ETSI TS 138104 v15.18.0 (2022-10)

TECHNICALSPECIFCATION

5G;
NR;
Base Station (BS) radio transmission and reception (3GPP TS 38.104 version 15.18.0 Release 15)

Reference	
RTS/TSGR-0438104vfiO	
Keywords	
5G	
ETSI	
650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE	
Tel.: +33492944200 Fax: +33493654716	
Siret № 3486235 Association à but no Sous-Préfecture de Gr	00017 - APE 7112B ucratif enregistrée à la (06) N° w061004871

Important notice

The present document can be downloaded from: http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx
If you find a security vulnerability in the present document, please report it through our Coordinated Vulnerability Disclosure Program:
https://www.etsi.org/standards/coordinated-vulnerability-disclosure

Notice of disclaimer \& limitation of liability

The information provided in the present deliverable is directed solely to professionals who have the appropriate degree of experience to understand and interpret its content in accordance with generally accepted engineering or other professional standard and applicable regulations.
No recommendation as to products and services or vendors is made or should be implied.
No representation or warranty is made that this deliverable is technically accurate or sufficient or conforms to any law and/or governmental rule and/or regulation and further, no representation or warranty is made of merchantability or fitness for any particular purpose or against infringement of intellectual property rights.
In no event shall ETSI be held liable for loss of profits or any other incidental or consequential damages.
Any software contained in this deliverable is provided "AS IS" with no warranties, express or implied, including but not limited to, the warranties of merchantability, fitness for a particular purpose and non-infringement of intellectual property rights and ETSI shall not be held liable in any event for any damages whatsoever (including, without limitation, damages for loss of profits, business interruption, loss of information, or any other pecuniary loss) arising out of or related to the use of or inability to use the software.

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.
© ETSI 2022.
All rights reserved.

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations pertaining to these essential IPRs, if any, are publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI Directives including the ETSI IPR Policy, no investigation regarding the essentiality of IPRs, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

DECT $^{\text {TM }}$, PLUGTESTS ${ }^{\text {TM }}$, UMTS ${ }^{\text {TM }}$ and the ETSI logo are trademarks of ETSI registered for the benefit of its Members. 3GPP ${ }^{\text {TM }}$ and LTE $^{\text {TM }}$ are trademarks of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners. oneM2M ${ }^{\text {TM }}$ logo is a trademark of ETSI registered for the benefit of its Members and of the oneM2M Partners. GSM ${ }^{\circledR}$ and the GSM logo are trademarks registered and owned by the GSM Association.

Legal Notice

This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).
The present document may refer to technical specifications or reports using their 3GPP identities. These shall be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between 3GPP and ETSI identities can be found under http://webapp.etsi.org/key/queryform.asp.

Modal verbs terminology

In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).
"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

Contents

Intellectual Property Rights 2
Legal Notice 2
Modal verbs terminology 2
Foreword 12
1 Scope 13
2 References 13
3 Definitions, symbols and abbreviations 14
3.1 Definitions 14
3.2 Symbols 18
3.3 Abbreviations 20
4 General 22
4.1 Relationship with other core specifications 22
4.2 Relationship between minimum requirements and test requirements 22
4.3 Conducted and radiated requirement reference points 22
4.3.1 BS type 1-C 22
4.3.2 BS type 1-H 23
4.3.3 $\quad B$ type 1-O and BS type 2-O 24
4.4 Base station classes 24
4.5 Regional requirements 25
4.6 Applicability of requirements 26
4.7 Requirements for contiguous and non-contiguous spectrum 27
4.8 Requirements for BS capable of multi-band operation 27
$4.9 \quad$ OTA co-location with other base stations 29
5 Operating bands and channel arrangement. 30
5.1 General 30
5.2 Operating bands 30
5.3 BS channel bandwidth 31
5.3.1 General 31
5.3.2 Transmission bandwidth configuration32
5.3.3 Minimum guardband and transmission bandwidth configuration 32
5.3.4 RB alignment 34
5.3A BS channel bandwidth for CA. 38
5.3A. $1 \quad$ Transmission bandwidth configuration for CA 38
5.3A. 2 Minimum guardband and transmission bandwidth configuration for CA 38
5.4 Channel arrangement 40
5.4.1 Channel spacing 40
5.4.1.1 Channel spacing for adjacent NR carriers 40
5.4.1.2 Channel spacing for CA 40
5.4.2 Channel raster 41
5.4.2.1 NR-ARFCN and channel raster. 41
5.4.2.2 Channel raster to resource element mapping. 41
5.4.2.3 Channel raster entries for each operating band. 42
5.4.3 Synchronization raster 43
5.4.3.1 Synchronization raster and numbering. 43
5.4.3.2 Synchronization raster to synchronization block resource element mapping. 44
5.4.3.3 Synchronization raster entries for each operating band. 44
6 Conducted transmitter characteristics 46
6.1 General 46
6.2 Base station output power46
6.2.1 General.46
6.2.2 Minimum requirement for $B S$ type 1-C. 47
6.2.3 Minimum requirement for BS type 1-H 47
6.2.4 Additional requirements (regional) 47
6.3 Output power dynamics 47
6.3.1 General 47
6.3.2 RE power control dynamic range 47
6.3.2.1 General 47
6.3.2.2 Minimum requirement for BS type 1-C and BS type 1-H 476.3.3
6.3.3.1
General
General 48 486.3 .3 .2Total power dynamic range48
Minimum requirement for BS type 1-C and BS type 1-H. 48
6.4 Transmit ON/OFF power 49
6.4.1 Transmitter OFF power 49
6.4.1.1 General 49
6.4.1.2 Minimum requirement for $B S$ type 1-C 49
Minimum requirement for $B S$ type 1-H. 49
6.4.1.3
Transmitter transient period 49
General 49
6.4.2.1
Minimum requirement for BS type 1-C and BS type 1-H. 50
6.4.2.3 Void. 50
6.5 Transmitted signal quality 50
6.5.1 Frequency error 50
6.5.1.1 General. 50
6.5.1.2 Minimum requirement for BS type 1-C and BS type 1-H. 51
6.5.2 Modulation quality 51
6.5.2.1 General 51
6.5.2.2 Minimum Requirement for BS type 1-C and BS type 1-H. 516.5.2.36.5.3
6.5.3.1
EVM frame structure for measurement 51
General 51Time alignment error51
6.5.3.2 6.5.3 Minimum requirement for BS type 1-C and BS type 1-H 52
. 6 Unwanted emissions 52
6.6.1 General 52
6.6.2 Occupied bandwidth 53
6.6.2.1 General. 53
6.6.2.2 Minimum requirement for BS type 1-C and BS type 1-H 53
6.6.3 Adjacent Channel Leakage Power Ratio 536.6.3.1
General 53
6.6.3.2 Limits and Basic limits 536.6.3.36.6.3.4
Minimum requirement for BS type 1-C 56
6.6.46.6.4.16.6.4.26.6.4.2.1Minimum requirement for $B S$ type $1-H$.576.6.2.2. Basic limits for Wide Area BS (Category A)
57
Operating band unwanted emissions576.6.4.2.25959
6.6.4.2.2.1 Category B requirements (Option 1) 59
Category B requirements (Option 2) 6.6.4.2.2.2 61
6.6.4.2.3 Basic limits for Medium Range BS (Category A and B) 61
6.6.4.2.4 Basic limits for Local Area BS (Category A and B) 62
6.6.4.2.5 Basic limits for additional requirements62
Limits in FCC Title 47 62
6.6.4.2.5.1
Protection of DTT
Protection of DTT 62 62
6.6.4.2.5.2
6.6.4.2.5.2
Minimum requirements for $B S$ type 1-C 63
6.6.4.4 Minimum requirements for BS type 1-H 63
6.6.5 Transmitter spurious emissions 63
6.6.5.1 General 63
6.6.5.2 Basic limits 64
6.6.5.2.1 General transmitter spurious emissions requirements 64
6.6.5.2.2 Protection of the BS receiver of own or different BS 64
6.6.5.2.3 Additional spurious emissions requirements 65
6.6.5.2. Co-location with other base stations. 72
6.6.5.3 Minimum requirements for $B S$ type 1-C 77
6.6.5.4 Minimum requirements for $B S$ type 1-H 77
6.7 Transmitter intermodulation 77
6.7.1 General 77
6.7.2 Minimum requirements for BS type 1-C 78
6.7.2.1 Co-location minimum requirements 78
6.7.2.2 Additional requirements 78
6.7.3 Minimum requirements for $B S$ type 1-H 79
6.7.3.1 Co-location minimum requirements 79
6.7.3.2 Intra-system minimum requirements. 79
6.7.3.3 Additional requirements 80
7 Conducted receiver characteristics 81
7.1 General 81
7.2 Reference sensitivity level 81
7.2.1 General 81
7.2.2 Minimum requirements for $B S$ type $1-C$ and $B S$ type 1-H 82
7.3 Dynamic range 83
7.3.1 General 83
7.3.2 Minimum requirement for $B S$ type 1-C and BS type 1-H. 83
7.4 In-band selectivity and blocking 86
7.4.1 Adjacent Channel Selectivity (ACS) 86
7.4.1.1 General 86
7.4.1.2 Minimum requirement for BS type 1-C and BS type 1-H 86
7.4.1.3 Void 88
7.4.1.4 Void. 88
7.4.2 In-band blocking 88
7.4.2.1 General 88
7.4.2.2 Minimum requirement for BS type 1-C and BS type 1-H. 88
7.4.2.3 Void. 90
7.4.2.4 Void. 90
7.5 Out-of-band blocking 907.5.1
7.5.2 90
Minimum requirement for BS type 1-C... $B S$ type 1-H. 90
7.5.3 Co-location minimum requirements for BS type 1-C and BS type 1-H. 91
7.5.4 Void 92
7.6 Receiver spurious emissions. 92
7.6.1 General 92
7.6.2 Basic limits. 92
7.6.3 Minimum requirement for $B S$ type $1-C$. 93
7.6.4 Minimum requirement for $B S$ type 1-H 93
7.7 Receiver intermodulation 93
7.7.1 General 93
7.7.2 Minimum requirement for BS type 1-C and BS type 1-H. 93
7.8 In-channel selectivity 98
7.8.1 General 98
7.8.2 \quad Minimum requirement for $B S$ type 1-C and BS type 1-H. 98
8 Conducted performance requirements. 101
8.1 General 101
8.1.1 Scope and definitions. 101
8.1.2 Void 101
8.2 Performance requirements for PUSCH 101
8.2.1 Requirements for PUSCH with transform precoding disabled 101
8.2.1.1 General 101
8.2.1.2 Minimum requirements. 102
8.2.2 Requirements for PUSCH with transform precoding enabled 109
8.2.2.1 General 109
8.2.2.2 Minimum requirements 110
8.2.3 Requirements for UCI multiplexed on PUSCH 111
8.2.3.1 General 111
8.2.3.2 Minimum requirements 112
8.3 Performance requirements for PUCCH 113
8.3.1 DTX to ACK probability 113
8.3.1.1 General 113
8.3.1.2 Minimum requirement 113
8.3.2 Performance requirements for PUCCH format 0 113
8.3.2.1 General 113
8.3.2.2 Minimum requirements 114
8.3.3 Performance requirements for PUCCH format 1 114
8.3.3.1 NACK to ACK requirements 114
8.3.3.1.1 General 114
8.3.3.1.2 Minimum requirements 115
8.3.3.2 ACK missed detection requirements 116
8.3.3.2.1 General 116
8.3.3.2.2 Minimum requirements 116
8.3.4 Performance requirements for PUCCH format 2 117
8.3.4.1 ACK missed detection requirements 117
8.3.4.1.1 General 117
8.3.4.1.2 Minimum requirements 117
8.3.4.2 UCI BLER performance requirements 117
8.3.4.2.1 General 117
8.3.4.2.2 Minimum requirements 118
8.3.5 Performance requirements for PUCCH format 3 118
8.3.5.1 General 118
8.3.5.2 Minimum requirements 119
8.3.6 Performance requirements for PUCCH format 4 120
8.3.6.1 General 120
8.3.6.2 Minimum requirement 121
8.3.7 Performance requirements for multi-slot PUCCH 121
8.3.7.1 General 121
8.3.7.2 Performance requirements for multi-slot PUCCH format 1 121
8.3.7.2.1 NACK to ACK requirements 121
8.3.7.2.1.1 General 121
8.3.7.2.1.2 Minimum requirements 122
8.3.7.2.2 \quad ACK missed detection requirements 122
8.3.7.2.2.1 General. 122
8.3.7.2.2.2 Minimum requirements 122
8.4 Performance requirements for PRACH 123
8.4.1 PRACH False alarm probability 123
8.4.1.1 General 123
8.4.1.2 Minimum requirement 123
8.4.2 PRACH detection requirements 123
8.4.2.1 General 123
8.4.2.2 Minimum requirements 123
9 Radiated transmitter characteristics 125
9.1 General 125
9.2 Radiated transmit power 125
9.2.1 General 125
9.2.2 Minimum requirement for BS type 1-H and BS type 1-O 125
9.2.3 Minimum requirement for $B S$ type 2- O 126
9.3 OTA base station output power 126
9.3.1 General 126
9.3.2 Minimum requirement for $B S$ type 1-O 126
9.3.3 Minimum requirement for $B S$ type 2- O 127
9.3.4 Additional requirements (regional) 127
9.4 OTA output power dynamics 127
9.4.1 General 127
9.4.2 OTA RE power control dynamic range 127
9.4.2.1 General 127
9.4.2.2 \quad Minimum requirement for $B S$ type 1-O 127
9.4.3 OTA total power dynamic range 127
9.4.3.1 General 127
9.4.3.2 \quad Minimum requirement for BS type 1-O 127
9.4.3.3 Minimum requirement for $B S$ type 2-O 128
9.5 OTA transmit ON/OFF power. 128
9.5.1 General 128
9.5.2 OTA transmitter OFF power. 128
9.5.2.1 General 128
9.5.2.2 Minimum requirement for BS type 1-O 128
9.5.2.3 Minimum requirement for BS type 2-O 128
9.5.3 OTA transient period 128
General 128
9.5.3.1
Minimum requirement for BS type 1-O
Minimum requirement for BS type 1-O 129 129
9.5.3.3 Minimum requirement for $B S$ type 2- O 129
9.6OTA transmitted signal quality129
9.6.1 OTA frequency error 129
General 129
9.6.1.2 Minimum requirement for $B S$ type $1-O$ 129
9.6.1.3 Minimum requirement for BS type 2-O 129
9.6.2 OTA modulation quality 130
9.6.2.1 General 130
9.6.2.2 Minimum Requirement for $B S$ type $1-O$ 130
9.6.2.3 Minimum Requirement for $B S$ type 2- O 130
9.6.2.3.1 EVM frame structure for measurement 130
9.6.3 OTA time alignment error 1309.6.3.1
General 130
9.6.3.2 Minimum requirement for $B S$ type $1-O$ 130
9.6.3.3 Minimum requirement for BS type 2-O 131
9.7 OTA unwanted emissions 131
9.7.1 General 131
9.7.2 OTA occupied bandwidth 132
9.7.2.1 General 132
9.7.2.2 Minimum requirement for BS type 1-O and BS type 2-O 132
9.7.3 OTA Adjacent Channel Leakage Power Ratio (ACLR) 132
9.7.3.1 General 132
9.7.3.2 Minimum requirement for BS type 1-O 132
9.7.3.3 Minimum requirement for $B S$ type 2- O 132
9.7.4 OTA operating band unwanted emissions 134
9.7.4.1 General 134
9.7.4.2 Minimum requirement for BS type 1-O 134
9.7.4.2.1 Additional requirements 135
9.7.4.2.1.1 Protection of DTT 135
9.7.4.2.1.2 Limits in FCC Title 47 135
9.7.4.3 Minimum requirement for $B S$ type 2- O 1359.7.4.3.1
1359.7.4.3.2General
9.7.4.3. OTA operating band unwanted emission limits (Category A) 136
9.7.4.3.3 OTA operating band unwanted emission limits (Category B) 137
9.7.4.3.4 Additional OTA operating band unwanted emission requirements. 137
9.7.4.3.4.1 Protection of Earth Exploration Satellite Service 137
9.7.5 OTA transmitter spurious emissions 138
9.7.5.1 General 138
9.7.5.2 Minimum requirement for BS type 1-O 138
9.7.5.2.1 General 138
9.7.5.2.2 General OTA transmitter spurious emissions requirements 138
9.7.5.2.3 Protection of the BS receiver of own or different BS 138
9.7.5.2.4 Additional spurious emissions requirements 138
9.7.5.2.5 Co-location with other base stations 139
9.7.5.3 Minimum requirement for $B S$ type 2-O 139
9.7.5.3.1 General 139
9.7.5.3.2 General OTA transmitter spurious emissions requirements 139
9.7.5.3.2.1 General 139
9.7.5.3.2.2 OTA transmitter spurious emissions (Category A) 139
9.7.5.3.2.3 OTA transmitter spurious emissions (Category B) 140
9.7.5.3.3 Additional OTA transmitter spurious emissions requirements 140
9.7.5.3.3.1 Limits for protection of Earth Exploration Satellite Service 140
9.8 OTA transmitter intermodulation 141
9.8.1 General 141
9.8.2 Minimum requirement for BS type 1-O 141
10 Radiated receiver characteristics 142
10.1 General 142
10.2 OTA sensitivity 143
10.2.1 \quad BS type 1-H and BS type 1-O 143
10.2.1.1 General 143
10.2.1.2 Minimum requirement 143
10.2.2 BS type 2-O 143
10.3 OTA reference sensitivity level. 144
10.3.1 General 144
10.3.2 Minimum requirement for BS type 1-O 144
10.3.3 Minimum requirement for $B S$ type 2- O 145
10.4 OTA dynamic range 146
10.4.1 General 146
10.4.2 Minimum requirement for BS type 1-O 146
10.5 OTA in-band selectivity and blocking. 155
10.5.1 OTA adjacent channel selectivity 155
10.5.1.1 General 155
10.5.1.2 Minimum requirement for $B S$ type 1-O. 155
10.5.1.3 Minimum requirement for $B S$ type 2- O. 156
10.5.2 OTA in-band blocking 157
10.5.2.1 General 157
10.5.2.2 Minimum requirement for BS type 1-O 157
10.5.2.3 Minimum requirement for BS type 2-O 160
10.6 OTA out-of-band blocking 160
10.6.1 General 160
10.6.2 Minimum requirement for BS type 1-O 160
10.6.2.1 General minimum requirement 160
10.6.2.2 Co-location minimum requirement 161
10.6.3 Minimum requirement for BS type 2-O 162
10.6.3.1 General minimum requirement 162
10.7 OTA receiver spurious emissions. 162
10.7.1 General 162
10.7.2 Minimum requirement for BS type 1-O 162
10.7.3 Minimum requirement for BS type 2-O 163
10.8 OTA receiver intermodulation 164
10.8.1 General 164
10.8.2 Minimum requirement for BS type 1-O 164
10.8.3 Minimum requirement for BS type 2-O 168
10.9 OTA in-channel selectivity. 169
10.9.1 General 169
10.9.2 Minimum requirement for BS type 1-O 169
10.9.3 Minimum requirement for BS type 2-O 172
11 Radiated performance requirements. 174
11.1 General 174
11.1.1 Scope and definitions 174
11.1.2 OTA demodulation branches 174
11.1.3 Void 175
11.2 Performance requirements for PUSCH 175
11.2.1 Requirements for $B S$ type 1-O 175
11.2.1.1 Requirements for PUSCH with transform precoding disabled 175
11.2.1.2 Requirements for PUSCH with transform precoding enabled 175
11.2.1.3 Requirements for UCI multiplexed on PUSCH 175
11.2.2 Requirements for $B S$ type 2- O 175
11.2.2.1 Requirements for PUSCH with transform precoding disabled 175
11.2.2.1.1 General 175
11.2.2.1.2 Minimum requirements 176
11.2.2.2 Requirements for PUSCH with transform precoding enabled 178
11.2.2.2.1 General 178
11.2.2.2.2 Minimum requirements 179
11.2.2.3 Requirements for UCI multiplexed on PUSCH 179
11.2.2.3.1 General 179
11.2.2.3.2 Minimum requirements 181
11.3 Performance requirements for PUCCH 182
11.3.1 Requirements for $B S$ type 1-O 182
11.3.1.1 DTX to ACK probability 182
11.3.1.2 Performance requirements for PUCCH format 0 183
11.3.1.3 Performance requirements for PUCCH format 1 183
11.3.1.4 Performance requirements for PUCCH format 2 183
11.3.1.5 Performance requirements for PUCCH format 3 183
11.3.1.6 Performance requirements for PUCCH format 4 183
11.3.2 Requirements for $B S$ type 2-O 183
11.3.2.1 DTX to ACK probability 183
11.3.2.2 Performance requirements for PUCCH format 0 183
11.3.2.2.1 General 183
11.3.2.2.2 Minimum requirements 184
11.3.2.3 Performance requirements for PUCCH format 1 184
11.3.2.3.1 NACK to ACK requirements 184
11.3.2.3.1.1 General 184
11.3.2.3.1.2 Minimum requirements 185
11.3.2.3.2 ACK missed detection requirements 185
11.3.2.3.2.1 General 185
11.3.2.3.2.2 Minimum requirements 185
11.3.2.4 Performance requirements for PUCCH format 2 186
11.3.2.4.1 ACK missed detection requirements 186
11.3.2.4.1.1 General. 186
11.3.2.4.1.2 Minimum requirements 186
11.3.2.4.2 UCI BLER performance requirements 187
11.3.2.4.2.1 General. 187
11.3.2.4.2.2 Minimum requirements 187
11.3.2.5 Performance requirements for PUCCH format 3 188
11.3.2.5.1 General 188
11.3.2.5.2 Minimum requirements 188
11.3.2.6 Performance requirements for PUCCH format 4 189
11.3.2.6.1 General 189
11.3.2.6.2 Minimum requirements 189
11.4 Performance requirements for PRACH 190
11.4.1 Requirements for BS type 1-O 190
11.4.1.1 PRACH False alarm probability 190
11.4.1.2 PRACH detection requirements 190
11.4.2 Requirements for $B S$ type 2- O 190
11.4.2.1 PRACH False alarm probability 190
11.4.2.1.1 General 190
11.4.2.1.2 Minimum requirement. 190
11.4.2.2 PRACH detection requirements 190
11.4.2.2.1 General 190
11.4.2.2.2 Minimum requirements 191
Annex A (normative): Reference measurement channels 192
A. 1 Fixed Reference Channels for reference sensitivity level, ACS, in-band blocking, out-of-band blocking, receiver intermodulation and in-channel selectivity (QPSK, $\mathrm{R}=1 / 3$). 192
A. 2 Fixed Reference Channels for dynamic range (16QAM, R=2/3). 193
A. 3 Fixed Reference Channels for performance requirements (QPSK, R=193/1024) 193
A. 4 Fixed Reference Channels for performance requirements (16QAM, $\mathrm{R}=658 / 1024$) 198
A. 5 Fixed Reference Channels for performance requirements (64QAM, R=567/1024) 202
A. 6 PRACH Test preambles 204
Annex B (normative): Error Vector Magnitude (FR1) 205
B. 1 Reference point for measurement 205
B. 2 Basic unit of measurement 205
B. 3 Modified signal under test 206
B. 4 Estimation of frequency offset 206
B. 5 Estimation of time offset 206
B.5.1 General 206
B.5.2 Window length 207
B. 6 Estimation of TX chain amplitude and frequency response parameters 208
B. 7 Averaged EVM 209
Annex C (normative): Error Vector Magnitude (FR2) 211
C. 1 Reference point for measurement 211
C. 2 Basic unit of measurement 211
C. 3 Modified signal under test 212
C. 4 Estimation of frequency offset 212
C. 5 Estimation of time offset 212
C.5.1 General 212
C.5.2 Window length 213
C. 6 Estimation of TX chain amplitude and frequency response parameters 213
C. 7 Averaged EVM 215
Annex D (normative): Characteristics of the interfering signals 217
Annex E: Void 218
Annex F (normative): Relationship between EIRP based regulatory requirements and 3GPP requirements. 219
F. 1 General 219
F. 2 Relationship between EIRP based regulatory requirements and conducted requirements 219
F. 3 Relationship between EIRP based regulatory requirements and OTA requirements 220
Annex G (Normative): Propagation conditions 221
G. 1 Static propagation condition 221
G. 2 Multi-path fading propagation conditions. 221
G.2.1 Delay profiles 221
G.2.1.1 Delay profiles for FR1 222
G.2.1.2 Delay profiles for FR2 223
G.2.2 Combinations of channel model parameters 224
G.2.3 MIMO Channel Correlation Matrices 225
G.2.3.1 MIMO Correlation Matrices using Uniform Linear Array (ULA) 225
G.2.3.1.1 Definition of MIMO Correlation Matrices. 225
G.2.3.1.2 MIMO Correlation Matrices at High, Medium and Low Level 229
G.2.3.2 Multi-Antenna channel models using cross polarized antennas 231
G.2.3.2.1 Definition of MIMO Correlation Matrices using cross polarized antennas 232
G.2.3.2.2 Spatial Correlation Matrices at UE and gNB sides 232
G.2.3.2.2.1 Spatial Correlation Matrices at UE side 232
G.2.3.2.2.2 Spatial Correlation Matrices at gNB side 233
G.2.3.2.3 MIMO Correlation Matrices using cross polarized antennas. 233
Annex H (informative): Change history 234
History 243

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).
The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z
where:
x the first digit:
1 presented to TSG for information;
2 presented to TSG for approval;
3 or greater indicates TSG approved document under change control.
y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
z
the third digit is incremented when editorial only changes have been incorporated in the document.

1 Scope

The present document establishes the minimum RF characteristics and minimum performance requirements of NR Base Station (BS).

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2] ITU-R Recommendation SM.329: "Unwanted emissions in the spurious domain".
[3] Recommendation ITU-R SM.328: "Spectra and bandwidth of emissions".
[4] 3GPP TR 25.942: "RF system scenarios".
[5] 3GPP TS 38.141-1: "NR; Base Station (BS) conformance testing; Part 1: Conducted conformance testing".
[6] 3GPP TS 38.141-2: "NR; Base Station (BS) conformance testing; Part 2: Radiated conformance testing".
[7] Recommendation ITU-R M.1545: "Measurement uncertainty as it applies to test limits for the terrestrial component of International Mobile Telecommunications-2000".
[8]
"Title 47 of the Code of Federal Regulations (CFR)", Federal Communications Commission.
3GPP TS 38.211: "NR; Physical channels and modulation".
3GPP TS 38.213: "NR; Physical layer procedures for control".
3GPP TS 38.331: "NR; Radio Resource Control (RRC); Protocol specification".
ECC/DEC/(17)06: "The harmonised use of the frequency bands $1427-1452 \mathrm{MHz}$ and $1492-1518$ MHz for Mobile/Fixed Communications Networks Supplemental Downlink (MFCN SDL)"
[13] 3GPP TS 36.104: "Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) radio transmission and reception".
[14] 3GPP TS 37.105: "Active Antenna System (AAS) Base Station (BS) transmission and reception".
[15] 3GPP TS 38.212: "NR; Multiplexing and channel coding".
3GPP TR 38.901: "Study on channel model for frequencies from 0.5 to 100 GHz " Standalone".

3GPP TS 38.101-2: "NR; User Equipment (UE) radio transmission and reception; Part 2: Range 2 Standalone"

ERC Recommendation 74-01, "Unwanted emissions in the spurious domain".

3 Definitions, symbols and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in 3GPP TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].

Aggregated BS Channel Bandwidth:The RF bandwidth in which a Base Station transmits and receives multiple contiguously aggregated carriers. The aggregated BS channel bandwidth is measured in MHz .
antenna connector: connector at the conducted interface of the BS type 1-C
active transmitter unit: transmitter unit which is ON, and has the ability to send modulated data streams that are parallel and distinct to those sent from other transmitter units to a BS type 1-C antenna connector, or to one or more BS type 1-H TAB connectors at the transceiver array boundary

Base Station RF Bandwidth: RF bandwidth in which a base station transmits and/or receives single or multiple carrier(s) within a supported operating band

NOTE: In single carrier operation, the Base Station RF Bandwidth is equal to the BS channel bandwidth.
Base Station RF Bandwidth edge: frequency of one of the edges of the Base Station RF Bandwidth.
basic limit: emissions limit relating to the power supplied by a single transmitter to a single antenna transmission line in ITU-R SM. 329 [2] used for the formulation of unwanted emission requirements for FR1
beam: beam (of the antenna) is the main lobe of the radiation pattern of an antenna array
NOTE: For certain BS antenna array, there may be more than one beam.
beam centre direction: direction equal to the geometric centre of the half-power contour of the beam
beam direction pair: data set consisting of the beam centre direction and the related beam peak direction
beam peak direction: direction where the maximum EIRP is found
beamwidth: beam which has a half-power contour that is essentially elliptical, the half-power beamwidths in the two pattern cuts that respectively contain the major and minor axis of the ellipse

BS channel bandwidth: RF bandwidth supporting a single NR RF carrier with the transmission bandwidth configured in the uplink or downlink

NOTE 1: The BS channel bandwidth is measured in MHz and is used as a reference for transmitter and receiver RF requirements.

NOTE 2: It is possible for the BS to transmit to and/or receive from one or more UE bandwidth parts that are smaller than or equal to the BS transmission bandwidth configuration, in any part of the BS transmission bandwidth configuration.

BS transmission bandwidth configuration: set of resource blocks located within the BS channel bandwidth which may be used for transmitting or receiving by the BS

BS type 1-C: NR base station operating at FR1 with requirements set consisting only of conducted requirements defined at individual antenna connectors

BS type 1-H: NR base station operating at FR1 with a requirement set consisting of conducted requirements defined at individual TAB connectors and OTA requirements defined at RIB

BS type 1-O: NR base station operating at FR1 with a requirement set consisting only of OTA requirements defined at the RIB

BS type 2-O: NR base station operating at FR2 with a requirement set consisting only of OTA requirements defined at the RIB

Channel edge: lowest or highest frequency of the NR carrier, separated by the BS channel bandwidth.
Carrier aggregation: aggregation of two or more component carriers in order to support wider transmission bandwidths

Carrier aggregation configuration: a set of one or more operating bands across which the BS aggregates carriers with a specific set of technical requirements
co-location reference antenna: a passive antenna used as reference for base station to base station co-location requirements

Contiguous carriers: set of two or more carriers configured in a spectrum block where there are no RF requirements based on co-existence for un-coordinated operation within the spectrum block.

Contiguous spectrum: spectrum consisting of a contiguous block of spectrum with no sub-block gap(s).
directional requirement: requirement which is applied in a specific direction within the OTA coverage range for the Tx and when the AoA of the incident wave of a received signal is within the OTA REFSENS RoAoA or the minSENS RoAoA as appropriate for the receiver
equivalent isotropic radiated power: equivalent power radiated from an isotropic directivity device producing the same field intensity at a point of observation as the field intensity radiated in the direction of the same point of observation by the discussed device

NOTE: Isotropic directivity is equal in all directions (i.e. 0 dBi).
equivalent isotropic sensitivity: sensitivity for an isotropic directivity device equivalent to the sensitivity of the discussed device exposed to an incoming wave from a defined AoA

NOTE 1: The sensitivity is the minimum received power level at which specific requirement is met.
NOTE 2: Isotropic directivity is equal in all directions (i.e. 0 dBi).
fractional bandwidth: fractional bandwidth FBW is defined as $F B W=200 \cdot \frac{F_{F B W h i g h}-F_{F B W l o w}}{F_{F B W h i g h}+F_{F B W l o w}} \%$
Highest Carrier: The carrier with the highest carrier frequency transmitted/received in a specified frequency band.
Inter-band carrier aggregation: carrier aggregation of component carriers in different operating bands.
NOTE: Carriers aggregated in each band can be contiguous or non-contiguous.
Inter-band gap: The frequency gap between two supported consecutive operating bands.
Intra-band contiguous carrier aggregation: contiguous carriers aggregated in the same operating band.
Intra-band non-contiguous carrier aggregation: non-contiguous carriers aggregated in the same operating band.
Inter RF Bandwidth gap: frequency gap between two consecutive Base Station RF Bandwidths that are placed within two supported operating bands

Lowest Carrier: The carrier with the lowest carrier frequency transmitted/received in a specified frequency band.
Lower sub-block edge: frequency at the lower edge of one sub-block.
NOTE: It is used as a frequency reference point for both transmitter and receiver requirements.
maximum carrier output power: mean power level measured per carrier at the indicated interface, during the transmitter ON period in a specified reference condition
maximum carrier TRP output power: mean power level measured per RIB during the transmitter ON period for a specific carrier in a specified reference condition and corresponding to the declared rated carrier TRP output power ($\mathrm{P}_{\text {rated }, \mathrm{c}, \mathrm{TRP}}$)
maximum total output power: mean power level measured within the operating band at the indicated interface, during the transmitter ON period in a specified reference condition
maximum total TRP output power: mean power level measured per RIB during the transmitter ON period in a specified reference condition and corresponding to the declared rated total TRP output power ($\mathrm{P}_{\text {rated,t,TRP }}$)
measurement bandwidth: RF bandwidth in which an emission level is specified
minSENS: the lowest declared EIS value for the OSDD's declared for OTA sensitivity requirement.
minSENS RoAoA: The reference RoAoA associated with the OSDD with the lowest declared EIS
multi-band connector: Antenna Connector of BS type 1-C or TAB connector of BS type 1-H associated with a transmitter or receiver that is characterized by the ability to process two or more carriers in common active RF components simultaneously, where at least one carrier is configured at a different operating band than the other carrier(s) and where this different operating band is not a sub-band or superseding-band of another supported operating band
multi-band RIB: operating band specific RIB associated with a transmitter or receiver that is characterized by the ability to process two or more carriers in common active RF components simultaneously, where at least one carrier is configured at a different operating band than the other carrier(s) and where this different operating band is not a subband or superseding-band of another supported operating band

Multi-carrier transmission configuration: set of one or more contiguous or non-contiguous carriers that a NR BS is able to transmit simultaneously according to the manufacturer's specification.

Non-contiguous spectrum: spectrum consisting of two or more sub-blocks separated by sub-block gap(s).
operating band: frequency range in which NR operates (paired or unpaired), that is defined with a specific set of technical requirements

NOTE: The operating band(s) for a BS is declared by the manufacturer according to the designations in tables 5.2-1 and 5.2-2.

OTA coverage range: a common range of directions within which TX OTA requirements that are neither specified in the OTA peak directions sets nor as TRP requirement are intended to be met

OTA peak directions set: set(s) of beam peak directions within which certain TX OTA requirements are intended to be met, where all OTA peak directions set(s) are subsets of the OTA coverage range

NOTE: The beam peak directions are related to a corresponding contiguous range or discrete list of beam centre directions by the beam direction pairs included in the set.

OTA REFSENS RoAoA: the RoAoA determined by the contour defined by the points at which the achieved EIS is 3dB higher than the achieved EIS in the reference direction assuming that for any AoA, the receiver gain is optimized for that AoA

NOTE: This contour will be related to the average element/sub-array radiation pattern 3 dB beamwidth.
OTA sensitivity directions declaration: set of manufacturer declarations comprising at least one set of declared minimum EIS values (with BS channel bandwidth), and related directions over which the EIS applies

NOTE: All the directions apply to all the EIS values in an OSDD.
polarization match: condition that exists when a plane wave, incident upon an antenna from a given direction, has a polarization that is the same as the receiving polarization of the antenna in that direction
radiated interface boundary: operating band specific radiated requirements reference where the radiated requirements apply

NOTE: For requirements based on EIRP/EIS, the radiated interface boundary is associated to the far-field region
Radio Bandwidth: frequency difference between the upper edge of the highest used carrier and the lower edge of the lowest used carrier
rated beam EIRP: For a declared beam and beam direction pair, the rated beam EIRP level is the maximum power that the base station is declared to radiate at the associated beam peak direction during the transmitter ON period
rated carrier output power: mean power level associated with a particular carrier the manufacturer has declared to be available at the indicated interface, during the transmitter ON period in a specified reference condition
rated carrier TRP output power: mean power level declared by the manufacturer per carrier, for BS operating in single carrier, multi-carrier, or carrier aggregation configurations that the manufacturer has declared to be available at the RIB during the transmitter ON period
rated total output power: mean power level associated with a particular operating band the manufacturer has declared to be available at the indicated interface, during the transmitter ON period in a specified reference condition
rated total TRP output power: mean power level declared by the manufacturer, that the manufacturer has declared to be available at the RIB during the transmitter ON period
reference beam direction pair: declared beam direction pair, including reference beam centre direction and reference beam peak direction where the reference beam peak direction is the direction for the intended maximum EIRP within the OTA peak directions set
receiver target: AoA in which reception is performed by BS types 1-H or BS type 1-O
receiver target redirection range: union of all the sensitivity RoAoA achievable through redirecting the receiver target related to particular OSDD
receiver target reference direction: direction inside the OTA sensitivity directions declaration declared by the manufacturer for conformance testing. For an OSDD without receiver target redirection range, this is a direction inside the sensitivity RoAoA
reference RoAoA: the sensitivity RoAoA associated with the receiver target reference direction for each OSDD.
requirement set:one of the NR base station requirement's set as defined for $B S$ type 1-C, BS type 1-H, BS type 1-O, and BS type 2-O
sensitivity RoAoA: RoAoA within the OTA sensitivity directions declaration, within which the declared EIS(s) of an OSDD is intended to be achieved at any instance of time for a specific BS direction setting
single-band connector: BS type 1-C antenna connector or BS type 1-H TAB connector supporting operation either in a single operating band only, or in multiple operating bands but does not meet the conditions for a multi-band connector.
single-band RIB: operating band specific RIB supporting operation either in a single operating band only, or in multiple operating bands but does not meet the conditions for a multi-band RIB.
sub-band: A sub-band of an operating band contains a part of the uplink and downlink frequency range of the operating band.
sub-block: one contiguous allocated block of spectrum for transmission and reception by the same base station
NOTE: There may be multiple instances of sub-blocks within a Base Station RF Bandwidth.
sub-block bandwidth: bandwidth of one sub-block.
sub-block gap: frequency gap between two consecutive sub-blocks within a Base Station RF Bandwidth, where the RF requirements in the gap are based on co-existence for un-coordinated operation
superseding-band: A superseding-band of an operating band includes the whole of the uplink and downlink frequency range of the operating band.

TAB connector: transceiver array boundary connector
TAB connector RX min cell group: operating band specific declared group of TAB connectors to which BS type 1-H conducted RX requirements are applied

NOTE: Within this definition, the group corresponds to the group of TAB connectors which are responsible for receiving a cell when the $B S$ type $1-H$ setting corresponding to the declared minimum number of cells with reception on all $T A B$ connectors supporting an operating band, but its existence is not limited to that condition

TAB connector TX min cell group: operating band specific declared group of TAB connectors to which BS type 1-H conducted TX requirements are applied.

NOTE: Within this definition, the group corresponds to the group of TAB connectors which are responsible for transmitting a cell when the BS type 1-H setting corresponding to the declared minimum number of cells with transmission on all TAB connectors supporting an operating band, but its existence is not limited to that condition
total radiated power: is the total power radiated by the antenna
NOTE: The total radiated power is the power radiating in all direction for two orthogonal polarizations. Total radiated power is defined in both the near-field region and the far-field region
transceiver array boundary: conducted interface between the transceiver unit array and the composite antenna
transmission bandwidth: RF Bandwidth of an instantaneous transmission from a UE or BS, measured in resource block units
transmitter OFF period: time period during which the BS transmitter is not allowed to transmit
transmitter ON period: time period during which the BS transmitter is transmitting data and/or reference symbols
transmitter transient period: time period during which the transmitter is changing from the OFF period to the ON period or vice versa

UE transmission bandwidth configuration: set of resource blocks located within the UE channel bandwidth which may be used for transmitting or receiving by the UE
upper sub-block edge: frequency at the upper edge of one sub-block.
NOTE: It is used as a frequency reference point for both transmitter and receiver requirements.

3.2 Symbols

For the purposes of the present document, the following symbols apply:

β	Percentage of the mean transmitted power emitted outside the occupied bandwidth on the assigned channel
$\mathrm{BeW}_{\theta, \text { REFSENS }}$	Beamwidth equivalent to the OTA REFSENS RoAoA in the θ-axis in degrees. Applicable for FR1 only.
$\mathrm{BeW}_{\varphi, \text { REFSENS }}$	Beamwidth equivalent to the OTA REFSENS RoAoA in the φ-axis in degrees. Applicable for FR1 only.
$\mathrm{BW}_{\text {Channel }}$	BS channel bandwidth
$\mathrm{BW}_{\text {Channel }}$	Aggregated BS Channel Bandwidth, expressed in MHz. $\mathrm{BW}_{\text {Channel_CA }}=\mathrm{F}_{\text {edge,high }}-\mathrm{F}_{\text {edge,low. }}$
BW ${ }_{\text {Channel,block }}$	Sub-block bandwidth, expressed in MHz. $\mathrm{BW}_{\text {Channel,block }}=\mathrm{F}_{\text {edge,block,high }}-\mathrm{F}_{\text {edge,block,low. }}$
BW ${ }_{\text {Config }}$	Transmission bandwidth configuration, where $\mathrm{BW}_{\text {Config }}=N_{\text {RB }} \times \mathrm{SCS} \times 12$
$\mathrm{BW}_{\text {Contiguous }}$	Contiguous transmission bandwidth, i.e. BS channel bandwidth for single carrier or Aggregated BS channel bandwidth for contiguously aggregated carriers. For non-contiguous operation within a band the term is applied per sub-block.
$\mathrm{BW}_{\text {GB, low }}$	The minimum guard band defined in clause 5.3.3 for lowest assigned component carrier
$\mathrm{BW}_{\mathrm{GB} \text {,high }}$	The minimum guard band defined in clause 5.3.3 for highest assigned component carrier
$\Delta \mathrm{f}$	Separation between the channel edge frequency and the nominal -3 dB point of the measuring filter closest to the carrier frequency
$\Delta \mathrm{F}_{\text {Global }}$	Global frequency raster granularity
$\Delta \mathrm{f}_{\text {max }}$	$\mathrm{f}_{\text {_offset }}^{\text {max }}$ minus half of the bandwidth of the measuring filter
$\Delta \mathrm{f}_{\text {Obue }}$	Maximum offset of the operating band unwanted emissions mask from the downlink operating band edge
$\Delta \mathrm{f}_{\text {Oов }}$	Maximum offset of the out-of-band boundary from the uplink operating band edge
$\Delta_{\text {FR2_REFSENS }}$	Offset applied to the FR2 OTA REFSENS depending on the AoA
$\Delta_{\text {minSENS }}$	Difference between conducted reference sensitivity and minSENS
$\Delta_{\text {otarefsens }}$	Difference between conducted reference sensitivity and OTA REFSENS
$\Delta \mathrm{F}_{\text {Raster }}$	Channel raster granularity
$\Delta_{\text {shift }}$	Channel raster offset for SUL

EIS $_{\text {minSENS }}$	The EIS declared for the minSENS RoAoA
EIS $_{\text {REFSENS }}$	OTA REFSENS EIS value
EIS $_{\text {REFSENS_50M }}$	Declared OTA reference sensitivity basis level for FR2 based on a reference measurement channel
	with 50MHz BS channel bandwidth
$\mathrm{F}_{\text {FBWhigh }}$	Highest supported frequency within supported operating band, for which fractional bandwidth
	support was declared

$\mathrm{P}_{\text {max, }, \text {, TRP }}$	Maximum carrier TRP output power measured at the RIB(s), and corresponding to the declared rated carrier TRP output power ($\mathrm{P}_{\mathrm{rated}, \mathrm{c}, \mathrm{TRP}}$)
$\mathrm{P}_{\text {max, }, \text { EIRP }}$	The maximum carrier EIRP when the NR BS is configured at the maximum rated carrier output TRP ($\mathrm{P}_{\text {rated }, \mathrm{c}, \mathrm{TRP}}$)
$\mathrm{P}_{\text {rated, }, \text { AC }}$	The rated carrier output power per antenna connector
$\mathrm{P}_{\text {rated, c,cell }}$	The rated carrier output power per TAB connector TX min cell group
$\mathrm{P}_{\text {rated, }, \text {, FBWhigh }}$	The rated carrier EIRP for the higher supported frequency range within supported operating band, for which fractional bandwidth support was declared
$\mathrm{P}_{\text {rated, }, \text { cFBWlow }}$	The rated carrier EIRP for the lower supported frequency range within supported operating band, for which fractional bandwidth support was declared
$\mathrm{P}_{\text {rated, }, \text { csys }}$	The sum of $\mathrm{P}_{\text {rated, }, \text {,TABC }}$ for all TAB connectors for a single carrier
$\mathrm{P}_{\text {rated, }, \text {, TABC }}$	The rated carrier output power per TAB connector
$\mathrm{P}_{\text {rated, }, \text {, TRP }}$	Rated carrier TRP output power declared per RIB
$\mathrm{P}_{\text {rated,t,AC }}$	The rated total output power declared at the antenna connector
$\mathrm{P}_{\text {rated, }, \text { TABC }}$	The rated total output power declared at TAB connector
$\mathrm{P}_{\text {rated,t,TRP }}$	Rated total TRP output power declared per RIB
$\mathrm{P}_{\text {Refsens }}$	Conducted Reference Sensitivity power level
$\mathrm{SCS}_{\text {low }}$	Sub-Carrier Spacing for the lowest assigned component carrier within a sub-block in CA
$\mathrm{SCS}_{\text {high }}$	Sub-Carrier Spacing for the highest assigned component carrier within a sub-block in CA
$\mathrm{SS}_{\text {REF }}$	SS block reference frequency position
$\mathrm{W}_{\text {gap }}$	Sub-block gap or Inter RF Bandwidth gap size

3.3 Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].

AA	Antenna Array
AAS	Active Antenna System
ACLR	Adjacent Channel Leakage Ratio
ACS	Adjacent Channel Selectivity
AoA	Angle of Arrival
AWGN	Additive White Gaussian Noise
BS	Base Station
BW	Bandwidth
CA	Carrier Aggregation
CACLR	Cumulative ACLR
CPE	Common Phase Error
CP-OFDM	Cyclic Prefix-OFDM
CW	Continuous Wave
DFT-s-OFDM	Discrete Fourier Transform-spread-OFDM
DM-RS	Demodulation Reference Signal
EIS	Equivalent Isotropic Sensitivity
EIRP	Effective Isotropic Radiated Power
E-UTRA	Evolved UTRA
EVM	Error Vector Magnitude
FBW	Fractional Bandwidth
FR	Frequency Range
FRC	Fixed Reference Channel
GSCN	Global Synchronization Channel Number
GSM	Global System for Mobile communications
ITU-R	Radiocommunication Sector of the International Telecommunication Union
ICS	In-Channel Selectivity
LA	Local Area
LNA	Low Noise Amplifier
MCS	Modulation and Coding Scheme
MR	Medium Range
NR	New Radio
NR-ARFCN	NR Absolute Radio Frequency Channel Number

OBUE	Operating Band Unwanted Emissions
OCC	Orthogonal Covering Code
OOB	Out-of-band
OSDD	OTA Sensitivity Directions Declaration
OTA	Over-The-Air
PRB	Physical Resource Block
PT-RS	Phase Tracking Reference Signal
QAM	Quadrature Amplitude Modulation
RB	Resource Block
RDN	Radio Distribution Network
RE	Resource Element
REFSENS	Reference Sensitivity
RF	Radio Frequency
RIB	Radiated Interface Boundary
RMS	Root Mean Square (value)
RoAoA	Range of Angles of Arrival
RS	Reference Signal
RV	Redundancy Version
RX	Receiver
SCS	Sub-Carrier Spacing
SDL	Supplementary Downlink
SS	Synchronization Symbol
SSB	Synchronization Signal Block
SUL	Supplementary Uplink
TAB	Transceiver Array Boundary
TAE	Time Alignment Error
TDL	Tapped Delay Line
TX	Transmitter
TRP	Total Radiated Power
UCI	Uplink Control Information
UEM	Unwanted Emissions Mask
UTRA	Universal Terrestrial Radio Access
WA	Wide Area
ZF	Zero Forcing

4 General

4.1 Relationship with other core specifications

The present document is a single-RAT specification for a BS, covering RF characteristics and minimum performance requirements. Conducted and radiated core requirements are defined for the BS architectures and BS types defined in clause 4.3.

The applicability of each requirement is described in clause 5 .

4.2 Relationship between minimum requirements and test requirements

Conformance to the present specification is demonstrated by fulfilling the test requirements specified in the conformance specification TS 38.141-1 [5] and TS 38.141-2 [6].

The minimum requirements given in this specification make no allowance for measurement uncertainty. The test specifications TS 38.141-1 [5] and TS 38.141-2 [6] define test tolerances. These test tolerances are individually calculated for each test. The test tolerances are used to relax the minimum requirements in this specification to create test requirements. For some requirements, including regulatory requirements, the test tolerance is set to zero.

The measurement results returned by the test system are compared - without any modification - against the test requirements as defined by the shared risk principle.

The shared risk principle is defined in recommendation ITU-R M. 1545 [7].

4.3 Conducted and radiated requirement reference points

4.3.1 BS type 1-C

For BS type 1-C, the requirements are applied at the BS antenna connector (port A) for a single transmitter or receiver with a full complement of transceivers for the configuration in normal operating conditions. If any external apparatus such as an amplifier, a filter or the combination of such devices is used, requirements apply at the far end antenna connector (port B).

Figure 4.3.1-1: BS type 1-C transmitter interface

Figure 4.3.1-2: BS type 1-C receiver interface

4.3.2 BS type 1-H

For BS type 1-H, the requirements are defined for two points of reference, signified by radiated requirements and conducted requirements.

Figure 4.3.2-1: Radiated and conducted reference points for BS type 1-H
Radiated characteristics are defined over the air (OTA), where the operating band specific radiated interface is referred to as the Radiated Interface Boundary (RIB). Radiated requirements are also referred to as OTA requirements. The (spatial) characteristics in which the OTA requirements apply are detailed for each requirement.

Conducted characteristics are defined at individual or groups of TAB connectors at the transceiver array boundary, which is the conducted interface between the transceiver unit array and the composite antenna.

The transceiver unit array is part of the composite transceiver functionality generating modulated transmit signal structures and performing receiver combining and demodulation.

The transceiver unit array contains an implementation specific number of transmitter units and an implementation specific number of receiver units. Transmitter units and receiver units may be combined into transceiver units. The transmitter/receiver units have the ability to transmit/receive parallel independent modulated symbol streams.

The composite antenna contains a radio distribution network (RDN) and an antenna array. The RDN is a linear passive network which distributes the RF power generated by the transceiver unit array to the antenna array, and/or distributes the radio signals collected by the antenna array to the transceiver unit array, in an implementation specific way.

How a conducted requirement is applied to the transceiver array boundary is detailed in the respective requirement clause.

4.3.3 BS type 1-O and BS type 2-O

For BS type 1-O and BS type 2-O, the radiated characteristics are defined over the air (OTA), where the operating band specific radiated interface is referred to as the Radiated Interface Boundary (RIB). Radiated requirements are also referred to as OTA requirements. The (spatial) characteristics in which the OTA requirements apply are detailed for each requirement.

Figure 4.3.3-1: Radiated reference points for BS type 1-O and BS type 2-O
Co-location requirements are specified at the conducted interface of the co-location reference antenna, the co-location reference antenna does not form part of the BS under test but is a means to provide OTA power levels which are representative of a co-located system, further defined in clause 4.9.

For a $B S$ type 1- O the transceiver unit array must contain at least 8 transmitter units and at least 8 receiver units. Transmitter units and receiver units may be combined into transceiver units. The transmitter/receiver units have the ability to transmit/receive parallel independent modulated symbol streams.

4.4 Base station classes

The requirements in this specification apply to Wide Area Base Stations, Medium Range Base Stations and Local Area Base Stations unless otherwise stated. The associated deployment scenarios for each class are exactly the same for BS with and without connectors.

For BS type 1-O and 2-O, BS classes are defined as indicated below:

- Wide Area Base Stations are characterised by requirements derived from Macro Cell scenarios with a BS to UE minimum distance along the ground equal to 35 m .
- Medium Range Base Stations are characterised by requirements derived from Micro Cell scenarios with a BS to UE minimum distance along the ground equal to 5 m .
- Local Area Base Stations are characterised by requirements derived from Pico Cell scenarios with a BS to UE minimum distance along the ground equal to 2 m .

For BS type 1-C and 1-H, BS classes are defined as indicated below:

- Wide Area Base Stations are characterised by requirements derived from Macro Cell scenarios with a BS to UE minimum coupling loss equal to 70 dB .
- Medium Range Base Stations are characterised by requirements derived from Micro Cell scenarios with a BS to UE minimum coupling loss equals to 53 dB .
- Local Area Base Stations are characterised by requirements derived from Pico Cell scenarios with a BS to UE minimum coupling loss equal to 45 dB .

4.5 Regional requirements

Some requirements in the present document may only apply in certain regions either as optional requirements, or as mandatory requirements set by local and regional regulation. It is normally not stated in the 3GPP specifications under what exact circumstances the regional requirements apply, since this is defined by local or regional regulation.

Table 4.5-1 lists all requirements in the present specification that may be applied differently in different regions.

Table 4.5-1: List of regional requirements

Clause number	Requirement	Comments
5.2	Operating bands	Some NR operating bands may be applied regionally.
$\begin{aligned} & \text { 6.2.1, } \\ & \text { 9.3.1 } \end{aligned}$	Base station output power, OTA base station output power:	For Band n41 operation in Japan, additional output power limits shall be applied.
$\begin{aligned} & \text { 6.2.4, } \\ & 9.3 .4 \end{aligned}$	Base station output power, OTA base station output power: Additional requirements	These requirements may be applied regionally as additional base station output power requirements.
$\begin{aligned} & \hline 6.6 .2, \\ & 9.7 .2 \end{aligned}$	Occupied bandwidth, OTA occupied bandwidth	The requirement may be applied regionally. There may also be regional requirements to declare the occupied bandwidth according to the definition in present specification.
6.6.3.3	Adjacent Channel Leakage Power Ratio	For Band n 41 operation in Japan, absolute ACLR limits shall be applied to the sum of the absolute ACLR power over all antenna connectors for BS type 1-C.
$\begin{aligned} & \hline \text { 6.6.4.2, } \\ & \text { 9.7.4.2 } \end{aligned}$	Operating band unwanted emission, OTA operating band unwanted emissions	Category A or Category B operating band unwanted emissions limits may be applied regionally.
$\begin{aligned} & \hline \text { 6.6.4.2.5.1, } \\ & \text { 9.7.4.2.1.2 } \end{aligned}$	Operating band unwanted emission, OTA operating band unwanted emissions: Limits in FCC Title 47	The BS may have to comply with the additional requirements, when deployed in regions where those limits are applied, and under the conditions declared by the manufacturer.
$\begin{aligned} & \hline \text { 6.6.4.2.5.2, } \\ & \text { 9.7.4.2.1.1 } \end{aligned}$	Operating band unwanted emission, OTA operating band unwanted emissions Protection of DTT	The BS operating in Band n20 may have to comply with the additional requirements for protection of DTT, when deployed in certain regions.
6.6.4.3	Operating band unwanted emissions	For Band n41 operation in Japan, the operating band unwanted emissions limits shall be applied to the sum of the emission power over all antenna connectors for BS type 1-C.
$\begin{gathered} \text { 6.6.5.2.1, } \\ 9.7 .5 .2 \end{gathered}$	Tx spurious emissions, OTA Tx spurious emissions	Category A or Category B spurious emission limits, as defined in ITUR Recommendation SM. 329 [2], may apply regionally. The emission limits for $B S$ type 1-H and BS type 1-O specified as the basic limit + X (dB) are applicable, unless stated differently in regional regulation.
$\begin{aligned} & \text { 6.6.5.2.3, } \\ & \text { 9.7.5.3.3 } \end{aligned}$	Tx spurious emissions: additional requirements, OTA Tx spurious emissions: additional requirements	These requirements may be applied for the protection of system operating in frequency ranges other than the BS operating band.
6.6.5.3	Transmitter spurious emissions	For Band n41 operation in Japan, the sum of the spurious emissions over all antenna connectors for $B S$ type 1-C shall not exceed the basic limits.
$\begin{gathered} 6.7 .2 .1 .1 \\ 6.7 .3 .1 .1 \\ 9.8 .2 \\ \hline \end{gathered}$	Transmitter intermodulation, OTA transmitter intermodulation	Interfering signal positions that are partially or completely outside of any downlink operating band of the base station are not excluded from the requirement in Japan in Band n77, n78, n79.
$\begin{aligned} & \hline 6.7 .2 .2, \\ & \text { 6.7.3.3 } \end{aligned}$	Transmitter intermodulation	For Band n 41 operation in Japan, the BS may have to comply with the additional requirements, when deployed in certain regions.
7.6.3	Rx spurious emissions,	For Band n 41 operation in Japan, the emission limits for BS type 1-C may apply to the sum of the emission power over all antenna connectors.
$\begin{aligned} & 7.6 .4, \\ & 10.7 .2 \\ & 10.7 .3 \end{aligned}$	Rx spurious emissions, OTA Rx spurious emissions	The emission limits for $B S$ type 1-H and BS type 1-O specified as the basic limit + X (dB) are applicable, unless stated differently in regional regulation. Additional limits for BS type 2-O may apply regionally.

4.6 Applicability of requirements

In table 4.6-1, the requirement applicability for each requirement set is defined. For each requirement, the applicable requirement clause in the specification is identified. Requirements not included in a requirement set is marked not applicable (NA).

Table 4.6-1: Requirement set applicability

Requirement	Requirement set			
	BS type 1-C	BS type 1-H	BS type 1-0	BS type 2-O
BS output power	6.2	6.2	NA	NA
Output power dynamics	6.3	6.3		
Transmit ON/OFF power	6.4	6.4		
Transmitted signal quality	6.5	6.5		
Occupied bandwidth	6.6.2	6.6.2		
ACLR	6.6 .3	6.6.3		
Operating band unwanted emissions	6.6.4	6.6.4		
Transmitter spurious emissions	6.6 .5	6.6.5		
Transmitter intermodulation	6.7	6.7		
Reference sensitivity level	7.2	7.2		
Dynamic range	7.3	7.3		
In-band selectivity and blocking	7.4	7.4		
Out-of-band blocking	7.5	7.5		
Receiver spurious emissions	7.6	7.6		
Receiver intermodulation	7.7	7.7		
In-channel selectivity	7.8	7.8		
Performance requirements	8	8		
Radiated transmit power	NA	9.2	9.2	9.2
OTA base station output power		NA	9.3	9.3
OTA output power dynamics			9.4	9.4
OTA transmit ON/OFF power			9.5	9.5
OTA transmitted signal quality			9.6	9.6
OTA occupied bandwidth			9.7.2	9.7.2
OTA ACLR			9.7.3	9.7.3
OTA out-of-band emission			9.7.4	9.7.4
OTA transmitter spurious emission			9.7.5	9.7.5
OTA transmitter intermodulation			9.8	NA
OTA sensitivity		10.2	10.2	NA
OTA reference sensitivity level		NA	10.3	10.3
OTA dynamic range			10.4	NA
OTA in-band selectivity and blocking			10.5	10.5
OTA out-of-band blocking			10.6	10.6
OTA receiver spurious emission			10.7	10.7
OTA receiver intermodulation			10.8	10.8
OTA in-channel selectivity			10.9	10.9
Radiated performance requirements			11	11

4.7 Requirements for contiguous and non-contiguous spectrum

A spectrum allocation where a BS operates can either be contiguous or non-contiguous. Unless otherwise stated, the requirements in the present specification apply for BS configured for both contiguous spectrum operation and noncontiguous spectrum operation.

For BS operation in non-contiguous spectrum, some requirements apply both at the Base Station RF Bandwidth edges and inside the sub-block gaps. For each such requirement, it is stated how the limits apply relative to the Base Station RF Bandwidth edges and the sub-block edges respectively.

4.8 Requirements for BS capable of multi-band operation

For multi-band connector or multi-band RIB, the RF requirements in clause $6,7,9$ and 10 apply separately to each supported operating band unless otherwise stated. For some requirements, it is explicitly stated that specific additions or exclusions to the requirement apply at multi-band connector (s), and multi-band $R I B(s)$ as detailed in the requirement clause. For $B S$ capable of multi-band operation, various structures in terms of combinations of different transmitter and receiver implementations (multi-band or single band) with mapping of transceivers to one or more antenna connectors
for BS type 1-C or TAB connectors for BS type 1-H in different ways are possible. For multi-band connector (s) the exclusions or provisions for multi-band apply. For single-band connector(s), the following applies:

- Single-band transmitter spurious emissions, operating band unwanted emissions, ACLR, transmitter intermodulation and receiver spurious emissions requirements apply to this connector that is mapped to singleband.
- If the BS is configured for single-band operation, single-band requirements shall apply to this connector configured for single-band operation and no exclusions or provisions for multi-band capable BS are applicable. Single-band requirements are tested separately at the connector configured for single-band operation, with all other antenna connectors terminated.

A BS type 1-H may be capable of supporting operation in multiple operating bands with one of the following implementations of TAB connectors in the transceiver array boundary:

- All TAB connectors are single-band connectors.
- Different sets of single-band connectors support different operating bands, but each TAB connector supports only operation in one single operating band.
- Sets of single-band connectors support operation in multiple operating bands with some single-band connectors supporting more than one operating band.
- All TAB connectors are multi-band connectors.
- A combination of single-band sets and multi-band sets of TAB connectors provides support of the type BS type 1-H capability of operation in multiple operating bands.

Unless otherwise stated all requirements specified for an operating band apply only to the set of TAB connectors supporting that operating band.

In the case of an operating band being supported only by single-band connectors in a TAB connector TX min cell group or a TAB connector $R X$ min cell group, single-band requirements apply to that set of TAB connectors.

In the case of an operating band being supported only by multi-band connectors supporting the same operating band combination in a TAB connector TX min cell group or a TAB connector $R X$ min cell group, multi-band requirements apply to that set of TAB connectors.

The case of an operating band being supported by both multi-band connectors and single-band connectors in a TAB connector TX min cell group or a TAB connector RX min cell group and is not covered by the present release of this specification.

The case of an operating band being supported by multi-band connectors which are not all supporting the same operating band combination in a TAB connector TX min cell group or a TAB connector RX min cell group is not covered by the present release of this specification.

BS type 1-O may be capable of supporting operation in multiple operating bands with one of the following implementations at the radiated interface boundary:

- All RIBs are single-band RIBs.
- All RIBs are multi-band RIBs.
- A combination of single-band RIBs and multi-band RIBs provides support of the BS type 1-O capability of operation in multiple operating bands.

For multi-band connectors and multi-band RIBs supporting the bands for TDD, the RF requirements in the present specification assume no simultaneous uplink and downlink occur between the bands.

The RF requirements for multi-band connectors and multi-band RIBs supporting bands for both FDD and TDD are not covered by the present release of this specification.

4.9 OTA co-location with other base stations

Co-location requirements are requirements which are based on assuming the BS type 1-O is co-located with another BS of the same base station class, they ensure that both co-located systems can operate with minimal degradation to each other.

Unwanted emission and out of band blocking co-location requirements are optional requirements based on declaration. TX OFF and TX IMD are mandatory requirements and have the form of a co-location requirement as it represents the worst-case scenario of all the interference cases.

NOTE: Due to the low level of the unwanted emissions for the spurious emissions and TX OFF level co-location is the most suitable method to show conformance.

The co-location reference antenna shall be a single column passive antenna which has the same vertical radiating dimension (h), frequency range, polarization, as the composite antenna of the BS type 1-O and nominal 65° horizontal half-power beamwidth (suitable for 3-sector deployment) and is placed at a distance d from the edge of the BS type 1-O, as shown in figure 4.9-1.

Figure 4.9-1: Illustration of BS type 1-O enclosure and co-location reference antenna
Edge-to-edge separation d between the BS type 1-O and the co-location reference antenna shall be set to 0.1 m .
The BS type 1-O and the co-location reference antenna shall be aligned in a common plane perpendicular to the mechanical bore-sight direction, as shown in figure 4.9-1.

The co-location reference antenna and the BS type 1-O can have different width.
The vertical radiating regions of the co-location reference antenna and the BS type 1-O composite antenna shall be aligned.

For co-location requirements where the frequency range of the signal at the co-location reference antenna is different from the BS type 1-O, a co-location reference antenna suitable for the frequency stated in the requirement is assumed.

OTA co-location requirements are based on the power at the conducted interface of a co-location reference antenna, depending on the requirement this interface is either an input or an output. For BS type 1-O with dual polarization the co-location reference antenna has two conducted interfaces each representing one polarization.

5 Operating bands and channel arrangement

5.1 General

The channel arrangements presented in this clause are based on the operating bands and BS channel bandwidths defined in the present release of specifications.

NOTE: Other operating bands and BS channel bandwidths may be considered in future releases.
Requirements throughout the RF specifications are in many cases defined separately for different frequency ranges (FR). The frequency ranges in which NR can operate according to the present version of the specification are identified as described in table 5.1-1.

Table 5.1-1: Definition of frequency ranges

Frequency range designation	Corresponding frequency range
FR1	$410 \mathrm{MHz}-7125 \mathrm{MHz}$
FR2	$24250 \mathrm{MHz}-52600 \mathrm{MHz}$

5.2 Operating bands

NR is designed to operate in the operating bands defined in table 5.2-1 and 5.2-2.

Table 5.2-1: NR operating bands in FR1

NR operating band	Uplink (UL) operating band BS receive / UE transmit Ful,low - Ful,high	Downlink (DL) operating band BS transmit / UE receive Fdl,low - Fdl,high	Duplex mode
n1	$1920 \mathrm{MHz}-1980 \mathrm{MHz}$	$2110 \mathrm{MHz}-2170 \mathrm{MHz}$	FDD
n2	$1850 \mathrm{MHz}-1910 \mathrm{MHz}$	$1930 \mathrm{MHz}-1990 \mathrm{MHz}$	FDD
n3	$1710 \mathrm{MHz}-1785 \mathrm{MHz}$	$1805 \mathrm{MHz}-1880 \mathrm{MHz}$	FDD
n5	$824 \mathrm{MHz}-849 \mathrm{MHz}$	$869 \mathrm{MHz}-894 \mathrm{MHz}$	FDD
n7	$2500 \mathrm{MHz}-2570 \mathrm{MHz}$	$2620 \mathrm{MHz}-2690 \mathrm{MHz}$	FDD
n8	$880 \mathrm{MHz}-915 \mathrm{MHz}$	$925 \mathrm{MHz}-960 \mathrm{MHz}$	FDD
n12	$699 \mathrm{MHz}-716 \mathrm{MHz}$	$729 \mathrm{MHz}-746 \mathrm{MHz}$	FDD
n20	$832 \mathrm{MHz}-862 \mathrm{MHz}$	$791 \mathrm{MHz}-821 \mathrm{MHz}$	FDD
n25	$1850 \mathrm{MHz}-1915 \mathrm{MHz}$	$1930 \mathrm{MHz}-1995 \mathrm{MHz}$	FDD
n28	$703 \mathrm{MHz}-748 \mathrm{MHz}$	$758 \mathrm{MHz}-803 \mathrm{MHz}$	FDD
n34	$2010 \mathrm{MHz}-2025 \mathrm{MHz}$	$2010 \mathrm{MHz}-2025 \mathrm{MHz}$	TDD
n38	$2570 \mathrm{MHz}-2620 \mathrm{MHz}$	$2570 \mathrm{MHz}-2620 \mathrm{MHz}$	TDD
n39	$1880 \mathrm{MHz}-1920 \mathrm{MHz}$	$1880 \mathrm{MHz}-1920 \mathrm{MHz}$	TDD
n40	$2300 \mathrm{MHz}-2400 \mathrm{MHz}$	$2300 \mathrm{MHz}-2400 \mathrm{MHz}$	TDD
n41	$2496 \mathrm{MHz}-2690 \mathrm{MHz}$	$2496 \mathrm{MHz}-2690 \mathrm{MHz}$	TDD
n50	$1432 \mathrm{MHz}-1517 \mathrm{MHz}$	$1432 \mathrm{MHz}-1517 \mathrm{MHz}$	TDD
n51	$1427 \mathrm{MHz}-1432 \mathrm{MHz}$	$1427 \mathrm{MHz}-1432 \mathrm{MHz}$	TDD
n66	$1710 \mathrm{MHz}-1780 \mathrm{MHz}$	$2110 \mathrm{MHz}-2200 \mathrm{MHz}$	FDD
n70	$1695 \mathrm{MHz}-1710 \mathrm{MHz}$	$1995 \mathrm{MHz}-2020 \mathrm{MHz}$	FDD
n71	$663 \mathrm{MHz}-698 \mathrm{MHz}$	$617 \mathrm{MHz}-652 \mathrm{MHz}$	FDD
n74	$1427 \mathrm{MHz}-1470 \mathrm{MHz}$	$1475 \mathrm{MHz}-1518 \mathrm{MHz}$	FDD
n75	N/A	$1432 \mathrm{MHz}-1517 \mathrm{MHz}$	SDL
n76	N/A	$1427 \mathrm{MHz}-1432 \mathrm{MHz}$	SDL
n77	$3300 \mathrm{MHz}-4200 \mathrm{MHz}$	$3300 \mathrm{MHz}-4200 \mathrm{MHz}$	TDD
n78	$3300 \mathrm{MHz}-3800 \mathrm{MHz}$	$3300 \mathrm{MHz}-3800 \mathrm{MHz}$	TDD
n79	$4400 \mathrm{MHz}-5000 \mathrm{MHz}$	$4400 \mathrm{MHz}-5000 \mathrm{MHz}$	TDD
n80	$1710 \mathrm{MHz}-1785 \mathrm{MHz}$	N/A	SUL
n81	$880 \mathrm{MHz}-915 \mathrm{MHz}$	N/A	SUL
n82	$832 \mathrm{MHz}-862 \mathrm{MHz}$	N/A	SUL
n83	$703 \mathrm{MHz}-748 \mathrm{MHz}$	N/A	SUL
n84	$1920 \mathrm{MHz}-1980 \mathrm{MHz}$	N/A	SUL
n86	$1710 \mathrm{MHz}-1780 \mathrm{MHz}$	N/A	SUL

Table 5.2-2: NR operating bands in FR2

NR operating band	Uplink (UL) and Downlink (DL) operating band BS transmit/receive UE transmit/receive FuL,low - FuL,high FDL,low - FDL,high	Duplex mode
n 257	$26500 \mathrm{MHz}-29500 \mathrm{MHz}$	
n 258	$24250 \mathrm{MHz}-27500 \mathrm{MHz}$	TDD
n 260	$37000 \mathrm{MHz}-40000 \mathrm{MHz}$	TDD
n 261	$27500 \mathrm{MHz}-28350 \mathrm{MHz}$	TDD

5.3 BS channel bandwidth

5.3.1 General

The BS channel bandwidth supports a single NR RF carrier in the uplink or downlink at the Base Station. Different $U E$ channel bandwidths may be supported within the same spectrum for transmitting to and receiving from UEs connected to the BS. The placement of the UE channel bandwidth is flexible but can only be completely within the BS channel bandwidth. The BS shall be able to transmit to and/or receive from one or more UE bandwidth parts that are smaller than or equal to the number of carrier resource blocks on the RF carrier, in any part of the carrier resource blocks.

The relationship between the channel bandwidth, the guardband and the transmission bandwidth configuration is shown in figure 5.3.1-1.

Figure 5.3.1-1: Definition of channel bandwidth and transmission bandwidth configuration for one NR channel

5.3.2 Transmission bandwidth configuration

The transmission bandwidth configuration N_{RB} for each BS channel bandwidth and subcarrier spacing is specified in table 5.3.2.-1 for FR1 and table 5.3.2-2 for FR2.

Table 5.3.2-1: Transmission bandwidth configuration N_{RB} for FR1

$\begin{aligned} & \text { SCS } \\ & (\mathrm{kHz}) \end{aligned}$	$\begin{gathered} 5 \\ \mathrm{MHz} \\ \hline \end{gathered}$	$\begin{gathered} \hline 10 \\ \mathrm{MHz} \\ \hline \end{gathered}$	$\begin{gathered} \hline 15 \\ \mathrm{MHz} \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ \mathrm{MHz} \end{gathered}$	$\begin{gathered} 25 \\ \mathrm{MHz} \\ \hline \end{gathered}$	$\begin{gathered} \hline 30 \\ \mathrm{MHz} \\ \hline \end{gathered}$	$\begin{gathered} \hline 40 \\ \mathrm{MHz} \\ \hline \end{gathered}$	$\begin{gathered} 50 \\ \mathrm{MHz} \end{gathered}$	60 MHz	$\begin{gathered} \hline 70 \\ \mathrm{MHz} \\ \hline \end{gathered}$	$\begin{gathered} 80 \\ \mathrm{MHz} \end{gathered}$	$\begin{gathered} \hline 90 \\ \mathrm{MHz} \end{gathered}$	$\begin{aligned} & 100 \\ & \mathrm{MHz} \end{aligned}$
	NRB												
15	25	52	79	106	133	160	216	270	N/A	N/A	N/A	N/A	N/A
30	11	24	38	51	65	78	106	133	162	189	217	245	273
60	N/A	11	18	24	31	38	51	65	79	93	107	121	135

Table 5.3.2-2: Transmission bandwidth configuration NRB $^{\text {for FR2 }}$

SCS (kHz)	$\mathbf{5 0} \mathbf{~ M H z}$	$\mathbf{1 0 0} \mathbf{~ M H z}$	$\mathbf{2 0 0} \mathbf{~ M H z}$	$\mathbf{4 0 0} \mathbf{~ M H z}$
	$\mathbf{N}_{\text {RB }}$	$\mathbf{N}_{\text {RB }}$	$\mathbf{N}_{\text {RB }}$	$\mathbf{N}_{\text {RB }}$
60	66	132	264	N/A
120	32	66	132	264

NOTE: All Tx and Rx requirements are defined based on transmission bandwidth configuration specified in table 5.3.2-1 for FR1 and table 5.3.2-2 for FR2.

5.3.3 Minimum guardband and transmission bandwidth configuration

The minimum guardband for each BS channel bandwidth and SCS is specified in table 5.3.3-1 for FR1 and in table 5.3.3-2 for FR2.

Table 5.3.3-1: Minimum guardband (kHz) (FR1)

$\begin{aligned} & \text { SCS } \\ & (\mathrm{kHz}) \end{aligned}$	$\begin{gathered} 5 \\ \mathrm{MHz} \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ \mathrm{MHz} \end{gathered}$	$\begin{gathered} 15 \\ \mathrm{MHz} \end{gathered}$	$\begin{gathered} 20 \\ \mathrm{MHz} \\ \hline \end{gathered}$	$\begin{gathered} 25 \\ \mathrm{MHz} \\ \hline \end{gathered}$	$\begin{gathered} \hline 30 \\ \mathrm{MHz} \end{gathered}$	$\begin{gathered} 40 \\ \mathrm{MHz} \end{gathered}$	$\begin{gathered} 50 \\ \mathrm{MHz} \end{gathered}$	$\begin{gathered} 60 \\ \mathrm{MHz} \end{gathered}$	$\begin{gathered} 70 \\ \mathrm{MHz} \\ \hline \end{gathered}$	$\begin{gathered} \hline 80 \\ \mathrm{MHz} \end{gathered}$	$\begin{gathered} 90 \\ \mathrm{MHz} \end{gathered}$	$\begin{aligned} & 100 \\ & \mathrm{MHz} \end{aligned}$
15	242.5	312.5	382.5	452.5	522.5	592.5	552.5	692.5	N/A	N/A	N/A	N/A	N/A

30	505	665	645	805	785	945	905	1045	825	965	925	885	845
60	$\mathrm{~N} / \mathrm{A}$	1010	990	1330	1310	1290	1610	1570	1530	1490	1450	1410	1370

Table: 5.3.3-2: Minimum guardband (kHz) (FR2)

$\mathbf{S C S} \mathbf{(k H z})$	$\mathbf{5 0} \mathbf{~ M H z}$	$\mathbf{1 0 0} \mathbf{~ M H z}$	$\mathbf{2 0 0} \mathbf{~ M H z}$	$\mathbf{4 0 0} \mathbf{~ M H z}$
60	1210	2450	4930	$\mathrm{~N} / \mathrm{A}$
120	1900	2420	4900	9860

The minimum guardband of SCS 240 kHz SS/PBCH block for each BS channel bandwidth is specified in table 5.3.3-3 for FR2.

Table: 5.3.3-3: Minimum guardband (kHz) of SCS 240 kHz SS/PBCH block (FR2)

SCS (kHz)	$\mathbf{1 0 0} \mathbf{~ M H z}$	$\mathbf{2 0 0} \mathbf{~ M H z}$	$\mathbf{4 0 0} \mathbf{~ M H z}$
240	3800	7720	15560

NOTE: The minimum guardband in Table 5.3.3-3 is applicable only when the SCS $240 \mathrm{kHz} \mathrm{SS} / \mathrm{PBCH}$ block is placed adjacent to the edge of the BS channel bandwidth within which the SS/PBCH block is located.

The number of RBs configured in any BS channel bandwidth shall ensure that the minimum guardband specified in this clause is met.

Figure 5.3.3-1: BS PRB utilization
In the case that multiple numerologies are multiplexed in the same symbol, the minimum guardband on each side of the carrier is the guardband applied at the configured BS channel bandwidth for the numerology that is transmitted/received immediately adjacent to the guard band.

For FR1, if multiple numerologies are multiplexed in the same symbol and the $B S$ channel bandwidth is $>50 \mathrm{MHz}$, the guardband applied adjacent to 15 kHz SCS shall be the same as the guardband defined for 30 kHz SCS for the same $B S$ channel bandwidth.

For FR2, if multiple numerologies are multiplexed in the same symbol and the BS channel bandwidth is $>200 \mathrm{MHz}$, the guardband applied adjacent to 60 kHz SCS shall be the same as the guardband defined for 120 kHz SCS for the same BS channel bandwidth.

Figure 5.3.3-2: Guard band definition when transmitting multiple numerologies

NOTE: Figure 5.3.3-2 is not intended to imply the size of any guard between the two numerologies. Internumerology guard band within the carrier is implementation dependent.

Figure 5.3.3-3: Void
Figure 5.3.3-4: Void
Figure 5.3.3-5: Void

5.3.4 RB alignment

For each BS channel bandwidth and each numerology, BS transmission bandwidth configuration must fulfil the minimum guardband requirement specified in clause 5.3.3.

For each numerology, its common resource blocks are specified in clause 4.4.4.3 in [9], and the starting point of its transmission bandwidth configuration on the common resource block grid for a given channel bandwidth is indicated by an offset to "Reference point A" in the unit of the numerology.

For each numerology, all UE transmission bandwidth configurations indicated to UEs served by the BS by higher layer parameter carrierBandwidth defined in TS 38.331 [11] shall fall within the BS transmission bandwidth configuration.

