ETSITS 136 101 V12.22.0 (2019-05)

LTE;

Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception (3GPP TS 36.101 version 12.22.0 Release 12)

Reference RTS/TSGR-0436101vcm0 Keywords LTE

ETSI

650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from: <u>http://www.etsi.org/standards-search</u>

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status.

Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services: https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.

The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2019. All rights reserved.

DECT[™], **PLUGTESTS**[™], **UMTS**[™] and the ETSI logo are trademarks of ETSI registered for the benefit of its Members. **3GPP**[™] and **LTE**[™] are trademarks of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

oneM2M[™] logo is a trademark of ETSI registered for the benefit of its Members and of the oneM2M Partners.

GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

Foreword

This Technical Specification (TS) has been produced by the ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under http://webapp.etsi.org/key/queryform.asp.

Modal verbs terminology

In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the <u>ETSI Drafting Rules</u> (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

Contents

Intelle	ectual Property Rights	2
Forev	vord	2
Moda	ıl verbs terminology	2
	vord	
1	Scope	
2	References	
3	Definitions, symbols and abbreviations	
3.1	Definitions	
3.2 3.3	Symbols	
3.3		
4	General	
4.1	Relationship between minimum requirements and test requirements	
4.2	Applicability of minimum requirements	
4.3	Void	
4.3A	Applicability of minimum requirements (CA, UL-MIMO, ProSe, Dual Connectivity, UE category 0)	
4.4	RF requirements in later releases	27
5	Operating bands and channel arrangement	27
5.1	General	
5.2	Void	27
5.3	Void	27
5.4	Void	
5.5	Operating bands	
5.5A	Operating bands for CA	
5.5B	Operating bands for UL-MIMO	
5.5C	Operating bands for Dual Connectivity	
5.5D	Operating bands for ProSe	
5.5E	Operating bands for UE category 0	
5.6	Channel bandwidth	
5.6.1	Channel bandwidths per operating band	
5.6A	Channel bandwidth for CA	
5.6A.1		
5.6B 5.6B.1	Channel bandwidth for UL-MIMO	
э.ов.1 5.6С	Channel bandwidth for Dual Connectivity	
NOTE	·	3 1
	operation.5.6C.1	.Void
	1	
5.6D	Channel bandwidth for ProSe	52
5.6D.1	Channel bandwidths per operating band for ProSe	52
5.7	Channel arrangement	52
5.7.1	Channel spacing	
5.7.1 <i>A</i>	1 0	
5.7.2	Channel raster	
5.7.2A		
5.7.3	Carrier frequency and EARFCN	
5.7.4 5.7.4	TX-RX frequency separation	
5.7.4 <i>A</i>	A TX-RX frequency separation for CA	55
6	Transmitter characteristics	55
6.1	General	55
6.2	Transmit power	
6.2.1	Void	56

6.2.2	UE maximum output power	
6.2.2A	UE maximum output power for CA	
6.2.2B	UE maximum output power for UL-MIMO	
6.2.3	UE maximum output power for modulation / channel bandwidth	
6.2.3A	UE Maximum Output power for modulation / channel bandwidth for CA	
6.2.3B	UE maximum output power for modulation / channel bandwidth for UL-MIMO	
6.2.3D	UE maximum output power for modulation / channel bandwidth for ProSe	
6.2.4	UE maximum output power with additional requirements	
6.2.4A	UE maximum output power with additional requirements for CA	
6.2.4A.1	A-MPR for CA_NS_01 for CA_1C	
6.2.4A.2	A-MPR for CA_NS_02 for CA_1C	
6.2.4A.3	A-MPR for CA_NS_03 for CA_1C	
6.2.4A.4	A-MPR for CA_NS_04	
6.2.4A.5	A-MPR for CA_NS_05 for CA_38C	
6.2.4A.6	A-MPR for CA_NS_06	
6.2.4A.7	A-MPR for CA_NS_07	
6.2.4A.8	A-MPR for CA_NS_08	
6.2.4B	UE maximum output power with additional requirements for UL-MIMO	
6.2.4D	UE maximum output power with additional requirements for ProSe	
6.2.5	Configured transmitted power	
6.2.5A	Configured transmitted power for CA	
6.2.5B	Configured transmitted power for UL-MIMO	
6.2.5C	Configured transmitted power for Dual Connectivity	
6.2.5D	Configured transmitted power for ProSe	
6.3	Output power dynamics	
6.3.1	(Void)	
6.3.2	Minimum output power	
6.3.2.1	Minimum requirement	
6.3.2A	UE Minimum output power for CA	
6.3.2A.1	Minimum requirement for CA	
6.3.2B	UE Minimum output power for UL-MIMO	
6.3.2B.1	Minimum requirement	
6.3.3	Transmit OFF power	
6.3.3.1.	Minimum requirement	
6.3.3A 6.3.3A.1	UE Transmit OFF power for CA	
6.3.3B	Minimum requirement for CA	
6.3.3В.1	Minimum requirement	
6.3.3D.1	Transmit OFF power for ProSe	
6.3.4	ON/OFF time mask	
6.3.4.1	General ON/OFF time mask	
6.3.4.2	PRACH and SRS time mask	
6.3.4.2.1	PRACH time mask	
6.3.4.2.2	SRS time mask	
6.3.4.3	Slot / Sub frame boundary time mask	
6.3.4.4	PUCCH / PUSCH / SRS time mask	
6.3.4A	ON/OFF time mask for CA	
6.3.4B	ON/OFF time mask for UL-MIMO	
6.3.4D	ON/OFF time mask for ProSe	
6.3.4D.1	General time mask for ProSe	99
6.3.4D.2	PSSS/SSSS time mask	
6.3.4D.3	PSSS / SSSS / PSBCH time mask	
6.3.4D.4	PSSCH / SRS time mask	102
6.3.5	Power Control	102
6.3.5.1	Absolute power tolerance	102
6.3.5.1.1	Minimum requirements	102
6.3.5.2	Relative Power tolerance	
6.3.5.2.1	Minimum requirements	102
6.3.5.3	Aggregate power control tolerance	103
6.3.5.3.1	Minimum requirement	
6.3.5A	Power control for CA	
6.3.5A.1	Absolute power tolerance	104

6.3.5A.1.1	Minimum requirements	.104
6.3.5A.2	Relative power tolerance	
6.3.5A.2.1	Minimum requirements	
6.3.5A.3	Aggregate power control tolerance	
6.3.5A.3.1	Minimum requirements	
6.3.5B	Power control for UL-MIMO	
6.3.5D	Power Control for ProSe	
6.3.5D.1	Absolute power tolerance	
6.4 V	oid	
	ransmit signal quality	
6.5.1	Frequency error	
6.5.1A	Frequency error for CA	
6.5.1B	Frequency error for UL-MIMO	
6.5.1D	Frequency error for ProSe	
6.5.2	Transmit modulation quality	
6.5.2.1	Error Vector Magnitude	
6.5.2.1.1	Minimum requirement	
6.5.2.2	Carrier leakage	
6.5.2.2.1	Minimum requirements	
6.5.2.3	In-band emissions	
6.5.2.3.1	Minimum requirements	
6.5.2.4	EVM equalizer spectrum flatness	
6.5.2.4.1	Minimum requirements	
6.5.2A	Transmit modulation quality for CA	
6.5.2A.1	Error Vector Magnitude	
6.5.2A.2	Carrier leakage for CA	
6.5.2A.2.1	Minimum requirements	
6.5.2A.3	In-band emissions	
6.5.2A.3.1	Minimum requirement for CA	
6.5.2B	Transmit modulation quality for UL-MIMO	
6.5.2B.1	Error Vector Magnitude	
6.5.2B.2	Carrier leakage	
6.5.2B.3	In-band emissions	
6.5.2B.4	EVM equalizer spectrum flatness for UL-MIMO	
6.5.2D	Transmit modulation quality for ProSe	
6.5.2D.1	Error Vector Magnitude	
6.5.2D.1	Carrier leakage	
6.5.2D.3	In-band emissions	
6.5.2D.4	EVM equalizer spectrum flatness for ProSe	
	output RF spectrum emissions	
6.6.1	Occupied bandwidth	
6.6.1A	Occupied bandwidth for CA	
6.6.1B	Occupied bandwidth for UL-MIMO.	
6.6.2	Out of band emission	
6.6.2.1	Spectrum emission mask	
6.6.2.1.1	Minimum requirement	
6.6.2.1A	Spectrum emission mask for CA	
6.6.2.2	Additional spectrum emission mask	
6.6.2.2.1	Minimum requirement (network signalled value "NS_03", "NS_11", "NS_20", and "NS_21").	116
6.6.2.2.2	Minimum requirement (network signalled value "NS_03", NS_11", NS_20", and NS_21").	
	Minimum requirement (network signalled value "NS_06" or "NS_07")	117
6.6.2.2.3 6.6.2.2A	Additional Spectrum Emission Mask for CA	
6.6.2.2A 6.6.2.2A.1	Minimum requirement (network signalled value "CA_NS_04")	110
6.6.2.3	Adjacent Channel Leakage Ratio	
6.6.2.3.1	Minimum requirement E-UTRA	
	•	
6.6.2.3.1A	Void	
6.6.2.3.1Aa 6.6.2.3.2	Void	
	Minimum requirements UTRA	
6.6.2.3.2A	Minimum requirement UTRA for CA	
6.6.2.3.3A 6.6.2.4	Minimum requirements for CA E-UTRA	
	Void	
6.6.2.4.1	Void	. 1 2 2

6.6.2A	Void	
6.6.2B	Out of band emission for UL-MIMO	123
6.6.3	Spurious emissions	123
6.6.3.1	Minimum requirements	123
6.6.3.1A	Minimum requirements for CA	123
6.6.3.2	Spurious emission band UE co-existence	
6.6.3.2A	Spurious emission band UE co-existence for CA	
6.6.3.3	Additional spurious emissions	
6.6.3.3.1	Minimum requirement (network signalled value "NS_05")	
6.6.3.3.2	Minimum requirement (network signalled value "NS_07")	
6.6.3.3.3	Minimum requirement (network signalled value "NS_08")	
6.6.3.3.4	Minimum requirement (network signalled value "NS_09")	
6.6.3.3.5	Minimum requirement (network signalled value "NS_12")	
6.6.3.3.6	Minimum requirement (network signalled value "NS_12")	124
6.6.3.3.7	Minimum requirement (network signalled value "NS_13")	
6.6.3.3.8	Minimum requirement (network signalled value "NS_15")	
6.6.3.3.9	Minimum requirement (network signalled value "NS_16")	
6.6.3.3.10	Minimum requirement (network signalled value "NS_17")	
6.6.3.3.11	Minimum requirement (network signalled value "NS_18")	
6.6.3.3.12	Minimum requirement (network signalled value "NS_19")	
6.6.3.3.13	Minimum requirement (network signalled value "NS_11")	
6.6.3.3.14	Minimum requirement (network signalled value "NS_20")	
6.6.3.3.15	Minimum requirement (network signalled value "NS_21")	
6.6.3.3.16	Minimum requirement (network signalled value "NS_22")	
6.6.3.3.17	Minimum requirement (network signalled value "NS_23")	140
6.6.3.3.18	Void	
6.6.3.3.19	Minimum requirement (network signalled value "NS_04")	140
6.6.3.3A	Additional spurious emissions for CA	
6.6.3.3A.1	<u>.</u>	
6.6.3.3A.2	_ , _ ,	
6.6.3.3A.3		
6.6.3.3A.4		
6.6.3.3A.5	· · · · · · · · · · · · · · · · · · ·	
6.6.3.3A.6		
6.6.3.3A.7	· · · · · · · · · · · · · · · · · · ·	
6.6.3.3A.8		
6.6.3A	Void	
6.6.3B	Spurious emission for UL-MIMO	
	Void	
	Void	
	Transmit intermodulation	
6.7.1	Minimum requirement	
6.7.1A	Minimum requirement for CA	
6.7.1B	Minimum requirement for UL-MIMO	145
6.8	Void	145
6.8.1	Void	145
6.8A	Void	145
	Time alignment error for UL-MIMO	
6.8B.1	Minimum Requirements	
	-	
	ceiver characteristics	
	General	
	Diversity characteristics	
7.3	Reference sensitivity power level	
7.3.1	Minimum requirements (QPSK)	147
7.3.1A	Minimum requirements (QPSK) for CA	
7.3.1B	Minimum requirements (QPSK) for UL-MIMO	
7.3.1D	Minimum requirements (QPSK) for ProSe	
7.3.1E	Minimum requirements (QPSK) for UE category 0	
7.3.2	Void	
	Maximum input level	
7.4 1	Minimum requirements	172

7.4.1A	Minimum requirements for CA	173
7.4.1B	Minimum requirements for UL-MIMO	
7.4.1D	Minimum requirements for ProSe	
7.4A	Void	
7.4A.1	Void	
7.5	Adjacent Channel Selectivity (ACS)	
7.5.1	Minimum requirements	
7.5.1A	Minimum requirements for CA	
7.5.1R	Minimum requirements for UL-MIMO	
7.5.1D	Minimum requirements for ProSe	
7.5.1D 7.6	Blocking characteristics	
7.6.1	In-band blocking	
7.6.1.1	Minimum requirements	
7.6.1.1A	Minimum requirements for CA	
7.6.1.1A	Minimum requirements for ProSe	
	•	
7.6.2	Out-of-band blocking	
7.6.2.1	Minimum requirements	
7.6.2.1A	Minimum requirements for CA	
7.6.2.1D	Minimum requirements for ProSe	
7.6.3	Narrow band blocking	
7.6.3.1	Minimum requirements	
7.6.3.1A	Minimum requirements for CA	
7.6.3.1D	Minimum requirements for ProSe	
7.6A	Void	
7.6B	Blocking characteristics for UL-MIMO	
7.7	Spurious response	
7.7.1	Minimum requirements	190
7.7.1A	Minimum requirements for CA	191
7.7.1B	Minimum requirements for UL-MIMO	192
7.7.1D	Minimum requirements for ProSe	192
7.8	Intermodulation characteristics	193
7.8.1	Wide band intermodulation.	193
7.8.1.1	Minimum requirements	193
7.8.1A	Minimum requirements for CA	
7.8.1B	Minimum requirements for UL-MIMO	
7.8.1D	Minimum requirements for ProSe	
7.8.2	Void	
7.9	Spurious emissions	
7.9.1	Minimum requirements.	
7.9.1A	Minimum requirements	
7.10	Receiver image	
7.10.1	Void	
7.10.1 7.10.1A	Minimum requirements for CA	
7.10.1A	William requirements for CA	190
8 Pe	rformance requirement	198
8.1	General	
8.1.1	Receiver antenna capability	
8.1.1.1	Simultaneous unicast and MBMS operations	
8.1.1.2	Dual-antenna receiver capability in idle mode	
8.1.2	Applicability of requirements	
8.1.2.1	Applicability of requirements for different channel bandwidths	
8.1.2.2	Definition of CA capability	
8.1.2.2A	Definition of dual connectivity capability	
8.1.2.3	Applicability and test rules for different CA configurations and bandwidth combination sets	
		201
8.1.2.3A	Applicability and test rules for different dual connectivity configuration and bandwidth	202
0 1 2 20	combination set	203
8.1.2.3B	Applicability and test rules for different TDD-FDD CA configurations and bandwidth	204
0104	combination sets	
8.1.2.4	Test coverage for different number of component carriers	
8.1.2.5	Applicability of performance requirements for Type B receiver	
8.1.3	UE category and UE DL category	
8.2	Demodulation of PDSCH (Cell-Specific Reference Symbols)	206

8.2.1	FDD (Fixed Reference Channel)	206
8.2.1.1	Single-antenna port performance	206
8.2.1.1.1	Minimum Requirement	207
8.2.1.1.2	Void	
8.2.1.1.3	Void	
8.2.1.1.4	Minimum Requirement 1 PRB allocation in presence of MBSFN	
8.2.1.2	Transmit diversity performance	
8.2.1.2.1	Minimum Requirement 2 Tx Antenna Port	
8.2.1.2.2	Minimum Requirement 4 Tx Antenna Port	
8.2.1.2.3	Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor	211
0.2.1.2.3	cell ABS)ggressor	212
8.2.1.2.3A		212
8.2.1.2.3A	Minimum Requirement 2 Tx Antenna Ports (demodulation subframe overlaps with aggressor	214
0.2.1.2.4	cell ABS and CRS assistance information are configured)	214
8.2.1.2.4	Enhanced Performance Requirement Type A - 2 Tx Antenna Ports with TM3 interference	216
00105	model	216
8.2.1.2.5	Enhanced Performance Requirement Type B - 2 Tx Antenna Ports with TM2 interference	• • •
	model	218
8.2.1.2.6	Enhanced Performance Requirement Type B - 2 Tx Antenna Ports with TM9 interference	
	model	
8.2.1.3	Open-loop spatial multiplexing performance	
8.2.1.3.1	Minimum Requirement 2 Tx Antenna Port	
8.2.1.3.1B	Enhanced Performance Requirement Type C –2Tx Antenna Ports	
8.2.1.3.1C	Enhanced Performance Requirement Type C - 2 Tx Antenna Ports with TM1 interference	224
8.2.1.3.2	Minimum Requirement 4 Tx Antenna Port	225
8.2.1.3.3	Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor	
	cell ABS)	225
8.2.1.3.4	Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor	
	cell ABS and CRS assistance information are configured)	229
8.2.1.4	Closed-loop spatial multiplexing performance	
8.2.1.4.1	Minimum Requirement Single-Layer Spatial Multiplexing 2 Tx Antenna Port	
8.2.1.4.1A	Minimum Requirement Single-Layer Spatial Multiplexing 4 Tx Antenna Port	
8.2.1.4.1B	Enhanced Performance Requirement Type A - Single-Layer Spatial Multiplexing 2 Tx	
0.2.1.1.10	Antenna Port with TM4 interference model	232
8.2.1.4.1C	Minimum Requirement Single-Layer Spatial Multiplexing 2 Tx Antenna Ports (demodulation	232
0.2.1.4.10	subframe overlaps with aggressor cell ABS and CRS assistance information are configured)	23/
8.2.1.4.1D	Enhanced Performance Requirement Type B - Single-layer Spatial Multiplexing 2 Tx	254
0.2.1.4.1D	Antenna Port with TM4 interference model	236
8.2.1.4.2	Minimum Requirement Multi-Layer Spatial Multiplexing 2 Tx Antenna Port	
		230
8.2.1.4.2A	Enhanced Performance Requirement Type C – Multi-layer Spatial Multiplexing 2Tx Antenna	220
0.2.1.4.2	Ports	
8.2.1.4.3	Minimum Requirement Multi-Layer Spatial Multiplexing 4 Tx Antenna Port	239
8.2.1.4.3A	Minimum Requirement Multi-Layer Spatial Multiplexing 4 Tx Antenna Port for dual	2.42
	connectivity	
8.2.1.5	MU-MIMO	
8.2.1.6	[Control channel performance: D-BCH and PCH]	
8.2.1.7	Carrier aggregation with power imbalance	
8.2.1.7.1	Minimum Requirement	
8.2.1.8	Intra-band non-contiguous carrier aggregation with timing offset	
8.2.1.8.1	Minimum Requirement	
8.2.2	TDD (Fixed Reference Channel)	
8.2.2.1	Single-antenna port performance	246
8.2.2.1.1	Minimum Requirement	246
8.2.2.1.2	Void	250
8.2.2.1.3	Void	250
8.2.2.1.4	Minimum Requirement 1 PRB allocation in presence of MBSFN	250
8.2.2.2	Transmit diversity performance	
8.2.2.2.1	Minimum Requirement 2 Tx Antenna Port	
8.2.2.2.2	Minimum Requirement 4 Tx Antenna Port	
8.2.2.2.3	Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor	
-	cell ABS)	252
8.2.2.2.3A	Minimum Requirement 2 Tx Antenna Ports (demodulation subframe overlaps with aggressor	
	cell ABS and CRS assistance information are configured)	254
	<i>5</i> -,	

8.2.2.2.4	Enhanced Performance Requirement Type A – 2 Tx Antenna Ports with TM3 interference	257
8.2.2.2.5	model	
8.2.2.2.6	Enhanced Performance Requirement Type B - 2 Tx Antenna Ports with TM2 interference model	
8.2.2.2.7	Enhanced Performance Requirement Type B - 2 Tx Antenna Ports with TM9 interference model	
8.2.2.3	Open-loop spatial multiplexing performance	
8.2.2.3.1	Minimum Requirement 2 Tx Antenna Port	
8.2.2.3.1A		
8.2.2.3.1B	Enhanced Performance Requirement Type C - 2Tx Antenna Ports	
8.2.2.3.1C	Enhanced Performance Requirement Type C - 2 Tx Antenna Ports with TM1 interference	
8.2.2.3.2	Minimum Requirement 4 Tx Antenna Port	.265
8.2.2.3.3	Minimum Requirement 2Tx antenna port (demodulation subframe overlaps with aggressor cell ABS)	266
8.2.2.3.4	Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)	270
8.2.2.4	Closed-loop spatial multiplexing performance	
8.2.2.4.1	Minimum Requirement Single-Layer Spatial Multiplexing 2 Tx Antenna Port	
8.2.2.4.1A		
8.2.2.4.1B	Enhanced Performance Requirement Type A – Single-Layer Spatial Multiplexing 2 Tx	
000110	Antenna Port with TM4 interference model	.273
8.2.2.4.1C	Minimum Requirement Single-Layer Spatial Multiplexing 2 Tx Antenna Ports (demodulation	27.
	subframe overlaps with aggressor cell ABS and CRS assistance information are configured)	275
8.2.2.4.1D	Enhanced Performance Requirement Type B - Single-layer Spatial Multiplexing 2 Tx	
	Antenna Port with TM4 interference model	
8.2.2.4.2	Minimum Requirement Multi-Layer Spatial Multiplexing 2 Tx Antenna Port	279
8.2.2.4.2A	Enhanced Performance Requirement Type C Multi-Layer Spatial Multiplexing 2 Tx Antenna Port	280
8.2.2.4.3	Minimum Requirement Multi-Layer Spatial Multiplexing 4 Tx Antenna Port	280
8.2.2.4.3A		
8.2.2.4.4	Void	
8.2.2.5	MU-MIMO	
8.2.2.6	[Control channel performance: D-BCH and PCH]	
8.2.2.7	Carrier aggregation with power imbalance	
8.2.2.7.1	Minimum Requirement	
8.2.2.8	Intra-band contiguous carrier aggregation with minimum channel spacing	
8.2.2.8.1	Minimum Requirement	
8.2.3	TDD FDD CA (Fixed Reference Channel)	
8.2.3.1	Single-antenna port performance	
8.2.3.1.1	Minimum Requirement for FDD PCell	
8.2.3.1.1	Minimum Requirement for TDD PCell	
	Open-loop spatial multiplexing performance 2Tx Antenna port	
8.2.3.2		
8.2.3.2.1	Minimum Requirement for FDD PCell	
8.2.3.2.1A		
8.2.3.2.2	Minimum Requirement for TDD PCell	
8.2.3.2.2A	Soft buffer management test for TDD PCell	
8.2.3.3	Closed-loop spatial multiplexing performance 4Tx Antenna Port	
8.2.3.3.1	Minimum Requirement for FDD PCell	
8.2.3.3.2	Minimum Requirement for TDD PCell	
	Demodulation of PDSCH (User-Specific Reference Symbols)	
8.3.1	FDD	
8.3.1.1	Single-layer Spatial Multiplexing	.301
8.3.1.1A	Enhanced Performance Requirement Type A – Single-layer Spatial Multiplexing with TM9	
	interference model	.303
8.3.1.1B	Single-layer Spatial Multiplexing (demodulation subframe overlaps with aggressor cell ABS and	
	CRS assistance information are configured)	.305
8.3.1.1C	Enhanced Performance Requirement Type B – Single-layer Spatial Multiplexing with TM9	
	interference model	307

8.3.1.1D	Enhanced Performance Requirement Type B – Single-layer Spatial Multiplexing with CRS interference model	309
8.3.1.1E	Enhanced Performance Requirement Type B – Single-layer Spatial Multiplexing with TM3 interference model	
8.3.1.1F	Enhanced Performance Requirement Type B – Single-layer Spatial Multiplexing with TM10 serving cell configuration and TM9 interference model	
8.3.1.2	Dual-Layer Spatial Multiplexing	
8.3.1.2A	Enhanced Performance Requirement Type C - Dual-Layer Spatial Multiplexing	
8.3.1.2A 8.3.1.3	Performance requirements for DCI format 2D and non Quasi Co-located Antenna Ports	
8.3.1.3.1	Minimum requirement with Same Cell ID (with single NZP CSI-RS resource)	
8.3.1.3.2	Minimum requirements with Same Cell ID (with multiple NZP CSI-RS resources)	
8.3.1.3.3	Minimum requirement with Different Cell ID and Colliding CRS (with single NZP CSI-RS resource)	
8.3.2	TDD	
8.3.2.1	Single-layer Spatial Multiplexing	
8.3.2.1A	Single-layer Spatial Multiplexing (with multiple CSI-RS configurations)	
8.3.2.1A 8.3.2.1B	Enhanced Performance Requirement Type A – Single-layer Spatial Multiplexing with TM9 interference model	
8.3.2.1C	Single-layer Spatial Multiplexing (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)	
8.3.2.1D	Enhanced Performance Requirement Type B – Single-layer Spatial Multiplexing with TM9 interference	
8.3.2.1E	Enhanced Performance Requirement Type B – Single-layer Spatial Multiplexing with CRS interference model	
8.3.2.1F	Enhanced Performance Requirement Type B – Single-layer Spatial Multiplexing with TM3 interference	
8.3.2.1G	Enhanced Performance Requirement Type B – Single-layer Spatial Multiplexing with TM10 serving cell configuration and TM9 interference model	
8.3.2.2	Dual-Layer Spatial Multiplexing	
8.3.2.2A	Enhanced Performance Requirement Type C - Dual-Layer Spatial Multiplexing	
8.3.2.3	Dual-Layer Spatial Multiplexing (with multiple CSI-RS configurations)	
8.3.2.4	Performance requirements for DCI format 2D and non Quasi Co-located Antenna Ports	
8.3.2.4.1	Minimum requirement with Same Cell ID (with single NZP CSI-RS resource)	
8.3.2.4.2	Minimum requirements with Same Cell ID (with multiple NZP CSI-RS resources)	
8.3.2.4.3	Minimum requirement with Different Cell ID and Colliding CRS (with single NZP CSI-RS resource)	
8.4	Demodulation of PDCCH/PCFICH	
8.4.1	FDD	
8.4.1.1	Single-antenna port performance	
8.4.1.2	Transmit diversity performance	
8.4.1.2.1	Minimum Requirement 2 Tx Antenna Port	
8.4.1.2.2	Minimum Requirement 4 Tx Antenna Port	
	Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS)	
8.4.1.2.4	Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor	
	cell ABS and CRS assistance information are configured)	
8.4.2	TDD	
8.4.2.1	Single-antenna port performance	
8.4.2.2	Transmit diversity performance	
8.4.2.2.1	Minimum Requirement 2 Tx Antenna Port	
8.4.2.2.2	Minimum Requirement 4 Tx Antenna Port	356
8.4.2.2.3	Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS)	356
8.4.2.2.4	Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)	360
8.5	Demodulation of PHICH	
8.5.1	FDD	
8.5.1.1	Single-antenna port performance	
8.5.1.2	Transmit diversity performance	
8.5.1.2.1	Minimum Requirement 2 Tx Antenna Port	
8.5.1.2.1	Minimum Requirement 4 Tx Antenna Port	
8.5.1.2.3	Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor	303

8.5.1.2.4	Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor	
	cell ABS and CRS assistance information are configured)	
8.5.2	TDD	
8.5.2.1	Single-antenna port performance	
8.5.2.2	Transmit diversity performance	
8.5.2.2.1	Minimum Requirement 2 Tx Antenna Port	370
8.5.2.2.2	Minimum Requirement 4 Tx Antenna Port	371
8.5.2.2.3	Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS)	371
8.5.2.2.4	Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor	
	cell ABS and CRS assistance information are configured)	
8.6	Demodulation of PBCH	
8.6.1	FDD	
8.6.1.1	Single-antenna port performance	375
8.6.1.2	Transmit diversity performance	376
8.6.1.2.1	Minimum Requirement 2 Tx Antenna Port	376
8.6.1.2.2	Minimum Requirement 4 Tx Antenna Port	
8.6.1.2.3	Minimum Requirement 2 Tx Antenna Port under Time Domain Measurement Resource	
	Restriction with CRS Assistance Information	376
8.6.2	TDD	
8.6.2.1	Single-antenna port performance	
8.6.2.2	Transmit diversity performance	
8.6.2.2.1	* *	
	Minimum Requirement 2 Tx Antenna Port	
8.6.2.2.2	Minimum Requirement 4 Tx Antenna Port	3/8
8.6.2.2.3	Minimum Requirement 2 Tx Antenna Port under Time Domain Measurement Resource	
	Restriction with CRS Assistance Information	
8.7	Sustained downlink data rate provided by lower layers	
8.7.1	FDD (single carrier and CA)	
8.7.2	TDD (single carrier and CA)	
8.7.3	FDD (EPDCCH scheduling)	388
8.7.4	TDD (EPDCCH scheduling)	389
8.7.5	TDD FDD CA	391
8.7.5.1	Minimum Requirement FDD PCell	392
8.7.5.2	Minimum Requirement TDD PCell	
8.7.6	FDD (DC)	
8.7.7	TDD (DC)	
8.8	Demodulation of EPDCCH	
8.8.1	Distributed Transmission.	
8.8.1.1	FDD	
8.8.1.1.1	Void	
8.8.1.2	TDD	
8.8.1.2.1	Void	
8.8.2	Localized Transmission with TM9	
8.8.2.1	FDD	
8.8.2.1.1	Void	
8.8.2.1.2	Void	404
8.8.2.2	TDD	404
8.8.2.2.1	Void	406
8.8.2.2.2	Void	406
8.8.3	Localized transmission with TM10 Type B quasi co-location type	406
8.8.3.1	FDD	
8.8.3.2	TDD	
8.9	Demodulation (single receiver antenna)	
8.9.1	PDSCH	
8.9.1.1	FDD and half-duplex FDD (Fixed Reference Channel)	
8.9.1.1.1	Transmit diversity performance (Cell-Specific Reference Symbols)	
8.9.1.1.2		
	Closed-loop spatial multiplexing performance (Cell-Specific Reference Symbols)	
8.9.1.1.3	Closed-loop spatial multiplexing performance (User-Specific Reference Symbols)	
8.9.1.2	TDD (Fixed Reference Channel)	
8.9.1.2.1	Transmit diversity performance (Cell-Specific Reference Symbols)	
8.9.1.2.2	Closed-loop spatial multiplexing performance (Cell-Specific Reference Symbols)	
8.9.1.2.3	Closed-loop spatial multiplexing performance (User-Specific Reference Symbols)	415

8.9.2	PHICH		
8.9.2.1	FDD and half-duplex FDD		
8.9.2.1.1	Transmit diversity performance	41	17
8.9.2.2	TDD	41	ر7
8.9.2.2.1	Transmit diversity performance	41	7
8.9.3	PBCH	41	17
8.9.3.1	FDD and half-duplex FDD	41	17
8.9.3.1.1	Transmit diversity performance	41	17
8.9.3.2	TDD	41	8
8.9.3.2.1	Transmit diversity performance	41	8
0 D	Languagian of Cilcana I Costa Information	41	0
	Reporting of Channel State Information		
9.1	General		
9.1.1	Applicability of requirements		
9.1.1.1	Applicability of requirements for different channel bandwidths		
9.1.1.2	Applicability and test rules for different CA configurations and bandwidth combination sets	41	18
9.1.1.2A		4.1	
0 1 1 2	combination sets		
9.1.1.3	Test coverage for different number of component carriers		
9.2	CQI reporting definition under AWGN conditions		
9.2.1	Minimum requirement PUCCH 1-0 (Cell-Specific Reference Symbols)		
9.2.1.1	FDD		
9.2.1.2	TDD		
9.2.1.3	FDD (CSI measurements in case two CSI subframe sets are configured)		
9.2.1.4	TDD (CSI measurements in case two CSI subframe sets are configured)	42	S
9.2.1.5	FDD (CSI measurements in case two CSI subframe sets are configured and with CRS assistance	40	. 7
9.2.1.6	information)	42	2/
9.2.1.0	information)	10	20
9.2.1.7	FDD (Modulation and TBS index Table 2 and 4-bit CQI Table 2 are used)		
9.2.1.7	TDD (Modulation and TBS index Table 2 and 4-bit CQI Table 2 are used)		
9.2.1.8	Minimum requirement PUCCH 1-1 (Cell-Specific Reference Symbols)		
9.2.2.1	FDD		
9.2.2.1	TDD		
9.2.2.2	Minimum requirement PUCCH 1-1 (CSI Reference Symbols)		
9.2.3.1	FDD		
9.2.3.1	TDD		
9.2.4	Minimum requirement PUCCH 1-1 (With Single CSI Process)		
9.2.4.1	FDD		
9.2.4.2	TDD		
9.2.5	Minimum requirement PUCCH 1-1 (when csi-SubframeSet -r12 and EIMTA-MainConfigServCell-		,
). <u>2.</u> 0	r12 are configured)	44	11
9.3	CQI reporting under fading conditions.		
9.3.1	Frequency-selective scheduling mode		
9.3.1.1	Minimum requirement PUSCH 3-0 (Cell-Specific Reference Symbols)		
9.3.1.1.1			
9.3.1.1.2			
9.3.1.1.3			
	assistance information)	44	15
9.3.1.1.4			
	assistance information)	44	18
9.3.1.1.5			
9.3.1.2	Minimum requirement PUSCH 3-1 (CSI Reference Symbol)		
9.3.1.2.1			
9.3.1.2.2			
9.3.1.2.3			
9.3.1.2.4			
9.3.1.2.5			
9.3.1.2.6			
9.3.2	Frequency non-selective scheduling mode		
9.3.2.1	Minimum requirement PUCCH 1-0 (Cell-Specific Reference Symbol)	46	50
93211	FDD	46	50

9.3.2.1.2	TDD	
9.3.2.2	Minimum requirement PUCCH 1-1 (CSI Reference Symbol)	464
9.3.2.2.1	FDD	464
9.3.2.2.2	TDD	465
9.3.3	Frequency-selective interference	467
9.3.3.1	Minimum requirement PUSCH 3-0 (Cell-Specific Reference Symbol)	467
9.3.3.1.1	FDD	467
9.3.3.1.2	TDD	468
9.3.3.2	Void	469
9.3.3.2.1	Void	
9.3.3.2.2	Void	469
9.3.4	UE-selected subband CQI	469
9.3.4.1	Minimum requirement PUSCH 2-0 (Cell-Specific Reference Symbols)	469
9.3.4.1.1	FDD	
9.3.4.1.2	TDD	470
9.3.4.2	Minimum requirement PUCCH 2-0 (Cell-Specific Reference Symbols)	471
9.3.4.2.1	FDD	
9.3.4.2.2	TDD	
9.3.5	Additional requirements for enhanced receiver Type A	
9.3.5.1	Minimum requirement PUCCH 1-0 (Cell-Specific Reference Symbol)	
9.3.5.1.1	FDD	
9.3.5.1.2	TDD	
9.3.5.2	Minimum requirement PUCCH 1-1 (CSI Reference Symbol)	
9.3.5.2.1	FDD	
9.3.5.2.2	TDD	
9.3.6	Minimum requirement (With multiple CSI processes)	
9.3.6.1	FDD	
9.3.6.2	TDD	
9.3.7	Minimum requirement PUSCH 3-2	
9.3.7.1	FDD	
9.3.7.2	TDD	
9.3.8	Additional requirements for enhanced receiver Type B	
9.3.8.1	Minimum requirement PUCCH 1-1 (Cell-Specific Reference Symbols)	
9.3.8.1.1	FDD	
9.3.8.1.2	TDD	
9.3.8.2	Minimum requirement PUCCH 1-1 (CSI Reference Symbols)	
9.3.8.2.1	FDD	
9.3.8.2.2	TDD	
9.3.8.3	Minimum requirement with CSI process	
9.3.8.3.1	FDD	
9.3.8.3.2	TDD	
9.4	Reporting of Precoding Matrix Indicator (PMI)	
9.4.1	Single PMI	
9.4.1.1	Minimum requirement PUSCH 3-1 (Cell-Specific Reference Symbols)	
9.4.1.1.1	FDD	
9.4.1.1.2	TDD	
9.4.1.2	Minimum requirement PUCCH 2-1 (Cell-Specific Reference Symbols)	
9.4.1.2.1	FDDFDD	
9.4.1.2.2	TDD	
9.4.1.3	Minimum requirement PUSCH 3-1 (CSI Reference Symbol)	
9.4.1.3.1	FDD	
9.4.1.3.1	TDD	
9.4.1.4	Minimum requirement PUCCH 1-1 (CSI Reference Symbol)	
9.4.1.4.1	FDD (with 4Tx enhanced codebook)	
9.4.1.4.1	TDD (with 4Tx enhanced codebook)	
9.4.1.4.2 9.4.1a	Void	
9.4.1a 9.4.1a.1	Void	
9.4.1a.1 9.4.1a.1.1		
9.4.1a.1.1 9.4.1a.1.2		
9.4.1a.1.2 9.4.2	Multiple PMI	
9.4.2.1	Minimum requirement PUSCH 1-2 (Cell-Specific Reference Symbols)	
9.4.2.1	FDDFDD	
J.T.∠.1.1	1 ບປ	

9.4.2.1		
9.4.2.2	Minimum requirement PUSCH 2-2 (Cell-Specific Reference Symbols)	518
9.4.2.2	.1 FDD	518
9.4.2.2	.2 TDD	519
9.4.2.3	Minimum requirement PUSCH 1-2 (CSI Reference Symbol)	520
9.4.2.3	.1 FDD	520
9.4.2.3	.2 TDD	522
9.4.2.3	.3 FDD (with 4Tx enhanced codebook)	524
9.4.2.3		
9.4.3	Void	
9.4.3.1	Void	
9.4.3.1.		
9.4.3.1.		
9.5	Reporting of Rank Indicator (RI)	
9.5.1	Minimum requirement (Cell-Specific Reference Symbols)	
9.5.1.1	FDD	
9.5.1.2		
9.5.2	Minimum requirement (CSI Reference Symbols)	
9.5.2.1	FDD	
9.5.2.1		
9.5.2.2 9.5.3	Minimum requirement (CSI measurements in case two CSI subframe sets are configured)	
9.5.3 9.5.3.1		
	FDD.	
9.5.3.2		
9.5.4	Minimum requirement (CSI measurements in case two CSI subframe sets are configured and CRS	
0 	assistance information are configured)	
9.5.4.1	FDD	
9.5.4.2		
9.5.5	Minimum requirement (with CSI process)	
9.5.5.1	FDD	
9.5.5.2		
9.6	Additional requirements for carrier aggregation	
9.6.1	Periodic reporting on multiple cells (Cell-Specific Reference Symbols)	
9.6.1.1	FDD	
9.6.1.2		
9.6.1.3		
9.6.1.4		
9.7	CSI reporting (Single receiver antenna)	
9.7.1	CQI reporting definition under AWGN conditions	
9.7.1.1	FDD and half-duplex FDD	555
9.7.1.2	TDD	556
9.7.2	CQI reporting under fading conditions	557
9.7.2.1	FDD and half-duplex FDD	557
9.7.2.2	TDD	558
10	D. C (A FDA CC)	
	Performance requirement (MBMS)	
10.1	FDD (Fixed Reference Channel)	
10.1.1	Minimum requirement	
10.2	TDD (Fixed Reference Channel)	560
10.2.1	Minimum requirement	561
11	Performance requirement (ProSe Direct Discovery)	561
	* · · · · · · · · · · · · · · · · · · ·	
11.1	General Applicability of requirements	
11.1.1	Applicability of requirements	
11.1.2	Reference DRX configuration	
11.2	Demodulation of PSDCH (single link performance)	
11.2.1	FDD	
11.2.2	TDD	
11.3	Power imbalance performance with two links	
11.3.1	FDD	
11.3.2	TDD	
11.4	Multiple timing reference test	
11 / 1	FDD	567

11.5 11.5.1 11.5.2	Maximum Sidelink processes test	568
12 Pe	erformance requirement (ProSe Direct Communication)	571
12.1	General	
12.1.1	Applicability of requirements	
12.1.2	Reference DRX configuration	
12.1.2	Demodulation of PSSCH	
12.2.1	FDD	
12.3	Demodulation of PSCCH	
12.3.1	FDD	
12.4	Demodulation of PSBCH	
12.4.1	FDD	
12.5	Power imbalance performance with two links	
12.5.1	FDD	
12.6	Multiple timing reference test	
12.6.1	FDD	
12.7	Maximum Sidelink processes test	
12.7.1	FDD	
12.7.1	Sustained downlink data rate with active Sidelink	
12.0	Sustained downlink data rate with active Sidernik	
Annex A	(normative): Measurement channels	582
A.1 G	eneral	582
A.2 U.	L reference measurement channels	582
A.2.1	General	
A.2.1.1	Applicability and common parameters	
A.2.1.1 A.2.1.2	Determination of payload size	
A.2.1.2 A.2.1.3	Overview of UL reference measurement channels	
A.2.1.3 A.2.2	Reference measurement channels for FDD	
A.2.2.1	Full RB allocation	
A.2.2.1.1	QPSK	
A.2.2.1.1 A.2.2.1.2	16-QAM	
A.2.2.1.2 A.2.2.1.3	64-QAM	
A.2.2.1.3 A.2.2.2	Partial RB allocation	
A.2.2.2.1	QPSK	
A.2.2.2.1 A.2.2.2.2	16-QAM	
A.2.2.2.3	64-QAM	
A.2.2.3 A.2.2.3	Void.	
A.2.3	Reference measurement channels for TDD.	
A.2.3.1	Full RB allocation	
A.2.3.1.1	QPSK	
A.2.3.1.1 A.2.3.1.2	16-QAM	
A.2.3.1.2	64-QAM	
A.2.3.1.3 A.2.3.2	Partial RB allocation	
A.2.3.2.1	QPSK	
A.2.3.2.1 A.2.3.2.2	16-QAM	
A.2.3.2.3	64-QAM	
A.2.3.2.3 A.2.3.3	Void	
A.3 D	L reference measurement channels	603
A.3.1	General	
A.3.1.1	Overview of DL reference measurement channels	603
A.3.2	Reference measurement channel for receiver characteristics	616
A.3.3	Reference measurement channels for PDSCH performance requirements (FDD)	629
A.3.3.1	Single-antenna transmission (Common Reference Symbols)	
A.3.3.2	Multi-antenna transmission (Common Reference Symbols)	
A.3.3.2.1	Two antenna ports	
A.3.3.2.2	Four antenna ports	
A.3.3.3	Reference Measurement Channel for UE-Specific Reference Symbols	
A.3.3.3.0	Two antenna ports (no CSI-RS)	

A.3.3.3.1	Two antenna port (CSI-RS)	
A.3.3.3.2	Four antenna ports (CSI-RS)	639
A.3.4	Reference measurement channels for PDSCH performance requirements (TDD)	
A.3.4.1	Single-antenna transmission (Common Reference Symbols)	
A.3.4.2	Multi-antenna transmission (Common Reference Signals)	
A.3.4.2.1	Two antenna ports	
A.3.4.2.2	Four antenna ports	
A.3.4.3	Reference Measurement Channels for UE-Specific Reference Symbols	
A.3.4.3.1	Single antenna port (Cell Specific)	
A.3.4.3.2	Two antenna ports (Cell Specific)	
A.3.4.3.3	Two antenna ports (CSI-RS)	
A.3.4.3.4	Four antenna ports (CSI-RS)	
A.3.4.3.5	Eight antenna ports (CSI-RS)	
A.3.5 A.3.5.1	Reference measurement channels for PDCCH/PCFICH performance requirements	
A.3.5.1 A.3.5.2	TDD	
A.3.5.2 A.3.6	Reference measurement channels for PHICH performance requirements	
A.3.7	Reference measurement channels for PBCH performance requirements	
A.3.8	Reference measurement channels for MBMS performance requirements	
A.3.8.1	FDD	
A.3.8.2	TDD	
A.3.9	Reference measurement channels for sustained downlink data rate provided by lower layers	
A.3.9.1	FDD	
A.3.9.2	TDD	
A.3.9.3	FDD (EPDCCH scheduling)	
A.3.9.4	TDD (EPDCCH scheduling)	
A.3.10	Reference Measurement Channels for EPDCCH performance requirements	
A.3.10.1	FDD	
A.3.10.2	TDD	682
A 1 CC		COC
A.4 CS	SI reference measurement channels	682
A.5 Ol	FDMA Channel Noise Generator (OCNG)	692
A.5.1	OCNG Patterns for FDD	
A.5.1.1	OCNG FDD pattern 1: One sided dynamic OCNG FDD pattern	
A.5.1.2	OCNG FDD pattern 2: Two sided dynamic OCNG FDD pattern	
A.5.1.3	OCNG FDD pattern 3: 49 RB OCNG allocation with MBSFN in 10 MHz	
A.5.1.4	OCNG FDD pattern 4: One sided dynamic OCNG FDD pattern for MBMS transmission	694
A.5.1.5	OCNG FDD pattern 5: One sided dynamic 16QAM modulated OCNG FDD pattern	694
A.5.1.6	OCNG FDD pattern 6: dynamic OCNG FDD pattern when user data is in 2 non-contiguous blocks	695
A.5.1.8	OCNG FDD pattern 8: Dynamic OCNG FDD pattern for TM10 transmission	696
A.5.2	OCNG Patterns for TDD	
A.5.2.1	OCNG TDD pattern 1: One sided dynamic OCNG TDD pattern	697
A.5.2.2	OCNG TDD pattern 2: Two sided dynamic OCNG TDD pattern	
A.5.2.3	OCNG TDD pattern 3: 49 RB OCNG allocation with MBSFN in 10 MHz	699
A.5.2.4	OCNG TDD pattern 4: One sided dynamic OCNG TDD pattern for MBMS transmission	
A.5.2.5	OCNG TDD pattern 5: One sided dynamic 16QAM modulated OCNG TDD pattern	
A.5.2.6	OCNG TDD pattern 6: dynamic OCNG TDD pattern when user data is in 2 non-contiguous blocks	
A.5.2.8	OCNG TDD pattern 8: Dynamic OCNG TDD pattern for TM10 transmission	702
A.6 Si	delink reference measurement channels	703
A.6.1	General	
A.6.1.1	Overview of ProSe reference measurement channels	
A.6.2	Reference measurement channel for receiver characteristics	
A.6.4	Reference measurement channels for PSCCH performance requirements	
A.6.5	Reference measurement channels for PSSCH performance requirements	
A.6.6	Reference measurement channels for PSBCH performance requirements	
	•	
	delink reference resource pool configurations	
A.7.1	Reference resource pool configurations for ProSe Direct Discovery demodulation tests	
A.7.1.1	FDD	
A.7.1.2	TDD	
A 7 2	Reference resource pool configurations for ProSe Direct Communication demodulation tests	713

A.7.2.	1 FDD	713
Anne	x B (normative): Propagation conditions	719
B.1	Static propagation condition	719
B.2	Multi-path fading propagation conditions	719
B.2.1	Delay profiles	
B.2.2	Combinations of channel model parameters	
B.2.3	MIMO Channel Correlation Matrices	
B.2.3.		
B.2.3.4 B.2.3.4	\mathcal{U}	
В.2.3 <i>Е</i>		
B.2.3		
B.2.3	· · · · · · · · · · · · · · · · · · ·	
B.2.3	•	
B.2.3	A.4 Beam steering approach	727
B.2.4	Propagation conditions for CQI tests	
B.2.4.		
B.2.5	Void	
B.2.6	MBSFN Propagation Channel Profile	728
B.3	High speed train scenario	729
B.4	Beamforming Model	720
в.4 В.4.1	Single-layer random beamforming (Antenna port 5, 7, or 8)	
B.4.2	Dual-layer random beamforming (antenna ports 7 and 8)	
B.4.3	Generic beamforming model (antenna ports 7-14)	
B.4.4	Random beamforming for EPDCCH distributed transmission (Antenna port 107 and 109)	
B.4.5	Random beamforming for EPDCCH localized transmission (Antenna port 107, 108, 109 or 110)	
B.5	Interference models for enhanced performance requirements Type-A	733
B.5.1	Dominant interferer proportion	733
B.5.2	Transmission mode 3 interference model	
B.5.3	Transmission mode 4 interference model	
B.5.4	Transmission mode 9 interference model	734
B.6	Interference models for enhanced performance requirements Type-B	734
B.6.1	Transmission mode 2 interference model	
B.6.2	Transmission mode 3 interference model	
B.6.3	Transmission mode 4 interference model	
B.6.4	Transmission mode 9 interference model	
B.6.5 B.6.6	CRS interference model	
D .0.0	Kandom menerelence moder	730
Anne	x C (normative): Downlink Physical Channels	738
C.1	General	738
C.2	Set-up	738
C.3	Connection	738
C.3.1	Measurement of Receiver Characteristics	
C.3.2	Measurement of Performance requirements	739
C.3.3	Aggressor cell power allocation for Measurement of Performance Requirements when ABS is Configured	740
C.3.4	Power Allocation for Measurement of Performance Requirements when Quasi Co-location Type B: same Cell ID	
C.3.5	Simplified CA testing method	
Anne	x D (normative): Characteristics of the interfering signal	743
D.1	General	743
D 2	Interference signals	7/13

Anne	ex E (normative):	Environmental conditions	744
E.1	General		744
E.2 E.2.1 E.2.2 E.2.3	Temperature Voltage		744 744
Anne	ex F (normative):	Transmit modulation	746
F.1	Measurement Point		746
F.2	Basic Error Vector N	Magnitude measurement	746
F.3	Basic in-band emissi	ions measurement	747
F.4	Modified signal unde	er test	747
F.5 F.5.1 F.5.2 F.5.3 F.5.4 F.5.5	Timing offset Window length Window length for Window length for	normal CPExtended CPPRACH	
F.6	Averaged EVM		751
F.7	Spectrum Flatness		752
Anne	ex G (informative):	Reference sensitivity level in lower SNR	753
G.1	General		753
G.2	Typical receiver sens	sitivity performance (QPSK)	753
G.3	Reference measurem	nent channel for REFSENSE in lower SNR	756
Anne	ex H (normative):	Modified MPR behavior	759
H.1	Indication of modifie	ed MPR behavior	759
Anne	ex I (informative):	Change history	760
Histo	ry		785

Foreword

This Technical Specification (TS) has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

Where:

- x the first digit:
 - 1 presented to TSG for information;
 - 2 presented to TSG for approval;
 - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the document.

1 Scope

The present document establishes the minimum RF characteristics and minimum performance requirements for E-UTRA User Equipment (UE).

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document *in the same Release as the present document*.
 - 3GPP TR 21.905: "Vocabulary for 3GPP Specifications". [1] [2] ITU-R Recommendation SM.329-10, "Unwanted emissions in the spurious domain" ITU-R Recommendation M.1545: "Measurement uncertainty as it applies to test limits for the [3] terrestrial component of International Mobile Telecommunications-2000". [4] 3GPP TS 36.211: "Physical Channels and Modulation". 3GPP TS 36.212: "Multiplexing and channel coding". [5] [6] 3GPP TS 36.213: "Physical layer procedures". 3GPP TS 36.331: "Requirements for support of radio resource management ". [7] 3GPP TS 36.307: "Requirements on User Equipments (UEs) supporting a release-independent [8] frequency band". [9] 3GPP TS 36.423: "X2 application protocol (X2AP) ". 3GPP TS 23.303: "Technical Specification Group Services and System Aspects; Proximity-based [10] services (ProSe); Stage 2". 3GPP TS36.300: "Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal [11] Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2".

3 Definitions, symbols and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in TR 21.905 [1] and the following apply in the case of a single component carrier. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].

Aggregated Channel Bandwidth: The RF bandwidth in which a UE transmits and receives multiple contiguously aggregated carriers.

Aggregated Transmission Bandwidth Configuration: The number of resource block allocated within the aggregated channel bandwidth.

Carrier aggregation: Aggregation of two or more component carriers in order to support wider transmission bandwidths.

Carrier aggregation band: A set of one or more operating bands across which multiple carriers are aggregated with a specific set of technical requirements.

Carrier aggregation bandwidth class: A class defined by the aggregated transmission bandwidth configuration and maximum number of component carriers supported by a UE.

Carrier aggregation configuration: A combination of CA operating band(s) and CA bandwidth class(es) supported by a UE.

Channel edge: The lowest and highest frequency of the carrier, separated by the channel bandwidth.

Channel bandwidth: The RF bandwidth supporting a single E-UTRA RF carrier with the transmission bandwidth configured in the uplink or downlink of a cell. The channel bandwidth is measured in MHz and is used as a reference for transmitter and receiver RF requirements.

Composite spectrum emission mask: Emission mask requirement for intraband non-contiguous carrier aggregation which is a combination of individual sub-block spectrum emissions masks.

Composite spurious emission requirement: Spurious emission requirement for intraband non-contiguous carrier aggregation which is a combination of individual sub-block spurious emission requirements.

Contiguous carriers: A set of two or more carriers configured in a spectrum block where there are no RF requirements based on co-existence for un-coordinated operation within the spectrum block.

Contiguous resource allocation: A resource allocation of consecutive resource blocks within one carrier or across contiguously aggregated carriers. The gap between contiguously aggregated carriers due to the nominal channel spacing is allowed.

Contiguous spectrum: Spectrum consisting of a contiguous block of spectrum with no sub-block gaps.

Enhanced performance requirements type A: This defines performance requirements assuming as baseline receiver reference symbol based linear minimum mean square error interference rejection combining.

Enhanced performance requirements type B: This defines performance requirements assuming as baseline receiver using network assisted interference cancelation and suppression.

Enhanced performance requirements type C: This defines performance requirements assuming as baseline receiver inter-stream interference cancellation.

Inter-band carrier aggregation: Carrier aggregation of component carriers in different operating bands.

NOTE: Carriers aggregated in each band can be contiguous or non-contiguous.

Intra-band contiguous carrier aggregation: Contiguous carriers aggregated in the same operating band.

Intra-band non-contiguous carrier aggregation: Non-contiguous carriers aggregated in the same operating band.

Lower sub-block **edge:** The frequency at the lower edge of one sub-block. It is used as a frequency reference point for both transmitter and receiver requirements.

Non-contiguous spectrum: Spectrum consisting of two or more sub-blocks separated by sub-block gap(s).

ProSe-enabled UE: A UE that supports ProSe requirements and associated procedures.

NOTE: As defined in TS 23.303 [10].

ProSe Direct Communication: A communication between two or more UEs in proximity that are ProSe-enabled.

NOTE: As defined in TS 23.303 [10].

ProSe Direct Discovery: A procedure employed by a ProSe-enabled UE to discover other ProSe-enabled UEs in its vicinity.

NOTE: As defined in TS 23.303 [10].

Sub-block: This is one contiguous allocated block of spectrum for transmission and reception by the same UE. There may be multiple instances of sub-blocks within an RF bandwidth.

Sub-block bandwidth: The bandwidth of one sub-block.

Sub-block gap: A frequency gap between two consecutive sub-blocks within an RF bandwidth, where the RF requirements in the gap are based on co-existence for un-coordinated operation.

Synchronized operation: Operation of TDD in two different systems, where no simultaneous uplink and downlink occur.

Unsynchronized operation: Operation of TDD in two different systems, where the conditions for synchronized operation are not met.

Upper sub-block edge: The frequency at the upper edge of one sub-block. It is used as a frequency reference point for both transmitter and receiver requirements.

3.2 Symbols

For the purposes of the present document, the following symbols apply:

BW_{Channel} Channel bandwidth

BW_{Channel,block} Sub-block bandwidth, expressed in MHz. BW_{Channel,block}= F_{edge,block,high}- F_{edge,block,low}.

Aggregated channel bandwidth, expressed in MHz.

BW_{GB} Virtual guard band to facilitate transmitter (receiver) filtering above / below edge CCs. E_{RS} Transmitted energy per RE for reference symbols during the useful part of the symbol, i.e.

excluding the cyclic prefix, (average power normalized to the subcarrier spacing) at the eNode B

transmit antenna connector

 $\hat{E}_{\rm s}$ The averaged received energy per RE of the wanted signal during the useful part of the symbol,

i.e. excluding the cyclic prefix, at the UE antenna connector; average power is computed within a set of REs used for the transmission of physical channels (including user specific RSs when present), divided by the number of REs within the set, and normalized to the subcarrier spacing

F Frequency

 $F_{agg_alloc_low} \qquad \quad Aggregated \ Transmission \ Bandwidth \ Configuration. \ The \ lowest \ frequency \ of \ the \ simultaneously$

transmitted resource blocks.

F_{agg_alloc_high} Aggregated Transmission Bandwidth Configuration. The highest frequency of the simultaneously

transmitted resource blocks.

 $\begin{aligned} F_{Interferer} & (offset) & Frequency offset of the interferer \\ F_{Interferer} & Frequency of the interferer \end{aligned}$

F_C Frequency of the carrier centre frequency

 $F_{C_agg} \qquad \qquad \text{Aggregated Transmission Bandwidth Configuration. Center frequency of the aggregated carriers.}$

 $F_{C,block, high}$ Center frequency of the highest transmitted/received carrier in a sub-block. $F_{C,block, low}$ Center frequency of the lowest transmitted/received carrier in a sub-block.

 $\begin{array}{ll} F_{C_low} & \text{The centre frequency of the } \textit{lowest carrier}, \text{ expressed in MHz.} \\ F_{C_high} & \text{The centre frequency of the } \textit{highest carrier}, \text{ expressed in MHz.} \end{array}$

 $\begin{array}{ll} F_{DL_low} & The \ lowest \ frequency \ of \ the \ downlink \ operating \ band \\ F_{DL_high} & The \ highest \ frequency \ of \ the \ downlink \ operating \ band \\ F_{UL_low} & The \ lowest \ frequency \ of \ the \ uplink \ operating \ band \\ F_{UL_high} & The \ highest \ frequency \ of \ the \ uplink \ operating \ band \end{array}$

 $\begin{array}{ll} F_{edge,block,low} & The \ lower \ sub-block \ edge, \ where \ F_{edge,block,low} = F_{C,block,low} - F_{offset.} \\ F_{edge,block,high} & The \ upper \ sub-block \ edge, \ where \ F_{edge,block,high} = F_{C,block,low} - F_{offset.} \\ F_{edge,block,high} & The \ upper \ sub-block \ edge, \ where \ F_{edge,block,high} = F_{C,block,low} - F_{offset.} \\ The \ upper \ sub-block \ edge, \ where \ F_{edge,block,high} = F_{C,block,low} - F_{offset.} \\ The \ upper \ sub-block \ edge, \ where \ F_{edge,block,high} = F_{C,block,high} + F_{offset.} \\ The \ lower \ edge \ of \ aggregated \ channel \ bandwidth, \ expressed \ in \ MHz. \\ F_{edge_high} & F_{cdge_high} & F_{cdge_high} \ to \ the \ higher \ edge \ or \ F_{cdge_high} \ to \ the \ lower \ edge. \\ \hline F_{cdge_high} & F_{cdge_high} \ to \ the \ higher \ edge \ or \ F_{cdge_high} \ to \ the \ lower \ edge. \\ \hline F_{cdge_high} & F_{cdge_high} \ to \ the \ higher \ edge \ or \ F_{cdge_high} \ to \ the \ lower \ edge. \\ \hline F_{cdge_high} & F_{cdge_high} \ to \ the \ higher \ edge \ or \ F_{cdge_high} \ to \ the \ lower \ edge. \\ \hline F_{cdge_high} & F_{cdge_high} \ to \ the \ higher \ edge \ or \ F_{cdge_high} \ to \ the \ lower \ edge. \\ \hline F_{cdge_high} & F_{cdge_high} \ to \ the \ lower \ edge. \\ \hline F_{cdge_high} & F_{cdge_high} \ to \ the \ lower \ edge. \\ \hline F_{cdge_high} & F_{cdge_high} \ to \ the \ lower \ edge \ or \ F_{cdge_high} \ to \ the \ lower \ edge. \\ \hline F_{cdge_high} & F_{cdge_high} \ to \ the \ lower \ edge \ or \ F_{cdge_high} \ to \ the \ lower \ edge \ or \ F_{cdge_high} \ to \ the \ lower \ edge \ or \ F_{cdge_high} \ to \ the \ lower \ edge \ or \ F_{cdge_high} \ to \ the \ lower \ edge \ or \ F_{cdge_high} \ to \ the \ lower \ edge \ or \ F_{cdge_high} \ to \ the \ lower \ edge \ or \ F_{cdge_high} \ to \ the \ lower \ edge \ or \ F_{cdge_high} \ to \ the \ lower \ edge \ or \ F_{cdge_high} \ to \ the \ lower \ edge \ or \ F_{cdge_high} \ to \ the \ lower \ edge \ lower \ edge$

 $F_{\text{offset,block,low}}$ Separation between lower edge of a sub-block and the center of the lowest component carrier

within the sub-block

 $F_{\text{offset,block,high}}$ Separation between higher edge of a sub-block and the center of the highest component carrier

within the sub-block

 $F_{offset_NS_23}$ Frequency offset in MHz needed if NS_23 is used

F_{OOB} The boundary between the E-UTRA out of band emission and spurious emission domains.

 P_{EMAX}

I_o	The power spectral density of the total input signal (power averaged over the useful part of the
	symbols within the transmission bandwidth configuration, divided by the total number of RE for this configuration and normalised to the subcarrier spacing) at the UE antenna connector, including the own-cell downlink signal
I_{or}	The total transmitted power spectral density of the own-cell downlink signal (power averaged over
	the useful part of the symbols within the transmission bandwidth configuration, divided by the total number of RE for this configuration and normalised to the subcarrier spacing) at the eNode B transmit antenna connector
\hat{I}_{or}	The total received power spectral density of the own-cell downlink signal (power averaged over
	the useful part of the symbols within the transmission bandwidth configuration, divided by the total number of RE for this configuration and normalised to the subcarrier spacing) at the UE antenna connector
I_{ot}	The received power spectral density of the total noise and interference for a certain RE (average
-	power obtained within the RE and normalized to the subcarrier spacing) as measured at the UE antenna connector
L_{CRB} N_{cp}	Transmission bandwidth which represents the length of a contiguous resource block allocation expressed in units of resources blocks Cyclic prefix length
N _{DL}	Downlink EARFCN
N_{oc}	The power spectral density of a white noise source (average power per RE normalised to the
	subcarrier spacing), simulating interference from cells that are not defined in a test procedure, as measured at the UE antenna connector The power spectral density of a white noise source (average power per RE normalized to the
N_{oc1}	subcarrier spacing), simulating interference in non-CRS symbols in ABS subframe from cells that
N_{oc2}	are not defined in a test procedure, as measured at the UE antenna connector. The power spectral density of a white noise source (average power per RE normalized to the
	subcarrier spacing), simulating interference in CRS symbols in ABS subframe from all cells that are not defined in a test procedure, as measured at the UE antenna connector.
N_{oc3}	The power spectral density of a white noise source (average power per RE normalised to the
	subcarrier spacing), simulating interference in non-ABS subframe from cells that are not defined in a test procedure, as measured at the UE antenna connector
N_{oc}	The power spectral density (average power per RE normalised to the subcarrier spacing) of the
	summation of the received power spectral densities of the strongest interfering cells explicitly defined in a test procedure plus N_{oc} , as measured at the UE antenna connector. The respective
	power spectral density of each interfering cell relative to N_{oc} is defined by its associated DIP
	value, or the respective power spectral density of each interfering cell relative to N_{oc} is defined by its associated Es/Noc value.
N _{Offs-DL} N _{Offs-UL}	Offset used for calculating downlink EARFCN Offset used for calculating uplink EARFCN
N_{otx}	The power spectral density of a white noise source (average power per RE normalised to the
Oix	subcarrier spacing) simulating eNode B transmitter impairments as measured at the eNode B transmit antenna connector
N_{RB}	Transmission bandwidth configuration, expressed in units of resource blocks
N_{RB_agg} N_{RB_alloc}	The number of the aggregated RBs within the fully allocated Aggregated Channel bandwidth. Total number of simultaneously transmitted resource blocks in Channel bandwidth or Aggregated Channel Bandwidth.
$N_{RB,c}$	The transmission bandwidth configuration of component carrier c , expressed in units of resource blocks
$N_{RB,largest\;BW}$	The largest transmission bandwidth configuration of the component carriers in the bandwidth combination, expressed in units of resource blocks
N_{RX}	Number of receiver antennas
N _{UL}	Uplink EARFCN.
Rav P _{CMAX}	Minimum average throughput per RB. The configured maximum UE output power.
P_{CMAX} P_{CMAX} , c	The configured maximum UE output power. The configured maximum UE output power for serving cell c .
Process	Mayimum allowed UE output power signalled by higher layers. Same as IE P May defined in [7]

Maximum allowed UE output power signalled by higher layers. Same as IE *P-Max*, defined in [7].

P_{EMAX, c} Maximum allowed UE output power signalled by higher layers for serving cell c. Same as IE

P-Max, defined in [7].

P_{Interferer} Modulated mean power of the interferer

 $\begin{array}{ll} P_{PowerClass} & P_{PowerClass} \ is \ the \ nominal \ UE \ power \ (i.e., \ no \ tolerance). \\ P_{UMAX} & The \ measured \ configured \ maximum \ UE \ output \ power. \end{array}$

Puw Power of an unwanted DL signal Pw Power of a wanted DL signal

RB_{start} Indicates the lowest RB index of transmitted resource blocks. RB_{end} Indicates the highest RB index of transmitted resource blocks.

 Δf_{OOB} Δ Frequency of Out Of Band emission.

 $\Delta R_{IB,c}$ Allowed reference sensitivity relaxation due to support for inter-band CA operation, for serving

cell c.

 $\Delta T_{IB,c}$ Allowed maximum configured output power relaxation due to support for inter-band CA

operation, for serving cell c.

 $\Delta T_{\rm C}$ Allowed operating band edge transmission power relaxation.

 $\Delta T_{C,c}$ Allowed operating band edge transmission power relaxation for serving cell c.

 ΔT_{ProSe} Allowed operating band transmission power relaxation due to support of E-UTRA ProSe on an

operating band.

 ρ_A According to Clause 5.2 in TS 36.213 [6] ρ_B According to Clause 5.2 in TS 36.213 [6]

σ Test specific auxiliary variable used for the purpose of downlink power allocation, defined in

Annex C.3.2.

W_{gap} Sub-block gap size

3.3 Abbreviations

For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1].

ABS Almost Blank Subframe

ACLR Adjacent Channel Leakage Ratio
ACS Adjacent Channel Selectivity

A-MPR Additional Maximum Power Reduction

AWGN Additive White Gaussian Noise

BS Base Station
CA Carrier Aggregation

CA X Intra-band contiguous CA of component carriers in one sub-block within Band X where X is the

applicable E-UTRA operating band

CA_X-X Intra-band non-contiguous CA of component carriers in two sub-blocks within Band X where X is

the applicable E-UTRA operating band

CA_X-Y Inter-band CA of component carrier(s) in one sub-block within Band X and component carrier(s)

in one sub-block within Band Y where X and Y are the applicable E-UTRA operating band

CA_X-X-Y CA of component carriers in two sub-blocks within Band X and component carrier(s) in one sub-

block within Band Y where X and Y are the applicable E-UTRA operating bands

CC Component Carriers CG Carrier Group

CPE Customer Premise Equipment

CPE_X Customer Premise Equipment for E-UTRA operating band X

CW Continuous Wave DC Dual Connectivity

DC_X-Y Inter-band DC of component carrier(s) in one sub-block within Band X and component carrier(s)

in one sub-block within Band Y where X and Y are the applicable E-UTRA operating band

DL Downlink

DIP Dominant Interferer Proportion

EARFCN E-UTRA Absolute Radio Frequency Channel Number

EPRE Energy Per Resource Element

E-UTRA Evolved UMTS Terrestrial Radio Access

EUTRAN Evolved UMTS Terrestrial Radio Access Network

EVM Error Vector Magnitude

FDD Frequency Division Duplex FRC Fixed Reference Channel HD-FDD Half- Duplex FDD

MCS Modulation and Coding Scheme

MCG Master Cell Group
MOP Maximum Output Power
MPR Maximum Power Reduction
MSD Maximum Sensitivity Degradation
OCNG OFDMA Channel Noise Generator

OFDMA Orthogonal Frequency Division Multiple Access

OOB Out-of-band PA Power Amplifier

PCC Primary Component Carrier

P-MPR Power Management Maximum Power Reduction

ProSe Proximity-based Services

PSBCH Physical Sidelink Broadcast CHannel
PSCCH Physical Sidelink Control CHannel
PSDCH Physical Sidelink Discovery CHannel
PSS Primary Synchronization Signal

PSS_RA PSS-to-RS EPRE ratio for the channel PSS

PSSCH Physical Sidelink Shared CHannel PSSS Primary Sidelink Synchronization Signal

RE Resource Element

REFSENS Reference Sensitivity power level

r.m.s Root Mean Square

SCC Secondary Component Carrier

SCG Secondary Cell Group

SINR Signal-to-Interference-and-Noise Ratio

SNR Signal-to-Noise Ratio

SSS Secondary Synchronization Signal

SSS RA SSS-to-RS EPRE ratio for the channel SSSSSS Secondary Sidelink Synchronization Signal

TDD Time Division Duplex UE User Equipment

UL Uplink

UL-MIMO Up Link Multiple Antenna transmission
UMTS Universal Mobile Telecommunications System

UTRA UMTS Terrestrial Radio Access

UTRAN UMTS Terrestrial Radio Access Network

xCH_RA xCH-to-RS EPRE ratio for the channel xCH in all transmitted OFDM symbols not containing cell-

specific RS

xCH_RB xCH-to-RS EPRE ratio for the channel xCH in all transmitted OFDM symbols containing cell-

specific RS

4 General

4.1 Relationship between minimum requirements and test requirements

The Minimum Requirements given in this specification make no allowance for measurement uncertainty. The test specification TS 36.521-1 Annex F defines Test Tolerances. These Test Tolerances are individually calculated for each test. The Test Tolerances are used to relax the Minimum Requirements in this specification to create Test Requirements.

The measurement results returned by the Test System are compared - without any modification - against the Test Requirements as defined by the shared risk principle.

The Shared Risk principle is defined in ITU-R M.1545 [3].

4.2 Applicability of minimum requirements

- a) In this specification the Minimum Requirements are specified as general requirements and additional requirements. Where the Requirement is specified as a general requirement, the requirement is mandated to be met in all scenarios
- b) For specific scenarios for which an additional requirement is specified, in addition to meeting the general requirement, the UE is mandated to meet the additional requirements.
- c) The reference sensitivity power levels defined in subclause 7.3 are valid for the specified reference measurement channels.
- d) Note: Receiver sensitivity degradation may occur when:
 - 1) The UE simultaneously transmits and receives with bandwidth allocations less than the transmission bandwidth configuration (see Figure 5.6-1), and
 - 2) Any part of the downlink transmission bandwidth is within an uplink transmission bandwidth from the downlink center subcarrier.
- e) The spurious emissions power requirements are for the long term average of the power. For the purpose of reducing measurement uncertainty it is acceptable to average the measured power over a period of time sufficient to reduce the uncertainty due to the statistical nature of the signal.

4.3 Void

4.3A Applicability of minimum requirements (CA, UL-MIMO, ProSe, Dual Connectivity, UE category 0)

The requirements in clauses 5, 6 and 7 which are specific to CA, UL-MIMO, ProSe, Dual Connectivity and UE category 0 are specified as suffix A, B, C, D, E where;

- a) Suffix A additional requirements need to support CA
- b) Suffix B additional requirements need to support UL-MIMO
- c) Suffix C additional requirements need to support Dual Connectivity
- d) Suffix D additional requirements need to support ProSe
- e) Suffix E additional requirements need to support UE category 0

A terminal which supports the above features needs to meet both the general requirements and the additional requirement applicable to the additional subclause (suffix A, B, C, D and E) in clauses 5, 6 and 7. Where there is a difference in requirement between the general requirements and the additional subclause requirements (suffix A, B, C, D, and E) in clauses 5, 6 and 7, the tighter requirements are applicable unless stated otherwise in the additional subclause.

A terminal which supports more than one feature (CA, UL-MIMO, ProSe, Dual Connectivity, and UE category 0) in clauses 5, 6 and 7 shall meet all of the separate corresponding requirements.

For a terminal supporting CA, compliance with minimum requirements for non-contiguous intra-band carrier aggregation in any given operating band does not imply compliance with minimum requirements for contiguous intra-band carrier aggregation in the same operating band.

For a terminal supporting CA, compliance with minimum requirements for contiguous intra-band carrier aggregation in any given operating band does not imply compliance with minimum requirements for non- contiguous intra-band carrier aggregation in the same operating band.

A terminal which supports a DL CA configuration shall support all the lower order fallback DL CA combinations and it shall support at least one bandwidth combination set for each of the constituent lower order DL combinations containing all the bandwidths specified within each specific combination set of the upper order DL combination.

A terminal which supports CA, for each supported CA configuration, shall support Pcell transmissions in each of the aggregated Component Carriers unless indicated otherwise in clause 5.6A.1.

Terminal supporting Dual Connectivity configuration shall meet the minimum requirements for corresponding CA configuration (suffix A), unless otherwise specified.

For a terminal that supports ProSe Direct Communication and/or ProSe Direct Discovery, the minimum requirements are applicable when

- the UE is associated with PCell on the ProSe carrier, or
- the UE is not associated with PCell on the ProSe carrier and is provisioned with the preconfigured radio parameters for ProSe Direct Communications that are associated with known Geographical Area.

When the ProSe UE is not associated with PCell on the ProSe carrier, and the UE does not have knowledge of its geographical area, or is provisioned with preconfigured radio parameters that are not associated with any Geographical Area, ProSe transmissions are not allowed, and the requirements in Section 6.3.3D apply.

4.4 RF requirements in later releases

The standardisation of new frequency bands and carrier aggregation configurations (downlink and uplink aggregation) may be independent of a release. However, in order to implement a UE that conforms to a particular release but supports a band of operation or a carrier aggregation configuration that is specified in a later release, it is necessary to specify some extra requirements. TS 36.307 [8] specifies requirements on UEs supporting a frequency band or a carrier aggregation configuration that is independent of release.

NOTE: For UEs conforming to the 3GPP release of the present document, some RF requirements of later releases may be mandatory independent of whether the UE supports the bands specif or carrier aggregation configurations ied in later releases or not. The set of RF requirements of later releases that is also mandatory for UEs conforming to the 3GPP release of the present document is determined by regional regulation.

5 Operating bands and channel arrangement

5.1 General

The channel arrangements presented in this clause are based on the operating bands and channel bandwidths defined in the present release of specifications.

NOTE: Other operating bands and channel bandwidths may be considered in future releases.

- 5.2 Void
- 5.3 Void
- 5.4 Void

5.5 Operating bands

E-UTRA is designed to operate in the operating bands defined in Table 5.5-1.

Table 5.5-1 E-UTRA operating bands

E-UTRA Operating Band	Uplink (UL) oper BS recei UE trans	ve mit	Downlink (DL) operating band BS transmit UE receive	Duplex Mode
4		UL_high	F _{DL_low} - F _{DL_high}	EDD
1	1920 MHz –	1980 MHz	2110 MHz — 2170 MHz	FDD
2	1850 MHz –	1910 MHz	1930 MHz — 1990 MHz	FDD
3	1710 MHz –	1785 MHz	1805 MHz — 1880 MHz	FDD
4	1710 MHz -	1755 MHz	2110 MHz — 2155 MHz	FDD
5	824 MHz —	849 MHz	869 MHz — 894MHz	FDD
6 ¹	830 MHz –	840 MHz	875 MHz — 885 MHz	FDD
7	2500 MHz –	2570 MHz	2620 MHz — 2690 MHz	FDD
8	880 MHz –	915 MHz	925 MHz — 960 MHz	FDD
9	1749.9 MHz -	1784.9 MHz	1844.9 MHz ⁻ 1879.9 MHz	FDD
10	1710 MHz –	1770 MHz	2110 MHz - 2170 MHz	FDD
11	1427.9 MHz -	1447.9	1475.9 MHz - 1495.9 MHz	FDD
		MHz		
12	699 MHz –	716 MHz	729 MHz - 746 MHz	FDD
13	777 MHz –	787 MHz	746 MHz - 756 MHz	FDD
14	788 MHz –	798 MHz	758 MHz — 768 MHz	FDD
15	Reserve		Reserved	FDD
16	Reserve		Reserved	FDD
17	704 MHz –	716 MHz	734 MHz - 746 MHz	FDD
18	815 MHz –	830 MHz	860 MHz - 875 MHz	FDD
19	830 MHz –	845 MHz	875 MHz - 890 MHz	FDD
20	832 MHz -	862 MHz	791 MHz – 821 MHz	FDD
21	1447.9 MHz –	1462.9 MHz	1495.9 MHz — 1510.9 MHz	FDD
22	3410 MHz -	3490 MHz	3510 MHz - 3590 MHz	FDD
23	2000 MHz -	2020 MHz	2180 MHz - 2200 MHz	FDD
24	1626.5 MHz –	1660.5 MHz	1525 MHz – 1559 MHz	FDD
25	1850 MHz -	1915 MHz	1930 MHz - 1995 MHz	FDD
26	814 MHz –	849 MHz	859 MHz - 894 MHz	FDD
27	807 MHz -	824 MHz	852 MHz - 869 MHz	FDD
28	703 MHz –	748 MHz	758 MHz - 803 MHz	FDD
29	N/A		717 MHz - 728 MHz	FDD ²
30	2305 MHz -	2315 MHz	2350 MHz - 2360 MHz	FDD
31	452.5 MHz -	457.5 MHz	462.5 MHz - 467.5 MHz	FDD
32	N/A		1452 MHz - 1496 MHz	FDD ²
33	1900 MHz –	1920 MHz	1900 MHz - 1920 MHz	TDD
34	2010 MHz -	2025 MHz	2010 MHz - 2025 MHz	TDD
35	1850 MHz -	1910 MHz	1850 MHz — 1910 MHz	TDD
36	1930 MHz –	1990 MHz	1930 MHz — 1990 MHz	TDD
37	1910 MHz –	1930 MHz	1910 MHz — 1930 MHz	TDD
38	2570 MHz -	2620 MHz	2570 MHz — 2620 MHz	TDD
39	1880 MHz -	1920 MHz	1880 MHz — 1920 MHz	TDD
40	2300 MHz -	2400 MHz	2300 MHz - 2400 MHz	TDD
41	2496 MHz	2690 MHz	2496 MHz 2690 MHz	TDD
42	3400 MHz -	3600 MHz	3400 MHz - 3600 MHz	TDD
43	3600 MHz -	3800 MHz	3600 MHz - 3800 MHz	TDD
44	703 MHz -	803 MHz	703 MHz - 803 MHz	TDD
	. 00 1111 12	300 1111 12	7 00 1711 12 000 1VII 12	

NOTE 1: Band 6 is not applicable
NOTE 2: Restricted to E-UTRA operation when carrier aggregation is configured. The downlink operating band is paired with the uplink operating band (external) of the carrier aggregation configuration that is supporting the configured Pcell.

5.5A Operating bands for CA

E-UTRA carrier aggregation is designed to operate in the operating bands defined in Tables 5.5A-1, 5.5A-2, 5.5A-2a and 5.5A-3.

Table 5.5A-1: Intra-band contiguous CA operating bands

E-UTRA	E-UTRA	Uplink (UL) operating band			Downlink (D	Duplex		
CA Band	Band	BS receive) / U	E transmit	BS transi	Mode		
		Ful_low	-	FUL_high	F _{DL_lo}	F _{DL_low} - F _{DL_high}		
CA_1	1	1920 MHz	_	1980 MHz	2110 MHz	_	2170 MHz	FDD
CA_2	2	1850 MHz	_	1910 MHz	1930 MHz	_	1990 MHz	FDD
CA_3	3	1710MHz	-	1785MHz	1805MHz	-	1880MHz	FDD
CA_7	7	2500 MHz	-	2570 MHz	2620 MHz	-	2690 MHz	FDD
CA_12	12	699 MHz	-	716 MHz	729 MHz	-	746 MHz	FDD
CA_23	23	2000 MHz	1	2020 MHz	2180 MHz	-	2200 MHz	FDD
CA_27	27	807 MHz	-	824 MHz	852 MHz	_	869 MHz	FDD
CA_38	38	2570 MHz	-	2620 MHz	2570 MHz	-	2620 MHz	TDD
CA_39	39	1880 MHz	-	1920 MHz	1880 MHz	-	1920 MHz	TDD
CA_40	40	2300 MHz	_	2400 MHz	2300 MHz	_	2400 MHz	TDD
CA_41	41	2496 MHz	-	2690 MHz	2496 MHz	_	2690 MHz	TDD
CA_42	42	3400 MHz	_	3600 MHz	3400 MHz	_	3600 MHz	TDD

Table 5.5A-2: Inter-band CA operating bands (two bands)

E-UTRA	E-UTRA	Uplink (UL) operating band		Downlink (D	Duplex			
CA Band	Band	BS receive / UE transmit			BS transi	Mode		
			_	F _{UL_high}	F _{DL_lo}			
CA_1-3	1	1920 MHz	_	1980 MHz	2110 MHz	_	2170 MHz	FDD
0/(_1 0	3	1710 MHz	_	1785 MHz	1805 MHz	_	1880 MHz	100
CA_1-5	1	1920 MHz	_	1980 MHz	2110 MHz	_	2170 MHz	FDD
CA_1-5	5	824 MHz	_	849 MHz	869 MHz	_	894 MHz	FDD
CA 17	1	1920 MHz	_	1980 MHz	2110 MHz	_	2170 MHz	רחח
CA_1-7	7	2500 MHz	_	2570 MHz	2620 MHz	_	2690 MHz	FDD
04.40	1	1920 MHz	_	1980 MHz	2110 MHz	_	2170 MHz	
CA_1-8	8	880 MHz	_	915 MHz	925 MHz	_	960 MHz	FDD
	1	1920 MHz	_	1980 MHz	2110 MHz	_	2170 MHz	
CA_1-11	11	1427.9 MHz	_	1447.9 MHz	1475.9 MHz	_	1495.9 MHz	FDD
	1	1920 MHz	_	1980 MHz	2110 MHz	_	2170 MHz	
CA_1-18	18	815 MHz	_	830 MHz	860 MHz	_	875 MHz	FDD
	1	1920 MHz	_	1980 MHz	2110 MHz	_	2170 MHz	
CA_1-19	19	830 MHz	_	845 MHz	875 MHz	_	890 MHz	FDD
	1	1920 MHz		1980 MHz	2110 MHz	_	2170 MHz	
CA_1-20	20	832 MHz	_	862 MHz	791 MHz	_	821 MHz	FDD
		†	_			_	2170 MHz	
CA_1-21	1	1920 MHz	_	1980 MHz	2110 MHz	_	_	FDD
	21	1447.9 MHz	_	1462.9 MHz	1495.9 MHz	_	1510.9 MHz	
CA_1-26	1	1920 MHz	_	1980 MHz	2110 MHz	_	2170 MHz	FDD
	26	814 MHz	_	849 MHz	859 MHz	_	894 MHz	
CA_1-28	1	1920 MHz	_	1980 MHz	2110 MHz	_	2170 MHz	FDD
O/_1 20	28	703 MHz	_	748 MHz	758 MHz	_	803 MHz	100
CA_1-41	1	1920 MHz	_	1980 MHz	2110 MHz	_	2170 MHz	FDD
CA_1-41	41	2496 MHz	_	2690 MHz	2496 MHz	_	2690 MHz	TDD
04 4 40	1	1920 MHz	_	1980 MHz	2110 MHz	_	2170 MHz	FDD
CA_1-42	42	3400 MHz	_	3600 MHz	3400 MHz	_	3600 MHz	TDD
2	2	1850 MHz	_	1910 MHz	1930 MHz	_	1990 MHz	
CA_2-4	4	1710 MHz	_	1755 MHz	2110 MHz	_	2155 MHz	FDD
	2	1850 MHz	_	1910 MHz	1930 MHz	_	1990 MHz	
CA_2-4-4	4	1710 MHz	_	1755 MHz	2110 MHz	_	2155 MHz	FDD
	2	1850 MHz	_	1910 MHz	1930 MHz	_	1990 MHz	
CA_2-5	5	824 MHz	_	849 MHz	869 MHz	_	894 MHz	FDD
	2	1850 MHz	-	1910 MHz	1930 MHz	_	1990 MHz	
CA_2-2-5	5	824 MHz	=	849 MHz	869 MHz	_	894 MHz	FDD
	2			1910 MHz		_	1990 MHz	
CA_2-12	<u> </u>	1850 MHz	_		1930 MHz			FDD
	12	699 MHz	_	716 MHz	729 MHz	_	746 MHz	
CA_2-13	2	1850 MHz	_	1910 MHz	1930 MHz	_	1990 MHz	FDD
	13	777 MHz	_	787 MHz	746 MHz	_	756 MHz	ļ
CA_2-2-	2	1850 MHz	_	1910 MHz	1930 MHz	_	1990 MHz	FDD
13	13	777 MHz	_	787 MHz	746 MHz	_	756 MHz	
CA_2-17	2	1850 MHz	_	1910 MHz	1930 MHz	_	1990 MHz	FDD
O/ (_Z 1/	17	704 MHz	_	716 MHz	734 MHz	_	746 MHz	100
CA_2-29	2	1850 MHz	_	1910 MHz	1930 MHz	_	1990 MHz	FDD
UA_2-29	29		N/A		717 MHz	_	728 MHz	100
CA 2.20	2	1850 MHz	_	1910 MHz	1930 MHz	_	1990 MHz	רחח
CA_2-30	30	2305 MHz	_	2315 MHz	2350 MHz	_	2360 MHz	FDD
04.0.5	3	1710 MHz	_	1785 MHz	1805 MHz	_	1880 MHz	E0.5
CA_3-5	5	824 MHz	-	849 MHz	869 MHz	_	894 MHz	FDD
04.5.	3	1710 MHz	_	1785 MHz	1805 MHz	_	1880 MHz	
CA_3-7	7	2500 MHz	<u> </u>	2570 MHz	2620 MHz	_	2690 MHz	FDD
	3	1710 MHz	_	1785 MHz	1805 MHz	_	1880 MHz	
CA_3-8	8	880 MHz	-	915 MHz	925 MHz	<u> </u>	960 MHz	FDD
	3	1710 MHz	-	1785 MHz	1805 MHz	Ë	1880 MHz	
CA_3-19	19	830 MHz	=	845 MHz	875 MHz	_	890 MHz	FDD
						_		
CA_3-20	3	1710 MHz	_	1785 MHz	1805 MHz	_	1880 MHz	FDD
	20	832 MHz	-	862 MHz	791 MHz	_	821 MHz	<u> </u>

		4740 ***	1	4705 \$411	4005 1111		4000 1411	
CA_3-26	3	1710 MHz	_	1785 MHz	1805 MHz	_	1880 MHz	FDD
<u> </u>	26 3	814 MHz	_	849 MHz	859 MHz	_	894 MHz	
CA_3-27	27	1710 MHz 807 MHz	_	1785 MHz 824 MHz	1805 MHz 852 MHz	_	1880 MHz 869 MHz	FDD
	3	1710 MHz	_	1785 MHz		_	1880 MHz	
CA_3-28	28	703 MHz	_	748 MHz	1805 MHz 758 MHz	_	803 MHz	FDD
	3	1710 MHz		1785 MHz	1805 MHz	_	1880 MHz	FDD
CA_3-42	42	3400 MHz	_	3600 MHz	3400 MHz	_	3600 MHz	TDD
	42	1710 MHz	_	1755 MHz	2110 MHz	_	2155 MHz	טטו
CA_4-5	5	824 MHz		849 MHz	869 MHz	_	894 MHz	FDD
	4	1710 MHz	_	1755 MHz	2110 MHz		2155 MHz	
CA_4-4-5	5	824 MHz		849 MHz	869 MHz		894 MHz	FDD
	4	1710 MHz	E	1755 MHz	2110 MHz		2155 MHz	
CA_4-7	7	2500 MHz		2570 MHz	2620 MHz		2690 MHz	FDD
	4	1710 MHz		1755 MHz	2110 MHz		2155 MHz	
CA_4-4-7	7	2500 MHz	_	2570 MHz	2620 MHz	_	2690 MHz	FDD
	4	1710 MHz		1755 MHz	2110 MHz		2155 MHz	
CA_4-12	12	699 MHz	Ε	716 MHz	729 MHz	_	746 MHz	FDD
CA_4-4-	4	1710 MHz	_	1755 MHz	2110 MHz	_	2155 MHz	
12 12	12	699 MHz	_	716 MHz	729 MHz	_	746 MHz	FDD
	4	1710 MHz	_	1755 MHz	2110 MHz	_	2155 MHz	
CA_4-13	13	777 MHz	=	787 MHz	746 MHz	_	756 MHz	FDD
CA_4-4-	4	1710 MHz	_	1755 MHz	2110 MHz	_	2155 MHz	
13	13	777 MHz		787 MHz	746 MHz	_	756 MHz	FDD
13	4	1710 MHz	-	1755 MHz	2110 MHz	_	2155 MHz	
CA_4-17	17	704 MHz		716 MHz	734 MHz	_	746 MHz	FDD
		1710 MHz	_	1755 MHz			2155 MHz	
CA_4-27	27	807 MHz	_	824 MHz	2110 MHz 852 MHz	_	869 MHz	FDD
			_					
CA_4-29	4 29	1710 MHz	N/A	1755 MHz	2110 MHz 717 MHz	_	2155 MHz 728 MHz	FDD
	4	1710 MHz	- IN/A	1755 MHz	2110 MHz		2155 MHz	
CA_4-30	30	2305 MHz	=	2315 MHz	2350 MHz	_	2360 MHz	FDD
	5	824 MHz	_	849 MHz	869 MHz		894 MHz	
CA_5-7	7	2500 MHz	=	2570 MHz	2620 MHz		2690 MHz	FDD
	5	824 MHz	=	849 MHz	869 MHz	_	894 MHz	
CA_5-12	12	699 MHz	_	716 MHz	729 MHz	_	746 MHz	FDD
	5	824 MHz		849 MHz	869 MHz		894 MHz	
CA_5-13	13	777 MHz		787 MHz	746 MHz		756 MHz	FDD
	5	824 MHz	H	849 MHz	869 MHz		894 MHz	
CA_5-17	17	704 MHz	H	716 MHz	734 MHz		746 MHz	FDD
	5	824 MHz		849 MHz	869 MHz		894 MHz	
CA_5-25	25	1850 MHz	_	1915 MHz	1930 MHz		1995 MHz	FDD
	5	824 MHz	=	849 MHz	869 MHz	Ε	894 MHz	
CA_5-30	30	2305 MHz	_	2315 MHz	2350 MHz		2360 MHz	FDD
	7	2500 MHz	=	2570 MHz	2620 MHz	<u> </u>	2690 MHz	
CA_7-8	8	880 MHz	=	915 MHz	925 MHz	_	960 MHz	FDD
	7	2500 MHz		2570 MHz	2620 MHz	_	2690 MHz	
CA_7-12	12	699 MHz	=	716 MHz	729 MHz	_	746 MHz	FDD
	7	2500 MHz	=	2570 MHz	2620 MHz		2690 MHz	
CA_7-20	20	832 MHz	=	862 MHz	791 MHz		821 MHz	FDD
	7	2500 MHz	=	2570 MHz	2620 MHz	_	2690 MHz	
CA_7-28	28	703 MHz	-	748 MHz	758 MHz	_	803 MHz	FDD
	8	880 MHz	-	915 MHz	925 MHz	_	960 MHz	
CA_8-11	11	1427.9 MHz	=	1447.9 MHz	1475.9 MHz	_	1495.9 MHz	FDD
	8	880 MHz	-	915 MHz	925 MHz	Ε	960 MHz	
CA_8-20	20	832 MHz	=	862 MHz	791 MHz		821 MHz	FDD
	8	880 MHz	-	915 MHz	925 MHz	E	960 MHz	FDD
CA_8-40	40	2300 MHz	-	2400 MHz	2300 MHz	E	2400 MHz	TDD
	11	1427.9 MHz	=	1447.9 MHz	1475.9 MHz	<u> </u>	1495.9 MHz	,00
CA_11-18	18	815 MHz	H	830 MHz	860 MHz	E	875 MHz	FDD
	10	ZIJINI CTO		OSO IVITIZ	OOU IVITIZ	_	OT O IVII 1Z	

		1	_			_			
CA_12-25	12	699 MHz	_	716 MHz	729 MHz	_	746 MHz	FDD	
OA_12-23	25	1850 MHz	_	1915 MHz	1930 MHz	_	1995 MHz	יטט ו	
CA 12 20	12	699 MHz	–	716 MHz	729 MHz	_	746 MHz	FDD	
CA_12-30	30	2305 MHz	_	2315 MHz	2350 MHz	_	2360 MHz	FDD	
CA 10 20	18	815 MHz	-	830 MHz	860 MHz	-	875 MHz	FDD	
CA_18-28	28	703 MHz	_	733 MHz ¹	758 MHz	_	788 MHz ¹	FDD	
CA 10 21	19	830 MHz	_	845 MHz	875 MHz	_	890 MHz	רחח	
CA_19-21	21	1447.9 MHz	_	1462.9 MHz	1495.9 MHz	_	1510.9 MHz	FDD	
CA 40 40	19	830 MHz	-	845 MHz	875 MHz	-	890 MHz	FDD	
CA_19-42	42	3400 MHz	-	3600 MHz	3400 MHz	-	3600 MHz	TDD	
CA 20 22	20	832 MHz	_	862 MHz	791 MHz	_	821 MHz	רחח	
CA_20-32	32		N/A		1452 MHz	_	1496 MHz	FDD	
CA 22 20	23	2000 MHz	_	2020 MHz	2180 MHz	_	2200 MHz	FDD	
CA_23-29	29		N/A		717 MHz	_	728 MHz	FDD	
CA 05 44	25	1850 MHz	_	1915 MHz	1930 MHz	_	1995 MHz	FDD	
CA_25-41	41	2496 MHz	_	2690 MHz	2496 MHz	_	2690 MHz	TDD	
CA 26 44	26	814 MHz	-	849 MHz	859 MHz	-	894 MHz	FDD	
CA_26-41	41	2496 MHz	_	2690 MHz	2496 MHz	_	2690 MHz	TDD	
CA 20 20	29		N/A		717 MHz	_	728 MHz	EDD	
CA_29-30	30	2305 MHz	_	2315 MHz	2350 MHz	_	2360 MHz	FDD	
CA 20 44	39	1880 MHz	_	1920 MHz	1880 MHz	_	1920 MHz	TDD	
CA_39-41	41	2496 MHz	_	2690 MHz	2496 MHz	_	2690 MHz	TDD	
CA 41 42	41	2496 MHz	_	2690 MHz	2496 MHz	_	2690 MHz	TDD	
CA_41-42	42	3400 MHz	_	3600 MHz	3400 MHz	_	3600 MHz	TDD	
NOTE 1: T	he frequency	range in band	28 is	restricted for t	his CA band co	mbii	nation.		

Table 5.5A-2a: Inter-band CA operating bands (three bands)

E-UTRA CA	E-UTRA	Uplink (UL) op		Downlink (DL) o		Duplex
Band	Band	BS receive / UE transmit		BS transmit /	Mode	
		F _{UL_low} -			F _{DL_high}	
04.405	3	1920 MHz –	1980 MHz	2110 MHz –	2170 MHz	
CA_1-3-5		1710 MHz –	1785 MHz	1805 MHz –	1880 MHz	FDD
	5	824 MHz -	849 MHz	869 MHz –	894 MHz	
04.400	1	1920 MHz —	1980 MHz	2110 MHz –	2170 MHz	
CA_1-3-8	3	1710 MHz -	1785 MHz	1805 MHz –	1880 MHz	FDD
	8	880 MHz –	915 MHz	925 MHz –	960 MHz	
CA 1 2 10	1	1920 MHz —	1980 MHz	2110 MHz –	2170 MHz	EDD
CA_1-3-19	3	1710 MHz —	1785 MHz	1805 MHz –	1880 MHz	FDD
	19 1	830 MHz –	845 MHz	875 MHz –	890 MHz	
04 4 0 00	3	1920 MHz —	1980 MHz	2110 MHz –	2170 MHz	
CA_1-3-20		1710 MHz -	1785 MHz	1805 MHz -	1880 MHz	FDD
	20	832 MHz -	862 MHz	791 MHz -	821 MHz	
04.4000	3	1920 MHz —	1980 MHz	2110 MHz -	2170 MHz	
CA_1-3-26		1710 MHz –	1785 MHz	1805 MHz –	1880 MHz	FDD
	26	814 MHz –	849 MHz	859 MHz –	894 MHz	
04.57	1	1920 MHz -	1980 MHz	2110 MHz –	2170 MHz	FDD
CA_1-5-7	5	824 MHz –	849 MHz	869 MHz –	894 MHz	FDD
	7	2500 MHz –	2570 MHz	2620 MHz –	2690 MHz	
04 4 7 00	1	1920 MHz –	1980 MHz	2110 MHz –	2170 MHz	
CA_1-7-20	7	2500 MHz –	2570 MHz	2620 MHz -	2690 MHz	FDD
	20	832 MHz –	862 MHz	791 MHz –	821 MHz	
0.4.4.0.00	1	1920 MHz –	1980 MHz	2110 MHz –	2170 MHz	
CA_1-18-28	18	815 MHz –	830 MHz	860 MHz –	875 MHz	FDD
	28	703 MHz –	733 MHz ¹	758 MHz –	788 MHz ¹	
	1	1920 MHz –	1980 MHz	2110 MHz –	2170 MHz	
CA_1-19-21	19	830 MHz –	845 MHz	875 MHz –	890 MHz	FDD
	21	1447.9 MHz –	1462.9 MHz	1495.9 MHz –	1510.9 MHz	
04.04.5	2	1850 MHz –	1910 MHz	1930 MHz -	1990 MHz	
CA_2-4-5	4	1710 MHz –	1755 MHz	2110 MHz -	2155 MHz	FDD
	5	824 MHz –	849 MHz	869 MHz –	894 MHz	
	2	1850 MHz —	1910 MHz	1930 MHz -	1990 MHz	
CA_2-4-12	4	1710 MHz -	1755 MHz	2110 MHz –	2155 MHz	FDD
	12	699 MHz –	716 MHz	729 MHz –	746 MHz	
	2	1850 MHz –	1910 MHz	1930 MHz -	1990 MHz	
CA_2-4-13	4	1710 MHz –	1755 MHz	2110 MHz -	2155 MHz	FDD
	13	777 MHz –	787 MHz	746 MHz -	756 MHz	
	2	1850 MHz –	1910 MHz	1930 MHz -	1990 MHz	
CA_2-4-29	4	1710 MHz -	1755 MHz	2110 MHz -	2155 MHz	FDD
	29	N/		717 MHz -	728 MHz	
	2	1850 MHz –	1910 MHz	1930 MHz -	1990 MHz	
CA_2-5-12	5	824 MHz –	849 MHz	869 MHz –	894 MHz	FDD
	12	699 MHz –	716 MHz	729 MHz -	746 MHz	
	2	1850 MHz –	1910 MHz	1930 MHz -	1990 MHz	
CA_2-5-13	5	824 MHz -	849 MHz	869 MHz -	894 MHz	FDD
	13	777 MHz –	787 MHz	746 MHz -	756 MHz	
	2	1850 MHz -	1910 MHz	1930 MHz -	1990 MHz	
CA_2-5-30	5	824 MHz -	849 MHz	869 MHz -	894 MHz	FDD
	30	2305 MHz –	2315 MHz	2350 MHz –	2360 MHz	
	2	1850 MHz –	1910 MHz	1930 MHz -	1990 MHz	
CA_2-12-30	12	699 MHz –	716 MHz	729 MHz -	746 MHz	FDD
	30	2305 MHz -	2315 MHz	2350 MHz -	2360 MHz	
	2	1850 MHz -	1910 MHz	1930 MHz -	1990 MHz	
CA_2-29-30	29	N/		717 MHz -	728 MHz	FDD
	30	2305 MHz –	2315 MHz	2350 MHz -	2360 MHz	<u> </u>
CA_3-7-20	3	1710 MHz –	1785 MHz	1805 MHz –	1880 MHz	FDD
UA_3-1-20	7	2500 MHz -	2570 MHz	2620 MHz -	2690 MHz	טטי

	20	832 MHz	_	862 MHz	791 MHz	_	821 MHz	
	4	1710 MHz	-	1755 MHz	2110 MHz	-	2155 MHz	
CA_4-5-12	5	824 MHz	-	849 MHz	869 MHz	-	894 MHz	FDD
	12	699 MHz	-	716 MHz	729 MHz	-	746 MHz	
	4	1710 MHz	-	1755 MHz	2110 MHz	-	2155 MHz	
CA_4-5-13	5	824 MHz	-	849 MHz	869 MHz	-	894 MHz	FDD
	13	777 MHz	_	787 MHz	746 MHz	_	756 MHz	
	4	1710 MHz	-	1755 MHz	2110 MHz	-	2155 MHz	
CA_4-5-30	5	824 MHz	_	849 MHz	869 MHz	-	894 MHz	FDD
	30	2305 MHz	-	2315 MHz	2350 MHz	-	2360 MHz	1
	4	1710 MHz	-	1755 MHz	2110 MHz	-	2155 MHz	
CA_4-7-12	7	2500 MHz	-	2570 MHz	2620 MHz	-	2690 MHz	FDD
	12	699 MHz	-	716 MHz	729 MHz	-	746 MHz	
	4	1710 MHz	-	1755 MHz	2110 MHz	-	2155 MHz	
CA_4-12-30	12	699 MHz	_	716 MHz	729 MHz	-	746 MHz	FDD
	30	2305 MHz	-	2315 MHz	2350 MHz	-	2360 MHz	
	4	1710 MHz	-	1755 MHz	2110 MHz	-	2155 MHz	
CA_4-29-30	29		N/A	4	717 MHz	_	728 MHz	FDD
	30	2305 MHz	_	2315 MHz	2350 MHz	_	2360 MHz	
	7	2500 MHz	_	2570 MHz	2620 MHz	_	2690 MHz	
CA_7-8-20	8	880 MHz	_	915 MHz	925 MHz	-	960 MHz	FDD
	20	832 MHz	_	862 MHz	791 MHz	_	821 MHz	
NOTE 1: The	frequency rar	nge in band 28	is re	stricted for this C	A band combin	atior	<u></u> ۱.	

Table 5.5A-3: Intra-band non-contiguous CA operating bands (with two sub-blocks)

E-UTRA	E-UTRA	Uplink (UL) operating band			Downlink (D	Duplex		
CA Band	Band	BS receive / UE transmit			BS transi	Mode		
		Ful_low - Ful_high			F _{DL_low} - F _{DL_high}			
CA_2-2	2	1850 MHz	_	1910 MHz	1930 MHz	_	1990 MHz	FDD
CA_3-3	3	1710 MHz	-	1785 MHz	1805 MHz	_	1880 MHz	FDD
CA_4-4	4	1710 MHz	-	1755 MHz	2110 MHz	-	2155 MHz	FDD
CA_7-7	7	2500 MHz	-	2570 MHz	2620 MHz	-	2690 MHz	FDD
CA_23-23	23	2000 MHz	-	2020 MHz	2180 MHz	-	2200 MHz	FDD
CA_25-25	25	1850 MHz	-	1915 MHz	1930 MHz	-	1995 MHz	FDD
CA_41-41	41	2496 MHz	ı	2690 MHz	2496 MHz	ı	2690 MHz	TDD
CA_42-42	42	3400 MHz	ı	3600 MHz	3400 MHz	-	3600 MHz	TDD

5.5B Operating bands for UL-MIMO

E-UTRA UL-MIMO is designed to operate in the operating bands defined in Table 5.5B-1.

Table 5.5B-1: Void

5.5C Operating bands for Dual Connectivity

E-UTRA dual connectivity is designed to operate in the operating bands defined in Table 5.5C-1.

Table 5.5C-1: Inter-band dual connectivity operating bands (two bands)

DC Band Band Band Ful. tow Full tow Ful. tow Full tow Ful. tow Full	E-UTRA	E-				Downlink (D	Duplex		
DC_1-3	DC Band	UTRA					Mode		
DC_1-3 3		Band				F _{DL_lo}			
DC_1-5	DC 1-3		1920 MHz	-	1980 MHz	2110 MHz	_	2170 MHz	FDD
DC_1-5	DO_1-3	3	1710 MHz	-	1785 MHz	1805 MHz	_	1880 MHz	100
DC_1-7	DC 1-5		1920 MHz	_	1980 MHz		_	2170 MHz	EDD
DC_1-7	DC_1-5	5	824 MHz	_	849 MHz	869 MHz	_	894 MHz	100
DC_1-8	DC 17	1	1920 MHz	ı	1980 MHz	2110 MHz	_	2170 MHz	EDD
DC_1-8	DC_1-7	7	2500 MHz	ı	2570 MHz	2620 MHz	-	2690 MHz	רטט
DC_1-19	DC 10	1	1920 MHz	ı	1980 MHz	2110 MHz	-	2170 MHz	EDD
DC_1-19	DC_1-0	8	880 MHz	1	915 MHz	925 MHz	_	960 MHz	FDD
DC_1-21	DO 4.40	1	1920 MHz	1	1980 MHz	2110 MHz	_	2170 MHz	רככ
DC_1-21	DC_1-19	19	830 MHz	-	845 MHz	875 MHz	-	890 MHz	FDD
DC_2-4	DC 4 04	1	1920 MHz	-	1980 MHz	2110 MHz	_	2170 MHz	EDD.
DC_2-4	DC_1-21	21	1447.9 MHz	_	1462.9 MHz	1495.9 MHz	_	1510.9 MHz	FDD
DC_2-4	50.04	2	1850 MHz	_	1910 MHz	1930 MHz	_	1990 MHz	
DC_2-13 2 1850 MHz - 1910 MHz 1930 MHz - 1990 MHz FDD DC_3-5 3 1710 MHz - 7785 MHz 1880 MHz - 1890 MHz - 2090 MHz - 2690 MHz - 1880 MHz FDD - 1880 MHz - 1890 MHz - 1890 MHz - <	DC_2-4	4		-	1755 MHz		_	2155 MHz	FDD
DC_2-13				_	1910 MHz		_	1990 MHz	
DC_3-5 3 1710 MHz - 1785 MHz 1805 MHz - 1880 MHz FDD DC_3-7 3 1710 MHz - 849 MHz - 894 MHz - 894 MHz - 1880 MHz - 12690 MHz - 1785 MHz 1805 MHz - 1880 MHz - 1785 MHz 1805 MHz - 1880 MHz - 1880 MHz - 190 MHz - 1785 MHz 1805 MHz - 960 MHz - 190 MHz - 1785 MHz 1805 MHz - 1880 MHz -	DC_2-13			_	787 MHz		_		FDD
DC_3-5 5 824 MHz - 849 MHz 869 MHz - 894 MHz FDD DC_3-7 3 1710 MHz - 1785 MHz 1805 MHz - 1880 MHz FDD DC_3-8 3 1710 MHz - 1785 MHz 1805 MHz - 1880 MHz FDD DC_3-8 8 880 MHz - 915 MHz 1805 MHz - 1880 MHz FDD DC_3-19 3 1710 MHz - 1785 MHz 1805 MHz - 1880 MHz FDD DC_3-19 3 1710 MHz - 1785 MHz 1805 MHz - 1880 MHz FDD DC_3-20 3 1710 MHz - 1785 MHz 1805 MHz - 890 MHz FDD DC_3-26 3 1710 MHz - 1785 MHz 1805 MHz - 1880 MHz FDD DC_4-7 4 1710 MHz - 1785 MHz 2110 MHz - 2155 MHz FDD D				_			_		
DC_3-7 3 1710 MHz - 1785 MHz 1805 MHz - 1880 MHz FDD DC_3-8 3 1710 MHz - 2570 MHz 2620 MHz - 2690 MHz - 2690 MHz - 2690 MHz - 1805 MHz - 1880 MHz - 915 MHz 1805 MHz - 1880 MHz - 915 MHz 292 MHz - 960 MHz - 1700 MHz - 1785 MHz 1805 MHz - 1880 MHz - 1800 MHz -	DC_3-5			_					FDD
DC_3-7 7 2500 MHz - 2570 MHz 2620 MHz - 2690 MHz FDD DC_3-8 3 1710 MHz - 1785 MHz 1805 MHz - 1880 MHz FDD DC_3-19 3 1710 MHz - 915 MHz 925 MHz - 960 MHz FDD DC_3-19 3 1710 MHz - 1785 MHz 1805 MHz - 1880 MHz FDD DC_3-20 3 1710 MHz - 1785 MHz 1805 MHz - 1880 MHz FDD DC_3-20 3 1710 MHz - 1785 MHz 1805 MHz - 1880 MHz FDD DC_3-26 3 1710 MHz - 1785 MHz 1805 MHz - 1880 MHz FDD DC_3-26 3 1710 MHz - 1785 MHz 1805 MHz - 1880 MHz FDD DC_4-7 4 1710 MHz - 1755 MHz 2110 MHz - 2155 MHz FDD DC_4-7 7 2500 MHz - 2570 MHz 2620 MHz - 2155 MHz FDD DC_4-12 4 1710 MHz - 1755 MHz 2110 MHz <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
DC_3-8 3 1710 MHz - 1785 MHz 1805 MHz - 1880 MHz FDD DC_3-19 3 1710 MHz - 915 MHz 925 MHz - 960 MHz PDD DC_3-19 3 1710 MHz - 1785 MHz 1805 MHz - 1880 MHz FDD DC_3-20 3 1710 MHz - 1785 MHz 1805 MHz - 881 MHz FDD DC_3-26 3 1710 MHz - 1785 MHz 1805 MHz - 1880 MHz FDD DC_3-26 3 1710 MHz - 1785 MHz 1805 MHz - 1880 MHz FDD DC_3-26 3 1710 MHz - 1755 MHz 1805 MHz - 1880 MHz FDD DC_4-7 7 2500 MHz - 1755 MHz 2110 MHz - 2155 MHz FDD DC_4-12 4 1710 MHz - 1755 MHz 2110 MHz - 2155 MHz FDD	DC_3-7								FDD
DC_3-8 8 880 MHz - 915 MHz 925 MHz - 960 MHz FDD DC_3-19 3 1710 MHz - 1785 MHz 1805 MHz - 1880 MHz FDD DC_3-19 19 830 MHz - 845 MHz 1805 MHz - 890 MHz FDD DC_3-20 3 1710 MHz - 1785 MHz 1805 MHz - 1880 MHz FDD DC_3-26 3 1710 MHz - 1785 MHz 1805 MHz - 894 MHz FDD DC_4-7 4 1710 MHz - 1755 MHz 2110 MHz - 2155 MHz FDD DC_4-7 4 1710 MHz - 1755 MHz 2110 MHz - 2155 MHz FDD DC_4-12 4 1710 MHz - 1755 MHz 2110 MHz - 2155 MHz FDD DC_4-13 4 1710 MHz - 1755 MHz 2110 MHz - 2155 MHz FDD <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
DC_3-19 3 1710 MHz - 1785 MHz 1805 MHz - 1880 MHz FDD DC_3-20 3 1710 MHz - 1785 MHz 1805 MHz - 890 MHz FDD DC_3-20 3 1710 MHz - 1785 MHz 1805 MHz - 1880 MHz FDD DC_3-26 3 1710 MHz - 1785 MHz 1805 MHz - 1880 MHz FDD DC_3-26 26 814 MHz - 849 MHz 859 MHz - 894 MHz FDD DC_4-7 4 1710 MHz - 1755 MHz 2110 MHz - 2155 MHz FDD DC_4-7 7 2500 MHz - 2570 MHz 2620 MHz - 2690 MHz FDD DC_4-12 4 1710 MHz - 1755 MHz 2110 MHz - 2155 MHz FDD DC_4-13 13 777 MHz - 787 MHz 746 MHz - 766 MHz FDD <t< td=""><td>DC_3-8</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>FDD</td></t<>	DC_3-8								FDD
19				_					
DC_3-20 3 1710 MHz - 1785 MHz 1805 MHz - 1880 MHz FDD DC_3-26 3 1710 MHz - 862 MHz 791 MHz - 821 MHz FDD DC_3-26 3 1710 MHz - 1785 MHz 1805 MHz - 1880 MHz FDD DC_4-7 2 6 814 MHz - 849 MHz 859 MHz - 894 MHz FDD DC_4-7 7 2500 MHz - 2670 MHz 2620 MHz - 2155 MHz FDD DC_4-12 4 1710 MHz - 1755 MHz 2110 MHz - 2155 MHz FDD DC_4-12 4 1710 MHz - 1755 MHz 2110 MHz - 2155 MHz FDD DC_4-13 13 777 MHz - 787 MHz 2110 MHz - 2155 MHz FDD DC_4-17 4 1710 MHz - 1755 MHz 2110 MHz - 2155 MHz FDD	DC_3-19			_					FDD
DC_3-20 832 MHz - 862 MHz 791 MHz - 821 MHz FDD DC_3-26 3 1710 MHz - 1785 MHz 1805 MHz - 1880 MHz FDD DC_3-26 814 MHz - 849 MHz 859 MHz - 894 MHz FDD DC_4-7 4 1710 MHz - 1755 MHz 2110 MHz - 2155 MHz FDD DC_4-12 4 1710 MHz - 1755 MHz 2110 MHz - 2155 MHz FDD DC_4-12 12 699 MHz - 776 MHz 729 MHz - 746 MHz FDD DC_4-13 4 1710 MHz - 1755 MHz 2110 MHz - 2155 MHz FDD DC_4-17 4 1710 MHz - 1755 MHz 2110 MHz - 2155 MHz FDD DC_5-7 5 824 MHz - 787 MHz 734 MHz - 746 MHz FDD DC_5-7 5 8				_					
DC_3-26 3 1710 MHz - 1785 MHz 1805 MHz - 1880 MHz FDD DC_4-7 26 814 MHz - 849 MHz 859 MHz - 894 MHz FDD DC_4-7 4 1710 MHz - 1755 MHz 2110 MHz - 2155 MHz FDD DC_4-12 4 1710 MHz - 1755 MHz 2110 MHz - 2690 MHz FDD DC_4-12 4 1710 MHz - 1755 MHz 2110 MHz - 2155 MHz FDD DC_4-13 4 1710 MHz - 1755 MHz 2110 MHz - 2155 MHz FDD DC_4-17 4 1710 MHz - 1755 MHz 2110 MHz - 2155 MHz FDD DC_4-17 4 1710 MHz - 1755 MHz 2110 MHz - 2155 MHz FDD DC_5-7 5 824 MHz - 849 MHz 869 MHz - 894 MHz FDD <td< td=""><td>DC_3-20</td><td></td><td></td><td>_</td><td></td><td></td><td>_</td><td></td><td rowspan="2">FDD</td></td<>	DC_3-20			_			_		FDD
DC_3-26 26 814 MHz — 849 MHz 859 MHz — 894 MHz FDD DC_4-7 4 1710 MHz — 1755 MHz 2110 MHz — 2155 MHz FDD DC_4-12 4 1710 MHz — 1755 MHz 2110 MHz — 2155 MHz FDD DC_4-12 4 1710 MHz — 1755 MHz 2110 MHz — 746 MHz FDD DC_4-13 4 1710 MHz — 1755 MHz 2110 MHz — 2155 MHz FDD DC_4-17 4 1710 MHz — 1755 MHz 746 MHz — 756 MHz FDD DC_4-17 4 1710 MHz — 1755 MHz 2110 MHz — 2155 MHz FDD DC_5-7 4 1710 MHz — 1755 MHz 2110 MHz — 756 MHz FDD DC_5-7 5 824 MHz — 849 MHz 869 MHz — 894 MHz FDD DC_				_			_		
DC_4-7	DC_3-26			_					FDD
DC_4-7 7 2500 MHz - 2570 MHz 2620 MHz - 2690 MHz FDD DC_4-12 4 1710 MHz - 1755 MHz 2110 MHz - 2155 MHz FDD DC_4-13 12 699 MHz - 716 MHz 729 MHz - 746 MHz FDD DC_4-13 4 1710 MHz - 1755 MHz 2110 MHz - 2155 MHz FDD DC_4-17 4 1710 MHz - 1755 MHz 2110 MHz - 756 MHz FDD DC_4-17 4 1710 MHz - 1755 MHz 2110 MHz - 2155 MHz FDD DC_4-17 4 1710 MHz - 1755 MHz 2110 MHz - 2155 MHz FDD DC_5-7 5 824 MHz - 849 MHz 869 MHz - 894 MHz FDD DC_5-12 5 824 MHz - 849 MHz 869 MHz - 894 MHz FDD DC_5-12 5 824 MHz - 849 MHz 869 MHz - 894 MHz FDD DC_5-17 7 2500 MHz - 716 MHz 734 MHz <td< td=""><td>_</td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td></td<>	_			_					
DC_4-12	DC 4-7			_					FDD
DC_4-12 12 699 MHz - 716 MHz 729 MHz - 746 MHz FDD DC_4-13 4 1710 MHz - 1755 MHz 2110 MHz - 2155 MHz FDD DC_4-17 4 1710 MHz - 1755 MHz 2110 MHz - 2155 MHz FDD DC_4-17 4 1710 MHz - 1755 MHz 2110 MHz - 2155 MHz FDD DC_5-7 5 824 MHz - 849 MHz 869 MHz - 894 MHz FDD DC_5-7 5 824 MHz - 849 MHz 869 MHz - 894 MHz FDD DC_5-12 5 824 MHz - 849 MHz 869 MHz - 894 MHz FDD DC_5-12 5 824 MHz - 849 MHz 869 MHz - 894 MHz FDD DC_5-12 5 824 MHz - 849 MHz 869 MHz - 894 MHz FDD DC_7-20				_					
DC_4-13 DC_4-13 DC_4-13 DC_4-13 DC_4-17 DC_4-17 DC_4-17 DC_4-17 DC_4-17 DC_4-17 DC_5-7 DC_5-12 DC_5-17 DC_5-17 DC_5-17 DC_7-20 DC_7-20 DC_7-20 DC_19-21 DC_19-21 DC_3-41 DC_3-41 DC_3-41 DC_3-41 DC_3-41 DC_3-41 DC_3-41 DC_3-41 DC_4-17 DC_3-41 DC_4-17 DC_4-17 DC_4-17 DC_5-18 DC_5-18 DC_5-18 DC_5-19 DC	DC 4-12			_			_		FDD
DC_4-13 13 777 MHz - 787 MHz 746 MHz - 756 MHz FDD DC_4-17 4 1710 MHz - 1755 MHz 2110 MHz - 2155 MHz FDD DC_4-17 17 704 MHz - 716 MHz 734 MHz - 746 MHz FDD DC_5-7 5 824 MHz - 849 MHz - 894 MHz FDD DC_5-12 5 824 MHz - 849 MHz - 894 MHz FDD DC_5-12 12 699 MHz - 716 MHz 729 MHz - 746 MHz FDD DC_5-12 5 824 MHz - 849 MHz 869 MHz - 894 MHz FDD DC_5-12 5 824 MHz - 849 MHz - 894 MHz FDD DC_5-17 5 824 MHz - 849 MHz - 894 MHz FDD DC_7-20 7 2500 MHz - 2570 MHz 2620				_			_		. 55
DC_4-17 A	DC 4-13			_			_		FDD
DC_4-17 17 704 MHz - 716 MHz 734 MHz - 746 MHz FDD DC_5-7 5 824 MHz - 849 MHz 869 MHz - 894 MHz FDD DC_5-12 5 824 MHz - 849 MHz 869 MHz - 894 MHz FDD DC_5-12 12 699 MHz - 716 MHz 729 MHz - 746 MHz FDD DC_5-17 5 824 MHz - 849 MHz 869 MHz - 894 MHz FDD DC_5-17 5 824 MHz - 849 MHz - 894 MHz FDD DC_7-20 7 2500 MHz - 716 MHz 734 MHz - 746 MHz FDD DC_7-20 7 2500 MHz - 2570 MHz 2620 MHz - 2690 MHz FDD DC_7-28 7 2500 MHz - 2570 MHz 2620 MHz - 803 MHz FDD DC_19-21 19	DO_+ 10			-		746 MHz	_		100
DC_5-7 The magnetic form The magnetic for	DC 4-17	4	1710 MHz	-	1755 MHz	2110 MHz	_	2155 MHz	FDD
DC_5-7 7 2500 MHz - 2570 MHz 2620 MHz - 2690 MHz FDD DC_5-12 5 824 MHz - 849 MHz 869 MHz - 894 MHz FDD DC_5-17 12 699 MHz - 716 MHz 729 MHz - 746 MHz FDD DC_5-17 5 824 MHz - 849 MHz 869 MHz - 894 MHz FDD DC_7-20 7 2500 MHz - 716 MHz 734 MHz - 746 MHz FDD DC_7-20 7 2500 MHz - 2570 MHz 2620 MHz - 2690 MHz FDD DC_7-28 7 2500 MHz - 2570 MHz 2620 MHz - 2690 MHz FDD DC_19-21 19 830 MHz - 748 MHz 875 MHz - 803 MHz FDD DC_39-41 39 1880 MHz - 1920 MHz 1880 MHz - 1920 MHz TDD DC_3	DO_ 4 -17		704 MHz	_	716 MHz	734 MHz	_	746 MHz	100
DC_5-12	DC 5.7		824 MHz	-	849 MHz	869 MHz	_	894 MHz	EDD
DC_5-12 12 699 MHz - 716 MHz 729 MHz - 746 MHz FDD DC_5-17 5 824 MHz - 849 MHz 869 MHz - 894 MHz FDD 17 704 MHz - 716 MHz 734 MHz - 746 MHz FDD DC_7-20 7 2500 MHz - 2570 MHz 2620 MHz - 2690 MHz FDD DC_7-28 7 2500 MHz - 2570 MHz 2620 MHz - 2690 MHz FDD DC_7-28 7 2500 MHz - 748 MHz 758 MHz - 803 MHz FDD DC_19-21 19 830 MHz - 845 MHz 875 MHz - 890 MHz FDD DC_39-41 39 1880 MHz - 1920 MHz 1880 MHz - 1920 MHz TDD DC_39-41 41 2496 MHz - 2690 MHz - 2690 MHz - 2690 MHz -	DC_5-7	7	2500 MHz	1	2570 MHz	2620 MHz	_	2690 MHz	FDD
DC_5-17 5 824 MHz - 849 MHz 869 MHz - 894 MHz FDD DC_5-17 704 MHz - 716 MHz 734 MHz - 746 MHz DC_7-20 7 2500 MHz - 2570 MHz 2620 MHz - 2690 MHz DC_7-28 7 2500 MHz - 2570 MHz 2620 MHz - 2690 MHz DC_7-28 7 2500 MHz - 2570 MHz 2620 MHz - 2690 MHz DC_17-28 7 2500 MHz - 2570 MHz 2620 MHz - 2690 MHz DC_19-21 19 830 MHz - 748 MHz 758 MHz - 803 MHz DC_19-21 1447.9 MHz - 1462.9 MHz 1495.9 MHz - 1510.9 MHz DC_39-41 39 1880 MHz - 1920 MHz 1880 MHz - 1920 MHz DC_39-41 39 1880 MHz - 2690 MHz 2496 MHz - 2690 MHz TDD	DC_5-12	5	824 MHz	-	849 MHz	869 MHz	_	894 MHz	EDD.
DC_5-17 5 824 MHz - 849 MHz 869 MHz - 894 MHz FDD 17 704 MHz - 716 MHz 734 MHz - 746 MHz - 746 MHz - 2690 MHz - 821 MHz - FDD DC_7-28 7 2500 MHz - 2570 MHz 2620 MHz - 2690 MHz FDD DC_7-28 7 2500 MHz - 2570 MHz 2620 MHz - 2690 MHz FDD DC_19-21 19 830 MHz - 845 MHz 875 MHz - 890 MHz FDD DC_39-41 39 1880 MHz - 1462.9 MHz 1480 MHz - 1920 MHz TDD DC_39-41 41 2496 MHz - 2690 MHz 2496 MHz - 2690 MHz TDD		12	699 MHz	-	716 MHz	729 MHz	_	746 MHz	טטו
DC_5-17 17 704 MHz - 716 MHz 734 MHz - 746 MHz FDD DC_7-20 7 2500 MHz - 2570 MHz 2620 MHz - 2690 MHz FDD DC_7-20 832 MHz - 862 MHz 791 MHz - 821 MHz FDD DC_7-28 7 2500 MHz - 2570 MHz 2620 MHz - 2690 MHz FDD DC_7-28 7 2500 MHz - 748 MHz 758 MHz - 803 MHz FDD DC_19-21 19 830 MHz - 845 MHz 875 MHz - 890 MHz FDD DC_39-41 39 1880 MHz - 1462.9 MHz 1480 MHz - 1920 MHz TDD DC_39-41 41 2496 MHz - 2690 MHz 2496 MHz - 2690 MHz TDD	DC_5-17	5	824 MHz	_		869 MHz	_	894 MHz	
DC_7-20 7 2500 MHz - 2570 MHz 2620 MHz - 2690 MHz FDD DC_7-28 7 2500 MHz - 2570 MHz 2620 MHz - 2690 MHz FDD DC_7-28 7 2500 MHz - 2570 MHz 2620 MHz - 2690 MHz FDD DC_19-21 19 830 MHz - 845 MHz 875 MHz - 890 MHz FDD DC_39-41 39 1880 MHz - 1920 MHz 1880 MHz - 1920 MHz TDD DC_39-41 41 2496 MHz - 2690 MHz 2496 MHz - 2690 MHz TDD				_			_		FDD
DC_7-20 20 832 MHz - 862 MHz 791 MHz - 821 MHz FDD DC_7-28 7 2500 MHz - 2570 MHz 2620 MHz - 2690 MHz FDD DC_7-28 28 703 MHz - 748 MHz 758 MHz - 803 MHz FDD DC_19-21 19 830 MHz - 845 MHz 875 MHz - 890 MHz FDD DC_39-41 39 1880 MHz - 1920 MHz 1880 MHz - 1920 MHz TDD DC_39-41 41 2496 MHz - 2690 MHz 2496 MHz - 2690 MHz TDD	DC_7-20			_					
DC_7-28 7 2500 MHz - 2570 MHz 2620 MHz - 2690 MHz FDD 28 703 MHz - 748 MHz 758 MHz - 803 MHz FDD DC_19-21 19 830 MHz - 845 MHz 875 MHz - 890 MHz FDD 21 1447.9 MHz - 1462.9 MHz 1495.9 MHz - 1510.9 MHz FDD DC_39-41 39 1880 MHz - 1920 MHz 1880 MHz - 1920 MHz TDD DC_39-41 41 2496 MHz - 2690 MHz 2496 MHz - 2690 MHz TDD				_			_		FDD
DC_7-28 28 703 MHz - 748 MHz 758 MHz - 803 MHz FDD DC_19-21 19 830 MHz - 845 MHz 875 MHz - 890 MHz FDD 21 1447.9 MHz - 1462.9 MHz 1495.9 MHz - 1510.9 MHz FDD DC_39-41 39 1880 MHz - 1920 MHz 1880 MHz - 1920 MHz TDD DC_39-41 41 2496 MHz - 2690 MHz 2496 MHz - 2690 MHz TDD	DC_7-28			_					FDD
DC_19-21 19 830 MHz - 845 MHz 875 MHz - 890 MHz FDD 21 1447.9 MHz - 1462.9 MHz 1495.9 MHz - 1510.9 MHz FDD DC_39-41 39 1880 MHz - 1920 MHz 1880 MHz - 1920 MHz TDD 41 2496 MHz - 2690 MHz 2496 MHz - 2690 MHz TDD				_					
DC_19-21	DC_19-21			_					FDD
DC_39-41 39 1880 MHz - 1920 MHz 1880 MHz - 1920 MHz TDD TDD				_					
41 2496 MHz - 2690 MHz 2496 MHz - 2690 MHz	DC_39-41								
									TDD
	5 6Δ 1 ₋ 2								

5.5D Operating bands for ProSe

E-UTRA ProSe is designed to operate in the operating bands defined in Table 5.5D-1.

Table 5.5D-1 E-UTRA ProSe operating band

E-UTRA	E-UTRA	ProSe UE transmit	ProSe UE receive	ProSe	ProSe	Direct
ProSe Band	Operating Band	Ful_low - Ful_high	F _{DL_low} - F _{DL_high}	Duplex Mode	Disc.	Comm.
2	2	1850 MHz – 1910 MHz	1850 MHz – 1910 MHz	HD	Yes	
3	3	1710 MHz – 1785 MHz	1710 MHz – 1785 MHz	HD	Yes	Yes
4	4	1710 MHz – 1755 MHz	1710 MHz – 1755 MHz	HD	Yes	
7	7	2500 MHz - 2570 MHz	2500 MHz - 2570 MHz	HD	Yes	Yes
14	14	788 MHz – 798 MHz	788 MHz – 798 MHz	HD	Yes	Yes
20	20	832 MHz - 862 MHz	832 MHz – 862 MHz	HD	Yes	Yes
26	26	814 MHz – 849 MHz	814 MHz – 849 MHz	HD	Yes	Yes
28	28	703 MHz - 748 MHz	703 MHz - 748 MHz	HD	Yes	Yes
31	31	452.5 MHz - 457.5 MHz	452.5 MHz - 457.5 MHz	HD	Yes	Yes
41	41	2496 MHz - 2690 MHz	2496 MHz - 2690 MHz	HD	Yes	

5.5E Operating bands for UE category 0

UE category 0 is designed to operate in the E-UTRA operating bands 2, 3, 4, 5, 8, 13, and 20 in both half duplex FDD mode and full-duplex FDD mode and in bands 39 and 41 in TDD mode. The E-UTRA bands are defined in Table 5.5-1.

5.6 Channel bandwidth

Requirements in present document are specified for the channel bandwidths listed in Table 5.6-1.

Table 5.6-1: Transmission bandwidth configuration N_{RB} in E-UTRA channel bandwidths

Channel bandwidth BW _{Channel} [MHz]	1.4	3	5	10	15	20
Transmission bandwidth configuration N _{RB}	6	15	25	50	75	100

Figure 5.6-1 shows the relation between the Channel bandwidth ($BW_{Channel}$) and the Transmission bandwidth configuration (N_{RB}). The channel edges are defined as the lowest and highest frequencies of the carrier separated by the channel bandwidth, i.e. at $F_C + /- BW_{Channel} / 2$.

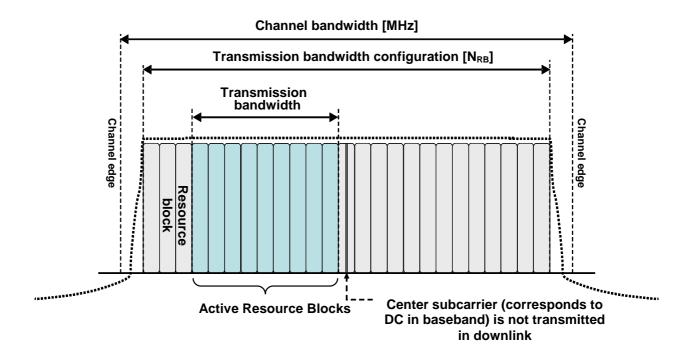


Figure 5.6-1: Definition of channel bandwidth and transmission bandwidth configuration for one E-UTRA carrier

5.6.1 Channel bandwidths per operating band

a) The requirements in this specification apply to the combination of channel bandwidths and operating bands shown in Table 5.6.1-1. The transmission bandwidth configuration in Table 5.6.1-1 shall be supported for each of the specified channel bandwidths. The same (symmetrical) channel bandwidth is specified for both the TX and RX path.

Table 5.6.1-1: E-UTRA channel bandwidth

	E-UTRA band / Channel bandwidth											
E-UTRA Band	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz						
1			Yes	Yes	Yes	Yes						
2	Yes	Yes	Yes	Yes	Yes ¹	Yes ¹						
3	Yes	Yes	Yes	Yes	Yes ¹	Yes ¹						
4	Yes	Yes	Yes	Yes	Yes	Yes						
5	Yes	Yes	Yes	Yes ¹								
6			Yes	Yes ¹								
7			Yes	Yes	Yes ³	Yes ^{1, 3}						
8	Yes	Yes	Yes	Yes ¹								
9			Yes	Yes	Yes ¹	Yes ¹						
10			Yes	Yes	Yes	Yes						
11			Yes	Yes ¹								
12	Yes	Yes	Yes ¹	Yes ¹								
13			Yes ¹	Yes ¹								
14			Yes ¹	Yes ¹								
17			Yes ¹	Yes ¹								
18			Yes	Yes ¹	Yes ¹							
19			Yes	Yes ¹	Yes ¹							
20			Yes	Yes ¹	Yes ¹	Yes ¹						
21			Yes	Yes ¹	Yes ¹							
22			Yes	Yes	Yes ¹	Yes ¹						
23	Yes	Yes	Yes	Yes	Yes ¹	Yes ¹						
24			Yes	Yes								
25	Yes	Yes	Yes	Yes	Yes ¹	Yes ¹						
26	Yes	Yes	Yes	Yes ¹	Yes ¹							
27	Yes	Yes	Yes	Yes ¹								
28		Yes	Yes	Yes ¹	Yes ¹	Yes ^{1, 2}						
30			Yes	Yes ¹								
31	Yes	Yes ¹	Yes ¹									
33			Yes	Yes	Yes	Yes						
34			Yes	Yes	Yes							
35	Yes	Yes	Yes	Yes	Yes	Yes						
36	Yes	Yes	Yes	Yes	Yes	Yes						
37			Yes	Yes	Yes	Yes						
38			Yes	Yes	Yes ³	Yes ³						
39			Yes	Yes	Yes ³	Yes ³						
40			Yes	Yes	Yes	Yes						
41			Yes	Yes	Yes	Yes						
42			Yes	Yes	Yes	Yes						
43			Yes	Yes	Yes	Yes						
44		Yes	Yes	Yes	Yes	Yes						

NOTE 1: ¹ refers to the bandwidth for which a relaxation of the specified UE receiver sensitivity requirement (subclause 7.3) is allowed.

b) The use of different (asymmetrical) channel bandwidth for the TX and RX is not precluded and is intended to form part of a later release.

5.6A Channel bandwidth for CA

For intra-band contiguous carrier aggregation *Aggregated Channel Bandwidth*, *Aggregated Transmission Bandwidth Configuration* and *Guard Bands* are defined as follows, see Figure 5.6A-1.

NOTE 2: ² For the 20 MHz bandwidth, the minimum requirements are specified for E-UTRA UL carrier frequencies confined to either 713-723 MHz or 728-738 MHz

NOTE 3: ³ refers to the bandwidth for which the uplink transmission bandwidth can be restricted by the network for some channel assignments in FDD/TDD co-existence scenarios in order to meet unwanted emissions requirements (Clause 6.6.3.2).

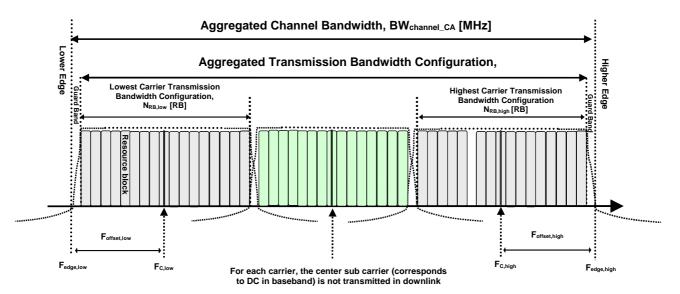


Figure 5.6A-1. Definition of Aggregated channel bandwidth and aggregated channel bandwidth edges

The aggregated channel bandwidth, BW_{Channel CA}, is defined as

$$BW_{Channel_CA} = F_{edge,high} - F_{edge,low}$$
 [MHz].

The lower bandwidth edge $F_{\text{edge,low}}$ and the upper bandwidth edge $F_{\text{edge,high}}$ of the aggregated channel bandwidth are used as frequency reference points for transmitter and receiver requirements and are defined by

$$F_{edge,low} = F_{C,low} - F_{offset,low}$$

$$F_{edge,high}\!=F_{C,high}+F_{offset,high}$$

The lower and upper frequency offsets depend on the transmission bandwidth configurations of the lowest and highest assigned edge component carrier and are defined as

$$F_{offset,low} = (0.18 N_{RB,low} + \Delta f_1)/2 + BW_{GB} [MHz]$$

$$F_{offset,high} = (0.18N_{RB,high} + \Delta f_1)/2 + BW_{GB} [MHz]$$

where $\Delta f_1 = \Delta f$ for the downlink with Δf the subcarrier spacing and $\Delta f_1 = 0$ for the uplink, while $N_{RB,low}$ and $N_{RB,high}$ are the transmission bandwidth configurations according to Table 5.6-1 for the lowest and highest assigned component carrier, respectively. BW_{GB} denotes the *Nominal Guard Band* and is defined in Table 5.6A-1, and the factor 0.18 is the PRB bandwidth in MHz.

NOTE: The values of BW_{Channel_CA} for UE and BS are the same if the lowest and the highest component carriers are identical.

Aggregated Transmission Bandwidth Configuration is the number of the aggregated RBs within the fully allocated Aggregated Channel bandwidth and is defined per CA Bandwidth Class (Table 5.6A-1).

For intra-band non-contiguous carrier aggregation *Sub-block Bandwidth* and *Sub-block edges* are defined as follows, see Figure 5.6A-2.

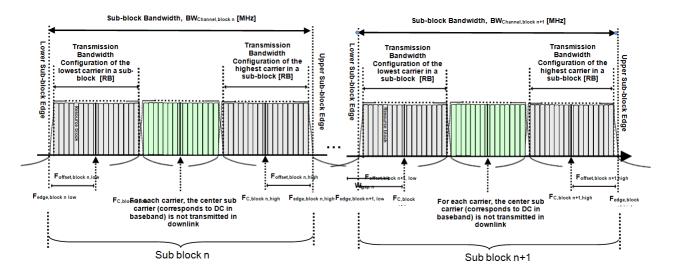


Figure 5.6A-2. Non-contiguous intraband CA terms and definitions

The lower sub-block edge of the Sub-block Bandwidth (BW_{Channel,block}) is defined as

$$F_{edge,block, low} = F_{C,block,low} - F_{offset,block, low}$$

The upper sub-block edge of the Sub-block Bandwidth is defined as

$$F_{edge,block,high} = F_{C,block,high} + F_{offset,block,high}$$

The Sub-block Bandwidth, BW_{Channel,block}, is defined as follows:

$${\tt BWChannel,block} = F_{\tt edge,block,high-Fedge,block,low~[MHz]}$$

The lower and upper frequency offsets F_{offset,block,low} and F_{offset,block,high} depend on the transmission bandwidth configurations of the lowest and highest assigned edge component carriers within a sub-block and are defined as

$$F_{offset,block,low} = (0.18N_{RB,low} + \Delta f_1)/2 + BW_{GB}[MHz]$$

$$F_{offset,block,high} = (0.18N_{RB,high} + \Delta f_1)/2 + BW_{GB}\left[MHz\right]$$

where $\Delta f_1 = \Delta f$ for the downlink with Δf the subcarrier spacing and $\Delta f_1 = 0$ for the uplink, while $N_{RB,low}$ and $N_{RB,high}$ are the transmission bandwidth configurations according to Table 5.6-1 for the lowest and highest assigned component carrier within a sub-block, respectively. BW_{GB} denotes the *Nominal Guard Band* and is defined in Table 5.6A-1, and the factor 0.18 is the PRB bandwidth in MHz.

The sub-block gap size between two consecutive sub-blocks W_{gap} is defined as

$$W_{\text{gap}} = F_{\text{edge,block n+1,low -}} \; F_{\text{edge,block n,high [MHz]}} \;$$

Table 5.6A-1: CA bandwidth classes and corresponding nominal guard bands

CA Bandwidth Class	Aggregated Transmission Bandwidth Configuration	Number of contiguous CC	Nominal Guard Band BW _{GB}
Α	N _{RB,agg} ≤ 100	1	a ₁ BW _{Channel(1)} - 0.5Δf ₁ (NOTE 2)
В	25 < N _{RB,agg} ≤ 100	2	0.05 $max(BW_{Channel(1)},BW_{Channel(2)})$ - 0.5 Δf_1
С	100 < N _{RB,agg} ≤ 200	2	$0.05 \ max(BW_{Channel(1)},BW_{Channel(2)}) - 0.5\Delta f_1$
D	200 < N _{RB,agg} ≤ 300	3	0.05 $max(BW_{Channel(1)},BW_{Channel(2)}, BW_{Channel(3)}) - 0.5\Delta f_1$
E	300 < N _{RB,agg} ≤ 400	4	NOTE 3
F	400 < N _{RB,agg} ≤ 500	5	NOTE 3

NOTE 1: BW_{Channel(j)}, j = 1, 2, 3, is the channel bandwidth of an E-UTRA component carrier according to Table 5.6-1 and $\Delta f_1 = \Delta f$ for the downlink with Δf the subcarrier spacing while $\Delta f_1 = 0$ for the uplink.

NOTE 2: $a_1 = 0.16/1.4$ for BW_{Channel(1)} = 1.4 MHz whereas $a_1 = 0.05$ for all other channel bandwidths.

NOTE 3: Applicaple for later releases.

The channel spacing between centre frequencies of contiguously aggregated component carriers is defined in subclause 5.7.1A.

5.6A.1 Channel bandwidths per operating band for CA

The requirements for carrier aggregation in this specification are defined for carrier aggregation configurations with associated bandwidth combination sets. For inter-band carrier aggregation, a *carrier aggregation configuration* is a combination of operating bands, each supporting a carrier aggregation bandwidth class. For intra-band contiguous carrier aggregation, a carrier aggregation configuration is a single operating band supporting a carrier aggregation bandwidth class.

For each carrier aggregation configuration, requirements are specified for all bandwidth combinations contained in a *bandwidth combination set*, which is indicated per supported band combination in the UE radio access capability. A UE can indicate support of several bandwidth combination sets per band combination.

Requirements for intra-band contiguous carrier aggregation are defined for the carrier aggregation configurations and bandwidth combination sets specified in Table 5.6A.1-1. Requirements for inter-band carrier aggregation are defined for the carrier aggregation configurations and bandwidth combination sets specified in Table 5.6A.1-2 and Table 5.6A.1-2a. Requirements for intra-band non-contiguous carrier aggregation are defined for the carrier aggregation configurations and bandwidth combination sets specified in Table 5.6A.1-3.

The DL component carrier combinations for a given CA configuration shall be symmetrical in relation to channel centre unless stated otherwise in Table 5.6A.1-1, Table 5.6A.1-2 and Table 5.6A.1-2a.

Table 5.6A.1-1: E-UTRA CA configurations and bandwidth combination sets defined for intra-band contiguous CA

	Uplink	E-UTRA CA configui Component carrie			set	
E-UTRA CA	CA	•	Maximum	Bandwidth		
configuratio n	configur ations (NOTE 3)	Channel bandwidths for carrier [MHz]	Channel bandwidths for carrier [MHz]	Channel bandwidths for carrier [MHz]	aggregated bandwidth [MHz]	combination n set
CA_1C	CA_1C	15	15		40	0
	0/(_/0	20	20		.0	
		5	20			
CA_2C		10	15, 20		40	0
O/ (15	10, 15, 20			Ü
		20	5, 10, 15, 20			
CA_3C	CA_3C	5, 10, 15	20		40	0
	20 5, 10, 15, 20					
		15	15		40	0
		20	20			Ŭ
CA_7C	CA_7C	10	20			
		15	15, 20		40	1
		20	10, 15, 20			
CA_12B	-	5	5, 10		15	0
CA 22D		10	10		20	0
CA_23B	-	5	15		20	0
		1.4, 3, 5	5			
CA_27B	CA_27B -	1.4, 3	10		13	0
CA_38C	CA 20C	15	15		40	0
CA_36C	CA_38C	20	20		40	O
CA_39C	CA_39C	5,10,15	20		35	0
CA_39C	CA_39C	20	5, 10, 15		33	0
		10	20			
		15	15		40	0
CA_40C	CA_40C	20	10, 20			
0Λ <u>-</u> 400	OA_ 1 00	10, 15	20			
		15	15		40	1
		20	10, 15, 20			
		10, 15, 20	20	20		
CA_40D	CA_40C	20	10, 15	20	60	0
		20	20	10, 15		
		10	20			
		15	15, 20		40	0
		20	10, 15, 20			
CA_41C	CA_41C	5, 10	20			
		15	15, 20		40	1
		20	5, 10, 15, 20			
		10	15, 20		40	2

		15	10, 15, 20			
		20	10, 15, 20			
		10	20	15		
		10	15, 20	20		
CA 44D	CA_41D	15	20	10, 15	60	0
CA_41D	CA_41C	15	10, 15, 20	20	60	0
		20	15, 20	10		
		20	10, 15, 20	15, 20		
CA_42C	CA 42C	5, 10, 15, 20	20		40	0
CA_42C	C CA_42C	20	5, 10, 15		40	U

NOTE 1: The CA configuration refers to an operating band and a CA bandwidth class specified in Table 5.6A-1 (the indexing letter). Absence of a CA bandwidth class for an operating band implies support of all classes

NOTE 2: For the supported CC bandwidth combinations, the CC downlink and uplink bandwidths are equal.

NOTE 3: Uplink CA configurations are the configurations supported by the present release of specifications.

Table 5.6A.1-2: E-UTRA CA configurations and bandwidth combination sets defined for inter-band CA (two bands)

	E-U1	RA CA c	onfigur	ation /	Bandw	idth co	mbina	tion set	1	
E-UTRA CA Configuration	Uplink CA configurations (NOTE 4)	E- UTRA Bands	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	Maximum aggregated bandwidth [MHz]	Bandwidth combination set
CA_1A-3A	CA_1A-3A	1 3			Yes Yes	Yes Yes	Yes Yes	Yes Yes	40	0
		1			100	Yes				
04 44 54	00.40.50	5				Yes			20	0
CA_1A-5A	CA_1A-5A	1			Yes	Yes	Yes	Yes	30	1
		5			Yes	Yes			30	1
CA_1A-7A	CA_1A-7A	1			Yes	Yes	Yes	Yes	40	0
<u> </u>	G/(_!////	7			.,	Yes	Yes	Yes		
		1			Yes	Yes	Yes	Yes	30	0
		8			Yes	Yes	-			
CA_1A-8A	CA_1A-8A	8			Yes Yes	Yes			20	1
		1			Yes	Yes Yes	Yes	Yes		
		8		Yes	Yes	Yes	165	162	30	2
		1		163	Yes	Yes	Yes	Yes		
CA_1A-11A	-	11			Yes	Yes	103	103	30	0
		1			Yes	Yes	Yes	Yes		_
		18			Yes	Yes	Yes		35	0
CA_1A-18A	-	1			Yes	Yes				
		18			Yes	Yes			20	1
00 40 400	04 44 404	1			Yes	Yes	Yes	Yes	0.5	•
CA_1A-19A	CA_1A-19A	19			Yes	Yes	Yes		35	0
CA 1A 20A		1			Yes	Yes	Yes	Yes	40	0
CA_1A-20A	-	20			Yes	Yes	Yes	Yes	40	U
CA_1A-21A	CA_1A-21A	1			Yes	Yes	Yes	Yes	35	0
0A_1A-21A	OA_IA-ZIA	21			Yes	Yes	Yes		33	0
		1			Yes	Yes	Yes	Yes	35	0
CA_1A-26A	-	26			Yes	Yes	Yes			•
		1			Yes	Yes			20	1
		26			Yes	Yes		V		
		28 ⁵			Yes Yes	Yes Yes	Yes	Yes	40	0
CA_1A-28A	-	1			Yes	Yes	Yes	Yes		
		285			Yes	Yes			20	1
		1			Yes	Yes	Yes	Yes		
CA_1A-41A ⁵	-	41			Yes	Yes	Yes	Yes	40	0
		1			Yes	Yes	Yes	Yes		
CA_1A-41C ⁵	-	41	See		C Band 1 in Tab		Combina		60	0
0.4.4.40.4		1			Yes	Yes	Yes	Yes	40	^
CA_1A-42A	-	42			Yes	Yes	Yes	Yes	40	0
		1			Yes	Yes	Yes	Yes		
CA_1A-42C	-	42	See		C Band 0 in Tal		Combina A.1-1	ation	60	0
		2	Yes	Yes	Yes	Yes	Yes	Yes	40	0
		4			Yes	Yes	Yes	Yes	40	0
CA_2A-4A	CA_2A-4A	2			Yes	Yes			20	1
O. (_Z. (- 1 /\	J. (_Z.) (=∓/\	4			Yes	Yes				,
		2			Yes	Yes	Yes	Yes	40	2
		4			Yes	Yes	Yes	Yes		_
CA_2A-4A-4A	-	2 4	See				Yes Combir	Yes nation	60	0
				Set	0 in Tal			l		
CA_2A-5A	-	2			Yes	Yes	Yes	Yes	30	0

,		•		,						,
		5			Yes	Yes				
		2			Yes	Yes			20	1
		5			Yes	Yes			20	I
		2	See	CA_2A-				nation		
CA_2A-2A-5A	-			Set	0 in Tal		\.1-3	1	50	0
		5			Yes	Yes				
		2			Yes	Yes	Yes	Yes	30	0
CA_2A-12A		12			Yes	Yes			30	U
CA_2A-12A	-	2			Yes	Yes	Yes	Yes	20	4
		12		Yes	Yes	Yes			30	1
		2			Yes	Yes	Yes	Yes		
CA_2A-12B	-	12	See	CA_12					35	0
_					0 in Tal					
		2			Yes	Yes	Yes	Yes		_
		13				Yes			30	0
CA_2A-13A	CA_2A-13A	2			Yes	Yes				
		13			100	Yes			20	1
		2	Soo	CA 2A-	ΩΛ Ran		Combin	ation		
CA_2A-2A-	_	_	366		0 in Tal			lation	50	0
13A	_	13		001		Yes	\. \ J		30	
		2	 	-	Yes	Yes	-			
CA_2A-17A	-	17	1	1			 		20	0
		1	 		Yes	Yes	 			
		2		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Yes	Yes	 		20	0
		29		Yes	Yes	Yes				
CA_2A-29A	_	2			Yes	Yes			20	1
07. <u></u> 7.1_07.1		29			Yes	Yes				·
		2			Yes	Yes	Yes	Yes	30	2
		29			Yes	Yes			30	
		2	See CA_2C Bandwidth Combination Set							
CA_2C-29A	-			0	in table	5.6A.1	-1		50	0
		29			Yes	Yes				
CA		2			Yes	Yes	Yes	Yes	20	0
CA_2A-30A	-	30			Yes	Yes			30	0
		3				Yes	Yes	Yes	0.0	
		5			Yes	Yes			30	0
		3				Yes				
CA_3A-5A	CA_3A-5A	5			Yes	Yes			20	1
		3			Yes	Yes	Yes	Yes		
		5			Yes	Yes	100	100	30	2
		3			Yes	Yes	Yes	Yes		
CA_3A-7A	CA_3A-7A	7			163	Yes	Yes	Yes	40	0
					\/					
CA_3A-7C		3	0	04 70	Yes	Yes	Yes	Yes	60	0
CA_3A-7C	-	7	See	CA_7C	in table			n set	60	0
			S00 (CA_3C				n Sot		
CA_3C-7A	_	3	366 (in table			ni Set	60	0
0A_30-1A	-	7	 	<u> </u>	Yes	Yes	Yes	Yes	00	
		3	1	1	169	Yes	Yes	Yes		
			 	-	Var		168	168	30	0
		8	ļ		Yes	Yes	1			
CA_3A-8A	CA_3A-8A	3	-	1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Yes	-		20	1
-	_	8	<u> </u>		Yes	Yes	\			
		3	ļ		Yes	Yes	Yes	Yes	30	2
		8	<u> </u>	Yes	Yes	Yes				_
CA_3A-19A	CA_3A-19A	3			Yes	Yes	Yes	Yes	35	0
5/_5/\ 13/\	5/1_5/13/A	19			Yes	Yes	Yes			J
		3			Yes	Yes	Yes	Yes	30	
04 04 004	04 04 004	20			Yes	Yes			30	0
CA_3A-20A	CA_3A-20A	3			Yes	Yes	Yes	Yes	40	,
		20	1		Yes	Yes	Yes	Yes	40	1
		3	<u> </u>		Yes	Yes	Yes	Yes		
CA_3A-26A	CA_3A-26A	26	1	-	Yes	Yes	Yes	. 00	35	0
J/_UA-2UA	UN_UM-2UM	3	1		Yes	Yes	103		20	1
		<u> </u>		<u> </u>	162	162			∠∪	<u> </u>

	1	26	l	l	Yes	Yes				
		3			Yes	Yes	Yes	Yes		
CA_3A-27A	-	27			Yes	Yes	163	163	30	0
		3			Yes	Yes	Yes	Yes		
CA_3A-28A	-	28			Yes	Yes	Yes	Yes	40	0
		3 ⁵			Yes	Yes	Yes	Yes		
CA_3A-42A	-	42			Yes	Yes	Yes	Yes	40	0
		33			Yes	Yes	Yes	Yes		
CA_3A-42C	-	42		Se	ee Table				60	0
		4			Yes	Yes				
		5			Yes	Yes			20	0
CA_4A-5A	-	4			Yes	Yes	Yes	Yes		_
		5			Yes	Yes			30	1
		İ	See	CA 4A-	4A Ban		Combir	nation		
CA_4A-4A-5A	-	4			0 in tab				50	0
		5			Yes	Yes				
CA_4A-7A	CA_4A-7A	4			Yes	Yes			30	0
CA_4A-7A	CA_4A-7A	7			Yes	Yes	Yes	Yes	30	U
		4			Yes	Yes				
CA_4A-4A-7A	-	4			Yes	Yes			40	0
		7			Yes	Yes	Yes	Yes		
		4	Yes	Yes	Yes	Yes			20	0
		12 ⁵			Yes	Yes			20	•
		4	Yes	Yes	Yes	Yes	Yes	Yes	30	1
		12 ⁵			Yes	Yes			00	•
CA_4A-12A	CA_4A-12A	4			Yes	Yes	Yes	Yes	30	2
O/(_ // 12/(0/(_1/(12/(12 ⁵		Yes	Yes	Yes			- 00	_
		4			Yes	Yes			20	3
		12 ⁵			Yes	Yes			20	
		4			Yes	Yes	Yes	Yes	30	4
		12 ⁵			Yes	Yes	<u> </u>	<u> </u>		-
CA_4A-4A-		4	See		4A Ban			nation	50	0
_ 12A	-	12 ⁵		Set	0 in Tal Yes	Yes	1.1-3	1	50	0
		4			Yes	Yes	Yes	Yes		
CA_4A-12B	_	12 ⁵	Soo	CA 12	B Band				35	0
OA_ 1 A-12B	_	12	366		0 in Tal			allOH	33	0
		4			Yes	Yes	Yes	Yes		
		13				Yes			30	0
CA_4A-13A	CA_4A-13A	4			Yes	Yes				_
		13				Yes			20	1
OA 44 44		4	See	CA_4A-	4A Ban		Combir	nation		
CA_4A-4A- 13A	-				0 in Tal	ole 5.6/		_	50	0
13A		13				Yes				
CA_4A-17A	CA_4A-17A	4			Yes	Yes			20	0
5/ - // 1///	5/ 4 /. 1//	17 ⁵			Yes	Yes		ļ	20	
CA_4A-27A	-	4			Yes	Yes	Yes	Yes	30	0
<u> </u>		27		Yes	Yes	Yes			30	
		4			Yes	Yes		ļ	20	0
		29		Yes	Yes	Yes		ļ		_
CA_4A-29A	-	4			Yes	Yes			20	1
		29			Yes	Yes	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<u></u>		-
		4			Yes	Yes	Yes	Yes	30	2
		29			Yes	Yes	V	V		
CA_4A-30A	-	4			Yes	Yes	Yes	Yes	30	0
		30	V	V	Yes	Yes		 		
CA_5A-7A	CA_5A-7A	5 7	Yes	Yes	Yes	Yes	\/	V	30	0
O/_O/\ //\	UA_3A-1A		i	Î.	l	Yes	Yes	Yes		
	UA_3A-7A				V					
CA_5A-12A	CA_5A-12A	5			Yes	Yes			20	0
		5 12			Yes	Yes Yes			20	0
		5				Yes			20 20	0

CA_5A-17A	CA_5A-17A	5			Yes	Yes			20	0
		17			Yes	Yes				
CA_5A-25A	_	5			Yes	Yes			30	0
0/1_0/1 20/1		25			Yes	Yes	Yes	Yes		Ŭ
CA_5A-30A		5			Yes	Yes			20	0
CA_SA-SUA	-	30			Yes	Yes			20	0
		7				Yes	Yes	Yes		
CA_7A-8A	-	8 ⁵		Yes	Yes	Yes			30	0
		7			Yes	Yes	Yes	Yes		
CA_7A-12A	-	12			Yes	Yes	163	103	30	0
					165		\/	\/		
		7				Yes	Yes	Yes	30	0
CA_7A-20A	CA_7A-20A	20			Yes	Yes				-
0/_//\\20/\	0/1_//\ _0/\	7				Yes	Yes	Yes	40	1
		20			Yes	Yes	Yes	Yes	70	'
04 74 004	04 74 004	7			Yes	Yes	Yes	Yes	0.5	_
CA_7A-28A	CA_7A-28A	28			Yes	Yes	Yes		35	0
		8			Yes	Yes				
CA_8A-11A	-	11			Yes	Yes			20	0
		8	1				1			
			1		Yes	Yes	1		20	0
CA_8A-20A	_	20	ļ		Yes	Yes	ļ			
0. (_0. (_0. (8		Yes	Yes	Yes			20	1
		20			Yes	Yes				'
CA 9A 40A		8			Yes	Yes			30	0
CA_8A-40A	-	40			Yes	Yes	Yes	Yes	30	0
		11			Yes	Yes				_
CA_11A-18A	-	18			Yes	Yes	Yes		25	0
		12			Yes	Yes				
CA_12A-25A	-	25			Yes	Yes	Yes	Yes	30	0
		12			Yes	Yes	163	103		
CA_12A-30A	-		-				-		20	0
		30			Yes	Yes				
CA_18A-28A	_	18			Yes	Yes	Yes		25	0
071_1071_2071		28			Yes	Yes				Ů
CA_19A-21A	CA_19A-21A	19			Yes	Yes	Yes		30	0
CA_IBA-ZIA	CA_19A-21A	21			Yes	Yes	Yes		30	U
04 454 454		19			Yes	Yes	Yes			_
CA_19A-42A	-	42			Yes	Yes	Yes	Yes	35	0
		19			Yes	Yes	Yes			
CA_19A-42C	_		Soo	CA 42	C Band			ation	55	0
OA_13A-420	_	42	366		0 in Tal			allOH	33	
		20		361	Yes	Yes	1.1-1			
CA_20A-32A	-						\/	\/	30	0
		32	<u> </u>		Yes	Yes	Yes	Yes		
		23			Yes	Yes	Yes	Yes	30	0
CA_23A-29A	_	29		Yes	Yes	Yes				
ON_20N°23M	_	23	<u></u>	<u> </u>	Yes	Yes	<u> </u>	<u> </u>	20	1
		29		Yes	Yes	Yes			∠∪	'
04 05: :::5		25			Yes	Yes	Yes	Yes	4-	-
CA_25A-41A ⁵	-	41	İ		Yes	Yes	Yes	Yes	40	0
		25			Yes	Yes	Yes	Yes		
CA_25A-41C ⁵	_		Soo	CA 41	C Band				60	0
0/1_20/1410		41	366		1 in Tal			allOH	00	
		26		361	Yes	Yes	Yes			
CA_26A-41A	-	41	1					Var	35	0
			-		Yes	Yes	Yes	Yes		
04 004 440		26	<u> </u>	0.1.1	Yes	Yes	Yes	<u> </u>		
CA_26A-41C	-	41	See		C Band			ation	55	0
			ļ	Set	1 in Tab		4.1-1	1		
CA_29A-30A	_	29			Yes	Yes			20	0
Lo, . oo, .		30			Yes	Yes				
CA_39A-41A	CA_39A-41A	39				Yes	Yes	Yes	40	0
UA_33A-41A	UA_33A-41A	41	<u> </u>		<u> </u>		<u> </u>	Yes	-1 0	
CA 20A 440		39				Yes	Yes	Yes		
CA_39A-41C	-	41						Yes	60	0
I	1		1				1			1

		41						Yes		
		39	See	CA_39	C Band	width C	Combina	ation		
CA_39C-41A	-			Set	0 in Tab	le 5.6A	۱.1-1		55	0
		41						Yes		
CA 44A 42A		41				Yes	Yes	Yes	40	0
CA_41A-42A	-	42				Yes	Yes	Yes	40	U

NOTE 1: The CA Configuration refers to a combination of an operating band and a CA bandwidth class specified in Table 5.6A-1 (the indexing letter). Absence of a CA bandwidth class for an operating band implies support of all classes.

