ETSl ES 201 873-1 V2.2.0 (2002-05)

ETSI Standard

Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3;
Part 1: TTCN-3 Core Language

D

2 ETSI ES 201 873-1 V2.2.0 (2002-05)

Reference
RES/MTS-00063-1 [2]

Keywords
ASN.1, methodology, MTS, testing, TTCN

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/th/status/status.asp

If you find errors in the present document, send your comment to:
editor@etsi.fr

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2002.
All rights reserved.

DECT™, PLUGTESTS ™ and UMTS™ are Trade Marks of ETSI registered for the benefit of its Members.

TIPHON™ and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members.
3GPP™is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

ETSI

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
mailto:editor@etsi.fr

3 ETSI ES 201 873-1 V2.2.0 (2002-05)

Contents

Intellectual Property RIGNES. ..o 11
0] Yo (o SO 11
1 000 RS SSR 12
2 = 1= 0 TSRS 12
3 Definitions and @bhreVialions............ccoiiiriiiiese e 13
31 (DT 1T 0T (o] PSSP 13
3.2 ADDIEVIBLIONS ...t R e R R R R rene e 15
4 L1l [N i1 o] o SRR 15
4.0 LT 0T ST RRR 15
4.1 The core language and pPresentation FOMMIAESoeieiieieere ettt eb e b e e ere 16
4.2 Unanimity Of the SPECITICALIONceiiieiiiier ettt bbb 17
43 (001070 7= 0 (o TSP 17
5 BaSiC |aNQUABOE BEMENTS ..ottt r e n e n e 17
5.0 (€T 0T = TSSO PSSP 17
51 Ordering Of 1aNQUAGE ElEMENES.........cci it e e st e e e se e tesresreese e e ensesaesbesneeseeneenen 18
511 FOrWEND FEFEIENCES ...ttt r et ren e ren et n e ren e 18
5.2 PEIBIMELENTZBIION........ceeeercee et b et b e R bt e R se bt ne e e R s e nenn e rene e 18
520 Static and dynamiC ParamELEriZATIONcoiieie ettt e ae et et et e ene e nean 18
521 Parameter passing by reference and by VaIUE...........cc.oiiiiiii e 19
5.2.1.0 LCTc 0T | SO SRTST P SRR 19
5211 Parameters passed DY FEfEIeNCe.o e 19
5212 Parameters passed DY VAIUE...........ooie et et 20
522 Formal and actual ParamELEr [ISES.......ucueieiee e se sttt sttt te et e e eneesresresneenneneens 20
523 Empty fOrmal ParamEter [IStcccviiieeicece ettt e e e st resreesa e e e e sresbenneeneeneens 20
524 =S (=0 0= Tz 1011 (= T TSR 20
5.3 S o] o1 11 21
5.3.0 (€7 07 g | ST PR O TTRPN 21
531 o0 LN o) (007 0T = 1.1 (= £ S 22
532 UNiQUENESS OF THENTITIEIS ...ttt s b et sa et et e b e sneeneen 22
54 [AENtIfIErS aNA KEYWOITSouiieiee ittt ettt et b et e a et et et e e b e s et sb e e e e e anes 23
6 TYPES @MU VBIUBS ...ttt ettt et ettt e seesae e besee et e aeeneeseesaeeneeseeeneensesneeneeneens 23
6.0 LC T 0T OSSPSR 23
6.1 BaSiC tYPES GNU VAIUES........cveiiieiieetiieceeeee e e ste sttt sae e esae e e e saestesbesaeeseeseeneessenseteseenteeneeneeseentesnearenneenennes 24
6.1.0 SIMPIE baSiC tYPES AN VAIUES........ccvecieieeceeceeec ettt st st e e e tesaesbesneene s seentesneenenneenen 24
6.1.1 BasiC StriNg tYPES @NA VBIUES........ccueiuiieeceeceeertes et st s eese e ettt es e aes e seestesresneeseeneenseseessesneeneenenns 25
6.1.2 Accessing individual StHiNG ElEMENES........ccccvrieiiieieee e re e sresre s e eneenes 27
6.2 SUD-LYPING Of DASIC LYPES ...ttt e e e e st e st be s e e ae e e eneeseesteseesaeeseeneeneeseentesneenenneeneen 27
6.2.0 (C7= 0T - OSSP T OO 27
6.2.1 LISES OF WAIUBS. ...ttt b et e b et e b e s he e st e st e se e beseeeb e s beeaeeneene e besbeebesneennennans 27
6.2.2 RBNQES ...ttt ettt h e bt bt a bt e a bt Rt e she e She e eRe SRt SRt SRt eae e eRe e eRe e ebeeReeebeeebe e be e beerennnenanenaes 27
6.2.2.0 LCTc 0T - | TSSOSO PSR TROTPR PR 27
6.2.2.1 INFINITE FAINQES ...ttt ettt et b e eb e b e et e s b e se et e s bt sb e ebeeaeente st et e saesbeeneeneenes 28
6.2.2.2 MiXING [ISES QN FANQESeeeiieiee ettt ettt e e e e e b e bt bt e ae et e beseesbesaeeneeneans 28
6.2.3 SUHNG 1ENGEN FESIIICIIONS. ...ttt st et e b e neebe 28
6.3 SHrUCLUrEd tYPES NG VAIUES. ..ottt sttt sttt sttt st b e bbb ettt neene s 28
6.3.0 =0T | 28
6.3.1 RECOI tYPE AN VAIUES.......c.eeieie ettt e st bbbt bbbt s be sttt eene e 29
6.3.1.0 L= 0T TS 29
6.3.1.1 Referencing fieldS Of @reCOrd tYPEeceiiiiee e b 30
6.3.1.2 Optional ElemMENtSTN ATECOI........cioiiieiee ettt st sbe b e e e se e beseesbesaeeneenean 30
6.3.2 SELLYPE NGO VBIUBS ...ttt ettt st b e bt b et et et se e b e s bt bt et et e beseenbesaeebeeneenean 30
6.3.2.0 LCTC 0T - | TSSO STPRTSRTROT 30
6.3.2.1 Referencing fieldS Of @ SEl tYPe.... .ot e 31

ETSI

6.3.2.2
6.3.3
6.3.4
6.3.5
6.3.5.0
6.351
6.3.5.2
6.4

6.5

6.6

6.7
6.7.0
6.7.1
6.7.2
6.7.2.0
6.7.21
6.7.2.2
6.7.2.3
6.7.24
6.7.2.5
6.7.3
6.7.4

7
7.0
7.1
7.2
7.2.0
721
7.3
7.3.0
731
74
7.5
750
751
752
753
754
755
7.5.6
7.5.7
7.5.8
759
7.5.10

8

8.0
8.1
8.2
8.3
8.4
8.4.0
84.1
8.5
8.5.0
851
852
8.6
8.7
8.8

9

4 ETSI ES 201 873-1 V2.2.0 (2002-05)

OPtioNal ElEMENES TN B ALeitieeieiteieee ettt b et b bbbt b e 31
Records and SEtS Of SINGIELYPESouiiiirieice e bbbttt 31
Enumerated tyPe 8N VAIUEScoiiiiieeee ettt ettt bbb 32
LU T T LTSRS 33

(€T 01 PRSI 33

Referencing fieldS Of @ UNION TYPE ...c.ueiviciiieceee st e et e e eneeneens 34

(@7 o) T0)0 7=) A= To W (11 o R 34

QIR TC =)8 L 34
F N Y PP PP P PP TPPRRTPROE 34
S ol £ Y= 4 o] 35
TYPE COMPEBLIDITTITY ...ttt b e et b e et b e et b e e e e b e sre e ene s 35
(€11 SO TRRS 35
Type compatibility Of NON-SLUCIUIEd TYPES.......coveuiriiieeiriee e 36
Type compatibility Of SITUCTUIEA TYPESoeieiieieeier e e e 36

LT 01 SRR 36

Type compatibility Of eNUMEraLEd tYPES......c.civirieiriieiree e 36

Type compatibility of record and record Of tYPES.......ccccvviiieririecere e e e 36

Type compatibility Of UNION TYPEScveiieiiiiie e et ne e enen 38

Type compatibility of SEt and SEt Of TYPES....cveieeieeee e e e nen 38

Compatibility DEIWEEN SHHICESviiviceciceeee et st e e e sresre e eneeneens 39
Type compatibility of commuNiCation OPEratioNScccveiieieeeeieere e nes 39
QIR 0T o0 10177 = o) o S 39

1700 L1 =TSRSS 39
LT 0T USRS 39
NAMING OF MOGUIES ...ttt et st b et ae e e et e e be s et eaeese e e e neeseeebesaesreeneeneanes 39
1Y oo (0Ll 7= = = (= £ 40

(€7 07 - TSSOSO PPN 40
Default values for MOAUIE PAraMELEN'S..........cceierieieeiireeeeee st e e se st se e esas e seesae e sresre s e esaensessesneeneeneens 40
1Y/ Koo (81 T=N 0 T g 0] 1S - 40
(€= 07 - | ROTUPTPTRRPN 40
(€T oTU o TS o) lo =1 4T o] S 41
1Y/ Feo (BL=N oo g 11 o] I o= o TSRS 41
IMPOItiNG FrOM MOGUIES.........neieee ettt ae e e e e e e e besae et e e meeneeseeebesaesreeneeneanes 42
(€11 SO PUURRR 42
Structure of importable defiNiTIONS ... et s 42
RUIES ON USING TMPOIT ...ttt st a e s bt ae e st e e se e besaeeb e s st eaeeae e enbeseesbesneeneennans 44
RECUISIVE IMPONT........eete ettt ettt ettt et b et h e et e e e eeee e e b e bt eb e e aeeae e e e se e besaeemee e enbeseeebesaeennennen 46
IMPOrting SINGIE AEfiNITIONS.......cciiiie e e sresresreese e e e e entesresbesneeneeneens 47
Importing all definitions Of AMOAUIEcccoi i eneeeens 48
00T 1T 0T I 00 1 48
Importing definitions of the SAME KING ... e 49
Handling Name ClasheS ON IMPOM..........cceiieieieere st e e e see e saesresseeseeeessesneeneeneens 49
Handling multiple references to the same definition ... 50
Import definitions from NON-TTCN MOUUIES.........cciiiiiiieieee e s 50

QL= 0 T [0 = 0] ST 50
LT 0T OO UR SRR 50
Port ComMmUNICaLiON MOTEL........c.civiriirireire e e 51
RESLI CLIONS ON CONNECLIONS.cuvriiiereeies ettt n e st e n s n e e rene e 52
ADSract teSt SYStEM INLEITACE.cce i e et sae s resre e e e e e se e besresrenneeneenes 54
Defining COMMUNICatiON POt LYPESvcueeeeeeeieseereste st steseeseeseeeeseestesresaessesseeseeseessesseseestessessesseessesaessesseensenes 55

(71 S 55
DS o oo £SO 55
DEfiNiNG COMPONENE LYPES.......eiteitieterie ettt sttt es et ae st e sbeeaeeae e e ebeseesbesaeeheeae e e e beseesbenteseeabesaesbesneeneanes 56
(€11 OO SRR 56
Declaring local variables and timersin a ComPONENTcooiieiirerieiiere et e 56
Defining components With array's Of POIES..........coucie it st 57
Addressing entitieSiNSIAE the SUT ... b st et se bbb ne e nes 57
COMPONENE FEFEIENCES. ... ettt sttt ettt et e et et s st b e e e st be s e e ae e b e seeneebe s e ebesbe st e b s be st eresbe e enees 57
Defining the test SYyStEM INLEITACEcoiriiie e 58
DECIAINTNG CONSEANESecueiti ettt e st e s ae e e st e et e s teesaesbeeseensesseessessesneeseesneensenrens 59

ETSI

5 ETSI ES 201 873-1 V2.2.0 (2002-05)

10 DeClaring VAITADIES........c.oiiiieeiieee et bbb et e st n e r e n e 59
R D= o = 1o 101 £ TP PSR UR PP PPN 60
11.0 LC T g1 - ST 60
111 THIMENS GBS PAIAITIELETS. ... eveivesteeteeeetestestestestesseeseeaesseteseeatesseassessessenteseessesseeseessessanseseeseesseensensessentesaesrenneensenes 60
12 DECIAING MESSAGEScccviitieieiteeie it eteeite st eteste st e stesaeeasesteesseabesseesesseeasestesasessesseensesseeseasteenseseesseensessens 60
13 Declaring ProCeAUIrE SIGNAEUIES.ccueeereueeieesirtertesseseessesessee e st s asessesbesseseesse s e s e e eseesenseanessennennennas 60
13.0 L= 31 S SS 60
131 Signatures for blocking and non-blocking COMMUNICALiON..........cccoveiiieieciecc e 61
13.2 Parameters Of ProCEAUIE SIGNEEUIES..........ccveiueiuerestestesesteeeeseestesres e s e sressesseesessesteseestesseeseesaesentessessesseesennanns 61
133 Value returning reMOte PrOCEAUIESceveeeiesteste st stesteeee e sees e seestesreeseesee e estesaestesaesaeesesseeseessentesaesrenseensenes 61
134 S o TC ot YT 00 =0T o1 R 61
14 DeClariNg tEMPIELES......c.veiuieeeiecie ettt e et e et e st e e e e tesaeeeesteeeesbeeseetesseessesteenseseesseensenrens 62
14.0 L= 31 -SSP 62
141 Declaring MeSSAge tEMPIBLESecuruirieiriirieirt ettt ettt b et b e st bbb e et b b et st b e e ene e 62
14.1.0 (=0T - TSR PSTPSR 62
1411 Templates fOor SENAING MESSAGES.cviiirirtii ettt b bbbt b bbbt be b e e 62
14.1.2 Templates fOr FECEIVING MESSAGEScoveiverrerrerrereereeeestestestestestesresseseessessestessestesseeseesessessessesseseessessesnsenes 63
14.2 Declaring SIgNatUre tEMPIALESc.eeueeierere sttt te st et eeae e e e e te st e s besaesteeseeseenaensentesrenrenseenennnens 63
14.2.0 LCT= 0T - PSPPSR 63
14.2.1 Templates for iNVOKING PrOCEAUIESccviieeieeeeeeeiese st e e ete st sae s e e e e seestesresseenesresrenneeneenes 64
14.2.2 Templates for accepting ProCedUre INVOCAIONS...........covieiireieeeseeeeeeseesesee e sre e sse e esa e eaeseesre e eneenes 64
14.3 Template MatChiNg MECNANISMSocuiiie ettt se e e e e e e beeaeeae e e e besaeebeeneensenes 64
144 ParameteriZation Of tEMPIALESoiiieie et se e be st e bt be et eae e e e beseesbesneeneennens 66
14.4.0 (=0T - TSRS 66
1441 Parameterization with matching attribULES............ccooiiiii e e 67
145 Passing tEMPIELES 8S PAIAIMELEIS.c..ciueeieeeereerteeie ettt et e et te e eae et e e eeessesbeseeabesaeeseaneeasenbeseesbesneaneennans 67
14.6 MOAITIEA tEIMPIBLES. ... ettt a et e e et e et sbeebeeaeeae e e emeeseesbe e st emeeneeasebeseeebesneeneennans 67
14.6.0 LC =0T - TP PRSPPI 67
146.1 Parameterization of Modified tEMPIAEScccveieeee e eens 68
14.6.2 IN-1iNe MOdified tEMPIALES......cvi ittt sae e re e e e e srestenneeneeneens 68
14.7 Changing teEMPIELE fIEIAS.ceeieieree e et e e e reese e e e e sresresneenenneenen 68
14.8 V= ot T @] 7= o o SR 69
14.9 V2= L8 T= o o = 4 o] o 69
S O 01 - 0] £ T PP URTUPURRUPPOTN 69
15.0 L= 0T -SSP 69
151 F N gL aTaa= (oo e = = o] £ SRS 71
15.2 S 1010 0] 1= = (o = PSR 71
15.3 RS = (00 0 0= = 0] £ SR 71
154 (00 [Tor= 0T 0= (0] (=SS 73
155 LTS S o]0 (] (=SS 73
15.6 S T 0 0 = 0] SR 74
15.7 R0 = (T 0] 0 < = (] £ T T PSP PUP PP PPPTI 75
16 FUNCHONS BN BILSEEPSeoueeieeeeeeeetee ettt ettt ee sttt e st s ee e e et e e e seeeaeenaesseemeesseeneesesneeneeseesseenseneean 75
16.1 [0 Tex 0] SO 75
16.1.0 (T 21| SRS 75
16.1.1 Parameterization Of FUNCIIONS ..ottt st 76
16.1.2 1Y 0) T T 0 1o 76
16.1.3 =0 1= 1101 o N {01 Tox 1 o 77
16.2 F L 1 o= TSSO SRS 78
16.2.0 (=07 SR 78
16.2.1 Parameterization Of BlTSIEPS........coi it b e e b 78
16.2.2 Local definitioNS iN @lTSIEPSc.eiuiiieiee ettt et bt b et e b ene e 78
16.2.2.0 LC = 0T - ST STPRTR 78
16.2.2.1 Restrictions for the initialization of local definitionsin altStePs.coveririrerieee 79
16.2.3 I NVOCALTON OF BITSEEIIS. ... ettt sttt b ettt et et b e bt it e e e e besbesb e s besbeeae e e ebeseeebesaeeneennens 79
16.3 Functions and altsteps for different CoOmMPONENT tYPESeiuiriireiireie e e 80
N = 0= s =TT U URTUPURRUPPTOTN 80

ETSI

6 ETSI ES 201 873-1 V2.2.0 (2002-05)

17.0 LT 07 P SRS 80
171 ParameteriZatiON Of tESE CASES.......eieeuieieree sttt st ae ettt e e e e teseestestesaeeneeseeteseesrenneeneeneens 81
18 Overview of program Statements and OPEIaLIONS........cc.eoveererererieere st e e s sns 81
19 BasiC Program SIAEIMENES.cciiieiie et eee sttt et e e st e e e st e s e et e sae e tesbeensesaeessesbesaeestesresseensesrens 83
19.0 LCTc 0T - ST ST STR 83
191 (0155 oSS 83
19.1.0 GIEMETEL......eeeeeet ettt b et e bbb e A A b £ ARt A ke E A b et A b e Rt E R e Rt E b e Rt e b e ne e b et e ebenas 83
1911 BO0IEAN EXPIESSIONS ..ottt sttt sttt ettt b et b e et b e s et b e s b et e bt s b et bt s b et bt b e e ne b e ae b e ene e 83
19.2 AASSIGIIMIENES ...tttk ettt ekt b e bt b et h bt e e b b e e a e b4 e 2R e e b e A Eeh e e b £ A E e R e e b e AR e e e h e E e s eb e e e s eb e b e b bt n e nenenn 83
193 THE LOG SEBIEMENTccveeeeet etttk bbb e bbb b e e e b e s e e e eb e se et e st e b e se e e ebese e e ebenrennerens 83
194 I L I o= IS = =00 oL R 84
195 THE GOLO SEALEIMENTcvveeeeece ettt b e e b et rer e se e e s e rene e 84
19.6 THE IT-E1S8 SLBLEIMENE ... et e et rer e e nn e rene e 85
19.7 THE O SEBLEIMENE ... e r et R e r et e b r b nenn e e rene e 86
19.8 THE WHITE SLAEEMENL.......c.eeeeiieeteere et r et rer e e nn e e rene e 86
19.9 The DO-WhIl@ SEAEEMENL ..ot r e s n e rene e 86
19.10 The StOP EXECULTION SEALEIMENL......ceeiie et a e e e e s e e e e eeseeseestesneeneeseetesaesresneennenes 86
20 Behavioural program StALEMENES.........cooueirerirereese et e e sn e e s sneen e e s e e e s 87
20.0 LC1c 0T - TSSOSO 87
20.1 F N LS g (AN 1< 7= Y/ o U TR 87
20.1.0 (€7 07 - | ST ROTUPPTRPUN 87
20.1.1 Execution Of alternative DENAVIOUccoieriiireiesece e 89
20.1.2 Selecting/desel eCting @n altErNELIVE.cveieeece ettt ene e nes 20
20.1.3 EISe branch iN @LErNELIVES...........ciieeeese e 20
20.14 Y4 oL SO SEP T S TP R TP SPR 91
20.15 Re-evaluation Of @t SEAEEMENES.......c.cireireirneeresre e 91
20.1.6 INvocation Of altStEPS AS AItEINALIVEScieiieeieeeeee ettt eb et e e e e e e sbe e eneeneens 91
20.2 The REPEAE SLALEIMENToeeiee ettt e e e e et bt e aeeae e s e e e et e seeeaeeheeneensese e besaeebesneensenes 91
20.3 INEErTEAVEA DENAVIOU ...ttt ettt et et sae e st e e e eeseeebesaesneeneeneenes 92
204 THE RELUIN SEBEEMIBNT.ee ettt sttt et e e e beebe s aeeb e e aeenseeeseeeneemeeneeseebesaeerenneennenes 93
21 DEfaUIt HANOING ... e e et n e nr s e s 94
21.0 LCTc 07 = TSSOSO PE ST S PRSTR 94
21.1 The default MEChANISIM ...t rene e 94
21.2 DEfAUIT FEFEIBNCES.cveeieeeetcere et R et r et eer et n et nrer e renens 94
21.3 IR LCE: A= (=0 o == 4o o 95
21.3.0 (€7 0T - TSSO T RPN 95
21.31 Activation of parameteriZed AltSIEPS.oe ettt b e es 95
214 The dEaCtiVALE OPEIGLIONc.eiiiieie ettt st bbb it s e e e et e seese e s beeae e e e se e besbesbeeneennenes 95
22 CONfiQUIatioN OPEIELIONS.eeoeeeeeeeeriesteereesteeeesteeeeeseesaeeseesteeeeseeeseestesseeeeaseeseesseaneessesseensenseseesneensessens 96
220 LC T 07 ST ST T 96
22.1 I LT O = (=Y 0] = = (o) o 96
22.2 The Connect and Map OPEFaLiONS.........cceieiirereeeereeseste e s e se e e e seeseestesaeeseeeensesaesaessesseeseeneensessessesseensenes 97
22.2.0 GNETEL ... ettt R R R R R Rt r e n s 97
22.2.1 Consistent conNNECtioNS aNd MEPPINGSeveeverueereereereeresresreseeeeseessessesresreseeseessessessessessessessssssssessessesseenses 98
22.3 The Disconnect and UNMEaP OPEFELIONS.couereeierierieriesiesieseeeesees e seesbesiesaesseeseabeseesaesaesseesesneenseseesbessesnsenes 98
224 The MTC, System and Self OPEratiONS..... ..ot b et et e b neenes 99
225 The Start test COMPONENT OPEIALIONeiui ettt ettt b et e e e e seesbe bt sbe e e e seseese e besaesbesaeennenes 99
22.6 The Stop test COMPONENE OPEFBEIONeiui ittt ettt sbe bt s et sbesbesaeebe e e e e e e e sbebesbesbesaeennenes 99
22.7 THe RUNNING OPEIATON......cuiitiiteeieeee ettt se bbb e ae et et se e be s aeebeese e e e teseenbesaeeneeneeneas 100
22.8 THE DONE OPEIGLIONeiuteee ettt sttt st et et eb e st e e e seeseeebesaeeb e e st e e enbeseeebe s et ebeeseemeenbeseenbesaeeneeneaneas 101
22.9 USING COMPONENT BITAYS. ... eeveeeneeterteseetesteseesestessesesseseesessessesessesseseeseseeseesessensesessesesessensesessensesessensesessenseneanas 101
22.10 Summary of the use of any and all With COMPONENLS.........coiiriiiirie e 102
23 COMMUNI CALION OPEFGTIONS.....c.vititeeeeeseeieeieeieste st st stesseee et sse st sbeabeseesbese e e s eseesesbeebenbesbeneeneensenneneas 102
23.0 LCTC 0T - OO ST 102
231 General format of COMMUNICALiON OPEFALIONS........couiiuiiierieeieie ettt et e e see b saeeneeneens 103
23.1.0 GIMETEL ...ttt et b ek b e b bR £ R R e AR e £ bR A bRt A bR e b et e bRt e bRt e et ne e benis 103
2311 General format of the SeNding OPEIaLiONS.........ccoiiiiriiee et s 103
23.1.2 General format Of the reCEiVING OPEraLioNS..........coeriiiiriiie ettt st sbe e eens 104

ETSI

7 ETSI ES 201 873-1 V2.2.0 (2002-05)

23.2 M essage-based COMMIUNICBLION. ..ottt b bbbt bbbt eb e s se s nn e e 105
23.2.0 GIEINENAL.....eceecte ettt st s et et s a et et e e et te e e Rt R e R e st R e nAe At EeeR et EeeR et eEeeaeseeReereneeteseenenrenreneete s 105
2321 THE SENA OPEIBLION ...ttt bbb e bbbt e st bt et e bt b e e b e eb e b et e s b e e enis 105
2322 THE RECEIVE OPEIBLION ...ttt e et b et b e bt et b e e e e bt s b e eb e b e s ene b s e e 106
23.2.2.0 (€= 0T RPN 106
23221 RECEIVE ANY MESSAGE. ... eveeueeeeteiteetesseeeestessestestestesseessesessestesaeasesssaseessessestesseasesseessessessessessessessesnennes 107
23.2.2.2 o AV 0] TV oo o S 107
23.2.3 I LSRN o (= o] o == o) o S 107
23.2.3.0 (€= 0T - PSP SPRSPRPRSN 107
23.23.1 TIrIQOEr ON GNY MESSAYEeevevererieeteeeetessestestesseeseseeeessessessessessesseessessessessessessesssessessensessessesesssnnsens 108
23232 THIQUEN ON BNY POttt ettt sttt eb et b s e bt e e e eb e s b e s e b e nb e s e st e b e e st b e s enenn e s enens 108
233 Procedure-based COMMIUNICBLION............cieiieieiie sttt st et st sbesae st e e e s e besaesbeeneeneenes 108
23.3.0 GIEINEN@L.....eceecte ettt ettt se et st e et e et e e e Rt E e eA e Rt R e eRe Rt R e eR et R e eE et eEenaeReeEentereeteseeneetenaeneere s 108
2331 THE Call OPEIELION ...ttt b et b bbbt s st b e s e st bt b e s e bt b et e se b nn e e e 109
23.31.0 (€= 0T TR TSRSPTPRN 109
23311 Handling responses and exceptionSt0 @ Call ... e 110
23.31.2 Handling timeout exceptionStO the Callcccvviieeicesese e s 110
23313 Calling blocking procedures without return value, out parameters, inout parameters and

oo o)1 0] 1 111
23314 Calling NON-blOCKIi NG PrOCEAUIESccveriiie sttt sr et re e enee s 111
23.3.2 LI ST = (o B0 0= o S 111
23.3.20 (€S 0T - PSPPSR 111
23321 ACCEPLING ANY CAL ...t ettt ae e e e e et e et et e s et eaeene e e eneeseeebesaeeneeneaneas 112
23322 (€1 (o= | ol g 1= |V oo SO 113
23.33 LT R o 1Yo o= = o] o OSSPSR 113
2334 BT ETC (= o LYo o= = o] o OSSR 113
23.34.0 (€= 0T TSRS 113
23341 LT =01V 1= o PR 114
23.34.2 GEL ATEPIY ON BNY PON...vriiiieieeetieeeeee e st e e ste e seese e e e stestestesreeseeseesesteseestesseeseeseeseenseseesesaeesenneensanes 114
23.35 LI LT TS =X 0] 1= - 1 o S 114
23.3.6 I (ST O (e a1 0] [o S 115
23.3.6.0 (€= 0T o PP PSPRPN 115
23.36.1 The TIMEOUL EXCEPTION «..c.veiveieieeeeeeeeeee e ste e st st e e se e te st e sressesseesee e enseseessestesaeeseeneeneeseesresnnenenneens 116
23.36.2 (O o g = 10| V(o= o1 o] o H ST UR R R 116
23.36.3 (O e g ol g 1= |V oo i AU TP 116
234 THE CHECK OPEIBLIONcteiei ittt sttt sttt b e bt ese et e s bt s bt sbe e st eaeeneebeseesbeebeemeanbeseenbesaeeaeeneaneas 116
2340 (7 1= | RSP USPRR 116
2341 The CheCK @NY OPEIELIONcouiiteieieeeeeeee sttt et b et e e e et e s be b e st eae e e e s e beseesbesaeene e e aneas 117
234.2 CRECK 0N BNY POIT ... ettt bt bt se e b e s bt ebeeae e e e nbeseeebesaeabeeas e s anbeseesbesneensennans 117
235 Controlling COMMUNICAEION POIS........eiuierereeeeierieseseesteseseeeessesteseeste e sseeseseessessessessessessesseesesssssesseesenseens 117
2350 (CTC 0T o PRSP PR 117
2351 LT @z T oo 0] = - (o) o 117
235.2 LIRS = oo] e o= o) o 118
2353 LILCES (] o] 1o A] o <= 1 o o 10 118
23.6 Use Of @ny and all With POFES........ceeiiiiriieeree ettt sttt enas 118
R 101 0] 0] ST 118
24.0 L= 01 - RS RS 118
24.1 THe SEArt tIMEr OPEIELION.cc.eieeieie ettt e b ae b e e e e e b seesbe s et eb e e st e e e beseesbesaeeneeneaneas 119
24.2 LIRS (0 T (] 0= 0] 1= 1o o 119
24.3 LI CEE R =0 RN 1= e o= o) o 120
244 The RUNNING tHMEN OPEIALHION. ..ottt bbbt b e s bbb e s bt 120
245 ThE TIMEOUL OPEIGLION ..ottt ettt ettt b e sttt e s e et e b et e ne e be st e bt s beseenesbe e nees 120
24.6 Summary of use of any and all WIth IMErS.........co e 121
LS T == ARY/= (o [oi f 0] 0 1= =1 1 T 121
25.0 L= 01 -SSR 121
25.1 IES o= RV o [o: S PRTOR 121
25.2 Verdict values and OVErWIITING FUIES.......co.eeueeieieie ittt ettt et bbb e et e b e e eneas 122
25.2.0 GENENEL.....c.eeuiite ettt sttt et sttt s ettt sttt e s e e st et saeae e te et e At Eeea e Rt Ee et eReeReea e At Reeae Rt e te e eReebe st eneebenaenenreneneee 122
25.2.1 oY= o [122
P = 7= = 1 1T 122

ETSI

8 ETSI ES 201 873-1 V2.2.0 (2002-05)

27 MOAUIE CONEIOI PAIT ...ttt b bbb e e e et eb e b e nn e n e e e 123
27.0 LT 01 RPN 123
27.1 EXECULTON OF TESE CBSES ...ttt et b e b bt se b s bt bt bt e e et se e besaesb e e e e e s 123
27.2 TEMINALION Of TESE CBSES....eveeetiite ettt sttt sttt sttt s ee et s b et be s be st ebesbeseenesbeseenesbenteneees 123
27.3 Controlling EXECULION Of TESE CASES......eiuiireieererieseesesestese e e e see s e e et te s e ese e e eeestestestesressesseenteseestesneeneeneens 124
274 TESE CASE SEIECHION ...ttt ettt st s b e e bt s b et b e b et b bt e bt e b et Re b e be et e 124
275 USE OF TIMEFS TN COMEION ...ttt b et b e bbb b b et s e b et nennas 125
28 SPECITYING GIITDULES........cciiiticeectece ettt e et et e st e e e e sbeeae e besreentese e besreeneenreens 125
28.0 L= 01 SRS 125
28.1 DiSPIaY GELITDULES.ccuieeieitieet ettt bbb et b e se s e bt e et st s bt b s e b e n e e 126
28.2 ENCOOING O VAIUBS ...ttt bbb bbbt b et bt b s n et enis 126
28.2.0 (€7 1 = | TSR PTOTSPTRN 126
28.2.1 ENCOOE @ITIULEScveeieeiisieet et skttt st e e b st e e e 126
28.2.2 VATANE BHITOULES ...ttt b ettt b et b et et s b et enenbeneenennas 127
28.2.3 SPECIAl SEFINGS. . veveeteeueeeiieste st se e e et e te st e s e saestesse e e e eessetesaeabesseeseessensetesaeatesaeeseeneensensessentesneerennnensesans 127
28.24 117z 1o = oo o L g0 128
28.3 EXEENSION GEITDULESttt bbbttt b et e b b et s bt eneenas 128
284 SCOPE OF BELITIULES..... ..ttt b bbbt bbb e st b et 128
285 OVErWIiting FUIES FOr GLEITIDULESc.iieieeeiieeee e bbb 129
28.6 Changing attributes of imported language ElEMENtS...........cceiiiiie e 130
Annex A (nor mative): BNF and StatiC SEMaNTICS.......covriiiirieieeieeeeeeeeesese s 131
Nt N I O N = | RS 131
A.1.0 LC T o1 -SSRSO 131
A.ll Conventions for the SYNtaX AESCIIPLIONcveieririe e e e e e sresresneenaeneens 131
A.l2 Statement terminNator SYMDOIS........c.o ittt et ae e e e e e e saesbesneeneeneens 131
A.13 L0 (S g 1) = PR STRSR 131
A.l4 (01001011 01T UR PP 131
A.15 B IO (0111 RSSO 132
A.16 TTCN-3 Syntax BNF PIrOQUCLIONSoouiieiitieieiiee ettt sttt sbe bt ene e e be e saeeneeneas 133
A.1.6.0 TTCON MOUUIE......eeeeeeieeeee ettt sttt b e bt b e st et e bt s b et e bt sb e s ese b et enenbeneeneenes 133
A.16.1 VKoo (81 ECT 0 = g TR o] Y o 134
A.1.6.1.0 (€T 0T - OO RRSRTRPRSPRPSTN 134
A.16.1.1 IR/ 1= (= 0 = {1 o o] =SS 134
A.1.6.1.2 CoNSEANE AEFINITIONSciveeeiietereeee ettt st s b et b e b e et se st ebeseenesbeseeeenens 135
A.16.1.3 QLI 1010 =0 (= T a0 SRS 135
A.16.14 FUNCEION AEFINITIONS ...ttt bbbttt et e b e e 137
A.16.15 SIGNALUNE AEFINITIONS ...t e bbbt e b et e e b e e e e es 137
A.16.1.6 TESLCASE AEFINITIONS.cueieiiee bttt b e s b e s bt sbeese e besaeebesaeenseeen 137
A.16.1.7 F N LS = oo (= 1T 0Tl (0] USSR 138
A.16.1.8 IMPOIT AEFINITIONS. ...ttt bt ae et e e et b e be e e e beseesbesaeene e e aneas 138
A.16.19 (€T go TN X L= 101 (To] o 3OS 139
A.1.6.1.10 External funCtion defiNitioNS...........cooieiiireiierse e bbb 139
A.1.6.1.11 External constant definitioNS........ ..o e b 139
A.16.1.12 Module parameter defiNItiONScoeecieierire et r e sae s r e e nes 139
A.16.2 L0511 o] I o 7= o SRS 139
A.1.6.2.0 GBINENAloeeceeteeete ettt sttt sttt st et b ettt be et et et e b et ke b e et e ebe e eteebe e eneeteeaeneetenre e eteereneenens 139
A.16.2.1 V= = T Y [=LA =0 o 140
A.16.2.2 THMEN INSEANETBLION ...ttt ettt b et e e besbeebesaeeaeeneese e besaesbesaeeneeeen 140
A.1.6.2.3 COMPONENE OPEIBLIONS ...ttt etieieete ettt e e ee st be bt sbesae e e e e e ss e besbesbesaeese e e e eesbeseesbesaesbeeneaneenes 140
A.16.24 POIT OPEIBLIONS ...ttt ettt bt b e heeh et e b e s ee s bt s bt e heehe e e e mbesbeebesbeeaeeneese e besaeebeeneeneanes 140
A.16.25 R0z 0] 01 = (g USSP 142
A.1.6.3 I3 L= OSSR 142
A.l64 Y LSS 143
A.165 e o010 174 14 o] 144
A.16.6 LAY S = =0T S 144
A.16.7 1S 0 Lo LU S = 1= 1= (S 145
A.16.8 R ST 0= 145
A.16.9 MiSCEllBNEOUS PIrOAUCTIONS ...ttt ettt bbb st e e 147
Annex B (normative): Matching inCOMING VAIUES..........cooiiiiieeee e 148

ETSI

9 ETSI ES 201 873-1 V2.2.0 (2002-05)

B.1 Template matChing MEChENISIMScouiiiiiiiieee s 148
B.1.0 (1= 0 = OSSPSR 148
B.1.1 MatChing SPECITIC VBIUESeee ettt ettt e e e e snaesaeesaeesaeenteeneeenneeneenraennens 148
B.1.2 Matching mechanisms iNStead Of VAIUESccce it 148
B.1.2.0 LT RS 148
B.1.2.1 BT 1L S 148
B.1.2.2 ComplEMENLEA VAIUE ISt ... ettt e st tesreste e e e ntesresresnneneennens 149
B.1.2.3 OMIUTLING VAIUES.......ceeeeeieie sttt et st st e e st e e s ee st e s aeeaeese e e e s teseebesaeateeseensensessetesaeasennnensensans 149
B.1.24 AANY VBIUB......eceeeeett ettt b e bt h bt et h e e e b 4R e s bR e e b e e R et bt et e e bt bt R R nenenn 149
B.1.25 ANY VBIUE OF NONE......e.eiuiitiieeieetest etttk ettt ettt e b e bt e eb e b e s b e s b ees e e bt s e s e eb e e b es e e bt b e s ebe s b et ene b e nn e e nnis 149
B.1.2.6 W AIUB FBINJE. ...tttk ettt ettt bt bt et b bbb e e bR £ s e bR e s e bRt s e b e R e s eb e eh et e bt b et ene e bt nn e e ens 150
B.1.2.7 U0 0 USSR U RPN 150
B.1.2.8 SUDSEL ... oottt ettt ettt e et e e aeshe e sheeete e teeteeheeeheebe e te e teeateahaeaheesReeabeebeereenteeneeareenreeres 150
B.1.3 Matching MechaniSMS INSIAE VEIUEScoirciiieiieeet e 151
B.1.3.0 LT 1= USSR 151
B.1.3.1 N)= =00 o S 151
B.1.3.1.1 Using single CharaCter WIlACAIdS..........cueveriieiiiisieece st st e 151
B.1.3.2 Any number of €lementS OF NO ElEMENT..........cceiie i re e e enes 151
B.1.3.2.1 Using multiple charaCter WildCards...........cccvieeiereresie et et 151
B.1.4 MaLChiNg BLITDULES OF VBIUESc.eeuiiiiieiiitiieiest ettt n s 152
B.1.4.0 (7= 0T - | SRRSO 152
B.14.1 (0= 001 g I L= (g od o] SR 152
B.1.4.2 The HIPreSENt INAICALON.......cceeiecee et s e et e e et e et e s be et e e be e besaeesaeesaeesaeesaeeseenseensenns 152
B.1.5 V= ot o g o o g = od (= g o= = o SRR 153
B.1.5.0 (7= 0T - | SRRSO 153
B.1.5.1 S =T 1= 0] o TSP 154
B.1.5.2 S L= = T = 0 =55 o 154
B.1.5.3 Y o gl 0SS Mo I g (T == 154
Annex C (normative): Pre-defined TTCN-3 fUNCLIONS.......cccviieiecieee e 155
C.1 INLEYEN 1O CRAIACLENeceieieetiete ettt s b nb e R e s e s e e e et ebenr e nenn e nennennas 155
(ORI O g = O (0 11 =0 = ST 155
C.3 Integer to UNIVEISAl CRArACLENcceeiiieiece ettt sttt e besaesreeneenre e 155
C.4 UNIversal CharaCter 10 INEOEN........eiveieireece e eee et e et et e e e st et te e e et e saaesaesreenaesreesaentesreeneenreans 155
(O I =11] a0 (o 11 o = ST 155
(O I o 1o T o (0T H g 11=e = ST 156
(ORI © = > (1o (o 1100 = T 156
(ORI O o= 5= (T 0o (o111 o ST 156
(O T 1110 = g (o o1 £ 111 o ST 156
(O O 1100 = g (o 1= 1 0T S 156
(ORI R g 110 = g (o 0o = 1 1 o T 157
(O D g (= o = g (o T ox == 1 SR 157
(O3 C T = o 1 o T a0 1] = 157
C.14 Number of elementSin aStrUCIUEA LYPE........ecveiiieecie ettt et e et e 158
(O L I 1= S == 1 0 o TR 158
C.16 The lISChOSEN FUNCLION........eeiiiiiecee ettt et s e e et e saeeaesreeaeesbesraetesreeneenreens 159
(O I N g T= T (= o = o I 1o o o 159
C.18 BitSHNG tO CRAISIING. ... eteeeereertiee st ee sttt ee et et e sttt e st e sae e eeseeeseesaesseessesseeseseeeneeseeeseeneensesneeneensenns 159
C.19 HEXSLIING tO CNAISIIING ... eeieeeeeieeeeee ettt ettt ae e e eesbe e e seeeneeeeseeene e eesneeneeneens 160

ETSI

10 ETSI ES 201 873-1 V2.2.0 (2002-05)

C.20 OCtetString t0 CNAraCEr SLINGeivirteieereieeeiieesie ettt ss s e et b b e b sne s e e e 160
C.21 CharaCter String t0 OCLELSLIINGeoververeereieeeieiesie ettt sb e ss e e e es e b sn s e e e 160
C.22 BitStNG tO NEXSIIING ... cceiitiieeitectieie sttt ettt ettt e st e e e s resre e besaeessesbeenaesbeeaeesbesreeneeseentesreennenrens 160
C.23 HEXSIITNG L0 OCTEESIITNG -...eveeveetirteetestese ettt e ettt b b e s e e e et esens e b nn e s e e e 161
C.24 BItSIING 10 OCLELSIIINGeeueeueetirtertestestestes ettt s et ss et et et es e b e b e sb e b e s e s e e ebenr e e b e nn e s e e ennas 161
(OIS o (oG T go R (o oL €= (1o R 161
(ORI ® (== (1o R C0] 4= 11 oo 162
C.27 OCELSIING 10 DITSIITNG. ...ttt sr e sr e nesren e 162
(O T 110 o = g (0 1 [T 162
(O T = Lo (o1 1= = 162
C.30 Therandom number generator FUNCHION...........coiiiieieice e 162
C.31 The SUBSIING FUNCLIONc.eiiiitiiii e e er e n e nn e nen e 163
Annex D (normative): Using other datatypeswith TTCN-3 ... 164
D.1 USINGASN.LWIth TTCN-3. .ttt bttt st st nb e e 164
D.1.0 LT 0T USRS 164
D.11 ASN.1 and TTCN-3 tyPe QUIVAIENTS........c.eirireeiiriirieterieieete ettt ettt se b b e b e e b e e e ebesreeenens 164
D.1.1.0 L€ 1 OSSPSR 164
D111 LK1= 0L 1T (=TSSP STTR 165
D.1.2 ASN.1 datatyPeS aNd VAIUES........c.cceieieiiiieetieeeies e see et etesae e st tesse e e esaeseetesaesbessesseenteseestesaessenneeneen 165
D.1.2.0 (CT= 0T - PSPPSR 165
D.1.21 SCOPE OFf ASNL L IAENMETIEISeeiee sttt st reere e e e e e tesrestenteseesrennneneennens 168
D.1.3 Parameterization IN ASN. L.t s et e s ren e e nn e r e 168
D.14 Defining ASN.L MESSAZE tEMPIALEScceieeeerieeteeeeeeee e e et esa e e s eestesresneese e e esee e e stesneeneennenes 169
D.1.4.0 L€ 1 RSP RRRRRN 169
D.141 ASN.1 receive messages using the TTCN-3 template SYNtaX........coeoereeereeeriereee e 169
D.14.2 Ordering Of teMPIAte FIEIAS.......ccui e sttt e e et eneeeen 170
D.15 (= pTetee [T aTo T g1 o]q 107 1T o] o FORRR USSR 170
D.1.5.0 L€ 1 SRR 170
D.151 PN NI = g oo o] g0] o1 = 170
D.152 ASN.LVEHANT ALITDULES ... e 171
Annex E (informative): Library of USEfUl TYPESc.oviiiiirieriesiee st 173
R IR T 4 1 = 0] OSSR O PSSR 173
I U < I Ve Y o= 173
E21 USEfUl SIMPIE DBSIC LYPES....veeeeiiesrer ettt n et nner e e enes 173
E.21.0 Signed and unsigned SiNGIE DYTE INTEOENSc.vovrveeierreereree e 173
E211 Signed and UNSIGNEA SNOMT INEEOEIS......c.vereerrrreirrereerrerere s nnene e 173
E.2.1.2 Signed and UNSIGNEA [ONG INEEJEISc.viverierrerirerreeees e n e e n e nene e 173
E.2.1.3 Signed and unNSIgNed 10NGIONG INTEJEIScoverirrieireerere et snene e 174
E214 L 7 Fo = (=SSR 174
E.2.2 USEFUL CharaCter SIFNQ TYIBS ..ottt sttt b et e et e bbb e s st e se e e et et e se e besaesbeennaneenes 174
E.2.20 UTF-8 character String "UFBSIIING"oouiiiiiieieeeee et st 174
E221 BMP character String "BIMPSIIiNG” ..o e s 175
E222 UTF-16 character String "ULfLESLING"cccooiiiriie ittt et st s b 175
E.2.23 I SO/IEC 8859 character string "iS08859SIING"c..oivirtereetirierierie et se et nes 175
E.2.3 (UL TS e N =0 Y 0= TSSO 176
E.2.30 Fixed-point deCiMal [EEIalccooeiiiree ettt 176
Annex F (informative): Bibliographyooeeeeee s 177
[1S 0 Y TP ORP PSPPI 178

ETSI

11 ETSI ES 201 873-1 V2.2.0 (2002-05)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, ispublicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards', which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/| PR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given asto the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

ThisETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and Specification
(MTS), and is now submitted for the ETSI standards Membership Approval Procedure.

The present document is part 1 of a multi-part deliverable covering the Testing and Test Control Notation version 3, as
identified below:

Part 1: "TTCN-3 CorelLanguage";

Part2: "TTCN-3 Tabular presentation Format (TFT)";
Part3: "TTCN-3 Graphical presentation Format (GFT)";
Part 4. "TTCN-3 Operational Semantics'.

ETSI

http://webapp.etsi.org/IPR/home.asp

12 ETSI ES 201 873-1 V2.2.0 (2002-05)

1 Scope

The present document defines the Core Language of TTCN Version 3 (or TTCN-3). TTCN-3 can be used for the
specification of all types of reactive system tests over a variety of communication ports. Typical areas of application are
protocol testing (including mobile and Internet protocols), service testing (including supplementary services), module
testing, testing of CORBA based platforms, APIs etc. TTCN-3 is not restricted to conformance testing and can be used
for many other kinds of testing including interoperability, robustness, regression, system and integration testing. The
specification of test suites for physical layer protocolsis outside the scope of the present document.

TTCN-3isintended to be used for the specification of test suites which are independent of test methods, layers and
protocols. Various presentation formats are defined for TTCN-3 such as atabular presentation format [1] and a
graphical presentation format [2]. The specification of these formats is outside the scope of the present document.

The present document defines a normative way of using of ASN.1 as defined in the ITU-T Recommendation X.680
series[7], [8], [9] and [10] with TTCN-3. The harmonization of other languages with TTCN-3 is not covered by the
present document.

While the design of TTCN-3 has taken the eventual implementation of TTCN-3 translators and compilersinto
consideration the means of realization of executable test suites (ETS) from abstract test suites (ATS) is outside the
scope of the present document.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

* References are either specific (identified by date of publication and/or edition number or version number) or
non-specific.

« For aspecific reference, subsequent revisions do not apply.

« For anon-specific reference, the latest version applies.

[1] ETSI ES 201 873-2 (V2.2.0): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 2: TTCN-3 Tabular Presentation Format (TFT)".

[2] ETSI TR 101 873-3 (V1.1.2): "Methods for Testing and Specification (MTS); The Tree and
Tabular Combined Notation version 3; Part 3: TTCN-3 Graphical Presentation Format (GFT)".

[3] I SO/IEC 9646-1 (1994): "Information technology - Open Systems Interconnection - Conformance
testing methodol ogy and framework - Part 1: General concepts”.

[4] I SO/IEC 9646-3 (1998): "Information technology - Open Systems Interconnection - Conformance
testing methodol ogy and framework - Part 3: The Tree and Tabular Combined Notation (TTCN)".

[5] ISO/IEC 646 (1991): "Information technology - 1SO 7-bit coded character set for information
interchange”.

[6] I SO/IEC 10646: "Information technology - Universal Multiple-Octet Coded Character Set (UCS)".

[7] ITU-T Recommendation X.680 (1997): "Information technology - Abstract Syntax Notation One

(ASN.1): Specification of basic notation"”.

(8] ITU-T Recommendation X.681 (1997): "Information technology - Abstract Syntax Notation One
(ASN.1): Information object specification”.

[9] ITU-T Recommendation X.682 (1997): "Information technology - Abstract Syntax Notation One
(ASN.1): Constraint specification".

[10] ITU-T Recommendation X.683 (1997): "Information technology - Abstract Syntax Notation One
(ASN.1): Parameterization of ASN.1 specifications'.

ETSI

13 ETSI ES 201 873-1 V2.2.0 (2002-05)

[11] ITU-T Recommendation X.690 (1997): "Information technology - ASN.1 encoding rules:
Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and
Distinguished Encoding Rules (DER)".

[12] ITU-T Recommendation X.691 (1997): "Information technology - ASN.1 encoding rules:
Specification of Packed Encoding Rules (PER)".

[13] I SO/IEC 6429 (1992): "Information technology - Control functions for coded character sets'.

[14] ITU-T Recommendation T.100 (1988): "International information exchange for interactive
videotex".

[15] ITU-T Recommendation T.101 (1994): "International interworking for videotex services'.

[16] ITU-T Recommendation X.660 (1992): "Information technology - Open Systems | nterconnection -

Procedures for the operation of OS| Registration Authorities: General procedures”.

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in I SO/IEC 9646-1 and | SO/IEC 9646-3 and
the following apply:

actual parameter: value, template or name reference (identifier) to be passed as parameter to the invoked entity
(function, test case, al t st ep etc.) as defined at the place of invoking

NOTE: The number, order and type of all actual parameters to be passed at a single invocation shall bein line
with thelist of formal parameters as defined in the invoked entity.

basic types: set of predefined TTCN-3 types described in clauses 6.1.0 and 6.1.1 of ES 201 873-1

NOTE: Basic types are referenced by their names.
compatibletype: TTCN-3 isnot strongly typed but the language does require type compatibility

NOTE: Variables, constants, templates etc. have compatible typesif conditionsin clause 6.7 are met.
communication port: abstract mechanism facilitating communication between test components

NOTE: A communication port is modelled as a FIFO queue in the receiving direction. Ports can be
message-based, procedure-based or a mixture of the two.

data types: common name for simple basic types, basic string types, structured types, the special datatype and all user
defined types based on them (see table 3 of ES 201 873-1)

defined types (defined TTCN-3 types): set of all predefined TTCN-3 types (basic types, all structured types, the type
anytype, the address, port and component types and the default type) and all user-defined types declared either in the
module or imported from another TTCN-3 module

dynamic parameterization: kind of parameterization, in which actual parameters are dependent on run-time events,
e.g. the value of the actual parameter is avalue received during run-time or depends on areceived value by alogical
relation

exception: in cases of procedure-based communication an exception (if defined) is raised by an answering entity if it
cannot answer a remote procedure call with the normal expected response

formal parameter: value or template name reference (identifier) not resolved at the time of the definition of an entity
(function, test case, al t st ep etc.) but at the time of invoking it

NOTE: Actua values or templates (or their names) to be used at the place of formal parameters are passed from
the place of invoking the entity (see also the definition of actual parameter).

ETSI

14 ETSI ES 201 873-1 V2.2.0 (2002-05)

global visibility: attribute of an entity (module parameter, constant, template etc.) that itsidentifier can be referenced
anywhere within the module where it is defined including all functions, test cases and altsteps defined within the same
module and the control part of that module

I mplementation Confor mance Statement (ICS): See |SO/IEC-9646-1.

I mplementation eXtra Information for Testing (I X1T): See ISO/IEC-9646-1.
Implementation Under Test (IUT): See ISO/IEC-9646-1.

known types. set of defined types, imported ASN.1 and other imported external types

local visibility: attribute of an entity (constant, variable etc.) that itsidentifier can be referenced only within the
function, test case or al t st ep whereit is defined

Main Test Component (MTC): See ISO/IEC 9646-3.

passing parameter by value: way of passing parameters where the arguments are eval uated before a parameterizable
entity is entered

NOTE: Only the values of the arguments are passed and changes to the arguments within the called entity have
no effect on the actual arguments as seen by the caller.

passing parameter by reference: way of passing parameters where arguments are not evaluated before the function,
al t st ep etc. isentered and a reference to the parameter is passed by the calling procedure (function, altstep etc.) to
the called procedure

NOTE: All changes to the arguments within the called procedure have effect on the actual arguments as seen by
the caller.

Parallel Test Component (PTC): See |SO/IEC 9646-3.

root type: basic type, structured type, specia datatype, special configuration type or specia default type to which the
user-defined TTCN-3 type can be traced back

NOTE: In case of types based on imported ASN.1 types, the root type is determined from the associated
TTCN-3 type (see clause D.1.2).

static parameterization: kind of parameterization, in which actual parameters are independent of run-time events,

i.e. known at compile time or in case of module parameters are known by the start of the test suite execution

(e.0. known from the test suite specification, here counting imported definitions, or the test system is aware of its value
before execution time)

strong typing: strict enforcement of type compatibility by type name equivalence with no exceptions
System Under Test (SUT): See ISO/IEC-9646-1.
NOTE: All types are known at compile time, i.e. are statically bound.

template: TTCN-3 templates are specific data structures for testing; used to either transmit a set of distinct values or to
check whether a set of received values matches the template specification

test case: See |SO/IEC-9646-1.
test case error: See | SO/IEC-9646-1.

test suite: TTCN-3 module that either explicitly or implicitly through import statements completely specifiesall
definitions and behaviour descriptions necessary to completely define a set of test cases

test system: See |SO/IEC-9646-1.

test system interface: test component that provides a mapping of the ports available in the (abstract) TTCN-3 test
system to those offered by areal test system

ETSI

15 ETSI ES 201 873-1 V2.2.0 (2002-05)

type compatibility: language feature, which alows to use values or templates of a given type as actual values of
another type (e.g. at assignments, as actual parameters at calling a function, referencing a template etc. or asareturn
value of afunction)

NOTE: Both thetype and the current value of the value or template shall be compatible with the other type.
value parameterization: ability to pass avalue or template as an actual parameter into a parameterized object
NOTE: Thisactua value parameter then completes the specification of that object.

user -defined type: type which is defined by subtyping of a basic type, declaring a structured type or constraining the
anytype to a single type by the dot notation

NOTE: User-defined types are referenced by their identifiers (names).
value notation: notation by which anidentifier is associated with a given value or range of a particular type

NOTE: Vaues may be constants or variables.

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

API Application Programming Interface
ASN.1 Abstract Syntax Notation One
ASP Abstract Service Primitive
ATS Abstract Test Suite
BNF Backus-Nauer Form
CORBA Common Object Request Broker Architecture
ETS Executable Test Suite
FIFO First In First Out
IDL Interface Description Language
uT Implementation Under Test
MTC Master Test Component
PDU Protocol Data Unit
PTC Parallel Test Component
(PICS (Protocol) Implementation Conformance Statement
PIXIT (Protocol) Implementation eXtra Information for Testing
SUT System Under Test
TTCN Testing and Test Control Notation
4 Introduction

4.0 General

TTCN-3isaflexible and powerful language applicable to the specification of all types of reactive system tests over a
variety of communication interfaces. Typical areas of application are protocol testing (including mobile and Internet
protocols), service testing (including supplementary services), module testing, testing of CORBA based platforms, API
testing etc. TTCN-3 is not restricted to conformance testing and can be used for many other kinds of testing including
interoperability, robustness, regression, system and integration testing.

From a syntactical point of view TTCN-3 isvery different from earlier versions of the language as defined in
| SO/IEC 9646-3 [4]. However, much of the well-proven basic functionality of TTCN has been retained, and in some
cases enhanced. TTCN-3 includes the following essential characteristics:

< theability to specify dynamic concurrent testing configurations;

« operations for procedure-based and message-based communication;

« the ability to specify encoding information and other attributes (including user extensibility);

ETSI

16 ETSI ES 201 873-1 V2.2.0 (2002-05)

« theability to specify data and signature templates with powerful matching mechanisms;

¢ type and value parameterization;

e theassignment and handling of test verdicts;

e test suite parameterization and test case selection mechanisms;

e combined use of TTCN-3 with ASN.1 (and potential use with other languages such as IDL);
« waell-defined syntax, interchange format and static semantics;

« different presentation formats (e.g. tabular and graphical presentation formats);

e aprecise execution algorithm (operational semantics).

4.1 The core language and presentation formats

Historically, TTCN has always been associated with conformance testing. In order to open the language to a wider
range of testing applicationsin both the standards domain and the industrial domain the present document separates the
specification of TTCN-3 into several parts. The first part, defined in the present document, is the core language. The
second part, defined in ES 201 873-2 [1], isthe tabular presentation format, similar in appearance and functionality to
earlier versions of TTCN. Thethird part, defined in TR 101 873-3 [2] is the graphical presentation format. The fourth
part contains the operational semantics of the language.

The core language serves three purposes:
a) asageneralized text-based test language in its own right;
b) asastandardized interchange format of TTCN test suites between TTCN tools;
c) asthe semantic basis (and where relevant, the syntactical basis) for various presentation formats.