5.3.5 BS channel bandwidth per operating band

The requirements in this specification apply to the combination of BS channel bandwidths, SCS and operating bands shown in table 5.3.5-1 for FR1 and in table 5.3.5-2 for FR2. The transmission bandwidth configuration in table 5.3.2-1 and table 5.3.2-2 shall be supported for each of the BS channel bandwidths within the BS capability. The BS channel bandwidths are specified for both the Tx and Rx path.

Table 5.3.5-1: BS channel bandwidths and SCS per operating band in FR1

NR band / SCS / BS channel bandwidth														
$\begin{gathered} \text { NR } \\ \text { Band } \end{gathered}$	$\begin{aligned} & \text { SCS } \\ & \text { kHz } \\ & \hline \end{aligned}$	$\begin{gathered} 5 \\ \mathrm{MHz} \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ \mathrm{MHz} \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ \mathrm{MHz} \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ \mathrm{MHz} \end{gathered}$	$\begin{gathered} 25 \\ \mathrm{MHz} \\ \hline \end{gathered}$	$\begin{gathered} 30 \\ \mathrm{MHz} \\ \hline \end{gathered}$	$\begin{gathered} 40 \\ \mathrm{MHz} \\ \hline \end{gathered}$	$\begin{gathered} 50 \\ \mathrm{MHz} \\ \hline \end{gathered}$	$\begin{gathered} 60 \\ \mathrm{MHz} \\ \hline \end{gathered}$	$\begin{gathered} \hline 70 \\ \mathrm{MHz} \\ \hline \end{gathered}$	$\begin{gathered} 80 \\ \mathrm{MHz} \\ \hline \end{gathered}$	$\begin{gathered} 90 \\ \mathrm{MHz} \\ \hline \end{gathered}$	$\begin{array}{r} 100 \\ \mathrm{MHz} \\ \hline \end{array}$
n1	15	Yes	Yes	Yes	Yes									
	30		Yes	Yes	Yes									
	60		Yes	Yes	Yes									
n2	15	Yes	Yes	Yes	Yes									
	30		Yes	Yes	Yes									
	60		Yes	Yes	Yes									
n3	15	Yes	Yes	Yes	Yes	Yes	Yes							
	30		Yes	Yes	Yes	Yes	Yes							
	60		Yes	Yes	Yes	Yes	Yes							
n5	15	Yes	Yes	Yes	Yes									
	30		Yes	Yes	Yes									
	60													
n7	15	Yes	Yes	Yes	Yes									
	30		Yes	Yes	Yes									
	60		Yes	Yes	Yes									
n8	15	Yes	Yes	Yes	Yes									
	30		Yes	Yes	Yes									
	60													
n12	15	Yes	Yes	Yes										
	30		Yes	Yes										
	60													
n20	15	Yes	Yes	Yes	Yes									
	30		Yes	Yes	Yes									
	60													
n25	15	Yes	Yes	Yes	Yes									
	30		Yes	Yes	Yes									
	60		Yes	Yes	Yes									
n28	15	Yes	Yes	Yes	Yes									
	30		Yes	Yes	Yes									
	60													
n34	15	Yes	Yes	Yes	Yes									
	30		Yes	Yes	Yes									
	60		Yes	Yes	Yes									
n38	15	Yes	Yes	Yes	Yes									
	30		Yes	Yes	Yes									
	60		Yes	Yes	Yes									
n39	15	Yes												
	30		Yes	Yes	Yes	Yes	Yes	Yes						
	60		Yes	Yes	Yes	Yes	Yes	Yes						
n40	15	Yes ${ }^{4}$	Yes											
	30		Yes		Yes		Yes							
	60		Yes		Yes		Yes							
n41	15		Yes	Yes	Yes			Yes	Yes					
	30		Yes	Yes	Yes			Yes						
	60		Yes	Yes	Yes			Yes						
n50	15	Yes ${ }^{5}$	Yes	Yes	Yes			Yes	Yes					
	30		Yes	Yes	Yes			Yes	Yes	Yes		Yes		
	60		Yes	Yes	Yes			Yes	Yes	Yes		Yes		
n51	15	Yes												
	30													
	60													
n66	15	Yes	Yes	Yes	Yes			Yes						
	30		Yes	Yes	Yes			Yes						
	60		Yes	Yes	Yes			Yes						
n70	15	Yes	Yes	Yes	Yes	Yes								
	30		Yes	Yes	Yes	Yes								
	60		Yes	Yes	Yes	Yes								

n71	15	Yes	Yes	Yes	Yes									
	30		Yes	Yes	Yes									
	60													
n74	15	Yes	Yes	Yes	Yes									
	30		Yes	Yes	Yes									
	60		Yes	Yes	Yes									
n75	15	Yes	Yes	Yes	Yes									
	30		Yes	Yes	Yes									
	60		Yes	Yes	Yes									
n76	15	Yes												
	30													
	60													
n77	15		Yes	Yes	Yes		Yes	Yes	Yes					
	30		Yes	Yes	Yes		Yes							
	60		Yes	Yes	Yes		Yes							
n78	15		Yes	Yes	Yes		Yes	Yes	Yes					
	30		Yes	Yes	Yes		Yes							
	60		Yes	Yes	Yes		Yes							
n79	15							Yes	Yes					
	30							Yes	Yes	Yes		Yes		Yes
	60							Yes	Yes	Yes		Yes		Yes
n80	15	Yes	Yes	Yes	Yes	Yes	Yes							
	30		Yes	Yes	Yes	Yes	Yes							
	60		Yes	Yes	Yes	Yes	Yes							
n81	15	Yes	Yes	Yes	Yes									
	30		Yes	Yes	Yes									
	60													
n82	15	Yes	Yes	Yes	Yes									
	30		Yes	Yes	Yes									
	60													
n83	15	Yes	Yes	Yes	Yes									
	30		Yes	Yes	Yes									
	60													
n84	15	Yes	Yes	Yes	Yes									
	30		Yes	Yes	Yes									
	60		Yes	Yes	Yes									
n86	15	Yes	Yes	Yes	Yes			Yes						
	30		Yes	Yes	Yes			Yes						
	60		Yes	Yes	Yes			Yes						
NOTE 1: Void. NOTE 2: Void. NOTE 3: Void. NOTE 4: For this bandwidth, the minimum requirements are restricted to operation when carrier is configured as an SCell part of DC or CA configuration. NOTE 5: Only applicable for a carrier configured as an SCell in a DC or CA configuration.														

Table 5.3.5-2: BS channel bandwidths and SCS per operating band in FR2

NR band / SCS / BS channel bandwidth					
NR Band	$\mathbf{S C S}$ $\mathbf{k H z}$	$\mathbf{5 0}$ $\mathbf{M H z}$	$\mathbf{1 0 0}$ $\mathbf{M H z}$	$\mathbf{2 0 0}$ $\mathbf{M H z}$	$\mathbf{4 0 0}$ $\mathbf{M H z}$
n257	60	Yes	Yes	Yes	
	120	Yes	Yes	Yes	Yes
n258	60	Yes	Yes	Yes	
	120	Yes	Yes	Yes	Yes
	60	Yes	Yes	Yes	
n261	120	Yes	Yes	Yes	Yes
	60	Yes	Yes	Yes	

5.3A BS channel bandwidth for CA

5.3A.1 Transmission bandwidth configuration for CA

For carrier aggregation, the transmission bandwidth configuration is defined per component carrier and the requirement is specified in clause 5.3.2.

5.3A.2 Minimum guardband and transmission bandwidth configuration for CA

For intra-band contiguous carrier aggregation, Aggregated BS Channel Bandwidth and Guard Bands are defined as follows, see Figure 5.3A.2-1.

Figure 5.3A.2-1: Definition of Aggregated BS Channel Bandwidth for intra-band carrier aggregation
The aggregated BS Channel Bandwidth, BW Channel_CA, is defined as

$$
\mathrm{BW}_{\text {Channel_CA }}=\mathrm{F}_{\text {edge, high }}-\mathrm{F}_{\text {edge,low }}(\mathrm{MHz})
$$

The lower bandwidth edge $\mathrm{F}_{\text {edge, low }}$ and the upper bandwidth edge $\mathrm{F}_{\text {edge, high }}$ of the aggregated $B S$ channel bandwidth are used as frequency reference points for transmitter and receiver requirements and are defined by

$$
\begin{gathered}
\mathrm{F}_{\text {edge,low }}=\mathrm{F}_{\mathrm{C}, \text { low }}-\mathrm{F}_{\text {offset,low }} \\
\mathrm{F}_{\text {edge,high }}=\mathrm{F}_{\mathrm{C}, \text { high }}+\mathrm{F}_{\text {offset,high }}
\end{gathered}
$$

The lower and upper frequency offsets depend on the transmission bandwidth configurations of the lowest and highest assigned edge component carrier and are defined as

$$
\begin{gathered}
\mathrm{F}_{\text {offset,low }}=\left(\mathrm{N}_{\mathrm{RB}, \text { low }} * 12+1\right) * \mathrm{SCS}_{\mathrm{low}} / 2+\mathrm{BW}_{\mathrm{GB}, \text { low }}(\mathrm{MHz}) \\
\mathrm{F}_{\text {offset,high }}=\left(\mathrm{N}_{\mathrm{RB}, \text { high }} * 12-1\right) * \mathrm{SCS}_{\text {high }} / 2+\mathrm{BW}_{\mathrm{GB}, \text { high }}(\mathrm{MHz})
\end{gathered}
$$

$\mathrm{N}_{\mathrm{RB}, \mathrm{low}}$ and $\mathrm{N}_{\mathrm{RB}, \text { high }}$ are the transmission bandwidth configurations according to Table 5.3.2-1 or Table 5.3.2-2 for the lowest and highest assigned component carrier, $\mathrm{SCS}_{\text {low }}$ and $\mathrm{SCS}_{\text {high }}$ are the sub-carrier spacing for the lowest and highest assigned component carrier respectively. $\mathrm{SCS}_{\text {low }}, \mathrm{SCS}_{\text {high }}, \mathrm{N}_{\mathrm{RB}, \text { low }}, \mathrm{N}_{\mathrm{RB}, \text { high }}, \mathrm{BW}_{\mathrm{GB}, \text { low }}$ and $\mathrm{BW}_{\mathrm{GB}, \text { high }}$ use the largest μ value among the subcarrier spacing configurations supported in the operating band for both of the channel bandwidths according to Table 5.3.5-1 and $\mathrm{BW}_{\mathrm{GB}, \text { low }}$ and $\mathrm{BW}_{\mathrm{GB}}$,high are the minimum guard band for lowest and highest assigned component carrier according to Table 5.3.3-1 for the said μ value. In case there is no common μ value for both of the channel bandwidths, $\mu=1$ is used for $\mathrm{SCS}_{\text {low }}, \mathrm{SCS}_{\text {high }}, \mathrm{N}_{\mathrm{RB}, \text { low }}, \mathrm{N}_{\mathrm{RB}, \text { high, }}, \mathrm{BW}_{\mathrm{GB}, \text { low }}$ and $\mathrm{BW}_{\mathrm{GB}, \text { high }}$.

For intra-band non-contiguous carrier aggregation sub-block bandwidth and sub-block edges are defined as follows, see figure 5.3A.2-2.

Figure 5.3A.2-2: Definition of sub-block bandwidth for intra-band non-contiguous spectrum
The lower sub-block edge of the sub-block bandwidth $\left(\mathrm{BW}_{\text {Channel,block }}\right)$ is defined as follows:

$$
\mathrm{F}_{\text {edge,block, low }}=\mathrm{F}_{\mathrm{C}, \text { block,low }}-\mathrm{F}_{\text {offsee,low }}
$$

The upper sub-block edge of the sub-block bandwidth is defined as follows:

$$
\mathrm{F}_{\text {edge,block,high }}=\mathrm{F}_{\mathrm{C}, \text { block,high }}+\mathrm{F}_{\text {offset,high }}
$$

The sub-block bandwidth, $\mathrm{BW}_{\text {Channel,block, }}$, is defined as follows:

$$
\mathrm{BW}_{\text {Channel,block }}=\mathrm{F}_{\text {edge,block,high }}-\mathrm{F}_{\text {edge,block,low }}(\mathrm{MHz})
$$

The lower and upper frequency offsets $\mathrm{F}_{\text {offset,block,low }}$ and $\mathrm{F}_{\text {offset,block,high }}$ depend on the transmission bandwidth configurations of the lowest and highest assigned edge component carriers within a sub-block and are defined as

$$
\begin{gathered}
\mathrm{F}_{\text {offset,block,low }}=\left(\mathrm{N}_{\mathrm{RB}, \text { low }} * 12+1\right) * \mathrm{SCS}_{\text {low }} / 2+\mathrm{BW}_{\mathrm{GB}, \text { low }}(\mathrm{MHz}) \\
\mathrm{F}_{\text {offset,block,high }}=\left(\mathrm{N}_{\mathrm{RB}, \text { high }} * 12-1\right) * \mathrm{SCS}_{\text {high }} / 2+\mathrm{BW}_{\mathrm{GB}, \text { high }}(\mathrm{MHz})
\end{gathered}
$$

where $\mathrm{N}_{\mathrm{RB}, \text { low }}$ and $\mathrm{N}_{\mathrm{RB}, \text { high }}$ are the transmission bandwidth configurations according to Table 5.3.2-1 or Table 5.3.2-2 for the lowest and highest assigned component carrier within a sub-block, respectively. $\mathrm{SCS}_{\text {low }}$ and $\mathrm{SCS}_{\text {high }}$ are the subcarrier spacing for the lowest and highest assigned component carrier within a sub-block, respectively. $\mathrm{SCS}_{\text {low }}, \mathrm{SCS}_{\text {high }}$, $\mathrm{N}_{\mathrm{RB}, \text { low }}, \mathrm{N}_{\mathrm{RB}, \text { high }}, \mathrm{BW}_{\mathrm{GB}, \text { low }}$ and $\mathrm{BW}_{\mathrm{GB}, \text {,igh }}$ use the largest μ value among the subcarrier spacing configurations supported in the operating band for both of the channel bandwidths according to Table 5.3.5-1 and $\mathrm{BW}_{\mathrm{GB}, \text { low }}$ and $\mathrm{BW}_{\mathrm{GB}, \text {,high }}$ are the minimum guard band for lowest and highest assigned component carrier according to Table 5.3.3-1 for the said μ value. In case there is no common μ value for both of the channel bandwidths, $\mu=1$ is used for $\operatorname{SCS}_{\text {low }}, \mathrm{SCS}_{\text {high }}, \mathrm{N}_{\text {RB,low }}, \mathrm{N}_{\text {RB, high }}$, $\mathrm{BW}_{\mathrm{GB}, \text { low }}$ and $\mathrm{BW}_{\mathrm{GB}, \text { high }}$.

The sub-block gap size between two consecutive sub-blocks $\mathrm{W}_{\text {gap }}$ is defined as follows:

$$
\mathrm{W}_{\text {gap }}=\mathrm{F}_{\text {edge,block } \mathrm{n}+1, \text { low }}-\mathrm{F}_{\text {edge,block n,high }}(\mathrm{MHz})
$$

5.4 Channel arrangement

5.4.1 Channel spacing

5.4.1.1 Channel spacing for adjacent NR carriers

The spacing between carriers will depend on the deployment scenario, the size of the frequency block available and the BS channel bandwidths. The nominal channel spacing between two adjacent NR carriers is defined as following:

- For NR FR1 operating bands with 100 kHz channel raster,
- Nominal Channel spacing $=\left(\mathrm{BW}_{\text {Channel(1) }}+\mathrm{BW}_{\text {Channel(2) })} / 2\right.$
- For NR FR1 operating bands with 15 kHz channel raster,
- Nominal Channel spacing $=\left(B W_{\text {Channel(1) }}+B W_{\text {Channel }(2)}\right) / 2+\{-5 \mathrm{kHz}, 0 \mathrm{kHz}, 5 \mathrm{kHz}\}$ for $\Delta \mathrm{F}_{\text {Raster }}$ equals to 15 kHz
- Nominal Channel spacing $=\left(B W_{\text {Channel(1) }}+B W_{\text {Channel(2) })} / 2+\{-10 \mathrm{kHz}, 0 \mathrm{kHz}, 10 \mathrm{kHz}\}\right.$ for $\Delta \mathrm{F}_{\text {Raster }}$ equals to 30 kHz
- For NR FR2 operating bands with 60 kHz channel raster,
 to 60 kHz
- Nominal Channel spacing $=\left(B W_{\text {Channel(1) }}+B W_{\text {Channel(2) })} / 2+\{-40 \mathrm{kHz}, 0 \mathrm{kHz}, 40 \mathrm{kHz}\}\right.$ for $\Delta \mathrm{F}_{\text {Raster }}$ equals to 120 kHz
where $\mathrm{BW}_{\text {Channel(1) }}$ and $\mathrm{BW}_{\text {Channel(2) }}$ are the BS channel bandwidths of the two respective NR carriers. The channel spacing can be adjusted depending on the channel raster to optimize performance in a particular deployment scenario.

5.4.1.2 Channel spacing for CA

For intra-band contiguously aggregated carriers, the channel spacing between adjacent component carriers shall be multiple of least common multiple of channel raster and sub-carrier spacing.

The nominal channel spacing between two adjacent aggregated NR carriers is defined as follows:
For NR operating bands with 100 kHz channel raster:

$$
\text { Nominal channel spacing }=\left\{\frac{B W_{\text {Channel }(1)}+B W_{\text {Channel }(2)-2\left|G B_{\text {Channel }(1)}-G B_{\text {Channel }(2)}\right|}^{0.6}}{0.0 .3(\mathrm{MHz}), ~)}\right.
$$

For NR operating bands with 15 kHz channel raster:

$$
\text { Nominal channel spacing }=\left\lfloor\frac{B W_{\text {Channel }(1)}+B W_{\text {Channel }(2)}-2 \mid G B \text { Channel }(1)-G B \text { Channel }(2) \mid}{0.015 * 2^{n+1}}\right\rfloor 0.015 * 2^{n}(\mathrm{MHz})
$$

with

$$
n=\mu_{0}
$$

For NR operating bands with 60 kHz channel raster:

$$
\text { Nominal channel spacing }=\left\{\frac{B W_{\text {Channel }(1)}+B W_{\text {Channel }(2)}-2 \mid G B_{\text {Channel }(1)}-G B \text { Channel }(2) \mid}{0.06 * 2^{n+1}}\right] 0.06 * 2^{n}(\mathrm{MHz})
$$

with

$$
n=\mu_{0}-2
$$

where $\mathrm{BW}_{\text {Channel(1) }}$ and $\mathrm{BW}_{\text {Channel(2) }}$ are the $B S$ channel bandwidths of the two respective NR component carriers according to Table 5.3.2-1 and 5.3.2-2 with values in MHz, μ_{0} the largest μ value among the subcarrier spacing configurations supported in the operating band for both of the channel bandwidths according to Table 5.3.5-1 and Table
5.3.5-2 and $G B_{\text {Channel(} i \text { i }}$ the minimum guard band for channel bandwidth i according to Table 5.3.3-1 and Table 5.3.3-2 for the said μ value, with μ as defined in TS 38.211 [9]. In case there is no common μ value for both of the channel bandwidths, $\mu_{0}=1$ is selected for NR operating bands with 15 kHz channel raster and $G B_{\text {Channel(} i \text {) }}$ is the minimum guard band for channel bandwidth i according to Table 5.3.3-1 for $\mu=1$ with μ as defined in TS 38.211[9].

The channel spacing for intra-band contiguous carrier aggregation can be adjusted to any multiple of least common multiple of channel raster and sub-carrier spacing less than the nominal channel spacing to optimize performance in a particular deployment scenario.

For intra-band non-contiguous carrier aggregation, the channel spacing between two NR component carriers in different sub-blocks shall be larger than the nominal channel spacing defined in this clause.

5.4.2 Channel raster

5.4.2.1 NR-ARFCN and channel raster

The global frequency raster defines a set of $R F$ reference frequencies $\mathrm{F}_{\mathrm{REF}}$. The $R F$ reference frequency is used in signalling to identify the position of RF channels, SS blocks and other elements. The global frequency raster is defined for all frequencies from 0 to 100 GHz . The granularity of the global frequency raster is $\Delta \mathrm{F}_{\text {Global }}$.

RF reference frequencies are designated by an NR Absolute Radio Frequency Channel Number (NR-ARFCN) in the range [$0 \ldots .3279165$] on the global frequency raster. The relation between the NR-ARFCN and the RF reference frequency $\mathrm{F}_{\text {REF }}$ in MHz is given by the following equation, where $\mathrm{F}_{\text {REF-Offs }}$ and $\mathrm{N}_{\text {Ref-Offs }}$ are given in table 5.4.2.1-1 and $\mathrm{N}_{\mathrm{REF}}$ is the NR-ARFCN.

$$
\mathrm{F}_{\text {REF }}=\mathrm{F}_{\text {REF-Offs }}+\Delta \mathrm{F}_{\text {Global }}\left(\mathrm{N}_{\text {REF }}-\mathrm{N}_{\text {REF-Offs }}\right)
$$

Table 5.4.2.1-1: NR-ARFCN parameters for the global frequency raster

Range of frequencies(MHz)	Δ F Global $^{(k H z)}$	Fref-offs $^{(M H z)}$	$\mathbf{N}_{\text {REF-Offs }}$	Range of $\mathbf{N}_{\text {ReF }}$
$0-3000$	5	0	0	$0-599999$
$3000-24250$	15	3000	600000	$600000-2016666$
$24250-100000$	60	24250.08	2016667	$2016667-3279165$

The channel raster defines a subset of RF reference frequencies that can be used to identify the RF channel position in the uplink and downlink. The RF reference frequency for an RF channel maps to a resource element on the carrier. For each operating band, a subset of frequencies from the global frequency raster are applicable for that band and forms a channel raster with a granularity $\Delta \mathrm{F}_{\text {Raster }}$, which may be equal to or larger than $\Delta \mathrm{F}_{\text {Global }}$.

For SUL bands, for the uplink of all FDD bands defined in table 5.2-1 and for band n34, n38 and n39,

$$
\mathrm{F}_{\text {REF,shift }}=\mathrm{F}_{\mathrm{REF}}+\Delta_{\text {shift, }} \text { where } \Delta_{\text {shift }}=0 \mathrm{kHz} \text { or } 7.5 \mathrm{kHz}
$$

where $\Delta_{\text {shift }}$ is signalled by the network in higher layer parameter frequencyShift7p5khz as defined in TS 38.331 [11].
For band $n 34, n 38$ and $n 39, F_{\text {REF, shift }}$ is only applicable to uplink transmissions using a 15 kHz SCS .
The mapping between the channel raster and corresponding resource element is given in clause 5.4.2.2. The applicable entries for each operating band are defined in clause 5.4.2.3.

5.4.2.2 Channel raster to resource element mapping

The mapping between the RF reference frequency on the channel raster and the corresponding resource element is given in table 5.4.2.2-1 and can be used to identify the RF channel position. The mapping depends on the total number of RBs that are allocated in the channel and applies to both UL and DL. The mapping must apply to at least one numerology supported by the BS.

Table 5.4.2.2-1: Channel Raster to Resource Element Mapping

	$N_{\mathrm{RB}} \bmod 2=0$	$N_{\mathrm{RB}} \bmod 2=1$
Resource element index k	0	6
Physical resource block number n_{PRB}	$n_{\mathrm{PRB}}=\left\lfloor\frac{N_{\mathrm{RB}}}{2}\right\rfloor$	$n_{\mathrm{PRB}}=\left\lfloor\frac{N_{\mathrm{RB}}}{2}\right\rfloor$

$k, n_{\text {PRB }}$ and N_{RB} are as defined in TS 38.211 [9].

5.4.2.3 Channel raster entries for each operating band

The RF channel positions on the channel raster in each NR operating band are given through the applicable NRARFCN in table 5.4.2.3-1 for FR1 and table 5.4.2.3-2 for FR2, using the channel raster to resource element mapping in clause 5.4.2.2.

- For NR operating bands with 100 kHz channel raster, $\Delta \mathrm{F}_{\text {Raster }}=20 \times \Delta \mathrm{F}_{\text {Global. }}$. In this case, every $20^{\text {th }}$ NRARFCN within the operating band are applicable for the channel raster within the operating band and the step size for the channel raster in table 5.4.2.3-1 is given as <20>.
- For NR operating bands with 15 kHz channel raster below $3 \mathrm{GHz}, \Delta \mathrm{F}_{\text {Raster }}=I \times \Delta \mathrm{F}_{\text {Global }}$, where $I \in\{3,6\}$. In this case, every $I^{\text {th }}$ NR-ARFCN within the operating band are applicable for the channel raster within the operating band and the step size for the channel raster in table 5.4.2.3-1 is given as $\langle I\rangle$.
- For NR operating bands with 15 kHz and 60 kHz channel raster above $3 \mathrm{GHz}, \Delta \mathrm{F}_{\text {Raster }}=I \times \Delta \mathrm{F}_{\text {Global }}$, where $I \epsilon$ $\{1,2\}$. In this case, every I^{h} NR-ARFCN within the operating band are applicable for the channel raster within the operating band and the step size for the channel raster in table 5.4.2.3-1 and table 5.4.2.3-2 is given as <I>.
- For frequency bands with two $\Delta \mathrm{F}_{\text {Raster }}$ in FR1, the higher $\Delta \mathrm{F}_{\text {Raster }}$ applies to channels using only the SCS that is equal to or larger than the higher $\Delta \mathrm{F}_{\text {Raster }}$ and SSB SCS is equal to the higher $\Delta \mathrm{F}_{\text {Raster }}$.
- For frequency bands with two $\Delta \mathrm{F}_{\text {Raster }}$ in FR2, the higher $\Delta \mathrm{F}_{\text {Raster }}$ applies to channels using only the SCS that is equal to the higher $\Delta \mathrm{F}_{\text {Raster }}$ and the SSB SCS that is equal to or larger than the higher $\Delta \mathrm{F}_{\text {Raster }}$.

Table 5.4.2.3-1: Applicable NR-ARFCN per operating band in FR1

NR operating band	$\Delta F_{\text {Raster }}$ (kHz)	Uplink range of $N_{\text {REF }}$ (First $-<$ Step size> - Last)	Downlink range of $N_{\text {REF }}$ (First $-<$ Step size $>-$ Last)
n1	100	$384000-<20>-396000$	$422000-<20>-434000$
n2	100	$370000-<20>-382000$	$386000-<20>-398000$
n3	100	$342000-<20>-357000$	$361000-<20>-376000$
n5	100	$164800-<20>-169800$	$173800-<20>-178800$
n7	100	$500000-<20>-514000$	$524000-<20>-538000$
n8	100	$176000-<20>-183000$	$185000-<20>-192000$
n12	100	$139800-<20>-143200$	$145800-<20>-149200$
n20	100	$166400-<20>-172400$	$158200-<20>-164200$
n25	100	$370000-<20>-383000$	$386000-<20>-399000$
n28	100	$140600-<20>-149600$	$151600-<20>-160600$
n34	100	$402000-<20>-405000$	$402000-<20>-405000$
n38	100	$514000-<20>-524000$	$514000-<20>-524000$
n39	100	$376000-<20>-384000$	$376000-<20>-384000$
n40	100	$460000-<20>-480000$	$460000-<20>-480000$
n41	15	$499200-<3>-537999$	$499200-<3>-537999$
	30	$499200-<6>-537996$	$499200-<6>-537996$
n50	100	$286400-<20>-303400$	$286400-<20>-303400$
n51	100	$285400-<20>-286400$	$285400-<20>-286400$
n66	100	$342000-<20>-356000$	$422000-<20>-440000$
n70	100	$339000-<20>-342000$	$399000-<20>-404000$
n71	100	$132600-<20>-139600$	$123400-<20>-130400$
n74	100	$285400-<20>-294000$	$295000-<20>-303600$
n75	100	N/A	$286400-<20>-303400$
n76	100	N/A	$285400-<20>-286400$
n77	15	$620000-<1>-680000$	$620000-<1>-680000$
	30	$620000-<2>-680000$	$620000-<2>-680000$
n78	15	$620000-<1>-653333$	$620000-<1>-653333$
	30	$620000-<2>-653332$	$620000-<2>-653332$
n79	15	$693334-<1>-733333$	$693334-<1>-733333$
	30	$693334-<2>-733332$	$693334-<2>-733332$
n80	100	$342000-<20>-357000$	N/A
n81	100	$176000-<20>-183000$	N/A
n82	100	$166400-<20>-172400$	N/A
n83	100	$140600-<20>-149600$	N/A
n84	100	$384000-<20>-396000$	N/A
n86	100	$342000-<20>-356000$	N/A

Table 5.4.2.3-2: Applicable NR-ARFCN per operating band in FR2

NR operating band	$\Delta F_{\text {Raster }}$ $(k H z)$	Uplink and Downlink range of $\mathrm{N}_{\text {bef }}$ (First - <Step size> - Last)
n257	60	2054166-<1>-2104165
	120	$2054167-<2>-2104165$
n258	60	$2016667-<1>-2070832$
	120	$2016667-<2>-2070831$
n260	60	$2229166-<1>-2279165$
	120	$2229167-<2>-2279165$
n261	60	2070833-<1>-2084999
	120	$2070833-<2>-2084999$

5.4.3 Synchronization raster

5.4.3.1 Synchronization raster and numbering

The synchronization raster indicates the frequency positions of the synchronization block that can be used by the UE for system acquisition when explicit signalling of the synchronization block position is not present.

A global synchronization raster is defined for all frequencies. The frequency position of the SS block is defined as SS $_{\text {REF }}$ with corresponding number GSCN. The parameters defining the SS $_{\text {REF }}$ and GSCN for all the frequency ranges are in table 5.4.3.1-1.

The resource element corresponding to the SS block reference frequency $\mathrm{SS}_{\mathrm{REF}}$ is given in clause 5.4.3.2. The synchronization raster and the subcarrier spacing of the synchronization block is defined separately for each band.

Table 5.4.3.1-1: GSCN parameters for the global frequency raster

Range of frequencies (MHz)	SS block frequency position SS	GSCN	Range of GSCN
$0-3000$	$N^{*} 1200 \mathrm{kHz}+\mathrm{M}^{*} 50 \mathrm{kHz}$, $\mathrm{N}=1: 2499, \mathrm{M} \in\{1,3,5\}(\mathrm{Note})$	$3 \mathrm{~N}+(\mathrm{M}-3) / 2$	$2-7498$
$3000-24250$	$3000 \mathrm{MHz}+\mathrm{N}^{*} 1.44 \mathrm{MHz}$, $\mathrm{N}=0: 14756$	$7499+\mathrm{N}$	$7499-22255$
$24250-100000$	$24250.08 \mathrm{MHz}+\mathrm{N}^{*} 17.28 \mathrm{MHz}$,	$22256+\mathrm{N}$	$22256-26639$
$\mathrm{~N}=0.4383$			

5.4.3.2 Synchronization raster to synchronization block resource element mapping

The mapping between the synchronization raster and the corresponding resource element of the SS block is given in table 5.4.3.2-1.

Table 5.4.3.2-1: Synchronization Raster to SS block Resource Element Mapping

Resource element index k	120

k is the subcarrier number of SS/PBCH block defined in TS 38.211 clause 7.4.3.1 [9].

5.4.3.3 Synchronization raster entries for each operating band

The synchronization raster for each band is give in table 5.4.3.3-1. The distance between applicable GSCN entries is given by the <Step size> indicated in table 5.4.3.3-1 for FR1 and table 5.4.3.3-2 for FR2.

Table 5.4.3.3-1: Applicable SS raster entries per operating band (FR1)

NR operating band	SS Block SCS	SS Block pattern (NOTE 1)	Range of GSCN (First - <Step size> - Last)
n1	15 kHz	Case A	$5279-<1>-5419$
n2	15 kHz	Case A	$4829-<1>-4969$
n3	15 kHz	Case A	$4517-<1>-4693$
n5	15 kHz	Case A	$2177-<1>-2230$
	30 kHz	Case B	$2183-<1>-2224$
n7	15 kHz	Case A	$6554-<1>-6718$
n8	15 kHz	Case A	$2318-<1>-2395$
n12	15 kHz	Case A	$1828-<1>-1858$
n20	15 kHz	Case A	$1982-<1>-2047$
n25	15 kHz	Case A	$4829-<1>-4981$
n28	15 kHz	Case A	1901-<1>-2002
n34	15 kHz	Case A	NOTE 3
	30 kHz	Case C	5036-<1>-5050
n38	15 kHz	Case A	NOTE 2
	30 kHz	Case C	$6437-<1>-6538$
n39	15 kHz	Case A	NOTE 4
	30 kHz	Case C	4712-<1>-4789
n40	30 kHz	Case C	$5762-<1>-5989$
n41	15 kHz	Case A	$6246-<3>-6717$
	30 kHz	Case C	$6252-<3>-6714$
n50	30 kHz	Case C	$3590-<1>-3781$
n51	15 kHz	Case A	$3572-<1>-3574$
n66	15 kHz	Case A	$5279-<1>-5494$
	30 kHz	Case B	$5285-<1>-5488$
n70	15 kHz	Case A	$4993-<1>-5044$
n71	15 kHz	Case A	$1547-<1>-1624$
n74	15 kHz	Case A	$3692-<1>-3790$
n75	15 kHz	Case A	$3584-<1>-3787$
n76	15 kHz	Case A	$3572-<1>-3574$
n77	30 kHz	Case C	$7711-<1>-8329$
n78	30 kHz	Case C	$7711-<1>-8051$
n79	30 kHz	Case C	8480-<16>-8880
NOTE 1: SS Block pattern is defined in clause 4.1 in TS 38.213 [10]. NOTE 2: The applicable SS raster entries are GSCN $=\{6432,6443,6457,6468,6479,6493,6507,6518$, 6532, 6543\} NOTE 3: The applicable SS raster entries are GSCN $=\{5032,5043,5054\}$ NOTE 4: The applicable SS raster entries are GSCN $=\{4707,4715,4718,4729,4732,4743,4747,4754$, $4761,4768,4772,4782,4786,4793\}$			

Table 5.4.3.3-2: Applicable SS raster entries per operating band (FR2)

NR operating band	SS Block SCS	SS Block pattern (note)	Range of GSCN (First $-<$ Step size - Last)
n 257	120 kHz	Case D	$22388-<1>-22558$
	240 kHz	Case E	$22390-<2>-22556$
n 259	120 kHz	Case D	$22257-<1>-22443$
	240 kHz	Case E	$22258-<2>-22442$
n 260	120 kHz	Case D	$23140-<1>-23369$
	240 kHz	Case E	$23142-<2>-23368$
n 261	120 kHz	Case D	$22995-<1>-23166$
	240 kHz	Case E	$22996-<2>-23164$
	120 kHz	Case D	$22446-<1>-22492$
NOTE: \quad SS Block pattern is defined in clause 4.1 in TS 38.213 [10].			

6 Conducted transmitter characteristics

6.1 General

Unless otherwise stated, the conducted transmitter characteristics are specified at the antenna connector for BS type 1-C and at the TAB connector for BS type 1-H, with a full complement of transceiver units for the configuration in normal operating conditions.

For BS type 1-H the manufacturer shall declare the minimum number of supported geographical cells (i.e. geographical areas covered by beams). The minimum number of supported geographical cells ($\mathrm{N}_{\text {cells }}$) relates to the BS setting with the minimum amount of cell splitting supported with transmission on all TAB connectors supporting the operating band, or with minimum amount of transmitted beams.

For $B S$ type 1- H manufacturer shall also declare TAB connector TX min cell groups. Every TAB connector of the $B S$ type 1-H supporting transmission in an operating band shall map to one TAB connector TX min cell group supporting the same operating band, where mapping of TAB connectors to cells/beams is implementation dependent.

The number of active transmitter units that are considered when calculating the conducted TX emissions limits ($\mathrm{N}_{\text {TXU,counted }}$) for BS type 1-H is calculated as follows:

$$
\mathrm{N}_{\mathrm{TXU}, \text { counted }}=\min \left(N_{T X U, a c t i v e}, 8 \times N_{\text {cells }}\right)
$$

$\mathrm{N}_{\text {TXU, countedpercell }}$ is used for scaling of basic limits and is derived as $\mathrm{N}_{\text {TXU, countedpercell }}=\mathrm{N}_{\text {TXU,counted }} / \mathrm{N}_{\text {cells }}$
NOTE: $\quad \mathrm{N}_{\mathrm{TXU}, \text { active }}$ depends on the actual number of active transmitter units and is independent to the declaration of $\mathrm{N}_{\text {cells }}$.

6.2 Base station output power

6.2.1 General

The BS conducted output power requirement is at antenna connector for BS type 1-C, or at TAB connector for BS type 1-H.

The rated carrier output power of the BS type 1-C shall be as specified in table 6.2.1-1.
Table 6.2.1-1: BS type 1-C rated output power limits for BS classes

BS class	Prated, c, AC
Wide Area BS	(Note)
Medium Range BS	$\leq 38 \mathrm{dBm}$
Local Area BS	$\leq 24 \mathrm{dBm}$
NOTE: \quad There is no upper limit for the Prated, C, AC rated output	power of the Wide Area Base Station.

The rated carrier output power of the BS type 1-H shall be as specified in table 6.2.1-2.
Table 6.2.1-2: BS type 1-H rated output power limits for BS classes

BS class	Prated, c, sys	Prated, c, TABC
Wide Area BS	(Note)	(Note)
Medium Range BS	$\leq 38 \mathrm{dBm}+10 \log$ (TTXU,counted $^{\text {a }}$	$\leq 38 \mathrm{dBm}$
Local Area BS	$\leq 24 \mathrm{dBm}+10 \log \left(\mathrm{~N}_{\text {TXU, }}\right.$ counted $)$	$\leq 24 \mathrm{dBm}$
is no upper limit for the Prated, ,c,sys or Prate,, , ,TABC of the Wide Area Base Statio		

For Band n 41 operation in Japan, the rated output power, $\mathrm{P}_{\text {rated.c.sys }}$ for BS type 1-H or the sum of $\mathrm{P}_{\text {rated,c,Ac }}$ over all antenna connectors for BS type 1-C declared by the manufacturer shall be equal to or less than 20 W per 10 MHz bandwidth.

6.2.2 Minimum requirement for $B S$ type 1-C

In normal conditions, $\mathrm{P}_{\text {max, }, \mathrm{c}, \mathrm{AC}}$ shall remain within +2 dB and -2 dB of the rated carrier output power $\mathrm{P}_{\mathrm{rated}, \mathrm{c}, \mathrm{AC}}$, declared by the manufacturer.

In extreme conditions, $\mathrm{P}_{\text {max, }, \mathrm{c}, \mathrm{AC}}$ shall remain within +2.5 dB and -2.5 dB of the rated carrier output power $\mathrm{P}_{\mathrm{rated}, \mathrm{c}, \mathrm{AC}}$, declared by the manufacturer.

In certain regions, the minimum requirement for normal conditions may apply also for some conditions outside the range of conditions defined as normal.

6.2.3 Minimum requirement for $B S$ type 1-H

In normal conditions, $\mathrm{P}_{\text {max, }, \mathrm{c}, \mathrm{TABC}}$ shall remain within +2 dB and -2 dB of the rated carrier output power $\mathrm{P}_{\mathrm{rate}, \mathrm{c}, \mathrm{TABC}}$ for each TAB connector as declared by the manufacturer.

In extreme conditions, $\mathrm{P}_{\text {max, }, \mathrm{c}, \mathrm{TABC}}$ shall remain within +2.5 dB and -2.5 dB of the rated carrier output power $\mathrm{P}_{\mathrm{rate}, \mathrm{c}, \mathrm{TABC}}$ for each TAB connector as declared by the manufacturer.

In certain regions, the minimum requirement for normal conditions may apply also for some conditions outside the range of conditions defined as normal.

6.2.4 Additional requirements (regional)

In certain regions, additional regional requirements may apply.

6.3 Output power dynamics

6.3.1 General

The requirements in clause 6.3 apply during the transmitter ON period. Transmitted signal quality (as specified in clause 6.5) shall be maintained for the output power dynamics requirements of this clause.

Power control is used to limit the interference level.

6.3.2 RE power control dynamic range

6.3.2.1 General

The RE power control dynamic range is the difference between the power of an RE and the average RE power for a BS at maximum output power ($\mathrm{P}_{\text {max, },, \mathrm{AC}}$ or $\mathrm{P}_{\text {max }, \mathrm{c}, \mathrm{TABC}}$) for a specified reference condition.

For BS type 1-C this requirement shall apply at the antenna connector supporting transmission in the operating band.
For BS type 1-H this requirement shall apply at each TAB connector supporting transmission in the operating band.

6.3.2.2 Minimum requirement for BS type 1-C and BS type 1-H

RE power control dynamic range:

Table 6.3.2.2-1: RE power control dynamic range

Modulation scheme used on the RE	RE power control dynamic range (dB)	
	(down)	(up)
QPSK (PDCCH)	-6	+4
QPSK (PDSCH)	-6	+3
16QAM (PDSCH)	-3	+3
64QAM (PDSCH)	0	0
256QAM (PDSCH)	0	0
NOTE:The output power per carrier shall always be less or equal to the maximum output power of the base station.		

6.3.3 Total power dynamic range

6.3.3.1 General

The BS total power dynamic range is the difference between the maximum and the minimum transmit power of an OFDM symbol for a specified reference condition.

For BS type 1-C this requirement shall apply at the antenna connector supporting transmission in the operating band.
For BS type 1-H this requirement shall apply at each TAB connector supporting transmission in the operating band.
NOTE: The upper limit of the dynamic range is the OFDM symbol power for a BS when transmitting on all RBs at maximum output power. The lower limit of the total power dynamic range is the average power for single RB transmission. The OFDM symbol shall carry PDSCH and not contain RS or SSB.

6.3.3.2 Minimum requirement for $B S$ type 1-C and BS type 1-H

The downlink (DL) total power dynamic range for each NR carrier shall be larger than or equal to the level in table 6.3.3.2-1.

Table 6.3.3.2-1: Total power dynamic range

BS channel bandwidth (MHz)	Total power dynamic range								
				$	$	$\mathbf{1 5 ~ k H z ~ S C S}$	$\mathbf{3 0} \mathbf{k H z ~ S C S}$	$\mathbf{6 0} \mathbf{~ k H z ~ S C S}$	
:---:	:---:	:---:	:---:						
5	13.9	10.4	N/A						
10	17.1	13.8	10.4						
15	18.9	15.7	12.5						
20	20.2	17	13.8						
25	21.2	18.1	14.9						
30	22	18.9	15.7						
40	23.3	20.2	17						
50	24.3	21.2	18.1						
60	N/A	22	18.9						
70	N/A	22.7	19.6						
80	N/A	23.3	20.2						
90	N/A	23.8	20.8						
100	N/A	24.3	21.3						

6.4 Transmit ON/OFF power

6.4.1 Transmitter OFF power

6.4.1. General

Transmit OFF power requirements apply only to TDD operation of NR BS.
Transmitter OFF power is defined as the mean power measured over $70 / \mathrm{N}$ us filtered with a square filter of bandwidth equal to the transmission bandwidth configuration of the BS ($\mathrm{BW}_{\text {Config }}$) centred on the assigned channel frequency during the transmitter OFF period. $\mathrm{N}=\mathrm{SCS} / 15$, where SCS is Sub Carrier Spacing in kHz .

For multi-band connectors and for single band connectors supporting transmission in multiple operating bands, the requirement is only applicable during the transmitter OFF period in all supported operating bands.

For BS supporting intra-band contiguous CA, the transmitter OFF power is defined as the mean power measured over $70 / \mathrm{N}$ us filtered with a square filter of bandwidth equal to the Aggregated BS Channel Bandwidth $\mathrm{BW}_{\text {Channel_CA }}$ centred on $\left(\mathrm{F}_{\text {edge, high }}+\mathrm{F}_{\text {edge,low }}\right) / 2$ during the transmitter OFF period. $\mathrm{N}=\mathrm{SCS} / 15$, where SCS is the smallest supported Sub Carrier Spacing in kHz in the Aggregated BS Channel Bandwidth.

6.4.1.2 Minimum requirement for BS type 1-C

For BS type 1-C, the requirements for transmitter OFF power spectral density shall be less than $-85 \mathrm{dBm} / \mathrm{MHz}$ per antenna connector.

6.4.1.3 Minimum requirement for BS type 1-H

For $B S$ type 1-H, the requirements for transmitter OFF power spectral density shall be less than $-85 \mathrm{dBm} / \mathrm{MHz}$ per $T A B$ connector.

6.4.2 Transmitter transient period

6.4.2.1 General

Transmitter transient period requirements apply only to TDD operation of NR BS.
The transmitter transient period is the time period during which the transmitter is changing from the transmitter OFF period to the transmitter ON period or vice versa. The transmitter transient period is illustrated in figure 6.4.2.1-1.

Figure 6.4.2.1-1: Example of relations between transmitter ON period, transmitter OFF period and transmitter transient period

For BS type 1-C this requirement shall be applied at the antenna connector supporting transmission in the operating band.

For BS type 1-H this requirement shall be applied at each TAB connector supporting transmission in the operating band.

6.4.2.2 Minimum requirement for $B S$ type 1-C and BS type 1-H

For BS type 1-C and BS type 1-H, the transmitter transient period shall be shorter than the values listed in the minimum requirement table 6.4.2.2-1.

Table 6.4.2.2-1: Minimum requirement for the transmitter transient period for BS type 1-C and BS type 1-H

Transition	Transient period length $(\boldsymbol{\mu s})$
OFF to ON	10
ON to OFF	10

6.4.2.3 Void

6.5 Transmitted signal quality

6.5.1 Frequency error

6.5.1.1 General

The requirements in clause 6.5.1 apply to the transmitter ON period.
Frequency error is the measure of the difference between the actual BS transmit frequency and the assigned frequency. The same source shall be used for RF frequency and data clock generation.

For BS type 1-C this requirement shall be applied at the antenna connector supporting transmission in the operating band.

For BS type 1-H this requirement shall be applied at each $T A B$ connector supporting transmission in the operating band.

6.5.1.2 Minimum requirement for $B S$ type 1-C and BS type 1-H

For BS type 1-C and BS type 1-H, the modulated carrier frequency of each NR carrier configured by the BS shall be accurate to within the accuracy range given in table 6.5.1.2-1 observed over 1 ms .

Table 6.5.1.2-1: Frequency error minimum requirement

BS class	Accuracy
Wide Area BS	$\pm 0.05 \mathrm{ppm}$
Medium Range BS	$\pm 0.1 \mathrm{ppm}$
Local Area BS	$\pm 0.1 \mathrm{ppm}$

6.5.2 Modulation quality

6.5.2.1 General

Modulation quality is defined by the difference between the measured carrier signal and an ideal signal. Modulation quality can e.g. be expressed as Error Vector Magnitude (EVM). The Error Vector Magnitude is a measure of the difference between the ideal symbols and the measured symbols after the equalization. This difference is called the error vector. Details about how the EVM is determined are specified in Annex B.

For BS type 1-C this requirement shall be applied at the antenna connector supporting transmission in the operating band.

For BS type 1-H this requirement shall be applied at each TAB connector supporting transmission in the operating band.

6.5.2.2 Minimum Requirement for $B S$ type 1-C and BS type 1-H

For BS type 1-C and 1-H, the EVM levels of each NR carrier for different modulation schemes on PDSCH outlined in table 6.5.2.2-1 shall be met using the frame structure described in clause 6.5.2.3.

Table 6.5.2.2-1: EVM requirements for BS type 1-C and BS type 1-H carrier

Modulation scheme for PDSCH	Required EVM
QPSK	17.5%
16QAM	12.5%
64QAM	8%
256QAM	3.5%

6.5.2.3 EVM frame structure for measurement

EVM shall be evaluated for each NR carrier over all allocated resource blocks and downlink subframes. Different modulation schemes listed in table 6.5.2.2-1 shall be considered for rank 1.

For NR, for all bandwidths, the EVM measurement shall be performed for each NR carrier over all allocated resource blocks and downlink subframes within 10 ms measurement periods. The boundaries of the EVM measurement periods need not be aligned with radio frame boundaries.

6.5.3 Time alignment error

6.5.3.1 General

This requirement shall apply to frame timing in MIMO transmission, carrier aggregation and their combinations.
Frames of the NR signals present at the BS transmitter antenna connectors or TAB connectors are not perfectly aligned in time. The RF signals present at the BS transmitter antenna connectors or transceiver array boundary may experience certain timing differences in relation to each other.

The TAE is specified for a specific set of signals/transmitter configuration/transmission mode.

For BS type 1-C, the TAE is defined as the largest timing difference between any two signals belonging to different antenna connectors for a specific set of signals/transmitter configuration/transmission mode.

For BS type 1-H, the TAE is defined as the largest timing difference between any two signals belonging to TAB connectors belonging to different transmitter groups at the transceiver array boundary, where transmitter groups are associated with the TAB connectors in the transceiver unit array corresponding to MIMO transmission, carrier aggregation for a specific set of signals/transmitter configuration/transmission mode.

6.5.3.2 Minimum requirement for $B S$ type 1-C and BS type $1-\mathrm{H}$

For MIMO transmission, at each carrier frequency, TAE shall not exceed 65 ns .
For intra-band contiguous carrier aggregation, with or without MIMO, TAE shall not exceed 260ns.
For intra-band non-contiguous carrier aggregation, with or without MIMO, TAE shall not exceed $3 \mu \mathrm{~s}$.
For inter-band carrier aggregation, with or without MIMO, TAE shall not exceed $3 \mu \mathrm{~s}$.
Table 6.5.3.2-1: Void
Table 6.5.3.2-2: Void
Table 6.5.3.2-3: Void

6.6 Unwanted emissions

6.6.1 General

Unwanted emissions consist of out-of-band emissions and spurious emissions according to ITU definitions [2]. In ITU terminology, out of band emissions are unwanted emissions immediately outside the BS channel bandwidth resulting from the modulation process and non-linearity in the transmitter but excluding spurious emissions. Spurious emissions are emissions which are caused by unwanted transmitter effects such as harmonics emission, parasitic emission, intermodulation products and frequency conversion products, but exclude out of band emissions.

The out-of-band emissions requirement for the BS transmitter is specified both in terms of Adjacent Channel Leakage power Ratio (ACLR) and operating band unwanted emissions (OBUE).

The maximum offset of the operating band unwanted emissions mask from the operating band edge is $\Delta \mathrm{f}_{\mathrm{OBUE}}$. The Operating band unwanted emissions define all unwanted emissions in each supported downlink operating band plus the frequency ranges $\Delta \mathrm{f}_{\text {OBUE }}$ above and $\Delta \mathrm{f}_{\text {OBUE }}$ below each band. Unwanted emissions outside of this frequency range are limited by a spurious emissions requirement.

The values of $\Delta \mathrm{f}_{\text {OBUE }}$ are defined in table 6.6.1-1 for the NR operating bands.
Table 6.6.1-1: Maximum offset of OBUE outside the downlink operating band

BS type	Operating band characteristics	$\Delta \mathrm{fobue} \mathrm{(MHz)}$
BS type 1-H	FDL,high - $\mathrm{F}_{\text {DL, }}$ low $<100 \mathrm{MHz}$	10
	$100 \mathrm{MHz} \leq \mathrm{F}_{\text {DL, high }}-\mathrm{F}_{\text {DL, }}$ low $\leq 900 \mathrm{MHz}$	40
BS type 1-C	$\mathrm{F}_{\text {DL, ,high }}-\mathrm{F}_{\text {DL,low }} \leq 200 \mathrm{MHz}$	10
	200 MHz < F FDL,high - FDL,low $\leq 900 \mathrm{MHz}$	40

For BS type 1-H the unwanted emission requirements are applied per the TAB connector TX min cell groups for all the configurations supported by the BS. The basic limits and corresponding emissions scaling are defined in each relevant clause.

There is in addition a requirement for occupied bandwidth.

6.6.2 Occupied bandwidth

6.6.2.1 General

The occupied bandwidth is the width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage $\beta / 2$ of the total mean transmitted power. See also Recommendation ITU-R SM. 328 [3].

The value of $\beta / 2$ shall be taken as 0.5%.
The occupied bandwidth requirement shall apply during the transmitter ON period for a single transmitted carrier. The minimum requirement below may be applied regionally. There may also be regional requirements to declare the occupied bandwidth according to the definition in the present clause.

For BS type 1-C this requirement shall be applied at the antenna connector supporting transmission in the operating band.

For BS type 1-H this requirement shall be appliedat each TAB connector supporting transmission in the operating band.

6.6.2.2 Minimum requirement for $B S$ type 1-C and BS type 1-H

The occupied bandwidth for each NR carrier shall be less than the BS channel bandwidth. For intra-band contiguous CA, the occupied bandwidth shall be less than or equal the Aggregated BS Channel Bandwidth.

6.6.3 Adjacent Channel Leakage Power Ratio

6.6.3.1 General

Adjacent Channel Leakage power Ratio (ACLR) is the ratio of the filtered mean power centred on the assigned channel frequency to the filtered mean power centred on an adjacent channel frequency.

The requirements shall apply outside the Base Station RF Bandwidth or Radio Bandwidth whatever the type of transmitter considered (single carrier or multi-carrier) and for all transmission modes foreseen by the manufacturer's specification.

For a BS operating in non-contiguous spectrum, the ACLR requirement in clause 6.6.3.2 shall apply in sub-block gaps for the frequency ranges defined in table 6.6.3.2-2a, while the CACLR requirement in clause 6.6.3.2 shall apply in subblock gaps for the frequency ranges defined in table 6.6.3.2-3.

For a multi-band connector, the ACLR requirement in clause 6.6.3.2 shall apply in Inter RF Bandwidth gaps for the frequency ranges defined in table 6.6.3.2-2a, while the CACLR requirement in clause 6.6.3.2 shall apply in Inter RF Bandwidth gaps for the frequency ranges defined in table 6.6.3.2-3.

The requirement shall apply during the transmitter ON period.

6.6.3.2 Limits and Basic limits

The ACLR is defined with a square filter of bandwidth equal to the transmission bandwidth configuration of the transmitted signal ($\mathrm{BW}_{\text {Config }}$) centred on the assigned channel frequency and a filter centred on the adjacent channel frequency according to the tables below.

For operation in paired and unpaired spectrum, the ACLR shall be higher than the value specified in table 6.6.3.2-1.

Table 6.6.3.2-1: Base station ACLR limit

BS channel bandwidth of lowest/highest carrier transmitted BW Channel (MHz)	BS adjacent channel centre frequency offset below the lowest or above the highest carrier centre frequency transmitted	Assumed adjacent channel carrier (informative)	Filter on the adjacent channel frequency and corresponding filter bandwidth	ACLR limit
$\begin{gathered} 5,10,15,20,25,30,40, \\ 50,60,70,80,90,100 \end{gathered}$	BWChannel	NR of same BW (Note 2)	Square (BWConfig)	45 dB
	$2 \times$ BWChannel	NR of same BW (Note 2)	Square (BW Config)	45 dB
	$\mathrm{BW}_{\text {channel }} / 2+2.5 \mathrm{MHz}$	5 MHz E-UTRA	Square (4.5 MHz)	$\begin{gathered} \hline 45 \mathrm{~dB} \\ (\text { Note 3) } \end{gathered}$
	$\mathrm{BW}_{\text {channel }} / 2+7.5 \mathrm{MHz}$	5 MHz E-UTRA	Square (4.5 MHz)	$\begin{gathered} 45 \mathrm{~dB} \\ (\text { Note 3) } \\ \hline \end{gathered}$

NOTE 1: \quad BW Channel and BW Config are the BS channel bandwidth and transmission bandwidth configuration of the lowest/highest carrier transmitted on the assigned channel frequency.
NOTE 2: With SCS that provides largest transmission bandwidth configuration (BW ${ }_{\text {Config }}$).
NOTE 3: The requirements are applicable when the band is also defined for E-UTRA or UTRA.

The ACLR absolute basic limit is specified in table 6.6.3.2-2.
Table 6.6.3.2-2: Base station ACLR absolute basic limit

BS category / BS class	ACLR absolute basic limit
Category A Wide Area BS	$-13 \mathrm{dBm} / \mathrm{MHz}$
Category B Wide Area BS	$-15 \mathrm{dBm} / \mathrm{MHz}$
Medium Range BS	$-25 \mathrm{dBm} / \mathrm{MHz}$
Local Area BS	$-32 \mathrm{dBm} / \mathrm{MHz}$

For operation in non-contiguous spectrum or multiple bands, the ACLR shall be higher than the value specified in Table 6.6.3.2-2a.

Table 6.6.3.2-2a: Base Station ACLR limit in non-contiguous spectrum or multiple bands

BS channel bandwidth of lowest/highest carrier transmitted BW Channel (MHz)	Sub-block or Inter RF Bandwidth gap size ($\mathrm{W}_{\text {gap }}$) where the limit applies (MHz)	BS adjacent channel centre frequency offset below or above the sub-block or Base Station RF Bandwidth edge (inside the gap)	Assumed adjacent channel carrier	Filter on the adjacent channel frequency and corresponding filter bandwidth	ACLR limit
5, 10, 15, 20	$\begin{gathered} W_{\text {gap }} \geq 15 \text { (Note } \\ 3 \text {) } \\ W_{\text {gap }} \geq 45 \text { (Note } \\ 4 \text {) } \end{gathered}$	2.5 MHz	5 MHz NR (Note 2)	Square (BW ${ }_{\text {config }}$)	45 dB
	$\begin{gathered} \mathrm{W}_{\text {gap }} \geq 20(\text { Note } \\ 3) \\ \mathrm{W}_{\text {gap }} \geq 50 \text { (Note } \\ 4) \\ \hline \end{gathered}$	7.5 MHz	5 MHz NR (Note 2)	Square (BW ${ }_{\text {contig }}$)	45 dB
$\begin{gathered} 25,30,40,50,60 \\ 70,80,90,100 \end{gathered}$	$\begin{gathered} W_{\text {gap }} \geq 60 \text { (Note } \\ 4 \text {) } \\ W_{\text {gap }} \geq 30 \text { (Note } \\ \text { 3) } \end{gathered}$	10 MHz	$\begin{aligned} & 20 \mathrm{MHz} \text { NR } \\ & \text { (Note 2) } \end{aligned}$	Square (BW ${ }_{\text {config }}$)	45 dB
	$\begin{gathered} W_{\text {gap }} \geq 80 \text { (Note } \\ 4) \\ W_{\text {gap }} \geq 50 \text { (Note } \\ \text { 3) } \end{gathered}$	30 MHz	$\begin{aligned} & 20 \mathrm{MHz} \text { NR } \\ & \text { (Note 2) } \end{aligned}$	Square (BW ${ }_{\text {config }}$)	45 dB
NOTE 1: BWConfig is the transmission bandwidth configuration of the assumed adjacent channel carrier. NOTE 2: With SCS that provides largest transmission bandwidth configuration (BWconfig). NOTE 3: Applicable in case the BS channel bandwidth of the NR carrier transmitted at the other edge of the gap is 5 , $10,15,20 \mathrm{MHz}$. NOTE 4: Applicable in case the BS channel bandwidth of the NR carrier transmitted at the other edge of the gap is $25,30,40,50,60,70,80,90,100 \mathrm{MHz}$.					

The Cumulative Adjacent Channel Leakage power Ratio (CACLR) in a sub-block gap or the Inter RF Bandwidth gap is the ratio of:
a) the sum of the filtered mean power centred on the assigned channel frequencies for the two carriers adjacent to each side of the sub-block gap or the Inter RF Bandwidth gap, and
b) the filtered mean power centred on a frequency channel adjacent to one of the respective sub-block edges or Base Station RF Bandwidth edges.

The assumed filter for the adjacent channel frequency is defined in table 6.6.3.2-3 and the filters on the assigned channels are defined in table 6.6.3.2-4.

For operation in non-contiguous spectrum or multiple bands, the CACLR for NR carriers located on either side of the sub-block gap or the Inter RF Bandwidth gap shall be higher than the value specified in table 6.6.3.2-3.

Table 6.6.3.2-3: Base Station CACLR limit

BS channel bandwidth of lowest/highest carrier transmitted BW Channel (MHz)	Sub-block or Inter RF Bandwidth gap size $\left(\mathrm{W}_{\text {gap }}\right)$ where the limit applies (MHz)	BS adjacent channel centre frequency offset below or above the sub-block or Base Station RF Bandwidth edge (inside the gap)	Assumed adjacent channel carrier	Filter on the adjacent channel frequency and corresponding filter bandwidth	CACLR limit
$5,10,15,20$	$\begin{gathered} 5 \leq W_{\text {gap }}<15 \\ \text { (Note 3) } \\ 5 \leq W_{\text {gap }}<45 \\ \text { (Note 4) } \\ \hline \end{gathered}$	2.5 MHz	5 MHz NR (Note 2)	Square (BWConfig)	45 dB
	$\begin{gathered} \hline 10<W_{\text {gap }}<20 \\ (\text { Note } 3) \\ 10 \leq W_{\text {gap }}<50 \\ \text { (Note 4) } \\ \hline \end{gathered}$	7.5 MHz	$\begin{aligned} & \hline 5 \mathrm{MHz} \mathrm{NR} \\ & \text { (Note 2) } \end{aligned}$	Square (BW ${ }_{\text {config }}$)	45 dB
$\begin{gathered} 25,30,40,50,60 \\ 70,80,90,100 \end{gathered}$	$\begin{gathered} 20 \leq W_{\text {gap }}<60 \\ (\text { Note } 4) \\ 20 \leq W_{\text {gap }}<30 \\ (\text { Note } 3) \end{gathered}$	10 MHz	$\begin{aligned} & 20 \mathrm{MHz} \text { NR } \\ & \text { (Note 2) } \end{aligned}$	Square (BW ${ }_{\text {config }}$)	45 dB
	$\begin{gathered} \hline 40<W_{\text {gap }}<80 \\ (\text { Note } 4) \\ 40 \leq W_{\text {gap }}<50 \\ \text { (Note 3) } \\ \hline \end{gathered}$	30 MHz	$\begin{aligned} & 20 \mathrm{MHz} \mathrm{NR} \\ & \text { (Note 2) } \end{aligned}$	Square (BWContig)	45 dB
NOTE 1: BWConfig is the transmission bandwidth configuration of the assumed adjacent channel carrier. NOTE 2: With SCS that provides largest transmission bandwidth configuration (BWConfig). NOTE 3: Applicable in case the BS channel bandwidth of the NR carrier transmitted at the other edge of the gap is 5 , $10,15,20 \mathrm{MHz}$. NOTE 4: Applicable in case the BS channel bandwidth of the NR carrier transmitted at the other edge of the gap is $25,30,40,50,60,70,80,90,100 \mathrm{MHz}$.					

The CACLR absolute basic limit is specified in table 6.6.3.2-3a.
Table 6.6.3.2-3a: Base station CACLR absolute basic limit

BS category / BS class	CACLR absolute basic limit
Category A Wide Area BS	$-13 \mathrm{dBm} / \mathrm{MHz}$
Category B Wide Area BS	$-15 \mathrm{dBm} / \mathrm{MHz}$
Medium Range BS	$-25 \mathrm{dBm} / \mathrm{MHz}$
Local Area BS	$-32 \mathrm{dBm} / \mathrm{MHz}$

Table 6.6.3.2-4: Filter parameters for the assigned channel

RAT of the carrier adjacent to the sub-block or Inter $\boldsymbol{R F}$ Bandwidth gap	Filter on the assigned channel frequency and corresponding filter bandwidth
NR	NR of same BW with SCS that provides largest transmission bandwidth configuration

6.6.3.3 Minimum requirement for $B S$ type 1- C

The ACLR (CACLR) absolute basic limits in table 6.6.3.2-2, 6.6.3.2-3a or the ACLR (CACLR) limits in table 6.6.3.21, 6.6.3.2-2a or 6.6.3.2-3, whichever is less stringent, shall apply for each antenna connector.

For Band n 41 operation in Japan, absolute ACLR limits shall be applied to the sum of the absolute ACLR power over all antenna connectors for BS type 1-C.

6.6.3.4 Minimum requirement for BS type 1-H

The ACLR (CACLR) absolute basic limits in table 6.6.3.2-2 $+\mathrm{X}, 6.6 .3 .2-3 \mathrm{a}+\mathrm{X}\left(\right.$ where $\left.\mathrm{X}=10 \log _{10}\left(\mathrm{~N}_{\mathrm{TXU}, \text { countedpercell }}\right)\right)$ or the ACLR (CACLR) limits in table 6.6.3.2-1, 6.6.3.2-2a or 6.6.3.2-3, whichever is less stringent, shall apply for each TAB connector TX min cell group.

NOTE: Conformance to the $B S$ type 1-H ACLR requirement can be demonstrated by meeting at least one of the following criteria as determined by the manufacturer:

1) The ratio of the sum of the filtered mean power measured on each TAB connector in the TAB connector TX min cell group at the assigned channel frequency to the sum of the filtered mean power measured on each $T A B$ connector in the TAB connector TX min cell group at the adjacent channel frequency shall be greater than or equal to the ACLR basic limit of the BS. This shall apply for each TAB connector TX min cell group.

Or

2) The ratio of the filtered mean power at the TAB connector centred on the assigned channel frequency to the filtered mean power at this TAB connector centred on the adjacent channel frequency shall be greater than or equal to the ACLR basic limit of the BS for every TAB connector in the TAB connector TX min cell group, for each TAB connector TX min cell group.

In case the ACLR (CACLR) absolute basic limit of BS type 1-H are applied, the conformance can be demonstrated by meeting at least one of the following criteria as determined by the manufacturer:

1) The sum of the filtered mean power measured on each TAB connector in the TAB connector $T X$ min cell group at the adjacent channel frequency shall be less than or equal to the ACLR (CACLR) absolute basic limit +X of the BS. This shall apply to each $T A B$ connector $T X$ min cell group.

Or

2) The filtered mean power at each $T A B$ connector centred on the adjacent channel frequency shall be less than or equal to the ACLR (CACLR) absolute basic limit of the BS scaled by X $-10 \log _{10}(n)$ for every TAB connector in the TAB connector TX min cell group, for each TAB connector TX min cell group, where n is the number of TAB connectors in the TAB connector TX min cell group.

6.6.4 Operating band unwanted emissions

6.6.4.1 General

Unless otherwise stated, the operating band unwanted emission (OBUE) limits in FR1 are defined from $\Delta \mathrm{f}_{\text {OBUE }}$ below the lowest frequency of each supported downlink operating band up to $\Delta f_{\text {OBUE }}$ above the highest frequency of each supported downlink operating band. The values of $\Delta \mathrm{f}_{\text {OBUE }}$ are defined in table 6.6.1-1 for the NR operating bands.

The requirements shall apply whatever the type of transmitter considered and for all transmission modes foreseen by the manufacturer's specification. In addition, for a BS operating in non-contiguous spectrum, the requirements apply inside any sub-block gap. In addition, for a BS operating in multiple bands, the requirements apply inside any Inter RF Bandwidth gap.

Basic limits are specified in the tables below, where:

- $\Delta \mathrm{f}$ is the separation between the channel edge frequency and the nominal -3dB point of the measuring filter closest to the carrier frequency.
- f_offset is the separation between the channel edge frequency and the centre of the measuring filter.
- $\mathrm{f}_{\text {_ }}$ offset $_{\text {max }}$ is the offset to the frequency $\Delta \mathrm{f}_{\text {OBUE }}$ outside the downlink operating band, where $\Delta \mathrm{f}_{\text {OBUE }}$ is defined in table 6.6.1-1.
- $\Delta f_{\max }$ is equal to f_{-}offset $_{\text {max }}$ minus half of the bandwidth of the measuring filter.

For a multi-band connector inside any Inter RF Bandwidth gaps with $\mathrm{W}_{\text {gap }}<2 * \Delta \mathrm{f}_{\mathrm{OBUE}}$, a combined basic limit shall be applied which is the cumulative sum of the basic limits specified at the Base Station RF Bandwidth edges on each side
of the Inter RF Bandwidth gap. The basic limit for Base Station RF Bandwidth edge is specified in clauses 6.6.4.2.1 to 6.6.4.2.4 below, where in this case:

- $\Delta \mathrm{f}$ is the separation between the Base Station RF Bandwidth edge frequency and the nominal -3 dB point of the measuring filter closest to the Base Station RF Bandwidth edge.
- f_offset is the separation between the Base Station RF Bandwidth edge frequency and the centre of the measuring filter.
- $\quad \mathrm{f}_{-}$offset $_{\max }$ is equal to the Inter RF Bandwidth gap minus half of the bandwidth of the measuring filter.
- $\Delta f_{\text {max }}$ is equal to f_{-}offset $t_{\text {max }}$ minus half of the bandwidth of the measuring filter.

For a multi-band connector, the operating band unwanted emission limits apply also in a supported operating band without any carrier transmitted, in the case where there are carrier(s) transmitted in another supported operating band. In this case, no cumulative basic limit is applied in the inter-band gap between a supported downlink operating band with carrier(s) transmitted and a supported downlink operating band without any carrier transmitted and

- In case the inter-band gap between a supported downlink operating band with carrier(s) transmitted and a supported downlink operating band without any carrier transmitted is less than $2 * \Delta \mathrm{f}_{\text {OBUE }}, \mathrm{f}_{\text {_offset }}{ }_{\text {max }}$ shall be the offset to the frequency $\Delta \mathrm{f}_{\text {OBUE }} \mathrm{MHz}$ outside the outermost edges of the two supported downlink operating bands and the operating band unwanted emission basic limits of the band where there are carriers transmitted, as defined in the tables of the present clause, shall apply across both downlink bands.
- In other cases, the operating band unwanted emission basic limits of the band where there are carriers transmitted, as defined in the tables of the present clause for the largest frequency offset ($\Delta \mathrm{f}_{\text {max }}$), shall apply from $\Delta f_{\text {OBUE }} \mathrm{MHz}$ below the lowest frequency, up to $\Delta \mathrm{f}_{\text {OBUE }} \mathrm{MHz}$ above the highest frequency of the supported downlink operating band without any carrier transmitted.

For a multicarrier single-band connector or a single-band connector configured for intra-band contiguous or noncontiguous carrier aggregation the definitions above apply to the lower edge of the carrier transmitted at the lowest carrier frequency and the upper edge of the carrier transmitted at the highest carrier frequency within a specified frequency band.

In addition inside any sub-block gap for a single-band connector operating in non-contiguous spectrum, a combined basic limit shall be applied which is the cumulative sum of the basic limits specified for the adjacent sub-blocks on each side of the sub-block gap. The basic limit for each sub-block is specified in clauses 6.6.4.2.1 to 6.6.4.2.4 below, where in this case:

- $\Delta \mathrm{f}$ is the separation between the sub-block edge frequency and the nominal -3 dB point of the measuring filter closest to the sub-block edge.
- f_offset is the separation between the sub-block edge frequency and the centre of the measuring filter.
- $\mathrm{f}_{\text {_offset }}^{\text {max }}$ is equal to the sub-block gap bandwidth minus half of the bandwidth of the measuring filter.
- $\Delta f_{\max }$ is equal to f_{-}offset $_{\text {max }}$ minus half of the bandwidth of the measuring filter.

For Wide Area BS, the requirements of either clause 6.6.4.2.1 (Category A limits) or clause 6.6.4.2.2 (Category B limits) shall apply.

For Medium Range BS, the requirements in clause 6.6.4.2.3 shall apply (Category A and B).
For Local Area BS, the requirements of clause 6.6.4.2.4 shall apply (Category A and B).
The application of either Category A or Category B basic limits shall be the same as for Transmitter spurious emissions in clause 6.6.5.

6.6.4.2 Basic limits

6.6.4.2.1 Basic limits for Wide Area BS (Category A)

For BS operating in Bands n5, n8, n12, n28, n71, basic limits are specified in table 6.6.4.2.1-1.
Table 6.6.4.2.1-1: Wide Area BS operating band unwanted emission limits (NR bands below 1 GHz) for Category A

Frequency offset of measurement filter -3dB point, Δf	Frequency offset of measurement filter centre frequency, f_offset	Basic limits (Note 1, 2)	Measurement bandwidth
$0 \mathrm{MHz} \leq \Delta \mathrm{f}<5 \mathrm{MHz}$	0.05 MHz < f_offset < 5.05 MHz	$-7 d B m-\frac{7}{5} \cdot\left(\frac{f-\text { offset }}{M H z}-0.05\right) d B$	100 kHz
$\begin{gathered} 5 \mathrm{MHz} \leq \Delta \mathrm{f}< \\ \min \left(10 \mathrm{MHz}, \Delta \mathrm{f}_{\max }\right) \end{gathered}$	$\begin{gathered} 5.05 \mathrm{MHz} \leq \text { f_offset }< \\ \min \left(10.05 \mathrm{MHz}, \text { f_offset }{ }_{\text {max }}\right) \end{gathered}$	-14 dBm	100 kHz
$10 \mathrm{MHz} \leq \Delta \mathrm{f} \leq \Delta \mathrm{f}_{\max }$	$10.05 \mathrm{MHz} \leq$ f_offset < f_offsetmax	-13 dBm (Note 3)	100 kHz

NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band, the emission limits within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks on each side of the sub-block gap. Exception is $\Delta f \geq 10 \mathrm{MHz}$ from both adjacent sub-blocks on each side of the sub-block gap, where the emission limits within sub-block gaps shall be $-13 \mathrm{dBm} / 100 \mathrm{kHz}$.
NOTE 2: For a multi-band connector with Inter RF Bandwidth gap $<2^{*} \Delta \mathrm{fobue}$ the emission limits within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks or RF Bandwidth on each side of the Inter RF Bandwidth gap.
NOTE 3: The requirement is not applicable when $\Delta f_{\max }<10 \mathrm{MHz}$.

For BS operating in Bands n1, n2, n3, n7, n25, n34, n38, n39, n40, n41, n50, n66, n70, n74, n75, n77, n78, n79, basic limits are specified in table 6.6.4.2.1-2:

Table 6.6.4.2.1-2: Wide Area BS operating band unwanted emission limits
(NR bands above 1 GHz) for Category A

Frequency offset of measurement filter -3dB point, Δf	Frequency offset of measurement filter centre frequency, f_offset	Basic limits (Note 1, 2)	Measurement bandwidth
$0 \mathrm{MHz} \leq \Delta \mathrm{f}<5 \mathrm{MHz}$	$0.05 \mathrm{MHz} \leq$ f_offset $<5.05 \mathrm{MHz}$	$-7 d B m-\frac{7}{5} \cdot\left(\frac{f_{-} \text {offset }}{M H z}-0.05\right) d B$	100 kHz
$\begin{gathered} 5 \mathrm{MHz} \leq \Delta \mathrm{f}< \\ \min \left(10 \mathrm{MHz}, \Delta \mathrm{f}_{\max }\right) \end{gathered}$	$\begin{gathered} 5.05 \mathrm{MHz} \leq \text { f_offset }< \\ \min \left(10.05 \mathrm{MHz}, \text { f_offset }{ }_{\text {max }}\right) \end{gathered}$	-14 dBm	100 kHz
$10 \mathrm{MHz} \leq \Delta \mathrm{f} \leq \Delta \mathrm{f}_{\text {max }}$	10.5 MHz < f_offset < f_offsetmax	-13 dBm (Note 3)	1MHz
NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band, the emission limits within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks on each side of the sub-block gap, where the contribution from the far-end sub-block shall be scaled according to the measurement bandwidth of the near-end sub-block. Exception is $\Delta f \geq 10 \mathrm{MHz}$ from both adjacent sub-blocks on each side of the sub-block gap, where the emission limits within sub-block gaps shall be $-13 \mathrm{dBm} / 1 \mathrm{MHz}$. NOTE 2: For a multi-band connector with Inter RF Bandwidth gap < $2^{*} \Delta$ fobue the emission limits within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks or RF Bandwidth on each side of the Inter RF Bandwidth gap, where the contribution from the far-end sub-block or RF Bandwidth shall be scaled according to the measurement bandwidth of the near-end sub-block or RF Bandwidth. NOTE 3. The requirement is not applicable when $\Delta f_{\max }<10 \mathrm{MHz}$.			

6.6.4.2.2 Basic limits for Wide Area BS (Category B)

For Category B Operating band unwanted emissions, there are two options for the basic limits that may be applied regionally. Either the basic limits in clause 6.6.4.2.2.1 or clause 6.6.4.2.2.2 shall be applied.

6.6.4.2.2.1 Category B requirements (Option 1)

For BS operating in Bands n5, n8, n12, n20, n28, n71, the basic limits are specified in table 6.6.4.2.2.1-1:

Table 6.6.4.2.2.1-1: Wide Area BS operating band unwanted emission limits (NR bands below 1 GHz) for Category B

Frequency offset of measurement filter - 3 dB point, $\Delta \mathrm{f}$	Frequency offset of measurement filter centre frequency, f_offset	Basic limits (Note 1, 2)	Measurement bandwidth
$0 \mathrm{MHz} \leq \Delta \mathrm{f}<5 \mathrm{MHz}$	0.05 MHz < f_offset < 5.05 MHz	$-7 d B m-\frac{7}{5} \cdot\left(\frac{f-\text { offset }}{M H z}-0.05\right) d B$	100 kHz
$\begin{gathered} 5 \mathrm{MHz} \leq \Delta \mathrm{f}< \\ \min \left(10 \mathrm{MHz}, \Delta \mathrm{f}_{\max }\right) \end{gathered}$	$\begin{gathered} 5.05 \mathrm{MHz} \leq \text { f_offset }< \\ \min \left(10.05 \mathrm{MHz}, \text { f_offset }{ }_{\text {max }}\right) \end{gathered}$	-14 dBm	100 kHz
$10 \mathrm{MHz} \leq \Delta \mathrm{f} \leq \Delta \mathrm{f}_{\max }$	$10.05 \mathrm{MHz} \leq$ f_offset < f_offsetmax	-16 dBm (Note 3)	100 kHz

NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band, the emission limits within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks on each side of the sub-block gap. Exception is $\Delta f \geq 10 \mathrm{MHz}$ from both adjacent sub-blocks on each side of the sub-block gap, where the emission limits within sub-block gaps shall be $-16 \mathrm{dBm} / 100 \mathrm{kHz}$.
NOTE 2: For a multi-band connector with Inter RF Bandwidth gap < $2^{*} \Delta$ fobue the emission limits within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks or RF Bandwidth on each side of the Inter RF Bandwidth gap, where the contribution from the far-end sub-block or RF Bandwidth shall be scaled according to the measurement bandwidth of the near-end sub-block or RF Bandwidth.
NOTE 3: The requirement is not applicable when $\Delta f_{\max }<10 \mathrm{MHz}$.

