ETSI TS 144 031 V13.0.0 (2016-01)

Digital cellular telecommunications system (Phase 2+);
Location Services (LCS);
Mobile Station (MS) - Serving Mobile Location Centre (SMLC)
Radio Resource LCS Protocol (RRLP)
(3GPP TS 44.031 version 13.0.0 Release 13)

Reference RTS/TSGG-0244031vd00 Keywords GSM

ETSI

650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from: http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.

Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services: https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.

The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2016.
All rights reserved.

DECTTM, **PLUGTESTS**TM, **UMTS**TM and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members. **3GPP**TM and **LTE**TM are Trade Marks of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under http://webapp.etsi.org/key/queryform.asp.

Modal verbs terminology

In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the <u>ETSI Drafting Rules</u> (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

Contents

Intelle	lectual Property Rights	2	
Forew	word	2	
Moda	al verbs terminology	2	
Forew	word	5	
1	Scope	6	
1.1	References		
1.2	Abbreviations	7	
2	Functionality of Protocol		
2.1	General		
2.2	Position Measurement Procedure	8	
2.3	Assistance Data Delivery Procedure		
2.3a	Positioning Capability Transfer Procedure	10	
2.4	(void)	10	
2.5	Error Handling Procedures	10	
2.5.1	General	10	
2.5.1a	Message Too Short	10	
2.5.2	Unknown Reference Number		
2.5.3	Missing Information Element or Component Element	11	
2.5.4	Incorrect Data	11	
2.5.5	Repeated Component	11	
2.5.6	(void)	12	
2.5.7	Missing Component	12	
2.5.8	Unforeseen Component		
2.5.8a	RRLP Procedure	12	
2.5.9	Pseudo-Segmentation	13	
3	Message Structure		
3.1	General Format of RRLP Message		
3.2	Reference Number IE	14	
3.3	Component IE	15	
4	Components		
4.1	Measure Position Request	16	
4.2	Measure Position Response	16	
4.3	Assistance Data	16	
4.4	Assistance Data Acknowledgement	17	
4.5	Protocol Error	1	
4.6	Positioning Capability Request		
4.7	Positioning Capability Response	18	
5	Elements of Components	18	
5.1	ASN.1 Description		
6	TOM Protocol Header for RRLP Transport	54	
6.1	General		
6.2	Remaining Octets of TOM Protocol Header for RRLP		
Anne	ex A (informative): Description of Components	56	
A.1	Introduction		
A.2	Measure Position Request		
A.2.1			
A.2.2			
A.2.2.			

A.2.2.4	E-OTD Measurement Assistance Data for System Information List Element			
A.2.2.4a	GPS Time Assistance Measurement Request element			
A.2.2.4b				
A.2.2.4c	Velocity Request element			
A.2.2.4d	GANSS Carrier-Phase Measurement Request Element	64		
A.2.2.4e	GANSS TOD - GSM Time Association Request Element	64		
A.2.2.4f	Required Response Time	64		
A.2.2.4g	GANSS Multi-frequency Measurement Request Element	64		
A.2.2.5	Extended Reference IE	65		
A.3	Measure Position Response	65		
A.3.1	General	65		
A.3.2	Elements	66		
A.3.2.1	Multiple Sets Element	66		
A.3.2.2	Reference BTS Identity Element	66		
A.3.2.3	E-OTD Measurement Information Element			
A.3.2.3a	E-OTD Measurement Extended Information Element			
A.3.2.4	Location Information Element			
A.3.2.5	GPS Measurement Information Element			
A.3.2.6	Location Information Error Element			
A.3.2.6a	GPS Time Assistance Measurements Element			
A.3.2.6b	Velocity Estimate Element			
A.3.2.7	Extended Reference IE			
A.3.2.8	Uplink RRLP Pseudo Segmentation Indication			
A.3.2.9	GANSS Location Information Element			
A.3.2.10	GANSS Measurement Information Element			
A.3.2.10				
A.4	Assistance Data			
A.4.1	General.			
A.4.2	Elements			
A.4.2.1	E-OTD Reference BTS for Assistance Data Element			
A.4.2.2	E-OTD Measurement Assistance Data Element			
A.4.2.3	E-OTD Measurement Assistance Data for System Information List Element			
A.4.2.4	GPS Assistance Data Element			
A.4.2.4a	GPS Time Assistance Measurement Request Element			
A.4.2.4b	GPS Reference Time Uncertainty Element			
A.4.2.4c	Additional GPS Assistance Data			
A.4.2.5	More Assistance Data To Be Sent Element			
A.4.2.5	More Assistance Data To Be Sent Element			
A.4.2.6	GANSS Assistance Data			
A.4.2.6.1	GANSS Common Assistance Data			
A.4.2.6.2	GANSS Generic Assistance Data			
A.4.2.7	GANSS Carrier-Phase Measurement Request Element			
A.4.2.7 A.4.2.8	GANSS Carrier-Flase Measurement Request Element			
A.4.2.6 A.5	Assistance Data Acknowledgement			
A.5.1	General			
A.6 A.6.1	Protocol Error			
	General Estandad Reference IE			
A.6.2 A.7	Extended Reference IE			
	Positioning Capability Request			
A.7.1	General			
A.8	Positioning Capability Response			
A.8.1	General			
A.8.2	Elements			
A.8.2.1	Positioning Capabilities			
A.8.2.2	Assistance Data Supported			
A.8.2.3	Assistance Data Needed	156		
Annex B (informative): Change History1				
II: at a m.		150		

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

- x the first digit:
 - 1 presented to TSG for information;
 - 2 presented to TSG for approval;
 - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the document.

1 Scope

The present document contains the definition of the Radio Resource LCS Protocol (RRLP) to be used between the Mobile Station (MS) and the Serving Mobile Location Centre (SMLC).

Clause 2 defines the functionality of the protocol. Clause 3 describes the message structure, and Clause 4 the structure of components. Clause 5 contains the ASN.1 description of the components.

1.1 References

[17]

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document *in the same Release as the present document*.

	1
[1]	3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]	3GPP TS 43.059: "Functional Stage 2 Description of Location Services in GERAN".
[3]	3GPP TS 29.002: "Mobile Application Part (MAP) specification".
[4]	ITU-T Recommendation X.691: "Information technology - ASN.1 encoding rules: Specification of Packed Encoding Rules (PER)".
[5]	ITU-T Recommendation X.680: "Information technology - Abstract Syntax Notation One (ASN.1): Specification of basic notation".
[6]	3GPP TS 23.032: "Universal Geographical Area Description (GAD)".
[7]	3GPP TS 49.031: "Location Services (LCS); Base Station System Application Part LCS Extension (BSSAP-LE)".
[8]	ICD-GPS-200, Navstar GPS Space Segment/Navigation User Interfaces.
[9]	RTCM-SC104, RTCM Recommended Standards for Differential GNSS Service (v.2.2).
[10]	3GPP TS 44.064: "General Packet Radio Service (GPRS); Mobile Station - Serving GPRS Support Node (MS-SGSN); Logical Link Control (LLC) layer specification".
[11]	Galileo OS Signal in Space ICD (OS SIS ICD), Issue 1. 1 2, September February 201 0 4, European Union.
[12]	IS-GPS-200, Revision D, Navstar GPS Space Segment/Navigation User Interfaces, March 7 th , 2006.
[13]	IS-GPS-705, Navstar GPS Space Segment/User Segment L5 Interfaces, September 22, 2005.
[14]	IS-GPS-800, Navstar GPS Space Segment/User Segment L1C Interfaces, March 31, 2008.
[15]	Specification for the Wide Area Augmentation System (WAAS), US Department of Transportation, Federal Aviation Administration, DTFA01-96-C-00025, 2001.
[16]	IS-QZSS, Quasi Zenith Satellite System Navigation Service Interface Specifications for QZSS, Ver.1.0, June 17, 2008.

Global Navigation Satellite System GLONASS Interface Control Document, Version 5, 2002.

[18] BDS-SIS-ICD-2.0: "BeiDou Navigation Satellite System Signal In Space Interface Control Document Open Service Signal (Version 2.0)", December 2013.

1.2 Abbreviations

For the purposes of the present document, the following abbreviations and the abbreviations given in 3GPP TR 21.905 or in 3GPP TS 43.059 apply.

ADR Accumulated Delta-Range

BDS BeiDou Navigation Satellite System

CNAV Civil Navigation

ECEF Earth-Centered, Earth-Fixed ECI Earth-Centered-Inertial

EGNOS European Geostationary Navigation Overlay Service

FEC Forward Error Correction

GAGAN GPS Aided Geo Augmented Navigation

ICD Interface Control Document

GANSS Galileo and Additional Navigation Satellite Systems

GLONASS GLObal'naya NAvigatsionnaya Sputnikovaya Sistema (Engl.: Global Navigation Satellite System)

GNSS Global Navigation Satellite System

IOD Issue of Data

LSB Least Significant Bit

MSAS Multi-functional Satellite Augmentation System

MSB Most Significant Bit msd mean solar day NAV Navigation

NICT National Institute of Information and Communications Technology

NTSC National Time Service Center

PZ-90 Parametry Zemli 1990 Goda – Parameters of the Earth Year 1990

QZSS Quasi-Zenith Satellite System
SBAS Space Based Augmentation System

SV Space Vehicle
USNO US Naval Observatory

WAAS Wide Area Augmentation System WGS-84 World Geodetic System 1984

2 Functionality of Protocol

2.1 General

The present document defines one generic RRLP message that is used to transfer Location Services (LCS) related information between the Mobile Station (MS) and the Serving Mobile Location Centre (SMLC). Usage of the RRLP protocol on a general level is described in 3GPP TS 43.059 that includes Stage 2 description of LCS.

One message includes one of the following components:

- Measure Position Request;
- Measure Position Response;
- Assistance Data;
- Assistance Data Acknowledgement;
- Protocol Error;
- Positioning Capability Request;
- Positioning Capability Response.

Next sub-clauses describe the usage of these components.

Delivery of components may be supported in the RRLP level using pseudo-segmentation by sending several shorter messages instead of one long message. Any assistance data that is successfully delivered to an MS and acknowledged prior to the interruption of the positioning procedure by an event like handover, or by any other event that causes an MS to terminate the positioning procedure or delivery of assistance data (see 3GPP TS 43.059), shall be retained by the MS and need not be resent by the SMLC when positioning or delivery of assistance data is again re-attempted.

The RRLP maximum PDU size is 242 octets. If the amount of data that needs to be sent is larger than RRLP maximum PDU size, the RRLP pseudo-segmentation shall be used. The RRLP pseudo-segmentation is the use of several RRLP components (one in each RRLP message) to deliver a large amount of information. For SMLC to MS messages, the Assistance Data component is the one that is sent several times in order to deliver the information. For MS to SMLC messages, the Measure Position Response component may be sent twice in order to deliver the information. Legacy MS and SMLC (3GPP Rel-4 or older) may send RRLP components that are larger than the RRLP maximum PDU size. In this case lower level segmentation will be used.

2.2 Position Measurement Procedure

The purpose of this procedure is to enable the SMLC to request for position measurement data or location estimate from the MS, and the MS to respond to the request with measurements or location estimate.

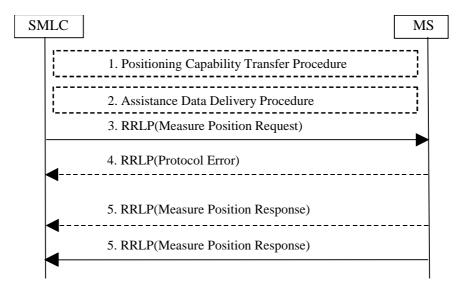


Figure 2.1: Position Measurement procedure

- 1. The Measure Position Request component and any Assistance Data Delivery Procedure may be preceded by a Positioning Capability Transfer procedure (see sub-clause 2.3a) to transfer the MS positioning capabilities to the SMLC.
- 2. The Measure Position Request component may be preceded by an Assistance Data Delivery Procedure (see subclause 2.3) to deliver some or all of the entire set of assistance data that is needed by the subsequent positioning procedure (steps 3-5).
- 3. The SMLC sends the Measure Position Request component in a RRLP message to the MS. The component includes QoS, other instructions, and possible assistance data to the MS. The RRLP message contains a reference number and an extended reference ID of the request.
- 4. The MS sends a RRLP message containing the Protocol Error component to the SMLC, if there is a problem that prevents the MS to receive a complete and understandable Measure Position Request component. The RRLP message contains the reference number and, if available, the extended reference ID included in the Measure Position Request received incomplete. The Protocol Error component includes a more specific reason. When the SMLC receives the Protocol Error component, it may try to resend the Measure Position Request (go back to the step 3), abort location, or start a new position measurement procedure (e.g. with updated assistance data).
- 5. The MS tries to perform the requested location measurements, and possibly calculates it own position. When the MS has location measurements, location estimate, or an error indication (measurements/location estimation not

possible), it sends the results in the Measure Position Response component to the SMLC. The RRLP message contains the reference number and, if received, the extended reference ID of the request originally received in the step 3. The MS may optionally send one additional Measure Position Response component in a second RRLP message to the SMLC if the amount of information it needs to transfer to the SMLC is too large to fit into one single Measure Position Response component (uplink RRLP pseudo-segmentation). This RRLP message also contains the reference number and, if received, the extended reference ID of the request originally received in the step 3. If two components are sent, the MS shall indicate in the first component that it is the first of many components and in the second one that it is the second of many components. If there is a problem that prevents the SMLC to receive a complete and understandable Measure Position Response component, the SMLC may decide to abort location, or start a new position measurement procedure instead. If additional Measure Position Response components are received by the SMLC after the 1st and optional 2nd one, they shall be ignored.

2.3 Assistance Data Delivery Procedure

The purpose of this procedure is to enable the SMLC to send assistance data to the MS related to position measurement and/or location calculation. Notice that RRLP protocol is not used by the MS to request assistance data, only to deliver it to the MS. The entire set of assistance data (i.e. the total amount of assistance data that the SMLC has decided to send in the current procedure) may be delivered in one or several Assistance Data components. In this case steps 1 and 3 below may be repeated several times by the SMLC. If several components are sent, the SMLC shall await the acknowledgement of each component before the next Assistance Data component is sent. If Assistance Data Delivery is used as part of the Position Measurement Procedure, as described in sub-clause 2.2, then some assistance data may be delivered in the final RRLP Measure Position Request.

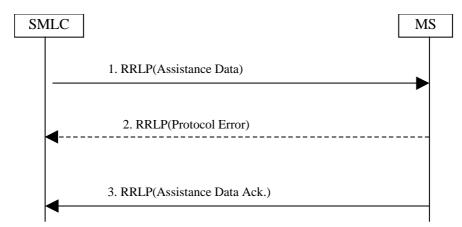


Figure 2.2: Assistance Data Delivery procedure

- 1. The SMLC sends the Assistance Data component to the MS. The component includes assistance data for location measurement and/or location calculation. The RRLP message contains a reference number and an extended reference ID of the delivery. The More Assistance Data To Be Sent Element in the Assistance Data component is used by the SMLC to indicate to the MS if either more Assistance Data components (in the current Assistance Data Delivery procedure) or a final RRLP Measure Position Request (if the Assistance Data Delivery Procedure forms part of a Position Measurement procedure as described in sub-clause 2.2) will be sent.
- 2. The MS sends a RRLP message containing the Protocol Error component to the SMLC, if there is a problem that prevents the MS to receive a complete and understandable Assistance Data component. The RRLP message contains the reference number and, if available, the extended reference ID included in the Assistance Data component received incomplete. The Protocol Error component includes a more specific reason. When the SMLC receives the Protocol Error component, it may try to resend the Assistance Data component (go back to the step 1), send a new measure Assistance Data set (e.g. with updated assistance data), or abort the delivery.
- 3. When the MS has received a complete Assistance Data component, it send the Assistance Data Acknowledgement component to the SMLC. The RRLP message contains the reference number of the Assistance Data originally received in step 1.

2.3a Positioning Capability Transfer Procedure

The purpose of this procedure is to enable the SMLC to obtain the positioning capabilities of the MS, the types of assistance supported and the types of assistance data that may be needed from the SMLC. MS support for this procedure can be indicated to the SMLC using the MS Classmark 3 IE for GSM (see 3GPP TS 24.008), the PS LCS Capability IE for GERAN Gb mode (see 3GPP TS 24.008) and the MS Positioning Capability IE for GERAN Iu mode (see 3GPP TS 44.118).

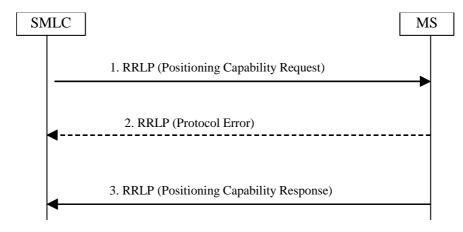


Figure 2.3: Positioning Capability Transfer procedure

- The SMLC sends the Positioning Capability Request component to the MS. The RRLP message contains a
 reference number and an extended reference ID of the request. The message may contain indication of GANSS
 positioning support.
- 2. The MS sends a RRLP message containing the Protocol Error component to the SMLC, if there is a problem that prevents the MS to receive a complete and understandable Positioning Capability Request component. The RRLP message contains the reference number and the extended reference ID included in the Positioning Capability Request component. The Protocol Error component includes a more specific reason. When the SMLC receives the Protocol Error component, it may try to resend the Positioning Capability Request component (go back to the step 1) or abort the request.
- 3. When the MS has received a complete Positioning Capability Request component, it sends the Positioning Capability Response component to the SMLC. The component shall include the positioning capabilities of the MS and the types of supported assistance data. The component may include the types of assistance needed by the MS to obtain a location estimate or positioning measurements. The RRLP message also contains the reference number and extended Reference ID of the Positioning Capability Request originally received in step 1.

2.4 (void)

2.5 Error Handling Procedures

2.5.1 General

In this sub-clause it is described how a receiving entity behaves in cases when it receives erroneous data or detects that certain data is missing.

2.5.1a Message Too Short

When MS receives a RRLP message, that is too short to contain all mandatory IEs, the MS sends a Protocol Error component with indication "Message Too Short". If the Reference Number can be found, it is included. If the Reference Number is not available, the Reference Number of the RRLP message carrying the Protocol Error component is set to '0'. If the Extended Reference IE can be found, it shall be included in the returned Protocol Error Component. If the Extended Reference IE is not available, an Extended Reference IE shall not be included. The original sending entity that receives the Protocol Error, may then resend the original message, or abort the procedure.

2.5.2 Unknown Reference Number

A SMLC detects that it has received a RRLP message with an unknown or invalid Reference Number, when one or more of the following conditions occur:

- a Measure Position Response, Assistance Data Acknowledgement, Positioning Capability Response or Protocol Error component is received with a Reference Number that the SMLC has not sent in a Measure Position Request, Assistance Data or Positioning Capability Request component during a pending Position Measurement, Assistance Data Delivery or Positioning Capability Transfer procedure.
- a Measure Position Response, Positioning Capability Response or Protocol Error component is received with an Extended Reference IE value that the SMLC has not sent in a Measure Position Request Assistance Data or Positioning Capability Request component during a pending Position Measurement, Assistance Data Delivery or Positioning Capability Transfer procedure.
- a Measure Position Response, Positioning Capability Response or Protocol Error component is received with a
 Reference Number and an Extended Reference IE value that the SMLC has not sent together in the same
 Measure Position Request, the same Assistance Data or the same Positioning Capability Request component
 during a pending Position Measurement, Assistance Data Delivery or Positioning Capability Transfer procedure.

The SMLC shall then discard the message. If the SMLC receives a Measure Position Response or a Protocol Error component containing no Extended Reference ID, then the SMLC shall assume that the target MS is for Release 4 or earlier and shall only verify the received Reference Number.

2.5.3 Missing Information Element or Component Element

When MS receives a RRLP message, that does not contain IEs or component elements expected to be present, the MS sends a Protocol Error component with indication "Missing Information Element or Component Element". If the Reference Number can be found, it is included. If the Reference Number is not available, the Reference Number of the RRLP message carrying the Protocol Error component is set to '0'. If the Extended Reference IE can be found, it shall be included in the returned Protocol Error Component. If the Extended Reference IE is not available, an Extended Reference IE shall not be included. The SMLC that receives the Protocol Error, may then resend the original message, or abort the procedure.

2.5.4 Incorrect Data

When MS receives a RRLP message, that is contains IEs or elements of components that are syntactically incorrect, the MS sends a Protocol Error component with indication "Incorrect Data". If the Reference Number can be found, it is included. If the Reference Number is not available, the Reference Number of the RRLP message carrying the Protocol Error component is set to '0'. If the Extended Reference IE can be found, it shall be included in the returned Protocol Error Component. If the Extended Reference IE is not available, an Extended Reference IE shall not be included. The SMLC that receives the Protocol Error, may then resend the original message, or abort the procedure.

2.5.5 Repeated Component

When after the reception of a Measure Position Request component, but before responding with a Measure Position Response or a Protocol Error component, the MS receives a new RRLP message with the Measure Position Request component, it acts as follows:

- if the old and new Measure Position Request components have the same Reference Number and, if included, the same Extended Reference IE, the MS ignores the later component;
- if the old and new Measure Position Request components have different Reference Numbers or, if included, different Extended Reference IEs or if one Measure Position Request component (old or new) contains an Extended Reference IE but the other component does not, the MS aborts activity for the former component, and starts to acts according to the later component, and sends a response to that.

When after the reception of an Assistance Data component, but before responding with an Assistance Data Acknowledgement or a Protocol Error component, the MS receives a new RRLP message with the Assistance Data component, it acts as follows:

- if the old and new Assistance Data components have the same Reference Number and, if included, the same Extended Reference IE and if pseudo-segmentation does not apply (see sub-clause 2.5.9), the MS ignores the later component;
- if the old and new Assistance Data components have different Reference Numbers or, if included, different Extended Reference IEs or if one Assistance Data component (old or new) contains an Extended Reference IE but the other component does not, the MS ignores the former component and sends an acknowledgement to the latter component.

When after the reception of a Positioning Capability Request component, but before responding with a Positioning Capability Response or a Protocol Error component, the MS receives a new RRLP message with the Positioning Capability Request component, it acts as follows:

- if the old and new Positioning Capability Request components have the same Reference Number and the same Extended Reference IE, the MS ignores the later component;
- if the old and new Positioning Capability Request components have different Reference Numbers or different Extended Reference IEs, the MS aborts activity for the former component, starts to act according to the later component and sends a response to that.

When after the reception of an Measure Position Response component, the SMLC receives a new RRLP message with the Measure Position Response component, it acts as follows:

- if the old and new Measure Position Response components have the same Reference Number and, if included, the same Extended Reference IE values, the SMLC may ignore the later component;

2.5.6 (void)

2.5.7 Missing Component

When the SMLC sends a Measure Position Request component to the MS, it starts a timer. If the timer expires before the SMLC receives the last Measure Position Response component or a Protocol Error component from the MS with the same Reference Number and, if included, the same Extended Reference IE value as in the sent component, it may abort location attempt or send a new Measure Position Request.

When the SMLC receives a Measure Position Response component with the same Reference Number and, if included, the same Extended Reference IE value as in the sent component indicating that it is the second of many segments, but the first of the many segments was never received by the SMLC, it may abort location attempt or send a new Measure Position Request.

When the SMLC sends a Assistance Data component to the MS, it starts a timer. If the timer expires before the SMLC receives a Assistance Data Acknowledgement or Protocol Error component from the MS with the same Reference Number as in the sent component and, in the case of a Protocol Error component, either the same extended reference ID as in the sent component or no extended reference ID, it may abort delivery attempt or send a new Assistance Data.

When the SMLC sends a Positioning Capability Request component to the MS, it starts a timer. If the timer expires before the SMLC receives a Positioning Capability Response or Protocol Error component from the MS with the same Reference Number and the same Extended Reference ID as in the sent component, it may about the Positioning Capability Transfer Procedure attempt or send a new Positioning Capability Request.

2.5.8 Unforeseen Component

When the MS receives a complete Assistance Data pseudo-segmentation sequence or an Assistance Data component that was sent without pseudo-segmentation, that it is not expecting, MS may discard it.

2.5.8a RRLP Procedure

The MS and SMLC shall only support one RRLP procedure at a time for either positioning, delivery of assistance data or positioning capability transfer. The normal sequence of events for either procedure is defined in sub-clause 2.2, sub-clause 2.3 or sub-clause 2.3a, respectively. If the MS is engaged in an RRLP procedure and receives a correctly encoded

RRLP message from the SMLC that starts a new procedure, the MS shall abort the first procedure without sending a response and start the second.

2.5.9 Pseudo-Segmentation

When the SMLC employs pseudo-segmentation to send an RRLP Measure Position Request message or an RRLP Assistance Data message, the SMLC shall send one or more RRLP Assistance Data components followed by:

- a final RRLP Measure Position Request component (see sub-clause 2.2) or
- a final RRLP Assistance Data component (see sub-clause 2.3).

The SMLC shall indicate in all but the final component (Measure Position Request or Assistance Data, respectively) that more components are on the way.

When an MS receives an Assistance Data component indicating that more components are on the way, the MS may store the contents of the component. If the MS receives a subsequent Assistance Data component or a final Measure Position Request component that is correctly encoded, the MS shall assume that the new component continues the pseudo-segmentation of the earlier component and may then store the contents of the new component. If the new component is an Assistance Data component indicating that no more components are on the way or if it is a Measure Position Request, the MS shall assume that pseudo-segmentation is complete. The MS may then employ the rules defined in sub-clause 2.5.5 to verify if the new message is a repeated duplicate of a previous message.

3 Message Structure

3.1 General Format of RRLP Message

The general format of the RRLP message is given below, and based on:

- ITU-T Recommendation X.680;
- ITU-T Recommendation X.691;

and is consistent with these ITU-T recommendations. Also further definitions in the present document are based on ASN.1/94 defined in ITU-T Recommendation X.680 (ASN.1 1994). BASIC-PER, unaligned variant is used. Both RRLP ASN.1 modules, RRLP-Messages and RRLP-Components, are based on recommendations presented above.

ASN.1 identifiers have the same name as the corresponding parameters (information elements of the RRLP message, components, elements of components, fields of component elements etc) in other parts of the present document, except for the differences required by the ASN.1 notation (blanks between words are removed, the first letter of the first word is lower-case and the first letter of the following words are capitalized, e.g. "Reference Number" is mapped to "referenceNumber"). In addition some words may be abbreviated as follows:

msr	measure
req	request
rsp	response
nbr	number
ack	acknowledgement

Ellipsis Notation shall be used in the same way as described in 3GPP TS 29.002 and shall be supported on the radio interface by the MS and the network for all operations defined in the present document.

Table 3.1.a: RRLP Message Format

```
RRLP-Messages
-- { RRLP-messages }
DEFINITIONS AUTOMATIC TAGS ::=
BEGIN
IMPORTS
    MsrPosition-Req, MsrPosition-Rsp, AssistanceData,
    ProtocolError, PosCapability-Req, PosCapability-Rsp
FROM
                        -- { RRLP-Components }
    RRLP-Components
PDU ::= SEOUENCE {
    referenceNumber
                            INTEGER (0..7),
    component
                            RRLP-Component
}
RRLP-Component ::= CHOICE {
                            MsrPosition-Req,
   msrPositionReq
                            MsrPosition-Rsp,
    msrPositionRsp
                            AssistanceData.
    assistanceData
    assistanceDataAck
                            NULL.
    protocolError
                            ProtocolError,
    posCapabilityReq
                            PosCapability-Req.
    posCapabilityRsp
                            PosCapability-Rsp
END
```

The message consists of two information elements, that are further described in the following sub-clauses.

3.2 Reference Number IE

This element is mandatory, and appears only once per RRLP message. It has the range from 0 to 7. Value 0 is reserved for indicating unknown Reference Number. Its ASN.1 definition is in sub-clause 3.1. This element contains the Reference Number that shall be used as follows:

- in the Position Measurement procedure the SMLC shall select any number within the range 1-7 that it is not already using with the particular MS. The Reference Number serves as an identification of the Measure Position request component that it sends to the MS. When the MS responds either with the Measure Position Response component, or the Protocol Error component, it shall use the same Reference Number value and, if an Extended Reference ID was included by the SMLC, the same Extended Reference ID to identify to which Measure Position Request it is responding, if the Reference Number has been obtained. If the MS has not been able to decode the Reference Number (e.g. IE missing), it shall use '0' as the Reference number in the response. This mechanism helps for example in the cases where the SMLC sends a Measure Position Request to the MS, and before it receives the Response, it needs to send another Request (e.g. assistance data changes). Then the SMLC can identify to which Request the Response is related to;
- in the Assistance Data Delivery procedure the SMLC shall select any number within the range 1 7 that it is not already using with the MS. The Reference Number serves as an identification of the Assistance Data component that it sends to the MS. When the MS responds either with the Assistance Data Acknowledgement component or the Protocol Error component, it shall use the same Reference Number value if the Reference Number has been obtained and, in the case of Protocol Error, if an Extended Reference ID was included by the SMLC, the same Extended Reference ID to identify to which Assistance Data component it is responding. If the MS has not been able to decode the Reference Number (e.g. IE missing), it shall use '0' as the Reference number in the response.
- in the Position Capability Transfer procedure the SMLC shall select any number within the range 1 7 that it is not already using with the MS. The Reference Number serves as an identification of the Positioning Capability Request component that it sends to the MS. When the MS responds either with the Positioning Capability Response component, or the Protocol Error component, it shall use the same Reference Number value if the Reference Number has been obtained and the same Extended Reference ID value if that has been obtained to

identify to which Positioning Capability Request component it is responding. If the MS has not been able to decode the Reference Number (e.g. IE missing), it shall use '0' as the Reference number in the response.

- the SMLC shall use the same Reference Number and same Extended Reference ID to resend any RRLP component for which a response was not received from the MS.
- the SMLC shall use a different Reference Number to that in any RRLP component for which a response was not received from the MS if the SMLC aborts an existing RRLP procedure and starts a new procedure.
- the SMLC may use the same Reference Number and same Extended Reference ID or different Reference Numbers and Extended Reference IDs for different RRLP components within the same pseudo-segmentation sequence.

In all RRLP messages except Assistance Data Acknowledgement, the Reference Number IE shall be supplemented by an Extended Reference IE in order to distinguish valid from invalid RRLP responses at the SMLC and duplicate from non-duplicate RRLP commands at the MS. In order to remain backward compatible, the receiving entity shall be able to receive Measure Position Request, Measure Position Response, Assistance Data and Protocol Error messages without the Extended Reference IE. The ASN.1 definition of the Extended Reference IE is given in sub-clause 5.1 and the procedures associated with sending and receiving it are given in clause 2 and in Annex A, sub-clauses A.2.2.5, A.3.2.7 and A.6.6.

3.3 Component IE

This element is mandatory, and appears only once per RRLP message. It contains the actual component to be transferred.

Different components are described further in Chapter 4. This IE contains only one component, i.e. it is not possible to include two or more components.

4 Components

This ASN.1 module contains the definitions of the components and datatypes defined in the components.

Table 4.a: RRLP-Components format

```
RRLP-Components
-- { RRLP-Components }
DEFINITIONS AUTOMATIC TAGS ::=
BEGIN
IMPORTS
    Ext-GeographicalInformation, VelocityEstimate
FROM
    MAP-LCS-DataTypes {
    itu-t identified-organization (4) etsi (0) mobileDomain (0)
    gsm-Network (1) modules (3) map-LCS-DataTypes (25) version10 (10)}
    ExtensionContainer
FROM MAP-ExtensionDataTypes {
    itu-t identified-organization (4) etsi (0) mobileDomain (0)
    gsm-Network (1) modules (3) map-ExtensionDataTypes (21) version10 (10)}
-- Add here other ASN.1 definitions presented below
-- in chapters 4 and 5.
END
```

4.1 Measure Position Request

This component is used by the SMLC to request location measurements or a location estimate from the MS. It includes QoS, other instructions, and possible assistance data to the MS. This component is defined as follows:

Table 4.1.a: Measure Position Request

```
-- add this definition to RRLP-Components module
 - Measurement Position request component
MsrPosition-Reg ::= SEOUENCE {
    positionInstruct
                            PositionInstruct.
    referenceAssistData
                            ReferenceAssistData
                                                     OPTIONAL,
    msrAssistData
                            MsrAssistData
                                                     OPTIONAL,
    systemInfoAssistData
                            SystemInfoAssistData
                                                     OPTIONAL,
                                                     OPTIONAL.
    qps-AssistData
                            GPS-AssistData
    extensionContainer
                            ExtensionContainer
                                                     OPTIONAL.
    -- Release 98 extension element
                                        Rel98-MsrPosition-Req-Extension
re198-MsrPosition-Req-extension
                                                                                 OPTIONAL.
    -- Release 5 extension element
rel5-MsrPosition-Req-extension
                                        Rel5-MsrPosition-Req-Extension
                                                                                 OPTIONAL,
     - Release 7 extension element
rel7-MsrPosition-Req-extension
                                                                                 OPTIONAL
                                        Rel7-MsrPosition-Reg-Extension
```

The elements of this component are defined in clause 5.

4.2 Measure Position Response

This component is used by the MS to respond to a Measure Position Request from the SMLC with location measurements, a location estimate, or an error indication. This component is defined as follows:

Table 4.2.a: Measure Position Response

```
-- add this defintion to RRLP-Components module
 - Measurement Position response component
MsrPosition-Rsp ::= SEQUENCE {
   multipleSets
                            MultipleSets
                                                    OPTIONAL.
    referenceIdentity
                            ReferenceIdentity
                                                    OPTIONAL,
    otd-MeasureInfo
                            OTD-MeasureInfo
                                                    OPTIONAL,
    locationInfo
                            LocationInfo
                                                    OPTIONAL,
    gps-MeasureInfo
                            GPS-MeasureInfo
                                                    OPTIONAL,
    locationError
                            LocationError
                                                    OPTIONAL,
    extensionContainer
                            ExtensionContainer
                                                    OPTIONAL,
    -- Release extension here
   rel-98-MsrPosition-Rsp-Extension
                            Rel-98-MsrPosition-Rsp-Extension
                                                                     OPTIONAL,
   rel-5-MsrPosition-Rsp-Extension
                            Rel-5-MsrPosition-Rsp-Extension
                                                                OPTIONAL.
    -- When RRLP pseudo-segmentation is used, rel-5-MsrPosition-Rsp-Extension
    -- and other possible future extensions should be the ones included in
    -- the 2nd MsrPosition-Rsp component.
    rel-7-MsrPosition-Rsp-Extension
                            Rel-7-MsrPosition-Rsp-Extension
                                                                OPTIONAL
```

The elements of this component are defined in clause 5.

4.3 Assistance Data

This component is used by the SMLC to deliver assistance data for location measurement and/or location calculation. This component is defined as follows:

Table 4.3.a: Assistance Data

```
-- add this defintion to RRLP-Components module
-- Assistance Data component
AssistanceData ::= SEQUENCE {
   referenceAssistData ReferenceAssistData
                                                    OPTIONAL,
   msrAssistData
                           MsrAssistData
                                                    OPTIONAL.
    systemInfoAssistData
                            SystemInfoAssistData
                                                    OPTIONAL.
   gps-AssistData
                            GPS-AssistData
                                                    OPTIONAL,
                                                    OPTIONAL,
   moreAssDataToBeSent
                           MoreAssDataToBeSent
                                                                -- If not present, interpret as only
                                                                -- Assistance Data component used to
                                                                -- deliver entire set of assistance
                                                                -- data.
    extensionContainer
                            ExtensionContainer
                                                    OPTIONAL,
    -- Release extension here
    rel98-AssistanceData-Extension Rel98-AssistanceData-Extension OPTIONAL,
    rel5-AssistanceData-Extension
                                   Rel5-AssistanceData-Extension
    rel7-AssistanceData-Extension Rel7-AssistanceData-Extension OPTIONAL
```

The elements of this component are defined in clause 5.

4.4 Assistance Data Acknowledgement

This component does not have any information contents. It presence indicates that the MS has received the complete Assistance Data component.

4.5 Protocol Error

This component is used by the receiving entity (SMLC or MS) to indicate to the sending entity, that there is a problem that prevents the receiving entity to receive a complete and understandable component. This component is defined as follows:

Table 4.5.a: Protocol Error

The elements of this component are defined in clause 5.

4.6 Positioning Capability Request

This component is used by the SMLC to request the positioning capabilities of the MS and optionally indicating GANSS positioning support. This component is defined as follows:

Table 4.6.a: Positioning Capability Request

```
}
```

The elements of this component are defined in clause 5.

4.7 Positioning Capability Response

This component is used by the MS to respond to a Positioning Capability Request from the SMLC with the positioning capabilities of the MS, the types of assistance data supported and the types of assistance data possibly needed by the MS. This component is defined as follows:

Table 4.7.a: Positioning Capability Response

```
-- add this definition to RRLP-Components module
-- Positioning Capability response component
PosCapability-Rsp ::= SEQUENCE {
   extended-reference
                         Extended-reference.
   posCapabilities
                          PosCapabilities,
-- assistanceSupported shall be included if and only if any of the assistance data is supported
   assistanceSupported AssistanceSupported
                                                  OPTIONAL,
   assistanceNeeded
                           AssistanceNeeded
                                                  OPTIONAL,
   extensionContainer
                          ExtensionContainer
                                                  OPTIONAL,
}
```

The elements of this component are defined in clause 5.

5 Elements of Components

5.1 ASN.1 Description

The following ASN.1 code defines the elements of components. See the Annex A for further description of the contents of components and their elements.