NOTE 2: For each band combination, all combinations of indicated bandwidths belong to the set.

NOTE 3: For the supported CC bandwidth combinations, the CC downlink and uplink bandwidths are equal.

NOTE 4: Uplink CA configurations are the configurations supported by the present release of specifications.

NOTE 5: For the corresponding CA configuration, UE may not support Pcell transmissions in this E-UTRA band.

Table 5.6A.1-2a: E-UTRA CA configurations and bandwidth combination sets defined for inter-band CA (three bands)

		E-UTRA C	A configu	uration /	Bandwid	Ith comb	ination	set		
E-UTRA CA Configuration	Uplink CA configurations (NOTE 5)	E- UTRA Bands	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	Maximum aggregated bandwidth [MHz]	Bandwidth combination set
		1			Yes	Yes	Yes	Yes		
		3			Yes	Yes	Yes	Yes	50	0
CA_1A-3A-5A		5			Yes	Yes				
CA_IA-3A-3A	-	1			Yes	Yes				
		3			Yes	Yes	Yes	Yes	40	1
		5			Yes	Yes				
		1			Yes	Yes	Yes	Yes		
		3		.,	Yes	Yes	Yes	Yes	50	0
		8		Yes	Yes	Yes				
04 44 04 04		1			Yes	Yes	V	V	40	4
CA_1A-3A-8A	-	3		\/	Yes	Yes	Yes	Yes	40	1
		8		Yes	Yes	Yes	V			
		1			Yes	Yes	Yes		40	0
		3		\/a-	Yes	Yes	Yes		40	2
		8		Yes	Yes	Yes	Voc	Voc		
CA 1A 2A 10A		3		1	Yes Yes	Yes Yes	Yes Yes	Yes Yes	- F-	_
CA_1A-3A-19A	-	19			Yes		Yes	res	55	0
		19				Yes Yes	Yes	Yes		
CA 1A 2A 26A					Yes				F0	0
CA_1A-3A-26A	-	3			Yes	Yes	Yes	Yes	50	0
		26 1			Yes Yes	Yes Yes	Yes	Yes		
CA 1A 2A 20A		3			Yes	Yes	Yes	Yes	60	0
CA_1A-3A-20A	-	20			Yes	Yes	Yes	Yes	60	U
					Yes	Yes	res	res		
		1 5			Yes	Yes			40	0
		7			165	Yes	Yes	Yes	40	U
CA_1A-5A-7A	-	1			Yes	Yes	Yes	Yes		
		5			Yes	Yes	165	162	50	1
		7			165	Yes	Yes	Yes	50	
		1			Yes	Yes	Yes	Yes		
CA_1A-7A-20A	_	7			163	Yes	Yes	Yes	50	0
OA_1A-1A-20A	_	20			Yes	Yes	163	163	. 50	O
		1			Yes	Yes	Yes	Yes		
		18			Yes	Yes	Yes	103	45	0
		28			Yes	Yes	100		1 .0	o o
CA_1A-18A-28A	-	1			Yes	Yes	Yes	Yes		
		18			Yes	Yes	100	100	40	1
		28			Yes	Yes			1	
		1			Yes	Yes	Yes	Yes		
CA_1A-19A-21A	_	19			Yes	Yes	Yes	. 00	50	0
57		21			Yes	Yes	Yes		1	
		2			Yes	Yes	Yes	Yes		
CA_2A-4A-5A	_	4			Yes	Yes	Yes	Yes	50	0
UA_2A-4A-3A	-				Yes	Yes	169	169	30	
		5		-			Vaa	Vaa		
04 04 44 464	ļ	2		-	Yes	Yes	Yes	Yes		_
CA_2A-4A-12A	-	4			Yes	Yes	Yes	Yes	50	0
		12			Yes	Yes	\			
		2			Yes	Yes	Yes	Yes		
CA_2A-4A-13A	-	4			Yes	Yes	Yes	Yes	50	0
		13				Yes				
		2			Yes	Yes	Yes	Yes		-
CA_2A-4A-29A	-	4			Yes	Yes	Yes	Yes	50	0
CA_2A-4A-29A	-	29		I .	Yes	Yes			<u>s</u> 50	U
		29			103	103				
CA_2A-5A-12A		29			Yes	Yes	Yes	Yes	40	0

		12		Yes	Yes				
		2		Yes	Yes	Yes	Yes		
CA_2A-5A-13A	-	5		Yes	Yes			40	0
		13			Yes				
		2		Yes	Yes	Yes	Yes		
CA_2A-5A-30A	-	5		Yes	Yes			40	0
		30		Yes	Yes				
		2		Yes	Yes	Yes	Yes		
CA_2A-12A-30A	-	12		Yes	Yes			40	0
		30		Yes	Yes]	
		2		Yes	Yes	Yes	Yes		
CA_2A-29A-30A	-	29		Yes	Yes			40	0
		30		Yes	Yes				
		3		Yes	Yes	Yes	Yes		
CA_3A-7A-20A	-	7			Yes	Yes	Yes	60	0
		20		Yes	Yes	Yes	Yes		
		4		Yes	Yes	Yes	Yes		
CA_4A-5A-12A	-	5		Yes	Yes			40	0
		12		Yes	Yes				
		4		Yes	Yes	Yes	Yes		
CA_4A-5A-13A	-	5		Yes	Yes			40	0
		13			Yes]	
		4		Yes	Yes	Yes	Yes		
CA_4A-5A-30A	-	5		Yes	Yes			40	0
		30		Yes	Yes]	
		4		Yes	Yes				
CA_4A-7A-12A	-	7		Yes	Yes	Yes	Yes	40	0
		12 ⁶		Yes	Yes]	
		4		Yes	Yes	Yes	Yes		
CA_4A-12A-30A	-	12		Yes	Yes			40	0
		30		Yes	Yes]	
		4		Yes	Yes	Yes	Yes		
CA_4A-29A-30A	-	29		Yes	Yes			40	0
		30		Yes	Yes				
		7			Yes	Yes	Yes		
CA_7A-8A-20A	-	86	Yes	Yes	Yes			40	0
		20		Yes	Yes				

NOTE 1: The CA Configuration refers to a combination of an operating band and a CA bandwidth class specified in Table 5.6A-1 (the indexing letter). Absence of a CA bandwidth class for an operating band implies support of all classes.

NOTE 2: For each band combination, all combinations of indicated bandwidths belong to the set.

NOTE 3: For the supported CC bandwidth combinations, the CC downlink and uplink bandwidths are equal.

NOTE 4: A terminal which supports a DL CA configuration shall support all the lower order fallback DL CA combinations and it shall support at least one bandwidth combination set for each of the constituent lower order DL combinations containing all the bandwidths specified within each specific combination set of the upper order DL combination.

NOTE 5: Uplink CA configurations are the configurations supported by the present release of specifications.

NOTE 6: For the corresponding CA configuration, UE may not support Pcell transmissions in this E-UTRA band.

Table 5.6A.1-3: E-UTRA CA configurations and bandwidth combination sets defined for noncontiguous intra-band CA (with two sub-blocks)

	E-UTRA CA configuration / Bandwidth combination set							
	Uplink CA	increas	ent carriers in sing carrier fre	quency	Maximum	Bandwidth		
E-UTRACA configuration	configurations (NOTE 1)	Channel bandwidths for carrier [MHz]	Channel bandwidths for carrier [MHz]	Channel bandwidths for carrier [MHz]	aggregated bandwidth [MHz]	combination set		
CA_2A-2A	-	5, 10, 15, 20	5, 10, 15, 20		40	0		
CA_3A-3A	-	5, 10, 15, 20	5, 10, 15, 20		40	0		
CA_4A-4A	CA_4A-4A	5, 10, 15, 20	5, 10, 15, 20		40	0		
		5	15			0		
CA_7A-7A	_	10	10, 15		40			
5 /		15	15, 20		_			
		20	20					
CA_23A-23A	-	5	10		15	0		
		5, 10	5, 10		20	0		
CA_25A-25A	-	5, 10, 15, 20	5, 10, 15, 20		40	1		
		10, 15, 20	10, 15, 20		40	0		
CA_41A-41A	-	5, 10, 15, 20	5, 10, 15, 20		40	1		
01.441.446		5, 10, 15, 20		C Bandwidth Set 1 in Table 3.1-1	00			
CA_41A-41C	-	See CA_41C Bandwidth Combination Set 1 in Table 5.6A.1-1		5, 10, 15, 20	60	0		
CA_42A-42A		5, 10, 15, 20	5, 10, 15, 20		40	0		
NOTE 1: Uplin	k CA configuration	s are the config	gurations suppo	rted by the pres	ent release of	specifications.		

5.6B Channel bandwidth for UL-MIMO

The requirements specified in subclause 5.6 are applicable to UE supporting UL-MIMO.

5.6B.1 Void

5.6C Channel bandwidth for Dual Connectivity

For E-UTRA DC bands specified in 5.5C, the corresponding E-UTRA CA configurations in 5.6A.1, i.e., dual uplink inter-band carrier aggregation with uplink assigned to two E-UTRA bands, are applicable to Dual Connectivity.

NOTE 1: Requirements for the dual connectivity configurations are defined in the sections corresponding E-UTRA uplink CA configurations, unless otherwise specified.

NOTE 2: For TDD inter-band dual connectivity configurations, requirements are applicable only for synchronous operation.5.6C.1 Void

5.6D Channel bandwidth for ProSe

5.6D.1 Channel bandwidths per operating band for ProSe

The ProSe combination of channel bandwidths and operating bands is shown in Table 5.6D.1-1 and Table 5.6D.1-2. The transmission bandwidth configuration in Table 5.6D.1-1 and Table 5.6D.1-2 shall be supported for each of the specified channel bandwidths. The same (symmetrical) channel bandwidth is specified for both the TX and RX path.

Table 5.6D.1-1 ProSe Direct Discovery channel bandwidth

	E-UTRA ProSe band / ProSe channel bandwidth								
E-UTRA ProSe Band	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz			
2			Yes	Yes	Yes	Yes			
3			Yes	Yes	Yes	Yes			
4			Yes	Yes	Yes	Yes			
7			Yes	Yes	Yes	Yes			
14			Yes	Yes					
20			Yes	Yes	Yes	Yes			
26			Yes	Yes	Yes				
28			Yes	Yes	Yes	Yes			
31			Yes						
41			Yes	Yes	Yes	Yes			

Table 5.6D.1-2 ProSe Direct Communication channel bandwidth

	E-UTRA ProSe band / ProSe channel bandwidth								
E-UTRA ProSe Band	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz			
3				Yes					
7				Yes					
14				Yes					
20				Yes					
26				Yes					
28				Yes					
31			Yes						

5.7 Channel arrangement

5.7.1 Channel spacing

The spacing between carriers will depend on the deployment scenario, the size of the frequency block available and the channel bandwidths. The nominal channel spacing between two adjacent E-UTRA carriers is defined as following:

Nominal Channel spacing = $(BW_{Channel(1)} + BW_{Channel(2)})/2$

where $BW_{Channel(1)}$ and $BW_{Channel(2)}$ are the channel bandwidths of the two respective E-UTRA carriers. The channel spacing can be adjusted to optimize performance in a particular deployment scenario.

5.7.1A Channel spacing for CA

For intra-band contiguous carrier aggregation with two or more component carriers, the nominal channel spacing between two adjacent E-UTRA component carriers is defined as the following:

Nominal channel spacing =
$$\frac{BW_{Channel(1)} + BW_{Channel(2)} - 0.1 |BW_{Channel(1)} - BW_{Channel(2)}|}{0.6}$$
 0.3 [MHz]

where $BW_{Channel(1)}$ and $BW_{Channel(2)}$ are the channel bandwidths of the two respective E-UTRA component carriers according to Table 5.6-1 with values in MHz. The channel spacing for intra-band contiguous carrier aggregation can be adjusted to any multiple of 300 kHz less than the nominal channel spacing to optimize performance in a particular deployment scenario.

For intra-band non-contiguous carrier aggregation the channel spacing between two E-UTRA component carriers in different sub-blocks shall be larger than the nominal channel spacing defined in this subclause.

5.7.2 Channel raster

The channel raster is 100 kHz for all bands, which means that the carrier centre frequency must be an integer multiple of 100 kHz.

5.7.2A Channel raster for CA

For carrier aggregation the channel raster is 100 kHz for all bands, which means that the carrier centre frequency must be an integer multiple of 100 kHz.

5.7.3 Carrier frequency and EARFCN

The carrier frequency in the uplink and downlink is designated by the E-UTRA Absolute Radio Frequency Channel Number (EARFCN) in the range 0-65535. The relation between EARFCN and the carrier frequency in MHz for the downlink is given by the following equation, where F_{DL_low} and $N_{Offs-DL}$ are given in Table 5.7.3-1 and N_{DL} is the downlink EARFCN.

$$F_{DL} = F_{DL low} + 0.1(N_{DL} - N_{Offs-DL})$$

The relation between EARFCN and the carrier frequency in MHz for the uplink is given by the following equation where $F_{UL\ low}$ and $N_{Offs\text{-}UL}$ are given in Table 5.7.3-1 and N_{UL} is the uplink EARFCN.

$$F_{UL} = F_{UL \ low} + 0.1(N_{UL} - N_{Offs-UL})$$

Table 5.7.3-1: E-UTRA channel numbers

E-UTRA		Downlink			Uplink	
Operating Band	F _{DL_low} (MHz)	Noffs-DL	Range of N _{DL}	Ful_low (MHz)	Noffs-UL	Range of N _{∪L}
1	2110	0	0 - 599	1920	18000	18000 - 18599
2	1930	600	600 – 1199	1850	18600	18600 – 19199
3	1805	1200	1200 – 1949	1710	19200	19200 – 19949
4	2110	1950	1950 – 2399	1710	19950	19950 - 20399
5	869	2400	2400 - 2649	824	20400	20400 - 20649
6	875	2650	2650 - 2749	830	20650	20650 - 20749
7	2620	2750	2750 - 3449	2500	20750	20750 - 21449
8	925	3450	3450 - 3799	880	21450	21450 - 21799
9	1844.9	3800	3800 - 4149	1749.9	21800	21800 - 22149
10	2110	4150	4150 - 4749	1710	22150	22150 - 22749
11	1475.9	4750	4750 – 4949	1427.9	22750	22750 - 22949
12	729	5010	5010 - 5179	699	23010	23010 - 23179
13	746	5180	5180 - 5279	777	23180	23180 - 23279
14	758	5280	5280 - 5379	788	23280	23280 - 23379
17	734	5730	5730 - 5849	704	23730	23730 - 23849
18	860	5850	5850 - 5999	815	23850	23850 - 23999
19	875	6000	6000 - 6149	830	24000	24000 – 24149
20	791	6150	6150 - 6449	832	24150	24150 – 24449
21	1495.9	6450	6450 - 6599	1447.9	24450	24450 – 24599
22	3510	6600	6600 - 7399	3410	24600	24600 - 25399
23	2180	7500	7500 – 7699	2000	25500	25500 – 25699
24	1525	7700	7700 – 8039	1626.5	25700	25700 - 26039
25	1930	8040	8040 - 8689	1850	26040	26040 - 26689
26	859	8690	8690 - 9039	814	26690	26690 - 27039
27	852	9040	9040 - 9209	807	27040	27040 – 27209
28	758	9210	9210 – 9659	703	27210	27210 – 27659
29 ²	717	9660	9660 - 9769		N/A	•
30	2350	9770	9770 – 9869	2305	27660	27660 - 27759
31	462.5	9870	9870 – 9919	452.5	27760	27760 – 27809
322	1452	9920	9920 - 10359		N/A	•
33	1900	36000	36000 - 36199	1900	36000	36000 - 36199
34	2010	36200	36200 - 36349	2010	36200	36200 - 36349
35	1850	36350	36350 - 36949	1850	36350	36350 - 36949
36	1930	36950	36950 - 37549	1930	36950	36950 - 37549
37	1910	37550	37550 - 37749	1910	37550	37550 - 37749
38	2570	37750	37750 – 38249	2570	37750	37750 – 38249
39	1880	38250	38250 - 38649	1880	38250	38250 - 38649
40	2300	38650	38650 - 39649	2300	38650	38650 - 39649
41	2496	39650	39650 -41589	2496	39650	39650 -41589
42	3400	41590	41590 – 43589	3400	41590	41590 – 43589
43	3600	43590	43590 – 45589	3600	43590	43590 – 45589
44	703	45590	45590 – 46589	703	45590	45590 – 46589

NOTE 1: The channel numbers that designate carrier frequencies so close to the operating band edges that the carrier extends beyond the operating band edge shall not be used. This implies that the first 7, 15, 25, 50, 75 and 100 channel numbers at the lower operating band edge and the last 6, 14, 24, 49, 74 and 99 channel numbers at the upper operating band edge shall not be used for channel bandwidths of 1.4, 3, 5, 10, 15 and 20 MHz respectively.

NOTE 2: Restricted to E-UTRA operation when carrier aggregation is configured.

NOTE 3: For ProSe the corresponding UL channel number are also specified for the DL for the associated ProSe operating bands i.e. ProSe_FuL = FuL and ProSe_FpL = FuL.

5.7.4 TX-RX frequency separation

a) The default E-UTRA TX channel (carrier centre frequency) to RX channel (carrier centre frequency) separation is specified in Table 5.7.4-1 for the TX and RX channel bandwidths defined in Table 5.6.1-1

Table 5.7.4-1: Default UE TX-RX frequency separation

E-UTRA Operating Band	TX – RX carrier centre frequency separation
1	190 MHz
2	80 MHz.
3	95 MHz.
4	400 MHz
5	45 MHz
6	45 MHz
7	120 MHz
8	45 MHz
9	95 MHz
10	400 MHz
11	48 MHz
12	30 MHz
13	-31 MHz
14	-30 MHz
17	30 MHz
18	45 MHz
19	45 MHz
20	-41 MHz
21	48 MHz
22	100 MHz
23	180 MHz
24	-101.5 MHz
25	80 MHz
26	45 MHz
27	45 MHz
28	55 MHz
30	45 MHz
31	10 MHz

b) The use of other TX channel to RX channel carrier centre frequency separation is not precluded and is intended to form part of a later release.

5.7.4A TX-RX frequency separation for CA

For intra-band contiguous carrier aggregation, the same TX-RX frequency separation as specified in Table 5.7.4-1 is applied to PCC and SCC, respectively.

6 Transmitter characteristics

6.1 General

Unless otherwise stated, the transmitter characteristics are specified at the antenna connector of the UE with a single or multiple transmit antenna(s). For UE with integral antenna only, a reference antenna with a gain of 0 dBi is assumed.

6.2 Transmit power

6.2.1 Void

6.2.2 UE maximum output power

The following UE Power Classes define the maximum output power for any transmission bandwidth within the channel bandwidth for non CA configuration unless otherwise stated. The period of measurement shall be at least one sub frame (1ms).

Table 6.2.2-1: UE Power Class

EUTRA band	Class 1 (dBm)	Tolerance (dB)	Class 2 (dBm)	Tolerance (dB)	Class 3 (dBm)	Tolerance (dB)	Class 4 (dBm)	Tolerance (dB)
1					23	±2		
2					23	±2 ²		
3					23	±2 ²		
4					23	±2		
5					23	±2		
6					23	±2		
7					23	±2 ²		
8					23	±2 ²		
9					23	±2		
10					23	±2		
11					23	±2		
12					23	±2 ²		
13					23	±2		
14	31	+2/-3			23	±2		
	0.	12, 0						
17					23	±2		
18					23	±2 ⁵		
19					23	±2		
20					23	±2 ²		
21					23	±2		
22					23	+2/-3.5 ²		
23					23 ⁶	±2 ⁶		
24					23	±2		
25					23	±2 ²		
26					23	±2 ²		
27					23	±2		
28					23	+2/-2.5		
30					23			
31					23	±2 ±2		
					23	±2		
					00	.0		
33					23	±2		
34					23	±2		
35					23	±2		
36					23	±2		
37					23	±2		
38					23	±2		
39					23	±2		
40					23	±2		
41					23	±2 ²		
42					23	+2/-3		
43					23	+2/-3		
44					23	+2/[-3]		

NOTE 1: Void

NOTE 2: 2 refers to the transmission bandwidths (Figure 5.6-1) confined within F_{UL_low} and F_{UL_low} + 4 MHz or F_{UL_high} - 4 MHz and F_{UL_high}, the maximum output power requirement is relaxed by reducing the lower tolerance limit by 1.5 dB

NOTE 3: For the UE which supports both Band 11 and Band 21 operating frequencies, the tolerance is FFS.

NOTE 4: P_{PowerClass} is the maximum UE power specified without taking into account the tolerance

NOTE 5: For a UE that supports both Band 18 and Band 26, the maximum output power requirement is relaxed by reducing the lower tolerance limit by 1.5 dB for transmission bandwidths confined within 815 MHz and 818 MHz.

NOTE 6: When NS_20 is signalled, the total output power within 2000-2005 MHz shall be limited to 7 dBm.

6.2.2A UE maximum output power for CA

The following UE Power Classes define the maximum output power for any transmission bandwidth within the aggregated channel bandwidth.

The maximum output power is measured as the sum of the maximum output power at each UE antenna connector. The period of measurement shall be at least one sub frame (1ms).

For inter-band carrier aggregation with uplink assigned to one E-UTRA band the requirements in subclause 6.2.2 apply.

For inter-band carrier aggregation with uplink assigned to two E-UTRA bands, UE maximum output power shall be measured over all component carriers from different bands. If each band has separate antenna connectors, maximum output power is measured as the sum of maximum output power at each UE antenna connector. The maximum output power is specified in Table 6.2.2A-0.

Table 6.2.2A-0: UE Power Class for uplink interband CA (two bands)

E-UTRA CA	Class 1	Tolerance	Class 2	Tolerance	Class 3	Tolerance	Class 4	Tolerance
Configuration	(dBm)	(dB)	(dBm)	(dB)	(dBm)	(dB)	(dBm)	(dB)
CA_1A-3A					23	+2/-32		
CA_1A-5A					23	+2/-3		
CA_1A-7A					23	+2/-3 ²		
CA_1A-8A					23	+2/-3 ²		
CA_1A-19A					23	+2/-3		
CA_1A-21A					23	+2/-3		
CA_2A-4A					23	+2/-32		
CA_2A-13A					23	+2/-32		
CA_3A-5A					23	+2/-32		
CA_3A-7A					23	+2/-32		
CA_3A-8A					23	+2/-32		
CA_3A-19A					23	+2/-32		
CA_3A-20A					23	+2/-32		
CA_3A-26A					23	+2/-32		
CA_4A-7A					23	+2/-32		
CA_4A-12A					23	+2/-32		
CA_4A-13A					23	+2/-3		
CA_4A-17A					23	+2/-3		
CA_5A-7A					23	+2/-3 ²		
CA_5A-12A					23	+2/-32		
CA_5A-17A					23	+2/-3		
CA_7A-20A					23	+2/-32		
CA_7A-28A					23	+2/-32		
CA_19A-21A					23	+2/-3		
CA 39A-41A					23	+2/-32		

NOTE 1: Void

NOTE 2: ² refers to the transmission bandwidths (Figure 5.6-1) confined within F_{UL_low} and F_{UL_low} + 4 MHz or F_{UL_high} – 4 MHz and F_{UL_high}, the maximum output power requirement is relaxed by reducing the lower tolerance limit by 1.5 dB

NOTE 3: P_{PowerClass} is the maximum UE power specified without taking into account the tolerance

NOTE 4: For inter-band carrier aggregation the maximum power requirement should apply to the total transmitted power over all component carriers (per UE).

For intra-band contiguous carrier aggregation the maximum output power is specified in Table 6.2.2A-1.

Table 6.2.2A-1: CA UE Power Class for intraband contiguous CA

E-UTRA CA Configuration	Class 1 (dBm)	Tolerance (dB)	Class 2 (dBm)	Tolerance (dB)	Class 3 (dBm)	Tolerance (dB)	Class 4 (dBm)	Tolerance (dB)
CA_1C					23	+2/-2		
CA_3C					23	+2/-22		
CA_7C					23	+2/-22		
CA_38C					23	+2/-2		
CA_39C					23	+2/-2		
CA_40C					23	+2/-2		
CA_41C					23	+2/-22		
CA_42C					23	+2/-3		

NOTE 1: Void

NOTE 2: If all transmitted resource blocks (Figure 5.6A-1) over all component carriers are confined within Fullow and Fullow + 4 MHz or/and Fullow - 4 MHz and Fullow, the maximum output power requirement is relaxed by reducing the lower tolerance limit by 1.5 dB

NOTE 3: ProwerClass is the maximum UE power specified without taking into account the tolerance

NOTE 4: For intra-band contiguous carrier aggregation the maximum power requirement should apply to the total transmitted power over all component carriers (per UE).

For intra-band non-contiguous carrier aggregation with one uplink carrier on the PCC, the requirements in subclause 6.2.2 apply. For intra-band non-contiguous carrier aggregation with two uplink carriers the maximum output power is specified in Table 6.2.2A-2.

Table 6.2.2A-2: UE Power Class for intraband non-contiguous CA

E-UTRA	A CA	Class 1	Tolerance	Class 2	Tolerance	Class 3	Tolerance	Class 4	Tolerance
Configu	ration	(dBm)	(dB)	(dBm)	(dB)	(dBm)	(dB)	(dBm)	(dB)
CA_4A	-4A					23	+2/-2		
NOTE 1:	NOTE 1: For transmission bandwidths (Figure 5.6-1) confined within Fullow and Fullow + 4 MHz or Fullhigh – 4 MHz and								
	Ful_high, the maximum output power requirement is relaxed by reducing the lower tolerance limit by 1.5 dB								
NOTE 2:	P _{Power}	class is the m	aximum UE p	ower specifi	ed without tak	king into acc	count the tolerar	nce	-
NOTE 3:	NOTE 3: For intra-band non-contiguous carrier aggregation the maximum power requirement should apply to the total								
	transmitted power over all component carriers (per UE).								

6.2.2B UE maximum output power for UL-MIMO

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the maximum output power for any transmission bandwidth within the channel bandwidth is specified in Table 6.2.2B-1. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2. For UE supporting UL-MIMO, the maximum output power is measured as the sum of the maximum output power at each UE antenna connector. The period of measurement shall be at least one sub frame (1ms).

Table 6.2.2B-1: UE Power Class for UL-MIMO in closed loop spatial multiplexing scheme

EUTRA band	Class 1 (dBm)	Tolerance (dB)	Class 2 (dBm)	Tolerance (dB)	Class 3 (dBm)	Tolerance (dB)	Class 4 (dBm)	Tolerance (dB)
1					23	+2/-3		
2					23	+2/-32		
3					23	+2/-32		
4					23	+2/-3		
5					23	+2/-3		
6					23	+2/-3		
7					23	+2/-32		
8					23	+2/-32		
9					23	+2/-3		
10					23	+2/-3		
11					23	+2/-3		
12					23	+2/-32		
13					23	+2/-3		
14					23	+2/-3		
17					23	+2/-3		
18					23	+2/-3		
19					23	+2/-3		
20					23	+2/-3 ²		
21					23	+2/-3		
22					23	+2/-4.5 ²		
					20	12/ 1.0		
23					23	+2/-3		
24					23	+2/-3		
25					23	+2/-3 ²		
26					23	+2/-3 ²		
27					23	+2/-3		
28					23	+2/[-3]		
30					23	+2/-3		
31					23	+2/-3		
					23	TZ/-3		
33					23	+2/-3		
34		1		1	23	+2/-3		
35 35				-	23	+2/-3		
36				-	23	+2/-3		
37					23			
38		-		 	23	+2/-3 +2/-3		
		+		 		+2/-3		
39		-		-	23			
40					23	+2/-3		
41					23	+2/-32		
42				1	23	+2/-4		
43					23	+2/-4		
44 NOTE 1:				<u> </u>	23	+2/[-3]		

NOTE 1: Void

NOTE 2: 2 refers to the transmission bandwidths (Figure 5.6-1) confined within F_{UL_low} and F_{UL_low} + 4 MHz or F_{UL_high} - 4 MHz and F_{UL_high}, the maximum output power requirement is relaxed by reducing the lower tolerance limit by 1.5 dB

NOTE 3: For the UE which supports both Band 11 and Band 21 operating frequencies, the tolerance is FFS.

NOTE 4: P_{PowerClass} is the maximum UE power specified without taking into account the tolerance

Table 6.2.2B-2: UL-MIMO configuration in closed-loop spatial multiplexing scheme

Transmission mode	DCI format	Codebook Index
Mode 2	DCI format 4	Codebook index 0

If UE is configured for transmission on single-antenna port, the requirements in subclause 6.2.2 apply.

6.2.3 UE maximum output power for modulation / channel bandwidth

For UE Power Class 1 and 3, the allowed Maximum Power Reduction (MPR) for the maximum output power in Table 6.2.2-1 due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1.

Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 1 and 3

Modulation	Cha	Channel bandwidth / Transmission bandwidth (NRB)						
	1.4	1.4 3.0 5 10 15 20						
	MHz	MHz	MHz	MHz	MHz	MHz		
QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1	
16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1	
16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 2	

For PRACH, PUCCH and SRS transmissions, the allowed MPR is according to that specified for PUSCH QPSK modulation for the corresponding transmission bandwidth.

For each subframe, the MPR is evaluated per slot and given by the maximum value taken over the transmission(s) within the slot; the maximum MPR over the two slots is then applied for the entire subframe.

For transmissions with non-contiguous resource allocation in single component carrier, the allowed Maximum Power Reduction (MPR) for the maximum output power in table 6.2.2-1, is specified as follows

$$MPR = CEIL \{M_A, 0.5\}$$

Where M_A is defined as follows

 $M_A = 8.00\text{-}10.12A \qquad ; 0.00 < A \le 0.33$

5.67 - 3.07A ; $0.33 < A \le 0.77$

3.31 ; $0.77 < A \le 1.00$

Where

 $A = N_{RB_alloc} / N_{RB}$.

CEIL{M_A, 0.5} means rounding upwards to closest 0.5dB, i.e. MPR \in [3.0, 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0]

For the UE maximum output power modified by MPR, the power limits specified in subclause 6.2.5 apply.

6.2.3A UE Maximum Output power for modulation / channel bandwidth for CA

For inter-band carrier aggregation with uplink assigned to one E-UTRA band (Table 5.6A-1), the requirements in subclause 6.2.3 apply.

For inter-band carrier aggregation with one component carrier per operating band and the uplink active in two E-UTRA bands, the requirements in subclause 6.2.3 apply for each uplink component carrier.

For intra-band contiguous carrier aggregation the allowed Maximum Power Reduction (MPR) for the maximum output power in Table 6.2.2A-1due to higher order modulation and contiguously aggregated transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3A-1. In case the modulation format is different on different component carriers then the MPR is determined by the rules applied to higher order of those modulations.

Table 6.2.3A-1: Maximum Power Reduction (MPR) for Power Class 3

Modulation	CA b Com _l E	MPR (dB)			
	25 RB	50 RB	75 RB	100 RB	
QPSK	> 8 and ≤ 25	> 12 and ≤ 50	> 16 and ≤ 75	> 18 and ≤ 100	≤ 1
QPSK	> 25	> 50	> 75	> 100	≤ 2
16 QAM	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1
16 QAM	> 8 and ≤ 25	> 12 and ≤ 50	> 16 and ≤ 75	> 18 and ≤ 100	≤ 2
16 QAM	> 25	> 50	> 75	> 100	≤ 3

For PUCCH and SRS transmissions, the allowed MPR is according to that specified for PUSCH QPSK modulation for the corresponding transmission bandwidth.

For intra-band contiguous carrier aggregation bandwidth class C with non-contiguous resource allocation, the allowed Maximum Power Reduction (MPR) for the maximum output power in Table 6.2.2A-1 is specified as follows

$$MPR = CEIL \{ min(M_A, M_{IM5}), 0.5 \}$$

Where M_A is defined as follows

$$\begin{array}{lll} M_A = & 8.2 & ; 0 \leq A < 0.025 \\ & 9.2 - 40A & ; 0.025 \leq A < 0.05 \\ & 8 - 16A & ; 0.05 \leq A < 0.25 \\ & 4.83 - 3.33A & ; 0.25 \leq A \leq 0.4, \\ & 3.83 - 0.83A & ; 0.4 \leq A \leq 1, \end{array}$$

and M_{IM5} is defined as follows

 $A = N_{RB_alloc} / N_{RB_agg}$

$$\begin{split} M_{IM5} = \ 4.5 & ; \Delta_{IM5} < 1.5 * BW_{Channel_CA} \\ 6.0 & ; 1.5 * BW_{Channel_CA} \leq \Delta_{IM5} < \ BW_{Channel_CA}/2 + F_{OOB} \\ \\ M_A & ; \Delta_{IM5} \geq BW_{Channel_CA}/2 + F_{OOB} \end{split}$$

Where

$$\Delta_{IM5} = max(\mid F_{C_agg} - (3*F_{agg_alloc_low} - 2*F_{agg_alloc_high})\mid, \mid F_{C_agg} - (3*F_{agg_alloc_high} - 2*F_{agg_alloc_low})\mid)$$

$$F_{C_{agg}} = (F_{edge_high} + F_{edge_low})/2$$

CEIL{ $M_{A,}$ 0.5} means rounding upwards to closest 0.5dB, i.e. MPR \in [3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5].

For intra-band non-contiguous carrier aggregation with one uplink carrier, the requirements in subclause 6.2.3 apply.

For intra-band non-contiguous carrier aggregation with two uplink carriers MPR is specified for E-UTRA CA configurations with a maximum possible $W_{GAP} \leq 35$ MHz; the allowed MPR is

$$MPR = CEIL \{M_N, 0.5\}$$

where $M_{\rm N}$ is defined as follows

$$\begin{array}{ll} M_N \!\! = & -0.125 \; N + 18.25 & ; \; 2 \leq N \leq 50 \\ \\ -0.0333 \; N + 13.67 & ; \; 50 < N \leq 200 \end{array}$$

where $N=N_{RB_alloc}$ is the number of allocated resource blocks. Clause 6.2.3 does not apply in addition. E-UTRA CA configurations with a maximum possible $W_{gap} > 35$ MHz and their corresponding MPR are intended to form part of a later release.

For intra-band carrier aggregation, the MPR is evaluated per slot and given by the maximum value taken over the transmission(s) on all component carriers within the slot; the maximum MPR over the two slots is then applied for the entire subframe.

For the UE maximum output power modified by MPR, the power limits specified in subclause 6.2.5A apply.

6.2.3B UE maximum output power for modulation / channel bandwidth for UL-MIMO

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the allowed Maximum Power Reduction (MPR) for the maximum output power in Table 6.2.2B-1 is specified in Table 6.2.3-1. The requirements shall be met with UL-MIMO configurations defined in Table 6.2.2B-2. For UE supporting UL-MIMO, the maximum output power is measured as the sum of the maximum output power at each UE antenna connector.

For the UE maximum output power modified by MPR, the power limits specified in subclause 6.2.5B apply.

If UE is configured for transmission on single-antenna port, the requirements in subclause 6.2.3 apply.

6.2.3D UE maximum output power for modulation / channel bandwidth for ProSe

For UE Power Class 1 and 3, this subclause specifies the allowed Maximum Power Reduction (MPR) power for ProSe physical channels and signals due to higher order modulation and transmit bandwidth configuration (resource blocks).

The allowed MPR for the maximum output power for ProSe physical channels PSDCH, PSCCH, PSSCH, and PSBCH shall be as specified in subclause 6.2.3 for PUSCH for the corresponding modulation and transmission bandwidth.

The allowed MPR for the maximum output power for ProSe physical signal PSSS shall be as be as specified in subclause 6.2.3 for PUSCH QPSK modulation for the corresponding transmission bandwidth.

The allowed MPR for the maximum output power for ProSe physical signal SSSS is specified in Table 6.2.3D-1.

Table 6.2.3D-1: Maximum Power Reduction (MPR) for SSSS for Power Class 1 and 3

Channel bandwidth	MPR for SSSS (dB)
1.4 MHz	
3.0 MHz	
5.0 MHz	≤ 4
10 MHz	≤ 4
15 MHz	≤ 4
20 MHz	≤ 4

6.2.4 UE maximum output power with additional requirements

Additional ACLR and spectrum emission requirements can be signalled by the network to indicate that the UE shall also meet additional requirements in a specific deployment scenario. To meet these additional requirements, Additional Maximum Power Reduction (A-MPR) is allowed for the output power as specified in Table 6.2.2-1. Unless stated otherwise, an A-MPR of 0 dB shall be used.

For UE Power Class 1 and 3 the specific requirements and identified subclauses are specified in Table 6.2.4-1 along with the allowed A-MPR values that may be used to meet these requirements. The allowed A-MPR values specified below in Table 6.2.4-1 to 6.2.4-15 are in addition to the allowed MPR requirements specified in subclause 6.2.3.

Table 6.2.4-1: Additional Maximum Power Reduction (A-MPR)

Network Signalling value	Requirements (subclause)	E-UTRA Band	Channel bandwidth (MHz)	Resources Blocks (N _{RB})	A-MPR (dB)
NS_01	6.6.2.1.1	Table 5.5-1	1.4, 3, 5, 10, 15, 20	Table 5.6-1	N/A
			3	>5	≤ 1
		2, 4,10, 23, 25,	5	>6	≤ 1
NS_03	6.6.2.2.1	2, 4, 10, 23, 23, 35, 36	10	>6	≤ 1
		33, 30	15	>8	≤ 1
			20	>10	≤ 1
NS_04	6.6.2.2.2, 6.6.3.3.19	41	5, 10, 15, 20	Table	6.2.4-4
NC OF	66221	1	10,15,20	≥ 50	≤ 1 (NOTE1)
NS_05	6.6.3.3.1		15, 20	Table 6.2.4	-18 (NOTE2)
NS_06	6.6.2.2.3	12, 13, 14, 17	1.4, 3, 5, 10	Table 5.6-1	N/A
NS_07	6.6.2.2.3 6.6.3.3.2	13	10	Table 6.2.4-2	
NS_08	6.6.3.3.3	19	10, 15	> 44	≤ 3
NS_09	6.6.3.3.4	21	10, 15	> 40	≤1
	0.0.3.3.4	21		> 55	≤2
NS_10		20	15, 20	Table	6.2.4-3
NS_11	6.6.2.2.1 6.6.3.3.13	23	1.4, 3, 5, 10, 15, 20	Table	6.2.4-5
NS_12	6.6.3.3.5	26	1.4, 3, 5, 10, 15	Table	6.2.4-6
NS_13	6.6.3.3.6	26	5		6.2.4-7
NS_14	6.6.3.3.7	26	10, 15	Table	6.2.4-8
NS_15	6.6.3.3.8	26	1.4, 3, 5, 10, 15	Table	6.2.4-9 6.2.4-10
NS_16	6.6.3.3.9	27	3, 5, 10		, Table 6.2.4-12, 6.2.4-13
NS_17	6.6.3.3.10	28	5, 10	Table 5.6-1	N/A
NS_18	6.6.3.3.11	28	5	≥2	≤1
			10, 15, 20	≥1	≤ 4
NS_19	6.6.3.3.12 6.2.2	44	10, 15, 20	rable	6.2.4-14
NS_20	6.6.2.2.1	23	5, 10, 15, 20	Table	6.2.4-15
NS_21	6.6.3.3.14 6.6.2.2.1	30	5, 10	Table	6.2.4-16
NO 00	6.6.3.3.15	40.40	F 40 45 05	+ · ·	0.0.4.47
NS_22	6.6.3.3.16	42, 43	5, 10, 15, 20		6.2.4-17
NS_23	6.6.3.3.17	42, 43	5, 10, 15, 20	N	I/A
 NS_32	_	_	_		_
NO_0Z	-	-	_	-	-

NOTE 1 Applicable when the lower edge of the assigned E-UTRA UL channel bandwidth frequency is larger than or equal to the upper edge of PHS band (1915.7 MHz) + 4 MHz + the channel BW assigned, where channel BW is as defined in subclause 5.6. A-MPR for operations below this frequency is not covered in this version of specifications except for the channel assignments in NOTE 2 as the emissions requirement in 6.6.3.3.1 may not be met. For 10MHz channel bandwidth whose carrier frequency is larger than or equal to 1945 MHz or 15 MHz channel bandwidth whose carrier frequency is larger than or equal to 1947.5 MHz, no A-MPR applies.

NOTE2 Applicable when carrier frequency is 1932.5 MHz for 15MHz channel bandwidth or 1930 MHz for 20MHz channel bandwidth case.

Table 6.2.4-2: A-MPR for "NS_07"

Parameters	Re	egion A	Regio	Region B		
RB _{start}	(0 - 12	13 – 18	19 – 42	43 – 49	
L _{CRB} [RBs]	6-8	1 to 5 and 9-50	>8		≤2	
A-MPR [dB]	≤ 8	≤ 12	≤ 12	≤ 6	≤ 3	

NOTE 1; RB_{start} indicates the lowest RB index of transmitted resource blocks

NOTE 2; LCRB is the length of a contiguous resource block allocation

NOTE 3: For intra-subframe frequency hopping between two regions, notes 1 and 2 apply on a per slot basis.

NOTE 4; For intra-subframe frequency hopping between two regions, the larger A-MPR value of the two regions may be applied for both slots in the subframe.

Table 6.2.4-3: A-MPR for "NS_10"

Channel bandwidth [MHz]	Parameters	Region A
	RB _{start}	0 – 10
15	LCRB [RBs]	1 -20
	A-MPR [dB]	≤ 2
	RB _{start}	0 – 15
20	LCRB [RBs]	1 -20
	A-MPR [dB]	≤5

NOTE 1: RB_{start} indicates the lowest RB index of transmitted resource blocks

NOTE 2: LCRB is the length of a contiguous resource block allocation

NOTE 3: For intra-subframe frequency hopping which intersects Region A, notes 1 and 2 apply on a per slot basis

NOTE 4: For intra-subframe frequency hopping which intersect Region A, the larger A-MPR value may be applied for both slots in the subframe

Table 6.2.4-4: A-MPR requirements for "NS_04" with bandwidth >5MHz

Channel bandwidth [MHz]		Parameters							
5	Fc [MHz]				≤ 2499.5			> 2499.5	
	RB _{start}			0 - 8		9 -	24	0 - 24	
	LCRB [RBs]			> 0		>	0	> 0	
	A-MPR [dB]			≤ 2		(0	0	
10	Fc [MHz]				≤ 2504			> 2504	
	RB _{start}			0 - 8		9 - 35	36 - 49	0 - 49	
	LCRB [RBs]	≤ 15	> 15	and < 25	≥ 25	N/A	> 0	> 0	
	RB _{start} + L _{CRB}	N/A		N/A	N/A	≥ 45	N/A	N/A	
	[RBs]								
	A-MPR [dB]	≤ 3		≤ 1	≤ 2	≤ 1	0	0	
15	Fc [MHz]				≤ 2510.8			> 2510.8	
	RB _{start}			0 - 13		14 – 59	60 – 74	0 - 74	
	LCRB [RBs]	≤ 18 o	r ≥ 36	> 18 a	and < 36	N/A	> 0	> 0	
	RB _{start} + L _{CRB}	N/	A	ı	V/A	≥ 62	N/A	N/A	
	[RBs]								
	A-MPR [dB]	≤:	3		≤ 1	≤ 1	0	0	
20	Fc [MHz]				≤ 2517.5			> 2517.5	
	RB _{start}		0 – 22			23 – 76	77 – 99	0 - 99	
	L _{CRB} [RBs]	≤ 18 o	r ≥ 40	> 18 a	and < 40	N/A	> 0	> 0	
	RB _{start} + L _{CRB}	N/A N/A		V/A	≥ 86	N/A	N/A		
	[RBs]								
	A-MPR [dB]	≤ :	3		≤ 1	≤ 1	0	0	

NOTE 1: RB_{start} indicates the lowest RB index of transmitted resource blocks NOTE 2: L_{CRB} is the length of a contiguous resource block allocation

NOTE 3: For intra-subframe frequency hopping which intersects regions, notes 1 and 2 apply on a per slot basis NOTE 4: For intra-subframe frequency hopping which intersects regions, the larger A-MPR value may be applied for both slots in the subframe

Table 6.2.4-5: A-MPR for "NS_11"

Channel Bandwidth [MHz]	Parameters									
	Fc [MHz]	<20	04		≥2004					
3	L _{CRB} [RBs]	1-1	15			>5				
	A-MPR [dB]	≤(≤ 1				
	Fc [MHz]	<20	04		200)4 ≤ Fc <	<2007		≥2(007
5	L _{CRB} [RBs]	1-2	25			6 & -25	8-12		>	•6
	A-MPR [dB]	≤7	7		≤	4	0		≤	1
	Fc [MHz]	200)5 ≤	Fc <2	2015	5		201	5	
4.0	RB _{start}		0	-49				0-49	9	
10	LCRB [RBs]		1-50				1-50			
	A-MPR [dB]		≤ 12				0			
	Fc [MHz]					<201	2.5			
	RB _{start}	0-4			5-21	1	22	-56		57-74
	LCRB [RBs]	≥1	7-	50	0-	6 & ≥50	≤25	>2	5	>0
	A-MPR [dB]	≤15	≤	7		≤10	0	≤6	6	≤15
15	Fc [MHz]					2012	12.5			
	RB _{start}	0-12			13-	-39	40-6	5		66-74
	LCRB [RBs]	≥1		≥3	0	<30	≥ (69 RB _{sta}			≥1
	A-MPR [dB]	≤10	≤10 :		6	0	≤2			≤6.5
	Fc [MHz]	<u>'</u>			201	0				
	RB _{start}	0-12		1	3-29	9	30-	-68		69-99
20	LCRB [RBs]	≥1	10	-60		1-9 & >60	1-24	≥2	5	≥1
	A-MPR [dB]	≤15	<u> </u>	≦7		≤10	0	≤7	7	≤15

Table 6.2.4-6: A-MPR for "NS_12"

Channel bandwidth [MHz]	Parameters	Region A		Region B
	RB _{start}	0		1-2
1.4	LCRB [RBs]	≤3	≥4	≥4
	A-MPR [dB]	≤3	≤6	≤3
	RB _{start}	0-3	3	4-5
3	LCRB [RBs]	1-1	5	≥9
	A-MPR [dB]	≤4		≤3
	RB _{start}	0-6		0-9
5	LCRB [RBs]	≤8	}	≥9
	A-MPR [dB]	≤5		≤3
	RB _{start}	0-1	5	0-22
10	L _{CRB} [RBs]	≤18	3	≥20
	A-MPR [dB]	≤4		≤2
	RB _{start}	0-30		0-30
15	LCRB [RBs]	≤30		≥32
	A-MPR [dB]	≤4	ļ	≤3

Table 6.2.4-7: A-MPR for "NS_13"

Channel bandwidth [MHz]	Parameters	Region A			
	RB _{start}	0-2			
5	L _{CRB} [RBs]	≤5	≥18		
	A-MPR [dB]	≤3	≤2		

Table 6.2.4-8: A-MPR for "NS_14"

Channel bandwidth [MHz]	Parameters	Region A				
	RB _{start}	0				
10	L _{CRB} [RBs]	≤5	=50			
	A-MPR [dB]	≤3	≤1			
	RB _{start}	≥8				
15	L _{CRB} [RBs]	≤16	≥50			
	A-MPR [dB]	≤3	≤1			

Table 6.2.4-9: A-MPR for "NS_15" for E-UTRA highest channel edge > 845 MHz and ≤ 849 MHz

Channel bandwidth [MHz]	Parameters	Region A	Region B	Region C
1.4	RB _{end} [RB]			4-5
1.4	A-MPR [dB]			≤3
	RB _{end} [RB]	0-1	8-12	13-14
3	LCRB [RB]	≤2	≥8	>0
	A-MPR [dB]	≤4	≤4	≤9
	RB _{end} [RB]	0-4	12-19	20-24
5	L _{CRB} [RB]	≤2	≥8	>0
	A-MPR [dB]	≤4	≤5	≤9
	RB _{end} [RB]	0-12	23-36	37-49
10	LCRB [RB]	≤2	≥15	>0
	A-MPR [dB]	≤4	≤6	≤9
	RB _{end} [RB]	0-20	26-53	54-74
15	LCRB [RB]	≤2	≥20	>0
	A-MPR [dB]	≤4	≤5	≤9

Table 6.2.4-10: A-MPR for "NS_15" for E-UTRA highest channel edge ≤ 845 MHz

Channel bandwidth [MHz]	Parameters	Region A	Region B	Region C
	RB _{end} [RB]			19-24
5	L _{CRB} [RB]			≥18
	A-MPR [dB]			≤2
	RB _{end} [RB]	0-4	29-44	45-49
10	LCRB [RB]	≤2	≥24	>0
	A-MPR [dB]	≤4	≤4	≤9
	RB _{end} [RB]	0-12	44-61	62-74
15	LCRB [RB]	≤2	≥20	>0
	A-MPR [dB]	≤4	≤5	≤9

Table 6.2.4-11: A-MPR for "NS_16" with channel lower edge at ≥807 MHz and <808.5 MHz

Channel bandwidth [MHz]	Parameter	Region A	Region B	Region C	Region D	Region E
	RB _{start}	0	1-2			
3 MHz	LCRB [RBs]	≥12	12			
	A-MPR [dB]	≤2	≤1			
	RB _{start}	0-1	2	2-9	2-5	
5 MHz	LCRB [RBs]	1 - 25	12	15-18	20	
	A-MPR [dB]	≤5	≤1	≤2	≤3	
	RB _{start}	0 - 8	0-14		15-20	15-24
10 MHz	L _{CRB} [RBs]	1 - 12	15-20	≥24	≥30	24-27
	A-MPR [dB]	≤5	≤3	≤7	≤3	≤1

Table 6.2.4-12: A-MPR for "NS_16" with channel lower edge at ≥808.5 MHz and <812 MHz

Channel bandwidth [MHz]	Parameter	Region A	Region B	Region C	Region D	Region E
	RB _{start}	0	0-1	1-5		
5 MHz	L _{CRB} [RBs]	16-20	≥24	16-20		
	A-MPR [dB]	≤2	≤3	≤1		
	RB _{start} 0-6		-6	0-10	0-14	11-20
10 MHz	LCRB [RBs]	1-12	15-20	24-32	≥36	24-32
	A-MPR [dB]	≤5	≤2	≤4	≤5	≤1

Table 6.2.4-13: A-MPR for "NS_16" with channel lower edge at ≥812 MHz

Channel bandwidth [MHz]	Parameter	Region A	Region B	Region C	Region D
	RB _{start}	0 - 9	0	1-14	0-5
10 MHz	LCRB [RBs]	27-32	36-40	36-40	≥45
	A-MPR [dB]	≤1	≤2	≤1	≤3

Table 6.2.4-14: A-MPR for "NS_19"

Channel bandwidth [MHz]	Parameters	Regi	on A	Region B		
	RB _{start}			0-6		
10	L _{CRB} [RBs]			≥40		
	A-MPR [dB]			≤1		
	RB _{start}	0-6		7-20		
15	LCRB [RBs]	≤18	≥36	≥42		
	A-MPR [dB]	≤2	≤3	≤2		
	RB _{start}	0-	14	15-30		
20	LCRB [RBs]	≤40	≥45	≥50		
	A-MPR [dB]	≤2	≤3	≤2		

Table 6.2.4-15: A-MPR for "NS_20"

Channel Bandwidth [MHz]	Parameters											
	Fc [MHz]	< 20	07.5		2007.5 ≤ Fc < 2012.5			2.5	2012.5 ≤ F	c ≤ 2017.5		
5	RB _{start}	≤ <u>;</u>	24		C)-3			4-6	≤2	24	
5	LCRB [RBs]	>	·0	1	5-19	2	≥20		≥18	1-2	25	
	A-MPR [dB]	≤	17		≤1		≤4		≤2	≤	0	
	Fc [MHz]				2005							
	RB _{start}		0-25				26-3	4		35-	49	
	L _{CRB} [RBs]	>0				8-15		>	15	>	0	
10	A-MPR [dB]	≤16			≤2			≤5	≤ 6			
10	Fc [MHz]	2015										
	RB _{start}	0-5							6-10			
	LCRB [RBs]	≥32								≥40		
	A-MPR [dB]		<u> </u>	4						≤2		
	Fc [MHz]						2012.5	5				
15	RB _{start}		0-14				15	-24		25-39	61-74	
13	LCRB [RBs]	1-9 & 4	0-75	10-	39	24	4-29		≥30	≥36	≤6	
	A-MPR [dB]	≤11		≤(3		≤1	≤7		≤5	≤6	
	Fc [MHz]						2010					
20	RB _{start}	0-21		22-3	31		32-3	38	39-49	50-68	69-99	
20	LCRB [RBs]	>0	1-9 & 3	31-75	10-3	30	≥1	5	≥24	≥25	>0	
	A-MPR [dB]	≤17	≤1:	2	≤6	6	≤9	1	≤7	≤5	≤16	

NOTE 1: When NS_20 is signaled the minimum requirements for the 10 MHz bandwidth are specified for E-UTRA UL carrier center frequencies of 2005 MHz or 2015 MHz.

NOTE 2: When NS_20 is signaled the minimum requirements for the 15 MHz channel bandwidth are specified for E-UTRA UL carrier center frequency of 2012.5 MHz.

Table 6.2.4-16: A-MPR for "NS_21"

Channel Bandwidth [MHz]	Parameters	Reg	ion A	Region B				
10	RB _{start}	0 – 6	0 – 6	N/A	N/A			
	RB _{end}	N/A	N/A	43 – 49	43 – 49			
	L _{CRB} [RBs]	1 – 2	3 – 12, 32 - 50	1 – 2	3 – 12, 32 - 50			
	A-MPR [dB]	≤ 4	≤3	≤ 4	≤ 3			

Table 6.2.4-17: A-MPR for "NS_22"

Channel bandwidth [MHz]	Parameters	Region A	Region B	Region C	Region D					
5	No A-MPR is needed for 5 MHz channel bandwidth									
10	RB _{start}	0-13	0-17	≤ 6	≥12					
	LCRB [RBs]	> 36	33-36	≤ 32	≤ 32					
	RBstart + LCRB [RBs]	N/A	N/A	N/A	≥44					
	A-MPR [dB]	≤ 4	≤ 3	≤ 3	≤ 3					
15	RB _{start}	0-24	0-38	≤ 14	≥ 23					
	L _{CRB} [RBs]	> 50	37-50	≤ 36	≤ 36					
	RBstart + LCRB [RBs]	N/A	N/A	N/A	≥59					
	A-MPR [dB]	≤ 5	≤ 4	≤ 3	≤ 3					
20	RB _{start}	0-35	0-51	≤ 21	≥ 31					
	L _{CRB} [RBs]	> 64	49-64	≤ 48	≤ 48					
	RBstart + LCRB [RBs]	N/A	N/A	N/A	≥79					
	A-MPR [dB]	≤ 5	≤ 4	≤ 3	≤ 3					

NOTE 1; RB_{start} indicates the lowest RB index of transmitted resource blocks

NOTE 2; LCRB is the length of a contiguous resource block allocation

NOTE 3: For intra-subframe frequency hopping between two regions, notes 1 and 2 apply on a per slot basis.

NOTE 4; For intra-subframe frequency hopping between two regions, the larger A-MPR value of the two regions may be applied for both slots in the subframe.

Table 6.2.4-18: A-MPR for "NS 05"

Channel Bandwidth [MHz]	Parameters								
	Fc [MHz]				1932.5				
15	RB _{start}	0-7	8 – 66				67-74		
	L _{CRB} [RBs]	≥1	≤30	≤30 31 – 9		54 ≤		3	>6
	A-MPR [dB]	≤11	0	≤3		≤5	≤5	5	≤1
	Fc [MHz]	1930							
	RB _{start}	0-23	24-75 76-					6-99	
20	L _{CRB} [RBs]	≥1	≤24 25 – 40		41 – 50	> 5	0	≤6	>6
	A-MPR [dB]	≤11	0	≤3	≤5	≤1	0	≤5	≤1

For PRACH, PUCCH and SRS transmissions, the allowed A-MPR is according to that specified for PUSCH QPSK modulation for the corresponding transmission bandwidth.

For each subframe, the A-MPR is evaluated per slot and given by the maximum value taken over the transmission(s) within the slot; the maximum A-MPR over the two slots is then applied for the entire subframe.

For the UE maximum output power modified by A-MPR, the power limits specified in subclause 6.2.5 apply.

6.2.4A UE maximum output power with additional requirements for CA

Additional ACLR, spectrum emission and spurious emission requirements for carrier aggregation can be signalled by the network to indicate that the UE shall also meet additional requirements in a specific deployment scenario. To meet these additional requirements, Additional Maximum Power Reduction (A-MPR) is allowed for the CA Power Class as specified in Table 6.2.2A-1.

If for intra-band carrier aggregation the UE is configured for transmissions on a single serving cell, then subclauses 6.2.3 and 6.2.4 apply with the Network Signaling value indicated by the field *additionalSpectrumEmission*.

For intra-band contiguous aggregation with the UE configured for transmissions on two serving cells, the maximum output power reduction specified in Table 6.2.4A-1 is allowed for all serving cells of the applicable uplink CA configurations according to the CA network signalling value indicated by the field *additionalSpectrumEmissionSCell*-

r10. Then clause 6.2.3A does not apply, i.e. the carrier aggregation MPR = 0dB, unless the value indicated is CA NS 31.

Table 6.2.4A-1: Additional Maximum Power Reduction (A-MPR) for intra-band contiguous CA

CA Network Signalling value	Requirements (subclause)	Uplink CA Configuration	A-MPR [dB] (subclause)
CA_NS_01	6.6.3.3A.1	CA_1C	6.2.4A.1
CA_NS_02	6.6.3.3A.2	CA_1C	6.2.4A.2
CA_NS_03	6.6.3.3A.3	CA_1C	6.2.4A.3
CA_NS_04	6.6.2.2A.1, 6.6.3.3A.8	CA_41C	6.2.4A.4
CA_NS_05	6.6.3.3A.4	CA_38C	6.2.4A.5
CA_NS_06	6.6.3.3A.5	CA_7C	6.2.4A.6
CA_NS_07	6.6.3.3A.6	CA_39C	6.2.4A.7
CA_NS_08	6.6.3.3A.7	CA_42C	6.2.4A.8
CA_NS_31	NOTE 1	Table 5.6A.1-1 (NOTE 1)	N/A
CA_NS_32		Reserved	

NOTE 1: Applicable for uplink CA configurations listed in Table 5.6A.1-1 for which none of the additional requirements in subclauses 6.6.2.2A or 6.6.3.3A apply.

NOTE 2: The index of the sequence CA_NS corresponds to the value of additionalSpectrumEmissionSCell-r10.

If for intra-band non-contigous carrier aggregation the UE is configured for transmissions on a single serving cell, then subclauses 6.2.3 and 6.2.4 apply with the Network Signaling value indicated by the field *additionalSpectrumEmission*.

For intra-band non-contiguous carrier aggregation with the UE configured for transmissions on two serving cells, the maximum output power reduction specified in Table 6.2.4A-2 is allowed for all serving cells of the applicable uplink CA configurations according to the CA network signalling value indicated by the field *additionalSpectrumEmissionSCell-r10*. MPR as specified in subclause 6.2.3A is not allowed in addition, unless A-MPR is N/A.

Table 6.2.4A-2: Additional Maximum Power Reduction (A-MPR) for intra-band non-contiguous CA

CA Network Signalling value	Additional requirements for sub-blocks in order of increasing uplink carrier frequency		Uplink CA Configuration	A-MPR for sub-blocks in order of increasing uplink carrier frequency
	Requirements (subclause)	Requirements (subclause)		A-MPR [dB] (subclause)
CA_NC_NS_01	6.6.2.2.1 (NS_03)	6.6.2.2.1 (NS_03)	CA_4A-4A	N/A
CA_NC_NS_31	NOTE 1	NOTE 1	Table 5.6A.1-3 (NOTE 1)	N/A
CA_NC_NS_32	Reserved			

NOTE 1: Applicable for uplink CA configurations listed in Table 5.6A.1-3 for which the additional requirements in subclause 6.6.2.1.1 (indicated by NS_01) applies in each sub-block.

NOTE 2: The index of the sequence CA_NC_NS corresponds to the value of additionalSpectrumEmissionSCell-r10.

If for inter-band carrier aggregation the UE is configured for transmissions on a single serving cell, then subclauses 6.2.3 and 6.2.4 apply with the Network Signaling value indicated by the field *additionalSpectrumEmission*.

For inter-band carrier aggregation with the UE configured for transmissions on two serving cells the maximum output power reduction specified in Table 6.2.4-1 is allowed for each serving cell of the applicable uplink CA configuration according to the Network Signaling value indicated by the field *additionalSpectrumEmission* for the PCC and the CA network signalling value indicated by the field *additionalSpectrumEmissionSCell-r10* for the SCC. The value of *additionalSpectrumEmissionSCell-r10* is equal to that of *additionalSpectrumEmission* configured on the SCC. MPR as specified in subclause 6.2.3A is allowed in addition.

For PUCCH and SRS transmissions, the allowed A-MPR is according to that specified for PUSCH QPSK modulation for the corresponding transmission bandwidth.

For intra-band carrier aggregation, the A-MPR is evaluated per slot and given by the maximum value taken over the transmission(s) on all component carriers within the slot; the maximum A-MPR over the two slots is then applied for the entire subframe.

For the UE maximum output power modified by A-MPR specified in table 6.2.4A-1, the power limits specified in subclause 6.2.5A apply.

6.2.4A.1 A-MPR for CA_NS_01 for CA_1C

If the UE is configured to CA_1C and it receives IE CA_NS_01 the allowed maximum output power reduction applied to transmissions on the PCC and the SCC for contiguously aggregated signals is specified in table 6.2.4A.1-1.

Table 6.2.4A.1-1: Contiguous allocation A-MPR for CA_NS_01

CA_1C: CA_NS_01	RB _{start}	L _{CRB} [RBs]	RB _{start} + L _{CRB} [RBs]	A-MPR for QPSK and 16- QAM [dB]
	0 – 23 and 176 – 199	> 0	N/A	≤ 12.0
100 RB / 100 RB	24 – 105	> 64	N/A	≤ 6.0
	106 – 175	N/A	> 175	≤ 5.0
75 RB / 75 RB	0 – 6 and 143	0 < L _{CRB} ≤ 10	N/A	≤ 11.0
	– 149	> 10	N/A	≤ 6.0
	7 – 90	> 44	N/A	≤ 5.0
	91 – 142	N/A	> 142	≤ 2.0

NOTE 1: RB start indicates the lowest RB index of transmitted resource blocks

NOTE 2: L_CRB is the length of a contiguous resource block allocation

NOTE 3: For intra-subframe frequency hopping which intersects regions, notes 1 and 2 apply on a per slot

basis

NOTE 4: For intra-subframe frequency hopping which intersects regions, the larger A-MPR value may be

applied for both slots in the subframe

If the UE is configured to CA_1C and it receives IE CA_NS_01 the allowed maximum output power reduction applied to transmissions on the PCell and the SCell with non-contiguous resource allocation is defined as follows

A-MPR = CEIL
$$\{M_A, 0.5\}$$

Where MA is defined as follows

$$\begin{array}{ll} M_A = & -22.5 \ A + 17 & ; \ 0 \leq A < 0.20 \\ \\ -11.0 \ A + 14.7 & ; \ 0.20 \leq A < 0.70 \end{array}$$

-1.7 A + 8.2 ; $0.70 \le A \le 1$

Where $A=N_{RB_alloc}\,/\,N_{RB_agg.}$

6.2.4A.2 A-MPR for CA_NS_02 for CA_1C

If the UE is configured to CA_1C and it receives IE CA_NS_02 the allowed maximum output power reduction applied to transmission on the PCC and the SCC for contiguously aggregated signals is specified in Table 6.2.4A.2-1.

Table 6.2.4A.2-1: Contiguous allocation A-MPR for CA_NS_02

CA_1C: CA_NS_02	RB _{end}	L _{CRB} [RBs]	A-MPR for QPSK and 16 -QAM [dB]
	0 –20	> 0	≤ 4 dB
	21 – 46	> 0	≤ 3 dB
100 RB / 100 RB	47 – 99	> RB _{end} - 20	≤ 3 dB
	100 – 184	> 75	≤ 6 dB
	185 – 199	> 0	≤ 10 dB
	0 – 48	> 0	≤ 2 dB
75 RB / 75 RB	49 – 80	> RB _{end} - 20	≤ 3 dB
	81 – 129	> 60	≤ 5 dB
	130 – 149	> 84	≤ 6 dB
	130 – 149	1 – 84	≤ 2 dB

If the UE is configured to CA_1C and it receives IE CA_NS_02 the allowed maximum output power reduction applied to transmissions on the PCell and the SCell with non-contiguous resource allocation is defined as follows:

$$A\text{-MPR} = CEIL \{M_{A,} 0.5\}$$

Where MA is defined as follows

$$\begin{array}{ll} M_A = & -22.5 \ A + 17 & ; \ 0 \leq A < 0.20 \\ \\ -11.0 \ A + 14.7 & ; \ 0.20 \leq A < 0.70 \\ \\ -1.7 \ A + 8.2 & ; \ 0.70 \leq A \leq 1 \end{array}$$

Where $A = N_{RB_alloc} \, / \, N_{RB_agg.}$

6.2.4A.3 A-MPR for CA_NS_03 for CA_1C

If the UE is configured to CA_1C and it receives IE CA_NS_03 the allowed maximum output power reduction applied to transmission on the PCC and the SCC for contiguously aggregated signals is specified in Table 6.2.4A.3-1.

Table 6.2.4A.3-1: Contiguous allocation A-MPR for CA_NS_03

CA_1C: CA_NS_03	RB _{end}	LCRB [RBs]	A-MPR for QPSK and 16-QAM [dB]
	0 – 26	> 0	≤ 10 dB
	27 – 63	≥ RB _{end} - 27	≤ 6 dB
100 RB / 100 RB	27 – 63	< RB _{end} - 27	≤ 1 dB
100 KB / 100 KB	64 – 100	> RB _{end} - 20	≤ 4 dB
	101 – 171	> 68	≤ 7 dB
	172 – 199	> 0	≤ 10 dB
	0 – 20	> 0	≤ 10 dB
	21 – 45	> 0	≤ 4 dB
75 RB / 75 RB	46 – 75	> RB _{end} – 13	≤ 2 dB
	76 – 95	> 45	≤ 5 dB
	96 – 149	> 43	≤ 8 dB
	120 – 149	1 - 43	≤ 6 dB

If the UE is configured to CA_1C and it receives IE CA_NS_03 the allowed maximum output power reduction applied to transmissions on the PCell and the SCell with non-contiguous resource allocation is defined as follows:

$$A-MPR = CEIL \{M_A, 0.5\}$$

Where MA is defined as follows

$$\begin{array}{ll} M_A = & -23.33A + 17.5 & ; \ 0 \leq A < 0.15 \\ \\ & -7.65A + 15.15 & ; \ 0.15 \leq A \leq 1 \end{array}$$

Where $A = N_{RB_alloc} / N_{RB_agg.}$

6.2.4A.4 A-MPR for CA_NS_04

If the UE is configured to CA_41C and it receives IE CA_NS_04 the allowed maximum output power reduction applied to transmission on the PCC and the SCC for contiguously aggregated signals is specified in Table 6.2.4A.4-1.

Table 6.2.4A.4-1: Contiguous Allocation A-MPR for CA_NS_04

CA Bandwidth Class C	RBstart	L _{CRB} [RBs]	RB _{start} + L _{CRB} [RBs]	A-MPR for QPSK [dB]	A-MPR for 16QAM [dB]
25 RB / 100 RB	0 – 34 and 90 – 124	>0	N/A	≤3dB	≤3.5dB
	35 – 89	N/A	>90	≤1dB	≤2.5dB
50RB / 100 RB	0 - 44 and 105 - 149	>0	N/A	≤4dB	≤4dB
	45 – 104	N/A	>105	≤3dB	≤4dB
75 RB / 75 RB	0 – 44 and 105 – 149	>0	N/A	≤4dB	≤4dB
	45 – 104	N/A	>105	≤4dB	≤4dB
100 RB / 75 RB	0 – 49 and 125 – 174	>0	N/A	≤4dB	≤4dB
	50 - 124	N/A	>125	≤3dB	≤4dB
100 RB / 100 RB	0 – 59 and 140 – 199	>0	N/A	≤3dB	≤4dB
	60– 139	N/A	>140	≤3dB	≤4dB

NOTE 1: RB_{start} indicates the lowest RB index of transmitted resource blocks

NOTE 2: LCRB is the length of a contiguous resource block allocation

NOTE 3: For intra-subframe frequency hopping which intersects regions, notes 1 and 2 apply on a per slot basis

NOTE 4: For intra-subframe frequency hopping which intersects regions, the larger A-MPR value may be applied for both slots in the subframe

If the UE is configured to CA_41C and it receives IE CA_NS_04 the allowed maximum output power reduction applied to transmissions on the PCell and the SCell with non-contiguous resource allocation is defined as follows

A-MPR = CEIL
$$\{M_A, 0.5\}$$

Where M_A is defined as follows

$$\begin{array}{lll} M_A & = & 11, & 0 \! \leq \! A \! < \! 0.05 \\ & = -55.0A + 13.75, & 0.05 \! \leq \! A \! < \! 0.15 \\ & = -4.0A + 6.10, & 0.15 \! \leq \! A \! < \! 0.40 \\ & = -0.83A + 4.83, & 0.40 \! \leq \! A \! \leq \! 1 \end{array}$$

Where $A = N_{RB_alloc} / N_{RB_agg.}$

6.2.4A.5 A-MPR for CA_NS_05 for CA 38C

If the UE is configured to CA_38C and it receives IE CA_NS_05 the allowed maximum output power reduction applied to transmission on the PCC and the SCC for contiguously aggregated signals is specified in Table 6.2.4A.5-1.

Table 6.2.4A.5-1: Contigous Allocation A-MPR for CA_NS_05

CA_38C	RB _{end}	LCRB [RBs]	A-MPR for QPSK and 16-QAM [dB]
	0 – 12	>0	≤ 5 dB
100RB/100RB	13 – 79	> RB _{end} - 13	≤ 2 dB
TOURD/TOURD	80 – 180	>60	≤ 6 dB
	181 – 199	> 0	≤ 11 dB
75RB/75RB	0 – 70	> max (0, RB _{end} -10)	≤ 2 dB
	71- 108	> 60	≤ 5 dB
	109 – 139	>0	≤ 5 dB
	140 – 149	≤ 70	≤ 2 dB
	140 – 149	>70	≤ 6 dB

NOTE 1: RBend indicates the highest RB index of transmitted resource blocks

NOTE 2: L_{CRB} is the length of a contiguous resource block allocation

NOTE 3: For intra-subframe frequency hopping which intersects regions, notes 1 and 2 apply on a per slot basis

NOTE 4: For intra-subframe frequency hopping which intersects regions, the larger A-MPR value may be applied for both slots in the subframe

If the UE is configured to CA_38C and it receives IE CA_NS_05 the allowed maximum output power reduction applied to transmissions on the PCell and the SCell with non-contiguous resource allocation is defined as follows

$$A-MPR = CEIL \{M_A, 0.5\}$$

Where MA is defined as follows

 $M_A = \text{-}14.17 \ A + 16.50 \qquad ; \ 0 \leq A < 0.60$

-2.50 A + 9.50 ; $0.60 \le \text{A} \le 1$

Where $A = N_{RB_alloc} / N_{RB_agg}$.

6.2.4A.6 A-MPR for CA_NS_06

If the UE is configured to CA_7C and it receives IE CA_NS_06 the allowed maximum output power reduction applied to transmission on the PCC and the SCC for contiguously aggregated signals is specified in Table 6.2.4A.6-1.

Table 6.2.4A.6-1: Contiguous Allocation A-MPR for CA_NS_06

CA Bandwidth Class C	RB _{end}	L _{CRB} [RBs]	A-MPR for QPSK and 16-QAM [dB]
	0 –22	>0	≤ 4 dB
	23 – 99	> max(0,RB _{end} - 25)	≤ 2 dB
100RB/100RB	100 – 142	> 75	≤ 3 dB
	143 – 177	>70	≤ 5 dB
	178 – 199	> 0	≤ 10 dB
	0 – 7	>0	≤ 5 dB
	8- 74	> max(0,RB _{end} - 10)	≤ 2 dB
75RB/75RB	75 – 109	>64	≤ 2 dB
	110 – 144	>35	≤ 6 dB
	145 – 149	>0	≤ 10 dB
	0 – 10	> 0	≤ 5 dB
50RB/100RB	11 – 75	> max(0, RB_End - 25)	≤ 2 dB
and	76 – 103	> 50	≤ 3 dB
100RB/50RB	104 – 144	> 25	≤ 6 dB
	145 – 149	> 0	≤ 10 dB
	0 – 15	> 0	≤ 5 dB
75RB/100RB and	16 – 75	> max(0, RB_End – 15)	≤ 2 dB
	76 – 120	> 50	≤ 3 dB
100RB/75RB	121 – 160	> 50	≤ 6 dB
	161 – 174	> 0	≤ 10 dB

If the UE is configured to CA_7C and it receives IE CA_NS_06 the allowed maximum output power reduction applied to transmissions on the PCell and the SCell with non-contiguous resource allocation is defined as follows:

$$A-MPR = CEIL \{M_A, 0.5\}$$

Where M_A is defined as follows

$$\begin{aligned} M_A = & -13.33A + 17.5 & ; 0 \leq A < 0.15 \\ -6.47A + 16.47 & ; 0.15 \leq A \leq 1 \end{aligned}$$

Where $A = N_{RB_alloc} \, / \, N_{RB_agg.}$

6.2.4A.7 A-MPR for CA_NS_07

If the UE is configured to CA_39C and it receives IE CA_NS_07 the allowed maximum output power reduction applied to transmission on the PCC and the SCC for contiguously aggregated signals is specified in Table 6.2.4A.7-1.

Table 6.2.4A.7-1: Contiguous Allocation A-MPR for CA_NS_07

CA_39C: CA_NS_07	RB _{Start}	LCRB [RBs]	A-MPR for QPSK and 16-QAM[dB]
	0 – 13	> 0	≤ 11
75 RB / 100 RB	14 – 50	≤ 60	≤ 3
and	14 – 100	> 60	≤ 7
100 RB / 75 RB	101 – 155	> max(155 - RBstart , 0)	≤ 2
	156 – 174	> 0	≤ 5
	0 – 5	> 0	≤ 11
50 00 / 400 00	6 – 42	≤ 25	≤ 3
50 RB / 100 RB	0 – 42	> 25	≤ 6
and 100 RB / 50 RB	43 – 80	> 50	≤ 5
100 KB / 30 KB	81 – 138	> 20	≤ 2
	139 – 149	> 0	≤ 5
05.00 / 400.00	0 00	≥ 84	≤ 6
25 RB / 100 RB and 100 RB / 25 RB	0 – 32	< 84	≤ 4
	33 – 60	> 50	≤ 3
	61 – 124	> 20	≤ 3

If the UE is configured to CA_39C and it receives IE CA_NS_07 the allowed maximum output power reduction applied to transmissions on the PCell and the SCell with non-contiguous resource allocation is defined as follows

$$A\text{-MPR} = CEIL \{M_{A}, 0.5\}$$

Where M_A is defined as follows

$$M_A = \text{-}16.\ 25A + 21 \hspace{1.5cm}; \ 0 \leq A < 0.\ 80$$

$$-2.50 \text{ A} + 10.00$$
 ; $0.80 \le A \le 1$

Where $A=N_{RB_alloc}\,/\,N_{RB_agg}$

6.2.4A.8 A-MPR for CA_NS_08

If the UE is configured to CA_42C and it receives IE CA_NS_08 the allowed maximum output power reduction applied to transmission on the PCC and the SCC for contiguously aggregated signals is specified in Table 6.2.4A.8-1.

A-MPR for CA 42C: **RBstart** Condition RBend QPSK and 16-L_{CRB} [RBs] **CA NS 08** QAM[dB] ≤ 12 ≤ 21 Or ≥ 178 > 25 and ≤ 80 ≤ 6 > 80 and ≤ 172 ≤ 8 100RB / 100RB ≥ 0 N/A N/A > 172 ≤ 9 ≥ 141 and < 178 > 21 and ≤ 58 Or < 48 ≤ 3 < 178 ≥ 48 and ≤ 80 > 21 And ≤ 4 ≤ 12 ≤ 25 ≤ 12 Or ≥ 162 > 25 and ≤ 75 ≤ 6 100RB / 75RB > 75 and <172 ≤ 8 ≥ 0 N/A N/A 9 ≥172 And 75RB / 100RB Or ≥ 125 and < 162 < 54 > 12 and ≤ 49 ≤ 3 > 12 < 162 ≥ 54 and ≤75 And ≤ 5 > 49 And < 125 ≥ 36 and < 54 ≤ 2 75RB / 75RB ≤ 16 ≤ 12

≥ 144

N/A

< 144

≥ 108 and < 144

≥ 92

N/A

> 16 and ≤ 61

> 61

≥ 36 and ≤ 61

< 36

≤ 34

> 34 and ≤ 44

> 44

≤ 6

≤ 8

≤ 5

≤ 3

≤ 4

≤ 5

≤ 8

Or

N/A

And

Or

Or

N/A

Table 6.2.4A.8-1: Contiguous Allocation A-MPR for CA_NS_08

- NOTE 1: RB_{start} indicates the lowest RB index of transmitted resource blocks
- NOTE 2: LCRB is the length of a contiguous resource block allocation

≤ 5

≥ 0

> 5

> 5 and ≤ 41

≤ 31

≥ 0

- NOTE 3: RB_{end} indicates the highest RB index of transmitted resource blocks
- NOTE 4: If condition is "and" both RB_{start} and RB_{end} constraints need to be met. If condition is "or" either RB_{start} or RB_{end} constraints need to be met
- NOTE 5: For intra-subframe frequency hopping which intersects regions, notes 1, 2, 3 and 4 apply on a per slot basis
- NOTE 6: For intra-subframe frequency hopping which intersects regions, the larger A-MPR value may be applied for both slots in the subframe

If the UE is configured to CA_42C and it receives IE CA_NS_08 the allowed maximum output power reduction applied to transmissions on the PCell and the SCell with non-contiguous resource allocation is defined as follows

A-MPR = CEIL
$$\{M_A, 0.5\}$$

Where MA is defined as follows

and

100RB / 50RB

And

50RB / 100RB

100RB / 25RB

And 25RB / 100RB

$$\begin{array}{ccc} M_A = & 20 & 0 \leq A < 0.025 \\ & 23 - 120A & 0.025 \leq A < 0.05 \\ & 17.53 - 10.59A & 0.05 \leq A \leq 0.9 \\ & 8 & 0.9 \leq A \leq 1 \end{array}$$

Where $A = N_{RB_alloc} / N_{RB_agg.}$

6.2.4B UE maximum output power with additional requirements for UL-MIMO

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the A-MPR values specified in subclause 6.2.4 shall apply to the maximum output power specified in Table 6.2.2B-1. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2. For UE supporting UL-MIMO, the maximum output power is measured as the sum of the maximum output power at each UE antenna connector. Unless stated otherwise, an A-MPR of 0 dB shall be used.

For the UE maximum output power modified by A-MPR, the power limits specified in subclause 6.2.5B apply.

If UE is configured for transmission on single-antenna port, the requirements in subclause 6.2.4 apply.

6.2.4D UE maximum output power with additional requirements for ProSe

The allowed A-MPR for the maximum output power for ProSe physical channels PSDCH, PSCCH, PSSCH, and PSBCH shall be as specified in subclause 6.2.4 for PUSCH for the corresponding modulation and transmission bandwidth.

The allowed A-MPR for the maximum output power for ProSe physical signal PSSS and SSSS shall be as be as specified in subclause 6.2.4 for PUSCH QPSK modulation for the corresponding transmission bandwidth.

6.2.5 Configured transmitted power

The UE is allowed to set its configured maximum output power $P_{CMAX,c}$ for serving cell c. The configured maximum output power $P_{CMAX,c}$ is set within the following bounds:

 $P_{CMAX_L,c} \leq P_{CMAX,c} \leq P_{CMAX_H,c}$ with

$$\begin{split} P_{CMAX_L,c} = MIN \; \{P_{EMAX,c} - \Delta T_{C,c}, \; & P_{PowerClass} - MAX(MPR_c + A-MPR_c + \Delta T_{IB,c} + \Delta T_{C,c} + \Delta T_{ProSe}, P-MPR_c)\} \\ P_{CMAX \; H,c} = MIN \; \{P_{EMAX,c}, \; P_{PowerClass}\} \end{split}$$

where

- $P_{EMAX,c}$ is the value given by IE *P-Max* for serving cell *c*, defined in [7];
- P_{PowerClass} is the maximum UE power specified in Table 6.2.2-1 without taking into account the tolerance specified in the Table 6.2.2-1;
- MPR $_c$ and A-MPR $_c$ for serving cell c are specified in subclause 6.2.3 and subclause 6.2.4, respectively;
- $\Delta T_{IB,c}$ is the additional tolerance for serving cell c as specified in Table 6.2.5-2; $\Delta T_{IB,c} = 0$ dB otherwise;
- $\Delta T_{C,c} = 1.5$ dB when Note 2 in Table 6.2.2-1 applies;
- $\Delta T_{C,c} = 0$ dB when Note 2 in Table 6.2.2-1 does not apply;
- $\Delta T_{ProSe} = 0.1$ dB when the UE supports ProSe Direct Discovery and/or ProSe Direct Communication on the corresponding E-UTRA ProSe band; $\Delta T_{ProSe} = 0$ dB otherwise.

P-MPR_c is the allowed maximum output power reduction for

- a) ensuring compliance with applicable electromagnetic energy absorption requirements and addressing unwanted emissions / self desense requirements in case of simultaneous transmissions on multiple RAT(s) for scenarios not in scope of 3GPP RAN specifications;
- b) ensuring compliance with applicable electromagnetic energy absorption requirements in case of proximity detection is used to address such requirements that require a lower maximum output power.

The UE shall apply P-MPR $_c$ for serving cell c only for the above cases. For UE conducted conformance testing P-MPR shall be $0~\mathrm{dB}$

- NOTE 1: P-MPR_c was introduced in the P_{CMAX,c} equation such that the UE can report to the eNB the available maximum output transmit power. This information can be used by the eNB for scheduling decisions.
- NOTE 2: P-MPR_c may impact the maximum uplink performance for the selected UL transmission path.

For each subframe, the $P_{CMAX_L,c}$ for serving cell c is evaluated per slot and given by the minimum value taken over the transmission(s) within the slot; the minimum $P_{CMAX_L,c}$ over the two slots is then applied for the entire subframe. $P_{PowerClass}$ shall not be exceeded by the UE during any period of time.

The measured configured maximum output power P_{UMAX,c} shall be within the following bounds:

$$P_{CMAX_L,c} - \ MAX\{T_{L,c}, T(P_{CMAX_L,c})\} \ \leq \ P_{UMAX,c} \leq \ P_{CMAX_H,c} + \ T(P_{CMAX_H,c}).$$

where the tolerance $T(P_{CMAX,c})$ for applicable values of $P_{CMAX,c}$ is specified in Table 6.2.5-1. The tolerance $T_{L,c}$ is the absolute value of the lower tolerance for the applicable operating band as specified in Table 6.2.2-1.

Table 6.2.5-1: P_{CMAX} tolerance

P _{CMAX,c} (dBm)	Tolerance T(P _{CMAX,c}) (dB)
23 < P _{CMAX,c} ≤ 33	2.0
21 ≤ P _{CMAX,c} ≤ 23	2.0
20 ≤ P _{CMAX,c} < 21	2.5
19 ≤ P _{CMAX,c} < 20	3.5
18 ≤ P _{CMAX,c} < 19	4.0
13 ≤ P _{CMAX,c} < 18	5.0
8 ≤ P _{CMAX,c} < 13	6.0
$-40 \le P_{CMAX,c} < 8$	7.0

For the UE which supports inter-band carrier aggregation configurations with the uplink assigned to one or two E-UTRA bands the $\Delta T_{IB,c}$ is defined for applicable bands in Table 6.2.5-2 and Table 6.2.5-3.

Table 6.2.5-2: ΔT_{IB,c} (two bands)

Inter-band CA Configuration	E-UTRA Band	ΔT _{IB,c} [dB]
CA_1A-3A	1 3	0.3
	1	0.3
CA_1A-5A	5	0.3
	1	0.5
CA_1A-7A	7	0.6
CA 4A 0A	1	0.3
CA_1A-8A	8	0.3
CA_1A-11A	1	0.3
OA_IA-IIA	11	0.3
CA_1A-18A	1	0.3
	18	0.3
CA_1A-19A	1	0.3
_	19	0.3
CA_1A-20A	20	0.3
	1	0.3
CA_1A-21A	21	0.3
	1	0.3
CA_1A-26A	26	0.3
04 44 55 1	1	0.3
CA_1A-28A	28	0.6
00.40.4408	1	0.5
CA_1A-41A ⁸	41	0.5
CA 4A 44C8	1	0.5
CA_1A-41C ⁸	41	0.5
CA 1A 42A	1	0.3
CA_1A-42A	42	0.8
CA_1A-42C	1	0.3
0A_1A-420	42	0.8
CA_2A-4A	2	0.5
U7 (4	0.5
CA_2A-4A-4A	2	0.5
_	4	0.5
CA_2A-5A	2	0.3
	5 2	0.3
CA_2A-2A-5A	5	0.3
	2	0.3
CA_2A-12A	12	0.3
	2	0.3
CA_2A-12B	12	0.3
04 04 404	2	0.3
CA_2A-13A	13	0.3
CA 2A 2A 42A	2	0.3
CA_2A-2A-13A	13	0.3
CA_2A-17A	2	0.3
	17	0.8
CA_2A-29A	2	0.3
CA_2C-29A	2	0.3
CA_2A-30A	2	0.5
J. (_Z, (00/(30	0.3
CA_3A-5A	3	0.3
	5	0.3
CA_3A-7A	3	0.5
	7	0.5
CA_3A-7C	<u>3</u> 7	0.5 0.5
	3	0.5
CA_3C-7A	7	0.5
CA_3A-8A	3	0.3
OA_0A	J	0.3

	8	0.3
04 04 404	3	0.3
CA_3A-19A	19	0.3
	_	
CA_3A-20A	3	0.3
	20	0.3
CV 3V 36V	3	0.3
CA_3A-26A	26	0.3
	3	0.3
CA_3A-27A		
	27	0.3
CA_3A-28A	3	0.3
CA_3A-20A	28	0.3
	3	0.6
CA_3A-42A	42	0.8
CA_3A-42C	3	0.6
0/1_0/1 120	42	0.8
04 44 54	4	0.3
CA_4A-5A	5	0.3
CA_4A-4A-5A	4	0.3
•/	5	0.3
00 10 70	4	0.5
CA_4A-7A	7	0.5
CA_4A-4A-7A	4	0.5
	7	0.5
OA 4A 4OA	4	0.3
CA_4A-12A	12	0.8
	4	0.3
CA_4A-4A-12A	-	
· · · · · · · · · · · · · · · · · · ·	12	0.8
04 44 400	4	0.3
CA_4A-12B	12	0.8
CA_4A-13A	4	0.3
	13	0.3
CA 4A 4A 4AA	4	0.3
CA_4A-4A-13A	13	0.3
	4	0.3
CA_4A-17A		
	17	0.8
CA_4A-27A	4	0.3
CA_4A-21A	27	0.3
CA_4A-29A	4	0.3
071_1712071	4	0.5
CA_4A-30A	-	
	30	0.3
CA	5	0.3
CA_5A-7A	7	0.3
	5	0.8
CA_5A-12A		
- 	12	0.4
CA_5A-13A	5	0.5
OA_3A-13A	13	0.5
	5	0.8
CA_5A-17A	17	
		0.4
CA_5A-25A	5	0.3
O/_U/\-ZU/\	25	0.3
 : :	5	0.3
CA_5A-30A	30	0.3
CA_7A-8A	7	0.3
<u> </u>	8	0.6
04 74 151	7	0.3
CA_7A-12A	12	0.3
	i	
CA_7A-20A	7	0.3
	20	0.3
04 74 004	7	0.3
CA_7A-28A	28	0.3
	i	
CA_8A-11A	8	0.3
	11	0.4
04 04 004	8	0.4
CA_8A-20A	20	0.4
	8	0.3
CA_8A-40A		

CA_11A-18A 11 0.3 CA_12A-25A 12 0.3 CA_12A-30A 12 0.3 CA_12A-30A 30 0.3 CA_18A-28A9 18 0.5 CA_19A-21A 19 0.3 CA_19A-21A 21 0.4 CA_19A-42A 19 0.3 CA_19A-42C 19 0.3 CA_20A-32A 20 0.8 CA_23A-29A 23 0.3 CA_25A-41A8 41 0.5 CA_25A-41C8 25 0.5 CA_26A-41C 26 0.3 CA_26A-41C 41 0.3 CA_29A-30A 30 0.3 CA_39A-41A 41 0.4 CA_39A-41A 41 0.57 CA_39A-41A 41 0.57 CA_39A-41A 41 0.67 CA_39A-41C 41 0.4 CA_39C-41A 41 0.4 CA_41A-42A 41 0.64		40	0.3
CA_12A-25A	CA 11A 10A	11	0.3
CA_12A-25A CA_12A-30A CA_12A-30A 30 CA_18A-28A ⁹ 18 CA_19A-21A CA_19A-42A CA_19A-42C CA_20A-32A CA_25A-41C ⁸ CA_26A-41C CA_29A-30A CA_39A-41A CA_39A-41A CA_39A-41A CA_13A CA_13A CA_13A CA_13A CA_13A CA_13A CA_13A CA_23A-24A CA_23A-24A CA_23A-24A CA_33A-24A CA_34A-24A CA_34A-44A CA_34A-4	CA_TTA-TOA		
CA_12A-30A	CA 12A 25A	12	0.3
CA_12A-30A CA_18A-28A ⁹ 28 0.5 CA_19A-21A 19 0.3 CA_19A-42A 19 0.3 CA_19A-42C 19 0.3 CA_20A-32A CA_23A-29A CA_25A-41C ⁸ CA_26A-41C CA_29A-30A CA_39A-41A CA_39A-41C CA_39C-41A CA_19A-42A 30 0.3 0.3 0.3 0.3 0.3 0.3 0.3	CA_12A-25A	25	0.3
CA_18A-28A ⁹ CA_19A-21A CA_19A-42A CA_19A-42C CA_20A-32A CA_23A-29A CA_25A-41C ⁸ CA_26A-41C CA_29A-30A CA_29A-30A CA_39A-41A CA_41A_42A	CA 12A 20A	12	0.3
CA_18A-28A³ 28 0.5 CA_19A-21A 19 0.3 CA_19A-42A 19 0.3 CA_19A-42C 19 0.3 CA_20A-32A 20 0.3 CA_23A-29A 23 0.3 CA_25A-41A³ 25 0.5 CA_25A-41C³ 25 0.5 CA_26A-41C 26 0.3 CA_26A-41C 26 0.3 CA_29A-30A 30 0.3 CA_39A-41A 41 0.4 CA_39A-41A 41 0.57 CA_39A-41C 41 0.57 CA_39C-41A 41 0.4 CA_41A 43A 41 0.4	CA_12A-30A	30	0.3
CA_19A-21A	CA 10A 20A9	18	0.5
CA_19A-21A 21 0.4 CA_19A-42A 19 0.3 CA_19A-42C 19 0.3 CA_20A-32A 20 0.8 CA_23A-29A 23 0.3 CA_25A-41A8 25 0.5 CA_25A-41C8 25 0.5 CA_25A-41C8 41 0.5 CA_26A-41A 26 0.3 CA_26A-41C 26 0.3 CA_29A-30A 30 0.3 CA_39A-41A 41 0.4 CA_39A-41A 41 0.57 CA_39A-41C 39 0.57 CA_39C-41A 41 0.4 CA_39C-41A 41 0.4 CA_41A 42A 41 0.4 CA_41A 42A 41 0.4 CA_41A 42A 41 0.4	CA_16A-26A°	28	0.5
CA_19A-42A	CA 40A 04A	19	0.3
CA_19A-42A 42 0.8 CA_19A-42C 42 0.8 CA_20A-32A 20 0.3 CA_23A-29A 23 0.3 CA_25A-41A8 25 0.5 CA_25A-41C8 25 0.5 CA_26A-41C 26 0.3 CA_26A-41A 41 0.3 CA_29A-30A 30 0.3 CA_39A-41A 41 0.4 CA_39A-41A 41 0.57 CA_39A-41C 41 0.57 CA_39A-41A 41 0.57 CA_39A-41A 41 0.64 CA_39A-41A 41 0.64 CA_39C-41A 41 0.64 CA_39C-41A 41 0.64 CA_41A 43A 41 0.64 CA_41A 43A 41 0.64	CA_19A-21A	21	0.4
CA_19A-42C	CA 40A 40A	19	0.3
CA_19A-42C 42 0.8 CA_20A-32A 20 0.3 CA_23A-29A 23 0.3 CA_25A-41A8 25 0.5 CA_25A-41C8 25 0.5 CA_26A-41C 26 0.3 CA_26A-41C 26 0.3 CA_29A-30A 30 0.3 CA_39A-41A 41 0.4 CA_39A-41A 41 0.57 CA_39A-41C 41 0.57 CA_39C-41A 41 0.4 CA_39C-41A 41 0.4 CA_39C-41A 41 0.4 CA_39C-41A 41 0.4 CA_41A_43A 41 0.4 CA_41A_43A 41 0.4 CA_41A_43A 41 0.4 CA_41A_43A 41 0.4	CA_19A-42A	42	0.8
CA_20A-32A 20 0.3 CA_23A-29A 23 0.3 CA_25A-41A8 25 0.5 CA_25A-41C8 25 0.5 CA_25A-41C8 41 0.5 CA_26A-41A 26 0.3 CA_26A-41C 26 0.3 CA_29A-30A 30 0.3 CA_39A-41A 39 0 ⁴ CA_39A-41A 41 0 ⁴ CA_39A-41C 39 0 ⁴ CA_39C-41A 41 0 ⁴ CA_39C-41A 41 0 ⁴ CA_41A_42A 41 0 ⁴ CA_41A_42A 41 0 ⁴	CA 40A 40C	19	0.3
CA_23A-29A 23 0.3 CA_25A-41A8 25 0.5 CA_25A-41C8 25 0.5 CA_26A-41C 26 0.3 CA_26A-41C 26 0.3 CA_29A-30A 30 0.3 CA_39A-41A 41 0.4 CA_39A-41A 41 0.57 CA_39A-41C 39 0.67 CA_39C-41A 41 0.4 CA_39C-41A 41 0.4 CA_41A_42A 41 0.4 CA_41A_42A 41 0.4 CA_41A_42A 41 0.4	CA_19A-42C	42	0.8
CA_25A-41A8 25 0.5 CA_25A-41C8 25 0.5 CA_26A-41A 26 0.3 CA_26A-41A 26 0.3 CA_26A-41C 26 0.3 CA_29A-30A 30 0.3 CA_39A-41A 39 0 ⁴ CA_39A-41A 41 0.5 ⁷ CA_39A-41C 39 0 ⁴ CA_39C-41A 41 0 ⁴ CA_39C-41A 41 0 ⁴ CA_41A_42A 41 0 ⁴ CA_41A_42A 41 0 ⁴	CA_20A-32A	20	0.3
CA_25A-41A° 41 0.5 CA_25A-41C° 25 0.5 CA_26A-41A 26 0.3 CA_26A-41C 26 0.3 CA_29A-30A 30 0.3 CA_39A-41A 39 0 ⁴ CA_39A-41A 41 0.5 ⁷ CA_39A-41C 39 0 ⁴ CA_39C-41A 39 0 ⁴ CA_39C-41A 41 0 ⁴ CA_41A 42A 41 0 ⁴ CA_41A 42A 41 0 ⁴ CA_41A 42A 41 0 ⁴	CA_23A-29A	23	0.3
CA_25A-41C ⁸ CA_25A-41C ⁸ CA_26A-41A CA_26A-41A CA_26A-41C CA_29A-30A CA_39A-41A CA_39A-41A CA_39A-41C CA_39A-41C CA_39C-41A CA_39C-41A CA_41	CA 05A 44A8	25	0.5
CA_25A-41C° 41 0.5 CA_26A-41A 26 0.3 CA_26A-41C 26 0.3 CA_29A-30A 30 0.3 CA_39A-41A 39 0 ⁴ CA_39A-41A 41 0.5 ⁷ CA_39A-41C 39 0 ⁴ CA_39C-41A 39 0 ⁴ CA_39C-41A 41 0 ⁴ CA_41A 42A 41 0 ⁴ CA_41A 42A 41 0 ⁴	CA_25A-41A°	41	0.5
CA_26A-41A	CA 05A 44C8	25	0.5
CA_26A-41A 41 0.3 CA_26A-41C 26 0.3 CA_29A-30A 30 0.3 CA_39A-41A 39 0 ⁴ CA_39A-41A 41 0 ⁴ CA_39A-41C 39 0 ⁴ CA_39C-41A 39 0 ⁴ CA_39C-41A 41 0 ⁴ CA_41A_42A 41 0 ⁴ CA_41A_42A 41 0 ⁴	CA_25A-41C°	41	0.5
CA_26A-41C	0.0 000 44.0	26	0.3
CA_26A-41C 41 0.3 CA_29A-30A 30 0.3 CA_39A-41A 39 0 ⁴ CA_39A-41A 41 0 ⁴ CA_39A-41A 41 0.5 ⁷ CA_39A-41C 39 0 ⁴ CA_39C-41A 41 0 ⁴ CA_39C-41A 41 0 ⁴ CA_41A_43A 41 0 ⁴ CA_41A_43A 41 0 ⁴	CA_26A-41A	41	0.3
CA_29A-30A 30 0.3 CA_39A-41A 39 0 ⁴ CA_39A-41A 41 0.5 ⁷ CA_39A-41C 39 0 ⁴ CA_39C-41A 39 0 ⁴ CA_39C-41A 41 0 ⁴ CA_41A 42A 41 0 ⁴ CA_41A 42A 41 0 ⁴	CA 2004 44.0	26	0.3
CA_39A-41A 39 0 ⁴ CA_39A-41A 41 0 ⁴ CA_39A-41A 39 0.5 ⁷ CA_39A-41C 39 0 ⁴ CA_39C-41A 39 0 ⁴ CA_39C-41A 41 0 ⁴ CA_41A_43A 41 0 ⁴	CA_26A-41C	41	0.3
CA_39A-41A	CA_29A-30A	30	0.3
CA_39A-41A 39 0.57 CA_39A-41C 39 0 ⁴ CA_39C-41A 41 0 ⁴ CA_41A 42A 41 0 ⁴ CA_41A 42A 41 0 ⁴	04 004 444	39	04
CA_39A-41A 41 0.57 CA_39A-41C 39 0 ⁴ CA_39C-41A 39 0 ⁴ CA_39C-41A 41 0 ⁴ CA_41A_42A 41 0 ⁴	CA_39A-41A	41	04
CA_39A-41C 39 0 ⁴ CA_39C-41A 39 0 ⁴ CA_41A 42A 41 0 ⁴ CA_41A 42A 41 0 ⁴	04 004 444	39	0.5^{7}
CA_39A-41C 41 0 ⁴ CA_39C-41A 39 0 ⁴ CA_41A 43A 41 0 ⁴ CA_41A 43A 41 0 ⁴	CA_39A-41A	41	0.5^{7}
CA_39A-41C 41 0 ⁴ CA_39C-41A 39 0 ⁴ CA_41A 43A 41 0 ⁴ CA_41A 43A 41 0 ⁴	CA 20A 44C	39	04
CA_39C-41A 41 0 ⁴ CA_41A_42A 41 0 ⁴	CA_39A-41C		04
CA_39C-41A 41 0 ⁴ CA_41A_42A 41 0 ⁴	CA 200 44 A	39	04
	CA_39C-41A		
	CA 44A 40A	41	04
	CA_41A-42A		0.54

- NOTE 1: The above additional tolerances are only applicable for the E-UTRA operating bands that belong to the supported inter-band carrier aggregation configurations
- NOTE 2: The above additional tolerances also apply in non-aggregated operation for the supported E-UTRA operating bands that belong to the supported interband carrier aggregation configurations
- NOTE 3: In case the UE supports more than one of the above 2DL inter-band carrier aggregation configurations and a E-UTRA operating band belongs to more than one 2DL inter-band carrier aggregation configurations then:
 - When the E-UTRA operating band frequency range is ≤ 1GHz, the applicable additional tolerance shall be the average of the 2DL tolerances above, truncated to one decimal place for that operating band among the supported 2DL CA configurations. In case there is a harmonic relation between low band UL and high band DL, then the maximum tolerance among the different supported 2DL carrier aggregation configurations involving such band shall be applied
 - When the E-UTRA operating band frequency range is >1GHz, the applicable additional 2DL tolerance shall be the maximum tolerance above that applies for that operating band among the supported 2DL CA configurations
- NOTE 4: Only applicable for UE supporting inter-band carrier aggregation with uplink in one E-UTRA band and without simultaneous Rx/Tx.
- NOTE 5: Unless otherwise specified, in case the UE supports more than one of the above 3DL inter-band carrier aggregation configurations and a E-UTRA operating band belongs to more than one 3DL inter-band carrier aggregation configurations then:
 - When the E-UTRA operating band frequency range is ≤ 1GHz and the tolerances are the same, the value applies to the band. If the tolerances

- are different, the applicable additional 3DL tolerance is FFS. In case there is a harmonic relation between low band UL and high band DL, then the maximum tolerance among the different supported 3DL carrier aggregation configurations involving such band shall be applied
- When the E-UTRA operating band frequency range is >1GHz, the applicable additional 3DL tolerance shall be the maximum tolerance above that applies for that operating band among the supported 3DL CA configurations
- NOTE 6: The above additional tolerances applicable for the E-UTRA operating bands that belong to the supported highest order inter-band carrier aggregation configuration, also applies to the same E-UTRA operating bands that belong to a supported lower order CA configuration.
- NOTE 7: Applicable for UE supporting inter-band carrier aggregation with two uplinks and without simultaneous Rx/Tx.
- NOTE 8: Only applicable for UE supporting inter-band carrier aggregation with the uplink active in the FDD band.
- NOTE 9: For Band 28, the requirements only apply for the restricted frequency range specified for this CA configuration (Table 5.5A-2).
- NOTE: The above additional tolerances do not apply to supported UTRA operating bands with frequency range below 1 GHz that correspond to the E-UTRA operating bands that belong to the supported inter-band carrier aggregation configurations when such bands are belonging only to band combination(s) where one band is <1GHz and another band is >1.7GHz and there is no harmonic relationship between the low band UL and high band DL. Otherwise the above additional tolerances also apply to supported UTRA operating bands that correspond to the E-UTRA operating bands that belong to the supported inter-band carrier aggregation configurations.
- NOTE: To meet the $\Delta T_{IB,c}$ requirements for CA_3A-7A with state-of-the-art technology, an increase in power consumption of the UE may be required. It is also expected that as the state-of-the-art technology evolves in the future, this possible power consumption increase can be reduced or eliminated.

Table 6.2.5-3: $\Delta T_{IB,c}$ (three bands)

CA_1A-3A-8A 1 0.3 CA_1A-3A-5A 3 0.3 CA_1A-3A-5A 3 0.3 CA_1A-3A-19A 3 0.3 CA_1A-3A-20A 3 0.3 CA_1A-3A-20A 3 0.3 CA_1A-3A-26A 1 0.3 CA_1A-3A-26A 1 0.3 CA_1A-3A-26A 7 0.6 CA_1A-7A-20A 7 0.6 CA_1A-7A-20A 7 0.6 CA_1A-1A-1A-1BA-1BB-1BB-1BB-1BB-1BB-1BB-1BB	Inter-band CA Configuration	E-UTRA Band	ΔT _{IB,c} [dB]
CA_1A-3A-8A 3 0.3 CA_1A-3A-5A 3 0.3 CA_1A-3A-5A 3 0.3 CA_1A-3A-19A 3 0.3 CA_1A-3A-2OA 3 0.3 CA_1A-5A-7A 5 0.3 CA_1A-5A-7A 5 0.3 CA_1A-7A-2OA 7 0.6 CA_1A-1A-7A-2OA 7 0.6 CA_1A-1A-1A-1A-1 0.5 0.3 CA_1A-1A-1A-2OA 1 0.5 CA_1A-1A-1A-2OA 1 0.3 CA_1A-1A-1A-2OA 1 0.3 CA_1A-1A-1A-2A-2A-2A-2A-2A-2A-2A-2A-2A-2A-2A-2A-2A	Comiguration	1	0.3
B 0.3 1 0.3 1 0.3 5 0.3 1 0.3 1 0.3 1 0.3 1 0.3 1 0.3 1 0.3 20 0.3 1 0.3 20 0.3 1 0.3 20 0.3 1 0.3 26 0.3 1 0.5 26 0.3 1 0.5 26 0.3 1 0.5 26 0.3 1 0.5 26 0.3 1 0.5 26 0.3 1 0.5 26 0.3 2 0.6 20 0.3 20 0.3 20 0.3 20 0.5 21<	CA 1A-3A-8A		
CA_1A-3A-5A 1 0.3 5 0.3 0.3 CA_1A-3A-19A 3 0.3 CA_1A-3A-20A 3 0.3 CA_1A-3A-20A 3 0.3 CA_1A-3A-20A 3 0.3 CA_1A-3A-26A 3 0.3 CA_1A-5A-7A 5 0.3 CA_1A-5A-7A 5 0.3 CA_1A-7A-20A 7 0.6 CA_1A-7A-20A 7 0.6 CA_1A-18A-28A 1 0.3 CA_1A-18A-28A 1 0.3 CA_1A-19A-21A 1 0.3 CA_1A-19A-21A 1 0.3 CA_2A-4A-5A 4 0.5 CA_2A-4A-5A 4 0.5 CA_2A-4A-12A 4 0.5 CA_2A-5A-12A 5 0.8 <tr< td=""><td>0/_//\ 0/\ \ 0/\ \</td><td></td><td></td></tr<>	0/_//\ 0/\ \ 0/\ \		
CA_1A-3A-5A 3 0.3 5 0.3 1 0.3 1 0.3 19 0.3 19 0.3 1 0.3 20 0.3 1 0.3 20 0.3 1 0.3 20 0.3 1 0.3 26 0.3 1 0.5 CA_1A-3A-26A 3 26 0.3 1 0.5 CA_1A-5A-7A 5 5 0.3 1 0.5 CA_1A-7A-2OA 7 0.6 0.3 1 0.5 CA_1A-7A-2OA 7 0.6 0.3 1 0.5 CA_1A-7A-2OA 7 0.6 0.3 1 0.5 0.6 0.3 0.7 0.6 0.8 28 <t< td=""><td></td><td></td><td></td></t<>			
5 0.3 1 0.3 1 0.3 19 0.3 1 0.3 1 0.3 1 0.3 20 0.3 1 0.3 26 0.3 1 0.5 26 0.3 1 0.5 26 0.3 1 0.5 CA_1A-5A-7A 5 7 0.6 1 0.5 CA_1A-5A-7A 7 0.6 0.3 1 0.5 CA_1A-7A-20A 7 7 0.6 20 0.3 CA_1A-7A-20A 1 1 0.5 CA_1A-1A-1A-1B-1 0.3 28 0.5 CA_1A-19A-2B-1 1 1 0.3 2 0.5 CA_2A-4A-5A-5A-5A-5A-1 4 19 0.3	CA 1A-3A-5A		
CA_1A-3A-19A 1 0.3 19 0.3 11 0.3 CA_1A-3A-20A 3 0.3 20 0.3 1 0.3 0.3 CA_1A-3A-26A 3 0.3 1 0.3 0.3 CA_1A-5A-7A 5 0.3 1 0.5 0.3 CA_1A-5A-7A 7 0.6 1 0.5 0.3 CA_1A-5A-7A 7 0.6 1 0.5 0.3 CA_1A-7A-20A 7 0.6 20 0.3 0.3 CA_1A-7A-20A 7 0.6 20 0.3 0.3 CA_1A-18A-18A-18 0.5 0.3 21 1 0.3 21A-19A-19 0.3 0.3 21A-21A-19A-19 0.3 0.3 21A-21A-2A-2A-2A-2A-2A-2A-2A-2A-2A-2A-2A-2A-A-2A-A-2A-A-2A-A-A-2A-A-A-2A-A-A-2A-	0/_//\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
CA_1A-3A-19A 3 0.3 19 0.3 11 0.3 20 0.3 11 0.3 20 0.3 11 0.3 26 0.3 11 0.5 CA_1A-5A-7A 5 7 0.6 1 0.5 CA_1A-7A-20A 7 7 0.6 20 0.3 CA_1A-7A-20A 7 7 0.6 20 0.3 CA_1A-18A-28A 28 28 0.5 CA_1A-19A-19A-19 0.3 21 0.4 21 0.4 21 0.5 CA_2A-4A-5A 4 0.5 2 0.5 CA_2A-4A-12A 4 0.5 2 0.5 0.5 CA_2A-4A-12A 4 0.5 2 0.5 0.5 2 0.5 <td></td> <td></td> <td></td>			
19	CA 1A-3A-19A		
CA_1A-3A-20A 1 0.3 20 0.3 1 0.3 20 0.3 1 0.3 26 0.3 1 0.5 CA_1A-5A-7A 5 5 0.3 7 0.6 1 0.5 CA_1A-7A-20A 7 0.6 20 0.3 0.3 CA_1A-18A-28A 18 20 0.3 CA_1A-18A-28A 18 28 0.5 CA_1A-19A-19 0.3 21 0.4 2 0.5 CA_2A-4A-5A 4 0.5 5 0.3 2 0.5 0.3 CA_2A-4A-5A 4 0.5 2 0.5 0.3 2 0.5 0.3 CA_2A-4A-12A 4 0.5 2 0.5 0.5 2 0.5 0.5	0/1_// 0// 10//		
CA_1A-3A-20A 3 0.3 CA_1A-3A-26A 3 0.3 CA_1A-5A-7A 26 0.3 CA_1A-5A-7A 5 0.3 CA_1A-7A-20A 7 0.6 CA_1A-18A-28A 1 0.5 CA_1A-19A-21A 1 0.3 CA_1A-19A-21A 1 0.3 CA_2A-4A-5A 4 0.5 CA_2A-4A-5A 4 0.5 CA_2A-4A-12A 2 0.5 CA_2A-4A-12A 4 0.5 CA_2A-4A-12A 4 0.5 CA_2A-4A-12A 4 0.5 CA_2A-4A-12A 4 0.5 CA_2A-4A-12A 2 0.5 CA_2A-4A-13A 4 0.5 CA_2A-4A-13A 4 0.5 CA_2A-4A-29A 2 0.5 CA_2A-5A-12A 2 0.5 CA_2A-5A-12A 5 0.8 CA_2A-5A-12A 5 0.8 12 0.3 0.5 <			
20	CA 1A-3A-20A		
CA_1A-3A-26A 1 0.3 26 0.3 CA_1A-5A-7A 5 0.3 CA_1A-5A-7A 5 0.3 CA_1A-7A-20A 7 0.6 CA_1A-7A-20A 7 0.6 CA_1A-18A-28A 1 0.3 CA_1A-18A-28A 1 0.5 CA_1A-19A-21A 19 0.3 CA_21A-21A 19 0.3 CA_2A-4A-5A 4 0.5 CA_2A-4A-5A 4 0.5 CA_2A-4A-12A 4 0.5 CA_2A-4A-12A 4 0.5 CA_2A-4A-13A 4 0.5 CA_2A-4A-29A 2 0.5 CA_2A-4A-29A 2 0.5 CA_2A-5A-12A 5 0.8 CA_2A-5A-12A 5 0.8 CA_2A-5A-12A 5 0.8 CA_2A-5A-12A 5 0.5 CA_2A-5A-13A 5 0.5 CA_2A-5A-30A 5 0.5 CA_2A-	0/1_// 0// 20/		
CA_1A-3A-26A 3 0.3 CA_1A-5A-7A 1 0.5 CA_1A-5A-7A 5 0.3 CA_1A-7A-20A 7 0.6 CA_1A-7A-20A 7 0.6 CA_1A-18A-28A 20 0.3 CA_1A-18A-18 0.5 0.5 CA_1A-19A-19 0.3 0.5 CA_2A-4A-5A 4 0.5 CA_2A-4A-5A 4 0.5 CA_2A-4A-12A 2 0.5 CA_2A-4A-12A 12 0.8 CA_2A-4A-13A 4 0.5 CA_2A-4A-29A 2 0.5 CA_2A-4A-29A 2 0.5 CA_2A-5A-12A 5 0.8 CA_2A-5A-13A 5 0.8 CA_2A-5A-12A 5 0.8 CA_2A-5A-13A 5 0.5 CA_2A-5A-13A 5 0.5 CA_2A-5A-13A 5 0.5 CA_2A-12A-30A 5 0.5 CA_2A-12A-30A 0 0.3			
CA_1A-5A-7A 26 0.3 1 0.5 0.3 7 0.6 1 1 0.5 0.6 20 0.3 0.6 20 0.3 0.5 CA_1A-18A-28A 18 0.5 28A 28 0.5 CA_1A-19A-19 0.3 0.3 21A 21 0.4 2 0.5 0.5 CA_2A-4A-5A 4 0.5 2 0.5 0.3 2 0.5 0.3 2 0.5 0.3 2 0.5 0.3 2 0.5 0.3 2 0.5 0.3 2 0.5 0.3 2 0.5 0.5 2 0.5 0.5 2 0.5 0.5 2 0.5 0.5 2 0.5 0.5 2 0.5 0.5	CA 1A-3A-26A		
CA_1A-5A-7A 1 0.5 5 0.3 7 0.6 1 0.5 CA_1A-7A-20A 7 0.6 20 0.3 CA_1A-18A-28A 1 0.3 28A 28 0.5 CA_1A-19A-21A 1 0.3 21A 21 0.4 21A 0.5 0.5 22A-4A-5A 0.5 0.5 23A-7A-12A 0.5 0.5 24A-4A-12A 0.5 0.5 2A-2A-4A-29A 4 0.5 2A-2A-5A-12A 5 0.5 2A-2A-5A-12A 5	O/_1/\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
CA_1A-5A-7A 5 0.3 CA_1A-7A-20A 7 0.6 CA_1A-7A-20A 7 0.6 CA_1A-18A-28A 1 0.3 CA_1A-19A-21A 1 0.3 21A 21 0.4 21A 21 0.4 22 0.5 CA_2A-4A-5A 4 0.5 5 0.3 0.5 6 0.5 0.5 CA_2A-4A-5A 4 0.5 5 0.3 0.5 6 0.5 0.3 CA_2A-4A-12A 4 0.5 12 0.8 0.5 2 0.5 0.5 CA_2A-4A-12A 4 0.5 13 0.3 0.5 2 0.5 0.5 2 0.5 0.5 2 0.5 0.5 2 0.5 0.5 2 0.5 0.5 2 0.5 <td< td=""><td></td><td></td><td></td></td<>			
CA_1A-7A-20A 7 0.6 CA_1A-7A-20A 7 0.6 20 0.3 CA_1A-18A-28A 18 0.5 28A 28 0.5 CA_1A-19A-21A 1 0.3 21A 21 0.4 21A 21 0.4 22 0.5 0.5 5 0.3 0.5 5 0.3 0.5 5 0.3 0.5 6 2 0.5 6 0.3 0.5 6 0.3 0.5 6 0.3 0.5 7 0.5 0.5 8 2 0.5 9 2 0.5 12 0.8 0.5 13 0.3 0.3 13 0.3 0.3 14 0.5 0.3 12 0.4 0.5 2 0.3 12 0.	CA 1A-5A-7A		
CA_1A-7A-20A 1 0.5 CA_1A-18A-28A 1 0.3 CA_1A-18A-28A 18 0.5 CA_1A-19A-21A 1 0.3 21A 21 0.4 21A 21 0.4 2A-2A-4A-5A 4 0.5 5 0.3 0.5 CA_2A-4A-12A 4 0.5 12 0.8 0.5 2 0.5 0.5 CA_2A-4A-12A 4 0.5 12 0.8 0.5 12 0.8 0.5 12 0.8 0.5 12 0.8 0.5 12 0.8 0.5 12 0.8 0.5 13 0.3 0.3 13 0.3 0.3 14 0.5 0.3 2 0.3 0.5 2 0.3 0.5 2 0.3 0.5 2 0.5 <td>UA_1A-3A-1A</td> <td></td> <td></td>	UA_1A-3A-1A		
CA_1A-7A-20A 7 0.6 20 0.3 CA_1A-18A-28A 18 0.5 28A 28 0.5 CA_1A-19A-21A 1 0.3 21A 21 0.4 CA_2A-4A-5A 4 0.5 5 0.3 2 CA_2A-4A-12A 4 0.5 CA_2A-4A-12A 4 0.5 CA_2A-4A-29A 2 0.5 CA_2A-4A-29A 2 0.5 CA_2A-5A-12A 2 0.5 CA_2A-5A-12A 5 0.8 CA_2A-5A-30A 5 0.3 CA_2A-5A-30A 5 0.3 CA_2A-12A-30A 5 0.3 CA_2A-12A-30A 5 0.3 CA_2A-29A-30A 3 0.3 CA_2A-29A-30A 2 0.5 CA_2A-29A-30A 3 0.3 CA_2A-12A-30A-30A 3 0.3 CA_3A-7A-20A 7 0.5 CA_3A-7A-20A			
CA_1A-18A- 28A CA_1A-18A- 28A 28 0.5 CA_1A-19A- 21A 1 0.3 21 CA_2A-4A-5A 19 0.5 0.5 0.5 0.5 0.5 0.6 0.7 19 0.3 21 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5	CA 1A 7A 20A		
CA_1A-18A- 28A 1 0.3 CA_1A-19A- 21A 1 0.3 CA_2A-4A-5A 19 0.3 CA_2A-4A-5A 4 0.5 CA_2A-4A-12A 4 0.5 CA_2A-4A-12A 4 0.5 CA_2A-4A-13A 4 0.5 CA_2A-4A-29A 2 0.5 CA_2A-4A-29A 2 [0.5] CA_2A-5A-12A 2 0.3 CA_2A-5A-12A 5 0.8 CA_2A-5A-13A 5 0.3 CA_2A-5A-30A 5 0.3 CA_2A-12A- 30A 30 0.3 CA_2A-29A- 30A 30 0.3 CA_2A-29A- 30A 30 0.3 CA_3A-7A-20A 7 0.5 CA_4A-5A-12A 5 0.8 CA_4A-5A-12A 7 0.5 CA_3A-7A-20A 7 0.5 CA_4A-5A-12A 5 0.8 CA_4A-5A-12A 5 0.8 CA_4A-5A-12A 5 0.	UA_1A-7A-2UA		
CA_1A-18A-28A 18 0.5 28A 28 0.5 CA_1A-19A-21A 19 0.3 21A 21 0.4 21A 21 0.4 21A 0.5 0.5 CA_2A-4A-5A 4 0.5 22 0.5 0.5 CA_2A-4A-12A 4 0.5 12 0.8 0.5 CA_2A-4A-13A 4 0.5 13 0.3 0.5 CA_2A-4A-29A 4 0.5 2 0.3 0.5 CA_2A-5A-12A 5 0.8 2 0.3 0.5 CA_2A-5A-13A 5 0.5 2 0.5 0.5 2 0.5 0.5 CA_2A-5A-13A 5 0.5 30 0.3 0.3 CA_2A-12A-30A 5 0.3 30 0.3 0.3 CA_2A-12A-30A 3 0.5			
Z6A 28 0.5 CA_1A-19A-21A 1 0.3 21A 21 0.4 21A 21 0.4 21A 21 0.4 22 0.5 0.5 23 0.5 0.5 24 0.5 0.5 25 0.5 0.5 26 0.5 0.5 27 0.5 0.5 28 0.5 0.5 29 0.5 0.5 20 0.5 0.5 20 0.5 0.5 20 0.3 0.3 20 0.3 0.5 20 0.3 0.5 21 0.4 0.5 22 0.3 0.5 23 0.5 0.5 24 0.5 0.5 25 0.5 0.5 26 0.5 0.5 27 0.5 0.5	CA_1A-18A-	·	
CA_1A-19A-21A 1 0.3 21A 0.4 0.5 2 0.5 0.5 0.5 CA_2A-4A-5A 4 0.5 5 0.3 2 0.5 CA_2A-4A-12A 4 0.5 12 0.8 2 0.5 CA_2A-4A-13A 4 0.5 13 0.3 0.3 0.3 CA_2A-4A-29A 4 0.5 2 0.5 0.3 0.5 2 0.5 0.3 0.3 CA_2A-5A-12A 5 0.8 12 0.4 0.5 0.3 2 0.5 0.5 0.5 2 0.5 0.5 0.5 13 0.5 0.5 0.5 2 0.5 0.5 0.5 2 0.5 0.5 0.5 2 0.5 0.5 0.5 2 0.5 0.5 0.5 2 0.5 0.5 0.5 2 0.5 0.5 0.5 30 0.3 0.3 0.3	28A		
CA_IA-19A-21A 19 0.3 21A 21 0.4 CA_2A-4A-5A 4 0.5 5 0.3 0.5 CA_2A-4A-12A 4 0.5 12 0.8 0.5 CA_2A-4A-13A 4 0.5 13 0.3 0.5 CA_2A-4A-29A 2 [0.5] CA_2A-4A-29A 2 0.5 CA_2A-5A-12A 5 0.8 12 0.4 0.5 2 0.3 0.5 2 0.3 0.5 2 0.3 0.5 2 0.5 0.5 13 0.5 0.5 2 0.5 0.5 13 0.5 0.5 2 0.5 0.5 2 0.5 0.5 2 0.5 0.3 3 0.3 0.3 2 0.5 0.5 30A 30		_	
21A 21 0.4 2 0.5 CA_2A-4A-5A 4 0.5 5 0.3 2 0.5 CA_2A-4A-12A 4 0.5 12 0.8 2 0.5 CA_2A-4A-13A 4 0.5 13 0.3 CA_2A-4A-29A 2 [0.5] 2 0.3 0.5 2 0.5 0.8 CA_2A-5A-12A 5 0.8 12 0.4 0.5 2 0.3 0.5 CA_2A-5A-13A 5 0.5 13 0.5 0.5 2 0.5 0.5 2 0.5 0.5 CA_2A-5A-13A 5 0.5 0.5 0.3 0.3 CA_2A-12A-30A 5 0.3 0.3 0.3 0.3 CA_2A-12A-30A 3 0.5 0.5 0.5 0.5 <	CA 1A-19A-		
CA_2A-4A-5A CA_2A-4A-5A CA_2A-4A-5A CA_2A-4A-12A CA_2A-4A-13A CA_2A-4A-29A CA_2A-5A-30A CA_2A-2A-2A-30A CA_2A-2A-3A-7A-20A CA_2A-4A-5A-12A CA_2A-4A-5A-12A CA_2A-4A-5A-12A CA_2A-4A-5A-12A CA_2A-5A-12A CA_3A-7A-20A CA_3A-7A-20A CA_4A-5A-12A CA_4A-5A-13A CA_4A-5A-13A CA_4A-5A-13A CA_4A-5A-13A CA_4A-5A-13A CA_3B-12 CA_3B-13 CA_3B-			
CA_2A-4A-5A 4 0.5 5 0.3 CA_2A-4A-12A 2 0.5 CA_2A-4A-12A 4 0.5 CA_2A-4A-13A 4 0.5 CA_2A-4A-29A 2 [0.5] CA_2A-5A-12A 5 0.8 CA_2A-5A-12A 5 0.8 CA_2A-5A-13A 5 0.5 CA_2A-5A-30A 5 0.5 CA_2A-5A-30A 5 0.3 CA_2A-12A-30A 5 0.3 CA_2A-12A-30A 5 0.3 CA_2A-12A-30A 2 0.5 CA_3A-7A-20A 2 0.5 CA_3A-7A-20A 7 0.5 CA_3A-7A-20A 7 0.5 CA_4A-5A-12A 5 0.8 CA_4A-5A-12A 5 0.8 CA_4A-5A-13A 5 0.5			
5 0.3 2 0.5 12 0.8 2 0.5 CA_2A-4A-13A 4 0.5 CA_2A-4A-29A 2 [0.5] CA_2A-4A-29A 2 [0.5] CA_2A-5A-12A 2 0.3 CA_2A-5A-12A 5 0.8 CA_2A-5A-13A 5 0.5 CA_2A-5A-30A 5 0.3 CA_2A-5A-30A 5 0.3 CA_2A-12A-30A 5 0.3 CA_2A-12A-30A 2 0.5 CA_3OA 30 0.3 CA_2A-12A-30A 2 0.5 30A 30 0.3 CA_3OA 30 0.3 CA_3A-729A-30A 2 0.5 30A 30 0.3 CA_3A-729A-30A 2 0.5 30A 30 0.3 CA_3A-7A-20A 7 0.5 CA_3A-7A-20A 7 0.5 CA_4A-5A-12A <td< td=""><td></td><td></td><td></td></td<>			
CA_2A-4A-12A 2 0.5 CA_2A-4A-12A 4 0.5 CA_2A-4A-13A 2 0.5 CA_2A-4A-29A 2 [0.5] CA_2A-5A-12A 2 0.3 CA_2A-5A-12A 5 0.8 CA_2A-5A-13A 5 0.5 CA_2A-5A-30A 2 0.5 CA_2A-5A-30A 5 0.5 CA_2A-12A-30A 2 0.5 CA_2A-12A-30A 30 0.3 CA_2A-12A-30A 2 0.5 CA_2A-12A-30A 30 0.3 CA_2A-12A-30A 30 0.3 CA_2A-12A-30A 30 0.3 CA_2A-12A-30A 30 0.3 CA_3A-7-20A-30A 30 0.3 CA_3A-7-20A-30A-30A-30A-30A-30A-30A-30A-30A-30A-3	CA_2A-4A-5A		
CA_2A-4A-12A 4 0.5 12 0.8 2 0.5 CA_2A-4A-13A 4 0.5 13 0.3 CA_2A-4A-29A 2 [0.5] CA_2A-5A-12A 5 0.8 12 0.4 0.5 2 0.3 0.5 CA_2A-5A-13A 5 0.5 13 0.5 0.5 CA_2A-5A-30A 5 0.3 CA_2A-5A-30A 5 0.3 CA_2A-12A-30A 2 0.5 CA_30A 30 0.3 CA_2A-29A-12A-30A 2 0.5 30A 30 0.3 CA_2A-29A-29A-2 2 0.5 30A 30 0.3 CA_3A-7A-20A 7 0.5 20 0.3 CA_4A-5A-12A 5 0.8 12 0.8 4 0.3 CA_4A-5A-13A 5 0.5			
12 0.8 2 0.5 CA_2A-4A-13A 4 0.5 13 0.3 CA_2A-4A-29A 2 [0.5] 2 0.3 CA_2A-5A-12A 5 0.8 12 0.4 2 0.3 CA_2A-5A-13A 5 0.5 2 0.5 2 0.5 CA_2A-5A-30A 5 0.3 30 0.3 CA_2A-12A-30A 2 0.5 30A 30 0.3 CA_2A-12A-30A 2 0.5 30A 0.3 0.3 CA_2A-29A-29A-2 2 0.5 30A 30 0.3 CA_3A-7A-20A 7 0.5 CA_3A-7A-20A 7 0.5 CA_4A-5A-12A 5 0.8 CA_4A-5A-12A 5 0.8 CA_4A-5A-13A 5 0.5			
CA_2A-4A-13A 2 0.5 CA_2A-4A-29A 2 [0.5] CA_2A-5A-12A 2 0.3 CA_2A-5A-12A 5 0.8 CA_2A-5A-13A 5 0.5 CA_2A-5A-30A 5 0.5 CA_2A-12A-30A 5 0.3 CA_2A-12A-30A 2 0.5 CA_2A-12A-30A 2 0.5 CA_2A-12A-30A 2 0.5 CA_2A-12A-30A 0.3 0.3 CA_2A-29A-30A 2 0.5 CA_3A-7A-20A 7 0.5 CA_3A-7A-20A 7 0.5 CA_3A-7A-20A 7 0.5 CA_4A-5A-12A 5 0.8 CA_4A-5A-12A 5 0.8 CA_4A-5A-13A 5 0.5	CA_2A-4A-12A	•	
CA_2A-4A-13A 4 0.5 CA_2A-4A-29A 2 [0.5] CA_2A-4A-29A 4 0.5 CA_2A-5A-12A 5 0.8 CA_2A-5A-12A 5 0.8 CA_2A-5A-13A 5 0.5 CA_2A-5A-30A 5 0.5 CA_2A-5A-30A 5 0.3 CA_2A-12A-30A 2 0.5 CA_3OA 30 0.3 CA_2A-29A-30A 2 0.5 CA_3OA 30 0.3 CA_2A-29A-29A-30A 2 0.5 CA_3A-7A-20A 7 0.5 CA_3A-7A-20A 7 0.5 CA_4A-5A-12A 5 0.8 CA_4A-5A-12A 5 0.8 CA_4A-5A-13A 5 0.5			
CA_2A-4A-29A 2 [0.5] CA_2A-5A-12A 2 0.3 CA_2A-5A-12A 5 0.8 CA_2A-5A-13A 12 0.4 CA_2A-5A-13A 5 0.5 CA_2A-5A-30A 5 0.5 CA_2A-12A-30A 2 0.5 CA_2A-12A-30A 2 0.5 CA_2A-29A-30A 2 0.5 CA_2A-29A-30A 3 0.3 CA_3A-7A-20A 7 0.5 CA_3A-7A-20A 7 0.5 CA_4A-5A-12A 5 0.8 CA_4A-5A-13A 5 0.5 CA_4A-5A-13A 5 0.5			
CA_2A-4A-29A 2 [0.5] CA_2A-5A-12A 5 0.8 CA_2A-5A-12A 5 0.8 CA_2A-5A-13A 2 0.3 CA_2A-5A-13A 5 0.5 CA_2A-5A-30A 5 0.5 CA_2A-5A-30A 5 0.3 CA_2A-12A-30A 2 0.5 CA_3A-12A-30A 2 0.5 CA_3A-12A-30A 30 0.3 CA_2A-12A-30A-30A-30 30 0.3 CA_3A-7A-20A-30A-30 3 0.5 CA_4A-5A-12A-30A-30A-30 3 0.5 CA_4A-5A-12A-30A-30A-30-30-30-30-30-30-30-30-30-30-30-30-30-	CA_2A-4A-13A		
CA_2A-4A-29A 4 0.5 CA_2A-5A-12A 5 0.8 12 0.4 0.3 CA_2A-5A-13A 5 0.5 CA_2A-5A-30A 5 0.5 CA_2A-5A-30A 5 0.3 CA_2A-12A-30A 2 0.5 CA_2A-12A-30A 2 0.5 CA_3A-12A-30A 30 0.3 CA_2A-12A-30A-30A 30 0.3 CA_2A-12A-30A-30A-30A-30A-30A-30A-30A-30A-30A-30			
CA_2A-5A-12A	CA 2A-4A-29A		
CA_2A-5A-12A 5 0.8 12 0.4 2 0.3 CA_2A-5A-13A 5 0.5 13 0.5 2 0.5 CA_2A-5A-30A 5 0.3 CA_2A-12A-30A 2 0.5 2 0.5 0.3 CA_2A-12A-30A 12 0.3 CA_2A-29A-30A 2 0.5 30A 30 0.3 CA_3A-7A-20A 7 0.5 20 0.3 CA_3A-7A-20A 7 0.5 20 0.3 CA_4A-5A-12A 5 0.8 CA_4A-5A-13A 5 0.5	0/(_Z/(!/(Z0/(
12 0.4 2 0.3 CA_2A-5A-13A 5 0.5 13 0.5 2 0.5 CA_2A-5A-30A 5 0.3 30 0.3 CA_2A-12A-30A 2 0.5 30A 30 0.3 CA_2A-12A-30A 2 0.5 30A 30 0.3 CA_2A-29A-30A 2 0.5 30A 3 0.5 CA_3A-7A-20A 7 0.5 CA_3A-7A-20A 7 0.5 CA_4A-5A-12A 5 0.8 CA_4A-5A-12A 5 0.8 CA_4A-5A-13A 5 0.5			0.3
CA_2A-5A-13A 2 0.3 CA_2A-5A-13A 5 0.5 CA_2A-5A-30A 2 0.5 CA_2A-5A-30A 5 0.3 CA_2A-12A-30A 2 0.5 30A 30 0.3 CA_2A-12A-30A 30 0.3 CA_2A-29A-30A 2 0.5 30A 30 0.3 CA_3A-7A-20A 7 0.5 CA_3A-7A-20A 7 0.5 CA_4A-5A-12A 5 0.8 CA_4A-5A-13A 5 0.5	CA_2A-5A-12A		
CA_2A-5A-13A 5 0.5 13 0.5 2 0.5 CA_2A-5A-30A 5 0.3 30 0.3 0.3 CA_2A-12A-30A 2 0.5 30A 30 0.3 CA_2A-29A-30A 2 0.5 30A 30 0.3 CA_3A-7A-20A 7 0.5 CA_3A-7A-20A 7 0.5 CA_4A-5A-12A 5 0.8 12 0.8 4 0.3 CA_4A-5A-13A 5 0.5			
13 0.5 CA_2A-5A-30A 5 0.3 30 0.3 CA_2A-12A-30A 2 0.5 30A 30 0.3 CA_2A-29A-30A 2 0.5 30A 30 0.3 CA_3A-7A-20A 7 0.5 CA_4A-5A-12A 5 0.8 CA_4A-5A-13A 5 0.5			
CA_2A-5A-30A 2 0.5 CA_2A-5A-30A 5 0.3 CA_2A-12A-30A 2 0.5 30A 30 0.3 CA_2A-29A-30A 2 0.5 30A 30 0.3 CA_3A-7A-20A 7 0.5 CA_4A-5A-12A 5 0.8 CA_4A-5A-13A 5 0.5	CA_2A-5A-13A		
CA_2A-5A-30A 5 0.3 CA_2A-12A-30A 2 0.5 CA_2A-12A-30A 12 0.3 CA_2A-29A-30A 2 0.5 30A 30 0.3 CA_3A-7A-20A 7 0.5 CA_4A-5A-12A 5 0.8 CA_4A-5A-13A 5 0.5			
30 0.3 CA_2A-12A-30A 2 0.5 30A 30 0.3 CA_2A-29A-30A 2 0.5 30A 30 0.3 CA_3A-7A-20A 7 0.5 CA_4A-5A-12A 5 0.8 CA_4A-5A-13A 5 0.5			
CA_2A-12A-30A 2 0.5 30A 30 0.3 CA_2A-29A-30A 2 0.5 30A 30 0.3 CA_3A-7A-20A 7 0.5 CA_4A-5A-12A 5 0.8 CA_4A-5A-13A 4 0.3 CA_4A-5A-13A 5 0.5	CA_2A-5A-30A		
CA_2A-12A-30A 12 0.3 30A 30 0.3 CA_2A-29A-30A 2 0.5 30A 30 0.3 CA_3A-7A-20A 7 0.5 20 0.3 4 0.3 CA_4A-5A-12A 5 0.8 CA_4A-5A-13A 5 0.5			
30A 12 0.3 30 0.3 CA_2A-29A-30A 2 0.5 30A 30 0.3 CA_3A-7A-20A 7 0.5 20 0.3 4 0.3 CA_4A-5A-12A 5 0.8 12 0.8 CA_4A-5A-13A 5 0.5	CA 2A-12A-		
CA_2A-29A- 30A 30 0.3 CA_3A-7A-20A 2 0.5 3 0.5 CA_3A-7A-20A 7 0.5 20 0.3 4 0.3 CA_4A-5A-12A 5 0.8 12 0.8 CA_4A-5A-13A 5 0.5			
30A 30 0.3 CA_3A-7A-20A 7 0.5 20 0.3 4 0.3 CA_4A-5A-12A 5 0.8 12 0.8 CA_4A-5A-13A 5 0.5		30	0.3
CA_3A-7A-20A 3 0.5 CA_3A-7A-20A 7 0.5 20 0.3 4 0.3 CA_4A-5A-12A 5 0.8 12 0.8 4 0.3 CA_4A-5A-13A 5 0.5		2	0.5
CA_3A-7A-20A 7 0.5 20 0.3 4 0.3 CA_4A-5A-12A 5 0.8 12 0.8 4 0.3 CA_4A-5A-13A 5 0.5	30A		
20 0.3 4 0.3 CA_4A-5A-12A 5 0.8 12 0.8 4 0.3 CA_4A-5A-13A 5 0.5		3	0.5
20 0.3 4 0.3 CA_4A-5A-12A 5 0.8 12 0.8 4 0.3 CA_4A-5A-13A 5 0.5	CA_3A-7A-20A	7	
CA_4A-5A-12A 4 0.3 5 0.8 12 0.8 4 0.3 CA_4A-5A-13A 5 0.5		20	
CA_4A-5A-12A 5 0.8 12 0.8 4 0.3 CA_4A-5A-13A 5 0.5			
12 0.8 4 0.3 CA_4A-5A-13A 5 0.5	CA_4A-5A-12A		
CA_4A-5A-13A 4 0.3 5 0.5			
CA_4A-5A-13A 5 0.5			
_	CA_4A-5A-13A	5	
		13	0.5

	4	0.5
CA_4A-5A-30A	5	0.3
	30	0.3
	4	0.5
CA_4A-7A-12A	7	0.5
	12	0.8
CA 4A 40A	4	0.5
CA_4A-12A- 30A	12	0.8
JUA	30	0.3
CA_4A-29A-	4	0.5
30A	30	0.3
CA_7A-8A-20A	7	0.3
	8	0.6
	20	[0.6]

- NOTE 1: The above additional tolerances are only applicable for the E-UTRA operating bands that belong to the supported inter-band carrier aggregation configurations
- NOTE 2: The above additional tolerances also apply in non-aggregated operation for the supported E-UTRA operating bands that belong to the supported interband carrier aggregation configurations
- NOTE 3: Unless otherwise specified, in case the UE supports more than one of the above 3DL inter-band carrier aggregation configurations and a E-UTRA operating band belongs to more than one 3DL inter-band carrier aggregation configurations then:
 - When the E-UTRA operating band frequency range is ≤ 1GHz and the tolerances are the same, the value applies to the band. If the tolerances are different, the applicable additional 3DL tolerance is FFS. In case there is a harmonic relation between low band UL and high band DL, then the maximum tolerance among the different supported 3DL carrier aggregation configurations involving such band shall be applied
 - When the E-UTRA operating band frequency range is >1GHz, the applicable additional 3DL tolerance shall be the maximum tolerance above that applies for that operating band among the supported 3DL CA configurations

NOTE 4: The above additional tolerances applicable for the E-UTRA operating bands that belong to the supported highest order inter-band carrier aggregation configuration, also applies to the same E-UTRA operating bands that belong to a supported lower order CA configuration.

NOTE: The above additional tolerances do not apply to supported UTRA operating bands with frequency range below 1 GHz that correspond to the E-UTRA operating bands that belong to the supported inter-band carrier aggregation configurations when such bands are belonging only to band combination(s) where one band is <1GHz and other bands are >1.7GHz and there is no harmonic relationship between the low band UL and high band DL. Otherwise the above additional tolerances also apply to supported UTRA operating bands that correspond to the E-UTRA operating bands that belong to the supported inter-band carrier aggregation configurations.

6.2.5A Configured transmitted power for CA

For uplink carrier aggregation the UE is allowed to set its configured maximum output power $P_{CMAX,c}$ for serving cell c and its total configured maximum output power P_{CMAX} .

The configured maximum output power $P_{CMAX,c}$ on serving cell c shall be set as specified in subclause 6.2.5.

For uplink inter-band carrier aggregation, MPR_c and A-MPR_c apply per serving cell c and are specified in subclause 6.2.3 and subclause 6.2.4, respectively. P-MPR_c accounts for power management for serving cell c. P_{CMAX,c} is calculated under the assumption that the transmit power is increased independently on all component carriers.

For uplink intra-band contiguous and non-contiguous carrier aggregation, $MPR_c = MPR$ and $A-MPR_c = A-MPR$ with MPR and A-MPR specified in subclause 6.2.3A and subclause 6.2.4A respectively. There is one power management term for the UE, denoted P-MPR, and P-MPR $_c = P-MPR$. $P_{CMAX,c}$ is calculated under the assumption that the transmit power is increased by the same amount in dB on all component carriers.

The total configured maximum output power P_{CMAX} shall be set within the following bounds:

$$P_{CMAX\ L} \leq P_{CMAX} \leq P_{CMAX\ H}$$

For uplink inter-band carrier aggregation with one serving cell c per operating band,

$$\begin{split} P_{CMAX_L} &= MIN \; \{10log_{10} \sum \; MIN \; [\; p_{EMAX,c} / \; (\Delta t_{C,c}), \; \; p_{PowerClass} / (mpr_c \cdot a - mpr_c \cdot \Delta t_{C,c} \cdot \Delta t_{IB,c} \cdot \Delta t_{ProSe}) \; , \; p_{PowerClass} / pmpr_c], \\ P_{PowerClass} \} \end{split}$$

$$P_{CMAX_H} = MIN\{10 log_{10} \sum p_{EMAX,c}, P_{PowerClass}\}$$

where

- $p_{\text{EMAX},c}$ is the linear value of $P_{\text{EMAX},c}$ which is given by IE *P-Max* for serving cell *c* in [7];
- P_{PowerClass} is the maximum UE power specified in Table 6.2.2A-1 without taking into account the tolerance specified in the Table 6.2.2A-1; p_{PowerClass} is the linear value of P_{PowerClass};
- mpr_c and a-mpr_c are the linear values of MPR_c and A-MPR_c as specified in subclause 6.2.3 and subclause 6.2.4, respectively;
- pmpr_c is the linear value of P-MPR_c;
- $\Delta t_{C,c}$ is the linear value of $\Delta T_{C,c}$. $\Delta t_{C,c} = 1.41$ when Note 2 in Table 6.2.2-1 applies for a serving cell c, otherwise $\Delta t_{C,c} = 1$;
- $\Delta t_{IB,c}$ is the linear value of the inter-band relaxation term $\Delta T_{IB,c}$ of the serving cell c as specified in Table 6.2.5-2; otherwise $\Delta t_{IB,c} = 1$;
- Δt_{ProSe} is the linear value of ΔT_{ProSe} and applies as specified in subclause 6.2.5.

For uplink intra-band contiguous and non-contiguous carrier aggregation,

$$\begin{split} P_{CMAX_L} &= MIN\{10 \ log_{10} \sum p_{EMAX,c} \ -\Delta T_C \ , \ P_{PowerClass} - MAX(MPR + A-MPR + \Delta T_{IB,c} + \Delta T_C + \Delta T_{ProSe}, P-MPR \) \ \} \\ &P_{CMAX_H} &= MIN\{10 \ log_{10} \sum p_{EMAX,c} \ , \ P_{PowerClass}\} \end{split}$$

where

- $p_{EMAX,c}$ is the linear value of $P_{EMAX,c}$ which is given by IE *P-Max* for serving cell c in [7];
- P_{PowerClass} is the maximum UE power specified in Table 6.2.2A-1 without taking into account the tolerance specified in the Table 6.2.2A-1;
- MPR and A-MPR are specified in subclause 6.2.3A and subclause 6.2.4A respectively;
- $\Delta T_{IB,c}$ is the additional tolerance for serving cell c as specified in Table 6.2.5-2;
- P-MPR is the power management term for the UE;
- ΔT_C is the highest value $\Delta T_{C,c}$ among all serving cells c in the subframe over both timeslots. $\Delta T_{C,c} = 1.5$ dB when Note 2 in Table 6.2.2A-1 applies to the serving cell c, otherwise $\Delta T_{C,c} = 0$ dB;
- ΔT_{ProSe} applies as specified in subclause 6.2.5.

For each subframe, the P_{CMAX_L} is evaluated per slot and given by the minimum value taken over the transmission(s) within the slot; the minimum P_{CMAX_L} over the two slots is then applied for the entire subframe. $P_{PowerClass}$ shall not be exceeded by the UE during any period of time.

If the UE is configured with multiple TAGs and transmissions of the UE on subframe i for any serving cell in one TAG overlap some portion of the first symbol of the transmission on subframe i+1 for a different serving cell in another TAG, the UE minimum of $P_{\text{CMAX_L}}$ for subframes i and i+1 applies for any overlapping portion of subframes i and i+1. $P_{\text{PowerClass}}$ shall not be exceeded by the UE during any period of time.

In case PC2 and uplink intra-band contiguous CA capable UE receives $p_{EMAX,c}$ in Scell then that applies both to Scell and Pcell once the Scell is activated.

The measured maximum output power P_{UMAX} over all serving cells shall be within the following range:

$$\begin{split} P_{CMAX_L} - MAX\{T_L, T_{LOW}(P_{CMAX_L}) \ \} \ \leq \ P_{UMAX} \leq \ P_{CMAX_H} + \ T_{HIGH}(P_{CMAX_H}) \end{split}$$

$$P_{UMAX} = 10 \ log_{10} \ \sum p_{UMAX_c} \end{split}$$

where $p_{UMAX,c}$ denotes the measured maximum output power for serving cell c expressed in linear scale. The tolerances $T_{LOW}(P_{CMAX})$ and $T_{HIGH}(P_{CMAX})$ for applicable values of P_{CMAX} are specified in Table 6.2.5A-1 and Table 6.2.5A-2 for inter-band carrier aggregation and intra-band carrier aggregation, respectively. The tolerance T_L is the absolute value of the lower tolerance for applicable E-UTRA CA configuration as specified in Table 6.2.2A-0, Table 6.2.2A-1 and Table 6.2.2A-2 for inter-band carrier aggregation, intra-band contiguous carrier aggregation and intra-band non-contiguous carrier aggregation, respectively.

P _{CMAX} (dBm)	Tolerance T _{LOW} (P _{CMAX}) (dB)	Tolerance Thigh(Pcmax) (dB)			
Рсмах = 23	3.0	2.0			
22 ≤ P _{CMAX} < 23	5.0	2.0			
21 ≤ P _{CMAX} < 22	5.0	3.0			
20 ≤ P _{CMAX} < 21	6.0	4.0			
16 ≤ P _{CMAX} < 20	5	.0			
11 ≤ P _{CMA} c < 16	6.0				
-40 ≤ Pcmax < 11	7.0				

Table 6.2.5A-1: P_{CMAX} tolerance for uplink inter-band CA (two bands)

Table 6.2.5A-2: P_{CMAX} tolerance

P _{CMAX} (dBm)	Tolerance TLow(PcMAX) (dB)	Tolerance Thigh(Pcmax) (dB)			
21 ≤ P _{CMAX} ≤ 23	2	.0			
20 ≤ P _{CMAX} < 21	2	.5			
19 ≤ P _{CMAX} < 20	3.5				
18 ≤ P _{CMAX} < 19	4	.0			
13 ≤ P _{CMAX} < 18	5.0				
8 ≤ P _{CMAX} < 13	6.0				
-40 ≤ P _{CMAX} < 8	7.0				

6.2.5B Configured transmitted power for UL-MIMO

For UE supporting UL-MIMO, the transmitted power is configured per each UE.

The definitions of configured maximum output power $P_{CMAX,c}$, the lower bound $P_{CMAX_L,c}$, and the higher bound $P_{CMAX_H,c}$ specified in subclause 6.2.5 shall apply to UE supporting UL-MIMO, where

- $P_{PowerClass}$ and $\Delta T_{C,c}$ are specified in subclause 6.2.2B;
- MPR,c is specified in subclause 6.2.3B;
- A-MPR_{,c} is specified in subclause 6.2.4B.

The measured configured maximum output power $P_{UMAX,c}$ for serving cell c shall be within the following bounds:

$$P_{CMAX_L,c} - MAX\{T_L, T_{LOW}(P_{CMAX_L,c})\} \leq P_{UMAX,c} \leq P_{CMAX_H,c} + T_{HIGH}(P_{CMAX_H,c})$$

where $T_{LOW}(P_{CMAX_L,c})$ and $T_{HIGH}(P_{CMAX_H,c})$ are defined as the tolerance and applies to $P_{CMAX_L,c}$ and $P_{CMAX_H,c}$ separately, while T_L is the absolute value of the lower tolerance in Table 6.2.2B-1 for the applicable operating band.

For UE with two transmit antenna connectors in closed-loop spatial amultiplexing scheme, the tolerance is specified in Table 6.2.5B-1. The requirements shall be met with UL-MIMO configurations specified in Table 6.2.2B-2.

Tolerance PCMAX,c Tolerance (dBm) $T_{LOW}(P_{CMAX_L,c})$ (dB) Thigh(Pcmax_h,c) (dB) $\overline{P_{CMAX,c}} = 23$ 3.0 2.0 $22 \le P_{CMAX,c} < 23$ 5.0 2.0 5.0 3.0 $21 \le P_{CMAX,c} < 22$ $20 \le P_{CMAX,c} < 21$ 6.0 4.0 $16 \le P_{CMAX,c} < 20$ 5.0 $11 \le P_{\text{CMAX},c} < 16$ 6.0 $-40 \le P_{CMAX,c} < 11$ 7.0

Table 6.2.5B-1: P_{CMAX,c} tolerance in closed-loop spatial multiplexing scheme

If UE is configured for transmission on single-antenna port, the requirements in subclause 6.2.5 apply.

6.2.5C Configured transmitted power for Dual Connectivity

For inter-band dual connectivity with one uplink serving cell per CG, the UE is allowed to set its configured maximum output power $P_{CMAX,c(i),i}$ for serving cell c(i) of CG i, i = 1,2, and its total configured maximum output power P_{CMAX} .

The configured maximum output power $P_{CMAX,c(i),i}$ (p) in subframe p of serving cell c(i) on CG i shall be set within the following bounds:

$$P_{\text{CMAX_L},c(i),i}(p) \leq P_{\text{CMAX},c(i),i}(p) \leq P_{\text{CMAX_H},c(i),i}(p)$$

where $P_{CMAX_L,c(i),i}(p)$ and $P_{CMAX_H,c(i),i}(p)$ are the limits for a serving cell c(i) of CG i as specified in subclause 6.2.5.

The total UE configured maximum output power $P_{CMAX}(p,q)$ in a subframe p of CG 1 and a subframe q of CG 2 that overlap in time shall be set within the following bounds for synchronous and asynchronous operation unless stated otherwise:

$$P_{CMAX L}(p,q) \leq P_{CMAX}(p,q) \leq P_{CMAX H}(p,q)$$

with

$$P_{\text{CMAX_L}}(p,q) = \text{MIN} \{10 \log_{10} [p_{\text{CMAX_L},c(1),1}(p) + p_{\text{CMAX_L},c(2),2}(q)], P_{\text{PowerClass}} \}$$

$$P_{\text{CMAX_H}}(p,q) = \text{MIN} \ \{10 \ \log_{10} \left[p_{\text{CMAX_H},c(1),1}(p) + p_{\text{CMAX_H},c(2),2}(q) \right], P_{\text{PowerClass}} \}$$

where $p_{CMAX L_c(i),i}$ is $p_{CMAX H_c(i),i}$ are the respective limits $P_{CMAX L_c(i),i}(p)$ and $P_{CMAX H_c(i),i}(p)$ expressed in linear scale.

If the UE is configured in Dual Connectivity and synchronous transmissions of the UE on subframe p for a serving cell in one CG overlaps some portion of the first symbol of the transmission on subframe q+1 for a different serving cell in the other CG, the UE minimum of P_{CMAX_L} between subframes pairs (p, q) and (p+1, q+1) respectively applies for any overlapping portion of subframes (p, q) and (p+1, q+1). $P_{PowerClass}$ shall not be exceeded by the UE during any period of time.

The measured total maximum output power P_{UMAX} over both CGs is

$$P_{\text{UMAX}} = 10 \log_{10} \left[p_{\text{UMAX},c(1),1} + p_{\text{UMAX},c(2),2} \right],$$

where $p_{UMAX,c(i),i}$ denotes the measured output power of serving cell c(i) of CG i expressed in linear scale.

If the UE is configured in Dual Connectivity and synchronous transmissions

$$P_{\text{CMAX L}}(p, q) - T_{\text{LOW}}(P_{\text{CMAX L}}(p, q)) \le P_{\text{UMAX}} \le P_{\text{CMAX H}}(p, q) + T_{\text{HIGH}}(P_{\text{CMAX H}}(p, q))$$

where $P_{CMAX_L}(p,q)$ and $P_{CMAX_H}(p,q)$ are the limits for the pair (p,q) and with the tolerances $T_{LOW}(P_{CMAX})$ and $T_{HIGH}(P_{CMAX})$ for applicable values of P_{CMAX} specified in Table 6.2.5C-1. P_{CMAX_L} may be modified for any overlapping portion of subframes (p,q) and (p+1,q+1).

If the UE is configured in Dual Connectivity and asynchronous transmissions, the subframes of the leading CG are taken as reference subframes for the measurement of the total configured output power P_{UMAX} . If subframe p of CG 1 and subframe q of CG 2 overlap in time in their respective slot 0 and

- 1. if p leads in time over q, then p is the reference subframe and the (p,q) and (p,q-1) pairs are considered for determining the P_{CMAX} tolerance
- 2. if q leads in time over p, then q is the reference subframe and the (p-1,q) and (p,q) pairs are considered for determining the P_{CMAX} tolerance;

for the reference subframe p duration (when subframe p in CG 1 leads):

$$P'_{CMAX_L} = MIN \{P_{CMAX_L}(p,q), P_{CMAX_L}(p,q-1)\}$$

$$P'_{CMAX H} = MAX \{P_{CMAX H} (p,q), P_{CMAX H} (p,q-1)\}$$

while for the reference subframe q duration (when subframe q in CG 2 leads):

$$P'_{CMAX_L} = MIN \{P_{CMAX_L} (p-1,q), P_{CMAX_L} (p,q)\}$$

$$P'_{CMAX_H} = MAX \{P_{CMAX_H} (p-1,q), P_{CMAX_H} (p,q)\}$$

where P_{CMAX_L} and P_{CMAX_H} are the applicable limits for each overlapping subframe pairs (p,q), (p,q-1), (p-1,q). The measured total configured maximum output power P_{UMAX} shall be within the following bounds:

$$P'_{CMAX_L} - T_{LOW}(P'_{CMAX_L}) \le P_{UMAX} \le P'_{CMAX_H} + T_{HIGH}(P'_{CMAX_H})$$

with the tolerances $T_{LOW}(P_{CMAX})$ and $T_{HIGH}(P_{CMAX})$ for applicable values of P_{CMAX} specified in Table 6.2.5C-1.

Tolerance Tolerance P_{CMAX}(dBm) Thigh (Pcmax H)(dB) TLOW(PCMAX_L)(dB) $P_{CMAX} = \overline{23}$ 3.0 2.0 2.0 22 ≤P_{CMAX},< 23 5.0 $21 \le P_{CMAX} < 22$ 5.0 3.0 20 ≤ P_{CMAX}, < 21 6.0 4.0 16 ≤ P_{CMAX} < 20 5.0 $11 \le P_{CMAX} < 16$ 6.0 -40 ≤ P_{CMAX} < 11 7.0

Table 6.2.5C-1: P_{CMAX} tolerance for inter-band Dual Connectivity

6.2.5D Configured transmitted power for ProSe

The configured maximum output power $P_{CMAX,c}$ and power boundary requirement specified in subclause 6.2.5 shall apply to UE supporting ProSe, where

- MPR $_c$ is specified in subclause 6.2.3D;
- A-MPR_c is specified in subclause 6.2.4D;
- $\Delta T_{\text{ProSe}} = 0.1 \text{ dB}.$

For $P_{\text{CMAX},PSSCH}$ and $P_{\text{CMAX},PSCCH}$, $P_{\text{EMAX},c}$ is the value given by IE P-Max for serving cell c, defined by [7], when present. $P_{\text{EMAX},c}$ is the value given by IE maxTxPower, defined by [7], when the UE is not associated with a serving cell on the ProSe carrier.

For $P_{\text{CMAX},PSDCH}$, $P_{\text{EMAX},c}$ is the value given by the IE discMaxTxPower in [7].