For BS operating in Bands n1, n2, n3, n7, n25, n34, n38, n39, n40, n41, n50, n66, n70, n75, n77, n78, n79, basic limits are specified in tables 6.6.4.2.2.1-2:

Table 6.6.4.2.2.1-2: Wide Area BS operating band unwanted emission limits (NR bands above 1 GHz) for Category B

Frequency offset of measurement filter -3dB point, Δf	Frequency offset of measurement filter centre frequency, f_offset	Basic limits (Note 1, 2)	Measurement bandwidth
$0 \mathrm{MHz} \leq \Delta \mathrm{f}<5 \mathrm{MHz}$	0.05 MHz < f_offset < 5.05 MH	$-7 d B m-\frac{7}{5} \cdot\left(\frac{f _ \text {offset }}{M H z}-0.05\right) d B$	100 kHz
$\begin{gathered} 5 \mathrm{MHz} \leq \Delta \mathrm{f}< \\ \min \left(10 \mathrm{MHz}, \Delta \mathrm{f}_{\max }\right) \end{gathered}$	$\begin{gathered} 5.05 \mathrm{MHz} \leq \text { f_offset }< \\ \min \left(10.05 \mathrm{MHz}, \text { f_offset }{ }_{\text {max }}\right) \end{gathered}$	-14 dBm	100 kHz
$10 \mathrm{MHz} \leq \Delta \mathrm{f} \leq \Delta \mathrm{f}_{\text {max }}$	$10.5 \mathrm{MHz} \leq$ f_offset < f_offsetmax	-15 dBm (Note 3)	1MH2
NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band, the emission limits within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks on each side of the sub-block gap, where the contribution from the far-end sub-block shall be scaled according to the measurement bandwidth of the near-end sub-block. Exception is $\Delta f \geq 10 \mathrm{MHz}$ from both adjacent sub-blocks on each side of the sub-block gap, where the emission limits within sub-block gaps shall be $-15 \mathrm{dBm} / 1 \mathrm{MHz}$. NOTE 2: For a multi-band connector with Inter RF Bandwidth gap < $2^{*} \Delta$ fobue the emission limits within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks or RF Bandwidth on each side of the Inter RF Bandwidth gap, where the contribution from the far-end sub-block or RF Bandwidth shall be scaled according to the measurement bandwidth of the near-end sub-block or RF Bandwidth. NOTE 3: The requirement is not applicable when $\Delta f_{\max }<10 \mathrm{MHz}$.			

6.6.4.2.2.2 Category B requirements (Option 2)

The limits in this clause are intended for Europe and may be applied regionally for BS operating in bands $\mathrm{n} 1, \mathrm{n} 3, \mathrm{n} 7, \mathrm{n} 8$, n38.

For a BS operating in bands n1, n3, n8 or BS type 1-C operating in bands n7 or n38, basic limits are specified in Table 6.6.4.2.2.2-1:

Table 6.6.4.2.2.2-1: Regional Wide Area BS operating band unwanted emission limits for Category B

Frequency offset of measurement filter -3dB point, $\Delta \mathrm{f}$	Frequency offset of measurement filter centre frequency, f_offset	Basic limits (Note 1, 2)	Measurement bandwidth
$0 \mathrm{MHz} \leq \Delta \mathrm{f}<0.2 \mathrm{MHz}$	0.015 MHz \leq f offset $<0.215 \mathrm{MHz}$	-14 dBm	30 kHz
0.2 MHz $\leq \Delta \mathrm{f}<1 \mathrm{MHz}$	0.215 MHz \leq f_offset $<1.015 \mathrm{MHz}$	$-14 d B m-15 \cdot\left(\frac{f _ \text {offset }}{M H z}-0.215\right) d B$	30 kHz
(Note 4)	$1.015 \mathrm{MHz} \leq$ f_offset $<1.5 \mathrm{MHz}$	-26 dBm	30 kHz
$\begin{gathered} 1 \mathrm{MHz} \leq \Delta \mathrm{f} \leq \\ \min \left(10 \mathrm{MHz}, \Delta f_{\max }\right) \end{gathered}$	$\begin{gathered} 1.5 \mathrm{MHz} \leq \text { f_offset }< \\ \min \left(10.5 \mathrm{MHz}, \text { f_offset }{ }_{\text {max }}\right) \end{gathered}$	$-13 \mathrm{dBm}$	1 MHz
$10 \mathrm{MHz} \leq \Delta \mathrm{f} \leq \Delta \mathrm{f}_{\max }$	10.5 MHz \leq f_offset < f_offsetmax	-15 dBm (Note 3)	1 MHz

NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band, the minimum requirement within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks on each side of the sub-block gap, where the contribution from the far-end sub-block shall be scaled according to the measurement bandwidth of the near-end sub-block. Exception is $\Delta f \geq 10 \mathrm{MHz}$ from both adjacent sub-blocks on each side of the sub-block gap, where the minimum requirement within sub-block gaps shall be $-15 \mathrm{dBm} / 1 \mathrm{MHz}$.
NOTE 2: For a multi-band connector with Inter RF Bandwidth gap $<2^{*} \Delta$ fobue the minimum requirement within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks or RF Bandwidth on each side of the Inter RF Bandwidth gap, where the contribution from the far-end sub-block or RF Bandwidth shall be scaled according to the measurement bandwidth of the near-end sub-block or RF Bandwidth.
NOTE 3: The requirement is not applicable when $\Delta f_{\max }<10 \mathrm{MHz}$.
NOTE 4: This frequency range ensures that the range of values of f _offset is continuous.

6.6.4.2.3 Basic limits for Medium Range BS (Category A and B)

For Medium Range BS, basic limits are specified in table 6.6.4.2.3-1 and table 6.6.4.2.3-2.
For the tables in this clause for BS type 1-C $\mathrm{P}_{\text {rated }, \mathrm{x}}=\mathrm{P}_{\text {rated, }, \mathrm{c}, \mathrm{AC}}$, and for BS type 1-H $\mathrm{P}_{\text {rated }, \mathrm{x}}=\mathrm{P}_{\text {rated, }, \mathrm{c}, \text { cell }}-$ $10 * \log _{10}\left(\mathrm{~N}_{\mathrm{TXU}, \text { countedpercell }}\right)$, and for BS type 1-O $\mathrm{P}_{\text {rated } \mathrm{x}}=\mathrm{P}_{\text {rated, }, \mathrm{TRP}}-9 \mathrm{~dB}$.

Table 6.6.4.2.3-1: Medium Range BS operating band unwanted emission limits, $31<P_{\text {rated }, \mathrm{x}} \leq 38 \mathrm{dBm}$

Frequency offset of measurement filter - 3 dB point, $\Delta \mathrm{f}$	Frequency offset of measurement filter centre frequency, f_offset	Basic limits (Note 1, 2)	Measurement bandwidth
$0 \mathrm{MHz} \leq \Delta \mathrm{f}<5 \mathrm{MHz}$	0.05 MHz < f_offset < 5.05 MHz	$P_{\text {rated }, x}-53 d B-\frac{7}{5}\left(\frac{\text { f_offset }}{M H z}-0.05\right) d B$	100 kHz
$\begin{gathered} 5 \mathrm{MHz} \leq \Delta \mathrm{f}<\min (10 \\ \left.\mathrm{MHz}, \Delta \mathrm{f}_{\max }\right) \end{gathered}$	$\begin{gathered} 5.05 \mathrm{MHz} \leq \text { f_offset }<\min (10.05 \\ \left.\mathrm{MHz}, \text { f_offset } \mathrm{max}_{\text {max }}\right) \end{gathered}$	Prated, x -60dB	100 kHz
$10 \mathrm{MHz} \leq \Delta \mathrm{f} \leq \Delta \mathrm{f}_{\text {max }}$	$10.05 \mathrm{MHz} \leq$ f_offset < f_offsetmax	Min(Prated, x -60dB, -25 dBm) (Note 3)	100 kHz
NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band the emission limits within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks on each side of the sub-block gap. Exception is $\Delta f \geq 10 \mathrm{MHz}$ from both adjacent sub-blocks on each side of the sub-block gap, where the emission limits within sub-block gaps shall be $\operatorname{Min}($ Prated $, x-60 \mathrm{~dB},-25 \mathrm{dBm}) / 100 \mathrm{kHz}$.			
NOTE 2: For a multi-band	d connector with Inter RF Bandwidth s is calculated as a cumulative sum the Inter RF Bandwidth gap.	gap <2* Δ fobue the emission limits within the contributions from adjacent sub-blocks or	Inter RF F Bandwidth

Table 6.6.4.2.3-2: Medium Range BS operating band unwanted emission limits, $\mathrm{P}_{\text {rated }, \mathrm{x}} \leq 31 \mathrm{dBm}$

Frequency offset of measurement filter -3dB point, Δf	Frequency offset of measurement filter centre frequency, f_offset	Basic limits (Note 1, 2)	Measurement bandwidth
$0 \mathrm{MHz} \leq \Delta \mathrm{f}<5 \mathrm{MHz}$	$0.05 \mathrm{MHz} \leq$ f_offset < 5.05 MHz	$-22 \mathrm{dBm}-\frac{7}{5}\left(\frac{f _ \text {offset }}{M H z}-0.05\right) d B$	100 kHz
$\begin{gathered} 5 \mathrm{MHz} \leq \Delta f<\min (10 \\ \left.\mathrm{MHz}, \Delta f_{\max }\right) \\ \hline \end{gathered}$	$\begin{gathered} 5.05 \mathrm{MHz} \leq \text { f_offset }<\min (10.05 \\ \left.\mathrm{MHz}, \text { f_offset } \mathrm{max}_{\text {ax }}\right) \end{gathered}$	-29 dBm	100 kHz
$10 \mathrm{MHz} \leq \Delta \mathrm{f} \leq \Delta \mathrm{f}_{\text {max }}$	10.05 MHz <f_offset < f_offsetmax	-29 dBm (Note 3)	100 kHz

NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band the emission limits within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks on each side of the sub-block gap. Exception is $\Delta f \geq 10 \mathrm{MHz}$ from both adjacent sub-blocks on each side of the sub-block gap, where the emission limits within sub-block gaps shall be $-29 \mathrm{dBm} / 100 \mathrm{kHz}$.
NOTE 2: For a multi-band connector with Inter RF Bandwidth gap < $2^{*} \Delta$ fobue the emission limits within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks or RF Bandwidth on each side of the Inter RF Bandwidth gap.
NOTE 3: The requirement is not applicable when $\Delta f_{\max }<10 \mathrm{MHz}$.

6.6.4.2.4 Basic limits for Local Area BS (Category A and B)

For Local Area BS, basic limits are specified in table 6.6.4.2.4-1.
Table 6.6.4.2.4-1: Local Area BS operating band unwanted emission limits

Frequency offset of measurement filter -3dB point, $\Delta \mathrm{f}$	Frequency offset of measurement filter centre frequency, f_offset	Basic limits (Note 1, 2)	Measurement bandwidth
$0 \mathrm{MHz} \leq \Delta \mathrm{f}<5 \mathrm{MHz}$	0.05 MHz < f_offset < 5.05 MHz	$-30 d B m-\frac{7}{5}\left(\frac{f_{-} \text {offset }}{M H z}-0.05\right) d B$	100 kHz
$\begin{gathered} 5 \mathrm{MHz} \leq \Delta \mathrm{f}<\min (10 \\ \left.\mathrm{MHz}, \Delta \mathrm{f}_{\max }\right) \end{gathered}$	$\begin{gathered} 5.05 \mathrm{MHz} \leq \mathrm{f} \text { _offset }<\min (10.05 \\ \left.\mathrm{MHz}, \mathrm{f} \text { _offset } \mathrm{m}_{\mathrm{max}}\right) \end{gathered}$	-37 dBm	100 kHz
$10 \mathrm{MHz} \leq \Delta \mathrm{f} \leq \Delta \mathrm{f}_{\text {max }}$	$10.05 \mathrm{MHz} \leq$ f_offset < f_offsetmax	-37 dBm (Note 10)	100 kHz
NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band the emission limits within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks on each side of the sub-block gap. Exception is $\Delta f \geq 10 \mathrm{MHz}$ from both adjacent sub-blocks on each side of the sub-block gap, where the emission limits within sub-block gaps shall be $-37 \mathrm{dBm} / 100 \mathrm{kHz}$. NOTE 2: For a multi-band connector with Inter RF Bandwidth gap < $2^{*} \Delta$ fobue the emission limits within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks or RF Bandwidth on each side of the Inter RF Bandwidth gap			

6.6.4.2.5 Basic limits for additional requirements

6.6.4.2.5.1 Limits in FCC Title 47

In addition to the requirements in clauses 6.6.4.2.1, 6.6.4.2.2, 6.6.4.2.3 and 6.6.4.2.4, the BS may have to comply with the applicable emission limits established by FCC Title 47 [8], when deployed in regions where those limits are applied, and under the conditions declared by the manufacturer.

6.6.4.2.5.2 Protection of DTT

In certain regions the following requirement may apply for protection of DTT. For BS type 1-C or BS type 1-H operating in Band n20, the level of emissions in the band 470-790 MHz, measured in an 8 MHz filter bandwidth on centre frequencies $\mathrm{F}_{\text {filter }}$ according to table 6.6.4.2.5.2-1, a basic limits $\mathrm{P}_{\mathrm{Em}, \mathrm{N}}$ is declared by the manufacturer. This requirement applies in the frequency range $470-790 \mathrm{MHz}$ even though part of the range falls in the spurious domain.

Table 6.6.4.2.5.2-1: Declared emissions basic limit for protection of DTT

Filter centre frequency, Ffilter	Measurement bandwidth	Declared emission basic limit $(\mathbf{d B m})$
$\mathrm{F}_{\text {filter }}=8^{\star} \mathrm{N}+306(\mathrm{MHz}) ;$	8 MHz	$\mathrm{P}_{\mathrm{EM}, \mathrm{N}}$
$21 \leq \mathrm{N} \leq 60$		

Note: The regional requirement is defined in terms of EIRP (effective isotropic radiated power), which is dependent on both the BS emissions at the antenna connector and the deployment (including antenna gain and feeder loss). The requirement defined above provides the characteristics of the BS needed to verify compliance with the regional requirement. Compliance with the regional requirement can be determined using the method outlined in TS 36.104 [13], annex F.

6.6.4.3 Minimum requirements for $B S$ type 1-C

The operating band unwanted emissions for BS type 1-C for each antenna connector shall be below the applicable basic limits defined in clause 6.6.4.2.

For Band n41 operation in Japan, the operating band unwanted emissions limits shall be applied to the sum of the emission power over all antenna connectors for BS type 1-C.

6.6.4.4 Minimum requirements for BS type 1-H

The operating band unwanted emissions requirements for $B S$ type 1-H are that for each TAB connector TX min cell group and each applicable basic limit in clause 6.6.4.2, the power summation emissions at the TAB connectors of the TAB connector TX min cell group shall not exceed a BS limit specified as the basic limit +X , where $\mathrm{X}=$ $10 \log _{10}\left(\mathrm{~N}_{\text {TXU, countedpercell }}\right)$.

NOTE: Conformance to the BS type 1-H spurious emission requirement can be demonstrated by meeting at least one of the following criteria as determined by the manufacturer:

1) The sum of the emissions power measured on each $T A B$ connector in the TAB connector $T X$ min cell group shall be less than or equal to the limit as defined in this clause for the respective frequency span.

Or

2) The unwanted emissions power at each $T A B$ connector shall be less than or equal to the $B S$ type 1-H limit as defined in this clause for the respective frequency span, scaled by $-10 \log _{10}(\mathrm{n})$, where n is the number of TAB connectors in the TAB connector TX min cell group.

6.6.5 Transmitter spurious emissions

6.6.5.1 General

The transmitter spurious emission limits shall apply from 9 kHz to 12.75 GHz , excluding the frequency range from $\Delta \mathrm{f}_{\text {OBUE }}$ below the lowest frequency of each supported downlink operating band, up to $\Delta \mathrm{f}_{\text {OBUE }}$ above the highest frequency of each supported downlink operating band, where the $\Delta f_{\text {OBUE }}$ is defined in table 6.6.1-1. For some operating bands, the upper limit is higher than 12.75 GHz in order to comply with the $5^{\text {th }}$ harmonic limit of the downlink operating band, as specified in ITU-R recommendation SM. 329 [2].

For a multi-band connector, for each supported operating band together with $\Delta \mathrm{f}_{\text {OBUE }}$ around the band is excluded from the transmitter spurious emissions requirement.

The requirements shall apply whatever the type of transmitter considered (single carrier or multi-carrier). It applies for all transmission modes foreseen by the manufacturer's specification.

Unless otherwise stated, all requirements are measured as mean power (RMS).

6.6.5.2 Basic limits

6.6.5.2.1 General transmitter spurious emissions requirements

The basic limits of either table 6.6.5.2.1-1 (Category A limits) or table 6.6.5. 2.1-2 (Category B limits) shall apply. The application of either Category A or Category B limits shall be the same as for operating band unwanted emissions in clause 6.6.4.

Table 6.6.5.2.1-1: General BS transmitter spurious emission limits in FR1, Category A

Spurious frequency range	Basic limit	Measurement bandwidth	Notes
$9 \mathrm{kHz}-150 \mathrm{kHz}$	-13 dBm	1 kHz	Note 1, Note 4
$150 \mathrm{kHz}-30 \mathrm{MHz}$		10 kHz	Note 1, Note 4
$30 \mathrm{MHz}-1 \mathrm{GHz}$		100 kHz	Note 1
1 GHz 12.75 GHz		1 MHz	Note 1, Note 2
$12.75 \mathrm{GHz}-5^{\text {th }}$ harmonic of the upper frequency edge of the DL operating band in GHz		1 MHz	Note 1, Note 2, Note 3
NOTE 1: Measurement bandwid NOTE 2: Upper frequency as in ITU NOTE 3: This spurious frequency harmonic of of the uppe 12.75 GHz .	as in ITU-R S R SM. 329 [2] nge applies o quency edge	329 [2], s4.1. s 2.5 table 1. y for operating band of the DL operating	for which the $5^{\text {th }}$ and is reaching beyond BS type 1-H

Table 6.6.5.2.1-2: General BS transmitter spurious emission limits in FR1, Category B

Spurious frequency range	Basic limit	Measurement bandwidth	Notes
$9 \mathrm{kHz}-150 \mathrm{kHz}$	-36 dBm	1 kHz	Note 1, Note 4
$150 \mathrm{kHz}-30 \mathrm{MHz}$		10 kHz	Note 1, Note 4
$30 \mathrm{MHz}-1 \mathrm{GHz}$		100 kHz	Note 1
$1 \mathrm{GHz}-12.75 \mathrm{GHz}$	-30 dBm	1 MHz	Note 1, Note 2
$12.75 \mathrm{GHz}-5^{\text {th }}$ harmonic of the upper frequency edge of the DL operating band in GHz		1 MHz	Note 1, Note 2, Note 3
NOTE 1: Measurement bandwidths as in ITU-R SM. 329 [2], s4.1. NOTE 2: Upper frequency as in ITU-R SM. 329 [2], s2.5 table 1. NOTE 3: This spurious frequency range applies only for operating bands for which the $5^{\text {th }}$ harmonic of the upper frequency edge of the DL operating band is reaching beyond 12.75 GHz . NOTE 4: This spurious frequency range applies only to $B S$ type $1-C$ and $B S$ type 1-H.			

6.6.5.2.2 Protection of the BS receiver of own or different BS

This requirement shall be applied for NR FDD operation in order to prevent the receivers of the BSs being desensitised by emissions from a BS transmitter. It is measured at the transmit antenna connector for BS type 1-C or at the TAB connector for BS type 1-H for any type of BS which has common or separate Tx/Rx antenna connectors / TAB connectors.

The spurious emission basic limits are provided in table 6.6.5.2.2-1.
Table 6.6.5.2.2-1: BS spurious emissions basic limits for protection of the BS receiver

BS class	Frequency range	Basic limits	Measurement bandwidth	Note
Wide Area BS	FuL,low - FuL,high	-96 dBm	100 kHz	
Medium Range BS	Fuc,low - FuL,high	-91 dBm	100 kHz	
Local Area BS	Ful,low - FuL,high	-88 dBm	100 kHz	

6.6.5.2.3 Additional spurious emissions requirements

These requirements may be applied for the protection of system operating in frequency ranges other than the BS downlink operating band. The limits may apply as an optional protection of such systems that are deployed in the same geographical area as the BS, or they may be set by local or regional regulation as a mandatory requirement for an NR operating band. It is in some cases not stated in the present document whether a requirement is mandatory or under what exact circumstances that a limit applies, since this is set by local or regional regulation. An overview of regional requirements in the present document is given in clause 4.5.

Some requirements may apply for the protection of specific equipment (UE, MS and/or BS) or equipment operating in specific systems (GSM, CDMA, UTRA, E-UTRA, NR, etc.) as listed below.

The spurious emission basic limits are provided in table 6.6.5.2.3-1 for a BS where requirements for co-existence with the system listed in the first column apply. For a multi-band connector, the exclusions and conditions in the Note column of table 6.6.5.2.3-1 apply for each supported operating band.

Table 6.6.5.2.3-1: BS spurious emissions basic limits for BS for co-existence with systems operating in other frequency bands

System type for NR to coexist with	Frequency range for co-existence requirement	Basic limits	Measurement bandwidth	Note
GSM900	$921-960 \mathrm{MHz}$	$-57 \mathrm{dBm}$	100 kHz	This requirement does not apply to BS operating in band n 8
	$876-915 \mathrm{MHz}$	-61 dBm	100 kHz	For the frequency range $880-915 \mathrm{MHz}$, this requirement does not apply to BS operating in band n8, since it is already covered by the requirement in clause 6.6.5.2.2.
DCS1800	$1805-1880 \mathrm{MHz}$	-47 dBm	100 kHz	This requirement does not apply to BS operating in band n3.
	$1710-1785 \mathrm{MHz}$	-61 dBm	100 kHz	This requirement does not apply to BS operating in band $n 3$, since it is already covered by the requirement in clause 6.6.5.2.2.
PCS1900	$1930-1990$ MHz	-47 dBm	100 kHz	This requirement does not apply to BS operating in band n2, n25 or band n70.
	$1850-1910$ MHz	-61 dBm	100 kHz	This requirement does not apply to BS operating in band n 2 or n 25 since it is already covered by the requirement in clause 6.6.5.2.2.
$\begin{aligned} & \text { GSM850 or } \\ & \text { CDMA850 } \end{aligned}$	$869-894 \mathrm{MHz}$	$-57 \mathrm{dBm}$	100 kHz	This requirement does not apply to BS operating in band n 5 .
	$824-849 \mathrm{MHz}$	-61 dBm	100 kHz	This requirement does not apply to BS operating in band $n 5$, since it is already covered by the requirement in clause 6.6.5.2.2.
UTRA FDDBand I orE-UTRA Band1 or NR Band$n 1$	$2110-2170 \mathrm{MHz}$	$-52 \mathrm{dBm}$	1 MHz	This requirement does not apply to BS operating in band n 1
	$1920-1980 \mathrm{MHz}$	-49 dBm	1 MHz	This requirement does not apply to BS operating in band $n 1$, since it is already covered by the requirement in clause 6.6.5.2.2.
UTRA FDD Band II or E-UTRA Band 2 or NR Band n2	$1930-1990$ MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in band n2 or n70.
	$1850-1910 \mathrm{MHz}$	-49 dBm	1 MHz	This requirement does not apply to BS operating in band n 2 , since it is already covered by the requirement in clause 6.6.5.2.2.
UTRA FDD Band III or E-UTRA Band 3 or NR Band n3	$1805-1880 \mathrm{MHz}$	-52 dBm	1 MHz	This requirement does not apply to BS operating in band n3.
	$1710-1785 \mathrm{MHz}$	-49 dBm	1 MHz	This requirement does not apply to BS operating in band $n 3$, since it is already covered by the requirement in clause 6.6.5.2.2.
UTRA FDD Band IV or E-UTRA Band 4	$2110-2155 \mathrm{MHz}$	-52 dBm	1 MHz	This requirement does not apply to BS operating in band n 66
	$1710-1755 \mathrm{MHz}$	-49 dBm	1 MHz	This requirement does not apply to BS operating in band $n 66$, since it is already covered by the requirement in clause 6.6.5.2.2.
$\begin{gathered} \text { UTRA FDD } \\ \text { Band V or } \\ \text { E-UTRA Band } \\ 5 \text { or NR Band } \\ \text { n5 } \end{gathered}$	$869-894 \mathrm{MHz}$	$-52 \mathrm{dBm}$	1 MHz	This requirement does not apply to BS operating in band n 5 .
	$824-849 \mathrm{MHz}$	-49 dBm	1 MHz	This requirement does not apply to BS operating in band $n 5$, since it is already covered by the requirement in clause 6.6.5.2.2.
UTRA FDD Band VI, XIX or E-UTRA Band $6,18,19$	$860-890 \mathrm{MHz}$	-52 dBm	1 MHz	
	$815-830 \mathrm{MHz}$	$-49 \mathrm{dBm}$	1 MHz	
	$830-845 \mathrm{MHz}$	-49 dBm	1 MHz	
UTRA FDD Band VII or E-UTRA Band 7 or NR Band n7	$2620-2690$ MHz	$-52 \mathrm{dBm}$	1 MHz	This requirement does not apply to BS operating in band n 7 .
	$2500-2570 \mathrm{MHz}$	-49 dBm	1 MHz	This requirement does not apply to BS operating in band $n 7$, since it is already covered by the requirement in clause 6.6.5.2.2.
UTRA FDD Band VIII or E-UTRA Band 8 or NR Band n8	$925-960 \mathrm{MHz}$	$-52 \mathrm{dBm}$	1 MHz	This requirement does not apply to BS operating in band n 8 .
	$880-915 \mathrm{MHz}$	-49 dBm	1 MHz	This requirement does not apply to BS operating in band n8, since it is already covered by the requirement in clause 6.6.5.2.2.
	$\begin{gathered} 1844.9-1879.9 \\ M H z \end{gathered}$	$-52 \mathrm{dBm}$	1 MHz	This requirement does not apply to BS operating in band n3.

UTRA FDD Band IX or E-UTRA Band 9	$\begin{gathered} 1749.9-1784.9 \\ \mathrm{MHz} \end{gathered}$	-49 dBm	1 MHz	This requirement does not apply to BS operating in band $n 3$, since it is already covered by the requirement in clause 6.6.5.2.2.
UTRA FDDBand X orE-UTRA Band10	$2110-2170 \mathrm{MHz}$	$-52 \mathrm{dBm}$	1 MHz	This requirement does not apply to BS operating in band n66
	$1710-1770 \mathrm{MHz}$	-49 dBm	1 MHz	This requirement does not apply to BS operating in band $n 66$, since it is already covered by the requirement in clause 6.6.5.2.2.
UTRA FDD Band XI or XXI or E-UTRA Band 11 or 21	$\begin{gathered} 1475.9-1510.9 \\ \mathrm{MHz} \\ \hline \end{gathered}$	$-52 \mathrm{dBm}$	1 MHz	This requirement does not apply to BS operating in band n50, n74 or n75.
	$\begin{gathered} 1427.9-1447.9 \\ \mathrm{MHz} \\ \hline \end{gathered}$	$-49 \mathrm{dBm}$	1 MHz	This requirement does not apply to BS operating in band n50, n51, n74, n75 or n76.
	$\begin{gathered} 1447.9-1462.9 \\ \mathrm{MHz} \end{gathered}$	$-49 \mathrm{dBm}$	1 MHz	This requirement does not apply to BS operating in band n50, n74 or n75.
UTRA FDD Band XII or E-UTRA Band 12 or NR Band n12	$729-746 \mathrm{MHz}$	$-52 \mathrm{dBm}$	1 MHz	This requirement does not apply to BS operating in band n 12 .
	$699-716 \mathrm{MHz}$	$-49 \mathrm{dBm}$	1 MHz	This requirement does not apply to BS operating in band n 12 , since it is already covered by the requirement in clause 6.6.5.2.2.
UTRA FDD Band XIII or E-UTRA Band 13	$746-756 \mathrm{MHz}$	-52 dBm	1 MHz	
	$777-787 \mathrm{MHz}$	$-49 \mathrm{dBm}$	1 MHz	
UTRA FDD Band XIV or E-UTRA Band 14	$758-768 \mathrm{MHz}$	-52 dBm	1 MHz	
	$788-798 \mathrm{MHz}$	$-49 \mathrm{dBm}$	1 MHz	
E-UTRA Band 17	$734-746 \mathrm{MHz}$	$-52 \mathrm{dBm}$	1 MHz	
	$704-716 \mathrm{MHz}$	$-49 \mathrm{dBm}$	1 MHz	
UTRA FDD Band XX or EUTRA Band 20 or NR Band n20	$791-821 \mathrm{MHz}$	$-52 \mathrm{dBm}$	1 MHz	This requirement does not apply to BS operating in band n20 or n28.
	$832-862 \mathrm{MHz}$	$-49 \mathrm{dBm}$	1 MHz	This requirement does not apply to BS operating in band n20, since it is already covered by the requirement in clause 6.6.5.2.2.
UTRA FDD Band XXII or E-UTRA Band 22	$3510-3590 \mathrm{MHz}$	-52 dBm	1 MHz	This requirement does not apply to BS operating in band n 77 or n 78 .
	$3410-3490 \mathrm{MHz}$	-49 dBm	1 MHz	This requirement does not apply to BS operating in band n 77 or n 78 .
$\begin{gathered} \text { E-UTRA Band } \\ 24 \end{gathered}$	$1525-1559 \mathrm{MHz}$	$-52 \mathrm{dBm}$	1 MHz	
	$\begin{gathered} 1626.5-1660.5 \\ \mathrm{MHz} \\ \hline \end{gathered}$	$-49 \mathrm{dBm}$	1 MHz	
UTRA FDD Band XXV or E-UTRA Band 25 or NR band n25	$1930-1995 \mathrm{MHz}$	$-52 \mathrm{dBm}$	1 MHz	This requirement does not apply to BS operating in band n2, n25 or n70.
	$1850-1915 \mathrm{MHz}$	$-49 \mathrm{dBm}$	1 MHz	This requirement does not apply to BS operating in band n 25 since it is already covered by the requirement in clause 6.6.5.2.2. For BS operating in Band n2, it applies for 1910 MHz to 1915 MHz , while the rest is covered in clause 6.6.5.2.2.
UTRA FDD Band XXVI or E-UTRA Band 26	$859-894 \mathrm{MHz}$	$-52 \mathrm{dBm}$	1 MHz	This requirement does not apply to BS operating in band n 5 .
	$814-849 \mathrm{MHz}$	$-49 \mathrm{dBm}$	1 MHz	For BS operating in Band n5, it applies for 814 MHz to 824 MHz , while the rest is covered in clause 6.6.5.2.2.
$\begin{gathered} \text { E-UTRA Band } \\ 27 \end{gathered}$	$852-869 \mathrm{MHz}$	$-52 \mathrm{dBm}$	1 MHz	This requirement does not apply to BS operating in Band n 5 .
	$807-824 \mathrm{MHz}$	$-49 \mathrm{dBm}$	1 MHz	This requirement also applies to BS operating in Band n28, starting 4 MHz above the Band n28 downlink operating band (Note 5).
E-UTRA Band 28 or NR Band n28	$758-803 \mathrm{MHz}$	$-52 \mathrm{dBm}$	1 MHz	This requirement does not apply to BS operating in band n20 or n28.
	$703-748 \mathrm{MHz}$	$-49 \mathrm{dBm}$	1 MHz	This requirement does not apply to BS operating in band n 28 , since it is already covered by the requirement in clause 6.6.5.2.2.
E-UTRA Band 29	$717-728 \mathrm{MHz}$	$-52 \mathrm{dBm}$	1 MHz	
$\begin{gathered} \text { E-UTRA Band } \\ 30 \\ \hline \end{gathered}$	$2350-2360 \mathrm{MHz}$	$-52 \mathrm{dBm}$	1 MHz	
	$2305-2315 \mathrm{MHz}$	-49 dBm	1 MHz	

E-UTRA Band	462.5 - 467.5 MHz	-52dBm	1 MHz	
31	$452.5-457.5 \mathrm{MHz}$	-49 dBm	1 MHz	
UTRA FDD band XXXII or E-UTRA band 32	1452 - 1496 MHz	$-52 \mathrm{dBm}$	1 MHz	This requirement does not apply to BS operating in band $\mathrm{n} 50, \mathrm{n} 74$ or n 75 .
UTRA TDD Band a) or EUTRA Band 33	1900 - 1920 MHz	$-52 \mathrm{dBm}$	1 MHz	
UTRA TDD Band a) or EUTRA Band 34 or NR band n34	$2010-2025$ MHz	$-52 \mathrm{dBm}$	1 MHz	This requirement does not apply to BS operating in Band n34.
UTRA TDD Band b) or EUTRA Band 35	1850 - 1910 MHz	$-52 \mathrm{dBm}$	1 MHz	
UTRA TDD Band b) or EUTRA Band 36	$1930-1990 \mathrm{MHz}$	$-52 \mathrm{dBm}$	1 MHz	This requirement does not apply to BS operating in Band n2 or n25.
UTRA TDD Band c) or EUTRA Band 37	1910 - 1930 MHz	$-52 \mathrm{dBm}$	1 MHz	
UTRA TDD Band d) or EUTRA Band 38 or NR Band n38	$2570-2620 \mathrm{MHz}$	$-52 \mathrm{dBm}$	1 MHz	This requirement does not apply to BS operating in Band n38.
UTRA TDD Band f) or EUTRA Band 39 or NR band n39	1880 - 1920MHz	$-52 \mathrm{dBm}$	1 MHz	This requirement does not apply to BS operating in Band n39.
UTRA TDD Band e) or EUTRA Band 40 or NR Band n40	$2300-2400 \mathrm{MHz}$	$-52 \mathrm{dBm}$	1 MHz	This requirement does not apply to BS operating in Band n40.
E-UTRA Band 41 or NR Band n41	$2496-2690 \mathrm{MHz}$	$-52 \mathrm{dBm}$	1 MHz	This is not applicable to BS operating in Band n 41 .
$\begin{gathered} \text { E-UTRA Band } \\ 42 \end{gathered}$	$3400-3600 \mathrm{MHz}$	$-52 \mathrm{dBm}$	1 MHz	This is not applicable to BS operating in Band n77 or n78.
$\begin{array}{\|c} \hline \text { E-UTRA Band } \\ 43 \\ \hline \end{array}$	$3600-3800 \mathrm{MHz}$	$-52 \mathrm{dBm}$	1 MHz	This is not applicable to BS operating in Band n77 or n78.
$\begin{gathered} \text { E-UTRA Band } \\ 44 \end{gathered}$	$703-803 \mathrm{MHz}$	$-52 \mathrm{dBm}$	1 MHz	This is not applicable to BS operating in Band n28.
$\begin{gathered} \text { E-UTRA Band } \\ 45 \end{gathered}$	1447 - 1467 MHz	$-52 \mathrm{dBm}$	1 MHz	
$\begin{gathered} \text { E-UTRA Band } \\ 46 \end{gathered}$	$5150-5925 \mathrm{MHz}$	$-52 \mathrm{dBm}$	1 MHz	
$\begin{gathered} \text { E-UTRA Band } \\ 47 \end{gathered}$	$5855-5925 \mathrm{MHz}$	$-52 \mathrm{dBm}$	1 MHz	
$\begin{array}{\|c} \hline \text { E-UTRA Band } \\ 48 \\ \hline \end{array}$	$3550-3700 \mathrm{MHz}$	$-52 \mathrm{dBm}$	1 MHz	This is not applicable to BS operating in Band n77 or n78.
E-UTRA Band 50 or NR band n50	$1432-1517 \mathrm{MHz}$	$-52 \mathrm{dBm}$	1 MHz	This requirement does not apply to BS operating in Band n50, n51, n74, n75 or n76.
E-UTRA Band 51 or NR Band n51	1427 - 1432 MHz	$-52 \mathrm{dBm}$	1 MHz	This requirement does not apply to BS operating in Band n50, n51, n75 or n76.
$\begin{gathered} \text { E-UTRA Band } \\ 65 \end{gathered}$	$2110-2200 \mathrm{MHz}$	$-52 \mathrm{dBm}$	1 MHz	This requirement does not apply to BS operating in band n 1 .
	$1920-2010 \mathrm{MHz}$	-49 dBm	1 MHz	For BS operating in Band n1, it applies for 1980 MHz to 2010 MHz , while the rest is covered in clause 6.6.5.2.2.
	$2110-2200 \mathrm{MHz}$	$-52 \mathrm{dBm}$	1 MHz	This requirement does not apply to BS operating in band n66.

E-UTRA Band 66 or NR Band n66	$1710-1780 \mathrm{MHz}$	-49 dBm	1 MHz	This requirement does not apply to BS operating in band $n 66$, since it is already covered by the requirement in clause 6.6.5.2.2.
E-UTRA Band 67	$738-758 \mathrm{MHz}$	$-52 \mathrm{dBm}$	1 MHz	This requirement does not apply to BS operating in Band n28.
$\begin{aligned} & \text { E-UTRA Band } \\ & 68 \end{aligned}$	$753-783 \mathrm{MHz}$	$-52 \mathrm{dBm}$	1 MHz	This requirement does not apply to BS operating in band n28.
	698-728 MHz	-49 dBm	1 MHz	For BS operating in Band n28, this requirement applies between 698 MHz and 703 MHz , while the rest is covered in clause 6.6.5.2.2.
E-UTRA Band 69	$2570-2620 \mathrm{MHz}$	$-52 \mathrm{dBm}$	1 MHz	This requirement does not apply to BS operating in Band n38.
E-UTRA Band 70 or NR Band n70	1995 - 2020 MHz	$-52 \mathrm{dBm}$	1 MHz	This requirement does not apply to BS operating in band n2, n25 or n70
	1695 - 1710 MHz	-49 dBm	1 MHz	This requirement does not apply to BS operating in band $n 70$, since it is already covered by the requirement in clause 6.6.5.2.2.
E-UTRA Band 71 or NR Band n71	$617-652 \mathrm{MHz}$	$-52 \mathrm{dBm}$	1 MHz	This requirement does not apply to BS operating in band n71
	$663-698 \mathrm{MHz}$	-49 dBm	1 MHz	This requirement does not apply to BS operating in band $n 71$, since it is already covered by the requirement in clause 6.6.5.2.2.
$\begin{gathered} \text { E-UTRA Band } \\ 72 \end{gathered}$	$461-466 \mathrm{MHz}$	$-52 \mathrm{dBm}$	1 MHz	
	$451-456 \mathrm{MHz}$	$-49 \mathrm{dBm}$	1 MHz	
E-UTRA Band 74 or NR Band n74	$1475-1518 \mathrm{MHz}$	$-52 \mathrm{dBm}$	1 MHz	This requirement does not apply to BS operating in band n50, n74 or n75.
	1427 - 1470 MHz	$-49 \mathrm{dBm}$	1MHz	This requirement does not apply to BS operating in band n50, n51, n74, n75 or n76.
E-UTRA Band 75 or NR Band n75	1432 - 1517 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in Band n50, n51, n74, n75 or n76.
E-UTRA Band 76 or NR Band n76	$1427-1432 \mathrm{MHz}$	$-52 \mathrm{dBm}$	1 MHz	This requirement does not apply to BS operating in Band n50, n51, n75 or n76.
NR Band n77	$3.3-4.2 \mathrm{GHz}$	$-52 \mathrm{dBm}$	1 MHz	This requirement does not apply to BS operating in Band n 77 or n 78
NR Band n78	$3.3-3.8 \mathrm{GHz}$	-52 dBm	1 MHz	This requirement does not apply to BS operating in Band n 77 or n 78
NR Band n79	$4.4-5.0 \mathrm{GHz}$	-52 dBm	1 MHz	This requirement does not apply to BS operating in Band n79
NR Band n 80	$1710-1785 \mathrm{MHz}$	-49 dBm	1 MHz	This requirement does not apply to BS operating in band n 3 , since it is already covered by the requirement in clause 6.6.5.2.2.
NR Band n81	$880-915 \mathrm{MHz}$	-49 dBm	1 MHz	This requirement does not apply to BS operating in band n8, since it is already covered by the requirement in clause 6.6.5.2.2.
NR Band n 82	$832-862 \mathrm{MHz}$	-49 dBm	1 MHz	This requirement does not apply to BS operating in band n 20 , since it is already covered by the requirement in clause 6.6.5.2.2.
NR Band n83	$703-748 \mathrm{MHz}$	-49 dBm	1 MHz	This requirement does not apply to BS operating in band $n 28$, since it is already covered by the requirement in clause 6.6.5.2.2.
NR Band n84	$1920-1980 \mathrm{MHz}$	-49 dBm	1 MHz	This requirement does not apply to BS operating in band $n 1$, since it is already covered by the requirement in clause 6.6.5.2.2.
$\begin{array}{\|c\|} \hline \text { E-UTRA Band } \\ 85 \\ \hline \end{array}$	$728-746 \mathrm{MHz}$	-52 dBm	1 MHz	This requirement does not apply to BS operating in band n12.
	$698-716 \mathrm{MHz}$	-49 dBm	1 MHz	This requirement does not apply to BS operating in band $n 12$, since it is already covered by the requirement in clause 6.6.5.2.2.
NR Band n86	$1710-1780 \mathrm{MHz}$	-49 dBm	1 MHz	This requirement does not apply to BS operating in band $n 66$, since it is already covered by the requirement in clause 6.6.5.2.2.

NOTE 1: As defined in the scope for spurious emissions in this clause, except for the cases where the noted requirements apply to a BS operating in Band n28, the co-existence requirements in table 6.6.5.2.3-1 do not apply for the $\Delta \mathrm{f}_{\text {OBUE }}$ frequency range immediately outside the downlink operating band (see table 5.21). Emission limits for this excluded frequency range may be covered by local or regional requirements.

NOTE 2: Table 6.6.5.2.3-1 assumes that two operating bands, where the frequency ranges in table 5.2-1 would be overlapping, are not deployed in the same geographical area. For such a case of operation with overlapping frequency arrangements in the same geographical area, special co-existence requirements may apply that are not covered by the 3GPP specifications.

NOTE 3: TDD base stations deployed in the same geographical area, that are synchronized and use the same or adjacent operating bands can transmit without additional co-existence requirements. For unsynchronized base stations, special co-existence requirements may apply that are not covered by the 3GPP specifications.

NOTE 4: For NR Band n28 BS, specific solutions may be required to fulfil the spurious emissions limits for BS for co-existence with E-UTRA Band 27 UL operating band.

The following requirement may be applied for the protection of PHS. This requirement is also applicable at specified frequencies falling between $\Delta \mathrm{f}_{\text {OBUE }}$ below the lowest BS transmitter frequency of the downlink operating band and $\Delta \mathrm{f}_{\text {OBUE }}$ above the highest BS transmitter frequency of the downlink operating band. $\Delta \mathrm{f}_{\text {OBUE }}$ is defined in clause 6.6.1.

The spurious emission basic limit for this requirement is:
Table 6.6.5.2.3-2: BS spurious emissions basic limits for BS for co-existence with PHS

Frequency range	Basic limit	Measurement Bandwidth	Note
$1884.5-1915.7 \mathrm{MHz}$	-41 dBm	300 kHz	Applicable when co-existence with PHS system operating in 1884.5-1915.7 MHz

Table 6.6.5.2.3-3: Void
In certain regions, the following requirement may apply to NR BS operating in Band n50 and n75 within the 1432 1452 MHz , and in Band n 51 and Band n76. The basic limit is specified in Table 6.6.5.2.3-4. This requirement is also applicable at the frequency range from $\Delta \mathrm{f}_{\text {OBUE }}$ below the lowest frequency of the BS downlink operating band up to $\Delta \mathrm{f}_{\text {OBUE }}$ above the highest frequency of the BS downlink operating band.

Table 6.6.5.2.3-4: Additional operating band unwanted emission basic limit for NR BS operating in Band n50 and n75 within 1432 - 1452 MHz, and in Band n51 and n76

Filter centre frequency, Ffilter	Basic limit	Measurement Bandwidth
Ffilter $=1413.5 \mathrm{MHz}$	-42 dBm	27 MHz

In certain regions, the following requirement may apply to BS operating in NR Band n50 and n75 within 1492-1517 MHz and in Band n 74 within 1492-1518 MHz. The maximum level of emissions, measured on centre frequencies $\mathrm{F}_{\text {filter }}$ with filter bandwidth according to Table 6.6.5.2.3-5, shall be defined according to the basic limits $\mathrm{P}_{\mathrm{Em}, \mathrm{n} 5 / \mathrm{n} 75, \mathrm{a}}$ nor $P_{\mathrm{EM}, \mathrm{n} 50 / \mathrm{n} 75, \mathrm{~b}}$ declared by the manufacturer.

Table 6.6.5.2.3-5: Operating band n50, n74 and n75 declared emission above 1518 MHz

Filter centre frequency, F F filter	Declared basic limits $(\mathbf{d B m})$	Measurement bandwidth
$1518.5 \mathrm{MHz} \leq$ Ffilter $\leq 1519.5 \mathrm{MHz}$	$\mathrm{P}_{\mathrm{EM}, \mathrm{n} 50 / \mathrm{n} 75, \mathrm{a}}$	1 MHz
$1520.5 \mathrm{MHz} \leq \mathrm{F}_{\text {filter }} \leq 1558.5 \mathrm{MHz}$	$\mathrm{P}_{\mathrm{EM}, \mathrm{n}, \mathrm{n} 50 / \mathrm{n} 75, \mathrm{~b}}$	1 MHz

NOTE: The regional requirement, included in [12], is defined in terms of EIRP, which is dependent on both the BS emissions at the antenna connector and the deployment (including antenna gain and feeder loss). The requirement defined above provides the characteristics of the base station needed to verify compliance with the regional requirement. The assessment of the EIRP level is described in Annex F.

The following requirement may apply to BS for Band n41 operation in Japan. This requirement is also applicable at the frequency range from $\Delta \mathrm{f}_{\text {OBUE }}$ below the lowest frequency of the BS downlink operating band up to $\Delta \mathrm{f}_{\text {OBUE }}$ above the highest frequency of the BS downlink operating band.

The power of any spurious emission shall not exceed:
Table 6.6.5.2.3-6: Additional BS Spurious emissions limits for Band n41

Frequency range	Basic limit	Measurement Bandwidth
$2505 \mathrm{MHz}-2535 \mathrm{MHz}$	-42 dBm	1 MHz
NOTE:This requirement applies for carriers allocated within $2545-2645 \mathrm{MHz}$.		

6.6.5.2.4 Co-location with other base stations

These requirements may be applied for the protection of other BS receivers when GSM900, DCS1800, PCS1900, GSM850, CDMA850, UTRA FDD, UTRA TDD, E-UTRA and/or NR BS are co-located with a BS.

The requirements assume a 30 dB coupling loss between transmitter and receiver and are based on co-location with base stations of the same class.

The basic limits are in table 6.6.5.2.4-1 for a BS where requirements for co-location with a BS type listed in the first column apply, depending on the declared Base Station class. For a multi-band connector, the exclusions and conditions in the Note column of table 6.6.5.2.4-1 shall apply for each supported operating band.

Table 6.6.5.2.4-1: BS spurious emissions basic limits for BS co-located with another BS

Type of co-located BS	Frequency range for co-location requirement	Basic limits			Measurement bandwidth	Note
		WA BS	MR BS	LA BS		
GSM900	$876-915 \mathrm{MHz}$	$\begin{array}{r} -98 \\ \mathrm{dBm} \\ \hline \end{array}$	$\begin{array}{r} -91 \\ \mathrm{dBm} \\ \hline \end{array}$	$\begin{array}{r} -70 \\ \mathrm{dBm} \\ \hline \end{array}$	100 kHz	
DCS1800	$1710-1785 \mathrm{MHz}$	$\begin{gathered} -98 \\ \mathrm{dBm} \end{gathered}$	$\begin{array}{r} -91 \\ \mathrm{dBm} \\ \hline \end{array}$	$\begin{gathered} -80 \\ \mathrm{dBm} \end{gathered}$	100 kHz	
PCS1900	1850 - 1910 MHz	$\begin{array}{r} -98 \\ \mathrm{dBm} \end{array}$	$\begin{array}{r} -91 \\ \mathrm{dBm} \end{array}$	$\begin{gathered} -80 \\ \mathrm{dBm} \end{gathered}$	100 kHz	
GSM850 or CDMA850	$824-849 \mathrm{MHz}$	$\begin{array}{r} -98 \\ \mathrm{dBm} \\ \hline \end{array}$	$\begin{array}{r} -91 \\ \mathrm{dBm} \\ \hline \end{array}$	$\begin{gathered} -70 \\ \mathrm{dBm} \end{gathered}$	100 kHz	
UTRA FDD Band I or EUTRA Band 1 or NR Band n 1	1920 - 1980 MHz	$\begin{gathered} -96 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -91 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -88 \\ \mathrm{dBm} \end{gathered}$	100 kHz	
UTRA FDD Band II or EUTRA Band 2 or NR Band n2	$1850-1910 \mathrm{MHz}$	$\begin{gathered} -96 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -91 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -88 \\ \mathrm{dBm} \end{gathered}$	100 kHz	
UTRA FDD Band III or EUTRA Band 3 or NR Band n3	$1710-1785 \mathrm{MHz}$	$\begin{gathered} -96 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -91 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} \hline-88 \\ \mathrm{dBm} \end{gathered}$	100 kHz	
UTRA FDD Band IV or EUTRA Band 4	$1710-1755 \mathrm{MHz}$	$\begin{gathered} -96 \\ \mathrm{dBm} \end{gathered}$	$\begin{array}{r} \hline-91 \\ \mathrm{dBm} \\ \hline \end{array}$	$\begin{gathered} -88 \\ \mathrm{dBm} \end{gathered}$	100 kHz	
UTRA FDD Band V or EUTRA Band 5 or NR Band n5	$824-849 \mathrm{MHz}$	$\begin{gathered} -96 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -91 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -88 \\ \mathrm{dBm} \end{gathered}$	100 kHz	
UTRA FDD Band VI, XIX or E-UTRA Band 6, 19	$830-845 \mathrm{MHz}$	$\begin{gathered} -96 \\ \mathrm{dBm} \end{gathered}$	$\begin{array}{r} -91 \\ \mathrm{dBm} \\ \hline \end{array}$	$\begin{gathered} -88 \\ \mathrm{dBm} \end{gathered}$	100 kHz	
UTRA FDD Band VII or E-UTRA Band 7 or NR Band n7	$2500-2570 \mathrm{MHz}$	$\begin{gathered} -96 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} \hline-91 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} \hline-88 \\ \mathrm{dBm} \end{gathered}$	100 kHz	
UTRA FDD Band VIII or E-UTRA Band 8 or NR Band n8	$880-915 \mathrm{MHz}$	$\begin{gathered} -96 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} \hline-91 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -88 \\ \mathrm{dBm} \end{gathered}$	100 kHz	
UTRA FDD Band IX or EUTRA Band 9	1749.9 - 1784.9 MHz	$\begin{array}{r} -96 \\ \mathrm{dBm} \\ \hline \end{array}$	$\begin{array}{r} \hline-91 \\ \mathrm{dBm} \\ \hline \end{array}$	$\begin{array}{r} -88 \\ \mathrm{dBm} \end{array}$	100 kHz	
UTRA FDD Band X or EUTRA Band 10	1710 - 1770 MHz	$\begin{gathered} -96 \\ \mathrm{dBm} \end{gathered}$	$\begin{array}{r} -91 \\ \mathrm{dBm} \end{array}$	$\begin{gathered} -88 \\ \mathrm{dBm} \end{gathered}$	100 kHz	
UTRA FDD Band XI or EUTRA Band 11	1427.9 -1447.9 MHz	$\begin{gathered} -96 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -91 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -88 \\ \mathrm{dBm} \end{gathered}$	100 kHz	This is not applicable to BS operating in Band n50 or n75
UTRA FDD Band XII or E-UTRA Band 12 or NR Band n12	$699-716 \mathrm{MHz}$	$\begin{gathered} \hline-96 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} \hline-91 \\ \mathrm{dBm} \end{gathered}$	$\begin{aligned} & \hline-88 \\ & \mathrm{dBm} \end{aligned}$	100 kHz	
UTRA FDD Band XIII or E-UTRA Band 13	777 - 787 MHz	$\begin{gathered} -96 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -91 \\ \mathrm{dBm} \\ \hline \end{gathered}$	$\begin{gathered} -88 \\ \mathrm{dBm} \end{gathered}$	100 kHz	
UTRA FDD Band XIV or E-UTRA Band 14	$788-798 \mathrm{MHz}$	$\begin{array}{r} -96 \\ \mathrm{dBm} \end{array}$	$\begin{array}{r} -91 \\ \mathrm{dBm} \\ \hline \end{array}$	$\begin{array}{r} -88 \\ \mathrm{dBm} \end{array}$	100 kHz	
E-UTRA Band 17	$704-716 \mathrm{MHz}$	$\begin{array}{r} -96 \\ \mathrm{dBm} \end{array}$	$\begin{gathered} -91 \\ \mathrm{dBm} \\ \hline \end{gathered}$	$\begin{array}{r} -88 \\ \mathrm{dBm} \end{array}$	100 kHz	
E-UTRA Band 18	$815-830 \mathrm{MHz}$	$\begin{array}{r} -96 \\ \mathrm{dBm} \\ \hline \end{array}$	$\begin{array}{r} -91 \\ \mathrm{dBm} \\ \hline \end{array}$	$\begin{gathered} -88 \\ \mathrm{dBm} \end{gathered}$	100 kHz	
UTRA FDD Band XX or E-UTRA Band 20 or NR Band n20	$832-862 \mathrm{MHz}$	$\begin{gathered} -96 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -91 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -88 \\ \mathrm{dBm} \end{gathered}$	100 kHz	
UTRA FDD Band XXI or E-UTRA Band 21	1447.9 - 1462.9 MHz	$\begin{gathered} -96 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -91 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -88 \\ \mathrm{dBm} \end{gathered}$	100 kHz	This is not applicable to BS operating in Band n50 or n75
UTRA FDD Band XXII or E-UTRA Band 22	$3410-3490 \mathrm{MHz}$	$\begin{gathered} -96 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -91 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -88 \\ \mathrm{dBm} \end{gathered}$	100 kHz	This is not applicable to BS operating in Band n77 or n78
E-UTRA Band 24	$1626.5-1660.5 \mathrm{MHz}$	$\begin{gathered} -96 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -91 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -88 \\ \mathrm{dBm} \end{gathered}$	100 kHz	

UTRA FDD Band XXV or E-UTRA Band 25 or NR Band n25	$1850-1915$ MHz	$\begin{gathered} -96 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -91 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} \hline-88 \\ \mathrm{dBm} \end{gathered}$	100 kHz	
UTRA FDD Band XXVI or E-UTRA Band 26	$814-849 \mathrm{MHz}$	$\begin{gathered} -96 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -91 \\ \text { dBm } \end{gathered}$	$\begin{gathered} -88 \\ \mathrm{dBm} \end{gathered}$	100 kHz	
E-UTRA Band 27	$807-824 \mathrm{MHz}$	$\begin{gathered} -96 \\ \text { dBm } \end{gathered}$	$\begin{gathered} -91 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -88 \\ \mathrm{dBm} \end{gathered}$	100 kHz	
E-UTRA Band 28 or NR Band n28	$703-748 \mathrm{MHz}$	$\begin{gathered} -96 \\ \text { dBm } \end{gathered}$	$\begin{gathered} -91 \\ \text { dBm } \end{gathered}$	$\begin{gathered} -88 \\ \mathrm{dBm} \end{gathered}$	100 kHz	
E-UTRA Band 30	$2305-2315 \mathrm{MHz}$	$\begin{gathered} -96 \\ \text { dBm } \end{gathered}$	$\begin{gathered} -91 \\ \text { dBm } \end{gathered}$	$\begin{gathered} -88 \\ \mathrm{dBm} \end{gathered}$	100 kHz	
E-UTRA Band 31	452.5 - 457.5 MHz	$\begin{gathered} -96 \\ \text { dBm } \end{gathered}$	$\begin{gathered} -91 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -88 \\ \mathrm{dBm} \end{gathered}$	100 kHz	
UTRA TDD Band a) or EUTRA Band 33	1900 - 1920 MHz	$\begin{gathered} -96 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -91 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -88 \\ \mathrm{dBm} \end{gathered}$	100 kHz	
UTRA TDD Band a) or EUTRA Band 34 or NR band n34	$2010-2025$ MHz	$\begin{gathered} -96 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -91 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -88 \\ \mathrm{dBm} \end{gathered}$	100 kHz	This is not applicable to BS operating in Band n34
UTRA TDD Band b) or EUTRA Band 35	$1850-1910 \mathrm{MHz}$	$\begin{gathered} -96 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -91 \\ \text { dBm } \end{gathered}$	$\begin{gathered} -88 \\ \mathrm{dBm} \end{gathered}$	100 kHz	
UTRA TDD Band b) or EUTRA Band 36	1930 - 1990 MHz	$\begin{gathered} -96 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -91 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -88 \\ \mathrm{dBm} \end{gathered}$	100 kHz	This is not applicable to BS operating in Band n2 or band n25
UTRA TDD Band c) or EUTRA Band 37	1910 - 1930 MHz	$\begin{gathered} -96 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -91 \\ \text { dBm } \end{gathered}$	$\begin{gathered} -88 \\ \mathrm{dBm} \end{gathered}$	100 kHz	
UTRA TDD Band d) or EUTRA Band 38 or NR Band n38	$2570-2620 \mathrm{MHz}$	$\begin{gathered} -96 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -91 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -88 \\ \mathrm{dBm} \end{gathered}$	100 kHz	This is not applicable to BS operating in Band n38.
UTRA TDD Band f) or EUTRA Band 39 or NR band n39	1880 - 1920MHz	$\begin{gathered} -96 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -91 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -88 \\ \mathrm{dBm} \end{gathered}$	100 kHz	This is not applicable to BS operating in Band n39
UTRA TDD Band e) or EUTRA Band 40 or NR Band n40	$2300-2400 \mathrm{MHz}$	$\begin{gathered} -96 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -91 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -88 \\ \mathrm{dBm} \end{gathered}$	100 kHz	This is not applicable to BS operating in Band n 40 .
E-UTRA Band 41 or NR Band n 41	2496 - 2690 MHz	$\begin{gathered} -96 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -91 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -88 \\ \mathrm{dBm} \end{gathered}$	100 kHz	This is not applicable to BS operating in Band n 41
E-UTRA Band 42	$3400-3600 \mathrm{MHz}$	$\begin{gathered} \hline-96 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -91 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -88 \\ \mathrm{dBm} \end{gathered}$	100 kHz	This is not applicable to BS operating in Band n77 or n78
E-UTRA Band 43	$3600-3800 \mathrm{MHz}$	$\begin{gathered} -96 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -91 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -88 \\ \mathrm{dBm} \end{gathered}$	100 kHz	This is not applicable to BS operating in Band n77 or n78
E-UTRA Band 44	$703-803 \mathrm{MHz}$	$\begin{gathered} -96 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -91 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -88 \\ \mathrm{dBm} \end{gathered}$	100 kHz	This is not applicable to BS operating in Band n28
E-UTRA Band 45	1447 - 1467 MHz	$\begin{array}{r} -96 \\ \mathrm{dBm} \\ \hline \end{array}$	$\begin{gathered} -91 \\ \mathrm{dBm} \\ \hline \end{gathered}$	$\begin{gathered} -88 \\ \mathrm{dBm} \\ \hline \end{gathered}$	100 kHz	
E-UTRA Band 46	$5150-5925 \mathrm{MHz}$	N/A	$\begin{gathered} -91 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -88 \\ \mathrm{dBm} \end{gathered}$	100 kHz	
E-UTRA Band 48	$3550-3700 \mathrm{MHz}$	$\begin{gathered} -96 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -91 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -88 \\ \mathrm{dBm} \end{gathered}$	100 kHz	This is not applicable to BS operating in Band n77 or n78

E-UTRA Band 50 or NR Band n50	$1432-1517 \mathrm{MHz}$	$\begin{gathered} \hline-96 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -91 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -88 \\ \mathrm{dBm} \end{gathered}$	100 kHz	This is not applicable to BS operating in Band n51, n74 or n75
E-UTRA Band 51 or NR Band n51	$1427-1432 \mathrm{MHz}$	N/A	N/A	$\begin{gathered} -88 \\ \mathrm{dBm} \end{gathered}$	100 kHz	This is not applicable to BS operating in Band n50, n74, n75 or n76
E-UTRA Band 65	1920 - 2010 MHz	$\begin{gathered} -96 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -91 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} \hline-88 \\ \mathrm{dBm} \end{gathered}$	100 kHz	
E-UTRA Band 66 or NR Band $n 66$	$1710-1780 \mathrm{MHz}$	$\begin{gathered} -96 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -91 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -88 \\ \mathrm{dBm} \end{gathered}$	100 kHz	
E-UTRA Band 68	$698-728 \mathrm{MHz}$	$\begin{gathered} -96 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -91 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -88 \\ \mathrm{dBm} \end{gathered}$	100 kHz	
E-UTRA Band 70 or NR Band 70	$1695-1710 \mathrm{MHz}$	$\begin{gathered} -96 \\ \text { dBm } \end{gathered}$	$\begin{gathered} -91 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -88 \\ \mathrm{dBm} \end{gathered}$	100 kHz	
E-UTRA Band 71 or NR Band n71	$663-698 \mathrm{MHz}$	$\begin{gathered} -96 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -91 \\ \mathrm{dBm} \end{gathered}$	$\begin{aligned} & -88 \\ & \mathrm{dBm} \end{aligned}$	100 kHz	
E-UTRA Band 72	$451-456 \mathrm{MHz}$	$\begin{gathered} -96 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -91 \\ \mathrm{dBm} \end{gathered}$	$\begin{aligned} & -88 \\ & \mathrm{dBm} \end{aligned}$	100 kHz	
E-UTRA Band 74 or NR Band n74	$1427-1470 \mathrm{MHz}$	$\begin{gathered} -96 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -91 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -88 \\ \mathrm{dBm} \end{gathered}$	100 kHz	This is not applicable to BS operating in Band n50 or n51
NR Band n77	$3.3-4.2 \mathrm{GHz}$	$\begin{gathered} -96 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -91 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} \hline-88 \\ \mathrm{dBm} \end{gathered}$	100 kHz	This is not applicable to BS operating in Band n77 or n78
NR Band n78	$3.3-3.8 \mathrm{GHz}$	$\begin{gathered} -96 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -91 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} \hline-88 \\ \mathrm{dBm} \end{gathered}$	100 kHz	This is not applicable to BS operating in Band n 77 or n78
NR Band n79	$4.4-5.0 \mathrm{GHz}$	$\begin{gathered} -96 \\ \text { dBm } \end{gathered}$	$\begin{gathered} -91 \\ \mathrm{dBm} \end{gathered}$	$\begin{aligned} & \hline-88 \\ & \mathrm{dBm} \end{aligned}$	100 kHz	
NR Band n80	$1710-1785 \mathrm{MHz}$	$\begin{gathered} -96 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -91 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -88 \\ \mathrm{dBm} \end{gathered}$	100 kHz	
NR Band n81	$880-915 \mathrm{MHz}$	$\begin{gathered} -96 \\ \text { dBm } \end{gathered}$	$\begin{gathered} -91 \\ \mathrm{dBm} \end{gathered}$	$\begin{aligned} & -88 \\ & \mathrm{dBm} \end{aligned}$	100 kHz	
NR Band n82	$832-862 \mathrm{MHz}$	$\begin{gathered} -96 \\ \text { dBm } \end{gathered}$	$\begin{gathered} -91 \\ \mathrm{dBm} \end{gathered}$	$\begin{aligned} & -88 \\ & \mathrm{dBm} \end{aligned}$	100 kHz	
NR Band n83	$703-748 \mathrm{MHz}$	$\begin{gathered} -96 \\ \text { dBm } \end{gathered}$	$\begin{gathered} -91 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -88 \\ \mathrm{dBm} \end{gathered}$	100 kHz	
NR Band n84	1920 - 1980 MHz	$\begin{gathered} -96 \\ \text { dBm } \end{gathered}$	$\begin{gathered} -91 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} -88 \\ \mathrm{dBm} \end{gathered}$	100 kHz	
E-UTRA Band 85	$698-716 \mathrm{MHz}$	$\begin{gathered} -96 \\ \text { dBm } \end{gathered}$	$\begin{gathered} -91 \\ \mathrm{dBm} \end{gathered}$	$\begin{aligned} & -88 \\ & \mathrm{dBm} \end{aligned}$	100 kHz	
NR Band n86	$1710-1780 \mathrm{MHz}$	$\begin{gathered} -96 \\ \text { dBm } \end{gathered}$	$\begin{gathered} -91 \\ \mathrm{dBm} \end{gathered}$	$\begin{aligned} & -88 \\ & \mathrm{dBm} \end{aligned}$	100 kHz	

NOTE 1: As defined in the scope for spurious emissions in this clause, the co-location requirements in table 6.6.5.2.4-1 do not apply for the frequency range extending Δ fobue immediately outside $^{\text {ime }}$ BS transmit frequency range of a downlink operating band (see table 5.2-1). The current state-of-the-art technology does not allow a single generic solution for co-location with other system on adjacent frequencies for 30 dB BS-BS minimum coupling loss. However, there are certain site-engineering solutions that can be used. These techniques are addressed in TR 25.942 [4].

NOTE 2: Table 6.6.5.2.4-1 assumes that two operating bands, where the corresponding BS transmit and receive frequency ranges in table 5.2-1 would be overlapping, are not deployed in the same geographical area. For such a case of operation with overlapping frequency arrangements in the same geographical area, special co-location requirements may apply that are not covered by the 3GPP specifications.

NOTE 3: Co-located TDD base stations that are synchronized and using the same or adjacent operating band can transmit without special co-locations requirements. For unsynchronized base stations, special co-location requirements may apply that are not covered by the 3GPP specifications.

6.6.5.3 Minimum requirements for $B S$ type 1-C

The Tx spurious emissions for BS type 1-C for each antenna connector shall not exceed the basic limits specified in clause 6.6.5.2.

For Band n41 operation in Japan, the sum of the spurious emissions over all antenna connectors for BS type 1-C shall not exceed the basic limits defined in clause 6.6.5.2.

6.6.5.4 Minimum requirements for BS type 1-H

The Tx spurious emissions requirements for BS type 1-H are that for each TAB connector TX min cell group and each applicable basic limit in clause 6.6.5.2, the power summation emissions at the TAB connectors of the TAB connector TX min cell group shall not exceed a limit specified as the basic limit +X , where $\mathrm{X}=10 \log _{10}\left(\mathrm{~N}_{\mathrm{TXU}, \text { countedpercell }}\right)$, unless stated differently in regional regulation.

NOTE: Conformance to the BS type 1-H spurious emission requirement can be demonstrated by meeting at least one of the following criteria as determined by the manufacturer:

1) The sum of the emissions power measured on each $T A B$ connector in the $T A B$ connector $T X$ min cell group shall be less than or equal to the limit as defined in this clause for the respective frequency span.

Or
2) The unwanted emissions power at each $T A B$ connector shall be less than or equal to the $B S$ type 1-H limit as defined in this clause for the respective frequency span, scaled by $-10 \log _{10}(\mathrm{n})$, where n is the number of TAB connectors in the TAB connector TX min cell group.

6.7 Transmitter intermodulation

6.7.1 General

The transmitter intermodulation requirement is a measure of the capability of the transmitter unit to inhibit the generation of signals in its non-linear elements caused by presence of the wanted signal and an interfering signal reaching the transmitter unit via the antenna, RDN and antenna array. The requirement shall apply during the transmitter ON period and the transmitter transient period.

For BS type 1-C, the transmitter intermodulation level is the power of the intermodulation products when an interfering signal is injected into the antenna connector.

For BS type 1-H, the transmitter intermodulation level is the power of the intermodulation products when an interfering signal is injected into the TAB connector.

For BS type 1-H, there are two types of transmitter intermodulation cases captured by the transmitter intermodulation requirement:

1) Co-location transmitter intermodulation in which the interfering signal is from a co-located base station.
2) Intra-system transmitter intermodulation in which the interfering signal is from other transmitter units within the BS type 1-H.

For BS type 1-H, the co-location transmitter intermodulation requirement is considered sufficient if the interference signal for the co-location requirement is higher than the declared interference signal for intra-system transmitter intermodulation requirement.

6.7.2 Minimum requirements for $B S$ type 1-C

6.7.2.1 Co-location minimum requirements

For $B S$ type 1-C, the wanted signal and interfering signal centre frequency is specified in table 6.7.2.1-1, where interfering signal level is Rated total output power $\left(\mathrm{P}_{\mathrm{rated}, \mathrm{t}, \mathrm{A}}\right)$ at antenna connector in the operating band -30 dB .

The requirement is applicable outside the Base Station RF Bandwidth or Radio Bandwidth. The interfering signal offset is defined relative to the Base Station RF Bandwidth edges or Radio Bandwidth edges.

For a BS operating in non-contiguous spectrum, the requirement is also applicable inside a sub-block gap for interfering signal offsets where the interfering signal falls completely within the sub-block gap. The interfering signal offset is defined relative to the sub-block edges.

For a multi-band connector, the requirement shall apply relative to the Base Station RF Bandwidth edges of each supported operating band. In case the Inter RF Bandwidth gap is less than $3 * \mathrm{BW}_{\text {Channel }}$ (where $\mathrm{BW}_{\text {Channel }}$ is the minimal $B S$ channel bandwidth of the band), the requirement in the gap shall apply only for interfering signal offsets where the interfering signal falls completely within the Inter RF Bandwidth gap.

The transmitter intermodulation level shall not exceed the unwanted emission limits in clauses 6.6.3, 6.6.4 and 6.6.5 in the presence of an NR interfering signal according to table 6.7.2.1-1.

Table 6.7.2.1-1: Interfering and wanted signals for the co-location transmitter intermodulation requirement

Parameter	Value
Wanted signal type	NR single carrier, or multi-carrier, or multiple intra-band contiguously or non- contiguously aggregated carriers
Interfering signal type	NR signal, the minimum BS channel bandwidth (BW Channel) with 15 kHz SCS of the band defined in clause 5.3.5.
Interfering signal level	Rated total output power (Prated,t,AC) in the operating band -30 dB
Interfering signal centre frequency offset from the lower/upper edge of the wanted signal or edge of sub- block inside a sub-block gap	$f_{\text {offset }}= \pm B W_{\text {Channee }}\left(n-\frac{1}{2}\right)$, for $\mathrm{n}=1,2$ and 3

NOTE 1: Interfering signal positions that are partially or completely outside of any downlink operating band of the base station are excluded from the requirement, unless the interfering signal positions fall within the frequency range of adjacent downlink operating bands in the same geographical area. In case that none of the interfering signal positions fall completely within the frequency range of the downlink operating band, TS 38.141-1 [5] provides further guidance regarding appropriate test requirements.
NOTE 2: In Japan, NOTE 1 is not applied in Band n77, n78, n79.

6.7.2.2 Additional requirements

For Band n41 operation in Japan, the sum of transmitter intermodulation level over all antenna connectors shall not exceed the unwanted emission limits in clauses 6.6.3, 6.6.4 and 6.6.5 in the presence of an NR interfering signal according to table 6.7.2.2-1.

Table 6.7.2.2-1 Interfering and wanted signals for the additional transmitter intermodulation requirement for Band n41

Parameter	Value
Wanted signal	NR single carrier (NOTE)
Interfering signal type	NR signal of 10 MHz channel bandwidth
Interfering signal level	Rated total output power in the operating band - 30 dB
Interfering signal centre frequency offset from	$\pm 5 \mathrm{MHz}$
the lower/upper carrier centre frequency of	$\pm 15 \mathrm{MHz}$
the wanted signal	$\pm 25 \mathrm{MHz}$
NOTE: This requirement applies for NR carriers allocated within 2545-2645 MHz.	

6.7.3 Minimum requirements for B type $1-H$

6.7.3.1 Co-location minimum requirements

The transmitter intermodulation level shall not exceed the unwanted emission limits in clauses 6.6.3, 6.6.4 and 6.6.5 in the presence of an NR interfering signal according to table 6.7.3.1-1

The requirement is applicable outside the Base Station RF Bandwidth edges. The interfering signal offset is defined relative to the Base Station RF Bandwidth edges or Radio Bandwidth edges.

For TAB connectors supporting operation in non-contiguous spectrum, the requirement is also applicable inside a subblock gap for interfering signal offsets where the interfering signal falls completely within the sub-block gap. The interfering signal offset is defined relative to the sub-block edges.

For multi-band connector, the requirement shall apply relative to the Base Station RF Bandwidth edges of each operating band. In case the inter RF Bandwidth gap is less than $3 * \mathrm{BW}_{\text {Channel }}$ (where $\mathrm{BW}_{\text {Channel }}$ is the minimal BS channel bandwidth of the band), the requirement in the gap shall apply only for interfering signal offsets where the interfering signal falls completely within the inter RF Bandwidth gap.

Table 6.7.3.1-1: Interfering and wanted $\underset{\text { signals for the co-location transmitter intermodulation }}{\text { requirent }}$

Parameter	Value
Wanted signal type	NR single carrier, or multi-carrier, or multiple intra-band contiguously or noncontiguously aggregated carriers
Interfering signal type	NR signal, the minimum BS channel bandwidth (BW Channel) with 15 kHz SCS of the band defined in clause 5.3.5.
Interfering signal level	Rated total output power per TAB connector (Prated,t,TABC) in the operating band - 30 dB
Interfering signal centre frequency offset from the lower/upper edge of the wanted signal or edge of subblock inside a gap	$\begin{aligned} & f_{\text {offseet }}= \pm B W_{\text {Chamne }}\left(n-\frac{1}{2}\right) \text {, for } \mathrm{n}=1,2 \text { and } \\ & 3 \end{aligned}$
NOTE 1: Interfering signal positions that are partially or completely outside of any downlink operating band of the TAB connector are excluded from the requirement, unless the interfering signal positions fall within the frequency range of adjacent downlink operating bands in the same geographical area. In case that none of the interfering signal positions fall completely within the frequency range of the downlink operating band, TS $38.141-1$ [5] provides further guidance regarding appropriate test requirements. NOTE 2: In Japan, NOTE 1 is not applied in Band $\mathrm{n} 77, \mathrm{n} 78, \mathrm{n} 79$.	

6.7.3.2 Intra-system minimum requirements

The transmitter intermodulation level shall not exceed the unwanted emission limits in clauses 6.6.3 and 6.6.4 in the presence of an NR interfering signal according to table 6.7.3.2-1.

Table 6.7.3.2-1: Interfering and wanted signals for intra-system transmitter intermodulation requirement

Parameter	Value
Wanted signal type	NR signal
Interfering signal type	NR signal of the same BS channel bandwidth and SCS as the wanted signal (Note 1).
Interfering signal level	Power level declared by the base station manufacturer (Note 2).
Frequency offset between interfering signal and wanted signal	NOTE 1: The interfering signal shall be incoherent with the wanted signal. NOTE 2:The declared interfering signal power level at each TAB connector is the sum of the co- channel leakage power coupled via the combined RDN and Antenna Array from all the other TAB connectors, but does not comprise power radiated from the Antenna Array and reflected back from the environment. The power at each of the interfering TAB connectors is Prated,,,TABC.

6.7.3.3 Additional requirements

For Band n41 operation in Japan, the transmitter intermodulation level shall not exceed the unwanted emission limits in clauses 6.6.3, 6.6.4 and 6.6.5 in the presence of an NR interfering signal according to table 6.7.3.3-1.

Table 6.7.3.3-1 Interfering and wanted signals for the additional transmitter intermodulation requirement for Band n41

Parameter	
Wanted signal	NR single carrier (NOTE)
Interfering signal type	NR signal of 10 MHz channel bandwidth
Interfering signal level	Rated total output power in the operating band - 30 dB
Interfering signal centre frequency offset from	$\pm 5 \mathrm{MHz}$
the lower/upper carrier centre frequency of	$\pm 15 \mathrm{MHz}$
the wanted signal	$\pm 25 \mathrm{MHz}$
NOTE: This requirement applies for NR carriers allocated within 2545-2645 MHz.	

$7 \quad$ Conducted receiver characteristics

7.1 General

Conducted receiver characteristics are specified at the antenna connector for BS type 1-C and at the TAB connector for BS type 1-H, with full complement of transceivers for the configuration in normal operating condition.

Unless otherwise stated, the following arrangements apply for conducted receiver characteristics requirements in clause 7:

- Requirements apply during the BS receive period.
- Requirements shall be met for any transmitter setting.
- For FDD operation the requirements shall be met with the transmitter unit(s) ON.
- Throughput requirements defined for the radiated receiver characteristics do not assume HARQ retransmissions.
- When BS is configured to receive multiple carriers, all the throughput requirements are applicable for each received carrier.
- For ACS, blocking and intermodulation characteristics, the negative offsets of the interfering signal apply relative to the lower Base Station RF Bandwidth edge or sub-block edge inside a sub-block gap, and the positive offsets of the interfering signal apply relative to the upper Base Station RF Bandwidth edge or sub-block edge inside a sub-block gap.

NOTE 1: In normal operating condition the BS in FDD operation is configured to transmit and receive at the same time.

NOTE 2: In normal operating condition the BS in TDD operation is configured to TX OFF power during receive period.

7.2 Reference sensitivity level

7.2.1 General

The reference sensitivity power level $\mathrm{P}_{\text {REFSENS }}$ is the minimum mean power received at the antenna connector for $B S$ type 1-C or TAB connector for BS type 1-H at which a throughput requirement shall be met for a specified reference measurement channel.

7.2.2 Minimum requirements for B S type 1-C and B S type 1-H

The throughput shall be $\geq 95 \%$ of the maximum throughput of the reference measurement channel as specified in annex A. 1 with parameters specified in table 7.2.2-1 for Wide Area BS, in table 7.2.2-2 for Medium Range BS and in table 7.2.2-3 for Local Area BS.

Table 7.2.2-1: NR Wide Area BS reference sensitivity levels

BS channel bandwidth (MHz)	Sub-carrier spacing (kHz)	Reference measurement channel	Reference sensitivity power level, PREFSENS (dBm)
$5,10,15$	15	G-FR1-A1-1	-101.7
10,15	30	G-FR1-A1-2	-101.8
10,15	60	G-FR1-A1-3	-98.9
$20,25,30,40,50$	15	G-FR1-A1-4	-95.3
$20,25,30,40,50,60$,			
$70,80,90,100$	30	G-FR1-A1-5	-95.6
$20,25,30,40,50,60$,	60	G-FR1-A1-6	-95.7

NOTE: Prefsens is the power level of a single instance of the reference measurement channel. This requirement shall be met for each consecutive application of a single instance of the reference measurement channel mapped to disjoint frequency ranges with a width corresponding to the number of resource blocks of the reference measurement channel each, except for one instance that might overlap one other instance to cover the full $B S$ channel bandwidth.

Table 7.2.2-2: NR Medium Range BS reference sensitivity levels

BS channel bandwidth (MHz)	Sub-carrier spacing (kHz)	Reference measurement channel	Reference sensitivity power level, Prefsens (dBm)
5, 10, 15	15	G-FR1-A1-1	-96.7
10, 15	30	G-FR1-A1-2	-96.8
10, 15	60	G-FR1-A1-3	-93.9
20, 25, 30, 40, 50	15	G-FR1-A1-4	-90.3
$\begin{gathered} 20,25,30,40,50,60 \\ 70,80,90,100 \end{gathered}$	30	G-FR1-A1-5	-90.6
$\begin{gathered} 20,25,30,40,50,60 \\ 70,80,90,100 \end{gathered}$	60	G-FR1-A1-6	-90.7
NOTE: Prefsens is the power level of a single instance of the reference measurement channel. This requirement shall be met for each consecutive application of a single instance of the reference measurement channel mapped to disjoint frequency ranges with a width corresponding to the number of resource blocks of the reference measurement channel each, except for one instance that might overlap one other instance to cover the full $B S$ channel bandwidth.			