Table 5.1.a: ASN.1 Description

```
add these defintions to RRLP-Components module
-- Position instructions
PositionInstruct ::= SEQUENCE {
    -- Method type
   methodType
                           MethodType,
   positionMethod
                           PositionMethod,
   measureResponseTime
                           MeasureResponseTime.
    useMultipleSets
                           UseMultipleSets,
    environmentCharacter
                           EnvironmentCharacter
                                                   OPTIONAL
}
MethodType ::= CHOICE {
   msAssisted
                   AccuracyOpt,
                                   -- accuracy is optional
   msBased
                                  -- accuracy is mandatory
                   Accuracy,
   msBasedPref
                                   -- accuracy is mandatory
                   Accuracy,
    msAssistedPref Accuracy
                                   -- accuracy is mandatory
 - Accuracy of the location estimation
AccuracyOpt ::= SEQUENCE {
    accuracy
                   Accuracy
                               OPTIONAL
```

```
-- The values of this field are defined in 3GPP TS 23.032 (Uncertainty code)
Accuracy ::= INTEGER (0..127)
-- Position Method
PositionMethod ::= ENUMERATED {
   eotd (0),
   gps (1),
   gpsOrEOTD (2)
}
-- Measurement request response time
MeasureResponseTime ::= INTEGER (0..7)
-- useMultiple Sets, FFS!
UseMultipleSets ::= ENUMERATED {
   multipleSets (0), -- multiple sets are allowed
                           -- sending of multiple is not allowed
   oneSet (1)
-- Environment characterization
EnvironmentCharacter ::= ENUMERATED {
   badArea (0),
   mixedArea (2),
}
-- E-OTD reference BTS for Assitance data IE
{\tt ReferenceAssistData} \; ::= \; {\tt SEQUENCE} \; \; \{ \;
   bcchCarrier BCCHCarrier,
                                                      -- BCCH carrier
   bsic
                   BSIC,
                                                      -- BSIC
   timeSlotScheme TimeSlotScheme,
                                                      -- Timeslot scheme
   btsPosition BTSPosition
                                     OPTIONAL
-- ellipsoid point and
-- ellipsoid point with altitude and uncertainty ellipsoid shapes are supported
{\tt BTSPosition} \ ::= \ {\tt Ext-GeographicalInformation}
-- RF channel number of BCCH
BCCHCarrier ::= INTEGER (0..1023)
-- Base station Identity Code
BSIC ::= INTEGER (0..63)
-- Timeslot scheme
TimeSlotScheme ::= ENUMERATED {
   equalLength (0),
   variousLength (1)
}
-- Time slot (modulo)
ModuloTimeSlot ::= INTEGER (0..3)
-- E-OTD measurement assistance data IE
-- The total number of neighbors in this element (MsrAssistData)
-- and in SystemInfoAssistData element (presented neighbors
-- can be at a maximum 15!)
MsrAssistData ::= SEQUENCE {
    msrAssistList SeqOfMsrAssistBTS
SeqOfMsrAssistBTS ::= SEQUENCE (SIZE(1..15)) OF MsrAssistBTS
MsrAssistBTS ::= SEQUENCE {
   bcchCarrier BCCHCarrier,
                                          -- BCCH carrier
                                          -- BSIC
   bsic
                      BSIC,
                       MultiFrameOffset, -- multiframe offset
   multiFrameori
timeSlotScheme TimeSlotS
RoughRTD,
   multiFrameOffset
                      TimeSlotScheme,
                                          -- Timeslot scheme
                                          -- rough RTD value
   roughRTD
   -- Location Calculation Assistance data is moved here
   calcAssistanceBTS CalcAssistanceBTS OPTIONAL
}
```

```
-- Multiframe offset
MultiFrameOffset ::= INTEGER (0..51)
-- The Multiframe Offset value 51 shall not be encoded by the transmitting entity and
-- shall be treated by the receiving entity as 0.
 - Rough RTD value between one base station and reference BTS
RoughRTD ::= INTEGER (0..1250)
-- The RoughRTD value 1250 shall not be encoded by the transmitting entity and shall
\ensuremath{\text{--}} be treated by the receiving entity as 0.
-- E-OTD Measurement assistance data for system information List IE
-- The total number of base stations in this element (SystemInfoAssistData
-- presented neighbors) and in MsrAssistData element can be at a maximum 15.
SystemInfoAssistData ::= SEQUENCE {
   systemInfoAssistList SeqOfSystemInfoAssistBTS
SeqOfSystemInfoAssistBTS::= SEQUENCE (SIZE(1..32)) OF SystemInfoAssistBTS
 - whether n.th is present or not ?
SystemInfoAssistBTS ::= CHOICE {
   notPresent NULL, present AssistBTSData
-- Actual assistance data for system information base station
AssistBTSData ::= SEQUENCE {
                     BSIC,
   bsic
multiFrameOffset
MultiFrameOffset,
TimeSlotScheme,
                                             -- BSIC
   multiFrameon:
timeSlotScheme TimeSlotScheme RoughRTD,
                        MultiFrameOffset, -- multiframe offset
                                            -- Timeslot scheme
                                            -- rough RTD value
    -- Location Calculation Assistance data
   calcAssistanceBTS CalcAssistanceBTS
                                            OPTIONAL
}
-- E-OTD Location calculation assistance data,
-- CalcAssistanceBTS element is optional not subfields
CalcAssistanceBTS ::= SEQUENCE {
   fineRTD FineRTD, -- fine RTD value between referenceWGS84 ReferenceWGS84 -- reference coordinates
    fineRTD
                       FineRTD,
                                        -- fine RTD value between base stations
}
-- Coordinates of neighbour BTS, WGS-84 ellipsoid
ReferenceWGS84 ::= SEQUENCE {
  relativeNorth RelDistance,
                                                 -- relative distance (south negative)
                    RelDistance,
   relativeEast
                                                -- relative distance (west negative)
    -- Relative Altitude is not always known
   relativeAlt
                   RelativeAlt
                                    OPTIONAL -- relative altitude
-- Fine RTD value between this BTS and the reference BTS
FineRTD ::= INTEGER (0..255)
 - Relative north/east distance
RelDistance ::= INTEGER (-200000..200000)
 - Relative altitude
RelativeAlt ::= INTEGER (-4000..4000)
-- Measure position response IEs
-- Reference Identity
-- Multiple sets
MultipleSets ::= SEQUENCE {
    -- number of reference sets
   nbrOfSets
                        INTEGER (2..3),
     -- This field actually tells the number of reference BTSs
   nbrOfReferenceBTSs INTEGER (1..3),
    -- This field is conditional and included optionally only if
    -- nbrOfSets is 3 and number of reference BTSs is 2.
   referenceRelation
                          ReferenceRelation
                                                   OPTIONAL
}
```

```
-- Relation between refence BTSs and sets
ReferenceRelation ::= ENUMERATED {
   secondBTSThirdSet (0), -- 1st BTS related to 1st and 2nd sets
   secondBTSSecondSet (1), -- 1st BTS related to 1st and 3rd sets
   firstBTSFirstSet (2) -- 1st BTS related to 1st set
}
-- Reference BTS Identity, this element contains number of
-- BTSs told nbrOfReferenceBTSs field in Multiple sets element)
ReferenceIdentity ::= SEQUENCE {
   -- Reference BTS list
   refBTSList
                  SeqOfReferenceIdentityType
SeqOfReferenceIdentityType ::= SEQUENCE (SIZE(1..3)) OF ReferenceIdentityType
-- Cell identity
ReferenceIdentityType ::= CHOICE {
   bsicAndCarrier BSICAndCarrier,
ci CellID,
                                    -- BSIC and Carrier
                                     -- Cell ID, LAC not needed
   requestIndex RequestIndex,
                                      -- Index to Requested Neighbor List
                                      -- Index to System info list, this type of ref. identity
   systemInfoIndex SystemInfoIndex,
                                      -- shall not be used by the MS unless it has received
                                       -- the SystemInfoAssistData from the SMLC for this cell.
                                      -- CI and LAC
   ciAndLAC CellIDAndLAC
}
BSICAndCarrier ::= SEQUENCE {
   carrier BCCHCarrier,
   bsic
              BSIC
}
RequestIndex ::= INTEGER (1..16)
SystemInfoIndex ::= INTEGER (1..32)
CellIDAndLAC ::= SEQUENCE {
   referenceLAC LAC,
                                     -- Location area code
                  CellID
   referenceCI
                                      -- Cell identity
CellID ::= INTEGER (0..65535)
LAC ::= INTEGER (0..65535)
-- OTD-MeasureInfo
OTD-MeasureInfo ::= SEQUENCE {
  -- Measurement info elements, OTD-MsrElement is repeated number of times
   -- told in nbrOfReferenceBTSs in MultipleSets, default value is 1
   otdMsrFirstSets
                      OTD-MsrElementFirst,
   -- if more than one sets are present this element is repeated
   -- NumberOfSets - 1 (-1 = first set)
   otdMsrRestSets
                     SeqOfOTD-MsrElementRest
                                                 OPTIONAL
}
SeqOfOTD-MsrElementRest ::= SEQUENCE (SIZE(1..2)) OF OTD-MsrElementRest
-- OTD measurent information for 1 set
OTD-MsrElementFirst ::= SEQUENCE {
   referenceTimeSlot ModuleTimeSlot
   refFrameNumber
                                                              -- Frame number modulo 42432
                          TOA-MeasurementsOfRef OPTIONAL,
   toaMeasurementsOfRef
   stdResolution
                          StdResolution,
                           INTEGER (0..960)
                                                  OPTIONAL,
                                                             -- TA correction
   taCorrection
   -- measured neighbors in OTD measurements
                          SeqOfOTD-FirstSetMsrs OPTIONAL
   otd-FirstSetMsrs
SeqOfOTD-FirstSetMsrs ::= SEQUENCE (SIZE(1..10)) OF OTD-FirstSetMsrs
```

```
-- OTD measurent information 2 and 3 sets if exist
OTD-MsrElementRest ::= SEQUENCE {
   refFrameNumber
                             INTEGER (0..42431),
                                                                       -- Frame number modulo 42432
    referenceTimeSlot
                            ModuloTimeSlot,
    toaMeasurementsOfRef
                             TOA-MeasurementsOfRef
                                                        OPTIONAL,
    stdResolution
                            StdResolution,
                             INTEGER (0..960)
    taCorrection
                                                         OPTIONAL.
                                                                      -- TA correction
    -- measured neighbors in OTD measurements
    otd-MsrsOfOtherSets
                           SeqOfOTD-MsrsOfOtherSets
                                                          OPTIONAL
SeqOfOTD-MsrsOfOtherSets ::= SEQUENCE (SIZE(1..10)) OF OTD-MsrsOfOtherSets
-- Standard deviation of the TOA measurements from the reference BTS
TOA-MeasurementsOfRef ::= SEQUENCE {
   refOuality
                       RefOuality,
   numOfMeasurements NumOfMeasurements
RefQuality ::= INTEGER (0..31)
                                         -- St Dev of TOA of reference as defined in annex
NumOfMeasurements ::= INTEGER (0..7) -- No. of measurements for RefQuality as defined in annex
                                        -- Values of resolution are defined in annex
StdResolution ::= INTEGER (0..3)
OTD-FirstSetMsrs ::= OTD-MeasurementWithID
-- Neighbour info in OTD measurements 0-10 times in TD measurement info
OTD-MsrsOfOtherSets ::= CHOICE {
    identityNotPresent OTD-Measurement,
                      OTD-MeasurementWithID
    identityPresent
}
-- For this OTD measurement identity is same as the identity of BTS
-- in the first set with same sequence number
OTD-Measurement ::= SEQUENCE {
   nborTimeSlot ModuloTimeSlot,
    nborrance eotdQuality EOTDQuar OTDValue
                    EOTDQuality,
   otdValue
}
-- This measurement contains the BTS identity and measurement
OTD-MeasurementWithID ::=SEQUENCE {
   neighborIdentity
nborTimeSlot
eotdQuality
otdValue

NeighborIdentity,
ModuloTimeSlot,
EOTDQuality,
OTDValue
}
EOTDQuality ::= SEQUENCE {
   nbrOfMeasurements INTEGER (0..7), stdOfEOTD INTEGER (0..31)
}
NeighborIdentity ::= CHOICE {
   bsicAndCarrier BSICAndCarrier, -- BSIC and Carrier
                                             -- Cell ID, LAC not needed
   ci
                        CellID,
   \verb|multiFrameCarrier| & \verb|multiFrameCarrier|, & -- & \verb|MultiFrameOffest| & \verb|and BSIC| \\
   requestIndex RequestIndex, systemInfoIndex SystemInfoIndex,
                        RequestIndex,
                                             -- Index to Requested Neighbor List
                                             -- Index to System info list, this type of neighbour
                                             \mbox{--} identity shall not be used by the MS unless it has
                                             -- received the SystemInfoAssistData from the SMLC for
                                             -- this cell.
   ciAndLAC
                       CellIDAndLAC
                                             -- CI and LAC
}
-- Multiframe and carrier
MultiFrameCarrier ::= SEQUENCE {
   bcchCarrier
                   BCCHCarrier
   multiFrameOffset MultiFrameOffset
}
-- OTD measurement value for neighbour
OTDValue ::= INTEGER (0..39999)
```

```
-- Location information IE
LocationInfo ::= SEQUENCE {
              INTEGER (0..65535),
                                                 -- Reference Frame number
    refFrame
    -- If refFrame is within (42432..65535), it shall be ignored by the receiver
    -- in that case the MS should provide GPS TOW if available
                   INTEGER (0..14399999) OPTIONAL, -- GPS TOW
                    FixType,
   fixType
    -- Note that applicable range for refFrame is 0 - 42431
    -- Possible shapes carried in posEstimate are
    -- ellipsoid point,
    -- ellipsoid point with uncertainty circle
    -- ellipsoid point with uncertainty ellipse
    -- ellipsoid point with altitude and uncertainty ellipsoid
                   Ext-GeographicalInformation
   posEstimate
}
FixType ::= INTEGER {
    twoDFix (0),
    threeDFix (1)
} (0..1)
-- GPS-Measurement information
GPS-MeasureInfo ::= SEQUENCE {
   -- Measurement info elements
    -- user has to make sure that in this element is number of elements
    -- defined in reference BTS identity
   gpsMsrSetList SeqOfGPS-MsrSetElement
SeqOfGPS-MsrSetElement ::= SEQUENCE (SIZE(1..3)) OF GPS-MsrSetElement
 - OTD measurent information 1-3 times in message
GPS-MsrSetElement ::= SEQUENCE {
   refFrame INTEGER (0..65535) OPTIONAL,
                                                     -- Reference Frame number
    gpsTOW
                    GPSTOW24b,
                                                       -- GPS TOW
    -- Note that applicable range for refFrame is 0 - 42431
-- N SAT can be read from number of elements of gps-msrList
   gps-msrList SeqOfGPS-MsrElement
}
-- 24 bit presentation for GPSTOW
GPSTOW24b ::= INTEGER (0..14399999)
-- measured elements in measurement parameters field
SeqOfGPS-MsrElement ::= SEQUENCE (SIZE(1..16)) OF GPS-MsrElement
GPS-MsrElement ::= SEQUENCE {
   satelliteID SatelliteID, cNo INTEGER (0..63),
                                                  -- Satellite identifier
                                                -- carrier noise ratio
   doppler INTEGER (-32768..32767), -- doppler, mulltiply by 0,2 wholeChips INTEGER (0..1022), -- whole value of the code phase measurement fracChips INTEGER (0..1024), -- fractional value of the code phase measurement
                                                 -- fractional value of the code phase measurement
                                              -- a value of 1024 shall not be encoded by the sender
                                              -- the receiver shall consider a value of 1024 to be
                                              -- invalid data
                                                 -- multipath indicator
-- index
    mpathIndic
                  MpathIndic,
   pseuRangeRMSErr INTEGER (0..63)
-- Multipath indicator
MpathIndic ::= ENUMERATED {
   notMeasured (0),
    low (1),
   medium (2),
   high (3)
}
```

```
-- Location error IE
LocationError ::= SEQUENCE {
                               LocErrorReason,
    locErrorReason
    additionalAssistanceData AdditionalAssistanceData OPTIONAL,
}
LocErrorReason ::= ENUMERATED {
   unDefined (0),
   notEnoughBTSs (1),
   notEnoughSats (2),
   eotdLocCalAssDataMissing (3),
    eotdAssDataMissing (4),
   gpsLocCalAssDataMissing (5),
   gpsAssDataMissing (6),
   methodNotSupported (7),
   notProcessed (8),
   refBTSForGPSNotServingBTS (9),
   refBTSForEOTDNotServingBTS (10),
   notEnoughGANSSSats (11),
 ganssAssDataMissing (12),
   refBTSForGANSSNotServingBTS (13)
-- exception handling:
-- an unrecognized value shall be treated the same as value 0
-- defines additional assistance data needed for any new location attempt
-- MS shall retain any assistance data already received
AdditionalAssistanceData ::= SEQUENCE {
                                                  OPTIONAL,
   gpsAssistanceData GPSAssistanceData
    extensionContainer
                          ExtensionContainer
   ganssAssistanceData GANSSAssistanceData OPTIONAL
}
GPSAssistanceData ::= OCTET STRING (SIZE (1..maxGPSAssistanceData))
-- GPSAssistanceData has identical structure and encoding to octets 3 to n of the
-- GPS Assistance Data IE in 3GPP TS 49.031
maxGPSAssistanceData
                       INTEGER ::= 40
GANSSAssistanceData ::= OCTET STRING (SIZE (1..maxGANSSAssistanceData))
-- GANSSAssistanceData has identical structure and encoding to octets 3 to n of the
-- GANSS Assistance Data IE in 3GPP TS 49.031
maxGANSSAssistanceData INTEGER ::= 40
-- Protocol Error Causes
ErrorCodes ::= ENUMERATED {
   unDefined (0),
missingComponet (1),
incorrectData (2),
missingIEorComponentElement (3),
messageTooShort (4),
unknowReferenceNumber (5),
}
-- exception handling:
-- an unrecognized value shall be treated the same as value 0
-- GPS assistance data IE
GPS-AssistData ::= SEQUENCE {
   controlHeader
                      ControlHeader
```

```
-- More Assistance Data To Be Sent IE
-- More Assistance Data Components On the Way indication for delivery of an entire set of assistance
-- data in multiple Assistance Data components.
MoreAssDataToBeSent ::= ENUMERATED {
  noMoreMessages (0), -- This is the only or last Assistance Data message used to deliver
                               -- the entire set of assistance data.
   moreMessagesOnTheWay (1)
                              -- The SMLC will send more Assistance Data messages or a final RRLP
                               -- Measure Position Request message to deliver the
                               -- the entire set of assistance data.
}
-- Control header of the GPS assistance data
ControlHeader ::= SEQUENCE {
    -- Field type Present information
   referenceTime ReferenceTime
                                           OPTIONAL,
    refLocation
                       RefLocation
                                           OPTIONAL,
   dgpsCorrections DGPSCorrections OPTIONAL,
   navigationModel NavigationModel OPTIONAL, ionosphericModel IonosphericModel OPTIONAL,
   navigationModel
                     UTCModel
                                          OPTIONAL,
   utcModel
                       Almanac
   almanac
                                           OPTIONAL,
   acquisAssist
                      AcquisAssist
                                          OPTIONAL,
   realTimeIntegrity SeqOf-BadSatelliteSet OPTIONAL
}
ReferenceTime ::= SEQUENCE {
   gpsTime
                      GPSTime.
    gsmTime
                       GSMTime
                                           OPTIONAL
   gpsTowAssist
                       GPSTOWAssist
                                           OPTIONAL
}
-- GPS Time includes week number and time-of-week (TOW)
GPSTime ::= SEQUENCE {
   gpsTOW23b
                       GPSTOW23b.
   apsWeek
                      GPSWeek
}
-- GPSTOW, range 0-604799,92, resolution 0,08 sec, 23-bit presentation
GPSTOW23b ::= INTEGER (0..7559999)
-- GPS week number
GPSWeek ::= INTEGER (0..1023)
-- GPSTOWAssist consists of TLM message, Anti-spoof flag, Alert flag, and 2 reserved bits in TLM
Word
-- for each visible satellite.
-- N_SAT can be read from number of elements in GPSTOWAssist
GPSTOWAssist ::= SEQUENCE (SIZE(1..12)) OF GPSTOWAssistElement
GPSTOWAssistElement ::= SEQUENCE {
   satelliteID SatelliteID,
    tlmWord
                       TLMWord,
                      AntiSpoofFlag,
   antiSpoof
    alert
                       AlertFlag,
    tlmRsvdBits
                       TLMReservedBits
}
```

```
-- TLM Word, 14 bits
TLMWord ::= INTEGER (0..16383)
-- Anti-Spoof flag
AntiSpoofFlag ::= INTEGER (0..1)
-- Alert flag
AlertFlag ::= INTEGER (0..1)
 - Reserved bits in TLM word, MSB occurs earlier in TLM Word transmitted by satellite
TLMReservedBits ::= INTEGER (0..3)
GSMTime ::= SEQUENCE {
   bcchCarrier BCCHCarrier, -- BCCH carrier
                   BSIC,
                                    -- BSIC
   bsic
   frameNumber FrameNumber timeSlot TimeSlot, bitNumber BitNumber
                   FrameNumber,
}
-- Frame number
FrameNumber ::= INTEGER (0..2097151)
 - Time slot number
TimeSlot ::= INTEGER (0..7)
-- Bit number
BitNumber ::= INTEGER (0..156)
-- Reference Location IE
RefLocation ::= SEQUENCE {
   threeDLocation
                           Ext-GeographicalInformation
 - DGPS Corrections IE
DGPSCorrections ::= SEQUENCE {
              INTEGER (0..604799), -- DGPS reference time INTEGER (0..7),
   gpsTOW
    -- N_SAT can be read from number of elements of satList
              SeqOfSatElement
   satList
SeqOfSatElement ::= SEQUENCE (SIZE (1..16)) OF SatElement
-- number of correction for satellites
SatElement ::= SEQUENCE {
   satelliteID
                  SatelliteID,
--- Sequence number for ephemeris
   iode
                   INTEGER (0..239),
   -- User Differential Range Error
                   INTEGER (0..3),
   -- Pseudo Range Correction, range is
   -- -655,04 - +655,04,
   pseudoRangeCor INTEGER (-2047..2047),
    -- Pseudo Range Rate Correction, range is
   -- -4,064 - +4,064,
   rangeRateCor
                  INTEGER (-127..127),
-- Delta Pseudo Range Correction 2
   deltaPseudoRangeCor2 INTEGER (-127..127),
                                                   -- This IE shall be ignored by the receiver
                                                    -- and set to zero by the sender
   -- Delta Pseudo Range Correction 2
   deltaRangeRateCor2 INTEGER (-7..7),
                                                    -- This IE shall be ignored by the receiver
                                                    -- and set to zero by the sender
   -- Delta Pseudo Range Correction 3
   deltaPseudoRangeCor3
                          INTEGER (-127..127),
                                                    -- This IE shall be ignored by the receiver
                                                    -- and set to zero by the sender
    -- Delta Pseudo Range Correction 3
                                                    -- This IE shall be ignored by the receiver
                           INTEGER (-7..7)
   deltaRangeRateCor3
                                                    -- and set to zero by the sender
SatelliteID ::= INTEGER (0..63) -- identifies satellite
```

```
-- Navigation Model IE
NavigationModel ::= SEQUENCE {
       navModelList SeqOfNavModelElement
-- navigation model satellite list
SeqOfNavModelElement ::= SEQUENCE (SIZE(1..16)) OF NavModelElement
NavModelElement ::= SEQUENCE {
       satelliteID SatelliteID,
                                                                  -- satellite status
       satStatus
                                    SatStatus
}
-- the Status of the navigation model
SatStatus ::= CHOICE {
      -- New satellite, new Navigation Model
       newSatelliteAndModelUC UncompressedEphemeris,
       -- Existing satellite, Existing Navigation Model
      oldSatelliteAndModel
                                                   NULL,
       -- Existing satellite, new Navigation Model
       newNaviModelUC
                                                   UncompressedEphemeris,
}
-- Uncompressed satellite emhemeris and clock corrections
UncompressedEphemeris ::= SEQUENCE {
      ephemCodeOnL2 INTEGER (0..3),
ephemURA INTEGER (0..15),
ephemSVhealth INTEGER (0..1023),
ephemL2Pflag INTEGER (0..1),
ephemSFlRsvd EphemerisSubframe1Reserved,
ephemTgd INTEGER (0..37799),
ephemToc INTEGER (0..37799),
ephemAF2 INTEGER (-128..127),
ephemAF1 INTEGER (-2097152..2097151),
ephemAF0 INTEGER (-32768..32767),
ephemCrs INTEGER (-32768..32767),
ephemDeltaN INTEGER (-32768..32767),
ephemM0 INTEGER (-32768..32767),
ephemM0 INTEGER (-32768..32767),
ephemCuc INTEGER (-32768..32767),
ephemCuc INTEGER (-32768..32767),
ephemE INTEGER (0..4294967295),
ephemCus INTEGER (-32768..32767),
ephemCus INTEGER (-32768..32767),
ephemAPowerHalf INTEGER (0..4294967295),
       ephemCodeOnL2 INTEGER (0..3),
       ephemAPowerHalf INTEGER (0..4294967295),
       ephemToe INTEGER (0..37799), ephemFitFlag INTEGER (0..1),
       ephemFitFlag INTEGER (0..1),
ephemAODA
phemCic INTEGER (0..31),
ephemCic INTEGER (-32768..32767),
ephemCis INTEGER (-2147483648..2147483647),
ephemCis INTEGER (-2147483648..2147483647),
ephemIO INTEGER (-2147483648..2147483647),
ephemCrc INTEGER (-32768..32767),
ephemW INTEGER (-2147483648..2147483647),
       ephemOmegaADot INTEGER (-8388608..8388607),
       ephemIDot
                                    INTEGER (-8192..8191)
}
-- Reserved bits in subframe 1 of navigation message
EphemerisSubframelReserved ::= SEQUENCE {
     reserved1 INTEGER (0..8388607), -- 23-bit field reserved2 INTEGER (0..16777215), -- 24-bit field reserved3 INTEGER (0..16777215), -- 24-bit field reserved4 INTEGER (0..65535) -- 16-bit field
}
```

```
-- Ionospheric Model IE
IonosphericModel ::= SEQUENCE {
               DOCEL ::= SEQUENCE {
    INTEGER (-128..127),
    alfa0
    alfa1
    alfa2
    alfa3
    beta0
    beta1
    beta2
    beta3
                       INTEGER (-128..127)
}
-- Universal Time Coordinate Model
UTCModel ::= SEQUENCE {
   utcDeltaTlsf INTEGER (-128..127)
}
-- Almanac, Long term model
-- NOTE: These are parameters are subset of the ephemeris
-- NOTE: But with reduced resolution and accuracy
Almanac ::= SEQUENCE {
                       INTEGER (0..255), -- Once per message
    alamanacWNa
     -- navigation model satellite list.
     -- The size of almanacList is actually Nums_Sats_Total field
    almanacList SeqOfAlmanacElement
SeqOfAlmanacElement ::= SEQUENCE (SIZE(1..64)) OF AlmanacElement
 -- Almanac info once per satellite
AlmanacElement ::= SEQUENCE {
    satelliteID SatelliteID,
    almanacE
                            INTEGER (0..65535),
    almanact integer (0..0555),
almanacKsii integer (-32768..32767),
almanacOmegaDot integer (-32768..32767),
almanacAPowerHalf integer (0..255),
almanacAPowerHalf integer (0..16777215),
    almanacW
almanacMO
almanacAFO
almanacAF1
                           INTEGER (-8388608..8388607),
                          INTEGER (-1024..1023),
INTEGER (-1024..1023)
}
 - Acquisition Assistance
AcquisAssist ::= SEQUENCE {
    -- Number of Satellites can be read from acquistList
    timeRelation
                      TimeRelation,
     -- Acquisition assistance list
    -- The size of Number of Satellites is actually Number of Satellites field
    acquisList
                       SeqOfAcquisElement
SeqOfAcquisElement ::= SEQUENCE (SIZE(1..16)) OF AcquisElement
-- the relationship between GPS time and air-interface timing
TimeRelation ::= SEQUENCE {
    gpsTOW
                  GPSTOW23b,
                                      -- 23b presentation
    gsmTime GSMTime
                                OPTIONAL
}
```

```
-- data occuring per number of satellites
AcquisElement ::= SEQUENCE {
                             SatelliteID.
    svid
    -- Doppler Oth order term,
    -- -5120,0 - 5117,5 Hz (= -2048 - 2047 with 2,5 Hz resolution)
                           INTEGER (-2048..2047),
AddionalDopplerFields OPTIONAL,
    doppler0
    addionalDoppler
    codePhase
                           INTEGER (0..1022), -- Code Phase
   intCodePhase

intCodePhase

INTEGER (0..19), -- Integer Code Phase

gpsBitNumber

INTEGER (0..3), -- GPS bit number

codePhaseSearchWindow

INTEGER (0..15), -- Code Phase Search Window
                            AddionalAngleFields
    addionalAngle
                                                    OPTIONAL
}
AddionalDopplerFields ::= SEQUENCE {
   -- Doppler 1st order term, -1,0 - +0,5 Hz/sec
 -- (= -42 + (0 to 63) with 1/42 Hz/sec. resolution)
   doppler1
                         INTEGER (0..63),
                           INTEGER (0..7)
   dopplerUncertainty
 -- a sender shall not encode any DopplerUncertainty value in the range 5 to 7
 -- a receiver shall ignore any value between 5 and 7.
AddionalAngleFields ::= SEQUENCE {
    -- azimuth angle, 0 - 348,75 deg (= 0 - 31 with 11,25 deg resolution)
                            INTEGER (0..31),
     -- elevation angle, 0 - 78,75 deg (= 0 - 7 with 11,25 deg resolution)
                             INTEGER (0..7)
    elevation
}
-- Real-Time Integrity
-- number of bad satellites can be read from this element
SeqOf-BadSatelliteSet ::= SEQUENCE (SIZE(1..16)) OF SatelliteID
 - Extension Elements
-- Release 98 Extensions here
Rel98-MsrPosition-Req-Extension ::= SEQUENCE {
  rel98-Ext-ExpOTD Rel98-Ext-ExpOTD
                                                         OPTIONAL, -- ExpectedOTD extension
qpsTimeAssistanceMeasurementRequest NULL OPTIONAL.
gpsReferenceTimeUncertainty GPSReferenceTimeUncertainty OPTIONAL
 - Further R98 extensions here
Rel98-AssistanceData-Extension ::= SEQUENCE {
  re198-Ext-ExpOTD
                                Rel98-Ext-ExpOTD
                                                         OPTIONAL, -- ExpectedOTD extension
gpsTimeAssistanceMeasurementRequest NULL OPTIONAL,
{\tt gpsReferenceTimeUncertainty} \ {\tt GPSReferenceTimeUncertainty} \ {\tt OPTIONAL}
-- Further R98 extensions here
}
-- Release 98 ExpOTD extension
Rel98-Ext-ExpOTD ::= SEQUENCE {
-- If MsrAssistBTS is included in message, msrAssistData-R98-ExpOTD shall be included.
   msrAssistData-R98-ExpOTD
                                         MsrAssistData-R98-ExpOTD
-- If SystemInfoAssistaData is included in message, systemInfoAssistData-R98-ExpOTD shall be
-- included.
   systemInfoAssistData-R98-ExpOTD SystemInfoAssistData-R98-ExpOTD OPTIONAL
}
-- MsrAssistData R98 extension
MsrAssistData-R98-ExpOTD ::= SEQUENCE {
    msrAssistList-R98-ExpOTD
                                          SegOfMsrAssistBTS-R98-ExpOTD
-- Indexes in SeqOfMsrAssistBTS-R98-ExpOTD refer to SeqOfMsrAssistBTS
-- If the index exceeds the SegOfMsrAssistBTS range or if there is other
-- inconsistencies between the BTS indices, the MS shall apply protocol
-- error cause incorrectData
SeqOfMsrAssistBTS-R98-ExpOTD ::= SEQUENCE (SIZE(1..15)) OF MsrAssistBTS-R98-ExpOTD
```

```
-- This element completes MsrAssistBTS IE
MsrAssistBTS-R98-ExpOTD ::= SEQUENCE {
    expectedOTD
                          ExpectedOTD,
    expOTDUncertainty
                           ExpOTDUncertainty
-- SystemInfoAssistData R98 extension
SystemInfoAssistData-R98-ExpOTD ::= SEQUENCE {
  systemInfoAssistListR98-ExpOTD SeqOfSystemInfoAssistBTS-R98-ExpOTD
-- SeqOfSystemInfoAssistBTS-R98-ExpOTD index refer to SeqOfSystemInfoAssistBTS
-- If the index exceeds the SegOfSystemInfoAssistBTS range or if there is other
-- inconsistencies between the BTS indices, the MS shall apply protocol
-- error cause incorrectData
SeqOfSystemInfoAssistBTS-R98-ExpOTD ::= SEQUENCE (SIZE(1..32)) OF SystemInfoAssistBTS-R98-ExpOTD
-- whether n.th is present or not ?
SystemInfoAssistBTS-R98-ExpOTD ::= CHOICE {
   notPresent NULL,
    present
                    AssistBTSData-R98-ExpOTD
-- This element completes AssistBTSData IE
AssistBTSData-R98-ExpOTD ::= SEQUENCE {
                       ExpectedOTD,
   expectedOTD
                           ExpOTDUncertainty -- Uncertainty of expected OTD
   expOTDuncertainty
}
-- Expected OTD value between nbor base station and reference BTS
-- at MS's current estimated location.
ExpectedOTD ::= INTEGER (0..1250)
-- The ExpectedOTD value 1250 shall not be encoded by the transmitting entity and
\operatorname{\mathsf{--}} shall be treated by the receiving entity as 0.
-- Uncertainty of Exptected OTD in bits
ExpOTDUncertainty ::= INTEGER(0..7)
-- Release 98 extensions
GPSReferenceTimeUncertainty ::= INTEGER (0 .. 127)
                                                        -- Coding according to Annex
GPSTimeAssistanceMeasurements ::= SEOUENCE {
                                                     -- MSB of frame number
-- in units of 100ns, for MS based AGPS
-- for MS assisted AGPS
referenceFrameMSB INTEGER (0 .. 63) OPTIONAL,
gpsTowSubms INTEGER (0 .. 9999) OPTIONAL, deltaTow INTEGER (0 .. 127) OPTIONAL,
gpsReferenceTimeUncertainty GPSReferenceTimeUncertainty OPTIONAL
Rel-98-MsrPosition-Rsp-Extension ::= SEQUENCE {
    -- First extension to Release 98
    rel-98-Ext-MeasureInfo SEQUENCE {
        otd-MeasureInfo-R98-Ext OTD-MeasureInfo-R98-Ext OPTIONAL
 \verb|timeAss| is tance \verb|Measurements| GPST imeAss| is tance \verb|Measurements| GPTIONAL|
  - Further R98 extensions here
-- This is an addition to OTD-MeasureInfo element defined in original message,
-- If OTD-MeasureInfo is absent, or if one or more OTD-MsrElementRest are present
-- OTD-MeasureInfo-R98-Ext shall be absent.
 - OTD-MeasureInfo-R98-Ext
OTD-MeasureInfo-R98-Ext ::= SEQUENCE {
    -- Measurement info elements
    otdMsrFirstSets-R98-Ext
                                OTD-MsrElementFirst-R98-Ext
}
```

```
-- OTD measurement information Ext for the first set only
OTD-MsrElementFirst-R98-Ext ::= SEQUENCE {
    \operatorname{--} additional measured neighbors in \operatorname{OTD} measurements
    otd-FirstSetMsrs-R98-Ext
                             SeqOfOTD-FirstSetMsrs-R98-Ext OPTIONAL
SeqOfOTD-FirstSetMsrs-R98-Ext ::= SEQUENCE (SIZE(1..5)) OF OTD-FirstSetMsrs
Rel-5-MsrPosition-Rsp-Extension ::= SEQUENCE {
    extended-reference Extended-reference OPTIONAL,
    -- The extended-reference shall be included by the MS if and only if previously
    -- received from the SMLC in a Measure Position Request. When included, the value sent
    -- by the MS shall equal the value received from the SMLC.
    -- extension to Release 5, for RRLP pseudo-segmentation here
   otd-MeasureInfo-5-Ext OTD-MeasureInfo-5-Ext OPTIONAL,
                                                   OPTIONAL,
   ulPseudoSegInd
                           UlPseudoSegInd
                                                               -- Included when uplink RRLP
    -- Pseudo-segmentation is used, not included when no uplink pseudo-segmentation is used
                   -- Possibly more extensions for Release 5 here later
}
Extended-reference ::= SEQUENCE {
   OTD-MeasureInfo-5-Ext ::= SeqOfOTD-MsrElementRest
    -- if more than one measurement sets are present this element is repeated
    -- NumberOfSets - 1 (-1 = first set) combined in OTD-MeasureInfo-5-Ext and
    -- OTD-MeasureInfo (e.g. if NumberOfSets is 3, then one otdMsrRestSets may
    -- be sent in OTD-MeasureInfo-5-Ext and one in OTD-MeasureInfo)
-- First part of Uplink RRLP Pseudo-segmentation indication, possibly more may be defined
-- in the future for segmentation with more than two segments.
UlPseudoSegInd ::= ENUMERATED {
   firstOfMany (0),
    secondOfMany(1)
Rel5-MsrPosition-Req-Extension ::= SEQUENCE {
                               Extended-reference,
   extended-reference
    -- Possibly more extensions for Release 5 here later
}
{\tt Rel5-AssistanceData-Extension} \ ::= \ {\tt SEQUENCE} \ \big\{
   extended-reference
                              Extended-reference,
-- Possibly more extensions for Release 5 here later
Rel-5-ProtocolError-Extension::= SEQUENCE {
   extended-reference Extended-reference OPTIONAL,
    -- The extended-reference shall be included by the MS if and only if previously
    -- received from the SMLC.
    -- When included, the value sent by the MS shall equal the value received from the SMLC.
    -- Possibly more extensions for Release 5 here later
-- Release 7 Extensions here
Rel7-MsrPosition-Req-Extension ::= SEQUENCE {
   velocityRequested
                                                                            OPTIONAL,
                                                   GANSSPositioningMethod OPTIONAL,
   ganssPositionMethod
   ganss-AssistData
                                                   GANSS-AssistData
                                                                           OPTIONAL,
   ganssCarrierPhaseMeasurementRequest
                                                                        OPTIONAL,
   ganssTODGSMTimeAssociationMeasurementRequest NULL
                                                                           OPTIONAL,
                                                   RequiredResponseTime
   requiredResponseTime
                                                                           OPTIONAL.
                                                   Add-GPS-AssistData
   add-GPS-AssistData
                                                                           OPTIONAL,
   {\tt ganssMultiFreqMeasurementRequest}
                                                   NULL
                                                                           OPTIONAL,
    -- Further Release 7 extentions here
}
```

```
-- additional satellite systems may be added in future versions of the protocol
 - Bit 0 of GANSSPositioningMethod bit map shall not be the only one set to TRUE ('1')
GANSSPositioningMethod ::= BIT STRING {
                    (0),
    galileo
                     (1),
    sbas
                    (2),
   modernizedGPS
                    (3),
    azss
                    (4),
                    (5),
    glonass
                   (6)} (SIZE (2..16))
GANSS-AssistData ::= SEOUENCE {
   ganss-controlHeader GANSS-ControlHeader
GANSS-ControlHeader ::= SEQUENCE {
ganssCommonAssistData GANSSCommonAssistData
                                                                   OPTIONAL.
 ganssGenericAssistDataList
                              SeqOfGANSSGenericAssistDataElement OPTIONAL
-- GANSS Common Assistance Data Elements
GANSSCommonAssistData ::= SEQUENCE {
   ganssReferenceTime GANSSReferenceTime
                                                           OPTIONAL.
    ganssRefLocation
                               GANSSRefLocation
   ganssIonosphericModel
                              GANSSIonosphericModel
                                                           OPTIONAL.
   ganssAddIonosphericModel GANSSAddIonosphericModel ganssEarthOrientParam GANSSEarthOrientParam
                                                           OPTIONAL,
                                                          OPTIONAL,
   ganssEarthOrientParam
    -- If GANSSReferenceTime is included, GANSSReferenceTime-R10-Ext shall also be included.
   ganssReferenceTime-R10-Ext GANSSReferenceTime-R10-Ext OPTIONAL
}
 - List of GANSS Generic Assistance Data Elements, up to 8 GANSS
SeqOfGANSSGenericAssistDataElement ::= SEQUENCE (SIZE (1..8)) OF GANSSGenericAssistDataElement
-- GANSS Generic Assistance Data Elements
GANSSGenericAssistDataElement ::= SEQUENCE {
   ganssID
                                INTEGER (0..7)
                                                          OPTIONAL, -- Coding according to Annex
                                       SegOfGANSSTimeModel
    ganssTimeModel
                                                                           OPTIONAL.
    ganssDiffCorrections
                                       GANSSDiffCorrections
                                                                           OPTIONAL.
    ganssNavigationModel
                                       GANSSNavModel
                                                                           OPTIONAL,
                                       GANSSRealTimeIntegrity
    ganssRealTimeIntegrity
    ganssDataBitAssist
                                       GANSSDataBitAssist
                                                                           OPTIONAL,
    ganssRefMeasurementAssist
                                       GANSSRefMeasurementAssist
                                                                           OPTIONAL.
    ganssAlmanacModel
                                       GANSSAlmanacModel
                                                                           OPTIONAL,
                                       GANSSUTCModel
    ganssUTCModel
                                                                           OPTIONAL,
    ganssEphemerisExtension
                                      GANSSEphemerisExtension
                                                                           OPTIONAL,
    ganssEphemerisExtCheck
                                       GANSSEphemerisExtensionCheck
                                                                           OPTIONAL,
    sbasID
                                INTEGER (0..7)
                                                         OPTIONAL, -- Coding according to Annex
    ganssAddUTCModel
                                       GANSSAddUTCModel
                                                                           OPTIONAL,
                                       GANSSAuxiliaryInformation
    ganssAuxiliaryInfo
                                                                           OPTIONAL,
    {\tt ganssDiffCorrectionsValidityPeriod} \quad {\tt GANSSDiffCorrectionsValidityPeriod} \quad {\tt OPTIONAL},
    -- If SeqOfGANSSTimeModel is included, SeqOfGANSSTimeModel-R10-Ext shall also be included.
                                       SeqOfGANSSTimeModel-R10-Ext
    ganssTimeModel-R10-Ext
                                                                          OPTIONAL,
    -- If GANSSRefMeasurementAssist is included, GANSSRefMeasurementAssist-R10-Ext shall also be
    -- included.
    ganssRefMeasurementAssist-R10-Ext GANSSRefMeasurementAssist-R10-Ext OPTIONAL,
     - If GANSSAlmanacModel is included, GANSSAlmanacModel-R10-Ext shall also be included.
    ganssAlmanacModel-R10-Ext GANSSAlmanacModel-R10-Ext
    ganssAlmanacModel-R12-Ext
                                       GANSSAlmanacModel-R12-Ext
                                                                           OPTIONAL.
    ganssRefMeasurementAssist-R12-Ext GANSSRefMeasurementAssist-R12-Ext OPTIONAL,
    -- The field may be present if the ganssID indicates BDS, otherwise it is not present.
    bdsDifferentialCorrections-r12 BDS-DiffCorrections-r12 OPTIONAL,
    --The field may be present if the ganssID indicates BDS, otherwise it is not present.
                                       BDS-GridModelParameter-r12
   bdsGridModel-r12
                                                                           OPTIONAL
-- GANSS COMMON ASSISTANCE DATA ELEMENTS
-- GANSS Reference Time IE
GANSSReferenceTime ::= SEQUENCE {
   ganssRefTimeInfo
                                   GANSSRefTimeInfo,
    ganssTOD-GSMTimeAssociation
                                   GANSSTOD-GSMTimeAssociation OPTIONAL
```

```
-- GANSS Reference Time includes GANSS TOD, GANSS Day, uncertainty
GANSSRefTimeInfo ::= SEQUENCE {
   -- ganssDay shall be present in this version of the protocol
                 INTEGER(0 .. 8191) OPTIONAL,
   ganssDay
    ganssT0D
                           GANSSTOD,
   ganssTODUncertainty GANSSTODUncertainty OPTIONAL, ganssTimeID INTEGER (0 . . 7) OPTIONAL
-- GANSS TOD integer seconds
GANSSTOD ::= INTEGER (0 .. 86399)
-- GANSS TOD uncertainty
GANSSTODUncertainty ::= INTEGER (0 .. 127) -- Coding according to Annex
-- GANSS Reference Time Rel-10 Extension:
GANSSReferenceTime-R10-Ext ::= SEQUENCE {
   ganssDayCycleNumber
                           INTEGER(0..7) -- coding according to annex
-- GANSS TOD-GSM Time association
{\tt GANSSTOD-GSMTimeAssociation} \; ::= \; {\tt SEQUENCE} \; \left\{ \right.
   bcchCarrier BCCHCarrier, -- BCCH carrier
bsic BSIC, -- BSIC
   frameNumber FrameNumber,
timeSlot TimeSlot,
bitNumber BitNumber,
frameDrift FrameDrift
                                      OPTIONAL
}
-- Frame drift
FrameDrift ::= INTEGER(-64 .. 63)
-- GANSS Reference Location IE
GANSSRefLocation ::= SEQUENCE {
    threeDLocation Ext-GeographicalInformation
```

```
-- GANSS Ionospheric Model IE
 - GANSS Ionospheric Model consists of NeQuick model parameters and storm flags
GANSSIonosphericModel ::= SEQUENCE {
   ganssIonoModel GANSSIonosphereModel,
ganssIonoStormFlags GANSSIonoStormFlags
                                                              OPTIONAL,
}
-- GANSS ionosphere model. Coding according to Annex
GANSSIonosphereModel ::= SEQUENCE {
   ai0 INTEGER (0 .. 2047),
    ail INTEGER (-1024 .. 1023),
    ai2 INTEGER (-8192 .. 8191)
}
-- GANSS ionosphere storm flags
ionoStormFlag3 INTEGER (0 .. 1),
ionoStormFlag4 INTEGER (0 .. 1),
ionoStormFlag5 INTEGER (0 .. 1)
}
-- GANSS Additional Ionospheric Model IE
-- GANSS Additional Ionospheric Model consists of Klobuchar model parameters
GANSSAddIonosphericModel ::= SEQUENCE {
    dataID
                BIT STRING (SIZE (2)), -- Coding according to Annex
    ionoModel IonosphericModel
-- GANSS Earth Orientation Paramaters IE
GANSSEarthOrientParam ::= SEQUENCE {
                       INTEGER (0..65535),
INTEGER (-1048576..1048575),
   teop
    pmX
   pmXdot
                       INTEGER (-16384..16383),
                        INTEGER (-1048576..1048575),
INTEGER (-16384..16383),
   pmY
    pmYdot
                       INTEGER (-1073741824..1073741823),
    deltaUT1
    deltaUT1dot
                       INTEGER (-262144..262143)
}
-- GANSS GENERIC ASSISTANCE DATA ELEMENTS
-- GANSS Time Model IE consists of time offset and first and second order parameters to relate GNSS
-- specific system time to selected time reference
{\tt SeqOfGANSSTimeModel} ::= {\tt SEQUENCE} \ ({\tt SIZE}(1...7)) \ {\tt OF} \ {\tt GANSSTimeModelElement}
GANSSTimeModelElement ::= SEQUENCE {
   ganssTimeModelRefTime INTEGER(0 .. 65535),
    tA0
                                 TA0,
   tA1
                                 TA1
                                                          OPTIONAL,
    tA2
                                 TA2
                                                          OPTIONAL,
    gnssTOID
                                 INTEGER (0 .. 7),
                                                           -- coding according to annex
    weekNumber
                                 INTEGER (0 .. 8191)
                                                         OPTIONAL
 - GANSS time model parameter A0
TAO ::= INTEGER (-2147483648 .. 2147483647)
-- GANSS time model parameter Al
TA1 ::= INTEGER (-8388608 .. 8388607)
 - GANSS time model parameter A2
TA2 ::= INTEGER (-64 .. 63)
-- GANSS Time Model Rel-10 Extension:
SeqOfGANSSTimeModel-R10-Ext ::= SEQUENCE (SIZE(1..7)) OF GANSSTimeModelElement-R10-Ext
GANSSTimeModelElement-R10-Ext ::= SEQUENCE {
    gnssTOID INTEGER (0 .. 7),
                                              -- coding according to annex
    deltaT
                    INTEGER (-128..127)
}
```

```
-- DGANSS Corrections IE
GANSSDiffCorrections ::= SEQUENCE {
                       INTEGER (0 .. 119), -- DGANSS reference time
    dganssRefTime
    -- N_SGN_TYPE can be read from number of elements of sgnTypeList
    sgnTypeList
                   SeqOfSgnTypeElement
}
SeqOfSgnTypeElement ::= SEQUENCE (SIZE (1..3)) OF SgnTypeElement -- max three signals per GNSS
-- DGANSS signal type element, once per GNSS signal type included in DGANSS
SgnTypeElement ::= SEQUENCE {
    ganssSignalID
                         GANSSSignalID, -- signal type identity
   ganssSignalID GANSSSignalID, -- ganssStatusHealth INTEGER (0 . . 7),
     -- N_SAT can be read from number of elements of dganssSgnList
                         SeqOfDGANSSSgnElement
    dganssSgnList
}
GANSSSignalID ::= INTEGER (0 .. 7) -- Coding according to Annex
SeqOfDGANSSSqnElement ::= SEQUENCE (SIZE (1..16)) OF DGANSSSqnElement
-- number of correction for signals
DGANSSSgnElement ::= SEQUENCE {
                    SVID, -- Satellite identity
    svID
--- Sequence number for GANSS Navigation Model that matches the DGANSS correction set
                   INTEGER (0 .. 1023),
   -- User Differential Range Error
   udre
                    INTEGER (0..3),
   -- Pseudo Range Correction, range is
   -- -655,04 - +655,04,
   pseudoRangeCor INTEGER (-2047..2047),
    -- Pseudo Range Rate Correction, range is
    -- -4,064 - +4,064,
   rangeRateCor INTEGER (-127..127)
SVID ::= INTEGER (0 .. 63) -- Coding according to Annex
-- GANSS Navigation Model IE
GANSSNavModel ::= SEQUENCE {
   nonBroadcastIndFlag INTEGER (0 .. 1),
                            SegOfGANSSSatelliteElement
   ganssSatelliteList
SeqOfGANSSSatelliteElement ::= SEQUENCE (SIZE(1..32)) OF GANSSSatelliteElement
GANSSSatelliteElement ::= SEQUENCE {
svID
                    SVID,
                    BIT STRING (SIZE(5)), -- Coding according to Annex
 svHealth
                    INTEGER (0 .. 1023),
 boi
                                             -- Coding according to Annex
 ganssClockModel GANSSClockModel,
 ganssOrbitModel GANSSOrbitModel,
 svHealthMSB
                  BIT STRING (SIZE(1)) OPTIONAL, -- Coding according to Annex
iodMSB INTEGER (0 .. 1) OPTIONAL, -- Coding according to Annex svHealthExt BIT STRING (SIZE(4)) OPTIONAL -- Coding according to Annex
 - GANSS orbit model for the GNSS satellite according to the choice
GANSSOrbitModel ::= CHOICE {
   keplerianSet
                      NavModel-KeplerianSet,
                                                     -- Model-1
   navKeplerianSet
                        NavModel-NAVKeplerianSet,
                                                      -- Model-2
   cnavKeplerianSet NavModel-NAVKeplerianSet, -- Model-2
NavModel-CNAVKeplerianSet, -- Model-3
   glonassECEF NavModel-GLONASSecef, -- Model-4
sbasECEF NavModel-SBASecef, -- Model-5
   bdsKeplerianSet-r12 NavModel-BDSKeplerianSet-r12
}
```

```
-- Navigation model in Keplerian parameters
NavModel-KeplerianSet ::= SEQUENCE {
         keplerToe INTEGER (0 . 16383),
keplerW INTEGER (-2147483648..2147483647),
keplerDeltaN INTEGER (-32768..32767),
keplerM0 INTEGER (-2147483648..2147483647),
         keplerOmegaDot INTEGER (-8388608..8388607),
keplerE INTEGER (0..4294967295),
keplerIDot INTEGER (-8192..8191),
         keplerAPowerHalf INTEGER (0.. 4294967295),

        keplerAPowerHalf
        INTEGER
        (0...4294967295),

        keplerI0
        INTEGER
        (-2147483648..2147483647),

        keplerOmega0
        INTEGER
        (-2147483648..2147483647),

        keplerCrs
        INTEGER
        (-32768..32767),

        keplerCus
        INTEGER
        (-32768..32767),

        keplerCrc
        INTEGER
        (-32768..32767),

        keplerCic
        INTEGER
        (-32768..32767),

        keplerCuc
        INTEGER
        (-32768..32767),

}
{\tt NavModel-NAVKeplerianSet} \ ::= \ {\tt SEQUENCE} \ \big\{
         navURA INTEGER (0..15),
navFitFlag INTEGER (0 1)
       navURA
       navE INTEGER (0..4294967295),
navIDot INTEGER (-8192..8191),
navAPowerHalf INTEGER (0..4294967295),
navIO INTEGER (0..4294967295),
navOmegaA0 INTEGER (-2147483648..2147483647),
navCrs INTEGER (-2147483648..2147483647),
navCrs INTEGER (-32768..32767),
navCus INTEGER (-32768..32767),
navCus INTEGER (-32768..32767),
navCrc INTEGER (-32768..32767),
navCic INTEGER (-32768..32767),
navCuc INTEGER (-32768..32767)
}
NavModel-CNAVKeplerianSet ::= SEQUENCE {
      INTEGER (-6536..6535),
INTEGER (-4294967296..4294967295),
INTEGER (-16384..16383),
INTEGER (-32768..32767),
INTEGER (-32768..32767),
INTEGER (-8388608..8388607),
INTEGER (-8388608..8388607),
INTEGER (-1048576..1048575),
         cnavIo
         cnavIoDot.
         cnavCis
        cnavCic
         cnavCrs
         cnavCrc
         cnavCus
                                                        INTEGER (-1048576..1048575),
                                                     INTEGER (-1048576..1048575)
         cnavCuc
}
```

```
NavModel-GLONASSecef ::= SEQUENCE {
                                      INTEGER (0..31),
      aloEn
      qloP1
                                     BIT STRING (SIZE(2)),
                                   BOOLEAN,
      gloP2
                                   INTEGER (0..3),
INTEGER (-67108864..67108863),
      gloM
      gloX
                           INTEGER (-8388608..8388607),
INTEGER (-16..15),
INTEGER (-67108864..67108863),
      gloXdot
      gloXdotdot
                            INTEGER (-67108864..67108863
INTEGER (-8388608..8388607),
INTEGER (-16..15),
INTEGER (-671061
     gloYdot
      gloY
      gloYdotdot
                                    INTEGER (-67108864..67108863),
INTEGER (-8388608..8388607),
      gloZ
      gloZdot
      gloZdotdot INTEGER (-330000 INTEGER (-16..15)
}
NavModel-SBASecef ::= SEQUENCE {

        Model-SBASecef
        ::= SEQUENCE {

        sbasTo
        INTEGER (0..5399)

        sbasAccuracy
        BIT STRING (SIZE(4)),

        sbasXg
        INTEGER (-536870912..536870911),

        sbasYg
        INTEGER (-536870912..536870911),

        sbasZg
        INTEGER (-6777216..16777215),

        sbasXgDot
        INTEGER (-65536..65535),

        sbasZgDot
        INTEGER (-65536..65535),

        sbasZgDotDot
        INTEGER (-512..511),

        sbasZgDotDot
        INTEGER (-512..511),

        sbasZgDotDot
        INTEGER (-512..511)

                                                                                              OPTIONAL,
}
NavModel-BDSKeplerianSet-r12 ::= SEQUENCE {
    bdsAODE-r12 INTEGER (0..31),
     bdsCuc-r12
bdsCus-r12
bdsCrc-r12
bdsCrs-r12
bdsCic-r12
                                      INTEGER (-131072..131071),
INTEGER (-131072..131071),
INTEGER (-131072..131071),
                                            INTEGER (-131072..131071),
      bdsCis-r12
                                          INTEGER (-131072..131071)
}
-- GANSS clock model for the GNSS satellite according to the choice
-- Model-1
      navClockModel NAVclockModel,
cnavClockModel CNAVclockModel,
glonassClockModel GLONASSclockModel,
sbasClockModel SPASGlockModel
                                                                                                      -- Model-2
                                                                                                      -- Model-3
                                                                                                      -- Model-4
                                                                                                      -- Model-5
      sbasClockModel
                                             SBASclockModel ,
      bdsClockModel-r12
                                           BDSClockModel-r12
                                                                                                      -- Model-6
}
SeqOfStandardClockModelElement ::= SEQUENCE (SIZE(1..2)) OF StandardClockModelElement
StandardClockModelElement ::= SEQUENCE {
     stanClockToc INTEGER (0 .. 16383),
stanClockAF2 INTEGER (-32 .. 31),
      stanClockAF1 INTEGER (-1048576 .. 1048575),
stanClockAF0 INTEGER (-1073741824 .. 107374
                               INTEGER (-1073741824 .. 1073741823),
      stanClockTgd INTEGER (-512 .. 511)
                                                                                         OPTIONAL,
      stanModelID INTEGER (0 .. 1)
                                                                                         OPTIONAL,
}
```

```
NAVclockModel ::= SEQUENCE {
      navToc INTEGER (0.. 37799),
navaf2 INTEGER (-128..127),
      navaf1
                      INTEGER (-32768..32767),
INTEGER (-2097152..20971
                               INTEGER (-2097152..2097151),
      navaf0
                              INTEGER (-128..127)
      navTgd
}
CNAVclockModel ::= SEQUENCE {
     cnavToc INTEGER (0..2015),
cnavTop INTEGER (0..2015),

        cnavTop
        INTEGER
        (0..2015),

        cnavURA0
        INTEGER
        (-16..15),

        cnavURA1
        INTEGER
        (0..7),

        cnavURA2
        INTEGER
        (0..7),

        cnavAf2
        INTEGER
        (-512..511),

        cnavAf1
        INTEGER
        (-524288..524287),

        cnavAf0
        INTEGER
        (-33554432..33554431),

        cnavTgd
        INTEGER
        (-4096..4095),

        cnavISC11cp
        INTEGER
        (-4096..4095)

        cnavISC11cd
        INTEGER
        (-4096..4095)

        cnavISC12c
        INTEGER
        (-4096..4095)

        cnavISC15i5
        INTEGER
        (-4096..4095)

        cnavISC15q5
        INTEGER
        (-4096..4095)

                                                                                   OPTIONAL,
                                                                                  OPTIONAL,
                                                                                   OPTIONAL,
                                                                                    OPTIONAL,
                                                                                   OPTIONAL
}
GLONASSclockModel ::= SEQUENCE {
     gloTau INTEGER (-2097152..2097151),
gloGamma INTEGER (-1024..1023),
      gloDeltaTau INTEGER (-16..15)
                                                                                   OPTIONAL
}
SBASclockModel ::= SEQUENCE {
      sbasAgf1
                               INTEGER (-128..127)
}
BDSClockModel-r12 ::= SEQUENCE {
bdsAODC-r12 INTEGER (0..31),
     bdsToc-r12 INTEGER (0..31),

bdsToc-r12 INTEGER (0..131071),

bdsA0-r12 INTEGER (-8388608..8388607),

bdsA1-r12 INTEGER (-2097152..2097151),

bdsA2-r12 INTEGER (-1024..1023),

bdsTgd1-r12 INTEGER (-512..511)
}
-- GANSS Real-Time Integrity IE
GANSSRealTimeIntegrity ::= SEQUENCE {
 -- list of satellites with bad signals
 -- NBS can be read from number of elements in SeqOf-BadSignalSet
      ganssBadSignalList
                                            SeqOfBadSignalElement
SeqOfBadSignalElement ::= SEQUENCE (SIZE(1..16)) OF BadSignalElement
BadSignalElement ::= SEQUENCE {
                        SVID, -- Coding according to Annex
D GANSSSignals OPTIONAL -- Coding according to Annex
     badSVID
     badSignalID
}
-- GANSS Data Bit Assistance IE
GANSSDataBitAssist ::= SEQUENCE {
                                                   INTEGER (0 .. 59),
      qanssT0D
      -- N_SAT can be read from number of elements in SeqOfGanssDataBitsElement
      ganssDataBitsSatList
                                                 SegOfGanssDataBitsElement,
}
SeqOfGanssDataBitsElement ::= SEQUENCE (SIZE(1 .. 32))OF GanssDataBitsElement
GanssDataBitsElement ::= SEQUENCE {
     svID
                                             SVID,
      -- N_SGN can be read from number of elements in Seq-OfGANSSDataBitsSgn
      ganssDataBitsSgnList
                                            Seq-OfGANSSDataBitsSgn,
}
```

```
Seq-OfGANSSDataBitsSgn ::= SEQUENCE (SIZE(1..8)) OF GANSSDataBitsSgnElement
{\tt GANSSDataBitsSgnElement} \ ::= \ {\tt SEQUENCE} \ \big\{
   ganssSignalType GANSSSignalID,
     -- N_BIT can be read from number of elements in SeqOf-DataBits
    ganssDataBits
                      SeqOf-GANSSDataBits,
}
SeqOf-GANSSDataBits ::= SEQUENCE (SIZE(1 .. 1024)) OF GANSSDataBit
GANSSDataBit ::= INTEGER(0 .. 1)
-- GANSS Reference Measurement Assistance IE
-- Code and Doppler assistance from the network.
GANSSRefMeasurementAssist ::= SEQUENCE {
                                            -- Coding according to Annex
    ganssSignalID
                          GANSSSignalID,
    {\tt ganssRefMeasAssistList} \quad {\tt SeqOfGANSSRefMeasurementElement}
SeqOfGANSSRefMeasurementElement ::= SEQUENCE (SIZE(1 .. 16)) OF GANSSRefMeasurementElement
GANSSRefMeasurementElement ::= SEQUENCE {
                            SVID,
    -- Doppler Oth order term,
    -- -1024 m/s to 1023,5 m/s with 0,5 m/s resolution)
                            INTEGER (-2048 .. 2047),
   doppler0
                                                                         -- Coding according to Annex
                                                      OPTIONAL,
   additionalDoppler
                           AdditionalDopplerFields
                 INTEGER (0 .. 1022),
INTEGER (0 .. 127),
    codePhase
                                                                         -- Code Phase in ms
   int.CodePhase
                                                                         -- Integer Code Phase in ms
   codePhaseSearchWindow INTEGER (0 .. 31), additionalAngle AddionalAngleFields
                                                             -- Code Phase Search Window, see Annex
                           AddionalAngleFields
    additionalAngle
                                                             OPTIONAL,
   codePhase1023
                           BOOLEAN
                                                             OPTIONAL
}
AdditionalDopplerFields ::= SEQUENCE {
    -- Doppler 1st order term, -0,2 - +0,1 m/s2
    -- ( = -42 + (0 to 63) with 1/210 m/s2 resolution)
    doppler1
                         INTEGER (0..63),
   dopplerUncertainty
                            INTEGER (0..4)
-- GANSS Reference Measurement Rel-10 Extension:
-- GANSSRefMeasurementAssist-R10-Ext shall contain the same number of elements as the
-- SeqOfGANSSRefMeasurementElement included in GANSSRefMeasurementAssist IE
{\tt GANSSRefMeasurementAssist-R10-Ext} \ ::= \ {\tt SEQUENCE} \ ({\tt SIZE(1 \ .. \ 16)}) \ {\tt OF}
                                                             GANSSRefMeasurement-R10-Ext-Element
GANSSRefMeasurement-R10-Ext-Element ::= SEQUENCE {
                      SVID,
    azimuthLSB
                        INTEGER(0..15),
    elevationLSB
                       INTEGER(0..15)
}
-- GANSS Reference Measurement Rel-12 Extension:
GANSSRefMeasurementAssist-R12-Ext ::= SEQUENCE {
   ganssSignalID GANSSSignalID,
                            INTEGER (0..100)
    confidence
   ganssRefMeasAssistList SeqOfGANSSRefMeasurementElement-R12 OPTIONAL
}
SeqOfGANSSRefMeasurementElement-R12 ::= SEQUENCE (SIZE(1 .. 16)) OF
                                                             GANSSRefMeasurement-R12-Ext-Element
GANSSRefMeasurement-R12-Ext-Element ::= SEQUENCE {
                                SVID,
    dopplerUncertaintyExt
                                ENUMERATED {
                                                 d60,
                                                 085
                                                 d100.
                                                 d120,
                                                 noInformation, ...}
```

```
-- GANSS Almanac Model IE
GANSSAlmanacModel ::= SEQUENCE {
       weekNumber INTEGER (0 .. 255), toa INTEGER (0 .. 255)
                                              INTEGER (0 .. 255) OPTIONAL,
                                                INTEGER (0 .. 3)
        ioda
                                                                                        OPTIONAL,
        ganssAlmanacList SeqOfGANSSAlmanacElement
}
SeqOfGANSSAlmanacElement ::= SEQUENCE (SIZE(1 .. 36)) OF GANSSAlmanacElement
-- GANSS Almanac Model
GANSSAlmanacElement ::= CHOICE {
       keplerianAlmanacSet Almanac-KeplerianSet,
                                                                                                                                  -- Model-1
        keplerianNAVAlmanac Almanac-NAVKeplerianSet,
                                                                                                                                 -- Model-2
       keplerianReducedAlmanac Almanac-ReducedKeplerianSet, -- Model-3
       keplerianMidiAlmanacAlmanac-MidiAlmanacSet,-- ModelkeplerianGLONASSAlmanac-GlonassAlmanacSet,-- Model-5ecefSBASAlmanacAlmanac-ECEFsbasAlmanacSet,-- Model-6
                                                                                                                                -- Model-4
                                                       Almanac-ECEFsbasAlmanacSet,
                                                                                                                  -- Model-7}
        keplerianBDSAlmanac-r12 Almanac-BDSAlmanacSet-r12
  -- Almanac parameters according to Keplerian parameters
Almanac-KeplerianSet ::= SEQUENCE {
                                                  SVID,
       kepAlmanacE
      SVID,
kepAlmanacE INTEGER (0 .. 2047),
kepAlmanacDeltaI INTEGER (-1024 .. 1023),
kepAlmanacOmegaDot INTEGER (-1024 .. 1023),
kepSVStatusINAV BIT STRING (SIZE (4)),
kepSVStatusFNAV BIT STRING (SIZE (2))
kepAlmanacAPowerHalf INTEGER (-4096..4095),
kepAlmanacOmegaO INTEGER (-32768 .. 32767),
kepAlmanacW INTEGER (-32768 .. 32767),
kepAlmanacMO INTEGER (-32768 .. 32767),
kepAlmanacAFO INTEGER (-32768 .. 32767),
kepAlmanacAFO INTEGER (-4096..4095)
                                                                                                                        OPTIONAL,
}
     | SVID | SVID | SVID | NAVALMED | SVID | NAVALME | INTEGER (0..65535), | NAVALME | INTEGER (-32768..32767), | NAVALMED | INTEGER (-32768..32767), | NAVALMED | INTEGER (0..255), | NAVALMED | INTEGER (0..255), | NAVALMED | INTEGER (0..16777215), | NAVALMED | INTEGER (-8388608..8388607), | NAVALMED | INTEGER (-8388608..8388607), | NAVALMED | INTEGER (-1024..1023), | NAVALMED | INTEGER (-1024..1023)
Almanac-NAVKeplerianSet ::= SEQUENCE {
}
Almanac-ReducedKeplerianSet ::= SEQUENCE {
       svID SVID, redAlmDeltaA INTEGER (-128..127),
      redAlmDeitaA INTEGER (-128..127 redAlmOmega0 INTEGER (-64..63), redAlmPhi0 INTEGER (-64..63), redAlmL1Health BOOLEAN, redAlmL2Health BOOLEAN, redAlmL5Health BOOLEAN
}
Almanac-MidiAlmanacSet ::= SEQUENCE {
    midiAlmDeltaI INTEGER (0..2047),
midiAlmDeltaI INTEGER (-1024..1023),
midiAlmSqrtA INTEGER (0..131071),
midiAlmOmegaO INTEGER (-32768..32767),
midiAlmOmega INTEGER (-32768..32767),
midiAlmMo INTEGER (-32768..32767),
midiAlmafO INTEGER (-1024..1023),
midiAlmaf1 INTEGER (-512..511),
midiAlmL1Health BOOLEAN,
midiAlmL5Health BOOLEAN,
midiAlmL5Health BOOLEAN
}
```

```
Almanac-GlonassAlmanacSet ::= SEQUENCE {
                                  INTEGER (1..1461),
     qloAlmNA
     qloAlmnA
                                  INTEGER (1..24),
   INTEGER (0..31),
gloAlmLambdaA INTEGER (-1048576..1048575),
gloAlmtlambdaA INTEGER (0..2097151),
gloAlmDeltaIa INTEGER (-131072..131071),
gloAlmDeltaTA INTEGER (-2097152..2097151),
gloAlmDeltaTdotA INTEGER (-64..63),
gloAlmEpsilonA INTEGER (0..32767),
gloAlmOmegaA INTEGER (-32768..32767),
gloAlmTauA INTEGER (-512..511)
                                 INTEGER (0..31),
    gloAlmHA
    gloAlmCA
                                  INTEGER (0..1),
                                 BIT STRING (SIZE(2))
                                                                       OPTIONAL
    gloAlmMA
}
Almanac-ECEFsbasAlmanacSet ::= SEQUENCE {
    sbasAlmDataID INTEGER (0..3), svID SVID,
    svID sVID,
sbasAlmHealth BIT STRING (SIZE(8)),
sbasAlmXg INTEGER (-16384..16383),
sbasAlmYg INTEGER (-16384..16383),
sbasAlmZg INTEGER (-256..255),
sbasAlmXgdot INTEGER (-4..3),
sbasAlmYgDot INTEGER (-4..3),
sbasAlmZgDot INTEGER (-8..7),
sbasAlmZgDot INTEGER (-8..7),
    sbasAlmYgDot
sbasAlmZgDot
                                 INTEGER (0..2047)
    sbasAlmTo
}
Almanac-BDSAlmanacSet-r12 ::= SEQUENCE {
                                       SVID,
     --This field may be present if the toa is not the same for all SVs; otherwise it is not present
and the toa is provided in GANSSAlmanacModel
   OPTIONAL.
     --This field is mandatory present if SV-ID is between 0 and 29; otherwise it is not present.
    bdsSvHealth-r12 BIT STRING (SIZE(9))
}
-- GANSS Almanac Model Rel-10 Extension
GANSSAlmanacModel-R10-Ext ::= SEQUENCE {
   completeAlmanacProvided BOOLEAN -- TRUE means that complete Almanac is provided
}
-- GANSS Almanac Model Rel-12 Extension
GANSSAlmanacModel-R12-Ext ::= SEQUENCE {
-- Either toa in GANSSAlmanacModel or toa-ext shall be present if GANSS-ID indicates Galileo
                                 INTEGER (256..1023) OPTIONAL,
    toa-ext
-- Either ioda in GANSSAlmanacModel or ioda-ext shall be present if GANSS-ID indicates Galileo
                                 INTEGER (4..15)
                                                              OPTIONAL
-- GANSS Universal Time Coordinate Model (Model-1)
GANSSUTCModel ::= SEQUENCE {
    ganssUtcAl INTEGER (-8388608..8388607),
    ganssUtcDN INTEGER (-128..127), ganssUtcDeltaTlsf INTEGER (-128..127)
}
```

```
--GANSS Ephemeris Extension
GANSSEphemerisExtension ::= SEQUENCE {
   ganssEphemerisHeader GANSSEphemerisExtensionHeader ganssReferenceSet SeqOfGANSSRefOrbit
                                                                             OPTIONAL.
                                                                               OPTIONAL,
   ganssephemerisDeltasMatrix GANSSEphemerisDeltaMatrix
                                                                               OPTIONAL,
}
-- The ganssEphemerisHeader and the ganssReferenceSet are mandatory only once in the delivery of the
-- GANSS Ephemeris Extension. The ganssReferenceSet shall include all healthy satellite vehicles
-- at the time of message construction.
GANSSEphemerisExtensionHeader ::= SEQUENCE {
   timeAtEstimation
                                GANSSEphemerisExtensionTime,
    validityPeriod
                                INTEGER(1..8),
-- The validity period, represented in hours, is the validity period of each individual ephemeris
-- delta payload
   ephemerisExtensionDuration INTEGER(1..512),
-- If the ephemerisExtensionDuration does not match the request duration made by the MS, the MS
-- should regard the provided ephemerisExtensionDuration as the limit of the SMLC ephemeris
-- extension capability at this time.
}
GANSSEphemerisExtensionTime ::= SEQUENCE {
   ganssEphExtDay INTEGER(0..8191), ganssEphExtTOD GANSSTOD,
}
 - Reference Nav Model for Ephepmeris Extension
ReferenceNavModel ::= SEQUENCE {
   keplerIO INTEGER (-2147483648..2147483647),
keplerOmegaO INTEGER (-2147483648..2147483647),
   keplerCrs
keplerCis
                      INTEGER (-32768..32767),
INTEGER (-32768..32767),
INTEGER (-32768..32767),
   keplerCus
                       INTEGER (-32768..32767),
INTEGER (-32768..32767),
   keplerCrc
keplerCic
    keplerCuc
                       INTEGER (-32768..32767)
SeqOfGANSSRefOrbit ::= SEQUENCE (SIZE(1..32)) OF GANSSReferenceOrbit
--The number of reference orbits can be read from number of elements in this sequence
GANSSReferenceOrbit ::= SEQUENCE {
                      SVID,
    ganssOrbitModel
                        ReferenceNavModel.
    ganssClockModel
                        GANSSClockModel,
}
GANSSEphemerisDeltaMatrix ::= SEQUENCE (SIZE(1 .. 128)) OF GANSSEphemerisDeltaEpoch
GANSSEphemerisDeltaEpoch ::= SEQUENCE {
                                                                    OPTIONAL,
    ganssDeltaEpochHeader GANSSDeltaEpochHeader
   ganssDeltaElementList
                                GANSSDeltaElementList,
}
.
-- Each GANSSDeltaEpoch element contains a header and the delta values for a particular time window
-- for all PRN's.
```

```
GANSSDeltaEpochHeader ::= SEQUENCE {
    ephemerisDeltaSizes CANCOL
                                                                    OPTIONAL.
                                 GANSSEphemerisDeltaBitSizes
                                                                   OPTIONAL.
    ephemerisDeltaScales
                                GANSSEphemerisDeltaScales
                                                                    OPTIONAL,
}
-- In each of the GANSSDeltaEpochs, if the optional element, validityPeriod is not included, the -- value in GANSSEphemerisExtensionHeader shall be used. If the optional elements
-- ephemerisDeltaSizes or ephemerisDeltaScales are not included, then the default ephemeris delta
-- sizes and scales shall be used. The default sizes and scales are found in the annex in the
-- table 55.11.
GANSSDeltaElementList ::= SEQUENCE (SIZE(1 .. 32)) OF OCTET STRING(SIZE (1..49))
 -- Each octet string element in GANSSDeltaElementList corresponds to one PRN within one epoch
-- Table 55.11 of the annex shows the organization of the delta ephemeris octet string.
-- Decoding of each of the octet strings is accomplished by consulting the ephemerisDeltaSizes
-- table to learn the length and order of each of the parameters in the ephemerisDelta payload.
-- Post decode scaling is accomplished by consulting the ephemerisDeltaScales table to learn the
-- scale factors to apply to the terms in the delta ephemeris.
-- Ephemeris Delta Bit Sizes.
GANSSEphemerisDeltaBitSizes ::= SEQUENCE {
-- This structure defines the order and sizes of the fields in the GANSSDeltaEpoch octet string
-- seqNum and svID are the first two elements of each GANSS Ephemeris Delta Element Structure
-- seqNum is always 7 bits, and svID is always 6 bits long and are thus not included in
-- the GANSSEphemerisDeltaBitSizes table. The value of seqNum indicates the GANSSDeltaEpoch number
-- The Ephemeris delta element payload mimics the bitsize table, but also includes the svID and
-- seqNum as the first two elements (in that order), in each block.
    bitsize-delta-deltaN integer(1..32), bitsize-delta-deltaN integer(1..16)
                                INTEGER(1..24),
    bitsize-delta-omegadot
    bitsize-delta-e
                                 INTEGER(1..32),
    bitsize-delta-idot
                                 INTEGER(1..14),
    bitsize-delta-sqrtA
                                 INTEGER(1..32),
                                 INTEGER(1..32),
    bitsize-delta-iO
    bitsize-delta-omega0
                               INTEGER(1..32),
   bitsize-delta-crs
bitsize-delta-cis
                                 INTEGER(1..16),
                                INTEGER(1..16),
                                INTEGER(1..16),
INTEGER(1..16),
   bitsize-delta-cus
bitsize-delta-crc
    bitsize-delta-cic
                                INTEGER(1..16),
    bitsize-delta-cuc
                                 INTEGER(1..16),
    bitsize-delta-tgdl
                                 INTEGER(1..10),
    bitsize-delta-tgd2
                                 INTEGER(1..10),
}
GANSSEphemerisDeltaScales ::= SEQUENCE {
    scale-delta-omega
                                 INTEGER(-16..15),
                                INTEGER(-16..15),
    scale-delta-deltaN
                              INTEGER(-16..15),
INTEGER(-16..15),
    scale-delta-m0
    scale-delta-omegadot
    scale-delta-e
                                 INTEGER(-16..15),
    scale-delta-idot
                                 INTEGER(-16..15),
    scale-delta-sqrtA
                                 INTEGER(-16..15),
                              INTEGER(-16..15),
INTEGER(-16..15),
INTEGER(-16..15),
    scale-delta-i0
    scale-delta-omega0
    scale-delta-crs
    scale-delta-cis
                                 INTEGER(-16..15),
                                INTEGER(-16..15),
    scale-delta-cus
                                INTEGER(-16..15),
    scale-delta-crc
                                INTEGER(-16..15),
INTEGER(-16..15),
    scale-delta-cic
    scale-delta-cuc
                                 INTEGER(-16..15),
INTEGER(-16..15),
    scale-delta-tgd1
    scale-delta-tqd2
}
```

```
-- GANSS Ephemeris Extension Check
GANSSEphemerisExtensionCheck ::= SEQUENCE {
    ganssBeginTime GANSSEphemerisExtensionTime, ganssEndTime GANSSEphemerisExtensionTime.
    ganssSatEventsInfo
                             GANSSSatEventsInfo,
}
GANSSSatEventsInfo ::= SEQUENCE {
    eventOccured
                         BIT STRING (SIZE (64)),
                       BIT STRING (SIZE (64)),
    futureEventNoted
.
-- If a bit is clear in the eventOccured field it indicates that no known errors have occured
-- between the current time and the ganssBeginTime nor is a maneuver planned for the next sixty
-- minutes.
-- If a bit is set in the future Event Noted field it indicates that a maneuver is planned during the
-- time period between current time plus sixty minutes and the ganssEndTime
-- GANSS Additional Universal Time Coordinate Model
GANSSAddUTCModel ::= CHOICE {
                  UTCmodelSet2,
   utcModel2
    utcModel3
                         UTCmodelSet3,
    utcModel4
                         UTCmodelSet4,
                        UTCmodelSet5-r12
    utcModel5-r12
}
UTCmodelSet2 ::= SEQUENCE {
                         INTEGER (-32768..32767),
    ut.cA0
    utcA1
                         INTEGER (-4096.. 4095),
    utcA2
                         INTEGER (-64..63),
                        INTEGER (-128.. 127),
   utcDeltaTls
                        INTEGER (0..65535),
INTEGER (0..8191),
    utcTot
    utcWNot
   utcWNlsf
utcDN
utcDeltaTlsf
                      INTEGER (0..255),
                         BIT STRING (SIZE(4)),
                        INTEGER (-128..127)
}
UTCmodelSet3 ::= SEQUENCE {
               INTEGER (1..1461),
   nA
                         INTEGER (-2147483648..2147483647),
    tauC
    b1
                         INTEGER (-1024..1023)
                                                                     OPTIONAL,
    b2
                         INTEGER (-512..511)
                                                                     OPTIONAL,
    kp
                         BIT STRING (SIZE(2))
                                                                     OPTIONAL
}
UTCmodelSet4 ::= SEQUENCE {
   utcAlwnt INTEGER (-8388608..8388607),
utcA0wnt INTEGER (-2147483648..2147483647),
    utcTot
                        INTEGER (0..255),
   utcWNt INTEGER (0..255),
utcDeltaTls INTEGER (-128..127),
utcWNlsf INTEGER (0..255),
utcDN
    utcDN
                         INTEGER (-128..127),
   utcDeltaTlsf INTEGER (-128..127),
utcStandardID INTEGER (0..7)
                                                    -- coding according to annex
}
UTCmodelSet5-r12 ::= SEQUENCE {
   utcA0-r12 INTEGER (-2147483648..2147483647),
                        INTEGER (-8388608..8388607),
INTEGER (-128..127),
    utcA1-r12
   utcDeltaTls-r12 INTEGER (-128..12
utcWNlsf-r12 INTEGER (0..255),
    utcDN-r12 INTEGER (0..255),
utcDeltaTlsf-r12 INTEGER (-128..127)
}
-- GANSS Auxiliary Information
GANSSAuxiliaryInformation ::= CHOICE{
    ganssID1 GANSS-ID1, -- This choice may only be present if GANSS ID indicates Modernized GPS
    ganssID3 GANSS-ID3, -- This choice may only be present if GANSS ID indicates GLONASS
}
```

```
GANSS-ID1 ::= SEQUENCE (SIZE(1..64)) OF GANSS-ID1-element
GANSS-ID1-element ::= SEQUENCE {
    signalsAvailable
                      GANSSSignals,
}
GANSS-ID3 ::= SEQUENCE (SIZE(1..64)) OF GANSS-ID3-element
GANSS-ID3-element ::= SEQUENCE {
    svID
                       SVID.
                        GANSSSignals,
    signalsAvailable
    channelNumber
                        INTEGER (-7..13),
}
-- DGANSS Corrections Validity Period:
-- This element may only be included if GANSSDiffCorrections IE is included in
-- GANSSGenericAssistDataElement element.
-- GANSSDiffCorrectionsValidityPeriod shall contain the same number of elements as the
-- SeqOfSgnTypeElement included in GANSSDiffCorrections IE
GANSSDiffCorrectionsValidityPeriod ::= SEQUENCE (SIZE (1..3)) OF DGANSSExtensionSgnTypeElement
DGANSSExtensionSgnTypeElement ::= SEQUENCE {
                               GANSSSignalID, -- signal type identity
   ganssSignalID
   dganssExtensionSgnList
                               SeqOfDGANSSExtensionSgnElement
}
-- SeqOfDGANSSExtensionSgnElement shall contain the same number of elements as the
-- SeqOfDGANSSSgnElement included in GANSSDiffCorrections IE
SeqOfDGANSSExtensionSgnElement ::= SEQUENCE (SIZE (1..16)) OF DGANSSExtensionSgnElement
DGANSSExtensionSgnElement ::= SEQUENCE {
                     SVID,
   svID
                                        -- Satellite identity
                        INTEGER(0..7), -- coding according to annex
    udreGrowthRate
    udreValidityTime INTEGER(0...7), -- coding according to annex
}
--Required Measurement Request Response Time, range is 1 to 128 seconds.
RequiredResponseTime ::= INTEGER (1..128)
-- Control header for additional GPS assistance data
Add-GPS-AssistData ::= SEOUENCE {
    add-GPS-controlHeader Add-GPS-ControlHeader
}
{\tt Add-GPS-ControlHeader} \; ::= \; {\tt SEQUENCE} \; \; \big\{
   gpsEphemerisExtension
                                    GPSEphemerisExtension
                                                                    OPTIONAL.
    gpsEphemerisExtensionCheck
                                   GPSEphemerisExtensionCheck
                                                                    OPTIONAL.
    . . . ,
    {\tt dgpsCorrectionsValidityPeriod} \quad {\tt DGPSCorrectionsValidityPeriod} \quad {\tt OPTIONAL},
    -- If ReferenceTime is included in ControlHeader, GPSReferenceTime-R10-Ext
    -- shall also be included.
   gpsReferenceTime-R10-Ext
                                    GPSReferenceTime-R10-Ext
                                                                    OPTIONAL,
    -- If AcquisAssist is included in ControlHeader, GPSAcquisAssist-R10-Ext
    -- shall also be included.
   gpsAcquisAssist-R10-Ext
                                GPSAcquisAssist-R10-Ext
    -- If Almanac is included in ControlHeader, GPSAlmanac-R10-Ext
    -- shall also be included.
    qpsAlmanac-R10-Ext
                                    GPSAlmanac-R10-Ext
                                                                    OPTIONAL.
    qpsAcquisAssist-R12-Ext GPSAcquisAssist-R12-Ext OPTIONAL
}
GPSClockModel ::= SEQUENCE {
         INTEGER (-128..127)
    af1
           INTEGER (-32768..32767),
           INTEGER (-2097152..2097151),
    af0
          INTEGER (-128..127)
    tad
}
```

```
--GPS Ephemeris Extension
GPSEphemerisExtension ::= SEQUENCE {
   gpsEphemerisHeader
                                  GPSEphemerisExtensionHeader OPTIONAL,
   gpsReferenceSet
                                  SeqOfGPSRefOrbit
                                                                  OPTIONAL,
   gpsephemerisDeltaMatrix
                             GPSEphemerisDeltaMatrix
                                                         OPTIONAL,
}
-- The gpsEphemerisHeader and the gpsReferenceSet are mandatory only once in the delivery of the
-- GPS Ephemeris Extension. The gpsReferenceSet shall include all healthy satellite vehicles at the
-- time of message construction
-- The SMLC is required to deliver the gpsReferenceSet for all healthy satellite vehicles
-- at the time of message construction.
GPSEphemerisExtensionHeader ::= SEQUENCE {
   timeofEstimation GPSEphemerisExtensionTime,
   validityPeriod
                               INTEGER(1..8),
-- The validity period, represented in hours is the validity period of each individual ephemeris
-- delta payload
   ephemerisExtensionDuration INTEGER(1..512),
-- If the ephemerisExtensionDuration does not match the request duration made by the MS, the MS
-- should regard the provided ephemerisExtensionDuration as the limit of the SMLC ephemeris
-- extension capability at this time.
} . . .
GPSEphemerisExtensionTime ::= SEQUENCE {
   qpsWeek
                      GPSWeek.
   gpsTOW
                       INTEGER (0..604799),
SeqOfGPSRefOrbit ::= SEQUENCE (SIZE(1..32)) OF GPSReferenceOrbit
--The number of reference orbits can be read from number of elements in this sequence
GPSReferenceOrbit ::= SEQUENCE {
                    SVID,
   svID
   gpsOrbitModel
                      ReferenceNavModel,
                     GPSClockModel,
   apsClockModel
GPSEphemerisDeltaMatrix ::= SEQUENCE (SIZE(1 .. 128)) OF GPSEphemerisDeltaEpoch
GPSEphemerisDeltaEpoch ::= SEQUENCE {
   gpsDeltaEpochHeader GPSDeltaEpochHeader
                                                         OPTIONAL.
   gpsDeltaElementList
                           GPSDeltaElementList,
}
-- Each GPSDeltaEpoch element contains a header and the delta values for a particular time window
-- for all PRN's.
GPSDeltaEpochHeader ::= SEQUENCE {
                   INTEGER(1..8)
   validityPeriod
                              GPSEphemerisDeltaBitSizes OPTIONAL,
   ephemerisDeltaSizes
   ephemerisDeltaScales
                              GPSEphemerisDeltaScales OPTIONAL,
}
-- In each of the GPSDeltaEpochs, if the optional element validityPeriod is not included,
-- the value in GPSEphemerisExtensionHeader shall be used. if the optional elements
-- ephemerisDeltaSizes or ephemerisDeltaScales are not included, then the default ephemeris delta
-- sizes and scales shall be used. The default sizes and scales are found in the annex in section
-- A.29.m
```

```
GPSDeltaElementList ::= SEQUENCE (SIZE(1 .. 32)) OF OCTET STRING(SIZE (1..47))
-- Each octet string element in GPSDeltaElementList corresponds to one PRN within one epoch
-- Table A.29.m of the annex shows the organization of the delta ephemeris octet string.
-- Decoding of each of the octet strings is accomplished by consulting the ephemerisDeltaSizes
-- table to learn the length and order of each of the parameters in the ephemerisDelta payload
-- Post decode scaling is accomplished by consulting the ephemerisDeltaScales table to learn the.
-- scale factors to apply to the terms in the delta ephemeris
-- Ephemeris Delta Bit Sizes.
GPSEphemerisDeltaBitSizes ::= SEQUENCE {
-- This structure defines the order and sizes of the fields in the GPSsDeltaEpoch octet string
-- seqNum and svID are the first two elements of each GPS Ephemeris Delta Element Structure
-- seqNum is always 7 bits, and svID is always 5 bits long and are thus not included in
-- the GPSEphemerisDeltaBitSizes table. seqNum indicates the GPSDeltaEpoch number.
-- The Ephemeris delta element payload mimics the bitsize table, but also includes the svID and
-- seqNum as the first two elements (in that order), in each block.
                                    INTEGER(1..32),
    bitsize-delta-omega
    bitsize-delta-omega INTEGER(1..32),
bitsize-delta-deltaN INTEGER(1..16),
bitsize-delta-m0 INTEGER(1..32),
    bitsize-delta-omegadot
                                   INTEGER(1..24),
                             INTEGER(1..13,,
INTEGER(1..32),
INTEGER(1..32),
INTEGER(1..32),
                                   INTEGER(1..32),
INTEGER(1..14),
    bitsize-delta-e
    bitsize-delta-e
bitsize-delta-idot
    bitsize-delta-sqrtA
    bitsize-delta-i0
    bitsize-delta-omega0
                                  INTEGER(1..16),
INTEGER(1..16),
    bitsize-delta-crs
bitsize-delta-cis
    bitsize-delta-cus
                                   INTEGER(1..16),
                                   INTEGER(1..16),
INTEGER(1..16),
    bitsize-delta-crc
bitsize-delta-cic
    bitsize-delta-cuc
                                   INTEGER(1..16),
INTEGER(1..10),
    bitsize-delta-tgd
}
GPSEphemerisDeltaScales ::= SEQUENCE {
    scale-delta-omega INTEGER(-16..15), scale-delta-deltaN INTEGER(-16..15),
    scale-uell

scale-delta-m0

scale-delta-omegadot INTEGER(-16..15),

scale-delta-e INTEGER(-16..15),

INTEGER(-16..15),

INTEGER(-16..15),

INTEGER(-16..15),
                                   INTEGER(-16..15),
INTEGER(-16..15),
    scale-delta-i0
    scale-delta-omega0
                                 INTEGER(-16..15),
INTEGER(-16..15),
INTEGER(-16..15),
INTEGER(-16..15),
    scale-delta-crs
    scale-delta-cis
    scale-delta-cus
    scale-delta-crc
                                  INTEGER(-16..15),
INTEGER(-16..15),
    scale-delta-cic
    scale-delta-cuc
                                   INTEGER(-16..15),
    scale-delta-tqd
                                    INTEGER(-16..15),
}
GPSEphemerisExtensionCheck ::= SEQUENCE {
    gpsEndTime
                                GPSEphemerisExtensionTime,
    gpsSatEventsInfo GPSSatEventsInfo,
}
```

```
GPSSatEventsInfo ::= SEQUENCE {
                        BIT STRING (SIZE (32)),
    eventOccured
    futureEventNoted BIT STRING (SIZE (32)),
}
-- If a bit is clear in the eventOccured field it indicates that no known errors have occured since
-- the gpsBeginTime nor is a maneuver planned for the next sixty minutes.
-- If a bit is set in the futureEventNoted field it indicates that a maneuver is planned during the
-- time period between current time plus sixty minutes and gpsEndTime
-- DGPS Corrections Validity Period:
-- This element may only be included if DGPSCorrections IE is included in ControlHeader element.
-- DGPSCorrectionsValidityPeriod shall contain the same number of elements as the SeqOfSatElement
-- included in DGPSCorrections IE
DGPSCorrectionsValidityPeriod ::= SEQUENCE (SIZE (1..16)) OF DGPSExtensionSatElement
DGPSExtensionSatElement ::= SEQUENCE {
   satelliteID SatelliteID, udreGrowthRate INTEGER(0..7), -- coding according to annex udreValidityTime INTEGER(0..7), -- coding according to annex
 - GPS Reference Time Rel-10 Extension:
GPSReferenceTime-R10-Ext ::= SEQUENCE {
   gpsWeekCycleNumber INTEGER(0..7)
                                       -- coding according to annex
-- GPS Acquisition Assistance Rel-10 Extension:
-- GPSAcquisAssist-R10-Ext shall contain the same number of elements as the SeqOfAcquisElement
-- included in AcquisAssist IE
GPSAcquisAssist-R10-Ext ::= SEQUENCE(SIZE (1..16)) OF GPSAcquisAssist-R10-Ext-Element
GPSAcquisAssist-R10-Ext-Element::= SEQUENCE {
    satelliteID SatelliteID,
    azimuthLSB
                        INTEGER(0..15),
   elevationLSB
                        INTEGER(0..15)
}
-- GPS Acquisition Assistance Rel-12 Extension:
GPSAcquisAssist-R12-Ext ::= SEQUENCE {
   confidence
                        INTEGER (0..100)
                                                                  OPTIONAL,
                        SeqOfGPSAcquisAssist-R12-Ext
                                                                  OPTIONAL
    acquisList
SeqOfGPSAcquisAssist-R12-Ext ::= SEQUENCE (SIZE(1..16)) OF GPSAcquisAssist-R12-Ext-Element
GPSAcquisAssist-R12-Ext-Element ::= SEQUENCE {
    satelliteTD
                                SatelliteID.
    dopplerUncertaintyExt
                                ENUMERATED {
                                                 d300.
                                                 d500,
                                                 d600.
                                                 noInformation, ...}
-- GPS Almanac Rel-10 Extension:
GPSAlmanac-R10-Ext ::= SEQUENCE {
   completeAlmanacProvided BOOLEAN -- TRUE means that complete Almanac is provided
Rel-7-MsrPosition-Rsp-Extension ::= SEQUENCE {
   velEstimate
                    VelocityEstimate OPTIONAL,
 -- Horizontal Velocity
 -- Horizontal with Vertical Velocity
 -- Horizontal Velocity with Uncertainty
 -- Horizontal with Vertical Velocity and Uncertainty
 ganssLocationInfo GANSSLocationInfo OPTIONAL,
ganssMeasureInfo GANSSMeasureInfo OPTIONAL,
  Further Release 7 extensions here
}
```

```
-- GANSS Location Information contains location estimate, time stamp with uncertainty
 - and optionally Reference Frame field
GANSSLocationInfo ::= SEQUENCE {
                                ReferenceFrame
   referenceFrame
                                                       OPTIONAL, -- Reference Frame Number
                               GANSSTODm OPTIONAL, -- GNSS TOD modulo INTEGER (0 . 16384) OPTIONAL, -- Coding according to Annex
   ganssTODm
   ganssTODFrac
    -- a value of 16384 shall not be encoded by the sender
   \, -- the receiver shall consider a value of 16384 to be invalid data
   ganssTODUncertainty
                             GANSSTODUncertainty OPTIONAL, -- Coding according to Annex
   ganssTimeID
                               INTEGER (0 .. 7)
                                                       OPTIONAL, -- Coding according to Annex
   fixType
                               FixTvpe,
   posData
                               PositionData,
                               INTEGER(0 .. 1) OPTIONAL, -- '0' if moving or motion not
    stationaryIndication
                                                                  -- known
    -- Possible shapes carried in posEstimate are
    -- ellipsoid point,
    -- ellipsoid point with uncertainty circle
    -- ellipsoid point with uncertainty ellipse
    -- ellipsoid point with altitude and uncertainty ellipsoid
   posEstimate
                               Ext-GeographicalInformation,
PositionData ::= BIT STRING {
   e-ot.d
                     (0),
    gps
                     (1),
   galileo
                     (2),
   sbas
                     (3),
   modernizedGPS
                     (4),
   qzss
                     (5),
    glonass
                     (6).
                     (7)} (SIZE (3..16))
-- GANSS TOD modulo 1 hour
GANSSTODm ::= INTEGER (0 .. 3599999)
ReferenceFrame ::= SEQUENCE {
referenceFN INTEGER (0 .. 65535),
    -- Note that applicable range for referenceFN is 0 - 42431 \,
referenceFNMSB INTEGER (0 .. 63) OPTIONAL -- MSB of Reference Frame Number
}
-- GANSS Measurement Information
GANSSMeasureInfo ::= SEQUENCE {
  -- Measurement info elements
ganssMsrSetList SeqOfGANSS-MsrSetElement
SeqOfGANSS-MsrSetElement ::= SEQUENCE (SIZE(1..3)) OF GANSS-MsrSetElement
 - GANSS measurement information 1-3 times in a message
{\tt GANSS-MsrSetElement} \; ::= \; {\tt SEQUENCE} \; \; \{ \;
   referenceFrame
                          ReferenceFrame
                                                   OPTIONAL, -- Reference Frame Number
    -- if ganssTODm is included, it is the GNSS specific system time of the GANSS reported
    -- first in ganss-SqnTypeList. If GPS Measurement Information element is not included in
   -- a Measure Position Response component, this field shall be present.
    ganssTODm
                           GANSSTODm
                                                   OPTIONAL, -- GANSS TOD modulo 1 hour
   deltaGANSSTOD INTEGER (0 . . 127) OPTIONAL, ganssTODUncertainty GANSSTODUncertainty OPTIONAL, -- Coding according to Annex
    --N_GANSS can be read from number of elements of SeqOfGANSS-MsrElement
    ganss-MsrElementList SeqOfGANSS-MsrElement
}
SeqOfGANSS-MsrElement ::= SEQUENCE (SIZE(1..8)) OF GANSS-MsrElement
ganss-SgnTypeList
                         SeqOfGANSS-SgnTypeElement
```

```
-- Measurements can be returned up to 8 different signal types
-- N_SGN_TYPE can be read from number of elements of SeqOfGANSS-SgnTypeElement
-- Reporting of multiple signal types as defined in A.2.2.4g
{\tt SeqOfGANSS-SgnTypeElement} \; ::= \; {\tt SEQUENCE} \; \; ({\tt SIZE(1..8)}) \; \; {\tt OF} \; {\tt GANSS-SgnTypeElement} \; \\
GANSS-SgnTypeElement ::= SEQUENCE {
    ganssSignalID GANSSSignalID, -- Coding according to Annex ganssCodePhaseAmbiguity INTEGER (0 .. 127) OPTIONAL,
    ganssSignalID
    --N\_SGN can be read from number of elements of SeqOfGANSS-SgnElement
    ganss-SgnList SeqOfGANSS-SgnElement,
}
-- Up to 16 Measurements can be returned per signal type
SeqOfGANSS-SgnElement ::= SEQUENCE (SIZE(1..16)) OF GANSS-SgnElement
GANSS-SgnElement ::= SEQUENCE {
   svID
                          SVID,
    cNo
                          INTEGER (0 .. 63),
    mpathDet
                          MpathIndic,
                                                                            -- Coding according to Annex
    carrierQualityInd INTEGER (0 .. 3)
                                                        OPTIONAL,
                                                                       -- Coding according to Annex
    codePhase INTEGER (0 .. 2097151), integerCodePhase INTEGER (0 .. 127)
                                                        OPTIONAL,
    codePhaseRMSError INTEGER (0..63),
                                                                        -- Coding according to Annex
               INTEGER (-32/00 .. .. INTEGER (0 .. 33554431)
                          INTEGER (-32768 .. 32767) OPTIONAL,
    doppler
    adr
                                                        OPTIONAL
}
```

```
Rel7-AssistanceData-Extension ::= SEQUENCE {
                                                   GANSS-AssistData
                                                                       OPTIONAL,
   ganss-AssistData
    {\tt ganssCarrierPhaseMeasurementRequest}
                                                   NULL
                                                                       OPTIONAL,
   ganssTODGSMTimeAssociationMeasurementRequest
                                                   NULL
                                                                       OPTIONAL,
    add-GPS-AssistData
                                                   Add-GPS-AssistData OPTIONAL,
-- Possibly more extensions for Release 7 here
}
BDS-DiffCorrections-r12 ::= SEQUENCE {
                              INTEGER (0..3599),
   dbds-RefTime-r12
    -- N_SGN_TYPE can be read from number of elements of bds-SgnTypeList-r12
   bds-SgnTypeList-r12
                        BDS-SgnTypeList-r12,
}
\verb|BDS-SgnTypeList-r12| ::= \verb|SEQUENCE| (SIZE (1..3)) | OF | \verb|BDS-SgnTypeElement-r12| |
BDS-SqnTypeElement-r12 ::= SEQUENCE {
                               GANSSSignalID
   ganssSignalID
                                                           OPTIONAL,
    -- N_SAT can be read from number of elements of dbds-CorrectionList-r12
   dbds-CorrectionList-r12
                            DBDS-CorrectionList-r12,
}
DBDS-CorrectionList-rl2 ::= SEQUENCE (SIZE (1..64)) OF DBDS-CorrectionElement-rl2
DBDS-CorrectionElement-r12 ::= SEQUENCE {
   svID
                              SVID,
   bds-UDREI-r12
                               INTEGER (0..15),
   bds-RURAI-r12
                              INTEGER (0..15),
   bds-ECC-DeltaT-r12 INTEGER (-4096..4095),
}
BDS-GridModelParameter-r12 ::= SEQUENCE {
                          INTEGER (0..3599),
  bds-RefTime-r12
   --N_IGP can be read from number of elements of GridIonList-r12
   gridIonList-r12
                           GridIonList-r12,
}
--Up to 16 instances are used in this version of the specification. The values 17 to 320 are
reserved for future use.
GridIonList-r12 ::= SEQUENCE (SIZE (1..320)) OF GridIonElement-r12
GridIonElement-r12 ::= SEQUENCE {
   igp-ID-r12
                          INTEGER (1..320),
                           INTEGER (0..511),
   dt-r12
                           INTEGER (0..15) ,
   givei-r12
}
```

```
-- Rel-7 Positioning Capability parameters here
PosCapabilities ::= SEQUENCE {
-- nonGANSSpositionMethods shall be included if and only if any
-- of the non-GANSS methods is supported.
   nonGANSSpositionMethods
                               NonGANSSPositionMethods OPTIONAL,
-- gANSSpositionMethods shall be included if and only if any of the GANSS methods is supported.
   gANSSPositionMethods
                               GANSSPositionMethods
                                                       OPTIONAL,
-- multipleMeasurementSets shall be present if and only if 'multiple sets' is supported
-- for any of the positioning methods
                              MultipleMeasurementSets OPTIONAL,
   multipleMeasurementSets
}
NonGANSSPositionMethods ::= BIT STRING {
   msAssistedEOTD (0),
   msBasedEOTD
                     (1),
                     (2), -- If this bit is set, gpsAssistance in AssistanceSupported IE
   msAssistedGPS
                          -- shall be present
   msBasedGPS
                     (3), -- If this bit is set, gpsAssistance in AssistanceSupported IE
                          -- shall be present
                    (4) } (SIZE (1..16))
    standaloneGPS
GANSSPositionMethods ::= SEQUENCE (SIZE(1..16)) OF GANSSPositionMethod
GANSSPositionMethod ::= SEQUENCE {
                                    INTEGER (0..7)
                                                                OPTIONAL, --Absence means Galileo
-- gANSSPositioningMethodTypes may be present for PosCapability-Req
-- and shall be present for PosCapability-Rsp
   gANSSPositioningMethodTypes
                                   GANSSPositioningMethodTypes OPTIONAL,
   gANSSSignals
                                   GANSSSignals,
-- sbasID shall be present if and only if ganssID indicates SBAS
    sbasID
                                    SBASID
                                                                OPTIONAL
GANSSPositioningMethodTypes ::= BIT STRING {
   msAssisted (0), -- If this bit is set, gANSSAssistanceSet in AssistanceSupported IE
                        -- shall be present.
   msBased (1),
                       -- If this bit is set, gANSSAssistanceSet in AssistanceSupported IE
                        -- shall be present.
   standalone (2) } (SIZE (1..8))
-- indicates MS support for particular GANSS signals and frequencies
GANSSSignals ::= BIT STRING {
   signal1 (0),
   signal2 (1),
signal3 (2),
    signal4 (3),
   signal5 (4),
    signal6 (5),
   signal7 (6),
signal8 (7) } (SIZE (1..8))
SBASID ::= BIT STRING {
   waas
             (0),
    egnos
             (1),
    masas
             (2),
            (3) } (SIZE (1..8))
   qaqan
```

```
-- indicates MS support of multiple measurement sets for MS assisted position methods
MultipleMeasurementSets ::= BIT STRING {
    eotd
             (0),
    gps
             (1),
   ganss
             (2) } (SIZE (1..8))
-- indicates MS support of different types of assistance data
AssistanceSupported ::= SEQUENCE {
    gpsAssistance
                                        GPSAssistance
                                                                            OPTIONAL,
    gANSSAssistanceSet
                                        GANSSAssistanceSet
                                                                            OPTIONAL,
-- gANSSAdditionalAssistanceChoices shall be present if the MS supports other than native models
   gANSSAdditionalAssistanceChoices GANSSAdditionalAssistanceChoices OPTIONAL
}
-- GPS assistance data supported
GPSAssistance ::= BIT STRING {
   almanac
                                (0),
   uTCmodel
                               (1),
   ionosphericModel
                               (2),
   navigationmodel
dGPScorrections
                               (3),
                               (4),
   referenceLocation
                               (5),
   referenceTime
                               (6),
   acquisitionAssistance
                               (7),
   realTimeIntegrity ephemerisExtension
                               (8),
                               (9),
    ephemerisExtensionCheck (10),
   gPSAcquisAssist-R12-Ext (11) } (SIZE (1..16))
-- GANSS assistance data supported
GANSSAssistanceSet ::= SEQUENCE {
    commonGANSSAssistance
                               CommonGANSSAssistance,
    specificGANSSAssistance
                               SpecificGANSSAssistance,
}
-- Common GANSS assistance data supported
CommonGANSSAssistance ::= BIT STRING {
   referenceTime
                          (0),
   referenceLocation
                            (1),
   ionosphericModel
   addIonosphericModel
                            (3),
    addIonosphericModel (4), earthOrientationParam (5) } (SIZE (1..8))
SpecificGANSSAssistance ::= SEQUENCE (SIZE(1..16)) OF GANSSAssistanceForOneGANSS
-- assistance data supported for a particular GANSS system
GANSSAssistanceForOneGANSS ::= SEQUENCE {
                          INTEGER (0..7) OPTIONAL, --Absence means Galileo
   ganssID
   gANSSAssistance
                           GANSSAssistance,
}
```

```
-- specific GANSS assistance data supported
GANSSAssistance ::= BIT STRING {
    realTimeIntegrity
    differentialCorrections
                                         (2),
   referenceMeasurementInformation (3),
                                         (4),
   navigationModel
                                         (5),
    timeModelGNSS-UTC
    timeModelGNSS-GNSS
                                         (6),
    databitassistance
    ephemerisExtension
                                         (8),
    ephemerisExtensionCheck
    addUTCmodel
                                         (10),
    auxiliaryInformation
                                         (11),
    gANSSRefMeasurementAssist-R12-Ext
                                         (12),
    bdsDifferentialCorrections-r12
                                         (13),
                                        (14) } (SIZE (1..16))
    bdsGridModel-r12
GANSSAdditionalAssistanceChoices ::= SEQUENCE (SIZE(1..16)) OF
GANSSAdditionalAssistanceChoicesForOneGANSS
{\tt GANSSAdditionalAssistanceChoicesForOneGANSS} ::= {\tt SEQUENCE} \ \{
                                    INTEGER (0..7) OPTIONAL, --Absence means Galileo
    ganssID
    ganssClockModelChoice
                                    GANSSModelID
                                                     OPTIONAL.
    gannsOrbitModelChoice GANSSModelID OPTIO
ganssAlmanacModelChoice GANSSModelID OPTIONAL,
                                                     OPTIONAL,
    ganssAdditionalUTCModelChoice GANSSModelID OPTIONAL,
GANSSModelID ::= BIT STRING {
   model1 (0),
    model2 (1),
   model3 (2),
   model4 (3),
   model5 (4),
    model6 (5),
    model7 (6),
   model8 (7) } (SIZE (1..8))
-- indicates assistance data that may be needed by the MS
-- These elements are coded as defined in TS 49.031 with the exceptions defined in section A.8.2.3
AssistanceNeeded ::= SEQUENCE {
    gpsAssistanceData
                                                     OPTIONAL,
                            GPSAssistanceData
    ganssAssistanceData
                            GANSSAssistanceData
                                                     OPTIONAL,
```

