration. This means when using a do-while loop the behaviour is executed at least once before the loop
condition is evaluated for the first time. If a break statement is executed that is not within the body of an enclosed
loop, alt, alststep or interleave, then the loop is terminated, too.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

 do { … } while (j<10);

19.7 The Label statement
The label statement allows the specification of labels in test cases, functions, altsteps and the control part of a
module.

Syntactical Structure

label LabelIdentifier

Semantic Description

A label marks a statement. The label is used by the goto statement (see clause 19.8) to transfer control to a labelled
statement.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) A label statement can be used freely like other TTCN-3 behavioural program statements according to the
syntax rules defined in annex A. It can be used before or after a TTCN-3 statement but not as the first
statement of an alternative or top alternative in an alt statement, interleave statement or altstep.

b) Labels used following the label keyword shall be unique among all labels defined in the same test case,
function, altstep or control part.

Examples

 label MyLabel; // Defines the label MyLabel

 // The labels L1, L2 and L3 are defined in the following TTCN-3 code fragment
 :
 label L1; // Definition of label L1
 alt{
 [] PCO1.receive(MySig1)
 { label L2; // Definition of label L2
 PCO1.send(MySig2);
 PCO1.receive(MySig3)
 }
 [] PCO2.receive(MySig4)
 { PCO2.send(MySig5);

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 138

 PCO2.send(MySig6);
 label L3; // Definition of label L3
 PCO2.receive(MySig7);
 }
 }
 :

19.8 The Goto statement
A goto statement performs a jump to a label.

Syntactical Structure

goto LabelIdentifier

Semantic Description

The goto statement can be used in functions, test cases, altsteps and the control part of a TTCN-3 module to transfer
control to a labelled statement.

The goto statement provides the possibility to jump freely, i.e. forwards and backwards, within a sequence of
statements, to jump out of a single compound statement (e.g. a while loop) and to jump over several levels out of
nested compound statements (e.g. nested alternatives).

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) It is not allowed to jump out of or into functions, test cases, altsteps and the control part of a TTCN-3 module.

b) It is not allowed to jump into a sequence of statements defined in a compound statement (i.e. alt statement,
while loop, for loop, if-else statement, do- while loop and the interleave statement).

c) It is not allowed to use the goto statement within an interleave statement.

Examples

 // The following TTCN-3 code fragment includes
 :
 label L1; // … the definition of label L1,
 MyVar := 2 * MyVar;
 if (MyVar < 2000) { goto L1; } // … a jump backward to L1,
 MyVar2 := Myfunction(MyVar);
 if (MyVar2 > MyVar) { goto L2; } // … a jump forward to L2,
 PCO1.send(MyVar);
 PCO1.receive;
 label L2; // … the definition of label L2,
 PCO2.send(integer: 21);
 alt {
 [] PCO1.receive { }
 [] PCO2.receive(integer: 67) {
 label L3; // … the definition of label L3,
 PCO2.send(MyVar);
 alt {
 [] PCO1.receive { }
 [] PCO2.receive(integer: 90) {
 PCO2.send(integer: 33);
 PCO2.receive(integer: 13);
 goto L4; // … a jump forward out of two nested alt statements,
 }
 [] PCO2.receive(MyError) {
 goto L3; // … a jump backward out of the current alt statement,
 }
 [] any port.receive {
 goto L2; // … a jump backward out of two nested alt statements,
 }
 }
 }
 [] any port.receive {
 goto L2; // … and a long jump backward out of an alt statement.
 }
 }

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 139

 label L4;
 :

19.9 The Stop execution statement
The stop statement terminates execution of test components, a test case or a test control.

Syntactical Structure

stop

Semantic Description

The stop statement terminates execution in different ways depending on the context in which it is used. When used in
the control part of a module or in a function used by the control part of a module, it terminates the execution of the
module control part. When used in a test case, altstep or function that are executed on a test component, it terminates
the relevant test component.

NOTE: The semantics of a stop statement that terminates a test component is identical to the stop component
operation self.stop (see clause 21.2.3).

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

 module MyModule {
 : // Module definitions
 testcase MyTestCase() runs on MyMTCType system MySystemType{
 var MyPTCType ptc:= MyPTCType.create; // PTC creation
 ptc.start(MyFunction()); // start PTC execution
 : // test case behaviour continued
 stop // stops the MTC, all PTCs and the whole test case
 }
 function MyFunction() runs on MyPTCType {
 :
 stop // stops the PTC only, the test case continues
 }
 control {
 : // test execution
 stop // stops the test campaign
 } // end control
 } // end module

19.10 The Return statement
The return statement terminates execution of functions or altsteps.

Syntactical Structure

return [Expression]

Semantic Description

The return statement terminates execution of a function or altstep and returns control to the point from which the
function or altstep was called. When used in functions, a return statement may be optionally associated with a return
value.

TTCN-3 allows optional statement blocks that may follow altstep calls within alt statements. If there is a statement
block, the return statement returns control to the beginning of this statement block and the statement block is
executed before the alt statement is left. If there is no statement block, test execution continues with the first statement
following the alt statement.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 140

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The return statement shall not be used in the statement block of a testcase.

Examples

 function MyFunction() return boolean {
 :
 if (date == "1.1.2005") {
 return false; // execution stops on the 1.1.2000 and returns the boolean false
 }
 :
 return true; // true is returned
 }

 function MyBehaviour() return verdicttype {
 :
 if (MyFunction()) {
 setverdict(pass); // use of MyFunction in an if statement
 }
 else {
 setverdict(inconc);
 }
 :
 return getverdict; // explicit return of the verdict
 }

19.11 The Log statement
The log statement provides the means to write logging information to some logging device. The information that can
be logged is summarized in table 18.

Table 18: TTCN-3 language elements that can be logged

Used in a log statement What is logged Comment
module parameter identifier actual value
literal value value This includes also free text.
data constant identifier actual value
template instance actual template or field

values and matching
symbols

data type variable identifier actual value
or "UNINITIALIZED"

See notes 3 and 4.

self, mtc, system or
component type variable
identifier

actual value and if
assigned the component

instance name
or "UNINITIALIZED"

On logging actual values see notes 2 to
4. Actual component states shall be
logged according to note 5.

running operation
(component or timer)

return value true or false. In case of component or
timer arrays, array element specification
shall be included.

alive operation
(component)

return value true or false. In case of arrays, array
element specifications shall be included.

port instance actual state Port states shall be logged according to
note 6.

default type variable identifier actual state
or "UNINITIALIZED"

Default states shall be logged according
to note 7. See also notes 2 to 4.

timer name actual state Timer states shall be logged according to
note 8.

read operation return value See clause 24.3.
match operation return value
getverdict operation return value none, pass, inconc, or fail
predefined functions return value See annex C.
function instance return value Only functions with return clause are

allowed.
external function instance return value Only external functions with return clause

are allowed.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 141

Used in a log statement What is logged Comment
formal parameter identifier see comment column Logging of actual parameters shall follow

rules specified for the language elements
they are substituting. In case of value
parameters the actual parameter value,
in case of template-type parameters the
actual template or field values and
matching symbols, in case of component
type parameters the actual component
reference etc. shall be logged. For timer
parameters also the use of the read
operation and for component type and
timer parameters the use of the running
operation are allowed.

NOTE 1: Actual value/actual template is the value/template at the moment of the execution of the log
statement.

NOTE 2: The type of the logged value is tool dependent.
NOTE 3: In case of array identifiers without array element specification, actual values and for

component references names of all array elements shall be logged.
NOTE 4: The string "UNINITIALIZED" is logged only if the log item is unbound (uninitialized).
NOTE 5: Component states that can be logged are: Inactive, Running, Stopped and Killed (for further

details see annex F).
NOTE 6: Port states that can be logged are: Started and Stopped (for further details see annex F).
NOTE 7: Default states that can be logged are: Activated and Deactivated.
NOTE 8: Timer states that can be logged are: Inactive, Running and Expired (for further details see

annex F).

Syntactical Structure

log "(" { (FreeText | TemplateInstance) [","] } ")"

Semantic Description

The log statement provides the means to write one or more log items to some logging device associated with the test
control or the test component in which the statement is used. Items to be logged shall be identified by a
comma-separated list in the argument of the log statement. Log items may be individual language elements specified in
table 18 or expressions composed of such log items.

It is strongly recommended that the execution of the log statement has no effect on the test behaviour. In particular,
functions used in a log statement shall neither explicitly nor implicitly change component variable values, port or timer
status, and shall not change the value of any of its inout or out parameters.

NOTE : It is outside the scope of the present document to define complex logging and trace capabilities which
may be tool dependent.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Functions used in log statements shall not use directly or indirectly statements other than if…else, for,
while, do…while, label, goto, return, mtc, system, self, running (PTC or timer), read and
getverdict.

Examples

 var integer myVar:= 1;
 log("Line 248 in PTC_A: ", myVar, " (actual value of myVar)");
 // The string "Line 248 in PTC_A: 1 (actual value of myVar)" is written to some log device
 // of the test system

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 142

19.12 The Break statement
A break statement causes the exit from a loop, from an altstep or from an alt or interleave statement.

Syntactical Structure

break

Semantic Description

On executing a break statement the innermost, currently executed loop, alt statement or interleave statement is
left. Execution continues with the statement following the construct which is left. Using break outside the body of a
loop (for, while, do-while) or an alternative of an alt or interleave statement shall cause a dynamic error.

Altsteps are always executed within a surrounding alt statement. If the execution of a top alternative of an altstep (see
clause 16.2) ends with a break statement, the altstep and the surrounding alt statement are left. Execution continues
with the statement following the surrounding alt statement.

NOTE: TTCN-3 allows optional statement blocks that may follow altstep calls within alt statements. These
statement blocks are not executed when the altstep is left by executing a break statement. A return
statement has to be used, if such an optional statement block has to be executed (see clause 19.10).

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

 do {
 …
 if (cond1) {
 break; // the do-while loop is left
 }
 …
 for (var integer j:=1; j<=10; j:= j+1) {
 …
 if (cond2) {
 break; // the for-loop is left but the do-while loop is continued
 }
 …
 }
 …
 }
 while (j<10);

19.13 The Continue statement
A continue statement causes the start of the next iteration of a loop.

Syntactical Structure

continue

Semantic Description

On executing a continue statement, the subsequent statements of the body of the innermost, currently executed loop
are skipped and the next iteration starts. Using continue outside the body of a loop (for, while, do-while) shall
cause a dynamic error.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 143

Examples

 do {
 …
 if (cond) {
 continue; // execution continues with the next iteration of the do-while-loop
 }
 …
 …
 for (var integer j:=1; j<=10; j:= j+1) {
 …
 if (cond2) {
 continue; // continues with the next iteration of the for-loop
 }
 …
 }
 …
 }
 while (j<10);

19.14 Statement block
Statement blocks can be used like basic program statements to introduce a local scope in the flow of control of TTCN-3
behaviour. The declarations and statements in a statement block are executed in the order of their appearance,
i.e. sequentially.

Syntactical Structure

"{" { LocalDefinition | Statement } "}"

Semantic Description

A statement block defines a local scope unit. Scoping rules for TTCN-3 are defined in clause 5.2.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

 var integer aVar:= 0; // aVar is declared

 { // start of a statement block
 var integer myVar:= 2; // myVar is declared
 aVar := 5 + myVar; // myVar is used in an assignment
 } // end of statement block

 // after leaving the statement block aVar is still known, but myVar is not known anymore.

20 Statement and operations for alternative behaviours
Test behaviour cannot only be expressed sequentially, but also as a set of alternatives or combinations of both.
An interleaving operator allows the specification of interleaved sequences or alternatives. Table 19 summarizes the
statements and operations for alternative behaviours.

Table 19: Overview of TTCN-3 statements and operations for alternative behaviours

Statements and operations for alternative behaviours
Statement/Operation Associated keyword or symbol

Alternative behaviour alt { … }
Re-evaluation of alt statements repeat
Interleaved behaviour interleave { … }
Activate a default activate
Deactivate a default deactivate

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 144

20.1 The snapshot mechanism
A more complex form of behaviour is where sequences of statements are expressed as sets of possible alternatives to
form a tree of execution paths, as illustrated in figure 9.

S1

S3

S6

S2

S4

S7

S5

S8

S9 S10

S1;
alt {
 [] S2 {
 alt {
 [] S4 { S7 }
 [] S5 {
 S8;
 alt {
 [] S9 {}
 [] S10 {}
 }
 }
 }
 }
 [] S3 { S6 }
}

Figure 9: Illustration of alternative behaviour

This is done with the alt statement.

When entering an alt statement, a snapshot is taken. A snapshot is considered to be a partial state of a test component
that includes all information necessary to evaluate the Boolean conditions that guard alternative branches, all relevant
stopped test components, all relevant timeout events and the top messages, calls, replies and exceptions in the relevant
incoming port queues. Any test component, timer and port which is referenced in at least one alternative in the alt
statement, or in a top alternative of an altstep that is invoked as an alternative in the alt statement or activated as
default is considered to be relevant. A detailed description of the snapshot semantics is given in the operational
semantics of TTCN-3 (part 4 of the TTCN-3 standard - ES 201 873-4 [1]).

NOTE 1: Snapshots are only a conceptual means for describing the behaviour of the alt statement. The concrete
algorithms for the snapshot handling can be found in part 4 of the TTCN-3 standard (ES 201 873-4 [1]).

NOTE 2: The TTCN-3 semantics assumes that taking a snapshot is instantaneous, i.e. has no duration. In a real
implementation, taking a snapshot may take some time and race conditions may occur. The handling of
such race conditions is outside the scope of the present document.

20.2 The Alt statement
The alt statements expresses sets of possible alternatives that form a tree of possible execution paths.

Syntactical Structure

alt "{"
 {
 "[" [BooleanExpression] "]"
 ((TimeoutStatement |
 ReceiveStatement |
 TriggerStatement |
 GetCallStatement |
 CatchStatement |
 CheckStatement |
 GetReplyStatement |
 DoneStatement |
 KilledStatement) StatementBlock)
 |
 (AltstepInstance [StatementBlock])
 }
 ["[" else "]" StatementBlock]
"}"

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 145

Semantic Description

The alt statement denotes branching of test behaviour due to the reception and handling of communication and/or
timer events and/or the termination of parallel test components, i.e. it is related to the use of the TTCN-3 operations
receive, trigger, getcall, getreply, catch, check, timeout,done and killed. The alt statement
denotes a set of possible events that are to be matched against a particular snapshot.

Execution of alternative behaviour:

When entering an alt statement, a snapshot is taken.

The alternative branches in the alt statement and the top alternatives of invoked altsteps and altsteps that are activated
as defaults are processed in the order of their appearance. If several defaults are active, the reverse order of their
activation determines the evaluation order of the top alternatives in the defaults. The alternative branches in active
defaults are reached by the default mechanism described in clause 20.5.

The individual alternative branches are either branches that may be guarded by a Boolean expression or else-branches,
i.e. alternative branches starting with [else].

Else-branches are always chosen and executed when they are reached (see below).

Branches that may be guarded by a Boolean expressions either invoke an altstep (altstep-branch), or start with a done
operation (done-branch), a killed operation (killed-branch), timeout operation (timeout-branch) or a receiving
operation (receiving-branch), i.e. receive, trigger, getcall, getrepy, catch or a check operation. The
evaluation of the Boolean guards shall be based on the snapshot. The Boolean guard is considered to be fulfilled if no
Boolean guard is defined, or if the Boolean guard evaluates to true. The branches are processed and executed in the
following manner.

An altstep-branch is selected if the Boolean guard is fulfilled. The selection of an altstep-branch causes the invocation
of the referenced altstep, i.e. the altstep is invoked and the evaluation of the snapshot continues within the altstep.
Altstep-branches may contain an optional statement block. The optional statement block shall be executed only, if an
alternative of the altstep referenced in the altstep-branch has been selected and executed.

A done-branch is selected if the Boolean guard is fulfilled and if the specified test component is in the list of stopped
components of the snapshot. The selection causes the execution of the statement block following the done operation.
The done operation itself has no further effect.

A killed-branch is selected if the Boolean guard is fulfilled and if the specified test component is in the list of killed
components of the snapshot. The selection causes the execution of the statement block following the killed
operation. The killed operation itself has no further effect.

A timeout-branch is selected if the Boolean guard is fulfilled and if the specified timeout event is in the timeout-list of
the snapshot. The selection causes execution of the specified timeout operation, i.e. removal of the timeout event
from the timeout-list, and the execution of the statement block following the timeout operation.

A receiving-branch is selected if the Boolean guard is fulfilled and if the matching criteria of receiving operation is
fulfilled by one of the messages, calls, replies or exceptions in the snapshot. The selection causes execution of the
receiving operation, i.e. removal of the matching message, call, reply or exception from the port queue, maybe an
assignment of the received information to a variable and the execution of the statement block following the receiving
operation. In the case of the trigger operation the top message of the queue is also removed if the Boolean guard is
fulfilled but the matching criteria is not. In this case the statement block of the given alternative is not executed.

NOTE 1: The TTCN-3 semantics describe the evaluation of a snapshot as a series of indivisible actions of a test
component. The semantics do not assume that the evaluation of a snapshot has no duration. During the
evaluation of a snapshot, test components may stop, timers may timeout and new messages, calls, replies
or exceptions may enter the port queues of the component However, these events do not change the actual
snapshot and thus, are not considered for the snapshot evaluation.

If none of the alternative branches in the alt statement and top alternatives in the invoked altsteps and active defaults
can be selected and executed, the alt statement shall be executed again, i.e. a new snapshot is taken and the evaluation
of the alternative branches is repeated with the new snapshot. This repetitive procedure shall continue until either an
alternative branch is selected and executed, or the test case is stopped by another component or by the test system
(e.g. because the MTC is stopped) or with a dynamic error.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 146

The test case shall stop and indicate a dynamic error if a test component is completely blocked. This means none of the
alternatives can be chosen, no relevant test component is running, no relevant timer is running and all relevant ports
contain at least one message, call, reply or exception that do not match.

NOTE 2: The repetitive procedure of taking a complete snapshot and re-evaluate all alternatives is only a
conceptual means for describing the semantics of the alt statement. The concrete algorithm that
implements this semantics is outside the scope of the present document.

Selecting/deselecting an alternative:

If necessary, it is possible to enable/disable an alternative by means of a Boolean expression placed between the
("[…]") brackets of the alternative.

Else branch in alternatives:

Any branch in an alt statement can be defined as an else branch by including the else keyword between the opening
and closing brackets at the beginning of the alternative. The statement block of the else branch is always executed if no
other alternative textually preceding the else branch has proceeded.

Default mechanism:

It should be noted that the default mechanism (see clause 20.5) is always invoked at the end of all alternatives. If an
else branch is defined, the default mechanism will never be called, i.e. active defaults will never be entered.

NOTE 3: It is also possible to use else in altsteps.

NOTE 4: It is allowed to use a repeat statement within an else branch.

NOTE 5: It is allowed to define more that one else branch in an alt statement or in an altstep, however always only
the first else branch is executed.

Re-evaluation of alt statements:

The re-evaluation of an alt statement can be specified by using a repeat statement (see clause 20.3).

Invocation of altsteps as alternatives:

TTCN-3 allows the invocation of altsteps as alternatives in alt statements (see clause 16.2.1). When an altstep is
explicitly invoked as an alternative, the optional statement block following the altstep call shall also be executed.

Continue execution after the alt statement:

Behaviour execution continues with the statement following the alt statement when one of the branches of the alt or
invoked defaults is selected and completely executed, or a branch of an altstep used in an altsteps-branch is selected
and the branch and the optional statement block following the invoked altstep are completely executed.

Execution also continues with the statement following the alt statement if a break statement is reached in the
statement block of the selected branch of an alt statement, of an altstep used in an altstep-branch, or of an
altstep invoked as default.

The alt statement can also be left by using a goto statement in the selected branch of the alt (i.e. no branches of
altsteps and defaults can be considered in this case), and execution continues with the statement following the label,
goto is pointing to.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The open and close square brackets ("[…]") shall be present at the start of each alternative, even if they are
empty. This not only aids readability but also is necessary to syntactically distinguish one alternative from
another.

b) The evaluation of a Boolean expression guarding an alternative may have side-effects. To avoid side effects
that cause an inconsistency between the actual snapshot and the state of the component, the same restrictions
as the restrictions for the initialization of local definitions within altsteps shall apply (clause 16.2).

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 147

c) The else branch shall not contain any of the actions allowed in branches guarded by a boolean expression
(i.e. an altstep call or a done, a killed, a timeout or a receiving operation).

d) An alt statement used within the module control part shall only contain the timeout statements.

Examples

EXAMPLE 1: Nested alternatives

 alt {
 [] MyPort.receive (MyMessage) {
 setverdict (pass);
 MyTimer.start;
 alt {
 [] MyPort.receive (MySecondMessage) {
 MyTimer.stop;
 setverdict (pass);
 }
 [] MyTimer.timeout {
 MyPort.send (MyRepeat);
 MyTimer.start;
 alt {
 [] MyPort.receive (MySecondMessage) {
 MyTimer.stop;
 setverdict (pass)
 }
 [] MyTimer.timeout { setverdict (inconc) }
 [] MyPort.receive { setverdict (fail) }
 }
 }
 [] MyPort.receive { setverdict (fail) }
 }
 }
 [] MyTimer.timeout { setverdict (inconc) }
 [] MyPort.receive { setverdict (fail) }
 }

EXAMPLE 2: Alt statement with guards

 alt {
 [x>1] L2.receive { // Boolean guard/expression
 setverdict(pass);
 }
 [x<=1] L2.receive { // Boolean guard/expression
 setverdict(inconc);
 }
 }

EXAMPLE 3: Alt statement with else branch

 // Use of alternative with Boolean expressions (or guard) and else branch
 alt {
 :
 [else] { // else branch
 MyErrorHandling();
 setverdict(fail);
 stop;
 }
 }

EXAMPLE 4: Re-evaluation with repeat

 alt {
 [] PCO3.receive {
 count := count + 1;
 repeat // usage of repeat
 }
 [] T1.timeout { }
 [] any port.receive {
 setverdict(fail);
 stop;
 }
 }

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 148

EXAMPLE 5: Alt statement with explicitly invoked altstep

 alt {
 [] PCO3.receive { }
 [] AnotherAltStep() { // Explicit call of altstep AnotherAltStep as alternative.
 setverdict(inconc) // Statement block executed if an alternative within
 // altstep AnotherAltStep has been selected and executed.
 }
 [] MyTimer.timeout { }
 }

20.3 The Repeat statement
The repeat statement is used for a re-evaluation of an alt statement.

Syntactical Structure

repeat

Semantic Description

The repeat statement, when used in the statement block of alternatives of alt statements, causes the re-evaluation of
the alt statement, i.e. a new snapshot is taken and the alternatives of the alt statement are evaluated in the order of
their specification.

When used in statement blocks of the response and exception handling parts of blocking procedure calls, the repeat
statement causes the re-evaluation of the response and exception handling part of the call (see clause 22.3.1).

If a repeat statement is used in a top alternative in an altstep definition, it causes a new snapshot and the
re-evaluation of the alt statement from which the altstep has been called. The call of the altstep may either be done
implicitly by the default mechanism (see clause 20.5.1) or explicitly in the alt statement (see clause 20.2).

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The repeat statement shall only be used within alt statements, call statements or altsteps.

Examples

EXAMPLE 1: Usage of repeat in an alt statement

 alt {
 [] PCO3.receive {
 count := count + 1;
 repeat // usage of repeat
 }
 [] T1.timeout { }
 [] any port.receive {
 setverdict(fail);
 stop;
 }
 }

EXAMPLE 2: Usage of repeat in an altstep

 altstep AnotherAltStep() runs on MyComponentType {
 [] PCO1.receive{
 setverdict(inconc);
 repeat // usage of repeat
 }
 [] PCO2.receive {}
 }

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 149

20.4 The Interleave statement
The interleave statement allows to specify the interleaved occurrence and handling of receiving events including
done, killed, timeout, receive, trigger, getcall, getreply, catch and check.

Syntactical Structure

interleave "{"
 { "[]" (TimeoutStatement |
 ReceiveStatement |
 TriggerStatement |
 GetCallStatement |
 CatchStatement |
 CheckStatement |
 GetReplyStatement |
 DoneStatement |
 KilledStatement) StatementBlock
 }
"}"

Semantic Description

The interleave statement allows to specify the interleaved occurrence and handling of the statements done,
killed, timeout, receive, trigger, getcall, getreply, catch and check.

Interleaved behaviour can always be replaced by an equivalent set of nested alt statements. The procedures for this
replacement and the operational semantics of interleaving are described in part 4 of the TTCN-3 standard
(ES 201 873-4 [1]).

The rules for the evaluation of an interleaving statement are the following:

a) Whenever a reception statement is executed, the following non-reception statements are subsequently executed
until the next reception statement is reached, a break statement is reached, or the interleaved sequence ends.

NOTE 1: Reception statements are TTCN-3 statements which may occur in sets of alternatives, i.e. receive,
check, trigger, getcall, getreply, catch, done, killed and timeout. Non-reception
statements denote all other non-control-transfer statements which can be used within the interleave
statement.

b) If none of the alternatives of the interleave statement can be executed, the default mechanism will be
invoked. This means, according to the semantics of the default mechanism, the actual snapshot will be used to
evaluate those altsteps that have been activated before entering the interleave statement.

NOTE 2: The complete semantics of the default mechanism within an interleave statement is given by
replacing the interleave statement by an equivalent set of nested alt statements. The default
mechanism applies for each of these alt statements.

c) The evaluation then continues by taking the next snapshot if no break statement was encountered.

d) The evaluation of the interleave statement is terminated if a break statement is executed.

The operational semantics of interleaving are fully defined in part 4 of the TTCN-3 standard (ES 201 873-4 [1]).

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Control transfer statements for, while, do-while, goto, activate, deactivate, stop, repeat,
return, direct call of altsteps as alternatives and (direct and indirect) calls of user-defined functions, which
include communication operations, shall not be used in interleave statements.

b) In addition, it is not allowed to guard branches of an interleave statement with Boolean expressions
(i.e. the '[]' shall always be empty). It is also not allowed to specify else branches in interleaved behaviour.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 150

Examples

 // The following TTCN-3 code fragment
 interleave {
 [] PCO1.receive(MySig1)
 { PCO1.send(MySig2);
 PCO1.receive(MySig3);
 }
 [] PCO2.receive(MySig4)
 { PCO2.send(MySig5);
 PCO2.send(MySig6);
 PCO2.receive(MySig7);
 }
 }

 // is a shorthand for
 alt {
 [] PCO1.receive(MySig1)
 { PCO1.send(MySig2);
 alt {
 [] PCO1.receive(MySig3)
 { PCO2.receive(MySig4);
 PCO2.send(MySig5);
 PCO2.send(MySig6);
 PCO2.receive(MySig7)
 }
 [] PCO2.receive(MySig4)
 { PCO2.send(MySig5);
 PCO2.send(MySig6);
 alt {
 [] PCO1.receive(MySig3) {
 PCO2.receive(MySig7); }
 [] PCO2.receive(MySig7) {
 PCO1.receive(MySig3); }
 }
 }
 }
 }
 [] PCO2.receive(MySig4)
 { PCO2.send(MySig5);
 PCO2.send(MySig6);
 alt {
 [] PCO1.receive(MySig1)
 { PCO1.send(MySig2);
 alt {
 [] PCO1.receive(MySig3)
 { PCO2.receive(MySig7);
 }
 [] PCO2.receive(MySig7)
 { PCO1.receive(MySig3);
 }
 }
 }
 [] PCO2.receive(MySig7)
 { PCO1.receive(MySig1);
 PCO1.send(MySig2);
 PCO1.receive(MySig3);
 }
 }
 }
 }

20.5 Default Handling
TTCN-3 allows the activation of altsteps (see clause 16.2) as defaults. For each test component the defaults,
i.e. activated altsteps, are stored as an ordered list. The defaults are listed in the reversed order of their activation i.e. the
last activated default is the first element in the list of active defaults. The TTCN-3 operations activate
(see clause 20.5.2) and deactivate (see clause 20.5.3) operate on the list of defaults. An activate puts a new
default as the first element into the list and a deactivate removes a default from the list. A default in the default list
can be identified by means of default reference that is generated as a result of the corresponding activate operation.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 151

20.5.1 The default mechanism

The default mechanism is evoked at the end of each alt statement, if due to the actual snapshot none of the specified
alternatives could be executed. An evoked default mechanism invokes the first altstep in the list of defaults, i.e. the last
activated default, and waits for the result of its termination. The termination can be successful or unsuccessful.
Unsuccessful means that none of the top alternatives of the altstep (see clause 16.2) defining the default behaviour
could be selected, successful means that one of the top alternatives of the default has been selected and executed.

NOTE 1: An interleave statement is semantically equivalent to a nested set of alt statements and the default
mechanism also applies to each of these alt statements. This means, the default mechanism also applies
to interleave statements.

In the case of an unsuccessful termination, the default mechanism invokes the next default in the list. If the last default
in the list has terminated unsuccessfully, the default mechanism will return to the place in the alt statement in which it
has been invoked, i.e. at the end of the alt statement, and indicate an unsuccessful default execution. An unsuccessful
default execution will also be indicated if the list of defaults is empty.

An unsuccessful default execution may cause a new snapshot or a dynamic error if the test component is blocked
(see clause 20.1).

In the case of a successful termination, the default may either stop the test component by means of a stop statement, or
the main control flow of the test component will continue immediately after the alt statement from which the default
mechanism was called or the test component will take new snapshot and re-evaluate the alt statement. The latter has
to be specified by means of a repeat statement (see clause 20.3). If the execution of the selected top alternative of the
default ends with a break statement or without a repeat statement the control flow of the test component will
continue immediately after the alt statement.

NOTE 2: TTCN-3 does not restrict the implementation of the default mechanism. It may for example be
implemented in form of a process that is implicitly called at the end of each alt statement or in form of a
separate thread that is only responsible for the default handling. The only requirement is that defaults are
called in the reverse order of their activation when the default mechanism has been invoked.

20.5.2 The Activate operation

The activate operation is used to activate altsteps as defaults.

Syntactical Structure

activate "(" AltstepRef "(" [{ ActualPar [","] }] ")" ")"

Semantic Description

An activate operation will put the referenced altstep as the first element into the list of defaults and return a default
reference. The default reference is a unique identifier for the default and may be used in a deactivate operation for
the deactivation of the default.

The effect of an activate operation is local to the test component in which it is called. This means, a test component
cannot activate a default in another test component.

The activate operation can be called without saving the returned default reference. This form is useful in test cases
which do not require explicit deactivation of the activated default, i.e. deactivation of a default is done implicitly at
MTC termination.

The actual parameters of a parameterized altstep (see clause 16.2.1) that should be activated as a default, shall be
provided in the corresponding activate statement. This means the actual parameters are bound to the default at the
time of its activation (and not e.g. at the time of its invocation by the default mechanism).

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) All timer instances in the actual parameter list shall be declared as component type local timers
(see clause 6.2.10.1).

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 152

b) An altstep that is activated as a default shall only have in parameters, port parameters, or timer parameters.

Examples

EXAMPLE 1: Activation where the default reference is kept

 // Declaration of a variable for the handling of defaults
 var default MyDefaultVar := null;
 :
 // Declaration of a default reference variable and activation of an altstep as default
 var default MyDefVarTwo := activate(MySecondAltStep());
 :
 // Activation of altstep MyAltStep as a default
 MyDefaultVar := activate(MyAltStep()); // MyAltStep is activated as default
 :
 // Usage of MyDefaultVar for the deactivation of default MyDefAltStep
 deactivate(MyDefaultVar);

EXAMPLE 2: Simple activation

 // Activation of an altstep as a default, without assignment of default reference
 activate(MyCommonDefault());

EXAMPLE 3: Activation of a parameterized altstep

 altstep MyAltStep2 (integer par_value1, MyType par_value2,
 MyPortType par_port, timer par_timer)
 {
 :
 }
 function MyFunc () runs on MyCompType
 { :
 var default MyDefaultVar := null;

 MyDefaultVar := activate(MyAltStep2(5, myVar, myCompPort, myCompTimer);
 // MyAltStep2 is activated as default with the actual parameters 5 and
 // the value of myVar. A change of myVar before a call of MyAltStep2 by
 // the default mechanism will not change the actual parameters of the call.
 :
 }

20.5.3 The Deactivate operation

The deactivate operation is used to deactivate defaults, i.e. previously activated altsteps.

Syntactical Structure

deactivate ["(" VariableRef | FunctionInstance ")"]

Semantic Description

A deactivate operation will remove the referenced default from the list of defaults.

The effect of a deactivate operation is local to the test component in which it is called. This means, a test
component cannot deactivate a default in another test component.

A deactivate operation without parameter deactivates all defaults of a test component.

Calling a deactivate operation with the special value null has no effect. Calling a deactivate operation with
an undefined default reference, e.g. an old reference to a default that has already been deactivated or an uninitialized
default reference variable, shall cause a runtime error.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The variable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with FunctionInstance must be of default type.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 153

Examples

 var default MyDefaultVar := null;
 var default MyDefVarTwo := activate(MySecondAltStep());
 var default MyDefVarThree := activate(MyThirdAltStep());
 :
 MyDefaultVar := activate(MyAltStep());
 :
 deactivate(MyDefaultVar); // deactivates MyAltStep
 :
 deactivate; // deactivates all other defaults, i.e. in this case MySecondAltStep
 // and MyThirdAltStep

21 Configuration Operations
Configuration operations are used to set up and control test components. They are summarized in table 20. These
operations shall only be used in TTCN-3 test cases, functions and altsteps (i.e. not in the module control part).

Table 20: Overview of TTCN-3 configuration operations

Operation Explanation Syntax Examples
Connection Operations
connect Connects the port of one test

component to the port of another test
component

connect(ptc1:p1, ptc2:p2);

disconnect Disconnects two or more connected
ports

disconnect(ptc1:p1, ptc2:p2);

map Maps the port of one test component to
the port of the test system interface

map(ptc1:q, system:sutPort1);

unmap Unmaps two or more mapped ports unmap(ptc1:q, system:sutPort1);

Test Component Operations
create Creation of a normal or alive test

component, the distinction between
normal and alive test components is
made during creation
(MTC behaves as a normal test
component)

Non-alive test components:
var PTCType c := PTCType.create;

Alive test components:
var PTCType c := PTCType.create alive;

start Starting test behaviour on a test
component, starting a behaviour does
not affect the status of component
variables, timers or ports

c.start(PTCBehaviour());

stop Stopping test behaviour on a test
component

c.stop;

kill Causes a test component to cease to
exist

c.kill;

alive Returns true if the test component has
been created and is ready to execute or
is executing already a behaviour;
otherwise returns false

if (c.alive) …

running Returns true as long as the test
component is executing a behaviour;
otherwise returns false

if (c.running) …

done Checks whether the function running on
a test component has terminated

c.done;

killed Checks whether a test component has
ceased to exist

c.killed { … }

Test Case Operations
stop Terminates the test case with the test

verdict error
testcase.stop (…);

Reference Operations
mtc Gets the reference to the MTC connect(mtc:p, ptc:p);

system Gets the reference to the test system
interface

map(c:p, system:sutPort);

self Gets the reference to the test
component that executes this operation

self.stop;

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 154

21.1 Connection Operations
The ports of a test component can be connected to other components or to the ports of the test system interface
(see figure 10). In the case of connections between two test components, the connect operation shall be used. When
connecting a test component to a test system interface the map operation shall be used. The connect operation
directly connects one port to another with the in side connected to the out side and vice versa. The map operation on
the other hand can be seen purely as a name translation defining how communications streams can be referenced.

Connected Ports

 OUT IN

 IN
 MTC PTC

IN OUT

SUT

Abstract Test System Interface

Real Test System Interface

Mapped Ports

IN OUT

Test system

Figure 10: Illustration of the connect and map operations

21.1.1 The Connect and Map operations

The connect operation and the map operation are used to setup connections to the SUT or between test components.

Syntactical Structure

connect "(" ComponentRef ":" Port "," ComponentRef ":" Port ")"
map "(" ComponentRef ":" Port "," ComponentRef ":" Port ")"

Semantic Description

With both the connect operation and the map operation, the ports to be connected are identified by the component
references of the components to be connected and the names of the ports to be connected.

The operation mtc identifies the MTC, the operation system identifies the test system interface and the operation
self identifies the test component in which self has been called (see clause 6.2.11). All these operations can be used
for identifying and connecting ports.

Both the connect and map operations can be called from any behaviour definition except for the control part of a
module. However before either operation is called, the components to be connected shall have been created and their
component references shall be known together with the names of the relevant ports.

Both the map and connect operations allow the connection of a port to more than one other port. It is not allowed to
connect to a mapped port or to map to a connected port.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 155

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) For both the connect and map operations, only consistent connections are allowed.

Assuming the following:

1) ports PORT1 and PORT2 are the ports to be connected;

2) inlist-PORT1 defines the messages or procedures of the in-direction of PORT1;

3) outlist-PORT1defines the messages or procedures of the out-direction of PORT1;

4) inlist-PORT2 defines the messages or procedures of the in-direction of PORT2; and

5) outlist-PORT2 defines the messages or procedures of the out-direction of PORT2.

b) The connect operation is allowed if and only if:

outlist-PORT1 ⊆ inlist-PORT2 and outlist-PORT2 ⊆ inlist-PORT1.

c) The map operation (assuming PORT2 is the test system interface port) is allowed if and only if:

outlist-PORT1 ⊆ outlist-PORT2 and inlist-PORT2 ⊆ inlist-PORT1.

d) In all other cases, the operations shall not be allowed.

e) Since TTCN-3 allows dynamic configurations and addresses, not all of these consistency checks can be made
statically at compile-time. All checks, which could not be made at compile-time, shall be made at run-time and
shall lead to a test case error when failing.

f) In addition, the restrictions on allowed and disallowed connections described in clause 9.1 apply.

Examples

 // It is assumed that the ports Port1, Port2, Port3 and PCO1 are properly defined and declared
 // in the corresponding port type and component type definitions
 :
 var MyComponentType MyNewPTC;
 MyNewPTC := MyComponentType.create;
 :
 connect(MyNewPTC:Port1, mtc:Port3);
 map(MyNewPTC:Port2, system:PCO1);
 :
 // In this example a new component of type MyComponentType is created and its reference stored
 // in variable MyNewPTC. Afterwards in the connect operation, Port1 of this new component
 // is connected with Port3 of the MTC. By means of the map operation, Port2 of the new component
 // is then connected to port PCO1 of the test system interface

21.1.2 The Disconnect and Unmap operations

The disconnect and unmap operations are the opposite operations of connect and map.

Syntactical Structure

disconnect [("(" ComponentRef ":" Port "," ComponentRef ":" Port ")") |
 ("(" PortRef ")") |
 ("(" ComponentRef ":" all port ")") |
 ("(" all component ":" all port ")")]

Semantic Description

The disconnect and unmap operations perform the disconnection (of previously connected) ports of test
components and the unmapping of (previously mapped) ports of test components and ports in the test system interface.

Both, the disconnect and unmap operations can be called from any component if the relevant component references
together with the names of the relevant ports are known. A disconnect or unmap operation has only an effect if the
connection or mapping to be removed has been created beforehand.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 156

To ease disconnect and unmap operations related to all connections and mappings of a component or a port, it is
allowed to use disconnect and unmap operations with one argument only. This one argument specifies one side of
the connections to be disconnected or unmapped. The all port keyword can be used to denote all ports of a
component.

The usage of a disconnect or unmap operation without any parameters is a shorthand form for using the operation
with the parameter self:all port. It disconnects or unmaps all ports of the component that calls the operation.

The all component keyword shall only be used in combination with the all port keyword, i.e. all
component:all port, and shall only be used by the MTC. Furthermore, the all component:all port
argument shall be used as the one and only argument of a disconnect or unmap operation and it allows to release
all connections and mappings of the test configuration.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

EXAMPLE 1: Disconnect/unmap for specific connections

 connect(MyNewComponent:Port1, mtc:Port3);
 map(MyNewComponent:Port2, system:PCO1);
 :
 disconnect(MyNewComponent:Port1, mtc:Port3); // disconnect previously made connection
 unmap(MyNewComponent:Port2, system:PCO1); // unmap previously made mapping

EXAMPLE 2: Disconnect/unmap for a component

 disconnect(MyNewComponent:Port1); // disconnects all connections of Port1, which
 // is owned by component MyNewComponent.
 unmap(MyNewComponent:all port); // unmaps all ports of component MyNewComponent

EXAMPLE 3: Disconnect/unmap for "self"

 disconnect; // is a shorthand form for …
 disconnect(self:all port); // which disconnects all ports of the component
 // that called the operation
 :
 unmap; // is a shorthand form for …
 unmap(self:all port); // which unmaps all ports of the component
 // that called the operation

EXAMPLE 4: Disconnect/unmap for "all component"

 disconnect(all component:all port); // the MTC disconnects all ports of all
 // components in the test configuration.
 :
 unmap(all component:all port); // the MTC unmaps all ports of all
 // components in the test configuration.

21.2 Test case operations
Test case operations address the entire test case by using the keyword testcase. Currently, the test case stop operation is
the only test case operation. It specifies an immediate stop of the test case behaviour with an error verdict.

21.2.1 Test case stop operation

The testcase stop operation defines a user defined immediate termination of a test case with the test verdict error and
an (optional) associated reason for the termination. Such an immediate stop of a test case is required for cases where a
user defined behaviour that does not contribute to the test outcome behaves in an unexpected manner which leads to a
situation where the continuation of the test case makes no more sense.

Syntactical Structure

testcase "." stop { (FreeText | TemplateInstance) [","] } ")"

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 157

Semantic Description

The test case stop operation causes an immediate stop of the entire test case behaviour with the verdict error. In
addition, the test case stop operation provides the means to specify the reason for the immediate termination of a test
case by writing one or more items to some logging device associated with the test control or the test component in
which the operation is used. Items to be logged shall be identified by a comma-separated list in the argument of the test
case stop operation. The argument of the test case stop operation shall follow the same restrictions as the argument of
the log statement (see clause 19.11).