Table 7.2.2-3: NR Local Area BS reference sensitivity levels

BS channel bandwidth (MHz)	Sub-carrier spacing (kHz)	Reference measurement channel	Reference sensitivity power level, Prefsens (dBm)
5, 10, 15	15	G-FR1-A1-1	-93.7
10, 15	30	G-FR1-A1-2	-93.8
10, 15	60	G-FR1-A1-3	-90.9
20, 25, 30, 40, 50	15	G-FR1-A1-4	-87.3
$\begin{gathered} 20,25,30,40,50,60 \\ 70,80,90,100 \end{gathered}$	30	G-FR1-A1-5	-87.6
$\begin{gathered} 20,25,30,40,50,60, \\ 70,80,90,100 \\ \hline \end{gathered}$	60	G-FR1-A1-6	-87.7

NOTE: PreFsens is the power level of a single instance of the reference measurement channel. This requirement shall be met for each consecutive application of a single instance of the reference measurement channel mapped to disjoint frequency ranges with a width corresponding to the number of resource blocks of the reference measurement channel each, except for one instance that might overlap one other instance to cover the full $B S$ channel bandwidth.

7.3 Dynamic range

7.3.1 General

The dynamic range is specified as a measure of the capability of the receiver to receive a wanted signal in the presence of an interfering signal at the antenna connector for BS type 1-C or TAB connector for BS type 1-H inside the received BS channel bandwidth. In this condition, a throughput requirement shall be met for a specified reference measurement channel. The interfering signal for the dynamic range requirement is an AWGN signal.

7.3.2 Minimum requirement for B S type 1-C and BS type 1-H

The throughput shall be $\geq 95 \%$ of the maximum throughput of the reference measurement channel as specified in annex A. 2 with parameters specified in table 7.3.2-1 for Wide Area BS, in table 7.3.2-2 for Medium Range BS and in table 7.3.2-3 for Local Area BS.

Table 7.3.2-1: Wide Area BS dynamic range

BS channel bandwidth (MHz)	Subcarrier spacing (kHz)	Reference measurement channel	Wanted signal mean power (dBm)	Interfering signal mean power (dBm) / BWContig	Type of interfering signal
5	15	G-FR1-A2-1	-70.7	-82.5	AWGN
	30	G-FR1-A2-2	-71.4		
10	15	G-FR1-A2-1	-70.7	-79.3	AWGN
	30	G-FR1-A2-2	-71.4		
	60	G-FR1-A2-3	-68.4		
15	15	G-FR1-A2-1	-70.7	-77.5	AWGN
	30	G-FR1-A2-2	-71.4		
	60	G-FR1-A2-3	-68.4		
20	15	G-FR1-A2-4	-64.5	-76.2	AWGN
	30	G-FR1-A2-5	-64.5		
	60	G-FR1-A2-6	-64.8		
25	15	G-FR1-A2-4	-64.5	-75.2	AWGN
	30	G-FR1-A2-5	-64.5		
	60	G-FR1-A2-6	-64.8		
30	15	G-FR1-A2-4	-64.5	-74.4	AWGN
	30	G-FR1-A2-5	-64.5		
	60	G-FR1-A2-6	-64.8		
40	15	G-FR1-A2-4	-64.5	-73.1	AWGN
	30	G-FR1-A2-5	-64.5		
	60	G-FR1-A2-6	-64.8		
50	15	G-FR1-A2-4	-64.5	-72.1	AWGN
	30	G-FR1-A2-5	-64.5		
	60	G-FR1-A2-6	-64.8		
60	30	G-FR1-A2-5	-64.5	-71.3	AWGN
	60	G-FR1-A2-6	-64.8		
70	30	G-FR1-A2-5	-64.5	-70.7	AWGN
	60	G-FR1-A2-6	-64.8		
80	30	G-FR1-A2-5	-64.5	-70.1	AWGN
	60	G-FR1-A2-6	-64.8		
90	30	G-FR1-A2-5	-64.5	-69.5	AWGN
	60	G-FR1-A2-6	-64.8		
100	30	G-FR1-A2-5	-64.5	-69.1	AWGN
	60	G-FR1-A2-6	-64.8		
NOTE: The wanted signal mean power is the power level of a single instance of the corresponding reference measurement channel. This requirement shall be met for each consecutive application of a single instance of the reference measurement channel mapped to disjoint frequency ranges with a width corresponding to the number of resource blocks of the reference measurement channel each, except for one instance that might overlap one other instance to cover the full $B S$ channel bandwidth.					

Table 7.3.2-2: Medium Range BS dynamic range

BS channel bandwidth (MHz)	Subcarrier spacing (kHz)	$\begin{gathered} \text { Reference } \\ \text { measurement } \\ \text { channel } \end{gathered}$	Wanted signal mean power (dBm)	Interfering signal mean power (dBm) BWcontig	Type of interfering signal
5	15	G-FR1-A2-1	-65.7	-77.5	AWGN
	30	G-FR1-A2-2	-66.4		
10	15	G-FR1-A2-1	-65.7	-74.3	AWGN
	30	G-FR1-A2-2	-66.4		
	60	G-FR1-A2-3	-63.4		
15	15	G-FR1-A2-1	-65.7	-72.5	AWGN
	30	G-FR1-A2-2	-66.4		
	60	G-FR1-A2-3	-63.4		
20	15	G-FR1-A2-4	-59.5	-71.2	AWGN
	30	G-FR1-A2-5	-59.5		
	60	G-FR1-A2-6	-59.8		
25	15	G-FR1-A2-4	-59.5	-70.2	AWGN
	30	G-FR1-A2-5	-59.5		
	60	G-FR1-A2-6	-59.8		
30	15	G-FR1-A2-4	-59.5	-69.4	AWGN
	30	G-FR1-A2-5	-59.5		
	60	G-FR1-A2-6	-59.8		
40	15	G-FR1-A2-4	-59.5	-68.1	AWGN
	30	G-FR1-A2-5	-59.5		
	60	G-FR1-A2-6	-59.8		
50	15	G-FR1-A2-4	-59.5	-67.1	AWGN
	30	G-FR1-A2-5	--59.5		
	60	G-FR1-A2-6	-59.8		
60	30	G-FR1-A2-5	-59.5	-66.3	AWGN
	60	G-FR1-A2-6	-59.8		
70	30	G-FR1-A2-5	-59.5	-65.7	AWGN
	60	G-FR1-A2-6	-59.8		
80	30	G-FR1-A2-5	-59.5	-65.1	AWGN
	60	G-FR1-A2-6	-59.8		
90	30	G-FR1-A2-5	-59.5	-64.5	AWGN
	60	G-FR1-A2-6	-59.8		
100	30	G-FR1-A2-5	-59.5	-64.1	AWGN
	60	G-FR1-A2-6	-59.8		
NOTE: The wanted signal mean power is the power level of a single instance of the corresponding reference measurement channel. This requirement shall be met for each consecutive application of a single instance of the reference measurement channel mapped to disjoint frequency ranges with a width corresponding to the number of resource blocks of the reference measurement channel each, except for one instance that might overlap one other instance to cover the full $B S$ channel bandwidth.					

Table 7.3.2-3: Local Area BS dynamic range

BS channel bandwidth (MHz)	Subcarrier spacing (kHz)	Reference measurement channel	Wanted signal mean power (dBm)	Interfering signal mean power (dBm) / BW config	Type of interfering signal
5	15	G-FR1-A2-1	-62.7	-74.5	AWGN
	30	G-FR1-A2-2	-63.4		
10	15	G-FR1-A2-1	-62.7	-71.3	AWGN
	30	G-FR1-A2-2	-63.4		
	60	G-FR1-A2-3	-60.4		
15	15	G-FR1-A2-1	-62.7	-69.5	AWGN
	30	G-FR1-A2-2	-63.4		
	60	G-FR1-A2-3	-60.4		
20	15	G-FR1-A2-4	-56.5	-68.2	AWGN
	30	G-FR1-A2-5	-56.5		
	60	G-FR1-A2-6	-56.8		
25	15	G-FR1-A2-4	-56.5	-67.2	AWGN
	30	G-FR1-A2-5	-56.5		
	60	G-FR1-A2-6	-56.8		
30	15	G-FR1-A2-4	-56.5	-66.4	AWGN
	30	G-FR1-A2-5	-56.5		
	60	G-FR1-A2-6	-56.8		
40	15	G-FR1-A2-4	-56.5	-65.1	AWGN
	30	G-FR1-A2-5	-56.5		
	60	G-FR1-A2-6	-56.8		
50	15	G-FR1-A2-4	-56.5	-64.1	AWGN
	30	G-FR1-A2-5	-56.5		
	60	G-FR1-A2-6	-56.8		
60	30	G-FR1-A2-5	-56.5	-63.3	AWGN
	60	G-FR1-A2-6	-56.8		
70	30	G-FR1-A2-5	-56.5	-62.7	AWGN
	60	G-FR1-A2-6	-56.8		
80	30	G-FR1-A2-5	-56.5	-62.1	AWGN
	60	G-FR1-A2-6	-56.8		
90	30	G-FR1-A2-5	-56.5	-61.5	AWGN
	60	G-FR1-A2-6	-56.8		
100	30	G-FR1-A2-5	-56.5	-61.1	AWGN
	60	G-FR1-A2-6	-56.8		
NOTE: The wanted signal mean power is the power level of a single instance of the corresponding reference measurement channel. This requirement shall be met for each consecutive application of a single instance of the reference measurement channel mapped to disjoint frequency ranges with a width corresponding to the number of resource blocks of the reference measurement channel each, except for one instance that might overlap one other instance to cover the full BS channel bandwidth.					

7.4 In-band selectivity and blocking

7.4.1 Adjacent Channel Selectivity (ACS)

7.4.1.1 General

Adjacent channel selectivity (ACS) is a measure of the receiver's ability to receive a wanted signal at its assigned channel frequency at the antenna connector for BS type 1-C or TAB connector for BS type 1-H in the presence of an adjacent channel signal with a specified centre frequency offset of the interfering signal to the band edge of a victim system.

7.4.1.2 Minimum requirement for B Stype 1-C and BS type 1-H

The throughput shall be $\geq 95 \%$ of the maximum throughput of the reference measurement channel.

For BS, the wanted and the interfering signal coupled to the BS type 1-C antenna connector or BS type 1-H TAB connector are specified in table 7.4.1.2-1 and the frequency offset between the wanted and interfering signal in table 7.4.1.2-2 for ACS. The reference measurement channel for the wanted signal is identified in table 7.2.2-1, 7.2.2-2 and 7.2.2-3 for each BS channel bandwidth and further specified in annex A.1. The characteristics of the interfering signal is further specified in annex D.

The ACS requirement is applicable outside the Base Station RF Bandwidth or Radio Bandwidth. The interfering signal offset is defined relative to the Base station RF Bandwidth edges or Radio Bandwidth edges.

For a BS operating in non-contiguous spectrum within any operating band, the ACS requirement shall apply in addition inside any sub-block gap, in case the sub-block gap size is at least as wide as the NR interfering signal in table 7.4.1.22. The interfering signal offset is defined relative to the sub-block edges inside the sub-block gap.

For a multi-band connector, the ACS requirement shall apply in addition inside any Inter RF Bandwidth gap, in case the Inter RF Bandwidth gap size is at least as wide as the NR interfering signal in table 7.4.1.2-2. The interfering signal offset is defined relative to the Base Station RF Bandwidth edges inside the Inter RF Bandwidth gap.

Minimum conducted requirement is defined at the antenna connector for BS type 1-C and at the TAB connector for BS type 1-H.

Table 7.4.1.2-1: Base station ACS requirement

BS channel bandwidth of the lowest/highest carrier received (MHz)	Wanted signal mean power (dBm)	Interfering signal mean power (dBm)
$5,10,15,20$, $25,30,40,50,60$, $70,80,90,100$ (Note 1)	PREFSENS +6 dB	Wide Area BS: -52 Medium Range BS: -47 Local Area BS: -44
NOTE 1: The SCS for the lowest/highest carrier received is the lowest		
NOTE 2:SCS supported by the BS for that bandwidth. PREFSENS depends on the BS channel bandwidth as specified in tables 7.2.2-1, 7.2.2-2, 7.2.2-3		

Table 7.4.1.2-2: Base Station ACS interferer frequency offset values

BS channel bandwidth of the lowest/highest carrier received (MHz)	Interfering signal centre frequency offset from the lower/upper Base Station RF Bandwidth edge or sub- block edge inside a sub- block gap (MHz)	Type of interfering signal
5	± 2.5025	
10	± 2.5075	5 MHz DFT-s-OFDM NR
signal		

7.4.1.3 Void

7.4.1.4 Void

7.4.2 In-band blocking

7.4.2.1 General

The in-band blocking characteristics is a measure of the receiver's ability to receive a wanted signal at its assigned channel at the antenna connector for BS type 1-C or TAB connector for BS type 1-H in the presence of an unwanted interferer, which is an NR signal for general blocking or an NR signal with one resource block for narrowband blocking.

7.4.2.2 Minimum requirement for B type 1-C and BS type 1-H

The throughput shall be $\geq 95 \%$ of the maximum throughput of the reference measurement channel, with a wanted and an interfering signal coupled to BS type 1-C antenna connector or BS type 1-H TAB connector using the parameters in tables 7.4.2.2-1, 7.4.2.2-2 and 7.4.2.2-3 for general blocking and narrowband blocking requirements. The reference measurement channel for the wanted signal is identified in clause 7.2.2 for each BS channel bandwidth and further specified in annex A.1. The characteristics of the interfering signal is further specified in annex D .

The in-band blocking requirements apply outside the Base Station RF Bandwidth or Radio Bandwidth. The interfering signal offset is defined relative to the Base Station RF Bandwidth edges or Radio Bandwidth edges.

The in-band blocking requirement shall apply from $F_{\text {UL,low }}-\Delta f_{\text {OOB }}$ to $F_{\text {UL,high }}+\Delta f_{\text {Oов }}$, excluding the downlink frequency range of the FDD operating band. The $\Delta \mathrm{f}_{\text {оов }}$ for BS type 1-C and BS type 1-H is defined in table 7.4.2.2-0.

Minimum conducted requirement is defined at the antenna connector for BS type 1-C and at the TAB connector for BS type 1-H.

Table 7.4.2.2-0: $\Delta f_{\text {оов }}$ offset for NR operating bands

BS type	Operating band characteristics	Δ foos (MHz)
BS type 1-C C	FUL,high - FuL,low $\leq 200 \mathrm{MHz}$	20
	200 MHz < FuL,high - FuL,low $\leq 900 \mathrm{MHz}$	60
BS type 1-H	FUL,high - FuL,low $<100 \mathrm{MHz}$	20
	$100 \mathrm{MHz} \leq$ FuL,high - FuL.low $\leq 900 \mathrm{MHz}$	60

For a BS operating in non-contiguous spectrum within any operating band, the in-band blocking requirements apply in addition inside any sub-block gap, in case the sub-block gap size is at least as wide as twice the interfering signal minimum offset in tables 7.4.2.2-1. The interfering signal offset is defined relative to the sub-block edges inside the sub-block gap.

For a multi-band connector, the blocking requirements apply in the in-band blocking frequency ranges for each supported operating band. The requirement shall apply in addition inside any Inter RF Bandwidth gap, in case the Inter RF Bandwidth gap size is at least as wide as twice the interfering signal minimum offset in tables 7.4.2.2-1.

For a BS operating in non-contiguous spectrum within any operating band, the narrowband blocking requirement shall apply in addition inside any sub-block gap, in case the sub-block gap size is at least as wide as the channel bandwidth of the NR interfering signal in Table 7.4.2.2-3. The interfering signal offset is defined relative to the sub-block edges inside the sub-block gap.

For a multi-band connector, the narrowband blocking requirement shall apply in addition inside any Inter RF Bandwidth gap, in case the Inter RF Bandwidth gap size is at least as wide as the NR interfering signal in Table 7.4.2.23. The interfering signal offset is defined relative to the Base Station RF Bandwidth edges inside the Inter RF Bandwidth gap.

Table 7.4.2.2-1: Base station general blocking requirement

BS channel bandwidth of the lowest/highest carrier received (MHz)	Wanted signal mean power (dBm) (Note 2)	Interfering signal mean power (dBm)	Interfering signal centre frequency minimum offset from the lower/upper Base Station RF Bandwidth edge or subblock edge inside a subblock gap (MHz)	Type of interfering signal
5, 10, 15, 20	Prefsens + xdB	Wide Area BS: -43 Medium Range BS: -38 Local Area BS: -35	± 7.5	5 MHz DFT-s-OFDM NR signal 15 kHz SCS, 25 RBs
$\begin{gathered} 25,30,40,50,60, \\ 70,80,90,100 \end{gathered}$	Prefsens +xdB	Wide Area BS: -43 Medium Range BS: -38 Local Area BS: -35	± 30	20 MHz DFT-s-OFDM NR signal 15 kHz SCS, 100 RBs

NOTE 1: Prefsens depends on the BS channel bandwidth as specified in tables 7.2.2-1, 7.2.2-2 and 7.2.2-3.
NOTE 2: For a BS capable of single band operation only, "x" is equal to 6 dB . For a BS capable of multi-band operation, " x " is equal to 6 dB in case of interfering signals that are in the in-band blocking frequency range of the operating band where the wanted signal is present or in the in-band blocking frequency range of an adjacent or overlapping operating band. For other in-band blocking frequency ranges of the interfering signal for the supported operating bands, " x " is equal to 1.4 dB .

Table 7.4.2.2-2: Base Station narrowband blocking requirement

BS channel bandwidth of the lowest/highest carrier received (MHz)	Wanted signal mean power (dBm)	Interfering signal mean power (dBm)
$5,10,15,20,25,30$,	PREFSENS + 6 dB	Wide Area BS: -49 $40,50,60,70$, $80,90,100($ Note 1)
	Medium Range BS: -44 Local Area BS: -41	

NOTE 1: The SCS for the lowest/highest carrier received is the lowest SCS supported by the BS for that BS channel bandwidth
NOTE 2: Prefsens depends on the BS channel bandwidth as specified in tables 7.2.2-1, 7.2.2-2 and 7.2.2-3.
NOTE 3: 7.5 kHz shift is not applied to the wanted signal.

Table 7.4.2.2-3: Base Station narrowband blocking interferer frequency offsets

BS channel bandwidth of the lowest/highest carrier received (MHz)	Interfering RB centre frequency offset to the lower/upper Base Station RF Bandwidth edge or subblock edge inside a subblock gap (kHz) (Note 2)	Type of interfering signal
5	$\begin{gathered} \pm\left(350+m^{*} 180\right), \\ m=0,1,2,3,4,9,14,19,24 \end{gathered}$	5 MHz DFT-s-OFDM NR signal, 15 kHz SCS, 1 RB
10	$\begin{gathered} \pm\left(355+\mathrm{m}^{*} 180\right), \\ \mathrm{m}=0,1,2,3,4,9,14,19,24 \end{gathered}$	
15	$\begin{gathered} \pm\left(360+m^{*} 180\right), \\ m=0,1,2,3,4,9,14,19,24 \end{gathered}$	
20	$\begin{gathered} \pm\left(350+\mathrm{m}^{*} 180\right) \\ \mathrm{m}=0,1,2,3,4,9,14,19,24 \end{gathered}$	
25	$\begin{gathered} \pm\left(565+\mathrm{m}^{* 1} 180\right), \\ \mathrm{m}=0,1,2,3,4,29,54,79,99 \end{gathered}$	20 MHz DFT-s-OFDM NR signal, 15 kHz SCS, 1 RB
30	$\begin{gathered} \pm\left(570+\mathrm{m}^{*} 180\right), \\ \mathrm{m}=0,1,2,3,4,29,54,79,99 \end{gathered}$	
40	$\begin{gathered} \pm\left(565+\mathrm{m}^{*} 180\right), \\ \mathrm{m}=0,1,2,3,4,29,54,79,99 \end{gathered}$	
50	$\begin{gathered} \pm\left(560+\mathrm{m}^{*} 180\right), \\ \mathrm{m}=0,1,2,3,4,29,54,79,99 \end{gathered}$	
60	$\begin{gathered} \pm\left(570+\mathrm{m}^{*} 180\right), \\ \mathrm{m}=0,1,2,3,4,29,54,79,99 \end{gathered}$	
70	$\begin{gathered} \pm\left(565+\mathrm{m}^{*} 180\right), \\ \mathrm{m}=0,1,2,3,4,29,54,79,99 \end{gathered}$	
80	$\begin{gathered} \pm\left(560+\mathrm{m}^{*} 180\right), \\ \mathrm{m}=0,1,2,3,4,29,54,79,99 \end{gathered}$	
90	$\begin{gathered} \pm\left(570+\mathrm{m}^{*} 180\right), \\ \mathrm{m}=0,1,2,3,4,29,54,79,99 \end{gathered}$	
100	$\begin{gathered} \pm\left(565+\mathrm{m}^{*} 180\right), \\ \mathrm{m}=0,1,2,3,4,29,54,79,99 \end{gathered}$	
NOTE 1: Interfering signal consisting of one resource block positioned at the stated offset, the channel bandwidth of the interfering signal is located adjacently to the lower/upper Base Station RF Bandwidth edge or subblock edge inside a sub-block gap.		
NOTE 2: $\begin{aligned} & \text { The cen } \\ & \text { the two }\end{aligned}$	re of the interfering RB refers to entral subcarriers.	frequency location between

7.4.2.3 Void

7.4.2.4 Void

7.5 Out-of-band blocking

7.5.1 General

The out-of-band blocking characteristics is a measure of the receiver ability to receive a wanted signal at its assigned channel at the antenna connector for BS type 1-C or TAB connector for BS type 1-H in the presence of an unwanted interferer out of the operating band, which is a CW signal for out-of-band blocking.

7.5.2 Minimum requirement for BS type 1-C and BS type 1-H

The throughput shall be $\geq 95 \%$ of the maximum throughput of the reference measurement channel, with a wanted and an interfering signal coupled to BS type 1-C antenna connector or BS type 1-H TAB connector using the parameters in table 7.5.2-1. The reference measurement channel for the wanted signal is identified in clause 7.2 .2 for each $B S$ channel
bandwidth and further specified in annex A.1. The characteristics of the interfering signal is further specified in annex D.

The out-of-band blocking requirement apply from 1 MHz to $\mathrm{F}_{\mathrm{UL}, \text { low }}-\Delta \mathrm{f}_{\text {OOB }}$ and from $\mathrm{F}_{\mathrm{UL}, \text { high }}+\Delta \mathrm{f}_{\mathrm{OOB}}$ up to 12750 MHz , including the downlink frequency range of the FDD operating band for BS supporting FDD. The $\Delta \mathrm{f}_{\text {оов }}$ for BS type 1-C and BS type 1-H is defined in table 7.4.2.2-0.

Minimum conducted requirement is defined at the antenna connector for BS type 1-C and at the TAB connector for BS type 1-H.

For a multi-band connector, the requirement in the out-of-band blocking frequency ranges apply for each operating band, with the exception that the in-band blocking frequency ranges of all supported operating bands according to clause 7.4.2.2 shall be excluded from the out-of-band blocking requirement.

Table 7.5.2-1: Out-of-band blocking performance requirement for NR

Wanted Signal mean power (dBm)	Interfering Signal mean power (dBm)	Type of Interfering Signal
PREFSNS +6 dB (Note)	-15	CW carrier
NOTE:Prefsens depends on the BS channel bandwidth as specified in Table 7.2.2-1, 7.2.2-2, and 7.2.2-3.		

7.5.3 Co-location minimum requirements for $B S$ type 1-C and BS type 1-H

This additional blocking requirement may be applied for the protection of NR BS receivers when GSM, CDMA, UTRA, E-UTRA or NR BS operating in a different frequency band are co-located with a NR BS. The requirement is applicable to all BS channel bandwidths supported by the NR BS.

The requirements in this clause assume a 30 dB coupling loss between interfering transmitter and NR BS receiver and are based on co-location with base stations of the same class.

The throughput shall be $\geq 95 \%$ of the maximum throughput of the reference measurement channel, with a wanted and an interfering signal coupled to BS type 1-C antenna connector or BS type 1-H TAB connector input using the parameters in table 7.5.3-1 for all the BS classes. The reference measurement channel for the wanted signal is identified in tables 7.2.2-1, 7.2.2-2 and 7.2.2-3 for each BS channel bandwidth and further specified in annex A.1.

The blocking requirement for co-location with BS in other bands is applied for all operating bands for which colocation protection is provided.

Minimum conducted requirement is defined at the antenna connector for BS type 1-C and at the TAB connector for BS type 1-H.

Table 7.5.3-1: Blocking performance requirement for NR BS when co-located with BS in other frequency bands.

Frequency range of interfering signal	Wanted signal mean power (dBm)	Interfering signal mean power for WA BS (dBm)	Interfering signal mean power for MR BS (dBm)	Interfering signal mean power for LA BS (dBm)	Type of interfering signal
Frequency range of co-located downlink operating band	Prefsens +6 dB (Note 1)	+16	+8	x (Note 2)	CW carrier
NOTE 1: Prefsens depends on the BS channel bandwidth as specified in Table 7.2.2-1, 7.2.2-2, and 7.2.2-3.					
NOTE 2: $\begin{aligned} & x=-7 \mathrm{dBm} \\ & \mathrm{x}=-4 \mathrm{dBm} \\ & \mathrm{x}=-6 \mathrm{dBm}\end{aligned}$	r NR BS co-locat r N BS co-locat NR BS co-locat	with Pico GSM850 or with Pico DCS1800 with UTRA bands or	Pico CDMA850 r Pico PCS1900 E-UTRA bands or N	bands	
NOTE 3: The requirement does not apply when the interfering signal falls within any of the supported uplink operating band(s) or in Δ foos immediately outside any of the supported uplink operating band(s).					

7.5.4 Void

7.6 Receiver spurious emissions

7.6.1 General

The receiver spurious emissions power is the power of emissions generated or amplified in a receiver unit that appear at the antenna connector (for BS type 1-C) or at the TAB connector (for BS type 1-H). The requirements apply to all BS with separate RX and TX antenna connectors / TAB connectors.

NOTE: In this case for FDD operation the test is performed when both TX and RX are ON, with the TX antenna connectors / TAB connectors terminated.

For antenna connectors / TAB connectors supporting both RX and TX in TDD, the requirements apply during the transmitter OFF period. For antenna connectors / TAB connectors supporting both RX and TX in FDD, the RX spurious emissions requirements are superseded by the TX spurious emissions requirements, as specified in clause 6.6.5.

For RX-only multi-band connectors, the spurious emissions requirements are subject to exclusion zones in each supported operating band. For multi-band connectors that both transmit and receive in operating band supporting TDD, RX spurious emissions requirements are applicable during the TX OFF period, and are subject to exclusion zones in each supported operating band.

For BS type 1-H manufacturer shall declare TAB connector RX min cell groups. Every TAB connector of BS type 1-H supporting reception in an operating band shall map to one TAB connector $R X$ min cell group, where mapping of TAB connectors to cells/beams is implementation dependent.

The number of active receiver units that are considered when calculating the conducted RX spurious emission limits ($\mathrm{N}_{\mathrm{RXU}, \mathrm{counted}}$) for BS type 1-H is calculated as follows:

$$
\mathrm{N}_{\mathrm{RXU}, \text { counted }}=\min \left(N_{R X U, \text { active }}, 8 \times N_{\text {cells }}\right)
$$

$\mathrm{N}_{\mathrm{RXU}, \text { countedpercell }}$ is used for scaling of basic limits and is derived as $\mathrm{N}_{\mathrm{RXU}, \text { countedpercell }}=\mathrm{N}_{\mathrm{RXU}, \text { counted }} / \mathrm{N}_{\text {cells }}$, where $\mathrm{N}_{\text {cells }}$ is defined in clause 6.1.

NOTE: $\quad N_{R X U, \text { active }}$ is the number of actually active receiver units and is independent to the declaration of $\mathrm{N}_{\text {cells }}$.

7.6.2 Basic limits

The receiver spurious emissions basic limits are provided in table 7.6.2-1.
Table 7.6.2-1: General BS receiver spurious emissions limits

Spurious frequency range	Basic limits	Measurement bandwidth	Note
$30 \mathrm{MHz}-1 \mathrm{GHz}$	$-57 \mathrm{dBm}$	100 kHz	Note 1
$1 \mathrm{GHz}-12.75 \mathrm{GHz}$	$-47 \mathrm{dBm}$	1 MHz	Note 1, Note 2
$12.75 \mathrm{GHz}-5^{\text {th }}$ harmonic of the upper frequency edge of the UL operating band in GHz	-47 dBm	1 MHz	Note 1, Note 2, Note 3
NOTE 1: Measurement bandwidths as in ITU-R SM. 329 [2], s4.1. NOTE 2: Upper frequency as in ITU-R SM. 329 [2], s2.5 table 1. NOTE 3: This spurious frequency range applies only for operating bands for which the $5^{\text {th }}$ harmonic of the upper frequency edge of the UL operating band is reaching beyond 12.75 GHz . NOTE 4: The frequency range from Δ fobue below the lowest frequency of the BS transmitter operating band to Δ fobue above the highest frequency of the BS transmitter operating band may be excluded from the requirement. Δ fobue is defined in clause 6.6.1. For multi-band connectors, the exclusion applies for all supported operating bands.			

7.6.3 Minimum requirement for $B S$ type 1-C

The RX spurious emissions requirements for BS type 1-C are that for each antenna connector, the power of emissions shall not exceed basic limits specified in table 7.6.2-1.

For Band n41 operation in Japan, the sum of RX spurious emissions requirements over all antenna connectors for BS type 1-C shall not exceed basic limits specified in table 7.6.2-1.

7.6.4 Minimum requirement for $B S$ type 1-H

The RX spurious emissions requirements for BS type 1-H are that for each applicable basic limit specified in table 7.6.21 for each TAB connector RX min cell group, the power sum of emissions at respective TAB connectors shall not exceed the BS limits specified as the basic limits +X , where $\mathrm{X}=10 \log _{10}\left(\mathrm{~N}_{\mathrm{RXU}, \text { countedpercell }}\right.$, unless stated differently in regional regulation.

The RX spurious emission requirements are applied per the $T A B$ connector $R X$ min cell group for all the configurations supported by the BS.

NOTE: Conformance to the BS receiver spurious emissions requirement can be demonstrated by meeting at least one of the following criteria as determined by the manufacturer:

1) The sum of the spurious emissions power measured on each TAB connector in the TAB connector $R X$ min cell group shall be less than or equal to the BS limit above for the respective frequency span.

Or
2) The spurious emissions power at each TAB connector shall be less than or equal to the BS limit as defined above for the respective frequency span, scaled by $-10 \log _{10}(n)$, where n is the number of TAB connectors in the TAB connector $R X$ min cell group.

7.7 Receiver intermodulation

7.7.1 General

Third and higher order mixing of the two interfering RF signals can produce an interfering signal in the band of the desired channel. Intermodulation response rejection is a measure of the capability of the receiver to receive a wanted signal on its assigned channel frequency at the antenna connector for BS type 1-C or TAB connector for BS type 1-H in the presence of two interfering signals which have a specific frequency relationship to the wanted signal.

7.7.2 Minimum requirement for B Stype 1-C and BS type 1-H

The throughput shall be $\geq 95 \%$ of the maximum throughput of the reference measurement channel, with a wanted signal at the assigned channel frequency and two interfering signals coupled to the BS type 1-C antenna connector or BS type 1-H TAB connector, with the conditions specified in tables 7.7.2-1 and 7.7.2-2 for intermodulation performance and in tables 7.7.2-3, and 7.7.2-4 for narrowband intermodulation performance. The reference measurement channel for the wanted signal is identified in tables 7.2.2-1, 7.2.2-2 and 7.2.2-3 for each BS channel bandwidth and further specified in annex A.1. The characteristics of the interfering signal is further specified in annex D.

The subcarrier spacing for the modulated interfering signal shall in general be the same as the subcarrier spacing for the wanted signal, except for the case of wanted signal subcarrier spacing 60 kHz and $B S$ channel bandwidth $<=20 \mathrm{MHz}$, for which the subcarrier spacing of the interfering signal shall be 30 kHz .

The receiver intermodulation requirement is applicable outside the Base Station RF Bandwidth or Radio Bandwidth edges. The interfering signal offset is defined relative to the Base Station RF Bandwidth edges or Radio Bandwidth edges.

For a BS operating in non-contiguous spectrum within any operating band, the narrowband intermodulation requirement shall apply in addition inside any sub-block gap in case the sub-block gap is at least as wide as the channel bandwidth of the NR interfering signal in table 7.7.2-2 or 7.7.2-4. The interfering signal offset is defined relative to the sub-block edges inside the sub-block gap.

For a multi-band connector, the intermodulation requirement shall apply in addition inside any Inter RF Bandwidth gap, in case the gap size is at least twice as wide as the NR interfering signal centre frequency offset from the Base Station RF Bandwidth edge.

For a multi-band connector, the narrowband intermodulation requirement shall apply in addition inside any Inter RF Bandwidth gap in case the gap size is at least as wide as the NR interfering signal in tables 7.7.2-2 and 7.7.2-4. The interfering signal offset is defined relative to the Base Station RF Bandwidth edges inside the Inter RF Bandwidth gap.

Table 7.7.2-1: General intermodulation requirement

Base Station Type	Wanted Signal mean power (dBm)	Mean power of interfering signals (dBm)	Type of interfering signals
Wide Area BS	Prefsens +6 dB	-52	See Table 7.7.2-2
Medium Range BS	Prefesens +6 dB	-47	
Local Area BS	Prefsens +6 dB	-44	

Table 7.7.2-2: Interfering signals for intermodulation requirement

BS channel bandwidth of the lowest/highest carrier received (MHz)	Interfering signal centre frequency offset from the lower/upper Base Station RF Bandwidth edge (MHz)	Type of interfering signal (Note 3)
5	± 7.5	CW
	± 17.5	5 MHz DFT-s-OFDM NR signal (Note 1)
10	± 7.465	CW
	± 17.5	5 MHz DFT-s-OFDM NR signal (Note 1)
15	± 7.43	CW
	± 17.5	5 MHz DFT-s-OFDM NR signal (Note 1)
20	± 7.395	CW
	± 17.5	5 MHz DFT-s-OFDM NR signal (Note 1)
25	± 7.465	CW
	± 25	20MHz DFT-s-OFDM NR signal (Note 2)
30	± 7.43	CW
	± 25	20 MHz DFT-s-OFDM NR signal (Note 2)
40	± 7.45	CW
	± 25	20 MHz DFT-s-OFDM NR signal (Note 2)
50	± 7.35	CW
	± 25	20 MHz DFT-s-OFDM NR signal (Note 2)
60	± 7.49	CW
	± 25	20 MHz DFT-s-OFDM NR signal (Note 2)
70	± 7.42	CW
	± 25	20 MHz DFT-s-OFDM NR signal (Note 2)
80	± 7.44	CW
	± 25	20 MHz DFT-s-OFDM NR signal (Note 2)
90	± 7.46	CW
	± 25	20 MHz DFT-s-OFDM NR signal (Note 2)
100	± 7.48	CW
	± 25	20 MHz DFT-s-OFDM NR signal (Note 2)

NOTE 1: Number of RBs is 25 for 15 kHz subcarrier spacing and 10 for 30 kHz subcarrier spacing.
NOTE 2: Number of RBs is 100 for 15 kHz subcarrier spacing, 50 for 30 kHz subcarrier spacing and 24 for 60 kHz subcarrier spacing.
NOTE 3: The RBs shall be placed adjacent to the transmission bandwidth configuration edge which is closer to the Base Station RF Bandwidth edge.

Table 7.7.2-3: Narrowband intermodulation performance requirement in FR1

BS type	Wanted signal mean power (dBm)	Interfering signalmean power (dBm)	Type of interfering signals
Wide Area BS	Prefsens + 6dB (Note 1)	-52	See Table 7.7.2-4
Medium Range BS	$\begin{aligned} & \text { Prefsens + 6dB } \\ & \text { (Note 2) } \\ & \hline \end{aligned}$	-47	
Local Area BS	$\begin{gathered} \hline \text { Prefsens + 6dB } \\ \text { (Note 3) } \end{gathered}$	-44	
NOTE 1: Prefsens depends on the BS channel bandwidth as specified in table 7.2.2-1. NOTE 2: Prefsens depends on the BS channel bandwidth as specified in table 7.2.2-2. NOTE 3: Prefsens depends on the BS channel bandwidth as specified in table 7.2.2-3.			

Table 7.7.2-4: Interfering signals for narrowband intermodulation requirement in FR1

BS channel bandwidth of the lowest/highest carrier received (MHz)	Interfering RB centre frequency offset from the lower/upper Base Station RF Bandwidth edge or sub-block edge inside a sub-block gap (kHz) (Note 3)	Type of interfering signal
5	± 360	CW
	± 1420	5 MHz DFT-s-OFDM NR signal, 1 RB (Note 1)
10	± 370	CW
	± 1960	5 MHz DFT-s-OFDM NR signal, 1 RB (Note 1)
15 (Note 2)	± 380	CW
	± 1960	5 MHz DFT-s-OFDM NR signal, 1 RB (Note 1)
20 (Note 2)	± 390	CW
	± 2320	5 MHz DFT-s-OFDM NR signal, 1 RB (Note 1)
25 (Note 2)	± 325	CW
	± 2350	20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1)
30 (Note 2)	± 335	CW
	± 2350	20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1)
40 (Note 2)	± 355	CW
	± 2710	20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1)
50 (Note 2)	± 375	CW
	± 2710	20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1)
60 (Note 2)	± 395	CW
	± 2710	20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1)
70 (Note 2)	± 415	CW
	± 2710	20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1)
80 (Note 2)	± 435	CW
	± 2710	20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1)
90 (Note 2)	± 365	CW
	± 2530	20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1)
100 (Note 2)	± 385	CW
	± 2530	20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1)

NOTE 1: Interfering signal consisting of one resource block
positioned at the stated offset, the BS channel bandwidth of the interfering signal is located adjacently to the lower/upper Base Station RF Bandwidth edge or sub-block edge inside a sub-block gap.
NOTE 2: This requirement shall apply only for a G-FRC mapped to the frequency range at the channel edge adjacent to the interfering signals.
NOTE 3: The centre of the interfering RB refers to the frequency location between the two central subcarriers.

7.8 In-channel selectivity

7.8.1 General

In-channel selectivity (ICS) is a measure of the receiver ability to receive a wanted signal at its assigned resource block locations at the antenna connector for BS type 1-C or TAB connector for BS type 1-H in the presence of an interfering signal received at a larger power spectral density. In this condition a throughput requirement shall be met for a specified reference measurement channel. The interfering signal shall be an NR signal which is time aligned with the wanted signal.

7.8.2 Minimum requirement for B Stype $1-C$ and $B S$ type $1-H$

For BS type 1-C and BS type 1-H, the throughput shall be $\geq 95 \%$ of the maximum throughput of the reference measurement channel as specified in annex A.1 with parameters specified in table 7.8.2-1 for Wide Area BS, in table 7.8.2-2 for Medium Range BS and in table 7.8.2-3 for Local Area BS. The characteristics of the interfering signal is further specified in annex D.

Table 7.8.2-1: Wide Area BS in-channel selectivity

$\begin{gathered} \text { BS channel } \\ \text { bandwidth (MHz) } \end{gathered}$	Subcarrier spacing (kHz)	Reference measurement channel	Wanted signal mean power (dBm)	Interfering signal mean power (dBm)	Type of interfering signal
5	15	G-FR1-A1-7	-100.6	-81.4	DFT-s-OFDM NR signal, 15 kHz SCS, 10 RBs
10,15,20,25,30	15	G-FR1-A1-1	-98.7	-77.4	DFT-s-OFDM NR signal, 15 kHz SCS, 25 RBs
40,50	15	G-FR1-A1-4	-92.3	-71.4	DFT-s-OFDM NR signal, 15 kHz SCS, 100 RBs
5	30	G-FR1-A1-8	-101.3	-81.4	DFT-s-OFDM NR signal, 30 kHz SCS, 5 RBs
10,15,20,25,30	30	G-FR1-A1-2	-98.8	-78.4	DFT-s-OFDM NR signal, 30 kHz SCS, 10 RBs
40,50,60,70,80,90,100	30	G-FR1-A1-5	-92.6	-71.4	DFT-s-OFDM NR signal, 30 kHz SCS, 50 RBs
10,15,20,25,30	60	G-FR1-A1-9	-98.2	-78.4	DFT-s-OFDM NR signal, 60 kHz SCS, 5 RBs
40,50,60,70,80,90,100	60	G-FR1-A1-6	-92.7	-71.6	DFT-s-OFDM NR signal, 60 kHz SCS, 24 RBs
NOTE: Wanted and interfering signal are placed adjacently around F_{c}, where the F_{c} is defined for BS channel bandwidth of the wanted signal according to the table 5.4.2.2-1. The aggregated wanted and interferer signal shall be centred in the BS channel bandwidth of the wanted signal.					

Table 7.8.2-2: Medium Range BS in-channel selectivity

BS channel bandwidth (MHz)	$\begin{gathered} \text { Subcarrier } \\ \text { spacing (kHz) } \end{gathered}$	Reference measurement channel	Wanted signal mean power (dBm)	Interfering signal mean power (dBm)	Type of interfering signal
5	15	G-FR1-A1-7	-95.6	-76.4	DFT-s-OFDM NR signal, 15 kHz SCS, 10 RBs
10,15,20,25,30	15	G-FR1-A1-1	-93.7	-72.4	DFT-s-OFDM NR signal, 15 kHz SCS, 25 RBs
40,50	15	G-FR1-A1-4	-87.3	-66.4	DFT-s-OFDM NR signal, 15 kHz SCS, 100 RBs
5	30	G-FR1-A1-8	-96.3	-76.4	DFT-s-OFDM NR signal, 30 kHz SCS, 5 RBs
10,15,20,25,30	30	G-FR1-A1-2	-93.8	-73.4	$\begin{gathered} \text { DFT-s-OFDM NR } \\ \text { signal, } 30 \mathrm{kHz} \text { SCS, } \\ 10 \mathrm{RBs} \end{gathered}$
40,50,60,70,80,90,100	30	G-FR1-A1-5	-87.6	-66.4	DFT-s-OFDM NR signal, 30 kHz SCS, 50 RBs
10,15,20,25,30	60	G-FR1-A1-9	-93.2	-73.4	DFT-s-OFDM NR signal, 60 kHz SCS, 5 RBs
40,50,60,70,80,90,100	60	G-FR1-A1-6	-87.7	-66.6	DFT-s-OFDM NR signal, 60 kHz SCS, 24 RBs

NOTE: Wanted and interfering signal are placed adjacently around F_{c}, where the F_{c} is defined for $B S$ channel bandwidth of the wanted signal according to the table 5.4.2.2-1. The aggregated wanted and interferer signal shall be centred in the $B S$ channel bandwidth of the wanted signal.

Table 7.8.2-3: Local area BS in-channel selectivity

$\begin{gathered} \text { BS channel } \\ \text { bandwidth (MHz) } \end{gathered}$	Subcarrier spacing (kHz)	Reference measurement channel	Wanted signal mean power (dBm)	Interfering signal mean power (dBm)	Type of interfering signal
5	15	G-FR1-A1-7	-92.6	-73.4	DFT-s-OFDM NR signal, 15 kHz SCS, 10 RBs
10,15,20,25,30	15	G-FR1-A1-1	-90.7	-69.4	DFT-s-OFDM NR signal, 15 kHz SCS, 25 RBs
40,50	15	G-FR1-A1-4	-84.3	-63.4	DFT-s-OFDM NR signal, 15 kHz SCS, 100 RBs
5	30	G-FR1-A1-8	-93.3	-73.4	DFT-s-OFDM NR signal, 30 kHz SCS, 5 RBs
10,15,20,25,30	30	G-FR1-A1-2	-90.8	-70.4	DFT-s-OFDM NR signal, 30 kHz SCS, 10 RBs
40,50,60,70,80,90,100	30	G-FR1-A1-5	-84.6	-63.4	DFT-s-OFDM NR signal, 30 kHz SCS, 50 RBs
10,15,20,25,30	60	G-FR1-A1-9	-90.2	-70.4	DFT-s-OFDM NR signal, 60 kHz SCS, 5 RBs
40,50,60,70,80,90,100	60	G-FR1-A1-6	-84.7	-63.6	DFT-s-OFDM NR signal, 60 kHz SCS, 24 RBs

NOTE: Wanted and interfering signal are placed adjacently around F_{c}, where the F_{c} is defined for $B S$ channel bandwidth of the wanted signal according to the table 5.4.2.2-1. The aggregated wanted and interferer signal shall be centred in the $B S$ channel bandwidth of the wanted signal.

8 Conducted performance requirements

8.1 General

8.1.1 Scope and definitions

Conducted performance requirements specify the ability of the BS type 1-C or BS type 1-H to correctly demodulate signals in various conditions and configurations. Conducted performance requirements are specified at the antenna connector(s) (for BS type 1-C) and at the TAB connector(s) (for BS type 1-H).

Conducted performance requirements for the BS are specified for the fixed reference channels defined in annex A and the propagation conditions in annex G. The requirements only apply to those FRCs that are supported by the base station.

Unless stated otherwise, performance requirements apply for a single carrier only. Performance requirements for a BS supporting carrier aggregation are defined in terms of single carrier requirements.

For FDD operation the requirements in clause 8 shall be met with the transmitter units associated with antenna connectors (for BS type 1-C) or TAB connectors (for BS type 1-H) in the operating band turned ON.

NOTE: In normal operating conditions, antenna connectors (for BS type 1-C) or TAB connectors (for BS type 1H) in FDD operation are configured to transmit and receive at the same time. The associated transmitter unit(s) may be OFF for some of the tests as specified in TS 38.141-1 [5].

The SNR used in this clause is specified based on a single carrier and defined as:
SNR = S / N

Where:
S is the total signal energy in the slot on a single antenna connector (for BS type 1-C) or on a single TAB connector (for BS type 1-H).

N is the noise energy in a bandwidth corresponding to the transmission bandwidth over the same duration where signal energy exists on a single antenna connector (for BS type 1-C) or on a single TAB connector (for BS type 1H).

8.1.2 Void

8.2 Performance requirements for PUSCH

8.2.1 Requirements for PUSCH with transform precoding disabled

8.2.1.1 General

The performance requirement of PUSCH is determined by a minimum required throughput for a given SNR. The required throughput is expressed as a fraction of maximum throughput for the FRCs listed in annex A. The performance requirements assume HARQ retransmissions.

Table: 8.2.1.1-1 Test parameters for testing PUSCH

Parameter		Value
Transform precoding		Disabled
Default TDD UL-DL pattern (Note 1)		15 kHz SCS: 3D1S1U, S=10D:2G:2U 30 kHz SCS: 7D1S2U, S=6D:4G:4U
HARQ	Maximum number of HARQ transmissions	4
	RV sequence	0, 2, 3, 1
DM-RS	DM-RS configuration type	1
	DM-RS duration	single-symbol DM-RS
	Additional DM-RS position	pos1
	Number of DM-RS CDM group(s) without data	2
	Ratio of PUSCH EPRE to DM-RS EPRE	-3 dB
	DM-RS port	$\{0\},\{0,1\}$
	DM-RS sequence generation	$\mathrm{NID}^{0}=0, \mathrm{nscID}=0$
Time domain resource assignment	PUSCH mapping type	A, B
	Start symbol	0
	Allocation length	14
Frequency domain resource assignment	RB assignment	Full applicable test bandwidth
	Frequency hopping	Disabled
TPMI index for 2Tx two-layer spatial multiplexing transmission		0
Code block group based PUSCH transmission		Disabled

8.2.1.2 Minimum requirements

The throughput shall be equal to or larger than the fraction of maximum throughput for the FRCs stated in tables 8.2.1.2-1 to 8.2.1.2-14 at the given SNR for 1Tx or for 2Tx two-layer spatial multiplexing transmission. FRCs are defined in annex A .

Table 8.2.1.2-1: Minimum requirements for PUSCH, Type A, 5 MHz channel bandwidth, 15 kHz SCS

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	FRC (Annex A)	Additional DM-RS position	SNR (dB)
1	2	Normal	TDLB100-400 Low	70%	G-FR1-A3-8	pos1	-2.3
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-8	pos1	10.1
		Normal	TDLA30-10 Low	70 \%	G-FR1-A5-8	pos1	12.3
	4	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-8	pos1	-5.8
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-8	pos1	6.2
		Normal	TDLA30-10 Low	70 \%	G-FR1-A5-8	pos1	8.8
	8	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-8	pos1	-8.7
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-8	pos1	3.0
		Normal	TDLA30-10 Low	70 \%	G-FR1-A5-8	pos1	5.6
2	2	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-22	pos1	1.0
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-22	pos1	18.2
	4	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-22	pos1	-2.3
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-22	pos1	11.0
	8	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-22	pos1	-5.3
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-22	pos1	6.8

Table 8.2.1.2-2: Minimum requirements for PUSCH, Type A, 10 MHz channel bandwidth, 15 kHz SCS

$\begin{aligned} & \text { Number } \\ & \text { of TX } \\ & \text { antennas } \end{aligned}$	$\begin{aligned} & \hline \text { Number } \\ & \text { of RX } \\ & \text { antennas } \end{aligned}$	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	$\begin{gathered} \text { FRC } \\ \text { (Annex A) } \end{gathered}$	Additional DM-RS position	SNR (dB)
1	2	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-9	pos1	-2.5
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-9	pos1	10.2
		Normal	TDLA30-10 Low	70 \%	G-FR1-A5-9	pos1	12.2
	4	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-9	pos1	-6.0
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-9	pos1	6.3
		Normal	TDLA30-10 Low	70 \%	G-FR1-A5-9	pos1	8.6
	8	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-9	pos1	-8.7
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-9	pos1	3.1
		Normal	TDLA30-10 Low	70 \%	G-FR1-A5-9	pos1	5.5
2	2	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-23	pos1	1.7
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-23	pos1	18.3
	4	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-23	pos1	-2.0
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-23	pos1	11.2
	8	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-23	pos1	-5.5
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-23	pos1	6.8

Table 8.2.1.2-3: Minimum requirements for PUSCH, Type A, 20 MHz channel bandwidth, 15 kHz SCS

Number of TX antennas	$\begin{aligned} & \text { Number } \\ & \text { of RX } \\ & \text { antennas } \end{aligned}$	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	$\begin{gathered} \text { FRC } \\ \text { (Annex A) } \end{gathered}$	Additional DM-RS position	SNR (dB)
1	2	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-10	pos1	-2.1
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-10	pos1	10.0
		Normal	TDLA30-10 Low	70 \%	G-FR1-A5-10	pos1	12.4
	4	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-10	pos1	-5.5
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-10	pos1	6.2
		Normal	TDLA30-10 Low	70 \%	G-FR1-A5-10	pos1	8.6
	8	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-10	pos1	-8.5
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-10	pos1	3.0
		Normal	TDLA30-10 Low	70 \%	G-FR1-A5-10	pos1	5.5
2	2	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-24	pos1	2.1
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-24	pos1	18.3
	4	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-24	pos1	-1.8
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-24	pos1	11.1
	8	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-24	pos1	-5.3
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-24	pos1	6.9

Table 8.2.1.2-4: Minimum requirements for PUSCH, Type A, 10 MHz channel bandwidth, 30 kHz SCS

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	$\begin{gathered} \text { FRC } \\ \text { (Annex A) } \end{gathered}$	Additional DM-RS position	SNR (dB)
1	2	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-11	pos1	-2.3
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-11	pos1	10.2
		Normal	TDLA30-10 Low	70 \%	G-FR1-A5-11	pos1	12.8
	4	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-11	pos1	-5.6
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-11	pos1	6.4
		Normal	TDLA30-10 Low	70 \%	G-FR1-A5-11	pos1	8.6
	8	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-11	pos1	-8.6
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-11	pos1	3.3
		Normal	TDLA30-10 Low	70 \%	G-FR1-A5-11	pos1	5.5
2	2	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-25	pos1	1.3
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-25	pos1	18.4
	4	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-25	pos1	-2.2
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-25	pos1	11.2
	8	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-25	pos1	-5.2
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-25	pos1	7.0

Table 8.2.1.2-5: Minimum requirements for PUSCH, Type A, 20 MHz channel bandwidth, 30 kHz SCS

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	$\begin{gathered} \text { FRC } \\ \text { (Annex A) } \end{gathered}$	Additional DM-RS position	SNR (dB)
1	2	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-12	pos1	-2.9
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-12	pos1	10.2
		Normal	TDLA30-10 Low	70 \%	G-FR1-A5-12	pos1	12.5
	4	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-12	pos1	-6.0
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-12	pos1	6.4
		Normal	TDLA30-10 Low	70 \%	G-FR1-A5-12	pos1	8.6
	8	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-12	pos1	-8.8
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-12	pos1	3.2
		Normal	TDLA30-10 Low	70 \%	G-FR1-A5-12	pos1	5.5
2	2	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-26	pos1	1.3
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-26	pos1	18.1
	4	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-26	pos1	-2.2
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-26	pos1	11.3
	8	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-26	pos1	-5.3
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-26	pos1	6.9

Table 8.2.1.2-6: Minimum requirements for PUSCH, Type A, 40 MHz channel bandwidth, 30 kHz SCS

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	$\begin{gathered} \text { FRC } \\ \text { (Annex A) } \end{gathered}$	Additional DM-RS position	SNR (dB)
1	2	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-13	pos1	-2.5
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-13	pos1	10.0
		Normal	TDLA30-10 Low	70 \%	G-FR1-A5-13	pos1	12.4
	4	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-13	pos1	-5.8
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-13	pos1	6.3
		Normal	TDLA30-10 Low	70%	G-FR1-A5-13	pos1	8.5
	8	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-13	pos1	-8.7
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-13	pos1	3.1
		Normal	TDLA30-10 Low	70 \%	G-FR1-A5-13	pos1	5.4
2	2	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-27	pos1	1.3
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-27	pos1	19.5
	4	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-27	pos1	-2.3
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-27	pos1	11.3
	8	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-27	pos1	-5.2
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-27	pos1	6.9

Table 8.2.1.2-7: Minimum requirements for PUSCH, Type A, 100 MHz channel bandwidth, 30 kHz SCS

Number of TX antennas	$\begin{aligned} & \hline \text { Number } \\ & \text { of RX } \\ & \text { antennas } \end{aligned}$	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	FRC (Annex A)	Additional DM-RS position	$\begin{aligned} & \text { SNR } \\ & \text { (dB) } \end{aligned}$
1	2	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-14	pos1	-2.8
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-14	pos1	10.2
		Normal	TDLA30-10 Low	70 \%	G-FR1-A5-14	pos1	13.0
	4	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-14	pos1	-5.8
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-14	pos1	6.5
		Normal	TDLA30-10 Low	70 \%	G-FR1-A5-14	pos1	9.0
	8	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-14	pos1	-8.7
		Normal	TDLC300-100 Low	70%	G-FR1-A4-14	pos1	3.2
		Normal	TDLA30-10 Low	70 \%	G-FR1-A5-14	pos1	5.8
2	2	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-28	pos1	1.4
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-28	pos1	19.2
	4	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-28	pos1	-2.2
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-28	pos1	11.6
	8	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-28	pos1	-5.2
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-28	pos1	7.1

Table 8.2.1.2-8: Minimum requirements for PUSCH, Type B, 5 MHz channel bandwidth, 15 kHz SCS

$\begin{aligned} & \text { Number } \\ & \text { of TX } \\ & \text { antennas } \end{aligned}$	$\begin{aligned} & \text { Number } \\ & \text { of RX } \\ & \text { antennas } \end{aligned}$	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	$\begin{gathered} \text { FRC } \\ \text { (Annex A) } \end{gathered}$	Additional DM-RS position	SNR (dB)
1	2	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-8	pos1	-2.3
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-8	pos1	10.2
		Normal	TDLA30-10 Low	70 \%	G-FR1-A5-8	pos1	12.5
	4	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-8	pos1	-5.7
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-8	pos1	6.3
		Normal	TDLA30-10 Low	70 \%	G-FR1-A5-8	pos1	8.9
	8	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-8	pos1	-8.7
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-8	pos1	3.0
		Normal	TDLA30-10 Low	70 \%	G-FR1-A5-8	pos1	5.7
2	2	Normal	TDLB100-400 Low	70%	G-FR1-A3-22	pos1	1.5
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-22	pos1	18.3
	4	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-22	pos1	-2.3
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-22	pos1	11.1
	8	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-22	pos1	-5.4
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-22	pos1	6.8

Table 8.2.1.2-9: Minimum requirements for PUSCH, Type B, 10 MHz channel bandwidth, 15 kHz SCS

$\begin{aligned} & \hline \text { Number } \\ & \text { of TX } \\ & \text { antennas } \end{aligned}$	$\begin{aligned} & \text { Number } \\ & \text { of RX } \\ & \text { antennas } \end{aligned}$	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	FRC (Annex A)	Additional DM-RS position	SNR (dB)
1	2	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-9	pos1	-2.3
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-9	pos1	10.5
		Normal	TDLA30-10 Low	70 \%	G-FR1-A5-9	pos1	12.6
	4	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-9	pos1	-5.7
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-9	pos1	6.5
		Normal	TDLA30-10 Low	70 \%	G-FR1-A5-9	pos1	8.9
	8	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-9	pos1	-9.0
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-9	pos1	3.2
		Normal	TDLA30-10 Low	70 \%	G-FR1-A5-9	pos1	5.8
2	2	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-23	pos1	2.0
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-23	pos1	18.7
	4	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-23	pos1	-2.3
		Normal	TDLC300-100 Low	70%	G-FR1-A4-23	pos1	11.3
	8	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-23	pos1	-5.2
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-23	pos1	7.0

Table 8.2.1.2-10: Minimum requirements for PUSCH, Type B, 20 MHz channel bandwidth, 15 kHz SCS

Number of TX antennas	$\begin{aligned} & \text { Number } \\ & \text { of RX } \\ & \text { antennas } \end{aligned}$	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	$\begin{gathered} \text { FRC } \\ \text { (Annex A) } \end{gathered}$	Additional DM-RS position	$\begin{aligned} & \hline \text { SNR } \\ & \text { (dB) } \end{aligned}$
1	2	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-10	pos1	-2.1
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-10	pos1	10.4
		Normal	TDLA30-10 Low	70 \%	G-FR1-A5-10	pos1	12.3
	4	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-10	pos1	-5.7
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-10	pos1	6.3
		Normal	TDLA30-10 Low	70%	G-FR1-A5-10	pos1	8.8
	8	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-10	pos1	-8.5
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-10	pos1	3.1
		Normal	TDLA30-10 Low	70 \%	G-FR1-A5-10	pos1	5.7
2	2	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-24	pos1	1.6
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-24	pos1	18.1
	4	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-24	pos1	-2.0
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-24	pos1	11.2
	8	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-24	pos1	-5.3
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-24	pos1	6.9

Table 8.2.1.2-11: Minimum requirements for PUSCH, Type B, 10 MHz channel bandwidth, 30 kHz SCS

Number of TX antennas	$\begin{aligned} & \hline \text { Number } \\ & \text { of RX } \\ & \text { antennas } \end{aligned}$	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	$\begin{gathered} \text { FRC } \\ \text { (Annex A) } \end{gathered}$	Additional DM-RS position	SNR (dB)
1	2	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-11	pos1	-2.4
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-11	pos1	10.1
		Normal	TDLA30-10 Low	70 \%	G-FR1-A5-11	pos1	12.5
	4	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-11	pos1	-5.7
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-11	pos1	6.4
		Normal	TDLA30-10 Low	70 \%	G-FR1-A5-11	pos1	8.6
	8	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-11	pos1	-8.8
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-11	pos1	3.2
		Normal	TDLA30-10 Low	70 \%	G-FR1-A5-11	pos1	5.6
2	2	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-25	pos1	1.1
		Normal	TDLC300-100 Low	70%	G-FR1-A4-25	pos1	18.5
	4	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-25	pos1	-2.5
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-25	pos1	11.3
	8	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-25	pos1	-5.6
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-25	pos1	7.0

Table 8.2.1.2-12: Minimum requirements for PUSCH, Type B, 20 MHz channel bandwidth, 30 kHz SCS

Number of TX antennas	$\begin{aligned} & \hline \text { Number } \\ & \text { of RX } \\ & \text { antennas } \end{aligned}$	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	$\begin{gathered} \text { FRC } \\ \text { (Annex A) } \end{gathered}$	Additional DM-RS position	SNR (dB)
1	2	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-12	pos1	-2.9
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-12	pos1	10.1
		Normal	TDLA30-10 Low	70 \%	G-FR1-A5-12	pos1	12.5
	4	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-12	pos1	-6.0
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-12	pos1	6.3
		Normal	TDLA30-10 Low	70 \%	G-FR1-A5-12	pos1	8.6
	8	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-12	pos1	-9.0
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-12	pos1	3.1
		Normal	TDLA30-10 Low	70 \%	G-FR1-A5-12	pos1	5.6
2	2	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-26	pos1	1.3
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-26	pos1	18.2
	4	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-26	pos1	-2.3
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-26	pos1	11.2
	8	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-26	pos1	-5.4
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-26	pos1	7.0

Table 8.2.1.2-13: Minimum requirements for PUSCH, Type B, 40 MHz channel bandwidth, 30 kHz SCS

Number of TX antennas	$\begin{aligned} & \hline \text { Number } \\ & \text { of RX } \\ & \text { antennas } \end{aligned}$	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	$\begin{gathered} \text { FRC } \\ \text { (Annex A) } \end{gathered}$	Additional DM-RS position	SNR (dB)
1	2	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-13	pos1	-2.5
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-13	pos1	10.0
		Normal	TDLA30-10 Low	70 \%	G-FR1-A5-13	pos1	12.5
	4	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-13	pos1	-5.8
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-13	pos1	6.2
		Normal	TDLA30-10 Low	70 \%	G-FR1-A5-13	pos1	8.7
	8	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-13	pos1	-8.8
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-13	pos1	3.0
		Normal	TDLA30-10 Low	70 \%	G-FR1-A5-13	pos1	5.5
2	2	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-27	pos1	1.7
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-27	pos1	18.7
	4	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-27	pos1	-2.1
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-27	pos1	11.2
	8	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-27	pos1	-5.2
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-27	pos1	6.9

Table 8.2.1.2-14: Minimum requirements for PUSCH, Type B, 100 MHz channel bandwidth, 30 kHz SCS

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	FRC (Annex A)	Additional DM-RS position	$\begin{aligned} & \hline \text { SNR } \\ & \text { (dB) } \end{aligned}$
1	2	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-14	pos1	-2.5
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-14	pos1	10.1
		Normal	TDLA30-10 Low	70 \%	G-FR1-A5-14	pos1	13.1
	4	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-14	pos1	-5.8
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-14	pos1	6.3
		Normal	TDLA30-10 Low	70 \%	G-FR1-A5-14	pos1	9.2
	8	Normal	TDLB100-400 Low	70%	G-FR1-A3-14	pos1	-8.7
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-14	pos1	3.1
		Normal	TDLA30-10 Low	70 \%	G-FR1-A5-14	pos1	5.9
2	2	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-28	pos1	1.6
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-28	pos1	19.3
	4	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-28	pos1	-2.2
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-28	pos1	11.6
	8	Normal	TDLB100-400 Low	70 \%	G-FR1-A3-28	pos1	-5.3
		Normal	TDLC300-100 Low	70 \%	G-FR1-A4-28	pos1	7.1

8.2.2 Requirements for PUSCH with transform precoding enabled

8.2.2.1 General

The performance requirement of PUSCH is determined by a minimum required throughput for a given SNR. The required throughput is expressed as a fraction of maximum throughput for the FRCs listed in annex A. The performance requirements assume HARQ retransmissions.

Table 8.2.2.1-1: Test parameters for testing PUSCH

Parameter		Value
Transform precoding		Enabled
Default TDD UL-DL pattern (Note 1)		15 kHz SCS: 3D1S1U, S=10D:2G:2U 30 kHz SCS: 7D1S2U, S=6D:4G:4U
HARQ	Maximum number of HARQ transmissions	4
	RV sequence	0, 2, 3, 1
DM-RS	DM-RS configuration type	1
	DM-RS duration	single-symbol DM-RS
	Additional DM-RS position	pos1
	Number of DM-RS CDM group(s) without data	2
	Ratio of PUSCH EPRE to DM-RS EPRE	-3 dB
	DM-RS port(s)	0
	DM-RS sequence generation	$\mathrm{N}_{1 \mathrm{D}^{0}}=0$, group hopping and sequence hopping are disabled
Time domain resource assignment	PUSCH mapping type	A, B
	Start symbol	0
	Allocation length	14
Frequency domain resource assignment	RB assignment	15 kHz SCS: 25 PRBs in the middle of the test bandwidth 30 kHz SCS: 24 PRBs in the middle of the test bandwidth
	Frequency hopping	Disabled
Code block group based PUSCH transmission		Disabled

8.2.2.2 Minimum requirements

The throughput shall be equal to or larger than the fraction of maximum throughput for the FRCs stated in tables 8.2.2.2-1 to 8.2.2.2-4 at the given SNR. FRCs are defined in annex A.

Table 8.2.2.2-1: Minimum requirements for PUSCH, Type A, 5 MHz channel bandwidth, 15 kHz SCS

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	FRC (Annex A)	Additional DM-RS position	SNR (dB)
1	2	Normal	TDLB100-400 Low	70%	G-FR1-A3-31	pos1	-2.4
	4	Normal	TDLB100-400 Low	70%	G-FR1-A3-31	pos1	-5.7
	8	Normal	TDLB100-400 Low	70%	G-FR1-A3-31	pos1	-8.5

Table 8.2.2.2-2: Minimum requirements for PUSCH, Type A, 10 MHz channel bandwidth, 30 kHz SCS

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	FRC (Annex A)	Additional DM-RS position	SNR (dB)
1	2	Normal	TDLB100-400 Low	70%	G-FR1-A3-32	pos1	-2.5
	4	Normal	TDLB100-400 Low	70%	G-FR1-A3-32	pos1	-5.7
	8	Normal	TDLB100-400 Low	70%	G-FR1-A3-32	pos1	-8.4

Table 8.2.2.2-3: Minimum requirements for PUSCH, Type B, 5 MHz channel bandwidth, 15 kHz SCS

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and	Fraction of maximum throughput	FRC (Annex A) matrelation (Annex G)	Additional DM-RS position	SNR (dB)
1	2	Normal	TDLB100-400 Low	70%	G-FR1-A3-31	pos1	-2.3
	4	Normal	TDLB100-400 Low	70%	G-FR1-A3-31	pos1	-5.8
	8	Normal	TDLB100-400 Low	70%	G-FR1-A3-31	pos1	-8.6

Table 8.2.2.2-4: Minimum requirements for PUSCH, Type B, 10 MHz channel bandwidth, 30 kHz SCS

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	FRC (Annex A)	Additional DM-RS position	SNR (dB)
1	2	Normal	TDLB100-400 Low	70%	G-FR1-A3-32	pos1	-2.7
	4	Normal	TDLB100-400 Low	70%	G-FR1-A3-32	pos1	-6.0
	8	Normal	TDLB100-400 Low	70%	G-FR1-A3-32	pos1	-8.8

8.2.3 Requirements for UCI multiplexed on PUSCH

8.2.3.1 General

In the tests for UCI multiplexed on PUSCH, the UCI information only contains CSI part 1 and CSI part 2 information, and there is no HACK/ACK information transmitted.

The CSI part 1 block error probability (BLER) is defined as the probability of incorrectly decoding the CSI part 1 information when the CSI part 1 information is sent as follow:

$$
B L E R_{\text {CSI part } 1}=\frac{\#(f a l s e \text { CSI part 1) }}{\#(\text { CSI part } 1)}
$$

where:

- \#(false CSI part 1) denotes the number of incorrectly decoded CSI part 1 information transmitted occasions
- \#(CSI part 1) denotes the number of CSI part 1 information transmitted occasions.

The CSI part 2 block error probability is defined as the probability of incorrectly decoding the CSI part 2 information when the CSI part 2 information is sent as follows:

$$
B L E R_{\text {CSI part } 2}=\frac{\#(\text { false CSI part 2) }}{\#(\text { CSI part } 2)}
$$

where:

- \#(false CSI part 2) denotes the number of incorrectly decoded CSI part 2 information transmitted occasions
- \#(CSI part 2) denotes the number of CSI part 2 information transmitted occasions.

The number of UCI information bit payload per slot is defined for two cases as follows:

- 5 bits in CSI part 1, 2 bits in CSI part 2
- 20 bits in CSI part 1, 20 bits in CSI part 2

The 7bits UCI case is further defined with the bitmap $[c 0 c 1 c 2 c 3 c 4]=\left[\begin{array}{llll}0 & 1 & 0 & 1\end{array} 0\right]$ for CSI part 1 information, where $c 0$ is mapping to the RI information, and with the bitmap [c 0 cl$]=[10]$ for CSI part2 information.

The 40bits UCI information case is assumed random information bit selection.
In both tests, PUSCH data, CSI part 1 and CSI part 2 information are transmitted simultaneously.

Table 8.2.3.1-1: Test parameters for testing UCI on PUSCH

Parameter		Value
Transform precoding		Disabled
Default TDD UL-DL patterns (Note 1)		30 kHz SCS:
HARQ	Maximum number of HARQ transmissions	1
	RV sequence	0
DM-RS	DM-RS configuration type	1
	DM-RS duration	Single-symbol DM-RS
	Additional DM-RS position	pos1
	Number of DM-RS CDM group(s) without data	2
	Ratio of PUSCH EPRE to DM-RS EPRE	-3 dB
	DM-RS port(s)	\{0\}
	DM-RS sequence generation	$N_{1 D^{0}}=0, n_{S C I D}=0$
Time domain resource assignment	PUSCH mapping type	A, B
	Start symbol	0
	Allocation length	14
Frequency domain resource assignment	RB assignment	Full applicable test bandwidth
	Frequency hopping	Disabled
Code block group based PUSCH transmission		Disabled
UCI	Number of CSI part 1 and CSI part 2 information bit payload	\{5,2\},\{20,20\}
	scaling	1
	betaOffsetACK-Index1	11
	betaOffsetCSI-Part1-Index1 and betaOffsetCSI-Part1-Index2	13
	betaOffsetCSI-Part2-Index1 and betaOffsetCSI-Part2-Index2	13
	UCI partition for frequency hopping	Disabled
Note 1: The same requirements are applicable to FDD and TDD with different UL-DL patterns.		

8.2.3.2 Minimum requirements

The CSI part 1 block error probability shall not exceed 0.1% at the SNR in table 8.2.3.2-1 and table 8.2.3.2-2.The CSI part 2 block error probability shall not exceed 1% at the SNR given in table 8.2.3.2-3 and table 8.2.3.2-4.

Table 8.2.3.2-1: Minimum requirements for UCI multiplexed on PUSCH, Type A, CSI part 1, 10 MHz Channel Bandwidth, 30 kHz SCS

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	UCI bits (CSI part 1, CSI part 2)	Additional DM-RS position	FRC (Annex A)	SNR (dB)
1	2	Normal	TDLC300-100 Low	$7(5,2)$	pos1	G-FR1-A4-11	5.4
	2	Normal	TDLC300-100 Low	$40(20,20)$	pos1	G-FR1-A4-11	4.3

Table 8.2.3.2-2: Minimum requirements for UCI multiplexed on PUSCH, Type B, CSI part 1, 10 MHz Channel Bandwidth, 30 kHz SCS

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	UCI bits (CSI part 1, CSI part2)	Additional DM-RS position	FRC (Annex A)	SNR (dB)
1	2	Normal	TDLC300-100 Low	$7(5,2)$	pos1	G-FR1-A4-11	5.8
	2	Normal	TDLC300-100 Low	$40(20,20)$	pos1	G-FR1-A4-11	4.1

Table 8.2.3.2-3: Minimum requirements for UCI multiplexed on PUSCH, Type A, CSI part 2, 10 MHz Channel Bandwidth, 30 kHz SCS

Number of TX antennas	Number of RXX antennas	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	UCI bits (CSI part 1, CSI part2)	Additional DM-RS position	FRC (Annex A)	SNR (dB)
1	2	Normal	TDLC300-100 Low	$7(5,2)$	pos1	G-FR1-A4-11	-0.2
	2	Normal	TDLC300-100 Low	$40(20,20)$	pos1	G-FR1-A4-11	2.4

Table 8.2.3.2-4: Minimum requirements for UCI multiplexed on PUSCH, Type B, CSI part 2, 10 MHz Channel Bandwidth, 30 kHz SCS

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	UCI bits (CSI part 1, CSI part2)	Additional DM-RS position	FRC (Annex A)	SNR (dB)
1	2	Normal	TDLC300-100 Low	$7(5,2)$	pos1	G-FR1-A4-11	0.3
	2	Normal	TDLC300-100 Low	$40(20,20)$	pos1	G-FR1-A4-11	2.6

8.3 Performance requirements for PUCCH

8.3.1 DTX to ACK probability

8.3.1.1 General

The DTX to ACK probability, i.e. the probability that ACK is detected when nothing was sent:

$$
\text { Prob(PUCCH DTX } \rightarrow \text { Ack bits })=\frac{\#(\text { false ACK bits })}{\#(\text { PUCCH DTX }) * \#(A C K / N A C K ~ b i t s)}
$$

where:

- \#(false ACK bits) denotes the number of detected ACK bits.
- \#(ACK/NACK bits) denotes the number of encoded bits per slot
- \#(PUCCH DTX) denotes the number of DTX occasions

8.3.1.2 Minimum requirement

The DTX to ACK probability shall not exceed 1% for all PUCCH formats carrying ACK/NACK bits:

$$
\operatorname{Prob}(\text { PUCCH DTX } \rightarrow \text { Ack bits }) \leq 10^{-2}
$$

8.3.2 Performance requirements for PUCCH format 0

8.3.2.1 General

The ACK missed detection probability is the probability of not detecting an ACK when an ACK was sent.

Table 8.3.2.1-1: Test Parameters

Parameter	Test
Number of UCI information bits	1
Number of PRBs	1
First PRB prior to frequency	
hopping	

The transient period as specified in TS 38.101-1 [17] clause 6.3.3.1 is not taken into account for performance requirement testing, where the RB hopping is symmetric to the CC centre, i.e. intra-slot frequency hopping is enabled.

8.3.2.2 Minimum requirements

The ACK missed detection probability shall not exceed 1% at the SNR given in table 8.3.2.2-1 and in table 8.3.2.2-2.
Table 8.3.2.2-1: Minimum requirements for PUCCH format 0 and 15 kHz SCS

Number of TX antennas	Number of RX antennas	Propagation conditions and correlation matrix (Annex G)	Number of OFDM symbols	Channel bandwidth / SNR (dB)		
				5 MHz	10 MHz	20 MHz
1	2	TDLC300-100 Low	1	9.4	8.8	9.3
			2	2.8	3.7	3.3
1	4	TDLC300-100 Low	1	3.0	2.9	3.2
			2	-1.0	-0.5	-0.8
1	8	TDLC300-100 Low	1	-1.1	-1.1	-1.1
			2	-4.1	-3.9	-4.0

Table 8.3.2.2-2: Minimum requirements for PUCCH format 0 and 30 kHz SCS

$\begin{aligned} & \text { Number } \\ & \text { of TX } \\ & \text { antennas } \end{aligned}$	Number of RX antennas	Propagation conditions and correlation matrix (Annex G)	Number of OFDM symbols	Channel bandwidth / SNR (dB)			
				10 MHz	20 MHz	40 MHz	100 MHz
1	2	TDLC300-100 Low	1	9.8	9.8	9.5	9.2
			2	4.2	3.6	3.8	3.5
1	4	TDLC300-100 Low	1	3.4	3.4	3.0	3.3
			2	-0.3	-0.4	-0.5	-0.8
1	8	TDLC300-100 Low	1	-1.0	-1.0	-1.1	-1.0
			2	-3.7	-3.8	-4.0	-3.9

8.3.3 Performance requirements for PUCCH format 1

8.3.3.1 NACK to ACK requirements

8.3.3.1.1 General

The NACK to ACK detection probability is the probability that an ACK bit is falsely detected when an NACK bit was sent on the particular bit position, where the NACK to ACK detection probability is defined as follows:

$$
\operatorname{Prob}(\text { PUCCH NACK } \rightarrow \text { ACK bits })=\frac{\#(\text { NACK bits decoded as ACK bits })}{\#(\text { Total NACK bits })},
$$

where:
_ \#(Total NACK bits) denotes the total number of NACK bits transmitted
\#(NACK bits decoded as ACK bits) denotes the number of NACK bits decoded as ACK bits at the receiver, i.e. the number of received ACK bits

- NACK bits in the definition do not contain the NACK bits which are mapped from DTX, i.e. NACK bits received when DTX is sent should not be considered.

Random codeword selection is assumed.
Table 8.3.3.1.1-1: Test Parameters

Parameter	Test
Number of information bits	2
Number of PRBs	1
Number of symbols	14
First PRB prior to frequency hopping	0
Intra-slot frequency hopping	enabled
First PRB after frequency hopping	The largest PRB index - (nrofPRBs - 1)
Group and sequence hopping	neither
Hopping ID	0
Initial cyclic shift	0
First symbol	0
Index of orthogonal cover code (timeDomainOCC)	0

The transient period as specified in TS 38.101-1 [17] clause 6.3.3.1 is not taken into account for performance requirement testing, where the RB hopping is symmetric to the CC centre, i.e. intra-slot frequency hopping is enabled.

8.3.3.1.2 Minimum requirements

The NACK to ACK probability shall not exceed 0.1% at the SNR given in table 8.3.3.1.2-1 and table 8.3.3.1.2-2.
Table 8.3.3.1.2-1: Minimum requirements for PUCCH format 1 with 15 kHz SCS

Number of TX antennas	Number of RX antennas	Cyclic Prefix	Propagation conditions and correlation matrix (Annex G)	Channel bandwidth / SNR (dB)		
				5 MHz	10 MHz	20 MHz
1	2	Normal	$\begin{aligned} & \text { TDLC-300- } \\ & 100 \text { Low } \end{aligned}$	-3.8	-3.6	-3.6
	4	Normal	$\begin{aligned} & \text { TDLC-300- } \\ & 100 \text { Low } \end{aligned}$	-8.4	-7.6	-8.4
	8	Normal	$\begin{aligned} & \text { TDLC-300- } \\ & 100 \text { Low } \end{aligned}$	-11.8	-11.4	-11.4

Table 8.3.3.1.2-2: Minimum requirements for PUCCH format 1 with 30 kHz SCS

Number of TX antennas	Number of RX antenna s	Cyclic Prefix	Propagation conditions and correlation matrix (Annex G)	Channel bandwidth / SNR (dB)			
				$\begin{gathered} \hline 10 \\ \mathrm{MHz} \end{gathered}$	$\begin{gathered} 20 \\ \mathrm{MHz} \end{gathered}$	40 MHz	$\begin{aligned} & 100 \\ & \mathrm{MHz} \end{aligned}$
1	2	Normal	$\begin{aligned} & \text { TDLC-300- } \\ & 100 \text { Low } \end{aligned}$	-2.8	-3.3	-3.9	-3.5
	4	Normal	$\begin{aligned} & \text { TDLC-300- } \\ & 100 \text { Low } \end{aligned}$	-8.1	-8.3	-7.5	-8.0
	8	Normal	$\begin{aligned} & \text { TDLC-300- } \\ & 100 \text { Low } \\ & \hline \end{aligned}$	-11.5	-11.2	-11.6	-11.3

8.3.3.2 \quad ACK missed detection requirements

8.3.3.2.1 General

The ACK missed detection probability is the probability of not detecting an ACK when an ACK was sent. The test parameters in table 8.3.3.1.1-1 are configured.