For $P_{\text{CMAX},PSBCH}$, $P_{\text{EMAX},c}$ is the value given by the IE maxTxPower in [7] when the ProSe UE is not associated with a serving cell on the ProSe carrier. When the UE is associated with a serving cell, then $P_{\text{EMAX},c}$ is the value given by the IE P-Max when PSBCH/SLSS transmissions is triggered for ProSe Direct communication as specified in [7], and is the value given by the IE discMaxTxPower in [7] otherwise.

For $P_{\text{CMAX},SSSS}$, the value is as calculated for $P_{\text{CMAX},PSBCH}$ and applying the MPR for SSSS as specified in Section 6.2.3D.

6.3 Output power dynamics

6.3.1 (Void)

6.3.2 Minimum output power

The minimum controlled output power of the UE is defined as the broadband transmit power of the UE, i.e. the power in the channel bandwidth for all transmit bandwidth configurations (resource blocks), when the power is set to a minimum value.

6.3.2.1 Minimum requirement

The minimum output power is defined as the mean power in one sub-frame (1ms). The minimum output power shall not exceed the values specified in Table 6.3.2.1-1.

	Channel bandwidth / Minimum output power / Measurement bandwidth					
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Minimum output power	-40 dBm					
Measurement bandwidth	1.08 MHz	2.7 MHz	4.5 MHz	9.0 MHz	13.5 MHz	18 MHz

Table 6.3.2.1-1: Minimum output power

6.3.2A UE Minimum output power for CA

For inter-band carrier aggregation with uplink assigned to two E-UTRA bands and intra-band contiguous and non-contiguous carrier aggregation, the minimum controlled output power of the UE is defined as the transmit power of the UE per component carrier, i.e., the power in the channel bandwidth of each component carrier for all transmit bandwidth configurations (resource blocks), when the power on both component carriers are set to a minimum value.

6.3.2A.1 Minimum requirement for CA

For inter-band carrier aggregation with uplink assigned to two E-UTRA bands, the minimum output power is defined per carrier and the requirement is specified in subclause 6.3.2.1.

For intra-band contiguous and non-contiguous carrier aggregation the minimum output power is defined as the mean power in one sub-frame (1ms). The minimum output power shall not exceed the values specified in Table 6.3.2A.1-1.

Table 6.3.2A.1-1: Minimum output power for intra-band contiguous and non-contiguous CA UE

	CC Channel bandwidth / Minimum output power / Measurement bandwidth					
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Minimum output power			-40 c	lBm		
Measurement bandwidth			4.5 MHz	9.0 MHz	13.5 MHz	18 MHz

6.3.2B UE Minimum output power for UL-MIMO

For UE supporting UL-MIMO, the minimum controlled output power is defined as the broadband transmit power of the UE, i.e. the sum of the power in the channel bandwidth for all transmit bandwidth configurations (resource blocks) at each transmit antenna connector, when the UE power is set to a minimum value.

6.3.2B.1 Minimum requirement

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the minimum output power is defined as the sum of the mean power at each transmit connector in one sub-frame (1ms). The minimum output power shall not exceed the values specified in Table 6.3.2B.1-1.

Table 6.3.2B.1-1: Minimum output power

	Channel bandwidth / Minimum output power / Measurement bandwidth					
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Minimum output power	-40 dBm					
Measurement bandwidth	1.08 MHz	2.7 MHz	4.5 MHz	9.0 MHz	13.5 MHz	18 MHz

If UE is configured for transmission on single-antenna port, the requirements in subclause 6.3.2 apply.

6.3.3 Transmit OFF power

Transmit OFF power is defined as the mean power when the transmitter is OFF. The transmitter is considered to be OFF when the UE is not allowed to transmit or during periods when the UE is not transmitting a sub-frame. During DTX and measurements gaps, the UE is not considered to be OFF.

6.3.3.1. Minimum requirement

The transmit OFF power is defined as the mean power in a duration of at least one sub-frame (1ms) excluding any transient periods. The transmit OFF power shall not exceed the values specified in Table 6.3.3.1-1.

Table 6.3.3.1-1: Transmit OFF power

	Chanr	Channel bandwidth / Transmit OFF power / Measurement bandwidth				
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Transmit OFF power		-50 dBm				
Measurement bandwidth	1.08 MHz	2.7 MHz	4.5 MHz	9.0 MHz	13.5 MHz	18 MHz

6.3.3A UE Transmit OFF power for CA

For inter-band carrier aggregation with uplink assigned to two E-UTRA bands and intra-band contiguous and non-contiguous carrier aggregation, transmit OFF power is defined as the mean power per component carrier when the transmitter is OFF on all component carriers. The transmitter is considered to be OFF when the UE is not allowed to transmit or during periods when the UE is not transmitting a sub-frame. During measurements gaps, the UE is not considered to be OFF.

6.3.3A.1 Minimum requirement for CA

For inter-band carrier aggregation with uplink assigned to two E-UTRA bands, transmit OFF power requirement is defined per carrier and the requirement is specified in subclause 6.3.3.1.

For intra-band contiguous and non-contiguous carrier aggregation the transmit OFF power is defined as the mean power in a duration of at least one sub-frame (1ms) excluding any transient periods. The transmit OFF power shall not exceed the values specified in Table 6.3.3A.1-1.

Table 6.3.3A.1-1: Transmit OFF power for intra-band contiguous and non-contiguos CA UE

	CC Channel bandwidth / Transmit OFF power / Measurement bandwidth					
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Transmit OFF power			-50 c	lBm		
Measurement bandwidth			4.5 MHz	9.0 MHz	13.5 MHz	18 MHz

6.3.3B UE Transmit OFF power for UL-MIMO

For UE supporting UL-MIMO, the transmit OFF power is defined as the mean power at each transmit antenna connector when the transmitter is OFF at all transmit antenna connectors. The transmitter is considered to be OFF when the UE is not allowed to transmit or during periods when the UE is not transmitting a sub-frame. During DTX and measurements gaps, the UE is not considered to be OFF.

6.3.3B.1 Minimum requirement

The transmit OFF power is defined as the mean power at each transmit antenna connector in a duration of at least one sub-frame (1ms) excluding any transient periods. The transmit OFF power at each transmit antenna connector shall not exceed the values specified in Table 6.3.3B.1-1.

Table 6.3.3B.1-1: Transmit OFF power per antenna port

	Channel bandwidth / Transmit OFF power/ Measurement bandwidth					
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Transmit OFF power	-50 dBm					
Measurement bandwidth	1.08 MHz	2.7 MHz	4.5 MHz	9.0 MHz	13.5 MHz	18 MHz

6.3.3D Transmit OFF power for ProSe

The Prose UE shall Transmit OFF power at all times when the UE is not associated with PCell on the ProSe carrier and does not have knowledge of its geographical area or is provisioned with pre-configured radio parameters that are not associated with any known Geographical Area.

The requirements specified in subclause 6.3.3D shall apply to UE supporting ProSe when

- the UE is associated with PCell on the ProSe carrier, or
- the UE is not associated with PCell on the ProSe carrier and is provisioned with the preconfigured radio parameters for ProSe Direct Communications that are associated with known Geographical Area.

6.3.4 ON/OFF time mask

6.3.4.1 General ON/OFF time mask

The General ON/OFF time mask defines the observation period between Transmit OFF and ON power and between Transmit ON and OFF power. ON/OFF scenarios include; the beginning or end of DTX, measurement gap, contiguous, and non contiguous transmission

The OFF power measurement period is defined in a duration of at least one sub-frame excluding any transient periods. The ON power is defined as the mean power over one sub-frame excluding any transient period.

There are no additional requirements on UE transmit power beyond that which is required in subclause 6.2.2 and subclause 6.6.2.3

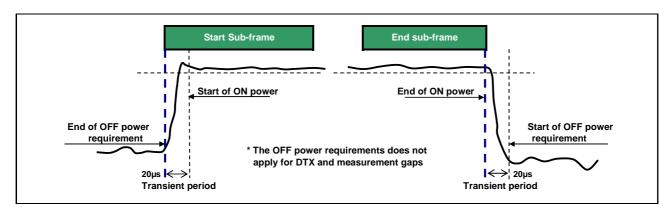


Figure 6.3.4.1-1: General ON/OFF time mask

6.3.4.2 PRACH and SRS time mask

6.3.4.2.1 PRACH time mask

The PRACH ON power is specified as the mean power over the PRACH measurement period excluding any transient periods as shown in Figure 6.3.4.2-1. The measurement period for different PRACH preamble format is specified in Table 6.3.4.2-1.

There are no additional requirements on UE transmit power beyond that which is required in subclause 6.2.2 and subclause 6.6.2.3

Table 6.3.4.2-1: PRACH ON power measurement period

PRACH preamble format	Measurement period (ms)
0	0.9031
1	1.4844
2	1.8031
3	2.2844
4	0.1479

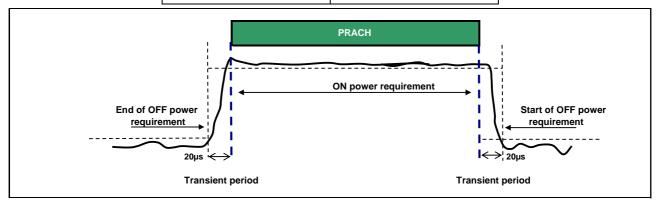


Figure 6.3.4.2-1: PRACH ON/OFF time mask

6.3.4.2.2 SRS time mask

In the case a single SRS transmission, the ON power is defined as the mean power over the symbol duration excluding any transient period. Figure 6.3.4.2.2-1

In the case a dual SRS transmission, the ON power is defined as the mean power for each symbol duration excluding any transient period. Figure 6.3.4.2.2-2

There are no additional requirements on UE transmit power beyond that which is required in subclause 6.2.2 and subclause 6.6.2.3

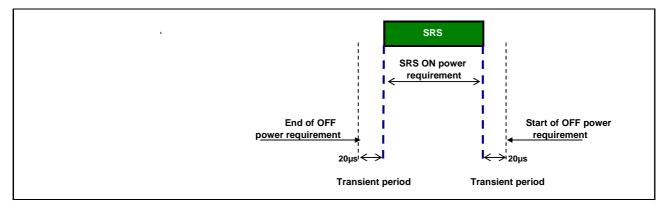


Figure 6.3.4.2.2-1: Single SRS time mask

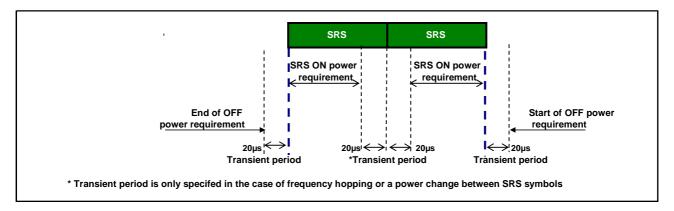


Figure 6.3.4.2.2-2: Dual SRS time mask for the case of UpPTS transmissions

6.3.4.3 Slot / Sub frame boundary time mask

The sub frame boundary time mask defines the observation period between the previous/subsequent sub–frame and the (reference) sub-frame. A transient period at a slot boundary within a sub-frame is only allowed in the case of Intra-sub frame frequency hopping. For the cases when the subframe contains SRS the time masks in subclause 6.3.4.4 apply.

There are no additional requirements on UE transmit power beyond that which is required in subclause 6.2.2 and subclause 6.6.2.3

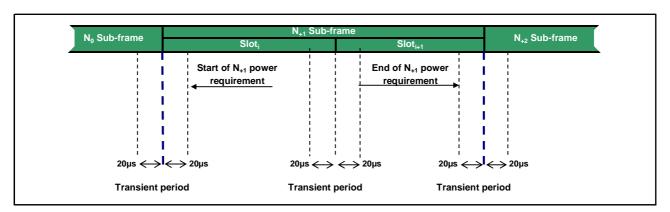


Figure 6.3.4.3-1: Transmission power template

6.3.4.4 PUCCH / PUSCH / SRS time mask

The PUCCH/PUSCH/SRS time mask defines the observation period between sounding reference symbol (SRS) and an adjacent PUSCH/PUCCH symbol and subsequent sub-frame.

There are no additional requirements on UE transmit power beyond that which is required in subclause 6.2.2 and subclause 6.6.2.3

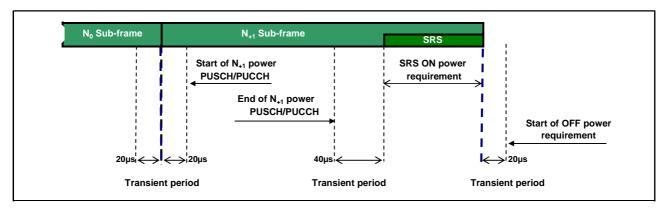


Figure 6.3.4.4-1: PUCCH/PUSCH/SRS time mask when there is a transmission before SRS but not after

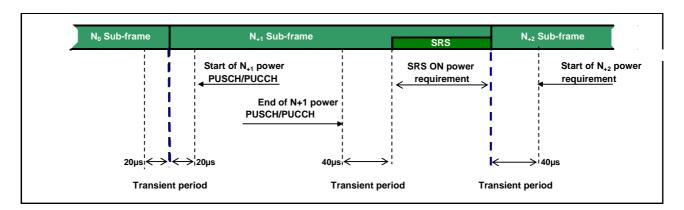


Figure 6.3.4.4-2: PUCCH/PUSCH/SRS time mask when there is transmission before and after SRS

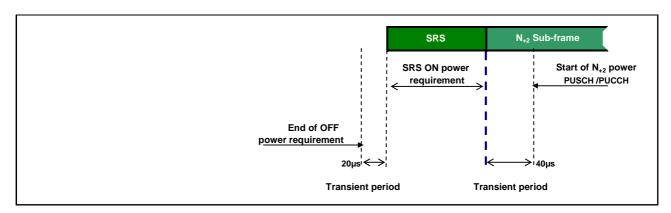


Figure 6.3.4.4-3: PUCCH/PUSCH/SRS time mask when there is a transmission after SRS but not before

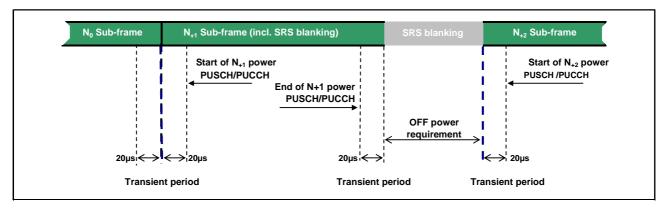


Figure 6.3.4.4-4: SRS time mask when there is FDD SRS blanking

6.3.4A ON/OFF time mask for CA

For inter-band carrier aggregation with uplink assigned to two E-UTRA bands and intra-band contiguous and non-contiguous carrier aggregation, the general output power ON/OFF time mask specified in subclause 6.3.4.1 is applicable for each component carrier during the ON power period and the transient periods. The OFF period as specified in subclause 6.3.4.1 shall only be applicable for each component carrier when all the component carriers are OFF.

6.3.4B ON/OFF time mask for UL-MIMO

For UE supporting UL-MIMO, the ON/OFF time mask requirements in subclause 6.3.4 apply at each transmit antenna connector.

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the general ON/OFF time mask requirements specified in subclause 6.3.4.1 apply to each transmit antenna connector. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2.

If UE is configured for transmission on single-antenna port, the requirements in subclause 6.3.4 apply.

6.3.4D ON/OFF time mask for ProSe

For ProSe Direct Discovery and ProSe Direct Communications, additional requirements on ON/OFF time masks for ProSe physical channels and signals are specified in this clause.

6.3.4D.1 General time mask for ProSe

The General ON/OFF time mask defines the observation period between the Transmit OFF and ON power and between Transmit ON and OFF power for PSDCH, PSCCH, and PSSCH transmissions in a subframe wherein the last symbol is punctured to create a guard period.

There are no additional requirements on UE transmit power beyond that which is required in subclause 6.2.2 and subclause 6.6.2.3.

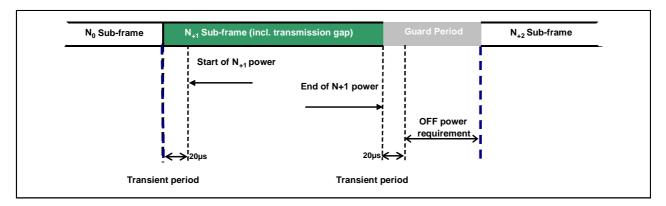


Figure 6.3.4D.1-1: PSDCH/PSCCH/PSSCH time mask

6.3.4D.2 PSSS/SSS time mask

The PSSS time mask / SSSS time mask defines the observation period between the Transmit OFF and ON power and between Transmit ON and OFF power for PSSS/SSSS transmissions in a subframe when not multiplexed with PSBCH in that subframe.

There are no additional requirements on UE transmit power beyond that which is required in subclause 6.2.2 and subclause 6.6.2.3.

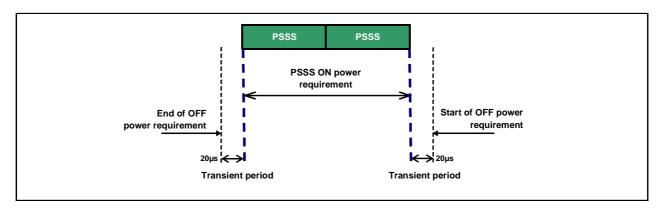


Figure 6.3.4D.2-1: PSSS time mask for normal CP transmission (when not time-multiplexed with PSBCH)

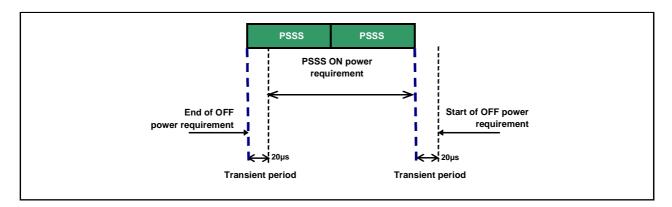


Figure 6.3.4D.2-2: PSSS time mask for extended CP transmission (when not time-multiplexed with PSBCH)

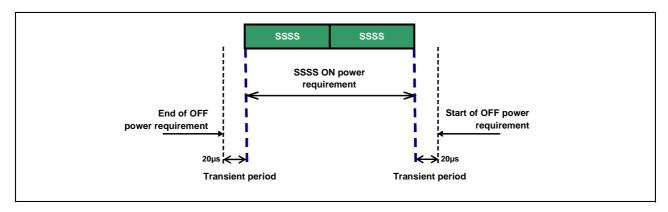


Figure 6.3.4D.2-3: SSSS time mask (when not time-multiplexed with PSBCH)

6.3.4D.3 PSSS / SSSS / PSBCH time mask

The PSSS/SSSS/PSBCH time mask defines the observation period between SSSS and adjacent PSSS/PSBCH symbols in a subframe, with last symbol punctured to create a guard period.

There are no additional requirements on UE transmit power beyond that which is required in subclause 6.2.2 and subclause 6.6.2.3.

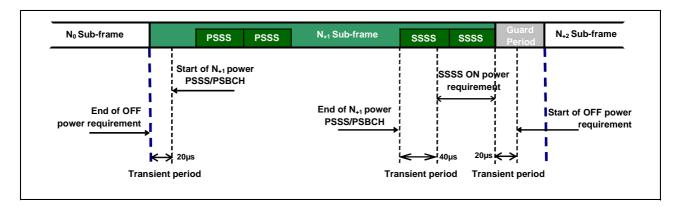


Figure 6.3.4D.3-1: PSSS/SSSS/PBCH time mask for normal CP transmission

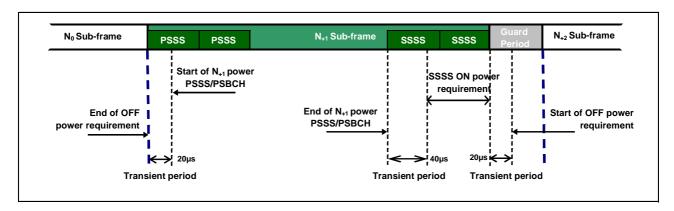


Figure 6.3.4D.3-2: PSSS/SSSS/PBCH time mask for extended CP transmission

6.3.4D.4 PSSCH / SRS time mask

The PSSCH/SRS time mask defines the observation period between sounding reference symbol (SRS) and an adjacent PSSCH symbol and subsequent sub-frame.

There are no additional requirements on UE transmit power beyond that which is required in subclause 6.2.2 and subclause 6.6.2.3.

The PSSCH/SRS time mask shall follow the PUSCH/PUCCH/SRS time mask as specified in subclause 6.3.4.4.

6.3.5 Power Control

6.3.5.1 Absolute power tolerance

Absolute power tolerance is the ability of the UE transmitter to set its initial output power to a specific value for the first sub-frame at the start of a contiguous transmission or non-contiguous transmission with a transmission gap larger than 20ms. This tolerance includes the channel estimation error (the absolute RSRP accuracy requirement specified in subclause 9.1 of TS 36.133)

In the case of a PRACH transmission, the absolute tolerance is specified for the first preamble. The absolute power tolerance includes the channel estimation error (the absolute RSRP accuracy requirement specified in subclause 9.1 of TS 36.133).

6.3.5.1.1 Minimum requirements

The minimum requirement for absolute power tolerance is given in Table 6.3.5.1.1-1 over the power range bounded by the Maximum output power as defined in subclause 6.2.2 and the Minimum output power as defined in subclause 6.3.2.

For operating bands under Note 2 in Table 6.2.2-1, the absolute power tolerance as specified in Table 6.3.5.1.1-1 is relaxed by reducing the lower limit by 1.5 dB when the transmission bandwidth is confined within F_{UL_low} and F_{UL_low} + 4 MHz or F_{UL_high} – 4 MHz and F_{UL_high} .

Table 6.3.5.1.1-1: Absolute power tolerance

Conditions	Tolerance
Normal	± 9.0 dB
Extreme	± 12.0 dB

6.3.5.2 Relative Power tolerance

The relative power tolerance is the ability of the UE transmitter to set its output power in a target sub-frame relatively to the power of the most recently transmitted reference sub-frame if the transmission gap between these sub-frames is ≤ 20 ms.

For PRACH transmission, the relative tolerance is the ability of the UE transmitter to set its output power relatively to the power of the most recently transmitted preamble. The measurement period for the PRACH preamble is specified in Table 6.3.4.2-1.

6.3.5.2.1 Minimum requirements

The requirements specified in Table 6.3.5.2.1-1 apply when the power of the target and reference sub-frames are within the power range bounded by the Minimum output power as defined in subclause 6.3.2 and the measured PUMAX as defined in subclause 6.2.5 (i.e, the actual power as would be measured assuming no measurement error). This power shall be within the power limits specified in subclause 6.2.5.

To account for RF Power amplifier mode changes 2 exceptions are allowed for each of two test patterns. The test patterns are a monotonically increasing power sweep and a monotonically decreasing power sweep over a range bounded by the requirements of minimum power and maximum power specified in subclauses 6.3.2 and 6.2.2. For these exceptions the power tolerance limit is a maximum of ± 6.0 dB in Table 6.3.5.2.1-1

Table 6.3.5.2.1-1 Relative power tolerance for transmission (normal conditions)

Power step ΔP (Up or down) [dB]	All combinations of PUSCH and PUCCH transitions [dB]	All combinations of PUSCH/PUCCH and SRS transitions between sub- frames [dB]	PRACH [dB]
ΔP < 2	±2.5 (Note 3)	±3.0	±2.5
2 ≤ ΔP < 3	±3.0	±4.0	±3.0
3 ≤ ΔP < 4	±3.5	±5.0	±3.5
4 ≤ ΔP ≤ 10	±4.0	±6.0	±4.0
10 ≤ ΔP < 15	±5.0	±8.0	±5.0
15 ≤ ΔP	±6.0	±9.0	±6.0

NOTE 1: For extreme conditions an additional ± 2.0 dB relaxation is allowed NOTE 2: For operating bands under Note 2 in Table 6.2.2-1, the relative power tolerance is relaxed by increasing the upper limit by 1.5 dB if the transmission bandwidth of the reference sub-frames is confined within FUL_low and FUL_low + 4 MHz or FUL_high - 4 MHz and FUL_high and the target sub-frame is not confined within any one of these frequency ranges; if the transmission bandwidth of the target sub-frame is confined within FUL_low and FUL_low + 4 MHz or FUL_high - 4 MHz and FUL_high and the reference sub-frame is not confined within any one of these frequency ranges, then the tolerance is relaxed by reducing the lower limit by 1.5 dB.

NOTE 3: For PUSCH to PUSCH transitions with the allocated resource blocks fixed in frequency and no transmission gaps other than those generated by downlink subframes, DwPTS fields or Guard Periods for TDD: for a power step $\Delta P \le 1$ dB, the relative power tolerance for transmission is ± 1.0 dB.

The power step (ΔP) is defined as the difference in the calculated setting of the UE Transmit power between the target and reference sub-frames with the power setting according to subclause 5.1 of [TS 36.213]. The error is the difference between ΔP and the power change measured at the UE antenna port with the power of the cell-specific reference signals kept constant. The error shall be less than the relative power tolerance specified in Table 6.3.5.2.1-1.

For sub-frames not containing an SRS symbol, the power change is defined as the relative power difference between the mean power of the original reference sub-frame and the mean power of the target subframe not including transient durations. The mean power of successive sub-frames shall be calculated according to Figure 6.3.4.3-1 and Figure 6.3.4.1-1 if there is a transmission gap between the reference and target sub-frames.

If at least one of the sub-frames contains an SRS symbol, the power change is defined as the relative power difference between the mean power of the last transmission within the reference sub-frame and the mean power of the first transmission within the target sub-frame not including transient durations. A transmission is defined as PUSCH, PUCCH or an SRS symbol. The mean power of the reference and target sub-frames shall be calculated according to Figures 6.3.4.1-1, 6.3.4.2-1, 6.3.4.4-1, 6.3.4.4-2 and 6.3.4.4-3 for these cases.

6.3.5.3 Aggregate power control tolerance

Aggregate power control tolerance is the ability of a UE to maintain its power in non-contiguous transmission within 21 ms in response to 0 dB TPC commands with respect to the first UE transmission, when the power control parameters specified in TS 36.213 are constant.

6.3.5.3.1 Minimum requirement

The UE shall meet the requirements specified in Table 6.3.5.3.1-1 for aggregate power control over the power range bounded by the minimum output power as defined in subclause 6.3.2 and the maximum output power as defined in subclause 6.2.2.

Table 6.3.5.3.1-1: Aggregate power control tolerance

TPC command	UL channel	Aggregate power tolerance within 21 ms	
0 dB	PUCCH	±2.5 dB	
0 dB	PUSCH	±3.5 dB	
NOTE: The UE transmission gap is 4 ms. TPC command is transmitted via PDCCH 4 subframes preceding each PUCCH/PUSCH transmission.			

6.3.5A Power control for CA

The requirements apply for one single PUCCH, PUSCH or SRS transmission of contiguous PRB allocation per component carrier with power setting in accordance with Clause 5.1 of [6].

6.3.5A.1 Absolute power tolerance

The absolute power tolerance is the ability of the UE transmitter to set its initial output power to a specific value for the first sub-frame at the start of a contiguous transmission or non-contiguous transmission with a transmission gap on each active component carriers larger than 20ms. The requirement can be tested by time aligning any transmission gaps on the component carriers.

6.3.5A.1.1 Minimum requirements

For inter-band carrier aggregation with uplink assigned to two E-UTRA bands, the absolute power control tolerance is specified on each component carrier exceed the minimum output power as defined in subclause 6.3.2A and the total power is limited by maximum output power as defined in subclause 6.2.2A. The requirements defined in Table 6.3.5.1.1-1 shall apply on each component carrier with both component carriers active. The requirements can be tested by time aligning any transmission gaps on both the component carriers.

For intra-band contiguous carrier aggregation bandwidth class C and intra-band non-contiguous carrier aggregation the absolute power control tolerance per component carrier is given in Table 6.3.5.1.1-1.

6.3.5A.2 Relative power tolerance

6.3.5A.2.1 Minimum requirements

For inter-band carrier aggregation with uplink assigned to two E-UTRA bands, the relative power tolerance is specified when the power of the target and reference sub-frames on each component carrier exceed the minimum output power as defined in subclause 6.3.2A and the total power is limited by P_{UMAX} as defined in subclause 6.2.5A. The requirements shall apply on each component carrier with both component carriers active. The UE transmitter shall have the capability of changing the output power independently on all component carriers in the uplink and:

- a) the requirements for all combinations of PUSCH and PUCCH transitions per component carrier is given in Table 6.3.5.2.1-1.
- b) for SRS the requirements for combinations of PUSCH/PUCCH and SRS transitions between subframes given in Table 6.3.5.2.1-1 apply per component carrier when the target and reference subframes are configured for either simultaneous SRS or simultaneous PUSCH.
- c) for RACH the requirements apply for the primary cell and are given in Table 6.3.5.2.1-1.

For intra-band contiguous carrier aggregation bandwidth class B and C and intra-band non-contiguous carrier aggregation, the requirements apply when the power of the target and reference sub-frames on each component carrier exceed -20 dBm and the total power is limited by P_{UMAX} as defined in subclause 6.2.5A. For the purpose of these requirements, the power in each component carrier is specified over only the transmitted resource blocks.

The UE shall meet the following requirements for transmission on both assigned component carriers when the average transmit power per PRB is aligned across both assigned carriers in the reference sub-frame:

a) for all possible combinations of PUSCH and PUCCH transitions per component carrier, the corresponding requirements given in Table 6.3.5.2.1-1;

- b) for SRS transitions on each component carrier, the requirements for combinations of PUSCH/PUCCH and SRS transitions given in Table 6.3.5.2.1-1 with simultaneous SRS of constant SRS bandwidth allocated in the target and reference subrames;
- c) for RACH on the primary component carrier, the requirements given in Table 6.3.5.2.1-1 for PRACH.

For a) and b) above, the power step ΔP between the reference and target subframes shall be set by a TPC command and/or an uplink scheduling grant transmitted by means of an appropriate DCI Format.

For a), b) and c) above, two exceptions are allowed for each component carrier for a power per carrier ranging from -20 dBm to $P_{UMAX,c}$ as defined in subclause 6.2.5. For these exceptions the power tolerance limit is ± 6.0 dB in Table 6.3.5.2.1-1.

6.3.5A.3 Aggregate power control tolerance

Aggregate power control tolerance is the ability of a UE to maintain its power in non-contiguous transmission within 21 ms in response to 0 dB TPC commands with respect to the first UE transmission, when the power control parameters specified in [6] are constant on all active component carriers.

6.3.5A.3.1 Minimum requirements

For inter-band carrier aggregation with uplink assigned to two E-UTRA bands, the aggregate power tolerance is specified on each component carrier exceed the minimum output power as defined in subclause 6.3.2A and the total power is limited by maximum output power as defined in subclause 6.2.2A. The requirements defined in Table 6.3.5.3.1-1 shall apply on each component carrier with both component carriers active. The requirements can be tested by time aligning any transmission gaps on both the component carriers.

For intra-band contiguous carrier aggregation bandwidth class C and intra-band non-contiguous carrier aggregation, the aggregate power tolerance per component carrier is given in Table 6.3.5.3.1-1 with either simultaneous PUSCH or simultaneous PUCCH-PUSCH (if supported by the UE) configured. The average power per PRB shall be aligned across both assigned carriers before the start of the test. The requirement can be tested with the transmission gaps time aligned between component carriers.

6.3.5B Power control for UL-MIMO

For UE supporting UL-MIMO, the power control tolerance applies to the sum of output power at each transmit antenna connector.

The power control requirements specified in subclause 6.3.5 apply to UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme. The requirements shall be met with UL-MIMO configurations specified in Table 6.2.2B-2, wherein

- The Maximum output power requirements for UL-MIMO are specified in subclause 6.2.2B
- The Minimum output power requirements for UL-MIMO are specified in subclause 6.3.2B
- The requirements for configured transmitted power for UL-MIMO are specified in subclause 6.2.5B.

If UE is configured for transmission on single-antenna port, the requirements in subclause 6.3.5 apply.

6.3.5D Power Control for ProSe

6.3.5D.1 Absolute power tolerance

For ProSe transmissions, the absolute power tolerance requirements specified in subclause 6.3.5.1 shall apply for each ProSe transmission.

6.4 Void

6.5 Transmit signal quality

6.5.1 Frequency error

The UE modulated carrier frequency shall be accurate to within ± 0.1 PPM observed over a period of one time slot (0.5 ms) compared to the carrier frequency received from the E-UTRA Node B

6.5.1A Frequency error for CA

For inter-band carrier aggregation with uplink assigned to two E-UTRA bands, the frequency error requirements defined in subclause 6.5.1 shall apply on each component carrier with both component carriers active.

For intra-band contiguous carrier aggregation the UE modulated carrier frequencies per band shall be accurate to within ± 0.1 PPM observed over a period of one timeslot compared to the carrier frequency of primary component carrier received from the E-UTRA in the corresponding band.

For intra-band non-contiguous carrier aggregation the requirements in Section 6.5.1 applies per component carrier.

6.5.1B Frequency error for UL-MIMO

For UE(s) supporting UL-MIMO, the UE modulated carrier frequency at each transmit antenna connector shall be accurate to within ± 0.1 PPM observed over a period of one time slot (0.5 ms) compared to the carrier frequency received from the E-UTRA Node B.

6.5.1D Frequency error for ProSe

The UE modulated carrier frequency for ProSe sidelink transmissions shall be accurate to within ± 0.1 PPM observed over a period of one time slot (0.5 ms) compared to the carrier frequency received from the synchronization source. The synchronization source can be E-UTRA Node B or a ProSe UE transmitting sidelink synchronization signals.

6.5.2 Transmit modulation quality

Transmit modulation quality defines the modulation quality for expected in-channel RF transmissions from the UE. The transmit modulation quality is specified in terms of:

- Error Vector Magnitude (EVM) for the allocated resource blocks (RBs)
- EVM equalizer spectrum flatness derived from the equalizer coefficients generated by the EVM measurement process
- Carrier leakage
- In-band emissions for the non-allocated RB

All the parameters defined in subclause 6.5.2 are defined using the measurement methodology specified in Annex F.

6.5.2.1 Error Vector Magnitude

The Error Vector Magnitude is a measure of the difference between the reference waveform and the measured waveform. This difference is called the error vector. Before calculating the EVM the measured waveform is corrected by the sample timing offset and RF frequency offset. Then the carrier leakage shall be removed from the measured waveform before calculating the EVM.

The measured waveform is further modified by selecting the absolute phase and absolute amplitude of the Tx chain. The EVM result is defined after the front-end IDFT as the square root of the ratio of the mean error vector power to the mean reference power expressed as a %.

The basic EVM measurement interval in the time domain is one preamble sequence for the PRACH and is one slot for the PUCCH and PUSCH in the time domain. When the PUSCH or PUCCH transmission slot is shortened due to multiplexing with SRS, the EVM measurement interval is reduced by one symbol, accordingly. The PUSCH or PUCCH EVM measurement interval is also reduced when the mean power, modulation or allocation between slots is expected to change. In the case of PUSCH transmission, the measurement interval is reduced by a time interval equal to the sum of 5 μ s and the applicable exclusion period defined in subclause 6.3.4, adjacent to the boundary where the power change is expected to occur. The PUSCH exclusion period is applied to the signal obtained after the front-end IDFT. In the case of PUCCH transmission with power change, the PUCCH EVM measurement interval is reduced by one symbol adjacent to the boundary where the power change is expected to occur.

6.5.2.1.1 Minimum requirement

The RMS average of the basic EVM measurements for 10 sub-frames excluding any transient period for the average EVM case, and 60 sub-frames excluding any transient period for the reference signal EVM case, for the different modulations schemes shall not exceed the values specified in Table 6.5.2.1.1-1 for the parameters defined in Table 6.5.2.1.1-2. For EVM evaluation purposes, [all PRACH preamble formats 0-4 and] all PUCCH formats 1, 1a, 1b, 2, 2a and 2b are considered to have the same EVM requirement as QPSK modulated.

Table 6.5.2.1.1-1: Minimum requirements for Error Vector Magnitude

Parameter	Unit	Average EVM Level	Reference Signal EVM Level
QPSK or BPSK	%	17.5	17.5
16QAM	%	12.5	12.5

Table 6.5.2.1.1-2: Parameters for Error Vector Magnitude

Parameter	Unit	Level
UE Output Power	dBm	≥ -40
Operating conditions		Normal conditions

6.5.2.2 Carrier leakage

Carrier leakage is an additive sinusoid waveform that has the same frequency as a modulated waveform carrier frequency. The measurement interval is one slot in the time domain.

6.5.2.2.1 Minimum requirements

The relative carrier leakage power is a power ratio of the additive sinusoid waveform and the modulated waveform. The relative carrier leakage power shall not exceed the values specified in Table 6.5.2.2.1-1.

Table 6.5.2.2.1-1: Minimum requirements for relative carrier leakage power

Parameters	Relative limit (dBc)	Applicable frequencies
Output power >10 dBm	-28	Carrier center frequency < 1 GHz
	-25	Carrier center frequency ≥ 1 GHz
0 dBm ≤ Output power ≤10 dBm	-25	
-30 dBm ≤ Output power ≤0 dBm	-20	
-40 dBm ≤ Output power < -30 dBm	-10	

6.5.2.3 In-band emissions

The in-band emission is defined as the average across 12 sub-carrier and as a function of the RB offset from the edge of the allocated UL transmission bandwidth. The in-band emission is measured as the ratio of the UE output power in a non-allocated RB to the UE output power in an allocated RB.

The basic in-band emissions measurement interval is defined over one slot in the time domain. When the PUSCH or PUCCH transmission slot is shortened due to multiplexing with SRS, the in-band emissions measurement interval is reduced by one SC-FDMA symbol, accordingly.

6.5.2.3.1 Minimum requirements

The relative in-band emission shall not exceed the values specified in Table 6.5.2.3.1-1.

Table 6.5.2.3.1-1: Minimum requirements for in-band emissions

Parameter description	Unit		Applicable Frequencies					
General	dB	ma 20 - 5	Any non-allocated (Note 2)					
		-28	Image frequencies when carrier center frequency < 1 GHz and Output power > 10 dBm	Imaga				
IQ Image	dB	-25	Image frequencies when carrier center frequency < 1 GHz and Output power ≤ 10 dBm	Image frequencies (Notes 2, 2)				
							-25	Image frequencies when carrier center frequency ≥ 1 GHz
			Output power > 10 dBm and carrier center frequency < 1 GHz					
Carrier leakage	dBc	dBc -25		Output power > 10 dBm and carrier center frequency ≥ 1 GHz	Carrier frequency			
		-25	0 dBm ≤ Output power ≤10 dBm	(Notes 4, 5)				
		-20						
		-10	-40 dBm ≤ Output power < -30 dBm					

- NOTE 1: An in-band emissions combined limit is evaluated in each non-allocated RB. For each such RB, the minimum requirement is calculated as the higher of *P*_{RB} 30 dB and the power sum of all limit values (General, IQ Image or Carrier leakage) that apply. *P*_{RB} is defined in Note 10.
- NOTE 2: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one nonallocated RB to the measured average power per allocated RB, where the averaging is done across all allocated RBs.
- NOTE 3: The applicable frequencies for this limit are those that are enclosed in the reflection of the allocated bandwidth, based on symmetry with respect to the centre carrier frequency, but excluding any allocated RBs.
- NOTE 4: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one nonallocated RB to the measured total power in all allocated RBs.
- NOTE 5: The applicable frequencies for this limit are those that are enclosed in the RBs containing the DC frequency if N_{RB} is odd, or in the two RBs immediately adjacent to the DC frequency if N_{RB} is even, but excluding any allocated RB.
- NOTE 6: $L_{\it CRB}$ is the Transmission Bandwidth (see Figure 5.6-1).
- NOTE 7: $N_{\it RB}$ is the Transmission Bandwidth Configuration (see Figure 5.6-1).
- NOTE 8: *EVM* is the limit specified in Table 6.5.2.1.1-1 for the modulation format used in the allocated RBs.
- NOTE 9: Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g.
 - $\Delta_{\it RB}=1$ or $\Delta_{\it RB}=-1$ for the first adjacent RB outside of the allocated bandwidth.
- NOTE 10: $P_{\it RB}$ is the transmitted power per 180 kHz in allocated RBs, measured in dBm.

6.5.2.4 EVM equalizer spectrum flatness

The zero-forcing equalizer correction applied in the EVM measurement process (as described in Annex F) must meet a spectral flatness requirement for the EVM measurement to be valid. The EVM equalizer spectrum flatness is defined in terms of the maximum peak-to-peak ripple of the equalizer coefficients (dB) across the allocated uplink block. The basic measurement interval is the same as for EVM.

6.5.2.4.1 Minimum requirements

The peak-to-peak variation of the EVM equalizer coefficients contained within the frequency range of the uplink allocation shall not exceed the maximum ripple specified in Table 6.5.2.4.1-1 for normal conditions. For uplink allocations contained within both Range 1 and Range 2, the coefficients evaluated within each of these frequency ranges shall meet the corresponding ripple requirement and the following additional requirement: the relative difference between the maximum coefficient in Range 1 and the minimum coefficient in Range 2 must not be larger than 5 dB,

and the relative difference between the maximum coefficient in Range 2 and the minimum coefficient in Range 1 must not be larger than 7 dB (see Figure 6.5.2.4.1-1).

The EVM equalizer spectral flatness shall not exceed the values specified in Table 6.5.2.4.1-2 for extreme conditions. For uplink allocations contained within both Range 1 and Range 2, the coefficients evaluated within each of these frequency ranges shall meet the corresponding ripple requirement and the following additional requirement: the relative difference between the maximum coefficient in Range 1 and the minimum coefficient in Range 2 must not be larger than 6 dB, and the relative difference between the maximum coefficient in Range 2 and the minimum coefficient in Range 1 must not be larger than 10 dB (see Figure 6.5.2.4.1-1).

Table 6.5.2.4.1-1: Minimum requirements for EVM equalizer spectrum flatness (normal conditions)

	Frequency range	Maximum ripple [dB]
F _{UL_Meas}	s – Ful_Low≥ 3 MHz and Ful_High – Ful_Meas≥ 3 MHz	4 (p-p)
	(Range 1)	
F _{UL_Mea}	$_{as}$ - F_{UL_Low} < 3 MHz or F_{UL_High} - F_{UL_Meas} < 3 MHz	8 (p-p)
	(Range 2)	
NOTE 1:	FUL_Meas refers to the sub-carrier frequency for which	the equalizer coefficient is
	evaluated	
NOTE 2:	Ful_Low and Ful_High refer to each E-UTRA frequency	band specified in Table
	5.5-1	

Table 6.5.2.4.1-2: Minimum requirements for EVM equalizer spectrum flatness (extreme conditions)

	Frequency range	Maximum Ripple [dB]
F _{UL_Meas}	s – F _{UL_Low} ≥ 5 MHz and F _{UL_High} – F _{UL_Meas} ≥ 5 MHz	4 (p-p)
	(Range 1)	
Ful_Mea	as - Ful_Low < 5 MHz or Ful_High - Ful_Meas < 5 MHz	12 (p-p)
	(Range 2)	
NOTE 1:	F _{UL_Meas} refers to the sub-carrier frequency for which	the equalizer coefficient is
	evaluated	
NOTE 2:	Ful_Low and Ful_High refer to each E-UTRA frequency	band specified in Table
	5.5-1	

Figure 6.5.2.4.1-1: The limits for EVM equalizer spectral flatness with the maximum allowed variation of the coefficients indicated (the ETC minimum requirement within brackets).

6.5.2A Transmit modulation quality for CA

For inter-band carrier aggregation with uplink assigned to two E-UTRA bands, the requirements shall apply on each component carrier as defined in clause 6.5.2 with both component carriers active.

The requirements in this clause apply with PCC and SCC in the UL configured and activated: PCC with PRB allocation and SCC without PRB allocation and without CSI reporting and SRS configured.

6.5.2A.1 Error Vector Magnitude

For the intra-band contiguous and non-contiguous carrier aggregation, the Error Vector Magnitude requirement should be defined for each component carrier. Requirements only apply with PRB allocation in one of the component carriers. Similar transmitter impairment removal procedures are applied for CA waveform before EVM calculation as is specified for non-CA waveform in sub-section 6.5.2.1.

When a single component carrier is configured Table 6.5.2.1.1-1 apply.

The EVM requirements are according to Table 6.5.2A.1-1 if CA is configured in uplink.

Table 6.5.2A.1-1: Minimum requirements for Error Vector Magnitude

Parameter	Unit	Average EVM Level per CC	Reference Signal EVM Level
QPSK or BPSK	%	17.5	17.5
16QAM	%	12.5	12.5

6.5.2A.2 Carrier leakage for CA

Carrier leakage is an additive sinusoid waveform that is confined within the aggrecated transmission bandwidth configuration. The carrier leakage requirement is defined for each component carrier and is measured on the component carrier with PRBs allocated. The measurement interval is one slot in the time domain.

6.5.2A.2.1 Minimum requirements

The relative carrier leakage power is a power ratio of the additive sinusoid waveform and the modulated waveform. The relative carrier leakage power shall not exceed the values specified in Table 6.5.2A.2.1-1.

Table 6.5.2A.2.1-1: Minimum requirements for Relative Carrier Leakage Power

Parameters	Relative Limit (dBc)
Output power >0 dBm	-25
-30 dBm ≤ Output power ≤0 dBm	-20
-40 dBm ≤ Output power < -30 dBm	-10

6.5.2A.3 In-band emissions

6.5.2A.3.1 Minimum requirement for CA

For intra-band contiguous carrier aggregation bandwidth class C, the requirements in Table 6.5.2A.3.1-1 and 6.5.2A.3.1-2 apply within the aggregated transmission bandwidth configuration with both component carrier (s) active and one single contiguous PRB allocation of bandwidth L_{CRB} at the edge of the aggregated transmission bandwidth configuration.

The inband emission is defined as the interference falling into the non allocated resource blocks for all component carriers. The measurement method for the inband emissions in the component carrier with PRB allocation is specified in annex F. For a non allocated component carrier a spectral measurement is specified.

For intra-band non-contiguous carrier aggregation the requirements for in-band emissions should be defined for each component carrier. Requirements only apply with PRB allocation in one of the component carriers according to Table 6.5.2.3.1.

Table 6.5.2A.3.1-1: Minimum requirements for in-band emissions (allocated component carrier)

Parameter	Unit		Limit	Applicable Frequencies	
		_	$25 - 10 \cdot \log_{10}(N_{RB} / L_{CRB}),$		
General	dB	20 · log 10	$EVM - 3 - 5 \cdot (\left \Delta_{RB}\right - 1) / L_{CRB},$	Any non-allocated (Note 2)	
		– 57 dBm	$/180 kHz - P_{RB}$		
IQ Image	dB		-25	Exception for IQ image (Note 3)	
Corrier		-25	Output power > 0 dBm	Formation to Orania to an account	
Carrier leakage	dBc	-20	-30 dBm ≤ Output power ≤ 0 dBm	Exception for Carrier frequency (Note 4)	
		-10		-40 dBm ≤ Output power < -30 dBm	(Note 4)

- NOTE 1: An in-band emissions combined limit is evaluated in each non-allocated RB. For each such RB, the minimum requirement is calculated as the higher of P_{RB} 30 dB and the power sum of all limit values (General, IQ Image or Carrier leakage) that apply. P_{RB} is defined in Note 9. The limit is evaluated in each non-allocated RB.
- NOTE 2: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one nonallocated RB to the measured average power per allocated RB, where the averaging is done across all allocated RBs
- NOTE 3: Exceptions to the general limit are allowed for up to $L_{\it CRBs}$ +1 RBs within a contiguous width of $L_{\it CRBs}$ +1 non-allocated RBs. The measurement bandwidth is 1 RB.
- NOTE 4: Exceptions to the general limit are allowed for up to two contiguous non-allocated RBs. The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in the non-allocated RB to the measured total power in all allocated RBs.
- NOTE 5: $L_{\it CRB}$ is the Transmission Bandwidth (see Figure 5.6-1) not exceeding $\lfloor N_{\it RB}/2-1 \rfloor$
- NOTE 6: $N_{\it RB}$ is the Transmission Bandwidth Configuration (see Figure 5.6-1) of the component carrier with RBs allocated.
- NOTE 7: EVM is the limit specified in Table 6.5.2.1.1-1 for the modulation format used in the allocated RBs.
- NOTE 8: Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g. $\Delta_{RB}=1$ or $\Delta_{RB}=-1$ for the first adjacent RB outside of the allocated bandwidth).
- NOTE 9: P_{RR} is the transmitted power per 180 kHz in allocated RBs, measured in dBm.

Table 6.5.2A.3.1-2: Minimum requirements for in-band emissions (not allocated component carrier)

Para- meter	Unit	Meas BW Note 1		Limit	remark	Applicable Frequencies
General	dΒ	BW of 1 RB (180KHz rectangular)	20 · log 10	$25 - 10 \cdot \log_{10}(N_{RB} / L_{CRB}),$ $EVM - 3 - 5 \cdot (\Delta_{RB} - 1) / L_{CRB},$ $e / 180 kHz - P_{RB}$	The reference value is the average power per allocated RB in the allocated component carrier	Any RB in the non allocated component carrier. The frequency raster of the RBs is derived when this component carrier is allocated with RBs
IQ Image	dB	BW of 1 RB (180KHz rectangular)		-25 Note 2	The reference value is the average power per allocated RB in the allocated component carrier	The frequencies of the $L_{\it CRB}$ contiguous non-allocated RBs are unknown. The frequency raster of the RBs is derived when this component carrier is allocated with RBs
		BW of 1 RB (180KHz		Note 3	The reference	The frequencies of
		rectangular)	-25	Output power > 0 dBm	value is the total power of the	the up to 2 non-allocated
Carrier leakage	dBc	dBc -20	-20	-30 dBm ≤ Output power ≤ 0 dBm		RBs are unknown. The frequency raster of the RBs is derived when this
			-10	-40 dBm ≤ Output power < -30 dBm	carrier	component carrier is allocated with RBs

NOTE1: Resolution BWs smaller than the measurement BW may be integrated to achieve the measurement bandwidth.

NOTE 2: Exceptions to the general limit is are allowed for up to $L_{\it CRB}$ +1 RBs within a contiguous width of $L_{\it CRB}$ +1 non-allocated RBs.

NOTE 3: Two Exceptions to the general limit are allowed for up to two contiguous non-allocated RBs

NOTE 4: Notes 1, 5, 6, 7, 8, 9 from Table 6.5.2A.3.1-1 apply for Table 6.5.2A.3.1-2 as well.

NOTE 5: Δ_{RB} for measured non-allocated RB in the non allocated component carrier may take non-integer values when the carrier spacing between the CCs is not a multiple of RB.

6.5.2B Transmit modulation quality for UL-MIMO

For UE supporting UL-MIMO, the transmit modulation quality requirements are specified at each transmit antenna connector.

If UE is configured for transmission on single-antenna port, the requirements in subclause 6.5.2 apply.

The transmit modulation quality is specified in terms of:

- Error Vector Magnitude (EVM) for the allocated resource blocks (RBs)
- EVM equalizer spectrum flatness derived from the equalizer coefficients generated by the EVM measurement process
- Carrier leakage (caused by IQ offset)
- In-band emissions for the non-allocated RB

6.5.2B.1 Error Vector Magnitude

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the Error Vector Magnitude requirements specified in Table 6.5.2.1.1-1 which is defined in subclause 6.5.2.1 apply at each transmit antenna connector. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2.

6.5.2B.2 Carrier leakage

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the Relative Carrier Leakage Power requirements specified in Table 6.5.2.2.1-1 which is defined in subclause 6.5.2.2 apply at each transmit antenna connector. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2.

6.5.2B.3 In-band emissions

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the In-band Emission requirements specified in Table 6.5.2.3.1-1 which is defined in subclause 6.5.2.3 apply at each transmit antenna connector. The requirements shall be met with the uplink MIMO configurations specified in Table 6.2.2B-2.

6.5.2B.4 EVM equalizer spectrum flatness for UL-MIMO

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the EVM Equalizer Spectrum Flatness requirements specified in Table 6.5.2.4.1-1 and Table 6.5.2.4.1-2 which are defined in subclause 6.5.2.4 apply at each transmit antenna connector. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2.

6.5.2D Transmit modulation quality for ProSe

The requirements in this clause apply to ProSe sidelink transmissions.

6.5.2D.1 Error Vector Magnitude

For ProSe sidelink physical channels PSDCH, PSCCH, PSSCH, and PSBCH, the Error Vector Magnitude requirements shall be as specified for PUSCH in subclause 6.5.2.1 for the corresponding modulation and transmission bandwidth. When ProSe transmissions are shortened due to transmission gap of 1 symbol at the end of the subframe, the EVM measurement interval is reduced by one symbol, accordingly.

For PSBCH the duration over which EVM is averaged shall be 24 subframes.

This requirement is not applicable for ProSe physical signals PSSS and SSSS.

6.5.2D.2 Carrier leakage

The requirements of subcaluse 6.5.2.2 shall apply for ProSe transmissions.

6.5.2D.3 In-band emissions

For ProSe sidelink physical channels PSDCH, PSCCH, PSSCH, and PSBCH, the In-band emissions requirements shall be as specified for PUSCH in subclause 6.5.2.3 for the corresponding modulation and transmission bandwidth. When ProSe transmissions are shortened due to transmission gap of 1 symbol at the end of the subframe, the In-band emissions measurement interval is reduced by one symbol, accordingly.

6.5.2D.4 EVM equalizer spectrum flatness for ProSe

The requirements of subcaluse 6.5.2.4 shall apply for ProSe transmissions.

6.6 Output RF spectrum emissions

The output UE transmitter spectrum consists of the three components; the emission within the occupied bandwidth (channel bandwidth), the Out Of Band (OOB) emissions and the far out spurious emission domain.

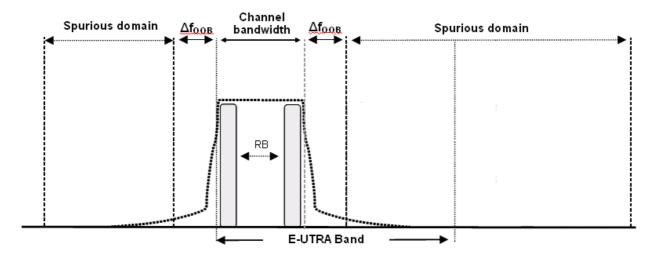


Figure 6.6-1: Transmitter RF spectrum

6.6.1 Occupied bandwidth

Occupied bandwidth is defined as the bandwidth containing 99 % of the total integrated mean power of the transmitted spectrum on the assigned channel. The occupied bandwidth for all transmission bandwidth configurations (Resources Blocks) shall be less than the channel bandwidth specified in Table 6.6.1-1

Occupied channel bandwidth / Channel bandwidth 1.4 3.0 5 10 15 20 MHz MHz MHz MHz MHz MHz Channel bandwidth 1.4 10 15 20 (MHz)

Table 6.6.1-1: Occupied channel bandwidth

6.6.1A Occupied bandwidth for CA

For inter-band carrier aggregation with uplink assigned to two E-UTRA bands the occupied bandwidth is defined per component carrier. Occupied bandwidth is the bandwidth containing 99 % of the total integrated mean power of the transmitted spectrum on assigned channel bandwidth on the component carrier. The occupied bandwidth shall be less than the channel bandwidth specified in Table 6.6.1-1.

For intra-band contiguous carrier aggregation the occupied bandwidth is a measure of the bandwidth containing 99 % of the total integrated power of the transmitted spectrum. The OBW shall be less than the aggregated channel bandwidth defined in subclause 5.6A.

For intra-band non-contiguous carrier aggregation sub-block occupied bandwidth is defined as the bandwidth containing 99 % of the total integrated mean power of the transmitted spectrum on the sub-block. In case the sub-block consist of one component carrier the occupied bandwidth of the sub-block shall be less than the channel bandwidth specified in Table 6.6.1-1.

6.6.1B Occupied bandwidth for UL-MIMO

For UE supporting UL-MIMO, the requirements for occupied bandwidth is specified at each transmit antenna connector. The occupied bandwidth is defined as the bandwidth containing 99 % of the total integrated mean power of the transmitted spectrum on the assigned channel at each transmit antenna connector.

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the occupied bandwidth at each transmitter antenna shall be less than the channel bandwidth specified in Table 6.6.1B-1. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2.

Occupied channel bandwidth / Channel bandwidth 3.0 20 MHz MHz MHz MHz MHz MHz Channel bandwidth 1.4 3 5 10 15 20 (MHz)

Table 6.6.1B-1: Occupied channel bandwidth

If UE is configured for transmission on single-antenna port, the requirements in subclause 6.6.1 apply.

6.6.2 Out of band emission

The Out of band emissions are unwanted emissions immediately outside the assigned channel bandwidth resulting from the modulation process and non-linearity in the transmitter but excluding spurious emissions. This out of band emission limit is specified in terms of a spectrum emission mask and an Adjacent Channel Leakage power Ratio.

6.6.2.1 Spectrum emission mask

The spectrum emission mask of the UE applies to frequencies (Δf_{OOB}) starting from the \pm edge of the assigned E-UTRA channel bandwidth. For frequencies greater than (Δf_{OOB}) as specified in Table 6.6.2.1.1-1 the spurious requirements in subclause 6.6.3 are applicable.

6.6.2.1.1 Minimum requirement

The power of any UE emission shall not exceed the levels specified in Table 6.6.2.1.1-1 for the specified channel bandwidth.

Spectrum emission limit (dBm)/ Channel bandwidth 1.4 Measurement Δf_{OOB} 3.0 10 20 (MHz) MHz MHz MHz MHz MHz MHz bandwidth -18 $\pm 0-1$ -10 -13 -15 -20 -21 30 kHz \pm 1-2.5 -10 -10 -10 -10 -10 -10 1 MHz $\pm 2.5 - 2.8$ -25 -10 -10 -10 -10 -10 1 MHz -10 -10 -10 -10 -10 1 MHz $\pm 2.8-5$ -25 -13 -13 -13 -13 1 MHz ± 5-6 -25 -13 -13 1 MHz \pm 6-10 -13 ± 10-15 -25 -13 -13 1 MHz ± 15-20 -25 -13 1 MHz -25 1 MHz $\pm 20-25$

Table 6.6.2.1.1-1: General E-UTRA spectrum emission mask

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.6.2.1A Spectrum emission mask for CA

For inter-band carrier aggregation with uplink assigned to two E-UTRA bands, the spectrum emission mask of the UE is defined per component carrier while both component carriers are active and the requirements are specified in subclauses 6.6.2.1 and 6.6.2.2. If for some frequency spectrum emission masks of component carriers overlap then spectrum emission mask allowing higher power spectral density applies for that frequency. If for some frequency a component carrier spectrum emission mask overlaps with the channel bandwidth of another component carrier, then the emission mask does not apply for that frequency.

For intra-band contiguous carrier aggregation the spectrum emission mask of the UE applies to frequencies (Δf_{OOB}) starting from the \pm edge of the aggregated channel bandwidth (Table 5.6A-1) For intra-band contiguous carrier aggregation the bandwidth class C, the power of any UE emission shall not exceed the levels specified in Table 6.6.2.1A-1 for the specified channel bandwidth.

Spectrum emission limit [dBm]/BW_{Channel_CA} Δf_{OOB} 25RB+100RB 50RB+75RB 50RB+100RB 75RB+75RB 75RB+100RB 100RB+100RB Measurement (24.75 MHz) (24.95MHz) (29.9 MHz) (34.85 MHz) (39.8 MHz) (MHz) (30 MHz) bandwidth ± 0-1 -22.5 -22.5 30 kHz -23.5-10 -10 -10 -10 -10 -10 1 MHz ± 1-5 ± 5-24.75 -13 -13 -13 -13 -13 -13 1 MHz -13 -25 -13 -13 -13 -13 1 MHz \pm 24.75-24.95 -25 -25 -13 1 MHz -13 -13 -13 \pm 24.95-29.75 -25 -13 -13 -13 -13 1 MHz \pm 29.75-29.9 \pm 29.9-29.95 -25 -25 -13 -13 -13 1 MHz -25 -13 1 MHz -13 -13 $\pm 29.95-30$ -25 -25 -13 -13 1 MHz $\pm 30-34.85$ -25 -25 -25 -13 1 MHz ± 34.85-34.9 -25 -25 -13 1 MHz $\pm 34.9 - 35$ ± 35-39.8 -25 -13 1 MHz -25 -25 1 MHz \pm 39.8-39.85 -25 1 MHz \pm 39.85-44.8

Table 6.6.2.1A-1: General E-UTRA CA spectrum emission mask for Bandwidth Class C

For intra-band non-contiguous carrier aggregation transmission the spectrum emission mask requirement is defined as a composite spectrum emissions mask. Composite spectrum emission mask applies to frequencies up to \pm Δf_{OOB} starting from the edges of the sub-blocks. Composite spectrum emission mask is defined as follows

- a) Composite spectrum emission mask is a combination of individual sub-block spectrum emissions masks
- b) In case the sub-block consist of one component carrier the sub-lock general spectrum emission mask is defined in subclause 6.6.2.1.1
- c) If for some frequency sub-block spectrum emission masks overlap then spectrum emission mask allowing higher power spectral density applies for that frequency
- d) If for some frequency a sub-block spectrum emission mask overlaps with the sub-block bandwidth of another sub-block, then the emission mask does not apply for that frequency.

6.6.2.2 Additional spectrum emission mask

This requirement is specified in terms of an "additional spectrum emission" requirement.

6.6.2.2.1 Minimum requirement (network signalled value "NS_03", "NS_11", "NS_20", and "NS_21")

Additional spectrum emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

When "NS_03", "NS_11", "NS_20" or "NS_21" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.2.2.1-1.

	Spectrum emission limit (dBm)/ Channel bandwidth									
Δf _{ООВ} (MHz)	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	Measurement bandwidth			
± 0-1	-10	-13	-15	-18	-20	-21	30 kHz			
± 1-2.5	-13	-13	-13	-13	-13	-13	1 MHz			
± 2.5-2.8	-25	-13	-13	-13	-13	-13	1 MHz			
± 2.8-5		-13	-13	-13	-13	-13	1 MHz			
± 5-6		-25	-13	-13	-13	-13	1 MHz			
± 6-10			-25	-13	-13	-13	1 MHz			
± 10-15				-25	-13	-13	1 MHz			
± 15-20					-25	-13	1 MHz			
± 20-25						-25	1 MHz			

Table 6.6.2.2.1-1: Additional requirements

NOTE:

As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.6.2.2.2 Minimum requirement (network signalled value "NS_04")

Additional spectrum emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

When "NS_04" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.2.2.2-1.

	Spectrum emission limit (dBm)/ Channel bandwidth								
Δf _{00В} (MHz)	5 MHz	10 MHz	15 MHz	20 MHz	Measurement bandwidth				
± 0-1	-15	-18	-20	-21	30 kHz				
± 1-2.5	-10	-10	-10	-10	1 MHz				
± 2.5-2.8	-10	-10	-10	-10	1 MHz				
± 2.8-5	-10	-10	-10	-10	1 MHz				
± 5-6	-13	-13	-13	-13	1 MHz				
± 6-9	-25	-13	-13	-13	1 MHz				
± 9-10	-25	-25	-13	-13	1 MHz				
± 10-13.5		-25	-13	-13	1 MHz				
± 13.5-15		-25	-25	-13	1 MHz				
± 15-18			-25	-13	1 MHz				
± 18-20			-25	-25	1 MHz				
± 20-25				-25	1 MHz				

Table 6.6.2.2.2-1: Additional requirements

Note:

As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.6.2.2.3 Minimum requirement (network signalled value "NS_06" or "NS_07")

Additional spectrum emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

When "NS_06" or "NS_07" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.2.2.3-1.

Table 6.6.2.2.3-1: Additional requirements

	Spectrum emission limit (dBm)/ Channel bandwidth								
Δf _{OOB} (MHz)	1.4 MHz	3.0 MHz	5 MHz	10 MHz	Measurement bandwidth				
± 0-0.1	-13	-13	-15	-18	30 kHz				
± 0.1-1	-13	-13	-13	-13	100 kHz				
± 1-2.5	-13	-13	-13	-13	1 MHz				
± 2.5-2.8	-25	-13	-13	-13	1 MHz				
± 2.8-5		-13	-13	-13	1 MHz				
± 5-6		-25	-13	-13	1 MHz				
± 6-10			-25	-13	1 MHz				
± 10-15				-25	1 MHz				

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.6.2.2A Additional Spectrum Emission Mask for CA

This requirement is specified in terms of an "additional spectrum emission" requirement.

6.6.2.2A.1 Minimum requirement (network signalled value "CA_NS_04")

Additional spectrum emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

When "CA_NS_04" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.2.2A.1-1.

Table 6.6.2.2A.1-1: Additional requirements

	Spectrum emission limit [dBm]/BW _{Channel_CA}									
Δf _{OOB} (MHz)	50+75RB (24.75 MHz)	25+100RB (24.95 MHz)	50+100RB (29.9 MHz)	75+75RB (30 MHz)	75+100RB (34.85 MHz)	100+100RB (39.8 MHz)	Measurement bandwidth			
± 0-1	-22	-22	-22.5	-23	-23.5	-24	30 kHz			
± 1-5	-10	-10	-10	-10	-10	-10	1 MHz			
± 5-22.95	-13	-13	-13	-13	-13	-13	1 MHz			
± 22.95-23.25	-13	-25	-13	-13	-13	-13	1 MHz			
±23.25-27.9	-25	-25	-13	-13	-13	-13	1 MHz			
± 27.9-28.5	-25	-25	-25	-13	-13	-13	1 MHz			
± 28.5-29.75	-25	-25	-25	-25	-13	-13	1 MHz			
± 29.75-29.95		-25	-25	-25	-13	-13	1 MHz			
± 29.95-32.85			-25	-25	-13	-13	1 MHz			
± 32.85-34.9			-25	-25	-25	-13	1 MHz			
± 34.9-35				-25	-25	-13	1 MHz			
± 35-37.8					-25	-13	1 MHz			
± 37.8-39.85					-25	-25	1 MHz			
± 39.85-44.8						-25	1 MHz			

Note:

As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.6.2.3 Adjacent Channel Leakage Ratio

Adjacent Channel Leakage power Ratio (ACLR) is the ratio of the filtered mean power centred on the assigned channel frequency to the filtered mean power centred on an adjacent channel frequency. ACLR requirements for one E-UTRA carrier are specified for two scenarios for an adjacent E-UTRA and /or UTRA channel as shown in Figure 6.6.2.3-1.

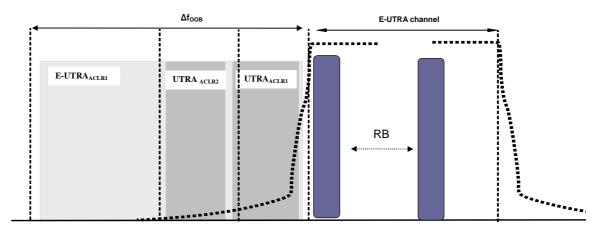


Figure 6.6.2.3-1: Adjacent Channel Leakage requirements for one E-UTRA carrier

6.6.2.3.1 Minimum requirement E-UTRA

E-UTRA Adjacent Channel Leakage power Ratio (E-UTRA_{ACLR}) is the ratio of the filtered mean power centred on the assigned channel frequency to the filtered mean power centred on an adjacent channel frequency at nominal channel spacing. The assigned E-UTRA channel power and adjacent E-UTRA channel power are measured with rectangular filters with measurement bandwidths specified in Table 6.6.2.3.1-1 and Table 6.6.2.3.1-2. If the measured adjacent channel power is greater than -50 dBm then the E-UTRA_{ACLR} shall be higher than the value specified in Table 6.6.2.3.1-2.

	Channel bandwidth / E-UTRA _{ACLR1} / Measurement bandwidth								
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz			
E-UTRA _{ACLR1}	30 dB	30 dB	30 dB	30 dB	30 dB	30 dB			
E-UTRA channel Measurement bandwidth	1.08 MHz	2.7 MHz	4.5 MHz	9.0 MHz	13.5 MHz	18 MHz			
Adjacent channel centre frequency	+1.4	+3.0	+5 /	+10	+15 /	+20			
offset [MHz]	-1.4	-3.0	-5	-10	-15	-20			

Table 6.6.2.3.1-1: General requirements for E-UTRA_{ACLR}

Table 6.6.2.3.1-2: Additional E-UTRA_{ACLR} requirements for Power Class 1

	Channel bandwidth / E-UTRA _{ACLR1} / Measurement bandwidth							
	1.4	3.0	5	10	15	20		
	MHz	MHz	MHz	MHz	MHz	MHz		
E-UTRA _{ACLR1}			37 dB	37 dB				
E-UTRA channel								
Measurement			4.5 MHz	9.0 MHz				
bandwidth								
Adjacent channel			+5	+10				
centre frequency			/	/				
offset [MHz]			-5	-10				
NOTE 1: E-UTRA _{ACLR1} shall be applicable for >23dBm								

6.6.2.3.1A Void

6.6.2.3.1Aa Void

6.6.2.3.2 Minimum requirements UTRA

UTRA Adjacent Channel Leakage power Ratio (UTRA_{ACLR}) is the ratio of the filtered mean power centred on the assigned E-UTRA channel frequency to the filtered mean power centred on an adjacent(s) UTRA channel frequency.

UTRA Adjacent Channel Leakage power Ratio is specified for both the first UTRA adjacent channel (UTRA_{ACLR1}) and the 2^{nd} UTRA adjacent channel (UTRA_{ACLR2}). The UTRA channel power is measured with a RRC bandwidth filter with roll-off factor α =0.22. The assigned E-UTRA channel power is measured with a rectangular filter with measurement bandwidth specified in Table 6.6.2.3.2-1. If the measured UTRA channel power is greater than –50dBm then the UTRA_{ACLR} shall be higher than the value specified in Table 6.6.2.3.2-1.

Table 6.6.2.3.2-1: Requirements for UTRA_{ACLR1/2}

		Channel	bandwidth / UTRA	ACLR1/2 / Measurem	ent bandwidth	
	1.4	3.0	5	10	15	20
	MHz	MHz	MHz	MHz	MHz	MHz
UTRA _{ACLR1}	33 dB	33 dB	33 dB	33 dB	33 dB	33 dB
Adjacent channel centre frequency offset [MHz]	0.7+BW _{UTRA} /2 / -0.7- BW _{UTRA} /2	1.5+BW _{UTRA} /2 / -1.5- BW _{UTRA} /2	+2.5+BWutra/2 / -2.5-BWutra/2	+5+BWutra/2 / -5-BWutra/2	+7.5+BWutra/2 / -7.5-BWutra/2	+10+BWutra/2 / -10-BWutra/2
UTRA _{ACLR2}	-	-	36 dB	36 dB	36 dB	36 dB
Adjacent channel centre frequency offset [MHz]	-	-	+2.5+3*BWutra/2 / -2.5-3*BWutra/2	+5+3*BWutra/2 / -5-3*BWutra/2	+7.5+3*BWutra/2 / -7.5-3*BWutra/2	+10+3*BWutra/2 / -10-3*BWutra/2
E-UTRA channel Measurement bandwidth	1.08 MHz	2.7 MHz	4.5 MHz	9.0 MHz	13.5 MHz	18 MHz
UTRA 5MHz channel Measurement bandwidth (Note 1)	3.84 MHz	3.84 MHz	3.84 MHz	3.84 MHz	3.84 MHz	3.84 MHz
UTRA 1.6MHz channel measurement bandwidth (Note 2)	1.28 MHz	1.28 MHz	1.28 MHz	1.28MHz	1.28MHz	1.28MHz

NOTE 1: Applicable for E-UTRA FDD co-existence with UTRA FDD in paired spectrum.

NOTE 2: Applicable for E-UTRA TDD co-existence with UTRA TDD in unpaired spectrum.

6.6.2.3.2A Minimum requirement UTRA for CA

For inter-band carrier aggregation with uplink assigned to two E-UTRA bands, the UTRA Adjacent Channel Leakage power Ratio (UTRA_{ACLR}) is the ratio of the filtered mean power centred on the assigned channel bandwidth on the component carrier to the filtered mean power centred on an adjacent channel frequency. The UTRA Adjacent Channel Leakage power Ratio is defined per carrier and the requirement is specified in subclause 6.6.2.3.2.

For intra-band contiguous carrier aggregation the UTRA Adjacent Channel Leakage power Ratio (UTRA $_{ACLR}$) is the ratio of the filtered mean power centred on the aggregated channel bandwidth to the filtered mean power centred on an adjacent(s) UTRA channel frequency.

For intra-band non-contiguous carrier aggregation when all sub-blocks consist of one component carrier the UTRA Adjacent Channel Leakage power Ratio (UTRA $_{ACLR}$) is the ratio of the sum of the filtered mean powers centered on the assigned sub-block frequencies to the filtered mean power centred on an adjacent(s) UTRA channel frequency. UTRA $_{ACLR1/2}$ requirements are applicable for all sub-blocks and are specified in Table 6.6.2.3.2A-2. UTRA $_{ACLR1}$ is required to be met in the sub-block gap when the gap bandwidth Wgap is $5MHz \le Wgap < 15MHz$. Both UTRA $_{ACLR1}$ and UTRA $_{ACLR2}$ are required to be met in the sub-block gap when the gap bandwidth Wgap is $15MHz \le Wgap$.

UTRA Adjacent Channel Leakage power Ratio is specified for both the first UTRA adjacent channel (UTRA_{ACLR1}) and the 2^{nd} UTRA adjacent channel (UTRA_{ACLR2}). The UTRA channel power is measured with a RRC bandwidth filter with roll-off factor α =0.22. The assigned aggregated channel bandwidth power is measured with a rectangular filter with measurement bandwidth specified in Table 6.6.2.3.2A-1 for intraband contiguous carrier aggregation or 6.6.2.3.2A-2 for intraband non-contiguous carrier aggregation. If the measured UTRA channel power is greater than –50dBm then the UTRA_{ACLR} shall be higher than the value specified in Table 6.6.2.3.2A-1 for intraband contiguous carrier aggregation or 6.6.2.3.2A-2 for intraband non-contiguous carrier aggregation.

Table 6.6.2.3.2A-1: Requirements for UTRA_{ACLR1/2}

	CA bandwidth class / UTRA _{ACLR1/2} / measurement bandwidth				
	CA bandwidth class C				
UTRA _{ACLR1}	33 dB				
Adjacent channel centre frequency offset (in MHz)	+ BW _{Channel_CA} /2 + BW _{UTRA} /2 / - BW _{Channel_CA} / 2 - BW _{UTRA} /2				
UTRA _{ACLR2}	36 dB				
Adjacent channel centre frequency offset (in MHz)	+ BW _{Channel_CA} /2 + 3*BW _{UTRA} /2 / - BW _{Channel_CA} /2 - 3*BW _{UTRA} /2				
CA E-UTRA channel Measurement bandwidth	BW _{Channel_CA} - 2* BW _{GB}				
UTRA 5MHz channel Measurement bandwidth (Note 1)	3.84 MHz				
UTRA 1.6MHz channel measurement bandwidth (Note 2)	1.28 MHz				
NOTE 1: Applicable for E-UTRA FDD co-existence with UTRA FDD in paired spectrum. NOTE 2: Applicable for E-UTRA TDD co-existence with UTRA TDD in unpaired spectrum.					

Table 6.6.2.3.2A-2: Requirements for intraband non-contiguous CA UTRA_{ACLR1/2}

	UTRA _{ACLR1/2} / measurement bandwidth
UTRA _{ACLR1}	33 dB
Adjacent channel centre frequency offset (in MHz)	+ F _{edge,block,high} + BW _{UTRA} /2 / - F _{edge,block,low} - BW _{UTRA} /2
UTRA _{ACLR2}	36 dB
Adjacent channel centre frequency offset (in MHz)	+ F _{edge,block,high} + 3*BW _{UTRA} /2 / - F _{edge,block,low} - 3*BW _{UTRA} /2
Sub-block measurement bandwidth	BWChannel,block - 2* BWGB
UTRA 5 MHz channel Measurement bandwidth (Note 1)	3.84 MHz
UTRA 1.6 MHz channel measurement bandwidth (Note 2)	1.28 MHz
	D co-existence with UTRA FDD in paired spectrum. D co-existence with UTRA TDD in unpaired spectrum.

6.6.2.3.3A Minimum requirements for CA E-UTRA

For intra-band contiguous carrier aggregation the carrier aggregation E-UTRA Adjacent Channel Leakage power Ratio (CA E-UTRA_{ACLR}) is the ratio of the filtered mean power centred on the aggregated channel bandwidth to the filtered mean power centred on an adjacent aggregated channel bandwidth at nominal channel spacing. The assigned aggregated channel bandwidth power are measured with rectangular filters with measurement bandwidths specified in Table 6.6.2.3.3A-1. If the measured adjacent channel power is greater than – 50dBm then the E-UTRA_{ACLR} shall be higher than the value specified in Table 6.6.2.3.3A-1.

Table 6.6.2.3.3A-1: General requirements for CA E-UTRA_{ACLR}

	CA bandwidth class / CA E-UTRA _{ACLR} / Measurement bandwidth
	CA bandwidth class C
CA E-UTRA _{ACLR}	30 dB
CA E-UTRA channel Measurement bandwidth	BW _{Channel_CA} - 2* BW _{GB}
Adjacent channel centre frequency offset (in MHz)	+ BWchannel_CA / - BWchannel_CA

For inter-band carrier aggregation with uplink assigned to two E-UTRA bands, E-UTRA Adjacent Channel Leakage power Ratio (E-UTRA_{ACLR}) is the ratio of the filtered mean power centred on the assigned channel bandwidth on a component carrier to the filtered mean power centred on an adjacent channel frequency. The E-UTRA Adjacent Channel Leakage power Ratio is defined per carrier and the requirement is specified in subclause 6.6.2.3.1.

For intra-band non-contiguous carrier aggregation when all sub-blocks consist of one component carrier the E-UTRA Adjacent Channel Leakage power Ratio (E-UTRA_{ACLR}) is the ratio of the sum of the filtered mean powers centred on the assigned sub-block frequencies to the filtered mean power centred on an adjacent channel frequency at nominal channel spacing. In case the sub-block gap bandwidth Wgap is smaller than of the sub-block bandwidth then for that sub-block no E-UTRA_{ACLR} requirement is set for the gap. In case the sub-block gab bandwidth Wgap is smaller than either of the sub-block bandwidths then no E-UTRA_{ACLR} requirement is set for the gap. The assigned E-UTRA sub-block power and adjacent E-UTRA channel power are measured with rectangular filters with measurement bandwidths specified in Table 6.6.2.3.3A-2. If the measured adjacent channel power is greater than –50dBm then the E-UTRA_{ACLR} shall be higher than the value specified in Table 6.6.2.3.3A-2.

Table 6.6.2.3.3A-2: General requirements for non-contiguous intraband CA E-UTRA_{ACLR}

	CC and adjacent channel bandwidth / E-UTRA _{ACLR} / Measurement bandwidth								
	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz			
E-UTRA _{ACLR1}	30 dB	30 dB	30 dB	30 dB	30 dB	30 dB			
CC and adjacent channel measurement bandwidth [MHz]	1.08	2.7	4.5	9	13.5	18			
Adjacent channel centre frequency offset [MHz]	+ 1.4 / - 1.4	+ 3 / - 3	+ 5 / - 5	+ 10 / - 10	+ 15 / - 15	+ 20 / - 20			

6.6.2.4 Void

6.6.2.4.1 Void

6.6.2A Void

<reserved for future use>

6.6.2B Out of band emission for UL-MIMO

For UE supporting UL-MIMO, the requirements for Out of band emissions resulting from the modulation process and non-linearity in the transmitters are specified at each transmit antenna connector.

For UEs with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the requirements in subclause 6.6.2 apply to each transmit antenna connector. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2.

If UE is configured for transmission on single-antenna port, the requirements in subclause 6.6.3 apply.

6.6.3 Spurious emissions

Spurious emissions are emissions which are caused by unwanted transmitter effects such as harmonics emission, parasitic emissions, intermodulation products and frequency conversion products, but exclude out of band emissions unless otherwise stated. The spurious emission limits are specified in terms of general requirements inline with SM.329 [2] and E-UTRA operating band requirement to address UE co-existence.

To improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.6.3.1 Minimum requirements

Unless otherwise stated, the spurious emission limits apply for the frequency ranges that are more than FOOB (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth. The spurious emission limits in Table 6.6.3.1-2 apply for all transmitter band configurations (NRB) and channel bandwidths.

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

Table 6.6.3.1-1: Boundary between E-UTRA out of band and spurious emission domain

Channel bandwidth	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz
OOB	2.8	6	10	15	20	25
boundary						
FOOB (MHz)						

Table 6.6.3.1-2: Spurious emissions limits

Frequency Range	Maximum Level	Measurement bandwidth	Note				
9 kHz ≤ f < 150 kHz	-36 dBm	1 kHz					
150 kHz ≤ f < 30 MHz	-36 dBm	10 kHz					
30 MHz ≤ f < 1000 MHz	-36 dBm	100 kHz					
1 GHz ≤ f < 12.75 GHz	-30 dBm	1 MHz					
12.75 GHz ≤ f < 5 th harmonic of the upper frequency edge of the UL operating band in GHz	-30 dBm	1 MHz	1				
NOTE 1: Applies for Bar	NOTE 1: Applies for Band 22, Band 42 and Band 43						

6.6.3.1A Minimum requirements for CA

This clause specifies the spurious emission requirements for carrier aggregation.

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

For inter-band carrier aggregation with uplink assigned to two E-UTRA bands, the spurious emission requirement Table 6.6.3.1-2 apply for the frequency ranges that are more than F_{OOB} as defined in Table 6.6.3.1-1 away from edges of the assigned channel bandwidth on a component carrier. If for some frequency a spurious emission requirement of individual component carrier overlaps with the spectrum emission mask or channel bandwidth of another component carrier then it does not apply.

NOTE: For inter-band carrier aggregation with uplink assigned to two E-UTRA bands the requirements in Table 6.6.3.1-2 could be verified by measuring spurious emissions at the specific frequencies where second and third order intermodulation products generated by the two transmitted carriers can occur; in that case, the requirements for remaining applicable frequencies in Table 6.6.3.1-2 would be considered to be verified by the measurements verifying the one uplink inter-band CA spurious emission requirement.

For intra-band contiguous carrier aggregation the spurious emission limits apply for the frequency ranges that are more than FOOB (MHz) in Table 6.6.3.1A-1 from the edge of the aggregated channel bandwidth (Table 5.6A-1). For frequencies Δ fOOB greater than FOOB as specified in Table 6.6.3.1A-1 the spurious emission requirements in Table 6.6.3.1-2 are applicable.

Table 6.6.3.1A-1: Boundary between E-UTRA out of band and spurious emission domain for intraband contiguous carrier aggregation

CA Bandwidth Class	OOB boundary F _{OOB} (MHz)
A	Table 6.6.3.1-1
В	FFS
С	BW _{Channel_CA} + 5

For intra-band non-contiguous carrier aggregation transmission the spurious emission requirement is defined as a composite spurious emission requirement. Composite spurious emission requirement applies to frequency ranges that are more than F_{OOB} away from the edges of the sub-blocks. Composite spurious emission requirement is defined as follows

- a) Composite spurious emission requirement is a combination of individual sub-block spurious emission requirements
- b) In case the sub-block consist of one component carrier the sub-lock spurious emission requirement and F_{OOB} are defined in subclause 6.6.3.1
- c) If for some frequency an individual sub-block spurious emission requirement overlaps with the general spectrum emission mask or the sub-block bandwidth of another sub-block then it does not apply

6.6.3.2 Spurious emission band UE co-existence

This clause specifies the requirements for the specified E-UTRA band, for coexistence with protected bands.

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

Table 6.6.3.2-1: Requirements

		Spurious	em	ission		·	
E-UTRA Band	Protected band		ency MHz	range :)	Maximum Level (dBm)	MBW (MHz)	Note
1	E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 20, 21, 22, 26, 27, 28, 31, 32, 38, 40, 41, 42, 43, 44	F _{DL_low}	-	F_{DL_high}	-50	1	
	E-UTRA Band 34	F_{DL_low}	-	F _{DL_high}	-50	1	15
	Frequency range	1880		1879.9	-50	1	15
	Frequency range	1895		1915	-15.5	5	15, 26, 27
	Frequency range	1915		1920	+1.6	5	15, 26, 27
2	E-UTRA Band 4, 5, 10, 12, 13, 14, 17, 23, 24, 26, 27, 28, 29, 30, 41, 42	F_{DL_low}	-	F_{DL_high}	-50	1	
	E-UTRA Band 2, 25	F_{DL_low}	-	F_{DL_high}	-50	1	15
	E-UTRA Band 43	F_{DL_low}	-	F_{DL_high}	-50	1	2
3	E-UTRA Band 1, 5, 7, 8, 11, 18, 19, 20, 21, 26, 27, 28, 31, 32, 33, 34, 38, 39, 40, 41, 43, 44	F _{DL_low}	-	F_{DL_high}	-50	1	
	E-UTRA Band 3	F_{DL_low}	-	F_{DL_high}	-50	1	15
	E-UTRA Band 22, 42	F_{DL_low}	-	F_{DL_high}	-50	1	2
	Frequency range	1884.5	-	1915.7	-41	0.3	
4	E-UTRA Band 2, 4, 5, 7, 10, 12, 13, 14, 17, 23, 24, 25, 26, 27, 28, 29, 30, 41, 43	F _{DL_low}	-	F _{DL_high}	-50	1	
	E-UTRA Band 42	F_{DL_low}	-	F_{DL_high}	-50	1	2
5	E-UTRA Band 1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 17, 23, 24, 25, 28, 29, 30, 31, 34, 38, 40, 42, 43	F _{DL_low}	-	F_{DL_high}	-50	1	
	E-UTRA Band 26	859	-	869	-27	1	
	E-UTRA Band 41	F_{DL_low}	-	F _{DL_high}	-50	1	2
6	E-UTRA Band 1, 9, 11, 34	F _{DL_low}	-	F _{DL_high}	-50	1	
	Frequency range	860	_	875	-37	1	
	Frequency range	875	_	895	-50	1	
	, , ,	1884.5	-	1919.6	41	0.3	7
	Frequency range	1884.5	-	1915.7	-41	0.3	8
7	E-UTRA Band 1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 17, 20, 22, 26, 27, 28, 29, 30, 31, 32, 33, 34, 40, 42, 43	F _{DL_low}	-	F_{DL_high}	-50	1	
	Frequency range	2570	-	2575	+1.6	5	15, 21, 26
	Frequency range	2575	-	2595	-15.5	5	15, 21, 26
	Frequency range	2595	-	2620	-40	1	15, 21
8	E-UTRA Band 1, 20, 28, 31, 32, 33, 34, 38, 39, 40	F_{DL_low}	-	F _{DL_high}	-50	1	
	E-UTRA band 3, 7, 22, 41, 42, 43	F_{DL_low}	-	F _{DL_high}	-50	1	2
	E-UTRA Band 8	F_{DL_low}	-	F _{DL_high}	-50	1	15
	E-UTRA Band 11, 21	F_{DL_low}	-	F _{DL_high}	-50	1	23
	Frequency range	860	-	890	-40	1	15, 23
	Frequency range	1884.5	-	1915.7	-41	0.3	8, 23
9	E-UTRA Band 1, 3, 11, 18, 19, 21, 26, 28, 34	F _{DL_low}	-	F_{DL_high}	-50	1	,
	E-UTRA Band 42	F_{DL_low}	-	F _{DL_high}	-50	1	2
	Frequency range	945	-	960	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	8
	Frequency range	2545	_	2575	-50	1	
	Frequency range	2595	_	2645	-50	1	
10	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17, 23, 24, 25, 26, 27, 28, 29, 30, 41, 43	F _{DL_low}	-	F _{DL_high}	-50	1	
	E-UTRA Band 22, 42	F _{DL low}	_	F _{DL_high}	-50	1	2
11	E-UTRA Band 1, 11, 18, 19, 21, 28, 34, 42	F _{DL_low}	-	F _{DL_high}	-50	1	
	Frequency range	945	-	960	-50	1	
	Frequency range	1839.9	-	1879.9	-50	1	
	Frequency range	1884.5		1915.7	-41	0.3	8

	Frequency range	2545	-	2575	-50	1	
	Frequency range	2595	-	2645	-50	1	
12	E-UTRA Band 2, 5, 13, 14, 17, 23, 24, 25, 26, 27, 30, 41	F _{DL_low}	-	F _{DL_high}	-50	1	
	E-UTRA Band 4, 10	F _{DL_low}	-	F _{DL_high}	-50	1	2
	E-UTRA Band 12	F _{DL_low}	-	F _{DL_high}	-50	1	15
13	E-UTRA Band 2, 4, 5, 10, 12, 13, 17, 23, 25, 26, 27, 29, 41	F_{DL_low}	•	F_{DL_high}	-50	1	
	E-UTRA Band 14	F_{DL_low}	•	F_{DL_high}	-50	1	15
	E-UTRA Band 24, 30	F_{DL_low}	-	F_{DL_high}	-50	1	2
	Frequency range	769	-	775	-35	0.00625	15
	Frequency range	799	-	805	-35	0.00625	11, 15
14	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17, 23, 24, 25, 26, 27, 29, 30, 41	F_{DL_low}	•	F_{DL_high}	-50	1	
	Frequency range	769	-	775	-35	0.00625	12, 15
	Frequency range	799	-	805	-35	0.00625	11, 12, 15
17	E-UTRA Band 2, 5, 13, 14, 17, 23, 24, 25, 26, 27, 30, 41	F_{DL_low}	-	F_{DL_high}	-50	1	
	E-UTRA Band 4, 10	F_{DL_low}	-	F_{DL_high}	-50	1	2
	E-UTRA Band 12	F_{DL_low}	-	F _{DL_high}	-50	1	15
18	E-UTRA Band 1, 3, 11, 21, 34, 42	F _{DL_low}	-	F _{DL_high}	-50	1	
	Frequency range	758	-	799	-50	1	
	Frequency range	799	-	803	-40	1	15
	Frequency range	860	-	890	-40	1	
	Frequency range	945	-	960	-50	1	0
	Frequency range	1884.5 2545	-	1915.7 2575	-41 -50	0.3	8
	Frequency range Frequency range	2545 2595	-	2645	-50 -50	1	
19	E-UTRA Band 1, 3, 11, 21, 28, 34, 42	F _{DL_low}		F _{DL_high}	-50	1	
10	Frequency range	945		960	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	8
	Frequency range	2545	-	2575	-50	1	-
	Frequency range	2595	-	2645	-50	1	
20	E-UTRA Band 1, 3, 7, 8, 22, 31, 32, 33, 34, 40, 43	F_{DL_low}	1	F_{DL_high}	-50	1	
	E-UTRA Band 20	F_{DL_low}	-	F _{DL_high}	-50	1	15
	E-UTRA Band 38, 42	F_{DL_low}	-	F_{DL_high}	-50	1	2
	Frequency range	758	-	788	-50	1	
21	E-UTRA Band 1, 3, 18, 19, 28, 34, 42	F_{DL_low}	-	F_{DL_high}	-50	1	
	Frequency range	945	-	960	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	8
	Frequency range	2545	-	2575	-50 50	1	
22	Frequency range E-UTRA Band 1, 3, 7, 8, 20, 26, 27, 28,	2595	-	2645	-50		
	31, 32, 33, 34, 38, 39, 40, 43	F _{DL_low}	-	F _{DL_high}	-50	1	
	Frequency range	3510	-	3525	-40	1	15
	Frequency range	3525	-	3590	-50	1	
23	E-UTRA Band 4, 5, 10, 12, 13, 14, 17, 23, 24, 26, 27, 29, 30, 41	F_{DL_low}	-	F_{DL_high}	-50	1	
24	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17, 23, 24, 25, 26, 29, 30, 41	F _{DL_low}	-	F_{DL_high}	-50	1	
25	E-UTRA Band 4, 5, 10,12, 13, 14, 17, 23, 24, 26, 27, 28, 29, 30, 41, 42	F_{DL_low}		F_{DL_high}	-50	1	
	E-UTRA Band 2	F_{DL_low}	-	F_{DL_high}	-50	1	15
	E-UTRA Band 25	$F_{DL_{low}}$	-	F_{DL_high}	-50	1	15
	E-UTRA Band 43	F_{DL_low}	-	F_{DL_high}	-50	1	2
26	E-UTRA Band 1, 2, 3, 4, 5, 10, 11, 12, 13, 14, 17, 18,19, 21, 23, 24, 25, 26, 29, 30, 31, 34, 39, 40, 42, 43	$F_{DL_{low}}$	-	F_{DL_high}	-50	1	
	E-UTRA Band 41	F_{DL_low}	-	F_{DL_high}	-50	1	2
	Frequency range	703	-	799	-50	1	
	Frequency range	799	-	803	-40	1	15
	Frequency range	945	-	960	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	8

07	F LITPA Paralla 0 0 4 5 7 40 40 40	1		ı		1	ı
27	E-UTRA Band 1, 2, 3, 4, 5, 7, 10, 12, 13, 14, 17, 23, 25, 26, 27, 29, 30, 31, 38, 40, 41, 42, 43	F _{DL_low}	-	F_{DL_high}	-50	1	
	E-UTRA Band 28	F_{DL_low}	-	790	-50	1	
	Frequency range	799	-	805	-35	0.00625	
28	E-UTRA Band 1, 4, 10, 22, 42, 43	F_{DL_low}	-	F _{DL_high}	-50	1	2
	E-UTRA Band 1	F _{DL_low}	-	F _{DL_high}	-50	1	19, 25
	E-UTRA Band 2, 3, 5, 7, 8, 18, 19, 20, 25, 26, 27, 31, 34, 38, 40, 41	F _{DL_low}	-	F _{DL_high}	-50	1	,
	E-UTRA Band 11, 21	F_{DL_low}	-	F_{DL_high}	-50	1	19, 24
	Frequency range	470	-	694	-42	8	15, 35
	Frequency range	470	-	710	-26.2	6	34
	Frequency range	662	-	694	-26.2	6	15
	Frequency range	758	-	773	-32	1	15
	Frequency range	773	-	803	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	8, 19
30	E-UTRA Band 2, 4, 5, 7, 10, 12, 13, 14, 17, 23, 24, 25, 26, 27, 29, 30, 38, 41	F _{DL_low}	-	F_{DL_high}	-50	1	·
31	E-UTRA Band 1, 5, 7, 8, 20, 22, 26, 27, 28, 31, 32, 33, 34, 38, 40, 42, 43	F _{DL_low}	1	F _{DL_high}	-50	1	
	E-UTRA Band 3	F_{DL_low}	-	F_{DL_high}	-50	1	2
	Frequency range	470	-	694	-42	8	
33	E-UTRA Band 1, 7, 8, 20, 22, 28, 31, 32,	F _{DL_low}	-	F _{DL high}	-50	1	5
	34, 38, 40, 42, 43 E-UTRA Band 3				-50	1	15
34	E-UTRA Band 3 E-UTRA Band 1, 3, 7, 8, 11, 18, 19, 20,	F _{DL_low}	-	F _{DL_high}	-50		15
34	21, 22, 26, 28, 31, 32, 33, 38,39, 40, 41, 42, 43, 44	$F_{DL_{low}}$	-	F_{DL_high}	-50	1	5
	Frequency range	1884.5	-	1915.7	-41	0.3	8
35							
36							
37			-				
38	E-UTRA Band 1, 2, 3, 4, 5, 8, 10, 12, 13, 14, 17, 20, 22, 27, 28, 29, 30, 31, 32, 33, 34, 40, 42, 43	$F_{DL_{Llow}}$	-	F_{DL_high}	-50	1	
	Frequency range	2620	-	2645	-15.5	5	15, 22, 26
	Frequency range	2645	-	2690	-40	1	15, 22
39	E-UTRA Band 1, 8, 22, 26, 34, 40, 41, 42, 44	F_{DL_low}	ı	F _{DL_high}	-50	1	
	Frequency range	1805		1855	-40	1	33
	Frequency range	1855		1880	-15.5	5	15,26,33
40	E-UTRA Band 1, 3, 5, 7, 8, 20, 22, 26, 27, 28, 31, 32, 33, 34, 38, 39, 41, 42, 43, 44	F_{DL_low}	ı	F _{DL_high}	-50	1	
41	E-UTRA Band 1, 2, 3, 4, 5, 8, 10, 12, 13, 14, 17, 23, 24, 25, 26, 27, 28, 29, 30, 34, 39, 40, 42, 44	F_{DL_low}	ı	F_{DL_high}	-50	1	
	E-UTRA Band 9, 11, 18, 19, 21	F _{DL_low}	-	F _{DL_high}	-50	1	30
	Frequency range	1884.5		1915.7	-41	0.3	8, 30
42	E-UTRA Band 1, 2, 3, 4, 5, 7, 8, 10, 11, 18, 19, 20, 21, 25, 26, 27, 28, 31, 32, 33, 34, 38, 40, 41, 44	F_{DL_low}	-	F_{DL_high}	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	8
43	E-UTRA Band 1, 2, 3, 4, 5, 7, 8, 10, 20, 25, 26, 27, 28, 31,32, 33, 34, 38, 40	F _{DL_low}	-	F _{DL_high}	-50	1	
44	E-UTRA Band 1, 40, 42	F_{DL_low}	-	F _{DL_high}	-50	1	2
	E-UTRA Band 3, 5, 8, 34, 39, 41	F _{DL_low}	-	F _{DL_high}	-50	1	

- NOTE 1: FDL_low and FDL_high refer to each E-UTRA frequency band specified in Table 5.5-1
- NOTE 2: As exceptions, measurements with a level up to the applicable requirements defined in Table 6.6.3.1-2 are permitted for each assigned E-UTRA carrier used in the measurement due to 2nd, 3rd, 4th [or 5th] harmonic spurious emissions. Due to spreading of the harmonic emission the exception is also allowed for the first 1 MHz frequency range immediately outside the harmonic emission on both sides of the harmonic emission. This results in an overall exception interval centred at the harmonic emission of (2MHz + N x L_{CRB} x 180kHz), where N is 2, 3, 4, [5] for the 2nd, 3rd, 4th [or 5th] harmonic respectively. The exception is allowed if the measurement bandwidth (MBW) totally or partially overlaps the overall exception interval.
- NOTE 3: N/A
- NOTE 4: N/A
- NOTE 5: For non synchronised TDD operation to meet these requirements some restriction will be needed for either the operating band or protected band
- NOTE 6: N/A
- NOTE 7: Applicable when co-existence with PHS system operating in 1884.5-1919.6MHz.
- NOTE 8: Applicable when co-existence with PHS system operating in 1884.5 -1915.7MHz.
- NOTE 9: N/A
- NOTE 10: N/A
- NOTE 11: Whether the applicable frequency range should be 793-805MHz instead of 799-805MHz is TBD
- NOTE 12: The emissions measurement shall be sufficiently power averaged to ensure a standard deviation < 0.5 dB
- NOTE 13: N/A
- NOTE 14: N/A
- NOTE 15: These requirements also apply for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.6.3.1-1 and Table 6.6.3.1A-1 from the edge of the channel bandwidth.
- NOTE 16: N/A
- **NOTE 17: N/A**
- NOTE 18: N/A
- NOTE 19: Applicable when the assigned E-UTRA carrier is confined within 718 MHz and 748 MHz and when the channel bandwidth used is 5 or 10 MHz.
- NOTE 20: N/A
- NOTE 21: This requirement is applicable for any channel bandwidths within the range 2500 2570 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2560.5 2562.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2552 2560 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB.
- NOTE 22: This requirement is applicable for any channel bandwidths within the range 2570 2615 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2605.5 2607.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2597 2605 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB.

 For carriers with channel bandwidth overlapping the frequency range 2615 2620 MHz the requirement applies with the maximum output power configured to +19 dBm in the IE *P-Max*.
- NOTE 23: This requirement is applicable only for the following cases:
 for carriers of 5 MHz channel bandwidth when carrier centre frequency (F_c) is within the range 902.5 MHz $\leq F_c <$ 907.5 MHz with an uplink transmission bandwidth less than or equal to 20 RB for carriers of 5 MHz channel bandwidth when carrier centre frequency (F_c) is within the range 907.5 MHz $\leq F_c \leq$ 912.5 MHz without any restriction on uplink transmission bandwidth.
 for carriers of 10 MHz channel bandwidth when carrier centre frequency (F_c) is $F_c =$ 910 MHz with an uplink transmission bandwidth less than or equal to 32 RB with RB_{start} > 3.
- NOTE 24: As exceptions, measurements with a level up to the applicable requirement of -38 dBm/MHz is permitted for each assigned E-UTRA carrier used in the measurement due to 2nd harmonic spurious emissions. An exception is allowed if there is at least one individual RB within the transmission bandwidth (see Figure 5.6-1) for which the 2nd harmonic totally or partially overlaps the measurement bandwidth (MBW).
- NOTE 25: As exceptions, measurements with a level up to the applicable requirement of -36 dBm/MHz is permitted for each assigned E-UTRA carrier used in the measurement due to 3rd harmonic spurious emissions. An exception is allowed if there is at least one individual RB within the transmission bandwidth (see Figure 5.6-1) for which the 3rd harmonic totally or partially overlaps the measurement bandwidth (MBW).
- NOTE 26: For these adjacent bands, the emission limit could imply risk of harmful interference to UE(s) operating in the protected operating band.
- NOTE 27: This requirement is applicable for any channel bandwidths within the range 1920 1980 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 1927.5 1929.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 1930 1938 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB.
- NOTE 28: N/A

NOTE 29: N/A

NOTE 30: This requirement applies when the E-UTRA carrier is confined within 2545-2575MHz or 2595-2645MHz and the channel bandwidth is 10 or 20 MHz

NOTE 31: N/A

NOTE 32: Void

NOTE 33: This requirement is only applicable for carriers with bandwidth confined within 1885-1920 MHz (requirement for carriers with at least 1RB confined within 1880 - 1885 MHz is not specified). This requirement applies for an uplink transmission bandwidth less than or equal to 54 RB for carriers of 15 MHz bandwidth when carrier center frequency is within the range 1892.5 - 1894.5 MHz and for carriers of 20 MHz bandwidth when carrier center frequency is within the range 1895 - 1903 MHz.

NOTE 34: This requirement is applicable for 5 and 10 MHz E-UTRA channel bandwidth allocated within 718-728MHz. For carriers of 10 MHz bandwidth, this requirement applies for an uplink transmission bandwidth less than or equal to 30 RB with RBstart > 1 and RBstart < 48.

NOTE 35: This requirement is applicable in the case of a 10 MHz E-UTRA carrier confined within 703 MHz and 733 MHz, otherwise the requirement of -25 dBm with a measurement bandwidth of 8 MHz applies.

NOTE: The restriction on the maximum uplink transmission to 54 RB in Notes 21, 22, and 27 of Table 6.6.3.2-1 is intended for conformance testing and may be applied to network operation to facilitate coexistence when the aggressor and victim bands are deployed in the same geographical area. The applicable spurious emission requirement of -15.5 dBm/5MHz is a least restrictive technical condition for FDD/TDD coexistence and may have to be revised in the future.

6.6.3.2A Spurious emission band UE co-existence for CA

This clause specifies the requirements for the specified carrier aggregation configurations for coexistence with protected bands.

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

For inter-band carrier aggregation with the uplink assigned to two E-UTRA bands, the requirements in Table 6.6.3.2A-0 apply on each component carrier with both component carriers are active.

NOTE: For inter-band carrier aggregation with uplink assigned to two E-UTRA bands the requirements in Table 6.6.3.2A-0 could be verified by measuring spurious emissions at the specific frequencies where second and third order intermodulation products generated by the two transmitted carriers can occur; in that case, the requirements for remaining applicable frequencies in Table 6.6.3.2A-0 would be considered to be verified by the measurements verifying the one uplink inter-band CA UE to UE co-existence requirements.

Table 6.6.3.2A-0: Requirements for uplink inter-band carrier aggregation (two bands)

	Spurious emission						
E-UTRA CA Configuration	Protected band	Frequency range (MHz)			Maximum Level (dBm)	MBW (MHz)	Note
CA_1A-3A	E-UTRA Band 1, 5, 7, 8, 11, 18, 19, 20, 21, 26, 27, 28, 31, 32, 38, 40, 41, 43, 44	F_{DL_low}	-	F _{DL_high}	-50	1	
	E-UTRA band 3, 34	F_{DL_low}	-	F_{DL_high}	-50	1	3
	E-UTRA band 22, 42	F_{DL_low}	-	F _{DL_high}	-50	1	2
	Frequency range	1884.5	-	1915.7	-41	0.3	7
	Frequency range	1880		1895	-40	1	3,12
	Frequency range	1895		1915	-15.5	5	3, 12, 13
	Frequency range	1915		1920	+1.6	5	3, 12, 13
CA_1A-5A	E-UTRA Band 1, 5, 7, 8, 22, 28, 31, 38, 40, 42, 43	$F_{DL_{low}}$	-	F _{DL_high}	-50	1	
	E-UTRA band 3,34	F_{DL_low}	-	F_{DL_high}	-50	1	3
	E-UTRA band 26	859	-	869	-27	1	
	E-UTRA band 41	F_{DL_low}	-	F_{DL_high}	-50	1	2
CA_1A-7A	E-UTRA Band 1, 5, 7, 8, 20, 22, 26, 27, 28, 31,32, 40, 42, 43	$F_{DL_{Llow}}$	-	F_{DL_high}	-50	1	
	E-UTRA band 3, 34	F _{DL_low}	-	F_{DL_high}	-50	1	3
	Frequency range	1880		1895	-40	1	3,12
	Frequency range	1895		1915	-15.5	5	3, 12, 13
	Frequency range	1915		1920	+1.6	5	3, 12, 13
	Frequency range	2570	-	2575	+1.6	5	3, 13, 14
	Frequency range	2575	-	2595	-15.5	5	3, 13, 14
CA_1A-8A	Frequency range E-UTRA Band 1, 20, 28, 31, 32,	2595	-	2620	-40	1	3, 14
	38, 40	F _{DL_low}		F _{DL_high}	-50	1	
	E-UTRA band 3	F_{DL_low}	-	F_{DL_high}	-50	1	2,3
	E-UTRA band 7, 22, 41, 42, 43	F_{DL_low}	-	F _{DL_high}	-50	1	2
	E-UTRA Band 8, 34	F_{DL_low}	-	F _{DL_high}	-50	1	3
	E-UTRA band 11, 21	F _{DL_low}	-	F _{DL_high}	-50	1	11
	Frequency range	860	-	890	-40	1	3, 11
	Frequency range	1884.5	-	1915.7	-41	0.3	7, 11
	Frequency range	1880		1895	-40	1	3,12
	Frequency range	1895		1915	-15.5	5 5	3, 12, 13
CA_1A-19A	Frequency range	1915		1920	+1.6		3, 12, 13
CA_IA-19A	E-UTRA Band 1, 3, 11, 21, 28, 42	F _{DL_low}	-	F _{DL_high}	-50 -50	1	3
	E-UTRA Band 34 Frequency range	F _{DL_low}	H	F _{DL_high}	-40	1	3, 8
	Frequency range	945	Ē	960	-50	1	3, 0
	Frequency range	1884.5	H	1915.7	-41	0.3	3, 7
	Frequency range	2545	H	2575	-50	1	3, 7
	Frequency range	2595	 	2645	-50	1	
CA_1A-21A	E-UTRA Band 11		<u> </u>	F _{DL high}	-35	1	3, 16
0/1 <u>-</u> 1/(21/(E-UTRA Band 1, 3, 18, 19, 28, 34, 42	F_{DL_low}		F _{DL high}	-50	1	0, 10
	E-UTRA Band 21	F _{DL_low}	<u> </u>	F _{DL_high}	-50	1	16
	Frequency range	1884.5	 	1915.7	-41	0.3	7
	Frequency range	945	 	960	-50	1	
	Frequency range	2545	-	2575	-50	1	
	Frequency range	2595	-	2645	-50	1	
CA_2A-4A	E-UTRA Band 4, 5, 10, 12, 13, 14, 17, 22, 23, 24, 26, 27, 28, 29, 30, 41	F _{DL_low}	_	F _{DL high}	-50	1	
	E-UTRA Band 2, 25	F _{DL_low}	-	F _{DL_high}	-50	1	3
	E-UTRA Band 42, 43	F _{DL_low}	L-	F _{DL_high}	-50	1	2
CA_2A-13A	E-UTRA Band 4, 5,10,12,13,17, 22, 23, 26, 27, 29, 41, 42	F _{DL_low}	-	F _{DL_high}	-50	1	
	E-UTRA Band 2,14, 25	F_{DL_low}	_	F_{DL_high}	-50	1	3
	E-UTRA Band 24, 30, 43	F_{DL_low}	L-	F_{DL_high}	-50	1	2

	Frequency range	769	-	775	-35	0.00625	3
	Frequency range	799	-	805	-35	0.00625	3, 9
CA_3A-5A	E-UTRA Band 1, 5, 7, 8, 22, 28,	F _{DL low}		F _{DL high}	-50	1	0, 0
	31, 38, 40, 42, 43	_		- 0			
	E-UTRA band 3,34	F _{DL_low}	-	F _{DL_high}	-50	1	3
04 04 74	E-UTRA band 26	859	-	869	-27	1	
CA_3A-7A	E-UTRA Band 1, 5, 7, 8, 20, 26, 27, 28, 31, 32, 33, 34, 40, 43, 44	F_{DL_low}	-	F_{DL_high}	-50	1	
	E-UTRA band 3	F_{DL_low}	-	F_{DL_high}	-50	1	3
	E-UTRA band 22, 42	F_{DL_low}	-	F_{DL_high}	-50	1	2
	Frequency range	2570	-	2575	+1.6	5	3, 13, 14
	Frequency range	2575	-	2595	-15.5	5	3, 13, 14
	Frequency range	2595	-	2620	-40	1	3, 14
CA_3A-8A	E-UTRA Band 1, 20, 28, 31, 32, 33, 34, 38, 39, 40, 44	F _{DL_low}	-	F _{DL_high}	-50	1	
	E-UTRA band 3, 8	F _{DL_low}	-	F _{DL_high}	-50	1	2, 3
	E-UTRA band 11, 21	F _{DL_low}	-	F _{DL_high}	-50	1	11
	E-UTRA band 7, 22, 41, 42, 43	F _{DL_low}	-	F _{DL_high}	-50	1	2
	Frequency range	1884.5	-	1915.7	-41	0.3	4, 11
	Frequency range	860	-	890	-40	1	3,11,17
CA_3A-19A	E-UTRA Band 1, 11, 21, 28	F _{DL_low}	-	F _{DL_high}	-50	1	, ,
	E-UTRA Band 3, 34	F _{DL low}	l -	F _{DL high}	-50	1	3
	E-UTRA Band 42	F _{DL_low}	_	F _{DL_high}	-50	1	2
	Frequency range	860	-	890	-40	1	3, 8
	Frequency range	945	-	960	-50	1	-, -
	Frequency range	1884.5	-	1915.7	-41	0.3	3, 4
	Frequency range	2545	_	2575	-50	1	σ, .
	Frequency range	2595	_	2645	-50	1	
CA_3A-20A	E-UTRA Band 1, 7, 8, 31, 32, 33,			_			
0/1_0/1 20/1	34, 40, 43	F _{DL_low}	-	F _{DL_high}	-50	1	0
	E-UTRA Band 3, 20	F _{DL_low}	-	F _{DL_high}	-50 -50	1	3
	E-UTRA Band 22, 38, 42	F _{DL_low}	-	F _{DL_high}	-50 -50	1	2
CA 2A 2CA	Frequency range E-UTRA Band 1, 5, 7, 11, 18, 19,	758	-	788	-50	1	
CA_3A-26A	21, 26, 34, 39, 40, 43	F _{DL_low}	-	F_{DL_high}	-50	1	
	E-UTRA band 3	F_{DL_low}	-	F_{DL_high}	-50	1	3
	E-UTRA band 22, 41, 42	F_{DL_low}	-	F_{DL_high}	-50	1	2
	Frequency range	1884.5	-	1915.7	-41	0.3	4
	Frequency range	703	-	799	-50	1	
	Trequency range	799	-	803	-40	1	3
	Frequency range	851	-	859	-53	0.00625	15
	Frequency range	945	-	960	-50	1	
CA_4A-7A	E-UTRA Band 2, 4, 5, 7, 10, 12,	F _{DL low}	-	F _{DL high}	-50	1	
	13, 14, 17, 26, 27, 28, 29, 30, 43 E-UTRA band 42	F _{DL_low}	-	F _{DL high}	-50	1	2
	Frequency range	2570		2575	+1.6	5	3, 13, 14
	Frequency range	2575		2595	-15.5	5	3, 13, 14
	' '		Ē		-40	1	3. 14
CA_4A-12A	Frequency range E-UTRA Band 2, 5, 7,13, 14, 17,	2595 F _{DL low}	-	F _{DL high}	-50	1	5, 14
	22, 23, 24, 25, 26, 27, 30, 41, 43 E-UTRA Band 4, 10, 42	F _{DL_low}		F _{DL high}	-50	1	2
	E-UTRA Band 12		-	0	-50		3
CA_4A-13A	E-UTRA Band 12 E-UTRA Band 2,4, 5, 7,	F _{DL_low}	-	F _{DL_high}	-50	1	J
OA_ 1 A-13A	10,12,13,17, 22, 23,25, 26, 27, 29, 41, 43	F_{DL_low}	-	F_{DL_high}	-50	1	
	E-UTRA Band 14	F _{DL_low}	-	F _{DL_high}	-50	1	3
	E-UTRA Band 24, 30, 42	F _{DL_low}	-	F _{DL_high}	-50	1	2
	Frequency range	769	-	775	-35	0.00625	3
	Frequency range	799	-	805	-35	0.00625	3, 9
CA_4A-17A	E-UTRA Band 2, 5, 7,13, 14, 17, 22, 23, 24, 25, 26, 27, 30, 41, 43	F_{DL_low}	-	F_{DL_high}	-50	1	•
	E-UTRA Band 4, 10. 42	F _{DL_low}	-	F _{DL_high}	-50	1	2
	E-UTRA Band 12	F _{DL_low}	-	F _{DL_high}	-50	1	3
CA_5A-7A	E-UTRA Band 1, 2, 3, 4, 5, 7, 8,	F _{DL_low}	-	F _{DL_high}	-50	1	
1	_ 0 Dana 1, 2, 0, 7, 0, 1, 0,	· DL_IUW	I	· PL_IIIYII			i

	10, 12, 13, 14, 17, 22, 28, 29, 30, 31, 40, 42, 43						
	E-UTRA band 26	859	-	869	-27	1	
	Frequency range	2570	-	2575	+1.6	5	3, 13, 14
	Frequency range	2575	-	2595	-15.5	5	3, 13, 14
	Frequency range	2595	-	2620	-40	1	3, 14
CA_5A-12A	E-UTRA Band 2, 5, 13, 14, 17, 22, 23, 24, 25, 30, 31, 42, 43	F _{DL_low}	-	F _{DL_high}	-50	1	
	E-UTRA band 4, 10, 41	F_{DL_low}	-	F _{DL_high}	-50	1	2
	E-UTRA band 26	859	-	869	-27	1	
	E-UTRA band 12	F _{DL low}	-	F _{DL high}	-50	1	3
CA_5A-17A	E-UTRA Band 2, 5, 13, 14, 17, 22, 23, 24, 25, 30, 31, 42, 43	F _{DL_low}	-	F _{DL_high}	-50	1	
	E-UTRA band 4, 10, 41	F_{DL_low}	-	F _{DL_high}	-50	1	2
	E-UTRA band 26	859	-	869	-27	1	
	E-UTRA band 12	F _{DL low}	-	F _{DL high}	-50	1	3
CA_7A-20A	E-UTRA Band 1,3, 7, 8, 22, 28, 31, 32, 33, 34, 40, 43	F _{DL_low}	-	F _{DL_high}	-50	1	
	E-UTRA Band 20	F_{DL_low}	-	F_{DL_high}	-50	1	3
	E-UTRA Band 42	F_{DL_low}	-	F _{DL_high}	-50	1	2
	Frequency range	2570	-	2575	+1.6	5	3, 13, 14
	Frequency range	2575	-	2595	-15.5	5	3, 13, 14
	Frequency range	2595	-	2620	-40	1	3, 14
CA_7A-28A	E-UTRA Band 2, 3, 5, 7, 8, 20, 26, 27, 31, 34, 40	F _{DL_low}	-	F _{DL_high}	-50	1	
	E-UTRA Band 1, 4, 10, 22, 42, 43	F_{DL_low}	-	F _{DL_high}	-50	1	2
	E-UTRA Band 1	F_{DL_low}	-	F _{DL_high}	-50	1	5, 6
	Frequency range	758	-	773	-32	1	3
	Frequency range	773	-	803	-50	1	
	Frequency range	2570	-	2575	+1.6	5	3, 13, 14
	Frequency range	2575	-	2595	-15.5	5	3, 13, 14
	Frequency range	2595	-	2620	-40	1	3, 14
CA_19A-21A	E-UTRA Band 1, 3, 18, 19, 28, 34, 42	F _{DL_low}	-	F _{DL_high}	-50	1	
	E-UTRA Band 11	F_{DL_low}	-	F _{DL_high}	-50	1	3, 16
	E-UTRA Band 21	F_{DL_low}	-	F _{DL_high}	-50	1	16
	Frequency range	860	-	890	-40	1	3, 8
	Frequency range	945	-	960	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	4
	Frequency range	2545	-	2575	-50	1	
	Frequency range	2595	-	2645	-50	1	
CA 39A-41A	E-UTRA Band 1, 8, 26, 34, 40, 42, 44	F _{DL low}	_	F _{DL_high}	-50	1	
	Frequency range	1805	-	1855	-40	1	20
	Frequency range	1855	-	1880	-15.5	5	3, 13, 20

- NOTE 1: F_{DL_low} and F_{DL_high} refer to each E-UTRA frequency band specified in Table 5.5-1
- NOTE 2: As exceptions, measurements with a level up to the applicable requirements defined in Table 6.6.3.1-2 are permitted for each assigned E-UTRA carrier used in the measurement due to 2nd, 3rd, 4th [or 5th] harmonic spurious emissions In case the exceptions are allowed due to spreading of the harmonic emission the exception is also allowed for the first 1 MHz frequency range immediately outside the harmonic emission on both sides of the harmonic emission. This results in an overall exception interval centred at the harmonic emission of (2MHz + N x Lcrb x 180kHz), where N is 2, 3 or 4 for the 2nd, 3rd or 4th harmonic respectively. The exception is allowed if the measurement bandwidth (MBW) totally or partially overlaps the overall exception interval.
- NOTE 3: These requirements also apply for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.6.3.1-1 and Table 6.6.3.1A-1 from the edge of the aggregated channel bandwidth.
- NOTE 4: Applicable when co-existence with PHS system operating in 1884.5 -1915.7MHz.
- NOTE 5: Applicable when the assigned E-UTRA carrier is confined within 718 MHz and 748 MHz and when the channel bandwidth used is 5 or 10 MHz.
- NOTE 6: As exceptions, measurements with a level up to the applicable requirement of -36 dBm/MHz is permitted for each assigned E-UTRA carrier used in the measurement due to 3rd harmonic spurious emissions. An exception is allowed if there is at least one individual RB within the transmission bandwidth (see Figure 5.6-1) for which the 3rd harmonic totally or partially overlaps the measurement bandwidth (MBW).
- NOTE 7: Applicable when NS_05 in section 6.6.3.3.1 is signalled by the network.
- NOTE 8: Applicable when NS_08 in subclause 6.6.3.3.3 is signalled by the network

- NOTE 9: Whether the applicable frequency range should be 793-805MHz instead of 799-805MHz is TBD.
- NOTE10: N/A
- NOTE 11: This requirement is applicable only for the following cases:
 - for carriers of 5 MHz channel bandwidth when carrier centre frequency (F_c) is within the range 902.5 MHz \leq F_c < 907.5 MHz with an uplink transmission bandwidth less than or equal to 20 RB
 - for carriers of 5 MHz channel bandwidth when carrier centre frequency (F_c) is within the range 907.5 MHz $\leq F_c \leq$ 912.5 MHz without any restriction on uplink transmission bandwidth.
 - for carriers of 10 MHz channel bandwidth when carrier centre frequency (F_c) is F_c = 910 MHz with an uplink transmission bandwidth less than or equal to 32 RB with RB_{start} > 3.
- NOTE 12: This requirement is applicable for any channel bandwidths within the range 1920 1980 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 1927.5 1929.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 1930 1938 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB.
- NOTE13: For these adjacent bands, the emission limit could imply risk of harmful interference to UE(s) operating in the protected operating band.
- NOTE 14: This requirement is applicable for any channel bandwidths within the range 2500 2570 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2560.5 2562.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2552 2560 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB.
- NOTE 15: Applicable when NS_15 in subclause 6.6.3.3.8 is signalled by the network.
- NOTE 16: Applicable when NS_09 in subclause 6.6.3.3.4 is signalled by the network
- NOTE 17: This requirement is applicable only when Band 3 transmission frequency is less than or equal to 1765 MHz.
- NOTE 18: This requirement applies when the E-UTRA carrier is confined within 2545-2575MHz or 2595-2645MHz and the channel bandwidth is 10 or 20 MHz
- NOTE 19: Void
- NOTE 20: This requirement is only applicable for carriers with bandwidth confined within 1885-1920 MHz (requirement for carriers with at least 1RB confined within 1880 1885 MHz is not specified). This requirement applies for an uplink transmission bandwidth less than or equal to 54 RB for carriers of 15 MHz bandwidth when carrier center frequency is within the range 1892.5 1894.5 MHz and for carriers of 20 MHz bandwidth when carrier center frequency is within the range 1895 1903 MHz.

Table 6.6.3.2A-1: Requirements for intraband carrier aggregation

E-		Spurious	em	ission			
UTRA CA Config uration	Protected band	Frequency range (MHz)			Maximum Level (dBm)	MBW (MHz)	Note
CA_1C	E-UTRA Band 1, 7, 8, 11, 18, 19, 20, 21, 22, 26, 27, 28, 31, 38, 40, 41, 42, 43, 44	F _{DL low}	-	F _{DL high}	-50	1	
	E-UTRA Band 3	F_{DL_low}	-	F _{DL_high}	-50	1	10
CA_3C	E-UTRA Band 1, 7, 8, 20, 26, 27, 28, 31, 33, 34, 38, 41, 43, 44	F_{DL_low}	-	$F_{DL_{high}}$	-50	1	
	E-UTRA Band 3	F_{DL_low}	-	F _{DL_high}	-50	1	10
	E-UTRA Band 22, 42	F_{DL_low}	-	F_{DL_high}	-50	1	2
CA_7C	E-UTRA Band 1, 3, 7, 8, 20, 22, 27, 28, 29, 30. 31, 33, 34, 40, 42, 43	F _{DL low}	-	F _{DL high}	-50	1	
CA_38C	E-UTRA Band 1,3, 8, 20, 22, 27, 28, 29, 30, 31, 33, 34, 40, 42, 43	$F_{DL_{low}}$	_	F _{DL_high}	-50	1	
CA 39C	E-UTRA Band 22, 34, 40, 41, 42, 44	F _{DL_low}	-	F _{DL_high}	-50	1	
CA_40C	E-UTRA Band 1, 3, 7, 8, 20, 22, 26, 27, 33, 34, 38, 39, 41, 42, 43, 44	F _{DL low}	-	F _{DL_high}	-50	1	
CA_41C	E-UTRA Band 1, 2, 3, 4, 5, 8, 10, 12, 13, 14, 17, 23, 24, 25, 26, 27, 28, 29, 30, 34, 39, 40, 42, 44	$F_{DL_{low}}$	-	F _{DL_high}	-50	1	
CA_42C	E-UTRA Band 1, 2, 3, 4, 5, 7, 8, 10, 11, 18, 19, 20, 21, 25, 26, 27, 28, 31, 33, 34, 38, 40, 41, 44	F _{DL_low}	-	F _{DL_high}	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	

NOTE 1: FDL_low and FDL_high refer to each E-UTRA frequency band specified in Table 5.5-1

NOTE 2: As exceptions, measurements with a level up to the applicable requirements defined in Table 6.6.3.1-2 are permitted for each assigned E-UTRA carrier used in the measurement due to 2nd, 3rd, 4th [or 5th] harmonic spurious emissions. Due to spreading of the harmonic emission the exception is also allowed for the first 1 MHz frequency range immediately outside the harmonic emission on both sides of the harmonic emission. This results in an overall exception interval centred at the harmonic emission of (2MHz + N x L_{CRB} x 180kHz), where N is 2, 3, 4, [5] for the 2nd, 3rd, 4th [or 5th] harmonic respectively. The exception is allowed if the measurement bandwidth (MBW) totally or partially overlaps the overall exception interval

NOTE 3: To meet these requirements some restriction will be needed for either the operating band or protected band

NOTE 4: N/A

NOTE 5: N/A

NOTE 6: N/A

NOTE 7: N/A

NOTE 8: N/A

NOTE 9: N/A

NOTE 10: The requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.6.3.1-1 and Table 6.6.3.1A-1 from the edge of the aggregated channel bandwidth.

NOTE 11: N/A

NOTE 12: N/A

NOTE 13: N/A

NOTE 14: N/A

Spurious emission E-UTRA CA Frequency range Protected band **MBW** Maximum Note Configur (MHz) Level (MHz) ation (dBm) E-UTRA Band 2, 4, 5, 7, 10, 12, 13, 14, 17, 22, 23, 24, 25, 26, 27, -50 1 CA_4A-F_{DL_low} FDL_high 28, 29, 30, 41, 43 4A E-UTRA Band 42 $F_{\mathsf{DL_low}}$ F_{DL_high} -50

Table 6.6.3.2A-2: Requirements for intraband non-contiguous CA

F_{DL_low} and F_{DL_high} refer to each E-UTRA frequency band specified in Table 5.5-1 NOTE 1:

NOTE 2: As exceptions, measurements with a level up to the applicable requirements defined in Table 6.6.3.1-2 are permitted for each assigned E-UTRA carrier used in the measurement due to 2nd or 3rd harmonic spurious emissions. Due to spreading of the harmonic emission the exception is also allowed for the first 1 MHz frequency range immediately outside the harmonic emission on both sides of the harmonic emission. This results in an overall exception interval centred at the harmonic emission of (2MHz + N x LCRB x 180kHz), where N is 2 or 3 for the 2nd or 3rd harmonic respectively. The exception is allowed if the measurement bandwidth (MBW) totally or partially overlaps the overall exception interval.

6.6.3.3 Additional spurious emissions

These requirements are specified in terms of an additional spectrum emission requirement. Additional spurious emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

6.6.3.3.1 Minimum requirement (network signalled value "NS 05")

When "NS_05" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.1-1. This requirement also applies for the frequency ranges that are less than FOOB (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

Frequency band Channel bandwidth / Spectrum Measurement Note (MHz) emission limit (dBm) bandwidth 20 5 10 15 MHz MHz MHz MHz -41 -41 -41 -41 300 KHz 1884.5 ≤ f ≤1915.7 1

Table 6.6.3.3.1-1: Additional requirements (PHS)

6.6.3.3.2 Minimum requirement (network signalled value "NS 07")

When "NS 07" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.2-1. This requirement also applies for the frequency ranges that are less than FOOB (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

Table 6.6.3.3.2-1: Additional requirements

Frequency band (MHz)		Channel bandwidth / Spectrum emission limit (dBm)	Measurement bandwidth	
		10 MHz		
769 :	≤ f ≤ 775	-57	6.25 kHz	
NOTE: The emissions measurement shall be sufficiently power averaged to ensure standard standard deviation < 0.5 dB				

6.6.3.3.3 Minimum requirement (network signalled value "NS_08")

When "NS 08" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.3-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

Table 6.6.3.3.3-1: Additional requirement

Frequency band (MHz)	Channel ban	dwidth / Spectrum (dBm) 10MHz	emission limit 15MHz	Measurement bandwidth
860 ≤ f ≤ 890	-40	-40	-40	1 MHz

6.6.3.3.4 Minimum requirement (network signalled value "NS_09")

When "NS 09" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.4-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

Table 6.6.3.3.4-1: Additional requirement

Frequency band (MHz)	Channel ban	Measurement bandwidth		
	5MHz	10MHz	15MHz	
1475.9 ≤ f ≤ 1510.9	-35	-35	-35	1 MHz

NOTE 1: Void.

NOTE 2: To improve measurement accuracy, A-MPR values for NS_09 specified in Table 6.2.4-1 in subclause 6.2.4 are derived based on 100 kHz RBW.

6.6.3.3.5 Minimum requirement (network signalled value "NS_12")

When "NS 12" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.5-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

Table 6.6.3.3.5-1: Additional requirements

Frequency band	Channel bandwidth /	Measurement bandwidth			
(MHz)	Spectrum emission limit (dBm)	bandwidth			
	1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz				
806 ≤ f ≤ 813.5	-42	6.25 kHz			
above 814.2 N	NOTE 1: The requirement applies for E-UTRA carriers with lower channel edge at or above 814.2 MHz.				
NOTE 2: The emissions standard devia	measurement shall be sufficiently power averation < 0.5 dB.	aged to ensure a			

6.6.3.3.6 Minimum requirement (network signalled value "NS_13")

When "NS 13" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.6-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

Table 6.6.3.3.6-1: Additional requirements

Frequency band (MHz)		Channel bandwidth / Spectrum emission limit (dBm)	Measurement bandwidth		
		1.4, 3, 5 MHz			
806	≤ f ≤ 816	-42	6.25 kHz		
NOTE 1:	NOTE 1: The requirement applies for E-UTRA carriers with lower channel edge at or above 819 MHz.				
NOTE 2:	NOTE 2: The emissions measurement shall be sufficiently power averaged to ensure a standard deviation < 0.5 dB.				

6.6.3.3.7 Minimum requirement (network signalled value "NS_14")

When "NS 14" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.7-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

Table 6.6.3.3.7-1: Additional requirements

Frequency ba (MHz)	nd	Channel bandwidth / Spectrum emission limit (dBm)	Measurement bandwidth		
		10 MHz, 15 MHz			
806 ≤ f ≤ 816	6	-42	6.25 kHz		
	NOTE 1: The requirement applies for E-UTRA carriers with lower channel edge at or above 824 MHz.				
NOTE 2: The emissions measurement shall be sufficiently power averaged to ensure a standard deviation < 0.5 dB.					

6.6.3.3.8 Minimum requirement (network signalled value "NS_15")

When "NS 15" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.8-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

Table 6.6.3.3.8-1: Additional requirements

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm) 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz	Measurement bandwidth				
851 ≤ f ≤ 859	-53	6.25 kHz				
NOTE 1: The emissions measurement shall be sufficiently power averaged to ensure a standard deviation < 0.5 dB.						

6.6.3.3.9 Minimum requirement (network signalled value "NS_16")

When "NS_16" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.9-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

Table 6.6.3.3.9-1: Additional requirements

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm) 1.4, 3, 5, 10 MHz	Measurement bandwidth	Note
790 ≤ f ≤ 803	-32	1 MHz	

6.6.3.3.10 Minimum requirement (network signalled value "NS_17")

When "NS_17" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.10-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.6.3.3.1-1 from the edge of the channel bandwidth.

Table 6.6.3.3.10-1: Additional requirements

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm) 5, 10 MHz	Measurement bandwidth	Note
470 ≤ f ≤ 710	-26.2	6 MHz	1

NOTE 1: Applicable when the assigned E-UTRA carrier is confined within 718 MHz and 748 MHz and when the channel bandwidth used is 5 or 10 MHz.

6.6.3.3.11 Minimum requirement (network signalled value "NS_18")

When "NS_18" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.11-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

Table 6.6.3.3.11-1: Additional requirements

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm) 5, 10, 15, 20 MHz	Measurement bandwidth	Note
692-698	-26.2	6 MHz	

6.6.3.3.12 Minimum requirement (network signalled value "NS_19")

When "NS_19" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.12-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

Table 6.6.3.3.12-1: Additional requirements

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm) 3, 5, 10, 15, 20 MHz	Measurement bandwidth	Note
662 ≤ f ≤ 694	-25	8 MHz	

6.6.3.3.13 Minimum requirement (network signalled value "NS_11")

When "NS_11" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.13-1. These requirements also apply for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.6.3.1-1 and Table 6.6.3.1A-1 from the edge of the channel bandwidth.

Table 6.6.3.3.13-1: Additional requirements

Frequency band	Channel bandwidth / Spectrum emission limit (dBm)	Measurement bandwidth
(MHz)	1.4, 3, 5, 10, 15, 20 MHz	
E-UTRA Band 2	-50	1 MHz
1998 ≤ f ≤ 1999	-21	1 MHz
1997 ≤ f < 1998	-27	1 MHz
1996 ≤ f < 1997	-32	1 MHz
1995 ≤ f < 1996	-37	1 MHz
1990 ≤ f < 1995	-40	1 MHz

6.6.3.3.14 Minimum requirement (network signalled value "NS_20")

When "NS_20" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.14-1. These requirements also apply for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.6.3.1-1 and Table 6.6.3.1A-1 from the edge of the channel bandwidth.

Table 6.6.3.3.14-1: Additional requirements

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm) 5, 10, 15, 20 MHz	Measurement bandwidth				
1990 ≤ f < 1999	-40	1 MHz				
1999 ≤ f ≤ 2000	-40	Note 1				
Note 1: The measurement bandwidth is 1% of the applicable E-UTRA channel bandwidth.						

6.6.3.3.15 Minimum requirement (network signalled value "NS_21")

When "NS_21" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.15-1. These requirements also apply for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.6.3.1-1 and Table 6.6.3.1A-1 from the edge of the channel bandwidth.

Table 6.6.3.3.15-1: Additional requirements

Frequency band	Channel bandwidth / Spectrum emission limit (dBm)	Measurement bandwidth
(MHz)	5, 10 MHz	
2200 ≤ f < 2288	-40	1 MHz
2288 ≤ f < 2292	-37	1 MHz
2292 ≤ f < 2296	-31	1 MHz
2296 ≤ f < 2300	-25	1 MHz
2320 ≤ f < 2324	-25	1 MHz
2324 ≤ f < 2328	-31	1 MHz
2328 ≤ f < 2332	-37	1 MHz
2332 ≤ f ≤ 2395	-40	1 MHz

6.6.3.3.16 Minimum requirement (network signalled value "NS_22")

When "NS 22" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.16-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

Table 6.6.3.3.16-1: Additional requirement

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm)	MBW						
	5, 10, 15, 20 MHz							
3400 ≤ f ≤ 3800	-23 (Note 1, Note 3)	5 MHz						
	-40 (Note 2)	1 MHz						
NOTE 1: This require:	ment applies within an offset between 5 MHz a	and 25 MHz						
from the low	er and from the upper edge of the channel band	dwidth,						
whenever the	ese frequencies overlap with the specified frequencies	uency band.						
NOTE 2: This require:	ment applies from 3400 MHz to 25 MHz below	the lower						
E-UTRA channel edge and from 25 MHz above the upper E-UTRA								
channel edge	channel edge to 3800 MHz.							
	n limit might imply risk of harmful interference to ted operating band	o UE(s) operating						

6.6.3.3.17 Minimum requirement (network signalled value "NS_23")

When "NS 23" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.17-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

Table 6.6.3.3.17-1: Additional requirement

	Frequency band (MHz) Channel bandwidth / Spectrum emission limit (dBm) 5, 10, 15, 20 MHz						
3400 :	≤ f ≤ 3800	-23 (Note 1, Note 4)	5 MHz				
		-40 (Note 2)	1 MHz				
NOTE 1:	25 MHz + Foff	rement applies within an offset between 5 MHz + Foffset_NS_23 and Foffset_NS_23 from the lower and from the upper edges of the andwidth, whenever these frequencies overlap with the specified hand					
NOTE 2:	lower E-UTRA	equirement applies from 3400 MHz to 25 MHz + F _{offset_NS_23} below the E-UTRA channel edge and from 25 MHz + F _{offset_NS_23} above the E-UTRA channel edge to 3800 MHz.					
	Foffset_NS_23 is: 0 MHz for 5 M 5 MHz for 10 9 MHz for 15 12 MHz for 20 This emission		e to UE(s)				

6.6.3.3.18 Void

Table 6.6.3.3.18-1: Void

6.6.3.3.19 Minimum requirement (network signalled value "NS_04")

When "NS 04" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.19-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

Table 6.6.3.3.19-1: Additional requirements

Frequency band	Channel bandwidth / Spectrum emission limit (dBm) 5, 10, 15, 20 MHz	Measurement bandwidth
2490.5 MHz ≤ f < 2496 MHz	-13	1 MHz
9 kHz < f < 2490.5 MHz	-25	1 MHz

6.6.3.3A Additional spurious emissions for CA

These requirements are specified in terms of an additional spectrum emission requirement. Additional spurious emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell reconfiguration message.

NOTE:

For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

6.6.3.3A.1 Minimum requirement for CA_1C (network signalled value "CA_NS_01")

When "CA_NS_01" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3A.1-1. This requirement also applies for the frequency ranges that are less than FOOB (MHz) in Table 6.6.3.1A-1 from the edge of the aggregated channel bandwidth.

Table 6.6.3.3A.1-1: Additional requirements (PHS)

Protected band	Frequency range (MHz)		inge (MHz)	Maximum Level (dBm)	MBW (MHz)	Note		
E-UTRA band 34	FDL_low	-	FDL_high	-50	1			
Frequency range	1884.5	-	1915.7	-41	0.3	1		
NOTE 1: Applicable v								

6.6.3.3A.2 Minimum requirement for CA_1C (network signalled value "CA_NS_02")

When "CA_NS_02" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3A.2-1. This requirement also applies for the frequency ranges that are less than FOOB (MHz) in Table 6.6.3.1A-1 from the edge of the aggregated channel bandwidth.

Table 6.6.3.3A.2-1: Additional requirements

Protected band	Frequenc	y ra	nge (MHz)	Maximum Level (dBm)	MBW (MHz)	Note
E-UTRA band 34	F _{DL_low}	-	F _{DL_high}	-50	1	
Frequency range	1900	-	1915	-15.5	5	1, 2
Frequency range	1915	-	1920	+1.6	5	1, 2

NOTE 1: The requirement also applies for the frequency ranges that are less than FOOB (MHz) in Table 6.6.3.1-1 and Table 6.6.3.14-1 from the edge of the channel bandwidth.

NOTE 2: For these adjacent bands, the emission limit could imply risk of harmful interference to UE(s) operating in the protected operating band.

6.6.3.3A.3 Minimum requirement for CA_1C (network signalled value "CA_NS_03")

When "CA_NS_03" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3A.3-1. This requirement also applies for the frequency ranges that are less than FOOB (MHz) in Table 6.6.3.1A-1 from the edge of the aggregated channel bandwidth.

Table 6.6.3.3A.3-1: Additional requirements

Protected band	Frequency range (MHz)			Maximum Level (dBm)	MBW (MHz)	Note
E-UTRA band 34	F_{DL_low}	-	F _{DL_high}	-50	1	
Frequency range	1880	-	1895	-40	1	
Frequency range	1895	-	1915	-15.5	5	1, 2
Frequency range	1915	-	1920	+1.6	5	1, 2

NOTE 1: The requirement also applies for the frequency ranges that are less than FOOB (MHz) in Table 6.6.3.1-1 and Table 6.6.3.14-1 from the edge of the channel bandwidth.

NOTE 2: For these adjacent bands, the emission limit could imply risk of harmful interference to UE(s) operating in the protected operating band.

6.6.3.3A.4 Minimum requirement for CA_38C (network signalled value "CA_NS_05")

When "CA_NS_05" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3A.4-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.6.3.1A-1 from the edge of the aggregated channel bandwidth. This requirement is applicable for carriers with aggregated channel bandwidths confined in 2570 - 2615 MHz.

Table 6.6.3.3A.4-1: Additional requirements

Protected band	Frequency range (MHz)		nge (MHz)	Maximum Level (dBm)	MBW (MHz)	Note
Frequency range	2620	-	2645	-15.5	5	1, 2, 3
Frequency range	2645	-	2690	-40	1	1. 3

NOTE 1: The requirement also applies for the frequency ranges that are less than FOOB (MHz) in Table 6.6.3.1-1 and Table 6.6.3.1A-1 from the edge of the channel bandwidth.

NOTE 2: For these adjacent bands, the emission limit could imply risk of harmful interference to UE(s) operating in the protected operating band.

NOTE 3: This requirement is applicable for carriers with aggregated channel bandwidths confined in 2570-2615 MHz.

6.6.3.3A.5 Minimum requirement for CA_7C (network signalled value "CA_NS_06")

When "CA_NS_06" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3A.5-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.6.3.1A-1 from the edge of the aggregated channel bandwidth.

Table 6.6.3.3A.5-1: Additional requirements

Protected band	Frequenc	cy rar	nge (MHz)	Maximum Level (dBm)	MBW (MHz)	Note
Frequency range	2570	-	2575	+1.6	5	1, 2
Frequency range	2575	-	2595	-15.5	5	1, 2
Frequency range	2595	-	2620	-40	1	

NOTE 1: The requirement also applies for the frequency ranges that are less than FOOB (MHz) in Table 6.6.3.1-1 and Table 6.6.3.14-1 from the edge of the channel bandwidth.

NOTE 2: For these adjacent bands, the emission limit could imply risk of harmful interference to UE(s) operating in the protected operating band.

6.6.3.3A.6 Minimum requirement for CA_39C (network signalled value "CA_NS_07")

When "CA_NS_07" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3A.6-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.6.3.1A-1 from the edge of the aggregated channel bandwidth.

Table 6.6.3.3A.6-1: Additional requirements

Protected band	Frequency range (MHz)			Maximum Level (dBm)	MBW (MHz)	Note
Frequency range	1805	-	1855	-40	1	1
Frequency range	1855	-	1880	-15.5	5	1, 2, 3

- NOTE 1: This requirement is applicable for carriers with aggregated channel bandwidths confined in 1885-1920 MHz.
- NOTE 2: The requirement also applies for the frequency ranges that are less than FOOB (MHz) in Table 6.6.3.1-1 and Table 6.6.3.1A-1 from the edge of the channel bandwidth.
- NOTE 3: For these adjacent bands, the emission limit could imply risk of harmful interference to UE(s) operating in the protected operating band.

6.6.3.3A.7 Minimum requirement for CA_42C (network signalled value "CA_NS_08")

When "CA_NS_08" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3A.7-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.6.3.1A-1 from the edge of the aggregated channel bandwidth.

Table 6.6.3.3A.7-1: Additional requirements

Frequency band (MHz)	Aggregated bandwidth / Spectrum emission limit (dBm) 25, 30, 35, 40 MHz (Note	MBW
3400 ≤ f ≤ 3800	-23 (Note 2, Note 4)	5 MHz
	-40 (Note 3)	1 MHz

- NOTE 1: Possible aggregated bandwidth for CA_42C as specified in Table 5.6A.1-1.
- NOTE 2: This requirement applies within an offset between 5 MHz and 25 MHz from the lower and from the upper edge of the channel bandwidth, whenever these frequencies overlap with the specified frequency band.
- NOTE 3: This requirement applies from 3400 MHz to 25 MHz below the lower E-UTRA channel edge and from 25 MHz above the upper E-UTRA channel edge to 3800 MHz.
- NOTE 4: This emission limit might imply risk of harmful interference to UE(s) operating in the protected operating band.

6.6.3.3A.8 Minimum requirement for CA 41C (network signalled value "CA NS 04")

When "CA_NS_04" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3A.8-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.6.3.1A-1 from the edge of the aggregated channel bandwidth.

Table 6.6.3.3A.8-1: Additional requirements

Frequency band	Spectrum emission limit (dBm)	Measurement bandwidth
2490.5 MHz ≤ f < 2495 MHz	-13	1 MHz
9 kHz < f < 2490.5 MHz	-25	1 MHz

6.6.3A Void

<reserved for future use>

6.6.3B Spurious emission for UL-MIMO

For UE supporting UL-MIMO, the requirements for Spurious emissions which are caused by unwanted transmitter effects such as harmonics emission, parasitic emissions, intermodulation products and frequency conversion products are specified at each transmit antenna connector.

For UEs with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the requirements in subclause 6.6.3 apply to each transmit antenna connector. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2.2B-1.

If UE is configured for transmission on single-antenna port, the general requirements in subclause 6.6.3 apply.

6.6A Void

6.6B Void

6.7 Transmit intermodulation

The transmit intermodulation performance is a measure of the capability of the transmitter to inhibit the generation of signals in its non linear elements caused by presence of the wanted signal and an interfering signal reaching the transmitter via the antenna.

6.7.1 Minimum requirement

User Equipment(s) transmitting in close vicinity of each other can produce intermodulation products, which can fall into the UE, or eNode B receive band as an unwanted interfering signal. The UE intermodulation attenuation is defined by the ratio of the mean power of the wanted signal to the mean power of the intermodulation product when an interfering CW signal is added at a level below the wanted signal at each of the transmitter antenna port with the other antenna port(s) if any is terminated. Both the wanted signal power and the intermodulation product power are measured through E-UTRA rectangular filter with measurement bandwidth shown in Table 6.7.1-1.

The requirement of transmitting intermodulation is prescribed in Table 6.7.1-1.

-29dBc

4.5MHz

-35dBc

4.5MHz

5MHz 20MHz BW Channel (UL) 10MHz 15MHz Interference Signal 5MHz 10MHz 10MHz 20MHz 15MHz 30MHz 20MHz 40MHz Frequency Offset Interference CW Signal -40dBc Level

-35dBc

9.0MHz

-29dBc

13.5MHz

-35dBc

13.5MHz

-29dBc

18MHz

-35dBc

18MHz

-29dBc

9.0MHz

Table 6.7.1-1: Transmit Intermodulation

6.7.1A Minimum requirement for CA

Intermodulation Product

Measurement bandwidth

User Equipment(s) transmitting in close vicinity of each other can produce intermodulation products, which can fall into the UE, or eNode B receive band as an unwanted interfering signal. The UE intermodulation attenuation is defined by the ratio of the mean power of the wanted signal to the mean power of the intermodulation product on both component carriers when an interfering CW signal is added at a level below the wanted signal at each of the transmitter antenna

port with the other antenna port(s) if any is terminated. Both the wanted signal power and the intermodulation product power are measured through rectangular filter with measurement bandwidth shown in Table 6.7.1A-1.

For inter-band carrier aggregation with uplink assigned to two E-UTRA bands, the requirement is specified in Table 6.7.1-1 which shall apply on each component carrier with both component carriers active.

For intra-band contiguous carrier aggregation the requirement of transmitting intermodulation is specified in Table 6.7.1 A-1.

CA bandwidth class(UL)

Interference Signal Frequency Offset
Interference CW Signal Level

Intermodulation Product

Measurement bandwidth

C

BWchannel_CA

2*BWchannel_CA

-40dBc

-40dBc

-35dBc

BWchannel_CA- 2* BWGB

Table 6.7.1A-1: Transmit Intermodulation

6.7.1B Minimum requirement for UL-MIMO

For UE supporting UL-MIMO, the transmit intermodulation requirements are specified at each transmit antenna connector and the wanted signal is defined as the sum of output power at each transmit antenna connector.

For UEs with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the requirements in subclause 6.7.1 apply to each transmit antenna connector. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2.

If UE is configured for transmission on single-antenna port, the requirements in subclause 6.7.1 apply.

- 6.8 Void
- 6.8.1 Void
- 6.8A Void

6.8B Time alignment error for UL-MIMO

For UE(s) with multiple transmit antenna connectors supporting UL-MIMO, this requirement applies to frame timing differences between transmissions on multiple transmit antenna connectors in the closed-loop spatial multiplexing scheme.

The time alignment error (TAE) is defined as the average frame timing difference between any two transmissions on different transmit antenna connectors.

6.8B.1 Minimum Requirements

For UE(s) with multiple transmit antenna connectors, the Time Alignment Error (TAE) shall not exceed 130 ns.

7 Receiver characteristics

7.1 General

Unless otherwise stated the receiver characteristics are specified at the antenna connector(s) of the UE. For UE(s) with an integral antenna only, a reference antenna(s) with a gain of 0 dBi is assumed for each antenna port(s). UE with an integral antenna(s) may be taken into account by converting these power levels into field strength requirements, assuming a 0 dBi gain antenna. For UEs with more than one receiver antenna connector, identical interfering signals shall be applied to each receiver antenna port if more than one of these is used (diversity).

The levels of the test signal applied to each of the antenna connectors shall be as defined in the respective sections below.

With the exception of subclause 7.3, the requirements shall be verified with the network signalling value NS_01 configured (Table 6.2.4-1).

All the parameters in clause 7 are defined using the UL reference measurement channels specified in Annexes A.2.2 and A.2.3, the DL reference measurement channels specified in Annex A.3.2 and using the set-up specified in Annex C.3.1.

For the additional requirements for intra-band non-contiguous carrier aggregation of two component carriers (one component carrier per sub-block), an in-gap test refers to the case when the interfering signal is located at a negative offset with respect to the assigned channel frequency of the highest carrier frequency and located at a positive offset with respect to the assigned channel frequency of the lowest carrier frequency.

For the additional requirements for intra-band non-contiguous carrier aggregation of two component carriers (one component carrier per sub-block), an out-of-gap test refers to the case when the interfering signal(s) is (are) located at a positive offset with respect to the assigned channel frequency of the highest carrier frequency, or located at a negative offset with respect to the assigned channel frequency of the lowest carrier frequency.

For the additional requirements for intra-band non-contiguous carrier aggregation of two component carriers with channel bandwidth larger than or equal to 5 MHz (one component carrier per sub-block), the existing adjacent channel selectivity requirements, in-band blocking requirements (for each case), and narrow band blocking requirements apply for in-gap tests only if the corresponding interferer frequency offsets with respect to the two measured carriers satisfy the following condition in relation to the sub-block gap size W_{gap} for at least one of these carriers j, j = 1,2, so that the interferer frequency position does not change the nature of the core requirement tested:

$$Wgap \ge 2$$
 |FInterferer (offset)_{,j}| - BWChannel(_j)

where $F_{Interferer (offset),j}$ is the interferer frequency offset with respect to carrier j as specified in subclause 7.5.1, subclause 7.6.1 and subclause 7.6.3 for the respective requirement and $BW_{Channel(j)}$ the channel bandwidth of carrier j. The interferer frequency offsets for adjacent channel selectivity, each in-band blocking case and narrow-band blocking shall be tested separately with a single in-gap interferer at a time.

For a ProSe UE that supports both ProSe Direct Discovery and ProSe Direct Communication, the receiver characteristics specified in clause 7 for ProSe Direct Communication shall apply.

For ProSe Direct Discovery and ProSe Direct Communication on E-UTRA ProSe operating bands that correspond to TDD E-UTRA operating bands as specified in subclause 5.5D, the only additional requirement for ProSe specified in subcaluse 7.4.1D is applicable.

7.2 Diversity characteristics

The requirements in Section 7 assume that the receiver is equipped with two Rx port as a baseline. These requirements apply to all UE categories unless stated otherwise. Requirements for 4 ports are FFS. With the exception of subclause 7.9 all requirements shall be verified by using both (all) antenna ports simultaneously.

For a category 0 UE the requirements in Section 7 assume that the receiver is equipped with single Rx port.

7.3 Reference sensitivity power level

The reference sensitivity power level REFSENS is the minimum mean power applied to both the UE antenna ports for all UE categories except category 0, or to the single antenna port for UE category 0, at which the throughput shall meet or exceed the requirements for the specified reference measurement channel.

The throughput for the REFSENS test is measured based on the Transmission Mode 1 unless specified otherwise.

7.3.1 Minimum requirements (QPSK)

The throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.3.1-1 and Table 7.3.1-2

Table 7.3.1-1: Reference sensitivity QPSK PREFSENS

Channel bandwidth										
E-UTRA Band	1.4 MHz (dBm)	3 MHz (dBm)	5 MHz (dBm)	10 MHz (dBm)	15 MHz (dBm)	20 MHz (dBm)	Duplex Mode			
1			-100	-97	-95.2	-94	FDD			
2	-102.7	-99.7	-98	-95	-93.2	-92	FDD			
3	-101.7	-98.7	-97	-94	-92.2	-91	FDD			
4	-104.7	-101.7	-100	-97	-95.2	-94	FDD			
5	-103.2	-100.2	-98	-95			FDD			
6			-100	-97			FDD			
7			-98	-95	-93.2	-92	FDD			
8	-102.2	-99.2	-97	-94			FDD			
9			-99	-96	-94.2	-93	FDD			
10			-100	-97	-95.2	-94	FDD			
11			-100	-97			FDD			
12	-101.7	-98.7	-97	-94			FDD			
13			-97	-94			FDD			
14			-97	-94			FDD			
17			-97	-94			FDD			
18			-100 ⁷	-97 ⁷	-95.2 ⁷		FDD			
19			-100	-97	-95.2		FDD			
20			-97	-94	-91.2	-90	FDD			
21			-100	-97	-95.2		FDD			
22			-97	-94	-92.2	-91	FDD			
23	-104.7	-101.7	-100	-97	-95.2	-94	FDD			
24			-100	-97			FDD			
25	-101.2	-98.2	-96.5	-93.5	-91.7	-90.5	FDD			
26	-102.7	-99.7	-97.5 ⁶	-94.5 ⁶	-92.7 ⁶		FDD			
27	-103.2	-100.2	-98	-95			FDD			
28		-100.2	-98.5	-95.5	-93.7	-91	FDD			
30			-99	-96			FDD			
31	-99.0	-95.7	-93.5				FDD			
33			-100	-97	-95.2	-94	TDD			
34			-100	-97	-95.2		TDD			
35	-106.2	-102.2	-100	-97	-95.2	-94	TDD			
36	-106.2	-102.2	-100	-97	-95.2	-94	TDD			
37			-100	-97	-95.2	-94	TDD			
38			-100	-97	-95.2	-94	TDD			
39			-100	-97	-95.2	-94	TDD			
40			-100	-97	-95.2	-94	TDD			
41			-98	-95	-93.2	-92	TDD			
42			-99	-96	-94.2	-93	TDD			
43			-99	-96	-94.2	-93	TDD			
44		[-100.2]	[-98]	[-95]	[-93.2]	[-92]	TDD			

NOTE 1: The transmitter shall be set to P_{UMAX} as defined in subclause 6.2.5

NOTE 2: Reference measurement channel is A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1

NOTE 3: The signal power is specified per port

NOTE 4: For the UE which supports both Band 3 and Band 9 the reference sensitivity level is FFS.

NOTE 5: For the UE which supports both Band 11 and Band 21 the reference sensitivity level is FFS.

NOTE 6: 6 indicates that the requirement is modified by -0.5 dB when the carrier

frequency of the assigned E-UTRA channel bandwidth is within 865-894 MHz.

NOTE 7: For a UE that support both Band 18 and Band 26, the reference sensitivity level for Band 26 applies for the applicable channel bandwidths.

The reference receive sensitivity (REFSENS) requirement specified in Table 7.3.1-1 shall be met for an uplink transmission bandwidth less than or equal to that specified in Table 7.3.1-2.

NOTE: Table 7.3.1-2 is intended for conformance tests and does not necessarily reflect the operational conditions of the network, where the number of uplink and downlink allocated resource blocks will be practically constrained by other factors. Typical receiver sensitivity performance with HARQ retransmission enabled and using a residual BLER metric relevant for e.g. Speech Services is given in the Annex G (informative).

For the UE which supports inter-band carrier aggregation configuration in Table 7.3.1-1A and Table 7.3.1-1B with the uplink in one or two E-UTRA bands, the minimum requirement for reference sensitivity in Table 7.3.1-1 shall be increased by the amount given in $\Delta R_{IB,c}$ in Table 7.3.1-1A and Table 7.3.1-1B for the applicable E-UTRA bands.