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The test case stop operation shall not be used in the module control part or functions invoked directly or
indirectly by the module control part.

Examples

 testcase.stop("Unexpected Termination");
 // The test case stops the an error verdict and the string "Unexpected Termination"
 // is written to some log device of the test system

21.3 Test Component Operations
Test component operations are used to create, start, stop and kill test components. They can also be used to check if test
components are alive, running, done or killed.

21.3.1 The Create operation

The create operation is used to create test components.

Syntactical Structure

ComponentType "." create ["(" Expression ")"] [alive]

Semantic Description

The MTC is the only test component, which is automatically created when a test case starts. All other test components
(the PTCs) shall be created explicitly during test execution by create operations. A component is created with its full
set of ports of which the input queues are empty and with its full set of constants, variables and timers. Furthermore, if a
port is defined to be of the type in or inout it shall be in a listening state ready to receive traffic over the connection.

All component variables and timers are reset to their initial value (if any) and all component constants are reset to their
assigned values when the component is explicitly or implicitly created.

Two types of PTCs are distinguished: a PTC that can execute a behaviour function only once and a PTC that is kept
alive after termination of a behaviour function and can be therefore reused to execute another function. The latter is
created using the additional alive keyword. An alive-type PTC must be destroyed explicitly using the kill
operation (see clause 21.2.4), whereas a non-alive PTC is destroyed implicitly after its behaviour function terminates.
Termination of a test case, i.e. the MTC, terminates all PTCs that still exist, if any.

Since all test components and ports are implicitly destroyed at the termination of each test case, each test case shall
completely create its required configuration of components and connections when it is invoked.

The create operation shall return the unique component reference of the newly created instance. The unique
reference to the component will typically be stored in a variable (see clause 6.2.10.1) and can be used for connecting
instances and for communication purposes such as sending and receiving.

Optionally, a name can be associated with the newly created component instance. The test system shall associate the
names 'MTC' to the MTC and 'SYSTEM' to the test system interface automatically at creation. Associated component
names are not required to be unique.

The component instance name is used for logging purposes (see clause 19.11) only and shall not be used to refer to the
component instance (the component reference shall be used for this purpose) and has no effect on matching.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 158

Components can be created at any point in a behaviour definition providing full flexibility with regard to dynamic
configurations (i.e. any component can create any other PTC). The visibility of component references shall follow the
same scope rules as that of variables and in order to reference components outside their scope of creation the component
reference shall be passed as a parameter or as a field in a message.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The name given by Expression shall be a charstring value and when assigned it shall appear as the argument of
the create function.

Examples

 // This example declares variables of type MyComponentType, which is used to store the
 // references of newly created component instances of type MyComponentType which is the
 // result of the create operations. An associated name is allocated to some of the created
 // component instances.
 :
 var MyComponentType MyNewComponent;
 var MyComponentType MyNewestComponent;
 var MyComponentType MyAliveComponent;
 var MyComponentType MyAnotherAliveComponent;
 :
 MyNewComponent := MyComponentType.create;
 MyNewestComponent := MyComponentType.create("Newest");
 MyAliveComponent := MyComponentType.create alive;
 MyAnotherAliveComponent := MyComponentType.create("Another Alive") alive;

21.3.2 The Start test component operation

The start operation is used to associate a test behaviour to a test component, which is then being executed by that test
component.

Syntactical Structure

(VariableRef | FunctionInstance) "." start "(" FunctionInstance ")"

Semantic Description

Once a PTC has been created and connected, behaviour has to be bound to this PTC and the execution of its behaviour
has to be started. This is done by using the start operation (as PTC creation does not start execution of the
component behaviour). The reason for the distinction between create and start is to allow connection operations to
be done before actually running the test component.

The start operation shall bind the required behaviour to the test component. This behaviour is defined by reference to
an already defined function.

An alive-type PTC may perform several behaviour functions in sequential order. Starting a second behaviour function
on a non-alive PTC or starting a function on a PTC that is still running results in a test case error. If a function is started
on an alive-type PTC after termination of a previous function, it uses variable values, timers, ports, and the local verdict
as they were left after termination of the previous function. In particular, if a timer was started in the previous function,
the subsequent function should be enabled to handle a possible timeout event. In contrast to that, all active defaults are
deactivated when the behaviour of an alive-type PTC is stopped. This means no default is activated when a new
behaviour is started on an alive-type PTC.

NOTE 1: The lifetime of variables and timers is bound to the scope in which they are declared. When an alive-type
component is stopped, only the component scope is left. This means only variable values and timers
declared in the component type definition of an alive-type PTC can be accessed by a function with a
corresponding runs on-clause that is started on an alive-type PTC.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The variable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with FunctionInstance must be of component type.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 159

b) The following restrictions apply to a function invoked in a start test component operation:

• This function shall have a runs on definition referencing a component type that is compatible with the
newly created component (see clause 6.3.3).

• Ports and timers shall not be passed into this function.

NOTE 2: Possible return values of a function invoked in a start test component operation, i.e. templates denoted
by return keyword or inout and out parameters, have no effect when the started test component
terminates.

NOTE 3: As in and inout ports starts listening when the component is created, at the moment, when it starts
execution there may be messages in the incoming queues of such ports already waiting to be processed.

Examples

 function MyFirstBehaviour() runs on MyComponentType { … }
 function MySecondBehaviour() runs on MyComponentType { … }
 :
 var MyComponentType MyNewPTC;
 var MyComponentType MyAlivePTC;
 :
 MyNewPTC := MyComponentType.create; // Creation of a new non-alive test component.
 MyAlivePTC := MyComponentType.create alive; // Creation of a new alive-type test component
 :
 MyNewPTC.start(MyFirstBehaviour()); // Start of the non-alive component.
 MyNewPTC.done; // Wait for termination
 MyNewPTC.start(MySecondBehaviour()); // Test case error
 :
 MyAlivePTC.start(MyFirstBehaviour()); // Start of the alive-type component
 MyAlivePTC.done; // Wait for termination
 MyAlivePTC.start(MySecondBehaviour()); // Start of the next function on the same component

21.3.3 The Stop test behaviour operation

The stop test behaviour operation is used to stop the execution of a test component by itself or by another test
component.

Syntactical Structure

stop |
((VariableRef | FunctionInstance | mtc | self) "." stop) |
(all component "." stop)

Semantic Description

By using the stop test component statement a test component can stop the execution of its own currently running test
behaviour or the execution of the test behaviour running on another test component. If a component does not stop its
own behaviour, but the behaviour running on another test component in the test system, the component to be stopped
has to be identified by using its component reference. A component can stop its own behaviour by using a simple stop
execution statement (see clause 19.9) or by addressing itself in the stop operation, e.g. by using the self operation.

NOTE 1: While the create, start, running, done and killed operations can be used for PTC(s) only, the
stop operation can also be applied to the MTC.

Stopping a test component is the explicit form of terminating the execution of the currently running behaviour. A test
component behaviour terminates also by completing its execution upon reaching the end of the testcase or function that
is started on this component or by an explicit return statement. This termination is also called implicit stop. The
implicit stop has the same effects as an explicit stop, i.e. the global verdict is updated with the local verdict of the
stopped test component (see clause 24).

If the stopped test component is the MTC, resources of all existing PTCs shall be released, the PTCs shall be removed
from the test system and the test case shall terminate (see clause 26.1).

Stopping a non-alive-type test component (implicitly or explicitly) shall destroy it and all resources associated with the
test component shall be released.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 160

Stopping an alive-type component shall stop the currently running behaviour only but the component continues to exist
and can execute new behaviour (started on it using the start operation). Stopping an alive-type component means that
all variables, timers and ports declared in the component type definition of the alive-type component keep their value,
contents or state. Furthermore, the local verdict of the component keeps its value. In contrast to that, all active defaults
are automatically deactivated when the alive-type component is stopped. The component shall be left in a consistent
state after stopping its behaviour.

For example, if the behaviour of an alive-type component is stopped during assigning a new value to an already bound
variable, the variable shall remain bound after the component is stopped (with the old or the new value). Similarly, if
the component is stopped during re-starting an already running timer, the timer shall be left in the running state after
termination of the behaviour.

The all keyword can be used by the MTC only in order to stop all running PTCs but the MTC itself.

NOTE 2: A PTC can stop the test case execution by stopping the MTC.

NOTE 3: The concrete mechanism for stopping PTCs is outside the scope of the present document.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The variable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with FunctionInstance must be of component type.

Examples

EXAMPLE 1: Stopping another test component and a test component by itself

 var MyComponentType MyComp := MyComponentType.create; // A new test component is created
 MyComp.start(CompBehaviour()); // The new component is started
 :
 if (date == "1.1.2005") {
 MyComp.stop; // The component "MyComp" is stopped
 }

 :
 if (a < b) {
 :
 self.stop; // The test component that is currently executing stops its own behaviour
 }
 :
 stop // The test component stops its own behaviour

EXAMPLE 2: Stopping all PTCs by the MTC

 all component.stop // The MTC stops all PTCs of the test case but not itself.

21.3.4 The Kill test component operation

The kill test component operation is used to destroy a test component by itself or by another test component. Kill and
stop on a non-alive component have the same results, while they differ for alive components: stopping an alive
components stops the test behaviour only, the test component continues to exist. Killing a test component destroys the
test component.

Syntactical Structure

kill |
((VariableRef | FunctionInstance | mtc | self) "." kill) |
(all component "." kill)

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 161

Semantic Description

The kill operation applied on a test component stops the execution of the currently running behaviour - if any - of that
component and frees all resources associated to it (including all port connections of the killed component) and removes
the component from the test system. The kill operation can be applied on the current test component itself by a
simple kill statement or by addressing itself using the self operation in conjunction with the kill operation. The
kill operation can also be applied to another test component. In this case the component to be killed shall be
addressed using its component reference. If the kill operation is applied on the MTC, e.g. mtc.kill, it terminates
the test case.

The all keyword can be used by the MTC only in order to stop and kill all running PTCs but the MTC itself.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The variable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with FunctionInstance must be of component type.

Examples

EXAMPLE 1: Killing another test component and a test component by itself

 var PTCType MyAliveComp := PTCType.create alive; // Create an alive-type test component
 MyAliveComp.start(MyFirstBehaviour()); // The new component is started
 MyAliveComp.done; // Wait for termination
 MyAliveComp.start(MySecondBehavior()); // Start the component a 2nd time
 MyAliveComp.done; // Wait for termination
 MyAliveComp.kill; // Free its resources

EXAMPLE 2: Killing all PTCs by the MTC

 all component.kill; // The MTC stops all (alive-type and normal) PTCs of the test case first
 // and frees their resources.

21.3.5 The Alive operation

The alive operation is a Boolean operation that checks whether a test component has been created and is ready to
execute or is executing already a behaviour function.

Syntactical Structure

(VariableRef |
FunctionInstance |
any component |
all component) "." alive

Semantic Description

Applied on a normal test component, the alive operation returns true if the component is inactive or running a
function and false otherwise. Applied on an alive-type test component, the operation returns true if the component is
inactive, running or stopped. It returns false if the component has been killed.

The alive operation can be used similar to the running operation on PTCSs only (see clause 21.2.6). In particular,
in combination with the all keyword it returns true if all (alive-type or normal) PTCs are alive.

The alive operation used in combination with the any keyword returns true if at least one PTC is alive.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The variable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with FunctionInstance must be of component type.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 162

Examples

 PTC1.done; // Waits for termination of the component
 if (PTC1.alive) { // If the component is still alive …
 PTC1.start(AnotherFunction()); // … execute another function on it.
 }

21.3.6 The Running operation

The running operation is a Boolean operation that checks whether a test component is executing already a behaviour
function.

Syntactical Structure

(VariableRef |
FunctionInstance |
any component |
all component) "." running

Semantic Description

The running operation allows behaviour executing on a test component to ascertain whether behaviour running on a
different test component has completed. The running operation can be used for PTCs only. The running operation
returns true for PTCs that have been started but not yet terminated or stopped. It returns false otherwise. The
running operation is considered to be a boolean expression and, thus, returns a boolean value to indicate
whether the specified test component (or all test components) has terminated. In contrast to the done operation, the
running operation can be used freely in boolean expressions.

When the all keyword is used with the running operation, it will return true if all PTCs started but not stopped
explicitly by another component are executing their behaviour. Otherwise it returns false.

When the any keyword is used with the running operation, it will return true if at least one PTC is executing its
behaviour. Otherwise it returns false.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The variable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with FunctionInstance must be of component type.

Examples

 if (PTC1.running) // usage of running in an if statement
 {
 // do something!
 }

 while (all component.running != true) { // usage of running in a loop condition
 MySpecialFunction()
 }

21.3.7 The Done operation

The done operation allows behaviour executing on a test component to ascertain whether the behaviour running on a
different test component has completed.

Syntactical Structure

(VariableRef |
FunctionInstance |
any component |
all component) "." done

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 163

Semantic Description

The done operation shall be used in the same manner as a receiving operation or a timeout operation. This means it
shall not be used in a boolean expression, but it can be used to determine an alternative in an alt statement or as
stand-alone statement in a behaviour description. In the latter case a done operation is considered to be a shorthand for
an alt statement with the done operation as the only alternative.

When the done operation is applied to a PTC, it matches only if the behaviour of that PTC has been stopped (implicitly
or explicitly) or the PTC has been killed. Otherwise, the match is unsuccessful.

When the all keyword is used with the done operation, it matches if no one PTC is executing its behaviour. It also
matches if no PTC has been created.

When the any keyword is used with the done operation, it matches if at least the behaviour of one PTC has been
stopped or killed. Otherwise, the match is unsuccessful.

NOTE: Stopping the behaviour of a non-alive component also results in removing that component from the test
system, while stopping an alive-type component leaves the component alive in the test system. In both
cases the done operation matches.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The done operation can be used for PTCs only.

b) The variable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with FunctionInstance must be of component type.

Examples

 // Use of done in alternatives
 alt {
 [] MyPTC.done {
 setverdict(pass)
 }

 [] any port.receive {
 repeat
 }
 }

 var MyComp c := MyComp.create alive;
 c.start(MyPTCBehaviour());
 :
 c.done;
 // matches as soon as the function MyPTCBehaviour (or function/altstep called by it) stops
 c.done;
 // matches the end of MyPTCBehaviour (or function/altstep called by it) too
 if(c.running) {c.done}
 // done here matches the end of the next behaviour only

 // the following done as stand-alone statement:
 all component.done;

 // has the following meaning:
 alt {
 [] all component.done {}
 }
 // and thus, blocks the execution until all parallel test components have terminated

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 164

21.3.8 The Killed operation

The killed operation allows to ascertain whether a different test component is alive or has been removed from the
test system.

Syntactical Structure

(VariableRef |
FunctionInstance |
any component |
all component) "." killed

Semantic Description

The killed operation shall be used in the same manner as receiving operations. This means it shall not be used in
boolean expressions, but it can be used to determine an alternative in an alt statement or as a stand-alone statement
in a behaviour description. In the latter case a killed operation is considered to be a shorthand for an alt statement
with the killed operation as the only alternative.

NOTE: When checking normal test components a killed operation matches if it stopped (implicitly or explicitly)
the execution of its behaviour or has been killed explicitly, i.e. the operation is equivalent to the done
operation (see clause 21.2.7). When checking alive-type test components, however, the killed
operation matches only if the component has been killed using the kill operation. Otherwise the
killed operation is unsuccessful.

When the all keyword is used with the killed operation, it matches if all PTCs of the test case have ceased to exist.
It also matches if no PTC has been created.

When the any keyword is used with the killed operation, it matches if at least one PTC ceased to exist. Otherwise,
the match is unsuccessful.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The killed operation can be used for PTCs only.

Examples

 var MyPTCType ptc := MyPTCType.create alive; // create an alive-type test component
 timer T:= 10.0; // create a timer
 T.start; // start the timer
 ptc.start(MyTestBehavior()); // start executing a function on the PTC
 alt {
 [] ptc.killed { // if the PTC was killed during execution …
 T.stop; // … stop the timer and …
 setverdict(inconc); // … set the verdict to 'inconclusive'
 }
 [] ptc.done { // if the PTC terminated regularly …
 T.stop; // … stop the timer and …
 ptc.start(AnotherFunction()); // … start another function on the PTC
 }
 [] T.timeout { // if the timeout occurs before the PTC stopped
 ptc.kill; // … kill the PTC and …
 setverdict(fail); // … set the verdict to 'fail'
 }
 }

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 165

21.3.9 Summary of the use of any and all with components

The keywords any and all may be used with configuration operations as indicated in table 21.

Table 21: Any and All with components

Operation Allowed Example Comment
 any (see note) all (see note)
create
start
running Yes but from

MTC only
Yes but from
MTC only

any component.running;

all component.running;

Is there any PTC performing test
behaviour?
Are all PTCs performing test
behaviour?

alive Yes but from
MTC only

Yes but from
MTC only

any component.alive;
all component.alive;

Is there any alive PTC?
Are all PTCs alive?

done Yes but from
MTC only

Yes but from
MTC only

any component.done;

all component.done;

Is there any PTC that completed
execution?
Did all PTCs complete their execution?

killed Yes but from
MTC only

Yes but from
MTC only

any component.killed;
all component.killed;

Is there any PTC that ceased to exist?
Did all PTCs cease to exist?

stop Yes but from
MTC only

all component.stop; Stop the behaviour on all PTCs.

kill Yes but from
MTC only

all component.kill; Kill all PTCs, i.e. they cease to exist.

NOTE: any and all refer to PTCs only, i.e. the MTC is not considered.

22 Communication operations
TTCN-3 supports message-based and procedure-based unicast, multicast and broadcast communication. Furthermore,
TTCN-3 allows to examine the top element of incoming port queues and to control the access to ports by means of
controlling operations. The communication operations and restrictions on their usage are summarized in table 22.

Table 22: Overview of TTCN-3 communication operations

Communication operations
Communication operation Keyword Can be used at

message-based ports
Can be used at

procedure-based ports
Message-based communication
Send message send Yes
Receive message receive Yes
Trigger on message trigger Yes
Procedure-based communication
Invoke procedure call call Yes
Accept procedure call from remote entity getcall Yes
Reply to procedure call from remote entity reply Yes
Raise exception (to an accepted call) raise Yes
Handle response from a previous call getreply Yes
Catch exception (from called entity) catch Yes
Examine top element of incoming port queues
Check msg/call/exception/reply received check Yes Yes
Controlling operations
Clear port queue clear Yes Yes
Clear queue and enable sending and
receiving at a port

start Yes Yes

Disable sending and disallow receiving
operations to match at a port

stop Yes Yes

Disable sending and disallow receiving
operations to match new messages/calls

halt Yes Yes

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 166

22.1 The communication mechanisms
This clause explains the principles of TTCN-3 communication for message-based communication (see clause 22.1.1),
for procedure-based communication (see clause 22.1.2), for unicast, multicast, and broadcast communication
(see clause 22.1.3), as well as the general format of sending and receiving operations (see clause 22.1.4).

22.1.1 Principles of message-based communication

Message-based communication is communication based on an asynchronous message exchange. Message-based
communication is non-blocking on the send operation, as illustrated in figure 11, where processing in the SENDER
continues immediately after the send operation occurs. The RECEIVER is blocked on the receive operation until it
processes the received message.

In addition to the receive operation, TTCN-3 provides a trigger operation that filters messages with certain
matching criteria from a stream of received messages on a given incoming port. Messages at the top of the queue that
do not fulfil the matching criteria are removed from the port without any further action.

RECEIVER

send

SENDER

receive or trigger

Figure 11: Illustration of the asynchronous send and receive

22.1.2 Principles of procedure-based communication

The principle of procedure-based communication is to call procedures in remote entities. TTCN-3 supports blocking
and non-blocking procedure-based communication. Blocking procedure-based communication is blocking on the calling
and the called side, whereas non-blocking procedure-based communication is only blocking on the called side.
Signatures of procedures that are used for non-blocking procedure-based communication shall be specified according to
the rules in clause 13.

The communication scheme of blocking procedure-based communication is shown in figure 12. The CALLER calls a
remote procedure in the CALLEE by using the call operation. The CALLEE accepts the call by means of a
getcall operation and reacts by either using a reply operation to answer the call or by raising (raise operation)
an exception. The CALLER handles the reply or exception by using getreply or catch operations. In figure 12, the
blocking of CALLER and CALLEE is indicated by means of dashed lines.

CALLER CALLEE

call getcall

getreply or
catch exception

reply or
raise exception

Figure 12: Illustration of blocking procedure-based communication

The communication scheme of non-blocking procedure-based communication is shown in figure 13. The CALLER
calls a remote procedure in the CALLEE by using the call operation and continues its execution, i.e. does not wait for
a reply or exception. The CALLEE accepts the call by means of a getcall operation and executes the requested
procedure. If the execution is not successful, the CALLEE may raise an exception to inform the CALLER. The
CALLER may handle the exception by using a catch operation in an alt statement. In figure 13, the blocking of the
CALLEE until the end of the call handling and possible raise of an exception is indicated by means of a dashed line.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 167

CALLER CALLEE

call getcall

raise exception catch exception

Figure 13: Illustration of non-blocking procedure-based communication

22.1.3 Principles of unicast, multicast and broadcast communication

TTCN-3 supports unicast, multicast and broadcast communication:

• Unicast communication means one sender to one receiver.

• Multicast communication is from one sender to a list of receivers.

• Broadcast communication is from one sender to all receivers (being connected or mapped to the sender).

The terms unicast, multicast and broadcast communication are related to port communication. This means, it is only
possible to address one, several or all test components that are connected to the specified port. Unicast, multicast and
broadcast can also be used for mapped ports. In this case, one, several or all entities within the SUT can be reached via
the specified mapped port.

22.1.4 General format of communication operations

Operations such as send and call are used for the exchange of information among test components and between an
SUT and test components. For explaining the general format of these operations, they can be structured into two groups:

a) a test component sends a message (send operation), calls a procedure (call operation), or replies to an
accepted call (reply operation) or raises an exception (raise operation). These actions are collectively
referred to as sending operations;

b) a component receives a message (receive operation), awaits a message (trigger operation),accepts a
procedure call (getcall operation), receives a reply for a previously called procedure (getreply
operation) or catches an exception (catch operation). These actions are collectively referred to as receiving
operations.

22.1.4.1 General format of the sending operations

Sending operations consist of a send part and, in the case of a blocking procedure-based call operation, a response
and exception handling part.

The send part:

• specifies the port at which the specified operation shall take place;

• defines the message or procedure call to be transmitted;

• gives an (optional) address part that uniquely identifies one or more communication partners to which a
message, call, reply or exception shall be send.

The port name, operation name and value shall be present in all sending operations. The address part (denoted by the to
keyword) is optional and need only be specified in cases of one-to-many connections where:

• unicast communication is used and one receiving entity shall be explicitly identified;

• multicast communication is used and a set of receiving entities has to be explicitly identified;

• broadcast communication is used and all entities connected to the specified port have to be addressed.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 168

EXAMPLE 1:

Send part (Optional) response
and exception

Port and operation Value part (Optional) address part handling part
MyP1.send (MyVariable + YourVariable - 2) to MyPartner;

Response and exception handling is only needed in cases of procedure-based communication. The response and
exception handling part of the call operation is optional and is required for cases where the called procedure returns a
value or has out or inout parameters whose values are needed within the calling component and for cases where the
called procedure may raise exceptions which need to be handled by the calling component.

The response and exception handling part of the call operation makes use of getreply and catch operations to
provide the required functionality.

EXAMPLE 2:

Send part (Optional) response and exception handling part
Port and
operation

Value part (Optional)
address part

MyP1.call (MyProc:{MyVar1}) {
 [] MyP1.getreply(MyProc:{MyVar2}) {}
 [] MyP1.catch(MyProc, ExceptionOne) {}
}

22.1.4.2 General format of the receiving operations

A receiving operation consists of a receive part and an (optional) assignment part.

The receive part:

a) specifies the port at which the operation shall take place;

b) defines a matching part which specifies the acceptable input which will match the statement;

c) gives an (optional) address expression that uniquely identifies the communication partner (in case of
one-to-many connections).

The port name, operation name and value part of all receiving operations shall be present. The identification of the
communication partner (denoted by the from keyword) is optional and need only be specified in cases of one-to-many
connections where the receiving entity needs to be explicitly identified.

The assignment part in a receiving operation is optional. For message-based ports it is used when it is required to store
received messages. In the case of procedure-based ports it is used for storing the in and inout parameters of an
accepted call, for storing the return value or for storing exceptions. For the assignment part strong typing is required,
e.g. the variable used for storing a message shall have the same type as the incoming message.

In addition, the assignment part may also be used to assign the sender address of a message, exception, reply or
call to a variable. This is useful for one-to-many connections where, for example, the same message or call can be
received from different components, but the message, reply or exception must be sent back to the original sending
component.

EXAMPLE:

Receive part (Optional) assignment part
Port and operation Matching part (Optional)

address
expression

 (Optional)
value

assignment

(Optional)
parameter

value
assignment

(Optional) sender
value assignment

MyP1.getreply (AProc:{?} value 5) -> param (V1) sender APeer

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 169

Receive part (Optional) assignment part
Port and operation Matching part (Optional)

address
expression

 (Optional) value
assignment

(Optional)
parameter

value
assignment

(Optional)
sender value
assignment

MyP2.receive (MyTemplate(5,7)) from APeer -> value MyVar

22.2 Message-based communication
The operations for message-based communication via asynchronous ports are summarized in table 23.

Table 23: Overview of TTCN-3 message-based communication

Communication operation Keyword
Send message send
Receive message receive
Trigger on message trigger
Check message received check

22.2.1 The Send operation

The send operation is used to place a message on an outgoing message port.

Syntactical Structure

Port "." send "(" TemplateInstance ")"
[to (AddressRef | AddressRefList | all component)]

Semantic Description

The send operation places a message on an outgoing message port. The message may be specified by referencing a
defined template or can be defined as an in-line template.

Sending unicast, multicast or broadcast

Unicast, multicast and broadcast communication can be determined by the optional to clause in the send operation. A
to clause can be omitted in case of a one-to-one connection where unicast communication is used and the message
receiver is uniquely determined by the test system structure.

Unicast communication is specified, if the to clause addresses one communication partner only. Multicast
communication is used, if the to clause includes a list of communication partners. Broadcast is defined by using the to
clause with all component keyword.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The TemplateInstance (and all parts of it) shall have a specific value i.e. the use of matching mechanisms such
as AnyValue is not allowed.

b) When defining the message in-line, the optional type part shall be used if there is ambiguity of the type of the
message being sent.

c) The send operation shall only be used on message-based ports and the type of the template to be sent shall be
in the list of outgoing types of the port type definition.

d) A to clause shall be present in case of one-to-many connections.

e) AddressRef shall not contain matching mechanisms and must be of address or component type.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 170

Examples

EXAMPLE 1: Simple send (receiver is determined from the test configuration)

 MyPort.send(MyTemplate(5,MyVar)); // Sends the template MyTemplate with the actual
 // parameters 5 and MyVar via MyPort.

 MyPort.send(5); // Sends the integer value 5 (which is an in-line template)

EXAMPLE 2: Sending with explicit to clause

 MyPort.send(charstring:"My string") to MyPartner;
 // Sends the string "My string" to a component with a
 // component reference stored in variable MyPartner

 MyPCO.send(MyVariable + YourVariable - 2) to MyPartner;
 // Sends the result of the arithmetic expression to MyPartner.

 MyPCO2.send(MyTemplate) to (MyPeerOne, MyPeerTwo);
 // Specifies a multicast communication, where the value of
 // MyTemplate is sent to the two component references stored
 // in the variables MyPeerOne and MyPeerTwo.

 MyPCO3.send(MyTemplate) to all component;
 // Broadcast communication: the value of Mytemplate is send to
 // all components which can be addressed via this port. If
 // MyPCO3 is a mapped port, the components may reside inside
 // the SUT.

22.2.2 The Receive operation

The receive operation is used to receive a message from an incoming message port queue.

Syntactical Structure

(Port | any port) "." receive
["(" TemplateInstance ")"]
[from AddressRef]
["->" [value (VariableRef |
 ("(" { VariableRef [":=" FieldOrTypeReference][","] } ")")
)]
 [sender VariableRef]]

Semantic Description

The receive operation is used to receive a message from an incoming message port queue. The message may be
specified by referencing a defined template or can be defined as an in-line template.

The receive operation removes the top message from the associated incoming port queue if, and only if, that top
message satisfies all the matching criteria associated with the receive operation.

If the match is not successful, the top message shall not be removed from the port queue i.e. if the receive operation
is used as an alternative of an alt statement and it is not successful, the execution of the test case shall continue with
the next alternative of the alt statement.

Matching criteria

The matching criteria are related to the type and value of the message to be received. The type and value of the message
to be received are determined by the argument of the receive operation, i.e. may either be derived from the defined
template or be specified in-line. An optional type field in the matching criteria to the receive operation shall be used
to avoid any ambiguity of the type of the value being received.

NOTE: Encoding attributes also participate in matching in an implicit way, by preventing the decoder to produce
an abstract value from the received message encoded in a different way than specified by the attributes.

Receiving from a specific sender

In the case of one-to-many connections the receive operation may be restricted to a certain communication partner.
This restriction shall be denoted using the from keyword.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 171

Storing the received message and parts of the received message

If the match is successful, the value removed from the port queue and/or parts of this value can be stored in variables or
formal parameters. This is denoted by the symbol '->' and the keyword value.

When the keyword value is followed by a name of a variable or formal parameter, the whole received message shall
be stored in the variable or formal parameter. The variable or formal parameter shall be type compatible with the
received message.

When the keyword value is followed by an assignment list enframed by a pair of parentheses, the whole received
message and/or one or more parts of it can be stored. In a single assignment within the list, on the left hand side of the
assignment symbol (":=") a field of the template type shall be referenced, on the right hand side the name of the variable
or a formal parameter, in which the value shall be stored. The variable or formal parameter shall be type compatible
with the type on the left hand side of the assignment symbol. As a special case the field reference can be absent to
indicate that the whole message shall be stored in a variable.

Storing the sender

It is also possible to retrieve and store the component reference or address of the sender of a message. This is denoted
by the keyword sender.

When the message is received on a connected port, only the component reference is stored in the following the sender
keyword, but the test system shall internally store the component name too, if any (to be used in logging).

Receive any message

A receive operation with no argument list for the type and value matching criteria of the message to be received shall
remove the message on the top of the incoming port queue (if any) if all other matching criteria are fulfilled.

Receive on any port

To receive a message on any port, use the any port keywords.

Stand-alone receive

The receive operation can be used as a stand-alone statement in a behaviour description. In this latter case the
receive operation is considered to be shorthand for an alt statement with the receive operation as the only
alternative.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) When defining the message in-line, the optional type part shall be present whenever the type of the message
being received is ambiguous.

b) The receive operation shall only be used on message-based ports and the type of the value to be received
shall be included in the list of incoming types of the port type definition.

c) No binding of the incoming values to the terms of the expression or to the template shall occur.

d) A message received by receive any message shall not be stored, i.e. the value clause shall not be present.

e) Type mismatch at storing the received value or parts of the received value and storing the sender shall cause an
error.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 172

Examples

EXAMPLE 1: Basic receive

 MyPort.receive(MyTemplate(5, MyVar)); // Matches a message that fulfils the conditions
 // defined by template MyTemplate at port MyPort.

 MyPort.receive(A<B); // Matches a Boolean value that depends on the outcome of A<B

 MyPort.receive(integer:MyVar); // Matches an integer value with the value of MyVar
 // at port MyPort

 MyPort.receive(MyVar); // Is an alternative to the previous example

EXAMPLE 2: Receiving from a sender, storing the message, parts of the message or the sender

 MyPort.receive(charstring:"Hello")from MyPeer; // Matches charstring "Hello" from MyPeer

 MyPort.receive(MyType:?) -> value MyVar; // The value of the received message is
 // assigned to MyVar.

 MyPort.receive(MyType:?) -> value (MyVar, MyMessageIdVar:= MyType.messageId)
 // The value of the received message is stored in the variable
 // MyVar and the value of the messageId field of the received
 // message is stored in the variable MyMessageIdVar.

 MyPort.receive(anytype:?) -> value (MyIntegerVar := integer)
 // If the received value is an integer, it is stored in the variable
 // MyIntegerVar, a test case error otherwise.

 MyPort.receive(charstring:?) -> value (MyCharstringVar)
 // The received value is stored in the variable MyCharstringVar;
 // Note that it is the same as to write "value MyCharstringVar"

 MyPort.receive(A<B) -> sender MyPeer; // The address of the sender is assigned to MyPeer

 MyPort.receive(MyTemplate:{5, MyVarOne}) -> value MyVarTwo sender MyPeer;
 // The received message value is stored in MyVarTwo and the sender address is stored in MyPeer.

EXAMPLE 3: Receive any message

 MyPort.receive; // Removes the top value from MyPort.

 MyPort.receive from MyPeer; // Removes the top message from MyPort if its sender is
 MyPeer

 MyPort.receive -> sender MySenderVar; // Removes the top message from MyPort and assigns
 // the sender address to MySenderVar

EXAMPLE 4: Receive on any port

 any port.receive(MyMessage);

22.2.3 The Trigger operation

The trigger operation is used to await a specific message on an incoming port queue.

Syntactical Structure

(Port | any port) "." trigger
["(" TemplateInstance ")"]
[from AddressRef]
["->" [value (VariableRef |
 ("(" { VariableRef [":=" FieldOrTypeReference][","] } ")")
)]
 [sender VariableRef]]

Semantic Description

The trigger operation removes the top message from the associated incoming port queue. If that top message meets
the matching criteria, the trigger operation behaves in the same manner as a receive operation. If that top
message does not fulfil the matching criteria, it shall be removed from the queue without any further action.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 173

The trigger operation requires the port name, matching criteria for type and value, an optional from restriction
(i.e. selection of communication partner) and an optional assignment of the matching message and sender component to
variables.

Matching criteria

The matching criteria as defined in clause 22.2.2 apply also to the trigger operation.

Trigger on any message

A trigger operation with no argument list shall trigger on the receipt of any message. Thus, its meaning is identical
to the meaning of receive any message.

Trigger on any port

To trigger on a message at any port, use the any port keywords.

Stand-alone trigger

The trigger operation can be used as a stand-alone statement in a behaviour description. In this latter case the
trigger operation is considered to be shorthand for an alt statement with two alternatives (one alternative expecting
the message and another alternative consuming all other messages and repeating the alt statement, see
ES 201 873-4 [1]).

Storing the received message, parts of the received message or the sender

Rules in clause 22.2.2 shall aply.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The trigger operation shall only be used on message-based ports and the type of the value to be received
shall be included in the list of incoming types of the port type definition.

b) A message received by TriggerOnAnyMessage shall not be assigned to a variable.

c) Type mismatch at storing the received value or parts of the received value and storing the sender shall cause an
error.

Examples

EXAMPLE 1: Basic trigger

 MyPort.trigger(MyType:?);
 // Specifies that the operation will trigger on the reception of the first message observed of
 // the type MyType with an arbitrary value at port MyPort.

EXAMPLE 2: Trigger from a sender and with storing message or sender

 MyPort.trigger(MyType:?) from MyPartner;
 // Triggers on the reception of the first message of type MyType at port MyPort
 // received from MyPartner.

 MyPort.trigger(MyType:?) from MyPartner -> value MyRecMessage;
 // This example is almost identical to the previous example. In addition, the message which
 // triggers i.e. all matching criteria are met, is stored in the variable MyRecMessage.

 MyPort.trigger(MyType:?) -> sender MyPartner;
 // This example is almost identical to the first example. In addition, the reference of the
 // sender component will be retrieved and stored in variable MyPartner.

 MyPort.trigger(integer:?) -> value MyVar sender MyPartner;
 // Trigger on the reception of an arbitrary integer value which afterwards is stored in
 // variable MyVar. The reference of the sender component will be stored in variable MyPartner.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 174

EXAMPLE 3: Trigger on any message

 MyPort.trigger;

 MyPort.trigger from MyPartner;

 MyPort.trigger -> sender MySenderVar;

EXAMPLE 4: Trigger on any port

 any port.trigger

22.3 Procedure-based communication
The operations for procedure-based communication via synchronous ports are summarized in table 24.

Table 24: Overview of procedure-based communication

Communication operation Keyword
Invoke procedure call call
Accept procedure call from remote entity getcall
Reply to procedure call from remote entity reply
Raise exception (to an accepted call) raise
Handle response from a previous call getreply
Catch exception (from called entity) catch
Check call/exception/reply received check

22.3.1 The Call operation

The call operation specifies the call of a remote operation on another test component or within the SUT.

Syntactical Structure

Port "." call "(" TemplateInstance ["," CallTimerValue] ")"
[to (AddressRef | AddressRefList | all component)]

Semantic Description

The call operation is used to specify that a test component calls a procedure in the SUT or in another test component.

The information to be transmitted in the send part of the call operation is a signature that may either be defined in the
form of a signature template or be defined in-line.

Handling responses and exceptions to a call

In case of non-blocking procedure-based communication the handling of exceptions to call operations is done by
using catch (see clause 22.3.6) operations as alternatives in alt statements.

If the nowait option is used, the handling of responses or exceptions to call operations is done by using getreply
(see clause 22.3.4) and catch (see clause 22.3.6) operations as alternatives in alt statements.

In case of blocking procedure-based communication, the handling of responses or exceptions to a call is done in the
response and exception handling part of the call operation by means of getreply (see clause 22.3.4) and catch
(see clause 22.3.6) operations.

The response and exception handling part of a call operation looks similar to the body of an alt statement. It defines
a set of alternatives, describing the possible responses and exceptions to the call.

If necessary, it is possible to enable/disable an alternative by means of a boolean expression placed between the "[]"
brackets of the alternative.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 175

The response and exception handling part of a call operation is executed like an alt statement without any active
default. This means a corresponding snapshot includes all information necessary to evaluate the (optional) Boolean
guards, may include the top element (if any) of the port over which the procedure has been called and may include a
timeout exception generated by the (optional) timer that supervises the call.

Handling timeout exceptions to a call

The call operation may optionally include a timeout. This is defined as an explicit value or constant of float type
and defines the length of time after the call operation has started that a timeout exception shall be generated by the
test system. If no timeout value part is present in the call operation, no timeout exception shall be generated.

Nowait calls of blocking procedures

Using the keyword nowait instead of a timeout exception value in a call operation allows calling a procedure to
continue without waiting either for a response or an exception raised by the called procedure or a timeout exception.

If the nowait keyword is used, a possible response or exception of the called procedure has to be removed from the
port queue by using a getreply or a catch operation in a subsequent alt statement.

Calling blocking procedures without return value, out parameters, inout parameters and exceptions

A blocking procedure may have no return values, no out and inout parameters and may raise no exception. The call
operation for such a procedure shall also have a response and exception handling part to handle the blocking in a
uniform manner.

Calling non-blocking procedures

A non-blocking procedure has no out and inout parameters, no return value and the non-blocking property is indicated
in the corresponding signature definition by means of a noblock keyword.

Possible exceptions raised by non-blocking procedures have to be removed from the port queue by using catch
operations in subsequent alt or interleave statements.

Unicast, multicast and broadcast calls of procedures

Like for the send operation, TTCN-3 also supports unicast, multicast and broadcast calls of procedures. This can be
done in the same manner as described in clause 22.2.1, i.e. the argument of the to clause of a call operation is for
unicast calls the address of one receiving entity (or can be omitted in case of one-to-one connections), for multicast calls
a list of addresses of a set of receivers and for broadcast calls the all component keyword. In case of one-to-one
connections, the to clause may be omitted, because the receiving entity is uniquely identified by the system structure.

The handling of responses and exceptions for a blocking or non-blocking unicast call operation has been explained in
this clause under "Handling timeout exceptions to a call". A multicast or broadcast call operation may cause several
responses and exceptions from different communication partners.

In case of a multicast or broadcast call operation of a non-blocking procedure, all exceptions which may be raised
from the different communication partners can be handled in subsequent catch, alt or interleave statements.

In case of a multicast or broadcast call operation of a blocking procedure, two options exist. Either, only one response
or exception is handled in the response and exception handling part of the call operation. Then, further responses and
exceptions can be handled in subsequent alt or interleave statements. Or, several responses or exceptions are
handled by the use of repeat statements in one or more of the statement blocks of the response and exception handling
part of the call operation: the execution of a repeat statement causes the re-evaluation of the call body.

NOTE: In the second case, the user needs to handle the number of repetitions.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The call operation shall only be used on procedure-based ports. The type definition of the port at which the
call operation takes place shall include the procedure name in its out or inout list i.e. it must be allowed to
call this procedure at this port.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 176

b) All in and inout parameters of the signature shall have a specific value i.e. the use of matching mechanisms
such as AnyValue is not allowed.

c) Only out parameters may be omitted or specified with a matching attribute.

d) The signature arguments of the call operation are not used to retrieve variable names for out and inout
parameters. The actual assignment of the procedure return value and out and inout parameter values to
variables shall explicitly be made in the response and exception handling part of the call operation by means
of getreply and catch operations. This allows the use of signature templates in call operations in the
same manner as templates can be used for types.

e) A to clause shall be present in case of one-to-many connections.

f) AddressRef shall not contain matching mechanisms and must be of address or component type.

g) CallTimerValue must be of type float.

h) The selection of the alternatives to a call shall only be based on getreply and catch operations for the
called procedure. Unqualified getreply and catch operations shall only treat replies from and exceptions
raised by the called procedure. The use of else branches and the invocation of altsteps is not allowed.

i) The evaluation of the Boolean expressions guarding the alternatives in the response and exception handling
part may have side effects. In order to avoid unexpected side effects, the same rules as for the Boolean guards
in alt statements shall be applied (see clause 20.2).

j) The call operation for a blocking procedures without return value, out parameters, inout parameters and
exceptions shall also have a response and exception handling part to handle the blocking in a uniform manner.

k) In case of a multicast or broadcast call operation of a blocking procedure, where the nowait keyword is
used, all responses and exceptions have to be handled in subsequent alt or interleave statements.

l) The call operation for a non-blocking procedure shall have no response and exception handling part, shall
raise no timeout exception and shall not use the nowait keyword.