The transient period as specified in TS 38.101-1 [17] clause 6.3.3.1 is not taken into account for performance requirement testing, where the RB hopping is symmetric to the CC centre, i.e. intra-slot frequency hopping is enabled.

8.3.3.2.2 Minimum requirements

The ACK missed detection probability shall not exceed 1% at the SNR given in table 8.3.3.2.2-1 and in table 8.3.3.2.22.

Table 8.3.3.2.2-1: Minimum requirements for PUCCH format 1 with 15 kHz SCS

Number of TX antennas	Number of RX antennas	Cyclic Prefix	Propagation conditions and correlation matrix (Annex G)	Channel bandwidth / SNR (dB)		
				5 MHz	10 MHz	20 MHz
1	2	Normal	$\begin{aligned} & \text { TDLC-300- } \\ & 100 \text { Low } \end{aligned}$	-5.0	-4.4	-5.0
	4	Normal	$\begin{aligned} & \text { TDLC-300- } \\ & 100 \text { Low } \end{aligned}$	-8.6	-8.2	-8.5
	8	Normal	$\begin{aligned} & \text { TDLC-300- } \\ & 100 \text { Low } \end{aligned}$	-11.6	-11.5	-11.5

Table 8.3.3.2.2-2: Minimum requirements for PUCCH format 1 with 30 kHz SCS

Number of TX antennas	Number of RX antenna s	Cyclic Prefix	Propagation conditions and correlation matrix (Annex G)	Channel bandwidth / SNR (dB)			
				$\begin{gathered} \hline 10 \\ \mathrm{MHz} \end{gathered}$	$\begin{gathered} 20 \\ \mathrm{MHz} \end{gathered}$	40 MHz	$\begin{aligned} & 100 \\ & \mathrm{MHz} \end{aligned}$
1	2	Normal	$\begin{aligned} & \text { TDLC-300- } \\ & 100 \text { Low } \end{aligned}$	-3.9	-4.4	-4.4	-4.2
	4	Normal	$\begin{aligned} & \text { TDLC-300- } \\ & 100 \text { Low } \end{aligned}$	-8.0	-8.1	-8.4	-8.3
	8	Normal	$\begin{aligned} & \text { TDLC-300- } \\ & 100 \text { Low } \\ & \hline \end{aligned}$	-11.4	-11.4	-11.4	-11.4

8.3.4 Performance requirements for PUCCH format 2

8.3.4.1 \quad ACK missed detection requirements

8.3.4.1.1 General

The ACK missed detection probability is the probability of not detecting an ACK when an ACK was sent.
The ACK missed detection requirement only applies to the PUCCH format 2 with 4 UCI bits.
Table 8.3.4.1.1-1: Test Parameters

Parameter	Value
Modulation order	QSPK
Starting RB location	0
Intra-slot frequency hopping	N / A
Number of PRBs	4
Number of symbols	1
The number of UCI information bits	4
First symbol	13
DM-RS sequence generation	$N_{I D}{ }^{\circ}=0$

8.3.4.1.2 Minimum requirements

The ACK missed detection probability shall not exceed 1% at the SNR given in table 8.3.4.1.2-1 and table 8.3.4.1.2-2 for 4UCI bits.

Table 8.3.4.1.2-1: Minimum requirements for PUCCH format 2 with 15 kHz SCS

Number of TX antennas	Number of RX antennas	Cyclic Prefix	Propagation conditions and correlation matrix (Annex G)	Channel bandwidth / SNR (dB)		
				5 MHz	10 MHz	20 MHz
1	2	Normal	TDLC300-100 Low	5.8	5.6	5.9
	4	Normal	TDLC300-100 Low	0.4	0.5	0.3
	8	Normal	TDLC300-100 Low	-3.5	-3.5	-3.5

Table 8.3.4.1.2-2: Minimum requirements for PUCCH format 2 with 30 kHz SCS

Number of TX antennas	Number of RX antennas	Cyclic Prefix	Propagation conditions and correlation matrix (Annex G)	Channel bandwidth / SNR (dB)			
				10MHz	20MHz	40MHz	100MHz
1	2	Normal	TDLC300-100 Low	5.5	5.6	5.5	5.7
	4	Normal	TDLC300-100 Low	0.3	0.2	0.3	0.4
	8	Normal	TDLC300-100 Low	-3.6	-3.6	-3.5	-3.3

8.3.4.2 UCI BLER performance requirements

8.3.4.2.1 General

The UCI block error probability (BLER) is defined as the probability of incorrectly decoding the UCI information when the UCI information is sent. The UCI information does not contain CSI part 2.

The transient period as specified in TS 38.101-1 [17] clause 6.3.3.1 is not taken into account for performance requirement testing, where the RB hopping is symmetric to the CC centre, i.e. intra-slot frequency hopping is enabled.

The UCI block error probability performance requirement only applies to the PUCCH format 2 with 22 UCI bits.

Table 8.3.4.2.1-1: Test Parameters

Parameter	Value
Modulation order	QSPK
First PRB prior to frequency hopping	0
Intra-slot frequency hopping	enabled
Frist PRB after frequency hopping	The largest PRB index - (Number of PRBs-1)
Number of PRBs	9
Number of symbols	2
The number of UCI information bits	22
First symbol	12
DM-RS sequence generation	$N_{10^{0}}=0$

8.3.4.2.2 Minimum requirements

The UCI block error probability shall not exceed 1% at the SNR given in table 8.3.4.2.2-1 and table 8.3.4.2.2-2 for 22 UCI bits.

Table 8.3.4.2.2-1: Minimum requirements for PUCCH format 2 with 15 kHz SCS

Number of	Number of RX antennas	Cyclic Prefix	Propagation conditions and correlation matrix (Annex G)	Channel bandwidth / SNR (dB)		
				5 MHz	10 MHz	20 MHz
1	2	Normal	TDLC300-100 Low	0.2	0.8	1.2
	4	Normal	TDLC300-100 Low	-3.6	-3.2	-3.2
	8	Normal	TDLC300-100 Low	-6.8	-6.7	-6.8

Table 8.3.4.2.2-2: Minimum requirements for PUCCH format 2 with 30 kHz SCS

Number of TX antennas	Number of RX antennas	Cyclic Prefix	Propagation conditions and correlation matrix (Annex G)	Channel bandwidth / SNR (dB)			
				10MHz	20MHz	40MHz	100MHz
1	2	Normal	TDLC300-100 Low	0.5	1.1	0.4	0.3
	4	Normal	TDLC300-100 Low	-3.3	-2.9	-3.3	-3.4
	8	Normal	TDLC300-100 Low	-5.8	-5.8	-6.7	-5.9

8.3.5 Performance requirements for PUCCH format 3

8.3.5.1 General

The performance is measured by the required SNR at UCI block error probability not exceeding 1%.
The UCI block error probability is defined as the conditional probability of incorrectly decoding the UCI information when the UCI information is sent. The UCI information does not contain CSI part 2.

The transient period as specified in TS 38.101-1 [17] clause 6.3.3.1 is not taken into account for performance requirement testing, where the RB hopping is symmetric to the CC centre, i.e. intra-slot frequency hopping is enabled.

Table 8.3.5.1-1: Test Parameters

Parameter	Test 1	Test 2
Modulation order	QPSK	
First PRB prior to frequency hopping	0	
Intra-slot frequency hopping	enabled	
First PRB after frequency hopping	The largest PRB index - (Number of PRBs - 1)	
Group and sequence hopping	neither	
Hopping ID	0	
Number of PRBs	1	3
Number of symbols	14	4
The number of UCI information bits	16	16
First symbol	0	0

8.3.5.2 Minimum requirements

The UCI block error probability shall not exceed 1% at the SNR given in Table 8.3.5.2-1 and Table 8.3.5.2-2.
Table 8.3.5.2-1: Minimum requirements for PUCCH format 3 with 15 kHz SCS

Test Number	Number of TX antennas	Number of RX antennas	Cyclic Prefix	Propagation conditions and correlation matrix (Annex G)	Additional DM-RS configuratio n	Channel bandwidth / SNR (dB)		
						5 MHz	10 MHz	20 MHz
1	1	2	Normal	$\begin{aligned} & \text { TDLC300- } \\ & 100 \text { Low } \end{aligned}$	No additional DM-RS	0.2	1.1	0.3
					Additional DM-RS	-0.1	0.5	-0.1
		4	Normal	$\begin{aligned} & \text { TDLC300- } \\ & 100 \text { Low } \end{aligned}$	No additional DM-RS	-3.8	-3.3	-3.8
					Additional DM-RS	-4.3	-4.0	-4.0
		8	Normal	$\begin{aligned} & \hline \text { TDLC300- } \\ & 100 \text { Low } \end{aligned}$	No additional DM-RS	-7.0	-6.7	-6.9
					Additional DM-RS	-7.7	-7.5	-7.7
2	1	2	Normal	$\begin{aligned} & \hline \text { TDLC300- } \\ & 100 \text { Low } \end{aligned}$	No additional DM-RS	1.4	2.2	2.0
		4	Normal	$\begin{aligned} & \text { TDLC300- } \\ & 100 \text { Low } \end{aligned}$	No additional DM-RS	-3.1	-2.5	-2.5
		8	Normal	$\begin{aligned} & \text { TDLC300- } \\ & 100 \text { Low } \\ & \hline \end{aligned}$	No additional DM-RS	-6.5	-6.0	-6.2

Table 8.3.5.2-2: Minimum requirements for PUCCH format 3 with 30 kHz SCS

Test Numbe r	$\begin{aligned} & \text { Number } \\ & \text { of TX } \\ & \text { antennas } \end{aligned}$	Number of RX antenna s	Cyclic Prefix	Propagation conditions and correlation matrix (Annex G)	Additional DM-RS configuratio n	Channel bandwidth / SNR (dB)			
						$\begin{gathered} \hline 10 \\ \mathrm{MHz} \end{gathered}$	$\begin{gathered} 20 \\ \mathrm{MHz} \end{gathered}$	40 MHz	$\begin{aligned} & 100 \\ & \text { MHz } \end{aligned}$
1	1	2	Normal	$\begin{gathered} \text { TDLC300-100 } \\ \text { Low } \end{gathered}$	No additional DM-RS	0.9	0.6	0.6	0.9
					Additional DM-RS	0.5	0.3	0.0	0.1
		4	Normal	$\begin{gathered} \text { TDLC300-100 } \\ \text { Low } \end{gathered}$	No additional DM-RS	-3.1	-3.4	-3.2	-3.5
					Additional DM-RS	-3.7	-4.1	-4.0	-4.2
		8	Normal	$\begin{gathered} \text { TDLC300-100 } \\ \text { Low } \end{gathered}$	No additional DM-RS	-6.6	-6.7	-6.8	-6.8
					Additional DM-RS	-7.5	-7.6	-7.6	-7.7
2	1	2	Normal	$\begin{gathered} \text { TDLC300-100 } \\ \text { Low } \end{gathered}$	No additional DM-RS	1.8	2.0	2.0	1.5
		4	Normal	$\begin{gathered} \text { TDLC300-100 } \\ \text { Low } \end{gathered}$	No additional DM-RS	-2.9	-3.0	-2.4	-3.0
		8	Normal	$\begin{gathered} \text { TDLC300-100 } \\ \text { Low } \end{gathered}$	No additional DM-RS	-6.4	-6.0	-6.4	-6.2

8.3.6 Performance requirements for PUCCH format 4

8.3.6.1 General

The performance is measured by the required SNR at UCI block error probability not exceeding 1%.
The UCI block error probability is defined as the conditional probability of incorrectly decoding the UCI information when the UCI information is sent. The UCI information does not contain CSI part 2.

The transient period as specified in TS 38.101-1 [17] clause 6.3.3.1 is not taken into account for performance requirement testing, where the RB hopping is symmetric to the CC centre, i.e. intra-slot frequency hopping is enabled.

Table 8.3.6.1-1: Test parameters

Parameter	Value
Modulation order	QPSK
First PRB prior to frequency hopping	0
Number of PRBs	1
Intra-slot frequency hopping	enabled
First PRB after frequency hopping	The largest PRB index - (Number of PRBs - 1)
Group and sequence hopping	neither
Hopping ID	0
Number of symbols	14
The number of UCI information bits	22
First symbol	0
Length of the orthogonal cover code	n 2
Index of the orthogonal cover code	

8.3.6.2 Minimum requirement

The UCI block error probability shall not exceed 1% at the SNR given in Table 8.3.6.2-1 and Table 8.3.6.2-2.
Table 8.3.6.2-1: Required SNR for PUCCH format 4 with 15 kHz SCS

Number of TX antennas	Number of RX antennas	Cyclic Prefix	Propagation conditions and correlation matrix (Annex G)	Additional DM-RS configuratio n	Channel bandwidth / SNR (dB)		
					5 MHz	10 MHz	20 MHz
1	2	Normal	$\begin{aligned} & \text { TDLC300- } \\ & 100 \text { Low } \end{aligned}$	No additional DM-RS	1.8	2.6	2.2
				Additional DM-RS	1.6	2.4	1.8
	4	Normal	$\begin{aligned} & \text { TDLC300- } \\ & 100 \text { Low } \end{aligned}$	No additional DM-RS	-2.3	-1.9	-2.2
				Additional DM-RS	-2.9	-2.6	-2.7
	8	Normal	$\begin{aligned} & \text { TDLC300- } \\ & 100 \text { Low } \end{aligned}$	No additional DM-RS	-5.9	-5.7	-5.8
				Additional DM-RS	-6.6	-6.4	-6.3

Table 8.3.6.2-2: Required SNR for PUCCH format 4 with 30 kHz SCS

$\begin{aligned} & \text { Number } \\ & \text { of TX } \\ & \text { antennas } \end{aligned}$	Number of RX antenna s	Cyclic Prefix	Propagation conditions and correlation matrix (Annex G)	Additional DM-RS configuratio n	Channel bandwidth / SNR (dB)			
					$\begin{gathered} 10 \\ \mathrm{MHz} \end{gathered}$	$\begin{gathered} 20 \\ \mathrm{MHz} \end{gathered}$	40 MHz	$\begin{aligned} & 100 \\ & \text { MHz } \end{aligned}$
1	2	Normal	$\begin{gathered} \text { TDLC300-100 } \\ \text { Low } \end{gathered}$	No additional DM-RS	3.1	2.8	3.1	2.8
				Additional DM-RS	2.8	2.3	3.1	2.2
	4	Normal	$\begin{gathered} \text { TDLC300-100 } \\ \text { Low } \end{gathered}$	No additional DM-RS	-1.7	-1.9	-1.7	-2.1
				Additional DM-RS	-2.0	-2.5	-2.5	-2.4
	8	Normal	$\begin{gathered} \text { TDLC300-100 } \\ \text { Low } \end{gathered}$	No additional DM-RS	-5.6	-5.5	-5.5	-5.5
				Additional DM-RS	-6.2	-6.1	-6.4	-6.2

8.3.7 Performance requirements for multi-slot PUCCH

8.3.7.1 General

8.3.7.2 Performance requirements for multi-slot PUCCH format 1

8.3.7.2.1 NACK to ACK requirements

8.3.7.2.1.1 General

The NACK to ACK detection probability is the probability that an ACK bit is falsely detected when an NACK bit was sent on the particular bit position, where the NACK to ACK detection probability is defined as follows:

$$
\operatorname{Prob}(\mathrm{PUCCH} \text { NACK } \rightarrow \text { ACK bits })=\frac{\#(\text { NACK bits decoded as ACK bits })}{\#(\text { Total NACK bits })},
$$

where:
. \#(Total NACK bits) denotes the total number of NACK bits transmitted
\#(NACK bits decoded as ACK bits) denotes the number of NACK bits decoded as ACK bits at the receiver, i.e. the number of received ACK bits

- NACK bits in the definition do not contain the NACK bits which are mapped from DTX, i.e. NACK bits received when DTX is sent should not be considered.

Random codeword selection is assumed.
Table 8.3.7.2.1.1-1: Test Parameters for multi-slot PUCCH format 1

Parameter	Test
Number of information bits	2
Number of PRBs	1
Number of symbols	14
First PRB prior to frequency hopping	0
Intra-slot frequency hopping	disabled
Inter-slot frequency hopping	enabled
First PRB after frequency hopping	The largest PRB index - (nrofPRBs - 1)
Group and sequence hopping	neither
Hopping ID	0
Initial cyclic shift	0
First symbol	0
Index of orthogonal cover code (timeDomainOCC)	0
Number of slots for PUCCH repetition	2

8.3.7.2.1.2 Minimum requirements

The multi-slot NACK to ACK probability shall not exceed 0.1% at the SNR given in table 8.3.7.2.1.2-1.
Table 8.3.7.2.1.2-1: Minimum requirements for multi-slot PUCCH format 1 with 30 kHz SCS

Number of TX antennas	Number of RX antennas	Cyclic Prefix	Propagation conditions and correlation matrix (Annex G)	Channel bandwidth SNR (dB)
				40 MHz
1	2	Normal	TDLC-300-100 Low	-6.3

8.3.7.2.2 ACK missed detection requirements

8.3.7.2.2.1 General

The ACK missed detection probability is the probability of not detecting an ACK when an ACK was sent. The test parameters in table 8.3.7.2.1.1-1 are configured.
8.3.7.2.2.2 Minimum requirements

The multi-slot ACK missed detection probability shall not exceed 1% at the SNR given in table 8.3.7.2.2.2-1.

Table 8.3.7.2.2.2-1: Minimum requirements for multi-slot PUCCH format 1 with 30 kzz SCS

Number of TX antennas	Number of RX antenna s	Cyclic Prefix	Propagation conditions and correlation matrix (Annex G)	Channel bandwidth / SNR (dB)
				40 MHz
1	2	Normal	TDLC-300-100 Low	-7.6

8.4 Performance requirements for PRACH

8.4.1 PRACH False alarm probability

8.4.1.1 General

The false alarm requirement is valid for any number of receive antennas, for any channel bandwidth.
The false alarm probability is the conditional total probability of erroneous detection of the preamble (i.e. erroneous detection from any detector) when input is only noise.

8.4.1.2 Minimum requirement

The false alarm probability shall be less than or equal to 0.1%.

8.4.2 PRACH detection requirements

8.4.2.1 General

The probability of detection is the conditional probability of correct detection of the preamble when the signal is present. There are several error cases - detecting different preamble than the one that was sent, not detecting a preamble at all or correct preamble detection but with the wrong timing estimation. For AWGN and TDLC300-100, a timing estimation error occurs if the estimation error of the timing of the strongest path is larger than the time error tolerance given in Table 8.4.2.1-1.

Table 8.4.2.1-1: Time error tolerance for AWGN and TDLC300-100

PRACH preamble	PRACH SCS $(\mathbf{k H z})$	Time error tolerance	
	1.25	AWGN	TDLC300-100
A1, A2, A3, B4, C0, C2	15	0.04 us	2.55 us
	30	0.26 us	2.03 us

The test preambles for normal mode are listed in table A.6-1 and the test parameter msg1-FrequencyStart is set to 0 .

8.4.2.2 Minimum requirements

The probability of detection shall be equal to or exceed 99% for the SNR levels listed in Tables 8.4.2.2-1 to 8.4.2.2-3.

Table 8.4.2.2-1: PRACH missed detection requirements for Normal Mode, 1.25 kHz SCS

Number of TX antennas	Number of RX antennas	Propagation conditions and correlation matrix (Annex G)	Frequency offset	$\begin{aligned} & \text { SNR } \\ & \text { (dB) } \end{aligned}$
				Burst format 0
1	2	AWGN	0	-14.5
		TDLC300-100 Low	400 Hz	-6.6
	4	AWGN	0	-16.7
		TDLC300-100 Low	400 Hz	-11.9
	8	AWGN	0	-18.9
		TDLC300-100 Low	400 Hz	-15.8

Table 8.4.2.2-2: PRACH missed detection requirements for Normal Mode, 15 kHz SCS

Number of TX antennas	$\begin{aligned} & \hline \text { Number } \\ & \text { of RX } \\ & \text { antennas } \end{aligned}$	Propagation conditions and correlation matrix (Annex G)	Frequency offset	SNR (dB)					
				Burst format A1	Burst format A2	Burst format A3	Burst format B4	Burst format CO	Burst format C2
1	2	AWGN	0	-9.3	-12.6	-14.2	-16.8	-6.3	-12.5
		$\begin{gathered} \text { TDLC300-100 } \\ \text { Low } \end{gathered}$	400 Hz	-2.1	-4.8	-6.6	-8.8	0.8	-4.9
	4	AWGN	0	-11.6	-14.3	-16.0	-19.0	-8.7	-14.1
		$\begin{gathered} \text { TDLC300-100 } \\ \text { Low } \end{gathered}$	400 Hz	-7.3	-10.3	-11.7	-13.8	-4.3	-10.2
	8	AWGN	0	-13.8	-16.7	-18.2	-21.2	-11.1	-16.6
		$\begin{gathered} \text { TDLC300-100 } \\ \text { Low } \end{gathered}$	400 Hz	-11.0	-13.9	-15.2	-17.3	-8.1	-13.9

Table 8.4.2.2-3: PRACH missed detection requirements for Normal Mode, 30 kHz SCS

Number of TX antennas	Number of RX antennas	Propagation conditions and correlation matrix (Annex G)	Frequency offset	SNR (dB)					
				Burst format A1	Burst format A2	Burst format A3	Burst format B4	Burst format CO	Burst format C2
1	2	AWGN	0	-9.1	-12.0	-13.8	-16.5	-6.1	-11.9
		TDLC300-100 Low	400 Hz	-2.8	-5.7	-7.4	-9.9	0.1	-5.6
	4	AWGN	0	-11.4	-14.2	-15.9	-19.0	-8.6	-14.1
		TDLC300-100 Low	400 Hz	-7.2	-10.4	-12.0	-14.5	-4.5	-10.4
	8	AWGN	0	-13.7	-16.6	-18.1	-21.1	-11.0	-16.5
		TDLC300-100 Low	400 Hz	-10.7	-13.7	-15.1	-17.6	-7.8	-13.7

$9 \quad$ Radiated transmitter characteristics

9.1 General

Radiated transmitter characteristics requirements apply on the BS type 1-H, BS type 1-O, or BS type 2-O including all its functional components active and for all foreseen modes of operation of the BS unless otherwise stated.

9.2 Radiated transmit power

9.2.1 General

BS type 1-H, BS type 1-O and BS type 2-O are declared to support one or more beams, as per manufacturer's declarations specified in TS 38.141-2 [6]. Radiated transmit power is defined as the EIRP level for a declared beam at a specific beam peak direction.

For each beam, the requirement is based on declaration of a beam identity, reference beam direction pair, beamwidth, rated beam EIRP, OTA peak directions set, the beam direction pairs at the maximum steering directions and their associated rated beam EIRP and beamwidth(s).

For a declared beam and beam direction pair, the rated beam EIRP level is the maximum power that the base station is declared to radiate at the associated beam peak direction during the transmitter ON period.

For each beam peak direction associated with a beam direction pair within the OTA peak directions set, a specific rated beam EIRP level may be claimed. Any claimed value shall be met within the accuracy requirement as described below. Rated beam EIRP is only required to be declared for the beam direction pairs subject to conformance testing as detailed in TS 38.141-2 [6].

NOTE 1: OTA peak directions set is set of beam peak directions for which the EIRP accuracy requirement is intended to be met. The beam peak directions are related to a corresponding contiguous range or discrete list of beam centre directions by the beam direction pairs included in the set.

NOTE 2: A beam direction pair is data set consisting of the beam centre direction and the related beam peak direction.

NOTE 3: A declared EIRP value is a value provided by the manufacturer for verification according to the conformance specification declaration requirements, whereas a claimed EIRP value is provided by the manufacturer to the equipment user for normal operation of the equipment and is not subject to formal conformance testing.

For operating bands where the supported fractional bandwidth (FBW) is larger than 6%, two rated carrier EIRP may be declared by manufacturer:

- $\quad P_{\text {rated, }, \text {,FBWlow }}$ for lower supported frequency range, and
- $P_{\text {rated, }, \text {,FBWhigh }}$ for higher supported frequency range.

For frequencies in between $\mathrm{F}_{\mathrm{FBWlow}}$ and $\mathrm{F}_{\mathrm{FBWh}}$, the rated carrier EIRP is:

- $\quad P_{\text {rated, }, \text {,FBWlow, }}$ for the carrier whose carrier frequency is within frequency range $\mathrm{F}_{\text {FBWlow }} \leq \mathrm{f}<\left(\mathrm{F}_{\text {FBWlow }}+\mathrm{F}_{\text {FBWhigh }}\right)$ / 2,
- $\quad P_{\text {rated, }, \text {,FBWhigh, }}$ for the carrier whose carrier frequency is within frequency range $\left(\mathrm{F}_{\text {FBWlow }}+\mathrm{F}_{\text {FBWhigh }}\right) / 2 \leq \mathrm{f}$ $\leq \mathrm{F}_{\text {FBWhigh }}$.

9.2.2 Minimum requirement for B S type 1-H and BS type 1-O

For each declared beam, in normal conditions, for any specific beam peak direction associated with a beam direction pair within the OTA peak directions set, a manufacturer claimed EIRP level in the corresponding beam peak direction shall be achievable to within $\pm 2.2 \mathrm{~dB}$ of the claimed value.

For BS type 1-O only, for each declared beam, in extreme conditions, for any specific beam peak direction associated with a beam direction pair within the OTA peak directions set, a manufacturer claimed EIRP level in the corresponding beam peak direction shall be achievable to within $\pm 2.7 \mathrm{~dB}$ of the claimed value.

Normal and extreme conditions are defined in TS 38.141-2, annex B [6].
In certain regions, the minimum requirement for normal conditions may apply also for some conditions outside the range of conditions defined as normal.

9.2.3 Minimum requirement for $B S$ type 2-O

For each declared beam, in normal conditions, for any specific beam peak direction associated with a beam direction pair within the OTA peak directions set, a manufacturer claimed EIRP level in the corresponding beam peak direction shall be achievable to within $\pm 3.4 \mathrm{~dB}$ of the claimed value.

For each declared beam, in extreme conditions, for any specific beam peak direction associated with a beam direction pair within the OTA peak directions set, a manufacturer claimed EIRP level in the corresponding beam peak direction shall be achievable to within $\pm 4.5 \mathrm{~dB}$ of the claimed value.

Normal and extreme conditions are defined in TS 38.141-2, annex B [6].
In certain regions, the minimum requirement for normal conditions may apply also for some conditions outside the range of conditions defined as normal.

9.3 OTA base station output power

9.3.1 General

OTA BS output power is declared as the TRP radiated requirement, with the output power accuracy requirement defined at the RIB during the transmitter ON period. TRP does not change with beamforming settings as long as the beam peak direction is within the OTA peak directions set. Thus, the TRP accuracy requirement must be met for any beamforming setting for which the beam peak direction is within the OTA peak directions set.

The BS rated carrier TRP output power for BS type 1-O shall be within limits as specified in table 9.3.1-1.
Table 9.3.1-1: BS rated carrier TRP output power limits for BS type 1-O

BS class	Prated,c,TRP
Wide Area BS	(note)
Medium Range BS	$\leq+47 \mathrm{dBm}$
Local Area BS	$\leq+33 \mathrm{dBm}$
NOTE: There is no upper limit for the Prated,c,TRP of the Wide Area Base Station.	

There is no upper limit for the rated carrier TRP output power of BS type 2-O.
For Band $n 41$ operation in Japan, the rated output power, $\mathrm{P}_{\text {rated, } \mathrm{c}, \mathrm{TRP}}$, declared by the manufacturer shall be equal to or less than 20 W per 10 MHz bandwidth.

Despite the general requirements for the BS output power described in clauses 9.3.2-9.3.3, additional regional requirements might be applicable.

NOTE: In certain regions, power limits corresponding to BS classes may apply for BS type 2-O.

9.3.2 Minimum requirement for $B S$ type 1-O

In normal conditions, the BS type 1-O maximum carrier TRP output power, $\mathrm{P}_{\text {max }, \mathrm{c}, \mathrm{TRP}}$ measured at the RIB shall remain within $\pm 2 \mathrm{~dB}$ of the rated carrier TRP output power $\mathrm{P}_{\text {rated, } \mathrm{c}, \mathrm{TRP},}$ as declared by the manufacturer.

Normal conditions are defined in TS 38.141-1, annex B [6].

9.3.3 Minimum requirement for $B S$ type 2-O

In normal conditions, the BS type 2-O maximum carrier TRP output power, $\mathrm{P}_{\text {max }, \mathrm{c}, \text { TRP }}$ measured at the RIB shall remain within $\pm 3 \mathrm{~dB}$ of the rated carrier TRP output power $\mathrm{P}_{\mathrm{rated}, \mathrm{c}, \mathrm{TRP}}$, as declared by the manufacturer.

Normal conditions are defined in TS 38.141-2, annex B [6].

9.3.4 Additional requirements (regional)

In certain regions, additional regional requirements may apply.

9.4 OTA output power dynamics

9.4.1 General

The requirements in clause 9.4 apply during the transmitter ON period. Transmit signal quality (as specified in clause 9.6) shall be maintained for the output power dynamics requirements.

The OTA output power requirements are directional requirements and apply to the beam peak directions over the OTA peak directions set.

9.4.2 OTA RE power control dynamic range

9.4.2.1 General

The OTA RE power control dynamic range is the difference between the power of an RE and the average RE power for a BS at maximum output power ($\mathrm{P}_{\text {max,c,EIRP }}$) for a specified reference condition.

This requirement shall apply at each RIB supporting transmission in the operating band.

9.4.2.2 Minimum requirement for $B S$ type 1-O

The OTA RE power control dynamic range is specified the same as the conducted RE power control dynamic range requirement for BS type 1-C and BS type 1-H in table 6.3.2.2-1.

9.4.3 OTA total power dynamic range

9.4.3.1 General

The OTA total power dynamic range is the difference between the maximum and the minimum transmit power of an OFDM symbol for a specified reference condition.

This requirement shall apply at each RIB supporting transmission in the operating band.
NOTE 1: The upper limit of the OTA total power dynamic range is the BS maximum carrier EIRP ($\mathrm{P}_{\mathrm{max}, \mathrm{c}, \mathrm{EIRP}}$) when transmitting on all RBs. The lower limit of the OTA total power dynamic range is the average EIRP for single RB transmission in the same direction using the same beam. The OFDM symbol carries PDSCH and not contain RS or SSB.

9.4.3.2 Minimum requirement for $B S$ type 1-O

OTA total power dynamic range minimum requirement for BS type 1-O is specified such as for each NR carrier it shall be larger than or equal to the levels specified for the conducted requirement for BS type 1-C and BS type 1-H in table 6.3.3.2-1.

9.4.3.3 Minimum requirement for BS type 2-O

OTA total power dynamic range minimum requirement for BS type $2-O$ is specified such as for each NR carrier it shall be larger than or equal to the levels specified in table 9.4.3.3-1.

Table 9.4.3.3-1: Minimum requirement for BS type 2-O total power dynamic range

SCS (kHz)	OTA total power dynamic range (dB)			
	$\mathbf{5 0} \mathbf{~ M H z}$	$\mathbf{1 0 0} \mathbf{~ M H z}$	$\mathbf{2 0 0} \mathbf{~ M H z}$	$\mathbf{4 0 0} \mathbf{~ M H z}$
60	18.1	21.2	24.2	$\mathrm{~N} / \mathrm{A}$
120	15.0	18.1	21.2	24.2

9.5 OTA transmit ON/OFF power

9.5.1 General

OTA transmit ON/OFF power requirements apply only to TDD operation of NR BS.

9.5.2 OTA transmitter OFF power

9.5.2.1 General

OTA transmitter OFF power is defined as the mean power measured over $70 / \mathrm{N} \mu$ s filtered with a square filter of bandwidth equal to the transmission bandwidth configuration of the $\mathrm{BS}\left(\mathrm{BW}_{\text {Config }}\right)$ centred on the assigned channel frequency during the transmitter OFF period. $\mathrm{N}=\mathrm{SCS} / 15$, where SCS is Sub Carrier Spacing in kHz .

For BS supporting intra-band contiguous CA, the OTA transmitter OFF power is defined as the mean power measured over $70 / \mathrm{N}$ us filtered with a square filter of bandwidth equal to the Aggregated BS Channel Bandwidth $\mathrm{BW}_{\text {Channel_CA }}$ centred on $\left(\mathrm{F}_{\text {edge,high }}+\mathrm{F}_{\text {edge,low }}\right) / 2$ during the transmitter OFF period. $\mathrm{N}=\mathrm{SCS} / 15$, where SCS is the smallest supported Sub Carrier Spacing in kHz in the Aggregated BS Channel Bandwidth.

For BS type 1-O, the transmitter OFF power is defined as the output power at the co-location reference antenna conducted output(s). For BS type 2-O the transmitter OFF power is defined as TRP.

For multi-band RIBs and single band RIBs supporting transmission in multiple bands, the requirement is only applicable during the transmitter OFF period in all supported operating bands.

9.5.2.2 Minimum requirement for BS type 1-O

The total power from all co-location reference antenna conducted output(s) shall be less than $-106 \mathrm{dBm} / \mathrm{MHz}$.

9.5.2.3 Minimum requirement for $B S$ type 2-O

The OTA transmitter OFF TRP spectral density for $B S$ type $2-O$ shall be less than $-36 \mathrm{dBm} / \mathrm{MHz}$.

9.5.3 OTA transient period

9.5.3.1 General

The OTA transmitter transient period is the time period during which the transmitter is changing from the transmitter OFF period to the transmitter ON period or vice versa. The transmitter transient period is illustrated in figure 6.4.2.1-1.

This requirement shall be applied at each RIB supporting transmission in the operating band.

9.5.3.2 Minimum requirement for BS type 1-O

For BS type 1-O, the OTA transmitter transient period shall be shorter than the values listed in the minimum requirement table 9.5.3.2-1.

Table 9.5.3.2-1: Minimum requirement for the OTA transmitter transient period for BS type 1-O

Transition	Transient period length $(\boldsymbol{\mu s})$
OFF to ON	10
ON to OFF	10

9.5.3.3 Minimum requirement for $B S$ type 2-O

For BS type 2-O, the OTA transmitter transient period shall be shorter than the values listed in the minimum requirement table 9.5.3.3-1.

Table 9.5.3.3-1: Minimum requirement for the OTA transmitter transient period for BS type 2-O

Transition	Transient period length $(\boldsymbol{\mu s})$
OFF to ON	3
ON to OFF	3

9.6 OTA transmitted signal quality

9.6.1 OTA frequency error

9.6.1.1 General

The requirements in clause 9.6.1 apply to the transmitter ON period.
OTA frequency error is the measure of the difference between the actual BS transmit frequency and the assigned frequency. The same source shall be used for RF frequency and data clock generation.

OTA frequency error requirement is defined as a directional requirement at the RIB and shall be met within the OTA coverage range.

9.6.1.2 Minimum requirement for $B S$ type 1-O

For BS type 1-O, the modulated carrier frequency of each NR carrier configured by the BS shall be accurate to within the accuracy range given in table 6.5.1.2-1 observed over 1 ms .

9.6.1.3 Minimum requirement for BS type 2-O

For BS type 2-O, the modulated carrier frequency of each NR carrier configured by the BS shall be accurate to within the accuracy range given in table 9.6.1.3-1 observed over 1 ms .

Table 9.6.1.3-1: OTA frequency error minimum requirement

BS class	Accuracy
Wide Area BS	$\pm 0.05 \mathrm{ppm}$
Medium Range BS	$\pm 0.1 \mathrm{ppm}$
Local Area BS	$\pm 0.1 \mathrm{ppm}$

9.6.2 OTA modulation quality

9.6.2.1 General

Modulation quality is defined by the difference between the measured carrier signal and an ideal signal. Modulation quality can e.g. be expressed as Error Vector Magnitude (EVM). Details about how the EVM is determined are specified in Annex B for FR1 and Annex C for FR2.

OTA modulation quality requirement is defined as a directional requirement at the RIB and shall be met within the OTA coverage range.

9.6.2.2 Minimum Requirement for BS type 1-O

For BS type 1-O, the EVM levels of each NR carrier for different modulation schemes on PDSCH outlined in table 6.5.2.2-1 shall be met. Requirements shall be the same as clause 6.5.2.2 and follow EVM frame structure from clause 6.5.2.3.

9.6.2.3 Minimum Requirement for BS type 2-O

For BS type 2-O, the EVM levels of each NR carrier for different modulation schemes on PDSCH outlined in table 9.6.2.3-1 shall be met, following the EVM frame structure described in clause 9.6.2.3.1.

Table 9.6.2.3-1: EVM requirements for BS type 2-O carrier

Modulation scheme for PDSCH	Required EVM (\%)
QPSK	17.5
16QAM	12.5
64QAM	8

9.6.2.3.1 EVM frame structure for measurement

EVM requirements shall apply for each NR carrier over all allocated resource blocks. Different modulation schemes listed in table 9.6.2.3-1 shall be considered for rank 1.

For NR, for all bandwidths, the EVM measurement shall be performed for each NR carrier over all allocated resource blocks and downlink subframes within 10 ms measurement periods. The boundaries of the EVM measurement periods need not be aligned with radio frame boundaries.

9.6.3 OTA time alignment error

9.6.3.1 General

This requirement shall apply to frame timing in MIMO transmission, carrier aggregation and their combinations.
Frames of the NR signals present in the radiated domain are not perfectly aligned in time. In relation to each other, the RF signals present in the radiated domain may experience certain timing differences.

The TAE is specified for a specific set of signals/transmitter configuration/transmission mode.
For a specific set of signals/transmitter configuration/transmission mode, the OTA Time Alignment Error (OTA TAE) is defined as the largest timing difference between any two different NR signals. The OTA time alignment error requirement is defined as a directional requirement at the RIB and shall be met within the OTA coverage range.

9.6.3.2 Minimum requirement for $B S$ type 1-O

For MIMO transmission, at each carrier frequency, OTA TAE shall not exceed 65 ns .
For intra-band contiguous carrier aggregation, with or without MIMO, OTA TAE shall not exceed 260 ns .
For intra-band non-contiguous carrier aggregation, with or without MIMO, OTA TAE shall not exceed $3 \mu \mathrm{~s}$.

For inter-band carrier aggregation, with or without MIMO, OTA TAE shall not exceed $3 \mu \mathrm{~s}$.
Table 9.6.3.2-1: Void
Table 9.6.3.2-2: Void
Table 9.6.3.2-3: Void

9.6.3.3 Minimum requirement for $B S$ type 2-O

For MIMO transmission, at each carrier frequency, OTA TAE shall not exceed 65 ns .
For intra-band contiguous carrier aggregation, with or without MIMO, OTA TAE shall not exceed 130 ns .
For intra-band non-contiguous carrier aggregation, with or without MIMO, OTA TAE shall not exceed 260 ns.

For inter-band carrier aggregation, with or without MIMO, OTA TAE shall not exceed $3 \mu \mathrm{~s}$.
Table 9.6.3.3-1: Void
Table 9.6.3.3-2: Void
Table 9.6.3.3-3: Void

9.7 OTA unwanted emissions

9.7.1 General

Unwanted emissions consist of so-called out-of-band emissions and spurious emissions according to ITU definitions ITU-R SM. 329 [2]. In ITU terminology, out of band emissions are unwanted emissions immediately outside the $B S$ channel bandwidth resulting from the modulation process and non-linearity in the transmitter but excluding spurious emissions. Spurious emissions are emissions which are caused by unwanted transmitter effects such as harmonics emission, parasitic emission, intermodulation products and frequency conversion products, but exclude out of band emissions.

The OTA out-of-band emissions requirement for the BS type 1-O and BS type 2-O transmitter is specified both in terms of Adjacent Channel Leakage power Ratio (ACLR) and operating band unwanted emissions (OBUE). The OTA Operating band unwanted emissions define all unwanted emissions in each supported downlink operating band plus the frequency ranges $\Delta \mathrm{f}_{\text {OBUE }}$ above and $\Delta \mathrm{f}_{\text {OBUE }}$ below each band. OTA Unwanted emissions outside of this frequency range are limited by an OTA spurious emissions requirement.

The maximum offset of the operating band unwanted emissions mask from the operating band edge is $\Delta \mathrm{f}_{\text {obue. }}$ The value of $\Delta \mathrm{f}_{\text {OBUE }}$ is defined in table 9.7.1-1 for BS type 1-O and BS type 2-O for the NR operating bands.

Table 9.7.1-1: Maximum offset $\Delta f_{\text {OBUE }}$ outside the downlink operating band

BS type	Operating band characteristics	$\Delta \mathrm{fobue}(\mathrm{MHz})$
BS type 1-0	FDL,high - F ${ }_{\text {DL, low }}<100 \mathrm{MHz}$	10
	$100 \mathrm{MHz} \leq$ FdL, high - Follow $\leq 900 \mathrm{MHz}$	40
BS type 2-O	$F_{\text {DL, high }}-\mathrm{F}_{\text {DL,low }} \leq 3250 \mathrm{MHz}$	1500

The unwanted emission requirements are applied per cell for all the configurations. Requirements for OTA unwanted emissions are captured using TRP, directional requirements or co-location requirements as described per requirement.

There is in addition a requirement for occupied bandwidth.

9.7.2 OTA occupied bandwidth

9.7.2.1 General

The OTA occupied bandwidth is the width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage $\beta / 2$ of the total mean transmitted power. See also recommendation ITU-R SM. 328 [3].

The value of $\beta / 2$ shall be taken as 0.5%.
The OTA occupied bandwidth requirement shall apply during the transmitter ON period for a single transmitted carrier. The minimum requirement below may be applied regionally. There may also be regional requirements to declare the OTA occupied bandwidth according to the definition in the present clause.

The OTA occupied bandwidth is defined as a directional requirement and shall be met in the manufacturer's declared OTA coverage range at the RIB.

9.7.2.2 Minimum requirement for $B S$ type 1-O and BS type 2-O

The OTA occupied bandwidth for each NR carrier shall be less than the BS channel bandwidth. For intra-band contiguous CA, the OTA occupied bandwidth shall be less than or equal to the Aggregated BS Channel Bandwidth.

9.7.3 OTA Adjacent Channel Leakage Power Ratio (ACLR)

9.7.3.1 General

OTA Adjacent Channel Leakage power Ratio (ACLR) is the ratio of the filtered mean power centred on the assigned channel frequency to the filtered mean power centred on an adjacent channel frequency. The measured power is TRP.

The requirement shall be applied per RIB during the transmitter ON period.

9.7.3.2 Minimum requirement for BS type 1-O

The ACLR (CACLR) absolute basic limits in table 6.6.3.2-2 + X, 6.6.3.2-2 $\mathrm{a}+\mathrm{X}$ (where $\mathrm{X}=9 \mathrm{~dB}$) or the ACLR (CACLR) basic limit in table 6.6.3.2-1, 6.6.3.2-2a or 6.6.3.2-3, whichever is less stringent, shall apply.

For a RIB operating in multi-carrier or contiguous CA, the ACLR requirements in clause 6.6.3.2 shall apply to $B S$ channel bandwidths of the outermost carrier for the frequency ranges defined in table 6.6.3.2-1.For a RIB operating in non-contiguous spectrum, the ACLR requirement in clause 6.6.3.2 shall apply in sub-block gaps for the frequency ranges defined in table 6.6.3.2-2a, while the CACLR requirement in clause 6.6.3.2 shall apply in sub-block gaps for the frequency ranges defined in table 6.6.3.2-3.

For a multi-band RIB, the ACLR requirement in clause 6.6.3.2 shall apply in Inter RF Bandwidth gaps for the frequency ranges defined in table 6.6.3.2-2a, while the CACLR requirement in clause 6.6.3.2 shall apply in Inter RF Bandwidth gaps for the frequency ranges defined in table 6.6.3.2-3.

9.7.3.3 Minimum requirement for BS type 2-O

The OTA ACLR limit is specified in table 9.7.3.3-1.
The OTA ACLR absolute limit is specified in table 9.7.3.3-2.
The OTA ACLR (CACLR) absolute limit in table 9.7.3.3-2 or 9.7.3.3-4a or the ACLR (CACLR) limit in table 9.7.3.31, 9.7.3.3-3 or 9.7.3.3-4, whichever is less stringent, shall apply.

For a $R I B$ operating in multi-carrier or contiguous CA, the OTA ACLR requirements in table 9.7.3.3-1 shall apply to $B S$ channel bandwidths of the outermost carrier for the frequency ranges defined in the table.For a RIB operating in noncontiguous spectrum, the OTA ACLR requirement in table 9.7.3.3-3 shall apply in sub-block gaps for the frequency ranges defined in the table, while the OTA CACLR requirement in table 9.7.3.3-4 shall apply in sub-block gaps for the frequency ranges defined in the table.

The CACLR in a sub-block gap is the ratio of:
a) the sum of the filtered mean power centred on the assigned channel frequencies for the two carriers adjacent to each side of the sub-block gap, and
b) the filtered mean power centred on a frequency channel adjacent to one of the respective sub-block edges.

The assumed filter for the adjacent channel frequency is defined in table 9.7.3.3-4 and the filters on the assigned channels are defined in table 9.7.3.3-5.

For operation in non-contiguous spectrum, the CACLR for NR carriers located on either side of the sub-block gap shall be higher than the value specified in table 9.7.3.3-4.

Table 9.7.3.3-1: BS type 2-O ACLR limit

BS channel bandwidth of lowest/highes carrier transmitted BWchannel (MHz)	BS adjacent channel centre frequency offset below the lowest or above the highest carrier centre frequency transmitted	Assumed adjacent channel carrier	Filter on the adjacent channel frequency and corresponding filter bandwidth	ACLR limit (dB)
$\begin{gathered} 50,100,200, \\ 400 \end{gathered}$	BW Channel	NR of same BW (Note 2)	Square (BWContig)	$\begin{aligned} & 28 \text { (Note 3) } \\ & 26 \text { (Note 4) } \end{aligned}$

NOTE 1: \quad BW Channel and $\mathrm{BW}_{\text {Config }}$ are the BS channel bandwidth and transmission bandwidth configuration of the lowest/highest carrier transmitted on the assigned channel frequency.
NOTE 2: With SCS that provides largest transmission bandwidth configuration (BW Config).
NOTE 3: Applicable to bands defined within the frequency spectrum range of $24.25-33.4 \mathrm{GHz}$
NOTE 4: Applicable to bands defined within the frequency spectrum range of $37-52.6 \mathrm{GHz}$

Table 9.7.3.3-2: BS type 2-O ACLR absolute limit

BS class	ACLR absolute limit
Wide area BS	$-13 \mathrm{dBm} / \mathrm{MHz}$
Medium range BS	$-20 \mathrm{dBm} / \mathrm{MHz}$
Local area BS	$-20 \mathrm{dBm} / \mathrm{MHz}$

Table 9.7.3.3-3: BS type 2-O ACLR limit in non-contiguous spectrum

BS channel bandwidth of lowest/highest carrier transmitted (MHz)	Sub-block gap size (Wgap) where the limit applies (MHz)	BS adjacent channel centre frequency offset below or above the sub-block edge (inside the gap)	Assumed adjacent channel carrier	Filter on the adjacent channel frequency and corresponding filter bandwidth	ACLR limit
50, 100	$\begin{gathered} W_{\text {gap }} \geq 100 \\ \text { (Note 5) } \\ W_{\text {gap }} \geq 250 \\ \text { (Note 6) } \\ \hline \end{gathered}$	25 MHz	50 MHz NR (Note 2)	Square (BWConfig)	$\begin{aligned} & 28 \text { (Note 3) } \\ & 26(\text { Note } 4) \end{aligned}$
200, 400	$\begin{gathered} \mathrm{W}_{\text {gap }} \geq 400 \\ \text { (Note 6) } \\ \mathrm{W}_{\text {gap }} \geq 250 \\ \text { (Note 5) } \\ \hline \end{gathered}$	100 MHz	$\begin{aligned} & 200 \mathrm{MHz} \text { NR } \\ & \text { (Note 2) } \end{aligned}$	Square (BW ${ }_{\text {config }}$)	$\begin{aligned} & 28 \text { (Note 3) } \\ & 26 \text { (Note 4) } \end{aligned}$
NOTE 1: BW Config is the transmission bandwidth configuration of the assumed adjacent channel carrier. NOTE 2: With SCS that provides largest transmission bandwidth configuration (BW Config). NOTE 3: Applicable to bands defined within the frequency spectrum range of $24.25-33.4 \mathrm{GHz}$. NOTE 4: Applicable to bands defined within the frequency spectrum range of $37-52.6 \mathrm{GHz}$. NOTE 5: Applicable in case the BS channel bandwidth of the NR carrier transmitted at the other edge of the gap is 50 or 100 MHz . NOTE 6: Applicable in case the BS channel bandwidth of the NR carrier transmitted the other edge of the gap is 200 or 400 MHz .					

Table 9.7.3.3-4: BS type 2-O CACLR limit in non-contiguous spectrum

BS channel bandwidth of lowest/highest carrier transmitted (MHz)	Sub-block gap size ($\mathrm{W}_{\text {gap }}$) where the limit applies (MHz)	BS adjacent channel centre frequency offset below or above the sub-block edge (inside the gap)	Assumed adjacent channel carrier	Filter on the adjacent channel frequency and corresponding filter bandwidth	CACLR limit
50, 100	$\begin{gathered} 50 \leq W_{\text {gap }}<100 \\ \text { (Note } 5) \\ 50 \leq W_{\text {gap }}<250 \\ \text { (Note 6) } \\ \hline \end{gathered}$	25 MHz	50 MHz NR (Note 2)	Square (BWConfig)	28 (Note 3) 26 (Note 4)
200, 400	$\begin{aligned} & 200 \leq W_{\text {gap }}< \\ & 400 \text { (Note 6) } \\ & 200 \leq W_{\text {gap }}< \\ & 250 \text { (Note 5) } \end{aligned}$	100 MHz	$\begin{aligned} & 200 \mathrm{MHz} \text { NR } \\ & \text { (Note 2) } \end{aligned}$	Square (BW ${ }_{\text {Config }}$)	28 (Note 3) 26 (Note 4)

NOTE 1: BWConfig is the transmission bandwidth configuration of the assumed adjacent channel carrier.
NOTE 2: With SCS that provides largest transmission bandwidth configuration (BWConfig).
NOTE 3: Applicable to bands defined within the frequency spectrum range of $24.25-33.4 \mathrm{GHz}$.
NOTE 4: Applicable to bands defined within the frequency spectrum range of $37-52.6 \mathrm{GHz}$.
NOTE 5: Applicable in case the BS channel bandwidth of the NR carrier transmitted at the other edge of the gap is 50 or 100 MHz .
NOTE 6: Applicable in case the BS channel bandwidth of the NR carrier transmitted at the other edge of the gap is 200 or 400 MHz .

Table 9.7.3.3-4a: BS type 2-O CACLR absolute limit

BS class	CACLR absolute limit
Wide area BS	$-13 \mathrm{dBm} / \mathrm{MHz}$
Medium range BS	$-20 \mathrm{dBm} / \mathrm{MHz}$
Local area BS	$-20 \mathrm{dBm} / \mathrm{MHz}$

Table 9.7.3.3-5: Filter parameters for the assigned channel

RAT of the carrier adjacent to the sub-block gap	Filter on the assigned channel frequency and corresponding filter bandwidth
NR	NR of same BW with SCS that provides largest transmission bandwidth configuration

9.7.4 OTA operating band unwanted emissions

9.7.4.1 General

The OTA limits for operating band unwanted emissions are specified as TRP per RIB unless otherwise stated.

9.7.4.2 Minimum requirement for $B S$ type 1-O

Out-of-band emissions in FR1 are limited by OTA operating band unwanted emission limits. Unless otherwise stated, the operating band unwanted emission limits in FR1 are defined from $\Delta \mathrm{f}_{\text {OBUE }}$ below the lowest frequency of each supported downlink operating band up to $\Delta \mathrm{f}_{\text {OBUE }}$ above the highest frequency of each supported downlink operating band. The values of $\Delta \mathrm{f}_{\text {OBUE }}$ are defined in table 9.7.1-1 for the NR operating bands.

The requirements shall apply whatever the type of transmitter considered and for all transmission modes foreseen by the manufacturer's specification. For a $R I B$ operating in multi-carrier or contiguous CA , the requirements apply to $B S$ channel bandwidths of the outermost carrier for the frequency ranges defined in clause 6.6.4.1.

For a RIB operating in non-contiguous spectrum, the requirements shall apply inside any sub-block gap for the frequency ranges defined in clause 6.6.4.1.

For a multi-band RIB, the requirements shall apply inside any Inter RF Bandwidth gap for the frequency ranges defined in clause 6.6.4.1.

The OTA operating band unwanted emission requirement for BS type 1-O is that for each applicable basic limit in clause 6.6.4.2, the power of any unwanted emission shall not exceed an OTA limit specified as the basic limit +X , where $\mathrm{X}=9 \mathrm{~dB}$.

9.7.4.2.1 Additional requirements

9.7.4.2.1. \quad Protection of DTT

In certain regions the following requirement may apply for protection of DTT. For BS type $1-O$ operating in Band n20, the level of emissions in the band $470-790 \mathrm{MHz}$, measured in an 8 MHz filter bandwidth on centre frequencies $\mathrm{F}_{\text {filter }}$ according to table 9.7.4.2.1.1-1, shall not exceed the maximum emission TRP level shown in the table. This requirement applies in the frequency range $470-790 \mathrm{MHz}$ even though part of the range falls in the spurious domain.

Table 9.7.4.2.1.1-1: Declared emissions levels for protection of DTT

Case	Measurement filter centre frequency	Condition on BS maximum aggregate TRP / 10 MHz, (NOTE)	Maximum level PTRP,	Measurement bandwidth

9.7.4.2.1.2 Limits in FCC Title 47

The BS may have to comply with the applicable emission limits established by FCC Title 47 [8], when deployed in regions where those limits are applied, and under the conditions declared by the manufacturer.

9.7.4.3 Minimum requirement for $B S$ type 2-O

9.7.4.3.1 General

The requirements of either clause 9.7.4.3.2 (Category A limits) or clause 9.7.4.3.3 (Category B limits) shall apply. The application of either Category A or Category B limits shall be the same as for General OTA transmitter spurious emissions requirements (BS type 2-O) in clause 9.7.5.3.2. In addition, the limits in clause 9.7.4.3.4 may also apply.

Out-of-band emissions in FR2 are limited by OTA operating band unwanted emission limits. Unless otherwise stated, the OTA operating band unwanted emission limits in FR2 are defined from Δ fobue $^{\text {below the lowest frequency of each }}$ supported downlink operating band up to $\Delta \mathrm{f}_{\text {OBUE }}$ above the highest frequency of each supported downlink operating band. The values of $\Delta \mathrm{f}_{\text {OBUE }}$ are defined in table 9.7.1-1 for the NR operating bands.

The requirements shall apply whatever the type of transmitter considered and for all transmission modes foreseen by the manufacturer's specification. For a RIB operating in multi-carrier or contiguous CA, the requirements apply to the
frequencies ($\Delta \mathrm{f}_{\mathrm{OBUE}}$) starting from the edge of the contiguous transmission bandwidth. In addition, for a RIB operating in non-contiguous spectrum, the requirements apply inside any sub-block gap.

Emissions shall not exceed the maximum levels specified in the tables below, where:

- $\Delta \mathrm{f}$ is the separation between the contiguous transmission bandwidth edge frequency and the nominal -3 dB point of the measuring filter closest to the contiguous transmission bandwidth edge.
- f_offset is the separation between the contiguous transmission bandwidth edge frequency and the centre of the measuring filter.
- $\mathrm{f}_{\text {_offset }}{ }_{\text {max }}$ is the offset to the frequency $\Delta \mathrm{f}_{\text {OBUE }}$ outside the downlink operating band, where $\Delta \mathrm{f}_{\text {OBUE }}$ is defined in table 9.7.1-1.
- $\Delta f_{\text {max }}$ is equal to f_{o} offset $_{\text {max }}$ minus half of the bandwidth of the measuring filter.

In addition, inside any sub-block gap for a RIB operating in non-contiguous spectrum, emissions shall not exceed the cumulative sum of the limits specified for the adjacent sub-blocks on each side of the sub-block gap. The limit for each sub-block is specified in clauses 9.7.4.3.2 and 9.7.4.3.3 below, where in this case:

- $\Delta \mathrm{f}$ is the separation between the sub-block edge frequency and the nominal -3 dB point of the measuring filter closest to the sub-block edge.
- f_offset is the separation between the sub-block edge frequency and the centre of the measuring filter.
- f_offset ${ }_{\text {max }}$ is equal to the sub-block gap bandwidth minus half of the bandwidth of the measuring filter.
- $\Delta f_{\text {max }}$ is equal to f_{-}offset $t_{\text {max }}$ minus half of the bandwidth of the measuring filter.

9.7.4.3.2 OTA operating band unwanted emission limits (Category A)

BS unwanted emissions shall not exceed the maximum levels specified in table 9.7.4.3.2-1 and 9.7.4.3.2-2.
Table 9.7.4.3.2-1: OBUE limits applicable in the frequency range 24.25 - 33.4 GHz

Frequency offset of measurement filter -3B point, Δf	Frequency offset of measurement filter centre frequency, f_offset	Limit	Measurement bandwidth
$0 \mathrm{MHz} \leq \Delta \mathrm{f}<$ $0.1 * \mathrm{BW}_{\text {contiguous }}$	$\begin{gathered} 0.5 \mathrm{MHz} \leq \mathrm{f} \text { _offset }<0.1^{*} \\ \mathrm{BW}_{\text {contiguous }}+0.5 \mathrm{MHz} \end{gathered}$	$\begin{gathered} \operatorname{Min}(-5 \mathrm{dBm}, \operatorname{Max}(\text { Prated.,t,TRP }- \\ 35 \mathrm{~dB},-12 \mathrm{dBm})) \end{gathered}$	1 MHz
$\begin{gathered} 0.1^{*} \mathrm{BW}_{\text {contiguous }} \leq \Delta \mathrm{f} \\ <\Delta \mathrm{f}_{\text {max }} \end{gathered}$	$0.1^{*} \mathrm{BW}_{\text {contiguous }}+0.5 \mathrm{MHz} \leq$ f offset < f offsetmax	$\begin{gathered} \operatorname{Min}(-13 \mathrm{dBm}, \operatorname{Max}(\text { Prated }, \mathrm{t}, \mathrm{TRP} \\ -43 \mathrm{~dB},-20 \mathrm{dBm})) \end{gathered}$	1 MHz
NOTE 1: For non-contiguous spectrum operation within any operating band the limit within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks on each side of the sub-block gap.			

Table 9.7.4.3.2-2: OBUE limits applicable in the frequency range $37 \mathbf{- 5 2 . 6} \mathbf{G H z}$

Frequency offset of measurement filter -3B point, Δf	Frequency offset of measurement filter centre frequency, f_offset	Limit	Measurement bandwidth
$0 \mathrm{MHz} \leq \Delta \mathrm{f}<$ $0.1 * B W$ contiguous	$\begin{gathered} 0.5 \mathrm{MHz} \leq \mathrm{f}^{2} \text { offset }<0.1^{*} \\ \mathrm{BW}_{\text {contiguous }}+0.5 \mathrm{MHz} \\ \hline \end{gathered}$	$\begin{gathered} \hline \operatorname{Min}(-5 \mathrm{dBm}, \operatorname{Max}(\text { Prated.,t,TRP }- \\ 33 \mathrm{~dB},-12 \mathrm{dBm})) \\ \hline \end{gathered}$	1 MHz
$0.1^{*} \mathrm{BW} \text { contiguous } \leq$ $\Delta \mathrm{f}<\Delta \mathrm{f}_{\max }$	0.1^{*} BW contiguous $+0.5 \mathrm{MHz} \leq$ f offset < f offset ${ }_{\text {max }}$	$\begin{gathered} \operatorname{Min}(-13 \mathrm{dBm}, \operatorname{Max}(\text { Prated, }, \text { TRP }- \\ 41 \mathrm{~dB},-20 \mathrm{dBm})) \end{gathered}$	1 MHz
NOTE 1: For non-contiguous spectrum operation within any operating band the limit within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks on each side of the sub-block gap.			

Table 9.7.4.3.2-3: Void

9.7.4.3.3 OTA operating band unwanted emission limits (Category B)

BS unwanted emissions shall not exceed the maximum levels specified in table 9.7.4.3.3-1 or 9.7.4.3.3-2.
Table 9.7.4.3.3-1: OBUE limits applicable in the frequency range $24.25-33.4 \mathrm{GHz}$

Frequency offset of measurement filter -3 dB point, Δf	Frequency offset of measurement filter centre frequency, f_offset	Limit	Measurement bandwidth
$0 \mathrm{MHz} \leq \Delta \mathrm{f}<$ $0.1^{*} \mathrm{BW}$ contiguous	$\begin{gathered} 0.5 \mathrm{MHz} \leq \mathrm{f} \text { _offset }<0.1^{*} \\ \mathrm{BW}_{\text {contiguous }}+0.5 \mathrm{MHz} \end{gathered}$	$\begin{gathered} \hline \operatorname{Min}(-5 \mathrm{dBm}, \operatorname{Max}(\mathrm{Prated}, \mathrm{t}, \mathrm{TRP}- \\ 35 \mathrm{~dB},-12 \mathrm{dBm})) \\ \hline \end{gathered}$	1 MHz
$\begin{gathered} 0.1^{*} \mathrm{BW}_{\text {contiguous }} \leq \Delta \mathrm{f} \\ \\ <\Delta \mathrm{f}_{\mathrm{B}} \end{gathered}$	$\begin{gathered} 0.1^{*} \text { BW contiguous }+0.5 \mathrm{MHz} \leq \\ \text { f_offset }<\Delta \mathrm{f}_{\mathrm{B}}+0.5 \mathrm{MHz} \end{gathered}$	$\begin{gathered} \operatorname{Min}(-13 \mathrm{dBm}, \operatorname{Max}(\text { Prated,t,TRP } \\ -43 \mathrm{~dB},-20 \mathrm{dBm})) \\ \hline \end{gathered}$	1 MHz
$\Delta \mathrm{f}_{\mathrm{B}} \leq \Delta \mathrm{f}<\Delta \mathrm{f}_{\text {max }}$	$\begin{gathered} \Delta \mathrm{f}_{\mathrm{B}}+5 \mathrm{MHz} \leq \mathrm{f}_{2} \text { offset }<\mathrm{f}_{-} \\ \text {offsetmax } \end{gathered}$	$\begin{gathered} \operatorname{Min}(-5 \mathrm{dBm}, \operatorname{Max}(\mathrm{Prated}, \mathrm{t}, \mathrm{TRP}- \\ 33 \mathrm{~dB},-10 \mathrm{dBm})) \end{gathered}$	10 MHz

NOTE 1: For non-contiguous spectrum operation within any operating band the limit within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks on each side of the sub-block gap, where the contribution from the far-end sub-block shall be scaled according to the measurement bandwidth of the near-end sub-block.
NOTE 2: $\Delta f_{B}=2^{*} B W_{\text {contiguous }}$ when $B W_{\text {contiguous }} \leq 500 \mathrm{MHz}$, otherwise $\Delta f_{B}=B W_{\text {contiguous }}+500 \mathrm{MHz}$.

Table 9.7.4.3.3-2: OBUE limits applicable in the frequency range $37-52.6 \mathrm{GHz}$

Frequency offset of measurement filter -3B point, Δf	Frequency offset of measurement filter centre frequency, f_offset	Limit	Measurement bandwidth
$\begin{gathered} 0 \mathrm{MHz} \leq \Delta \mathrm{f}< \\ 0.1^{*} \mathrm{BW}_{\text {contiguous }} \end{gathered}$	$\begin{gathered} 0.5 \mathrm{MHz} \leq \mathrm{f} \text { _offset }<0.1^{*} \\ \mathrm{BW}_{\text {contiguous }}+0.5 \mathrm{MHz} \end{gathered}$	$\begin{gathered} \hline \operatorname{Min}(-5 \mathrm{dBm}, \operatorname{Max}(\text { Prated.t,TRP }- \\ 33 \mathrm{~dB},-12 \mathrm{dBm})) \end{gathered}$	1 MHz
$\begin{gathered} 0.1^{*} \mathrm{BW}_{\text {contiguous }} \leq \Delta \mathrm{f} \\ \\ <\Delta \mathrm{f}_{\mathrm{B}} \end{gathered}$	$\begin{gathered} 0.1^{*} \text { BW }{ }_{\text {contiguous }}+0.5 \mathrm{MHz} \leq \\ \mathrm{f} \text { _offset }<\Delta \mathrm{f}_{\mathrm{B}}+0.5 \mathrm{MHz} \end{gathered}$	$\begin{gathered} \hline \operatorname{Min}(-13 \mathrm{dBm}, \operatorname{Max}(\text { Prated.,t,TRP } \\ -41 \mathrm{~dB},-20 \mathrm{dBm})) \\ \hline \end{gathered}$	1 MHz
$\Delta \mathrm{f}_{\mathrm{B}} \leq \Delta \mathrm{f}<\Delta \mathrm{f}_{\text {max }}$	$\Delta f_{B}+5 \mathrm{MHz} \leq \mathrm{f}_{-}$offset $<\mathrm{f}_{-}$ offset ${ }_{\text {max }}$	$\begin{gathered} \hline \operatorname{Min}(-5 \mathrm{dBm}, \operatorname{Max}(\text { Prated.t,TRP }- \\ 31 \mathrm{~dB},-10 \mathrm{dBm})) \end{gathered}$	10 MHz
NOTE 1: For non-contiguous spectrum operation within any operating band the limit within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks on each side of the sub-block gap, where the contribution from the far-end sub-block shall be scaled according to the measurement bandwidth of the near-end sub-block. NOTE 2: $\Delta \mathrm{f}_{\mathrm{B}}=2^{\star} \mathrm{BW}$ contiguous when $\mathrm{BW}_{\text {contiguous }} \leq 500 \mathrm{MHz}$, otherwise $\Delta \mathrm{f}_{\mathrm{B}}=\mathrm{BW}_{\text {contiguous }}+500 \mathrm{MHz}$.			

9.7.4.3.4 Additional OTA operating band unwanted emission requirements

9.7.4.3.4.1 Protection of Earth Exploration Satellite Service

For BS operating in the frequency range $24.25-27.5 \mathrm{GHz}$, the power of unwanted emission shall not exceed the limits in table 9.7.4.3.4.1-1.

Table 9.7.4.3.4.1-1: OBUE limits for protection of Earth Exploration Satellite Service

Frequency range	Limit	Measurement Bandwidth
$23.6-24 \mathrm{GHz}$	$-3 \mathrm{dBm}($ Note 1)	200 MHz
$23.6-24 \mathrm{GHz}$	$-9 \mathrm{dBm}($ Note 2)	200 MHz

NOTE 1: This limit applies to BS brought into use on or before 1 September 2027.
NOTE 2: This limit applies to BS brought into use after 1 September 2027.

9.7.5 OTA transmitter spurious emissions

9.7.5.1 General

Unless otherwise stated, all requirements are measured as mean power.
The OTA spurious emissions limits are specified as TRP per RIB unless otherwise stated.

9.7.5.2 Minimum requirement for $B S$ type 1-O

9.7.5.2.1 General

The OTA transmitter spurious emission limits for FR1 shall apply from 30 MHz to 12.75 GHz , excluding the frequency range from $\Delta f_{\text {OBUE }}$ below the lowest frequency of each supported downlink operating band, up to $\Delta f_{\text {OBUE }}$ above the highest frequency of each supported downlink operating band, where the $\Delta f_{\text {OBUE }}$ is defined in table 9.7.1-1. For some FR1 operating bands, the upper limit is higher than 12.75 GHz in order to comply with the $5^{\text {th }}$ harmonic limit of the downlink operating band, as specified in ITU-R recommendation SM. 329 [2].

For multi-band RIB each supported operating band and $\Delta \mathrm{f}_{\text {OBUE }} \mathrm{MHz}$ around each band are excluded from the OTA transmitter spurious emissions requirements.
The requirements shall apply whatever the type of transmitter considered (single carrier or multi-carrier). It applies for all transmission modes foreseen by the manufacturer's specification.

BS type 1-O requirements consists of OTA transmitter spurious emission requirements based on TRP and co-location requirements not based on TRP.

9.7.5.2.2 General OTA transmitter spurious emissions requirements

The Tx spurious emissions requirements for BS type 1-O are that for each applicable basic limit above 30 MHz in clause 6.6.5.2.1, the TRP of any spurious emission shall not exceed an OTA limit specified as the basic limit +X , where $X=9 \mathrm{~dB}$, unless stated differently in regional regulation.

9.7.5.2.3 Protection of the BS receiver of own or different BS

This requirement shall be applied for NR FDD operation in order to prevent the receivers of own or a different BS of the same band being desensitised by emissions from a type 1-O BS.

This requirement is a co-location requirement as defined in clause 4.9, the power levels are specified at the co-location reference antenna output.

The total power of any spurious emission from both polarizations of the co-location reference antenna connector output shall not exceed the basic limits in clause 6.6.5.2.2 +XdB , where $\mathrm{X}=-21 \mathrm{~dB}$.

9.7.5.2.4 Additional spurious emissions requirements

These requirements may be applied for the protection of systems operating in frequency ranges other than the BS downlink operating band. The limits may apply as an optional protection of such systems that are deployed in the same geographical area as the BS, or they may be set by local or regional regulation as a mandatory requirement for an NR operating band. It is in some cases not stated in the present document whether a requirement is mandatory or under what exact circumstances that a limit applies, since this is set by local or regional regulation. An overview of regional requirements in the present document is given in clause 4.5.

Some requirements may apply for the protection of specific equipment (UE, MS and/or BS) or equipment operating in specific systems (GSM, CDMA, UTRA, E-UTRA, NR, etc.). The Tx additional spurious emissions requirements for $B S$ type 1-O are that for each applicable basic limit in clause 6.6.5.2.3, the TRP of any spurious emission shall not exceed an OTA limit specified as the basic limit +X , where $\mathrm{X}=9 \mathrm{~dB}$.

9.7.5.2.5 Co-location with other base stations

These requirements may be applied for the protection of other BS receivers when GSM900, DCS1800, PCS1900, GSM850, CDMA850, UTRA FDD, UTRA TDD, E-UTRA and/or NR BS are co-located with a BS.

The requirements assume co-location with base stations of the same class.
NOTE: For co-location with UTRA, the requirements are based on co-location with UTRA FDD or TDD base stations.

This requirement is a co-location requirement as defined in clause 4.9, the power levels are specified at the co-location reference antenna output(s).

The power sum of any spurious emission is specified over all supported polarizations at the output(s) of the co-location reference antenna and shall not exceed the basic limits in clause 6.6.5.2.4 +XdB , where $\mathrm{X}=-21 \mathrm{~dB}$.

For a multi-band RIB, the exclusions and conditions in the notes column of table 6.6.5.2.4-1 apply for each supported operating band.

9.7.5.3 Minimum requirement for $B S$ type 2-O

9.7.5.3.1 General

In FR2, the OTA transmitter spurious emission limits apply from 30 MHz to $2^{\text {nd }}$ harmonic of the upper frequency edge of the downlink operating band, excluding the frequency range from $\Delta f_{\text {OBUE }}$ below the lowest frequency of the downlink operating band, up to $\Delta \mathrm{f}_{\text {obue }}$ above the highest frequency of the downlink operating band, where the $\Delta \mathrm{f}_{\text {obue }}$ is defined in table 9.7.1-1.

9.7.5.3.2 General OTA transmitter spurious emissions requirements

9.7.5.3.2.1 General

The requirements of either clause 9.7.5.3.2.2 (Category A limits) or clause 9.7.5.3.2.3 (Category B limits) shall apply. The application of either Category A or Category B limits shall be the same as for Operating band unwanted emissions in clause 9.7.4.3.

Table 9.7.5.3.2-1: Void
NOTE: Table 9.7.5.3.2-1 is moved to clause 9.7.5.3.2.2 as Table 9.7.5.3.2.2-1.

9.7.5.3.2.2 OTA transmitter spurious emissions (Category A)

The power of any spurious emission shall not exceed the limits in table 9.7.5.3.2-1
Table 9.7.5.3.2.2-1: BS radiated Tx spurious emission limits in FR2

Frequency range	Limit	Measurement Bandwidth	Note
$30 \mathrm{MHz}-1 \mathrm{GHz}$		100 kHz	Note 1
$1 \mathrm{GHz}-2^{\text {nd }}$ harmonic of the upper frequency edge of the DL operating band	-13 dBm	1 MHz	Note 1, Note 2
NOTE 1: Bandwidth as in ITU-R SM.329 [2], s4.1 NOTE 2: Upper frequency as in ITU-R SM.329 [2], s2.5 table 1.			

9.7.5.3.2.3 OTA transmitter spurious emissions (Category B)

The power of any spurious emission shall not exceed the limits in table 9.7.5.3.2.3-1.
Table 9.7.5.3.2.3-1: BS radiated Tx spurious emission limits in FR2 (Category B)

Frequency range (Note 4)	Limit	Measurement Bandwidth	Note
$30 \mathrm{MHz} \leftrightarrow 1 \mathrm{GHz}$	-36 dBm	100 kHz	Note 1
$1 \mathrm{GHz} \leftrightarrow 18 \mathrm{GHz}$	-30 dBm	1 MHz	Note 1
$18 \mathrm{GHz} \leftrightarrow \mathrm{F}_{\text {step, } 1}$	-20 dBm	10 MHz	Note 2
$\mathrm{F}_{\text {step, } 1} \leftrightarrow \mathrm{~F}_{\text {step, } 2}$	-15 dBm	10 MHz	Note 2
$\mathrm{F}_{\text {step }, 2} \leftrightarrow \mathrm{~F}_{\text {step, },}$	$-10 \mathrm{dBm}$	10 MHz	Note 2
$\mathrm{F}_{\text {step, } 4} \leftrightarrow \mathrm{~F}_{\text {step, } 5}$	$-10 \mathrm{dBm}$	10 MHz	Note 2
$\mathrm{F}_{\text {step }, 5} \leftrightarrow \mathrm{~F}_{\text {step, } 6}$	$-15 \mathrm{dBm}$	10 MHz	Note 2
$\mathrm{F}_{\text {step, } 6} \leftrightarrow 2^{\text {nd }}$ harmonic of the upper frequency edge of the DL operating band	-20 dBm	10 MHz	Note 2, Note 3
NOTE 1: Bandwidth as in ITU-R SM. 329 [2], s4.1 NOTE 2: Limit and bandwidth as in ERC Recommendation 74-01 [19], Annex 2. NOTE 3: Upper frequency as in ITU-R SM. 329 [2], s2.5 table 1. NOTE 4: The step frequencies $F_{\text {step }, \mathrm{x}}$ are defined in Table 9.7.5.3.2.3-2.			

Table 9.7.5.3.2.3-2: Step frequencies for defining the BS radiated Tx spurious emission limits in FR2 (Category B)

Operating band	$\begin{aligned} & \hline \text { Fstep, }^{1} \\ & (\mathrm{GHz}) \end{aligned}$	$\begin{aligned} & \hline \text { Fstep,2 } \\ & (\mathrm{GHz}) \end{aligned}$	$\begin{gathered} \text { Fstep, }^{3} \\ \text { (GHz) } \\ \text { (Note 2) } \end{gathered}$	$\begin{gathered} \text { Fstep,4 } \\ \text { (GHz) } \\ \text { (Note 2) } \end{gathered}$	$\begin{aligned} & \text { Fstep,5 } \\ & \text { (GHz) } \end{aligned}$	$\begin{aligned} & \hline \text { Fstep,6 } \\ & \text { (GHz) } \end{aligned}$
n257	18	23.5	25	31	32.5	41.5
n258	18	21	22.75	29	30.75	40.5

NOTE 1: $\mathrm{F}_{\text {step, } \mathrm{x}}$ are based on ERC Recommendation 74-01 [19], Annex 2.
NOTE 2: $\mathrm{F}_{\text {step, } 3}$ and $\mathrm{F}_{\text {step, } 4}$ are aligned with the values for Δ fobue in Table 9.7.1-1.

9.7.5.3.3 Additional OTA transmitter spurious emissions requirements

These requirements may be applied for the protection of systems operating in frequency ranges other than the BS downlink operating band. The limits may apply as an optional protection of such systems that are deployed in the same geographical area as the BS, or they may be set by local or regional regulation as a mandatory requirement for an NR operating band. It is in some cases not stated in the present document whether a requirement is mandatory or under what exact circumstances that a limit applies, since this is set by local or regional regulation. An overview of regional requirements in the present document is given in clause 4.5.

9.7.5.3.3.1 Limits for protection of Earth Exploration Satellite Service

For BS operating in the frequency range $24.25-27.5 \mathrm{GHz}$, the power of any spurious emissions shall not exceed the limits in Table 9.7.5.3.3.1-1.

Table 9.7.5.3.3.1-1: Limits for protection of Earth Exploration Satellite Service

Frequency range	Limit	Measurement Bandwidth	Note
$23.6-24 \mathrm{GHz}$	-3 dBm	200 MHz	Note 1
$23.6-24 \mathrm{GHz}$	-9 dBm	200 MHz	Note 2

NOTE 1: This limit applies to BS brought into use on or before 1 September 2027.
NOTE 2: This limit applies to BS brought into use after 1 September 2027.

9.8 OTA transmitter intermodulation

9.8.1 General

The OTA transmitter intermodulation requirement is a measure of the capability of the transmitter unit to inhibit the generation of signals in its non-linear elements caused by presence of the wanted signal and an interfering signal reaching the transmitter unit via the RDN and antenna array from a co-located base station. The requirement shall apply during the transmitter ON period and the transmitter transient period.

The requirement shall apply at each RIB supporting transmission in the operating band.
The transmitter intermodulation level is the total radiated power of the intermodulation products when an interfering signal is injected into the co-location reference antenna.

The OTA transmitter intermodulation requirement is not applicable for BS type 2-O.

9.8.2 Minimum requirement for $B S$ type 1-O

For BS type 1-O the transmitter intermodulation level shall not exceed the TRP unwanted emission limits specified for OTA transmitter spurious emission in clause 9.7.5.2 (except clause 9.7.5.2.3 and clause 9.7.5.2.5), OTA operating band unwanted emissions in clause 9.7.4.2 and OTA ACLR in clause 9.7.3.2 in the presence of a wanted signal and an interfering signal, defined in table 9.8.2-1.