The core language may be used independently of the presentation formats. However, neither the tabular format nor the
graphical format can be used without the core language. Use and implementation of these presentation formats shall be
done on the basis of the core language.

The tabular format and the graphical format are the first in an anticipated set of different presentation formats. These
other formats may be standardized presentation formats or they may be proprietary presentation formats defined by
TTCN-3 users themselves. These additional formats are not defined in the present document.

TTCN-3isfully harmonized with ASN.1 which may optionally be used with TTCN-3 modules as an alternative data
type and value syntax. Use of ASN.1in TTCN-3 modulesis defined in annex D of the present document. The approach
used to combine ASN.1 and TTCN-3 could be applied to support the use of other type and value systems with TTCN-3.
However, the details of this are not defined in the present document.

TTCN-3 < >

Core
ASN.1 Types Tabular
& Values Language format < >
Other Types Graphical
& Values format < >

,,,,,,,,,,,,,,,,,,,, TTCN-3 User

Other Types Presentation The shaded boxes are not
& Values, formaty, > defined in this document

Figure 1: User's view of the core language and the various presentation formats

ETSI

17 ETSI ES 201 873-1 V2.2.0 (2002-05)

The core language is defined by a complete syntax (see annex A) and operational semantics (see part 4 of the present
document). It contains minimal static semantics (provided in the body of the present document and in annex A) which
do not restrict the use of the language due to some underlying application domain or methodology. Functionality of
previous versions of TTCN, such as test suite indexes, which can be achieved using proprietary toolsis not part of
TTCN-3.

4.2 Unanimity of the specification

The language is specified syntactically and semantically in terms of atextual description in the body of the current
document (clauses 5 to 28) and in aformalized way in annex A. In each case, when the textual description is not
exhaustive, the formal description completesit. If the textual and the formal specifications are contradictory, the latter
shall take precedence.

4.3 Conformance

The present document does not specify levels of implementation for the language. However, for an implementation
claiming to conform to this version of the language, all implemented features of this document shall be consistent with
the requirements given in the present document.

NOTE: Thisdoes not prevent any conformant implementation to realize extra features not specified in the present
document.

5 Basic language elements

5.0 General

The top-level unit of TTCN-3 isamodule. A module cannot be structured into sub-modules. A module can import
definitions from other modules. Modules can have parameter liststo give aform of test suite parameterization similar to
the PICS and PIXIT parameterization mechanisms of TTCN-2.

A module consists of a definitions part and a control part. The definitions part of a module defines test components,
communication ports, data types, constants, test data templates, functions, signatures for procedure calls at ports, test
cases etc.

The control part of amodule calls the test cases and controls their execution. The control part may also declare (local)
variables etc. Program statements (such asi f -el se and do- whi | e) can be used to specify the selection and
execution order of individual test cases. The concept of global variablesis not supported in TTCN-3.

TTCN-3 has a number of pre-defined basic data types as well as structured types such as records, sets, unions,
enumerated types and arrays. Imported ASN.1 types and values may be used with TTCN-3.

A special kind of data structure called a template provides parameterization and matching mechanisms for specifying
test data to be sent or received over the test ports. The operations on these ports provide both message-based and
procedure-based communication capabilities. Procedure calls may be used for testing implementations which are not
message based.

Dynamic test behaviour is expressed as test cases. TTCN-3 program statements include powerful behaviour description
mechani sms such as aternative reception of communication and timer events, interleaving and default behaviour. Test
verdict assignment and logging mechanisms are al so supported.

Finally, TTCN-3 language elements may be assigned attributes such as encoding information and display attributes. It is
also possible to specify (non-standardized) user-defined attributes.

ETSI

18

ETSI ES 201 873-1 V2.2.0 (2002-05)

Table 1: Overview of TTCN-3 language elements

Language element Associated | Specified in | Specified in | Specified in | Specified in
keyword module module functions/ test
definitions control altsteps/ test| component
cases
TTCN-3 module definition module
Import of definitions from other module [import Yes
Grouping of definitions group Yes
Data type definitions type Yes
Communication port definitions port Yes
Test component definitions component Yes
Signature definitions signature Yes
External function/constant definitions external Yes
Constant definitions const Yes Yes Yes Yes
Data/signature template definitions template Yes
Function definitions function Yes
Altstep definitions altstep Yes
Test case definitions testcase Yes
Variable declarations var Yes Yes Yes
Timer declarations timer Yes Yes Yes

5.1

Ordering of language elements

Generally, the order in which declarations can be made is arbitrary. Inside a block of statements and declarations, such
as afunction body or abranch of ani f - el se statement, all declarations (if any), shall be made at the beginning of the

block only.
EXAMPLE:

/1l This is a legal mxing of TTCN-3 decl arations

vér MyVar Type MyVar 2 :
const integer MyConst:
if (x > 10)

3,
1;

var integer MyVarl:= 1;

MyVar1: = MyVar1l + 10;

5.1.1

Forward references

Definitions in the modul e definitions part may be made in any order and while forward references should be avoided
(for readability reasons) thisis not mandatory. For example, recursive elements, such as functions that call other
functions and module parameterization, may lead to unavoidable forward references.

Forward references are only allowed for declarations in the module definitions part. Forward references shall never be
made inside the module control part, test case definitions, functions and altsteps. This means forward references to local
variables, local timersand local constants shall never occur. The only exceptions to this rule are labels. Forward
referencesto labels maybe used in got o statements to jump forwards (see clause 19.5).

5.2

5.2.0

Parameterization

Static and dynamic parameterization

TTCN-3 supports value parameterization according to the following limitations:

ETSI

19 ETSI ES 201 873-1 V2.2.0 (2002-05)

a) language elements which cannot be parameterized are: const,var, ti mer,control, group and
i mport;

b) thelanguage element nodul e allows static val ue parameterization to support test suite parametersi.e. this
parameterization may or may not be resolvable at compile-time but shall be resolved by the commencement of
run-time (i.e. static at run-time). This means that, at run-time, module parameter values are globally visible but
not changeable;

c) al user-defined t ype definitions (including the structured type definitions such asr ecor d, set etc.), and the
special configuration type addr ess support static value parameterization i.e. this parameterization shall be
resolved at compile-time;

d) thelanguage elementst enpl at e, si gnature,testcase, altstepandfuncti on supportdynamic
value parameterization (i.e. this parameterization shall be resolvable at run-time).

A summary of which language elements can be parameterized and what can be passed to them as parametersisgiven in
table 2.

Table 2: Overview of parameterizable TTCN-3 language elements

Keyword Value Parameterization Types of values allowed to appear in
formal/actual parameter lists
module Static at start of run-time [Values of: all basic types, all user-defined types and

addr ess type.
type (note 1) Static at compile-time |Values of: all basic types, all user-defined types and
addr ess type.

template Dynamic at run-time [Values of: all basic types, all user-defined types,
addr ess type and t enpl at e.
function Dynamic at run-time [Values of: all basic types, all user-defined types,

addr ess type, conponent type, port type,
default,tenplateandti mer.

altstep Dynamic at run-time [Values of: all basic types, all user-defined types,
addr ess type, conmponent type, port type,
default,tenplateandtimer.

testcase Dynamic at run-time [Values of: all basic types and of all user-defined
types, addr ess type and t enpl at e.
signature Dynamic at run-time |Values of: all basic types, all user-defined types and

addr ess type and conponent type.

NOTE 1: record of, set of, enunerated, port, conponent andsubtype
definitions do not allow parameterization.

NOTE 2: Examples of syntax and specific use of parameterization with the different language
elements are given in the relevant clauses in the present document.

5.2.1 Parameter passing by reference and by value

5.2.1.0 General

By default, all actual parameters of basic types, basic string types, user-defined structured types, address type and
component type are passed by value. This may optionally be denoted by the keyword i n. To pass parameters of the
mentioned types by reference the keywords out ori nout shall be used.

Timers and ports are aways passed by reference and are identified by the keywordst i mer and por t . The keyword
i nout may optionally be used to denote passing by reference.

5.2.1.1 Parameters passed by reference

Passing parameters by reference has the following limitations:

a) only theformal parameter liststo al t st eps called explicitly, functi ons, si gnatures andtestcase
may contain pass-by-reference parameters;

NOTE: Thereare further restrictions on how to use pass-by-reference parameters in signatures (see clause 23).

ETSI

20 ETSI ES 201 873-1 V2.2.0 (2002-05)

b) the actual parameters shall only be variables (e.g. not constants or templates).

EXAMPLE:

functi on MyFunction(inout bool ean MyRef erenceParaneter){ ...};

/'l MyRef erenceParaneter is passed by reference. The actual parameter can be read and set
/1 fromw thin the function

functi on MyFunction(out bool ean MyRef erenceParaneter){ ...};
/'l MyReferenceParaneter is passed by reference. The actual parameter can only be set

/I from within the function

5.2.1.2 Parameters passed by value

Actual parametersthat are passed by value may be variables as well as constants, templates etc.

function MyFunction(in tenplate MyTenpl ateType MyVal ueParaneter){ ...};
/I MyV alueParameter is passed by value, the in keyword is optional

5.2.2 Formal and actual parameter lists

The number of elements and the order in which they appear in an actual parameter list shall be the same as the number
of elements and their order in which they appear in the corresponding formal parameter list. Furthermore, the type of
each actual parameter shall be compatible with the type of each corresponding formal parameter.

EXAMPLE:

/1 A function definition with a formal parameter |ist
function MyFunction(integer Formal Parl, bool ean Formal Par2, bitstring Formal Par3) { ...}

/1 A function call with an actual parameter |ist
MyFunction(123, true,'1100' B);

5.2.3 Empty formal parameter list

If the formal parameter list of the TTCN-3 language elementsf unct i on, t est case, si gnature, altstepor
ext ernal functi on isempty thenthe empty parentheses shall be included both in the declaration and in the
invocation of that element. In all other cases the empty parentheses shall be omitted.

EXAMPLE:

/1 A function definition with an enpty paraneter list shall be witten as
function MyFunction(){ ...}

/Il Arecord definition with an enpty parameter list shall be witten as
type record MyRecord { ...}

5.2.4 Nested parameter lists

Generally, all parameterized entities specified as an actual parameter shall have their own parameters resolved in the
actual parameter list.

EXAMPLE:

/1 Gven the nessage definition
type record MyMessageType

i nt eger fieldl,
charstring field2,
bool ean field3

}

/1 A message tenplate night be
tenpl ate MyMessageType MyTenpl ate(i nteger MyVal ue) : =

{
fieldl := MyVal ue,
field2 := pattern "abc*xyz",
field3 := true

ETSI

21 ETSI ES 201 873-1 V2.2.0 (2002-05)

}

/1 A test case paraneterized with a tenplate m ght be
testcase TCOO1(tenpl ate MyMessageType RxMsg) runs on PTClL system TSl

M/PCO recei ve(RxMsQ) ;
}

/1 When the test case is called in the control part and the paraneterized tenplate is
/'l used as an actual paraneter, the actual paraneters for tenplate nust be provided
control

TCOO1(MyTenpl at e(7)) :

5.3 Scope rules

5.3.0 General

TTCN-3 provides six basic units of scope:
a) module definition part;
b) control part of amodule;
C) component types;
d) functions,
f) test cases;
e) atsteps,
g) "blocks of statements and declarations’ within compound statements.
NOTE 1: Additional scoping rule for groups are given in clause 7.3.1.
NOTE 2: Additional scoping rule for counters of f or loops are given in clause 19.7.

Each unit of scope consists of (optional) declarations. The scope units control part of a module, functions, test cases,
altsteps and "blocks of statements and declarations” within compound statements may additionally specify some form
of behaviour by using the TTCN-3 program statements and operations (see clause 18).

Definitions made in the module definition part but outside of other scope units are globally visible, i.e. may be used
elsewhere in the module, including all functions, test cases and atsteps defined within the module and the control part.
I dentifiersimported from other modules are also globally visible throughout the importing module.

Definitions made in the module control part have local visibility, i.e. can be used within the control part only.

Definitions made in atest component type may be used only in functions, test cases and altsteps referencing that
component type or a consistent test component type (see clause 16.3) by ar uns on-clause.

Test cases, altsteps and functions are individual scope units without any hierarchical relation between them,

i.e. declarations made at the beginning of their body have local visibility and may be used in the given test case,

al t st ep or function only (e.g. adeclaration made in atest case is not visible in afunction called by the test case or in
anal t st ep used by the test case).

Compound statements, e.g. i f - el se-, whi | e-, do- whi | e-, or al t -statements include "blocks of statements and
declarations'. They may be used within the control part of amodule, test cases, altsteps, functions, or may be embedded
in other compound statements, e.g. ani f - el se-statement that is used within awhi | e-loop.

The "blocks of statements and declarations" of compound statements and embedded compound statements have a
hierarchical relation both to the scope unit including the given "block of statements and declarations" and to any
embedded "block of statements and declarations'. Declarations made within a"block of statements and declarations’
have local visibility.

ETSI

22 ETSI ES 201 873-1 V2.2.0 (2002-05)

The hierarchy of scope unitsis shown in figure 2. Declarations of a scope unit at a higher hierarchical level arevisible
in al units at lower levels within the same branch of the hierarchy. Declarations of a scope unit in alower level of
hierarchy are not visible to those units at a higher hierarchical level.

module
definitions part
module component type function V\|/|thout al tstep W||thout
control part runs on-clause runs on-clause

block of statements
(within a compound

block of statements
(within a compound

block of statements
(within a compound

functi on with al t st ep with
runs on-clause runs on-clause

block of statements
(within a compound

embedded
block of statements
(within a compound

embedded
block of statements
(within a compound

embedded
block of statements
(within a compound

block of statements
(within a compound

block of statements
(within a compound

embedded
block of statements
(within a compound

embedded
block of statements
(within a compound

block of statements
(within a compound

Figure 2: Hierarchy of scope units

EXAMPLE:

modul e MyModul e
{ :
const integer M/Const := 0; // MConst is visible to MyBehavi our A and MyBehavi ourB

functi on MyBehavi our A()
éonst integer A :=1; /1 The constant Ais only visible to MyBehavi ourA

}

functi on MyBehavi our B()
{ .

.const integer B := 1; /1 The constant Bis only visible to MyBehavi ourB

5.3.1 Scope of formal parameters

The scope of the formal parametersin a parameterized language element (e.g. in afunction call) shall be restricted to
the definition in which the parameters appear and to the lower levels of scope in the same scope hierarchy. That is they
follow the normal scope rules (see clause 5.4).

5.3.2 Uniqueness of identifiers

TTCN-3 requires uniqueness of identifiersi.e. al identifiersin the same scope hierarchy shall be distinctive. This
means that a declaration in alower level of scope shall not re-use the same identifier as a declaration in a higher level of
scope in the same branch of the scope hierarchy. Identifiers for fields of structured types, enumeration values and
groups do not have to be globally unique, however in the case of enumeration values the identifiers shall only be reused
for enumeration values within other enumerated types. The rules of identifier uniqueness shall also apply to identifiers
of formal parameters.

ETSI

23 ETSI ES 201 873-1 V2.2.0 (2002-05)

EXAMPLE:
nodul e MyModul e
;:onst integer A :=1;
i‘uncti on MyBehavi our A()

{ :
const integer A:=1; // |Is NOT all owed

)
{ .

.const boolean A := true; // Is NOT all owed

}

/1 The following IS allowed as the constants are not declared in the sane scope hierarchy
/'l (assuming there is no declaration of A in nodul e header)
functi on MyBehavi our A()

{ :
const integer A := 1;
}

functi on MyBehavi our B()

const integer A := 1;

}
54 Identifiers and keywords

TTCN-3 identifiers are case sensitive and TTCN-3 keywords shall be written in all lowercase letters (see annex A).
TTCN-3 keywords shall not be used neither as identifiers of TTCN-3 abjects nor as identifiers of objectsimported from
modules of other languages.

6 Types and values

6.0 General

TTCN-3 supports a number of predefined basic types. These basic types include ones normally associated with a
programming language, such asi nt eger, bool ean and string types, as well as some TTCN-3 specific ones such as
objidandverdi cttype. Structured typessuch asr ecor d types, set typesand enuner at ed types can be
constructed from these basic types.

The special datatype anyt ype isdefined as the union of all known types within a module.

Special types associated with test configurations such asaddr ess, port and conponent may be used to define the
architecture of the test system (see clause 22).

The special type def aul t may be used for the default handling (see clause 21).

The TTCN-3 types are summarized in table 3.

ETSI

6.1

24 ETSI ES 201 873-1 V2.2.0 (2002-05)

Table 3: Overview of TTCN-3 types

Class of type Keyword Sub-type

Simple basic types integer range, list
char range, list
universal char range, list
float range, list
boolean list
objid list
verdicttype list

Basic string types bitstring list, length
hexstring list, length
octetstring list, length
charstring range, list, length
universal charstring range, list, length

Structured types record list
record of list, length
set list
set of list, length
enumerated list
union list

Special data types anytype list

Special configuration types address
port
component

Special default types default

Basic types and values

6.1.0 Simple basic types and values

TTCN-3 supports the following basic types:

a)

i nt eger : atype with distinguished values which are the positive and negative whole numbers, including zero.

Values of integer type shall be denoted by one or more digits; the first digit shall not be zero unlessthe value is
0; the value zero shall be represented by asingle zero.

b) char : atype whose distinguished values are characters of the version of 1SO/IEC 646 [5] complying to the

International Reference Version (IRV) as specified in clause 8.2 of ISO/IEC 646 [5].

NOTE 1: ThelRV version of ISO/IEC 646 [5] is equivalent to the IRV version of the International Reference

©)

Alphabet (former International Alphabet No.5 - IA5), described in ITU-T Recommendation T.50
(see annex F).

Values of thetype char may be given enclosed in double quotes () or calculated using a predefined conversion
function with the positive integer value of their encoding as argument.

Relational operators equality (==) and non-equality (! =) can be used to compare values of type char .
uni ver sal char : atype whose distinguished values are single characters from | SO/IEC 10646 [6].

Values of thetypeuni ver sal char may be given enclosed in double quotes ("),calculated using a
predefined conversion function with the positive integer value of their encoding as argument or by a
"quadruple”. The "quadruple" is only capable to denote a single character and denotes the character by the
decimal values of its group, plane, row and cell according to |SO/IEC 10646 [6], preceded by the keyword char
included into apair of brackets and separated by commas (e.g. char (0, 0, 1, 113) denotes the Hungarian
character "i").

NOTE 2: Control characters can be denoted by using the quadruple form only.

ETSI

25 ETSI ES 201 873-1 V2.2.0 (2002-05)

By default uni ver sal char shall conform to the UCS-4 coded representation form specified in clause 14.2
of ISO/IEC 10646 [6]. This default encoding can be overridden using the defined encoding attributes
(seeclause 28.2.1).

NOTE 3: UCS-4 isan encoding format, which represents any UCS character on afixed, 32 bits-length field.

Relational operators equality (==) and non-equality (! =) can be used to compare values of type
uni versal char.

d) fl oat : atypeto describe floating-point numbers.
Floating point numbers are represented as: <mantissa> x <hase> <exponent>

Where <mantissa> a positive or negative integer, <base> a positive integer (in most cases 2, 10 or 16) and
<exponent> a positive or negative integer.

The floating-point number representation is restricted to a base with the value of 10. Floating point values can be
expressed by using either:

- the normal notation with a dot in a sequence of numbers like, 1.23 (which represents 123*1072), 2.783
(i.e. 2783 x 103) or -123.456789 (which represents -123456789 x 10°6); or

- by two numbers separated by E where the first number specifies the mantissa and the second specifies the
exponent, for example 12.3E4 (which represents 12.3 x 10%) or -12.3E-4 (which represents -12.3 x 104).

€) bool ean: atype consisting of two distinguished val ues.
Values of boolean type shall be denoted by t r ue and f al se.

f) obj i d: atype whose distinguished values are the set of all object identifiers conforming to clause 6.2 of ITU-T
Recommendation X.660 [16].

EXAMPLE:
{itu-t(0) identified-organization(4) etsi(0)}
or aternatively {itu-t identified-organization etsi}
or aternatively { 04 0}
g) verdi cttype: atypefor use with test verdicts consisting of 5 distinguished values.

Values of ver di ct t ype shall be denoted by pass, fail ,i nconc,none anderror.

6.1.1 Basic string types and values
TTCN-3 supports the following basic string types:

NOTE 1: The general term string or string typein TTCN-3 referstobi t st ri ng, hexstri ng, oct et stri ng,
charstring anduni versal charstring.

a) bitstring: atypewhose distinguished values are the ordered sequences of zero, one, or more bits.

Values of typebi t st ri ng shall be denoted by an arbitrary number (possibly zero) of zeros and ones, preceded
by asingle quote (') and followed by the pair of characters 'B.

EXAMPLE 1.
'01101'B

b) hexstri ng: atype whose distinguished values are the ordered sequences of zero, one, or more hexadecimal
digits, each corresponding to an ordered sequence of four bits.

Values of type hexst r i ng shall be denoted by an arbitrary number (possibly zero) of the hexadecimal digits:
123456789ABCDEF

ETSI

26 ETSI ES 201 873-1 V2.2.0 (2002-05)

preceded by asingle quote (') and followed by the pair of characters 'H; each hexadecimal digit is used to
denote the value of a semi-octet using a hexadecimal representation.

EXAMPLE 2:
'‘ABO1D'H

C) oct et stri ng: atype whose distinguished values are the ordered sequences of zero or a positive even number
of hexadecimal digits (every pair of digits corresponding to an ordered sequence of eight bits).

Values of typeoct et st ri ng shall be denoted by an arbitrary, but even, number (possibly zero) of the
hexadecimal digits.

123456789ABCDEF

preceded by a single quote (') and followed by the pair of characters 'O; each hexadecimal digit is used to
denote the value of a semi-octet using a hexadecimal representation.

EXAMPLE 3:
'FF96'O

d) charstri ng: aretypeswhose distinguished values are zero, one, or more characters of the version of
ISO/IEC 646 [5] complying to the International Reference Version (IRV) as specified in clause 8.2 of
I SO/IEC 646 [5] (see note 1of clause 6.1.0 b).

The character string type preceded by the keyword uni ver sal denotes types whose distinguished values are
zero, one, or more characters from | SO/IEC 10646 [6].

Values of char st ri ng type shall be denoted by an arbitrary number (possibly zero) of characters from the
relevant character set, preceded and followed by double quote ().

In cases where it is necessary to define strings that include the character double quote (") the character is
represented by a pair of double quotes on the same line with no intervening space characters.

EXAMPLE 4: ""abcd"" representsthe literal string "abcd".

Theuni ver sal char st ri ng type can also be denoted by an arbitrary number (possibly zero) of characters
from the relevant character set, preceded and followed by double quote (") or by a"quadruple". The "quadruple”
isonly capable to denote a single character and denotes the character by the decimal values of its group, plane,
row and cell according to ISO/IEC 10646 [6], preceded by the keyword char included into a pair of brackets
and separated by commas (e.g. char (0, 0, 1, 113) denotes the Hungarian character "ii"). In cases whereiit is
necessary to denote the character double quote () in a string assigned according to the first method (within
double quotes), the character is represented by a pair of double quotes on the same line with no intervening space
characters. The two methods may be mixed within a single notation for a string value by using the concatenation
operator.

EXAMPLES5: Theassignment : "the Braille character” & char (0, 0, 40, 48) & "lookslike this" representsthe
literal string: the Braille character &1 looks like this.

NOTE 2: Control characters can be denoted by using the quadruple form only.

By default uni ver sal char st ri ng shall conformto the UCS-4 coded representation form specified in
clause 14.2 of ISO/IEC 10646 [6].

NOTE 3: UCS-4 isan encoding format, which represents any UCS character on afixed, 32 bits-length field.

This default encoding can be overridden using the defined encoding attributes (see clause 28.2.1). The following
useful character string types utf8string, bmpstring, utf16string and iso8859string using these attributes are
defined in annex E.

ETSI

27 ETSI ES 201 873-1 V2.2.0 (2002-05)

6.1.2 Accessing individual string elements

Individual elementsin astring type may be accessed using an array-like syntax. Only single elements of the string may
be accessed.

Units of length of different string type elements are indicated in table 4.

Indexing shall begin with the value zero (0).

EXAMPLE:
/1 Gven
MyBitString := '11110111" B;
/1 Then doi ng
MBitString[4] :='1'B;

/'l Results in the bitstring '11111111'B

6.2 Sub-typing of basic types

6.2.0 General

User-defined types shall be denoted by the keyword t ype. With user-defined typesit is possible to create sub-types
(such aslists, ranges and length restrictions) on simple basic and basic string types according to table 3.

6.2.1 Lists of values

TTCN-3 permits the specification of alist of distinguished values of any given type aslisted in table 3. The valuesin
the list shall be of the root type and shall be a true subset of the values defined by the root type. The subtype defined by
thislist restricts the allowed values of the subtype to those valuesin the list.

EXAMPLE:

type bitstring MListOIBitStrings ('01'B, '10'B, '11' B);
type float pi (3.1415926);
type universal char Special Letter (char(0, 0, 1, 111), char(0, 0, 1, 112), char(0, 0, 1, 113));

6.2.2 Ranges

6.2.2.0 General

TTCN-3 permits the specification of arange of values of typei nt eger, char, uni versal char andfl oat
(or derivations of these types). The subtype defined by this range restricts the allowed values of the subtype to the
valuesin the range including the lower boundary and the upper boundary.

EXAMPLE 1:

type integer MylntegerRange (0 .. 255);
type char MyChar Range ("a" .. "z");
type float piRange (3.14 .. 3142E-3);

The char range specification can also be used withinachar st r i ng subtype definitionsand uni ver sal char
range withintheuni ver sal char st ri ng subtype definitions. In these cases the range restricts the allowed values
for each separate character in the strings.

EXAMPLE 2:

type charstring MyCharString ("a" .. "z");

/1 Defines a string type of any length with each character within the specified range
type universal charstring M/UCharStringl ("a" .. "z");

/1 Defines a string type of any length with each character within the range specified using
/1 the doubl e quote notation

type universal charstring MyUCharString2 (char(0, O, 1, 111) .. char(0, 0, 1, 113));

/1 Defines a string type of any length with each character within the range specified using
/1 the quadruple notation

ETSI

28 ETSI ES 201 873-1 V2.2.0 (2002-05)

6.2.2.1 Infinite ranges

In order to specify an infinite integer or float range, the keyword i nf i ni t y may be used instead of a value indicating
that there is no lower or upper boundary. The upper boundary shall be greater than or equal to the lower boundary.

EXAMPLE:
type integer MylntegerRange (-infinity .. -1); // Al negative integer nunbers

NOTE: The'vaue for infinity isimplementation dependent. Use of this feature may lead to portability problems.

6.2.2.2 Mixing lists and ranges

For values of typei nt eger, char, uni versal char andfl oat (or derivations of these types) it is possible to
mix lists and ranges.

EXAMPLE:

type integer MylntegerRange (1, 2, 3, 10 .. 20, 99, 100);
type char MyCharRange ("a", "b", "c". "0" .. "9");

Withinchar string and universal charstri ng subtype definitions, lists and ranges shall not be mixed in
the same subtype definition.
6.2.3 String length restrictions

TTCN-3 permits the specification of length restrictions on string types. The length boundaries are of different
complexity depending on the string type with which they are used. In al cases, these boundaries shall evaluate to
non-negativei nt eger values (or derivedi nt eger values).

EXAMPLE:
type bitstring MyByte | ength(8); /'l Exactly length 8
type bitstring MyByte length(8 .. 8); /1 Exactly length 8

type bitstring M/N bbl eToByte length(4 .. 8); /1 Mnimmlength 4, maxi mumlength 8

Table 4 specifies the units of length for different string types.

Table 4: Units of length used in field length specifications

Type Units of Length
bitstring bits
hexstring hexadecimal digits
octetstring octets
character strings characters

For the upper bound the keyword i nf i ni ty may aso be used to indicate that there is no upper limit for the length.
The upper boundary shall be greater than or equal to the lower boundary.

6.3 Structured types and values

6.3.0 General

Thet ype keyword is also used to specify structured typessuch asr ecor d types, r ecor d of types, set types, set
of types, enumrer at ed typesand uni on types.

Values of these types may be given using an explicit assignment notation or a short-hand value list notation.

ETSI

29 ETSI ES 201 873-1 V2.2.0 (2002-05)

EXAMPLE 1:

const MyRecordType MyRecordVal ue: = // assi gnnment notation
fieldl := "11001"B,
field2 := true,
field3 := "A string"

}

/I O

const MyRecordType MyRecordVal ue: = {'11001'B, true, "A string"} //value list notation

When specifying partial values (i.e. setting the value of only a subset of the fields of a structured variable) using the
assignment notation only the fields to be assigned values must be specified. Using the value list notation al fieldsin the
structure shall be specified either with avalue, the not used symbol "-" or theomni t keyword.

EXAMPLE 2:

var MyRecordType MyVari abl e:

[/ assi gnnment notation

fieldl := "11001"B,
field3 := "A string"
}
/1 O

var MyRecordType MyVari abl e:

{'11001'B, -, "A string"} //value list notation

It isnot allowed to mix the two value notations in the same (immediate) context.

EXAMPLE 3:

/1 This is disallowed
const MyRecordType MyRecordVal ue: = { M/l ntegerValue, field2 := true, "A string"}

In both the assignment notation and value list notation, optional fields shall be omitted by using the explicit oni t value
for the relevant field. Omitting afield causes the value of the relevant field becomes undefined whatever value it has
before. Theoni t keyword shall not be used for mandatory fields.

6.3.1 Record type and values

6.3.1.0 General

TTCN-3 supports ordered structured types known asr ecor d. The elements of ar ecor d type may be any of the basic
types or user-defined data types (such as other records, sets or arrays). The values of ar ecor d shall be compatible
with the types of ther ecor d fields. The element identifiers are local to ther ecor d and shall be unique within the
recor d (but do not have to be globally unique). A constant that is of r ecor d type shall contain no variables or
module parameters as field values, either directly or indirectly.

type record MyRecordType
{

i nt eger fieldl,
MyQt her Recor dType field2 optional,
charstring field3

}

type record MyQt her Recor dType
bitstring fieldl,
bool ean field2
}
Records may be defined with no fields (i.e. as empty records).
EXAMPLE 1:
type record MyEmptyRecord { }

A record valueisassigned on an individual element basis.

ETSI

30 ETSI ES 201 873-1 V2.2.0 (2002-05)

EXAMPLE 2:
var integer MylntegerValue: = 1;

const MyQt her Recor dType MyQt her Recor dVal ue: =

{
fieldl := '11001' B,
field2 := true
}
var MyRecordType MyRecordVal ue: =
{
fieldl := Myl ntegerVal ue,
field2 := M/Q her Recor dVal ue,
field3 := "A string"
}

Or using an valuellist.
EXAMPLE 3:
M/Recor dVal ue: = { M/l nt eger Val ue, {'11001'B, true}, "A string"};
Optional fields shall be omitted using the omit symbol.
EXAMPLE 4:
MyRecor dVal ue: = { Myl nt eger Val ue, omit , "A string"};
/'l Note that this is not the sane as witing,
/'l MyRecordVal ue: = { Myl ntegerValue, -, "A string"};
/I which would mean the value of field2 is unchanged

6.3.1.1 Referencing fields of a record type

Elements of ar ecor d shall be referenced by the dot notation TypeOr Val uel d. El enent | d, where
TypeOr Val uel d resolvesto the name of a structured type or variable. Elementld shall resolve to the name of afield
in astructured type.

EXAMPLE:

MyVarl := MyRecordl. WEl enent 1;
/1 If arecord is nested within another type then the reference nay |l ook like this

MyVar2 := MyRecord1.MyElement1.MyRecord2.MyElement?2;

6.3.1.2 Optional elements in a record
Optional elementsinar ecor d shall be specified using the opt i onal keyword.
EXAMPLE:

type record MyMessageType

Fi el dTypel field1,
Fi el dType2 field2 optional,

Fiel dTypeN fiel dN

6.3.2 Set type and values

6.3.2.0 General

TTCN-3 supports unordered structured types known as set . Set types and values are similar to records except that the
ordering of theset fieldsis not significant.

ETSI

31 ETSI ES 201 873-1 V2.2.0 (2002-05)

EXAMPLE:
type set M/Set Type
i nt eger fieldl,
charstring field2
}
Thefield identifiers are local to the set and shall be unique within the set (but do not have to be globally unique).

The value list notation for setting values shall not be used for values of set types.

6.3.2.1 Referencing fields of a set type
Elements of aset shall be referenced by the dot notation (see clause 6.3.1.1).

EXAMPLE:

MyVar 3 := MySet 1. nyEl enent 1;
/1 1f a set is nested in another type then the reference may | ook like this

MyVar4 := MyRecordl.myElementl.MySet2. myElement2;

6.3.2.2 Optional elements in a set

Optional elementsinaset shall be specified using the opt i onal keyword.

6.3.3 Records and sets of single types

TTCN-3 supports the specification of records and sets whose elements are all of the same type. These are denoted using
the keyword of . These records and sets do not have element identifiers and can be considered similar to an ordered
array and an unordered array respectively.

Thel engt h keyword is used to restrict lengthsof r ecor d of andset of .

EXAMPLE 1:

type record | ength(10) of integer M/RecordOf Type; // is a record of exactly 10 integers

type record |l ength(0..10) of integer MyRecordOf Type; // is a record of a maxi mum of 10 integers
type record length(10..infinity) of integer M/RecordOf Type; // record of at |east 10 integers
type set of boolean MySet Of Type; // is an unlimted set of bool ean val ues

type record |l ength(0..10) of charstring StringArray |ength(12);
/1 is arecord of a maxi mumof 10 strings each with exactly 12 characters

The value notation for r ecord of andset of shall beavaluelist notation or an indexed notation for an individual
element (the same value notation as for arrays, see clause 6.5).

When the value list notation is used, the first value in the list is assigned to the first element, the second list valueis
assigned to the second element etc. No empty assignment is allowed (e.g. two commas, the second immediately
following the first or only with white space between them), elements to be left out from the assignment shall be
explicitly skipped or omitted in the list.

Indexed value notations can be used on both the right-hand side and left-hand side of assignments. The index of the first
element shall be zero and the index value shall not exceed the limitation placed by length subtyping. If the value of the
element notated by the index at the right-hand of an assignment is undefined, this shall cause a semantical or run-time
error. If anindexing operator at the left-hand side of an assignment refers to a non-existent element, the value at the
right-hand side is assigned to the element and all elements with an index smaller than the actual index and without
assigned value are created with an undefined value. Undefined elements are permitted only in transient states (while the
value remainsinvisible). Sendingar ecor d of value with undefined elements shall cause a dynamic testcase error.

ETSI

32 ETSI ES 201 873-1 V2.2.0 (2002-05)

EXAMPLE 2:

/1 G ven

type record of integer MyRecordd;

var integer MyVar;

var MyRecorddf MyRecordVar :={ 0, 1, 2, 3 };

MyVar := MyRecordVar[O]; // the first elenent of the ‘record of’ value is assigned to MyVar

/'l I ndexed values are pernmitted on the left-hand side of assignments as well:
M/RecordVar[1] := MyVar; // M/Var is assigned to the second el enent

/1 The following two assignnents

M/Recordvar :={ 0, 1, -, 2, omit };
M/RecordVar[6] := 6;

//will result in { O, 1, <unchanged>, 2, <undefined>, <undefined> 6 };
/1 Note also, that the 3" el ement would remain undefined if had no assigned val ue before.
/1 and the 6'" element (with index 5) had no assigned val ue before this assignnent.

NOTE: Thismakes possibleto copy r ecord of vaueseement by element in afor loop. For example, the
function below reversesthe elementsof ar ecord of vaue

function reverse(in MyRecord src) return MyRecord

{
var MyRecord dest;

var integer |;

for(l :=0; I < sizeof(src); I:=1 + 1) {
dest[sizeof(src) — 1 - 1] :=src[l];

}

return dest;

}

Embedded r ecord of andset of typeswill result in adata structure similar to multidimensional arrays (see
clause 6.5).

EXAMPLE 3:

/1 Gven
type record of integer MyBasi cRecordOf Type;
type record of MyBasicRecordOf Type M/RecordO Type;

/1 Then the variable nyRecordOXArray will have simlar attributes then a two-dinensional array:
var MyRecor dOf Type nyRecordOf Array;

/1 and reference to a particular element would | ook like this

/1 (value of the second elenment of the third ' MyBasi cRecordOf Type' construct)

nyRecordOr Array [2][1] := 1,

6.3.4 Enumerated type and values

TTCN-3 supportsenuner at ed types. Enumerated types are used to model types that take only a distinct named set of
values. Such distinct values are called enumerations. Each enumeration shall have an identifier. Operations on
enumerated types shall only use these identifiers and are restricted to assignment, equivalence and ordering operators.
Enumeration identifiers shall be unique within the enumerated type (but do not have to be globally unique) and
consequently visible within the context of the given type only. Enumeration identifiers shall only be reused within other
structured type definitions and shall not be used for identifiers of local or global visibility at the same or alower level of
the same branch of the scope hierarchy (see scope hierarchy in clause 5.4.0).

EXAMPLE 1:

type enunerated M/First EnunType {
Monday, Tuesday, Wednesday, Thursday, Friday

b
type i nteger Mnday;
/1 This definition is illegal, as the nane of the type has local or global visibility

type enunerated MySecondEnuniype {
Sat urday, Sunday, Monday
b

/1 This definition is legal as it reuses the Monday enuneration identifier within
/1 a different enunerated type

ETSI

33 ETSI ES 201 873-1 V2.2.0 (2002-05)

type record MyRecordType {
i nt eger Monday

/} This definition is legal as it reuses the Monday enuneration identifier within
I/ a distinct structured type as identifier of a given field of this type

type record MyNewRecor dType {
M/Fi rst Enunifype firstField,
i nt eger secondFi el d

}s

var MyNewRecor dType newRecordVal ue : = { Mnday, 0 }
/1 MyFirstEnunType is inplicitly referenced via the firstField el enent of MyNewRecordType

const integer Monday := 7
/1 This definitionis illegal as it reuses the Monday enuneration identifier for a
/1 different TTCN-3 object within the sane scope unit

Each enumeration may optionally have an assigned integer value, which is defined after the name of the enumeration in
parenthesis. Each assigned integer number shall be distinct within asingle enuner at ed type. For each enumeration
without an assigned integer value, the system successively associates an integer number in the textual order of the
enumerations, starting at the left-hand side, beginning with zero, by step 1 and skipping any number occupied in any of
the enumerations with a manually assigned value. These values are only used by the system to allow the use of
relational operators

NOTE 1: Theinteger value also may be used by the system to encode/decode enumerated values. This, however is
outside of the scope of this document (with the exception that TTCN-3 allows the association of encoding
attributes to TTCN-3 items).

For any instantiation or value reference of an enumrer at ed type, the given type shall beimplicitly or explicitly
referenced.

NOTE 2: If the enumerated type is an element of a user defined structured type, the enumerated type isimplicitly
referenced viathe given element (i.e. by the identifier of the element or the position of the valuein a
value list notation) at value assignment, instantiation etc.

EXAMPLE 2:

/1 Valid instantiations of MyFirstEnunType and MySecondEnunType woul d be
var MyFirst EnunType Today := Tuesday;

var MySecondEnunilype Tonorrow : = Monday;

/] But the following statenent is illegal because the two enuneration types are not conpatible
Today : = Tomnorrow

6.3.5 Unions

6.3.5.0 General

TTCN-3 supportsthe uni on type. Theuni on typeisacollection of fields, each one identified by an identifier. Only
one of the specified fields will ever be present in an actual union value. Union types are useful to model a structure
which can take one of a finite number of known types.

EXAMPLE:
type uni on MyUni onType
{

i nt eger numnber ,
charstring string

}

/1 Avalid instantiation of MyUnionType woul d be
var MyUni onType age, oneYeard der;
var integer agel nMont hs;

age. nunmber := 34; /'l value notation by referencing the field. Note, that this
/'l notation makes the given field to be the chosen one
oneYeard der := {nunber := age+l};

ETSI

34 ETSI ES 201 873-1 V2.2.0 (2002-05)

agel nMonths : = age x 12;

Thisis equivalent to writing:
oneYear d der := {nunber := age.nunber+1};
agel nMont hs : = age. nunber x 12;

The value list notation for setting values shall not be used for values of uni on types.

6.3.5.1 Referencing fields of a union type
Fields of auni on type shall be referenced by the dot notation (see clause 6.3.1.1).

EXAMPLE:
MyVar5 : = MyUni onl. nyChoi cel;

/1 If a union type is nested in another type then the reference nay look like this
MyVar 6 : = MyRecor dl. nyEl enent 1. MyUni on2. nyChoi ce2;

6.3.5.2 Optionality and union

Optional fields are not allowed for the uni on type, which meansthat the opt i onal keyword shall not be used with
uni on types.

6.4 The anytype

The specia type anyt ype isdefined as a shorthand for the union of all known typesin a TTCN-3 module. The
definition of the term known typesis given in clause 3.1.

The fieldnames of theanyt ype shall be uniquely identified by the corresponding type names.

EXAMPLE:

/1 A valid usage of anytype woul d be
var anytype MyVar One, My Var Two;
var integer MyVarThree;

MyVar One. i nt eger : = 34,
M/Var Two : = {integer := My/VarOne + 1};

MyVar Three : = MyVarOne x 12;

Theanyt ype isdefined locally for each module and (like the other predefined types) cannot be directly imported by
another module. However, a user defined type of the type anyt ype can be imported by another module. The effect of
thisisthat all types of that module are imported.

NOTE: The user-defined type of anyt ype "contains' all types imported into the module where it is declared.
Importing such a user-defined type into a module may cause side effects and hence due caution hasto be
given to such cases.

6.5 Arrays

In common with many programming languages, arrays are not considered to be typesin TTCN-3. Instead, they may be
specified at the point of a variable declaration. Arrays may be declared as single or multi-dimensional.

EXAMPLE 1:

var integer MyArrayl[3]; // Instantiates an integer array of 3 elenents with the index 0 to 2
var integer M/Array2[2][3]; // Instantiates a two-dinensional integer array of 2 x 3 elenents
W th
/1 indexes from(0,0) to (1,2)

ETSI

35 ETSI ES 201 873-1 V2.2.0 (2002-05)

Array dimensions shall be specified using constant expressions which shall evaluate to a positivei nt eger value.
Array dimensions may also be specified using ranges. In such cases the lower and upper values of the range define the
lower and upper index values.

EXAMPLE 2:
var integer M/Array3[1 .. 5]; /'l Instantiates an integer array of 5 elenents
/!l with the index 1 to 5
M/Array3[1] := 10; // Lowest index
M/Array3[5] := 50; // Hi ghest index
var integer MJ/Array4[1 .. 5][2 .. 3]; // Instantiates a two-dinmensional integer array of

/1 5 x 2 elements with indexes from(1,2) to (5,3)

The values of array elements shall be compatible with the corresponding variable declaration. Values may be assigned
individually by avalue list notation or indexed notation or more than one or al at once by avalue list notation. When
the value list notation is used, the first value of thelist is assigned to the first element of the array (the element with
index 0), the second value to the second element etc. Elementsto be left out from the assignment shall be explicitly
skipped or omitted in the list.

EXAMPLE 3:
M/Arrayl1[0]: = 10;
M/Arrayl[1] : = 20;
M/Arrayl[3]: = 30;

/1 or using an value |ist
M/Arrayl: = {10, 20, -, 30};

NOTE: Anaternative way to use multi-dimensional data structures is via employing the record, record of, set or

set of types.
EXAMPLE 4.
/1l Gven
type record MyRecordType
{
i nt eger fieldl,
MyQt her St ruct field2,
charstring field3

/I An array of MyRecordType could be
var MyRecordType myRecordArray[10];
Il A reference to a particular element would look like this
myRecordArray[1].fieldl := 1;

6.6 Recursive types

Where applicable TTCN-3 type definitions may be recursive. The user, however, shall ensure that all type recursion is
resolvable and that no infinite recursion occurs.

6.7 Type compatibility

6.7.0 General

Generally, TTCN-3 requires type compatibility of values at assignments, instantiations and comparison.

For the purpose of this clause value "b" is called the actual value to be assigned, passed as parameter etc. , type "B" is
called the type of value "b" and type "A" is called the type definition of the value, which is to obtain the actual value of
value"b".

ETSI

36 ETSI ES 201 873-1 V2.2.0 (2002-05)

6.7.1 Type compatibility of non-structured types

For non-structured variables, constants, templates etc. the value "b" is compatible to type "A"if type "B" resolvesto the
sameroot type astype"A" (i.e. i nt eger) and it does not violate subtyping (e.g. ranges, length restrictions) of
type IIAII i

EXAMPLE:

/1 Gven
type integer Mylnteger(1l .. 10);

var integer x
var Myl nteger vy,

/1 Then
y :=5; /] is a valid assignnent

X 1= Y;
I/l is a valid assignnent, because y has the sane root type as x and no subtyping is violated

x
[l

20; // is a valid assignnment
y 1= X
/1 is NOT a valid assignnment, because the value of x is out of the range of Ml nteger

:=5; /] is a valid assignnent
P= X
is a valid assignnent, because the value of x is now within the range of M/ nteger

6.7.2 Type compatibility of structured types

6.7.2.0 General

In the case of structured types (except the enuner at ed type) avalue"b" of type "B" is compatible with type "A", if
the effective value structures of type "B" and type "A" are compatible, in which case assignments, instantiations and
comparisons are allowed.

6.7.2.1 Type compatibility of enumerated types

Enumerated types are never compatible with other basic or structured types (i.e. for enumerated types strong typing is
required).

6.7.2.2 Type compatibility of record and record of types

For r ecor d types the effective value structures are compatible if the number, type, and optionality of the fields at the
textual order of definition areidentical and values of each existing field of the value "b" is compatible with the type of
its corresponding field in type "A". Values of each field in the value "b" are assigned to the corresponding field in the
value of type"A".

EXAMPLE 1:

/1 Gven
type record AType {

integer (0..10) a optional
integer (0..10) b opti onal
bool ean c

}

type record BType {
i nt eger a optional
integer (0..10) b optional
bool ean c

}

type record CType { /1 type with different field nanes
i nt eger d opti onal
i nt eger e opti onal
bool ean f

ETSI

}
type record DType {

37

/1 type with field c optional

ETSI ES 201 873-1 V2.2.0 (2002-05)

i nt eger a optional,
i nt eger b optional,
bool ean c opti onal
}
type record EType { /] type with an extra field d
i nt eger a optional,
i nt eger b optional,
bool ean c,
fl oat d optional
}
var AType MyVarA : = { 1, true};
var BType MyVarB := { onmit, 2, true};
var CType MyVarC : = { 3, onit, true};
var DType MyVarD := { 4, 4, true};
var EType MyVarE := { 5, 5, true, onmit};
/'l Then
MyVar A : = MyVar B; I/l is a valid assignnent,
/1 value of M/\VarAis (a := <undefined> b:= 2, c:=true)
MyVar C : = MyVar B; /1 is a valid assignnent
/1 value of MyVarCis (d := <undefined> e:= 2, f:=true)
MyVar A : = MyVar D, /1 is NOT a valid assignment because the optionality of fields does not
/1 match
MyVar A : = MyVar E; /1 is NOT a valid assignment because the nunber of fields does not match
MyVarC := { d:= 20 };// actual value of MVarCis { d:=20, e:=2,f:= true }
MyVar A : = MyVarC /1 is NOT a valid assignnent because field “d” of MyVarC viol ates subtyping

/1 of field “a” of AType

For r ecor d of typesand arrays the effective value structures are compatible if their component types are compatible
and value"b" of type "B" does not violate any length subtyping of ther ecor d of type or dimension of the array of
type"A". Values of elements of the value "b" shall be assigned sequentially to the instance of type"A", including
undefined elements.

recor d of typesand single-dimension arrays are compatible with r ecor d typesif their effective value structures are
compatible and the number of elements of value "b" of ther ecord of type"B" or the dimension of array "B" is
exactly the same as the number of elements of ther ecor d type"A". Optionality of ther ecor d type fields has no
importance when determining compatibility, i.e. it does not affect the counting of fields (which means that optional
fields shall always be included in the count). Assignment of the element values of ther ecor d of type or array to the
instance of ar ecor d type shall bein the textua order of the corresponding r ecor d type definition, including
undefined elements. If an element with an undefined value is assigned to an optional element of ther ecor d, thiswill
cause the optional element to be omitted. An attempt to assign an element with undefined value to a mandatory element
of ther ecor d shall cause an error.

NOTE: Iftherecord of typehasno length restriction or the length restriction exceeds the number of elements
of the compared r ecor d type and the index of any defined element of ther ecor d of vaueislessor
equal than the number of elements of ther ecor d type minus one, than the compatibility requirement is

aways fulfilled.

Vauesof ar ecor d type also can be assigned to an instance of ar ecor d of typeor asingle-dimension array if no
length restriction of ther ecor d of typeisviolated or the dimension of the array is more than or equals to the number
of element of ther ecor d type. Optional elements missing inther ecor d value shall be assigned as elements with
undefined values.

EXAMPLE 2:

/1l Gven

type record HType {
i nteger a,
integer b optional,
integer c

}

type record of integer |Type

ETSI

38 ETSI ES 201 873-1 V2.2.0 (2002-05)

var HType MyVarH := { 1, onmit, 2};
var | Type MyVarl,
var integer MArrayVar[2];

/'l Then

M/ArrayVar := MyVarH,
// is a valid assignnent as type of MyArrayVar andHType are conpati bl e

MyVarl := MyVarH,
I/l is a valid assignnent as the types are conpatible and no subtyping is violated
MWVarl :={ 3, 4};
MyVarH : = MyVarl ;
/1 is NOT a valid assignment as the mandatory field “c” of Htype receives no val ue
6.7.2.3 Type compatibility of union types
For uni on types the effective value structures shall be compatible between the active field in value "b" and type "A".
EXAMPLE:
/1 Gven
type union JType
{
Atype A
Bt ype B,
Ht ype H
b

var JType MyVarJd := { A:={ 1, 1, true}};

/1 Then

MyVarB : = MyVarJ

/1 is a valid assignnent as the type of the active field in MyVarJ (Atype) and

/1 Btype are conpatible and the actual values of MyVarJ does not viol ates subtyping

6.7.2.4 Type compatibility of set and set of types

set typesareonly type compatible with other set typesand set of types. For set typesand for set of typesthe
same compatibility rules shall apply astor ecor d andr ecor d of types.

NOTE: Thisimpliesthat though the order of elements at sending and receipt is unknown, when determining type
compatibility for set types, the textual order of the fields in the type definition is decisive.

EXAMPLE:

/1 Gven

type set FType {
integer a optional,
integer b optional,
bool ean ¢

}

type set GIype {
integer d optional,
integer e optional,
bool ean f

}

var FType MyVarF := { a:
var Glype MyVarG := { f

1, c:=true };
true, d:=7};

/1l Then

MyVarF : = MyVar G /1 is a valid assignnent as types FType and Glype are conpatible

MyVar F : = MyVar A; /1 is NOT a valid assignment as MyVarA is a record type

ETSI

39 ETSI ES 201 873-1 V2.2.0 (2002-05)

6.7.2.5 Compatibility between slices

Therules defined in this clause for structured types compatibility are also valid for the sub-structure of such types
i.e. equivalence between dlices.

EXAMPLE:

/1 |f considering declarations above, then
MyVarJ.H := MyVar H;
I/l is a valid assignnent as the type of field H of JType and HType are conpati bl e

MyVarl := MyVarJH;
[/l isavalid assignment as | Type and the type of field H of JType are compatible

6.7.3 Type compatibility of communication operations

The communication operations (see clause 23) send, recei ve,trigger,call,getcall,reply,getreply
andr ai se are exceptions to the weaker rule of type compatibility and require strong typing. The types of values or
templates directly used as parameters to these operations must aso be explicitly defined in the associated port type
definition. Strong typing also applies to storing the received value, address or component reference during ar ecei ve
ortrigger operation.

6.7.4 Type conversion

If it is necessary to convert values of one type to values of another type, where the types are not derived from the same
root type, then either one of the predefined conversion functions defined in annex C or a user defined function shall be
used.

EXAMPLE:

/1 To convert an integer value to a hexstring value use the predefined function int2hex

MyHstring := int2hex(123, 4);

7 Modules

7.0 General

The principa building blocks of TTCN-3 are modules. For example, a module may define afully executable test suite
or just alibrary. A module consists of a (optional) definitions part, and a (optional) module control part.

NOTE: Thetermtest suiteis synonymous with a complete TTCN-3 module containing test cases and a control
part.

7.1 Naming of modules
Module names are of the form of a TTCN-3 identifier followed by an optional object identifier.
NOTE 1: The moduleidentifier isthe informal text name of the module.

NOTE 2: Module names may differ in the object identifier part only. However, in this case due precaution hasto be
exercised at import to avoid name clash as prefixing of identifiers (see clause 7.5.8) is unable to resolve
such kind of clashes.

ETSI

40 ETSI ES 201 873-1 V2.2.0 (2002-05)

7.2 Module parameters

7.2.0 General

The nodul e parameter list defines a set of values that are supplied by the test environment at run-time. During test
execution these values shall be treated as constants. Module parameters are declared by listing their identifiers and types
between a pair of curly brackets following the keyword par anet er s. Module parameters shall be declared within the
module definition part only. More than one occurrence of module parameters declaration is allowed but each parameter
shall be declared only once (i.e. redefinition of the module parameter is not allowed).

EXAMPLE:
modul e MyModul ewi t hPar anet er s

{
paraneters { integer TS Par0, TS Parl; boolean TS Par2 };

fenpl ate MyType Mtenplate
field TS Par 3

par améters { hexstring TS Par3 };

NOTE: This providesfunctionality similar to TTCN-2 test suite parametersthat provide PICS and PIXIT values
to the test suite.

7.2.1 Default values for module parameters

It is allowed to specify default values for module parameters. This shall be done by an assignment in the module
parameter list. A default value can be aliteral value only and can merely be assigned at the place of the declaration of
the parameter. If the test system does not provide an actual run-time value for the given parameter, the default value
shall be used during test execution, otherwise the actual value provided by the test system.

EXAMPLE:
modul e MyModul eDef aul t Par anet er

{
paraneters { integer TS Par0 := 0, TS Parl; boolean TS Par2 := True};

7.3 Module definitions part

7.3.0 General

The module definitions part specifies the top-level definitions of the module and may import identifiers from other
modules. Scope rules for declarations made in the module definition part and imported declarations are given in
clause 5.3. Those language elements which may be defined in a TTCN-3 module are listed in table 1. The module
definitions may be imported by other modules.

EXAMPLE:

modul e MyModul e
{ /1 This nodul e contains definitions only

;:onst i nteger MyConstant := 1;
type record MyMessageType { ...}

functi on TestStep(){ ...}
} :

Declarations of dynamic language elementssuch as var orti mer shall only be madein the control part, test cases,
functions, altsteps or component types.

ETSI

41 ETSI ES 201 873-1 V2.2.0 (2002-05)

NOTE: TTCN-3 does not support the declaration of variables in the module definitions part. This means that
global variables cannot be defined in TTCN-3. However variables defined in atest component may be
used by all test cases, functions etc. running on that component and variables defined in the control part
provide the ability to keep their values independently of test case execution.

7.3.1 Groups of definitions

In the module definitions part definitions can be collected in named groups. A group of declarations can be specified
wherever asingle declaration is allowed. Groups may be nested i.e. groups may contain other groups. This allows the
test suite specifier to structure, among other things, collections of test data or functions describing test behaviour.

Grouping is done to aid readability and to add logical structure to the test suiteif required. Groups and nested groups
have no scoping except in the context of group identifiers and attributes given to agroup by an associated wi t h
statement. This means:

e Group identifiers across the whole module need not necessarily be unique. However, al group identifiers on the
same level of hierarchy shall be unique and sub-groupsin alower level of hierarchy shall not have the same
name as agroup in ahigher level of hierarchy. If necessary, the dot notation shall be used to identify sub-groups
within the group hierarchy uniquely, e.g. for the import of a specific sub-group.

e Overriding rulesfor attribute are given in clause 28.4.

EXAMPLE:

/1 A collection of definitions

group MyG oup {
const integer MyConst:= 1;

type record MyMessageType { ...};

group MyG oupl { /1 Sub-group with definitions
type record Anot her MessageType { ...};
const bool ean MyBool ean : = fal se

}
/1 A group of altsteps

group MyStepLibrary {
group MyG oupl { /1 Sub-group with the same name as the sub-group with definitions

altstep MyStepll() { ...}
altstep MyStep12() { ...}
aitstep M/Stepln() { ...}
}
group MG oup2 {

altstep MyStep21() { ...}
altstep MyStep22() { ...}

éltstep MyStep2n() { ...}
}

/1 An inport statement that inmports MyGoupl within M/StepLibrary
import from MyModul e() {
group MyStepLibrary. MyG oupl

7.4 Module control part

The module control part may contain local definitions and describes the execution order (possibly repetitious) of the
actual test cases. A test case shall be defined in the module definitions part and called in the control part.

EXAMPLE:

modul e MyTest Suite
{ /1 This nodul e contains definitions ...

const integer MyConstant := 1;

type record MyMessageType { ...}
tenpl ate MyMessageType MyMessage := { ...}

ETSI

42 ETSI ES 201 873-1 V2.2.0 (2002-05)

function MyFunctionl() { ...}
function MyFunction2() { ...}

iestcase M/Test casel() runs on MyMICType { ...}
testcase MyTestcase2() runs on MyMICType { ...}

// ...and a control part so it is executable
control

{

var bool ean MyVariable; // Local control variable

M/TestCasel(); /'l sequential execution of test cases
M/Test Case2() ;

7.5 Importing from modules

7.5.0 General

It is possible to re-use definitions specified in different modules using thei nmport statement. TTCN-3 has no explicit
export construct thus, by default, all module definitionsin the module definitions part may be imported. Ani npor t
statement can be used anywhere in the module definitions part. It shall not be used in the control part.