Examples

EXAMPLE 1: Blocking call with getreply

 // Given …
 signature MyProc (out integer MyPar1, inout boolean MyPar2);
 :
 // a call of MyProc
 MyPort.call(MyProc:{ -, MyVar2}) { // in-line signature template for the call of MyProc
 [] MyPort.getreply(MyProc:{?, ?}) { }
 }

 // … and another call of MyProc
 MyPort.call(MyProcTemplate) { // using signature template for the call of MyProc
 [] MyPort.getreply(MyProc:{?, ?}) { }
 }

 MyPort.call(MyProcTemplate) to MyPeer { // calling MyProc at MyPeer
 [] MyPort.getreply(MyProc:{?, ?}) { }
 }

EXAMPLE 2: Blocking call with getreply and catch

 // Given
 signature MyProc3 (out integer MyPar1, inout boolean MyPar2) return MyResultType
 exception (ExceptionTypeOne, ExceptionTypeTwo);
 :

 // Call of MyProc3
 MyPort.call(MyProc3:{ -, true }) to MyPartner {

 [] MyPort.getreply(MyProc3:{?, ?}) -> value MyResult param (MyPar1Var,MyPar2Var) { }

 [] MyPort.catch(MyProc3, MyExceptionOne) {
 setverdict(fail);
 stop;

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 177

 }
 [] MyPort.catch(MyProc3, ExceptionTypeTwo : ?) {
 setverdict(inconc);
 }
 [MyCondition] MyPort.catch(MyProc3, MyExceptionThree) { }
 }

EXAMPLE 3: Blocking call with timeout exception

 MyPort.call(MyProc:{5,MyVar}, 20E-3) {

 [] MyPort.getreply(MyProc:{?, ?}) { }

 [] MyPort.catch(timeout) { // timeout exception after 20ms
 setverdict(fail);
 stop;
 }
 }

EXAMPLE 4: Nowait call

 MyPort.call(MyProc:{5, MyVar}, nowait); // The calling test component will continue
 // its execution without waiting for the
 // termination of MyProc

EXAMPLE 5: Blocking call without return value, out parameters, inout parameters and exceptions

 // Given …
 signature MyBlockingProc (in integer MyPar1, in boolean MyPar2);
 :
 // a call of MyBlockingProc
 MyPort.call(MyBlockingProc:{ 7, false }) {
 [] MyPort.getreply(MyBlockingProc:{ -, - }) { }
 }

EXAMPLE 6: Broadcast call

 var boolean first:= true;
 MyPort.call(MyProc:{5,MyVar}, 20E-3) to all component { // Broadcast call of MyProc
 // Handles the response from MyPeerOne
 [first] MyPort.getreply(MyProc:{?, ?}) from MyPeerOne {
 if (first) { first := false; repeat; }
 :
 }
 // Handles the response from MyPeerTwo
 [first] MyPort.getreply(MyProc:{?, ?}) from MyPeerTwo {
 if (first) { first := false; repeat; }
 :
 }
 [] MyPort.catch(timeout) { // timeout exception after 20ms
 setverdict(fail);
 stop;
 }
 }

 alt {
 [] MyPort.getreply(MyProc:{?, ?}) { // Handles all other responses to the broadcast call
 repeat
 }
 }

EXAMPLE 7: Multicast call

 MyPort.call(MyProc:{5,MyVar}, nowait) to (MyPeer1, MyPeer2); // Multicast call of MyProc

 interleave {
 [] MyPort.getreply(MyProc:{?, ?}) from MyPeer1 { } // Handles the response of MyPeer1
 [] MyPort.getreply(MyProc:{?, ?}) from MyPeer2 { } // Handles the response of MyPeer2
 }

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 178

22.3.2 The Getcall operation

The getcall operation is used to accept calls.

Syntactical Structure

(Port | any port) "." getcall
["(" TemplateInstance ")"]
[from AddressRef]
["->" [param "(" { (VariableRef ":=" ParameterIdentifier) "," } |
 { (VariableRef | "-") "," }
 ")"]
 [sender VariableRef]]

Semantic Description

The getcall operation is used to specify that a test component accepts a call from the SUT, or another test
component.

The getcall operation shall remove the top call from the incoming port queue, if, and only if, the matching criteria
associated to the getcall operation are fulfilled. These matching criteria are related to the signature of the call to be
processed and the communication partner. The matching criteria for the signature may either be specified in-line or be
derived from a signature template.

The assignment of in and inout parameter values to variables shall be made in the assignment part of the getcall
operation. This allows the use of signature templates in getcall operations in the same manner as templates are used
for types.

A getcall operation may be restricted to a certain communication partner in case of one-to-many connections. This
restriction shall be denoted by using the from keyword.

The (optional) assignment part of the getcall operation comprises the assignment of in and inout parameter
values to variables and the retrieval of the address of the calling component. The keyword param is used to retrieve the
parameter values of a call.

The keyword sender is used when it is required to retrieve the address of the sender (e.g. for addressing a reply or
exception to the calling party in a one-to-many configuration).

Accepting any call

A getcall operation with no argument list for the signature matching criteria will remove the call on the top of the
incoming port queue (if any) if all other matching criteria are fulfilled.

Getcall on any port

To getcall on any port is denoted by the any keyword.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The getcall operation shall only be used on procedure-based ports and the signature of the procedure call to
be accepted shall be included in the list of allowed incoming procedures of the port type definition.

b) The signature argument of the getcall operation shall not be used to pass in variable names for in and
inout parameters.

c) The ParameterIdentifiers must be from the corresponding signature definition.

d) The value assignment part shall not be used with the getcall operation.

e) Parameters of calls accepted by accepting any call shall not be assigned to a variable, i.e. the param clause
shall not be present.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 179

Examples

EXAMPLE 1: Basic getcall

 MyPort.getcall(MyProc: MyProcTemplate(5, MyVar)); // accepts a call of MyProc at MyPort

 MyPort.getcall(MyProc:{5, MyVar}) from MyPeer; // accepts a call of MyProc at MyPort from MyPeer

EXAMPLE 2: Getcall with matching and assignments of parameter values to variables

 MyPort.getcall(MyProc:{?, ?}) from MyPartner -> param (MyPar1Var, MyPar2Var);
 // The in or inout parameter values of MyProc are assigned to MyPar1Var and MyPar2Var.

 MyPort.getcall(MyProc:{5, MyVar}) -> sender MySenderVar;
 // Accepts a call of MyProc at MyPort with the in or inout parameters 5 and MyVar.
 // The address of the calling party is retrieved and stored in MySenderVar.

 // The following getcall examples show the possibilities to use matching attributes
 // and omit optional parts, which may be of no importance for the test specification.

 MyPort.getcall(MyProc:{5, MyVar}) -> param(MyVar1, MyVar2) sender MySenderVar;

 MyPort.getcall(MyProc:{5, ?}) -> param(MyVar1, MyVar2);

 MyPort.getcall(MyProc:{?, MyVar}) -> param(- , MyVar2);
 // The value of the first inout parameter is not important or not used

 // The following examples shall explain the possibilities to assign in and inout parameter
 // values to variables. The following signature is assumed for the procedure to be called:

 signature MyProc2(in integer A, integer B, integer C, out integer D, inout integer E);

 MyPort.getcall(MyProc2:{?, ?, 3, - , ?}) -> param (MyVarA, MyVarB, - , -, MyVarE);
 // The parameters A, B, and E are assigned to the variables MyVarA, MyVarB, and
 // MyVarE. The out parameter D needs not to be considered.

 MyPort.getcall(MyProc2:{?, ?, 3, -, ?}) -> param (MyVarA:= A, MyVarB:= B, MyVarE:= E);
 // Alternative notation for the value assignment of in and inout parameter to variables. Note,
 // the names in the assignment list refer to the names used in the signature of MyProc2

 MyPort.getcall(MyProc2:{1, 2, 3, -, *}) -> param (MyVarE:= E);
 // Only the inout parameter value is needed for the further test case execution

EXAMPLE 3: Accepting any call

 MyPort.getcall; // Removes the top call from MyPort.

 MyPort.getcall from MyPartner; // Removes a call from MyPartner from port MyPort

 MyPort.getcall -> sender MySenderVar; // Removes a call from MyPort and retrieves
 // the address of the calling entity

EXAMPLE 4: Getcall on any port

 any port.getcall(MyProc:?)

22.3.3 The Reply operation

The reply operation is used to reply to a call.

Syntactical Structure

Port "." reply "(" TemplateInstance [value Expression] ")"
[to (AddressRef | AddressRefList | all component)]

Semantic Description

The reply operation is used to reply to a previously accepted call according to the procedure signature.

NOTE: The relation between an accepted call and a reply operation cannot always be checked statically. For
testing it is allowed to specify a reply operation without an associated getcall operation.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 180

The value part of the reply operation consists of a signature reference with an associated actual parameter list and
(optional) return value. The signature may either be defined in the form of a signature template or it may be defined
in-line.

Responses to one or more call operations may be sent to one, several or all peer entities connected to the addressed
port. This can be specified in the same manner as described in clause 22.2.1. This means, the argument of the to clause
of a reply operation is for unicast responses the address of one receiving entity, for multicast responses a list of
addresses of a set of receivers and for broadcast responses the all component keywords.

In case of one-to-one connections, the to clause may be omitted, because the receiving entity is uniquely identified by
the system structure.

A return value shall be explicitly stated with the value keyword.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) A reply operation shall only be used at a procedure-based port. The type definition of the port shall include
the name of the procedure to which the reply operation belongs.

b) All out and inout parameters of the signature shall have a specific value i.e. the use of matching
mechanisms such as AnyValue is not allowed.

c) A to clause shall be present in case of one-to-many connections.

d) AddressRef shall not contain matching mechanisms and must be of address or component type.

e) If a value is to be returned to the calling party, this shall be explicitly stated using the value keyword.

Examples

 MyPort.reply(MyProc2:{ - ,5}); // Replies to an accepted call of MyProc2.

 MyPort.reply(MyProc2:{ - ,5}) to MyPeer; // Replies to an accepted call of MyProc2 from MyPeer

 MyPort.reply(MyProc2:{ - ,5}) to (MyPeer1, MyPeer2); // Multicast reply to MyPeer1 and MyPeer2

 MyPort.reply(MyProc2:{ - ,5}) to all component; // Broadcast reply to all entities connected
 // to MyPort

 MyPort.reply(MyProc3:{5,MyVar} value 20); // Replies to an accepted call of MyProc3.

22.3.4 The Getreply operation

The getreply operation is used to handle replies from a previously called procedure.

Syntactical Structure

(Port | any port) "." getreply
["(" TemplateInstance [value TemplateInstance]")"]
[from AddressRef]
["->" [value VariableRef]
 [param "(" { (VariableRef ":=" ParameterIdentifier) "," } |
 { (VariableRef | "-") "," }
 ")"]
 [sender VariableRef]]

Semantic Description

The getreply operation is used to handle replies from a previously called procedure.

The getreply operation shall remove the top reply from the incoming port queue, if, and only if, the matching
criteria associated to the getreply operation are fulfilled. These matching criteria are related to the signature of the
procedure to be processed and the communication partner. The matching criteria for the signature may either be
specified in-line or be derived from a signature template.

Matching against a received return value can be specified by using the value keyword.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 181

A getreply operation may be restricted to a certain communication partner in case of one-to-many connections. This
restriction shall be denoted by using the from keyword.

The assignment of out and inout parameter values to variables shall be made in the assignment part of the
getreply operation. This allows the use of signature templates in getreply operations in the same manner as
templates are used for types.

The (optional) assignment part of the getreply operation comprises the assignment of out and inout parameter
values to variables and the retrieval of the address of the sender of the reply. The keyword value is used to retrieve
return values and the keyword param is used to retrieve the parameter values of a reply. The keyword sender is used
when it is required to retrieve the address of the sender.

Get any reply

A getreply operation with no argument list for the signature matching criteria shall remove the reply message on the
top of the incoming port queue (if any) if all other matching criteria are fulfilled.

If GetAnyReply is used in the response and exception handling part of a call operation, it shall only treat replies from
the procedure invoked by the call operation.

Get a reply on any port

To get a reply on any port, use the any port keywords.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) A getreply operation shall only be used at a procedure-based port. The type definition of the port shall
include the name of the procedure to which the getreply operation belongs.

b) The signature argument of the getreply operation shall not be used to pass in variable names for out and
inout parameters.

c) Parameters or return values of responses accepted by get any reply shall not be assigned to a variable, i.e. the
param and value clause shall not be present.

Examples

EXAMPLE 1: Basic getreply

 MyPort.getreply(MyProc:{5, ?} value 20); // Accepts a reply of MyProc with two out or
 // inout parameters and a return value of 20

 MyPort.getreply(MyProc2:{ - , 5}) from MyPeer; // Accepts a reply of MyProc2 from MyPeer

EXAMPLE 2: Getreply with storing inout/out parameters and return values in variables

 MyPort.getreply(MyProc1:{?, ?} value ?) -> value MyRetValue param(MyPar1,MyPar2);
 // The returned value is assigned to variable MyRetValue and the value
 // of the two out or inout parameters are assigned to the variables MyPar1 and MyPar2.

 MyPort.getreply(MyProc1:{?, ?} value ?) -> value MyRetValue param(- , MyPar2) sender MySender;
 // The value of the first parameter is not considered for the further test execution and
 // the address of the sender component is retrieved and stored in the variable MySender.

 // The following examples describe some possibilities to assign out and inout parameter values
 // to variables. The following signature is assumed for the procedure which has been called

 signature MyProc2(in integer A, integer B, integer C, out integer D, inout integer E);

 MyPort.getreply(ATemplate) -> param(- , - , - , MyVarOut1, MyVarInout1);

 MyPort.getreply(ATemplate) -> param(MyVarOut1:=D, MyVarOut2:=E);

 MyPort.getreply(MyProc2:{ - , - , - , 3, ?}) -> param(MyVarInout1:=E);

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 182

EXAMPLE 3: Get any reply

 MyPort.getreply; // Removes the top reply from MyPort.

 MyPort.getreply from MyPeer; // Removes the top reply received from MyPeer from MyPort.

 MyPort.getreply -> sender MySenderVar; // Removes the top reply from MyPort and retrieves the
 // address of the sender entity

EXAMPLE 4: Get a reply on any port

 any port.getreply(Myproc:?)

22.3.5 The Raise operation

Exceptions are raised with the raise operation.

Syntactical Structure

Port "." raise "(" Signature "," TemplateInstance ")"
[to (AddressRef | AddressRefList | all component)]

Semantic Description

The raise operation is used to raise an exception.

NOTE: The relation between an accepted call and a raise operation cannot always be checked statically. For
testing it is allowed to specify a raise operation without an associated getcall operation.

The value part of the raise operation consists of the signature reference followed by the exception value.

Exceptions are specified as types. Therefore the exception value may either be derived from a template or be the value
resulting from an expression (which of course can be an explicit value). The optional type field in the value
specification to the raise operation shall be used in cases where it is necessary to avoid any ambiguity of the type of
the value being sent.

Exceptions to one or more call operations may be sent to one, several or all peer entities connected to the addressed
port. This can be specified in the same manner as described in clause 22.2.1. This means, the argument of the to clause
of a raise operation is for unicast exceptions the address of one receiving entity, for multicast exceptions a list of
addresses of a set of receivers and for broadcast exceptions the all component keywords.

In case of one-to-one connections, the to clause may be omitted, because the receiving entity is uniquely identified by
the system structure.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) An exception shall only be raised at a procedure-based port. An exception is a reaction to an accepted
procedure call the result of which leads to an exceptional event.

b) The type of the exception shall be specified in the signature of the called procedure. The type definition of the
port shall include in its list of accepted procedure calls the name of the procedure to which the exception
belongs.

c) A to clause shall be present in case of one-to-many connections.

d) AddressRef shall not contain matching mechanisms and must be of address or component type.

Examples

 MyPort.raise(MySignature, MyVariable + YourVariable - 2);
 // Raises an exception with a value which is the result of the arithmetic expression
 // at MyPort

 MyPort.raise(MyProc, integer:5}); // Raises an exception with the integer value 5 for MyProc

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 183

 MyPort.raise(MySignature, "My string") to MyPartner;
 // Raises an exception with the value "My string" at MyPort for MySignature and
 // send it to MyPartner

 MyPort.raise(MySignature, "My string") to (MyPartnerOne, MyPartnerTwo);
 // Raises an exception with the value "My string" at MyPort and sends it to MyPartnerOne and
 // MyPartnerTwo (i.e. multicast communication)

 MyPort.raise(MySignature, "My string") to all component;
 // Raises an exception with the value "My string" at MyPort for MySignature and sends it
 // to all entites connected to MyPort (i.e. broadcast communication)

22.3.6 The Catch operation

The catch operation is used to catch exceptions.

Syntactical Structure

(Port | any port) "." catch
["(" (Signature "," TemplateInstance) | TimeoutKeyword ")"]
[from AddressRef]
["->" [value (VariableRef |
 ("(" { VariableRef [":=" FieldOrTypeReference][","] } ")")
)]
 [sender VariableRef]]

Semantic Description

The catch operation is used to catch exceptions raised by a test component or the SUT as a reaction to a procedure
call. Exceptions are specified as types and thus, can be treated like messages, e.g. templates can be used to distinguish
between different values of the same exception type.

The catch operation removes the top exception from the associated incoming port queue if, and only if, that top
exception satisfies all the matching criteria associated with the catch operation.

A catch operation may be restricted to a certain communication partner in case of one-to-many connections. This
restriction shall be denoted by using the from keyword.

The (optional) redirection part of the catch operation comprises of storing the exception value and/or one or more
parts of it and the retrieval of the address of the calling component. The keyword value is used to retrieve the value of
an exception and/or the parts of it and the keyword sender is used when it is required to retrieve the address of the
sender.

The catch operation may be part of the response and exception handling part of a call operation or be used to
determine an alternative in an alt statement. If the catch operation is used in the accepting part of a call operation,
the information about port name and signature reference to indicate the procedure that raised the exception is redundant,
because this information follows from the call operation. However, for readability reasons (e.g. in case of complex
call statements) this information shall be repeated.

The Timeout exception

There is one special timeout exception that can be caught by the catch operation. The timeout exception is an
emergency exit for cases where a called procedure neither replies nor raises an exception within a predetermined time
(see clause 22.3.1).

Catch any exception

A catch operation with no argument list allows any valid exception to be caught. The most general case is without
using the from keyword. CatchAnyException will also catch the timeout exception.

Catch on any port

To catch an exception on any port use the any keyword.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 184

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The catch operation shall only be used at procedure-based ports. The type of the caught exception shall be
specified in the signature of the procedure that raised the exception.

b) No binding of the incoming values to the terms of the expression or to the template shall occur. The
assignment of the exception values to variables shall be made in the assignment part of the catch operation.

c) Catching timeout exceptions shall be restricted to the exception handling part of a call. No further matching
criteria (including a from part) and no assignment part is allowed for a catch operation that handles a
timeout exception.

d) Exception values accepted by catch any exception shall not be assigned to a variable, i.e. the value clause shall
not be present.

e) If CatchAnyException is used in the response and exception handling part of a call operation, it shall only
treat exceptions raised by the procedure invoked by the call operation.

Examples

EXAMPLE 1: Basic catch

 MyPort.catch(MyProc, integer: MyVar); // Catches an integer exception of value
 // MyVar raised by MyProc at port MyPort.

 MyPort.catch(MyProc, MyVar); // Is an alternative to the previous example.

 MyPort.catch(MyProc, A<B); // Catches a boolean exception

 MyPort.catch(MyProc, MyType:{5, MyVar}); // In-line template definition of an exception value.

 MyPort.catch(MyProc, charstring:"Hello")from MyPeer; // Catches "Hello" exception from MyPeer

EXAMPLE 2: Catch with storing value and/or sender in variables

 MyPort.catch(MyProc, MyType:?) from MyPartner -> value MyVar;
 // Catches an exception from MyPartner and assigns its value to MyVar.

 MyPort.catch(MyProc, MyTemplate(5)) -> value MyVarTwo sender MyPeer;
 // Catches an exception, assigns its value to MyVarTwo and retrieves the
 // address of the sender.

 MyPort.catch(MyProc, MyTemplate(5)) -> value (MyVarThree:= f1)
 sender MyPeer;
 // Catches an exception, assigns the value of its field f1 to MyVarThree and retrieves the
 // address of the sender.

EXAMPLE 3: The Timeout exception

 MyPort.call(MyProc:{5,MyVar}, 20E-3) {
 [] MyPort.getreply(MyProc:{?, ?}) { }
 [] MyPort.catch(timeout) { // timeout exception after 20ms
 setverdict(fail);
 stop;
 }
 }

EXAMPLE 4: Catch any exception

 MyPort.catch;

 MyPort.catch from MyPartner;

 MyPort.catch -> sender MySenderVar;

EXAMPLE 5: Catch on any port

 any port.catch;

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 185

22.4 The Check operation
The check operation allows reading the top element of a message-based or procedure-based incoming port queue.

Syntactical Structure

(Port | any port) "." check
["("
 (PortReceiveOp | PortGetCallOp | PortGetReplyOp | PortCatchOp) |
 ([from AddressRef] ["->" sender VariableRef])
")"]

Semantic Description

The check operation is a generic operation that allows read access to the top element of message-based and
procedure-based incoming port queues without removing the top element from the queue. The check operation has to
handle values of a certain type at message-based ports and to distinguish between calls to be accepted, exceptions to be
caught and replies from previous calls at procedure-based ports.

The receiving operations receive, getcall, getreply and catch together with their matching and value, sender
or parameter storing parts, are used by the check operation to define the conditions that have to be checked and the
information to be optionally extracted.

It is the top element of an incoming port queue that shall be checked (it is not possible to look into the queue). If the
queue is empty the check operation fails. If the queue is not empty, a copy of the top element is taken and the
receiving operation specified in the check operation is performed on the copy. The check operation fails if the
receiving operation fails i.e. the matching criteria are not fulfilled. In this case the copy of the top element of the queue
is discarded and test execution continues in the normal manner, i.e. the statement or alternative next to the check
operation is evaluated. The check operation is successful if the receiving operation is successful. In this case, the
value, sender or parameter storing parts of the receiving operation, if any, are executed, i.e. the message and/or a part of
it, the sender's address or component reference, the parameter(s) of the call or reply or the value of the exception are
stored in the associated variables.

If check is used as a stand-alone statement, it is considered to be a shorthand for an alt statement with the check
operation as the only alternative.

Check any operation

A check operation with no argument list allows checking whether something waits for processing in an incoming port
queue. The check any operation allows to distinguish between different senders (in case of one-to-many connections)
by using a from clause and to retrieve the sender by using a shorthand assignment part with a sender clause.

NOTE 1: Information related to the message-based input queue of a mixed port can be retrieved easily by using the
check operation in combination with a receive any operation, e.g.
MyPort.check(receive) -> sender Mysender.

Check on any port

To check on any port, use the any port keywords.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Using the check operation in a wrong manner, e.g. check for an exception at a message-based port shall
cause a test case error.

NOTE 2: In most cases the correct usage of the check operation can be checked statically, i.e. before/during
compilation.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 186

Examples

EXAMPLE 1: Basic check

 MyPort1.check(receive(5)); // Checks for an integer message of value 5.

 MyPort1.check(receive(charstring:?) -> value MyCharVar);
 // Checks for a charstring message and stores the message if the message type is charstring

 MyPort2.check(getcall(MyProc:{5, MyVar}) from MyPartner);
 // Checks for a call of MyProc at port MyPort2 from MyPartner

 MyPort2.check(getreply(MyProc:{5, MyVar} value 20));
 // Checks for a reply from procedure MyProc at MyPort2 where the returned value is 20 and
 // the values of the two out or inout parameters are 5 and the value of MyVar.

 MyPort2.check(catch(MyProc, MyTemplate(5, MyVar)));

 MyPort2.check(getreply(MyProc1:{?, MyVar} value *) -> value MyReturnValue param(MyPar1,-));

 MyPort.check(getcall(MyProc:{5, MyVar}) from MyPartner -> param (MyPar1Var, MyPar2Var));

 MyPort.check(getcall(MyProc:{5, MyVar}) -> sender MySenderVar);

EXAMPLE 2: Check any operation

 MyPort.check;

 MyPort.check(from MyPartner);

 MyPort.check(-> sender MySenderVar);

EXAMPLE 3: Check on any port

 any port.check;

22.5 Controlling communication ports
TTCN-3 operations for controlling message-based and procedure-based ports are presented in table 25.

Table 25: Overview of TTCN-3 port operations

Port operations
Statement Associated keyword or symbol

Clear port clear
Start port start
Stop port stop
Halt port halt

22.5.1 The Clear port operation

The clear port operation empties incoming port queues.

Syntactical Structure

(Port | (all port)) "." clear

Semantic Description

The clear operation removes the contents of the incoming queue of the specified port or of all ports of the test
component performing the clear operation.

If a port queue is already empty then this operation shall have no action on that port.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 187

Examples

 MyPort.clear; // clears port MyPort

22.5.2 The Start port operation

The start operation enables sending and receiving operations on the port(s).

Syntactical Structure

(Port | (all port)) "." start

Semantic Description

If a port is defined as allowing receiving operations such as receive, getcall etc., the start operation clears the
incoming queue of the named port and starts listening for traffic over the port. If the port is defined to allow sending
operations then the operations such as send, call, raise etc., are also allowed to be performed at that port.

By default, all ports of a component shall be started implicitly when a component is created. The start port operation
will cause unstopped ports to be restarted by removing all messages waiting in the incoming queue.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

 MyPort.start; // starts MyPort

22.5.3 The Stop port operation

The stop operation disables sending and disallow receiving operations to match at the port(s).

Syntactical Structure

(Port | (all port)) "." stop

Semantic Description

If a port is defined as allowing receiving operations such as receive and getcall, the stop operation causes
listening at the named port to cease. If the port is defined to allow sending operations then stop port disallows the
operations such as send, call, raise etc., to be performed.

To cease listening at the port means that all receiving operations defined before the stop operation shall be completely
performed before the working of the port is suspended.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

 MyPort.receive (MyTemplate1) -> value RecPDU;
 // the received value is decoded, matched against
 // MyTemplate1 and the matching value is stored
 // in the variable RecPDU
 MyPort.stop; // No receiving operation defined following the stop
 // operation is executed (unless the port is restarted
 // by a subsequent start operation)
 MyPort.receive (MyTemplate2); // This operation does not match and will block (assuming
 // that no default is activated)

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 188

22.5.4 The Halt port operation

The halt operation is comparable to the stop operation, but allows entries being already in the queue to be processed
with receiving operations.

Syntactical Structure

(Port | (all port)) "." halt

Semantic Description

If a port allows receiving operations such as receive, trigger and getcall, the halt operation disallows
receiving operations to succeed for messages and procedure call elements that enter the port queue after performing the
halt operation at that port. Messages and procedure call elements that were already in the queue before the halt
operation can still be processed with receiving operations. If the port allows sending operations then halt port
immediately disallows sending operations such as send, call, raise etc. to be performed. Subsequent halt
operations have no effect on the state of the port or its queue.

NOTE 1: The port halt operation virtually puts a marker after the last entry in the queue received when the
operation is performed. Entries ahead of the marker can be processed normally. After all entries in the
queue ahead of the marker have been processed, the state of the port is equivalent to the stopped state.

NOTE 2: If a port stop operation is performed on a halted port before all entries in the queue ahead of the marker
have been processed, further receive operations are disallowed immediately (i.e. the marker is virtually
moved to the top of the queue).

NOTE 3: A port start operation on a halted port clears all entries in the queue irrespectively if they arrived
before or after performing the port halt operation. It also removes the marker.

NOTE 4: A port clear operation on a halted port clears all entries in the queue irrespectively if they arrived
before or after performing the port halt operation. It also virtually puts the marker at the top of the
queue.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

 MyPort.halt; // No sending allowed on Myport from this moment on;
 // processing of messages in the queue still possible.
 MyPort.receive (MyTemplate1); // If a message was already in the queue before the halt
 // operation and it matches MyTemplate1, it is processed;
 // otherwise the receive operation blocks.

22.6 Use of any and all with ports
The keywords any and all may be used with configuration and communication operations as indicated in table 26.

Table 26: Any and All with ports

Operation Allowed Example
 any all
receive, trigger, getcall, getreply, catch, check) yes any port.receive
connect / map
disconnect / unmap yes unmap(self : all port)
start, stop, clear, halt yes all port.start

NOTE: Ports are owned by test components and instantiated when a component is created. The keywords any
port and all port address all ports owned by a test component and not only the ports known in the
scope of the function or altstep that is executed on the component.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 189

23 Timer operations
TTCN-3 supports a number of timer operations as given in table 27. These operations may be used in test cases,
functions, altsteps and module control.

Table 27: Overview of TTCN-3 timer operations

Timer operations
Statement Associated keyword or symbol

Start timer start
Stop timer stop
Read elapsed time read
Check if timer running running
Timeout event timeout

23.1 The timer mechanism
It is assumed that each test component and the module control maintain their own running-timers list and timeout-list,
i.e. a list of all timers that are actually running and a list of all timers that have timed out. The timeout-lists are part of
the snapshots that are taken when a test case is executed. The running-timers list and timeout-list of a component or
module control are updated if a timer of the component or module control is started, is stopped, times out or the
component or module control executes a timeout operation.

NOTE 1: The running-timers list and the timeout-list are only a conceptual lists and do not restrict the
implementation of timers. Other data structures like a set, where the access to timeout events is not
restricted by, e.g. the order in which the timeout events have happened, may also be used.

NOTE 2: Conceptually, each test component and module control maintain one running-timers list and one timeout-
list only. However, within a given scope unit only timers known in the scope unit can be accessed
individually, i.e. timers that are declared in the scope unit, passed in as parameters to the scope unit or
known via a runs-on clause. In some special cases (e.g. for re-establishing a test component during a test
run), it can be necessary to stop timers local to other scope units or to check if timers local to other scope
units are running or have already timed out. This can be done by using the keywords all and any in
combination with the timer operations stop, timeout and running. Allowed combinations are
defined in clause 23.7.

When a timer expires, the timer becomes immediately inactive. A timeout event is placed in the timeout-list and the
timer is removed from the running-timer list of the test component or module control for which the timer has been
declared. Only one entry for any particular timer may appear in the timeout-list and running-timer list of the test
component or module control for which the timer has been declared.

All running timers shall automatically be cancelled when a test component is explicitly or implicitly stopped.

23.2 The Start timer operation
The start timer operation is used to indicate that a timer shall start running.

Syntactical Structure

((TimerIdentifier | TimerParIdentifier) { "[" SingleExpression "]" })
"." start ["(" TimerValue ")"]

Semantic Description

When a timer is started, its name is added to the list of running timers (for the given scope unit).

The optional timer value parameter shall be used if no default duration is given, or if it is desired to override the default
value specified in the timer declaration. When a timer duration is overridden, the new value applies only to the current
instance of the timer, any later start operations for this timer, which do not specify a duration, shall use the default
duration.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 190

Starting a timer with the timer value 0.0 means that the timer times out immediately. Starting a timer with a negative
timer value, e.g. the timer value is the result of an expression, or without a specified timer value shall cause a runtime
error.

The timer clock runs from the float value zero (0.0) up to maximum stated by the duration parameter.

The start operation may be applied to a running timer, in which case the timer is stopped and re-started. Any entry in
a timeout-list for this timer shall be removed from the timeout-list.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Timer value shall be a non-negative numerical float number (i.e. the value shall be greater or equal 0.0,
infinity and not_a_number are disallowed).

Examples

 MyTimer1.start; // MyTimer1 is started with the default duration
 MyTimer2.start(20E-3); // MyTimer2 is started with a duration of 20 ms

 // Elements of timer arrays may also be started in a loop, for example
 timer t_Mytimer [5];
 var float v_timerValues [5];

 for (var integer i := 0; i<=4; i:=i+1)
 { v_timerValues [i] := 1.0 }

 for (var integer i := 0; i<=4; i:=i+1)
 {t_Mytimer [i].start (v_timerValues [i])}

23.3 The Stop timer operation
The stop operation is used to stop a running timer.

Syntactical Structure

(((TimerIdentifier | TimerParIdentifier) { "[" SingleExpression "]" }) |
 all timer)
"." stop

Semantic Description

A stop operation removes a running timer from the list of running timers. A stopped timer becomes inactive and its
elapsed time is set to the float value zero (0.0).

Stopping an inactive timer is a valid operation, although it does not have any effect. Stopping an expired timer causes
the entry for this timer in the timeout-list to be removed.

The all keyword may be used to stop all timers that have been started on a component or module control.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

 MyTimer1.stop; // stops MyTimer1
 all timer.stop; // stops all running timers

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 191

23.4 The Read timer operation
The read operation is used to retrieve the time that has elapsed since the specified timer was started.

Syntactical Structure

((TimerIdentifier | TimerParIdentifier) { "[" SingleExpression "]" })
"." read

Semantic Description

The read operation returns the time that has elapsed since the specified timer was started. The returned value shall be
of type float.

Applying the read operation on an inactive timer, i.e. on a timer not listed on the running-timer list, will return the
float value zero (0.0).

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

 var float Myvar;
 MyVar := MyTimer1.read; // assign to MyVar the time that has elapsed since MyTimer1 was started

23.5 The Running timer operation
The running timer operation is used to check whether a timer is in the running-timer list.

Syntactical Structure

(((TimerIdentifier | TimerParIdentifier) { "[" SingleExpression "]" }) |
 any timer)
"." running

Semantic Description

The running timer operation is used to check whether a specific timer visible in the given scope unit is listed on the
running-timer list or not (i.e. that it has been started and has neither timed out nor been stopped). The operation returns
the value true if the timer is listed on the list, false otherwise.

The any keyword may be used to check if any timer started on a component or module control is running.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

EXAMPLE 1: Checking if a specific timer is running

 if (MyTimer1.running) { … }

EXAMPLE 2: Checking if an arbitrary timer is running

 if (any timer.running) { … }

23.6 The Timeout operation
The timeout operation allows to check the expiration of timers.

Syntactical Structure

(((TimerIdentifier | TimerParIdentifier) { "[" SingleExpression "]" }) |
 any timer)

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 192

"." timeout

Semantic Description

The timeout operation allows to check the expiration of a specific timer in the scope unit of a test component or
module control in which the timeout operation has been called or of any timer that has been started on a test component
or module control before entering the scope in which the timeout operation has been called.

When a timeout operation is processed, if a timer name is indicated, the timeout-list is searched according to the
TTCN-3 scope rules. If there is a timeout event matching the timer name, that event is removed from the timeout-list,
and the timeout operation succeeds.

The timeout can be used to determine an alternative in an alt statement or as stand-alone statement in a behaviour
description. In the latter case a timeout operation is considered to be shorthand for an alt statement with the
timeout operation as the only alternative.

The any keyword used with the timeout operation succeeds if the timeout-list is not empty.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The timeout shall not be used in a boolean expression.

Examples

EXAMPLE 1: Timeout of a specific timer

 MyTimer1.timeout; // checks for the timeout of the previously started timer MyTimer1

EXAMPLE 2: Timeout of an arbitrary timer

 any timer.timeout; // checks for the timeout of any previously started timer

23.7 Summary of use of any and all with timers
The keywords any and all may be used with timer operations as indicated in table 28.

Table 28: Any and All with Timers

Operation Allowed Example
 any all

start

stop yes all timer.stop
read
running yes if (any timer.running) {…}
timeout yes any timer.timeout

24 Test verdict operations
Verdict operations given in table 29 allow to set and retrieve verdicts. These operations shall only be used in test cases,
altsteps and functions.

Table 29: Overview of TTCN-3 test verdict operations

Test verdict operations
Statement Associated keyword or symbol

Set local verdict setverdict
Get local verdict getverdict

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 193

24.1 The Verdict mechanism
Each test component of the active configuration shall maintain it's own local verdict. The local verdict is an object
which is created for each test component at the time of its creation. It is used to track the individual verdict in each test
component (i.e. in the MTC and in each and every PTC).

Additionally, there is a global test case verdict instantiated and handled by the test system that is updated when each test
component (i.e. the MTC and each and every PTC) terminates execution (see figure 14). This verdict is not accessible
to the getverdict and setverdict operations. The value of this verdict shall be returned by the test case when it
terminates execution. If the returned verdict is not explicitly saved in the control part (e.g. assigned to a variable) then it
is lost.

Verdict returned
by the test case

when it terminates

MTC
V PTC1 V PTCn V

V

Figure 14: Illustration of the relationship between verdicts

NOTE 1: TTCN-3 does not specify the actual mechanisms that perform the updating of the local and test case
verdicts. These mechanisms are implementation dependent.

The verdict can have five different values: pass, fail, inconc, none and error, i.e. the distinguished values of
the verdicttype (see clause 6.1).

NOTE 2: inconc means an inconclusive verdict.

When a test component is instantiated, its local verdict object is created and set to the value none.

When changing the value of the local verdict (i.e. using the setverdict operation) the effect of this change shall
follow the overwriting rules listed in table 30. The test case verdict is implicitly updated on the termination of a test
component. The effect of this implicit operation shall also follow the overwriting rules listed in table 30.

Table 30: Overwriting rules for the verdict

Current value of New verdict assignment value
Verdict pass inconc fail none

None pass inconc fail none
Pass pass inconc fail pass
Inconc inconc inconc fail inconc
Fail fail fail fail fail

The error verdict is special in that it is set by the test system to indicate that a test case (i.e. run-time) error has
occurred. It shall not be set by the setverdict operation and will not be returned by the getverdict operation. No
other verdict value can override an error verdict. This means that an error verdict can only be a result of an
execute test case operation.

Together with the local test verdict, each test component shall also maintain an implicit charstring variable to store
information about the reasons for assigning the verdict. The implicit charstring variable shall have no effect on the
overwriting rules and on the calculation of the final test case verdict. On the termination of the test component, the local
verdict of the test component shall be logged together with the implicit charstring variable. The implicit
charstring variable cannot be retrieved and read by any TTCN-3 function, it only provides additional information
for logging.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 194

24.2 The Setverdict operation
The local verdict is set with the setverdict operation.

Syntactical Structure

setverdict "(" SingleExpression { "," (FreeText | TemplateInstance) } ")"

Semantic Description

The value of the local verdict is changed with the setverdict operation. The effect of this change shall follow the
overwriting rules listed in table 30.

The optional parameters allow to provide information that explain the reasons for assigning the verdict. This
information is composed to a string and stored in an implicit charstring variable. On termination of the test
component, the actual local verdict is logged together with the implicit charstring variable. Since the optional
parameters can be seen as log information, the same rules and restrictions as for the parameters of the log statement
(clause 19.11) apply.

As the result of the setverdict operation, the implicit charstring variable is overwritten whenever the local verdict
of a test component is overwritten. A setverdict operation with a verdict only that overwrites the current local
verdict, will also clear the implicit charstring variable. This means previously stored information gets lost.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The setverdict operation shall only be used with the values pass, fail, inconc and none. It shall not
be used to assign the value error, this is set by the test system only to indicate run-time errors.

b) SingleExpression shall resolve to a value of type verdict.

c) For FreeText and TemplateInstance, the same rules and restrictions apply as for the parameters of the log
statement. Table 18 lists all language elements that can be used in a setverdict operation.

Examples

EXAMPLE 1:

 setverdict(pass); // the local verdict is set to pass
 :
 setverdict(fail); // until this line is executed, which will result in the value
 // of the local verdict being overwritten to fail
 // When the ptc terminates the test case verdict is set to fail

EXAMPLE 2:

 var integer myVar:= 1;
 :
 MyPort.receive(integer:MyVar); // Matches an integer value with the value of MyVar
 // at port MyPort
 setverdict(pass, "Value received: ", myVar); // Provided the actual test component verdict is
 // none: local verdict is set to pass, the implicit
 // charstring variable is set to "Value received: 5"
 stop; // The test component terminates. The local test verdict and
 // implicit charstring variable are logged

24.3 The Getverdict operation
The value of the local verdict may be retrieved using the getverdict operation.

Syntactical Structure

getverdict

Semantic Description

The getverdict operation returns the actual value of the local verdict.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 195

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

 MyResult := getverdict; // Where MyResult is a variable of type verdicttype

25 External actions
In some testing situations some interface(s) to the SUT may be missing or unknown a priori (e.g. management
interface) but it may be necessary that the SUT is stimulated to carry out certain actions (e.g. send a message to the test
system). Also certain actions may be required from the test executing personnel (e.g. to change the environmental
conditions of testing like the temperature, voltage of the power feeding, etc.).

The required action may be described as a string expression, i.e. the use of literal strings, string typed variables and
parameters, etc. and any concatenation thereof are allowed.

Syntactical Structure

action "(" { (FreeText | Expression) ["&"] } ")"

Semantic Description

External actions can be used in test cases, functions, altsteps and module control.

There is no specification of what is done to or by the SUT to trigger this action, only an informal description of the
required action itself.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Expression shall have the base type charstring or universal charstring.

Examples

 var charstring myString:= " now."
 action("Send MyTemplate on lower PCO" & myString); // Informal description of the
 // external action

26 Module control
Test cases are defined in the module definitions part while the module control part manages their execution. The
statements and operations that can be used in the module control are summarized in table 31.

Table 31: Overview of TTCN-3 statements and operations in module control

Statement Associated keyword or symbol
Assignments :=
If-else if (…) {…} else {…}
Select case select case (…) { case (…) {…}

case else {…}}
For loop for (…) {…}
While loop while (…) {…}
Do while loop do {…} while (…)
Label and Goto label / goto
Stop execution stop
Leaving a loop, alt or interleave break
Next iteration of a loop continue
Logging log

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 196

Statement Associated keyword or symbol
Alternative behaviour (see note) alt {…}
Re-evaluation of alternative behaviour
(see note)

repeat

Interleaved behaviour (see note) interleave {…}
Activate a default (see note) activate
Deactivate a default (see note) deactivate
Start timer start
Stop timer stop
Read elapsed time read
Check if timer running running
Timeout event timeout
Stimulate an (SUT) action externally action
Execute test case execute
NOTE: Can be used to control timer operations only.