Table 7.3.1-1A: ΔR_{IB,c} (two bands)

Inter-band CA Configuration	E-UTRA Band	ΔR _{IB,c} [dB]
CA_1A-3A	1 3	0
CA_1A-5A	1	0
	<u>5</u> 1	0
CA_1A-7A	7 1	0
CA_1A-8A	8	0
CA_1A-11A	<u> </u>	0
CA_1A-18A	1	0
	<u>18</u> 1	0
CA_1A-19A	19 1	0
CA_1A-20A	20	0 0
CA_1A-21A -	<u>1</u> 21	0
CA_1A-26A	1	0
	<u>26</u> 1	0
CA_1A-28A	<u>28</u> 1	0.2
CA_1A-41A ⁸	41	0
CA_1A-41C ⁸	<u>1</u> 41	0
CA_1A-42A	1	0
	42 1	0.5 0
CA_1A-42C	42 2	0.5 0.3
CA_2A-4A	4	0.3
CA_2A-4A-4A	<u>2</u> 4	0.3
CA_2A-5A	2	0
CA_2A-2A-5A	5 2	0 0
	<u>5</u> 2	0
CA_2A-12A	12	0
CA_2A-12B	<u>2</u> 12	0
CA_2A-13A	2 13	0
CA_2A-2A-13A	2	0
	<u>13</u> 2	0
CA_2A-17A	17	0.5
CA_2A-29A CA_2C-29A	<u>2</u> 2	0 0
CA_2A-30A	2 30	0.4 0.5
CA_3A-5A	3	0
	<u>5</u> 3	0
CA_3A-7A	7	0
CA_3A-7C	3 7	0 0
CA_3C-7A	<u>3</u> 7	0
CA_3A-8A	3	0

	8	0
CA_3A-19A	3	0
G/ (_G/ (10/ (19	0
CA_3A-20A	3	0
UA_3A-20A	20	0
CA 2A 2CA	3	0
CA_3A-26A	26	0
	3	0
CA_3A-27A	27	0
	3	0
CA_3A-28A	28	0
	3	0.2
CA_3A-42A	42	0.5
CA_3A-42C	3	0.2
_	42	0.5
CA_4A-5A	4	0
o	5	0
CA_4A-4A-5A	4	0
OA_ 1 A-1A-3A	5	0
CA 4A 7A	4	0.5
CA_4A-7A	7	0.5
04 44 44 = 1	4	0.5
CA_4A-4A-7A	7	0.5
	4	0
CA_4A-12A	12	0.5
	4	0.5
CA_4A-12B		
	12	0.5
CA_4A-4A-12A	4	0
_	12	0.5
CA_4A-13A	4	0
G/(_ i/(16/(13	0
CA_4A-4A-13A	4	0
UA_4A-4A-13A	13	0
CA 4A 47A	4	0
CA_4A-17A	17	0.5
	4	0
CA_4A-27A	27	0
CA_4A-29A	4	0
	4	0.4
CA_4A-30A	30	0.5
	5	
CA_5A-7A		0
	7	0
CA_5A-12A	5	0.5
· - -	12	0.3
CA_5A-13A	5	0
20, . 10, .	13	0
CA_5A-17A	5	0.5
UU. 11A	17	0.3
CA 5A 35A	5	0
CA_5A-25A	25	0
OA 54 004	5	0
CA_5A-30A	30	0
- · ·	7	0
CA_7A-8A	8	0.2
	7	0
CA_7A-12A	12	0
CA_7A-20A	7	0
	20	0
CA_7A-28A	7	0
	28	0
CA_8A-11A	8	0
5/1_0/1/1/A	11	0
CA 9A 20A	8	0
CA_8A-20A	20	0
CA_8A-40A	8	0
00		~

-	40	
	40	0
CA_11A-18A	11	0
O/(_11// 10//	18	0
CA_12A-25A	12	0
OA_12A-23A	25	0
CA_12A-30A	12	0
CA_12A-30A	30	0
CA 10A 20A9	18	0
CA_18A-28A ⁹	28	0
04 404 044	19	0
CA_19A-21A	21	0
04 404 404	19	0
CA_19A-42A	42	0.5
04 404 400	19	0
CA_19A-42C	42	0.5
CA_20A-32A	20	0
CA 23A-29A	23	0
04.054.4448	25	0
CA_25A-41A ⁸	41	0
04 054 4408	25	0
CA_25A-41C ⁸	41	0
04 004 444	26	0
CA_26A-41A	41	0
04 004 440	26	0
CA_26A-41C	41	0
CA_29A-30A	30	0
	39	0.24
CA_39A-41A —	41	0.24
	39	0.27
CA_39A-41A	41	0.27
04 004 446	39	0.24
CA_39A-41C —	41	0.24
04 000 444	39	0.24
CA_39C-41A —	41	0.24
0.4.4.4.0.4	41	0.44
CA_41A-42A	42	0.54
	·	

- NOTE 1: The above additional tolerances are only applicable for the E-UTRA operating bands that belong to the supported inter-band carrier aggregation configurations
- NOTE 2: The above additional tolerances also apply in intra-band and non-aggregated operation for the supported E-UTRA operating bands that belong to the supported inter-band carrier aggregation configurations
- NOTE 3: In case the UE supports more than one of the above 2DL inter-band carrier aggregation configurations and a E-UTRA operating band belongs to more than one 2DL inter-band carrier aggregation configurations then:
 - When the E-UTRA operating band frequency range is ≤ 1GHz, the applicable additional tolerance shall be the average of the 2DL tolerances in Table 7.3.1-1A, truncated to one decimal place that would apply for that operating band among the supported 2DL CA configurations. In case there is a harmonic relation between low band UL and high band DL, then the maximum tolerance among the different supported 2DL carrier aggregation configurations involving such band shall be applied
 - When the E-UTRA operating band frequency range is >1GHz, the applicable additional tolerance shall be the maximum 2DL tolerance in Table 7.3.1-1A that would apply for that operating band among the supported 2DL CA configurations
- NOTE 4: Only applicable for UE supporting inter-band carrier aggregation with uplink in one E-UTRA band and without simultaneous Rx/Tx.
- NOTE 5: Unless otherwise specified, in case the UE supports more than one of the above 3DL inter-band carrier aggregation configurations and a E-UTRA operating band belongs to more than one 3DL inter-band carrier aggregation configurations then:
 - When the E-UTRA operating band frequency range is ≤ 1GHz and the tolerances are the same, the value applies to the band. If the tolerances

- are different, the applicable additional 3DL tolerance is FFS. In case there is a harmonic relation between low band UL and high band DL, then the maximum tolerance among the different supported 3DL carrier aggregation configurations involving such band shall be applied
- When the E-UTRA operating band frequency range is >1GHz, the applicable additional 3DL tolerance shall be the maximum tolerance above that applies for that operating band among the supported 3DL CA configurations
- NOTE 6: The above additional tolerances applicable for the E-UTRA operating bands that belong to the supported highest order inter-band carrier aggregation configuration, also applies to the same E-UTRA operating bands that belong to a supported lower order CA configuration.
- NOTE 7: Applicable for UE supporting inter-band carrier aggregation with two uplinks and without simultaneous Rx/Tx.
- NOTE 8: Only applicable for UE supporting inter-band carrier aggregation with the uplink active in the FDD band.
- NOTE 9: For Band 28, the requirements only apply for the restricted frequency range specified for this CA configuration (Table 5.5A-2).

Table 7.3.1-1B: ΔR_{IB,c} (three bands)

CA_1A-3A-5A 1 0 CA_1A-3A-8A 3 0 CA_1A-3A-8A 8 0 CA_1A-3A-19A 3 0 CA_1A-3A-19A 3 0 CA_1A-3A-20A 3 0 CA_1A-3A-26A 3 0 CA_1A-3A-26A 3 0 CA_1A-3A-26A 3 0 CA_1A-5A-7A 5 0 CA_1A-5A-7A 5 0 CA_1A-5A-7A 5 0 CA_1A-1A-1A-7A-20A 7 0 CA_1A-1BA-1 1 0 CA_1A-1BA-2BA 18 0 CA_1A-1BA-1BA-1BB 0 0 CA_1A-1BA-1BB-1BB 0 0 CA_2A-4A-5A-1AB-1BB 0 0	Inter-band CA Configuration	E-UTRA Band	ΔR _{IB,c} [dB]
5 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 20 0 1 0 20 0 1 0 20 0 1 0 26 0 1 0 26 0 1 0 26 0 1 0 26 0 26 0 1 0 26 0 1 0 26 0 1 0 26 0 2 0 20 0 0 0 0 0 0 0 0 <		1	0
5 0 CA_1A-3A-8A 3 0 CA_1A-3A-19A 3 0 CA_1A-3A-19A 3 0 19 0 0 CA_1A-3A-20A 3 0 20 0 0 CA_1A-3A-26A 3 0 CA_1A-5A-7A 5 0 CA_1A-5A-7A 5 0 CA_1A-5A-7A 7 0 CA_1A-1A-1A-1 0 0 CA_1A-1A-1A-1 0 0 CA_1A-1BA-1BA-1BB-2BA-2BB 0 0 CA_1A-1BA-1BA-1BB-1BB-2BB-1BB-1BB-1BB-1BB-1BB-1BB-1BB	CA_1A-3A-5A	3	0
CA_1A-3A-8A 3 0 CA_1A-3A-19A 1 0 19 0 CA_1A-3A-2OA 3 0 CA_1A-3A-2OA 3 0 CA_1A-3A-26A 3 0 CA_1A-3A-26A 3 0 CA_1A-3A-26A 3 0 CA_1A-5A-7A 5 0 CA_1A-5A-7A 5 0 CA_1A-1A-5A-7A 7 0 CA_1A-1A-1A-1 0 0 CA_1A-1A-1A-2OA 7 0 CA_1A-1BA-1 1 0 CA_1A-1BA-18 0 0 CA_1A-1BA-19 0 0 CA_1A-19A-19 0 0 CA_1A-19A-19 0 0 CA_2A-4A-5A 4 0.3 CA_2A-4A-12A 4 0.3 CA_2A-4A-12A 4 0.3 CA_2A-4A-12A 4 0.3 CA_2A-4A-12A 2 0.3 CA_2A-5A-12A 5		5	0
8		1	0
8	CA_1A-3A-8A	3	0
CA_1A-3A-19A 3 0 CA_1A-3A-20A 3 0 CA_1A-3A-26A 3 0 CA_1A-3A-26A 3 0 CA_1A-3A-26A 3 0 CA_1A-3A-26A 3 0 CA_1A-5A-7A 5 0 CA_1A-5A-7A 5 0 CA_1A-5A-7A 7 0 CA_1A-7A-20A 7 0 CA_1A-7A-20A 7 0 CA_1A-1BA-2BA 18 0 2BA 28 0 CA_1A-19A-21A 1 0 21A 21 0 2A-4A-5A 4 0.3 2A-2A-4A-5A 4 0.3 2A-2A-4A-5A 4 0.3 2A-2A-4A-1A-1A 4 0.3 2A-2A-4A-1A-1A 4 0.3 2A-2A-4A-1A-1A 4 0.3 2A-2A-4A-1A-1A 4 0.3 CA-2A-4A-1A-1A 4 0.3 CA-2A-5A-1A-1A <td></td> <td>8</td> <td>0</td>		8	0
19		1	0
19	CA_1A-3A-19A	3	0
CA_1A-3A-20A 1 0 20 0 1 0 CA_1A-3A-26A 3 0 CA_1A-3A-26A 3 0 CA_1A-5A-7A 5 0 CA_1A-5A-7A 5 0 CA_1A-7A-20A 7 0 CA_1A-7A-20A 7 0 CA_1A-1BA-2BA 18 0 2BA 28 0 CA_1A-19A-21A 1 0 21A 21 0 2A-4A-5A 4 0.3 2A-2A-4A-5A 4 0.3 2A-2A-4A-12A 4 0.3 2A-2A-4A-12A 4 0.3 2A-2A-4A-12A 4 0.3 2A-2A-4A-13A 4 0.3 2A-2A-4A-13A 4 0.3 2A-2A-4A-29A 4 0.3 2A-2A-5A-12A 2 0.3 2A-2A-5A-12A 5 0.5 3A-2A-5A-13A 5 0			0
CA_1A-3A-26A			0
CA_1A-3A-26A	CA 1A-3A-20A	3	0
CA_1A-3A-26A 1 0 26 0 0 CA_1A-5A-7A 1 0 CA_1A-7A-20A 7 0 CA_1A-7A-20A 7 0 CA_1A-18A-28A 1 0 28A 0 0 CA_1A-19A-18A-18B-18B-18B-18B-18B-18B-18B-18B-18B-18B			
CA_1A-3A-26A 3 0 266 0 1 0 CA_1A-5A-7A 5 0 7 0 CA_1A-7A-20A 7 0 CA_1A-18A-28A 1 0 28A 28 0 CA_1A-19A-21A 1 0 21A 21 0 22 0.3 0 22 0.3 0 23 0.3 0 24 0.3 0 25 0.3 0 26 0.3 0 29 0.3 0 20 0.3 0 21 0.3 0 22 0.3 0			
CA_1A-5A-7A	CA 1A-3A-26A		
CA_1A-5A-7A 1 0 CA_1A-5A-7A 5 0 T 0 0 CA_1A-7A-20A 7 0 CA_1A-18A-28A 1 0 CA_1A-19A-21A 1 0 21A 1 0 CA_2A-4A-5A 4 0.3 CA_2A-4A-12A 4 0.3 CA_2A-4A-12A 4 0.3 CA_2A-4A-13A 4 0.3 CA_2A-4A-29A 4 0.3 CA_2A-4A-29A 4 0.3 CA_2A-5A-12A 2 0 CA_2A-5A-12A 2 0 CA_2A-5A-13A 5 0 CA_2A-5A-30A 5 0 CA_2A-5A-30A 5 0 CA_2A-12A-30A 5 0 CA_2A-12A-30A 5 0 CA_2A-29A-30A 2 0.4 CA_3A-7A-20A 7 0 CA_3A-7A-20A 7 0 CA_4A-5A-12A	O/(_!/\ O/\ 20/\		
CA_1A-5A-7A 5 0 1 0 0 CA_1A-7A-20A 7 0 CA_1A-18A-28A 1 0 28A 28 0 CA_1A-19A-21A 1 0 21A 21 0 2A-4A-5A 4 0.3 2A-4A-12A 4 0.3 2A-4A-12A 4 0.3 2A-4A-13A 4 0.3 2A-4A-13A 4 0.3 2A-4A-29A 2 0.3 A-2A-4A-13A 4 0.3 CA_2A-4A-29A 2 0.3 CA_2A-4A-3A 4 0.3 CA_2A-4A-3A 4 0.3 CA_2A-5A-12A 2 0 CA_2A-5A-12A 5 0.5 12 0.3 0 CA_2A-5A-30A 5 0 CA_2A-5A-30A 5 0 CA_2A-12A-30A 3 0 30 0.5 0 <td></td> <td></td> <td></td>			
CA_1A-7A-20A 7 0 CA_1A-18A-28A 1 0 CA_1A-19A-21A 1 0 CA_1A-19A-21A 1 0 CA_2A-4A-5A 4 0.3 CA_2A-4A-5A 4 0.3 CA_2A-4A-12A 4 0.3 CA_2A-4A-12A 4 0.3 CA_2A-4A-13A 12 0.5 CA_2A-4A-29A 4 0.3 CA_2A-5A-12A 2 0.3 CA_2A-5A-12A 2 0.3 CA_2A-5A-12A 2 0 CA_2A-5A-13A 5 0.5 CA_2A-5A-30A 5 0 CA_2A-12A-30A 5 0 CA_2A-12A-30A 5 0 CA_2A-29A-30A 3 0 CA_2A-29A-30A 2 0.4 CA_3A-7A-20A 7 0 CA_3A-7A-20A 7 0 CA_4A-5A-12A 5 0.5 CA_4A-5A-12A 5 0.5	CΔ 1Δ-5Δ-7Δ		
CA_1A-7A-20A 1 0 CA_1A-18A-28A 1 0 CA_1A-18A-28A 1 0 CA_1A-19A-21A 1 0 CA_2A-4A-5A 4 0.3 CA_2A-4A-5A 4 0.3 CA_2A-4A-12A 4 0.3 CA_2A-4A-12A 4 0.3 CA_2A-4A-13A 12 0.5 CA_2A-4A-29A 2 0.3 CA_2A-4A-29A 4 0.3 CA_2A-5A-12A 5 0.5 CA_2A-5A-12A 5 0.5 CA_2A-5A-13A 5 0 CA_2A-5A-30A 5 0 CA_2A-5A-30A 5 0 CA_2A-12A-30A 30 0.5 CA_2A-29A-30A 2 0.4 CA_2A-29A-30A 3 0.5 CA_3A-7A-20A 7 0 CA_3A-7A-20A 7 0 CA_4A-5A-12A 5 0.5 CA_4A-5A-12A 5 0.5	UA_1A-3A-7A		
CA_1A-7A-20A 7 0 CA_1A-18A-28A 1 0 28A 28 0 CA_1A-19A-21A 19 0 21A 21 0 CA_2A-4A-5A 4 0.3 CA_2A-4A-12A 4 0.3 CA_2A-4A-12A 4 0.3 CA_2A-4A-13A 4 0.3 CA_2A-4A-29A 2 0.3 CA_2A-4A-29A 2 0.3 CA_2A-5A-12A 5 0.5 CA_2A-5A-12A 5 0.5 CA_2A-5A-30A 5 0 CA_2A-5A-30A 5 0 CA_2A-12A-30A 5 0 CA_2A-29A-30A 5 0 CA_2A-29A-30A 30 0.5 CA_2A-29A-30A 30 0.5 CA_2A-29A-30A 30 0.5 CA_3A-7A-20A 7 0 CA_3A-7A-20A 7 0 CA_4A-5A-12A 5 0.5 CA_4			
CA_1A-18A- 28A CA_1A-19A- 21A CA_2A-4A-5A CA_2A-4A-3A CA_2A-5A-12A- CA_2A-29A-30A CA_2A-2A-2A CA_2A-2A-2A CA_2A-2A-2A CA_2A-2A-3A CA_2A-3A-3A CA_3A-3A-3A-3A CA_3A-3A-3A CA_3A-3A-3A CA_3A-3A-3A CA_3A-3A-3A CA_3A-3A-3A CA_3A-3A-3A C	CA 1A 7A 20A		
CA_1A-18A-28A 18 0 28A 28 0 CA_1A-19A-21A 19 0 21A 21 0 2A-4A-5A 4 0.3 5 0 0 CA_2A-4A-12A 4 0.3 CA_2A-4A-12A 4 0.3 CA_2A-4A-13A 4 0.3 CA_2A-4A-29A 2 0.3 CA_2A-4A-29A 2 0.3 CA_2A-5A-12A 2 0 CA_2A-5A-12A 5 0.5 12 0.3 0 CA_2A-5A-12A 5 0 13 0 0 CA_2A-5A-30A 5 0 CA_2A-5A-30A 5 0 CA_2A-12A-30A 5 0 CA_2A-12A-30A 5 0 CA_2A-12A-30A 30 0.5 CA_2A-29A-30A 30 0.5 CA_2A-29A-30A 30 0.5 CA_3A-7A-20A 7	CA_1A-7A-20A		
CA_1A-18A-28A 18 0 CA_1A-19A-21A 1 0 CA_2A-4A-5A 4 0.3 CA_2A-4A-5A 4 0.3 CA_2A-4A-12A 4 0.3 CA_2A-4A-12A 4 0.3 CA_2A-4A-13A 4 0.3 CA_2A-4A-29A 2 0.3 CA_2A-4A-29A 4 0.3 CA_2A-5A-12A 5 0.5 CA_2A-5A-13A 5 0 CA_2A-5A-30A 5 0 CA_2A-5A-30A 5 0 CA_2A-12A-30A 5 0 CA_2A-12A-30A 5 0 CA_2A-29A-2 2 0.4 30A 30 0.5 CA_2A-29A-30A 2 0 CA_2A-29A-2 2 0.4 30A 30 0.5 CA_3A-7A-20A 7 0 CA_3A-7A-20A 7 0 CA_4A-5A-12A 5 0.5 CA_4A-5A-1			
28A 18 0 CA_1A-19A-21A 1 0 21A 21 0 21A 21 0 2A-4A-5A 4 0.3 5 0 0 CA_2A-4A-12A 4 0.3 CA_2A-4A-12A 4 0.3 CA_2A-4A-13A 4 0.3 CA_2A-4A-29A 2 0.3 CA_2A-4A-29A 4 0.3 CA_2A-5A-12A 5 0.5 CA_2A-5A-12A 2 0 CA_2A-5A-12A 5 0 CA_2A-5A-30A 5 0 CA_2A-5A-30A 5 0 CA_2A-12A-30A 30 0.5 CA_2A-12A-30A 30 0.5 CA_2A-29A-2-2A-2-2A-2-2A-2-2A-2-2A-2-2A-2	CA 1A-18A-	· · · · · · · · · · · · · · · · · · ·	
CA_1A-19A-21A 1 0 21A 21 0 2 0.3 CA_2A-4A-5A 4 0.3 5 0 2 0.3 CA_2A-4A-12A 4 0.3 12 0.5 2 0.3 CA_2A-4A-13A 4 0.3 CA_2A-4A-29A 2 0.3 CA_2A-4A-29A 4 0.3 CA_2A-5A-12A 5 0.5 12 0.3 0.5 CA_2A-5A-12A 5 0.5 12 0.3 0.5 CA_2A-5A-13A 5 0 CA_2A-5A-30A 5 0 CA_2A-5A-30A 5 0 CA_2A-12A-30A 30 0.5 CA_2A-12A-30A 30 0.5 CA_2A-29A-30A 30 0.5 CA_2A-29A-30A 30 0.5 CA_3A-7A-20A 7 0 CA_3A-7A-20A 7 0			
CA_1A-19A-21A 19 0 21A 21 0 CA_2A-4A-5A 4 0.3 5 0 0 2 0.3 0 CA_2A-4A-12A 4 0.3 12 0.5 0.3 CA_2A-4A-13A 4 0.3 13 0 0 CA_2A-4A-29A 2 0.3 CA_2A-5A-12A 5 0.5 12 0.3 0.5 CA_2A-5A-12A 5 0.5 12 0.3 0.5 CA_2A-5A-30A 5 0 CA_2A-5A-30A 5 0 CA_2A-5A-30A 5 0 CA_2A-12A-30A 2 0.4 CA_30A 30 0.5 CA_30A 30 0.5 CA_2A-12A-30A 3 0 CA_3A-7A-20A 7 0 CA_3A-7A-20A 7 0 CA_4A-5A-12A 5 0.5		_	
21A	CA 1A-19A-		
CA_2A-4A-5A			
CA_2A-4A-5A 4 0.3 5 0 2 0.3 CA_2A-4A-12A 4 0.3 12 0.5 2 0.3 CA_2A-4A-13A 4 0.3 13 0 CA_2A-4A-29A 2 0.3 CA_2A-4A-29A 4 0.3 2 0 0 CA_2A-5A-12A 5 0.5 12 0.3 0.5 2 0 0 CA_2A-5A-13A 5 0 13 0 0 CA_2A-5A-30A 5 0 CA_2A-5A-30A 5 0 CA_2A-12A-30A 30 0.5 CA_2A-12A-30A 0 0 CA_2A-12A-30A 30 0.5 CA_2A-12A-30A 30 0.5 CA_2A-29A-30A 30 0.5 CA_3A-7A-20A 7 0 CA_3A-7A-20A 7 0	21/1		
5 0 CA_2A-4A-12A 4 0.3 12 0.5 0.3 CA_2A-4A-13A 4 0.3 CA_2A-4A-29A 2 0.3 CA_2A-5A-12A 5 0.5 CA_2A-5A-13A 5 0.5 CA_2A-5A-30A 5 0 CA_2A-12A-30A 5 0 CA_2A-29A-30A 5 0 CA_2A-29A-30A 2 0.4 CA_2A-12A-30A 0 0.5 CA_2A-12A-30A 0 0.5 CA_2A-12A-30A 0 0.5 CA_2A-12A-30A 0 0 CA_2A-12A-30A 0 0 CA_2A-12A-30A 0 0 CA_3A-7A-20A 0 0 CA_3A-7A-20A 0 0 CA_3A-7A-20A 0 0 CA_4A-5A-12A 0 0 CA_4A-5A-12A 0 0 CA_4A-5A-13A 0 0			
CA_2A-4A-12A 2 0.3 CA_2A-4A-12A 4 0.3 CA_2A-4A-13A 4 0.3 CA_2A-4A-29A 2 0.3 CA_2A-5A-12A 5 0.5 CA_2A-5A-12A 5 0.5 CA_2A-5A-13A 5 0 CA_2A-5A-30A 5 0 CA_2A-5A-30A 5 0 CA_2A-12A-30A 2 0.4 CA_2A-12A-30A 0 0.5 CA_2A-12A-30A 0 0.5 CA_2A-12A-30A 0 0.5 CA_3A-7A-20A 0 0 CA_3A-7A-20A 0 0 CA_3A-7A-20A 0 0 CA_4A-5A-12A 0 0 CA_4A-5A-12A 0 0 CA_4A-5A-13A 0 0	CA_2A-4A-5A		0.3
CA_2A-4A-12A 4 0.3 12 0.5 2 0.3 CA_2A-4A-13A 4 0.3 CA_2A-4A-29A 2 0.3 CA_2A-5A-12A 5 0.5 CA_2A-5A-12A 5 0.5 CA_2A-5A-13A 5 0 CA_2A-5A-30A 5 0 CA_2A-5A-30A 5 0 CA_2A-12A-30A 5 0 CA_2A-12A-30A 2 0.4 CA_2A-12A-30A 0.5 0 CA_2A-12A-30A 0.5 0 CA_3A-7A-20A 7 0 CA_3A-7A-20A 7 0 CA_3A-7A-20A 7 0 CA_4A-5A-12A 5 0.5 CA_4A-5A-12A 5 0.5 CA_4A-5A-13A 5 0			
12 0.5 2 0.3 CA_2A-4A-13A 4 0.3 CA_2A-4A-29A 2 0.3 CA_2A-5A-12A 5 0.5 CA_2A-5A-12A 5 0.5 CA_2A-5A-13A 5 0 CA_2A-5A-30A 5 0 CA_2A-12A-30A 5 0 CA_2A-12A-30A 5 0 CA_2A-29A-30A 2 0.4 CA_3A-7A-20A 7 0 CA_3A-7A-20A 7 0 CA_4A-5A-12A 5 0.5 CA_4A-5A-12A 5 0.5 CA_4A-5A-12A 5 0.5 CA_4A-5A-13A 5 0			
CA_2A-4A-13A 2 0.3 CA_2A-4A-29A 2 0.3 CA_2A-5A-12A 2 0 CA_2A-5A-13A 5 0.5 CA_2A-5A-30A 0 0 CA_2A-12A-30A 0 0 CA_2A-12A-30A 0 0 CA_2A-29A-30A 0 0 CA_2A-29A-30A 0 0 CA_2A-29A-30A 0 0 CA_3A-7A-20A 0 0 CA_3A-7A-20A 7 0 CA_4A-5A-12A 5 0.5 CA_4A-5A-12A 5 0.5 CA_4A-5A-13A 5 0	CA_2A-4A-12A	4	0.3
CA_2A-4A-13A 4 0.3 CA_2A-4A-29A 2 0.3 CA_2A-5A-12A 2 0 CA_2A-5A-12A 5 0.5 CA_2A-5A-13A 5 0 CA_2A-5A-30A 5 0 CA_2A-5A-30A 5 0 CA_2A-12A-30A 2 0.4 CA_2A-12A-30A 2 0.4 CA_2A-29A-30A 2 0.4 CA_2A-29A-30A 2 0.4 CA_3A-7A-20A 7 0 CA_3A-7A-20A 7 0 CA_4A-5A-12A 5 0.5 CA_4A-5A-12A 5 0.5 CA_4A-5A-13A 5 0		12	0.5
CA_2A-4A-29A 13 0 CA_2A-4A-29A 2 0.3 CA_2A-5A-12A 5 0.5 CA_2A-5A-13A 5 0 CA_2A-5A-13A 0 0 CA_2A-5A-30A 0 0 CA_2A-12A-30A 0 0 CA_2A-12A-30A 0 0 CA_2A-12A-30A 0 0 CA_2A-29A-30A 0 0 CA_3A-7A-20A 0 0 CA_3A-7A-20A 0 0 CA_4A-5A-12A 0 0 CA_4A-5A-12A 0 0 CA_4A-5A-12A 0 0 CA_4A-5A-13A 0 0		2	0.3
CA_2A-4A-29A 13 0 CA_2A-4A-29A 2 0.3 CA_2A-5A-12A 5 0.5 CA_2A-5A-13A 5 0 CA_2A-5A-13A 0 0 CA_2A-5A-30A 0 0 CA_2A-12A-30A 0 0 CA_2A-12A-30A 0 0 CA_2A-12A-30A 0 0 CA_2A-29A-30A 0 0 CA_3A-7A-20A 0 0 CA_3A-7A-20A 0 0 CA_4A-5A-12A 0 0 CA_4A-5A-12A 0 0 CA_4A-5A-12A 0 0 CA_4A-5A-13A 0 0	CA_2A-4A-13A	4	0.3
CA_2A-4A-29A 4 0.3 CA_2A-5A-12A 5 0.5 CA_2A-5A-13A 2 0 CA_2A-5A-13A 5 0 CA_2A-5A-30A 5 0 CA_2A-5A-30A 5 0 CA_2A-12A-30A 2 0.4 CA_3A-12A-30A 2 0.4 CA_2A-12A-30A 0 0.5 CA_2A-29A-30A 30 0.5 CA_3A-7A-20A 3 0 CA_3A-7A-20A 7 0 CA_4A-5A-12A 5 0.5 CA_4A-5A-12A 5 0.5 CA_4A-5A-13A 5 0		13	0
CA_2A-4A-29A 4 0.3 CA_2A-5A-12A 5 0.5 CA_2A-5A-13A 2 0 CA_2A-5A-13A 5 0 CA_2A-5A-30A 5 0 CA_2A-5A-30A 5 0 CA_2A-12A-30A 2 0.4 CA_3A-12A-30A 2 0.4 CA_2A-12A-30A 0 0.5 CA_2A-29A-30A 30 0.5 CA_3A-7A-20A 3 0 CA_3A-7A-20A 7 0 CA_4A-5A-12A 5 0.5 CA_4A-5A-12A 5 0.5 CA_4A-5A-13A 5 0	04 04 44 004	2	0.3
CA_2A-5A-12A 2 0 CA_2A-5A-12A 5 0.5 CA_2A-5A-13A 5 0 CA_2A-5A-30A 5 0 CA_2A-5A-30A 5 0 CA_2A-12A-30A 2 0.4 CA_2A-12A-30A 2 0.4 CA_2A-12A-30A 12 0 CA_2A-29A-30A 2 0.4 30A 30 0.5 CA_3A-7A-20A 7 0 CA_3A-7A-20A 7 0 CA_4A-5A-12A 5 0.5 CA_4A-5A-13A 5 0	CA_2A-4A-29A	4	
CA_2A-5A-12A 5 0.5 CA_2A-5A-13A 2 0 CA_2A-5A-13A 5 0 CA_2A-5A-30A 5 0 CA_2A-5A-30A 5 0 CA_2A-12A-30A 2 0.4 CA_2A-12A-30A 2 0.4 CA_2A-29A-30A 30 0.5 CA_3A-7A-20A 3 0 CA_3A-7A-20A 7 0 CA_4A-5A-12A 5 0.5 CA_4A-5A-12A 5 0.5 CA_4A-5A-13A 5 0			
CA_2A-5A-13A 2 0 CA_2A-5A-13A 5 0 CA_2A-5A-30A 2 0.4 CA_2A-5A-30A 5 0 CA_2A-12A-30A 2 0.4 CA_2A-12A-30A 2 0.4 CA_2A-12A-30A 30 0.5 CA_2A-29A-30A 2 0.4 30A 30 0.5 CA_3A-7A-20A 7 0 CA_3A-7A-20A 7 0 CA_4A-5A-12A 5 0.5 CA_4A-5A-12A 5 0.5 CA_4A-5A-13A 5 0	CA 2A-5A-12A		
CA_2A-5A-13A 2 0 CA_2A-5A-13A 5 0 CA_2A-5A-30A 5 0 CA_2A-5A-30A 5 0 CA_2A-12A-30A 2 0.4 30A 30 0.5 CA_2A-12A-30A 30 0.5 CA_2A-29A-30A 2 0.4 30A 30 0.5 CA_3A-7A-20A 7 0 CA_3A-7A-20A 7 0 CA_4A-5A-12A 5 0.5 CA_4A-5A-12A 5 0.5 CA_4A-5A-13A 5 0			
CA_2A-5A-13A 5 0 CA_2A-5A-30A 2 0.4 CA_2A-5A-30A 5 0 CA_2A-12A-30A 2 0.4 CA_2A-12A-30A 0 0.5 CA_2A-29A-30A 2 0.4 30A 30 0.5 CA_2A-29A-30A 3 0 CA_3A-7A-20A 7 0 CA_3A-7A-20A 7 0 CA_4A-5A-12A 5 0.5 CA_4A-5A-12A 5 0.5 CA_4A-5A-13A 5 0			
13 0 CA_2A-5A-30A 5 0 CA_2A-12A-30A 2 0.4 CA_2A-12A-30A 2 0.4 30A 30 0.5 CA_2A-29A-30A 2 0.4 30A 30 0.5 CA_3A-7A-20A 3 0 CA_3A-7A-20A 7 0 CA_4A-5A-12A 5 0.5 CA_4A-5A-12A 5 0.5 CA_4A-5A-13A 5 0	CA 2A-5A-13A		
CA_2A-5A-30A 2 0.4 CA_2A-5A-30A 5 0 CA_2A-12A-30A 2 0.4 30A 30 0.5 CA_2A-29A-30A 2 0.4 30A 30 0.5 CA_3A-7A-20A 3 0 CA_3A-7A-20A 7 0 CA_4A-5A-12A 5 0.5 CA_4A-5A-12A 5 0.5 CA_4A-5A-13A 5 0			
CA_2A-5A-30A 5 0 30 0.5 CA_2A-12A-30A 2 0.4 30A 30 0.5 CA_2A-29A-30A 2 0.4 30A 30 0.5 CA_3A-7A-20A 7 0 CA_4A-5A-12A 5 0.5 CA_4A-5A-12A 5 0.5 CA_4A-5A-13A 5 0			
30 0.5 CA_2A-12A-30A 2 0.4 30A 30 0.5 CA_2A-29A-30A 2 0.4 30A 30 0.5 CA_3A-7A-20A 7 0 CA_4A-5A-12A 5 0.5 CA_4A-5A-13A 5 0	CA 2A-5A-30A		
CA_2A-12A-30A 2 0.4 30A 30 0.5 CA_2A-29A-30A 2 0.4 30A 30 0.5 CA_3A-7A-20A 3 0 CA_4A-5A-12A 5 0.5 CA_4A-5A-13A 0 0 CA_4A-5A-13A 0 0	J. (
CA_2A-12A-30A 12 0 30A 30 0.5 CA_2A-29A-30A 2 0.4 30A 30 0.5 CA_3A-7A-20A 7 0 CA_4A-5A-12A 5 0.5 CA_4A-5A-13A 0 0 CA_4A-5A-13A 0 0			
30A 30 0.5 CA_2A-29A- 30A 2 0.4 30A 30 0.5 CA_3A-7A-20A 7 0 20 0 CA_4A-5A-12A 5 0.5 CA_4A-5A-13A 5 0			
CA_2A-29A-30A 2 0.4 30A 30 0.5 CA_3A-7A-20A 7 0 CA_4A-5A-12A 4 0 CA_4A-5A-13A 5 0.5 CA_4A-5A-13A 5 0	30A		
30A 30 0.5 CA_3A-7A-20A 7 0 20 0 CA_4A-5A-12A 5 0.5 CA_4A-5A-13A 5 0	CA 2A 20A		
CA_3A-7A-20A 7 0 CA_3A-7A-20A 7 0 20 0 CA_4A-5A-12A 5 0.5 CA_4A-5A-13A 5 0			
CA_3A-7A-20A 7 0 20 0 CA_4A-5A-12A 5 0.5 CA_4A-5A-13A 5 0	JUA		
20 0 CA_4A-5A-12A 4 0 5 0.5 12 0.5 4 0 CA_4A-5A-13A 5 0	CA 2A 7A 22A		
CA_4A-5A-12A 4 0 5 0.5 12 0.5 4 0 CA_4A-5A-13A 5 0	UA_3A-7A-2UA		
CA_4A-5A-12A 5 0.5 12 0.5 4 0 CA_4A-5A-13A 5 0			
12 0.5 4 0 CA_4A-5A-13A 5 0	04 44 54 451		
CA_4A-5A-13A 4 0 5 0	CA_4A-5A-12A		
CA_4A-5A-13A 5 0			
13 0	CA_4A-5A-13A		
·		13	0

	4	0.4
CA_4A-5A-30A	5	0
	30	0.5
	4	0.5
CA_4A-7A-12A	7	0.5
	12	0.5
CA 4A 40A	4	0.4
CA_4A-12A- 30A	12	0.5
SUA	30	0.5
CA_4A-29A-	4	0.4
30A	30	0.5
	7	0
CA_7A-8A-20A	8	0.2
	20	[0.2]

- NOTE 1: The above additional tolerances are only applicable for the E-UTRA operating bands that belong to the supported inter-band carrier aggregation configurations.
- NOTE 2: The above additional tolerances also apply in intra-band and non-aggregated operation for the supported E-UTRA operating bands that belong to the supported inter-band carrier aggregation configurations.
- NOTE 3: Unless otherwise specified, in case the UE supports more than one of the above 3DL inter-band carrier aggregation configurations and a E-UTRA operating band belongs to more than one 3DL inter-band carrier aggregation configurations then:
 - When the E-UTRA operating band frequency range is ≤ 1GHz and the tolerances are the same, the value applies to the band. If the tolerances are different, the applicable additional 3DL tolerance is FFS. In case there is a harmonic relation between low band UL and high band DL, then the maximum tolerance among the different supported 3DL carrier aggregation configurations involving such band shall be applied
 - When the E-UTRA operating band frequency range is >1GHz, the applicable additional 3DL tolerance shall be the maximum tolerance above that applies for that operating band among the supported 3DL CA configurations
- NOTE 4: The above additional tolerances applicable for the E-UTRA operating bands that belong to the supported highest order inter-band carrier aggregation configuration, also applies to the same E-UTRA operating bands that belong to a supported lower order CA configuration.

NOTE: The above additional tolerances do not apply to supported UTRA operating bands with frequency range below 1 GHz that correspond to the E-UTRA operating bands that belong to the supported inter-band carrier aggregation configurations when such bands are belonging only to band combination(s) where one band is <1GHz and other bands are >1.7GHz and there is no harmonic relationship between the low band UL and high band DL. Otherwise the above additional tolerances also apply to supported UTRA operating bands that correspond to the E-UTRA operating bands that belong to the supported inter-band carrier aggregation configurations.

Table 7.3.1-2: Uplink configuration for reference sensitivity

E-UTRA Band / Channel bandwidth / NRB / Duplex mode							
E-UTRA Band	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	Duplex Mode
1			25	50	75	100	FDD
2	6	15	25	50	50 ¹	50 ¹	FDD
3	6	15	25	50	50 ¹	50 ¹	FDD
4	6	15	25	50	75	100	FDD
5	6	15	25	25 ¹			FDD
6			25	25 ¹			FDD
7			25	50	75	75¹	FDD
8	6	15	25	25 ¹			FDD
9			25	50	50 ¹	50 ¹	FDD
10			25	50	75	100	FDD
11			25	25 ¹			FDD
12	6	15	20 ¹	20 ¹			FDD
13			20 ¹	20 ¹			FDD
14			15 ¹	15 ¹			FDD
17			20 ¹	20 ¹			FDD
18			25	25 ¹	25 ¹		FDD
19			25	25 ¹	25 ¹		FDD
20			25	20 ¹	20 ³	20 ³	FDD
21			25	25 ¹	25 ¹		FDD
22			25	50	50 ¹	50 ¹	FDD
23	6	15	25	50	75	100	FDD
24			25	50			FDD
25	6	15	25	50	50 ¹	50 ¹	FDD
26	6	15	25	25 ¹	25 ¹		FDD
27	6	15	25	25 ¹			FDD
28		15	25	25 ¹	25 ¹	25 ¹	FDD
30			25	25 ¹			FDD
31	6	5 ⁴	5 ⁴				FDD
33			25	50	75	100	TDD
34			25	50	75		TDD
35	6	15	25	50	75	100	TDD
36	6	15	25	50	75	100	TDD
37			25	50	75	100	TDD
38			25	50	75	100	TDD
39			25	50	75	100	TDD
40			25	50	75	100	TDD
41			25	50	75	100	TDD
42			25	50	75	100	TDD
43			25	50	75	100	TDD
44		15	25	50	75	100	TDD
NOTE 1: 1	roforo to th						occible to

NOTE 1: ¹ refers to the UL resource blocks shall be located as close as possible to the downlink operating band but confined within the transmission bandwidth configuration for the channel bandwidth (Table 5.6-1).

NOTE 2: For the UE which supports both Band 11 and Band 21 the uplink configuration for reference sensitivity is FFS.

NOTE 3: ³ refers to Band 20; in the case of 15MHz channel bandwidth, the UL resource blocks shall be located at RB_{start} 11 and in the case of 20MHz channel bandwidth, the UL resource blocks shall be located at RB_{start} 16 NOTE 4: ⁴ refers to Band 31; in the case of 3 MHz channel bandwidth, the UL

resource blocks shall be located at RB_{start} 9 and in the case of 5 MHz channel bandwidth, the UL resource blocks shall be located at RB_{start} 10.

Unless given by Table 7.3.1-3, the minimum requirements specified in Tables 7.3.1-1 and 7.3.1-2 shall be verified with the network signalling value NS_01 (Table 6.2.4-1) configured.

Table 7.3.1-3: Network signalling value for reference sensitivity

E-UTRA Band	Network Signalling value
2	NS_03
4	NS_03
10	NS_03
12	NS_06
13	NS_06
14	NS_06
17	NS_06
19	NS_08
21	NS_09
23	NS_03
25	NS_03
30	NS_21

7.3.1A Minimum requirements (QPSK) for CA

For inter-band carrier aggregation with one component carrier per operating band and the uplink assigned to one E-UTRA band the throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.3.1-1 and Table 7.3.1-2. The reference sensitivity is defined to be met with all downlink component carriers active and one of the uplink carriers active. The uplink resource blocks shall be located as close as possible to the primary downlink operating band but confined within the transmission bandwidth configuration for the channel bandwidth (Table 5.6-1). The primary downlink operating band is the downlink band of the active uplink operating band. The UE shall meet the requirements specified in subclause 7.3.1 with the following exceptions.

For the UE that supports any of the E-UTRA CA configurations given in Table 7.3.1A-0a, exceptions to the aforementioned requirements are allowed when the uplink is active in a lower-frequency band and is within a specified frequency range such that transmitter harmonics fall within the downlink transmission bandwidth assigned in a higher band as noted in Table 7.3.1A-0a. For these exceptions, the UE shall meet the requirements specified in Table 7.3.1A-0a and Table 7.3.1A-0b.

Table 7.3.1A-0a: Reference sensitivity for carrier aggregation QPSK PREFSENS, CA (exceptions due to harmonic issue)

Channel bandwidth									
EUTRA CA Configuration	EUTRA band	1.4 MHz (dBm)	3 MHz (dBm)	5 MHz (dBm)	10 MHz (dBm)	15 MHz (dBm)	20 MHz (dBm)	Duplex mode	
	1			N/A	N/A	N/A	N/A		
CA_1A-3A-8A ⁴	3			N/A	N/A	N/A	N/A	FDD	
_	8		N/A	N/A	N/A			'55	
	1			N/A	N/A	N/A	N/A		
CA_1A-18A- 28A ¹²	18			N/A	N/A	N/A		FDD	
20/1	28			N/A	N/A				
CA 1A-28A ^{5,6}	1			-89.8	-89.4	-89	-88.7	FDD	
CA_1A-28A°,°	28			-98.3	-95.3	-93.5	-90.8	FUU	
CA 2A 9A4	3			N/A	N/A	N/A	N/A	- FDD	
CA_3A-8A ⁴	8		N/A	N/A	N/A			FDD	
CA 2A 42A910	3			-96.8	-93.8	-92	-90.8	FDD	
CA_3A-42A ^{9,10}	42			-71.7	-71.7	-71.7	-71.7	TDD	
0.4 0.4 40.4.11	3			-96.8	-93.8	-92	-90.8	FDD	
CA_3A-42A ¹¹	42			-97.1	-94.7	-93.2	-92.5	TDD	
00.40.40056	4	-89.2	-89.2	-90	-89.5	-89	-88.5	FDD	
CA_4A-12A ^{5,6}	12		-98.2	-96.5	-93.5				
CA_4A-17A ^{5,6}	4			-90	-89.5			FDD	
CA_4A-17A	17			-96.5	-93.5			FDD	
CA_2A-4A-	2			-97.7	-94.7	-92.9	-91.7		
12A ^{5,6}	4			-90	-89.5	-89	-88.5	FDD	
12/1	12			-96.5	-93.5				
CA_4A-5A-	4			-90	-89.5	-89	-88.5		
12A ^{5,6}	5			-97.5	-94.5			FDD	
IZA	12			-96.5	-93.5				
CA 4A-7A-	4			-90	-89.5	-89	-88.5		
12A ^{5,6}	7			-97.5	-94.5			FDD	
IZA	12			-96.5	-93.5				
CA_26A-41A ⁸	26			N/A	N/A	N/A		FDD	
	41			N/A	N/A	N/A	N/A	TDD	
CA 7A-8A ^{5,6}	7				-87.4	-87	-86.7	FDD	
UA_1A-0A ^{3,3}	8		-99	-96.8	-93.8			רטט	
CA 7A 9A	7				-87.4	-87	-86.7		
CA_7A-8A- 20A ^{5,6}	8		-99	-96.8	-93.8			FDD	
20A ^{0,0}	20			[-96.8]	[-93.8]				

- NOTE 1: The transmitter shall be set to P_{UMAX} as defined in subclause 6.2.5A.
- NOTE 2: Reference measurement channel is A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1
- NOTE 3: The signal power is specified per port
- NOTE 4: No requirements apply when there is at least one individual RE within the uplink transmission bandwidth of the low band for which the 2nd transmitter harmonic is within the downlink transmission bandwidth of the high band. The reference sensitivity is only verified when this is not the case (the requirements specified in clause 7.3.1 apply).
- NOTE 5: These requirements apply when there is at least one individual RE within the uplink transmission bandwidth of a low band for which the 3rd transmitter harmonic is within the downlink transmission bandwidth of a high band.
- NOTE 6: The requirements should be verified for UL EARFCN of a low band (superscript LB) such that $f_{UL}^{LB} = \left \lfloor f_{DL}^{HB} / 0.3 \right \rfloor 0.1 \text{ in MHz and } F_{UL_low}^{LB} + BW_{Channel}^{LB} / 2 \leq f_{UL}^{LB} \leq F_{UL_high}^{LB} BW_{Channel}^{LB} / 2 \text{ with } f_{DL}^{HB}$ the carrier frequency of a high band in MHz and $BW_{Channel}^{LB}$ the channel bandwidth configured in the low band.
- NOTE 7: Void.
- NOTE 8: No requirements apply when there is at least one individual RE within the uplink transmission bandwidth of the low band for which the 3rd transmitter harmonic is within the downlink transmission bandwidth of the high band. The reference sensitivity is only verified when this is not the case (the requirements specified in clause 7.3.1 apply).
- NOTE 9: These requirements apply when there is at least one individual RE within the uplink transmission bandwidth of the aggressor (lower) band for which the 2nd transmitter harmonic

is within the downlink transmission bandwidth of a victim (higher) band and a range ΔF_{HD} above and below the edge of this downlink transmission bandwidth. The value ΔF_{HD} depends on the E-UTRA configuration: $\Delta F_{HD} = 10$ MHz for CA_3A-42A.

NOTE 10: The requirements should be verified for UL EARFCN of the aggressor (lower) band (superscript LB) such that $f_{UL}^{LB} = \left \lfloor f_{DL}^{HB}/0.2 \right \rfloor \!\! 0.1 \text{in MHz}$ and

 $F_{UL_low}^{LB} + BW_{Channel}^{LB}$ / $2 \le f_{UL}^{LB} \le F_{UL_high}^{LB} - BW_{Channel}^{LB}$ / 2 with f_{DL}^{HB} carrier frequency in the victim (higher) band in MHz and $BW_{Channel}^{LB}$ the channel bandwidth configured in the lower band.

NOTE 11: The requirements are only applicable to channel bandwidths with a carrier frequency at $\pm \left(20 + BW_{Channel}^{HB} / 2\right)$ MHz offset from $2f_{UL}^{LB}$ in the victim (higher band) with

 $F_{UL_low}^{LB} + BW_{Channel}^{LB} / 2 \le f_{UL}^{LB} \le F_{UL_high}^{LB} - BW_{Channel}^{LB} / 2$, where $BW_{Channel}^{LB}$ and $BW_{Channel}^{HB}$ are the channel bandwidths configured in the aggressor (lower) and victim (higher) bands in MHz, respectively.

NOTE 12: For the UE that supports CA_1A-18A-28A, no requirements apply when there is at least one individual RE within the uplink transmission bandwidth of the low band for which the 3rd transmitter harmonic is within the downlink transmission bandwidth of the high band. The reference sensitivity should only be verified when this is not the case (the requirements specified in clause 7.3.1 apply).

Table 7.3.1A-0b: Uplink configuration for the low band (exceptions due to harmonic issue)

E-UTRA Band / Channel bandwidth of the high band / N _{RB} / Duplex mode									
EUTRA CA Configuration	UL band	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	Duplex mode	
CA_1A-28A	28			8	16	25	25	FDD	
CA_4A-12A	12	2	5	8	16	20	20	FDD	
CA_4A-17A	17			8	16			FDD	
CA_2A-4A- 12A	12			8	16	20	20	FDD	
CA_3A-42A	3			12	25	36	50	FDD	
CA_4A-5A- 12A	12			8	16	20	20	FDD	
CA_4A-7A- 12A	12			8	16	20	20	FDD	
CA_7A-8A	8				16	25	25	FDD	
CA_7A-8A- 20A	8				16	25	25	FDD	

NOTE 1: refers to the UL resource blocks, which shall be centred within the transmission bandwidth configuration for the channel bandwidth.

NOTE 2: the UL configuration applies regardless of the channel bandwidth of the low band unless the UL resource blocks exceed that specified in Table 7.3.1-2 for the uplink bandwidth in which case the allocation according to Table 7.3.1-2 applies.

For the UE that supports any of the E-UTRA CA configurations given in Table 7.3.1A-0bA, exceptions are allowed when the uplink is active within a specified frequency range as noted in Table 7.3.1A-0bA. For these exceptions, the UE shall meet the requirements specified in Table 7.3.1A-0bA and Table 7.3.1A-0bB.

Table 7.3.1A-0bA: Reference sensitivity for carrier aggregation QPSK PREFSENS, CA (exceptions for two bands due to close proximity of UL to DL channel)

Channel bandwidth										
EUTRA CA Configuration	EUTRA band	1.4 MHz (dBm)	3 MHz (dBm)	5 MHz (dBm)	10 MHz (dBm)	15 MHz (dBm)	20 MHz (dBm)	Duplex mode		
CA 1A 2A4	1			-100	-97	-95.2	-94	FDD		
CA_1A-3A ⁴	3			-94	-91.5	-90	-89	FDD		
CA 4A 2A5	1			-100	-97	-95.2	-94	- FDD		
CA_1A-3A ⁵	3			-97	-94	-92.2	-91	FDD		
CA_18A-28A ⁶	18			-100	-97	-95.2		FDD		
	28			-94	-92.5			רטט		

- NOTE 1: The transmitter shall be set to Pumax as defined in subclause 6.2.5A.
- NOTE 2: Reference measurement channel is A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1
- NOTE 3: The signal power is specified per port
- NOTE 4: These requirements apply when the uplink is active in Band 1 and the separation between the lower edge of the uplink channel in Band 1 and the upper edge of the downlink channel in Band 3 is < 60 MHz. For each channel bandwidth in Band 3, the requirement applies regardless of channel bandwidth in Band 1.
- NOTE 5: These requirements apply when the uplink is active in Band 1 and the separation between the lower edge of the uplink channel in Band 1 and the upper edge of the downlink channel in Band 3 is ≥ 60 MHz. For each channel bandwidth in Band 3, the requirement applies regardless of channel bandwidth in Band 1.
- NOTE 6: These requirements apply when the uplink is active in Band 18 and the downlink channels in Band 28 are confined within the restricted frequency range specified for this CA configuration (Table 5.5A-2). For each channel bandwidth in Band 28, the requirement applies regardless of channel bandwidth in Band 18.

Table 7.3.1A-0bB: Uplink configuration for the uplink band (exceptions for two bands due to close proximity of UL to DL channel)

E-UTI	E-UTRA Band / Channel bandwidth of the affected DL band / NRB / Duplex mode									
EUTRA CA Configuration	UL band	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	Duplex mode		
CA_1A-3A ^{1, 2}	1			25	25	25	25	FDD		
CA_1A-3A ^{1, 3}	1			25	45	45	45	FDD		
CA_18A-28A ⁴	18			18	18			FDD		

- NOTE 1: refers to the UL resource blocks shall be located as close as possible to the downlink channel in Band 3 but confined within the transmission bandwidth configuration for the channel bandwidth (Table 5.6-1) in the uplink channel in Band 1.
- NOTE 2: UL allocation when the separation between the lower edge of the uplink channel in Band 1 and the upper edge of the downlink channel in Band 3 is < 60 MHz
- NOTE 3: UL allocation when the separation between the lower edge of the uplink channel in Band 1 and the upper edge of the downlink channel in Band 3 is ≥ 60 MHz.
- NOTE 4: refers to the UL resource blocks shall be located as close as possible to the downlink channel in Band 28 but confined within the transmission bandwidth configuration for the channel bandwidth (Table 5.6-1).

For the UE that supports any of the E-UTRA CA configurations given in Table 7.3.1A-0bC, exceptions are allowed when the uplink is active within a specified frequency range as noted in Table 7.3.1A-0bC. For these exceptions, the UE shall meet the requirements specified in Table 7.3.1A-0bC and Table 7.3.1A-0bD.

Table 7.3.1A-0bC: Reference sensitivity for carrier aggregation QPSK PREFSENS, CA (exceptions for three bands due to close proximity of UL to DL channel)

			Channel b	andwidth				
EUTRA CA Configuration	EUTRA band	1.4 MHz (dBm)	3 MHz (dBm)	5 MHz (dBm)	10 MHz (dBm)	15 MHz (dBm)	20 MHz (dBm)	Duplex mode
	1			-100	-97	-95.2	-94	
CA_1A-3A-5A ⁴	3			-94	-91.5	-90	-89	FDD
	5			-98	-95			
	1			-100	-97	-95.2	-94	
CA_1A-3A-5A ⁵	3			-97	-94	-92.2	-91	FDD
	5			-98	-95			
	1			-100	-97	-95.2	-94	
CA_1A-3A-8A ⁴	3			-94	-91.5	-90	-89	FDD
	8		-99.2	-97	-94			
	1			-100	-97	-95.2	-94	
CA_1A-3A-8A ⁵	3			-97	-94	-92.2	-91	FDD
	8		-99.2	-97	-94			1
	1			-100	-97	-95.2	-94	
CA_1A-3A- 19A ⁴	3			-94	-91.5	-90	-89	FDD
19A	19			-100	-97	-95.2		
	1			-100	-97	-95.2	-94	
CA_1A-3A- 19A ⁵	3			-97	-94	-92.2	-91	FDD
19A°	19			-100	-97	-95.2		1
	1			-100	-97	-95.2	-94	
CA_1A-3A- 20A ⁴	3			-94	-91.5	-90	-89	FDD
20A*	20			-97	-94	-91.2	-90	1
	1			-100	-97	-95.2	-94	
CA_1A-3A- 20A ⁵	3			-97	-94	-92.2	-91	FDD
ZUA	20			-97	-94	-91.2	-90	
	1			-100	-97	-95.2	-94	
CA_1A-3A- 26A ⁴	3			-94	-91.5	-90	-89	FDD
ZOA	26			-97.5 ⁷	-94.5 ⁷			1
	1			-100	-97	-95.2	-94	
CA_1A-3A- 26A ⁵	3			-97	-94	-92.2	-91	FDD
ZOA°	26			-97.5 ⁷	-94.5 ⁷			1
	1			-100	-97	-95.2	-94	
CA_1A-18A- 28A ⁶	18			-100	-97	-95.2		FDD
ZoA°	28			-94	-92.5			1

NOTE 1: The transmitter shall be set to P_{UMAX} as defined in subclause 6.2.5A.

NOTE 2: Reference measurement channel is A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1

NOTE 3: The signal power is specified per port

NOTE 4: These requirements apply when the uplink is active in Band 1 and the separation between the lower edge of the uplink channel in Band 1 and the upper edge of the downlink channel in Band 3 is < 60 MHz. For each channel bandwidth in Band 3 and Band 5 or Band 8 or Band 19 or Band 20 or Band 26, the requirement applies regardless of channel bandwidth in Band 1.

NOTE 5: These requirements apply when the uplink is active in Band 1 and the separation between the lower edge of the uplink channel in Band 1 and the upper edge of the downlink channel in Band 3 is ≥ 60 MHz. For each channel bandwidth in Band 3 and Band 5 or Band 8 or Band 19 or Band 20 or Band 26, the requirement applies regardless of channel bandwidth in Band 1.

NOTE 6: These requirements apply when the uplink is active in Band 18 and the downlink channels in Band 28 are confined within the restricted frequency range specified for this CA configuration (Table 5.5A-2). For each channel bandwidth in Band 28, the requirement applies regardless of channel bandwidth in Band 18.

NOTE 7: ⁷ indicates that the requirement is modified by -0.5 dB when the carrier frequency of the assigned E-UTRA channel bandwidth is within 865-894 MHz.

Table 7.3.1A-0bD: Uplink configuration for the uplink band (exceptions for three bands due to close proximity of UL to DL channel)

E-UTI	E-UTRA Band / Channel bandwidth of the affected DL band / NRB / Duplex mode										
EUTRA CA Configuration	UL band	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	Duplex mode			
CA_1A-3A- 5A ^{1, 2}	1			25	25	25	25	FDD			
CA_1A-3A- 5A ^{1, 3}	1			25	45	45	45	FDD			
CA_1A-3A- 8A ^{1, 2}	1			25	25	25	25	FDD			
CA_1A-3A- 8A ^{1, 3}	1			25	45	45	45	FDD			
CA_1A-3A- 19A ^{1, 2}	1			25	25	25	25	FDD			
CA_1A-3A- 19A ^{1, 3}	1			25	45	45	45	FDD			
CA_1A-3A- 20A ^{1, 2}	1			25	25	25	25	FDD			
CA_1A-3A- 20A ^{1, 3}	1			25	45	45	45	FDD			
CA_1A-3A- 26A ^{1, 2}	1			25	25	25	25	FDD			
CA_1A-3A- 26A ^{1, 3}	1			25	45	45	45	FDD			
CA_1A-18A- 28A ⁴	18			18	18			FDD			

NOTE 1: refers to the UL resource blocks shall be located as close as possible to the downlink channel in Band 3 but confined within the transmission bandwidth configuration for the channel bandwidth (Table 5.6-1) in the uplink channel in Band 1.

For band combinations including operating bands without uplink band (as noted in Table 5.5-1), the requirements are specified in Table 7.3.1A-0d for any uplink band with uplink configuration specified in Table 7.3.1-2.

NOTE 2: UL allocation when the separation between the lower edge of the uplink channel in Band 1 and the upper edge of the downlink channel in Band 3 is < 60 MHz

NOTE 3: UL allocation when the separation between the lower edge of the uplink channel in Band 1 and the upper edge of the downlink channel in Band 3 is ≥ 60 MHz.

NOTE 4: refers to the UL resource blocks shall be located as close as possible to the downlink channel in Band 28 but confined within the transmission bandwidth configuration for the channel bandwidth (Table 5.6-1).

Table 7.3.1A-0d: Reference sensitivity QPSK PREFSENS (CA with a SDL band)

			Channel b	andwidth				
EUTRA CA Configuration	EUTRA band	1.4 MHz (dBm)	3 MHz (dBm)	5 MHz (dBm)	10 MHz (dBm)	15 MHz (dBm)	20 MHz (dBm)	Duplex mode
CA 2A 20A	2			-98	-95	-93.2	-92	EDD
CA_2A-29A	29		-98.7	-97	-94			FDD
CA 2C 20A	2			-98	-95	-93.2	-92	FDD
CA_2C-29A	29			-97	-94			ם שיר
CA 4A 20A	4			-100	-97	-95.2	-94	FDD
CA_4A-29A	29		-98.7	-97	-94			רטט
CA_20A-32A	20			-97	-94			FDD
CA_20A-32A	32			-100	-97	-95.2	-94	ם סו
CA 22A 20A	23			-100	-97	-95.2	-94	FDD
CA_23A-29A	29		-98.7	-97	-94			
CA 29A-30A	29			-97	-94			FDD
CA_29A-30A	30			-99	-96			רטט
04 04 44	2			-97.7	-94.7	-92.9	-91.7	
CA_2A-4A- 29A	4			-99.7	-96.7	-94.9	-93.7	FDD
23/4	29			-97	-94			
04 04 004	2			-97.6	-94.6	-92.8	-91.6	
CA_2A-29A-	29			-97	-94			FDD
30A	30			-98.5	-95.5			
0.4.4.00.4	4			-99.6	-96.6	-94.8	-93.6	
CA_4A-29A- 30A	29			-97	-94			FDD
JUA	30			-98.5	-95.5			

NOTE 1: The transmitter shall be set to Pumax as defined in subclause 6.2.5A.

NOTE 2: Reference measurement channel is A.3.2 with one sided dynamic OCNG Pattern OP.1

FDD/TDD as described in Annex A.5.1.1/A.5.2.1

NOTE 3: The signal power is specified per port

Table 7.3.1A-0e: Void

In all cases for single uplink inter-band CA, unless given by Table 7.3.1-3 for the band with the active uplink carrier, the applicable reference sensitivity requirements shall be verified with the network signalling value NS_01 (Table 6.2.4-1) configured.

For inter-band carrier aggregation with uplink assigned to two E-UTRA bands the throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.3.1-1 and Table 7.3.1-2. The reference sensitivity is defined to be met with all downlink component carriers active and both of the uplink carriers active.

For E-UTRA CA configurations with uplink and downlink assigned to two E-UTRA bands given in Table 7.3.1A-0f the reference sensitivity is defined only for the specific uplink and downlink test points which are specified in Table 7.3.1A-0f. For these test points the reference sensitivity requirement specified in Table 7.3.1-1 is relaxed by the amount of parameter MSD given in Table 7.3.1A-0f.

The allowed exceptions defined in Table 7.3.1A-0a and Table 7.3.1A-0b for inter-band carrier aggregation with a single active uplink are also applicable for dual uplink operation.

Table 7.3.1A-0f: 2 UL and 2 DL interband reference sensitivity QPSK P_{REFSENS} and uplink/downlink configurations

E-UTRA Band / Channel bandwidth / N _{RB} / Duplex mode									
EUTRA CA Configuration	EUTRA band	UL F _c (MHz)	UL/DL BW (MHz)	UL C _{LRB}	DL F _c (MHz)	MSD (dB)	Duplex mode		

CA 1A 3A	1	1950	5	25	2140	23	FDD
CA_1A-3A	3	1760	5	25	1855	N/A	FDD
CA_1A-8A	1	1965	5	25	2155	6	FDD
CA_TA-6A	8	887.5	5	25	932.5	N/A	FDD
CA 2A 4A	2	1860	20	50 ²	1940	5	FDD
CA_2A-4A	4	1752.5	5	25	2152.5	N/A	FDD
CA 2A 4A	2	1868.3	5	25	1948.3	N/A	FDD
CA_2A-4A	4	1735	5	25	2135	5	FDD
CA_3A-5A	3	1771	10	50	1866	4	FDD
CA_3A-5A	5	838	5	25	883	N/A	FDD
CA_3A-5A	3	1721	10	50	1816	N/A	FDD
CA_SA-SA	5	838	5	25	883	24	FDD
CA 2A 7A	3	1730	5	25	1825	N/A	FDD
CA_3A-7A	7	2535	10	50	2655	13	FDD
CA_3A-8A	3	1755	10	50	1850	N/A	FDD
CA_SA-6A	8	900	5	25	945	8	FDD
CA 3A 8A	3	1747.5	10	50	1842.5	6.4	FDD
CA_3A-8A	8	897.5	5	25	942.5	N/A	FDD
CA_3A-19A	3	1771	5	25	1866	4	FDD
CA_3A-19A	19	838	5	25	883	N/A	רטט
CA 3A 10A	3	1721	5	25	1816	N/A	FDD
CA_3A-19A	19	838	5	25	883	27	FDD
CA 2A 20A	3	1775	5	25	1870	4	FDD
CA-3A-20A	20	840	5	25	799	N/A	FDD
CA-3A-20A	3	1735	5	25	1830	N/A	FDD
CA-3A-20A	20	847	5	25	806	9	FDD
CA 2A 26A	3	1771	5	25	1866	4	FDD
CA_3A-26A	26	838	5	25	883	N/A	רטט
CA 3A 36A	3	1721	5	25	1816	N/A	FDD
CA_3A-26A	26	838	5	25	883	26	FDD
CA 4A 7A	4	1730	5	25	2130	N/A	FDD
CA_4A-7A	7	2535	5	25	2655	15	רטט
CA 5A 7A	5	834	5	25	879	12	FDD
CA_5A-7A	7	2547	10	50	2667	N/A	רטט
CA 7A 20A	7	2512	10	50	2632	N/A	FDD
CA_7A-20A	20	851	5	25	810	12	רטט

NOTE 1: Both of the transmitters shall be set min(+20 dBm, P_{CMAX_L,c}) as defined in subclause 6.2.5A

NOTE 2: RB_{START} = 0

For intra-band contiguous carrier aggregation the throughput of each component carrier shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.3.1-1 and Table 7.3.1A-1. The requirement is verified using an uplink CA configuration with the largest number of carriers supported by the UE. Table 7.3.1A-1 specifies the maximum number of allocated uplink resource blocks for which the intra-band contiguous carrier aggregation reference sensitivity requirement shall be met. The PCC and SCC allocations as defined in Table 7.3.1A-1 form a contiguous allocation where TX–RX frequency separations of the component carriers are as defined in Table 5.7.4-1. In case downlink CA configuration has additional SCC(s) compared to uplink CA configuration those are configured furthers away from uplink band. For UE(s) supporting one uplink carrier, the uplink configuration of the PCC shall be in accordance with Table 7.3.1-2 and the downlink PCC carrier center frequency shall be configured closer to uplink operating band than any of the downlink SCC center frequency. Unless given by Table 7.3.1-3, the reference sensitivity requirements shall be verified with the network signalling value NS_01 (Table 6.2.4-1) configured.

Table 7.3.1A-1: Intra-band contiguous CA uplink configuration for reference sensitivity for Bandwidth Class C

		(A confi	guration	/ CC co	ombinat	ion / N _R	_{B_agg} / D	uplex m	ode			
Uplink CA	100RB	+25RB	100RB	+50RB	75RB-	⊦75RB	75RB-	+50RB	100RB	+75RB	100RB-	+100RB	Duplex
configuration	PCC	SCC	PCC	SCC	PCC	SCC	PCC	SCC	PCC	SCC	PCC	SCC	Mode
CA_1C	N/A	N/A	N/A	N/A	75	54	N/A	N/A	N/A	N/A	100	30	FDD
CA_3C	50	0	50	0	N/A	N/A	N/A	N/A	50	0	50	0	FDD
CA_7C	N/A	N/A	75	0	75	0	N/A	N/A	75	0	75	0	FDD
CA_38C	N/A	N/A	N/A	N/A	75	75	N/A	N/A	N/A	N/A	100	100	TDD
CA_39C	100	25	100	50	N/A	N/A	N/A	N/A	100	75	N/A	N/A	TDD
CA_40C	N/A	N/A	100	50	75	75	N/A	N/A	100	75	100	100	TDD
CA_41C	100	25	100	50	75	75	75	50	100	75	100	100	TDD
CA_42C	100	25	100	50	N/A	N/A	N/A	N/A	100	75	100	100	TDD

- NOTE 1: The carrier centre frequency of SCC in the UL operating band is configured closer to the DL operating band.
- NOTE 2: The transmitted power over both PCC and SCC shall be set to Pumax as defined in subclause 6.2.5A.
- NOTE 3: The UL resource blocks in both PCC and SCC shall be confined within the transmission bandwidth configuration for the channel bandwidth (Table 5.6-1).
- NOTE 4: The UL resource blocks in PCC shall be located as close as possible to the downlink operating band, while the UL resource blocks in SCC shall be located as far as possible from the downlink operating band.
- NOTE 5: In case a CA configuration consists of CC channel bandwidths which are unequal in bandwidth the PCC channel bandwidth shall be the larger one for reference sensitivity test.
- NOTE 6: Void.

For intra-band non-contiguous carrier aggregation with one uplink carrier and two downlink sub-blocks, the throughput of each downlink component carrier shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) and parameters specified in Table 7.3.1-1 and Table 7.3.1A-3 with the power level in Table 7.3.1-1 increased by ΔR_{IBNC} given in Table 7.3.1A-3 for the SCC(s). The requirements apply with all downlink carriers active. Unless given by Table 7.3.1-3, the reference sensitivity requirements shall be verified with the network signalling value NS_01 (Table 6.2.4-1) configured.

Table 7.3.1A-3: Intra-band non-contiguous CA with one uplink configuration for reference sensitivity

CA configuration	Aggregated channel bandwidth (PCC+SCC)	W _{gap} / [MHz]	UL PCC allocation	ΔR _{IBNC} (dB)	Duplex mode
	25RB+25RB	$30.0 < W_{gap} \le 50.0$	12 ¹	5.3	
	25KD+25KD	$0.0 < W_{gap} \le 30.0$	25 ¹	0	
	25RB+50RB	$25.0 < W_{gap} \le 45.0$	12 ¹	4.4	
	20112100112	$0.0 < W_{gap} \le 25.0$	25 ¹	0	
	25RB+75RB	$20.0 < W_{gap} \le 40.0$	12 ¹	4.2	
	20112110112	$0.0 < W_{gap} \le 20.0$	25 ¹	0	
	25RB+100RB	$15.0 < W_{gap} \le 35.0$	12 ¹	3.8	
	201131100113	$0.0 < W_{gap} \le 15.0$	25 ¹	0	
	50RB+25RB	$15.0 < W_{gap} \le 45.0$	12 ¹	5.9	
	OUNDIZOND	$0.0 < W_{gap} \le 15.0$	32 ¹	0	
	50RB+50RB	$10.0 < W_{gap} \le 40.0$	12 ¹	4.6	
	OUNDIOUND	$0.0 < W_{gap} \le 10.0$	321	0	
CA_2A-2A	50RB+75RB	5.0 < W _{gap} ≤ 35.0	12 ¹	4.1	FDD
		$0.0 < W_{gap} \le 5.0$	32 ¹	0	
	50RB+100RB	$0.0 < W_{gap} \le 30.0$	12 ¹	4.0	
	75RB+25RB	$10.0 < W_{gap} \le 40.0$	12 ¹²	6.7	
	73110+23110	$0.0 < W_{gap} \le 10.0$	36 ¹	0	
	75DD : 50DD	$5.0 < W_{gap} \le 35.0$	12 ¹²	5.4	
	75RB+50RB	$0.0 < W_{gap} \le 5.0$	36¹	0	
	75RB+75RB	$0.0 < W_{gap} \le 30.0$	12 ¹²	4.6	
	75RB+100RB	$0.0 < W_{gap} \le 25.0$	12 ¹²	4.2	
	100RB+25RB	$0.0 < W_{gap} \le 35.0$	16 ¹³	7.2	
	100RB+50RB	$0.0 < W_{gap} \le 30.0$	16 ¹³	5.8	
	100RB+75RB	$0.0 < W_{gap} \le 25.0$	16 ¹³	5.0	
	100RB+100RB	$0.0 < W_{gap} \le 20.0$	16 ¹³	4.6	
		$45.0 < W_{gap} \le 65.0$	12 ¹	4.7	
	25RB+25RB	$0.0 < W_{gap} \le 45.0$	25 ¹	0	
		40.0 < W _{gap} ≤ 60.0	12 ¹	3.8	
	25RB+50RB	$0.0 < W_{gap} \le 40.0$	25 ¹	0	
		35.0 < W _{gap} ≤ 55.0	12 ¹	3.6	
	25RB+75RB	$0.0 < W_{gap} \le 35.0$	25 ¹	0	
		$30.0 < W_{gap} \le 50.0$	12 ¹	3.4	
	25RB+100RB	$0.0 < W_{\rm gap} \le 30.0$	25 ¹	0	
		$30.0 < W_{\text{gap}} \le 50.0$	12 ⁹	5.1	
	50RB+25RB		32 ¹	0	
CA 2A 2A		$0.0 < W_{gap} \le 30.0$	+		FDD
CA_3A-3A	50RB+50RB	$25.0 < W_{gap} \le 55.0$	12 ⁹	4.3	FDD
		$0.0 < W_{gap} \le 25.0$	32 ¹	0	
	50RB+75RB	$20.0 < W_{gap} \le 50.0$	129	3.8	
		0.0 < W _{gap} ≤ 20.0	32 ¹	0	
	50RB+100RB	$15.0 < W_{gap} \le 45.0$	129	3.4	
		0.0 < W _{gap} ≤ 15.0	32 ¹	0	
	75RB+25RB	$25.0 < W_{gap} \le 55.0$	12 ¹⁰	6.0	
	_	$0.0 < W_{gap} \le 25.0$	321	0	
	75RB+50RB	$20.0 < W_{gap} \le 50.0$	12 ¹⁰	4.7	
		$0.0 < W_{gap} \le 20.0$	32 ¹	0	
	75RB+75RB	$15.0 < W_{gap} \le 45.0$	12 ¹⁰	4.2	

		$0.0 < W_{gap} \le 15.0$	32 ¹	0	
		$10.0 < W_{gap} \le 40.0$	12 ¹⁰	3.8	
	75RB+100RB	0.0 < W _{gap} ≤ 10.0	32 ¹	0	
		15.0 < W _{gap} ≤ 50.0	16 ¹¹	6.5	
	100RB+25RB		+		
		0.0 < W _{gap} ≤ 15.0	321	0	
	100RB+50RB	$10.0 < W_{gap} \le 45.0$	16 ¹¹	5.1	
	100112100112	$0.0 < W_{gap} \le 10.0$	32 ¹	0	
	400DD . 75DD	$5.0 < W_{gap} \le 40.0$	16 ¹¹	4.5	
	100RB+75RB	$0.0 < W_{gap} \le 5.0$	32 ¹	0	
	100RB+100RB	$0.0 < W_{gap} \le 35.0$	16 ¹¹	4.1	
CA_4A-4A	NOTE 6	NOTE 7	NOTE 8	0.0	FDD
<u> </u>	50RB+50RB	$25.0 < W_{gap} \le 50.0$	32 ¹	0.0	
		0.0 < W _{gap} ≤ 25.0	50 ¹	0.0	
	75RB+25RB	$20.0 < W_{gap} \le 50.0$	32 ¹	0.0	
		$0.0 < W_{gap} \le 20.0$	50 ¹	0.0	
	75RB+50RB	$20.0 < W_{gap} \le 45.0$	32 ¹	0.0	
04 -4 -4		$0.0 < W_{gap} \le 20.0$	50 ¹	0.0	500
CA_7A-7A	75RB+75RB	$15.0 < W_{gap} \le 40.0$	32 ¹	0.0	FDD
		0.0 < W _{gap} ≤ 15.0	50 ¹	0.0	
	100RB+75RB	15.0 < W _{gap} ≤ 35.0	36 ¹	0.0	
	100112110112	$0.0 < W_{gap} \le 15.0$	50 ¹	0.0	
	100RB+100RB	15.0 < W _{gap} ≤ 30.0	32 ¹	0.0	
	1001121100112	$0.0 < W_{gap} \le 15.0$	45 ¹	0.0	
CA 23A-23A	NOTE 6	NOTE 7	NOTE 8	0.0	FDD
		$30.0 < W_{gap} \le 55.0$	10 ¹	5.0	
	25RB+25RB	0.0 < W _{gap} ≤ 30.0	25 ¹	0.0	
		25.0 < W _{gap} ≤ 50.0	10 ¹	4.5	
	25RB+50RB	$0.0 < W_{gap} \le 25.0$	25 ¹	0.0	
		20 < W _{gap} ≤ 45	10 ¹	4.3	
	25RB+75RB				
		U < VV gap ≥ ∠U	25 ¹	0	
		$0 < W_{gap} \le 20$ $15 < W_{gap} \le 40$	25 ¹		
	25RB+100RB	15 < W _{gap} ≤ 40	10 ¹	4.1	
		$15 < W_{gap} \le 40$ 0 < W _{gap} ≤ 15	10 ¹ 25 ¹	4.1 0	
	25RB+100RB 50RB+25RB	$15 < W_{gap} \le 40$ $0 < W_{gap} \le 15$ $15.0 < W_{gap} \le 50.0$	10 ¹ 25 ¹ 10 ⁴	4.1 0 5.5	
	50RB+25RB	$\begin{array}{c} 15 < W_{gap} \leq 40 \\ 0 < W_{gap} \leq 15 \\ 15.0 < W_{gap} \leq 50.0 \\ 0.0 < W_{gap} \leq 15.0 \end{array}$	10 ¹ 25 ¹ 10 ⁴ 32 ¹	4.1 0 5.5 0.0	
		$\begin{array}{c} 15 < W_{gap} \leq 40 \\ 0 < W_{gap} \leq 15 \\ 15.0 < W_{gap} \leq 50.0 \\ 0.0 < W_{gap} \leq 15.0 \\ 10.0 < W_{gap} \leq 45.0 \end{array}$	10 ¹ 25 ¹ 10 ⁴ 32 ¹ 10 ⁴	4.1 0 5.5 0.0 5.0	
CA 25A-25A	50RB+25RB 50RB+50RB	$\begin{array}{c} 15 < W_{gap} \leq 40 \\ 0 < W_{gap} \leq 15 \\ 15.0 < W_{gap} \leq 50.0 \\ 0.0 < W_{gap} \leq 15.0 \\ 10.0 < W_{gap} \leq 45.0 \\ 0.0 < W_{gap} \leq 10.0 \\ \end{array}$	10 ¹ 25 ¹ 10 ⁴ 32 ¹	4.1 0 5.5 0.0	FDD
CA_25A-25A	50RB+25RB	$\begin{array}{c} 15 < W_{gap} \leq 40 \\ 0 < W_{gap} \leq 15 \\ 15.0 < W_{gap} \leq 50.0 \\ 0.0 < W_{gap} \leq 15.0 \\ 10.0 < W_{gap} \leq 45.0 \\ 0.0 < W_{gap} \leq 10.0 \\ 5 < W_{gap} \leq 40 \end{array}$	10 ¹ 25 ¹ 10 ⁴ 32 ¹ 10 ⁴ 32 ¹ 10 ⁴	4.1 0 5.5 0.0 5.0 0.0 4.5	FDD
CA_25A-25A	50RB+25RB 50RB+50RB 50RB+75RB	$\begin{array}{c} 15 < W_{gap} \leq 40 \\ 0 < W_{gap} \leq 15 \\ 15.0 < W_{gap} \leq 50.0 \\ 0.0 < W_{gap} \leq 15.0 \\ 10.0 < W_{gap} \leq 45.0 \\ 0.0 < W_{gap} \leq 45.0 \\ 0.0 < W_{gap} \leq 40.0 \\ 5 < W_{gap} \leq 40 \\ 0 < W_{gap} \leq 5 \end{array}$	10 ¹ 25 ¹ 10 ⁴ 32 ¹ 10 ⁴ 32 ¹	4.1 0 5.5 0.0 5.0 0.0	FDD
CA_25A-25A	50RB+25RB 50RB+50RB 50RB+75RB 50RB+100RB	$\begin{array}{c} 15 < W_{gap} \leq 40 \\ 0 < W_{gap} \leq 15 \\ 15.0 < W_{gap} \leq 50.0 \\ 0.0 < W_{gap} \leq 15.0 \\ 10.0 < W_{gap} \leq 45.0 \\ 0.0 < W_{gap} \leq 440.0 \\ 5 < W_{gap} \leq 40 \\ 0 < W_{gap} \leq 5 \\ 0 < W_{gap} \leq 35 \\ \end{array}$	10 ¹ 25 ¹ 10 ⁴ 32 ¹ 10 ⁴ 32 ¹ 10 ⁴ 32 ¹ 21 ¹ 32 ¹	4.1 0 5.5 0.0 5.0 0.0 4.5	FDD
CA_25A-25A	50RB+25RB 50RB+50RB 50RB+75RB	$\begin{array}{c} 15 < W_{gap} \leq 40 \\ 0 < W_{gap} \leq 15 \\ 15.0 < W_{gap} \leq 50.0 \\ 0.0 < W_{gap} \leq 15.0 \\ 10.0 < W_{gap} \leq 45.0 \\ 0.0 < W_{gap} \leq 440.0 \\ 5 < W_{gap} \leq 40 \\ 0 < W_{gap} \leq 5 \\ 0 < W_{gap} \leq 35 \\ 10 < W_{gap} \leq 45 \\ \end{array}$	10 ¹ 25 ¹ 10 ⁴ 32 ¹ 10 ⁴ 32 ¹ 10 ⁴ 32 ¹ 10 ⁴ 32 ¹ 10 ⁴	4.1 0 5.5 0.0 5.0 0.0 4.5 0 4.2	FDD
CA_25A-25A	50RB+25RB 50RB+50RB 50RB+75RB 50RB+100RB 75RB+25RB	$\begin{array}{c} 15 < W_{gap} \leq 40 \\ 0 < W_{gap} \leq 15 \\ 15.0 < W_{gap} \leq 50.0 \\ 0.0 < W_{gap} \leq 15.0 \\ 10.0 < W_{gap} \leq 45.0 \\ 0.0 < W_{gap} \leq 45.0 \\ 0.0 < W_{gap} \leq 40 \\ 0 < W_{gap} \leq 5 \\ 0 < W_{gap} \leq 35 \\ 10 < W_{gap} \leq 45 \\ 0 < W_{gap} \leq 10.0 \\ 0 < W_{gap} \leq 10.0 \\ 0 < W_{gap} \leq 10 \\ $	10 ¹ 25 ¹ 10 ⁴ 32 ¹ 10 ⁴ 32 ¹ 10 ⁴ 32 ¹ 10 ⁴ 10 ¹⁴	4.1 0 5.5 0.0 5.0 0.0 4.5 0 4.2 7.6	FDD
CA_25A-25A	50RB+25RB 50RB+50RB 50RB+75RB 50RB+100RB	$\begin{array}{c} 15 < W_{gap} \leq 40 \\ 0 < W_{gap} \leq 15 \\ \hline 15.0 < W_{gap} \leq 50.0 \\ 0.0 < W_{gap} \leq 15.0 \\ \hline 10.0 < W_{gap} \leq 45.0 \\ 0.0 < W_{gap} \leq 45.0 \\ \hline 0.0 < W_{gap} \leq 40.0 \\ \hline 0 < W_{gap} \leq 5 \\ 0 < W_{gap} \leq 5 \\ \hline 0 < W_{gap} \leq 35 \\ \hline 10 < W_{gap} \leq 45 \\ \hline 0 < W_{gap} \leq 45 \\ \hline 0 < W_{gap} \leq 40 \\ \hline 0 < W_{gap} \leq 45 \\ \hline 0 < W_{gap} \leq 40 \\ \hline 0 < W_{gap} \leq 45 \\ \hline 0 < W_{gap} \leq 40 \\ \hline \end{array}$	10 ¹ 25 ¹ 10 ⁴ 32 ¹ 10 ⁴ 32 ¹ 10 ⁴ 32 ¹ 10 ⁴ 32 ¹ 10 ⁴ 32 ¹ 10 ⁴ 32 ¹ 10 ¹⁴	4.1 0 5.5 0.0 5.0 0.0 4.5 0 4.2 7.6 0	FDD
CA_25A-25A	50RB+25RB 50RB+50RB 50RB+75RB 50RB+100RB 75RB+25RB	$\begin{array}{c} 15 < W_{gap} \leq 40 \\ 0 < W_{gap} \leq 15 \\ 15.0 < W_{gap} \leq 50.0 \\ 0.0 < W_{gap} \leq 15.0 \\ 10.0 < W_{gap} \leq 45.0 \\ 0.0 < W_{gap} \leq 45.0 \\ 0.0 < W_{gap} \leq 40 \\ 0 < W_{gap} \leq 5 \\ 0 < W_{gap} \leq 35 \\ 10 < W_{gap} \leq 45 \\ 0 < W_{gap} \leq 10.0 \\ 0 < W_{gap} \leq 10.0 \\ 0 < W_{gap} \leq 10 \\ $	10 ¹ 25 ¹ 10 ⁴ 32 ¹ 10 ⁴ 32 ¹ 10 ⁴ 32 ¹ 10 ⁴ 32 ¹ 10 ⁴ 32 ¹ 10 ¹⁴	4.1 0 5.5 0.0 5.0 0.0 4.5 0 4.2 7.6 0 6.7	FDD
CA_25A-25A	50RB+25RB 50RB+50RB 50RB+75RB 50RB+100RB 75RB+25RB 75RB+50RB	$\begin{array}{c} 15 < W_{gap} \leq 40 \\ 0 < W_{gap} \leq 15 \\ \hline 15.0 < W_{gap} \leq 50.0 \\ 0.0 < W_{gap} \leq 15.0 \\ \hline 10.0 < W_{gap} \leq 45.0 \\ 0.0 < W_{gap} \leq 45.0 \\ \hline 0 < W_{gap} \leq 40 \\ \hline 0 < W_{gap} \leq 5 \\ \hline 0 < W_{gap} \leq 35 \\ \hline 10 < W_{gap} \leq 45 \\ \hline 0 < W_{gap} \leq 40 \\ \hline 0 < W_{gap} \leq 5 \\ \hline 0 < W_{gap} \leq 5 \\ \hline 0 < W_{gap} \leq 5 \\ \hline 0 < W_{gap} \leq 5 \\ \hline 0 < W_{gap} \leq 5 \\ \hline 0 < W_{gap} \leq 5 \\ \hline 0 < W_{gap} \leq 5 \\ \hline 0 < W_{gap} \leq 5 \\ \hline 0 < W_{gap} \leq 5 \\ \hline \end{array}$	10 ¹ 25 ¹ 10 ⁴ 32 ¹ 10 ⁴ 32 ¹ 10 ⁴ 32 ¹ 10 ⁴ 32 ¹ 10 ¹⁴ 32 ¹ 10 ¹⁴ 32 ¹ 10 ¹⁴ 32 ¹	4.1 0 5.5 0.0 5.0 0.0 4.5 0 4.2 7.6 0 6.7 0	FDD
CA_25A-25A	50RB+25RB 50RB+50RB 50RB+75RB 50RB+100RB 75RB+25RB 75RB+50RB 75RB+75RB	$\begin{array}{c} 15 < W_{gap} \leq 40 \\ 0 < W_{gap} \leq 15 \\ 15.0 < W_{gap} \leq 50.0 \\ 0.0 < W_{gap} \leq 15.0 \\ 10.0 < W_{gap} \leq 45.0 \\ 0.0 < W_{gap} \leq 45.0 \\ 0.0 < W_{gap} \leq 40.0 \\ 5 < W_{gap} \leq 5 \\ 0 < W_{gap} \leq 5 \\ 0 < W_{gap} \leq 35 \\ 10 < W_{gap} \leq 45 \\ 0 < W_{gap} \leq 10 \\ 5 < W_{gap} \leq 40 \\ 0 < W_{gap} \leq 40 \\ 0 < W_{gap} \leq 5 \\ 0 < W_{gap} \leq 5 \\ 0 < W_{gap} \leq 5 \\ 0 < W_{gap} \leq 5 \\ 0 < W_{gap} \leq 35 \\ \end{array}$	10 ¹ 25 ¹ 10 ⁴ 32 ¹ 10 ⁴ 32 ¹ 10 ⁴ 32 ¹ 10 ⁴ 32 ¹ 10 ¹⁴ 32 ¹ 10 ¹⁴ 32 ¹ 10 ¹⁴ 32 ¹ 10 ¹⁴	4.1 0 5.5 0.0 5.0 0.0 4.5 0 4.2 7.6 0 6.7 0 5.6	FDD
CA_25A-25A	50RB+25RB 50RB+50RB 50RB+75RB 50RB+100RB 75RB+25RB 75RB+50RB 75RB+75RB 75RB+100RB	$\begin{array}{c} 15 < W_{gap} \leq 40 \\ 0 < W_{gap} \leq 15 \\ \hline 15.0 < W_{gap} \leq 50.0 \\ 0.0 < W_{gap} \leq 15.0 \\ \hline 10.0 < W_{gap} \leq 45.0 \\ 0.0 < W_{gap} \leq 45.0 \\ \hline 0.0 < W_{gap} \leq 40.0 \\ \hline 5 < W_{gap} \leq 40 \\ \hline 0 < W_{gap} \leq 5 \\ \hline 0 < W_{gap} \leq 35 \\ \hline 10 < W_{gap} \leq 45 \\ \hline 0 < W_{gap} \leq 10 \\ \hline 5 < W_{gap} \leq 40 \\ \hline 0 < W_{gap} \leq 50 \\ \hline 0 < W_{gap} \leq 35 \\ \hline 0 < W_{gap} \leq 35 \\ \hline 0 < W_{gap} \leq 35 \\ \hline 0 < W_{gap} \leq 35 \\ \hline 0 < W_{gap} \leq 35 \\ \hline 0 < W_{gap} \leq 35 \\ \hline 0 < W_{gap} \leq 30 \\ \hline 0 < W_{gap} \leq 40 \\ \hline \end{array}$	10 ¹ 25 ¹ 10 ⁴ 32 ¹ 10 ⁴ 32 ¹ 10 ⁴ 32 ¹ 10 ⁴ 32 ¹ 10 ¹⁴ 32 ¹ 10 ¹⁴ 32 ¹ 10 ¹⁴ 10 ¹⁴ 10 ¹⁴	4.1 0 5.5 0.0 5.0 0.0 4.5 0 4.2 7.6 0 6.7 0 5.6 4.8	FDD
CA_25A-25A	50RB+25RB 50RB+50RB 50RB+75RB 50RB+100RB 75RB+25RB 75RB+50RB 75RB+75RB 75RB+100RB 100RB+25RB	$\begin{array}{c} 15 < W_{gap} \leq 40 \\ 0 < W_{gap} \leq 15 \\ 15.0 < W_{gap} \leq 50.0 \\ 0.0 < W_{gap} \leq 15.0 \\ 10.0 < W_{gap} \leq 45.0 \\ 0.0 < W_{gap} \leq 45.0 \\ 0.0 < W_{gap} \leq 40.0 \\ 5 < W_{gap} \leq 5 \\ 0 < W_{gap} \leq 5 \\ 0 < W_{gap} \leq 35 \\ 10 < W_{gap} \leq 45 \\ 0 < W_{gap} \leq 10 \\ 5 < W_{gap} \leq 40 \\ 0 < W_{gap} \leq 40 \\ 0 < W_{gap} \leq 5 \\ 0 < W_{gap} \leq 5 \\ 0 < W_{gap} \leq 5 \\ 0 < W_{gap} \leq 5 \\ 0 < W_{gap} \leq 35 \\ \end{array}$	10 ¹ 25 ¹ 10 ⁴ 32 ¹ 10 ⁴ 32 ¹ 10 ⁴ 32 ¹ 10 ⁴ 32 ¹ 10 ¹⁴ 32 ¹ 10 ¹⁴ 32 ¹ 10 ¹⁴ 10 ¹⁴ 12 ¹⁵	4.1 0 5.5 0.0 5.0 0.0 4.5 0 4.2 7.6 0 6.7 0 5.6 4.8	FDD
CA_25A-25A	50RB+25RB 50RB+50RB 50RB+75RB 50RB+100RB 75RB+25RB 75RB+50RB 75RB+75RB 75RB+100RB 100RB+25RB 100RB+25RB	$\begin{array}{c} 15 < W_{gap} \leq 40 \\ 0 < W_{gap} \leq 15 \\ 15.0 < W_{gap} \leq 50.0 \\ 0.0 < W_{gap} \leq 15.0 \\ 10.0 < W_{gap} \leq 45.0 \\ 0.0 < W_{gap} \leq 45.0 \\ 0.0 < W_{gap} \leq 40.0 \\ 5 < W_{gap} \leq 5 \\ 0 < W_{gap} \leq 5 \\ 0 < W_{gap} \leq 35 \\ 10 < W_{gap} \leq 45 \\ 0 < W_{gap} \leq 40 \\ 0 < W_{gap} \leq 40 \\ 0 < W_{gap} \leq 5 \\ 0 < W_{gap} \leq 40 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 30 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < $	10 ¹ 25 ¹ 10 ⁴ 32 ¹ 10 ⁴ 32 ¹ 10 ⁴ 32 ¹ 10 ⁴ 32 ¹ 10 ¹⁴ 32 ¹ 10 ¹⁴ 32 ¹ 10 ¹⁴ 12 ¹⁵ 12 ¹⁵	4.1 0 5.5 0.0 5.0 0.0 4.5 0 4.2 7.6 0 6.7 0 5.6 4.8 8	FDD
CA_25A-25A	50RB+25RB 50RB+50RB 50RB+75RB 50RB+100RB 75RB+25RB 75RB+50RB 75RB+75RB 75RB+100RB 100RB+25RB 100RB+50RB	$\begin{array}{c} 15 < W_{gap} \leq 40 \\ 0 < W_{gap} \leq 15 \\ 15.0 < W_{gap} \leq 50.0 \\ 0.0 < W_{gap} \leq 15.0 \\ 10.0 < W_{gap} \leq 45.0 \\ 0.0 < W_{gap} \leq 45.0 \\ 0.0 < W_{gap} \leq 10.0 \\ 5 < W_{gap} \leq 5 \\ 0 < W_{gap} \leq 5 \\ 0 < W_{gap} \leq 5 \\ 0 < W_{gap} \leq 45 \\ 0 < W_{gap} \leq 45 \\ 0 < W_{gap} \leq 40 \\ 0 < W_{gap} \leq 40 \\ 0 < W_{gap} \leq 5 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 40 \\ 0 < W_{gap} \leq 40 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 40 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_$	10 ¹ 25 ¹ 10 ⁴ 32 ¹ 10 ⁴ 32 ¹ 10 ⁴ 32 ¹ 10 ⁴ 32 ¹ 10 ¹⁴ 32 ¹ 10 ¹⁴ 32 ¹ 10 ¹⁴ 12 ¹⁵ 12 ¹⁵	4.1 0 5.5 0.0 5.0 0.0 4.5 0 4.2 7.6 0 6.7 0 5.6 4.8 8 6.7 6.1	FDD
	50RB+25RB 50RB+50RB 50RB+75RB 50RB+100RB 75RB+25RB 75RB+75RB 75RB+75RB 75RB+100RB 100RB+25RB 100RB+50RB 100RB+50RB	$\begin{array}{c} 15 < W_{gap} \leq 40 \\ 0 < W_{gap} \leq 15 \\ 15.0 < W_{gap} \leq 50.0 \\ 0.0 < W_{gap} \leq 15.0 \\ 10.0 < W_{gap} \leq 45.0 \\ 0.0 < W_{gap} \leq 45.0 \\ 0.0 < W_{gap} \leq 40.0 \\ 0 < W_{gap} \leq 5 \\ 0 < W_{gap} \leq 5 \\ 0 < W_{gap} \leq 35 \\ 10 < W_{gap} \leq 45 \\ 0 < W_{gap} \leq 10 \\ 5 < W_{gap} \leq 40 \\ 0 < W_{gap} \leq 5 \\ 0 < W_{gap} \leq 40 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 30 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 30 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} \leq 35 \\ 0 < W_{gap} < W_{gap} < W_{gap} < W_{gap} < W_{gap} < W_{gap} < W_{gap} < W_{gap} < W_{gap} < W_{ga$	10 ¹ 25 ¹ 10 ⁴ 32 ¹ 10 ⁴ 32 ¹ 10 ⁴ 32 ¹ 10 ⁴ 32 ¹ 10 ⁴ 10 ¹⁴ 32 ¹ 10 ¹⁴ 32 ¹ 10 ¹⁴ 12 ¹⁵ 12 ¹⁵ 12 ¹⁵	4.1 0 5.5 0.0 5.0 0.0 4.5 0 4.2 7.6 0 6.7 0 5.6 4.8 8 6.7 6.1 5.7	

CA_42A-42A | NOTE 6 | NOTE 7 | NOTE 8 | 0.0 | T NOTE 1: 1 refers to the UL resource blocks shall be located as close as possible to the downlink operating band but confined within the transmission.

NOTE 2: W_{gap} is the sub-block gap between the two sub-blocks.

NOTE 3: The carrier center frequency of PCC in the UL operating band is configured closer to the DL operating band.

NOTE 4: ⁴ refers to the UL resource blocks shall be located at RB_{start}=33.

NOTE 5: For the TDD intra-band non-contiguous CA configurations, the minimum requirements apply only in synchronized operation between all component carriers.

NOTE 6: All combinations of channel bandwidths defined in Table 5.6A.1-3.

NOTE 7: All applicable sub-block gap sizes.

```
NOTE 8: The PCC allocation is same as Transmission bandwidth configuration N<sub>RB</sub> as defined in Table 5.6-1.

NOTE 9: 9 refers to the UL resource blocks shall be located at RB<sub>start</sub>=25.

NOTE 10: 10 refers to the UL resource blocks shall be located at RB<sub>start</sub>=35.

NOTE 11: 11 refers to the UL resource blocks shall be located at RB<sub>start</sub>=50.

NOTE 12: 12 refers to the UL resource blocks shall be located at RB<sub>start</sub>=39.

NOTE 13: 13 refers to the UL resource blocks shall be located at RB<sub>start</sub>=57.

NOTE 14: 14 refers to the UL resource blocks shall be located at RB<sub>start</sub>=44.

NOTE 15: 15 refers to the UL resource blocks shall be located at RB<sub>start</sub>=62.
```

For intra-band non-contiguous carrier aggregation with two uplink and downlink carriers the reference sensitivity is defined to be met with both downlink and uplink carriers activated. The downlink PCC and SCC minimum requirements for reference sensitivity as specified in Table 7.3.1-1 are increased by amount of ΔR_{2UL_PCC} and ΔR_{2UL_SCC} which are defined in Table 7.3.1A-4 when uplink PCC and SCC allocations are according to the Table 7.3.1A-4.

Table 7.3.1A-4: Intra-band non-contiguous CA with two uplinks configuration for reference sensitivity

CA configuration	Aggregated channel bandwidth (PCC+SCC)	W _{gap} /[MHz]	UL PCC allocation	UL SCC allocation	ΔR _{2UL_PCC} (dB)	ΔR _{2UL_SCC} (dB)	Duplex mode
CA_4A-4A	NOTE 2	NOTE 3	NOTE 4	NOTE 5	0.0	0.0	FDD

NOTE 1: The transmitter shall be set to Pumax as defined in subclause 6.2.5A.

NOTE 2: All combinations of channel bandwidths defined in Table 5.6A.1-3.

NOTE 3: All applicable sub-block gap sizes.

NOTE 4: The PCC allocation is same as Transmission bandwidth configuration N_{RB} as defined in Table 5.6-1.

NOTE 5: The SCC allocation is same as Transmission bandwidth configuration NRB as defined in Table 5.6-1.

For combinations of intra-band contiguous and inter-band carrier aggregation with three downlink carriers and one uplink carrier assigned to one E-UTRA band, the requirement is defined with an uplink configuration in accordance with Table 7.3.1-2 for each band capable of uplink operation. The downlink PCC carrier center frequency shall be configured closer to the uplink operating band than the downlink SCC center frequency when the uplink is active in the band supporting two component carriers. For these uplink configurations, the UE shall meet the reference sensitivity requirements for intra-band contiguous carrier aggregation of two downlink carriers and for the remaining component carrier the requirements specified in subclause 7.3.1. The three downlink carriers shall be active throughout the tests. Unless given by Table 7.3.1-3, the reference sensitivity requirements shall be verified with the network signalling value NS_01 (Table 6.2.4-1) configured.

For combinations of intra-band non-contiguous and inter-band carrier aggregation with three downlink carriers and one uplink carrier assigned to one E-UTRA band, the requirement is defined with an uplink configuration in accordance with Table 7.3.1A-3 when the uplink is active in the band supporting two component carriers and in accordance with Table 7.3.1-2 when the uplink is active in the other band. The carrier center frequency of PCC in the UL operating band is configured closer to the DL operating band when the uplink is active in the band supporting non-contiguous aggregation of two component carriers. For these uplink configurations, the UE shall meet the reference sensitivity requirements for intra-band non-contiguous carrier aggregation of two downlink carriers and for the remaining component carrier the requirements specified in subclause 7.3.1. For the two component carriers within the same band, $\Delta R_{IBNC} = 0$ dB for all sub-block gaps (Table 7.3.1A-3) when the uplink is active in the band supporting the single component carrier. The three downlink carriers shall be active throughout the tests. Unless given by Table 7.3.1-3, the reference sensitivity requirements shall be verified with the network signalling value NS_01 (Table 6.2.4-1) configured.

For the UE that supports any of combinations of intra-band and inter-band carrier aggregation given in Table 7.3.1A-5, exceptions to the aforementioned requirements are allowed when the uplink is active in a lower-frequency band and is within a specified frequency range such that transmitter harmonics fall within the downlink transmission bandwidth assigned in a higher band as noted in Table 7.3.1A-5. For these exceptions, the UE shall meet the requirements specified in Table 7.3.1A-5 and Table 7.3.1A-6.

Table 7.3.1A-5: Reference sensitivity for carrier aggregation QPSK PREFSENS, CA (exceptions due to harmonic issues in the combinations of intra-band and inter-band CA)

	Channel bandwidth											
EUTRA CA Configuration	EUTRA band	1.4 MHz (dBm)	3 MHz (dBm)	5 MHz (dBm)	10 MHz (dBm)	15 MHz (dBm)	20 MHz (dBm)	Duplex mode				
CA_3A-42C ^{7,8}	3			-96.8	-93.8	-92	-90.8	FDD				
CA_3A-42C ^{7,0}	42			-71.7	-71.7	-71.7	-71.7	TDD				
CA 2A 42C9	3			-96.8	-93.8	-92	-90.8	FDD				
CA_3A-42C ⁹	42			-97.1	-94.7	-93.2	-92.5	TDD				
CA_4A-4A-	4			-90	-89.5	-89	-88.5	FDD				
12A ^{4,5}	12			-96.5	-93.5			רטט				
CA 4A 40D45	4			-90	-89.5	-89	-88.5	FDD				
CA_4A-12B ^{4,5}	12			-96.5	-93.5			רטט				
CA_26A-41C ⁶	26			N/A	N/A	N/A		FDD				
	41			N/A	N/A	N/A	N/A	TDD				

- NOTE 1: The transmitter shall be set to Pumax as defined in subclause 6.2.5A.
- NOTE 2: Reference measurement channel is A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1
- NOTE 3: The signal power is specified per port
- NOTE 4: These requirements apply when there is at least one individual RE within the uplink transmission bandwidth of a low band for which the 3rd transmitter harmonic is within the downlink transmission bandwidth of a high band.
- NOTE 5: The requirements should be verified for UL EARFCN of a low band (superscript LB) such that $f_{UL}^{LB} = \left \lfloor f_{DL}^{HB} / 0.3 \right \rfloor 0.1 \text{ in MHz and } F_{UL_low}^{LB} + BW_{Channel}^{LB} / 2 \leq f_{UL}^{LB} \leq F_{UL_high}^{LB} BW_{Channel}^{LB} / 2 \text{ with } f_{DL}^{HB}$ the carrier frequency of a high band in MHz and $BW_{Channel}^{LB}$ the channel bandwidth configured in the low band.
- NOTE 6: No requirements apply when there is at least one individual RE within the uplink transmission bandwidth of the low band for which the 3rd transmitter harmonic is within the downlink transmission bandwidth of the high band. The reference sensitivity is only verified when this is not the case (the requirements specified in clause 7.3.1 apply).
- NOTE 7: These requirements apply when there is at least one individual RE within the uplink transmission bandwidth of the aggressor (lower) band for which the 2nd transmitter harmonic is within the downlink transmission bandwidth of a victim (higher) band and a range ΔF_{HD} above and below the edge of this downlink transmission bandwidth. The value ΔF_{HD} depends on the E-UTRA configuration: $\Delta F_{HD} = 10$ MHz for CA_3A-42C.
- NOTE 8: The requirements should be verified for UL EARFCN of the aggressor (lower) band (superscript LB) such that $f_{UL}^{LB} = \left \lfloor f_{DL}^{HB} / 0.2 \right \rfloor 0.1$ in MHz and $F_{UL_low}^{LB} + BW_{Channel}^{LB} / 2 \le f_{UL}^{LB} \le F_{UL_high}^{LB} BW_{Channel}^{LB} / 2$ with f_{DL}^{HB} carrier frequency in the victim (higher) band in MHz and $BW_{Channel}^{LB}$ the channel bandwidth configured in the lower band.
- NOTE 9: The requirements are only applicable to channel bandwidths with a carrier frequency at $\pm \left(20 + BW_{Channel}^{HB} / 2\right) \text{ MHz offset from } 2f_{UL}^{LB} \text{ in the victim (higher band) with } \\ F_{UL_low}^{LB} + BW_{Channel}^{LB} / 2 \le f_{UL}^{LB} \le F_{UL_high}^{LB} BW_{Channel}^{LB} / 2 \text{ , where } BW_{Channel}^{LB} \text{ and } BW_{Channel}^{HB} \text{ are the channel bandwidths configured in the aggressor (lower) and victim (higher) bands in MHz, respectively.}$

Table 7.3.1A-6: Uplink configuration for the low band (exceptions due to harmonic issues in the combinations of intra-band and inter-band CA)

E-	E-UTRA Band / Channel bandwidth of the high band / NRB / Duplex mode										
EUTRA CA Configuration	UL band	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	Duplex mode			
CA_3A-42C	3			12	25	36	50	FDD			
CA_4A-4A- 12A	12			8	16	20	20	FDD			
CA_4A-12B	12			8	16	20	20	FDD			

NOTE 1: refers to the UL resource blocks, which shall be centred within the transmission bandwidth configuration for the channel bandwidth.

NOTE 2: the UL configuration applies regardless of the channel bandwidth of the low band unless the UL resource blocks exceed that specified in Table 7.3.1-2 for the uplink bandwidth in which case the allocation according to Table 7.3.1-2 applies.

7.3.1B Minimum requirements (QPSK) for UL-MIMO

For UE with two transmitter antenna connectors in closed-loop spatial multiplexing scheme, the minimum requirements in Clause 7.3.1 shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2. For UL-MIMO, the parameter P_{UMAX} is the total transmitter power over the two transmits power over the two transmit antenna connectors.

7.3.1D Minimum requirements (QPSK) for ProSe

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.6.2 with parameters specified in Table 7.3.1D-1 and Table 7.3.1D-2.

Table 7.3.1D-1: Reference sensitivity for ProSe Direct Discovery QPSK PREFSENS

	Channel bandwidth												
E-UTRA ProSe Band	1.4 MHz (dBm)	3 MHz (dBm)	5 MHz (dBm)	10 MHz (dBm)	15 MHz (dBm)	20 MHz (dBm)	Duplex Mode						
2			-104.1	-104.1	-104.1	-104.1	HD						
3			-103.1	-103.1	-103.1	-103.1	HD						
4			-106.1	-106.1	-106.1	-106.1	HD						
7			-103.8	-103.8	-103.8	-103.8	HD						
14			-103.1	-103.1			HD						
20			-103.2	-103.2	-102.2	-102.2	HD						
26			-103.5 ⁵	-103.5 ⁵	-103.5 ⁵		HD						
28			-104.4	-104.4	-104.4	-102.9	HD						
31			-99.5				HD						

NOTE 1: Reference measurement channel is A.6.2

NOTE 2: The signal power is specified per port

NOTE 3: For the UE which supports both Band 3 and Band 9 the reference sensitivity level is FFS.

NOTE 4: For the UE which supports both Band 11 and Band 21 the reference sensitivity level is FFS.

NOTE 5: ⁵ indicates that the requirement is modified by -0.5 dB when the carrier frequency of the assigned E-UTRA channel bandwidth is within 865-894 MHz.

NOTE 6: For a UE that support both Band 18 and Band 26, the reference sensitivity level for Band 26 applies for the applicable channel bandwidths.

Table 7.3.1D-2: Reference sensitivity for ProSe Direct Communication QPSK PREFSENS

	Channel bandwidth										
E-UTRA ProSe Band	1.4 MHz (dBm)	3 MHz (dBm)	5 MHz (dBm)	10 MHz (dBm)	15 MHz (dBm)	20 MHz (dBm)	Duplex Mode				
3				-97.6			HD				
7				-98.3			HD				
14				-97.6			HD				
20				-97.7			HD				
26				-98.0 ⁵			HD				
28				-98.9			HD				
31			-96.7				HD				

NOTE 1: Reference measurement channel is A.6.2

NOTE 2: The signal power is specified per port

NOTE 3: For the UE which supports both Band 3 and Band 9 the reference sensitivity level is FFS.

NOTE 4: For the UE which supports both Band 11 and Band 21 the reference sensitivity level is FFS.

NOTE 5: ⁵ indicates that the requirement is modified by -0.5 dB when the carrier frequency of the assigned E-UTRA channel bandwidth is within 865-894 MHz.

NOTE 6: For a UE that support both Band 18 and Band 26, the reference sensitivity level for Band 26 applies for the applicable channel bandwidths.

NOTE: Table 7.3.1D-1/ Table 7.3.1D-2 is intended for conformance tests and does not necessarily reflect the operational conditions of the network, where the number of allocated resource blocks will be practically constrained by other factors.

For the UE which supports ProSe in an operating band as specified in Section 5.5D and is configured with (and can transmit on) only PCell, and the UE also supports a E-UTRA downlink inter-band carrier aggregation configuration in Table 7.3.1-1A or Table 7.3.1-1B, the minimum requirement for reference sensitivity in Table 7.3.1D-1 and Table 7.3.1D-2 shall be increased by the amount given in $\Delta R_{IB,c}$ in Table 7.3.1-1A and Table 7.3.1-1B for the corresponding E-UTRA ProSe band.

7.3.1E Minimum requirements (QPSK) for UE category 0

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.3.1E-1A/Table 7.3.1E-1B and Table 7.3.1E-2.

Table 7.3.1E-1A: Reference sensitivity for FDD and TDD UE category 0 QPSK PREFSENS

		Cha	annel bar	ndwidth			
E-UTRA	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	Duplex
Band	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	Mode
2	-100.2	-97.2	-95.5	-92.5	-90.7	-89.5	FDD
3	-99.2	-96.2	-94.5	-91.5	-89.7	-88.5	FDD
4	-102.2	-99.2	-97.5	-94.5	-92.7	-91.5	FDD
5	-100.7	-97.7	-95.5	-92.5			FDD
8	-99.7	-96.7	-94.5	-91.5			FDD
13			-94	-91			FDD
20			-94.5	-91.5	-88.2	-87	FDD
39			-97.5	-94.5	-92.7	-91.5	TDD
41			-95.5	-92.5	-90.7	-89.5	TDD

NOTE 1: The transmitter shall be set to Pumax as defined in subclause 6.2.5

NOTE 2: Reference measurement channel is A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1

Table 7.3.1E-1B: Reference sensitivity for HD-FDD UE category 0 QPSK PREFSENS

	Channel bandwidth										
E-UTRA Band	1.4 MHz (dBm)	3 MHz (dBm)	5 MHz (dBm)	10 MHz (dBm)	15 MHz (dBm)	20 MHz (dBm)	Duplex Mode				
2	-101	-98	-96.3	-93.3	-91.5	-90.3	HD-FDD				
3	-100	-97	-95.3	-92.3	-90.5	-89.3	HD-FDD				
4	-103	-100	-98.3	-95.3	-93.5	-92.3	HD-FDD				
5	-101.5	-98.5	-96.3	-93.3			HD-FDD				
8	-100.5	-97.5	-95.3	-92.3			HD-FDD				
13			-95.3	-92.3			HD-FDD				
20			-95.3	-92.3	-89.5	-88.3	HD-FDD				

NOTE 1: The transmitter shall be set to P_{UMAX} as defined in subclause 6.2.5

NOTE 2: Reference measurement channel is A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1

The reference receive sensitivity (REFSENS) requirement specified in Table 7.3.1E-1A/Table 7.3.1E-1B shall be met for an uplink transmission bandwidth less than or equal to that specified in Table 7.3.1E-2.

NOTE: Table 7.3.1E-2 is intended for conformance tests and does not necessarily reflect the operational conditions of the network, where the number of uplink and downlink allocated resource blocks will be practically constrained by other factors. Typical receiver sensitivity performance with HARQ retransmission enabled and using a residual BLER metric relevant for e.g. Speech Services is given in the Annex X (informative).

Table 7.3.1E-2: FDD and TDD UE category 0 Uplink configuration for reference sensitivity

	E-U1	RA Band	I / Channe	el bandwid	th / N _{RB} /	Duplex mo	ode
E-UTRA	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	Duplex Mode
Band							
2	6	15	25	36 ¹	36 ¹	36 ¹	FDD and HD-FDD
3	6	15	25	36 ¹	36 ¹	36 ¹	FDD and HD-FDD
4	6	15	25	36 ¹	36 ¹	36 ¹	FDD and HD-FDD
5	6	15	25	25 ¹			FDD and HD-FDD
8	6	15	25	25 ¹			FDD and HD-FDD
13			20 ¹	20 ¹			FDD and HD-FDD
20			25	20 ¹	20 ²	20 ²	FDD and HD-FDD
39			25	36 ¹	36 ¹	36 ¹	TDD
41			25	36 ¹	36 ¹	36 ¹	TDD

NOTE 1: ¹ refers to the UL resource blocks shall be located as close as possible to the downlink operating band but confined within the transmission bandwidth configuration for the channel bandwidth (Table 5.6-1).

NOTE 2: ² refers to Band 20; in the case of 15MHz channel bandwidth, the UL resource blocks shall be located at RB_{start} 11 and in the case of 20MHz channel bandwidth, the UL resource blocks shall be located at RB_{start} 16.

7.3.2 Void

7.4 Maximum input level

This is defined as the maximum mean power received at the UE antenna port, at which the specified relative throughput shall meet or exceed the minimum requirements for the specified reference measurement channel.

7.4.1 Minimum requirements

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.4.1-1

Table 7.4.1-1: Maximum input level

Rx Parameter	Units		(Channel b	andwidth)			
		1.4	3	5	10	15	20		
		MHz	MHz	MHz	MHz	MHz	MHz		
Power in Transmission	dBm -25 ²								
Bandwidth Configuration	-27 ³								
NOTE 1: The transmitter sha						nk configu	ıration		
specified in Table 7									
NOTE 2: Reference measure									
dynamic OCNG Pat	dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1.								
	: Reference measurement channel is Annex A.3.2: 256QAM, R=4/5 variant with one								
sided dynamic OCN	IG Pattern	OP.1 FD	D/TDD as	described	in Annex	A.5.1.1/A.	5.2.1.		

7.4.1A Minimum requirements for CA

For inter-band carrier aggregation with one component carrier per operating band and the uplink assigned to one E-UTRA band the maximum input level is defined with the uplink active on the band(s) other than the band whose downlink is being tested. For E-UTRA CA configurations including an operating band without uplink band, the requirements for all downlinks shall be met with the single uplink carrier active in each band capable of UL operation. The UE shall meet the requirements specified in subclause 7.4.1 for each component carrier while all downlink carriers are active.

For intra-band contiguous carrier aggregation maximum input level is defined as the powers received at the UE antenna port over the Transmission bandwidth configuration of each CC, at which the specified relative throughput shall meet or exceed the minimum requirements for the specified reference measurement channel over each component carrier.

The downlink SCC(s) shall be configured at nominal channel spacing to the PCC. For FDD the PCC shall be configured closest to the uplink band. All downlink carriers shall be active throughout the test. The uplink output power shall be set as specified in Table 7.4.1A-1 with the uplink configuration set according to Table 7.3.1A-1 for the applicable carrier aggregation configuration. For UE(s) supporting one uplink carrier, the uplink configuration of the PCC shall be in accordance with Table 7.3.1-2.

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channels over each component carrier as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.4.1A-1.

For intra-band non-contiguous carrier aggregation with one uplink carrier and two downlink sub-blocks, each larger than or equal to 5 MHz, the maximum input level requirements are defined with the uplink configuration in accordance with Table 7.3.1A-3. For this uplink configuration, the UE shall meet the requirements for each sub-block as specified in Table 7.4.1-1 and Table 7.4.1A-1 for one component carrier and two component carriers per sub-block, respectively. The throughput of each downlink component carrier shall be \geq 95% of the maximum throughput of the specified reference measurement channel as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1). The requirements apply with all downlink carriers active.

Rx Parameter	Units	CA Bandwidth Class							
		Α	В	С	D	E	F		
Power in largest			-28 ²	-25 ²	-25 ²				
Transmission Bandwidth Configuration CC	dBm		-30 ³	-27 ³	-27 ³				
Power in each other CC	dBm		-28+ 10log(N _{RB,c} /N _{RB,largest} _{BW}) ²	-25 + 10log(N _{RB,c} /N _{RB,largest} _{BW)} ²	-25 + 10log(N _{RB,c} /N _{RB,largest} _{BW)} ²				
	UBIII		-30+ 10log(N _{RB,c} /N _{RB,largest}	-27 + 10log(N _{RB,c} /N _{RB,largest}	-27 + 10log(N _{RB,c} /N _{RB,largest}				

Table 7.4.1A-1: Maximum input level for intra-band contiguous CA

NOTE 1: The transmitter shall be set to 4dB below Pcmax_L,c or Pcmax_L as defined in subclause 6.2.5A.

NOTE 2: Reference measurement channel is Annex A.3.2: 64QAM, R=3/4 variant with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1.

NOTE 3: Reference measurement channel is Annex A.3.2: 256QAM, R=4/5 variant with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1.

For combinations of intra-band contiguous and inter-band carrier aggregation with three downlink carriers and one uplink assigned to one E-UTRA band, the requirement is defined with the uplink active in the band other than that supporting the downlink(s) under test and a configuration in accordance with Table 7.3.1-2. The downlink PCC carrier center frequency shall be configured closer to the uplink operating band than the downlink SCC center frequency when the uplink is active in the band supporting two component carriers. For E-UTRA CA configurations including an operating band without uplink band, the requirements for all downlinks shall be met with the single uplink carrier active in each band capable of UL operation. For these uplink configurations, the UE shall meet the maximum input-level requirements for intra-band contiguous carrier aggregation of two downlink carriers and for the remaining component carrier the the requirements specified in subclause 7.4.1. The three downlink carriers shall be active throughout the tests.

For combinations of intra-band non-contiguous and inter-band carrier aggregation with three downlink carriers and one uplink assigned to one E-UTRA band, the requirement is defined with the uplink active in the band other than that supporting the downlink(s) under test. The uplink configuration shall be in accordance with Table 7.3.1A-3 when the uplink is active in the band supporting two component carriers and in accordance with Table 7.3.1-2 when the uplink is active in the other band. For E-UTRA CA configurations including an operating band without uplink band, the requirements for all downlinks shall be met with the single uplink carrier active in each band capable of UL operation. For these uplink configurations, the UE shall meet the maximum input-level requirements for intra-band non-contiguous carrier aggregation of two downlink carriers and for the remaining component carrier the the requirements specified in subclause 7.4.1. The three downlink carriers shall be active throughout the tests.

7.4.1B Minimum requirements for UL-MIMO

For UE with two transmitter antenna connectors in closed-loop spatial multiplexing, the minimum requirements in Clause 7.4.1 shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2. For UL-MIMO, the parameter $P_{\text{CMAX_L}}$ is defined as the total transmitter power over the two transmit antenna connectors.

7.4.1D Minimum requirements for ProSe

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.6.2.

Table 7.4.1D-1: Maximum input level for ProSe

Rx Parameter	Units	Channel bandwidth						
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
Power in Transmission Bandwidth Configuration	dBm -22							
NOTE 1: Reference measurement channel is Annex A.6.2								

7.4A Void

7.4A.1 Void

7.5 Adjacent Channel Selectivity (ACS)

Adjacent Channel Selectivity (ACS) is a measure of a receiver's ability to receive a E-UTRA signal at its assigned channel frequency in the presence of an adjacent channel signal at a given frequency offset from the centre frequency of the assigned channel. ACS is the ratio of the receive filter attenuation on the assigned channel frequency to the receive filter attenuation on the adjacent channel(s).

7.5.1 Minimum requirements

The UE shall fulfil the minimum requirement specified in Table 7.5.1-1 for all values of an adjacent channel interferer up to -25 dBm. However it is not possible to directly measure the ACS, instead the lower and upper range of test parameters are chosen in Table 7.5.1-2 and Table 7.5.1-3 where the throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1).

Table 7.5.1-1: Adjacent channel selectivity

		Channel bandwidth							
Rx Parameter	Units	1.4 3 5 10 15 20							
		MHz	MHz	MHz	MHz	MHz	MHz		
ACS	dB	33.0	33.0	33.0	33.0	30	27		

Table 7.5.1-2: Test parameters for Adjacent channel selectivity, Case 1

Rx Parameter	Units			Channel b	andwidth		
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Power in	dBm						
Transmission				REFSENS	` . 11 dD		
Bandwidth				KEFSENS) + 14 UD		
Configuration							
	dBm	REFSENS	REFSENS	REFSENS	REFSENS	REFSENS	REFSENS
P _{Interferer}		+45.5dB	+45.5dB	+45.5dB	+45.5dB	+42.5dB	+39.5dB
BWInterferer	MHz	1.4	3	5	5	5	5
F _{Interferer} (offset)	MHz	1.4+0.0025	3+0.0075	5+0.0025	7.5+0.0075	10+0.0125	12.5+0.0025
		/	/	/	/	/	/
		-1.4-0.0025	-3-0.0075	-5-0.0025	-7.5-0.0075	-10-0.0125	-12.5-
							0.0025

NOTE 1: The transmitter shall be set to 4dB below PcMax_L at the minimum uplink configuration specified in Table 7.3.1-2 with PcMax_L as defined in subclause 6.2.5.

NOTE 2: The interferer consists of the Reference measurement channel specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1 and set-up according to Annex C.3.1

Rx Parameter	Units			Channel b	andwidth		
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Power in Transmission Bandwidth Configuration	dBm	-56.5	-56.5	-56.5	-56.5	-53.5	-50.5
P _{Interferer}	dBm			-2	5		
BWInterferer	MHz	1.4	3	5	5	5	5
Finterferer (offset)	MHz	1.4+0.0025 / -1.4-0.0025	3+0.0075 / -3-0.0075	5+0.0025 / -5-0.0025	7.5+0.0075 / -7.5-0.0075	10+0.0125 / -10-0.0125	12.5+0.0025 / -12.5- 0.0025

Table 7.5.1-3: Test parameters for Adjacent channel selectivity, Case 2

NOTE 1: The transmitter shall be set to 24dB below PcMAX_L at the minimum uplink configuration specified in Table 7.3.1-2 with PcMAX_L as defined in subclause 6.2.5.

NOTE 2: The interferer consists of the Reference measurement channel specified in Annex 3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1 and set-up according to Annex C.3.1.

7.5.1A Minimum requirements for CA

For inter-band carrier aggregation with one component carrier per operating band and the uplink assigned to one E-UTRA band, the adjacent channel requirements are defined with the uplink active on the band(s) other than the band whose downlink is being tested. The UE shall meet the requirements specified in subclause 7.5.1 for each component carrier while all downlink carriers are active. For E-UTRA CA configurations including an operating band without uplink band (as noted in Table 5.5-1), the requirements for all downlinks shall be met with the single uplink carrier active in each band capable of UL operation. For E-UTRA CA configurations listed in Table 7.3.1A-0a under conditions for which reference sensitivity for the operating band being tested is N/A, the adjacent channel requirements of subclause 7.5.1A do not apply.

For intra-band contiguous carrier aggregation the downlink SCC(s) shall be configured at nominal channel spacing to the PCC. For FDD, the PCC shall be configured closest to the uplink band. All downlink carriers shall be active throughout the test. The uplink output power shall be set as specified in Table 7.5.1A-2 and Table 7.5.1A-3 with the uplink configuration set according to Table 7.3.1A-1 for the applicable carrier aggregation configuration. For UE(s) supporting one uplink carrier, the uplink configuration of the PCC shall be in accordance with Table 7.3.1-2. The UE shall fulfil the minimum requirement specified in Table 7.5.1A-1 for an adjacent channel interferer on either side of the aggregated downlink signal at a specified frequency offset and for an interferer power up to -25 dBm. The throughput of each carrier shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.5.1A-2 and 7.5.1A-3.

For intra-band non-contiguous carrier aggregation with one uplink carrier and two downlink sub-blocks, each larger than or equal to 5 MHz, the adjacent channel selectivity requirements are defined with the uplink configuration in accordance with Table 7.3.1A-3. For this uplink configuration, the UE shall meet the requirements for each sub-block as specified in subclauses 7.5.1 and 7.5.1A for one component carrier and two component carriers per sub-block, respectively. The UE shall fulfil the minimum requirements all values of a single adjacent channel interferer in-gap and out-of-gap up to a –25 dBm interferer power while all downlink carriers are active. For the lower range of test parameters (Case 1), the interferer power P_{interferer} shall be set to the maximum of the levels given by the carriers of the respective sub-blocks as specified in Table 7.5.1-2 and Table 7.5.1A-2 for one component carrier and two component carriers per sub-block, respectively. The wanted signal power levels for the carriers of each sub-block shall then be adjusted relative to P_{interferer} in accordance with the ACS requirement for each sub-block (Table 7.5.1-1 and Table 7.5.1A-1). For the upper range of test parameters (Case 2) for which the interferer power P_{interferer} is -25 dBm (Table 7.5.1-3 and Table 7.5.1A-3) the wanted signal power levels for the carriers of each sub-block shall be adjusted relative to P_{interferer} like for Case 1.

Table 7.5.1A-1: Adjacent channel selectivity

		CA Bandwidth Class							
Rx Parameter	Units	В	С	D	E	F			
ACS	dB	27	24	22.2					

Table 7.5.1A-2: Test parameters for Adjacent channel selectivity, Case 1

Rx Parameter	Units		CA	Bandwidth C	lass	
		В	С	D	E	F
Pw in Transmission Bandwidth		REFSENS	REFSENS	REFSEN		
Configuration, per CC		+ 14 dB	+ 14 dB	S + 14 dB		
	dBm	Aggregated	Aggregated	Aggregat		
		power +	power +	ed power		
PInterferer		25.5 dB	22.5 dB	+ 20.7 dB		
BWInterferer	MHz	5	5	5		
F _{Interferer} (offset)	MHz		2.5 + F _{offset}	2.5 +		
		2.5 + F _{offset}	/	Foffset		
		/	-2.5 - Foffset	/		
		-2.5 - Foffset		-2.5 -		
				F _{offset}		

- NOTE 1: The transmitter shall be set to 4dB below Pcmax_L,c or Pcmax_L as defined in subclause 6.2.5A.
- NOTE 2: The interferer consists of the Reference measurement channel specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1 and set-up according to Annex C.3.1
- NOTE 3: The F_{interferer} (offset) is the frequency separation of the center frequency of the carrier closest to the interferer and the center frequency of the adjacent channel interferer and shall be further adjusted to $\left|F_{interferer}/0.015+0.5\right|0.015+0.0075\,\text{MHz}$ to be offset from the sub-carrier raster.

Table 7.5.1A-3: Test parameters for Adjacent channel selectivity, Case 2

Rx Parameter	Units	ts CA Bandwidth Class							
		В	С	D	E	F			
Pw in Transmission Bandwidth Configuration, per CC	dBm	-50.5 +10log ₁₀ (N _{RB,c} / N _{RB} _{agg})	-47.5 +10log ₁₀ (N _{RB} ,c/N _{RB} agg)	-45.7 +10log ₁₀ (N _{RB,c} /N _{RB agg})					
P _{Interferer}	dBm		-25						
BWInterferer	MHz	5	5	5					
Finterferer (offset)	MHz	2.5+ F _{offset} / -2.5- F _{offset}	2.5+ F _{offset} / -2.5- F _{offset}	2.5+ F _{offset} / -2.5- F _{offset}					

- NOTE 1: The transmitter shall be set to 24dB below Pcmax_L,c or Pcmax_L as defined in subclause 6.2.5A.
- NOTE 2: The interferer consists of the Reference measurement channel specified in Annex 3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1 and set-up according to Annex C.3.1
- NOTE 3: The $F_{interferer}$ (offset) is the frequency separation of the center frequency of the carrier closest to the interferer and the center frequency of the adjacent channel interferer and shall be further adjusted to $|F_{interferer}/0.015 + 0.5|0.015 + 0.0075$ MHz to be offset from the sub-carrier raster.

For combinations of intra-band contiguous and inter-band carrier aggregation with three downlink carriers and one uplink carrier assigned to one E-UTRA band, the requirement is defined with the uplink active in the band other than that supporting the downlink(s) under test and a configuration in accordance with Table 7.3.1-2. The downlink PCC carrier center frequency shall be configured closer to the uplink operating band than the downlink SCC center frequency when the uplink is active in the band supporting two component carriers. For E-UTRA CA configurations including an operating band without uplink band, the requirements for all downlinks shall be met with the single uplink carrier active in each band capable of UL operation. For these uplink configurations, the UE shall meet the adjacent channel selectivity requirements for intra-band contiguous carrier aggregation of two downlink carriers and for the remaining component carrier the the requirements specified in subclause 7.5.1. The three downlink carriers shall be active throughout the tests.

For combinations of intra-band non-contiguous and inter-band carrier aggregation with three downlink carriers and one uplink carrier assigned to one E-UTRA band, the requirement is defined with the uplink active in the band other than that supporting the downlink(s) under test. The uplink configuration shall be in accordance with Table 7.3.1A-3 when the uplink is active in the band supporting two component carriers and in accordance with Table 7.3.1-2 when the uplink is active in the other band. For E-UTRA CA configurations including an operating band without uplink band, the requirements for all downlinks shall be met with the single uplink carrier active in each band capable of UL operation. For these uplink configurations, the UE shall meet the adjacent channel selectivity requirements for intra-band non-contiguous carrier aggregation of two downlink carriers with $\Delta R_{IBNC} = 0$ dB for all sub-block gaps (Table 7.3.1A-3) and

for the remaining component carrier the the requirements specified in subclause 7.5.1. The three downlink carriers shall be active throughout the tests.

7.5.1B Minimum requirements for UL-MIMO

For UE(s) with two transmitter antenna connectors in closed-loop spatial multiplexing scheme, the minimum requirements in Clause 7.5.1 shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2. For UL-MIMO, the parameter P_{CMAX_L} is defined as the total transmitter power over the two transmit antenna connectors.

7.5.1D Minimum requirements for ProSe

The UE shall fulfil the minimum requirement specified in Table 7.5.1D-1 for all values of an adjacent channel interferer up to -25 dBm. However it is not possible to directly measure the ACS, instead the lower and upper range of test parameters are chosen in Table 7.5.1D-2 and Table 7.5.1D-3 where the throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annex A.6.2.

Table 7.5.1D-1: Adjacent channel selectivity for ProSe

		Channel bandwidth					
Rx Parameter	Units	1.4	3	5	10	15	20
		MHz	MHz	MHz	MHz	MHz	MHz
ACS	dB			33.0	33.0	30	27

Table 7.5.1D-2: Test parameters for Adjacent channel selectivity for ProSe, Case 1

Rx Parameter	Units	Channel bandwidth						
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
Power in	dBm							
Transmission Bandwidth		Prefsens_prose + 14 dB						
Configuration								
	dBm			REFSENS	REFSENS	REFSENS	REFSENS	
PInterferer				+45.5dB	+45.5dB	+42.5dB	+39.5dB	
BWInterferer	MHz			5	5	5	5	
Finterferer (offset)	MHz			5+0.0025	7.5+0.0075	10+0.0125	12.5+0.0025	
				/	/	/	/	
				-5-0.0025	-7.5-0.0075	-10-0.0125	-12.5-	
						<u> </u>	0.0025	

NOTE 1: The interferer is QPSK modulated PUSCH containing data and reference symbols. Normal cyclic prefix is used. The data content shall be uncorrelated to the wanted signal and modulated according to clause 5 of TS36.211.

Table 7.5.1D-3: Test parameters for Adjacent channel selectivity for ProSe, Case 2

Rx Parameter	Units	Channel bandwidth					
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Power in Transmission							
Bandwidth Configuration	dBm			-56.5	-56.5	-53.5	-50.5
	-ID				<u> </u>		
PInterferer	dBm			-2	5		
BWInterferer	MHz			5	5	5	5
Finterferer (offset)	MHz			5+0.0025	7.5+0.0075	10+0,0125	12.5+0.0025
				/	/	/	/
				-5-0.0025	-7.5-0.0075	-10-0.0125	-12.5-
							0.0025

NOTE 1: The interferer is QPSK modulated PUSCH containing data and reference symbols. Normal cyclic prefix is used. The data content shall be uncorrelated to the wanted signal and modulated according to clause 5 of TS36.211.

7.6 Blocking characteristics

The blocking characteristic is a measure of the receiver's ability to receive a wanted signal at its assigned channel frequency in the presence of an unwanted interferer on frequencies other than those of the spurious response or the adjacent channels, without this unwanted input signal causing a degradation of the performance of the receiver beyond a specified limit. The blocking performance shall apply at all frequencies except those at which a spurious response occur.

7.6.1 In-band blocking

In-band blocking is defined for an unwanted interfering signal falling into the UE receive band or into the first 15 MHz below or above the UE receive band at which the relative throughput shall meet or exceed the minimum requirement for the specified measurement channels..

7.6.1.1 Minimum requirements

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.6.1.1-1 and 7.6.1.1-2.

Table 7.6.1.1-1: In band blocking parameters

Rx parameter	Units	Channel bandwidth							
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz		
Power in			REFSENS + channel bandwidth specific value below						
Transmission Bandwidth Configuration	dBm	6	6	6	6	7	9		
BWInterferer	MHz	1.4	3	5	5	5	5		
F _{loffset, case 1}	MHz	2.1+0.0125	4.5+0.0075	7.5+0.0125	7.5+0.0025	7.5+0.0075	7.5+0.0125		
Floffset, case 2	MHz	3.5+0.0075	7.5+0.0075	12.5+0.0075	12.5+0.012	12.5+0.002	12.5+0.007		
					5	5	5		

NOTE 1: The transmitter shall be set to 4dB below Pcmax_L at the minimum uplink configuration specified in Table 7.3.1-2 with Pcmax_L as defined in subclause 6.2.5.

NOTE 2: The interferer consists of the Reference measurement channel specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1 and set-up according to Annex C.3.1

Table 7.6.1.1-2: In-band blocking

E-UTRA	Parameter	Unit	Case 1	Case 2	Case 3	Case 4	Case 5
band	PInterferer	dB m	-56	-44			-38
	F _{Interferer} (offset)	MH z	=-BW/2 - F _{loffset,case} 1 & =+BW/2 + F _{loffset,case} 1	≤-BW/2 - Floffset,case 2 & ≥+BW/2 + Floffset,case 2			-BW/2 - 11
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44	Finterferer	MHz	(Note 2)	F _{DL_low} – 15 to F _{DL_high} + 15	Void	Void	
30	FInterferer	MHz	(Note 2)	F _{DL_low} – 15 to F _{DL_high} + 15			F _{DL_low} – 11

NOTE 1: For certain bands, the unwanted modulated interfering signal may not fall inside the UE receive band, but within the first 15 MHz below or above the UE receive band

NOTE 2: For each carrier frequency the requirement is valid for two frequencies:

- a. the carrier frequency -BW/2 Floffset, case 1 and
- b. the carrier frequency +BW/2 + Floffset, case 1

NOTE 3: Finterferer range values for unwanted modulated interfering signal are interferer center frequencies

For the UE which supports inter band CA configuration in Table 7.3.1-1A, $P_{Interferer}$ power defined in Table 7.6.1.1-2 is increased by the amount given by $\Delta R_{IB,c}$ in Table 7.3.1-1A.

7.6.1.1A Minimum requirements for CA

For inter-band carrier aggregation with one component carrier per operating band and the uplink assigned to one E-UTRA band the in-band blocking requirements are defined with the uplink active on the band(s) other than the band whose downlink is being tested. The UE shall meet the requirements specified in subclause 7.6.1.1 for each component carrier while all downlink carriers are active. For the UE which supports inter band CA configuration in Table 7.3.1-1A, $P_{Interferer}$ power defined in Table 7.6.1.1-2 is increased by the amount given by $\Delta R_{IB,c}$ in Table 7.3.1-1A. For E-UTRA CA configurations including an operating band without uplink band (as noted in Table 5.5-1), the requirements for all downlinks shall be met with the single uplink carrier active in each band capable of UL operation. The requirements for the component carrier configured in the operating band without uplink band are specified in Table 7.6.1.1-1 and Table 7.6.1.1A-0.

Table 7.6.1.1A-0: In-band blocking for additional operating bands for carrier aggregation

E-UTRA band	Parameter	Unit	Case 1	Case 2
	Pinterferer	dBm	-56	-44
	F _{Interferer} (offset)	MHz	=-BW/2 - Floffset,case 1 & =+BW/2 + Floffset,case 1	≤-BW/2 − F _{loffset,case 2} & ≥+BW/2 + F _{loffset,case 2}
29, 32	F _{Interferer}	MHz	(Note 2)	F _{DL_low} – 15 to F _{DL_high} + 15

NOTE 1: For certain bands, the unwanted modulated interfering signal may not fall inside the UE receive band, but within the first 15 MHz below or above the UE receive band

NOTE 2: For each carrier frequency the requirement is valid for two frequencies:

- a. the carrier frequency -BW/2 Floffset, case 1 and
- b. the carrier frequency +BW/2 + F_{loffset, case 1}

NOTE 3: F_{Interferer} range values for unwanted modulated interfering signal are interferer center frequencies

For E-UTRA CA configurations listed in Table 7.3.1A-0a under conditions for which reference sensitivity for the operating band being tested is N/A, the in-band blocking requirements of subclause 7.6.1.1A do not apply.

For intra-band contiguous carrier aggregation the downlink SCC(s) shall be configured at nominal channel spacing to the PCC. For FDD, the PCC shall be configured closest to the uplink band. All downlink carriers shall be active throughout the test. The uplink output power shall be set as specified in Table 7.6.1.1A-1 with the uplink configuration set according to Table 7.3.1A-1 for the applicable carrier aggregation configuration. For UE(s) supporting one uplink carrier, the uplink configuration of the PCC shall be in accordance with Table 7.3.1-2. The UE shall fulfil the minimum requirement in presence of an interfering signal specified in Tables 7.6.1.1A-1 and Tables 7.6.1.1A-2 being on either side of the aggregated signal. The throughput of each carrier shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.6.1.1A-1 and 7.6.1.1A-2.

For intra-band non-contiguous carrier aggregation with one uplink carrier and two downlink sub-blocks, each larger than or equal to 5 MHz, the in-band blocking requirements are defined with the uplink configuration in accordance with Table 7.3.1A-3. For this uplink configuration, the UE shall meet the requirements for each sub-block as specified in subclause 7.6.1.1 and in this subclause for one component carrier and two component carriers per sub-block, respectively. The requirements apply for in-gap and out-of-gap interferers while all downlink carriers are active.

Rx Parameter	Units CA Bandwidth Class						
		В	С	D	E	F	
Pw in Transmission		R	EFSENS + CA B	andwidth Class	specific value belov	N	
Bandwidth Configuration, per CC	dBm	9	12	13.8			
BWInterferer	MHz	5	5	5			
Floffset, case 1	MHz	7.5	7.5	7.5			
Floffset_case 2	MHz	12.5	12.5	12.5			

Table 7.6.1.1A-1: In band blocking parameters

NOTE 1: The transmitter shall be set to 4dB below Pcmax_L, or Pcmax_L as defined in subclause 6.2.5A

NOTE 2: The interferer consists of the Reference measurement channel specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1 and set-up according to

Annex C.3.1

Table 7.6.1.1A-2: In-band blocking

CA configuration	Parameter	Unit	Case 1	Case 2
	P _{Interferer}	dBm	-56	-44
	F _{Interferer}		=-Foffset-Floffset,case 1	≤-F _{offset} — F _{loffset,case 2}
	(offset)	MHz	&	&
	(Oliset)		=+Foffset + Floffset,case 1	≥+F _{offset} + F _{loffset,case 2}
CA_1C, CA_2C, CA_3C, CA_7C, CA_12B, CA_23B, CA_27B, CA_38C, CA_39C, CA_40C, CA_41C, CA_40D, CA_41D, CA_42C	F _{Interferer} (Range)	MHz	(Note 2)	F _{DL_low} – 15 to F _{DL_high} + 15

- NOTE 1: For certain bands, the unwanted modulated interfering signal may not fall inside the UE receive band, but within the first 15 MHz below or above the UE receive band
- NOTE 2: For each carrier frequency the requirement is valid for two frequencies:
 - a. the carrier frequency -Foffset Floffset, case 1 and
 - b. the carrier frequency +Foffset + Floffset, case 1
- NOTE 3: Foffset is the frequency offset from the center frequency of the CC being tested to the edge of aggregated channel bandwidth.
- NOTE 4: The F_{interferer} (offset) is the frequency separation of the center frequency of the carrier closest to the interferer and the center frequency of the interferer and shall be further adjusted to $\begin{bmatrix} F_{interferer} / 0.015 + 0.5 \end{bmatrix} 0.015 + 0.0075$ MHz to be offset from the sub-carrier raster.

For combinations of intra-band contiguous and inter-band carrier aggregation with three downlink carriers and one uplink carrier assigned to one E-UTRA band, the requirement is defined with the uplink active in the band other than that supporting the downlink(s) under test and a configuration in accordance with Table 7.3.1-2. The downlink PCC carrier center frequency shall be configured closer to the uplink operating band than the downlink SCC center frequency when the uplink is active in the band supporting two component carriers. For E-UTRA CA configurations including an

operating band without uplink band, the requirements for all downlinks shall be met with the single uplink carrier active in each band capable of UL operation. For these uplink configurations, the UE shall meet the in-band blocking requirements for intra-band contiguous carrier aggregation of two downlink carriers and for the remaining component carrier the requirements specified in subclause 7.6.1. The three downlink carriers shall be active throughout the tests.

For combinations of intra-band non-contiguous and inter-band carrier aggregation with three downlink carriers and one uplink carrier assigned to one E-UTRA band, the requirement is defined with the uplink active in the band other than that supporting the downlink(s) under test. The uplink configuration shall be in accordance with Table 7.3.1A-3 when the uplink is active in the band supporting two component carriers and in accordance with Table 7.3.1-2 when the uplink is active in the other band. For E-UTRA CA configurations including an operating band without uplink band, the requirements for all downlinks shall be met with the single uplink carrier active in each band capable of UL operation. For these uplink configurations, the UE shall meet the in-band blocking requirements for intra-band non-contiguous carrier aggregation of two downlink carriers with $\Delta R_{IBNC} = 0$ dB for all sub-block gaps (Table 7.3.1A-3) and for the remaining component carrier the requirements specified in subclause 7.6.1. The three downlink carriers shall be active throughout the tests.

7.6.1.1D Minimum requirements for ProSe

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annex A.6.2.

Table 7.6.1.1D-1: In band blocking parameters for ProSe Direct Discovery

Rx parameter	Units	Channel bandwidth							
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz		
Power in		PR	EFSENS_ProSe +	channel bandwid	dth specific val	ue below + Pof	fset		
Transmission Bandwidth Configuration	dBm			6	6	7	9		
BWInterferer	MHz			5	5	5	5		
Floffset, case 1	MHz			7.5+0.0125	7.5+0.0025	7.5+0.0075	7.5+0.0125		
Floffset, case 2	MHz			12.5+0.0075	12.5+0.012 5	12.5+0.002 5	12.5+0.007 5		
Poffset	dB			10.9	13.9	15.7	16.9		

NOTE 1: The interferer is QPSK modulated PUSCH containing data and reference symbols. Normal cyclic prefix is used. The data content shall be uncorrelated to the wanted signal and modulated according to clause 5 of TS36.211

Table 7.6.1.1D-2: In band blocking parameters for ProSe Direct Communication

Rx parameter	Units	Channel bandwidth							
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz		
Power in			Prefsens_prose + channel bandwidth specific value below						
Transmission Bandwidth Configuration	dBm			6	6	7	9		
BWInterferer	MHz			5	5	5	5		
F _{loffset, case 1}	MHz			7.5+0.0125	7.5+0.0025	7.5+0.0075	7.5+0.0125		
F _{loffset, case 2}	MHz			12.5+0.0075	12.5+0.012	12.5+0.002	12.5+0.007		
	1				5	5	5		

NOTE 1: The interferer is QPSK modulated PUSCH containing data and reference symbols. Normal cyclic prefix is used. The data content shall be uncorrelated to the wanted signal and modulated according to clause 5 of TS36.211

E-UTRA	Parameter	Unit	Case 1	Case 2
ProSe	P _{Interferer}	dBm	-56	-44
band	E		=-BW/2 - F _{loffset,case 1}	≤-BW/2 − F _{loffset,case 2}
	F _{Interferer} (offset)	MHz	&	&
	(Oliset)		=+BW/2 + Floffset,case 1	≥+BW/2 + Floffset,case 2
2,3,4,7,14,				F _{DL_low} – 15
20,26,28,31	Finterferer	MHz	(Note 2)	to
20,20,20,01				F _{DL_high} + 15

Table 7.6.1.1D-3: In-band blocking for ProSe

NOTE 1: For certain bands, the unwanted modulated interfering signal may not fall inside the UE receive band, but within the first 15 MHz below or above the UE receive band

NOTE 2: For each carrier frequency the requirement is valid for two frequencies:

a. the carrier frequency -BW/2 - Floffset, case 1 and

b. the carrier frequency +BW/2 + Floffset, case 1

NOTE 3: F_{Interferer} range values for unwanted modulated interfering signal are interferer center frequencies

For the UE which supports inter band CA configuration in Table 7.3.1-1A, $P_{Interferer}$ power defined in Table 7.6.1.1D-3 is increased by the amount given by $\Delta R_{IB,c}$ in Table 7.3.1-1A.

7.6.2 Out-of-band blocking

Out-of-band band blocking is defined for an unwanted CW interfering signal falling more than 15 MHz below or above the UE receive band. For the first 15 MHz below or above the UE receive band the appropriate in-band blocking or adjacent channel selectivity in subclause 7.5.1 and subclause 7.6.1 shall be applied.

7.6.2.1 Minimum requirements

The throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.6.2.1-1 and 7.6.2.1-2.

For Table 7.6.2.1-2 in frequency range 1, 2 and 3, up to $\max(24, 6 \cdot \lceil N_{RB} / 6 \rceil)$ exceptions are allowed for spurious response frequencies in each assigned frequency channel when measured using a 1MHz step size, where N_{RB} is the number of resource blocks in the downlink transmission bandwidth configuration (see Figure 5.6-1). For these exceptions the requirements of subclause 7.7 Spurious response are applicable.

For Table 7.6.2.1-2 in frequency range 4, up to $\max(8, \lceil (N_{RB} + 2 \cdot L_{CRBs})/8 \rceil)$ exceptions are allowed for spurious response frequencies in each assigned frequency channel when measured using a 1MHz step size, where N_{RB} is the number of resource blocks in the downlink transmission bandwidth configurations (see Figure 5.6-1) and L_{CRBs} is the number of resource blocks allocated in the uplink. For these exceptions the requirements of clause 7.7 spurious response are applicable.

Table 7.6.2.1-1: Out-of-band blocking parameters

Rx Parameter	Units	Channel bandwidth						
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
Power in		REFS	ENS + ch	annel ban	dwidth sp	ecific valu	e below	
Transmission Bandwidth Configuration	dBm	6	6	6	6	7	9	

NOTE 1: The transmitter shall be set to 4dB below Pcmax_L at the minimum uplink configuration specified in Table 7.3.1-2 with Pcmax_L as defined in subclause 6.2.5.

NOTE 2: Reference measurement channel is specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.

Table 7.6.2.1-2: Out of band blocking

E-UTRA band	Parameter	Units	Frequency				
			Range 1	Range 2	Range 3	Range 4	
	P _{Interferer}	dBm	-44	-30	-15	-15	
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,			F _{DL_low} -15 to F _{DL_low} -60	F _{DL_low} -60 to F _{DL_low} -85	F _{DL_low} -85 to 1 MHz	-	
12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42 (NOTE 2), 43 (NOTE 2), 44	Finterferer (CW)	MHz	F _{DL_high} +15 to F _{DL_high} + 60	F _{DL_high} +60 to F _{DL_high} +85	F _{DL_high} +85 to +12750 MHz	-	
2, 5, 12, 17	F _{Interferer}	MHz	-	-	-	Ful_low - Ful_high	

NOTE 1: For the UE which supports both Band 11 and Band 21 the out of blocking is FFS.

NOTE 2: The power level of the interferer (P_{Interferer}) for Range 3 shall be modified to -20 dBm for F_{Interferer} > 2800 MHz and F_{Interferer} < 4400 MHz.

7.6.2.1A Minimum requirements for CA

For inter-band carrier aggregation with one component carrier per operating band and the uplink assigned to one E-UTRA band, the out-of-band blocking requirements are defined with the uplink active on the band(s) other than the band whose downlink is being tested. The throughput in the downlink measured shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.6.2.1-1 and 7.6.2.1A-0. The UE shall meet these requirements for each component carrier while all downlink carriers are active.

For inter-band carrier aggregation with one component carrier per operating band and the uplink active in two E-UTRA bands, the out-of-band blocking requirements specified above shall be met with the transmitter power for the uplink set to 7 dB below PCMAX_L,c for each serving cell *c*.

For E-UTRA CA configurations including an operating band without uplink band (as noted in Table 5.5-1), the requirements for all downlinks shall be met with the single uplink carrier active in each band capable of UL operation. For E-UTRA CA configurations listed in Table 7.3.1A-0a under conditions for which reference sensitivity for the operating band being tested is N/A, the out-of-band blocking requirements of subclause 7.6.2.1A do not apply.

≤ 12750

Parameter	Unit	Range 1	Range 2	Range 3
Pw	dBm	Table 7.6	6.2.1-1 for all component ca	arriers
Pinterferer	dBm	$-44 + \Delta R_{IB,c}$	-30 + ∆R _{IB,c}	-15 + $\Delta R_{IB,c}$
Finterferer	MHz	$-60 < f - F_{DL_Low(j)} < -15$	$-85 < f - F_{DL_Low(j)} \le -60$	$1 \le f \le F_{DL_Low(1)} - 85$
(CW)		or	or	or
		$15 < f - F_{DL_High(j)} < 60$	$60 \le f - F_{DL_High(j)} < 85$	F _{DL_High()} + 85 ≤ f
				$\leq F_{\mathrm{DL_Low}(j+1)} - 85$ with
				<i>j</i> < X
				or
				$F_{DL \; High(X)} + 85 \le f$

Table 7.6.2.1A-0: out-of-band blocking for inter-band carrier aggregation

- NOTE 1: $F_{DL_Low(j)}$ and $F_{DL_High(j)}$ denote the respective lower and upper frequency limits of the operating band containing carrier j, j = 1,...,X, with carriers numbered in increasing order of carrier frequency and X the number of component carriers in the band combination (X = 2 or X = 3 for the present version of this specification).
- NOTE 2: For $F_{DL_Low(j+1)} F_{DL_High(j)} < 145$ MHz and $F_{Interferer}$ in $F_{DL_High(j)} < f < F_{DL_Low(j+1)}$ with j < X, $F_{Interferer}$ can be in both Range 1 and Range 2. Then the lower of the $P_{Interferer}$ applies.
- NOTE 3: For F_{DL_Low(j)} − 15 MHz ≤ f ≤ F_{DL_High(j)} + 15 MHz the appropriate adjacent channel selectivity and in-band blocking requirments in the respective subclauses 7.5.1A and 7.6.1.1A shall be applied for carrier *j*.
- NOTE 4: $\Delta R_{IB,c}$ according to Table 7.3.1-1A applies when serving cell c is measured.
- NOTE 5: For inter-band CA combinations containing Bands 42 or 43, the interferer with respect to Band 42 or Band 43 shall have power level (P_{Interferer}) for Range 3 modified to -20 + ΔR_{IB,c} dBm for F_{Interferer} > 2800 MHz and F_{Interferer} < 4400 MHz.

For Table 7.6.2.1A-0 in frequency ranges 1, 2 and 3, up to $\max(24,6 \cdot \lceil N_{RB} \cdot /6 \rceil)$ exceptions per downlink are allowed for spurious response frequencies for one active uplink when measured using a step size of 1 MHz.

For Table 7.6.2.1A-0 in frequency ranges 1, 2 and 3, up to $2 \cdot \max(24.6 \cdot \lceil N_{RB} \cdot /6 \rceil)$ exceptions per downlink are allowed for spurious response frequencies for two active uplinks when measured using a step size of 1 MHz. For these exceptions the requirements in clause 7.7.1A apply.

For intra-band contiguous carrier aggreagations the downlink SCC(s) shall be configured at nominal channel spacing to the PCC. For FDD, the PCC shall be configured closest to the uplink band. All downlink carriers shall be active throughout the test. The uplink output power shall be set as specified in Table 7.6.2.1A-1 with the uplink configuration set according to Table 7.3.1A-1 for the applicable carrier aggregation configuration. For UE(s) supporting one uplink carrier, the uplink configuration of the PCC shall be in accordance with Table 7.3.1-2.

The UE shall fulfil the minimum requirement in presence of an interfering signal specified in Tables 7.6.2.1A-1 and Tables 7.6.2.1A-2 being on either side of the aggregated signal. The throughput of each carrier shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.6.2.1A-1 and 7.6.2.1A-2.

For Table 7.6.2.1A-2 in frequency range 1, 2 and 3, up to $\max(24,6 \cdot \lceil N_{RB} \cdot /6 \rceil)$ exceptions are allowed for spurious response frequencies in each assigned frequency channel when measured using a 1MHz step size. For these exceptions the requirements of subclause 7.7 Spurious response are applicable.

Table 7.6.2.1A-1: Out-of-band blocking parameters

Rx Parameter	Units	CA Bandwidth Class					
		В	С	D	E	F	
Pw in Transmission Bandwidth Configuration, per	dBm	REFSENS + CA Bandwidth Class specific value below					
CC		9	9	9			
NOTE 1: The transmitter shall be set to 4dB below	PCMAX_L,c (or Pcmax_L a	s defined in	subclause	6.2.5A.		
NOTE 2: Reference measurement channel is spec	th one side	d dynamic (OCNG Patte	ern OP.1			
FDD/TDD as described in Annex A 5.1.1/	A 5 2			•			

CA configuration	Parameter	Units	Frequency		
			Range 1	Range 2	Range 3
	P _{Interferer}	dBm	-44	-30	-15
_1C, CA_2C, CA_3C, CA_7C , CA_12B, CA_23B,	Finterferer	MHz	F _{DL_low} - 15 to F _{DL_low} - 60	F _{DL_low} - 60 to F _{DL_low} - 85	F _{DL_low} - 85 to 1 MHz
CA_27B, CA_38C, CA_40C, CA_41C, CA_40D, CA_42C (NOTE 1)	(CW)		F _{DL_high} +15 to F _{DL_high} + 60	F _{DL_high} +60 to F _{DL_high} +85	F _{DL_high} +85 to +12750 MHz

Table 7.6.2.1A-2: Out of band blocking

NOTE 1: For CA_42C, the power level of the interferer (P_{Interferer}) for Range 3 shall be modified to -20 dBm for F_{Interferer} > 2800 MHz and F_{Interferer} < 4400 MHz.

For intra-band non-contiguous carrier aggregation with one uplink carrier and two downlink sub-blocks, the out-of-band blocking requirements are defined with the uplink configuration in accordance with table 7.3.1A-3. For this uplink configuration, the UE shall meet the requirements for each sub-block as specified in subclauses 7.6.2.1 and 7.6.2.1A for one component carrier and two component carriers per sub-block, respectely. The requirements apply with all downlink carriers active.

For Table 7.6.2.1-2 in frequency range 1, 2 and 3, up to $\max(24,6\cdot\lceil N_{RB}\cdot/6\rceil)$ exceptions per assigned E-UTRA channel per sub-block of the E-UTRA CA configuration are allowed for spurious response frequencies for one active uplink when measured using a 1MHz step size. For these exceptions the requirements of subclause 7.7 spurious response are applicable.

For Table 7.6.2.1-2 in frequency range 4, up to $\max(8, \lceil (N_{RB} + 2 \cdot L_{CRBs})/8 \rceil)$ exceptions per assigned E-UTRA channel per sub-block of the E-UTRA CA configuration are allowed for spurious response frequencies for one active uplink when measured using a 1MHz step size. For these exceptions the requirements of clause 7.7 spurious response are applicable.

For intra-band non-contiguous carrier aggregation with two uplink carriers and two downlink carriers, the out-of-band blocking requirements are defined with the uplink configuration of the PCC and SCC being in accordance with Table 7.3.1A-4 and powers of both carriers set to $P_{CMAX_L,c} - 7$ dBm. The UE shall meet the requirements specified in subclause 7.6.2.1 for each component carrier while both downlink carriers are active.

For Table 7.6.2.1-2 in frequency range 1, 2 and 3, up to $2 \cdot \max(24,6 \cdot \lceil N_{RB} \cdot /6 \rceil)$ exceptions per assigned E-UTRA channel per sub-block of the E-UTRA CA configuration are allowed for spurious response frequencies for two active uplinks in the same operating band when measured using a 1MHz step size. For these exceptions the requirements of subclause 7.7 spurious response are applicable.

For Table 7.6.2.1-2 in frequency range 4, up to $2 \cdot \max(8, \lceil (N_{RB} + 2 \cdot L_{CRBs})/8 \rceil)$ exceptions per assigned E-UTRA channel per sub-block of the E-UTRA CA configuration are allowed for spurious response frequencies for two active uplinks in the same operating band when measured using a 1MHz step size. For these exceptions the requirements of clause 7.7 spurious response are applicable.

For combinations of intra-band contiguous and inter-band carrier aggregation with three downlink carriers and the uplink assigned to one E-UTRA band, the requirement is defined with the uplink active in the band other than that supporting the downlink(s) under test and a configuration in accordance with Table 7.3.1-2. The downlink PCC carrier center frequency shall be configured closer to the uplink operating band than the downlink SCC center frequency when the uplink is active in the band supporting two component carriers. For E-UTRA CA configurations including an operating band without uplink band, the requirements for all downlinks shall be met with the single uplink carrier active in each band capable of UL operation. For each downlink the UE shall meet the out-of-band blocking requirements applicable for inter-band carrier aggregation with one component carrier per operating band but with a sub-block of up to two component carriers assigned to the same operating band. For the sub-block of two component carriers the out-of-band blocking parameters in Table 7.6.2.1-1 are replaced by those specified in Table 7.6.2.1A-1. The three downlink carriers shall be active throughout the tests.

For combinations of intra-band non-contiguous and inter-band carrier aggregation with three downlink carriers and the uplink assigned to one E-UTRA band, the requirement is defined with the uplink active in the band other than that supporting the downlink(s) under test. The uplink configuration shall be in accordance with Table 7.3.1A-3 when the

uplink is active in the band supporting two component carriers and in accordance with Table 7.3.1-2 when the uplink is active in the other band. For E-UTRA CA configurations including an operating band without uplink band, the requirements for all downlinks shall be met with the single uplink carrier active in each band capable of UL operation. For the two component carriers within the same band, P_{wanted} in Table 7.6.2.1A-0 is set using $\Delta R_{IBNC} = 0$ dB for all subblock gaps (Table 7.3.1A-3). For each downlink the UE shall meet the out-of-band blocking requirements applicable for inter-band carrier aggregation with one component carrier per operating band but with up to two component carriers assigned to the same band. The three downlink carriers shall be active throughout the tests.

7.6.2.1D Minimum requirements for ProSe

The throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annex A.6.2 with parameters specified in Tables 7.6.2.1D-1, 7.6.2.1D-2 and 7.6.2.1D-3.

For Table 7.6.2.1D-3 in frequency range 1, 2 and 3, up to $\max(24, 6 \cdot \lceil N_{RR} / 6 \rceil)$ exceptions are allowed for

spurious response frequencies in each assigned frequency channel when measured using a 1MHz step size, where N_{RB} is the number of resource blocks in the downlink transmission bandwidth configuration (see Figure 5.6-1). For these exceptions the requirements of subclause 7.7 Spurious response are applicable.

Table 7.6.2.1D-1: Out-of-band blocking parameters for ProSe Direct Discovery

Rx Parameter	Units	Channel bandwidth						
		1.4 MU-	1.4 3 MHz 5 MHz 10 15 20 MHz MHz MHz MHz					
Power in			 	l nannal hai		ecific valu		
Transmission	dBm	I REFSENS	5_P105e + CI		offset	becine van	de below	
Bandwidth Configuration	ubili	6 6 7 9						
Poffset	dB			10.9	13.9	15.7	16.9	
NOTE 2: Reference measurement channel is specified in Annex A.6.2.								