If the object identifier is provided as part of the module name (from which the definitions are imported from) in the
import statement, this object identifier shall be used to identify the correct module.

All definitions that are imported from one module shall be referenced in onei nport statement only.

If an imported definition has attributes (defined by means of awi t h statement) then the attributes shall also be
imported. The mechanism to change attributes of imported definitionsis explained in clause 28.6.

NOTE: If the module has global attributes they are associated to definitions without these attributes.

EXAMPLE:

modul e MyModul eA
{ /1 This nodul e contains definitions and inported definitions

const integer MyConstant := 1;
import from MyModul eB all; // Scope of the inported definitions is global to MyMdul eA
import from MyModul eC {

type MTypel, MyType2;

tenpl ate all

}
type record MyMessageType { ...}

functi on MyBehavi our C()

{
const integer MyConstant := 2;
/1 inmport cannot be used here
}
control
{ /1 inmport cannot be used here
}

7.5.1 Structure of importable definitions

TTCN-3 supports the import of the following definitions. module parameters, user defined types, signatures, constants,
external constants, data templates, signature templates, functions, external functions, altsteps and test cases. Each
definition has a name (defines the identifier of the definition, e.g. a function name), a specification (e.g. atype
specification or a signature of afunction) and in the case of functions, altsteps and test cases an associated behaviour
description.

ETSI

43 ETSI ES 201 873-1 V2.2.0 (2002-05)

EXAMPLE:
Name Specification Behaviour description
function MyFunction (inout MyTypel MyPar) return MyType2 {
runs on MyCompType const MyType3 MyConst := .;
: [/ further behaviour
}
Specification Name Specification
type record M/Recor dType {
fieldl MyType4,
field2 integer
}
Specification Name Specification
tenplate M/Typeb M/ Tenpl ate {
fieldl := 1,
field2 := WConst, // MConst is a nodul e constant
field3 := Mdul ePar // Modul ePar is nodul e paraneter

}

Behaviour descriptions have no effect on the import mechanism, because their internals are considered to beinvisible to
the importer when the corresponding functions, altsteps or test cases are imported. Thus, they are not considered in the
following descriptions.

The specification part of an importable definition contains local definitions (e.g. field names of structured type
definitions or values of enumerated types) and referenced definitions (e.g. references to type definitions, templates,
constants or module parameters). For the examples above, this means:

Name Local definitions Referenced definitions
function MyFunction MyPar MyTypel, MyType2, MyCompType
type MyRecordTy | fieldl, field2 MyType3, integer
pe
tenpl ate MyTemplate MyType5, fieldl, field2, field3, MyConst, ModulePar

NOTE 1: Thelocal definitions column refersto identifiers only that are newly defined in the importable definition.
Values assigned to individua fields of importable definitions, e.g. in template definitions, may a so be
considered as local definitions, but they are not important for the explanation of the import mechanism.

NOTE 2: The referenced definitions fieldl, field2 and field3 of template MyTemplate are the field names of
MyType5, i.e. they are referenced via MyTypeb.

Referenced definitions are also importable definitions, i.e. the source of areferenced definition can again be structured
into a name and a specification part and the specification part also contains local and referenced definitions. In other
words, an importable definition may be built up recursively from other importable definitions.

The TTCN-3 import mechanism isrelated to the local and referenced definitions used in the specification part of the
importable definitions. Therefore table 5 specifies the possible local and referenced definitions of importable
definitions.

ETSI

44 ETSI ES 201 873-1 V2.2.0 (2002-05)

Table 5: Possible local and referenced definitions of importable definitions

Importable Definition Possible Local Definitions Possible Referenced Definitions
Module parameter Module parameter type
User-defined type (for all) Parameter names Parameter type
* enumerated type Concrete values
e structured type Field names Field types
* port type Message types, signatures
e component type Constant names, variable names, | Constant types, variable types, port types
timer names and port names
Signature Parameter names Parameter types, return type, types of exceptions
Constant Constant type
External constant Constant type
Data Template Parameter names Template type, parameter types, constants,
module parameters, functions
Signature template Signature definition, constants, module parameters
functions
Function Parameter names Parameter types, return type, component type
(runs on-clause)
External function Parameter names Parameter types, return type
Altstep Parameter names Parameter types, component type (r uns
on-clause)
Test case Parameter names Parameter types, component types (r uns on- and
syst em clause)

The TTCN-3 import mechanism distinguishes between the identifier of a referenced definitions and the information
necessary for the usage of a referenced definition within the imported definition. For the usage, the identifier of a
referenced definition is not required and therefore not imported automatically.

7.5.2 Rules on using import
On using import the following rules shall be applied:

a) Only top-level definitionsin the module may be imported. Definitions which occur at alower scope (e.g. local
constants defined in a function) shall not be imported;

b) Only direct importing from the source module of a definition (i.e. the module where the actual definition for the
identifier referenced inthei nport statement resides) is allowed;

c) A definitionisimported together with its name and all local definitions.

NOTE 1: A local definition, e.g. afield name of a user-defined record type, only has meaning in the context of the
definitionsin which it is defined, e.g. afield name of arecord type can only be used to access afield of
the record type and not outside this context.

d) A definitionisimported together with all information of referenced definitions that are necessary for the usage of
the referenced definition.

NOTE 2: Import statements are transitive, e.g. if amodule A imports a definition from module B that uses atype
reference defined in module C, the corresponding information necessary for the usage of that typeis
automatically imported into module A.

€) Asdefault, the identifiers of referenced definitions are not automatically imported. If the identifiers of the
referenced definitions are wished to be implicitly imported, the r ecur si ve directive (see clause 7.5.3) shall be
used.

NOTE 3: If the referenced definitions are wished to be used in the importing module when the default import
mechanism is used (e.g. for variable instantiation), it shall be explicitly imported from its source module.

f) When importing a function, altstep or test case the corresponding behaviour specifications and all definitions
used inside the behaviour specifications remain invisible for the importing module.

ETSI

45 ETSI ES 201 873-1 V2.2.0 (2002-05)

EXAMPLE:
nodul e Mbdul eONE {

paraneters {
i nteger MddParl, MdPar2 := 7
}

type record RecordType_T1 {
integer Fieldl_T1,
bool ean Field2_T1

}

type record RecordType_T2 {
M/RecordType_T1 Fieldl1_T2, // Use of RecordType_T1
M/Recor dType_T1 Fiel d2_T2,

i nt eger Fi el d3_T2
}
const integer MyConst := 13;
tenpl ate RecordType_T2 Tenplate T2 (RecordType_T1 TenpPar_T2):= { // paranmeterized tenplate
Fieldl1_T2 := TenpPar_T2, /1 Reference to tenpl ate paraneter
Field2_T2 := {MConst, true}, /'l Reference to nodul e constant
Fi el d3_T2 := MddPar 1 /'l Reference to a nodul e paraneter

}
} // end nodul e Modul eONE

nodul e Modul eTWD {

import from Modul eONE {
tenpl ate Tenplate_ T2

/1l Only the nanes Tenplate_T2 and TenpPar_T2 will be visible in Mdul eTW. Please note, that
/1 the identifier TenpPar_T2 can only be used in the context of Tenplate_T2, e.g., when

/1 providing an actual paraneter value. Al Infornation

/1 necessary for the usage of Tenplate_T2, e.g., for type checking purposes, are inported

/1 for the referenced definitions RecordType_T2, RecordType_T1, Fieldl_T2, Field2_T2,

/1 Field3_T3, MyConst and MddParl, but their identifiers are not visible in Mdul eTWO

// This nmeans, e.g., it is not possible to use the constant MyConst or to declare a

[/ variable of type RecordType_T1 or RecordType_T2 in Mdul eTWD wi thout explicitly inporting
/'l these types

i mport from Modul eONE {
par anet ers MdPar 2
}
/1 The nodul e parameter MddPar2 of Mdul eONE is inmported from Mddul eONE and

/1 can be used |ike an integer constant

} /1 end nodul e Modul eTWO

modul e Modul eTHREE {

inmport from Modul eONE all; // inports all definitions from Mydul eONE

type port MyPort Type {
i nout RecordType_T2
}

type conponent MyConpType {
var integer MyComponentVar := MddPar2; // Reference to a nodul e paraneter of Mdul eONE
port MyPortType MyPort

}
function MyFunction () return integer {

return MyConst /'l Returns a nodul e constant defined in Mdul eONE
}

testcase MyTest Case (out RecordType_T2 MyPar) runs on MyConpType {

var integer MyTCVar := MddPar2; // Reference to a nodul e paraneter of Mdul eONE

ETSI

46 ETSI ES 201 873-1 V2.2.0 (2002-05)

MyPort.send(Tenpl ate_T2); // Sending a tenplate defined i n Mbdul eONE
MyPort.recei ve(RecordType_T2 : ?) -> value MyPar; /'l The received value is assigned
// to the inout paraneter MyPar.

} // end testcase MyTest Case

} // end Modul eTHREE

nodul e Mbdul eFOUR {

i mport from Modul eTHREE {
testcase MyTest Case

/1l Only the nanes MyTest Case and MyPar will be visible and usable in Mdul eFOUR
/1 Type information for RecordType_T2 is inported via Mdul eTHREE from Modul eONE and
/1 type information for MyConpType is inported from Modul eTHREE. All definitions
/] used in the behaviour part of MyTestCase renmin hidden for the user of Mdul eFOUR

} // end Modul eFOUR

7.5.3 Recursive import

The TTCN-3 default import mechanism imports referenced definitions without their identifier. This means, areferenced
definition cannot be used within the importing module for, e.g. declaring a variable or for being sent over a port. Even
though this default import mechanism avoids cluttering up of the name space of the importing module, in some cases it
isdesired to import all referenced definitions together with their identifiers. In TTCN-3, ther ecur si ve keyword
provides this feature.

Onusingi nport together withar ecur si ve directive the following rules shall be applied:
a) Therulesa), b), c) and f) of clause 7.5.2 remain valid.

b) A recursively imported definition isimported together with all referenced definitions, i.e. the identifier of all
referenced definitions becomes visible and usable in the importing module.

NOTE 1: Recursive import statements are transitive within source modules, e.g. if amodule A imports a definition
recursively from module B that uses atype T aso defined in module B, then type T is automatically
imported into module A.

NOTE 2: Recursive import statements are not transitive over module boundaries, e.g. if amodule A imports a
definition recursively from module B that uses atype T defined in module C, thetype T is not
automatically imported into module A. Type T hasto be imported explicitly from module C, i.e. from its
source module.

EXAMPLE:

/1 The nodul e Mbdul eONE and Modul eTHREE are defined as in the exanpl es
/Il for clause 7.5.2.

nmodul e Modul eFl VE {
i mport from Modul eONE recursive {
tenpl ate Tenplate T2
}

/1 The recursive inport of Tenplate_T2 will also inport the definitions of

/1 RecordType_T2, RecordType_T1, M/Const and MbdParl from Modul eONE. Due to the

/1 inmport of the types RecordType_T2 and RecordType_T1, the field names of these types
/1l Fieldl_T1, Field2_T1, Fieldl_T2, Field2_T2 and Field3_T3 will becomne visible

/1 in Mdul eFl VE

} /1 end nodul e Modul eFl VE
nodul e Mobdul eSI X {

i mport from Modul eTHREE recursive {
testcase MyTest Case

ETSI

47 ETSI ES 201 873-1 V2.2.0 (2002-05)

/1l WIIl cause an ERROR, if the nodul e does not include a further inport statenent

/1 that inports RecordType_T2 recursively from Mdul eONE! The recursive inport of

/'l MyTest Case from Mddul eTHREE requires the recursive inport of RecordType_T2 and

/'l MyConpType fromtheir source nodul es. The source nodul e of RecordType_T2 is nodul e
/1 Modul eONE. Even though the source nodul e of MyConpType is Mbdul eTHREE, its

/] recursive inport will also cause an error, because this definition also requires
/1 definitions from Mbdul eONE.

} // end Modul eSI X

modul e Modul eSEVEN {

import from Modul eONE recursive {
par aneters MdPar 2;
type RecordType_T2

/1 Inports ModPar2, RecordType_T2 and RecordType_T1 (RecordType_T1 is used by
/1 RecordType_T2)from Modul eONE. Through the recursive inport the field nanes
/1l Fieldl _T1, Field2_T1,Fieldl_T2, Field2_T2 and Fiel d3_T3 of RecordType_T2 and
/'l RecordType_T1 will al so becone visible.

i mport from Mbdul eTHREE recursive {
testcase MyTest Case

/1 Inports MyTest Case, MyConpType (used by MyTest Case) and MyPortType (used by

/'l MyConpType) from Modul eTHREE. Through the recursive inport of MyTestCase and

/'l MyConptype the identifiers MyPar (defined in MyTest Case), MyConponentVar and

/'l MyPort (both defined in MyConpType) becone visible. Definitions from Mdul eOne
/'l that are needed for the recursive inport of MyTestCase are recursively inported
/1 by the previous inport statement.

} // end Modul eSEVEN

nodul e Modul eEl GHT {

import from Modul eONE {
paraneters MdPar 2;
type RecordType_T2

}

i mport from Mbdul eTHREE recursive {
testcase MyTest Case
}

/1 WIl cause an error, because for the conplete recursive inport of M/TestCase
/1 also the type RecordType_T1 needs to be inported conpletely from Modul eONE, or
/1 in other words, RecordType_T2 needs to be inported recursively.

} /1 end Modul eEl GHT

7.5.4

Importing single definitions

Single definitions may be imported.

EXAMPLE:

import from MyModul eA {

}

type MyTypel /1 inports one type definition from MyModul eA

i mport from MyModul eB {

type MyType2, Mtype3, M/Typed; /1 inports three types
tenpl ate MyTenpl at el; /1 inmports one tenplate
const MyConstl1, MyConst2 /1 inmports two constants

ETSI

48 ETSI ES 201 873-1 V2.2.0 (2002-05)

7.5.5 Importing all definitions of a module

All definitions of a module definitions part may be imported using theal | keyword next to the module name. If all
definitions of amodule isimported by using theal | keyword, no other form of import (import of single definitions,
import of the same kind etc.) shall be used for the samei nport statement.

EXAMPLE 1.

import from MyModule all;

If some declarations are wished not to be imported, their kinds and identifiers shall be listed in the exception list within
apair of curly brackets following the except keyword.

EXAMPLE 2:

inmport from MyMddul e all except {

type MyType3, MType5
/'l excludes type declarations MyType3 and MyType5 fromthe inport statenent
/1 but inports all other declarations of MyMdule

}

Theal | keyword isalso alowed to be used in the exception list; this will exclude all declarations of the same kind
from the import statement.

EXAMPLE 3:
import from MyMddul e all except {

type MyType3, MType5; [/ excludes the two types fromthe inport statenent
tenpl ate all /'l excludes all tenplates declared in MyMbdule fromthe inport statenent

7.5.6 Importing groups
Groups of definitions may be imported.
EXAMPLE 1:

i mport from MyModul e {
group MyG oup

The effect of importing agroup isidentical toani nport statement that lists all importable definitions (including
sub-groups) of this group.

TTCN-3 groups are only used for structuring purposes and are not scope units. Therefore, it is allowed to import
sub-groups (i.e. agroup which is defined within another group) directly, i.e. without the groups in which the sub-group
is embedded. If the name of a sub-group that should be imported isidentical to the name of another sub-group in the
same module (see clause 7.3.1), the dot notation shall be used to identify the sub-group to be imported uniquely.

If some definitions of a group are wished not to be imported, their kinds and identifiers shall be listed in the exception
list within a pair of curly brackets following the except keyword.

EXAMPLE 2:

import from MyModul e {
group MyGroup except {
type WType3, MyType5
/'l excludes type definitions MyType3 and MyType5 fromthe inport statenent
/1 but inports all other definitions of MG oup

}

Theal | keyword isalso alowed to be used in the exception list; thiswill exclude all definitions of the same kind from
the import statement.

ETSI

49 ETSI ES 201 873-1 V2.2.0 (2002-05)

EXAMPLE 3:
i mport from MyModul e {
group MyGroup except {

type MyType3, MyType5; [/ excludes the two types fromthe inport statenent and
tenplate all /] excludes all tenplates defined in M\ Group fromthe inport statement

7.5.7 Importing definitions of the same kind

Theal | keyword may be used to import all definitions of the same kind of a module.

EXAMPLE 1:

import from MyModul e {
type all; // inports all types of MyModul e
tenplate all I/ inports all tenplates of MyMdul e

}

If some declarations of akind are wished to be excluded from the given import statement, their identifiers shall be listed
following the except keyword.

EXAMPLE 2:

import from MyModul e {
type all except MyType3, MType5; I/ inports all types except MyType3 and MyType5
tenplate all [/ inports all tenplates defined in Mynodul e

7.5.8 Handling name clashes on import

All TTCN-3 modules shall have their own name space in which all definitions shall be uniquely identified. Name
clashes may occur due to import e.g. import from different modules, import of groups or import of recursive definitions.
Name clashes shall be resolved by prefixing the imported definition (which causes the name clash) by the identifier of
the module from which it isimported. The prefix and the identifier shall be separated by a dot (.).

In cases where there are no ambiguities the prefixing need not (but may) be present when the imported definitions are
used. When the definition is referenced in the same module where it is defined, the module identifier of the module (the
current module) also may be used for prefixing the identifier of the definition.

EXAMPLE:
modul e MyModul eA {

t&/pe bitstring MTypeA;
i mport from SoneMbdul eC {

type M/ TypeA, /1 Where MyTypeA is of type character string
M/ TypeB /1 Where MyTypeB is of type character string

}
c;)ntrol {

vér SoneModul eC. MyTypeA MyVarl := "Test String"; // Prefix nust be used

var MyTypeA MyVar2 := '10110011'B; // This is the original MTypeA

vér M/ TypeB MyVar3 := "Test String"; // Prefix need not be used ...

var SoneModul eC. MyTypeB MyVar3 := "Test String"; // ..but it can be if wi shed
}

NOTE: Definitions with the same name defined in different modules are always assumed to be different, even if
the actual definitionsin the different modules are identical. For example, importing a type that is already
defined locally, even with the same name, would lead to two different types being available in the
module.

ETSI

50 ETSI ES 201 873-1 V2.2.0 (2002-05)

7.5.9 Handling multiple references to the same definition

Theuseof i nport on single definitions, groups of definitions, definitions of the same kind etc. may lead to situations
where the same definition is referred to more than once. Such cases shall be resolved by the system and definitions shall
be imported only once.

NOTE: The mechanisms to resolve such ambiguities e.g. overwriting and sending warnings to the user, are
outside the scope of the present document and should be provided by TTCN-3 tools.

All'i mport statements and definitions within import statements are considered to be treated independently one after
the other in the order of their appearance. It isimportant to point out, that the except statement does not exclude the
definitions listed from being imported in general; all statements importing definitions of the same kind can be seenasa
shorthand notation for an equivalent list of identifiers of single definitions. Theexcept statement excludes definitions
fromthissinglelist only.

EXAMPLE:
i mport from MyModul e {
type all except MyTypes3; I/ inports all types of MyModdul e except MyType3
type MyType3 /] inports MyType3 explicitly

7.5.10 Import definitions from non-TTCN modules

In cases when definitions are imported from other sources than TTCN-3 modul es, the language specification shall be
used to denote the language (may be together with a version number) of the source (e.g. module, package, library or
even file) from which definitions are imported. It consists of the | anguage keyword and a subsequent textual
declaration of the denoted language. The use of the language specification is optional when importing from a TTCN-3
module of the same edition as the importing module. Language identifiers specified for ASN.1 modules are givenin
clause D.1.

EXAMPLE:

i mport from MyASNLMbdul e | anguage "ASN. 1:1997" {
type MyYASN1Type

NOTE: Theimport mechanism is designed to allow the re-use of TTCN-3 and ASN.1 definitions from other
TTCN-3 or ASN.1 modules. The rules for importing definitions from specifications written in other
languages, e.g. SDL packages, may follow the TTCN-3 rules or may have to be defined separately.
Import rules for languages other than TTCN-3 and ASN.1 are not covered by this document.

8 Test configurations

8.0 General

TTCN-3 alows the (dynamic) specification of concurrent test configurations (or configuration for short). A
configuration consists of a set of inter-connected test components with well-defined communication ports and an
explicit test system interface which defines the borders of the test system.

ETSI

51 ETSI ES 201 873-1 V2.2.0 (2002-05)

TTCN Test system
MTC | < > pTC,
_, PTC, | —— T
+ Abstract Test SystemInterface V*
_J
Real Test System Interface

SUT

Figure 3: Conceptual view of a typical TTCN-3 test configuration

Within every configuration there shall be one (and only one) main test component (MTC). Test components that are not
MTCs are called parallel test components or PTCs. The MTC shall be created by the system automatically at the start of
each test case execution. The behaviour defined in the body of thetest case shall execute on this component. During
execution of atest case other components can be created dynamically by the explicit use of the cr eat e operation.

Test case execution shall end when the MTC terminates. All other PTCs are treated equally i.e. thereis no explicit
hierarchical relationship among them and the termination of a single PTC terminates neither other components nor the
MTC. When the MTC terminates the test system has to stop all PTCs not terminated by the moment when the test case
execution is ended.

Communication between test components and between the components and the test system interface is achieved via
communication ports (see clause 8.1).

Test component types and port types, denoted by the keywords conponent and por t , shall be defined in the module
definitions part. The actual configuration of components and the connections between them is achieved by performing
creat e and connect operations within the test case behaviour. The component ports are connected to the ports of
the test system interface by means of the map operation (see clause 22.2).

8.1 Port communication model

Test components are connected viatheir portsi.e. connections among components and between a component and the
test system interface are port-oriented. Each port is modelled as an infinite FIFO queue which stores the incoming
messages or procedure calls until they are processed by the component owning that port.

NOTE: While TTCN-3 portsareinfinitein principle in areal test system they may overflow. This should be
treated as atest case error (see clause 25.2.1).

MTC m‘ PTC
>

Figure 4: The TTCN-3 communication port model

ETSI

52 ETSI ES 201 873-1 V2.2.0 (2002-05)

8.2 Restrictions on connections

TTCN-3 connections are port-to-port and port-to-test system interface connections (see figure 5). There are no
restrictions on the number of connections a component may maintain. One-to-many connections are also alowed
(e.g. figure 5 (g) or figure 5 (h)).

The following connections are not allowed:;

e A port owned by acomponent A shall not be connected with two or more ports owned by the same component
(figure 6 (a) and figure 6 (€)).

e A port owned by acomponent A shall not be connected with two or more ports owned by a component B
(seefigure 6 (c)).

e A port owned by acomponent A can only have a one-to-one connection with the test system interface. This
means, connections as shown in figure 6 (b) and figure 6 (d) are not allowed.

e Connections within the test system interface are not allowed (see figure 6 (f)).

Since TTCN-3 alows dynamic configurations and addresses, the restrictions on connections cannot always be checked
at compile-time. The checks shall be made at run-time and shall lead to atest case error when failing.

ETSI

53 ETSI ES 201 873-1 V2.2.0 (2002-05)

test system test component

test component test component

fOoE—an

test system interface

O[>

() (b)

test system

test component
A

test component test component

test system interface f]\ fJ\
—/ \—/

(c) (d)

test component
test component :I A
A

(e))
test system rost o st :
test component est componen est componen
test component :I B A B
A
—] —

:IteSt component E' E

C)
test system interface \/\/

g

(9) (h)

Figure 5: Allowed connections

ETSI

54 ETSI ES 201 873-1 V2.2.0 (2002-05)

test system

test component
A

test component
A

=

test system interface H

N

(a) (b)

test system

test component test component
test component :I B A

gl

:I test system interface /_(
—/
)

AN
S

(c) (d

test component test system
A 11—
I:IZI_ test system interface K'L A_\
—/ —/

(e) (f)

Figure 6: NOT allowed connections

8.3 Abstract test system interface

TTCN-3is used to test implementations. The object being tested is known as the Implementation Under Test or IUT.
The IUT may offer direct interfaces for testing or it may be part of system in which case the tested object isknown asa
System Under Test or SUT. In the minimal case the IUT and the SUT are equivalent. In the present document the term
SUT isused in agenera way to mean either SUT or IUT.

Inarea test environment test cases need to communicate with the SUT. However, the specification of the real physical
connection is outside the scope of TTCN-3. Instead, a well defined (but abstract) test system interface shall be
associated with each test case. A test system interface definition isidentical to a component definitioni.e. itisalist of
all possible communication ports through which the test case is connected to the SUT.

The test system interface statically defines the number and type of the port connectionsto the SUT during atest run.
However, the connections between the test system interface and the TTCN-3 test components are dynamic in nature and
may be modified during atest run by using map and unnmap operations (see clauses 22.2 and 22.3).

ETSI

55 ETSI ES 201 873-1 V2.2.0 (2002-05)

8.4 Defining communication port types

8.4.0 General

Ports facilitate communication between test components and between test components and the test system interface.

TTCN-3 supports message-based and procedure-based ports. Each port shall be defined as being message-based or
procedure-based (or both at the same time as described by clause 8.4.1). Message-based ports shall be identified by the
keyword nmessage and procedure-based ports shall be identified by the keyword pr ocedur e within the associated
port type definition.

Ports are directional. The directions are specified by the keywordsi n (for the in direction), out (for the out direction)
andi nout (for both directions). Each port type definition shall have one or more lists indicating the allowed collection
of (message) types and/or procedures together with the allowed communication direction.

EXAMPLE 1:

/'l Message-based port which allows types MsgTypel and MsgType2 to be received at, MsgType3 to be
/1 sent via and any integer value to be send and received over the port

type port MyMessagePort Type message

{

in MsgTypel, MsgType2;
out MsgType3;
i nout i nt eger

}

/'l Procedure-based port which allows the renote call of the procedures Procl, Proc2 and Proc3.
/1 Note that Procl, Proc2 and Proc3 are defined as signatures

type port MyProcedurePort Type procedure

{

out Procl, Proc2, Proc3

NOTE: Theterm message is used to mean both messages as defined by templates and actual values resulting from
expressions. Thus, the list restricting what may be used on a message-based port issimply alist of type
names.

Using the keyword al | in one of the lists associated to a port type alows all types or all procedure signatures defined
in the module to be passed over that communication port.

EXAMPLE 2:

/'l Message-based port which allows any value of all built-in types and user-defined types to be
/1 transferred in both directions over this port
type port MyAl | MesssagesPort Type nessage

i nout al |

8.4.1 Mixed ports

It is possible to define a port as alowing both kinds of communication. Thisis denoted by the keyword m xed. This
means that the lists for mixed ports will also be mixed and include both signatures and types. Theal | keyword in this
case denotes all types and all procedure signatures defined in the module. No separation is made in the definition.

/1 M xed port, defining a nessage-based and a procedure-based port with the sane name. The in,
/1 out and inout lists are also mxed: MgTypel, MsgType2, MsgType3 and integer refer to the
/'l message-based part of the mixed port and Procl, Proc2, Proc3, Proc4 and Proc5 refer to the
/1 procedure-based port.

type port MyM xedPort Type m xed

{

in MsgTypel, MsgType2, Procl, Proc2;
out MsgType3, Proc3, Proc4,
i nout i nteger, Proch;

}

/1 Mxed port, all types and all signatures defined in the nodule can be used at this port to
/1 communicate with either the SUT or other test conponents */

ETSI

56 ETSI ES 201 873-1 V2.2.0 (2002-05)

type port MyAl | M xedPort Type ni xed
{

i nout al |

A mixed port in TTCN-3 is defined as a shorthand notation for two ports, i.e. a message-based port and a
procedure-based port with the same name. At run-time the distinction between the two portsis made by the
communication operations.

Operations used to control ports (see clause 23.5) i.e. st art, st op and cl ear shall perform the operation on both
queues (in arbitrary order) if called with an identifier of a mixed port.

8.5 Defining component types

85.0 General

The conponent type defines which ports are associated with a component. These definitions shall be madein the
module definitions part. The port names in a component definition are local to that component i.e. another component
may have ports with the same names. Ports of the same component shall all have unique names. Definition of a
component alone does not mean that there is any connection between the components over these ports.

NOTE: TTCN-3differsfrom TTCN-2 in thisrespect, where the test configuration is static and declaring test
components, PCOs and ASPs implies their automatic connection when the test case execution isinitiated.

EXAMPLE:
PCO2 PCO3
MyMTC MyPTC p—
Il of MyMTCType fm— Il of MyPTCType
PCO4
PCO1 PCO1

Figure 7: Typical components

type conponent MyMICType
{

port MyMessagePort Type PCOL
}

type conponent MyPTCType
port MyMessagePort Type PCOL, PCO4;

port MyProcedurePort Type PCO2;
port M/Al | MesssagesPort Type PCO3

8.5.1 Declaring local variables and timers in a component
It is possible to declare constants, variables and timerslocal to a particular component.
EXAMPLE:

type conponent MyMICType

var integer MyLocal I nt eger;
timer MyLocal Ti ner;
port MyMessagePort Type PCOL

ETSI

57 ETSI ES 201 873-1 V2.2.0 (2002-05)

These declarations are visible to all functions and altsteps that run on the component. This shall be explicitly stated
using ther uns on keyword (see clause 16).

Component variables and timers are associated with the component instance and follow the scope rules defined in
clause 5.3. Each new instance of a component will thus have its own set of variables and timers as specified in the
component definition (including any initial values, if stated).

NOTE: When used astest system interfaces (see clause 8.8) components cannot make use of any constants,
variables and timers declared in the component.

8.5.2 Defining components with arrays of ports
It is possible to define arrays of portsin component type definitions (also see clause 22.9).

EXAMPLE:
type conponent My3pcoConpType
{

port MyMessagel nterfaceType PCO 3]
/1 Defines a conponent type which has an array of 3 ports.

8.6 Addressing entities inside the SUT

An SUT may consist of several entities which have to be addressed individually. The address data type is atype for use
with port operations to address SUT entities. When used witht o, f r omand sender the address data type shall only
be used in receive and send operations of ports mapped to test system interface. The actual data representation of

addr ess isresolved either by an explicit type definition within the test suite or externally by the test system (i.e. the
addr ess typeisleft as an open type within the TTCN-3 specification). This allows abstract test casesto be specified
independently of any real address mechanism specific to the SUT.

Explicit SUT addresses shall only be generated inside a TTCN-3 module if the type is defined inside the module. If the
typeis not defined inside the module explicit SUT addresses shall only be passed in as parameters or be received in
message fields or as parameters of remote procedure calls.

In addition, the specia value nul | isavailable to indicate an undefined address, e.g. for the initialization of variables
of the address type.

EXAMPLE:

/1 Associates the type integer to the open type address
type i nteger address;

/) new address variable initialized with null
var address MySUTentity := null;

/'l receiving an address value and assigning it to variable MySUTentity
PCO recei ve(address: *) -> value MySUTentity;

/) usage of the received address for sending tenplate M/Result
PCO send(M/Result) to MySUTentity;

/) usage of the received address for receiving a confirmation tenplate
PCO. recei ve(M/Confirmation) from MySUTentity;

8.7 Component references

Component references are unique references to the test components created during the execution of atest case. This
unique component reference is generated by the test system at the time when a component is created, i.e. a component
referenceistheresult of acr eat e operation (see clause 22.1). In addition component references are returned by the
predefined functions sy st em(returns the component reference to identify the ports of the test system interface), nt ¢
(returns the component reference of the MTC) and sel f (returns the component reference of the component in which
sel f iscalled).

ETSI

58 ETSI ES 201 873-1 V2.2.0 (2002-05)

Component references are used in the configuration operationsconnect , map and st art (see clause 22) to set-up
test configurationsand inthef r om t 0 and sender parts of communication operations of ports connected to test
components other than the test system i nt er f ace for addressing purposes (see clause 23 and figure 5).

In addition, the specia value nul | isavailable to indicate an undefined component reference, e.g. for the initialization
of variables to handle component references.

The actual data representation of component references shall be resolved externally by the test system. This allows
abstract test cases to be specified independently of any real TTCN-3 runtime environment, in other words TTCN-3 does
not restrict the implementation of atest system with respect to the handling and identification of test components.

NOTE: A component reference includes component type information. This means, for example, that a variable
for handling component references must use the corresponding component type name in its declaration.

EXAMPLE:

/1 A conponent type definition

type conponent MyConpType {
port PortTypeOne PCOL;
port PortTypeTwo PCO2

}

/'l Declaring two variables for the handling of references to conponents of type My/ConpType
// and creating a conponent of this type
var MyConpType MyConplnst := MyConpType. create;

/'l Usage of conponent references in configuration operations

/1 always referring to the conponent created above

connect (sel f: MyPCOL, MyConpl nst: PCOL) ;

map(MyConpl nst: PCO2, system Ext PCOL) ;

MyConpl nst . start (MyBehavi or(self)); // self is passed as a paraneter to MyBehavi or

/'l Usage of conponent references in from and to- clauses
MyPCOL. recei ve from MyConpl nst ;

M/PCOZ. recei ve(integer:?) -> sender MyConpl nst;

WPCOI. recei ve(M/Tenpl ate) from MyConpl nst ;

MPOCR. send(integer:5) to MyConplnst;

/1 The followi ng exanpl e expl ains the case of a one-to-many connection at a Port PCOL

/1 where values of type ML can be received fromseveral conponents of the different types
/1 ConpTypel, ConpType2 and ConpType3 and where the sender has to be retrieved.

/1 In this case the followi ng schene may be used:

vér ML MyMessage, MyResult;

var MyConpTypel Mylnstl := null;
var MyConpType2 Mylnst2 := null;
var MyConpType3 Mylnst3 := null;
ait {
[] PCOL.receive(M.:?) fromMlInstl -> value MyMessage sender Mylnstl {}
[] PCOL.receive(M.:?) fromMlInst2 -> value MyMessage sender Mylnst2 {}
[T PCOL.receive(M:?) fromMlInst3 -> value MyMessage sender Mylnst3 {}
}
WResuIt : = MyMessageHandl i ng(MyMessage) ; /] some result is retrieved froma function
i]; (MyInstl I'= null) {PCOL.send(M/Result) to Mylnst1};
if (MiInst2 !'= null) {PCOL send(M/Result) to Ml nst2};
I'= null) {PCOL. send(M/Result) to Myl nst3};

if (MInst3!

8.8 Defining the test system interface

A component type definition is used to define the test system interface because, conceptually, component type
definitions and test system interface definitions have the same form (both are collections of ports defining possible
connection points).

ETSI

59 ETSI ES 201 873-1 V2.2.0 (2002-05)

type conponent Myl SDNTest System nterface

port MyBchannel | nterfaceType B1;
port MyBchannel | nterfaceType B2;
port MyDchannel I nterfaceType D1

}

Generally, a component type reference defining the test system interface shall be associated with every test case using
more than one test component. The ports of the test system interface shall automatically be instantiated by the system

together with the MTC when the test case execution startsi.e. when the test case is called from the control part of the

module.

The operation returning the component reference of the test system interfaceissyst em This shall be used to address
the ports of the test system.

EXAMPLE:

map(MyMICConponent : Port 2, system PCOL) ;

In the case where the MTC is the only component that isinstantiated during test execution, atest system interface need
not be associated to the test case. In this case, the component type definition associated with the MTC implicitly defines
the corresponding test system interface.

9 Declaring constants

Constants can be declared and used in module definitions part, component type definitions, the module control part, test
cases, functions and altsteps. Constant definitions are denoted by the keyword const . The value of the constant shall
be assigned at the point of declaration.

EXAMPLE 1:

const integer MyConstl := 1;
const boolean MyConst2 := true, MyConst3 := false;

The assignment of the value to the constant may be done within the module or it may be done externally. The latter case
isan externa constant declaration denoted by the keyword ext er nal .

EXAMPLE 2:

external const integer MyExternal Const; // external constant declaration

An external constant may have an arbitrary type but the type has to be known in the modulei.e. aroot type or a user-
defined type defined in the module, or imported from some other module. The mapping of the type to the external
representation of an external constant is again outside the scope of the present document. The mechanism of how the
value of an external constant is passed into a module is outside the scope of the present document.

10 Declaring variables

Variables are denoted by the keyword var . Variables can be declared and used in the module control part, test cases,
functions and altsteps. Additionally, variables can be declared in component type definitions. These variables can be
used in test cases, altsteps and functions which are running on the given component type. Variables shall not be
declared or used in amodule definitions part (i.e. global variables are not supported in TTCN-3). A variable declaration
may have an optional initial value assigned to it.

EXAMPLE:

1:

var integer MyVarl : ;
true, MyVar3 : = fal se;

var bool ean MyVar2 :

Use of uninitialized variables at runtime shall cause atest case error.

ETSI

60 ETSI ES 201 873-1 V2.2.0 (2002-05)

11 Declaring timers

11.0 General

Timers can be declared and used in the module control part, test cases, functions and altsteps. Additionally, timers can
be declared in component type definitions. These timers can be used in test cases, functions and altsteps which are
running on the given component type. A timer declaration may have an optional default duration value assigned to it.
The timer shall be started with this value if no other value is specified. This value shall be anon-negative f | oat value
(i.e. greater or equal 0.0) where the base unit is seconds.

EXAMPLE:
timer MTinmerl := 5E-3; // declaration of the tinmer MyTinerl with the default value of 5ns

timer MTiner2; // declaration of MyTiner2 without a default tiner value i.e. a value has
/1l to be assigned when the tinmer is started

11.1 Timers as parameters

Timers can only be passed by reference to functions and altsteps. Timers passed into a function or altstep are known
inside the behaviour definition of the function or altstep.

Timers passed in as parameters by reference can be used like any other timer, i.e. it needs not to be declared. A started
timer can also be passed into a function or altstep. The timer continuesto run, i.e. it is not stopped implicitly. Thereby,
possible timeout events can be handled inside the function or altstep to which the timer is passed.

EXAMPLE:

/1 Function definition with a tiner in the formal parameter |ist
function MyBehavi our (timer MyTimer)

M/Ti mer. start;

12 Declaring messages

One of the key elements of TTCN-3 isthe ability to send and receive complex messages over the communication ports
defined by the test configuration. These messages may be those explicitly concerned with testing the SUT or with the
internal co-ordination and control messages specific to the relevant test configuration.

NOTE: InTTCN-2 these messages are the Abstract Service Primitives (ASPs), the Protocol Data Units (PDUS)
and co-ordination messages. The core language of TTCN-3 is generic in the sense that it does not make
any syntactic or semantic distinctions of this kind.

13 Declaring procedure signatures

13.0 General

Procedure signatures (or signatures for short) are needed for procedure-based communication. Procedure-based
communication may be used for the communication within the test system, i.e. among test components, or for the
communication between the test system and the SUT. In the latter case, a procedure may either be invoked in the SUT
(i.e. the test system performsthe call) or invoked in the test system (i.e. the SUT performs the call). For al used
procedures, i.e. procedures used for the communication among test components, procedures called from the SUT and
procedures called from the test system, complete procedure si gnat ur e shall be defined in the TTCN-3 module.

ETSI

61 ETSI ES 201 873-1 V2.2.0 (2002-05)

13.1 Signatures for blocking and non-blocking communication

TTCN-3 supports blocking and non-blocking procedure-based communication. Signature definitions for non-blocking
communication shall use anobl ock keyword, shall only havei n parameters (see clause 13.2) and shall have no
return value (see clause 13.3), but may raise exceptions (see clause 13.4). By default, signature definitions without
nobl ock keyword are assumed to be used for blocking procedure-based communication.

EXAMPLE:

si gnature MyRenot eProcOne (); /1 MyRenoteProcOne will be used for blocking
/] procedure-based comunication. It has neither
[/ paraneters nor a return val ue.

si gnature MyRenot eProcTwo () nobl ock; /'l MyRenoteProcTwo will be used for non bl ocking

/] procedure-based comunication. It has neither
/] paraneters nor a return val ue.

13.2 Parameters of procedure signatures

Signature definitions may have parameters. Within asi gnat ur e definition the parameter list may include parameter
identifiers, parameter types and their directioni.e. i n, out , ori nout . Thedirectioni nout and out indicate that
these parameters are used to retrieve information from the remote procedure. Note that the direction of the parametersis
as seen by the called party rather than the calling party.

EXAMPLE:

signature MyRenoteProcThree (in integer Parl, out float Par2, inout integer Par3);

/! MyRenoteProcThree will be used for bl ocking procedure-based communication. The procedure
/'l has three paraneters: Parl an in paraneter of type integer, Par2 an out paraneter of

/1 type float and Par3 an inout paraneter of type integer.

13.3 Value returning remote procedures

A remote procedure may return a value after its termination. The type of the return value shall be specified by means of
ar et ur n clausein the corresponding signature definition.

EXAMPLE:

signature MyRenot eProcFour (in integer Parl) return integer;

/'l MyRenot eProcFour will be used for bl ocking procedure-based comuni cation. The procedure
/1 has the in parameter Parl of type integer and returns a value of type integer after its
/1 term nation

13.4 Specifying exceptions

Exceptions that may be raised by remote procedures are represented in TTCN-3 as values of a specific type. Therefore
templates and matching mechanisms can be used to specify or check return values of remote procedures.

NOTE: The conversion of exceptions generated by or sent to the SUT into the corresponding TTCN-3 type or
SUT representation is tool and system specific and therefore beyond the scope of the present document.

The exceptions are defined in the form of an exception list included inthe si gnat ur e definition. Thislist definesall
the possible different types associated with the set of possible exceptions (the meaning of exceptions themselves will
usualy only be distinguished by being represented by specific values of these types).

EXAMPLE:

signature MyRenot eProcFive (inout float Parl) return integer

exception (ExceptionTypel, ExceptionType2);
/'l MyRenoteProcFive will be used for bl ocking procedure-based comunication. It may return a
/1 float value in the inout paraneter Parl and an integer value, or may raise exceptions of
/1 type ExceptionTypel or ExceptionType2

ETSI

62 ETSI ES 201 873-1 V2.2.0 (2002-05)

signature MyRenoteProcSix (in integer Parl) nobl ock
exception (integer, float);
/1 MyRenoteProcSix will be used for non-bl ocking procedure-based comruni cation. In case of
/1 an unsuccessfull term nation, M/RenoteProcSix nay raise exceptions of type integer or float.

14 Declaring templates

14.0 General

Templates are used to either transmit a set of distinct values or to test whether a set of received values matches the
template specification.

Templates provide the following possibilities:
a) they are away to organize and to re-use test data, including a simple form of inheritance;
b) they can be parameterized;
c) they allow matching mechanisms;
d) they can be used with either message-based or procedure-based communications.

Within atemplate values, ranges and matching attributes can be specified and then used in both message-based and
procedure-based communications. Templates may be specified for any TTCN-3 type or procedure signature. The
type-based templates are used for message-based communications and the signature templates are used in
procedure-based communications.

14.1 Declaring message templates

14.1.0 General

Instances of messages with actual values may be specified using templates. A template can be thought of as being a set
of instructions to build a message for sending or to match areceived message.

Templates may be specified for any TTCN-3 type defined in table 3 except for the special configuration and default
types(port, conponent, address anddefault).

EXAMPLE:

/1 When used in a receiving operation this tenplate will match any integer val ue
tenpl ate integer Mytenplate := ?;

/1 This tenplate will match only the integer values 1, 2 or 3

tenplate i nteger Mytenplate := (1, 2, 3);

14.1.1 Templates for sending messages

A template used in asend operation defines a complete set of field values comprising the message to be transmitted
over atest port. At the time of the send operation, the template shall be fully defined i.e. all fields shall resolve to
actual values and no matching mechanisms shall be used in the template fields, neither directly nor indirectly.

NOTE: For sending templates omitting an optional field is considered to be a value notation rather than a
matching mechanism.

EXAMPLE:

/1 Gven the nessage definition
type record MyMessageType

{

i nt eger fieldl optional,
charstring field2,
bool ean field3

ETSI

63 ETSI ES 201 873-1 V2.2.0 (2002-05)

}

/1 a nessage tenplate could be
tenpl ate MyMessageType MyTenpl ate: =

fieldl := omt,
field2 := "M string",
field3 := true

}

/1 and a correspondi ng send operation could be
M/PCO. send(MyTenpl at e) ;

14.1.2 Templates for receiving messages

A template used inar ecei ve operation defines a data template against which an incoming message is to be matched.
Matching mechanisms, as defined in annex B, may be used in receive templates. No binding of the incoming values to
the template shall occur.

EXAMPLE:

/1l Gven the nessage definition
type record MyMessageType

{
i nt eger fieldl optional,
charstring field2,
bool ean field3

}

/1 a nessage tenplate mght be
tenpl ate MyMessageType MyTenpl ate: =

fieldl := ?,
field2 := pattern "abc*xyz",
field3 := true

}

/1 and a corresponding receive operation could be
MyPCO. recei ve(M/Tenpl ate) ;

14.2 Declaring signature templates

14.2.0 General

Instances of procedure parameter lists with actual values may be specified using templates. Templates may be defined
for any procedure by referencing the associated signature definition.

EXAMPLE:

/1 signature definition for a renote procedure
signature RenoteProc(in integer Parl, out integer Par2, inout integer Par3) return integer;

/'l exanpl e tenpl ates associ ated to defined procedure signature
tenpl ate RenoteProc Tenpl atel: =

Parl := 1,
Par2 := 2,
Par3 := 3
}
tenpl ate RenoteProc Tenpl ate2: =
Parl := 1,
Par2 := ?,
Par3 := 3
}
tenpl ate RenoteProc Tenpl ate3: =
{
Parl := 1,
Par2 := ?,

ETSI

64 ETSI ES 201 873-1 V2.2.0 (2002-05)

Par3 .= ?

14.2.1 Templates for invoking procedures

Atemplateusedinacal | orrepl y operation defines a complete set of field valuesfor all i n andi nout
parameters. At thetime of thecal | operationall i n andi nout parametersin the template shall resolve to actual
values, no matching mechanisms shall be used in these fields, either directly or indirectly. Any template specification
for out parametersissimply ignored, thereforeit is allowed to specify matching mechanisms for these fields, or to
omit them (see annex B).

EXAMPLE:

/1 Gven the exanples in the introduction of clause 14.2 ...

/1 Valid invocation since all in and inout paraneters have a distinct val ue
M/PCO. cal | (Renot eProc: Tenpl atel) ;

/1 Valid invocation since all in and inout paraneters have a distinct val ue
M/PCO. cal | (Renpt eProc: Tenpl at e2) ;

/1 Invalid invocation because the inout paraneter Par3 has a natching attribute not a val ue
M/PCO. cal | (Renot eProc: Tenpl at e3) ;

/1 Tenpl ates never return values. In the case of Par2 and Par3 the values returned by the

/1 call operation nust be retrieved using an assignment clause at the end of the call statement

14.2.2 Templates for accepting procedure invocations

A template used inaget cal | operation defines a data template against which the incoming parameter fields are
matched. Matching mechanisms, as defined in annex B, may be used in any templates used by this operation. No
binding of incoming values to the template shall occur. Any out parameters shall be ignored in the matching process.

EXAMPLE:

/1 Gven the exanples in the introduction of clause 14.2 ...

/1 Valid getcall, it will match if Par2 == 2 and Par3 == 3
M/PCO. get cal | (Renot eProc: Tenpl atel) ;

/1 Valid getcall, it will match if Par3 == 3 and Any val ue of Par2
\ MyPCO. get cal | (Renot eProc: Tenpl at e2) ;

/1 Valid getcall, it will match on Any val ue of Par3 and Par2
M/PCO. get cal | (Renot eProc: Tenpl at e3) ;

14.3 Template matching mechanisms

Generally, matching mechanisms are used to replace values of single template fields or to replace even the entire
contents of atemplate. Some of the mechanisms may be used in combination.

Matching mechanisms and wildcards may also be used in-linein received eventsonly (i.e.r ecei ve, getcal I,
get repl y and cat ch operations). They may appear in explicit values.

EXAMPLE 1:

M/PCO. r ecei ve(charstring: "abcxyz");
M/PCO. recei ve (integer:conplenment(1l, 2, 3));
The type identifier may be omitted when the value unambiguously identifies the type.
EXAMPLE 2:

M/PCO. r ecei ve(’ AAAA O) ;

NOTE: Thefollowing types may be omitted: integer, float, boolean, objid, bitstring, hexstring, octetstring.

ETSI

65 ETSI ES 201 873-1 V2.2.0 (2002-05)

However, the type of the in-line template shall be in the port list over which the template is received. In the case where
there is an ambiguity between the listed type and the type of the value provided (e.g. through sub-typing) then the type
name shall beincluded in the receive statement.

Matching mechanisms are arranged in four groups:

a) specific values (i.e. an expression that evaluatesto a specific value);

b) special symbolsthat can be used instead of values:

(...): alist of values;

complement (...): complement of alist of values;

omit: value is omitted;

?: wildcard for any value;

*: wildcard for any value or no value at al (i.e. an omitted value);

(lower t o upper): arange of integer values between and including the lower- and upper bounds.

c) special symbolsthat can be used inside values:

?: wildcard for any single element in astring, array, record of orset of;

*: wildcard for any number of consecutive elementsin astring, array, record of orset of,orno
element at al (i.e. an omitted element).

d) special symbolswhich describe attributes of values:

length: restrictions for strings and arrays,

ifpresent: for matching of optional field values (if not omitted).

The supported matching mechanisms and their associated symbols (if any) and the scope of their application are shown
in table 6. The left-hand column of thistable lists all the TTCN-3 and ASN.1 equivalent types as defined in the

ITU-T Recommendation X.680 series[7], [8], [9] and [10] to which these matching mechanisms apply. A full
description of each matching mechanism can be found in annex B.

ETSI

66 ETSI ES 201 873-1 V2.2.0 (2002-05)

Table 6: TTCN-3 Matching Mechanisms

Used with values of |Value Instead of values Inside Attributes
values
S V C (0] A A R S S A A L |
p a o] m n n a u u n n e f
e I m i y y n p b y y n P
c u p t \% \% g e S E E g r
i e I \% a a e r e I | t e
f L e a I I s t e e h s
i i m | u u e m m R e
c s e u e e t e e e n
\% t n e ? (0] n n S t
a t r t t t
| e N (?) S r
u d 0 (0] i
e L n r c
| e N t
s *) o i
t n o]
e n
*
boolean Yes | Yes | Yes | Yes | Yes | Yes Yes
integer Yes | Yes | Yes | Yes | Yes | Yes | Yes Yes
char Yes | Yes | Yes | Yes | Yes | Yes | Yes Yes
universal char Yes | Yes | Yes | Yes | Yes | Yes | Yes Yes
float Yes | Yes | Yes | Yes | Yes | Yes | Yes Yes
bitstring Yes | Yes | Yes | Yes | Yes | Yes Yes | Yes | Yes | Yes
octetstring Yes | Yes | Yes | Yes | Yes | Yes Yes | Yes | Yes | Yes
hexstring Yes | Yes | Yes | Yes | Yes | Yes Yes | Yes | Yes | Yes
character strings Yes | Yes | Yes | Yes | Yes | Yes | Yes Yes | Yes | Yes | Yes
record Yes | Yes | Yes | Yes | Yes | Yes Yes
record of Yes | Yes | Yes | Yes | Yes | Yes Yes | Yes | Yes | Yes
array Yes | Yes | Yes | Yes | Yes | Yes Yes | Yes | Yes | Yes
set Yes | Yes | Yes | Yes | Yes | Yes Yes
set of Yes | Yes | Yes | Yes | Yes | Yes Yes | Yes| Yes | Yes | Yes | Yes
enumerated Yes | Yes | Yes | Yes | Yes | Yes Yes
union Yes | Yes | Yes | Yes | Yes | Yes Yes

14.4 Parameterization of templates

14.4.0 General

Templates for both sending and receiving operations can be parameterized. The actual parameters of atemplate can
include values and templates, functions and special matching symbols. The rules for formal and actual parameter lists
shall be followed as defined in clause 5.2.

EXAMPLE:

/1 The tenplate
tenpl ate MyMessageType MyTenpl ate (integer MyFormal Param: =

fieldl := MyFor mal Par am
field2 := pattern "abc*xyz",
field3 := true

}

/'l could be used as follows
pcol. send(MyTenpl at e(123));

ETSI

67 ETSI ES 201 873-1 V2.2.0 (2002-05)

14.4.1 Parameterization with matching attributes

To enable matching attributes to be passed as parameters the extra keyword t enpl at e shall be added before the type
field. This makes the parameter atemplate and in effect extends the allowed parameters for the associated type to
include the appropriate set of matching attributes (see annex B) as well asthe normal set of values. Template parameter
fields shall not be called by reference.

EXAMPLE:

/1 The tenplate
tenpl ate MyMessageType MyTenpl ate (tenpl ate integer MyFormal Param: =

{ fieldl := MyFor mal Par am
field2 := pattern "abc*xyz",
field3 := true

}

/1 could be used as follows
pcol. recei ve(M/Tenpl ate(?));

/Il O as foll ows

pcol.recei ve(M/Tenpl ate(onit));

14.5 Passing templates as parameters

Only functi on,testcase,al t st ep andt enpl at e definitions can have templates as formal parameters.

EXAMPLE:

functi on MyBehavi our (tenpl ate MyMsgType M/For nal Par anet er)
runs on MyConponent Type

{

pcol. recei ve(MyFor nal Par anet er) ;

14.6 Modified templates

14.6.0 General

Normally atemplate specifies a set of base or default values or matching symbols for each and every field defined in the
appropriate definition. In cases where small changes are needed to specify a new template it is possible to specify a
modified template. A modified template specifies modifications to particular fields of the origina template, either
directly or indirectly.

Thenodi fi es keyword denotes the parent template from which the new, or modified template shall be derived. This
parent template may be either the original template or a modified template.

The modifications occur in alinked fashion eventually tracing back to the original template. If atemplate field and its
corresponding value or matching symbol is specified in the modified template, then the specified value or matching
symbol replaces the one specified in the parent template. If atemplate field and its corresponding val ue or matching
symbol is not specified in the modified template, then the value or matching symbol in the parent template shall be
used.

A modified template shall not refer to itself, either directly or indirectly i.e. recursive derivation is not allowed.

EXAMPLE:

/'l Gven

tenpl ate MyRecordType MyTenpl atel : =
fieldl := 123,
field2 := "A string",
field3 := true

/1 then writing
tenpl ate MyRecordType MyTenpl ate2 nodifies MyTenpl atel : =

fieldl := omt, /1 fieldl is optional but present in MyTenpl atel

ETSI

68 ETSI ES 201 873-1 V2.2.0 (2002-05)

field2 := "A nodified string"
/1 field3 is unchanged

I/l is the sane as witing
tenpl ate MyRecordType MyTenpl ate2 : =

fieldl := omt,
field2 := "A nodified string",
field3 := true

14.6.1 Parameterization of modified templates

If a base template has aformal parameter list, the following rules apply to al modified templates derived from that base
template, whether or not they are derived in one or several modification steps:

a) thederived template shall not omit parameters defined at any of the modification steps between the base
template and the actual modified template;

b) aderived template can have additional (appended) parameters if wished;
c) theformal parameter list shall follow the template name for every modified template;

d) basetemplate fields containing parameterized templates shall not be modified or explicitly omitted in a modified

template.
EXAMPLE:
/1 Gven
tenpl ate MyRecordType MyTenpl atel(i nteger Mypar): =
fieldl : = MyPar,
field2 := "A string",
field3 := true

}

/1 then a nodification could be
tenpl ate MyRecordType MyTenpl ate2(integer MyPar) nodifies M/Tenplatel : =

{ /1 fieldl is paranmeterized in Tenplatel and renai ns al so paraneterized in Tenpl ate2
field2 := "A nodified string",

}

14.6.2 In-line modified templates

Aswell as creating explicitly named modified templates TTCN-3 allows the definition of in-line modified templates.

EXAMPLE:
/1 Gven
tenpl ate MyMessageType Setup : =
{ fieldl := 75,
field2 := "abc",
field3 := true
}

/1 Could be used to define an in-line nodified tenplate of Setup
pcol.send (modifies Setup := {field1 76});

14.7 Changing template fields

In communication operations (e.g. send, r ecei ve, cal | ,get cal | etc.) it isallowed to change template fields via
parameterization or by in-line derived templates only. The effects of these changes on the value of the template field do
not persist in the template subsequent to the corresponding communication event.

The dot notation MyTemplatel d.Fieldld shall not be used to set or retrieve valuesin templates in communication events.
The"->" symbol shall be used for this purpose (see clause 23).

ETSI

69 ETSI ES 201 873-1 V2.2.0 (2002-05)

14.8 Match Operation

The mat ch operation allows the value of a variable to be compared with atemplate. The operation returns a boolean
value. If the types of the template and variable are not compatible (see clause 6.7)the operation returns false. If the types
are compatible the return value of the operation indicates whether the value of the variable conforms to the specified
template.

EXAMPLE:
tenpl ate integer LessThanl0 := (-infinity..9);

testcase TCO01()
runs on MyMICType

{
var integer RxVal ue;

PCOL. recei ve(integer:?) -> val ue RxVal ue;

if(match(RxVal ue, LessThanl0)) { ...}
/1 true if the actual value of Rxvalue is less than 10 and fal se ot herw se

}

14.9 Value of Operation

Theval ueof operation allows the value specified within atemplate to be assigned to the fields of avariable. The
variable and template shall be type compatible (see 6.7) and each field of the template shall resolve to a single value.

EXAMPLE:
type record Exanpl eType

integer fieldl,
bool ean fiel d2

}

tenpl ate Exanpl eType SetupTenpl ate : =
{
fieldl :
field2 :

1,
true

}

va.r ExampleType RxValue := valueof(SetupTemplate);

15 Operators

15.0 General

TTCN-3 supports a number of predefined operators that may be used in the terms of TTCN-3 expressions. The
predefined operators fall into seven categories:

a) arithmetic operators,
b) string operators;

c) relational operators;
d) logical operators;

€) bitwise operators;
f) shift operators;

g) rotate operators.