26.1 The Execute statement
Test cases are executed with an execute statement in the module control.

Syntactical Structure

execute "(" TestcaseRef "(" [{ ActualPar [","] }] ")" ["," TimerValue] ")"

Semantic Description

In the module control part the execute statement is used to start test cases (see clause 27.1). The result of an executed
test case is always a value of type verdicttype. Every test case shall contain one and only one MTC the type of
which is referenced in the header of the test case definition. The behaviour defined in the test case body is the behaviour
of the MTC.

When a test case is invoked the MTC is created, the ports of the MTC and the test system interface are instantiated and
the behaviour specified in the test case definition is started on the MTC. All these actions shall be performed implicitly
i.e. without explicit create and start operations.

Test case start

A test case is called using an execute statement. As the result of the execution of a test case, a test case verdict of
either none, pass, inconc, fail or error shall be returned and may be assigned to a variable for further
processing.

Optionally, the execute statement allows supervision of a test case by means of a timer duration.

Test case parameterization and configuration

All variables (if any) defined in the control part of a module shall be passed into the test case by parameterization if
they are to be used in the behaviour definition of that test case, i.e. TTCN-3 does not support global variables of any
kind.

At the start of each test case, the test configuration shall be reset. This means that all components and ports conducted
by create, connect, etc. operations in a previous test case were destroyed when that test case was stopped (hence
are not "visible" to the new test case).

Test case termination

A test case terminates with the termination of the MTC. On termination of the MTC (explicitly or implicitly), all
running parallel test components shall be removed by the test system.

NOTE 1: The concrete mechanism for stopping all PTCs is tool specific and therefore outside the scope of the
present document.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 197

The final verdict of a test case is calculated based on the final local verdicts of the different test components according
to the rules defined in clause 24.1. The actual local verdict of a test component becomes its final local verdict when the
test component terminates itself or is stopped by itself, another test component or by the test system.

NOTE 2: To avoid race conditions for the calculation of test verdicts due to the delayed stopping of PTCs, the MTC
should ensure that all PTCs have stopped (by means of the done or killed statement) before it stops
itself.

Test case timer

Timer may be used to supervise the execution of a test case. This may be done using an explicit timeout in the
execute statement. If the test case does not end within this duration, the result of the test case execution shall be an
error verdict and the test system shall terminate the test case. The timer used for test case supervision is a system timer
and need not be declared or started.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) TimerValue shall be of base type float.

b) When the corresponding formal parameter is not of template type TemplateInstance shall resolve to an
Expression.

c) The execute statement shall not be called from within an existing executing testcase or function chain called
from a test case, i.e. test cases can only be executed from the control part or from functions directly called
from the control part.

Examples

EXAMPLE 1: Test case execution without keeping the test case verdict

 execute(MyTestCase1()); // executes MyTestCase1, without storing the
 // returned test verdict and without time
 // supervision

EXAMPLE 2: Test case execution with keeping the test case verdict

 MyVerdict := execute(MyTestCase2()); // executes MyTestCase2 and stores the resulting
 // verdict in variable MyVerdict

EXAMPLE 3: Test case timer

 MyVerdict := execute(MyTestCase3(),5E-3); // executes MyTestCase3 and stores the resulting
 // verdict in variable MyVerdict. If the test case
 // does not terminate within 5ms, MyVerdict will
 // get the value 'error'

 MyReturnVal := execute (MyTestCase(), 7E-3);
 // Where the return verdict will be error if MyTestCase does not complete execution
 // within 7ms

26.2 The Control part
The control part defines, in which order, sequence, loop, under which preconditions, and with which parameters test
cases are to be executed.

Syntactical Structure

control "{"
 { (ConstDef |
 TemplateDef |
 VarInstance |
 TimerInstance |
 TimerStatements |
 BasicStatements |
 BehaviourStatements |
 SUTStatements |
 stop) [";"] }

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 198

"}"
[WithStatement] [";"]

Semantic Description

Sequence of test cases

Program statements specify such things like the order in which test cases are to be executed or the number of times a
test case should run.

If no programming statements are used then, by default, the test cases are executed in the sequential order in which they
appear in the module control.

NOTE: This does not preclude the possibility that certain tools may wish to override this default ordering to allow
a user or tool to select a different execution order.

Timer operations may also be used explicitly to control test case execution.

Selection/deselection of test cases

The selection and deselection of test cases can also be used to control the execution of test cases.

There are different ways in TTCN-3 to select and deselect test cases. For example, boolean expressions may be used to
select and deselect which test cases are to be executed. This includes, of course, the use of functions that return a
boolean value.

Another way to execute test cases as a group is to collect them in a function and execute that function from the module
control.

As a test case returns a single value of type verdicttype, it is also possible to control the order of test case
execution depending on the outcome of a test case. The use of the TTCN-3 verdicttype is another way to select test
cases.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Configuration statements such as connect and map (with the exception of stop execution, which is allowed),
communication statements such as send and receive and verdict statements such as setverdict shall not be used
in the control part.

b) Statements for alternative behaviours shall only be used to control timer behaviours.

c) The restrictions on the use of statements in the control part are given in table 16.

Examples

EXAMPLE 1: Test case execution in a loop

 module MyTestSuite () {
 :
 control {
 :
 // Do this test 10 times
 count:=0;
 while (count < 10)
 { execute (MySimpleTestCase1());
 count := count+1;
 }
 }
 }

EXAMPLE 2: Test case execution controlled by a timer and a counter

 // Example of the use of the running timer operation
 while (T1.running or x<10) // Where T1 is a previously started timer
 { execute(MyTestCase());
 x := x+1;
 }

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 199

 // Example of the use of the start and timeout operations

 timer T1 := 1.0;
 :
 execute(MyTestCase1());
 T1.start;
 T1.timeout; // Pause before executing the next test case
 execute(MyTestCase2());

EXAMPLE 3: Selection/deselection of test cases with Boolean expressions

 module MyTestSuite () {
 :
 control {
 :
 if (MySelectionExpression1()) {
 execute(MySimpleTestCase1());
 execute(MySimpleTestCase2());
 execute(MySimpleTestCase3());
 }
 if (MySelectionExpression2()) {
 execute(MySimpleTestCase4());
 execute(MySimpleTestCase5());
 execute(MySimpleTestCase6());
 }
 :
 }
 }

EXAMPLE 4: Selection/deselection of test cases with functions

 function MyTestCaseGroup1()
 { execute(MySimpleTestCase1());
 execute(MySimpleTestCase2());
 execute(MySimpleTestCase3());
 }
 function MyTestCaseGroup2()
 { execute(MySimpleTestCase4());
 execute(MySimpleTestCase5());
 execute(MySimpleTestCase6());
 }
 :
 control
 { if (MySelectionExpression1()) { MyTestCaseGroup1(); }
 if (MySelectionExpression2()) { MyTestCaseGroup2(); }
 :
 }

EXAMPLE 5: Selection/deselection of test cases based on test case verdicts

 if (execute (MySimpleTestCase()) == pass)
 { execute (MyGoOnTestCase()) }
 else
 { execute (MyErrorRecoveryTestCase()) };

27 Specifying attributes
TTCN-3 uses attributes to give special characterization/meaning to language elements such as specific presentation
format, specific encoding and encoding variants, and user-defined properties.

27.1 The Attribute mechanism
Attributes can be associated with TTCN-3 language elements by means of the with statement.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 200

27.1.1 Scope of attributes

A with statement may associate attributes to a single language element or to elements or fields of structured types (in a
recursive way), the same way as specified in clauses 6.2.1.1 and 6.2.3.2. It is also possible to associate attributes to a
number of language elements by, e.g. listing fields of a structured type in an attribute statement associated with a single
type definition or associating a with statement to the surrounding scope unit or group of language elements.

EXAMPLE 1: // attributes for single language elements and groups

 // MyPDU1 will be displayed as PDU
 type record MyPDU1 { … } with { display "PDU"}

 // MyPDU2 will be displayed as PDU with the application specific extension attribute MyRule
 type record MyPDU2 { … }
 with
 {
 display "PDU";
 extension "MyRule"
 }

 // The following group definition …
 group MyPDUs {
 type record MyPDU3 { … }
 type record MyPDU4 { … }
 }
 with {display "PDU"} // All types of group MyPDUs will be displayed as PDU

 // is identical to
 group MyPDUs {
 type record MyPDU3 { … } with { display "PDU"}
 type record MyPDU4 { … } with { display "PDU"}
 }

EXAMPLE 2: // attributes for fields and elements

 type record MyRec {
 integer field1,
 record {
 integer eField1,
 boolean eField2
 } field2
 }
 with { display (field2.eField1) "colour blue" }
 // the embedded field eField1 is displayed blue

 type record of integer MyRecOfInteger
 with { display ([-]) "colour green"
 // all integer elements are displayed green

 type record of integer MyRecOfInteger2
 with { display ([-]) "colour red" }
 // integer elements are displayed red

 const MyRecOfInteger c_MyRecordOfInt := {0, 1, 2, 3}
 with { display ([0]) "colour blue" }
 // the first element is displayed blue, the other elements are displayed red

27.1.2 Overwriting rules for attributes

An attribute definition in a lower scope unit will override a general attribute definition in a higher scope. Additional
overwriting rules for variant attributes are defined in the present clause.

EXAMPLE 1:

 type record MyRecordA
 {
 :
 } with { encode "RuleA" }

 // In the following, MyRecordA is encoded according to RuleA and not according to RuleB
 type record MyRecordB
 {
 :
 field MyRecordA

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 201

 } with { encode "RuleB" }

A with statement that is placed inside the scope of another with statement shall override the outermost with. This
shall also apply to the use of the with statement with groups. Care should be taken when the overwriting scheme is
used in combination with references to single definitions. The general rule is that attributes shall be assigned and
overwritten according to the order of their occurrence.

 // Example of the use of the overwriting scheme of the with statement
 group MyPDUs
 {
 type record MyPDU1 { … }
 type record MyPDU2 { … }

 group MySpecialPDUs
 {
 type record MyPDU3 { … }
 type record MyPDU4 { … }
 }
 with {extension "MySpecialRule"} // MyPDU3 and MyPDU4 will have the application
 // specific extension attribute MySpecialRule
 }
 with
 {
 display "PDU"; // All types of group MyPDUs will be displayed as PDU and
 extension "MyRule"; // (if not overwritten) have the extension attribute MyRule
 }

 // is identical to …
 group MyPDUs
 {
 type record MyPDU1 { … } with {display "PDU"; extension "MyRule" }
 type record MyPDU2 { … } with {display "PDU"; extension "MyRule" }
 group MySpecialPDUs {
 type record MyPDU3 { … } with {display "PDU"; extension "MySpecialRule" }
 type record MyPDU4 { … } with {display "PDU"; extension "MySpecialRule" }
 }
 }

An attribute definition in a lower scope can be overwritten in a higher scope by using the override directive.

EXAMPLE 2:

 type record MyRecordA
 {
 :
 } with { encode "RuleA" }

 // In the following, MyRecordA is encoded according to RuleB
 type record MyRecordB
 {
 :
 fieldA MyRecordA
 } with { encode override "RuleB" }

The override directive forces all contained types at all lower scopes to be forced to the specified attribute.

An attribute definition for a field or element of a structured type overrides the corresponding attribute of the structured
type, as regards the identified field or element. The attribute definition for a field or element of a structured type can
however be overridden with the override directive in the attribute definition of the structured type.

27.1.2.1 Additional overwriting rules for variant attributes

A variant attribute is always related to an encode attribute. Whereas a variant of an encoding may change, an
encoding shall not change without overwriting all current variant attributes. Therefore, for variant attributes the
following overwriting rules apply:

• a variant attribute overwrites an current variant attribute according to the rules defined in clause 27.1.2;

• an encoding attribute, which overwrites a current encoding attribute according to the rules defined in
clause 27.1.2, also overwrites a corresponding current variant attribute, i.e. no new variant attribute is
provided, but the current variant attribute becomes inactive;

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 202

• an encoding attribute, which changes a current encoding attribute of an imported language element
according to the rules defined in clause 27.1.3, also changes a corresponding current variant attribute,
i.e. no new variant attribute is provided, but the current variant attribute becomes inactive.

EXAMPLE:

 module MyVariantEncodingModule {
 :
 type charstring MyCharString; // Normally encoded according to "Encoding 1"
 :
 group MyVariantsOne {
 :
 type record MyPDUone
 {
 integer field1, // field1 will be encoded according to "Encoding 2" only.
 // "Encoding 2" overwrites "Encoding 1" and variant "Variant 1"
 Mytype field3 // field3 will be encoded according to "Encoding 1" with
 // variant "Variant 1".
 }
 with { encoding (field1) "Encoding 2" }
 :
 }
 with { variant "Variant 1" }

 group MyVariantsTwo
 { :
 type record MyPDUtwo
 {
 integer field1, // field1 will be encoded according to "Encoding 3"
 // using encoding variant "Variant 3"
 Mytype field3 // field3 will be encoded according to "Encoding 3"
 // using encoding variant "Variant 2"
 }
 with { variant (field1) "Variant 3" }
 :
 }
 with { encode "Encoding 3"; variant "Variant 2"}

 }
 with { encode "Encoding 1" }

27.1.3 Changing attributes of imported language elements

In general, a language element is imported together with its attributes. In some cases these attributes may have to be
changed when importing the language element, e.g. a type may be displayed in one module as ASP, then it is imported
by another module where it should be displayed as PDU. For such cases it is allowed to change attributes on the
import statement.

EXAMPLE:

 import from MyModule {
 type MyType
 }
 with { display "ASP" } // MyType will be displayed as ASP

 import from MyModule {
 group MyGroup
 }
 with {
 display "PDU"; // By default all types will be displayed as PDU
 extension "MyRule"
 }

27.2 The With statement
The with statement is used to associate attributes to TTCN-3 language elements (and sets thereof).

Syntactical Structure

with "{"
 { (encode | variant | display | extension | optional)
 [override]

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 203

 ["(" DefinitionRef | FieldReference | AllRef ")"]
 FreeText [";"] }
"}"

Semantic Description

There are five kinds of attributes that can be associated to language elements:

a) display: allows the specification of display attributes related to specific presentation formats;

b) encode: allows references to specific encoding rules;

c) variant: allows references to specific encoding variants;

d) extension: allows the specification of user-defined attributes;

e) optional: allows the implicit setting of optional fields in records and sets to omit.

The syntax for the argument of the with statement (i.e. the actual attributes) is defined as a free text string.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) DefinitionRef and FieldReference must refer to a definition or field respectively which is within the module,
group or definition to which the with statement is associated.

Examples

 type record MyService {
 integer i,
 float f
 }
 with { display "ServiceCall" } // MyRecord will be displayed as a ServiceCall

27.3 Display attributes
Display attributes allow the specification of display attributes related to specific presentation formats.

Syntactical Structure

display

Semantic Description

All TTCN-3 language elements can have display attributes to specify how particular language elements shall be
displayed in, for example, a tabular format.

Special attribute strings related to the display attributes for the tabular (conformance) presentation format can be found
in ES 201 873-2 [i.1].

Special attribute strings related to the display attributes for the graphical presentation format can be found in
ES 201 873-3 [i.2].

Other display attributes may be defined by the user.

NOTE: Because user-defined attributes are not standardized, the interpretation of these attributes may differ
between tools or even may not be supported.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 204

Examples

 type record MyService {
 integer i,
 float f
 }
 with { display "ServiceCall" } // MyRecord will be displayed as a ServiceCall

27.4 Encoding attributes
In TTCN-3, general or particular encoding rules can be specified by using encode and variant attributes. Encoding
attributes allow references to specific encoding rules.

Syntactical Structure

encode

Semantic Description

Encoding rules define how a particular value, template, etc. shall be encoded and transmitted over a communication
port and how received signals shall be decoded. TTCN-3 does not have a default encoding mechanism. This means
that encoding rules or encoding directives are defined in some external manner to TTCN-3.

The encode attribute allows the association of some referenced encoding rule or encoding directive to be made to a
TTCN-3 definition.

The manner in which the actual encoding rules are defined (e.g. prose, functions, etc.) is outside the scope of the present
document. If no specific rules are referenced then encoding shall be a matter for individual implementation.

In most cases encoding attributes will be used in a hierarchical manner. The top-level is the entire module, the next
level is a group and the lowest is an individual type or definition:

a) module: encoding applies to all types defined in the module, including TTCN-3 types (built-in types);

b) group: encoding applies to a group of user-defined type definitions;

c) type or definition: encoding applies to a single user-defined type or definition;

d) field:encoding applies to a field in a record or set type or template.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

 module MyFirstmodule
 { :
 import from MySecondModule {
 type MyRecord
 }
 with { encode "MyRule 1" } // Instances of MyRecord will be encoded according to MyRule 1

 :
 type charstring MyType; // Normally encoded according to the 'Global encoding rule
 :
 group MyRecords
 { :
 type record MyPDU1
 {
 integer field1, // field1 will be encoded according to "Rule 3"
 boolean field2, // field2 will be encoded according to "Rule 3"
 Mytype field3 // field3 will be encoded according to "Rule 2"
 }
 with { encode (field1, field2) "Rule 3" }
 :
 }
 with { encode "Rule 2" }

 }

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 205

 with { encode "Global encoding rule" }

27.5 Variant attributes
In TTCN-3, general or particular encoding rules can be specified by using encode and variant attributes. Variant
attributes allow references to specific encoding variants.

Syntactical Structure

variant

Semantic Description

To specify a refinement of the currently specified encoding scheme instead of its replacement, the variant attribute
shall be used. The variant attributes are different from other attributes, because they are closely related to encode
attributes. Therefore, for variant attributes, additional overwriting rules apply (see clause 27.1.2.1).

Special variant strings:

The following strings are the predefined (standardized) variant attributes for simple basic types (see clause D.2.1):

a) "8 bit" and "unsigned 8 bit" mean, when applied to integer and enumerated types, that the integer
value or the integer numbers associated with enumerations shall be handled as it was represented on 8-bits
(single byte) within the system.

b) "16 bit" and "unsigned 16 bit" mean, when applied to integer and enumerated types, that the integer
value or the integer numbers associated with enumerations shall be handled as it was represented on 16-bits
(two bytes) within the system.

c) "32 bit" and "unsigned 32 bit" mean, when applied to integer and enumerated types, that the integer
value or the integer numbers associated with enumerations shall be handled as it was represented on 32-bits
(four bytes) within the system.

d) "64 bit" and "unsigned 64 bit" mean, when applied to integer and enumerated types, that the integer
value or the integer numbers associated with enumerations shall be handled as it was represented on 64-bits
(eight bytes) within the system.

e) "IEEE754 float","IEEE754 double", "IEEE754 extended float" and
"IEEE754 extended double" mean, when applied to a float type, that the value shall be encoded and
decoded according to the standard IEEE 754 [7] (see annex E).

The following strings are the predefined (standardized) variant attributes for charstring and universal
charstring (see clause D.2.2):

a) "UTF-8" means, when applied to the universal charstring type, that each character of the value shall be
individually encoded and decoded according to the UCS Transformation Format 8 (UTF-8) as defined in
annex R of ISO/IEC 10646 [2].

b) "UCS-2" means, when applied to the universal charstring type, that each character of the value shall be
individually encoded and decoded according to the UCS-2 coded representation form (see clause 14.1 of
ISO/IEC 10646 [2]).

c) "UTF-16" means, when applied to the universal charstring type, that each character of the value shall be
individually encoded and decoded according to the UCS Transformation Format 16 (UTF-16) as defined in
annex Q of ISO/IEC 10646 [2].

d) "8 bit" means, when applied to charstring and universal charstring types, that each character of the value
shall be individually encoded and decoded according to the coded representation as specified in
ISO/IEC 8859-1 [i.10] (an 8-bit coding).

The following strings are the predefined (standardized) variant attributes for structured types (see clause D.2.3):

a) "IDL:fixed FORMAL/01-12-01 v.2.6" means, when applied to a record type, that the value shall be
handled as an IDL fixed point decimal value (see annex E).

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 206

These variant attributes can be used in combination with the more general encode attributes specified at a higher level.
For example a universal charstring specified with the variant attribute "UTF-8" within a module which
itself has a global encoding attribute "BER:1997" (see clause 12.2 of ES 201 873-7 [i.5]) will cause each character of
the values within the string to first be encoded following the UTF-8 rules and then this UTF-8 value will be encoded
following the more global BER rules.

Invalid encodings

If it is desired to specify invalid encoding rules then these shall be specified in a referenceable source external to the
module in the same way that valid encoding rules are referenced.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

EXAMPLE:

 module MyTTCNmodule1
 { :
 type charstring MyType; // Normally encoded according to the "Global encoding rule"
 :
 group MyRecords
 { :
 type record MyPDU1
 {
 integer field1, // field1 will be encoded according to "Rule 2"
 // using encoding variant "length form 3"
 Mytype field3 // field3 will be encoded according to "Rule 2"
 // using any possible length encoding format
 }
 with { variant (field1) "length form 3" }
 :
 }
 with { encode "Rule 2" }

 }
 with { encode "Global encoding rule" }

27.6 Extension attributes
Extension attributes can be used for proprietary extensions to TTCN-3.

Syntactical Structure

extension

Semantic Description

All TTCN-3 language elements can have extension attributes specified by the user.

NOTE: Because user-defined attributes are not standardized the interpretation of these attributes between tools
supplied by different vendors may differ or even not be supported.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

 testcase MyTestcase() runs on MTCType {
 :
 }
 with { extension "Test Purpose: This test case is used to check …" }

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 207

27.7 Optional attributes
The optional attribute can be used to indicate that optional fields of constants, module parameters or templates of
record and set types are implicitly set to omit.

Syntactical Structure

optional

Semantic Description

TTCN-3 constants, module parameters, and templates can have an optional attribute. Also, TTCN-3 language
elements that contain such definitions, i.e. module, group, function, altstep, test case, control, and component type
definitions can have an optional attribute. When an optional attribute is associated to a function, altstep, test
case, control or component type definitions, it shall have effect on all the constants, module parameters, and templates
declared within these definitions and not on the enframing definition itself.

Special optional strings:

The following strings are the predefined (standardized) optional attributes.

a) "implicit omit" means that all optional fields, which have not been defined in the definition the attribute
is associated with, are set to omit. This applies recursively to the optional fields of the entity and to subfields
of the mandatory fields.

b) "explicit omit" means that all optional fields, which have not been defined in the definition the attribute
is associated with, are left undefined. This applies recursively to the optional fields of the entity and to
subfields of the mandatory fields.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Data type, port type, procedure signature and variable definitions and import statements shall not have an
optional attribute associated to them directly. When an optional attribute is associated to module,
group, function, altstep, test case, control or component type containing such definitions, it shall not have any
effect on the included data type, port type, procedure signature, variable or import statement.

Examples

type record MyRecord1 {
 integer a,
 boolean b optional
}
type record MyRecord2 {
 MyRecord1 m
}

// reference templates with explicitly set fields
template MyRecord1 MyTemplate1 := { a := ?, b := omit }
template MyRecord2 MyTemplate2 := { m := { a := ?, b := omit }}

// reference templates
template MyRecord1 MyTemplate1a := { a := ? } // b is undefined
template MyRecord1 MyTemplate1b := { a := ? } with {optional "explicit omit"} // b is undefined

template MyRecord2 MyTemplate2a := {} // m and its subfields are undefined
template MyRecord2 MyTemplate2b := { m := { a := ?}}; // m.b is undefined

// templates with attribute

template MyRecord1 MyTemplate11 := { a := ? } with {optional "implicit omit"}
 // same as MyTemplate1, b is set to omit

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 208

template MyRecord2 MyTemplate21 := { m := { a := ?}} with {optional "implicit omit"}}
 // same as MyTemplate2, by recursive application of the attribute
template MyRecord2 MyTemplate22 := { m := MyTemplate1a}} with {optional "implicit omit"}}
 // same as MyTemplate2, by recursive application of the attribute

template MyRecord2 MyTemplate23 := {} with {optional "implicit omit"}
 // same as MyTemplate2a, m remains undefined

template MyRecord2 MyTemplate24 := { m := MyTemplate1b} with {optional "implicit omit"}
 // same as MyTemplate2b, the attribute on the lower scope is not overwritten
template MyRecord2 MyTemplate25 := { m := MyTemplate1b} with {optional override "implicit omit"}}
 // same as MyTemplate2, the attribute on the lower scope is overwritten

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 209

Annex A (normative):
BNF and static semantics

A.1 TTCN-3 BNF
This annex defines the syntax of TTCN-3 using extended BNF (henceforth just called BNF).

A.1.1 Conventions for the syntax description
Table A.1 defines the metanotation used to specify the extended BNF grammar for TTCN-3.

Table A.1: The syntactic metanotation

::= is defined to be definition of non-terminal
abc xyz abc followed by xyz concatenation
| alternative alternative
[abc] 0 or 1 instances of abc optional
{abc} 0 or more instances of abc repetition 1
{abc}+ 1 or more instances of abc repetition 2
(...) textual grouping grouping
Abc the non-terminal symbol abc non-terminal
"abc" a terminal symbol abc terminal

NOTE: The metanotation defined in table A.1 is parsed from left to right. The metanotation operators have the
following precedence, from highest (binding tightest) at the top, to lowest (loosest) at the bottom:
- Repetition, Optional
- Grouping
- Concatenation
- Alternative
- Definition

A.1.2 Statement terminator symbols
In general all TTCN-3 language constructs (i.e. definitions, declarations, statements and operations) are terminated with
a semi-colon (;). The semi-colon is optional if the language construct ends with a right-hand curly brace (}) or the
following symbol is a right-hand curly brace (}), i.e. the language construct is the last statement in a statement block.

A.1.3 Identifiers
TTCN-3 identifiers are case sensitive and may only contain lowercase letters (a-z) uppercase letters (A-Z) and numeric
digits (0-9). Use of the underscore (_) symbol is also allowed. An identifier shall begin with a letter (i.e. not with a
number and not an underscore).

A.1.4 Comments
Comments written in free text may appear anywhere in a TTCN-3 specification. Comments may contain any graphical
character defined in ISO/IEC 10646 [2]. Block comments shall be opened by the symbol pair /* and closed by the
symbol pair */.

EXAMPLE 1:

 /* This is a block comment
 spread over two lines */

Block comments shall not be nested.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 210

 /* This is not /* a legal */ comment */

Line comments shall be opened by the symbol pair // and closed by a <newline>.

EXAMPLE 2:

 // This is a line comment
 // spread over two lines

EXAMPLE 3:

 // The following is not legal
 const // This is MyConst integer MyConst := 1;
 // A block comment should have been used instead
 const /* This is MyConst */ integer MyConst := 1;
 // A line comment like this works as well
 const // This is MyConst
 integer MyConst := 1;

A.1.5 TTCN-3 terminals
TTCN-3 terminal symbols and reserved words are listed in tables A.2 and A.3.

Table A.2: List of TTCN-3 special terminal symbols

Begin/end block symbols { }
Begin/end list symbols ()
Alternative symbols []
To symbol (in a range) ..
Line comments and Block comments /* */ //
Line/statement terminator symbol ;
Arithmetic operator symbols + / -
Concatenation operator symbol &
Equivalence operator symbols != == >= <=
String enclosure symbols " '
Wildcard/matching symbols ? *
Assignment symbol :=
Communication operation assignment ->
Bitstring, hexstring and Octetstring values B H O
Float exponent E

The predefined function identifiers defined in table 15 and described in annex C shall also be treated as reserved words.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 211

Table A.3: List of TTCN-3 terminals which are reserved words

action
activate
address
alive
all
alt
altstep
and
and4b
any
anytype

bitstring
boolean
break

case
call
catch
char
charstring
check
clear
complement
component
connect
const
continue
control
create

deactivate
default
disconnect
display
do
done

else
encode
enumerated
error
except
exception
execute
extends
extension
external

fail
false
float
for
friend
from
function

getverdict
getcall
getreply
goto
group

halt
hexstring

if
ifpresent
import
in
inconc
infinity
inout
integer
interleave

kill
killed

label
language
length
log

map
match
message
mixed
mod
modifies
module
modulepar
mtc

noblock
none
not
not4b
nowait
null

octetstring
of
omit
on
optional
or
or4b
out
override

param
pass
pattern
permutation
port
present
private
procedure
public

raise
read
receive
record

recursive
rem
repeat
reply
return
running
runs

select
self
send
sender
set
setverdict
signature
start
stop
subset
superset
system

template
testcase
timeout
timer
to
trigger
true
type

union
universal
unmap

value
valueof
var
variant
verdicttype

while
with

xor
xor4b

The TTCN-3 terminals listed in table A.3 shall not be used as identifiers in a TTCN-3 module. These terminals shall be
written in all lowercase letters.

A.1.5.1 Use of whitespaces and newlines

The elements of the TTCN-3 syntax (reserved words, identifiers, terminal symbols and literal values) shall be separated
by whitespace or by special terminal symbols listed in table Table A.2 according to the TTCN-3 syntax.

In representing whitespace, any one or more of the following characters of the C0 set of ISO/IEC 6429 [5] and Annex A
of ISO/IEC 646 [4] may be used in any combination:

• HT - HORIZONTAL TABULATION (9)

• LF - LINE FEED (10)

• VT -VERTICAL TABULATION (11)

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 212

• FF - FORM FEED (12)

• CR - CARRIAGE RETURN (13)

• SP - SPACE (32)

The characters of the C0 set of ISO/IEC 6429 [5] and annex A of ISO/IEC 646 [4] below are denoting newline (end of
line). A single CR(13) character directly followed by an LF(10) character denote a single end of line (i.e. the sequence
CRLFCRLFVT denotes 3 lines):

• LF - LINE FEED (10)

• VT - VERTICAL TABULATION (11)

• FF - FORM FEED (12)

• CR - CARRIAGE RETURN (13)

Any character or character sequence that is a valid newline is also a valid whitespace.

NOTE: It is recommended that for newline only the CR and LF and for whitespace only the HT, LF, CR and SP
control characters are used as the VT and FF characters may cause problems with some conventional text
editors.

A.1.6 TTCN-3 syntax BNF productions

A.1.6.0 TTCN-3 module
1. TTCN3Module ::= TTCN3ModuleKeyword TTCN3ModuleId
 "{"
 [ModuleDefinitionsPart]
 [ModuleControlPart]
 "}"
 [WithStatement] [SemiColon]
2. TTCN3ModuleKeyword ::= "module"
3. TTCN3ModuleId ::= ModuleId
4. ModuleId ::= GlobalModuleId [LanguageSpec]
5. GlobalModuleId ::= ModuleIdentifier
6. ModuleIdentifier ::= Identifier
7. LanguageSpec ::= LanguageKeyword FreeText { "," FreeText }
8. LanguageKeyword ::= "language"

A.1.6.1 Module definitions part

A.1.6.1.0 General

9. ModuleDefinitionsPart ::= ModuleDefinitionsList
10. ModuleDefinitionsList ::= {ModuleDefinition [SemiColon]}+
11. ModuleDefinition ::= (([Visibility]
 (TypeDef |
 ConstDef |
 TemplateDef |
 ModuleParDef |
 FunctionDef |
 SignatureDef |
 TestcaseDef |
 AltstepDef |
 ImportDef |
 ExtFunctionDef |
 ExtConstDef)
) |
 (["public"] GroupDef) |
 (["private"] FriendModuleDef)
) [WithStatement]
12. Visibility ::= "public" | "friend" | "private"

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 213

A.1.6.1.1 Typedef definitions

13. TypeDef ::= TypeDefKeyword TypeDefBody
14. TypeDefBody ::= StructuredTypeDef | SubTypeDef
15. TypeDefKeyword ::= "type"
16. StructuredTypeDef ::= RecordDef |
 UnionDef |
 SetDef |
 RecordOfDef |
 SetOfDef |
 EnumDef |
 PortDef |
 ComponentDef
17. RecordDef ::= RecordKeyword StructDefBody
18. RecordKeyword ::= "record"
19. StructDefBody ::= (StructTypeIdentifier | AddressKeyword)
 "{" [StructFieldDef {"," StructFieldDef}] "}"
20. StructTypeIdentifier ::= Identifier
21. StructFieldDef ::= (Type | NestedTypeDef) StructFieldIdentifier [ArrayDef] [SubTypeSpec]
 [OptionalKeyword]
22. NestedTypeDef ::= NestedRecordDef |
 NestedUnionDef |
 NestedSetDef |
 NestedRecordOfDef |
 NestedSetOfDef |
 NestedEnumDef
23. NestedRecordDef ::= RecordKeyword "{" [StructFieldDef {"," StructFieldDef}] "}"
24. NestedUnionDef ::= UnionKeyword "{" UnionFieldDef {"," UnionFieldDef} "}"
25. NestedSetDef ::= SetKeyword "{" [StructFieldDef {"," StructFieldDef}] "}"
26. NestedRecordOfDef ::= RecordKeyword [StringLength] OfKeyword (Type | NestedTypeDef)
27. NestedSetOfDef ::= SetKeyword [StringLength] OfKeyword (Type | NestedTypeDef)
28. NestedEnumDef ::= EnumKeyword "{" EnumerationList "}"
29. StructFieldIdentifier ::= Identifier
30. OptionalKeyword ::= "optional"
31. UnionDef ::= UnionKeyword UnionDefBody
32. UnionKeyword ::= "union"
33. UnionDefBody ::= (StructTypeIdentifier | AddressKeyword)
 "{" UnionFieldDef {"," UnionFieldDef} "}"
34. UnionFieldDef ::= (Type | NestedTypeDef) StructFieldIdentifier [ArrayDef] [SubTypeSpec]
35. SetDef ::= SetKeyword StructDefBody
36. SetKeyword ::= "set"
37. RecordOfDef ::= RecordKeyword [StringLength] OfKeyword StructOfDefBody
38. OfKeyword ::= "of"
39. StructOfDefBody ::= (Type | NestedTypeDef) (StructTypeIdentifier | AddressKeyword) [SubTypeSpec]
40. SetOfDef ::= SetKeyword [StringLength] OfKeyword StructOfDefBody
41. EnumDef ::= EnumKeyword (EnumTypeIdentifier | AddressKeyword)
 "{" EnumerationList "}"
42. EnumKeyword ::= "enumerated"
43. EnumTypeIdentifier ::= Identifier
44. EnumerationList ::= Enumeration {"," Enumeration}
45. Enumeration ::= EnumerationIdentifier ["("[Minus] Number ")"]
46. EnumerationIdentifier ::= Identifier
47. SubTypeDef ::= Type (SubTypeIdentifier | AddressKeyword) [ArrayDef] [SubTypeSpec]
48. SubTypeIdentifier ::= Identifier
49. SubTypeSpec ::= AllowedValues [StringLength] | StringLength
/* STATIC SEMANTICS - AllowedValues shall be of the same type as the field being subtyped */
50. AllowedValues ::= "(" (ValueOrRange {"," ValueOrRange}) | CharStringMatch ")"
51. ValueOrRange ::= RangeDef | ConstantExpression | Type
/* STATIC SEMANTICS - RangeDef production shall only be used with integer, charstring, universal
charstring or float based types */
/* STATIC SEMANTICS - When subtyping charstring or universal charstring range and values shall not
be mixed in the same SubTypeSpec */
52. RangeDef ::= LowerBound ".." UpperBound
53. StringLength ::= LengthKeyword "(" SingleConstExpression [".." UpperBound] ")"
/* STATIC SEMANTICS - StringLength shall only be used with String types or to limit set of and
record of. SingleConstExpression and UpperBound shall evaluate to non-negative integer values (in
case of UpperBound including infinity) */
54. LengthKeyword ::= "length"
55. PortType ::= [GlobalModuleId Dot] PortTypeIdentifier
56. PortDef ::= PortKeyword PortDefBody
57. PortDefBody ::= PortTypeIdentifier PortDefAttribs
58. PortKeyword ::= "port"
59. PortTypeIdentifier ::= Identifier
60. PortDefAttribs ::= MessageAttribs | ProcedureAttribs | MixedAttribs
61. MessageAttribs ::= MessageKeyword
 "{" {MessageList [SemiColon]}+ "}"
62. MessageList ::= Direction AllOrTypeList
63. Direction ::= InParKeyword | OutParKeyword | InOutParKeyword

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 214

64. MessageKeyword ::= "message"
65. AllOrTypeList ::= AllKeyword | TypeList
/* NOTE: The use of AllKeyword in port definitions is deprecated */
66. AllKeyword ::= "all"
67. TypeList ::= Type {"," Type}
68. ProcedureAttribs ::= ProcedureKeyword
 "{" {ProcedureList [SemiColon]}+ "}"
69. ProcedureKeyword ::= "procedure"
70. ProcedureList ::= Direction AllOrSignatureList
71. AllOrSignatureList ::= AllKeyword | SignatureList
72. SignatureList ::= Signature {"," Signature}
73. MixedAttribs ::= MixedKeyword
 "{" {MixedList [SemiColon]}+ "}"
74. MixedKeyword ::= "mixed"
75. MixedList ::= Direction ProcOrTypeList
76. ProcOrTypeList ::= AllKeyword | (ProcOrType {"," ProcOrType})
77. ProcOrType ::= Signature | Type
78. ComponentDef ::= ComponentKeyword ComponentTypeIdentifier
 [ExtendsKeyword ComponentType {"," ComponentType}]
 "{" [ComponentDefList] "}"
79. ComponentKeyword ::= "component"
80. ExtendsKeyword ::= "extends"
81. ComponentType ::= [GlobalModuleId Dot] ComponentTypeIdentifier
82. ComponentTypeIdentifier ::= Identifier
83. ComponentDefList ::= {ComponentElementDef [SemiColon]}
84. ComponentElementDef ::= PortInstance | VarInstance | TimerInstance | ConstDef
85. PortInstance ::= PortKeyword PortType PortElement {"," PortElement}
86. PortElement ::= PortIdentifier [ArrayDef]
87. PortIdentifier ::= Identifier

A.1.6.1.2 Constant definitions

88. ConstDef ::= ConstKeyword Type ConstList
89. ConstList ::= SingleConstDef {"," SingleConstDef}
90. SingleConstDef ::= ConstIdentifier [ArrayDef] AssignmentChar ConstantExpression
91. ConstKeyword ::= "const"
92. ConstIdentifier ::= Identifier

A.1.6.1.3 Template definitions

93. TemplateDef ::= TemplateKeyword [TemplateRestriction] BaseTemplate [DerivedDef]
 AssignmentChar TemplateBody
94. BaseTemplate ::= (Type | Signature) TemplateIdentifier ["(" TemplateFormalParList ")"]
95. TemplateKeyword ::= "template"
96. TemplateIdentifier ::= Identifier
97. DerivedDef ::= ModifiesKeyword TemplateRef
98. ModifiesKeyword ::= "modifies"
99. TemplateFormalParList ::= TemplateFormalPar {"," TemplateFormalPar}
100. TemplateFormalPar ::= FormalValuePar | FormalTemplatePar
/* STATIC SEMANTICS - FormalValuePar shall resolve to an in parameter */
101. TemplateBody ::= (SimpleSpec | FieldSpecList | ArrayValueOrAttrib) [ExtraMatchingAttributes]
/* STATIC SEMANTICS - Within TeplateBody the ArrayValueOrAttrib can be used for array, record,
record of and set of types. */
102. SimpleSpec ::= SingleValueOrAttrib
103. FieldSpecList ::= "{"[FieldSpec {"," FieldSpec}] "}"
104. FieldSpec ::= FieldReference AssignmentChar TemplateBody
105. FieldReference ::= StructFieldRef | ArrayOrBitRef | ParRef
106. StructFieldRef ::= StructFieldIdentifier| PredefinedType | TypeReference
/* STATIC SEMANTICS - PredefinedType and TypeReference shall be used for anytype value notation
only. PredefinedType shall not be AnyTypeKeyword.*/
107. ParRef ::= SignatureParIdentifier
/* STATIC SEMANTICS - SignatureParIdentifier shall be a formal parameter identifier from the
associated signature definition */
108. SignatureParIdentifier ::= ValueParIdentifier
109. ArrayOrBitRef ::= "[" FieldOrBitNumber "]"
/* STATIC SEMANTICS - ArrayRef shall be optionally used for array types and TTCN-3 record of and set
of. The same notation can be used for a Bit reference inside an TTCN-3 charstring, universal
charstring, bitstring, octetstring and hexstring type */
110. FieldOrBitNumber ::= SingleExpression
/* STATIC SEMANTICS - SingleExpression will resolve to a value of integer type */
111. SingleValueOrAttrib ::= MatchingSymbol |
 SingleExpression |
 (TemplateRefWithParList [ExtendedFieldReference])
/* STATIC SEMANTIC - VariableIdentifier (accessed via singleExpression) may only be used in in-line
template definitions to reference variables in the current scope */
112. ArrayValueOrAttrib ::= "{" ArrayElementSpecList "}"