Table 7.6.2.1D-2: Out-of-band blocking parameters for ProSe Direct Communication

Rx Parameter	Units	Channel bandwidth						
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
Power in		Prefsens	S_ProSe + Ch	nannel ba	ndwidth sp	ecific valu	ue below	
Transmission Bandwidth	dBm			6	6	7	9	
Configuration								

Table 7.6.2.1D-3: Out of band blocking for ProSe

E-UTRA	Parameter	Units	Frequency				
ProSe			Range 1 Range 2		Range 3		
band	PInterferer	dBm	-44	-30	-15		
			F _{DL_low} -15 to	F _{DL_low} -60 to	F _{DL_low} -85 to		
2,3,4,7,14,	F _{Interferer}	MHz	F _{DL_low} -60	F _{DL_low} -85	1 MHz		
20,26,28,31	(CW)	IVII IZ	FDL_high +15 to	FDL_high +60 to	FDL_high +85 to		
			F _{DL_high} + 60	F _{DL_high} +85	+12750 MHz		
NOTE 1: For t	he UE which su	pports botl	n Band 11 and Band	21 the out of blockir	ng is FFS.		

7.6.3 Narrow band blocking

This requirement is measure of a receiver's ability to receive a E-UTRA signal at its assigned channel frequency in the presence of an unwanted narrow band CW interferer at a frequency, which is less than the nominal channel spacing.

7.6.3.1 Minimum requirements

The relative throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.6.3.1-1

Channel Bandwidth Parameter Unit 1.4 MHz 5 MHz 10 MHz 15 MHz Prefsens + channel-bandwidth specific value below P_w dBm 16 16 13 Puw (CW) dBm -55 -55 -55 -55 -55 -55 Fuw (offset for 1.7025 2.7075 7.7025 MHz 0.9075 5.2125 10.2075 $\Delta f = 15 \text{ kHz}$ Fuw (offset for MHz $\Delta f = 7.5 \text{ kHz}$

Table 7.6.3.1-1: Narrow-band blocking

NOTE 1: The transmitter shall be set a 4 dB below Pcmax_L at the minimum uplink configuration specified in Table 7.3.1-2 with Pcmax_L as defined in subclause 6.2.5.

NOTE 2: Reference measurement channel is specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1.

For the UE which supports inter-band CA configuration in Table 7.3.1-1A, P_{UW} power defined in Table 7.6.3.1-1 is increased by the amount given by $\Delta R_{IB,c}$ in Table 7.3.1-1A.

7.6.3.1A Minimum requirements for CA

For inter-band carrier aggregation with one component carrier per operating band and the uplink assigned to one E-UTRA band the narrow-band blocking requirements are defined with the uplink active on the band(s) other than the band whose downlink is being tested. The UE shall meet the requirements specified in subclause 7.6.3.1 for each component carrier while all downlink carriers are active. For E-UTRA CA configurations including an operating band without uplink band (as noted in Table 5.5-1), the requirements for all downlinks shall be met with the single uplink carrier active in each band capable of UL operation. For E-UTRA CA configurations listed in Table 7.3.1A-0a under conditions for which reference sensitivity for the operating band being tested is N/A, the narrow-band blocking requirements of subclause 7.6.3.1A do not apply.

For intra-band contiguous carrier aggregation the downlink SCC(s) shall be configured at nominal channel spacing to the PCC. For FDD, the PCC shall be configured closest to the uplink band. All downlink carriers shall be active throughout the test. The uplink output power shall be set as specified in Table 7.6.3.1A-1 with the uplink configuration set according to Table 7.3.1A-1 for the applicable carrier aggregation configuration. For UE(s) supporting one uplink, the uplink configuration of the PCC shall be in accordance with Table 7.3.1-2. The UE shall fulfil the minimum requirement in presence of an interfering signal specified in Table 7.6.3.1A-1 being on either side of the aggregated signal. The throughput of each carrier shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.6.3.1A-1.

For intra-band non-contiguous carrier aggregation with one uplink carrier and two downlink sub-blocks, the narrow band blocking requirements are defined with the uplink configuration in accordance with Table 7.3.1A-3. For this uplink configuration, the UE shall meet the requirements for each sub-block as specified in subclauses 7.6.3.1 and 7.6.3.1A for one component carrier and two component carriers per sub-block, respectively. The requirements apply for in-gap and out-of-gap interferers while all downlink carriers are active.

Fuw (offset for

 $\Delta f = 7.5 \text{ kHz}$

CA Bandwidth Class Parameter Unit Ε C D REFSENS + CA Bandwidth Class specific value below Pw in Transmission Bandwidth dBm Configuration, per CC 16 16⁴ 16 P_{uw} (CW) dBm -55 -55 -55 - Foffset 0.2 F_{offset} – 0.2 Fuw (offset for MHz / $\Delta f = 15 \text{ kHz}$ + Foffset + 0.2 + Foffset + 0.2 + Foffset + 0.2

Table 7.6.3.1A-1: Narrow-band blocking

NOTE 1: The transmitter shall be set to 4dB below Pcmax_L,c or Pcmax_L as defined in subclause 6.2.5A.

MHz

- NOTE 2: Reference measurement channel is specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1.
- NOTE 3: The F_{uw} (offset) is the frequency separation of the center frequency of the carrier closest to the interferer and the center frequency of the interferer and shall be further adjusted to $\lfloor F_{interferer} / 0.015 + 0.5 \rfloor 0.015 + 0.0075$ MHz to be offset from the sub-carrier raster.
- NOTE 4: The requirement is applied for the band combinations whose component carriers' BW≥5 MHz.

For combinations of intra-band contiguous and inter-band carrier aggregation with three downlink carriers and one uplink carrier assigned to one E-UTRA band, the requirement is defined with the uplink active in the band other than that supporting the downlink(s) under test and a configuration in accordance with Table 7.3.1-2. The downlink PCC carrier center frequency shall be configured closer to the uplink operating band than the downlink SCC center frequency when the uplink is active in the band supporting two component carriers. For E-UTRA CA configurations including an operating band without uplink band, the requirements for all downlinks shall be met with the single uplink carrier active in each band capable of UL operation. For these uplink configurations, the UE shall meet the narrow-band blocking requirements for intra-band contiguous carrier aggregation of two downlink carriers and for the remaining component carrier the requirements specified in subclause 7.6.3. The three downlink carriers shall be active throughout the tests.

For combinations of intra-band non-contiguous and inter-band carrier aggregation with three downlink carriers and one uplink carrier assigned to one E-UTRA band, the requirement is defined with the uplink active in the band other than that supporting the downlink(s) under test. The uplink configuration shall be in accordance with Table 7.3.1A-3 when the uplink is active in the band supporting two component carriers and in accordance with Table 7.3.1-2 when the uplink is active in the other band. For E-UTRA CA configurations including an operating band without uplink band, the requirements for all downlinks shall be met with the single uplink active in each band capable of UL operation. For these uplink configurations, the UE shall meet the narrow-band blocking requirements for intra-band non-contiguous carrier aggregation of two downlink carriers with $\Delta R_{IBNC} = 0$ dB for all sub-block gaps (Table 7.3.1A-3) and for the remaining component carrier the requirements specified in subclause 7.6.3. The three downlink carriers shall be active throughout the tests.

7.6.3.1D Minimum requirements for ProSe

The relative throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annex A.6.2 with parameters specified in Table 7.6.3.1D-1 and Table 7.6.3.1D-2.

Table 7.6.3.1D-1: Narrow-band blocking for ProSe Direct Discovery

Parameter	Unit		-	Channel Ba	ndwidth		
Farailleter	Onit	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Pw	dBm	PREFSENS	_ProSe + chanı	nel-bandwidt	h specific v	value belov	v + P _{offset}
FW	UDIII			16	13	14	16
Puw (CW)	dBm			-55	-55	-55	-55
Poffset	dB			10.9	13.9	15.7	16.9
F_{uw} (offset for $\Delta f = 15 \text{ kHz}$)	MHz			2.7075	5.2125	7.7025	10.2075
F_{uw} (offset for $\Delta f = 7.5 \text{ kHz}$)	MHz						
NOTE 1: Referen	nce measurem	ent channel i	s specified ir	n Annex A.6.	2.		

Channel Bandwidth Parameter Unit 1.4 MHz 3 MHz 5 MHz | 10 MHz | 15 MHz | 20 MHz PREFSENS_ProSe + channel-bandwidth specific value below P_{w} dBm 16 13 14 P_{uw} (CW) dBm -55 -55 -55 -55 Fuw (offset for MHz 2.7075 5.2125 7.7025 10.2075 $\Delta f = 15 \text{ kHz}$ Fuw (offset for MHz $\Delta f = 7.5 \text{ kHz}$

Table 7.6.3.1D-2: Narrow-band blocking for ProSe Direct Communication

NOTE 1: Reference measurement channel is specified in Annex A.6.2.

For the UE which supports inter-band CA configuration in Table 7.3.1-1A, P_{UW} power defined in Table 7.6.3.1D-1 and Table 7.6.3.1D-2 is increased by the amount given by $\Delta R_{IB,c}$ in Table 7.3.1-1A.

7.6A Void

<Reserved for future use>

7.6B Blocking characteristics for UL-MIMO

For UE with two transmitter antenna connectors in closed-loop spatial multiplexing scheme, the minimum requirements in subclause 7.6 shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2. For UL-MIMO, the parameter P_{CMAX_L} is defined as the total transmitter power over the two transmit antenna connectors.

7.7 Spurious response

Spurious response is a measure of the receiver's ability to receive a wanted signal on its assigned channel frequency without exceeding a given degradation due to the presence of an unwanted CW interfering signal at any other frequency at which a response is obtained i.e. for which the out of band blocking limit as specified in subclause 7.6.2 is not met.

7.7.1 Minimum requirements

The throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.7.1-1 and 7.7.1-2.

Table 7.7.1-1: Spurious response parameters

Rx parameter	Units	Channel bandwidth							
		1.4 MHz	1.4 MHz 3 MHz 5 MHz 10 MHz 15 MHz 20 MHz						
Power in		REF	REFSENS + channel bandwidth specific value below						
Transmission Bandwidth	dBm	6	6 6 6 6 7 9						
Configuration		J				,	J		

NOTE 1: The transmitter shall be set to 4dB below Pcmax_L at the minimum uplink configuration specified in Table 7.3.1-2.

N OTE 2: Reference measurement channel is specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1.

Table 7.7.1-2: Spurious response

Parameter	Unit	Level
P _{Interferer} (CW)	dBm	-44
FInterferer	MHz	Spurious response frequencies

For the UE which supports inter-band CA configuration in Table 7.3.1-1A, $P_{interferer}$ power defined in Table 7.7.1-2 is increased by the amount given by $\Delta R_{IB,c}$ in Table 7.3.1-1A.

7.7.1A Minimum requirements for CA

For inter-band carrier aggregation with one component carrier per operating band and the uplink assigned to one E-UTRA band the spurious response requirements are defined with the uplink active on the band(s) other than the band whose downlink is being tested. The throughput measured in each downlink with $F_{interferer}$ in Table 7.6.2.1A-0 at spurious response frequencies shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.7.1-1 and 7.7.1-2. The UE shall meet these requirements for each component carrier while all downlink carriers are active.

For inter-band carrier aggregation with one component carrier per operating band and the uplink active in two E-UTRA bands, the spurious response requirements applicable specified above shall be met with the transmitter power for the uplink set to 7 dB below $P_{\text{CMAX_L,c}}$ for each serving cell c.

For E-UTRA CA configurations including an operating band without uplink band (as noted in Table 5.5-1), the requirements for all downlinks shall be met with the single uplink carrier active in each band capable of UL operation. For E-UTRA CA configurations listed in Table 7.3.1A-0a under conditions for which reference sensitivity for the operating band being tested is N/A, the spurious response requirements of subclause 7.7.1A do not apply.

For intra-band contiguous carrier aggregation the downlink SCC(s) shall be configured at nominal channel spacing to the PCC. For FDD, the PCC shall be configured closest to the uplink band. All downlink carriers shall be active throughout the test. The uplink output power shall be set as specified in Table 7.7.1A-1 with the uplink configuration set according to Table 7.3.1A-1 for the applicable carrier aggregation configuration. For UE(s) supporting one uplink carrier, the uplink configuration of the PCC shall be in accordance with Table 7.3.1-2. The throughput of each carrier shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.7.1A-1 and 7.7.1A-2.

For intra-band non-contiguous carrier aggregation with one uplink carrier and two downlink sub-blocks, the spurious response requirements are defined with the uplink configuration in accordance with Table 7.3.1A-3. For this uplink configuration, the UE shall meet the requirements for each sub-block as specified in subclauses 7.7.1 and 7.7.1A for one component carrier and two component carriers per sub-block, respectively. The requirements apply with all downlink carriers active.

For intra-band non-contiguous carrier aggregation with two uplink carriers and two downlink carriers, the spurious response requirements applicable specified above shall be met with the transmitter powers for the uplinks set to $P_{CMAX_L,c} - 7 \text{ dBm}$.

Table 7.7.1A-1: Spurious response parameters

Rx Parameter	Units	CA Bandwidth Class					
	B C D E						
Pw in Transmission Bandwidth	dBm	REFSENS + CA Bandwidth Class specific value below					
Configuration, per CC 9 9 9							
NOTE 1: The transmitter shall be set to 4dB below PCMAX LG or PCMAX L as defined in subclause 6.2.5A.							

NOTE 1. The transmitter shall be set to 4dB below PCMAX_L as defined in subclause 6.2.5A.

NOTE 2: Reference measurement channel is specified in Annex A.3.2 with one sided dynamic OCNG Pattern

OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1.

Table 7.7.1A-2: Spurious response

Parameter	Unit	Level
P _{Interferer} (CW)	dBm	-44
FInterferer	MHz	Spurious response frequencies

For combinations of intra-band contiguous and inter-band carrier aggregation with three downlink carriers and one uplink carrier assigned to one E-UTRA band, the requirement is defined with the uplink active in the band other than that supporting the downlink(s) under test and a configuration in accordance with Table 7.3.1-2. The downlink PCC

carrier center frequency shall be configured closer to the uplink operating band than the downlink SCC center frequency when the uplink is active in the band supporting two component carriers. For E-UTRA CA configurations including an operating band without uplink band, the requirements for all downlinks shall be met with the single uplink carrier active in each band capable of UL operation. For each downlink the UE shall meet the spurious-response requirements applicable for inter-band carrier aggregation with one component carrier per operating band but with a sub-block of up to two component carriers assigned to the same operating band. For the sub-block of two component carriers the spurious response parameters in Table 7.7.1-1 are replaced by those specified in Table 7.7.1A-1. The three downlink carriers shall be active throughout the tests.

For combinations of intra-band non-contiguous and inter-band carrier aggregation with three downlink carriers and one uplink carrier assigned to one E-UTRA band, the requirement is defined with the uplink active in the band other than that supporting the downlink(s) under test. The uplink configuration shall be in accordance with Table 7.3.1A-3 when the uplink is active in the band supporting two component carriers and in accordance with Table 7.3.1-2 when the uplink is active in the other band. For E-UTRA CA configurations including an operating band without uplink band, the requirements for all downlinks shall be met with the single uplink carrier active in each band capable of UL operation. For the two component carriers within the same band, P_{wanted} in Table 7.6.2.1A-0 is set using $\Delta R_{IBNC} = 0$ dB for all subblock gaps (Table 7.3.1A-3). For each downlink the UE shall meet the spurious-response requirements applicable for inter-band carrier aggregation with one component carrier per operating band but with up to two component carriers assigned to the same band. The three downlink carriers shall be active throughout the tests.

7.7.1B Minimum requirements for UL-MIMO

For UE with two transmitter antenna connectors in closed-loop spatial multiplexing scheme, the minimum requirements in Clause 7.7.1 shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2. For UL-MIMO, the parameter $P_{\text{CMAX_L}}$ is defined as the total transmitter power over the two transmit antenna connectors.

7.7.1D Minimum requirements for ProSe

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annex A.6.2 with parameters specified in Tables 7.7.1D-1, 7.7.1D-2, and 7.7.1D-3.

Rx parameter Units **Channel bandwidth** 1.4 MHz 3 MHz 5 MHz 10 MHz 15 MHz Power in Prefsens_Prose + channel bandwidth specific value below+ Poffset Transmission dBm Bandwidth 7 6 6 9 Configuration Poffset dB 10.9 13.9 15.7 16.9 Reference measurement channel is specified in Annex A.6.2.

Table 7.7.1D-1: Spurious response parameters for ProSe Direct Discovery

Table 7.7.1D-2: Spurious response parameters for ProSe Direct Communication

Rx parameter	Units	Channel bandwidth							
		1.4 MHz 3 MHz 5 MHz 10 MHz 15 MHz 20 MHz							
Power in		Prefsens Prose + channel bandwidth specific value below							
Transmission	dBm								
Bandwidth	ubili			6	6	7	9		
Configuration									
NOTE 1: Refere	NOTE 1: Reference measurement channel is specified in Annex A.6.2.								

Table 7.7.1D-3: Spurious response for ProSe

Parameter	Unit	Level
P _{Interferer} (CW)	dBm	-44
F _{Interferer}	MHz	Spurious response frequencies

For the UE which supports inter-band CA configuration in Table 7.3.1-1A, $P_{interferer}$ power defined in Table 7.7.1D-3 is increased by the amount given by $\Delta R_{IB,c}$ in Table 7.3.1-1A.

7.8 Intermodulation characteristics

Intermodulation response rejection is a measure of the capability of the receiver to receiver a wanted signal on its assigned channel frequency in the presence of two or more interfering signals which have a specific frequency relationship to the wanted signal.

7.8.1 Wide band intermodulation

The wide band intermodulation requirement is defined following the same principles using modulated E-UTRA carrier and CW signal as interferer.

7.8.1.1 Minimum requirements

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.8.1.1 for the specified wanted signal mean power in the presence of two interfering signals

Units	Channel bandwidth							
	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz		
	RI	REFSENS + channel bandwidth specific value below						
dBm	12 8 6 6 7 9							
dBm		-46						
dBm			-46					
	1.4	3			5			
MHz	-BW/2 -2.1	-BW/2 -4.5		-BW	/2 – 7.5			
	/	/			/			
	+BW/2+ 2.1							
MHz	2*F _{Interferer 1}							
	dBm dBm MHz	dBm 12 dBm 12 dBm	REFSENS + char dBm 12 8 dBm dBm 1.4 3 MHz -BW/2 -2.1 +BW/2 + 2.1 HBW/2 + 4.5 MHz	REFSENS + channel bandwi dBm 12 8 6 dBm -46 dBm -46 MHz -BW/2 -2.1 -BW/2 -4.5 / / +BW/2 + 2.1 +BW/2 + 4.5 MHz MHz 2*Finterfer	REFSENS + channel bandwidth specific dBm 12 8 6 6 dBm -46 dBm -46 1.4 3 MHz -BW/2 -2.1 -BW/2 -4.5 / +BW/2+ 2.1 +BW/2 + 4.5 MHz 2*FInterferer 1	REFSENS + channel bandwidth specific value below dBm 12 8 6 6 7 dBm -46 dBm -46 MHz -BW/2 - 2.1		

Table 7.8.1.1-1: Wide band intermodulation

- NOTE 1: The transmitter shall be set to 4dB below Pcmax_L at the minimum uplink configuration specified in Table 7.3.1-2 with Pcmax_L as defined in subclause 6.2.5.
- NOTE 2: Reference measurement channel is specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1.
- NOTE 3: The modulated interferer consists of the Reference measurement channel specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1 with set-up according to Annex C.3.1The interfering modulated signal is 5MHz E-UTRA signal as described in Annex D for channel bandwidth ≥5MHz

For the UE which supports inter band CA configuration in Table 7.3.1-1A, $P_{interferer1}$ and $P_{interferer2}$ powers defined in Table 7.8.1.1-1 are increased by the amount given by $\Delta R_{IB,c}$ in Table 7.3.1-1A.

7.8.1A Minimum requirements for CA

For inter-band carrier aggregation with one component carrier per operating band and the uplink assigned to one E-UTRA band the wide band intermodulation requirements are defined with the uplink active on the band(s) other than the band whose downlink is being tested. The UE shall meet the requirements specified in subclause 7.8.1.1 for each component carrier while all downlink carriers are active. For E-UTRA CA configurations including an operating band without uplink band (as noted in Table 5.5-1), the requirements for all downlinks shall be met with the single uplink carrier active in each band capable of UL operation. For E-UTRA CA configurations listed in Table 7.3.1A-0a under conditions for which reference sensitivity for the operating band being tested is N/A, the wideband intermodulation requirements of subclause 7.8.1A do not apply.

For intra-band contiguous carrier aggegation the downlink SCC(s) shall be configured at nominal channel spacing to the PCC, For FDD, the PCC shall be configured closest to the uplink band. All downlink carriers shall be active throughout the test. The uplink output power shall be set as specified in Table 7.8.1A-1 with the uplink configuration set according to Table 7.3.1A-1 for the applicable carrier aggreagation configuration. For UE(s) supporting one uplink carrier, the uplink configuration of the PCC shall be in accordance with Table 7.3.1-2. The UE shall fulfil the minimum requirement in presence of an interfering signal specified in Table 7.8.1A-1 being on either side of the aggregated signal. The throughput of each carrier shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.8.1A-1

194

Table 7.8.1A-1: Wide band intermodulation

Rx parameter	Units		CA Bandwidth Class							
		В	С	D	E	F				
P _w in		RE	REFSENS + CA Bandwidth Class specific value below							
Transmission Bandwidth Configuration, per CC	dBm	9	12	13.8						
P _{Interferer 1} (CW)	dBm			-46						
P _{Interferer 2} (Modulated)	dBm			-46						
BW _{Interferer 2}	MHz	5	5	5						
FInterferer 1 (Offset)	MHz	-F _{offset} -7.5 / + F _{offset} +7.5	-F _{offset} -7.5 / + F _{offset} +7.5	-F _{offset} -7.5 / + F _{offset} +7.5						
F _{Interferer 2} (Offset)	MHz			2*FInterferer 1						

- NOTE 1: The transmitter shall be set to 4dB below Pcmax_L,c or Pcmax_L as defined in subclause 6.2.5A.
- NOTE 2: Reference measurement channel is specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1.
- NOTE 3: The modulated interferer consists of the Reference measurement channel specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1 with set-up according to Annex C.3.1.
- NOTE 4: The interfering modulated signal is 5MHz E-UTRA signal as described in Annex D for channel bandwidth ≥5MHz;
- NOTE 5: The F_{interferer 1} (offset) is the frequency separation of the center frequency of the carrier closest to the interferer and the center frequency of the CW interferer and F_{interferer 2} (offset) is the frequency separation of the center frequency of the carrier closest to the interferer and the center frequency of the modulated interferer.

For intra-band non-contiguous carrier aggregation with one uplink carrier and two downlink sub-blocks, the wide band intermodulation requirements are defined with the uplink configuration in accordance with Table 7.3.1A-3. For this uplink configuration, the UE shall meet the requirements for each sub-block as specified in subclauses 7.8.1.1 and in this subclause for one component carrier and two component carriers per sub-block, respectively. The requirements apply for out-of-gap interferers while all downlink carriers are active.

For combinations of intra-band contiguous and inter-band carrier aggregation with three downlink carriers and one uplink carrier assigned to one E-UTRA band, the requirement is defined with the uplink active in the band other than that supporting the downlink(s) under test and a configuration in accordance with Table 7.3.1-2. The downlink PCC carrier center frequency shall be configured closer to the uplink operating band than the downlink SCC center frequency when the uplink is active in the band supporting two component carriers. For E-UTRA CA configurations including an operating band without uplink band, the requirements for all downlinks shall be met with the single uplink carrier active in each band capable of UL operation. For these uplink configurations, the UE shall meet the wide-band intermodulation requirements for intra-band contiguous carrier aggregation of two downlink carriers and for the remaining component carrier the requirements specified in subclause 7.8.1. The three downlink carriers shall be active throughout the tests.

For combinations of intra-band non-contiguous and inter-band carrier aggregation with three downlink carriers and one uplink carrier assigned to one E-UTRA band, the requirement is defined with the uplink active in the band other than that supporting the downlink(s) under test. The uplink configuration shall be in accordance with Table 7.3.1A-3 when the uplink is active in the band supporting two component carriers and in accordance with Table 7.3.1-2 when the uplink is active in the other band. For E-UTRA CA configurations including an operating band without uplink band, the

requirements for all downlinks shall be met with the single uplink carrier active in each band capable of UL operation. For these uplink configurations, the UE shall meet the wide-band intermodulation requirements for intra-band non-contiguous carrier aggregation of two downlink carriers with $\Delta R_{IBNC}=0$ dB for all sub-block gaps (Table 7.3.1A-3) and for the remaining component carrier the requirements specified in subclause 7.8.1. The three downlink carriers shall be active throughout the tests.

7.8.1B Minimum requirements for UL-MIMO

For UE(s) with two transmitter antenna connectors in closed-loop spatial multiplexing scheme, the minimum requirements in subclause 7.8.1 shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2. For UL-MIMO, the parameter P_{CMAX_L} is defined as the total transmitter power over the two transmit antenna connectors.

7.8.1D Minimum requirements for ProSe

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annex A.6.2 with parameters specified in Table 7.8.1D-1, Table 7.8.1D-2, and Table 7.8.1D-3 for the specified wanted signal mean power in the presence of two interfering signals

Table 7.8.1D-1: Wide band intermodulation parameters for ProSe Direct Discovery

Rx parameter	Units	Channel bandwidth					
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Poffset	dB			10.9	13.9	15.7	16.9

Table 7.8.1D-2: Wide band intermodulation for ProSe Direct Communication

Rx parameter	Units	Channel bandwidth					
		1.4 MHz 3 MHz 5 MHz 10 MHz 15 MHz 20 MH				20 MHz	
Poffset	dB			0	0	0	0

Table 7.8.1D-3: Wide band intermodulation for ProSe

Rx Parameter	Units	Channel bandwidth							
		1.4 MHz 3 MHz		5 MHz	10 MHz	15 MHz	20 MHz		
Power in		Prefsen	Prefsens_Prose + channel			I bandwidth specific value below+ Poffset			
Transmission Bandwidth Configuration	dBm	12		8	6	6	7	9	
P _{Interferer 1} (CW)	dBm	-46							
P _{Interferer 2} (Modulated)	dBm				-46				
BW _{Interferer 2}		1.4		3			5		
F _{Interferer 1}	MHz	-BW/2 -2.1	-BW/	′2 –4.5		-BW	/2 – 7.5		
(Offset)									
		+BW/2+ 2.1							
F _{Interferer 2} (Offset)	MHz	2*F _{Interferer 1}							

NOTE 1: Reference measurement channel is specified in Annex A.6.2

NOTE 2: The interferer is QPSK modulated PUSCH containing data and reference symbols. Normal cyclic prefix is used. The data content shall be uncorrelated to the wanted signal and modulated according to clause 5 of TS36.211

For the UE which supports inter band CA configuration in Table 7.3.1-1A, $P_{interferer1}$ and $P_{interferer2}$ powers defined in Table 7.8.1D-3 are increased by the amount given by $\Delta R_{IB,c}$ in Table 7.3.1-1A.

7.8.2 Void

7.9 Spurious emissions

The spurious emissions power is the power of emissions generated or amplified in a receiver that appear at the UE antenna connector.

7.9.1 Minimum requirements

The power of any narrow band CW spurious emission shall not exceed the maximum level specified in Table 7.9.1-1

Table 7.9.1-1: General receiver spurious emission requirements

Frequency band	Measurement bandwidth	Maximum level	Note
30MHz ≤ f < 1GHz	100 kHz	-57 dBm	
1GHz ≤ f ≤ 12.75 GHz	1 MHz	-47 dBm	
12.75 GHz ≤ f ≤ 5 th harmonic of the upper frequency edge of the DL operating band in GHz	1 MHz	-47 dBm	1

NOTE 1: Applies only for Band 22, Band 42 and Band 43

NOTE 2: Unused PDCCH resources are padded with resource element groups with power level given

by PDCCH_RA/RB as defined in Annex C.3.1.

7.9.1A Minimum requirements

For E-UTRA CA configurations including an operating band without uplink band (as noted in Table 5.5-1), the power of any narrow band CW spurious emission shall not exceed the maximum level specified in Table 7.9.1A-1.

Table 7.9.1A-1: General receiver spurious emission requirements

Frequency band	Measurement bandwidth	Maximum level	Note
30MHz ≤ f < 1GHz	100 kHz	-57 dBm	
1GHz ≤ f ≤ 12.75 GHz	1 MHz	-47 dBm	

NOTE 1: Unused PDCCH resources are padded with resource element groups with power level given

by PDCCH_RA/RB as defined in Annex C.3.1.

NOTE 2: The requirements apply when the UE is configured for carrier aggregation but is not

transmitting.

7.10 Receiver image

7.10.1 Void

7.10.1A Minimum requirements for CA

Receiver image rejection is a measure of a receiver's ability to receive the E-UTRA signal on one component carrier while it is also configured to receive an adjacent aggregated carrier. Receiver image rejection ratio is the ratio of the wanted received power on a sub-carrier being measured to the unwanted image power received on the same sub-carrier when both sub-carriers are received with equal power at the UE antenna connector.

For intra-band contiguous carrier aggregation the UE shall fulfil the minimum requirement specified in Table 7.10.1A-1 for all values of aggregated input signal up to -22 dBm.

Table 7.10.1A-1: Receiver image rejection

	CA bandwidth class						
Rx parameter	Units	Α	В	С	D	Е	F
Receiver image rejection	dB		25	25	25		

8 Performance requirement

This clause contains performance requirements for the physical channels specified in TS 36.211 [4]. The performance requirements for the UE in this clause are specified for the measurement channels specified in Annex A.3, the propagation conditions in Annex B and the downlink channels in Annex C.3.2.

Note: For the requirements in the following sections, similar Release 8 and 9 requirements apply for time domain measurements restriction under colliding CRS.

8.1 General

8.1.1 Receiver antenna capability

The performance requirements are based on UE(s) that utilize one or more antenna receivers.

For all test cases, the SNR is defined as

$$SNR = \frac{\sum_{j=1}^{N_{RX}} \hat{E}_{s}^{(j)}}{\sum_{i=1}^{N_{RX}} N_{oc}^{(j)}}$$

where N_{RX} denotes the number of receiver antenna connectors and the superscript receiver antenna connector j. The above SNR definition assumes that the REs are not precoded. The SNR definition does not account for any gain which can be associated to the precoding operation. The relative power of physical channels transmitted is defined in Table C.3.2-1. The SNR requirement applies for the UE categories and CA capabilities given for each test.

For enhanced performance requirements type A, the SINR is defined as

$$SINR = \frac{\sum_{j=1}^{N_{RX}} \hat{E}_{s}^{(j)}}{\sum_{j=1}^{N_{RX}} N_{oc}^{(j)}}$$

where N_{RX} denotes the number of reciver antenna connectors and the superscript receiver antenna connector j. The above SINR definition assumes that the REs are not precoded. The SINR definition does not account for any gain which can be associated to the precoding operation. The relative power of physical channels transmitted is defined in Table C.3.2-1. The SINR requirement applies for the UE categories given for each test.

For the performance requirements specified in this clause, it is assumed that N_{RX} =2 unless otherwise stated.

Table 8.1.1-1: Void

8.1.1.1 Simultaneous unicast and MBMS operations

8.1.1.2 Dual-antenna receiver capability in idle mode

8.1.2 Applicability of requirements

8.1.2.1 Applicability of requirements for different channel bandwidths

In Clause 8 the test cases may be defined with different channel bandwidth to verify the same target FRC conditions with the same propagation conditions, correlation matrix and antenna configuration.

Test cases defined for 5MHz channel bandwidth that reference this clause are applicable to UEs that support only Band 31.

8.1.2.2 Definition of CA capability

The definition with respect to CA capabilities for 2CCs is given as in Table 8.1.2.2-1. The definition with respect to CA capabilities for 3CCs is given in Table 8.1.2.2-3.

Table 8.1.2.2-1: Definition of CA capability with 2DL CCs

CA Capability	CA Capability Description			
CA2_C	Intra-band contiguous CA			
CA2_A2	Inter-band CA (two bands)			
CA2_N2	Intra-band non-contiguous CA (with two sub-blocks)			
Note 1: CA2_C corresponds to E-UTRA CA configurations and bandwidth combination sets defined in Table 5.6A.1-1 for 2 DL CCs.				
CA2_A2 corresponds to E-UTRA CA configurations and bandwidth combination sets defined in Table 5.6A.1-2 for 2 DL CCs. CA2_N2 corresponds to E-UTRA CA configurations and bandwidth				
cor	nbination sets defined in Table 5.6A.1-3 for 2 DL CCs.			

The supported testable aggregated CA bandwidth combinations for 2CCs for each CA capability are listed in Table 8.1.2.2-2.

Table 8.1.2.2-2: Supported testable aggregated CA bandwidth combinations for different CA capability with 2DL CCs

CA Capability	Bandwidth combination for FDD CA	Bandwidth combination for TDD CA	Bandwidth combination for TDD- FDD CA				
CA2_C	5+5MHz, 5+10MHz, 10+10MHz, 20+20MHz	20+20MHz, 15+20MHz	NA				
CA2_A2	10+10MHz, 10+15MHz, 10+20MHz, 15+20MHz, 20+20MHz	20+20MHz	10(FDD)+20(TDD)MHz, 15(FDD)+20(TDD)MHz, 20(FDD)+20(TDD)MHz				
CA2_N2 5+10MHz, 10+10MHz, 20+20MHz		20+20MHz	NA				
	Note 1: This table is only for information and applicability and test rules of CA performance requirements are specified in 8.1.2.3 and 9.1.1.2						

Table 8.1.2.2-3: Definition of CA capability with 3 DL CCs

CA	CA Capability Description				
Capability					
CA3_C	Intra-band contiguous CA				
CA3_A2	Inter-band CA (two bands)				
CA3_A3	Inter-band CA (three bands)				
CA3_N2	Intra-band non-contiguous CA (with two sub-blocks)				
	3_C corresponds to E-UTRA CA configurations and bandwidth				
cor	nbination sets defined in Table 5.6A.1-1 for 3 DL CCs.				
CA	3_A2 corresponds to E-UTRA CA configurations and bandwidth				
	nbination sets defined in Table 5.6A.1-2 for 3 DL CCs.				
CA3_A3 corresponds to E-UTRA CA configurations and bandwidth					
combination sets defined in and Table 5.6A.1-2a for 3 DL CCs.					
	3_N2 corresponds to E-UTRA CA configurations and bandwidth				
cor	nbination sets defined in Table 5.6A.1-3 for 3 DL CCs.				

The supported testable largest aggregated CA bandwidth combinations for 3CCs for each CA capability are listed in Table 8.1.2.2-4.

Table 8.1.2.2-4: Supported largest aggregated CA bandwidth combinations for different CA capability with 3 CCs

CA capability	Bandwidth combination for FDD CA	Bandwidth combination for TDD CA	Bandwidth combination for TDD-FDD CA
CA3_C	NA	20+20+20MHz	NA
CA3_A2	5+10+20MHz, 10+10+20MHz, 10+20+20MHz, 20+20+20MHz	15+20+20MHz, 20+20+20MHz	15(FDD)+20(TDD)+20(TDD)MHz, 20(FDD)+20(TDD)+20(TDD)MHz
CA3_A3	10+10+20MHz, 10+15+15MHz, 10+15+20MHz, 10+20+20MHz, 15+15+20MHz, 15+20+20MHz, 20+20+20MHz	NA	NA
CA3_N2	NA	20+20+20MHz	NA

Note 1: This table is only for information and applicability and test rules of CA performance requirements are specified in 8.1.2.3 and 9.1.1.2.

For test cases with more than one component carrier, "Fraction of Maximum Throughput" in the performance requirement refers to the ratio of the sum of throughput values of all component carriers to the sum of the nominal maximum throughput values of all component carriers, unless otherwise stated.

8.1.2.2A Definition of dual connectivity capability

The definition with respect to dual connectivity capabilities for configurations with 2CCs is given as in Table 8.1.2.2A-1.

Table 8.1.2.2A-1: Definition of dual connectivity capability with 2DL CCs

Dual connectivity Capability	Dual connectivity capability Description
DC_A_2	Inter-band dual connecitivty (two bands)
Note 1: DC	_A_2 corresponds to E-UTRA dual connectivity configurations and
bar	ndwidth combination sets defined for inter-band dual connecitivty (two
bar	nds) as specified in 5.6C.

The supported testable dual connectivity bandwidth combinations for 2CCs for each dual connectivity capability are listed in Table 8.1.2.2A-2.

Table 8.1.2.2A-2: Supported testable dual connectivity bandwidth combinations for different dual connectivitys capability with 2DL CCs

	l connectivity capability	Bandwidth combination for FDD dual connectivity	Bandwidth combination for TDD dual connectivity			
	DC_A_2	10+10MHz, 10+20MHz,	20+20MHz			
		15+15MHz, 15+20MHz,				
		20+20MHz				
Note 1:	This table is only for	his table is only for information and applicability and test rules of dual				
	connectivity perfor	mance requirements are specif	ied in 8.1.2.3A			

8.1.2.3 Applicability and test rules for different CA configurations and bandwidth combination sets

The performance requirement for CA UE demodulation tests in Clause 8 are defined independent of CA configurations and bandwidth combination sets specified in Clause 5.6A.1. For UEs supporting different CA configurations and bandwidth combination sets, the applicability and test rules are defined for the tests for 2 DL CCs in Table 8.1.2.3-1 and 3DL CCs in Table 8.2.2.3-2. For simplicity, CA configuration below refers to combination of CA configuration and bandwidth combination set.

Table 8.1.2.3-1: Applicability and test rules for CA UE demodulation tests with 2 DL CCs

Tests	CA capability where the tests apply	CA configuration from the selected CA capbility where the tests apply	CA Bandwidth combination to be tested in priority order
CA tests with 2CCs in Clause 8.2.1.1.1, 8.2.1.4.3	Any one of the supported CA capabilities	Any one of the supported FDD CA configurations	10+10 MHz, 20+20 MHz, 5+5 MHz, and 10MHz+5MHz.
CA tests with 2CCs in Clause 8.2.1.3.1	Each supported CA capability	Any one of the supported FDD CA configurations in each CA capability	10+10 MHz, 20+20 MHz, 5+5 MHz, and 10MHz+5MHz.
CA tests with 2CCs in Clause 8.2.1.3.1A, 8.7.1	Any one of the supported CA capabilities with largest aggregated CA bandwidth combination	Any one of the supported FDD CA configurations with largest aggregated CA bandwidth combination	Largest aggregated CA bandwidth combination
CA tests with 2CCs in Clause 8.2.1.7.1	CA_C	Supported FDD intra-band contiguous CA configurations covering the lowest and highest operating bands	Largest aggregated CA bandwidth combinations
CA tests with 2CCs in Clause 8.2.2.1.1, 8.2.2.4.3	Any one of the supported CA capabilities with largest aggregated CA bandwidth combination	Any one of the supported TDD CA configurations with largest aggregated CA bandwidth combination	Largest aggregated CA bandwidth combination
CA tests with 2CCs in Clause 8.2.2.3.1	Each supported CA capability	Any one of the supported TDD CA configurations in each CA capability with largest aggregated CA bandwidth combination	Largest aggregated CA bandwidth combination
CA tests with 2CCs in Clause 8.2.2.3.1A, 8.7.2	Any one of the supported CA capabilities with largest aggregated CA bandwidth	Any one of the supported TDD CA configurations with largest aggregated CA bandwidth combination	Largest aggregated CA bandwidth combination
CA tests with 2CCs in 8.2.2.7.1	CA_C	Supported TDD intra-band contiguous CA configurations covering the lowest and highest operating bands	Largest aggregated CA bandwidth combinations
CA tests with 2CCs in Clause 8.2.1.8.1	CA_N	CA_3A-3A defined in Table 5.6A.1-3	10+10 MHz
CA tests with 2CCs in Clause 8.2.2.8.1	CA2_C	CA_41C defined in Table 5.6A.1-1	20+20 MHz

The applicability and test rules are specified in this table, unless otherwise stated. Number of the supported bandwidth combinations to be tested from each selected

Note 3: A single Uplink CC is configured for all tests

Note 2: CA configuration is 1.

Table 8.1.2.3-2: Applicability and test rules for CA UE demodulation tests with 3 DL CCs

Tests	CA capability where the tests apply	CA configuration from the selected CA capbility where the tests apply	CA Bandwidth combination to be tested in priority order
CA tests with 3CCs in Clause 8.2.1.1.1, 8.2.1.4.3, 8.7.1	Any one of the supported CA capabilities with largest aggregated CA bandwidth combination	Any one of the supported FDD CA configurations with largest aggregated CA bandwidth combination	Largest aggregated CA bandwidth combination
CA tests with 3CCs in Clause 8.2.1.3.1	Each supported CA capability	Any one of the supported FDD CA configurations in each CA capability with largest aggregated CA bandwidth combination	Largest aggregated CA bandwidth combination
CA tests with 3CCs in Clause 8.2.2.1.1, 8.2.2.4.3, 8.7.2	Any one of the supported CA capabilities with largest aggregated CA bandwidth combination	Any one of the supported TDD CA configurations with largest aggregated CA bandwidth combination	Largest aggregated CA bandwidth combination
CA tests with 3CCs in Clause 8.2.2.3.1	Each supported CA capability	Any one of the supported TDD CA configurations in each CA capability with largest aggregated CA bandwidth combination	Largest aggregated CA bandwidth combination
CA tests with 3CCs in Clause 8.2.2.8.1	CA3_C	CA_41D defined in Table 5.6A.1-1	20+20+20 MHz

Note 1: The applicability and test rules are specified in this table, unless otherwise stated.

Note 2: Number of the supported bandwidth combinations to be tested from each selected

CA configuration is 1.

Note 3: A single Uplink CC is configured for all tests

8.1.2.3A Applicability and test rules for different dual connectivity configuration and bandwidth combination set

The performance requirement for dual connectivity UE demodulation tests in Clause 8 are defined independent of dual connectivity configurations and bandwidth combination sets specified in Clause 5.6C.1. For UEs supporting different dual connectivity configurations and bandwidth combination stes, the applicability and test rules are defined for the tests for the configurations with 2CCs in Table 8.1.2.3A-1. For simplicity, dual connectivity configuration below refers to combination of dual connectivity configuration and bandwidth set.

Both CA performance requirements and dual connectivity performance requirements are applied for dual connectivity capable UE.

Table 8.1.2.3A-1: Applicability and test rules for dual connectivity UE demodulation tests with 2DL CCs

Tests	Dual connectivity capability where the tests apply	Dual connectivity configuration from the selected CA capbility where the tests apply	Dual connectivity Bandwidth combination to be tested in priority order
Dual connectivity test in Clause 8.2.1.4.3A, 8.7.6	Any one of the supported dual connectivity capabilities with largest aggregated dual connectivity bandwidth combination	Any one of the supported FDD dual connectvity configurations with the largest aggregated dual connectivity bandwidth combimation	Largest dual connectivity aggregated bandwidth combination
Dual connectivity test in Clause 8.2.2.4.3A, 8.7.7	Any one of the supported dual connectivity capabilities with largest aggregated dual connectivity bandwidth combination test rules are specified in this tal	Any one of the supported TDD dual connectvity configurations with the largest aggregated dual connectivity bandwidth combination	Largest dual connectivity aggregated bandwidth combination

Note 2: Number of the supported bandwidth combinations to be tested from each selected DC or CA configuration is 1.

8.1.2.3B Applicability and test rules for different TDD-FDD CA configurations and bandwidth combination sets

The performance requirement for TDD-FDD CA UE demodulation tests in Clause 8 are defined independent of CA configurations and bandwidth combination sets specified in Clause 5.6A.1. For UEs supporting different CA configurations and bandwidth combination sets, the applicability and test rules are defined for the tests for 2 DL TDD-FDD CA in Table 8.1.2.3B-1 and in Table 8.1.2.3B-2 for 3 DL TDD-FDD CA. For simplicity, CA configuration below refers to combination of CA configuration and bandwidth combination set.

Table 8.1.2.3B-1: Applicability and test rules for CA UE demodulation tests for TDD-FDD CA with 2 DL CCs

Tests	CA capability where the tests apply	CA configuration from the selected CA capbility where the tests apply	CA Bandwidth combination to be tested in priority order
CA tests with 2CCs in Clause 8.2.3.1.1, 8.2.3.2.1A, 8.2.3.3.1, 8.7.5.1	Any one of the supported CA capabilities with largest aggregated CA bandwidth combination	Any one of the supported TDD-FDD CA configurations with FDD PCell with largest aggregated CA bandwidth combination	Largest aggregated CA bandwidth combination
CA tests with 2CCs in Clause 8.2.3.2.1	Each supported CA capability	Any one of the supported TDD-FDD CA configurations with FDD PCell in each CA capability with largest aggregated CA bandwidth combination	Largest aggregated CA bandwidth combination
CA tests with 2CCs in Clause 8.2.3.1.2, 8.2.3.2.2A, 8.2.3.3.2, 8.7.5.2	Any one of the supported CA capabilities with largest aggregated CA bandwidth combination	Any one of the supported TDD-FDD CA configurations with TDD PCell with largest aggregated CA bandwidth combination	Largest aggregated CA bandwidth combination
CA tests with 2CCs in Clause 8.2.3.2.2	Each supported CA capability	Any one of the supported TDD-FDD CA configurations with TDD PCell in each CA capability with largest aggregated CA bandwidth combination	Largest aggregated CA bandwidth combination

Note 1: The applicability and test rules are specified in this table, unless otherwise stated.

Note 2: Number of the supported bandwidth combinations to be tested from each selected CA configuration is

1.

Note 3: A single Uplink CC is configured for all tests

Table 8.1.2.3B-2: Applicability and test rules for CA UE demodulation tests for TDD-FDD CA with 3 DL **CCs**

Tests	CA capability where the tests apply	CA configuration from the selected CA capbility where the tests apply	CA Bandwidth combination to be tested in priority order
CA tests with 3CCs in Clause 8.2.3.1.1, 8.2.3.2.1A, 8.2.3.3.1, 8.7.5.1	Any one of the supported CA capabilities with largest aggregated CA bandwidth combination	Any one of the supported TDD-FDD CA configurations with FDD PCell with largest aggregated CA bandwidth combination	Largest aggregated CA bandwidth combination
CA tests with 3CCs in Clause 8.2.3.2.1	Each supported CA capability	Any one of the supported TDD-FDD CA configurations with FDD PCell in each CA capability with largest aggregated CA bandwidth combination	Largest aggregated CA bandwidth combination
CA tests with 3CCs in Clause 8.2.3.1.2, 8.2.3.2.2A, 8.2.3.3.2, 8.7.5.2	Any one of the supported CA capabilities with largest aggregated CA bandwidth combination	Any one of the supported TDD-FDD CA configurations with TDD PCell with largest aggregated CA bandwidth combination	Largest aggregated CA bandwidth combination
CA tests with 3CCs in Clause 8.2.3.2.2 Each supported CA capability		Any one of the supported TDD-FDD CA configurations with TDD PCell in each CA capability with largest aggregated CA bandwidth combination	Largest aggregated CA bandwidth combination

The applicability and test rules are specified in this table, unless otherwise stated. Note 1:

Number of the supported bandwidth combinations to be tested from each selected CA configuration is Note 2:

Note 3: A single Uplink CC is configured for all tests

8.1.2.4 Test coverage for different number of component carriers

For FDD tests specified in 8.2.1.1.1, 8.2.1.3.1, 8.2.1.4.3, and 8.7.1, if corresponding CA tests are tested, the test coverage can be considered fulfilled without executing single carrier tests.

For TDD tests specified in 8.2.2.1.1, 8.2.2.3.1, 8.2.2.4.3, and 8.7.2, if corresponding CA tests are tested, the test coverage can be considered fulfilled without executing single carrier tests.

For TDD FDD tests specified in 8.2.3.1, 8.2.3.2, 8.2.3.3, and 8.7.5, if corresponding TDD FDD CA tests are tested, the test coverage can be considered fulfilled without executing both FDD and TDD single carrier tests.

For FDD CA tests specified in 8.2.1.1.1, 8.2.1.4.3, and 8.7.1, among all supported CA capabilities, if corresponding CA tests with the largest number of CCs supported by the UE are tested, the test coverage can be considered fulfilled without executing the CA tests with less than the largest number of CCs supported by the UE.

For FDD CA tests specified in 8.2.1.3.1, for each supported CA capability, if corresponding CA tests with the largest number of CCs supported by the UE are tested, the test coverage can be considered fulfilled without executing the CA tests with less than the largest number of CCs supported by the UE.

For TDD CA tests specified in 8.2.2.1.1, 8.2.2.4.3, and 8.7.2, among all supported CA capabilities, if corresponding CA tests with the largest number of CCs supported by the UE are tested, the test coverage can be considered fulfilled without executing the CA tests with less than the largest number of CCs supported by the UE.

For TDD CA tests specified in 8.2.2.3.1, for each supported CA capability, if corresponding CA tests with the largest number of CCs supported by the UE are tested, the test coverage can be considered fulfilled without executing the CA tests with less than the largest number of CCs supported by the UE.

For TDD FDD CA tests specified in 8.2.3.1, 8.2.3.3, and 8.7.5, among all supported CA capabilities, if corresponding CA tests with the largest number of CCs supported by the UE are tested, the test coverage can be considered fulfilled without executing the TDD FDD CA tests with less than the largest number of CCs supported by the UE.

For TDD FDD CA tests specified in 8.2.3.2, for each supported CA capability, if corresponding CA tests with the largest number of CCs supported by the UE are tested, the test coverage can be considered fulfilled without executing the TDD FDD CA tests with less than the largest number of CCs supported by the UE.

For FDD CA power imbalance tests specified in 8.2.1.7.1, if they are are tested with FDD intra-band contiguous CA configurations with 2 DL CCs, the test coverage can be considered fulfilled with FDD intra-band contiguous CA configurations with 3 DL CCs supported by the UE.

For TDD CA power imbalance tests specified in 8.2.2.7.1, if they are are tested with TDD intra-band contiguous CA configurations with 2 DL CCs, the test coverage can be considered fulfilled with TDD intra-band contiguous CA configurations with 3 DL CCs supported by the UE.

8.1.2.5 Applicability of performance requirements for Type B receiver

For TM10 capable UE, if corresponding tests specified in 8.3.1.1F, 8.3.2.1G, 9.3.8.3 are tested, the test coverage can be considered fulfilled without executing the tests specified in 8.3.1.1C, 8.3.2.1D, 9.3.8.2. For a UE which does not have TM10 capability, the tests specified in sections 8.3.1.1C, 8.3.2.1D, 9.3.8.2 should be used.

8.1.3 UE category and UE DL category

UE category and UE DL category refer to *ue-Category* and *ue-CategoryDL* define in 4.1 and 4.1A from [12]. A UE that belongs to either a UE category or a UE DL category indicated in UE performance requirements in subclause 8, 9, 10 shall fulfil the corresponding requirements.

A UE indicating DL category 13 may indicate category 9 or 10 and shall thereby fulfil all requirements in subclause 8, 9, 10 that are indicated for either cat 9 or DL Cat 13 UEs. For SDR tests in section 8.7 both cat 9 and cat 13 test shall be used for this UE while for the other test only Cat 13 tests needs to be done.

8.2 Demodulation of PDSCH (Cell-Specific Reference Symbols)

8.2.1 FDD (Fixed Reference Channel)

The parameters specified in Table 8.2.1-1 are valid for all FDD tests unless otherwise stated.

Unit Value Parameter Inter-TTI Distance 1 Number of HARQ 8 **Processes** processes per component carrier Maximum number of 4 HARQ transmission Redundancy version {0,1,2,3} for QPSK and 16QAM {0,0,1,2} for 64QAM and 256QAM coding sequence 4 for 1.4 MHz bandwidth, 3 for 3 MHz and Number of OFDM 5 MHz bandwidths, symbols for PDCCH per OFDM symbols 2 for 10 MHz. 15 MHz and 20 MHz component carrier bandwidths unless otherwise stated Cyclic Prefix Normal 0 Cell_ID Cross carrier scheduling Not configured

Table 8.2.1-1: Common Test Parameters (FDD)

8.2.1.1 Single-antenna port performance

The single-antenna performance in a given multi-path fading environments is determined by the SNR for which a certain relative information bit throughput of the reference measurement channels in Annex A.3.3 is achieved. The

purpose of these tests is to verify the single-antenna performance with different channel models and MCS. The QPSK and 64QAM cases are also used to verify the performance for all bandwidths specified in Table 5.6.1-1.

8.2.1.1.1 Minimum Requirement

For single carrier, the requirements are specified in Table 8.2.1.1.1-2, with the addition of the parameters in Table 8.2.1.1.1-1 and the downlink physical channel setup according to Annex C.3.2.

For CA with 2 DL CCs, the requirements are specified in Table 8.2.1.1.1-4, with the addition of the parameters in Table 8.2.1.1.1-3 and the downlink physical channel setup according to Annex C.3.2.

For CA with 3 DL CCs, the requirements are speicifed in Table 8.2.1.1.1-6, based on single carrier requirement speicified in Table 8.2.1.1.1-5, with the addition of the parameters in Table 8.2.1.1.1-3 and the downlink physical channel setup according to Annex C.3.2.

The test coverage for different number of component carriers is defined in 8.1.2.4.

Table 8.2.1.1.1-1: Test Parameters

Paramete	r	Unit	Test 1- 5	Test 6- 8	Test 9- 15	Test 16- 18	Test 19
Devention of a sure	$ ho_{\scriptscriptstyle A}$	dB	0	0	0	0	0
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)				
	σ	dB	0	0	0	0	0
N_{oc} at antenna	a port	dBm/15kHz	-98	-98	-98	-98	-98
Symbols for unused PRBs			OCNG (Note 2)	OCNG (Note 2)	OCNG (Note 2)	OCNG (Note 2)	OCNG (Note 2)
Modulation			QPSK	16QAM	64QAM	16QAM	QPSK
PDSCH transmiss	ion mode		1	1	1	1	1

Note 1: $P_{p} = 0$.

Note 2: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.

Note 3: Void. Note 4: Void.

Table 8.2.1.1.1-2: Minimum performance (FRC)

				Propa-	Correlation	Reference	value	
Test num.	Band- width	Reference channel	OCNG pattern	gation condi- tion	matrix and antenna config.	Fraction of maximum throughput (%)	SNR (dB)	cate gory
1	10 MHz	R.2 FDD	OP.1 FDD	EVA5	1x2 Low	70	-1.0	≥1
2	10 MHz	R.2 FDD	OP.1 FDD	ETU70	1x2 Low	70	-0.4	≥1
3	10 MHz	R.2 FDD	OP.1 FDD	ETU300	1x2 Low	70	0.0	≥1
4	10 MHz	R.2 FDD	OP.1 FDD	HST	1x2	70	-2.4	≥1
5	1.4 MHz	R.4 FDD	OP.1 FDD	EVA5	1x2 Low	70	0.0	≥1
	10 MHz	R.3 FDD	OP.1 FDD	EVA5	1x2 Low	70	6.7	≥2
6	5 MHz	R.3-1 FDD	OP.1 FDD	EVA5	1x2 Low	70	6.7	1
0	5 MHz (Note 4)	R.3-1 FDD	OP.1 FDD	EVA5	1x2 Low	70	6.7	≥2
	10 MHz	R.3 FDD	OP.1 FDD	ETU70	1x2 Low	30	1.4	≥2
7	5 MHz	R.3-1 FDD	OP.1 FDD	ETU70	1x2 Low	30	1.4	1
/	5 MHz (Note 4)	R.3-1 FDD	OP.1 FDD	ETU70	1x2 Low	30	1.4	≥2
	10 MHz	R.3 FDD	OP.1 FDD	ETU300	1x2 High	70	9.4	≥2
8	5 MHz	R.3-1 FDD	OP.1 FDD	ETU300	1x2 High	70	9.4	1
8	5 MHz (Note 4)	R.3-1 FDD	OP.1 FDD	ETU300	1x2 High	70	9.4	≥2
9	3 MHz	R.5 FDD	OP.1 FDD	EVA5	1x2 Low	70	17.6	≥1
10	5 MHz	R.6 FDD	OP.1 FDD	EVA5	1x2 Low	70	17.4	≥2
10	5 MHz	R.6-1 FDD	OP.1 FDD	EVA5	1x2 Low	70	17.5	1
11	10 MHz	R.7 FDD	OP.1 FDD	EVA5	1x2 Low	70	17.7	≥2
11	10 MHz	R.7-1 FDD	OP.1 FDD	EVA5	1x2 Low	70	16.7	1
12	10 MHz	R.7 FDD	OP.1 FDD	ETU70	1x2 Low	70	19.0	≥2
12	10 MHz	R.7-1 FDD	OP.1 FDD	ETU70	1x2 Low	70	18.1	1
13	10 MHz	R.7 FDD	OP.1 FDD	EVA5	1x2 High	70	19.1	≥2
13	10 MHz	R.7-1 FDD	OP.1 FDD	EVA5	1x2 High	70	17.8	1
14	15 MHz	R.8 FDD	OP.1 FDD	EVA5	1x2 Low	70	17.7	≥2
14	15 MHz	R.8-1 FDD	OP.1 FDD	EVA5	1x2 Low	70	16.8	1
	20 MHz	R.9 FDD	OP.1 FDD	EVA5	1x2 Low	70	17.6	≥3
15	20 MHz	R.9-2 FDD	OP.1 FDD	EVA5	1x2 Low	70	17.3	2
	20 MHz	R.9-1 FDD	OP.1 FDD	EVA5	1x2 Low	70	16.7	1
16	3 MHz	R.0 FDD	OP.1 FDD	ETU70	1x2 Low	30	1.9	≥1
17	10 MHz	R.1 FDD	OP.1 FDD	ETU70	1x2 Low	30	1.9	≥1
18	20 MHz	R.1 FDD	OP.1 FDD	ETU70	1x2 Low	30	1.9	≥1
19	10 MHz	R.41 FDD	OP.1 FDD	EVA5	1x2 Low	70	-5.4	≥1

Note 1: Void. Note 2: Void. Note 3: Void.

Note 4: Test case applicability is defined in 8.1.2.1.

Table 8.2.1.1.1-3: Test Parameters for CA

Par	Parameter		Value
Downlink	$ ho_{\scriptscriptstyle A}$	dB	0
power	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)
allocation	σ	dB	0
N_{oc} at a	N_{oc} at antenna port		-98
Symbols fo	Symbols for unused PRBs		OCNG (Note 2)
Modulation			QPSK
PDSCH trai	nsmission mode		1

Note 1: $P_{p} = 0$.

Note 2: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs

shall be uncorrelated pseudo random data, which is QPSK modulated.

Note 3: PUCCH format 1b with channel selection is used to feedback ACK/NACK for Tests in Table 8.2.1.1.1-4, PUCCH format 3 is used to feedback ACK/NACK for Tests in

Table 8.2.1.1.1-6.

Note 4: The same PDSCH transmission mode is applied to each component carrier.

Table 8.2.1.1.1-4: Minimum performance (FRC) for CA with 2DL CCs

				Propa	Correlatio	Reference	e value	
Test num.	Band- width	Reference channel	OCNG pattern	gation condi- tion	n matrix and antenna config.	Fraction of maximum throughput (%)	SNR (dB)	UE cate- gory
1	2x10 MHz	R.2 FDD	OP.1 FDD (Note 1)	EVA5	1x2 Low	70	-1.1	≥3 (Note 2)
2	2x20 MHz	R.42 FDD	OP.1 FDD (Note 1)	EVA5	1x2 Low	70	-1.3	≥5
3	2x5	R.42-2 FDD	OP.1 FDD	EVA5	1x2 Low	70	-1.0	≥2
3	MHz	R.42-2 FDD	OP.1 FDD	EVAS	TXZ LOW	70	-1.0	22
	10MHz	R.2 FDD for 10MHz CC	OP.1 FDD			70	-1.7	
4	+5MHz	R.42-2 FDD for 5MHz CC	OP.1 FDD	EVA5	1x2 Low	70	-1.0	≥3

Note 1: The OCNG pattern applies for each CC.

Note 2: 30usec timing difference between two CCs is applied in inter-band CA case.

Note 3: The applicability of requirements for different CA configurations and bandwidth combination

sets is defined in 8.1.2.3.

Table 8.2.1.1.1-5: Single carrier performance for multiple CA configurations

				Correlation	Reference va	lue
Band- width	Reference channel	OCNG pattern	Propagation condition	matrix and antenna config.	Fraction of maximum throughput (%)	SNR (dB)
1.4MHz	R.4 FDD	OP.1 FDD	EVA5	1x2 Low	70	-1.3
3MHz	R.42-1 FDD	OP.1 FDD	EVA5	1x2 Low	70	-1.1
5MHz	R.42-2 FDD	OP.1 FDD	EVA5	1x2 Low	70	-1.0
10MHz	R.2 FDD	OP.1 FDD	EVA5	1x2 Low	70	-1.7
15MHz	R.42-3 FDD	OP.1 FDD	EVA5	1x2 Low	70	-1.6
20MHz	R.42 FDD	OP.1 FDD	EVA5	1x2 Low	70	-1.7

Table 8.2.1.1.1-6: Minimum performance (FRC) based on single carrier performance for CA with 3DL **CCs**

Test num.	CA Band-width combination	Requirement	UE category		
1	3x20MHz	As specified in Table 8.2.1.1.1-5 per CC	≥5		
2	20MHz+20MHz+15MHz	As specified in Table 8.2.1.1.1-5 per CC	≥5		
3	20MHz+20MHz+10MHz	As specified in Table 8.2.1.1.1-5 per CC	≥5		
4	20MHz+15MHz+15MHz	As specified in Table 8.2.1.1.1-5 per CC	≥5		
5	20MHz+15MHz+10MHz	As specified in Table 8.2.1.1.1-5 per CC	≥5		
6	20MHz+10MHz+10MHz	As specified in Table 8.2.1.1.1-5 per CC	≥5		
7	15MHz+15MHz+10MHz	As specified in Table 8.2.1.1.1-5 per CC	≥5		
8	20MHz+10MHz+5MHz	As specified in Table 8.2.1.1.1-5 per CC	≥5		
Note 1: The applicability of requirements for different CA configurations and bandwidth combination					

sets is defined in 8.1.2.3

Note 2: 30usec timing difference between PCell and any SCell which is not within the same band or sub-block as PCell, is applied in inter-band CA case, where PCell can be assigned on any

8.2.1.1.2 Void

8.2.1.1.3 Void

8.2.1.1.4 Minimum Requirement 1 PRB allocation in presence of MBSFN

The requirements are specified in Table 8.2.1.1.4-2, with the addition of the parameters in Table 8.2.1.1.4-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the single-antenna performance with a single PRB allocated at the lower band edge in presence of MBSFN.

Table 8.2.1.1.4-1: Test Parameters for Testing 1 PRB allocation

Parameter		Unit	Test 1
	$ ho_{\scriptscriptstyle A}$	dB	0
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)
	σ	dB	0
N_{oc} at antenna	port	dBm/15kHz	-98
Symbols for MBSFN portion of MBSFN subframes (Note 2)			OCNG (Note 3)
PDSCH transmission	on mode		1

Note 1: $P_{\scriptscriptstyle R}=0$

The MBSFN portion of an MBSFN subframe comprises the Note 2: whole MBSFN subframe except the first two symbols in the

The MBSFN portion of the MBSFN subframes shall contain Note 3: QPSK modulated data. Cell-specific reference signals are not inserted in the MBSFN portion of the MBSFN subframes, QPSK modulated MBSFN data is used instead.

Table 8.2.1.1.4-2: Minimum performance 1PRB (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference	value	UE
number		Channel	Pattern	Condition	Matrix and	Fraction of	SNR	Category
					Antenna	Maximum	(dB)	
					Configuration	Throughput		
						(%)		
1	10 MHz	R.29 FDD	OP.3 FDD	ETU70	1x2 Low	30	2.0	≥1

8.2.1.2 Transmit diversity performance

8.2.1.2.1 Minimum Requirement 2 Tx Antenna Port

The requirements are specified in Table 8.2.1.2.1-2, with the addition of the parameters in Table 8.2.1.2.1-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of transmit diversity (SFBC) with 2 transmitter antennas.

Table 8.2.1.2.1-1: Test Parameters for Transmit diversity Performance (FRC)

Parameter		Unit	Test 1-2				
	$ ho_{\scriptscriptstyle A}$	dB	-3				
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)				
	σ	dB	0				
$N_{\it oc}$ at antenna	port	dBm/15kHz	-98				
PDSCH transmission	on mode		2				
Note 1: $P_B = 1$.							

Table 8.2.1.2.1-2: Minimum performance Transmit Diversity (FRC)

Test	Band-	Reference	OCNG	Propagation	Correlation	Reference value		UE
number	width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughp ut (%)	SNR (dB)	Category
1	10 MHz	R.11 FDD	OP.1 FDD	EVA5	2x2 Medium	70	6.8	≥2
	5 MHz	R.11-2 FDD	OP.1 FDD	EVA5	2x2 Medium	70	5.9	1
	5 MHz	R.11-2 FDD	OP.1 FDD	EVA5	2x2 Medium	70	5.9	≥2
	(Note 1)							
2	10 MHz	R.10 FDD	OP.1 FDD	HST	2x2	70	-2.3	≥1
Note 1:	Test case a	pplicability is de	efined in 8.1.2	.1.	•		•	

8.2.1.2.2 Minimum Requirement 4 Tx Antenna Port

The requirements are specified in Table 8.2.1.2.2-2, with the addition of the parameters in Table 8.2.1.2.2-1 and the downlink physical channel setup according Annex C.3.2. The purpose is to verify the performance of transmit diversity (SFBC-FSTD) with 4 transmitter antennas.

Table 8.2.1.2.2-1: Test Parameters for Transmit diversity Performance (FRC)

Parameter		Unit	Test 1-2
	$ ho_{\scriptscriptstyle A}$	dB	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
	σ	dB	0
N_{oc} at antenna	port	dBm/15kHz	-98
PDSCH transmission	on mode		2
Note 1: $P_B = 1$.			

Table 8.2.1.2.2-2: Minimum performance Transmit Diversity (FRC)

Test	Band-	Reference	OCNG	Propagation	Correlation	Reference value		UE
number	width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	1.4 MHz	R.12 FDD	OP.1 FDD	EPA5	4x2 Medium	70	0.6	≥1
2	10 MHz	R.13 FDD	OP.1 FDD	ETU70	4x2 Low	70	-0.9	≥1

8.2.1.2.3 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS)

The requirements are specified in Table 8.2.1.2.3-2, with the addition of parameters in Table 8.2.1.2.3-1 and the downlink physical channel setup according to Annex C.3.2 and Annex C.3.3. The purpose is to verify the performance of transmit diversity (SFBC) with 2 transmit antennas if the PDSCH transmission in the serving cell takes place in subframes that overlap with ABS [9] of the aggressor cell. In Table 8.2.1.2.3-1, Cell 1 is the serving cell, and Cell 2 is the aggressor cell. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 is according to Annex C.3.3, respectively.

Table 8.2.1.2.3-1: Test Parameters for Transmit diversity Performance (FRC)

Parameter	Parameter		Cell 1	Cell 2		
	$ ho_{\scriptscriptstyle A}$	dB	-3	-3		
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3		
	σ	dB	0	N/A		
	N_{oc1}	dBm/15kHz	-102 (Note 2)	N/A		
$N_{\it oc}$ at antenna port	N_{oc2}	dBm/15kHz	-98 (Note 3)	N/A		
	N_{oc3}	dBm/15kHz	-94.8 (Note 4)	N/A		
\hat{E}_s/N_{oc2}		dB	Reference Value in Table 8.2.1.2.3-2	6		
$BW_Channel$		MHz	10	10		
Subframe Configura	tion		Non-MBSFN	Non-MBSFN		
Time Offset between	Cells	μs	2.5 (synchro	nous cells)		
Cell Id			0	1		
ABS pattern (Note	5)		N/A	11000100 11000000 11000000 11000000 11000000		
RLM/RRM Measurement Pattern (Note 6)			10000000 10000000 10000000 10000000 1000000	N/A		
0010	Ccsi,0		11000100 11000000 11000000 11000000 11000000	N/A		
CSI Subframe Sets (Note7)	C _{CSI,1}		00111011 00111111 00111111 00111111 00111111	N/A		
Number of control OFDM			2	2		
PDSCH transmission	mode		2	N/A		
Cyclic prefix			Normal	Normal		

- Note 1: $P_B = 1$.
- Note 2: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.
- Note 3: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.
- Note 4: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS
- Note 5: ABS pattern as defined in [9].
- Note 6: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
- Note 7: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].
- Note 8: Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1 and Cell2 is the same.
- Note 9: SIB-1 will not be transmitted in Cell2 in this test.

Table 8.2.1.2.3-2: Minimum Performance Transmit Diversity (FRC)

Test Number	Reference Channel		NG tern	Cond	agation ditions ote 1)	Correlation Matrix and Antenna	Reference \	Reference Value	
		Cell 1	Cell 2	Cell 1	Cell 2	Configurati on	Fraction of Maximum Throughput (%) Note 5	SNR (dB) (Note 2)	
1	R.11-4 FDD Note 4	OP.1 FDD	OP.1 FDD	EVA5	EVA 5	2x2 Medium	70	3.4	≥2
Note 1:	Note 1: The propagation conditions for Cell 1 and Cell2 are statistically independent.								
Note 2:	SNR corresponds to \hat{E}_s/N_{oc2} of cell 1.								
Note 3: Note 4:	The correlation matrix and antenna configuration apply for Cell 1 and Cell 2. Cell 1 Reference channel is modified: PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the								

8.2.1.2.3A Minimum Requirement 2 Tx Antenna Ports (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)

ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel. The maximum Throughput is calculated from the total Payload in 9 subframes, averaged over 40ms.

The requirements are specified in Table 8.2.1.2.3A-2, with the addition of parameters in Table 8.2.1.2.3A-1. The purpose is to verify the performance of transmit diversity (SFBC) with 2 transmit antennas if the PDSCH transmission in the serving cell takes place in subframes that overlap with ABS [9] of the aggressor cells with CRS assistance information. In Table 8.2.1.2.3A-1, Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] includes Cell 2 and Cell 3.

Table 8.2.1.2.3A-1: Test Parameters for Transmit diversity Performance (FRC)

Parameter		Unit	Cell 1	Cell 2	Cell 3
	$ ho_{\scriptscriptstyle A}$	dB	-3	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3 (Note 1)	-3 (Note 1)
	σ	dB	0	N/A	N/A
	N_{oc1}	dBm/15kHz	-98 (Note 2)	N/A	N/A
N_{oc} at antenna port	N_{oc2}	dBm/15kHz	-98 (Note 3)	N/A	N/A
	N_{oc3}	dBm/15kHz	-93 (Note 4)	N/A	N/A
\hat{E}_s/N_{oc2}		dB	Reference Value in Table8.2.1.2.3 A-2	12	10
BW _{Channel}		MHz	10	10	10
Subframe Configu	ration		Non-MBSFN	Non-MBSFN	Non-MBSFN
Time Offset betwee	n Cells	μs	N/A	3	-1
Frequency shift between	en Cells	Hz	N/A	300	-100
Cell Id			0	126	1
ABS pattern (No	te 5)		N/A	11000000 11000000 11000000 11000000 11000000	11000000 11000000 11000000 11000000 11000000
RLM/RRM Measur Subframe Pattern (I			1000000 1000000 1000000 1000000 1000000	N/A	N/A
CSI Subframe Sets	C _{CSI,0}		11000000 11000000 11000000 11000000 11000000	N/A	N/A
(Note7)	Ccsi,1		00111111 00111111 00111111 00111111 00111111	N/A	N/A
Number of control symbols	OFDM		2	Note 8	Note 8
PDSCH transmissio	n mode		2	Note 9	Note 9
Cyclic prefix			Normal	Normal	Normal

Note 1: $P_B = 1$.

Note 2: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10, #12, #13 of a subframe overlapping with the aggressor ABS.

Note 3: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.

Note 4: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS

Note 5: ABS pattern as defined in [9].

Note 6: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]

Note 7: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].

Note 8: The number of control OFDM symbols is not available for ABS and is 2 for the subframe indicated by "0" of ABS pattern.

Note 9: Downlink physical channel setup in Cell 2 and Cell 3 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.

Note 10: The number of the CRS ports in Cell 1, Cell 2 and Cell 3 is the same.

Note 11: SIB-1 will not be transmitted in Cell 2 and Cell 3 in this test.

Table 8.2.1.2.3A-2: Minimum Performance Transmit Diversity (FRC)

Test Number	Reference Channel	OC	NG Patte	ern	Propaga	ation Cor (Note1)	nditions	Correlation Matrix and	Reference	Value	UE Cate
		Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	Antenna Configuration (Note 2)	Fraction of Maximum Throughput (%) Note 5	SNR (dB) (Note 3)	gory
1	R.11-4 FDD Note 4	OP.1 FDD	OP.1 FDD	OP.1 FDD	EVA5	EVA5	EVA5	2x2 Medium	70	3.4	≥2

- Note 1: The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.
- Note 2: The correlation matrix and antenna configuration apply for Cell 1, Cell 2 and Cell 3.
- Note 3: SNR corresponds to E_s/N_{oc2} of cell 1.
- Note 4: Cell 1 Reference channel is modified: PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.
- Note 5: The maximum Throughput is calculated from the total Payload in 9 subframes, averaged over 40ms.

8.2.1.2.4 Enhanced Performance Requirement Type A - 2 Tx Antenna Ports with TM3 interference model

The requirements are specified in Table 8.2.1.2.4-2, with the addition of parameters in Table 8.2.1.2.4-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of transmit diversity (SFBC) with 2 transmit antennas when the PDSCH transmission in the serving cell is interfered by PDSCH of two dominant interfering cells applying transmission mode 3 interference model defined in clause B.5.2. In Table 8.2.1.2.4-1, Cell 1 is the serving cell, and Cell 2, 3 are interfering cells. The downlink physical channel setup is according to Annex C.3.2 for each of Cell 1, Cell 2 and Cell 3, respectively.

Table 8.2.1.2.4-1: Test Parameters for Transmit diversity Performance (FRC) with TM3 interference model

Parameter		Unit	Cell 1	Cell 2	Cell 3
	$ ho_{\scriptscriptstyle A}$	dB	-3	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3	-3
	σ	dB	0	0	0
Cell-specific reference	signals		Antenna ports 0,1	Antenna ports 0,1	Antenna ports 0,1
N_{oc} at antenna po	ort	dBm/15kHz	-98	N/A	N/A
DIP (Note 2)		dB	N/A	-2.23	-8.06
BWChannel		MHz	10	10	10
Cyclic Prefix			Normal	Normal	Normal
Cell Id			0	1	2
Number of control OFDM	symbols		2	2	2
PDSCH transmission	mode		2	N/A	N/A
Interference mode	el		N/A	As specified in clause B.5.2	As specified in clause B.5.2
Probability of occurrence of	Rank 1	%	N/A	80	80
transmission rank in interfering cells	Rank 2	%	N/A	20	20
Reporting interva	ıl	ms	5	N/A	N/A
Reporting mode			PUCCH 1-0	N/A	N/A
Physical channel for CQI reporting			PUSCH(Note 5)	N/A	N/A
cqi-pmi-Configuration	Index		2	N/A	N/A

Note 1: $P_B = 1$

Note 2: The respective received power spectral density of each interfering cell relative to N_{oc} is defined by its associated DIP value as specified in clause B.5.1.

Note 3: Cell 1 is the serving cell. Cell 2, 3 are the interfering cells.

Note 4: Cell 2 transmission is delayed with respect to Cell 1 by 0.33 ms and Cell 3 transmission is delayed with respect to Cell 1 by 0.67 ms.

Note 5: To avoid collisions between CQI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1 and #6 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#5 and #0.

Table 8.2.1.2.4-2: Enhanced Performance Requirement Type A, Transmit Diversity (FRC) with TM3 interference model

Test Number	Reference Channel	OCI	NG Pat	tern		opagat onditio		Correlation Matrix and	Reference	Value	UE Cate
		Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	Antenna Configurati on (Note 3)	Fraction of Maximum Throughput (%)	SINR (dB) (Note 2)	gory
1	R.46 FDD	OP. 1 FD D	N/A	N/A	EV A70	EV A70	EV A70	2x2 Low	70	-1.1	≥1

Note 1: The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.

Note 2: SINR corresponds to \hat{E}_s/N_{oc} of Cell 1 as defined in clause 8.1.1.

Note 3: Correlation matrix and antenna configuration parameters apply for each of Cell 1, Cell 2 and Cell 3.

8.2.1.2.5 Enhanced Performance Requirement Type B - 2 Tx Antenna Ports with TM2 interference model

The requirements are specified in Table 8.2.1.2.5-2, with the addition of parameters in Table 8.2.1.2.5-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of transmit diversity (SFBC) with 2 transmit antennas when the PDSCH transmission in the serving cell is interfered by PDSCH of two interfering cells applying transmission mode 2 interference model defined in clause B.6.1. In Table 8.2.1.2.5-1, Cell 1 is the serving cell, and Cell 2, 3 are interfering cells. The downlink physical channel setup is according to Annex C.3.2 for each of Cell 1, Cell 2 and Cell 3, respectively.

Table 8.2.1.2.5-1: Test Parameters for Transmit Diversity Performance (FRC) with TM2 interference model

Param	neter		Unit	Cell 1	Cell 2	Cell 3
		$ ho_{\scriptscriptstyle A}$	dB	-3	-3	-3
Downlink power alloca	tion	$ ho_{\scriptscriptstyle B}$	dB	-3 (NOTE 1)	-3	-3
		σ	dB	0	0	0
Cell-specific reference	signals			Antenna ports 0,1	Antenna ports 0,1	Antenna ports 0,1
N_{oc} at antenna port			dBm/15kHz		-98	
\hat{E}_s/N_{oc}			dB	N/A	13.91	3.34
BW _{Channel}			MHz	10	10	10
Cyclic Prefix				Normal	Normal	Normal
Cell Id				0	6	1
Number of control OF	OM sym	bols		3	3	3
CFI indicated in PCFIC	CH			3	3	3
PDSCH transmission r	node			2	2	2
Interference model				N/A	As specified in clause B.6.1	As specified in clause B.6.1
MBSFN				Not configured	Not configured	Not configured
Time offset to cell 1	Time offset to cell 1		us	N/A	2	3
Frequency offset to cell 1		Hz	N/A	200	300	
NeighCellsInfo- p r12	-aList-r	12		N/A	{dB-6, dB-3, dB0}	{dB-6, dB-3, dB0}
, ,	ansmis r12	sionModeList		N/A	{2,3,4,8,9}	{2,3,4,8,9}

NOTE 1: $P_B = 1$

NOTE 2: Cell 1 is the serving cell. Cell 2, 3 are the interfering cells.

NOTE 3: NeighCellsInfo-r12 is described in subclause 6.3.2 of [7].

Table 8.2.1.2.5-2: Minimum Performance for Enhanced Performance Requirement Type B, Transmit Diversity (FRC) with TM2 interference model

Test Number	Reference Channel	OCI	NG Pat	tern		opagat onditio		Correlation Matrix and	Reference	Value	UE Cate
		Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	Antenna Configurati on (NOTE 3)	Fraction of Maximum Throughput (%)	SNR (dB) (NOTE 2)	gory
1	R.11-10 FDD	OP. 1 FD D	N/A	N/A	EP A5	EP A5	EP A5	2x2 Low	85	15.5	≥1

NOTE 1: The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.

NOTE 2: SNR corresponds to \widehat{E}_s/N_{oc} of Cell 1 as defined in clause 8.1.1.

NOTE 3: Correlation matrix and antenna configuration parameters apply for each of Cell 1, Cell 2 and Cell 3.

8.2.1.2.6 Enhanced Performance Requirement Type B - 2 Tx Antenna Ports with TM9 interference model

The requirements are specified in Table 8.2.1.2.6-2, with the addition of parameters in Table 8.2.1.2.6-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of transmit diversity (SFBC) with 2 transmit antennas when the PDSCH transmission in the serving cell is interfered by PDSCH of two interfering cells applying transmission mode 9 interference model defined in clause B.6.4. In Table 8.2.1.2.6-1, Cell 1 is the serving cell, and Cell 2, 3 are interfering cells. The downlink physical channel setup is according to Annex C.3.2 for each of Cell 1, Cell 2 and Cell 3, respectively.

Table 8.2.1.2.6-1: Test Parameters for Transmit Diversity Performance (FRC) with TM9 interference model

Pa	arameter		Unit	Cell 1	Cell 2	Cell 3
		$ ho_{\scriptscriptstyle A}$	dB	-3	0	0
Downlink power al	location	$ ho_{\scriptscriptstyle B}$	dB	-3 (NOTE 1)	0	0
		σ	dB	0	-3	-3
Cell-specific refere	Cell-specific reference signals			Antenna ports 0,1	Antenna ports 0,1	Antenna ports 0,1
N_{oc} at antenna po	ort		dBm/15kHz		-98	
\hat{E}_s/N_{oc}			dB	N/A	3.28	0.74
BW _{Channel}			MHz	10	10	10
Cyclic Prefix				Normal	Normal	Normal
Cell Id				0	1	6
Number of control	OFDM sy	mbols		3	3	3
CFI indicated in Po	CFICH			3	Random from set {1,2,3}	Random from set {1,2,3}
PDSCH transmiss	ion mode			2	9	9
Interference mode	I			N/A	As specified in clause B.6.4	As specified in clause B.6.4
CSI reference sign	nals			N/A	Antenna ports 15,16	Antenna ports 15,16
CSI-RS periodicity T _{CSI-RS} / Δ _{CSI-RS}	and subfr	ame offset	Subframes	N/A	10 / 1	10 / 1
CSI reference sign	nal configu	ration		N/A	6	7
Zero-power CSI-R I _{CSI-RS} / ZeroPower	<i>rCSI-RŠ</i> b		Subframes / bitmap	N/A	6 / 01000000000 00000	6 / 0010000000 000000
Time offset to cell 1			us	N/A	5	-5
Frequency offset to cell 1			Hz	N/A	600	-600
MBSFN			Not configured	Not configured	Not configured	
NeighCellsInfo- r12 p-aList-r12		12		N/A	{dB-6, dB-3, dB0}	{dB-6, dB-3, dB0}
(NOTE 4)	transmis r12	sionModeList-		N/A	{2,3,4,8,9}	{2,3,4,8,9}

NOTE 1: $P_B = 1$

NOTE 2: Cell 1 is the serving cell. Cell 2, 3 are the interfering cells.

NOTE 3: CSI-RS configurations are according to [4] subclause 6.10.5.2.

NOTE 4: NeighCellsInfo-r12 is described in subclause 6.3.2 of [7].

Table 8.2.1.2.6-2: Minimum Performance for Enhanced Performance Requirement Type B, Transmit Diversity (FRC) with TM9 interference model

Test Number	Reference Channel	OCI	OCNG Pattern		Propagation Conditions			Correlation Matrix and	Reference	Value	UE Cate
		Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	Antenna Configurati on (NOTE 3)	Fraction of Maximum Throughput (%)	SNR (dB) (NOTE 2)	gory
1	R.11-9 FDD	OP. 1 FD D	N/A	N/A	EP A5	EP A5	EP A5	2x2 Low	85	8.4	≥1

NOTE 1: The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.

NOTE 2: SNR corresponds to \widehat{E}_{s}/N_{ac} of Cell 1 as defined in clause 8.1.1.

NOTE 3: Correlation matrix and antenna configuration parameters apply for each of Cell 1, Cell 2 and Cell 3.

8.2.1.3 Open-loop spatial multiplexing performance

8.2.1.3.1 Minimum Requirement 2 Tx Antenna Port

For single carrier, the requirements are specified in Table 8.2.1.3.1-2, with the addition of the parameters in Table 8.2.1.3.1-1 and the downlink physical channel setup according to Annex C.3.2.

For CA with 2 DL CC, the requirements are specified in Table 8.2.1.3.1-4, with the addition of the parameters in Table 8.2.1.3.1-3 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of large delay CDD with 2 transmitter antennas.

For CA with 3 DL CCs, the requirements are specified in Table 8.2.1.3.1-6, based on single carrier requirement specified in Table 8.2.1.3.1-5, with the addition of the parameters in Table 8.2.1.3.1-3 and the downlink physical channel setup according to Annex C.3.2.

The test coverage for different number of component carriers is defined in 8.1.2.4.

Table 8.2.1.3.1-1: Test Parameters for Large Delay CDD (FRC)

Parameter		Unit	Test 1-4
Devention	$ ho_{\scriptscriptstyle A}$	dB	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
	σ	dB	0
$N_{\it oc}$ at antenna	N_{oc} at antenna port		-98
PDSCH transmission	on mode		3

Note 1: $P_B = 1$.

Note 2: Void.

Note 3: Void.

Table 8.2.1.3.1-2: Minimum performance Large Delay CDD (FRC)

				Propa-	Correlation	Reference	value	
Test num	Bandwidt h	Referenc e channel	OCNG pattern	gation condi- tion	matrix and antenna config.	Fraction of maximum Throughput (%)	SNR (dB)	UE cate gory
1	10 MHz	R.11 FDD	OP.1 FDD	EVA70	2x2 Low	70	13.0	≥2
2 (Note 3)	5 MHz	R.11-2 FDD	OP.1 FDD	EVA70	2x2 Low	70	12.7	≥2
3	10 MHz	R.35 FDD	OP.1 FDD	EVA200	2x2 Low	70	20.2	≥2
4	10 MHz	R.35-4 FDD	OP.1 FDD	ETU600	2x2 Low	70	20.8	≥2

Note 1: Void.

Note 2: Test 1 may not be executed for UE-s for which Test 1 or 2 in Table 8.2.1.3.1-4 is applicable.

Note 3: Test case applicability is defined in 8.1.2.1.

Table 8.2.1.3.1-3: Test Parameters for Large Delay CDD (FRC) for CA

Parameter	,	Unit	Value
Develiels never	$ ho_{\scriptscriptstyle A}$	dB	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
	σ	dB	0
N_{oc} at antenna port		dBm/15kHz	-98
PDSCH transmission	on mode		3

Note 1: $P_B = 1$.

Note 2: PUCCH format 1b with channel selection is used to feedback ACK/NACK for Tests in Table 8.2.1.3.1-4,

PUCCH format 3 is used to feedback ACK/NACK for Tests in Table 8.2.1.3.1-6.

Note 3: The same PDSCH transmission mode is applied to each

component carrier.

Table 8.2.1.3.1-4: Minimum performance Large Delay CDD (FRC) for CA with 2DL CCs

				Propa-	Correlation	Referenc	e value	
Test num	Bandwidth	Referenc e channel	OCNG pattern	gation condi- tion	matrix and antenna config.	Fraction of maximum Throughput (%)	SNR (dB)	UE category
1 (Note 2)	2x10 MHz	R.11 FDD	OP.1 FDD (Note 1)	EVA70	2x2 Low	70	13.7	≥3
2 (Note 2)	2x20 MHz	R.30 FDD	OP.1 FDD (Note 1)	EVA70	2x2 Low	70	13.2	≥5
3	2x5 MHz	R.11-2 FDD	OP.1 FDD	EVA70	2x2 Low	70	12.7	≥2
4	10MHz+5	R.11 FDD for 10MHz CC,	OP.1 FDD (Note 1)	EVA70	2x2 Low	70	13.0	≥3
4	MHz	R.11-2 FDD for 5MHz CC	OP.1 FDD (Note 1)	EVA/U	ZXZ LOW	70	12.7	≥3

Note 1: The OCNG pattern applies for each CC.

Note 2: Void

Note 3: The applicability of requirements for different CA configurations and bandwidth combination sets is defined in 8.1.2.3.

Table 8.2.1.3.1-5: Single carrier performance for multiple CA configurations

			Propa-	Correlation	Reference val	ue
Band- width	Reference channel	OCNG pattern	gation condition	matrix and antenna config.	Fraction of maximum throughput (%)	SNR (dB)
1.4MHz	R.11-5 FDD	OP. 1 FDD	EVA70	2x2 Low	70	13.6
3MHz	R.11-6 FDD	OP. 1 FDD	EVA70	2x2 Low	70	12.3
5MHz	R.11-2 FDD	OP. 1 FDD	EVA70	2x2 Low	70	12.3
10 MHz	R.11 FDD	OP. 1 FDD	EVA70	2x2 Low	70	12.9
15MHz	R.11-7 FDD	OP. 1 FDD	EVA70	2x2 Low	70	12.8
20MHz	R.30 FDD	OP. 1 FDD	EVA70	2x2 Low	70	12.9

Table 8.2.1.3.1-6: Minimum performance (FRC) based on single carrier performance for CA with 3 DL CCs

on Requirement 52 sategory
As specified in Table 8.2.1.3.1-5 per CC ≥5
-15MHz As specified in Table 8.2.1.3.1-5 per CC ≥5
-10MHz As specified in Table 8.2.1.3.1-5 per CC ≥5
-15MHz As specified in Table 8.2.1.3.1-5 per CC ≥5
-10MHz As specified in Table 8.2.1.3.1-5 per CC ≥5
-10MHz As specified in Table 8.2.1.3.1-5 per CC ≥5
-10MHz As specified in Table 8.2.1.3.1-5 per CC ≥5
+5MHz As specified in Table 8.2.1.3.1-5 per CC ≥5
12 24 24 24 24

Note 1: The applicability of requirements for different CA configurations and bandwidth combination sets is defined in 8.1.2.3

8.2.1.3.1A Soft buffer management test

For CA, the requirements are specified in Table 8.2.1.3.1A-2, with the addition of the parameters in Table 8.2.1.3.1A-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the UE performance with proper instantaneous buffer implementation. The test points are applied to UE category and bandwidth combination with maximum aggregated bandwidth as specified in Table 8.2.1.3.1A-3.

Table 8.2.1.3.1A-1: Test Parameters for soft buffer management test (FRC) for CA

Parameter		Unit	Test 1-7
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
	σ	dB	0
$N_{\scriptscriptstyle oc}$ at antenna	N_{oc} at antenna port		-98
PDSCH transmission	on mode		3

Note 1: $P_B = 1$.

Note 2: For CA test cases, PUCCH format 1b with channel selection is used to feedback ACK/NACK.

Note 3: For CA test cases, the same PDSCH transmission mode is applied to each component carrier.

Table 8.2.1.3.1A-2: Minimum performance soft buffer management test (FRC) for CA

						Reference	ce value
Test Bandwi num dth		Reference channel	OCNG pattern	Propa- gation condition	Correlation matrix and antenna config.	Fraction of maximum Throughput (%)	SNR (dB)
1	2x20 MHz	R.30 FDD	OP.1 FDD (Note 1)	EVA70	2x2 Low	70	13.2
2	15MHz +	R.35-2 FDD for 15MHz CC	OP.1 FDD (Note 1)	EVA5	2x2 Low	70	15.1
2	10MHz	R.35-3 FDD for 10MHz CC	OP.1 FDD (Note 1)	EVAS	ZXZ LOW	70	15.1
3	20MHz + 10MHz	R.30 FDD for 20MHz CC	OP.1 FDD (Note 1)	EVA70	2x2 Low	70	13.5
3		R.11 FDD for 10MHz CC	OP.1 FDD (Note 1)	EVA/U	ZXZ LOW	70	13.5
4	20MHz +	R.30 FDD for 20MHz CC	OP.1 FDD (Note 1)	EVA70	2x2 Low	70	13.5
4	15MHz	R.30-1 FDD for 15MHz CC	OP.1 FDD (Note 1)	EVA/U		70	13.5
5	2x20 MHz	R.35-1 FDD	OP.1 FDD (Note 1)	EVA5	2x2 Low	70	15.8
6	20MHz +	R.35-1 FDD for 20MHz CC	OP.1 FDD (Note 1)	EVA5	2x2 Low	70	15.9
0	10MHz	R.35-3 FDD for 10MHz CC	OP.1 FDD (Note 1)	EVAS	ZXZ LOW	70	15.9
7	20MHz +	R.35-1 FDD for 20MHz CC	OP.1 FDD (Note 1)	F\/^F	2021 200	70	15.9
7	15MHz	R.35-2 FDD for 15MHz CC	OP.1 FDD (Note 1)	EVA5	2x2 Low	70	15.9

Note 1: For CA test cases, the OCNG pattern applies for each CC.

Note 2: For Test 2, 3, 4, 6, 7 the Fraction of maximum Throughput applies to each CC.

Note 3: The applicability of requirements for different CA configurations and bandwidth combination sets is defined in 8.1.2.3.

Table 8.2.1.3.1A-3: Test points for soft buffer management tests for CA

LIE optogory	Bandwidth combination with maximum aggregated bandwidth (Note 1)								
UE category	2x20MHz	15MHz+10MHz	20MHz+10MHz	20MHz+15MHz					
3	1	2	3	4					
4	5	N/A	N/A 6						
Note 1: Maximum over all supported CA configurations and bandwidth combination sets according to Table 5.6A.1-									
1and Table	5.6A.1-2.	_		-					

8.2.1.3.1B Enhanced Performance Requirement Type C –2Tx Antenna Ports

The requirements are specified in Table 8.2.1.3.1B-2, with the addition of the parameters in Table 8.2.1.3.1B-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of large delay CDD with 2 transmitter antennas.

Table 8.2.1.3.1B-1: Test Parameters for Large Delay CDD (FRC)

Parameter		Unit	Test 1
Downlink novem	$ ho_{\scriptscriptstyle A}$	dB	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
	σ	dB	0
$N_{\it oc}$ at antenna	port	dBm/15kHz	-98
PDSCH transmission	on mode		3
Note 1: $P_R = 1$.			

Table 8.2.1.3.1B-2: Enhanced Performance Requirement Type C for Large Delay CDD (FRC)

ſ					Propa-	Correlation	Reference	value	
	Test num	Bandwidt h	Referenc e channel	OCNG pattern	gation condi- tion	matrix and antenna config.	Fraction of maximum Throughput (%)	SNR (dB)	UE cate gory
	1	10 MHz	R.11 FDD	OP.1 FDD	EVA70	2x2 Medium	70	17.8	≥2

8.2.1.3.1C Enhanced Performance Requirement Type C - 2 Tx Antenna Ports with TM1 interference

The requirements are specified in Table 8.2.1.3.1C-2, with the addition of parameters in Table 8.2.1.3.1C-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of open-loop spatial multiplexing performence with 2 transmit antennas when the PDSCH transmission in the serving cell is interfered by PDSCH of one dominant interfering cell with transmission mode 1. In Table 8.2.1.3.1C-1, Cell 1 is the serving cell, and Cell 2 is interfering cells. The downlink physical channel setup is according to Annex C.3.2 for each of Cell 1 and Cell 2 respectively.

Table 8.2.1.3.1C-1 Test parameters for Larger Delay CDD (FRC) with TM1 interference

Parameter		Unit	Cell 1	Cell 2	
Bandwidth		MHz	10 M	Hz	
Downlink	Downlink $ ho_{\scriptscriptstyle A}$		-3	0	
power	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	0	
allocation	σ		0	0	
Cell-spec			Antenna	Antenna	
reference s	ignals		ports 0,1	port 0	
Cyclic Pr			Normal	Normal	
Cell IE)		0	1	
Transmis: mode			3	Note 2	
$N_{\!\scriptscriptstyle oc}$ at anteni	na port	dBm/15kHz	-98	N/A	
\hat{E}_s/N_{oc} (No	ote 3)	dB	Reference Value in Table 8.2.1.3.1C-2	12.95	
Correlatior antenn configura	a tion		Medium (2x2)	Medium(1x 2)	
Number of 0 symbols PDCCI	for		2	N/A	
Max number of HARQ transmissions			4	N/A	
Redunda version co sequend	ding		{0,1,2,3}	N/A	

Note 1: $P_{R} = 1$

Note 2: Downlink physical channel setup in Cell 2 in

accordance with Annex C.3.2 applying OCNG pattern OP.5 FDD as defined in Annex A.5.1.5.

Note 3: Cell 1 is the serving cell. Cell 2 is the interfering cell.

Note 4: All cells are time-synchronous.

Note 5: SIB-1 will not be transmitted in Cell2 in this test.

Table 8.2.1.3.1C-2 Enhanced Performance Requirement Type C, Larger Delay CDD (FRC) with TM1 interference

Test Number	Reference Channel	OCNG Pattern		Propagation Conditions (Note 1)		Reference Value		UE Categor y
		Cell 1	Cell 2	Cell 1	Cell 2	Fraction of Maximum Throughpu t (%)	SNR (dB) (Note 2)	
1	R.11-8 FDD	OP.1 FDD	OP.5 FDD	EVA7 0	EVA7 0	70	19.9	≥2
	The propagation				Cell 2 ar	e statistically in	ndependent	•

8.2.1.3.2 Minimum Requirement 4 Tx Antenna Port

The requirements are specified in Table 8.2.1.3.2-2, with the addition of the parameters in Table 8.2.1.3.2-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of large delay CDD with 4 transmitter antennas.

Table 8.2.1.3.2-1: Test Parameters for Large Delay CDD (FRC)

Parameter		Unit	Test 1
Devention of the second	$ ho_{\scriptscriptstyle A}$	dB	-6
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-6 (Note 1)
	σ	dB	3
$N_{\it oc}$ at antenna	port	dBm/15kHz	-98
PDSCH transmission	on mode		3
Note 1: $P_B = 1$	·		

Table 8.2.1.3.2-2: Minimum performance Large Delay CDD (FRC)

Test	Band-	Reference	OCNG	Propagation	Correlation	Reference value		UE
number	width	Channel	Pattern	Condition	Antenna Maximum (dB) Configuration Throughput (%)			Category
1	10 MHz	R.14 FDD	OP.1 FDD	EVA70	4x2 Low	70	14.3	≥2

8.2.1.3.3 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS)

The requirements for non-MBSFN ABS are specified in Table 8.2.1.3.3-2, with the addition of parameters in Table 8.2.1.3.3-1 and the downlink physical channel setup according to Annex C.3.2 and Annex C.3.3.

The requirements for MBSFN ABS are specified in Table 8.2.1.3.3-4, with the addition of parameters in Table 8.2.1.3.3-3 and the downlink physical channel setup according to Annex C.3.2 and Annex C.3.3.

The purpose is to verify the performance of large delay CDD with 2 transmitter antennas if the PDSCH transmission in the serving cell takes place in subframes that overlap with ABS [9] of the aggressor cell. In Tables 8.2.1.3.3-1 and 8.2.1.3.3-3, Cell 1 is the serving cell, and Cell 2 is the aggressor cell. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 is according to Annex C.3.3, respectively.

Table 8.2.1.3.3-1: Test Parameters for Large Delay CDD (FRC) - Non-MBSFN ABS

Parameter		Unit	Cell 1	Cell 2
	$ ho_{\scriptscriptstyle A}$	dB	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3
	σ	dB	0	N/A
	N_{oc1}	dBm/15kHz	-102 (Note 2)	N/A
N_{oc} at antenna port	N_{oc2}	dBm/15kHz	-98 (Note 3)	N/A
	N_{oc3}	dBm/15kHz	-94.8 (Note 4)	N/A
\widehat{E}_s/N_{oc2}		dB	Reference Value in Table 8.2.1.3.3-2	6
BW _{Channel}		MHz	10	10
Subframe Configura	ation		Non-MBSFN	Non-MBSFN
Cell Id			0	1
Time Offset between	Cells	μs	2.5 (synchro	nous cells)
ABS pattern (Note	÷ 5)		N/A	11000100, 11000000, 11000000, 11000000, 11000000
RLM/RRM Measurement Pattern(Note 6)			1000000 1000000 1000000 1000000 1000000	N/A
CSI Subframe Sets (Note	Ccsi,0		11000100 11000000 11000000 11000000 11000000	N/A
7)	C _{CSI,1}		00111011 00111111 00111111 00111111 00111111	N/A
Number of control OFDN			2	2
PDSCH transmission	mode		3	N/A
Cyclic prefix		1	Normal	Normal

Note 1: $P_B = 1$.

Note 2: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.

Note 3: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.

Note 4: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS

Note 5: ABS pattern as defined in [9].

Note 6: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7].

Note 7: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].

Note 8: Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1 and Cell2 is the same.

Note 9: SIB-1 will not be transmitted in Cell2 in this test.

Table 8.2.1.3.3-2: Minimum Performance Large Delay CDD (FRC) - Non-MBSFN ABS

Test Number	Reference Channel	OCNG	Pattern	Propagation Conditions (Note 1)		Correlation Matrix and Antenna	Reference \	/alue	UE Category
		Cell 1	Cell 2	Cell 1	Cell 2	Configuration	Fraction of Maximum Throughput (%) Note 5	SNR (dB) (Note 2)	
1	R.11 FDD Note 4	OP.1 FDD	OP.1 FDD	EVA 5	EVA 5	2x2 Low	70	13.3	≥2
Note 1:	The propagati	on conditi	n conditions for Cell 1 and Cell2 are statistically independent.						
Note 2:	SNR correspo	nds to \widehat{E}	$_{s}/N_{oc2}$ c	of cell 1.					

Note 3: The correlation matrix and antenna configuration apply for Cell 1 and Cell 2.

Note 4: Cell 1 Reference channel is modified: PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.

Note 5: The maximum Throughput is calculated from the total Payload in 9 subframes, averaged over 40ms.

Table 8.2.1.3.3-3: Test Parameters for Large Delay CDD (FRC) - MBSFN ABS

Parameter		Unit	Cell 1	Cell 2
	$ ho_{\scriptscriptstyle A}$	dB	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3
	σ	dB	0	N/A
	N_{oc1}	dBm/15kHz	-102 (Note 2)	N/A
N_{oc} at antenna port	N_{oc2}	dBm/15kHz	-98 (Note 3)	N/A
	N_{oc3}	dBm/15kHz	-94.8 (Note 4)	N/A
\hat{E}_s/N_{oc2}		dB	Reference Value in Table 8.2.1.3.3-4	6
BW _{Channel}		MHz	10	10
Subframe Configur	ation		Non-MBSFN	MBSFN
Cell Id			0	126
Time Offset between	Cells	μs	2.5 (synchro	nous cells)
ABS pattern (Note	÷ 5)		N/A	0001000000 0100000010 0000001000 0000000
RLM/RRM Measurement Pattern (Note 6			0001000000 0100000010 0000001000 0000000	N/A
CSI Subframe Sets (Note	Ccsi,0		0001000000 0100000010 0000001000 0000000	N/A
7)	C _{CSI,1}		1110111111 1011111101 1111110111 1111111	N/A
MBSFN Subframe Allocation	,		N/A	001000 100001 000100 000000
Number of control OFDN			2	2
PDSCH transmission	mode		3	N/A
Cyclic prefix			Normal	Normal

- Note 1: $P_B = 1$.
- Note 2: This noise is applied in OFDM symbols #1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11, #12, #13 of a subframe overlapping with the aggressor ABS.
- Note 3: This noise is applied in OFDM symbol #0 of a subframe overlapping with the aggressor ABS.
- Note 4: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS.
- Note 5: ABS pattern as defined in [9]. The 4th, 12th, 19th and 27th subframes indicated by ABS pattern are MBSFN ABS subframes.
- Note 6: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7].
- Note 7: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].
- Note 8: Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1 and Cell2 is the same.
- Note 9: SIB-1 will not be transmitted in Cell2 in this test.
- Note 10: MBSFN Subframe Allocation as defined in [7], four frames with 24 bits is chosen for MBSFN subframe allocation.
- Note 11: The maximum number of uplink HARQ transmission is ≤ 2 so that each PHICH channel transmission is in a subframe protected by MBSFN ABS in this test.

Table 8.2.1.3.3-4: Minimum Performance Large Delay CDD (FRC) - MBSFN ABS

Cell 1	Cell 2	Configuration	Fraction of		
		3	Maximum Throughput (%) Note 5	SNR (dB) (Note 2)	
EVA 5	EVA 5	2x2 Low	70	12.0	≥2
				EVA 5 EVA 5 2x2 Low 70	

- Note 1: The propagation conditions for Cell 1 and Cell2 are statistically independent.
- Note 2: SNR corresponds to \hat{E}_s/N_{ac2} of cell 1.
- Note 3: The correlation matrix and antenna configuration apply for Cell 1 and Cell 2.
- Note 4: Cell 1 Reference channel is modified: PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.
- Note 5: The maximum Throughput is calculated from the total Payload in 4 subframes, averaged over 40ms.

8.2.1.3.4 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)

The requirements for non-MBSFN ABS are specified in Table 8.2.1.3.4-2, with the addition of parameters in Table 8.2.1.3.4-1. The purpose is to verify the performance of large delay CDD with 2 transmit antennas if the PDSCH transmission in the serving cell takes place in subframes that overlap with ABS [9] of the aggressor cells with CRS assistance information. In Table 8.2.1.3.4-1, Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] includes Cell 2 ad Cell3.

Table 8.2.1.3.4-1: Test Parameters for Large Delay CDD (FRC) - Non-MBSFN ABS

Parameter		Unit	Cell 1	Cell 2	Cell 3
	$ ho_{\scriptscriptstyle A}$	dB	-3	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3 (Note 1)	-3 (Note 1)
	σ	dB	0	N/A	N/A
	N_{oc1}	dBm/15kHz	-98 (Note 2)	N/A	N/A
N_{oc} at antenna port	N_{oc2}	dBm/15kHz	-98 (Note 3)	N/A	N/A
	N_{oc3}	dBm/15kHz	-93 (Note 4)	N/A	N/A
\hat{E}_s/N_{oc2}		dB	Reference Value in Table 8.2.1.3.4-2	Reference Value in Table 8.2.1.3.4-2	Reference Value in Table 8.2.1.3.4-2
BW _{Channel}		MHz	10	10	10
Subframe Configu	ration		Non-MBSFN	Non-MBSFN	Non-MBSFN
Time Offset betwee	n Cells	μs	N/A	3	-1
Frequency shift between	een Cells	Hz	N/A	300	-100
Cell Id			0	1	126
ABS pattern (No	te 5)		N/A	11000000 11000000 11000000 11000000 11000000	11000000 11000000 11000000 11000000 11000000
RLM/RRM Measur Subframe Pattern (10000000 10000000 10000000 10000000 1000000	N/A	N/A
CSI Subframe Sets	Ccsi,o		11000000 11000000 11000000 11000000 11000000	N/A	N/A
(Note7)	Ccsi,1		00111111 00111111 00111111 00111111 00111111	N/A	N/A
Number of control symbols	OFDM		2	Note 8	Note 8
PDSCH transmissio	n mode		3	Note 9	Note 9
Cyclic prefix			Normal	Normal	Normal

Note 1: $P_{p} = 1$.

Note 2: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.

Note 3: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.

Note 4: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS

Note 5: ABS pattern as defined in [9].

Note 6: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]

Note 7: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].

Note 8: The number of control OFDM symbols is not available for ABS and is 2 for the subframe indicated by "0" of ABS pattern.

Note 9: Downlink physical channel setup in Cell 2 and Cell 3 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.

Note 10: The number of the CRS ports in Cell 1, Cell 2 and Cell 3 is the same.

Note 11: SIB-1 will not be transmitted in Cell 2 and Cell 3 in this test.

Table 8.2.1.3.4-2: Minimum Performance Large Delay CDD (FRC) - Non-MBSFN ABS

Test Number	Refer ence	$\hat{E}_s/2$	N_{oc2}	OC	NG Patt	ern		ropagations (N		Correlation Matrix and	Reference Value		UE Cate
	Chan nel	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	Antenna Configurati on (Note 2)	Fraction of Maximum Throughp ut (%) Note 5	SNR (dB) (Note 3)	gory
1	R.11 FDD Note 4	9	7	OP.1 FDD	OP.1 FDD	OP.1 FDD	EVA5	EVA5	EVA5	2x2 Low	70	13.9	≥2
2	R.35 FDD Note 4	9	1	OP.1 FDD	OP.1 FDD	OP.1 FDD	EVA5	EVA5	EVA5	2x2 Low	70	22.6	≥2

- Note 1: The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.
- Note 2: The correlation matrix and antenna configuration apply for Cell 1, Cell 2 and Cell 3.
- Note 3: SNR corresponds to \hat{E}_s/N_{oc2} of cell 1.
- Note 4: Cell 1 Reference channel is modified: PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.
- Note 5: The maximum Throughput is calculated from the total Payload in 9 subframes, averaged over 40ms.

8.2.1.4 Closed-loop spatial multiplexing performance

8.2.1.4.1 Minimum Requirement Single-Layer Spatial Multiplexing 2 Tx Antenna Port

The requirements are specified in Table 8.2.1.4.1-2, with the addition of the parameters in Table 8.2.1.4.1-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-one performance with wideband and frequency selective precoding.

Table 8.2.1.4.1-1: Test Parameters for Single-Layer Spatial Multiplexing (FRC)

Parameter		Unit	Test 1	Test 1A	Test 2	
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	-3	-3	-3	
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3 (Note 1)	-3 (Note 1)	
	σ	dB	0	0	0	
N_{oc} at antenna port		dBm/15kHz	-98	-98	-98	
Precoding granularity		PRB	6	4	50	
PMI delay (Note	2)	ms	8	8	8	
Reporting inter	val	ms	1	1	1	
Reporting mod	de		PUSCH 1-2	PUSCH 1-2	PUSCH 3-1	
CodeBookSubsetR	estricti		001111	001111	001111	
on bitmap						
PDSCH transmission		· · · · · · · · · · · · · · · · · · ·	4	4	4	
mode						
1						

Note 1: $P_B = 1$.

Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Table 8.2.1.4.1-2: Minimum performance Single-Layer Spatial Multiplexing (FRC)

Test number	Band- width	Reference Channel	OCNG Pattern	Propagation Condition	Correlation Matrix and Antenna Configuration	Reference v Fraction of Maximum Throughput (%)	value SNR (dB)	UE Catego ry
1	10 MHz	R.10 FDD	OP.1 FDD	EVA5	2x2 Low	70	-2.5	≥1
1A (Note 1)	5 MHz	R.10-2 FDD	OP.1 FDD	EVA5	2x2 Low	70	-2.9	≥1
2	10 MHz	R.10 FDD	OP.1 FDD	EPA5	2x2 High	70	-2.3	≥1
Note 1: Tes	st case appli	cability is defin	ned in 8.1.2.1.	•			•	

8.2.1.4.1A Minimum Requirement Single-Layer Spatial Multiplexing 4 Tx Antenna Port

The requirements are specified in Table 8.2.1.4.1A-2, with the addition of the parameters in Table 8.2.1.4.1A-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-one performance with wideband and frequency selective precoding.

Table 8.2.1.4.1A-1: Test Parameters for Single-Layer Spatial Multiplexing (FRC)

Parameter		Unit	Test 1
Davinlink navyan	$ ho_{\scriptscriptstyle A}$	dB	-6
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-6 (Note 1)
	σ	dB	3
N_{oc} at antenna p	ort	dBm/15kHz	-98
Precoding granula	arity	PRB	6
PMI delay (Note	2)	ms	8
Reporting interv	al	ms	1
Reporting mode	•		PUSCH 1-2
CodeBookSubsetRe on bitmap	estricti		0000000000000000 00000000000000000 00000
PDSCH transmiss mode	sion		4

Note 1: $P_B = 1$.

Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Table 8.2.1.4.1A-2: Minimum performance Single-Layer Spatial Multiplexing (FRC)

Test	Band-	Reference	OCNG	Propagation	Correlation	Reference v	alue	UE
number	width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.13 FDD	OP.1 FDD	EVA5	4x2 Low	70	-3.2	≥1

8.2.1.4.1B Enhanced Performance Requirement Type A - Single-Layer Spatial Multiplexing 2 Tx Antenna Port with TM4 interference model

The requirements are specified in Table 8.2.1.4.1B-2, with the addition of the parameters in Table 8.2.1.4.1B-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-one performance with wideband precoding with two transmit antennas when the PDSCH transmission in the serving cell is interfered by PDSCH of two dominant interfering cells applying transmission mode 4 interference model defined

in clause B.5.3. In Table 8.2.1.4.1B-1, Cell 1 is the serving cell, and Cell 2, 3 are interfering cells. The downlink physical channel setup is according to Annex C.3.2 for each of Cell 1, Cell 2 and Cell 3, respectively.

Table 8.2.1.4.1B-1: Test Parameters for Single-Layer Spatial Multiplexing (FRC) with TM4 interference model

Parameter		Unit	Cell 1	Cell 2	Cell 3
	$ ho_{\scriptscriptstyle A}$	dB	-3	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3	-3
	σ	dB	0	0	0
Cell-specific reference	signals		Antenna ports 0,1	Antenna ports 0,1	Antenna ports 0,1
N_{oc} at antenna po	ort	dBm/15kHz	-98	N/A	N/A
DIP (Note 2)		dB	N/A	-1.73	-8.66
BW _{Channel}	MHz	10	10	10	
Cyclic Prefix		Normal	Normal	Normal	
Cell Id	Cell Id			1	2
Number of control OFDM	symbols		2	2	2
PDSCH transmission	mode		6	N/A	N/A
Interference mode	el		N/A	As specified in clause B.5.3	As specified in clause B.5.3
Probability of occurrence of	Rank 1	%	N/A	80	80
transmission rank in interfering cells	Rank 2	%	N/A	20	20
Precoding granula	rity	PRB	50	6	6
PMI delay (Note 4	1)	ms	8	N/A	N/A
Reporting interva	ıl	ms	5	N/A	N/A
Reporting mode		PUCCH 1-1	N/A	N/A	
CodeBookSubsetRestricti		1111	N/A	N/A	
Physical channel for CQI	reporting		PUSCH(Note 6)	N/A	N/A
cqi-pmi-Configuration	Index		2	N/A	N/A

Note 1: $P_{R} = 1$

Note 2: The respective received power spectral density of each interfering cell relative to N_{oc} is defined by its associated DIP value as specified in clause B.5.1.

Note 3: Cell 1 is the serving cell. Cell 2, 3 are the interfering cells.

Note 4: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Note 5: All cells are time-synchronous.

Note 6: To avoid collisions between CQI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1 and #6 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#5 and #0.

Table 8.2.1.4.1B-2: Enhanced Performance Requirement Type A, Single-Layer Spatial Multiplexing (FRC) with TM4 interference model

Test Number	Reference Channel	OCI	OCNG Pattern			opagat onditio		Correlation Reference Value Matrix and			UE Cate
		Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	Antenna Configurati on (Note 3)	Fraction of Maximum Throughput (%)	SINR (dB) (Note 2)	gory
1	R.47 FDD	OP. 1 FD D	N/A	N/A	EV A5	EV A5	EV A5	2x2 Low	70	0.8	≥1

Note 1: The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.

Note 2: SINR corresponds to \hat{E}_s/N_{ac} of Cell 1 as defined in clause 8.1.1.

Note 3: Correlation matrix and antenna configuration parameters apply for each of Cell 1, Cell 2 and Cell 3.

8.2.1.4.1C Minimum Requirement Single-Layer Spatial Multiplexing 2 Tx Antenna Ports (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)

The requirements are specified in Table 8.2.1.4.1C-2, with the addition of parameters in Table 8.2.1.4.1C-1. The purpose is to verify the closed loop rank-one performance with wideband precoding if the PDSCH transmission in the serving cell takes place in subframes that overlap with ABS [9] of the aggressor cell with CRS assistance information. In Table 8.2.1.4.1C-1, Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] includes Cell 2 and Cell 3.

Table 8.2.1.4.1C-1: Test Parameters for Single-Layer Spatial Multiplexing (FRC) – Non-MBSFN ABS

Parameter		Unit	Cell 1	Cell 2	Cell 3
	$ ho_{\scriptscriptstyle A}$	dB	-3	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3 (Note 1)	-3 (Note 1)
anocation	σ	dB	0	N/A	N/A
	N_{oc1}	dBm/15kHz	-98 (Note 2)	N/A	N/A
N_{oc} at antenna port	N_{oc2}	dBm/15kHz	-98 (Note 3)	N/A	N/A
	N_{oc3}	dBm/15kHz	-93 (Note 4)	N/A	N/A
\hat{E}_s/N_{oc2}	\widehat{E}_s/N_{oc2}		Reference Value in Table 8.2.1.4.1C-2	12	10
BW _{Channel}		MHz	10	10	10
Subframe Configu	ration		Non-MBSFN	Non-MBSFN	Non-MBSFN
Time Offset betwee	n Cells	μs	N/A	3	-1
Frequency shift between	een Cells	Hz	N/A	300	-100
Cell Id			0	126	1
ABS pattern (No	te 5)		N/A	11000000 11000000 11000000 11000000 11000000	11000000 11000000 11000000 11000000 11000000
	RLM/RRM Measurement Subframe Pattern (Note 6)		10000000 10000000 10000000 10000000 1000000	N/A	N/A
CSI Subframe Sets	C _{CSI,0}		11000000 11000000 11000000 11000000 11000000	N/A	N/A
(Note7)	Ccsi,1		00111111 00111111 00111111 00111111 00111111	N/A	N/A
Number of control symbols	Number of control OFDM		2	Note 8	Note 8
PDSCH transmission mode			6	Note 9	Note 9
Precoding granularity		PRB	50	N/A	N/A
PMI delay (Note		ms	8	N/A	N/A
Reporting inter		ms	1	N/A	N/A
Peporting mod			PUSCH 3-1	N/A	N/A
CodeBookSubsetRe bitmap	striction		1111	N/A	N/A
Cyclic prefix			Normal	Normal	Normal

Test

Number

Note 5:

Reference

Channel

Reference Value

SNR

Fraction of

UE

Cate

gory

Note 1:	$P_B = 1$.
Note 2:	This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.
Note 3:	This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.
Note 4:	This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS
Note 5:	ABS pattern as defined in [9].
Note 6:	Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
Note 7:	As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].
Note 8:	The number of control OFDM symbols is not available for ABS and is 2 for the subframe indicated by "0" of ABS pattern.
Note 9:	Downlink physical channel setup in Cell 2 and Cell 3 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.
Note 10:	If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).
Note 11:	The number of the CRS ports in Cell 1, Cell 2 and Cell 3 is the same.

Table 8.2.1.4.1C-2: Minimum Performance Single-Layer Spatial Multiplexing (FRC)- Non-MBSFN ABS

Propagation

Conditions (Note1)

Cell 2

Cell 3

Cell 1

Correlation

Matrix and

Antenna

Note 12: SIB-1 will not be transmitted in Cell 2 and Cell 3 in this test.

Cell 3

OCNG Pattern

Cell 2

								on (Note 2)	Throughput (%) Note 5	(0B) (Note 3)	
1	R.11 FDD	OP.1	OP.1	OP.1	EPA5	EPA5	EPA5	2x2 High	70	6.1	≥2
	Note 4	FDD	FDD	FDD							
Note 1:	The propagat	agation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.									
Note 2:	The correlation	on matrix	and ante	nna conf	iguration	apply for	Cell 1, C	cell 2 and Cell 3.			
Note 3:	SNR correspo	onds to \hat{I}	\hat{E}_s/N_{oc2}	of cell 1.							
Note 4:		the serv	ing cell s	ubframe	when the	subfram	e is overl	apped with the	ciated PDCCH/P ABS subframe of		

8.2.1.4.1D Enhanced Performance Requirement Type B - Single-layer Spatial Multiplexing 2 Tx Antenna Port with TM4 interference model

The maximum Throughput is calculated from the total Payload in 9 subframes, averaged over 40ms.

The requirements are specified in Table 8.2.1.4.1D-2, with the addition of the parameters in Table 8.2.1.4.1D-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-one performance with wideband precoding with two transmit antennas when the PDSCH transmission in the serving cell is interfered by PDSCH of two interfering cells applying transmission mode 4 interference model defined in clause B.6.3. In Table 8.2.1.4.1D-1, Cell 1 is the serving cell, and Cell 2, 3 are interfering cells. The downlink physical channel setup is according to Annex C.3.2 for each of Cell 1, Cell 2 and Cell 3, respectively.

Table 8.2.1.4.1D-1: Test Parameters for Single-layer Spatial Multiplexing (FRC) with TM4 interference model

Parame	eter	Unit	Cell 1	Ce	ell 2	Cell 3		
	$ ho_{\scriptscriptstyle A}$	dB	-3		-3		3	
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (NOTE 1)		3		3	
anocanon	σ	dB	0	0		0		
Cell-specific referen	ce signals		Antenna ports 0,1	Antenna	ports 0,1	Antenna	ports 0,1	
N_{oc} at antenna port		dBm/15 kHz			-98			
Test number (NOTE	: 4)			Test 1	Test 2	Test 1 Test 2		
\hat{E}_s/N_{oc}		dB	N/A	13.91	3.28	3.34	0.74	
Cell Id				6	1	1	6	
CFI indicated in PCI	FICH			3	Random from set {1,2,3}	3	Random from set {1,2,3}	
BW _{Channel}		MHz	10	•	0	1	0	
Cyclic Prefix			Normal	No	rmal	No	rmal	
Number of control C	FDM symbols		3		3		3	
PDSCH transmissio	n mode		4		4		4	
Interference model			N/A		ed in clause 6.3		ed in clause 6.3	
Precoding			Random wideband precoding per TTI		ed in clause 6.3			
Time offset to cell 1		us	N/A		2		3	
Frequency offset to			N/A		00		00	
MBSFN			Not configured		nfigured		nfigured	
NeighCellsInfo-	p-aList-r12		N/A	{dB-6, dB-3, dB0}		{dB-6, d	B-3, dB0}	
r12 (NOTE 3)	transmissionM odeList-r12		N/A	{2,3,	4,8,9}	{2,3,	4,8,9}	

NOTE 1: $P_B = 1$

NOTE 2: Cell 1 is the serving cell. Cell 2, 3 are the interfering cells. NOTE 3: NeighCellsInfo-r12 is described in subclause 6.3.2 of [7]. NOTE 4: Test 1 and Test 2 are defined in Table 8.2.1.4.1D-2.

Table 8.2.1.4.1D-2: Minimum Performance for Enhanced Performance Requirement Type B, Single-layer Spatial Multiplexing (FRC) with TM4 interference model

Test Num	Referenc e	ОС	NG Patt	ern		Propagation Correlation Conditions Matrix and		Reference Value		UE Categor	
	Channel	Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	Antenna Configurati on (NOTE 3)	Fraction of Maximum Throughp ut (%)	SNR (dB) (NOTE 2)	у
1	R.11-10 FDD	OP.1 FDD	N/A	N/A	EVA 5	EVA 5	EVA 5	2x2 Low	85	17.0	≥1
2	R.11-9 FDD	OP.1 FDD	N/A	N/A	EPA 5	EPA 5	EPA 5	2x2 Low	85	10.1	≥1

NOTE 1: The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.

NOTE 2: SNR corresponds to \hat{E}_s/N_{oc} of Cell 1 as defined in clause 8.1.1.

NOTE 3: Correlation matrix and antenna configuration parameters apply for each of Cell 1, Cell 2 and Cell 3.

8.2.1.4.2 Minimum Requirement Multi-Layer Spatial Multiplexing 2 Tx Antenna Port

The requirements are specified in Table 8.2.1.4.2-2, with the addition of the parameters in Table 8.2.1.4.2-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-two performance with wideband and frequency selective precoding.

Table 8.2.1.4.2-1: Test Parameters for Multi-Layer Spatial Multiplexing (FRC)

Parameter	•	Unit	Test 1-2	Test 2A	Test 3
Develiels never	$ ho_{\scriptscriptstyle A}$	dB	-3	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3 (Note 1)	-3 (Note 1)
	σ	dB	0	0	0
$N_{\it oc}$ at antenna port		dBm/15kHz	-98	-98	-98
Precoding grant	ularity	PRB	50	25	6
PMI delay (Not	e 2)	ms	8	8	8
Reporting inte	rval	ms	1	1	1
Reporting mo	de		PUSCH 3-1	PUSCH 3-1	PUSCH 1-2
CodeBookSubsetRestriction bitmap			110000	110000	110000
PDSCH transmission mode			4	4	4
Number of OFDM sy PDCCH per compon		OFDM symbol	2	3	1

Note 1: $P_{R} = 1$.

Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI

estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the

eNB downlink before SF#(n+4).

Table 8.2.1.4.2-2: Minimum performance Multi-Layer Spatial Multiplexing (FRC)

Test	Band-	Reference	OCNG	Propagation	Correlation	Reference v	/alue	UE	UE DL
number	width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category	category
1	10 MHz	R.35 FDD	OP.1 FDD	EPA5	2x2 Low	70	18.9	≥2	≥6
2	10 MHz	R.11 FDD	OP.1 FDD	ETU70	2x2 Low	70	14.3	≥2	≥6
2A (Note 1)	5 MHz	R.11-2 FDD	OP.1 FDD	ETU70	2x2 Low	70	14.0	≥2	≥6
3	10MHz 256QAM	R. 65 FDD	OP.1 FDD	EVA5	2x2 Low	70	25.3	11-12	≥11
Note 1:	Test case ap	plicability is de	efined in 8.1.2.	.1.					

8.2.1.4.2A Enhanced Performance Requirement Type C – Multi-layer Spatial Multiplexing 2Tx Antenna Ports

The requirements are specified in Table 8.2.1.4.2A-2, with the addition of the parameters in Table 8.2.1.4.2A-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-two performance with wideband precoding.

Table 8.2.1.4.2A-1: Test Parameters for Multi-Layer Spatial Multiplexing (FRC)

Parameter		Unit	Test 1
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
	σ	dB	0
$N_{_{oc}}$ at antenna	port	dBm/15kHz	-98
Precoding granu	larity	PRB	50
PMI delay (Not	e 2)	ms	8
Reporting inte	rval	ms	1
Reporting mo	de		PUSCH 3-1
CodeBookSubsetRe	estriction		110000
bitmap			
PDSCH transmission	on mode		4

Note 1: $P_R = 1$.

Note 2: If the UE reports in an available uplink reporting instance

at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Table 8.2.1.4.2A-2: Enhanced Performance Requirement Type C for Multi-Layer Spatial Multiplexing with TM4 (FRC)

	Test	Band-	Reference	OCNG	Propagation	Correlation	Reference v	/alue	UE
	number	width	Channel	Pattern	Condition	Matrix and	Fraction of	SNR	Category
						Antenna	Maximum	(dB)	
						Configuration	Throughput		
							(%)		
ĺ	1	10 MHz	R.11 FDD	OP.1 FDD	ETU70	2x2 Medium	70	18.3	≥2

8.2.1.4.3 Minimum Requirement Multi-Layer Spatial Multiplexing 4 Tx Antenna Port

For single carrier, the requirements are specified in Table 8.2.1.4.3-2, with the addition of the parameters in Table 8.2.1.4.3-1 and the downlink physical channel setup according to Annex C.3.2.

For CA with 2 DL CCs, the requirements are specified in Table 8.2.1.4.3-4, with the addition of the parameters in Table 8.2.1.4.3-3 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-two performance with wideband and frequency selective precoding.

For CA with 3 DL CCs, the requirements are specified in Table 8.2.1.4.3-6, based on single carrier requirement specified in Table 8.2.1.4.3-5, with the addition of the parameters in Table 8.2.1.4.3-3 and the downlink physical channel setup according to Annex C.3.2.

The test coverage for different number of component carriers is defined in 8.1.2.4.

Table 8.2.1.4.3-1: Test Parameters for Multi-Layer Spatial Multiplexing (FRC)

Parameter		Unit	Test 1
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	-6
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-6 (Note 1)
	σ	dB	3
$N_{\it oc}$ at antenna	port	dBm/15kHz	-98
Precoding granu	larity	PRB	6
PMI delay (Not	e 2)	ms	8
Reporting inter	rval	ms	1
Reporting mo	de		PUSCH 1-2
CodeBookSubsetRe	estriction		000000000000000000000000000000000000000
bitmap			000011111111111111111100000000
			0000000
PDSCH transmission	on mode		4

Note 1: $P_B = 1$.

Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n

based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Note 3: Void. Note 4: Void. Note 5: Void.

Table 8.2.1.4.3-2: Minimum performance Multi-Layer Spatial Multiplexing (FRC)

				Brons	Correlation	Reference		
Test num.	Band- width	Reference channel	OCNG pattern	Propa- gation condi- tion	matrix and antenna config.	Fraction of maximum throughput (%)	SNR (dB)	UE cate- gory
1	10 MHz	R.36 FDD	OP.1 FDD	EPA5	4x2 Low	70	14.7	≥2
Note 1	: Void.							

Table 8.2.1.4.3-3: Test Parameters for Multi-Layer Spatial Multiplexing (FRC) for CA

Parameter		Unit	Value
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	-6
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-6 (Note 1)
	σ	dB	3
$N_{\it oc}$ at antenna	port	dBm/15kHz	-98
Precoding granu	ılarity	PRB	4 for 3MHz and 5MHz CCs, 6 for 10MHz CCs, 8 for 15MHz and 20MHz CCs
PMI delay (Not	e 2)	ms	8
Reporting inte	rval	ms	1
Reporting mo	de		PUSCH 1-2
CodeBookSubsetRestriction bitmap			00000000000000000000000000000000000000
CSI request field (Note 3)		'10'
PDSCH transmission	on mode		4

Note 1: $P_B = 1$.

Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported

PMI cannot be applied at the eNB downlink before SF#(n+4).

Note 3: Multiple CC-s under test are configured as the 1st set of serving cells by higher

layers.

Note 4: ACK/NACK bits are transmitted using PUSCH with PUCCH format 1b with channel selection configured for Tests in Table 8.2.1.4.3-4, and with PUCCH

format 3 for Tests in Table 8.2.1.4.3-6.

Note 5: The same PDSCH transmission mode is applied to each component carrier.

Table 8.2.1.4.3-4: Minimum performance Multi-Layer Spatial Multiplexing (FRC) for CA with 2DL CCs

				Propa-	Correlation	Reference	e value	
Test num	Band- width	Reference channel	OCNG pattern	gation condi- tion	matrix and antenna config.	Fraction of maximum throughput (%)	SNR (dB)	UE cate- gory
1	2x10 MHz	R.14 FDD	OP.1 FDD (Note 1)	EVA5	4x2 Low	70	10.8	≥3
2	2x20 MHz	R.14-3 FDD	OP.1 FDD (Note 1)	EVA5	4x2 Low	70	10.9	≥5
3	2x5 MHz	R.14-6 FDD	OP.1 FDD (Note 1)	EVA5	4x2 Low	70	9.5	≥2
3	ZAJ IVII IZ	N.14-01 DD	OP.1 FDD (Note 1)	LVAS	4X2 LOW	70	9.5	-22
4	10MHz+5	R.14 FDD for 10MHz CC	OP.1 FDD (Note 1)	EVA5	4x2 Low	70	10.1	≥3
4	MHz	R.14-6 FDD for 5MHz CC	OP.1 FDD (Note 1)	LVAS	4XZ LOW	70	9.5	-53

Note 1: The OCNG pattern applies for each CC.

Note 2: The applicability of requirements for different CA configurations and bandwidth combination sets is defined in 8.1.2.3.

Table 8.2.1.4.3-5: Single carrier performance for multiple CA configurations

				Correlation	Reference	e value
Band- width	Reference channel	OCNG pattern	Propa- gation condi-tion	matrix and antenna config.	Fraction of maximum throughput (%)	SNR (dB)
1.4MHz	R.14-4 FDD	OP.1 FDD	EVA5	4x2 Low	70	10.4
3MHz	R.14-5 FDD	OP.1 FDD	EVA5	4x2 Low	70	9.5
5MHz	R.14-6 FDD	OP.1 FDD	EVA5	4x2 Low	70	9.5
10 MHz	R.14 FDD	OP.1 FDD	EVA5	4x2 Low	70	10.1
15MHz	R.14-7 FDD	OP.1 FDD	EVA5	4x2 Low	70	10.1
20MHz	R.14-3 FDD	OP.1 FDD	EVA5	4x2 Low	70	10.3

Table 8.2.1.4.3-6: Minimum performance (FRC) based on single carrier performance for CA with 3 DL CCs

Test num.	CA Band-width combination	Requirement	UE category			
1	3x20MHz	As specified in Table 8.2.1.4.3-5 per CC	≥5			
2	20MHz+20MHz+15MHz	As specified in Table 8.2.1.4.3-5 per CC	≥5			
3	20MHz+20MHz+10MHz	As specified in Table 8.2.1.4.3-5 per CC	≥5			
4	4 20MHz+15MHz+15MHz As specified in Table 8.2.1.4.3		≥5			
5	20MHz+15MHz+10MHz	As specified in Table 8.2.1.4.3-5 per CC	≥5			
6	20MHz+10MHz+10MHz	As specified in Table 8.2.1.4.3-5 per CC	≥5			
7	15MHz+15MHz+10MHz	As specified in Table 8.2.1.4.3-5 per CC	≥5			
8	20MHz+10MHz+5MHz	As specified in Table 8.2.1.4.3-5 per CC	≥5			
Note 1: The applicability of requirements for different CA configurations and bandwidth combination sets is defined in 8.1.2.3						

8.2.1.4.3A Minimum Requirement Multi-Layer Spatial Multiplexing 4 Tx Antenna Port for dual connectivity

For dual connectivity the requirements are specified in Table 8.2.1.4.3A-3, based on single carrier requirement specified in Table 8.2.1.4.3A-2, with the addition of the parameters in Table 8.2.1.4.3A-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-two performance with wideband and frequency selective precoding by using dual connectivity transmission.

Table 8.2.1.4.3A-1: Test Parameters for Multi-Layer Spatial Multiplexing (FRC) for dual connectivity

Parameter		Unit	Values
Danielink name	$ ho_{\scriptscriptstyle A}$	dB	-6
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-6 (Note 1)
	σ	dB	3
$N_{_{oc}}$ at antenna	port	dBm/15kHz	-98
Precoding granu	ılarity	PRB	6 for 1.4MHz, 4 for 3MHz and 5MHz CCs, 6 for 10MHz CCs, and 8 for 15MHz CCs and 20MHz CCs
PMI delay (Not	e 2)	ms	8
Reporting inte	rval	ms	1
Reporting mo	de		PUSCH 1-2
CodeBookSubsetRe	estriction		000000000000000000000000000000000000000
bitmap			00001111111111111111100000000
			00000000
PDSCH transmission	on mode		4
ACK/NACK transr	nission		Separate ACK/NACK feedbacks
			with PUCCH format 1b on the MCG and SCG
CSI feedbac	k		Separate PUSCH feedbacks on the MCG and SCG
Time offset between MCG CC and SCG CC		μS	0 for UE under test supporting synchronous dual connectivity; 334 for UE under test supporting both asynchronous and synchrounous dual connectivity (Note 4)

Note 1: $P_B = 1$.

Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this

reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Note 3: The same PDSCH transmission mode is applied to each component carrier.

Note 4: As defined in TS36.300 [11].

Note 5: If the UE supports both SCG bearer and Split bearer, the SCG bearer is

configured.

Table 8.2.1.4.3A-2: Single carrier performance for multiple dual connectivity configurations

			Propa-	Correlation	Reference	value
Band- width	Reference channel	OCNG pattern	gation condi- tion	matrix and antenna config.	Fraction of maximum throughput (%)	SNR (dB)
1.4MHz	R.14-4 FDD	OP. 1 FDD	EVA5	4x2 Low	70	10.36
3MHz	R.14-5 FDD	OP. 1 FDD	EVA5	4x2 Low	70	9.5
5MHz	R.14-6 FDD	OP. 1 FDD	EVA5	4x2 Low	70	9.5
10 MHz	R.14 FDD	OP. 1 FDD	EVA5	4x2 Low	70	10.1
15MHz	R.14-7 FDD	OP. 1 FDD	EVA5	4x2 Low	70	10.1
20MHz	R.14-3 FDD	OP. 1 FDD	EVA5	4x2 Low	70	10.3

Table 8.2.1.4.3A-3: Minimum performance Multi-Layer Spatial Multiplexing (FRC) for dual connectivity

Test num.	Band-width combination	Requirement	UE category
1	2x20 MHz	As specified in Table 8.2.1.4.3A-2 per CC	≥5
2	15+20 MHz	As specified in Table 8.2.1.4.3A-2 per CC	≥5
3	10+20MHz	As specified in Table 8.2.1.4.3A-2 per CC	≥5
4	2x15 MHz	As specified in Table 8.2.1.4.3A-2 per CC	≥5
5	2x10 MHz	As specified in Table 8.2.1.4.3A-2 per CC	≥3

Note 1: The OCNG pattern applies for each CC.

Note 2: The applicability of requirements for different dual connectivity configurations and bandwidth combination sets is defined in 8.1.2.3A.

8.2.1.5 MU-MIMO

8.2.1.6 [Control channel performance: D-BCH and PCH]

8.2.1.7 Carrier aggregation with power imbalance

For CA, the requirements in this section verify the ability of an intraband adjacent carrier aggregation UE to demodulate the signal transmitted by the PCell or SCell in the presence of a stronger SCell or PCell signal on an adjacent frequency. Throughput is measured on the PCell or SCell only.

8.2.1.7.1 Minimum Requirement

The requirements are specified in Table 8.2.1.7.1-2, with the addition of the parameters in Table 8.2.1.7.1-1 and the downlink physical channel setup according to Annex C.3.2.

Table 8.2.1.7.1-1: Test Parameters for CA

Paramete	r	Unit	Test 1	Test 2-3
David Entra access	$ ho_{\scriptscriptstyle A}$	dB	0	0
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0 (Note 1)
	σ	dB	0	0
$N_{\it oc}$ at antenna por	t	dBm/15kHz	Off (Note 2)	Off (Note 2)
Symbols for unused	d PRBs		OCNG (Note 3)	OCNG (Note 3)
Modulation			64 QAM	64 QAM
Maximum number of transmission	of HARQ		1	1
Redundancy versio sequence	n coding		{0}	{0}
PDSCH transmission of PCell	on mode		1	3
PDSCH tramsmissi of SCell	on mode		3	1
OCNC Dottors	PCell		OP.1 FDD	OP.5 FDD
OCNG Pattern	SCell		OP.5 FDD	OP.1 FDD
Propagation	PCell		Clause B.1	Clause B.1
Conditions SCell			Clause B.1	Clause B.1
Correlation Matrix	PCell		1x2	2x2
and Antenna SCell			2x2	1x2

Note 1: $P_{\rm B}=0$ for 1x2 and $P_{\rm B}=1$ for 2x2 antenna configuration.

Note 2: No external noise sources are applied

Note 3: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated.

pseudo random data.

Note 4: Void

Table 8.2.1.7.1-2: Minimum performance (FRC) for CA

Test Number			Reference channel		Power at port (dBr	antenna n/15KHz)	Fraction of	ce value f Maximum hput (%)	UE Category
	PCell	SCell	PCell	SCell	\hat{E}_{s_PCell}	\hat{E}_{s_SCell}	PCell	SCell	
					for PCell	for Scell			
1	20	20	R.49 FDD	NA	-85	-79	85	NA	≥5
2	10	10	NA	R.49-1 FDD	-79	-85.8	NA	85	≥5
3	5	5	NA	R.49-2 FDD	-79	-85.9	NA	85	≥5
Note 1:	The OC	NG pattern	for PCell is u	sed to fill the c	ontrol chani	nel. The OC	NG pattern	for SCell is ι	ised to fill

the control channel and PDSCH.

Note 2: The applicability of requirements for different CA configurations and bandwidth combination sets is defined in 8.1.2.3.

8.2.1.8 Intra-band non-contiguous carrier aggregation with timing offset

The requirements in this section verify the ability of an intraband non-contiguous carrier aggregation UE to demodulate the signal transmitted by the PCell and SCell in the presence of timing offset between the cells. Throughput is measured on both cells.

8.2.1.8.1 Minimum Requirement

For CA the requirements are specified in Table 8.2.1.8.1-2, with the addition of the parameters in Table 8.2.1.8.1-1 and the downlink physical channel setup according to Annex C.3.2.

Table 8.2.1.8.1-1: Test Parameters for CA

Paramete	r	Unit	Test 1			
Deventink news	$ ho_{\scriptscriptstyle A}$	dB	-3			
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)			
	σ	dB	0			
$N_{\it oc}$ at antenn	a port	dBm/15kHz	-98			
Modulatio	n		64 QAM			
Maximum number	of HARQ		4			
transmissio	on					
Redundancy version	on coding		{0,0,1,2}			
sequence)					
PDSCH transmiss	ion mode		3			
of PCell						
PDSCH tramsmiss of SCell	sion mode		3			
Note 1: D = 1						

Note 1: $P_{\rm B}=1$.

The OCNG pattern is used to fill unused control Note 2: channel and PDSCH.

Table 8.2.1.8.1-2: Minimum performance (FRC) for CA

Test	Cell	Band-	Referenc	OCNG	Propagati	Correlati	Refence v	alue	Timing	UE
Numbe r		width	e Channel	Patter n	on Condition s	on Matrix and Antenna	Fraction of Maximum Throughput (%)	SNR (dB)	relative to PCell (µs)	Catego ry
1	PCell	10MH z	R.35-4 FDD	OP.1	EPA200	2x2 Low	70	21.15	N/A	≥3
'	SCell	10MH z	R.35-3 FDD	FDD	EPA200	2x2 Low	60	15.18	-30.26	23

Note 1: The EPA200 propagation channels applied to PCell and SCell are statistically independent.

Note 2: The applicability and test rules of requirements for different CA configurations and bandwidth combination sets are defined in 8.1.2.3.

8.2.2 TDD (Fixed Reference Channel)

The parameters specified in Table 8.2.2-1 are valid for all TDD tests unless otherwise stated.

Table 8.2.2-1: Common Test Parameters (TDD)

Parameter	Unit	Value					
Uplink downlink configuration (Note 1)		1					
Special subframe configuration (Note 2)		4					
Cyclic prefix		Normal					
Cell ID		0					
Inter-TTI Distance		1					
Number of HARQ processes per component carrier	Processes	7					
Maximum number of HARQ transmission		4					
Redundancy version coding sequence		{0,1,2,3} for QPSK and 16QAM {0,0,1,2} for 64QAM and 256QAM					
Number of OFDM symbols for PDCCH per component carrier	OFDM symbols	4 for 1.4 MHz bandwidth, 3 for 3 MHz and 5 MHz bandwidths, 2 for 10 MHz, 15 MHz and 20 MHz bandwidths unless otherwise stated					
Cross carrier scheduling		Not configured					
Note 1: as specified in Table 4.2-2 in TS 36.211 [4]. Note 2: as specified in Table 4.2-1 in TS 36.211 [4].							

8.2.2.1 Single-antenna port performance

The single-antenna performance in a given multi-path fading environments is determined by the SNR for which a certain relative information bit throughput of the reference measurement channels in Annex A.3.4 is achieved. The purpose of these tests is to verify the single-antenna performance with different channel models and MCS. The QPSK and 64QAM cases are also used to verify the performance for all bandwidths specified in Table 5.6.1-1.

8.2.2.1.1 Minimum Requirement

For single carrier, the requirements are specified in Table 8.2.2.1.1-2, with the addition of the parameters in Table 8.2.2.1.1-1 and the downlink physical channel setup according to Annex C.3.2.

For CA with 2 DL CCs, the requirements are specified in Table 8.2.2.1.1-4, with the addition of the parameters in Table 8.2.2.1.1-3 and the downlink physical channel setup according to Annex C.3.2.

For CA with 3 DL CCs, the requirements are specified in Table 8.2.2.1.1-7, based on single carrier requirement specified in Table 8.2.2.1.1-5, with the addition of the parameters in Table 8.2.2.1.1-3 and the downlink physical channel setup according to Annex C.3.2.

The test coverage for different number of component carriers is defined in 8.1.2.4.

Table 8.2.2.1.1-1: Test Parameters

Parameter		Unit	Test 1- 5	Test 6-8	Test 9- 15	Test 16- 18	Test 19
Downlink	$ ho_{\scriptscriptstyle A}$	dB	0	0	0	0	0
power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)				
	σ	dB	0	0	0	0	0
$N_{\scriptscriptstyle oc}$ at antenn	N_{oc} at antenna port		-98	-98	-98	-98	-98
Symbols for up	nused		OCNG (Note 2)	OCNG (Note 2)	OCNG (Note 2)	OCNG (Note 2)	OCNG (Note 2)
Modulatio	n		QPSK	16QAM	64QAM	16QAM	QPSK
ACK/NACK fee	edback		Multiplexing	Multiplexin	Multiplexin	Multiplexin	Multiplexing
mode			_	g	g	g	
PDSCH transm mode	nission		1	1	1	1	1

Note 1: $P_B = \overline{0}$

Note 2: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random

data, which is QPSK modulated.

Note 3: Void Note 4: Void

Table 8.2.2.1.1-2: Minimum performance (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference v	alue	UE
number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.2 TDD	OP.1 TDD	EVA5	1x2 Low	70	-1.2	≥1
2	10 MHz	R.2 TDD	OP.1 TDD	ETU70	1x2 Low	70	-0.6	≥1
3	10 MHz	R.2 TDD	OP.1 TDD	ETU300	1x2 Low	70	-0.2	≥1
4	10 MHz	R.2 TDD	OP.1 TDD	HST	1x2	70	-2.6	≥1
5	1.4 MHz	R.4 TDD	OP.1 TDD	EVA5	1x2 Low	70	0.0	≥1
6	10 MHz	R.3 TDD	OP.1 TDD	EVA5	1x2 Low	70	6.7	≥2
	5 MHz	R.3-1 TDD	OP.1 TDD	EVA5	1x2 Low	70	6.7	1
7	10 MHz	R.3 TDD	OP.1 TDD	ETU70	1x2 Low	30	1.4	≥2
	5 MHz	R.3-1 TDD	OP.1 TDD	ETU70	1x2 Low	30	1.4	1
8	10 MHz	R.3 TDD	OP.1 TDD	ETU300	1x2 High	70	9.3	≥2
	5 MHz	R.3-1 TDD	OP.1 TDD	ETU300	1x2 High	70	9.3	1
9	3 MHz	R.5 TDD	OP.1 TDD	EVA5	1x2 Low	70	17.6	≥1
10	5 MHz	R.6 TDD	OP.1 TDD	EVA5	1x2 Low	70	17.6	≥2
	5 MHz	R.6-1 TDD	OP.1 TDD	EVA5	1x2 Low	70	17.6	1
11	10 MHz	R.7 TDD	OP.1 TDD	EVA5	1x2 Low	70	17.6	≥2
	10 MHz	R.7-1 TDD	OP.1 TDD	EVA5	1x2 Low	70	17.6	1
12	10 MHz	R.7 TDD	OP.1 TDD	ETU70	1x2 Low	70	19.1	≥2
	10 MHz	R.7-1 TDD	OP.1 TDD	ETU70	1x2 Low	70	19.1	1
13	10 MHz	R.7 TDD	OP.1 TDD	EVA5	1x2 High	70	19.1	≥2
	10 MHz	R.7-1 TDD	OP.1 TDD	EVA5	1x2 High	70	19.1	1
14	15 MHz	R.8 TDD	OP.1 TDD	EVA5	1x2 Low	70	17.8	≥2
	15 MHz	R.8-1 TDD	OP.1 TDD	EVA5	1x2 Low	70	17.8	1
15	20 MHz	R.9 TDD	OP.1 TDD	EVA5	1x2 Low	70	17.7	≥3
	20 MHz	R.9-2 TDD	OP.1 TDD	EVA5	1x2 Low	70	17.7	2
	20 MHz	R.9-1 TDD	OP.1 TDD	EVA5	1x2 Low	70	17.7	1
16	3 MHz	R.0 TDD	OP.1 TDD	ETU70	1x2 Low	30	2.1	≥1
17	10 MHz	R.1 TDD	OP.1 TDD	ETU70	1x2 Low	30	2.0	≥1
18	20 MHz	R.1 TDD	OP.1 TDD	ETU70	1x2 Low	30	2.1	≥1
19	10 MHz	R.41 TDD	OP.1 TDD	EVA5	1x2 Low	70	-5.3	≥1
Note 1:	Void.	•		•	•			

Table 8.2.2.1.1-3: Test Parameters for CA

	Parameter		Value
Downlink	$ ho_{\scriptscriptstyle A}$	dB	0
power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)
	σ	dB	0
Λ	$N_{\scriptscriptstyle oc}$ at antenna port		-98
Symb	ools for unused PRBs		OCNG (Note 2)
	Modulation		QPSK
ACK/NACK feedback mode			PUCCH format 1b with channel selection for Tests in Table 8.2.2.1.1-4; PUCCH format 3 for Tests in Table 8.2.2.1.1-7
PDSC	CH transmission mode		1
_	•		

Note 1: $P_B = 0$

Note 2: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one

PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated

pseudo random data, which is QPSK modulated.

Note 3: The same PDSCH transmission mode is applied to each component carrier.

Table 8.2.2.1.1-4: Minimum performance (FRC) for CA with 2DL CCs

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference	value	UE
number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	2x20MHz	R.42 TDD	OP.1 TDD (Note 1)	EVA5	1x2 Low	70	-1.2	≥5
2	20MHz+ 15MHz	R.42 TDD for 20MHz CC	OP.1 TDD (Note 1)	EVA5	1x2 Low	70	-1.4	≥5
		R.42-3 TDD for 15MHz CC	OP.1 TDD (Note 1)			70	-1.4	

Note 1: The OCNG pattern applies for each CC.

Note 2: The applicability of requirements for different CA configurations and bandwidth combination sets is defined in

8.1.2.3.

Note 3: 30usec timing difference between PCell and any SCell is applied in inter-band CA case, where PCell can be

assigned on any CC.

Table 8.2.2.1.1-5: Single carrier performance for multiple CA configurations

				Correlation	Reference value		
Band- width	Reference channel	OCNG pattern	Propa- gation condi-tion	matrix and antenna config.	Fraction of maximum throughput (%)	SNR (dB)	
1.4MHz	R.4 TDD	OP.1 TDD	EVA5	1x2 Low	70	-0.6	
3MHz	R.42-1 TDD	OP.1 TDD	EVA5	1x2 Low	70	-0.8	
5MHz	R.42-2 TDD	OP.1 TDD	EVA5	1x2 Low	70	-1.2	
10MHz	R.2 TDD	OP.1 TDD	EVA5	1x2 Low	70	-1.6	
15MHz	R.42-3 TDD	OP.1 TDD	EVA5	1x2 Low	70	-1.4	
20MHz	R.42 TDD	OP.1 TDD	EVA5	1x2 Low	70	-1.4	

Table 8.2.2.1.1-6: Void

Table 8.2.2.1.1-7: Minimum performance (FRC) based on single carrier performance for CA with 3 DL CCs

Test num.		CA Band-width combination	Requirement	UE category			
1 3x20MHz		3x20MHz	As specified in Table 8.2.2.1.1-5 per CC	≥5			
2 20MHz+20MHz+15MHz		20MHz+20MHz+15MHz	As specified in Table 8.2.2.1.1-5 per CC	≥5			
Note 1: The applicability of requirements for different CA configurations and bandwidth combination sets is defined in 8.1.2.3							
Note 2:	•						

8.2.2.1.2 Void

8.2.2.1.3 Void

8.2.2.1.4 Minimum Requirement 1 PRB allocation in presence of MBSFN

The requirements are specified in Table 8.2.2.1.4-2, with the addition of the parameters in Table 8.2.2.1.1.4-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the single-antenna performance with a single PRB allocated at the lower band edge in presence of MBSFN.

Table 8.2.2.1.4-1: Test Parameters for Testing 1 PRB allocation

Parameter		Unit	Test 1
	$ ho_{\scriptscriptstyle A}$	dB	0
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)
	σ	dB	0
N_{oc} at antenna	port	dBm/15kHz	-98
Symbols for MBSFN MBSFN subframes			OCNG (Note 3)
ACK/NACK feedba	ck mode		Multiplexing
PDSCH transmission	on mode		1
р 0		•	•

Note 1: $P_B = 0$

Note 2: The MBSFN portion of an MBSFN subframe comprises the whole MBSFN subframe except the first two symbols in the

first slot

Note 3: The MBSFN portion of the MBSFN subframes shall contain QPSK modulated data. Cell-specific reference signals are not inserted in the MBSFN portion of the MBSFN

subframes, QPSK modulated MBSFN data is used instead

Table 8.2.2.1.4-2: Minimum performance 1PRB (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference	value	UE
number		Channel	Pattern	Condition	Matrix and	Fraction of	SNR	Category
					Antenna	Maximum	(dB)	
					Configuration	Throughput		
						(%)		
1	10 MHz	R.29 TDD	OP.3 TDD	ETU70	1x2 Low	30	2.0	≥1

8.2.2.2 Transmit diversity performance

8.2.2.2.1 Minimum Requirement 2 Tx Antenna Port

The requirements are specified in Table 8.2.2.2.1-2, with the addition of the parameters in Table 8.2.2.2.1-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of transmit diversity (SFBC) with 2 transmitter antennas.

Table 8.2.2.2.1-1: Test Parameters for Transmit diversity Performance (FRC)

Parameter		Unit	Test 1-2					
	$ ho_{\scriptscriptstyle A}$	dB	-3					
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)					
	σ	dB	0					
N_{oc} at antenna	port	dBm/15kHz	-98					
ACK/NACK feedba	ck mode		Multiplexing					
PDSCH transmission	on mode		2					
Note 1: $P_B = 1$								

Table 8.2.2.2.1-2: Minimum performance Transmit Diversity (FRC)

Test	Bandw	Reference	OCNG	Propagation	Correlation	Reference value		UE
number	idth	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
4	10 MHz	R.11 TDD	OP.1 TDD	EVA5	2x2 Medium	70	6.8	≥2
1	5 MHz	R.11-2 TDD	OP.1 TDD	EVA5	2x2 Medium	70	6.8	1
2	10 MHz	R.10 TDD	OP.1 TDD	HST	2x2	70	-2.3	≥1

8.2.2.2.2 Minimum Requirement 4 Tx Antenna Port

The requirements are specified in Table 8.2.2.2.2-2, with the addition of the parameters in Table 8.2.2.2.2-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of transmit diversity (SFBC-FSTD) with 4 transmitter antennas.

Table 8.2.2.2.1: Test Parameters for Transmit diversity Performance (FRC)

Parameter		Unit	Test 1-2				
	$ ho_{\scriptscriptstyle A}$	dB	-3				
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)				
	σ	dB	0				
$N_{\scriptscriptstyle oc}$ at antenna	port	dBm/15kHz	-98				
ACK/NACK feedba	ck mode		Multiplexing				
PDSCH transmission	on mode		2				
Note 1: $P_B = 1$							

Table 8.2.2.2.2: Minimum performance Transmit Diversity (FRC)

Test	Band-	Reference	OCNG	Propagation	Correlation	Reference v	/alue	UE
number	width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	1.4 MHz	R.12 TDD	OP.1 TDD	EPA5	4x2 Medium	70	0.2	≥1
2	10 MHz	R.13 TDD	OP.1 TDD	ETU70	4x2 Low	70	-0.5	≥1

8.2.2.2.3 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS)

The requirements are specified in Table 8.2.2.2.3-2, with the addition of parameters in Table 8.2.2.2.3-1 and the downlink physical channel setup according to Annex C.3.2 and Annex C.3.3. The purpose is to verify the performance of transmit diversity (SFBC) with 2 transmit antennas if the PDSCH transmission in the serving cell takes place in subframes that overlap with ABS [9] of the aggressor cell. In Table 8.2.2.2.3-1, Cell 1 is the serving cell, and Cell 2 is the aggressor cell. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 is according to Annex C.3.3, respectively.

Table 8.2.2.2.3-1: Test Parameters for Transmit diversity Performance (FRC)

Parameter		Unit	Cell 1	Cell 2
Uplink downlink conf	iguration		1	1
Special subframe con	figuration		4	4
	$ ho_{\scriptscriptstyle A}$	dB	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3 (Note 1)
	σ	dB	0	N/A
	N_{oc1}	dBm/15kHz	-102 (Note 2)	N/A
N_{oc} at antenna port	N_{oc2}	dBm/15kHz	-98 (Note 3)	N/A
	N_{oc3}	dBm/15kHz	-94.8 (Note 4)	N/A
\hat{E}_s/N_{oc2}		dB	Reference Value in Table 8.2.2.3-2	6
BW _{Channel}		MHz	10	10
Subframe Configu	ration		Non-MBSFN	Non-MBSFN
Time Offset betwee	n Cells	μs	2.5 (synch	ronous cells)
Cell Id			0	1
ABS pattern (No	te 5)		N/A	0000010001 0000000001
RLM/RRM Measuremer Pattern (Note			0000000001 0000000001	N/A
CSI Subframe Sets	C _{CSI,0}		0000010001 0000000001	N/A
(Note 7)	C _{CSI,1}		1100101000 1100111000	N/A
Number of control OFD	M symbols		2	2
ACK/NACK feedbac	k mode		Multiplexing	N/A
PDSCH transmission			2	N/A
Cyclic prefix			Normal	Normal

Note 1: $P_B = 1$

Note 2: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.

Note 3: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.

Note 4: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS.

Note 5: ABS pattern as defined in [9].

Note 6: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7].

Note 7: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].

Note 8: Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1 and Cell2 is the same.

Note 9: SIB-1 will not be transmitted in Cell2 in this test.

Table 8.2.2.2.3-2: Minimum Performance Transmit Diversity (FRC)

Test Number	Reference Channel	OCNG	Pattern	Cond	gation itions te 1)	Correlation Matrix and Antenna	Reference	Reference Value	
		Cell 1	Cell 2	Cell 1	Cell 2	Configuration	Fraction of Maximum Throughput (%) Note 5	SNR (dB) (Note 2)	
1	R.11-4 TDD Note 4	OP.1 TDD	OP.1 TDD	EVA5	EVA5	2x2 Medium	70	3.8	≥2

Note 1: The propagation conditions for Cell 1 and Cell2 are statistically independent.

Note 2: SNR corresponds to \hat{E}_s/N_{oc2} of cell 1.

Note 3: The correlation matrix and antenna configuration apply for Cell 1 and Cell 2.

Note 4: Cell 1 Reference channel is modified: PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel. Note 5: The maximum Throughput is calculated from the total Payload in 2 subframes, averaged over 20ms.

8.2.2.2.3A Minimum Requirement 2 Tx Antenna Ports (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)

The requirements are specified in Table 8.2.2.2.3A-2, with the addition of parameters in Table 8.2.2.2.3A-1. The purpose is to verify the performance of transmit diversity (SFBC) with 2 transmit antennas if the PDSCH transmission in the serving cell takes place in subframes that overlap with ABS [9] of the aggressor cell with CRS assistance information. In Table 8.2.2.2.3A-1, Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] includes Cell 2 and Cell 3.