The requirement is applicable outside the Base Station RF Bandwidth edges. The interfering signal offset is defined relative to the Base Station RF Bandwidth edges or Radio Bandwidth edges.

For RIBs supporting operation in non-contiguous spectrum, the requirement is also applicable inside a sub-block gap for interfering signal offsets where the interfering signal falls completely within the sub-block gap. The interfering signal offset is defined relative to the sub-block edges.

For RIBs supporting operation in multiple operating bands, the requirement shall apply relative to the Base Station RF Bandwidth edges of each operating band. In case the inter RF Bandwidth gap is less than $3 * \mathrm{BW}_{\text {Channel }}$ (where $\mathrm{BW}_{\text {Channel }}$ is the minimal BS channel bandwidth of the band), the requirement in the gap shall apply only for interfering signal offsets where the interfering signal falls completely within the inter RF Bandwidth gap.

Table 9.8.2-1: Interfering and wanted signals for the OTA transmitter intermodulation requirement

Parameter	Value
Wanted signal	NR signal or multi-carrier, or multiple intra-band contiguously or non- contiguously aggregated carriers
Interfering signal type	NR signal the minimum BS channel bandwidth (BW Channel) with 15 kHz SCS of the band defined in clause 5.3.5
Interfering signal power level	$\mathrm{min}\left(46 \mathrm{dBm}, \mathrm{P}_{\text {rated, }, \text {,TRP }}\right.$)
Interfering signal centre frequency offset from the lower (upper) edge of the wanted signal or edge of sub-block inside a gap	$f_{\text {offset }}= \pm B W_{\text {Channel }}\left(n-\frac{1}{2}\right)$, for $\mathrm{n}=1,2$ and 3

NOTE 1: Interfering signal positions that are partially or completely outside of any downlink operating band of the RIB are excluded from the requirement, unless the interfering signal positions fall within the frequency range of adjacent downlink operating bands in the same geographical area. In case that none of the interfering signal positions fall completely within the frequency range of the downlink operating band, TS 38.141-2 [6] provides further guidance regarding appropriate test requirements.
NOTE 2: In Japan, NOTE 1 is not applied in Band n77, n78, n79.
NOTE 3: For $B S$ type 1-O with dual polarization, the interfering signal power shall be equally divided between the supported polarizations at the co-location reference antenna.

10 Radiated receiver characteristics

10.1 General

Radiated receiver characteristics are specified at RIB for BS type 1-H, BS type 1-O, or BS type 2-O, with full complement of transceivers for the configuration in normal operating condition.

Unless otherwise stated, the following arrangements apply for the radiated receiver characteristics requirements in clause 10:

- Requirements apply during the BS receive period.
- Requirements shall be met for any transmitter setting.
- For FDD operation the requirements shall be met with the transmitter unit(s) ON.
- Throughput requirements defined for the radiated receiver characteristics do not assume HARQ retransmissions.
- When BS is configured to receive multiple carriers, all the throughput requirements are applicable for each received carrier.
- For ACS, blocking and intermodulation characteristics, the negative offsets of the interfering signal apply relative to the lower Base Station RF Bandwidth edge or sub-block edge inside a sub-block gap, and the positive offsets of the interfering signal apply relative to the upper Base Station RF Bandwidth edge or sub-block edge inside a sub-block gap.
- Each requirement shall be met over the RoAoA specified.

NOTE 1: In normal operating condition the BS in FDD operation is configured to transmit and receive at the same time.

NOTE 2: In normal operating condition the BS in TDD operation is configured to TX OFF power during receive period.

For FR1 requirements which are to be met over the OTA REFSENS RoAoA absolute requirement values are offset by the following term:
$\Delta_{\text {Otarefsens }}=44.1-10 * \log _{10}\left(\mathrm{BeW}_{\theta, \text { ReFSENs }} * \mathrm{BeW}_{\varphi, \text { REFSENs }}\right) \mathrm{dB}$ for the reference direction
and

$$
\Delta_{\text {OTAREFSENS }}=41.1-10 * \log _{10}\left(\mathrm{BeW}_{\theta, \text { REFSENS }} * \mathrm{BeW}_{\varphi, \text { REFSENS }}\right) \mathrm{dB} \text { for all other directions }
$$

For requirements which are to be met over the minSENS RoAoA absolute requirement values are offset by the following term:

$$
\Delta_{\text {minSENS }}=\mathrm{P}_{\text {REFSENS }}-\text { EIS }_{\text {minSENS }}(\mathrm{dB})
$$

For FR2 requirements which are to be met over the OTA REFSENS RoAoA absolute requirement values are offset by the following term:

$$
\Delta_{\text {FR2_REFSENS }}=-3 \mathrm{~dB} \text { for the reference direction }
$$

and

$$
\Delta_{\text {FR2_REFSENS }}=0 \mathrm{~dB} \text { for all other directions }
$$

10.2 OTA sensitivity

10.2.1 BS type 1-H and BS type 1-O

10.2.1.1 General

The OTA sensitivity requirement is a directional requirement based upon the declaration of one or more OTA sensitivity direction declarations (OSDD), related to a BS type 1-H and BS type 1-O receiver.

The BS type 1-H and BS type 1-O may optionally be capable of redirecting/changing the receiver target by means of adjusting BS settings resulting in multiple sensitivity RoAoA. The sensitivity RoAoA resulting from the current BS settings is the active sensitivity RoAoA.

If the BS is capable of redirecting the receiver target related to the OSDD then the OSDD shall include:

- BS channel bandwidth and declared minimum EIS level applicable to any active sensitivity RoAoA inside the receiver target redirection range in the OSDD.
- A declared receiver target redirection range, describing all the angles of arrival that can be addressed for the OSDD through alternative settings in the BS.
- Five declared sensitivity RoAoA comprising the conformance testing directions as detailed in TS 38.141-2 [6].
- The receiver target reference direction.

NOTE 1: Some of the declared sensitivity RoAoA may coincide depending on the redirection capability.
NOTE 2: In addition to the declared sensitivity RoAoA, several sensitivity RoAoA may be implicitly defined by the receiver target redirection range without being explicitly declared in the OSDD.

NOTE 3: (Void)
If the BS is not capable of redirecting the receiver target related to the OSDD, then the OSDD includes only:

- The set(s) of RAT, BS channel bandwidth and declared minimum EIS level applicable to the sensitivity RoAoA in the OSDD.
- One declared active sensitivity RoAoA.
- The receiver target reference direction.

NOTE 4: For BS without target redirection capability, the declared (fixed) sensitivity RoAoA is always the active sensitivity RoAoA.

The OTA sensitivity EIS level declaration shall apply to each supported polarization, under the assumption of polarization match.

10.2.1.2 Minimum requirement

For a received signal whose AoA of the incident wave is within the active sensitivity RoAoA of an OSDD, the error rate criterion as described in clause 7.2 shall be met when the level of the arriving signal is equal to the minimum EIS level in the respective declared set of EIS level and BS channel bandwidth.

10.2.2 BS type 2-O

There is no OTA sensitivity requirement for FR2, the OTA sensitivity is the same as the OTA reference sensitivity in clause 10.3.

10.3 OTA reference sensitivity level

10.3.1 General

The OTA REFSENS requirement is a directional requirement and is intended to ensure the minimum OTA reference sensitivity level for a declared OTA REFSENS RoAoA. The OTA reference sensitivity power level EIS REFSENS $^{\text {is the }}$ minimum mean power received at the RIB at which a reference performance requirement shall be met for a specified reference measurement channel.

The OTA REFSENS requirement shall apply to each supported polarization, under the assumption of polarization match.

10.3.2 Minimum requirement for $B S$ type 1-O

The throughput shall be $\geq 95 \%$ of the maximum throughput of the reference measurement channel as specified in the corresponding table and annex A. 1 when the OTA test signal is at the corresponding EIS REFSENS level and arrives from any direction within the OTA REFSENS RoAoA.

Table 10.3.2-1: Wide Area BS reference sensitivity levels

BS channel bandwidth (MHz)	Sub-carrier spacing (kHz)	Reference measurement channel	OTA reference sensitivity level, EISrefsens (dBm)
5, 10, 15	15	G-FR1-A1-1	-101.7- otatarefsens $^{\text {a }}$
10, 15	30	G-FR1-A1-2	-101.8 - \triangle otarefsens
10, 15	60	G-FR1-A1-3	-98.9- \triangle otarefsens
20, 25, 30, 40, 50	15	G-FR1-A1-4	-95.3- \triangle otarefsens
$\begin{gathered} 20,25,30,40,50,60 \\ 70,80,90,100 \end{gathered}$	30	G-FR1-A1-5	-95.6- \triangle otarefsens
$\begin{gathered} 20,25,30,40,50,60 \\ 70,80,90,100 \end{gathered}$	60	G-FR1-A1-6	-95.7- Ootarefsens $^{\text {a }}$
NOTE: EISREFSENS is the power level of a single instance of the reference measurement channel. This requirement shall be met for each consecutive application of a single instance of the reference measurement channel mapped to disjoint frequency ranges with a width corresponding to the number of resource blocks of the reference measurement channel each, except for one instance that might overlap one other instance to cover the full $B S$ channel bandwidth.			

Table 10.3.2-2: Medium Range BS reference sensitivity levels

BS channel bandwidth (MHz)	Sub-carrier spacing (kHz)	Reference measurement channel	OTA reference sensitivity level, EISrefsens (dBm)
5, 10, 15	15	G-FR1-A1-1	-96.7- Ootarefsens $^{\text {a }}$
10, 15	30	G-FR1-A1-2	-96.8- \triangle otarefsens
10, 15	60	G-FR1-A1-3	-93.9- \triangle otarefsens
20, 25, 30, 40, 50	15	G-FR1-A1-4	-90.3- \triangle otarefsens
$\begin{gathered} 20,25,30,40,50,60 \\ 70,80,90,100 \end{gathered}$	30	G-FR1-A1-5	-90.6- Otarefsens $^{\text {a }}$
$\begin{gathered} 20,25,30,40,50,60 \\ 70,80,90,100 \end{gathered}$	60	G-FR1-A1-6	-90.7- Ootarefsens $^{\text {a }}$
NOTE: EISREFSENS is the power level of a single instance of the reference measurement channel. This requirement shall be met for each consecutive application of a single instance of the reference measurement channel mapped to disjoint frequency ranges with a width corresponding to the number of resource blocks of the reference measurement channel each, except for one instance that might overlap one other instance to cover the full $B S$ channel bandwidth.			

Table 10.3.2-3: Local Area BS reference sensitivity levels

BS channel bandwidth (MHz)	Sub-carrier spacing (kHz)	Reference measurement channel	OTA reference sensitivity level, EIS refsens (dBm)
5, 10, 15	15	G-FR1-A1-1	-93.7- Otatarefsens $^{\text {a }}$
10, 15	30	G-FR1-A1-2	-93.8- \triangle otarefsens
10, 15	60	G-FR1-A1-3	-90.9- \triangle otarefsens
20, 25, 30, 40, 50	15	G-FR1-A1-4	-87.3- $\Delta_{\text {OtAREFSENS }}$
$\begin{gathered} 20,25,30,40,50,60 \\ 70,80,90,100 \end{gathered}$	30	G-FR1-A1-5	-87.6- \triangle otarefsens
$\begin{gathered} 20,25,30,40,50,60 \\ 70,80,90,100 \\ \hline \end{gathered}$	60	G-FR1-A1-6	-87.7- Ootarefsens $^{\text {a }}$
NOTE: EISREFSENs is the power level of a single instance of the reference measurement channel. This requirement shall be met for each consecutive application of a single instance of the reference measurement channel mapped to disjoint frequency ranges with a width corresponding to the number of resource blocks of the reference measurement channel each, except for one instance that might overlap one other instance to cover the full $B S$ channel bandwidth.			

10.3.3 Minimum requirement for $B S$ type 2-O

The throughput shall be $\geq 95 \%$ of the maximum throughput of the reference measurement channel as specified in the corresponding table and annex A. 1 when the OTA test signal is at the corresponding EIS Refsens level and arrives from any direction within the OTA REFSENS RoAoA.

EIS $_{\text {REFSENS }}$ levels are derived from a single declared basis level EIS REFSENS_50M, which is based on a reference measurement channel with 50 MHz BS channel bandwidth. EIS REFSENS_50 $^{\text {s }}$ itself is not a requirement and although it is based on a reference measurement channel with 50 MHz BS channel bandwidth it does not imply that BS has to support 50MHz BS channel bandwidth.

For Wide Area BS, EIS REFSENS_50m $^{\text {is }}$ an integer value in the range -96 to -119 dBm . The specific value is declared by the vendor.

For Medium Range BS, EIS Refsens_50m is an integer value in the range -91 to -114 dBm . The specific value is declared by the vendor.

For Local Area BS, EIS REFSENS_50M 2 is an integer value in the range -86 to -109 dBm . The specific value is declared by the vendor.

Table 10.3.3-1: FR2 OTA reference sensitivity requirement

BS channel bandwidth (MHz)	Sub-carrier spacing (kHz)	Reference measurement channel	OTA reference sensitivity level, EISrefsens (dBm)
50, 100, 200	60	G-FR2-A1-1	EISREFSENS_50M + FrR2_REFSENS $^{\text {a }}$
50	120	G-FR2-A1-2	EISREFSENS 50M $+\triangle_{\text {FR2 _ REFSENS }}$
100, 200, 400	120	G-FR2-A1-3	EISREFSENS_50M $+3+\Delta$ fr2_REFSENS

NOTE 1: EISREFSENs is the power level of a single instance of the reference measurement channel. This requirement shall be met for each consecutive application of a single instance of the reference measurement channel mapped to disjoint frequency ranges with a width corresponding to the number of resource blocks of the reference measurement channel each, except for one instance that might overlap one other instance to cover the full $B S$ channel bandwidth.
NOTE 2: The declared EISREFSENS_50M shall be within the range specified above.

10.4 OTA dynamic range

10.4.1 General

The OTA dynamic range is a measure of the capability of the receiver unit to receive a wanted signal in the presence of an interfering signal inside the received BS channel bandwidth.

The requirement shall apply at the RIB when the AoA of the incident wave of a received signal and the interfering signal are from the same direction and are within the OTA REFSENS RoAoA.

The wanted and interfering signals apply to each supported polarization, under the assumption of polarization match.

10.4.2 Minimum requirement for $B S$ type 1-O

For NR, the throughput shall be $\geq 95 \%$ of the maximum throughput of the reference measurement channel.

Table 10.4.2-1: Wide Area BS OTA dynamic range for NR carrier

BS channel bandwidth (MHz)	Subcarrier spacing (kHz)	Reference measurement channel	Wanted signal mean power (dBm)	Interfering signal mean power (dBm) BWConfig	Type of interfering signal
5	15	G-FR1-A2-1	-70.7- \triangle otarefsens	-82.5- $\Delta_{\text {otarefsens }}$	AWGN
	30	G-FR1-A2-2	-71.4- Δ otarefsens		
10	15	G-FR1-A2-1	$-70.7-$ Δ otarefsens	-79.3- \triangle otarefsens	AWGN
	30	G-FR1-A2-2	-71.4- Δ otarefsens		
	60	G-FR1-A2-3	-68.4- \triangle otarefsens		
15	15	G-FR1-A2-1	$-70.7-$ Δ otarefsens	-77.5- Otarefsens $^{\text {a }}$	AWGN
	30	G-FR1-A2-2	-71.4- \triangle otarefsens		
	60	G-FR1-A2-3	$-68.4-$ \triangle otarefsens		
20	15	G-FR1-A2-4	$-64.5-$ \triangle OTAREFSENS	-76.2- Otarefsens $^{\text {a }}$	AWGN
	30	G-FR1-A2-5	-64.5- \triangle otarefsens		
	60	G-FR1-A2-6	$-64.8-$ Δ otarefsens		
25	15	G-FR1-A2-4	-64.5- Δ otarefsens	-75.2- $\Delta_{\text {otarefsens }}$	AWGN
	30	G-FR1-A2-5	-64.5- \triangle otarefsens		
	60	G-FR1-A2-6	-64.8- Δ otarefsens		
30	15	G-FR1-A2-4	-64.5- \triangle otarefsens	-74.4- otarefsens $^{\text {a }}$	AWGN
	30	G-FR1-A2-5	$-64.5-$ \triangle otarefsens		
	60	G-FR1-A2-6	$-64.8-$ \triangle otarefsens		
40	15	G-FR1-A2-4	$-64.5-$ Δ otarefsens	-73.1- otarefsens $^{\text {a }}$	AWGN
	30	G-FR1-A2-5	$-64.5-$ \triangle otarefsens		
	60	G-FR1-A2-6	-64.8- Δ otarefsens		
50	15	G-FR1-A2-4	$-64.5-$ Δ otarefsens	-72.1- \triangle otarefsens	AWGN
	30	G-FR1-A2-5	$-64.5-$ \triangle OTAREFSENS		
	60	G-FR1-A2-6	-64.8- Δ otarefsens		
60	30	G-FR1-A2-5	$-64.5-$ Δ otarefsens	-71.3- \triangle otarefsens	AWGN
	60	G-FR1-A2-6	-64.8 Δ otarefsens		
70	30	G-FR1-A2-5	$-64.5-$ Δ otarefsens	-70.7- $\Delta_{\text {otarefsens }}$	AWGN
	60	G-FR1-A2-6	$-64.8-$ \triangle otarefsens		
80	30	G-FR1-A2-5	-64.5- Δ otarefsens	-70.1- $\Delta_{\text {otarefsens }}$	AWGN
	60	G-FR1-A2-6	$-64.8-$ Δ otarefsens		
90	30	G-FR1-A2-5	$-64.5-$ \triangle OTAREFSENS	-69.5- $\Delta_{\text {otarefsens }}$	AWGN
	60	G-FR1-A2-6	$-64.8-$ Δ otarefsens		
100	30	G-FR1-A2-5	$-64.5-$ Δ otarefsens	-69.1- $\Delta_{\text {otarefsens }}$	AWGN

		60	G-FR1-A2-6	$-64.8-$ \triangle OTAREFSENS	
NOTE:	The wanted signal mean power is the power level of a single instance of the corresponding reference measurement channel. This requirement shall be met for each consecutive application of a single instance of the reference measurement channel mapped to disjoint frequency ranges with a width corresponding to the number of resource blocks of the reference measurement channel each, except for one instance that might overlap one other instance to cover the full $B S$ channel bandwidth.				

Table 10.4.2-2: Medium Range BS OTA dynamic range for NR carrier

BS channel bandwidth (MHz)	$\begin{gathered} \text { Subcarrier } \\ \text { spacing (kHz) } \end{gathered}$	Reference measurement channel	Wanted signal mean power (dBm)	Interfering signal mean power (dBm) BWContig	Type of interfering signal
5	15	G-FR1-A2-1	-65.7- Δ otarefsens	-77.5- $\Delta_{\text {otarefsens }}$	AWGN
	30	G-FR1-A2-2	$-66.4-$ Δ otarefsens		
10	15	G-FR1-A2-1	$-65.7-$ \triangle otarefsens	-74.3- $\Delta_{\text {otarefsens }}$	AWGN
	30	G-FR1-A2-2	$-66.4-$ \triangle otarefsens		
	60	G-FR1-A2-3	-63.4- Δ otarefsens		
15	15	G-FR1-A2-1	$-65.7-$ \triangle otarefsens	-72.5- $\Delta_{\text {otarefsens }}$	AWGN
	30	G-FR1-A2-2	-66.4- \triangle otarefsens		
	60	G-FR1-A2-3	-63.4- Δ otarefsens		
20	15	G-FR1-A2-4	-59.5- Δ otarefsens	-71.2- $\Delta_{\text {otarefsens }}$	AWGN
	30	G-FR1-A2-5	$-59.5-$ \triangle otarefsens		
	60	G-FR1-A2-6	$-59.8-$ Δ otarefsens		
25	15	G-FR1-A2-4	$-59.5-$ Δ otarefsens	-70.2- $\Delta_{\text {otarefsens }}$	AWGN
	30	G-FR1-A2-5	$-59.5-$ \triangle otarefsens		
	60	G-FR1-A2-6	$-59.8-$ \triangle otarefsens		
30	15	G-FR1-A2-4	$-59.5-$ \triangle OTAREFSENS	-69.4- Ottarefsens $^{\text {a }}$	AWGN
	30	G-FR1-A2-5	$-59.5-$ Δ otarefsens		
	60	G-FR1-A2-6	-59.8- Δ otarefsens		
40	15	G-FR1-A2-4	$-59.5-$ \triangle otarefsens	-68.1- \triangle otarefsens	AWGN
	30	G-FR1-A2-5	$-59.5-$ Δ otarefsens		
	60	G-FR1-A2-6	-59.8- Δ otarefsens		
50	15	G-FR1-A2-4	$-59.5-$ Δ otarefsens	-67.1- \triangle otarefsens	AWGN
	30	G-FR1-A2-5	$-59.5-$ \triangle otarefsens		
	60	G-FR1-A2-6	$-59.8-$ Δ otarefsens		
60	30	G-FR1-A2-5	-59.5- \triangle otarefsens	-66.3- \triangle otarefsens	AWGN
	60	G-FR1-A2-6	$-59.8-$ Δ otarefsens		
70	30	G-FR1-A2-5	$-59.5-$ \triangle otarefsens	-65.7- $\Delta_{\text {otarefsens }}$	AWGN
	60	G-FR1-A2-6	$-59.8-$ \triangle otarefsens		
80	30	G-FR1-A2-5	$-59.5-$ \triangle otarefsens	-65.1- Ottarefsens $^{\text {a }}$	AWGN
	60	G-FR1-A2-6	$-59.8-$ Δ otarefsens		
90	30	G-FR1-A2-5	-59.5- \triangle otarefsens	-64.5- Ottarefsens $^{\text {a }}$	AWGN
	60	G-FR1-A2-6	$-59.8-$ Δ OtAREFSENS		
100	30	G-FR1-A2-5	-59.5- \triangle otarefsens	-64.1- Otarefsens $^{\text {a }}$	AWGN

		60	G-FR1-A2-6	$-59.8-$ DOTAREFSENS
NOTE:	The wanted signal mean power is the power level of a single instance of the corresponding reference measurement channel. This requirement shall be met for each consecutive application of a single instance of the reference measurement channel mapped to disjoint frequency ranges with a width corresponding to the number of resource blocks of the reference measurement channel each, except for one instance that might overlap one other instance to cover the full $B S$ channel bandwidth.			

Table 10.4.2-3: Local Area BS OTA dynamic range for NR carrier

BS channel bandwidth (MHz)	Subcarrier spacing (kHz)	Reference measurement channel	Wanted signal mean power (dBm)	Interfering signal mean power (dBm) BWConfig	Type of interfering signal
5	15	G-FR1-A2-1	-62.7- \triangle otarefsens	-74.5- $\Delta_{\text {otarefsens }}$	AWGN
	30	G-FR1-A2-2	$-64.4-$ \triangle otarefsens		
10	15	G-FR1-A2-1	$-62.7-$ Δ otarefsens	-71.3- \triangle otarefsens	AWGN
	30	G-FR1-A2-2	$-64.4-$ Δ otarefsens		
	60	G-FR1-A2-3	-60.4- Δ otarefsens		
15	15	G-FR1-A2-1	$-62.7-$ Δ otarefsens	-69.5- Otarefsens $^{\text {a }}$	AWGN
	30	G-FR1-A2-2	-64.4- \triangle otarefsens		
	60	G-FR1-A2-3	$-60.4-$ Δ otarefsens		
20	15	G-FR1-A2-4	-56.5- \triangle OTAREFSENS	-68.2- \triangle otarefsens	AWGN
	30	G-FR1-A2-5	$-56.5-$ \triangle otarefsens		
	60	G-FR1-A2-6	$-56.8-$ Δ otarefsens		
25	15	G-FR1-A2-4	-56.5 \triangle OTAREFSENS	-67.2- Ottarefsens $^{\text {a }}$	AWGN
	30	G-FR1-A2-5	$-56.5-$ Δ otarefsens		
	60	G-FR1-A2-6	$-56.8-$ Δ otarefsens		
30	15	G-FR1-A2-4	-56.5- \triangle otarefsens	-66.4- $\mathrm{O}_{\text {otarefsens }}$	AWGN
	30	G-FR1-A2-5	$-56.5-$ \triangle otarefsens		
	60	G-FR1-A2-6	$-56.8-$ \triangle otarefsens		
40	15	G-FR1-A2-4	$-56.5-$ Δ otarefsens	-65.1- otarefsens $^{\text {a }}$	AWGN
	30	G-FR1-A2-5	$-56.5-$ \triangle otarefsens		
	60	G-FR1-A2-6	-56.8- Δ otarefsens		
50	15	G-FR1-A2-4	$-56.5-$ \triangle otarefsens	-64.1- otarefsens $^{\text {a }}$	AWGN
	30	G-FR1-A2-5	$-56.5-$ \triangle otarefsens		
	60	G-FR1-A2-6	-56.8- Δ otarefsens		
60	30	G-FR1-A2-5	$-56.5-$ \triangle otarefsens	-63.3- \triangle otarefsens	AWGN
	60	G-FR1-A2-6	-56.8- Δ otarefsens		
70	30	G-FR1-A2-5	$-56.5-$ Δ otarefsens	-62.7- $\Delta_{\text {otarefsens }}$	AWGN
	60	G-FR1-A2-6	$-56.8-$ Δ otarefsens		
80	30	G-FR1-A2-5	$-56.5-$ Δ otarefsens	-62.1- Otarefsens $^{\text {a }}$	AWGN
	60	G-FR1-A2-6	$-56.8-$ \triangle otarefsens		
90	30	G-FR1-A2-5	$-56.5-$ \triangle otarefsens	-61.5- $\Delta_{\text {otarefsens }}$	AWGN
	60	G-FR1-A2-6	$-56.8-$ Δ otarefsens		
100	30	G-FR1-A2-5	-56.5- Δ otarefsens	-61.1- $\Delta_{\text {otarefsens }}$	AWGN

		60	G-FR1-A2-6	$-56.8-$ DOTAREFSENS
NOTE:	The wanted signal mean power is the power level of a single instance of the corresponding reference measurement channel. This requirement shall be met for each consecutive application of a single instance of the reference measurement channel mapped to disjoint frequency ranges with a width corresponding to the number of resource blocks of the reference measurement channel each, except for one instance that might overlap one other instance to cover the full $B S$ channel bandwidth.			

10.5 OTA in-band selectivity and blocking

10.5.1 OTA adjacent channel selectivity

10.5.1.1 General

OTA Adjacent channel selectivity (ACS) is a measure of the receiver's ability to receive an OTA wanted signal at its assigned channel frequency in the presence of an OTA adjacent channel signal with a specified centre frequency offset of the interfering signal to the band edge of a victim system.

10.5.1.2 Minimum requirement for $B S$ type 1-O

The requirement shall apply at the RIB when the AoA of the incident wave of a received signal and the interfering signal are from the same direction and are within the minSENS RoAoA.

The wanted and interfering signals apply to each supported polarization, under the assumption of polarization match.
The throughput shall be $\geq 95 \%$ of the maximum throughput of the reference measurement channel.
For FR1, the OTA wanted and the interfering signal are specified in table 10.5.1.2-1 and table 10.5.1.2-2 for OTA ACS. The reference measurement channel for the OTA wanted signal is further specified in annex A.1. The characteristics of the interfering signal is further specified in annex D .

The OTA ACS requirement is applicable outside the Base Station RF Bandwidth or Radio Bandwidth. The OTA interfering signal offset is defined relative to the Base station RF Bandwidth edges or Radio Bandwidth edges.

For RIBs supporting operation in non-contiguous spectrum within any operating band, the OTA ACS requirement shall apply in addition inside any sub-block gap, in case the sub-block gap size is at least as wide as the NR interfering signal in table 10.5.1.2-2. The OTA interfering signal offset is defined relative to the sub-block edges inside the sub-block gap.

For multi-band RIBs, the OTA ACS requirement shall apply in addition inside any Inter RF Bandwidth gap, in case the Inter RF Bandwidth gap size is at least as wide as the NR interfering signal in table 10.5.1.2-2. The interfering signal offset is defined relative to the Base Station RF Bandwidth edges inside the Inter RF Bandwidth gap.

Table 10.5.1.2-1: OTA ACS requirement for BS type 1-O

BS channel bandwidth of the lowest/highest carrier received (MHz)	Wanted signal mean power (dBm) (Note 2)	Interfering signal mean power (dBm)
$\begin{gathered} 5,10,15,20,25,30, \\ 40,50,60,70,80,90 \\ 100 \text { (Note 1) } \end{gathered}$	EISminsens + 6 dB	Wide Area BS: -52 - $\Delta_{\text {minSENS }}$ Medium Range BS: $-47-\Delta_{\text {minSENS }}$ Local Area BS: -44- $\Delta_{\text {minSENS }}$
NOTE 1: The SCS for the lowest/highest carrier received is the lowest SCS supported by the BS for that bandwidth NOTE 2: EISminsENS depends on the BS channel bandwidth		

Table 10.5.1.2-2: OTA ACS interferer frequency offset for BS type 1-O

BS channel bandwidth of the lowest/highest carrier received (MHz)	Interfering signal centre frequency offset from the lower/upper Base Station RF Bandwidth edge or subblock edge inside a subblock gap (MHz)	Type of interfering signal
5	± 2.5025	5 MHz DFT-s-OFDM NR signal, 15 kHz SCS, 25 RBs
10	± 2.5075	
15	± 2.5125	
20	± 2.5025	
25	± 9.4675	20 MHz DFT-s-OFDM NR signal, 15 kHz SCS, 100 RBs
30	± 9.4725	
40	± 9.4675	
50	± 9.4625	
60	± 9.4725	
70	± 9.4675	
80	± 9.4625	
90	± 9.4725	
100	± 9.4675	

10.5.1.3 Minimum requirement for $B S$ type 2-O

The requirement shall apply at the RIB when the AoA of the incident wave of a received signal and the interfering signal are from the same direction and are within the OTA REFSENS RoAoA.

The wanted and interfering signals apply to each supported polarization, under the assumption of polarization match.
The throughput shall be $\geq 95 \%$ of the maximum throughput of the reference measurement channel.
For FR2, the OTA wanted and the interfering signal are specified in table 10.5.1.3-1 and table 10.5.1.3-2 for OTA ACS. The reference measurement channel for the OTA wanted signal is further specified in annex A.1. The characteristics of the interfering signal is further specified in annex D .

The OTA ACS requirement is applicable outside the Base Station RF Bandwidth. The OTA interfering signal offset is defined relative to the Base station RF Bandwidth edges.

For RIBs supporting operation in non-contiguous spectrum within any operating band, the OTA ACS requirement shall apply in addition inside any sub-block gap, in case the sub-block gap size is at least as wide as the NR interfering signal in table 10.5.1.3-2. The OTA interfering signal offset is defined relative to the sub-block edges inside the sub-block gap.

Table 10.5.1.3-1: OTA ACS requirement for BS type 2-O

BS channel bandwidth of the lowest/highest carrier received (MHz)	Wanted signal mean power (dBm)	Interfering signal mean power (dBm)
50, 100, 200, 400	EISrefsens + 6 dB (Note 3)	```EIS \(_{\text {REFSENS_5 }}\) 50M \(+27.7+\Delta_{\text {FR2_REFSENS }}\) (Note 1) EISREFSENS_50M \(+26.7+\Delta_{\text {FR2_REFSENS }}\) (Note 2)```
NOTE 1: Applicable to bands defined within the frequency spectrum range of 24.25 $-33.4 \mathrm{GHz}$ NOTE 2: Applicable to bands defined within the frequency spectrum range of 37 - $52.6 \mathrm{GHz}$ NOTE 3: EISREFSENs is given in clause 10.3.3		

Table 10.5.1.3-2: OTA ACS interferer frequency offset for BS type 2-O

BS channel bandwidth of the lowest/highest carrier received (MHz)	Interfering signal centre frequency offset from the lower/upper Base Station RF Bandwidth edge or sub- block edge inside a sub- block gap (MHz)	Type of interfering signal
50	± 24.29	
100	± 24.31	50 MHz DFT-s-OFDM NR
200	± 24.29	
400	± 24.31	

10.5.2 OTA in-band blocking

10.5.2.1 General

The OTA in-band blocking characteristics is a measure of the receiver's ability to receive a OTA wanted signal at its assigned channel in the presence of an unwanted OTA interferer, which is an NR signal for general blocking or an NR signal with one RB for narrowband blocking.

10.5.2.2 Minimum requirement for $B S$ type 1-O

The requirement shall apply at the RIB when the AoA of the incident wave of a received signal and the interfering signal are from the same direction, and:

- when the wanted signal is based on EIS REFSENS: $^{\text {the AoA of the incident wave of a received signal and the }}$ interfering signal are within the OTA REFSENS RoAoA.
- when the wanted signal is based on EIS Einsens: the AoA of the incident wave of a received signal and the interfering signal are within the minSENS RoAoA.

The wanted and interfering signals apply to each supported polarization, under the assumption of polarization match.
The throughput shall be $\geq 95 \%$ of the maximum throughput of the reference measurement channel, with OTA wanted and OTA interfering signal specified in tables 10.5.2.2-1, table 10.5.2.2-2 and table 10.5.2.2-3 for general OTA and narrowband OTA blocking requirements. The reference measurement channel for the OTA wanted signal is identified in clause 10.3.2 and are further specified in annex A.1. The characteristics of the interfering signal is further specified in annex D.

The OTA in-band blocking requirements apply outside the Base Station RF Bandwidth or Radio Bandwidth. The interfering signal offset is defined relative to the Base Station RF Bandwidth edges or Radio Bandwidth edges.

For BS type 1-O the OTA in-band blocking requirement shall apply in the in-band blocking frequency range, which is from $\mathrm{F}_{\mathrm{UL}, \text { low }}-\Delta \mathrm{f}_{\text {оов }}$ to $\mathrm{F}_{\mathrm{UL}, \text { high }}+\Delta \mathrm{f}_{\text {оов }}$, excluding the downlink frequency range of the FDD operating band. The $\Delta \mathrm{f}_{\text {оов }}$ for BS type 1- O is defined in table 10.5.2.2-0.

Table 10.5.2.2-0: $\Delta \mathrm{f}_{\mathrm{foв}}$ offset for NR operating bands in FR1

BS type	Operating band characteristics	Δ foos (MHz)
BS type 1-O	FuL,high - FuL,low < 100 MHz	20
	$100 \mathrm{MHz} \leq$ FuL,high - FuL.low $\leq 900 \mathrm{MHz}$	60

For RIBs supporting operation in non-contiguous spectrum within any operating band, the OTA in-band blocking requirements apply in addition inside any sub-block gap, in case the sub-block gap size is at least as wide as twice the interfering signal minimum offset in table 10.5.2.2-1. The interfering signal offset is defined relative to the sub-block edges inside the sub-block gap.

For multi-band RIBs, the OTA in-band blocking requirements apply in the in-band blocking frequency ranges for each supported operating band. The requirement shall apply in addition inside any Inter RF Bandwidth gap, in case the Inter

RF Bandwidth gap size is at least as wide as twice the interfering signal minimum offset in tables 10.5.2.2-1 and 10.5.2.2-3.

For a RIBs supporting operation in non-contiguous spectrum within any operating band, the OTA narrowband blocking requirements apply in addition inside any sub-block gap, in case the sub-block gap size is at least as wide as the interfering signal minimum offset in table 10.5.2.2-3. The interfering signal offset is defined relative to the sub-block edges inside the sub-block gap.

For a multi-band RIBs, the OTA narrowband blocking requirements apply in the narrowband blocking frequency ranges for each supported operating band. The requirement shall apply in addition inside any Inter RF Bandwidth gap, in case the Inter RF Bandwidth gap size is at least as wide as the interfering signal minimum offset in table 10.5.2.2-3.

Table 10.5.2.2-1: General OTA blocking requirement for BS type 1-O

BS channel bandwidth of the lowest/highest carrier received (MHz)	Wanted signal mean power (dBm) (Note 1)	Interfering signal mean power (dBm)	Interfering signal centre frequency minimum offset from the lower/upper Base Station RF Bandwidth edge or sub-block edge inside a sub-block gap (MHz)	Type of interfering signal

Table 10.5.2.2-2: OTA narrowband blocking requirement for BS type 1-O

BS channel bandwidth of the lowest/highest carrier received (MHz)	OTA Wanted signal mean power (dBm)	OTA Interfering signal mean power (dBm)
5, 10, 15, 20	$\begin{gathered} \text { EISREFSENS + } \\ 6 \mathrm{~dB} \end{gathered}$	Wide Area BS: -49- Δ otarefsens Medium Range BS: -44- \triangle otarefsens Local Area BS: -41- \triangle otarefsens
	$\begin{gathered} \text { EISminSENS + } \\ 6 \mathrm{~dB} \end{gathered}$	Wide Area BS: -49 - $\Delta_{\text {minSENS }}$ Medium Range BS: -44 - $\Delta_{\text {minSENS }}$ Local Area BS: -41 $-\Delta_{\text {minSens }}$
$\begin{gathered} 25,30,40,50,60 \\ 70,80,90,100 \end{gathered}$	$\begin{gathered} \text { EISREFSENS + } \\ 6 \mathrm{~dB} \end{gathered}$	Wide Area BS: -49- \triangle otarefsens Medium Range BS: -44- \triangle otarefsens Local Area BS: -41- \triangle otarefsens
	$\begin{gathered} \hline \text { EIS }_{\text {minSENS }}+ \\ 6 \mathrm{~dB} \end{gathered}$	Wide Area BS: -49 - Δ minSENS Medium Range BS: -44 - $\Delta_{\text {minSENS }}$ Local Area BS: $-41-\Delta_{\text {minSENS }}$

NOTE 1: The SCS for the lowest/highest carrier received is the lowest SCS supported by the BS for that bandwidth.
NOTE 2: 7.5 kHz shift is not applied to the wanted signal.

Table 10.5.2.2-3: OTA narrowband blocking interferer frequency offsets for BS type 1-O

BS channel bandwidth of the lowest/highest carrier received (MHz)	Interfering RB centre frequency offset to the lower/upper Base Station RF Bandwidth edge or subblock edge inside a subblock gap (kHz) (Note 2)	Type of interfering signal
5	$\begin{gathered} \pm\left(350+\mathrm{m}^{\star} 180\right) \\ \mathrm{m}=0,1,2,3,4,9,14,19,24 \end{gathered}$	5 MHz DFT-s-OFDM NR signal, 15 kHz SCS, 1 RB
10	$\begin{gathered} \pm\left(355+\mathrm{m}^{*} 180\right) \\ \mathrm{m}=0,1,2,3,4,9,14,19,24 \end{gathered}$	
15	$\begin{gathered} \pm\left(360+m^{*} 180\right) \\ m=0,1,2,3,4,9,14,19,24 \end{gathered}$	
20	$\begin{gathered} \pm\left(350+m^{*} 180\right) \\ m=0,1,2,3,4,9,14,19,24 \end{gathered}$	
25	$\begin{gathered} \pm\left(565+\mathrm{m}^{*} 180\right) \\ \mathrm{m}=0,1,2,3,4,29,54,79,99 \end{gathered}$	20 MHz DFT-s-OFDM NR signal, 15 kHz SCS, 1 RB
30	$\begin{gathered} \pm\left(570+\mathrm{m}^{\star} 180\right) \\ \mathrm{m}=0,1,2,3,4,29,54,79,99 \end{gathered}$	
40	$\begin{gathered} \pm\left(565+\mathrm{m}^{*} 180\right), \\ \mathrm{m}=0,1,2,3,4,29,54,79,99 \end{gathered}$	
50	$\begin{gathered} \pm\left(560+\mathrm{m}^{\star} 180\right) \\ \mathrm{m}=0,1,2,3,4,29,54,79,99 \end{gathered}$	
60	$\begin{gathered} \pm\left(570+\mathrm{m}^{\star} 180\right) \\ m=0,1,2,3,4,29,54,79,99 \end{gathered}$	
70	$\begin{gathered} \pm\left(565+m^{*} 180\right), \\ m=0,1,2,3,4,29,54,79,99 \end{gathered}$	
80	$\begin{gathered} \pm\left(560+\mathrm{m}^{\star 180)}\right. \\ \mathrm{m}=0,1,2,3,4,29,54,79,99 \end{gathered}$	
90	$\begin{gathered} \pm\left(570+\mathrm{m}^{*} 180\right), \\ \mathrm{m}=0,1,2,3,4,29,54,79,99 \end{gathered}$	
100	$\begin{gathered} \pm\left(565+\mathrm{m}^{\star 180)}\right. \\ \mathrm{m}=0,1,2,3,4,29,54,79,99 \end{gathered}$	

NOTE 1: Interfering signal consisting of one resource block is positioned at the stated offset, the channel bandwidth of the interfering signal is located adjacently to the lower/upper Base Station RF Bandwidth edge or sub-block edge inside a sub-block gap.
NOTE 2: The centre of the interfering RB refers to the frequency location between the two central subcarriers.

10.5.2.3 Minimum requirement for BS type 2-O

The requirement shall apply at the RIB when the AoA of the incident wave of a received signal and the interfering signal are from the same direction and are within the OTA REFSENS RoAoA.

The wanted and interfering signals apply to each supported polarization, under the assumption of polarization match.
The throughput shall be $\geq 95 \%$ of the maximum throughput of the reference measurement channel.
For BS type 2-O, the OTA wanted and OTA interfering signals are provided at RIB using the parameters in table 10.5.2.3-1 for general OTA blocking requirements. The reference measurement channel for the wanted signal is further specified in annex A.1. The characteristics of the interfering signal is further specified in annex D.

The OTA blocking requirements are applicable outside the Base Station RF Bandwidth. The interfering signal offset is defined relative to the Base Station RF Bandwidth edges.

For $B S$ type 2- O the OTA in-band blocking requirement shall apply from $\mathrm{F}_{\mathrm{UL} _ \text {low }}-\Delta \mathrm{f}_{\text {оов }}$ to $\mathrm{F}_{\mathrm{UL} \text { _high }}+\Delta \mathrm{f}_{\text {оов. }}$ The $\Delta \mathrm{f}_{\text {оов }}$ for BS type 2-O is defined in table 10.5.2.3-0.

Table 10.5.2.3-0: Δ fooв offset for NR operating bands in FR2

BS type	Operating band characteristics	$\boldsymbol{\Delta f o o в ~ (M H z) ~}$
BS type 2-O	FuL_high - FuL_low $\leq 3250 \mathrm{MHz}$	1500

For a RIBs supporting operation in non-contiguous spectrum within any operating band, the OTA blocking requirements apply in addition inside any sub-block gap, in case the sub-block gap size is at least as wide as twice the interfering signal minimum offset in table 10.5.2.3-1. The interfering signal offset is defined relative to the sub-block edges inside the sub-block gap.

Table 10.5.2.3-1: General OTA blocking requirement for BS type 2-O

BS channel bandwidth of the lowest/highest carrier received (MHz)	OTA wanted signal mean power (dBm)	OTA interfering signal mean power (dBm)	OTA interfering signal centre frequency offset from the	Type of OTA interfering signal lower/upper Base Station RF Bandwidth edge or sub-block edge inside a sub-block gap (MHz)

10.6 OTA out-of-band blocking

10.6.1 General

The OTA out-of-band blocking characteristics are a measure of the receiver unit ability to receive a wanted signal at the $R I B$ at its assigned channel in the presence of an unwanted interferer.

10.6.2 Minimum requirement for $B S$ type 1-O

10.6.2.1 General minimum requirement

The requirement shall apply at the RIB when the AoA of the incident wave of the received signal and the interfering signal are from the same direction and are within the minSENS RoAoA.

The wanted signal applies to each supported polarization, under the assumption of polarization match. The interferer shall be polarization matched in-band and the polarization maintained for out-of-band frequencies.

For OTA wanted and OTA interfering signals provided at the RIB using the parameters in table 10.6.2.1-1, the following requirements shall be met:

- The throughput shall be $\geq 95 \%$ of the maximum throughput of the reference measurement channel. The reference measurement channel for the OTA wanted signal is identified in clause 10.3.2 for each BS channel bandwidth and further specified in annex A.1.

For a multi-band RIB, the OTA out-of-band requirement shall apply for each supported operating band, with the exception that the in-band blocking frequency ranges of all supported operating bands according to clause 7.4.2.2 shall be excluded from the OTA out-of-band blocking requirement.

For BS type 1-O the OTA out-of-band blocking requirement apply from 30 MHz to $\mathrm{F}_{\mathrm{UL}, \mathrm{low}}-\Delta \mathrm{f}_{\mathrm{OOB}}$ and from $\mathrm{F}_{\mathrm{UL}, \text { high }}+$ $\Delta \mathrm{f}_{\text {оов }}$ up to 12750 MHz , including the downlink frequency range of the FDD operating band for BS supporting FDD. The $\Delta \mathrm{f}_{\text {оов }}$ for BS type 1-O is defined in table 10.5.2.2-0.

Table 10.6.2.1-1: OTA out-of-band blocking performance requirement

Wanted signal mean power (dBm)	Interfering signal RMS field-strength (V/m)	Type of interfering Signal
EIS $_{\text {minsens }}+6 \mathrm{~dB}$ (Note 1)	0.36	CW carrier
NOTE 1: EIS minSENS depends on the channel bandwidth as specified in clause 10.2 NOTE 2: The RMS field-strength level in V / m is related to the interferer EIRP level at a distance described as $E=\frac{\sqrt{30 E I R F}}{r}$, where EIRP is in W and r is in m ; for example, $0.36 \mathrm{~V} / \mathrm{m}$ is equivalent to 36 dBm at fixed distance of 30 m.		

10.6.2.2 Co-location minimum requirement

This additional OTA out-of-band blocking requirement may be applied for the protection of BS receivers when NR, E-UTRA BS, UTRA BS, CDMA BS or GSM/EDGE BS operating in a different frequency band are co-located with a BS.

The requirement is a co-location requirement. The interferer power levels are specified at the co-location reference antenna conducted input. The interfering signal power is specified per supported polarization.

The requirement is valid over the minSENS RoAoA.
For OTA wanted and OTA interfering signal provided at the RIB using the parameters in table 10.6.2.1-1, the following requirements shall be met:

- The throughput shall be $\geq 95 \%$ of the maximum throughput of the reference measurement channel. The reference measurement channel for the OTA wanted signal is identified in clause 10.3.2 for each BS channel bandwidth and further specified in annex A.1.

For BS type 1-O the OTA blocking requirement for co-location with BS in other frequency bands is applied for all operating bands for which co-location protection is provided.

Table 10.6.2.2-1: OTA blocking requirement for co-location with BS in other frequency bands

Frequency range of interfering signal	Wanted signal mean power (dBm)	Interfering signal mean power for WA BS (dBm)	Interfering signal mean power for MR BS (dBm)	Interfering signal mean power for LA BS (dBm)	Type of interfering signal
Frequency range of co-located downlink operating band	EIS minSENS +6 dB (Note 1)	+46	+38	+24	CW carrier
NOTE 1: EISminSENS depends on the BS class and on the BS channel bandwidth, see clause 10.2. NOTE 2:The requirement does not apply when the interfering signal falls within any of the supported uplink operating band(s) or in \triangle foos immediately outside any of the supported uplink operating band(s).					

10.6.3 Minimum requirement for $B S$ type 2-O

10.6.3.1 General minimum requirement

The requirement shall apply at the RIB when the AoA of the incident wave of the received signal and the interfering signal are from the same direction and are within the OTA REFSENS RoAoA.

The wanted signal applies to each supported polarization, under the assumption of polarization match. The interferer shall be polarization matched in-band and the polarization maintained for out-of-band frequencies.

For BS type 2-O the OTA out-of-band blocking requirement apply from 30 MHz to $\mathrm{F}_{\mathrm{UL}, \mathrm{low}}-1500 \mathrm{MHz}$ and from $\mathrm{F}_{\mathrm{UL}, \text { high }}+1500 \mathrm{MHz}$ up to $2^{\text {nd }}$ harmonic of the upper frequency edge of the operating band.

For OTA wanted and OTA interfering signals provided at the RIB using the parameters in table 10.6.3.1-1, the following requirements shall be met:

- The throughput shall be $\geq 95 \%$ of the maximum throughput of the reference measurement channel. The reference measurement channel for the OTA wanted signal is identified in clause 10.3.3 for each BS channel bandwidth and further specified in annex A.1.

Table 10.6.3.1-1: OTA out-of-band blocking performance requirement

Frequency range of interfering signal $(\mathbf{M H z})$	Wanted signal mean power $(\mathbf{d B m})$	Interferer RMS field- strength $(\mathbf{V} / \mathbf{m})$	Type of interfering signal
30 to 12750	EISREFSENS +6 dB	0.36	CW
12750 to FuL,low -1500	EISREFSENS +6 dB	0.1	CW
FuL,high +1500 to 2 nd the upper frequency edge of the operating band	EISREFSENS +6 dB	0.1	CW

10.7 OTA receiver spurious emissions

10.7.1 General

The OTA RX spurious emission is the power of the emissions radiated from the antenna array from a receiver unit.
The metric used to capture OTA receiver spurious emissions for BS type 1-O and BS type 2-O is total radiated power (TRP), with the requirement defined at the RIB.

10.7.2 Minimum requirement for $B S$ type 1-O

For a BS operating in FDD, OTA RX spurious emissions requirements do not apply as they are superseded by the OTA TX spurious emissions requirement. This is due to the fact that TX and RX spurious emissions cannot be distinguished in OTA domain.

For a BS operating in TDD, the OTA RX spurious emissions requirement shall apply during the transmitter OFF period only.

For RX only multi-band RIB, the OTA RX spurious emissions requirements are subject to exclusion zones in each supported operating band.

The OTA RX spurious emissions requirement for BS type 1-O is that for each basic limit specified in table 10.7.2-1, the power sum of emissions at the RIB shall not exceed limits specified as the basic limit $+X$, where $X=9 \mathrm{~dB}$, unless stated differently in regional regulation.

Table 10.7.2-1: General BS receiver spurious emission basic limits for BS type 1-O

Spurious frequency range	Basic limit (Note 4)	Measurement bandwidth	Notes	
$30 \mathrm{MHz}-1 \mathrm{GHz}$	-36 dBm	100 kHz	Note 1	
$1 \mathrm{GHz}-12.75 \mathrm{GHz}$	$-30 \mathrm{dBm}$	1 MHz	Note 1, Note 2	
$12.75 \mathrm{GHz}-5^{\text {th }}$ harmonic of the upper frequency edge of the UL operating band in GHz		1 MHz	Note 1, Note 2, Note 3	
NOTE 1: Measurement bandwidths as in ITU-R SM. 329 [2], s4.1. NOTE 2: Upper frequency as in ITU-R SM. 329 [2], s2.5 table 1. NOTE 3: This spurious frequency range applies only for operating bands for which the $5^{\text {th }}$ harmonic of the upper frequency edge of the UL operating band is reaching beyond 12.75 GHz . NOTE 4: Additional limits may apply regionally. NOTE 5: The frequency range from Δ fobue below the lowest frequency of the BS transmitter operating band to Δ fobue above the highest frequency of the BS transmitter operating band may be excluded from the requirement. Δ fobue is defined in clause 9.7.1. For multiband RIB, the exclusion applies for all supported operating bands.				

10.7.3 Minimum requirement for $B S$ type 2-O

The OTA RX spurious emissions requirement shall apply during the transmitter OFF period only.
For the BS type 2-O, the power of any RX spurious emission shall not exceed the limits in table 10.7.3-1.
10.7.3-1: Radiated Rx spurious emission limits for BS type 2-O

Spurious frequency range (Note 4)	Limit (Note 5)	Measurement Bandwidth	Note
$30 \mathrm{MHz} \leftrightarrow 1 \mathrm{GHz}$	-36 dBm	100 kHz	Note 1
$1 \mathrm{GHz} \leftrightarrow 18 \mathrm{GHz}$	-30 dBm	1 MHz	Note 1
$18 \mathrm{GHz} \leftrightarrow \mathrm{F}_{\text {step }, 1}$	-20 dBm	10 MHz	Note 2
$\mathrm{F}_{\text {step }, 1} \leftrightarrow \mathrm{~F}_{\text {step,2 }}$	$-15 \mathrm{dBm}$	10 MHz	Note 2
$\mathrm{F}_{\text {step,2 }} \leftrightarrow \mathrm{F}_{\text {step,3 }}$	$-10 \mathrm{dBm}$	10 MHz	Note 2
$\mathrm{F}_{\text {step }, 4} \leftrightarrow \mathrm{~F}_{\text {step }, 5}$	$-10 \mathrm{dBm}$	10 MHz	Note 2
$\mathrm{F}_{\text {step }, 5} \leftrightarrow \mathrm{~F}_{\text {step }, 6}$	-15 dBm	10 MHz	Note 2
$\mathrm{F}_{\text {step }, 6} \leftrightarrow 2^{\text {nd }}$ harmonic of the upper frequency edge of the UL operating band	-20 dBm	10 MHz	Note 2, Note 3
NOTE 1: Bandwidth as in ITU-R SM. 329 [2], s4.1 NOTE 2: Limit and bandwidth as in ERC Recommendation 74-01 [19], Annex 2. NOTE 3: Upper frequency as in ITU-R SM. 329 [2], s2.5 table 1. NOTE 4: The step frequencies $F_{\text {step }, \mathrm{x}}$ are defined in Table 10.7.3-2. NOTE 5: Additional limits may apply regionally.			

Table 10.7.3-2: Step frequencies for defining the radiated Rx spurious emission limits for BS type 2-O

Operating band	$\mathbf{F}_{\text {step,1 }}$ $(\mathbf{G H z})$	$\mathbf{F}_{\text {step,2 }}$ $(\mathbf{G H z})$	$\mathbf{F}_{\text {step,3 }}$ $(\mathbf{G H z})$	$\mathbf{F}_{\text {step,4 }}$ $(\mathbf{G H z})$	$\mathbf{F}_{\text {step,5 }}$ $(\mathbf{G H z})$	$\mathbf{F}_{\text {step,6 }}$ $(\mathbf{G H z})$
n 257	18	23.5	25	31	32.5	41.5
n 258	18	21	22.75	29	30.75	40.5
n 260	25	34	35.5	41.5	43	52
n 261	18	25.5	26.0	29.85	30.35	38.35

In addition to the requirements in Table 10.7.3-1, the requirement for protection of EESS for BS operating in frequency range $24.25-27.5 \mathrm{GHz}$ in clause 9.7.5.3.3 may be applied.

10.8 OTA receiver intermodulation

10.8.1 General

Third and higher order mixing of the two interfering RF signals can produce an interfering signal in the band of the desired channel. Intermodulation response rejection is a measure of the capability of the receiver unit to receive a wanted signal on its assigned channel frequency in the presence of two interfering signals which have a specific frequency relationship to the wanted signal. The requirement is defined as a directional requirement at the RIB.

10.8.2 Minimum requirement for $B S$ type 1-O

The requirement shall apply at the RIB when the AoA of the incident wave of a received signal and the interfering signal are from the same direction, and:

- when the wanted signal is based on EIS REFSENS: $^{\text {t }}$ the AoA of the incident wave of a received signal and the interfering signal are within the OTA REFSENS RoAoA.
- when the wanted signal is based on EIS minsens: the AoA of the incident wave of a received signal and the interfering signal are within the minSENS RoAoA.

The wanted and interfering signals apply to each supported polarization, under the assumption of polarization match.
The throughput shall be $\geq 95 \%$ of the maximum throughput of the reference measurement channel, with a wanted signal at the assigned channel frequency and two interfering signals at the RIB with the conditions specified in tables 10.8.2-1 and 10.8.2-2 for intermodulation performance and in tables 10.8.2-3 and 10.8.2-4 for narrowband intermodulation performance.

The reference measurement channel for the wanted signal is identified in table 10.3.2-1, table 10.3.2-2 and table 10.3.23 for each BS channel bandwidth and further specified in annex A.1. The characteristics of the interfering signal is further specified in annex D.

The subcarrier spacing for the modulated interfering signal shall be the same as the subcarrier spacing for the wanted signal, except for the case of wanted signal subcarrier spacing 60 kHz and $B S$ channel bandwidth $<=20 \mathrm{MHz}$, for which the subcarrier spacing of the interfering signal shall be 30 kHz .

The receiver intermodulation requirement is applicable outside the Base Station RF Bandwidth or Radio Bandwidth edges. The interfering signal offset is defined relative to the Base Station RF Bandwidth edges or Radio Bandwidth edges.

For a RIBs supporting operation in non-contiguous spectrum within any operating band, the narrowband intermodulation requirement shall apply in addition inside any sub-block gap in case the sub-block gap is at least as wide as the BS channel bandwidth of the NR interfering signal in tables 10.8.2-2 and 10.8.2-4. The interfering signal offset is defined relative to the sub-block edges inside the sub-block gap.

For multi-band RIBs, the intermodulation requirement shall apply in addition inside any Inter RF Bandwidth gap, in case the gap size is at least twice as wide as the NR interfering signal centre frequency offset from the Base Station RF Bandwidth edge.

For multi-band RIBs, the narrowband intermodulation requirement shall apply in addition inside any Inter RF Bandwidth gap in case the gap size is at least as wide as the NR interfering signal in tables 10.8.2-2 and 10.8.2-4. The interfering signal offset is defined relative to the Base Station RF Bandwidth edges inside the Inter RF Bandwidth gap.

Table 10.8.2-1: General intermodulation requirement

BS class	Wanted Signal mean power (dBm)	Mean power of the interfering signals (dBm)	Type of interfering signals
Wide Area BS	EISrefsens +6 dB	-52- \triangle otarefsens	See Table 10.8.2-2
	EISminSENS +6 dB	-52- $\Delta_{\text {minSENS }}$	
Medium Range BS	EISreFSENS +6 dB	-47- \triangle otarefsens	
	EISminSENS +6 dB	-47- $\Delta_{\text {minSENS }}$	
Local Area BS	EISrefsens +6 dB	-44- \triangle otarefsens	
	EISminSENS +6 dB	-44- $\Delta_{\text {minSENS }}$	
NOTE 1: EISREFSENS and EISminSEns depend on the BS class and on the $B S$ channel bandwidth, see clause 10.3 and 10.2.			

Table 10.8.2-2: Interfering signals for intermodulation requirement

	Interfering signal centre frequency offset from the lower/upper base station RF Bandwidth edge (MHz)	Type of interfering signal (Note 3)
5	± 7.5	CW
	± 17.5	5 MHz DFT-s-OFDM NR signal (Note 1)
10	± 7.465	CW
	± 17.5	5 MHz DFT-s-OFDM NR signal (Note 1)
15	± 7.43	CW
	± 17.5	5 MHz DFT-s-OFDM NR signal (Note 1)
20	± 7.395	CW
	± 17.5	5 MHz DFT-s-OFDM NR signal (Note 1)
25	± 7.465	CW
	± 25	20 MHz DFT-s-OFDM NR signal (Note 2)
30	± 7.43	CW
	± 25	20 MHz DFT-s-OFDM NR signal (Note 2)
40	± 7.45	CW
	± 25	20 MHz DFT-s-OFDM NR signal (Note 2)
50	± 7.35	CW
	± 25	20 MHz DFT-s-OFDM NR signal (Note 2)
60	± 7.49	CW
	± 25	20 MHz DFT-s-OFDM NR signal (Note 2)
70	± 7.42	CW
	± 25	20 MHz DFT-s-OFDM NR signal (Note 2)
80	± 7.44	CW
	± 25	20 MHz DFT-s-OFDM NR signal (Note 2)
90	± 7.46	CW
	± 25	20 MHz DFT-s-OFDM NR signal (Note 2)
100	± 7.48	CW
	± 25	20 MHz DFT-s-OFDM NR signal (Note 2)
NOTE 1: Number of RBs is 25 for 15 kHz subcarrier spacing and 10 for 30 kHz subcarrier spacing. NOTE 2: Number of RBs is 100 for 15 kHz subcarrier spacing, 50 for 30 kHz subcarrier spacing and 24 for 60 kHz subcarrier spacing. NOTE 3: The RBs shall be placed adjacent to the transmission bandwidth configuration edge which is closer to the Base Station RF Bandwidth edge.		

Table 10.8.2-3: Narrowband intermodulation performance requirement in FR1

BS class	Wanted signal mean power (dBm)	Interfering signal mean power (dBm)	Type of interfering signals
Wide Area BS	EISrefsens + 6 dB (Note 1)	-52- \triangle otarefsens	See Table 10.8.2-4
	EISminSENS + 6 dB (Note 1)	-52- $\Delta_{\text {minSENS }}$	
Medium Range BS	$\begin{gathered} \text { EISREFSENS }+6 \mathrm{~dB} \\ \text { (Note 1) } \end{gathered}$	-47- otatarefsens $^{\text {a }}$	
	EIS minSens +6 dB (Note 1)	-47- $\Delta_{\text {minSENS }}$	
Local Area BS	$\begin{gathered} \text { EISREFSENS + } 6 \mathrm{~dB} \\ \text { (Note 1) } \\ \hline \end{gathered}$	-44- \triangle otarefsens	
	EISminSENS + 6 dB (Note 1)	-44- $\Delta_{\text {minsens }}$	
NOTE 1: EISREFSENS	minSENS depends on the	S channel bandwidth	e clause 10.3 and 10.2.

Table 10.8.2-4: Interfering signals for narrowband intermodulation requirement in FR1

BS channel bandwidth of the lowest/highest carrier received (MHz)	Interfering RB centre frequency offset from the lower/upper Base Station RF Bandwidth edge or sub-block edge inside a sub-block gap (kHz) (Note 3)	Type of interfering signal
5	± 360	CW
	± 1420	5 MHz DFT-s-OFDM NR signal, 1 RB (NOTE 1)
10	± 370	CW
	± 1960	5 MHz DFT-s-OFDM NR signal, 1 RB (NOTE 1)
15 (NOTE 2)	± 380	CW
	± 1960	5 MHz DFT-s-OFDM NR signal, 1 RB (NOTE 1)
20 (NOTE 2)	± 390	CW
	± 2320	5 MHz DFT-s-OFDM NR signal, 1 RB (NOTE 1)
25 (NOTE 2)	± 325	CW
	± 2350	20 MHz DFT-s-OFDM NR signal, 1 RB (NOTE 1)
30 (NOTE 2)	± 335	CW
	± 2350	20 MHz DFT-s-OFDM NR signal, 1 RB (NOTE 1)
40 (NOTE 2)	± 355	CW
	± 2710	20 MHz DFT-s-OFDM NR signal, 1 RB (NOTE 1)
50 (NOTE 2)	± 375	CW
	± 2710	20 MHz DFT-s-OFDM NR signal, 1 RB (NOTE 1)
60 (NOTE 2)	± 395	CW
	± 2710	20 MHz DFT-s-OFDM NR signal, 1 RB (NOTE 1)
70 (NOTE 2)	± 415	CW
	± 2710	20 MHz DFT-s-OFDM NR signal, 1 RB (NOTE 1)
80 (NOTE 2)	± 435	CW
	± 2710	20 MHz DFT-s-OFDM NR signal, 1 RB (NOTE 1)
90 (NOTE 2)	± 365	CW
	± 2530	20 MHz DFT-s-OFDM NR signal, 1 RB (NOTE 1)
100 (NOTE 2)	± 385	CW
	± 2530	20 MHz DFT-s-OFDM NR signal, 1 RB (NOTE 1)

NOTE 1: Interfering signal consisting of one resource block
positioned at the stated offset, the BS channel bandwidth of the interfering signal is located adjacently to the lower/upper Base Station RF Bandwidth edge or sub-block edge inside a sub-block gap.
NOTE 2: This requirement shall apply only for a G-FRC mapped to the frequency range at the channel edge adjacent to the interfering signals.
NOTE 3: The centre of the interfering RB refers to the frequency location between the two central subcarriers.

10.8.3 Minimum requirement for $B S$ type 2-O

The requirement shall apply at the RIB when the AoA of the incident wave of the received signal and the interfering signal are from the same direction and are within the OTA REFSENS RoAoA.

The wanted and interfering signals applies to each supported polarization, under the assumption of polarization match.
Throughput shall be $\geq 95 \%$ of the maximum throughput of the reference measurement channel, with OTA wanted signal at the assigned channel frequency and two OTA interfering signals provided at the RIB using the parameters in tables 10.8.3-1 and 10.8.3-2. All of the OTA test signals arrive from the same direction, and the requirement is valid if the signals arrive from any direction within the OTA REFSENS RoAoA. The reference measurement channel for the wanted signal is identified in table 10.3.3-1 for each BS channel bandwidth and further specified in annex A.1. The characteristics of the interfering signal is further specified in annex D .

The subcarrier spacing for the modulated interfering signal shall be the same as the subcarrier spacing for the wanted signal.

The receiver intermodulation requirement is applicable outside the Base Station RF Bandwidth. The interfering signal offset is defined relative to the Base Station RF Bandwidth edges.

Table 10.8.3-1: General intermodulation requirement

BS channel bandwidth of the lowest/highest carrier received (MHz)	Wanted signal mean power (dBm)	Interfering signal mean power (dBm)	Type of interfering signals
$50,100,200,400$	EISREFSENS +6	EISREFSENS_50M $+25+$ $\Delta_{\text {FR2_REFSENS }}$	See Table 10.8.3-2
NOTE: \quad EISREFSENS and EISREFSENS_50M are given in clause 10.3.3.			

Table 10.8.3-2: Interfering signals for intermodulation requirement

BS channel bandwidth of the lowest/highest carrier received (MHz)	Interfering signal centre frequency offset from the lower/upper Base Station RF Bandwidth edge (MHz)	Type of interfering signal 50$\quad \pm 7.5$
100	± 40	$50 \mathrm{MHz} \mathrm{DFT-s-OFDM} \mathrm{NR} \mathrm{signal}$
	(Note 1)	

10.9 OTA in-channel selectivity

10.9.1 General

In-channel selectivity (ICS) is a measure of the receiver ability to receive a wanted signal at its assigned resource block locations in the presence of an interfering signal received at a larger power spectral density. In this condition a throughput requirement shall be met for a specified reference measurement channel. The interfering signal shall be an NR signal as specified in annex A. 1 and shall be time aligned with the wanted signal.

10.9.2 Minimum requirement for $B S$ type 1-O

The requirement shall apply at the RIB when the AoA of the incident wave of the received signal and the interfering signal are the same direction and are within the minSENS RoAoA

The wanted and interfering signals applies to each supported polarization, under the assumption of polarization match.

For a wanted and an interfering signal coupled to the RIB, the following requirements shall be met:

- For BS type 1-O, the throughput shall be $\geq 95 \%$ of the maximum throughput of the reference measurement channel as specified in annex A. 1 with parameters specified in table 10.9.2-1 for Wide Area BS, in table 10.9.2-2 for Medium Range BS and in table 10.9.2-3 for Local Area BS. The characteristics of the interfering signal is further specified in annex D.

Table 10.9.2-1: Wide Area BS in-channel selectivity

BS channel bandwidth (MHz)	$\begin{gathered} \text { Subcarrier } \\ \text { spacing (kHz) } \end{gathered}$	Reference measurement channel	Wanted signal mean power (dBm)	Interfering signal mean power (dBm)	Type of interfering signal
5	15	G-FR1-A1-7	$-100.6-$ Δ minSENS	-81.4- $\Delta_{\text {minSENS }}$	DFT-s-OFDM NR signal, 15 kHz SCS, 10 RBs
10,15,20,25,30	15	G-FR1-A1-1	-98.7- Δ minSENS	-77.4 - $\Delta_{\text {minSENS }}$	DFT-s-OFDM NR signal, 15 kHz SCS, 25 RBs
40,50	15	G-FR1-A1-4	-92.3- Δ minsens	-71.4 - Δ minSENS	DFT-s-OFDM NR signal, 15 kHz SCS, 100 RBs
5	30	G-FR1-A1-8	-101.3- Δ minSENS	-81.4 - Δ minSENS	DFT-s-OFDM NR signal, 30 kHz SCS, 5 RBs
10,15,20,25,30	30	G-FR1-A1-2	-98.8- Δ minsens	-78.4 - Δ minsENS	DFT-s-OFDM NR signal, 30 kHz SCS, 10 RBs
40,50,60,70,80,90,100	30	G-FR1-A1-5	-92.6- Δ minSENS	-71.4 Δ minsens	DFT-s-OFDM NR signal, 30 kHz SCS, 50 RBs
10,15,20,25,30	60	G-FR1-A1-9	-98.2- Δ minsens	-78.4 - Δ minsens	DFT-s-OFDM NR signal, 60 kHz SCS, 5 RBs
40,50,60,70,80,90,100	60	G-FR1-A1-6	$\begin{gathered} -92.7- \\ \Delta_{\text {minSENS }} \end{gathered}$	$\begin{aligned} & -71.6- \\ & \Delta_{\text {minSENS }} \end{aligned}$	DFT-s-OFDM NR signal, 60 kHz SCS, 24 RBs

NOTE: Wanted and interfering signal are placed adjacently around F_{c}, where the F_{c} is defined for BS channel bandwidth of the wanted signal according to the table 5.4.2.2-1. The aggregated wanted and interferer signal shall be centred in the BS channel bandwidth of the wanted signal.

Table 10.9.2-2: Medium Range BS in-channel selectivity

BS channel bandwidth (MHz)	$\begin{gathered} \text { Subcarrier } \\ \text { spacing (kHz) } \end{gathered}$	\qquad measuremen channel	Wanted signal mean power (dBm)	Interfering signal mean power (dBm)	Type of interfering signal
5	15	G-FR1-A1-7	-95.6- Δ minSENS	-76.4 - Δ minsens	$\begin{gathered} \hline \text { DFT-s-OFDM NR } \\ \text { signal, } 15 \mathrm{kHz} \text { SCS, } \\ 10 \mathrm{RBs} \\ \hline \end{gathered}$
10,15,20,25,30	15	G-FR1-A1-1	-93.7- Δ minsens	-72.4 - Δ minsens	$\begin{gathered} \hline \text { DFT-s-OFDM NR } \\ \text { signal, } 15 \mathrm{kHz} \text { SCS, } \\ 25 \mathrm{RBs} \\ \hline \end{gathered}$
40,50	15	G-FR1-A1-4	$\begin{gathered} -87.3- \\ \Delta_{\text {minSENS }} \end{gathered}$	-66.4 - Δ minSENS	$\begin{gathered} \hline \text { DFT-s-OFDM NR } \\ \text { signal, } 15 \mathrm{kHz} \text { SCS, } \\ 100 \mathrm{RBs} \end{gathered}$
5	30	G-FR1-A1-8	-96.3- Δ minSENS	-76.4 - Δ minsens	DFT-s-OFDM NR signal, 30 kHz SCS, 5 RBs
10,15,20,25,30	30	G-FR1-A1-2	-93.8- Δ minsens	-73.4 - Δ minsens	DFT-s-OFDM NR signal, 30 kHz SCS, 10 RBs
40,50,60,70,80,90,100	30	G-FR1-A1-5	$\begin{gathered} -87.6- \\ \Delta_{\text {minSENS }} \end{gathered}$	-66.4 - Δ minSENS	DFT-s-OFDM NR signal, 30 kHz SCS, 50 RBs
10,15,20,25,30	60	G-FR1-A1-9	-93.2- Δ minSENS	-73.4 - Δ minSENS	DFT-s-OFDM NR signal, 60 kHz SCS, 5 RBs
40,50,60,70,80,90,100	60	G-FR1-A1-6	$\begin{gathered} -87.7- \\ \Delta_{\text {minSENS }} \end{gathered}$	-66.6- Δ minsens	$\begin{gathered} \hline \text { DFT-s-OFDM NR } \\ \text { signal, } 60 \mathrm{kHz} \text { SCS, } \\ 24 \mathrm{RBs} \\ \hline \end{gathered}$
NOTE: Wanted and interfering signal are placed adjacently around F_{c}, where the F_{c} is defined for BS channel bandwidth of the wanted signal according to the table 5.4.2.2-1. The aggregated wanted and interferer signal shall be centred in the BS channel bandwidth of the wanted signal.					

Table 10.9.2-3: Local area BS in-channel selectivity

BS channel bandwidth (MHz)	Subcarrier spacing (kHz)	\qquad	Wanted signal mean power (dBm)	Interfering signal mean power (dBm)	Type of interfering signal
5	15	G-FR1-A1-7	-92.6- $\Delta_{\text {minSENS }}$	-73.4 - Δ minSENS	DFT-s-OFDM NR signal, 15 kHz SCS, 10 RBs
10,15,20,25,30	15	G-FR1-A1-1	$\begin{gathered} -90.7- \\ \Delta_{\text {minSENS }} \end{gathered}$	-69.4 - $\Delta_{\text {minSENS }}$	DFT-s-OFDM NR signal, 15 kHz SCS, 25 RBs
40,50	15	G-FR1-A1-4	-84.3- Δ minSENS	-63.4 - Δ minSENS	$\begin{gathered} \hline \text { DFT-s-OFDM NR } \\ \text { signal, } 15 \mathrm{kHz} \text { SCS, } \\ 100 \mathrm{RBs} \end{gathered}$
5	30	G-FR1-A1-8	-93.3- $\Delta_{\text {minSENS }}$	-73.4- $\Delta_{\text {minSENS }}$	DFT-s-OFDM NR signal, 30 kHz SCS, 5 RBs
10,15,20,25,30	30	G-FR1-A1-2	-90.8- Δ minsens	-70.4 - Δ minSENS	DFT-s-OFDM NR signal, 30 kHz SCS , 10 RBs
40,50,60,70,80,90,100	30	G-FR1-A1-5	-84.6- Δ minsens	$\begin{gathered} -63.4- \\ \Delta_{\text {minSENS }} \end{gathered}$	DFT-s-OFDM NR signal, 30 kHz SCS, 50 RBs
10,15,20,25,30	60	G-FR1-A1-9	-90.2- Δ minSENS	-70.4 - $\Delta_{\text {minSENS }}$	DFT-s-OFDM NR signal, 60 kHz SCS, 5 RBs
40,50,60,70,80,90,100	60	G-FR1-A1-6	-84.7- $\Delta_{\text {minSENS }}$	-63.6 - Δ minSENS	DFT-s-OFDM NR signal, 60 kHz SCS, 24 RBs
NOTE: Wanted and interfering signal are placed adjacently around F_{c}, where the F_{c} is defined for BS channel bandwidth of the wanted signal according to the table 5.4.2.2-1. The aggregated wanted and interferer signal shall be centred in the $B S$ channel bandwidth of the wanted signal.					

10.9.3 Minimum requirement for $B S$ type 2-O

The requirement shall apply at the RIB when the AoA of the incident wave of the received signal and the interfering signal are from the same direction and are within the OTA REFSENS RoAoA.

The wanted and interfering signals applies to each supported polarization, under the assumption of polarization match.

For BS type 2-O, the throughput shall be $\geq 95 \%$ of the maximum throughput of the reference measurement channel as specified in annex A. 1 with parameters specified in table 10.9.3-1. The characteristics of the interfering signal is further specified in annex D.

Table 10.9.3-1: OTA in-channel selectivity requirement for BS type 2-O

BS channel bandwidth (MHz)	Subcarrier spacing (kHz)	\qquad measuremen channel	Wanted signal mean power (dBm) (Note 2)	Interfering signal mean power (dBm) (Note 2)	Type of interfering signal
50	60	G-FR2-A1-4	EISREFSENS 50M + Δ FR2_REFSENS	$\begin{gathered} \text { EIS }_{\text {REFSENS_50M }}+10 \\ +\Delta_{\text {FR2_REFSENS }} \end{gathered}$	DFT-s-OFDM NR signal, 60 kHz SCS, 32 RB
100,200	60	G-FR2-A1-1	EISREFSENS_50M + 3 + Δ FR2_REFSENS	EISREFSENS_50M + 13 $+\Delta_{\text {FR2_REFSENS }}$	DFT-s-OFDM NR signal, 60 kHz SCS, 64 RB
50	120	G-FR2-A1-5	EISREFSENS 50M + Δ FR2_REFSENS	$\begin{aligned} & \text { EIS }_{\text {REFSENS_50M }}+10 \\ & +\Delta_{\text {FR2_REFSENS }} \end{aligned}$	$\begin{gathered} \hline \text { DFT-s-OFDM NR signal, } \\ 120 \mathrm{kHz} \text { SCS, } \\ 16 \mathrm{RB} \end{gathered}$
100,200,400	120	G-FR2-A1-2	EISREFSENS_50M + 3 + Δ FR2_REFSENS	EISREFSENS_50M + 13 $+\Delta_{\text {FR2_REFSENS }}$	$\begin{gathered} \hline \text { DFT-s-OFDM NR signal, } \\ 120 \mathrm{kHz} \mathrm{SCS}, \\ 32 \mathrm{RB} \end{gathered}$
NOTE 1: Wanted and interfering signal are placed adjacently around F_{c}, where the F_{c} is defined for $B S$ channel bandwidth of the wanted signal according to the table 5.4.2.2-1. The aggregated wanted and interferer signal shall be centred in the BS channel bandwidth of the wanted signal. NOTE 2: EISREFSENS_50M is defined in clause 10.3.3.					

Table 10.9.3-2: (Void)
Table 10.9.3-3: (Void)

11 Radiated performance requirements

11.1 General

11.1.1 Scope and definitions

Radiated performance requirements specify the ability of the BS type 1-O or BS type 2-O to correctly demodulate radiated signals in various conditions and configurations. Radiated performance requirements are specified at the RIB.

Radiated performance requirements for the BS are specified for the fixed reference channels defined in annex A and the propagation conditions in annex G. The requirements only apply to those FRCs that are supported by the BS.

The radiated performance requirements for BS type 1-O and for the BS type 2-O are limited to two OTA demodulation branches as described in clause 11.1.2. Conformance requirements can only be tested for 1 or 2 demodulation branches depending on the number of polarizations supported by the BS, with the required SNR applied separately per polarization.

NOTE 1: The BS can support more than 2 demodulation branches, however OTA conformance testing can only be performed for 1 or 2 demodulation branches.

Unless stated otherwise, radiated performance requirements apply for a single carrier only. Radiated performance requirements for a BS supporting CA are defined in terms of single carrier requirements.

For BS type 1-O in FDD operation the requirements in clause 8 shall be met with the transmitter units associated with the RIB in the operating band turned ON.

NOTE 2: BS type 1-O in normal operating conditions in FDD operation is configured to transmit and receive at the same time. The transmitter unit(s) associated with the RIB may be OFF for some of the tests.

In tests performed with signal generators a synchronization signal may be provided from the BS to the signal generator, to enable correct timing of the wanted signal.

Whenever the "RX antennas" term is used for the radiated performance requirements description, it shall refer to the demodulation branches (i.e. not physical antennas of the antenna array).

The SNR used in this clause is specified based on a single carrier and defined as:

$$
\mathrm{SNR}=\mathrm{S} / \mathrm{N}
$$

Where:
S is the total signal energy in a slot on a RIB.
N is the noise energy in a bandwidth corresponding to the transmission bandwidth over the same duration where signal energy exists on a RIB.