6 TOM Protocol Header for RRLP Transport

6.1 General

For the specification of the TOM protocol, see 3GPP TS 44.064.

6.2 Remaining Octets of TOM Protocol Header for RRLP

The number of remaining octet following the first octets of the TOM protocol header for RRLP is one. The encoding of this octet is defined in the figure 6.1 and the table 6.1.

Figure 6.1: Remaining Octets of TOM Protocol Header for RRLP

Table 6.1: C/R bit content

C/R	UI frame information field
0	Command (SMLC to MS) or Final Response (MS to SMLC)
1	Not Command or Final Response

The setting of the C/R flag is provided by the sending RRLP entity, for further details see 3GPP TS 43.059.

The Spare bits shall be ignored by the receiver and set to 0 by the sender. If a protocol header with more than one remaining octet of the TOM protocol header is received, the additional octets after the first remaining octet shall be ignored by the receiver.

Annex A (informative): **Description of Components**

Introduction **A.1**

This annex describes the contents of components.

Measure Position Request **A.2**

A.2.1 General

The Measure Position Request is a RRLP component from the SMLC to the MS. This component is common to E-OTD, GPS and GANSS (Galileo and Additional Navigation Satellite Systems) location methods. As a response to this component, the MS performs E-OTD, GPS or GANSS measurements and possibly calculates its own position, if the MS and/or the network support these options. It contains the following elements.

Table A.1: Measure Position Request component content

Element	Type/Reference	Presence
Positioning Instructions	Positioning Instructions 2.2.1	М
E-OTD Reference BTS for	E-OTD Reference BTS for Assistance	0
Assistance Data	Data 2.2.2	
E-OTD Measurement Assistance	E-OTD Measurement Assistance Data	0
Data	2.2.3	
E-OTD Measurement Assistance	E-OTD Measurement Assistance Data	0
Data for System Information List	for System Information List 2.2.4	
GPS Assistance Data	GPS Assistance Data 4.2.4	0
Additional GPS Assistance Data	Additional GPS Assistance Data 4.2.4c	0
GPS Time Assistance Measurement	GPS Time Assistance Measurement	0
Request	Request 2.2.4a	
GPS Reference Time Uncertainty	GPS Reference Time Uncertainty 2.2.4b	0
Velocity Request	Velocity Request 2.2.4c	0
Extended Reference	Extended Reference 2.2.5	0
GANSS Positioning Method	GANSS Positioning Method Element	0
Element	2.2.1a	
GANSS Carrier-Phase	GANSS Carrier-Phase Measurement	0
Measurement Request	Request 2.2.4d	
GANSS TOD - GSM Time	GANSS TOD - GSM Time Association	0
Association Request	Request 2.2.4e	
GANSS Multi-frequency	GANSS Multi-frequency Measurement	0
Measurement Request	Request 2.2.4g	
GANSS Assistance Data	GANSS Assistance Data 4.2.6	0
Required Response Time	Required Response Time 2.2.4f	0

A 2 2 **Elements**

A.2.2.1 Positioning Instructions Element

The purpose of Positioning Instructions element is to express the allowed/required location method(s), and to provide information required QoS. This element is mandatory in the Measure Position Request message, and contains the following fields:

Method Type

This field indicates whether MS based or assisted version is allowed/requested. If the Positioning Methods field includes more than one method, the Method Type applies to all of them. This field is mandatory, and has the following values:

'0': MS assisted;

'1': MS based:

'2': MS based is preferred, but MS assisted is allowed;

'3': MS assisted is preferred, but MS based is allowed.