Table 8.2.2.2.3A-1: Test Parameters for Transmit diversity Performance (FRC)

255

Parameter		Unit	Cell 1	Cell 2	Cell 3
Uplink downlink conf	guration		1	1	1
Special subframe con	figuration		4	4	4
	$ ho_{\scriptscriptstyle A}$	dB	-3	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3 (Note 1)	-3 (Note 1)
	σ	dB	0	N/A	N/A
	N_{oc1}	dBm/15kHz	-98 (Note 2)	N/A	N/A
N_{oc} at antenna port	N_{oc2}	dBm/15kHz	-98 (Note 3)	N/A	N/A
	N_{oc3}	dBm/15kHz	-93 (Note 4)	N/A	N/A
\hat{E}_s/N_{oc2}		dB	Reference Value in Table 8.2.2.2.3A-2	12	10
BW _{Channel}		MHz	10	10	10
Subframe Configu	ration		Non-MBSFN	Non-MBSFN	Non-MBSFN
Time Offset betwee	n Cells	μs	N/A	3	-1
Frequency shift between	een Cells	Hz	N/A	300	-100
Cell Id			0	126	1
ABS pattern (No	te 5)		N/A	000000001 0000000001	0000000001 0000000001
RLM/RRM Measur Subframe Pattern (I			0000000001 0000000001	N/A	N/A
CSI Subframe Sets	Ccsi,0		0000000001 0000000001	N/A	N/A
(Note7)	Ccsi,1		1100111000 1100111000	N/A	N/A
Number of control OFDM symbols			2	Note 8	Note 8
ACK/NACK feedback mode			Multiplexing	N/A	N/A
PDSCH transmissio	n mode		2	Note 9	Note 9
Cyclic prefix			Normal	Normal	Normal

- Note 1: $P_{p} = 1$.
- Note 2: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10, #12, #13 of a subframe overlapping with the aggressor ABS.
- Note 3: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.
- Note 4: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS
- Note 5: ABS pattern as defined in [9].
- Note 6: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
- Note 7: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].
- Note 8: The number of control OFDM symbols is not available for ABS and is 2 for the subframe indicated by "0" of ABS pattern.
- Note 9: Downlink physical channel setup in Cell 2 and Cell 3 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.
- Note 10: The number of the CRS ports in Cell 1, Cell 2 and Cell 3 is the same.
- Note 11: SIB-1 will not be transmitted in Cell 2 and Cell 3 in this test.

Table 8.2.2.2.3A-2: Minimum Performance Transmit Diversity (FRC)

Test Number	Reference Channel	OCNG Pattern			opagations (N		Correlation Matrix and	Reference '	Value	UE Cate	
		Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	Antenna Configuration (Note 2)	Fraction of Maximum Throughput (%) Note 5	SNR (dB) (Note 3)	gory
1	R.11-4 TDD Note 4	OP.1 TDD	OP.1 TDD	OP.1 TDD	EVA5	EVA5	EVA5	2x2 Medium	70	3.5	≥2
Note 1:	The propagation	n conditi	ons for C	ell 1 Cel	I 2 and C	ell 3 are	statistica	lly independent.			

- The correlation matrix and antenna configuration apply for Cell 1, Cell 2 and Cell 3... Note 2:
- Note 3: SNR corresponds to \hat{E}_s/N_{ac2} of cell 1.
- Cell 1 Reference channel is modified: PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are Note 4: transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.
- The maximum Throughput is calculated from the total Payload in 2 subframes, averaged over 20ms. Note 5:

8.2.2.2.4 Enhanced Performance Requirement Type A – 2 Tx Antenna Ports with TM3 interference model

The requirements are specified in Table 8.2.2.2.4-2, with the addition of parameters in Table 8.2.2.2.4-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of transmit diversity (SFBC) with 2 transmit antennas when the PDSCH transmission in the serving cell is interfered by PDSCH of two dominant interfering cells applying transmission mode 3 interference model defined in clause B.5.2. In Table 8.2.2.2.4-1, Cell 1 is the serving cell, and Cell 2, 3 are interfering cells. The downlink physical channel setup is according to Annex C.3.2 for each of Cell 1, Cell 2 and Cell 3, respectively.

Table 8.2.2.2.4-1: Test Parameters for Transmit diversity Performance (FRC) with TM3 interference model

Parameter		Unit	Cell 1	Cell 2	Cell 3
	$ ho_{\scriptscriptstyle A}$	dB	-3	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3	-3
	σ	dB	0	0	0
Cell-specific reference	signals		Antenna ports 0,1	Antenna ports 0,1	Antenna ports 0,1
N_{oc} at antenna po	ort	dBm/15kHz	-98	N/A	N/A
DIP (Note 2)		dB	N/A	-1.73	-8.66
BWChannel		MHz	10	10	10
Cyclic Prefix			Normal	Normal	Normal
Cell Id			0	1	2
Number of control OFDM	symbols		2	2	2
PDSCH transmission	mode		2	N/A	N/A
Interference mode	el		N/A	As specified in clause B.5.2	As specified in clause B.5.2
Probability of occurrence of	Rank 1	%	N/A	80	80
transmission rank in interfering cells	Rank 2	%	N/A	20	20
Reporting interva	ıl	ms	5	N/A	N/A
Reporting mode			PUCCH 1-0	N/A	N/A
ACK/NACK feedback		Multiplexing	N/A	N/A	
Physical channel for CQI		PUSCH(Note 5)	N/A	N/A	
cqi-pmi-Configuration	Index		4	N/A	N/A

Note 1: $P_B = 1$

Note 2: The respective received power spectral density of each interfering cell relative to N_{oc} is defined by its associated DIP value as specified in clause B.5.1.

Note 3: Cell 1 is the serving cell. Cell 2, 3 are the interfering cells.

Note 4: All cells are time-synchronous.

Note 5: To avoid collisions between CQI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#4 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#8 and #3.

Table 8.2.2.2.4-2: Enhanced Performance Requirement Type A, Transmit Diversity (FRC) with TM3 interference model

Test Number	Reference Channel	OCI	NG Pat	tern		opagat onditio		Correlation Matrix and	Reference Value		UE Cate
		Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	Antenna Configurati on (Note 3)	Fraction of Maximum Throughput (%)	SINR (dB) (Note 2)	gory
1	R.46 TDD	OP. 1 TD D	N/A	N/A	EV A70	EV A70	EV A70	2x2 Low	70	-1.4	≥1

Note 1: The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.

Note 2: SINR corresponds to \hat{E}_s/N_{oc} of Cell 1 as defined in clause 8.1.1.

Note 3: Correlation matrix and antenna configuration parameters apply for each of Cell 1, Cell 2 and Cell 3.

8.2.2.2.5 Minimum Requirement 2 Tx Antenna Port (when *EIMTA-MainConfigServCell-r12* is configured)

The requirements are specified in Table 8.2.2.2.5-2 with the addition of the parameters in Table 8.2.2.2.5-1 and the downlink physical channel setup according to Annex C.3.2. The test purpose is to verify the performance of transmit diversity (SFBC) with 2 transmitter antennas in case of using eIMTA TDD UL-DL reconfiguration for TDD serving cell(s) via monitoring PDCCH with eIMTA-RNTI on a PCell.

Table 8.2.2.2.5-1: Test Parameters for Transmit diversity Performance (FRC) when EIMTA-MainConfigServCell-r12 is configured

Parameter		Unit	Value
	$ ho_{\scriptscriptstyle A}$	dB	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
	σ	dB	0
$N_{\it oc}$ at antenna port		dBm/15kHz	-98
Uplink downlink configuration in SIB1	(Note 2)		0
Downlink HARQ reference configuration	ion (eimta-		5
HarqReferenceConfig-r12) (Note 2)	· · · · · · · · (NI - · · · · · · · · · · · · · · · · · ·		(0, 4, 0, 0, 4, 5, 0)
Set of dynamic TDD UL-DL configura			{0, 1, 2, 3, 4, 5, 6}
Periodicity of monitoring the L1 recor (eimta-CommandPeriodicity-r12)	figuration DCI	ms	10
Set of subframes to monitor the L1 re (eimta-CommandSubframeSet-r12) ({0,1,5,6}
Number of DL HARQ processes	,	Processes	15
PDSCH transmission mode			2
ACK/NACK feedback mode (Note 5)			Multiplexing

Note 1: $P_R = 1$.

Note 2: As specified in Table 4.2-2 in TS 36.211.

Note 3: UL/DL configuration in PDCCH with eIMTA-RNTI is randomly selected from the given set on a per-DCI basis with equal probability.

Note 4: The set of subframes to monitor PDCCH with eIMTA-RNTI for frame n includes subframes {1,5,6} in frame n-1 and subframe 0 in frame n. Subframes for reconfiguration DCI transmission are chosen in a random way on a per-DCI basis with equal probability.

Note 5: PUCCH Format 3 is used for DL HARQ feedback.

Table 8.2.2.2.5-2: Minimum performance Transmit diversity when EIMTA-MainConfigServCell-r12 is configured

				Correlation	Reference v		
Test	Reference channel	OCNG Pattern	Propagation Conditions	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	UE Category
1	R.67 TDD	OP.1 TDD	EVA5	2x2 Medium	70	5.0	≥1

8.2.2.2.6 Enhanced Performance Requirement Type B - 2 Tx Antenna Ports with TM2 interference model

The requirements are specified in Table 8.2.2.2.6-2, with the addition of parameters in Table 8.2.2.2.6-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of transmit diversity (SFBC) with 2 transmit antennas when the PDSCH transmission in the serving cell is interfered by PDSCH of two interfering cells applying transmission mode 2 interference model defined in clause B.6.1. In Table 8.2.2.2.6-1, Cell 1 is the serving cell, and Cell 2, 3 are interfering cells. The downlink physical channel setup is according to Annex C.3.2 for each of Cell 1, Cell 2 and Cell 3, respectively.

Table 8.2.2.2.6-1: Test Parameters for Transmit Diversity Performance (FRC) with TM2 interference model

Par	ameter		Unit	Cell 1	Cell 2	Cell 3
Uplink downlink Cor	nfiguration			1	1	1
Special subframe co	onfiguratio	n		4	4	4
		$ ho_{\scriptscriptstyle A}$	dB	-3	-3	-3
Downlink power allo	cation	$ ho_{\scriptscriptstyle B}$	dB	-3 (NOTE 1)	-3	-3
		σ	dB	0	0	0
Cell-specific referen	ce signals			Antenna ports 0,1	Antenna ports 0,1	Antenna ports 0,1
N_{oc} at antenna port			dBm/15kHz		-98	
\hat{E}_s/N_{oc}			dB	N/A	13.91	3.34
BW _{Channel}			MHz	10	10	10
Cyclic Prefix				Normal	Normal	Normal
Cell Id				0	6	1
Number of control C	FDM sym	bols in		3	3	3
CFI indicated in PCI subframes	FICH in no	ormal		3	3	3
Number of control C special subframes	FDM sym	bols in		2	2	2
CFI indicated in PCI subframes	FICH in sp	ecial		2	2	2
PDSCH transmissio	n mode			2	2	2
Interference model				N/A	As specified in clause B.6.1	As specified in clause B.6.1
MBSFN	MBSFN			Not configured	Not configured	Not configured
Time offset to cell 1			us	N/A	2	3
Frequency offset to cell 1			Hz	N/A	200	300
NeighCellsInfo- r12 p-aList-r12				N/A	{dB-6, dB-3, dB0}	{dB-6, dB-3, dB0}
(NOTE 3)	transmis	sionModeList		N/A	{2,3,4,8,9}	{2,3,4,8,9}
NOTE 1: $P_n = 1$						

NOTE 1: $P_B = 1$

NOTE 2: Cell 1 is the serving cell. Cell 2, 3 are the interfering cells.

NOTE 3: NeighCellsInfo-r12 is described in subclause 6.3.2 of [7].

Table 8.2.2.2.6-2: Minimum Performance for Enhanced Performance Requirement Type B, Transmit Diversity (FRC) with TM2 interference model

Test Number	Reference Channel	OCI	NG Pat	tern		opagat onditio		Correlation Matrix and	Reference Value		UE Cate
		Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	Antenna Configurati on (NOTE 3)	Fraction of Maximum Throughput (%)	SNR (dB) (NOTE 2)	gory
1	R.11-12 TDD	OP. 1 TD D	N/A	N/A	EP A5	EP A5	EP A5	2x2 Low	85	15.3	≥1

NOTE 1: The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.

NOTE 2: SNR corresponds to \hat{E}_s/N_{oc} of Cell 1 as defined in clause 8.1.1.

NOTE 3: Correlation matrix and antenna configuration parameters apply for each of Cell 1, Cell 2 and Cell 3.

8.2.2.2.7 Enhanced Performance Requirement Type B - 2 Tx Antenna Ports with TM9 interference model

The requirements are specified in Table 8.2.2.2.7-2, with the addition of parameters in Table 8.2.2.2.7-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of transmit diversity (SFBC) with 2 transmit antennas when the PDSCH transmission in the serving cell is interfered by PDSCH of two interfering cells applying transmission mode 9 interference model defined in clause B.6.4. In Table 8.2.2.2.7-1, Cell 1 is the serving cell, and Cell 2, 3 are interfering cells. The downlink physical channel setup is according to Annex C.3.2 for each of Cell 1, Cell 2 and Cell 3, respectively.

Table 8.2.2.2.7-1: Test Parameters for Transmit Diversity Performance (FRC) with TM9 interference model

Parameter		Unit	Cell 1	Cell 2	Cell 3
Uplink downlink Configuration			1	1	1
Special subframe configura	tion		4	4	4
	$ ho_{\scriptscriptstyle A}$	dB	-3	0	0
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (NOTE 1)	0	0
	σ	dB	0	-3	-3
Cell-specific reference signa	als		Antenna ports 0,1	Antenna ports 0,1	Antenna ports 0,1
N_{oc} at antenna port		dBm/15kHz		-98	
\hat{E}_s/N_{oc}		dB	N/A	3.28	0.74
BW _{Channel}		MHz	10	10	10
Cyclic Prefix			Normal	Normal	Normal
Cell Id			0	1	6
Number of control OFDM synormal subframes	mbols in		3	3	3
CFI indicated in PCFICH in	normal		3	Random from	Random from
subframes	male alla lin			set {1,2,3}	set {1,2,3}
Number of control OFDM sy special subframes	mbois in		2	2	2
CFI indicated in PCFICH in	special		2	Random from	Random from
subframes				set {1,2}	set {1,2}
PDSCH transmission mode			2	9	9
Interference model			N/A	As specified in clause B.6.4	As specified in clause B.6.4
CSI reference signals			N/A	Antenna ports 15,16	Antenna ports 15,16
CSI-RS periodicity and subtraction T _{CSI-RS} / Δ _{CSI-RS}	rame offset	Subframes	N/A	10 / 4	10 / 4
CSI reference signal config	ıration		N/A	6	7
Zero-power CSI-RS configu		Subframes /	N/A	9/	9/
I _{CSI-RS} / ZeroPowerCSI-RS	bitmap		010000000000 0000	001000000000 0000	
Time offset to cell 1	us	N/A	5	-5	
Frequency offset to cell 1		Hz	N/A	600	-600
MBSFN		Not configured	Not configured	Not configured	
NeighCellsInfo- p-aLis r12		N/A	{dB-6, dB-3, dB0}	{dB-6, dB-3, dB0}	
	issionModeList		N/A	{2,3,4,8,9}	{2,3,4,8,9}

NOTE 1: $P_B = 1$

NOTE 2: Cell 1 is the serving cell. Cell 2, 3 are the interfering cells.

NOTE 3: CSI-RS configurations are according to [4] subclause 6.10.5.2.

NOTE 4: NeighCellsInfo-r12 is described in subclause 6.3.2 of [7].

Table 8.2.2.2.7-2: Minimum Performance for Enhanced Performance Requirement Type B, Transmit Diversity (FRC) with TM9 interference model

Test Number	Reference Channel	OCI	NG Pat	tern		opagat onditio				Value	UE Cate
		Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	Antenna Configurati on (NOTE 3)	Fraction of Maximum Throughput (%)	SNR (dB) (NOTE 2)	gory
1	R.11-11 TDD	OP. 1 TD D	N/A	N/A	EP A5	EP A5	EP A5	2x2 Low	85	8.1	≥1

NOTE 1: The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.

NOTE 2: SNR corresponds to \widehat{E}_s/N_{ac} of Cell 1 as defined in clause 8.1.1.

NOTE 3: Correlation matrix and antenna configuration parameters apply for each of Cell 1, Cell 2 and Cell 3.

8.2.2.3 Open-loop spatial multiplexing performance

8.2.2.3.1 Minimum Requirement 2 Tx Antenna Port

For single carrier, the requirements are specified in Table 8.2.2.3.1-2, with the addition of the parameters in Table 8.2.2.3.1-1 and the downlink physical channel setup according to Annex C.3.2.

For CA with 2 DL CCs, the requirements are specified in Table 8.2.2.3.1-4, with the addition of the parameters in Table 8.2.2.3.1-3 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of large delay CDD with 2 transmitter antennas.

For CA with 3 DL CCs, the requirements are specified in Table 8.2.2.3.1-7, based on single carrier requirement specified in Table 8.2.2.3.1-5, with the addition of the parameters in Table 8.2.2.3.1-3 and the downlink physical channel setup according to Annex C.3.2.

The test coverage for different number of component carriers is defined in 8.1.2.4.

Table 8.2.2.3.1-1: Test Parameters for Large Delay CDD (FRC)

Parameter		Unit	Test 1-3
Devention of the second	$ ho_{\scriptscriptstyle A}$	dB	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
	σ	dB	0
$N_{\it oc}$ at antenna	port	dBm/15kHz	-98
ACK/NACK feedba	ck mode		Bundling
PDSCH transmission	on mode		3

Note 1: $P_B = 1$ Note 2: Void.

Note 3: Void.

Table 8.2.2.3.1-2: Minimum performance Large Delay CDD (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference v	Reference value	
num ber		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Cate gory
1	10 MHz	R.11-1 TDD	OP.1 TDD	EVA70	2x2 Low	70	13.1	≥2
2	10 MHz	R.35 TDD	OP.1 TDD	EVA200	2x2 Low	70	20.3	≥2
3	10 MHz	R.35-2 TDD	OP.1 TDD	ETU600	2x2 Low	70	21.1	≥2
Note 1	Void.							

Table 8.2.2.3.1-3: Test Parameters for Large Delay CDD (FRC) for CA

Parameter	ı	Unit	Value
Davidial access	$ ho_{\scriptscriptstyle A}$	dB	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
	σ	dB	0
$N_{_{oc}}$ at antenna	N_{oc} at antenna port		-98
ACK/NACK feedba	ck mode		PUCCH format 1b with channel selection for Tests in Table 8.2.2.3.1-4; PUCCH format 3 for Tests in Table 8.2.2.3.1-7
PDSCH transmission	on mode		3

Note 1: $P_B = 1$ Note 2: Void

Note 3: The same PDSCH transmission mode is applied to each component carrier.

Table 8.2.2.3.1-4: Minimum performance Large Delay CDD (FRC) for CA with 2DL CCs

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference v	/alue	UE
num ber		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Categ ory
1	2x20 MHz	R.30-1 TDD	OP.1 TDD (Note 1)	EVA70	2x2 Low	70	13.7	≥5
2	20MHz+15M Hz	R.30-1 TDD for 20MHz CC	OP.1 TDD (Note 1)	EVA70	2x2 Low	70	13.0	≥5
		R.11-9 TDD for 15MHz CC	OP.1 TDD (Note 1)	EVA70		70	12.9	

Note 1: The OCNG pattern applies for each CC.

Note 2: The applicability of requirements for different CA configurations and bandwidth combination sets is defined in 8.1.2.3.

Table 8.2.2.3.1-5: Single carrier performance for multiple CA configurations

			Propa-	Correlation	Reference value		
Band- width	Reference channel	OCNG pattern	gation condi- tion	matrix and antenna config.	Fraction of maximum throughput (%)	SNR (dB)	

1.4MHz	R.11-5 TDD	OP.1 TDD	EVA70	2x2 Low	70	13.2
3MHz	R.11-6 TDD	OP.1 TDD	EVA70	2x2 Low	70	12.8
5MHz	R.11-7 TDD	OP.1 TDD	EVA70	2x2 Low	70	12.6
10 MHz	R.11-8 TDD	OP.1 TDD	EVA70	2x2 Low	70	12.8
15MHz	R.11-9 TDD	OP.1 TDD	EVA70	2x2 Low	70	12.9
20MHz	R.30-1 TDD	OP. 1 TDD	EVA70	2x2 Low	70	13.0

Table 8.2.2.3.1-6: Void

Table 8.2.2.3.1-7: Minimum performance (FRC) based on single carrier performance for CA with 3 DL CCs

Test num. CA Band-width combination		CA Band-width combination	Requirement	UE category			
1 3x20MHz		3x20MHz	As specified in Table 8.2.2.3.1-5 per CC	≥5			
2	2 20MHz+20MHz+15MHz		As specified in Table 8.2.2.3.1-5 per CC	≥5			
Note 1:							

8.2.2.3.1A Soft buffer management test

For CA, the requirements are specified in Table 8.2.2.3.1A-2, with the addition of the parameters in Table 8.2.2.3.1A-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify UE performance with proper instantaneous buffer implementation.

Table 8.2.2.3.1A-1: Test Parameters for soft buffer management test (FRC) for CA

Parameter	1	Unit	Test 1-2
Downlink power allocation	$ ho_{\scriptscriptstyle A}$	dB	-3
	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
	σ	dB	0
$N_{_{oc}}$ at antenna	N_{oc} at antenna port		-98
ACK/NACK feedba	ACK/NACK feedback mode		- (Note 2)
PDSCH transmission	on mode		3

Note 1: $P_{R} = 1$

Note 2: PUCCH format 1b with channel selection is used to feedback ACK/NACK.

Note 3: For CA test cases, the same PDSCH transmission mode is applied to each

component carrier.

Table 8.2.2.3.1A-2: Minimum performance soft buffer management test (FRC) for CA

Test num ber	Bandwidth	Reference Channel	OCNG Pattern	Propagation Condition	Correlation Matrix and Antenna Configuration	Reference v Fraction of Maximum Throughput (%)	value SNR (dB)	UE Cate gory
1	2x20 MHz	R.30-2 TDD	OP.1 TDD	EVA70	2x2 Low	70	13.2	3
			(Note 1)					
2	2x20 MHz	R.35-1 TDD	OP.1 TDD (Note 1)	EVA5	2x2 Low	70	15.7	4

Note 1: For CA test cases, the OCNG pattern applies for each CC.

Note 2: The applicability of requirements for different CA configurations and bandwidth combination sets is defined in 8.1.2.3.

8.2.2.3.1B Enhanced Performance Requirement Type C - 2Tx Antenna Ports

The requirements are specified in Table 8.2.2.3.1B-2, with the addition of the parameters in Table 8.2.2.3.1B-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of large delay CDD with 2 transmitter antennas.

Table 8.2.2.3.1B-1: Test Parameters for Large Delay CDD (FRC)

Paramete	Parameter		Test 1
Daniel Internation	$ ho_{\scriptscriptstyle A}$	dB	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
	σ	dB	0
$N_{\it oc}$ at antenna	port	dBm/15kHz	-98
ACK/NACK feedba	ick mode		Bundling
PDSCH transmissi	on mode		3
Note 1: $P_B = 1$			_

Table 8.2.2.3.1B-2: Enhanced Performance Requirement Type C for Large Delay CDD (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference v	/alue	UE
num ber		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Cate gory
1	10 MHz	R.11-1 TDD	OP.1 TDD	EVA70	2x2 Medium	70	17.4	≥2

8.2.2.3.1C Enhanced Performance Requirement Type C - 2 Tx Antenna Ports with TM1 interference

The requirements are specified in Table 8.2.2.3.1C-2, with the addition of parameters in Table 8.2.2.3.1C-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of open-loop spatial multiplexing performence with 2 transmit antennas when the PDSCH transmission in the serving cell is interfered by PDSCH of one dominant interfering cell with transmission mode 1. In Table 8.2.2.3.1C-1, Cell 1 is the serving cell, and Cell 2 is interfering cells. The downlink physical channel setup is according to Annex C.3.2 for each of Cell 1 and Cell 2 respectively.

Table 8.2.2.3.1C-1 Test parameters for Larger Delay CDD (FRC) with TM1 interference

Parame	ter	Unit	Cell 1	Cell 2
Bandwid	lth	MHz	10 M	lHz
Downlink	$ ho_{\scriptscriptstyle A}$		-3	0
power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	0
anocation	σ		0	0
Cell-spec reference s			Antenna ports 0,1	Antenna port 0
Cyclic Pr			Normal	Normal
Cell ID)		0	1
Transmission	n mode		3	Note 2
$N_{\!oc}$ at anten	na port	dBm/15kHz	-98	N/A
\hat{E}_s/N_{oc} (No	\hat{E}_s/N_{oc} (Note 3)		Reference Value in Table 8.2.2.3.1C-2	12.95
Correlation antenn configura	а		Medium (2x2)	Medium(1x2)
Number of 0 symbols for F			2	N/A
Max numb HARQ transm			4	N/A
Redundancy version coding sequence			{0,1,2,3}	N/A
Note 1: P	_s = 1 ownlink p	.2 applying OCN	etup in Cell 2 in ac G pattern OP.5 TDI	

Annex A.5.2.5.

Note 3: Cell 1 is the serving cell. Cell 2 is the interfering cell.

Note 4:

All cells are time-synchronous.
SIB-1 will not be transmitted in Cell2 in this test. Note 5:

Table 8.2.2.3.1C-2 Enhanced Performance Requirement Type C, Larger Delay CDD (FRC) with TM1 interference

Test Number	Reference Channel	OCNG Pattern		Propagation Conditions (Note 1)		Reference Value		UE Category			
		Cell 1	Cell 2	Cell 1	Cell 2	Fraction of Maximum Throughput (%)	SNR (dB) (Note 2)				
1	R.11-10 TDD	OP.1 TDD	OP.5 TDD	EVA70	EVA70	70	19.6	≥2			
Note 1:	' '										

Note 2: SNR corresponds to \hat{E}_s/N_{oc} of Cell 1.

8.2.2.3.2 Minimum Requirement 4 Tx Antenna Port

The requirements are specified in Table 8.2.2.3.2-2, with the addition of the parameters in Table 8.2.2.3.2-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of large delay CDD with 4 transmitter antennas.

Table 8.2.2.3.2-1: Test Parameters for Large Delay CDD (FRC)

Parameter		Unit	Test 1					
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	-6					
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-6 (Note 1)					
aooao	σ	dB	3					
$N_{_{oc}}$ at antenna	port	dBm/15kHz	-98					
ACK/NACK feedba			Bundling					
PDSCH transmission	on mode		3					
Note 1: $P_B = 1$.								

Table 8.2.2.3.2-2: Minimum performance Large Delay CDD (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	on Reference		UE
number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.14 TDD	OP.1 TDD	EVA70	4x2 Low	70	14.2	≥2

8.2.2.3.3 Minimum Requirement 2Tx antenna port (demodulation subframe overlaps with aggressor cell ABS)

The requirements for non-MBSFN ABS are specified in Table 8.2.2.3.3-2, with the addition of parameters in Table 8.2.2.3.3-1 and the downlink physical channel setup according to Annex C.3.2 and Annex C.3.3.

The requirements for MBSFN ABS are specified in Table 8.2.2.3.3-4, with the addition of parameters in Table 8.2.2.3.3-3 and the downlink physical channel setup according to Annex C.3.2 and Annex C.3.3.

The purpose is to verify the performance of large delay CDD with 2 transmitter antennas if the PDSCH transmission in the serving cell takes place in subframes that overlap with ABS [9] of the aggressor cell. In Tables 8.2.2.3.3-1 and 8.2.2.3.3-3, Cell 1 is the serving cell, and Cell 2 is the aggressor cell. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 is according to Annex C.3.3, respectively.

Table 8.2.2.3.3-1: Test Parameters for Large Delay CDD (FRC) - Non-MBSFN ABS

Parameter		Unit	Cell 1	Cell 2
Uplink downlink config	guration		1	1
Special subframe conf	iguration		4	4
	$ ho_{\scriptscriptstyle A}$	dB	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3 (Note 1)
	σ	dB	0	N/A
	N_{oc1}	dBm/15kHz	-102 (Note 2)	N/A
$N_{\it oc}$ at antenna port	N_{oc2}	dBm/15kHz	-98 (Note 3)	N/A
	N_{oc3}	dBm/15kHz	-94.8 (Note 4)	N/A
\hat{E}_s/N_{oc2}		dB	Reference Value in Table 8.2.2.3.3-2	6
$BW_Channel$		MHz	10	10
Subframe Configur	ation		Non-MBSFN	Non-MBSFN
Cell Id			0	1
Time Offset between	n Cells	μs	2.5 (synchro	nous cells)
ABS pattern (Not	e 5)		N/A	0000010001, 0000000001
RLM/RRM Measurement Pattern (Note 6			000000001, 000000001	N/A
CSI Subframe Sets	Ccsi,0		0000010001, 000000001	N/A
(Note 7)	C _{CSI,1}		1100101000 1100111000	N/A
Number of control OFDM symbols			2	2
ACK/NACK feedback	k mode		Multiplexing	N/A
PDSCH transmission	n mode		3	N/A
Cyclic prefix			Normal	Normal

- Note 1: $P_B = 1$
- Note 2: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.
- Note 3: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.
- Note 4: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS.
- Note 5: ABS pattern as defined in [9].
- Note 6: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7].
- Note 7: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].
- Note 8: Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1 and Cell2 is the same.
- Note 9: SIB-1 will not be transmitted in Cell2 in this test.

Table 8.2.2.3.3-2: Minimum Performance Large Delay CDD (FRC) - Non-MBSFN ABS

Test Number	Reference Channel	OCNG Pattern		Propagation Conditions (Note 1)		Correlation Matrix and Antenna	Reference Value		UE Category
		Cell 1	Cell 2	Cell 1	Cell 2	Configuration	Fraction of Maximum Throughput (%) Note 5	SNR (dB) (Note 2)	
1	R.11 TDD Note 4	OP.1 TDD	OP.1 TDD	EVA 5	EVA 5	2x2 Low	70	14.0	≥2

Note 1: The propagation conditions for Cell 1 and Cell2 are statistically independent.

SNR corresponds to \widehat{E}_s/N_{oc2} of cell 1. Note 2:

Note 3:

The correlation matrix and antenna configuration apply for Cell 1 and Cell 2. Cell 1 Reference channel is modified: PDSCH other than SIB1/paging and its associated Note 4: PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel. The maximum Throughput is calculated from the total Payload in 2 subframes, averaged over 20ms. Note 5:

Table 8.2.2.3.3-3: Test Parameters for Large Delay CDD (FRC) – MBSFN ABS

Parameter		Unit	Cell 1	Cell 2
Uplink downlink confi	guration		1	1
Special subframe conf	iguration		4	4
	$ ho_{\scriptscriptstyle A}$	dB	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3 (Note 1)
	σ	dB	0	N/A
	N_{oc1}	dBm/15kHz	-102 (Note 2)	N/A
N_{oc} at antenna port	N_{oc2}	dBm/15kHz	-98 (Note 3)	N/A
	N_{oc3}	dBm/15kHz	-94.8 (Note 4)	N/A
\hat{E}_s/N_{oc2}		dB	Reference Value in Table 8.2.2.3.3-4	6
$BW_Channel$		MHz	10	10
Subframe Configu	ration		Non-MBSFN	MBSFN
Cell Id			0	126
Time Offset between	n Cells	μs	2.5 (synchror	nous cells)
ABS pattern (Not	e 5)		N/A	000000001 000000001
RLM/RRM Measuremen Pattern (Note 6			000000001 000000001	N/A
CSI Subframe Sets	C _{CSI,0}		000000001 000000001	N/A
(Note 7)	C _{CSI,1}		1100111000 1100111000	N/A
MBSFN Subframe Alloc	ation (Note		N/A	000010
Number of control OFD	M symbols		2	2
ACK/NACK feedbac			Multiplexing	N/A
PDSCH transmission	n mode		3	N/A
Cyclic prefix			Normal	Normal

- Note 1: $P_B = 1$.
- Note 2: This noise is applied in OFDM symbols #1, #2, #3, #4, #5, #6, #7, #8, #9, #10,#11, #12, #13 of a subframe overlapping with the aggressor ABS.
- Note 3: This noise is applied in OFDM symbol #0 of a subframe overlapping with the aggressor ABS
- Note 4: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS.
- Note 5: ABS pattern as defined in [9]. The 10th and 20th subframes indicated by ABS pattern are MBSFN ABS subframes.
- Note 6: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
- Note 7: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].
- Note 8: Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1 and Cell2 is the same.
- Note 9: SIB-1 will not be transmitted in Cell2 in this test.
- Note 10: MBSFN Subframe Allocation as defined in [7], one frame with 6 bits is chosen for MBSFN subframe allocation.

Table 8.2.2.3.3-4: Minimum Performance Large Delay CDD (FRC) - MBSFN ABS

Test Number	Reference Channel	OCNG Pattern		Propagation Conditions (Note 1)		Correlation Matrix and Antenna	Reference Value		UE Category
		Cell 1	Cell 2	Cell 1	Cell 2	Configuration	Fraction of Maximum Throughput (%) Note 5	SNR (dB) (Note 2)	
1	R.11 TDD Note 4	OP.1 TDD	OP.1 TDD	EVA 5	EVA 5	2x2 Low	70	12.2	≥2

Note 1: The propagation conditions for Cell 1 and Cell2 are statistically independent.

Note 2: SNR corresponds to \hat{E}_s/N_{oc2} of cell 1.

Note 3: The correlation matrix and antenna configuration apply for Cell 1 and Cell 2.

Note 4: Cell 1 Reference channel is modified: PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.

Note 5: The maximum Throughput is calculated from the total Payload in 2 subframes, averaged over 20ms.

8.2.2.3.4 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)

The requirements for non-MBSFN ABS are specified in Table 8.2.2.3.4-2, with the addition of parameters in Table 8.2.2.3.4-1. The purpose is to verify the performance of large delay CDD with 2 transmitter antennas if the PDSCH transmission in the serving cell takes place in subframes that overlap with ABS [9] of the aggressor cell with CRS assistance information. In Table 8.2.2.3.4-1, Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] includes Cell 2 and Cell 3.

Table 8.2.2.3.4-1: Test Parameters for Large Delay CDD (FRC) - Non-MBSFN ABS

Parameter		Unit	Cell 1	Cell 2	Cell 3
Uplink downlink confi	guration		1	1	1
Special subframe con	figuration		4	4	4
	$ ho_{\scriptscriptstyle A}$	dB	-3	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3 (Note 1)	-3 (Note 1)
	σ	dB	0	N/A	N/A
	N_{oc1}	dBm/15kHz	-98 (Note 2)	N/A	N/A
N_{oc} at antenna port	N_{oc2}	dBm/15kHz	-98 (Note 3)	N/A	N/A
	N_{oc3}	dBm/15kHz	-93 (Note 4)	N/A	N/A
\hat{E}_s/N_{oc2}		dB	Reference Value in Table 8.2.2.3.4-2	Reference Value in Table 8.2.2.3.4-2	Reference Value in Table 8.2.2.3.4-2
BW _{Channel}		MHz	10	10	10
Subframe Configu	ration		Non-MBSFN	Non-MBSFN	Non-MBSFN
Time Offset betwee	n Cells	μs	N/A	3	-1
Frequency shift between	een Cells	Hz	N/A	300	-100
Cell Id			0	1	126
ABS pattern (No	te 5)		N/A	0000000001 0000000001	0000000001 0000000001
RLM/RRM Measur Subframe Pattern (I			000000001 000000001	N/A	N/A
CSI Subframe Sets	Ccsi,0		0000000001 0000000001	N/A	N/A
(Note7)	Ccsi,1		1100111000 1100111000	N/A	N/A
Number of control symbols	OFDM		2	Note 8	Note 8
ACK/NACK feedbac	k mode		Multiplexing	N/A	N/A
PDSCH transmissio	n mode		3	Note 9	Note 9
Cyclic prefix			Normal	Normal	Normal

- Note 1: $P_{B} = 1$.
- Note 2: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.
- Note 3: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.
- Note 4: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS
- Note 5: ABS pattern as defined in [9].
- Note 6: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
- Note 7: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].
- Note 8: The number of control OFDM symbols is not available for ABS and is 2 for the subframe indicated by "0" of ABS pattern.
- Note 9: Downlink physical channel setup in Cell 2 and Cell 3 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.
- Note 10: The number of the CRS ports in Cell1, Cell2 and Cell 3 is the same.
- Note 11: SIB-1 will not be transmitted in Cell2 and Cell 3 in this test.

Table 8.2.2.3.4-2: Minimum Performance Large Delay CDD (FRC) - Non-MBSFN ABS

Test Number	Refer ence	$\hat{E}_s/2$	N_{oc2}	OC	NG Patt	ern		ropagations (N		Correlation Matrix and	Reference	Value	UE Cate
	Chan nel	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	Antenna Configurati on (Note 2)	Fraction of Maximum Throughp ut (%) Note 5	SNR (dB) (Note 3)	gory
1	R.11 TDD Note 4	9	7	OP.1 TDD	OP.1 TDD	OP.1 TDD	EVA5	EVA5	EVA5	2x2 Low	70	14.2	≥2
2	R.35 TDD Note 4	9	1	OP.1 TDD	OP.1 TDD	OP.1 TDD	EVA5	EVA5	EVA5	2x2 Low	70	22.7	≥2

- Note 1: The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.
- Note 2: The correlation matrix and antenna configuration apply for Cell 1, Cell 2 and Cell 3.
- Note 3: SNR corresponds to \hat{E}_s/N_{oc2} of cell 1.
- Note 4: Cell 1 Reference channel is modified: PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.
- Note 5: The maximum Throughput is calculated from the total Payload in 2 subframes, averaged over 20ms.

8.2.2.4 Closed-loop spatial multiplexing performance

8.2.2.4.1 Minimum Requirement Single-Layer Spatial Multiplexing 2 Tx Antenna Port

The requirements are specified in Table 8.2.2.4.1-2, with the addition of the parameters in Table 8.2.2.4.1-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-one performance with wideband and frequency selective precoding.

Table 8.2.2.4.1-1: Test Parameters for Single-Layer Spatial Multiplexing (FRC)

Parameter		Unit	Test 1	Test 2
Describes neces	$ ho_{\scriptscriptstyle A}$	dB	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3 (Note 1)
	σ	dB	0	0
N_{oc} at antenna port		dBm/15kHz	-98	-98
Precoding granula	Precoding granularity		6	50
PMI delay (Note 2	2)	ms	10 or 11	10 or 11
Reporting interva	al	ms	1 or 4 (Note 3)	1 or 4 (Note 3)
Reporting mode			PUSCH 1-2	PUSCH 3-1
CodeBookSubsetRest	riction		001111	001111
bitmap				
ACK/NACK feedback mode			Multiplexing	Multiplexing
PDSCH transmission	mode		4	4

Note 1: $P_B = 1$.

Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Note 3: For Uplink - downlink configuration 1 the reporting interval will alternate between 1ms and 4ms.

Note 3:

Table 8.2.2.4.1-2: Minimum performance Single-Layer Spatial Multiplexing (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference	value	UE
number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.10 TDD	OP.1 TDD	EVA5	2x2 Low	70	-3.1	≥1
2	10 MHz	R.10 TDD	OP.1 TDD	EPA5	2x2 High	70	-2.8	≥1

8.2.2.4.1A Minimum Requirement Single-Layer Spatial Multiplexing 4 Tx Antenna Port

The requirements are specified in Table 8.2.2.4.1A-2, with the addition of the parameters in Table 8.2.2.4.1A-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-one performance with wideband and frequency selective precoding.

Table 8.2.2.4.1A-1: Test Parameters for Single-Layer Spatial Multiplexing (FRC)

Parameter		Unit	Test 1
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	-6
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-6 (Note 1)
	σ	dB	3
$N_{\it oc}$ at antenna	port	dBm/15kHz	-98
Precoding granul	arity	PRB	6
PMI delay (Note	2)	ms	10 or 11
Reporting inter	val	ms	1 or 4 (Note 3)
Reporting mod	de		PUSCH 1-2
CodeBookSubsetR	estricti		0000000000000000
on bitmap			00000000000000000
			0000000000000111
			1111111111111
ACK/NACK feedl	back		Multiplexing
mode			
PDSCH transmis	sion		4
mode			
Note 1: $P_B = 1$.			
at subrar SF not la	me SF#r iter than	n based on PMI es	link reporting instance stimation at a downlink corted PMI cannot be a SF#(n+4).

Table 8.2.2.4.1A-2: Minimum performance Single-Layer Spatial Multiplexing (FRC)

will alternate between 1ms and 4ms.

For Uplink - downlink configuration 1 the reporting interval

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference	/alue	UE
number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.13 TDD	OP.1 TDD	EVA5	4x2 Low	70	-3.5	≥1

8.2.2.4.1B Enhanced Performance Requirement Type A – Single-Layer Spatial Multiplexing 2 Tx Antenna Port with TM4 interference model

The requirements are specified in Table 8.2.2.4.1B-2, with the addition of the parameters in Table 8.2.2.4.1B-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-

one performance with wideband precoding with two transmit antennas when the PDSCH transmission in the serving cell is interfered by PDSCH of two dominant interfering cells applying transmission mode 4 interference model defined in clause B.5.3. In Table 8.2.2.4.1B-1, Cell 1 is the serving cell, and Cell 2, 3 are interfering cells. The downlink physical channel setup is according to Annex C.3.2 for each of Cell 1, Cell 2 and Cell 3, respectively.

Table 8.2.2.4.1B-1: Test Parameters for Single-Layer Spatial Multiplexing (FRC) with TM4 interference model

Parameter	Unit	Cell 1	Cell 2	Cell 3	
	$ ho_{\scriptscriptstyle A}$	dB	-3	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3	-3
	σ	dB	0	0	0
Cell-specific reference	signals		Antenna ports 0,1	Antenna ports 0,1	Antenna ports 0,1
N_{oc} at antenna po	ort	dBm/15kHz	-98	N/A	N/A
DIP (Note 2)		dB	N/A	-1.73	-8.66
BW _{Channel}		MHz	10	10	10
Cyclic Prefix			Normal	Normal	Normal
Cell Id			0	1	2
Number of control OFDM	symbols		2	2	2
PDSCH transmission			6	N/A	N/A
Interference mode	el		N/A	As specified in clause B.5.3	As specified in clause B.5.3
Probability of occurrence of	Rank 1	%	N/A	80	80
transmission rank in interfering cells	Rank 2	%	N/A	20	20
Precoding granular	rity	PRB	50	6	6
PMI delay (Note 4		ms	10 or 11	N/A	N/A
Reporting interval		ms	5	N/A	N/A
Reporting mode			PUCCH 1-1	N/A	N/A
CodeBookSubsetRestriction bitmap			1111	N/A	N/A
ACK/NACK feedback		Multiplexing	N/A	N/A	
Physical channel for CQI		PUSCH(Note 6)	N/A	N/A	
cqi-pmi-Configuration	Index		4	N/A	N/A

- Note 1: $P_{B} = 1$
- Note 2: The respective received power spectral density of each interfering cell relative to N_{oc} is defined by its associated DIP value as specified in clause B.5.1.
- Note 3: Cell 1 is the serving cell. Cell 2, 3 are the interfering cells.
- Note 4: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).
- Note 5: All cells are time-synchronous.
- Note 6: To avoid collisions between CQI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#4 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#8 and #3.

Table 8.2.2.4.1B-2: Enhanced Performance Requirement Type A, Single-Layer Spatial Multiplexing (FRC) with TM4 interference model

275

Test Number	Reference Channel	OCI	NG Pat	tern		opagat onditio		Correlation Matrix and	Reference	Value	UE Cate
		Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	Antenna Configurati on (Note 3)	Fraction of Maximum Throughput (%)	SINR (dB) (Note 2)	gory
1	R.47 TDD	OP. 1 TD D	N/A	N/A	EV A5	EV A5	EV A5	2x2 Low	70	1.1	≥1

Note 1: The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.

Note 2: SINR corresponds to \hat{E}_s/N_{oc} of Cell 1 as defined in clause 8.1.1.

Note 3: Correlation matrix and antenna configuration parameters apply for each of Cell 1, Cell 2 and Cell 3.

8.2.2.4.1C Minimum Requirement Single-Layer Spatial Multiplexing 2 Tx Antenna Ports (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)

The requirements are specified in Table 8.2.2.4.1C-2, with the addition of parameters in Table 8.2.2.4.1C-1. The purpose is to verify the closed loop rank-one performance with wideband precoding if the PDSCH transmission in the serving cell takes place in subframes that overlap with ABS [9] of the aggressor cell with CRS assistance information. In Table 8.2.2.4.1C-1, Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] includes Cell 2 and Cell 3.

Table 8.2.2.4.1C-1: Test Parameters for Single-Layer Spatial Multiplexing (FRC) - Non-MBSFN ABS

Parameter		Unit	Cell 1	Cell 2	Cell 3
Uplink downlink confi	guration		1	1	1
Special subframe con	figuration		4	4	4
	$ ho_{\scriptscriptstyle A}$	dB	-3	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3 (Note 1)	-3 (Note 1)
	σ	dB	0	N/A	N/A
	N_{oc1}	dBm/15kHz	-98 (Note 2)	N/A	N/A
N_{oc} at antenna port	N_{oc2}	dBm/15kHz	-98 (Note 3)	N/A	N/A
	N_{oc3}	dBm/15kHz	-93 (Note 4)	N/A	N/A
\hat{E}_s/N_{oc2}		dB	Reference Value in Table 8.2.2.4.1C-2	12	10
BW _{Channel}		MHz	10	10	10
Subframe Configu	ration		Non-MBSFN	Non-MBSFN	Non-MBSFN
Time Offset betwee	n Cells	μs	N/A	3	-1
Frequency shift between	een Cells	Hz	N/A	300	-100
Cell Id			0	126	1
ABS pattern (Not	te 5)		N/A	0000000001 0000000001	0000000001 0000000001
RLM/RRM Measur Subframe Pattern (I			000000001 000000001	N/A	N/A
CSI Subframe Sets	Ccsi,0		000000001 000000001	N/A	N/A
(Note7)	Ccsi,1		1100111000 1100111000	N/A	N/A
Number of control of symbols	OFDM		2	Note 8	Note 8
ACK/NACK feeback	k mode		Multiplexing	N/A	N/A
PDSCH transmissio	n mode		6	Note 9	Note 9
Precoding granul	arity	PRB	50	N/A	N/A
PMI delay (Note		ms	10 or 11	N/A	N/A
Reporting inter	val	ms	1 or 4 (Note 11)	N/A	N/A
Peporting mod			PUSCH 3-1	N/A	N/A
CodeBookSubsetRestriction bitmap			1111	N/A	N/A
Cyclic prefix			Normal	Normal	Normal

- Note 1: $P_{p} = 1$.
- Note 2: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.
- Note 3: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.
- Note 4: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS
- Note 5: ABS pattern as defined in [9].
- Note 6: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
- Note 7: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].
- Note 8: The number of control OFDM symbols is not available for ABS and is 2 for the subframe indicated by "0" of ABS pattern.
- Note 9: Downlink physical channel setup in Cell 2 and Cell 3 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.
- Note 10: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).
- Note 11: For Uplink downlink configuration 1 the reporting interval will alternate between 1ms and 4ms.
- Note 12: The number of the CRS ports in Cell 1, Cell 2 and Cell 3 is the same.
- Note 13: SIB-1 will not be transmitted in Cell 2 and Cell 3 in this test.

Table 8.2.2.4.1C-2: Minimum Performance Single-Layer Spatial Multiplexing (FRC)- Non-MBSFN ABS

Test Number	Reference Channel	OCNG Pattern			ropagations (N		Correlation Matrix and	Reference	Value	UE Cate	
		Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	Antenna Configuration (Note 2)	Fraction of Maximum Throughput (%) Note 5	SNR (dB) (Note 3)	gory
1	R.11 TDD Note 4	OP.1 TDD	OP.1 FDD	OP.1 TDD	EPA5	EPA5	EPA5	2x2 High	70	6.4	≥2

- Note 1: The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.
- Note 2: The correlation matrix and antenna configuration apply for Cell 1, Cell 2 and Cell 3.
- Note 3: SNR corresponds to \hat{E}_s/N_{oc2} of cell 1.
- Note 4: Cell 1 Reference channel is modified: PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.
- Note 5: The maximum Throughput is calculated from the total Payload in 2 subframes, averaged over 20ms.

8.2.2.4.1D Enhanced Performance Requirement Type B - Single-layer Spatial Multiplexing 2 Tx Antenna Port with TM4 interference model

The requirements are specified in Table 8.2.2.4.1D-2, with the addition of the parameters in Table 8.2.2.4.1D-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-one performance with wideband precoding with two transmit antennas when the PDSCH transmission in the serving cell is interfered by PDSCH of two interfering cells applying transmission mode 4 interference model defined in clause B.6.3. In Table 8.2.2.4.1D-1, Cell 1 is the serving cell, and Cell 2, 3 are interfering cells. The downlink physical channel setup is according to Annex C.3.2 for each of Cell 1, Cell 2 and Cell 3, respectively.

Table 8.2.2.4.1D-1: Test Parameters for Single-layer Spatial Multiplexing (FRC) with TM4 interference model

Para	meter		Unit	Cell 1	Се	II 2	Се	II 3
Uplink downlink Co	onfiguration			1		1		1
Special subframe of	configuration	า		4		4		4
	$ ho_{\scriptscriptstyle A}$		dB	-3	-	3	-	3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$		dB	-3 (NOTE 1)	-3		-	3
σ			dB	0	()		0
Cell-specific refere	nce signals			Antenna ports 0,1	Antenna	ports 0,1	Antenna	ports 0,1
N_{oc} at antenna po	rt		dBm/15 kHz			-98		
Test number (NOT	E 4)				Test 1	Test 2	Test 1	Test 2
\hat{E}_s/N_{oc}			dB	N/A	13.91	3.28	3.34	0.74
Cell Id					6	1	1	6
CFI indicated in PCFICH in normal subframes		rmal			3	Random from set {1,2,3}	3	Random from set {1,2,3}
CFI indicated in PC subframes	CFICH in sp	ecial			3	Random from set {1,2}	3	Random from set {1,2}
BW _{Channel}			MHz	10	10		10	
Cyclic Prefix				Normal	Noi	mal	Normal	
Number of control normal subframes	_			3	;	3	3	
Number of control special subframes	OFDM sym	bols in		2	:	2	:	2
PDSCH transmissi	on mode			4		4		4
Interference model				N/A		cified in B.6.3		cified in e B.6.3
Precoding			Random wideband precoding per TTI	As specified in clause B.6.3		clause	cified in e B.6.3	
Time offset to cell			us	N/A	2			3
Frequency offset to cell 1		Hz	N/A		00		00	
MBSFN			Not configured		nfigured		nfigured	
NeighCellsInfo- p-aList-r12				N/A	{dB-6, dl	B-3, dB0}	{dB-6, dl	B-3, dB0}
r12 (NOTE 3)	transmission List-r12	nMode		N/A	{2,3,	4,8,9}	{2,3,4,8,9}	

NOTE 1: $P_B = 1$

NOTE 2: Cell 1 is the serving cell. Cell 2, 3 are the interfering cells. NOTE 3: NeighCellsInfo-r12 is described in subclause 6.3.2 of [7]. NOTE 4: Test 1 and Test 2 are defined in Table 8.2.2.4.1D-2.

Table 8.2.2.4.1D-2: Minimum Performance for Enhanced Performance Requirement Type B, Single-layer Spatial Multiplexing (FRC) with TM4 interference model

est lum	Referenc e	ОС	NG Patt	ern		opagati onditior		Correlation Matrix and	Reference	Reference Value	
	Channel	Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	Antenna Configurati on (NOTE 3)	Fraction of Maximum Throughp ut (%)	SNR (dB) (NOTE 2)	у
1	R.11-12 TDD	OP.1 TDD	N/A	N/A	EVA 5	EVA 5	EVA 5	2x2 Low	85	16.1	≥1
2	R.11-11 TDD	OP.1 TDD	N/A	N/A	EPA 5	EPA 5	EPA 5	2x2 Low	85	9.5	≥1

NOTE 1: The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.

NOTE 2: SNR corresponds to \hat{E}_s/N_{oc} of Cell 1 as defined in clause 8.1.1.

NOTE 3: Correlation matrix and antenna configuration parameters apply for each of Cell 1, Cell 2 and Cell 3.

8.2.2.4.2 Minimum Requirement Multi-Layer Spatial Multiplexing 2 Tx Antenna Port

The requirements are specified in Table 8.2.2.4.2-2, with the addition of the parameters in Table 8.2.2.4.2-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-two performance with wideband and frequency selective precoding.

Table 8.2.2.4.2-1: Test Parameters for Multi-Layer Spatial Multiplexing (FRC)

Parameter		Unit	Test 1-2	Test 3
Develielenenen	$ ho_{\scriptscriptstyle A}$	dB	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3 (Note 1)
	σ	dB	0	0
$N_{\scriptscriptstyle oc}$ at antenna	port	dBm/15kHz	-98	-98
Precoding granu	ılarity	PRB	50	8
PMI delay (Not	e 2)	ms	10 or 11	10 or 11
Reporting inte	rval	ms	1 or 4 (Note 3)	1 or 4 (Note 3)
Reporting mo	de		PUSCH 3-1	PUSCH 1-2
ACK/NACK feedba	ck mode		Bundling	Bundling
CodeBookSubsetRestriction			110000	110000
bitmap				
PDSCH transmission mode			4	4
Number of OFDM symbols for PDCCH per component carrier		OFDM symbol	2	1

Note 1: $P_{R} = 1$.

Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this

reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Note 3: For Uplink - downlink configuration 1 the reporting interval will alternate

between 1ms and 4ms.

Table 8.2.2.4.2-2: Minimum performance Multi-Layer Spatial Multiplexing (FRC)

Test number	Band- width	Reference Channel	OCNG Pattern	Propagation Condition	Correlation Matrix and Antenna Configuration	Reference v Fraction of Maximum Throughput (%)	value SNR (dB)	UE Category	UE DL category
1	10 MHz	R.35 TDD	OP.1 TDD	EPA5	2x2 Low	70	19.5	≥2	≥6
2	10 MHz	R.11-1 TDD	OP.1 TDD	ETU70	2x2 Low	70	13.9	≥2	≥6
3	20 MHz 256QA M	R. 65 TDD	OP.1 TDD	EVA5	2x2 Low	70	24.9	11-12	≥11

8.2.2.4.2A Enhanced Performance Requirement Type C Multi-Layer Spatial Multiplexing 2 Tx Antenna Port

The requirements are specified in Table 8.2.2.4.2A-2, with the addition of the parameters in Table 8.2.2.4.2A-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-two performance with wideband precoding.

Table 8.2.2.4.2A-1: Test Parameters for Multi-Layer Spatial Multiplexing (FRC)

Parameter	1	Unit	Test 1			
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	-3			
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)			
	σ	dB	0			
$N_{\it oc}$ at antenna	port	dBm/15kHz	-98			
Precoding grant	ılarity	PRB	50			
PMI delay (Not	e 2)	ms	10 or 11			
Reporting inte	rval	ms	1 or 4 (Note 3)			
Reporting mo	de		PUSCH 3-1			
ACK/NACK feedba	ck mode		Bundling			
CodeBookSubsetRo bitmap	estriction		110000			
PDSCH transmission	on mode		4			
Note 1: $P_B = 1$.						
Note 2: If the UE reports in an available uplink reporting instance at						

Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF

not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Note 3: For Uplink - downlink configuration 1 the reporting interval

will alternate between 1ms and 4ms.

Table 8.2.2.4.2A-2: Enhanced Performance Requirement Type C for Multi-Layer Spatial Multiplexing (FRC)

Test	Band-	Reference	OCNG	Propagation	Correlation	Reference	/alue	UE
number	width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.11-1 TDD	OP.1 TDD	ETU70	2x2 Medium	70	17.8	≥2

8.2.2.4.3 Minimum Requirement Multi-Layer Spatial Multiplexing 4 Tx Antenna Port

For single carrier, the requirements are specified in Table 8.2.2.4.3-2, with the addition of the parameters in Table 8.2.2.4.3-1 and the downlink physical channel setup according to Annex C.3.2.

For CA with 2 DL CCs, the requirements are specified in Table 8.2.2.4.3-4, with the addition of the parameters in Table 8.2.2.4.3-3 and the downlink physical channel setup according to Annex C.3.2.The purpose of these tests is to verify the closed loop rank-two performance with wideband and frequency selective precoding.

For CA with 3 DL CCs, the requirements are specified in Table 8.2.2.4.3-7, based on single carrier requirement specified in Table 8.2.2.4.3-5, with the addition of the parameters in Table 8.2.2.4.3-3 and the downlink physical channel setup according to Annex C.3.2.

The test coverage for different number of component carriers is defined in 8.1.2.4.

Table 8.2.2.4.3-1: Test Parameters for Multi-Layer Spatial Multiplexing (FRC)

Parameter		Unit	Test 1
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-6
allocation	$ ho_{\scriptscriptstyle B}$	dB	-6 (Note 1)
	σ	dB	3
N_{oc} at antenna	N_{oc} at antenna port		-98
Precoding granu	Precoding granularity		6
PMI delay (Not	PMI delay (Note 2)		10 or 11
Reporting inter	val	ms	1 or 4 (Note 3)
Reporting mo	de		PUSCH 1-2
ACK/NACK feedback	ck mode		Bundling
CodeBookSubsetRe	estriction		000000000000000000000000000000000000000
bitmap			00001111111111111111100000000
			0000000
PDSCH transmission	on mode		4

Note 1: $P_B = 1$.

If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this Note 2:

reported PMI cannot be applied at the eNB downlink before SF#(n+4)

Note 3: For Uplink - downlink configuration 1 the reporting interval will alternate

between 1ms and 4ms.

Note 4: Void. Note 5: Void. Note 6: Void.

Table 8.2.2.4.3-2: Minimum performance Multi-Layer Spatial Multiplexing (FRC)

Test	Band-	Reference	OCNG	Propagatio	Correlation Reference value UE	Reference value		UE
number	width	Channel	Pattern	n Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.36 TDD	OP.1 TDD	EPA5	4x2 Low	70	15.7	≥2
Note 1:	Void							

Table 8.2.2.4.3-3: Test Parameters for Multi-Layer Spatial Multiplexing (FRC) for CA

Parameter		Unit	Value
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	-6
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-6 (Note 1)
	σ	dB	3
$N_{_{oc}}$ at antenna	port	dBm/15kHz	-98
Precoding granu	larity	PRB	8
PMI delay (Not	e 2)	ms	10 or 11
Reporting inte	Reporting interval		1 or 4 (Note 3)
Reporting mo	Reporting mode		PUSCH 1-2
ACK/NACK feedba	ck mode		PUCCH format 1b with channel
			selection for Tests in Table
			8.2.2.4.3-4; PUCCH format 3 for
			Tests in Table 8.2.2.4.3-7
CodeBookSubsetRo	estriction		000000000000000000000000000000000000000
bitmap			00001111111111111111100000000
·			0000000
CSI request field (Note 4)		'10'
PDSCH transmission	on mode		4

Note 1: $P_B = 1$.

Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n

based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4)

Note 3: For Uplink - downlink configuration 1 the reporting interval will alternate

between 1ms and 4ms.

Note 4: Multiple CC-s under test are configured as the 1st set of serving cells by high

layers.

Note 5: The same PDSCH transmission mode is applied to each component carrier.

Table 8.2.2.4.3-4: Minimum performance Multi-Layer Spatial Multiplexing (FRC) for CA with 2DL CCs

Test	Band-			Propagation	Correlation	Reference value		UE
number	width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	2x20 MHz	R.43 TDD	OP.1 TDD (Note 1)	EVA5	4x2 Low	70	11.1	≥5
2	20MHz +15MH z	R.43 TDD for 20MHz CC	OP.1 TDD (Note 1)	EVA5	4x2 Low	70	10.7	≥5
		R.43-5 TDD for 15MHz CC	OP.1 TDD (Note 1)				10.6	

Note 1: The OCNG pattern applies for each CC.

Note 2: The applicability of requirements for different CA configurations and bandwidth combination sets is defined in 8.1.2.3.

Table 8.2.2.4.3-5: Single carrier performance for multiple CA configurations

				Correlation	Referenc	e value
Band- width	Reference channel	OCNG pattern	Propa- gation condi- tion	matrix and antenna config.	Fraction of maximum throughput (%)	SNR (dB)
1.4MHz	R.43-1 TDD	OP.1 TDD	EVA5	4x2 Low	70	11.0
3MHz	R.43-2 TDD	OP.1 TDD	EVA5	4x2 Low	70	9.8
5MHz	R.43-3 TDD	OP.1 TDD	EVA5	4x2 Low	70	10.0
10 MHz	R.43-4 TDD	OP.1 TDD	EVA5	4x2 Low	70	10.5
15MHz	R.43-5 TDD	OP.1 TDD	EVA5	4x2 Low	70	10.6
20MHz	R.43 TDD	OP. 1 TDD	EVA5	4x2 Low	70	10.7

Table 8.2.2.4.3-6: Void

Table 8.2.2.4.3-7: Minimum performance (FRC) based on single carrier performance for CA with 3 DL CCs

Test num. CA Band-width combination		Requirement	UE category					
1 3x20MHz		As specified in Table 8.2.2.4.3-5 per CC	≥5					
2	20MHz+20MHz+15MHz	As specified in Table 8.2.2.4.3-5 per CC	≥5					
Note 1: The applicability of requirements for different CA configurations and bandwidth combination sets is								
defin	ed in 8.1.2.3							

8.2.2.4.3A Minimum Requirement Multi-Layer Spatial Multiplexing 4 Tx Antenna Port for dual connectivity

For dual connectivity the requirements are specified in Table 8.2.2.4.3A-3, based on single carrier requirement specified in Table 8.2.2.4.3A-2, with the addition of the parameters in Table 8.2.2.4.3A-1 and the downlink physical channel setup according to Annex C.3.2.The purpose of these tests is to verify the closed loop rank-two performance with wideband and frequency selective precoding by using dual connectivity.

Table 8.2.2.4.3A-1: Test Parameters for Multi-Layer Spatial Multiplexing (FRC) for dual connectivity

Parameter		Unit	Value
Dawelink name	$ ho_{\scriptscriptstyle A}$	dB	-6
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-6 (Note 1)
	σ	dB	3
$N_{\it oc}$ at antenna	port	dBm/15kHz	-98
Precoding granul	arity	PRB	6 for 1.4MHz, 4 for 3MHz and 5MHz CCs, 6 for 10MHz CCs, and 8 for 15MHz CCs and 20MHz CCs
PMI delay (Note	2)	ms	10 or 11
Reporting inter	val	ms	1 or 4 (Note 3)
Reporting mode			PUSCH 1-2
CodeBookSubsetRestriction			000000000000000000000000000000000000000
bitmap			000011111111111111111100000000 00000000
PDSCH transmissio	n mode		4
ACK/NACK transm	ission		Separate ACK/NACK feedbacks with PUCCH format 1b on the MCG and SCG
CSI feedback	(Separate PUSCH feedbacks on the MCG and SCG
Time offset between l and SCG CC		μs	0 for UE under test supporting synchronous dual connectivity; 334 for UE under test supporting both asynchronous and synchrounous dual connectivity (Note 5)

Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this

reported PMI cannot be applied at the eNB downlink before SF#(n+4)

Note 3: For Uplink - downlink configuration 1 the reporting interval will alternate

between 1ms and 4ms.

Note 4: The same PDSCH transmission mode is applied to each component carrier.

Note 5: As defined in TS36.300 [11].

Note 6: If the UE supports both SCG bearer and Split bearer, the SCG bearer is

configured.

Table 8.2.2.4.3A-2: Single carrier performance for multiple dual connectivity configurations

			Propa-	Correlation	Reference	value
Band- width	Reference channel	OCNG pattern	gation condi- tion	matrix and antenna config.	Fraction of maximum throughput (%)	SNR (dB)
1.4MHz	R.43-1 TDD	OP.1 TDD	EVA5	4x2 Low	70	11.0
3MHz	R.43-2 TDD	OP.1 TDD	EVA5	4x2 Low	70	9.8
5MHz	R.43-3 TDD	OP.1 TDD	EVA5	4x2 Low	70	10.0
10 MHz	R.43-4 TDD	OP.1 TDD	EVA5	4x2 Low	70	10.5
15MHz	R.43-5 TDD	OP.1 TDD	EVA5	4x2 Low	70	10.6
20MHz	R.43 TDD	OP. 1 TDD	EVA5	4x2 Low	70	10.7

Table 8.2.2.4.3A-3: Minimum performance Multi-Layer Spatial Multiplexing (FRC) for dual connectivity

Test num.	Band-width combination	Requirement	UE category
-----------	------------------------	-------------	-------------

1	2x20 MHz	As specified in Table 8.2.2.4.3A-2 per CC	≥5						
Note 1:	The OCNG pattern applies for each CC.								
Note 2:	The applicability of requirements for different dual connectivity configurations and bandwidth combination sets is								
	defined in 8.1.2.3A.	-							

8.2.2.4.4 Void

8.2.2.5 MU-MIMO

8.2.2.6 [Control channel performance: D-BCH and PCH]

8.2.2.7 Carrier aggregation with power imbalance

The requirements in this section verify the ability of an intraband adjacent carrier aggregation UE to demodulate the signal transmitted by the PCell or SCell in the presence of a stronger SCell or PCell signal on an adjacent frequency. Throughput is measured on the PCell or SCell only.

8.2.2.7.1 Minimum Requirement

For CA, the requirements are specified in Table 8.2.2.7.1-2, with the addition of the parameters in Table 8.2.2.7.1-1 and the downlink physical channel setup according to Annex C.3.2.

Table 8.2.2.7.1-1: Test Parameters for CA

$ \begin{array}{c} \rho_A \\ \rho_B \\ \sigma \\ \text{t} \end{array} $	dB dB dB dBm/15kHz	0 0 (Note 1) 0 Off (Note 2) OCNG (Note 3) 64 QAM	0 0 (Note 1) 0 Off (Note 2) OCNG (Note 3) 64 QAM				
σ t d PRBs of HARQ	dB	0 Off (Note 2) OCNG (Note 3) 64 QAM	0 Off (Note 2) OCNG (Note 3) 64 QAM				
t PRBs		Off (Note 2) OCNG (Note 3) 64 QAM	Off (Note 2) OCNG (Note 3) 64 QAM				
d PRBs of HARQ	dBm/15kHz	OCNG (Note 3) 64 QAM	OCNG (Note 3) 64 QAM				
of HARQ		(Note 3) 64 QAM	(Note 3) 64 QAM				
		64 QAM	64 QAM				
		1	1				
n coding			l				
		{0}	{0}				
on mode		1	3				
on mode		3	1				
PCell		OP.1 TDD	OP.5 TDD				
SCell		OP.5 TDD	OP.1 TDD				
PCell		Clause B.1	Clause B.1				
SCell		Clause B.1	Clause B.1				
PCell		1x2	2x2				
SCell		2x2	1x2				
	-		ration.				
Note 2: No external noise sources are applied. These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data. Note 4: Void.							
	PCell SCell PCell SCell PCell SCell PCell SCell or 1x2 and nal noise sonysical rescont virtual UE ed over the	on mode PCell SCell PCell SCell PCell SCell PCell SCell Procell SCell Or 1x2 and $P_B = 1$ for 2x2 and noise sources are apply nysical resource blocks are of virtual UEs with one PDS ed over the OCNG PDSCH	on mode 1 The property of the property of				

Table 8.2.2.7.1-2: Minimum performance (FRC) for CA

Test Number	Bandwidth (MHz)		, ,		Power at antenna port (dBm/15KHz)		Reference value Fraction of Maximum Throughput (%)		UE Category
	PCell	SCell	PCell	SCell	\hat{E}_{s_PCell}	\hat{E}_{s_SCell}	PCell	SCell	
					for PCell	for Scell			
1	20	20	R.49 TDD	NA	-85	-79	85	NA	≥5
2	20	15	NA	R.49-1 TDD	-79	-85.8	NA	85	≥5

Note 1: The OCNG pattern for PCell is used to fill the control channel. The OCNG pattern for SCell is used to fill the control channel and PDSCH.

Note 2: The applicability of requirements for different CA configurations and bandwidth combination sets is defined in 8.1.2.3.

8.2.2.8 Intra-band contiguous carrier aggregation with minimum channel spacing

The requirements in this section verify the ability of an UE supporting intraband contiguous carrier aggregation with minimum channel spacing to demodulate the signal transmitted by the PCell and SCell(s). Throughput is measured on each cell. The minimum channel spacing of intra-band contiguous carrier aggregation refers to the possible minimum channel spacing as any multiple of 300 kHz less than the nominal channel spacing defined in 5.7.1A.

8.2.2.8.1 Minimum Requirement

For CA the requirements are specified in Table 8.2.2.8.1-2, with the addition of the parameters in Table 8.2.2.8.1-1 and the downlink physical channel setup according to Annex C.3.2.

Table 8.2.2.8.1-1: Test Parameters for CA

Parameter		Unit	Test 1-2
Downlink power allocation	$ ho_{\scriptscriptstyle A}$	dB	0
	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)
	σ	dB	0
$N_{\it oc}$ at antenna port		dBm/15kHz	-98
Symbols for unused PRBs			OCNG (Note 2)
Modulation			64QAM
ACK/NACK feedback mode			PUCCH format 1b with channel selection for Test 1; PUCCH format 3 for Test 2
PDSCH transmission mode			1

Note 1: $P_B = 0$

Note 2: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.

Note 3: The same PDSCH transmission mode is applied to each component carrier.

Table 8.2.2.8.1-2: Minimum performance (FRC) for intra-band CA with minimum channel spacing

Test Bandwidth		Reference	OCNG	Propagation	Correlation	Reference value		UE
number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	2x20MHz	R.9 TDD	OP.1 TDD (Note 1)	EVA5	1x2 Low	70	17.16	≥5
		R.9 TDD	OP.1 TDD (Note 1)			70	17.16	
2	3x20MHz	R.9 TDD	OP.1 TDD (Note 1)	EVA5	1x2 Low	70	17.16	≥5
		R.9 TDD	OP.1 TDD (Note 1)			70	17.16	
		R.9 TDD	OP.1 TDD (Note 1)			70	17.16	

Note 1: The OCNG pattern applies for each CC.

Note 2: The applicability and test rules of requirements for different CA configurations and bandwidth combination sets are defined in 8.1.2.3.

8.2.3 TDD FDD CA (Fixed Reference Channel)

The parameters specified in Table 8.2.3-1 are valid for all the TDD FDD CA tests unless otherwise stated.

Table 8.2.3-1: Common Test Parameters

Parameter		Unit	Value		
Uplink downlink configuration TDD CC only			1		
Special subframe configu 2) for TDD CC only	ration (Note		4		
Inter-TTI Distance			1		
Maximum number of HARQ processes per	FDD PCell	Processes	8 for FDD and TDD CCs		
component carrier	TDD PCell	Processes	11 for FDD CC; 7 for TDD CC		
Maximum number of HAF transmission	RQ		4		
Redundancy version cod	ing sequence		{0,1,2,3} for QPSK and 16QAM {0,0,1,2} for 64QAM		
Number of OFDM symbo PDCCH per component of		OFDM symbols	4 for 1.4 MHz bandwidth, 3 for 3 MHz and 5 MHz bandwidths, 2 for 10 MHz, 15 MHz and 20 MHz bandwidths		
Cyclic Prefix			Normal		
Cell_ID			0		
Cross carrier scheduling			Not configured		
ACK/NACK feedback mo	de		PUCCH format 3		
Downlink HARQ-ACK	FDD PCell		As specified in Clause 7.3.3 in TS36.213 [6]		
timing	TDD PCell		As specified in Clause 7.3.4 in TS36.213 [6]		
Note 1: as specified in Table 4.2-2 in TS 36.211 [4]. Note 2: as specified in Table 4.2-1 in TS 36.211 [4].					

The applicability of ther requirements are specified in Clause 8.1.2.3. The single carrier performance with different bandwidths for multiple CA configurations specified in Clause 8.2.3 cannot be applied for UE single carrier test.

8.2.3.1 Single-antenna port performance

The single-antenna performance in a given multi-path fading environments is determined by the SNR for which a certain relative information bit throughput of the reference measurement channels in Annex A.3.3 is achieved. The purpose of these tests is to verify the single-antenna performance with different channel models and MCS.

8.2.3.1.1 Minimum Requirement for FDD PCell

For TDD FDD CA with FDD PCell and 2DL CCs, the requirements are specified in Table 8.2.3.1.1-4 based on single carrier requirement specified in Table 8.2.3.1.1-2 and Table 8.2.3.1.1-3, with the addition of the parameters in Table 8.2.3.1.1-1 and the downlink physical channel setup according to Annex C.3.2.

For TDD FDD CA with FDD PCell and 3DL CCs, the requirements are specified in Table 8.2.3.1.1-5 based on single carrier requirement specified in Table 8.2.3.1.1-2 and Table 8.2.3.1.1-3, with the addition of the parameters in Table 8.2.3.1.1-1 and the downlink physical channel setup according to Annex C.3.2.

The test coverage for different number of component carriers is defined in 8.1.2.4.

Table 8.2.3.1.1-1: Test Parameters for CA

meter Unit Valu

Pai	rameter	Unit	Value
Downlink	$ ho_{\scriptscriptstyle A}$	dB	0
power	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)
allocation	σ	dB	0
N_{oc} at i	antenna port	dBm/15kHz	-98
Symbols for	Symbols for unused PRBs		OCNG (Note 2)
Мо	dulation		QPSK
PDSCH tra	nsmission mode		1

Note 1: $P_{p} = 0$.

Note 2: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.

Note 3: The same PDSCH transmission mode is applied to each component carrier.

Table 8.2.3.1.1-2: Single carrier performance with different bandwidths for multiple CA configurations for FDD PCell and SCell (FRC)

Band- Reference		OCNG	Propagation	Correlation	Reference	value
width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)
1.4 MHz	R.4 FDD	OP.1 FDD	EVA5	1x2 Low	70	-1.3
3 MHz	R.42-1 FDD	OP.1 FDD	EVA5	1x2 Low	70	-1.1
5MHz	R.42-2 FDD	OP.1 FDD	EVA5	1x2 Low	70	-1.0
10MHz	R.2 FDD	OP.1 FDD	EVA5	1x2 Low	70	-1.7
15MHz	R.42-3 FDD	OP.1 FDD	EVA5	1x2 Low	70	-1.6
20MHz	R.42 FDD	OP.1 FDD	EVA5	1x2 Low	70	-1.7

Table 8.2.3.1.1-3: Single carrier performance with different bandwidths for multiple CA configurations for TDD SCell (FRC)

Band-	Band- Reference		Propagation	Correlation	Reference value	
width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)
1.4 MHz	R.4 TDD	OP.1 TDD	EVA5	1x2 Low	70	-0.6
3 MHz	R.42-1 TDD	OP.1 TDD	EVA5	1x2 Low	70	-0.8
5MHz	R.42-2 TDD	OP.1 TDD	EVA5	1x2 Low	70	-1.2
10MHz	R.2 TDD	OP.1 TDD	EVA5	1x2 Low	70	-1.6
15MHz	R.42-3 TDD	OP.1 TDD	EVA5	1x2 Low	70	-1.4
20MHz	R.42 TDD	OP.1 TDD	EVA5	1x2 Low	70	-1.4

Table 8.2.3.1.1-4: Minimum performance for multiple CA configurations with 2DL CCs (FRC)

Test number	CA Bandwidth combination (MHz)		bination	Minimum performance requirement	UE Category	
	Total FDD CC TDD CC		TDD CC			
1	2x20	20	20			
2	20+10	10	20	20 As defined in Table 8.2.3.1.1-2 and Table 8.2.3.1.1-3 per CC		
3	20+15	20+15 15 20 A		As defined in Table 8.2.3.1.1-2 and Table 8.2.3.1.1-3 per CC	≥5	
Note 1:	The applical	oility of requi	rements for d	lifferent CA configurations and bandwidth combination sets is def	ined in	
	8.1.2.3B.					
Note 2:	2: 30usec timing difference between PCell and any SCell is applied in inter-band CA case, where PCell can be					
	assigned or	any FDD C	C.			

Table 8.2.3.1.1-5: Minimum performance for multiple CA configurations with 3DL CCs (FRC)

Test number	CA Bandwidth combination (MHz)		bination	Minimum performance requirement	UE Category			
	Total FDD CC TDD CC		TDD CC					
1	3x20	3x20 20 2x20 As defined in Table 8.2.3.1.1-2 and Table 8.2.3.1.1-3 per CC						
2	20+20+15	15	2x20	As defined in Table 8.2.3.1.1-2 and Table 8.2.3.1.1-3 per CC	≥5			
3	20+20+10	10	2x20	As defined in Table 8.2.3.1.1-2 and Table 8.2.3.1.1-3 per CC	≥5			
Note 1:								
Note 2:	30usec timir assigned on	•		cell and any SCell is applied in inter-band CA case, where PCell of	can be			

8.2.3.1.2 Minimum Requirement for TDD PCell

For TDD FDD CA with TDD PCell and 2DL CCs, the requirements are specified in Table 8.2.3.1.2-4 based on single carrier requirement specified in Table 8.2.3.1.2-2 and Table 8.2.3.1.2-3, with the addition of the parameters in Table 8.2.3.1.2-1 and the downlink physical channel setup according to Annex C.3.2.

For TDD FDD CA with TDD PCell with 3DL CCs, the requirements are specified in Table 8.2.3.1.2-5 based on single carrier requirement specified in Table 8.2.3.1.2-2 and Table 8.2.3.1.2-3, with the addition of the parameters in Table 8.2.3.1.2-1 and the downlink physical channel setup according to Annex C.3.2.

The test coverage for different number of component carriers is defined in 8.1.2.4.

Table 8.2.3.1.2-1: Test Parameters for CA

Par	ameter	Unit	Value
Downlink	$ ho_{\scriptscriptstyle A}$	dB	0
power	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)
allocation	σ	dB	0
N_{oc} at a	antenna port	dBm/15kHz	-98
Symbols fo	r unused PRBs		OCNG (Note 2)
Modulation			QPSK
PDSCH tran	nsmission mode		1

Note 1: $P_{R} = 0$.

Note 2: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs

shall be uncorrelated pseudo random data, which is QPSK modulated.

Note 3: The same PDSCH transmission mode is applied to each component carrier.

Table 8.2.3.1.2-2: Single carrier performance with different bandwidths for multiple CA configurations for FDD SCell (FRC)

Band-	Reference	Reference OCNG	Propagation	Correlation	Reference	value
width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)
1.4 MHz	R.4 FDD	OP.1 FDD	EVA5	1x2 Low	70	-1.3
3 MHz	R.42-1 FDD	OP.1 FDD	EVA5	1x2 Low	70	-1.1
5MHz	R.42-2 FDD	OP.1 FDD	EVA5	1x2 Low	70	-1.0
10MHz	R.2 FDD	OP.1 FDD	EVA5	1x2 Low	70	-1.7
15MHz	R.42-3 FDD	OP.1 FDD	EVA5	1x2 Low	70	-1.6
20MHz	R.42 FDD	OP.1 FDD	EVA5	1x2 Low	70	-1.7

Table 8.2.3.1.2-3: Single carrier performance with different bandwidths for multiple CA configurations for TDD PCell and SCell (FRC)

Band-	Reference	OCNG	Propagation	Correlation	Reference	value
width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)
1.4 MHz	R.4 TDD	OP.1 TDD	EVA5	1x2 Low	70	-0.6
3 MHz	R.42-1 TDD	OP.1 TDD	EVA5	1x2 Low	70	-0.8
5MHz	R.42-2 TDD	OP.1 TDD	EVA5	1x2 Low	70	-1.2
10MHz	R.2 TDD	OP.1 TDD	EVA5	1x2 Low	70	-1.6
15MHz	R.42-3 TDD	OP.1 TDD	EVA5	1x2 Low	70	-1.4
20MHz	R 42 TDD	OP 1 TDD	FVA5	1x2 Low	70	-1 4

Table 8.2.3.1.2-4: Minimum performance for multiple CA configurations with 2DL CCs (FRC)

Test			dth (MHz)	Minimum performance requirement	UE
number			TDD CC		Category
1	2x20	2x20 20 As defined in Table 8.2.3.1.2-2 and Table 8.2.3.1.2-3 per CC			≥5
2	20+10	10	0 20 As defined in Table 8.2.3.1.2-2 and Table 8.2.3.1.2-3 per CC		≥5
3	20+15	15	20	As defined in Table 8.2.3.1.2-2 and Table 8.2.3.1.2-3 per CC	≥5
Note 1:	The applical	oility of requi	rements for d	lifferent CA configurations and bandwidth combination sets is def	fined in
	8.1.2.3B				
Note 2:	30usec timir assigned on	•		ell and any SCell is applied in inter-band CA case, where PCell of	can be

Table 8.2.3.1.2-5: Minimum performance for multiple CA configurations with 3DL CCs (FRC)

Test	33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3			Minimum performance requirement	UE	
number	Total FDD CC TDD CC		TDD CC		Category	
1	3x20	20	2x20	As defined in Table 8.2.3.1.2-2 and Table 8.2.3.1.2-3 per CC	≥5	
2	20+20+15	15	2x20	As defined in Table 8.2.3.1.2-2 and Table 8.2.3.1.2-3 per CC	≥5	
3	20+20+10	10	2x20	As defined in Table 8.2.3.1.2-2 and Table 8.2.3.1.2-3 per CC	≥5	
Note 1:	The applical	bility of requi	rements for d	lifferent CA configurations and bandwidth combination sets is def	fined in	
	8.1.2.3B.					
Note 2:	2: 30usec timing difference between PCell and any SCell is applied in inter-band CA case, where PCell can be					
	assigned or	any TDD C	C.			

8.2.3.2 Open-loop spatial multiplexing performance 2Tx Antenna port

8.2.3.2.1 Minimum Requirement for FDD PCell

For TDD FDD CA with FDD PCell and 2DL CCs, the requirements are specified in Table 8.2.3.2.1-4 based on single carrier requirement specified in Table 8.2.3.2.1-2 and Table 8.2.3.2.1-3, with the addition of the parameters in Table 8.2.3.2.1-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of large delay CDD with 2 transmitter antennas.

For TDD FDD CA with FDD PCell and 3DL CCs, the requirements are specified in Table 8.2.3.2.1-5 based on single carrier requirement specified in Table 8.2.3.2.1-2 and Table 8.2.3.2.1-3, with the addition of the parameters in Table 8.2.3.2.1-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of large delay CDD with 2 transmitter antennas.

The test coverage for different number of component carriers is defined in 8.1.2.4.

Table 8.2.3.2.1-1: Test Parameters for Large Delay CDD (FRC) for CA

Parameter		Unit	Value
Downlink power allocation	$ ho_{\scriptscriptstyle A}$	dB	-3
	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
	σ	dB	0
$N_{\it oc}$ at antenna	port	dBm/15kHz	-98
PDSCH transmission mode			3

Note 1: $P_B = 1$.

Note 2: The same PDSCH transmission mode is applied to each component carrier.

Table 8.2.3.2.1-2: Single carrier performance with different bandwidths for multiple CA configurations for FDD PCell and SCell (FRC)

Band-	Reference	OCNG	Propagation	Correlation	Reference	value
width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)
1.4 MHz	R.11-5 FDD	OP.1 FDD	EVA70	2x2 Low	70	13.6
3 MHz	R.11-6 FDD	OP.1 FDD	EVA70	2x2 Low	70	12.3
5MHz	R.11-2 FDD	OP.1 FDD	EVA70	2x2 Low	70	12.3
10MHz	R.11 FDD	OP.1 FDD	EVA70	2x2 Low	70	12.9
15MHz	R.11-7 FDD	OP.1 FDD	EVA70	2x2 Low	70	12.8
20MHz	R.30 FDD	OP.1 FDD	EVA70	2x2 Low	70	12.9

Table 8.2.3.2.1-3: Single carrier performance with different bandwidths for multiple CA configurations for TDD SCell (FRC)

Band-	Reference	OCNG	Propagation	Correlation	Reference	value
width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)
1.4 MHz	R.11-5 TDD	OP.1 TDD	EVA70	2x2 Low	70	13.2
3 MHz	R.11-6 TDD	OP.1 TDD	EVA70	2x2 Low	70	12.8
5MHz	R.11-7 TDD	OP.1 TDD	EVA70	2x2 Low	70	12.6
10MHz	R.11-8 TDD	OP.1 TDD	EVA70	2x2 Low	70	12.8
15MHz	R.11-9 TDD	OP.1 TDD	EVA70	2x2 Low	70	12.9
20MHz	R.30-1 TDD	OP.1 TDD	EVA70	2x2 Low	70	13.0

Table 8.2.3.2.1-4: Minimum performance for multiple CA configurations with 2DL CCs (FRC)

Test Aggregated Bandwidth (MHz)		tth (MHz)	Minimum performance requirement	UE	
number	Total	FDD CC	TDD CC		Category
1	2x20	20	20	As defined in Table 8.2.3.2.1-2 and Table 8.2.3.2.1-3 per CC	≥5
2	20+10	10	20	As defined in Table 8.2.3.2.1-2 and Table 8.2.3.2.1-3 per CC	≥5
3	20+15	15	20	As defined in Table 8.2.3.2.1-2 and Table 8.2.3.2.1-3 per CC	≥5
Note 1:	The applica 8.1.2.3B	bility of requi	rements for o	different CA configurations and bandwidth combination sets is def	ined in

Table 8.2.3.2.1-5: Minimum performance for multiple CA configurations with 3DL CCs (FRC)

Test	Test Aggregated Bandwidth (MHz) Total FDD CC TDD CC		dth (MHz)	Minimum performance requirement	UE		
number			TDD CC		Category		
1	3x20	20	2x20	As defined in Table 8.2.3.2.1-2 and Table 8.2.3.2.1-3 per CC	≥5		
2	20+20+15	15	2x20	As defined in Table 8.2.3.2.1-2 and Table 8.2.3.2.1-3 per CC	≥5		
3	20+20+10	10	2x20	As defined in Table 8.2.3.2.1-2 and Table 8.2.3.2.1-3 per CC	≥5		
Note 1:	Note 1: The applicability of requirements for different CA configurations and bandwidth combination sets is defined in						
	8.1.2.3B.			·			

8.2.3.2.1A Soft buffer management test for FDD PCell

For TDD-FDD CA, the requirements are specified in Table 8.2.3.2.1A-2, with the addition of the parameters in Table 8.2.3.2.1A-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the UE performance with proper instantaneous buffer implementation for FDD as PCell.

Table 8.2.3.2.1A-1: Test Parameters for CA

	Parameter		Value	е
			FDD Carrier	TDD Carrier
Downlink	$ ho_{\scriptscriptstyle A}$	dB	-3	-3
power	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3 (Note 1)
allocation	σ	dB	0	0
N_{oc} at antenna port		dBm/15kHz	-98	-98
PDSCH	PDSCH transmission mode		3	3

Note 1: $P_R = 1$.

Note 2: The same PDSCH transmission mode is applied to each component carrier.

Table 8.2.3.2.1A-2: Minimum performance (FRC) for CA

						Correl			
Test num.	Banc	l-width	Reference channel	OCNG pattern	Propa- gation condi-tion	ation matrix and anten na config	Fraction of maximum throughput (%)	SNR (dB)	UE cate gory
1	PCell	20MHz	R.30 FDD	OP.1 FDD (Note 1)	E\/\\\ 70	2x2	70	13.2	3
'	SCell	20MHz	R.30-2 TDD	OP.1 TDD (Note 1)	EVA70	Low	70	13.2	3
2	PCell	20MHz	R.35-1 FDD	OP.1 FDD (Note 1)	EVA70	2x2	70	16.3	4
2	SCell	20MHz	R.35-1 TDD	OP.1 TDD (Note 1)	EVA/U	Low	70	16.3	7
3	PCell	10MHz	R.35-3 FDD	OP.1 FDD (Note 1)	EVA70	2x2 Low	70	16.0	3
3	SCell	20MHz	R.30-2 TDD	OP.1 TDD (Note 1)	EVATO		70	13.2	
4	PCell	10MHz	R.35-3 FDD	OP.1 FDD (Note 1)	EVA70	2x2	70	16.0	4
4	SCell	20MHz	R.35-1 TDD	OP.1 TDD (Note 1)	EVATO	Low	70	16.3	
5	PCell	15MHz	R.35-2 FDD	OP.1 FDD (Note 1)	EVA70	2x2	70	16.0	3
J	SCell	20MHz	R.30-2 TDD	OP.1 TDD (Note 1)	EVATO	Low	70	13.2	ى
6	PCell	Cell 15MHz R.35-2 FDD	OP.1 FDD (Note 1)	E)/A70	2x2	70	16.0	4	
U	SCell	20MHz	R.35-1 TDD	OP.1 TDD (Note 1)	EVA70	Low	70	16.3	4

Note 1: The OCNG pattern applies for each CC.

Note 2: The applicability and test rules of requirements for different CA configurations and bandwidth combination sets are defined in 8.1.2.3B.

8.2.3.2.2 Minimum Requirement for TDD PCell

For TDD FDD CA with TDD PCell and 2DL CCs, the requirements are specified in Table 8.2.3.2.2-4 based on single carrier requirement specified in Table 8.2.3.2.2-2 and Table 8.2.3.2.2-3, with the addition of the parameters in Table

8.2.3.2.2-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of large delay CDD with 2 transmitter antennas.

For TDD FDD CA with TDD PCell and 3DL CCs, the requirements are specified in Table 8.2.3.2.2-5 based on single carrier requirement specified in Table 8.2.3.2.2-2 and Table 8.2.3.2.2-3, with the addition of the parameters in Table 8.2.3.2.2-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of large delay CDD with 2 transmitter antennas.

The test coverage for different number of component carriers is defined in 8.1.2.4.

Table 8.2.3.2.2-1: Test Parameters for Large Delay CDD (FRC) for CA

Parameter		Unit	Value
Davinlink navian	$ ho_{\scriptscriptstyle A}$	dB	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
	σ	dB	0
$N_{\it oc}$ at antenna	port	dBm/15kHz	-98
PDSCH transmission	on mode		3

Note 1: $P_R = 1$.

Note 2: The same PDSCH transmission mode is applied to each component carrier.

Table 8.2.3.2.2-2: Single carrier performance with different bandwidths for multiple CA configurations for FDD SCell (FRC)

Band-	Reference	OCNG	Propagation	Correlation	Reference	value
width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)
1.4 MHz	R.11-5 FDD	OP.1 FDD	EVA70	2x2 Low	70	13.6
3 MHz	R.11-6 FDD	OP.1 FDD	EVA70	2x2 Low	70	12.3
5MHz	R.11-2 FDD	OP.1 FDD	EVA70	2x2 Low	70	12.3
10MHz	R.11 FDD	OP.1 FDD	EVA70	2x2 Low	70	12.9
15MHz	R.11-7 FDD	OP.1 FDD	EVA70	2x2 Low	70	12.8
20MHz	R.30 FDD	OP.1 FDD	EVA70	2x2 Low	70	12.9

Table 8.2.3.2.2-3: Single carrier performance with different bandwidths for multiple CA configurations for TDD PCell and SCell (FRC)

Band-	Reference	OCNG	Propagation	Correlation	Reference	value
width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)
1.4 MHz	R.11-5 TDD	OP.1 TDD	EVA70	2x2 Low	70	13.2
3 MHz	R.11-6 TDD	OP.1 TDD	EVA70	2x2 Low	70	12.8
5MHz	R.11-7 TDD	OP.1 TDD	EVA70	2x2 Low	70	12.6
10MHz	R.11-8 TDD	OP.1 TDD	EVA70	2x2 Low	70	12.8
15MHz	R.11-9 TDD	OP.1 TDD	EVA70	2x2 Low	70	12.9
20MHz	R.30-1 TDD	OP.1 TDD	EVA70	2x2 Low	70	13.0

Table 8.2.3.2.2-4: Minimum performance for multiple CA configurations with 2DL CCs (FRC)

Test	number		dth (MHz)	Minimum performance requirement	UE		
number Total FDD CC TDD CC		TDD CC		Category			
1	2x20	20	20	As defined in Table 8.2.3.2.2-2 and Table 8.2.3.2.2-3 per CC	≥5		
2	20+10	10	20	As defined in Table 8.2.3.2.2-2 and Table 8.2.3.2.2-3 per CC	≥5		
3	20+15	15	20	As defined in Table 8.2.3.2.2-2 and Table 8.2.3.2.2-3 per CC	≥5		
Note 1: The applicability of requirements for different CA configurations and bandwidth combination sets is defined in							
	8.1.2.3B						

Table 8.2.3.2.2-5: Minimum performance for multiple CA configurations with 3DL CCs (FRC)

Test	Aggregat	ed Bandwid	th (MHz)	Minimum performance requirement	UE		
number	Total FDD CC TE		TDD CC		Category		
1	3x20	20	2x20	As defined in Table 8.2.3.2.2-2 and Table 8.2.3.2.2-3 per CC	≥5		
2	20+20+15	15	2x20	As defined in Table 8.2.3.2.2-2 and Table 8.2.3.2.2-3 per CC	≥5		
3	20+20+10	10	2x20	As defined in Table 8.2.3.2.2-2 and Table 8.2.3.2.2-3 per CC	≥5		
Note 1:	te 1: The applicability of requirements for different CA configurations and bandwidth combination sets is defined in						
	8.1.2.3B.						

8.2.3.2.2A Soft buffer management test for TDD PCell

For TDD-FDD CA, the requirements are specified in Table 8.2.3.2.2A-2, with the addition of the parameters in Table 8.2.3.2.2A-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the UE performance with proper instantaneous buffer implementation for TDD as PCell.

Table 8.2.3.2.2A-1: Test Parameters for CA

	Parameter	Unit	Value		
			FDD Carrier	TDD Carrier	
Downlink	$ ho_{\scriptscriptstyle A}$	dB	-3	-3	
power	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3 (Note 1)	
allocation	σ	dB	0	0	
N_{oc} at antenna port		dBm/15kHz	-98	-98	
PDSCH	transmission mode		3	3	

Note 1: $P_{B} = 1$.

Note 2: The same PDSCH transmission mode is applied to each component carrier.

Table 8.2.3.2.2A-2: Minimum performance (FRC) for CA

						Correl	Reference v	alue	
Test num.	Band	l-width	Reference channel	OCNG pattern	Propa- gation condi-tion	ation matrix and anten na config	Fraction of maximum throughput (%)	SNR (dB)	UE cate gory
1	PCell	20MHz	R.30-2 TDD	OP.1 TDD (Note 1))	EVA70	2x2	70	13.2	3
'	SCell	20MHz	R.30 FDD	OP.1 FDD (Note 1	EVA/U	Low	70	13.2	3
	PCell	20MHz	R.35-1 TDD	OP.1 TDD (Note 1)	E\/A70	2x2	70	16.2	4
2	SCell	20MHz	R.35-1 FDD	OP.1 FDD (Note 1)	EVA70	Low	70	16.2	4
2	PCell	20MHz	R.30-2 TDD	OP.1 TDD (Note 1)	EVA70	2x2	70	13.2	3
3	SCell	10MHz	R.35-3 FDD	OP.1 FDD (Note 1)		Low	70	16.0	
4	PCell	20MHz	R.35-1 TDD	OP.1 TDD (Note 1)	E)/A70	2x2	70	16.2	_
4	SCell	10MHz	R.35-3 FDD	OP.1 FDD (Note 1)	EVA70	Low	70	15.8	4
_	PCell	20MHz	R.30-2 TDD	OP.1 TDD (Note 1)	E)/A70	2x2	70	13.2	
5	SCell	15MHz	R.35-2 FDD	OP.1 FDD (Note 1)	EVA70	Low	70	15.8	3
	PCell	20MHz	R.35-1 TDD	OP.1 TDD (Note 1)	E)/A70	2x2	70	16.2	
6	SCell	15MHz	R.35-2 FDD	OP.1 FDD (Note 1)	EVA70	Low	70	15.8	4

Note 1: The OCNG pattern applies for each CC.

Note 2: The applicability and test rules of requirements for different CA configurations and bandwidth combination sets are defined in 8.1.2.3B.

8.2.3.3 Closed-loop spatial multiplexing performance 4Tx Antenna Port

8.2.3.3.1 Minimum Requirement for FDD PCell

For TDD FDD CA with FDD PCell and 2DL CCs, the requirements are specified in Table 8.2.3.3.1-4 based on single carrier requirement specified in Table 8.2.3.3.1-2 and Table 8.2.3.3.1-3, with the addition of the parameters in Table 8.2.3.3.1-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-two performance with wideband and frequency selective precoding.

For TDD FDD CA with FDD PCell and 3DL CCs, the requirements are specified in Table 8.2.3.3.1-5 based on single carrier requirement specified in Table 8.2.3.3.1-2 and Table 8.2.3.3.1-3, with the addition of the parameters in Table 8.2.3.3.1-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-two performance with wideband and frequency selective precoding.

The test coverage for different number of component carriers is defined in 8.1.2.4.

Table 8.2.3.3.1-1: Test Parameters for Multi-Layer Spatial Multiplexing (FRC) for CA

Paramete	er	Unit	Value			
Danielink name	$ ho_{\scriptscriptstyle A}$	dB	-6			
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-6 (Note 1)			
	σ	dB	3			
$N_{\it oc}$ at antenn	a port	dBm/15kHz	-98			
Precoding gran	nularity	PRB	Wideband precoding for 1.4MHz, 4 for 3MHz and 5MHz CCs, 6 for 10MHz CCs, 8 for 15MHz and 20MHz CCs			
DMI dolov (Noto 2)	FDD CC	ms	8			
PMI delay (Note 2)	TDD CC	ms	10 or 11			
Departing interval	FDD CC	ms	1			
Reporting interval	TDD CC	ms	1 or 4 (Note 3)			
Reporting m	ode		PUSCH 1-2			
CodeBookSubsetF bitmap	Restriction		00000000000000000000000000000000000000			
CSI request field	(Note 3)		'10'			
PDSCH transmiss	ion mode		4			
NI 1 4 D 1						

Note 1: $P_B = 1$.

Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this

reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Note 3: Multiple CC-s under test are configured as the 1st set of serving cells by higher

lavers.

Note 4: ACK/NACK bits are transmitted using PUSCH with PUCCH format 3.

Note 5: The same PDSCH transmission mode is applied to each component carrier.

Table 8.2.3.3.1-2: Single carrier performance with different bandwidths for multiple CA configurations for FDD PCell and SCell (FRC)

Band-	Reference	OCNG	Propagation	Correlation	Reference	value
width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)
1.4 MHz	R.14-4 FDD	OP.1 FDD	EVA5	4x2 Low	70	10.4
3 MHz	R.14-5 FDD	OP.1 FDD	EVA5	4x2 Low	70	9.5
5MHz	R.14-6 FDD	OP.1 FDD	EVA5	4x2 Low	70	9.5
10MHz	R.14 FDD	OP.1 FDD	EVA5	4x2 Low	70	10.1
15MHz	R.14-7 FDD	OP.1 FDD	EVA5	4x2 Low	70	10.1
20MHz	R.14-3 FDD	OP.1 FDD	EVA5	4x2 Low	70	10.3

Table 8.2.3.3.1-3: Single carrier performance with different bandwidths for multiple CA configurations for TDD SCell (FRC)

Band-	Band- Reference		Propagation	Correlation	Reference	value
width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)
1.4 MHz	R.43-1 TDD	OP.1 TDD	EVA5	4x2 Low	70	11.0
3 MHz	R.43-2 TDD	OP.1 TDD	EVA5	4x2 Low	70	9.8
5MHz	R.43-3 TDD	OP.1 TDD	EVA5	4x2 Low	70	10.0
10MHz	R.43-4 TDD	OP.1 TDD	EVA5	4x2 Low	70	10.5
15MHz	R.43-5 TDD	OP.1 TDD	EVA5	4x2 Low	70	10.6
20MHz	R.43 TDD	OP.1 TDD	EVA5	4x2 Low	70	10.7

Table 8.2.3.3.1-4: Minimum performance for multiple CA configurations with 2DL CCs (FRC)

Test	Aggregated Bandwidth (MHz)		tth (MHz)	Minimum performance requirement	UE	
number	Total	FDD CC	TDD CC		Category	
1	2x20	20	20	As defined in Table 8.2.3.3.1-2 and Table 8.2.3.3.1-3 per CC	≥5	
2	20+10	10	20	As defined in Table 8.2.3.3.1-2 and Table 8.2.3.3.1-3 per CC	≥5	
3	20+15	15	20	As defined in Table 8.2.3.3.1-2 and Table 8.2.3.3.1-3 per CC	≥5	
Note 1: The applicability of requirements for different CA configurations and bandwidth combination sets is defined in						
	8.1.2.3B	•		-		

Table 8.2.3.3.1-5: Minimum performance for multiple CA configurations with 3DL CCs (FRC)

Test	Aggregated Bandwidth (MHz)		dth (MHz)	Minimum performance requirement	UE		
number	Total	FDD CC	TDD CC		Category		
1	3x20	20	2x20	As defined in Table 8.2.3.3.1-2 and Table 8.2.3.3.1-3 per CC	≥5		
2	20+20+15	15	2x20	As defined in Table 8.2.3.3.1-2 and Table 8.2.3.3.1-3 per CC	≥5		
3	20+20+10	10	2x20	As defined in Table 8.2.3.3.1-2 and Table 8.2.3.3.1-3 per CC	≥5		
Note 1:	The applicability of requirements for different CA configurations and bandwidth combination sets is defined in						
	8.1.2.3B						

8.2.3.3.2 Minimum Requirement for TDD PCell

For TDD FDD CA with TDD PCell and 2DL CCs, the requirements are specified in Table 8.2.3.3.2-4 based on single carrier requirement specified in Table 8.2.3.3.2-2 and Table 8.2.3.3.2-3, with the addition of the parameters in Table 8.2.3.3.2-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-two performance with wideband and frequency selective precoding.

For TDD FDD CA with TDD PCell and 3DL CCs, the requirements are specified in Table 8.2.3.3.2-5 based on single carrier requirement specified in Table 8.2.3.3.2-2 and Table 8.2.3.3.2-3, with the addition of the parameters in Table 8.2.3.3.2-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-two performance with wideband and frequency selective precoding.

The test coverage for different number of component carriers is defined in 8.1.2.4.

Table 8.2.3.3.2-1: Test Parameters for Multi-Layer Spatial Multiplexing (FRC) for CA

Paramete	r	Unit	Value
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	-6
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-6 (Note 1)
	σ	dB	3
$N_{\it oc}$ at antenn	a port	dBm/15kHz	-98
Precoding gran	ularity	PRB	Widelband pre-coding for 1.4MHz, 4 for 3MHz and 5MHz CCs, 6 for 10MHz CCs, 8 for 15MHz and 20MHz CCs
DMI dolov (Noto 2)	FDD CC	ms	8
PMI delay (Note 2)	TDD CC	ms	10 or 11
Reporting interval	FDD CC	ms	1
Reporting interval	TDD CC	ms	1 or 4 (Note 3)
Reporting m	ode		PUSCH 1-2
CodeBookSubsetF bitmap	Restriction		00000000000000000000000000000000000000
CSI request field	(Note 3)		'10'
PDSCH transmiss	ion mode		TM4

Note 1: $P_B = 1$.

Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Note 3: Multiple CC-s under test are configured as the 1st set of serving cells by higher

layers.

Note 4: ACK/NACK bits are transmitted using PUSCH with PUCCH format 3.

Note 5: The same PDSCH transmission mode is applied to each component carrier.

Table 8.2.3.3.2-2: Single carrier performance with different bandwidths for multiple CA configurations for FDD SCell (FRC)

Band-	Reference	OCNG	Propagation	Correlation	Reference	value
width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)
1.4 MHz	R.14-4 FDD	OP.1 FDD	EVA5	4x2 Low	70	10.4
3 MHz	R.14-5 FDD	OP.1 FDD	EVA5	4x2 Low	70	9.5
5MHz	R.14-6 FDD	OP.1 FDD	EVA5	4x2 Low	70	9.5
10MHz	R.14 FDD	OP.1 FDD	EVA5	4x2 Low	70	10.1
15MHz	R.14-7 FDD	OP.1 FDD	EVA5	4x2 Low	70	10.1
20MHz	R.14-3 FDD	OP.1 FDD	EVA5	4x2 Low	70	10.3

Table 8.2.3.3.2-3: Single carrier performance with different bandwidths for multiple CA configurations for TDD PCell and SCell (FRC)

Band-	Band- Reference		Propagation	Correlation	Reference	value
width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)
1.4 MHz	R.43-1 TDD	OP.1 TDD	EVA5	4x2 Low	70	11.0
3 MHz	R.43-2 TDD	OP.1 TDD	EVA5	4x2 Low	70	9.8
5MHz	R.43-3 TDD	OP.1 TDD	EVA5	4x2 Low	70	10.0
10MHz	R.43-4 TDD	OP.1 TDD	EVA5	4x2 Low	70	10.5
15MHz	R.43-5 TDD	OP.1 TDD	EVA5	4x2 Low	70	10.6
20MHz	R.43 TDD	OP.1 TDD	EVA5	4x2 Low	70	10.7

Table 8.2.3.3.2-4: Minimum performance for multiple CA configurations with 2DL CCs (FRC)

Test	Aggregated Bandwidth (MHz)		dth (MHz)	Minimum performance requirement	UE		
number	Total	FDD CC	TDD CC		Category		
1	2x20	20	20	As defined in Table 8.2.3.3.2-2 and Table 8.2.3.3.2-3 per CC	≥5		
2	20+10	10	20	As defined in Table 8.2.3.3.2-2 and Table 8.2.3.3.2-3 per CC	≥5		
3	20+15	15	20	As defined in Table 8.2.3.3.2-2 and Table 8.2.3.3.2-3 per CC	≥5		
Note 1:	Note 1: The applicability of requirements for different CA configurations and bandwidth combination sets is defined in						
	8.1.2.3B						

Table 8.2.3.3.2-5: Minimum performance for multiple CA configurations with 3DL CCs (FRC)

Test	Aggregated Bandwidth (MHz)		tth (MHz)	Minimum performance requirement	UE		
number	Total	FDD CC	TDD CC		Category		
1	3x20	20	2x20	As defined in Table 8.2.3.3.2-2 and Table 8.2.3.3.2-3 per CC	≥5		
2	20+20+15	15	2x20	As defined in Table 8.2.3.3.2-2 and Table 8.2.3.3.2-3 per CC	≥5		
3	20+20+10	10	2x20	As defined in Table 8.2.3.3.2-2 and Table 8.2.3.3.2-3 per CC	≥5		
Note 1:	lote 1: The applicability of requirements for different CA configurations and bandwidth combination sets is defined in						
	8.1.2.3B.	•		-			

8.3 Demodulation of PDSCH (User-Specific Reference Symbols)

8.3.1 FDD

The parameters specified in Table 8.3.1-1 are valid for FDD unless otherwise stated.

Table 8.3.1-1: Common Test Parameters for User-specific Reference Symbols

Parameter	Unit	Value	
Cyclic prefix		Normal	
Cell ID		0	
Inter-TTI Distance		1	
Number of HARQ processes	Processes	8	
Maximum number of HARQ transmission		4	
Redundancy version coding sequence		{0,1,2,3} for QPSK and 16QAM {0,0,1,2} for 64QAM and 256QAM	
Number of OFDM symbols for PDCCH	OFDM symbols	2	
Precoder update granularity		Frequency domain: 1 PRG for Transmission modes 9 and 10 Time domain: 1 ms	
Note 1: Void. Note 2: Void.			

8.3.1.1 Single-layer Spatial Multiplexing

For single-layer transmission on antenna ports 7 or 8 upon detection of a PDCCH with DCI format 2C, the requirements are specified in Table 8.3.1.1-1 and 8.3.1.1-2, with the addition of the parameters in Table 8.3.1.1-3 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify rank-1 performance on one of the antenna ports 7 or 8 with and without a simultaneous transmission on the other antenna port, and to verify rate matching with multiple CSI reference symbol configurations with non-zero and zero transmission power.

Table 8.3.1.1-1: Test Parameters for Testing CDM-multiplexed DM RS (single layer) with multiple CSI-RS configurations

parameter		Unit	Test 1	Test 2	Test 3
Downlink nower $ ho_{\scriptscriptstyle A}$		dB	0	0	0
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0 (Note 1)	0 (Note 1)
	σ	dB	-3	-3	-3
Beamforming mo	del		Annex B.4.1	Annex B.4.1	Annex B.4.1
Cell-specific refere signals	ence			Antenna ports 0,1	
CSI reference sign	nals		Antenna ports 15,,18	Antenna ports 15,,18	Antenna ports 15,, 18 5 / 2
CSI-RS periodicity and subframe offset T _{CSI-RS} / Δ _{CSI-RS}		Subframes	5/2	5/2	5/2
CSI reference sig configuration	nal		0	3	0
Zero-power CSI-RS configuration /csi-rs / ZeroPowerCSI-RS bitmap		Subframes / bitmap	3 / 0001000000000000	3 / 00010000000000000	3 / 00010000000000000
$N_{\scriptscriptstyle oc}$ at antenna p	ort	dBm/15kHz	-98	-98	-98
Symbols for unused PRBs			OCNG (Note 4)	OCNG (Note 4)	OCNG (Note 4)
Number of allocated resource blocks (Note 2)		PRB	50	50	50
Simultaneous transmission			No	Yes (Note 3, 5)	No
PDSCH transmiss mode	sion		9	9	9

Note 1: $P_R = 1$.

Note 2: The modulation symbols of the signal under test are mapped onto antenna port 7 or 8.

Note 3: Modulation symbols of an interference signal is mapped onto the antenna port (7 or 8) not used for the input signal under test.

Note 4: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.

Note 5: The two UEs' scrambling identities $n_{\rm SCID}$ are set to 0 for CDM-multiplexed DM RS with interfering simultaneous transmission test cases.

Table 8.3.1.1-2: Minimum performance for CDM-multiplexed DM RS without simultaneous transmission (FRC) with multiple CSI-RS configurations

Test	Bandwidt Reference OCNG Propagation		Correlation	Reference	value	UE	UE DL		
numbe	h and MCS	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughpu t (%)	SNR (dB)	Category	Cat- egory
1	10 MHz QPSK 1/3	R.43 FDD	OP.1 FDD	EVA5	2x2 Low	70	-1	≥1	≥6
3	10MHz 256QAM	R. 66 FDD	OP.1 FDD	EPA5	2x2 Low	70	24.3	11-12	≥11

Table 8.3.1.1-3: Minimum performance for CDM-multiplexed DM RS with interfering simultaneous transmission (FRC) with multiple CSI-RS configurations

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference v	alue	UE
number	and MCS	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
2	10 MHz 64QAM 1/2	R.50 FDD	OP.1 FDD	EPA5	2x2 Low	70	21.9	≥2
Note 1:	The reference	channel applie	s to both the	input signal unde	er test and the inte	rfering signal.		

8.3.1.1A Enhanced Performance Requirement Type A – Single-layer Spatial Multiplexing with TM9 interference model

The requirements are specified in Table 8.3.1.1A-2, with the addition of the parameters in Table 8.3.1.1A-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify closed loop rank one performance on one of the antenna ports 7 or 8 without a simultaneous transmission on the other antenna port in the serving cell when the PDSCH transmission in the serving cell is interfered by PDSCH of one dominant interfering cell applying transmission mode 9 interference model defined in clause B.5.4. In 8.3.1.1A-1, Cell 1 is the serving cell, and Cell 2 is the interfering cell. The downlink physical channel setup is according to Annex C.3.2 for each of Cell 1 and Cell 2, respectively.

Table 8.3.1.1A-1: Test Parameters for Testing CDM-multiplexed DM RS (single layer) with TM9 interference model

paramete	r	Unit	Cell 1	Cell 2
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	0	0
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0
	σ	dB	-3	-3
Cell-specific referer	nce signals		Antenna ports 0,1	Antenna ports 0,1
CSI reference s	signals		Antenna ports 15,,18	N/A
CSI-RS periodic subframe offset T_{CSI}	-RS / Δ CSI-RS	Subframes	5/2	N/A
CSI reference configuration			0	N/A
$N_{\it oc}$ at antenn	a port	dBm/15kH z	-98	N/A
DIP (Note	2)	dB	N/A	-1.73
BWChanne	l	MHz	10	10
Cyclic Pref	ïx		Normal	Normal
Cell Id			0	126
Number of contro symbols	I OFDM		2	2
PDSCH transmiss	ion mode		9	N/A
Beamforming ı	model		As specified in clause B.4.3 (Note 4, 5)	N/A
Interference n	nodel		N/A	As specified in clause B.5.4
Probability of occurrence of	Rank 1		N/A	70
transmission rank in interfering cells	Rank 2		N/A	30
Precoder update g	ranularity	PRB	50	6
PMI delay (No	ote 5)	Ms	8	N/A
Reporting into	erval	Ms	5	N/A
Reporting m	ode		PUCCH 1-1	N/A
CodeBookSubsetF bitmap	Restriction		0000000000000000 00000000000000000 00000	N/A
Symbols for unus	ed PRBs		OCNG (Note 6)	N/A
Simultaneous tran	smission		No simultaneous transmission on the other antenna port in (7 or 8) not used for the input signal under test	N/A
Physical channel reporting			PUSCH(Note 8)	N/A
cqi-pmi-Configura			5	N/A

Note 1: $P_B = 1$

Note 2: The respective received power spectral density of each interfering cell relative to N_{oc} ' is defined by its associated DIP value as specified in clause B.5.1.

Note 3: The modulation symbols of the signal under test in Cell 1 are mapped onto antenna port 7 or 8.

Note 4:	The precoder in clause B.4.3 follows UE recommended PMI.
Note 5:	If the UE reports in an available uplink reporting instance at subrame SF#n based
	on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI
	cannot be applied at the eNB downlink before SF#(n+4).
Note 6:	These physical resource blocks are assigned to an arbitrary number of virtual UEs
	with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs
	shall be uncorrelated pseudo random data, which is QPSK modulated.
Note 7:	All cells are time-synchronous.
Note 8:	To avoid collisions between CQI reports and HARQ-ACK it is necessary to report
	both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in
	downlink SF#4 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on
	PUSCH in uplink subframe SF#8 and #3.

Table 8.3.1.1A-2: Enhanced Performance Requirement Type A, CDM-multiplexed DM RS with TM9 interference model

Test Number	Referenc e		NG tern		gation itions	Correlatio n Matrix	Reference V	UE Categor	
	Channel	Cell 1	Cell 2	Cell 1	Cell 2	and Antenna Configurat ion (Note 3)	Fraction of Maximum Throughput (%)	SINR (dB) (Note 2)	у
1	R.48 FDD	OP.1 FDD	N/A	EVA5	EVA5	4x2 Low	70	-1.1	≥1

Note 1: The propagation conditions for Cell 1 and Cell 2 are statistically independent.

Note 2: SINR corresponds to \hat{E}_s/N_{ac} of Cell 1 as defined in clause 8.1.1.

Note 3: Correlation matrix and antenna configuration parameters apply for each of Cell 1 and Cell 2.

8.3.1.1B Single-layer Spatial Multiplexing (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)

The requirements are specified in Table 8.3.1.1B -2, with the addition of parameters in Table 8.3.1.1B-1. The purpose is to verify the performance of the antenna ports 7 or 8 without a simultaneous transmission on the other antenna port in the serving cell if the PDSCH transmission in the serving cell takes place in subframes that overlap with ABS [9] of the aggressor cell with CRS assistance information. In Table 8.3.1.1B-1, Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] includes Cell 2 and Cell 3.

Table 8.3.1.1B-1: Test parameters of TM9-Single-Layer (2 CSI-RS ports) – Non-MBSFN ABS

Parameter		Unit	Cell 1	Cell 2	Cell 3	
	$ ho_{\scriptscriptstyle A}$	dB	0	-3	-3	
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	-3 (Note 1)	-3 (Note 1)	
	σ	dB	-3	N/A	N/A	
	N_{oc1}	dBm/15kHz	-98 (Note 2)	N/A	N/A	
N_{oc} at antenna port	N_{oc2}	dBm/15kHz	-98 (Note 3)	N/A	N/A	
	N_{oc3}	dBm/15kHz	-93 (Note 4)	N/A	N/A	
\hat{E}_s/N_{oc2}		dB	Reference Value in Table 8.3.1.1B-2	12	10	
BW _{Channel}		MHz	10	10	10	
Subframe Configu	ration		Non-MBSFN	Non-MBSFN	Non-MBSFN	
Time Offset betwee	n Cells	μs	N/A	3	-1	
Frequency shift between	een Cells	Hz	N/A	300	-100	
Cell Id			0	1	126	
Cell-specific referenc	e signals		A	ntenna ports 0,1		
CSI reference sig			Antenna ports 15,16	N/A	N/A	
CSI-RS periodicity subframe offset $T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$	et s	Subframes	5/2	N/A	N/A	
CSI reference signoration			8	N/A	N/A	
Zero-power CSI- configuration I _{CSI-RS} / ZeroPowe bitmap		Subframes / bitmap	3 / 00100000000000 00	N/A	N/A	
ABS pattern (No	te 5)		N/A	11000000 11000000 11000000 11000000 11000000	1100000 1100000 1100000 1100000 1100000	
RLM/RRM Measur Subframe Pattern (I			10000000 10000000 10000000 10000000 1000000	N/A	N/A	
CSI Subframe Sets	C _{CSI,0}		11000000 11000000 11000000 11000000 11000000	N/A	N/A	
(Note7)	Ccsi,1		00111111 00111111 00111111 00111111 00111111	N/A	N/A	
Number of control symbols	OFDM		2	Note 8	Note 8	
PDSCH transmissio	n mode		TM9-1layer	Note 9	Note 9	
Precoding granul			Frequency domain: 1 PRG Time domain: 1 ms	N/A	N/A	
Beamforming mo	odel		Annex B.4.1	N/A	N/A	
Cyclic prefix			Normal	Normal	Normal	

Reference Value

UE

Note 1:	$P_{\rm B}=1$.
Note 2:	This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.
Note 3:	This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.
Note 4:	This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS
Note 5:	ABS pattern as defined in [9]. PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.
Note 6:	Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
Note 7:	As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].
Note 8:	The number of control OFDM symbols is not available for ABS and is 2 for the subframe indicated by "0" of ABS pattern.
Note 9:	Downlink physical channel setup in Cell 2 and Cell 3 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.
Note 10:	
Note 11:	The number of the CRS ports in Cell 1, Cell 2 and Cell 3 is the same.
Note 12:	SIB-1 will not be transmitted in Cell 2 and Cell 3 in this test.
Note 13:	The modulation symbols of the signal under test are mapped onto antenna port 7 or 8.

Table 8.3.1.1B-2: Minimum Performance of TM9-Single-Layer (2 CSI-RS ports) – Non-MBSFN ABS

Propagation

Correlation

OCNG Pattern

SNR corresponds to \hat{E}_s/N_{ac2} of cell 1.

Test

Note 3:

Reference

Number	Channel				Cond	litions (N	lote1)	Matrix and			Cate	
		Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	Antenna Configurati on (Note 2)	Fraction of Maximum Throughput (%)	SNR (dB) (Note 3)	gory	
1	R.51 FDD	OP.1 FDD	OP.1 FDD	OP.1 FDD		EVA5		2x2 Low	70	7.8	≥2	
Note 1: Note 2:		The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent. The correlation matrix and antenna configuration apply for Cell 1, Cell 2 and Cell 3.										

8.3.1.1C Enhanced Performance Requirement Type B – Single-layer Spatial Multiplexing with TM9 interference model

The requirements are specified in Table 8.3.1.1C-2, with the addition of the parameters in Table 8.3.1.1C-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify closed loop rank one performance on one of the antenna ports 7, 8 without a simultaneous transmission on the other antenna port in the serving cell when the PDSCH transmission in the serving cell is interfered by PDSCH of two interfering cells applying transmission mode 9 interference model defined in clause B.6.4. In 8.3.1.1C-1, Cell 1 is the serving cell, and Cell 2, 3 are interfering cells. The downlink physical channel setup is according to Annex C.3.2 for each of Cell 1, Cell 2 and Cell 3, respectively.

Table 8.3.1.1C-1: Test Parameters for Testing CDM-multiplexed DM RS (Single-layer) with TM9 interference model

Para	meter		Unit	Cell 1	Cell 2	Cell 3
		$ ho_{\scriptscriptstyle A}$	dB	0	0	0
Downlink power alloc	ation	$ ho_{\scriptscriptstyle B}$	dB	0 (NOTE 1)	0	0
		σ	dB	-3	-3	-3
Cell-specific reference	e signa	ıls		Antenna ports 0,1	Antenna ports 0,1	Antenna ports 0,1
N_{oc} at antenna port			dBm/15kHz		-98	
\hat{E}_s/N_{oc}			dB	N/A	13.91	3.34
BW _{Channel}			MHz	10	10	10
Cyclic Prefix				Normal	Normal	Normal
Cell Id				0	1	6
Number of control OF	FDM sy	mbols		3	3	3
CFI indicated in PCF	ICH			3	3	3
PDSCH transmission	mode			9	9	9
Interference model				N/A	As specified in clause B.6.4	As specified in clause B.6.4
Precoding				Random wideband precoding per TTI	As specified in clause B.6.4	As specified in clause B.6.4
CSI reference signals	3			Antenna ports 15, 16, 17, 18	Antenna ports 15, 16	Antenna ports 15, 16
CSI-RS periodicity ar Tcsi-Rs / ∆csi-Rs	nd subf	rame offset	Subframes	10 / 1	10 / 1	10 / 1
CSI reference signal	configu	ıration		5	6	7
Zero-power CSI-RS of Icsi-RS /ZeroPowerCS	configu	ration	Subframes / bitmap	6 / 10000000000 00000	6 / 01000000000 0000	6 / 00100000000 00000
Time offset to cell 1			us	N/A	2	3
Frequency offset to cell 1			Hz	N/A	200	300
MBSFN				Not configured	Not configured	Not configured
r12				N/A	{dB-6, dB-3, dB0}	{dB-6, dB-3, dB0}
	transm -r12	issionModeList		N/A	{2,3,4,8,9}	{2,3,4,8,9}
NOTE 1: D = 1						

NOTE 1: $P_B = 1$

NOTE 2: Cell 1 is the serving cell. Cell 2, 3 are the interfering cells.

NOTE 3: CSI-RS configurations are according to [4] subclause 6.10.5.2.

NOTE 4: NeighCellsInfo-r12 is described in subclause 6.3.2 of [7].

Table 8.3.1.1C-2: Minimum Performance for Enhanced Performance Requirement Type B, CDM-multiplexed DM RS with TM9 interference model

Test Num	Referenc e	ОС	NG Patt	tern	Propagation Conditions			Correlation Matrix and Antenna Configuration			Reference	UE Categ	
ber	Channel	Cell	Cell	Cell	Cell	Cell	Cell	Cell 1	Cell 2	Cell 3	Fraction of	SNR (dB)	ory
		1	2	3	1	2	3				Maximum Throughput (%)	(NOTE 2)	
1	R.69 FDD	OP. 1 FD D	N/A	N/A	EP A5	EP A5	EP A5	4x2 Low	2x2 Low	2x2 Low	85	18.5	≥1

NOTE 1: The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.

NOTE 2: SNR corresponds to \hat{E}_s/N_{oc} of Cell 1 as defined in clause 8.1.1.

8.3.1.1D Enhanced Performance Requirement Type B – Single-layer Spatial Multiplexing with CRS interference model

The requirements are specified in Table 8.3.1.1D-2, with the addition of the parameters in Table 8.3.1.1D-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify closed loop rank one performance on one of the antenna ports 7 or 8 without a simultaneous transmission on the other antenna port in the serving cell when the PDSCH transmission in the serving cell is interfered by the CRS of the interfering cell, applying the CRS interference model defined in clause B.6.5. In 8.3.1.1D-1, Cell 1 is the serving cell, and Cell 2, 3 are interfering cells. The downlink physical channel setup is according to Annex C.3.2 for each of Cell 1, Cell 2 and Cell 3, respectively.

Table 8.3.1.1D-1: Test Parameters for Testing CDM-multiplexed DM RS (Single-layer) with CRS interference model

Param	eter	Unit	Cell 1	Cell 2	Cell 3	
	$ ho_{\scriptscriptstyle A}$	dB	0	0	0	
Downlink power allocat	ion $ ho_{\scriptscriptstyle B}$	dB	0 (NOTE 1)	0	0	
	σ	dB	-3	-3	-3	
Cell-specific reference	signals		Antenna ports 0,1	Antenna ports 0,1	Antenna ports 0,1	
N_{oc} at antenna port		dBm/15kHz		-98		
\hat{E}_s/N_{oc}		dB	N/A	13.91	3.34	
BW _{Channel}		MHz	10	10	10	
Cyclic Prefix			Normal	Normal Normal		
Cell Id			0 1		6	
Number of control OFD	M symbols		3	3	3	
CFI indicated in PCFIC	Н		3	3	3	
PDSCH transmission m	node		8			
Interference model			N/A	As specified in clause B.6.5	As specified in clause B.6.5	
Precoding			Random wideband precoding per TTI	N/A	N/A	
Time offset to cell 1		us	N/A	2	3	
Frequency offset to cell	1	Hz	N/A	200	300	
MBSFN			Not configured	Not configured	Not configured	
NeighCellsInfo- r12 p-aList-r12			N/A	{dB-6, dB-3, dB0}	{dB-6, dB-3, dB0}	
, ,	ansmissionMod 12	deList	N/A	{2,3,4,8,9}	{2,3,4,8,9}	

NOTE 1: $P_B = 1$

NOTE 2: Cell 1 is the serving cell. Cell 2, 3 are the interfering cells.

NOTE 3: NeighCellsInfo-r12 is described in subclause 6.3.2 of [7].

Table 8.3.1.1D-2: Minimum Performance for Enhanced Performance Requirement Type B, CDM-multiplexed DM RS with CRS interference model

Test Number	Reference Channel	OCNG Pattern				opagat onditio		Correlation Matrix and	Reference	Value	UE Cate
		Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	Antenna Configurati on (NOTE 3)	Fraction of Maximum Throughput (%)	SNR (dB) (NOTE 2)	gory
1	R.71 FDD	OP. 1 FD D	N/A	N/A	EP A5	EP A5	EP A5	2x2 Low	85	14.3	≥2

NOTE 1: The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.

NOTE 2: SNR corresponds to \hat{E}_{s}/N_{oc} of Cell 1 as defined in clause 8.1.1.

NOTE 3: Correlation matrix and antenna configuration parameters apply for each of Cell 1, Cell 2 and Cell 3.

8.3.1.1E Enhanced Performance Requirement Type B – Single-layer Spatial Multiplexing with TM3 interference model

The requirements are specified in Table 8.3.1.1E-2, with the addition of the parameters in Table 8.3.1.1E-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify closed loop rank one performance on one of the antenna ports 7 or 8 without a simultaneous transmission on the other antenna port in the serving cell when the PDSCH transmission in the serving cell is interfered by PDSCH of two interfering cells applying transmission mode 3 interference model defined in clause B.6.2. In 8.3.1.1E-1, Cell 1 is the serving cell, and Cell 2, 3 are interfering cells. The downlink physical channel setup is according to Annex C.3.2 for each of Cell 1, Cell 2 and Cell 3, respectively.

Table 8.3.1.1E-1: Test Parameters for Testing CDM-multiplexed DM RS (Single-layer) with TM3 interference model

Pai	rameter	Unit	Cell 1	Cell 2	Cell 3
	$ ho_{\scriptscriptstyle A}$	dB	0	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (NOTE 1)	-3	-3
	σ	dB	-3	0	0
Cell-specific referer	nce signals		Antenna ports 0,1	Antenna ports 0,1	Antenna ports 0,1
N_{oc} at antenna port		dBm/15kHz		-98	
\hat{E}_s/N_{oc}		dB	N/A	3.28	0.74
BW _{Channel}		MHz	10	10	10
Cyclic Prefix			Normal	Normal	Normal
Cell Id			0	1	6
Number of control (OFDM symbols		3	3	3
CFI indicated in PCFICH			3	Random from {1,2,3}	Random from {1,2,3}
PDSCH transmission	on mode		8	3	3
Interference model			N/A	As specified in clause B.6.2	As specified in clause B.6.2
Precoding			Random wideband precoding per TTI	As specified in clause B.6.2	As specified in clause B.6.2
Time offset to cell 1		us	N/A	2	3
Frequency offset to	cell 1	Hz	N/A	200	300
MBSFN			Not configured	Not configured	Not configured
NeighCellsInfo- r12	p-aList-r12		N/A	{dB-6, dB-3, dB0}	{dB-6, dB-3, dB0}
(NOTE 4)	transmissionModeList -r12		N/A	{2,3,4,8,9}	{2,3,4,8,9}
NOTE 4. D 1					

NOTE 1: $P_R = 1$

NOTE 2: Cell 1 is the serving cell. Cell 2, 3 are the interfering cells.

NOTE 3: CSI-RS configurations are according to [4] subclause 6.10.5.2.

NOTE 4: NeighCellsInfo-r12 is described in subclause 6.3.2 of [7].

Table 8.3.1.1E-2: Minimum Performance for Enhanced Performance Requirement Type B, CDM-multiplexed DM RS with TM3 interference model

Test Number	Reference Channel	OCI	OCNG Pattern		Propagation Conditions		Correlation Matrix and	Reference Value		UE Cate	
		Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	Antenna Configurati on (NOTE 3)	Fraction of Maximum Throughput (%)	SNR (dB) (NOTE 2)	gory
1	R.70 FDD	OP. 1 FD D	N/A	N/A	EP A5	EP A5	EP A5	2x2 Low	85	11.5	≥1

NOTE 1: The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.

NOTE 2: SNR corresponds to \hat{E}_s/N_{ac} of Cell 1 as defined in clause 8.1.1.

NOTE 3: Correlation matrix and antenna configuration parameters apply for each of Cell 1, Cell 2 and Cell 3.

8.3.1.1F Enhanced Performance Requirement Type B – Single-layer Spatial Multiplexing with TM10 serving cell configuration and TM9 interference model

The requirements are specified in Table 8.3.1.1F-2, with the addition of the parameters in Table 8.3.1.1F-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify closed loop rank one performance on one of the antenna ports 7 or 8 without a simultaneous transmission on the other antenna port in the

serving cell when the PDSCH transmission configured with TM10 in the serving cell is interfered by PDSCH of one dominant interfering cell applying transmission mode 9 interference model defined in clause B.6.3. The NAICS network assistance is provided when the serving cell TM10 is configured with QCL-type A and PCID based DM-RS scrambling. The neighbouring cell has transmission mode TM9 and NeighCellsInfo-r12 for interfering cell indicates presence of TM9. In 8.3.1.1F-1, Cell 1 is the serving cell, and Cell 2, 3 are interfering cells. The downlink physical channel setup is according to Annex C.3.2 for each of Cell 1, Cell 2 and Cell 3, respectively.

Table 8.3.1.1F-1: Test Parameters for Testing CDM-multiplexed DM RS (single layer) with TM10 serving cell configuration and TM9 interference model

Paramet	er	Unit	Cell 1	Cell 2	Cell 3
	$ ho_{\scriptscriptstyle A}$	dB	0	0	0
Downlink power allocatio	n $ ho_{_B}$	dB	0 (Note 1)	0	0
	σ	dB	-3	-3	-3
Cell-specific reference si	gnals		Antenna ports 0,1	Antenna ports 0,1	Antenna ports 0,1
$N_{\it oc}$ at antenna port		dBm/15kHz		-98	
\widehat{E}_s/N_{oc}		dB	N/A	13.91	3.34
BWchannel		MHz	10	10	10
Cyclic Prefix			Normal	Normal	Normal
Cell Id			0	1	6
Number of control OFDM	symbols		3	3	3
CFI indicated in PCFICH		3	3	3	
PDSCH transmission mo		10	9	9	
Interference model	Interference model			As specified in clause B.6.4	As specified in clause B.6.4
Precoding	Precoding		Random wideband precoding per TTI	As specified in clause B.6.4	As specified in clause B.6.4
CSI reference signals			Antenna ports 15, 16, 17, 18	Antenna ports 15, 16	Antenna ports 15, 16
CSI-RS periodicity and s $T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$	ubframe offset	Subframes	10 / 1	10 / 1	10 / 1
CSI reference signal con	figuration		5	6	7
Zero-power CSI-RS confi I _{CSI-RS} /ZeroPowerCSI-RS	Subframes / bitmap	6 / 1000000000 00000	6 / 010000000000 0000	6 / 00100000000 00000	
Time offset to cell 1		us	N/A	2	3
Frequency offset to cell 1		Hz	N/A	200	300
MBSFN			Not configured	Not configured	Not configured
NeighCellsInfo- p-al	_ist-r12		N/A	{dB-6, dB-3, dB0}	{dB-6, dB-3, dB0}
(Note 4) tran	smissionModeList		N/A	{2,3,4,8,9}	{2,3,4,8,9}

Note 1: $P_{R} = 1$

Note 2: Cell 1 is the serving cell. Cell 2, 3 are the interfering cells.

Note 3: CSI-RS configurations are according to [4] subclause 6.10.5.2.

Note 4: NeighCellsInfo-r12 is described in subclause 6.3.2 of [7].

Table 8.3.1.1F-2: Minimum Performance for Enhanced Performance Requirement Type B, CDM-multiplexed DM RS with TM10 serving cell configuration and TM9 interference model

Test Number	Referenc e Channel	OCNG Pattern		Propagation Conditions		Correlation Matrix and Antenna Configuration		Reference Value		UE Cate gory			
		Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	Fraction of Maximum Throughput (%)	SNR (dB) (Note 2)	
1	R.69 FDD	OP. 1 FD D	N/A	N/A	EP A5	EP A5	EP A5	4x2 Low	2x2 Low	2x2 Low	85	18.2	≥1

Note 1: The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.

Note 2: SINR corresponds to \hat{E}_s/N_{oc} of Cell 1 as defined in clause 8.1.1.

8.3.1.2 Dual-Layer Spatial Multiplexing

For dual-layer transmission on antenna ports 7 and 8 upon detection of a PDCCH with DCI format 2C, the requirements are specified in Table 8.3.1.2-2, with the addition of the parameters in Table 8.3.1.2-1 where Cell 1 is the serving cell and Cell 2 is the interfering cell. The downlink physical channel setup is set according to Annex C.3.2. The purpose of these tests is to verify the rank-2 performance for full RB allocation, to verify rate matching with multiple CSI reference symbol configurations with non-zero and zero transmission power, and to verify that the UE correctly estimate SNR.

Table 8.3.1.2-1: Test Parameters for Testing CDM-multiplexed DM RS (dual layer) with multiple CSI-RS configurations

Don	ameter	Unit	Test 1		
Fai	ameter	Onit	Cell 1	Cell 2	
	$ ho_{\scriptscriptstyle A}$	dB	0	0	
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0	
	σ	dB	-3	-3	
	PDSCH_RA	dB	4	N/A	
	PDSCH_RB	dB	4	N/A	

Cell-specific reference signals		Antenna ports 0 and 1	Antenna ports 0 and 1
Cell ID		0	126
CSI reference signals		Antenna ports 15,16	NA
Beamforming model		Annex B.4.2	NA
CSI-RS periodicity and subframe offset $T_{\text{CSI-RS}}$ /	Subframes	5/2	NA
CSI reference signal configuration		8	NA
Zero-power CSI-RS configuration Icsi-RS / ZeroPowerCSI- RS bitmap	Subframes / bitmap	3 / 00100000000000000	NA
$N_{\it oc}$ at antenna port	dBm/15kHz	-98	-98
\hat{E}_s/N_{oc}		Reference Value in Table 8.3.1.2-2	7.25dB
Symbols for unused PRBs		OCNG (Note 2)	NA
Number of allocated resource blocks (Note 2)	PRB	50	NA
Simultaneous transmission		No	NA
PDSCH transmission mode		9	Blanked

Note 1: $P_{p} = 1$

Note 2: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.

Table 8.3.1.2-2: Minimum performance for CDM-multiplexed DM RS (FRC) with multiple CSI-RS configurations

Test number	Bandwidth and MCS	Reference Channel		NG tern	Propagation Condition		Correlation Matrix and	Reference value		UE Categ
			Cell1	Cell 2	Cell 1	Cell 2	Antenna Configurati on	Fraction of Maximum Throughput (%)	SNR (dB)	ory
1	10 MHz 16QAM 1/2	R.51 FDD	OP.1 FDD	N/A	ETU5	ETU5	2x2 Low	70	14.2	≥2

Note 1: The propagation conditions for Cell 1 and Cell 2 are statistically independent.

Note 2: Correlation matrix and antenna configuration parameters apply for each of Cell 1 and Cell 2.

Note 3: SNR corresponds to \hat{E}_s/N_{oc} of Cell 1.

8.3.1.2A Enhanced Performance Requirement Type C - Dual-Layer Spatial Multiplexing

The requirements are specified in Table 8.3.1.2A-2, with the addition of the parameters in Table 8.3.1.2A-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of this test is to verify rank two performance for full RB allocation upon antenna ports 7 and 8.

Table 8.3.1.2A-1: Test Parameters for Testing CDM-multiplexed DM RS (dual layer) with multiple CSI-RS configurations

parameter		Unit	Test 1
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	0
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)
	σ	dB	-3
Cell-specific reference signals	ence		Antenna ports 0 and 1
CSI reference sig	nals		Antenna ports 15,16
Beamforming mo	del		Annex B.4.2
CSI-RS periodicity subframe offse T _{CSI-RS} / Δ _{CSI-RS}	et	Subframes	5/2
CSI reference sig configuration	ınal		8
Zero-power CSI- configuration IcsI-RS / ZeroPowerCSI- bitmap		Subframes / bitmap	3 / 00100000000000000
$N_{\it oc}$ at antenna p	oort	dBm/15kHz	-98
Symbols for unus PRBs	sed		OCNG (Note 2)
	Number of allocated resource blocks (Note 2)		50
Simultaneous transmission			No
PDSCH transmission mode			9
Note 1: D = 1			

Note 1: $P_B = 1$

Note 2: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per

virtual UE; the data transmitted over the OCNG
PDSCHs shall be uncorrelated pseudo random

data, which is QPSK modulated.

Table 8.3.1.2A-2: Enhanced Performance Requirement Type C for CDM-multiplexed DM RS (FRC) with multiple CSI-RS configurations

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference value		UE	
number	and MCS	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category	
1	10 MHz 16QAM 1/2	R.51 FDD	OP.1 FDD	EPA5	2x2 Medium	70	17.4	≥2	

8.3.1.3 Performance requirements for DCI format 2D and non Quasi Co-located Antenna Ports

8.3.1.3.1 Minimum requirement with Same Cell ID (with single NZP CSI-RS resource)

The requirements are specified in Table 8.3.1.3.1-3, with the additional parameters in Table 8.3.1.3.1-1 and Table 8.3.1.3.1-2. The purpose of this test is to verify the UE capability of supporting non quasi-colocated antenna ports when the UE receives DCI format 2D in a scenario where the two transmission point share the same Cell ID. In particular the test verifies that the UE, configured with quasi co-location type B, performs correct tracking and compensation of the timing difference between two transmission points, channel parameters estimation and rate matching according to the

'PDSCH RE Mapping and Quasi-Co-Location Indicator' (PQI) signalling defined in [6], configured according to Table 8.3.1.3.1-2. In Tables 8.3.1.3.1-1 and 8.3.1.3.1-2, transmission point 1 (TP 1) is the serving cell and transmission point 2 (TP 2) transmits PDSCH. The downlink physical channel setup for TP 1 is according to Table C.3.4-1 and for TP 2 according to Table C.3.4-2.

Table 8.3.1.3.1-1: Test Parameters for quasi co-location type B: same Cell ID

Paramete	r	Unit	TP 1	TP 2
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	0	0
allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0
	σ	dB	-3	-3
Cell-specific referer	nce signals		Antenna ports 0,1	(Note 2)
CSI-RS 0 antenr	na ports		NA	Port {15,16}
qcl-CSI-RS-Configl CSI-RS 0 period subframe offset Tcsi	icity and I-RS / ∆csi-RS	Subframes	NA	5/2
qcl-CSI-RS-Configl CSI-RS 0 config	uration		NA	8
csi-RS-ConfigZPId- power CSI-RS 0 co Icsi-RS / ZeroPower CSI-R	nfiguration		NA	2/ 0000010000000000
$N_{\it oc}$ at antenna port		dBm/15kH z	-98	-98
\widehat{E}_s/N_{oc}	\widehat{E}_s/N_{oc}		Reference point in Table 8.3.1.3.1-3	Reference point in Table 8.3.1.3.1-3
BW _{Channel}		MHz	10	10
Cyclic Pref	ix		Normal	Normal
Cell Id			0	0
Number of contro symbols	ol OFDM		2	2
PDSCH transmiss	ion mode		Blanked	10
Number of alloca	ted PRB	PRB	NA	50
qcl-Operation, PD Mapping and Qu Location Indic	ıasi-Co-		Type B, '00'	
Time offset between	een TPs	μs	NA	Reference point in Table 8.3.1.3.1-3
Frequency error be	tween TPs	Hz	NA	0
Beamforming i	model		NA	Port 7 as specified in clause B.4.1
Symbols for unus	ed PRBs		NA	OCNG (Note 3)

Note 1: $P_{B} = 1$

Noet 2: REs for antenna ports 0 and 1 have zero transmission power.

Note 3: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.

Table 8.3.1.3.1-2: Configurations of PQI and DL transmission hypothesis for each PQI set

F	PQI set Parameters index		s in each PQI set	hypothesi	smission is for each Set
		NZP CSI-RS Index (For quasi	ZP CSI-RS configuration	TP 1	TP 2

	co-location)			
PQI set 0	CSI-RS 0	ZP CSI-RS 0	Blanked	PDSCH

Table 8.3.1.3.1-3: Minimum performance for quasi co-location type B: same Cell ID

Test Number	Reference Channel		iCN tern	Time offset between	Propag Cond (No	itions	Correlation Matrix and Antenna	Reference Value		UE Category
		TP 1	TP 2	TPs (μs)	TP 1	TP 2	Configuration (Note 2)	Fraction of Maximum Throughput (%)	SNR (dB) (Note 3)	
1	R.52 FDD	NA	OP.1 FDD	2	EPA5	EPA5	2x2 Low	70	12.1	≥2
2	R.52 FDD	NA	OP.1 FDD	-0.5	EPA5	EPA5	2x2 Low	70	12.6	≥2

Note 1: The propagation conditions for TP 1 and TP 2 are statistically independent.

Note 2: The correlation matrix and antenna configuration apply for TP 1 and TP 2.

Note 3: SNR corresponds to \hat{E}_s / N_{oc} of TP 2 as defined in clause 8.1.1.

8.3.1.3.2 Minimum requirements with Same Cell ID (with multiple NZP CSI-RS resources)

The requirements are specified in Table 8.3.1.3.2-3, with the additional parameters in Tables 8.3.1.3.2-1 and 8.3.1.3.2-2. The purpose of this test is to verify the UE capability of supporting non quasi-colocated antenna ports when the UE receives DCI format 2D in a scenario where the two transmission point share the same Cell ID. In particular the test verifies that the UE, configured with quasi co-location type B, performs correct tracking and compensation of the timing difference between two transmission points, channel parameters estimation and rate matching according to the 'PDSCH RE Mapping and Quasi-Co-Location Indicator' (PQI) signalling defined in [6]. In Tables 8.3.1.3.2-1 and 8.3.1.3.2-2, transmission point 1 (TP 1) is the serving cell transmitting PDCCH, synchronization signals and PBCH, and transmission point 2 (TP 2) has same Cell ID as TP 1. Multiple NZP CSI-RS resources and ZP CSI-RS resources are configured. In each sub-frame, DL PDSCH transmission is dynamically switched between 2 TPs with multiple PDSCH RE Mapping and Quasi-Co-Location Indicator configuration (PQI). Configurations of PDSCH RE Mapping and Quasi-Co-Location Indicator and downlink transmission hypothesis are defined in Table 8.3.1.3.2-2. The downlink physical channel setup for TP 1 is according to Table C.3.4-1 and for TP 2 according to Table C.3.4-2.

Table 8.3.1.3.2-1: Test Parameters for timing offset compensation with DPS transmission

paramete	r	Unit	TP 1	TP 2
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	0	0
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0
	σ	dB	-3	-3

Beamforming model		As specified in clause B.4.1	As specified in clause B.4.1
Cell-specific reference signals		Antenna ports 0,1	(Note 2)
CSI reference signals 0		Antenna ports {15,16}	N/A
CSI-RS 0 periodicity and subframe offset $T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$	Subframes	5/2	N/A
CSI reference signal 0 configuration		0	N/A
CSI reference signals 1		N/A	Antenna ports {15,16}
CSI-RS 1 periodicity and subframe offset $T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$	Subframes	N/A	5/2
CSI reference signal 1 configuration		N/A	8
Zero-power CSI-RS 0 configuration I _{CSI-RS} / ZeroPower CSI-RS bitmap	Subframes /bitmap	2/ 001000000000000000	N/A
Zero-power CSI-RS1 configuration /csi-Rs / ZeroPower CSI-RS bitmaps	Subframes /bitmap	N/A	2/ 00000100000000000
\widehat{E}_s/N_{oc}	dB	Reference Value in Table 8.3.1.3.2-3	Reference Value in Table 8.3.1.3.2-3
$N_{\it oc}$ at antenna port	dBm/15kH z	-98	-98
BWchannel	MHz	10	10
Cyclic Prefix		Normal	Normal
Cell Id		0	0
Number of control OFDM symbols		2	2
Timing offset between TPs		N/A	Reference Value in Table 8.3.1.3.2-3
Frequency offset between TPs	Hz	N/A	0
Number of allocated resource blocks	PRB	50	50
PDSCH transmission mode		10	10
Probability of occurrence of PDSCH transmission(Note 3)	%	30	70
Symbols for unused PRBs		OCNG (Note 4)	OCNG (Note 4)
•			

Note 1: $P_{R} = 1$

Note 2: REs for antenna ports 0 and 1 have zero transmission power.

Note 3: PDSCH transmission from TPs shall be randomly determined independently for each subframe. Probabilities of occurrence of PDSCH transmission from TPs are specified.

Note 4: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.

Note 3:

Table 8.3.1.3.2-2: Configurations of PQI and DL transmission hypothesis for each PQI set

PQI set index	Parameter	DL transmission hypothesis for each PQI Set		
	NZP CSI-RS Index (For quasi co-location)	ZP CSI-RS configuration	TP 1	TP 2
PQI set 0	CSI-RS 0	ZP CSI-RS 0	PDSCH	Blanked
PQI set 3	CSI-RS 1	Blanked	PDSCH	

Table 8.3.1.3.2-3: Performance Requirements for timing offset compensation with DPS transmission

Test Number	Timing offset(us)	Reference Channel		NG tern		gation litions	Correlation Matrix and	Reference Value				UE Category
			TP 1	TP 2	TP 1	TP 2	Antenna Configuration (Note 2)	Fraction of Maximum Throughput (%)	SNR (dB) (Note 3)			
1	2	R.53 FDD	OP.1 FDD	OP.1 FDD	EPA5	EPA5	2x2 Low	70	12.2	≥2		
2	-0.5	R.53 FDD	OP.1 FDD	OP.1 FDD	EPA5	EPA5	2x2 Low	70	12.5	≥2		
Note 1: Note 2:												

8.3.1.3.3 Minimum requirement with Different Cell ID and Colliding CRS (with single NZP CSI-RS resource)

SNR corresponds to \hat{E}_{s}/N_{oc} of both TP 1 and TP 2 as defined in clause 8.1.1.

The requirements are specified in Table 8.3.1.3.3-2, with the additional parameters in Table 8.3.1.3.3-1. The purpose of this test is to verify the UE capability of supporting non quasi-colocated antenna ports when the UE receives DCI format 2D in a scenario where the two transmission points have different Cell ID and colliding CRS. In particular the test verifies that the UE, configured with quasi co-location type B, performs correct tracking and compensation of the frequency difference between two transmission points, channel parameters estimation and rate matching behaviour according to the 'PDSCH RE Mapping and Quasi-Co-Location Indicator' signalling defined in [6]. In Table 8.3.1.3.3-1, transmission point 1 (TP 1) is serving cell transmitting PDCCH, synchronization signals and PBCH, and transmission point 2 (TP 2) transmits PDSCH with different Cell ID. The downlink physical channel setup for TP 1 is according to Table C.3.4-1 and for TP 2 according to Table C.3.4-2.

Table 8.3.1.3.3-1: Test Parameters for quasi co-location type B with different Cell ID and Colliding CRS

paramete	r	Unit	TP 1	TP 2
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	0	0
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0
	σ	dB	-3	-3

Beamforming model		N/A	As specified in clause B.4.2
Cell-specific reference signals		Antenna ports 0,1	Antenna ports 0,1
CSI reference signals 0		N/A	Antenna ports {15,16}
CSI-RS 0 periodicity and subframe offset $T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$	Subframes	N/A	5/2
CSI reference signal 0 configuration		N/A	0
Zero-power CSI-RS 0 configuration I _{CSI-RS} / ZeroPower CSI-RS bitmap	Subframes /bitmap	N/A	2/ 00100000000000000
\hat{E}_s/N_{oc}	dB	Reference point in Table 8.3.1.3.3-2 + 4dB	Reference Value in Table 8.3.1.3.3-2
$N_{\it oc}$ at antenna port	dBm/15kH z	-98	-98
BWChannel	MHz	10	10
Cyclic Prefix		Normal	Normal
Cell Id		0	126
Number of control OFDM symbols		1	2
Timing offset between TPs	us	N/A	0
Frequency offset between TPs	Hz	N/A	200
qcl-Operation, PDSCH RE Mapping and Quasi-Co- Location Indicator'		Туре	B, '00'
PDSCH transmission mode		Blank	10
Number of allocated resource block		N/A	50
Symbols for unused PRBs		N/A	OCNG(Note2)

Note 1: $P_B = 1$

These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs Note 2: shall be uncorrelated pseudo random data, which is QPSK modulated.

Table 8.3.1.3.3-2: Performance Requirements for quasi co-location type B with different Cell ID and **Colliding CRS**

Test Number	Reference Channel	OCNG Pattern		Conditions Ma		Correlation Reference Value Matrix and Antenna		Matrix and		Reference Value	
		TP 1	TP 2	TP 1	TP 2	Configuration (Note 2)	Fraction of Maximum Throughput (%)	SNR (dB) (Note 3)			
1	R.54 FDD	N/A	OP.1 FDD	EPA5	ETU5	2x2 Low	70	14.4	≥2		

Note 1:

The propagation conditions for TP.1 and TP.2 are statistically independent.

Correlation matrix and antenna configuration parameters apply for each of TP.1 and TP.2. Note 2:

SNR corresponds to \hat{E}_{s}/N_{oc} of TP.2 as defined in clause 8.1.1. Note 3:

8.3.2 TDD

The parameters specified in Table 8.3.2-1 are valid for TDD unless otherwise stated.

Table 8.3.2-1: Common Test Parameters for User-specific Reference Symbols

Parameter	Unit	Value
Uplink downlink configuration (Note 1)		1
Special subframe configuration (Note 2)		4
Cyclic prefix		Normal
Cell ID		0
Inter-TTI Distance		1
Number of HARQ processes	Processes	7
Maximum number of HARQ transmission		4
Redundancy version coding sequence		{0,1,2,3} for QPSK and 16QAM {0,0,1,2} for 64QAM and 256QAM
Number of OFDM symbols for PDCCH	OFDM symbols	2
Precoder update granularity		Frequency domain: 1 PRB for Transmission mode 8, 1 PRG for Transmission modes 9 and 10 Time domain: 1 ms
ACK/NACK feedback mode		Multiplexing
	Table 4.2-2 in TS 36 Table 4.2-1 in TS 36	

8.3.2.1 Single-layer Spatial Multiplexing

For single-layer transmission on antenna port 5, the requirements are specified in Table 8.3.2.1-2, with the addition of the parameters in Table 8.3.2.1-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the demodulation performance using user-specific reference signals with full RB or single RB allocation.

Table 8.3.2.1-1: Test Parameters for Testing DRS

Parameter		Unit	Test 1	Test 2	Test 3	Test 4		
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	0	0	0	0		
allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0 (Note 1)	0 (Note 1)	0 (Note 1)		
	σ	dB	0	0	0	0		
Cell-specific reference Antenna port 0								
Beamforming mo	del		Annex B.4.1					
$N_{\it oc}$ at antenna p	ort	dB/15kHz	-98	-98	-98	-98		
Symbols for unused	PRBs		OCNG (Note 2)	OCNG (Note 2)	OCNG (Note 2)	OCNG (Note 2)		
PDSCH transmission mode			7	7	7	7		

Note 1: $P_B = 0$.

Note 2: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.

Table 8.3.2.1-2: Minimum performance DRS (FRC)

Test	Bandwidth	Reference		Propagation	Correlation	Reference	value	UE
number	and MCS	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz QPSK 1/3	R.25 TDD	OP.1 TDD	EPA5	2x2 Low	70	-0.8	≥1
2	10 MHz 16QAM 1/2	R.26 TDD	OP.1 TDD	EPA5	2x2 Low	70	7.0	≥2
	5MHz 16QAM 1/2	R.26-1 TDD	OP.1 TDD	EPA5	2x2 Low	70	7.0	1
3	10 MHz 64QAM 3/4	R.27 TDD	OP.1 TDD	EPA5	2x2 Low	70	17.0	≥2
	10 MHz 64QAM 3/4	R.27-1 TDD	OP.1 TDD	EPA5	2x2 Low	70	17.0	1
4	10 MHz 16QAM 1/2	R.28 TDD	OP.1 TDD	EPA5	2x2 Low	30	1.7	≥1

For single-layer transmission on antenna ports 7 or 8 upon detection of a PDCCH with DCI format 2B, the requirements are specified in Table 8.3.2.1-4 and 8.3.2.1-5, with the addition of the parameters in Table 8.3.2.1-3 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify rank-1 performance on one of the antenna ports 7 or 8 with and without a simultaneous transmission on the other antenna port.

Table 8.3.2.1-3: Test Parameters for Testing CDM-multiplexed DM RS (single layer)

Parameter		Unit	Test 1	Test 2	Test 3	Test 4	Test 5		
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	0	0	0	0	0		
allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0 (Note 1)	0 (Note 1)	0 (Note 1)	0 (Note 1)		
	σ	dB	-3	-3	-3	-3	-3		
Cell-specific reference signals	е		Antenna port 0 and antenna port 1						
Beamforming mode			Annex B.4.1						
$N_{\scriptscriptstyle oc}$ at antenna port	t	dBm/15kHz	-98	-98	-98	-98	-98		
Symbols for unused PF	RBs		OCNG (Note 4)	OCNG (Note 4)	OCNG (Note 4)	OCNG (Note 4)	OCNG (Note 4)		
Simultaneous transmission			No	No	No	Yes (Note 3, 5)	Yes (Note 3, 5)		
PDSCH transmission m	ode		8	8	8	8	8		

Note 1: $P_R = 1$.

Note 2: The modulation symbols of the signal under test is mapped onto antenna port 7 or 8.

Note 3: Modulation symbols of an interference signal is mapped onto the antenna port (7 or 8) not used for the input signal under test.

Note 4: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.

Note 5: The two UEs' scrambling identities $n_{\rm SCID}$ are set to 0 for CDM-multiplexed DM RS with interfering simultaneous transmission test cases.

Table 8.3.2.1-4: Minimum performance for CDM-multiplexed DM RS without simultaneous transmission (FRC)

Test	Bandwidt	Reference	OCNG	Propagation	Correlation	Reference value		UE
number	h and MCS	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughpu t (%)	SNR (dB)	Category
1	10 MHz QPSK 1/3	R.31 TDD	OP.1 TDD	EVA5	2x2 Low	70	-1.0	≥1
2	10 MHz 16QAM 1/2	R.32 TDD	OP.1 TDD	EPA5	2x2 Medium	70	7.7	≥2
	5MHz 16QAM 1/2	R.32-1 TDD	OP.1 TDD	EPA5	2x2 Medium	70	7.7	1
3	10 MHz 64QAM 3/4	R.33 TDD	OP.1 TDD	EPA5	2x2 Low	70	17.7	≥2
	10 MHz 64QAM 3/4	R.33-1 TDD	OP.1 TDD	EPA5	2x2 Low	70	17.7	1

Table 8.3.2.1-5: Minimum performance for CDM-multiplexed DM RS with interfering simultaneous transmission (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference value		UE	
number	and MCS	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category	
4	10 MHz	R.32 TDD	OP.1 TDD	EPA5	2x2 Medium	70	21.9	≥2	
	16QAM 1/2	(Note 1)							
5	10 MHz	R.34 TDD	OP.1 TDD	EPA5	2x2 Low	70	22.0	≥2	
	64QAM 1/2	(Note 1)							
Note 1:	The reference channel applies to both the input signal under test and the interfering signal.								

8.3.2.1A Single-layer Spatial Multiplexing (with multiple CSI-RS configurations)

For single-layer transmission on antenna ports 7 or 8 upon detection of a PDCCH with DCI format 2C, the requirements are specified in Table 8.3.2.1A-2 and 8.3.2.1A-3, with the addition of the parameters in Table 8.3.2.1A-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify rank-1 performance on one of the antenna ports 7 or 8 with and without a simultaneous transmission on the other antenna port, and to verify rate matching with multiple CSI reference symbol configurations with non-zero and zero transmission power.

Table 8.3.2.1A-1: Test Parameters for Testing CDM-multiplexed DM RS (single layer) with multiple CSI-RS configurations

Parameter		Unit	Test 1	Test 2	Test 3
Danieliali a anna	$ ho_{\scriptscriptstyle A}$	dB	0	0	0
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0 (Note 1)	0 (Note 1)
	σ	dB	-3	-3	-3
Cell-specific refere	ence			Antenna ports 0,1	
CSI reference signals			Antenna ports 15,,22	Antenna ports 15,,18	Antenna ports 15,,18
Beamforming model			Annex B.4.1	Annex B.4.1	Annex B.4.1
CSI-RS periodicity and subframe offset TcsI-RS / \(\Delta \text{CcsI-RS} \)		Subframes	5 / 4	5/4	5/4
CSI reference sig configuration	nal		1	3	3
Zero-power CSI- configuration IcsI-RS / ZeroPowerCSI-II bitmap		Subframes / bitmap	4 / 0010000100000000	4 / 00100000000000000	001000000000000000
N_{oc} at antenna p	ort	dBm/15kHz	-98	-98	-98
Symbols for unus PRBs	sed		OCNG (Note 4)	OCNG (Note 4)	OCNG (Note 4)
Number of alloca resource blocks (No		PRB	50	50	100
Simultaneous transmission			No	Yes (Note 3, 5)	No
PDSCH transmiss mode	sion		9	9	9

Note 1: $P_R = 1$.