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 215

113. ArrayElementSpecList ::= ArrayElementSpec {"," ArrayElementSpec}
114. ArrayElementSpec ::= NotUsedSymbol | PermutationMatch | TemplateBody
115. NotUsedSymbol ::= Dash
116. MatchingSymbol ::= Complement |
 AnyValue |
 AnyOrOmit |
 ValueOrAttribList |
 Range |
 BitStringMatch |
 HexStringMatch |
 OctetStringMatch |
 CharStringMatch |
 SubsetMatch |
 SupersetMatch
117. ExtraMatchingAttributes ::= LengthMatch | IfPresentMatch | (LengthMatch IfPresentMatch)
118. BitStringMatch ::= "'" {BinOrMatch} "'" "B"
119. BinOrMatch ::= Bin | AnyValue | AnyOrOmit
120. HexStringMatch ::= "'" {HexOrMatch} "'" "H"
121. HexOrMatch ::= Hex | AnyValue | AnyOrOmit
122. OctetStringMatch ::= "'" {OctOrMatch} "'" "O"
123. OctOrMatch ::= Oct | AnyValue | AnyOrOmit
124. CharStringMatch ::= PatternKeyword Pattern {"&" (Pattern | ReferencedValue)}
125. PatternKeyword ::= "pattern"
126. Pattern ::= """ { PatternElement } """
127. PatternElement ::=
 ("\" ("?" | "*" | "\" | "[" | "]" | "{" | "}" | """ | "|" | "(" | ")" | "#" | "+" |
 "d" | "w" | "t" | "n" | "r" | "s" | "b")) |
 ("?" | "*" | "\" | "|" | "+") |
 ("[" ["^"] [{PatternChar ["-" PatternChar] }] "]") |
 ("{" ReferencedValue "}") |
 ("\" "N" "{" (ReferencedValue | Type) "}") |
 (""" """) |
 ("(" PatternElement ")") |
 ("#" (Num | ("(" Num "," [Num] ")") | ("(" "," Num ")"))) |
 PatternChar
128. PatternChar ::= Char | PatternQuadruple
129. PatternQuadruple ::= "\" "q" "(" Group "," Plane "," Row "," Cell ")"
130. Complement ::= ComplementKeyword "(" TemplateBody {"," TemplateBody} ")"
131. ComplementKeyword ::= "complement"
132. SubsetMatch ::= SubsetKeyword ValueOrAttribList
133. SubsetKeyword ::= "subset"
134. SupersetMatch ::= SupersetKeyword ValueOrAttribList
135. SupersetKeyword ::= "superset"
136. PermutationMatch ::= PermutationKeyword PermutationList
137. PermutationKeyword ::= "permutation"
138. PermutationList ::= "(" TemplateBody { "," TemplateBody } ")"
/* STATIC SEMANTICS: Restrictions on the content of TemplateBody are given in clause B.1.3.3 */
139. AnyValue ::= "?"
140. AnyOrOmit ::= "*"
141. ValueOrAttribList ::= "(" TemplateBody {"," TemplateBody}+ ")"
142. LengthMatch ::= StringLength
143. IfPresentMatch ::= IfPresentKeyword
144. IfPresentKeyword ::= "ifpresent"
145. PresentKeyword ::= "present"
146. Range ::= "(" LowerBound ".." UpperBound ")"
147. LowerBound ::= SingleConstExpression | (Minus InfinityKeyword)
148. UpperBound ::= SingleConstExpression | InfinityKeyword
/* STATIC SEMANTICS - LowerBound and UpperBound shall evaluate to types integer, charstring,
universal charstring or float. In case LowerBound or UpperBound evaluates to types charstring or
universal charstring, only SingleConstExpression may be present and the string length shall be 1*/
149. InfinityKeyword ::= "infinity"
150. TemplateInstance ::= InLineTemplate
151. TemplateInstanceAssignment ::= (TemplateParIdentifier | ValueParIdentifier)
 ":=" InLineTemplate
/* STATIC SEMANTICS – if a value parameter is used, the inline template shall evaluate to a value */
152. TemplateRefWithParList ::= [GlobalModuleId Dot] (TemplateIdentifier [TemplateActualParList] |
 TemplateParIdentifier)
153. TemplateRef ::= [GlobalModuleId Dot] TemplateIdentifier | TemplateParIdentifier
154. InLineTemplate ::= [(Type | Signature) Colon] [DerivedRefWithParList AssignmentChar]
 TemplateBody
155. DerivedRefWithParList ::= ModifiesKeyword TemplateRefWithParList
156. TemplateActualParList ::= "(" [(TemplateActualPar {"," TemplateActualPar}) |
 (TemplateActualParAssignment {"," TemplateActualParAssignment })]")"
157. TemplateActualPar ::= TemplateInstance | Dash
/* STATIC SEMANTICS - When the corresponding formal parameter is not of template type the
TemplateInstance production shall resolve to one or more SingleExpressions */
158. TemplateActualParAssignment ::= TemplateInstanceAssignment
159. TemplateOps ::= MatchOp | ValueofOp

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 216

160. MatchOp ::= MatchKeyword "(" Expression "," TemplateInstance")"
161. MatchKeyword ::= "match"
162. ValueofOp ::= ValueofKeyword "(" TemplateInstance ")"
163. ValueofKeyword ::= "valueof"

A.1.6.1.4 Function definitions

164. FunctionDef ::= FunctionKeyword FunctionIdentifier
 "("[FunctionFormalParList] ")" [RunsOnSpec] [ReturnType]
 StatementBlock
165. FunctionKeyword ::= "function"
166. FunctionIdentifier ::= Identifier
167. FunctionFormalParList ::= FunctionFormalPar {"," FunctionFormalPar}
168. FunctionFormalPar ::= FormalValuePar |
 FormalTimerPar |
 FormalTemplatePar |
 FormalPortPar
169. ReturnType ::= ReturnKeyword [TemplateKeyword | RestrictedTemplate] Type
170. ReturnKeyword ::= "return"
171. RunsOnSpec ::= RunsKeyword OnKeyword ComponentType
172. RunsKeyword ::= "runs"
173. OnKeyword ::= "on"
174. MTCKeyword ::= "mtc"
175. StatementBlock ::= "{" [FunctionDefList] [FunctionStatementList] "}"
176. FunctionDefList::= {(FunctionLocalDef | FunctionLocalInst)[SemiColon]}+
177. FunctionStatementList::= {FunctionStatement [SemiColon]}+
178. FunctionLocalInst ::= VarInstance | TimerInstance
179. FunctionLocalDef ::= ConstDef | TemplateDef
180. FunctionStatement ::= ConfigurationStatements |
 TimerStatements |
 CommunicationStatements |
 BasicStatements |
 BehaviourStatements |
 VerdictStatements |
 SUTStatements
181. FunctionInstance ::= FunctionRef "(" [FunctionActualParList] ")"
182. FunctionRef ::= [GlobalModuleId Dot] (FunctionIdentifier | ExtFunctionIdentifier) |
 PreDefFunctionIdentifier
183. PreDefFunctionIdentifier ::= Identifier
/* STATIC SEMANTICS - The Identifier shall be one of the pre-defined TTCN-3 Function Identifiers
from Annex C of ES 201 873-1 */
184. FunctionActualParList ::= (FunctionActualPar {"," FunctionActualPar}) |
 (FunctionActualParAssignment { "," FunctionActualParAssignment })
185. FunctionActualPar ::= TimerRef |
 TemplateInstance |
 Port |
 ComponentRef |
 Dash
/* STATIC SEMANTICS - When the corresponding formal parameter is not of template type the
TemplateInstance production shall resolve to one or more SingleExpressions i.e. equivalent to the
Expression production */
186. FunctionActualParAssignment ::= TemplateInstanceAssignment | ComponentRefAssignment |
 PortAssignment | TimerRefAssignment
187. TimerRefAssignment ::= TimerParIdentifier ":=" TimerRef
188. PortAssignment ::= PortParIdentifier ":=" Port

A.1.6.1.5 Signature definitions

189. SignatureDef ::= SignatureKeyword SignatureIdentifier
 "("[SignatureFormalParList] ")" [ReturnType | NoBlockKeyword]
 [ExceptionSpec]
190. SignatureKeyword ::= "signature"
191. SignatureIdentifier ::= Identifier
192. SignatureFormalParList ::= SignatureFormalPar {"," SignatureFormalPar}
193. SignatureFormalPar ::= FormalValuePar
194. ExceptionSpec ::= ExceptionKeyword "(" ExceptionTypeList ")"
195. ExceptionKeyword ::= "exception"
196. ExceptionTypeList ::= Type {"," Type}
197. NoBlockKeyword ::= "noblock"
198. Signature ::= [GlobalModuleId Dot] SignatureIdentifier

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 217

A.1.6.1.6 Testcase definitions

199. TestcaseDef ::= TestcaseKeyword TestcaseIdentifier
 "("[TestcaseFormalParList] ")" ConfigSpec
 StatementBlock
200. TestcaseKeyword ::= "testcase"
201. TestcaseIdentifier ::= Identifier
202. TestcaseFormalParList ::= TestcaseFormalPar {"," TestcaseFormalPar}
203. TestcaseFormalPar ::= FormalValuePar |
 FormalTemplatePar
204. ConfigSpec ::= RunsOnSpec [SystemSpec]
205. SystemSpec ::= SystemKeyword ComponentType
206. SystemKeyword ::= "system"
207. TestcaseInstance ::= ExecuteKeyword "(" TestcaseRef "(" [TestcaseActualParList] ")"
 ["," TimerValue] ")"
208. ExecuteKeyword ::= "execute"
209. TestcaseRef ::= [GlobalModuleId Dot] TestcaseIdentifier
210. TestcaseActualParList ::= (TestcaseActualPar {"," TestcaseActualPar}) |
 (TestcaseActualParAssignment { "," TestcaseActualParAssignment })
211. TestcaseActualPar ::= TemplateInstance | Dash
/* STATIC SEMANTICS - When the corresponding formal parameter is not of template type the
TemplateInstance production shall resolve to one or more SingleExpressions i.e. equivalent to the
Expression production */
212. TestcaseActualParAssignment ::= TemplateInstanceAssignment

A.1.6.1.7 Altstep definitions

213. AltstepDef ::= AltstepKeyword AltstepIdentifier
 "("[AltstepFormalParList] ")" [RunsOnSpec]
 "{" AltstepLocalDefList AltGuardList "}"
214. AltstepKeyword ::= "altstep"
215. AltstepIdentifier ::= Identifier
216. AltstepFormalParList ::= FunctionFormalParList
217. AltstepLocalDefList ::= {AltstepLocalDef [SemiColon]}
218. AltstepLocalDef ::= VarInstance | TimerInstance | ConstDef | TemplateDef
219. AltstepInstance ::= AltstepRef "(" [FunctionActualParList] ")"
220. AltstepRef ::= [GlobalModuleId Dot] AltstepIdentifier

A.1.6.1.8 Import definitions

221. ImportDef ::= ImportKeyword ImportFromSpec (AllWithExcepts | ("{" ImportSpec "}"))
222. ImportKeyword ::= "import"
223. AllWithExcepts ::= AllKeyword [ExceptsDef]
224. ExceptsDef ::= ExceptKeyword "{" ExceptSpec "}"
225. ExceptKeyword ::= "except"
226. ExceptSpec ::= {ExceptElement [SemiColon]}
227. ExceptElement ::= ExceptGroupSpec |
 ExceptTypeDefSpec |
 ExceptTemplateSpec |
 ExceptConstSpec |
 ExceptTestcaseSpec |
 ExceptAltstepSpec |
 ExceptFunctionSpec |
 ExceptSignatureSpec |
 ExceptModuleParSpec
228. ExceptGroupSpec ::= GroupKeyword (ExceptGroupRefList | AllKeyword)
229. ExceptTypeDefSpec ::= TypeDefKeyword (TypeRefList | AllKeyword)
230. ExceptTemplateSpec ::= TemplateKeyword (TemplateRefList | AllKeyword)
231. ExceptConstSpec ::= ConstKeyword (ConstRefList | AllKeyword)
232. ExceptTestcaseSpec ::= TestcaseKeyword (TestcaseRefList | AllKeyword)
233. ExceptAltstepSpec ::= AltstepKeyword (AltstepRefList | AllKeyword)
234. ExceptFunctionSpec ::= FunctionKeyword (FunctionRefList | AllKeyword)
235. ExceptSignatureSpec ::= SignatureKeyword (SignatureRefList | AllKeyword)
236. ExceptModuleParSpec ::= ModuleParKeyword (ModuleParRefList | AllKeyword)
237. ImportSpec ::= {ImportElement [SemiColon]}
238. ImportElement ::= ImportGroupSpec |
 ImportTypeDefSpec |
 ImportTemplateSpec |
 ImportConstSpec |
 ImportTestcaseSpec |
 ImportAltstepSpec |
 ImportFunctionSpec |
 ImportSignatureSpec |
 ImportModuleParSpec |
 ImportImportSpec

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 218

239. ImportFromSpec ::= FromKeyword ModuleId [RecursiveKeyword]
240. RecursiveKeyword ::= "recursive"
241. ImportGroupSpec ::= GroupKeyword (GroupRefListWithExcept | AllGroupsWithExcept)
242. GroupRefList ::= FullGroupIdentifier {"," FullGroupIdentifier}
243. GroupRefListWithExcept ::= FullGroupIdentifierWithExcept {"," FullGroupIdentifierWithExcept}
244. AllGroupsWithExcept ::= AllKeyword [ExceptKeyword GroupRefList]
245. FullGroupIdentifier ::= GroupIdentifier {Dot GroupIdentifier}
246. FullGroupIdentifierWithExcept ::= FullGroupIdentifier [ExceptsDef]
247. ExceptGroupRefList ::= ExceptFullGroupIdentifier {"," ExceptFullGroupIdentifier}
248. ExceptFullGroupIdentifier ::= FullGroupIdentifier
249. ImportTypeDefSpec ::= TypeDefKeyword (TypeRefList | AllTypesWithExcept)
250. TypeRefList ::= TypeDefIdentifier {"," TypeDefIdentifier}
251. AllTypesWithExcept ::= AllKeyword [ExceptKeyword TypeRefList]
252. TypeDefIdentifier ::= StructTypeIdentifier |
 EnumTypeIdentifier |
 PortTypeIdentifier |
 ComponentTypeIdentifier |
 SubTypeIdentifier
253. ImportTemplateSpec ::= TemplateKeyword (TemplateRefList | AllTemplsWithExcept)
254. TemplateRefList ::= TemplateIdentifier {"," TemplateIdentifier}
255. AllTemplsWithExcept ::= AllKeyword [ExceptKeyword TemplateRefList]
256. ImportConstSpec ::= ConstKeyword (ConstRefList | AllConstsWithExcept)
257. ConstRefList ::= ConstIdentifier {"," ConstIdentifier}
258. AllConstsWithExcept ::= AllKeyword [ExceptKeyword ConstRefList]
259. ImportAltstepSpec ::= AltstepKeyword (AltstepRefList | AllAltstepsWithExcept)
260. AltstepRefList ::= AltstepIdentifier {"," AltstepIdentifier}
261. AllAltstepsWithExcept ::= AllKeyword [ExceptKeyword AltstepRefList]
262. ImportTestcaseSpec ::= TestcaseKeyword (TestcaseRefList | AllTestcasesWithExcept)
263. TestcaseRefList ::= TestcaseIdentifier {"," TestcaseIdentifier}
264. AllTestcasesWithExcept ::= AllKeyword [ExceptKeyword TestcaseRefList]
265. ImportFunctionSpec ::= FunctionKeyword (FunctionRefList | AllFunctionsWithExcept)
266. FunctionRefList ::= FunctionIdentifier {"," FunctionIdentifier}
267. AllFunctionsWithExcept ::= AllKeyword [ExceptKeyword FunctionRefList]
268. ImportSignatureSpec ::= SignatureKeyword (SignatureRefList | AllSignaturesWithExcept)
269. SignatureRefList ::= SignatureIdentifier {"," SignatureIdentifier}
270. AllSignaturesWithExcept ::= AllKeyword [ExceptKeyword SignatureRefList]
271. ImportModuleParSpec ::= ModuleParKeyword (ModuleParRefList | AllModuleParWithExcept)
272. ModuleParRefList ::= ModuleParIdentifier {"," ModuleParIdentifier}
273. AllModuleParWithExcept ::= AllKeyword [ExceptKeyword ModuleParRefList]
274. ImportImportSpec ::= ImportKeyword AllKeyword

A.1.6.1.9 Group definitions

275. GroupDef ::= GroupKeyword GroupIdentifier
 "{" [ModuleDefinitionsPart] "}"
276. GroupKeyword ::= "group"
277. GroupIdentifier ::= Identifier

A.1.6.1.10 External function definitions

278. ExtFunctionDef ::= ExtKeyword FunctionKeyword ExtFunctionIdentifier
 "("[FunctionFormalParList] ")" [ReturnType]
279. ExtKeyword ::= "external"
280. ExtFunctionIdentifier ::= Identifier

A.1.6.1.11 External constant definitions

281. ExtConstDef ::= ExtKeyword ConstKeyword Type ExtConstIdentifierList
282. ExtConstIdentifierList ::= ExtConstIdentifier { "," ExtConstIdentifier }
283. ExtConstIdentifier ::= Identifier

A.1.6.1.12 Module parameter definitions

284. ModuleParDef ::= ModuleParKeyword (ModulePar | ("{" MultitypedModuleParList "}"))
285. ModuleParKeyword ::= "modulepar"
286. MultitypedModuleParList ::= { ModulePar [SemiColon] }
287. ModulePar ::= ModuleParType ModuleParList
288. ModuleParType ::= Type
289. ModuleParList ::= ModuleParIdentifier [AssignmentChar ConstantExpression]
 {","ModuleParIdentifier [AssignmentChar ConstantExpression]}
290. ModuleParIdentifier ::= Identifier

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 219

A.1.6.1.13 Friend module definitions

291. FriendModuleDef ::= "friend" "module" ModuleIdentifier {"," ModuleIdentifier } [SemiColon]

A.1.6.2 Control part

A.1.6.2.0 General

292. ModuleControlPart ::= ControlKeyword
 "{" ModuleControlBody "}"
 [WithStatement] [SemiColon]
293. ControlKeyword ::= "control"
294. ModuleControlBody ::= [ControlStatementOrDefList]
295. ControlStatementOrDefList ::= {ControlStatementOrDef [SemiColon]}+
296. ControlStatementOrDef ::= FunctionLocalDef |
 FunctionLocalInst |
 ControlStatement
297. ControlStatement ::= TimerStatements |
 BasicStatements |
 BehaviourStatements |
 SUTStatements |
 StopKeyword

A.1.6.2.1 Variable instantiation

298. VarInstance ::= VarKeyword ((Type VarList)
 | ((TemplateKeyword | RestrictedTemplate) Type TempVarList))
299. VarList ::= SingleVarInstance {"," SingleVarInstance}
300. SingleVarInstance ::= VarIdentifier [ArrayDef] [AssignmentChar VarInitialValue]
301. VarInitialValue ::= Expression
302. VarKeyword ::= "var"
303. VarIdentifier ::= Identifier
304. TempVarList ::= SingleTempVarInstance {"," SingleTempVarInstance}
305. SingleTempVarInstance ::= VarIdentifier [ArrayDef] [AssignmentChar TempVarInitialValue]
306. TempVarInitialValue ::= TemplateBody
307. VariableRef ::= (VarIdentifier | ValueParIdentifier | TemplateParIdentifier)
 [ExtendedFieldReference]

A.1.6.2.2 Timer instantiation

308. TimerInstance ::= TimerKeyword TimerList
309. TimerList ::= SingleTimerInstance{"," SingleTimerInstance}
310. SingleTimerInstance ::= TimerIdentifier [ArrayDef] [AssignmentChar TimerValue]
311. TimerKeyword ::= "timer"
312. TimerIdentifier ::= Identifier
313. TimerValue ::= Expression
314. TimerRef ::= (TimerIdentifier | TimerParIdentifier) {ArrayOrBitRef}

A.1.6.2.3 Component operations

315. ConfigurationStatements ::= ConnectStatement |
 MapStatement |
 DisconnectStatement |
 UnmapStatement |
 DoneStatement |
 KilledStatement |
 StartTCStatement |
 StopTCStatement |
 KillTCStatement
316. ConfigurationOps ::= CreateOp | SelfOp | SystemOp | MTCOp | RunningOp | AliveOp
317. CreateOp ::= ComponentType Dot CreateKeyword ["(" SingleExpression ")"] [AliveKeyword]
318. SystemOp ::= SystemKeyword
319. SelfOp ::= "self"
320. MTCOp ::= MTCKeyword
321. DoneStatement ::= ComponentId Dot DoneKeyword
322. KilledStatement ::= ComponentId Dot KilledKeyword
323. ComponentId ::= ComponentOrDefaultReference | (AnyKeyword | AllKeyword) ComponentKeyword
324. DoneKeyword ::= "done"
325. KilledKeyword ::= "killed"
326. RunningOp ::= ComponentId Dot RunningKeyword
327. RunningKeyword ::= "running"
328. AliveOp ::= ComponentId Dot AliveKeyword

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 220

329. CreateKeyword ::= "create"
330. AliveKeyword ::= "alive"
331. ConnectStatement ::= ConnectKeyword SingleConnectionSpec
332. ConnectKeyword ::= "connect"
333. SingleConnectionSpec ::= "(" PortRef "," PortRef ")"
334. PortRef ::= ComponentRef Colon Port
335. ComponentRef ::= ComponentOrDefaultReference | SystemOp | SelfOp | MTCOp
336. ComponentRefAssignment ::= ValueParIdentifier ":=" ComponentRef
337. DisconnectStatement ::= DisconnectKeyword [SingleOrMultiConnectionSpec]
338. SingleOrMultiConnectionSpec ::= SingleConnectionSpec |
 AllConnectionsSpec |
 AllPortsSpec |
 AllCompsAllPortsSpec
339. AllConnectionsSpec ::= "(" PortRef ")"
340. AllPortsSpec ::= "(" ComponentRef ":" AllKeyword PortKeyword ")"
341. AllCompsAllPortsSpec ::= "(" AllKeyword ComponentKeyword ":" AllKeyword PortKeyword ")"
342. DisconnectKeyword ::= "disconnect"
343. MapStatement ::= MapKeyword SingleConnectionSpec
344. MapKeyword ::= "map"
345. UnmapStatement ::= UnmapKeyword [SingleOrMultiConnectionSpec]
346. UnmapKeyword ::= "unmap"
347. StartTCStatement ::= ComponentOrDefaultReference Dot StartKeyword "(" FunctionInstance ")"
348. StartKeyword ::= "start"
349. StopTCStatement ::= StopKeyword | (ComponentReferenceOrLiteral Dot StopKeyword) |
 (AllKeyword ComponentKeyword Dot StopKeyword)
350. ComponentReferenceOrLiteral ::= ComponentOrDefaultReference | MTCOp | SelfOp
351. KillTCStatement ::= KillKeyword | (ComponentReferenceOrLiteral Dot KillKeyword) |
 (AllKeyword ComponentKeyword Dot KillKeyword)
352. ComponentOrDefaultReference ::= VariableRef | FunctionInstance
353. KillKeyword ::= "kill"

A.1.6.2.4 Port operations

354. Port ::= (PortIdentifier | PortParIdentifier) {ArrayOrBitRef}
355. CommunicationStatements ::= SendStatement |
 CallStatement |
 ReplyStatement |
 RaiseStatement |
 ReceiveStatement |
 TriggerStatement |
 GetCallStatement |
 GetReplyStatement |
 CatchStatement |
 CheckStatement |
 ClearStatement |
 StartStatement |
 StopStatement |
 HaltStatement
356. SendStatement ::= Port Dot PortSendOp
357. PortSendOp ::= SendOpKeyword "(" SendParameter ")" [ToClause]
358. SendOpKeyword ::= "send"
359. SendParameter ::= TemplateInstance
360. ToClause ::= ToKeyword (AddressRef |
 AddressRefList |
 AllKeyword ComponentKeyword)
361. AddressRefList ::= "(" AddressRef {"," AddressRef} ")"
362. ToKeyword ::= "to"
363. AddressRef ::= TemplateInstance
364. CallStatement ::= Port Dot PortCallOp [PortCallBody]
365. PortCallOp ::= CallOpKeyword "(" CallParameters ")" [ToClause]
366. CallOpKeyword ::= "call"
367. CallParameters ::= TemplateInstance ["," CallTimerValue]
368. CallTimerValue ::= TimerValue | NowaitKeyword
369. NowaitKeyword ::= "nowait"
370. PortCallBody ::= "{" CallBodyStatementList "}"
371. CallBodyStatementList ::= {CallBodyStatement [SemiColon]}+
372. CallBodyStatement ::= CallBodyGuard StatementBlock
373. CallBodyGuard ::= AltGuardChar CallBodyOps
374. CallBodyOps ::= GetReplyStatement | CatchStatement
375. ReplyStatement ::= Port Dot PortReplyOp
376. PortReplyOp ::= ReplyKeyword "(" TemplateInstance [ReplyValue]")" [ToClause]
377. ReplyKeyword ::= "reply"
378. ReplyValue ::= ValueKeyword Expression
379. RaiseStatement ::= Port Dot PortRaiseOp
380. PortRaiseOp ::= RaiseKeyword "(" Signature "," TemplateInstance ")" [ToClause]
381. RaiseKeyword ::= "raise"
382. ReceiveStatement ::= PortOrAny Dot PortReceiveOp

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 221

383. PortOrAny ::= Port | AnyKeyword PortKeyword
384. PortReceiveOp ::= ReceiveOpKeyword ["(" ReceiveParameter ")"] [FromClause] [PortRedirect]
385. ReceiveOpKeyword ::= "receive"
386. ReceiveParameter ::= TemplateInstance
387. FromClause ::= FromKeyword (AddressRef |
 AddressRefList |
 AnyKeyword ComponentKeyword)
388. FromKeyword ::= "from"
389. PortRedirect ::= PortRedirectSymbol (ValueSpec [SenderSpec] | SenderSpec)
390. PortRedirectSymbol ::= "->"
391. ValueSpec ::= ValueKeyword (VariableRef |
 ("(" SingleValueSpec { "," SingleValueSpec } ")"))
392. SingleValueSpec ::= VariableRef [AssignmentChar FieldReference ExtendedFieldReference]
/*STATIC SEMANTICS – FieldReference shall not be ParRef and ExtendedFieldReference shall not be
 TypeDefIdentifier*/
393. ValueKeyword ::= "value"
394. SenderSpec ::= SenderKeyword VariableRef
395. SenderKeyword ::= "sender"
396. TriggerStatement ::= PortOrAny Dot PortTriggerOp
397. PortTriggerOp ::= TriggerOpKeyword ["(" ReceiveParameter ")"] [FromClause] [PortRedirect]
398. TriggerOpKeyword ::= "trigger"
399. GetCallStatement ::= PortOrAny Dot PortGetCallOp
400. PortGetCallOp ::= GetCallOpKeyword ["(" ReceiveParameter ")"] [FromClause]
 [PortRedirectWithParam]
401. GetCallOpKeyword ::= "getcall"
402. PortRedirectWithParam ::= PortRedirectSymbol RedirectWithParamSpec
403. RedirectWithParamSpec ::= ParamSpec [SenderSpec] |
 SenderSpec
404. ParamSpec ::= ParamKeyword ParamAssignmentList
405. ParamKeyword ::= "param"
406. ParamAssignmentList ::= "(" (AssignmentList | VariableList) ")"
407. AssignmentList ::= VariableAssignment {"," VariableAssignment}
408. VariableAssignment ::= VariableRef AssignmentChar ParameterIdentifier
409. ParameterIdentifier ::= ValueParIdentifier
410. VariableList ::= VariableEntry {"," VariableEntry}
411. VariableEntry ::= VariableRef | NotUsedSymbol
412. GetReplyStatement ::= PortOrAny Dot PortGetReplyOp
413. PortGetReplyOp ::= GetReplyOpKeyword ["(" ReceiveParameter [ValueMatchSpec] ")"]
 [FromClause] [PortRedirectWithValueAndParam]
414. PortRedirectWithValueAndParam ::= PortRedirectSymbol RedirectWithValueAndParamSpec
415. RedirectWithValueAndParamSpec ::= ValueSpec [ParamSpec] [SenderSpec] |
 RedirectWithParamSpec
416. GetReplyOpKeyword ::= "getreply"
417. ValueMatchSpec ::= ValueKeyword TemplateInstance
418. CheckStatement ::= PortOrAny Dot PortCheckOp
419. PortCheckOp ::= CheckOpKeyword ["(" CheckParameter ")"]
420. CheckOpKeyword ::= "check"
421. CheckParameter ::= CheckPortOpsPresent | FromClausePresent | RedirectPresent
422. FromClausePresent ::= FromClause [PortRedirectSymbol SenderSpec]
423. RedirectPresent ::= PortRedirectSymbol SenderSpec
424. CheckPortOpsPresent ::= PortReceiveOp | PortGetCallOp | PortGetReplyOp | PortCatchOp
425. CatchStatement ::= PortOrAny Dot PortCatchOp
426. PortCatchOp ::= CatchOpKeyword ["("CatchOpParameter ")"] [FromClause] [PortRedirect]
427. CatchOpKeyword ::= "catch"
428. CatchOpParameter ::= Signature "," TemplateInstance | TimeoutKeyword
429. ClearStatement ::= PortOrAll Dot PortClearOp
430. PortOrAll ::= Port | AllKeyword PortKeyword
431. PortClearOp ::= ClearOpKeyword
432. ClearOpKeyword ::= "clear"
433. StartStatement ::= PortOrAll Dot PortStartOp
434. PortStartOp ::= StartKeyword
435. StopStatement ::= PortOrAll Dot PortStopOp
436. PortStopOp ::= StopKeyword
437. StopKeyword ::= "stop"
438. HaltStatement ::= PortOrAll Dot PortHaltOp
439. PortHaltOp ::= HaltKeyword
440. HaltKeyword ::= "halt"
441. AnyKeyword ::= "any"

A.1.6.2.5 Timer operations

442. TimerStatements ::= StartTimerStatement | StopTimerStatement | TimeoutStatement
443. TimerOps ::= ReadTimerOp | RunningTimerOp
444. StartTimerStatement ::= TimerRef Dot StartKeyword ["(" TimerValue ")"]
445. StopTimerStatement ::= TimerRefOrAll Dot StopKeyword
446. TimerRefOrAll ::= TimerRef | AllKeyword TimerKeyword
447. ReadTimerOp ::= TimerRef Dot ReadKeyword

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 222

448. ReadKeyword ::= "read"
449. RunningTimerOp ::= TimerRefOrAny Dot RunningKeyword
450. TimeoutStatement ::= TimerRefOrAny Dot TimeoutKeyword
451. TimerRefOrAny ::= TimerRef | (AnyKeyword TimerKeyword)
452. TimeoutKeyword ::= "timeout"

A.1.6.3 Type
453. Type ::= PredefinedType | ReferencedType
454. PredefinedType ::= BitStringKeyword |
 BooleanKeyword |
 CharStringKeyword |
 UniversalCharString |
 IntegerKeyword |
 OctetStringKeyword |
 HexStringKeyword |
 VerdictTypeKeyword |
 FloatKeyword |
 AddressKeyword |
 DefaultKeyword |
 AnyTypeKeyword
455. BitStringKeyword ::= "bitstring"
456. BooleanKeyword ::= "boolean"
457. IntegerKeyword ::= "integer"
458. OctetStringKeyword ::= "octetstring"
459. HexStringKeyword ::= "hexstring"
460. VerdictTypeKeyword ::= "verdicttype"
461. FloatKeyword ::= "float"
462. AddressKeyword ::= "address"
463. DefaultKeyword ::= "default"
464. AnyTypeKeyword ::= "anytype"
465. CharStringKeyword ::= "charstring"
466. UniversalCharString ::= UniversalKeyword CharStringKeyword
467. UniversalKeyword ::= "universal"
468. ReferencedType ::= [GlobalModuleId Dot] TypeReference [ExtendedFieldReference]
469. TypeReference ::= StructTypeIdentifier |
 EnumTypeIdentifier |
 SubTypeIdentifier |
 ComponentTypeIdentifier
470. ArrayDef ::= {"[" ArrayBounds [".." ArrayBounds] "]"}+
471. ArrayBounds ::= SingleConstExpression
/* STATIC SEMANTICS - ArrayBounds will resolve to a non negative value of integer type */

A.1.6.4 Value
472. Value ::= PredefinedValue | ReferencedValue
473. PredefinedValue ::= BitStringValue |
 BooleanValue |
 CharStringValue |
 IntegerValue |
 OctetStringValue |
 HexStringValue |
 VerdictTypeValue |
 EnumeratedValue |
 FloatValue |
 AddressValue |
 OmitValue
474. BitStringValue ::= Bstring
475. BooleanValue ::= "true" | "false"
476. IntegerValue ::= Number
477. OctetStringValue ::= Ostring
478. HexStringValue ::= Hstring
479. VerdictTypeValue ::= "pass" | "fail" | "inconc" | "none" | "error"
480. EnumeratedValue ::= EnumerationIdentifier
481. CharStringValue ::= Cstring | Quadruple
482. Quadruple ::= CharKeyword "(" Group "," Plane "," Row "," Cell ")"
483. CharKeyword ::= "char"
484. Group ::= Number
485. Plane ::= Number
486. Row ::= Number
487. Cell ::= Number
488. FloatValue ::= FloatDotNotation | FloatENotation | NaNKeyword
489. NaNKeyword ::= "not_a_number"
490. FloatDotNotation ::= Number Dot DecimalNumber
491. FloatENotation ::= Number [Dot DecimalNumber] Exponential [Minus] Number

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 223

492. Exponential ::= "E"
493. ReferencedValue ::= ValueReference [ExtendedFieldReference]
494. ValueReference ::= [GlobalModuleId Dot] (ConstIdentifier | ExtConstIdentifier |
 ModuleParIdentifier) |
 ValueParIdentifier |
 VarIdentifier
495. Number ::= (NonZeroNum {Num}) | "0"
496. NonZeroNum ::= "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
497. DecimalNumber ::= {Num}+
498. Num ::= "0" | NonZeroNum
499. Bstring ::= "'" {Bin} "'" "B"
500. Bin ::= "0" | "1"
501. Hstring ::= "'" {Hex} "'" "H"
502. Hex ::= Num | "A" | "B" | "C" | "D" | "E" | "F"| "a" | "b" | "c" | "d" | "e" | "f"
503. Ostring ::= "'" {Oct} "'" "O"
504. Oct ::= Hex Hex
505. Cstring ::= """ {Char} """
506. Char ::= /* REFERENCE - A character defined by the relevant CharacterString type. For
charstring a character from the character set defined in ISO/IEC 646. For universal charstring a
character from any character set defined in ISO/IEC 10646 */
507. Identifier ::= Alpha{AlphaNum | Underscore}
508. Alpha ::= UpperAlpha | LowerAlpha
509. AlphaNum ::= Alpha | Num
510. UpperAlpha ::= "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" | "J" | "K" | "L" | "M" |
"N" | "O" | "P" | "Q" | "R" | "S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z"
511. LowerAlpha ::= "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | "j" | "k" | "l" | "m" |
"n" | "o" | "p" | "q" | "r" | "s" | "t" | "u" | "v" | "w" | "x" | "y" | "z"
512. ExtendedAlphaNum ::= /* REFERENCE - A graphical character from the BASIC LATIN or from the
LATIN-1 SUPPLEMENT character sets defined in ISO/IEC 10646 (characters from char (0,0,0,32) to char
(0,0,0,126), from char (0,0,0,161) to char (0,0,0,172) and from char (0,0,0,174) to char (0,0,0,255)
*/
513. FreeText ::= """ {ExtendedAlphaNum} """
514. AddressValue ::= "null"
515. OmitValue ::= OmitKeyword
516. OmitKeyword ::= "omit"

A.1.6.5 Parameterization
517. InParKeyword ::= "in"
518. OutParKeyword ::= "out"
519. InOutParKeyword ::= "inout"
520. FormalValuePar ::= [(InParKeyword | InOutParKeyword | OutParKeyword)]
 Type ValueParIdentifier [":=" (Expression | Dash)]
521. ValueParIdentifier ::= Identifier
522. FormalPortPar ::= [InOutParKeyword] PortTypeIdentifier PortParIdentifier
523. PortParIdentifier ::= Identifier
524. FormalTimerPar ::= [InOutParKeyword] TimerKeyword TimerParIdentifier
525. TimerParIdentifier ::= Identifier
526. FormalTemplatePar ::= [(InParKeyword | OutParKeyword | InOutParKeyword)]
 (TemplateKeyword | RestrictedTemplate)
 Type TemplateParIdentifier [":=" (TemplateInstance | Dash)]
527. TemplateParIdentifier ::= Identifier
528. RestrictedTemplate ::= OmitKeyword | (TemplateKeyword TemplateRestriction)
529. TemplateRestriction ::= "(" (OmitKeyword | ValueKeyword | PresentKeyword) ")"

A.1.6.6 With statement
530. WithStatement ::= WithKeyword WithAttribList
531. WithKeyword ::= "with"
532. WithAttribList ::= "{" MultiWithAttrib "}"
533. MultiWithAttrib ::= {SingleWithAttrib [SemiColon]}
534. SingleWithAttrib ::= AttribKeyword [OverrideKeyword] [AttribQualifier] AttribSpec
535. AttribKeyword ::= EncodeKeyword |
 VariantKeyword |
 DisplayKeyword |
 ExtensionKeyword |
 OptionalKeyword
536. EncodeKeyword ::= "encode"
537. VariantKeyword ::= "variant"
538. DisplayKeyword ::= "display"
539. ExtensionKeyword ::= "extension"
540. OverrideKeyword ::= "override"
541. AttribQualifier ::= "(" DefOrFieldRefList ")"
542. DefOrFieldRefList ::= DefOrFieldRef {"," DefOrFieldRef}
543. DefOrFieldRef ::= DefinitionRef |

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 224

 (FieldReference [ExtendedFieldReference]) |
 ("[" NotUsedSymbol | SingleExpression "]") |
 AllRef
544. DefinitionRef ::= StructTypeIdentifier |
 EnumTypeIdentifier |
 PortTypeIdentifier |
 ComponentTypeIdentifier |
 SubTypeIdentifier |
 ConstIdentifier |
 TemplateIdentifier |
 AltstepIdentifier |
 TestcaseIdentifier |
 FunctionIdentifier |
 SignatureIdentifier |
 VarIdentifier |
 TimerIdentifier |
 PortIdentifier |
 ModuleParIdentifier |
 FullGroupIdentifier
545. AllRef ::= (GroupKeyword AllKeyword [ExceptKeyword "{" GroupRefList "}"]) |
 (TypeDefKeyword AllKeyword [ExceptKeyword "{" TypeRefList "}"]) |
 (TemplateKeyword AllKeyword [ExceptKeyword "{" TemplateRefList "}"]) |
 (ConstKeyword AllKeyword [ExceptKeyword "{" ConstRefList "}"]) |
 (AltstepKeyword AllKeyword [ExceptKeyword "{" AltstepRefList "}"]) |
 (TestcaseKeyword AllKeyword [ExceptKeyword "{" TestcaseRefList "}"]) |
 (FunctionKeyword AllKeyword [ExceptKeyword "{" FunctionRefList "}"]) |
 (SignatureKeyword AllKeyword [ExceptKeyword "{" SignatureRefList "}"]) |
 (ModuleParKeyword AllKeyword [ExceptKeyword "{" ModuleParRefList "}"])
546. AttribSpec ::= FreeText

A.1.6.7 Behaviour statements
547. BehaviourStatements ::= TestcaseInstance |
 FunctionInstance |
 ReturnStatement |
 AltConstruct |
 InterleavedConstruct |
 LabelStatement |
 GotoStatement |
 RepeatStatement |
 DeactivateStatement |
 AltstepInstance |
 ActivateOp |
 BreakStatement |
 ContinueStatement
548. VerdictStatements ::= SetLocalVerdict
549. VerdictOps ::= GetLocalVerdict
550. SetLocalVerdict ::= SetVerdictKeyword "(" SingleExpression { "," LogItem } ")"
551. SetVerdictKeyword ::= "setverdict"
552. GetLocalVerdict ::= "getverdict"
553. SUTStatements ::= ActionKeyword "(" ActionText {StringOp ActionText} ")"
554. ActionKeyword ::= "action"
555. ActionText ::= FreeText | Expression
556. ReturnStatement ::= ReturnKeyword [Expression | InLineTemplate]
/* STATIC SEMANTICS - Expression shall evaluate to a value of a type compatible with the return type
for functions returning a value. It shall evaluate to a value, template (literal or template
instance), or a matching mechanism compatible with the return type for functions returning a
template. */
557. AltConstruct ::= AltKeyword "{" AltGuardList "}"
558. AltKeyword ::= "alt"
559. AltGuardList ::= {GuardStatement | ElseStatement [SemiColon]}
560. GuardStatement ::= AltGuardChar (AltstepInstance [StatementBlock] | GuardOp StatementBlock)
561. ElseStatement ::= "["ElseKeyword "]" StatementBlock
562. AltGuardChar ::= "[" [BooleanExpression] "]"
563. GuardOp ::= TimeoutStatement |
 ReceiveStatement |
 TriggerStatement |
 GetCallStatement |
 CatchStatement |
 CheckStatement |
 GetReplyStatement |
 DoneStatement |
 KilledStatement
564. InterleavedConstruct ::= InterleavedKeyword "{" InterleavedGuardList "}"
565. InterleavedKeyword ::= "interleave"
566. InterleavedGuardList ::= {InterleavedGuardElement [SemiColon]}+
567. InterleavedGuardElement ::= InterleavedGuard InterleavedAction

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 225

568. InterleavedGuard ::= "[" "]" GuardOp
569. InterleavedAction ::= StatementBlock
570. LabelStatement ::= LabelKeyword LabelIdentifier
571. LabelKeyword ::= "label"
572. LabelIdentifier ::= Identifier
573. GotoStatement ::= GotoKeyword LabelIdentifier
574. GotoKeyword ::= "goto"
575. RepeatStatement ::= "repeat"
576. ActivateOp ::= ActivateKeyword "(" AltstepInstance ")"
577. ActivateKeyword ::= "activate"
578. DeactivateStatement ::= DeactivateKeyword ["(" ComponentOrDefaultReference ")"]
579. DeactivateKeyword ::= "deactivate"
580. BreakStatement ::= "break"
581. ContinueStatement ::= "continue"