ETSI

70 ETSI ES 201 873-1 V2.2.0 (2002-05)

These operators are listed in table 7.

Table 7: List of TTCN-3 operators

Category Operator Symbol or Keyword
Arithmetic operators addition +
subtraction
multiplication *
division /
modulo mod
remainder rem
String operators concatenation &
Relational operators equal ==
less than <
greater than >
not equal I=
greater than or equal >=
less than or equal <=
Logical operators logical not not
logical and and
logical or or
logical xor Xxor
Bitwise operators bitwise not not4b
bitwise and and4b
bitwise or or4db
bitwise xor xordb
Shift operators shift left <<
shift right >>
Rotate operators rotate left <@
rotate right @>

The precedence of these operatorsis shown in table 8. Within any row in this table, the listed operators have equal
precedence. If more than one operator of equal precedence appears in an expression, the operations are evaluated from
left to right. Parentheses may be used to group operands in expressions, in which case a parenthesized expression has
the highest precedence for evaluation.

Table 8: Precedence of Operators

Priority Operator type Operator
highest (...)
UnaryBinary +,-%* /[, mod, rem
Binary + &
Unary not4b
Binary and4b
Binary xordb
Binary ordb
Binary <<, >>, <@, @>
Binary <, >, <=, >=
Binary ==, 1=
Unary not
Binary and
Binary xor
Binary or
Lowest

ETSI

71 ETSI ES 201 873-1 V2.2.0 (2002-05)

15.1 Arithmetic operators

The arithmetic operators represent the operations of addition, subtraction, multiplication, division, modulo and
remainder. Operands of these operators shall be of typei nt eger (including derivations of i nt eger) or f | oat
(including derivations of f | oat), except for mod which shall be used withi nt eger (including derivations of

i nt eger) typesonly.

Withi nt eger typesthe result type of arithmetic operationsisi nt eger . With float types the result type of arithmetic
operationsisf | oat .

In the case where plus (+) or minus (-) is used as the unary operator the rules for operands apply as well. The result of
using the minus operator is the negative value of the operand if it was positive and vice versa.

The result of performing the division operation (/) on two:

a) i nt eger vauesgivesthewholei nt eger part of the value resulting from dividing thefirst i nt eger by the
second (i.e. fractions are discarded);

b) fl oat valuesgivesthef | oat valueresulting from dividing thefirst f | oat by the second (i.e. fractions are
not discarded).

The operatorsr emand nod compute on operands of typei nt eger and have aresult of typei nt eger . The
operationsx remy andx nod y computetherest that remains from aninteger division of x by y. Therefore, they
are only defined for non-zero operandsy . For positivex andy, bothx rem y andx nod y have the sameresult but
for negative arguments they differ.

Formally, mod and r emare defined as follows:

X remy =X -y * (xly)

x mod y = x rem|y| if x>0
=0 if x<0 and x rem|y| =0
=|y] + xrem]y| if x<0 and x rem|y| <0

Table 9 illustrates the difference between the mod and rem operator:

Table 9: Effect of mod and rem operator

X -3 -2 -1 0 1 2 3
x mod 3 0 1 2 0 1 2 0
X rem 3 0 -2 -1 0 1 2 0

15.2 String operators

The predefined string operators perform concatenation of values of compatible string types. The operation isasimple
concatenation from left to right. No form of arithmetic addition isimplied. The result type is the root type of the
operands.

EXAMPLE:

'1111'B & '0000' B & '1111'B gives '111100001111'B

15.3 Relational operators

The predefined relational operators represent the relations of equality (==), less than (<), greater than (>), non-equality
to (! =), greater than or equal to (>=) and less than or equal to (<=). Operands of equality and non-equality may be of
arbitrary but compatible types with the exception of the enumrer at ed type, in which case operands shall be instances
of the same type. All other relational operators shall have operands only of typei nt eger (including derivatives of

i nteger),fl oat (including derivationsof f | oat) or instances of the same enuner at ed types. The result type of
these operationsisbool ean.

ETSI

72 ETSI ES 201 873-1 V2.2.0 (2002-05)

Twocharstringoruni versal charstring vauesareequal only, if they have equal lengths and the characters
at al positions are the same. For values of bi t st ri ng, hexstri ng or oct et st ri ng typesthe same equality rule
applies with the exception, that fractions which shall equal at all positions are bits, hexadecimal digits or pairs of
hexadecimal digits accordingly.

Twor ecor d values, set values, r ecor d of valuesor set of vauesareequal if, and only if, their effective value
structures are compatible (see clause 6.7) and the values of all corresponding fields are equal. Record values may also
be compared to record of values and set values to set of values. In these cases the same rule applies as for comparing
tworecord orset vaues.

NOTE: "All fields' meansthat optional fields not present in the actual value of ar ecor d type shall be taken as
an undefined value. Such field can equal only to a missing optional field (also considered to be an
undefined value) when compared with a value of another r ecor d type or to an element with undefined
value when compared with avalue of ar ecor d of type. This principle also applies when values of two
set typesor aset andaset of typeare compared.

Two values of uni on typesare equal if, and only if, in both values the types of these chosen fields are compatible and
the actual values of the chosen fields equal.

EXAMPLE:

/1 Gven

type set SetA {
i nt eger al optional,
i nt eger a2 optional,
i nt eger a3 optional
H

type set SetB {
i nt eger bl optional,
i nt eger b2 optional,
i nt eger b3 optional

}s

type set SetC {
i nt eger cl optional,
i nt eger c2 optional,

}s
type set of integer Set(;

type uni on Uni D {
i nt eger di,
i nt eger dz2,
b

type uni on Uni E {
i nt eger el,
i nt eger ez,

}s

type uni on Uni F {

i nt eger fi1,
i nt eger f2,
bool ean f3,
b
/1 And
const Set A conSet Al = { al :=0, a3 := 2 };
/1 Notice that the order of defining values of the field does not nmatter
const Set B conSet B1 = { bl:=0, b3 :=21};
const Set B conSet B2 = { b2:=0, b3 :=21},;
const Set C conSet C1 = {cl:=0, c2:=21%;
const Set Of conSet O0f 1 = {0, omt, 2};
const Set O conSet OF 2 = {0 2},
const Uni D conUni D1 = { dl1:=0 };
const Uni E conUni E1 = { el:=01};
const Uni E conUni E2; = { e2:=0};
const Uni F conUni F1; = { f1:=0 };

ETSI

73 ETSI ES 201 873-1 V2.2.0 (2002-05)

/1 Then
conSet A1 == conSet Bl
/1l returns true
conSet A1 == conSet B2
// returns fal se, because nor al neither a2 equals to its counterpart
/1 (not the corresponding element is omtted)
conSet A1 == conSet Cl1
Il returns fal se, because the effective value structures of SetA and SetC are not conpatible
conSet A1 == conSet Of 1;
/1 returns true
conSet A1 == conSet Of 2;
/1 returns false, as the counterpart of the onmtted a2 is 2
/1 but the counterpart of a3 is undefined
conSet C1 == conSet O 2;
/1 returns true
conUni D1 == conUni E1
/1l returns true
conUni D1 == conUni E2
/'l returns false, as the chosen field e2 is not the counterpart of the field d1 of Uni Dl
conUni D1 == conUni F1
/'l returns false, as the effective value structures of UniDlL and Uni F are not conpatible

15.4 Logical operators

The predefined bool ean operators perform the operations of negation, logical and, logical or and logical xor .
Their operands shall be of type bool ean. The result type of logical operationsisbool ean.

Thelogical not isthe unary operator that returnsthe valuet r ue if its operand was of valuef al se and returnsthe
valuef al se if the operand was of valuet r ue.

Thelogical and returnsthe valuet r ue if both its operands aret r ue; otherwise it returnsthe value f al se.

Thelogica or returnsthevaluet r ue if at least one of itsoperandsist r ue; it returnsthe value f al se only if both
operandsaref al se.

Thelogical xor returnsthevaluet r ue if one of itsoperandsist r ue; it returnsthe value f al se if both operands are
f al se orif both operandsaret r ue.

15.5 Bitwise operators

The predefined bitwise operators perform the operations of bitwise not , bitwise and, bitwise or and bitwise xor .
These operators are known as not 4b, and4b, or 4b and xor 4b respectively.

NOTE: Toberead as"not for bit", "and for bit" etc.

Their operands shall beof t ype bi t string, hexstring, octetstring.Inthecaseof and4b, or4b and
xor 4b the operands shall be of compatible types.The result type of the bitwise operators shall be the root type of the
operands.

The bitwise not 4b unary operator inverts the individual bit values of its operand. For each bit in the operand a 1 bitis
settoOandaObitissetto 1. Thatis:

notdb '1'B gives '0'B
notdb '0'B gives '1'B

EXAMPLE 1:

not4b '1010'B gives '0101'B
not4b '1A5'H gives 'E5A'H
not4b ' 01A5' O gives ' FE5A' O

The bitwise and4b operator accepts two operands of equal length. For each corresponding bit position, the resulting
valueisal if both bits are set to 1, otherwise the value for the resulting bit is 0. That is:

'"1'B and4b '1'B gives '1'B
'"1'B and4b '0'B gives '0'B
'0'B and4b '1'B gives '0'B
'0'B and4b '0'B gives '0'B

ETSI

74 ETSI ES 201 873-1 V2.2.0 (2002-05)

EXAMPLE 2:

'1001' B and4b ' 0101' B gi ves '0001'B
"B'Hand4b '5'H gives '1'H
"FB' O and4b '15' O gives '11'0O

The bitwise or 4b operator accepts two operands of equal length. For each corresponding bit position, the resulting
valueis 0 if both bits are set to 0, otherwise the value for the resulting bit is 1. That is:

ordb '1'B gives
or4db '0'B gives
or4db '1'B gives
ordb '0' B gives

eRrRkR
W oW W w

'1'B
'1'B
'0'B
'0'B

EXAMPLE 3:

'1001' B or4b '0101' B gives '1101'B
'"9'Hordb '5'Hgives 'DH
"A9'O or4b '"F5'O gives 'FD O

The bitwise xor 4b operator accepts two operands of equal length. For each corresponding bit position, the resulting
valueis 0 if both bitsare set to O or if both bits are set to 1, otherwise the value for the resulting bitis 0. That is:

1'B xor4b '1' B gives
'0'B xor4b '0'B gives
0'B xor4b '1'B gives
1'B xor4b '0' B gives

PR
WWwww

EXAMPLE 4:

'1001' B xor4b ' 0101' B gives '1100'B
"9"H xor4b '5'H gives 'CH
'39'0 xor4b '15'0 gives '2C'O

15.6 Shift operators

The predefined shift operators perform the shift left (<<) and shift right (>>) operations. Their |eft-hand operand shall
beoftype bitstring,hexstringoroctetstring. Their right-hand operand shall be of typei nt eger. The
result type of these operators shall be the same as that of the left operand.

The shift operators behave differently based upon the type of their left-hand operand. If the type of the left-hand
operand is:

a) bit st ring thenthe shift unit applied is1 bit;
b) hexst ri ng then the shift unit applied is 1 hexadecimal digit;
C) oct et stri ng then the shift unit applied is 1 octet.

The shift left (<<) operator accepts two operands. It shifts the left-hand operand by the number of shift unitsto the left
as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits or octets) are discarded. For each
shift unit shifted to the left, a zero ('0'B, '0'H, or '00'O determined according to the type of the left-hand operand) is
inserted from the right-hand side of the |eft operand.

NOTE: Anerror verdict shall be assigned if a system dependent overflow occurs when applying the shift left
operation to the left-hand operand.

EXAMPLE 1.

'111001'B << 2 gives '100100'B
'12345'H << 2 gives '34500'H
'11122334455' O << (1+1) gives '3344550000' O

The shift right (>>) operator accepts two operands. It shifts the left-hand operand by the number of shift units to the
right as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits or octets) are discarded. For
each shift unit shifted to the right, azero ('0'B, 'O'H, or '00'O determined according to the type of the left-hand operand)
isinserted from the left-hand side of the |eft operand.

ETSI

75 ETSI ES 201 873-1 V2.2.0 (2002-05)

EXAMPLE 2:

'111001'B >> 2 gives '001110'B
'12345'H >> 2 gives '00123'H
'1122334455' O >> (1+1) gives '0000112233'0O

15.7 Rotate operators

The predefined rotate operators perform the rotate left (<@ and rotate right (@) operators. Their |eft-hand operand
shall beoft ype bitstring,hexstring,octetstring,charstringor universal charstring.
Their right-hand operand shall be of typei nt eger . The result type of these operators shall be the same as that of the
left operand.

The rotate operators behave differently based upon the type of their left-hand operand. If the type of the left-hand
operand is:

a) bi tstring thentherotate unit applied is 1 bit;

b) hexstri ng then the rotate unit applied is 1 hexadecimal digit;

C) oct et stri ng then the rotate unit applied is 1 octet;

d) charstringoruniversal charstri ng then the rotate unit applied is one character;

Therotate left (<@ operator accepts two operands. It rotates the left-hand operand by the number of shift unitsto the
left as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits, octets, or characters) are
re-inserted into the left-hand operand from its right-hand side.

EXAMPLE 1:

'101001'B <@2 gives '100110'B

'12345'H <@2 gives '34512'H
'1122334455' O <@ (1+2) gives '4455112233'0
"abcdef g" <@3 gives "defgabc"

Therotateright (@) operator accepts two operands. It rotates the left-hand operand by the number of shift units to the
right as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits, octets, or characters) are
re-inserted into the left-hand operand from its |eft-hand side.

EXAMPLE 2:

'100001'B @ 2 gives '011000'B

'12345'H @ 2 gives '45123'H
'1122334455' O @ (1+2) gives '3344551122'0
"abcdefg" @ 3 gives "efgabcd"

16 Functions and altsteps

In TTCN-3, functions and altsteps are used to specify and structure test behaviour, define default behaviour and to
structure computation in a module etc. as described in the following clauses.

16.1 Functions

16.1.0 General

Functions are used in TTCN-3 to express test behaviour, to organize test execution or to structure computation in a
module, for example, to calculate asingle value, to initialize a set of variables or to check some condition. Functions
may return avalue. Thisis denoted by ther et ur n keyword followed by atype identifier. The keyword r et ur n,
when used in the body of the function with areturn type defined in its header, always shall be followed by avalue, a
constant or variable reference or an expression presenting the return value. The type of the return value shall be
compatible with the return type. The return statement in the body of the function causes the function to terminate and to
return the return value to the location of the call of the function.

ETSI

76 ETSI ES 201 873-1 V2.2.0 (2002-05)

EXAMPLE 1.

/1 Definition of MyFunction which has no paraneters
function MyFunction() return integer

{

return 7, // return the integer value 7 when the function terninates

}

A function may be defined within a module or be declared as being defined externally (i.e. ext er nal). For an external
function only the function interface has to be provided in the TTCN-3 module. The realization of the external function
is outside the scope of the present document. External functions are not allowed to contain port operations.

external function MyFunction4() return integer; // External function without paraneters
/1 which returns an integer val ue

external function |nitTestDevices(); /1 An external function which only has an
/'l effect outside the TTCN-3 nodul e

NOTE 1: The TTCN-3 functionsreplace Test Steps and Test Suite Procedural Definitions, external functions
replace Test Suite Operationsin TTCN-2. Informal functions may be declared as external functions with
explanatory comments or by using an empty formal function with comments.

In amodule, the behaviour of afunction can be defined by using the program statements and operations described in
clause 18. If afunction uses variables, constants, timers and ports that are declared in a component type definition, the
component type shall be referenced using ther uns on keywords in the function header. The one exception to thisrule
isif all component-wide information used within the function is passed in as parameters.

EXAMPLE 2:

function MyFunction3() runs on MyPTCType {
/1 MyFunction3 doesn't return a val ue, but

var integer MyVar := 5; /1 does nake use of the port operation
PCOL. send(MyVar) ; /1 send and therefore requires a runs on
// clause to resolve the port identifiers
} /1 by referencing a conponent type

A function without r uns on clause shall never invoke a function or altstep or activate an atstep as default with a
runs on clauselocally.

Functions started by using the st ar t test component operation shall awayshavear uns on clause (see clause 22.5)
and are considered to be invoked in the component to be started, i.e. not locally. However, the st ar t test component
operation may be invoked in functions without ar uns on clause.

NOTE 2: Theredtrictions concerning ther uns on clause are only related to functions and altsteps and not to test
Cases.

Functions used in the control part of a TTCN-3 module shall have nor uns on clause. Nevertheless, they are allowed
to execute test cases.

16.1.1 Parameterization of functions
Functions may be parameterized. The rulesfor formal parameter lists shall be followed as defined in clause 5.2.

EXAMPLE:

functi on MyFunction2(inout integer My/Parl) {
/'l MyFunction2 doesn't return a val ue
MyParl := 10 * MyParl; // but changes the value of MyParl which
} /'l is passed in by reference

16.1.2 Invoking functions
A function isinvoked by referring to its name and providing the actual list of parameter. Functions that do not return

values shall be invoked directly. Functions that return values may be invoked directly or inside expressions. The rules
for actual parameter lists shall be followed as defined in clause 5.2.

ETSI

77 ETSI ES 201 873-1 V2.2.0 (2002-05)

EXAMPLE:

:= MyFunction4(); // The value returned by MyFunction4 is assigned to MyVar.
/'l The types of the returned value and MyVar have to be the sane

My Var
MyFunct i on2(MyVar 2) ; /1 MyFunction2 doesn't return a value and is called with the
/] actual paraneter MyVar2, which nay be passed in by reference

MyVar 3 : = MyFunction6(4)+ MyFunction7(M/Var3); // Functions used in expressions

Special restrictions apply to functions bound to test components using the st ar t test component operation. These

restrictions are described in clause 22.5.

16.1.3 Predefined functions

TTCN-3 contains a number of predefined (built-in) functions that need not be declared before use.

Table 10: List of TTCN-3 predefined functions

Category Function Keyword

Conversion functions Convert integer value to char value i nt 2char
Convert integer value to universal char value i nt 2uni char
Convert integer value to bitstring value int2bit
Convert integer value to hexstring value i nt 2hex
Convert integer value to octetstring value i nt 2oct
Convert integer value to charstring value int2str
Convert integer value to float value i nt 2f | oat
Convert float value to integer value fl oat 2i nt
Convert char value to integer value char 2i nt
Convert universal char value to integer value uni char 2i nt
Convert bitstring value to integer value bi t 2i nt
Convert bitstring value to hexstring value bi t 2hex
Convert bitstring value to octetstring value bi t 2oct
Convert bitstring value to charstring value bit 2str
Convert hexstring value to integer value hex2i nt
Convert hexstring value to bitstring value hex2bi t
Convert hexstring value to octetstring value hex2oct
Convert hexstring value to charstring value hex2str
Convert octetstring value to integer value oct 2i nt
Convert octetstring value to bitstring value oct 2bi t
Convert octetstring value to hexstring value oct Zhex
Convert octetstring value to charstring value oct 2str
Convert charstring value to integer value str2int
Convert charstring value to octetstring value str2oct

Length/size functions Return the length of a value of any string type I'engt hof
Return the number of elements in a record, record of, si zeof
template, set, set of or array

Presencel/choice functions Determine if an optional field in a record, record of, template, |i spresent
set or set of is present
Determine which choice has been made in a union type i schosen

String functions Returns part of the input string matching the specified pattern |r €gexp
description
Returns the specified portion of the input string substr

Other functions Generate a random integer number rnd

When a predefined function is invoked:

1) the number of the actual parameters shall be the same as the number of the formal parameters; and

2) each actual parameter shall evaluate to an element of its corresponding formal parameter's type; and

3) all variables appearing in the actual parameter list shall be bound.

The full description of predefined functionsis given in annex C.

ETSI

78 ETSI ES 201 873-1 V2.2.0 (2002-05)

16.2 Altsteps

16.2.0 General

TTCN-3 uses altsteps to specify default behaviour or to structure the alternatives of anal t statement. Altsteps are
scope units similar to functions. The altstep body defines an optional set of local definitions and a set of alternatives, the
so-called top alternatives, that forms the altstep body. The syntax rules of the top aternatives are identical to the syntax
rules of the alternatives of al t statements.

The behaviour of an altstep can be defined by using the program statements and operations summarized in clause 18. If
an atstep includes port operations or uses component variables, constants or timers the associated component type shall
be referenced using the r uns on keywords in the altstep header. The one exception to thisruleisif all ports, variables,
constants and timers used within the altstep are passed in as parameters.

EXAMPLE:

/1 Gven

type conponent MyConponent Type {
var integer MyIntVar := 0;

timer MyTi mer;
port MyPort TypeOne PCOL, PCQOZ2;
port MyPort TypeTwo PCCB;

/1 Atstep definition using PCOl, PCO2, MylntVar and MyTiner of MyConponent Type
altstep AltSet _A(in integer MyParl) runs on MyConponent Type {
[T PCOL. receive(MTenpl ate(M/Parl, MylntVar) {

setverdi ct (i nconc);

}
[T PCR2.receive {
r epeat

[1 %vyTi ner.tineout {

setverdict(fail);
st op
}

}

Altsteps may invoke functions and altsteps or activate altsteps as defaults. An altstep without r uns on clause shall
never invoke afunction or altstep or activate an altstep as default withar uns on clause locally.

16.2.1 Parameterization of altsteps

Altsteps may be parameterized. An altstep that is activated as default shall only have value parameters, i.e. i n
parameters. An atstep that only isinvoked as an dternativeinanal t statement or as stand-alone statement in a
TTCN-3 behaviour description may havei n, out andi nout parameters. The rules for formal parameter lists shall be
followed as defined in clause 5.2.

16.2.2 Local definitions in altsteps

16.2.2.0 General

Altsteps may define local definitions of constants, variables and timers. The local definitions shall be defined before the
set of alternatives.

EXAMPLE:

altstep AnotherAltStep(in integer MyParl) runs on MyConponent Type {
var integer MyLocal Var := MyFunction(); /1 local variable
const float MyFloat := 3.41; /1 1ocal constant

[T PCOL. receive(MTenpl ate(M/Par1, MyLocal Var) {
setverdi ct (i nconc);

}
[T PCR2.receive {
r epeat

ETSI

79 ETSI ES 201 873-1 V2.2.0 (2002-05)

16.2.2.1 Restrictions for the initialization of local definitions in altsteps

Theinitialization of local definitions by calling value returning functions may have side effects. To avoid side effects
that cause an inconsistency between the actual snapshot and the state of the component the following operations shall
not be called during the initialization of alocal definition:

e Thedone operation.

e All port operations, i.e. start (port), stop (port), clear, send, receive, trigger, call, getcall, reply, getreply, raise,
catch, check.

NOTE 1: The execution of the operationsdone, st art (port), st op (port), cl ear,recei ve,tri gger,
getcal | ,getrepl y,cat ch andcheck can cause conflictswith the actual snapshot. Their

execution may remove information from port queues, restrict the access to port queues and/or cause a new
snapshot within the evaluation of the actual snapshot.

NOTE 2: Theoperationssend, cal | ,reply andr ai se, shal be avoided for readability purposes, i.e. all
communication shall be made explicit and not as a side effect during communication.

e Thetimer operationsst art (timer),ti meout and st op (timer).
NOTE 3: Itisallowed to usether eadt i mer and timer r unni ng operation.

NOTE 4: These restrictions for the initialization of local definitionsin altsteps are the same restrictions as the
restrictions to avoid side effects for the Boolean expressions used to select and deselect aternativesin
al t statement or within atsteps.

16.2.3 Invocation of altsteps

Theinvocation of an altstep is awaysrelated to anal t statement. The invocation may be done either implicitly by the
default mechanism (see clause 21) or explicitly by adirect call withinan al t statement (see clause 20.1.6). The
invocation of an altstep causes no new snapshot and the evaluation of the top alternatives of an altstep is done by using
the actual snapshot of theal t statement from which the altstep was called.

NOTE: A new snapshot within an altstep will of course be taken, if within a selected top alternative anew al t
statement is specified and entered.

For an implicit invocation of an altstep by means of the default mechanism the altstep has to be activated as a default by
means of anact i vat e statement before the place of the invocation is reached.

EXAMPLE 1:
vér default MyDefVarTwo : = activate(M/SecondAltStep()); // Activation of an altstep as default

Anexplicit call of an altstep withinan al t statement looks like afunction call as alternative.

EXAMPLE 2:

ait {
[T PC®.receive {

[T AnotherAltStep(); /] explicit call of altstep AnotherAltStep as alternative
/1 of an alt statenent
[T MyTiner.tineout {}

ETSI

80 ETSI ES 201 873-1 V2.2.0 (2002-05)

When an altstep is called explicitly withinan al t statement, the next alternative to be checked is the first alternative of
theal t st ep. Theaternatives of theal t st ep are checked and executed the same way as alternatives of an al t
statement (see clause 20.1) with the exception, that no new snapshot is taken when entering the al t st ep. An
unsuccessful termination of the altstep (i.e. al top aternatives of theal t st ep have been checked and no matching
branch is found) causes the evaluation of the next alternative or invocation of the default mechanism (if the explicit call
isthe last alternative of theal t statement). A successful termination may cause either the termination of the test
component, i.e. the altstep endswith ast op statement, or a new snapshot and re-evaluation of theal t statement,

i.e. the altstep ends with r epeat (see clause 20.2) or a continuation immediately after theal t statement, i.e. the
selected top alternative of the altstep ends without explicit r epeat .

Anal t st ep can also be caled as stand-alone statement in a TTCN-3 behaviour description. In this case the call of the
al t st ep can beinterpreted as shorthand for an al t statement with only one alternative describing the explicit call of
theal t st ep.

EXAMPLE 3:

/1 The statenment
Another Al tStep(); // AnotherAltStep is assuned to be a correctly defined altstep

/lis a shorthand for

alt {
[1 AnotherAltStep();
}

16.3 Functions and altsteps for different component types

Instances of different component types may use the same function or altstep if they fulfil the following consistency rule:

"Let C1 and C2 be two component types and FT be afunction or altstep which refersto C1initsr uns on clause. An
instance of component type C2 may use FT if the type definition C2 includes the entire type definition of C1. This
means, C2 includes at |east the same port, variable and timer instances and constant declarations as C1. The "same
instance" means here, that both the type and the identifier shall be identical".

17 Test cases

17.0 General

Test cases are a special kind of function. In the module control part the execut e statement is used to start test cases
(see clause 27.1). Theresult of an executed test case is alwaysavalue of typever di ct t ype. Every test case shall
contain one and only one MTC the type of which is referenced in the header of the test case definition. The behaviour
defined in the test case body is the behaviour of the MTC.

When atest caseisinvoked the MTC is created, the ports of the MTC and the test system interface are instantiated and
the behaviour specified in the test case definition is started on the MTC. All these actions shall be performed implicitly
i.e. without the explicit cr eat e and st art operations.

To provide the information to allow these implicit operations to occur atest case header has two parts:

a) interface part (mandatory): denoted by the keyword r uns on which references the required component type for
the MTC and makes the associated port names visible within the MTC behaviour; and

b) test system part (optional): denoted by the keyword sy st emwhich references the component type which
defines the required ports for the test system interface. The test system part shall only be omitted if, during test
execution, only the MTC isinstantiated. In this case, the MTC type defines the test system interface ports
implicitly.

ETSI

81 ETSI ES 201 873-1 V2.2.0 (2002-05)

EXAMPLE:

testcase MyTest CaseOne()

runs on MyM cTypel /1 defines the type of the MIC

system MyTest Syst enilype /1 mekes the port names of the TSI visible to the MIC

/1 The behavi our defined here executes on the ntc when the test case invoked

}

/1 or, a test case where only the MIC is instantiated
testcase MyTest CaseTwo() runs on MyM cType2

/1 The behavi our defined here executes on the nmtc when the test case invoked

17.1 Parameterization of test cases

Test cases may be parameterized. The rules for formal parameter lists shall be followed as defined in clause 5.2.

18 Overview of program statements and operations

The fundamental program elements of test cases, functions, altsteps and the control part of TTCN-3 modules are basic
program statements such as expressions, assignments, loop constructs etc., behavioural statements such as sequential
behaviour, alternative behaviour, interleaving, defaults etc., and operations such assend, r ecei ve, cr eat e, etc.

Statements can be either single statements (which do not include other program statements) or compound statements
(which may include other statements and blocks of statements and declarations).

Statements shall be executed in the order of their appearance, i.e. sequentialy, asillustrated in figure 8.

S1

s2 |:‘> Ss1; s2; S3;

S3

Figure 8: lllustration of sequential behaviour

Theindividual statements in the sequence shall be separated by the delimiter ";".
EXAMPLE:

MyPort . send(Mynessage); MTinmer.start; |og("Done!");

The specification of an empty block of statements and declarations, i.e. { } , may be found in compound statements,
e.g.abranchinanal t statement, and implies that no actions are taken.

ETSI

82 ETSI ES 201 873-1 V2.2.0 (2002-05)

Table 11: Overview of TTCN-3 statements and operations

Statement Associated keyword or| Can be used in Can be used in
symbol module control | functions, test cases
and altsteps
Basic program statements
Expressions (...) Yes Yes
Assignments = Yes Yes
Logging log Yes Yes
Label and Goto label / goto Yes Yes
If-else if (..){. }else{.} Yes Yes
For loop for (...){...} Yes Yes
While loop while (...) {...} Yes Yes
Do while loop do {...} while (...) Yes Yes
Stop execution stop Yes Yes
Behavioural program statements
Alternative behaviour alt {...} Yes (see note 1) Yes
Re-evaluation of alternative behaviour repeat Yes (see note 1) Yes
Interleaved behaviour interleave {...} Yes (see note 1) Yes
Returning control return Yes
Statements for default hanling
Activate a default activate Yes (see note 1) Yes
Deactivate a default deactivate Yes (see note 1) Yes
Configuration operations
Create parallel test component create Yes
Connect component to component connect Yes
Disconnect two components disconnect Yes
Map port to test interface map Yes
Unmap port from test system interface unmap Yes
Get MTC address mtc Yes
Get test system interface address system Yes
Get own address self Yes
Start execution of test component start Yes
Stop execution of test component stop Yes
Check termination of a PTC running Yes
Wait for termination of a PTC done Yes
Communication operations
Send message send Yes
Invoke procedure call call Yes
Reply to procedure call from remote entity |reply Yes
Raise exception (to an accepted call) raise Yes
Receive message receive Yes
Trigger on message trigger Yes
Accept procedure call from remote entity getcall Yes
Handle response from a previous call getreply Yes
Catch exception (from called entity) catch Yes
Check (current) message/call received check Yes
Clear port clear Yes
Clear and give access to port start Yes
Stop access (receiving & sending) at port |stop Yes
Timer operations
Start timer start Yes Yes
Stop timer stop Yes Yes
Read elapsed time read Yes Yes
Check if timer running running Yes Yes
Timeout event timeout Yes Yes
Verdict operations
Set local verdict setverdict Yes
Get local verdict getverdict Yes
External actions
Stimulate an (SUT) action externally Iaction Yes Yes
Execution of test cases
Execute test case lexecute Yes Yes (see note 2)
NOTE 1: Can be used to control timer operations only.
NOTE 2: Can only be used in functions and altsteps that are used in module control.

ETSI

83 ETSI ES 201 873-1 V2.2.0 (2002-05)

19 Basic program statements

19.0 General

Basic program statements are expressions, assignments, operations, loop constructs etc. All basic program statements
can be used in the control part of a module and in TTCN-3 functions, altsteps and test cases.

Table 12: Overview of TTCN-3 basic program statements

Basic program statements

Statement Associated keyword or symbol
Expressions (...)
Assignments =
Logging log
Label and Goto label / goto
If-else if (..){...}else{...}
For loop for (..){...}
While loop while (...){ ... }
Do while loop do {... }while (...)
Stop execution stop

19.1 Expressions

19.1.0 General

TTCN-3 alows the specification of expressions using the operators defined in clause 15. Expressions are built from
other (simple) expressions. Expressions may use value returning functions only. The result of an expression shall be the
value of a specific type and the operators used shall be compatible with the type of the operands.

EXAMPLE:

(x +y - increment(z))*3;

19.1.1 Boolean expressions

A bool ean expression shall only contain bool ean values and/or bool ean operators and/or relational operators
and shall evaluate to abool ean value of eithert r ue or f al se.

EXAMPLE:

((A and B) or (not C or (j<10));

19.2 Assignments

Values may be assigned to variables. Thisisindicated by the symbol ":=". During execution of an assignment the right-
hand side of the assignment shall evaluate to an element of the same type of the left-hand side. The effect of an
assignment is to bind the variable to the value of the expression. The expression shall contain no unbound variables. All
assignments occur in the order in which they appear, that iseft to right processing.

EXAMPLE:

MyVariable := (x +y - increnent(z))*3;
19.3 The Log statement

Thel og statement provides the means to write a character string to some logging device associated with test control or
the test component in which the statement is used.

ETSI

84 ETSI ES 201 873-1 V2.2.0 (2002-05)

EXAMPLE:

log("Line 248 in PTC A");
I/l The string "Line 248 in PTC_ A" is witten to sone |og device of the test system

NOTE: Itisoutside the scope of the present document to define complex logging and trace capabilities which
may be tool dependent.

19.4 The Label statement

Thel abel statement allows the specification of labelsin test cases, functions, altsteps and the control part of a
module. A | abel statement can be used freely like other TTCN-3 behavioural program statements according to the
syntax rules defined in annex A. It can be used before or after a TTCN-3 statement but not asfirst statement of an
alternative or top alternativeinanal t statement, i nt er | eave statement or altstep. Labels used following the

| abel keyword shall be unique among all labels defined in the same test case, function, altstep or control part.

EXAMPLE:
| abel MyLabel; /1 Defines the | abel MyLabel
/1 The labels L1, L2 and L3 are defined in the following TTCN- 3 code fragnent

Iébel L1; /1 Definition of |abel L1
al t {
[T PCOL. receive(MSigl)
{ | abel L2; [/ Definition of |abel L2
PCOL. send(MySi g2) ;
PCOL. recei ve(MySi g3)

}
[T PC.receive(MSig4)
{ PC®2. send(M/Si g5) ;
PC2. send(MySi g6) ;

| abel L3; /1 Definition of |abel L3
PC2. recei ve(M/Si g7) ;
goto L1; /1 Junp to label L1

19.5 The Goto statement

The got o statement can be used in functions, test cases, altsteps and the control part of a TTCN module. The got o
statement performsajumpto al abel .

The got o statement provides the possibility to jump fregly, i.e. forwards and backwards, within a sequence of
statements, to jump out of a single compound statement (e.g. awhi | e loop) and to jump over several levels out of
nested compound statements (e.g. nested alternatives). However, the use of the got o statement shall be restricted by
the following rules:

a) Itisnot alowed to jump out of or into functions, test cases, atsteps and the control part of a TTCN module.

b) Itisnot allowed to jump into a sequence of statements defined in a compound statement (i.e. al t statement,
whi | e loop, for loop, i f -el se statement, do- whi | e loop andthei nt er | eave statement).

c) Itisnot alowed to usethe got o statement withinani nt er | eave statement.

EXAMPLE:

/1 The following TTCN-3 code fragnent includes

Iébel L1; /1l ...the definition of |abel L1,
MyVar := 2 * MWVar,
if (MyVar < 2000) { goto L1; } /1 ..a jump backward to L1,

MyVar2 : = Myfunction(MVar);

if (MVvar2 > MyVar) { goto L2; } /[l ..a junp forward to L2,

PCOL. send(MyVar) ;

PCOL. recei ve -> val ue MyVar 2;

| abel L2; /1 ...the definition of |abel L2,
PCX2. send(i nteger: 21);

ETSI

85 ETSI ES 201 873-1 V2.2.0 (2002-05)

alt {
[T PCOL.receive { }
[] PC®2.receive(integer: 67) {
| abel L3; /1 ..the definition of |abel L3,
PCX2. send(MyVar) ;
alt {
[] PCOL.receive { }
[1] PC®2.receive(integer: 90) {
PC®2. send(i nteger: 33);
PCQ2. recei ve(integer: 13);

goto L4; // ..a junp forward out of two nested alt statenents,
}
[T PCR2.receive(MError) {
goto L3; /1 ..a junmp backward out of the current alt statenent,
[1 any port.receive {
goto L2; [/l ...a junp backward out of two nested alt statenents,
}
}
[1 any port.receive {
goto L2; /1 ..and a long junp backward out of an alt statement.
}
}
| abel L4,

19.6 The If-else statement

Thei f - el se statement, also known as the conditional statement, is used to denote branching in the control flow due
tobool ean expressions. Schematically the conditional looks as follows:

if (expression;)

st at ement bl ockq
el se

st at ement bl ocks

Where st at enent bl ock, refersto ablock of statements.

EXAMPLE:
if (date == "1.1.2000") return { fail };
if (MyVar < 10) {

MyVar = MyVar * 10;
log ("MyVar < 10");

}
el se {

MyVar := MyVar/5;
}

A more complex scheme could be;

i f (expressiony)
st at ement bl ockq
el se if (expressiony)
st at ement bl ocks

el se if (expressiony)
st at ement bl ockp,
el se
st at ement bl ockp+1

In such cases readability heavily depends on the formatting but formatting shall have no syntactic or semantic meaning.

ETSI

86 ETSI ES 201 873-1 V2.2.0 (2002-05)

19.7 The For statement

Thef or statement defines a counter loop. The value of the index variable is increased, decreased or manipulated in
such amanner that after a certain number of execution loops a termination criteriais reached.

Thef or statement contains two assignments and abool ean expression. The first assignment is necessary to initialize
the index (or counter) variable of the loop. The bool ean expression terminates the loop and the second assignment is
used to manipulate the index variable.

EXAMPLE 1:

for (j:=1; j<=10; j:=j+1) { ..}

The termination criterion of the loop shall be expressed by the bool ean expression. It is checked at the beginning of
each new loop iteration. If it evaluatestot r ue, the execution continues with the statement which immediately follows
thef or loop.

Theindex variable of af or loop can be declared before being used in the for statement or can be declared and
initidlized inthe f or statement header. If the index variable is declared and initialized in the f or statement header, the
scope of the index variableis limited to the loop body, i.e. it isonly visible inside the loop body.

EXAMPLE 2:

var integer j; /] Declaration of integer variable j

for (j:=1; j<=10; j:=j+1) { ..} /'l Usage of variable j as index variable of the for |oop
for (var float i:=1.0; i<7.9; i:=i*1.35) { ..} // Index variable i is declared and initialized

/1 in the for loop header. Variable i only is
/1 visible in the | oop body.

19.8 The While statement

A whi | e loop is executed as long as the loop condition holds. The loop condition shall be checked at the beginning of
each new loop iteration. If the loop condition does not hold, then the loop is exited and execution shall continue with the
statement, which immediately follows the whi | e loop.

EXAMPLE:

while (j<10){ ...}

19.9 The Do-while statement

Thedo- whi | e loop isidentical to awhi | e loop with the exception that the loop condition shall be checked at the end
of each loop iteration. This means when using ado- whi | e loop the behaviour is executed at least once before the loop
condition is evaluated for the first time.

EXAMPLE:

do { ...} while (j<10);

19.10 The Stop execution statement

The st op statement terminates execution in different ways depending on the context in which it is used. When used in
the control part of a module or in afunction used by the control part of a module, it terminates the test execution. When
used in atest case, altstep or function that are executed on atest component, it terminates the relevant test component.

ETSI

87 ETSI ES 201 873-1 V2.2.0 (2002-05)

EXAMPLE:

nodul e MyModul e {
. /] Module definitions
testcase MyTest Case() runs on MYMICType system MySyst enmlype{

st op /] stops a test component

control {
/] test execution
st op /] stops the test canpaign
} // end control
} /1 end nodul e

NOTE: Thesemanticsof ast op statement that terminates a test component isidentical to the stop component
operationsel f. st op (see clause 22.6).

20 Behavioural program statements

20.0 General

Behavioural program statements may be used in test cases, functions and altsteps, except for:
(@) ther et ur n statement which shall only be used in functions; and

(b) theal t statement, thei nt er | eave statement and ther epeat statement which may also be used in
module control.

Behavioural program statements specify the dynamic behaviour of the test components over the communication ports.
Test behaviour can be expressed sequentially, as a set of aternatives or combinations of both. An interleaving operator
allows the specification of interleaved sequences or alternatives.

Table 13: Overview of TTCN-3 behavioural program statements

Behavioural program statements
Statement Associated keyword or symbol
Alternative behaviour alt{...}
Re-evaluation of alt statements |repeat
Interleaved behaviour interleave { ... }
Returning control return

20.1 Alternative behaviour

20.1.0 General

A more complex form of behaviour is where sequences of statements are expressed as sets of possible alternatives to
form atree of execution paths, asillustrated in figure 9:

ETSI

88 ETSI ES 201 873-1 V2.2.0 (2002-05)

S1;
S1 alt {
[1 s2 {
alt {
[] 4 { S7}
[1 S5
S8;
alt {
[1 so {}
[1 S10 {}
}
}
}
}
[] S3 { s6}

Figure 9: lllustration of alternative behaviour

Theal t statement denotes branching of test behaviour due to the reception and handling of communication and/or
timer events and/or the termination of parallel test components, i.e. it isrelated to the use of the TTCN-3 operations
receive,trigger,getcall,getreply,catch,check,tinmeout anddone. Theal t statement denotesa
set of possible events that are to be matched against a particular snapshot (see clause 20.1.1).

NOTE: Theal t statement correspondsto the alternatives at the same level of indentation in TTCN-2. However,
there are significant differences, e.g.

a) itisnot possible to examine the port queue by using the bool ean expression and then to disable an
alternative;

b) Itisnot possibleto call afunction asan alternativeintheal t statement, except in the case where an
elseguard (i.e. [el se]) isthelast choicein the alternative (see clause 20.1.3).

EXAMPLE:
/1 Use of nested alternative statenents

alt {
[1 Ll.receive(DL_REL_CO *) ({

setverdi ct (pass);

TAC. st op;

TNOAC. start;

alt {

[T Ll.receive(DL_EST IN {

TNOAC. st op;
setverdi ct (pass);

}
[T TNOAC. tineout ({

L1. send(DEL_EST_RQ *);

TAC. start;

alt {

[T L1l.receive(DL_EST _CO *) {

TAC. st op;
set verdi ct (pass)

}
[T TAC tinmeout {
setverdi ct (i nconc);

[T Ll.receive {
setverdi ct (i nconc)
}

}

[1 Ll.receive {
setverdi ct (i nconc)
}

}

}
[T TAC. tinmeout {
set verdi ct (i nconc)
}

ETSI

89 ETSI ES 201 873-1 V2.2.0 (2002-05)

[1 Ll.receive {
set verdi ct (i nconc)

}

20.1.1 Execution of alternative behaviour

When entering an al t statement, a snapshot istaken. A snapshot is considered to be a partial state of atest component
that includes all information necessary to evaluate the Boolean conditions that guard alternative branches, all relevant
stopped test components, all relevant timeout events and the top messages, calls, replies and exceptions in the relevant
incoming port queues. Any test component, timer and port which isreferenced in at least one alternativein the al t
statement, or in top alternative of an altstep that isinvoked as an aternative inthe al t statement or activated as default
is considered to be relevant. A detailed description of the snapshot semanticsis given in the operational semantics of
TTCN-3 (part 4 of the present document (see bibliography)).

NOTE 1: Snapshots are only conceptual means for describing the behaviour of theal t statement. The concrete
algorithms for the snapshot handling can be found in part 4 of the present document (see bibliography).

NOTE 2: The TTCN-3 semantics assumes that taking a snapshot is instantaneously, i.e. has no duration. In areal
implementation, taking a snapshot may take some time and race conditions may occur. The handling of
such race conditionsis outside the scope of this standard.

The alternative branchesintheal t statement and the top aternatives of invoked atsteps and altsteps that are activated
as defaults are processed in the order of their appearance. If several defaults are active, the activation order determines
the evaluation order of the top alternativesin the defaults. The alternative branchesin active defaults are reached by the
default mechanism described in clause 21.

Theindividual alternative branches are either branches that may be guarded by a Boolean expression or else-branches,
i.e. alternative branches starting with [el se] .

Else-branches are always chosen and executed when they are reached (see clause 20.1.3).

Branches that may be guarded by a Boolean expressions either invoke an altstep (altstep-branch), or start withadone
operation (done-branch), t i meout operation (timeout-branch) or an receiving operation (receiving-branch),
i.e.receive, trigger,getcall,getrepy orcat ch. Theevauation of the Boolean guards shall be based on
the snapshot. The Boolean guard is considered to be fulfilled if no Boolean guard is defined, or if the Boolean guard
evaluatesto t r ue. The branches are processed and executed in the following manner:

An altstep-branch is selected if the Boolean guard is fulfilled. The selection of an altstep-branch causes the invocation
of the referenced atstep, i.e. the altstep isinvoked and the evaluation of the snapshot continues within the altstep.

A done-branch is selected if the Boolean guard is fulfilled and if the specified test component isin the list of stopped
components of the snapshot. The selection causes the execution of the statement block following the done operation.
The done operation itself has no further effect.

A timeout-branch is selected if the Boolean guard is fulfilled and if the specified timeout event isin the timeout-list of
the snapshot. The selection causes execution of the specified t i meout operation, i.e. removal of the timeout event
from the timeout-list, and the execution of the statement block followingthet i neout operation.

A receiving-branch is selected if the Boolean guard is fulfilled and if the matching criteria of receiving operation is
fulfilled by one of the messages, calls, replies or exceptions in the snapshot. The selection causes execution of the
receiving operation, i.e. removal of the matching message, call, reply or exception from the port queue, maybe an
assignment of the received information to a variable and the execution of the statement block following the receiving
operation. In the case of thet ri gger operation the top message of the queueis also removed if the Boolean guard is
fulfilled but the matching criteriais not. In this case the statement block of the given aternative is not executed.

NOTE 3: The TTCN-3 semantics describe the evaluation of a snapshot as a series of indivisible actions of atest
component. The semantics do not assume that the evaluation of a snapshot has no duration. During the
evaluation of a snapshot, test components may stop, timers may timeout and new messages, calls, replies
or exceptions may enter the port queues of the component However, these events do not change the actual
snapshot and thus, are not considered for the snapshot eval uation.

ETSI

90 ETSI ES 201 873-1 V2.2.0 (2002-05)

If none of the alternative branchesintheal t statement and top alternativesin the invoked altsteps and active defaults
can be selected and executed, theal t statement shall be executed again, i.e. a new snapshot is taken and the evaluation
of the alternative branchesis repeated with the new snapshot. This repetitive procedure shall continue until either an
alternative branch is selected and executed, or the test case is stopped by another component or by the test system

(e.0. because the MTC is stopped) or with adynamic error.

The test case shall stop and indicate a dynamic error if atest component is completely blocked. This means none of the
alternatives can be chosen, no relevant test component is running, no relevant timer isrunning and all relevant ports
contain at least one message, call, reply or exception.

NOTE 4: The repetitive procedure of taking a complete snapshot and re-evaluate al alternativesis only a
conceptual means for describing the semantics of theal t statement. The concrete algorithm that
implements this semantics is outside the scope of this standard.

20.1.2 Selecting/deselecting an alternative

If necessary, it is possible to enable/disable an alternative by means of a Boolean expression placed betweenthe [|'
brackets of the alternative.

The evaluation of a Boolean expression guarding an aternative may have side-effects. To avoid side effects that cause
an inconsistency between the actual snapshot and the state of the component the same restrictions as the restrictions for
theinitialization of local definitions within altsteps shall apply (clause 16.2.2.1).

The open and close square brackets [' '] ' shall be present at the start of each alternative, even if they are empty. This
not only aids readability but also is necessary to syntactically distinguish one alternative from another.

EXAMPLE:

/1 Use of alternative wi th Bool ean expressions (or guard)

ait {
[x>1] L2.receive { /1 Bool ean guar d/ expressi on
setverdi ct (pass);
[x<=1] L2.receive { /1 Bool ean guar d/ expressi on

setverdi ct (i nconc);

}

20.1.3 Else branch in alternatives

Thelast branchinanal t statement can be defined as an else branch by including the el se keyword between the open
and close brackets at the beginning of the alternative. The else branch shall not contain any of the actions allowed in
branches guarded by a boolean expression (i.e. anal t st ep call or adone, atimeout or areceiving operation). The
statement block of the else branch is aways executed if no other alternative textually preceding the else branch has
proceeded.

EXAMPLE:
/1l Use of alternative with Bool ean expressions (or guard)

ait {
[x>1] L2.receive {
setverdi ct (pass);

[x<=1] L2.receive {
setverdi ct (i nconc);

[el se] { /1 else branch
MyEr ror Handl i ng();
setverdict(fail);
st op;

}

ETSI

91 ETSI ES 201 873-1 V2.2.0 (2002-05)

It should be noted that the default mechanism (see clause 21) is always invoked at the end of al adternatives. If anel se
branch is defined, the default mechanism will never be called, i.e. active defaults will never be entered.

NOTE 1: Itisalso possibleto useel se inaltsteps.

NOTE 2: Itisalowedtousear epeat statement aslast statement of an el se branch.

20.1.4 Void

20.1.5 Re-evaluation of alt statements

There-evaluation of anal t statement can be specified by using ar epeat statement (see clause 20.2).

EXAMPLE:
alt {
[T PC3.receive {
count := count + 1,
r epeat /'l usage of repeat

}
[T Til.timeout { }
[T any port.receive {
setverdict(fail);
st op;

}

20.1.6 Invocation of altsteps as alternatives
TTCN-3 alowsthe invocation of atsteps asaternativesinal t statements (see clause 16.2.3).

EXAMPLE:

alt {
[T PCX®.receive { }
[1 AnotherAltStep(); // explicit call of altstep AnotherAltStep as alternative
/1 of an alt statenent
[T WTinmer.timeout { }

} .

20.2 The Repeat statement

Ther epeat statement causes the re-evaluation of anal t statement, i.e. a new snapshot is taken and the alternatives
of theal t statement are evaluated in the order of their specification. Ther epeat statement shall only be used as last
statement of an aternativeinanal t statement or aslast statement of atop aternative in an altstep definition.

If ar epeat statement isused as last statement of an alternativeinanal t statement, it causes a new snapshot and the
re-evaluation of theal t statement.

EXAMPLE 1:
/1 Usage of repeat in an alt statenent
alt {
[T PC3.receive {
count := count + 1,
r epeat /] usage of repeat

}
[T Til.timeout { }
[1 any port.receive {
setverdict(fail);
st op;

}

ETSI

92 ETSI ES 201 873-1 V2.2.0 (2002-05)

If ar epeat statement isused as last statement of atop aternative in an atstep definition, it causes a new snapshot and
the re-evaluation of theal t statement from which the altstep has been called. The call of the altstep may either be done
implicitly by the default mechanism (see clause 21) or explicitly inthe al t statement (see clause 20.1.6).

EXAMPLE 2:

/] Usage of repeat in an altstep
altstep AnotherAltStep() runs on MyConponent Type {
[T PCOL. receive{
setverdi ct (i nconc);
r epeat /'l usage of repeat

}
[T PCR2.receive {}

20.3 Interleaved behaviour

Thei nt er | eave statement alows to specify the interleaved occurrence and handling of the statementsdone,
ti meout,receive,trigger,getcall,catchandcheck.

Control transfer statementsf or , whi | e, do-whi | e, got 0, acti vat e, deacti vat e, st op, repeat,return,
direct call of altsteps as alternatives and (direct and indirect) calls of user-defined functions, which include
communication operations, shall not beused ini nt er | eave statements. In addition, it is not allowed to guard
branchesof ani nt er | eave statement with Boolean expressions (i.e. the '[]' shall always be empty). It isalso not
allowed to specify el se branchesin interleaved behaviour.

Interleaved behaviour can always be replaced by an equivalent set of nested alternatives. The procedures for this
replacement and the operational semantics of interleaving are described in part 4 of the present document (see

bibliography).
Therule for the evaluation of an interleaving statement is the following:

a) whenever areception statement is executed, the following non-reception statements are subsequently executed
until the next reception statement is reached or the interleaved sequence ends;

NOTE: Reception statements are TTCN-3 statements which may occur in sets of alternatives, i.e.r ecei ve,
check,trigger,getcal | ,getreply,catch,done andti meout . Non-reception statements
denote al other non-control-transfer statements which can be used withinthei nt er | eave statement.

b) the evaluation then continues by taking the next snapshot.
The operational semantics of interleaving are fully defined in part 4 of the present document (see bibliography).

EXAMPLE:
/1 The following TTCN-3 code fragnent

interleave {
[T PCOL. receive(MSigl)
{ PCOL. send(M/Si g2) ;
PCOL. recei ve(M/Si g3) ;

}
[T PCR.receive(MSig4)
{ PC®2. send(M/Si g5) ;
PC®2. send(MySi g6) ;
PCQ2. recei ve(MW/Si g7) ;

/1 can be interpreted as a shorthand for

alt {
[1 PCOL.receive(M/Sigl)
{ PCOL. send(M/Si g2) ;
alt {
[1 PCOL.recei ve(M/Si g3)
{ PC2. recei ve(M/Si g4) ;
PC®2. send(MySi g5) ;

ETSI

(]
{

}
(]

93

PC2. send(M/Si g6) ;
PC2. recei ve(M/Si g7)

}
PC®2. recei ve(M/Si g4)

PC®2. send(My/Si g5) ;

PC®2. send(MySi g6) ;

alt {

[] PCOL.receive(MSig3) {
PC2. recei ve(M/Si g7); }

[T PCR.receive(MSig7) {
PCOL. recei ve(MWSi g3); }

}

}
PC2. recei ve(MySi g4)

{ PCO2. send(My/Si g5) ;
PC2. send(M/Si g6) ;

alt {

(]
{

(]
{

20.4

PCOL. r ecei ve(M/Si g1)

PCOL. send(M/Si g2) ;
It
?] éCOl recei ve(M/Si g3)
{ PC®2. recei ve(M/Si g7) ;

}

PC2. recei ve(M/Si g7)

{ PCOL. r ecei ve(MySi g3) ;
}

(]

}

}
PC2. r ecei ve(MySi g7)

PCOL. r ecei ve(M/Si gl) ;
PCOL. send(M/Si g2) ;
PCQOL. r ecei ve(MySi g3) ;

The Return statement

ETSI ES 201 873-1 V2.2.0 (2002-05)

Ther et ur n statement terminates execution of a function and returns control to the point from which the function was
caled. A r et ur n statement may be optionally associated with areturn value. A r et ur n statement shall only be used

in afunction.

EXAMPLE:

function MyFunction() return bool ean {

return fal se;

"1.1.2000") {

/'l true is returned

functi on MyBehaviour() return verdicttype {

if (date ==

}

return true;

}

if (MFuncti
setverdi

}

el se {
setverdi

}

on()) {

ct(pass); // use of MyFunction in an if statenent

ct (inconc);

return getverdict; // explicit return of the verdict

ETSI

/] execution stops on the 1.1.2000 and returns the bool ean fal se

94 ETSI ES 201 873-1 V2.2.0 (2002-05)

21 Default Handling

21.0 General

TTCN-3 alows the activation of altsteps (see clause 16.2) as defaults. For each test component the defaullts,

i.e. activated altsteps, are stored in form of alist. The defaults are listed in the order of their activation. The TTCN-3
operationsact i vat e (seeclause 21.3) and deact i vat e (see clause 21.4) operate on the list of defaults. An

act i vat e appends a new default to the end of thelist and adeact i vat e removes adefault from thelist. A default
in the default list can be identified by means of default reference that is generated as a result of the corresponding

acti vat e operation.

Table 14: Overview of TTCN-3 statement for default handling

Statements for default handling
Statement Associated keyword or symbol
Activate a default activate
Deactivate a default deactivate

21.1 The default mechanism

The default mechanism is evoked at the end of each al t statement, if due to the actual snapshot none of the specified
alternatives could be executed. An evoked default mechanism invokes the first altstep in the list of defaults and waits
for the result of itstermination. The termination can be successful or unsuccessful. Unsuccessful means that none of the
top alternatives of the al t st ep (see clause 16.2) defining the default behaviour could be selected, successful means
that one of the top alternatives has been selected and executed.

In case of an unsuccessful termination, the default mechanism invokes the next default in the list. If the last default in
the list has terminated unsuccessfully, the default mechanism will return to the placeinthe al t statement in which it
has been invoked, i.e. at the end of theal t statement, and indicate an unsuccessful default execution. An unsuccessful
default execution will also be indicated if the list of defaultsis empty.

An unsuccessful default execution may cause a new snapshot or a dynamic error if the test component is blocked
(see clause 20.1).

In case of asuccessful termination, the default may either stop the test component by means of ast op statement, or the
main control flow of the test component will continue immediately after theal t statement from which the default
mechanism was called or the test component will take new snapshot and re-evaluatethe al t statement. The latter has
to be specified by means of ar epeat statement (see clause 20.2). If the selected top alternative of the default ends
without ar epeat statement the control flow of the test component will continue immediately after theal t statement.

NOTE: TTCN-3 does not restrict the implementation of the default mechanism. It may for example be
implemented in form of a processthat isimplicitly called at the end of each al t statement or in form of a
separate thread that only is responsible for the default handling. The only requirement is that defaults are
called in the order of their activation when the default mechanism has been invoked.

21.2 Default references

Default references are unique references to activated defaults. Such a unique default reference is generated by atest
component when an altstep is activated as a default, i.e. a default referenceisthe result of anact i vat e operation
(see clause 21.3).

Default references have the special and predefined type def aul t . Variables of type def aul t can be used to handle
activated defaultsin test components. The specia value nul | isavailable to indicate an undefined default reference,
e.g. for theinitiaization of variables to handle default references.