Note 2: The modulation symbols of the signal under test are mapped onto antenna port 7 or 8.

Note 3: Modulation symbols of an interference signal is mapped onto the antenna port (7 or 8) not used for the input signal under test.

Note 4: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.

Note 5: The two UEs' scrambling identities $n_{\rm SCID}$ are set to 0 for CDM-multiplexed DM RS with interfering simultaneous transmission test cases.

Table 8.3.2.1A-2: Minimum performance for CDM-multiplexed DM RS without simultaneous transmission (FRC) with multiple CSI-RS configurations

Test	Bandwidt	Reference	OCNG	Propagation	Correlation	Reference	value	UE	UE DL
number	h and MCS	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughpu t (%)	SNR (dB)	Category	Cat- egory
1	10 MHz QPSK 1/3	R.50 TDD	OP.1 TDD	EVA5	2x2 Low	70	-0.6	≥1	≥6
3	20MHz 256QAM	R. 66 TDD	OP.1 TDD	EPA5	2x2 Low	70	24.3	11-12	≥11

Table 8.3.2.1A-3: Minimum performance for CDM-multiplexed DM RS with interfering simultaneous transmission (FRC) with multiple CSI-RS configurations

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference v	UE				
number	and MCS	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category			
2	10 MHz 64QAM 1/2	R.44 TDD	OP.1 TDD	EPA5	2x2 Low	70	22.1	≥2			
Note 1:	Note 1: The reference channel applies to both the input signal under test and the interfering signal.										

8.3.2.1B Enhanced Performance Requirement Type A – Single-layer Spatial Multiplexing with TM9 interference model

The requirements are specified in Table 8.3.2.1B-2, with the addition of the parameters in Table 8.3.2.1B-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify closed-loop rank one performance on one of the antenna ports 7 or 8 without a simultaneous transmission on the other antenna port in the serving cell when the PDSCH transmission in the serving cell is interfered by PDSCH of one dominant interfering cell applying transmission mode 9 interference model defined in clause B.5.4. In 8.3.2.1B-1, Cell 1 is the serving cell, and Cell 2 is the interfering cell. The downlink physical channel setup is according to Annex C.3.2 for each of Cell 1 and Cell 2, respectively.

Table 8.3.2.1B-1: Test Parameters for Testing CDM-multiplexed DM RS (single layer) with TM9 interference model

paramete	r	Unit	Cell 1	Cell 2
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	0	0
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0
	σ	dB	-3	-3
Cell-specific referer	nce signals		Antenna ports 0,1	Antenna ports 0,1
CSI reference s	signals		Antenna ports 15,,18	N/A
CSI-RS periodic subframe offset $T_{\rm CSI}$	-RS / Δ CSI-RS	Subframes	5 / 4	N/A
CSI reference configuration			0	N/A
$N_{\it oc}$ at antenn	a port	dBm/15kH z	-98	N/A
DIP (Note	2)	dB	N/A	-1.73
BWChanne	l	MHz	10	10
Cyclic Pref	ix		Normal	Normal
Cell Id			0	126
Number of contro symbols	of OFDM		2	2
PDSCH transmiss	ion mode		9	N/A
Beamforming I	model		As specified in clause B.4.3 (Note 4, 5)	N/A
Interference n	nodel		N/A	As specified in clause B.5.4
Probability of occurrence of	Rank 1		N/A	70
transmission rank in interfering cells	Rank 2		N/A	30
Precoder update g	ranularity	PRB	50	6
PMI delay (No	ote 5)	ms	10 or 11	N/A
Reporting into	erval	ms	5	N/A
Reporting m	ode		PUCCH 1-1	N/A
CodeBookSubsetF bitmap	Restriction		000000000000000 0000000000000000 000000	N/A
Symbols for unus	ed PRBs		OCNG (Note 6)	N/A
Simultaneous tran			No simultaneous transmission on the other antenna port in (7 or 8) not used for the input signal under test	N/A
Physical channel reporting			PUSCH(Note 8)	N/A
cqi-pmi-Configura			4	N/A

Note 1: $P_B = 1$

Note 2: The respective received power spectral density of each interfering cell relative to N_{oc} ' is defined by its associated DIP value as specified in clause B.5.1.

Note 3: The modulation symbols of the signal under test in Cell 1 are mapped onto antenna port 7 or 8.

Note 4:	The precoder in clause B.4.3 follows UE recommended PMI.
Note 5:	If the UE reports in an available uplink reporting instance at subrame SF#n based
	on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI
	cannot be applied at the eNB downlink before SF#(n+4).
Note 6:	These physical resource blocks are assigned to an arbitrary number of virtual UEs
	with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs
	shall be uncorrelated pseudo random data, which is QPSK modulated.
Note 7:	All cells are time-synchronous.
Note 8:	To avoid collisions between CQI reports and HARQ-ACK it is necessary to report
	both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in
	downlink SF#4 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on
	PUSCH in uplink subframe SF#8 and #3.

Table 8.3.2.1B-2: Enhanced Performance Requirement Type A, CDM-multiplexed DM RS with TM9 interference model

Test Number	Referenc e	OCNG Pattern		Propagation Conditions		Correlatio n Matrix	Reference Value		UE Categor
	Channel	Cell 1	Cell 2	Cell 1	Cell 2	and Antenna Configurat ion (Note 3)	Fraction of Maximum (dB) Throughput (%) (Note 2)		у
1	R.48 TDD	OP.1 TDD	N/A	EVA5	EVA5	4x2 Low	70	-1.0	≥1

Note 1: The propagation conditions for Cell 1 and Cell 2 are statistically independent.

Note 2: SINR corresponds to \hat{E}_s/N_{ac} of Cell 1 as defined in clause 8.1.1.

Note 3: Correlation matrix and antenna configuration parameters apply for each of Cell 1 and Cell 2.

8.3.2.1C Single-layer Spatial Multiplexing (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)

The requirements are specified in Table 8.3.2.1C-2, with the addition of parameters in Table 8.3.2.1C-1. The purpose is to verify the performance of the antenna ports 7 or 8 without a simultaneous transmission on the other antenna port in the serving cell if the PDSCH transmission in the serving cell takes place in subframes that overlap with ABS [9] of the aggressor cell with CRS assistance information. In Table 8.3.2.1C-1, Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] includes Cell 2 and Cell 3.

Table 8.3.2.1C-1: Test parameters of TM9-Single-Layer (2 CSI-RS ports) – Non-MBSFN ABS

Parameter		Unit	Cell 1	Cell 2	Cell 3
Uplink downlink Conf	iguration		1	1	1
Special subframe con	figuration		4	4	4
	$ ho_{\scriptscriptstyle A}$	dB	0	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	-3 (Note 1)	-3 (Note 1)
	σ	dB	-3	N/A	N/A
	N_{oc1}	dBm/15kHz	-98 (Note 2)	N/A	N/A
N_{oc} at antenna port	N_{oc2}	dBm/15kHz	-98 (Note 3)	N/A	N/A
	N_{oc3}	dBm/15kHz	-93 (Note 4)	N/A	N/A
\hat{E}_s/N_{oc2}		dB	Reference Value in Table 8.3.2.1C-2	12	10
BW _{Channel}		MHz	10	10	10
Subframe Configu	ration		Non-MBSFN	Non-MBSFN	Non-MBSFN
Time Offset betwee	n Cells	μs	N/A	3	-1
Frequency shift between	en Cells	Hz	N/A	300	-100
Cell Id			0	1	126
Cell-specific reference	e signals		A	ntenna ports 0,1	
CSI reference sig			Antenna ports 15,16	N/A	N/A
CSI-RS periodicity subframe offse $T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$	et s	Subframes	5 / 4	N/A	N/A
CSI reference sign configuration			8	N/A	N/A
Zero-power CSI- configuration I _{CSI-RS} / ZeroPower bitmap	-RS	Subframes / bitmap	4 / 00100000000000 00	N/A	N/A
ABS pattern (Not	te 5)		N/A	0000000001 0000000001	0000000001 0000000001
RLM/RRM Measur Subframe Pattern (I			000000001 000000001	N/A	N/A
CSI Subframe Sets	Ccsi,0		000000001 0000000001 0000000001	N/A	N/A
(Note7)	Ccsi,1		1100111000 1100111000	N/A	N/A
Number of control of symbols	OFDM		2	Note 8	Note 8
PDSCH transmissio	n mode		TM9-1layer	Note 9	Note 9
Precoding granul			Frequency domain: 1 PRG Time domain: 1 ms	N/A	N/A
Beamforming mo			Annex B.4.1	N/A	N/A
Cyclic prefix			Normal	Normal	Normal

Note 1:	$P_B = 1$.
Note 2:	This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a
	subframe overlapping with the aggressor ABS.
Note 3:	This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.
Note 4:	This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS
Note 5:	ABS pattern as defined in [9]. PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.
Note 6:	Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
Note 7:	As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].
Note 8:	The number of control OFDM symbols is not available for ABS and is 2 for the subframe indicated by "0" of ABS pattern.
Note 9:	Downlink physical channel setup in Cell 2 and Cell 3 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.
Note 10:	If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).
Note 11:	For Uplink - downlink configuration 1 the reporting interval will alternate between 1ms and 4ms.
Note 12:	The number of the CRS ports in Cell 1, Cell 2 and Cell 3 is the same.
Note 13:	SIB-1 will not be transmitted in Cell 2 and Cell 3 in this test.
Note 14:	The modulation symbols of the signal under test are mapped onto antenna port 7 or 8.

Table 8.3.2.1C-2: Minimum Performance of TM9-Single-Layer (2 CSI-RS ports) – Non-MBSFN ABS

Number	Channel	00	NG Patt	ern	Conditions (Note1)		Matrix and	Reference	Reference value		
		Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	Antenna Configurati on (Note 2)	Fraction of Maximum Throughput (%)	SNR (dB) (Note 3)	gory
1	R.51 TDD	OP.1	OP.1	OP.1		EVA5		2x2 Low	70	8.5	≥2
		TDD	TDD	TDD							
Note 1:	The propagat	tion cond	itions for	Cell 1, C	ell 2 and	Cell 3 are	e statistic	ally independen	t.		
Note 2:						apply for	Cell 1, C	Cell 2 and Cell 3.			
Note 3:	SNR correspo	onds to \hat{I}	\hat{E}_s/N_{oc2}	of cell 1.							

8.3.2.1D Enhanced Performance Requirement Type B – Single-layer Spatial Multiplexing with TM9 interference

The requirements are specified in Table 8.3.2.1D-2, with the addition of the parameters in Table 8.3.2.1D-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify closed loop rank one performance on one of the antenna ports 7 or 8 without a simultaneous transmission on the other antenna port in the serving cell when the PDSCH transmission in the serving cell is interfered by PDSCH of two interfering cells applying transmission mode 9 interference model defined in clause B.6.4. In 8.3.2.1D-1, Cell 1 is the serving cell, and Cell 2, 3 are interfering cells. The downlink physical channel setup is according to Annex C.3.2 for each of Cell 1, Cell 2 and Cell 3, respectively.

Table 8.3.2.1D-1: Test Parameters for Testing CDM-multiplexed DM RS (Single-layer) with TM9 interference model

Paramete		Unit	Cell 1	Cell 2	Cell 3
Uplink downlink Configura			1	1	1
Special subframe configur	ation		4	4	4
	$ ho_{\scriptscriptstyle A}$	dB	0	0	0
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (NOTE 1)	0	0
	σ	dB	-3	-3	-3
Cell-specific reference sig		Antenna ports 0,1	Antenna ports 0,1	Antenna ports 0,1	
N_{oc} at antenna port	dBm/15kHz		-98		
\hat{E}_s/N_{oc}		dB	N/A	13.91	3.34
BWchannel		MHz	10	10	10
Cyclic Prefix			Normal	Normal	Normal
Cell Id			0	1	6
Number of control OFDM normal subframes	symbols in		3	3	3
CFI indicated in PCFICH is subframes	n normal		3	3	3
Number of control OFDM special subframes		2	2	2	
CFI indicated in PCFICH in	n special		2	2	2
subframes				_	
PDSCH transmission mod	e		9	9	9
Interference model			N/A	As specified in clause B.6.4	As specified in clause B.6.4
Precoding			Random wideband precoding per TTI	As specified in clause B.6.4	As specified in clause B.6.4
CSI reference signals			Antenna ports 15, 16, 17, 18	Antenna ports 15, 16	Antenna ports 15, 16
CSI-RS periodicity and sul T _{CSI-RS} / Δ _{CSI-RS}	oframe offset	Subframes	10 / 4	10 / 4	10 / 4
CSI reference signal confi	guration		5	6	7
Zero-power CSI-RS config Icsi-RS /ZeroPowerCSI-RS	uration	Subframes / bitmap	9 / 1000000000 00000	9 / 01000000000 0000	9 / 00100000000 00000
Time offset to cell 1	us	N/A	2	3	
Frequency offset to cell 1		Hz	N/A Not configured	200	300
MBSFN				Not configured	Not configured
NeighCellsInfo- p-aLi		N/A	{dB-6, dB-3, dB0}	{dB-6, dB-3, dB0}	
(NOTE 4) trans	missionModeList		N/A	{2,3,4,8,9}	{2,3,4,8,9}

NOTE 1: $P_B = 1$

NOTE 2: Cell 1 is the serving cell. Cell 2, 3 are the interfering cells.

NOTE 3: CSI-RS configurations are according to [4] subclause 6.10.5.2.

NOTE 4: NeighCellsInfo-r12 is described in subclause 6.3.2 of [7].

Table 8.3.2.1D-2: Minimum Performance for Enhanced Performance Requirement Type B, CDM-multiplexed DM RS with TM9 interference model

Test Numb	Reference Channel	OCI	NG Pat	tern		opagat onditio			tion Mat		Reference Value		UE Cate
er		Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	Fraction of Maximum Throughp ut (%)	SNR (dB) (NOTE 2)	gory
1	R.69 TDD	OP. 1 TD D	N/A	N/A	EP A5	EP A5	EP A5	4x2 Low	2x2 Low	2x2 Low	85	18.0	≥1

NOTE 1: The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.

NOTE 2: SNR corresponds to \hat{E}_s/N_{oc} of Cell 1 as defined in clause 8.1.1.

8.3.2.1E Enhanced Performance Requirement Type B – Single-layer Spatial Multiplexing with CRS interference model

The requirements are specified in Table 8.3.2.1E-2, with the addition of the parameters in Table 8.3.2.1E-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify closed loop rank one performance on one of the antenna ports 7 or 8 without a simultaneous transmission on the other antenna port in the serving cell when the PDSCH transmission in the serving cell is interfered by the CRS of the interfering cell, applying the CRS interference model defined in clause B.6.5. In 8.3.2.1E-1, Cell 1 is the serving cell, and Cell 2, 3 are interfering cells. The downlink physical channel setup is according to Annex C.3.2 for each of Cell 1, Cell 2 and Cell 3, respectively.

Table 8.3.2.1E-1: Test Parameters for Testing CDM-multiplexed DM RS (Single-layer) with CRS interference model

Paramete	er	Unit	Cell 1	Cell 2	Cell 3
Uplink downlink Configura	ation		1	1	1
Special subframe configu	ration		4	4	4
	$ ho_{\scriptscriptstyle A}$	dB	0	0	0
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (NOTE 1)	0	0
	σ	dB	-3	-3	-3
Cell-specific reference sig	Cell-specific reference signals			Antenna ports 0,1	Antenna ports 0,1
N_{oc} at antenna port		dBm/15kHz		-98	
\hat{E}_s/N_{oc}	dB	N/A	13.91	3.34	
BWChannel		MHz	10	10	10
Cyclic Prefix			Normal	Normal	Normal
Cell Id			0	1	6
Number of control OFDM normal subframes		3	3	3	
CFI indicated in PCFICH subframes		3	3	3	
Number of control OFDM special subframes	•		2	2	2
CFI indicated in PCFICH subframes	in special		2	2	2
PDSCH transmission mod	de		8	N/A	N/A
Interference model			N/A	As specified in clause B.6.5	As specified in clause B.6.5
Precoding		Random wideband precoding per TTI	N/A	N/A	
Time offset to cell 1		us	N/A	2	3
Frequency offset to cell 1				200	300
MBSFN		Not configured	Not configured	Not configured	
NeighCellsInfo- r12 p-aList-r12			N/A	{dB-6, dB-3, dB0}	{dB-6, dB-3, dB0}
(NOTE 3) trans	smissionModeList		N/A	{2,3,4,8,9}	{2,3,4,8,9}

NOTE 1: $P_B = 1$

NOTE 2: Cell 1 is the serving cell. Cell 2, 3 are the interfering cells. NOTE 3: NeighCellsInfo-r12 is described in subclause 6.3.2 of [7].

Table 8.3.2.1E-2: Minimum Performance for Enhanced Performance Requirement Type B, CDMmultiplexed DM RS with CRS interference model

Test Number	Reference Channel	OCI	NG Pat	tern	n Propagati Condition			Correlation Matrix and	Reference Value		UE Cate
		Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	Antenna Configurati on (NOTE 3)	Fraction of Maximum Throughput (%)	SNR (dB) (NOTE 2)	gory
1	R.71 TDD	OP. 1 TD D	N/A	N/A	EP A5	EP A5	EP A5	2x2 Low	85	14.0	≥2

NOTE 1: The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.

NOTE 2: SNR corresponds to \hat{E}_s/N_{oc} of Cell 1 as defined in clause 8.1.1.

NOTE 3: Correlation matrix and antenna configuration parameters apply for each of Cell 1, Cell 2 and Cell 3.

8.3.2.1F Enhanced Performance Requirement Type B – Single-layer Spatial Multiplexing with TM3 interference

The requirements are specified in Table 8.3.2.1F-2, with the addition of the parameters in Table 8.3.2.1F-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify closed loop rank one performance on one of the antenna ports 7 or 8 without a simultaneous transmission on the other antenna port in the serving cell when the PDSCH transmission in the serving cell is interfered by PDSCH of two interfering cells applying transmission mode 3 interference model defined in clause B.6.2. In 8.3.2.1F-1, Cell 1 is the serving cell, and Cell 2, 3 are interfering cells. The downlink physical channel setup is according to Annex C.3.2 for each of Cell 1, Cell 2 and Cell 3, respectively.

Table 8.3.2.1F-1: Test Parameters for Testing CDM-multiplexed DM RS (Single-layer) with TM3 interference model

Paramete	Unit	Cell 1	Cell 2	Cell 3	
Uplink downlink Configura			1	1	1
Special subframe configur	ation		4	4	4
	$ ho_{\scriptscriptstyle A}$	dB	0	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (NOTE 1)	-3	-3
	σ	dB	-3	0	0
Cell-specific reference sig	nals		Antenna ports 0,1	Antenna ports 0,1	Antenna ports 0,1
N_{oc} at antenna port		dBm/15kHz		-98	
\hat{E}_s/N_{oc}		dB	N/A	3.28	0.74
BW _{Channel}		MHz	10	10	10
Cyclic Prefix			Normal	Normal	Normal
Cell Id			0	1	6
Number of control OFDM normal subframes	symbols in		3	3	3
CFI indicated in PCFICH i	n normal		3	Random from	Random from
subframes				set {1,2,3}	set {1,2,3}
Number of control OFDM special subframes	symbols in		2	2	2
CFI indicated in PCFICH i subframes	n special		2	Random from set {1,2}	Random from set {1,2}
PDSCH transmission mod	е		8	3	3
Interference model			N/A	As specified in clause B.6.2	As specified in clause B.6.2
Precoding			Random wideband precoding per TTI	As specified in clause B.6.2	As specified in clause B.6.2
Time offset to cell 1		us	N/A	2	3
Frequency offset to cell 1		Hz	N/A	200	300
MBSFN			Not configured	Not configured	Not configured
NeighCellsInfo- r12 p-aList-r12			N/A	{dB-6, dB-3, dB0}	{dB-6, dB-3, dB0}
(NOTE 4) trans	missionModeList		N/A	{2,3,4,8,9}	{2,3,4,8,9}

NOTE 1: $P_{R} = 1$

NOTE 2: Cell 1 is the serving cell. Cell 2, 3 are the interfering cells. NOTE 3: CSI-RS configurations are according to [4] subclause 6.10.5.2.

NOTE 4: NeighCellsInfo-r12 is described in subclause 6.3.2 of [7].

Table 8.3.2.1F-2: Minimum Performance for Enhanced Performance Requirement Type B, CDM-multiplexed DM RS with TM3 interference model

Test Number	Reference Channel	OCI	NG Pat	tern		opagat onditio		Correlation Matrix and			UE Cate
		Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	Antenna Configurati on (NOTE 3)	Fraction of Maximum Throughput (%)	SNR (dB) (NOTE 2)	gory
1	R.70 TDD	OP. 1 TD D	N/A	N/A	EP A5	EP A5	EP A5	2x2 Low	85	11.3	≥1

NOTE 1: The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.

NOTE 2: SNR corresponds to $\hat{E}_{\rm s}/N_{ac}$ of Cell 1 as defined in clause 8.1.1.

NOTE 3: Correlation matrix and antenna configuration parameters apply for each of Cell 1, Cell 2 and Cell 3.

8.3.2.1G Enhanced Performance Requirement Type B – Single-layer Spatial Multiplexing with TM10 serving cell configuration and TM9 interference model

The requirements are specified in Table 8.3.2.1G-2, with the addition of the parameters in Table 8.3.2.1G-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify closed loop rank one performance on one of the antenna ports 7 or 8 without a simultaneous transmission on the other antenna port in the serving cell when the PDSCH transmission configured with TM10 in the serving cell is interfered by PDSCH of one dominant interfering cell applying transmission mode 9 interference model defined in clause B.6.3. The NAICS network assistance is provided when the serving cell TM10 is configured with QCL-type A and PCID based DM-RS scrambling. The neighbouring cell has transmission mode TM9 and NeighCellsInfo-r12 for interfering cell indicates presence of TM9. In 8.3.2.1G-1, Cell 1 is the serving cell, and Cell 2, 3 are interfering cells. The downlink physical channel setup is according to Annex C.3.2 for each of Cell 1, Cell 2 and Cell 3, respectively.

Table 8.3.2.1G-1: Test Parameters for Testing CDM-multiplexed DM RS (single layer) Multiplexing with TM10 serving cell configuration and TM9 interference model

Parameter			Unit	Cell 1	Cell 2	Cell 3
Uplink downlink Con				1	1	1
Special subframe co	nfiguratio	n		4	4	4
		$ ho_{\scriptscriptstyle A}$	dB	0	0	0
Downlink power allo	cation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0	0
		σ	dB	-3	-3	-3
Cell-specific reference	ce signals	3		Antenna ports 0,1	Antenna ports 0,1	Antenna ports 0,1
N_{oc} at antenna port			dBm/15kHz		-98	
\hat{E}_s/N_{oc}			dB	N/A	13.91	3.34
BW _{Channel}			MHz	10	10	10
Cyclic Prefix				Normal	Normal	Normal
Cell Id				0	1	6
Number of control O normal subframes	•			3	3	3
CFI indicated in PCF subframes				3	3	3
Number of control O special subframes	-			2	2	2
CFI indicated in PCF subframes	TICH in sp	pecial		2	2	2
PDSCH transmission	n mode			10	9	9
Interference model				N/A	As specified in clause B.6.4	As specified in clause B.6.4
Precoding				Random wideband precoding per TTI	As specified in clause B.6.4	As specified in clause B.6.4
CSI reference signal	s			Antenna ports 15, 16, 17, 18	Antenna ports 15, 16	Antenna ports 15, 16
CSI-RS periodicity a T _{CSI-RS} / Δ _{CSI-RS}	nd subfra	me offset	Subframes	10 / 4	10 / 4	10 / 4
CSI reference signal configuration			5	6	7	
Zero-power CSI-RS configuration Icsi-RS /ZeroPowerCSI-RS bitmap			Subframes / bitmap	9 / 1000000000 00000	9 / 01000000000 0000	9 / 00100000000 00000
Time offset to cell 1				N/A	2	3
	Frequency offset to cell 1			N/A	200	300
MBSFN				Not configured	Not configured	Not configured
NeighCellsInfo- r12 p-aList-r12		12		N/A	{dB-6, dB-3, dB0}	{dB-6, dB-3, dB0}
(Note 4)	transmis	sionModeList		N/A	{2,3,4,8,9}	{2,3,4,8,9}

Note 1: $P_{\scriptscriptstyle R}=1$

Note 2:

Cell 1 is the serving cell. Cell 2, 3 are the interfering cells. CSI-RS configurations are according to [4] subclause 6.10.5.2. Note 3:

NeighCellsInfo-r12 is described in subclause 6.3.2 of [7]. Note 4:

Table 8.3.2.1G-2: Minimum Performance for Enhanced Performance Requirement Type B, CDMmultiplexed DM RS Multiplexing with TM10 serving cell configuration and TM9 interference model

Test Number	Reference Channel	OCI	NG Pat	tern		opagat onditio		Correlation Matrix and Antenna Configurati on		Matrix and Antenna Configurati		/alue	UE Cate gory
		Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	C ell 1	C ell 2	C ell 3	Fraction of Maximum Throughput (%)	SNR (dB) (Note 2)	
1	R.69 TDD	OP. 1 TD D	N/A	N/A	EP A5	EP A5	EP A5	4x 2 Lo w	2x 2 Lo w	2x 2 Lo w	85	18.0	≥1

The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent. Note 1:

SINR corresponds to \hat{E}_s/N_{oc} of Cell 1 as defined in clause 8.1.1. Note 2:

8.3.2.2 **Dual-Layer Spatial Multiplexing**

For dual-layer transmission on antenna ports 7 and 8 upon detection of a PDCCH with DCI format 2B, the requirements are specified in Table 8.3.2.2-2, with the addition of the parameters in Table 8.3.2.2-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the rank-2 performance for full RB allocation.

Table 8.3.2.2-1: Test Parameters for Testing CDM-multiplexed DM RS (dual layer)

Parame	ter	Unit	Test 1	Test 2	
Downlink	$ ho_{\scriptscriptstyle A}$	dB	0	0	
power	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0 (Note 1)	
allocation	σ	dB	-3	-3	
Cell-sper reference symbol	ce		Antenna port 0 and antenna port 1		
Beamforn mode	•		Annex B.4.2		
N_{oc} at ant	enna	dBm/15kHz	-98	-98	
Symbols unused P			OCNG (Note 2)	OCNG (Note 2)	
Number of allocated resource blocks		PRB	50	50	
PDSCI transmiss mode	sion		8	8	

Note 1:

Note 2:

These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.

Table 8.3.2.2-2: Minimum performance for CDM-multiplexed DM RS (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference	value	UE
number	and MCS	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz QPSK 1/3	R.31 TDD	OP.1 TDD	EVA5	2x2 Low	70	4.5	≥2
2	10 MHz 16QAM 1/2	R.32 TDD	OP.1 TDD	EPA5	2x2 Medium	70	21.7	≥2

8.3.2.2A Enhanced Performance Requirement Type C - Dual-Layer Spatial Multiplexing

The requirements are specified in Table 8.3.2.2A-2, with the addition of the parameters in Table 8.3.2.2A-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the rank-2 performance for full RB allocation upon antenna ports 7 and 8.

Table 8.3.2.2A-1: Test Parameters for Testing CDM-multiplexed DM RS (dual layer)

Parame	ter	Unit	Test 1
Downlink	$ ho_{\scriptscriptstyle A}$	dB	0
power	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)
allocation	σ	dB	-3
Cell-spec reference symbol	ce		Antenna port 0 and antenna port 1
Beamforn model			Annex B.4.2
N_{oc} at ant	enna	dBm/15kHz	-98
Symbols unused P			OCNG (Note 2)
Number allocate resource b	ed	PRB	50
PDSCH transmission mode			8
Note 1:	D 1		

Note 1: $P_B = 1$.

Note 2: These physical resource blocks are assigned to

an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.

Table 8.3.2.2A-2: Enhanced Performance Requirement Type C for CDM-multiplexed DM RS (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference	value	UE
number	and MCS	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz 16QAM 1/2	R.32 TDD	OP.1 TDD	EPA5	2x2 Medium	70	17.0	≥2

8.3.2.3 Dual-Layer Spatial Multiplexing (with multiple CSI-RS configurations)

For dual-layer transmission on antenna ports 7 and 8 upon detection of a PDCCH with DCI format 2C, the requirements are specified in Table 8.3.2.3-2, with the addition of the parameters in Table 8.3.2.3-1 where Cell 1 is the serving cell and Cell 2 is the interfering cell. The downlink physical channel setup is set according to Annex C.3.2. The purpose of these tests is to verify the rank-2 performance for full RB allocation, to verify rate matching with multiple CSI reference symbol configurations with non-zero and zero transmission power, and to verify that the UE correctly estimate SNR.

Table 8.3.2.3-1: Test Parameters for Testing CDM-multiplexed DM RS (dual layer) with multiple CSI-RS configurations

Daran	Parameter		Test	: 1
Paran	leter	Unit	Cell 1	Cell 2
	$ ho_{\scriptscriptstyle A}$	dB	0	0
Downlink	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0
	ower o		-3	-3
anocation	PDSCH_RA	dB	4	N/A
	PDSCH_RB	dB	4	N/A
Cell-specific sign			Antenna ports 0 and 1	Antenna ports 0 and 1
Cell	ID		0	126
CSI referen	ce signals		Antenna ports 15,16	NA
Beamformi	ng model		Annex B.4.2	NA
CSI-RS peri subframe offset Δ_{CSI}	T _{CSI-RS} /	Subframes	5 / 4	NA
CSI referer configu			8	NA
Zero-powe configu Icsi-RS / Ze RS bit	ration roPowerCSI-	Subframes / bitmap	4 / 001000000000000000	NA
$N_{\it oc}$ at anto	enna port	dBm/15kHz	-98	-98
\widehat{E}_s/N_{oc}			Reference Value in Table 8.3.2.3-2	Test specific, 7.25dB
Symbols for u	nused PRBs		OCNG (Note 2)	NA
Number of allocated resource blocks (Note 2)		PRB	50	NA
Simultaneous	transmission		No	NA
PDSCH transn	nission mode		9	Blanked

Note 1: $P_R = 1$

Note 2: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.

Table 8.3.2.3-2: Minimum performance for CDM-multiplexed DM RS (FRC) with multiple CSI-RS configurations

Test number	Bandwidth and MCS	Reference Channel		NG tern	Propagation Condition		Correlation Reference value Matrix and		value	UE Cate
			Cell 1	Cell 2	Cell 1	Cell 2	Antenna Configurati on	Fraction of Maximum Throughput (%)	SNR (dB)	gory
1	10 MHz 16QAM 1/2	R.51 TDD	OP.1 TDD	N/A	ETU5	ETU5	2x2 Low	70	14.8	≥2

Note 1: The propagation conditions for Cell 1 and Cell 2 are statistically independent.

Note 2: Correlation matrix and antenna configuration parameters apply for each of Cell 1 and Cell 2.

Note 3: SNR corresponds to \hat{E}_s/N_{oc} of Cell 1.

8.3.2.4 Performance requirements for DCI format 2D and non Quasi Co-located Antenna Ports

8.3.2.4.1 Minimum requirement with Same Cell ID (with single NZP CSI-RS resource)

The requirements are specified in Table 8.3.2.4.1-3, with the additional parameters in Table 8.3.2.4.1-1 and Table 8.3.2.4.1-2. The purpose of this test is to verify the UE capability of supporting non quasi-colocated antenna ports when the UE receives DCI format 2D in a scenario where the two transmission point share the same Cell ID. In particular the test verifies that the UE, configured with quasi co-location type B, performs correct tracking and compensation of the timing difference between two transmission points, channel parameters estimation and rate matching according to the 'PDSCH RE Mapping and Quasi-Co-Location Indicator' (PQI) signalling defined in [6], configured according to Table 8.3.2.4.1-2. In Tables 8.3.2.4.1-1 and 8.3.2.4.1-2, transmission point 1 (TP 1) is the serving cell and transmission point 2 (TP 2) transmits PDSCH. The downlink physical channel setup for TP 1 is according to Table C.3.4-1 and for TP 2 according to Table C.3.4-2.

Table 8.3.2.4.1-1: Test Parameters for quasi co-location type B: same Cell ID

Paramete	r	Unit	TP 1	TP 2
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	0	0
allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0
	σ	dB	-3	-3
Cell-specific referer	nce signals		Antenna ports 0,1	(Note 2)
CSI-RS 0 antenna ports			NA	Port {15,16}
qcl-CSI-RS-Configl CSI-RS 0 period subframe offset Tcsi	icity and -RS / ∆csi-RS	Subframes	NA	5/4
qcl-CSI-RS-Configl CSI-RS 0 config	uration		NA	8
csi-RS-ConfigZPId- power CSI-RS 0 co Icsi-RS / ZeroPower CSI-R	nfiguration		NA	4/ 0000010000000000
$N_{\it oc}$ at antenn	a port	dBm/15kH z	-98	-98
\widehat{E}_s/N_{oc}		dB	Reference point in Table 8.3.2.4.1-3	Reference point in Table 8.3.2.4.1-3
BW _{Channe}	l	MHz	10	10
Cyclic Pref	ïx		Normal	Normal
Cell Id			0	0
Number of contro symbols	ol OFDM		2	2
PDSCH transmiss	ion mode		Blanked	10
Number of alloca	ted PRB	PRB	NA	50
qcl-Operation, 'PDSCH RE Mapping and Quasi-Co- Location Indicator'			Туре	B, '00'
Time offset between	een TPs	μs	NA	Reference point in Table 8.3.2.4.1-3
Frequency error between TPs		Hz	NA	0
Beamforming model			NA	Port 7 as specified in clause B.4.1
Symbols for unus	ed PRBs		NA	OCNG (Note 3)

Note 1: $P_B = 1$

Noet 2: REs for antenna ports 0 and 1 have zero transmission power.

Note 3: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.

Table 8.3.2.4.1-2: Configurations of PQI and DL transmission hypothesis for each PQI set

PQI set index	Parameter	DL transmission hypothesis for each PQI Set		
	NZP CSI-RS Index (For quasi co-location)	ZP CSI-RS configuration	TP 1	TP 2
PQI set 0	CSI-RS 0	Blanked	PDSCH	

Table 8.3.2.4.1-3: Minimum performance for quasi co-location type B: same Cell ID

Test Number	Reference Channel		OGCN Time offset between		Conditions Matrix and		Conditions		fset Conditions		/alue	UE Category
		TP 1	TP 2	TPs (μs)	TP 1	TP 2	Configuration (Note 2)	Fraction of Maximum Throughput (%)	SNR (dB) (Note 3)			
1	R.52 TDD	NA	OP.1 TDD	2	EPA5	EPA5	2x2 Low	70	12	≥2		
2	R.52 TDD	NA	OP.1 TDD	-0.5	EPA5	EPA5	2x2 Low	70	12.4	≥2		

Note 1: The propagation conditions for TP 1 and TP 2 are statistically independent.

Note 2: The correlation matrix and antenna configuration apply for TP 1 and TP 2.

Note 3: SNR corresponds to \hat{E}_s/N_{ac} of TP 2 as defined in clause 8.1.1.

8.3.2.4.2 Minimum requirements with Same Cell ID (with multiple NZP CSI-RS resources)

The requirements are specified in Table 8.3.2.4.2-3, with the additional parameters in Tables 8.3.2.4.2-1 and 8.3.2.4.2-2. The purpose of this test is to verify the UE capability of supporting non quasi-colocated antenna ports when the UE receives DCI format 2D in a scenario where the two transmission point share the same Cell ID. In particular the test verifies that the UE, configured with quasi co-location type B, performs correct tracking and compensation of the timing difference between two transmission points, channel parameters estimation and rate matching according to the 'PDSCH RE Mapping and Quasi-Co-Location Indicator' (PQI) signalling defined in [6]. In Tables 8.3.2.4.2-1 and 8.3.2.4.2-2, transmission point 1 (TP 1) is the serving cell transmitting PDCCH, synchronization signals and PBCH, and transmission point 2 (TP 2) has same Cell ID as TP 1. Multiple NZP CSI-RS resources and ZP CSI-RS resources are configured. In each sub-frame, DL PDSCH transmission is dynamically switched between 2 TPs with multiple PDSCH RE Mapping and Quasi-Co-Location Indicator configuration (PQI). Configurations of PDSCH RE Mapping and Quasi-Co-Location Indicator and downlink transmission hypothesis are defined in Table 8.3.2.4.2-2. The downlink physical channel setup for TP 1 is according to Table C.3.4-1 and for TP 2 according to Table C.3.4-2.

Table 8.3.2.4.2-1: Test Parameters for timing offset compensation with DPS transmission

paramete	r	Unit	TP 1	TP 2
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	0	0
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0
	σ	dB	-3	-3

Beamforming model		As specified in clause B.4.1	As specified in clause B.4.1
Cell-specific reference signals		Antenna ports 0,1	(Note 2)
CSI reference signals 0		Antenna ports {15,16}	N/A
CSI-RS 0 periodicity and subframe offset $T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$	Subframes	5 / 4	N/A
CSI reference signal 0 configuration		0	N/A
CSI reference signals 1		N/A	Antenna ports {15,16}
CSI-RS 1 periodicity and subframe offset $T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$	Subframes	N/A	5 / 4
CSI reference signal 1 configuration		N/A	8
Zero-power CSI-RS 0 configuration lcsi-RS / ZeroPower CSI-RS bitmap	Subframes /bitmap	4/ 001000000000000000	N/A
Zero-power CSI-RS1 configuration lcsi-Rs / ZeroPower CSI-RS bitmaps	Subframes /bitmap	N/A	4/ 00000100000000000
\hat{E}_s/N_{oc}	dB	Reference Value in Table 8.3.2.4.2-3	Reference Value in Table 8.3.2.4.2-3
$N_{\it oc}$ at antenna port	dBm/15kH z	-98	-98
BWchannel	MHz	10	10
Cyclic Prefix		Normal	Normal
Cell Id		0	0
Number of control OFDM symbols		2	2
Timing offset between TPs		N/A	Reference Value in Table 8.3.2.4.2-3
Frequency offset between TPs	Hz	N/A	0
Number of allocated resource blocks	PRB	50	50
PDSCH transmission mode		10	10
Probability of occurrence of PDSCH transmission(Note 3)	%	30	70
Symbols for unused PRBs		OCNG (Note 4)	OCNG (Note 4)

Note 1: $P_{p} = 1$

Note 2: REs for antenna ports 0 and 1 have zero transmission power.

Note 3: PDSCH transmission from TPs shall be randomly determined independently for each subframe. Probabilities of occurrence of PDSCH transmission from TPs are specified.

Note 4: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.

Table 8.3.2.4.2-2: Configurations of PQI and DL transmission hypothesis for each PQI set

PQI set index	Parameter	DL transmission hypothesis for each PQI Set			
	NZP CSI-RS Index (For quasi co-location)	TP 1	TP 2		
PQI set 0	CSI-RS 0	ZP CSI-RS 0	PDSCH	Blanked	
PQI set 1	CSI-RS 1	RS 1 ZP CSI-RS 1 E			

Table 8.3.2.4.2-3: Performance Requirements for timing offset compensation with DPS transmission

(us) Channel		NG tern	Propagation Conditions		Correlation Matrix and	Reference Value		UE Category	
us) Channel	TP 1	TP 2	TP 1	TP 2	Antenna Configuration (Note 2)	Fraction of Maximum Throughput (%)	SNR (dB) (Note 3)	Category	
R.53 TDD	OP.1 TDD	OP.1 TDD	EPA5	EPA5	2x2 Low	70	12.3	≥2	
R.53 TDD	OP.1 TDD	OP.1 TDD	EPA5	EPA5	2x2 Low	70	12.5	≥2	
The propagation conditions for TP 1and TP 2 are statistically independent. Correlation matrix and antenna configuration parameters apply for each of TP 1 and TP 2.									
o	R.53 TDD pagation conditions tion matrix and ante	R.53 TDD OP.1 TDD pagation conditions for TP 1 tion matrix and antenna conf	R.53 TDD OP.1 OP.1 TDD R.53 TDD OP.1 TDD pagation conditions for TP 1 and TP 2 tion matrix and antenna configuration	R.53 TDD OP.1 OP.1 EPA5 TDD TDD pagation conditions for TP 1and TP 2 are statition matrix and antenna configuration paramet	R.53 TDD OP.1 OP.1 EPA5 EPA5 pagation conditions for TP 1 and TP 2 are statistically in tion matrix and antenna configuration parameters apply	R.53 TDD OP.1 OP.1 EPA5 EPA5 2x2 Low TDD TDD Pagation conditions for TP 1and TP 2 are statistically independent.	R.53 TDD OP.1 OP.1 EPA5 EPA5 2x2 Low 70 pagation conditions for TP 1and TP 2 are statistically independent. tion matrix and antenna configuration parameters apply for each of TP 1 and TP 2.	R.53 TDD OP.1 OP.1 EPA5 EPA5 2x2 Low 70 12.5 pagation conditions for TP 1 and TP 2 are statistically independent. tion matrix and antenna configuration parameters apply for each of TP 1 and TP 2.	

8.3.2.4.3 Minimum requirement with Different Cell ID and Colliding CRS (with single NZP CSI-RS resource)

The requirements are specified in Table 8.3.2.4.3-2, with the additional parameters in Table 8.3.2.4.3-1. The purpose of this test is to verify the UE capability of supporting non quasi-colocated antenna ports when the UE receives DCI format 2D in a scenario where the two transmission points have different Cell ID and colliding CRS. In particular the test verifies that the UE, configured with quasi co-location type B, performs correct tracking and compensation of the frequency difference between two transmission points, channel parameters estimation and rate matching behaviour according to the 'PDSCH RE Mapping and Quasi-Co-Location Indicator' signalling defined in [6]. In Table 8.3.2.4.3-1, transmission point 1 (TP 1) is serving cell transmitting PDCCH, synchronization signals and PBCH, and transmission point 2 (TP 2) transmits PDSCH with different Cell ID. The downlink physical channel setup for TP 1 is according to Table C.3.4-1 and for TP 2 according to Table C.3.4-2.

Table 8.3.2.4.3-1: Test Parameters for quasi co-location type B with different Cell ID and Colliding CRS

paramete	r	Unit	TP 1	TP 2
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	0	0
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0
	σ	dB	-3	-3

Beamforming model		N/A	As specified in clause B.4.2
Cell-specific reference signals		Antenna ports 0,1	Antenna ports 0,1
CSI reference signals 0		N/A	Antenna ports {15,16}
CSI-RS 0 periodicity and subframe offset $T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$	Subframes	N/A	5/4
CSI reference signal 0 configuration		N/A	0
Zero-power CSI-RS 0 configuration I _{CSI-RS} / ZeroPower CSI-RS bitmap	Subframes /bitmap	N/A	4/ 00100000000000000
\hat{E}_s/N_{oc}	dB	Reference point in Table 8.3.2.4.3-2 + 4dB	Reference Value in Table 8.3.2.4.3-2
$N_{_{oc}}$ at antenna port	dBm/15kH z	-98	-98
BWchannel	MHz	10	10
Cyclic Prefix		Normal	Normal
Cell Id		0	126
Number of control OFDM symbols		1	2
Timing offset between TPs	us	N/A	0
Frequency offset between TPs	Hz	N/A	200
qcl-Operation, 'PDSCH RE Mapping and Quasi-Co- Location Indicator'		Туре	B, '00'
PDSCH transmission mode		Blank	10
Number of allocated resource block		N/A	50
Symbols for unused PRBs		N/A	OCNG(Note2)

Note 1: $P_B = 1$

These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs Note 2: shall be uncorrelated pseudo random data, which is QPSK modulated.

Table 8.3.2.4.3-2: Performance Requirements for quasi co-location type B with different Cell ID and **Colliding CRS**

Test Number	Reference Channel	OCNG Pattern		Propagation Conditions (Note1)		ditions Matrix and		e Value	UE Category
		TP 1	TP 2	TP 1	TP 2	Configuration (Note 2)	Fraction of Maximum Throughput (%)	SNR (dB) (Note 3)	
1	R.54 TDD	N/A	OP.1 TDD	EPA5	ETU5	2x2 Low	70	14.7	≥2

Note 1:

The propagation conditions for TP 1 and TP 2 are statistically independent.

Correlation matrix and antenna configuration parameters apply for each of TP 1 and TP 2. Note 2:

SNR corresponds to \hat{E}_{s}/N_{oc} of TP 2 as defined in clause 8.1.1. Note 3:

8.4 Demodulation of PDCCH/PCFICH

The receiver characteristics of the PDCCH/PCFICH are determined by the probability of miss-detection of the Downlink Scheduling Grant (Pm-dsg). PDCCH and PCFICH are tested jointly, i.e. a miss detection of PCFICH implies a miss detection of PDCCH

8.4.1 FDD

The parameters specified in Table 8.4.1-1 are valid for all FDD tests unless otherwise stated.

Table 8.4.1-1: Test Parameters for PDCCH/PCFICH

Parame	eter	Unit	Single antenna port	Transmit diversity
Number of PDC	CH symbols	symbols	2	2
PHICH Ng (Note 1)		1	1
PHICH du	ration		Normal	Normal
Unused RE-s a	and PRB-s		OCNG	OCNG
Cell II)		0	0
Downlink nower	PDCCH_RA PHICH_RA OCNG_RA	dB	0	-3
Downlink power allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	0	-3
$N_{\it oc}$ at anter	nna port	dBm/15kHz	-98	-98
Cyclic pr	efix		Normal	Normal
Note 1: According	ng to Clause 6.9	in TS 36.211 [4].		

8.4.1.1 Single-antenna port performance

For the parameters specified in Table 8.4.1-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.1.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.4.1.1-1: Minimum performance PDCCH/PCFICH

Test number	Bandwidth	Aggregation level	Reference Channel	OCNG Pattern	Propagation Condition	Antenna configuration	Refer val	
						and correlation Matrix	Pm- dsg (%)	SNR (dB)
1	10 MHz	8 CCE	R.15 FDD	OP.1 FDD	ETU70	1x2 Low	1	-1.7

8.4.1.2 Transmit diversity performance

8.4.1.2.1 Minimum Requirement 2 Tx Antenna Port

For the parameters specified in Table 8.4.1-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.1.2.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.4.1.2.1-1: Minimum performance PDCCH/PCFICH

Test	Bandwidth	Aggregation	Reference	OCNG	Propagation	Antenna	Reference	e value
number		level	Channel	Pattern	Condition	configuration and correlation Matrix	Pm-dsg (%)	SNR (dB)
1	10 MHz	4 CCE	R.16 FDD	OP.1 FDD	EVA70	2 x 2 Low	1	-0.6

8.4.1.2.2 Minimum Requirement 4 Tx Antenna Port

For the parameters specified in Table 8.4.1-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.1.2.2-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.4.1.2.2-1: Minimum performance PDCCH/PCFICH

Ī	Test	Bandwidth	Aggregation	Reference	OCNG	Propagation	Antenna	Reference	e value
	number		level	Channel	Pattern	Condition	configuration and correlation Matrix	Pm-dsg (%)	SNR (dB)
	1	5 MHz	2 CCE	R.17 FDD	OP.1 FDD	EPA5	4 x 2 Medium	1	6.3

8.4.1.2.3 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS)

For the parameters for non-MBSFN ABS specified in Table 8.4.1-1 and Table 8.4.1.2.3-1, the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.1.2.3-2. The downlink physical setup is in accordance with Annex C.3.2 and Annex C.3.3. In Table 8.4.1.2.3-1, Cell 1 is the serving cell, and Cell 2 is the aggressor cell. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 is according to Annex C.3.3, respectively.

For the parameters for MBSFN ABS specified in Table 8.4.1-1 and Table 8.4.1.2.3-3, the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.1.2.3-4. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 is according to Annex C.3.3, respectively.

Table 8.4.1.2.3-1: Test Parameters for PDCCH/PCFICH - Non-MBSFN ABS

347

Paramete		Unit	Cell 1	Cell 2	
Downlink power	PDCCH_RA PHICH_RA OCNG_RA	dB	-3	-3	
allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	-3	-3	
	N_{oc1}	dBm/15kHz	-100.5 (Note 1)	N/A	
N_{oc} at antenna port	N_{oc2}	dBm/15kHz	-98 (Note 2)	N/A	
	N_{oc3}	dBm/15kHz	-95.3 (Note 3)	N/A	
\hat{E}_s/N_{oc}	\widehat{E}_s/N_{oc2}		Reference Value in Table 8.4.1.2.3-2	1.5	
BW _{Channe}		MHz	10	10	
Subframe Confi	Subframe Configuration		Non-MBSFN	Non-MBSFN	
Time Offset between	een Cells	μs	2.5 (synchro	nous cells)	
Cell Id			0	1	
ABS pattern (N	lote 4)		N/A	00000100 00000100 00000100 01000100 00000100	
RLM/RRM Measurem Pattern (Not			00000100 00000100 00000100 00000100 00000100	N/A	
CSI Subframe Sets	C _{CSI,0}		00000100 00000100 00000100 01000100 00000100	N/A	
(Note 6)			11111011 11111011 11111011 10111011 11111011	N/A	
Number of control OF			3	3	
PHICH Ng (N			1	N/A	
PHICH dura			Extended	N/A	
Unused RE-s an			OCNG	OCNG	
Cyclic pre	iX	venhala #1 #2 #2 #2	Normal	Normal	

- Note 1: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10, #12, #13 of a subframe overlapping with the aggressor ABS.
- Note 2: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.
- Note 3: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS Note 4: ABS pattern as defined in [9]. PDCCH/PCFICH other than that associated with SIB1/Paging
- are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell.
- Note 5: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]:
- Note 6: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7];
- Note 7: Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1 and Cell2 is the same.
- Note 8: SIB-1 will not be transmitted in Cell2 in the test.
- Note 9: According to Clause 6.9 in TS 36.211 [4].

Table 8.4.1.2.3-2: Minimum performance PDCCH/PCFICH – Non-MBSFN ABS

Test Numb er	Aggregati on Level	Referen ce Channel	OCNG Pattern		Cond	gation itions te 1)	Correlation Matrix and Antenna	Reference Value	
			Cell 1	Cell 2	Cell 1	Cell 2	Configuration	Pm- dsg (%)	SNR (dB) (Note 2)
1	8 CCE	R15-1 FDD	OP.1 FDD	OP.1 FDD	EVA5	EVA5	2x2 Low	1	-3.9

The propagation conditions for Cell 1 and Cell 2 are statistically independent. Note 1:

Note 2:

SNR corresponds to \hat{E}_s/N_{oc2} of cell 1. The correlation matrix and antenna configuration apply for Cell 1 and Cell 2. Note 3:

Table 8.4.1.2.3-3: Test Parameters for PDCCH/PCFICH – MBSFN ABS

Paramet		Unit	Cell 1	Cell 2	
Downlink power	PDCCH_RA PHICH_RA OCNG_RA	dB	-3	-3	
allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	-3	-3	
	N_{oc1}	dBm/15kHz	-100.5 (Note 1)	N/A	
N_{oc} at antenna port	N_{oc2}	dBm/15kHz	-98 (Note 2)	N/A	
	N_{oc3}	dBm/15kHz	-95.3 (Note 3)	N/A	
\hat{E}_s/N_{oc}	\hat{E}_s/N_{oc2}		Reference Value in Table 8.4.1.2.3-	1.5	
BW _{Chann}	el	MHz	10	10	
Subframe Configuration			Non-MBSFN	MBSFN	
Time Offset betw	een Cells	μs	2.5 (synchro	nous cells)	
Cell Id			0	126	
ABS pattern (Note 4)		N/A	0001000000 0100000010 0000001000 0000000	
RLM/RRM Measuren Pattern (No			0001000000 0100000010 0000001000 0000000	N/A	
CSI Subframe Sets	Ccsi,0		0001000000 0100000010 0000001000 0000000	N/A	
(Note 6)	C _{CSI,1}		1110111111 1011111101 1111110111 1111111	N/A	
MBSFN Subframe Allo	ocation (Note 9)		N/A	001000 100001 000100 000000	
Number of control O	FDM symbols		3	3	
PHICH Ng (N			1	N/A	
PHICH dura			extended	N/A	
Unused RE-s ar			OCNG	OCNG	
Cyclic pre	etix		Normal	Normal	

Note 1:	This noise is applied in OFDM symbols #1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11, #12, #13
	of a subframe overlapping with the aggressor ABS.

- Note 2: This noise is applied in OFDM symbols #0 of a subframe overlapping with the aggressor ABS.
- Note 3: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS
- Note 4: ABS pattern as defined in [9]. The 4th, 12th, 19th and 27th subframes indicated by ABS pattern are MBSFN ABS subframes. PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the MBSFN ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.
- Note 5: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7].
- Note 6: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].
- Note 7: Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1 and Cell2 is the same.
- Note 8: SIB-1 will not be transmitted in Cell2 in this test.
- Note 9: MBSFN Subframe Allocation as defined in [7], four frames with 24 bits is chosen for MBSFN subframe allocation.
- Note 10: The maximum number of uplink HARQ transmission is ≤ 2 so that each PHICH channel transmission is in a subframe protected by MBSFN ABS in this test.
- Note 11: According to Clause 6.9 in TS 36.211 [4].

Table 8.4.1.2.3-4: Minimum performance PDCCH/PCHICH - MBSFN ABS

Test Numl er	33 - 3	Reference Channel		NG tern	Propagation Conditions (Note 1) II 2 Cell 1 Cell 2		Correlation Matrix and Antenna	Reference Value		
			Cell 1	Cell 2			Configurati on	Pm- dsg (%)	SNR (dB) (Note 2)	
1	8 CCE	R15-1 FDD	OP.1 FDD	OP.1 FDD	EVA5	EVA5	2x2 Low	1	-4.2	

Note 1: The propagation conditions for Cell 1 and Cell2 are statistically independent.

Note 2: SNR corresponds to \hat{E}_s/N_{oc2} of cell 1.

Note 3: The correlation matrix and antenna configuration apply for Cell 1 and Cell 2.

8.4.1.2.4 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)

For the parameters for non-MBSFN ABS specified in Table 8.4.1-1 and Table 8.4.1.2.4-1, the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.1.2.4-2.

For the parameters for MBSFN ABS specified in Table 8.4.1-1 and Table 8.4.1.2.4-3, the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.1.2.4-4.

In Tables 8.4.1.2.4-1 and 8.4.1.2.4-3, Cell 1 is the serving cell, and Cell 2 and Cell3are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] including Cell 2 and Cell 3 is provided.

Table 8.4.1.2.4-1: Test Parameters for PDCCH/PCFICH – Non-MBSFN ABS

Param	eter	Unit	Cell 1	Cell 2	Cell 3	
Downlink nower	PDCCH_RA PHICH_RA OCNG_RA	dB	-3	-3	-3	
Downlink power allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	-3	-3	-3	
	N_{oc1}	dBm/15kHz	-98(Note 1)	N/A	N/A	
N_{oc} at antenna	N_{oc2}	dBm/15kHz	-98 (Note 2)	N/A	N/A	
port	N_{oc3}	dBm/15kHz	-93 (Note 3)	N/A	N/A	
\hat{E}_s/N		dB	Reference Value in Table 8.4.1.2.4-2	5	3	
BWch	annel	MHz	10	10	10	
Subframe Co	onfiguration		Non-MBSFN	Non-MBSFN	Non-MBSFN	
Time Offset be	etween Cells	μs	N/A 3		-1	
Frequency shift	between Cells	Hz	N/A	300	-100	
Cell	Id		0	126	1	
ABS patterr	n (Note 4)		N/A	00000100 00000100 00000100 00000100 00000100	00000100 00000100 00000100 00000100 00000100	
RLM/RRM Me Subframe Patt			00000100 00000100 00000100 00000100 00000100	N/A	N/A	
CSI Subframe	Ccsi,o		00000100 00000100 00000100 00000100 00000100	N/A	N/A	
Sets (Note 6)	Ccsi,1		11111011 11111011 11111011 11111011 11111011	N/A	N/A	
Number of control OFDM symbols			2	Note 7	Note 7	
PHICH Ng			1	N/A	N/A	
PHICH d			Normal	N/A	N/A	
Unused RE-s			OCNG	OCNG	OCNG	
Cyclic	oretix		Normal	Normal	Normal	

Note 1:	This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.
Note 2:	This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.
Note 3:	This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS
Note 4:	ABS pattern as defined in [9]. PDCCH/PCFICH other than that associated with SIB1/Paging are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell.
Note 5:	Time-domain measurement resource restriction pattern for PCell measurements as defined in [7];
Note 6:	As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7];
Note 7:	The number of control OFDM symbols is not available for ABS and is 2 for the subframe indicated by "0" of ABS pattern.
Note 8:	The number of the CRS ports in Cell1, Cell2 and Cell 3is the same.
Note 9:	SIB-1 will not be transmitted in Cell2 and Cell 3 in the test.

Table 8.4.1.2.4-2: Minimum performance PDCCH/PCFICH – Non-MBSFN ABS

Test Number	Aggregati on Level	Reference Channel	oc	NG Patt	ern	Propagation Conditions (Note 1)						Correlation Matrix and	Reference Value	
			Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell3	Antenna Configuration (Note 2)	Pm- dsg (%)	SNR (dB) (Note 3)			
1	8 CCE	R.15-2 FDD	OP.1 FDD	OP.1 FDD	OP.1 FDD	EVA5	EVA5	EVA5	2x2 Low	1	-2.2			

Note 1: The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.

Note 2: The correlation matrix and antenna configuration apply for Cell 1, Cell 2 and Cell 3.

According to Clause 6.9 in TS 36.211 [4]

Note 3: SNR corresponds to \hat{E}_{s}/N_{oc2} of cell 1.

Note 10

Table 8.4.1.2.4-3: Test Parameters for PDCCH/PCFICH – MBSFN ABS

Paran	neter	Unit	Cell 1	Cell 2	Cell 3	
Downlink nower	PDCCH_RA PHICH_RA OCNG_RA	dB	-3	-3	-3	
Downlink power allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	-3	-3	-3	
	N_{oc1}	dBm/15kHz	-98(Note 1)	N/A	N/A	
N_{oc} at antenna	N_{oc2}	dBm/15kHz	-98 (Note 2)	N/A	N/A	
port	N_{oc3}	dBm/15kHz	-93 (Note 3)	N/A	N/A	
\hat{E}_s/N		dB	Reference Value in Table 8.4.1.2.4-4	5	3	
BW _C	nannel	MHz	10	10	10	
Subframe Co	onfiguration		Non-MBSFN	MBSFN	MBSFN	
Time Offset b	etween Cells	μs	N/A	3	-1	
Frequency shift	between Cells	Hz	N/A	300	-100	
Cell	l ld		0	126	1	
ABS patter	ABS pattern (Note 4)		N/A	0001000000 0100000010 0000001000 0000000	0001000000 0100000010 0000001000 0000000	
RLM/RRM Measu Pattern (0001000000 0100000010 0000001000 0000000	N/A	N/A	
CSI Subframe	Ccsi,o		0001000000 0100000010 0000001000 0000000	N/A	N/A	
Sets (Note 6)	C _{CSI,1}		1110111111 1011111101 1111110111 1111111	N/A	N/A	
MBSFN Subframe)		N/A	001000 100001 000100 000000	001000 100001 000100 000000	
Number of contro			2	Note 8	Note 8	
PHICH Ng			1	N/A	N/A	
PHICH o			Normal	N/A	N/A	
Unused RE-s Cyclic			OCNG Normal	OCNG Normal	OCNG Normal	
Cyclic	hielix		INUITIAI	INUITIAI	INUIIIIai	

Note 1:	This noise is applied in OFDM symbols #1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11, #12, #13 of
	a subframe overlapping with the aggressor ABS.
Note 2:	This noise is applied in OFDM symbols #0 of a subframe overlapping with the aggressor ABS.
Note 3:	This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS
Note 4:	ABS pattern as defined in [9]. The 4 th , 12 th , 19 th and 27 th subframes indicated by ABS pattern
	are MBSFN ABS subframes. PDSCH other than SIB1/paging and its associated
	PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped
	with the MBSFN ABS subframe of aggressor cell and the subframe is available in the definition
	of the reference channel.
Note 5:	Time-domain measurement resource restriction pattern for PCell measurements as defined in
	[7].
Note 6:	As configured according to the time-domain measurement resource restriction pattern for CSI
	measurements defined in [7].
Note 7:	MBSFN Subframe Allocation as defined in [7], four frames with 24 bits are chosen for MBSFN
	subframe allocation.
Note 8:	The number of control OFDM symbols is not available for ABS and is 2 for the subframe
	indicated by "0" of ABS pattern.
Note 9:	The maximum number of uplink HARQ transmission is ≤ 2 so that each PHICH channel
	transmission is in a subframe protected by MBSFN ABS in this test.
Note 10:	The number of the CRS ports in Cell 1, Cell 2 and Cell 3 is the same.
Note 11:	SIB-1 will not be transmitted in Cell 2 and Cell 3 in this test.
Note 12:	According to Clause 6.9 in TS 36.211 [4].

Table 8.4.1.2.4-4: Minimum performance PDCCH/PCFICH – MBSFN ABS

Test Number	Aggregati on Level	Reference Channel	00	NG Patto	ern	Propagation Correlation Conditions (Note 1) Matrix and			Reference Value		
			Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell3	Antenna Configuration (Note 2)	Pm- dsg (%)	SNR (dB) (Note 3)
1	8 CCE	R.15-2 FDD	OP.1 FDD	OP.1 FDD	OP.1 FDD	EVA5	EVA5	EVA5	2x2 Low	1	-2.0

Note 1: The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.

Note 2: The correlation matrix and antenna configuration apply for Cell 1, Cell 2 and Cell 3.

Note 3: SNR corresponds to \hat{E}_s/N_{oc2} of cell 1.

8.4.2 TDD

The parameters specified in Table 8.4.2-1 are valid for all TDD tests unless otherwise stated.

Table 8.4.2-1: Test Parameters for PDCCH/PCFICH

Parameter		Unit	Single antenna port	Transmit diversity		
Uplink downlink configuration (Note 1)			0	0		
Special subframe (Note	configuration		4	4		
Number of PDC	CH symbols	symbols	2	2		
PHICH Ng (Note 3)		1	1		
PHICH du	ration		Normal	Normal		
Unused RE-s and PRB-s			OCNG	OCNG		
Cell ID			0	0		
Downlink nower	PDCCH_RA PHICH_RA OCNG_RA	dB	0	-3		
Downlink power allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	0	-3		
N_{oc} at antenna port		dBm/15kHz	-98	-98		
Cyclic prefix			Normal	Normal		
ACK/NACK feedback mode			Multiplexing	Multiplexing		
Note 1: as specified in Table 4.2-2 in TS 36.211 [4].						

Note 1: as specified in Table 4.2-2 in TS 36.211 [4]. Note 2: as specified in Table 4.2-1 in TS 36.211 [4]. Note 3: According to Clause 6.9 in TS 36.211 [4].

8.4.2.1 Single-antenna port performance

For the parameters specified in Table 8.4.2-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.2.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.4.2.1-1: Minimum performance PDCCH/PCFICH

Test	Bandwidth	Aggregation	Reference	OCNG	Propagation	Antenna	Referen	ce value
number		level	Channel	Pattern	Condition	configuration	Pm-dsg (%)	SNR (dB)
						and correlation Matrix		
1	10 MHz	8 CCE	R.15 TDD	OP.1 TDD	ETU70	1x2 Low	1	-1.6

8.4.2.2 Transmit diversity performance

8.4.2.2.1 Minimum Requirement 2 Tx Antenna Port

For the parameters specified in Table 8.4.2-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.2.2.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.4.2.2.1-1: Minimum performance PDCCH/PCFICH

Test	Bandwidth	Aggregation	Reference	OCNG	Propagation	Antenna	Reference value	
number		level	Channel	Pattern	Condition	configuration and correlation Matrix	Pm-dsg (%)	SNR (dB)
1	10 MHz	4 CCE	R.16 TDD	OP.1 TDD	EVA70	2 x 2 Low	1	0.1

8.4.2.2.2 Minimum Requirement 4 Tx Antenna Port

For the parameters specified in Table 8.4.2-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.2.2.2-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.4.2.2.2-1: Minimum performance PDCCH/PCFICH

Test	Bandwidth	Aggregation	Reference	OCNG	Propagation	Antenna	Reference	value
number		level	Channel	Pattern	Condition	configuration and correlation Matrix	Pm-dsg (%)	SNR (dB)
1	5 MHz	2 CCE	R.17 TDD	OP.1 TDD	EPA5	4 x 2 Medium	1	6.5

8.4.2.2.3 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS)

For the parameters for non-MBSFN ABS specified in Table 8.4.2-1 and Table 8.4.2.2.3-1, the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.2.2.3-2. The downlink physical setup is in accordance with Annex C.3.2 and Annex C.3.3.. In Table 8.4.2.2.3-1, Cell 1 is the serving cell, and Cell 2 is the aggressor cell. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 is according to Annex C.3.3, respectively.

For the parameters for MBSFN ABS specified in Table 8.4.2-1 and Table 8.4.2.3-3, the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.2.3-4. The downlink physical channel setup for Cell 1 is according to Annex C3.2 and for Cell 2 is according to Annex C.3.3, respectively.

Table 8.4.2.2.3-1: Test Parameters for PDCCH/PCFICH - Non-MBSFN ABS

Parameter		Unit	Cell 1	Cell 2
Uplink downlink configuration			1	1
Special subframe co			4	4
Downlink nower	PDCCH_RA PHICH_RA OCNG_RA	dB	-3	-3
Downlink power allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	-3	-3
	N_{oc1}	dBm/15kHz	-100.5 (Note 1)	N/A
N_{oc} at antenna port	N_{oc2}	dBm/15kHz	-98 (Note 2)	N/A
	N_{oc3}	dBm/15kHz	-95.3 (Note 3)	N/A
\widehat{E}_s/N_{oc2}		dB	Reference Value in Table 8.4.2.2.3-2	1.5
BW _{Channe}	BWchannel		10	10
Subframe Confiç	guration		Non-MBSFN	Non-MBSFN
Time Offset between	een Cells	μ\$	2.5 (synchronous cells)	
Cell Id			0	1
ABS pattern (N	lote 4)		N/A	0000010001 0000000001
RLM/RRM Measurem Pattern(Note			000000001 000000001	N/A
CSI Subframe	C _{CSI,0}		0000010001 000000001	N/A
Sets(Note 6)	Ccsi,1		1100101000 1100111000	N/A
Number of control OFDM symbols			3	3
ACK/NACK feedback mode			Multiplexing	N/A
PHICH Ng (Note 9)			1	N/A
PHICH duration			extended	N/A
	Unused RE-s and PRB-s			
Unused RE-s an Cyclic pref			OCNG Normal	OCNG Normal

- Note 1: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.
- Note 2: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.
- Note 3: This noise is applied in OFDM symbols of a subframe overlapping with aggressor non-ABS
- Note 4: ABS pattern as defined in [9]. PDCCH/PCFICH other than that associated with SIB1/Paging are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell.
- Note 5: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7].
- Note 6: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].
- Note 7: Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1 and Cell2 is the same.
- Note 8: SIB-1 will not be transmitted in Cell2 in the test.
- Note 9: According to Clause 6.9 in TS 36.211 [4].

Table 8.4.2.2.3-2: Minimum performance PDCCH/PCFICH - Non-MBSFN ABS

Test Numbe r	Aggregatio n Level	Referenc e Channel	OCNG	OCNG Pattern		pagation Correlation ditions Matrix and ote 1) Antenna			rence lue
			Cell 1	Cell 2	Cell 1	Cell 2	Configuration	Pm- dsg (%)	SNR (dB) (Note 2)
1	8 CCE	R15-1 TDD	OP.1 TDD	OP.1 TDD	EVA5	EVA5	2x2 Low	1	-3.9

The propagation conditions for Cell 1 and Cell 2 are statistically independent. Note 1:

Note 2:

SNR corresponds to \hat{E}_s/N_{oc2} of cell 1. The correlation matrix and antenna configuration apply for Cell 1 and Cell 2. Note 3:

Table 8.4.2.2.3-3: Test Parameters for PDCCH/PCFICH - MBSFN ABS

Parameter		Unit	Cell 1	Cell 2
Uplink downlink co	nfiguration		1	1
Special subframe co	onfiguration		4	4
Downstin Language	PDCCH_RA PHICH_RA OCNG_RA	dB	-3	-3
Downlink power allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	-3	-3
	N_{oc1}	dBm/15kHz	-100.5 (Note 1)	N/A
N_{oc} at antenna port	N_{oc2}	dBm/15kHz	-98 (Note 2)	N/A
	N_{oc3}	dBm/15kHz	-95.3 (Note 3)	N/A
\hat{E}_s/N_{oc2}		dB	Reference Value in Table 8.4.2.2.3-4	1.5
BW _{Channe}	ıl	MHz	10	10
Subframe Config	Subframe Configuration		Non-MBSFN	MBSFN
Time Offset between	een Cells	μs	2.5 (synchronous cells)	
Cell Id			0	126
ABS pattern (N	lote 4)		N/A	000000001 000000001
RLM/RRM Measurem Pattern(Note			0000000001 0000000001	N/A
CSI Subframe	C _{CSI,0}		000000001 000000001	N/A
Sets(Note 6)	C _{CSI,1}		1100111000 1100111000	N/A
MBSFN Subframe Allocation (Note 9)			N/A	000010
Number of control OFDM symbols			3	3
ACK/NACK feedback mode			Multiplexing	N/A
PHICH Ng (Note 10)			1	N/A
PHICH dura			extended	N/A
Unused RE-s an			OCNG	OCNG
Cyclic prefix			Normal	Normal

- Note 1: This noise is applied in OFDM symbols #1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11, #12, #13 of a subframe overlapping with the aggressor ABS.
- Note 2: This noise is applied in OFDM symbols #0 of a subframe overlapping with the aggressor ABS.
- Note 3: This noise is applied in OFDM symbols of a subframe overlapping with aggressor non-ABS
- Note 4: ABS pattern as defined in [9]. The 10th and 20th subframes indicated by ABS pattern are MBSFN ABS subframes.PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the MBSFN ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.
- Note 5: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7].
- Note 6: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].
- Note 7: Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1 and Cell2 is the same.
- Note 8: SIB-1 will not be transmitted in Cell2 in this test.
- Note 9: MBSFN Subframe Allocation as defined in [7], one frame with 6 bits is chosen for MBSFN subframe allocation.
- Note 10: According to Clause 6.9 in TS 36.211 [4].

Table 8.4.2.2.3-4: Minimum performance PDCCH/PCFICH – MBSFN ABS

Test Number	Aggregati on Level	Reference Channel	OCNG Pattern		Propag Condition	,	Correlation Matrix and	Referen	ce Value
			Cell 1	Cell 2	Cell 1	Cell 2	Antenna Configurati on	Pm-dsg (%)	SNR (dB) (Note 2)
1	8 CCE	R15-1 TDD	OP.1 TDD	OP.1 TDD	EVA5	EVA5	2x2 Low	1	-4.1

Note 1: The propagation conditions for Cell 1 and Cell2 are statistically independent.

Note 2: SNR corresponds to \hat{E}_s/N_{oc2} of cell 1.

Note 3: The correlation matrix and antenna configuration apply for Cell 1 and Cell 2.

8.4.2.2.4 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)

For the parameters for non-MBSFN ABS specified in Table 8.4.2-1 and Table 8.4.2.2.4-1, the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.2.2.4-2.

For the parameters for MBSFN ABS specified in Table 8.4.2-1 and Table 8.4.2.2.4-3, the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.2.2.4-4.

In Tables 8.4.2.2.4-1 and 8.4.2.2.4-3, Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] including Cell 2 and Cell 3 is provided.

Table 8.4.2.2.4-1: Test Parameters for PDCCH/PCFICH - Non-MBSFN ABS

Param	eter	Unit	Cell 1	Cell 2	Cell 3
Uplink downlink	configuration		1	1	1
Special subframe	configuration		4	4	4
Downlink power	PDCCH_RA PHICH_RA OCNG_RA	dB	-3	-3	-3
allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	-3	-3	-3
	N_{oc1}	dBm/15kHz	-98(Note 1)	N/A	N/A
N_{oc} at antenna	N_{oc2}	dBm/15kHz	-98 (Note 2)	N/A	N/A
port	N_{oc3}	dBm/15kHz	-93 (Note 3)	N/A	N/A
\hat{E}_s/N		dB	Reference Value in Table 8.4.2.2.4-2	5	3
BW _{Cha}	annel	MHz	10	10	10
Subframe Co	nfiguration		Non-MBSFN	Non-MBSFN	Non-MBSFN
Time Offset be	tween Cells	μs	N/A	3	-1
Frequency shift I	between Cells	Hz	N/A	300	-100
Cell	ld		0	126	1
ABS pattern	(Note 4)		N/A	0000000001 0000000001	0000000001 0000000001
RLM/RRM Me Subframe Patt			0000000001 0000000001	N/A	N/A
CSI Subframe	Ccsi,0		000000001 000000001	N/A	N/A
Sets (Note 6)	C _{CSI,1}		1100111000 1100111000	N/A	N/A
Number of control OFDM symbols			2	Note 7	Note 7
ACK/NACK feedback mode			Multiplexing	N/A	N/A
PHICH Ng (Note 10)			1	N/A	N/A
PHICH d	uration		Normal	N/A	N/A
Unused RE-s			OCNG	OCNG	OCNG
Cyclic p	orefix		Normal	Normal	Normal

- Note 1: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10, #12, #13 of a subframe overlapping with the aggressor ABS.
- Note 2: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.
- Note 3: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS
- Note 4: ABS pattern as defined in [9]. PDCCH/PCFICH other than that associated with SIB1/Paging are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell.
- Note 5: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7];
- Note 6: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7];
- Note 7: The number of control OFDM symbols is not available for ABS and is 2 for the subframe indicated by "0" of ABS pattern.
- Note 8: The number of the CRS ports in Cell1, Cell2 and Cell 3is the same.
- Note 9: SIB-1 will not be transmitted in Cell2 and Cell 3 in the test.
- Note 10: According to Clause 6.9 in TS 36.211 [4].

Table 8.4.2.2.4-2: Minimum performance PDCCH/PCFICH – Non-MBSFN ABS

Test Number	Aggregati on Level	Reference Channel	OC	NG Patt	ern	Propagation Conditions (Note 1)			Correlation Matrix and	Referer	nce Value
			Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell3	Antenna Configuration (Note 2)	Pm- dsg (%)	SNR (dB) (Note 3)
1	8 CCE	R.15-2 TDD	OP.1 TDD	OP.1 TDD	OP.1 TDD	EVA5	EVA5	EVA5	2x2 Low	1	-2.0

Note 1: The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.

Note 2: The correlation matrix and antenna configuration apply for Cell 1, Cell 2 and Cell 3.

Note 3: SNR corresponds to \hat{E}_s/N_{oc2} of cell 1.

Table 8.4.2.2.4-3: Test Parameters for PDCCH/PCFICH - MBSFN ABS

Param	eter	Unit	Cell 1	Cell 2	Cell 3
Uplink downlink	configuration		1	1	1
Special subframe			4	4	4
Downlink power	PDCCH_RA PHICH_RA OCNG_RA	dB	-3	-3	-3
allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	-3	-3	-3
	N_{oc1}	dBm/15kHz	-98 (Note 1)	N/A	N/A
N_{oc} at antenna	N_{oc2}	dBm/15kHz	-98 (Note 2)	N/A	N/A
port	N_{oc3}	dBm/15kHz	-93 (Note 3)	N/A	N/A
\widehat{E}_s/N		dB	Reference Value in Table 8.4.2.2.4-4	5	3
BWch	annel	MHz	10	10	10
Subframe Co	onfiguration		Non-MBSFN	MBSFN	MBSFN
Time Offset be	etween Cells	μs	N/A	3	-1
Frequency shift	between Cells	Hz	N/A	300	-100
Cell	Id		0	126	1
ABS patterr	(Note 4)		N/A	0000000001 0000000001	0000000001 0000000001
RLM/RRM Me Subframe Patt			0000000001 0000000001	N/A	N/A
CSI Subframe	Ccsi,0		000000001 000000001	N/A	N/A
Sets (Note 6)	C _{CSI,1}		1100111000 1100111000	N/A	N/A
MBSFN Subframe Allocation (Note 7)			N/A	000010	000010
Number of control	/		2	Note 8	Note 8
ACK/NACK feedback mode PHICH Ng (Note 11)			Multiplexing	N/A	N/A
			1	N/A	N/A
PHICH d	uration		Normal	N/A	N/A
Unused RE-s			OCNG	OCNG	OCNG
Cyclic p	orefix		Normal	Normal	Normal

- Note 1: This noise is applied in OFDM symbols #1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11, #12, #13 of a subframe overlapping with the aggressor ABS.
- Note 2: This noise is applied in OFDM symbols #0 of a subframe overlapping with the aggressor ABS.
- Note 3: This noise is applied in OFDM symbols of a subframe overlapping with aggressor non-ABS
- Note 4: ABS pattern as defined in [9]. The 10th and 20th subframes indicated by ABS pattern are MBSFN ABS subframes. PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the MBSFN ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.
- Note 5: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7].
- Note 6: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].
- Note 7: MBSFN Subframe Allocation as defined in [7], one frame with 6 bits is chosen for MBSFN subframe allocation.
- Note 8: The number of control OFDM symbols is not available for ABS and is 2 for the subframe indicated by "0" of ABS pattern.
- Note 9: Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1 and Cell2 is the same.
- Note 10: SIB-1 will not be transmitted in Cell2 in this test.
- Note 11: According to Clause 6.9 in TS 36.211 [4].

Table 8.4.2.2.4-4: Minimum performance PDCCH/PCFICH - MBSFN ABS

Test Number	Aggregati on Level			OCNG Pattern			ropagationitions (N		Correlation Matrix and	Referer	nce Value
			Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell3	Antenna Configuration (Note 2)	Pm- dsg (%)	SNR (dB) (Note 3)
1	8 CCE	R.15-2 TDD	OP.1 TDD	OP.1 TDD	OP.1 TDD	EVA5	EVA5	EVA5	2x2 Low	1	-1.8
Note 1:	The propagation	on conditions f	or Call 1	Call 2 or	24 Call 3	ara atatic	tically in	donondor	\ +		

Note 1: The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.

8.5 Demodulation of PHICH

The receiver characteristics of the PHICH are determined by the probability of miss-detecting an ACK for a NACK (Pm-an). It is assumed that there is no bias applied to the detection of ACK and NACK (zero-threshold delection).

8.5.1 FDD

The parameters specified in Table 8.5.1-1 are valid for all FDD tests unless otherwise stated.

Table 8.5.1-1: Test Parameters for PHICH

Parame	eter	Unit	Single antenna port	Transmit diversity
Downlink power	PDCCH_RA PHICH_RA OCNG_RA	dB	0	-3
allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	0	-3
PHICH du	ıration		Normal	Normal
PHICH Ng	(Note 1)		Ng = 1	Ng = 1
PDCCH C	Content			be included with the aligned with A.3.6.
Unused RE-s	and PRB-s		OCNG	OCNG
Cell ID			0	0
N_{oc} at antenna port		dBm/15kHz	-98	-98
Cyclic p	refix		Normal	Normal
Note 1: according	g to Clause 6.9 in	TS 36.211 [4]	_	

8.5.1.1 Single-antenna port performance

For the parameters specified in Table 8.5.1-1 the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.1.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.5.1.1-1: Minimum performance PHICH

Test	Bandwidth	Reference	OCNG	OCNG Propagation Antenna		Reference value		
number		Channel	Pattern	Condition	configuration and correlation Matrix	Pm-an (%)	SNR (dB)	
1	10 MHz	R.18	OP.1 FDD	ETU70	1 x 2 Low	0.1	5.5	
2	10 MHz	R.24	OP.1 FDD	ETU70	1 x 2 Low	0.1	0.6	

Note 2: The correlation matrix and antenna configuration apply for Cell 1, Cell 2 and Cell 3.

Note 3: SNR corresponds to \hat{E}_s/N_{oc2} of cell 1.

8.5.1.2 Transmit diversity performance

8.5.1.2.1 Minimum Requirement 2 Tx Antenna Port

For the parameters specified in Table 8.5.1-1 the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.1.2-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.5.1.2.1-1: Minimum performance PHICH

Test	Bandwidth	Reference	OCNG	Propagation	Antenna	Referen	ce value
number		Channel	Pattern	Condition	configuration and correlation Matrix	Pm-an (%)	SNR (dB)
1	10 MHz	R.19	OP.1 FDD	EVA70	2 x 2 Low	0.1	4.4
1A	5MHz (Note 1)	R.19-1	OP.1 FDD	EVA 70	2x2 Low	0.1	4
Note 1: Te	est case applicabil	itv is defined in	8.1.2.1.	•		•	

8.5.1.2.2 Minimum Requirement 4 Tx Antenna Port

For the parameters specified in Table 8.5.1-1 the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.1.2.2-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.5.1.2.2-1: Minimum performance PHICH

Test	Bandwidth	Reference	OCNG	Propagation	Antenna	Referen	ce value
number		Channel	Pattern	Condition	configuration	Pm-an (%)	SNR (dB)
					and		
					correlation		
					Matrix		
1	5 MHz	R.20	OP.1 FDD	EPA5	4 x 2 Medium	0.1	6.1

8.5.1.2.3 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS)

For the parameters specified in Table 8.5.1-1 and Table 8.5.1.2.3-1, the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.1.2.3-2. The downlink physical setup is in accordance with Annex C.3.2 and Annex C.3.3. In Table 8.5.1.2.3-1, Cell 1 is the serving cell, and Cell 2 is the aggressor cell. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 is according to Annex C.3.3, respectively.

Table 8.5.1.2.3-1: Test Parameters for PHICH

Paramete		Unit	Cell 1	Cell 2
Downlink power allocation	PDCCH_RA PHICH_RA OCNG_RA	dB	-3	-3
	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	-3	-3
N_{oc} at antenna port	N_{oc1}	dBm/15kHz	-100.5 (Note 1)	N/A
	N_{oc2}	dBm/15kHz	-98 (Note 2)	N/A
	N_{oc3}	dBm/15kHz	-95.3 (Note 3)	N/A
\widehat{E}_s/N_{oc}		dB	Reference Value in Table 8.5.1.2.3-2	1.5
BW _{Channe}	ıl	MHz	10	10
Subframe Config	guration		Non-MBSFN	Non-MBSFN
Time Offset between	een Cells	μs	2.5 (synchror	nous cells)
Cell Id			0	1
ABS pattern (N	lote 4)		N/A	00000100 00000100 00000100 01000100 00000100
RLM/RRM Measurem Pattern (Not			00000100 00000100 00000100 00000100 00000100	N/A
CSI Subframe Sets (Note 6)	Ccsi,o		00000100 00000100 00000100 01000100 00000100	N/A
	C _{CSI,1}		11111011 11111011 11111011 10111011 11111011	N/A
Number of control OFDM symbols			3	3
PHICH Ng (No			1	N/A
PHICH dura			extended	N/A
Unused RE-s an			OCNG	OCNG
Cyclic pref	IX		Normal	Normal

- Note 1: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS
- Note 2: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS
- Note 3: This noise is applied in OFDM symbols of a subframe overlapping with aggressor non-ABS
- Note 4: ABS pattern as defined in [9]. PHICH is transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell but not in the 26th subframe indicated by the ABS pattern.
- Note 5: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
- Note 6: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7]
- Note 7: Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1 and Cell2 is the same.
- Note 8: SIB-1 will not be transmitted in Cell2 in the test.
- Note 9: According to Clause 6.9 in TS 36.211 [4].

Table 8.5.1.2.3-2: Minimum performance PHICH

Test Number	Reference Channel	OCNG	Pattern	Cond	gation itions te 1)	Antenna Reference Value Configuration and		nce Value
		Cell 1	Cell 2	Cell 1 Cell 2		Correlation Matrix	Pm-an (%)	SNR (dB) (Note 2)
1	R.19	OP.1 FDD	OP.1 FDD	EPA5	EPA5	2x2 Low	0.1	4.6
Note 1:					ell 2 are s	tatistically indepen	dent.	
Note 2:	SNR corresponds to \hat{E}_s/N_{oc2} of cell 1.							
Note 3:	The correlation	matrix ar	nd antenna	a configur	ation appl	y for Cell 1 and Ce	II 2.	

8.5.1.2.4 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)

For the parameters specified in Table 8.5.1-1 and Table 8.5.1.2.4-1, the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.1.2.4-2. In Table 8.5.1.2.4-1, Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] including Cell 2 and Cell 3 is provided.

Table 8.5.1.2.4-1: Test Parameters for PHICH

Param	eter	Unit	Cell 1	Cell 2	Cell 3
Douglink nower	PDCCH_RA PHICH_RA OCNG_RA	dB	-3	-3	-3
Downlink power allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	-3	-3	-3
	N_{oc1}	dBm/15kHz	-98 (Note 1)	N/A	N/A
N_{oc} at antenna	N_{oc2}	dBm/15kHz	-98 (Note 2)	N/A	N/A
port	N_{oc3}	dBm/15kHz	-93 (Note 3)	N/A	N/A
\hat{E}_s/N		dB	Reference Value in Table 8.5.1.2.4-	5	3
BWch	annel	MHz	10	10	10
Subframe Co	onfiguration		Non-MBSFN	Non-MBSFN	Non-MBSFN
Time Offset be	etween Cells	μs	N/A	3	-1
Frequency shift	between Cells	Hz	N/A	300	-100
Cell	Id		0	126	1
PDCCH (Content		UL Grant should be included with the proper information aligned with A.3.6.	N/A	N/A
ABS patterr	n (Note 4)		N/A	00000100 00000100 00000100 00000100 00000100	00000100 00000100 00000100 00000100 00000100
RLM/RRM Me Subframe Patt			0000100 00000100 00000100 00000100 00000100	N/A	N/A
CSI Subframe	Ccsi,o		00000100 00000100 00000100 00000100 00000100	N/A	N/A
Sets (Note 6)			11111011 11111011 11111011 11111011	N/A	N/A
Number of control			2	Note 7	Note 7
PHICH Ng			1	N/A	N/A
PHICH d			Normal	N/A	N/A
Unused RE-s			OCNG	OCNG	OCNG
Cyclic	DIETIX		Normal	Normal	Normal

Note 1:	This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS
Note 2:	This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS
Note 3:	This noise is applied in OFDM symbols of a subframe overlapping with aggressor non-ABS
Note 4:	ABS pattern as defined in [9]. PHICH is transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell but not in the 26 th subframe indicated by the ABS pattern.
Note 5:	Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
Note 6:	As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7]
Note 7:	The number of control OFDM symbols is not available for ABS and is 2 for the subframe indicated by "0" of ABS pattern.
Note 8:	The number of the CRS ports in Cell 1, Cell 2 and Cell 3 is the same.
Note 9:	SIB-1 will not be transmitted in Cell 2 and Cell 3 in the test.
Note 10:	According to Clause 6.9 in TS 36.211 [4].

Table 8.5.1.2.4-2: Minimum performance PHICH

Test Number	Reference Channel	OC	NG Patt	ern		Propagation Conditions (Note 1)		Antenna Configuration	Reference Value	
		Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	and Correlation Matrix (Note 2)	Pm-an (%)	SNR (dB) (Note 3)
1	R.19	OP.1 FDD	OP.1 FDD	OP.1 FDD	EPA5	EVA5	EVA5	2x2 Low	0.1	5.0
Note 1: Note 2: Note 3:	: The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent. : The correlation matrix and antenna configuration apply for Cell 1, Cell 2 and Cell 3.									

8.5.2 TDD

The parameters specified in Table 8.5.2-1 are valid for all TDD tests unless otherwise stated.

Table 8.5.2-1: Test Parameters for PHICH

Param	eter	Unit	Single antenna port	Transmit diversity		
Uplink downlink cor 1)	nfiguration (Note		1	1		
Special subframe (Note	•		4	4		
	PDCCH_RA PHICH_RA OCNG_RA	dB	0	-3		
Downlink power allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	0	-3		
PHICH du	uration		Normal	Normal		
PHICH Ng	(Note 3)		Ng = 1	Ng = 1		
PDCCH C	Content			b be included with the on aligned with A.3.6.		
Unused RE-s	and PRB-s		OCNG	OCNG		
Cell I	D		0	0		
$N_{\it oc}$ at antenna port		dBm/15kHz	-98	-98		
Cyclic p			Normal	Normal		
ACK/NACK fee			Multiplexing	Multiplexing		
Note 1: as specif	ied in Table 4.2-2	in TS 36.211 [4]			

Note 1: as specified in Table 4.2-2 in TS 36.211 [4] Note 2: as specified in Table 4.2-1 in TS 36.211 [4] Note 3: according to Clause 6.9 in TS 36.211 [4]

8.5.2.1 Single-antenna port performance

For the parameters specified in Table 8.5.2-1 the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.2.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.5.2.1-1: Minimum performance PHICH

Test	Bandwidth	Reference	OCNG	Propagation	Antenna	Referen	ce value
number		Channel	Pattern	Condition	configuration and correlation Matrix	Pm-an (%)	SNR (dB)
1	10 MHz	R.18	OP.1 TDD	ETU70	1 x 2 Low	0.1	5.8
2	10 MHz	R.24	OP.1 TDD	ETU70	1 x 2 Low	0.1	1.3

8.5.2.2 Transmit diversity performance

8.5.2.2.1 Minimum Requirement 2 Tx Antenna Port

For the parameters specified in Table 8.5.2-1 the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.2.2.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.5.2.2.1-1: Minimum performance PHICH

Ī	Test	Bandwidth	Reference	OCNG	Propagation	Antenna	Referen	ce value
	number		Channel	Pattern	Condition	configuration and correlation Matrix	Pm-an (%)	SNR (dB)
ſ	1	10 MHz	R.19	OP.1 TDD	EVA70	2 x 2 Low	0.1	4.2

8.5.2.2.2 Minimum Requirement 4 Tx Antenna Port

For the parameters specified in Table 8.5.2-1 the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.2.2-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.5.2.2.2-1: Minimum performance PHICH

Test	Bandwidth	Reference	OCNG	Propagation	Antenna	Referen	ce value
number		Channel	Pattern	Condition	configuration	Pm-an (%)	SNR (dB)
					and		
					correlation		
					Matrix		
1	5 MHz	R.20	OP.1 TDD	EPA5	4 x 2 Medium	0.1	6.2

8.5.2.2.3 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS)

For the parameters specified in Table 8.5.2-1 and Table 8.5.2.2.3-1, the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.2.2.3-2. The downlink physical setup is in accordance with Annex C.3.2 and Annex C.3.3, In Table 8.5.2.2.3-1, Cell 1 is the serving cell, and Cell 2 is the aggressor cell. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 is according to Annex C.3.3, respectively.

Table 8.5.2.2.3-1: Test Parameters for PHICH

Paramete	r	Unit	Cell 1	Cell 2
Uplink downlink cor	nfiguration		1	1
Special subframe co	onfiguration		4	4
Downlink nower	PDCCH_RA PHICH_RA OCNG_RA	dB	-3	-3
Downlink power allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	-3	-3
	N_{oc1}	dBm/15kHz	-100.5 (Note 1)	N/A
N_{oc} at antenna port	N_{oc2}	dBm/15kHz	-98 (Note 2)	N/A
	N_{oc3}	dBm/15kHz	-95.3 (Note 3)	N/A
\hat{E}_s/N_{oc2}	\widehat{E}_s/N_{oc2}		Reference Value in Table 8.5.2.2.3-2	1.5
BW _{Channel}	BW _{Channel}		10	10
Subframe Config	guration		Non-MBSFN	Non-MBSFN
Time Offset between	een Cells	μs	2.5 (synchronous cells)	
Cell Id			0	1
ABS pattern (N	ote 4)		N/A	0000010001 0000000001
RLM/RRM Measureme Pattern (Note			000000001 000000001	N/A
CSI Subframe Sets	C _{CSI,0}		0000010001 0000000001	N/A
(Note 6)	C _{CSI,1}		1100101000 1100111000	N/A
Number of control OF	Number of control OFDM symbols		3	3
ACK/NACK feedback mode			Multiplexing	N/A
	PHICH Ng (Note 9)		1	N/A
PHICH dura	tion		extended	N/A
Unused RE-s and			OCNG	OCNG
Cyclic pref	ix		Normal	Normal

- Note 1: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS
- Note 2: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS
- Note 3: This noise is applied in OFDM symbols of a subframe overlapping with aggressor non-ABS
- Note 4: ABS pattern as defined in [9]. PHICH is transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell but not in subframe 5
- Note 5: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
- Note 6: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7]
- Note 7: Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1 and Cell2 is the same.
- Note 8: SIB-1 will not be transmitted in Cell2 in the test.
- Note 9: According to Clause 6.9 in TS 36.211 [4].

Table 8.5.2.2.3-2: Minimum performance PHICH

Test Number	Reference Channel	OCNG	Pattern	Cond	gation itions te 1)	Antenna Configuration and	Refere	nce Value
		Cell 1	Cell 2	Cell 1	Cell 2	Correlation Matrix	Pm-an (%)	SNR (dB) (Note 2)
1	R.19	OP.1 TDD	OP.1 TDD	EPA5	EPA5	2x2 Low	0.1	4.6
Note 1:					ell 2 are s	tatistically indepen	dent.	
Note 2:	SNR correspor	sponds to \widehat{E}_s/N_{oc2} of cell 1.						
Note 3:	The correlation	matrix ar	nd antenna	a configur	ation appl	y for Cell 1 and Ce	II 2.	

8.5.2.2.4 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)

For the parameters specified in Table 8.5.2-1 and Table 8.5.2.2.4-1, the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.2.2.4-2. In Table 8.5.2.2.4-1, Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] including Cell 2 and Cell 3 is provided.

Table 8.5.2.2.4-1: Test Parameters for PHICH

Paran		Unit	Cell 1	Cell 2	Cell 3
Uplink downlink			1	1	1
Special subfram			4	4	4
Downlink power	PDCCH_RA PHICH_RA OCNG_RA	dB	-3	-3	-3
allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	-3	-3	-3
	N_{oc1}	dBm/15kHz	-98 (Note 1)	N/A	N/A
N_{oc} at antenna	N_{oc2}	dBm/15kHz	-98 (Note 2)	N/A	N/A
port	N_{oc3}	dBm/15kHz	-93 (Note 3)	N/A	N/A
\hat{E}_s/N	V_{oc2}	dB	Reference Value in Table 8.5.2.2.4-2	5	3
BW _C r	nannel	MHz	10	10	10
Subframe Co	onfiguration		Non-MBSFN	Non-MBSFN Non-MBSFN	
Time Offset be	etween Cells	μs	N/A	3	-1
Frequency shift	between Cells	Hz	N/A	300	-100
Cell	ld		0	126	1
PDCCH	Content		UL Grant should be included with the proper information aligned with A.3.6.	N/A	N/A
ABS patter	n (Note 4)		N/A	000000001 0000000001	0000000001
RLM/RRM Measur Pattern (000000001 000000001	N/A	N/A
CSI Subframe	Ccsi,0		000000001 000000001	N/A	N/A
Sets (Note 6)	Ccsi,1		1100111000 1100111000	N/A	N/A
Number of contro	I OFDM symbols		2	Note 7	Note 7
ACK/NACK fee	edback mode		Multiplexing	N/A	N/A
PHICH Ng			1	N/A	N/A
PHICH o			Normal	N/A	N/A
Unused RE-s			OCNG	OCNG	OCNG
Cyclic	prefix		Normal	Normal	Normal

- Note 1: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS
- Note 2: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS
- Note 3: This noise is applied in OFDM symbols of a subframe overlapping with aggressor non-ABS
- Note 4: ABS pattern as defined in [9]. PHICH is transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell but not in subframe 5
- Note 5: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
- Note 6: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7]
- Note 7: The number of control OFDM symbols is not available for ABS and is 2 for the subframe indicated by "0" of ABS pattern.
- Note 8: The number of the CRS ports in Cell 1, Cell 2 and Cell 3 is the same.
- Note 9: SIB-1 will not be transmitted in Cell 2 and Cell 3 in the test.
- Note 10: According to Clause 6.9 in TS 36.211 [4].

Table 8.5.2.2.4-2: Minimum performance PHICH

Test Number	Reference Channel	OC	NG Patt	ern	Propagation Conditions (Note 1)		Antenna Reference Configuration		ence Value	
		Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	and Correlation Matrix (Note 2)	Pm-an (%)	SNR (dB) (Note 3)
1	R.19	OP.1 TDD	OP.1 TDD	OP.1 TDD	EPA5	EVA5	EVA5	2x2 Low	0.1	5.7
Note 1: Note 2: Note 3:	The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent. The correlation matrix and antenna configuration apply for Cell 1, Cell 2 and Cell 3.									

8.6 Demodulation of PBCH

The receiver characteristics of the PBCH are determined by the probability of miss-detection of the PBCH (Pm-bch), which is defined as

$$Pm - bch = 1 - \frac{A}{B}$$

Where A is the number of correctly decoded MIB PDUs and B is the Number of transmitted MIB PDUs (Redundancy versions for the same MIB are not counted separately).

8.6.1 FDD

Table 8.6.1-1: Test Parameters for PBCH

Parame	ter	Unit	Single antenna port	Transmit diversity
Downlink power	PBCH_RA	dB	0	-3
allocation	PBCH_RB	dB	0	-3
$N_{\it oc}$ at anter	nna port	dBm/15kHz	-98	-98
Cyclic pr	efix		Normal	Normal
Cell II)		0	0
		-2 in TS 36.211 [4 -1 in TS 36.211 [4		

8.6.1.1 Single-antenna port performance

For the parameters specified in Table 8.6.1-1 the average probability of a miss-detecting PBCH (Pm-bch) shall be below the specified value in Table 8.6.1.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.6.1.1-1: Minimum performance PBCH

Test	Bandwidth	Reference	Propagation	Antenna	Referen	ence value	
number		Channel	Condition	configuration and correlation Matrix	Pm-bch (%)	SNR (dB)	
1	1.4 MHz	R.21	ETU70	1 x 2 Low	1	-6.1	

8.6.1.2 Transmit diversity performance

8.6.1.2.1 Minimum Requirement 2 Tx Antenna Port

For the parameters specified in Table 8.6.1-1 the average probability of a miss-detected PBCH (Pm-bch) shall be below the specified value in Table 8.6.1.2.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.6.1.2.1-1: Minimum performance PBCH

Test	Bandwidth	Reference	Propagation	Antenna	Referen	ce value
number		Channel	Condition	configuration	Pm-bch (%)	SNR (dB)
				and		
				correlation		
				Matrix		
1	1.4 MHz	R.22	EPA5	2 x 2 Low	1	-4.8

8.6.1.2.2 Minimum Requirement 4 Tx Antenna Port

For the parameters specified in Table 8.6.1-1 the average probability of a miss-detected PBCH (Pm-bch) shall be below the specified value in Table 8.6.1.2.2-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.6.1.2.2-1: Minimum performance PBCH

Te	st	Bandwidth	Reference	Propagation	Antenna	Referen	ce value
num	ber		Channel	Condition	configuration	Pm-bch (%)	SNR (dB)
					and		
					correlation		
					Matrix		
1		1.4 MHz	R.23	EVA5	4 x 2 Medium	1	-3.5

8.6.1.2.3 Minimum Requirement 2 Tx Antenna Port under Time Domain Measurement Resource Restriction with CRS Assistance Information

For the parameters specified in Table 8.6.1.2.3-1 and Table 8.6.1.2.3-2, the averaged probability of a miss-detected PBCH (Pm-bch) shall be below the specified value in Table 8.6.1.2.3-2. Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, repectively. The CRS assistance information [7] including Cell 2 and Cell 3 is provided.

Table 8.6.1.2.3-1: Test Parameters for PBCH

Param	eter	Unit	Cell 1	Cell 2	Cell 3
Downlink power	PBCH_RA OCNG_RA	dB	-3	-3	-3
allocation	PBCH_RB OCNG_RB	dB	-3	-3	-3
N_{oc} at ante	enna port	dBm/15kHz	-98	N/A	N/A
$\frac{\mathcal{E}_3}{N_{oc}}$		dB	Reference Value in Table 8.6.1.2.3-2	4	2
BWch	annel	MHz	1.4	1.4	1.4
Time Offset be	etween Cells	μs	N/A	3	-1
Frequency shift	between Cells	Hz	N/A	300	-100
Cell	Id		0	126	1
ABS Patteri	n (Note 4)		N/A	01000000 01000000 01000000 01000000 01000000	01000000 01000000 01000000 01000000 01000000
Unused RE-s	and PRB-s		OCNG	OCNG	OCNG
Cyclic	orefix		Normal	Normal	Normal

Note 1: The number of the CRS ports in Cell1, Cell2 and Cell 3 is the same.

Note 2: SIB-1 will not be transmitted in Cell2 and Cell 3 in the test.

Note 3: The PBCH transmission from Cell 1, Cell 2 and Cell 3 overlap. The same PBCH transmission redundancy version is used for Cell 1, Cell 2 and Cell 3.

Note 4: ABS pattern as defined in [9]. PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.

Table 8.6.1.2.3-2: Minimum performance PBCH

Test	Reference	Propagation Conditions (Note 1)		Antenna Configuration	Reference Value				
Number	Channel	Cell 1	Cell 2	Cell 3	and Correlation Matrix (Note 2)	Pm-bch (%)	SNR (dB) (Note 3)		
1	R.22	ETU30	ETU30	ETU30	2x2 Low	1	-3.0		
Note 1:	The propagation	on conditions for	or Cell 1, C	Cell 2 and Cell	3 are statistically independent	t.			
Note 2:	The correlation	n matrix and ar	ntenna con	figuration appl	y for Cell 1, Cell 2 and Cell 3.				
Note 3:	SNR correspon	The correlation matrix and antenna configuration apply for Cell 1, Cell 2 and Cell 3. SNR corresponds to \hat{E}_s/N_{oc} of cell 1.							

8.6.2 TDD

Table 8.6.2-1: Test Parameters for PBCH

Parame	ter	Unit	Single antenna port	Transmit diversity			
Uplink downlink of (Note			1	1			
Special subframe (Note 2	•		4	4			
Downlink power	PBCH_RA	dB	0	-3			
allocation	PBCH_RB	dB	0	-3			
$N_{\it oc}$ at anter	na port	dBm/15kHz	-98	-98			
Cyclic pr	efix		Normal	Normal			
Cell II)		0	0			
	Note 1: as specified in Table 4.2-2 in TS 36.211 [4].						

8.6.2.1 Single-antenna port performance

For the parameters specified in Table 8.6.2-1 the average probability of a miss-detected PBCH (Pm-bch) shall be below the specified value in Table 8.6.2.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.6.2.1-1: Minimum performance PBCH

1	Test	Bandwidth	Reference	Propagation	Antenna	Reference value		
nu	ımber		Channel	Condition	configuration and correlation Matrix	Pm-bch (%)	SNR (dB)	
	1	1.4 MHz	R.21	ETU70	1 x 2 Low	1	-6.4	

8.6.2.2 Transmit diversity performance

8.6.2.2.1 Minimum Requirement 2 Tx Antenna Port

For the parameters specified in Table 8.6.2-1 the average probability of a miss-detected PBCH (Pm-bch) shall be below the specified value in Table 8.6.2.2.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.6.2.2.1-1: Minimum performance PBCH

Test	Bandwidth	Reference	Propagation	Antenna	Referen	Reference value		
number		Channel	Condition	configuration	Pm-bch (%)	SNR (dB)		
				and				
				correlation Matrix				
1	1.4 MHz	R.22	EPA5	2 x 2 Low	1	-4.8		

8.6.2.2.2 Minimum Requirement 4 Tx Antenna Port

For the parameters specified in Table 8.6.2-1 the average probability of a miss-detected PBCH (Pm-bch) shall be below the specified value in Table 8.6.2.2.2-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.6.2.2.2-1: Minimum performance PBCH

Test	Bandwidth	Reference	Propagation	Antenna	Referen	ce value
number		Channel	Condition	configuration and correlation Matrix	Pm-bch (%)	SNR (dB)
1	1.4 MHz	R.23	EVA5	4 x 2 Medium	1	-4.1

8.6.2.2.3 Minimum Requirement 2 Tx Antenna Port under Time Domain Measurement Resource Restriction with CRS Assistance Information

For the parameters specified in Table 8.6.2.2.3-1 and Table 8.6.2.2.3-2, the averaged probability of a miss-detected PBCH (Pm-bch) shall be below the specified value in Table 8.6.2.2.3-2. Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C3.3, respectively. The CRS assistance information [7] including Cell 2 and Cell 3 is provided.

Table 8.6.2.2.3-1: Test Parameters for PBCH

Param	eter	Unit	Cell 1	Cell 2	Cell 3
Downlink power	PBCH_RA OCNG_RA	dB	-3	-3	-3
allocation	PBCH_RB OCNG_RB	dB	-3	-3	-3
N_{oc} at ante	enna port	dBm/15kHz	-98	N/A	N/A
$rac{\widehat{E}_s}{N_{ot}}$		dB	Reference Value in Table 4 8.6.2.2.3-2		2
BWch	annel	MHz	1.4	1.4	1.4
Time Offset be	etween Cells	μs	N/A	3	-1
Frequency shift	between Cells	Hz	N/A	300	-100
Cell	Id		0	126	1
ABS Pattern (Note 4)			N/A	0000000001 0000000001	0000000001 0000000001
Unused RE-s	and PRB-s		OCNG	OCNG	OCNG
Cyclic	orefix		Normal	Normal	Normal

Note 1: The number of the CRS ports in Cell1, Cell2 and Cell 3is the same.

Note 2: SIB-1 will not be transmitted in Cell2 and Cell 3 in the test.

Note 3: The PBCH transmission from Cell 1, Cell 2 and Cell 3 overlap. The same PBCH transmission redundancy version is used for Cell 1, Cell 2 and Cell 3.

Note 4: ABS pattern as defined in [9]. PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.

Table 8.6.2.2.3-2: Minimum performance PBCH

Test	Reference	Propagation	n Condition	ons (Note 1)	Antenna Configuration	Refe	Reference Value			
Number	Channel	Cell 1	Cell 2	Cell 3	and Correlation Matrix	Pm-bch	SNR (dB) (Note			
					(Note 2)	(%)	3)			
1	R.22	ETU30	ETU30	ETU30	2x2 Low 1 -3.0					
Note 1:	The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.									
Note 2:	The correlation	n matrix and ar	ntenna cor	figuration appl	v for Cell 1, Cell 2 and Cell 3	_				

Note 3: SNR corresponds to \hat{E}_s/N_{oc} of cell 1.

8.7 Sustained downlink data rate provided by lower layers

The purpose of the test is to verify that the Layer 1 and Layer 2 correctly process in a sustained manner the received packets corresponding to the maximum number of DL-SCH transport block bits received within a TTI for the UE category indicated. The sustained downlink data rate shall be verified in terms of the success rate of delivered PDCP SDU(s) by Layer 2. The test case below specifies the RF conditions and the required success rate of delivered TB by Layer 1 to meet the sustained data rate requirement. The size of the TB per TTI corresponds to the largest possible DL-SCH transport block for each UE category using the maximum number of layers for spatial multiplexing. Transmission modes 1 and 3 are used with radio conditions resembling a scenario where sustained maximum data rates are available.

Test case is selected according to table 8.7-1 depending on UE capability for CA and EPDCCH.

Single carrier UE Single carrier UE CA UE not **CA UE supporting** not supporting supporting supporting **EPDCCH EPDCCH EPDCCH EPDCCH FDD** 8.7.1 8.7.1 8.7.3 8.7.1, 8.7.3 **TDD** 8.7.4 8.7.2, 8.7.4 8.7.2 8.7.2

Table 8.7-1: SDR test applicability

8.7.1 FDD (single carrier and CA)

The parameters specified in Table 8.7.1-1 are valid for all FDD tests unless otherwise stated.

Parameter	Unit	Value
Cyclic prefix		Normal
Cell ID		0
Inter-TTI Distance		1
Number of HARQ processes per component carrier	Processes	8
Maximum number of HARQ transmission		4
Redundancy version coding sequence		{0,0,1,2} for 64QAM and 256QAM
Number of OFDM symbols for PDCCH per component carrier	OFDM symbols	1
Cross carrier scheduling		Not configured
Propagation condition		Static propagation condition No external noise sources are applied

Table 8.7.1-1: Common Test Parameters (FDD)

For UE not supporting 256QAM, the requirements are specified in Table 8.7.1-3, with the addition of the parameters in Table 8.7.1-2 and the downlink physical channel setup according to Annex C.3.2. The test points are applied to UE category and bandwidth combination with maximum aggregated bandwidth as specified in Table 8.7.1-4. The TB success rate shall be sustained during at least 300 frames.

For UE supporting 256QAM, the requirements are specified in Table 8.7.1-6, with the addition of the parameters in Table 8.7.1-5 and the downlink physical channel setup according to Annex C.3.2. The test points are applied to UE category and bandwidth combination with maximum aggregated bandwidth as specified in Table 8.7.1-7, the TB success rate shall be sustained during at least 300 frames. For UE supporting 256QAM, the requirement in Table 8.7.1-3 is not applicable.

For UE supporting 256QAM and category 9/10 and category 13, the requirements are specified in both Table 8.7.1-3 and Table 8.7.1-6, with the addition of the parameters in Table 8.7.1-2 and in Table 8.7.1-5 respectively. The downlink physical channel setup according to Annex C.3.2. The test points are applied to UE category and bandwidth combination with maximum aggregated bandwidth as specified in Table 8.7.1-4 and in Table 8.7.1-7 for the category 9/10 and category 13, the TB success rate shall be sustained during at least 300 frames.

The test coverage for different number of component carriers is defined in 8.1.2.4.

Table 8.7.1-2: test parameters for sustained downlink data rate (FDD 64QAM)

T(Bandwidth	Transmission	Antenna	Codebook		nlink pocation ($\hat{E}_{\scriptscriptstyle s}$ at	Symbols for
Test	(MHz)	mode	configuration	subset restriction	$ ho_{\scriptscriptstyle A}$	$ ho_{\scriptscriptstyle B}$	σ	antenna port (dBm/15kHz)	unused PRBs
1	10	1	1 x 2	N/A	0	0	0	-85	OP.6 FDD
2	10	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
3,4,6	20	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
3A	10	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
3B, 4A	2x10	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
3C, 4B	15	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
6A	2x20	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
6B	10+15	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
6C	10+20	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
6D	15+20	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
6E	2x15	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
7	3x20	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
7A	15+20+20	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
7B	10+20+20	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
7C	15+15+20	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
7D	10+15+20	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
7E	10+10+20	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
7F	10+15+15	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
7G	5+10+20	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD

Note 1: For CA test cases, PUCCH format 1b with channel selection is used to feedback ACK/NACK for Test 1-6E, and PUCCH format 3 is used to feedback ACK/NACK for Test 7-7G.

Table 8.7.1-3: Minimum requirement (FDD 64QAM)

Test	Number of bits of a DL-SCH transport	Measurement channel	Reference value		
	block received within a TTI		TB success rate [%]		
1	10296	R.31-1 FDD	95		
2	25456	R.31-2 FDD	95		
3	51024	R.31-3 FDD	95		
3A	36696 (Note 2)	R.31-3A FDD	85		
3B	25456	R.31-2 FDD	95		
3C	51024	R.31-3C FDD	85		
4	75376 (Note 3)	R.31-4 FDD	85		
4A	36696 (Note 2)	R.31-3A FDD	85		
4B	55056 (Note 5)	R.31-4B FDD	85		
6	75376 (Note 3)	R.31-4 FDD	85		
6A	75376 (Note 3)	R.31-4 FDD	85		
6B	36696 (Note 2) for 10MHz CC	R.31-3A FDD for 10MHz CC	85		
	55056 for 15MHz CC	R.31-5 FDD for 15MHz CC			
6C	36696 (Note 2) for 10MHz CC	R.31-3A FDD for 10MHz CC	85		
	75376 (Note 3) for 20MHz CC	R.31-4 FDD for 20MHz CC			
6D	55056 for 15MHz CC	R.31-5 FDD for 15MHz CC	85		
	75376 (Note 3) for 20MHz CC	R.31-4 FDD for 20MHz CC			
6E	55056 (Note 5) for two 15MHz CCs	R.31-4B FDD for two 15MHz CCs	85		
7	75376 (Note 3)	R.31-4 FDD	85		
7A	55056 (Note 5) for 15MHz CC	R.31-5 FDD for 15MHz CC	85		
	75376 (Note 3) for 20MHz CC	R.31-4 FDD for 20MHz CC			
7B	36696 (Note 2) for 10MHz CC	R.31-3A FDD for 10MHz CC	85		
	75376 (Note 3) for 20MHz CC	R.31-4 FDD for 20MHz CC			
7C	55056 (Note 5) for 15MHz CC	R.31-5 FDD for 15MHz CC	85		
	75376 (Note 3) for 20MHz CC	R.31-4 FDD for 20MHz CC			
7D	36696 (Note 2) for 10MHz CC	R.31-3A FDD for 10MHz CC	85		
	55056 (Note 5) for 15MHz CC	R.31-5 FDD for 15MHz CC			
	75376 (Note 3) for 20MHz CC	R.31-4 FDD for 20MHz CC			
7E	36696 (Note 2) for 10MHz CC	R.31-3A FDD for 10MHz CC	85		
	75376 (Note 3) for 20MHz CC	R.31-4 FDD for 20MHz CC			
7F	36696 (Note 2) for 10MHz CC	R.31-3A FDD for 10MHz CC	85		
	55056 (Note 5) for 15MHz CC	R.31-5 FDD for 15MHz CC			
7G	18336 (Note 6) for 5MHz CC	R.31-6 FDD for 5MHz CC	85		
	36696 (Note 2) for 10MHz CC	R.31-3A FDD for 10MHz CC			
	75376 (Note 3) for 20MHz CC	R.31-4 FDD for 20MHz CC			

Note 1: For 2 layer transmissions, 2 transport blocks are received within a TTI.

Note 2: 35160 bits for sub-frame 5.

Note 3: 71112 bits for sub-frame 5.

Note 4: The TB success rate is defined as TB success rate = 100%*N_{DL_correct_rx}/ (N_{DL_newtx} + N_{DL_retx}), where N_{DL_newtx} is the number of newly transmitted DL transport blocks, N_{DL_retx} is the number of retransmitted DL transport blocks, and N_{DL_correct_rx} is the number of correctly received DL transport blocks.

Note 5: 52752bits for sub-frame 5. Note 6: 15840bits for sub-frame 0.

Table 8.7.1-4: Test points for sustained data rate (FRC 64QAM)

	Maximum supported							Cat. 11, 12
CA config	Bandwidth/ Bandwidth combination (MHz)	Cat. 1	Cat. 2	Cat. 3	Cat. 4	Cat. 6,7	Cat. 9,10	DL Cat. 11, 12
Cinala	10	1	2	3A	3A	-	-	-
Single	15	-	-	3C	4B	-	-	-
carrier	20	-	-	3	4	6	-	-
	10+10	-	-	3B	4A	4A	4A	-
	10+15		-	3B	4A	6B	6B	ı
CA	10+20	-	-	3B	4A	6C	6C	-
with	15+15			3B	4A	6E	6E	ı
2CCs	15+20	ı	-	3B	4A	6D	6D	ı
	20+20	-	-	3B or 3 (Note 4)	4A or 4 (Note 4)	6A	6A	ı
	3x20	ı	-	-	-	6A	7	7
	15+20+20	ı	-	-	-	6A	7A	7A
C A	10+20+20	ı	-	-	-	6A	7B	7B
CA with	15+15+20					6D	7C	7C
3CCs	10+15+20	ı	-	-	-	6D	7D	7D
3003	10+10+20	ı	-	-	-	7E	7E	7E
	10+15+15	ı	-	-	-	7F	7F	7F
	5+10+20	1	-	-	-	7G	7G	7G

Note 1: Void.

Note 2: For non-CA UE, test is selected for maximum supported bandwidth.

Note 3: Void.

Note 4: If the intra-band contiguous CA is the only CA configuration supported by category 3 or 4 UE, the single carrier test is selecte, i.e., Test 3 for UE category 3 and Test 4 for UE category 4. Otherwise, Test 3B applies for category 3 UE and Test 4A applies for category 4 UE.

Note 5: The applicability of requirements for different CA configurations and bandwidth combination sets is defined in 8.1.2.3.

Table 8.7.1-5: test parameters for sustained downlink data rate (FDD 256QAM)

Test	Bandwidth	Transmission	Antenna	Codebook subset		nlink p		$\hat{E}_{\scriptscriptstyle S}$ at	Symbols for
1621	(MHz)	mode	configuration	restriction	$ ho_{\scriptscriptstyle A}$	$ ho_{\scriptscriptstyle B}$	σ	antenna port (dBm/15kHz)	unused PRBs
1	20	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
2	2x10	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
3	10+15	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
4	10+20	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
5	2x15	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
6	15+20	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
7	2x20	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
8	3x20	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
9	15+20+20	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
10	10+20+20	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
11	15+15+20	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
12	10+15+20	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
13	10+10+20	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
14	10+15+15	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
15	5+10+20	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
Note 1	: For CA tes	t cases, PUCCH fo	rmat 3 is used to	feedback ACk	<td></td> <td></td> <td></td> <td></td>				

Table 8.7.1-6: Minimum requirement (FDD 256QAM)

Test	Measurement channel	Reference value					
		TB success rate [%]					
1	R.68 FDD	85					
2	R.68-2 FDD	85					
3	R.68-2 FDD for 10MHz CC	85					
3	R.68-1 FDD for 15MHz CC						
4	R.68-2 FDD for 10MHz CC	85					
-	R.68 FDD for 20MHz CC						
5	R.68-1 FDD	85					
6	R.68-1 FDD for 15MHz CC	85					
	R.68 FDD for 20MHz CC						
7	R.68 FDD	85					
8	R.68 FDD	85					
9	R.68-1 FDD for 15MHz CC	85					
9	R.68 FDD for 20MHz CC						
10	R.68-2 FDD for 10MHz CC	85					
10	R.68 FDD for 20MHz CC						
11	R.68-1 FDD for 15MHz CC	85					
11	R.68 FDD for 20MHz CC						
	R.68-2 FDD for 10MHz CC	85					
12	R.68-1 FDD for 15MHz CC						
	R.68 FDD for 20MHz CC						
13	R.68-2 FDD for 10MHz CC	85					
13	R.68 FDD for 20MHz CC						
14	R.68-2 FDD for 10MHz CC	85					
1-7	R.68-1 FDD for 15MHz CC						
	R.68-3 FDD for 5MHz CC	85					
15	R.68-2 FDD for 10MHz CC						
	R.68 FDD for 20MHz CC						
Note 1:	For 2 layer transmissions, 2 transport blooming	ocks are received within a					
	TTI.						
Note 2:	The TB success rate is defined as TB su						
	100%*NDL_correct_rx/ (NDL_newtx + NDL_retx), \						
	number of newly transmitted DL transpo						
	number of retransmitted DL transport blo						
	number of correctly received DL transport blocks.						

Table 8.7.1-7: Test points for sustained data rate (FRC 256QAM)

	Maximum supported	Cat. 11, 12			
CA config	Bandwidth/ Bandwidth combination (MHz)	DL Cat. 11, 12	DL Cat. 13		
Single carrier	20	-	1		
	2x10	2	2		
C A	10+15	3	3		
CA with	10+20	4	4		
2CCs	2x15	5	5		
2003	15+20	6	6		
	20+20	7	7		
	3x20	8	7		
	15+20+20	9	7		
C 4	10+20+20	10	7		
CA with	15+15+20	11	6		
3CCs	10+15+20	12	6		
3008	10+10+20	13	13		
	10+15+15	14	14		
	5+10+20	15	15		

8.7.2 TDD (single carrier and CA)

The parameters specified in Table 8.7.2-1 are valid for all TDD tests unless otherwise stated.

Table 8.7.2-1: Common Test Parameters (TDD)

Parameter	Unit	Value			
Special subframe configuration (Note 1)		4			
Cyclic prefix		Normal			
Cell ID		0			
Inter-TTI Distance		1			
Maximum number of HARQ transmission		4			
Redundancy version coding sequence		{0,0,1,2} for 64QAM and 256QAM			
Number of OFDM symbols for PDCCH per component carrier	OFDM symbols	1			
Cross carrier scheduling		Not configured			
Propagation condition		Static propagation condition No external noise sources are applied			
Note 1: as specified in Table 4.2-1 in TS 36.211 [4].					

For UE not supporting 256QAM, the requirements are specified in Table 8.7.2-3, with the addition of the parameters in Table 8.7.2-2 and the downlink physical channel setup according to Annex C.3.2. The test points are applied to UE category and bandwidth combination with maximum aggregated bandwidth as specified in Table 8.7.2-4. The TB success rate shall be sustained during at least 300 frames.

For UE supporting 256QAM, the requirements are specified in Table 8.7.2-6, with the addition of the parameters in Table 8.7.2-5 and the downlink physical channel setup according to Annex C.3.2. The test points are applied to UE category and bandwidth combination with maximum aggregated bandwidth as specified in Table 8.7.2-7. The TB success rate shall be sustained during at least 300 frames. For UE supporting 256QAM, the requirement in Table 8.7.2-3 is not applicable.

For UE supporting 256QAM and category 9/10 and category 13, the requirements are specified in both Table 8.7.2-3 and Table 8.7.2-6, with the addition of the parameters in Table 8.7.2-2 and in Table 8.7.2-5 respectively. The downlink physical channel setup according to Annex C.3.2. The test points are applied to UE category and bandwidth combination with maximum aggregated bandwidth as specified in Table 8.7.2-4 and in Table 8.7.2-7 for the category 9/10 and category 13, the TB success rate shall be sustained during at least 300 frames.

The test coverage for different number of component carriers is defined in 8.1.2.4.

Table 8.7.2-2: test parameters for sustained downlink data rate (TDD 64QAM)

Test	Bandwidth		Antenna	Codebook subset	Downlink power allocation (dB)			$\hat{E}_{\scriptscriptstyle s}$ at antenna	ACK/NACK feedback	Symbols for unused
(MHz)	mode	configuration	restriction	$ ho_{\scriptscriptstyle A}$	$ ho_{\scriptscriptstyle B}$	σ	port (dBm/15 kHz)	mode	PRBs	
1	10	1	1 x 2	N/A	0	0	0	-85	Bundling	OP.6 TDD
2	10	3	2 x 2	10	-3	-3	0	-85	Bundling	OP.1 TDD
3	20	3	2 x 2	10	-3	-3	0	-85	Bundling	OP.1 TDD
3A	15	3	2 x 2	10	-3	-3	0	-85	Muliplexing	OP.2 TDD
4,6	20	3	2 x 2	10	-3	-3	0	-85	Multiplexing	OP.1 TDD
6A	2x20	3	2 x 2	10	-3	-3	0	-85	- (Note 1)	OP.1 TDD
6B	20+15	3	2 x 2	10	-3	-3	0	-85	(Note 1)	OP.1 TDD
7	3x20	3	2 x 2	10	-3	-3	0	-85	(Note 2)	OP.1 TDD
7A	15+20+20	3	2 x 2	10	-3	-3	0	-85	(Note 2)	OP.1 TDD

Note 1: PUCCH format 1b with channel selection is used to feedback ACK/NACK.

Note 2: PUCCH format 3 is used to feedback ACK/NACK.

Table 8.7.2-3: Minimum requirement (TDD 64QAM)

Test	Number of bits of a DL-SCH transport block received within a TTI for normal/special sub-frame	Measurement channel	Reference value TB success rate [%]
1	10296/0	R31-1 TDD	95
2	25456/0	R31-2 TDD	95
3	51024/0	R31-3 TDD	95
3A	51024/0	R31-3A TDD	85
4	75376/0 (Note 2)	R31-4 TDD	85
6	75376/0 (Note 2)	R.31-4 TDD	85
6A	75376/0 (Note 2)	R.31-4 TDD	85
6B	55056/0 for 15MHz CC 75376/0 for 20MHz CC (Note 2)	R31-5 TDD for 15MHz CC R.31-4 TDD for 20MHz CC	85
7	75376/0 (Note 2)	R.31-4 TDD	85
7A	55056/0 for 15MHz CC 75376/0 for 20MHz CC (Note 2)	R.31-5 TDD for 15MHz CC R.31-4 TDD for 20MHz CC	85

Note 1: For 2 layer transmissions, 2 transport blocks are received within a TTI.

Note 2: 71112 bits for sub-frame 5.

Note 3: The TB success rate is defined as TB success rate = 100%*N_{DL_correct_rx}/ (N_{DL_newtx} + N_{DL_retx}), where N_{DL_newtx} is the number of newly transmitted DL transport blocks, N_{DL_retx} is the number of retransmitted DL transport blocks, and N_{DL_correct_rx} is the number of correctly received DL transport blocks.

Table 8.7.2-4: Test points for sustained data rate (FRC 64QAM)

CA config	Bandwidth/ Bandwidth combination (MHz)	Cat. 1	Cat. 2	Cat. 3	Cat. 4	Cat. 6,7	Cat. 9, 10	Cat. 11, 12 DL Cat. 11, 12
Circ elle	10	1	2	-	-	-	-	-
Single	15	-	-	3A	3A	-	-	-
carrier	20	-	-	3	4	6	-	-
CA with	20+20	-		3(Note 4)	4 (Note 4)	6A	6A	-
2CCs	15+20	-	-	3(Note 4)	4 (Note 4)	6B	6B	-
CA with 3	3x20		-	-	-	6A	7	7
CCs	15+20+20	-	-	-	-	6A	7A	7A

Note 1: Void.

Note 2: For non-CA UE, test is selected for maximum supported bandwidth.

Note 3: Void.

Note 4: If the intra-band contiguous CA is the only CA configuration supported by category 3 or 4 UE, single

carrier test is selected.

Note 5: The applicability of requirements for different CA configurations and bandwidth combination sets is

defined in 8.1.2.3.

Table 8.7.2-5: test parameters for sustained downlink data rate (TDD 256QAM)

Test	Bandwidth	Transmission	Antenna	Codebook subset	Downlink power allocation (dB)			$\hat{E}_{\scriptscriptstyle s}$ at antenna	ACK/NACK feedback	Symbols for unused
1030	(MHz)	mode	configuration	restriction	$ ho_{\scriptscriptstyle A}$	$ ho_{\scriptscriptstyle B}$	σ	port (dBm/15 kHz)	mode	PRBs
1	20	3	2 x 2	10	-3	-3	0	-85	Bundling	OP.1 TDD
2	15+20	3	2 x 2	10	-3	-3	0	-85	(Note 1)	OP.1 TDD
3	2x20	3	2 x 2	10	-3	-3	0	-85	(Note 1)	OP.1 TDD
4	3x20	3	2 x 2	10	-3	-3	0	-85	(Note 1)	OP.1 TDD
5	15+20+20	3	2 x 2	10	-3	-3	0	-85	(Note 1)	OP.1 TDD
Note 1	I: For CA to	est cases. PUCCH	I format 3 is used	to feedback	ACK/N	IACK.				

Table 8.7.2-6: Minimum requirement (TDD 256QAM)

Test	Measurement channel	Reference value
		TB success rate [%]
1	R.68 TDD	85
2	R.68-1 TDD for 15MHz CC R.68 TDD for 20MHz CC	85
3	R.68 TDD	85
4	R.68 TDD	85
5	R.68-1 TDD for 15MHz CC R.68 TDD for 20MHz CC	85

Note 1: For 2 layer transmissions, 2 transport blocks are received within a TTI.

Note 2: The TB success rate is defined as TB success rate = 100%*N_{DL_correct_rx}/ (N_{DL_newtx} + N_{DL_retx}), where N_{DL_newtx} is the number of newly transmitted DL transport blocks, N_{DL_retx} is the number of retransmitted DL transport blocks, and N_{DL_correct_rx} is the number of correctly received DL transport blocks.

Table 8.7.2-7: Test points for sustained data rate (FRC 256QAM)

CA config	Bandwidth/ Bandwidth combination (MHz)	Cat. 11, 12 DL Cat. 11, 12	DL Cat. 13		
Single carrier	20	-	1		
CA with	15+20	2	2		
2CCs	2x20	3	3		
CA with 3	3x20	4	3		
CCs	15+20+20	5	3		

8.7.3 FDD (EPDCCH scheduling)

The parameters specified in Table 8.7.3-1 are valid for all FDD tests unless otherwise stated.

Table 8.7.3-1: Common test parameters (FDD)

Parameter	Unit	Value					
Cyclic prefix		Normal					
Cell ID		0					
Inter-TTI Distance		1					
Number of HARQ							
processes per	Processes	8					
component carrier							
Maximum number of		4					
HARQ transmission		4					
Redundancy version		{0,0,1,2} for 64QAM					
coding sequence		(0,0,1,2) 101 0+QAW					
Number of OFDM							
symbols for PDCCH per	OFDM symbols	1					
component carrier							
Cross carrier scheduling		Not configured					
Number of EPDCCH		1					
sets		'					
EPDCCH transmission		Localized					
type							
Number of PRB per		2 PRB pairs					
EPDCCH set and		10MHz BW: Resource blocks n _{PRB} = 48, 49					
EPDCCH PRB pair		15MHz BW: Resource blocks n _{PRB} = 70, 71					
allocation		20MHz BW: Resource blocks n _{PRB} = 98, 99					
EPDCCH Starting		Derived from CFI (i.e. default behaviour)					
Symbol		, ,					
ECCE Aggregation Level		2 ECCEs					
Number of EREGs per ECCE		4					
		EPDCCH candidate is randomly assigned					
EPDCCH scheduling		in each subframe					
EPDCCH precoder							
(Note 1)		Fixed PMI 0					
EPDCCH monitoring SF		111111111 000000000					
pattern		111111111 0000000000					
Timing advance	μs	100					
	μο	Static propagation condition					
Propagation condition		No external noise sources are applied					
Note 1: EPDCCH precoder parameters are defined for tests with 2 x 2 antenna							
configuration		and the second s					

The requirements are specified in Table 8.7.3-3, with the addition of the parameters in Table 8.7.3-2 and the downlink physical channel setup according to Annex C.3.2. The test points are applied to UE category, CA capability and

bandwidth combination with maximum aggregated bandwidth as specified in Table 8.7.3-4. The TB success rate shall be sustained during at least 300 frames.

Table 8.7.3-2: Test parameters for SDR test for PDSCH scheduled by EPDCCH (FDD)

Test Bandwidth		Transmission	Antenna	Codebook subset		ownlin Ilocati			$\hat{E}_{\scriptscriptstyle S}$ at	Symbols for
Test	(MHz)	mode	configuration	restriction	$ ho_{\scriptscriptstyle A}$	$ ho_{\scriptscriptstyle B}$	σ	δ	antenna port (dBm/15kHz)	unused PRBs
1	10	1	1 x 2	N/A	0	0	0	0	-85	OP.6 FDD
2	10	3	2 x 2	10	-3	-3	0	3	-85	OP.1 FDD
3,4,6	20	3	2 x 2	10	-3	-3	0	3	-85	OP.1 FDD
ЗА	10	3	2 x 2	10	-3	-3	0	3	-85	OP.1 FDD
3C, 4B	15	3	2 x 2	10	-3	-3	0	3	-85	OP.1 FDD

Table 8.7.3-3: Minimum requirement (FDD)

Test	Number of bits of a DL-SCH transport	Measurement channel	Reference value
	block received within a TTI		TB success rate [%]
1	10296	R.31E-1 FDD	95
2	25456	R.31E-2 FDD	95
3	51024	R.31E-3 FDD	95
3A	36696 (Note 2)	R.31E-3A FDD	85
3C	51024	R.31E-3C FDD	85
4	75376 (Note 3)	R.31E-4 FDD	85
4B	55056 (Note 5)	R.31E-4B FDD	85
6	75376 (Note 3)	R.31E-4 FDD	85

Note 1: For 2 layer transmissions, 2 transport blocks are received within a TTI.

Note 2: 35160 bits for sub-frame 5.

Note 3: 71112 bits for sub-frame 5.

Note 4: The TB success rate is defined as TB success rate = $100\%*N_{DL_correct_rx}/(N_{DL_newtx} + N_{DL_retx})$, where N_{DL_newtx} is the number of newly transmitted DL transport blocks, N_{DL_retx} is the number of retransmitted DL transport

blocks, and N_{DL_correct_rx} is the number of correctly received DL transport blocks.

Note 5: 52752 bits for sub-frame 5.

Table 8.7.3-4: Test points for sustained data rate (FRC)

CA config	Bandwidth (MHz)	Category 1	Category 2	Category 3	Category 4	Category 6	Category 7
Single	10	1	2	3A	3A	-	-
Ų.	15	-	-	3C	4B	-	-
carrier	20	-	-	3	4	6	6
Note 1: T	The test is selected for	maximum sur	ported bandw	vidth.			

8.7.4 TDD (EPDCCH scheduling)

The parameters specified in Table 8.7.4-1 are valid for all TDD tests unless otherwise stated.

Table 8.7.4-1: Common test parameters (TDD)

Parameter	Unit	Value
Special subframe		4
configuration (Note 1)		·
Cyclic prefix		Normal
Cell ID		0
Inter-TTI Distance		1
Maximum number of HARQ transmission		4
Redundancy version coding sequence		{0,0,1,2} for 64QAM
Number of OFDM symbols for PDCCH per component carrier	OFDM symbols	1
Cross carrier scheduling		Not configured
Number of EPDCCH sets		1
EPDCCH transmission type		Localized
Number of PRB per EPDCCH set and EPDCCH PRB pair allocation		2 PRB pairs 10MHz BW: Resource blocks n _{PRB} = 48, 49 15MHz BW: Resource blocks n _{PRB} = 70, 71 20MHz BW: Resource blocks n _{PRB} = 98,
EPDCCH Starting Symbol		99 Derived from CFI (i.e. default behaviour)
ECCE Aggregation Level		2 ECCEs
Number of EREGs per ECCE		4 for normal subframe and for special subframe
EPDCCH scheduling		EPDCCH candidate is randomly assigned in each subframe
EPDCCH precoder (Note 2)		Fixed PMI 0
EPDCCH monitoring SF pattern		UL-DL configuration 1: 1101111111 000000000 UL-DL configuration 5: 1100111001 000000000
Timing advance	μs	100
Propagation condition		Static propagation condition No external noise sources are applied
Note 1: As specified in Note 2: EPDCCH preconfiguration	Table 4.2-1 in TS 36 oder parameters are	.211 [4]. defined for tests with 2 x 2 antenna

The requirements are specified in Table 8.7.4-3, with the addition of the parameters in Table 8.7.4-2 and the downlink physical channel setup according to Annex C.3.2. The test points are applied to UE category, CA capability and bandwidth combination with maximum aggregated bandwidth as specified in Table 8.7.4-4. The TB success rate shall be sustained during at least 300 frames.

Table 8.7.4-2: Test parameters for SDR test for PDSCH scheduled by EPDCCH (TDD)

Test	Bandwidth (MHz)	Transmission mode	Antenna configuration	Codebook subset	Downlink power allocation (dB)				$\hat{E}_{\scriptscriptstyle s}$ at antenna port	HINHSEA	ACK/NACK feedback
	(111112)	' restriction	$ ho_{\scriptscriptstyle B}$	σ	δ	(dBm/15kHz)	PRBs	mode			
1	10	1	1 x 2	N/A	0	0	0	0	-85	OP.6 TDD	Bundling
2	10	3	2 x 2	10	-3	-3	0	3	-85	OP.1 TDD	Bundling
3	20	3	2 x 2	10	-3	-3	0	3	-85	OP.1 TDD	Bundling
ЗА	15	3	2 x 2	10	-3	-3	0	3	-85	OP.2 TDD	Multiplexing
4,6	20	3	2 x 2	10	-3	-3	0	3	-85	OP.1 TDD	Multiplexing

Table 8.7.4-3: Minimum requirement (TDD)

Test	Number of bits of a DL-SCH transport block received within a TTI for normal/special sub-frame	Measurement channel	Reference value TB success rate [%]		
1	10296/0	R.31E-1 TDD	95		
2	25456/0	R.31E-2 TDD	95		
3	51024/0	R.31E-3 TDD	95		
3A	51024/0	R.31E-3A TDD	85		
4	75376/0 (Note 2)	R.31E-4 TDD	85		
6	75376/0 (Note 2)	R.31E-4 TDD	85		

Note 1: For 2 layer transmissions, 2 transport blocks are received within a TTI.

Note 2: 71112 bits for sub-frame 5.

Note 3: The TB success rate is defined as TB success rate = $100\%*N_{DL_correct_rx}/(N_{DL_newtx} + N_{DL_retx})$, where N_{DL_newtx} is the number of newly transmitted DL transport blocks, N_{DL_retx} is the number of retransmitted DL transport blocks, and $N_{DL_correct_rx}$ is the number of correctly received DL transport blocks.

Table 8.7.4-4: Test points for sustained data rate (FRC)

CA config	Bandwidth/ Bandwidth combination (MHz)	Category 1	Category 2	Category 3	Category 4	Category 6	Category 7
Cinalo	10	1	2	-	-	-	-
Single	15	-	-	3A	3A	-	-
carrier	20	-	-	3	4	6	6
Note 1: T	he test is selected for	maximum supi	oorted bandwid	lth.			

8.7.5 TDD FDD CA

The parameters specified in Table 8.7.5-1 are valid for all TDD FDD CA tests unless otherwise stated.

Table 8.7.5-1: Common Test Parameters (TDD FDD CA)

Parameter		Unit	Value
Uplink downlink configuration TDD CC			1
Special subframe configuration for TDD CC	ation (Note 2)		4
	$ ho_{\scriptscriptstyle A}$	dB	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3
	σ	dB	0
Cyclic prefix			Normal
Cell ID			0
Inter-TTI Distan	ce		1
Maximum number of HARQ processes per	FDD PCell	Processes	8 for FDD and TDD CCs
component carrier	TDD PCell	Processes	11 for FDD CC; 7 for TDD CC
Maximum number of HARO	transmission		4
Redundancy version codi	ng sequence		{0,0,1,2} for 64QAM, 256QAM
Number of OFDM symbol per component ca		OFDM symbols	1
Cross carrier schee	duling		Not configured
Propagation cond	lition		Static propagation condition No external noise sources are applied
Transmission mo	ode		TM3
Codebook subset res	striction		10
Antenna configura	ation		2 x 2
$\hat{E}_{\scriptscriptstyle s}$ at antenna port (dB	m/15kHz)		-85
Symbols for unused	PRBs		OP.1 FDD for FDD CC, OP.1 TDD for TDD CC
ACK/NACK feedbac	k mode		PUCCH format 3
Downlink HARQ-ACK	FDD PCell		As specified in Clause 7.3.3 in TS36.213 [6]
timing	TDD PCell		As specified in Clause 7.3.4 in TS36.213 [6]

8.7.5.1 Minimum Requirement FDD PCell

For UE not supporting 256QAM, the requirements for TDD FDD CA with FDD PCell are specified in Table 8.7.5.1-1 with the additional parameters specified in Table 8.7.5-1, and the downlink physical channel setup according to Annex C.3.2. The test points are applied to UE category and bandwidth combination with maximum aggregated bandwidth as specified in Table 8.7.5.1-2. The TB success rate shall be sustained during at least 300 frames.

For UE supporting 256QAM, the requirements for TDD FDD CA with FDD PCell are specified in Table 8.7.5.1-3 with the additional parameters specified in Table 8.7.5-1, and the downlink physical channel setup according to Annex C.3.2. The test points are applied to UE category or UE DL category, and bandwidth combination with the maximum aggregated bandwidth as specified in Table 8.7.5.1-4. The TB success rate shall be sustained during at least 300 frames. For UE supporting 256QAM, the requirement in Table 8.7.5.1-1 is not applicable.

The applicability of the requirements are specified in Clause 8.1.2.3B. The test coverage for different number of component carriers is defined in 8.1.2.4.

Table 8.7.5.1-1: test parameters for sustained downlink data rate (TDD FDD CA 64QAM)

Test number	Bandwidth (MHz)		Number of bits of a DL- SCH transport block received within a TTI (for normal/special subframe for TDD, except for subframe #5)		Measuremo	Reference value		
	Total	FDD CC	TDD CC	FDD CC	TDD CC	FDD CC	TDD CC	TB success rate [%]
1	2x20	20	20	75376	75376/0	R.31-4 FDD	R.31-4 TDD	85
2	10+20	10	20	36696	75376/0	R.31-3A FDD	R.31-4 TDD	85
2A	15+20	15	20	55056	75376/0	R.31-5 FDD	R.31-4 TDD	85
3	10+10	10	10	36696	36696/0	R.31-3A FDD	R.31-6 TDD	85
4	3x20	20	2x20	75376	75376/0	R.31-4 FDD	R.31-4 TDD	85
5	15+20+20	15	2x20	55056	75376/0	R.31-5 FDD	R.31-4 TDD	85
6	10+20+20	10	2x20	36696	75376/0	R.31-3A FDD	R.31-4 TDD	85

Table 8.7.5.1-2: Test points for sustained data rate (FRC 64QAM)

CA	Maximum sı Bandwidth	upported Bar combination		Cat. 1	Cat. 2 Cat. 3 Cat. 4		Cat. 6, 7	Cat. 9,10	Cat. 11, 12,	
config	Total	FDD CC	TDD CC	Cal. I	Cat. 2	Cat. 3	Cal. 4	DL Cat. 6,7	DL Cat. 9, 10	DL Cat. 11, 12
CA	2x20	20	20	-	-	3	3	1	1	-
with	10+20	10	20	-	-	3	3	2	2	-
2CCs	15+20	15	20	-	-	3	3	2A	2A	-
CA	3x20	20	2x20	-	-	-	-	1	4	4
with	15+20+20	15	2x20	-	-	-	-	2A	5	5
3CCs	10+20+20	10	2x20	-	-	-	-	2	6	6

Note 1: If DL category is signalled by the UE under test, then select the test point according to UE DL Category. Otherwise, select the test point according to the UE category signalled. Void.

Note 2:

Table 8.7.5.1-3: Minimum requirement (TDD FDD CA 256QAM)

Test	Bar	ndwidth (MH	lz)	Measureme	ent channel	Reference value
number	Total	FDD CC	TDD CC	FDD CC	TDD CC	TB success rate [%]
1	2x20	20	20	R.68 FDD	R.68 TDD	85
2	10+20	10	20	R.68-2 FDD	R.68 TDD	85
3	15+20	15	20	R.68-1 FDD	R.68 TDD	85
4	3x20	20	2x20	R.68 FDD	R.68 TDD	85
5	15+20+20	15	2x20	R.68-1 FDD	R.68 TDD	85
6	10+20+20	10	2x20	R.68-2 FDD	R.68TDD	85

Table 8.7.5.1-4: Test points for sustained data rate (FRC 256QAM)

CA	Maximum sı Bandwidth	upported Ba		Cat. 11, 12	DL Cat.		
config	Total	FDD CC	TDD CC	DL Cat. 11, 12	13		
CA	2x20	20	20	1	1		
with	10+20	10	20	2	2		
2CCs	15+20	15	20	3	3		

CA	3x20	20	2x20	4	1		
with	15+20+20	15	2x20	5	3		
3CCs	10+20+20	10	2x20	6	2		

Note 1: If DL category is signalled by the UE under test, then select the test point according to UE DL Category. Otherwise, select the test point according to the UE category signalled.

8.7.5.2 Minimum Requirement TDD PCell

For UE not supporting 256QAM, the requirements for TDD FDD CA with TDD PCell are specified in Table 8.7.5.2-1 with the additional parameters specified in Table 8.7.5-1, and the downlink physical channel setup according to Annex C.3.2. The test points are applied to UE category and bandwidth combination with maximum aggregated bandwidth as specified in Table 8.7.5.2-2. The TB success rate shall be sustained during at least 300 frames.

For UE supporting 256QAM, the requirements for TDD FDD CA with FDD PCell are specified in Table 8.7.5.2-3 with the additional parameters specified in Table 8.7.5-1, and the downlink physical channel setup according to Annex C.3.2. The test points are applied to UE category or UE DL category, and bandwidth combination with maximum aggregated bandwidth as specified in Table 8.7.5.2-4. The TB success rate shall be sustained during at least 300 frames. For UE supporting 256QAM, the requirements in Table 8.7.5.2-1 is not applicable.

The applicability of ther requirements are specified in Clause 8.1.2.3B. The test coverage for different number of component carriers is defined in 8.1.2.4.

Table 8.7.5.2-1: test parameters for sustained downlink data rate (TDD FDD CA 64QAM)

Test number	Bandwidth (MHz)			SCH trans received v (for norm subframe	bits of a DL- sport block vithin a TTI aal/special e for TDD, subframe #5)	Measureme	Reference value	
	Total	FDD CC	TDD CC	FDD CC	TDD CC	FDD CC	TDD CC	TB success rate [%]
1	2x20	20	20	75376	75376/0	R.31-4 FDD	R.31-4 TDD	85
2	10+20	10	20	36696	75376/0	R.31-3A FDD	R.31-4 TDD	85
2A	15+20	15	20	55056	75376/0	R.31-5 FDD	R.31-4 TDD	85
3	10+10	10	10	36696	36696/0	R.31-3A FDD	R.31-6 TDD	85
4	3x20	20	2x20	75376	75376/0	R.31-4 FDD	R.31-4 TDD	85
5	15+20+20	15	2x20	55056	75376/0	R.31-5 FDD	R.31-4 TDD	85
6	10+20+20	10	2x20	36696	75376/0	R.31-3A FDD	R.31-4 TDD	85

Table 8.7.5.2-2: Test points for sustained data rate (FRC 64QAM)

CA	Maximum supported Bandwidth/ Bandwidth combination (MHz)			Cat. 1	Cat. 2	Cat. 3	Cat. 4	Cat. 6, 7	Cat. 9,10	Cat. 11, 12,
config	Total	FDD CC	TDD CC	Cat. 1	Cat. 2	Cat. 3 Cat. 4		DL Cat. 6,7	DL Cat. 9, 10	DL Cat. 11, 12
CA	2x20	20	20	-	-	3	3	1	1	-
with	10+20	10	20	-	-	3	3	2	2	-
2CCs	15+20	15	20	-	-	3	3	2A	2A	-
CA	3x20	20	2x20	-	-	-	-	1	4	4
with	15+20+20	15	2x20	-	-	-	-	2A	5	5
3CCs	10+20+20	10	2x20	-	-	-	-	2	6	6

Note 1: If DL category is signalled by the UE under test, then select the test point according to UE DL Category. Otherwise, select the test point according to the UE category signalled.

Note 2: Void.

Table 8.7.5.2-3: Minimum requirement (TDD FDD CA 256QAM)

Test	Bar	ndwidth (MF	lz)	Measureme	Reference value	
number	Total	FDD CC	TDD CC	FDD CC	TDD CC	TB success rate [%]
1	2x20	20	20	R.68 FDD	R.68 TDD	85
2	10+20	10	20	R.68-2 FDD	R.68 TDD	85
3	15+20	15	20	R.68-1 FDD	R.68 TDD	85
4	3x20	20	2x20	R.68 FDD	R.68 TDD	85
5	15+20+20	15	2x20	R.68-1 FDD	R.68 TDD	85
6	10+20+20	10	2x20	R.68-2 FDD	R.68TDD	85

Table 8.7.5.2-4: Test points for sustained data rate (FRC 256QAM)

CA	Maximum supported Bandwidth/ Bandwidth combination (MHz)			Cat. 11, 12	DL Cat.		
config	Total	FDD CC	TDD CC	DL Cat. 11, 12	13		
CA	2x20	20	20	1	1		
with	10+20	10	20	2	2		
2CCs	15+20	15	20	3	3		
CA	3x20	20	2x20	4	1		
with	15+20+20	15	2x20	5	3		
3CCs	10+20+20	10	2x20	6	2		

Note 1: If DL category is signalled by the UE under test, then select the test point according to UE DL Category. Otherwise, select the test point according to the UE category signalled.

8.7.6 FDD (DC)

The parameters specified in Table 8.7.6-1 are valid for all FDD DC tests unless otherwise stated.

Table 8.7.6-1: Common Test Parameters (FDD)

Parai	neter	Unit	Value
Cyclic	prefix		Normal
Cel	IID		0
Inter-TTI	Distance		1
compone	Q processes per ent carrier	Processes	8
Maximum number of HARQ transmission			4
Redundancy version	n coding sequence		{0,0,1,2} for 64QAM and 256QAM
	symbols for PDCCH nent carrier	OFDM symbols	1
Cross carrier scheduling			Not configured
Propagation condition			Static propagation condition No external noise sources are applied
Transmission mode			TM3
Codebook sub	set restriction		10
Antenna co	onfiguration		2x2
$\hat{E}_{\scriptscriptstyle s}$ at antenna p	ort (dBm/15kHz)		-85
Symbols for t	unused PRBs		OP.1 FDD
ACK/NACK fe	edback mode		Separate ACK/NACK feedbacks with PUCCH format 3 on the MCG and SCG
Time offset between MCG CC and SCG CC		μs	O for UE under test supporting synchronous dual connectivity; 500 for UE under test supporting both asynchronous and synchrounous dual connectivity (Note 1)
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3
	σ	dB	0 ity are defined in TS36.300 [11].

If the UE supports both SCG bearer and Split bearer, the Split bearer is configured.

For UE not supporting 256QAM, the requirements are specified in Table 8.7.6-2, with the addition of the parameters in Table 8.7.6-1 and the downlink physical channel setup according to Annex C.3.2. The test points are applied to UE category and bandwidth combination with maximum aggregated bandwidth as specified in Table 8.7.6-3. The TB success rate across CGs shall be sustained during at least 300 frames.

For UE supporting 256QAM, the requirements are specified in Table 8.7.6-4, with the addition of the parameters in Table 8.7.6-1 and the downlink physical channel setup according to Annex C.3.2. The test points are applied to UE category and bandwidth combination with maximum aggregated bandwidth as specified in Table 8.7.6-5. The TB success rate across CGs shall be sustained during at least 300 frames. For UE supporting 256QAM, the requirements in Table 8.7.6-2 are not applicable.

The applicability of ther requirements are specified in Clause 8.1.2.3A.

Table 8.7.6-2: Minimum requirement (DC 64QAM)

Test number	Bandwidth combination (MHz)	Number of bits of a DL-SCH transport block received	Measurement channel	Refe TB su)	
		within a TTI		DRB type of Split bearer	DRB type	
				(Note 2)	MCG	SCG
1	2x10	25456	R.31-2 FDD	95	95	95
2	2x10	36696 (Note 4)	R.31-3A FDD	85	85	85
3	10+20	36696 (Note 4) for 10MHz CC 75376 (Note 5) for 20MHz CC	R.31-3A FDD for 10MHz CC R.31-4 FDD for 20MHz CC	85	85	85
4	2x15	55056 (Note 6)	R.31-4B FDD	85	85	85
5	15+20	55056 for 15MHz CC 75376 (Note 5) for 20MHz CC	R.31-5 FDD for 15MHz CC R.31-4 FDD for 20MHz CC	85	85	85
6	2x20	75376 (Note 5)	R.31-4 FDD	85	85	85

Note 1: For 2 layer transmissions, 2 transport blocks are received within a TTI.

Note 2: For the configuration of DRB type of Split bearer, the TB success rate across CGs is defined as TB success rate = 100%*NDL_correct_rx/ (NDL_newtx + NDL_retx), where NDL_newtx is the number of newly transmitted DL transport blocks , NDL_retx is the number of retransmitted DL transport blocks, and NDL_correct_rx is the number of correctly received DL transport blocks. All the above numbers of transmitted, retransmitted or correctly received DL transport blocks are calculated as the sum of the numbers of DL transport blockes across all the CGs used for DC transmission or reception.

Note 3: For the configuration of DRB type of SCG bearer, the TB success rate across CGs is defined as TB success rate = 100%*N_{DL_correct_rx}/ (N_{DL_newtx} + N_{DL_retx}), where N_{DL_newtx} is the number of newly transmitted DL transport blocks, N_{DL_retx} is the number of retransmitted DL transport blocks, and N_{DL_correct_rx} is the number of correctly received DL transport blocks. All the above numbers of transmitted, retransmitted or correctly received DL transport blocks are calculated as the sum of the numbers of DL transport blockes per CG used for DC transmission or reception, separately.

Note 4: 35160 bits for sub-frame 5. Note 5: 71112 bits for sub-frame 5. Note 6: 52752 bits for sub-frame 5.

Table 8.7.6-3: Test points for sustained data rate (FRC DC 64QAM)

DC config	Maximum supported Bandwidth combination (MHz)	Cat. 3	Cat. 4	Cat. 6, 7	Cat. 9, 10	Cat. 11, 12	
	2x10	1	2	2	2	-	
DC with	10+20	1	2	3	3	-	
DC with 2CCs	2x15	1	2	4	4	-	
2008	15+20	1	2	5	5	-	
	2x20	1	2	6	6	-	

Table 8.7.6-4: Minimum requirement (DC 256QAM)

Test number	Bandwidth combination (MHz)	Measurement channel	Reference value TB success rate (%)		%)
			DRB type of Split bearer		e of SCG (Note 3)
			(Note 2)	MCG	SCG
1	2x10	R.68-2 FDD	85	85	85
2	10+20	R.68-2 FDD for 10MHz CC R.68 FDD for 20MHz CC	85	85	85
3	2x15	R.68-1 FDD	85	85	85
4	15+20	R.68-1 FDD for 15MHz CC R.68 FDD for 20MHz CC	85	85	85
5	2x20	R.68 FDD	85	85	85

Note 1: For 2 layer transmissions, 2 transport blocks are received within a TTI.

Note 2: For the configuration of DRB type of Split bearer, the TB success rate across CGs is defined as TB success rate = 100%*NDL_correct_rx/ (NDL_newtx + NDL_retx), where NDL_newtx is the number of newly transmitted DL transport blocks, NDL_retx is the number of retransmitted DL transport blocks, and NDL_correct_rx is the number of correctly received DL transport blocks. All the above numbers of transmitted, retransmitted or correctly received DL transport blocks are calculated as the sum of the numbers of DL transport blockes across all the CGs used for DC transmission or reception.

Note 3: For the configuration of DRB type of SCG bearer, the TB success rate across CGs is defined as TB success rate = 100%*Npl_correct_rx/ (Npl_newtx + Npl_retx), where Npl_newtx is the number of newly transmitted DL transport blocks, Npl_retx is the number of retransmitted DL transport blocks, and Npl_correct_rx is the number of correctly received DL transport blocks. All the above numbers of transmitted, retransmitted or correctly received DL transport blocks are calculated as the sum of the numbers of DL transport blockes per CG used for DC transmission or reception, separately.

Table 8.7.6-5: Test points for sustained data rate (FRC DC 256QAM)

DC config	Maximum supported	Cat. 11, 12	DL Cat. 13			
config	Bandwidth combination (MHz)	DL Cat 11, 12	DE Gat. 13			
	2x10	1	1			
DC with	10+20	2	2			
2CCs	2x15	3	3			
2005	15+20	4	4			
	2x20	5	5			

8.7.7 TDD (DC)

The parameters specified in Table 8.7.7-1 are valid for all TDD DC tests unless otherwise stated.

Table 8.7.7-1: Common Test Parameters (TDD)

Para	meter	Unit	Value
Uplink downlir	nk configuration		2 (Note 2)
Special subfrar	me configuration		4
Cyclic	prefix		Normal
Ce	II ID		0
Inter-TT	Distance		1
	Q processes per ent carrier	Processes	7
Maximum number o	f HARQ transmission		4
Redundancy version	on coding sequence		{0,0,1,2} for 64QAM and 256QAM
	symbols for PDCCH nent carrier	OFDM symbols	1
Cross carrie	er scheduling		Not configured
Propagation condition			Static propagation condition No external noise sources are applied
Transmis	sion mode		ТМЗ
Codebook su	bset restriction		10
Antenna c	onfiguration		2x2
$\hat{E}_{\scriptscriptstyle s}$ at antenna p	oort (dBm/15kHz)		-85
Symbols for	unused PRBs		OP.1 TDD
ACK/NACK fo	eedback mode		Separate ACK/NACK feedbacks with PUCCH format 3 on the MCG and SCG
Time offset between MCG CC and SCG CC		μs	O for UE under test supporting synchronous dual connectivity; 500 for UE under test supporting both asynchronous and synchrounous dual connectivity (Note 1)
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-3
allocation	$ ho_{\scriptscriptstyle B}$	dB	-3
Note 1: Asynchro	σ	dB	0 y are defined in TS36.300 [11].

Note 1: Asynchronous and synchrous dual connectivity are defined in 1356.300 [11].

Note 2: If the UE supports both SCG bearer and Split bearer, the Split bearer is configured.

For UE not supporting 256QAM, the requirements are specified in Table 8.7.7-2, with the addition of the parameters in Table 8.7.7-1 and the downlink physical channel setup according to Annex C.3.2. The test points are applied to UE category and bandwidth combination with maximum aggregated bandwidth as specified in Table 8.7.7-3. The TB success rate shall be sustained during at least 300 frames.

For UE supporting 256QAM, the requirements are specified in Table 8.7.7-4, with the addition of the parameters in Table 8.7.7-1 and the downlink physical channel setup according to Annex C.3.2. The test points are applied to UE category and bandwidth combination with maximum aggregated bandwidth as specified in Table 8.7.7-5. The TB success rate shall be sustained during at least 300 frames. For UE supporting 256QAM, the requirements in Table 8.7.7-2 are not applicable.

The applicability of ther requirements are specified in Clause 8.1.2.3A.

Note 4: 71112 bits for sub-frame 5.