A.1.6.8 Basic statements
582. BasicStatements ::= Assignment | LogStatement | LoopConstruct | ConditionalConstruct |
 SelectCaseConstruct | StatementBlock
583. Expression ::= SingleExpression | CompoundExpression
584. CompoundExpression ::= FieldExpressionList | ArrayExpression
/* STATIC SEMANTICS - Within CompoundExpression the ArrayExpression can be used for Arrays, record,
record of and set of types. */
585. FieldExpressionList ::= "{" FieldExpressionSpec {"," FieldExpressionSpec} "}"
586. FieldExpressionSpec ::= FieldReference AssignmentChar NotUsedOrExpression
587. ArrayExpression ::= "{" [ArrayElementExpressionList] "}"
588. ArrayElementExpressionList ::= NotUsedOrExpression {"," NotUsedOrExpression}
589. NotUsedOrExpression ::= Expression | NotUsedSymbol
590. ConstantExpression ::= SingleConstExpression | CompoundConstExpression
591. SingleConstExpression ::= SingleExpression
592. BooleanExpression ::= SingleExpression
/* STATIC SEMANTICS - BooleanExpression shall resolve to a Value of type Boolean */
593. CompoundConstExpression ::= FieldConstExpressionList | ArrayConstExpression
/* STATIC SEMANTICS - Within CompoundConstExpression the ArrayConstExpression can be used for
arrays, record, record of and set of types. */
594. FieldConstExpressionList ::= "{" FieldConstExpressionSpec {"," FieldConstExpressionSpec} "}"
595. FieldConstExpressionSpec ::= FieldReference AssignmentChar ConstantExpression
596. ArrayConstExpression ::= "{" [ArrayElementConstExpressionList] "}"
597. ArrayElementConstExpressionList ::= ConstantExpression {"," ConstantExpression}
598. Assignment ::= VariableRef AssignmentChar (Expression | TemplateBody)
/* STATIC SEMANTICS - The Expression on the right hand side of Assignment shall evaluate to an
explicit value of a type compatible with the type of the left hand side for value variables and
shall evaluate to an explicit value, template (literal or a template instance) or a matching
mechanism compatible with the type of the left hand side for template variables. */
599. SingleExpression ::= XorExpression { "or" XorExpression }
/* STATIC SEMANTICS - If more than one XorExpression exists, then the XorExpressions shall evaluate
to specific values of compatible types */
600. XorExpression ::= AndExpression { "xor" AndExpression }
/* STATIC SEMANTICS - If more than one AndExpression exists, then the AndExpressions shall evaluate
to specific values of compatible types */
601. AndExpression ::= NotExpression { "and" NotExpression }
/* STATIC SEMANTICS - If more than one NotExpression exists, then the NotExpressions shall evaluate
to specific values of compatible types */
602. NotExpression ::= ["not"] EqualExpression
/* STATIC SEMANTICS - Operands of the not operator shall be of type boolean or derivatives of type
Boolean. */
603. EqualExpression ::= RelExpression { EqualOp RelExpression }
/* STATIC SEMANTICS - If more than one RelExpression exists, then the RelExpressions shall evaluate
to specific values of compatible types */
604. RelExpression ::= ShiftExpression [RelOp ShiftExpression]
/* STATIC SEMANTICS - If both ShiftExpressions exist, then each ShiftExpression shall evaluate to a
specific integer, Enumerated or float Value or derivatives of these types */
605. ShiftExpression ::= BitOrExpression { ShiftOp BitOrExpression }
/* STATIC SEMANTICS - Each Result shall resolve to a specific Value. If more than one Result exists
the right-hand operand shall be of type integer or derivatives and if the shift op is "<<" or ">>"
then the left-hand operand shall resolve to either bitstring, hexstring or octetstring type or
derivatives of these types. If the shift op is "<@" or "@>" then the left-hand operand shall be of
type bitstring, hexstring, octetstring, charstring, universal charstring, record of, set of, or
array, or derivatives of these types */
606. BitOrExpression ::= BitXorExpression { "or4b" BitXorExpression }
/* STATIC SEMANTICS - If more than one BitXorExpression exists, then the BitXorExpressions shall
evaluate to specific values of compatible types */
607. BitXorExpression ::= BitAndExpression { "xor4b" BitAndExpression }
/* STATIC SEMANTICS - If more than one BitAndExpression exists, then the BitAndExpressions shall
evaluate to specific values of compatible types */
608. BitAndExpression ::= BitNotExpression { "and4b" BitNotExpression }

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 226

/* STATIC SEMANTICS - If more than one BitNotExpression exists, then the BitNotExpressions shall
evaluate to specific values of compatible types */
609. BitNotExpression ::= ["not4b"] AddExpression
/* STATIC SEMANTICS - If the not4b operator exists, the operand shall be of type bitstring,
octetstring or hexstring or derivatives of these types. */
610. AddExpression ::= MulExpression { AddOp MulExpression }
/* STATIC SEMANTICS - Each MulExpression shall resolve to a specific Value. If more than one
MulExpression exists and the AddOp resolves to StringOp then the MulExpressions shall be valid
operands for StringOp. If more than one MulExpression exists and the AddOp does not resolve to
StringOp then the MulExpression shall both resolve to type integer or float or derivatives of these
types.*/
611. MulExpression ::= UnaryExpression { MultiplyOp UnaryExpression }
/* STATIC SEMANTICS - Each UnaryExpression shall resolve to a specific Value. If more than one
UnaryExpression exists then the UnaryExpressions shall resolve to type integer or float or
derivatives of these types. */
612. UnaryExpression ::= [UnaryOp] Primary
/* STATIC SEMANTICS - Primary shall resolve to a specific Value of type integer or float or
derivatives of these types.*/
613. Primary ::= OpCall | Value | "(" SingleExpression ")"
614. ExtendedFieldReference ::= { (Dot (StructFieldIdentifier | TypeDefIdentifier))
 | ArrayOrBitRef
 | ("[" NotUsedSymbol "]") }+
/* STATIC SEMANTIC - The TypeDefIdentifier shall be used only if the type of the VarInstance or
ReferencedValue in which the ExtendedFieldReference is used is anytype.
ArrayOrBitRef shall be used when referencing elements of values or arrays.
The square brackets with dash shall be used when referencing inner types of a record of or set of
type. */
615. OpCall ::= ConfigurationOps |
 VerdictOps |
 TimerOps |
 TestcaseInstance |
 (FunctionInstance [ExtendedFieldReference]) |
 (TemplateOps [ExtendedFieldReference]) |
 ActivateOp
616. AddOp ::= "+" | "-" | StringOp
/* STATIC SEMANTICS - Operands of the "+" or "-" operators shall be of type integer or float or
derivations of integer or float (i.e. subrange) */
617. MultiplyOp ::= "*" | "/" | "mod" | "rem"
/* STATIC SEMANTICS - Operands of the "*", "/", rem or mod operators shall be of type integer or
float or derivations of integer or float (i.e. subrange) */
618. UnaryOp ::= "+" | "-"
/* STATIC SEMANTICS - Operands of the "+" or "-" operators shall be of type integer or float or
derivations of integer or float (i.e. subrange) */
619. RelOp ::= "<" | ">" | ">=" | "<="
/* STATIC SEMANTICS - the precedence of the operators is defined in Table 6 */
620. EqualOp ::= "==" | "!="
621. StringOp ::= "&"
/* STATIC SEMANTICS - Operands of the list operator shall be bitstring, hexstring, octetstring,
(universal) character string, record of, set of, or array types, or derivates of these types */
622. ShiftOp ::= "<<" | ">>" | "<@" | "@>"
623. LogStatement ::= LogKeyword "(" LogItem { "," LogItem } ")"
624. LogKeyword ::= "log"
625. LogItem ::= FreeText | TemplateInstance
626. LoopConstruct ::= ForStatement |
 WhileStatement |
 DoWhileStatement
627. ForStatement ::= ForKeyword "(" Initial SemiColon Final SemiColon Step ")"
 StatementBlock
628. ForKeyword ::= "for"
629. Initial ::= VarInstance | Assignment
630. Final ::= BooleanExpression
631. Step ::= Assignment
632. WhileStatement ::= WhileKeyword "(" BooleanExpression ")"
 StatementBlock
633. WhileKeyword ::= "while"
634. DoWhileStatement ::= DoKeyword StatementBlock
 WhileKeyword "(" BooleanExpression ")"
635. DoKeyword ::= "do"
636. ConditionalConstruct ::= IfKeyword "(" BooleanExpression ")"
 StatementBlock
 {ElseIfClause}[ElseClause]
637. IfKeyword ::= "if"
638. ElseIfClause ::= ElseKeyword IfKeyword "(" BooleanExpression ")" StatementBlock
639. ElseKeyword ::= "else"
640. ElseClause ::= ElseKeyword StatementBlock
641. SelectCaseConstruct ::= SelectKeyword "(" SingleExpression ")" SelectCaseBody
642. SelectKeyword ::= "select"
643. SelectCaseBody ::= "{" { SelectCase }+ "}"

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 227

644. SelectCase ::= CaseKeyword ("(" TemplateInstance {"," TemplateInstance } ")" | ElseKeyword)
 StatementBlock
645. CaseKeyword ::= "case"

A.1.6.9 Miscellaneous productions
646. Dot ::= "."
647. Dash ::= "-"
648. Minus ::= Dash
649. SemiColon ::= ";"
650. Colon ::= ":"
651. Underscore ::= "_"
652. AssignmentChar ::= ":="

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 228

Annex B (normative):
Matching incoming values

B.1 Template matching mechanisms
This annex specifies the matching mechanisms that may be used in TTCN-3 templates (and only in templates).

B.1.1 Matching specific values
Specific values are the basic matching mechanism of TTCN-3 templates. Specific values in templates are expressions
which do not contain any matching mechanisms or wildcards. Unless otherwise specified, a template field matches the
corresponding incoming field value if, and only if, the incoming field value has exactly the same value as the value to
which the expression in the template evaluates.

EXAMPLE:

 // Given the message type definition
 type record MyMessageType
 {
 integer field1,
 charstring field2,
 boolean field3 optional,
 integer field4[4]
 }

 // A message template using specific values could be
 template MyMessageType MyTemplate:=
 {
 field1 := 3+2, // specific value of integer type
 field2 := "My string", // specific value of charstring type
 field3 := true, // specific value of boolean type
 field4 := {1,2,3,4} // specific value of integer array
 }

B.1.2 Matching mechanisms instead of values
The following matching mechanisms may be used in place of explicit values.

B.1.2.1 Value list

Value lists specify lists of acceptable incoming values. It can be used on values of all types. A value list may also
contain templates. A template field that uses a value list matches the corresponding incoming field if, and only if, the
incoming field value matches any one of the values or templates in the value list. Each value or template in the value list
shall be of the type declared for the template field in which this mechanism is used.

EXAMPLE:

 template MyMessage MyTemplate:=
 {
 field1 := (2,4,6), // list of integer values
 field2 := ("String1", "String2"), // list of charstring values
 :
 :
 }

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 229

B.1.2.2 Complemented value list

The keyword complement denotes a list of values that will not be accepted as incoming values (i.e. it is the
complement of a value list). It can be used on all values of all types. A complemented value list may also contain
templates.

Each value or template in the list shall be of the type declared for the template field in which the complement is used. A
template field that uses complement matches the corresponding incoming field if and only if the incoming field does not
match any of the values or templates listed in the value list. The value list may be a single value, of course.

EXAMPLE:

 template MyMessage MyTemplate:=
 {
 complement (1,3,5), // list of unacceptable integer values
 :
 field3 not(true) // will match false
 :
 }

B.1.2.3 Any value

The matching symbol "?" (AnyValue) is used to indicate that any valid incoming value is acceptable. It can be used on
values of all types. A template field that uses the any value mechanism matches the corresponding incoming field if,
and only if, the incoming field evaluates to a single element of the specified type.

EXAMPLE:

 template MyMessage MyTemplate:=
 {
 field1 := ?, // will match any integer
 field2 := ?, // will match any non-empty charstring value
 field3 := ?, // will match true or false
 field4 := ? // will match any sequence of integers
 }

B.1.2.4 Any value or none

The matching symbol "*" (AnyValueOrNone) is used to indicate that any valid incoming value, including omission of
that value, is acceptable. It can be used on values of all types, provided that the template field is declared as optional.

A template field that uses this symbol matches the corresponding incoming field if, and only if, either the incoming
field evaluates to any element of the specified type, or if the incoming field is absent.

EXAMPLE:

 template MyMessage MyTemplate:=
 { :
 field3 := *, // will match true or false or omitted field
 :
 }

B.1.2.5 Value range

Ranges indicate a bounded range of acceptable values. When used for values of integer or float types (and integer
or float subtypes), a boundary value shall be either:

a) infinity or -infinity;

b) an expression that evaluates to a specific integer or float value.

The lower boundary shall be put on the left side of the range, the upper boundary at the right side. The lower boundary
shall be less than the upper boundary. A template field that uses a range matches the corresponding incoming field if,
and only if, the incoming field value is equal to one of the values in the range.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 230

When used in templates or template fields of charstring or universal charstring types, the boundaries
shall evaluate to valid character positions according to the coded character set table(s) of the type (e.g. the given
position shall not be empty). Empty positions between the lower and the upper boundaries are not considered to be valid
values of the specified range.

EXAMPLE:

 template MyMessage MyTemplate:=
 {
 field1 := (1 .. 6), // range of integer type
 :
 :
 :
 }
 // other entries for field1 might be (-infinity to 8) or (12 to infinity)

B.1.2.6 SuperSet

SuperSet is an operation for matching that shall be used only on values of set of types. SuperSet is denoted by the
keyword superset. SuperSet matches the incoming set of values if, and only if, the incoming set of values contains at
least all of the elements defined within the SuperSet, and may contain more. The argument of SuperSet shall be of the
type replicated by the set of. This argument may contain templates (including template variables) and matching
mechanisms, with the exception of omit, AnyValueOrNone, superset, subset and the matching attributes (length
restriction and ifpresent). However, the length matching attribute may be attached to the SuperSet itself, in which case
the minimal length allowed by the length attribute shall not be less than the number of the elements in the SuperSet.

EXAMPLE:

 type set of integer MySetOfType (0 .. 10);

 template MySetOfType MyTemplate1 := superset (1, 2, 3);
 // matches any sequence of integers which contains at least one occurrences of the numbers
 // 1, 2 and 3 in any order and position

 template MySetOfType MyTemplate2_AnyValue := superset (1, 2, ?);
 // matches any sequence of integers which contains at least one occurrences of the numbers
 // 1, 2 and at least one more valid integer value (i.e. between 0 and 10, inclusively), in any
 // order and position

 template MySetOfType MyTemplate3 := superset (1, 2, (3, 4));
 // matches any sequence of integers which contains at least one occurrences of the numbers
 // 1, 2 and a number with the value 3 or 4, in any order and position

 template MySetOfType MyTemplate4 := superset (1, 2, complement(3, 4));
 // any sequence of integers matches which contains at least one occurrences of the numbers
 // 1, 2 and a valid integer value which is not 3 or 4, in any order and position

 template MySetOfType MyTemplate6 := superset (1, 2, 3) length (7);
 // matches any sequence of 7 integers which contains at least one occurrences of the numbers
 // 1, 2 and 3 in any order and position

 template MySetOfType MyTemplate7 := superset (1, 2, ?) length (7 .. infinity);
 // matches any sequence of at least 7 integers which contains at least one occurrences of the
 // numbers 1, 2 and 3 in any order and position

 template MySetOfType MyTemplate8 := superset (1, 2, 3) length (2 .. 7);
 // causes an error, the lower bound of the length attribute contradicts to the minimum number
 // of elements imposed by the superset argument

B.1.2.7 SubSet

SubSet is an operation for matching that can be used only on values of set of types. SubSet is denoted by the
keyword subset. SubSet matches the incoming set of values if, and only if, the incoming set of values contains only
elements defined within the SubSet, and may contain less. The argument of SubSet shall be of the type replicated by the
set of. This argument may contain templates (including template variables) and matching mechanisms, with the
exception of omit, AnyValueOrNone, superset, subset and the matching attributes (length restriction and ifpresent).
However, the length matching attribute may be attached to the SubSet itself, in which case the maximum length allowed
by the length attribute shall not exceed the number of the elements in the SubSet.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 231

EXAMPLE:

 template MySetOfType MyTemplate1:= subset (1, 2, 3);
 // matches any sequence of integers which contains zero or one occurrences of the numbers
 // 1, 2 and 3 in any order and position

 template MySetOfType MyTemplate1:= subset (1, 2, ?);
 // matches any sequence of integers which contains zero or one occurrences of the numbers
 // 1, 2 and a valid integer value (i.e. between 0 and 10, inclusive) in any order and position

 template MySetOfType MyTemplate1:= subset (1, 2, (3, 4));
 // matches any sequence of integers which contains zero or one occurrences of the numbers
 // 1, 2 and one of the numbers 3 or 4, in any order and position

 template MySetOfType MyTemplate1:= subset (1, 2, complement (3, 4));
 // matches any sequence of integers which contains zero or one occurrences of the numbers
 // 1, 2 and a valid integer number which is not 3 or 4, in any order and position

 template MySetOfType MyTemplate1:= subset (1, 2, 3) length (2);
 // matches any sequence of two integers which contains zero or one occurrences of
 // the numbers 1, 2 and 3, in any order and position

 template MySetOfType MyTemplate1:= subset (1, 2, ?) length (0 .. 2);
 // matches any sequence of zero, one or two integers which contains zero or one occurrences of
 // the numbers 1, 2 and of a valid integer value, in any order and position

 template MySetOfType MyTemplate1:= subset (1, 2, 3) length (0 .. 4);
 // causes an error, the upper bound of length attribute contradicts to the maximum number of
 // elements imposed by the subset argument

B.1.2.8 Omitting optional fields

The keyword omit denotes that an optional field shall be absent. It can be assigned to templates, but shall only be used
in fields of record and set types provided that the fields are optional.

EXAMPLE:

 template MyMessage MyTemplate:=
 { :
 :
 field3 := omit, // omit the optional field field3
 :
 }

B.1.3 Matching mechanisms inside values
The following matching mechanisms may be used inside explicit values of strings, records, records of, sets, sets of and
arrays.

B.1.3.1 Any element

The matching symbol "?" (AnyElement) is used to indicate that it replaces single elements of a string (except character
strings, see table 4 for the lengths of the units being matched by "?" in a string), a record of, a set of or an array.
It shall be used only within values of string types, record of types, set of types and arrays.

EXAMPLE:

 template MyMessage MyTemplate:=
 { :
 field2 := "abcxyz",
 field3 := '10???'B, // where each "?" may either be 0 or 1
 field4 := {1, ?, 3} // where ? may be any integer value
 }

NOTE: The "?" in field4 can be interpreted as AnyValue as an integer value, or AnyElement inside a record
of, set of or array. Since both interpretations lead to the same match no problem arises.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 232

B.1.3.1.1 Using single character wildcards

If it is required to express the "?" wildcard in character strings it shall be done using character patterns
(see clause B.1.5). For example: "abcdxyz", "abccxyz", "abcxxyz" etc. will all match pattern "abc?xyz". However,
"abcxyz", "abcdefxyz", etc. will not.

B.1.3.2 Any number of elements or no element

The matching symbol "*" (AnyElementsOrNone) is used to indicate that it replaces none or any number of consecutive
elements of a string (except character strings), a record of, a set of or an array. The "*" symbol matches the
longest sequence of elements possible, according to the pattern as specified by the symbols surrounding the "*".

EXAMPLE:

 template Mymessage MyTemplate:=
 { :
 field2 := "abcxyz",
 field3 := '10*11'B, // where "*" may be any sequence of bits (possibly empty)
 field4 := {*, 2, 3} // where "*"may be any number of integer values or omitted
 }

 var charstring MyStrings[4];
 MyPCO.receive(MyStrings:{"abyz", *, "abc" });

If a "*" appears at the highest level inside a string, a record of, set of or array, it shall be interpreted as
AnyElementsOrNone.

NOTE: This rule prevents the otherwise possible interpretation of "*" as AnyValueOrNone that replaces an
element inside a string, record of, set of or array.

B.1.3.2.1 Using multiple character wildcards

If it is required to expressed the "*" wildcard in character strings it shall be done using character patterns
(see clause B.1.5). For example: "abcxyz", "abcdefxyz" "abcabcxyz" etc. will all match pattern "abc*xyz".

B.1.3.3 Permutation

Permutation is an operation for matching that shall be used only on values of record of types. Permutation is
denoted by the keyword permutation. Expressions, templates and AnyElement and AnyElementsOrNone are
allowed as permutation elements. Each element listed in the permutation shall be of the type replicated by the record
of type.

A permutation without AnyElementsOrNone in place of a single record of element means that any series of elements is
acceptable provided that there is a one to one mapping between elements in the record of and in the permutation list
such that each element matches its corresponding element in the permutation list.

AnyElementsOrNone used inside permutation (directly or via reference) replaces none or any number of elements
within the segment of the record of value matched by permutation. The permutation matching is successful, if a subset
of the elements in the record of matches the permutation list without the AnyElementsOrNone. If both permutation and
AnyElementsOrNone are used in a record of template, they shall be evaluated jointly.

NOTE 1: AnyElementsOrNone used inside permutation has a different effect as AnyElementsOrNone used in
conjunction with permutation as in the latter AnyElementsOrNone replaces consecutive elements only.
For example, {permutation(1,2,*)} is equivalent to ({*,1,*,2,*},{*,2,*,1,*}), while
{permutation(1,2),*} is equivalent to ({1,2},{2,1},*).

NOTE 2: When AnyElementsOrNone is inside a permutation, a length attribute may be applied to
AnyElementsOrNone to restrict the number of elements matched by AnyElementsOrNone (see also
clause B.1.4.1).

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 233

EXAMPLE:

 type record of integer MySequenceOfType;

 template MySequenceOfType MyTemplate1 := { permutation (1, 2, 3), 5 };
 // matches any of the following sequences of 4 integers: 1,2,3,5; 1,3,2,5; 2,1,3,5;
 // 2,3,1,5; 3,1,2,5; or 3,2,1,5

 template MySequenceOfType MyTemplate2 := { permutation (1, 2, ?), 5 };
 // matches any sequence of 4 integers that ends with 5 and contains 1 and 2 at least once in
 // other positions

 template MySequenceOfType MyTemplate3 := { permutation (1, 2, 3), * };
 // matches any sequence of integers starting with 1,2,3; 1,3,2; 2,1,3; 2,3,1; 3,1,2 or 3,2,1

 template MySequenceOfType MyTemplate4 := { *, permutation (1, 2, 3)};
 // matches any sequence of integers ending with 1,2,3; 1,3,2; 2,1,3; 2,3,1; 3,1,2 or 3,2,1

 template MySequenceOfType MyTemplate5 := { *, permutation (1, 2, 3),* };
 // matches any sequence of integers containing any of the following substrings at any position:
 // 1,2,3; 1,3,2; 2,1,3; 2,3,1; 3,1,2 or 3,2,1

 template MySequenceOfType MyTemplate6 := { permutation (1, 2, *), 5 };
 // matches any sequence of integers that ends with 5 and containing 1 and 2 at least once in
 // other positions

 template MySequenceOfType MyTemplate7 := { permutation (1, 2, 3), * length (0..5)};
 // matches any sequence of three to eight integers starting with 1,2,3; 1,3,2; 2,1,3; 2,3,1;
 // 3,1,2 or 3,2,1

 template integer MyInt1 := (1,2,3);
 template integer MyInt2 := (1,2,?);
 template integer MyInt3 := ?;
 template integer MyInt4 := *;

 template MySequenceOfType MyTemplate10 := { permutation (MyInt1, 2, 3), 5 };
 // matches any of the sequences of 4 integers:
 // 1,3,2,5; 2,1,3,5; 2,3,1,5; 3,1,2,5; or 3,2,1,5;
 // 2,3,2,5; 2,2,3,5; 2,3,2,5; 3,2,2,5; or 3,2,2,5;
 // 3,3,2,5; 2,3,3,5; 2,3,3,5; 3,3,2,5; or 3,2,3,5;

 template MySequenceOfType MyTemplate11 := { permutation (MyInt2, 2, 3), 5 };
 // matches any sequence of 4 integers that ends with 5 and contains 2 and 3 at least once in
 // other positions

 template MySequenceOfType MyTemplate12 := { permutation (MyInt3, 2, 3), 5 };
 // matches any sequence of 4 integers that ends with 5 and contains 2 and 3 at least once in
 // other positions

 template MySequenceOfType MyTemplate13 := { permutation (MyInt4, 2, 3), 5 };
 // matches any sequence of integers that ends with 5 and containing 2 and 3 at least once in
 // other positions

 template MySequenceOfType MyTemplate14 := { permutation (MyInt3, 2, ?), 5 };
 // matches any sequence of 4 integers that ends with 5 and contains 2 at least once in
 // other positions

 template MySequenceOfType MyTemplate15 := { permutation (MyInt4, 2, *), 5 };
 // matches any sequence of integers that ends with 5 and contains 2 at least once in
 // other positions

B.1.4 Matching attributes of values
The following attributes may be associated with matching mechanisms.

B.1.4.1 Length restrictions

The length restriction attribute is used to restrict the length of string values matching the template or the number of
elements in a set of, record of or array structure. It shall be used only as an attribute of the following matching
mechanisms: ValueOrAttribList, ComplementedList, AnyValue, AnyValueOrNone, AnyElement, AnyElementsOrNone,
superset, subset, and pattern. It can also be used in conjunction with the ifpresent matching attribute. The syntax for
length can be found in clauses 6.2.3 and 6.3.3.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 234

NOTE: When the length attribute is used with a value list, elements of the list may be disabled by the attribute.

When both the complement and the length restriction matching mechanisms are used for a template or template field,
restrictions implied by them shall apply to the template or template field independently.

The units of length are to be interpreted according to table 4 in the main body of the present document in the case of
string values. For set of, record of types and arrays the unit of length is the replicated type. The boundaries
shall be denoted by expressions which resolve to specific non-negative integer values. Alternatively, the keyword
infinity can be used as a value for the upper boundary in order to indicate that there is no upper limit of length.

The length specifications for the template shall not conflict with the length for restrictions (if any) of the corresponding
type. A template field that uses length as an attribute of a symbol matches the corresponding incoming field if, and only
if, the incoming field matches both the symbol and its associated attribute. The length attribute matches if the length of
the incoming field is greater than or equal to the specified lower bound and less than or equal to the upper bound. In the
case of a single length value the length attribute matches only if the length of the received field is exactly the specified
value.

It is allowed to use a length restriction in conjunction with the special value omit, however in this case the length
attribute has no effect (i.e. with omit it is redundant). With AnyValueOrNone and ifpresent it places a restriction
on the incoming value, if any.

EXAMPLE:

 template Mymessage MyTemplate:=
 {
 field1 := complement ({4,5},{1,4,8,9}) length (1 .. 6), // any value containing 1, 2, 3, 4,

// 5 or 6 elements is accepted provided it is not {4,5} or {1,4,8,9}
 field2 := "ab*ab" length(5), // matches the character string "ab*ab" only
 field3 := "ab*ab" length(13), // never matches as the specific value is of length 5
 // and not of length 13
 field4 := pattern "ab*ab" length(13),
 // max length of the AnyElementsOrNone string is 9 characters
 :
 }

B.1.4.2 The IfPresent indicator

The ifpresent indicates that a match may be made if an optional field is present (i.e. not omitted). This attribute
may be used with all the matching mechanisms, provided this field is declared as optional.

A template field that uses ifpresent matches the corresponding incoming field if, and only if, the incoming field
matches according to the associated matching mechanism, or if the incoming field is absent.

EXAMPLE:

 template Mymessage MyTemplate:=
 { :
 field2 := "abcd" ifpresent, // matches "abcd" if not omitted
 :
 :
 }

NOTE: AnyValueOrNone has exactly the same meaning as ? ifpresent.

B.1.5 Matching character pattern
Character patterns can be used in templates to define the format of a required character string to be received. Character
patterns can be used to match charstring and universal charstring values. In addition to literal characters,
character patterns allow the use of meta-characters (e.g. ? and * within a character pattern means matching any
character and any number of any character respectively).

EXAMPLE 1:

 template charstring MyTemplate:= pattern "ab??xyz*0";

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 235

This template would match any character string that consists of the characters "ab", followed by any two characters,
followed by the characters "xyz", followed by any number of any characters (including any number of "0"-s) before the
closing character "0".

If it is required to interpret any metacharacter literally it shall be preceded with the metacharacter "\".

EXAMPLE 2:

 template charstring MyTemplate:= pattern "ab?\?xyz*";

This template would match any character string which consists of the characters "ab", followed by any character,
followed by the characters "?xyz", followed by any number of any characters.

The list of meta characters for TTCN-3 patterns is shown in table B.1. Metacharacters shall not contain whitespaces
except a whitespace preceded by a newline character before or inside a set expression.

Table B.1: List of TTCN-3 pattern metacharacters

Metacharacter Description
? Match any character (see notes 1 and 2)
* Match any character zero or more times; shall match the longest possible number

of characters (see example 1 above) (see notes 1 and 2)
\ Cause the following metacharacter to be interpreted as a literal (see note 3).

When preceding a character without defined metacharacter meaning "\" and the
character together match the character following the "\" (see note 4)

[] Match any character within the specified set, see clause B.1.5.1 for more details
- Has a metacharacter meaning inside a pair of square brackets ("[" and "]") only,

except the first and last positions within the bracket. Allows to specify a range of
characters; see clause B.1.5.1 for more details

^ Has a metacharacter meaning as the first character following the opening square
bracket inside a pair of square brackets ("[" and "]") only and cause to match any
character complementing the set of characters following this metacharacter;
see clause B.1.5.1 for more details

\q{group,plane,row,cell} Match the Universal character specified by the quadruple
{reference} Insert the referenced user defined string and interpret it as a regular expression.

See clause B.1.5.2 for more details
\N{reference} Match any character within the set of characters, where the set is defined by the

referenced definition; see clause B.1.5.4 for more details
\d Match any numerical digit (equivalent to [0-9])
\w Match any alphanumeric character (equivalent to [0-9a-zA-Z])
\t Match the C0 control character HT(9) (see ISO/IEC 6429 [5])
\n Match any of the following C0 control characters: LF(10), VT(11), FF(12), CR(13)

(see ISO/IEC 6429 [5]) (jointly called newline characters, see clause A.1.5.1)
\r Match the C0 control character CR (see ISO/IEC 6429 [5])
\s Match any one of the following C0 control characters: HT(9), LF(10), VT(11),

FF(12), CR(13), SP(32) (see ISO/IEC 6429 [5], ISO/IEC 646 [4]) (jointly called
white-space characters, see clause A.1.5.1)

\b Match a word boundary (any graphical character except SP or DEL is preceded
or followed by any of the whitespace or newline characters)

\" Match the double quote character
"" Match the double quote character
| Used to denote two alternative expressions

() Used to group an expression

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 236

Metacharacter Description
#(n, m) Match the preceding expression at least n times but no more than m times

(postfix). See clause B.1.5.3 for more details
#n Match the previous expression exactly n times (where n is a single digit) (postfix);

the same as #(n)
+ Match the preceding expression one or several times (postfix); the same as #(1,)

NOTE 1: Metacharacters ? and * are able to match any characters of the character set of the root type of the
template or template field in which they are used (i.e. not considering type constraints applied). However,
it shall not be forgotten, that receiving operations require type checking of the received message before
attempting to match it. Therefore received values not complying with the subtype specification of the
template or template field are never provided for matching.

NOTE 2: In some other languages/notations ? and * has different meaning as metacharacters. However in TTCN
these characters are traditionally used for matching in the sense as specified in this table.

NOTE 3: Consequently the backslash character can be matched by a pair of backslash characters without space
between them (\\), e.g. the pattern "\\d" will match the string "\d"; opening or closing square brackets can
be matched by "\[" and "\]" respectively, etc.

NOTE 4: Such use of the metacharacter "\" is deprecated as further metacharacters can be defined later.

Character patterns may be composed from several fragments using the concatenation operation. The fragments of the
pattern shall be concatenated before any evaluation of the pattern expression. See also the shorthand notation for
referenced definitions at concatenation in clause B.1.5.2.

EXAMPLE 3:

 template charstring MyTemplate:= pattern "ab?\?" & "xyz*"; // results in the same pattern as
 // in example2

B.1.5.1 Set expression

A list of characters enclosed by a pair of "[" and "]" matches any single character in that list. The set expression is
delimited by the "[" "]" symbols. In addition to character literals, it is possible to specify character ranges using the
hyphen "-" as separator. The range consist of the character immediately before the separator, the character immediately
after it and all characters with a character code between the codes of the two bordering characters. A hyphen character
"-" inside the list but without preceding or following character loses its special meaning.

The set expression can also be negated by placing the caret "^" character as the first character after the opening square
bracket. Negation takes precedence over character ranges. Therefore a hyphen "-" immediately following a negating
caret "^" shall be processed as a literal character.

An empty list and an empty negated list are not allowed. Therefore a closing square bracket "]" immediately following
an opening square bracket "[" or a caret following the opening square bracket "[" and immediately followed by a
closing square bracket "]" shall be processed as literal characters.

All metacharacters, except those listed below, lose their special meaning inside the list:

• "]" not at the first position and not immediately following a "^" at the first position;

• "-" not at the first or last positions in the list;

• "^" at the first position in the list except when immediately followed by a closing square bracket;

• "\", "\d", "\t", "\w", "\r", "\n", "\s" and "\b";

• "\q{group,plane,row,cell}";

• "\N{reference}".

NOTE 1: Embedded lists are not allowed (for example in pattern "[ab[r-z]]" the second "[" denotes a literal "[", the
first "]" closes the list and the second "]" causes an error as no related opening bracket in the pattern).

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 237

NOTE 2: To include a literal caret character "^", place it anywhere except in the first position or precede it with a
backslash. To include a literal hyphen "-", place it first or last in the list, or precede it with a backslash.
To include a literal closing square bracket "]", place it first or precede it with a backslash. If the first
character in the list is the caret "^", then the characters "-" and "]" also match themselves when they
immediately follow that caret.

EXAMPLE:

 template charstring RegExp1:= pattern "[a-z]"; // this will match any character from a to z

 template charstring RegExp2:= pattern "[^a-z]"; // this will match any character except a to z

 template charstring RegExp3:= pattern "[AC-E][0-9][0-9][0-9]YKE";

 // RegExp3 will match a string which starts with the letter A or a letter between
 // C and E (but not e.g. B) then has three digits and the letters YKE

B.1.5.2 Reference expression

In addition to direct string values, it is also possible within the pattern to use references to templates, constants,
variables, formal parameters, module parameters, or to their fields. The reference shall be enclosed within the
"{" "}" characters and reference shall resolve a compatible character string type. Contents of the referenced templates,
constants or variables shall be handled as a regular expression. Each expression shall be dereferenced only once, before
the insertion (i.e. the expression dereferenced and inserted into the referencing pattern shall not be dereferenced again).

EXAMPLE 1:

 const charstring MyString:= "ab?";

 template charstring MyTemplate:= pattern "{MyString}";

This template would match any character string that consists of the characters "ab" followed by any character.

 template universal charstring MyTemplate1:= pattern "{MyString}de\q{1, 1, 13, 7}";

This template would match any character string which consists of the characters "ab", followed by any character,
followed by the characters "de", followed by the character in ISO10646-1 with group=1, plane=1, row=13 and cell=7.

If a referenced definition or field of a definitioncontains one or more reference expressions, then these references shall
recursively be dereferenced before inserting their contents into the referencing pattern.

If a fragment of a pattern contains a single reference only, it is allowed, as a shorthand notation, to reference the
definition or the field of the definition directly, i.e. leave out double quotes (" ") and the pair of curly brackets ({ }).

EXAMPLE 2:

 const charstring MyConst2 := "ab";
 template charstring RegExp1 := pattern "{MyConst2}";
 // matches the string "ab"
 template charstring RegExp1a := pattern MyConst2;
 // the same as above, matches the string "ab"
 template charstring RegExp2 := pattern "{RegExp1}{RegExp1}";
 // matches the string "abab"
 template charstring RegExp2a := pattern "{RegExp1}" & "{RegExp1}";
 // the same as above, matches the string "abab"
 template charstring RegExp2b := pattern RegExp1 & RegExp1;
 // the same as above, matches the string "abab"
 template charstring RegExp3 := pattern "c{RegExp2}d";
 // matches the string "cababd"

 template charstring RegExp4 := pattern "{Reg";
 template charstring RegExp5 := pattern "Exp1}";
 template charstring RegExp6 := pattern "{RegExp4}{RegExp5}";
 // matches the string "{RegExp1}" only (i.e. shall not be handled as a reference expression
 // after insertion)
 template charstring RegExp7 := pattern "{Reg" & "Exp1}";
 // note the difference to the previous example; in this case the fragments of the
 // pattern are joined before any evaluation, i.e. this template will match the string "ab"

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 238

EXAMPLE 3:

 template charstring Ref0:= "My String";
 template charstring Ref1:= "{Re";
 template charstring Ref2:= "f0}";
 template charstring Ref3:= "{Ref1}{Ref2}";
 //this matches "{Ref0}"
 //i.e. there is no further dereferencing
 //as Ref1 and Ref2 do not contain a reference

 template charstring Ref4:= "{Ref0}";
 template charstring Ref5:= "";
 template charstring Ref6:= "{Ref1}{Ref2}";
 //this matches "My String" – here Ref0 is dereferenced, because Ref4 contains
 //the reference expression {Ref0} with the reference Ref0
 template charstring RegExp7 := pattern "{Reg" & "Exp1}";
 //note the difference to Ref6: in this case the fragments of the
 //pattern are joined before any evaluation, i.e. this template will match the string "ab"

EXAMPLE 4:

 type record MyRecord {
 integer i,
 charstring c
 }
 const MyRecord referencedRecord:= {1,”this”}
 const charstring referencedConstant := referencedRecord.c;
 template charstring referencingPattern := pattern "{referencedConstant}"
 //this matches "this" as the referencedConstant is dereferenced

B.1.5.3 Match expression n times

To specify that the preceding expression should be matched a number of times one of the following syntaxes shall be
used: "#(n, m)", "#(n,)", "#(, m)", "#(n)", "#n" or "+".. The form "#(n, m)" specifies that the preceding expression must
be matched at least n times but not more than m times. The metacharacter postfix "#(n,)" specifies that the preceding
expression must be matched at least n times while "#(, m)" indicates that the preceding expression shall be matched not
more than m times. Metacharacters (postfixes) "#(n)" and "#n" specify that the preceding expression must be matched
exactly n times (they are equivalent to "#(n, n)"). In the form "#n" n shall be a single digit. The metacharacter postfix
"+" denotes that the preceding expression must be matched at least 1 time (equivalent to "#(1,)").

EXAMPLE:

 template charstring RegExp4:= pattern "[a-z]#(9, 11)"; // match at least 9 but no more than 11
 // characters from a to z
 template charstring RegExp5a:= pattern "[a-z]#(9)"; // match exactly 9
 // characters from a to z
 template charstring RegExp5b:= pattern "[a-z]#9"; // match exactly 9
 // characters from a to z
 template charstring RegExp6:= pattern "[a-z]#(9,)"; // match at least 9
 // characters from a to z
 template charstring RegExp7:= pattern "[a-z]#(, 11)"; // match no more than 11
 // characters from a to z
 template charstring RegExp8:= pattern "[a-z]+"; // match at least 1
 // characters from a to z,

B.1.5.4 Match a referenced character set

A notation of the form "\N{reference}", where reference is denoting a one-character-length template, constant,
variable, formal parameter or module parameter, matches the character in the referenced value or template.

Referencing a template, constant, variable, formal parameter or module parameter that is not of length 1 shall cause an
error.

A notation of the form "\N{typereference}", where "typereference" is a reference to a charstring or universal
charstring type, matches any character of the character set denoted by the referenced type.

NOTE 1: Cases when the referenced set of characters is not a subset of values allowed by the type definition of the
template or template field for which the character pattern is used, are not be treated as an error (but e.g.
matching never can occur if the two sets do not overlap).

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 239

NOTE 2: \N{charstring} is equivalent to ? when the latter is applied to a template or template field of
charstring type and \N{universal charstring} is equivalent to ? when the latter is applied to
a template or template field of universal charstring type (but causes an error if applied to a
template or template field of charstring type).

EXAMPLE:

 type charstring MyCharRange ("a".."z");
 type charstring MyCharList ("a", "z");
 const MyCharRange myCharR := "r";

 template charstring myTempPatt1 := pattern "\N{myCharR}";
 // myTempPatt1 shall match the string "r" only

 template charstring myTempPatt2 := pattern "\N{MyCharRange}";
 // myTempPatt2 shall match any string containing a single character from a to z

 template MyCharRange myTempPatt3 := pattern "\N{MyCharList}";
 // myTempPatt3 shall match strings "a" or "z" only

B.1.5.5 Type compatibility rules for patterns

For the purpose of referenced patterns (see clause B.1.5.2) and references character sets (see clause B.1.5.3) specific
type compatibility rules apply: a referenced type, template, constant, variable or module parameter of the type
charstring always can be used in the pattern specification of a template or template field of universal
charstring type; a referenced type, template or value of the type universal charstring can be used in the
pattern specification of a template or template field of charstring type if all characters used in the referenced
template or value and the character set allowed by the referenced type has their corresponding characters in the
charstring type (see definition of corresponding characters in clause 6.3.1).

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 240

Annex C (normative):
Pre-defined TTCN-3 functions
This annex defines the TTCN-3 predefined functions.

C.0 General exception handling procedures
When the general restrictions specified in clause 16.1.2 are not met, this shall cause a compile time or runtime error.
Error situations for which no explicit exception-handling rule is defined in the relevant clauses of this annex shall cause
a TTCN-3 compile-time or run-time error. Which error situation causes compile-time and which one run-time error is a
tool implementation option.

C.1 Integer to character
 int2char(in integer invalue) return charstring

This function converts an integer value in the range of 0 to 127 (8-bit encoding) into a single-character-length
charstring value. The integer value describes the 8-bit encoding of the character.

In addition to the general error causes in clause 16.1.2, error causes are:

• invalue is less than 0 or greater than 127.

C.2 Integer to universal character
 int2unichar(in integer invalue) return universal charstring

This function converts an integer value in the range of 0 to 2 147 483 647 (32-bit encoding) into a
single-character-length universal charstring value. The integer value describes the 32-bit encoding of the
character.

In addition to the general error causes in clause 16.1.2, error causes are:

• invalue is less than 0 or greater than 2147483647.

C.3 Integer to bitstring
 int2bit(in integer invalue, in integer length) return bitstring

This function converts a single integer value to a single bitstring value. The resulting string is length bits
long.