In GPS positioning methods, 'MS based' may indicate either MS Based Assisted GPS method or Conventional GPS method. If 'MS based is indicated with no GPS assistance data then the MS may interpret this as either Conventional GPS or MS based A-GPS without assistance data. The same interpretation applies also to the GANSS positioning method.

Positioning Methods

This field indicates which location method or methods should be used. This field is mandatory.

'0': E-OTD;

'1': GPS;

'2': E-OTD or GPS (i.e. both can be reported).

NOTE:

If the selected positioning method is 'GPS' or 'E-OTD or GPS', the field GANSS Positioning Method, if present in a Measure Position Request component, indicates request of GANSS method and indicates the allowed satellite systems.

Response Time

This field indicates the desired response time. However, when performing measurements, the desired response time may be exceeded. This field is mandatory.

The response time is 2^N seconds, where N is the value in this field. Thus the desired maximum response time can be 1, 2, 4, 8, 16, 32, 64, or 128 seconds.

Range: 0-7

Accuracy

This field indicates the required accuracy of the location estimate. This is field is mandatory when Method Type is '1', '2', or '3' and optional when Method Type is '0'.

This field is 7 bit Uncertainty Code as defined in 3GPP TS 23.032.

Multiple Sets

This field indicates whether MS is requested to send multiple *E-OTD/GPS/GANSS Measurement Information Sets*. The maximum number of measurement sets is three. This is field is mandatory. MS is expected to include the current measurement set. Additionally MS may include historical measurement sets, or measure new additional sets if the response time allows that.

'0': multiple IEs can be send;

'1': sending of multiple sets is not allowed.

Environment Characterization

Environment Characterization field provides the MS with information about expected multipath and NLOS in the current area. This field is optional.

'0': possibly heavy multipath and NLOS conditions (e.g. bad urban or urban).

'1': no or light multipath and usually LOS conditions (e.g. suburban or rural).

'2': not defined or mixed environment.

'3': reserved for future use.

A.2.2.1a GANSS Positioning Method Element

This bit map indicates the satellite systems allowed by the SMLC corresponding to allowance of 'GPS' in the Positioning Methods field. Each bit is of type Boolean, where TRUE ('1') means the particular satellite system is allowed. For example EOTD + Galileo method can be indicated by setting 'E-OTD or GPS' in Positioning Methods and setting only the 'bit 1' to TRUE value in the GANSS Positioning Method element. The MS shall not request assistance data or report measurements for the systems that are not indicated in the bit map.

NOTE: Bit 0 of this bit map shall not be the only one set to TRUE ('1').

'bit 0': GPS;

'bit 1': Galileo;

'bit 2': SBAS (WAAS, EGNOS, MSAS, GAGAN);

'bit 3': Modernized GPS (L1C, L2C, L5);

'bit 4': QZSS;

'bit 5': GLONASS:

'bit 6': BDS;

'bit 7-15': Reserved for future GNSSes.

A.2.2.2 E-OTD Reference BTS for Assistance Data Element

The RTD and 51 multiframe offset values in the E-OTD Measurement Assistance Data element and the E-OTD Measurement Assistance Data for System Information List element are calculated relative to the BTS indicated in this element. Also the E-OTD Measurement Assistance data for System Information List element, if present, refers to the System Information Neighbor List of this reference BTS.

Inclusion of this parameter is mandatory for E-OTD since it is not possible to reliably default to the current serving BTS for the target MS, as there is a small chance that the SMLC does not know this. If the E-OTD Measurement Assistance data for System Information List element is present, the current serving cell must be the same as reference BTS identified in this element.

BCCH Carrier

This field indicates the absolute RF channel number of BCCH of the reference BTS. This field is mandatory.

Range: 0 - 1023

BSIC

This field indicates the BSIC (Base Station Identity Code) of the reference BTS. This field is mandatory.

Range: 0 - 63

Time Slot Scheme

The Time Slot Scheme field indicates the type of transmission scheme the reference BTS is using. If the MS measures BTSs signals from time slots other than 0 or 4, and it is informed about the burst length schemes used by BTSs, then it can compensate for the possible error. (This is necessary if the MS averages bursts from different time slots, and the BTS uses varying lengths of bursts.) This field is mandatory.

'0' = all time slots are 156,25 bits long.

'1' = time slots 0 and 4 are 157 bits long and other time slots are 156 bits long.

BTS Position

This field contains the BTS position in the format defined in 3GPP TS 23.032. This field is optional, but should be present for MS based E-OTD positioning. The allowed shapes are:

- ellipsoid point;
- ellipsoid point with altitude and uncertainty ellipsoid.

A.2.2.3 E-OTD Measurement Assistance Data Element

This element identifies BTSs that are used for E-OTD measurements. This element helps the MS to make measurements from neighbor BTS (even below decoding level). This element is optional in the Measure Position Request component. The presence of this element means that the MS should try to measure the E-OTD values between the reference BTS and the BTSs identified in this element.

This element is used to deliver E-OTD measurement assistance data for those BTSs, that are not included in the System Information Neighbor List of the reference BTS, if necessary.

The RTD and 51 multiframe offset values are calculated relative to the BTS indicated in the E-OTD Reference BTS for Assistance Data element. This element contains the following fields.

Number of BTSs

This field indicates how many BTSs are included in this IE. This field is mandatory. The maximum number of BTSs in this message for whom the assistance data can be given is 16 (reference BTS and 15 neighbour BTSs). Thus the sum of **Number of BTSs** field in this IE and total amount of **E-OTD Neighbor present** bits with value '1' in **E-OTD Measurement Assistance Data for System Information List IE** can be at a maximum 15.

Range: 1 to 15.

The following fields are repeated for the number of BTSs included in the Number of BTSs field.

BCCH Carrier

This field indicates the absolute RF channel number of BCCH of the particular BTS. This field is mandatory.

Range: 0 - 1023

BSIC

This field indicates the BSIC (Base Station Identity Code) of the particular BTS. This field is mandatory.

Range: 0 - 63

Multiframe Offset

This field indicates the frame difference between the start of the 51 multiframes frames being transmitted from this BTS and the reference BTS. The multiframe offset is defined as T_{BTS} - T_{Ref} , where T_{BTS} is the time of the start of the 51 multiframe in the BTS in question, and T_{Ref} is the time of the start of the 51 multiframe in the reference BTS. This field is mandatory. Multiframe Offset may be used to calculate the Expected Multiframe Offset (the Multiframe Offset value that MS is expected to measure between this BTS and reference BTS in its current estimated location).

Expected Multiframe Offset = (Multiframe Offset + Adjustment) modulo 51

Adjustment = 1 if Rough RTD - Expected OTD >= 850

Adjustment = -1 if Rough RTD - Expected OTD =< -850

Adjustment = 0 if -400 = < Rough RTD - Expected OTD = < 400

If the Rough RTD - Expected OTD is not within any of the ranges above, an error has occurred and the Expected OTD should be ignored and no Expected Multiframe Offset can be calculated.

Range: 0 - 51

Usable range of Multiframe Offset value is 0 - 50. The Multiframe Offset value 51 shall not be encoded by the transmitting entity and shall be treated by the receiving entity as 0.

Time Slot Scheme

The Time Slot Scheme field indicates the type of transmission scheme the particular BTS is using. If the MS measures BTSs signals from time slots other than 0 or 4, and it is informed about the burst length schemes used by BTSs, then it can compensate for the possible error. (This is necessary if the MS averages bursts from different time slots, and the BTS uses varying lengths of bursts.) This field is mandatory.

'0' = all time slots are 156,25 bits long.

'1' = time slots 0 and 4 are 157 bits long and other time slots are 156 bits long.

Rough RTD

This field indicates the rough RTD value between this BTS and reference BTS. The used resolution is 1 bits. This RTD value is the RTD value of TS0s (i.e. the difference in starting of TS0), not only the RTD between starts of bursts. The RTD is defined as T_{BTS} - T_{Ref} , where T_{BTS} is the time of the start of TS0 in the BTS in question, and T_{Ref} is the time of the start of the TS0 in the reference BTS. This field is mandatory.

Range: 0 - 1250

Usable range of Rough RTD value is 0 - 1249. The Rough RTD value 1250 shall not be encoded by the transmitting entity and shall be treated by the receiving entity as 0.

Accurate RTD values are needed for MS based E-OTD, i.e. when the MS calculates its own position.

Expected OTD

This field indicates the OTD value that MS is expected to measure between this BTS and reference BTS in its current estimated location. SMLC can estimate MS's location roughly e.g. based on serving BTS coordinates, TA, and possibly some other information. The used resolution is 1 bits. This OTD value is the OTD value of TS0s (i.e. the difference in starting of TS0), not only the OTD between starts of bursts. The OTD is defined as T_{BTS} - T_{Ref} , where T_{BTS} is the time of the start of TS0 in the BTS in question, and T_{Ref} is the time of the start of the TS0 in the reference BTS. This is element is Release 98 extension and it is an optional element included in Release98-Ext IE. SMLC shall send this element to MS supporting MS Assisted or MS Based E-OTD.

Range: 0 - 1250

Usable range of Expected OTD value is 0 - 1249. The Expected OTD value 1250 shall not be encoded by the transmitting entity and shall be treated by the receiving entity as 0.

Uncertainty Of Expected OTD

This field indicates the uncertainty in Expected OTD value. The uncertainty is related to SMLC's estimation of MS's location. The uncertainty defines following search window for MS, that it can use to speed up the OTD measurements:

Expected OTD - Uncertainty < measured OTD < Expected OTD + Uncertainty.

This is element is Release 98 extension and it is an optional element included in Release 98-Ext IE. SMLC shall send this element to MS supporting MS Assisted or MS Based E-OTD.

Range is 0 - 7 with following encoding:

```
'0'
                    0 < \text{uncertainty} \le 2 \text{ bit};
'1'
                    2 < uncertainty <= 4 bit;
'2'
                    4 < uncertainty <= 8 bit;
'3'
                    8 < uncertainty <= 12 bit;
'4'
                    12 < uncertainty <= 16 bit;
'5'
                    16 < uncertainty <= 22 bit;
'6'
                    22 < uncertainty <= 30 bit;
'7'
                    uncertainty > 30 bit.
```

NOTE: If uncertainty in MS's location is x bits, uncertainty in Expected OTD is 2*x (in the worst case). When the uncertainty is given with value '7' no upper bound exist for the uncertainty.

The following fields tell the coordinates of neighbor BTSs that are used for E-OTD measurements, and also fine RTD values. This information allows the MS to calculate its own location. These fields (Fine RTD, Relative north, Relative

east and Relative altitude) are optional. All of Fine RTD, Relative north, and Relative east fields must be present, if some of them is included.

Fine RTD

This field indicates the fine RTD value between this BTS and reference BTS. It provides the 1/256 bit duration resolution to the value expressed in the corresponding Rough RTD field. This RTD value is the RTD value of TS0s (i.e. the difference in starting of TS0), not only the RTD between starts of bursts. The RTD is defined as T_{BTS} - T_{Ref} , where T_{BTS} is the time of the start of TS0 in the BTS in question, and T_{Ref} is the time of the start of the TS0 in the reference BTS. This field is optional.

Range: 0 - 255

Relative North

This field indicates the distance of the neighbor BTS from the reference BTS in north- (negative values mean south) direction. This field is optional. The units are 0,03 seconds. The used reference ellipsoid is WGS 84 ellipsoid.

Range: -200000...200000

Relative East

This field indicates the distance of the neighbor BTS from the reference BTS in east (negative values mean west) direction. This field is optional. The units are 0,03 seconds. The used reference ellipsoid is WGS 84 ellipsoid.

Range: -200000 ... 200000

Relative Altitude

This field indicates the altitude of the neighbor BTS relative to the reference BTS in meters. This field is optional.

Range: -4000 .. 4000 meters

A.2.2.4 E-OTD Measurement Assistance Data for System Information List Element

This element identifies those BTSs in the System Information Neighbor List that are used for E-OTD measurements. The System Information Neighbor Lists, to which this assistance data is given, are System Information Neighbor Lists that are sent in the dedicated mode, packet idle mode, packet transfer mode, or dual transfer mode. This element helps the MS to make measurements from those neighbor BTS (even below decoding level). This element is optional in the Measure Position Request component. The presence of this element means that the MS should use the BTSs identified here to the E-OTD measurements.

The RTD and 51 multiframe offset values are calculated relative to the reference BTS. This element contains the following fields.

Number of Neighbors

This field indicates how many neighbors are included in this IE.

Range: 1-32

The following fields are repeated for the number indicated in the Number of Neighbors field.

E-OTD Neighbor present

This field indicates whether the information concerning a certain BTS in the Neighbor List is present. Altogether no more than 15 BTS can have the indication "Neighbor is included". The maximum number of BTSs in this message for whom the assistance data can be given is 16 (reference BTS and 15 neighbor BTSs). Thus the sum of total amount of E-OTD Neighbor present bits with value '1' in this IE and Number of BTSs field in E-OTD Measurement Assistance Data IE can be at a maximum 15.

'0' Neighbor not included;

'1' Neighbor is included.

The following fields (BSIC, Multiframe Offset, Time Slot Sscheme and Rough RTD) are included if E-OTD neighbor present field is set to '1'.

BSIC

This field indicates the BSIC (Base Station Identity Code) of the particular BTS. This field is mandatory.

Range: 0 - 63

Multiframe Offset

This field indicates the frame difference between the start of the 51 multiframes frames being transmitted from this BTS and the reference BTS. The multiframe offset is defined as T_{BTS} - T_{Ref} , where T_{BTS} is the time of the start of the 51 multiframe in the BTS in question, and T_{Ref} is the time of the start of the 51 multiframe in the reference BTS. This field is mandatory. Multiframe Offset may be used to calculate the Expected Multiframe Offset (the Multiframe Offset value that MS is expected to measure between this BTS and reference BTS in its current estimated location).

Expected Multiframe Offset = (Multiframe Offset + Adjustment) modulo 51

Adjustment = 1 if Rough RTD - Expected OTD >= 850

Adjustment = -1 if Rough RTD - Expected OTD =< -850

Adjustment = 0 if -400 = < Rough RTD - Expected OTD = < 400

Range: 0 - 51

Usable range of Multiframe Offset value is 0 - 50. The Multiframe Offset value 51 shall not be encoded by the transmitting entity and shall be treated by the receiving entity as 0.

Time Slot Scheme

The Time Slot Scheme field indicates the type of transmission scheme the particular BTS is using. If the MS measures BTSs signals from time slots other than 0 or 4, and it is informed about the burst length schemes used by BTSs, then it can compensate for the possible error. (This is necessary if the MS averages bursts from different time slots, and the BTS uses varying lengths of bursts.) This field is mandatory.

'0' = all time slots are 156,25 bits long;

'1' = time slots 0 and 4 are 157 bits long and other time slots are 156 bits long.

Rough RTD

This field indicates the RTD value between this BTS and the reference BTS. The used resolution is 1 bit. This RTD value is the RTD value of TS0s (i.e. the difference in starting of TS0), not only the RTD between starts of bursts. The RTD is defined as T_{BTS} - T_{Ref} , where T_{BTS} is the time of the start of TS0 in the BTS in question, and T_{Ref} is the time of the start of the TS0 in the reference BTS. This field is mandatory.

Range: 0 - 1250

Usable range of Rough RTD value is 0 - 1249. The RoughRTD value 1250 shall not be encoded by the transmitting entity and shall be treated by the receiving entity as 0.

Expected OTD

This field indicates the OTD value that MS is expected to measure between this BTS and reference BTS in its current estimated location. SMLC can estimate MS's location roughly e.g. based on serving BTS coordinates, TA, and possibly some other information. The used resolution is 1 bits. This OTD value is the OTD value of TS0s (i.e. the difference in starting of TS0), not only the OTD between starts of bursts. The OTD is defined as T_{BTS} - T_{Ref} , where T_{BTS} is the time of the start of TS0 in the BTS in question, and T_{Ref} is the time of the start of the TS0 in the reference BTS. This element is Release 98 extension and it is an optional element included in Release98-Ext IE. SMLC shall send this element to MS supporting MS Assisted or MS Based E-OTD.

Range: 0 - 1250

Usable range of Expected OTD value is 0 - 1249. The Expected OTD value 1250 shall not be encoded by the transmitting entity and shall be treated by the receiving entity as 0.

Uncertainty Of Expected OTD

This field indicates the uncertainty in Expected OTD value. The uncertainty is related to SMLC's estimation of MS's location. The uncertainty defines following search window for MS, that it can use to speed up the OTD measurements:

Expected OTD - Uncertainty < measured OTD < Expected OTD + Uncertainty.

This element is Release 98 extension and it is an optional element included in Release 98-Ext IE. SMLC shall send this element to MS supporting MS Assisted or MS Based E-OTD.

Range is 0 - 7 with following encoding:

```
'0'
                    0 < \text{uncertainty} \le 2 \text{ bit;}
'1'
                    2 < uncertainty <= 4 bit;
'2'
                    4 < uncertainty <= 8 bit;
'3'
                    8 < uncertainty <= 12 bit;
'4'
                    12 < uncertainty <= 16 bit;
'5'
                    16 < uncertainty <= 22 bit;
'6'
                    22 < uncertainty <= 30 bit;
'7'
                    uncertainty > 30 bit.
```

NOTE: If uncertainty in MS's location is x bits, uncertainty in Expected OTD is 2*x (in the worst case). When the uncertainty is given with value '7' no upper bound exist for the uncertainty.

The following fields tell the coordinates of neighbor BTSs that are used for E-OTD measurements, and also fine RTD values. This information allows the MS to calculate its own location. These fields (Fine RTD, Relative north, Relative east and Relative altitude) are optional. All of Fine RTD, Relative north, and Relative east fields must be present, if some of them is included.

Fine RTD

This field indicates the fine RTD value between this BTS and reference BTS. It provides the 1/256 bit duration resolution to the value expressed in the corresponding Rough RTD field. This RTD value is the RTD value of TS0s (i.e. the difference in starting of TS0), not only the RTD between starts of bursts. The RTD is defined as T_{BTS} - T_{Ref} , where T_{BTS} is the time of the start of TS0 in the BTS in question, and T_{Ref} is the time of the start of the TS0 in the reference BTS. This field is optional.

Range: 0 - 255

Relative North

This field indicates the distance of the neighbor BTS from the reference BTS in north- (negative values mean south) direction. This field is optional. The units are 0,03 seconds. The used reference ellipsoid is WGS 84 ellipsoid.

Range: -200000...200000

Relative East

This field indicates the distance of the neighbor BTS from the reference BTS in east (negative values mean west) direction. This field is optional. The units are 0,03 seconds. The used reference ellipsoid is WGS 84 ellipsoid.

Range: -200000 ... 200000

Relative Altitude

This field indicates the altitude of the neighbor BTS relative to the reference BTS in meters. This field is optional.

Range: -4000 .. 4000 meters

A.2.2.4a GPS Time Assistance Measurement Request element

This component does not have any information contents. If this component is present, the MS is requested to return GPS time assistance measurements.

A.2.2.4b GPS Reference Time Uncertainty element

This element provides the accuracy of the relation GPS and GSM time in the Reference Time field in GPS Assistance Data IE. If GPS TOW is the given GPS time, then the true GPS time, corresponding to the provided GSM time as observed at the MS location, lies in the interval (GPS TOW - GPS Reference Time Uncertainty, GPS TOW + GPS Reference Time Uncertainty). An entity that supports this element shall always include it when appropriate. This means that when the element is expected but is not received, lack of support at the sender can be assumed and some implementation dependent default interpretation can then be applied.

The uncertainty r, expressed in microseconds, is mapped to a number K, with the following formula:

$$r = C*(((1+x)^{K})-1)$$

with C = 0,0022 and x = 0,18. With $0 \le K \le 127$, a suitably useful range between 0 and 3 second is achieved for the uncertainty, while still being able to code down to values as small as 0,3 nanoseconds. To encode any higher value of uncertainty than that corresponding in the above formula to K=127, the same value, K=127, shall also be used. The uncertainty is then coded on 7 bits, as the binary encoding of K=127.

Table A.1a: Example values for the GPS Reference Time Uncertainty Parameter Format

Value of K	Value of uncertainty
0	0 nanoseconds
1	0,396 nanoseconds
2	0,863 nanoseconds
-	-
50	8,64 microseconds
-	-
127	\geq 2,96 seconds

A.2.2.4c Velocity Request element

If this element is present, the MS is requested to return a velocity estimate along with the location estimate. Requesting velocity does not guarantee its delivery, if conditions support its availability and it is requested it will be provided.

A.2.2.4d GANSS Carrier-Phase Measurement Request Element

This component does not have any information contents. If this component is present, the MS is requested to return carrier phase measurements in the GANSS Measurement Information IE.

A.2.2.4e GANSS TOD - GSM Time Association Request Element

This component does not have any information contents. If this component is present, the MS is requested to return GANSS TOD - GSM time association measurements. Only either GPS Timing Assistance Measurement Request Element or GANSS TOD - GSM Time Association Measurement Request should be present in Measure Position Request.

A.2.2.4f Required Response Time

This element indicates the maximum response time that shall be allowed for the positioning request in the MS. When this element is received, the MS shall send an RRLP Measure Position Response before the required response time has elapsed.

When this element is received, the MS shall ignore the Response Time field in the Positioning Instructions element.

The Required Response Time has a value from 1 to 128 seconds.

A.2.2.4g GANSS Multi-frequency Measurement Request Element

This component does not have any information contents.

If this component is present, the MS is requested to return measurements performed on multiple GANSS signal types if the MS supports this capability. If this component is not present, the MS shall report only one signal type for each GANSS.

If SMLC has indicated supported signal types in Positioning Capability Request, the MS shall only report signals that are supported by SMLC.

Extended Reference IE A.2.2.5

This element is mandatory in any RRLP Measure Position Request component, any RRLP Assistance Data component, any RRLP Positioning Capability Request component and any RRLP Positioning Capability response component.

For reasons of backward compatibility, the IE is not defined for a Release 4 or earlier SMLC and would be ignored, when received, by a Release 4 or earlier MS. Additionally, other requirements associated with this IE would not be supported by a Release 4 or earlier MS or SMLC.

The Extended Reference IE contains the following elements:

SMLC code: an integer in the range 0-63 distinguishing any SMLC from other neighbour SMLCs in the same

> Routing Area. Each SMLC is assigned a specific SMLC ID value. The values assigned to neighbour SMLCs in the same Routing Area between which inter-NSE cell change is possible

should be different.

Transaction ID: an integer in the range 0-262143 distinguishing different RRLP transactions in different MSs

currently being served by the same SMLC. An SMLC shall assign a different transaction ID to each currently open RRLP transaction for positioning and assistance data delivery among all target MSs. When any RRLP transaction for any MS is completed in the SMLC (e.g. the MS has sent a correctly formatted RRLP Measure Position Response or Assistance Data Ack.) or if the transaction is aborted (e.g. SMLC timeout on an RRLP response), the associated transaction ID value shall become free and may be later assigned to a new RRLP transaction by the SMLC. When any transaction ID value becomes free, an SMLC should attempt to wait for at least 128 seconds (the maximum defined RRLP response time from an MS) before reassigning the same value.

A.3 Measure Position Response

A.3.1 General

The Measure Position Response is a RRLP component from the MS to the network. It is the response to the Measure Position Request. It contains the following elements. One of the five elements containing measurement data or location estimate (E-OTD Measurement Information, Location Information, GPS Measurement Information, GANSS Measurement Information or GANSS Location Information) or Location Information Error element must be included.

Table A.2: Measure Position Response component content

Element	Type/Reference	Presence
Multiple Sets	Multiple Sets 3.2.1	0
Reference BTS Identity	Reference BTS Identity 3.2.2	0
E-OTD Measurement Information	E-OTD Measurement Information 3.2.3	0
Location Information	Location Information 3.2.4	0
GPS Measurement Information	GPS Measurement Information 3.2.5	0
Location Information Error	Location Information Error 3.2.6	С
GPS Time Assistance Measurements	GPS Time Assistance Measurements 3.2.6a	0
Velocity Estimate	Velocity Estimate 3.2.6b	0
Extended Reference	Extended Reference 3.2.7	С
Uplink RRLP Pseudo Segmentation	Uplink RRLP Pseudo Segmentation Indication	С
Indication	3.2.8	
GANSS Location Information	GANSS Location Information 3.2.9	0
GANSS Measurement Information	GANSS Measurement Information 3.2.10	0

A.3.2 Elements

A.3.2.1 Multiple Sets Element

This element indicates how many E-OTD Measurement Information sets, GPS Measurement Information sets or GANSS Measurement Information sets, and Reference BTS Identities are included to this element. This element is optional. If this element is absent, a single measurement set is included.

Number of E-OTD/GPS/GANSS Measurement Information Sets

This field indicates the number of *Number of E-OTD/GPS/GANSS Measurement Information* sets included to this component. This field is mandatory. If two or more types of measurement elements are present, then there are the equal number of them, and each pair has the same reference BTS.

Range: 2 - 3

Number of Reference BTS

This field indicates the number of reference BTSs used in this component. This field is mandatory.

Range: 1-3

Reference BTS relation to Measurement Elements

This field indicates how the reference BTSs listed in this element relate to measurement sets later in this component. This field is conditional and included only if Number of E-OTD/GPS/GANSS Measurement Information Sets is '3' and Number of Reference BTSs is '2'.

- '0' = First reference BTS is related to first and second E-OTD/GPS/GANSS Measurement Information Sets, and second reference BTS is related to third E-OTD/GPS Measurement Information Sets.
- '1' = First reference BTS is related to first and third E-OTD/GPS/GANSS Measurement Information Sets, and second reference BTS is related to second E-OTD/GPS/GANSS Measurement Information Sets.
- '2' = First reference BTS is related to first E-OTD/GPS/GANSS Measurement Information Sets, and second reference BTS is related to second and third E-OTD/GPS/GANSS Measurement Information Sets.

If this field is not included, the relation between reference BTS and Number of E-OTD/GPS/GANSS Measurement Information Sets is as follows:

- if there are three sets and three reference BTSs -> First reference BTS relates to first set, second reference BTS relates to second set, and third reference BTS relates to third set;
- if there are two sets and two reference BTS -> First reference BTS relates to first set, and second reference BTS relates to second set;
- if there is only one reference BTS and 1-3 sets -> this reference BTS relates to all sets.

A.3.2.2 Reference BTS Identity Element

This element identifies the reference BTS(s). This element is conditional to the number of reference BTSs. It is mandatory, if there is more than one reference BTS, and optional otherwise. If this element is not included, the Reference BTS, used in other elements, is the current serving BTS of MS. If this element is included, the BTSs defined here are used as Reference BTSs in all other elements.

The following fields are repeated for the number of reference BTSs included in the Number of Reference BTS field.

CellIdType

This field indicates is the identity method of the Reference BTS. This field is mandatory within this element.

- '0' = Cell identity is told using BSIC and BCCH carrier.
- '1' = Cell identity is told using CI, and the LAC is the same as the current serving BTS.

- '2' = Cell identity is told using an index referring to the BTS listed in the Measure Position Request component (the indicated reference BTS is 1)
- '3' = Cell identity is told using an index referring to the BTS listed in the BCCH allocation list (System Information Neighbor Lists) of the serving BTS. This type of reference identity shall not be used by the MS unless it has received the "E-OTD Measurement Assistance Data for System Information List Element" from the SMLC for this cell.
- '4' = Cell identity is told using CI, and the LAC.

Reference LAC

This field indicates the Location Area Code of the reference BTS. The purpose of the Location Area Code is to identify a location area. This field is conditional, and included, if CellIDType field is '4'.

Range: 0 - 65535

Reference CI

This field indicates the Cell Identity value of the reference BTS. The purpose of the Cell Identity value is to identify a cell within a location area. This field is conditional, and included, if CellIDType field is '1' or '4'.

Range: 0 - 65535

Reference BCCH Carrier

This field indicates the absolute RF channel number of the BCCH of the reference base station. BCCH carrier field is conditional and is included only if CellIdType is set '0'.

Range: 0 - 1023

Reference BSIC

This field indicates the BSIC (Base Station Identity Code of the base station).

BSIC field is conditional and is included only if CellIdType is set '0' or '3'.

Range: 0 - 63

Request Index

This field indicates an index identifying the reference BTS by referring to the BTSs listed in the Measure Position Request component (the indicated reference BTS in the Measure Position Request component has the index value 1, and possible next BTS '2', and so on)

This field is conditional and included only if CellIdType is set to '2'.

Range: 1-16

System Info Index

This field indicates an index identifying the reference BTS by referring to the BCCH allocation list (System Information Neighbor List) of the serving BTS .

This field is conditional and included only if CellIdType is set to '3'.

Range: 1-32

A.3.2.3 E-OTD Measurement Information Element

The purpose of the E-OTD Measurement Information element is to provide OTD measurements of signals sent from the reference and neighbor based stations. The length of this element depends on the number of neighbor cells for which OTD measurements have been collected. This element is optional in the Measure Position Response component. It is included in the Measure Position Response component, if the network has requested the mobile to perform the MS assisted E-OTD method. BTSs which cannot be measured or whose measurements are excessively inaccurate need not be reported. The MS may include measurements for other BTSs not given in the assistance data by the SMLC.

The E-OTD and 51 multiframe offset values are reported relative to the reference BTS as defined in the previous subclauses.

The following fields are repeated for each measurement set.

Reference Frame Number

This field indicates the frame number of the last measured burst from the reference BTS modulo 42432. This information can be used as a time stamp for the measurements. This field is mandatory.

Range: 0 - 42431

Reference Time Slot

Reference Time Slot indicates the time slot modulo 4 relative to which the MS reports the reference BTS measurements. This field is mandatory.

Range: 0 to 3

NOTE 1: If MS does not know timeslot scheme, the MS reports the used timeslot. MS can only report results based on one time slot (N) or two time slots (N and N+4). If the MS knows the timeslot scheme, it can make measurements from several timeslots and reports that the used timeslot is zero (and makes correction).

Reference Quality

Reference Quality field includes the standard deviation of the TOA measurements from the reference BTS with respect to T_{Ref} (where T_{Ref} is the time of arrival of signal from the reference BTS used to calculate the OTD values). This field is optional. The Reference Quality field can be used to evaluate the reliability of E-OTD measurements in the SMLC and in weighting of the E-OTD values in the location calculation.

Following linear 5 bit encoding is used:

```
'00000' 0 - (R*1-1) meters;

'00001' R*1 - (R*2-1) meters;

'00010' R*2 - (R*3-1) meters;

...

'11111' R*31 meters or more.
```

where R is the resolution defined by Std Resolution field. For example, if R=20 meters, corresponding values are 0-19 meters, 20-39 meters, 40-59 meters, ..., 620+ meters.

Number of Measurements

Number of Measurements for the Reference Quality field is used together with Reference Quality to define quality of the reference base site TOA. The field indicates how many measurements have been used in the MS to define the standard deviation of the measurements. Following 3 bit encoding is used:

```
'000':
                   2-4;
                   5-9;
'001':
'010':
                   10-14;
'011':
                   15-24;
'100':
                   25-34;
'101':
                   35-44:
'110':
                   45-54:
'111':
                   55 or more.
```

This field is optional.

Std Resolution

Std Resolution field includes the resolution used in Reference Quality field and Std of EOTD Measurements field. Encoding on 2 bits as follows:

```
'00' 10 meters;
'01' 20 meters;
'10' 30 meters;
```

'11' Reserved.

This field is mandatory.

TA Correction

This field indicates the estimate of the time difference between the moment that the MS uses to adjust its internal timing for reception and transmission (e.g. corresponding to maximum energy) and the estimate of the reception of the first arriving component from the serving BTS. This value can be used as a correction by the SMLC to the Timing Advance (TA) value when the distance between the MS and the serving BTS is estimated based on TA.

The value *TACor* in this field corresponds to the TA Correction in bit periods as follows:

- TA Correction in bit periods = TACor/64 -8.

TA Correction has the resolution of 1/64 bit period, and the range - 8 ... +7 bit periods. Negative TA Correction in bits indicates that the first signal component from the serving BTS is estimated to arrive before the moment used for communication. This field is optional.

Range: 0-960

Number of Measured Neighbors

This field indicates the number of different neighbor BTSs. This field is mandatory.

Range: 0 - 10

NOTE 2: If the MS can not measure any neighbor BTSs, then this value is set to '0'.

The following fields are repeated for the number of BTSs included in the Number of Measured Neighbors field.

Neighbor Identity Present

The presence of this field is conditional, it shall not be present in the first set. It is mandatory for the other sets. This field indicates whether the identity information (i.e. CellIDType and possibly Neighbor CI / Neighbor BCCH Carrier / Neighbor BSIC / Neighbor Multiframe Offset / Request Index / System Info Index fields) concerning a certain BTS is present or whether the BTS identity is given as reference to the first measurement set.

- '0' Identity information not included, and identity of this BTS is same as the identity of BTS in first set with same sequence number.
- '1' Identity information is included.

CellIdType

This field indicates is the identity method of the cell. This field is conditional, and included if Neighbor Identity Present is '1'. If CellIdType field is not present, the following fields can not be present either: Neighbor CI, Neighbor BCCH Carrier, Neighbor BSIC, Neighbor Multiframe Offset, Request Index, System Info Index.

- '0' = Cell identity is told using BSIC and BCCH carrier.
- '1' = Cell identity is told using CI, and the LAC is the same as the current serving BTS.
- '2' = Cell identity is told using 51 Multiframe offset and BCCH carrier.
- '3' = Cell identity is told using an index referring to the BTS listed in the Measure Position Request component (the indicated reference BTS is 1).
- '4' = Cell identity is told using an index referring to the BTS listed in the BCCH allocation list (System Information Neighbor Lists) of the serving BTS. This type of neighbor identity shall not be used by the MS unless it has received the "E-OTD Measurement Assistance Data for System Information List Element" from the SMLC for this cell.
- '5' = Cell identity is told using CI and the LAC.

NOTE: The MS can decide which of these methods to use. The CellIdType '3' and '4' are preferred.

Neighbor LAC

This field indicates the Location Area Code of the neighbor BTS. The purpose of the Location Area Code is to identify a location area. This field is conditional, and included, if CellIDType field is '5'.

Range: 0 - 65535

Neighbor CI

This field indicates the Cell Identity of the particular neighbor cell. The purpose of the Cell Identity value is to identify a cell within a location area.

Neighbor CI field is conditional and is included only if CellIdType is set '1' or '5' and the CI value of the given cell is available.

Range: 0 - 65535

Neighbor BCCH Carrier

This field indicates the absolute RF channel number of the BCCH of the neighbor base station. BCCH carrier field is conditional and is included only if CellIdType is set '0' or '2'.

Range: 0 - 1023

Neighbor BSIC

This field indicates the BSIC (Base Station Identity Code of the base station).

BSIC field is conditional and is included only if CellIdType is set '0' or '4'.

Range: 0 - 63

Neighbor Multiframe Offset

This field indicates the frame difference between the start of the 51 multiframes frames arriving from this BTS and the reference BTS. The multiframe offset is defined as T_{BTS} - T_{Ref} , where T_{BTS} is the time of the start of the 51 multiframe in the BTS in question, and T_{Ref} is the time of the start of the 51 multiframe in the reference BTS. This field is conditional and included only if CellIdType is set to '2'.

Range: 0 - 51

Request Index

This field indicates an index identifying the reference BTS by referring to the BTSs listed in the Measure Position Request component (the indicated reference BTS in the Measure Position Request component has the index value 1, and possible next BTS '2', and so on).

This field is conditional and included only if CellIdType is set to '3'.

Range: 1-16

System Info Index

This field indicates an index identifying the reference BTS by referring to the BCCH allocation list (System Information Neighbor List) of the serving BTS.

This field is conditional and included only if CellIdType is set to '4'.

Range: 1-32

Neighbor Time Slot

Neighbor Time Slot indicates the time slot modulo 4 relative to which the MS reports the neighbor BTS measurements. This field is mandatory.

Range: 0 to 3

NOTE 3: If the MS does not know the timeslot scheme, the MS reports the used timeslot. MS can only report a result based on one time slot (N) or two time slots (N and N+4). If the MS knows the timeslot scheme, the MS can make measurements from several timeslots and reports that the used timeslot is zero (and makes correction).

Number of EOTD Measurements

Number of Measurements field is used together with Std of EOTD Measurements field to define quality of a reported EOTD measurement. The field indicates how many EOTD measurements have been used in the MS to define the standard deviation of these measurements. Following 3 bit encoding is used.

```
'000':
                   2-4;
                   5-9;
'001':
'010':
                   10-14;
'011':
                   15-24;
'100':
                   25-34;
'101':
                   35-44:
'110':
                   45-54;
'111':
                   55 or more.
```

This field is mandatory.

Std of EOTD Measurements

Std of EOTD Measurements field includes standard deviation of EOTD measurements. This field is mandatory. It can be used to evaluate the reliability of EOTD measurements in the SMLC and in weighting of the OTD values in location calculation.

Following linear 5 bit encoding is used:

```
'00000' 0 - (R*1-1) meters;

'00001' R*1 - (R*2-1) meters;

'00010' R*2 - (R*3-1) meters;

...

'11111' R*31 meters or more.
```

where R is the resolution defined by Std Resolution field. For example, if R=20 meters, corresponding values are 0 - 19 meters, 20 - 39 meters, 40 - 59 meters, ..., 620+ meters.

OTD

This field indicates the measured OTD value between the receptions of signals from the reference and the neighbor BTS. The OTD is defined as T_{Nbor} - T_{Ref} (modulo burst length) where T_{Nbor} is the time of arrival of signal from the neighbor BTS, and T_{Ref} is the time of arrival of signal from the reference BTS. The reporting resolution of the OTD value is 1/256 bit. This field is mandatory.

Range: 0 - 39999

A.3.2.3a E-OTD Measurement Extended Information Element

The purpose of the E-OTD Measurement Ext Information element is to provide OTD measurements of signals sent from the reference and neighbour base stations. The length of this element depends on the number of neighbour cells for which OTD measurements have been collected. This element is optional in the Measure Position Response component. It is included in the Measure Position Response component, if E-OTD measurements didn't fit in the E-OTD Measurement Information Element.

The E-OTD and 51 multiframe offset values are reported relative to the reference BTS as defined in the previous subclauses.

The following fields are valid only for the first set of measurements

Number of Measured Neighbors

This field indicates the number of different neighbor BTSs. This field is mandatory.

Range: 0 - 5

NOTE: If the MS can not measure any neighbor BTSs, then this value is set to '0'.

The following fields are repeated for the number of BTSs included in the Number of Measured Neighbors field. They are defined in the previous sub-clause:

- CellIdType,
- Neighbor LAC,
- Neighbor CI,
- Neighbor BCCH Carrier,
- Neighbor BSIC,
- Neighbor Multiframe Offset,
- Request Index,
- System Info Index,
- Neighbor Time Slot,
- Number of EOTD Measurements,
- Std of EOTD Measurements,
- OTD

A.3.2.4 Location Information Element

The purpose of Location Information element is to provide the location estimate from the MS to the network, if the MS is capable of determining its own position. Optionally, the element may contain the velocity parameters computed by the MS.

This element is optional. This element contains the following fields.

Reference Frame

This field specifies the reference BTS Reference Frame number during which the location estimate was measured. The time of the Reference Frame boundary is as observed by the MS, ie without Timing Advance compensation. This field is mandatory. However, if the Reference Frame number is within (42432..65535), the value of this field shall be ignored and in that case the MS should provide GPS TOW if available.

Table A.3: Reference Frame field contents

Parameter	# of Bits	Resolution	Range	Units
Reference Frame	16		0 - 65535	frames

Note that expected values for Reference Frame are in range 0 - 42431.

GPS TOW

This field specifies the GPS TOW for which the location estimate is valid, rounded down to the nearest millisecond unit. This field is optional but shall be included if GPS Time Assistance Measurements are included. If GPS Time Assistance Measurements are included in the RRLP Measure Position Response, the MS shall align GPS System time (as defined by the GPS TOW and the GPS TOW Subms fields) with the reported GSM frame boundary observed by the MS at that time.

Table A.4: GPS TOW field contents

Parameter	# of Bits	Resolution	Range	Units
GPS TOW	24	1 ms	0 - 14399999	ms

The 24 bits of GPS TOW are the least significant bits. The most significant bits shall be derived by the Serving Mobile Location Center to unambiguously derive the GPS TOW.

Fix Type

This field contains an indication as to the type of measurements performed by the MS: 2D or 3D. This field is mandatory.

0' = 2D fix.

'1' = 3D fix.

Position Estimate

This field contains the calculated position estimate in the format defined in 3GPP TS 23.032. The allowed shapes are:

- ellipsoid Point;
- ellipsoid point with uncertainty circle;
- ellipsoid point with uncertainty ellipse;
- ellipsoid point with altitude and uncertainty ellipsoid.

A.3.2.5 GPS Measurement Information Element

The purpose of the GPS Measurement Information element is to provide GPS measurement information from the MS to the SMLC. This information includes the measurements of code phase and Doppler, which enables the network-based GPS method where position is computed in the SMLC. The proposed contents are shown in table A.5, and the individual fields are described subsequently. See also Figure A.1 for an illustration of the relation between some of the fields.

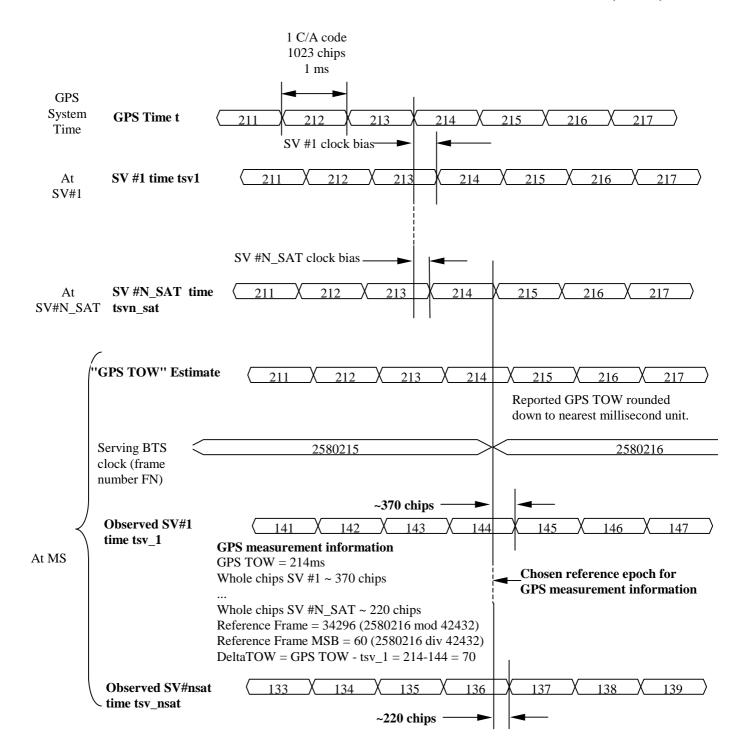


Figure A.1. Exemplary definitions of GPS measurement information fields.

This element is included in the Measure Position Response component if the network has requested the mobile to perform mobile-assisted location measurements using a GPS location method.

Following fields are repeated a number of times told in Number of E-OTD/GPS Measurement *Sets* field if Multiple Sets element is included. If Multiple Sets element is not included, the default value for sets is one (i.e. the following fields are present only once).

Table A.5: GPS Measurement Information element content

Element fields	Presence	Occurrences
Reference Frame	0	1
GPS TOW	М	1
# of Satellites (N_SAT)	М	1
Measurement Parameters	М	N_SAT

The following paragraphs describe the content of each information field of this element.

Reference Frame

This field is optional.

Table A.6: Reference Frame field contents

Parameter	# of Bits	Resolution	Range	Units
Reference Frame	16		0 - 65535	frames

Note that expected values for Reference Frame are in range 0 - 42431. If Reference Frame and GPS Time Assistance Measurements both are included in the RRLP Measure Position Response, the code phase measurements shall be aligned with the reported GSM frame boundary observed by the MS at that time, as indicated in Figure A.1. The time of the Reference Frame boundary is as observed by the MS, ie without Timing Advance compensation.

GPS TOW

This field specifies the GPS TOW for which the location estimate is valid, rounded down to the nearest millisecond unit. This field is mandatory.

Table A.7: GPS TOW field contents

Parameter	# of Bits	Resolution	Range	Units
GPS TOW	24	1 ms	0 - 14399999	ms

The 24 bits of GPS TOW are the least significant bits. The most significant bits shall be derived by the Serving Mobile Location Center to unambiguously derive the GPS TOW.

NOTE: The GPS Reference Time Uncertainty, if present, indicates the accuracy of GPSTOW, as described in sub-clause A.3.2.6.a.

of Satellites (*N_SAT*)

Number of Measurements

This field specifies the number of measurements for which measurements satellites are provided in the component. This value represents the number of satellites that were measured by the MS. This value of N_SAT determines the length of the payload portion of the component. Typical range for N_SAT is four to a maximum of 12. This field is mandatory and occurs once per set.

Table A.7a: # of Satellites field contents

Parameter	# of Bits	Resolution	Range	Units
N_SAT	4		1 - 16	

Measurement Parameters

This field contains information about the measurements of code phase and Doppler, which enables the network-based method where position is computed in the SMLC. This field is mandatory and occurs *N_SAT* times per message.

Table A.8: Measurement Parameters field contents

Parameter	# of Bits	Resolution	Range	Units
Satellite ID	6		0 - 63	
C/N _o	6	1	0 - 63	dB-Hz
Doppler	16	0,2	±6553,6	Hz
Whole Chips	10	1	0 - 1022	chips
Fractional Chips	11	2 ⁻¹⁰	0 - (1-2 ⁻¹⁰)	chips
Multipath Indicator	2	see Table A.9	TBD	
Pseudorange RMS	6	3 bit mantissa	0,5 - 112	m
Error		3 bit exp		

Satellite ID

This field identifies the particular satellite for which the measurement data is valid. This values 0 - 63 represent satellite PRNs 1 - 64, respectively.

C/N_0

This field contains the estimate of the carrier-to-noise ratio of the received signal from the particular satellite used in the measurement. It is given in whole dBs and has a range of 0 to 63. Typical levels observed by MS-based GPS units will be in the range of 20 dB to 50 dB.

Doppler

This field contains the Doppler measured by the MS for the particular satellite signal. This information can be used to compute the 3-D velocity of the MS. The Doppler range is sufficient to cover the potential range of values measured by the MS.

Whole Chips

This field contains the whole value of the code-phase measurement made by the MS for the particular satellite signal at the time of measurement, in units of 1 GPS chip in the range from 0 to 1022 chips, where increasing binary values of the field signify increasing measured pseudoranges. The code phase measurement is divided into two fields, "Whole Chips" and "Fractional Chips".

Fractional Chips

This field contains the fractional value of the code-phase measurement made by the MS for the particular satellite signal at the time of measurement. The resolution of the fractional portion is approximately 0.3 m.

NOTE: The actual ASN.1 coding of this field reserves 11 bits for legacy compatibility. Only the 10 least significant bits are actually required to code the values (0..1023)

Multipath Indicator

This field contains the Multipath Indicator value. This parameter is specified according to the representation described in table A.9.

Table A.9: Multipath Indicator values and associated indications

Value	Multipath Indication	
00	Not measured	
01	Low, MP error < 5m	
10	Medium, 5m < MP error < 43m	
11	High, MP error > 43m	

Range: 0 - 3

Pseudorange RMS Error

This field contains a Pseudorange RMS Error value.

Range: 0,5 m to 112 m

NOTE: This parameter is specified according to a floating-point representation as described in Table A.10.

Table A.10: Pseudorange RMS Error representation

Index	Mantissa	Exponent	Floating-Point value, x _i	Pseudorange value, P
0	000	000	0,5	P < 0,5
1	001	000	0,5625	0,5 <= P < 0,5625
I	Х	у	0,5 * (1 + x/8) * 2 ^y	$x_{i-1} <= P < x_i$
62	110	111	112	104 <= P < 112
63	111	111		112 <= P

A.3.2.6 Location Information Error Element

The purpose of Location Information Error element is to provide the indication of error and the reason for it, when the MS can not perform the required location or the network can not determine the position estimate. The element may also indicate what further assistance data may be needed by the target MS to produce a successful location estimate or location measurements. This element is optional. This element has the following fields.

Error Reason

This field indicates the reason for error. This field is mandatory.

	** * * *
'0':	Undefined error.
υ.	Unidenned en Or.

'1': There were not enough BTSs to be received when performing mobile based E-OTD.
'2': There were not enough GPS satellites to be received, when performing GPS location.

'3': E-OTD location calculation assistance data missing.

'4': E-OTD assistance data missing.

'5': GPS location calculation assistance data missing.

'6': GPS assistance data missing.
'7': Requested method not supported.
'8': Location request not processed.

'9': Reference BTS for GPS is not the serving BTS.
'10': Reference BTS for E-OTD is not the serving BTS.

'11': There were not enough GANSS satellites received, when performing GANSS location.

'12': GANSS assistance data missing.

'13': Reference BTS for GANSS is not the serving BTS.

Additional Assistance Data

This field is optional. Its presence indicates that the target MS will retain assistance data already sent by the SMLC. The SMLC may send further assistance data for any new location attempt but need not resend previous assistance data. The field may contain the following:

GPS Assistance Data: Necessary additional GPS assistance data (structure and encoding as for the GPS

Assistance Data IE in 3GPP TS 49.031 excluding the IEI and length octets)

GANSS Assistance Data: Necessary additional GANSS assistance data (structure and encoding as for the GANSS

Assistance Data IE in 3GPP TS 49.031 excluding the IEI and length octets)

A.3.2.6a GPS Time Assistance Measurements Element

This IE contains measurements that are used to define an accurate relation between GSM and GPS time or to provide additional GPS TOW information for MS Assisted A-GPS. The contents are shown in Table A.10a, and the individual fields are described subsequently.