Default references are used in deact i vat e operations (see clause 21.4) in order to identify the default to be
deactivated.

ETSI

95 ETSI ES 201 873-1 V2.2.0 (2002-05)

The actual data representation of thedef aul t type shall be resolved externally by the test system. This allows abstract
test cases to be specified independently of any real TTCN-3 runtime environment, in other words TTCN-3 does not
restrict the implementation of atest system with respect to the handling and identification of defaults.

EXAMPLE:

/Il Declaration of a variable for the handling of defaults
/1 and initialization with the null val ue

var default MyDefaultVar := null;

/) Usage of MyDefaultVar for storing an activated default
MyDef aul tVar : = activate(MDefAltStep()); // MyDefAltStep is activated as default

/) Usage of MyDefaultVar for the deactivation of default M/DefAltStep
deactivat e(MyDef aul t Var) ;

21.3 The activate operation

21.3.0 General

Theact i vat e operation is used to activate altsteps as defaults. Anact i vat e operation will append the referenced
altstep to the list of defaults and return a default reference. The default reference is a unique identifier for the default
and may be used inadeact i vat e operation for the deactivation of the default.

The effect of anact i vat e operationislocal to the test component in which it is called. This means, atest component
cannot activate a default in another test component.

EXAMPLE:
/) Decl aration of a variable for the handling of defaults
var default MyDefaultVar := null;

/1 Declaration of a default reference variable and activation of an altstep as defaul t
var default MyDefVarTwo := activate(M/SecondAltStep());

/) Activation of altstep MJAItStep as a default
MyDef aul t Var : = activate(MAItStep()); // MAItStep is activated as default

21.3.1 Activation of parameterized altsteps

The actual parameters of a parameterized altstep (see clause 16.2.1) that should be activated as a default, shall be
provided in the corresponding act i vat e statement. This means the actual parameters are bound to the default at the
time of its activation (and not e.g. at the time of itsinvocation by the default mechanism).

EXAMPLE:

vér default MyDefaultVar := null;
WDef aul tVar := activate(M/AItStep2(5 MVar);
/1 MyAltStep2 is activated as default with the actual paraneters 5 and

/1 the value of MyVar. A change of MyVar before a call of M/AtStep2 by
/1 the default mechanismwi |l not change the actual paranmeters of the call.

21.4 The deactivate operation

Thedeact i vat e operation is used to deactivate defaults, i.e. previoudy activated altsteps. A deact i vat e
operation will remove the referenced default from the list of defaults.

The effect of adeact i vat e operationislocal to the test component in which it is called. This means, atest
component cannot deactivate a default in another test component.

ETSI

96 ETSI ES 201 873-1 V2.2.0 (2002-05)

A deact i vat e operation without parameter deactivates all defaults of atest component.

Callingadeact i vat e operation with the specia value nul | has no effect. Calling adeact i vat e operation with
an undefined default reference, e.g. an old reference to a default that has already been deactivated or anot initialized
default reference variable, shall cause aruntime error.

EXAMPLE:

vér default MyDefaultVar := null;

var default MyDefVarTwo := activate(M/SecondAl tStep());
var default MyDefVarThree : = activate(MyThirdAltStep());
M/DefauItVar ;= activate(MA tStep());

déact ivate(MDefaultVar); // deactivates M/AIt Step)

déactivate; /'l deactivates all other defaults, i.e. in our case M/SecondAlt Step
/1 and MyThirdAltStep

22 Configuration operations

22.0 General

Configuration operations are used to set up and control test components. These operations shall only be used in TTCN-3
test cases, functions and altsteps (i.e. not in the module control part).

Table 15: Overview of TTCN-3 configuration operations

Configuration operations

Statement Operation Name
Create parallel test component create
Connect one component to another component connect
Disconnect two components disconnect
Map component port to test interface port map
Unmap port from test system interface unmap
Get MTC address mtc
Get test system interface address system
Get own address self
Start execution of test component start
Stop execution of test component stop
Check termination of a PTC running
Wait for termination of a PTC done

22.1 The Create operation

The MTC isthe only test component which is automatically created when atest case starts. All other test components
(the PTCs) shall be created explicitly during test execution by cr eat e operations. A component is created with its full
set of ports of which the input queues are empty. Furthermore, if a port is defined to be of thetypei n or i nout it shal
bein alistening state ready to receive traffic over the connection.

All component variables and timers are reset to their initial value (if any) and all component constants are reset to their
assigned values when the component is explicitly or implicitly created.

Since al components and ports are implicitly destroyed at the termination of each test case, each test case shall
completely create its required configuration of components and connections when it is invoked.

ETSI

97 ETSI ES 201 873-1 V2.2.0 (2002-05)

/1 This exanple declares a variable of type address, which is used to store the reference of a
/'l newy created conponent of type MyConponent Type which is the result of the create function.

vér MyConponent t ype MyNewConponent ;

WI\lem(bnponent : = MyConponent Type. creat e;

Thecr eat e operation shall return the unigue component reference of the newly created instance. The unique
reference to the component will typically be stored in a variable (see clause 8.7) and can be used for connecting
instances and for communication purposes such as sending and receiving.

Components can be created at any point in a behaviour definition providing full flexibility with regard to dynamic
configurations (i.e. any component can create any other PTC). The visibility of component references shall follow the
same scope rules as that of variables and in order to reference components outside their scope of creation the component
reference shall be passed as a parameter or asafield in a message.

22.2 The Connect and Map operations

22.2.0 General

The ports of atest component can be connected to other components or to the ports of the test system interface. In the
case of connections between two test componentsthe connect operation shall be used. When connecting a test
component to atest system interface the map operation shall be used. The connect operation directly connects one
port to another with thei n side connected to the out side and vice versa. The nap operation on the other hand can be
seen purely as a name trandation defining how communications streams should be referenced.

Test system Connected Ports

I N

>
out I'N
auTr I'N
Mapped Ports 4
Abstract Test System Interface aut ¢ | I'N
OO

Real Test System Interface

SUT

Figure 10: lllustration of the connect and map operations

With both the connect operation and the map operation, the ports to be connected are identified by the component
references of the components to be connected and the names of the ports to be connected.

The operation mt ¢ identifiesthe MTC and the operation sy st emidentifyes the test system interface (see clause 22.4).
Both these operations can be used for identifying and connecting ports.

Both theconnect and map operations can be called from any behaviour definition except for the control part of a
module. However before either operation is called the components to be connected shall have been created and their
component references shall be known together with the names of the relevant ports.

Both the map and connect operations allow the connection of a port to more than one other port. It is not allowed to
connect to a mapped port or to map to a connected port.

ETSI

98 ETSI ES 201 873-1 V2.2.0 (2002-05)

EXAMPLE:

I/l It is assuned that the ports Portl, Port2, Port3 and PCOL are properly defined and decl ared
/1 in the corresponding port type and conponent type definitions

vér My Conponent Type M/NewPTC;

lvi/NewPTC : = MyConponent Type. creat e;

connect (MyNewPTC: Port1, ntc:Port3);
map(MyNewPTC: Port 2, system PCOL);

/1 I'n this exanple a new conponent of type MyConponent Type is created and its reference stored
/1 in variable M/NewPTC. Afterwards in the connect operation, Portl of this new component

/1 is connected with Port3 of the MIC. By neans of the map operation, Port2 of the new component
/1 is then connected to port PCOL of the test systeminterface

22.2.1 Consistent connections and mappings
For both the connect and map operations only consistent connections are allowed.
Assuming the following:
a) ports PORT1 and PORT?2 are the ports to be connected;
b) inlist-PORT1 defines the messages or procedures of the in-direction of PORT1;
c) outlist-PORT 1defines the messages or procedures of the out-direction of PORT1,;
d) inlist-PORT2 defines the messages or procedures of the in-direction of PORT2; and
€) outlist-PORT2 defines the messages or procedures of the out-direction of PORT2.
Theconnect operationisallowed if and only if:
e outlist-PORT1 O inlist-PORT2 and outlist-PORT?2 [inlist-PORT 1.
The map operation (assuming PORT2 is the test system interface port) is alowed if and only if:
e outlist-PORT1 0 outlist-PORT?2 and inlist-PORT2 [inlist-PORT1.
In all other cases, the operations shall not be allowed.

Since TTCN-3 alows dynamic configurations and addresses, not all of these consistency checks can be made statically
at compile-time. All checks, which could not be made at compile-time, shall be made at run-time and shall lead to atest
case error when failing.

22.3 The Disconnect and Unmap operations

Thedi sconnect and unmap operations are the opposite operations of connect and map. They perform the
disconnection (of previously connected) ports of test components and the unmapping of (previously mapped) ports of
test components and ports in the test system interface.

Both, the di sconnect and unnmap operations can be called from any component if the relevant component references
together with the names of the relevant ports are known. A di sconnect or unmap operation has only an effect if the
connection or mapping to be removed has been created beforehand.

EXAMPLE:
cbnnect (MyNewConponent: Port1l, mntc:Port3);

map(MyNewConponent : Port 2, system PCOL) ;

di sconnect (MyNewConponent: Port1, mtc: Port3); /1 disconnect previously made connection

ETSI

99 ETSI ES 201 873-1 V2.2.0 (2002-05)

unmap(MyNewConponent : Port 2, system PCOL) ; /1 unmap previously nade mappi ng

22.4 The MTC, System and Self operations

The component reference (see clause 8.7) has two operations, nt ¢ and syst emwhich return the reference of the
master test component and the test system interface respectively. In addition, the operation sel f can be used to return
the reference of the component in whichiit is called.

EXAMPLE:

var MyConponent Type MyAddress;
M/Address := self; // Store the current conponent reference

The only operations allowed on component references are assignment and equivalence.

22.5 The Start test component operation

Once a PTC has been created and connected behaviour has to be bound to this PTC and the execution of its behaviour
has to be started. Thisisdone by usingthe st art operation (PTC creation does not start execution of the component
behaviour). The reason for the distinction between cr eat e and st ar t isto allow connection operations to be done
before actually running the test component.

Thest art operation shall bind the required behaviour to the test component. This behaviour is defined by reference to
an aready defined function.

EXAMPLE:

/1 It is assuned that the ports Portl, Port2, Port3 and PCOL are properly defined and decl ared
/1 in the corresponding port type and conponent type definitions

vér My Conponent Type MyNewPTC,

WI\IGV\PTC : = MyConponent Type. cr eat €; I/l Creation of a new test conponent.
cbnnect (MyNewPTC: Port1, ntc:Port3); /1 Connection of the new conponent wth

map(MyNewPTCt : Port 2, system PCOL); /] its environnent.

WNewPTC. start (MyPTCBehavi our ()); /1 Start of the new conponent.

The following restrictions apply to afunction invoked inast art test component operation:
e |f thisfunction has parametersthey shall only bei n parameters, i.e. parameters by value.

e Thisfunction shall have ar uns on definition referencing the same component type as the newly created
component.

e Portsand timers shall not be passed into this function.

NOTE: Asinandi nout portsstarts listening when the component is created, at the moment, when it starts
execution there may be messages in the incoming queues of such ports aready waiting to be processed.

22.6 The Stop test component operation

By using the st op test component statement a test component can stop its own execution or the execution of another
test component. If a component does not stop itself, but another test component in the test system, the component to be
stopped hasto be identified by using its component reference. A component can stop itself by usingasimple st op
execution statement (clause 19.10) or by addressing itself in the st op operation, e.g. by using the sel f operation. The
st op test component operation has no arguments.

ETSI

100 ETSI ES 201 873-1 V2.2.0 (2002-05)

EXAMPLE 1.

NOTE 1: Whilethecr eat e, start, runni ng and done operations can be used for PTC(s) only, the st op
operation can be used for both the MTC and to PTC(s).

var MyConponent Type MyConp := MyConponent Type. creat e; /1 A new test conponent is created

MyConp. st art (ConpBehavi our ()); /] The new conponent is started
it (date == "1.1.2003") {
My Conp. st op /1l The new conponent is stopped on the 1.1.2003

}

if (condl) {
. /] Some behavi our

sel f. st op /1 The test conponent stops itself by using the self operation
el se {
st op /1 The test conponent stops itself by using a sinple stop operation

} .
If the test component that is stopped isthe MTC, all remaining PTCsthat are still running shall also be stopped and the
test case terminates (see clause 27.2).
NOTE 2: A PTC can stop the test case execution by stopping the MTC.

All resources shall be released when atest component terminates, either explicitly using the st op operation or through
reaching ar et ur n statement in the function that originally started the test component or implicitly when the
component reaches the end of its behaviour definition. Any variables storing a stopped component reference shall be
undefined.

NOTE 3: Undefined means that the value cannot be used for any computation, i.e. it refersto nothing and that its
valueisnot considered to benul | .

The rules for the termination of test cases and the calculation of the final test verdict are described in clause 25.

Theal | keyword can be used by the MTC only in order to stop all running PTCs. In this case, the MTC will not be
stopped. It continues its execution after the stop statement.

EXAMPLE 2:

ail conponent . st op /1l The MIC stops all PTCs of the test case but not itself.

NOTE 4: The concrete mechanism for stopping PTCs is outside the scope of the present document.

22.7 The Running operation

Ther unni ng operation alows behaviour executing on atest component to ascertain whether behaviour running on a
different test component has completed. Ther unni ng operation can be used for PTCsonly. Ther unni ng operation
isconsidered to be abool ean expression and, thus, returnsabool ean value to indicate whether the specified test
component (or all test components) has terminated. In contrast to the done operation, the r unni ng operation can be
used freely inbool ean expressions.

Whentheal | keyword isused with ther unni ng operation, it will returnt r ue if all PTCs started but not stopped
explicitly by another component is executing its behaviour. Otherwise it returnsf al se.

When the any keyword is used with ther unni ng operation, it will returnt r ue if at least one PTC is executing its
behaviour. Otherwiseit returnsf al se.

ETSI

101 ETSI ES 201 873-1 V2.2.0 (2002-05)

EXAMPLE:

if (PTCL. running) /1 usage of running in an if statement

/1 Do sonet hi ng!

while (all conponent.running != true) { // usage of running in a |oop condition
My Speci al Functi on()

22.8 The Done operation

The done operation allows behaviour executing on atest component to ascertain whether the behaviour running on a
different test component has completed. The done operation can be used for PTCsonly.

The done operation shall be used in the same manner as areceiving operation or at i meout operation. This meansiit
shall not beused inabool ean expression, but it can be used to determine an alternativeinanal t statement or as
stand-alone statement in a behaviour description. In the latter case adone operation is considered to be a shorthand for
anal t statement with only one alternative, i.e. it has blocking semantics, and therefore provides the ability of passive
waiting for the termination of test components.

Whentheal | keyword is used with the done operation, it will returnt r ue if no one PTC is executing its behaviour.
It also returns trueif no PTC has been created or started. Otherwiseit returnsf al se.

When the any keyword is used with the done operation, it will returnt r ue if at least one PTC started but not stopped
explicitly by another component is finished executing its behaviour. Otherwise it returnsf al se.

NOTE: TheTTCN-3 done operation and the DONE operation TTCN-2 have identical semantics.

EXAMPLE:
/1 Use of done in alternatives
alt {

[T MPTC. done {
setverdi ct (pass)
}

[T any port.receive {
goto alt
}

/1 the followi ng done as stand-al one statenent:

al | conponent. done;

/1 has the foll ow ng neaning:

ait {
[T all conponent.done {}
}

/1 and thus, blocks the execution until all parallel test conponents have term nated

22.9 Using component arrays

Thecr eat e,connect, start andst op operations do not work directly on arrays of components. Instead a
specific element of the array shall be provided as the parameter. For components the effect of an array is achieved by
using an array of component references and assigning the relevant array element to the result of the cr eat e operation.

ETSI

EXAMPLE:

/1 This exanple shows how to nodel the effect of creating,

/1 conponent references.

102

ETSI ES 201 873-1 V2.2.0 (2002-05)

connecting and running arrays of
/] conponents using a | oop and by storing the created conponent reference in an array of

testcase MyTest Case() runs on MM cType system MyTest System nterface

M/Ptc [i] := M/PtcTypel.create;

connect (sel f: Pt cCoordi nati on,

{
vér integer i;
var M/PTCTypel MPtcType[11];
for (i:= 0 i<=10; i:=i+1)
{
}.
}

My Pt cAddr esses[i]: M cCoordi nation);
MyPtc [i].start(M/PtcBehaviour());

22.10 Summary of the use of any and all with components

The keywordsany and al | may be used with configuration operations as indicated in table 16.

Table 16: Any and All with components

Operation Allowed Example
any all
create
start
runni ng Yes but from Yes but from MTC |any conponent. runni ng
MTC only only al | conponent. running
done Yes but from Yes but from MTC |any comnponent . done
MTC only only al | conponent. done
stop Yes but from MTC |al | conponent. st op
only

23 Communication operations

23.0 General

TTCN-3 supports message-based and procedure-based communication. Furthermore, TTCN-3 alowsto examine the
top element of incoming port queues and to control the access to ports by means of controlling operations.

ETSI

103 ETSI ES 201 873-1 V2.2.0 (2002-05)

Table 17: Overview of TTCN-3 communication operations

Communication operations
Communication operation Keyword Can be used at Can be used at
message-based ports | procedure-based ports
Message-based communication
Send message send Yes
Receive message receive Yes
Trigger on message trigger Yes
Procedure-based communication
Invoke procedure call call Yes
Accept procedure call from remote entity getcall Yes
Reply to procedure call from remote entity |reply Yes
Raise exception (to an accepted call) raise Yes
Handle response from a previous call getreply Yes
Catch exception (from called entity) catch Yes
Examine top element of incoming port queues
Check msg/call/exception/reply received [check | Yes Yes
Controlling operations
Clear port clear Yes Yes
Clear and give access to port start Yes Yes
Stop access (receiving & sending) to port stop Yes Yes

23.1 General format of communication operations

23.1.0 General

Operations such assend and cal | are used for the exchange of information among test components and between an
SUT and test components. For explaining the general format of these operations, they can be structured into two groups:

a) atest component sends a message (send operation), calls aprocedure (cal | operation), or repliesto an
accepted call (r epl y operation) or raises an exception (r ai se operation). These actions are collectively
referred to as sending operations;

b) acomponent receives amessage (r ecei ve operation), awaitsamessage (t r i gger operation),accepts a
procedure call (get cal | operation), receives areply for apreviously called procedure (get r epl y operation)
or catches an exception (cat ch operation). These actions are collectively referred to as receiving operations.

23.1.1 General format of the sending operations

Sending operations consist of a send part and, in the case of a blocking procedure-based cal | operation, aresponse
and exception handling part.

The send part:
« gpecifiesthe port at which the specified operation shall take place;
« definesthe value of the information to be transmitted;

e givesan (optional) address expression that uniquely identifies the communication partner in the case of
aone-to-many connection.

The port name, operation name and value shall be present in all sending operations. The identification of the
communication partner (denoted by thet o keyword) is optional and need only be specified in cases of one-to-many
connections where the receiving entity shall be explicitly identified.

ETSI

104 ETSI ES 201 873-1 V2.2.0 (2002-05)

EXAMPLE 1:
(Optional)
Send part response and
exception
Port and operation Value part (Optional) address expression | handling part
MyP1. send (MyVariable + YourVariable — 2) to MyPartner;

Response and exception handling is only needed in cases of procedure-based communication. The response and
exception handling part of the cal | operation isoptional and isrequired for cases where the called procedure returns a
value or hasout ori nout parameters whose values are needed within the calling component and for cases where the
called procedure may raise exceptions which need to be handled by the calling component.

The response and exception handling part of the call operation makes use of get r epl y and cat ch operationsto
provide the required functionality.

EXAMPLE 2:
Send part (Optional) response and exception handling part
Port and Value part (Optional)
operation address
expression
MyP1.call | (MyProc: {M/Var1}) {
[T MWP1.getreply(MProc: {MyVar2}) {}
[T M/P1l.catch(M/Proc, ExceptionOne) {}
}

23.1.2 General format of the receiving operations
A receiving operation consists of areceive part and an (optional) assignment part.
Thereceive part:
a) specifiesthe port at which the operation shall take place;
b) defines a matching part which specifies the acceptable input which will match the statement;

c) givesan (optional) address expression that uniquely identifies the communication partner (in case of
one-to-many connections).

The port name, operation name and value part of all receiving operations shall be present. The identification of the
communication partner (denoted by the f r omkeyword) is optional and need only be specified in cases of one-to-many
connections where the receiving entity needsto be explicitly identified.

The (optional) assignment part in areceiving operation is optional. For message-based portsit is used when it is
required to store received messages. In the case of procedure-based portsit is used for storing thei n andi nout
parameters of an accepted call or for storing exceptions. For the assignment part strong typing is required, e.g. the
variable used for storing a message shall have the same type as the incoming message.

In addition, the assignment part may also be used to assign the sender address of a message, exception, r epl y or
cal | toavariable. Thisisuseful for one-to-many connections where, for example, the same message or call can be
received from different components, but the message, reply or exception must be sent back to the original sending
component.

ETSI

105 ETSI ES 201 873-1 V2.2.0 (2002-05)

EXAMPLE:
Receive part (Optional) assignment part
Port and operation Matching part (Optional) (Optional) (Optional) (Optional) sender
address value parameter value | value assignment
expression assighment assighment
MyP1. getreply |(AProc: {?} value 5) -> param (V1) |sender APeer
Receive part (Optional) assignment part
Port and operation Matching part (Optional) (Optional) value (Optional) (Optional)
address assignment parameter value | sender value
expression assignment assighment
M/P2.receive |(MyTenplate(5,7)) [from ->|val ue MyVar
APeer

23.2 Message-based communication

23.2.0 General

M essage-based communication is communication based on an asynchronous message exchange. M essage-based
communication is non-blocking on the send operation, asillustrated in figure 11, where processing in the SENDER
continues immediately after the send operation occurs. The RECEIVER isblocked onther ecei ve operation until it
processes the received message.

In additionto ther ecei ve operation, TTCN-3 providesat r i gger operation that filters messages with certain
matching criteria from a stream of received messages on a given incoming port. Messages at the top of the queue that
do not fulfil the matching criteria are removed from the port without any further action.

send receive or trigger

SENDER p| RECEIVER

Figure 11: lllustration of the asynchronous send and receive

23.2.1 The Send operation

The send operation is used to place a value on an outgoing message port queue. The value may be specified by
referencing atemplate, a variable, or a constant or can be defined in-line from an expression (which of course can be an
explicit value). When defining the value in-line the optional type field shall be used if there is ambiguity of the type of
the value being sent.

The send operation shall only be used on message-based (or mixed) ports and the type of the value to be sent shall be
in the list of outgoing types of the port type definition.

EXAMPLE 1:

MyPort . send(My Tenpl at e(5, MyVar)) ; /1 Sends the tenplate MyTenplate with the actual
/| paraneters 5 and MyVar via MyPort.

MyPort . send(5); /1 Sends the integer value 5

ETSI

106 ETSI ES 201 873-1 V2.2.0 (2002-05)

In cases of one-to-many connections the communication partner shall be specified uniquely. This shall be denoted using
thet o keyword.

EXAMPLE 2:

M/Port.send(charstring:"My string") to MyPartner; /'l Sends the string "My string" to a
conponent with a
/1 conponent reference stored in variable MyPartner

M/PCO. send(MyVari abl e + YourVariable - 2) to MyPartner;
/1 Sends the result of the arithnetic expression to MyPartner.

23.2.2 The Receive operation

23.2.2.0 General

Ther ecei ve operation is used to receive avalue from an incoming message port queue. The value may be specified
by referencing atemplate, avariable, or a constant or can be defined in-line from an expression (which of course can be
an explicit value). When defining the value in-line the optional type field shall be used to avoid any ambiguity of the
type of the value being received. Ther ecei ve operation shall only be used on message-based (or mixed) ports and the
type of the value to be received shall be included in thelist of incoming types of the port type definition.

Ther ecei ve operation removes the top message from the associated incoming port queue if, and only if, that top
message satisfies all the matching criteria associated with ther ecei ve operation. No binding of the incoming values
to the terms of the expression or to the template shall occur.

If the match is not successful, the top message shall not be removed from the port queuei.e. if ther ecei ve operation
isused as an alternative of an al t statement and it is not successful the execution of the test case shall continue with
the next alternative of theal t statement.

The matching criteria are related to the type and value of the message to be received. The type and value of the message
to be received may either be derived from atemplate or from the value resulting from an expression (which of course
can be an explicit value). An optional type field in the matching criteriato ther ecei ve operation shall be used to
avoid any ambiguity of the type of the value being received.

NOTE: Encoding attributes are also participating in matching in an implicit way, by preventing the decoder to
produce an abstract value from the received message encoded in a different way than specified by the
attributes.

In the case of one-to-many connectionsther ecei ve operation may be restricted to a certain communication partner.
Thisrestriction shall be denoted using the f r omkeyword.

EXAMPLE 1:

MyPort.recei ve(M/Tenpl ate(5, MyVar)); /1 Matches a nessage that fulfils the conditions
/1 defined by tenmplate MyTenplate at port MyPort.

MyPort . recei ve(A<B); /1 Matches a Bool ean val ue that dependi ng on the outcone of A<B

MyPort.receive(integer: MVar); [/ Matches an integer value with the value of MVar
/1 at port MyPort

MyPort . recei ve(M/Var); /1 Is an alternative to the previous exanple

MyPort.receive(charstring:"Hello")from MyPeer; // Matches charstring "Hello" from MyPeer

If the match is successful, the value removed from the port queue can be stored in a variable and the address of the
component that sent the message, can be retrieved and stored in avariable. Thisis denoted by the symbol '->' and the
keyword val ue.

It isalso possibleto retrieve and store the component reference or address of the sender of a message. Thisis denoted
by the keyword sender .

ETSI

107 ETSI ES 201 873-1 V2.2.0 (2002-05)

EXAMPLE 2:
M/Port.receive(MType: ?) -> value MyVar; /1 The val ue of the received nessage is
/'l assigned to MyVar.
M/Port.receive(A<B) -> sender MyPeer; /] The address of the sender is assigned to MyPeer

M/Port.receive(M/Tenpl ate: {5, MyVarOne}) -> value MyVar Two sender MyPeer;
/1 The received nessage value is stored in M/Var and the sender address is stored in MyPeer.

23.2.2.1 Receive any message

A recei ve operation with no argument list for the type and value matching criteria of the message to be received shall
remove the message on the top of the incoming port queue (if any) if all other matching criteria are fulfilled.

NOTE: Thisisequivalent tothe TTCN-2 OTHERWISE statement.
A message received by ReceiveAnyMessage shall not be assigned to a variable.
EXAMPLE:
M/Port . receive; /'l Rermoves the top value from MyPort.

M/Port.receive from M/Peer; // Renoves the top nessage from M/Port if its sender is M/Peer

MyPort.receive -> sender MySender Var; /'l Rermoves the top nessage from MyPort and assigns
/1 the sender address to MySender Var

23.2.2.2 Receive on any port
Tor ecei ve amessage on any port use the any keyword.

EXAMPLE:

any port.recei ve(M/Message) ;

23.2.3 The Trigger operation

23.2.3.0 General

Thet ri gger operation removes the top message from the associated incoming port queue. If that top message meets
the matching criteria, thet r i gger operation behavesin the same manner asar ecei ve operation. If that top
message do not fulfil the matching criteria, it shall be removed from the queue without any further action. The

tri gger operation shall only be used on message-based (or mixed) ports and the type of the value to be received shall
be included in the list of incoming types of the port type definition.

NOTE: Thenoteto clause 22.2.2.0 isalso valid for thet ri gger operation.

Thet ri gger operation can be used as a stand-al one statement in a behaviour description. In this latter case the
trigger operation isconsidered to be shorthand for anal t statement with only one alternative, i.e. it has blocking
semantics, and therefore provides the ability of waiting for the next message matching the specified template or value
on that queue.

EXAMPLE 1:

MyPort.trigger(MType: ?);
/1 Specifies that the operation will trigger on the reception of the first nessage observed of
/1l the type MyType with an arbitrary value at port MyPort.

Thet ri gger operation requires the port name, matching criteria for type and value, an optional f r omrestriction
(i.e. selection of communication partner) and an optional assignment of the matching message and sender component to
variables.

ETSI

108 ETSI ES 201 873-1 V2.2.0 (2002-05)

EXAMPLE 2:

MyPort.trigger(MType:?) from MyPartner;

/1 Triggers on the reception of the first message of type MyType at port MyPort

/1 received from MyPartnner.

MyPort.trigger(MType:?) from M/Partner -> val ue MyRecMessage;

/1 This exanple is alnost identical to the previous exanple. In addition, the nessage which
Il triggers i.e. all matching criteria are net, is stored in the variable M/RecMessage.
MyPort.trigger(MType:?) -> sender MyPartner;

/Il This exanple is alnost identical to the first exanple. In addition, the reference of the
/'l sender conponent will be retrieved and stored in variable M/Partner.
MyPort.trigger(integer:?) -> value My/Var sender MyPartner;

I/ Trigger on the reception of an arbitrary integer value which afterwards is stored in
/1 variable MyVar. The reference of the sender conponent will be stored in variable M/Partner.

23.2.3.1 Trigger on any message

Atrigger operation with no argument list shall trigger on the receipt of any message. Thus, its meaning is identical
to the meaning of receive any message. A message received by TriggerOnAnyMessage shall not be assigned to a
variable.

EXAMPLE:
MyPort.trigger;
MyPort.trigger from MyPartner;

MyPort.trigger -> sender MySender Var;

23.2.3.2 Trigger on any port
Totri gger onamessage at any port usethe any keyword.
EXAMPLE:

any port.trigger

23.3 Procedure-based communication

23.3.0 General

The principle of procedure-based communication isto call procedures in remote entities. TTCN-3 supports blocking
and non-blocking procedure-based communication. Blocking procedure-based communication is blocking on the calling
and the called side, whereas non-blocking procedure-based communication only is blocking on the called side.
Signatures of procedures that are used for non-blocking procedure-based communication shall be specified according to
therulesin clause 23.

The communication scheme of blocking procedure-based communication is shown in figure 12. The CALLER callsa
remote procedure in the CALLEE by using thecal | operation. The CALLEE accepts the call by means of a

get cal | operation and reacts by either using ar epl y operation to answer the call or by raising (r ai se operation)
an exception. The CALLER handlesreply or exception by using get r epl y or cat ch operations. In figure 12, the
blocking of CALLER and CALLEE isindicated by means of dashed lines.

ETSI

109 ETSI ES 201 873-1 V2.2.0 (2002-05)

cal | get cal |
i g
CALLER | | | | CALLEE
I< |
getreply or reply or
cat ch exception rai se exception

Figure 12: Illustration of blocking procedure-based communication

The communication scheme of non-blocking procedure-based communication is shown in figure 13. The CALLER
calls aremote procedure in the CALLEE by using the cal | operation and continues its execution, i.e. does not wait for
areply or exception. The CALLEE acceptsthe call by means of aget cal | operation and executes the requested
procedure. If the execution is not successful, the CALLEE may raise an exception to inform the CALLER. The
CALLER may handle the exception by using acat ch operationinanal t statement. In figure 13, the blocking of the
CALLEE until the end of the call handling and possible raise of an exception isindicated by means of a dashed line.

cal | get cal |
>
CALLER | | CALLEE
< |
cat ch exception rai se exception

Figure 13: lllustration of blocking procedure-based communication

23.3.1 The Call operation

23.3.1.0 General

Thecal | operationis used to specify that atest component calls a procedure in the SUT or in another test component.
Thecal | operation shall only be used on procedure-based (or mixed) ports. The type definition of the port at which
the call operation takes place shall include the procedure nameinitsout ori nout listi.e. it must be allowed to call
this procedure at this port.

Theinformation to be transmitted in the send part of the cal | operation is a signature that may either be defined in the
form of asignature template or be defined in-line. All i n andi nout parameters of the signature shall have a specific
valuei.e. the use of matching mechanisms such as AnyValue is not allowed.

The signature arguments of the cal | operation are not used to retrieve variable namesfor out and i nout parameters.
The actual assignment of the procedure return value and out and i nout parameter values to variables shall explicitly
be made in the response and exception handling part of thecal | operation by means of get r epl y and cat ch
operations. This allows the use of signature templatesin cal | operations in the same manner as templates can be used
for types.

EXAMPLE 1:

/1l Gven ..
signature MyProc (out integer MyParl, inout bool ean MyPar?2);

/) a call of MyProc
MyPort.call (MProc:{ -, MyVar2}) { /1 inline signature tenplate for the call of M/Proc

[T MyPort.getreply(MProc:{?, ?}) { }

/1 ...and another call of MProc
MyPort.call (M/ProcTenpl ate) { /1 using signature tenplate for the call of M/Proc
[T MyPort.getreply(MProc:{?, ?}) { }

ETSI

110 ETSI ES 201 873-1 V2.2.0 (2002-05)

}

In cases of one-to-many connections the communication partner shall be specified uniquely. This shall be denoted using
the keyword t o.

EXAMPLE 2:

MyPort.cal |l (M/ProcTenpl ate) to M/Peer { /1 calling M/Proc at MyPeer
[T MyPort.getreply(MProc:{?, ?}) { }

23.3.1.1 Handling responses and exceptions to a Call

In case of non-blocking procedure-based communication or if the nowai t optionisused (see clause 23.3.1.2), the
handling of responses or exceptionsto cal | operationsisdone by using get r epl y (seeclause 23.3.2) and cat ch
(see clause 23.3.6) operations as alternativesin al t statements.

In case of blocking procedure-based communication, the handling of response or exception to acall isdone in the
response and exception handling part of thecal | operation by means of get r epl y (see clause 23.3.2) and cat ch
(see clause 23.3.6) operations.

The response and exception handling part of acal | operation looks similar to the body of anal t statement. It defines
aset of alternatives, describing the possible responses and exceptions to the call. The selection of the alternatives shall
only be based on get r epl y and cat ch operations for the called procedure. This means, the usage of el se branches
and the invocation of altsteps are not allowed.

If necessary, it is possible to enable/disable an aternative by means of abool ean expression placed betweenthe [|'
brackets of the alternative.

The response and exception handling part of a call operation is executed likean al t statement without any active
default. This means a corresponding snapshot includes all information necessary to eval uate the (optional) Boolean
guards, may include the top element (if any) of the port over which the procedure has been called and may include a
timeout exception generated by the (optional) timer that supervisesthe call (see clause 23.3.1.2).

The evaluation of the Boolean expressions guarding the alternatives in the response and exception handling part may
have side effects. In order to avoid unexpected side effects, the same rules as for the Boolean guardsin al t statements
shall be applied (see clause 20.1.1).

EXAMPLE:
/'l Gven

signature MyProc3 (out integer MyParl, inout boolean MyPar2) return MyResult Type
exception (ExceptionTypeOne, ExceptionTypeTwo);

/1 Call of MyProc3
MyPort.call (MProc3:{ -, true }) to MyPartner {
[T MyPort.getreply(MProc3:{?, ?}) -> value MyResult param (M/Par 1Var, MyPar2Var) { }
[T MyPort.catch(M/Proc3, MExceptionOne) {
setverdict(fail);

st op;

}
[T MyPort.catch(MProc3, ExceptionTypeTwo : ?) {
setverdi ct (i nconc);

}
[MyCondi tion] MyPort.catch(M/Proc3, MyExceptionThree) { }
}

23.3.1.2 Handling timeout exceptions to the Call

Thecal | operation may optionally include atimeout. Thisis defined as an explicit value or constant of f | oat type
and defines the length of time after thecal | operation has started that at i meout exception shall be generated by the
test system. If no timeout value part is present inthe cal | operationnot i meout exception shall be generated.

ETSI

111 ETSI ES 201 873-1 V2.2.0 (2002-05)

EXAMPLE 1:
MyPort.cal |l (MProc: {5 M/Var}, 20E-3) {

[T MyPort.getreply(MProc:{?, ?}) { }

[T MyPort.catch(tineout) { /] timeout exception after 20ns
setverdict(fail);
st op;
}
}

Using the keyword nowai t intheinstead of atimeout exception valueinacal | operation allows calling a procedure
to continue without waiting either for aresponse or an exception raised by the called procedure or atimeout exception.

EXAMPLE 2:

M/Port.call (MProc: {5 MVar}, nowait); /1 The calling test conponent will continue
/1 its execution w thout waiting for the
/'l termnation of MyProc

In wherethe nowai t keyword is used, a possible response or exception of the called procedure has to be removed
from the port queue by using aget r epl y or acat ch operation in asubsequent al t statement.

23.3.1.3 Calling blocking procedures without return value, out parameters, inout
parameters and exceptions

A blocking procedure may have no return values, no out and inout parameters and may raise no exception. The call
operation for such a procedure cases shall also have aresponse and exception handling part to handle the blocking in a
uniform manner.

EXAMPLE:

/1 Gven ..
signature MBIl ocki ngProc (in integer MyParl, in bool ean MyPar2);

/) a call of MBI ocki ngProc
MyPort.cal | (MyBl ockingProc:{ 7, false }) {

[1 MyPort.getreply(MyBlockingProc:{ -, - }) {}
}

23.3.14 Calling non-blocking procedures

A non-blocking procedure has no out and inout parameters, no return value and the non-blocking property is indicated
in the corresponding signature definition by means of anobl ock keyword.

The call operation for a non-blocking procedure shall have no response and exception handling part, shall raise no
timeout exception and shall not use the nowai t keyword.

Possible exceptions raised by non-blocking procedures have to be removed from the port queue by using cat ch
operationsin subsequent al t statements.

23.3.2 The Getcall operation

23.3.2.0 General

Theget cal | operation is used to specify that atest component accepts a call from the SUT, or another test
component. Theget cal | operation shall only be used on procedure-based (or mixed) ports and the signature of the
procedure call to be accepted shall be included in the list of allowed incoming procedures of the port type definition.

Theget cal | operation shall remove the top call from the incoming port queue, if, and only if, the matching criteria
associated totheget cal | operation are fulfilled. These matching criteria are related to the signature of the call to be
processed and the communication partner. The matching criteria for the signature may either be specified in-line or be
derived from a signature template.

ETSI

112 ETSI ES 201 873-1 V2.2.0 (2002-05)

A get cal | operation may be restricted to a certain communication partner in case of one-to-many connections. This
restriction shall be denoted by using the f r omkeyword.

EXAMPLE 1.

MyPort . getcal | (MProc(5, MVar)); /'l accepts a call of MyProc at MyPort
MyPort.getcall(MyProc:{ 5, MyVar}) from MyPeer; // accepts a call of MyProc at MyPort from MyPeer

The signature argument of the get cal | operation shall not be used to passin variable names for i n and i nout
parameters. The assignment of i n andi nout parameter valuesto variables shall be made in the assignment part of the
get cal | operation. Thisallows the use of signature templatesinget cal | operationsin the same manner as
templates are used for types.

The (optional) assignment part of the get cal | operation comprises the assignment of i n and i nout parameter
values to variables and the retrieval of the address of the calling component. The keyword par amis used to retrieve the
parameter values of acall.

The keyword sender isused when it isrequired to retrieve the address of the sender (e.g. for addressing ar epl y or
exception to the calling party in a one-to-many configuration).

EXAMPLE 2:

MyPort.getcal | (M/Proc:{?, ?}) from MyPartner -> param (M/Par1Var, M/Par2Var);
/1 The in or inout paraneter values of M/Proc are assigned to MyPar1Var and MyPar2Var.

MyPort.getcal | (M/Proc: {5, My/Var}) -> sender MySender Var;
/'l Accepts a call of MyProc at MyPort with the in or inout parameters 5 and MyVar.
/1 The address of the calling party is retrieved and stored in MySender Var.

/1l The followi ng getcall exanples show the possibilities to use matching attributes
/1 and onmit optional parts, which may be of no inmportance for the test specification.

MyPort.getcal | (MProc: {5 MVar}) -> paran{M/Varl, MVar2) sender MySender Var;
MyPort.getcal | (M/Proc: {5, ?}) -> param(My/Varl, MVar?2);

MyPort.getcal | (MProc:{?, MVar}) -> paran{ - , MVar2);
/1 The value of the first inout paraneter is not inportant or not used

/1 The followi ng exanples shall explain the possibilities to assign in and inout paraneter
/1 values to variables. The followi ng signature is assuned for the procedure to be called:

signature MyProc2(in integer A integer B, integer C, out integer D, inout integer E);
MyPort.getcal | (MProc2:{?, ?, 3, - , ?}) -> param (My/VarA, MyVarB, - , -, M/\Varg);

/1 The paranmeters A B, anf E are assigned to the variables M/VarA, M/VarB, and

/'l MyVarE. The out paranmeter D needs not to be considered.

M/Port.getcal | (MProc2:{?, ?, 3, -, ?}) -> param (M/VarA:= A, MVarB.= B, M/VarE:. = E);

/1 Alternative notation for the value assignment of in and inout paraneter to variables. Note,
/1 the names in the assignnent list refer to the names used in the signature of MyProc2
MyPort.getcal | (M/Proc2: {1, 2, 3, -, *}) -> param (MyVarE: = E);

/1l Only the inout parameter value is needed for the further test case execution

23.3.2.1 Accepting any call

A get cal | operation with no argument list for the signature matching criteria will remove the call on the top of the
incoming port queue (if any) if al other matching criteria are fulfilled. Parameters of calls accepted by AcceptAnyCall
shall not be assigned to avariable.

EXAMPLE:
MyPort . getcall; /'l Renoves the top call from MyPort.
MyPort.getcall from MWPartner; // Renoves a call from MyPartner from port MyPort

MyPort.getcall -> sender MySender Var; /!l Rermoves a call from MyPort and retrieves
/I the address of the calling entity

ETSI

113 ETSI ES 201 873-1 V2.2.0 (2002-05)

23.3.2.2 Getcall on any port
Toget cal | onany port is denoted by the any keyword.
EXAMPLE:

any port.getcall(MyProc)

23.3.3 The Reply operation

Ther epl y operation is used to reply to a previously accepted call according to the procedure signature. A r epl y
operation shall only be used at a procedure-based (or mixed) port. The type definition of the port shall include the name
of the procedure to which ther epl y operation belongs.

NOTE: Therelation between an accepted call and ar epl y operation cannot always be checked statically. For
testing it isalowed to specify ar epl y operation without an associated get cal | operation.

The value part of ther epl y operation consists of a signature reference with an associated actual parameter list and
(optional) return value. The signature may either be defined in the form of a signature template or it may be defined
in-line. All out andi nout parameters of the signature shall have a specific valuei.e. the use of matching mechanisms
such as AnyValue is not allowed.

In cases of one-to-many connections the communication partner shall be specified explicitly and shall be unique. This
shall be denoted using thet o keyword.

If avalueisto be returned to the calling party this shall be explicitly stated using theval ue keyword.
EXAMPLE:

M/Port.reply(MProc2:{ - ,5}); /'l Replies to an accepted call of MProc2.

MyPort.reply(MyProc2:{ - ,5}) to MyPeer; // Replies to an accepted call of M/Proc2 from MyPeer

MyPort.reply(MyProc3:{5,MyVar} value 20); // Repliesto an accepted call of MyProc2.
23.3.4 The Getreply operation

23.3.4.0 General

Theget r epl y operation is used to handle replies from a previously called procedure. A get r epl y operation shall
only be used at a procedure-based (or mixed) port.

Theget r epl y operation shall remove the top reply from the incoming port queue, if, and only if, the matching
criteriaassociated to the get r epl y operation are fulfilled. These matching criteria are related to the signature of the
procedure to be processed and the communication partner. The matching criteria for the signature may either be
specified in-line or be derived from a signature template.

Matching against a received return value can be specified by using theval ue keyword.

A get r epl y operation may be restricted to a certain communication partner in case of one-to-many connections. This
restriction shall be denoted by using the f r omkeyword.

EXAMPLE 1:

MyPort.getreply(MyProc: {5, ?} value 20); /1 Accepts a reply of MyProc with two out or
/1 inout paraneters and a return value of 20

MyPort.getreply(MyProc2:{ - , 5}) from MPeer; // Accepts a reply of MyProc from M/Peer

The signature argument of the get r epl y operation shall not be used to passin variable namesfor out andi nout
parameters. The assignment of out and i nout parameter values to variables shall be made in the assignment part of
theget r epl y operation. This allows the use of signature templatesin get cal | operationsin the same manner as
templates are used for types.

ETSI

114 ETSI ES 201 873-1 V2.2.0 (2002-05)

The (optional) assignment part of the get r epl y operation comprises the assignment of out andi nout parameter
values to variables and the retrieval of the address of sender of the reply. The keyword val ue isused to retrieve return
values and the keyword par amis used to retrieve the parameter values of areply. The keyword sender is used when
it isrequired to retrieve the address of the sender.

EXAMPLE 2:

MyPort.getreply(MyProcl:{?, ?} value ?) -> value My/RetVal ue paranm(M/Parl, MyPar 2) ;

/] The returned value is assigned to variable M/RetValue and the val ue

/1 of the two out or inout paraneters are assigned to the variables M/Parl and MyPar 2.
MyPort.getreply(MyProcl:{?, ?} value ?) -> value MyRetVal ue paran{ - , MyPar2) sender M/Sender;
/1 The value of the first parameter is not considered for the further test execution and

/'l the address of the sender conponent is retrieved stored in the variable M/Sender.

/1 The follow ng exanpl es describe sone possibilities to assign out and inout paraneter val ues
/1 to variables. The following signature is assumed for the procedure which has been called

signature MyProc2(in integer A integer B, integer C, out integer D, inout integer E);
MyPort. getrepl y(ATenpl ate) -> paran(- , - , - , M/VarQutl, MVarlnoutl);
M/Port. getrepl y(ATenpl ate) -> paran{M/Var CQut 1: =D, MyVar CQut 2: =E) ;

MyPort.getreply(MyProc2:{ - , -, -, 3, ?}) -> paran(M/Varlnoutl: =E);

23.34.1 Get any reply

A get r epl y operation with no argument list for the signature matching criteria shall remove areply message on the
top of the incoming port queue (if any) if all other matching criteria are fulfilled. Parameters or return values of
responses accepted by GetAnyReply shall not be assigned to avariable.

EXAMPLE:
MyPort. getreply; /'l Rermoves the top reply from MyPort.
M/Port.getreply from MyPeer; /'l Renoves the top reply received from M/Peer from M/Port.

M/Port.getreply -> sender MySenderVar; // Renoves the top reply from M/Port and retrieves the
/Il address of the sender entity

23.3.4.2 Get a reply on any port
To get areply on any port use theany keyword.
EXAMPLE:

any port.getreply(Myproc)

23.3.5 The Raise operation

Ther ai se operation is used to raise an exception. An exception shall only be raised at a procedure-based (or mixed)
port. An exception is areaction to an accepted procedure call the result of which leads to an exceptional event. The type
of the exception shall be specified in the signature of the called procedure. The type definition of the port shall include
initslist of accepted procedure calls the name of the procedure to which the exception belongs.

NOTE: Therelation between an accepted call and ar ai se operation cannot aways be checked statically. For
testing it is alowed to specify ar ai se operation without an associated get cal | operation.

The value part of ther ai se operation consists of the signature reference followed by the exception value.

Exceptions are specified astypes. Therefore the exception value may either be derived from atemplate or be the value
resulting from an expression (which of course can be an explicit value). The optional type field in the value
specification to ther ai se operation shall be used in cases where it is necessary to avoid any ambiguity of the type of
the value being sent.

ETSI

115 ETSI ES 201 873-1 V2.2.0 (2002-05)

In cases of one-to-many connections the communication partner shall be specified uniquely. This shall be denoted using
the keyword t 0.

EXAMPLE:

MyPort.rai se(MySi gnature, MyVariable + YourVariable - 2);
/] Raises an exception with a value which is the result of the arithnetic expression
/1 at MyPort

MyPort.raise(MProc, integer:5}); /] Raises an exception with the integer value 5 for MyProc

M/Port.raise(MSignature, "My string") to MyPartner;
/! Raises an exception with the value"My string" at MyPort for M/Proc and send it to MyPeer

23.3.6 The Catch operation

23.3.6.0 General

The cat ch operation is used to catch exceptions raised by a peer entity as areaction to aprocedure call. Thecat ch
operation shall only be used at procedure-based (or mixed) ports. The type of the caught exception shall be specified in
the signature of the procedure that raised the exception. Exceptions are specified as types and thus, can be treated like
messages e.g. templates can be used to distinguish between different values of the same exception type.

The cat ch operation removes the top exception from the associated incoming port queue if, and only if, that top
exception satisfies al the matching criteria associated with the cat ch operation. No binding of the incoming values to
the terms of the expression or to the template shall occur.

A cat ch operation may be restricted to a certain communication partner in case of one-to-many connections. This
restriction shall be denoted by using the f r omkeyword.

EXAMPLE 1:
MyPort.catch(M/Proc, integer: MyVar); /] Catches an integer exception of value
/'l MyVar raised by MyProc at port M/Port.
MyPort . catch(M/Proc, MVar); I/l I's an alternative to the previous exanple.
MyPort . cat ch(M/Proc, A<B); /| Catches a bool ean exception

MyPort.catch(M/Proc, MyType: {5, MVar}); // In-line tenplate definition of an exception val ue.

MyPort . catch(M/Proc, charstring:"Hello")from MyPeer; /] Catches "Hello" exception from MyPeer

The (optional) assignment part of the cat ch operation comprises the assignment of the exception value and the
retrieval of the address of the calling component. The keyword val ue isused to retrieve the value of an exception and
the keyword sender isused when it isrequired to retrieve the address of the sender.

EXAMPLE 2:

MyPort . catch(M/Proc, MyType:?) from MyPartner -> val ue MyVar;
/'l Catches an exception from M/Partner and assigns its value to MyVar.

MyPort.catch(M/Proc, M/Tenplate(5)) -> value MyVarTwo sender M/Peer;
/1 Catches an exception from M/Partner, assigns its value to MyVar and retrieves the
/1 address of the sender.

The cat ch operation may be part of the response and exception handling part of acal | operation or be used to
determine an alternativein an al t statement. If the cat ch operation is used in the accepting part of acal | operation,
the information about port name and signature reference to indicate the procedure that raised the exception is redundant,
because thisinformation follows fromthecal | operation. However, for readability reasons (e.g. in case of complex
cal | statements) thisinformation shall be repeated.

ETSI

116 ETSI ES 201 873-1 V2.2.0 (2002-05)

23.3.6.1 The Timeout exception

Thereisone special t i meout exception that is caught by the cat ch operation. Thet i neout exceptionisan
emergency exit for cases where a called procedure neither replies nor raises an exception within a predetermined time
(seeclause 23.3.1.2).

EXAMPLE:
MyPort.call (MyProc: {5, MyVar}, 20E-3) {
[T MyPort.getreply(MProc:{?, ?}) { }
[1 MyPort.catch(tineout) { /] timeout exception after 20ns
setverdict(fail);
st op;
}
}

Catchingt i neout exceptions shall be restricted to the exception handling part of a call. No further matching criteria
(including af r ompart) and no assignment part is allowed for acat ch operation that handlesat i meout exception.

23.3.6.2 Catch any exception

A cat ch operation with no argument list allows any valid exception to be caught. The most general case is without
using the f r omkeyword and without an assignment part. This statement will also catch thet i meout exception.

EXAMPLE:
MyPort . cat ch;
M/Port.catch from MyPartner;

MyPort.catch -> sender MySender Var;

23.3.6.3 Catch on any port
To cat ch an exception on any port use the any keyword.

EXAMPLE:

any port.catch;

23.4 The Check operation

23.4.0 General

The check operation is a generic operation that allows read access to the top element of message-based and
procedure-based incoming port queues without removing the top element from the queue. The check operation hasto
handle values of a certain type at message-based ports and to distinguish between calls to be accepted, exceptionsto be
caught and replies from previous calls at procedure-based ports.

Thereceiving operationsr ecei ve, get cal | , getr epl y and cat ch together with their matching and assignment
parts, are used by the check operation to define the condition that hasto be checked and to extract the value or values
of its parametersif required.

It isthe top element of an incoming port queue that shall be checked (it is not possible to ook into the queue). If the
gueue is empty the check operation fails. If the queue is not empty, a copy of the top element is made and the
receiving operation specified in the check operation is performed on the copy. The check operation falsif the
receiving function failsi.e. the matching criteria are not fulfilled. In this case the copy of the top element of the queueis
discarded and test execution continuesin the normal manner, i.e. the next statement or aternative to the check operation
isevaluated. The check operation is successful if the receiving function is successful.

Using the check operation in awrong manner, e.g. check for an exception at a message-based port shall cause atest
case error.

ETSI

117 ETSI ES 201 873-1 V2.2.0 (2002-05)

NOTE: Inmost cases the correct usage of the check operation can be checked statically, i.e. before compilation.
EXAMPLE:

M/Port 1. check(receive(5)); [// Checks for an integer nessage of value 5.

MyPort 2. check(getcal I (MProc: {5, MyVar}) from MyPartner);
/Il Checks for a call of MyProc at port MyPort2 from MyPart ner

MyPort 2. check(getrepl y(MyProc: {5, MyVar} value 20));
/] Checks for a reply fromprocedure M/Proc at MyPort where the returned value is 20 and
/1 the values of the two out or inout paraneters is 5 and the value of MVar.

MyPort 2. check(cat ch(M/Proc, MyTenpl ate(5, MyVar)));
MyPort 2. check(getrepl y(MyProcl: {?, MyVar} value *) -> value MyReturnVal ue paran(MPar1l));
MyPort . check(getcal | (MyProc: {5, MyVar}) from MyPartner -> param (M/Par1Var, M/Par2Var));

MyPort. check(getcal | (MProc: {5, MyVar}) -> sender MySender Var);

23.4.1 The Check any operation

A check operation with no argument list allows checking whether something waits for processing in an incoming port
gueue. The CheckAny operation allows to distinguish between different senders (in case of one-to-many connections)
by using af r omclause and to retrieve the sender by using a shorthand assignment part withasender clause.

EXAMPLE:
MyPor t . check;
MyPort . check(from MyPartnner);

MyPort. check(-> sender MySender Var);

23.4.2 Check on any port
Tocheck onany port use theany keyword.
EXAMPLE:

any port.check;

23.5 Controlling communication ports

23.5.0 General

TTCN-3 operations for controlling message-based, procedure-based and mixed ports are;
¢ cl ear : remove the contents of an incoming port queus;
e start: startlistening at and give access to a port;

e st op: stop listening and disallow sending operations at a port.

23.5.1 The Clear port operation

Thecl ear operation removes the contents of the incoming queue of the specified port. If the port queue is already
empty then this operation shall have no action.

EXAMPLE:

MyPort. cl ear; /1 clears port MyPort

ETSI

118 ETSI ES 201 873-1 V2.2.0 (2002-05)

23.5.2 The Start port operation

If aport is defined as allowing receiving operationssuch asr ecei ve, get cal | etc., thest art operation clearsthe
incoming queue of the named port and starts listening for traffic over the port. If the port is defined to allow sending
operations then the operations such assend, cal | , r ai se etc., are aso alowed to be performed at that port.

EXAMPLE:
MyPort.start; /] starts MyPort

By default, all ports of a component shall be started implicitly when a component is created. The start port operation
will cause unstopped ports to be restarted by removing all messages waiting in the incoming queue.

23.5.3 The Stop port operation

If aport isdefined as allowing receiving operationssuch asr ecei ve and get cal | , the st op operation causes
listening at the named port to cease. If the port is defined to allow sending operations then st op port disallows the
operationssuch assend, cal | ,r ai se etc., to be performed.

EXAMPLE 1:
MyPort . st op; /'l stops MyPort

NOTE: To ceaselistening at the port means that all receiving operations defined before the stop operation shall be
completely performed before the working of the port is suspended.

EXAMPLE 2:

MyPort.receive (MyTemplatel) -> RecPDU; // the received value is decoded, matched against
/I MyTemplatel and the matching valueis stored
I/l in the variable RecPDU
MyPort.stop; /I No receiving operation defined following the stop
/I operation is executed (unless the port is restarted
// by a subsequent start operation)
MyPort.receive (MyTemplate?); /I This operation is not executed

23.6 Use of any and all with ports

The keywordsany and al | may be used with configuration and communication operations as indicated in table 18.

Table 18: Any and All with ports

Operation Allowed Example
any all
receive, trigger, getcall, getreply, catch, yes any port.receive
check)
connect / map
start, stop, clear yes all port.start

24 Timer operations

24.0 General

TTCN-3 supports a number of timer operations. These operations may be used in test cases, functions, altsteps and
module control.

ETSI

119 ETSI ES 201 873-1 V2.2.0 (2002-05)

It is assumed that each TTCN-3 scope unit in which timers are declared, maintains its own running-timerslist and
timeout-list, i.e. alist of al timersthat isactually running and alist of all timersthat has timed out. The timeout-lists are
part of the snapshots that are taken when atest case is executed. A timeout-list is updated, if atimer in the scope unit is
started, is stopped, timesout or at i meout operation is executed.

NOTE 1: The running-timers list and the timeout-list are only a conceptual lists and does not restrict the
implementation of timers. Other data structures like a set, where the access to timeout eventsis not
restricted by, e.g. the order in which the timeout events have happened, may also be used.

NOTE 2: It isassumed that for each test component a special running-timers list and timeout-list exist that handle
timer start/stop and timeout events of timers declared in the corresponding component type definition.

When atimer expires (conceptually immediately before a snapshot processing of a set of aternative events), atimeout
event is placed into the timeout-list of the scope unit in which the timer has been declared. The timer becomes
immediately inactive. Only one entry for any particular timer may appear in the timeout-list of the scope unit in which
the timer has been declared at any one time.

All running timers shall automatically be cancelled when the component is explicitly or implicitly stopped.