For the purposes of this conversion, a bitstring shall be interpreted as a positive base 2 integer value. The
rightmost bit is least significant, the leftmost bit is the most significant. The bits 0 and 1 represent the decimal values 0
and 1 respectively. If the conversion yields a value with fewer bits than specified in the length parameter, then the
bitstring shall be padded on the left with zeros.

In addition to the general error causes in clause 16.1.2, error causes are:

• invalue is less than zero;

• the conversion yields a return value with more bits than specified by length.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 241

C.4 Integer to hexstring
 int2hex(in integer invalue, in integer length) return hexstring

This function converts a single integer value to a single hexstring value. The resulting string is length
hexadecimal digits long.

For the purposes of this conversion, a hexstring shall be interpreted as a positive base 16 integer value. The
rightmost hexadecimal digit is least significant, the leftmost hexadecimal digit is the most significant. The hexadecimal
digits 0 to F represent the decimal values 0 to 15 respectively. If the conversion yields a value with fewer hexadecimal
digits than specified in the length parameter, then the hexstring shall be padded on the left with zeros.

In addition to the general error causes in clause 16.1.2, error causes are:

• invalue is less than zero;

• the conversion yields a return value with more hexadecimal characters than specified by length.

C.5 Integer to octetstring
 int2oct(in integer invalue, in integer length) return octetstring

This function converts a single integer value to a single octetstring value. The resulting string is length
octets long.

For the purposes of this conversion, an octetstring shall be interpreted as a positive base 16 integer value. The
rightmost hexadecimal digit is least significant, the leftmost hexadecimal digit is the most significant. The number of
hexadecimal digits provided shall be multiples of 2 since one octet is composed of two hexadecimal digits. The
hexadecimal digits 0 to F represent the decimal values 0 to 15 respectively. If the conversion yields a value with fewer
hexadecimal digits than specified in the length parameter, then the hexstring shall be padded on the left with
zeros.

In addition to the general error causes in clause 16.1.2, error causes are:

• invalue is less than zero;

• the conversion yields a return value with more octets than specified by length.

C.6 Integer to charstring
 int2str(in integer invalue) return charstring

This function converts the integer value into its string equivalent (the base of the return string is always decimal).

The general error causes in clause 16.1.2 apply.

EXAMPLE:

 int2str(66) // will return the charstring value "66"

 int2str(-66) // will return the charstring value "-66"

 int2str(0) // will return the charstring value "0"

C.7 Integer to float
 int2float(in integer invalue) return float

This function converts an integer value into a float value.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 242

The general error causes in clause 16.1.2 apply.

EXAMPLE:

 int2float(4) = 4.0

C.8 Float to integer
 float2int(in float invalue) return integer

This function converts a float value into an integer value by removing the fractional part of the argument and
returning the resulting integer.

In addition to the general error causes in clause 16.1.2, error causes are:

• invalue is infinity, -infinity or not_a_number.

EXAMPLE:

 float2int(3.12345E2) = float2int(312.345) = 312

C.9 Character to integer
 char2int(in charstring invalue) return integer

This function converts a single-character-length charstring value into an integer value in the range of 0 to 127. The
integer value describes the 8-bit encoding of the character.

In addition to the general error causes in clause 16.1.2, error causes are:

• length of invalue does not equal 1.

C.10 Character to octetstring
 char2oct(in charstring invalue) return octetstring

This function converts a charstring invalue to an octetstring. Each octet of the octetstring will
contain the ISO/IEC 646 [4] codes (according to the IRV) of the appropriate characters of invalue.

The general error causes in clause 16.1.2 apply.

EXAMPLE:

 char2oct ("Tinky-Winky") = '54696E6B792D57696E6B79'O

C.11 Universal character to integer
 unichar2int(in universal charstring invalue) return integer

This function converts a single-character-length universal charstring value into an integer value in the range of
0 to 2 147 483 647. The integer value describes the 32-bit encoding of the character.

In addition to the general error causes in clause 16.1.2, error causes are:

• length of invalue does not equal 1.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 243

C.12 Bitstring to integer
 bit2int(in bitstring invalue) return integer

This function converts a single bitstring value to a single integer value.

For the purposes of this conversion, a bitstring shall be interpreted as a positive base 2 integer value. The
rightmost bit is least significant, the leftmost bit is the most significant. The bits 0 and 1 represent the decimal values 0
and 1 respectively.

NOTE: On real test systems the integer interpretation of invalue may lead to an overflow problem that causes
compile time or run-time error. However, this is out of the scope of the present document.

The general error causes in clause 16.1.2 apply.

C.13 Bitstring to hexstring
 bit2hex(in bitstring invalue) return hexstring

This function converts a single bitstring value to a single hexstring. The resulting hexstring represents the
same value as the bitstring.

For the purpose of this conversion, a bitstring shall be converted into a hexstring, where the bitstring is divided into
groups of four bits beginning with the rightmost bit. Each group of four bits is converted into a hex digit as follows:

'0000'B → '0'H, '0001'B → '1'H, '0010'B → '2'H, '0011'B → '3'H, '0100'B → '4'H, '0101'B → '5'H,
'0110'B → '6'H, '0111'B → '7'H, '1000'B → '8'H, '1001'B → '9'H, '1010'B → 'A'H, '1011'B → 'B'H,
'1100'B → 'C'H, '1101'B → 'D'H, '1110'B → 'E'H, and '1111'B → 'F'H.

When the leftmost group of bits does contain less than 4 bits, this group is filled with '0'B from the left until it contains
exactly 4 bits and is converted afterwards. The consecutive order of hex digits in the resulting hexstring is the same as
the order of groups of 4 bits in the bitstring.

The general error causes in clause 16.1.2 apply.

EXAMPLE:

 bit2hex ('111010111'B)= '1D7'H

C.14 Bitstring to octetstring
 bit2oct(in bitstring invalue) return octetstring

This function converts a single bitstring value to a single octetstring. The resulting octetstring
represents the same value as the bitstring.

For the conversion the following holds: bit2oct(value)=hex2oct(bit2hex(value)).

The general error causes in clause 16.1.2 apply.

EXAMPLE:

 bit2oct('111010111'B)= '01D7'O

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 244

C.15 Bitstring to charstring
 bit2str(in bitstring invalue) return charstring

This function converts a single bitstring value to a single charstring. The resulting charstring has the
same length as the bitstring and contains only the characters '0' and '1'.

For the purpose of this conversion, a bitstring shall be converted into a charstring. Each bit of the
bitstring is converted into a character '0' or '1' depending on the value 0 or 1 of the bit. The consecutive order of
characters in the resulting charstring is the same as the order of bits in the bitstring.

The general error causes in clause 16.1.2 apply.

EXAMPLE:

 bit2str('1110101'B) will return "1110101"

C.16 Hexstring to integer
 hex2int(in hexstring invalue) return integer

This function converts a single hexstring value to a single integer value.

For the purposes of this conversion, a hexstring shall be interpreted as a positive base 16 integer value. The
rightmost hexadecimal digit is least significant, the leftmost hexadecimal digit is the most significant. The hexadecimal
digits 0 to F represent the decimal values 0 to 15 respectively.

NOTE: On real test systems the integer interpretation of invalue may lead to an overflow problem that causes
compile time or run-time error. However, this is out of the scope of the present document.

The general error causes in clause 16.1.2 apply.

C.17 Hexstring to bitstring
 hex2bit(in hexstring invalue) return bitstring

This function converts a single hexstring value to a single bitstring. The resulting bitstring represents the
same value as the hexstring.

For the purpose of this conversion, a hexstring shall be converted into a bitstring, where the hex digits of the
hexstring are converted in groups of bits as follows:

'0'H → '0000'B, '1'H → '0001'B, '2'H → '0010'B, '3'H → '0011'B, '4'H → '0100'B, '5'H → '0101'B,
'6'H → '0110'B, '7'H → '0111'B, '8'H → '1000'B, '9'H → '1001'B, 'A'H → '1010'B, 'B'H → '1011'B,
'C'H → '1100'B, 'D'H → '1101'B, 'E'H → '1110'B, and 'F'H → '1111'B.

The consecutive order of the groups of 4 bits in the resulting bitstring is the same as the order of hex digits in the
hexstring.

The general error causes in clause 16.1.2 apply.

EXAMPLE:

 hex2bit('1D7'H)= '000111010111'B

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 245

C.18 Hexstring to octetstring
 hex2oct(in hexstring invalue) return octetstring

This function converts a single hexstring value to a single octetstring. The resulting octetstring
represents the same value as the hexstring.

For the purpose of this conversion, a hexstring shall be converted into a octetstring, where the
octetstring contains the same sequence of hex digits as the hexstring when the length of the hexstring
modulo 2 is 0. Otherwise, the resulting octetstring contains 0 as leftmost hex digit followed by the same sequence
of hex digits as in the hexstring.

The general error causes in clause 16.1.2 apply.

EXAMPLE:

 hex2oct('1D7'H)= '01D7'O

C.19 Hexstring to charstring
 hex2str(in hexstring invalue) return charstring

This function converts a single hexstring value to a single charstring. The resulting charstring has the same length as the
hexstring and contains only the characters '0' to '9'and 'A' to 'F'.

For the purpose of this conversion, a hexstring shall be converted into a charstring. Each hex digit of the
hexstring is converted into a character '0' to '9' and 'A' to 'F' depending on the value 0 to 9 or A to F of the hex digit.
The consecutive order of characters in the resulting charstring is the same as the order of digits in the
hexstring.

The general error causes in clause 16.1.2 apply.

EXAMPLE:

 hex2str('AB801'H) will return "AB801"

C.20 Octetstring to integer
 oct2int(in octetstring invalue) return integer

This function converts a single octetstring value to a single integer value.

For the purposes of this conversion, an octetstring shall be interpreted as a positive base 16 integer value. The
rightmost hexadecimal digit is least significant, the leftmost hexadecimal digit is the most significant. The number of
hexadecimal digits provided shall be multiples of 2 since one octet is composed of two hexadecimal digits. The
hexadecimal digits 0 to F represent the decimal values 0 to 15 respectively.

NOTE: On real test systems the integer interpretation of invalue may lead to an overflow problem that causes
compile time or run-time error. However, this is out of the scope of the present document.

The general error causes in clause 16.1.2 apply.

C.21 Octetstring to bitstring
 oct2bit(in octetstring invalue) return bitstring

This function converts a single octetstring value to a single bitstring. The resulting bitstring represents
the same value as the octetstring.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 246

For the conversion the following holds: oct2bit(value)=hex2bit(oct2hex(value)).

The general error causes in clause 16.1.2 apply.

EXAMPLE:

 oct2bit ('01D7'O)='0000000111010111'B

C.22 Octetstring to hexstring
 oct2hex(in octetstring invalue) return hexstring

This function converts a single octetstring value to a single hexstring. The resulting hexstring represents
the same value as the octetstring.

For the purpose of this conversion, a octetstring shall be converted into a hexstring containing the same
sequence of hex digits as the octetstring.

The general error causes in clause 16.1.2 apply.

EXAMPLE:

 oct2hex('1D74'O)= '1D74'H

C.23 Octetstring to character string
 oct2str(in octetstring invalue) return charstring

This function converts an octetstring invalue to an charstring representing the string equivalent of the
input value. The resulting charstring shall have the same length as the incoming octetstring.

For the purpose of this conversion each hex digit of invalue is converted into a character '0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', 'A', 'B', 'C', 'D', 'E' or 'F' echoing the value of the hex digit. The consecutive order of characters in the resulting
charstring is the same as the order of hex digits in the octetstring.

The general error causes in clause 16.1.2 apply.

EXAMPLE:

 oct2str('4469707379'O) = "4469707379"

C.24 Octetstring to character string, version II
 oct2char(in octetstring invalue) return charstring

This function converts an octetstring invalue to a charstring. The input parameter invalue shall not
contain octet values higher than 7F. The resulting charstring shall have the same length as the input
octetstring. The octets are interpreted as ISO/IEC 646 [4] codes (according to the IRV) and the resulting
characters are appended to the returned value.

The general error causes in clause 16.1.2 apply.

EXAMPLE:

 oct2char('4469707379'O) = "Dipsy"

NOTE: The character string returned may contain non-graphical characters, which cannot be presented between
the double quotes.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 247

C.25 Charstring to integer
 str2int(in charstring invalue) return integer

This function converts a charstring representing an integer value to the equivalent integer.

In addition to the general error causes in clause 16.1.2, error causes are:

• invalue contains characters other than "0", "1", "2", "3", "4", "5", "6", "7", "8", "9" and "-".

• invalue contains the character "-" at another position than the leftmost one.

NOTE: On real test systems the integer interpretation of invalue may lead to an overflow problem that causes
compile time or run-time error. However, this is out of the scope of the present document.

EXAMPLE:

 str2int("66") // will return the integer value 66

 str2int("-66") // will return the integer value -66

 str2int("6-6") // will cause an error

 str2int("abc") // will cause an error

 str2int("0") // will return the integer value 0

C.26 Character string to hexstring
 str2hex(in charstring invalue) return hexstring

This function converts a string of the type charstring to a hexstring. The string invalue shall contain the
"0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e" "f", "A", "B", "C", "D", "E" or "F" graphical
characters only. Each character of invalue shall be converted to the corresponding hexadecimal digit. The resulting
hexstring will have the same length as the incoming charstring.

In addition to the general error causes in clause 16.1.2, error cause is:

• invalue contains characters other than specified above.

EXAMPLE:

 str2hex("54696E6B792D57696E6B7") = '54696E6B792D57696E6B7'H

C.27 Character string to octetstring
 str2oct(in charstring invalue) return octetstring

This function converts a string of the type charstring to an octetstring. The string invalue shall contain
the "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e" "f", "A", "B", "C", "D", "E" or "F" graphical
characters only. When the string invalue contains even number characters the resulting octetstring contains 0
as leftmost character followed by the same sequence of characters as in the charstring.

lengthof (see clause C.) for the resulting octetstring will return half of lengthof of the incoming
charstring. In addition to the general error causes in clause 16.1.2, error causes is:

• invalue contains characters other than specified above.

EXAMPLE:

 str2oct("54696E6B792D57696E6B79") = '54696E6B792D57696E6B79'O
 str2oct("1D7")= '01D7'O

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 248

NOTE: The semantic of the str2oct function cause asymmetric behaviour:

 oct2str(str2oct("1D7"))// results the charstring value "01D7"

C.28 Character string to float
 str2float(in charstring invalue) return float

This function converts a charstring comprising a number into a float value. The format of the number in the
charstring shall follow rules in clause 6.1.0, items a) or b) with the following exceptions:

• leading zeros are allowed;

• leading "+" sign before positive values is allowed;

• "-0.0" is allowed;

• no numbers after the dot in the decimal notation are allowed.

In addition to the general error causes in clause 16.1.2, error causes are:

• the format of invalue is different than defined above.

NOTE: On real test systems the float interpretation of invalue may lead to an overflow problem that causes
compile time or run-time error. However, this is out of the scope of the present document.

EXAMPLE:

 str2float("12345.6") // is the same as str2float("123.456E+02")
 str2float("1.6") // returns a float value equal to 1.6
 str2float("+001.") // returns a float value equal to 1.0
 str2float("+001") // returns a float value equal to 1.0
 str2float("-0.0") // returns a float value equal to -0.0

C.29 Length of strings and lists
 lengthof(in template (present) any_string_or_list_type inpar) return integer

This function returns the length of a value or template that is of type bitstring, hexstring, octetstring,
charstring, universal charstring, record of, set of, or array (see the note below). The units of
length for each string type are defined in table 4 in the main body of the present document. For record of, set of,
and array, the value to be returned is the sequential number of the last initialized element: in case of record of and
set of the index of that element plus 1. In case of arrays, lengthof should return the index of that last element
minus the index of the first element plus 1.

The length of a fixed length record of, set of, or array value will always be the fixed length according to the type
definition.

The length of an universal charstring shall be calculated by counting each combining character and hangul syllable
character (including fillers) on its own (see ISO/IEC 10646 [2], clauses 23 and 24).

When the function lengthof is applied to string-type templates, inpar shall only contain the following matching
mechanisms: specific value, value list, complemented value list, pattern, "?" (AnyValue instead of value), "*"
(AnyValueOrNone instead of value), "?" (AnyElement inside value) and "*" (AnyElementsOrNone inside value) and the
length restriction matching attribute. In case of string-type templates inpar shall match values of the same length only.

When the function lengthof is applied to templates of record of or set of types, inpar shall only contain the
following matching mechanisms: specific value, value list, complemented value list, "?" (AnyValue instead of value),
"*" (AnyValueOrNone instead of value), SuperSet, SubSet, "?" (AnyElement inside value) and "*"
(AnyElementsOrNone inside value), permutattion and the length restriction matching attribute. The parameter inpar
shall only match values, for which the lengthof function would give the same result.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 249

NOTE 1: In case of record ofs and set ofs and arrays only elements of the TTCN-3 object, which is the parameter of
the function are calculated; i.e. no elements of nested types are taken into account at determining the
return value.

In addition to the general error causes in clause 16.1.2, error causes are:

• inpar is a string-type template and it can match string values with different length or the length restriction
matching attribute contradicts the number of string elements in the template body;

• inpar is a record of or set of type template and it can match values of different lengths or the length
restriction matching attribute contradicts the number of elements in the template body.

NOTE 2: On real test systems the length calculation of inpar may lead to an overflow problem that causes
compile time or run-time error. However, this is out of the scope of the present document.

The general error causes in clause 16.1.2 apply.

EXAMPLE 1: Using lengthof for values

 lengthof('010'B) // returns 3

 lengthof('F3'H) // returns 2

 lengthof('F2'O) // returns 1

 lengthof (universal charstring : "Length_of_Example") // returns 17

 // Given
 type record length(0..10) of integer MyList;
 var MyList MyListVar := { 0, 1, -, 2, - };

 lengthof(MyListVar);

 // returns 4 without respect to the fact, that the element MyListVar[2] is not initialized

EXAMPLE 2: Using lengthof for string-type templates

 lengthof(charstring : "HELLO") // returns 5

 lengthof(octetstring : (’12’O, ’34’O)) // returns 1

 lengthof(’1??1’B) // returns 4

 lengthof(universal charstring : ? length(8)) // returns 8

 lengthof(’1*F’H) // shall cause an error

 lengthof(’1*F’H length (8)) // returns 8

 lengthof(bitstring : ? length(2..infinity)) // shall cause an error

 lengthof(’00*FF’O length(1..2)) // returns 2

 lengthof(’1*49’H length(1..2)) // shall cause an error

 lengthof(’1’B length(3)) // shall cause an error

 lengthof(’1*1’B length(10..20)) // shall cause an error

EXAMPLE 3:

 type record of integer RoI;
 template RoI tr_roI1 := { 1, permutation(2, 3), ? }
 template RoI tr_roI2 := {1, *, (2, 3) }
 template RoI tr_roI3 := { 1, *, 10 } length(5)
 template RoI tr_roI4 := { 1, 2, 3, * } length(1..2)
 template RoI tr_roI5 := { 1, 2, 3, * } length(1..3)

 lengthof (tr_roI1) // returns 4

 lengthof (tr_roI2) // shall cause an error

 lengthof (tr_roI3) // returns 5

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 250

 lengthof (tr_roI4) // shall cause an error

 lengthof (tr_roI5) // returns 3

C.30 Number of elements in a structured value
 sizeof(in template (present) any_record_set_type inpar) return integer

This function returns the actual number of elements of a value or template of a record or set type (see note).

The function sizeof is applicable to templates of record and set types. The function is applicable only if the sizeof
function gives the same result on all values that match the template.

NOTE: Only elements of the TTCN-3 object, which is the parameter of the function are calculated; i.e. no
elements of nested types/values are taken into account at determining the return value.

In addition to the general error causes in clause 16.1.2, error causes are:

• when inpar is a template and it can match values of different sizes.

EXAMPLE:

 // Given
 type record MyPDU
 { boolean field1 optional,
 integer field2
 };

 template MyPDU MyTemplate
 { field1 := omit,
 field2 := 5
 };

 sizeof(MyTemplate); // returns 1

 type set S {
 integer f1,
 bitstring f2 optional,
 charstring f3 optional
 }

 template S tr_S1 := { f1 := (0..99), f2 := omit, f3 := ? }
 template S tr_S2 := { f3 := *, f1 := 1, f2 := ’00’B ifpresent }
 template S tr_S3 := ({ f1 := 1, f2 := omit, f3 := "ABC" }, { f1 := 2, f3 := omit, f2 := ’1’B })
 template S tr_S4 := ?

 sizeof(tr_S1) // returns 2
 sizeof(tr_S2) // shall cause an error
 sizeof(tr_S3) // returns 2
 sizeof(tr_S4) // shall cause an error

C.31 The IsPresent function
 ispresent(in template any_ type inpar) return boolean

This function is allowed for templates of all data types and returns:

• the value true if the given template fulfils the (present) template restriction as described in clause 15.8,

• the value false otherwise if no error is caused (see below).

NOTE 1: When the argument of ispresent is a subfield of a template field to which the "?" (AnyValue) matching
is assigned, the extension mechanism specified in clause 15.6.2 applies.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 251

NOTE 2: This means that whenever ispresent(MyTemplate) returns true,
- MyTemplate can safely be assigned to a non-optional field of the type of the template in a template
 variable
- MyTemplate can safely be used as an actual template(present) parameter or assigned to a variable of kind
 template(present).

In addition to the general error causes in clause 16.1.2, error causes are:

• inpar is referring to a field that is not accessible, e.g. embedded in a template or in a field using omit or "*"
(AnyValueOrNone). Note, that this rule applies for any levels of embedding.

EXAMPLE:

 // Given
 type record MyRecord
 {
 record {
 boolean innerField1 optional,
 integer innerField2 optional
 } field1 optional,
 integer field2
 }

 var MyRecord vl_MyRecord := { field1 := {}, field2 := 5 }

 ispresent(vl_MyRecord.field1) // returns true

 vl_MyRecord.field1 := omit

 ispresent(vl_MyRecord.field1) // returns false

 ispresent(vl_MyRecord.field1.innerField1) // shall return false because field1 is omitted

 var template MyRecord vlt_MyRecord := { field1 := ?, field2 := 5 }

 ispresent(vlt_MyRecord.field1) // returns true

 ispresent(vlt_MyRecord.field1.innerField1) // shall cause an error because field1 is AnyValue
 // (pls. note, that at expansion of field1 the optional field innerField1 obtains "*"
 // that can match both a present and an omitted field

 type record R { integer f1 optional, integer f2 optional }
 template R t1 := {f1 := 1, f2 :=(2 .. 4) }
 template R t2 := { f1 := omit, f2 := (5, 7) ifpresent }
 template R t3 := {f1 := *, f2 :=? }

 ispresent(t1.f1) // returns true

 ispresent(t1.f2) // returns true

 ispresent(t2.f1) // returns false

 ispresent(t2.f2) // return false

 ispresent(t3.f1) // return false

 ispresent(t3.f2) // returns true

 function f(in template p) {
 if (ispresent(p)) {
 // do something
 }
 }
 f(t) // does not cause an error if t is a valid template

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 252

C.32 The IsChosen function
 ischosen(in template any_union_type inpar) return boolean

This function returns the value true if and only if the data object reference specifies the variant of the union type that
is actually selected for a given data object.

The function ischosen is applicable to templates of union types containing a specific value or a value list. It returns
true if all the values matched by inpar have the given field selected. The result is false if there is another field of
the union type on which ischosen would return true.

In addition to the general error causes in clause 16.1.2, error causes are:

• inpar is referring to a field that is not accessible, e.g. embedded in a template or in a field using omit, "?"
(AnyValue) or "*" (AnyValueOrNone). Note, that this rule apply for any levels of embedding;

• when inpar is a template and it can match values containing different selected fields.

EXAMPLE 1:

 type union U { integer f1, octetstring f2 }
 template U t_U1 := {f1 := 1}
 template U t_U2 := {f2 := ?}
 template U t_U3 := ?
 template U t_U4 := ({ f1 := 2 }, {f2 := ’AB’O })
 template U t_U5 := ({ f2 := ’12?’O }, { f2 := ’*34’O length(2) })

 ischosen(t_U1.f1) // returns true

 ischosen(t_U1.f2) // returns false

 ischosen(t_U2.f1) // returns false

 ischosen(t_U2.f2) // returns true

 ischosen(t_U3.f1) // shall cause an error

 ischosen(t_U3.f2) // shall cause an error

 ischosen(t_U4.f1) // shall cause an error

 ischosen(t_U4.f2) // shall cause an error

 ischosen(t_U5.f1) // returns false

 ischosen(t_U5.f2) // returns true

EXAMPLE 2:

 // Given
 type union MyUnion
 { PDU_type1 p1,
 PDU_type2 p2,
 PDU_type p3
 }

 // and given that MyPDU is a template of MyUnion type
 // and received_PDU is also of MyUnion type
 // then
 MyPort.receive(MyPDU) -> value received_PDU
 ischosen(received_PDU.p2)
 // returns true if the actual instance of MyPDU carries a PDU of the type PDU_type2

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 253

C.33 The Regexp function
 regexp(
 in template (value) any_character_string_type inpar,
 in template (present) any_character_string_type expression,
 in integer groupno
) return any_character_string_type

This function returns the substring of the input character string inpar, which is the content of n-th group matching to
the expression. The parameters inpar and expression shall be a value or a template of charstring or
universal charstring types. In case inpar is a template, it shall contain the specific value matching
mechanism only. The type of expression shall be universal charstring only when the type of inpar is
universal charstring. When expression is a template it shall contain the specific value or pattern matching
mechanisms only. The parameter groupno shall be a non-negative integer. The type of the character string returned is
the root type of inpar.

First inpar (or in case inpar is a template, its value equivalent) shall be matched against expression. If
expression is not a template containing a pattern matching mechanism, it shall be processed by this predefined
function as if it was a character pattern as described in clause B.1.5. If this matching is unsuccessful, an empty string
shall be returned. If this matching is successful, the substring of inpar shall be returned, which matched the
groupno-s group of expression during the matching. Group numbers are assigned by the order of occurrences of
the opening bracket of a group and counted starting from 0 by step 1.

In addition to the general error causes in clause 16.1.2, error causes are:

• when inpar is a template, it contains other matching mechanism than specific value or character pattern;

• when expression is a template, it contains other matching mechanism than specific value or character
pattern;

• inpar is of charstring type and expression is of universal charstring type;

• groupno is a negative integer;

• there is no groupno -s group in expression.

EXAMPLE:

 // Given
 var charstring myInput := " simple text for a regexp example ";
 var charstring myString;

 myString := regexp(myInput,charstring:"?+(text)?+",0) //will return "text"

 myString := regexp(myInput,charstring:"?+(text)?+",1) //causes an error as there is
 //no group with index 1
 myString := regexp(myInput,charstring:"(?+)(text)(?+)",0) //will return " simple "

 myString := regexp(myInput,charstring:"(?+)(text)(?+)",2) //will return
 //" for a regexp example "
 myString := regexp(myInput,charstring:"((?+)(text)(?+))",0) //will return the whole inpar,
 //i.e. " simple text for a regexp example "
 myString := regexp(myInput,charstring:"(([]+)(text)(?+))",0) //will return an empty string
 //as expression does not matches inpar
 myString := regexp(myInput,universal charstring:"?+(text)?+",0) //will cause an error as
 // inpar is of type charstring, while
 // expression is of type universal charstring

 myInput := " date: 2001-10-20 ; msgno: 17; exp "
 var template charstring myPattern := pattern"([/t]#(,)date:[\d\-]#(,);[/t]#(,)msgno: (\d#(1,3)); (exp)#(0,1))"
 //please note, that only the very first opening bracket and the bracket before "\d" denotes
 // groups; "#(,)", "#(1,3)" and "#(0,1)" denotes matching the preceding expression several time

 myString := regexp(myInput, myPattern,1) //will return the value "17".

 //An example of a wrapper function to count groups from 1 and return the complete p_inpar
 //if p_groupno equals 0
 function regexp0(

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 254

 in template charstring p_inpar,
 in template charstring p_expression,
 in integer p_groupno)
 return charstring {
 var template charstring extended_expr := pattern "({p expression})";
 return regexp(p inpar, extended_expr, p_groupno)
 }

C.34 The Substring function
 substr(
 in template (present) any_string_or_sequence_type inpar,
 in integer index,
 in integer count
) return input_string_or_sequence_type

This function returns a substring or subsequence from a value that is of a binary string type (bitstring,
hexstring, octetstring), a character string type (charstring, universal charstring), or a sequence
type (record of, set of or array). The type of the substring or subsequence returned is the root type of the input
parameter. The starting point of substring or subsequence to return is defined by the second parameter (index).
Indexing starts from zero. The third input parameter (count) defines the length of the substring or subsequence to be
returned. The units of length for string types are as defined in table 4 of the present document. For sequence types, the
unit of length is element.

NOTE: Please note that the root types of arrays is record of, therefore if inpar is an array the returned type
is record of. This, in same cases, may lead to different indexing in inpar and in the returned value.

When used on templates of character string types, only the inside matching mechanisms AnyElement and
AnyElementsOrNone are allowed in inpar and the function shall return the character representation of the matching
mechanisms, i.e. "?" for AnyElement and "*" for AnyElementsOrNone. When inpar is a template of binary string or
sequence type or is an array, only the specificvalue and AnyElement matching mechanisms are allowed and the
substring or subsequence to be returned shall not contain AnyElement.

In addition to the general error causes in clause 16.1.2, error causes are:

• index is less than zero;

• count is less than zero;

• index+count is greater than lengthof(inpar);

• inpar is a template of a character string type and contains a matching mechanism other than AnyElement or
AnyElementsOrNone;

• inpar is a template of a binary string or sequence type or array and it contains other matching mechanism as
specific value and AnyElement;

• inpar is a template of a binary string or sequence type or array and the substring or subsequence to be
returned contains the AnyElement matching mechanism.

EXAMPLE:

 substr('00100110'B, 3, 4) // returns '0011'B

 substr('ABCDEF'H, 2, 3) // returns 'CDE'H

 substr('01AB23CD'O, 1, 2) // returns 'AB23'O

 substr("My name is JJ", 11, 2) // returns "JJ"

 substr({ 4, 5, 6 }, 1, 2) // returns {5, 6}

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 255

C.35 The Replace function
 replace(
 in any_string_or_sequence_type inpar,
 in integer index,
 in integer len,
 in any_string_or_sequence_type repl
) return any_string_or_sequence type

This function replaces the substring or subsequence of value inpar at index index of length len with the string or
sequence value repl and returns the resulting string or sequence. inparshall not be modified. If len is 0 the string
or sequence repl is inserted. If index is 0, repl is inserted at the beginning of inpar. If index is
lengthof(inpar), repl is inserted at the end of inpar. inparand repl, and the returned string or sequence
shall be of the same root type. The function replace can be applied to bitstring, hexstring, octetstring, or
any character string, record of, set of, or arrays. Note that indexing in strings starts from zero.

NOTE: Please note that the root types of arrays is record of, therefore if inpar or repl or both are an
array, the returned type is record of. This, in same cases, may lead to different indexing in inpar
and/or repl and in the returned value.

In addition to the general error causes in clause 16.1.2, error causes are:

• inpar or repl are not of string, record of, set of, or array type;

• inpar and repl are of different root type;

• index is less than 0 or greater than lengthof(inpar);

• len is less than 0 or greater than lengthof(inpar);

• index+len is greater than lengthof(inpar).

EXAMPLE:

 replace ('00000110'B, 1, 3, '111'B) // returns '01110110'B

 replace ('ABCDEF'H, 0, 2, '123'H) // returns '123CDEF'H

 replace ('01AB23CD'O, 2, 1, 'FF96'O) // returns '01ABFF96CD'O

 replace ("My name is JJ", 11, 1, "xx") // returns "My name is xxJ"

 replace ("My name is JJ", 11, 0, "xx") // returns "My name is xxJJ"

 replace ("My name is JJ", 2, 2, "x") // returns "Myxame is JJ",

 replace ("My name is JJ", 12, 2, "xx") // produces test case error

 replace ("My name is JJ", 13, 2, "xx") // produces test case error

 replace ("My name is JJ", 13, 0, "xx") // returns "My name is JJxx"

C.36 The random number generator function
 rnd([in float seed]) return float

The rnd function returns a (pseudo) random number less than 1 but greater or equal to 0. The random number
generator is initialized by means of an optional seed value. Afterwards, if no new seed is provided, the last generated
number will be used as seed for the next random number. Without a previous initialization a value calculated from the
system time will be used as seed value when rnd is used the first time.

Each time the rnd function is initialized with the same seed value, it shall repeat the same sequence of random
numbers.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 256

To produce a random integers in a given range, the following formula can be used:

 float2int(int2float(upperbound - lowerbound +1)*rnd()) + lowerbound
 // Here, upperbound and lowerbound denote highest and lowest number in range.

The general error causes in clause 16.1.2 apply.

C.37 Enumerated to integer
 enum2int(in Enumerated_type inpar) return integer

This function accepts an enumeration value and returns the integer value associated to the enumeration (see also
clause 6.2.4).

The general error causes in clause 16.1.2 apply.

EXAMPLE:

 type enumerated MyFirstEnumType {
 Monday, Tuesday, Wednesday, Thursday, Friday
 };

 type enumerated MySecondEnumType {
 Saturday(-3), Sunday (0), Monday
 };

 //within a dynamic language element:
 var MyFirstEnumType vl_FirstEnum := Monday;
 var MySecondEnumType vl_SecondEnum := Monday;

 enum2int(vl_FirstEnum) // returns 0
 enum2int(vl_SecondEnum) // returns 1

 vl_FirstEnum := Wednesday;
 vl_SecondEnum := Saturday;
 enum2int(vl_FirstEnum) // returns 2
 enum2int(vl_SecondEnum) // returns -3

 vl_FirstEnum := Friday;
 vl_SecondEnum := Sunday;
 enum2int(vl_FirstEnum) // returns 4
 enum2int(vl_SecondEnum) // returns 0

C.38 The IsValue function
 isvalue(in template any_type inpar) return boolean;

The function shall accept templates of any known type. The function shall return true, if inpar is completely
initialized and resolves to a specific value. If inpar is of a structured type or array, omit is considered to be a
concrete value for optional fields, i.e. the function shall also return true if optional fields of inpar are set to omit. The
function shall return false otherwise.

If the isvalue function is used with a non-selected choice of a union type value or template, this shall cause an error.

The null value assigned to default and component references shall be considered as concrete values.

In addition to the general error causes in clause 16.1.2, error causes are:

• inpar is referring to a field that is not accessible, e.g. embedded in a template or in a template field using
omit or "*" (AnyValueOrNone). Note that this rule applies for any levels of embedding.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 257

EXAMPLE 1: Simple types

 template charstring ts_char0 := "ABCD"; //template containing a specific value matching
 template charstring tr_char1 := "AB?D"; //template containing a specific value matching
 //note, that "?" is not a matching symbol in this case
 template charstring tr_char2 := pattern "ABCD"; //a pattern matching a single value only
 template charstring tr_char3 := pattern "AB?D"; //pattern matching
 template charstring tr_char4 := ("ABCD"); // template containing a specific value (expression)
 template charstring tr_char5 := ("ABCD","EFGH"); //a value list matching a single value only

 isvalue(ts_char0); // shall return true
 isvalue(tr_char1); // shall return true
 isvalue(tr_char2); // shall return false
 isvalue(tr_char3); // shall return false
 isvalue(tr_char4); // shall return true similarly to e.g. isvalue((2)) shall return true
 isvalue(tr_char5); // shall return false

 EXAMPLE 2: Special types

 var default vl_default := null;
 isvalue(vl_default); // shall return true

EXAMPLE 3: Record/set types

 type record MyRec {
 integer f1 optional,
 integer f2 optional
 }

 var MyRec vl_MyRec;
 var template MyRec vlt_MyRec;

 isvalue(vl_MyRec); // shall return false
 isvalue(vlt_MyRec); // shall return false

 vl_MyRec := { f1 := 5, f2 := omit }
 vlt_MyRec := { f1 := ?, f2 := 5 }

 isvalue(vl_MyRec); // shall return true
 isvalue(vl_MyRec.f2); // shall return false;
 isvalue(vlt_MyRec); // shall return false
 isvalue(vlt_MyRec.f1); // shall return false
 isvalue(vlt_MyRec.f2); // shall return true

 vlt_MyRec.f2 := omit;

 isvalue(vlt_MyRec.f2); // shall return false

EXAMPLE 4: Union types

 type union MyUnion {
 integer ch1,
 integer ch2
 }

 template MyUnion ts_MyUnion := { ch1 := 5 }
 template MyUnion tr_MyUnion := { ch1 := ? }

 var MyUnion vl_ MyUnion;

 isvalue(ts_MyUnion); // shall return true
 isvalue(tr_MyUnion); // shall return false
 isvalue(tr_MyUnion.ch1); // shall return false;
 // note, this is different from ischosen(tr_MyUnion.ch1) as isvalue checks the content of the
 // choice ch1, while ischosen is checking if ch1 has been selected or not
 isvalue(tr_MyUnion.ch2); // shall cause an error;

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 258

C.39 The encoding function
 encvalue(in template (value) any_type inpar) return bitstring

The encvalue function encodes a value or template into a bitstring. When the actual parameter that is passed to
inpar is a template, it shall resolve to a specific value (the same restrictions apply as for the argument of the send
statement). The returned bitstring represents the encoded value of inpar, however, the TTCN-3 test system need not
to make any check on its correctness.

In addition to the general error causes in clause 16.1.2, error causes are:

• Encoding fails due to a runtime system problem (i.e. no encoding function exists for the actual type of
inpar).

C.40 The decoding function
 decvalue(inout bitstring encoded_value, out any_type decoded_value) return integer

The decvalue function decodes a bitstring into a value. The test system shall suppose that the bitstring
encoded_value represents an encoded instance of the actual type of decoded_value.

If the decoding was successful, then the used bits are removed from the parameter encoded_value, the rest is
returned (in the parameter encoded_value), and the decoded value is returned in the parameter decoded_value.
If the decoding was unsuccessful, the actual parameters for encoded_value and decoded_value are not
changed. The function shall return an integer value to indicate success or failure of the decoding below:

• The return value 0 indicates that decoding was successful.

• The return value 1 indicates an unspecified cause of decoding failure.

• The return value 2 indicates that decoding could not be completed as encoded_value did not contain
enough bits.

The restrictions in clause 16.1.2 apply. If any of these restrictions is applicable, the return value shall be 1.

C.41 The testcasename function
 testcasename () return charstring

The testcasename function shall return the unqualified name of the actually executing test case.

EXAMPLE 1:

 module MyTCModule {
 :
 testcase MyTestCase1 () runs on MTC system TSI
 {
 var charstring v_TCname := testcasename ();
 // will return the charstring "MyTestCase1"
 :
 }
 :
 testcase MyTestCase2 () runs on MTC system TSI
 {
 :
 }
 :
 }
 module MyTSModule {
 :
 function MyStartAPTC() runs on PTC {
 var charstring v_TCname := testcasename ();
 // will return charstring "MyTestCase1", if the function is
 // called by a test component during the execution of MyTestCase1

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 259

 // will return charstring "MyTestCase2", if the function is
 // called by a test component when MyTestCase2 is being executed
 }
 :
 }

When the function testcasename is called if the control part is being executed but no testcase, it shall return the
empty string.

EXAMPLE 2:

 module MyModule {
 :
 control
 {
 var charstring v_TCname := testcasename () // will return charstring ""
 :
 }
 :
 }

The general error causes in clause 16.1.2 apply.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 260

Annex D (normative):
Preprocessing macros
This annex defines a set of preprocessing macros. A preprocessing macro is a macro that is replaced by a preprocessor
or a compiler with a charstring or integer value respectively before compilation. Preprocessing macros shall not
be replaced inside literal charstring values and templates and not in TTCN-3 comments. In the TTCN-3 code, it
can be used like a charstring or an integer value respectively.

D.1 Preprocessing macro __MODULE__
The __MODULE__ preprocessing macro denotes the module name in which the macro is used. A preprocessor or
compiler shall replace all occurrences of __MODULE__ with the actual module name in form of a charstring value.

D.2 Preprocessing macro __FILE__
The __FILE__ preprocessing macro denotes the canonical (absolute) file name, i.e. the full path and the basic file
name, in which the macro is used. A preprocessor or compiler shall replace all occurrences of __FILE__ with the
actual canonical (absolute) file name in form of a charstring value.

NOTE: The format of the canonical file name depends on the operating system and is not specified by the present
document.

EXAMPLE:

 const charstring MyConst:= __FILE__;
 //MyConst is for example "/home/myhome/MyTest.ttcn"

D.3 Preprocessing macro __BFILE__
The __BFILE__ preprocessing macro denotes the basic (relative) file name, i.e. without path, in which the macro is
used. A preprocessor or compiler shall replace all occurrences of __BFILE__ with the actual basic (relative) file name
in form of a charstring value.

NOTE: The format of the basic file name depends on the operating system and is not specified by the present
document.

EXAMPLE:

 const charstring MyConst:= __BFILE__;
 // MyConst is for example "MyTest.ttcn"

D.4 Preprocessing macro __LINE__
The __LINE__ preprocessing macro denotes the line number of the file in which the macro is used. A preprocessor or
compiler shall replace each occurrence of __LINE__ with the actual line number in form of an integer value.

A file starts with line number 1. Each newline shall increase the line number by 1 (see clause A.1.5.1). Also newlines
of commented lines shall increase the line number by 1.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 261

D.5 Preprocessing macro __SCOPE__
The __SCOPE__ preprocessing macro denotes the unqualified name of the lowest named basic scope unit in which the
macro is used. According to clause 5.2, basic scope units of TTCN-3 are module definitions part, module control part,
component types, functions, altsteps, test cases, statement blocks, templates and user defined named types. Statement
blocks have no name and therefore, a __SCOPE__ preprocessing macro used in a statement block refers to the next
higher named basic scope unit.