Table A.10a: GPS Time Assistance Measurements Information element content

Element fields	Presence
Reference Frame MSB	0
GPS TOW Subms	0
Delta TOW	0
GPS Reference Time Uncertainty	0

Reference Frame MSB

This field shall be included when GPS-GSM time association is provided for either MS Based A-GPS or MS Assisted A-GPS. It indicates the Most Significant Bits (MSBs) of the frame number of the reference BTS corresponding to the GPS measurement or location estimate. Starting from the complete GSM frame number denoted FN, the MS calculates Reference Frame MSB as

Reference Frame MSB = floor(FN/42432)

The complete GSM frame number FN can then be reconstructed in the SMLC by combining the fields Reference Frame with Reference Frame MSB in the following way

FN = Reference Frame MSB*42432+Reference Frame

Range: 0-63

GPS TOW Subms

This field is only applicable for MS-Based A-GPS. This field indicates in units of 100ns the submillisecond part of the GPS time of measurement. This field together with the GPS TOW field in the Location Information Element provides a more accurate time stamp of the location estimate for MS based AGPS Expressed in units of microseconds. The precise GPS time of measurements in milliseconds is thus equal to

GPS TOW + 0,0001*GPS TOW Subms

The estimation of precise GPS time of measurement using AGPS is vulnerable to millisecond ambiguities. Therefore the MS shall only report this field when it is confident that any millisecond ambiguities have been avoided.

Range: 0-9999

Delta TOW

This field is only applicable for MS-Assisted A-GPS. This field specifies the difference in milliseconds between the GPS TOW reported in the GPS Measurement Information Element and the millisecond part of the SV time tsv_1 of the first SV in the list reported from the MS. Figure A.1 shows an example of Delta TOW calculation. The Delta TOW is defined as Delta TOW = GPS TOW - fix(tsv 1)

where fix() denotes rounding to the nearest integer towards zero. The estimation of tsv_1 which forms the basis for the calculation of Delta TOW is vulnerable to millisecond ambiguities. Therefore the MS shall only report this field when it is confident that the correct millisecond event has been recovered.

Range: 0-127

GPS Reference Time Uncertainty

This element is optional. It provides the accuracy of the relation GPS and GSM time in the Location Information or GPS Measurement Information Element when GPS-GSM time association is provided. For MS Assisted A-GPS when GPS-GSM time association is not provided, even if GPS Time Assistance Measurement Request is not included in the Measure Position Request, this element can be included to provide the accuracy of the reported GPS TOW. The interval, range and treatment is as described in sub-clause 2.2.4b.

A.3.2.6b Velocity Estimate Element

This field contains the calculated velocity estimate in the format defined in 3GPP TS 23.032. The allowed encodings are:

- Horizontal Velocity

- Horizontal with Vertical Velocity
- Horizontal Velocity with uncertainty
- Horizontal with Vertical Velocity and uncertainty

A.3.2.7 Extended Reference IE

This IE shall be included in any Measure Position Response if and only if an Extended Reference IE was received in the corresponding previous Measure Position Request message.

NOTE: For reasons of backward compatibility, a Release 4 or earlier MS will not include this IE.

The Extended Reference IE contains the following elements.

SMLC code: an integer in the range 0-63. The value returned by a target MS in a Measure Position Response

shall equal the value received from the SMLC in the earlier Measure Position Request.

Transaction ID: an integer in the range 0-262143 distinguishing different RRLP transactions in different MSs

currently being served by the same SMLC. The value returned by a target MS in a Measure Position Response shall equal the value received from the SMLC in the earlier Measure Position

Request.

When an MS employs pseudo-segmentation to return an RRLP response, the same Extended Reference IE shall be included in each RRLP Measure Position Response component.

A.3.2.8 Uplink RRLP Pseudo Segmentation Indication

This element is included by the MS when up-link RRLP pseudo-segmentation is used. In the first segment, 'first of many' is indicated and in the second 'second of many' is indicated. It is not included when up-link pseudo-segmentation is not used.

A.3.2.9 GANSS Location Information Element

The purpose of GANSS Location Information element is to provide the GANSS location estimate from the MS to the SMLC, if the MS is capable of determining its own position. Optionally, the element may contain Reference Frame element for including accurate relation between the cellular frame and GANSS Time of Day (TOD) for the serving cell if requested by the SMLC.

If GANSS Positioning Method was included in a Measure Position Request component, this field shall be used to report the location estimate from the MS to the network.

The time reference of GANSS TOD in GANSS Location Information Element can be any GNSS specific system time. The time reference is indicated by GANSS_TIME_ID.

The contents of GANSS Location Information are shown in Table A.10.1, and the individual fields are described subsequently.

Table A.10.1: GANSS Location Information Element Content

Element fields	Presence
Reference Frame	O (note 1)
GANSS TOD	O (note 1)
GANSS TOD Frac	0
GANSS TOD Uncertainty	0
GANSS_TIME_ID	O (note 2)
Fix Type	M
Position Data	M
Stationary Indication	0
Location Estimate	М
	0.44100

NOTE 1: Either Reference Frame or GANSS Reference Time shall always be included. NOTE 2. Absence of this field means Galileo

Reference Frame

This element contains Reference FN and Reference FN MSB fields. Reference FN field specifies the reference BTS reference frame number during which the location estimate was measured. The time of the reference frame boundary is as observed by the MS, i.e. without Timing Advance compensation.

Note that expected values for Reference FN are in range 0 - 42431.

Reference FN MSB field specifies the Most Significant Bits (MSB) of the frame number of the reference BTS corresponding to the GANSS Measurement Information or Location Estimate. Starting from the complete GSM frame number denoted FN, the MS calculates Reference FN MSB as

Reference FN MSB = floor(FN/42432)

The complete GSM frame number FN can then be reconstructed in the SMLC by combining the fields Reference Frame with Reference FN MSB in the following way

FN = Reference FN MSB*42432+Reference FN

Range: 0-63

Table A.10.2: Reference Frame field contents

Parameter	# of Bits	Resolution	Range	Unit	Incl.
Reference FN	16		0 - 65535	frame	М
Reference FN MSB	6		0 - 63	frame	0

GANSS TOD

This field specifies the time for which the location estimate is valid, rounded down to the nearest integer millisecond. This field is optional but shall be included if GANSS TOD - GSM time association is included in which case the MS shall align GANSS TOD with the reported GSM frame boundary observed by the MS at that time. The time reference of GANSS TOD is indicated by GANSS_TIME_ID.

Table A.10.3: GANSS TOD contents

Parameter	# of Bits	Resolution	Range	Unit
GANSS TOD	22	1	0 - 3599999	ms

The 22 bits of GANSS TOD are the least significant bits. The most significant bits shall be derived by the SMLC to unambiguously derive the GANSS TOD.

GANSS TOD Frac

This field is the submillisecond part of the GANSS time of day. This field together with the GANSS TOD field provides a more accurate time stamp of the Location Estimate having resolution of ~61 ns. This field is optional but shall be included if GANSS TOD - GSM time association is included.

Table A.10.4: GANSS TOD Frac contents

Parameter	# of Bits	Resolution	Range	Unit
GANSS_TOD_Frac	14	2 ⁻¹⁴	0 - (1-2 ⁻¹⁴)	ms

GANSS TOD Uncertainty

This parameter provides the accuracy of the relation between GANSS TOD and GSM time if GANSS TOD-GSM time association is provided. When GANSS TOD-GSM time association is not provided, this element can be included to provide the accuracy of the reported GANSS TOD.

The uncertainty r, expressed in microseconds, is mapped to a number K, with the following formula:

$$r = C*(((1+x)^{K})-1)$$

with C = 0.0022 and x = 0.18. With $0 \le K \le 127$, a suitably useful range between 0 and 3 second is achieved for the uncertainty, while still being able to code down to values as small as 0,3 nanoseconds. To encode any higher value of uncertainty than that corresponding in the above formula to K=127, the same value, K=127, shall also be used. The uncertainty is then coded on 7 bits, as the binary encoding of K=127.

Table A.10.5: Example values for the GANSS TOD Uncertainty Parameter Format

Value of K	Value of uncertainty
0	0 nanoseconds
1	0,396 nanoseconds
2	0,863 nanoseconds
-	-
50	8,64 microseconds
-	-
127	≥ 2,96 seconds

GANSS_TIME_ID

This field indicates which GNSS has been used as the time reference for GANSS Location Information. This field is optional and absence of this field means that Galileo system time is used as time reference.

Table A.10.6: GANSS_TIME_ID

GANSS_TIME_ID	Indication
GPS	0
QZSS	1
GLONASS	2
BDS	3
Reserved for future use	4-7

Fix Type

This field contains an indication as to the type of measurements performed by the MS: 2D or 3D. This field is mandatory.

'0' = 2D fix.

'1' = 3D fix.

Position Data

This element provides a list of positioning methods and satellite systems used to calculate the Position Estimate. Each bit of this bitmap is of type Boolean, where TRUE ('1') means the particular positioning method or signal(s) from a satellite system has been used.

'bit 0': E-OTD; 'bit 1' GPS; 'bit 2': Galileo; 'bit 3': SBAS;

'bit 4': Modernized GPS;

'bit 5': QZSS;
'bit 6': GLONASS;
'bit 7': BDS;
'bit 8-15': Reserved.

Stationary Indication

This field indicates whether the MS is stationary (horizontal and vertical speeds less than the resolution of the Velocity Estimate parameters as defined in 3GPP TS 23.032).

If Velocity Estimate is requested and the MS is stationary, then the Stationary Indication is set to '1' and Velocity Estimate may not be included in Measure Position Response Element.

Position Estimate

This field contains the calculated position estimate in the format defined in 3GPP TS 23.032. The allowed shapes are:

- ellipsoid Point;
- ellipsoid point with uncertainty circle;
- ellipsoid point with uncertainty ellipse;
- ellipsoid point with altitude and uncertainty ellipsoid.

As defined in 3GPP TS 23.032, the position estimate is provided in WGS-84 reference system.

A.3.2.10 GANSS Measurement Information Element

The purpose of the GANSS Measurement Information element is to provide GANSS measurement information from the MS to the SMLC and GANSS TOD - GSM time association if requested by the SMLC. This information includes the measurements of code phase, Doppler, C/N_o and optionally accumulated carrier phase, also called accumulated deltarange (ADR), which enable the network-based GANSS method where position is computed in the SMLC. The contents are shown in table A.10.7, and the individual fields are described subsequently. See also Figure A.1a for an illustration of the relation between some of the fields.

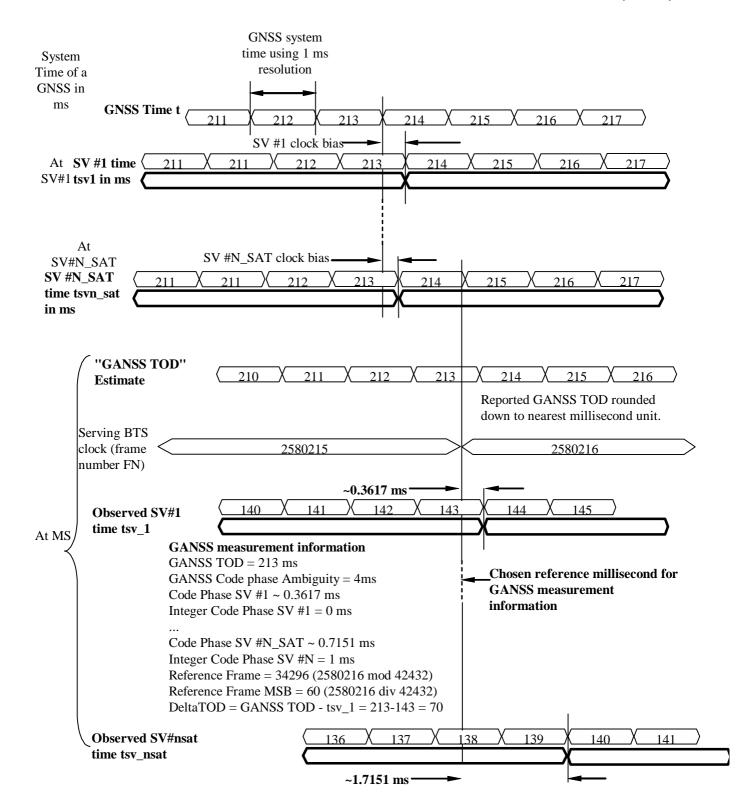


Figure A.1a. Exemplary definitions of GANSS measurement information fields.

GANSS Measurement Information element is included in the Measure Position Response component if the network has requested the mobile to perform mobile-assisted location measurements using GANSS Positioning Method. GANSS Measurement Information element will also optionally include carrier phase measurements if SMLC has requested the MS to perform carrier phase measurements.

The following fields are repeated the number of times indicated in Number of E-OTD/GPS/GANSS Measurement Sets field if Multiple Sets element is included. If Multiple Sets element is not included, the default value for sets is one (i.e. the following fields are present only once).

Table A.10.7: GANSS Measurement Information element content

Element fields	Presence	Occurrences		
Reference Frame	0	1		
GANSS TOD	O (note 1)	1		
DeltaTOD	0	1		
GANSS TOD Uncertainty	0	1		
GANSS Generic Measurement Information M N_GANSS				
NOTE 1: If GPS Measurement Information element is not included in a Measure				
Position Response component, this	field shall be pre	esent.		

The following paragraphs describe the content of each information field of this element.

Reference Frame

These fields are shown in Table A.10.8 and are optional, but shall be included when GANSS TOD- GSM time association is provided.

Note that expected values for Reference FN are in range 0 - 42431. The time of the reference frame boundary is as observed by the MS, ie without Timing Advance compensation.

Reference FN MSB field indicates the Most Significant Bits (MSB) of the frame number of the reference BTS corresponding to the GANSS Measurement Information.

Starting from the complete GSM frame number denoted FN, the MS calculates Reference FN MSB as

Reference FN MSB = floor(FN/42432)

The complete GSM frame number FN can then be reconstructed in the SMLC by combining the fields Reference Frame with Reference FN MSB in the following way

FN = Reference FN MSB*42432+Reference FN

Table A.10.8: Reference Frame field contents

Parameter	# of Bits	Resolution	Range	Unit
Reference FN	16		0 - 65535	frame
Reference FN MSB	6		0 - 63	frame

GANSS TOD

This field specifies the GANSS TOD for which the GANSS Measurement Parameters in GANSS Generic Measurement Information Element are valid. This field shall be included when GANSS TOD-GSM time association is provided or if GPS Measurement Information element is not present in a Measure Position Response component. If GPS Measurement Information element is present in a Measure Position Response component, and GANSS TOD field is absent in the GANSS Measurement Information element, the GPS TOW included in the GPS Measurement Information element specifies the reference time for which the GANSS Measurement Parameters are valid.

The 22 bits of GANSS TOD are the least significant bits. The most significant bits shall be derived by the Serving Mobile Location Centre to unambiguously derive the GANSS TOD.

The value for GANSS TOD is derived from the GNSS specific system time of the GNSS reported first in the GANSS Measurement IE rounded down to the nearest millisecond unit.

Table A.10.9: GANSS TOD field contents

Parameter	# of Bits	Resolution	Range	Units
GANSS TOD	22	1 ms	0 - 3599999	ms

DeltaTOD

This field specifies the difference in milliseconds between GANSS TOD reported in the GANSS Measurement Information Element and the millisecond part of the SV time tsv_1 of the first SV in the list reported from the MS. The DeltaTOD is defined as

$$DeltaTOD = GANSS TOD - fix(tsv_1)$$

where fix() denotes rounding to the nearest integer towards zero.

Range: 0-127

GANSS TOD Uncertainty

This element provides the accuracy of the relation GANSS TOD -GSM time when GANSS TOD-GSM time association is provided. When GANSS TOD-GSM time association is not provided, even if GANSS TOD - GSM Time Association Measurement Request is not included in the Measure Position Request, this element can be included to provide the accuracy of the reported GANSS TOD.

If GANSS TOD is the given GNSS time, then the true GNSS time, corresponding to the provided GSM time as observed at the MS location, lies in the interval (GANSS TOD – GANSS TOD Uncertainty, GANSS TOD + GANSS TOD Uncertainty).

The uncertainty r, expressed in microseconds, is mapped to a number K, with the following formula:

$$r = C*(((1+x)^{K})-1)$$

with C = 0.0022 and x = 0.18. With $0 \le K \le 127$, a suitably useful range between 0 and 3 second is achieved for the uncertainty, while still being able to code down to values as small as 0,3 nanoseconds. To encode any higher value of uncertainty than that corresponding in the above formula to K=127, the same value, K=127, shall also be used. The uncertainty is then coded on 7 bits, as the binary encoding of K=127.

Examples of GANSS TOD Uncertainty value are shown in Table A.10.10.

Table A.10.10: Example values for the GANSS TOD-GSM Time Uncertainty Parameter Format

Value of K	Value of uncertainty
0	0 nanoseconds
1	0,396 nanoseconds
2	0,863 nanoseconds
-	-
50	8,64 microseconds
-	-
127	≥ 2,96 seconds

N_GANSS, Number of GANSS Generic Measurement Information Elements

N_GANSS specifies the number of GANSS Generic Measurement Information Element occurrences in GANSS Measurement Information element, one occurrence for each reported GANSS. The range is from 1 to 8.

A.3.2.10.1 GANSS Generic Measurement Information Element

Table A.10.11: GANSS Generic Measurement Information

Element fields	Presence	Occurrences
GANSS ID	O (note 1)	1
GANSS Generic Measurement Element	M	N_SGN_TYPE
Note 1: Absence of this field means Galileo.		

GANSS ID

GANSS ID field identifies the GNSS constellation on which GANSS Measurement Parameters were measured according to Table A.40.

Range: 0-7

N_SGN_TYPE, Number of GANSS Generic Measurement Elements

N_SGN_TYPE specifies the number of GANSS Generic Measurement Element occurrences in GANSS Generic Measurement Information element. The range for N_SGN_TYPE is from 1 to 8.

Table A.10.12: GANSS Generic Measurement Element contents

Element fields	Presence	Occurrences
GANSS Signal ID	M	1
GANSS Code Phase Ambiguity	0	1
GANSS Measurement Parameters	M	N_SGN

This element contains measurement information for one GNSS signal type indicated by GANSS Signal ID.

GANSS Signal ID

GANSS Signal ID field identifies the signal on which GANSS Measurement Parameters were measured. The supported signals are listed in Table A.59.

Range: 0 - 7

GANSS Code Phase Ambiguity

The GANSS Code Phase Ambiguity field gives the ambiguity of the code phase measurement. It is given in ms and is an integer between 0 and 127.

The Total Code Phase for a satellite k (Satk) is given modulo this GANSS Code Phase Ambiguity and is reconstructed with:

Code_Phase_Tot(Satk) = Code_Phase (Satk)+ Integer Code Phase(Satk) + n * Code Phase Ambiguity, n= 0,1,2,...

If there is no code phase ambiguity, the GANSS Code Phase Ambiguity shall be set to 0.

The field is optional. If GANSS Code Phase Ambiguity is absent, the default value is 0.

N_SGN, Number of Signal Measurements

N_SGN specifies the number of GANSS Measurement Parameters element occurrence in GANSS Generic Measurement Information element. Typical range for *N_SGN* is 4 to a maximum of 16.

GANSS Measurement Parameters

This field contains information about the measurements of code phase and Doppler, which enables the network-based method where position is computed in the SMLC. This field is mandatory and occurs *N_SGN* times in GANSS Generic Measurement Information element.

Table A.10.13: GANSS Measurement Parameters field contents

Parameter	# of Bits	Resolution	Range	Units	Incl.
Signal Quality Parameters					
SV ID	6		-		M
C/N _o	6	1	0 - 63	dB-Hz	M
Multipath Indicator	2		See Table A.9		M
Carrier Quality Indication	2				O ⁽¹⁾
		Code Phase Measu	irements	•	
Code Phase	21	2 ⁻²¹	0 - (1-2 ⁻²¹)	ms	M
Integer Code Phase	7	1	0 - 127	ms	0
Code Phase RMS	6	3 bit mantissa	0,5 - 112	m	M
Error		3 bit exp			
	I	Doppler Frequency Me	asurements		
Doppler	16	0,04	±1310,7	m/s	0
ADR	25	2 ⁻¹⁰	0 - 32767,5	m	O ⁽¹⁾
NOTE 1: All of these f	ields shall be	present together, or ne	one of them shall b	oe present.	

SV ID

The SV ID is an index number for a satellite within a satellite system. The SV ID value range starts from 0 for each satellite system. The interpretation of SV ID for each GANSS is defined in Table A.10.14.

Table A.10.14: Interpretation of SV ID

System	Value of SV ID	Interpretation of SV ID	
Galileo	'0' – '35'	Code No. 1 to 36	
	'36' – '63'	Reserved	
Modernized GPS	'0' – '62'	Satellite PRN Signal No. 1 to 63	
	'63'	Reserved	
SBAS	'0' – '38'	Satellite PRN Signal No. 120 to 158	
	'39' – '63'	Reserved	
QZSS	'0' – '4'	Satellite PRN Signal No. 193 to 197	
	'5 – '63'	Reserved	
GLONASS	'0' – '23'	Slot Number 1 to 24	
	'24 – '63'	Reserved	
BDS	'0' – '36'	Satellite ranging code number signal	
		No.1 to 37 [18]	
	'37' – '63'	Reserved	

C/N_0

This field contains the estimate of the carrier-to-noise ratio of the received signal from the particular satellite. It is given in whole dB-Hz and has a range of 0 to 63. Typical levels observed by GNSS receivers will be in the range of 16 dB-Hz to 50 dB-Hz.

Carrier Quality Indication

This field indicates the quality of a carrier phase measurement as a bit field. The LSB indicates the data polarity, that is. if the data from a specific satellite is received inverted, this is indicated by setting the LSB value to '1'. In the case the data is not inverted, the LSB is set to '0'. The MSB indicates if accumulation of the carrier phase has been continuous, that is, without cycle slips since the previous measurement report. If the carrier phase accumulation has been continuous, the MSB value is set to '1X'. Otherwise, the MSB is set to '0X'.

This field is optional and shall be included only when carrier phase measurements are requested.

Table A.10.16: Carrier Phase Quality Indication values and associated indications

Bit	Polarity Indication			
'0'	Data Direct			
'1'	Data Inverted			
'0X'	Carrier phase not continuous			
'1X'	Carrier phase continuous			
X = do no	t care			

Code Phase

This field contains the whole and fractional value of the code-phase measurement made by the MS for the particular satellite signal at the time of measurement in the units of ms. GNSS specific code phase measurements (e.g. chips) are converted into unit of ms by dividing the measurements by the *nominal* values of the measured signal chipping rate (e.g. Galileo L1 OS measurement is divided by 1023,0 chip/ms).

Integer Code Phase

This field indicates the integer millisecond part of the code phase that is expressed modulo the GANSS Code PhaseAmbiguity.

The value of the ambiguity is given in the GANSS Ambiguity field of the GANSS Generic Measurement Information element.

The Integer code phase is optional. The default value is 0.

Code Phase RMS Error

This field contains Code Phase RMS Error value. This parameter has the same range as described in Table A.10.

Doppler

This field contains the Doppler measured by the MS for the particular satellite signal. This information can be used to compute the 3-D velocity of the MS.

The Doppler range is sufficient to cover the potential range of values measured by the MS. Doppler measurements are converted into unit of m/s by multiplying the Doppler measurement in Hz by the *nominal* wavelength of the measured signal.

ADR

This field contains the ADR measurement measured by the MS for the particular satellite signal. This information can be used to compute the 3-D velocity or high-accuracy position of the MS. ADR measurements are converted into units of m by multiplying the ADR measurement by the *nominal* wavelength of the measured signal.

This field is optional and shall be included only when carrier phase measurements are requested.

A.4 Assistance Data

A.4.1 General

The Assistance Data is a RRLP component from the network to the MS. It is used by the network to provide assistance data to enable MS-based E-OTD or MS-based Assisted GPS capabilities in the MS and may be used to help support MS-assisted E-OTD and MS-assisted Assisted GPS. It contains the following elements.

Table A.11: Assistance Data component content

Element	Type/Reference	Presence
E-OTD Reference BTS for	E-OTD Reference BTS for Assistance Data 2.2.3	С
Assistance Data		
E-OTD Measurement Assistance	E-OTD Measurement Assistance Data 2.2.4	С
Data		
E-OTD Measurement Assistance	E-OTD Measurement Assistance Data for System	С
Data for System Information List	Information List 2.2.5	
GPS Assistance Data	GPS Assistance Data 4.2.4	С
Additional GPS Assistance Data	Additional GPS Assistance Data 4.2.4c	0
GPS Time Assistance Measurement	GPS Time Assistance Measurement Request	0
Request	4.2.4a	
GPS Reference Time Uncertainty	GPS Reference Time Uncertainty 4.2.4b	0
More Assistance Data To Be Sent	More Assistance Data To Be Sent 4.2.5	С
Extended Reference	Extended Reference 2.2.5	С
GANSS Assistance Data	GANSS Assistance Data 4.2.6	С
GANSS Carrier-Phase	GANSS Carrier-Phase Measurement Request 4.2.7	0
Measurement Request	, i	
GANSS TOD - GSM Time	GANSS TOD - GSM Time Association Request	0
Association Request	4.2.8	

A.4.2 Elements

A.4.2.1 E-OTD Reference BTS for Assistance Data Element

This element is conditional. It is as described in sub-clause 2.2.3. If the network can provide assistance data, and data for E-OTD has been requested, this element is included.

A.4.2.2 E-OTD Measurement Assistance Data Element

This element is conditional. It is as described in sub-clause 2.2.4. If the network can provide assistance data, and data for E-OTD has been requested, this element is included.

A.4.2.3 E-OTD Measurement Assistance Data for System Information List Element

This element is conditional. It is as described in sub-clause 2.2.5. If the network can provide assistance data, and data for E-OTD has been requested, this element is included.

A.4.2.4 GPS Assistance Data Element

The GPS Assistance Data element contains a single GPS assistance message that supports both MS-assisted and MS-based GPS methods. This element can contain one or more of the fields listed in table A.12 below, which support both MS-assisted and MS-based GPS methods. As table A.12 shows, all fields are optional.

Note that certain types of GPS Assistance data may be derived, wholly or partially, from other types of GPS Assistance data.

In addition, an Integrity Monitor (IM) shall detect unhealthy (e.g., failed/failing) satellites and also shall inform users of measurement quality in DGPS modes when satellites are healthy. Excessively large pseudo range errors, as evidenced by the magnitude of the corresponding DGPS correction, shall be used to detect failed satellites. Unhealthy satellites should be detected within 10 seconds of the occurrence of the satellite failure. When unhealthy (e.g., failed/failing) satellites are detected, the assistance and/or DGPS correction data shall not be supplied for these satellites. When the error in the IM computed position is excessive for solutions based upon healthy satellites only, DGPS users shall be informed of measurement quality through the supplied UDRE values. After bad satellites have been indicated in the Real Time Integrity field, if the satellites return to healthy condition for some period of time, the indications for them shall be removed from this field.

Parameter Presence Repetition Reference Time 0 Yes Reference Location 0 No **DGPS Corrections** 0 Yes **Navigation Model** 0 Yes Ionospheric Model 0 No **UTC Model** 0 No 0 Yes Almanac Acquisition Assistance O Yes

O

Yes

Table A.12: Fields in the GPS Assistance Data element

When RRLP pseudo-segmentation is used, Table A.12 indicates which parameters may be repeated in more than one RRLP segment in order to provide data for multiple satellites. When any such parameter appears in more than one segment, the following rules shall apply.

1. There shall be no repetition of data for the same satellite.

Real-Time Integrity

- 2. Optional and conditional elements in the parameter not associated with a particular satellite shall each appear in at most one RRLP segment.
- 3. Any mandatory element not associated with a particular satellite shall assume consistent values in the case of an element related to current GPS time and the same value otherwise.
- 4. The maximum number of satellites defined in sub-clause 5.1 for which data can be included for any parameter in one RRLP segment shall apply also when counted over all RRLP segments.

Reference Time

These fields specify the relationship between GPS time and air-interface timing of the BTS transmission in the reference cell. These fields occur once per message; some are mandatory and some are conditional, as shown in table A.14. Note that Reference Time may also be present within the Acquisition Assistance parameter. In such a case, the SMLC shall ensure consistency.

Parameter # Bits Scale Range Units Incl. **Factor GPS Week** 10 0 - 1023 Μ 1 weeks **GPS TOW** 0,08 23 0-604799,92 Μ sec **BCCH Carrier** 10 0 - 1023 O (note 1) 1 **BSIC** 6 1 0 - 63O (note 1) FNm 21 1 $0 - (2^{21}-1)$ frames O (note 1) ΤN 3 1 0 - 7 timeslots O (note 1) ΒN 8 1 0 - 156 bits O (note 1) 24*N_SAT **GPS TOW Assist** NOTE 1: All of these fields shall be present together, or none of them shall be present.

Table A.14: Reference Time (Fields occurring once per message)

GPS Week

This field specifies the GPS week number of the assistance being provided. GPS Week eliminates one-week ambiguities from the time of the GPS assistance. This field is mandatory.

NOTE: The number of 1024 week cycles since the GPS zero time-point is provided in the GPS Reference Time Extension in Table A.29u.

GPS TOW

The GPS TOW (time-of-week) is a mandatory field and is specified with 80 msec resolution. When GSM Time Present is "1", GPS TOW and BCCH/BSIC/FNm/TN/BN IEs provide a valid relationship between GPS and GSM time, as seen at the approximate location of the MS, ie the propagation delay from BTS to MS shall be compensated for by the SMLC. Depending on implementation, the relation between GPS and GSM time may have varying accuracy. Therefore, the uncertainty of the timing relation may be provided in the optional field GPS Reference Time Uncertainty. If the

propagation delay from BTS to MS is not accurately known, the SMLC shall use the best available approximation of the propagation delay and take the corresponding delay uncertainty into account in the calculation of the field GPS Reference Time Uncertainty. When GSM Time Present is "0", GPS TOW is an estimate of current GPS time of week at time of reception of the RRLP segment containing this data by the MS. The SMLC should achieve an accuracy of +/- 3 seconds for this estimate including allowing for the transmission delay between SMLC and MS of the RRLP segment containing GPS TOW. Note that the MS should further compensate GPS TOW for the time between the reception of the segment containing GPS TOW and the time when the GPS TOW field is used.

BCCH Carrier/BSIC/FNm/TN/BN

These fields specify the state of the GSM frame number, timeslot number, and bit number, respectively, of the reference BTS with the specified BCCH carrier and BSIC at the time that correspond to GPS TOW. The SMLC shall use the current serving BTS as the reference BTS. The frame number field is given modulo 2^{21} , i.e., the MSB of the GSM frame number is truncated. The MS shall interpret FNm as the most recent of the two possible frame numbers that FNm could represent. The target MS has the option of rejecting a GPS position request or GPS assistance data if the reference BTS is not the serving BTS.

GPS TOW Assist

This field contains several fields in the Telemetry (TLM) Word and Handover Word (HOW) that are currently being broadcast by the respective GPS satellites. Combining this information with GPS TOW enables the MS to know the entire 1,2-second (60-bit) pattern of TLM and HOW that is transmitted at the start of each six-second subframe by the particular GPS satellite. This field contains information for each of N_SAT satellites, and optional. The individual fields for each satellite in the message are shown in table A.15a.

Parameter # Bits Scale Range Units Incl. Factor

Table A.15a: GPS TOW Assist (Fields occurring N_SAT times per message)

Satio	Ø		0 - 63	-	IVI
TLM Message	14		0 - 16383	Bit field	М
Anti-Spoof	1	1	0 -1	Bit field	M
Alert	1	1	0 - 1	Bit field	M
TLM Reserved	2		0 - 3	Bit field	M

SatID

This field identifies the satellite for which the corrections are applicable. The values ranging from 0 to 63 represent satellite PRNs ranging from 1 to 64, respectively.

TLM Message

This field contains a 14-bit value representing the Telemetry Message (TLM) being broadcast by the GPS satellite identified by the particular SatID, with the MSB occurring first in the satellite transmission.

Anti-Spoof/Alert

These fields contain the Anti-Spoof and Alert flags that are being broadcast by the GPS satellite identified by SatID.

TLM Reserved

These fields contain the two reserved bits in the TLM Word being broadcast by the GPS satellite identified by SatID, with the MSB occurring first in the satellite transmission.

Reference Location

The Reference Location field contains a 3-D location (with uncertainty) specified as per 3GPP TS 23.032. The purpose of this field is to provide the MS with a priori knowledge of its location in order to improve GPS receiver performance. The allowed shape is 3-D location with uncertainty (ellipsoid point with altitude and uncertainty ellipsoid).

DGPS Corrections

These fields specify the DGPS corrections to be used by the MS. All fields are mandatory when DGPS Corrections are present in the GPS Assistance Data.

Table A.15: DGPS Corrections

Parameter	# Bits	Scale Factor	Range	Units	Incl.		
	The following fields occur once per message						
GPS TOW	20	1	0 - 604799	sec	M		
Status/Health	3	1	0-7		M		
N_SAT	4	1	1-16		M		
The fol	lowing field:	s occur once per s	satellite (N_SAT ti	mes)			
SatID	6		0 - 63		M		
IODE	8		0 - 255		M		
UDRE	2		0 - 3		M		
PRC	12	0,32	±655,04	meters	M		
RRC	8	0,032	±4,064	meters/sec	M		
Delta PRC2	8				М		
Delta RRC2	4				M		
Delta PRC3	8				М		
Delta RRC3	4				М		

GPS TOW

This field indicates the baseline time for which the corrections are valid.

Status/Health

This field indicates the status of the differential corrections contained in the broadcast message. The values of this field and their respective meanings are shown below in table A.16.

Table A.16: Values of Status/Health IE

Code	Indication		
000	UDRE Scale Factor = 1,0		
001	UDRE Scale Factor = 0,75		
010	UDRE Scale Factor = 0,5		
011	UDRE Scale Factor = 0,3		
100	UDRE Scale Factor = 0,2		
101	UDRE Scale Factor = 0,1		
110	Reference Station Transmission Not Monitored		
111	Data is invalid - disregard		

The first six values in this field indicate valid differential corrections. When using the values described below, the "UDRE Scale Factor" value is applied to the UDRE values contained in the message. The purpose is to indicate an estimate in the amount of error in the corrections.

The value "110" indicates that the source of the differential corrections (e.g., reference station or external DGPS network) is currently not being monitored. The value "111" indicates that the corrections provided by the source are invalid, as judged by the source. In the later case, the message shall contain no corrections for individual satellites. Any MS that receives DGPS Corrections in a GPS Assistance Data IE shall contain the appropriate logic to properly interpret this condition and look for the next IE.

N_SAT

This field indicates the number of satellites for which differential corrections are available. Corrections for up to 16 satellites.

SatID

This field identifies the satellite for which the corrections are applicable. The values ranging from 0 to 63 represent satellite PRNs ranging from 1 to 64, respectively.

IODE

This IE is the sequence number for the ephemeris for the particular satellite. The MS can use this IE to determine if new ephemeris is used for calculating the corrections that are provided in the broadcast message. This eight-bit IE identifies a particular set of ephemeris data for a GPS satellite and may occupy the numerical range of [0, 255]. The transmitted

IODE value will be different from any value transmitted by the GPS satellite during the preceding six hours. For more information about this field can be found from RTCM-SC104.

User Differential Range Error (UDRE)

This field provides an estimate of the uncertainty $(1-\sigma)$ in the corrections for the particular satellite. The value in this field shall be multiplied by the UDRE Scale Factor in the common Corrections Status/Health field to determine the final UDRE estimate for the particular satellite. The meanings of the values for this field are described in table A.18.

Table A.18: Values of UDRE IE

Value	Indication
00	UDRE ≤ 1,0 m
01	1,0 m < UDRE ≤ 4,0 m
10	4,0 m < UDRE ≤ 8,0 m
11	8,0 m < UDRE

Each UDRE value shall be adjusted based on the operation of an Integrity Monitor (IM) function which exists at the network (SMLC, GPS server, or reference GPS receiver itself). Positioning errors derived at the IM which are excessive relative to DGPS expected accuracy levels shall be used to scale the UDRE values to produce consistency.

Pseudo-Range Correction (PRC)

This field indicates the correction to the pseudorange for the particular satellite at the GPS Reference Time, t_0 . The value of this field is given in meters (m) and the resolution is 0,32, as shown in table A.15 above. The method of calculating this field is described in [9].

If the SMLC has received a request for GPS assistance data from an MS which included a request for the navigation models and DGPS (i.e., bit D and E are set to one in 'Requested GPS Assistance Data, see 3GPP TS 49.031), the SMLC shall determine, for each satellite, if the navigation model stored by the MS is still suitable for use with DGPS corrections (also see navigation model update conditions right before Table A.19) and if so and if DGPS corrections are supported the SMLC should send DGPS corrections without including the navigation model.

The IODE value sent for a satellite shall always be the IODE value that corresponds to the navigation model for which the pseudo-range corrections are applicable.

The pseudo-range correction shall correspond to the available navigation model (the one already stored in and identified by the MS or the one included in the same procedure as the pseudo-range correction). The MS shall only use the PRC value when the IODE value received matches its available navigation model.

Pseudo-Range Rate Correction (RRC)

This field indicates the rate-of-change of the pseudorange correction for the particular satellite, using the satellite ephemeris identified by the IODE IE. The value of this field is given in meters per second (m/sec) and the resolution is 0,032, as shown in table A.15 above. For some time $t_1 > t_0$, the corrections for IODE are estimated by

$$PRC(t_{1,IODE}) = PRC(t_{0,IODE}) + RRC(t_{0,IODE}) \cdot (t_1 - t_0),$$

and the MS uses this to correct the pseudorange it measures at t_1 , PR_m(t_1 , IODE), by

$$PR(t_{1, IODE}) = PR_m(t_{1, IODE}) + PRC(t_{1, IODE}).$$

The SMLC shall always send the RRC value that corresponds to the PRC value that it sends (see above for details). The MS shall only use the RRC value when the IODE value received matches its available navigation model.

Delta Pseudo-Range Correction 2 (Delta PRC2)

This IE is not used. The sender shall set it to zero and the receiver shall ignore it.

Delta Pseudo-Range Rate Correction 2 (Delta RRC2)

This IE is not used. The sender shall set it to zero and the receiver shall ignore it.

Delta Pseudo-Range Correction 3 (Delta PRC3)

This IE is not used. The sender shall set it to zero and the receiver shall ignore it.

Delta Pseudo-Range Rate Correction 3 (Delta RRC3)

This IE is not used. The sender shall set it to zero and the receiver shall ignore it.

Navigation Model

This set of fields contains information required to manage the transfer of precise navigation data to the GPS-capable MS. In response to a request from an MS for GPS assistance data, the SMLC shall determine whether to send the navigation model for a particular satellite to an MS based upon factors like the T-Toe limit specified by the MS and any request from the MS for DGPS (also see above). This information includes control bit fields as well as satellite ephemeris and clock corrections. The individual fields are given in Table A.19 below, and the conditions for their presence is discussed below.

Table A.19: Navigation Model (per-satellite fields - (1) = Positive range only)

Parameter	# Bits	Scale	Units	Incl.			
		Factor	• • • • • • • • • • • • • • • • • • • •				
Navigation Model Flow Control (once per message)							
Num_Sats_Total	4 ⁽¹⁾	1		М			
Satellite and Format Identification (once per satellite)							
SatID	6 ⁽¹⁾			М			
Satellite Status	2		Boolean	М			
Satellite Navigation	Model and As	sociated B	its (once per satellite)				
C/A or P on L2	2		Boolean	С			
URA Index	4		Boolean	С			
SV Health	6		Boolean	C			
IODC	10 ⁽¹⁾			С			
L2 P Data Flag	1		Boolean	С			
SF 1 Reserved	87			С			
T _{GD}	8	2 ⁻³¹	sec	С			
t _{oc}	16 ⁽¹⁾	2 ⁴	sec	С			
af ₂	8	2 ⁻⁵⁵	sec/sec ²	С			
af ₁	16	2 ⁻⁴³	sec/sec	С			
af_0	22	2 ⁻³¹	sec	С			
C _{rs}	16	2 ⁻⁵	meters	С			
Δn	16	2 ⁻⁴³	semi-circles/sec	С			
M ₀	32	2 ⁻³¹	semi-circles	С			
Cuc	16	2 ⁻²⁹	radians	С			
е	32 ⁽¹⁾	2 ⁻³³		С			
C _{us} (A) ^{1/2}	16	2 ⁻²⁹	radians	С			
(A) ^{1/2}	32 ⁽¹⁾	2 ⁻¹⁹	meters ^{1/2}	С			
t _{oe}	16 ⁽¹⁾	2 ⁴	sec	С			
Fit Interval Flag	1		Boolean	С			
AODO	5	900	sec	С			
C _{ic}	16	2 ⁻²⁹	radians	С			
OMEGA ₀	32	2 ⁻³¹	semi-circles	С			
C _{is}	16	2 ⁻²⁹	radians	С			
i ₀	32	2 ⁻³¹	semi-circles	С			
C _{rc}	16	2 ⁻⁵ 2 ⁻³¹	meters	С			
ω	32	2 ⁻³¹	semi-circles	С			
OMEGAdot	24	2 ⁻⁴³	semi-circles/sec	C			
Idot	14	2-43	semi-circles/sec	С			

Num_Sats_Total

This field specifies the number of satellites that are included in the provided Navigation Model. A range of 1-16 is available. This field is mandatory when the Navigation Model field is included in the message.

SatID

This field identifies the satellite for which the assistance is applicable. This value is the same as the PRN number provided in the navigation message transmitted by the particular satellite. The range is 0 to 63, with 0-31 indicating GPS satellites 1-32, respectively, and 32-63 indicating satellites in future augmentation systems (e.g., WAAS or EGNOS). This field is mandatory for each included satellite.

Satellite Status

This field is a two-bit value that indicates the status of the Navigation Model for the particular satellite specified by SatID. This field is mandatory for each included satellite. The MS shall interpret the combinations of the two bits as follows.

Table A.20: Satellite Status (per-satellite field)

MSB	LSB	Interpretation		
0	0	New satellite, new Navigation Model		
0	1	Existing satellite, same Navigation Model		
1	0	Existing satellite, new Navigation Model		
1	1	Reserved		

This Satellite Navigation Model and associated bit fields include the parameters that accurately model the orbit and clock state of the particular satellite. For the particular satellite, these fields are conditional based on the value of Satellite Status for that satellite. The fields are absent when Satellite Status is "01", and present for all other values. The format for the ephemeris, clock corrections, and associate bits are specified in ICD-GPS-200.

Ionospheric Model

The Ionospheric Model contains fields needed to model the propagation delays of the GPS signals through the ionosphere. The information elements in this field are shown in table A.21. Proper use of these fields allows a single-frequency GPS receiver to remove approximately 50 % of the ionospheric delay from the range measurements. The Ionospheric Model is valid for the entire constellation and changes slowly relative to the Navigation Model. All of the fields must be included when Ionospheric Model is present.

Table A.21: Ionospheric Model (occurs once per message, when present)

Parameter	# Bits	Scale Factor	Units	Incl.
α_0	8	2 ⁻³⁰	seconds	С
α_1	8	2 ⁻²⁷	sec/semi-circle	С
α_2	8	2 ⁻²⁴	sec/(semi-circle) ²	С
α ₃	8	2 ⁻²⁴	sec/(semi-circle)3	С
β_0	8	2 ¹¹	seconds	О
β ₁	8	2 ¹⁴	sec/semi-circle	С
β2	8	2 ¹⁶	sec/(semi-circle) ²	С
β3	8	2 ¹⁶	sec/(semi-circle)3	С

UTC Model

The UTC Model field contains a set of parameters needed to relate GPS time to Universal Time Coordinate (UTC). All of the fields in the UTC Model are mandatory when the field is present.

Table A.22: UTC Model (occurs once per message, when present per-satellite fields - (1) = Positive range only)

Parameter	# Bits	Scale Factor	Units	Incl.
A ₁	24	2 ⁻⁵⁰	sec/sec	С
A_0	32	2 ⁻³⁰	seconds	С
t _{ot} ⁽¹⁾	8	2 ¹²	seconds	С
$WN_t^{(1)}$	8	1	weeks	С
Δt_{LS}	8	1	seconds	С
WN _{LSF} ⁽¹⁾	8	1	weeks	С
DN	8	1	days	С
Δt_{LSF}	8	1	seconds	С

Almanac

These fields specify the coarse, long-term model of the satellite positions and clocks. These fields are given in table A.23. With one exception (δi) , these parameters are a subset of the ephemeris and clock correction parameters in the Navigation Model, although with reduced resolution and accuracy. The almanac model is useful for receiver tasks that require coarse accuracy, such as determining satellite visibility. The model is valid for up to one year, typically. Since it is a long-term model, the field should be provided for all satellites in the GPS constellation. If almanac is not provided for the full GPS constellation, the SMLC shall set the Complete Almanac Provided field in Table A.29w to FALSE. All fields in the Almanac are mandatory when the Almanac is present. The fields t_{oa} and WN_a specify the GPS time-of-week and week number, respectively, that are the reference points for the Almanac parameters.

The Almanac also is useful as an acquisition aid for network-based GPS methods. Given a recent Almanac (< 3-4 weeks old), the MS only needs Reference Time and Reference Location information to quickly acquire the signals and return measurements to the network.

The Almanac also contains information about the health of that satellite as described in ICD-GPS-200. If this Alamanc has been captured from the satellite signal, the SV Health field represents the predicted satellite health at the time the GPS control segment uploaded the Almanac to the satellite. According to ICD-GPS-200, this health information may differ from the SV Health field in the Navigation Model (table A.19) due to different upload times.

The parameters Num_Sats_Total and SatID shall be interpreted in the same manner as described under table A19.

Table A.23: Almanac (per-satellite fields - (1) = Positive range only)

Parameter	# Bits	Scale Factor	Units	Incl.
•	The following f	ields occur once p	er message	
Num_Sats_Total	6 ⁽¹⁾	1		M
WN_a	8 ⁽¹⁾	1	weeks	M
	The following	fields occur once	per satellite	
SatID	6 ⁽¹⁾			M
e ⁽¹⁾	16	2 ⁻²¹	dimensionless	M
t _{oa} ⁽¹⁾	8	2 ¹²	sec	M
δί	16	2 ⁻¹⁹	semi-circles	M
OMEGADOT	16	2 ⁻³⁸	semi-circles/sec	M
SV Health	8		Boolean	M
A ^{1/2(1)}	24	2 ⁻¹¹	meters ^{1/2}	M
OMEGA ₀	24	2 ⁻²³	semi-circles	M
ω	24	2 ⁻²³	semi-circles	M
M_0	24	2 ⁻²³	semi-circles	M
af ₀	11	2 ⁻²⁰	seconds	M
af ₁	11	2 ⁻³⁸	sec/sec	M

Acquisition Assistance

The Acquisition Assistance field of the GPS Assistance Data Information Element contains parameters that enable fast acquisition of the GPS signals in network-based GPS positioning. Essentially, these parameters describe the range and derivatives from respective satellites to the Reference Location at the Reference Time. Table A.24 illustrates the assistance data occurring once per message and table A.25 illustrates the assistance data occurring per number of satellites for which acquisition assistance is being provided. Figure A.2 illustrates the relation between some of the fields.

This field is optional. The field would probably appear when the Method Type field of the Positioning Instructions IE is set to 0 (MS-Assisted) and the Positioning Methods field of the Position Instructions IE is set to 1 (GPS) or 2 (GPS or E-OTD).

Table A.24: GPS Acquisition Assist - Parameters appearing once per message

Parameter		Range	Bits	Resolution	Incl.	Notes
Number of Satellit	es	0 - 15	4		М	
Reference Time	GPS TOW	0 -604799,92 sec	23	0,08 sec	М	
	BCCH Carrier	0 - 1023	10		O ¹	
	BSIC	0 - 63	6		O ¹	
	Frame #	0 - 2097151	21		O ¹	
	Timeslots #	0 - 7	3		O ¹	
	Bit #	0 - 156	8		O ¹	
NOTE: All of th	ese field shall be	present together, or none of th	em shall b	e present.		

Table A.25: GPS Acquisition Assist - Parameters appearing [number of satellites] times per message

Parameter	Range	Bits	Resolution	Incl.	Notes
SVID/PRNID	1 - 64 (0 - 63)	6		М	
Doppler (0 th order term)	-5120 Hz to 5117,5 Hz	12	2,5 Hz	M	
Doppler (1 st order term)	-1,0 - 0,5 Hz/sec.	6	1/42 Hz/sec.	O ¹	
Doppler Uncertainty	12.5 Hz - 200 Hz	3		O ^{1,3}	
	$[2^{-n}(200) \text{ Hz}, n = 0 - 4]$				
Code Phase	0 - 1022 chips	10	1 chip	М	
Integer Code Phase	0-19	5	1 C/A period	M	
GPS Bit number	0 - 3	2		M	
Code Phase Search Window	1 - 192 chips	4		M	
Azimuth	0 - 348,75 deg	5	11,25 deg	O ²	
Elevation	0 - 78,75 deg	3	11,25 deg	O^2	

NOTE 1: Both of these fields shall be present together, or none of them shall be present.

NOTE 2: Both of these fields shall be present together, or none of them shall be present.

NOTE 3: If Doppler Uncertainty Extension (Table A.29x) is present, Doppler Uncertainty shall be set to value 0 (200 Hz).