Table 19: Overview of TTCN-3 timer operations

Timer operations
Statement Associated keyword or symbol
Start timer Start
Stop timer Stop
Read elapsed time Read
Check if timer running running
Timeout event timeout

24.1 The Start timer operation

Thest art timer operation is used to indicate that atimer should start running. Timer values shall be non-negative
f 1 oat numbers(i.e. greater or equal 0.0). When atimer is started, its name is added to the list of running timers (for
the given scope unit).

EXAMPLE:

M/ Timerl.start; /1 MWyTinmerl is started with the default duration
My Timer2.start(20E-3); // MyTinmer2 is started with a duration of 20 s

The optional timer val ue parameter shall be used if no default duration is given, or if it is desired to override the default
value specified in the timer declaration. When atimer duration is overridden, the new value applies only to the current
instance of thetimer, any later st art operations for this timer, which do not specify a duration, shall use the default
duration.

Starting atimer with the timer value 0.0 means that the timer times out immediately. Starting a timer with a negative
timer value, e.g. the timer value is the result of an expression, or without a specified timer value shall cause aruntime
error.

The timer clock runs from the float value zero (0.0) up to maximum stated by the duration parameter.

Thest art operation may be applied to arunning timer, in which case the timer is stopped and re-started. Any entry in
atimeout-list for thistimer shall be removed from the timeout-list.

24.2 The Stop timer operation

The st op operation is used to stop arunning timer and to remove it from the list of running timers. A stopped timer
becomesinactive and its elapsed time is set to the float value zero (0.0).

ETSI

120 ETSI ES 201 873-1 V2.2.0 (2002-05)

Stopping an inactive timer is a valid operation, although it does not have any effect. Any entry in atimeout-list for this
timer shall be removed from the timeout-list.

Theal | keyword may be used to stop all timersthat are visible in the scope unit in which the st op operation has been
called.

EXAMPLE:
My Ti ner 1. st op; /1 stops MyTinerl
all timer.stop; /1 stops all running tiners

24.3 The Read timer operation

Ther ead operation is used to retrieve the time that has elapsed since the specified timer was started and to store it into
the specified variable. This variable shall be of typef | oat .

EXAMPLE:

var float Myvar;
MyVar := MyTinerl.read; // assign to MyVar the time that has el apsed since MyTinerl was started

Applying ther ead operation on an inactive timer i.e. on atimer not listed on the running-timer list, will return the
value zero.

24.4 The Running timer operation

Ther unni ng timer operation is used to check whether atimer islisted on the running-timer list of the given scope
unit or not (i.e. that it has been started and has neither timed out nor been stopped). The operation returns the value
t r ue if thetimer islisted on thelist, f al se otherwise.

EXAMPLE:

if (MTimerl.running) { ...}

24.5 The Timeout operation

Thet i meout operation alows to check expiration of atimer, or of all timers, in a scope unit of atest component or
module control in which the timeout operation has been called.

When at i neout operation is processed, if atimer nameisindicated, the timeout-lists of the component or module
control are searched according to the TTCN-3 scoperules. If there is atimeout event matching the timer name, that
event is removed from the timeout-list, and thet i neout operation succeeds. Thet i neout shall not beused ina
bool ean expression, but it can be used to determine an dternativeinan al t statement or as stand-alone statement in
abehaviour description. In the latter caseat i meout operation is considered to be shorthand for anal t statement
with only one alternative, i.e. it has blocking semantics, and therefore provides the ability of passive waiting for the
timeout of timer(s).

NOTE: TheTTCN-3ti meout operation and the TIMEOUT operationin TTCN-2 have identical semantics.

EXAMPLE 1:

MyTi mer 1. ti meout ; /1 checks for the tineout of the previously started tiner MyTinerl

Theany keyword used with thet i meout operation (rather than an explicitly named timer) succeedsif the timeout list
is not empty.

EXAMPLE 2:

any tinmer.tinmeout; // checks for the tinmeout of any previously started tinmer

ETSI

121 ETSI ES 201 873-1 V2.2.0 (2002-05)

24.6 Summary of use of any and all with timers

The keywordsany and al | may be used with timer operations as indicated in table 20.

Table 20: Any and All with Timers

Operation Allowed Example
any all
start
stop yes all timer.stop
read
running yes if (any timer.running) {...}
timeout yes any timer.timeout

25 Test verdict operations

25.0 General

Verdict operations allow to set and retrieve verdicts using the get ver di ct and set ver di ct operations
respectively. These operations shall only be used in test cases, altsteps and functions.

Table 21: Overview of TTCN-3 test verdict operations

Test verdict operations
Statement Associated keyword or symbol
Set local verdict setverdict
Get local verdict getverdict

Each test component of the active configuration shall maintain it's own local verdict. The local verdict is an object
which is created for each test component at the time of itsinstantiation. It is used to track the individual verdict in each
test component (i.e. inthe MTC and in each and every PTC).

NOTE: Unlike TTCN-2 no final verdict can be assigned to atest component , therefore assigning a verdict never
halts execution of the test component in which the behaviour is executing. If required, this shall be
explicitly done by using the st op statement.

25.1 Test case verdict

Additionally thereis a global verdict that is updated when each test component (i.e. the MTC and each and every PTC)
terminates execution. This verdict is not accessibleto theget ver di ct and set ver di ct operations. The value of
this verdict shall be returned by the test case when it terminates execution. If the returned verdict is not explicitly saved
in the control part (e.g. assigned to avariable) then it islost.

Verdict returned y :
by_thetes_t case
when it terminates
MIC PTC1 [y PTCh [y

Figure 14: lllustration of the relationship between verdicts

NOTE: TTCN-3 does not specify the actual mechanisms that perform the updating of the local and test case
verdicts. These mechanisms are implementation dependent.

ETSI

122 ETSI ES 201 873-1 V2.2.0 (2002-05)

25.2 Verdict values and overwriting rules

25.2.0 General

The verdict can have five different values: pass, fai | ,i nconc, none ander r or i.e. the distinguished values of
thever di ctt ype (seeclause6.1).

NOTE: i nconc meansaninconclusive verdict.
Theset verdi ct operation shall only be used with the valuespass, f ai | ,i nconc and none.

EXAMPLE 1:

setverdi ct (pass);
setverdi ct (i nconc);

The value of the local verdict may be retrieved using the get ver di ct operation.

EXAMPLE 2:

M/Result := getverdict; // Wiere M/Result is a variable of type verdicttype
When atest component isinstantiated, itslocal verdict object is created and set to the value none.

When changing the value of the local verdict (i.e. usingthe set ver di ct operation) the effect of this change shall
follow the overwriting rules listed in table 22. The test case verdict isimplicitly updated on the termination of atest
component. The effect of thisimplicit operation shall also follow the overwriting ruleslisted in table 22.

Table 22: Overwriting rules for the verdict

Current value of New verdict assignment value

Verdict pass inconc fail none
none pass inconc fail none
pass pass inconc fail pass
inconc inconc inconc fail inconc
fail fail fail fail fail

EXAMPLE 3:

setverdi ct (pass); /1 the local verdict is set to pass
setverdict(fail); /1 until this line is executed which will result in the val ue

/1 of the local verdict being overwitten to fail
/1 When the ptc terminates the test case verdict is set to fail

25.2.1 Error verdict

Theer ror verdict isspecial in that it is set by the test system to indicate that atest case (i.e. run-time) error has
occurred. It shall not be set by theset ver di ct operation and will not be returned by the getverdict operation. No
other verdict value can override an er r or verdict. Thismeansthat an er r or verdict can only be aresult of an
execut e test case operation.

26 External actions

In some testing situations some electrical interface(s) to the SUT may be missing or unknown a priori (e.g. management
interface) but it may be necessary that the SUT is stimulated to carry out certain actions (e.g. send a message to the test
system). Also certain actions may be required from the test executing personnel (e.g. to change the environmental
conditions of testing like the temperature, voltage of the power feeding etc.).

The required action may be defined as a string.

ETSI

123 ETSI ES 201 873-1 V2.2.0 (2002-05)

EXAMPLE 1.

action("Send MyTenpl ate on lower PCO'); // Informal description of the SUT action

or as areference to a template which specifies the structure of the message to be sent by the SUT.
EXAMPLE 2:

action(MyTenplate); // This is equivalent to the TTCN-2 | MPLICIT SEND st at ement .

In both cases there is no specification of what is done to or by the SUT to trigger this action, only an informal
specification of the required action itself.

SUT actions can be specified in test cases, functions, altsteps and module control.

27 Module control part

27.0 General

Test cases are defined in the module definitions part while the module control part manages their execution. All
variables, timers etc. (if any) defined in the control part of amodule shall be passed into the test case by
parameterization if they are to be used in the behaviour definition of that test casei.e. TTCN-3 does not support global
variables or timers of any kind.

At the start of each test case the test configuration shall be reset. This meansthat all components and ports conducted by
creat e, connect, etc. operationsin a previous test case were destroyed when that test case was stopped (hence are
not 'visible' to the new test case).

27.1 Execution of test cases

A test caseiscaled using an execut e statement. Asthe result of the execution of atest case atest case verdict of
either none, pass, i nconcl usi ve,fail orerror shal bereturned and may be assigned to a variable for further
processing.

Optionally, the execut e statement allows supervision of atest case by means of atimer duration (see clause 27.5).

EXAMPLE:
execut e(MyTest Casel()); /1 executes MyTestCasel, without storing the
[/ returned test verdict and without tine
/] supervision
MyVer di ct : = execute(M/Test Case2()); /] executes MyTestCase2 and stores the resulting

/1 verdict in variable MyVerdict

MyVer di ct : = execute(M/ Test Case3(), 5E-3); /'l executes MyTestCase3 and stores the resulting
/1 verdict in variable My/Verdict. If the test case
/1 does not terminate within 5ms, MyVerdict will
/1 get the value 'error'

27.2 Termination of test cases

A test case terminates with the termination of the MTC. On terminating of the MTC (explicitly or implicitly) al running
parallel test components shall be terminated by the test system.

NOTE 1: The concrete mechanism for stopping all PTCsistool specific and therefore outside the scope of the
present document.

ETSI

124 ETSI ES 201 873-1 V2.2.0 (2002-05)

The final verdict of atest caseis calculated based on the final local verdicts of the different test components according
to the rules defined in clause 25. The actual local verdict of atest component becomesits final local verdict when the
test component terminates itself or is stopped by itself, another test component or by the test system.

NOTE 2: To avoid race conditions for the calculation of test verdicts due to the delayed stopping of PTCs, the MTC
should ensure that all PTCs have stopped (by means of the done statement) before it stops itself.

27.3 Controlling execution of test cases

Program statements, limited to those defined in tables 11 and 12 may be used in the control part of a module to specify
such things as the order in which the test cases are to be executed or the number of times a test case may be run.

EXAMPLE 1:
modul e MyTestSuite () {
control {
/) Do this test 10 tines
count : =0;
whil e (count < 10)

{ execute (M/Si npl eTest Casel());
count := count+1;
}

}

If no programming statements are used then, by default, the test cases are executed in the sequential order in which they
appear in the module control.

NOTE: Thisdoes not preclude the possibility that certain tools may wish to override this default ordering to allow
auser or tool to select adifferent execution order.

Test casesreturn asingle value of typever di ctt ype soitis possibleto control the order of execution depending on
the outcome of atest case.

EXAMPLE 2:

if (execute (MySinpl eTestCase()) == pass) { execute (My/GoOnTest Case) }
el se { execute (M/ErrorRecoveryTest Case) };

27.4 Test case selection

Boolean expressions may be used to select and deselect which test cases are to be executed. Thisincludes, of course, the
use of functionsthat return abool ean vaue.

NOTE: Thisisequivalent tothe TTCN-2 named test selection expressions.
EXAMPLE 1:

modul e MyTestSuite () {
cbntrol {

if (MySel ectionExpressionl()) {
execut e(MySi npl eTest Casel());
execut e(MySi npl eTest Case2());
execut e(MySi npl eTest Case3());

}
if (MySel ectionExpression2())
execut e(MySi npl eTest Case4(
execut e(MySi npl eTest Case5(
(

{
; ;
execut e(MySi npl eTest Case6()

)
);
).

ETSI

125 ETSI ES 201 873-1 V2.2.0 (2002-05)

Another way to execute test cases as a group is to collect them in a function and execute that function from the module
control.

EXAMPLE 2:

functi on MyTest CaseG oupl()

{ execut e(MySi npl eTest Casel());
execut e(MySi npl eTest Case2());
execut e(MySi npl eTest Case3());

}

function MyTest CaseG oup2()

{ execut e(MySi npl eTest Case4());
execut e(MySi npl eTest Case5());
execut e(MySi npl eTest Caseb6());

} .

cbntrol
{ if (MySel ectionExpressionl()) { M/TestCaseG oupl(); }
if (MySel ecti onExpressionl()) { MyTest CaseG oup2(); }

27.5 Use of timers in control

Timer may be used to supervise execution of atest case. This may be done using an explicit timeout in theexecut e
statement. If the test case does not end within this duration, the result of the test case execution shall be an error verdict
and the test system shall terminate the test case. The timer used for test case supervision is a system timer and need not
be neither declared nor started.

EXAMPLE 1:

M/ReturnVal := execute (M/TestCase(), 7E-3);
/1 Where the return verdict will be error if the TestCase does not conplete execution
/1 within 7ms

Timer operations may also be used explicitly to control test case execution.

EXAMPLE 2:

/] Exanple of the use of the running tiner operation
while (T1l.running or x<10) // Where Tl is a previously started tiner
{ execut e(MyTest Case());
X 1= X+1;
}

/] Exanple of the use of the start and tinmeout operations
timer T1 := 1,

ei(ecut e(MTest Casel());

Tl.start;

T1.timeout; // Pause before executing the next test case
execut e(MyTest Case2());

28 Specifying attributes

28.0 General

Attributes can be associated with TTCN-3 language elements by means of thewi t h statement. The syntax for the
argument of thewi t h statement (i.e. the actual attributes) is simply defined as a free text string.

There are four kinds of attributes:
a) di spl ay: alowsthe specification of display attributes related to specific presentation formats;

b) encode: allows references to specific encoding rules;

ETSI

126 ETSI ES 201 873-1 V2.2.0 (2002-05)

c) vari ant : alowsreferencesto specific encoding variants;

c) ext ensi on: alowsthe specification of user-defined attributes.

28.1 Display attributes

All TTCN-3 language elements can have di spl ay attributes to specify how particular language elements should be
displayed in, for example, atabular format.

Special attribute strings related to the display attributes for the tabular (conformance) presentation format can be found
in ES201 873-2 [1].

Special attribute strings related to the display attributes for the graphical presentation format can be found in
TR 101 873-3[2].

Other di spl ay attributes may be defined by the user.

NOTE: Because user-defined attributes are not standardized the interpretation of these attributes may differ
between tools or even may not be supported.

28.2 Encoding of values

28.2.0 General

Encoding rules define how a particular value, template etc. shall be encoded and transmitted over a communication
port and how received signals shall be decoded. TTCN-3 does not have a default encoding mechanism. This means
that encoding rules or encoding directives are defined in some external manner to TTCN-3.

In TTCN-3, general or particular encoding rules can be specified by using encode and var i ant attributes.

28.2.1 Encode attributes

The encode attribute allows the association of some referenced encoding rule or encoding directive to be made to a
TTCN-3 definition.

Specia attribute strings related to ASN.1 encoding attributes can be found in annex D.

The manner in which the actual encoding rules are defined (e.g. prose, functions etc.) is outside the scope of the present
document. If no specific rules are referenced then encoding shall be a matter for individual implementation.

In most cases encoding attributes will be used in a hierarchical manner. The top-leve isthe entire module, the next
level isagroup and the lowest isan individual type or definition:

a) nodul e: encoding appliesto al types defined in the module, including TTCN-3 types (built-in types);
b) gr oup: encoding appliesto a group of user-defined type definitions;

c) type or definiti on:encoding appliesto asingle user-defined type or definition;

d) fi el d: encoding appliesto afieldinar ecor d or set typeort enpl at e.

EXAMPLE:
modul e MyTTCNnodul e
{ .

i mport from MySecondModul e {
type MyRecord

}
with { encode "MyRule 1" } // Instances of MyRecord will be encoded according to MyRule 1

iype charstring MyType; // Normally encoded according to the global rule

Qroup MyRecor ds

ETSI

127 ETSI ES 201 873-1 V2.2.0 (2002-05)

{ :
type record MyPDUL

i nt eger fieldl, // fieldl will be encoded according to Rule 3
bool ean field2, /1 field2 will be encoded according to Rule 3
M/t ype field3 /1 field3 will be encoded according to Rule 2

with { encode (fieldl, field2) "Rule 3" }
13
with { encode "Rule 2" }

with { encode "d obal encoding rule" }

28.2.2 Variant attributes

To specify arefinement of the currently specified encoding scheme instead of its replacement, thevar i ant attribute
shall be used.

EXAMPLE:

nodul e MyTTCNnodul el
{ éype charstring MyType; // Normally encoded according to the global rule
;group M/Recor ds

iype record MyPDUL

i nt eger fieldl, /1 fieldl will be encoded according to Rule 2
/1 using encoding variant “length form3”
M/t ype field3 /1 field3 will be encoded according to Rule 2

/1 using any possible | ength encoding format

}

with { variant (fieldl) "length form3" }
13
with { encode "Rule 2" }

with { encode "d obal encoding rule" }

28.2.3 Special strings
The following strings are the predefined (standardized) var i ant attributes for simple basic types (see clause E.2.1):

a "8 bit"and"unsigned 8 bit" mean, when applied to integer and enumerated types, that the integer
value or the integer numbers associated with enumerations shall be handled as it was represented on 8-bits
(single byte) within the system.

b) "16 bit"and"unsi gned 16 bit" mean, when applied to integer and enumerated types, that the integer
value or the integer numbers associated with enumerations shall be handled as it was represented on 16-bits
(two bytes) within the system.

c) "32 bit"and"unsi gned 32 bit" mean, when applied to integer and enumerated types, that the integer
value or the integer numbers associated with enumerations shall be handled as it was represented on 32-bits
(four bytes) within the system.

d) "64 bit"and"unsi gned 64 bit" mean, when applied to integer and enumerated types, that the integer
value or the integer numbers associated with enumerations shall be handled as it was represented on 64-bits
(eight bytes) within the system.

e) "I EEE754 float","| EEE754 doubl e", "I EEE754 extended fl oat" and
"| EEE754 extended doubl e" mean, when applied to afloat type, that the value shall be encoded and
decoded according to the standard | EEE 754 (see annex F).

ETSI

128 ETSI ES 201 873-1 V2.2.0 (2002-05)

The following strings are the predefined (standardized) var i ant attributesfor char , uni ver sal char,
charstringanduni versal charstring (seeclauseE.2.2):

a) "UTF- 8" means, when applied to universal char and universal charstring types, that each character of the value
shall be individually encoded and decoded according to the UCS Transformation Format 8 (UTF-8) as defined in
annex R of ISO/IEC 10646 [6].

b) "UCS- 2" means, when applied to universal char and universal charstring types, that each character of the value
shall beindividually encoded and decoded according to the UCS-2 coded representation form (see clause 14.1 of
ISO/IEC 10646 [6]).

¢) "UTF- 16" means, when applied to universal char and universal charstring types, that each character of the value
shall beindividually encoded and decoded according to the UCS Transformation Format 16 (UTF-16) as defined
in annex Q of ISO/IEC 10646 [6].

d) "8 bi t" means, when applied to char, universal char, charstring and universal charstring types, that each
character of the value shall be individually encoded and decoded according to the coded representation as
specified in ISO/IEC 8859 (an 8-hit coding).

The following strings are the predefined (standardized) var i ant attributes for structured types (see clause E.2.3):

a) "IDL:fixed FORMAL/ 01-12-01 v. 2.6" means, when applied to arecord type, that the value shall be
handled asan IDL fixed point decimal value (see annex F).

These variant attributes can be used in combination with the more general encode attributes specified at a higher level.
For exampleauni ver sal char st ri ng specified with thevar i ant attribute "UTF-8" within a module which
itself has aglobal encoding attribute "BER:1997" (see clause D.1.5.1) will cause each character of the values within the
string to first be encoded following the UTF-8 rules and then this UTF-8 value will be encoded following the more
global BER rules.

28.2.4 Invalid encodings

If it is desired to specify invalid encoding rules then these shall be specified in areferenceabl e source external to the
module in the same way that valid encoding rules are referenced.

28.3 Extension attributes

All TTCN-3 language elements can have ext ensi on attributes specified by the user.

NOTE: Because user-defined attributes are not standardized the interpretation of these attributes between tools
supplied by different vendors may differ or even not be supported.

28.4 Scope of attributes

A wi t h statement may associate attributes to a single language element. It is also possible to associate attributesto a
number of language elements by e.g. listing fields of a structured type in an attribute statement associated with asingle
type definition or associating awi t h statement to the surrounding scope unit or gr oup of language elements.

EXAMPLE:

/1 MyPDUL will be displayed as PDU
type record WPDU1 { ...} with { display "PDU'}

/1 MWyPDU2 will be displayed as PDU with the application specific extension attribute M/Rule
type record WPDW2 { ...}
Wi th

di splay "PDU';
extensi on "M/Rul "

}

/1 The follow ng group definition ...
group MyPDUs {
type record WPDU3 { ...}

ETSI

129 ETSI ES 201 873-1 V2.2.0 (2002-05)

type record WPDW { ...}
}
with {display "PDU'} /1 Al types of group MyPDUs wi |l be displayed as PDU
[/l is identical to
group MyPDUs {

type record WPDU3 { ...} with { display "PDU'}
type record WPDW { ...} with { display "PDU'}

28.5 Overwriting rules for attributes
An attribute definition in alower scope unit will override agenera attribute definition in a higher scope.

EXAMPLE 1:

type record MyRecordA
{

} with { encode "Rul eA" }

/1 In the follow ng, M/RecordA is encoded according to Rul eA and not according to Rul eB
type record MyRecordB
{

fiel d M/Recor dA
} with { encode "RuleB" }

A wi t h statement that is placed inside the scope of another wi t h statement shall override the outermost wi t h. This
shall also apply to the use of thewi t h statement with groups. Care should be taken when the overwriting schemeis
used in combination with references to single definitions. The general rule isthat attributes shall be assigned and
overwritten according to the order of their occurrence.

/] Exanple of the use of the overwiting scheme of the with statement
group MyPDUs
{

type record WyPDUL { ...}

type record WPDW2 { ...}

group MySpeci al PDUs
{

type record WPDU3 { ...}
type record WPDUW4 { ...}

}
with {extension "M/Special Rul e"} /1 MWyPDU3 and MyPDU4 wi Il have the application
/'l specific extension attri bute MySpecial Rul e

}
with
di splay "PDU'; /1 Al types of group MPDUs will be displayed as PDU and
extension "M/Rule"; // (if not overwitten) have the extension attribute M/Rule
}
// is identical to ...
group MyPDUs
{
type record MyPDU1 { ...} with {display "PDU'; extension "M/Rule" }
type record WPDU2 { ...} with {display "PDU'; extension "M/Rule" }
group MySpeci al PDUs {
type record MWPDU3 { ...} with {display "PDU'; extension "M/Special Rule" }
type record MWPDU4 { ...} with {display "PDU'; extension "M/Special Rule" }
}
}

An attribute definition in alower scope can be overwritten in a higher scope by using theover ri de directive.

ETSI

130 ETSI ES 201 873-1 V2.2.0 (2002-05)

EXAMPLE 2:

type record MyRecor dA

} with{ encode "Rul eA" }

/1 In the followi ng, M/RecordA is encoded according to RuleB
type record MyRecordB

{

fi el dA M/RecordA
} with { encode override "Rul eB" }

Theoverri de directiveforces al contained types at al lower scopes to be forced to the specified attribute.

28.6 Changing attributes of imported language elements

In general, alanguage element is imported together with its attributes. In some cases these attributes may have to be
changed when importing the language element e.g. atype may be displayed in one module as ASP, then it isimported
by another module where it should be displayed as PDU. For such casesit is allowed to change attributes on the

i mport statement.

EXAMPLE:

import from MyModul e {
type MyType

}
with { display "ASP" } // MyType will be displayed as ASP

import from MyModul e {
group MyGoup

}

with {
di splay "PDU'; /1 By default all types will be displayed as PDU
extensi on "M/Rul e"

ETSI

131 ETSI ES 201 873-1 V2.2.0 (2002-05)

Annex A (normative):
BNF and static semantics

A.1 TTCN-3 BNF

A.1.0 General

This annex defines the syntax of TTCN-3 using extended BNF (henceforth just called BNF).

A.1.1 Conventions for the syntax description

Table A.1 defines the metanotation used to specify the extended BNF grammar for TTCN-3:

Table A.1: The syntactic metanotation

n= is defined to be

abc xyz abc followed by xyz

[alternative

[abc] 0 or 1 instances of abc
{abc} 0 or more instances of abc
{abc}+ 1 or more instances of abc
(o) textual grouping

Abc the non-terminal symbol abc
"abc" a terminal symbol abc

A.1.2 Statement terminator symbols

In general all TTCN-3 language constructs (i.e. definitions, declarations, statements and operations) are terminated with
asemi-colon (;). The semi-colon is optiona if the language construct ends with aright-hand curly brace (}) or the
following symbol is aright-hand curly brace (}), i.e. the language construct is the last statement in a block of
statements, operations and declarations.

A.1.3 Identifiers

TTCN-3 identifiers are case sensitive and may only contain lowercase letters (a-z) uppercase letters (A-Z) and numeric
digits (0-9). Use of the underscore (_) symbol isalso allowed. An identifier shall begin with aletter (i.e. not a number
and not an underscore).

A.1.4 Comments

Comments written in free text may appear anywhere in a TTCN-3 specification.
Block comments shall be opened by the symbol pair /* and closed by the symbol pair */.

EXAMPLE 1:

/* This is a block conment
spread over two lines */

Block comments shall not be nested.

/* This is not /* a legal */ comrent */

Line comments shall be opened by the symbol pair // and closed by a <newline>.

ETSI

132 ETSI ES 201 873-1 V2.2.0 (2002-05)

EXAMPLE 2:

/1 This is a |line comrent
/'l spread over two |ines

Line comments may follow TTCN-3 program statements but they shall not be embedded in a statement.
EXAMPLE 3:

/1 The followi ng is not |egal
const // This is MyConst integer MyConst := 1;

/1 The following is I|egal
const integer MConst :=1; // This is M/Const

A.1.5 TTCN-3 terminals

TTCN-3 terminal symbols and reserved words are listed in tables A.2 and A.3.

Table A.2: List of TTCN-3 special terminal symbols

Begin/end block symbols { 1}
Begin/end list symbols ()
Alternative symbols [1]

To symbol (in a range) .

Line comments and Block comments > Il
Line/statement terminator symbol

Arithmetic operator symbols + /-
String concatenation operator symbol &
Equivalence operator symbols I= == >= <=
String enclosure symbols ' '
Wildcard/matching symbols ? *
Assignment symbol =
Communication operation assignment ->

Bitstring, hexstring and Octetstring values B HO
Float exponent E

The predefined function identifiers defined in table 10 and described in annex C shall also be treated as reserved words.

ETSI

133

ETSI ES 201 873-1 V2.2.0 (2002-05)

Table A.3: List of TTCN-3 terminals which are reserved words

action
activate
addr ess
al |

alt

al tstep
and
and4b
any

anyt ype

bitstring
bool ean

cal

catch

char
charstring
check

cl ear
conpl enent
conmponent
connect
const
control
create

deactivate
def aul t
di sconnect

di spl ay
do
done

el se
encode
enuner at ed
error
except
exception
execut e
ext ensi on
ext erna

fail

fal se

fl oat
for
from
function

getverdi ct
get cal
getreply
goto

group
hexstring

if

i fpresent
i mport

in

i nconc
infinity
i nout

i nt eger
interl eave

| abel

| anguage
| engt h

| og

map

mat ch
nessage
m xed
nod
nodi fi es
nodul e
ntc

nobl ock
none

not
not 4b
nowai t
nul |

objid
octetstring
of

omt

on

opti ona

or

or4b

out
override

par am
pass
pattern
port
procedure

rai se
read
receive
record

recursive
rem

r epeat
reply
return
runni ng
runs

sel f

send
sender
set
setverdi ct
signature
start

st op
subset
super set
system

tenpl ate
testcase
ti meout
timer

to
trigger
true

type

uni on
uni ver sa
unmap

val ue

val ueof

var

vari ant
verdicttype

whi | e
W th

xor
xor 4b

The TTCN-3 terminalslisted in table A.3 shall not be used asidentifiersin a TTCN-3 module. These terminas shall be
written in all lowercase letters.

A.1.6 TTCN-3 syntax BNF productions

A.1.6.0 TTCN module

1. TTCN3Mbdul e :

2. TTCN3Mbdul eKeyword :: = "nodul e"
3. TTCN3Modul el d ::= Modul el dentifier [Definitiveldentifier]
4. Modul eldentifier ::= ldentifier
5. Definitiveldentifier ::= Dot ObjectldentifierKeyword "{"
6. DefinitiveQbjldConmponentList ::= {DefinitiveCbjldConponent}+
7. DefinitiveOojldConmponent ::=
Defi ni tiveNunber Form |
Def i ni ti veNameAndNunber For m
. DefinitiveNunber Form ::= Nunber
9. DefinitiveNameAndNunberForm::= ldentifier "("

Begi nChar

[Modul eDefi niti onsPart]

[Modul eControl Part]
EndChar

[WthStatenent] [Seni Col on]

;= TTCN3Mbdul eKeyword TTCN3Mbdul el d

ETSI

DefinitiveNunber Form")"

DefinitiveCbj | dConponentList "}

134 ETSI ES 201 873-1 V2.2.0 (2002-05)

A.1.6.1 Module definitions part

A.1.6.1.0 General

10. Modul eDefini ti onsPart Modul eDef i ni tionsLi st
11. Modul eDefinitionsList ::= {Mdul eDefinition [Semn Colon]}+
12. Mbdul eDefinition ::= (TypeDef |

Const Def |

Tenpl at eDef |

Par anDef |

Functi onDef |

Si gnat ur eDef |

Test caseDef |

Al tstepDef |

| npor t Def |

G oupDef |

Ext Functi onDef |

Ext Const Def) [WthStatenent]

A.16.1.1 Typedef definitions

13. TypeDef ::= TypeDef Keyword TypeDef Body
14. TypeDef Body ::= StructuredTypeDef | SubTypeDef
15. TypeDef Keyword ::= "type"
16. StructuredTypeDef ::= RecordDef |
Uni onDef |
Set Def |
Recor dOF Def |
Set Of Def | EnunDef |
Port Def |
Conponent Def
17. RecordDef ::= RecordKeyword Struct Def Body
18. RecordKeyword ::= "record"
19. StructDefBody ::= (StructTypeldentifier [StructDefFormal ParList] | AddressKeyword)
Begi nChar
[StructFieldDef {"," StructFi el dDef}]
20. EndChar Struct Typel dentifier ::= ldentifier
21. StructDef Formal ParList ::="(" StructDefFormal Par {"," StructDefFormal Par} ")"
22. Struct Def Fornal Par ::= Fornal Val uePar
/* STATI C SEMANTI CS - Formal Val uePar shall resolve to an in paranmeter */
23. StructFieldDef ::= Type StructFieldldentifier [ArrayDef] [SubTypeSpec] [Optional Keyword]
24. StructFieldldentifier ::= ldentifier
25. Optional Keyword ::= "optional"
26. Uni onDef ::= Uni onKeyword Uni onDef Body
27. Uni onKeyword ::= "union"
28. UnionDefBody ::= (StructTypeldentifier [StructDefFormal ParList] | AddressKeyword)
Begi nChar
Uni onFi el dDef {"," Uni onFi el dDef}
EndChar
29. UnionFiel dDef ::= Type StructFieldldentifier [ArrayDef] [SubTypeSpec]
30. SetDef ::= SetKeyword Struct Def Body
31. SetKeyword ::= "set"
32. RecordODef ::= RecordKeyword [StringLength] O Keyword Struct Of Def Body
33. O Keyword ::= "of"
34. StructOfDefBody ::= Type (StructTypeldentifier | AddressKeyword) [SubTypeSpec]
35. Set O Def ::= SetKeyword [StringLength] O Keyword Struct O Def Body
36. EnumDef ::= EnunKeyword (Enunilypeldentifier | AddressKeyword)
Begi nChar
Enuner ati onLi st
EndChar
37. EnunKeyword ::= "enumerated"
38. Enunlypeldentifier ::= Identifier
39. EnunerationList ::= Enuneration {"," Enuneration}
40. Enuneration ::= Enunmerationldentifier ["(" Number ")"]
41. Enurerationldentifier ::= ldentifier
42. SubTypeDef ::= Type (SubTypeldentifier | AddressKeyword) [ArrayDef] [SubTypeSpec]
43. SubTypeldentifier ::= Identifier
44. SubTypeSpec ::= Al owedVal ues | StringlLength
/* STATI C SEMANTI CS - Al | owedVal ues shall be of the same type as the field being subtyped */
45. Al l owedVal ues ::= "(" Val ueOrRange {"," ValueOrRange} ")"
46. Val ueOrRange ::= RangeDef | Singl eConstExpression

/* STATI C SEMANTI CS - RangeDef production shall only be used with integer, char, universal char,
charstring, universal charstring or float based types */

[* STATI C SEMANTI CS - Wen subtyping charstring or universal charstring range and val ues shall not
be mixed in the sane SubTypeSpec */

47. RangeDef ::= LowerBound ".." UpperBound

ETSI

135 ETSI ES 201 873-1 V2.2.0 (2002-05)

48. StringlLength ::= LengthKeyword " (" SingleConstExpression [".." UpperBound] ")"
49. /* STATIC SEMANTICS - StringlLength shall only be used with String types or to limt set of and
record of. SingleConstExpression and UpperBound shal |l evaluate to non-negative integer values (in

case of UpperBound including infinity) */LengthKeyword ::= "length"
50. PortType ::= [G obal Mbdul el d Dot] Port Typel dentifier
51. PortDef ::= PortKeyword Port Def Body
52. PortDefBody ::= PortTypeldentifier PortDefAttribs
53. PortKeyword ::= "port"
54. PortTypeldentifier ::= Identifier
55. PortDefAttribs ::= MessageAttribs | ProcedureAttribs | MxedAttribs
56. MessageAttribs ::= MessageKeyword
Begi nChar
{MessageLi st [Sem Col on] }+
EndChar
57. Messagelist ::= Direction Al O Typeli st
58. Direction ::= |InParKeyword | QutParKeyword | |nCQutPar Keyword
59. MessageKeyword ::= "nmessage"
60. Al O TypeList ::= All Keyword | Typeli st
61. All Keyword ::= "all"
62. TypelList ::= Type {"," Type}
63. ProcedureAttribs ::= ProcedureKeyword
Begi nChar
{ProcedurelList [Sem Colon]}+
EndChar
64. ProcedureKeyword ::= "procedure"
65. ProcedurelList ::= Direction Al O Signatureli st
66. Al OrSignatureList ::= Al Keyword | Signaturelist
67. SignatureList ::= Signature {"," Signature}
68. M xedAttribs ::= M xedKeyword
Begi nChar
{M xedLi st [Semni Colon]}+
EndChar
69. M xedKeyword ::= "m xed"
70. M xedList ::= Direction ProcOr Typeli st
71. ProcOrTypeList ::= Al Keyword | (ProcOrType {"," ProcOr Type})
72. ProcOrType ::= Signature | Type
73. Conponent Def ::= Conponent Keyword Conponent Typeldentifier
Begi nChar
[Component Def Li st]
EndChar
74. Conponent Keyword ::= "conponent"
75. Conponent Type :: = [@ obal Modul el d Dot] Conponent Typel dentifier
76. Conponent Typeldentifier ::= ldentifier
77. Component Def Li st ::= {Conponent El ement Def [Semi Col on]}
78. Conponent El ement Def ::= Portlnstance | Varlnstance | Tinmerlnstance | Const Def
79. Portlnstance ::= PortKeyword Port Type PortEl enent {"," PortEl ement}
80. PortElement ::= Portldentifier [ArrayDef]
81. Portldentifier ::= ldentifier
A.1.6.1.2 Constant definitions
82. ConstDef ::= ConstKeyword Type ConstLi st
83. ConstList ::= SingleConstDef {"," SingleConstDef}
84. Singl eConstDef ::= Constldentifier [ArrayDef] AssignnentChar Constant Expression

/* STATI C SEMANTI CS - The Val ue of the Constant Expression shall be of the same type as the stated
type for the constant s */

85. ConstKeyword ::= "const"

86. Constldentifier ::= ldentifier

A.1.6.1.3 Template definitions

87. Tenpl ateDef ::= Tenpl at eKeyword BaseTenpl ate [DerivedDef] Assignment Char Tenpl at eBody
88. BaseTenplate ::= (Type | Signature) Tenplateldentifier ["(" Tenpl ateFormal ParList ")"]

89. Tenpl at eKeyword ::= "tenpl ate”

90. Tenplateldentifier ::= Identifier

91. DerivedDef ::= ModifiesKeyword Tenpl at eRef

92. ModifiesKeyword ::= "nodifies"

93. Tenpl at eFor mal Par Li st ::= Tenpl ateFormal Par {"," Tenpl at eFor mal Par}

94. Tenpl ateFormal Par ::= Formal Val uePar | For mal Tenpl at ePar

/* STATI C SEMANTI CS - Formal Val uePar shall resolve to an in paranmeter */

95. Tenpl ateBody ::= SinpleSpec | FieldSpecList | ArrayValueOrAttrib

/* STATIC SEMANTICS - Wthin Tepl ateBody the ArrayVal ueOAttrib can be used for array, record,
record of and set of types. */

96. Sinpl eSpec ::= SingleValueOAttrib

97. FieldSpecList ::="{"[FieldSpec {"," FieldSpec}] "}"

98. FieldSpec ::= Fiel dReference Assignnment Char Tenpl at eBody
99. FieldReference ::= StructFieldRef | ArrayOBitRef | ParRef
100. StructFieldRef ::= StructFieldldentifier

ETSI

136 ETSI ES 201 873-1 V2.2.0 (2002-05)

101. ParRef ::= SignatureParldentifier

/* OPERATI ONAL SEMANTI CS - SignatureParldentifier shall be a fornal paraneter Identifier fromthe
associ ated signature definition */

102. SignatureParldentifier ::= ValueParldentifier

103. ArrayOrBitRef ::= "[" FieldO BitNunber "]"

[* STATI C SEMANTICS - ArrayRef shall be optionally used for array types and ASN.1 SET OF and
SEQUENCE OF and TTCN record of and set of. The same notation can be used for a Bit reference inside
an ASN.1 or TTCN bitstring type */

104. Fi el dOBit Nunber ::= Singl eExpression
/* STATI C SEMANTI CS - Singl eExpression will resolve to a value of integer type */
105. SingleVal ueOrAttrib ::= Mat chi ngSynbol [ExtraMatchi ngAttributes] |

Si ngl eExpressi on [ExtraMatchi ngAttributes] |

Tenpl at eRef W t hPar Li st
[* STATI C SEMANTI C - Variableldentifier (accessed via singleExpression) may only be used in inline
tenpl ate definitions to reference variables in the current scope */

106. ArrayValueOrAttrib ::= "{" ArrayEl enent SpecList "}"
107. ArrayEl enent SpecLi st ::= ArrayEl enent Spec {"," ArrayEl enent Spec}
108. ArrayEl ement Spec ::= Not UsedSynbol | Tenpl at eBody
109. Not UsedSynbol ::= Dash
110. Matchi ngSynmbol ::= Conpl enment |
AnyVal ue |
AnyOrOnit |
Val ueOr AttribList |
Range |

BitStringMatch |
HexStringMatch |
Cctet StringWatch |
Char StringMatch |
Subset Mat ch |
Super set Mat ch

111. ExtraMatchingAttributes ::= LengthMatch | |fPresentMatch
112. BitStringwatch ::= """ {BinO Match} "'" "B"

113. BinO-Match ::= Bin | AnyValue | AnyOrOnt

114. HexStringhvatch ::="'" {HexOrMatch} "'" "H'

115. HexOrivatch ::= Hex | AnyValue | AnyOrOnmit

116. CctetStringMatch ::= """ {CctOrhvatch} "' "O

117. CctOrMatch ::= Cct | AnyValue | AnyOrOnmit

118. CharStringMatch ::= PatternKeyword Char StringVal ue

119. PatternKeyword ::= "pattern"

120. Conpl enent ::= Conpl ement Keyword Val uelLi st

121. Conpl enent Keyword ::= "conpl enent"

122. Val ueList ::= "(" Constant Expression {"," ConstantExpression} ")"
123. Subset Match ::= Subset Keyword Val ueli st

[* STATI C SEMANTI C - Subset matching shall only be used with the set of type */
124. Subset Keyword ::= "subset"

125. Superset Match ::= Superset Keyword Val ueli st

/* STATI C SEMANTI C - Superset matching shall only be used with the set of type */
126. Superset Keyword ::= "superset"

127. AnyValue ::="?"

128. AnyOrQmt ::= "*"

129. ValueOrAttribList ::="(" TenplateBody {"," Tenpl ateBody}+ ")"
130. LengthMatch ::= StringLength

131. IfPresentMatch ::= |fPresent Keyword

132. IfPresentKeyword ::= "ifpresent”

133. Range ::= "(" LowerBound ".." UpperBound ")"

134. LowerBound ::= Singl eConst Expression | Mnus InfinityKeyword
135. UpperBound ::= Singl eConst Expression | InfinityKeyword

/* STATI C SEMANTI CS - Lower Bound and UpperBound shall evaluate to types integer, char, universal
char or float. In case LowerBound or UpperBound eval uates to types char or universal char, only
Si ngl eConst Expressi on may be present */

136. InfinityKeyword ::= "infinity"

137. Tenpl atel nstance ::= | nLi neTenpl ate

138. Tenpl ateRef WthParList ::= [A obal Modul el d Dot] Tenpl ateldentifier [TenplateActual ParlList]
| Tenpl at ePar | dentifier

139. Tenpl ateRef ::= [G obal Modul el d Dot] Tenplateldentifier | TenplateParldentifier

140. InLineTenplate ::= [(Type | Signature) Colon] [DerivedDef AssignmentChar] Tenpl at eBody

[* STATI C SEMANTICS - The type field may only be omtted when the type is inplicitly unanbi gous */
141. Tenpl ateActual ParList ::= "(" Tenpl ateActual Par {"," Tenpl ateActual Par} ")"

142. Tenpl at eActual Par :: = Tenpl at el nst ance

[* STATI C SEMANTI CS - When the corresponding fornal paraneter is not of tenplate type the
Tenpl at el nstance production shall resolve to one or nore Singl eExpressions */

143. Tenpl ateOps ::= MatchOp | Val ueof Op

144. MatchQp ::= MatchKeyword "(" Expression "," Tenpl atel nstance")"

/* STATI C SEMANTICS - The type of the value returned by the expression nust be the sane as the
tenpl ate type and each field of the tenplate shall resolve to a single value */

145. MatchKeyword ::= "natch”
146. Val ueof Op ::= Val ueof Keyword " (" Tenpl at el nstance")"
147. Val ueof Keyword ::= "val ueof"

ETSI

137 ETSI ES 201 873-1 V2.2.0 (2002-05)

A.16.1.4 Function definitions

148. FunctionDef ::= FunctionKeyword Functionldentifier
"("[FunctionFormal ParList] ")" [RunsOnSpec] [ReturnType]

149. St at ement Bl ockFuncti onKeyword ::= "function"

150. Functionldentifier ::= ldentifier

151. FunctionFormal ParLi st ::= FunctionFornal Par {"," Functi onFor nmal Par}

152. FunctionFornal Par ::= Fornal Val uePar |

For mal Ti mer Par |
For mal Tenpl at ePar |
For mal Port Par

153. ReturnType ::= ReturnKeyword Type

154. ReturnKeyword ::= "return"

155. RunsOnSpec ::= RunsKeyword OnKeyword Conponent Type

156. RunsKeyword ::= "runs"

157. OnKeyword ::= "on"

159. MICKeyword ::= ntc

158. StatenentBlock ::= Begi nChar [FunctionSt at enent Or Def Li st] EndChar
160. FunctionStatenent O DeflList ::= {FunctionStatenment O Def [Sem Colon]}+
161. FunctionStatenent O Def ::= FunctionLocal Def |

FunctionLocal I nst |
Functi onSt at enent

162. FunctionLocal Inst ::= Varlnstance | Timerlnstance
163. FunctionLocal Def ::= Const Def
164. FunctionStatenent ::= ConfigurationStatements |

Ti mer Statenents |

Conmruni cati onSt at ements |
Basi cStatenments |

Behavi our St at ement s |
Verdict Statenents |

SUTSt at enent s

165. Functionlnstance ::= FunctionRef "(" [FunctionActual ParList] ")"
166. FunctionRef ::= [d obal Modul eld Dot] Functionldentifier
167. FunctionActual ParList ::= FunctionActual Par {"," FunctionActual Par}
168. FunctionActual Par ::= TinmerRef |

Tenpl at el nstance |

Port |

Conponent Ref

/* STATI C SEMANTI CS - When the corresponding fornal paraneter is not of tenplate type the
Tenpl at el nst ance production shall resolve to one or nore SingleExpressions i.e., equivalent to the
Expr essi on production */

A.1.6.15 Signature definitions

169. SignatureDef ::= SignatureKeyword Signatureldentifier
"("[SignatureFormal ParList] ")" [ReturnType | NoBl ockKeyword]
[Except i onSpec]

170. SignatureKeyword ::= "signature"

171. Signatureldentifier ::= Identifier

172. SignatureFornmal ParList ::= SignatureFormal Par {"," SignatureFormal Par}
173. SignatureFornal Par ::= For mal Val uePar

174. ExceptionSpec ::= Excepti onKeyword " (" ExceptionTypeList ")"

175. ExceptionKeyword ::= "exception"

176. ExceptionTypeList ::= Type {"," Type}

177. NoBl ockKeyword ::= "nobl ock"

178. Signature ::= [G obal Modul eld Dot] Signatureldentifier

A.1.6.1.6 Testcase definitions

179. TestcaseDef ::= TestcaseKeyword Testcaseldentifier
"("[TestcaseFornmal ParList] ")" ConfigSpec
180. St at enent Bl ockTest caseKeyword :: = "testcase"
181. Testcaseldentifier ::= Identifier
182. TestcaseFornmal ParLi st ::= TestcaseFornal Par {"," TestcaseFor nal Par}
183. TestcaseFor mal Par ::= Fornmal Val uePar |
For mal Tenpl at ePar
184. ConfigSpec ::= RunsOnSpec [Systenftpec]
185. Systentpec ::= SystenKeyword Component Type
186. SystenkKeyword ::= "systent
188. 187. Testcaselnstance ::= ExecuteKeyword "(" TestcaseRef "(" [TestcaseActual ParList] ")" [","
Ti merVal ue] ")"ExecuteKeyword ::= "execute"
189. TestcaseRef ::= [d obal Modul el d Dot] Testcaseldentifier
190. TestcaseActual ParList ::= TestcaseActual Par {"," TestcaseActual Par}

191. TestcaseActual Par ::=
Tenpl at el nst ance

ETSI

138 ETSI ES 201 873-1 V2.2.0 (2002-05)

[* STATI C SEMANTI CS - When the corresponding fornal paraneter is not of tenplate type the
Tenpl at el nst ance production shall resolve to one or nore SingleExpressions i.e., equivalent to the
Expression production */

A.1.6.1.7 Altstep definitions

192. AltstepDef ::= AltstepKeyword Al tstepldentifier
"("[Al tstepFormal ParList] ")" [RunsOnSpec]
Begi nChar
Al t st epLocal Def Li st
Al t Guar dLi st
EndChar
193. AltstepKeyword ::= "altstep"
194. Altstepldentifier ::= ldentifier
195. Al tstepFormal ParList ::= FunctionFormal ParLi st
[* STATIC SEMANTICS - all formal paranmeter nust be value parameters i.e., in paranmeters */
196. Al tstepLocal DefList ::= {AltstepLocal Def [Semni Col on]}
197. AltsteplLocal Def ::= Varlnstance | Tinmerlnstance | Const Def
198. Altsteplnstance ::= Al tstepRef "(" [FunctionActual ParList] ")"
199. AltstepRef ::= [d obal Moduleld Dot] Altstepldentifier

A.1.6.1.8 Import definitions

200. InportDef ::= I nmportKeyword | nportFronSpec (Al | WthExceptions | (Begi nChar I|nportSpec EndChar))
201. I nportKeyword ::= "inport"

202. Al WthExceptions ::= Al Keyword [Excepti onsDef]

203. ExceptionsDef ::= Excepti onKeyword Begi nChar Excepti onSpec EndChar

204. ExceptionKeyword ::= "except"

205. ExceptionSpec ::= {ExceptionEl ement [Seni Col on]}

[* STATI C SEMANTI CS: Any of the production conponents (Excepti onG oupSpec, ExceptionTypeDef Spec
etc.) may be present only once in the ExceptionSpec production */
206. ExceptionEl enent ::= Excepti onG oupSpec |

Excepti onTypeDef Spec |

Excepti onTenpl at eSpec |

Except i onConst Spec |

Excepti onTest caseSpec |

Excepti onAl t st epSpec |

Excepti onFuncti onSpec |

Except i onSi gnat ur eSpec |

Except i onPar anSpec

207. ExceptionG oupSpec ::= G oupKeyword (ExceptionG oupRefList | AllKeyword)
208. ExceptionTypeDef Spec ::= TypeDef Keyword (TypeRefList | All Keyword)

209. ExceptionTenpl ateSpec ::= Tenpl at eKeyword (Tenpl at eRef Li st | Al | Keywor d)
210. ExceptionConst Spec ::= Const Keyword (ConstRefList | Al Keyword)

211. ExceptionTestcaseSpec ::= TestcaseKeyword (TestcaseRefList | All Keyword)
212. ExceptionAltstepSpec ::= Al tstepKeyword (Al tstepRefList | AllKeyword)
213. ExceptionFunctionSpec ::= FunctionKeyword (FunctionRefList | AllKeyword)
214. ExceptionSignatureSpec ::= SignatureKeyword (SignatureRefList | AllKeyword)
215. ExceptionParanSpec ::= ParanKeyword (ParanRefList | Al Keyword)

216. | nportSpec ::= {1 mport El enrent [Semi Col on]}

217. InportEl ement ::= |nportG oupSpec |

| npor t TypeDef Spec |
| npor t Tenpl at eSpec |
| npor t Const Spec |
| npor t Test caseSpec |
I nport Al 't st epSpec |
| npor t Functi onSpec |
| npor t Si gnat ur eSpec |
| npor t Par anSpec
218. | nport Frontpec ::= FronKeyword Mddul el d [Recursi veKeywor d]
219. Moduleld ::= d obal Modul el d [LanguageSpec]
/* STATI C SEMANTI CS - LanguageSpec may only be onitted if the referenced nodul e contains TTCN 3
notation */
220. LanguageKeyword ::= "l anguage"
221. LanguageSpec ::= LanguageKeyword FreeText
222. dobal Moduleld ::= Mduleldentifier [Dot ObjectldentifierValue]
223. RecursiveKeyword ::= "recursive"
224. | nport G oupSpec ::= GoupKeyword (G oupRefList | Al G oupsWthException)
225. GoupReflList ::= Full Goupldentifier {"," FullGoupldentifier})
226. Al GoupsWthException ::= Al Keyword [Excepti onKeyword G oupRefList]
Ful |l Groupldentifier := Groupldentifier {Dot Groupldentifier} [ExceptionSpec]
227. ExceptionGoupReflList ::= ExceptionFull Goupldentifier {"," ExceptionFull Groupldentifier})
228. ExceptionFull Goupldentifier ::= Goupldentifier {Dot Goupldentifier}
228' . | nmport TypeDef Spec ::= TypeDef Keyword (TypeRefList | Al TypesWthException)
229. TypeRefList ::= TypeDefldentifier {"," TypeDefldentifier}
230. Al TypesWt hException ::= Al Keyword [Excepti onKeyword TypeRef Li st]
231. TypeDefldentifier ::= StructTypeldentifier |

ETSI

139 ETSI ES 201 873-1 V2.2.0 (2002-05)

EnuniTypel dentifier |
Port Typel dentifier |
Conponent Typel dentifier |
SubTypel dentifier
232. | nportTenpl ateSpec ::= Tenpl at eKeyword (Tenpl ateRefList | Al Tenpl sWthException)
233. TenplateRefList ::= Tenplateldentifier {"," Tenplateldentifier}
234. Al Tenpl sWthException ::= Al Keyword [Excepti onKeyword Tenpl at eRef Li st]
235. | nport Const Spec ::= ConstKeyword (ConstReflList | AllConstsWthException)
236. ConstReflList ::= Constldentifier {"," Constldentifier}
237. Al| ConstsWthException ::= Al Keyword [Excepti onKeyword Const Ref Li st]
238. InportAltstepSpec ::= AltstepKeyword (Al tstepReflList | Al Al tstepsWthException)
239. AltstepReflList ::= Altstepldentifier {"," Altstepldentifier}
240. Al AltstepsWthException ::= Al Keyword [Excepti onKeyword AltstepRefList]
241. | nport TestcaseSpec ::= TestcaseKeyword (TestcaseRefList | All TestcasesWthException)
242. TestcaseRefList ::= Testcaseldentifier {"," Testcaseldentifier}
243. Al | TestcasesWthException ::= Al Keyword [Excepti onKeyword Test caseRef Li st]
244. | nportFunctionSpec ::= FunctionKeyword (FuncionRefList) | AllFuncti onsWthException)
245. FunctionRefList ::= Functionldentifier {"," Functionldentifier}
246. Al | Functi onsWthException ::= Al Keyword [Excepti onKeyword Functi onRef Li st]
247. |nportSignatureSpec ::= SignatureKeyword (SignatureRefList | AllSignaturesWthException)
248. SignatureReflList ::= Signatureldentifier {"," Signatureldentifier}
249. Al| SignaturesWthException ::= Al Keyword [Excepti onKeyword Si gnat ureRefLi st]
250. | nport Parantspec ::= ParankKeyword (ParanRefList | AllParamAthException)
251. ParanRefList ::= Mdul eParldentifier {"," Mdul eParldentifier}
252. Al ParamN t hException ::= Al | Keyword [Excepti onKeyword Par anRef Li st]

A.1.6.1.9 Group definitions

253. GroupDef ::= G oupKeyword G oupldentifier
Begi nChar
[Modul eDefinitionsPart]
EndChar

254. G oupKeyword ::= "group"

255. Goupldentifier ::= ldentifier

A.1.6.1.10 External function definitions
256. ExtFunctionDef ::= ExtKeyword Functi onKeyword ExtFunctionldentifier "("[FunctionFormal ParList]
")" [ReturnType]

257. ExtKeyword ::= "external"
258. Ext Functionldentifier ::= ldentifier

A.1.6.1.11 External constant definitions

259. Ext ConstDef ::= ExtKeyword ConstKeyword Type Ext Constldentifier
260. ExtConstldentifier ::= ldentifier

A.1.6.1.12 Module parameter definitions

261. ParanDef ::= ParankKeyword "{" Mbdul eParList "}"

262. ParanKeyword ::= "paraneters”

263. Modul eParLi st ::= Mdul ePar {Seni Col on Modul ePar}

264. Modul ePar ::= Modul ePar Type Mbdul eParldentifier [AssignnentChar ConstantExpression] {","

Mbdul ePar | denti fi er [Assi gnnent Char Constant Expression]}

265. /* STATIC SEMANTICS - The Val ue of the Constant Expression shall be of the sane type as the
stated type for the Parameter */Nbdul eParType ::= Type

266. Modul eParldentifier ::= ldentifier

A.1.6.2 Control part

A.1.6.2.0 General

267. Modul eControl Part ::= Control Keyword
Begi nChar
Modul eCont r ol Body
EndChar
[WthStatenent] [Seni Col on]
268. Control Keyword ::= "control"
269. Modul eControl Body ::= [Control Statement O Def Li st]
271. 270. Control Statenent OrDefList ::= {Control St at enent O Def
[Semi Col on] } +Control Statenent O Def ::= FunctionLocal |l nst |

Control Statenent |
Funct i onLocal Def
272. Control Statement ::= TinmerStatenments |
Basi cStatenments |
Behavi our St at ement s |

ETSI

140 ETSI ES 201 873-1 V2.2.0 (2002-05)

SUTSt at enent s

A.1l6.21 Variable instantiation

273. Varlnstance ::= VarKeyword Type VarlLi st

274. VarlList ::= SingleVarlnstance {"," SingleVarlnstance}

275. SingleVarlnstance ::= Varldentifier [ArrayDef] [AssignmentChar Varlnitial Val ue]
276. Varlnitial Val ue ::= Expression

277. VarKeyword ::= "var"

278. Varldentifier ::= ldentifier

279. VariableRef ::= (Varldentifier | ValueParldentifier) [ExtendedFi el dRef erence]

A.1.6.2.2 Timer instantiation

280. Timerlnstance ::= Ti merKeyword Ti merLi st

281. TimerList ::= SingleTimerlnstance{"," SingleTi merlnstance}

282. SingleTinmerlnstance ::= Tinmerldentifier [ArrayDef] [AssignmentChar Ti merVal ue]
283. TinmerKeyword ::= "tinmer"

284. Timerldentifier ::= ldentifier

285. TimerVal ue ::= Singl eExpression

[* STATI C SEMANTI CS - Singl eExpression nust resolve to a value of type float */
286. TimerRef ::= Tinmerldentifier [ArrayOBitRef]|