11.1.2 OTA demodulation branches

Radiated performance requirements are only specified for up to 2 demodulation branches.
If the BS type 1-O, or the BS type 2-O uses polarization diversity and has the ability to maintain isolation between the signals for each of the demodulation branches, then radiated performance requirements can be tested for up to two demodulation branches (i.e. 1RX or 2RX test setups). When tested for two demodulation branches, each demodulation branch maps to one polarization.

If the BS type 1-O, or the BS type 2-O does not use polarization diversity then radiated performance requirements can only be tested for a single demodulation branch (i.e. 1RX test setup).

11.1.3 Void

11.2 Performance requirements for PUSCH

11.2.1 Requirements for $B S$ type 1-O

11.2.1.1 Requirements for PUSCH with transform precoding disabled

Apply the requirements defined in clause 8.2.1 for 2 Rx .

11.2.1.2 Requirements for PUSCH with transform precoding enabled

Apply the requirements defined in clause 8.2.2 for 2 Rx .

11.2.1.3 Requirements for UCI multiplexed on PUSCH

Apply the requirements defined in clause 8.2.3 for 2 Rx .

11.2.2 Requirements for BS type 2-O

11.2.2.1 Requirements for PUSCH with transform precoding disabled

11.2.2.1.1 General

The performance requirement of PUSCH is determined by a minimum required throughput for a given SNR. The required throughput is expressed as a fraction of maximum throughput for the FRCs listed in annex A. The performance requirements assume HARQ retransmissions.

Table 11.2.2.1.1-1: Test parameters for testing PUSCH

Parameter		Value
Transform precoding		Disabled
Default TDD UL-DL pattern (Note 1)		60 kHz and 120 kHz SCS: 3D1S1U, S=10D:2G:2U
HARQ	Maximum number of HARQ transmissions	4
	RV sequence	0, 2, 3, 1
DM-RS	DM-RS configuration type	1
	DM-RS duration	single-symbol DM-RS
	Additional DM-RS symbols	pos0, pos1
	Number of DM-RS CDM group(s) without data	2
	Ratio of PUSCH EPRE to DM-RS EPRE	$-3 \mathrm{~dB}$
	DM-RS port(s)	$\{0\},\{0,1\}$
	DM-RS sequence generation	$\mathrm{N}_{\text {ID }}=0, \mathrm{n}_{\text {SCID }}=0$
Time domain resource	PUSCH mapping type	B
	Start symbol index	0
	Allocation length	10
Frequency domain resource	RB assignment	Full applicable test bandwidth
	Frequency hopping	Disabled
TPMI index for 2Tx two-layer spatial multiplexing transmission		0
Code block group based PUSCH transmission		Disabled
PT-RS configuration	Frequency density (KPT-RS)	2, Disabled
	Time density (LPT-RS)	1, Disabled

11.2.2.1.2 Minimum requirements

The throughput shall be equal to or larger than the fraction of maximum throughput stated in the tables 11.2.2.1.2-1 to 11.2.2.1.2-5 at the given SNR for 1Tx and for 2Tx two-layer spatial multiplexing transmission.

Table 11.2.2.1.2-1: Minimum requirements for PUSCH, 50 MHz channel bandwidth, 60 kHz SCS

$\begin{aligned} & \hline \text { Number } \\ & \text { of TX } \\ & \text { antennas } \end{aligned}$	Number of demodulation branches	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	$\begin{gathered} \text { FRC } \\ \text { (Annex A) } \end{gathered}$	Additional DM-RS position	$\begin{aligned} & \hline \text { PT- } \\ & \text { RS } \end{aligned}$	$\begin{aligned} & \text { SNR } \\ & \text { (dB) } \end{aligned}$
1	2	Normal	$\begin{aligned} & \text { TDLA30-300 } \\ & \text { Low } \end{aligned}$	70 \%	$\begin{gathered} \text { G-FR2-A3- } \\ 1 \end{gathered}$	pos0	No	-2.0
					$\begin{gathered} \text { G-FR2-A3- } \\ 13 \\ \hline \end{gathered}$	pos1	No	-2.2
		Normal	$\begin{gathered} \text { TDLA30-300 } \\ \text { Low } \end{gathered}$	70 \%	G-FR2-A4-	pos0	Yes	12.0
					1		No	11.5
					$\begin{gathered} \text { G-FR2-A4- } \\ 11 \end{gathered}$	pos1	Yes	10.7
							No	10.7
		Normal	$\begin{gathered} \text { TDLA30-75 } \\ \text { Low } \end{gathered}$	70 \%	G-FR2-A5-	pos0	Yes	13.7
					1		No	13.1
					$\begin{gathered} \text { G-FR2-A5- } \\ 6 \end{gathered}$	pos1	Yes	13.4
							No	12.9
2		Normal	$\begin{aligned} & \text { TDLA30-300 } \\ & \text { Low } \end{aligned}$	70 \%	$\begin{gathered} \hline \text { G-FR2-A3- } \\ 6 \end{gathered}$	pos0	No	1.5
					$\begin{aligned} & \text { G-FR2-A3- } \\ & 18 \end{aligned}$	pos1	No	1.2
					$\begin{gathered} \text { G-FR2-A4- } \\ 16 \end{gathered}$	pos1	Yes	19.6
							No	18.1

Table 11.2.2.1.2-2: Minimum requirements for PUSCH, 100 MHz channel bandwidth, 60 kHz SCS

$\begin{aligned} & \text { Number } \\ & \text { of TX } \\ & \text { antennas } \end{aligned}$	Number of demodulation branches	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	$\begin{gathered} \text { FRC } \\ \text { (Annex A) } \end{gathered}$	Additional DM-RS position	$\begin{aligned} & \text { PT- } \\ & \text { RS } \end{aligned}$	SNR (dB)
1	2	Normal	$\begin{gathered} \text { TDLA30-300 } \\ \text { Low } \end{gathered}$	70 \%	G-FR2- A3-2	pos0	No	-2.1
					$\begin{gathered} \text { G-FR2- } \\ \text { A3-14 } \end{gathered}$	pos1	No	-2.4
		Normal	$\begin{gathered} \text { TDLA30-300 } \\ \text { Low } \end{gathered}$	70 \%	$\begin{gathered} \text { G-FR2- } \\ \text { A4-2 } \end{gathered}$	pos0	Yes	12.2
							No	11.2
					G-FR2- A4-12	pos1	Yes	11.2
							No	10.6
		Normal	$\begin{gathered} \text { TDLA30-75 } \\ \text { Low } \end{gathered}$	70 \%	G-FR2-A5-2	pos0	Yes	14.2
							No	13.3
					$\begin{gathered} \text { G-FR2- } \\ \text { A5-7 } \\ \hline \end{gathered}$	pos1	Yes	13.7
							No	13.1
2		Normal	$\begin{gathered} \text { TDLA30-300 } \\ \text { Low } \end{gathered}$	70 \%	G-FR2-A3-7	pos0	No	1.5
					$\begin{gathered} \text { G-FR2- } \\ \text { A3-19 } \\ \hline \end{gathered}$	pos1	No	1.2
					G-FR2- A4-17	pos1	Yes	18.8
							No	18.3

Table 11.2.2.1.2-3: Minimum requirements for PUSCH, 50 MHz channel bandwidth, 120 kHz SCS

$\begin{aligned} & \text { Number } \\ & \text { of TX } \\ & \text { antennas } \end{aligned}$	Number of demodulation branches	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	$\begin{gathered} \text { FRC } \\ \text { (Annex A) } \end{gathered}$	Additional DM-RS position	$\begin{aligned} & \hline \text { PT- } \\ & \text { RS } \end{aligned}$	SNR (dB)
1	2	Normal	TDLA30-300Low	70 \%	$\begin{gathered} \text { G-FR2-A3- } \\ 3 \end{gathered}$	pos0	No	-1.8
					$\begin{gathered} \text { G-FR2-A3- } \\ 15 \end{gathered}$	pos1	No	-2.1
		Normal	$\begin{gathered} \text { TDLA30-300 } \\ \text { Low } \end{gathered}$	70 \%	G-FR2-A4-	pos0	Yes	11.6
							No	10.9
					G-FR2-A4-	pos1	Yes	10.9
					13		No	10.5
		Normal	$\begin{gathered} \text { TDLA30-75 } \\ \text { Low } \end{gathered}$	70 \%	G-FR2-A5-	pos0	Yes	13.7
					3		No	13.1
					G-FR2-A5-		Yes	13.2
					8	pos 1	No	13.0
2		Normal	$\begin{gathered} \text { TDLA30-300 } \\ \text { Low } \end{gathered}$	70 \%	$\begin{gathered} \text { G-FR2-A3- } \\ 8 \end{gathered}$	pos0	No	1.4
					$\begin{aligned} & \text { G-FR2-A3- } \\ & 20 \end{aligned}$	pos1	No	1.3
		Normal	TDLA30-300Low	70 \%	G-FR2-A4-	pos0	Yes	21.1
					8		No	18.6
					G-FR2-A4-	pos1	Yes	19.6
					18		No	17.6

Table 11.2.2.1.2-4: Minimum requirements for PUSCH, 100 MHz channel bandwidth, 120 kHz SCS

Number of TX antennas	Number of demodulation branches	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	FRC (Annex A)	Additional DM-RS position	$\begin{aligned} & \text { PT- } \\ & \text { RS } \end{aligned}$	$\begin{aligned} & \text { SNR } \\ & \text { (dB) } \end{aligned}$
1	2	Normal	$\begin{gathered} \text { TDLA30-300 } \\ \text { Low } \end{gathered}$	70 \%	$\begin{gathered} \text { G-FR2-A3- } \\ 4 \end{gathered}$	pos0	No	-2.4
					$\begin{gathered} \text { G-FR2-A3- } \\ 16 \end{gathered}$	pos1	No	-2.5
		Normal	$\begin{gathered} \text { TDLA30-300 } \\ \text { Low } \end{gathered}$	70 \%	G-FR2-A4-	pos0	Yes	11.9
							No	10.5
					G-FR2-A4-	pos1	Yes	11.1
							No	10.5
		Normal	$\begin{gathered} \text { TDLA30-75 } \\ \text { Low } \end{gathered}$	70 \%	G-FR2-A5-	pos0	Yes	13.5
					4		No	12.9
					G-FR2-A5-	pos1	Yes	13.4
					9		No	12.8
2		Normal	TDLA30-300Low	70 \%	$\begin{gathered} \text { G-FR2-A3- } \\ 9 \end{gathered}$	pos0	No	1.4
					$\begin{gathered} \text { G-FR21- } \\ \text { A3-21 } \\ \hline \end{gathered}$	pos1	No	1.2
		Normal	$\begin{gathered} \text { TDLA30-300 } \\ \text { Low } \end{gathered}$	70 \%	G-FR2-A4-	pos0	Yes	20.8
					9		No	19.4
					G-FR2-A4-	pos1	Yes	18.5
					19		No	18.0

Table 11.2.2.1.2-5: Minimum requirements for PUSCH, 200 MHz channel bandwidth, 120 kHz SCS

Number of TX antennas	Number of demodulation branches	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	$\begin{gathered} \text { FRC } \\ \text { (Annex A) } \end{gathered}$	Additional DM-RS position	$\begin{aligned} & \hline \text { PT- } \\ & \text { RS } \end{aligned}$	$\begin{aligned} & \text { SNR } \\ & \text { (dB) } \end{aligned}$
1	2	Normal	$\begin{gathered} \text { TDLA30-300 } \\ \text { Low } \end{gathered}$	70 \%	$\begin{gathered} \text { G-FR2- } \\ \text { A3-5 } \end{gathered}$	pos0	No	-2.1
					$\begin{aligned} & \text { G-FR2- } \\ & \text { A3-17 } \end{aligned}$	pos1	No	-2.4
		Normal	TDLA30-300Low	70 \%	G-FR2-	pos0	Yes	11.3
							No	10.9
					G-FR2-	pos1	Yes	11.2
					A4-15		No	10.7
		Normal	$\begin{aligned} & \text { TDLA30-75 } \\ & \text { Low } \end{aligned}$	70 \%	G-FR2-	pos0	Yes	14.1
					A5-5		No	13.4
					G-FR2-	pos1	Yes	13.7
					A5-10		No	13.3
2		Normal	TDLA30-300Low	70 \%	$\begin{gathered} \text { G-FR2- } \\ \text { A3-10 } \end{gathered}$	pos0	No	1.4
					$\begin{aligned} & \text { G-FR2- } \\ & \text { A3-22 } \\ & \hline \end{aligned}$	pos1	No	1.1
		Normal	$\begin{gathered} \text { TDLA30-300 } \\ \text { Low } \end{gathered}$	70 \%	G-FR2-	pos0	Yes	21.5
					A4-10		No	20.2
					G-FR2-	pos1	Yes	19.0
					A4-20		No	18.2

11.2.2.2 Requirements for PUSCH with transform precoding enabled

11.2.2.2.1 General

The performance requirement of PUSCH is determined by a minimum required throughput for a given SNR. The required throughput is expressed as a fraction of maximum throughput for the FRCs listed in Annex A. The performance requirements assume HARQ retransmissions.

Table 11.2.2.2.1-1: Test parameters for testing PUSCH

Parameter		Value
Transform precoding		Enabled
Default TDD UL-DL pattern (Note 1)		60 kHz and 120 kHz SCS: 3D1S1U, S=10D:2G:2U
HARQ	Maximum number of HARQ transmissions	4
	RV sequence	0, 2, 3, 1
DM-RS	DM-RS configuration type	1
	DM-RS duration	single-symbol DM-RS
	Additional DM-RS position	pos0, pos1
	Number of DM-RS CDM group(s) without data	2
	Ratio of PUSCH EPRE to DM-RS EPRE	-3 dB
	DM-RS port(s)	0
	DM-RS sequence generation	$\mathrm{N}_{1 \mathrm{I}^{0}}=0$, group hopping and sequence hopping are disabled
Time domain resource assignment	PUSCH mapping type	B
	Start symbol	0
	Allocation length	10
Frequency domain resource assignment	RB assignment	30 PRBs in the middle of the test bandwidth
	Frequency hopping	Disabled
Code block group based PUSCH transmission		Disabled
PT-RS		Not configured
Note 1: The same requirements are applicable to TDD with different UL-DL patterns.		

11.2.2.2.2 Minimum requirements

The throughput shall be equal to or larger than the fraction of maximum throughput stated in the tables 11.2.2.2.2-1 to 11.2.2.2.2-2 at the given SNR.

Table 11.2.2.2.2-1: Minimum requirements for PUSCH, Type B, 50 MHz Channel Bandwidth, 60 kHz SCS

Number of TX antennas	Number of demodulation branches	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	FRC (Annex A)	Additional DM-RS position	SNR (dB)
1	2	Normal	TDLA30-300 Low	70%	G-FR2-A3-11	pos0	-1.8
			G-FR2-A3-23	pos1	-1.9		

Table 11.2.2.2.2-2: Minimum requirements for PUSCH, Type B, 50 MHz Channel Bandwidth, 120 kHz SCS

Number of TX antennas	Number of demodulation branches	Cyclic prefix	Propagation conditions and correlation matrix (Annex	Fraction of maximum (hroughput	FRC (Annex A)	Additional DM-RS position	SNR (dB)
1	2	Normal	TDLA30-300 Low	70%	G-FR2-A3-12	pos0	-1.8
				G-FR2-A3-24	pos1	-1.9	

11.2.2.3 Requirements for UCI multiplexed on PUSCH

11.2.2.3.1 General

In the tests for UCI multiplexed on PUSCH, the UCI information only contains CSI part 1 and CSI part 2 information, and there is no HACK/ACK information transmitted.

The CSI part 1 block error probability is defined as the probability of incorrectly decoding the CSI part 1 information when the CSI part 1 information is sent as follow:

$$
B L E R_{\text {CSI part } 1}=\frac{\#(\text { false CSI part 1) }}{\#(\text { CSI part } 1)}
$$

where:

- \#(false CSI part 1) denotes the number of incorrectly decoded CSI part 1 information transmitted occasions
- \#(CSI part 1) denotes the number of CSI part 1information transmitted occasions.

The CSI part 2 block error probability (BLER) is defined as the probability of incorrectly decoding the CSI part 2 information when the CSI part 2 information is sent as follows:

$$
B L E R_{\text {CSI part } 2}=\frac{\#(\text { false CSI part 2) }}{\#(\text { CSI part 2) }}
$$

where:

- \#(false CSI part 2) denotes the number of incorrectly decoded CSI part 2 information transmitted occasions
- \#(CSI part 2) denotes the number of CSI part 2 information transmitted occasions.

The number of UCI information bit payload per slot is defined for two cases as follows:

- 5 bits in CSI part 1, 2 bits in CSI part 2
- 20 bits in CSI part 1, 20 bits in CSI part 2

The 7bits UCI case is further defined with the bitmap $[\mathrm{c} 0 \mathrm{c} 1 \mathrm{c} 2 \mathrm{c} 3 \mathrm{c} 4]=\left[\begin{array}{llll}0 & 1 & 0 & 1\end{array} 0\right]$ for CSI part 1 information, where c 0 is mapping to the RI information, and with the bitmap $[\mathrm{c} 0 \mathrm{c} 1]=[10]$ for CSI part2 information.

The 40bits UCI information case is assumed random information bit selection.
In both tests, PUSCH data, CSI part 1 and CSI part 2 information are transmitted simultaneously.

Table 11.2.2.3.1-1: Test parameters for testing UCI multiplexed on PUSCH

Parameter		Value
Transform precoding		

11.2.2.3.2 Minimum requirements

The CSI part 1 block error probability shall not exceed 0.1% at the SNR given in table 11.2.2.3.2-1 and table 11.2.2.3.22. The CSI part 2 block error probability shall not exceed 1% at the SNR given in table 11.2.2.3.2-3 and table 11.2.2.3.2-4.

Table 11.2.2.3.2-1: Minimum requirements for UCI multiplexed on PUSCH, Type B, With PT-RS, CSI part 1, 50 MHz Channel Bandwidth, 120 kHz SCS

Number of TX antennas	Number of demodulation branches	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	UCI bits (CSI part 1, CSI part 2)	Additional DM-RS position	FRC (Annex A)	SNR (dB)
1	2	Normal	TDLA30-300 Low	$7(5,2)$	pos0	G-FR2-A4-3	7.2
	2	Normal	TDLA30-300 Low	$40(20,20)$	pos0	G-FR2-A4-3	5.8
	2	Normal	TDLA30-300 Low	$7(5,2)$	pos1	G-FR2-A4-13	7.8
	2	Normal	TDLA30-300 Low	$40(20,20)$	pos1	G-FR2-A4-13	5.9

Table 11.2.2.3.2-2: Minimum requirements for UCI multiplexed on PUSCH, Type B, Without PTRS, CSI part 1, 50 MHz Channel Bandwidth, 120 kHz SCS

Number of TX antennas	Number of demodulation branches	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	UCI bits (CSI part 1 CSI part 2)	Additional DM-RS position	FRC (Annex A)	$\begin{aligned} & \hline \text { SNR } \\ & \text { (dB) } \end{aligned}$
1	2	Normal	$\begin{gathered} \text { TDLA30-300 } \\ \text { LOW } \end{gathered}$	7(5,2)	pos0	G-FR2-A4-3	7.1
	2	Normal	$\begin{gathered} \text { TDLA30-300 } \\ \text { LOW } \end{gathered}$	40(20,20)	pos0	G-FR2-A4-3	5.8
	2	Normal	$\begin{gathered} \text { TDLA30-300 } \\ \text { LOW } \end{gathered}$	$7(5,2)$	pos1	G-FR2-A4-13	7.3
	2	Normal	$\begin{gathered} \text { TDLA30-300 } \\ \text { LOW } \end{gathered}$	40(20,20)	pos1	G-FR2-A4-13	5.5

Table 11.2.2.3.2-3: Minimum requirements for UCI multiplexed on PUSCH, Type B, With PTRS, CSI part 2, 50 MHz Channel Bandwidth, 120 kHz SCS

Number of TX antennas	Number of demodulation branches	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	UCI bits (CSI part 1, CSI part 2)	Additional DM-RS position	FRC (Annex A)	SNR (dB)
1	2	Normal	TDLA30-300 LOW	$7(5,2)$	pos0	G-FR2-A4-3	1.1
	2	Normal	TDLA30-300 LOW	$40(20,20)$	pos0	G-FR2-A4-3	4.0
	2	Normal	TDLA30-300 LOW	$7(5,2)$	pos1	G-FR2-A4-13	1.3
	2	Normal	TDLA30-300 LOW	$40(20,20)$	pos1	G-FR2-A4-13	4.0

Table 11.2.2.3.2-4: Minimum requirements for UCI multiplexed on PUSCH, Type B, Without PTRS, CSI part 2, 50 MHz Channel Bandwidth, 120 kHz SCS

Number of TX antennas	Number of demodulation branches	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	UCI bits (CSI part 1 CSI part 2)	Additional DM-RS position	FRC (Annex A)	$\begin{aligned} & \text { SNR } \\ & \text { (dB) } \end{aligned}$
1	2	Normal	$\begin{gathered} \text { TDLA30-300 } \\ \text { LOW } \end{gathered}$	7(5,2)	pos0	G-FR2-A4-3	1.1
	2	Normal	$\begin{aligned} & \text { TDLA30-300 } \\ & \text { LOW } \end{aligned}$	40(20,20)	pos0	G-FR2-A4-3	3.9
	2	Normal	$\begin{gathered} \text { TDLA30-300 } \\ \text { LOW } \\ \hline \end{gathered}$	7(5,2)	pos1	G-FR2-A4-13	1.2
	2	Normal	$\begin{gathered} \text { TDLA30-300 } \\ \text { LOW } \end{gathered}$	40(20,20)	pos1	G-FR2-A4-13	3.7

11.3 Performance requirements for PUCCH

11.3.1 Requirements for $B S$ type 1-O

11.3.1.1 DTX to ACK probability

Apply the requirements defined in clause 8.3.1

11.3.1.2 Performance requirements for PUCCH format 0

Apply the requirements defined in clause 8.3.2 for 2 Rx .

11.3.1.3 Performance requirements for PUCCH format 1

Apply the requirements defined in clause 8.3.3 for 2 Rx .

11.3.1.4 Performance requirements for PUCCH format 2

Apply the requirements defined in clause 8.3.4 for 2 Rx .

11.3.1.5 Performance requirements for PUCCH format 3

Apply the requirements defined in clause 8.3.5 for 2 Rx .

11.3.1.6 Performance requirements for PUCCH format 4

Apply the requirements defined in clause 8.3.6 for 2 Rx .

11.3.1.7 Performance requirements for multi-slot PUCCH

Apply the requirements defined in clause 8.3.7 for 2 Rx .

11.3.2 Requirements for $B S$ type 2-O

11.3.2.1 DTX to ACK probability

Apply the requirements defined in clause 8.3.1.

11.3.2.2 Performance requirements for PUCCH format 0

11.3.2.2.1 General

The ACK missed detection probability is the probability of not detecting an ACK when an ACK was sent.
Table 11.3.2.2.1-1: Test Parameters

Parameter	Test
Number of UCI information bits	1
Number of PRBs	1
First PRB prior to frequency	
hopping	

The transient period as specified in TS 38.101-1[17] clause 6.3.3.1 and TS 38.101-2 [18] clause 6.3.3.1 is not taken into account for performance requirement testing, where the RB hopping is symmetric to the CC centre, i.e. intra-slot frequency hopping is enabled.

11.3.2.2.2 Minimum requirements

The ACK missed detection probability shall not exceed 1% at the SNR given in table 11.3.2.2.2-1 and in table 11.3.2.2.2-2.

Table 11.3.2.2.2-1: Minimum requirements for PUCCH format 0 and 60 kHz SCS

Number of TX antennas	Number of demodulation branches	Propagation conditions and correlation matrix (Annex G)	Number of OFDM symbols	Channel bandwidth / SNR (dB)	
				50 MHz	100 MHz
1	2	TDLA30-300 Low	1	9.3	9.0
			2	4.2	4.0

Table 11.3.2.2.2-2: Minimum requirements for PUCCH format 0 and 120 kHz SCS

Number of TX antennas	Number of demodulation branches	Propagation conditions and correlation matrix (Annex G)	Number of OFDM symbols	Channel bandwidth / SNR (dB)		
				50 MHz	100 MHz	200 MHz
1	2	TDLA30-300 Low	1	9.5	9.2	9.7
			2	4.1	3.8	4.0

11.3.2.3 Performance requirements for PUCCH format 1

11.3.2.3.1 NACK to ACK requirements

11.3.2.3.1.1
 General

The NACK to ACK detection probability is the probability that an ACK bit is falsely detected when an NACK bit was sent on the particular bit position, where the NACK to ACK detection probability is defined as follows:

$$
\operatorname{Prob}(\text { PUCCHNACK } \rightarrow \text { ACK bits })=\frac{\#(\text { NACK bits decoded as ACK bits) }}{\#(\text { Total NACK bits) }}
$$

where:

- \#(Total NACK bits) denotes the total number of NACK bits transmitted
- \#(NACK bits decoded as ACK bits) denotes the number of NACK bits decoded as ACK bits at the receiver, i.e. the number of received ACK bits
- NACK bits in the definition do not contain the NACK bits which are mapped from DTX, i.e. NACK bits received when DTX is sent should not be considered.

Random codeword selection is assumed.

Table 11.3.2.3.1.1-1: Test Parameters

Parameter	Test
Number of information bits	2
Number of PRBs	1
Number of symbols	14
First PRB prior to frequency hopping	0
Intra-slot frequency hopping	enabled
First PRB after frequency hopping	The largest PRB index - (nrofPRBs - 1)
Group and sequence hopping	neither
Hopping ID	0
Initial cyclic shift	0
First symbol	0
Index of orthogonal cover code (timeDomainOCC)	0

The transient period as specified in TS 38.101-1 [17] and TS 38.101-2 [18] clause 6.3.3.1 is not taken into account for performance requirement testing, where the RB hopping is symmetric to the CC centre, i.e. intra-slot frequency hopping is enabled.

11.3.2.3.1.2 Minimum requirements

The NACK to ACK probability shall not exceed 0.1% at the SNR given in Table 11.3.2.3.1.2-1 and Table 11.3.2.3.1.2-2.

Table 11.3.2.3.1.2-1: Minimum requirements for PUCCH format 1 with 60 kHz SCS

Number of TX antennas	Number of Demodulation Branches	Cyclic Prefix	Propagation conditions and correlation matrix (Annex G)	Channel bandwidth / SNR (dB)	
				50 MHz	100 MHz
1	2	Normal	TDLA30-300 Low	-1.2	-4.2

Table 11.3.2.3.1.2-2: Minimum requirements for PUCCH format 1 with 120 kHz SCS

Number of TX antenna s	Number ofDemodulationBranches	Cyclic Prefix	Propagation conditions and correlation matrix (Annex G)	Channel bandwidth / SNR (dB)		
				50 MHz	100 MHz	200 MHz
1	2	Normal	TDLA30-300 Low	-3.9	-3.9	-3.0

11.3.2.3.2 ACK missed detection requirements

11.3.2.3.2.1 General

The ACK missed detection probability is the probability of not detecting an ACK when an ACK was sent. The test parameters in Table 11.3.2.3.1.1-1 are configured.

The transient period as specified in TS 38.101-1 [17] and TS 38.101-2 [18] clause 6.3.3.1 is not taken into account for performance requirement testing, where the RB hopping is symmetric to the CC centre, i.e. intra-slot frequency hopping is enabled.
11.3.2.3.2.2 Minimum requirements

The ACK missed detection probability shall not exceed 1% at the SNR given in Table 11.3.2.3.2.2-1 and in Table 11.3.2.3.2.2-2.

Table 11.3.2.3.2.2-1: Minimum requirements for PUCCH format 1 with 60 kHz SCS

Number of TX antennas	Number of Demodulation Branches	Cyclic Prefix	Propagation conditions and correlation matrix (Annex G)	Channel bandwidth / SNR (dB)	
				50 MHz	100 MHz
1	2	Normal	TDLA30-300 Low	-3.9	-4.2

Table 11.3.2.3.2.2-2: Minimum requirements for PUCCH format 1 with 120 kHz SCS

Number of TX antenna s	\qquad	Cyclic Prefix	Propagation conditions and correlation matrix (Annex G)	Channel bandwidth / SNR (dB)		
				50 MHz	100 MHz	200 MHz
1	2	Normal	TDLA30-300 Low	-4.7	-4.6	-4.6

11.3.2.4 Performance requirements for PUCCH format 2

11.3.2.4.1 ACK missed detection requirements

11.3.2.4.1.1 General

The ACK missed detection probability is the probability of not detecting an ACK when an ACK was sent.
The ACK missed detection requirement only applies to the PUCCH format 2 with 4 UCI bits.
Table 11.3.2.4.1.1-1: Test Parameters

Parameter	Value
Modulation order	QSPK
Starting RB location	0
Intra-slot frequency hopping	N / A
Number of PRBs	4
Number of symbols	1
The number of UCI information bits	4
First symbol	13
DM-RS sequence generation	$N_{I D^{\circ}}=0$

11.3.2.4.1.2 Minimum requirements

The ACK missed detection probability shall not exceed 1% at the SNR given in table 11.3.2.4.1.2-1 and table 11.3.2.4.1.2-2 for 4UCI bits.

Table 11.3.2.4.1.2-1: Minimum requirements for PUCCH format 2 with 60 kHz SCS

Number of TX antennas	Number of demodulatio n branches	Cyclic Prefix	Propagation conditions and correlation matrix (Annex G)	Channel bandwidth / SNR (dB)	
				50 MHz	100 MHz
1	2	Normal	TDLA30-300 Low	6.7	7.2

Table 11.3.2.4.1.2-2: Minimum requirements for PUCCH format 2 with 120 kHz SCS

Number of TX antennas	Number of demodulati on branches	Cyclic Prefix	Propagation conditions and correlation matrix (Annex G)	Channel bandwidth / SNR (dB)		
				50 MHz	100 MHz	200 MHz
1	2	Normal	$\begin{gathered} \text { TDLA30-300 } \\ \text { Low } \end{gathered}$	6.6	6.3	6.6

11.3.2.4.2 UCI BLER performance requirements

11.3.2.4.2.1 General

The UCI block error probability (BLER) is defined as the probability of incorrectly decoding the UCI information when the UCI information is sent. The UCI information does not contain CSI part 2.

The transient period as specified in TS 38.101-1 [17] and TS 38.101-2 [18] clause 6.3.3.1 is not taken into account for performance requirement testing, where the RB hopping is symmetric to the CC centre, i.e. intra-slot frequency hopping is enabled.

The UCI performance only applies to the PUCCH format 2 with 22 UCI bits.
Table 11.3.2.4.2.1-1: Test Parameters

Parameter	Value
Modulation order	QSPK
First PRB prior to frequency hopping	0
Intra-slot frequency hopping	enabled
First PRB after frequency hopping	The largest PRB index - (Number of PRBs-1)
Number of PRBs	9
Number of symbols	2
The number of UCI information bits	22
First symbol	12
DM-RS sequence generation	$N_{I D^{0}}=0$

11.3.2.4.2.2 Minimum requirements

The UCI block error probability shall not exceed 1% at the SNR given in table 11.3.2.4.2.2-1 and table 11.3.2.4.2.2-2 for 22 UCI bits.

Table 11.3.2.4.2.2-1: Minimum requirements for PUCCH format 2 with 60 kHz SCS

Number of TX antennas	Number of demodulati on branches	Cyclic Prefix	Propagation conditions and correlation matrix (Annex G)	Channel bandwidth / SNR (dB)	
				50 MHz	100 MHz
1	2	Normal	$\begin{gathered} \text { TDLA30-300 } \\ \text { Low } \end{gathered}$	2.6	1.1

Table 11.3.2.4.2.2-2: Minimum requirements for PUCCH format 2 with 120 kHz SCS

Number ofTX antennas	Number of demodulati on branches	Cyclic Prefix	Propagation conditions and correlation matrix (Annex G)	Channel bandwidth / SNR (dB)		
		Normal	TDLA30-300 Low	1.2	1.2	1.1
1	2	Non MHz				

11.3.2.5 Performance requirements for PUCCH format 3

11.3.2.5.1 General

The performance is measured by the required SNR at UCI block error probability not exceeding 1%.
The UCI block error probability is defined as the conditional probability of incorrectly decoding the UCI information when the UCI information is sent. The UCI information does not contain CSI part 2.

The transient period as specified in TS 38.101-2 [18] clause 6.3.3.1 is not taken into account for performance requirement testing, where the RB hopping is symmetric to the CC centre, i.e. intra-slot frequency hopping is enabled.

Table 11.3.2.5.1-1: Test parameters

Parameter	Test 1	Test 2
Modulation order	QPSK	
First PRB prior to frequency hopping	0	
Intra-slot frequency hopping	enabled	
First PRB after frequency hopping	The largest PRB index - (Number of PRBs - 1)	
Group and sequence hopping	neither	
Hopping ID	0	
Number of PRBs	14	3
Number of symbols	16	4
The number of UCI information bits	0	16
First symbol	0	

11.3.2.5.2 Minimum requirements

The UCI block error probability shall not exceed 1% at the SNR given in Table 11.3.2.5.2-1 and Table 11.3.2.5.2-2.
Table 11.3.2.5.2-1: Required SNR for PUCCH format 3 with 60 kHz SCS

TestNumber	$\begin{aligned} & \text { Number } \\ & \text { of TX } \\ & \text { antennas } \end{aligned}$	Number of demodul ation branche s	Cyclic Prefix	Propagation conditions and correlation matrix (Annex G)	$\begin{aligned} & \text { Additional } \\ & \text { DM-RS } \\ & \text { configuration } \end{aligned}$	ChannelBandwidth / SNR(dB)	
						50 MHz	100 MHz
1	1	2	Normal	TDLA30-300 Low	No additional DM-RS	1.6	0.7
					Additional DMRS	1.3	0.9
2	1	2	Normal	TDLA30-300 Low	No additional DM-RS	3.0	2.4

Table 8.3.2.5.2-2: Required SNR for PUCCH format 3 with 120kHz SCS

Test Number	Number of TX antennas	Number of demodulat ion branches	Cyclic Prefix	Propagation conditions and correlation matrix (Annex G)	Additional DM-RS configuration	Channel Bandwidth / SNR (dB)		
						$\begin{gathered} 50 \\ \mathrm{MHz} \end{gathered}$	$\begin{aligned} & 100 \\ & \text { MHz } \end{aligned}$	$\begin{aligned} & 200 \\ & \mathrm{MHz} \end{aligned}$
1	1	2	Normal	$\begin{gathered} \text { TDLA30-300 } \\ \text { Low } \end{gathered}$	No additional DM-RS	1.4	0.7	0.7
					Additional DMRS	1.3	1.4	0.9
2	1	2	Normal	$\begin{gathered} \text { TDLA30-300 } \\ \text { Low } \end{gathered}$	No additional DM-RS	1.1	2.9	1.4

11.3.2.6 Performance requirements for PUCCH format 4

11.3.2.6.1 General

The performance is measured by the required SNR at UCI block error probability not exceeding 1%.
The UCI block error probability is defined as the conditional probability of incorrectly decoding the UCI information when the UCI information is sent. The UCI information does not contain CSI part 2.

The transient period as specified in TS 38.101-2 [18] clause 6.3.3.1 is not taken into account for performance requirement testing, where the RB hopping is symmetric to the CC centre, i.e. intra-slot frequency hopping is enabled.

Table 11.3.2.6.1-1: Test parameters

Parameter	Value
Modulation	QPSK
First PRB prior to frequency hoppingstartingPRB	0
Number of PRBs	1
Intra-slot frequency hopping	enabled
First PRB after frequency hopping	The largest PRB index - (Number of PRBs -1)
Group and sequence hopping	neither
Hopping ID	0
Number of symbols	14
The number of UCI information bits	22
First symbol	0
Length of the orthogonal cover code	n 2
Index of the orthogonal cover code	n 0

11.3.2.6.2 Minimum requirements

The UCI block error probability shall not exceed 1% at the SNR given in Table 11.3.2.6.2-1 and Table 11.3.2.6.2-2.
Table 11.3.2.6.2-1: Required SNR for PUCCH format 4 with 60 kHz SCS

Number of TX antennas	Number of demodula tion branches	Cyclic Prefix	Propagation conditions and correlation matrix (Annex G)	Additional DM-RS configuration	Channel Bandwidth / SNR (dB)	
					50 MHz	100 MHz
1	2	Normal	TDLA30-300 Low	$\begin{gathered} \hline \text { No additional DM- } \\ \text { RS } \\ \hline \end{gathered}$	3.0	2.7
				Additional DM-RS	3.1	3.5

Table 11.3.2.6.2-2: Required SNR for PUCCH format 4 with 120 kHz SCS

Number of TX antennas	Number of demodulat ion branches	Cyclic Prefix	Propagation conditions and correlation matrix (Annex G)	Additional DM-RS configuration	Channel Bandwidth / SNR (dB)		
					50 MHz	100 MHz	$\begin{gathered} 200 \mathrm{MH} \\ \mathrm{z} \end{gathered}$
1	2	Normal	TDLA30-300 Low	No additional DM-RS	2.8	2.8	3.5
				Additional DM-RS	3.6	3.8	3.2

11.4 Performance requirements for PRACH

11.4.1 Requirements for $B S$ type 1-O

11.4.1.1 PRACH False alarm probability

Apply the requirements defined in clause 8.4 .1 for 2 Rx .

11.4.1.2 PRACH detection requirements

Apply the requirements defined in clause 8.4.2 for 2 Rx .

11.4.2 Requirements for $B S$ type 2-O

11.4.2.1 PRACH False alarm probability

11.4.2.1.1 General

The false alarm requirement is valid for any number of receive antennas, for any channel bandwidth.
The false alarm probability is the conditional total probability of erroneous detection of the preamble (i.e. erroneous detection from any detector) when input is only noise.

11.4.2.1.2 Minimum requirement

The false alarm probability shall be less than or equal to 0.1%.

11.4.2.2 PRACH detection requirements

11.4.2.2.1 General

The probability of detection is the conditional probability of correct detection of the preamble when the signal is present. There are several error cases - detecting different preamble than the one that was sent, not detecting a preamble at all or correct preamble detection but with the wrong timing estimation. For AWGN and TDLA30-300, a timing estimation error occurs if the estimation error of the timing of the strongest path is larger than the time error tolerance given in Table 11.4.2.2-1.

Table 11.4.2.2-1: Time error tolerance for AWGN and TDLA30-300

PRACH preamble	PRACH SCS (kHz)	Time error tolerance	
		AWGN	TDLA30-300
A1, A2, A3, B4,	60	0.13 us	0.28 us
C0, C2	120	0.07 us	0.22 us

The test preambles for normal mode are listed in table A.6-2 and the test parameter msg1-FrequencyStart is set to 0 .

11.4.2.2.2 Minimum requirements

The probability of detection shall be equal to or exceed 99% for the SNR levels listed in Tables 11.4.2.2.2-1 to 11.4.2.2.2-2.

Table 11.4.2.2.2-1: PRACH missed detection requirements for Normal Mode, 60 kHz SCS

$\begin{aligned} & \text { Number } \\ & \text { of TX } \\ & \text { antennas } \end{aligned}$	Number of demodulation branches	Propagation conditions and correlation matrix (Annex G)	Frequency offset	SNR (dB)					
				Burst format A1	Burst format A2	Burst format A3	Burst format B4	Burst format CO	Burst format C2
1	2	AWGN	0	-8.9	-11.9	-13.5	-15.8	-6.0	-11.8
		$\begin{gathered} \text { TDLA30-300 } \\ \text { Low } \end{gathered}$	4000 Hz	-1.6	-3.8	-4.8	-6.9	1.1	-3.9

Table 11.4.2.2.2-2: PRACH missed detection requirements for Normal Mode, 120 kHz SCS

$\begin{aligned} & \text { Number } \\ & \text { of TX } \\ & \text { antennas } \end{aligned}$	Number of demodulation branches	Propagation conditions and correlation matrix (Annex G)	Frequency offset	SNR (dB)					
				Burst format A1	Burst format A2	Burst format A3	Burst format B4	Burst format CO	Burst format C2
1	2	AWGN	0	-8.7	-11.5	-13.3	-15.8	-5.8	-11.4
		$\begin{gathered} \text { TDLA30-300 } \\ \text { Low } \end{gathered}$	4000 Hz	-1.7	-4.4	-5.8	-7.5	1.2	-4.2

Annex A (normative):

Reference measurement channels

A. 1 Fixed Reference Channels for reference sensitivity level, ACS, in-band blocking, out-of-band blocking, receiver intermodulation and in-channel selectivity (QPSK, R=1/3)

The parameters for the reference measurement channels are specified in table A.1-1 for FR1 reference sensitivity level, ACS, in-band blocking, out-of-band blocking, receiver intermodulation, in-channel selectivity, OTA sensitivity, OTA reference sensitivity level, OTA ACS, OTA in-band blocking, OTA out-of-band blocking, OTA receiver intermodulation and OTA in-channel selectivity.

The parameters for the reference measurement channels are specified in table A.1-2 for FR2 OTA reference sensitivity level, OTA ACS, OTA in-band blocking, OTA out-of-band blocking, OTA receiver intermodulation and OTA inchannel selectivity.

Table A.1-1: FRC parameters for FR1 reference sensitivity level, ACS, in-band blocking, out-of-band blocking, receiver intermodulation, in-channel selectivity, OTA sensitivity, OTA reference sensitivity level, OTA ACS, OTA in-band blocking, OTA out-of-band blocking, OTA receiver intermodulation and OTA in-channel selectivity

Reference channel	G-FR1- A1-1	$\underset{\substack{\text { G-FR1-2 }}}{\text { A- }}$	$\begin{gathered} \text { G-FR1- } \\ \text { A1-3 } \end{gathered}$	$\begin{gathered} \text { G-FR1- } \\ \text { A1-4 } \end{gathered}$	$\begin{gathered} \text { G-FR1- } \\ \text { A1-5 } \end{gathered}$	$\begin{gathered} \text { G-FR1- } \\ \text { A1-6 } \end{gathered}$	$\begin{gathered} \text { G-FR1- } \\ \text { A1-7 } \end{gathered}$	$\begin{gathered} \text { G-FR1- } \\ \text { A1-8 } \end{gathered}$	$\begin{gathered} \text { G-FR1- } \\ \text { A1-9 } \end{gathered}$
Subcarrier spacing (kHz)	15	30	60	15	30	60	15	30	60
Allocated resource blocks	25	11	11	106	51	24	15	6	6
CP-OFDM Symbols per slot (Note 1)	12	12	12	12	12	12	12	12	12
Modulation	QPSK								
Code rate (Note 2)	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3
Payload size (bits)	2152	984	984	9224	4352	2088	1320	528	528
Transport block CRC (bits)	16	16	16	24	24	16	16	16	16
Code block CRC size (bits)	-	-	-	24	-	-	-	-	-
Number of code blocks - C	1	1	1	2	1	1	1	1	1
Code block size including CRC (bits) (Note 3)	2168	1000	1000	4648	4376	2104	1336	544	544
Total number of bits per slot	7200	3168	3168	30528	14688	6912	4320	1728	1728
Total symbols per slot	3600	1584	1584	15264	7344	3456	2160	864	864

NOTE 1: DM-RS configuration type $=1$ with DM-RS duration = single-symbol DM-RS, additional DM-RS position = pos1 with $I_{0}=2, I=11$ as per table 6.4.1.1.3-3 of TS 38.211 [5].
NOTE 2: MCS index 4 and target coding rate $=308 / 1024$ are adopted to calculate payload size.
NOTE 3: Code block size including CRC (bits) equals to K^{\prime} in clause 5.2.2 of TS 38.212 [15].

Table A.1-2: FRC parameters for FR2 OTA reference sensitivity level, OTA ACS, OTA in-band blocking, OTA out-of-band blocking, OTA receiver intermodulation and OTA in-channel selectivity

Reference channel	G-FR2-A1-1	G-FR2-A1-2	G-FR2-A1-3	G-FR2-A1-4	G-FR2-A1-5
Subcarrier spacing (kHz)	60	120	120	60	120
Allocated resource blocks	66	32	66	33	16
CP-OFDM Symbols per slot (Note 1)	12	12	12	12	12
Modulation	QPSK	QPSK	QPSK	QPSK	QPSK
Code rate (Note 2)	$1 / 3$	$1 / 3$	$1 / 3$	$1 / 3$	$1 / 3$
Payload size (bits)	5632	2792	5632	2856	1416
Transport block CRC (bits)	24	16	24	16	16
Code block CRC size (bits)	-	-	-	-	-
Number of code blocks - C	1	1	1	1	1
Code block size including CRC (bits) (Note 3)	5656	2808	5656	2872	1432
Total number of bits per slot	19008	9216	19008	9504	4608
Total symbols per slot	9504	4608	9504	4752	2304
NOTE 1: DM RS					

NOTE 1: DM-RS configuration type $=1$ with DM-RS duration $=$ single-symbol DM-RS, additional DM-RS position $=$ pos1 with $I o=2, I=11$ as per table 6.4.1.1.3-3 of TS 38.211 [5].
NOTE 2: MCS index 4 and target coding rate $=308 / 1024$ are adopted to calculate payload size.
NOTE 3: Code block size including CRC (bits) equals to K^{\prime} in clause 5.2.2 of TS 38.212 [15].

A. 2 Fixed Reference Channels for dynamic range (16QAM, R=2/3)

The parameters for the reference measurement channels are specified in table A.2-1 for FR1 dynamic range and OTA dynamic range.

Table A.2-1: FRC parameters for FR1 dynamic range and OTA dynamic range

Reference channel	$\underset{1}{\text { G-FR1-A2- }}$	$\begin{gathered} \hline \text { G-FR1-A2- } \\ 2 \end{gathered}$	$\begin{gathered} \hline \text { G-FR1-A2- } \\ 3 \end{gathered}$	$\underset{4}{\text { G-FR1-A2- }}$	$\begin{gathered} \text { G-FR1-A2- } \\ 5 \end{gathered}$	$\begin{gathered} \text { G-FR1-A2- } \\ 6 \end{gathered}$
Subcarrier spacing (kHz)	15	30	60	15	30	60
Allocated resource blocks	25	11	11	106	51	24
CP-OFDM Symbols per slot (Note 1)	12	12	12	12	12	12
Modulation	16QAM	16QAM	16QAM	16QAM	16QAM	16QAM
Code rate (Note 2)	2/3	2/3	2/3	2/3	2/3	2/3
Payload size (bits)	9224	4032	4032	38936	18960	8968
Transport block CRC (bits)	24	24	24	24	24	24
Code block CRC size (bits)	24	-	-	24	24	24
Number of code blocks - C	2	1	1	5	3	2
Code block size including CRC (bits) (Note 3)	4648	4056	4056	7816	6352	4520
Total number of bits per slot	14400	6336	6336	61056	29376	13824
Total symbols per slot	3600	1584	1584	15264	7344	3456

NOTE 1: DM-RS configuration type= 1 with DM-RS duration = single-symbol DM-RS, additional DM-RS position = pos 1 with $I_{0}=2, I=11$ as per table 6.4.1.1.3-3 of TS 38.211 [5].
NOTE 2: MCS index 16 and target coding rate $=658 / 1024$ are adopted to calculate payload size.
NOTE 3: Code block size including CRC (bits) equals to K^{\prime} in clause 5.2.2 of TS 38.212 [15].

A. 3 Fixed Reference Channels for performance requirements (QPSK, R=193/1024)

The parameters for the reference measurement channels are specified in table A.3-2, table A.3-4 and table A.3-6 for FR1 PUSCH performance requirements:

- FRC parameters are specified in table A.3-2 for FR1 PUSCH with transform precoding disabled, Additional DM$R S$ position $=$ posl and 1 transmission layer.
- FRC parameters are specified in table A.3-4 for FR1 PUSCH with transform precoding disabled, Additional DMRS position $=$ posl and 2 transmission layers.
- FRC parameters are specified in table A.3-6 for FR1 PUSCH with transform precoding enabled, Additional DM$R S$ position $=$ posl and 1 transmission layer.

The parameters for the reference measurement channels are specified in table A.3-7 to table A.3-12 for FR2 PUSCH performance requirements:

- FRC parameters are specified in table A.3-7 for FR2 PUSCH with transform precoding disabled, Additional DM$R S$ position $=$ pos0 and 1 transmission layer.
- FRC parameters are specified in table A.3-8 for FR2 PUSCH with transform precoding disabled, Additional DM$R S$ position $=$ pos 0 and 2 transmission layers.
- FRC parameters are specified in table A.3-9 for FR2 PUSCH with transform precoding enabled, Additional DM$R S$ position $=$ pos0 and 1 transmission layer.
- FRC parameters are specified in table A.3-10 for FR2 PUSCH with transform precoding disabled, Additional $D M-R S$ position $=$ posl and 1 transmission layer.
- FRC parameters are specified in table A.3-11 for FR2 PUSCH with transform precoding disabled, Additional $D M-R S$ position $=$ pos 1 and 2 transmission layers.
- FRC parameters are specified in table A.3-12 for FR2 PUSCH with transform precoding enabled, Additional $D M-R S$ position $=$ pos 1 and 1 transmission layer.

Table A.3-1: Void

Table A.3-2: FRC parameters for FR1 PUSCH performance requirements, transform precoding disabled, Additional DM-RS position = pos1 and 1 transmission layer (QPSK, R=193/1024)

Reference channel	G-FR1-A3-8	G-FR1-A3-9	$\begin{gathered} \text { G-FR1- } \\ \text { A3-10 } \end{gathered}$	$\begin{gathered} \text { G-FR1- } \\ \text { A3-11 } \end{gathered}$	$\begin{aligned} & \text { G-FR1- } \\ & \text { A3-12 } \end{aligned}$	$\begin{gathered} \text { G-FR1- } \\ \text { A3-13 } \end{gathered}$	$\begin{aligned} & \text { G-FR1- } \\ & \text { A3-14 } \end{aligned}$
Subcarrier spacing [kHz]	15	15	15	30	30	30	30
Allocated resource blocks	25	52	106	24	51	106	273
CP-OFDM Symbols per slot (Note 1)	12	12	12	12	12	12	12
Modulation	QPSK						
Code rate (Note 2)	193/1024	193/1024	193/1024	193/1024	193/1024	193/1024	193/1024
Payload size (bits)	1352	2856	5768	1320	2792	5768	14856
Transport block CRC (bits)	16	16	24	16	16	24	24
Code block CRC size (bits)			24			24	24
Number of code blocks - C	1	1	2	1	1	2	4
Code block size including CRC (bits) (Note 2)	1368	2872	2920	1336	2808	2920	3744
Total number of bits per slot	7200	14976	30528	6912	14688	30528	78624
Total symbols per slot	3600	7488	15264	3456	7344	15264	39312
NOTE 1: $D M-R S$ configuration type $=1$ with $D M-R S$ duration $=$ single-symbol $D M-R S$ and the number of DM-RS CDM groups without data is 2 , Additional $D M-R S$ position $=$ pos $1, I_{0}=2$ and $I=11$ for PUSCH mapping type A, $I_{0}=0$ and $I=10$ for PUSCH mapping type B as per table 6.4.1.1.3-3 of TS 38.211 [5]. NOTE 2: Code block size including CRC (bits) equals to K^{\prime} in clause 5.2.2 of TS 38.212 [15].							

Table A.3-3: Void

Table A.3-4: FRC parameters for FR1 PUSCH performance requirements, transform precoding disabled, Additional DM-RS position = pos1 and 2 transmission layers (QPSK, R=193/1024)

Reference channel	$\begin{gathered} \text { G-FR1- } \\ \text { A3-22 } \end{gathered}$	$\begin{gathered} \text { G-FR1- } \\ \text { A3-23 } \end{gathered}$	$\begin{gathered} \text { G-FR1- } \\ \text { A3-24 } \end{gathered}$	$\begin{aligned} & \text { G-FR1- } \\ & \text { A3-25 } \end{aligned}$	$\begin{gathered} \text { G-FR1- } \\ \text { A3-26 } \end{gathered}$	$\begin{gathered} \hline \text { G-FR1- } \\ \text { A3-27 } \end{gathered}$	$\begin{gathered} \text { G-FR1- } \\ \text { A3-28 } \end{gathered}$
Subcarrier spacing [kHz]	15	15	15	30	30	30	30
Allocated resource blocks	25	52	106	24	51	106	273
CP-OFDM Symbols per slot (Note 1)	12	12	12	12	12	12	12
Modulation	QPSK						
Code rate (Note 2)	193/1024	193/1024	193/1024	193/1024	193/1024	193/1024	193/1024
Payload size (bits)	2728	5640	11528	2600	5512	11528	29736
Transport block CRC (bits)	16	24	24	16	24	24	24
Code block CRC size (bits)	-	24	24	-	24	24	24
Number of code blocks - C	1	2	4	1	2	4	8
Code block size including CRC (bits) (Note 2)	2744	2856	2912	2616	2792	2912	3744
Total number of bits per slot	14400	29952	61056	13824	29376	61056	157248
Total symbols per slot	7200	14976	30528	6912	14688	30528	78624
NOTE 1: DM-RS configuration type $=1$ with DM-RS duration = single-symbol DM-RS and the number of DM-RS CDM groups without data is 2, Additional DM-RS position = pos $1, l_{0}=2$ and $l=11$ for PUSCH mapping type A, $l_{0}=0$ and $I=10$ for PUSCH mapping type B as per table 6.4.1.1.3-3 of TS 38.211 [5]. NOTE 2: Code block size including CRC (bits) equals to K^{\prime} in clause 5.2.2 of TS 38.212 [15].							

Table A.3-5: Void

Table A.3-6: FRC parameters for FR1 PUSCH performance requirements, transform precoding enabled, Additional DM-RS position = pos1 and 1 transmission layer (QPSK, R=193/1024)

Reference channel	G-FR1-A3-31	G-FR1-A3-32
Subcarrier spacing [kHz]	15	30
Allocated resource blocks	25	24
DFT-s-OFDM Symbols per slot (Note 1)	12	12
Modulation	QPSK	QPSK
Code rate (Note 2)	$193 / 1024$	$193 / 1024$
Payload size (bits)	1352	1320
Transport block CRC (bits)	16	16
Code block CRC size (bits)	-	-
Number of code blocks - C	1	1
Code block size including CRC (bits) (Note 2)	1368	1336
Total number of bits per slot	7200	6912
Total symbols per slot	3600	3456
NOTE 1.		

NOTE 1: DM-RS configuration type $=1$ with DM-RS duration $=$ single-symbol DM-RS and the number of DMRS CDM groups without data is 2, Additional DM-RS position = pos1, $l_{0}=2$ and $l=11$ for PUSCH mapping type $A, I_{0}=0$ and $I=10$ for PUSCH mapping type B as per Table 6.4.1.1.3-3 of TS 38.211 [5].

NOTE 2: Code block size including CRC (bits) equals to K^{\prime} in clause 5.2.2 of TS 38.212 [15].

Table A.3-7: FRC parameters for FR2 PUSCH performance requirements, transform precoding disabled, Additional DM-RS position = pos0 and 1 transmission layer (QPSK, R=193/1024)

Reference channel	G-FR2- A3-1	G-FR2- A3-2	G-FR2- A3-3	G-FR2- A3-4	G-FR2- A3-5
Subcarrier spacing [kHz]	60	60	120	120	120
Allocated resource blocks	66	132	32	66	132
CP-OFDM Symbols per slot (Note 1)	9	9	9	9	9
Modulation	QPSK	QPSK	QPSK	QPSK	QPSK
Code rate (Note 2)	$193 / 1024$	$193 / 1024$	$193 / 1024$	$193 / 1024$	$193 / 1024$
Payload size (bits)	2664	5384	1320	2664	5384
Transport block CRC (bits)	16	24	16	16	24
Code block CRC size (bits)	-	24	-	-	24
Number of code blocks - C	1	2	1	1	2
Code block size including CRC (bits) (Note 2)	2680	2728	1336	2680	2728
Total number of bits per slot	14256	28512	6912	14256	28512
Total symbols per slot	7128	14256	3456	7128	14256

NOTE 1: DM-RS configuration type $=1$ with DM-RS duration $=$ single-symbol DM-RS and the number of DM-RS CDM groups without data is 2, Additional $D M-R S$ position $=$ posO with $10=0$ as per Table 6.4.1.1.3-3 of TS 38.211 [5].
NOTE 2: Code block size including CRC (bits) equals to K^{\prime} in clause 5.2.2 of TS 38.212 [15].

Table A.3-8: FRC parameters for FR2 PUSCH performance requirements, transform precoding disabled, Additional DM-RS position $=$ posO and 2 transmission layers (QPSK, R=193/1024)

Reference channel	G-FR2- A3-6	G-FR2- A3-7	G-FR2- A3-8	G-FR2- A3-9	G-FR2- A3-10
Subcarrier spacing [kHz]	60	60	120	120	120
Allocated resource blocks	66	132	32	66	132
CP-OFDM Symbols per slot (Note 1)	9	9	9	9	9
Modulation	QPSK	QPSK	QPSK	QPSK	QPSK
Code rate (Note 2)	$193 / 1024$	$193 / 1024$	$193 / 1024$	$193 / 1024$	$193 / 1024$
Payload size (bits)	5384	10752	2600	5384	10752
Transport block CRC (bits)	24	24	16	24	24
Code block CRC size (bits)	24	24	-	24	24
Number of code blocks - C	2	3	1	2	3
Code block size including CRC (bits) (Note 2)	2728	3616	2616	2728	3616
Total number of bits per slot	28512	57024	13824	28512	57024
Total symbols per slot	14256	28512	6912	14256	28512
NOTE 1:DM-RS configuration type = 1 with DM-RS duration = single-symbol DM-RS and the number of DM-RS CDM groups without data is 2, Additional DM-RS position $=$ posO with $10=0$ as per Table 6.4.1.1.3-3 of TS 38.211 [5]. NOTE 2: Code block size including CRC (bits) equals to K' in clause 5.2.2 of TS 38.212 [15].					

Table A.3-9: FRC parameters for FR2 PUSCH performance requirements, transform precoding enabled, Additional DM-RS position = posO and 1 transmission layer (QPSK, R=193/1024)

Reference channel	G-FR2-A3-11	G-FR2-A3-12
Subcarrier spacing [kHz]	60	120
Allocated resource blocks	30	30
DFT-s-OFDM Symbols per slot (Note 1)	9	9
Modulation	QPSK	QPSK
Code rate (Note 2)	$193 / 1024$	$193 / 1024$
Payload size (bits)	1224	1224
Transport block CRC (bits)	16	16
Code block CRC size (bits)	-	-
Number of code blocks - C	1	1
Code block size including CRC (bits) (Note 2)	1240	1240
Total number of bits per slot	6480	6480
Total symbols per slot	3240	3240

NOTE 1: DM-RS configuration type $=1$ with DM-RS duration = single-symbol DM-RS and the number of DMRS CDM groups without data is 2 , Additional $D M-R S$ position $=p o s 0$ with $I_{0}=0$ as per Table 6.4.1.1.3-3 of TS 38.211 [5].

NOTE 2: Code block size including CRC (bits) equals to K^{\prime} in clause 5.2.2 of TS 38.212 [15].

Table A.3-10: FRC parameters for FR2 PUSCH performance requirements, transform precoding disabled, Additional DM-RS position = pos1 and 1 transmission layer (QPSK, R=193/1024)

Reference channel	G-FR2- A3-13	G-FR2- A3-14	G-FR2- A3-15	G-FR2- A3-16	G-FR2- A3-17
Subcarrier spacing [kHz]	60	60	120	120	120
Allocated resource blocks	66	132	32	66	132
CP-OFDM Symbols per slot (Note 1)	8	8	8	8	8
Modulation	QPSK	QPSK	QPSK	QPSK	QPSK
Code rate (Note 2)	$193 / 1024$	$193 / 1024$	$193 / 1024$	$193 / 1024$	$193 / 1024$
Payload size (bits)	2408	4744	1160	2408	4744
Transport block CRC (bits)	16	24	16	16	24
Code block CRC size (bits)	-	24	-	-	24
Number of code blocks - C	1	2	1	1	2
Code block size including CRC (bits) (Note 2)	2424	2408	1176	2424	2408
Total number of bits per slot	12672	25344	6144	12672	25344
Total symbols per slot	6336	12672	3072	6336	12672
N					

NOTE 1: $D M-R S$ configuration type $=1$ with $D M-R S$ duration $=$ single-symbol DM-RS and the number of DM-RS CDM groups without data is 2, Additional DM-RS position $=$ pos 1 with $I_{0}=0$ and $I=8$ as per Table 6.4.1.1.3-3 of TS 38.211 [5].

NOTE 2: Code block size including CRC (bits) equals to K^{\prime} in clause 5.2.2 of TS 38.212 [15].

Table A.3-11: FRC parameters for FR2 PUSCH performance requirements, transform precoding disabled, Additional DM-RS position = pos1 and 2 transmission layers (QPSK, R=193/1024)

Reference channel	G-FR2- A3-18	G-FR2- A3-19	G-FR2- A3-20	G-FR2- A3-21	G-FR2- A3-22
Subcarrier spacing [kHz]	60	60	120	120	120
Allocated resource blocks	66	132	32	66	132
CP-OFDM Symbols per slot (Note 1)	8	8	8	8	8
Modulation	QPSK	QPSK	QPSK	QPSK	QPSK
Code rate (Note 2)	$193 / 1024$	$193 / 1024$	$193 / 1024$	$193 / 1024$	$193 / 1024$
Payload size (bits)	4744	9480	2408	4744	9480
Transport block CRC (bits)	24	24	16	24	24
Code block CRC size (bits)	24	24	-	24	24
Number of code blocks - C	2	3	1	2	3
Code block size including CRC (bits) (Note 2)	2408	3192	2424	2408	3192
Total number of bits per slot	25344	50688	12288	25344	50688
Total symbols per slot	12672	25344	6144	12672	25344

NOTE 1: $\quad D M$-RS configuration type $=1$ with $D M$-RS duration $=$ single-symbol $D M-R S$ and the number of DM-RS CDM groups without data is 2 , Additional $D M-R S$ position $=$ pos 1 with $I o=0$ and $I=8$ as per Table 6.4.1.1.3-3 of TS 38.211 [5].

NOTE 2: Code block size including CRC (bits) equals to K^{\prime} in clause 5.2.2 of TS 38.212 [15].

Table A.3-12: FRC parameters for FR2 PUSCH performance requirements, transform precoding enabled, Additional DM-RS position = pos1 and 1 transmission layer (QPSK, R=193/1024)

Reference channel	G-FR2-A3-23	G-FR2-A3-24
Subcarrier spacing [kHz]	60	120
Allocated resource blocks	30	30
DFT-s-OFDM Symbols per slot (Note 1)	8	8
Modulation	QPSK	QPSK
Code rate (Note 2)	$193 / 1024$	$193 / 1024$
Payload size (bits)	1128	1128
Transport block CRC (bits)	16	16
Code block CRC size (bits)	-	-
Number of code blocks - C	1	1
Code block size including CRC (bits) (Note 2)	1144	1144
Total number of bits per slot	5760	5760
Total symbols per slot	2880	2880

NOTE 1: DM-RS configuration type $=1$ with DM-RS duration = single-symbol $D M$-RS and the number of DMRS CDM groups without data is 2, Additional $D M-R S$ position $=p o s 1$ with $I_{0}=0$ and $I=8$ as per Table 6.4.1.1.3-3 of TS 38.211 [5].
NOTE 2: Code block size including CRC (bits) equals to K^{\prime} in clause 5.2.2 of TS 38.212 [15].

A. 4 Fixed Reference Channels for performance requirements (16QAM, $R=658 / 1024$)

The parameters for the reference measurement channels are specified in table A.4-2 and table A.4-4 for FR1 PUSCH performance requirements:

- FRC parameters are specified in table A.4-2 for FR1 PUSCH with transform precoding disabled, Additional DM$R S$ position $=$ posl and 1 transmission layer.
- FRC parameters are specified in table A.4-4 for FR1 PUSCH with transform precoding disabled, Additional DMRS position $=$ posl and 2 transmission layers.

The parameters for the reference measurement channels are specified in table A.4-5 to table A.4-8 for FR2 PUSCH performance requirements:

- FRC parameters are specified in table A.4-5 for FR2 PUSCH with transform precoding disabled, Additional DM$R S$ position $=$ pos0 and 1 transmission layer.
- FRC parameters are specified in table A.4-6 for FR2 PUSCH with transform precoding disabled, Additional DM$R S$ position $=$ pos 0 and 2 transmission layers.
- FRC parameters are specified in table A.4-7 for FR2 PUSCH with transform precoding disabled, Additional DMRS position = posl and 1 transmission layer.
- FRC parameters are specified in table A.4-8 for FR2 PUSCH with transform precoding disabled, Additional DMRS position $=$ posl and 2 transmission layers.

Table A.4-1: Void

Table A.4-2: FRC parameters for FR1 PUSCH performance requirements, transform precoding disabled, Additional DM-RS position = pos1 and 1 transmission layer (16QAM, R=658/1024)

Reference channel	G-FR1- A4-8	G-FR1- A4-9	G-FR1- A4-10	G-FR1- A4-11 (Note 3)	G-FR1- A4-12	G-FR1- A4-13	G-FR1- A4-14
Subcarrier spacing [kHz]	15	15	15	30	30	30	30
Allocated resource blocks	25	52	106	24	51	106	273
CP-OFDM Symbols per slot (Note 1)	12	12	12	12	12	12	12
Modulation	16 QAM	16QAM	16 QAM				
Code rate (Note 2)	$658 / 1024$	$658 / 1024$	$658 / 1024$	$658 / 1024$	$658 / 1024$	$658 / 1024$	$658 / 1024$
Payload size (bits)	9224	19464	38936	8968	18960	38936	100392
Transport block CRC (bits)	24	24	24	24	24	24	24
Code block CRC size (bits)	24	24	24	24	24	24	24
Number of code blocks - C	2	3	5	2	3	5	12
Code block size including CRC (bits) (Note 2)	4648	6520	7816	4520	6352	7816	8392
Total number of bits per							
slot	14400	29952	61056	13824	29376	61056	157248
Total symbols per slot	3600	7488	15264	3456	7344	15264	39312
NOTEDM							

NOTE 1: DM-RS configuration type $=1$ with DM-RS duration $=$ single-symbol $D M$-RS and the number of DM-RS CDM groups without data is 2, Additional DM-RS position $=$ pos $1, I_{0}=2$ and $l=11$ for PUSCH mapping type A, $I_{0}=0$ and $I=10$ for PUSCH mapping type B as per table 6.4.1.1.3-3 of TS 38.211 [5].
NOTE 2: Code block size including CRC (bits) equals to K^{\prime} in clause 5.2.2 of TS 38.212 [15].
NOTE 3: The calculation of the "Total number of bits per slot" and "Total symbols per slot" fields include the REs taken up by CSI part 1 and CSI part 2, if present.

Table A.4-3: Void

Table A.4-4: FRC parameters for FR1 PUSCH performance requirements, transform precoding disabled, Additional DM-RS position = pos1 and 2 transmission layers (16QAM, R=658/1024)

Reference channel	$\begin{gathered} \hline \text { G-FR1- } \\ \text { A4-22 } \end{gathered}$	$\begin{gathered} \text { G-FR1- } \\ \text { A4-23 } \end{gathered}$	$\begin{gathered} \text { G-FR1- } \\ \text { A4-24 } \end{gathered}$	$\begin{gathered} \hline \text { G-FR1- } \\ \text { A4-25 } \end{gathered}$	$\begin{gathered} \text { G-FR1- } \\ \text { A4-26 } \end{gathered}$	$\begin{gathered} \text { G-FR1- } \\ \text { A4-27 } \end{gathered}$	$\begin{gathered} \hline \text { G-FR1- } \\ \text { A4-28 } \end{gathered}$
Subcarrier spacing [kHz]	15	15	15	30	30	30	30
Allocated resource blocks	25	52	106	24	51	106	273
CP-OFDM Symbols per slot (Note 1)	12	12	12	12	12	12	12
Modulation	16QAM						
Code rate (Note 2)	658/1024	658/1024	658/1024	658/1024	658/1024	658/1024	658/1024
Payload size (bits)	18432	38936	77896	17928	37896	77896	200808
Transport block CRC (bits)	24	24	24	24	24	24	24
Code block CRC size (bits)	24	24	24	24	24	24	24
Number of code blocks - C	3	5	10	3	5	10	24
Code block size including CRC (bits) (Note 2)	6176	7816	7816	6008	7608	7816	8392
Total number of bits per slot	28800	59904	122112	27648	58752	122112	314496
Total symbols per slot	7200	14976	30528	6912	14688	30528	78624
NOTE 1: DM-RS configuration type $=1$ with DM-RS duration $=$ single-symbol DM-RS and the number of DM-RS CDM groups without data is 2, Additional DM-RS position $=$ pos $1, l_{0}=2$ and $l=11$ for PUSCH mapping type A, $l_{0}=0$ and $l=10$ for PUSCH mapping type B as per table 6.4.1.1.3-3 of TS 38.211 [5]. NOTE 2: Code block size including CRC (bits) equals to K^{\prime} in clause 5.2.2 of TS 38.212 [15].							

Table A.4-5: FRC parameters for FR2 PUSCH performance requirements, transform precoding disabled, Additional DM-RS position = pos0 and 1 transmission layer (16QAM, R=658/1024)

Reference channel	G-FR2- A4-1	G-FR2- A4-2	G-FR2- A4-3 (Note 3)	G-FR2- A4-4	$\begin{gathered} \text { G-FR2- } \\ \text { A4-5 } \end{gathered}$
Subcarrier spacing [kHz]	60	60	120	120	120
Allocated resource blocks	66	132	32	66	132
CP-OFDM Symbols per slot (Note 1)	9	9	9	9	9
Modulation	16QAM	16QAM	16QAM	16QAM	16QAM
Code rate (Note 2)	658/1024	658/1024	658/1024	658/1024	658/1024
Payload size (bits)	18432	36896	8968	18432	36896
Transport block CRC (bits)	24	24	24	24	24
Code block CRC size (bits)	24	24	24	24	24
Number of code blocks - C	3	5	2	3	5
Code block size including CRC (bits) (Note 2)	6176	7408	4520	6176	7408
Total number of bits per slot without PT-RS	28512	57024	13824	28512	57024
Total number of bits per slot with PT-RS (Note 4)	27324	54648	13248	27324	54648
Total symbols per slot without PT-RS	7128	14256	3456	7128	14256
Total symbols per slot with PT-RS (Note 4)	6831	13662	3312	6831	13662

NOTE 1: DM-RS configuration type $=1$ with DM-RS duration $=$ single-symbol DM-RS and the number of DM-RS CDM groups without data is 2 , Additional $D M-R S$ position $=$ pos 0 with $I_{0}=0$ as per Table 6.4.1.1.3-3 of TS 38.211 [5].
NOTE 2: Code block size including CRC (bits) equals to K^{\prime} in clause 5.2.2 of TS 38.212 [15].
NOTE 3: The calculation of the "Total number of bits per slot" and "Total symbols per slot" fields include the REs taken up by CSI part 1 and CSI part 2, if present.
NOTE 4: PT-RS configuration $K_{P T-R S}=2, L_{P T-R S}=1$.

Table A.4-6: FRC parameters for FR2 PUSCH performance requirements, transform precoding disabled, Additional DM-RS position = pos0 and 2 transmission layers (16QAM, R=658/1024)

Reference channel	G-FR2- A4-6	G-FR2- A4-7	G-FR2- A4-8	G-FR2- A4-9	G-FR2- A4-10
Subcarrier spacing [kHz]	60	60	120	120	120
Allocated resource blocks	66	132	32	66	132
CP-OFDM Symbols per slot (Note 1)	9	9	9	9	9
Modulation	16 QAM	16 QAM	16 QAM	16QAM	16QAM
Code rate (Note 2)	$658 / 1024$	$658 / 1024$	$658 / 1024$	$658 / 1024$	$658 / 1024$
Payload size (bits)	36896	73776	17928	36896	73776
Transport block CRC (bits)	24	24	24	24	24
Code block CRC size (bits)	24	24	24	24	24
Number of code blocks - C	5	9	3	5	9
Code block size including CRC (bits) (Note 2)	7408	8224	6008	7408	8224
Total number of bits per slot without PT-RS	57024	114048	27648	57024	114048
Total number of bits per slot with PT-RS (Note	54648	109296	26496	54648	109296
3)					
Total symbols per slot without PT-RS	14256	28512	6912	14256	28512
Total symbols per slot with PT-RS (Note 3)	13662	27324	6624	13662	27324
NOTE 1 $D M$ RS					

NOTE 1: DM-RS configuration type $=1$ with DM-RS duration $=$ single-symbol $D M$-RS and the number of DM-RS CDM groups without data is 2 , Additional $D M-R S$ position $=$ pos 0 with $I_{0}=0$ as per Table 6.4.1.1.3-3 of TS 38.211 [5].
NOTE 2: Code block size including CRC (bits) equals to K^{\prime} in clause 5.2.2 of TS 38.212 [15].
NOTE 3: PT-RS configuration $K_{\text {PT-RS }}=2, L_{P T-R S}=1$.

Table A.4-7: FRC parameters for FR2 PUSCH performance requirements, transform precoding disabled, Additional DM-RS position = pos1 and 1 transmission layer (16QAM, R=658/1024)

Reference channel	G-FR2- A4-11	G-FR2- A4-12	G-FR2- A4-13 (Note 3)	G-FR2- A4-14	G-FR2- A4-15
Subcarrier spacing [kHz]	60	60	120	120	120
Allocated resource blocks	66	132	32	66	132
CP-OFDM Symbols per slot (Note 1)	8	8	8	8	8
Modulation	16 QAM	16 QAM	16 QAM	16QAM	16 QAM
Code rate (Note 2)	$658 / 1024$	$658 / 1024$	$658 / 1024$	$658 / 1024$	$658 / 1024$
Payload size (bits)	16392	32776	7936	16392	32776
Transport block CRC (bits)	24	24	24	24	24
Code block CRC size (bits)	24	24	-	24	24
Number of code blocks - C	2	4	1	2	4
Code block size including CRC (bits) (Note 2)	8232	8224	7960	8232	8224
Total number of bits per slot without PT-RS	25344	50688	12288	25344	50688
Total number of bits per slot with PT-RS (Note	24288	48576	11776	24288	48576
4)		6336	12672	3072	6336
Total symbols per slot without PT-RS	6072	12144	2944	6072	12672
Total symbols per slot with PT-RS (Note 4)	6074				
NOTE 1: DM					

NOTE 1: DM-RS configuration type $=1$ with $D M-R S$ duration $=$ single-symbol $D M-R S$ and the number of DM-RS CDM groups without data is 2, Additional $D M-R S$ position $=$ pos 1 with $I_{0}=0$ and $I=8$ as per Table 6.4.1.1.3-3 of TS 38.211 [5].

NOTE 2: Code block size including CRC (bits) equals to K^{\prime} in clause 5.2.2 of TS 38.212 [15].
NOTE 3: The calculation of the "Total number of bits per slot" and "Total symbols per slot" fields include the REs taken up by CSI part 1 and CSI part 2, if present.
NOTE 4: PT-RS configuration $K_{\text {PT-RS }}=2, L_{P T-R S}=1$.

Table A.4-8: FRC parameters for FR2 PUSCH performance requirements, transform precoding disabled, Additional DM-RS position = pos1 and 2 transmission layers (16QAM, R=658/1024)

Reference channel	$\begin{gathered} \text { G-FR2- } \\ \text { A4-16 } \end{gathered}$	$\begin{gathered} \text { G-FR2- } \\ \text { A4-17 } \\ \hline \end{gathered}$	$\begin{gathered} \text { G-FR2- } \\ \text { A4-18 } \end{gathered}$	$\begin{gathered} \text { G-FR2- } \\ \text { A4-19 } \end{gathered}$	$\begin{gathered} \text { G-FR2- } \\ \text { A4-20 } \end{gathered}$
Subcarrier spacing [kHz]	60	60	120	120	120
Allocated resource blocks	66	132	32	66	132
CP-OFDM Symbols per slot (Note 1)	8	8	8	8	8
Modulation	16QAM	16QAM	16QAM	16QAM	16QAM
Code rate (Note 2)	658/1024	658/1024	658/1024	658/1024	658/1024
Payload size (bits)	32776	65576	15880	32776	65576
Transport block CRC (bits)	24	24	24	24	24
Code block CRC size (bits)	24	24	24	24	24
Number of code blocks - C	4	8	2	4	8
Code block size including CRC (bits) (Note 2)	8224	8224	7976	8224	8224
Total number of bits per slot without PT-RS	50688	101376	24576	50688	101376
Total number of bits per slot with PT-RS (Note 3)	48576	97152	23552	48576	97152
Total symbols per slot without PT-RS	12672	25344	6144	12672	25344
Total symbols per slot with PT-RS (Note 3)	12144	24288	5888	12144	24288

NOTE 1: $D M-R S$ configuration type $=1$ with $D M$-RS duration $=$ single-symbol $D M-R S$ and the number of DM-RS CDM groups without data is 2 , Additional DM-RS position $=$ pos 1 with $l o=0$ and $I=8$ as per Table 6.4.1.1.3-3 of TS 38.211 [5].

NOTE 2: Code block size including CRC (bits) equals to K^{\prime} ' in clause 5.2.2 of TS 38.212 [15].
NOTE 3: PT-RS configuration $K_{\text {PT-RS }}=2$, LPT-RS $=1$.

A. 5 Fixed Reference Channels for performance requirements (64QAM, $R=567 / 1024$)

The parameters for the reference measurement channels are specified in table A.5-2 for FR1 PUSCH performance requirements:

- FRC parameters are specified in table A.5-2 for FR1 PUSCH with transform precoding disabled, Additional DM$R S$ position $=$ posl and 1 transmission layer.

The parameters for the reference measurement channels are specified in table A.5-3 to table A.5-4 for FR2 PUSCH performance requirements:

- FRC parameters are specified in table A.5-3 for FR2 PUSCH with transform precoding disabled, Additional DM$R S$ position $=$ pos 0 and 1 transmission layer.
- FRC parameters are specified in table A.5-4 for FR2 PUSCH with transform precoding disabled, Additional DMRS position $=$ pos 1 and 1 transmission layer.