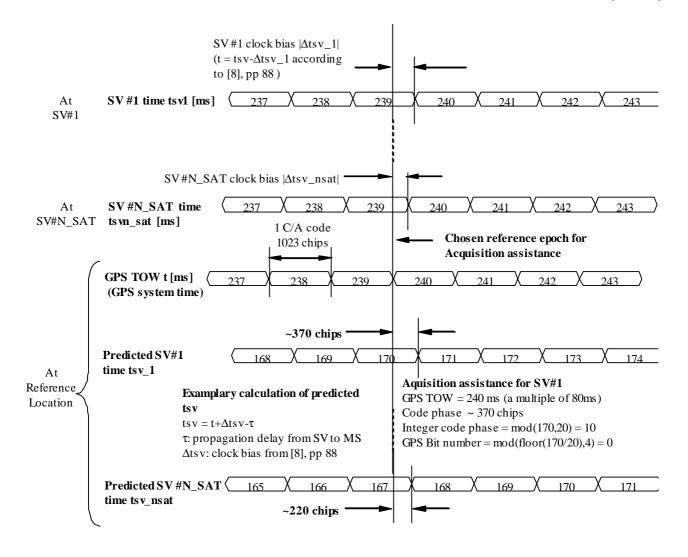


Figure A.2. Exemplary calculations of Acquisition Assistance fields.

This field indicates whether or not angle information is present in this message. The MS shall interpret a value of "1" to mean that angle (Azimuth and Elevation) information is present, and "0" to mean that it is not provided. This field is mandatory.

Number of Satellites

This field contains the number of satellites identified in this information element. This field is mandatory.

Range: 0 - 15

Reference Time

The Reference Time field of the GPS Acquisition Assistance Data IE specifies the relationship between GPS time and air-interface timing of the BTS transmission in the reference cell.

GPS TOW subfield specifies the GPS TOW for which the location estimate is valid. When the parameters BCCH Carrier/BSIC/Frame #/Timeslots #/Bit # are present, together with GPSTOW they provide a valid relationship between GPS and GSM time, as seen at the approximate location of the MS, ie the propagation delay from BTS to MS shall be compensated for by the SMLC. Depending on implementation, the relation between GPS and GSM time may have varying accuracy. The uncertainty of the timing relation may be provided in the optional field GPS Reference Time Uncertainty. If the propagation delay from BTS to MS is not accurately known, the SMLC shall use the best available approximation of the propagation delay and take the corresponding delay uncertainty into account in the calculation of the field GPS Reference Time Uncertainty. GPS TOW is mandatory when the GPS Acquisition Assistance Data

Information Element is included. When the GSM time parameters are not present the GPS TOW is an estimate of current GPS time of week at time of reception of the RRLP segment containing the GPS TOW by the MS. The SMLC should achieve an accuracy of +/- 3 seconds for this estimate including allowing for the transmission delay between SMLC and MS of the RRLP segment containing GPS TOW. Note that the MS should further compensate GPS TOW for the time between the reception of the segment containing GPS TOW and the time when the GPS TOW field is used.

Range: 0 - 604799,92 sec

The **BCCH Carrier** # and **BSIC** subfields specify the reference cell for which GSM timing is provided. These subfields are optional when the GPS Acquisition Assistance Data Information Element is included. If included, the SMLC shall set the reference cell to the current serving cell. A target MS has the option of rejecting a GPS position request or GPS assistance data if the reference cell is not the serving cell.

The **Frame** # subfield specifies the GSM frame number of the BTS transmissions for the reference cell that occur at the given GPS TOW. This subfield is optional when the GPS Acquisition Assistance Data Information Element is included.

Range: 0 - 2097151

The **Timeslots** # subfield specifies the GSM timeslot of the BTS transmissions for the reference cell that occur at the given GPS TOW. This subfield is optional when the GPS Acquisition Assistance Data Information Element is included.

Range: 0 - 7

The **Bit** # subfield specifies the GSM and bit number of the BTS transmissions for the reference cell that occur at the given GPS TOW. This subfield is optional when the GPS Acquisition Assistance Data Information Element is included.

Range: 0 - 156

SVID/PRNID

This field identifies the particular satellite for which the measurement data is supplied. This value is the same as the PRN number provided in the navigation message transmitted by the particular satellite.

The range is 0 to 63, where SVID = PRNID - 1

Doppler (0th order term)

This field contains the Doppler (0^{th} order term) value. A positive value defines the increase in satellite signal frequency due to velocity towards the MS. A negative value defines the decrease in satellite signal frequency due to velocity away from the MS. This field is mandatory.

Range: 5120 Hz to 5117,5 Hz

Doppler (1st order term)

This field contains the Doppler (1st order term) value. A positive value defines the rate of increase in satellite signal frequency due to acceleration towards the MS. A negative value defines the rate of decrease in satellite signal frequency due to acceleration away from the MS. This field is optional.

Range: -1,0 Hz to 0,5 Hz / s

Doppler Uncertainty

This field contains the Doppler uncertainty value. It is defined such that the Doppler experienced by a stationary MS is in the range "Doppler – Doppler Uncertainty" to "Doppler + Doppler Uncertainty". This field is optional. If Doppler Uncertainty (together with Doppler 1st order term) is omitted, the terminal shall interpret Doppler Uncertainty as greater than +/-200 Hz. If the Doppler Uncertainty Extension (Table A.29x) field is present, the MS that supports the Doppler Uncertainty Extension shall ignore this field.

Permitted Values: 12,5 Hz, 25 Hz, 50 Hz, 100 Hz, 200 Hz as encoded by an integer n in the range 0-4 according to the formula in Table A.25

Code Phase

This field contains code phase, in units of 1 GPS chip, in the range from 0 to 1022 GPS chips, where increasing binary values of the field signify increasing predicted pseudoranges, as seen by a receiver at the Reference Location at the time GPS TOW. The Reference Location would typically be an apriori estimate of the MS location. This field is mandatory.

Range: 0-1022 chips

Integer Code Phase

This field contains integer code phase, i.e. the number of the code periods that have elapsed since the latest GPS bit boundary, in units of C/A code period, as seen by a receiver at the Reference Location at the time GPS TOW. This field is mandatory.

Range: 0-19

GPS Bit Number

This field contains GPS bit number (expressed modulo 4) currently being transmitted at the time GPS TOW, as seen by a receiver at the Reference Location. This field is mandatory.

Range: 0-3

Code Phase Search Window

This field contains the code phase search window. The code phase search window accounts for the uncertainty in the estimated MS location but not any uncertainty in GPS TOW. It is defined such that the expected code phase is in the range "Code Phase - Code Phase Search Window" to "Code Phase + Code Phase Search Window". This field is mandatory.

Range: 0-15 (i.e. 1-512 chips according to following table)

Table A.26: Code Phase Search Window Parameter Format

CODE_PHASE_WIN	Code Phase Search Window (GPS chips)
'0000'	512
'0001'	1
'0010'	2
'0011'	3
'0100'	4
'0101'	6
'0110'	8
'0111'	12
'1000'	16
'1001'	24
'1010'	32
'1011'	48
'1100'	64
'1101'	96
'1110'	128
'1111'	192

Azimuth

This field together with the Azimuth LSB included in Acquisition Assistance Extension in Table A.29v contains the azimuth angle. An angle of x degrees means the satellite azimuth a is in the range ($x \le a < x+0.703125$) degrees. This field is optional.

Range: 0 - 359,296875 degrees.

Elevation

This field together with the Elevation LSB included in Acquisition Assistance Extension in Table A.29v contains the elevation angle. An angle of y degrees means the satellite elevation e is in the range ($y \le e < y+0.703125$) degrees except for y = 89.296875 where the range is extended to include 90 degrees. This field is optional.

Range: 0 - 89,296875 degrees

Real-Time Integrity

The Real-Time Integrity field of the GPS Assistance Data Information Element contains parameters that describe the real-time status of the L1C/A signal in GPS constellation. Primarily intended for non-differential applications, the real-time integrity of the satellite constellation is of importance as there is no differential correction data by which the mobile can determine the soundness of each satellite signal. The Real-Time GPS Satellite Integrity data communicates the health of the L1C/A signal to the mobile in real-time. The format is shown in table A.29. The SMLC shall always transmit the Real Time Integrity field with the current list of satellites with unhealthy L1C/A signal, for any A-GPS positioning attempt and whenever A-GPS assistance data is sent. The same applies for GANSS positioning attempt and assistance data when modernized GPS is involved. If the number of bad satellites (NBS) is zero, then the Real Time Integrity field shall be omitted. When the Extended Reference IE is included in the RRLP Measure Position Request message or in the RRLP Assistance Data message, then the MS shall interpret the absence of a Real Time Integrity field in the assistance data provided by the SMLC to mean that NBS is zero. If the Extended Reference IE is not present, this interpretation applies when the assistance data is provided by the SMLC following a previous request of the MS for Real Time Integrity data.

Table A.29: Real-Time Integrity - Parameters appearing NBS times

Parameter	# Bits	Scale Factor	Range	Units	Incl.
Bad_SVID	6	1	0-63		С

NBS (Number of Bad Satellites)

The NBS value indicates the number of satellite ID's that follow. The user should not use the L1C/A signal of those satellites at this time in a fix. This NBS value is determined from the Bad_SVID list.

Bad SVID

This six bit field appears NBS times, and indicates the SVID of satellites which L1C/A signal should not be used for fix by the user at this time. The values ranging from 0 to 63 represent satellite PRNs ranging from 1 to 64, respectively.

A.4.2.4a GPS Time Assistance Measurement Request Element

This element is optional and controls if the MS should return GPS time assistance measurements or not to the SMLC. The inclusion of this parameter implies use of measure Position Request The description is found in sub-chapter 2.2.4a.

A.4.2.4b GPS Reference Time Uncertainty Element

This element is conditional and provides the accuracy of the relation GPS and GSM time in the Acquisition Assistance in GPS Assistance Data Element. The interval, range and treatment is as described in sub-clause 2.2.4b.

A.4.2.4c Additional GPS Assistance Data

The Additional GPS Assistance Data Element contains additional GPS assistance data which are not included in the GPS Assistance Data Element. This element can contain one or more of the fields listed in Table A.29a below.

Table A.29a: Fields in the Additional GPS Assistance Data element

Parameter	Presence	Repetition
GPS Ephemeris Extension	0	Yes
GPS Ephemeris Extension Check	0	Yes
DGPS Corrections Validity Period	0	Yes
GPS Reference Time Extension	0	No
GPS Acquisition Assistance Extension	0	Yes
GPS Almanac Extension	0	No
GPS Acquisition Assistance Extension-R12	0	Yes

When RRLP pseudo-segmentation is used, Table A.29a indicates which parameters may be repeated in more than one RRLP segment in order to provide data for multiple satellites. When any such parameter appears in more than one segment, the following rules shall apply.

- 1. There shall be no repetition of the same data for the same satellite, even though there might be multiple realizations of the IEs for the same satellite. For example, GPS Ephemeris Extension may occur multiple times for the same satellite, but with different data content.
- 2. Optional and conditional elements in the parameter not associated with a particular satellite shall each appear in at most one RRLP segment.
- 3. Any mandatory element not associated with a particular satellite shall assume consistent values in the case of an element related to current GPS time and the same value otherwise.
- 4. The maximum number of satellites defined in sub-clause 5.1 for which data can be included for any parameter in one RRLP segment shall apply also when counted over all RRLP segments.

GPS Ephemeris Extension

The GPS Ephemeris extension contains parameters designed to extend the time of applicability of the Ephemeris terms by the continuous addition of the delta ephemeris terms to the respective terms of the referenced ephemeris.

This message can provide extension information for every satellite for many days into the future; doing so may create a large message, thus care must be taken to consider the transport bandwidth. The SMLC can limit the duration of the extension to decrease the message size. For example if the extension duration is limited to twelve hours the payload will be approximately 2,000 octets, for a typical 27 satellite constellation.

Table A.29.b: GPS Ephemeris Extension

Parameter	# Bits	Scale Factor	Units	Incl.
gpsEphemerisHeader	See Tabl	e A.29.c		0
gpsReferenceSet	See Table A.29.e			0
ephemerisDeltaMatrix	List of GF	PSEphemerisDeltal	Epochs	0

Table A.29.c: GPS Ephemeris Header

Parameter	# Bits	Scale Factor	Units	Incl.
GPS Ephemeris Extension (Once per message)				
timeOfEstimation	See Table A.29.d			M
validityPeriod	3	1	Hours	M
ephemerisExtensionDuration	9	1	Hours	М

Time of Estimation

The GPS Time at Estimation provides the GPS time at which the ephemeris extensions were created.

Table A.29.d: Time of Estimation

Parameter	# Bits	Scale Factor	Units	Incl.
GPS Week of Estimation	10	1	Week	M
GPS TOW of Estimation	20	1	Seconds	M

GPS Week of Estimation

This field specifies the week of the time that the estimation was determined.

Range: 0 - 1023 weeks

GPS TOW of Estimation

Integer number of GPS TOW seconds within the current week of the time that the estimation was determined.

Range: 0 - 604800 s.

Validity Period

The validityPeriod indicates the validity period of the GPS Reference Set. It also indicates the default validity period of each individual delta ephemeris packet in the case that the individual validityPeriod is not present in the GPS Delta Epoch Header (see Table A.29.j). It is the length of time that the GPS Reference Set is intended to last and, if applicable, it is the length of time that the ephemeris constructed by application of the delta is intended to last.

Range: 1 - 8 hours.

Ephemeris Extension Duration

The Ephemeris Extension duration indicates the total block of time measured in units of hours that the extended ephemeris covers.

Range: 1 - 512 hours.

The gpsEphemeris header is mandatory only once in the delivery of the GPS Ephemeris Extension message.

GPS Reference Set

Table A.29.e: GPS Reference Set

Parameter	Presence	Note
GPS Reference Orbit	M	See Table A.29.f

The GPS Reference Set is a list of GPS Reference Orbits, one for each healthy satellite vehicle at the time of construction.

GPSReference Orbit

Table A.29.f: GPS Reference Orbit

Parameter	# Bits	Scale Factor	Units	Incl.
svID	5	1		M
gpsOrbitModel	See Table	See Table A.29.g		M
gpsClockModel	See Table	A.29.h		M

SvID

The satellite vehicle ID identifying to which satellite the following orbital and clock model apply

GPSOrbitModel

This field is a structure that contains the Reference Nav Model satellite orbit information upon which all subsequent delta information will be applied to create the next ephemeris for use in navigation.

Table A.29.g: Reference Nav Model

Parameter	# Bits	Scale Factor	Units	Incl.
keplerToe	16	24	seconds	M
keplerW	32	2-31	hours	M
keplerDeltaN	16	2-43	semi-circles/sec	M
keplerM0	32	2 ⁻³¹	semi-circles	M
keplerOmegaDot	27	2 ⁻⁴³	semi-circles/sec	M
keplerE	32	2 ⁻³³		M
keplerIDot	14	2 ⁻⁴³	semi-circles/sec	M
keplerAPowerHalf	32	2 ⁻¹⁹	Meters ^{1/2}	M
keplerIO	32	2 ⁻³¹	semi-circles	M
kelerOmega0	32	2 ⁻³¹	semi-circles	M
keplerCrs	16	2 ⁻⁵	meters	M
keplerCis	16	2 ⁻²⁹	radians	M
keplerCus	16	2 ⁻²⁹	radians	M
keplerCrc	16	2 ⁻⁵	meters	M
keplerCic	16	2 ⁻²⁹	radians	M
KeplerCuc	16	2 ⁻²⁹	radians	M

GPSClockModel

This field is a structure that contains the satellite clock model upon which all subsequent clock information will be applied to create the next clock model for use in navigation.

GPS Clock Model

Table A.29.h: GPS Clock Model

Parameter	# Bits	Scale Factor	Units	Incl.
aF2	8	2 ⁻⁵⁵	seconds/seconds2	M
aF1	16	2 ⁻⁴³	seconds/seconds	M
aF0	22	2 ⁻³¹	seconds	M
tgd	8	2 ⁻³¹	seconds	M

GPS Ephemeris Delta Matrix

GPS Ephemeris Delta Matrix is a list of GPS Ephemeris Delta Epochs. Each epoch is indicated by a unique seqNum. Each epoch corresponds to a specific update interval and contains a delta epoch header and ephemeris delta elements for all PRNs for that epoch.

GPS Ephemeris Delta Epoch

Table A.29.i: GPS Ephemeris Delta Epoch

Parameter	Note	Incl.
gpsDeltaEpochHeader	See Table A.29.j	0
gpsDeltaElementList	List of GPS Ephemeris Delta Elements	М

GPS Delta Epoch Header

Table A.29.j: GPS Delta Epoch Header

Parameter	# Bits	Scale Factor	Units	Incl.
validityPeriod	3	1	Hours	0
ephemerisDeltaSizes	See Tab	See Table A.29.k		
ephemerisDeltaScales	See Tab	le A.29.l		0

Validity Period

The validityPeriod indicates the validity period of each individual delta ephemeris packet. It is the length of time that the ephemeris constructed by application of the delta is intended to last. If not present then the default validityPeriod in the GPS Ephemeris Header IE applies (see Table A.29.c).

Range: 1 - 8 hours.

Ephemeris Delta Sizes

This field is a structure that indicates the bit sizes for all the fields in the GPS Ephemeris Delta structure.

Table A.29.k: GPS Ephemeris Delta Sizes

Parameter	# Bits	Scale Factor	Units	Incl.
bitSize_delta_ω	5	1		M
bitSize_delta_∆n	4	1		M
bitSize_delta_M0	5	1		M
bitSize_delta_OMEGAdot	5	1		M
bitSize_delta_e	5	1		M
bitSize_delta_ldot	4	1		M
bitSize_delta_sqrtA	5	1		M
bitSize_delta_i0	5	1		M
bitSize_delta_OMEGA0	5	1		M
bitSize_delta_Crs	4	1		M
bitSize_delta_Cis	4	1		M
bitSize_delta_Cus	4	1		M
bitSize_delta_Crc	4	1		M
bitSize_delta_Cic	4	1		M
bitSize_delta_Cuc	4	1		M
bitSize_delta_tgd	4	1		M

Ephemeris Delta Scales

This field is a structure that indicates the scale factor modifiers for all the fields in the GPS Ephemeris Delta structure.

Table A.29.I: GPS Ephemeris Delta Scales

Parameter	# Bits	Scale Factor	Units	Incl.
scale_delta_ω	5	1		M
scale_delta_∆n	5	1		M
scale_delta_M0	5	1		M
scale_delta_OMEGAdot	5	1		M
scale_delta_e	5	1		M
scale_delta_ldot	5	1		M
scale_delta_sqrtA	5	1		M
scale_delta_i0	5	1		M
scale_delta_OMEGA0	5	1		M
scale_delta_Crs	5	1		M
scale_delta_Cis	5	1		M
scale_delta_Cus	5	1		M
scale_delta_Crc	5	1		M
scale_delta_Cic	5	1		M
scale_delta_Cuc	5	1		M
scale_delta_tgd	5	1		M

GPS Delta Element List

GPS Delta Element List is a list of GPS Ephemeris Delta Elements

GPS Ephemeris Delta Element

Each GPS Ephemeris Delta Element is encoded as an octet string of up to 47 octets. Each element is uniquely identified by the pair (seqNum, sv_ID) and it is defined as a structure as shown in table A.29.m. The MS should parse the octet string according to the fields specified in table A.29.m. Each element in table A.29.m but for seqNum and sv_ID should

be treated as a signed integer. The actual number of octets is determined by the size of the bit fields in the GPS_Ephemeris_Delta_Sizes table (table A.29.k). Each set of up to 47 octets represents a single extension for a single satellite vehicle. Each element encodes the satellite vehicle ID and the sequence number. The sequence number specifies the order in which the individual ephemeris extension elements are assembled as time marches forward to create the next ephemeris. The sequence number is the same for all satellite vehicle IDs for a particular update period.

Parameter	# Bits	Default	Scale Factor	Default	Units	Incl.
		# Bits		Scale		
sequenceNum	7		1	1		М
svID	5		1	1		М
delta_ω	132 (1)	21	2 ⁻¹⁶ *2 ⁻³¹ 2 ¹⁵ *2 ⁻³¹ (²)	2 ⁻³¹	semi-circles	М
delta_∆n	116 (1)	12	$2^{-16} \times 2^{-43} 2^{15} \times 2^{-43} {2 \choose 2}$	2 ⁻⁴³	semi-circles/sec	М
delta_M0	132 (1)	21	$2^{-16} \times 2^{-31} 2^{15} \times 2^{-31} {2 \choose 2}$	2 ⁻³¹	semi-circles	М
delta_OMEGAdot	124 (1)	13	$2^{-16} \times 2^{-43} 2^{15} \times 2^{-43} {2 \choose 2}$	2 ⁻⁴³	semi-circles/sec	М
delta_e	132 (1)	18	$2^{-16} \times 2^{-33} 2^{15} \times 2^{-33} {2 \choose 2}$	2 ⁻³³		М
delta_ldot	114 (1)	11	$2^{-16} \times 2^{-43} 2^{15} \times 2^{-43} {2 \choose 2}$	2 ⁻⁴³	semi-circles/sec	М
delta_sqrtA	132 (1)	14	$2^{-16} \times 2^{-19} 2^{15} \times 2^{-19} {2 \choose 2}$	2 ⁻¹⁹	meters1/2	М
delta_i0	132 (1)	14	$2^{-16} \times 2^{-31} 2^{15} \times 2^{-31} {2 \choose 2}$	2 ⁻³¹	semi-circles	М
delta_OMEGA0	132 (1)	14	$2^{-16} \times 2^{-31} 2^{15} \times 2^{-31} {2 \choose 2}$	2 ⁻³¹	semi-circles	М
delta_Crs	116 (1)	12	$2^{-16}*2^{-5}2^{15}*2^{-5}(^{2})$	2 ⁻⁵	meters	М
delta_Cis	116 (1)	11	$2^{-16} \times 2^{-29} 2^{15} \times 2^{-29} {2 \choose 2}$	2 ⁻²⁹	radians	М
delta_Cus	116 (1)	12	$2^{-16} \times 2^{-29} 2^{15} \times 2^{-29} {2 \choose 2}$	2 ⁻²⁹	radians	М
delta_Crc	116 (1)	12	$2^{-16}*2^{-5}2^{15}*2^{-5}(^{2})$	2 ⁻⁵	meters	М
delta_Cic	116 (1)	11	2 ⁻¹⁶ *2 ⁻²⁹ 2 ¹⁵ *2 ⁻²⁹ (²)	2 ⁻²⁹	radians	М
delta_Cuc	116 (1)	12	2 ⁻¹⁶ *2 ⁻²⁹ 2 ¹⁵ *2 ⁻²⁹ (²)	2 ⁻²⁹	radians	M
delta_tgd	116 (1)	2	2 ⁻¹⁶ *2 ⁻³¹ 2 ¹⁵ *2 ⁻³¹ (²)	2 ⁻³¹	seconds	М

Table A.29.m: GPS Ephemeris Delta Element

- (1) The number of bits of each signed integer field is variable and it is indicated once for all numEphemerisDeltas by the structure ephemerisDeltasSizes. When the ephemerisDeltaSizes field is not present, the values found in the columns "Default # Bits" shall be used.
- (2) The scale factor of each parameter is variable around the default scale factor. The variation for each field is indicated once for all numEphemerisDeltas by the structure ephemerisDeltasScales. For example, if the scale factor modifier for delta_omega has a value of 4, the scale factor for delta_omega is 2⁴ * 2⁻³¹. When the ephemerisDeltaScales is not used, the values found in the column "Default Scale" shall be used.

sequenceNum

This field indicates the order of the Ephemeris delta terms. The ephemeris constructed for use in satellite positioning is built by adding the delta terms to the referenced GPS_Navigation Model in the order dictated by this sequence number. The sequence number shall remain the same for each svID in an epoch of Ephemeris Deltas corresponding to a particular update interval.

svID

This field identifies the satellite ID within a particular sequenceNum or epoch.

These fields, with the exception of sequenceNum and svID, specify the deltas to be added to the existing Ephemeris to create a new Ephemeris suite that is extended from its predecessor by the time provided in the "validityPeriod" parameter. To compute the time of ephemeris for the newly constructed ephemeris, validityPeriod is added to the preceding toe. The ephemeris time of clock (toc) is set equal to the toe.

For each of the other ephemeris terms the corresponding delta ephemeris term is added in order to create the updated ephemeris. The terms delta_M0, delta_i0, and delta_OMEGA0 of the delta ephemeris must be extrapolated prior to the addition of the delta terms as follows:

$$delta \ _M_{0(i+1)} = delta \ _M_{0(i)} + (\sqrt{\frac{\mu}{A_i^3}} + \Delta n_i) * dt$$

Where μ is the WGS 84 value of the earth's gravitational constant for GPS user and is equal to 3,986005 * 10^{14} m³/sec², and A(i) is the semi-major axis associated with this satellite's update. The extrapolation of delta_M0, uses the prior set's sqrtA term to compute A_(i) as the square of sqrtA_(i).

$$\begin{aligned} \text{delta_OMEGA0}_{(i+1)} &= \text{delta_OMEGA0}_{(i)} \ + \text{delta_OMEGAdot}_{(i)} * \text{dt} \\ &\quad i0_{\ (i+1)} = i0_{(i)} + \text{Idot}_{(i)} * \text{dt} \end{aligned}$$

Where dt is equal to the validity period * 3600. The terms af0, and af1 from the GPS clock model must be extrapolated as follows:

$$afO_{(i+1)} = afO_{(i)} + af1_{(i)} * dt + af2*dt^{2}$$

$$af1_{(i+1)} = af1_{(i)} + 2 * af2_{(i)} * dt$$

$$af2_{(i+1)} = af2_{(i)}$$

Where af0, af1, and af2 are the clock model terms as shown in table A.29.c

dt is equal to the validity period represented in seconds (validityPeriod * 3600)

The following demonstrates the application of the ephemeris extension technique. Assume the validityPeriod = 5, representing: (5+1) hours = 6 hours, and the GPS Navigation model for a particular satellite, identified by the reference IOD has a toe = 0 seconds.

The toe for sequenceNumber 1 is computed by adding the validityPeriod to the initial toe of 0 as 0 + 6 hours = 0 + 21600 seconds. The new ephemeris is constructed by adding the delta ephemeris terms from set 1 to the reference ephemeris creating the new ephemeris, which will be used for the next six hours. For the five terms listed above (delta_M0, delta_i0, delta_OMEGA0, af0, and af1) the extrapolation described must occur prior to the addition of the delta term.

The next ephemeris computation will occur by adding the validityPeriod to the current toe of 21600 as: 21600 + 6 hours = 21600 + 21600 = 43200. The ephemeris delta terms from set two are added to the ephemeris resulting from the prior addition to create the next ephemeris. This is done for each satellite vehicle ID.

GPS Ephemeris Extension check

The GPS Ephemeris Extension check provides information about non foreseen events that occurred during the period starting at the gpsBeginTime to the current time. An event is signified through a bit string. Each bits refers to one PRN. If a bit is set to one, this means that the ephemeris extension is no longer valid for this specific PRN. In order to indicate planned future manuvers an end time is provided. The SMLC can indicate that a future event is planned between the current time and the end time of this ephemeris extension.

Table A.29.n: Ephemeris Extension check

Parameter	Presence	Note
gpsBeginTime	M	See Table A.29o
gpsEndTime	M	See Table A.29p
gpsSatEventsInfo	M	See Table A.29q

GPS Begin Time

The GPS begin time corresponds to the GPS Week and GPS Seconds of Estimation of the ephemeris extensions block.

Table A.29.o: GPS Begin Time

Parameter	# Bits	Scale Factor	Units	Incl.
GPS Week	10	1	Weeks	M
GPS TOW	20	1	Seconds	М

GPS End Time

The GPS end time represents the final time the Ephemeris extension is valid.

Table A.29.p: GPS End Time

Parameter	# Bits	Scale Factor	Units	Incl.
GPS Week	10	1	Weeks	M
GPS TOW	20	1	Seconds	M

GPS Sat Event Information

This IE is designed to indicate events that have or may occur between the gpsBeginTime and the gpsEndTime.

Table A.29.q: GPS Sat Event Information

Parameter	# Bits	Scale Factor	Units	Incl.
EventOccurred	32	-	-	M
FutureEventNoted	32	-	-	M

EventOccurred

If a bit is is clear in the eventOccured field it indicates that a satellite maneuver has not occurred since the ganssBeginTime nor is a maneuver planned for the next sixty minutes.

FutureEventNoted

If a bit is set in the futureEventNoted field it indicates that a maneuver is planned during the time period between current time plus sixty minutes and gpsEndTime

DGPS Corrections Validity Period

This element is an extension to the DGPS Corrections IE and provides the validity period of the differential corrections for each satellite included in the DGPS Corrections IE (see Table A.15). This element may only be included if the DGPS Corrections IE is included in the GPS Assistance Data element.

Table A.29r: DGPS Corrections Validity Period

Parameter	# Bits	Scale Factor	Range	Units	Incl.
N_SAT	4	1	1-16		М
The following fields occur once per satellite (N_SAT times)					
SatID	6		0-63		М
UDRE Growth Rate	3		0-7		М
Time of Validity for	3		0-7		М
UDRE Growth Rate					

N_SAT

This field indicates the number of satellites for which differential corrections validity period is available. This field shall be set to the same value as the N_SAT parameter in the DGPS Corrections element in Table A.15.

SatID

This field identifies the satellite for which the corrections validity period is applicable. The values ranging from 0 to 63 represent satellite PRNs ranging from 1 to 64, respectively. The UDRE Growth Rate and Time of Validity for UDRE Growth Rate IEs shall be included for the same satellite IDs as the differential corrections in Table A.15 are provided.

UDRE Growth Rate

This field provides an estimate of the growth rate of uncertainty $(1-\sigma)$ in the corrections for the particular satellite identified by SatID. The estimated UDRE at time value specified in the "Time of Validity for UDRE Growth Rate" t_I is calculated as follows:

 $UDRE(t_0+t_1) = UDRE(t_0) \times UDRE$ Growth Rate

where t_0 is the DGPS Reference Time GPS TOW for which the corrections in Table A.15 are valid, t_1 is the "Time of Validity for UDRE Growth Rate" field as shown in Table A.29t, UDRE(t_0) is the User Differential Range Error field as provided in Table A.15, and "UDRE Growth Rate" field is the factor as shown in Table A.29s.

Table A.29s: Values of UDRE Growth Rate IE

Value	Indication
000	1,5
001	2
010	4
011	6
100	8
101	10
110	12
111	16

Time of Validity for UDRE Growth Rate

This field specifies the time when the "UDRE Growth Rate" field applies. The meaning of the values for this field is described in Table A.29t.

Table A.29t: Time of Validity for UDRE Growth Rate IE

Value	Indication [seconds]
000	20
001	40
010	80
011	160
100	320
101	640
110	1280
111	2560

GPS Reference Time Extension

This element is an extension to the Reference Time IE and is shown in Table A.29u. If Reference Time is provided by the SMLC, the GPS Reference Time Extension shall also be provided.

NOTE: For reasons of backward compatibility, this IE is not defined for a Release 9 or earlier SMLC and would be ignored, when received, by a Release 9 or earlier MS. This means that when the element is expected but is not received, the SMLC is Release 9 or earlier.

Table A.29u: Reference Time Extension

Parameter	# Bits	Scale Factor	Range	Units	Incl.
GPS Week Cycle Number	3	1	0 - 7	1024 weeks	М

GPS Week Cycle Number

This field provides the number of 1024 GPS week cycles occurred since the GPS zero time-point (midnight of the night of January 5, 1980/morning of January 6, 1980). The first 1024 GPS weeks since the zero time-point is GPS Week Cycle Number 0.

GPS Acquisition Assistance Extension

This element is an extension to the Acquisition Assistance IE and is shown in Table A.29v. If Acquisition Assistance is provided by the SMLC, the GPS Acquisition Assistance Extension shall also be provided.

NOTE: For reasons of backward compatibility, this IE is not defined for a Release 9 or earlier SMLC and would be ignored, when received, by a Release 9 or earlier MS. This means that when the element is expected but is not received, the SMLC is Release 9 or earlier.

Table A.29v: Acquisition Assistance Extension

Parameter	# Bits	Scale Factor	Range	Units	Incl.
N_SAT	4	1	0-15		M
The following fields occur once per satellite (N_SAT times)					
SatID	6		0-63		M
Azimuth LSB	4	0,703125	0-10,546875	degrees	M
Elevation LSB	4	0,703125	0-10,546875	degrees	М

N_SAT

This field indicates the number of satellites for which Acquisition Assistance is provided. This field shall be set to the same value as the Number of Satellites parameter in the Acquisition Assist element in Table A.24.

SatID

This field identifies the satellite for which the Acquisition Assistance is provided. This field shall be set to the same value as the SVID/PRN field in Table A.25.

Azimuth LSB

This field specifies the 4 least significant bits of the satellite azimuth angle. The 5 most significant bits are provided in the Azimuth field in Table A.25. The full satellite azimuth is constructed as "Azimuth" \times 11,25 + "Azimuth LSB" \times 0,703125 degrees.

Elevation LSB

This field specifies the 4 least significant bits of the satellite elevation angle. The 5 most significant bits are provided in the Elevation field in Table A.25. The full satellite elevation is constructed as "Elevation" \times 11,25 + "Elevation LSB" \times 0,703125 degrees.

GPS Almanac Extension

This element is an extension to the Almanac IE and and is shown in Table A.29w. If Almanac is provided by the SMLC, the Almanac Extension shall also be provided.

NOTE: For reasons of backward compatibility, this IE is not defined for a Release 9 or earlier SMLC and would be ignored, when received, by a Release 9 or earlier MS. This means that when the element is expected but is not received, the SMLC is Release 9 or earlier.

Table A.29w: Almanac Extension

Parameter	# Bits	Scale Factor	Range	Units	Incl.
Complete Almanac Provided	1			Boolean	М

Complete Almanac Provided

This field indicates whether the SMLC provided Almanac for the full GPS constellation or not. TRUE means complete GPS almanac is provided.

GPS Acquisition Assistance Extension-R12

This element is an extension to the Acquisition Assistance IE and is shown in Table A.29x. The SMLC should include this field only if supported by the MS.

Table A.29x: Acquisition Assistance Extension-R12

Parameter	# Bits	Scale Factor	Range	Units	Incl.
Confidence	7	1	0-100	percent	0
N_SAT	4	1	0-15		0
The following fields occur once per satellite (N_SAT times)					
SatID	6		0-63		М
Doppler Uncertainty	3		300, 400, 500,	Hz	M
Extension			600, 'No		
			Information'		

Confidence

This field specifies the confidence level of the reference location area or volume used to calculate the GPS Acquisition Assistance parameters (search windows). A high percentage value (e.g., 98% or more) indicates to the MS that the provided search windows are reliable. The SMLC should include this field to indicate the confidence level of the provided information.

Range: 0 - 100

N_SAT

This field indicates the number of satellites for which GPS Acquisition Assistance Extension-R12 is provided.

SatID

This field identifies the satellite for which the GPS Acquisition Assistance Extension-R12 is provided.

Doppler Uncertainty Extension

If this field is present, the MS that supports this field shall ignore the Doppler Uncertainty (Table A.25) field. This field specifies additional Doppler uncertainty values. It is defined such that the Doppler experienced by a stationary MS is in the range [Doppler-Doppler Uncertainty Extension] to [Doppler+Doppler Uncertainty Extension].

Enumerated values define 300 Hz, 400 Hz, 500 Hz, 600 Hz, and "No Information".

A.4.2.5 More Assistance Data To Be Sent Element

A.4.2.5 More Assistance Data To Be Sent Element

This element is set by the SMLC to indicate to the MS if more Assistance Data components or a the final RRLP Measure Position Request component will be sent in the current procedure in order to deliver the entire set of assistance data.

A.4.2.6 GANSS Assistance Data

The GANSS Assistance Data consists of two or more data elements depending on the number of GNSS constellations included in the GANSS Assistance Data. GANSS Assistance Data elements are of two different types: GANSS Common Assistance Data and GANSS Generic Assistance Data. GANSS Common Assistance Data element is included at most only once and it contains Information Elements that can be used with any GNSS constellation. GANSS Generic Assistance data element can be included multiple times depending on the number of GNSS constellations supported in the GANSS Assistance Data. One GANSS Generic Assistance Data element contains Information Elements dedicated only for one specific GNSS constellation at a time. If two or more constellations are supported, GANSS Generic Assistance Data is given for each constellation separately.

The fields in GANSS Assistance Data are listed in Table A.30 below. As table A.30 shows, all fields are optional.

Table A.30: Fields in the GANSS Assistance Data element

Element	Presence	Repetition
GANSS Common Assistance Data	0	No
GANSS Generic Assistance Data	0	Yes

When RRLP pseudo-segmentation is used, Tables A.30, A.31 and A.39 indicate which elements may be repeated in more than one RRLP segment in order to provide data for multiple constellations, satellites or signals. When any such element – with the exception of the GANSS ID and SBAS ID element – appears in more than one segment, the following rules shall apply.

- 1. There shall be no repetition of the same data for the same constellation, satellite or signal even though there might be multiple realizations of the IEs for the same constellation, satellite or signal. For example, DGANSS corrections may occur multiple times for the same satellite.
- 2. Optional and conditional fields in the element not associated with a particular satellite or signal shall each appear in at most one RRLP segment.
- 3. Any mandatory field not associated with a particular satellite or signal shall assume consistent values in the case of a field related to current reference time and the same value otherwise.
- 4. The maximum number of constellations, satellites or signals defined in sub-clause 5.1 for which data can be included for any parameter in one RRLP segment shall apply also when counted over all RRLP segments.

A.4.2.6.1 GANSS Common Assistance Data

GANSS Common Assistance Data element contains GNSS constellation independent information elements that can be applied on any specific GNSS or on a combination of GNSS. GANSS Common Assistance Data fields are included in GANSS Assistance Data only once. This element can contain one or more of the fields listed in table A.31 below. As Table A.31 shows, all fields are optional.

Element	Presence	Repetition
GANSS Reference Time	0	No
GANSS Reference Location	0	No
GANSS Ionospheric Model	0	No
GANSS Additional Ionospheric Model	0	No
GANSS Earth Orientation Parameters	0	No
GANSS Reference Time Extension	0	No

Table A.31: GANSS Common Assistance Data content

GANSS Reference Time

This field specifies the GANSS Time Of Day (TOD) with uncertainty and relationship between GANSS Reference Time and air-interface timing of the BTS transmission in the reference cell. These fields occur once per message; some are mandatory and some are optional, as shown in Table A.33.

When GANSS TOD -GSM Time association is present, GANSS TOD and BCCH/BSIC/FN_m/TN/BN IEs provide a valid relationship between GANSS TOD and GSM time, as seen at the approximate location of the MS, i.e. the propagation delay from BTS to MS shall be compensated for by the SMLC. Depending on implementation, the relation between GANSS TOD and GSM time may have varying accuracy. Therefore, the uncertainty of the timing relation is provided in GANSS TOD Uncertainty. If the propagation delay from BTS to MS is not accurately known, the SMLC shall use the best available approximation of the propagation delay and take the corresponding delay uncertainty into account in the calculation of the field GANSS TOD Uncertainty. When GANSS TOD -GSM Time association is not present, GANSS TOD is an estimate of current GANSS TOD at time of reception of the RRLP segment containing this data by the MS. The SMLC should achieve an accuracy of +/- 3 seconds for this estimate including allowing for the transmission delay between SMLC and MS of the RRLP segment containing GANSS TOD. Note that the MS should further compensate GANSS TOD for the time between the reception of the segment containing GANSS TOD and the time when the GANSS TOD field is used.

Table A.33: GANSS Reference Time

Parameter	# Bits	Scale Factor	Range	Units	Incl.
GAN	SS Refer	ence Time Information (once	e per message)		
GANSS Day	13	1	0 - 8191	day	M
GANSS TOD	17	1	0 - 86399	sec	M
GANSS TOD Uncertainty	7	-	0127	-	0
GANSS_TIME_ID	3				O (note 3)
GANS	S TOD -	GSM Time Association (one	ce per message)		
BCCH Carrier	10	1	0 - 1023		O (note 1)
BSIC	6	1	0 - 63		O (note 1)
FNm	21	1	0 - (2 ²¹ -1)	frames	O (note 1)
TN	3	1	0 - 7	timeslots	O (note 1)
BN	8	1	0 - 156	bits	O (note 1)
FN₁	7	2 ⁻³⁰	-5,9605e-8 -	sec/sec	O (note 2)
			+5,8673e-8		
NOTE 1: All of these fields shall be	present	together, or none of them sh	all be present.		
NOTE 2: This field can be optionall	y include	d if GANSS TOD - GSM Tim	ne association is pr	esent.	
NOTE 3. Absence of this field mean	ns Galileo	o system time.	•		•

GANSS Day

This field specifies the sequential number of days (with day count starting at 0) from the origin of the GNSS system time indicated by GANSS_TIME_ID modulo 8192 days (about 22 years). The GNSS system time origin is defined in Table A.34 for each GANSS.

NOTE: The number of 8192 day cycles since the GANSS zero time-point is provided in the GANSS Reference Time Extension in Table A.35c.

GANSS TOD

Integer number of GANSS TOD seconds within the current day.

Range: 0 - 86399 s.

GANSS TOD Uncertainty

GANSS TOD uncertainty value as described in 3.2.9. This field is optional.

GANSS_TIME_ID

This field specifies the GNSS system time used in GANSS Reference Time. The SMLC shall set the GANSS_TIME_ID only to system times for corresponding GANSSs supported by the MS.

Table A.34: GANSS TIME ID

GANSS_TIME_ID	Indication	GNSS System Time Origin
Galileo System Time	(default)	Days from Galileo System Time (GST) start
·		epoch, defined as 13 seconds before midnight
		between 21st August and 22nd August 1999; i.e.,
		GST was equal to 13 seconds at August 22nd
		1999 00:00:00 UTC
GPS System Time	0	January 6, 1980; 00:00:00 UTC(USNO)
QZSS System Time	1	January 6, 1980; 00:00:00 UTC(USNO)
GLONASS System Time	2	December 31 st 1995 21:00:00 UTC (SU), which is
		local UTC Moscow January 1 st 1996 00:00:00,
		defined as UTC(SU) + 3 hours in [17]
BDS	3	January 1, 2006 00:00:00 UTC (NTSC)
Reserved for future use	4 - 7	_

BCCH Carrier/BSIC/FN_m/TN/BN/FN₁

These fields specify the state of the GSM frame number, respectively, of the reference BTS with the specified BCCH carrier and BSIC at the time that correspond to GANSS TOD. Also, the drift rate of the frame timing, FN_1 , with respect to the GANSS TOD is optionally given. The SMLC shall use the current serving BTS as the reference BTS. The target

MS has the option of rejecting a GANSS position request or GANSS assistance data if the reference BTS is not the serving BTS. If FN_m field is present in the assistance, cellular time parameters $FN_m/TN/BN$ shall be aligned with the integer GANSS TOD second given in GANSS TOD field.

GANSS Reference Location

The Reference Location field contains a 3-D location (with uncertainty) specified as per 3GPP TS 23.032. The purpose of this field is to provide the MS with a priori knowledge of its location in order to improve GNSS receiver performance. The allowed shape is 3-D location with uncertainty (ellipsoid point with altitude and uncertainty ellipsoid). As defined in 3GPP TS 23.032, the GANSS Reference Location is provided in WGS-84 reference system.

NOTE: If GPS Assistance Data component is present as well, the SMLC should include the Reference Location either in the GPS Assistance Data or GANSS Common Assistance Data element.

GANSS Ionospheric Model

GANSS Ionospheric Model contains parameters to model the propagation delay of the GNSS signals through the ionosphere. The information elements in this field are shown in Table A.35. Proper use of these fields as defined in [11] allows a single-frequency GNSS receiver to remove the ionospheric delay from the pseudorange measurements.

Bits **Parameter** Scale Factor Units Incl. **GANSS Ionosphere Model Parameters** 11 2 Solar Flux Units M a_{i0} a_{i1} 11 2 Solar Flux M Units/degree 2⁻¹⁵ 14 М Solar Flux a_{i2} Units/degree² **GANSS Ionosphere Regional Storm Flags** Storm Flag 1 O (note 1) 1 ---Storm Flag 2 1 ------O (note 1) Storm Flag 3 1 ------O (note 1) Storm Flag 4 1 ------O (note 1) Storm Flag 5 O (note 1) NOTE 1: All of these fields shall be present together, or none of them shall be

Table A.35: GANSS Ionospheric Model

GANSS Ionosphere Parameters

The ionosphere model parameters are used to estimate the ionospheric distortions on pseudoranges as described in [11] section 5.1.6.

GANSS Ionosphere Regional Storm Flags

present.

These fields specify the Ionosphere disturbance flags (1,...,5) for five different regions as described in [11] section 5.1.6. If the ionosphere disturbance flag for a region is not present the target device shall treat the ionosphere disturbance condition as unknown.

GANSS Additional Ionospheric Model

The GANSS Additional Ionospheric Model contains parameters to model the propagation delays of the GANSS signals through the ionosphere. The information elements in this field are shown in table A.35.a.

When Data ID has the value '11' it indicates that the parameters have been generated by QZSS, and the parameters have been specialized and are applicable within the area defined in [16]. When Data ID has the value '00' it indicates the parameters are applicable worldwide [16]. All other values for Data ID are reserved. When Data ID has the value '01' it indicates that the parameters have been generated by BDS, and UE shall use these parameters according to the description given in 5.2.4.7 in [18].

Table A.35.a: GANSS Additional lonospheric Model

Parameter	# Bits	Scale Factor	Units	Incl.
Data ID	2		See text	M
α_0	8	2 ⁻³⁰	seconds	M
α_1	8	2 ⁻²⁷	sec/semi-circle	M
α_2	8	2 ⁻²⁴	sec/(semi-circle) ²	M
α_3	8	2 ⁻²⁴	sec/(semi-circle)3	M
βο	8	2 ¹¹	seconds	M
β1	8	2 ¹⁴	sec/semi-circle	M
β ₂	8	2 ¹⁶	sec/(semi-circle) ²	M
β ₃	8	2 ¹⁶	sec/(semi-circle)3	M

GANSS Earth Orientation Parameters

The GANSS Earth Orientation Parameters provides parameters to construct the ECEF and ECI coordinate transformation as defined in [12] and are shown in Table A.35.b. GANSS Earth Orientation Parameters indicate the relationship between the Earth's rotational axis and WGS-84 reference system.

Table A.35.b: GANSS Earth Orientation Paramaters

Parameter	# Bits	Scale Factor	Units	Incl.
t _{EOP}	16	24	seconds	M
PM_X	21	2 ⁻²⁰	arc-seconds	M
PM_X_dot	15	2 ⁻²¹	arc-seconds/day	M
PM_Y	21	2 ⁻²⁰	arc-seconds	M
PM_Y_dot	15	2 ⁻²¹	arc-seconds/day	M
ΔUT1	31	2 ⁻²⁴	seconds	M
ΔUT1_dot	19	2 ⁻²⁵	seconds/day	M

GANSS Reference Time Extension

This element is an extension to the GANSS Reference Time IE and is shown in Table A.35c. If GANSS Reference Time is provided by the SMLC, the GANSS Reference Time Extension shall also be provided.

NOTE: For reasons of backward compatibility, this IE is not defined for a Release 9 or earlier SMLC and would be ignored, when received, by a Release 9 or earlier MS. This means that when the element is expected but is not received, the SMLC is Release 9 or earlier.

Table A.35c: GANSS Reference Time Extension

Parameter	# Bits	Scale Factor	Range	Units	Incl.
GANSS Day Cycle Number	3	1	0 - 7	8192 days	M

GANSS Day Cycle Number

This field provides the number of 8192 day cycles occurred since the GANSS zero time-point defined in Table A.34. The first 8192 GANSS days since the zero time-point is GANSS Day Cycle Number 0.

A.4.2.6.2 GANSS Generic Assistance Data

GANSS Generic Assistance data elements contain Information Elements that are applied on one specific GNSS at a time indicated by GANSS_ID. The format of the IE's remains the same regardless of the GANSS; only the values of the parameters and inclusion of certain optional fields will vary.

GANSS Generic Assistance Data is repeated for each GNSS included in GANSS Assistance Data. GANSS Generic Assistance Data can contain one or more of the elements listed in Table A.39 below. As Table A.39 shows, all fields are optional.

Table A.39: GANSS Generic Assistance Data content

Element	Presence	Repetition
GANSS ID	O (note 1)	Yes
GANSS Time Model	0	Yes
DGANSS Corrections	0	Yes
GANSS Navigation Model	0	Yes
GANSS Real-Time Integrity	0	Yes
GANSS Data Bit Assistance	0	Yes
GANSS Reference Measurement Information	0	Yes
GANSS Almanac Model	0	Yes
GANSS UTC Model	0	Yes
GANSS Ephemeris Extension	0	Yes
GANSS Ephemeris Ext Check	0	Yes
SBAS ID	0	Yes
GANSS Additional UTC Model	0	Yes
GANSS Auxiliary Information	0	Yes
DGANSS Corrections Validity Period	0	Yes
GANSS Time Model Extension	0	Yes
GANSS Reference Measurement Extension	0	Yes
GANSS Almanac Model Extension	0	Yes
GANSS Almanac Model Extension-R12	0	Yes
GANSS Reference Measurement Extension-R12	0	Yes
DBDS Corrections	O (note 2)	Yes
BDS Grid Model	O (note 2)	Yes
NOTE 1: Absence of this field means Galileo.		<u> </u>
NOTE 2: The field may be present if the GANSS ID) = BDS; otherwise	e it is not present.

GANSS_ID

This field indicates the GNSS for which the following assistance data IE's in GANSS Generic Assistance Data element are dedicated. The supported GANSS are listed in Table A.40. Absence of this field indicates Galileo. If GANSS ID indicates SBAS, the SBAS ID shall be included to indicate the specific SBAS addressed.

Range: 0 - 7

Table A.40: GANSS_ID

GANSS_ID	Indication
SBAS	0
Modernized GPS	1
QZSS	2
GLONASS	3
BDS	4
Reserved for future use	5-7

GANSS Time Model

This field specifies a model to relate GNSS system time to a selected time reference. GNSS Time Offset ID (GNSS_TO_ID) identifies the GNSS for which the relation is provided.