TinmerParldentifier [ArrayOrBitRef]
A.1.6.2.3 Component operations

287. ConfigurationStatenents ::= Connect St at ement |
MapSt at emrent |
Di sconnect St at enent |
UnnmapSt at enent |
DoneSt at enent |
St art TCSt at enent |
St opTCSt at enent

288. ConfigurationQps ::= CreateQp | SelfQp | SystemOp | MICOp | Runni ngOp
289. CreateQp ::= Conponent Type Dot Creat eKeyword

290. SystenDp ::= SystenkKeyword

291. SelfOp ::= "self"

292. MICQp ::= MICKeyword

293. DoneStatenent ::= Conponentld Dot DoneKeyword

294. Componentld ::= Conponentldentifier | (AnyKeyword | All Keyword) Conponent Keyword
295. DoneKeyword ::= "done"

296. RunningQ ::= Conponentld Dot Runni ngKeyword

297. Runni ngKkeyword ::= "runni ng"

298. CreateKeyword ::= "create"

299. Connect Statenent ::= Connect Keyword Port Spec

300. Connect Keyword ::= "connect"

301. PortSpec ::= "(" PortRef "," PortRef ")"

302. PortRef ::= ConponentRef Col on Port

303. Component Ref ::= Componentldentifier | System® | SelfOp | MICOp

304. DisconnectStatenment ::= Disconnect Keyword Port Spec

305. DisconnectKeyword ::= "disconnect"

306. MapStatement ::= MapKeyword Port Spec

307. MapKeyword ::= "nap"

308. UnmapStatenent ::= UnmapKeyword Port Spec

309. UnmapKeyword ::= "unmap"

310. StartTCStatenent ::= Conponentldentifier Dot StartKeyword "(" Functionlnstance ")"

/* STATI C SEMANTI CS the Function instance may only have in paranmeters */

/* STATI C SEMANTI CS the Function instance shall not have tiner paraneters */

311. StartKeyword ::= "start"

312. StopTCsStatenent ::= StopKeyword | Conponentldentifier Dot StopKeyword |
Al | Keywor d Conponent Keyword Dot St opKeywor d

313. Conponentldentifier ::= VariableRef | Functionlnstance

/* STATI C SEMANTI CS the variabl e associated with Variabl eRef or the Return type associated with
Functi onl nstance nust be of conponent type */

A.1.6.2.4 Port operations

314. Port ::= (Portldentifier | PortParldentifier) [ArrayO BitRef]
315. Communi cati onStatenents ::= SendSt at enent |

Cal | Statenent |

Repl ySt at ement |

Rai seSt at enent |

Recei veSt at enent |

Tri gger St atenent |

Cet Cal | St at emrent |

ETSI

141 ETSI ES 201 873-1 V2.2.0 (2002-05)

CGet Repl ySt at emrent |
Cat chSt at ement |
CheckSt at ement |

Cl ear St at ement |
Start Statenment |

St opSt at enent

316. SendStatenent ::= Port Dot PortSendOp

317. PortSendQp ::= SendOpKeyword " (" SendParaneter ")" [ToCd ause]
318. SendOpKeyword ::= "send"

319. SendParaneter ::= Tenpl at el nstance

320. ToCd ause ::= ToKeyword Addr essRef

321. ToKeyword ::= "to"

322. AddressRef ::= VariableRef | Functionlnstance

[* STATI C SEMANTI CS - Vari abl eRef and Functionlnstance return nust be of address or conponent type
*/

323. Cal |l Statenent Port Dot PortCall Op [PortCall Body]

324. PortCall Op ::= Cal I OpKeyword "(" CallParanmeters ")" [Tod ause]
325. Cal | OpKeyword ::= "cal I "
326. Cal | Parameters ::= Tenplatelnstance ["," Call Ti merVal ue]
/* STATI C SEMANTI CS only out paraneters rTay be omited or specified with a matching attribute */
327. Call TimerValue ::= TinmerValue | NowaitKeyword
/* STATI C SEMANTI CS Val ue nust be of type float */
328. Nowait Keyword ::= "nowait"
329. PortCallBody ::= Begi nChar
Cal | BodySt at enent Li st
EndChar
330. Cal | BodyStatenentList ::= {Call BodyStatenment [Sem Colon]}+
331. CallBodyStatenent ::= Call BodyGuard StatenentBl ock
332. Call BodyGuard ::= Al tGuardChar Call BodyQps
333. Cal | BodyOps ::= CetRepl yStatenent | CatchStatenent
334. ReplyStatenent ::= Port Dot PortRepl yQp
335. PortReplyQp ::= ReplyKeyword " (" Tenpl atel nstance [ReplyValue]")" [Tod ause]
336. Repl yKeyword ::= "reply"
337. ReplyVal ue ::= Val ueKeyword Expression
338. RaiseStatenent ::= Port Dot PortRai seCp
339. PortRaise(::= RaiseKeyword "(" Signature "," Tenplatelnstance ")" [ToCd ause]
340. Rai seKeyword ::= "raise"
341. ReceiveStatenment ::= PortO Any Dot PortRecei veQp
342. PortOrAny ::= Port | AnyKeyword Port Keyword
343. PortReceive® ::= ReceiveKeyword ["(" ReceiveParameter ")"] [FronC ause] [PortRedirect]
[* STATI C SEMANTI CS: the Port Redirect option may only be present if the ReceiveParaneter option is

al so present */

344. ReceiveQpKeyword ::= "receive"

345. ReceiveParaneter ::= Tenpl at el nstance

346. FronO ause ::= FronKeyword AddressRef

347. FronKeyword ::= "front

348. PortRedirect ::= PortRedirectSynbol (ValueSpec [SenderSpec] | Sender Spec)
349. PortRedirectSynbol ::="->"

350. Val ueSpec ::= Val ueKeyword Vari abl eRef

351. Val uekKeyword ::= "val ue"

352. Sender Spec ::= Sender Keyword Vari abl eRef

/* STATI C SEMANTI C Vari abl e ref nust be of address or conponent type */

353. Sender Keyword ::= "sender"

354, TriggerStatenent ::= PortOrAny Dot PortTrigger Qp

355. PortTriggerQp ::= Trigger OpKeyword ["(" ReceiveParameter ")"] [FronC ause] [PortRedirect]

/* STATI C SEMANTI CS: the PortRedirect option may only be present if the ReceiveParanmeter option is
al so present */

356. Trigger OpKeyword ::= "trigger"
357. GetCal |l St atenment = PortOrAny Dot PortCetCal |l Op
358. PortGetCall Op ::= GetCall OpKeyword ["(" ReceiveParanmeter ")"] [FronC ause]

[Port Redi rect Wt hPar anj
[* STATI C SEMANTI CS: the PortRedirect WthParam option may only be present if the ReceiveParaneter
option is also present */

359. GetCall OpKeyword ::= "getcal "
360. PortRedirect WthParam :: = PortRedirect Synbol Redirect Spec
361. RedirectSpec ::= ValueSpec [ParaSpec] [SenderSpec] |
Par aSpec [Sender Spec] |
Sender Spec
362. ParaSpec ::= ParaKeyword ParaAssi gnment Li st
363. ParaKeyword ::= "parant
364. ParaAssignmentlList ::="(" (AssignmentList | VariableList) ")"
365. AssignmentList ::= Variabl eAssignment {"," Variabl eAssi gnnent}
366. Vari abl eAssignment ::= Variabl eRef Assignment Char Paraneterldentifier

[* STATI C SEMANTICS: the paraneterldentifiers nust be fromthe corresponding signature definition */
367. Paraneterldentifier ::= ValueParldentifier |

Ti mer Parl dentifier |

Tenpl ateParl dentifier |

Port Par |l dentifier

ETSI

142 ETSI ES 201 873-1 V2.2.0 (2002-05)

368. VariableList ::= VariableEntry {"," VariableEntry}

369. VariableEntry ::= Variabl eRef | NotUsedSynbol

370. GetReplyStatenment ::= Port O Any Dot Port Get Repl yOp

371. PortGetReplyQp ::= Get Repl yOpKeyword [" (" Recei veParaneter [Val ueMatchSpec] ")"]

[FronCl ause] [Port Redirect Wt hParani
[* STATI C SEMANTICS: the PortRedirectWthParam option may only be present if the ReceiveParaneter
option is also present */

372. GetRepl yOpKeyword ::= "getreply"

373. Val ueMat chSpec ::= Val ueKeyword Tenpl at el nst ance

374. CheckStatenent ::= PortOrAny Dot Port CheckOp

375. PortCheckQp ::= CheckOpKeyword ["(" CheckParaneter ")"]

376. CheckOpKeyword ::= "check"

377. CheckParaneter ::= CheckPort OpsPresent | FronC ausePresent | RedirectPresent
378. CheckPort OpsPresent ::= CheckPortQps [FronC ause] [PortRedirectSynbol Sender Spec]
379. FronO ausePresent ::= FronCl ause [PortRedirect Synmbol Sender Spec]

380. RedirectPresent ::= PortRedirectSynbol Sender Spec

381. CheckPortQps ::= PortReceiveQp | PortGetCall Op | PortGetReplyQp | PortCatchOp
382. CatchStatenent ::= PortOrAny Dot Port CatchQp

383. PortCatchQp ::= CatchOpKeyword [" (" CatchQpParaneter ")"] [FronC ause] [PortRedirect]

/* STATI C SEMANTI CS: the PortRedirect option may only be present if the CatchQpParaneter option is
al so present */

384. CatchOpKeyword ::= "catch"

385. CatchOpParaneter ::= Signature "," Tenpl atel nstance | Ti neout Keyword
386. ClearStatenment ::= PortOAll Dot PortC earOp

387. PortOAll ::= Port | Al Keyword PortKeyword

388. Portd earQ ::= O ear OpKeyword

390. 389. ClearOpKeyword ::= clearStartStatement ::= PortOrAll Dot PortStartQp
391. PortStartQp ::= StartKeyword

392. StopStatement ::= PortOrAll Dot PortStopOp

393. PortStopOp ::= StopKeyword

395. StopKeyword ::= "stop"

394. AnyKeyword ::= "any"

A.1.6.25 Timer operations

396. TinmerStatements ::= StartTinmerStatenent | StopTinmerStatenment | Ti meout St at ement
397. TimerOps ::= ReadTimerOp | Runni ngTi ner Op

398. StartTinmerStatement ::= TinmerRef Dot StartKeyword ["(" TinerValue ")"]
399. StopTinmerStatement ::= TimerRef O All Dot StopKeyword

400. TimerRefOAll ::= TimerRef | Al Keyword Ti mer Keywor d

401. ReadTimerOQp ::= TimerRef Dot ReadKeyword

402. ReadKeyword ::= "read"

403. RunningTimerQp ::= TimerRef O Any Dot Runni ngKeyword

404. Timeout Statenent ::= TinerRefOr Any Dot Ti neout Keyword

405. TimerRef OrAny ::= TinmerRef | AnyKeyword Ti mer Keywor d

406. Ti meout Keyword ::= "timeout"

A.1.6.3 Type

407. Type ::= PredefinedType | ReferencedType

408. PredefinedType ::= BitStringKeyword |

Bool eanKeyword |

Char Stri ngKeyword |
Uni versal CharString |
Char Keyword |

Uni ver sal Char |

| nt eger Keyword |
Cctet StringKeyword |
bj ectldentifierKeyword |
HexStri ngKeyword |
Ver di ct TypeKeyword |
Fl oat Keyword |

Addr essKeyword |
Def aul t Keyword |
AnyTypeKeywor d
409. BitStringKeyword ::= "bitstring"
410. Bool eanKeyword ::= "bool ean"
411. IntegerKeyword ::= "integer"
412. CctetStringKeyword ::= "octetstring”
413. ojectldentifierKeyword ::= "objid"
414. HexStringKeyword ::= "hexstring"
415. Verdict TypeKeyword ::= "verdicttype"
416. Fl oat Keyword ::= "float"
417. AddressKeyword ::= "address"
418. Defaul t Keyword ::= "defaul t"
419. AnyTypeKeyword ::= "anytype"
420. Char StringKeyword ::= "charstring"

ETSI

143 ETSI ES 201 873-1 V2.2.0 (2002-05)

421. Universal CharString ::= Universal Keyword Char Stri ngkeyword

422. Universal Keyword ::= "universal"

423. CharKeyword ::= "char"

424. Universal Char ::= Universal Keyword Char Keyword

425. ReferencedType ::= [G obal Modul el d Dot] TypeRef erence [ExtendedFi el dRef erence]
426. TypeReference ::= StructTypeldentifier[TypeActual ParList] |

EnuniTypel dentifier |
SubTypel dentifier |
Conponent Typel denti fier

427. TypeActual ParList ::= "(" TypeActual Par {"," TypeActual Par} ")"
428. TypeActual Par ::= Constant Expression

429. ArrayDef ::={"[" ArrayBounds [".." ArrayBounds] "]"}+

430. ArrayBounds ::= Singl eConst Expressi on

/* STATI C SEMANTICS - ArrayBounds will resolve to a non negative value of integer type */

A.1.6.4 Value
431. Val ue ::= PredefinedVal ue | ReferencedVal ue
432. Predefinedvalue ::= BitStringVal ue |

Bool eanVal ue |

Char StringVal ue |

I nt eger Val ue |

Cct et StringVal ue |

oj ectl dentifierValue |
HexStri ngVal ue |

Ver di ct TypeVal ue |
Enurer at edVal ue |

Fl oat Val ue |
Addr essVal ue |
QOri t Val ue
433. BitStringValue ::= Bstring
434. Bool eanValue ::= "true" | "fal se"
435. | ntegerVal ue ::= Nunber
436. CctetStringValue ::= Gstring
437. ojectldentifierValue ::= ObjectldentifierKeyword "{" CbjldConponentlList "}"
/* ReferencedVal ue nust be of type object ldentifer */
438. oj | dConponent Li st ::= {Ooj | dConmponent } +
439. nj | dConponent :: = NameForm |
Nurber Form |

NameAndNumber For m
440. Nunber Form ::= Nunmber | ReferencedVal ue
/* STATI C SEMANTI CS - referencedVal ue nust be of type integer and have a non negative Val ue */

441. NameAndNunmber Form ::= Identifier NunberForm

442. NameForm ::= ldentifier

443. HexStringValue ::= Hstring

444. VerdictTypeValue ::= "pass" | "fail" | "inconc" | "none" | "error"

445. Enuner atedVal ue ::= Enunerationldentifier

446. CharStringValue ::= Cstring | Quadruple

447. Quadruple ::= CharkKeyword "(" Goup "," Plane "," Row "," Cell ")"

448. Group ::= Nunber

449. Pl ane ::= Nunber

450. Row ::= Nunber

451. Cell ::= Nunber

452. Fl oatVal ue ::= Fl oat Dot Notati on | Fl oat ENotati on

453. Fl oat Dot Not ation ::= Nunber Dot Deci mal Nurber

454, Fl oat ENotation ::= Nunmber [Dot Deci mal Nunber] Exponential [M nus] Nunber
455. Exponential ::="E"

456. ReferencedVal ue ::= Val ueRef erence [Ext endedFi el dRef er ence]

457. Val ueReference ::= [G obal Mbdul el d Dot] (Constldentifier | ExtConstldentifier) |

Val uePar I dentifier |
Modul ePar | dentifier |
Var | dentifier

458. Nunber ::= (NonZeroNum {Nun}) | "0"

459. NonZeroNum::= "1" | "2" | "3" | "4" | "5" | "é" | "7" | "8" | "9"

460. Deci mal Number ::= {Nun}

461. Num::= "0" | NonZer oNum

462. Bstring ::="'"" {Bin} "'" "B"

463. Bin ::="0" | "1"

464. Hstring ::= """ {Hex} "'" "H'

465. Hex ::= Num| "A' | "B" | "C' | "D'"| "E'"| "F'| "a" | "b" | "c" | "d" | "e" | "f"
466. Cstring ::="'" {Cct} "'" "O

467. Cct ::= Hex Hex

468. Cstring ::= """ {Char}

469. Char ::=/* REFERENCE - A character defined by the relevant CharacterString type. For

charstring a character fromthe character set defined in I SOIEC 646. For universal charstring a
character fromany character set defined in | SO |EC 10646 */
470. ldentifier ::= A pha{A phaNum | Underscore}

ETSI

144 ETSI ES 201 873-1 V2.2.0 (2002-05)

471. Al pha ::= Upper A pha | LowerAl pha

472. A phaNum ::= Al pha | Num

473. UpperAlpha ::="A" | "B" | "C" | "D" | "E" | "F" | "G | "H | "1™ | "3 | "K' | "L" | "M |
SN MO P Q| RS | U VWX |ty |

474. LowerAl pha ::="a" | "b" | "c¢" | "d" | "e" | “f" | "g" | "h" | “i" | “"j" | "k" | "1™ | "o |
S T B e O Ot I I B S S G L

475. ExtendedAl phaNum ::= /* REFERENCE - A graphical character fromthe BASIC LATIN or fromthe

LATI N-1 SUPPLEMENT character sets defined in I SO | EC 10646 (characters fromchar (0,0,0,33) to char
(0,0,0,126), fromchar (0,0,0,161) to char (0,0,0,172) and fromchar (0,0,0,174) to char (0,O0,Q0, 255)
*/

476. FreeText ::= """ {ExtendedAl phaNun} """
477. AddressValue ::= "null"

478. QOmtValue ::= OritKeyword

479. QOmtKeyword ::= "omt"

A.1.6.5 Parameterization

480. | nParKeyword ::= "in"

481. Qut Par Keyword ::= "out"

482. | nCut Par Keyword ::= "inout"

483. Formal Val uePar ::= [(|nParKeyword | |nQutParKeyword | QutParKeyword)] Type Val ueParldentifier
484. Val ueParldentifier ::= ldentifier

485. Fornal PortPar ::= [l nCut Par Keyword] PortTypeldentifier PortParldentifier

486. PortParldentifier ::= ldentifier

487. Formal TimerPar ::= [|nQutPar Keyword] Ti mer Keyword Ti merParldentifier

488. TimerParldentifier ::= ldentifier

489. Fornual Tenpl atePar ::= [| nPar Keyword] Tenpl at eKeyword Type Tenpl at ePar | dentifier
490. Tenpl ateParldentifier ::= ldentifier

A.1.6.6 With statement

491. WthStatenment ::= WthKeyword WthAttribLi st

492. WthKeyword ::= "with"

493. WthAttribList ="{" MiltiWthAttrib "}"

494, MultiWthAttrib ::= {SingleWthAttrib [Sem Colon]}+

495. SingleWthAttrib ::= Attri bKeyword [OverrideKeyword] [AttribQualifier] AttribSpec
496. AttribKeyword ::= EncodeKeyword |

Vari ati onKeyword |
Di spl ayKeyword |
Ext ensi onKeywor d

497. EncodeKeyword ::= "encode"

498. Vari ati onKeyword ::= "variant"

499. DisplayKeyword ::= "display"

500. ExtensionKeyword ::= "extension"

501. OverrideKeyword ::= "override"

502. AttribQualifier ::="(" DefOFieldRefList ")"

503. Def O FieldRefList ::= DefOrFieldRef {"," DefOFieldRef}

504. DefOFieldRef ::= DefinitionRef | FieldReference | All Ref | PredefinedType

[* STATI C SEMANTICS: the Def OrFiel dRef nust refer to a definition or field which is within the
nmodul e, group or definition to which the with statenment is associated */
505. DefinitionRef ::= StructTypeldentifier |
EnuniTypel dentifier |
Port Typel dentifier |
Conponent Typel dentifier |
SubTypel dentifier |
Constldentifier |
Tenpl atel dentifier |
Altstepldentifier |
Testcasel dentifier |
Functionldentifier |
Signatureldentifier |
Ful | G oupldentifier
506. AllRef ::= Al GoupsWthException |
Al | TypesW t hException |
Al | Tenpl sWt hException |
| Const sWt hException |
| Al tstepsWthException |
| Test casesWt hException |
| Functi onsWt hException |
| Si gnat uresWt hException |
| Par amN/ t hExcepti on
507. AttribSpec ::= FreeText

Al
A
Al
Al
Al
Al

ETSI

145 ETSI ES 201 873-1 V2.2.0 (2002-05)

A.1.6.7 Behaviour statements

508. Behavi our Statenents ::= Test casel nst ance
Functi onl nst ance |
Ret ur nSt at ement |
Al t Construct |
I nterl eavedConstruct |
Label St at ement |
Cot oSt at emrent |
Repeat St at enent Deacti vat eSt at enent |
Al t st epl nstance/* STATI C SEMANTI CS: Testcasel nstance shall not be called fromwthin
an exi sting executing testcase or function chain called froma testcase i.e., testcases can only be
instantiated fromthe control part or fromfunctions directly called fromthe control part */
509. VerdictStatements ::= SetlLocal Verdi ct
510. VerdictQps ::= GetLocal Verdi ct
511. SetlLocal Verdict ::= SetVerdi ctKeyword "(" SingleExpression ")"
[* STATI C SEMANTI CS - Si ngl eExpression nmust resolve to a value of type verdict */

/* STATI C SEMANTI CS - the SetlLocal Verdict shall not be used to assign the Value error */
512. SetVerdi ct Keyword ::= "setverdict"

513. GetlLocal Verdict ::= "getverdict"

514. SUTStatements ::= Acti onKeyword " (" (FreeText | Tenpl ateRef WthParList) ")"

515. ActionKeyword ::= "action"

516. ReturnStatenent ::= ReturnKeyword [Expression]

517. AltConstruct ::= Al tKeyword Begi nChar AltGuardLi st EndChar

518. AltKeyword ::= "alt"

519. AltCuardList ::= {GuardStatement [Sem Colon]}+ [ElseStatenent [Sem Col on]]
520. GuardStatenent ::= AltGuardChar (Al tsteplnstance | GuardQOp Statenent Bl ock)
521. ElseStatenment ::= "["El seKeyword "]" StatenentBl ock

521. AltQuardChar ::= "[" [Bool eanExpression] "]"

523. GuardQp ::= Ti meout St at enent |

Recei veSt at enent |

Trigger Statenent |

Get Cal | St at ement |

Cat chSt at enent |

CheckSt at enent |

Get Repl ySt at ement |

DoneSt at enent
[* STATI C SEMANTI CS - GuardOp used within the nodule control part. May only contain the
timeout St at ement */

524, InterleavedConstruct ::= InterleavedKeyword Begi nChar |nterleavedGuardLi st EndChar
525. Interl eavedkeyword ::= "interl eave"

526. InterleavedGuardList ::= {Interl eavedGuardEl ement [Sem Col on]}+

527. Interl eavedQuardEl enment ::= Interl eaved@ard |nterleavedAction

528. InterleavedGard ::="[" "]" QuardQp

529. InterleavedAction ::= StatenentBl ock

[* STATI C SEMANTI CS - the StatenentBl ock may not contain | oop statements, goto, activate,
deactivate, stop, return or calls to functions */

530. Label Statenent ::= Label Keyword Label I dentifier

531. Label Keyword ::= "Il abel "

532. Labelldentifier ::= ldentifier

533. CotoStatenment ::= GotoKeyword Label Identifier

534. GotoKeyword ::= "goto"

535. Repeat Statenment ::= "repeat"

536. ActivateQp ::= ActivateKeyword "(" Al tsteplnstance ")"

537. ActivateKeyword ::= "activate"

538. DeactivateStatement ::= DeactivateKeyword ["(" Expression ")"]
[* STATI C SEMANTI CS expression shall evaluate to a value of default type */
539. DeactivateKeyword ::= "deactivate"

A.1.6.8 Basic statements

540. BasicStatenents ::= Assignnment | LogStatenent | LoopConstruct | Conditional Construct

541. Expression ::= Singl eExpression | ConpoundExpression

/* STATI C SEMANTI CS - Expression shall not contain Configuration, activate operation or verdict
operations within the nodul e control part */

542. ConpoundExpression ::= Fi el dExpressionList | ArrayExpression

[* STATI C SEMANTI CS - Wt hin ConmpoundExpression the ArrayExpressioncan be used for Arrays, record,
record of and set of types. */

543. Fi el dExpr essi onLi st "{" Fiel dExpressionSpec {"," Fiel dExpressionSpec} "}"

544, Fi el dExpressi onSpec ::= Fi el dReference Assi gnnment Char Expression

545. ArrayExpression ::= "{" [ArrayEl ement ExpressionList] "}"

546. ArrayEl ement ExpressionLi st ::= NotUsedOr Expression {"," NotUsedOr Expression}
547. Not UsedOr Expression ::= Expression | NotUsedSynbol

548. Const ant Expression ::= Singl eConst Expressi on | ConpoundConst Expressi on

549. Singl eConst Expression ::= Singl eExpression

ETSI

146 ETSI ES 201 873-1 V2.2.0 (2002-05)

/* STATI C SEMANTI CS - Singl eConst Expression shall not contain Variables or Mdule paraneters and
shall resolve to a constant Value at conpile time */

550. Bool eanExpression ::= Singl eExpression
/* STATI C SEMANTI CS - Bool eanExpression shall resolve to a Value of type Bool ean */
551. ConpoundConst Expression :: = Fi el dConst Expressi onLi st | ArrayConst Expression

[* STATI C SEMANTICS - W thin ConpoundConst Expression the ArrayConst Expression can be used for
Arrays, record, record of and set of types. */

552. Fi el dConst ExpressionList ::= "{" FieldConstExpressionSpec {"," FieldConstExpressionSpec} "}"
553. Fi el dConst Expressi onSpec :: = Fi el dRef erence Assi gnnment Char Const ant Expr essi on

554. ArrayConst Expression ::= "{" [ArrayEl ement Const ExpressionList] "}"

555. ArrayEl enent Const Expressi onLi st ::= ConstantExpression {"," Constant Expression}

556. Assignment ::= Variabl eRef AssignnmentChar Expression

/* OPERATI ONAL SEMANTI CS - The Expression on the RHS of Assignment shall evaluate to an explicit
Val ue of the type of the LHS. */

557. Singl eExpression ::= Sinpl eExpression {Logical Op Sinpl eExpression}

[* OPERATI ONAL SENMANTICS - |f both Sinpl eExpressions and the Logical Op exist then the

Si npl eExpressi ons shall evaluate to specific values of conpatible types */

558. Sinpl eExpression ::= [not] SubExpression

/* OPERATI ONAL SEMANTI CS - Operands of the not operator shall be of type boolean (TTCN or ASN. 1) or
derivatives of type Bool ean. */

559. SubExpression ::= Partial Expression [Rel Op Parti al Expression]

/* OPERATI ONAL SEMANTICS - |If both Partial Expressions and the Rel Op exist then the

Parti al Expressions shall evaluate to specific values of conpatible types. */

/* OPERATIONAL SEMANTICS - If RelQp is "<" | ">" | ">=" | "<=" then each SubExpression shall
evaluate to a specific integer, Enunerated or float Value (these values can either be TTCN or ASN. 1
val ues) */

560. Partial Expression ::= Result [ShiftQp Result]

/* OPERATI ONAL SEMANTI CS - Each Result shall resolve to a specific Value. If nore than one Result
exi sts the right-hand operand shall be of type integer and if the shift opis '<<' or '>> then the
| eft-hand operand shall resolve to either bitstring, hexstring or octetstring type. If the shift op
is '<@ or '@' then the left-hand operand shall be of type bitstring, hexstring, charstring or

uni versal charstring */

561. Result ::= SubResult {BitOp SubResult}

/* OPERATI ONAL SEMANTICS - |If both SubResults and the BitOp exist then the SubResults shall evaluate
to specific values of conpatible types */

562. SubResult ::= [not4b] Product

/* OPERATI ONAL SEMANTICS - If the not4b operator exists, the operand shall be of type bitstring,
octetstring or hexstring. */

563. Product ::= Term {AddOp Terni

/* OPERATI ONAL SEMANTICS - Each Termshall resolve to a specific Value. |f nore than one Term exists
then the Terns shall resolve to type integer or float. */

564. Term::= Factor {MiltiplyOp Factor}

/* OPERATI ONAL SEMANTI CS - Each Factor shall resolve to a specific Value. If nore than one Factor
exists then the Factors shall resolve to type integer or float. */

565. Factor ::= [UnaryQp] Primary
/* OPERATI ONAL SEMANTICS - The Prinary shall resolve to a specific Value. If UnaryOp exists and is
"not" then Primary shall resolve to type BOOLEAN if the UnaryQp is "+" or "-" then Primary shall

resolve to type integer or float. If the UnaryQp resolves to not4b then the Primary shall resolve to
the type bitstring, hexstring or octetstring. */
566. Primary ::= OpCall | Value | "(" SingleExpression ")"
567. ExtendedFi el dReference ::= {(Dot (StructFieldldentifier | ArrayOBitRef |
TypeDef I dentifier))}+
/* OPERATI ONAL SEMANTI C: The TypeDefldentifier shall be used only if the type of the Varlnstance or
Ref erencedVal ue in wich the ExtendedFi el dReference is used is anytype.
568. pCall ::= Configurati onQps |
Verdi ct Ops |
Ti mer Ops |
Test casel nstance |
Functi onl nst ance |

Tenpl at eOps |

ActivateOp
569. AddOp ::= "+" | "-" | StringOp
/* OPERATI ONAL SEMANTICS - Operands of the "+" or "-" operators shall be of type integer or
float(i.e., TTCN or ASN. 1 predefined) or derivations of integer or float (i.e., subrange) */
570. MultiplyQp ::="*" | "/" | "pod" | "renf

/* OPERATI ONAL SEMANTICS - Operands of the "*", "/", remor nod operators shall be of type integer
or float(i.e., TTCN or ASN. 1 predefined) or derivations of integer or float (i.e., subrange). */

571. UnaryQp ::= "+" | "-

/* OPERATI ONAL SEMANTICS - QOperands of the "+" or "-" operators shall be of type integer or
float(i.e., TTCN or ASN. 1 predefined) or derivations of integer or float (i.e., subrange). */
572. RelQp ::="==" | "<" | ">" | "I="] ">=" | "<="

/* OPERATI ONAL SEMANTICS - the precedence of the operators is defined in Table 7

*/

573. BitQp ::= "and4b" | "xor4b" | "or4b"

/* OPERATI ONAL SEMANTI CS - Operands of the and4b, or4b or xor4b operator shall be of type bitstring,
hexstring or octetstring (TTCN or ASN.1) or derivatives of these types. */

574. Logical O ::= "and" | "xor" | "or"

ETSI

147 ETSI ES 201 873-1 V2.2.0 (2002-05)

/* OPERATI ONAL SEMANTI CS - Operands of the and, or or xor operators shall be of type boolean (TTCN
or ASN. 1) or derivatives of type Boolean. */

/* OPERATI ONAL SEMANTICS - the precedence of the operators is defined in Table 7 */

575. StringQp ::="&"

/* OPERATI ONAL SEMANTI CS - Operands of the string operator shall be bitstring, hexstring,
octetstring or character string */

576. ShiftQp ::="<<" | ">>" | "<@ | "@"

577. LogStatenent ::= LogKeyword "(" [FreeText] ")"
578. LogKeyword ::= "l og"

579. LoopConstruct ::= ForStatenment |

Wi | eSt at enent |
DoWhi | eSt at enent

580. ForStatement ::= ForKeyword "(" Initial Sem Colon Final Sem Colon Step ")"
St at ement Bl ock

581. ForKeyword ::= for

582. Initial ::= Varlnstance | Assignnent

583. Final ::= Bool eanExpression

584. Step ::= Assignment

585. Wil eStatenent ::= Whi | eKeyword " (" Bool eanExpression ")"
St at erent Bl ock

586. Wil eKeyword ::= "while"

587. DoWil eStatement ::= DoKeyword StatenentBl ock
Wi | eKeyword " (" Bool eanExpression ")"

588. DoKeyword ::= "do"

589. Conditional Construct ::= | f Keyword " (" Bool eanExpression ")"

St at ement Bl ock
{El sel fd ause}[El sed ause]

590. |fKeyword ::=if

591. ElselfCd ause ::= El seKeyword |fKeyword "(" Bool eanExpression ")" StatenentBl ock
592. El seKeyword ::= "el se"

593. El sed ause ::= El seKeyword Statemnent Bl ock

A.1.6.9 Miscellaneous productions

594, Dot ::="."

595. Dash ::="-"

596. M nus ::= Dash
597. Semi Colon ::=";"
598. Colon ::= ":"

599. Underscore ::="_
600. Begi nChar ::= "{"
601. EndChar ::= "}"

602. AssignnentChar ::= ":="

ETSI

148 ETSI ES 201 873-1 V2.2.0 (2002-05)

Annex B (normative):
Matching incoming values

B.1 Template matching mechanisms

B.1.0 General

This annex specifies the matching mechanisms that may be used in TTCN-3 templates (and only in templates).

B.1.1 Matching specific values

Specific values are the basic matching mechanism of TTCN-3 templates. Specific values in templates are expressions
which do not contain any matching mechanisms or wildcards. Unless otherwise specified, atemplate field matches the
corresponding incoming field valueif, and only if, the incoming field value has exactly the same value as the value to
which the expression in the template eval uates.

EXAMPLE:

/1 Gven the nessage type definition
type record MyMessageType
{

i nt eger fieldl,
charstring field2,
bool ean field3 optional,

integer[4] field4

/1 A nessage tenplate using specific values could be
tenpl ate MyMessageType MyTenpl ate: =

fieldl := 3+2, /'l specific value of integer type
field2 := "My string", [/ specific value of charstring type
field3 := true, /'l specific value of boolean type
fieldd : = {1,2,3} /] specific value of integer array

}
B.1.2 Matching mechanisms instead of values

B.1.2.0 General

The following matching mechanisms may be used in place of explicit values.

B.1.2.1 Value list

Value lists specify lists of acceptable incoming values. It can be used on values of all types. A template field that uses a
value list matches the corresponding incoming field if, and only if, the incoming field value matches any one of the
valuesin the value list. Each valuein the value list shall be of the type declared for the template field in which this
mechanism is used.

EXAMPLE:
tenpl ate Mynmessage MyTenpl ate: =
{

fieldl :
field2 :

(2,4,6), /1 list of integer values
("Stringl", "String2"), /1 list of charstring val ues

ETSI

149 ETSI ES 201 873-1 V2.2.0 (2002-05)

B.1.2.2 Complemented value list

The keyword conpl enent denotesalist of values that will not be accepted asincoming values (i.e. it isthe
complement of avaluelist). It can be used on all values of all types.

Each value in the list shall be of the type declared for the template field in which the complement is used. A template
field that uses complement matches the corresponding incoming field if and only if the incoming field does not match
any of the valueslisted in the value list. The value list may be a single value, of course.

EXAMPLE:
tenpl ate Mynessage MyTenpl ate: =
{
conpl erent (1,3,5), // list of unacceptable integer val ues

field3 not (true) /1 will nmatch false

B.1.2.3 Omitting values

The keyword oni t denotes that an optional template field shall be absent. It can be used on values of all types,
provided that the template field is optional .

EXAMPLE:

tenpl ate Mymessage MyTenpl ate: =
{ :

1.‘ield3:=on”it, /1 omt this field

B.1.2.4 Any value

The matching symbol "?* (AnyValue) is used to indicate that any valid incoming value is acceptable. It can be used on
values of all types. A template field that uses the any value mechanism matches the corresponding incoming field if,
and only if, the incoming field evaluates to a single el ement of the specified type.

EXAMPLE:

tenpl ate Mynessage MyTenpl ate: =

fieldl := 2, /1 will match any integer

field2 := 2, /1 will match any non-enpty charstring val ue
field3 :=?, /1 will match true or false

fieldd := 7?2 /1 will match any sequence of integers

B.1.2.5 Any value or none

The matching symbol "*" (AnyValueOrNone) is used to indicate that any valid incoming value, including omission of
that value, is acceptable. It can be used on values of all types, provided that the template field is declared as optional.

A template field that uses this symbol matches the corresponding incoming field if, and only if, either the incoming
field evaluates to any element of the specified type, or if the incoming field is absent.

EXAMPLE:
tenpl ate Mynmessage MyTenpl ate: =
{ .

1.‘ield3 = * /1 will match true or false or omtted field

ETSI

150 ETSI ES 201 873-1 V2.2.0 (2002-05)

B.1.2.6 Value range

Ranges indicate a bounded range of acceptable values. It shall be used only on values of i nt eger types (and integer
sub-types). A boundary value shall be either:

a) infinity or -infinity;
b) an expression that eval uates to a specific integer value.

The lower boundary shall be put on the |eft side of the range, the upper boundary at the right side. The lower boundary
shall be less than the upper boundary. A template field that uses a range matches the corresponding incoming field if,
and only if, the incoming field value is equal to one of the valuesin the range.

EXAMPLE:
tenpl ate Mynessage MyTenpl ate: =

fieldl := (1 .. 6), // range of integer type

}
/1 other entries for fieldl might be (-infinity to 8) or (12 to infinity)

B.1.2.7 SuperSet

SuperSet is an operation for matching that shall be used only on valuesof r ecor d of andset of types. SuperSetis
denoted by the keyword super set . A field that uses SuperSet matches the corresponding incoming field if, and only
if, theincoming field contains at |east al of the elements defined within the SuperSet, and may contain more. The
argument of SuperSet shall be of the type declared for the field in which the SuperSet mechanism is used.

EXAMPLE:

type set of integer MySet Of Type;

tenpl ate MySet O0f Type MyTenpl atel : = superset (1, 2, 3);
/1 any sequence of integers matches which contains at |east one occurences of the nunbers
// 1, 2 and 3 in any order and positions

type record of integer MyRecordO Type;

tenpl ate MyRecordOf Type MyTenpl ate2 : = superset (1, 2, 3);
/1 any sequence of integers matches which contains the nunbers 1, 2 and 3 (in this sequential
/1 order) at the first three positions (but may contain nore el enents)

B.1.2.8 SubSet

SubSet is an operation for matching that can be used only on valuesof r ecor d of eand set of types. SubSet is
denoted by the keyword subset .

A field that uses SubSet matches the corresponding incoming field if, and only if, the incoming field contains only
elements defined within the SubSet, and may contain less. The argument of SubSet shall be of the type declared for the
field in which the SubSet mechanismis used.

EXAMPLE:

tenpl ate MySet Of Type MyTenpl atel: = subset (1, 2, 3);
/1 any sequence of integers nmatches which contains zero or one occurences of the nunbers
/1 1, 2 and 3 in any order and positions

tenpl ate MyRecordOf Type MyTenpl ate2 : = subset (1, 2, 3);

/'l any sequence of integers matches which contains at nost three elements and their val ues
I/l are 1 for the first elenent (if present), 2 for the second elenent(if present) and

/1 3 for the third element(if present)

ETSI

151 ETSI ES 201 873-1 V2.2.0 (2002-05)

B.1.3 Matching mechanisms inside values

B.1.3.0 General

The following matching mechanisms may be used inside explicit values of strings, records, records of, sets, sets of and
arrays.

B.1.3.1 Any element

The matching symbol "?" (AnyElement) is used to indicate that it replaces single elements of a string (except character
strings), ar ecord of ,aset of oranarray. It shall be used only within values of string types, r ecor d of types,

set of typesand arrays.

EXAMPLE:

tenpl ate Mynessage MyTenpl ate: =

fiel d2 := "abcxyz",
field3 :="'10???'B, /1 where each "?" nay either be 0 or 1
fieldd := {1, ?, 3} // where ? nay be any integer val ue

}

NOTE: The"?'infi el d4 can beinterpreted as AnyValue as an integer value, or AnyElement insidear ecor d
of ,set of orarray. Since both interpretations lead to the same match no problem arises.

B.1.3.1.1 Using single character wildcards

If it isrequired to expressthe "?" wildcard in character strings it shall be done using character patterns (see
clause B.1.5). For example: "abcdxyz", "abcexyz" "abexxyz" etc. will all match pat t er n "abc?xyz". However,
"abcxyz", "abedefxyz", etc. will not.

B.1.3.2 Any number of elements or no element

The matching symbol "*" (AnyElementsOrNone) is used to indicate that it replaces none or any humber of consecutive
elements of a string (except character strings), ar ecor d of ,aset of or anarray. It shall be used only within
values of string types or arrays. The "*" symbol matches the longest sequence of elements possible, according to the
pattern as specified by the symbols surrounding the "*".

EXAMPLE:

tenpl ate Mynessage MyTenpl ate: =

fiel d2 := "abcxyz",
field3 := "10*11' B, /1 where "*" may be any sequence of bits (possibly enpty)
fieldd :={*, 2, 3} /'l where the first element may be any integer value or omtted

}

var charstring MyStrings[4];
M/PCO. recei ve(M/Strings: {"abyz", *, "abc" });

If a"*" appears at the highest level inside astring, ar ecor d of , set of or array, it shall be interpreted as
AnyElementsOrNone.

NOTE: Thisrule preventsthe otherwise possible interpretation of "*" as AnyValueOrNone that replaces an
elementinsideastring, r ecord of , set of or aray.
B.1.3.2.1 Using multiple character wildcards

If it isrequired to expressed the "*" wildcard in character stringsit shall be done using character patterns (see
clause B.1.5).For example: "abcxyz", "abedefxyz" "abcabexyz" etc. will al match pat t er n "abc*xyz".

ETSI

152 ETSI ES 201 873-1 V2.2.0 (2002-05)

B.1.4 Matching attributes of values

B.1.4.0 General

The following attributes may be associated with matching mechanisms.

B.1.4.1 Length restrictions

The length restriction attribute is used to restrict the length of string values and the number of elementsinaset of or
record of structure. It shall be used only as an attribute of the following mechanisms. Complement, AnyValue,
AnyValueOrNone, AnyElement and AnyElementsOrNone. It can also be used in conjunction with thei f pr esent
attribute. The syntax for | engt h can be found in clauses 6.2.3 and 6.3.3.

The units of length are to be interpreted according to table 4 in the main body of the present document in the case of
string values. For set of and record of typesthe unit of length isthe replicated type. The boundaries shall be
denoted by expressions which resolve to specific non-negativei nt eger values. Alternatively, the keyword

i nfinity canbeused asavalue for the upper boundary in order to indicate that there is no upper limit of length.

The length specifications for the template shall not conflict with the length for restrictions (if any) of the corresponding
type. A template field that uses Length as an attribute of a symbol matches the corresponding incoming field if, and
only if, the incoming field matches both the symbol and its associated attribute. The length attribute matchesif the
length of the incoming field is greater than or equal to the specified lower bound and less than or equal to the upper
bound. In the case of asingle length value the length attribute matches only if the length of the received field is exactly
the specified value.

In the case of an omitted field, the length attribute is always considered as matching (i.e. with omi t it isredundant).
With AnyValueOrNoneand i f pr esent it places arestriction on the incoming value, if any.

EXAMPLE:
tenpl ate Mymessage MyTenpl ate: =

fieldl :
field2 :

conpl enent (4,5) length (1 .. 6), // is the same as (1,2, 3, 6)
"ab*ab" length(13) // max length of the AnyEl ementsOrNone string is 9 characters

}

B.1.4.2 The IfPresent indicator

Thei f present indicates that a match may be made if an optional field is present (i.e. not omitted). This attribute
may be used with all the matching mechanisms, provided the type is declared as optional.

A template field that usesi f pr esent matches the corresponding incoming field if, and only if, the incoming field
matches according to the associated matching mechanism, or if the incoming field is absent.

EXAMPLE:
tenpl ate Mymessage: MyTenpl at e: =

fiel d2 := "abcd" ifpresent, // matches "abcd" if not omtted

}

NOTE: AnyValueOrNone has exactly the ssmemeaningas? i f present .

ETSI

153 ETSI ES 201 873-1 V2.2.0 (2002-05)

B.1.5 Matching character pattern

B.1.5.0 General

Character patterns can be used in templates to define the format of arequired character string to be received. Character
patterns can be used to match char st ri ng and uni ver sal

character patterns allow the use of meta characters ? and * to mean any character and any number of any character

respectively.
EXAMPLE 1:

tenpl ate charstring M/Tenpl ate: = pattern "ab??xyz*";

Thistemplate would match any character string that consists of the characters 'aby’, followed by any two characters,
followed by the characters 'xyz', followed by any number of any characters.

If it isrequired to interpret any metacharacter literally it should be preceded with the metacharacter '\'.

EXAMPLE 2:

tenpl ate charstring MyTenpl ate: = pattern "ab?\ ?xyz*";

This template would match any character string which consists of the characters 'ab’, followed by any character,
followed by the characters "“?xyZz', followed by any number of any characters.

The list of meta characters for TTCN-3 patternsis shown in table B.1.

Table B.1: List of TTCN-3 pattern metacharacters

Metacharacter

Description

?

Match any character

*

Match any character zero or more times

\

Cause the following meta character to be interpreted as a literal (see note)

[l

Match any character within the specified set, see clause B.1.5.1 for more details

Usable inside a pair of square brackets ("[* and "]") only and allows to specify a
range of characters; see clause B.1.5.1 for more details

Usable inside a pair of square brackets ("[* and "]") only and cause to match any
character complementing the set of characters following this metacharacter;
see clause B.1.5.1 for more details

\g{ group, plane, row, cell }

Match the Universal character specified by the quadruple

{reference} Insert the referenced user defined string and interpret it as a regular expression.
See clause B.1.5.2 for more details
\d Match any numerical digit (equivalent to [0-9])
\w Match any alphanumeric character (equivalent to [0-9a-zA-Z])
\t Match the CO control character HT (see ISO/IEC 6429 [13])
\n Match the CO control character LF (see ISO/IEC 6429 [13])
\r Match the CO control character CR (see ISO/IEC 6429 [13])
\" Match the double quote character
| Used to denote two alternative expressions
() Used to group an expression
#(n, m) Match the preceding expression at least n times but no more than m times.

See clause B.1.5.3 for more details

between them (\\).

NOTE: Consequently the backslash character can be matched by a pair of backslash characters without space

ETSI

char stri ng vaues. In addition to literal characters,

154 ETSI ES 201 873-1 V2.2.0 (2002-05)

B.1.5.1 Set expression

The set expression isdelimited by the [" ‘]' symbols. In addition to character literals, it is possible to specify character
ranges using the separator '-'. The set expression can also be negated by placing the "M character as the first character
after the opening square brace.

EXAMPLE:

tenpl ate charstring RegExpl:= pattern “[a-z]”"; [/ this will nmatch any character froma to z

tenpl ate charstring RegExp2: = pattern “[”a-z]"; [/ this will nmatch any character except a to z

tenpl ate charstring RegExp3:= pattern “[A-E][0-9][0-9][0-9] YKE";

/1 RegExp3 will match a string which starts with a letter between A and E then has three
/] digits and the letters YKE

B.1.5.2 Reference expression

In addition to direct string valuesit is also possible within the pattern statement to use references to existing templates,
constants or variables. The referenceis enclosed withinthe '{" '}' characters. The reference shall resolve to one of the
character string types.

EXAMPLE:
const charstring MyString: = "ab?";

tenpl ate charstring MyTenpl ate: = pattern “{M/String}”;

This template would match any character string that consists of the characters 'ab’, followed by any characters. In effect
any character string following the pat t er n keyword either explicitly or by reference will be interpreted following the
rules defined in this clause.

tenpl ate universal charstring M/Tenpl atel: = pattern “{M/String}de\q{1, 1, 13, 7}";
This template would match any character string which consists of the characters 'ab’, followed by any characters,
followed by the characters 'de, followed by the character in 1SO10646-1 with group=1, plane=1, row=65 and cell=7.
B.1.5.3 Match expression n times

To specify that the preceding expression should be matched a number of times the '#(n, m)' syntax is used. This
specifies that the preceding expression must be matched at least n times but not more than m times.

EXAMPLE:

tenpl ate charstring RegExp4:= pattern “[a-z]#(9, 11)”"; /! match at least 9 but no nore than 11
I/l characters froma to z

tenpl ate charstring RegExp5:= pattern “[a-z]#(9)"; /1 match exactly 9
/'l characters froma to z

tenpl ate charstring RegExp6:= pattern “[a-z]#(9,)"; /1 match at |east 9
/Il characters froma to z

tenpl ate charstring RegExp7:= pattern “[a-z]#(, 11)”"; /1 match no nore than 11

/1 characters froma to z

ETSI

155 ETSI ES 201 873-1 V2.2.0 (2002-05)

Annex C (normative):
Pre-defined TTCN-3 functions

This annex defines the TTCN-3 predefined functions.

C.1 Integer to character

i nt2char (i nteger value) return char

Thisfunction convertsani nt eger valueintherange of 0 ... 127 (8-hit encoding) into a character value of
ISO/IEC 646 [5]. The integer value describes the 8-bit encoding of the character.

The function returns -1 if the value of the argument is a negative or greater than 127.

C.2 Character to integer

char 2i nt (char value) return integer

Thisfunction convertsachar value of ISO/IEC 646 [5] into an integer value in the range of 0 ... 127. The integer
value describes the 8-bit encoding of the character.

C.3 Integer to universal character

i nt 2uni char (i nteger value) return universal char

Thisfunction convertsani nt eger valueintherangeof O ... 2 147 483 647 (32-bit encoding) into a character value
of ISO/IEC 10646 [6]. The integer value describes the 32-bit encoding of the character.

The function returns the quadruple (255, 255, 255, 255) if the value of the argument is a negative or greater than
2 147 483 647

C.4 Universal character to integer

uni char 2i nt (uni versal char value) return integer

Thisfunction convertsauni ver sal char vaue of ISO/IEC 10646 [6] into an integer value in the range of
0 ... 2147 483 647. Theinteger value describes the 32-bit encoding of the character.

C.5 Bitstring to integer
bit2int(bitstring value) return integer
Thisfunction convertsasinglebi t st ri ng valuetoasinglei nt eger value.

For the purposes of this conversion, abi t st ri ng shall be interpreted as a positivebase 2i nt eger vaue. The
rightmost bit is least significant, the leftmost bit is the most significant. The bits 0 and 1 represent the decimal values 0
and 1 respectively.

ETSI

156 ETSI ES 201 873-1 V2.2.0 (2002-05)

C.6 Hexstring to integer

hex2i nt (hexstring value) return integer
Thisfunction convertsasingle hexst ri ng valueto asinglei nt eger value.

For the purposes of this conversion, ahexst ri ng shall be interpreted as a positive base 16 i nt eger value. The
rightmost hexadecimal digit is least significant, the leftmost hexadecimal digit is the most significant. The hexadecimal
digits 0 .. F represent the decimal values 0 .. 15 respectively.

C.7 Octetstring to integer

oct2int(octetstring value) return integer
Thisfunction convertsasingleoct et st ri ng valueto asinglei nt eger vaue.

For the purposes of this conversion, an oct et st ri ng shall be interpreted as a positive base 16 i nt eger value. The
rightmost hexadecimal digit is least significant, the leftmost hexadecimal digit is the most significant. The number of
hexadecimal digits provided shall be multiples of 2 since one octet is composed of two hexadecimal digits. The
hexadecimal digitsO .. F represent the decimal values O .. 15 respectively.

C.8 Charstring to integer

str2int(charstring value) return integer

Thisfunction convertsachar st ri ng representing ani nt eger valueto the equivalenti nt eger . If the string does
not represent avalid integer value the function returns the value zero (0).

EXAMPLES:

str2int("66") /1l will return the integer value 66
str2int("-66") // will return the integer value -66
str2int("abc") // will return the integer value 0

str2int("0") /1 will return the integer value 0

C.9 Integer to bitstring

int2bit(integer value, length) return bitstring

Thisfunction convertsasingle i nt eger valuetoasinglebi t stri ng value. The resulting string is| engt h bits
long.

For the purposes of this conversion, abi t st ri ng shall be interpreted as a positivebase 2i nt eger value. The
rightmost bit is least significant, the leftmost bit is the most significant. The bits 0 and 1 represent the decimal values 0
and 1 respectively. If the conversion yields a value with fewer bits than specified in the | engt h parameter, then the
bi t st ri ng shall be padded on the left with zeros. A test case error shall occur if the val ue isnegative or if the
resulting bi t st ri ng contains more bits than specified inthe |l engt h parameter.

C.10 Integer to hexstring

i nt 2hex(i nteger value, length) return hexstring

Thisfunction convertsasinglei nt eger valueto asinglehexst ri ng value. Theresulting string is| engt h
hexadecimal digits long.

ETSI

157 ETSI ES 201 873-1 V2.2.0 (2002-05)

For the purposes of this conversion, ahexst ri ng shall be interpreted as a positive base 16 i nt eger value. The
rightmost hexadecimal digit is least significant, the leftmost hexadecimal digit is the most significant. The hexadecimal
digitsO ... F represent the decimal valuesO ... 15 respectively. If the conversion yields a value with fewer hexadecimal
digits than specified in the | engt h parameter, then the hexst r i ng shall be padded on the left with zeros. A test case
error shall occur if the val ue isnegativeor if the resulting hexst ri ng contains more hexadecimal digits than
specified inthel engt h parameter.

C.11 Integer to octetstring

i nt2oct (i nteger value, length) return octetstring

Thisfunction convertsasinglei nt eger valuetoasingleoct et st ri ng value. The resulting stringisl engt h
octets long.

For the purposes of this conversion, an oct et st ri ng shall be interpreted as a positive base 16 i nt eger value. The
rightmost hexadecimal digit is least significant, the leftmost hexadecimal digit is the most significant. The number of
hexadecimal digits provided shall be multiples of 2 since one octet is composed of two hexadecimal digits. The
hexadecimal digitsO .. F represent the decimal values O .. 15 respectively. If the conversion yields a value with fewer
hexadecimal digits than specified in the| engt h parameter, then the hexst r i ng shall be padded on the | eft with
zeros. A test case error shall occur if the val ue isnegative or if the resulting hexst r i ng contains more hexadecimal
digits than specified in the | engt h parameter.

C.12 Integer to charstring

int2str(integer value) return charstring

This function converts the integer value into its string equivalent (the base of the return string is always decimal).

EXAMPLES:

int2str(66) /1 will return the charstring val ue "66"
int2str(-66) /1 will return the charstring value "-66"
int2str(0) /1 will return the integer value "0"

C.13 Length of string type

| engt hof (any_string_type value) return integer

This function returns the length of avaluethat isof typebi t st ri ng, hexst ri ng, oct et stri ng, or any character
string. The units of length for each string type are defined in table 4 in the main body of the present document.

The length of an universal charstring shall be calculated by counting each combining character and hangul syllable
character (including fillers) on its own (see I SO/IEC 10646 [6], clauses 23 and 24).

EXAMPLE:

| engthof (' 010'B) // returns 3

| engt hof (' F3' H) /'l returns 2
lengthof ("F2' O // returns 1

| engt hof (universal charstring : "Length_of Exanple") // returns 17

ETSI

158 ETSI ES 201 873-1 V2.2.0 (2002-05)

C.14 Number of elements in a structured type

si zeof (structured_type value) return integer

This function returns the declared number of elementsof ar ecor d, r ecor d of , set, set of typeor the actua
number of elements of a constant, variable, t enpl at e of these types or array (see note). This function shall not be
appliedtorecord of orset of typeswithout length subtyping. Inthecaseof record of andset of vaues
or templates or arrays, the actual value to be returned is the sequential number of the last defined element (index of that
element plus 1).

NOTE: Only elements of the TTCN-3 object, which isthe parameter of the function are calculated; i.e. no
elements of nested types/values are taken into account at determining the return value.

EXAMPLE:

/1 Gven
type record MyPDU
{ bool ean fieldl optional,
integer field2

type ’record of integer MyPDUL,;

tenpl ate MYPDU M/ Tenpl ate
{ fieldl omt,

field2 5
b
var integer nuntl enents;
/1 then
nunkl ements : = sizeof (MyPDU); /'l returns 2
nuntl enents : = sizeof (MyTenplate); // returns 1
nuntl enents : = sizeof (MyPDUL); [/l returns error as M/PDUL is not constrained

/1 Gven

type record | ength(0..10) of integer MyRecord;
var MyRecord MyRecordVar;

My/RecordVar := { 0, 1, omt, 2, onmt };

/1 then
nunkl ements : = sizeof (MyRecordVar);
/1 returns 4 without respect to the fact, that the elenent MyRecordVar[2] is undefined

C.15 The IsPresent function

i spresent (any_type value) return bool ean

Thisfunction returnsthe value t r ue if and only if the value of the referenced field is present in the actual instance of
the referenced data object. The argument toi spr esent shall be areference to afield within a data object that is
defined asbeing opt i onal .

/1 Gven
type record MyRecord
{ bool ean fieldl optional,
integer field2

}
/'l and given that MWPDU is a tenplate of MyRecord type
/1 and received_PDU is al so of MyRecord type
/1 then
MyPort.receive(M/PDU) -> val ue recei ved_PDU
i spresent (recei ved_PDU. fiel d1)
/1 returns true if fieldl in the actual instance of MyPDU is present

ETSI

159 ETSI ES 201 873-1 V2.2.0 (2002-05)

C.16 The IsChosen function

i schosen(any_type val ue) return bool ean

Thisfunction returnsthe valuet r ue if and only if the data object reference specifies the variant of the uni on type
that is actually selected for a given data object.

EXAMPLE:

/1l Gven
type uni on MyUni on
{ PDU typel pl,
PDU_t ype2 p2,
PDU_t ype p3
}

/1 and given that MWPDU is a tenplate of MyUnion type

/1 and received_PDU is also of MyUnion type

/1 then

MyPort.receive(M/PDU) -> val ue recei ved_PDU

i schosen(recei ved_PDU. p2)

/'l returns true if the actual instance of MyPDU carries a PDU of the type PDU_type2

C.17 The Regexp function

regexp (any_character_string_type instr, charstring expression, integer groupno) return
character_string_type

This function returns the substring of the input character stringi nst r , which is the content of n-th group matching to
theexpr essi on. Ininput stringi nst r may be of any character string type. The type of the character string returned
istheroot type of i nst r . The expression is a character pattern as described in clause B.1.5. The number of the group
to be returned is specified by gr oupno, which shall be a positive integer. Group numbers are assigned by the order of
occurrences of the opening bracket of a group and counted starting from O by step 1. If no substring fulfilling all
conditions (i.e. pattern and group number) is found within the input string, an empty string is returned.