A preprocessor or compiler shall replace all occurrences of __SCOPE__ with a charstring value which includes:

a) the module name, if the lowest named scope unit is the module definitions part;

b) "control", if the lowest named scope unit is the module control part;

c) a component type name, if the lowest named scope unit is a component type definition;

d) a test case name, if the lowest named scope unit is a test case definition;

e) an altstep name, if the lowest named scope is an altstep definition;

f) a function name, if the lowest named scope is a function definition;

g) a template name, if the lowest named scope is a template definition (local or global); or

h) the type name, if the lowest named scope is a user defined named type definition.

NOTE: The __SCOPE__ preprocessing macro cannot be used to retrieve the names of other kinds of definitions,
like for example names of groups of definitions or names of global constants.

EXAMPLE 1: Using __SCOPE__ in constant and template definitions

 module MyModule
 {
 const charstring MyConst := __SCOPE__; // MyConst contains "MyModule"
 template charstring MyTemplate := __SCOPE__; // MyTemplate contains "MyTemplate"

 type record MyRecord1
 {
 charstring field11,
 charstring field12
 }

 template MyRecord1 MyTemplate1 (charstring p := __SCOPE__) :=
 {
 field11 := p,
 field12 := __SCOPE__ // field12 contains "MyTemplate1"
 }

 function MyFunction() {
 var template MyRecord1 v_Myvar1 := MyTemplate1;
 // field11 of MyTemplate1 will contain the default value of parameter p,
 // i.e. "MyTemplate1"
 };
 }

EXAMPLE 2: Using __SCOPE__ in a structured type scope

 type record MyRecord2 {
 charstring field21,
 charstring field22 ("a", "b", __SCOPE__)
 // list constrained field: a legal values are "a", "b" or "MyRecord2"
 }

 template MyRecord2 MyTemplate2 := {
 field21 := "a",
 field22 := "MyRecord2" // a valid specific value matching
 }

 template MyRecord2 MyTemplate3 := {
 field21 := "a",
 field22 := __SCOPE__

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 262

 // Causes an error as __SCOPE__ is replaced with "MyTemplate3",
 // which is violating the list constraint of field22
 }

EXAMPLE 3: Using __SCOPE__ in an embedded structured type scope

 type record MyRecord3 {
 charstring field31,
 record {
 charstring field321 ("a", "b", __SCOPE__)
 // list constrained field: a legal value shall be "a", "b" or "MyRecord3"
 } field32
 }

 template MyRecord3 MyTemplate4 :=
 {
 field31 := "a",
 field32 :=
 {
 field321 := "MyRecord3" // a valid specific value matching
 }
 }

 template MyRecord3 MyTemplate5 :=
 {
 field31 := "a",
 field32 :=
 {
 field321 := __SCOPE__
 // Causes and error as __SCOPE__ is replaced with "MyTemplate5",
 // which is violating the list constraint of field321
 }
 }

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 263

Annex E (informative):
Library of Useful Types

E.1 Limitations
Names of types added to this library are to be unique within the whole language and within the library (i.e. are not to be
one of the names defined in annex C). Names defined in this library are not to be used by TTCN-3 users as identifiers of
other definitions than given in this annex.

NOTE: Therefore type definitions given in this annex may be repeated in TTCN-3 modules but no type distinct
from the one specified in this annex can be defined with one of the identifiers used in this annex.

E.2 Useful TTCN-3 types

E.2.1 Useful simple basic types

E.2.1.0 Signed and unsigned single byte integers

These types supports integer values of the range from -128 to 127 for the signed and from 0 to 255 for the unsigned
type. The value notation for these types are the same as the value notation for the integer type. Values of these types are
to be encoded and decoded as they were represented on a single byte within the system independently from the actual
representation form used.

NOTE: Encoding of values of these types may be the same or may differ from each other and from the encoding
of the integer type (the root type of these useful types) depending on the actual encoding rules used.
Details of encoding rules are out of the scope of the present document.

Type definitions for these types are:

 type integer byte (-128 .. 127) with { variant "8 bit" };

 type integer unsignedbyte (0 .. 255) with { variant "unsigned 8 bit" };

E.2.1.1 Signed and unsigned short integers

These types support integer values of the range from -32 768 to 32 767 for the signed and from 0 to 65 535 for the
unsigned type. The value notation for these types are the same as the value notation for the integer type. Values of these
types are to be encoded and decoded as they were represented on two bytes within the system independently from the
actual representation form used.

NOTE: Encoding of values of these types may be the same or may differ from each other and from the encoding
of the integer type (the root type of these useful types) depending on the actual encoding rules used.
Details of encoding rules are out of the scope of the present document.

Type definitions for these types are:

 type integer short (-32768 .. 32767) with { variant "16 bit" };

 type integer unsignedshort (0 .. 65535) with { variant "unsigned 16 bit" };

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 264

E.2.1.2 Signed and unsigned long integers

These types support integer values of the range from -2 147 483 648 to 2 147 483 647 for the signed and from 0 to
4 294 967 295 for the unsigned type. The value notation for these types are the same as the value notation for the
integer type. Values of these types are to be encoded and decoded as they were represented on four bytes within the
system independently from the actual representation form used.

NOTE: Encoding of values of these types may be the same or may differ from each other and from the encoding
of the integer type (the root type of these useful types) depending on the actual encoding rules used.
Details of encoding rules are out of the scope of the present document.

Type definitions for these types are:

 type integer long (-2147483648 .. 2147483647)
 with { variant "32 bit" };

 type integer unsignedlong (0 .. 4294967295)
 with { variant "unsigned 32 bit" };

E.2.1.3 Signed and unsigned longlong integers

These types support integer values of the range from -9 223 372 036 854 775 808 to 9 223 372 036 854 775 807 for the
signed and from 0 to 18 446 744 073 709 551 615 for the unsigned type. The value notation for these types are the same
as the value notation for the integer type. Values of these types are to be encoded and decoded as they were represented
on eight bytes within the system independently from the actual representation form used.

NOTE: Encoding of values of these types may be the same or may differ from each other and from the encoding
of the integer type (the root type of these useful types) depending on the actual encoding rules used.
Details of encoding rules are out of the scope of the present document.

Type definitions for these types are:

 type integer longlong (-9223372036854775808 .. 9223372036854775807)
 with { variant "64 bit" };

 type integer unsignedlonglong (0 .. 18446744073709551615)
 with { variant "unsigned 64 bit" };

E.2.1.4 IEEE 754 floats

These types support the ANSI/IEEE 754 [7] for binary floating-point arithmetic. The type IEEE 754 [7] float supports
floating-point numbers with base 10, exponent of size 8, mantissa of size 23 and a sign bit. The type IEEE 754 [7]
double supports floating-point numbers with base 10, exponent of size 11, mantissa of size 52 and a sign bit. The type
IEEE 754 [7] extfloat supports floating-point numbers with base 10, minimal exponent of size 11, minimal
mantissa of size 32 and a sign bit. The type IEEE 754 [7] extdouble supports floating-point numbers with base 10,
minimal exponent of size 15, minimal mantissa of size 64 and a sign bit.

Values of these types are to be encoded and decoded according to the IEEE 754 [7] definitions. The value notation for
these types are the same as the value notation for the float type (base 10).

NOTE: Precise encoding of values of this type depends on the actual encoding rules used. Details of encoding
rules are out of the scope of the present document.

Type definitions for these types are:

 type float IEEE754float with { variant "IEEE754 float" };

 type float IEEE754double with { variant "IEEE754 double" };

 type float IEEE754extfloat with { variant "IEEE754 extended float" };

 type float IEEE754extdouble with { variant "IEEE754 extended double" };

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 265

E.2.2 Useful character string types

E.2.2.0 UTF-8 character string "utf8string"

This type supports the whole character set of the TTCN-3 type universal charstring (see paragraph d) of
clause 6.1.1). Its distinguished values are zero, one, or more characters from this set. Values of this type are entirely
(e.g. each character of the value individually) to be encoded and decoded according to the UCS Transformation Format
8 (UTF-8) as defined in annex R of ISO/IEC 10646 [2]. The value notation for this type is the same as the value
notation for the universal charstring type.

The type definition for this type is:

 type universal charstring utf8string with { variant "UTF-8" };

E.2.2.1 BMP character string "bmpstring"

This type supports the Basic Multilingual Plane (BMP) character set of ISO/IEC 10646 [2]. The BMP represents all
characters of plane 00 of group 00 of the Universal Multiple-octet coded Character Set. Its distinguished values are
zero, one, or more characters from the BMP. Values of this type are entirely (e.g. each character of the value
individually) to be encoded and decoded according to the UCS-2 coded representation form (see clause 14.1 of
ISO/IEC 10646 [2]). The value notation for this type is the same as the value notation for the universal
charstring type.

NOTE: The type "bmpstring" supports a subset of the TTCN-3 type universal charstring.

The type definition for this type is:

 type universal charstring bmpstring (char (0,0,0,0) .. char (0,0,255,255))
 with { variant "UCS-2" };

E.2.2.2 UTF-16 character string "utf16string"

This type supports all characters of planes 00 to 16 of group 00 of the Universal Multiple-octet coded Character Set (see
ISO/IEC 10646 [2]). Its distinguished values are zero, one, or more characters from this set. Values of this type are
entirely (e.g. each character of the value individually) to be encoded and decoded according to the UCS Transformation
Format 16 (UTF-16) as defined in annex Q of ISO/IEC 10646 [2]. The value notation for this type is the same as the
value notation for the universal charstring type.

NOTE: The type "utf16string" supports a subset of the TTCN-3 type universal charstring.

The type definition for this type is:

 type universal charstring utf16string (char (0,0,0,0) .. char (0,16,255,255))
 with { variant "UTF-16" };

E.2.2.3 ISO/IEC 8859-1 character string "iso8859string"

This type supports all characters in all alphabets defined in the multiparty standard ISO/IEC 8859-1 [i.10] (see
annex G). Its distinguished values are zero, one, or more characters from the ISO/IEC 8859-1 [i.10] character set.
Values of this type are entirely (e.g. each character of the value individually) to be encoded and decoded according to
the coded representation as specified in ISO/IEC 8859-1 [i.10] (an 8-bit coding). The value notation for this type is the
same as the value notation for the universal charstring type.

NOTE 1: The type "iso8859string" supports a subset of the TTCN-3 type universal charstring.

NOTE 2: In each ISO/IEC 8859-1 [i.10] alphabet the lower part of the character set table (positions 02/00 to 07/14)
is compatible with the ISO/IEC 646 [4] character set. Hence all extra language specific characters are
defined for the upper part of the character table only (positions 10/00 to 15/15). As the "iso8859string"
type is defined as a subset of the TTCN-3 type universal charstring, any coded character representation of
any ISO/IEC 8859-1 [i.10] alphabets can be mapped into an equivalent character (a character with the
same coded representation when encoded on 8 bits) from the Basic Latin or Latin-1 Supplement character
tables of ISO/IEC 10646 [2].

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 266

The type definition for this type is:

 type universal charstring iso8859string (char (0,0,0,0) .. char (0,0,0,255))
 with { variant "8 bit" };

E.2.3 Useful structured types

E.2.3.0 Fixed-point decimal literal

This type supports the use of fixed-point decimal literal as defined in the IDL Syntax and Semantics version 2.6 [i.11].
It is specified by an integer part, a decimal point and a fraction part. The integer and fraction parts both consist of a
sequence of decimal (base 10) digits. The number of digits is stored in "digits" and the size of the fraction part is given
in "scale". The digits itself are stored in "value_". Value notation for this type is the same as the value notation for the
record type. Values of this type are to be encoded and decoded as IDL fixed point decimal values.

NOTE: Precise encoding of values of this type depends on the actual encoding rules used. Details of encoding
rules are out of the scope of the present document.

The type definition for this type is:

 type record IDLfixed {
 unsignedshort digits,
 short scale,
 charstring value_
 }
 with { variant "IDL:fixed FORMAL/01-12-01 v.2.6" };

E.2.4 Useful atomic string types

E.2.4.1 Single ISO/IEC 646 character type

A type whose distinguished values are single characters of the version of ISO/IEC 646 [4] complying to the
International Reference Version (IRV) as specified in clause 8.2 of ISO/IEC 646 [4] (see also note 1 to clause 6.1.1).

The type definition for this type is:

 type charstring char646 length (1);

NOTE: The special string "8 bit" defined in clause 27.5 may be used with this type to specify a given encoding
for its values. Also, other properties of the base type can be changed by using attribute mechanisms.

E.2.4.2 Single universal character type

A type whose distinguished values are single characters from ISO/IEC 10646 [2].

The type definition for this type is:

 type universal charstring uchar length (1);

NOTE: Special strings defined in clause 27.5 except "8 bit" may be used with this type to specify a given
encoding for its values. Also, other properties of the base type can be changed by using attribute
mechanisms.

E.2.4.3 Single bit type

A type whose distinguished values are single binary digits.

The type definition for this type is:

 type bitstring bit length (1);

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 267

E.2.4.4 Single hex type

A type whose distinguished values are single hexadecimal digits.

The type definition for this type is:

 type hexstring hex length (1);

E.2.4.5 Single octet type

A type whose distinguished values are pairs of hexadecimal digits.

The type definition for this type is:

 type octetstring octet length (1);

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 268

Annex F (informative):
Operations on TTCN-3 active objects
This annex describes in a short form the semantics of operations on active objects in TTCN-3 being test components,
timers and ports. This dynamic behaviour is written in the form of state machines with:

• the states being named and identified as nodes;

• the initial state being identified by an incoming arrow;

• transitions between states connecting two states (not necessarily different states) and identified as arrows;

• transitions being marked with the enabling condition for that transition (i.e. operation or statement calls) and
the resulting condition (for example a test case error), both are separated by '/':

- operation and statement calls are the TTCN-3 operations and statements applicable to the object (written
in bold);

- error as a resulting condition means testcase error (written in bold);

- null as a resulting condition means that except of a possible state change no other results apply (written
in bold);

- match/no match refers to the matching result of a transition (written in bold);

- concrete values are boolean or float results (written in bold italics);

- all other resulting conditions are textually described (written in standard font);

• notes are used to explain further details of the state machine.

For further details, please refer to the operational semantics of TTCN-3 [1]. In case of any contradiction between this
annex and the operational semantics of TTCN-3 [1] the latter takes precedence.

F.1 Test components

F.1.1 Test component references
Variables of test component types, the self and mtc operations are used to reference test components. The start,
stop, done and running operations are not directly applied on test components but on component references. The
test system has to decide if the operation requested should effect the component object itself or other action is
appropriate (e.g. an error occurs when the reference of a stopped PTC is used in a component start operation). The
create operation used to create PTCs returns a unique reference to the created PTC, which is typically bound to a test
component variable. The behaviour related to test component variables themselves is shown in figure F.1.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 269

Initialized

"assignment of the return value of create"/"references created test component"

Uninitialized

done/error killed/error
running/error alive/error
stop/error kill/error
start/error

"assignment of the return value of create"/"references created
test component" (and "looses the previous reference")

Error
(see note)

variable
declaration

NOTE: Whenever a test component enters its error state, the error verdict is assigned to its local verdict, the test
case terminates and the overall test case result will be error.

Figure F.1: Handling of test component references

F.1.2 Dynamic behaviour of PTCs
PTCs can be of non-alive type or alive-type. Non-alive type PTCs can be in Inactive, Running and Killed states. Their
dynamic behaviour is shown in figure F.2.

start/"component executes function"

done/no match killed/no match
running/false alive/true

done/no match killed/no match
running/true alive/true

stop/null (see note 2a) kill/null (see note 2b)

done/match killed/match
running/false alive/false

stop/"component terminates" (se note 2a)

kill/"component terminates" (see note 2b)

create/creation of a non-alive PTC

start/error

start/error

"run-time error"/error

Inactive

Running

Killed

Error
(see note 3)

stop/"component terminates" (see note 1a)

kill/"component terminates" (see note 1b)

"return from function"/"component terminates"
"completion of function"/"component terminates"

NOTE 1: (a) Stop can be either a stop, self.stop or a stop from another test component.
(b) Kill can be either a kill, self.kill, a kill from another test component or a kill from the test system (in
 error cases).

NOTE 2: (a) Stop can be from another test component only.
(b) Kill can be from another test component or from the test system (in error cases) only.

NOTE 3: Whenever a test component enters its error state, the error verdict is assigned to its local verdict, the test
case terminates and the overall test case result will be error.

Figure F.2: Dynamic behaviour of non-alive type PTCs

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 270

Alive-type PTCs can be in Inactive, Running, Stopped and Killed states. Their dynamic behaviour is shown in
figure F.3.

start/"component executes function"

done/no match killed/no match
running/false alive/true

done/no match killed/no match
running/true alive/true

create alive/creation of an alive PTC

start/error

start/error

"run-time error"/error

Inactive

Stopped

stop/null (see note 2a)

kill/null (see note 2b)
done/match
killed/match
running/false
alive/false

Killed

stop/null (see note 2a)

done/match
killed/no match
running/false
alive/true

kill/"component terminates" (see note 2b)

kill/"component terminates" (see note 1b)

stop/"component stops" (see note 2a)

Running

stop/"component stops" (see note 1a)

"return from function"/"component terminates"
"completion of function"/"component terminates"

start/"component
executes function"

kill/"component terminates" (see note 2b)

Error
(see note 3)

NOTE 1: (a) Stop can be either a stop, self.stop or a stop from another test component.
(b) Kill can be either a kill, self.kill, a kill from another test component or a kill from the test system (in
 error cases).

NOTE 2: (a) Stop can be from another test component only.
(b) Kill can be from another test component or from the test system (in error cases) only.

NOTE 3: Whenever a test component enters its error state, the error verdict is assigned to its local verdict, the test
case terminates and the overall test case result will be error.

Figure F.3: Dynamic behaviour of alive-type PTCs

F.1.3 Dynamic behaviour of the MTC
The MTC can be in Running or Killed state. The dynamic behaviour of the MTC is shown in figure F.4.

Running

Killed
(see note 2)

stop/"component terminates" (see note 1a)

kill/"component terminates" (see note 1b)

"completing of the test case"/"component terminates"

done/no match killed/no match
running/true alive/true

execute/"creates the MTC" and "starts the testcase"

Error
(see note 3)

start/error
stopfrom another component/error
kill from another component/error
"run-time error"/error

NOTE 1: (a) Stop can be either a stop, self.stop, a stop from another test component.
(b) Kill can be either a kill, self.kill, a kill from another test component or a kill from the test system (in
 error cases).

NOTE 2: All remaining PTCs are to be killed as well and the testcase terminates.
NOTE 3: Whenever the MTC enters its error state, the error verdict is assigned to its local verdict, the test case

terminates and the overall test case result will be error.

Figure F.4: Dynamic behaviour of the MTC

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 271

F.2 Timers
Timers can be in Inactive, Running or Expired state. The dynamic behaviour of a timer is shown in figure F.5.

‘

Inactive

Test component timers: "component created";
Other local timers: "testcase, function, altstep,
statement block entered or default activated"

Running
(see note 1)

stop/null
running/false
read/0.0
timeout/no match

Expired
(see note 2)

(timer expiry)/null

timeout/match
stop/null

running/false
read/0.0

start/"timer starts with
non-negative duration"

stop/stop timer

start/"timer restarts with non-negative duration"
running/true
read/elapsed time
timeout/no match

start/"timer starts with non-negative duration"

start with negative duration/error

Error
(see note 3)

NOTE 1: For any scope unit, all timers in that scope being in Running state constitute the running-timer list.
NOTE 2: For any scope unit, all timers in that scope being in Expired state constitute the timeout-list.
NOTE 3: Whenever a timer enters its error state, the test component it belongs to enters also its error state, assigns

a local error verdict, the test case terminates and the overall test case result will be error.

Figure F.5: Dynamic behaviour of timers

F.3 Ports
Ports can be in Started or Stopped state. As their behaviour is rather complex, the state machine has been split into a
state machine giving the dynamic behaviour of configuration operations (i.e. connect, disconnect, map and unmap), of
port controlling operations (i.e. start, stop and clear) and of communication operations (i.e. send, receive, call, getcall,
raise, catch, reply, getreply and check). As trigger is a shorthand for an alt together with receive it is not considered
here.

F.3.1 Configuration Operations
The port configuration operations (i.e. connect, disconnect, map and unmap) are indifferent to the state of the port. They
show the behaviour shown in figure F.6.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 272

Started

Stopped

create/"creates
test component"
(see note 1)

Error
(see note 2)

connect/if ("illegal connection") then error
map/if ("illegal connection") then "store link to other port" error

Halted

connect/if ("legal connection")
 then (if ("link not yet established")
 then "establish this link" else null)
disconnect/if ("link established") then "remove this link" else null
map/if ("legal connection")
 then "store link to other port"
 (if ("link not yet established")
 then "establish this link" else null)
unmap/if ("link established") then "remove this link" else null

connect/if ("legal connection")
 then (if ("link not yet established")
 then "establish this link" else null)
disconnect/if ("link established") then "remove this link" else null
map/if ("legal connection")
 then (if ("link not yet established")
 then "establish this link" else null)
unmap/if ("link established") then "remove this link" else null

NOTE 1: When creating a PTC the ports of that PTC are created and started; when creating the MTC the ports of
the MTC and the ports of the TSI are created and started.

NOTE 2: Whenever a port enters its error state, the test component it belongs to enters also its error state, assigns
a local error verdict, the test case terminates and the overall test case result will be error.

Figure F.6: Dynamic behaviour of ports: port configuration operations

The transitions do not change the main state of the port, i.e. the port remains in the Started or Stopped state.

F.3.2 Port Controlling Operations
The results of port controlling operations are shown in figure F.7.

clear/"clears queue"
stop/null

Started

Stopped

stop/null

Halted

start/"clears queue" and
"removes halt maker"

halt/"puts halt
marker at the
top of the queue"

halt/"puts halt marker
at the end of the queue"

stop/"removes halt maker" clear/"clears queue" and
"puts halt marker at the
 top of the queue"
halt/null

create/"creates
test component"
(see note)

clear/"clears queue"
start/"clears queue"

start/"clears queue"

NOTE: When creating a PTC the ports of that PTC are created and started; when creating the MTC the ports of
the MTC and the ports of the TSI are created and started.

Figure F.7: Dynamic behaviour of ports: port controlling operations

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 273

F.3.3 Communication Operations
The results of the communication operations send, receive, call, getcall, raise, catch, reply, getreply, check are shown in
figure F.8.

 send/if ("unique receiver") then "transmit" (see note 2)
receive/if ("top queue element matches")
 then match and "remove from queue"
 else no match
call/if ("unique receiver") then "transmit" (see note 2)
getcall/if ("top queue element matches")
 then match and "remove from queue"
 else no match
reply/if ("unique receiver") then "transmit" (see note 2)
getreply/if ("top queue element matches")
 then match and "remove from queue"
 else no match
raise/if ("unique receiver") then "transmit" (see note 2)
catch/if ("top queue element matches")
 then match and "remove from queue"
 else no match
check/if ("top queue element matches")
 then match
 else no match

create/"creates
test component"

(see note 1)

send/if ("ambiguous" or "no receiver") error (see note 2)
call/if ("ambiguous" or "no receiver") error (see note 2)
reply/if ("ambiguous" or "no receiver") error (see note 2)
raise/if ("ambiguous" or "no receiver") error (see note 2)

send/error
call/error
reply/error
raise/error

Started

Stopped

Halted

receive/if ("top queue element is halt marker")
 then no match
 else if ("top queue element matches")
 then match & "remove from queue"
 else no match
getcall/if ("top queue element is halt marker")
 then no match
 else if ("top queue element matches")
 then match & "remove from queue"
 else no match
getreply/if ("top queue element is halt marker")
 then no match
 else if ("top queue element matches")
 then match & "remove from queue"
 else no match
catch/if ("top queue element is halt marker")
 then no match
 else if ("top queue element matches")
 then match & "remove from queue"
 else no match
check/if ("top queue element is halt marker")
 then no match
 else if ("top queue element matches")
 then match
 else no match receive/no match

getcall/no match
getreply/no
match
catch/no match
check/no match

Error
(see note 3)

NOTE 1: When creating a PTC the ports of that PTC are created and started; when creating a MTC the ports of the
MTC and the ports of the TSI are created and started.

NOTE 2: A unique receiver exists if there is only one link for this port or if the to address expression references a
test component whose port is linked to this port (a terminated test component is not a legal receiver).

NOTE 3: Whenever a port enters its error state, the test component it belongs to enters also its error state, assigns
a local error verdict, the test case terminates and the overall test case result will be error.

NOTE 4: As trigger is a shorthand for an alt together with receive it is not considered here.

Figure F.8: Dynamic behaviour of ports: communication operations

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 274

Annex G (informative):
Deprecated language features

G.1 Group style definition of module parameters
Previous versions of the standard (up to and including V2.2.1) required to use a group-like syntax shown in the example
below to declare module parameters. The module parameter syntax has been unified with constant and variable
declaration syntax in this version but group-like syntax is not fully removed to leave a time period for tool providers
and users to change from the old syntax to the new one. The group-like syntax of module parameter declarations may be
fully removed in a future edition of the standard.

EXAMPLE (superfluous syntax):

 module MyModuleWithParameters
 {
 modulepar { integer TS_Par0, TS_Par1 := 0;
 boolean TS_Par2 := true
 "};
 modulepar { hexstring TS_Par3 };
 }

G.2 Recursive import
Previous versions of the standard (up to and including V2.2.1) allowed to import named definitions implicitly, via
importing other definitions of the same module using them in a recursive mode. This feature is deprecated and may
be fully removed in a future edition of the standard.

G.3 Using all in port type definitions
Previous versions of the standard (up to and including V2.2.1) allowed to use the all keyword in port type definitions
instead of an explicit list of types and signatures allowed via the given port. This feature is deprecated and may be fully
removed in a future edition of the standard.

G.4 sizeof for length of lists
Previous versions of the standard (up to and including V3.2.2) allowed to use the builtin function sizeof to compute
the length of record of, set of, and array. This has been replaced by lengthof. The use of sizeof for list
like types is deprecated and is planned to be fully removed in the next published edition.

G.5 sizeoftype predefined function
The previous version of the standard (up to and including V3.3.1) defined the sizeoftype predefined function. This
feature is deprecated in this version of the standard and may be fully removed in the next published edition.

G.6 Mixed ports
Previous versions of the standard (up to and including V3.2.2) allowed to use mixed ports. This feature is deprecated
and may be fully removed in a future edition of the standard.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 275

G.7 External constants
Previous versions of the standard (up to and including 3.4.1) allowed to use external constants. This feature is
deprecated and may be fully removed in a future edition of the standard.

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 276

Annex H (informative):
Bibliography

• ETSI ES 201 873-1 (V1.1.2): "Methods for Testing and Specification (MTS); The Tree and Tabular Combined
Notation version 3; Part 1: TTCN-3 Core Language".

• ETSI ES 201 873-1 (V2.2.1): "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language".

• ETSI ES 201 873-1 (V3.1.1): "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language".

• ETSI ES 201 873-1 (V3.2.1): "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language".

• ETSI ES 201 873-1 (V3.3.2): "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language".

• ETSI ES 201 873-1 (V3.4.1): "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language".

• ETSI ES 201 873-1 (V4.1.1): "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language".

ETSI

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05) 277

History

Document history

V1.1.1 March 2001 Publication

V1.1.2 June 2001 Publication

V2.2.1 February 2003 Publication

V3.1.1 June 2005 Publication

V3.2.1 February 2007 Publication

V3.3.2 April 2008 Publication

V3.4.1 September 2008 Publication

V4.1.1 June 2009 Publication

V4.2.1 May 2010 Membership Approval Procedure MV 20100723: 2010-05-24 to 2010-07-23

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Introduction
	4.1 The core language and presentation formats
	4.2 Unanimity of the specification
	4.3 Conformance

	5 Basic language elements
	5.1 Identifiers and keywords
	5.2 Scope rules
	5.2.1 Scope of formal parameters
	5.2.2 Uniqueness of identifiers

	5.3 Ordering of language elements
	5.4 Parameterization
	5.4.1 Formal parameters
	5.4.1.1 Formal parameters of kind value
	5.4.1.2 Formal parameters of kind template
	5.4.1.3 Formal parameters of kind timer
	5.4.1.4 Formal parameters of kind port

	5.4.2 Actual parameters

	5.5 Cyclic Definitions

	6 Types and values
	6.1 Basic types and values
	6.1.0 Simple basic types and values
	6.1.1 Basic string types and values
	6.1.1.1 Accessing individual string elements

	6.1.2 Subtyping of basic types
	6.1.2.1 Lists of values
	6.1.2.2 Lists of types
	6.1.2.3 Ranges
	6.1.2.4 String length restrictions
	6.1.2.5 Pattern subtyping of character string types
	6.1.2.6 Mixing subtyping mechanisms
	6.1.2.6.1 Mixing patterns, lists and ranges
	6.1.2.6.2 Using length restriction with other constraints

	6.2 Structured types and values
	6.2.1 Record type and values
	6.2.1.1 Referencing fields of a record type
	6.2.1.2 Optional elements in a record
	6.2.1.3 Nested type definitions for field types

	6.2.2 Set type and values
	6.2.2.1 Referencing fields of a set type
	6.2.2.2 Optional elements in a set
	6.2.2.3 Nested type definition for field types

	6.2.3 Records and sets of single types
	6.2.3.1 Nested type definitions
	6.2.3.2 Referencing elements of record of and set of types

	6.2.4 Enumerated type and values
	6.2.5 Unions
	6.2.5.1 Referencing fields of a union type
	6.2.5.2 Option and union
	6.2.5.3 Nested type definition for field types

	6.2.6 The anytype
	6.2.7 Arrays
	6.2.8 The default type
	6.2.9 Communication port types
	6.2.10 Component types
	6.2.10.1 Component type definition
	6.2.10.2 Reuse of component types

	6.2.11 Component references
	6.2.12 Addressing entities inside the SUT
	6.2.13 Subtyping of structured types
	6.2.13.1 Length subtyping of record ofs and set ofs
	6.2.13.2 List subtyping of structured types and anytype
	6.2.13.3 Subtyping of the iterated type of record ofs and set ofs
	6.2.13.4 Mixing subtyping mechanisms

	6.3 Type compatibility
	6.3.1 Type compatibility of non-structured types
	6.3.2 Type compatibility of structured types
	6.3.2.1 Type compatibility of enumerated types
	6.3.2.2 Type compatibility of record and record of types
	6.3.2.3 Type compatibility of set and set of types
	6.3.2.4 Type compatibility of union types
	6.3.2.5 Type compatibility of anytype types
	6.3.2.6 Compatibility between sub-structures

	6.3.3 Type compatibility of component types
	6.3.4 Type compatibility of communication operations
	6.3.5 Type conversion

	6.4 Type synonym

	7 Expressions
	7.1 Operators
	7.1.1 Arithmetic operators
	7.1.2 List operator
	7.1.3 Relational operators
	7.1.4 Logical operators
	7.1.5 Bitwise operators
	7.1.6 Shift operators
	7.1.7 Rotate operators

	7.2 Field references and list elements

	8 Modules
	8.1 Definition of a module
	8.2 Module definitions part
	8.2.1 Module parameters
	8.2.2 Groups of definitions
	8.2.3 Importing from modules
	8.2.3.1 General format of import
	8.2.3.2 Importing single definitions
	8.2.3.3 Importing groups
	8.2.3.4 Importing definitions of the same kind
	8.2.3.5 Importing all definitions of a module
	8.2.3.6 Import definitions from other TTCN-3 editions and from non-TTCN-3 modules
	8.2.3.7 Importing of import statements from TTCN-3 modules
	8.2.3.8 Compatibility of language specifications in imports

	8.2.4 Definition of friend modules
	8.2.5 Visibility of definitions

	8.3 Module control part

	9 Port types, component types and test configurations
	9.1 Communication ports
	9.2 Test system interface

	10 Declaring constants
	11 Declaring variables
	11.1 Value variables
	11.2 Template variables

	12 Declaring timers
	13 Declaring messages
	14 Declaring procedure signatures
	15 Declaring templates
	15.1 Declaring message templates
	15.2 Declaring signature templates
	15.3 Global and local templates
	15.4 In-line Templates
	15.5 Modified templates
	15.6 Referencing elements of templates or template fields
	15.6.1 Referencing individual string elements
	15.6.2 Referencing record and set fields
	15.6.3 Referencing record of and set of elements

	15.7 Template matching mechanisms
	15.7.1 Specific values
	15.7.2 Special symbols that can be used instead of values
	15.7.3 Special symbols that can be used inside values
	15.7.4 Special symbols which describe attributes of values

	15.8 Template Restrictions
	15.9 Match Operation
	15.10 Valueof Operation
	15.11 Concatenating templates of string and list types

	16 Functions, altsteps and testcases
	16.1 Functions
	16.1.1 Invoking functions
	16.1.2 Predefined functions
	16.1.3 External functions
	16.1.4 Invoking functions from specific places

	16.2 Altsteps
	16.2.1 Invoking altsteps

	16.3 Test cases

	17 Void
	18 Overview of program statements and operations
	19 Basic program statements
	19.1 Assignments
	19.2 The If-else statement
	19.3 The Select case statement
	19.4 The For statement
	19.5 The While statement
	19.6 The Do-while statement
	19.7 The Label statement
	19.8 The Goto statement
	19.9 The Stop execution statement
	19.10 The Return statement
	19.11 The Log statement
	19.12 The Break statement
	19.13 The Continue statement
	19.14 Statement block

	20 Statement and operations for alternative behaviours
	20.1 The snapshot mechanism
	20.2 The Alt statement
	20.3 The Repeat statement
	20.4 The Interleave statement
	20.5 Default Handling
	20.5.1 The default mechanism
	20.5.2 The Activate operation
	20.5.3 The Deactivate operation

	21 Configuration Operations
	21.1 Connection Operations
	21.1.1 The Connect and Map operations
	21.1.2 The Disconnect and Unmap operations

	21.2 Test case operations
	21.2.1 Test case stop operation

	21.3 Test Component Operations
	21.3.1 The Create operation
	21.3.2 The Start test component operation
	21.3.3 The Stop test behaviour operation
	21.3.4 The Kill test component operation
	21.3.5 The Alive operation
	21.3.6 The Running operation
	21.3.7 The Done operation
	21.3.8 The Killed operation
	21.3.9 Summary of the use of any and all with components

	22 Communication operations
	22.1 The communication mechanisms
	22.1.1 Principles of message-based communication
	22.1.2 Principles of procedure-based communication
	22.1.3 Principles of unicast, multicast and broadcast communication
	22.1.4 General format of communication operations
	22.1.4.1 General format of the sending operations
	22.1.4.2 General format of the receiving operations

	22.2 Message-based communication
	22.2.1 The Send operation
	22.2.2 The Receive operation
	22.2.3 The Trigger operation

	22.3 Procedure-based communication
	22.3.1 The Call operation
	22.3.2 The Getcall operation
	22.3.3 The Reply operation
	22.3.4 The Getreply operation
	22.3.5 The Raise operation
	22.3.6 The Catch operation

	22.4 The Check operation
	22.5 Controlling communication ports
	22.5.1 The Clear port operation
	22.5.2 The Start port operation
	22.5.3 The Stop port operation
	22.5.4 The Halt port operation

	22.6 Use of any and all with ports

	23 Timer operations
	23.1 The timer mechanism
	23.2 The Start timer operation
	23.3 The Stop timer operation
	23.4 The Read timer operation
	23.5 The Running timer operation
	23.6 The Timeout operation
	23.7 Summary of use of any and all with timers

	24 Test verdict operations
	24.1 The Verdict mechanism
	24.2 The Setverdict operation
	24.3 The Getverdict operation

	25 External actions
	26 Module control
	26.1 The Execute statement
	26.2 The Control part

	27 Specifying attributes
	27.1 The Attribute mechanism
	27.1.1 Scope of attributes
	27.1.2 Overwriting rules for attributes
	27.1.2.1 Additional overwriting rules for variant attributes

	27.1.3 Changing attributes of imported language elements

	27.2 The With statement
	27.3 Display attributes
	27.4 Encoding attributes
	27.5 Variant attributes
	27.6 Extension attributes
	27.7 Optional attributes

	Annex A (normative): BNF and static semantics
	A.1 TTCN-3 BNF
	A.1.1 Conventions for the syntax description
	A.1.2 Statement terminator symbols
	A.1.3 Identifiers
	A.1.4 Comments
	A.1.5 TTCN-3 terminals
	A.1.5.1 Use of whitespaces and newlines

	A.1.6 TTCN-3 syntax BNF productions
	A.1.6.0 TTCN-3 module
	A.1.6.1 Module definitions part
	A.1.6.1.0 General
	A.1.6.1.1 Typedef definitions
	A.1.6.1.2 Constant definitions
	A.1.6.1.3 Template definitions
	A.1.6.1.4 Function definitions
	A.1.6.1.5 Signature definitions
	A.1.6.1.6 Testcase definitions
	A.1.6.1.7 Altstep definitions
	A.1.6.1.8 Import definitions
	A.1.6.1.9 Group definitions
	A.1.6.1.10 External function definitions
	A.1.6.1.11 External constant definitions
	A.1.6.1.12 Module parameter definitions
	A.1.6.1.13 Friend module definitions

	A.1.6.2 Control part
	A.1.6.2.0 General
	A.1.6.2.1 Variable instantiation
	A.1.6.2.2 Timer instantiation
	A.1.6.2.3 Component operations
	A.1.6.2.4 Port operations
	A.1.6.2.5 Timer operations

	A.1.6.3 Type
	A.1.6.4 Value
	A.1.6.5 Parameterization
	A.1.6.6 With statement
	A.1.6.7 Behaviour statements
	A.1.6.8 Basic statements
	A.1.6.9 Miscellaneous productions

	Annex B (normative): Matching incoming values
	B.1 Template matching mechanisms
	B.1.1 Matching specific values
	B.1.2 Matching mechanisms instead of values
	B.1.2.1 Value list
	B.1.2.2 Complemented value list
	B.1.2.3 Any value
	B.1.2.4 Any value or none
	B.1.2.5 Value range
	B.1.2.6 SuperSet
	B.1.2.7 SubSet
	B.1.2.8 Omitting optional fields

	B.1.3 Matching mechanisms inside values
	B.1.3.1 Any element
	B.1.3.1.1 Using single character wildcards

	B.1.3.2 Any number of elements or no element
	B.1.3.2.1 Using multiple character wildcards

	B.1.3.3 Permutation

	B.1.4 Matching attributes of values
	B.1.4.1 Length restrictions
	B.1.4.2 The IfPresent indicator

	B.1.5 Matching character pattern
	B.1.5.1 Set expression
	B.1.5.2 Reference expression
	B.1.5.3 Match expression n times
	B.1.5.4 Match a referenced character set
	B.1.5.5 Type compatibility rules for patterns

	Annex C (normative): Pre-defined TTCN-3 functions
	C.0 General exception handling procedures
	C.1 Integer to character
	C.2 Integer to universal character
	C.3 Integer to bitstring
	C.4 Integer to hexstring
	C.5 Integer to octetstring
	C.6 Integer to charstring
	C.7 Integer to float
	C.8 Float to integer
	C.9 Character to integer
	C.10 Character to octetstring
	C.11 Universal character to integer
	C.12 Bitstring to integer
	C.13 Bitstring to hexstring
	C.14 Bitstring to octetstring
	C.15 Bitstring to charstring
	C.16 Hexstring to integer
	C.17 Hexstring to bitstring
	C.18 Hexstring to octetstring
	C.19 Hexstring to charstring
	C.20 Octetstring to integer
	C.21 Octetstring to bitstring
	C.22 Octetstring to hexstring
	C.23 Octetstring to character string
	C.24 Octetstring to character string, version II
	C.25 Charstring to integer
	C.26 Character string to hexstring
	C.27 Character string to octetstring
	C.28 Character string to float
	C.29 Length of strings and lists
	C.30 Number of elements in a structured value
	C.31 The IsPresent function
	C.32 The IsChosen function
	C.33 The Regexp function
	C.34 The Substring function
	C.35 The Replace function
	C.36 The random number generator function
	C.37 Enumerated to integer
	C.38 The IsValue function
	C.39 The encoding function
	C.40 The decoding function
	C.41 The testcasename function

	Annex D (normative): Preprocessing macros
	D.1 Preprocessing macro __MODULE__
	D.2 Preprocessing macro __FILE__
	D.3 Preprocessing macro __BFILE__
	D.4 Preprocessing macro __LINE__
	D.5 Preprocessing macro __SCOPE__

	Annex E (informative): Library of Useful Types
	E.1 Limitations
	E.2 Useful TTCN-3 types
	E.2.1 Useful simple basic types
	E.2.1.0 Signed and unsigned single byte integers
	E.2.1.1 Signed and unsigned short integers
	E.2.1.2 Signed and unsigned long integers
	E.2.1.3 Signed and unsigned longlong integers
	E.2.1.4 IEEE 754 floats

	E.2.2 Useful character string types
	E.2.2.0 UTF-8 character string "utf8string"
	E.2.2.1 BMP character string "bmpstring"
	E.2.2.2 UTF-16 character string "utf16string"
	E.2.2.3 ISO/IEC 8859-1 character string "iso8859string"

	E.2.3 Useful structured types
	E.2.3.0 Fixed-point decimal literal

	E.2.4 Useful atomic string types
	E.2.4.1 Single ISO/IEC 646 character type
	E.2.4.2 Single universal character type
	E.2.4.3 Single bit type
	E.2.4.4 Single hex type
	E.2.4.5 Single octet type

	Annex F (informative): Operations on TTCN-3 active objects
	F.1 Test components
	F.1.1 Test component references
	F.1.2 Dynamic behaviour of PTCs
	F.1.3 Dynamic behaviour of the MTC

	F.2 Timers
	F.3 Ports
	F.3.1 Configuration Operations
	F.3.2 Port Controlling Operations
	F.3.3 Communication Operations

	Annex G (informative): Deprecated language features
	G.1 Group style definition of module parameters
	G.2 Recursive import
	G.3 Using all in port type definitions
	G.4 sizeof for length of lists
	G.5 sizeoftype predefined function
	G.6 Mixed ports
	G.7 External constants

	Annex H (informative): Bibliography
	History