The SMLC may send multiple GANSS Time Models (up to 7) for a specific GNSS depending on the number of the allowed satellite systems in GANSS Positioning Method. For example, the SMLC may send two GANSS Time Models for Galileo to give the relations between Galileo and two GNSS system times.

NOTE: The integer number of seconds of the GNSS-GNSS Time Offset is provided in the GANSS Time Model Extension in Table A.55.22.

Table A.41: GANSS Time Model

Parameter	# Bits	Scale Factor	Range	Units	Incl.
GANSS Time Model Reference	16	24	0 - 604784	S	M
Time					
T _{A0}	32	2 ⁻³⁵		sec	M
T _{A1}	24	2 ⁻⁵¹		sec/sec	0
T _{A2}	7	2 ⁻⁶⁸		sec/sec ²	0
GNSS_TO_ID	3				M
Week Number	13	1	0 - 8191	week	0

GANSS Time Model Reference Time

This field specifies the reference time of week for GANSS Time Model and it is given in GNSS specific system time.

Range: 0 604784 seconds

$T_{A0}/T_{A1}/T_{A2}$

These fields specify the GANSS Time Model for a specific GNSS system by constant and first and second order terms of polynomial. The first and second order terms are optional.

GNSS_TO_ID

This field specifies GNSS Time Offset ID. GANSS Time Model contains parameters to convert GNSS System Time from the system indicated by GANSS_ID to GNSS System Time indicated by GNSS_TO_ID. The conversion is defined in [12,13,14].

Table A.42: GNSS_TO_ID

GNSS_TO_ID	Indication
GPS	0
GALILEO	1
QZSS	2
GLONASS	3
BDS	4
Reserved for future use	5-7

Week Number

This field specifies the reference week of GANSS Time Model given in GNSS specific system time. This field is optional.

DGANSS Corrections

These fields specify the DGANSS corrections to be used by the MS.

Table A.43: DGANSS Corrections

Parameter	# Bits	Scale Factor	Range	Units	Incl.		
	The following fields occur once per message						
DGANSS Reference Time	7	30	0 - 3570	seconds	M		
N_SGN_TYPE	2	1	1 - 3		M		
The following fi	elds occur o	once per GANSS s	signal type (N_SG	N_TYPE times	s)		
GANSS_Signal_ID	3				M		
Status/Health	3	1	0 - 7		М		
N_SAT	4	1	1 - 16		M		
The fo	ollowing fiel	ds occur once per	satellite (N_SAT	times)			
SV_ID	6		063		M		
IOD	10				М		
UDRE	2		0 - 3		М		
PRC	12	0,32	±655,04	meters	М		
RRC	8	0,032	±4,064	meters/sec	М		

DGANSS Reference Time

This field indicates the baseline time for which the DGANSS corrections are valid as modulo 3600 s. DGANSS Reference Time is given in GNSS system time.

Range: 0 - 3600 s

N_SGN_TYPE

This field indicates the number of GNSS signal types included in DGANSS Corrections IE.

Range: 1 - 3

GANSS_Signal_ID

DGANSS corrections are provided per GNSS signal type identified by GANSS_Signal_ID. The supported signals are listed in Table A.59.

Status/Health

This field indicates the status of the differential corrections contained in the broadcast message. The values of this field and their respective meanings are shown below in Table A.44.

Table A.44: Values of Status/Health IE

Code	Indication
000	UDRE Scale Factor = 1,0
001	UDRE Scale Factor = 0,75
010	UDRE Scale Factor = 0,5
011	UDRE Scale Factor = 0,3
100	UDRE Scale Factor = 0,2
101	UDRE Scale Factor = 0,1
110	Reference Station Transmission Not Monitored
111	Data is invalid - disregard

The first six values in this field indicate valid differential corrections. When using the values described below, the "UDRE Scale Factor" value is applied to the UDRE values contained in the message. The purpose is to indicate an estimate in the amount of error in the corrections.

The value "110" indicates that the source of the differential corrections (e.g., reference station or external DGANSS network) is currently not being monitored. The value "111" indicates that the corrections provided by the source are invalid, as judged by the source. In the later case, the message shall contain no corrections for individual satellites. Any MS that receives DGANSS Corrections in a GANSS Assistance Data IE shall contain the appropriate logic to properly interpret this condition and look for the next IE.

N_SAT

This field indicates the number of satellites (per specified GANSS_Signal_ID) for which differential corrections are included in this element.

Range: 1 - 16

SV ID

The SV ID is an index number for a satellite. The interpretation of SV ID is defined in Table A.10.14.

Issue Of Data

Issue of Data field contains the identity for the GANSS Navigation Model, as defined in Table A.48.2 (i.e., excluding the IOD_MSB, if applicable for the particular GANSS or signal).

User Differential Range Error (UDRE)

This field provides an estimate of the uncertainty $(1-\sigma)$ in the corrections for the particular satellite. The value in this field shall be multiplied by the UDRE Scale Factor in the common Corrections Status/Health field to determine the final UDRE estimate for the particular satellite. The meanings of the values for this field are described in Table A.45.

Table A.45: Values of UDRE IE

Value	Indication
00	UDRE ≤ 1,0 m
01	1,0 m < UDRE ≤ 4,0 m
10	4,0 m < UDRE ≤ 8,0 m
11	8,0 m < UDRE

Each UDRE value shall be adjusted based on the operation of an Integrity Monitor (IM) function which exists at the network (SMLC, GPS server, or reference GPS receiver itself). Positioning errors derived at the IM which are excessive relative to DGPS expected accuracy levels shall be used to scale the UDRE values to produce consistency.

Pseudo-Range Correction (PRC)

This field indicates the correction to the pseudorange for the particular satellite at DGANSS Reference Time, t_0 . The value of this field is given in meters (m) and the resolution is 0,32, as shown in Table A.43 above. The method of calculating this field is described in [9].

If the SMLC has received a request for GANSS assistance data from an MS which included a request for the navigation models and DGANSS (i.e., bit J and M are set to one in 'Requested GANSS Assistance Data, see 3GPP TS 49.031), the SMLC shall determine, for each satellite, if the navigation model stored by the MS is still suitable for use with DGANSS corrections (also see navigation model update conditions right before Table A.46) and if so and if DGANSS corrections are supported the SMLC should send DGANSS corrections without including the navigation model.

The IOD value sent for a satellite shall always be the IOD value that corresponds to the navigation model for which the pseudo-range corrections are applicable.

The pseudo-range correction shall correspond to the available navigation model (the one already stored in and identified by the MS or the one included in the same procedure as the pseudo-range correction). The MS shall only use the PRC value when the IOD value received matches its available navigation model.

Pseudo-range corrections are provided with respect to GNSS specific geodetic datum (e.g., PZ-90.02 if GANSS ID indicates GLONASS).

Pseudo-Range Rate Correction (RRC)

This field indicates the rate-of-change of the pseudorange correction for the particular satellite, using the satellite ephemeris and clock corrections identified by the IOD IE. The value of this field is given in meters per second (m/sec) and the resolution is 0,032, as shown in table A.43 above. For some time $t_1 > t_0$, the corrections for IOD are estimated by

$$PRC(t_{1. IOD}) = PRC(t_{0. IOD}) + RRC(t_{0. IOD}) \cdot (t_1 - t_0)$$
,

and the MS uses this to correct the pseudorange it measures at t_1 , $PR_m(t_1, IOD)$, by

$$PR(t_{1, IOD}) = PR_m(t_{1, IOD}) + PRC(t_{1, IOD})$$
.

The SMLC shall always send the RRC value that corresponds to the PRC value that it sends (see above for details). The MS shall only use the RRC value when the IOD value received matches its available navigation model.

GANSS Navigation Model

This set of fields contains information required to manage the transfer of precise navigation data to the GANSS-capable MS. In response to a request from a MS for GANSS Assistance Data, the SMLC shall determine whether to send the navigation model for a particular satellite to an MS based upon factors like the T-Toe limit specified by the MS and any request from the MS for DGANSS (also see above). This information includes control bit fields as well as satellite ephemeris and clock corrections and clock and orbit accuracy models. GANSS Orbit Model can be given in Keplerian parameters or as state vector in Earth-Centered Earth-Fixed coordinates, dependent on the GANSS-ID and the MS capabilities. The meaning of these parameters is defined in relevant ICDs of the particular GANSS and GNSS specific interpretations apply. For example, Modernized GPS and QZSS use the same model parameters but some parameters have a different interpretation [16].

GANSS Navigation Model element can contain data up to at most 32 satellites. The individual fields are given in Table A.46 and the conditions for their presence is discussed below.

Table A.46: GANSS Navigation Model contents

Parameter	# Bits	Scale Factor	Units	Incl.				
Navigat	Navigation Model Flow Control (once per message)							
Num_Sat	5	1		М				
Non-Broadcast Indication	1			M				
The following	g fields occur once p	er satellite (Nun	n_Sat times)					
SV ID	6			M				
SV Health	5			M				
IOD	10			М				
GANSS Clock Model	See Table A.49.1			М				
GANSS Orbit Model	See Table A.49.2			М				
SV Health_MSB	1			0				
IOD_MSB	1			0				
SV Health Extension	4			0				

Num_Sat

This field specifies the number of satellites that are included in the provided GANSS Navigation Model element. A range of 1-32 is available. This field is mandatory when the GANSS Navigation Model field is included in the GANSS Assistance Data message.

Non-Broadcast Indication

This field indicates if the GANSS Navigation Model Elements are not derived from satellite broadcast data or are given in a format not native to the GANSS.

Table A.47: Values of Non-Broadcast Indication Flag

Value	Non-Broadcast Indication
0	GANSS Navigation Data elements corresponding with broadcasted
	data
1	GANSS Navigation Data element not derived from satellite broadcast

SV_ID

The field specifies the SV/Slot ID for which the GANSS Navigation Model Elements is given. The interpretation of SV ID is defined in Table A.10.14.

Range: 0 - 63

SV Health and SV Health_MSB

This parameter gives information about the satellite's current health. The health values are GNSS system specific. The SV Health bits have the encoding as in Table A.48.1 for a particular GANSS. The SV Health_MSB may be present for some GANSS or signals as defined in Table A.48.1. If SV Health_MSB is present, the total SV Health information is created by appending the SV Health field to the SV Health_MSB field.

Table A.48.1: Interpretation SV Health Bits

GANSS	SV		SV Health Bit String(5)					
	Health_MSB	Bit 1 (MSB)	Bit 2	Bit 3	Bit 4	Bit 5 (LSB)		
Galileo	(1)	E5a Data	E5b Data	E1-B Data	E5a Signal H	lealth Status		
[11, section		Validity Status	Validity Status	Validity Status				
5.1.9.3]		·		·				
Modernized	(1)	L1C Health	L1 Health	L2 Health	L5 Health	'0'		
GPS ⁽²⁾		[14]	[12,13]	[12,13]	[12,13]	(reserved)		
SBAS ⁽³⁾	(1)	Ranging On	Corrections	Integrity On	'0'	'0'		
		(0), Off(1)	On (0), Off (1)	(0), Off(1)	(reserved)	(reserved)		
QZSS	MSB of SV		5 LS	SBs of SV Health	[16]			
QZS-L1 ⁽⁴⁾	Health [16]				-			
QZSS	⁽¹⁾	L1C Health	L1 Health	L2 Health	L5 Health	'0'		
QZS-		[16]	[16]	[16]	[16]	(reserved)		
L1C/L2C/L5 ⁽⁵⁾								
GLONASS	⁽¹⁾	B _n (MSB)	MSB) F _T					
		[17, page 23]	[17, Table 4.4]					
BDS	(1)	B1I Health		'()'			
		(SatH1) [18]		(rese	rved)			

Note 1: The SV Health_MSB field shall not be present in GANSS Navigation Model for these GANSS or GANSS signals. Note 2: If a certain signal is not supported on the satellite indicated by SV_ID, the corresponding health bit shall be set to '1' (i.e., signal can not be used).

Note 3: SV Health in case of GANSS ID indicates SBAS includes the 5 LSBs of the Health included in GEO Almanac Message Parameters (Type 17) [15].

Note 4: If GANSS ID indicates 'QZSS', and GANSS Orbit Model-2 is included, this interpretation of SV Health applies.

Note 5: If GANSS ID indicates 'QZSS', and GANSS Orbit Model-3 is included, this interpretation of SV Health applies.

SV Health Extension

This parameter gives additional information about the satellite's current health. The health values are GNSS system specific. The SV Health Extension bits have the encoding as in Table A.48.1a for a particular GANSS.

Table A.48.1a: Interpretation SV Health Extension Bits

GANSS	SV Health Extension Bit String(4)				
GANSS	Bit 1 (MSB)	Bit 2	Bit 3	Bit 4 (LSB)	
Galileo [11, section 5.1.9.3]	E5b Signal Health Status E1-B Signal Health Status				

Issue Of Data

Issue of Data field contains the identity for GANSS Navigation Model. The IOD_MSB may be present for some GANSS or signals as defined in Table A.48.2a. If IOD_MSB is present, the total IOD information is constructed as defined in Table A.48.2a.

In the case of broadcasted Galileo ephemeris, the IOD contains the IODnav as described in [11].

In case of broadcasted Modernized GPS ephemeris, the IOD contains the 11-bit parameter t_{oe} as defined in [12, Table 30-I] [14, Table 3.5-1] and is constructed using IOD and IOD_MSB fields.

In case of broadcasted SBAS ephemeris, the IOD contains the 8 bits Issue of Data as defined in [15] Message Type 9.

In case of broadcasted QZSS QZS-L1 ephemeris, the IOD contains the IODC as described in [16].

In case of broadcasted QZSS QZS-L1C/L2C/L5 ephemeris, the IOD contains the 11-bit parameter t_{oe} as defined in [16] and is constructed using IOD and IOD_MSB fields.

In case of broadcasted GLONASS ephemeris, the IOD contains the parameter t_b as defined in [17].

In case of broadcasted BDS ephemeris, the IOD contains the $11\ MSB$ bits of t_{oe} as defined in [18].

Table A.48.2: Interpretation of Issue Of Data

GANSS	Parameter	# Bits	Scale Factor	Range	Units
Galileo	IODnav	10		0-1023	
Modernized GPS ⁽¹⁾	LSBs of t _{oe}	10	300	0-306900	seconds
SBAS	IOD	8		0-255	
QZSS – QZS-L1 ⁽²⁾	IODC	10		0-1023	
QZSS – QZS-	LSBs of t _{oe}	10	300	0-306900	seconds
L1C/L2C/L5 ⁽¹⁾⁽³⁾					
GLONASS	t _b	7	15	15-1425	minutes
BDS ⁽⁴⁾	bit 2 (MSB) to	10	512	0-524288	seconds
	bit 11 (MSB)				
	of t _{oe}				

Note 1: The MSB of toe is provided in IOD_MSB field.

Note 2: If GANSS ID indicates 'QZSS', and GANSS Clock and Orbit Model-2 are included, this interpretation of IOD applies.

Note 3: If GANSS ID indicates 'QZSS', and GANSS Clock and Orbit Model-3 are included, this interpretation of IOD applies .

Note 4: If GANSS ID indicates 'BDS', the bit 2 (MSB) to bit 11 (MSB) are provided in IOD field and the bit 1 (MSB) is provided in IOD_MSB field.

Table A.48.2a: Interpretation of IOD_MSB

GANSS ⁽¹⁾	IOD_MSB	Scale Factor	Units	Comment
Modernized GPS	MSB of t _{oe}	307200	seconds	The full toe is constructed as "MSB of
				t _{oe} " x 307200 + "LSBs of t _{oe} " x 300
				(Effective range of full toe is 0-
				604500 seconds)
QZSS – QZS-	MSB of toe	307200	seconds	The full toe is constructed as "MSB of
L1C/L2C/L5				t _{oe} " x 307200 + "LSBs of t _{oe} " x 300
				(Effective range of full toe is 0-
				604500 seconds)
BDS	Bit 1 (MSB) of	524288	seconds	The full IOD is constructed as "
	t _{oe}			IOD_MSB " x 524288+ "IOD" x 512
				(Effective range of IOD is 0-604672
				seconds)

Note 1: The IOD_MSB field shall not be present in GANSS Navigation Model for GANSS or GANSS signals not defined in this Table.

GANSS Clock Model

GANSS clock model (Model-1) contains one or two clock model elements. If included, Clock Model-1 shall be included once or twice depending on the MS capability.

If the MS is supporting multiple Galileo signals, the SMLC shall include both F/Nav and I/Nav clock models in GANSS Clock Model IE if the SMLC assumes the MS to perform Location Information calculation using multiple signals. The MS capabilities to support multiple GNSS frequencies are indicated in the Positioning Capability Response element (clause A.8). Otherwise, SMLC shall include only the model suitable for the GNSS.

Table A.49.1: GANSS Clock Model

Parameter	# Bits	Scale Factor	Units	Incl.
0	ne of the follo	owing models can be incl	luded:	
		Model-1:		
	Satellite	Clock Model (Galileo [11])		
t _{oc}	14 ^(u)	60	sec	C ⁽¹⁾
af ₂	6	2 ⁻⁵⁹	sec/sec ²	C(1)
af₁	21	2 ⁻⁴⁶ 2 ⁻³⁴ 2 ⁻³²	sec/sec	C ⁽¹⁾
af ₀	31	2 ⁻³⁴	sec	C ⁽¹⁾
T _{GD} (BGD)	10	2 ⁻³²	sec	O ⁽¹⁾
Model ID	1			0
		Model-2:		
		NAV Clock Model	1	-(1)
t _{oc}	16	2 ⁴	seconds	C ⁽¹⁾
af ₂	8	2 ⁻⁵⁵ 2 ⁻⁴³ 2 ⁻³¹ 2 ⁻³¹	sec/sec ²	C ⁽¹⁾
af ₁	16	2 2 3	sec/sec	C ⁽¹⁾
af ₀	22	2 ⁻³¹	seconds	C(1)
T _{GD}	8	2 31	seconds	C ⁽¹⁾
	ONIAN	Model-3:		
		//CNAV-2 Clock Model		J (1)
t _{oc}	11	300	seconds	C ⁽¹⁾
t _{op}	11	300	seconds	C ⁽¹⁾
URA _{oc} Index	5			C ⁽¹⁾
URA _{oc1} Index	3			C ⁽¹⁾
URA _{oc2} Index	3	 60		C ⁽¹⁾
a _{f2-n}	10	2 -48	sec/sec ²	C ⁽¹⁾
a _{f1-n}	20	2 ⁻⁶⁰ 2 ⁻⁴⁸ 2 ⁻³⁵ 2 ⁻³⁵ 2 ⁻³⁵ 2 ⁻³⁵	sec/sec	C ⁽¹⁾
a _{f0-n}	26	2 00	seconds	C ⁽¹⁾
T _{GD}	13	2 35	seconds	C ⁽¹⁾
ISC _{L1CP}	13	2 35	seconds	O ⁽²⁾
ISC _{L1CD}	13	2 35	seconds	O ⁽²⁾
ISC _{L1C/A}	13	2 35	seconds	O ⁽³⁾
ISC _{L2C}	13	2 35	seconds	O ⁽³⁾
ISC _{L5I5}	13	2 ⁻³⁵ 2 ⁻³⁵ 2 ⁻³⁵ 2 ⁻³⁵	seconds	O ⁽⁴⁾
ISC _{L5Q5}	13		seconds	O ⁽⁴⁾
	CLONA	Model-4:		
- (4.)		SS Satellite Clock Model 2 ⁻³⁰	accondo	C ⁽¹⁾
$\tau_{\rm n}(t_{\rm b})$	22	2-40	seconds	C ⁽¹⁾
$\gamma_{n}(t_{b})$	11	2 ⁻⁴⁰ 2 ⁻³⁰		
Δau_{n}	5		seconds	0
	00.40	Model-5:		
1		S Satellite Clock Model	000000	C ⁽¹⁾
t ₀	13	16 2 ⁻³¹	seconds	
a _{Gfo}	12	2 ⁻⁴⁰	seconds	C ⁽¹⁾
a _{Gf1}	8	Model-6:	Seconds/sec	U. /
	RDS	Satellite Clock Model		
AODC	5			C ⁽¹⁾
	17	2 ³	seconds	C ⁽¹⁾
t _{oc}	24	2 ³ 2 ⁻³³		C ⁽¹⁾
a ₀	22	2 ⁻⁵⁰	sec/sec	C ⁽¹⁾
a ₁	11	2 ⁻⁶⁶	seconds	C ⁽¹⁾
a ₂	10	10 ⁻¹⁰	seconds	C ⁽¹⁾
T_GD	10	IU	Seconds	

NOTE 1: All of these fields shall be present together, or none of them shall be present.

NOTE 2: Both of these fields shall be present together, or none of them shall be present.

NOTE 3: Both of these fields shall be present together, or none of them shall be present. NOTE 4: Both of these fields shall be present together, or none of them shall be present.

Model ID

This field specifies the identity of the clock model according to Table A.49.1a. This field is optional.

Table A.49.1a: Galileo Clock Model Identity

Value	Identity
0	I/Nav
1	F/Nav

GANSS Orbit Model

GANSS Orbit Model IE contains the following presentation: Satellite Navigation Model Using Keplerian Parameters or Satellite Navigation Model Using Earth-Centered, Earth-fixed Parameters as described in Table A.49.2.

Table A.49.2: GANSS Orbit Model

Parameter	# Bits		Units	Incl.
		One of the following models	s can be included:	
	0-4-	Model-1:	Karlarian Danamatan	
+	14 ^(u)	ellite Navigation Model Using	1	С
t _{oe}	32	60 2 ⁻³¹	sec semi-circles	C
0	16	2 ⁻⁴³	semi-circles/sec	C
Δn M_0	32	2 ⁻³¹	semi-circles	C
OMEGAdot	24	2 ⁻⁴³	semi-circles/sec	C
e	32 ^(u)	2 ⁻³³		C
Idot	14	2-43	semi-circles/sec	C
sqrtA	32 ^(u)	2 ⁻¹⁹	meters ^{1/2}	C
i ₀	32	2 ⁻³¹	semi-circles	C
OMEGA₀	32	2 ⁻³¹	semi-circles	C
C _{rs}	16	2 ⁻⁵	meters	C
C _{is}	16	2 ⁻²⁹	radians	C
C _{us}	16	2 ⁻²⁹	radians	C
C _{rc}	16	2 ⁻⁵	meters	C
C _{ic}	16	2 ⁻²⁹	radians	C
Cuc	16	2 ⁻²⁹	radians	C
- 40		Model-2:	,	
	Satellit	e Navigation Model Using NA	AV Keplerian Parameters	
URA Index	4			С
Fit Interval Flag	1		Boolean	С
t _{oe}	16	2 ⁴	sec	С
ω	32	2 ⁻³¹	semi-circles	С
Δn	16	2 ⁻⁴³	semi-circles/sec	С
M_0	32	2 ⁻³¹	semi-circles	С
OMEGAdot	24	2 ⁻⁴³	semi-circles/sec	С
е	32 ^(u)	2 ⁻³³		С
ldot	14	2 ⁻⁴³	semi-circles/sec	С
sqrtA	32 ^(u)	2 ⁻¹⁹	meters ^{1/2}	С
i ₀	32	2 ⁻³¹	semi-circles	С
OMEGA ₀	32	2 ⁻³¹	semi-circles	С
C_{rs}	16	2 ⁻⁵	meters	С
C _{is}	16	2 ⁻²⁹	radians	С
Cus	16	2 ⁻²⁹	radians	С
C_{rc}	16	2 ⁻⁵	meters	С
C _{ic}	16	2 ⁻²⁹	radians	С
C _{uc}	16	2 ⁻²⁹	radians	С
		Model-3:		
S			CNAV-2 Keplerian Parameters	T -
t _{op}	11	300	seconds	C
URA _{oe} Index	5			С
ΔΑ	26	2 ⁻⁹	meters	С
A_dot	25	2 ⁻²¹	meters/sec	С
Δn_0	17	2 ⁻⁴⁴	semi-circles/sec	С
Δn_0 _dot	23	2 ⁻⁵⁷	semi-circles/sec ²	С
M_{0-n}	33	2 ⁻³²	semi-circles	С
e _n	33	2 ⁻³⁴		С
ω_{n}	33	2 ⁻³²	semi-circles	С
$\Omega_{ extsf{0-n}}$	33	2 ⁻³²	semi-circles	С
$\Delta\Omega$ _dot	17	2 ⁻⁴⁴	semi-circles/sec	С
i _{o-n}	33	2 ⁻³²	semi-circles	С
i _{0-n} _dot	15	2 ⁻⁴⁴	semi-circles/sec	С
C _{is-n}	16	2 ⁻³⁰	radians	С
C _{ic-n}	16	2 ⁻³⁰	radians	С
C_{rs-n}	24	2 ⁻⁸	meters	С
C _{rc-n}	24	2 ⁻⁸	meters	С
C _{us-n}	21	2 ⁻³⁰	radians	С
C _{uc-n}	21	2 ⁻³⁰	radians	С
		Model-4:		
Satellite	Navigation	Model Using GLONASS Ea	rth-Centered, Earth-fixed Parame	eters

En	5 ^(u)	1	days	С
P1	2 ^(u)			C
P2	1 ^(u)	1		C
M	2 ^(u)	1		0
	27	2 ⁻¹¹	kilometers	C
$x_n(t_b)$				
$\dot{x}_n(t_b)$	24	2 ⁻²⁰	kilometres/second	С
$\ddot{x}_n(t_b)$	5	2 ⁻³⁰	kilometres/second ²	С
$y_n(t_b)$	27	2 ⁻¹¹	kilometers	С
$\dot{y}_n(t_b)$	24	2 ⁻²⁰	kilometres/second	С
$\ddot{y}_n(t_b)$	5	2 ⁻³⁰	kilometres/second ²	С
$z_n(t_b)$	27	2 ⁻¹¹	kilometers	С
$\dot{z}_n(t_b)$	24	2 ⁻²⁰	kilometres/second	С
$\ddot{z}_n(t_b)$	5	2 ⁻³⁰	kilometres/second ²	С
	1	Model-5:		<u> </u>
Satellit	e Navigati		entered, Earth-fixed Parameters	
t ₀	13	16	seconds	O ⁽¹⁾
Accuracy	4			
X _G	30	0,08	meters	C C C
Y _G	30	0,08	meters	<u> </u>
Z _G	25	0,4		<u> </u>
			meters	C
X _G	17	0,000625	meters/sec	
Rate-of-Change	47	0.000005		
Y _G Rate-of-Change	17	0,000625	meters/sec	С
Z _G Rate-of-Change	18	0,004	meters/sec	С
X _G Acceleration	10	0,0000125	meters/sec ²	С
Y _G Acceleration	10	0,0000125	meters/sec ²	C
Z _G Acceleration	10	0,0000125	meters/sec ²	C
ZG Acceleration	10	Model-6:	meters/sec	U
	0-4-11:4		Karlada Danasatan	
1005		Navigation Model Using BDS		Τ.
AODE	5			С
URA Index	4			С
t _{oe}	17	2 ³	seconds	С
A ^{1/2}	32	2 ⁻¹⁹	meters ^{1/2}	С
е	32	2 ⁻³³		С
ω	32	2 ⁻³¹	semi-circles	С
Δn	16	2 ⁻⁴³	semi-circles/sec	C
M ₀	32	2 ⁻³¹	semi-circles	C
	32	2 ⁻³¹	semi-circles	С
Ω_0		2 ⁻⁴³		
Ω_dot	24	Z	semi-circles/sec	С
i ₀	32	2 ⁻³¹	semi-circles	С
Idot	14	2 ⁻⁴³	semi-circles/sec	С
C _{uc}	18	2 ⁻³¹	radians	С
C _{us}	18	2 ⁻³¹	radians	С
C _{rc}	18	2 ⁻⁶	meters	С
C _{rs}	18	2 ⁻⁶	meters	С
C _{ic}	18	2 ⁻³¹	radians	С
C _{is}	18	2 ⁻³¹	radians	С
Note 1: If GANSS (Clock Mod	el-5 is not included, this field sl	nall be present.	
NOTE u: unsigned			•	
	1			

GANSS Real-Time Integrity

Integrity Monitor (IM) shall detect unhealthy (e.g., failed/failing) satellite signals and also shall inform users of measurement quality in DGANSS modes when satellite signals are healthy. Excessively large pseudo range errors, as evidenced by the magnitude of the corresponding DGANSS correction, shall be used to detect failed satellite signals.

Unhealthy satellite signals should be detected within 10 seconds of the occurrence of the satellite signal failure. When unhealthy (e.g., failed/failing) satellite signals are detected, the assistance and/or DGANSS correction data shall not be supplied for these satellite signals. When the error in the IM computed position is excessive for solutions based upon healthy satellite signals only, DGANSS users shall be informed of measurement quality through the supplied UDRE values. After bad satellite signals have been indicated in the Real Time Integrity field, if the satellite signals return to healthy condition for some period of time, the indications for them shall be removed from this field.

GANSS Real-Time Integrity field of the GANSS Assistance Data Information Element contains parameters that describe the real-time status of the GANSS constellations. Primarily intended for non-differential applications, the real-time integrity of the satellite constellation is of importance as there is no differential correction data by which the mobile can determine the soundness of each satellite signal. GANSS Real-Time Integrity data communicates the health of the GNSS signals to the mobile in real-time. The format is shown in Table A.50. The SMLC shall always transmit the GANSS Real Time Integrity field with the current list of unhealthy signals, for any GANSS positioning attempt and whenever GANSS Assistance Data is sent. If the number of bad signals (NBS) is zero, then the GANSS Real Time Integrity field shall be omitted.

Table A.50: GANSS Real-Time Integrity

Parameter	# Bits	Scale Factor	Range	Units	Incl.
The following fields occur once per SV with bad signal (NBS times)					
Bad_GNSS_SV_ID	6	1			M
Bad_GNSS_Signal_ID	8	1			0

NBS (Number of satellites with bad signal)

The NBS value indicates the number of satellites with bad signal.

Bad_GNSS_SV_ID

This field specifies the SV ID of the satellite with bad signal or signals. The interpretation of SV ID is defined in Table A.10.14.

Bad_GNSS_Signal_ID

This field identifies the bad signal of a satellite. Absence of this field means that all signals on the specific SV are bad. The interpretation of Bad_GNSS_Signal_ID is listed in Table A.59. If the satellite in question belongs to the modernized GPS constellation and has some healthy signals but bad L1C/A signal, Bad_GNSS_Signal_ID shall be present but may have all the bits set to '0'. Status of L1C/A signal shall be indicated with Real-Time Integrity IE in GPS Assistance Data Element.

GANSS Data Bit Assistance

This element provides data bit assistance data for specific satellite signals for data wipe-off. The data bits included in the assistance data depends on the GANSS and its signal.

Table A.51: GANSS Data Bit Assistance

Parameter	Bits	Resolution	Range	Incl.
GANSS TOD	6	1	0 – 59	M
The following	fields occur or	nce per satellite	(N_SAT times)	
SV ID	6	1		М
The following	fields occur o	nce per signal (N_SGN times)	
GANSS_Signal_ID	3	1	0 - 7	М
N_BIT	10	1	1 – 1024	М
Data Bits	N_BIT			М

GANSS TOD

This field indicates the reference time of the first bit of the data in GANSS Data Bit Assistance in integer seconds in GNSS specific system time.

Data Bit Reference Time is given as modulo 60 s from GANSS TOD.

N_SAT

This field specifies the number of satellites in GANSS Data Bit Assistance element.

SV ID

The field specifies the SV for which the GANSS Data Bit Assistance is given. The interpretation of SV ID is defined in Table A.10.14.

Range: 0-63

N SGN

This field specifies the number of signals for which GANSS Data Bit Assistance is provided.

Range: 1-8

GANSS_Signal_ID

This field specifies the GANSS signal type of the GANSS Data Bit Assistance as listed in Table A.59.

N BIT

This field indicates the number of bits (or symbols) included in the IE.

Data Bits

Data bits are contained in GNSS system and data type specific format.

In case of Galileo, it contains the FEC encoded and interleaved modulation symbols. The logical levels 1 and 0 correspond to signal levels -1 and +1, respectively. In case of Modernized GPS L1C, it contains the encoded and interleaved modulation symbols as defined in [14] section 3.2.3.1.

In case of Modernized GPS L2C, it contains either the NAV data modulation bits, the FEC encoded NAV data modulation symbols, or the FEC encoded CNAV data modulation symbols, dependent on the current signal configuration of this satellite as defined in [12, Table 3-III].

In case of Modernized GPS L5, it contains the FEC encoded CNAV data modulation symbols as defined in [13].

In case of SBAS, it contains the FEC encoded data modulation symbols as defined in [15].

In case of QZSS QZS-L1, it contains the NAV data modulation bits as defined in [16] section 5.2. In case of QZSS QZS-L1C, it contains the encoded and interleaved modulation symbols as defined in [16] section 5.3. In case of QZSS QZS-L2C, it contains the encoded modulation symbols as defined in [16] section 5.5. In case of QZSS QZS-L5, it contains the encoded modulation symbols as defined in [16] section 5.6.

In case of GLONASS, it contains the 100 sps differentially Manchester encoded modulation symbols as defined in [17] section 3.3.2.2.

In case of BDS, it contains the encoded and interleaved modulation symbols as defined in [18] section 5.1.3.

GANSS Reference Measurement Information

This field provides reference code and Doppler measurement information of visible satellites of a GANSS constellation. The information can be used as acquisition assistance to improve the sensitivity of the receiver.

These parameters describe the range and optionally the derivatives from respective satellites to the GANSS Reference Location at the GANSS Reference Time. The code phase and Doppler fields are aligned with the time provided in GANSS Reference Time. Figure A.4a illustrates the relation between some of the fields with respect to the GANSS TOD.

If GPS Acquisition Assistance is included the Reference Time included in the GPS Acquisition Assistance is also valid for the GANSS Reference Measurement fields and the parameters are referenced to GPS TOW. Figure A.4b illustrates the relation between some of the fields with respect to GPS TOW.

The parameters are given in units of ms and m/s which makes it possible to convert the values to any nominal frequency and chipping and code rate.

Table A.52: GANSS Reference Measurement Information Contents

Parameter	Range	Bits	Resolution	Incl.		
GANSS_Signal_ID	0 - 7	3		M		
Т	he following fields occur once per satel	lite (Num_Sa	at times)			
SV_ID	0 - 63	6		M		
Doppler (0 th order term)	-1024 m/s to 1023,5 m/s	12	0,5 m/s	M		
Doppler (1 st order term)	-0,2 - 0,1 m/s ² .	6	1/210 m/s ² .	O ⁽¹⁾		
Doppler Uncertainty	2,5 m/s - 40 m/s	3		O ^(1,3)		
	$[2^{-n}(40) \text{ m/s}, n = 0 - 4]$					
Code Phase	0 - (1-2 ⁻¹⁰) ms	10	2 ⁻¹⁰ ms	M		
Integer Code Phase	0 - 127 ms	7	1 ms	M		
Code Phase Search	See Table A.53	5		M		
Window						
Azimuth	0 - 348,75 deg	5	11,25 deg	O ⁽²⁾		
Elevation	0 - 78,75 deg	3	11,25 deg	O ⁽²⁾		
Code Phase_1023	boolean	1		0		
NOTE 1,2: All of these fields shall be present together, or none of them shall be present. NOTE 3: If Doppler Uncertainty Extension (Table A.55.25) is present, Doppler Uncertainty shall be set to value 0 (40 m/s).						

Figure A.4a. Exemplary calculations of some GANSS Reference Measurement fields with respect to GANSS TOD.

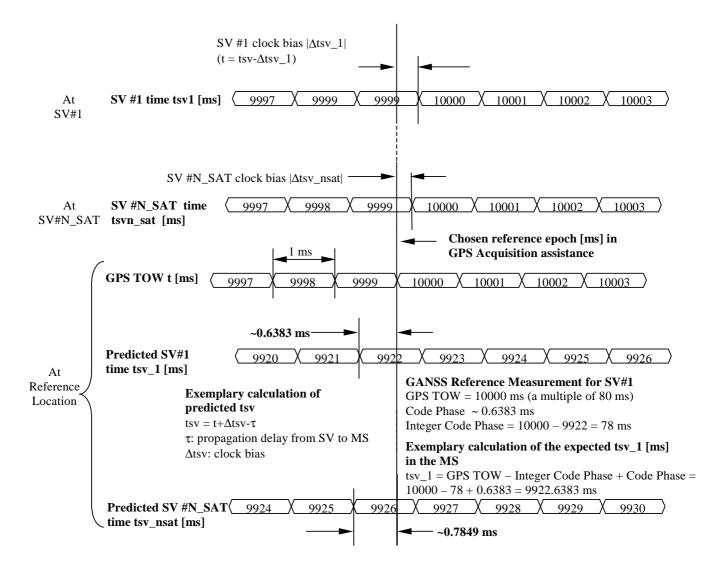


Figure A.4b. Exemplary calculations of some GANSS Reference Measurement fields with respect to GPS TOW.

GANSS_Signal_ID

This field specifies the GNSS signal type. The supported signals are listed in Table A.59.

Num_Sat

This field specifies the number of satellites in GANSS Reference Measurement Information element.

SV_ID

This field specifies the SV for which the GANSS Reference Measurement Assistance is given. The interpretation of SV ID is defined in Table A.10.14.

Range: 0-63

Doppler (0th order term)

This field contains the Doppler (0th order term) value. A positive value in Doppler defines the increase in satellite signal frequency due to velocity towards the MS. A negative value in Doppler defines the decrease in satellite signal frequency due to velocity away from the MS.

Doppler is given in unit of m/s by multiplying the Doppler value in Hz by the *nominal* wavelength of the assisted signal.

This field is mandatory.

Doppler (1st order term)

This field contains the Doppler (1st order term) value. A positive value defines the rate of increase in satellite signal frequency due to acceleration towards the MS. A negative value defines the rate of decrease in satellite signal frequency due to acceleration away from the MS.

Doppler (1st order term) is given in unit of m/s by multiplying the Doppler value in Hz by the *nominal* wavelength of the assisted signal.

This field is optional.

Doppler Uncertainty

This field contains the Doppler uncertainty value. It is defined such that the Doppler experienced by a stationary MS is in the range "Doppler – Doppler Uncertainty" to "Doppler + Doppler Uncertainty". This field is optional. If Doppler Uncertainty (together with Doppler 1st order term) is omitted, the terminal shall interpret Doppler Uncertainty as greater than +/-40 m/s. If the Doppler Uncertainty Extension (Table A.55.25) field is present, the MS that supports the Doppler Uncertainty Extension shall ignore this field.

Doppler Uncertainty is given in unit of m/s by multiplying the Doppler Uncertainty value in Hz by the *nominal* wavelength of the assisted signal.

Permitted Values: 2,5 m/s, 5 m/s, 10 m/s, 20 m/s, 40 m/s as encoded by an integer n in the range 0-4 according to

the formula in Table A.52.

Code Phase

This field together with the Code Phase_1023 field contains code phase, in units of milliseconds, in the range from 0 to 1 millisecond scaled by the *nominal* chipping rate of the GNSS signal, where increasing values of the field signify increasing predicted signal code phases, as seen by a receiver at the Reference Location at the GANSS Reference Time. The Reference Location would typically be an apriori estimate of the MS location. This field is mandatory.

Range: $0 - (1-2^{-10})$ ms

NOTE: The value (1-2⁻¹⁰) ms is encoded using the Code Phase_1023 field.

Integer Code Phase

This field contains integer code phase (expressed modulo 128 ms). The satellite integer milliseconds code phase currently being transmitted at the GANSS Reference Time, as seen by a receiver at the Reference Location is calculated as reference time (GANSS TOD or GPS TOW, expressed in milliseconds) minus (Integer_Code_Phase + ($n \times 128$ ms)), as shown in Figure A.4a/b, with $n = \dots -2, -1, 0, 1, 2, \dots$ This field is mandatory.

Range: 0-127 ms

Code Phase Search Window

This field contains the code phase search window. The code phase search window accounts for the uncertainty in the estimated MS location but not any uncertainty in GANSS Reference Time. It is defined such that the expected code phase is in the range "Code Phase - Code Phase Search Window" to "Code Phase + Code Phase Search Window" given in units of milliseconds. This field is mandatory.

Range: 0-31 (i.e. 0,002 - 2,000 ms according to following table)

Table A.53: Code Phase Search Window Parameter Format

CODE_PHASE_SEARCH_WINDOW	Code Phase Search Window [ms]
'00000'	No information
'00001'	0,002
'00010'	0,004
'00011'	0,008
'00100'	0,012
'00101'	0,016
'00110'	0,024
'00111'	0,032
'01000'	0,048
'01001'	0,064
'01010'	0,096
'01011'	0,128
'01100'	0,164
'01101'	0,200
'01110'	0,250
'01111'	0,300
'10000'	0,360
'10001'	0,420
'10010'	0,480
'10011'	0,540
'10100'	0,600
'10101'	0,660
'10110'	0,720
'10111'	0,780
'11000'	0,850
'11001'	1,000
'11010'	1,150
'11011'	1,300
'11100'	1,450
'11101'	1,600
'11110'	1,800
'11111'	2,000

Azimuth

This field together with the Azimuth LSB included in GANSS Reference Measurement Extension in Table A.55.23contains the azimuth angle. An angle of x degrees means the satellite azimuth a is in the range ($x \le a < x+0.703125$) degrees. This field is optional.

Range: 0 - 359,296875 degrees.

Elevation

This field together with the Elevation LSB included in GANSS Reference Measurement Extension in Table A.55.23 contains the elevation angle. An angle of y degrees means the satellite elevation e is in the range ($y \le e < y+0.703125$) degrees except for y = 89.296875 where the range is extended to include 90 degrees. This field is optional.

Range: 0 - 89,296875 degrees

Code Phase_1023

This field if set to TRUE indicates that the code phase has the value $1023 \times 2^{-10} = (1-2^{-10})$ ms. This field may only be set to TRUE if the value provided in the Code Phase field is 1022. If this field is set to FALSE, the code phase is the value provided in the Code Phase field in the range from 0 to $(1 - 2 \times 2^{-10})$ ms. If this field is not present and the Code Phase field has the value 1022, the MS may assume that the code phase is between $(1 - 2 \times 2^{-10})$ and $(1 - 2^{-10})$ ms.

GANSS Almanac Model

These fields specify the coarse, long-term model of the satellite positions and clocks. These fields are given in Table A.54. The meaning of these parameters is defined in relevant ICDs of the particular GANSS and GNSS specific interpretations apply. For example, Modernized GPS and QZSS use the same model parameters but some parameters have a different interpretation [16].

GANSS Almanac Model is useful for receiver tasks that require coarse accuracy, such as determining satellite visibility. The model is valid for up to few weeks, typically. Since it is a long-term model, the field should be provided for all satellites in the GNSS constellation. If almanac is not provided for the full GNSS constellation, the SMLC shall set the Complete Almanac Provided field in Table A.55.24 to FALSE.

Table A.54: GANSS Almanac Model (per-satellite fields - (1) = Positive range only)

Parameter	# Bits	Scale Factor	Units	Incl.
TI	ne following	fields occur once	per message	
Num_Sats_Total	6	1		M
Week Number	8	1	weeks	M
T _{oa}	8	2 ¹² if GANSS-	S	0
		ID is not		
		Galileo.		
		600 if GANSS-		
100		ID is Galileo		
IODa	2			0
One	e of the folio	owing models car	n be included:	
This made	Localita one	Model-1:	m_Sats_Total times)	<u> </u>
SV ID	6	Model Using Keple	l Parameters	М
_	11	2 ⁻¹⁶	dimensionless	M
δί	11	2 ⁻¹⁴	semi-circles	M
OMEGADOT	11	2 ⁻³³	semi-circles semi-circles/sec	M
SV Status INAV	4		dimensionless	M
SV Status FNAV	2		dimensionless	0
delta_A ^{1/2}	13	2 ⁻⁹	meters ^{1/2}	M
OMEGA ₀	16	2 ⁻¹⁵	semi-circles	M
ω	16	2 ⁻¹⁵	semi-circles	M
M_0	16	2 ⁻¹⁵	semi-circles	M
af ₀	16	2 ⁻¹⁹	seconds	M
af ₁	13	2 ⁻³⁸	sec/sec	M
uii	.0	Model-2:	000,000	
This mode	l occurs onc		m_Sats_Total times)	
			plerian Parameters	'
SV ID	6			М
e	16	2 ⁻²¹	dimensionless	М
δί	16	2 ⁻¹⁹	semi-circles	М
OMEGADOT	16	2 ⁻³⁸	semi-circles/sec	М
SV Health	8		Boolean	М
A ^{1/2}	24	2 ⁻¹¹	meters ^{1/2}	M
OMEGA ₀	24	2 ⁻²³	semi-circles	M
ω	24	2 ⁻²³	semi-circles	М
M ₀	24	2 ⁻²³	semi-circles	M
af ₀	11	2 ⁻²⁰	seconds	M
af ₁	11	2 ⁻³⁸	sec/sec	М
		Model-3:		
This model occurs once per satellite (Num_Sats_Total times)				
		el Using Reduced	Keplerian Parameters	
SV_ID	6	 0+9		M
δ_{A}	8	2 ⁺⁹	meters	M
Ω_0	7	2 ⁻⁶	semi-cicles	М
Φ_0	7	2 ⁻⁶	semi-circles	М
L1 Health	1			М
L2 Health	1			M
L5 Health	1			M

		Model-4:		
			im_Sats_Total times eplerian Parameters)
SV_ID	6			М
e	11	2 ⁻¹⁶		M
δί	11	2 ⁻¹⁴	semi-circles	М
Ω_{-} dot	11	2 ⁻¹⁴ 2 ⁻³³	semi-circles/sec	М
sqrtA	17	2 ⁻⁴	meters ^{1/2}	M
Ω_0	16	2 ⁻⁴ 2 ⁻¹⁵	semi-circles	M
	16	2 ⁻¹⁵	semi-circles	M
ω M ₀	16	2 ⁻¹⁵		M
-	_	2 ⁻²⁰	semi-circles	M
a _{fo}	11	2 ⁻³⁷	seconds	
a _{fl}	10		sec/sec	M
L1 Health	1			M
L2 Health	1			M
L5 Health	1			M
		Model-5:		
			im_Sats_Total times	
GANSS AI			Keplerian Paramete	
N ^A	11	1	days	M
n ^A	5	1		M
H _n ''	5	1		M
H_n^A λ_n^A $t_{\lambda n}^A$	21	2 ⁻²⁰	semi-circles	M
$t_{\lambda n}^{A}$	21	2 ⁻⁵	seconds	M
Δi_n^A	18	2 ⁻²⁰	semi-circles	M
Δi_n^A ΔT_n^A	22	2 ⁻⁹	seconds/orbit period	M
ΔT_DOT _n ^A	7	2 ⁻¹⁴	seconds/orbit period ²	М
ϵ_{n}^{A}	15	2 ⁻²⁰		М
ω_n^A	16	2 ⁻¹⁵	semi-circles	M
τ_n^A	10	2 ⁻¹⁸	seconds	M
C _n ^A	1	1		M
M _n ^A	2	1		O
Ινίη	4	Model-6:		10
This mod	el occurs on		ım_Sats_Total times	1
			ECEF Parameters	/
Data ID	2	1	LOLI I didilieleis	М
SV_ID	6	1		M
_	8	 		M
Health X _G	15	2600		M
Y _G	15	2600	meters	M
			meters	
Z _G	9	26000	meters	M
X _G Rate-of-Change	3	10	meters/sec	M
Y _G Rate-of-Change	3	10	meters/sec	M
Z _G Rate-of-Change	4	40,96	meters/sec	M
t ₀	11	64	seconds	M
-	al a a	Model-7:	m Cata Tatala	<u> </u>
I his mod	ei occurs on	ce per satellite (Nu	m_Sats_Total times)
	Almanac M		eplerian Parameters	N.4
SV_ID				M
t _{oa}	8	2 ¹²	seconds	O(note 2)
A ^{1/2}	24	2 ⁻¹¹	meters1/2	M
е	17	2 ⁻²¹		M
ω	24	2 ⁻²³	semi-circles	M
M_0	24	2 ⁻²³	semi-circles	M
Ω_0	24	2 ⁻²³	semi-circles	M
Ω_{-} dot	17	2 ⁻³⁸	semi-circles/sec	M
δ_{i}	16	2 ⁻¹⁹	semi-circles	M
a ₀	11	2 ⁻²⁰	seconds	M
a ₁	11	2 ⁻³⁸	sec/sec	М
Hea	9			O (note 3)

NOTE 2: This field may be present if the toa is not the same for all SVs; otherwise it is not present and the toa is provided in GANSSAlmanacModel

NOTE 3: This IE is mandatory present if the IE "SV ID" is between 0 and 29 and not needed otherwise.

Num Sats Total

This field specifies the total number of satellites in GANSS Almanac Model.

Range: 1 - 36

Week Number

This field specifies the Almanac reference week number in GNSS specific system time to which the Almanac Reference Time T_{oa} is referenced, modulo 256 weeks. If T_{oa} is not included in GANSS Almanac Model, the MS shall ignore the Week Number.

Range: 0 - 255

NOTE: In case of Galileo, the almanac reference week number WN_a natively contains only the 2 LSB's [11,

section 5.1.10].

Toa

This field specifies the Almanac Reference Time common to all satellites in GANSS Almanac Model Using Keplerian Parameters given in GNSS specific system time.

Range: 0 - 255

In case of GNSS-ID does not indicate Galileo, the scale factor is 2¹² seconds. In case of GNSS-ID does indicate Galileo, the scale factor is 600 seconds.

NOTE: Range extension of T_{oa} may be present in the GANSS Almanac Model Extension-R12 element (Table

A.55.25), if GANSS-ID indicates Galileo.

IOD_a

This field specifies the Issue-Of-Data common to all satellites in GANSS Almanac Model using Keplerian Parameters.

Range: 0 - 3

NOTE: Range extension of IOD_a may be present in the GANSS Almanac Model Extension-R12 element (Table

A.55.25), if GANSS-ID indicates Galileo.

SV_ID

This field identifies the satellite for which the GANSS Almanac Model is given. The interpretation of SV ID is defined in Table A.10.14.