EXAMPLE:

/1l Gven

var charstring nypattern2 :="

var charstring nyinput :=* date: 2001-10-20 ; nsgno: 17; exp *“

var charstring nypattern := “[/t]#(,)date:[\d\-T#(,);[/t1#(,)msgno: (\d#(1,3)); [exp]#(0,1)”

/1 Then the expression
var charstring nystring := regexp(nyinput, mypattern, 1)
/Iwill return the value “17".

C.18 Bitstring to charstring

bit2str (bitstring value) return charstring

Thisfunction convertsasinglebi t st ri ng valuetoasinglechar st ri ng. Theresulting char stri ng hasthe
samelength asthe bi t st ri ng and contains only the characters'0' and '1'.

For the purpose of this conversion, abi t st ri ng should be converted into achar st ri ng. Each bit of the
bi t stri ng isconverted into acharacter '0' or '1' depending on the value 0 or 1 of the bit. The consecutive order of
charactersin theresulting char st ri ng isthe same asthe order of bitsinthebi t stri ng.

EXAMPLE:

bit2str ('1110101'B) will return "1110101"

ETSI

160 ETSI ES 201 873-1 V2.2.0 (2002-05)

C.19 Hexstring to charstring

hex2str (hexstring value) return charstring

This function converts a single hexstring value to a single charstring. The resulting charstring has the same length as the
hexstring and contains only the characters'0' to '9'and 'A' to 'F'.

For the purpose of this conversion, ahexst r i ng should be converted into achar st r i ng. Each hex digit of the
hexst ri ng isconverted into acharacter '0' to '9' and 'A' to 'F' depending on the value 0 to 9 or A to F of the hex digit.
The consecutive order of charactersin theresulting char st r i ng isthe same asthe order of digitsin the

hexstri ng.

EXAMPLE:

hex2str ('AB801'H) will return "AB80O1"

C.20 Octetstring to character string

oct2str (octetstring value) return charstring

Thisfunction convertsaoct et st ri ng valueto anchar st ri ng. Theresulting char st ri ng will have the same
length astheincoming oct et st ri ng. The octets are interpreted as | SO/IEC 646 [5] codes (according to the IRV) and
the resulting characters are stored in the returned value. Octet values higher than 7F shall cause an error.

EXAMPLE:
oct2str ('4469707379'H) = "Di psy"

NOTE: The character string returned may contain non-graphical characters, which can not be presented between
the double quotes.

C.21 Character string to octetstring

str2oct (charstring value) return octetstring

Thisfunction convertsachar st ri ng valuetoanoct et st ri ng. Theresulting oct et st ri ng will have the same
length asthe incoming char st ri ng. Each octet of the oct et st ri ng will contain the ISO/IEC 646 [5] codes
(according to the IRV) of the appropriate characters of thechar st ri ng.

EXAMPLE:

str2oct ("Tinky-Wnky") = '54696E6B792D57696E6B79' H

C.22 Bitstring to hexstring

bit2hex (bitstring value) return hexstring

Thisfunction convertsasinglebi t st ri ng valueto asingle hexst ri ng. Theresulting hexst ri ng represents the
samevaueasthebi t st ri ng.

For the purpose of this conversion, a bitstring should be converted into a hexstring, where the bitstring is divided into
groups of four bits beginning with the rightmost bit. Each group of four bitsis converted into a hex digit as follows:
'0000B ->'0'H, '0001'B ->'1'H, '0010B ->'2'H, '0011'B ->'3'H, '0100B ->'4'H, '0101B ->'5'H,

'0110B ->'6'H, '0111'B ->'7'H, '1000B ->'8H, '1001B ->'9'H, '1010B ->'A'H, '1011B ->'B'H,

'1100B ->'CH, '1101B ->'D'H, '1110'B ->'E'H, and '1111'B -> 'FH.

ETSI

161 ETSI ES 201 873-1 V2.2.0 (2002-05)

When the leftmost group of bits does contain less than 4 bits, this group isfilled with '0'B from the left until it contains
exactly 4 bits and is converted afterwards. The consecutive order of hex digitsin the resulting hexstring is the same as
the order of groups of 4 bitsin the bitstring.

EXAMPLE:

bit2hex ('111010111'B)= '1D7'H

C.23 Hexstring to octetstring

hex2oct (hexstring value) return octetstring

Thisfunction convertsasinglehexst ri ng valueto asingleoct et st ri ng. Theresultingoct et stri ng
represents the same value asthe hexst r i ng.

For the purpose of this conversion, ahexst r i ng should be converted into aoct et st ri ng, wherethe

oct et st ri ng contains the same sequence of hex digitsasthe hexst r i ng when the length of thehexstri ng
modulo 2 is 0. Otherwise, the resulting oct et st ri ng contains 0 as leftmost hex digit followed by the same sequence
of hex digitsasinthehexst ri ng.

EXAMPLE:

hex2oct (' 1D7' H = '01D7' O

C.24 Bitstring to octetstring

bit2oct (bitstring value) return octetstring

Thisfunction convertsasinglebi t st ri ng valuetoasingleoct et st ri ng. Theresultingoct et stri ng
represents the same value asthe bi t st ri ng.

For the conversion the following holds: bit2oct(val ue)=hex2oct(bit2hex(value)).

EXAMPLE:

bit2oct ('111010111'B)= '01D7' O

C.25 Hexstring to bitstring

hex2bit (hexstring value) return bitstring

Thisfunction convertsasingle hexst ri ng valuetoasinglebi t st ri ng. Theresulting bi t st ri ng represents the
same value asthehexst ri ng.

For the purpose of this conversion, ahexst r i ng should be converted into abi t st ri ng, where the hex digits of the
hexst ri ng are converted in groups of bits as follows:

'0'H ->'0000B, 'I'H->'0001B, '2H->'0010B, '3'H->'0011B, '4'H->'0100B, 'S'H->'0101B,
'6'H ->'0110B, '7'H->'0111B, '8'H->'1000B, '9'H->'1001'B, 'A'H->'1010B, 'B'H ->'1011'B,
'CH ->'1100B, 'D'H->'1101B, 'E'H ->'1110B, and 'FH -> '1111'B.

The consecutive order of the groups of 4 bitsin the resulting bi t st ri ng isthe same as the order of hex digitsin the
hexstri ng.

EXAMPLE:

hex2bit ('1D7' H = '000111010111'B

ETSI

162 ETSI ES 201 873-1 V2.2.0 (2002-05)

C.26 Octetstring to hexstring

oct 2hex (octetstring value) return hexstring

Thisfunction convertsasingleoct et st ri ng valueto asinglehexst ri ng. The resulting hexst r i ng represents
the samevalue astheoct et stri ng.

For the purpose of this conversion, aoct et st ri ng should be converted into ahexst r i ng containing the same
sequence of hex digitsastheoct et stri ng.

EXAMPLE:

oct 2hex ('1D74' O = '1D74'H

C.27 Octetstring to bitstring

oct2bit (octetstring value) return bitstring

Thisfunction convertsasingleoct et st ri ng valuetoasinglebi t st ri ng. Theresulting bi t st ri ng represents
the samevalue astheoct et stri ng.

For the conversion the following holds: oct2bit(value)=hex2bit(oct2hex(value)).

EXAMPLE:

oct2bit ('01D7' O ='000111010111'B

C.28 Integer to float
int2float (integer value) return float
Thisfunction convertsani nt eger valueintoaf | oat vaue.

EXAMPLE:

int2float(4) = 4.0

C.29 Float to integer

float2int (float value) return integer

Thisfunction convertsaf | oat valueintoani nt eger value by removing the fractional part of the argument and
returning the resulting i nt eger .

EXAMPLE:

f1oat2i nt (3. 12345E2) = fl oat 2i nt (312. 345) = 312

C.30 The random number generator function

rnd ([float seed]) return float

Ther nd function returns a (pseudo) random number less than 1 but greater or equal to 0. The random number
generator isinitialized by means of an optional seed value. Afterwards, if no new seed is provided, the last generated
number will be used as seed for the next random number. Without a previous initialization a value calculated from the
system time will be used as seed value whenr nd isused the first time.

ETSI

163 ETSI ES 201 873-1 V2.2.0 (2002-05)

NOTE: Eachtimethernd functionisinitialized with the same seed value, it shall repeat the same sequence of
random numbers.

To produce a random integersin a given range, the following formula can be used:
f | oat 2i nt (i nt 2f | oat (upper bound — | ower bound +1)*rnd()) + | owerbound

/'l Here, upperbound and | ower bound denote highest and | owest nunber in range.

C.31 The Substring function

substr (any_string_type value, integer index, returncount) return input_string_type

This function returns a substring from avalue that is of type bi t st ri ng, hexstri ng, oct et stri ng, or any
character string. The type of the substring is the root type of the input value. The starting point of substring to returnis
defined by the second in parameter (index). Indexing starts from zero. The third input parameter defines the length of
the substring to be returned. The units of length are as defined in table 4.

EXAMPLE:

substr ('00100110'B, 3, 4) // returns '0011'B
substr (' ABCDEF' H, 2, 3) /'l returns ' CDE H
substr ('01AB23CD O 1, 2) [/ returns 'AB23'O

substr ("My nanme is JJ", 11, 2) // returns "JJ"

ETSI

164 ETSI ES 201 873-1 V2.2.0 (2002-05)

Annex D (normative):
Using other data types with TTCN-3

D.1 Using ASN.1 with TTCN-3

This annex defines the optional use of ASN.1 with TTCN-3.

D.1.0 General

TTCN-3 provides a clean interface for using ASN.1 version 1997 (as defined in the ITU-T Recommendation X.680
series[7], [8], [9], [10]) in TTCN-3 modules. When imported into a TTCN-3 modul e the language identifier shall be:

"ASN.1:1997" for ASN.1 version 1997,
"ASN.1:1994" for ASN.1 version 1994,
"ASN.1:1988" for Blue Book version of ASN.1

NOTE 1: Languageidentifiers"ASN.1:1994" and "ASN.1:1988" refer to versions of ASN.1 based on superseded
ITU-T Recommendations and the only purpose to include them into this standard is to allocate unique
identifiersif protocol modules based on these ASN.1 versions are used with TTCN-3.

NOTE 2: When "ASN.1:1988" is supported, the ASN.1 items shall be imported according to the syntactical and
semantical rules of ITU-T Recommendation X.208 (Blue Book)

NOTE 3: References for ASN.1:1994 and ASN.1:1988 can be found in annex F.

When ASN.1 is used with TTCN-3 the keywords listed in clause 11.18 of ITU-T Recommendation X.680 [7] shall not
be used as identifiersin a TTCN-3 module. ASN.1 keywords shall follow the requirements of ITU-T Recommendation
X.680 [7].

D.1.1 ASN.1 and TTCN-3 type equivalents

D.1.1.0 General

The ASN.1 typeslisted in table D.1 are considered to be equivalent to their TTCN-3 counterparts.

Table D.1: List of ASN.1 and TTCN-3 equivalents

ASN.1 type Maps to TTCN-3 equivalent
BOOLEAN bool ean
INTEGER i nt eger
REAL (notel) f1 oat
OBJECT IDENTIFIER objid
BIT STRING bitstring
OCTET STRING octetstring
SEQUENCE record
SEQUENCE OF record of
SET set
SET OF set of
ENUMERATED enumer at ed
CHOICE uni on
VisibleString char(note2), charstring
IA5String char(note2), charstring
UniversalString uni versal char (note2),
uni versal charstring

ETSI

165 ETSI ES 201 873-1 V2.2.0 (2002-05)

NOTE 1: The ASN.1type REAL isequivalent to the TTCN-3 typef | oat until the base is unrestricted or

NOTE 2:

restricted to base 10 explicitly or implicitly. The ASN.1 notation allows explicit restriction by e.g. inner
subtyping but from ASN.1-TTCN-3 type mapping point of view an explicit restrictionisan ASN.1 value
notation. Implicit restriction may be defined by the textual description of the given protocol, i.e. outside
of the ASN.1 module(s). However, in both cases the TTCN-3 value notation can be used irrespective if
the basein ASN.1 (see also note 3 in clause D.1.2.0).

Only ASN.1 subtypes of the length of exactly 1 character are equivalent to TTN-3 basic char types,

e.g. IA5String (SIZE (1)) is equivalent to the TTCN-3 type char but IA5String (SIZE (0..1)) is not.

All TTCN-3 operators, functions, matching mechanisms, val ue notation etc. that can be used with a TTCN-3 type given
intable D.1 may also be used with the corresponding ASN.1 type.

D.1.1.1 Identifiers

In converting ASN.1 identifiersto TTCN-3 identifiers any hyphen "-" symbols shall be changed to an underscore”_".

EXAMPLE:
MyASNLnodul e DEFINITIONS :: =
BEG N
M ssl eadi ng- ASNL- Nane: : = | NTEGER -- ASN. 1 type identifier using “-*
END

modul e MyTTCNModul e

{

D.1.2

import from MyASNlnodul e | anguage "ASN. 1:1997" all;

const M ssl eadi ng_ASN1_Nane Exanpl eConst: = 1; /1l TTCN-3 reference to ASN. 1 type

/1 using underscores

ASN.1 data types and values

D.1.2.0 General

ASN.1 types and values may be used in TTCN-3 modules. ASN.1 definitions are made using a separate ASN.1 module.
ASN.1 types and values are referenced by their type references and value references as produced according to
clauses 9.3 and 9.4 of ITU-T Recommendation X.680 [7] within the ASN.1 module&(s).

EXAMPLE 1:
MyASNLnodul e DEFINITIONS : : =
BEG N
Z. .= | NTEGER - Sinple type definition

END

BMessage: : = SET
{

nane Nane,

title Vi sibleString,

date Dat e
}

johnVal ues Bnessage :: =

{

name "John Doe",
title "M,
date "April 12t

}

Def i nedVal uesForFieldl Z :

- ASN. 1 type definition

- ASN. 1 val ue definition

:= {0 | 1} —-ASN. 1 subtype definition

ETSI

166 ETSI ES 201 873-1 V2.2.0 (2002-05)

The ASN.1 module shall conform to the syntax of the ITU-T Recommendation X.680 series[7], [8], [9] and [10]. Once
declared, ASN.1 types and values may be used within TTCN-3 modulesin a similar way that ordinary TTCN-3 types
and values from other TTCN-3 modules are used (i.e. the required definitions shall be imported). When importing
ASN.1itemsinto a TTCN-3 module, an associated type or value is produced for each ASN.1 item imported. All
TTCN-3 definitions or assignments based on imported ASN.1 items shall be done according the rules imposed by the
related associated type or value. Also, the matching mechanism shall use the associated type when matching constants,
variables, templates or in-line expressions based on ASN.1 declarations.

Associated types and val ues are derived from ASN.1 items by application the following transformation rules (the order
corresponds to the order of execution of the individual transformations):

1) Ignore any extension markers and exception specifications.

2) Ignore any user defined constraints (see clause 9 of ITU-T Recommendation X.682 [9]).
3) Ignore any contents constraint (see clause 9 of ITU-T Recommendation X.682 [9]).

4) Ignore any pattern constraint (see clause 48.9 of ITU-T Recommendation X.680 [7]).

5) Create equivalent subtypes from all types constrained by contained subtyping by replacing included types by the
set of values they represent.

6) Execute the COMPONENTS OF transformation according to clause 24.4 of ITU-T Recommendation X.680 [7]
on any SEQUENCE types and according to clause and 26.2 on any SET types containing the keywords "
COMPONENTS OF".

7) Replace any EMBEDDED PDV type with its associated type obtained by expanding inner subtyping in the
associated type of the EMBEDDED PDV type (see clause 32.5 of ITU-T Recommendation X.680 [7]) to afull
type definition.

8) Replace the EXTERNAL type with its associated type obtained by expanding inner subtyping in the associated
type of the EXTERNAL type (see clause 33.5 of ITU-T Recommendation X.680 [7]) to afull type definition
(see note 3).

9) Replacethe CHARACTER STRING type with its associated type obtained by expanding inner subtyping in the
associated type of the CHARACTER STRING type (see clause 39.5 of ITU-T Recommendation X.680 [7]) to a
full type definition..

10) Replace the INSTANCE OF type with its associated type obtained by substituting INSTANCE OF
DefinedObjectClass by its associated ASN.1 type (see clause C.7 of ITU-T Recommendation X.681 [8]) and
replace all ASN.1 types with their TTCN-3 equivalents according to table D.1. The resulted type isthe
TTCN-3 associated type.

11) Ignore any remaining inner subtyp ing (see note 4).

12)Ignore any named numbers and named bitsin ASN.1 types. In ASN.1 values replace any named number by its
value and substitute any named bits or sequence of named bits by a bitstring without trailing zeros, where bit
positions identified by names present are replaced by "1"s, other bit positions are replaced by "0"s.

13) Replace any selection type with the type referenced by the selection type; if the denoted choice type (the "Type"
in clause 29.1 of ITU-T Recommendation X.680 [7]) is a constrained type, the selection has to be done on the
parent type of the denoted choice type.

14) Convert any RELATIVE-OID type or valueto an obj i d type or value (see note 5).

15) Replace any of the following restricted character string types with their associated types obtained as (see note 6):
BMPString: uni versal charstring (char(0,0,0,0)..char (0,0,255,255));
UTF8String: uni versal charstring;
NumericString: char st ri ng constrained to the set of characters as given in clause 36.2 of ITU-T
Recommendation X.680 [7];
PrintableString: char st ri ng constrained to the set of characters as given in clause 36.4 of ITU-T
Recommendation X.680 [7];
TeletexString and T61String: uni ver sal char st ri ng constrained to the set of charactersasgivenin
ITU-T Recommendation T.61 (see bibliography);

ETSI

167 ETSI ES 201 873-1 V2.2.0 (2002-05)

VideotexString: uni ver sal char st ri ng constrained to the set of charactersasgivenin ITU-T
Recommendations T.100 [14] and T.101 [15];
GraphicString: uni ver sal charstri ng;
GeneralString: uni ver sal charstri ng.

16) Replace any GeneralizedTime and UTCTime types or values with the type or value of char st ri ng.
17) Replace any ObjectDescriptor type or value by theuni ver sal char st ri ng type or vaue.

18) Replace any notations for the object class field types (see clause 14 of ITU-T Recommendation X.681 [8]) by the
ASN.1 item they are referencing to; open types has to be replaced by the metatype "OPEN TY PE" for the
purpose of the transformation (and only for that).

19) Replace al information from objects notations (see clause 15 of ITU-T Recommendation X.681 [8]) by the
ASN.1 item they are referencing to.

20) Revert table constraints (see clause 10 of ITU-T Recommendation X.682 [9]) to list subtyping and ignore all
relational constraints (see note 7).

21) Replace all occurrences of NULL type with the following associated TTCN-3 type:
type enuner at ed <identifier> { NULL }, where <identifier> isthe ASN.1 Type reference converted
according to clause D.1.1.1.

22) Replace all references to open types with anyt ype.

23) Replace ASN.1 types with their equivalents according to table D.1 and ASN.1 values with equivalent TTCN-3
values based on the associated types (see note 8). The metatype "OPEN TYPE" hasto bereplaced by anyt ype.

NOTE 1: Associated types alone do not alow the correct encoding values based on ASN.1 types. However, the
extrainformation needed for the system to make correct encoding is implementation dependent and
remains hidden for the user and not needed to make proper declarations or assignments based on ASN.1
types and values.

NOTE 2: When importing ENUMERATED types, integer numbers assigned by the user to enumerations are also
imported.

NOTE 3: The data-value field of the EXTERNAL type may be encoded as a single-ASN1-type, octet-aligned or
arbitrary (see clause 8.18.1 of ITU-T Recommendation X.690 [11]) at the discretion of the encoder; if the
user wants to enforce one given form of encoding or wants to allow only one specific encoding form at
matching, it shall use the appropriate encoding attribute for the type or the given constant, variable,
template or template field (see clause D.1.5.2).

NOTE 4: Inner subtyping shall be taken into account by the user when defining TTCN-3 values or templates based
on an ASN.1 type constrained by inner subtyping.

NOTE 5: Equivalence with the obj i d typeislimited to the syntax to be used for value notations only. In the case
of objid values the first two values of the tree are restricted (see ITU-T Recommendation X.660 [16]).
This restriction does not apply to values based on the imported RELATIVE-OID type.

NOTE 6: VisibleString, |A5String and Universal String has their equivalent TTCN-3 types and replaced directly.

NOTE 7: Relational constraints shall be taken into account by the user when declaring values and templates (also
may be handled by toolsimplicitly).

NOTE 8: Missing optiona fieldsin values of structured ASN.1 types (SET, SEQUENCE, EXTERNAL etc.) are
equivalent to explicitly omitted fields in structured TTCN-3 values.

EXAMPLE 2:
modul e MyTTCNModul e
{
i mport from MyASNlnodul e | anguage "ASN. 1:1997" all;

const Bmessage MyYTTCNConst: = johnVal ues;
const DefinedVal uesForFi el d1 Val uel: = 1;

ETSI

168 ETSI ES 201 873-1 V2.2.0 (2002-05)

NOTE 9: ASN.1 definitions other than types and values (i.e. information object classes or information object sets)
are not directly accessible from the TTCN-3 notation. Such definitions shall be resolved to atype or value
within the ASN.1 module before they can be referenced from within the TTCN-3 module.

D.1.2.1 Scope of ASN.1 identifiers

Imported ASN.1 identifiers follow the same scope rules as imported TTCN-3 types and values (see clause 5.3).

D.1.3 Parameterization in ASN.1

It is permitted to reference parameterized ASN.1 type and value definitions from with the TTCN-3 module. However,
all ASN.1 parameterized definitions used in a TTCN-3 module shall be provided with actual parameters (open types are
not permitted) and the actual parameters provided shall be resolvable at compile-time.

The TTCN-3 core language does not support the import of ASN.1 items, which employ uniquely ASN.1 specific
objects as formal or actual parameter(s). ASN.1 specific parameterization which involves objects which cannot be
defined directly in the TTCN-3 core language shall therefore be resolved in the ASN.1 part before use within the
TTCN-3. The ASN.1 specific objects are:

a) Information Object classes;
b) Information Objects;
¢) Information Object Sets.

For example the following is not legal because it defines a TTCN-3 type which takes an ASN.1 object set as an actual
parameter.

MyASNLnodul e DEFINITIONS :: =
BEG N
-- ASN. 1 Modul e definition

-- Information object class definition
MESSAGE ::= CLASS { &mrsgTypeVal ue | NTEGER UNI QUE,

&MVsgFi el ds}
-- Infornation object definition
set upMessage MESSAGE ::= { &mrsgTypeVal ue 1,
&MVsgFi el ds CCTET STRI NG
set upAckMessage MESSACE :: = { &mrsgTypeVal ue 2,
&\VsgFi el ds BOOLEAN}

-- Information object set definition
M/Prot ocol MESSAGE ::= { setupMessage | setupAckMessage}

-- ASN. 1 type constrai ned by object set
MyMessage{ MESSAGE : MsgSet} ::= SEQUENCE

{
code MESSAGE. &rsgTypeVal ue({ MsgSet}),

Type MESSAGE. &VvsgFi el ds({ MsgSet})
}
END
modul e MyTTCNModul e

/1 TTCN-3 nodul e definition
i mport from MyASNLlnodul e | anguage "ASN. 1:1997" all;

/1 1llegal TTCN-3 type with object set as paraneter
type record Q(MESSAGE MyMsgSet) ::= { 4 fieldl,
M/Message(MyMsgSet) fi el d2}
}

To make thisalegal definition the extra ASN.1 type My Messagel has to be defined as shown below. This resolves the
information object set parameterization and can therefore be directly used in the TTCN-3 module.

ETSI

169 ETSI ES 201 873-1 V2.2.0 (2002-05)

MyASNLnodul e DEFINITIONS :: =

BEG N
-- ASN. 1 Modul e definition
MyProt ocol MESSAGE ::= { setupMessage | setupAckMessage}
-- Extra ASN. 1 type to renove object set paraneterization
My/Messagel ::= MyMessage{ MyProtocol}
END
modul e MyTTCNModul e
{
/1 TTCN-3 nodul e definition
i mport from MyASNlnodul e | anguage "ASN. 1:1997" all;
/1 Legal TTCN-3 type with no object set as paraneter
type record Q:={ Z fieldl,
M/Messagel field2}
}

D.1.4 Defining ASN.1 message templates

D.1.4.0 General

If messages are defined in ASN.1 using, for example, SEQUENCE (or possibly SET) then actual messages, for both
send andr ecei ve events, can be specified using the ASN.1 value syntax.

EXAMPLE:

MyASN1nodul e DEFINITIONS :: =
BEA N
-- ASN. 1 Modul e definition

-- The message definition
M/MessageType: : = SEQUENCE
{

fieldl [1] I ASSTRI NG /1 Like TTCN-3 character string

field2 [2] INTEGER OPTI ONAL, /1 like TTCN-3 integer

field3 [4] Field3Type, /'l Like TTCN-3 record

fieldd [5] Field4Type /1 Like TTCN-3 array
}
Fi el d3Type: : = SEQUENCE {field31 BIT STRING field32 |INTEGER, field33 CCTET STRI NG,
Fi el d4Type: : = SEQUENCE OF BOOLEAN

-- may have the followi ng val ue
nmyVal ue MyMessageType: : =
{

fieldl "A string",
field2 123,
field3 {field31 '11011' B, field32 456789, field33 'FF G,
fieldd {true, false}
}
END

D.1.4.1 ASN.1 receive messages using the TTCN-3 template syntax

Matching mechanisms are not supported in the standard ASN.1 syntax. Thus, if it iswished to use matching
mechanisms with an ASN.1 receive message then the TTCN-3 syntax for receive templates shall be used instead. Note
that this syntax includes component references in order to be able to reference the individual componentsin ASN.1
SEQUENCE, SET etc.

ETSI

170 ETSI ES 201 873-1 V2.2.0 (2002-05)

EXAMPLE:
i mport from MyASNlnodul e | anguage "ASN. 1: 1997" {
type nyMessageType

/'l a nmessage tenpl ate using natching nechanisns within TTCN-3 might be
tenpl ate nyMessageType My Val ue: =
{

fieldl : = TAT?S"trt <" g,
field2 : = *,
field3.field31 := '110??'B,
field3.field32 := 2,
field3.field33 := 'F?'Q
field4d.[0] := true,

fieldd.[1] := fal se

}

/1 the followi ng syntax is equally valid
tenpl ate nmyMessageType MyVal ue: =

fieldl := "A"'<?>"tr"<*>"g", [/ string with wildcards
field2 := *, I/l any integer or none at all
field3d := {'110??'B, ?, 'F?' &,

fieldd := {?, false}

D.1.4.2 Ordering of template fields

When TTCN-3 templates are used for ASN. 1 types the significance of the order of the fieldsin the template will depend
on the type of ASN.1 construct used to define the message type. For example: if SEQUENCE or SEQUENCE OF isused
then the message fields shall be sent or matched in the order specified in the template. If SET or SET OF isused then
the message fields may be sent or matched in any order.

D.1.5 Encoding information

D.1.5.0 General

TTCN-3 alows references to encoding rules and variations within encoding rules to be associated with various TTCN-3
language elements. It is also possible to define invalid encodings. This encoding information is specified using the
wi t h statement according to the following syntax:

EXAMPLE:

nmodul e MyModul e
{

i ﬁport from MyASN1nodul e | anguage "ASN. 1: 1997" {
type nyMessageType

}
with {
encode: = "PER- BASI C- ALI GNED: 1997" // All instances of MyMessageType shoul d be encoded
usi ng PER: 1997

} .

} // end modul e
with { encode "BER 1997" } // Default encoding for the entire nodule (test suite) is BER 1997

D.1.5.1 ASN.1 encoding attributes

The following strings are the predefined (standardized) encoding attributes for ASN.1:
a) "BER:1997" means encoded according to ITU-T Recommendation X.690 (BER) [11];
b) "CER:1997" means encoded according to I TU-T Recommendation X.690 (CER) [11];
¢) "DER:1997" means encoded according to ITU-T Recommendation X.690 (DER) [11].

ETSI

d)

€)

f)

9)

171 ETSI ES 201 873-1 V2.2.0 (2002-05)

"PER-BASIC-UNALIGNED:1997" means encoded according to (Unaligned PER)
ITU-T Recommendation X.691 [12];

"PER-BASIC-ALIGNED:1997" means encoded according to ITU-T Recommendation X.691
(Aligned PER) [12];

"PER-CANONICAL-UNALIGNED:1997" means encoded according to (Canonical Unaligned PER)
ITU-T Recommendation X.691 [12];

"PER-CANONICAL-ALIGNED:1997" means encoded according to ITU-T Recommendation X.691 (Canonical
Aligned PER) [12].

D.1.5.2 ASN.1 variant attributes

The following strings are predefined (standardized) variant attributes. They have predefined meaning when applied
jointly with predefined ASN.1 encoding attributes only (see clause D.1.5.1). Handling of these predefined attributes
when applied jointly with other attributes or to an TTCN-3 object without an attribute is out of scope of this standard
(see note 1):

a)

b)

d)

€)

f)

9)

h)

i)

"length form 1" means, that the given value shall only be encoded and decoded using the short form of the
length octets (see clause 8.1.3 of ITU-T Recommendation X.690 [11]) in case of BER, CER and DER
encodings or the single octet length determinant (see clause 10.9 of Recommendation X.691 [12]) in case of
any form of the PER encoding (see note 2).

"length form 2" means, that the given value shall only be encoded and decoded using the long form of the
length octets (see clause 8.1.3 of ITU-T Recommendation X.690 [11]) in case of BER, CER and DER
encodings or the two octets length determinant (see clause 10.9 of ITU-T Recommendation X.691 [12]) in case
of any form of the PER encoding (see note 2).

"length form 3" means, that the given value shall only be encoded and decoded using the indefinite form of the
length octets (see clause 8.1.3 of ITU-T Recommendation X.690 [11]) in case of BER, CER and DER
encodings.

"REAL base 2" means that the given value shall be encoded or matched according to the REAL binary encoding
form. This attribute can be used on constants, variables or templates only and when used on any kind of a
grouping (e.g. to groups or to the whole import statement) it shall have effect on these TTCN-3 objects only.

"single-ASN1-type", "octet-aligned” and "arbitrary" means, that the given value based on an ASN.1
EXTERNAL type shall be encoded using the specified by the attribute encoding form or matched if received
with the specified choice only (see clause 8.18 of Recommendation X.690 [11]). This attribute can be used on
imported ASN.1 EXTERNAL types and constants, variables, templates or template fields based on these types
only; when used on any kind of a grouping (e.g. to groups or to the whole import statement) it shall have effect
on these TTCN-3 objects only. If the conditions set in clauses 8.18.6 to 8.18.8 of Recommendation X.690 [11]
and the specified attribute do not met, this shall cause arun-time error.

"TeletexString” means that the given value shall be encoded and decoded as the ASN.1 type TeletexString
(see clause 8.20 of Recommendation X.690 [11] and clause 26 of Recommendation X.691 [12]).

"VideotexString" means that the given value shall be encoded and decoded as the ASN.1 type VideotexString
(see clause 8.20 of Recommendation X.690 [11] and clause 26 of Recommendation X.691 [12]).

"GraphicString" means that the given value shall be encoded and decoded as the ASN.1 type GraphicString
(see clause 8.20 of Recommendation X.690 [11] and clause 26 of Recommendation X.691 [12]).

"General String" means that the given value shall be encoded and decoded as the ASN.1 type General String
(see clause 8.20 of Recommendation X.690 [11] and clause 26 of Recommendation X.691 [12]).

NOTE 1: These attributes may be reused in implementation specific encoding rules with a different meaning than

specified in the current clause, may be ignored or awarning/error indication may be given. However, the
strategy to be applied isimplementation dependent.

ETSI

172 ETSI ES 201 873-1 V2.2.0 (2002-05)

NOTE 2: Application of these variant attributes may lead to invalid ASN.1 encoding (e.g. using the indefinite
length form to primitive values in BER or not using the minimum necessary number of length octets).
Thisisalowed intentionally and users shall alocate these variant attributes to constants, variables,
templates or template fields used for receiving cautiously.

ETSI

173 ETSI ES 201 873-1 V2.2.0 (2002-05)

Annex E (informative):
Library of Useful Types

E.1 Limitations

Names of types added to this library should be unique within the whole language and within the library (i.e. should not
be one of the names defined in annex C. Names defined in this library should not be used by TTCN-3 users as
identifiers of other definitions than given in this annex.

NOTE: Therefore type definitions given in this annex may be repeated in TTCN-3 modules but no type distinct
from the one specified in this annex can be defined with one of the identifiers used in this annex.

E.2 Useful TTCN-3 types

E.2.1 Useful simple basic types

E.2.1.0 Signed and unsigned single byte integers

These types supports integer values of the range from —128 to 127 for the signed and from 0 to 255 for the unsigned
type. The value notation for these types are the same as the value notation for the integer type. Values of these types
shall be encoded and decoded as they were represented on a single byte within the system independently from the actual
representation form used.

NOTE: Encoding of values of these types may be the same or may differ from each other and from the encoding
of the integer type (the root type of these useful types) depending on the actual encoding rules used.
Details of encoding rules are out of the scope of the current document.

Type definitions for these types are:
type integer byt e (-128 .. 127) with { variant "8 bit" };

type integer unsi gnedbyt e (0 .. 255) with { variant "unsigned 8 bit" };

E.2.1.1 Signed and unsigned short integers

These types support integer values of the range from -32768 to 32767 for the signed and from 0 to 65535 for the
unsigned type. The value notation for these types are the same as the val ue notation for the integer type. Va ues of these
types shall be encoded and decoded as they were represented on two bytes within the system independently from the
actua representation form used.

NOTE: Encoding of values of these types may be the same or may differ from each other and from the encoding
of the integer type (the root type of these useful types) depending on the actual encoding rules used.
Details of encoding rules are out of the scope of the current document.

Type definitions for these types are:
type integer short (-32768 .. 32767) with { variant "16 bit" };

type integer unsi gnedshort (0 .. 65535) with { variant "unsigned 16 bit" };

E.2.1.2 Signed and unsigned long integers

These types support integer values of the range from -2147483648 to 2147483647 for the signed and from O to
4294967295 for the unsigned type. The value notation for these types are the same as the value notation for the integer
type. Values of these types shall be encoded and decoded as they were represented on four bytes within the system
independently from the actual representation form used.

ETSI

174 ETSI ES 201 873-1 V2.2.0 (2002-05)

NOTE: Encoding of values of these types may be the same or may differ from each other and from the encoding
of theinteger type (the root type of these useful types) depending on the actual encoding rules used.
Details of encoding rules are out of the scope of the current document.

Type definitions for these types are:

type integer | ong (-2147483648 .. 2147483647)
with { variant "32 bit" };

type integer unsi gnedl ong (0 .. 4294967295)
with { variant "unsigned 32 bit" };

E.2.1.3 Signed and unsigned longlong integers

These types support integer values of the range from -9223372036854775808 to 9223372036854775807 for the signed
and from 0 to 18446744073709551615 for the unsigned type. The value notation for these types are the same as the
value notation for the integer type. Values of these types shall be encoded and decoded as they were represented on
eight bytes within the system independently from the actual representation form used.

NOTE: Encoding of values of these types may be the same or may differ from each other and from the encoding
of theinteger type (the root type of these useful types) depending on the actual encoding rules used.
Details of encoding rules are out of the scope of the current document.

Type definitions for these types are:

type integer | ongl ong (-9223372036854775808 .. 9223372036854775807)
with { variant "64 bit" };

type integer unsi gned| ongl ong (0 .. 18446744073709551615)
with { variant "unsigned 64 bit" };

E.2.1.4 |EEE 754 floats

These types support the ANSI/IEEE Standard 754 (see bibliography) for binary floating-point arithmetic. The type
|EEE 754 float supports floating-point numbers with base 10, exponent of size 8, mantissa of size 23 and asign bit. The
type | EEE 754 double supports floating-point numbers with base 10, exponent of size 11, mantissa of size 52 and asign
bit. The type IEEE 754 ext f | oat supports floating-point numbers with base 10, minimal exponent of size 11,
minimal mantissa of size 32 and asign bit. The type IEEE 754 ext doubl e supports floating-point numbers with

base 10, minimal exponent of size 15, minimal mantissa of size 64 and a sign hit.

Values of these types shall be encoded and decoded according to the IEEE 754 definitions. The value notation for these
types are the same as the value notation for the float type (base 10).

NOTE: Precise encoding of values of thistype depends on the actual encoding rules used. Details of encoding
rules are out of the scope of the current document.

Type definitions for these types are:
type fl oat | EEE754f | oat with { variant "|EEE754 float" };
type fl oat | EEE754doubl e with { variant "|EEE754 double" };
type fl oat | EEE754extfloat with { variant "|EEE754 extended float" };

type fl oat | EEE754ext doubl e with { variant "|EEE754 extended double" };

E.2.2 Useful character string types

E.2.2.0 UTF-8 character string "utf8string"

This type supports the whole character set of the TTCN-3 typeuni ver sal char st ri ng (see paragraph d) of
clause 6.1.1). Its distinguished values are zero, one, or more characters from this set. Values of thistype has entirely
(e.0. each character of the value individually) be encoded and decoded according to the UCS Transformation Format 8
(UTF-8) as defined in annex R of 1SO/IEC 10646 [6]. The value notation for this type is the same as the val ue notation
for theuni ver sal charstri ng type.

ETSI

175 ETSI ES 201 873-1 V2.2.0 (2002-05)

The type definition for thistypeis:

type universal charstring utf8string with { variant "UTF-8" };

E.2.2.1 BMP character string "bmpstring"

Thistype supports the Basic Multilingual Plane (BMP) character set of |SO/IEC 10646 [6]. The BMP represents all
characters of plane 00 of group 00 of the Universal Multiple-octet coded Character Set. Its distinguished values are
zero, one, or more characters from the BMP. Values of thistype has entirely (e.g. each character of the value
individually) be encoded and decoded according to the UCS-2 coded representation form (see clause 14.1 of

| SO/IEC 10646 [6]). The value notation for thistype is the same as the value notation for theuni ver sal
charstri ng type.

NOTE: thetype"bmpstring" supports a subset of the TTCN-3 typeuni ver sal charstring.

The type definition for thistypeis:

type universal charstring bnpstring (char (0,0,0,0) .. char (0,0, 255, 255))
with { variant "UCS-2" };

E.2.2.2 UTF-16 character string "utf16string"

This type supports all characters of planes 00 to 16 of group 00 of the Universal Multiple-octet coded Character Set (see
ISO/IEC 10646 [6]). Its distinguished values are zero, one, or more characters from this set. Values of thistype has
entirely (e.g. each character of the value individually) be encoded and decoded according to the UCS Transformation
Format 16 (UTF-16) as defined in annex Q of 1SO/IEC 10646 [6]. The value notation for this type is the same as the
value notation for theuni ver sal char stri ng type.

NOTE: thetype"utf16string" supports a subset of the TTCN-3 typeuni ver sal charstri ng.

The type definition for thistypeis:

type universal charstring utfl6string (char (0,0,0,0) .. char (0,16, 255,255))
with { variant "UTF-16" };

E.2.2.3 ISO/IEC 8859 character string "iso8859string"

Thistype supports al charactersin all aphabets defined in the multiparty standard | SO/IEC 8859 (see annex F). Its
distinguished values are zero, one, or more characters from the 1SO/IEC 8859 character set. Values of thistype has
entirely (e.g. each character of the value individually) be encoded and decoded according to the coded representation as
specified in ISO/IEC 8859 (an 8-bit coding). The value notation for thistype is the same as the value notation for the
uni ver sal charstring type.

NOTE 1: Thetype "iso8859string" supports a subset of the TTCN-3 typeuni ver sal charstri ng.

NOTE 2: In each ISO/IEC 8859 a phabet the lower part of the character set table (positions 02/00 to 07/14) is
compatible with the ISO/IEC 646 character set. Hence all extra language specific characters are defined
for the upper part of the character table only (positions 10/00 to 15/15). Asthe "iso8859string” typeis
defined as a subset of the TTCN-3 type universal charstring, any coded character representation of any
| SO/IEC 8859 al phabets can be mapped into an equivalent character (a character with the same coded
representation when encoded on 8 hits) from the Basic Latin or Latin-1 Supplement character tables of
ISO/IEC 10646.

The type definition for thistypeis:

type universal charstring iso8859string (char (0,0,0,0) .. char (0,0,0,255))
with { variant "8 bit" };

ETSI

176 ETSI ES 201 873-1 V2.2.0 (2002-05)

E.2.3 Useful structured types

E.2.3.0 Fixed-point decimal literal

This type supports the use of fixed-point decimal literal as defined in the IDL Syntax and Semantics version 2.6 (see
annex F). It is specified by an integer part, a decimal point and afraction part. The integer and fraction parts both
consist of a sequence of decimal (base 10) digits. The number of digitsis stored in "digits’ and the size of the fraction
part isgiven "scale". The digitsitself are stored in "value ". Value notation for thistype is the same as the value
notation for the record type. Values of this type shall be encoded and decoded as IDL fixed point decimal values.

NOTE: Precise encoding of values of thistype depends on the actual encoding rules used. Details of encoding
rules are out of the scope of the current document.

The type definition for thistypeis:
type record |IDLfixed {
unsi gnedshort digits,
short scal e,
charstring val ue_

}
with { variant "IDL:fixed FORMVAL/01-12-01 v.2.6" };

ETSI

177 ETSI ES 201 873-1 V2.2.0 (2002-05)

Annex F (informative):
Bibliography

ITU-T Recommendation T.50 (1992): "International Reference Alphabet (IRA) (Formerly International
Alphabet No. 5 or IA5) - Information technology - 7-bit coded character set for information interchange”.

ITU-T Recommendation X.208: " Specification of Abstract Syntax Notation One (ASN.1)".

| SO/IEC 8859-1: "Information technology - 8-bit single-byte coded graphic character sets - Part 1: Latin
alphabet No. 1".

Object Management Group (OMG): "The Common Object Request Broker: Architecture and Specification - IDL
Syntax and Semantics'. Version 2.6, FORMAL/01-12-01, December 2001.

|EEE 754 (1985): "Binary Floating-Point Arithmetic".

ETSI ES 201 873-4 (V2.2.0): "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 4: TTCN-3 Operational Semantics'.

ITU-T Recommendation T.61 (1988): "Character repertoire and coded character sets for the international tel etex
service'.

ETSI

178 ETSI ES 201 873-1 V2.2.0 (2002-05)

History
Document history
V111 March 2001 Publication
V1.1.2 June 2001 Publication
V220 May 2002 Membership Approval Procedure MV 20020712: 2002-05-14 to 2002-07-12

ETSI

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Introduction
	4.0 General
	4.1 The core language and presentation formats
	4.2 Unanimity of the specification
	4.3 Conformance

	5 Basic language elements
	5.0 General
	5.1 Ordering of language elements
	5.1.1 Forward references

	5.2 Parameterization
	5.2.0 Static and dynamic parameterization
	5.2.1 Parameter passing by reference and by value
	5.2.1.0 General
	5.2.1.1 Parameters passed by reference
	5.2.1.2 Parameters passed by value

	5.2.2 Formal and actual parameter lists
	5.2.3 Empty formal parameter list
	5.2.4 Nested parameter lists

	5.3 Scope rules
	5.3.0 General
	5.3.1 Scope of formal parameters
	5.3.2 Uniqueness of identifiers

	5.4 Identifiers and keywords

	6 Types and values
	6.0 General
	6.1 Basic types and values
	6.1.0 Simple basic types and values
	6.1.1 Basic string types and values
	6.1.2 Accessing individual string elements

	6.2 Sub-typing of basic types
	6.2.0 General
	6.2.1 Lists of values
	6.2.2 Ranges
	6.2.2.0 General
	6.2.2.1 Infinite ranges
	6.2.2.2 Mixing lists and ranges

	6.2.3 String length restrictions

	6.3 Structured types and values
	6.3.0 General
	6.3.1 Record type and values
	6.3.1.0 General
	6.3.1.1 Referencing fields of a record type
	6.3.1.2 Optional elements in a record

	6.3.2 Set type and values
	6.3.2.0 General
	6.3.2.1 Referencing fields of a set type
	6.3.2.2 Optional elements in a set

	6.3.3 Records and sets of single types
	6.3.4 Enumerated type and values
	6.3.5 Unions
	6.3.5.0 General
	6.3.5.1 Referencing fields of a union type
	6.3.5.2 Optionality and union

	6.4 The anytype
	6.5 Arrays
	6.6 Recursive types
	6.7 Type compatibility
	6.7.0 General
	6.7.1 Type compatibility of non-structured types
	6.7.2 Type compatibility of structured types
	6.7.2.0 General
	6.7.2.1 Type compatibility of enumerated types
	6.7.2.2 Type compatibility of record and record of types
	6.7.2.3 Type compatibility of union types
	6.7.2.4 Type compatibility of set and set of types
	6.7.2.5 Compatibility between slices

	6.7.3 Type compatibility of communication operations
	6.7.4 Type conversion

	7 Modules
	7.0 General
	7.1 Naming of modules
	7.2 Module parameters
	7.2.0 General
	7.2.1 Default values for module parameters

	7.3 Module definitions part
	7.3.0 General
	7.3.1 Groups of definitions

	7.4 Module control part
	7.5 Importing from modules
	7.5.0 General
	7.5.1 Structure of importable definitions
	7.5.2 Rules on using import
	7.5.3 Recursive import
	7.5.4 Importing single definitions
	7.5.5 Importing all definitions of a module
	7.5.6 Importing groups
	7.5.7 Importing definitions of the same kind
	7.5.8 Handling name clashes on import
	7.5.9 Handling multiple references to the same definition
	7.5.10 Import definitions from non-TTCN modules

	8 Test configurations
	8.0 General
	8.1 Port communication model
	8.2 Restrictions on connections
	8.3 Abstract test system interface
	8.4 Defining communication port types
	8.4.0 General
	8.4.1 Mixed ports

	8.5 Defining component types
	8.5.0 General
	8.5.1 Declaring local variables and timers in a component
	8.5.2 Defining components with arrays of ports

	8.6 Addressing entities inside the SUT
	8.7 Component references
	8.8 Defining the test system interface

	9 Declaring constants
	10 Declaring variables
	11 Declaring timers
	11.0 General
	11.1 Timers as parameters

	12 Declaring messages
	13 Declaring procedure signatures
	13.0 General
	13.1 Signatures for blocking and non-blocking communication
	13.2 Parameters of procedure signatures
	13.3 Value returning remote procedures
	13.4 Specifying exceptions

	14 Declaring templates
	14.0 General
	14.1 Declaring message templates
	14.1.0 General
	14.1.1 Templates for sending messages
	14.1.2 Templates for receiving messages

	14.2 Declaring signature templates
	14.2.0 General
	14.2.1 Templates for invoking procedures
	14.2.2 Templates for accepting procedure invocations

	14.3 Template matching mechanisms
	14.4 Parameterization of templates
	14.4.0 General
	14.4.1 Parameterization with matching attributes

	14.5 Passing templates as parameters
	14.6 Modified templates
	14.6.0 General
	14.6.1 Parameterization of modified templates
	14.6.2 In-line modified templates

	14.7 Changing template fields
	14.8 Match Operation
	14.9 Value of Operation

	15 Operators
	15.0 General
	15.1 Arithmetic operators
	15.2 String operators
	15.3 Relational operators
	15.4 Logical operators
	15.5 Bitwise operators
	15.6 Shift operators
	15.7 Rotate operators

	16 Functions and altsteps
	16.1 Functions
	16.1.0 General
	16.1.1 Parameterization of functions
	16.1.2 Invoking functions
	16.1.3 Predefined functions

	16.2 Altsteps
	16.2.0 General
	16.2.1 Parameterization of altsteps
	16.2.2 Local definitions in altsteps
	16.2.2.0 General
	16.2.2.1 Restrictions for the initialization of local definitions in altsteps

	16.2.3 Invocation of altsteps

	16.3 Functions and altsteps for different component types

	17 Test cases
	17.0 General
	17.1 Parameterization of test cases

	18 Overview of program statements and operations
	19 Basic program statements
	19.0 General
	19.1 Expressions
	19.1.0 General
	19.1.1 Boolean expressions

	19.2 Assignments
	19.3 The Log statement
	19.4 The Label statement
	19.5 The Goto statement
	19.6 The If-else statement
	19.7 The For statement
	19.8 The While statement
	19.9 The Do-while statement
	19.10 The Stop execution statement

	20 Behavioural program statements
	20.0 General
	20.1 Alternative behaviour
	20.1.0 General
	20.1.1 Execution of alternative behaviour
	20.1.2 Selecting/deselecting an alternative
	20.1.3 Else branch in alternatives
	20.1.4 Void
	20.1.5 Re-evaluation of alt statements
	20.1.6 Invocation of altsteps as alternatives

	20.2 The Repeat statement
	20.3 Interleaved behaviour
	20.4 The Return statement

	21 Default Handling
	21.0 General
	21.1 The default mechanism
	21.2 Default references
	21.3 The activate operation
	21.3.0 General
	21.3.1 Activation of parameterized altsteps

	21.4 The deactivate operation

	22 Configuration operations
	22.0 General
	22.1 The Create operation
	22.2 The Connect and Map operations
	22.2.0 General
	22.2.1 Consistent connections and mappings

	22.3 The Disconnect and Unmap operations
	22.4 The MTC, System and Self operations
	22.5 The Start test component operation
	22.6 The Stop test component operation
	22.7 The Running operation
	22.8 The Done operation
	22.9 Using component arrays
	22.10 Summary of the use of any and all with components

	23 Communication operations
	23.0 General
	23.1 General format of communication operations
	23.1.0 General
	23.1.1 General format of the sending operations
	23.1.2 General format of the receiving operations

	23.2 Message-based communication
	23.2.0 General
	23.2.1 The Send operation
	23.2.2 The Receive operation
	23.2.2.0 General
	23.2.2.1 Receive any message
	23.2.2.2 Receive on any port

	23.2.3 The Trigger operation
	23.2.3.0 General
	23.2.3.1 Trigger on any message
	23.2.3.2 Trigger on any port

	23.3 Procedure-based communication
	23.3.0 General
	23.3.1 The Call operation
	23.3.1.0 General
	23.3.1.1 Handling responses and exceptions to a Call
	23.3.1.2 Handling timeout exceptions to the Call
	23.3.1.3 Calling blocking procedures without return value, out parameters, inout parameters and exceptions
	23.3.1.4 Calling non-blocking procedures

	23.3.2 The Getcall operation
	23.3.2.0 General
	23.3.2.1 Accepting any call
	23.3.2.2 Getcall on any port

	23.3.3 The Reply operation
	23.3.4 The Getreply operation
	23.3.4.0 General
	23.3.4.1 Get any reply
	23.3.4.2 Get a reply on any port

	23.3.5 The Raise operation
	23.3.6 The Catch operation
	23.3.6.0 General
	23.3.6.1 The Timeout exception
	23.3.6.2 Catch any exception
	23.3.6.3 Catch on any port

	23.4 The Check operation
	23.4.0 General
	23.4.1 The Check any operation
	23.4.2 Check on any port

	23.5 Controlling communication ports
	23.5.0 General
	23.5.1 The Clear port operation
	23.5.2 The Start port operation
	23.5.3 The Stop port operation

	23.6 Use of any and all with ports

	24 Timer operations
	24.0 General
	24.1 The Start timer operation
	24.2 The Stop timer operation
	24.3 The Read timer operation
	24.4 The Running timer operation
	24.5 The Timeout operation
	24.6 Summary of use of any and all with timers

	25 Test verdict operations
	25.0 General
	25.1 Test case verdict
	25.2 Verdict values and overwriting rules
	25.2.0 General
	25.2.1 Error verdict

	26 External actions
	27 Module control part
	27.0 General
	27.1 Execution of test cases
	27.2 Termination of test cases
	27.3 Controlling execution of test cases
	27.4 Test case selection
	27.5 Use of timers in control

	28 Specifying attributes
	28.0 General
	28.1 Display attributes
	28.2 Encoding of values
	28.2.0 General
	28.2.1 Encode attributes
	28.2.2 Variant attributes
	28.2.3 Special strings
	28.2.4 Invalid encodings

	28.3 Extension attributes
	28.4 Scope of attributes
	28.5 Overwriting rules for attributes
	28.6 Changing attributes of imported language elements

	Annex A (normative): BNF and static semantics
	A.1 TTCN-3 BNF
	A.1.0 General
	A.1.1 Conventions for the syntax description
	A.1.2 Statement terminator symbols
	A.1.3 Identifiers
	A.1.4 Comments
	A.1.5 TTCN-3 terminals
	A.1.6 TTCN-3 syntax BNF productions
	A.1.6.0 TTCN module
	A.1.6.1 Module definitions part
	A.1.6.1.0 General
	A.1.6.1.1 Typedef definitions
	A.1.6.1.2 Constant definitions
	A.1.6.1.3 Template definitions
	A.1.6.1.4 Function definitions
	A.1.6.1.5 Signature definitions
	A.1.6.1.6 Testcase definitions
	A.1.6.1.7 Altstep definitions
	A.1.6.1.8 Import definitions
	A.1.6.1.9 Group definitions
	A.1.6.1.10 External function definitions
	A.1.6.1.11 External constant definitions
	A.1.6.1.12 Module parameter definitions

	A.1.6.2 Control part
	A.1.6.2.0 General
	A.1.6.2.1 Variable instantiation
	A.1.6.2.2 Timer instantiation
	A.1.6.2.3 Component operations
	A.1.6.2.4 Port operations
	A.1.6.2.5 Timer operations

	A.1.6.3 Type
	A.1.6.4 Value
	A.1.6.5 Parameterization
	A.1.6.6 With statement
	A.1.6.7 Behaviour statements
	A.1.6.8 Basic statements
	A.1.6.9 Miscellaneous productions

	Annex B (normative): Matching incoming values
	B.1 Template matching mechanisms
	B.1.0 General
	B.1.1 Matching specific values
	B.1.2 Matching mechanisms instead of values
	B.1.2.0 General
	B.1.2.1 Value list
	B.1.2.2 Complemented value list
	B.1.2.3 Omitting values
	B.1.2.4 Any value
	B.1.2.5 Any value or none
	B.1.2.6 Value range
	B.1.2.7 SuperSet
	B.1.2.8 SubSet

	B.1.3 Matching mechanisms inside values
	B.1.3.0 General
	B.1.3.1 Any element
	B.1.3.1.1 Using single character wildcards

	B.1.3.2 Any number of elements or no element
	B.1.3.2.1 Using multiple character wildcards

	B.1.4 Matching attributes of values
	B.1.4.0 General
	B.1.4.1 Length restrictions
	B.1.4.2 The IfPresent indicator

	B.1.5 Matching character pattern
	B.1.5.0 General
	B.1.5.1 Set expression
	B.1.5.2 Reference expression
	B.1.5.3 Match expression n times

	Annex C (normative): Pre-defined TTCN-3 functions
	C.1 Integer to character
	C.2 Character to integer
	C.3 Integer to universal character
	C.4 Universal character to integer
	C.5 Bitstring to integer
	C.6 Hexstring to integer
	C.7 Octetstring to integer
	C.8 Charstring to integer
	C.9 Integer to bitstring
	C.10 Integer to hexstring
	C.11 Integer to octetstring
	C.12 Integer to charstring
	C.13 Length of string type
	C.14 Number of elements in a structured type
	C.15 The IsPresent function
	C.16 The IsChosen function
	C.17 The Regexp function
	C.18 Bitstring to charstring
	C.19 Hexstring to charstring
	C.20 Octetstring to character string
	C.21 Character string to octetstring
	C.22 Bitstring to hexstring
	C.23 Hexstring to octetstring
	C.24 Bitstring to octetstring
	C.25 Hexstring to bitstring
	C.26 Octetstring to hexstring
	C.27 Octetstring to bitstring
	C.28 Integer to float
	C.29 Float to integer
	C.30 The random number generator function
	C.31 The Substring function

	Annex D (normative): Using other data types with TTCN-3
	D.1 Using ASN.1 with TTCN-3
	D.1.0 General
	D.1.1 ASN.1 and TTCN-3 type equivalents
	D.1.1.0 General
	D.1.1.1 Identifiers

	D.1.2 ASN.1 data types and values
	D.1.2.0 General
	D.1.2.1 Scope of ASN.1 identifiers

	D.1.3 Parameterization in ASN.1
	D.1.4 Defining ASN.1 message templates
	D.1.4.0 General
	D.1.4.1 ASN.1 receive messages using the TTCN-3 template syntax
	D.1.4.2 Ordering of template fields

	D.1.5 Encoding information
	D.1.5.0 General
	D.1.5.1 ASN.1 encoding attributes
	D.1.5.2 ASN.1 variant attributes

	Annex E (informative): Library of Useful Types
	E.1 Limitations
	E.2 Useful TTCN-3 types
	E.2.1 Useful simple basic types
	E.2.1.0 Signed and unsigned single byte integers
	E.2.1.1 Signed and unsigned short integers
	E.2.1.2 Signed and unsigned long integers
	E.2.1.3 Signed and unsigned longlong integers
	E.2.1.4 IEEE 754 floats

	E.2.2 Useful character string types
	E.2.2.0 UTF-8 character string "utf8string"
	E.2.2.1 BMP character string "bmpstring"
	E.2.2.2 UTF-16 character string "utf16string"
	E.2.2.3 ISO/IEC 8859 character string "iso8859string"

	E.2.3 Useful structured types
	E.2.3.0 Fixed-point decimal literal

	Annex F (informative): Bibliography
	History