Table A.5-1: Void

Table A.5-2: FRC parameters for FR1 PUSCH performance requirements, transform precoding disabled, Additional DM-RS position = pos1 and 1 transmission layer (64QAM, R=567/1024)

Reference channel	$\begin{gathered} \text { G-FR1- } \\ \text { A5-8 } \end{gathered}$	$\begin{gathered} \text { G-FR1- } \\ \text { A5-9 } \end{gathered}$	$\begin{gathered} \hline \text { G-FR1- } \\ \text { A5-10 } \end{gathered}$	$\begin{gathered} \hline \text { G-FR1- } \\ \text { A5-11 } \end{gathered}$	$\begin{gathered} \text { G-FR1- } \\ \text { A5-12 } \end{gathered}$	$\begin{gathered} \text { G-FR1- } \\ \text { A5-13 } \end{gathered}$	$\begin{gathered} \text { G-FR1- } \\ \text { A5-14 } \end{gathered}$
Subcarrier spacing [kHz]	15	15	15	30	30	30	30
Allocated resource blocks	25	52	106	24	51	106	273
CP-OFDM Symbols per slot (Note 1)	12	12	12	12	12	12	12
Modulation	64QAM						
Code rate (Note 2)	567/1024	567/1024	567/1024	567/1024	567/1024	567/1024	567/1024
Payload size (bits)	12040	25104	50184	11528	24576	50184	131176
Transport block CRC (bits)	24	24	24	24	24	24	24
Code block CRC size (bits)	24	24	24	24	24	24	24
Number of code blocks - C	2	3	6		3	6	16
Code block size including CRC (bits) (Note 2)	6056	8400	8392	5800	8224	8392	8224
Total number of bits per slot	21600	44928	91584	20736	44064	91584	235872
Total symbols per slot	3600	7488	15264	3456	7344	15264	39312
NOTE 1: DM-RS configuration type $=1$ with $D M-R S$ duration $=$ single-symbol $D M-R S$ and the number of DM-RS CDM groups without data is 2 , Additional DM-RS position $=$ pos $1, l_{0}=2$ and $I=11$ for PUSCH mapping type A, $l_{0}=0$ and $I=10$ for PUSCH mapping type B as per table 6.4.1.1.3-3 of TS 38.211 [5]. NOTE 2: Code block size including CRC (bits) equals to K^{\prime} in clause 5.2.2 of TS 38.212 [15].							

Table A.5-3: FRC parameters for FR2 PUSCH performance requirements, transform precoding disabled, Additional DM-RS position = pos0 and 1 transmission layer (64QAM, R=567/1024)

Reference channel	G-FR2-A5-1	G-FR2-A5-2	G-FR2-A5-3	G-FR2-A5-4	G-FR2-A5-5
Subcarrier spacing [kHz]	60	60	120	120	120
Allocated resource blocks	66	132	32	66	132
CP-OFDM Symbols per slot (Note 1)	9	9	9	9	9
Modulation	64QAM	64QAM	64QAM	64QAM	64QAM
Code rate (Note 2)	567/1024	567/1024	567/1024	567/1024	567/1024
Payload size (bits)	23568	47112	11528	23568	47112
Transport block CRC (bits)	24	24	24	24	24
Code block CRC size (bits)	24	24	24	24	24
Number of code blocks - C	3	6	2	3	6
Code block size including CRC (bits) (Note 2)	7888	7880	5800	7888	7880
Total number of bits per slot without PT-RS	42768	85536	20736	42768	85536
Total number of bits per slot with PT-RS (Note 3)	40986	81972	19872	40986	81972
Total symbols per slot without PT-RS	7128	14256	3456	7128	14256
Total symbols per slot with PT-RS (Note 3)	6831	13662	3312	6831	13662

NOTE 1: DM-RS configuration type $=1$ with DM-RS duration $=$ single-symbol $D M$-RS and the number of DM-RS CDM groups without data is 2 , Additional $D M-R S$ position $=$ pos0 with $I_{0}=0$ as per Table 6.4.1.1.3-3 of TS 38.211 [5].
NOTE 2: Code block size including CRC (bits) equals to K^{\prime} in clause 5.2.2 of TS 38.212 [15].
NOTE 3: PT-RS configuration $K_{P T-R S}=2, L_{P T-R S}=1$.

Table A.5-4: FRC parameters for FR2 PUSCH performance requirements, transform precoding disabled, Additional DM-RS position = pos1 and 1 transmission layer (64QAM, R=567/1024)

Reference channel	$\begin{gathered} \text { G-FR2- } \\ \text { A5-6 } \end{gathered}$	G-FR2-A5-7	$\begin{gathered} \hline \text { G-FR2- } \\ \text { A5-8 } \end{gathered}$	$\begin{gathered} \text { G-FR2- } \\ \text { A5-9 } \end{gathered}$	$\begin{gathered} \hline \text { G-FR2- } \\ \text { A5-10 } \end{gathered}$
Subcarrier spacing [kHz]	60	60	120	120	120
Allocated resource blocks	66	132	32	66	132
CP-OFDM Symbols per slot (Note 1)	8	8	8	8	8
Modulation	64QAM	64QAM	64QAM	64QAM	64QAM
Code rate (Note 2)	567/1024	567/1024	567/1024	567/1024	567/1024
Payload size (bits)	21000	42016	10248	21000	42016
Transport block CRC (bits)	24	24	24	24	24
Code block CRC size (bits)	24	24	24	24	24
Number of code blocks - C	3	5	2	3	5
Code block size including CRC (bits) (Note 2)	7032	8432	5160	7032	8432
Total number of bits per slot without PT-RS	38016	76032	18432	38016	76032
Total number of bits per slot with PT-RS (Note 3)	36432	72864	17664	36432	72864
Total symbols per slot without PT-RS	6336	12672	3072	6336	12672
Total symbols per slot with PT-RS (Note 3)	6072	12144	2944	6072	12144

NOTE 1: DM-RS configuration type $=1$ with DM-RS duration $=$ single-symbol DM-RS and the number of DM-RS CDM groups without data is 2 , Additional $D M-R S$ position $=$ pos 1 with $I_{0}=0$ and $I=8$ as per Table 6.4.1.1.3-3 of TS 38.211 [5].

NOTE 2: Code block size including CRC (bits) equals to K^{\prime} in clause 5.2.2 of TS 38.212 [15].
NOTE 3: PT-RS configuration $K_{P T-R S}=2$, LPT-RS $=1$.

A. 6 PRACH Test preambles

Table A.6-1: Test preambles for Normal Mode in FR1

Burst format	SCS (kHz)	Ncs	Logical sequence index	v
0	1.25	13	22	32
A1, A2, A3,	15	23	0	0
$\mathrm{B4}, \mathrm{C0}, \mathrm{C} 2$	30	46	0	0

Table A.6-2: Test preambles for Normal Mode in FR2

Burst format	SCS (kHz)	Ncs	Logical sequence index	v
A1, A2, A3,	60	69	0	0
B4, C0, C2	120	69	0	0

Annex B (normative): Error Vector Magnitude (FR1)

B. 1 Reference point for measurement

The EVM shall be measured at the point after the FFT and a zero-forcing (ZF) equalizer in the receiver, as depicted in figure B.1-1 below.

Figure B.1-1: Reference point for EVM measurement

B. 2 Basic unit of measurement

The basic unit of EVM measurement is defined over one slot in the time domain and $N_{B W}^{R B}$ subcarriers in the frequency domain:

$$
E V M=\sqrt{\frac{\sum_{t \in T} \sum_{f \in F(t)}\left|Z^{\prime}(t, f)-I(t, f)\right|^{2}}{\sum_{t \in T} \sum_{f \in F(t)}|I(t, f)|^{2}}}
$$

where
T is the set of symbols with the considered modulation scheme being active within the slot,
$F(t)$ is the set of subcarriers within the $N_{\mathrm{BW}}^{\mathrm{RB}}$ subcarriers with the considered modulation scheme being active in symbol t,
$I(t, f)$ is the ideal signal reconstructed by the measurement equipment in accordance with relevant Tx models,
$Z^{\prime}(t, f)$ is the modified signal under test defined in annex B.3.
NOTE: Although the basic unit of measurement is one slot, the equalizer is calculated over 10 ms measurement interval to reduce the impact of noise in the reference signals. The boundaries of the 10 ms measurement intervals need not be aligned with radio frame boundaries.

B. 3 Modified signal under test

Implicit in the definition of EVM is an assumption that the receiver is able to compensate a number of transmitter impairments. The signal under test is equalized and decoded according to:

$$
Z^{\prime}(t, f)=\frac{F F T\left\{z(v-\Delta \tilde{t}) \cdot e^{-j 2 \pi \tilde{\delta_{v}}}\right\} e^{j 2 \pi f \Delta \tilde{t}}}{\tilde{a}(f) \cdot e^{j \widetilde{\varphi}(f)}}
$$

where
$z(v)$ is the time domain samples of the signal under test.
$\Delta \tilde{t}$ is the sample timing difference between the FFT processing window in relation to nominal timing of the ideal signal. Note that two timing offsets are determined, the corresponding EVM is measured and the maximum used as described in annex B.7.
$\Delta \tilde{f}$ is the RF frequency offset.
$\tilde{\varphi}(f)$ is the phase response of the TX chain.
$\tilde{a}(f)$ is the amplitude response of the TX chain.

B. 4 Estimation of frequency offset

The observation period for determining the frequency offset $\Delta \tilde{f}$ shall be 1 slot.

B. 5 Estimation of time offset

B.5.1 General

The observation period for determining the sample timing difference $\Delta \tilde{t}$ shall be 1 slot.
In the following $\Delta \tilde{c}$ represents the middle sample of the EVM window of length W (defined in annex B.5.2) or the last sample of the first window half if W is even.
$\Delta \tilde{c}$ is estimated so that the EVM window of length W is centred on the measured cyclic prefix of the considered OFDM symbol. To minimize the estimation error the timing shall be based on demodulation reference signals. To limit time distortion of any transmit filter the reference signals in the 1 outer RBs are not taken into account in the timing estimation

Two values for $\Delta \tilde{t}$ are determined:
$\Delta \tilde{t}_{l}=\Delta \tilde{c}+\alpha-\left\lfloor\frac{W}{2}\right\rfloor$ and
$\Delta \tilde{t}_{h}=\Delta \tilde{c}+\left\lfloor\frac{W}{2}\right\rfloor$ where $\alpha=0$ if W is odd and $\alpha=1$ if W is even.
When the cyclic prefix length varies from symbol to symbol then T shall be further restricted to the subset of symbols with the considered modulation scheme being active and with the considered cyclic prefix length type.

B.5.2 Window length

Table B.5.2-1, B.5.2-2, B.5.2-3 specify the EVM window length (W) for normal CP.
Table B.5.2-1: EVM window length for normal CP, FR1, 15 kHz SCS

Channel bandwidth (MHz)	FFT size	CP length for symbols 1-6 and 8-13 in FFT samples	EVM window length \boldsymbol{W}	Ratio of \boldsymbol{W} to total CP length for symbols 1-6 and 8-13 (Note) (\%)
5	512	36	14	40
10	1024	72	28	40
15	1536	108	44	40
20	2048	144	58	40
25	2048	144	72	50
30	3072	216	108	50
40	4096	288	144	50
50	4096	288	144	50
NOTE:These percentages are informative and apply to a slot's symbols 1 to 6 and 8 to 13. Symbols 0				

Table B.5.2-2: EVM window length for normal CP, FR1, 30 kHz SCS

Channel bandwidth (MHz)	FFT size	CP length for symbols 1-13 in FFT samples	EVM window length \boldsymbol{W}	Ratio of \boldsymbol{W} to total CP length for symbols 1-13 (Note) (\%)
5	256	18	8	40
10	512	36	14	40
15	768	54	22	40
20	1024	72	28	40
25	1024	72	36	50
30	1536	108	54	50
40	2048	144	72	50
50	2048	144	72	50
60	3072	216	130	60
70	3072	216	130	60
80	4096	288	172	60
90	4096	288	172	60
100	4096	288	172	60
NOTE:These percentages are informative and apply to a slot's symbols 1 through 13. Symbol 0 has a longer CP and therefore a lower percentage.				

Table B.5.2-3: EVM window length for normal CP, FR1, 60 kHz SCS

Channel bandwidth (MHz)	FFT size	CP length in FFT samples	EVM window length W	Ratio of W to total CP length (Note) (\%)
10	256	18	8	40
15	384	27	11	40
20	512	36	14	40
25	512	36	18	50
30	768	54	26	50
40	1024	72	36	50
50	1024	72	36	50
60	1536	108	64	60
70	1536	108	64	60
80	2048	144	86	60
90	2048	144	86	60
100	2048	144	86	60
NOTE: These percentages are informative and apply to all OFDM symbols within subframe except for symbol 0 of slot 0 and slot 2 . Symbol 0 of slot 0 and slot 2 may have a longer CP and therefore a lower percentage.				

Table B.5.2-4 below specifies the EVM window length (W) for extended CP. The number of CP samples excluded from the EVM window is the same as for normal CP length.

Table B.5.2-4: EVM window length for extended CP, FR1, 60 kHz SCS

Channel bandwidth (MHz)	FFT size	CP length in FFT samples	EVM window length \boldsymbol{W}	Ratio of \boldsymbol{W} to total CP length (Note) (\%)
10	256	64	54	84
15	384	96	80	83
20	512	128	106	83
25	512	128	110	85.9
30	768	192	164	85.9
40	1024	256	220	85.9
50	1024	256	220	85.9
60	1536	384	340	88.6
70	1536	384	340	88.7
80	2048	512	454	88.7
90	2048	512	454	88.7
100	2048	512	454	88.7
NOTE: These percentages are informative.				

B. 6 Estimation of TX chain amplitude and frequency response parameters

The equalizer coefficients $\tilde{a}(f)$ and $\tilde{\varphi}(f)$ are determined as follows:

1. Calculate the complex ratios (amplitude and phase) of the post-FFT acquired signal $Z^{\prime}(t, f)$ and the post-FFT ideal signal $I_{2}(t, f)$, for each reference signal, over 10 ms measurement interval. This process creates a set of complex ratios:
$a(t, f) \cdot e^{j \varphi(t, f)}=\frac{Z^{\prime}(t, f)}{I_{2}(t, f)}$
Where the post-FFT ideal signal $I_{2}(t, f)$ is constructed by the measuring equipment according to the relevant TX specifications, using the following parameters: i.e. nominal demodulation reference signals, (all other modulation symbols are set to 0 V), nominal carrier frequency, nominal amplitude and phase for each applicable subcarrier, nominal timing.
2. Perform time averaging at each reference signal subcarrier of the complex ratios, the time-averaging length is 10 ms measurement interval. Prior to the averaging of the phases $\varphi\left(t_{i}, f\right)$ an unwrap operation must be performed according to the following definition: The unwrap operation corrects the radian phase angles of $\varphi\left(t_{i}, f\right)$ by adding multiples of $2 *$ PI when absolute phase jumps between consecutive time instances t_{i} are greater than or equal to the jump tolerance of PI radians. This process creates an average amplitude and phase for each reference signal subcarrier (i.e. every second subcarrier).
$a(f)=\frac{\sum_{i=1}^{N} a\left(t_{i}, f\right)}{N}$
$\varphi(f)=\frac{\sum_{i=1}^{N} \varphi\left(t_{i}, f\right)}{N}$

Where N is the number of reference signal; time-domain locations t_{i} from $Z^{\prime}(t, f)$ for each reference signal subcarrier f.
3. The equalizer coefficients for amplitude and phase $\hat{a}(f)$ and $\hat{\varphi}(f)$ at the reference signal subcarriers are obtained by computing the moving average in the frequency domain of the time-averaged reference signal subcarriers, i.e. every second subcarrier. The moving average window size is 19 and averaging is over the DMRS subcarriers in the allocated RBs. For DM-RS reference signal subcarriers at or near the edge of the channel, or when the number of available DM-RS subcarriers within a set of contiguously allocated RBs is smaller than the moving average window size, the window size is reduced accordingly as per figure B.6-1.
4. Perform linear interpolation from the equalizer coefficients $\hat{a}(f)$ and $\hat{\varphi}(f)$ to compute coefficients $\tilde{a}(f)$, $\tilde{\varphi}(f)$ for each subcarrier.

Figure B.6-1: Reference subcarrier smoothing in the frequency domain

B. 7 Averaged EVM

EVM is averaged over all allocated downlink resource blocks with the considered modulation scheme in the frequency domain, and a minimum of $N_{d l}$ slots where $N_{d l}$ is the number of slots in a 10 ms measurement interval.

For FDD the averaging in the time domain equals the $N_{d l}$ slot duration of the 10 ms measurement interval from the equalizer estimation step.

$$
\overline{E V M_{\text {frame }}}=\sqrt{\frac{1}{\sum_{i=1}^{N_{a l}} N i} \sum_{i=1}^{N_{a j}} \sum_{j=1}^{N_{i}} E V M_{i, j}^{2}}
$$

- Where $N i$ is the number of resource blocks with the considered modulation scheme in slot i.
- The EVM requirements shall be tested against the maximum of the RMS average at the window W extremities of the EVM measurements:
- Thus $\overline{\mathrm{EVM}}_{\text {frame, } 1}$ is calculated using $\Delta \tilde{t}=\Delta \tilde{t}_{l}$ in the expressions above and $\overline{\mathrm{EVM}}_{\text {frame }, h}$ is calculated using $\Delta \tilde{t}=\Delta \tilde{t}_{h}$ in the $\overline{E V M_{\text {frame }}}$ calculation.
- Thus we get:

$$
\overline{E V M}=\max \left(\overline{E V M}_{\text {frame,l }}, \overline{E V M}_{\text {frame, }}\right)
$$

For TDD, let $N_{d l}^{\text {TDD }}$ be the number of slots with downlink symbols within a 10 ms measurement interval, the averaging in the time domain can be calculated from $N_{d l}^{T D D}$ slots of different 10 ms measurement intervals and should have a minimum of $N_{d l}$ slots averaging length where $N_{d l}$ is the number of slots in a 10 ms measurement interval.

- $\overline{E V M}_{\text {frame }}$ is derived by: Square the EVM results in each 10 ms measurement interval. Sum the squares, divide the sum by the number of EVM relevant locations, square-root the quotient (RMS).
${\overline{E V M_{\text {frame }}}}=\sqrt{\frac{1}{\sum_{i=1}^{N_{d D}^{T D D}} N_{i}} \sum_{i=1}^{N_{d l}^{T D D}} \sum_{j=1}^{N_{i}} E V M_{i, j}^{2}}$
- Where N_{i} is the number of resource blocks with the considered modulation scheme in slot i.
- The $E V M_{\text {frame }}$ is calculated, using the maximum of $\overline{E V M}_{\text {frame }}$ at the window W extremities. Thus $\overline{E V M}_{\text {frame, }}$ is
 timing $(\Delta c-W / 2)$ and and high is the timing $(\Delta c+W / 2))$.

$$
E V M_{\text {frame }}=\max \left(\overline{E V M}_{\text {framel },},{\left.\overline{E V M_{\text {frame, }}}\right)}\right)
$$

- In order to unite at least $N_{d l}$ slots, consider the minimum integer number of 10 ms measurement intervals, where $N_{\text {frame }}$ is determined by.

$$
N_{\text {frame }}=\left\lceil\frac{10 \times N_{\text {slot }}}{N_{d l}^{\text {TDD }}}\right\rceil
$$

and $N_{\text {slot }}=1$ for $15 \mathrm{kHz} \mathrm{SCS}, N_{\text {slot }}=2$ for 30 kHz SCS and $N_{\text {slot }}=4$ for 60 kHz SCS normal CP.

- Unite by RMS.

$$
\overline{E V M}=\sqrt{\frac{1}{N_{\text {frame }}} \sum_{k=1}^{N_{\text {frame }}} E V M_{\text {frame }, k}^{2}}
$$

Annex C (normative): Error Vector Magnitude (FR2)

C. 1 Reference point for measurement

The EVM shall be measured at the point after the FFT and a zero-forcing (ZF) equalizer in the receiver, as depicted in figure C.1-1 below.

Figure C.1-1: Reference point for EVM measurement

C. 2 Basic unit of measurement

The basic unit of EVM measurement is defined over one slot in the time domain and $N_{B W}^{R B}$ subcarriers in the frequency domain:
$E V M=\sqrt{\frac{\sum_{t \in T} \sum_{f \in F(t)}\left|Z^{\prime}(t, f)-I(t, f)\right|^{2}}{\sum_{t \in T} \sum_{f \in F(t)}|I(t, f)|^{2}}}$
where
T is the set of symbols with the considered modulation scheme being active within the slot,
$F(t)$ is the set of subcarriers within the $N_{\mathrm{BW}}^{\mathrm{RB}}$ subcarriers with the considered modulation scheme being active in symbol t,
$I(t, f)$ is the ideal signal reconstructed by the measurement equipment in accordance with relevant Tx models,
$Z^{\prime}(t, f)$ is the modified signal under test defined in C.3.
NOTE: Although the basic unit of measurement is one slot, the equalizer is calculated over 10 ms measurement intervals to reduce the impact of noise in the reference signals. The boundaries of the 10 ms measurement intervals need not be aligned with radio frame boundaries.

C. 3 Modified signal under test

Implicit in the definition of EVM is an assumption that the receiver is able to compensate a number of transmitter impairments. The signal under test is equalized and decoded according to:

$$
Z^{\prime}(t, f)=\frac{F F T\left\{z(v-\Delta \tilde{t}) \cdot e^{-j 2 \pi \Delta \tilde{f} v}\right\} e^{j 2 \pi f \Delta \tilde{t}}}{\tilde{a}(f) \cdot e^{j \tilde{\varphi}(f)}}
$$

where
$z(v)$ is the time domain samples of the signal under test.
$\Delta \tilde{t}$ is the sample timing difference between the FFT processing window in relation to nominal timing of the ideal signal. Note that two timing offsets are determined, the corresponding EVM is measured and the maximum used as described in C.7.
$\Delta \tilde{f}$ is the RF frequency offset.
$\widetilde{\varphi}(f)$ is the phase response of the TX chain.
$\tilde{a}(f)$ is the amplitude response of the TX chain.

C. 4 Estimation of frequency offset

The observation period for determining the frequency offset $\Delta \tilde{f}$ shall be 1 slot.

C. 5 Estimation of time offset

C.5.1 General

The observation period for determining the sample timing difference $\Delta \tilde{t}$ shall be 1 slot.
In the following $\Delta \tilde{c}$ represents the middle sample of the EVM window of length W (defined in C.5.2) or the last sample of the first window half if W is even.
$\Delta \tilde{c}$ is estimated so that the EVM window of length W is centred on the measured cyclic prefix of the considered OFDM symbol. To minimize the estimation error the timing shall be based on the reference signals. To limit time distortion of any transmit filter the reference signals in the 1 outer RBs are not taken into account in the timing estimation

Two values for $\Delta \tilde{t}$ are determined:
$\Delta \tilde{t}_{l}=\Delta \tilde{c}+\alpha-\left\lfloor\frac{W}{2}\right\rfloor$ and
$\Delta \tilde{t}_{h}=\Delta \tilde{c}+\left\lfloor\frac{W}{2}\right\rfloor$ where $\alpha=0$ if W is odd and $\alpha=1$ if W is even.
When the cyclic prefix length varies from symbol to symbol then T shall be further restricted to the subset of symbols with the considered modulation scheme being active and with the considered cyclic prefix length type.

C.5.2 Window length

Table C.5.2-1 and Table C.5.2-2 specify the EVM window length (W) for normal CP for FR2 for normal CP.
Table C.5.2-1: EVM window length for normal CP, FR2, 60 kHz SCS

Channel bandwidth (MHz)	FFT size	CP length in FFT samples	EVM window length W	Ratio of W to total CP length (Note) (\%)
50	1024	72	36	50
100	2048	144	72	50
200	4096	288	144	50
NOTE:These percentages are informative and apply to all OFDM symbols within subframe except for symbol 0 of slot 0 and slot 2. Symbol 0 of slot 0 and slot 2 may have a longer CP and therefore a lower percentage.				

Table C.5.2-2: EVM window length for normal CP, FR2, 120 kHz SCS

Channel bandwidth (MHz)	FFT size	CP length in FFT samples	EVM window length W	Ratio of \boldsymbol{W} to total CP length (Note) (\%)
50	512	36	18	50
100	1024	72	36	50
200	2048	144	72	50
400	4096	288	144	50
NOTE 1: These percentages are informative and apply to all OFDM symbols within subframe except for symbol 0 of slot 0 and slot 4. Symbol 0 of slot 0 and slot 4 may have a longer CP and therefore a lower percentage.				

Table C.5.2-3 below specifies the EVM window length (W) for extended CP. The number of CP samples excluded from the EVM window is the same as for normal CP length.

Table C.5.2-3: EVM window length for extended CP, FR2, 60 kHz SCS

Channel bandwidth (MHz)	FFT size	CP length in FFT samples	EVM window length W	Ratio of W to total CP length (Note) (\%)
50	1024	256	220	85.9
100	2048	512	440	85.9
200	4096	1024	880	85.9
NOTE: \quad These percentages are informative.				

C. 6 Estimation of TX chain amplitude and frequency response parameters

The equalizer coefficients $\tilde{a}(f)$ and $\tilde{\varphi}(f)$ are determined as follows:

1. Calculate the complex ratios (amplitude and phase) of the post-FFT acquired signal $Z^{\prime}(t, f)$ and the post-FFT ideal signal $I_{2}(t, f)$, for each reference signal, over 10 ms measurement intervals. This process creates a set of complex ratios:

$$
a(t, f) \cdot e^{j \varphi(t, f)}=\frac{Z^{\prime}(t, f)}{I_{2}(t, f)}
$$

Where the post-FFT ideal signal $I_{2}(t, f)$ is constructed by the measuring equipment according to the relevant TX specifications, using the following parameters:

- nominal demodulation reference signals and nominal PT-RS if present (all other modulation symbols are set to 0 V),
- nominal carrier frequency,
- nominal amplitude and phase for each applicable subcarrier,
- nominal timing.

2. Perform time averaging at each reference signal subcarrier of the complex ratios, the time-averaging length is 10 ms measurement interval. Prior to the averaging of the phases $\varphi\left(t_{i}, f\right)$ an unwrap operation must be performed according to the following definition: The unwrap operation corrects the radian phase angles of $\varphi\left(t_{i}, f\right)$ by adding multiples of $2 *$ PI when absolute phase jumps between consecutive time instances t_{i} are greater than or equal to the jump tolerance of PI radians. This process creates an average amplitude and phase for each reference signal subcarrier (i.e. every second subcarrier).

$$
\begin{aligned}
& a(f)=\frac{\sum_{i=1}^{N} a\left(t_{i}, f\right)}{N} \\
& \varphi(f)=\frac{\sum_{i=1}^{N} \varphi\left(t_{i}, f\right)}{N}
\end{aligned}
$$

Where N is the number of reference signal time-domain locations t_{i} from $Z^{\prime}(t, f)$ for each reference signal subcarrier f.
3. The equalizer coefficients for amplitude and phase $\hat{a}(f)$ and $\hat{\varphi}(f)$ at the reference signal subcarriers are obtained by computing the moving average in the frequency domain of the time-averaged reference signal subcarriers, i.e. every second subcarrier. The moving average window size is 19 and averaging is over the DMRS subcarriers in allocated RBs. For DM-RS subcarriers at or near the edge of the channel, or when the number of available DM-RS subcarriers within a set of contiguously allocated RBs is smaller than the moving average window size, the window size is reduced accordingly as per figure C.6-1.
4. Perform linear interpolation from the equalizer coefficients $\hat{a}(f)$ and $\hat{\varphi}(f)$ to compute coefficients $\tilde{a}(f)$, $\widetilde{\varphi}(f)$ for each subcarrier. To account for the common phase error (CPE) experienced in millimetre wave frequencies, $\bar{\varphi}(f)$, in the estimated coefficients contain phase rotation due to the CPE, θ, in addition to the phase of the equalizer coefficient $\tilde{\varphi}(f)$, that is

$$
\bar{\varphi}(f)=\tilde{\varphi}(f)+\theta(t)
$$

For OFDM symbols where PT-RS does not exist, $\theta(t)$ can be estimated by performing linear interpolation from neighboring symbols where PT-RS is present.

In order to separate component of the CPE, θ, contained in, $\bar{\varphi}(f)$, estimation and compensation of the CPE needs to follow. $\theta(t)$ is the common phase error (CPE), that rotates all the subcarriers of the OFDM symbol at time t.

Estimate of the CPE, $\theta(t)$, at OFDM symbol time, t, can then be obtained from using the PT-RS employing the expression

$$
\tilde{\theta}(t)=\arg \left\{\sum_{f \in f^{p t r s}}\left(\frac{Z^{\prime}(t, f)}{I_{p t r s}(t, f)}\right)\left(\tilde{a}(f) e^{-j \bar{\varphi}(f)}\right)\right\}
$$

In the above equation, $f^{p t r s}$ is the set of subcarriers where PT-RS are mapped, $t \in t^{p t r s}$ where $t^{p t r s}$ is the set of OFDM symbols where PT-RS are mapped while $Z^{\prime}(t, f)$ and $I_{p t r s}(t, f)$ are is the post-FFT acquired signal and the ideal PT-RS signal respectively. That is, estimate of the CPE at a given OFDM symbol is obtained from frequency correlation of the complex ratios at the PT-RS positions with the conjugate of the estimated equalizer complex coefficients. The estimated CPE can be subtracted from $\bar{\varphi}(f)$ to remove influence of the CPE, and obtain estimate of the complex coefficient's phase

$$
\tilde{\varphi}(f)=\bar{\varphi}(f)-\tilde{\theta}(\mathrm{t})
$$

Figure C.6-1: Reference subcarrier smoothing in the frequency domain

C. 7 Averaged EVM

EVM is averaged over all allocated downlink resource blocks with the considered modulation scheme in the frequency domain, and a minimum of $N_{d l}$ slots where $N_{d l}$ is the number of slots in a 10 ms measurement interval.

For TDD, let $N_{d l}^{T D D}$ be the number of slots with downlink symbols within a 10 ms measurement interval, the averaging in the time domain can be calculated from $N_{d l}^{T D D}$ slots of different 10 ms measurement intervals and should have a minimum of $N_{d l}$ slots averaging length where $N_{d l}$ is the number of slots in a 10 ms measurement interval.

- $\overline{E V M}_{\text {frame }}$ is derived by: Square the EVM results in each 10 ms measurement intervals. Sum the squares, divide the sum by the number of EVM relevant locations, square-root the quotient (RMS).
$\overline{E V M}_{\text {frame }}=\sqrt{\frac{1}{\sum_{i=1}^{N_{d l}^{T D D}} N_{i}} \sum_{i=1}^{N_{d l}^{T D D}} \sum_{j=1}^{N_{i}} E V M_{i, j}^{2}}$
- Where N_{i} is the number of resource blocks with the considered modulation scheme in slot i.
- The $E V M_{\text {frame }}$ is calculated, using the maximum of $\overline{E V M}_{\text {frame }}$ at the window W extremities. Thus $\overline{E V M}_{\text {frame, }}$ is calculated using $\tilde{t}=\Delta \tilde{t}_{l}$ and $\overline{E V M}_{\text {frame, }}$ is calculated using $\tilde{t}=\Delta \tilde{t}_{h}(l$ and h, low and high; where low is the timing ($\Delta c-W / 2$) and and high is the timing $(\Delta c+W / 2)$).

$$
E V M_{\text {frame }}=\max \left(\overline{E V M}_{\text {frame, }},{\left.\overline{E V M_{\text {frame, }}}\right) \text {) }}\right.
$$

- In order to unite at least $N_{d l}$ slots, consider the minimum integer number of 10 ms measurement intervals, where $N_{\text {frame }}$ is determined by.

$$
N_{\text {frame }}=\left\lceil\frac{10 \times N_{\text {slot }}}{N_{d l}^{T D D}}\right\rceil
$$

and $N_{\text {slot }}=4$ for 60 kHz SCS and $N_{\text {slot }}=8$ for 120 kHz SCS .

- Unite by RMS.

$$
\overline{E V M}=\sqrt{\frac{1}{N_{\text {frame }}} \sum_{k=1}^{N_{\text {frame }}} E V M_{\text {frame }, k}^{2}}
$$

Annex D (normative): Characteristics of the interfering signals

The interfering signal shall be a PUSCH containing data and DM-RS symbols. Normal cyclic prefix is used. The data content shall be uncorrelated to the wanted signal and modulated according to clause 6 of TS38.211 [9]. Mapping of PUSCH modulation to receiver requirement are specified in table D-1.

Table D-1: Modulation of the interfering signal

Receiver requirement	Modulation
In-channel selectivity	16QAM
Adjacent channel selectivity and narrow-band blocking	QPSK
General blocking	QPSK
Receiver intermodulation	QPSK

Annex E: Void

Annex F (normative):
 Relationship between EIRP based regulatory requirements and 3GPP requirements

F. 1 General

This annex applies to FR1 BS type 1-C, BS type 1-H and BS type 1-O.
Some regional requirements are defined per effective isotropic radiated power (EIRP), which is a combination of the transmitted power (or in some cases spectral density) and the effective antenna gain which is a site-specific condition. Such requirements may be applied per antenna, per cell, or per base station. It shall be noted that the definition of BS or cell may differ between regulations.

The regulations are based on the assumption on BS type 1-C conducted requirements and a passive antenna and must be interpreted for active antenna systems that have active beamforming. This annex describes how the power per connector and sum power over $T A B$ connectors can be related to such requirements.

Where the regulator prescribes a method for EIRP calculation, that method supersedes the proposed assessment in this annex.

F. 2 Relationship between EIRP based regulatory requirements and conducted requirements

When 3GPP specifications mandate manufacturer declarations of the (conducted) output power or power spectral density per connector for the base station under the reference conditions stated as a way to accommodate the referred regional requirements without putting requirements on the local site conditions.

For the case when the base station manufacturer maximum output power or unwanted emission declarations apply per connector, the maximum EIRP can be estimated using the following formulas:

EIRP per antenna (applicable for BS type 1-C):

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{EIRP}}=\mathrm{P}_{\mathrm{T} x}+\mathrm{G}_{\text {Ant }} \\
& \mathrm{P}_{\text {EIRPcell }}=10 * \log \left(\sum 10^{\mathrm{PEIRP} / 10}\right)
\end{aligned}
$$

In case the EIRP requirement is set per polarization, the summation shall be made per polarization.

- " $\mathrm{P}_{\text {EIRP" }}$ is the resulting effective isotropic radiated power (or radiated power spectral density) resulting from the power (or power spectral density) declared by the manufacturer in dBm (or $\mathrm{dBm} /$ measurement BW).
- " P_{Tx} " is the conducted power or power spectral density declared by the manufacturer in dBm (or $\mathrm{dBm} /$ measurement BW).
- " $\mathrm{G}_{\mathrm{Ant}}$ " is the effective antenna gain, calculated as the antenna gain (dBi) minus the loss of the site infrastructure connecting the BS antenna connector with the antenna (dB) for the applied frequency. The antenna nominal gain is only applicable within a certain frequency range. For BS type $1-H, \mathrm{G}_{\text {Ant }}$ shall be an assumption on the gain of a passive antenna system in order to provide a total power emissions level comparable to the level obtained when a BS type 1-C is connected to a passive antenna. A typical example of a passive antenna gain, as used for BS type $l-O$, is 17 dBi .
- " n " is the index number of the co-located antennas illuminating the same cell. $\mathrm{P}_{\text {EIRPn }}$ is the $\mathrm{P}_{\text {EIRP }}$ of the nth antenna.
- "Cell" is in this annex used in the sense that it is the limited geographical area covered by the carrier transmitted from one site.

F. 3 Relationship between EIRP based regulatory requirements and OTA requirements

The regulations set an EIRP limit considering a passive antenna BS. Although the gain of passive antennas may vary somewhat, the variation is in the order of a few dBs. The gain variation of a BS type 1-O may be much larger. However, BS type 1-O unwanted emissions requirements are defined as TRP, since TRP impacts co-existence properties.

In order to relate the EIRP values in the specifications to TRP, a fixed assumption has been made on the gain of a typical passive BS antenna.

Thus, the maximum TRP can be estimated using the following formulas:
TRP limit per antenna: $\quad P_{\text {TRP, antenna }}=P_{\text {EIRP }}-G_{\text {Ant }}$
TRP limit per cell or per BS: $\quad \mathrm{P}_{\text {TRP }}=\mathrm{P}_{\text {TRP, antenna }}+9 \mathrm{~dB}$
It is noted that the BS type 1-O architecture assumes that a BS subject to OTA requirements will have at least 8 antennas.

In case the TRP requirement is set per polarization, the summation shall be made per polarization.

- "PEIRP" is the effective isotropic radiated power (or radiated power spectral density) set in the regulation (assuming a passive BS antenna) in dBm (or $\mathrm{dBm} /$ measurement BW).
- "G GAnt " is the effective antenna gain, the antenna gain (dBi) is a fixed reference value of 17 dBi . Directivity value should be used in above equations, however with all antenna losses are assumed zero then we can use effective antenna gain.

Annex G (Normative): Propagation conditions

G. 1 Static propagation condition

The propagation for the static performance measurement is an Additive White Gaussian Noise (AWGN) environment. No fading or multi-paths exist for this propagation model.

G. 2 Multi-path fading propagation conditions

The multipath propagation conditions consist of several parts:

- A delay profile in the form of a "tapped delay-line", characterized by a number of taps at fixed positions on a sampling grid. The profile can be further characterized by the r.m.s. delay spread and the maximum delay spanned by the taps.
- A combination of channel model parameters that include the Delay profile and the Doppler spectrum that is characterized by a classical spectrum shape and a maximum Doppler frequency.
- Different models are used for FR1 and FR2.

G.2.1 Delay profiles

The delay profiles are simplified from the TR 38.901 [16] TDL models. The simplification steps are shown below for information. These steps are only used when new delay profiles are created. Otherwise, the delay profiles specified in G.2.1.1 and G.2.1.2 can be used as such.

Step 1: Use the original TDL model from TR 38.901 [16].
Step 2: Re-order the taps in ascending delays.
Step 3: Perform delay scaling according to the procedure described in clause 7.7.3 in TR 38.901 [16].
Step 4: Apply the quantization to the delay resolution 5 ns . This is done simply by rounding the tap delays to the nearest multiple of the delay resolution.

Step 5: If multiple taps are rounded to the same delay bin, merge them by calculating their linear power sum.
Step 6: If there are more than 12 taps in the quantized model, merge the taps as follows

- Find the weakest tap from all taps (both merged and unmerged taps are considered)
- If there are two or more taps having the same value and are the weakest, select the tap with the smallest delay as the weakest tap.
- When the weakest tap is the first delay tap, merge taps as follows
- Update the power of the first delay tap as the linear power sum of the weakest tap and the second delay tap.
- Remove the second delay tap.
- When the weakest tap is the last delay tap, merge taps as follows
- Update the power of the last delay tap as the linear power sum of the second-to-last tap and the last tap.
- Remove the second-to-last tap.

- Otherwise

- For each side of the weakest tap, identify the neighbour tap that has the smaller delay difference to the weakest tap.
o When the delay difference between the weakest tap and the identified neighbour tap on one side equals the delay difference between the weakest tap and the identified neighbour tap on the other side.
- Select the neighbour tap that is weaker in power for merging.
o Otherwise, select the neighbour tap that has smaller delay difference for merging.
- To merge, the power of the merged tap is the linear sum of the power of the weakest tap and the selected tap.
- When the selected tap is the first tap, the location of the merged tap is the location of the first tap. The weakest tap is removed.
- When the selected tap is the last tap, the location of the merged tap is the location of the last tap. The weakest tap is removed.
- Otherwise, the location of the merged tap is based on the average delay of the weakest tap and selected tap. If the average delay is on the sampling grid, the location of the merged tap is the average delay. Otherwise, the location of the merged tap is rounded towards the direction of the selected tap (e.g. 10 ns $\& 20 \mathrm{~ns} \rightarrow 15 \mathrm{~ns}, 10 \mathrm{~ns} \& 25 \mathrm{~ns} \rightarrow 20 \mathrm{~ns}$, if 25 ns had higher or equal power; 15 ns , if 10 ns had higher power). The weakest tap and the selected tap are removed.
- Repeat step 6 until the final number of taps is 12 .

Step 7: Round the amplitudes of taps to one decimal (e.g. $-8.78 \mathrm{~dB} \rightarrow-8.8 \mathrm{~dB}$)
Step 8: If the delay spread has slightly changed due to the tap merge, adjust the final delay spread by increasing or decreasing the power of the last tap so that the delay spread is corrected.

Step 9: Re-normalize the highest tap to 0 dB .
Note 1: Some values of the delay profile created by the simplification steps may differ from the values in tables G.2.1.1-2, G.2.1.1-3, G.2.1.1-4, and G.2.1.2-2 for the corresponding model.

Note 2: For Step 5 and Step 6, the power values are expressed in the linear domain using 6 digits of precision. The operations are in the linear domain.

G.2.1.1 Delay profiles for FR1

The delay profiles for FR1 are selected to be representative of low, medium and high delay spread environment. The resulting model parameters are specified in table G.2.1.1-1 and the tapped delay line models are specified in tables G.2.1.1-2 ~ G.2.1.1-4.

Table G.2.1.1-1: Delay profiles for NR channel models

Model	Number of channel taps	Delay spread (r.m.s.)	Maximum excess tap delay (span)	Delay resolution
TDLA30	12	30 ns	290 ns	5 ns
TDLB100	12	100 ns	480 ns	5 ns
TDLC300	12	300 ns	2595 ns	5 ns

Table G.2.1.1-2: TDLA30 (DS = $\mathbf{3 0} \mathbf{n s)}$

Tap \#	Delay (ns)	Power (dB)	Fading distribution
1	0	-15.5	Rayleigh
2	10	0	Rayleigh
3	15	-5.1	Rayleigh
4	20	-5.1	Rayleigh
5	25	-9.6	Rayleigh
6	50	-8.2	Rayleigh
7	65	-13.1	Rayleigh
8	75	-11.5	Rayleigh
9	105	-11.0	Rayleigh
10	135	-16.2	Rayleigh
11	150	-16.6	Rayleigh
12	290	-26.2	Rayleigh

Table G.2.1.1-3: TDLB100 (DS = 100 ns)

Tap \#	Delay (ns)	Power (dB)	Fading distribution
1	0	0	Rayleigh
2	10	-2.2	Rayleigh
3	20	-0.6	Rayleigh
4	30	-0.6	Rayleigh
5	35	-0.3	Rayleigh
6	45	-1.2	Rayleigh
7	55	-5.9	Rayleigh
8	120	-2.2	Rayleigh
9	170	-0.8	Rayleigh
10	245	-6.3	Rayleigh
11	330	-7.5	Rayleigh
12	480	-7.1	Rayleigh

Table G.2.1.1-4: TDLC300 (DS = 300 ns)

Tap \#	Delay (ns)	Power (dB)	Fading distribution
1	0	-6.9	Rayleigh
2	65	0	Rayleigh
3	70	-7.7	Rayleigh
4	190	-2.5	Rayleigh
5	195	-2.4	Rayleigh
6	200	-9.9	Rayleigh
7	240	-8.0	Rayleigh
8	325	-6.6	Rayleigh
9	520	-7.1	Rayleigh
10	1045	-13.0	Rayleigh
11	1510	-14.2	Rayleigh
12	2595	-16.0	Rayleigh

G.2.1.2 Delay profiles for FR2

The delay profiles for FR2 are specified in table G.2.1.2-1 and the tapped delay line models are specified in table G.2.1.2-2.

Table G.2.1.2-1: Delay profiles for NR channel models

Model	Number of channel taps	Delay spread (r.m.s.)	Maximum excess tap delay (span)	Delay resolution
TDLA30	12	30 ns	290 ns	5 ns

Table G.2.1.2-2: TDLA30 (DS = 30 ns)

Tap \#	Delay (ns)	Power (dB)	Fading distribution
1	0	-15.5	Rayleigh
2	10	0	Rayleigh
3	15	-5.1	Rayleigh
4	20	-5.1	Rayleigh
5	25	-9.6	Rayleigh
6	50	-8.2	Rayleigh
7	65	-13.1	Rayleigh
8	75	-11.5	Rayleigh
9	105	-11.0	Rayleigh
10	135	-16.2	Rayleigh
11	150	-16.6	Rayleigh
12	290	-26.2	Rayleigh

G.2.2 Combinations of channel model parameters

The propagation conditions used for the performance measurements in multi-path fading environment are indicated as a combination of a channel model name and a maximum Doppler frequency, i.e., TDLA<DS>-<Doppler>, TDLB<DS><Doppler> or TDLC<DS>-<Doppler> where '<DS>' indicates the desired delay spread and '<Doppler>' indicates the maximum Doppler frequency (Hz).

Table G.2.2-1 and G.2.2-2 show the propagation conditions that are used for the performance measurements in multipath fading environment for low, medium and high Doppler frequencies for FR1 and FR2, respectively.

Table G.2.2-1: Channel model parameters for FR1

Combination name	Tapped delay line model	Maximum Doppler frequency
TDLA30-5	TDLA30	5 Hz
TDLA30-10	TDLA30	10 Hz
TDLB100-400	TDLB100	400 Hz
TDLC300-100	TDLC300	100 Hz

Table G.2.2-2: Channel model parameters for FR2

Combination name	Tapped delay line model	Maximum Doppler frequency
TDLA30-75	TDLA30	75 Hz
TDLA30-300	TDLA30	300 Hz

G.2.3 MIMO Channel Correlation Matrices

The MIMO channel correlation matrices defined in G. 2.3 apply for the antenna configuration using uniform linear arrays at both gNB and UE and for the antenna configuration using cross polarized antennas.

G.2.3.1 MIMO Correlation Matrices using Uniform Linear Array (ULA)

The MIMO channel correlation matrices defined in G.2.3.1 apply for the antenna configuration using uniform linear array (ULA) at both gNB and UE.

G.2.3.1.1 Definition of MIMO Correlation Matrices

Table G.2.3.1.1-1 defines the correlation matrix for the gNB:
Table G.2.3.1.1-1: gNB correlation matrix

Table G.2.3.1.1-2 defines the correlation matrix for the UE:
Table G.2.3.1.1-2: UE correlation matrix

	One antenna	Two antennas	Four antennas
UE Correlation	$R_{U E}=1$	$R_{U E}=\left(\begin{array}{cc}1 & \beta \\ \beta^{*} & 1\end{array}\right)$	$R_{U E}=\left(\begin{array}{cccc}1 & \beta^{1 / 9} & \beta^{4 / 9} & \beta \\ \beta^{1 / 9} & 1 & \beta^{1 / 9} & \beta^{4 / 9} \\ \beta^{4 / 9} & \beta^{1 / 9} & 1 & \beta^{1 / 9} \\ \beta^{*} & \beta^{4 / 9} & \beta^{1 / 9} & 1\end{array}\right)$

Table G.2.3.1.1-3 defines the channel spatial correlation matrix $R_{\text {spat }}$. The parameters α and β in Table G.2.3.1.1-3 defines the spatial correlation between the antennas at the gNB and UE respectively.

Table G.2.3.1.1-3: $R_{\text {spat }}$ correlation matrices

$\begin{aligned} & 1 \times 2 \\ & \text { cas } \\ & \text { cas } \end{aligned}$	$R_{s p a t}=R_{g N B}=\left(\begin{array}{ll}1 & \alpha \\ \alpha^{*} & 1\end{array}\right)$
$\begin{gathered} 1 \times 4 \\ \text { cas } \\ \mathrm{e} \end{gathered}$	$R_{\text {spat }}=R_{g N B}=\left(\begin{array}{cccc}1 & \alpha^{1 / 9} & \alpha^{4 / 9} & \alpha \\ \alpha^{1 / 9^{*}} & 1 & \alpha^{1 / 9} & \alpha^{4 / 9} \\ \alpha^{4 / 9^{* *}} & \alpha^{1 / 9^{*}} & 1 & \alpha^{1 / 9} \\ \alpha^{*} & \alpha^{4 / 9^{*}} & \alpha^{1 / 9^{*}} & 1\end{array}\right)$
$\begin{gathered} 1 \times 8 \\ \text { cas } \\ e \end{gathered}$	
$\begin{gathered} 2 \times 2 \\ \text { cas } \\ e \end{gathered}$	$R_{\text {spat }}=R_{U E} \otimes R_{g N B}=\left[\begin{array}{cc}1 & \beta \\ \beta^{*} & 1\end{array}\right] \otimes\left[\begin{array}{cc}1 & \alpha \\ \alpha^{*} & 1\end{array}\right]=\left[\begin{array}{cccc}1 & \alpha & \beta & \beta \alpha \\ \alpha^{*} & 1 & \beta \alpha^{*} & \beta \\ \beta^{*} & \beta^{*} \alpha & 1 & \alpha \\ \beta^{*} \alpha^{*} & \beta^{*} & \alpha^{*} & 1\end{array}\right]$
$\begin{gathered} 2 \times 4 \\ \text { cas } \\ e \end{gathered}$	$R_{\text {spat }}=R_{U E} \otimes R_{g N B}=\left[\begin{array}{cc}1 & \beta \\ \beta^{*} & 1\end{array}\right] \otimes\left[\begin{array}{cccc}1 & \alpha^{1 / 9} & \alpha^{4 / 9} & \alpha \\ \alpha^{1 / 9} & 1 & \alpha^{1 / 9} & \alpha^{4 / 9} \\ \alpha^{4 / 9} & \alpha^{1 / 9} & 1 & \alpha^{1 / 9} \\ \alpha^{*} & \alpha^{4 / 9} & \alpha^{1 / 9} & 1\end{array}\right]$
$\begin{gathered} 2 \times 8 \\ \text { cas } \\ e \end{gathered}$	$R_{\text {spat }}=R_{U E} \otimes R_{g N B}=\left[\begin{array}{cc} 1 & \beta \\ \beta^{*} & 1 \end{array}\right] \otimes\left[\begin{array}{ccccccc} 1 & \alpha^{1 / 49} & \alpha^{4 / 49} & \alpha^{9 / 49} & \alpha^{16 / 49} & \alpha^{25 / 49} & \alpha^{36 / 4} \\ \alpha^{1 / 49^{*}} & 1 & \alpha^{1 / 49} & \alpha^{4 / 49} & \alpha^{9 / 49} & \alpha^{16 / 49} & \alpha^{25 / 4} \\ \alpha^{4 / 49^{*}} & \alpha^{1 / 49^{*}} & 1 & \alpha^{1 / 49} & \alpha^{4 / 49} & \alpha^{9 / 49} & \alpha^{16 / 4} \\ \alpha^{9 / 49^{*}} & \alpha^{4 / 49^{*}} & \alpha^{1 / 49^{*}} & 1 & \alpha^{1 / 49} & \alpha^{4 / 49} & \alpha^{9 / 4} \\ \alpha^{16 / 49^{*}} & \alpha^{9 / 49^{*}} & \alpha^{4 / 49^{*}} & \alpha^{1 / 49^{*}} & 1 & \alpha^{1 / 49} & \alpha^{4 / 4} \\ \alpha^{25 / 49^{* *}} & \alpha^{16 / 49^{*}} & \alpha^{9 / 49^{*}} & \alpha^{4 / 49^{*}} & \alpha^{1 / 49^{*}} & 1 & \alpha^{1 / 4} \\ \alpha^{36 / 49^{*}} & \alpha^{25 / 49^{*}} & \alpha^{16 / 49^{*}} & \alpha^{9 / 49^{*}} & \alpha^{4 / 49^{*}} & \alpha^{1 / 49^{*}} & 1 \\ \alpha^{*} & \alpha^{36 / 49^{*}} & \alpha^{25 / 49^{*}} & \alpha^{16 / 49^{*}} & \alpha^{9 / 49^{*}} & \alpha^{4 / 49^{*}} & \alpha^{1 / 4} \end{array}\right.$

| 4×4
 cas
 e |
| :---: | :---: | :---: | :---: |\(\quad R_{spat}=R_{U E} \otimes R_{g N B}=\left(\begin{array}{cccc}1 \& \beta^{1 / 9} \& \beta^{4 / 9} \& \beta

\beta^{1 / 9^{*}} \& 1 \& \beta^{1 / 9} \& \beta^{4 / 9}

\beta^{4 / 9^{*}} \& \beta^{1 / 9^{*}} \& 1 \& \beta^{1 / 9}

\beta^{*} \& \beta^{4 / *^{*}} \& \beta^{1 / *^{*}} \& 1\end{array}\right) \otimes\left[$$
\begin{array}{cccc}1 & \alpha^{1 / 9} & \alpha^{4 / 9} & \alpha \\
\alpha^{1 / 9} & 1 & \alpha^{1 / 9} & \alpha^{4 / 9} \\
\alpha^{4 / 9} & \alpha^{1 / 9} & 1 & \alpha^{1 / 9} \\
\alpha^{*} & \alpha^{4 / 9} & \alpha^{1 / 9} & 1\end{array}
$$\right]\)

For cases with more antennas at either gNB or UE or both, the channel spatial correlation matrix can still be expressed as the Kronecker product of $R_{U E}$ and $R_{g N B}$ according to $R_{s p a t}=R_{U E} \otimes R_{g N B}$.

G.2.3.1.2 MIMO Correlation Matrices at High, Medium and Low Level

The α and β for different correlation types are given in Table G.2.3.1.2-1.
Table G.2.3.1.2-1: Correlation for High Medium and Low Level

Low correlation		Medium Correlation		High Correlation	
α	β	α	β	α	β
0	0	0.9	0.3	0.9	0.9

The correlation matrices for high, medium and low correlation are defined in Table G.2.3.1.2-2, G.2.3.1.2-3 and G.2.3.1.2-4 as below.

The values in Table G.2.3.1.2-2 have been adjusted for the 2 x 4 and 4 x 4 high correlation cases to insure the correlation matrix is positive semi-definite after round-off to 4 -digit precision. This is done using the equation:

$$
\mathbf{R}_{\text {high }}=\left[\mathbf{R}_{\text {spatial }}+a I_{n}\right] /(1+a)
$$

Where the value "a" is a scaling factor such that the smallest value is used to obtain a positive semi-definite result. For the 2 x 4 high correlation case, $\mathrm{a}=0.00010$. For the 4 x 4 high correlation case, $\mathrm{a}=0.00012$.

The same method is used to adjust the $4 x 4$ medium correlation matrix in Table G.2.3.1.2-3 to insure the correlation matrix is positive semi-definite after round-off to 4 -digit precision with $\mathrm{a}=0.00012$.

Table G.2.3.1.2-2: MIMO correlation matrices for high correlation

$\begin{gathered} 1 \times 2 \\ \text { case } \end{gathered}$	$R_{\text {high }}=\left(\begin{array}{cc} 1 & 0.9 \\ 0.9 & 1 \end{array}\right)$	
$\begin{aligned} & 2 \times 2 \\ & \text { case } \end{aligned}$		$R_{\text {high }}=\left(\begin{array}{cccc}1 & 0.9 & 0.9 & 0.81 \\ 0.9 & 1 & 0.81 & 0.9 \\ 0.9 & 0.81 & 1 & 0.9 \\ 0.81 & 0.9 & 0.9 & 1\end{array}\right)$
$\begin{aligned} & 2 \times 4 \\ & \text { case } \end{aligned}$		$R_{\text {high }}=\left[\begin{array}{llllllll}1.0000 & 0.9883 & 0.9542 & 0.8999 & 0.8999 & 0.8894 & 0.8587 & 0.8099 \\ 0.9883 & 1.0000 & 0.9883 & 0.9542 & 0.8894 & 0.8999 & 0.8894 & 0.8587 \\ 0.9542 & 0.9883 & 1.0000 & 0.9883 & 0.8587 & 0.8894 & 0.8999 & 0.8894 \\ 0.8999 & 0.9542 & 0.9883 & 1.0000 & 0.8099 & 0.8587 & 0.8894 & 0.8999 \\ 0.8999 & 0.8894 & 0.8587 & 0.8099 & 1.0000 & 0.9883 & 0.9542 & 0.8999 \\ 0.8894 & 0.8999 & 0.8894 & 0.8587 & 0.9883 & 1.0000 & 0.9883 & 0.9542 \\ 0.8587 & 0.8894 & 0.8999 & 0.8894 & 0.9542 & 0.9883 & 1.0000 & 0.9883 \\ 0.8099 & 0.8587 & 0.8894 & 0.8999 & 0.8999 & 0.9542 & 0.9883 & 1.0000\end{array}\right]$
$\begin{gathered} 4 \times 4 \\ \text { case } \end{gathered}$	$R_{\text {high }}=$	

Table G.2.3.1.2-3: MIMO correlation matrices for medium correlation

Table G.2.3.1.2-4: MIMO correlation matrices for low correlation

1×2 case	$R_{\text {low }}=\mathbf{I}_{2}$
$\mathbf{1 \times 4}$ case	$R_{\text {low }}=\mathbf{I}_{4}$
$\mathbf{1 \times 8}$ case	$R_{\text {low }}=\mathbf{I}_{8}$
$\mathbf{2 \times 2}$ case	$R_{\text {low }}=\mathbf{I}_{4}$
$\mathbf{2 x 4}$ case	$R_{\text {low }}=\mathbf{I}_{8}$
$\mathbf{2 x 8}$ case	$R_{\text {low }}=\mathbf{I}_{16}$
$\mathbf{4 x 4}$ case	$R_{\text {low }}=\mathbf{I}_{16}$

In Table G.2.3.1.2-4, \mathbf{I}_{d} is a $d \times d$ identity matrix.
NOTE: For completeness, the correlation matrices were defined for high, medium and low correlation but performance requirements exist only for low correlation.

G.2.3.2 Multi-Antenna channel models using cross polarized antennas

The MIMO channel correlation matrices defined in G.2.3.2 apply to two cases as presented below:

- One TX antenna and multiple RX antennas case, with cross polarized antennas used at gNB
- Multiple TX antennas and multiple RX antennas case, with cross polarized antennas used at both UE and gNB

The cross-polarized antenna elements with $+/-45$ degrees polarization slant angles are deployed at gNB . For one TX antenna case, antenna element with +90 degree polarization slant angle is deployed at UE. For multiple TX antennas case, cross-polarized antenna elements with $+90 / 0$ degrees polarization slant angles are deployed at UE.

For the cross-polarized antennas, the N antennas are labelled such that antennas for one polarization are listed from 1 to $\mathrm{N} / 2$ and antennas for the other polarization are listed from $\mathrm{N} / 2+1$ to N , where N is the number of TX or RX antennas.

G.2.3.2.1 Definition of MIMO Correlation Matrices using cross polarized antennas

For the channel spatial correlation matrix, the following is used:

$$
R_{S p a t}=P_{U L}\left(R_{U E} \otimes \Gamma_{U L} \otimes R_{g N B}\right) P_{U L}^{T}
$$

Where

- $\quad R_{U E}$ is the spatial correlation matrix at the UE with same polarization,
- $R_{g N B}$ is the spatial correlation matrix at the gNB with same polarization,
- $\quad \Gamma_{U L}$ is a polarization correlation matrix,
- $\quad P_{U L}$ is a permutation matrix, and
- $(\bullet)^{T}$ denotes transpose.

Table G.2.3.2.1-1 defines the polarization correlation matrix.
Table G.2.3.2.1-1: Polarization correlation matrix

	One TX antenna	Multiple TX antennas
Polarization correlation matrix	$\Gamma_{U L}=\left[\begin{array}{cc}1 & -\gamma \\ -\gamma & 1\end{array}\right]$	$\Gamma_{U L}=\left[\begin{array}{cccc}1 & -\gamma & 0 & 0 \\ -\gamma & 1 & 0 & 0 \\ 0 & 0 & 1 & \gamma \\ 0 & 0 & \gamma & 1\end{array}\right]$

The matrix $P_{U L}$ is defined as

$$
\mathbf{P}_{U L}(a, b)=\left\{\begin{array}{lc}
1 & \text { for } a=(j-1) N r+i \text { and } b=2(j-1) N r+i, \quad i=1, \cdots, N r, j=1, \cdots,\lceil N t / 2\rceil \\
1 & \text { for } a=(j-1) N r+i \text { and } b=2(j-N t / 2) N r-N r+i, \quad i=1, \cdots, N r, j=\lceil N t / 2\rceil+1, \ldots, N t \\
0 & \text { otherwise }
\end{array}\right.
$$

where $N t$ and $N r$ is the number of TX and RX antennas respectively, and $\lceil\bullet\rceil$ is the ceiling operator.
The matrix $P_{U L}$ is used to map the spatial correlation coefficients in accordance with the antenna element labelling system described in G.2.3.2.

G.2.3.2.2 Spatial Correlation Matrices at UE and gNB sides

G.2.3.2.2.1 Spatial Correlation Matrices at UE side

For 1-antenna transmitter, $R_{U E}=1$.
For 2-antenna transmitter using one pair of cross-polarized antenna elements, $R_{U E}=1$.

For 4-antenna transmitter using two pairs of cross-polarized antenna elements, $R_{U E}=\left(\begin{array}{cc}1 & \beta \\ \beta^{*} & 1\end{array}\right)$.

G.2.3.2.2.2 Spatial Correlation Matrices at gNB side

For 2-antenna receiver using one pair of cross-polarized antenna elements, $R_{g N B}=1$.
For 4-antenna receiver using two pairs of cross-polarized antenna elements, $R_{g N B}=\left(\begin{array}{cc}1 & \alpha \\ \alpha^{*} & 1\end{array}\right)$.
For 8-antenna receiver using four pairs of cross-polarized antenna elements, $R_{g N B}=\left(\begin{array}{cccc}1 & \alpha^{1 / 9} & \alpha^{4 / 9} & \alpha \\ \alpha^{1 / 9^{* *}} & 1 & \alpha^{1 / 9} & \alpha^{4 / 9} \\ \alpha^{4 / 9^{*}} & \alpha^{1 / 9^{*}} & 1 & \alpha^{1 / 9} \\ \alpha^{*} & \alpha^{4 / 9^{*}} & \alpha^{1 / 9^{*}} & 1\end{array}\right)$.

G.2.3.2.3 MIMO Correlation Matrices using cross polarized antennas

The values for parameters α, β and γ for low spatial correlation are given in Table G.2.3.2.3-1.
Table G.2.3.2.3-1: Values for parameters α, β and γ

Low spatial correlation			
α	β	Y	
Note 1:	Value of α applies when more than one pair of cross-polarized antenna elements at gNB side.		
Note 2:	Value of β applies when more than one pair of cross-polarized antenna elements at UE side.		

The correlation matrices for low spatial correlation are defined in Table G.2.3.2.3-2 as below.
Table G.2.3.2.3-2: MIMO correlation matrices for low spatial correlation

1×8 case	$R_{\text {low }}=\mathbf{I}_{8}$
2×8 case	$R_{\text {low }}=\mathbf{I}_{16}$

In Table G.2.3.2.3-2, \mathbf{I}_{d} is a $d \times d$ identity matrix.

Annex H (informative): Change history

Change history								
Date	Meeting	TDoc	CR	Rev	Cat	Subject/Comment	New version	
$2017-05$	RAN4\#83	R4- 1704619				Specification skeleton	0.0 .1	
$2017-05$	RAN4\#83	R4- 1705332				Specification skeleton (revised)	0.0 .2	
$2017-05$	RAN4\#83	R4- 1706228				Specification skeleton (revised)	0.0 .3	
2017-07	RAN4-NR AH \#2	R4- 1706983				Agreed Text Proposal in RAN4 NR AH \#2: R4-1706955, "TP to TS 38.104: BS classification for NR BS"	0.1 .0	
2018-08	RAN4\#84	R4- 1709212				Agreed Text Proposal in RAN4 \#84: R4-1708872, "TP to TS 38.104 BS transmitter transient period"	0.2 .0	

2018-10	RAN4\#84 bis bis	$\begin{gathered} \hline \text { R4- } \\ 1711970 \end{gathered}$			Agreed Text Proposal in RAN4 \#84bis: R4-1710199, "TP for TS 38.104: out of band blocking (10.4)" R4-1710587, "TP for TS 38.104: Relationship with other core specifications (4.1)" R4-1710588, "TP for TS 38.104: Relationship between minimum requirements and test requirements (4.2)" R4-1710589, "TP for TS 38.104: Regional requirements (4.5)" R4-1710591, "TP for TS 38.104: Conducted transmitter characteristics (general) (6.1)" R4-1710593, "TP for TS 38.104: Operating band unwanted emissions (conducted) (6.6.4)" R4-1710594, "TP for TS 38.104: Conducted receiver characteristics (General) (7.1)" R4-1710595, "TP for TS 38.104: Radiated transmitter characteristics (General) (9.1)" R4-1710598, "TP for TS 38.104: Radiated receiver characteristics (General) (10.1)" R4-1711325, "TP to TS38.104: OTA Output power dynamics (9.4)" R4-1711363, "TP to TS 38.104 - Occupied bandwidth (6.6.2)" R4-1711745, "TP to TS 38.104 - Conducted and radiated requirement reference points (4.3)" R4-1711746, "TP for TS 38.104: Adding applicability table to clause 4.6" R4-1711747, "TP for TS 38.104: Operating bands and channel arrangements. (5)" R4-1711748, "TP to TS38.104: conducted NR BS output power (6.2)" R4-1711750, "TP for TS 38.104: Transmit ON/OFF power (6.4)" R4-1711753, "TP for TS 38.104: Time alignment error requirements (6.5)" R4-1711754, "TP for TS 38.104: Unwanted emissions, General (Conducted) (6.6.1)" R4-1711755, "TP to TS 38.104: Occupied bandwidth for FR1 and FR2 NR BS (9.7)" R4-1711756, "TP to TS 38.104: Transmitter spurious emissions (conducted) (6.6.5)" R4-1711757, "TP for TS 38.104:Conducted BS transmitter intermodulation for FR1 (clause 6.7)" R4-1711758, "TP to TS 38.104: Reference Sensitivity (conducted) (7.2)" R4-1711759, "TP to TS 38.104: NR BS conducted ACLR requirement in FR1 (6.6.3)" R4-1711760, "TP to TS38.104: conducted NR BS receiver spurious emissions (7.6)" R4-1711761, "TP to TS38.104: Radiated NR BS transmit power; FR1 (9.2)" R4-1711762, "TP to TS38.104: OTA base station output power, FR1 (9.3)" R4-1711763, "TP for TS 38.104: OTA Transmit ON/OFF power (9.5)" R4-1711764, "TP to TS 38.104 - OTA ACLR" R4-1711765, "TP for TS 38.104: OTA Operating band unwanted emissions and Spectrum emissions mask (9.7.4)" R4-1711766, "TP for TS 38.104: OTA Spurious emission (9.7.5)" R4-1711767, "TP for TS 38.104: Adding specification text for OTA TX IMD requirement in clause 9.8" R4-1711768, "TP to TS 38.104: OTA Sensitivity (10.2)" R4-1711771, "TP to TS38.104: OTA receiver spurious emissions, FR1 (10.7)" R4-1711772, "TP to TS 38.104: Receiver Intermodulation (10.8)" R4-1711811, "TP to TS 38.104: NR BS conducted in-band selectivity and blocking requirements in FR1 (7.4)" R4-1711950, "TP to TS 38.104: Modulation Quality Skeleton (6.5)" R4-1711951, "TP to TS38.104: frequency error for FR1 NR BS (6.5\&9.6)" R4-1711952, "TP to TS 38.104: OTA reference sensitivity (10.3)"	0.3.0
2017-11	$\begin{gathered} \text { RAN4\#84 } \\ \text { bis } \end{gathered}$	$\begin{gathered} \text { R4- } \\ 1711971 \end{gathered}$			Alignment of structure, terminology, and definitions between clauses.	0.4.0

2018-06	RAN\#80	RP-181076	0005		F	TS 38.104 Combined updates (NSA) from RAN4 \#86bis and RAN4 \#87	15.2.0
2018-09	RAN\#81	RP-181896	0008		F	TS 38.104 Combined updates from RAN4 \#88	15.3.0
2018-12	RAN\#82	RP-182837	0016	1	F	CR to TS 38.104 on Combined updates from RAN4 \#88bis and \#89 (including 7.5 kHz carrier shift in UL for remaining bands)	15.4.0
2018-12	RAN\#82	RP-182362	0017		B	CR to 38.104 on Combined CRs for BS Demodulation performance	15.4.0
2019-03	RAN\#83	RP-190403	0019		F	CR to TS 38.104 on Combined updates from RAN4 \#90 This document combines the proposed changes in the following Draft CRs from RAN4 \#90: R4-1900284, "Draft CR on NR PUCCH format2 performance requirements for TS 38.104" R4-1900763, "Draft CR to TS 38.104: Update of performance requirement numbers for DFT-s-OFDM based PUSCH" R4-1900876, "Draft CR to TS 38.104: On RX spurious emissions requirement" R4-1900968, "Draft CR for 38.104: Performance requirements for NR PUCCH format 1" R4-1901329, "Draft CR to 38.104: Annex C. 6 correction" R4-1901330, "Draft CR to 38.104: Abbreviations addition" R4-1901387, "Draft CR to TS 38.104 BS demodulation PUCCH format 0 requirements" R4-1901474, "Draft CR to TS 38.104: Corrections on transmitter co-existence and co-location requirements" R4-1901483, "Draft CR to TS 38.104: Corrections on general intermodulation requirement" R4-1902239, "Draft CR to TS 38.104: Addition of missing EIRP/EIS definitions in terminology in clause 3.1" - R4-1902241, "Draft CR to 38.104; clarification of BS power limits" R4-1902245, "Draft CR to 38.104: Correction to FR2 OTA Interfering signal mean power units" - R4-1902246, "Draft CR to 38.104; Correction to definition of OTA reference sensitivity" R4-1902260, "draft CR to TS 38.104 - update emissions scaling" R4-1902338, "Draft CR: Update on FR1 range extension for TS38.104" R4-1902389, "draftCR for 38.104 on PUSCH requirements with CP-OFDM and FR1" R4-1902394, "Draft CR to TS 38.104 - PUSCH requirements with CP-OFDM for FR2" R4-1902396, "CR: Updates to PUCCH formats 3 and 4 performance requirements in TS 38.104" R4-1902444, "Draft CR to TS 38.104: Editorial CR for BS demodulation requirements" R4-1902561, "Draft CR for updating PRACH performance requirements in TS38.104" R4-1902571, "Corrections to 38.104 Delay profile calculation" R4-1902642, "Draft CR to TS 38.104: Correction on multi-band operation related requirements"	15.5.0

2019-12	RAN\#86	RP-192999	0048	1	F	CR to TS 38.104: Update of performance requirements for DFT-sOFDM based PUSCH (Rel-15)	15.8.0
2019-12	RAN\#86	RP-192999	0051	1	F	CR for 38.104: Performance requirements for NR PUCCH format 1	15.8.0
2019-12	RAN\#86	RP-192999	0052	1	F	CR for 38.104: Performance requirements for NR multi-slot PUCCH	15.8.0
2019-12	RAN\#86	RP-193034	0054		F	Sync raster to SSB resource element mapping	15.8.0
2019-12	RAN\#86	RP-192999	0056		F	CR on correction of NR PUCCH format2 performance requirements (Rel-15) for TS 38.104	15.8.0
2019-12	RAN\#86	RP-192999	0058	1	F	CR on correction of NR UCI on PUSCH performance requirements (Rel-15) for TS 38.104	15.8.0
2019-12	RAN\#86	RP-192999	0060		F	CR on correction on FRC table for FR1 PUSCH performance requirements (Rel-15) for TS 38.104	15.8.0
2019-12	RAN\#86	RP-192999	0062	1	F	CR for 38.104 on PUSCH requirements with CP-OFDM and FR1	15.8.0
2019-12	RAN\#86	RP-193034	0064	1	F	CR for TS38.104: Corrections on channel bandwdith for band n34	15.8.0
2019-12	RAN\#86	RP-193035	0066	1	F	CR to TS38.104: Editorial corrections	15.8.0
2019-12	RAN\#86	RP-193035	0069	1	F	CR to 38.104 on Editorial corrections (Rel-15)	15.8.0
2019-12	RAN\#86	RP-193035	0071	1	F	CR to 38.104 on Corrections from endorsed draft CRs (Rel-15)	15.8.0
2019-12	RAN\#86	RP-193034	0073	2	F	CR to 38.104 on Receiver spurious emission requirements	15.8.0
2019-12	RAN\#86	RP-192999	0076	1	F	Updates to PRACH requirements in TS 38.104 for Rel-15	15.8.0
2019-12	RAN\#86	RP-193034	0080		F	CR to TS 38.104: Correction on interference level of receiver dynamic range requirement	15.8.0
2019-12	RAN\#86	RP-193034	0082		F	CR to TS 38.104: Finalization of interfering RB centre frequency offsets in receiver narrowband blocking requirement	15.8.0
2019-12	RAN\#86	RP-193034	0084		F	CR to TR 38.104: Correction of table reference of interfering signal for ACS requirement	15.8.0
2019-12	RAN\#86	RP-193034	0086		F	CR to TS 38.104: Correction on interfering signal frequency offsets for receiver intermodulation requirements	15.8.0
2019-12	RAN\#86	RP-193034	0088		F	CR to TS 38.104 on corrections to channel raster entries for NR band (Rel-15)	15.8.0
2019-12	RAN\#86	RP-193035	0096		F	CR to TS38.104: further updates on the abbreviations (clause 3.3)R15	15.8.0
2019-12	RAN\#86	RP-192999	0099	1	F	CR to TS 38.104 BS demodulation PUCCH format 0 requirements	15.8.0
2019-12	RAN\#86	RP-192999	0101	1	F	CR to TS 38.104 BS demodulation CP-OFDM PUSCH FR2 requirements	15.8.0
2019-12	RAN\#86	RP-193035	0107	1	F	CR to 38.104: Correction on FR2 Category B OBUE mask	15.8.0
2019-12	RAN\#86	RP-193002	0109	1	F	CR Frame averaging for EVM Annex B and C in TS 38.104	15.8.0
2019-12	RAN\#86	RP-193035	0111		F	CR to TS 38.104: OTA TAE correction, Rel-15	15.8.0
2019-12	RAN\#86	RP-193035	0113	1	F	CR to TS 38.104: MR BS class terminology correction, Rel-15	15.8.0
2019-12	RAN\#86	RP-192999	0115	1	F	CR: Updates for PUCCH formats 3 and 4 performance requirements in TS 38.104 (Rel-15)	15.8.0
2019-12	RAN\#86	RP-193035	0117		F	Correction of limit for TX spurios BS type 1-H	15.8.0
2019-12	RAN\#86	RP-193035	0121		F	CR to TS 38.104: Editorial corrections	15.8.0
2019-12	RAN\#86	RP-193035	0123		F	CR to TS 38.104: Clarification for the number of interfering signals	15.8 .0
2020-03	RAN\#87	RP-200398	0133	1	F	CR to TS 38.104: Corrections on rated carrier output power symbols	15.9.0
2020-03	RAN\#87	RP-200398	0141		F	CR to TS 38.104: Regional requirements	15.9.0
2020-03	RAN\#87	RP-200398	0144		F	IntraSlot frequency hopping applicability in the one OFDM symbol test case	15.9.0
2020-03	RAN\#87	RP-200398	0150		F	CR to TS 38.104 editorial correction	15.9.0
2020-06	RAN\#88	RP-200986	0163		F	CR for 38.104: Performance requirements clarification of PUSCH BS Type O-2 PT-RS configuration for MCS 2	15.10 .0
2020-06	RAN\#88	RP-200986	0175		F	CR to TS 38.104: Correction to out-of-band blocking requirements in clause 7.5 and clause 10.6	15.10 .0
2020-06	RAN\#88	RP-200986	0194		F	CR to 38.104: Adding missing clause on Radiated Performance requirements for multi-slot PUCCH (11.3.1)	15.10 .0
2020-06	RAN\#88	RP-200986	0212		F	TS38.104 draft CR on 30KHz SSB SCS for n40	15.10 .0
2020-06	RAN\#88	RP-200986	0177	1	F	CR to TS 38.104: Correction on the CA nominal channel spacing	15.10 .0
2020-06	RAN\#88	RP-200986	0208	1	F	CR to 38.104 on Receiver spurious emissions exclusion band (Rel15)	15.10 .0
2020-06	RAN\#88	RP-200986	0206	1	F	CR to 38.104 on Removal of brackets and TBD (Rel-15)	15.10 .0
2020-06	RAN\#88	RP-200986	0210	2	F	CR to 38.104 on EESS protection for bands n257 and n258 (Rel-15	15.10 .0
2020-06	RAN\#88	RP-200986	0179	2	F	30k SSB SCS for n50	15.10 .0
2020-06	RAN\#88	RP-200986	0181	2	F	Addition of 30k SSB SCS for Band n38	15.10 .0
2020-09	RAN\#89	RP-201512	0221		F	CR to TS 38.104: Correction of co-location requirement in clause 7.5.3	15.11 .0
2020-09	RAN\#89	RP-201512	0223	1	F	CR to TS38.104: Add 30k SSB SCS for Band n34 and n39	15.11 .0
2020-09	RAN\#89	RP-201512	0226	1	F	CR to TS 38.104: OTA receiver spurious requirements for EESS protection (rel-15)	15.11 .0
2020-09	RAN\#89	RP-201512	0232	1	F	CR to 38.104: Annex B and C clarification on equlisation calculation (B.6, C.6)	15.11 .0
2020-09	RAN\#89	RP-202100	0237	1	C	7.5 kHz UL shift for LTE/NR spectrum sharing in Band 38/n38	15.11 .0
2020-12	RAN\#90	RP-202488	0260		F	CR to 38.104 on Category B OTA spurious emissions for Band n257	15.12 .0
2021-03	RAN\#91e	RP-210117	0271	1	F	CR to TS 38.104: Additions of regional requirements for n 41 in Japan, Rel-15	15.13.0

| $2021-03$ | RAN\#91e | RP-210117 | 0287 | | F | CR to TS 38.104: EESS protection requirement correction | 15.13 .0 |
| :--- | :--- | :--- | :--- | :---: | :---: | :--- | :--- | :--- |
| $2021-03$ | RAN\#91e | RP-210117 | 0292 | 1 | F | CR to TS38.104: Correction on the Aggregated Channel Bandwidth | 15.13 .0 |
| $2021-06$ | RAN\#92 | RP-211082 | 0334 | 1 | F | CR to 38.104: In-band blocking for multi-band Base Stations | 15.14 .0 |
| $2021-09$ | RAN\#93 | RP-211910 | 0346 | | B | Introduction of the UL 7.5kHz shift for NR TDD band n34 and n39 in
 $38.104 ~ R 15$ | 15.15 .0 |
| $2021-09$ | RAN\#93 | RP-211926 | 0349 | | F | Big CR for TS 38.104 Maintenance Demod part(Rel-15, CAT F) | 15.15 .0 |
| $2021-09$ | RAN\#93 | RP-211926 | 0352 | | F | Big CR for TS 38.104 Maintenance RF part (Rel-15, CAT F) | 15.15 .0 |
| $2021-12$ | RAN\#94 | RP-212856 | 0358 | | F | Big CR for TS 38.104 Maintenance RF part (Rel-15, CAT F) | 15.16 .0 |
| $2022-06$ | RAN\#96 | RP-221655 | 0387 | | F | Big CR for TS 38.104 Maintenance RF part (Rel-15, CAT F) | 15.17 .0 |
| $2022-09$ | RAN\#97 | RP-222026 | 0405 | | F | Big CR for TS 38.104 Maintenance Demod part (Rel-15, CAT F) | 15.18 .0 |

History

Document history		
V15.2.0	July 2018	Publication
V15.3.0	October 2018	Publication
V15.4.0	April 2019	Publication
V15.5.0	May 2019	Publication
V15.6.0	July 2019	Publication
V15.7.0	October 2019	Publication
V15.8.0	January 2020	Publication
V15.9.0	April 2020	Publication
V15.10.0	July 2020	Publication
V15.11.0	November 2020	Publication
V15.12.0	January 2021	Publication
V15.13.0	April 2021	Publication
V15.14.0	September 2021	Publication
V15.15.0	October 2021	Publication
V15.16.0	March 2022	Publication
V15.17.0	August 2022	Publication
V15.18.0	October 2022	Publication