Range: 0 - 63

SV Status INAV

This field contains the I/NAV health status bits [11, section 5.1.10].

SV Status FNAV

This field contains the F/NAV health status bits [11, section 5.1.10]. If the MS is supporting multiple Galileo signals, the SMLC shall include this field.

GANSS UTC Model

The GANSS UTC Model field contains a set of parameters needed to relate GNSS system time to Universal Time Coordinate (UTC). All of the fields in the GANSS UTC Model are mandatory when the field is present. The UTC time standard, UTC(k), is GNSS specific. E.g., if GANSS ID indicates QZSS, GANSS UTC Model field contains a set of parameters needed to relate QZST to UTC(NICT).

Table A.55: GANSS UTC Model (Model-1)

Parameter	# Bits	Scale Factor	Units	Incl.
A ₁	24	2 ⁻⁵⁰	sec/sec	С
A_0	32	2 ⁻³⁰	seconds	С
t _{ot}	8	2 ¹²	seconds	С
WN_t	8	1	weeks	С
Δt_{LS}	8	1	seconds	О
WN _{LSF}	8	1	weeks	С
DN	8	1	days	С
Δt_{LSF}	8	1	seconds	С

GANSS Ephemeris Extension

The GANSS Ephemeris extension contains parameters designed to extend the time of applicability of the Ephemeris terms by the continuous addition of the delta ephemeris terms to the respective terms of the referenced ephemeris.

This message can provide extension information for every satellite for many days into the future; doing so may create a large message, thus care must be taken to consider the transport bandwidth. The SMLC can limit the duration of the extension to decrease the message size. For example if the extension duration is limited to twelve hours the payload will be approximately 2,000 octets, for a typical 27 satellite constellation.

Table A.55.2: GANSS Ephemeris Extension

Parameter	# Bits	Scale Factor	Units	Incl.
ganssEphemerisHeader	See Table A.55.3			0
ganssReferenceSet	See Table A.55.5			0
ganssEphemerisDeltaMatrix	List of GANSSEphemerisDe		eltaEpochs	0

Table A.55.3: GANSS Ephemeris Header

Parameter	# Bits	Scale Factor	Units	Incl.	
GANSS Ephemeris Extension (Once per message)					
timeAtEstimation	See Table	A.55.4		M	
validityPeriod	3	1	Hours	M	
ephemerisExtensionDuration	9	1	Hours	M	

Time at Estimation

The Time at Estimation provides the GANSS time at which the ephemeris extensions were created.

Table A.55.4: Time at Estimation

Parameter	# Bits	Scale Factor	Units	Incl.
GANSS Day of Estimation	13	1	Day	M
GANSS TOD of Estimation	17	1	Seconds	М

GANSS Day of Estimation

This field specifies the sequential number of days (with day count starting at 0) from the origin of the GNSS system time indicated by GANSS_TIME_ID modulo 8192 days (about 22 years) of the time that the estimation was determined. The GNSS system time origin is defined in Table A.34 for each GANSS.

Range: 0 - 8191 days

GANSS TOD of Estimation

Integer number of GANSS TOD seconds within the current day of the time that the estimation was determined.

Range: 0 - 86399 s.

Validity Period

The validityPeriod indicates the validity period of the GANSS Reference Set. It also indicates the default validity period of each individual delta ephemeris packet in the case that the individual validityPeriod is not present in the GANSS Delta Epoch Header (see Table A.55.8). It is the length of time that the GANSS Reference Set is intended to last and, if applicable, it is the length of time that the ephemeris constructed by application of the delta is intended to last.

Range: 1 - 8 hours.

Ephemeris Extension Duration

The Ephemeris Extension duration indicates the total block of time measured in units of hours that the extended ephemeris covers.

Range: 1 - 512 Hours.

The ganssEphemeris header is mandatory only once in the delivery of the GANSS Ephemeris Extension message

GANSS Reference Set

Table A.55.5: GANSS Reference Set

Parameter	Presence	Note
GANSS Reference Orbit	M	See Table A.55.6

GANSS Reference Orbit

Table A.55.6: GANSS Reference Orbit

Parameter	# Bits	Scale Factor	Units	Incl.
svID	6	1		M
ganssOrbitModel	See Table	A.29.g		М
ganssClockModel	See Table	A.49.1		М

SvID

The satellite vehicle ID identifying to which satellite the following orbital and clock model apply. The interpretation of SV ID is defined in Table A.10.14.

GANSS OrbitModel

This field is a structure that contains the Reference Nav Model (see Table A.29.g) satellite orbit information upon which all subsequent delta information will be applied to create the next ephemeris for use in navigation.

GANSS ClockModel

This field is a structure that contains the satellite clock model upon which all subsequent clock information will be applied to create the next clock model for use in navigation.

GANSA Ephemeris Delta Matrix

GANSS Ephemeris Delta Matrix is a list of GANSS Ephemeris Delta Epochs. Each epoch is indicated by a unique seqNum. Each epoch corresponds to a specific update interval and contains a delta epoch header and ephemeris delta elements for all PRNs for that epoch.

GANSS Ephemeris Delta Epoch

Table A.55.7: GANSS Ephemeris Delta Epoch

Parameter	Note	Incl.
ganssDeltaEpochHeader	See Table A.55.8	0
ganssDeltaElementList	List of GANSS Ephemeris Delta Elements	М

GANSS Delta Epoch Header

Table A.55.8: GANSS Delta Epoch Header

Parameter	# Bits	Scale Factor	Units	Incl.
validityPeriod	3	1	Hours	0
ephemerisDeltaSizes	See Tabl	See Table A.55.9		
ephemerisDeltaScales	See Tabl	See Table A.55.10		

Validity Period

The validityPeriod indicates the validity period of each individual delta ephemeris packet. It is the length of time that the ephemeris constructed by application of the delta is intended to last. If not present then the default validityPeriod in the GANSS Ephemeris Header IE applies (see Table A.55.3).

Range: 1 - 8 hours.

Ephemeris Delta Sizes

This field is a structure that indicates the bit sizes for all the fields in the GANSS Ephemeris Delta structure

Table A.55.9: GANSS Ephemeris Delta Sizes

Parameter	# Bits	Scale Factor	Units	Incl.
bitSize_delta_ω	5	1		М
bitSize_delta_∆n	4	1		М
bitSize_delta_M0	5	1		М
bitSize_delta_OMEGAdot	5	1		M
bitSize_delta_e	5	1		M
bitSize_delta_ldot	4	1		M
bitSize_delta_sqrtA	5	1		M
bitSize_delta_i0	5	1		M
bitSize_delta_OMEGA0	5	1		M
bitSize_delta_Crs	4	1		M
bitSize_delta_Cis	4	1		M
bitSize_delta_Cus	4	1		M
bitSize_delta_Crc	4	1		M
bitSize_delta_Cic	4	1		M
bitSize_delta_Cuc	4	1		M
bitSize_delta_tgd1	4	1		M
bitSize_delta_tgd2	4	1		M

Ephemeris Delta Scales

This field is a structure that indicates the scale factor modifiers for all the fields in the GANSS Ephemeris Delta structure.

Table A.55.10: GANSS Ephemeris Delta Scales

Parameter	# Bits	Scale Factor	Units	Incl.
scale_delta_ω	5	1		М
scale_delta_∆n	5	1		М
scale_delta_M0	5	1		M
scale_delta_OMEGAdot	5	1		M
scale_delta_e	5	1		M
scale_delta_ldot	5	1		M
scale_delta_sqrtA	5	1		M
scale_delta_i0	5	1		M
scale_delta_OMEGA0	5	1		M
scale_delta_Crs	5	1		M
scale_delta_Cis	5	1		M
scale_delta_Cus	5	1		M
scale_delta_Crc	5	1		M
scale_delta_Cic	5	1		M
scale_delta_Cuc	5	1		M
scale_delta_tgd1	5	1		M
scale_delta_tgd2	5	1		M

GANSS Delta Element List

GANSS Delta Element List is a list of GANSS Ephemeris Delta Elements

Ephemeris Delta Element

Each GANSS Ephemeris Delta element is uniquely identified by the pair (seqNum, sv_ID) and it is defined as a structure as shown in table A.55.11. The MS should parse the octet string according to the fields specified in table A.55.4. Each element in table A.55.4 but for seqNum and sv_ID should be treated as a signed integer. Each Ephemeris delta is transmitted as an octet string of up to 49 octets. The actual number of octets is determined by the size of the bit fields in the GPS_Ephemeris_Delta_Sizes table (table A.55.9). Each set of up to 49 octets represents a single extension for a single satellite vehicle. Each set encodes the satellite vehicle ID and the sequence number. The sequence number specifies the order in which the individual ephemeris extension elements are assembled as time marches forward to create the next ephemeris. The sequence number is the same for all satellite vehicle IDs for a particular update period.

Table A.55.11: GANSS Ephemeris Delta Element

Parameter	# Bits	Default # Bits	Scale Factor	Default Scale	Units	Incl.
sequenceNum	7		1	1		М
svID	6		1	1		M
delta_ω	132 (1)	21	$2^{-16}*2^{-31}2^{15}*2^{-31}(^{2})$	2 ⁻³¹	semi-circles	M
delta_∆n	116 (1)	12	$2^{-16}*2^{-43}2^{15}*2^{-43}(^2)$	2 ⁻⁴³	semi-circles/sec	М
delta_M0	132 (1)	21	$2^{-16} \times 2^{-31} 2^{15} \times 2^{-31} {2 \choose 2}$	2 ⁻³¹	semi-circles	M
delta_OMEGAdot	124 (1)	13	2 ⁻¹⁶ *2 ⁻⁴³ 2 ¹⁵ *2 ⁻⁴³ (²)	2 ⁻⁴³	semi-circles/sec	М
delta_e	132 (1)	18	$2^{-16} \times 2^{-33} 2^{15} \times 2^{-33} {2 \choose 2}$	2 ⁻³³		M
delta_ldot	114 (1)	11	$2^{-16} \times 2^{-43} 2^{15} \times 2^{-43} {2 \choose 2}$	2 ⁻⁴³	semi-circles/sec	M
delta_sqrtA	132 (1)	14	$2^{-16} \times 2^{-19} 2^{15} \times 2^{-19} {2 \choose 1}$	2 ⁻¹⁹	meters1/2	M
delta_i0	132 (1)	14	$2^{-16} \times 2^{-31} 2^{15} \times 2^{-31} {2 \choose 2}$	2 ⁻³¹	semi-circles	M
delta_OMEGA0	132 (1)	14	$2^{-16} \times 2^{-31} 2^{15} \times 2^{-31} {2 \choose 2}$	2 ⁻³¹	semi-circles	M
delta_Crs	116 (1)	12	$2^{-16}*2^{-5}2^{15}*2^{-5}(^{2})$	2 ⁻⁵	meters	M
delta_Cis	116 (1)	11	$2^{-16} \times 2^{-29} 2^{15} \times 2^{-29} {2 \choose 2}$	2 ⁻²⁹	radians	M
delta_Cus	116 (1)	12	$2^{-16} \times 2^{-29} 2^{15} \times 2^{-29} {2 \choose 2}$	2 ⁻²⁹	radians	M
delta_Crc	116 (1)	12	$2^{-16}*2^{-5}2^{15}*2^{-5}(^{2})$	2 ⁻⁵	meters	M
delta_Cic	116 (1)	11	$2^{-16} \times 2^{-29} 2^{15} \times 2^{-29} {2 \choose 2}$	2 ⁻²⁹	radians	M
delta_Cuc	116 (1)	12	$2^{-16} \times 2^{-29} 2^{15} \times 2^{-29} {2 \choose 2}$	2 ⁻²⁹	radians	М
delta_tgd1	116 (1)	2	$2^{-16} \times 2^{-31} 2^{15} \times 2^{-31} {2 \choose 2}$	2 ⁻³¹	seconds	М
delta_tgd2	116 (1)	2	$2^{-16}*2^{-31}2^{15}*2^{-31}(^{2})$	2 ⁻³¹	seconds	М

(1) The number of bits of each signed integer field is variable and it is indicated once for all numEphemerisDeltas by the structure ephemerisDeltasSizes. When the ephemerisDeltaSizes field is not present, the values found in the columns "Default # Bits" shall be used.

(2) The scale factor of each parameter is variable around the default scale factor. The variation for each field is indicated once for all numEphemerisDeltas by the structure ephemerisDeltasScales. For example, if the scale factor modifier for delta_omega has a value of 4, the scale factor for delta_omega is 2⁴ * 2⁻³¹. When the ephemerisDeltaScales is not used, the values found in the column "Default Scale" shall be used.

sequenceNum

This field indicates the order of the Ephemeris delta terms. The ephemeris constructed for use in satellite positioning is built by adding the delta terms to the referenced GANSS_Navigation Model in the order dictated by this sequence number. The sequence number shall remain the same for each svID in a group of Ephemeris Deltas corresponding to a particular update epoch.

svID

This field identifies the satellite ID within a particular sequenceNum.

These fields, with the exception of sequenceNum and svID, specify the deltas to be added to the existing Ephemeris to create a new Ephemeris suite that is extended from its predecessor by the time provided in the "validityPeriod" parameter. To compute the time of ephemeris for the newly constructed ephemeris, validityPeriod is added to the preceding toe. The ephemeris time of clock (toc) is set equal to the toe.

For each of the other ephemeris terms the corresponding delta ephemeris term is added in order to create the updated ephemeris. The terms delta_M0, delta_i0, and delta_OMEGA0 of the delta ephemeris must be extrapolated prior to the addition of the delta terms as follows:

$$M_{0(i+1)} = M_{0(i)} + delta M_{0(i)} + (\sqrt{\frac{\mu}{A_{(i)}^3}} + \Delta n_{(i)}) \cdot dt$$

Where μ is the WGS 84 value of the earth's gravitational constant for GANSS user, and $A_{(i)}$ is the semi-major axis associated with this satellite's update. The extrapolation of delta_M0, uses the prior set's sqrtA term to compute $A_{(i)}$.

$$\begin{split} OMEGA0_{(i+1)} &= OMEGA0_{(i)} + deltaOMEGA0_{(i)} + OMEGAdot_{(i)} * dt \\ &\quad i0_{(i+1)} = i0_{(i)} + delta_i0_{(i)} + Idot_{(i)} * dt \end{split}$$

Where dt is equal to validityPeriod*3600. The terms af0, and af1 from the GANSS clock model must be extrapolated as follows:

$$afO_{(i+1)} = afO_{(i)} + af1_{(i)} * dt + af2_{(i)} * dt^{2}$$

$$af1_{(i+1)} = af1_{(i)} + 2 * af2_{(i)} * dt$$

$$af2_{(i+1)} = af2_{(i)}$$

Where af0, af1, and af2 are the clock model terms as shown in table A.49.1.

The following demonstrates the application of the ephemeris extension technique. Assume the validityPeriod = 5, representing: (5+1)hours = 6 hours, and the GANSS Navigation model for a particular satellite, identified by the reference IOD has a toe = 0 seconds.

The toe for sequenceNumber 1 is computed by adding the validityPeriod to the initial toe of 0 as 0 + 6 hours =0 + 21600 seconds. The new ephemeris is constructed by adding the delta ephemeris terms from set 1 to the reference ephemeris creating the new ephemeris, which will be used for the next six hours. For the five terms listed above (delta_M0, delta_i0, delta_OMEGA0, af0, and af1) the extrapolation described must occur prior to the addition of the delta term. Of course if one of these three delta ephemeris terms was provided in full via the exception table then the extrapolation is unnecessary and the exception term combined with the delta_ephemeris term is used directly.

The next ephemeris computation will occur by adding the validityPeriod to the current toe of 21600 as: 21600 + 6 hours = 21600 + 21600 = 43200. The ephemeris delta terms from set two are added to the ephemeris resulting from the prior addition to create the next ephemeris. This is done for each satellite vehicle ID listed in the provided satellite list indicated in the ganssSatRef field.

GANSS Ephemeris Extension check

The GANSS Ephemeris Extension check provides information about non foreseen events that occurred during the period starting at the ganssBeginTime to the current time. An event is signified through a bit string . Each bits refers to

If a bit is clear in the eventOccured field it indicates that a satellite maneuver has not occurred since the ganssBeginTime nor is one PRN. If a bit is set to one, this means that the ephemeris extension is no longer valid for this specific PRN. In order to indicate planned future manuvers an end time is provided. The SMLC can indicate that a future event is planned between the current time and the end time of this ephemeris extension.

Table A.55.12: Ephemeris Extension check

Parameter	Presence	Note	
ganssBeginTime	M	See Table A.55.13	
ganssEndTime	M	See Table A.55.14	
ganssSatEventsInfo	M	See Table A.55.15	

GANSS Begin Time

The GANSS begin time corresponds to the GANSS Day and GANSS Seconds of Estimation of the ephemeris extensions block.

Table A.55.13: GANSS Begin Time

Parameter	# Bits	Scale Factor	Units	Incl.
GANSS Day	13	1	Day	M
GANSS TOD	17	1	Seconds	M

GANSS End Time

The GANSS end time represents the final time the Ephemeris extension is valid.

Table A.55.14: GANSS End Time

Parameter	# Bits	Scale Factor	Units	Incl.
GANSS Day	13	1	Day	M
GANSS TOD	17	1	Seconds	М

GANSS Sat Event Information

This IE is designed to indicate events that have or may occur between the ganssBeginTime and the ganssEndTime.

Table A.55.15: GANSS Sat Event Information

Parameter	# Bits	Scale Factor	Units	Incl.
EventOccurred	64	-	-	M
FutureEventNoted	64	-	-	М

EventOccurred

FutureEventNoted

If a bit is set in the futureEventNoted field it indicates that a maneuver is planned during the time period between current time plus sixty minutes and ganssEndTime

SBAS ID

If GANSS ID indicates SBAS, this field defines the specific SBAS for which the GANSS specific assistance data are provided according to Table A.55.16.

Table A.55.16: SBAS ID

SBAS	Value of SBAS ID	
WAAS	0	
EGNOS	1	
MSAS	2	
GAGAN	3	
Reserved	4-7	

GANSS Additional UTC Model

The GANSS Additional UTC Model field contains several sets of parameters needed to relate GNSS system time to Universal Time Coordinate (UTC), as defined in [12, 13, 14, 15, 16, 17]. Only one parameter set can be included in one GANSS Additional UTC Model and which set of parameters to include depends on the GANSS-ID and MS capabilities.

The UTC time standard, UTC(k), is GNSS specific. E.g., if GANSS ID indicates QZSS, GANSS Additional UTC Model field contains a set of parameters needed to relate QZST to UTC(NICT). If GANSS ID indicates Modernized GPS, GANSS Additional UTC Model field contains a set of parameters needed to relate GPS system time to UTC(USNO). If GANSS ID indicates GLONASS, GANSS Additional UTC Model field contains a set of parameters needed to relate GLONASS system time to UTC(RU). If GANSS ID indicates SBAS, GANSS Additional UTC Model field contains a set of parameters needed to relate SBAS network time for the SBAS indicated by SBAS ID to the UTC standard defined by the UTC Standard ID. If GANSS ID indicates BDS, GANSS Additional UTC Model field contains a set of parameters needed to relate BDS system time to UTC (NTSC).

Table A.55.17: GANSS Additional UTC Model

Parameter	# Bits	Scale Factor	Units	Incl.		
	One of the following models can be included:					
	Model-2 (as defined in [12,13,14,16])					
A _{0-n}	16	2 ⁻³⁵	seconds	C ⁽¹⁾		
A _{1-n}	13	2 ⁻⁵¹	sec/sec	C ⁽¹⁾		
A _{2-n}	7	2 ⁻⁶⁸	sec/sec ²	C ⁽¹⁾		
Δt_{LS}	8	1	seconds	C ⁽¹⁾		
tot	16	2 ⁴	seconds	C ⁽¹⁾		
WN_{ot}	13	1	weeks	C ⁽¹⁾		
WN_{LSF}	8	1	weeks	C ⁽¹⁾		
DN	4	1	days	C ⁽¹⁾		
Δt_{LSF}	8	1	seconds	C ⁽¹⁾		
	Mo	del-3 (as defined in	[17])			
N ^A	11	1	days	C ⁽¹⁾		
τ _c	32	2 ⁻³¹	seconds	C ⁽¹⁾		
B1	11	2 ⁻¹⁰	seconds	O ⁽²⁾		
B2	10	2 ⁻¹⁶	sec/msd	O ⁽²⁾		
KP	2	1		0		
	Model-4 (as	defined in [15], Mess	sage Type 12)	•		
A _{1WNT}	24	2 ⁻⁵⁰	sec/sec	C ⁽¹⁾		
A _{0WNT}	32	2 ⁻³⁰	seconds	C ⁽¹⁾		
t _{ot}	8	2 ¹²	seconds	C ⁽¹⁾		
WN _t	8	1	weeks	C ⁽¹⁾		
Δt_{LS}	8	1	seconds	C ⁽¹⁾		
WN _{LSF}	8	1	weeks	C ⁽¹⁾		
DN	8	1	days	C ⁽¹⁾		
Δt_{LSF}	8	1	seconds	C ⁽¹⁾		
UTC	3	1		C ⁽¹⁾		
Standard						
ID						
Model-5 (as defined in [18])						
A _{0UTC}	32	2 ⁻³⁰	Seconds	C ⁽¹⁾		
A _{1UTC}	24	2 ⁻⁵⁰	sec/sec	C ⁽¹⁾		
Δt_{LS}	8	1	Seconds	C ⁽¹⁾		
WN _{LSF}	8	1	Weeks	C ⁽¹⁾		
DN	8	1	Days	C ⁽¹⁾		
Δt_{LSF}	8	1	Seconds	C ⁽¹⁾		
Note 1: All of these fields shall be present together, or none of						
them shall be present.						
Note 2: If the optional elements are included, both elements shall be						

Note 2: If the optional elements are included, both elements shall be included.

UTC Standard ID

If GANSS ID indicates SBAS, this field indicates the UTC standard used for the SBAS network time indicated by SBAS ID to UTC relation as defined in Table A.55.18 ([15], Message Type 12).

Table A.55.18: UTC Standard ID

UTC Standard	Value of UTC Standard ID
UTC as operated by the Communications Research Laboratory (CRL), Tokyo, Japan	0
UTC as operated by the National Institute of Standards and Technology (NIST)	1
UTC as operated by the U. S. Naval Observatory (USNO)	2
UTC as operated by the International Bureau of Weights and Measures (BIPM)	3
Reserved for future definition	4-7

GANSS Auxiliary Information

This field contains additional information dependent on the GANSS ID and is shown in Table A.55.19. If GANSS Auxiliary Information is provided together with other satellite dependent GANSS assistance data (i.e., any of DGANSS Corrections, GANSS Navigation Model, GANSS Data Bit Assistance, or GANSS Reference Measurement Information IEs) and RRLP pseudo-segmentation is used, the GANSS Auxiliary Information should be provided for the same satellites and in the same RRLP segment as the other satellite dependent GANSS assistance data.

Table A.55.19: GANSS Auxiliary Information Parameter Format

Parameter	Range	Bits	Resolution	Incl.		
One of the following group of elements can be included, dependent on the GANSS ID						
The following fields may of	only be present if GANSS ID indicates N	Nodernized G	PS and occur once per s	atellite		
	(N_SAT times):					
SV ID	0-63	6		M		
Signals Available	Table A.59	8		M		
The following fields ma	ay only be present if GANSS ID indicate	s GLONASS	and occur once per sate	llite		
	(N_SAT times):					
SV ID	0-63	6		M		
Signals Available	Table A.59	8		M		
Channel number	-7 – 13	5		М		

SV ID

This field specifies the SV for which the GANSS Auxiliary Information is given. The interpretation of SV ID is defined in Table A.10.14.

Range: 0-63

Signals Available

This field indicates the ranging signals supported by the satellite indicated by SV ID. This field is given as a bit string as shown in Table A.59 for a particular GANSS. If a bit is set to '1' it indicates that the satellite identified by SV ID transmits ranging signals according to the signal correspondence in Table A.59. If a bit is set to '0' it indicates that the corresponding signal is not supported on the satellite identified by SV ID.

Channel number

This field indicates the GLONASS carrier frequency number of the satellite identified by SV ID, as defined in [17].

DGANSS Corrections Validity Period

This element is an extension to the DGANSS Corrections IE and provides the validity period of the differential corrections for each satellite and signal included in the DGANSS Corrections IE (see Table A.43). This element may only be included if the DGANSS Corrections IE is included in the GANSS Generic Assistance Data element.

Table A.55.20: DGANSS Corrections Validity Period

Parameter	# Bits	Scale Factor	Range	Units	Incl.
N_SGN_TYPE	2	1	1-3		M
The following fiel	ds occur or	nce per GANSS si	gnal type (N_SGN	N_TYPE times)	
GANSS_Signal_ID	3				М
N_SAT	4	1	1-16		М
The fol	lowing field:	s occur once per s	atellite (N_SAT ti	mes)	
SV_ID	6		0-63		М
UDRE Growth Rate	3		0-7		М
Time of Validity for	3		0-7		M
UDRE Growth Rate					

N_SGN_TYPE

This field indicates the number of GNSS signal types included in DGANSS Corrections Validity Period IE. This field shall be set to the same value as the N_SGN_TYPE parameter in the DGANSS Corrections element in Table A.43.

GANSS_Signal_ID

DGANSS corrections validity period are provided per GNSS signal type identified by GANSS_Signal_ID. The supported signals are listed in Table A.59. This field shall be set to the same value as the GANSS_Signal_ID parameter in the DGANSS Corrections element in Table A.43.

N SAT

This field indicates the number of satellites for which differential corrections validity period is available. This field shall be set to the same value as the N_SAT parameter in the DGANSS Corrections element in Table A.43.

SV ID

This field identifies the satellite for which the corrections validity period is applicable. The interpretation of SV ID is defined in Table A.10.14. The UDRE Growth Rate and Time of Validity for UDRE Growth Rate IEs shall be included for the same SV IDs as the differential corrections in Table A.43 are provided.

UDRE Growth Rate

This field provides an estimate of the growth rate of uncertainty $(1-\sigma)$ in the corrections for the particular satellite identified by SV_ID. The estimated UDRE at time value specified in the "Time of Validity for UDRE Growth Rate" t_I is calculated as follows:

$$UDRE(t_0+t_1) = UDRE(t_0) \times UDRE$$
 Growth Rate

where t_0 is the DGANSS Reference Time for which the corrections in Table A.43 are valid, t_1 is the "Time of Validity for UDRE Growth Rate" field as shown in Table A.55.21, UDRE(t_0) is the User Differential Range Error field as provided in Table A.43, and "UDRE Growth Rate" field is the factor as shown in Table A.55.21.

Table A.55.21: Values of UDRE Growth Rate IE

Value	Indication
000	1,5
001	2
010	4
011	6
100	8
101	10
110	12
111	16

Time of Validity for UDRE Growth Rate

This field specifies the time when the "UDRE Growth Rate" field applies. The meaning of the values for this field is described in Table A.55.21a.

Table A.55.21a: Time of Validity for UDRE Growth Rate IE

Value	Indication
	[seconds]
000	20
001	40
010	80
011	160
100	320
101	640
110	1280
111	2560

GANSS Time Model Extension

This element is an extension to the GANSS Time Model IE and is shown in Table A.55.22. If GANSS Time Model is provided by the SMLC, the GANSS Time Model Extension shall also be provided.

NOTE: For reasons of backward compatibility, this IE is not defined for a Release 9 or earlier SMLC and would be ignored, when received, by a Release 9 or earlier MS. This means that when the element is expected but is not received, the SMLC is Release 9 or earlier.

Table A.55.22: GANSS Time Model Extension

Parameter	# Bits	Scale Factor	Range	Units	Incl.
GNSS_TO_ID	3				M
Delta T	8	1	-128 - 127	seconds	М

GNSS_TO_ID

This field is the same as defined in Table A.41 and specifies GNSS for which the GANSS Time Model Extension is provided.

Delta T

This field specifies the integer seconds of the GNSS-GNSS Time Offset provided in the GANSS Time Model in Table A 41.

GANSS Reference Measurement Extension

This element is an extension to the GANSS Reference Measurement Information IE and is shown in Table A.55.23. If GANSS Reference Measurement Information is provided by the SMLC, the GANSS Reference Measurement Extension shall also be provided.

NOTE: For reasons of backward compatibility, this IE is not defined for a Release 9 or earlier SMLC and would be ignored, when received, by a Release 9 or earlier MS. This means that when the element is expected but is not received, the SMLC is Release 9 or earlier.

Table A.55.23: GANSS Reference Measurement Extension

Parameter	# Bits	Scale Factor	Range	Units	Incl.
Num_Sat	4	1	0-15		М
The following fields occur once per satellite (Num_Sat times)					
SV_ID	6		0-63		M
Azimuth LSB	4	0,703125	0-10,546875	degrees	M
Elevation LSB	4	0,703125	0-10,546875	degrees	М

Num_Sat

This field indicates the number of satellites for which GANSS Reference Measurement is provided. This field shall be set to the same value as the Num_Sat parameter in the GANSS Reference Measurement Information element in Table A.52.

SV_ID

This field identifies the satellite for which the GANSS Reference Measurement is provided. This field shall be set to the same value as the SV_ID field in Table A.52.

Azimuth LSB

This field specifies the 4 least significant bits of the satellite azimuth angle. The 5 most significant bits are provided in the Azimuth field in Table A.52. The full satellite azimuth is constructed as "Azimuth" \times 11,.25 + "Azimuth LSB" \times 0,703125 degrees.

Elevation LSB

This field specifies the 4 least significant bits of the satellite elevation angle. The 5 most significant bits are provided in the Elevation field in Table A.52. The full satellite elevation is constructed as "Elevation" \times 11,25 + "Elevation LSB" \times 0,703125 degrees.

GANSS Almanac Model Extension

This element is an extension to the GANSS Almanac Model IE and is shown in Table A.55.24. If GANSS Almanac Model is provided by the SMLC, the GANSS Almanac Model Extension shall also be provided.

NOTE: For reasons of backward compatibility, this IE is not defined for a Release 9 or earlier SMLC and would be ignored, when received, by a Release 9 or earlier MS. This means that when the element is expected but is not received, the SMLC is Release 9 or earlier.

Table A.55.24: GANSS Almanac Model Extension

Parameter	# Bits	Scale Factor	Range	Units	Incl.
Complete Almanac Provided	1			Boolean	M

Complete Almanac Provided

This field indicates whether the SMLC provided Almanac for the full GANSS constellation or not. TRUE means complete GANSS almanac is provided.

GANSS Almanac Model Extension-R12

This element is an extension to the GANSS Almanac Model IE and is shown in Table A.55.25. It is used only if GANSS-ID is Galileo in this version of protocol.

Table A.55.25: GANSS Almanac Model Extension-R12

Parameter	# Bits	Scale Factor	Units	Incl.
T _{oa} -Ext	10	600	S	O (note 1)
IOD _a -Ext	4			O (note 2)

NOTE 1: If T_{oa} in GANSS Almanac Model element (Table A.54) is present, this field shall not be present.

NOTE 2: If IOD_a in GANSS Almanac Model element (Table A.54) is present, this field shall not be present.

Toa-Ext

This field specifies the Almanac Reference Time common to all satellites in GANSS Almanac Model using Keplerian Parameters given in GNSS specific system time.

Range: 256 - 1023

In case of GNSS-ID does indicate Galileo, the scale factor is 600 seconds.

IOD_a-Ext

This field specifies the Issue-Of-Data common to all satellites in GANSS Almanac Model using Keplerian Parameters.

Range: 4 - 15

GANSS Reference Measurement Extension-R12

This element is an extension to the GANSS Reference Measurement Information IE and is shown in Table A.55.25.a. The SMLC should include this field only if supported by the MS.

Table A.55.25.a: GANSS Reference Measurement Extension-R12

Parameter	# Bits	Scale Factor	Range	Units	Incl.
GANSS_Signal_ID	3		0-7		M
Confidence	7	1	0-100	percent	0
Num_Sat	4	1	0-15		0
The following	fields, if inc	luded, occur once	per satellite (Num	n_Sat times)	
SV_ID	6		0-63		M
Doppler Uncertainty	3		60, 80, 100,	m/s	М
Extension			120, 'No		
			Information'		

GANSS_Signal_ID

This field specifies the GNSS signal type. The supported signals are listed in Table A.59.

Confidence

This field specifies the confidence level of the reference location area or volume used to calculate the GANSS Reference Measurement parameters (search windows). A high percentage value (e.g., 98% or more) indicates to the MS that the provided search windows are reliable. The SMLC should include this field to indicate the confidence level of the provided information.

Range: 0 - 100

Num_Sat

This field indicates the number of satellites for which GANSS Reference Measurement Extension-R12 is provided.

SV_ID

This field identifies the satellite for which the GANSS Reference Measurement Extension-R12 is provided.

Doppler Uncertainty Extension

If this field is present, the MS that supports this field shall ignore the Doppler Uncertainty (Table A.52) field. This field specifies additional Doppler uncertainty values. It is defined such that the Doppler experienced by a stationary MS is in the range [Doppler-Doppler Uncertainty Extension] to [Doppler+Doppler Uncertainty Extension]. Doppler Uncertainty Extension is given in unit of m/s by multiplying the Doppler Uncertainty Extension value in Hz by the nominal wavelength of the assisted signal.

Enumerated values define 60 m/s, 80 m/s, 100 m/s, 120 m/s, and "No Information".

DBDS Corrections

These fields specify the DBDS corrections to be used by the MS.

Table A.55.25.b: DBDS Corrections

Parameter	# Bits	Scale Factor	Range	Units	Incl.
	The follow	wing fields occur o	nce per message		
N_SGN_TYPE	2	1	1 - 3		М
DBDS Reference Time	12	1	0 - 3599	seconds	M
The following	fields occur	once per GANSS	signal type (N_SG	N_TYPE time	s)
N_SAT	6	1	1 - 64		М
DBDS Signal ID	3				М
The	following fie	lds occur once pe	r satellite (N_SAT	times)	
SV_ID	6		0 - 63		М
UDREI	4		0 - 15		M
RURAI	4		0 - 15		M
Delta T	13	0.1	-409.5 – 409.5	meters	M

DBDS Reference Time

This field indicates the baseline time for which the DBDS corrections are valid as modulo 3600 s. DBDS Reference Time is given in BDS system time.

Range: 0 - 3599 s

DBDS Signal ID

DBDS corrections are provided per BDS signal type identified by BDS Signal_ID. The supported signals are listed in Table A.59.

UDREI

UDRE is used to describe the error of equivalent clock correction in meters. It is indicated by user differential range error index (UDREI). It occupies 4 bits for each satellite within the range of 1~15 and the update rate is 3 seconds. The corresponding relationship between UDRE and UDREI is shown in A.55.26.

Table A.55.26: UDREI definitions

UDREI	UDRE		
	(meters, 99.9%)		
0	1		
1	1.5		
2	2		
3	3		
4	4		
5	5		
6	6		
7	8		
8	10		
9	15		
10	20		
11	50		
12	100		
13	150		
14	Not monitored		
15	Not available		

RURAI

Regional User Range Accuracy (RURA) is used to describe the satellite signal pseudo-range error in meters. The satellite signal integrity information is indicated with the Regional User Range Accuracy Index (RURAI). It occupies 4 bits for each satellite so the effective range of RURAI is 0 to 15. See Table A.55.27 for the corresponding relationship between RURAI and RURA.

Table A.55.27: RURAI definitions

RURAI	RURA		
	(meters, 99.9%)		
0	0.75		
1	1		
2	1.25		
3	1.75		
4	2.25		
5	3		
6	3.75		
7	4.5		
8	5.25		
9	6		
10	7.5		
11	15		
12	50		
13	150		
14	300		
15	> 300.0		

Delta_T

The BDS differential correction information is expressed in equivalent clock correction (Δt). It occupies 13 bits for each satellite with the unit and scale factor of meter and 0.1 respectively and is expressed with two's complement. The MSB is for the sign bit (+ or -).

BDS Grid Model

The BDS Grid Model parameters are used to estimate the ionospheric distortions on pseudoranges as described in [18] on page 76.

Table A.55.28: BDS Grid Model

Parameter	# Bits	Scale Factor	Range	Units	Incl.
	The follow	wing fields occur o	nce per message)	
BDS Reference Time	12	1	0 - 3599	seconds	М
N_IGP	9	1	1 - 320 ⁽¹⁾	-	М
Tl	ne following f	ields occur once p	er IGP (N_IGP ti	mes ⁽¹⁾)	
IGP number	9		1320		М
Vertical Delay	9	0.125	0 - 63.625	meters	M
GIVEI	4				М
NOTE 1: Up to 16 instance	es are used ir	this version of the	e specification. Th	ne values 17 to	320 are

NOTE 1: Up to 16 instances are used in this version of the specification. The values 17 to 320 are reserved for future use.

BDS Reference Time

This field indicates the baseline time for which the BDS Grid Model are valid as modulo 3600 s. BDS Reference Time is given in BDS system time.

Range: 0 - 3599 s

IGP number

This field indicates the ionospheric grid point (IGP) number as defined in [18].

Vertical DelayVertical delay is used to indicate the vertical ionosphere delay on B1I signal at the ith grid point, expressed in scale factor of 0.125 and with unit of meters. The effective range of vertical delay is between 0 to 63.625 meters.

GIVEI

The grid ionosphere vertical error (GIVE) describes the delay correction accuracy at ionosphere grid points and is indicated with GIVEI. See Table A.55.29 for the relationship between GIVEI and GIVE.

Table A.55.29: GIVEI definitions

GIVEI	GIVE
	(meters, 99.9%)
0	0.3
1	0.6
2	0.9
3	1.2
4	1.5
5	1.8
6	2.1
7	2.4
8	2.7
9	3
10	3.6
11	4.5
12	6
13	9
14	15
15	45

A.4.2.7 GANSS Carrier-Phase Measurement Request Element

This element is optional and controls if the MS should return carrier-phase measurements in GANSS Measurement Information IE or not to the SMLC. The inclusion of this parameter implies use of measure Position Request. The description is found in sub-chapter 2.2.4d.

A.4.2.8 GANSS TOD - GSM Time Association Request Element

This element is optional and controls if the MS should return GANSS TOD - GSM Time Association Measurements or not to the SMLC. The inclusion of this parameter implies use of measure Position Request. The description is found in sub-chapter 2.2.4e.

A.5 Assistance Data Acknowledgement

A.5.1 General

The MS sends the Assistance Data Acknowledgement component to the SMLC to indicate that it has received the whole Assistance Data component.

A.6 Protocol Error

A.6.1 General

This component is used by the receiving entity (SMLC or MS) to indicate to the sending entity, that there is a problem that prevents the receiving entity to receive a complete and understandable component.

This component has the following values:

- '0': Undefined;
- '1': Missing Component;
- '2': Incorrect Data;
- '3': Missing Information Element or Component Element;
- '4': Message Too Short;
- '5': Unknown Reference Number.

A.6.2 Extended Reference IE

This IE shall be included in any Protocol Error message if and only if an Extended Reference IE was received in the corresponding previous Measure Position Request or Assistance Data message.

NOTE: For reasons of backward compatibility, a Release 4 or earlier MS will not include this IE.

The Extended Reference IE contains the following elements.

SMLC code: an integer in the range 0-63. The value returned by a target MS in a Protocol Error message shall

equal the value received from the SMLC in the earlier Measure Position Request or Assistance Data

message.

Transaction ID: an integer in the range 0-262143 distinguishing different RRLP transactions in different MSs

currently being served by the same SMLC. The value returned by a target MS in a Protocol Error message shall equal the value received from the SMLC in the earlier Measure Position Request or

Assistance Data message.

A.7 Positioning Capability Request

A.7.1 General

The SMLC sends the Positioning Capability Request component to the MS to request the MS positioning capabilities, types of assistance data supported and any assistance data that may be needed. It contains the following elements.

Table A.56: Positioning Capability Request component content

Element	Type/Reference	Presence
Extended Reference	Extended Reference 2.2.5	M
GANSS Position Method Parameters	GANSS Position Method Parameters, Table A.58	0

A.8 Positioning Capability Response

A.8.1 General

The Positioning Capability Response is a RRLP component from the MS to the network. It is the response to the Positioning Capability Request. It contains the following elements.

Table A.57: Positioning Capability Response component content

Element	Type/Reference	Presence
Extended Reference	Extended Reference 2.2.5	M
Positioning Capabilities	Positioning Capabilities 8.2.1	M
Assistance Data Supported	Assistance Data Supported 8.2.2	0
Assistance Data Needed	Assistance Data Needed 8.2.3	0

A.8.2 Elements

A.8.2.1 Positioning Capabilities

This element indicates the positioning methods and other positioning capabilities supported by the MS. The inclusion of this element is mandatory.

The MS may indicate support for non-GANSS position methods and/or GANSS position methods. The MS indicates its support for non-GANSS position methods using a bit string with one bit representing each method, set to one if the method is supported and zero if it is not. The following Non-GANSS Position Methods can be identified:

- MS Assisted E-OTD;
- MS Based E-OTD;
- MS Assisted GPS;
- MS Based GPS;
- Standalone GPS.

The MS indicates its support for GANSS position methods by providing the parameters shown in Table A.58 for each GANSS system supported.

Table A.58: GANSS Position Method Support

GANSS Position Method Parameters
GANSS_ID
GANSS Position Method Types
GANSS Signals
SBAS ID

GANSS_ID

Range: 0 - 7

This field indicates the GANSS. The supported GANSS are defined in sub-clause A.4.2.6.2 (Table A.40). Absence of this field indicates Galileo.

GANSS Position Method Types

For each supported GANSS system, the MS shall and SMLC may indicate which method types are supported. This is represented using a bit string with one bit per method type where a one value indicates support and a zero value no support. The following GANSS Method Types can be identified:

- MS Assisted;
- MS Based;
- Standalone.

GANSS Signals

For each supported GANSS system, the MS shall and SMLC may indicate which signals are supported. This is represented using a bit string with one bit per signal where a one value indicates support and a zero value no support. The individual signals are denoted generically as signal1, signal2 etc. in the ASN.1 in clause 5.1. Table A.59 shows the signal correspondence for each defined GANSS system. Unfilled table entries indicate no assignment and shall either not be included or set to zero if included.

The GANSS Signal Correspondence in Table A.59 is also used when a single signal is addressed (e.g., when reporting GANSS measurements or providing GANSS assistance data). In this case, an Integer value is used to indicate the signal, and the values 0 to 7 correspond to GANSS Signal 1 to 8, respectively.

Table A.59: GANSS Signal Correspondence

GANSS System	Signal 1	Signal 2	Signal 3	Signal 4	Signal 5	Signal 6	Signal 7	Signal 8
Galileo	E1	E5a	E5b	E6	E5a+E5b			
Modernized GPS	L1C	L2C	L5					
SBAS	L1							
QZSS	QZS-L1	QZS- L1C	QZS- L2C	QZS-L5				
GLONASS	G1	G2	G3					
BDS	B1I							

SBAS ID

If GANSS ID in Table A.58 indicates support for SBAS, this field shall be present to indicate support of specific SBAS using a bit map with one bit per SBAS where a one value indicates support and a zero value no support.

Table A.59.a: SBAS ID Correspondence

	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
ĺ	WAAS	EGNOS	MSAS	GAGAN	reserved	reserved	reserved	reserved

The MS shall also indicate whether it supports multiple measurement sets for the MS Assisted position methods listed below. This is represented using a bit string with one bit representing each position method which is set to a one if multiple measurement sets are supported for that method and to a zero if not. The following MS Assisted Position Methods associated with Multiple Measurement Sets can be identified:

- E-OTD;
- GPS:
- GANSS.

A.8.2.2 Assistance Data Supported

This element indicates the types of assistance data that the MS supports for GPS and GANSS and is shown in Table A.59.b.

Table A.59.b: Assistance Data Supported

GANSS Position Method Parameters
GPS Assistance Data
GANSS Assistance Data
GANSS Additional Assistance Data Choices

GPS Assistance Data

In the case of GPS, support for each of the following types of assistance data can be individually indicated using a bit string in which a one value indicates support and a zero no support. The following GPS Assistance Indications can be identified:

- Almanac;
- UTC model;
- Ionospheric Model;
- Navigation Model;
- DGPS Corrections;
- Reference Location:
- Reference Time:
- Acquisition Assistance;
- Real Time Integrity;
- Ephemeris Extension;
- Ephemeris Extension Check;
- GPS Acquisition Assistance Extension-R12.
- DBDS Corrections
- BDS Grid Model

GANSS Assistance Data

In the case of GANSS, support for each of the following types of common assistance data is indicated using a bit string in which each bit represents one type of assistance data and is set to a one to indicate support and a zero to indicate no support. The following Common GANSS Assistance Indications can be identified:

- GANSS Reference Time;
- GANSS Reference Location;
- GANSS Ionospheric Model;
- GANSS Additional Ionospheric Model;
- GANSS Earth Orientation Parameters.

The MS indicates its support for assistance data specific to each GANSS system by providing the parameters shown in Table A.60 for each GANSS system supported.

Table A.60: GANSS Assistance Support

GANSS Assistance Parameters
GANSS_ID
GANSS Assistance

GANSS_ID

Range: 0 - 7

This field indicates the GANSS. The supported GANSS are defined in sub-clause A.4.2.6.2 (Table A.40). Absence of this field indicates Galileo.

GANSS Assistance

Supported GANSS Assistance data is indicated using a bit string in which each bit represents one type of assistance data and is set to a one to indicate support and a zero to indicate no support. The following types of Specific GANSS Assistance Indications can be identified.

- GANSS Real Time Integrity;
- GANSS Differential Corrections;
- GANSS Almanac;
- GANSS Reference Measurement Information;
- GANSS Navigation Model;
- GANSS Time Model GNSS-UTC;
- GANSS Time Model GNSS-GNSS;
- GANSS Data Bit Assistance;
- GANSS Ephemeris Extension;
- GANSS Ephemeris Extension Check;
- GANSS Additional UTC Model;
- GANSS Auxiliary Information;
- GANSS Reference Measurement Extension-R12.

GANSS Additional Assistance Data Choices

For GANSS Assistance Data elements for which multiple choices exist (GANSS Clock Model (Table A.49.1), GANSS Orbit Model (Table A.49.2), GANSS Almanac Model (Table A.54), and GANSS UTC Model/Additional UTC Model (Table A.55/A.55.17)) the MS and SMLC shall support the native formats choice as defined in the relevant ICDs for each GANSS signal. The MS can indicate which additional non-native choice(s) is(are) supported for a particular GANSS using a bit map with one bit per model where a one value indicates support and a zero value no support. Note that native support need not be indicated in this bit map.

Table A.61: GANSS Additional Assistance Data Choices

Parameter	#Bits	Type/Reference	Prsesence				
The following fields occur once per GANSS (Num_GANSS times)							
GANSS ID	3	Table A.40	O ⁽¹⁾				
GANSS Clock Model Choice	8	Bit String –Table A.62	C ⁽²⁾				
GANSS Orbit Model Choice	8	Bit String –Table A.62	C ⁽²⁾				
GANSS Almanac Model Choice	8	Bit String –Table A.62	C ⁽³⁾				
GANSS UTC Model Choice	8	Bit String –Table A.62	C ⁽⁴⁾				

Note 1: Absence of this field indicates Galileo.

Note 2: These elements may only be present if GANSS Navigation Model support is indicated in GANSS Assistance.

Note 3: This element may only be present if GANSS Almanac support is indicated in GANSS Assistance.

Note 4: This element may only be present if GANSS Additional UTC Model support is indicated in GANSS Assistance.

Table A.62: Bit String of GANSS Additional Assistance Data Choices

Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7	Model 8	
The individual Models 1-8 are identified in Tables A.49.1, A.49.2, A.54, and A.55/A.55.17.								
Non defined Models in Assistance Data Choices shall have the value '0' at the corresponding								
bit position.								

A.8.2.3 Assistance Data Needed

This element indicates the types of assistance data that the MS may need to obtain a location estimate or positioning measurements. The MS shall use this IE to indicate to the SMLC all the supported assistance data types for which the MS does not have current versions using the assistance data request IEs defined in 3GPP TS 49.031. The SMLC can then decide which subset of these assistance data types if any to download. The IE is encoded using the request for assistance data IEs defined for GPS and GANSS in 3GPP TS 49.031, with the following exceptions:

Requested GPS Assistance Data (clause 10.10 in 3GPP TS 49.031):

- If the MS supports Navigation Model (Bit D), Ephemeris Extension (Bit J), and Ephemeris Extension Check (Bit K), all three bits D, J, and K can be set to value 1 if the MS has no current versions of these assistance data types. If bit D is set to value 1, the coding of octets 5 to 8+2n shall be according to Figure 10.10.2 in clause 10.10 of 3GPP TS 49.031.

Requested GANSS Assistance Data (clause 10.31 in 3GPP TS 49.031):

- If the MS supports Navigation Model (Bit M), Ephemeris Extension (Bit N), and Ephemeris Extension Check (Bit R), all three bits M, N, and R can be set to value 1 if the MS has no current versions of these assistance data types.
- If the MS supports GANSS Ephemeris Extension (Bit N) and the MS has no current version of this assistance data type, bit N shall be set to value 1 but the corresponding extension octets in Figure 10.31.3d of 3GPP TS 49.031 shall be omitted.
- If the MS supports GANSS Data Bit Assistance (Bit Q) and the MS has no current version of this assistance data type, bit Q shall be set to value 1 but the corresponding extension octets in Figure 10.31.3c of 3GPP TS 49.031 shall be omitted.
- If the MS supports GANSS Ephemeris Extension Check (Bit R) and the MS has no current version of this assistance data type, bit R shall be set to value 1 but the corresponding extension octets in Figure 10.31.3e of 3GPP TS 49.031 shall be omitted.

Annex B (informative): Change History

	Meeting#	Tdoc	CR	Rev	Subject/Comment	New Version
J	anuary 2016	-	-	-	Rel-13 version based on v12.3.0.	13.0.0

History

Document history		
V13.0.0	January 2016	Publication