Table 8.7.7-2: Minimum requirement (DC 64QAM)

Test number	Bandwidth combinatio n (MHz)	Number of bits of a DL-SCH transport block received within	Measurement channel		Reference value TB success rate across CGs(%)			
	, ,	a TTI		DRB type of Split bearer	DRB type of SCG bearer (Note 3)			
				(Note 2)	MCG	SCG		
1	2x20	75376/0 (Note 4)	R.31-4A TDD	85	85	85		
Note 2:	For 2 layer transmissions, 2 transport blocks are received within a TTI. For the configuration of DRB type of Split bearer,the TB success rate across CGs is defined as TB success rate = 100%*N _{DL_correct_rx} / (N _{DL_newtx} + N _{DL_retx}), where N _{DL_newtx} is the number of newly transmitted DL transport blocks, N _{DL_retx} is the number of retransmitted DL transport blocks, and N _{DL_correct_rx} is the number of correctly received DL transport blocks. All the above numbers of transmitted, retransmitted or correctly received DL transport blocks are calculated as the sum of the numbers of DL transport blockes across all the CGs used for DC transmission or reception.							
Note 3:	rate = 100%*N blocks, N _{DL_ret} received DL tr transport block	uration of DRB type of SCI IDL_correct_rx/ (NDL_newtx + NDI is the number of retransn ansport blocks. All the above is are calculated as the subor reception, separately.	L_retx), where N _{DL_newtx} is th nitted DL transport blocks ove numbers of transmitte	ne number of newly , and N _{DL_correct_rx} is d, retransmitted or	transmitted D the number o correctly rece	L transport f correctly ived DL		

Table 8.7.7-3: Test points for sustained data rate (FRC DC 64QAM)

DC config	Maximum supported Bandwidth combination (MHz)	Cat. 3	Cat. 4	Cat. 6, 7	Cat. 9, 10	Cat. 11, 12	
DC with 2CCs	2x20	-	-	1	1	-	

Table 8.7.7-4: Minimum requirement (DC 256QAM)

Test number	Bandwidth combination (MHz)	Measurement channel	Reference value TB success rate (%) DRB type of SCG Split bearer bearer (Note 3) (Note 3)		
			(Note 2)	MCG	SCG
1	2x20	R.68-3 TDD	85	85	85
Note 1: Note 2: Note 3:	For the configured defined as TB is is the number of retransmitted DDL transport blockers are transport blockers. For the configured as TB is is the number of retransmitted DDL transport blockers.	Ismissions, 2 transport blocks a ration of DRB type of Split bear success rate = 100%*NDL_correct_of newly transmitted DL transport blocks, and NDL_correct_ocks. All the above numbers of ansport blocks are calculated as es across all the CGs used for I ration of DRB type of SCG bear success rate = 100%*NDL_correct_of newly transmitted DL transport blocks, and NDL_correct_ocks. All the above numbers of ansport blocks are calculated as es per CG used for DC transmises per CG used for DC transmises.	er, the TB success rx/ (NDL_newtx + NDL rt blocks, NDL_retx is pect_rx is the number transmitted, retrar the sum of the nu DC transmission o rer, the TB succes rx/ (NDL_newtx + NDL rt blocks, NDL_retx is pect_rx is the number transmitted, retrar the sum of the nu	s rate across _retx), where I s the number of correctly asmitted or co mbers of DL r reception. s rate across _retx), where I s the number of correctly asmitted or co mbers of DL	NDL_newtx of received correctly s CGs is NDL_newtx of received correctly

Table 8.7.7-5: Test points for sustained data rate (FRC DC 256QAM)

DC	Maximum supported Bandwidth combination (MHz)	Cat. 11, 12	DI Cat 13		
DC config		DL Cat. 11, 12	DL Cat. 13		
DC with 2CCs	2x20	1	1		

8.8 Demodulation of EPDCCH

The receiver characteristics of the EPDCCH are determined by the probability of miss-detection of the Downlink Scheduling Grant (Pm-dsg). For the distributed transmission tests in 8.8.1, EPDCCH and PCFICH are tested jointly, i.e. a miss detection of PCFICH implies a miss detection of EPDCCH. For other tests, EPDCCH and PCFICH are not tested jointly.

8.8.1 Distributed Transmission

8.8.1.1 FDD

The parameters specified in Table 8.8.1.1-1 are valid for all FDD distributed EPDCCH tests unless otherwise stated.

Table 8.8.1.1-1: Test Parameters for Distributed EPDCCH

Para	meter	Unit	Value		
Number of PDCCH	symbols	symbols	2 (Note 1)		
PHICH duration			Normal		
Unused RE-s and F	PRB-s		OCNG		
Cell ID			0		
	$ ho_{\scriptscriptstyle A}$	dB	-3		
Downlink power	$ ho_{\scriptscriptstyle B}$	dB	-3		
allocation	σ	dB	0		
	δ	dB	3		
$N_{\it oc}$ at antenna por	t	dBm/15 kHz	-98		
Cyclic prefix			Normal		
Subframe Configura	ation		Non-MBSFN		
Precoder Update G	ranularity	PRB	1		
		ms	1		
Beamforming Pre-C			Annex B. 4.4		
Cell Specific Refere	ence Signal		Port 0 and 1		
Number of EPDCC	H Sets Configured		2 (Note 2)		
Number of PRB per	EPDCCH Set		4 (1 st Set) 8 (2 nd Set)		
EPDCCH Subframe	Monitoring		`NA		
PDSCH TM	<u> </u>		TM3		
DCI Format			2A		
PCFICH. configure		ch-StartSymb	ool-r11 is not		
overlapp PRB = {0					
set for Te	est 2, respectively. Bot	th sets are al	ways configured.		

For the parameters specified in Table 8.8.1.1-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.8.1.1-2. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.8.1.1-2: Minimum performance Distributed EPDCCH

ſ	Test	Bandwidth	Aggregation	Reference	OCNG	Propagation	Antenna	Reference	e value
	number		level	Channel	Pattern	Condition	configuration and correlation Matrix	Pm-dsg (%)	SNR (dB)
Ī	1	10 MHz	4 ECCE	R.55 FDD	OP.7 FDD	EVA5	2 x 2 Low	1	2.60
ſ	2	10 MHZ	16 ECCE	R.56 FDD	OP.7 FDD	EVA70	2 x 2 Low	1	-3.20

8.8.1.1.1 Void

Table 8.8.1.1.1-1: Void

8.8.1.2 TDD

The parameters specified in Table 8.8.1.2-1 are valid for all TDD distributed EPDCCH tests unless otherwise stated.

Table 8.8.1.2-1: Test Parameters for Distributed EPDCCH

Paran	neter	Unit	Value			
Number of PDCCH s	ymbols	symbols	2 (Note 1)			
PHICH duration			Normal			
Unused RE-s and PR	B-s		OCNG			
Cell ID			0			
	$ ho_{\scriptscriptstyle A}$	dB	-3			
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3			
allocation	σ	dB	0			
	δ	dB	3			
$N_{\it oc}$ at antenna port		dBm/15 kHz	-98			
Cyclic prefix			Normal			
Subframe Configurati	on		Non-MBSFN			
Precoder Update Gra	nularity	PRB	1			
r recoder opuate Gra	iriularity	ms	1			
Beamforming Pre-Co		Annex B. 4.4				
Cell Specific Referen		Port 0 and 1				
Number of EPDCCH	Sets Configured		2 (Note 2)			
Number of PRB per E	PDCCH Sat		4 (1st Set)			
-			8 (2 nd Set)			
EPDCCH Subframe I	Monitoring		NA			
PDSCH TM			TM3			
DCI Format			2A			
TDD UL/DL Configura	ation		0			
TDD Special Subfram			1 (Note 3)			
	g symbol for EPDCC RRC signalling <i>epdcc</i>					
Note 2: The two se overlappin PRB = {0, EPDCCH is set for Tes	•					
Note 3: Demodula special sul	ition performance is a oframe.	averaged ove	er normal and			

For the parameters specified in Table 8.8.1.2-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.8.1.2-2. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.8.1.2-2: Minimum performance Distributed EPDCCH

Test	Bandwidth	Aggregation	Reference	OCNG	Propagation	Antenna	Reference value	
number		level	Channel	Pattern	Condition	configuration and correlation Matrix	Pm-dsg (%)	SNR (dB)
1	10 MHz	4 ECCE	R.55 TDD	OP.7 TDD	EVA5	2 x 2 Low	1	2.80
2	10 MHZ	16 ECCE	R.56 TDD	OP.7 TDD	EVA70	2 x 2 Low	1	-3.10

8.8.1.2.1 Void

Table 8.8.1.2.1-1: Void

8.8.2 Localized Transmission with TM9

8.8.2.1 FDD

The parameters specified in Table 8.8.2.1-1 are valid for all FDD TM9 localized ePDCCH tests unless otherwise stated.

Table 8.8.2.1-1: Test Parameters for Localized EPDCCH with TM9

Parame	eter	Unit	Value
Number of PDCCH syr	mbols	symbols	1 (Note 1)
EPDCCH starting sym	bol	symbols	2 (Note 1)
PHICH duration			Normal
Unused RE-s and PRE	3-s		OCNG
Cell ID			0
	$ ho_{\scriptscriptstyle A}$	dB	0
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0
allocation	σ	dB	-3
	δ	dB	0
$N_{\it oc}$ at antenna port		dBm/15 kHz	-98
Cyclic prefix			Normal
Subframe Configuratio	n		Non-MBSFN
Precoder Update Gran	ularity	PRB	1
·		ms	1
Beamforming Pre-Cod			Annex B.4.5
Cell Specific Reference			Port 0 and 1
CSI-RS Reference Sig			Port 15 and 16
CSI-RS reference sign configuration	al resource		0
CSI reference signal seconfiguration Icsi-RS	ubframe		2
ZP-CSI-RS configuration	on bitmap		000001000000000
ZP-CSI-RS subframe of	configuration I _{ZP} -		2
CSI-RS			-
Number of EPDCCH S			2 (Note 2)
EPDCCH Subframe M			111111110 1111111101 1111111011
subframePatternConfig	g-r11		1111110111 (Note 3)
PDSCH TM			TM9

Note 1: The starting symbol for EPDCCH is signalled with *epdcch-StartSymbol-r11*. However, CFI is set to 1.

Note 2: The first set is distributed transmission with PRB = {0, 49} and the second set is localized transmission with PRB = {0, 7, 14, 21, 28, 35, 42, 49}. ePDCCH is scheduled in the second set for all tests

Note 3: EPDCCH is scheduled in every SF. UE is required to monitor ePDCCH for UE-specific search space only in SFs configured by *subframePatternConfig-r11*. Legacy PDCCH is not scheduled.

For the parameters specified in Table 8.8.2.1-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.8.2.1-2. EPDCCH subframe monitoring is configured and the subframe monitoring requirement in EPDCCH restricted subframes is statDTX of 99.9%.

The downlink physical setup is in accordance with Annex C.3.2.

Table 8.8.2.1-2: Minimum performance Localized EPDCCH with TM9

Test	Bandwidth	Aggregation	Reference	OCNG	Propagation	Antenna	Referenc	e value
number		level	Channel	Pattern	Condition	configuration and correlation Matrix	Pm-dsg (%)	SNR (dB)
1	10 MHz	2 ECCE	R.57 FDD	OP.7 FDD	EVA5	2 x 2 Low	1	12.2
2	10 MHZ	8 ECCE	R.58 FDD	OP.7 FDD	EVA5	2 x 2 Low	1	2.5

8.8.2.1.1 Void

Table 8.8.2.1.1-1: Void

8.8.2.1.2 Void

Table 8.8.2.1.2-1: Void

Table 8.8.2.1.2-2: Void

Table 8.8.2.1.2-3: Void

8.8.2.2 TDD

The parameters specified in Table 8.8.2.2-1 are valid for all TDD TM9 localized ePDCCH tests unless otherwise stated.

Table 8.8.2.2-1: Test Parameters for Localized EPDCCH with TM9

Parameter		Unit	Value
Number of PDCCH symbol	s	symbols	1 (Note 1)
EPDCCH starting symbol		symbols	2 (Note 1)
PHICH duration			Normal
Unused RE-s and PRB-s			OCNG
Cell ID			0
ρ	A	dB	0
Downlink power ρ	В	dB	0
allocation σ		dB	-3
δ		dB	0
$N_{\it oc}$ at antenna port		dBm/15 kHz	-98
Cyclic prefix			Normal
Subframe Configuration			Non-MBSFN
Precoder Update Granular	itv	PRB	1
•	ity	ms	1
Beamforming Pre-Coder			Annex B.4.5
Cell Specific Reference Signature	gnal		Port 0 and 1
CSI-RS Reference Signal			Port 15 and 16
CSI-RS reference signal re configuration	source		0
CSI reference signal subfraction losi-Rs	ame		0
ZP-CSI-RS configuration b	itmap		000001000000000
ZP-CSI-RS subframe confi	guration Izp-		0
Number of EPDCCH Sets			2 (Note 2)
EPDCCH Subframe Monitoring pattern subframePatternConfig-r11			1100011000 1100010000 1100011000 1100001000 1100011000 1000011000 1100011000 (Note 3)
PDSCH TM			TM9
TDD UL/DL Configuration			0
TDD Special Subframe	•		1 (Note 4)

- The starting symbol for EPDCCH is signalled with epdcch-StartSymbol-r11. However, CFI is Note 1: set to 1.
- Note 2: The first set is distributed transmission with PRB = {0, 49} and the second set is localized transmission with PRB = {0, 7, 14, 21, 28, 35, 42, 49}. ePDCCH is scheduled in the second set for all tests.
- Note 3: EPDCCH is scheduled in every SF. UE is required to monitor ePDCCH for UE-specific search space only in SFs configured by subframePatternConfig-r11. Legacy PDCCH is not scheduled.

Demodulation performance is averaged over normal and special subframe. Note 4:

For the parameters specified in Table 8.8.2.2-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.2.2.2-2. EPDCCH subframe monitoring is configured and the subframe monitoring requirement in EPDCCH restricted subframes is statDTX of 99.9%.

The downlink physical setup is in accordance with Annex C.3.2.

Table 8.8.2.2-2: Minimum performance Localized EPDCCH with TM9

Test	Bandwidth	Aggregation	Reference	OCNG	Propagation	Antenna	Reference value	
number		level	Channel	Pattern	Condition	configuration and correlation Matrix	Pm-dsg (%)	SNR (dB)
1	10 MHz	2 ECCE	R.57 TDD	OP.7 TDD	EVA5	2 x 2 Low	1	12.8
2	10 MHZ	8 ECCE	R.58 TDD	OP.7 TDD	EVA5	2 x 2 Low	1	2.0

8.8.2.2.1 Void

Table 8.8.2.2.1-1: Void

8.8.2.2.2 Void

Table 8.8.2.2.2-1: Void

Table 8.8.2.2.2: Void

Table 8.8.2.2.2-3: Void

8.8.3 Localized transmission with TM10 Type B quasi co-location type

8.8.3.1 FDD

For the parameters specified in Table 8.8.3.1-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified values in Table 8.8.3.1-2. In Table 8.8.3.1-1, transmission point 1 (TP 1) is the serving cell. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.8.3.1-1: Test Parameters for Localized Transmission TM10 Type B quasi co-location type

_			Te	est 1	Tes	st 2
	rameter	Unit	TP 1	TP 2	TP 1	TP 2
PHICH durati					ormal	
Downlink	$ ho_{\scriptscriptstyle A}$	dB			0	
power	$ ho_{\scriptscriptstyle B}$	dB			0	
allocation	σ	dB			-3	
	δ	dB	OdP power		0	
\hat{E}_s/N_{oc}	\hat{E}_s/N_{oc}		0dB power imbalance is considered between TP 1 and TP 2,	Reference value in Table 8.8.3.1-	Reference value in Table 8.8.3.1-	Reference value in Table 8.8.3.1-
$N_{\it oc}$ at anten	na port	dBm/ 15kH z		-	98	
Bandwidth		MHz	10	10	10	10
Number of co EPDCCH Set	S		2 (N	lote 1)	2 (N	ote1)
EPDCCH-PR (setConfigId)			0	1	0	1
PRB-set	type of EPDCCH-		Localized	Localized	Localized	Localized
EPDCCH-PR	Number of PRB pair per EPDCCH-PRB-set		8	8	8	8
	amforming model mission mode		Annex B.4.5 TM10	Annex B.4.5 TM10	Annex B.4.5 TM10	Annex B.4.5 TM10
PDSCH trans	mission mode		TIVITU	TIVITU	Probability of	Probability of
PDSCH transmission scheduling			Blanked in all the subframes	Transmit in all the subframes	occurrence of PDSCH transmission is 30% (Note 3)	occurrence of PDSCH transmission is 70% (Note 3)
Non-zero power CSI	CSI reference signal configuration		N/A	0	N/A	0
reference signal (NZPId=1)	CSI reference signal subframe configuration IcsI-RS		N/A	2	N/A	2
Non-zero power CSI	CSI reference signal configuration		N/A	N/A	10	N/A
reference signal (NZPId=2)	CSI reference signal subframe configuration <i>I</i> _{CSI-RS}		N/A	N/A	2	N/A
Zero power CSI reference	CSI-RS Configuration list (ZeroPowerCSI- RS bitmap)	Bitma p	N/A	0000010000000 000	N/A	1000010000000
signal (ZPId=1)	CSI-RS subframe configuration <i>I</i> _{CSI-RS}		N/A	2	N/A	2
Zero power CSI reference	CSI-RS Configuration list (ZeroPowerCSI- RS bitmap)	Bitma p	N/A	N/A	1000010000000 000	N/A
signal (ZPId=2)	CSI-RS subframe configuration $I_{\text{CSI-RS}}$		N/A	N/A	2	N/A
PQI set 0 (Note 4)	Non-Zero power CSI RS Identity (NZPId)		N/A	1	N/A	1

	Zero power CSI RS Identity (ZPId)		N/A	1	N/A	1
PQI set 1	Non-Zero power CSI RS Identity (NZPId)		N/A	N/A	2	N/A
(Note 4)	Zero power CSI RS Identity (ZPId)		N/A	N/A	2	N/A
Number of P	DCCH symbols	Symb ols		1 (N	ote 2)	
EPDCCH sta	arting position		pdsch-Start- r11=2 (Note 2)	pdsch-Start- r11=2 (Note 2)	pdsch-Start- r11=2 (Note 2)	pdsch-Start- r11=2 (Note 2)
Subframe co	nfiguration		Non-MBSFN	Non-MBSFN	Non-MBSFN	Non-MBSFN
Time offset b	Time offset between TPs µs N/A		N/A	2	N/A	2
Frequency shift between TPs		Hz	N/A 200		N/A	200
Cell ID			0	126	0	126

- Note 1: Resource blocks n_{PRB} =0, 7, 14, 21, 28, 35, 42, 49 are allocated for both the first set and the second set.
- Note 2: The starting OFDM symbol for EPDCCH is determined from the higher layer signalling pdsch-Start-r11.

 And CFI is set to 1.
- Note 3: The TP from which PDSCH is transmitted shall be randomly determined independently for each subframe. Probabilities of occurrence of PDSCH transmission from TP 1 and TP 2 are specified.
- Note 4: For PQI set 0, PDSCH and EPDCCH are transmitted from TP 2. For PQI set 1, PDSCH and EPDCCH are transmitted from TP1. EPDCCH and PDSCH are transmitted from same TP.

Table 8.8.3.1-2: Minimum Performance

Test	Aggregation	Reference	OCNG	Propagation	Antenna	Antenna Reference	
number	level	Channel	Pattern	Condition	configuration and correlation Matrix	Pm-dsg (%)	SNR (dB)
1	2 ECCE	R.59 FDD	OP.7 FDD	EVA5	2 x 2 Low	1	13.4
2	2 ECCE	R.59 FDD	OP.7 FDD	EVA5	2 x 2 Low	1	13.4

8.8.3.2 TDD

For the parameters specified in Table 8.8.3.2-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified values in Table 8.8.3.2-2. In Table 8.8.3.2-1, transmission point 1 (TP1) is the serving cell. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.8.3.2-1: Test Parameters for Localized Transmission TM10 Type B quasi co-location type

Doromotor		1111	Te	est 1	Test 2			
	rameter	Unit	TP 1	TP 2	TP 1	TP 2		
PHICH durati					rmal			
Downlink	$ ho_{\scriptscriptstyle A}$	dB			0			
power	$ ho_{\scriptscriptstyle B}$	dB			0			
allocation	σ	dB			-3			
	δ	dB	0					
\hat{E}_s/N_{oc}	\hat{E}_s/N_{oc}		0dB power imbalance is considered between TP 1 and TP 2,	Reference value in Table 8.8.3.2-	Reference value in Table 8.8.3.2-	Reference value in Table 8.8.3.2-2		
$N_{\it oc}$ at anten	na port	dBm/ 15kH z		-	98			
Bandwidth		MHz	10	10	10	10		
Number of El			2 (N	ote 1)	2 (No	ote1)		
EPDCCH-PR (setConfigld)			0	1	0	1		
PRB-set	type of EPDCCH-		Localized	Localized	Localized	Localized		
Number of PI EPDCCH-PR	B-set	PRB	8	8	8	8		
	amforming model		Annex B.4.5 TM10	Annex B.4.5 TM10	Annex B.4.5 TM10	Annex B.4.5 TM10		
	PDSCH transmission mode PDSCH transmission scheduling		Blanked in all the subframes	Transmit in all the subframes	Probability of occurrence of PDSCH transmission is 30% (Note 3)	Probability of occurrence of PDSCH transmission is 70% (Note 3)		
CSI reference configuration	S		Antenna ports 15,16	Antenna ports 15,16	Antenna ports 15,16	Antenna ports 15,16		
Non-zero power CSI	CSI reference signal configuration		N/A	0	N/A	0		
reference signal (NZPId=1)	CSI reference signal subframe configuration I _{CSI-RS}		N/A	0	N/A	0		
Non-zero power CSI	CSI reference signal configuration		N/A	N/A	10	N/A		
reference signal (NZPId=2)	CSI reference signal subframe configuration I _{CSI-RS}		N/A	N/A	0	N/A		
Zero power CSI reference	CSI-RS Configuration list (ZeroPowerCSI- RS bitmap)	Bitma p	N/A	0000010000000 000	N/A	1000010000000		
signal (ZPId=1)	CSI-RS subframe configuration I _{CSI-RS}		N/A	0	N/A	0		
Zero power CSI reference	CSI-RS Configuration list (ZeroPowerCSI-RS bitmap)	Bitma p	N/A	N/A	1000010000000 000	N/A		
signal (ZPId=2)	CSI-RS subframe configuration I _{CSI-RS}		N/A	N/A	0	N/A		

PQI set 0	Non-Zero power CSI RS Identity (NZPId)		N/A	1	N/A	1		
(Note 4)	Zero power CSI RS Identity (ZPId)		N/A	1	N/A	1		
PQI set 1	Non-Zero power CSI RS Identity (NZPId)		N/A	N/A	2	N/A		
(Note 4)	Zero power CSI RS Identity (ZPId)		N/A	N/A	2	N/A		
Number of Pl	DCCH symbols	Symb ols	1 (Note 2)					
EPDCCH sta	arting position		pdsch-Start- r11=2 (Note 2)	pdsch-Start- r11=2 (Note 2)	pdsch-Start- r11=2 (Note 2)	pdsch-Start- r11=2 (Note 2)		
Subframe cor	nfiguration		Non-MBSFN	Non-MBSFN	Non-MBSFN	Non-MBSFN		
Time offset b	etween TPs	μs	N/A	2	N/A	2		
Frequency sh	nift between TPs	Hz	N/A	200	N/A	200		
Cell ID	Cell ID		0	126	0	126		
TDD UL/DL o	configuration		0					
TDD special subframe					1			

- Note 1: Resource blocks $n_{PRB} = 0, 7, 14, 21, 28, 35, 42, 49$ are allocated for both the first set and the second set.
- Note 2: The starting OFDM symbol for EPDCCH is determined from the higher layer signalling pdsch-Start-r11.

 And CFI is set to 1.
- Note 3: The TP from which PDSCH is transmitted shall be randomly determined independently for each subframe. Probabilities of occurrence of PDSCH transmission from TP 1 and TP 2 are specified.
- Note 4: For PQI set 0, PDSCH and EPDCCH are transmitted from TP 2. For PQI set 1, PDSCH and EPDCCH are transmitted from TP1. EPDCCH and PDSCH are transmitted from same TP.

Table 8.8.3.2-2: Minimum Performance

Test	Aggregation	Reference	OCNG	Propagation	Antenna	ntenna Reference	
number	level	Channel	Pattern	Condition	configuration and correlation Matrix	Pm-dsg (%)	SNR (dB)
1	2 ECCE	R.59 TDD	OP.7 TDD	EVA5	2 x 2 Low	1	13.6
2	2 ECCE	R.59 TDD	OP.7 TDD	EVA5	2 x 2 Low	1	13.6

8.9 Demodulation (single receiver antenna)

The SNR deifintion is given in Clause 8.1.1 where the number of receiver antennas N_{RX} assumed for the minimum performance requirement in this clause is 1.

8.9.1 PDSCH

8.9.1.1 FDD and half-duplex FDD (Fixed Reference Channel)

The parameters specified in Table 8.9.1.1-1 are valid for FDD and half-duplex FDD tests unless otherwise stated.

Parameter Unit Value Inter-TTI Distance 1 Number of HARQ processes per **Processes** 8 component carrier Maximum number of 4 HARQ transmission {0,1,2,3} for QPSK and 16QAM Redundancy version coding sequence {0,0,1,2} for 64QAM 4 for 1.4 MHz bandwidth, 3 for 3 MHz and Number of OFDM 5 MHz bandwidths, symbols for PDCCH per OFDM symbols 2 for 10 MHz, 15 MHz and 20 MHz component carrier bandwidths Cyclic Prefix Normal Frequency domain: 1 PRG Precoder update Time domain: 1 ms for Transmission granularity mode 9

Table 8.9.1.1-1: Common Test Parameters (FDD and half-duplex FDD)

8.9.1.1.1 Transmit diversity performance (Cell-Specific Reference Symbols)

8.9.1.1.1.1 Minimum Requirement 2 Tx Antenna Port

The requirements are specified in Table 8.9.1.1.1.1-2, with the addition of the parameters in Table 8.9.1.1.1.1-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of transmit diversity (SFBC) with 2 transmitter antennas.

Table 8.9.1.1.1.1-1: Test Parameters for Transmit diversity Performance (FRC)

Parameter		Unit	Test 1
	$ ho_{\scriptscriptstyle A}$	dB	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
	σ	dB	0
$N_{_{oc}}$ at antenna	port	dBm/15kHz	-98
PDSCH transmission	on mode		2
Note 1: $P_B = 1$.			

Table 8.9.1.1.1.1-2: Minimum performance Transmit Diversity (FRC)

Test	Band-	Reference	OCNG	Propagation	Correlation	Reference	value	UE DL
number	width and MCS	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughp ut (%)	SNR (dB)	category
1	10 MHz 16QAM 1/2	R.62 FDD	OP.1 FDD	EPA5	2x1 Low	70	9.0	0

8.9.1.1.2 Closed-loop spatial multiplexing performance (Cell-Specific Reference Symbols)

8.9.1.1.2.1 Minimum Requirement Single-Layer Spatial Multiplexing 2 Tx Antenna Port

The requirements are specified in Table 8.9.1.1.2.1-2, with the addition of the parameters in Table 8.9.1.1.2.1-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-one performance with frequency selective precoding.

Table 8.9.1.1.2.1-1: Test Parameters for Single-Layer Spatial Multiplexing (FRC)

Parameter		Unit	Test 1
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-3
allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
	σ	dB	0
$N_{\it oc}$ at antenna $_{ m I}$	port	dBm/15kHz	-98
Precoding granul	arity	PRB	6
PMI delay (Note	2)	ms	8
Reporting interv	/al	ms	8
Reporting mod	le		PUSCH 1-2
CodeBookSubsetRestricti on bitmap			001111
PDSCH transmission			4
mode			

Note 1: $P_{R} = 1$.

Note 2: If the UE reports in an available uplink reporting instance at

subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the

eNB downlink before SF#(n+4).

Table 8.9.1.1.2.1-2: Minimum performance Single-Layer Spatial Multiplexing (FRC)

Test	Band-	Reference	OCNG	Propagation	Correlation	Reference v	alue	UE DL
number	width and MCS	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	categor y
1	10 MHz 64QAM 1/2	R.63 FDD	OP.1 FDD	EPA5	2x1 Low	70	13.2	0

8.9.1.1.3 Closed-loop spatial multiplexing performance (User-Specific Reference Symbols)

8.9.1.1.3.1 Single-layer Spatial Multiplexing

For single-layer transmission on antenna ports 7 or 8 upon detection of a PDCCH with DCI format 2C, the requirements are specified in Table 8.9.1.1.3.1-2 with the addition of the parameters in Table 8.9.1.1.3.1-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify rank-1 performance on one of the antenna ports 7 or 8, and to verify rate matching with multiple CSI reference symbol configurations with non-zero and zero transmission power.

Table 8.9.1.1.3.1-1: Test Parameters for Testing CDM-multiplexed DM RS (single layer) with multiple **CSI-RS** configurations

parameter		Unit	Test 1
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	0
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)
	σ	dB	-3
Beamforming mo	del		Annex B.4.1
Cell-specific refere signals	ence		Antenna ports 0,1
CSI reference sign	nals		Antenna ports 15,,18
CSI-RS periodicity subframe offse $T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$	t	Subframes	5/2
CSI reference sig configuration			0
Zero-power CSI-l configuration I _{CSI-RS} / ZeroPowerCSI-F bitmap		Subframes / bitmap	3 / 0001000000000000
$N_{\it oc}$ at antenna p	ort	dBm/15kHz	-98
Symbols for unus PRBs	Symbols for unused PRBs		OCNG (Note 4)
Number of allocated resource blocks (Note 2)		PRB	6
PDSCH transmiss mode	sion		9
Note 1: $P_R = 1$.			

Note 2: The modulation symbols of the signal under test are mapped

onto antenna port 7 or 8.

These physical resource blocks are assigned to an arbitrary Note 3: number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated

pseudo random data, which is QPSK modulated.

Table 8.9.1.1.3.1-2: Minimum performance for CDM-multiplexed DM RS (FRC) with multiple CSI-RS configurations

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference	value	UE DL
number	and MCS	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughpu t (%)	SNR (dB)	category
1	10 MHz QPSK 1/3	R.64 FDD	OP.1 FDD	EPA5	2x1 Low	70	4.7	0

8.9.1.2 TDD (Fixed Reference Channel)

The parameters specified in Table 8.9.1.2-1 are valid for all TDD tests unless otherwise stated.

Table 8.9.1.2-1: Common Test Parameters (TDD)

Parameter	Unit	Value					
Uplink downlink configuration (Note 1)		1					
Special subframe configuration (Note 2)		4					
Cyclic prefix		Normal					
Cell ID		0					
Inter-TTI Distance		1					
Number of HARQ processes per component carrier	Processes	7					
Maximum number of HARQ transmission		4					
Redundancy version coding sequence		{0,1,2,3} for QPSK and 16QAM {0,0,1,2} for 64QAM					
Number of OFDM symbols for PDCCH per component carrier	OFDM symbols	4 for 1.4 MHz bandwidth, 3 for 3 MHz and 5 MHz bandwidths, 2 for 10 MHz, 15 MHz and 20 MHz bandwidths					
Precoder update granularity		Frequency domain: 1 PRG Time domain: 1 ms for Transmission mode 9					
ACK/NACK feedback mode		Multiplexing					
	Note 1: as specified in Table 4.2-2 in TS 36.211 [4].						

8.9.1.2.1 Transmit diversity performance (Cell-Specific Reference Symbols)

8.9.1.2.1.1 Minimum Requirement 2 Tx Antenna Port

The requirements are specified in Table 8.9.1.2.1.1-2, with the addition of the parameters in Table 8.9.1.2.1.1-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of transmit diversity (SFBC) with 2 transmitter antennas.

Table 8.9.1.2.1.1-1: Test Parameters for Transmit diversity Performance (FRC)

Parameter		Unit	Test 1-2
	$ ho_{\scriptscriptstyle A}$	dB	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
	σ	dB	0
$N_{\it oc}$ at antenna	port	dBm/15kHz	-98
ACK/NACK feedba	ck mode		Multiplexing
PDSCH transmission	on mode		2
Note 1: $P_B = 1$			

Table 8.9.1.2.1.1-2: Minimum performance Transmit Diversity (FRC)

Test	Bandw	Reference	OCNG	Propagation	Correlation	Reference	value	UE DL
number	idth	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	category
1	10 MHz 16QAM 1/2	R.62 TDD	OP.1 TDD	EPA5	2x1 Low	70	8.8	0

8.9.1.2.2 Closed-loop spatial multiplexing performance (Cell-Specific Reference Symbols)

8.9.1.2.2.1 Minimum Requirement Single-Layer Spatial Multiplexing 2 Tx Antenna Port

The requirements are specified in Table 8.9.1.2.2.1-2, with the addition of the parameters in Table 8.9.1.2.2.1-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-one performance with frequency selective precoding.

Table 8.9.1.2.2.1-1: Test Parameters for Single-Layer Spatial Multiplexing (FRC)

Parameter		Unit	Test 1
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
	σ	dB	0
$N_{\it oc}$ at antenna p	ort	dBm/15kHz	-98
Precoding granula	rity	PRB	6
PMI delay (Note	2)	ms	10 or 11
Reporting interva	al	ms	1 or 4 (Note 3)
Reporting mode	;		PUSCH 1-2
CodeBookSubsetRes	triction		001111
bitmap			
ACK/NACK feedback	mode		Multiplexing
PDSCH transmission mode			4
Note 1: D = 1			

Note 1: $P_B = 1$.

Note 2: If the UE reports in an available uplink reporting instance at

subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the

eNB downlink before SF#(n+4).

Note 3: For Uplink - downlink configuration 1 the reporting interval will

alternate between 1ms and 4ms.

Table 8.9.1.2.2.1-2: Minimum performance Single-Layer Spatial Multiplexing (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference	value	UE DL
number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	category
1	10 MHz 64QAM 1/2	R.63 TDD	OP.1 TDD	EPA5	2x1 Low	70	13.1	0

8.9.1.2.3 Closed-loop spatial multiplexing performance (User-Specific Reference Symbols)

8.9.1.2.3.1 Single-layer Spatial Multiplexing

For single-layer transmission on antenna ports 7 or 8 upon detection of a PDCCH with DCI format 2C, the requirements are specified in Table 8.9.1.2.3.1-2 with the addition of the parameters in Table 8.9.1.2.3.1-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify rank-1 performance on one of the

antenna ports 7 or 8, and to verify rate matching with multiple CSI reference symbol configurations with non-zero and zero transmission power.

Table 8.9.1.2.3.1-1: Test Parameters for Testing CDM-multiplexed DM RS (single layer) with multiple CSI-RS configurations

Parameter		Unit	Test 1		
D 11.1	$ ho_{\scriptscriptstyle A}$		0		
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)		
	σ	dB	-3		
Cell-specific refere	ence		Antenna ports 0,1		
CSI reference sign	nals		Antenna ports 15,,18		
Beamforming mo	del		Annex B.4.1		
CSI-RS periodicity subframe offse $T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$	t	Subframes	5/4		
CSI reference sig configuration	nal		1		
Zero-power CSI-l configuration I _{CSI-RS} / ZeroPowerCSI-F bitmap		Subframes / bitmap	4 / 0010000100000000		
$N_{\it oc}$ at antenna p	ort	dBm/15kHz	-98		
Symbols for unus PRBs	ed		OCNG (Note 4)		
Number of allocar resource blocks (No		PRB	6		
Simultaneous transmission			No		
PDSCH transmission mode			9		
Note 1: $P_B = 1$.					
Note 2: The modulation symbols of the signal under test are mapped onto antenna port 7 or 8. Note 3: These physical resource blocks are assigned to an					

Table 8.9.1.2.3.1-2: Minimum performance for CDM-multiplexed DM RS without simultaneous transmission (FRC) with multiple CSI-RS configurations

which is QPSK modulated.

arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data,

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference value		UE DL
number	and MCS	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughpu t (%)	SNR (dB)	category
1	10 MHz QPSK 1/3	R.64 TDD	OP.1 TDD	EPA5	2x1 Low	70	4.5	0

8.9.2 PHICH

8.9.2.1 FDD and half-duplex FDD

8.9.2.1.1 Transmit diversity performance

For the parameters specified in Table 8.5.1-1 the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.9.2.1.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.9.2.1.1-1: Minimum performance PHICH

Test	Bandwidth	Reference	OCNG	Propagation	Antenna	Referen	ce value
number		Channel	Pattern	Condition	configuration and correlation Matrix	Pm-an (%)	SNR (dB)
1	10 MHz	R.19	OP.1 FDD	EPA5	2 x 1 Low	0.1	8.6

8.9.2.2 TDD

8.9.2.2.1 Transmit diversity performance

For the parameters specified in Table 8.5.2-1 the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.9.2.2.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.9.2.2.1-1: Minimum performance PHICH

Test	Bandwidth	Reference	OCNG	Propagation	Antenna	Referen	ce value	
number		Channel	Pattern	Condition	configuration and correlation Matrix	Pm-an (%)	SNR (dB)	
1	10 MHz	R.19	OP.1 TDD	EPA5	2 x 1 Low	0.1	8.6	

8.9.3 PBCH

8.9.3.1 FDD and half-duplex FDD

8.9.3.1.1 Transmit diversity performance

For the parameters specified in Table 8.6.1-1 the average probability of a miss-detected PBCH (Pm-bch) shall be below the specified value in Table 8.9.3.1.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.9.3.1.1-1: Minimum performance PBCH

Test	Bandwidth	Reference	Propagation	Antenna	Referen	e value	
number		Channel	Condition	configuration	Pm-bch (%)	SNR (dB)	
				and			
				correlation			
				Matrix			
1	1.4 MHz	R.22	EPA5	2 x 1 Low	1	-1.3	

8.9.3.2 TDD

8.9.3.2.1 Transmit diversity performance

For the parameters specified in Table 8.6.2-1 the average probability of a miss-detected PBCH (Pm-bch) shall be below the specified value in Table 8.9.3.2.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.9.3.2.1-1: Minimum performance PBCH

	Test	Bandwidth	Reference	Propagation	Antenna	Reference value		
r	number		Channel	Condition	configuration and correlation Matrix	Pm-bch (%)	SNR (dB)	
	1	1.4 MHz	R.22	EPA5	2 x 1 Low	1	-1.7	

9 Reporting of Channel State Information

9.1 General

This section includes requirements for the reporting of channel state information (CSI). For all test cases in this section, the definition of SNR and SINR are in accordance with the one given in clause 8.1.1.

For the performance requirements specified in this clause, it is assumed that N_{RX} =2 unless otherwise stated.

Unless otherwise stated, 4-bit CQI Table in Table 7.2.3-1 in TS 36.213 [6], and Modulation and TBS index table in Table 7.1.7.1-1 for PDSCH in TS 36.213 [6] are applied in all the CSI requirements.

9.1.1 Applicability of requirements

9.1.1.1 Applicability of requirements for different channel bandwidths

In Clause 9 the test cases may be defined with different channel bandwidth to verify the same CSI requirement.

Test cases defined for 5MHz channel bandwidth that reference this clause are applicable to UEs that support only Band 31.

9.1.1.2 Applicability and test rules for different CA configurations and bandwidth combination sets

The performance requirement for CA CQI tests in Clause 9 are defined independent of CA configurations and bandwidth combination sets specified in Clause 5.6A.1. For UEs supporting different CA configurations and bandwidth combination sets, the applicability and test rules are defined for the tests for 2 DL CCs in Table 9.1.1.2-1 and 3 DL CCs in Table 9.1.1.2-2. For simplicity, CA configuration below refers to combination of CA configuration and bandwidth combination set.

Table 9.1.1.2-1: Applicability and test rules for CA UE CQI tests with 2 DL CCs

CA capability where the tests apply	CA configuration from the selected CA capbility where the tests apply	CA Bandwidth combination to be tested in priority order
Any of one of the supported CA capabilities	Any one of the supported FDD CA configurations	10+10 MHz, 20+20 MHz, 5+5 MHz, and 10MHz+5MHz.
Any of one of the supported CA capabilities with largest aggregated CA bandwidth combination	Any one of the supported TDD CA configurations with largest aggregated CA bandwidth combination	Largest aggregated CA bandwidth combination
r of the supported be figuration is 1.	andwidth combinations to be to	
f	where the tests apply Any of one of the supported CA capabilities Any of one of the supported CA capabilities with largest aggregated CA bandwidth combination of the supported before the supported	Any of one of the supported CA capabilities Any of one of the supported CA capabilities Any of one of the supported CA capabilities Any of one of the supported CA capabilities with largest aggregated CA bandwidth combination Dicability and test rules are specified in this table, of the supported bandwidth combinations to be to

Table 9.1.1.2-2: Applicability and test rules for CA UE CQI tests with 3 DL CCs

Tests	CA capability where the tests apply	CA configuration from the selected CA capbility where the tests apply	CA Bandwidth combination to be tested in priority order				
CA tests with 3CCs in Clause 9.6.1.1	Any of one of the supported CA capabilities with largest aggregated CA bandwidth combination	Any one of the supported FDD CA configurations with largest aggregated CA bandwidth combination	Largest aggregated CA bandwidth combination				
CA tests with 3CCs in Clause 9.6.1.2	Any of one of the supported CA capabilities with largest aggregated CA bandwidth combination	Any one of the supported TDD CA configurations with largest aggregated CA bandwidth combination	Largest aggregated CA bandwidth combination				
Note 1: The applicability and test rules are specified in this table, unless otherwise stated							
Note 2: Number of the supported bandwidth combinations to be tested from each selected CA configuration is 1.							
Note 3: A single Uplink CC is configured for all tests							

9.1.1.2A Applicability and test rules for different TDD-FDD CA configurations and bandwidth combination sets

The performance requirement for TDD-FDD CA CQI tests in Clause 9 are defined independent of CA configurations and bandwidth combination sets specified in Clause 5.6A.1. For UEs supporting different CA configurations and bandwidth combination sets, the applicability and test rules are defined for the tests for 2 DL TDD-FDD CA in Table 9.1.1.2A-1 and for 3 DL TDD-FDD CA in Table 9.1.1.2A-2. For simplicity, CA configuration below refers to combination of CA configuration and bandwidth combination set.

Table 9.1.1.2A-1: Applicability and test rules for CA UE CQI tests for TDD-FDD CA with 2 DL CCs

Tests	CA capability where the tests apply	CA configuration from the selected CA capbility where the tests apply	CA Bandwidth combination to be tested in priority order					
CA tests with 2CCs in Clause 9.6.1.3	Any of one of the supported CA capabilities	Any one of the supported TDD- FDD CA configurations with FDD PCell with largest aggregated CA bandwidth combination	Largest aggregated CA bandwidth combination					
CA tests with 2CCs in Clause 9.6.1.4	Any of one of the supported CA capabilities	Any one of the supported TDD- FDD CA configurations with TDD PCell with largest aggregated CA bandwidth combination	Largest aggregated CA bandwidth combination					
Note 1: The applicability and test rules are specified in this table, unless otherwise stated. Note 2: Number of the supported bandwidth combinations to be tested from each selected CA configuration is 1.								
Note 3: A single Uplink CC is configured for all tests								

Table 9.1.1.2A-2: Applicability and test rules for CA UE CQI tests for TDD-FDD CA with 3 DL CCs

Tests	CA capability where the tests apply	CA configuration from the selected CA capbility where the tests apply	CA Bandwidth combination to be tested in priority order					
CA tests with 3CCs in Clause 9.6.1.3	Any of one of the supported CA capabilities	Any one of the supported TDD- FDD CA configurations with FDD PCell with largest aggregated CA bandwidth combination	Largest aggregated CA bandwidth combination					
CA tests with 3CCs in Clause 9.6.1.4 Any of one of the supported CA capabilities		Any one of the supported TDD- FDD CA configurations with TDD PCell with largest aggregated CA bandwidth combination Largest aggregated CA bandwidth combination						
Note 1: The applicability and test rules are specified in this table, unless otherwise stated.								

Note 2: Number of the supported bandwidth combinations to be tested from each selected CA

configuration is 1.

Note 3: A single Uplink CC is configured for all tests

9.1.1.3 Test coverage for different number of component carriers

For FDD CA tests specified in 9.6.1.1, among all supported CA capabilities, if corresponding CA tests with the largest number of CCs supported by the UE are tested, the test coverage can be considered fulfilled without executing the CA tests with less than the largest number of CCs supported by the UE.

For TDD CA tests specified in 9.6.1.2, among all supported CA capabilities, if corresponding CA tests with the largest number of CCs supported by the UE are tested, the test coverage can be considered fulfilled without executing the CA tests with less than the largest number of CCs supported by the UE.

For TDD FDD CA tests specified in 9.6.1.3 and 9.6.1.4, among all supported CA capabilities, if corresponding CA tests with the largest number of CCs supported by the UE are tested, the test coverage can be considered fulfilled without executing the TDD FDD CA tests with less than the largest number of CCs supported by the UE.

9.2 CQI reporting definition under AWGN conditions

The reporting accuracy of the channel quality indicator (CQI) under frequency non-selective conditions is determined by the reporting variance and the BLER performance using the transport format indicated by the reported CQI median. The purpose is to verify that the reported CQI values are in accordance with the CQI definition given in TS 36.213 [6]. To account for sensitivity of the input SNR the reporting definition is considered to be verified if the reporting accuracy is met for at least one of two SNR levels separated by an offset of 1 dB.

cqi-pmi-ConfigurationIndex

9.2.1 Minimum requirement PUCCH 1-0 (Cell-Specific Reference Symbols)

9.2.1.1 FDD

The following requirements apply to UE Category ≥ 1 . For the parameters specified in Table 9.2.1.1-1 and Table 9.2.1.1-2, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2, the reported CQI value according to RC.1 FDD / RC.14 FDD in Table A.4-1 shall be in the range of ± 1 of the reported median more than 90% of the time. If the PDSCH BLER using the transport format indicated by median CQI is less than or equal to 0.1, the BLER using the transport format indicated by the (median CQI + 1) shall be greater than 0.1. If the PDSCH BLER using the transport format indicated by the median CQI is greater than 0.1, the BLER using transport format indicated by (median CQI - 1) shall be less than or equal to 0.1.

The applicability of the requirement with 5MHz bandwidth as specificed in Table 9.2.1.1-2 is defined in 9.1.1.1.

Parameter Unit Test 1 Test 2 Bandwidth MHz 10 PDSCH transmission mode 1 dB 0 $\rho_{\scriptscriptstyle A}$ Downlink power dB 0 $\rho_{\scriptscriptstyle B}$ allocation dΒ 0 σ Propagation condition and AWGN (1 x 2) antenna configuration SNR (Note 2) dΒ 0 $\hat{I}_{or}^{(j)}$ dB[mW/15kHz] -98 -97 -92 -91 $N^{\overline{(j)}}$ dB[mW/15kHz] -98 -98 Max number of HARQ transmissions Physical channel for CQI **PUCCH Format 2** reporting PUCCH Report Type 4 Reporting periodicity ms $N_{pd} = 5$

Table 9.2.1.1-1: PUCCH 1-0 static test (FDD)

Note 1: Reference measurement channel RC.1 FDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1, except for category 1 UE use RC.4 FDD with two sided dynamic OCNG Pattern OP.2 FDD as described in Annex A.5.1.2.

Note 2: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.

Table 9.2.1.1-2: PUCCH 1-0 static test (FDD 5MHz)

Parameter		Unit	Tes	st 1	Test 2			
Bandwidth		MHz		5				
PDSCH transmission	mode				1			
Downlink power	$ ho_{\scriptscriptstyle A}$	dB			0			
allocation	$ ho_{\scriptscriptstyle B}$	dB			0			
	σ	dB			0			
Propagation condition antenna configuration			AWGN (1 x 2)					
SNR (Note 2	SNR (Note 2)		[0]	[1]	[6]	[7]		
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz] [-98] [-97] [-92]		[-91]				
$N_{oc}^{(j)}$		dB[mW/15kHz]	-9	98	-!	98		
Max number of HARO transmissions	Ω				1			
Physical channel for reporting	CQI		PUCCH Format 2					
PUCCH Report Type			4					
Reporting periodicity		ms	$N_{\rm pd} = 5$					
cqi-pmi-Configuration	nIndex		•	•	6	•		

Note 1: Reference measurement channel RC.14 FDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1, except for category 1 UE use RC.15 FDD with two sided dynamic OCNG Pattern OP.2 FDD as described in Annex A.5.1.2

Note 2: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.

9.2.1.2 TDD

The following requirements apply to UE Category ≥ 1 . For the parameters specified in Table 9.2.1.2-1, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2, the reported CQI value according to RC.1 TDD in Table A.4-1 shall be in the range of ± 1 of the reported median more than 90% of the time. If the PDSCH BLER using the transport format indicated by median CQI is less than or equal to 0.1, the BLER using the transport format indicated by the median CQI + 1) shall be greater than 0.1. If the PDSCH BLER using the transport format indicated by the median CQI is greater than 0.1, the BLER using transport format indicated by (median CQI – 1) shall be less than or equal to 0.1.

Table 9.2.1.2-1: PUCCH 1-0 static test (TDD)

Parameter		Unit	Tes	st 1	Te	st 2	
Bandwidth		MHz			10		
PDSCH transmission	n mode						
Uplink downlink configuration			2				
Special subfra configuration					4		
Devertials never	$ ho_{\scriptscriptstyle A}$	dB		0			
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB			0		
	σ	dB			0		
. •	Propagation condition and antenna configuration		AWGN (1 x 2)				
SNR (Note 2	2)	dB	0	1	6	7	
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-98	-97	-92	-91	
$N_{oc}^{(j)}$		dB[mW/15kHz]	-9	98	-6	98	
Max number of H transmission					1		
Physical channel f reporting	or CQI			PUSCH	H (Note 3)		
PUCCH Report	Туре				4		
Reporting period	dicity	ms	$N_{\rm pd} = 5$				
cqi-pmi-Configurati					3	·	
ACK/NACK feedbac	ck mode			Multi	plexing	·	

- Note 1: Reference measurement channel RC.1 TDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1, except for category 1 UE use RC.4 TDD with two sided dynamic OCNG Pattern OP.2 TDD as described in Annex A.5.2.2.
- Note 2: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.
- Note 3: To avoid collisions between CQI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#3 and #8 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#7 and #2.

9.2.1.3 FDD (CSI measurements in case two CSI subframe sets are configured)

The following requirements apply to UE Category ≥ 1 . For the parameters specified in Table 9.2.1.3-1, and using the downlink physical channels specified in tables C.3.2-1 for Cell 1, C.3.3-1 for Cell 2 and C.3.2-2, the reported CQI value according to RC.2 FDD / RC.6 FDD in Table A.4-1 in subframes overlapping with aggressor cell ABS and non-ABS subframes shall be in the range of ± 1 of the reported median more than 90% of the time. If the PDSCH BLER in non-ABS subframes using the transport format indicated by median CQI obtained by reports in CSI subframe sets $C_{CSI,1}$ is less than or equal to 0.1, the BLER in non-ABS subframes using the transport format indicated by the (median CQI + 1) shall be greater than 0.1. If the PDSCH BLER in non-ABS subframes using transport format indicated by (median CQI - 1) shall be less than or equal to 0.1. The value of the median CQI obtained by reports in CSI subframe sets $C_{CSI,1}$ shall be larger than or equal to 2 and less than or equal to 5 in Test 1 and shall be larger than or equal to 0 and less than or equal to 1 in Test 2.

Table 9.2.1.3-1: PUCCH 1-0 static test (FDD)

Parameter		11		Tes	st 1		Te	st 2
Parameter		Unit	Ce	II 1	Cell 2	Ce	Cell 1 Cell 2	
Bandwidth		MHz		10				0
PDSCH transmission	on mode		2	2	Note 10		2	Note 10
Downlink power	$ ho_{\scriptscriptstyle A}$	dB		-3	3		-	3
allocation	$ ho_{\scriptscriptstyle B}$	dB		-3			-3	
	σ	dB		0)			0
Propagation condit antenna configu				Clause E	3.1 (2x2)		Clause I	3.1 (2x2)
\widehat{E}_s/N_{oc2} (Not	te 1)	dB	4 5 6		4	5	-12	
(:)	$N_{oc1}^{(j)}$	dBm/15kHz	-102 (Note 7)		N/A	-98(N	lote 7)	N/A
$N_{oc}^{(j)}$ at antenna	$N_{oc2}^{(j)}$	dBm/15kHz	-98 (N	lote 8)	N/A	-98(N	lote 8)	N/A
port	$N_{oc3}^{(j)}$	dBm/15kHz	-94.8 (Note 9)	N/A	-98(Note 9)		N/A
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-94	-93	-92	-94	-93	-110
Subframe Configu	uration		Non-M	IBSFN	Non-MBSFN	Non-N	/BSFN	Non-MBSFN
Cell Id)	1		0	1
Time Offset between	en Cells	μs	2.5	(synchro	onous cells)	2.5	s (synchr	onous cells)
ABS pattern (No	ABS pattern (Note 2)		N/A		01010101 01010101 01010101 01010101 01010101	N/A		01010101 01010101 01010101 01010101 01010101
RLM/RRM Measu Subframe Pattern			0000 0000 0000	0100 0100 0100 0100 0100	N/A	00000100 00000100 00000100 00000100 00000100		N/A
CSI Subframe Sets	Ccsi,0		0101 0101 0101 0101	0101 0101 0101 0101 0101	N/A	0101 0101 0101 0101	10101 10101 10101 10101 10101	N/A
(Note 3)	Ccsi,1		1010 1010 1010 1010	10101010 10101010 10101010 10101010 10101010		10101010 10101010 10101010 10101010 10101010		N/A
Number of control symbols	OFDM			3	3			3
Max number of F				1				1
	Physical channel for Ccsi,0 CQI		ı	PUCCH I	Format 2		PUCCH	Format 2
Physical channel for reporting	C _{CSI,1} CQI		F	PUSCH (Note 12)		PUSCH (Note 12)	
PUCCH Report				4				4
Reporting perior		Ms		$N_{\rm pd}$	= 5		N_{pd}	= 5
cqi-pmi-Configurati Ccsi,0 (Note 1			6	6	N/A		6	N/A
cqi-pmi-Configuration	onIndex2		ţ	5	N/A		5	N/A

- Note 1: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.
- Note 2: ABS pattern as defined in [9].
- Note 3: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
- Note 4: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7]
- Note 5: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
- Note 6: Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1 and Cell2 is the same.
- Note 7: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.
- Note 8: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS
- Note 9: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS.
- Note 10: Downlink physical channel setup in Cell 2 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.1.5
- Note 11: Reference measurement channel in Cell 1 RC.2 FDD according to Table A.4-1 for UE Cateogry 2-8 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1, and RC.6 FDD according to Table A.4-1 for Category 1 with one/two sided dynamic OCNG Pattern OP. 1/2 FDD as described in Annex A.5.1.1 and A.5.1.2.
- Note 12: To avoid collisions between HARQ-ACK and wideband CQI it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#4 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#8 and #3.
- Note 13: cgi-pmi-ConfigurationIndex is applied for Ccsl.o.
- Note 14: cqi-pmi-ConfigurationIndex2 is applied for Ccsi,1.

9.2.1.4 TDD (CSI measurements in case two CSI subframe sets are configured)

The following requirements apply to UE Category ≥ 1 . For the parameters specified in Table 9.2.1.4-1, and using the downlink physical channels specified in tables C.3.2-1 for Cell 1, C3.3-1 for Cell 2 and C.3.2-2, the reported CQI value according to RC.2 TDD / RC.6 TDD in Table A.4-1 in subframes overlapping with aggressor cell ABS and non-ABS subframes shall be in the range of ± 1 of the reported median more than 90% of the time. If the PDSCH BLER in non-ABS subframes using the transport format indicated by median CQI obtained by reports in CSI subframe sets $C_{CSI,1}$ is less than or equal to 0.1, the BLER in non-ABS subframes using the transport format indicated by the median CQI is greater than 0.1. If the PDSCH BLER in non-ABS subframes using the transport format indicated by the median CQI is greater than 0.1, the BLER in non-ABS subframes using transport format indicated by (median CQI – 1) shall be less than or equal to 0.1. The value of the median CQI obtained by reports in CSI subframe sets $C_{CSI,0}$ minus the median CQI obtained by reports in CSI subframe sets $C_{CSI,1}$ shall be larger than or equal to 2 and less than or equal to 5 in Test 1 and shall be larger than or equal to 0 and less than or equal to 1 in Test 2.

Table 9.2.1.4-1: PUCCH 1-0 static test (TDD)

Parameter		Unit	Test 1			Test 2		
			Ce	II 1	Cell 2	Ce	II 1	Cell 2
Bandwidth		MHz			0			0
PDSCH transmission mode			2 Note 10		2		Note 10	
	Uplink downlink configuration				1			1
Special subframe configuration			4		4			
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	-3		-3			
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3			-3		
	σ	dB	0			0		
Propagation condit antenna configur			Clause B.1 (2x2)		Clause B.1 (2x2)			
\widehat{E}_s/N_{oc2} (Not	e 1)	dB	4	5	6	4	5	-12
(:)	$N_{oc1}^{(j)}$	dBm/15kHz	-102 (1	Note 7)	N/A	N/A -98 (Note 7)		N/A
$N_{oc}^{(j)}$ at antenna	$N_{oc2}^{(j)}$	dBm/15kHz	-98 (Note 8)		N/A	-98 (Note 8)		N/A
port	$N_{oc3}^{(j)}$	dBm/15kHz	-94.8 (Note 9)		N/A	-98 (Note 9)		N/A
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-94	-93	-92	-94	-93	-110
Subframe Configuration			Non-M	IBSFN	Non-MBSFN	Non-M	BSFN	Non-MBSFN
Cell Id			0 1		0 1		1	
Time Offset between Cells		μs	2.5 (synchronous cells)		2.5 (synchronous cells)			
ABS pattern (Note 2)			N,	/A	0100010001 0100010001	N/A		0100010001 0100010001
RLM/RRM Measurement Subframe Pattern (Note 4)			0000000001 0000000001		N/A	0000000001 0000000001		N/A
Submanie i attenii	` ′		01000		N/A	0100010001 0100010001		N.A
CSI Subframe Sets	Ccsi,0		01000		IN/A			N.A
(Note 3)	C _{CSI,1}		1000101000 1000101000		N/A	1000101000 1000101000		N/A
Number of control OFDM symbols			3		3			
Max number of HARQ			1 1		 1			
transmissions			' '					
Physical channel for C _{CSI,0} CQI reporting				PUCCH	Format 2	PUCCH Format 2		Format 2
Physical channel for C _{CSI,1} CQI			PUSCH (Note 12) PUSCH		SCH			
reporting PUCCH Report Type					1	4		4
Reporting periodicity		ms	$N_{pd} = 5$		N _{pd} = 5			
cqi-pmi-ConfigurationIndex			,			,		
C _{CSI,0} (Note 13)			3)	N/A	3	3	N/A
cqi-pmi-ConfigurationIndex2 C _{CSI,1} (Note 14)			4	1	N/A		1	N/A
ACK/NACK feedback mode			Multiplexing		Multiplexing			

- Note 1: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.
- Note 2: ABS pattern as defined in [9].
- Note 3: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
- Note 4: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].
- Note 5: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
- Note 6: Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1 and Cell2 is the same.
- Note 7: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.
- Note 8: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS
- Note 9: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS.
- Note 10: Downlink physical channel setup in Cell 2 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.2.5
- Note 11: Reference measurement channel in Cell 1 RC.2 TDD according to Table A.4-1 for UE Category ≥2 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1, and RC.6 TDD according to Table A.4-1 for Category 1 with one/two sided dynami OCNG Pattern OP.1/2 TDD as described in Annex A.5.2.1 and Annex A.5.2.2.
- Note 12: To avoid collisions between HARQ-ACK and wideband CQI it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#4 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#8 and #3.
- Note 13: cqi-pmi-ConfigurationIndex is applied for Ccsi.o.
- Note 14: cqi-pmi-ConfigurationIndex2 is applied for C_{CSI,1}.

9.2.1.5 FDD (CSI measurements in case two CSI subframe sets are configured and with CRS assistance information)

The following requirements apply to UE Category ≥ 2 . For the parameters specified in Table 9.2.1.5-1, and using the downlink physical channels specified in tables C.3.2-1 for Cell 1, C.3.3-2 for Cell 2 and Cell 3, and C.3.2-2, the reported CQI value according to RC.2 FDD in Table A.4-1 in subframes overlapping with aggressor cell ABS and non-ABS subframes shall be in the range of ± 1 of the reported median more than 90% of the time.

For test 1 and test 2, if the PDSCH BLER in ABS subframes using the transport format indicated by median CQI obtained by reports in CSI subframe sets $C_{\text{CSI},0}$ is less than or equal to 0.1, the BLER in ABS subframes using the transport format indicated by the (median CQI + 1) shall be greater than 0.1. If the PDSCH BLER in ABS subframes using the transport format indicated by the median CQI is greater than 0.1, the BLER in ABS subframes using transport format indicated by (median CQI – 1) shall be less than or equal to 0.1.

For test 2, if the PDSCH BLER in non-ABS subframes using the transport format indicated by median CQI obtained by reports in CSI subframe sets $C_{CSI,1}$ is less than or equal to 0.1, the BLER in non-ABS subframes using the transport format indicated by the (median CQI + 2) shall be greater than 0.1. If the PDSCH BLER in non-ABS subframes using the transport format indicated by the median CQI is greater than 0.1, the BLER in non-ABS subframes using transport format indicated by (median CQI – 1) shall be less than or equal to 0.1.

Table 9.2.1.5-1: PUCCH 1-0 static test (FDD)

Parameter		Heit	Т	est 1	Te	Test 2		
		Unit	Cell 1 Cell 2 and 3			Cell 1 Cell 2 and 3		
Bandwidth		MHz	10 2 Note 10			Note 40		
PDSCH transmission mode		dB	2	-3	2	Note 10		
Downlink power	$ ho_{\scriptscriptstyle A}$							
allocation	$ ho_{\scriptscriptstyle B}$	dB	-3			3		
Propagation condi	σ tion and	dB		0		0		
antenna configu			Clause	B.1 (2x2)	Clause	B.1 (2x2)		
\widehat{E}_s/N_{oc2} (Note 1)		dB	4 5	Cell 2: 12 Cell 3: 10	13 14	Cell 2: 12 Cell 3: 10		
(1)	$N_{oc1}^{(j)}$	dBm/15kHz	-98 (Note 7)	N/A	-98 (Note 7)	N/A		
$N_{oc}^{(j)}$ at antenna port	$N_{oc2}^{(j)}$	dBm/15kHz	-98 (Note 8)	N/A	-98 (Note 8)	N/A		
·	$N_{oc3}^{(j)}$	dBm/15kHz	-93 (Note 9)	N/A	-93 (Note 9)	N/A		
Subframe Config	uration		Non-MBSFN		+	Non-MBSFN		
Cell Id			0	Cell 2: 6 Cell 3: 1	0	Cell 2: 6 Cell 3: 1		
Time Offeet between	on Calla		Cell 2	2: 3 usec	Cell 2:	Cell 2: 3 usec		
Time Offset betwe	en Cells	μs		3: -1usec		Cell 3: -1usec		
Frequency Shift betv	veen Cells	Hz	Cell 2: 300Hz Cell 3: -100Hz			Cell 2: 300Hz Cell 3: -100Hz		
ABS pattern (Note 2)			N/A	01010101 01010101 01010101 01010101 01010101	N/A	01010101 01010101 01010101 01010101 01010101		
RLM/RRM Measurement Subframe Pattern (Note 4)			00000100 00000100 00000100 00000100 00000100	N/A	00000100 00000100 00000100 00000100 00000100	N/A		
CSI Subframe Sets (Note 3)	Ccsi,0		01010101 01010101 01010101 01010101 01010101	N/A	01010101 01010101 01010101 01010101 01010101	N/A		
	C _{CSI,1}		10101010 10101010 10101010 10101010 10101010	N/A	10101010 10101010 10101010 10101010 10101010	N/A		
Number of control OFDM			3			3		
symbols Max number of HARQ transmissions			1			1		
Physical channel for C _{CSI,0} CQI reporting			PUCCH Format 2		PUCCH	PUCCH Format 2		
Physical channel for C _{CSI,1} CQI reporting			PUSCH (Note 12)		PUSCH	PUSCH (Note 12)		
PUCCH Report Type			4		4			
Reporting periodicity		Ms	$N_{pd} = 5$		N _{po}	$N_{\rm pd} = 5$		
cqi-pmi-ConfigurationIndex Ccsi,0 (Note 13)			6	N/A	6	N/A		
cqi-pmi-ConfigurationIndex2 Ccsl,1 (Note 14)			5	N/A	5	N/A		

- Note 1: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.
- Note 2: ABS pattern as defined in [9].
- Note 3: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
- Note 4: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7]
- Note 5: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
- Note 6: Cell 1 is the serving cell. Cell 2 and Cell 3 are the aggressor cells. The number of the CRS ports in Cell1, Cell2, and Cell3 are the same.
- Note 7: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.
- Note 8: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS
- Note 9: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS.
- Note 10: Downlink physical channel setup in Cell 2 and Cell 3 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.1.5
- Note 11: Reference measurement channel in Cell 1 RC.2 FDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1.
- Note 12: To avoid collisions between HARQ-ACK and wideband CQI it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#4 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#8 and #3.
- Note 13: cqi-pmi-ConfigurationIndex is applied for Ccsl,o.
- Note 14: cqi-pmi-ConfigurationIndex2 is applied for Ccsi,1.

9.2.1.6 TDD (CSI measurements in case two CSI subframe sets are configured and with CRS assistance information)

The following requirements apply to UE Category ≥ 2 . For the parameters specified in Table 9.2.1.6-1, and using the downlink physical channels specified in tables C.3.2-1 for Cell 1, C3.3-2 for Cell 2 and Cell 3, and C.3.2-2, the reported CQI value according to RC.2 TDD in Table A.4-1 in subframes overlapping with aggressor cell ABS and non-ABS subframes shall be in the range of ± 1 of the reported median more than 90% of the time.

For test 1 and test 2, if the PDSCH BLER in ABS subframes using the transport format indicated by median CQI obtained by reports in CSI subframe sets $C_{CSI,0}$ is less than or equal to 0.1, the BLER in ABS subframes using the transport format indicated by the (median CQI + 1) shall be greater than 0.1. If the PDSCH BLER in ABS subframes using the transport format indicated by the median CQI is greater than 0.1, the BLER in ABS subframes using transport format indicated by (median CQI – 1) shall be less than or equal to 0.1.

For test 2, if the PDSCH BLER in non-ABS subframes using the transport format indicated by median CQI obtained by reports in CSI subframe sets $C_{\text{CSI},1}$ is less than or equal to 0.1, the BLER in non-ABS subframes using the transport format indicated by the (median CQI + 2) shall be greater than 0.1. If the PDSCH BLER in non-ABS subframes using the transport format indicated by the median CQI is greater than 0.1, the BLER in non-ABS subframes using transport format indicated by (median CQI – 1) shall be less than or equal to 0.1.

Table 9.2.1.6-1: PUCCH 1-0 static test (TDD)

Parameter		Unit	Test 1			Test 2		
			Cel		Cell 2 and 3	Ce	II 1	Cell 2 and 3
Bandwidth		MHz			0			0
PDSCH transmission mode Uplink downlink configuration			2		Note 10	2	2	Note 10
				<u> </u>	I			1
Special subframe configuration				4	4	4		
Downlink power allocation	$ ho_{\scriptscriptstyle A}$	dB	-3		-3		3	
	$ ho_{\scriptscriptstyle B}$	dB	-3			-3		
σ		dB	0		0			
Propagation condition and antenna configuration			Clause B.1 (2x2)		Clause B.1 (2x2)			
\widehat{E}_s/N_{oc2} (No	te 1)	dB	4	5	Cell 2: 12 Cell 3: 10	13	14	Cell 2: 12 Cell 3: 10
(:)	$N_{oc1}^{(j)}$	dBm/15kHz	-98 (No	ote 7)	N/A	-98 (N	lote 7)	N/A
$N_{oc}^{(j)}$ at antenna	$N_{oc2}^{(j)}$	dBm/15kHz	-98 (Note 8) N/A		-98 (N	lote 8)	N/A	
port	$N_{oc3}^{(j)}$	dBm/15kHz	-93 (No	ote 9)	N/A	-93 (N	lote 9)	N/A
Subframe Config	uration		Non-M	BSFN	Non-MBSFN	Non-M	/IBSFN	Non-MBSFN
Cell Id			0		Cell 2: 6 Cell 3: 1	0		Cell 2: 6 Cell 3: 1
Time Offset between	en Cells	μs	Cell 2: 3 usec Cell 3: -1usec		Cell 2: 3 usec Cell 3: -1usec			
Frequency shift between Cells		Hz	Cell 2: 300Hz Cell 3: -100Hz		Cell 2: 300Hz Cell 3: -100Hz			
ABS pattern (Note 2)			N/A	A	0100010001 0100010001	N	/A	0100010001 0100010001
RLM/RRM Measurement Subframe Pattern (Note 4)			000000		N/A		00001	N/A
CSI Subframe Sets	Ccsi,0		010001 010001	10001	N/A	01000)10001)10001	N.A
(Note 3)	C _{CSI,1}		100010	01000	N/A	10001	01000 01000	N/A
Number of control OFDM symbols			3		3			
Max number of h transmission			1		1			
Physical channel for C _{CSI,0} CQI reporting			PUCCH Format 2		PUCCH Format 2			
Physical channel for C _{CSI,1} CQI reporting			PUSCH (Note 12)		PUSCH (Note 12)			
PUCCH Report Type			4		4			
Reporting periodicity		ms	$N_{\rm pd} = 5$		$N_{pd} = 5$			
cqi-pmi-ConfigurationIndex Ccsl,0 (Note 13)			3		N/A	;	3	N/A
cqi-pmi-ConfigurationIndex2			4		N/A		4	N/A
C _{CSI,1} (Note 14) ACK/NACK feedback mode			Multiplexing		Multiplexing			

- Note 1: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.
- Note 2: ABS pattern as defined in [9].
- Note 3: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
- Note 4: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].
- Note 5: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
- Note 6: Cell 1 is the serving cell. Cell 2 and Cell 3 are the aggressor cells. The number of the CRS ports in Cell1, Cell2, and Cell3 is the same.
- Note 7: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.
- Note 8: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS
- Note 9: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS.
- Note 10: Downlink physical channel setup in Cell 2 and Cell 3 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.2.5
- Note 11: Reference measurement channel in Cell 1 RC.2 TDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1.
- Note 12: To avoid collisions between HARQ-ACK and wideband CQI it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#4 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#8 and #3.
- Note 13: cqi-pmi-ConfigurationIndex is applied for C_{CSI.0}.
- Note 14: cqi-pmi-ConfigurationIndex2 is applied for Ccsi,1.

9.2.1.7 FDD (Modulation and TBS index Table 2 and 4-bit CQI Table 2 are used)

The following requirements apply to UE Category 11-12 and DL Category \geq 11. For the parameters specified in Table 9.2.1.7-1, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2, the reported CQI value according to RC.1A FDD in Table A.4-1 shall be in the range of \pm 1 of the reported median more than 90% of the time. If the PDSCH BLER using the transport format indicated by median CQI is less than or equal to 0.1, the BLER using the transport format indicated by the (median CQI + 1) shall be greater than 0.1. If the PDSCH BLER using the transport format indicated by the median CQI is greater than 0.1, the BLER using transport format indicated by (median CQI - 1) shall be less than or equal to 0.1.

In this test, 4-bit CQI Table 2 in Table 7.2.3-2 in TS 36.213 [6], and Modulation and TBS index table 2 in Table 7.1.7.1-1A for PDSCH in TS 36.213 [6] are applied.

Table 9.2.1.7-1: PUCCH 1-0 static test (FDD)

Parameter		Unit	Test 1		Test 2		
Bandwidth		MHz	10				
PDSCH transmission mode			1				
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	0				
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0				
	σ	dB	0				
Propagation condition and antenna configuration			AWGN (1 x 2)				
SNR (Note 2)		dB	-1	0	20	21	
$\hat{I}_{or}^{(j)}$	$\hat{I}_{or}^{(j)}$		-99	-98	-78	-77	
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98 -98		98		
Max number of HARQ transmissions			1				
Physical channel for CQI reporting			PUCCH Format 2				
PUCCH Report Type			4				
Reporting periodicity		ms	$N_{pd} = 5$				
cqi-pmi-Configurati	onIndex		6				

Note 1: Reference measurement channel RC.1A FDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1.

Note 2: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.

9.2.1.8 TDD (Modulation and TBS index Table 2 and 4-bit CQI Table 2 are used)

The following requirements apply to UE Category 11-12 and UE DL Category \geq 11. For the parameters specified in Table 9.2.1.8-1, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2, the reported CQI value according to RC.1A TDD in Table A.4-1 shall be in the range of \pm 1 of the reported median more than 90% of the time. If the PDSCH BLER using the transport format indicated by median CQI is less than or equal to 0.1, the BLER using the transport format indicated by the (median CQI + 1) shall be greater than 0.1. If the PDSCH BLER using the transport format indicated by the median CQI is greater than 0.1, the BLER using transport format indicated by (median CQI - 1) shall be less than or equal to 0.1.

In this test, 4-bit CQI Table 2 in Table 7.2.3-2 in TS 36.213 [6], and Modulation and TBS index table 2 in Table 7.1.7.1-1A for PDSCH in TS 36.213 [6] are applied.

Parameter		Unit	Test 1 Test 2			st 2
Bandwidth		MHz	20			
PDSCH transmission	n mode				1	
Uplink downlink conf	iguration				2	
Special subfration			4			
Dannelinkananna	$ ho_{\scriptscriptstyle A}$	dB			0	
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0			
	σ	dB			0	
Propagation condition and antenna configuration			AWGN (1 x 2)			
SNR (Note 2)		dB	-1	0	20	21
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-99	-98	-78	-77
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98 -98		98	
Max number of HARQ transmissions			1			
Physical channel for CQI reporting			PUSCH (Note 3)			
PUCCH Report Type			4			
Reporting periodicity		ms	·	Np	d = 5	<u> </u>
cqi-pmi-Configurati					3	
ACK/NACK feedbac					olexing	
Note 1: Reference measurement channel RC.1A TDD according to Table A.4-1 with one sided						

Table 9.2.1.8-1: PUCCH 1-0 static test (TDD)

- Note 1: Reference measurement channel RC.1A TDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1.
- Note 2: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.
- Note 3: To avoid collisions between CQI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#3 and #8 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#7 and #2.

9.2.2 Minimum requirement PUCCH 1-1 (Cell-Specific Reference Symbols)

The minimum requirements for dual codeword transmission are defined in terms of a reporting spread of the wideband CQI value for codeword #1, and their BLER performance using the transport format indicated by the reported CQI median of codeword #0 and codeword #1. The precoding used at the transmitter is a fixed precoding matrix specified by the bitmap parameter *codebookSubsetRestriction*. The propagation condition assumed for the minimum performance requirement is defined in subclause B.1.

9.2.2.1 FDD

The following requirements apply to UE Category ≥2. For the parameters specified in table 9.2.2.1-1, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2, the reported offset level of the wideband spatial

differential CQI for codeword #1 (Table 7.2-2 in TS 36.213 [6]) shall be used to determine the wideband CQI index for codeword #1 as

wideband CQI_1 = wideband CQI_0 - Codeword 1 offset level

The wideband CQI_1 shall be within the set {median CQI_1 -1, median CQI_1 , median CQI_1+1 } for more than 90% of the time, where the resulting wideband values CQI_1 shall be used to determine the median CQI values for codeword #1. For both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median CQI_0-1 and median CQI_1-1 shall be less than or equal to 0.1. Furthermore, for both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median CQI_0+1 and median CQI_1+1 shall be greater than or equal to 0.1.

Parameter		Unit	Te	st 2			
Bandwidth		MHz	10				
PDSCH transmission	on mode				4		
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-3				
allocation	$ ho_{\scriptscriptstyle B}$	dB	-3				
	σ	dB			0		
Propagation condit antenna configur	ation			Clause I	3.1 (2 x 2)		
CodeBookSubsetRestriction bitmap			010000				
SNR (Note 2	?)	dB	10 11		16	17	
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-88	-87	-82	-81	
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98 -98		98		
Max number of F transmission			1				
Physical channel for CQI/PMI reporting			PUCCH Format 2				
PUCCH Report Type for CQI/PMI			2				
PUCCH Report Type for RI				·	3		
Reporting period		ms		Npe	d = 5		
cqi-pmi-Configurati					6		
ri-ConfigInde			1 (Note 3)				

Table 9.2.2.1-1: PUCCH 1-1 static test (FDD)

- Note 1: Reference measurement channel RC.2 FDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1.
- Note 2: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.
- Note 3: It is intended to have UL collisions between RI reports and HARQ-ACK, since the RI reports shall not be used by the eNB in this test.

9.2.2.2 TDD

The following requirements apply to UE Category ≥2. For the parameters specified in table 9.2.2.2-1, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2, the reported offset level of the wideband spatial differential CQI for codeword #1 (Table 7.2-2 in TS 36.213 [6]) shall be used to determine the wideband CQI index for codeword #1 as

wideband CQI_1 = wideband CQI_0 - Codeword 1 offset level

The wideband CQI_1 shall be within the set {median CQI_1 -1, median CQI_1 , median CQI_1+1 } for more than 90% of the time, where the resulting wideband values CQI_1 shall be used to determine the median CQI values for codeword #1. For both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median CQI_0-1 and median CQI_1-1 shall be less than or equal to 0.1. Furthermore, for both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median CQI_0+1 and median CQI_1+1 shall be greater than or equal to 0.1.

				` '			
Parameter		Unit	Test 1 Test 2				
Bandwidth		MHz	10				
PDSCH transmission					4		
Uplink downlink conf					2		
Special subfra configuration			4				
	$ ho_{\scriptscriptstyle A}$	dB			-3		
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB			-3		
	σ	dB			0		
Propagation condition and antenna configuration			Clause B.1 (2 x 2)				
CodeBookSubsetRestriction bitmap			010000				
SNR (Note 2)		dB	10	11	16	17	
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-88	-87	-82	-81	
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98 -98		98		
Max number of H transmission			1				
Physical channel for CQI/PMI reporting			PUSCH (Note 3)				
PUCCH Report Type			2				
Reporting periodicity		ms		N _p	d = 5		
cqi-pmi-ConfigurationIndex					3		
ri-ConfigInde	X			805 (Note 4)		
ACK/NACK feedback	ck mode		Multiplexing				

Table 9.2.2.2-1: PUCCH 1-1 static test (TDD)

Note 1: Reference measurement channel RC.2 TDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1.

- Note 2: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.
- To avoid collisions between CQI/PMI reports and HARQ-ACK it is necessary to report both on Note 3: PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#3 and #8 to allow periodic CQI/PMI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#7 and #2.
- Note 4: RI reporting interval is set to the maximum allowable length of 160ms to minimise collisions between RI, CQI/PMI and HARQ-ACK reports. In the case when all three reports collide, it is expected that CQI/PMI reports will be dropped, while RI and HARQ-ACK will be multiplexed. At eNB, CQI report collection shall be skipped every 160ms during performance verification.

9.2.3 Minimum requirement PUCCH 1-1 (CSI Reference Symbols)

The minimum requirements for dual codeword transmission are defined in terms of a reporting spread of the wideband CQI value for codeword #1, and their BLER performance using the transport format indicated by the reported CQI median of codeword #0 and codeword #1. The precoding used at the transmitter is a fixed precoding matrix specified by the bitmap parameter *codebookSubsetRestriction*. The propagation condition assumed for the minimum performance requirement is defined in subclause B.1.

9.2.3.1 **FDD**

The following requirements apply to UE Category ≥2. For the parameters specified in table 9.2.3.1-1, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2, the reported offset level of the wideband spatial differential CQI for codeword #1 (Table 7.2-2 in TS 36.213 [6]) shall be used to determine the wideband CQI index for codeword #1 as

wideband CQI_1 = wideband CQI_0 – Codeword 1 offset level

The wideband CQI₁ shall be within the set {median CQI₁ -1, median CQI₁, median CQI₁ +1} for more than 90% of the time, where the resulting wideband values CQI₁ shall be used to determine the median CQI values for codeword #1. For both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median $CQI_0 - 1$ and median CQI₁ – 1 shall be less than or equal to 0.1. Furthermore, for both codewords #0 and #1, the PDSCH BLER

using the transport format indicated by the respective median $CQI_0 + 1$ and median $CQI_1 + 1$ shall be greater than or equal to 0.1.

Table 9.2.3.1-1: PUCCH 1-1	static test (F	DD)
----------------------------	----------------	-----

Parameter	Parameter			Test 1 Test 2		
Bandwidth		MHz	10			
PDSCH transmission	n mode		9			
	$ ho_{\scriptscriptstyle A}$	dB			0	
Downlink power	$ ho_{\scriptscriptstyle B}$	dB			0	
allocation	P_c	dB			-3	
	σ	dB			-3	
Cell-specific reference	e signals			Antenna	a ports 0, 1	
CSI reference si				Antenna p	orts 15,,18	
CSI-RS periodicity and	d subframe			-		
offset				:	5/1	
	T _{CSI-RS} / Δ _{CSI-RS} CSI reference signal configuration		0			
Propagation condition and antenna						
	configuration		Clause B.1 (4 x 2)			
Beamforming M	Beamforming Model		As specified in Section B.4.3			}
CodeBookSubsetRestriction bitmap			0x0000 0000 0100 0000			
SNR (Note 2	SNR (Note 2)		7	8	13	14
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-91	-90	-85	-84
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98 -98		8	
Max number of HARQ tr	ansmissions		1			
Physical channel for	CQI/PMI		DUCCH (Note2)			
reporting			POSCH (Notes)			
PUCCH Report Type for CQI/PMI			2			
Physical channel for RI reporting				PUCCH	l Format 2	
PUCCH Report Typ			3			
Reporting periodicity		ms		N₂	od = 5	
CQI delay		ms			8	
cqi-pmi-Configurati	onIndex				2	
ri-ConfigInde	X				1	
reporting PUCCH Report Type f Physical channel for R PUCCH Report Typ Reporting period CQI delay cqi-pmi-Configurati ri-Configlnde	or CQI/PMI II reporting be for RI dicity	ms	PUCCH Format 2 3 N _{pd} = 5 8			

Note 1: Reference measurement channel RC.7 FDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1.

Note 2: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.

Note 3: To avoid collisions between CQI/PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1 and #6 to allow periodic CQI/PMI to multiplex with the HARQ-ACK on PUSCH in uplink SF#0 and #5.

9.2.3.2 TDD

The following requirements apply to UE Category ≥2. For the parameters specified in table 9.2.3.2-1, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2, the reported offset level of the wideband spatial differential CQI for codeword #1 (Table 7.2-2 in TS 36.213 [6]) shall be used to determine the wideband CQI index for codeword #1 as

wideband CQI_1 = wideband CQI_0 - Codeword 1 offset level

The wideband CQI_1 shall be within the set {median CQI_1 -1, median CQI_1 , median CQI_1+1 } for more than 90% of the time, where the resulting wideband values CQI_1 shall be used to determine the median CQI values for codeword #1. For both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median CQI_0-1 and median CQI_1-1 shall be less than or equal to 0.1. Furthermore, for both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median CQI_0+1 and median CQI_1+1 shall be greater than or equal to 0.1.

Table 9.2.3.2-1: PUCCH 1-1 submode 1 static test (TDD)

Parameter	r	Unit	Test 1 Test 2		st 2	
Bandwidth		MHz	10			
PDSCH transmissi	on mode				9	
Uplink downlink con	figuration				2	
Special subframe co	nfiguration				4	
	$ ho_{\scriptscriptstyle A}$	dB			0	
Downlink power	$ ho_{\scriptscriptstyle B}$	dB			0	
allocation	P_c	dB			-6	
	σ	dB			-3	
CRS reference s	ignals			Antenna	ports 0, 1	
CSI reference s	•				orts 15,,22	
CSI-RS periodicity an				•	, ,	
offset				5	5/ 3	
$T_{ exttt{CSI-RS}}$ / $\Delta_{ exttt{CSI-}}$	·RS					
CSI reference signal configuration			0			
Propagation condition and antenna			Clause B.1 (8 x 2)			
configuration			, ,			
Beamforming Model			As specified in Section B.4.3			
CodeBookSubsetRestriction bitmap			0x0000 0000 0020 0000 0000 0001 0000			01 0000
SNR (Note 2)		dB	4	5	10	11
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-94	-93	-88	-87
$N_{oc}^{(j)}$	$N_{oc}^{(j)}$		-98 -98		98	
Max number of HARQ t	ransmissions		1			
Physical channel for			DUIQQUI (N. 1 . 0)			
reporting			PUSCH (Note 3)			
PUCCH Report Type for CQI/second			2b			
Physical channel for RI reporting			PUSCH			
PUCCH Report Type for RI/ first PMI					5	
Reporting periodicity		ms		No	d = 5	
CQI delay		ms			or 11	
cqi-pmi-Configurat		-			3	
ri-ConfigInd				805 (Note 4)	
ACK/NACK feedba					plexing	

- Note 1: Reference measurement channel RC.7 TDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1.
- Note 2: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.
- Note 3: To avoid collisions between CQI/PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#3 and #8 to allow periodic CQI/PMI to multiplex with the HARQ-ACK on PUSCH in uplink SF#7 and #2.
- Note 4: RI reporting interval is set to the maximum allowable length of 160ms to minimise collisions between RI, CQI/PMI and HARQ-ACK reports. In the case when all three reports collide, it is expected that CQI/PMI reports will be dropped, while RI and HARQ-ACK will be multiplexed. At eNB, CQI report collection shall be skipped every 160ms during performance verification.

9.2.4 Minimum requirement PUCCH 1-1 (With Single CSI Process)

The minimum requirements for dual codeword transmission are defined in terms of a reporting spread of the wideband CQI value for codeword #1, and their BLER performance using the transport format indicated by the reported CQI median of codeword #0 and codeword #1. The precoding used at the transmitter is a fixed precoding matrix specified by the bitmap parameter *codebookSubsetRestriction*. The propagation condition assumed for the minimum performance requirement is defined in subclause B.1.

9.2.4.1 FDD

The following requirements apply to UE Category ≥2. For the parameters specified in table 9.2.4.1-1, and using the downlink physical channels specified in Tables C.3.4-1 and C.3.4-2, the reported offset level of the wideband spatial

differential CQI for codeword #1 (Table 7.2-2 in TS 36.213 [6]) shall be used to determine the wideband CQI index for codeword #1 as

wideband CQI₁ = wideband CQI₀ - Codeword 1 offset level

The wideband CQI_1 shall be within the set {median CQI_1 -1, median CQI_1 , median CQI_1+1 } for more than 90% of the time, where the resulting wideband values CQI_1 shall be used to determine the median CQI values for codeword #1. For both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median CQI_0-1 and median CQI_1-1 shall be less than or equal to 0.1. Furthermore, for both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median CQI_0+1 and median CQI_1+1 shall be greater than or equal to 0.1.

Table 9.2.4.1-1: PUCCH 1-1 static test (FDD)

CSI reference signals	0 0 -3 N/A Note 2) N/A N/A 1 /	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 -3 N/A Note 2) N/A N/A N/A 1 /	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 -3 N/A Note 2) N/A N/A N/A 1 /	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 -3 N/A Note 2) N/A N/A N/A 1 /	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-3 N/A Note 2) N/A N/A N/A 1 /	
Cell ID	N/A Note 2) N/A N/A N/A 1 / 000000000	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Note 2) N/A N/A N/A 1 / 000000000	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	N/A N/A N/A 1 /	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	N/A N/A N/A 1 /	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	N/A N/A 1 / 00000000	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	N/A 1 / 00000000	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 /	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	00000000	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	00000	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N/A	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CH 1-1	
	use B.1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(2 x 2)	
SNR (Note 3) dB 20 6 7 20 14 $\hat{I}_{or}^{(j)}$ dB[mW/15kHz] -78 -92 -91 -78 -84 $N_{oc}^{(j)}$ dB[mW/15kHz] -98 -98	00000	
$\hat{I}_{or}^{(j)}$ dB[mW/15kHz] -78 -92 -91 -78 -84 $N_{oc}^{(j)}$ dB[mW/15kHz] -98 -98	15	
$N_{oc}^{(j)}$ dB[mW/15kHz] -98 -98	-83	
Modulation / Information hit		
payload (Note4) QPSK / 4392 (Note4) QPS	SK / 4392	
Max number of HARQ 1 N/A 1	N/A	
transmissions		
Physical channel for CQI/PMI PUSCH (Note5) PUSCH (Note5)	N/A	
DLICCH Papart Type for		
CQI/PMI Z N/A Z	N/A	
PUCCH Report Type for RI 3 N/A 3	N/A	
Reporting periodicity ms $N_{pd} = 5$ N/A $N_{pd} = 5$	N/A	
CQI Delay ms 8 N/A 8	N/A	
cqi-pmi-ConfigurationIndex 2 N/A 2	N/A	
ri-ConfigIndex 1 N/A 1	N/A	
PDSCH scheduled sub-frames 1,2,3,4,6,7,8,9 1,2,3,4,6,7,8,9	<u> </u>	
Timing offset between TPs us 0 0		
Frequency offset between TPs		

Note1: Reference measurement channel RC.10 FDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1.

Note 2: REs for antenna ports 0 and 1 CRS have zero transmission power.

Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.

Note 4: N/A.

Note 5: To avoid collisions between CQI/PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1 and #6 to allow periodic CQI/PMI to multiplex with the HARQ-ACK on PUSCH in uplink SF#0 and #5.

9.2.4.2 TDD

The following requirements apply to UE Category ≥2. For the parameters specified in table 9.2.4.2-1, and using the downlink physical channels specified in Tables C.3.4-1 and C.3.4-2, the reported offset level of the wideband spatial differential CQI for codeword #1 (Table 7.2-2 in TS 36.213 [6]) shall be used to determine the wideband CQI index for codeword #1 as

wideband CQI_1 = wideband CQI_0 - Codeword 1 offset level

The wideband CQI_1 shall be within the set {median CQI_1 -1, median CQI_1 , median CQI_1+1 } for more than 90% of the time, where the resulting wideband values CQI_1 shall be used to determine the median CQI values for codeword #1. For both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median CQI_0-1 and median CQI_1-1 shall be less than or equal to 0.1. Furthermore, for both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median CQI_0+1 and median CQI_1+1 shall be greater than or equal to 0.1.

Table 9.2.4.2-1: PUCCH 1-1 static test (TDD)

Parameter		Unit	Test 1			Test 2			
	.eı		TP1 TP2			TP1 TP2		2	
Bandwidth		MHz	10						
PDSCH transmissio			10 2						
Uplink downlink cor Special subframe co						<u> </u>			
Special Subfraffie G		dB	0	0		0	,)	
Danualiak namas	$\rho_{\scriptscriptstyle A}$	_		_				_	
Downlink power allocation (Note 1)	$\rho_{\scriptscriptstyle B}$	dB	0	0		0)	
	Pc	dB	-6	-6		-6		6	
	σ	dB	-3	N/	A	-3		/A	
Cell ID			C)		()		
Cell-specific referer	nce signals		Antenna ports 0, 1	(Note	e 2)	Antenna ports 0, 1	(No	te 2)	
CSI reference signa	als		Antenna ports 15,,22	N/.	A	Antenna ports 15,,22	N.	/A	
CSI-RS periodicity a subframe offset $T_{\rm CS}$			5/3	N/	A	5/3	N.	/A	
CSI-RS configuration			0	N/	A	0	N	/A	
Zero-Power CSI-RS configuration IcsI-RS / ZeroPower(bitmap			3 / 001000000000 0000	3 100001 000	00000	3 / 001000000000 0000	10000	/ 100000 000	
CSI-IM configuratio IcsI-Rs / ZeroPowerC bitmap	CSI-RS		3 / 001000000000 0000	N/A		3 / 001000000000 0000	N	N/A	
CSI process configuration Signal/Interference/Reporting mode			CSI-RS/CSI-IM/PUCCH 1-1		CSI-RS/CSI-IM/PU		- 1 1-1		
Propagation condition and antenna configuration			Clause B.1 (8 x 2)	Clause B.1 (2 x 2)		Clause B.1 (8 x 2)	Claus (2:		
CodeBookSubsetRobitmap	CodeBookSubsetRestriction bitmap		0x0000 0000 0020 0000 0000 0001 0000	100000		0x0000 0000 0020 0000 0000 0001 0000	100	000	
SNR (Note 3)	SNR (Note 3)		17	6	7	17	14	15	
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-81	-92	-91	-81	-84	-83	
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98		-98				
Modulation / Information			(Note4)	QPSK / 4392		(Note4)	QPSK	/ 4392	
Max number of HAF transmissions	RQ		1	N/	A	1	N.	/A	
Physical channel fo reporting			PUSCH (Note5)	N/	A	PUSCH (Note5)	N	/A	
PUCCH Report Type for CQI/second PMI			2b	N/		2b	N.	/A	
Physical channel for RI reporting			PUSCH	N/.	Α	PUSCH	N.	/A	
PMI	PUCCH Report Type for RI/ first		5	N/		5		/A	
Reporting periodicit	У	ms	$N_{pd} = 5$	N/.		$N_{\text{pd}} = 5$		/A	
CQI Delay	an Inda:	ms	10 or 11	N/.		10 or 11		/A	
cqi-pmi-Configuration ri-ConfigIndex	oninaex		3 905 (Note 6)	N/		3 905 (Noto 6)		/A /^	
ACK/NACK feedba	ck mode		805 (Note 6) Multiplexing	N/.		805 (Note 6) Multiplexing		<u>/A</u> /A	
PDSCH scheduled			3,4,		, ,	3,4,		1/7	
Timing offset betwe		us	3,4,			3,4,			
Frequency offset be		Hz	C			C			

Note1:	Reference measurement channel RC.10 TDD according to Table A.4-1 with one sided dynamic OCNG Pattern
	OP 1 TDD as described in Anney 4.5.2.1

- Note 2: REs for antenna ports 0 and 1 CRS have zero transmission power.
- Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.
- Note 4: N/A.
- Note 5: To avoid collisions between CQI/PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#3 and #8 to allow periodic CQI/PMI to multiplex with the HARQ-ACK on PUSCH in uplink SF#7 and #2.
- Note 6: RI reporting interval is set to the maximum allowable length of 160ms to minimise collisions between RI, CQI/PMI and HARQ-ACK reports. In the case when all three reports collide, it is expected that CQI/PMI reports will be dropped, while RI and HARQ-ACK will be multiplexed. At eNB, CQI report collection shall be skipped every 160ms during performance verification.

9.2.5 Minimum requirement PUCCH 1-1 (when *csi-SubframeSet –r12* and *EIMTA-MainConfigServCell-r12* are configured)

The following requirements apply to UE Category ≥ 2 which supports eIMTA TDD UL-DL reconfiguration for TDD serving cell(s) via monitoring PDCCH with eIMTA-RNTI and Rel-12 CSI subframe sets. For the parameters specified in table 9.2.5-1, and using the downlink physical channels specified in Tables C.3.2-1 and C.3.2-2, for each CSI subframe set, the reported CQI value shall be in the range of ± 1 of the reported median more than 90% of the time. For each CSI subframe set, if the PDSCH BLER using the transport format indicated by median CQI is less than or equal to 0.1, the BLER using the transport format indicated by the (median CQI + 1) shall be greater than 0.1. If the PDSCH BLER using the transport format indicated by the median CQI is greater than 0.1, the BLER using transport format indicated by (median CQI - 1) shall be less than or equal to 0.1. The difference of the median CQI obtained by reports in CSI subframe sets $C_{CSI,0}$ and the median CQI obtained by reports in CSI subframe sets $C_{CSI,0}$ and the median CQI obtained by reports in CSI subframe sets $C_{CSI,0}$ and the median CQI obtained by reports in CSI subframe sets $C_{CSI,0}$ shall be larger than or equal to 3.

Table 9.2.5 -1: PUCCH 1-1 static test (TDD)

Parameter		Unit	Test	
Bandwidth		MHz		10
PDSCH transmission	on mode			9
Uplink downlink configur				0
Downlink HARQ re				
configuration (e				2
HarqReferenceConfig-	r12) (Note 4)			
Set of dynamic TDI			{0), 2}
configurations (No				•
Periodicity of monitor reconfiguration DC		mo		10
CommandPeriodic	i (eiiiia- sity-r12)	ms		10
Set of subframes to mo				
reconfiguration DC			Si	F#5
CommandSubframe			•	
CSI-MeasSubframe			0001	100011
Special subframe cor				4
	$\rho_{\scriptscriptstyle A}$	dB		0
Downlink power		dB		0
allocation	$ ho_{\scriptscriptstyle B}$	-		
	P_c	dB		0
050 /	σ	dB		-3
CRS reference s	_		Antenna	ports 0, 1
CSI DS pariadicity an			Antenna	ports 15,16
CSI-RS periodicity an	d subframe		E	5/4
$T_{ ext{CSI-RS}}$ / $\Delta_{ ext{CSI-RS}}$				0/4
CSI reference signal configuration				4
Zero-Power CSI-RS configuration 0				D /
I _{CSI-RS} / ZeroPowerCSI-RS bitmap				00000000
Zero-Power CSI-RS configuration 1				4 /
I _{CSI-RS} / ZeroPowerCSI-RS bitmap			0100000	00000000
Propagation condition and antenna			Clause I	3.1 (2 x 2)
	configuration		As specified in Section B.4.3	
Beamforming M				
CodeBookSubsetRestr		ID.		0001'
SNR in CSI subfrai		dB	0	1
SNR in CSI subfrai	ne set 1	dB	10	11
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-98	-97
$N_{oc1}^{(j)}$ for CSI subfra	me set 0	dB[mW/15kHz]	-98	-98
$N_{oc2}^{(j)}$ for CSI subfra	nme set 1	dB[mW/15kHz]	-108	-108
PDSCH scheduled su CSI subframe s			(),5
PDSCH scheduled su				100
CSI subframe set 1			3,4	1,8,9
Max number of HARQ transmissions				1
Physical channel for CQI/PMI			PUSCH	I (Note 6)
reporting			1 0001	. (0.0 0)
PUCCH Report Type for CQI/second PMI				2b
Physical channel for RI reporting			PU	SCH
PUCCH Report Type for RI/ first PMI				5
Reporting perio	dicity	ms		el-12 CSI subframe set
CQI delay		ms	12 for CSI s	ubframe set 0 ubframe set 1
cqi-pmi-Configurat	ionIndex			r set 0 or set 1
ri-ConfigInde	ЭХ			and set 1 (Note 7)
ACK/NACK feedba				plexing
ACK/NACK reeuback mode				J

- Note 1: Reference measurement channel RC.19 TDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 TDD and dynamic OCNG Pattern with multiple non-contiguous blocks OP.7 TDD as described in Annex A.5.2.1/7 for CSI subframe set 0.
- Note 2: Reference measurement channel RC.20 TDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1 for CSI subframe set 1.
- Note 3: In the test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level for each CSI subframe set separately.
- Note 4: As specified in Table 4.2-2 in TS 36.211.
- Note 5: UL/DL configuration in PDCCH with eIMTA-RNTI is cyclically selected from the given set on a per-DCI basis.
- Note 6: To avoid collisions between CQI/PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1 and #6 to allow periodic CQI/PMI to multiplex with the HARQ-ACK on PUSCH in uplink SF#7 and #2. CQI/PMI reports for CSI subframe set 0 is transmitted in SF#2 and CQI/PMI reports for CSI subframe set 1 is transmitted in SF#7
- Note 7: RI reporting interval is set to the maximum allowable length of 160ms to minimise collisions between RI, CQI/PMI and HARQ-ACK reports. In the case when all three reports collide, it is expected that CQI/PMI reports will be dropped, while RI and HARQ-ACK will be multiplexed. At eNB, CQI report collection shall be skipped every 160ms during performance verification.

9.3 CQI reporting under fading conditions

9.3.1 Frequency-selective scheduling mode

The accuracy of sub-band channel quality indicator (CQI) reporting under frequency selective fading conditions is determined by a double-sided percentile of the reported differential CQI offset level 0 per sub-band, and the relative increase of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest reported differential CQI offset level the corresponding transport format compared to the case for which a fixed format is transmitted on any sub-band in set *S* of TS 36.213 [6]. The purpose is to verify that preferred sub-bands can be used for frequently-selective scheduling. To account for sensitivity of the input SNR the sub-band CQI reporting under frequency selective fading conditions is considered to be verified if the reporting accuracy is met for at least one of two SNR levels separated by an offset of 1 dB.

9.3.1.1 Minimum requirement PUSCH 3-0 (Cell-Specific Reference Symbols)

9.3.1.1.1 FDD

For the parameters specified in Table 9.3.1.1.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.1.1.1-2 and by the following

- a) a sub-band differential CQI offset level of 0 shall be reported at least α % of the time but less than β % for each sub-band;
- b) the ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set S shall be $\geq \gamma$;
- c) when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS, the average BLER for the indicated transport formats shall be greater or equal to 0.05.

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD.

Table 9.3.1.1.1-1 Sub-band test for single antenna transmission (FDD)

Parai	Parameter		Test 1 Test 2			st 2	
Band	width	MHz	10 MHz				
Transmiss	sion mode			1 (p	ort 0)		
Downlink	$ ho_{\scriptscriptstyle A}$	dB			0		
power	$ ho_{\scriptscriptstyle B}$	dB		-	0		
allocation	σ	dB			0		
SNR (Note 3)	dB	9	10	14	15	
	(j) or	dB[mW/15kHz]	-89 -88 -84] -89 -88 -84		-83
N	$N_{oc}^{(j)}$		-98 -98		98		
Propagation channel			Clause B.2.4 with $\tau_d = 0.45 \mu$).45 <i>μ</i> s,	
			$a = 1, \ f_D = 5 \text{Hz}$				
Antenna co	Antenna configuration		1 x 2				
Reporting interval		ms	5				
CQI delay		ms	8				
Reporting mode				PUSCH 3-0			
Sub-ba	nd size	RB		6 (ful	l size)		
	er of HARQ issions			1			

Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4)

Note 2: Reference measurement channel RC.3 FDD according to Table A.4-1 with one/two sided dynamic OCNG Pattern OP.1/2 FDD as described in Annex A.5.1.1/2.

Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.

Table 9.3.1.1.1-2 Minimum requirement (FDD)

	Test 1	Test 2
α[%]	2	2
β [%]	55	55
γ	1.1	1.1
UE Category	≥1	≥1

9.3.1.1.2 TDD

For the parameters specified in Table 9.3.1.1.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.1.1.2-2 and by the following

- a) a sub-band differential CQI offset level of 0 shall be reported at least α % of the time but less than β % for each sub-band;
- b) the ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set S shall be $\geq \gamma$;
- c) when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS, the average BLER for the indicated transport formats shall be greater or equal to 0.05.

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD.

Table 9.3.1.1.2-1 Sub-band test for single antenna transmission (TDD)

Parar	neter	Unit	Te	Test 1 Test 2		
Band	width	MHz		10	MHz	
Transmiss	sion mode		1 (port 0)			
Downlink	$ ho_{\scriptscriptstyle A}$	dB		(0	
power	$ ho_{\scriptscriptstyle B}$	dB		(0	
allocation	σ	dB		(0	
Uplink d configu					2	
Special s configu	uration				4	
SNR (Note 3)	dB	9	10	14	15
	$\hat{I}_{or}^{(j)}$		-89	-88	-84	-83
N_{c}	(j) oc	dB[mW/15kHz]	-98 -98			8
Propagation channel			Clause B.2.4 with $ au_d=0.45~\mu\mathrm{s},~a=1,$ $f_D=5~\mathrm{Hz}$			
Antenna co	nfiguration		1 x 2			
Reporting	g interval	ms	5			
CQI	delay	ms	10 or 11			
Reportir	ng mode			PUSCH 3-0		
Sub-ba	nd size	RB		6 (ful	l size)	
Max numbe transm	er of HARQ issions			1		
ACK/NACK fe	edback mode			Multip	lexing	
Note 1: If the UE reports in an available uplink reporting instance at subframe						
SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4)						

Note 2: Reference measurement channel RC.3 TDD according to Table A.4-1 with one/two sided dynamic OCNG Pattern OP.1/2 TDD as described in Annex A.5.2.1/2.

Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.

Table 9.3.1.1.2-2 Minimum requirement (TDD)

	Test 1	Test 2
α[%]	2	2
β[%]	55	55
γ	1.1	1.1
UE Category	≥1	≥1

9.3.1.1.3 FDD (CSI measurements in case two CSI subframe sets are configured and with CRS assistance information)

For the parameters specified in Table 9.3.1.1.3-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.1.1.3-2 and by the following

- a) a sub-band differential CQI offset level of 0 shall be reported at least α % of the time but less than β % for each sub-band;
- b) the ratio of the throughput in ABS subframes obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set S shall be $\geq \gamma$;

c) when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS, the average BLER in ABS subframes for the indicated transport formats shall be greater than or equal to ε .

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD.

Table 9.3.1.1.3-1 Sub-band test for single antenna transmission (FDD)

Doromotor		Unit		Tes	t 1	Test 2		
Parameter			Се	II 1	Cell 2 and 3	Cell 1	Cell 2 and 3	
Bandwidth		MHz		10			10	
PDSCH transmission			1		Note 10	1	Note 10	
Downlink power	$ ho_{\scriptscriptstyle A}$	dB		0			0	
allocation ρ_B		dB		0			0	
	σ	dB		0			0	
Propagation con	dition		with To	e B.2.4 I = 0.45 1, fd = Hz	EVA5 Low antenna correlation	Clause B.2.4 with Td = 0.45 us, a = 1, fd = 5 Hz	EVA5 Low antenna correlation	
Antenna configu	ration			1x			x2	
\widehat{E}_s/N_{oc2} (Not	e 1)	dB	4	5	Cell 2: 12 Cell 3: 10	14 15	Cell 2: 12 Cell 3: 10	
- x(i)	$N_{oc1}^{(j)}$	dBm/15kHz	-98 (N	lote 7)	N/A	-98 (Note 7)	N/A	
$N_{oc}^{(j)}$ at antenna port	$N_{oc2}^{(j)}$	dBm/15kHz	-98 (N	lote 8)	N/A	-98 (Note 8)	N/A	
·	$N_{oc3}^{(j)}$	dBm/15kHz	,	lote 9)	N/A	-93 (Note 9)	N/A	
Subframe Configu	uration		Non-M	1BSFN	Non-MBSFN	Non-MBSFN	Non-MBSFN	
Cell Id			()	Cell 2: 6 Cell 3: 1	0	Cell 2: 6 Cell 3: 1	
Time Offset between	en Cells	μs	Cell 2: 3 usec Cell 3: -1usec			: 3 usec : -1usec		
Frequency Shift betw	een Cells	Hz	Cell 2: 300Hz Cell 3: -100Hz		Cell 2: 300Hz Cell 3: -100Hz			
ABS pattern (Note 2)			N	/A	01010101 01010101 01010101 01010101 01010101	N/A	01010101 01010101 01010101 01010101 01010101	
RLM/RRM Measurement Subframe Pattern (Note 4)			0000 0000 0000	0100 0100 0100 0100 0100	N/A	00000100 00000100 00000100 00000100 00000100	N/A	
CSI Subframe Sets	Ccsi,0		0101 0101 0101 0101	0101 0101 0101	N/A	01010101 01010101 01010101 01010101 01010101	N/A	
(Note 3)	C _{CSI,1}		1010 1010 1010 1010	1010 1010 1010 1010 1010	N/A	10101010 10101010 10101010 10101010 10101010	N/A	
Number of control OFDM symbols				3		3		
Max number of F				1		1		
CQI delay		ms			8	3		
Reporting interval (ms				0		
Reporting mo						CH 3-0		
Sub-band siz	ze	RB			6 (full	sıze)		

- Note 1: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.
- Note 2: ABS pattern as defined in [9]. PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.
- Note 3: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
- Note 4: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7]
- Note 5: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
- Note 6: Cell 1 is the serving cell. Cell 2 and Cell 3 are the aggressor cells. The number of the CRS ports in Cell1, Cell2, and Cell3 are the same.
- Note 7: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.
- Note 8: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.
- Note 9: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS.
- Note 10: Downlink physical channel setup in Cell 2 and Cell 3 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.1.5
- Note 11: Reference measurement channel in Cell 1 RC.3 FDD according to Table A.4-1 with one/two sided dynamic OCNG Pattern OP.1/2 FDD as described in Annex A.5.1.1/2.
- Note 12: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4).
- Note 13: The CSI reporting is such that reference subframes belong to Ccsi.0.

Table 9.3.1.1.3-2 Minimum requirement (FDD)

	Test 1	Test 2
α[%]	2	2
β[%]	55	55
γ	1.1	1.1
3	0.01	0.01
UE Category	≥1	≥1

9.3.1.1.4 TDD (CSI measurements in case two CSI subframe sets are configured and with CRS assistance information)

For the parameters specified in Table 9.3.1.1.4-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.1.1.4-2 and by the following

- a) a sub-band differential CQI offset level of 0 shall be reported at least α % of the time but less than β % for each sub-band;
- b) the ratio of the throughput in ABS subframes obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set S shall be $> \gamma$;
- c) when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS, the average BLER in ABS subframes for the indicated transport formats shall be greater than or equal to ε .

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD.

Table 9.3.1.1.4-1: Sub-band test for single antenna transmission (TDD)

Parameter		Unit		Tes	st 1		Tes	st 2
Parameter			Се		Cell 2 and 3	Ce	II 1	Cell 2 and 3
Bandwidth		MHz			0			0
PDSCH transmission			1		Note 10		1	Note 10
Uplink downlink con					1			1
Special subfra configuration				4	4		4	4
Downlink power	$ ho_{\scriptscriptstyle A}$	dB		0			()
allocation	$ ho_{\scriptscriptstyle B}$	dB			0			0
	σ	dB))
Propagation con	dition		Clause with Td us, a =	= 0.45 1, fd =	EVA5 Low antenna correlation	with Td us, a =	e B.2.4 l = 0.45 1, fd = Hz	EVA5 Low antenna correlation
Antenna configu	ration			1)	x2		1:	x2
\widehat{E}_s/N_{oc2} (Not	te 1)	dB	4	5	Cell 2: 12 Cell 3: 10	14	15	Cell 2: 12 Cell 3: 10
(;)	$N_{oc1}^{(j)}$	dBm/15kHz	-98 (N	lote 7)	N/A	-98 (N	lote 7)	N/A
$N_{oc}^{(j)}$ at antenna	$N_{oc2}^{(j)}$	dBm/15kHz	-98 (N	lote 8)	N/A	-98 (N	lote 8)	N/A
port	$N_{oc3}^{(j)}$	dBm/15kHz		lote 9)	N/A	-93 (N	lote 9)	N/A
Subframe Configuration			Non-M	IBSFN	Non-MBSFN	Non-M	1BSFN	Non-MBSFN
Cell Id			()	Cell 2: 6 Cell 3: 1	()	Cell 2: 6 Cell 3: 1
Time Offset between	en Cells	μs	Cell 2: 3 usec Cell 3: -1usec		Cell 2: 3 usec Cell 3: -1usec			
Frequency shift betw	een Cells	Hz	Cell 2: 300Hz Cell 3: -100Hz		Cell 2: 300Hz Cell 3: -100Hz			
ABS pattern (No	,		N,	/A	0100010001 0100010001	N.	/A	0100010001 0100010001
RLM/RRM Measu Subframe Pattern			00000		N/A	00000		N/A
CSI Subframe Sets	Ccsi,0		01000 01000		N/A	01000 01000		N.A
(Note 3)	C _{CSI,1}			01000 01000	N/A		01000 01000	N/A
Number of control	OFDM							2
symbols					3		·	3
Max number of HARQ					1			1
transmissions					•			•
CQI delay	Note 12\	ms				0		
Reporting interval (Reporting mo		ms			PUSC	,H 3⁻U		
Sub-band siz		RB			6 (full			
		ועט	+	Multip		3126)	Multin	lexing
ACK/NACK feedback mode			1	ινιαιαρ	no Alling	l	iviuitip	no Alling

- Note 1: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.
- Note 2: ABS pattern as defined in [9]. PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.
- Note 3: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
- Note 4: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].
- Note 5: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
- Note 6: Cell 1 is the serving cell. Cell 2 and Cell 3 are the aggressor cells. The number of the CRS ports in Cell1, Cell2, and Cell3 is the same.
- Note 7: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.
- Note 8: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS
- Note 9: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS.
- Note 10: Downlink physical channel setup in Cell 2 and Cell 3 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.2.5
- Note 11: Reference measurement channel in Cell 1 RC.3 TDD according to Table A.4-1 with one/two sided dynamic OCNG Pattern OP.1/2 TDD as described in Annex A.5.2.1/2.
- Note 12: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4).
- Note 13: The CSI reporting is such that reference subframes belong to Ccsi,0.

	Test 1	Test 2
α[%]	2	2
β[%]	55	55
γ	1.1	1.1
3	0.01	0.01
UE Category	≥1	≥1

Table 9.3.1.1.4-2 Minimum requirement (TDD)

9.3.1.1.5 TDD (when *csi-SubframeSet –r12* is configured)

The following requirements apply to UE Category ≥1 which supports Rel-12 CSI subframe sets. For the parameters specified in Table 9.3.1.1.5-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.1.1.5-2 and by the following

- a) a sub-band differential CQI offset level of 0 shall be reported at least α % of the time but less than β % for each sub-band for each CSI subframe set;
- b) the ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set S shall be ≥ γ for each CSI subframe set;
- c) when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS, the average BLER for the indicated transport formats shall be greater or equal to 0.05 and less than 0.60 for each CSI subframe set.
- d) the difference of the wide-band median CQI obtained by reports in CSI subframe sets $C_{CSI,0}$ and the wide-band median CQI obtained by reports in CSI subframe sets $C_{CSI,1}$ shall be larger than or equal to 3.

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each available downlink transmission instance. Sub-bands of a size smaller than full size are excluded from the test.

Table 9.3.1.1.5-1: Sub-band test for TDD

Parameter		Unit	Test			
	Band	width	MHz	1	0	
Tran	smiss	sion mode		2	2	
Uplink do	wnlin	k configuration		2	2	
		ne configuration			4	
CSI-Mea	asSub	frameSet-r12		00011	00000	
Daniel la la caract		$ ho_{\scriptscriptstyle A}$	dB	-	3	
Downlink pow allocation	/er	$ ho_{\scriptscriptstyle B}$	dB	-	3	
dilocation		σ	dB	(0	
SNR in	CSI s	ubframe set 0	dB	0	1	
SNR in	CSI s	ubframe set 1	dB	10	11	
	\hat{I}_{o}^{0}	j) r	dB[mW/15kHz]	-98	-97	
		subframe set 0	dB[mW/15kHz]	-98	-98	
$N_{oc2}^{(j)}$ fo	or CSI	subframe set 1	dB[mW/15kHz]	-108	-108	
Prop	agatio	on channel			th $\tau_d = 0.45 \mu\text{s}$,	
				a=1, f	$\frac{C_D}{D} = 5 \text{ Hz}$ x2	
		nfiguration				
		nce signals RS configuration 0		Antenna p	ort 0 and 1	
		erCSI-RS bitmap				
Zero-Power	CSI-F	RS configuration 1		4	00000000	
I _{CSI-RS} / Zer	<u>oPow</u>	erCSI-RS bitmap		0100000000000000		
	PDSCH scheduled subframes for CSI subframe set 0			8,9		
PDSCH scheduled subframes for CSI				3	,4	
subframe set 1			ma			
Reporting interval (Note 4)		ms		bframe set ubframe set 0		
_	CQI		ms	15 for CSI su	ubframe set 1	
		ig mode			CH 3-0	
		nd size	RB	6 (full size)		
		RQ transmissions			1 .	
		edback mode			olexing	
		H Sets Configured			te 5,6)	
		per EPDCCH Set			4	
		ame Monitoring			IA CCE	
		regation level				
		nforming model reports in an available	unlink reporting ineta		KB.4.4 SE#n based on	
		ation at a downlink su				
		nd CQI cannot be app				
		measurement chann				
		amic OCNG Pattern C				
		, the minimum require				
		nd the respective want				
		ubframe set 0, PDCCI				
		d in downlink SF#3 to				
		r CSI subframe set 1,				
	shall be transmitted in downlink SF#8 to allow aperiodic CQI/PMI/RI to be transmitted on uplink SF#2.					
Note 5: In ca						
	·					
	for the first set and PRB = {40, 43, 46, 49} for the second set. EPDCCH set is selected					
after	sche	duling decision for PD	SCH to avoid collision	n between PDSCI	H and EPDCCH	
		pectively. EPDCCH is				
		is derived from the PO	CFICH. RRC signalling	g epdcch-StartSyı	mbol-r11is not	
conf	igure	1				

Table 9.3.1.1.5-2: Minimum requirement (TDD)

	Test
α[%]	2
β[%]	55
γ	1.1
UE Category	≥1

9.3.1.2 Minimum requirement PUSCH 3-1 (CSI Reference Symbol)

9.3.1.2.1 FDD

For the parameters specified in Table 9.3.1.2.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.1.2.1-2 and by the following

- a) a sub-band differential CQI offset level of 0 shall be reported at least α % of the time but less than β % for each sub-band;
- b) the ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set S shall be $\geq \gamma$;
- c) when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS, the average BLER for the indicated transport formats shall be greater or equal to 0.05.

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD. Sub-bands of a size smaller than full size are excluded from the test.

Table 9.3.1.2.1-1 Sub-band test for FDD

Parai	Parameter		Te	st 1	Tes	st 2
Band	width	MHz		10	MHz	
Transmiss	sion mode			9		
	$ ho_{\scriptscriptstyle A}$	dB	0			
Downlink power	$ ho_{\scriptscriptstyle B}$	dB			0	
allocation	P_c	dB	0			
	σ	dB			0	
SNR (Note 3)	dB	4	5	11	12
\hat{I}_{c}	(j) or	dB[mW/15kHz]	-94	-93	-87	-86
N	(j) oc	dB[mW/15kHz]	-9	98	-6	98
Propagation channel			Clause B.2.4 with $\tau_{\scriptscriptstyle d}=0.45\mu{\rm s},$).45 <i>μ</i> s,
			$a = 1, f_D = 5 \text{ Hz}$			
	onfiguration			2x2		
	ning Model		As sp	As specified in Section B.4.3		
	nce signals				a ports 0	
	nce signals		Α	intenna p	orts 15, '	16
	and subframe offset			5	/ 1	
$T_{\text{CSI-RS}}$	$/\Delta_{ extsf{CSI-RS}}$					
	signal configuration				4	
	Restriction bitmap		000001			
Reporting into	erval (Note 4)	ms		5		
CQI delay		ms		8		
Reportir				CH 3-1		
Sub-ba	nd size	RB		6 (ful	l size)	
	ARQ transmissions				1	
Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the cNR downlink before SF#(n-4)						

or wideband CQI cannot be applied at the eNB downlink before SF#(n+4)

Note 2: Reference measurement channel RC.8 FDD according to Table A.4-1 with one/two sided dynamic OCNG Pattern OP.1/2 FDD as described in Annex A.5.1.1/2.

Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.

Note 4: PDCCH DCI format 0 with a trigger for aperiodic CQI shall be transmitted in downlink SF#1 and #6 to allow aperiodic CQI/PMI/RI to be transmitted in uplink SF#0 and #5.

Table 9.3.1.2.1-2 Minimum requirement (FDD)

	Test 1	Test 2
α[%]	2	2
β[%]	40	40
γ	1.1	1.1
UE Category	≥1	≥1

9.3.1.2.2 **TDD**

For the parameters specified in Table 9.3.1.2.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.1.2.2-2 and by the following

- a) a sub-band differential CQI offset level of 0 shall be reported at least α % of the time but less than β % for each sub-band;
- b) the ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set S shall be $\geq \gamma$;

c) when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS, the average BLER for the indicated transport formats shall be greater or equal to 0.05.

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD. Sub-bands of a size smaller than full size are excluded from the test.

Table 9.3.1.2.2-1 Sub-band test for TDD

	Band			Test 1 Tes			3 L Z
-	Bandwidth		MHz		10	MHz	
Transmission mode		sion mode			,	9	
Uplin	k downlin	k configuration				2	
Specia	al subfram	ne configuration				4	
$ ho_{\scriptscriptstyle A}$		dB	0				
Downlink	power	$\rho_{\scriptscriptstyle B}$	dB			0	
allocat		P_c	dB			0	
			dB			0	
	SNR (N	Jote 3)	dB	4	5	11	12
				-			
	$\hat{I}_o^{(}$	<i>r</i>	dB[mW/15kHz]	-94	-93	-87	-86
	N_{c}	(j) oc	dB[mW/15kHz]	-6	98	-9	98
				Clause	Clause B.2.4 with $\tau_d = 0.45 \mu\text{s}$		
F	Propagation	n channel		$a = 1, f_D = 5 \text{ Hz}$			
Antenna configuration					x2		
		ing Model		As sr	pecified in		B 4 3
CRS reference signals			710 0		a port 0	D. 1.0	
CSI reference signals				Antenna		6	
		and subframe offset					
	T _{CSI-RS} /				5/	/ 3	
CSI-RS re	eference s	signal configuration				4	
		Restriction bitmap		000001			
Rep	orting inte	erval (Note 4)	ms	5			
	CQI		ms	10			
	Reportin			PUSCH 3-1			
	Sub-ba		RB	6 (full size)			
		RQ transmissions			,	1	
		edback mode				lexing	
		eports in an available					
		ation at a downlink su					bband
		nd CQI cannot be app					
Note 2:	reterence	measurement chann	el RC.8 TDD accordir	ng to lab	DIE A.4-1	with one/	two
		amic OCNG Pattern C					4
		est, the minimum requ		illea for a	at least o	ne or the	two
		nd the respective want CI format 0 with a trig		chall be	tranemitt	od in day	wolink
		#8 to allow aperiodic					

Table 9.3.1.2.2-2 Minimum requirement (TDD)

	Test 1	Test 2
α[%]	2	2
β[%]	40	40
γ	1.1	1.1
UE Category	≥1	≥1

Test 1

000001

5

8

PUSCH 3-1

6 (full size)

Parameter

CodeBookSubsetRestriction bitmap

Reporting interval (Note 4)

CQI delay

Reporting mode

Sub-band size

Max number of HARQ transmissions

9.3.1.2.3 FDD (Modulation and TBS index Table 2 and 4-bit CQI Table 2 are used)

For the parameters specified in Table 9.3.1.2.3-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.1.2.3-2 and by the following

- a) a sub-band differential CQI offset level of 0 shall be reported at least α % of the time but less than β % for each sub-band;
- b) the ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set *S* shall be $\geq \gamma$;
- c) when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS, the average BLER for the indicated transport formats shall be greater or equal to 0.05.

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD. Sub-bands of a size smaller than full size are excluded from the test.

In this test, 4-bit CQI Table 2 in Table 7.2.3-2 in TS 36.213 [6], and Modulation and TBS index table 2 in Table 7.1.7.1-1A for PDSCH in TS 36.213 [6] are applied.

Bandwidth 10 MHz MHz Transmission mode 9 0 dB $\rho_{\scriptscriptstyle A}$ dΒ 0 Downlink power $\rho_{\scriptscriptstyle B}$ allocation P_c dΒ 0 dB 0 σ SNR (Note 3) dB 16 17 $\hat{I}_{or}^{(j)}$ dB[mW/15kHz] -82 -81 $N_{oc}^{(j)}$ dB[mW/15kHz] -98 -98 Clause B.2.4 with $\tau_{_d}=0.45\,\mu\mathrm{s}$, Propagation channel a = 1, $f_D = 5 \text{ Hz}$ Antenna configuration 2x2 Beamforming Model As specified in Section B.4.3 CRS reference signals Antenna ports 0 CSI reference signals Antenna ports 15, 16 CSI-RS periodicity and subframe offset 5/1 $T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$ CSI-RS reference signal configuration

Table 9.3.1.2.3-1 Sub-band test for FDD

Unit

Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4)

ms

ms

RB

- Note 2: Reference measurement channel RC.8A FDD according to Table A.4-1 with one/two sided dynamic OCNG Pattern OP.1/2 FDD as described in Annex A.5.1.1/2.
- Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.
- Note 4: PDCCH DCI format 0 with a trigger for aperiodic CQI shall be transmitted in downlink SF#1 and #6 to allow aperiodic CQI/PMI/RI to be transmitted in uplink SF#0 and #5.

Table 9.3.1.2.3-2 Minimum requirement (FDD)

	Test 1
<i>α</i> [%]	2
β[%]	40
γ	1.1
UE Category	11-12
UE DL Category	<u>≥</u> 11

9.3.1.2.4 TDD (Modulation and TBS index Table 2 and 4-bit CQI Table 2 are used)

For the parameters specified in Table 9.3.1.2.4-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.1.2.4-2 and by the following

- a) a sub-band differential CQI offset level of 0 shall be reported at least α % of the time but less than β % for each sub-band;
- b) the ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set *S* shall be $\geq \gamma$;
- c) when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS, the average BLER for the indicated transport formats shall be greater or equal to 0.05.

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD. Sub-bands of a size smaller than full size are excluded from the test.

In this test, 4-bit CQI Table 2 in Table 7.2.3-2 in TS 36.213 [6], and Modulation and TBS index table 2 in Table 7.1.7.1-1A for PDSCH in TS 36.213 [6] are applied.

Table 9.3.1.2.4-1 Sub-band test for TDD

Parai	neter	Unit	Test 1
Bandwidth		MHz	20 MHz
Transmiss	sion mode		9
Uplink downlink configuration			2
Special subframe configuration			4
	$ ho_{\scriptscriptstyle A}$	dB	0
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0
	P_{c}	dB	0
	σ	dB	0

SNR (Note 3)	dB	16	17
$\hat{I}_{or}^{(j)}$	dB[mW/15kHz]	-82	-81
$N_{oc}^{(j)}$	dB[mW/15kHz]	-98	-98
Decreasion showed		Clause B.2.4 wi	th $\tau_d = 0.45 \mu\text{s}$,
Propagation channel		a = 1, f	$_{D} = 5 \mathrm{Hz}$
Antenna configuration			x2
Beamforming Model		As specified in Section B.4.3	
CRS reference signals		Antenna port 0	
CSI reference signals		Antenna port 15,16	
CSI-RS periodicity and subframe offset TCSI-RS / \(\Delta \text{CSI-RS} \)		5/ 3	
CSI-RS reference signal configuration		4	
CodeBookSubsetRestriction bitmap		000	0001
Reporting interval (Note 4)	Reporting interval (Note 4) ms 5		5
CQI delay	ms	1	0
Reporting mode		PUSC	CH 3-1
Sub-band size	RB	8 (ful	l size)
Max number of HARQ transmissions			1
ACK/NACK feedback mode		Multip	olexing

- Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4)
- Note 2: Reference measurement channel RC.8A TDD according to Table A.4-1 with one/two sided dynamic OCNG Pattern OP.1/2 TDD as described in Annex A.5.2.1/2.
- Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.
- Note 4: PDCCH DCI format 0 with a trigger for aperiodic CQI shall be transmitted in downlink SF#3 and #8 to allow aperiodic CQI/PMI/RI to be transmitted on uplink SF#2 and #7.

Table 9.3.1.2.4-2 Minimum requirement (TDD)

	Test 1
<i>α</i> [%]	2
β [%]	40
γ	1.1
UE Category	11-12
UE DL Category	≥11

9.3.1.2.5 Void

9.3.1.2.6 TDD (when *csi-SubframeSet –r12* is configured with one CSI process)

The following requirements apply to UE Category ≥1 which supports Rel-12 CSI subframe sets and TM10. For the parameters specified in Table 9.3.1.2.6-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.1.2.6-2 and by the following

- a) a sub-band differential CQI offset level of 0 shall be reported at least α % of the time but less than β % for each sub-band for each CSI subframe set;
- b) the ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set S shall be ≥ γ for each CSI subframe set;
- c) when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS, the average BLER for the indicated transport formats shall be greater or equal to 0.01 for each CSI subframe set.

d) The difference of the wide-band median CQI obtained by reports in CSI subframe sets $C_{CSI,0}$ and the wide-band median CQI obtained by reports in CSI subframe sets $C_{CSI,1}$ shall be larger than or equal to 3.

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each available downlink transmission instance. Sub-bands of a size smaller than full size are excluded from the test.

Table 9.3.1.2.6-1: Sub-band test for TDD

Parameter		Unit	Te	est	
Bandwidth		MHz	1	0	
Transmission mode				0	
Uplink downlink configuration			2	2	
	Special subframe configuration				1
CSI-N	/leasSub	frameSet-r12		00011	00000
		$ ho_{\scriptscriptstyle A}$	dB	()
Downlink po		$ ho_{\scriptscriptstyle B}$	dB	()
allocatio	n	P_{c}	dB	-:	3
		σ	dB	-:	3
		ubframe set 0	dB	0	1
SNR ii	า CSI s	ubframe set 1	dB	10	11
	\hat{I}_a^0	(j) or	dB[mW/15kHz]	-98	-97
$N_{oc1}^{(j)}$	for CSI	subframe set 0	dB[mW/15kHz]	-98	-98
		subframe set 1	dB[mW/15kHz]	-108	-108
Des		an ahannal		Clause B.2.4 wit	th $ au_d=0.45\mu\mathrm{s}$,
Pro	pagatio	on channel		a = 1, f	$_{D}=5\mathrm{Hz}$
Anto	enna co	onfiguration		2)	
Ве	amform	ing Model		As specified in	Section B.4.3
CRS	3 refere	nce signals		Antenna p	ort 0 and 1
CSI	refere	nce signals		Antenna	oort 15,16
		and subframe offset $^{\prime}$ $\Delta_{ extsf{CSI-RS}}$		5/	0
CSI-RS refe	rence	signal configuration		()
		RS configuration 0		3	/
		erCSI-RS bitmap		0000010000000000	
		RS configuration 1			/
I _{CSI-RS} / ZeroPowerCSI-RS bitmap			01000000	00000000	
CSI-IM configuration 0			3	1	
		erCSI-RS bitmap		00000100	00000000
		figuration 1 erCSI-RS bitmap		01000000	•
CSI process					
Signal/Interf	erence/	Reporting mode for ame set 0		CSI-RS/CSI-IM	1 0/PUSCH 3-1
CSI process					
Signal/Interf	erence/	Reporting mode for		CSI-RS/CSI-IM	1 1/PUSCH 3-1
		ame set 1 Restriction bitmap		000	001
		erval (Note 4)	ms		oframe set
Теры			1113		ibframe set 0
	CQI	delay	ms	15 for CSI su	ıbframe set 1
		nd size	RB	6 (full	size)
		subframes for CSI ne set 0		8	,9
PDSCH sch	reduled	subframes for CSI		3	,4
subframe set 1 Max number of HARQ transmissions					1
ACK/NACK feedback mode			Multip		
Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based					
CQI estimation at a downlink subframe not later than SF#(n-4), this reported					
or wideband CQI cannot be applied at the eNB downlink before SF#(n+4)					
Note 2: Reference measurement channel RC.18 TDD according to Table A.4-1 with one/two					
sided dynamic OCNG Pattern OP.1/2 TDD as described in Annex A.5.2.1/2.					
Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two					
Note 4: Fo	,				lic CQI shall be
transmitted in downlink SF#3 to allow aperiodic CQI/PMI/RI to be transmitted on uplink					
		r CSI subframe set 1, ansmitted in downlink			
shall be transmitted in downlink SF#8 to allow aperiodic CQI/PMI/RI to be transmitted					

on uplink SF#2

Table 9.3.1.2.6-2: Minimum requirement (TDD)

	Test
α[%]	2
β[%]	55
γ	1.02
UE Category	≥1

9.3.2 Frequency non-selective scheduling mode

The reporting accuracy of the channel quality indicator (CQI) under frequency non-selective fading conditions is determined by the reporting variance, and the relative increase of the throughput obtained when the transport format transmitted is that indicated by the reported CQI compared to the case for which a fixed transport format configured according to the reported median CQI is transmitted. In addition, the reporting accuracy is determined by a minimum BLER using the transport formats indicated by the reported CQI. The purpose is to verify that the UE is tracking the channel variations and selecting the largest transport format possible according to the prevailing channel state for frequently non-selective scheduling. To account for sensitivity of the input SNR the CQI reporting under frequency non-selective fading conditions is considered to be verified if the reporting accuracy is met for at least one of two SNR levels separated by an offset of 1 dB.

9.3.2.1 Minimum requirement PUCCH 1-0 (Cell-Specific Reference Symbol)

9.3.2.1.1 FDD

For the parameters specified in Table 9.3.2.1.1-1 and Table 9.3.2.1.1-3, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.2.1.1-2 and Table 9.3.2.1.1-4 and by the following

- a) a CQI index not in the set {median CQI -1, median CQI, median CQI +1} shall be reported at least α % of the time;
- b) the ratio of the throughput obtained when transmitting the transport format indicated by each reported wideband CQI index and that obtained when transmitting a fixed transport format configured according to the wideband CQI median shall be $\geq \gamma$;
- c) when transmitting the transport format indicated by each reported wideband CQI index, the average BLER for the indicated transport formats shall be greater or equal to 0.02

The applicability of the requirement with 5MHz bandwidth as specificed in Table 9.3.2.1.1-3 and Table 9.3.2.1.1-4 is defined in 9.1.1.1.

Table 9.3.2.1.1-1 Fading test for single antenna (FDD)

Parameter		Unit	Te	Test 1 Test 2		
Bandwidth		MHz	10 MHz			
Transmiss	sion mode			1 (port 0)		
Downlink	$ ho_{\scriptscriptstyle A}$	dB		0		
power	$ ho_{\scriptscriptstyle B}$	dB	0			
allocation	σ	dB		()	
SNR (N	Note 3)	dB	6	7	12	13
- 0	j) r	dB[mW/15kHz]	-92	-91	-86	-85
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98 -98		98	
Propagation	n channel		EPA5			
Correlation and			High (1 x 2)			
antenna co	nfiguration					
Reportin			PUCCH 1-0			
Reporting	periodicity	ms	$N_{pd} = 2$			
CQI	delay	ms	8			
Physical c	hannel for		PUSCH (Note 4)			
CQI reporting			PUSCH (Note 4)			
PUCCH Report Type				4		
cqi-pmi- ConfigurationIndex				1		
Max number of HARQ transmissions			1			

- Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink SF not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4)
- Note 2: Reference measurement channel RC.1 FDD according to Table A.4-1 for Category 2-8 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1 and RC.4 FDD according to Table A.4-1 for Category 1 with one/two sided dynamic OCNG Pattern OP.1/2 FDD as described in Annex A.5.1.1/2.
- Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.
- Note 4: To avoid collisions between CQI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1, #3, #7 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#5, #7, #1 and #3.

Table 9.3.2.1.1-2 Minimum requirement (FDD)

	Test 1	Test 2
α[%]	20	20
γ	1.05	1.05
UE Category	≥1	≥1

Table 9.3.2.1.1-3 Fading test for single antenna (FDD)

Parameter		Unit	Test 1 Test 2			st 2
Bandwidth		MHz	5 MHz			
Transmissi	on mode		1 (port 0)			
Downlink	$ ho_{\scriptscriptstyle A}$	dB		(0	
power	$ ho_{\scriptscriptstyle B}$	dB		(0	
allocation	σ	dB		(0	
SNR (Note	3)	dB	6	7	12	13
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-92	-91	-86	-85
$N_{oc}^{(j)}$		dB[mW/15kHz]	-6	98	-9	8
Propagatio	n channel			EP	PA5	
Correlation	and			∐iah /	(1 v 2)	
antenna co			High (1 x 2)			
Reporting r			PUCCH 1-0			
Reporting	periodicity	ms	$N_{pd} = 2$			
CQI delay		ms	8			
Physical c				PUSCH (Note 4)		
CQI reporti				, ,		
PUCCH Re	eport Type				4	
cqi-pmi- Configurati	ionIndex			•	1	
	er of HARQ			,	1	
transmissio					•	
Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink SF not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4) Note 2: Reference measurement channel RC.14 FDD according to Table A.4-1 for Category ≥ 2 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1 and RC.15 FDD according to Table A.4-1 for Category 1 with one/two sided dynamic OCNG Pattern OP.1/2 FDD as described in Annex A.5.1.1/2.Note 3: For						

Table 9.3.2.1.1-4 Minimum requirement (FDD)

in uplink subframe SF#5, #7, #1 and #3.

each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.

To avoid collisions between CQI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1, #3, #7 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH

	Test 1	Test 2
α[%]	20	20
γ	1.05	1.05
UE Category	≥1	≥1

9.3.2.1.2 TDD

Note 4:

For the parameters specified in Table 9.3.2.1.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.2.1.2-2 and by the following

- a) a CQI index not in the set {median CQI -1, median CQI, median CQI +1} shall be reported at least α % of the time;
- b) the ratio of the throughput obtained when transmitting the transport format indicated by each reported wideband CQI index and that obtained when transmitting a fixed transport format configured according to the wideband CQI median shall be $\geq \gamma$;
- c) when transmitting the transport format indicated by each reported wideband CQI index, the average BLER for the indicated transport formats shall be greater or equal to 0.02.

Table 9.3.2.1.2-1 Fading test for single antenna (TDD)

Parameter		Unit	Test 1 Test 2			st 2
Bandwidth		MHz	10 MHz			
Transmission mode			1 (port 0)			
Downlink	$ ho_{\scriptscriptstyle A}$	dB		()	
power	$ ho_{\scriptscriptstyle B}$	dB		()	
allocation	σ	dB		()	
	lownlink uration			2	2	
configu	subframe uration			4	4	
SNR (I	Note 3)	dB	6	7	12	13
\hat{I}_{a}^{0}	(j) or	dB[mW/15kHz]	-92	-91	-86	-85
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98 -98		98	
Propagation	on channel		EPA5			
Correlation and antenna configuration			High (1 x 2)			
	ng mode		PUCCH 1-0			
	periodicity	ms		N_{pd}	= 5	
CQI	delay	ms	10 or 11			
Physical channel for CQI reporting			PUSCH (Note 4)			
PUCCH R	eport Type		4			
cqi-pmi- ConfigurationIndex			3			
	er of HARQ issions		1			
	K feedback ode			Multip	lexing	
Note 1: If the UE reports in an available uplink reporting instance at						

- Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink SF not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4).
- Note 2: Reference measurement channel RC.1 TDD according to Table A.4-1 for Category 2-8 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1 and RC.4 TDD according to Table A.4-1 for Category 1 with one/two sided dynamic OCNG Pattern OP.1/2 TDD as described in Annex A.5.2.1/2.
- Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.
- Note 4: To avoid collisions between CQI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#3 and #8 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#7 and #2.

Table 9.3.2.1.2-2 Minimum requirement (TDD)

	Test 1	Test 2
α[%]	20	20
γ	1.05	1.05
UE Category	≥1	≥1

9.3.2.2 Minimum requirement PUCCH 1-1 (CSI Reference Symbol)

9.3.2.2.1 FDD

For the parameters specified in Table 9.3.2.2.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.2.2.1-2 and by the following

- a) a CQI index not in the set {median CQI -1, median CQI, median CQI +1} shall be reported at least α % of the time:
- b) the ratio of the throughput obtained when transmitting the transport format indicated by each reported wideband CQI index and that obtained when transmitting a fixed transport format configured according to the wideband CQI median shall be $\geq \gamma$;
- c) when transmitting the transport format indicated by each reported wideband CQI index, the average BLER for the indicated transport formats shall be greater or equal to 0.02.

Table 9.3.2.2.1-1 Fading test for FDD

Parameter		Unit	Tes	Test 1 Test 2		st 2
Bandwidth		MHz	10 MHz			
Transmission mode			9			
$ ho_{\scriptscriptstyle A}$		dB	0			
Downlink power	$ ho_{\scriptscriptstyle B}$	dB	0			
allocation	P_{c}	dB	-3			
	σ	dB	-3			
SNR (I	Note 3)	dB	2	3	7	8
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-96	-95	-91	-90
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98 -98			18
Propagation channel			EPA5			
	tenna configuration		ULA High (4 x 2)			
	ning Model		As specified in Section B.4.3			B.4.3
Cell-specific reference signals			Antenna ports 0,1			
CSI reference signals			Antenna ports 15,,18			18
CSI-RS periodicity and subframe offset $T_{\text{CSI-RS}} / \Delta_{\text{CSI-RS}}$			5/1			
CSI-RS reference signal configuration			2			
CodeBookSubsetRestriction bitmap			0x0000 0000 0000 0001			001
Reporting mode			PUCCH 1-1			
Reporting periodicity		ms	$N_{pd} = 5$			
CQI delay		ms	8			
Physical channel for CQI/ PMI reporting			PUSCH (Note 4)			
PUCCH Report Type for CQI/PMI			2			
PUCCH channel for RI reporting			PUCCH Format 2			
PUCCH report type for RI			3			
cqi-pmi-ConfigurationIndex			2			
ri-ConfigIndex			1			
Max number of HARQ transmissions					1	

- Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink SF not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4)
- Note 2: Reference measurement channel RC.7 FDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1.
- Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.
- Note 4: To avoid collisions between CQI/ PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1 and #6 to allow periodic CQI/ PMI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#0 and #5.

Table 9.3.2.2.1-2 Minimum requirement (FDD)

	Test 1	Test 2
α[%]	20	20
γ	1.05	1.05
UE Category	≥2	≥2

9.3.2.2.2 TDD

For the parameters specified in Table 9.3.2.2.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.2.2.2-2 and by the following

- a) a CQI index not in the set {median CQI -1, median CQI, median CQI +1} shall be reported at least α % of the time;
- b) the ratio of the throughput obtained when transmitting the transport format indicated by each reported wideband CQI index and that obtained when transmitting a fixed transport format configured according to the wideband CQI median shall be $\geq \gamma$;
- c) when transmitting the transport format indicated by each reported wideband CQI index, the average BLER for the indicated transport formats shall be greater or equal to 0.02.

Table 9.3.2.2.2-1 Fading test for TDD

Parameter		Unit	Test 1 Test :		st 2	
Bandwidth		MHz		10 MHz		
Transmission mode			9			
Uplink downlink configuration			2			
Special subframe configuration			4			
	$ ho_{\scriptscriptstyle A}$	dB	0			
Downlink power	$ ho_{\scriptscriptstyle B}$	dB	0			
allocation	P_{c}	dB	-6			
	σ	dB	-3			
SNR (N	Note 3)	dB	1	2	7	8
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-97	-96	-91	-90
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98 -98			8
Propagation channel			EPA5			
Correlation and ant	tenna configuration		XP High (8 x 2)			
Beamform	ing Model		As specified in Section B.4.3			
CRS reference signals			Antenna ports 0, 1			
CSI reference signals			Antenna ports 15,,22			22
CSI-RS periodicity and subframe offset			5/ 3			
T _{CSI-RS} /	$^{\prime}\Delta_{ extsf{CSI-RS}}$		5/ 3			
CSI-RS reference signal configuration			2			
CodeBookSubsetRestriction bitmap			0x0000 0000 0000 0020 0000 0000 0001		0000	
Reporting mode			PUCCH 1-1 (Sub-mode: 2)			e: 2)
Reporting periodicity		ms	$N_{pd} = 5$			
CQI delay		ms	10			
Physical channel for CQI/ PMI			PUSCH (Note 4)			
reporting			. ,			
PUCCH Report Type for CQI/ PMI			2c			
Physical channel for RI reporting			PUCCH Format 2			
PUCCH report type for RI			3			
cqi-pmi-ConfigurationIndex			3			
ri-ConfigIndex			805 (Note 5)			
Max number of HARQ transmissions				1		
ACK/NACK feedback mode				Multip	lexing	

- Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink SF not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4)
- Note 2: Reference measurement channel RC.7 TDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1.
- Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.
- Note 4: To avoid collisions between CQI/ PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#3 and #8 to allow periodic CQI/ PMI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#2 and #7.
- Note 5: RI reporting interval is set to the maximum allowable length of 160ms to minimise collisions between RI, CQI/PMI and HARQ-ACK reports. In the case when all three reports collide, it is expected that CQI/PMI reports will be dropped, while RI and HARQ-ACK will be multiplexed. At eNB, CQI report collection shall be skipped every 160ms during performance verification and the reported CQI in subframe SF#7 of the previous frame is applied in downlink subframes until a new CQI (after CQI/PMI dropping) is available.

Table 9.3.2.2.2-2 Minimum requirement (TDD)

	Test 1	Test 2
α[%]	20	20
γ	1.05	1.05
UE Category	≥2	≥2

9.3.3 Frequency-selective interference

The accuracy of sub-band channel quality indicator (CQI) reporting under frequency selective interference conditions is determined by a percentile of the reported differential CQI offset level +2 for a preferred sub-band, and the relative increase of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest reported differential CQI offset level the corresponding transport format compared to the case for which a fixed format is transmitted on any sub-band in set *S* of TS 36.213 [6]. The purpose is to verify that preferred sub-bands are used for frequently-selective scheduling under frequency-selective interference conditions.

9.3.3.1 Minimum requirement PUSCH 3-0 (Cell-Specific Reference Symbol)

9.3.3.1.1 FDD

For the parameters specified in Table 9.3.3.1.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.3.1.1-2 and by the following

- a) a sub-band differential CQI offset level of +2 shall be reported at least $\alpha\%$ for at least one of the sub-bands of full size at the channel edges;
- b) the ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set S shall be $\geq \gamma$;

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD. Sub-bands of a size smaller than full size are excluded from the test.

Table 9.3.3.1.1-1 Sub-band test for single antenna transmission (FDD)

Parameter		Unit	Test 1	Test 2	
Bandwidth		MHz	10 MHz	10 MHz	
Transmission mode			1 (port 0)	1 (port 0)	
Downlink	$ ho_{\scriptscriptstyle A}$	dB	0	0	
power	$ ho_{\scriptscriptstyle B}$	dB	0	0	
allocation	σ	dB	0	0	
$I_{ot}^{(j)}$ for RB 05		dB[mW/15kHz]	-102	-93	
$I_{ot}^{(j)}$ for RB 641		dB[mW/15kHz]	-93	-93	
$I_{ot}^{(j)}$ for RB 4249		dB[mW/15kHz]	-93	-102	
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-94	-94	
Max number of HARQ transmissions			1		
Propagation channel			Clause B.2.4 with $\tau_d = 0.45 \mu$		
			$a = 1, f_D = 5 \text{ Hz}$		
Reporting interval		ms	5		
Antenna configuration			1 x 2		
CQI delay		ms	8		
Reporting mode			PUSCH 3-0		
Sub-band size		RB	6 (full size)		

Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4)

Note 2: Reference measurement channel RC.3 FDD according to Table A.4-1 with one/two sided dynamic OCNG Pattern OP.1/2 FDD as described in Annex A.5.1.1/2.

Table 9.3.3.1.1-2 Minimum requirement (FDD)

	Test 1	Test 2
α[%]	60	60
γ	1.6	1.6
UE Category	≥1	≥1

9.3.3.1.2 TDD

For the parameters specified in Table 9.3.3.1.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.3.1.2-2 and by the following

- a) a sub-band differential CQI offset level of +2 shall be reported at least $\alpha\%$ for at least one of the sub-bands of full size at the channel edges;
- b) the ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set S shall be $\geq \gamma$;

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD. Sub-bands of a size smaller than full size are excluded from the test.

Table 9.3.3.1.2-1 Sub-band test for single antenna transmission (TDD)

Parar	neter	Unit	Test 1	Test 2
Band	width	MHz	10 MHz 10 MHz	
Transmiss	sion mode		1 (port 0)	1 (port 0)
Downlink	$ ho_{\scriptscriptstyle A}$	dB	0	0
power	$ ho_{\scriptscriptstyle B}$	dB	0	0
allocation	σ	dB	0	0
	lownlink uration		2	
	subframe uration		4	
$I_{ot}^{(j)}$ for	RB 05	dB[mW/15kHz]	-102	-93
$I_{ot}^{(j)}$ for F	RB 641	dB[mW/15kHz]	-93 -93	
$I_{ot}^{(j)}$ for RB 4249		dB[mW/15kHz]	-93 -102	
\hat{I}_o^{i}	(j) or	dB[mW/15kHz]	-94	-94
Max number transm	er of HARQ issions		1	
Dronogotic	an ahannal		Clause B.2.4 with	h $ au_d=0.45\mu\mathrm{s},$
Fiopagalic	on channel		$a = 1, f_I$	$_{0} = 5 \mathrm{Hz}$
Antenna co	onfiguration		1 x 2	
	g interval	ms	1 x 2	
	delay	ms	10 or 11	
Reportir	ng mode		PUSCH 3-0	
	nd size	RB	6 (full size)	
	K feedback	onto in an annallable a	Multiplexing	

Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4).

Note 2: Reference measurement channel RC.3 TDD according to table A.4-1 with one/two sided dynamic OCNG Pattern OP.1/2 TDD as described in Annex A.5.2.1/2.

Table 9.3.3.1.2-2 Minimum requirement (TDD)

	Test 1	Test 2
α[%]	60	60
γ	1.6	1.6
UE Category	≥1	≥1

9.3.3.2 Void

9.3.3.2.1 Void

9.3.3.2.2 Void

9.3.4 UE-selected subband CQI

The accuracy of UE-selected subband channel quality indicator (CQI) reporting under frequency-selective fading conditions is determined by the relative increase of the throughput obtained when transmitting on the UE-selected subbands with the corresponding transport format compared to the case for which a fixed format is transmitted on any subband in set *S* of TS 36.213 [6]. The purpose is to verify that correct subbands are accurately reported for frequency-selective scheduling. To account for sensitivity of the input SNR the subband CQI reporting under frequency-selective fading conditions is considered to be verified if the reporting accuracy is met for at least one of two SNR levels separated by an offset of 1 dB.

9.3.4.1 Minimum requirement PUSCH 2-0 (Cell-Specific Reference Symbols)

9.3.4.1.1 FDD

For the parameters specified in Table 9.3.4.1.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.4.1.1-2 and by the following

a) the ratio of the throughput obtained when transmitting on a randomly selected subband among the best M subbands reported by the UE the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband COI median on a randomly selected subband in set S shall be $\geq \gamma$;

The requirements only apply for subbands of full size and the random scheduling across the subbands is done by selecting a new subband in each TTI for FDD. The transport block size TBS (wideband CQI median) is that resulting from the code rate which is closest to that indicated by the wideband CQI median and the $N_{\rm PRB}$ entry in Table 7.1.7.2.1-1 of TS 36.213 [6] that corresponds to the subband size.

Table 9.3.4.1.1-1 Subband test for single antenna transmission (FDD)

Para	meter	Unit	Tes	st 1	Tes	st 2
Band	dwidth	MHz	10 MHz			
Transmis	sion mode			1 (po	ort 0)	
Downlink	$ ho_{\scriptscriptstyle A}$	dB		()	
power	$ ho_{\scriptscriptstyle B}$	dB		()	
allocation	σ	dB		()	
SNR (Note 3)	dB	9	10	14	15
	(j) or	dB[mW/15kHz]	-89	-88	-84	-83
N	r(j) oc	dB[mW/15kHz]	-9	98	-6	98
			Clause	B.2.4 wit	th $\tau_d = 0$).45 <i>μ</i> s,
Propagati	on channel		$a = 1, f_D = 5 \text{ Hz}$			
Reportin	g interval	ms		Ę	<u>5</u> 3	
CQI	delay	ms				
	ng mode			PUSC	H 2-0	
	er of HARQ				1	
	nissions				•	
-	d size (k)	RBs		3 (full	size)	
	of preferred nds (<i>M</i>)			ţ	5	
Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4) Note 2: Reference measurement channel RC.5 FDD according to Table						
A.4-1 with one/two sided dynamic OCNG Pattern OP.1/2 FDD as described in Annex A.5.1.1/2.				D as		
	lote 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input					

Table 9.3.4.1.1-2 Minimum requirement (FDD)

	Test 1	Test 2
γ	1.2	1.2
UE Category	≥1	≥1

9.3.4.1.2 TDD

level.

For the parameters specified in Table 9.3.4.1.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.4.1.2-2 and by the following

a) the ratio of the throughput obtained when transmitting on a randomly selected subband among the best M subbands reported by the UE the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected subband in set S shall be $\geq \gamma$;

The requirements only apply for subbands of full size and the random scheduling across the subbands is done by selecting a new subband in each available downlink transmission instance for TDD. The transport block size TBS (wideband CQI median) is that resulting from the code rate which is closest to that indicated by the wideband CQI median and the N_{PRB} entry in Table 7.1.7.2.1-1 of TS 36.213 [6] that corresponds to the subband size.

Table 9.3.4.1.2-1 Sub-band test for single antenna transmission (TDD)

Parai	meter	Unit	Tes	st 1	Tes	st 2
Band	width	MHz		10 N	ИНz	
Transmiss	sion mode			1 (po	ort 0)	
Downlink	$ ho_{\scriptscriptstyle A}$	dB		()	
power	$ ho_{\scriptscriptstyle B}$	dB		()	
allocation	σ	dB		()	
Uplink o	lownlink uration			2	2	
	subframe uration			4	4	
SNR (Note 3)	dB	9	10	14	15
\hat{I}_{a}	(j) or	dB[mW/15kHz]	-89	-88	-84	-83
N	(j) oc	dB[mW/15kHz]	-6	98	-6)8
			Clause	B.2.4 wit	th $\tau_d = 0$	$0.45 \mu s$,
Propagation	on channel		$a = 1, f_D = 5 \text{ Hz}$,	
Reportin	g interval	ms			5	
	delay	ms		10 c	or 11	
	ng mode			PUSC	CH 2-0	
	er of HARQ				1	
	issions					
	d size (k)	RBs		3 (full	size)	
	f preferred			į	5	
	nds (<i>M</i>) K feedback					
	de			Multip	lexing	
Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4) Note 2: Reference measurement channel RC.5 TDD according to Table A.4-1 with one/two sided dynamic OCNG Pattern OP.1/2 TDD as described in Annex A.5.2.1/2.			CQI able D as			
le		the minimum requine two SNR(s) and t				

Table 9.3.4.1.2-2 Minimum requirement (TDD)

	Test 1	Test 2
γ	1.2	1.2
UE Category	≥1	≥1

9.3.4.2 Minimum requirement PUCCH 2-0 (Cell-Specific Reference Symbols)

9.3.4.2.1 FDD

For the parameters specified in Table 9.3.4.2.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.4.2.1-2 and by the following

a) the ratio of the throughput obtained when transmitting on subbands reported by the UE the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected subband in set S shall be $\geq \gamma$;

The requirements only apply for subbands of full size and the random scheduling across the subbands is done by selecting a new subband in each TTI for FDD. The transport block size TBS (wideband CQI median) is that resulting

from the code rate which is closest to that indicated by the wideband CQI median and the N_{PRB} entry in Table 7.1.7.2.1-1 of TS 36.213 [6] that corresponds to the subband size.

Table 9.3.4.2.1-1 Subband test for single antenna transmission (FDD)

	meter	Unit	res	st 1		st 2
	lwidth	MHz	10 MHz			
Transmis	sion mode			1 (po	ort 0)	
Downlink	$ ho_{\scriptscriptstyle A}$	dB		()	
power	$ ho_{\scriptscriptstyle B}$	dB		()	
allocation	σ	dB		()	
SNR (Note 3)	dB	8	9	13	14
\hat{I}_{c}	(j) or	dB[mW/15kHz]	-90	-89	-85	-84
N	oc (j)	dB[mW/15kHz]	-6	98	-9	18
5			Clause	B.2.4 wit	th $\tau_d = 0$.45 <i>μ</i> s
Propagation	on channel			a = 1, f	$_D = 5 \mathrm{Hz}$	
Reporting	periodicity	ms		N₽	= 2	
	delay	ms	8			
Physical channel for CQI reporting			PUSCH (Note 4)			
	eport Type					
	and CQI		4			
	eport Type		1			
	and CQI				I	
Max number of HARQ					1	
transmissions						
Subband size (k) Number of bandwidth		RBs		6 (full	size)	
	bandwidth s (<i>J</i>)			3	3	
	<u>3 (J)</u> ≺				1	
cgi-pmi-C	onfigIndex			•	1	
Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4) Note 2: Reference measurement channel RC.3 FDD according to Table A.4-1 with one/two sided dynamic OCNG Pattern OP.1/2 FDD as described in Annex A.5.1.1/2. Note 3: For each test, the minimum requirements shall be fulfilled for at						
I	For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.					

according to the most recent subband CQI report for bandwidth part with j=1.

Note 6: In the case where wideband CQI is reported, data is to be

CQI reports for the short subband (having 2RBs in the last

bandwidth part) are to be disregarded and data scheduling

To avoid collisions between CQI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1, #3, #7 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH

scheduled according to the most recently used subband CQI report.

in uplink subframe SF#5, #7, #1 and #3.

Note 5:

Table 9.3.4.2.1-2 Minimum requirement (FDD)

	Test 1	Test 2
γ	1.15	1.15
UE Category	≥1	≥1

9.3.4.2.2 TDD

For the parameters specified in Table 9.3.4.2.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.4.2.2-2 and by the following

a) the ratio of the throughput obtained when transmitting on subbands reported by the UE the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected subband in set S shall be $\geq \gamma$;

The requirements only apply for subbands of full size and the random scheduling across the subbands is done by selecting a new subband in each available downlink transmission instance for TDD. The transport block size TBS (wideband CQI median) is that resulting from the code rate which is closest to that indicated by the wideband CQI median and the N_{PRB} entry in Table 7.1.7.2.1-1 of TS 36.213 [6] that corresponds to the subband size.

Table 9.3.4.2.2-1 Sub-band test for single antenna transmission (TDD)

Para	meter	Unit	Te	st 1	Tes	st 2
	dwidth	MHz			MHz	
Transmis	sion mode			1 (po	ort 0)	
Downlink	$ ho_{\scriptscriptstyle A}$	dB		()	
power	$ ho_{\scriptscriptstyle B}$	dB		()	
allocation	σ	dB		()	
config	downlink uration			2	2	
	subframe uration			4	1	
	Note 3)	dB	8	9	13	14
\hat{I}_{c}	(j) or	dB[mW/15kHz]	-90	-89	-85	-84
N	r(j) oc	dB[mW/15kHz]	-(98	-9	8
Propagati	on channel		Clause	B.2.4 wit	th $\tau_d = 0$.45 μ s,
., ., 5				a = 1, f		
	periodicity	ms			= 5	
	delay	ms		10 c	or 11	
CQI re	channel for porting			PUSCH	(Note 4)	
	eport Type cand CQI			4	4	
	eport Type					
for subb	and CQI				1	
	er of HARQ				1	
	nissions d size (<i>k</i>)	RBs	6 (full size)			
Number of	bandwidth ss (J)	1.22			3	
	.s (<i>0)</i> K				1	
cqi-pmi-C	onfigIndex				3	
ACK/NAC	K feedback			Multip	levina	
	ode		<u> </u>			
Note 2:	subframe SF# not later than cannot be app Reference me	orts in an available unit based on CQI es SF#(n-4), this report of at the eNB downsaurement channe	timation rted subb vnlink be I RC.3 TI	at a down and or wi fore SF#(DD accord	ilink subfrideband (n+4). ding to Ta	CQI able
		e/two sided dynamic	OCNG	Pattern C	P.1/2 TD	D as
Note 3:	or each test,	cribed in Annex A.5.2.1/2. each test, the minimum requirements shall be fulfilled for at st one of the two SNR(s) and the respective wanted signal input				
Note 4:				CCH allow		
Note 5: 0	CQI reports for	e SF#7 and #2. orts for the short subband (having 2RBs in the last th part) are to be disregarded and data scheduling g to the most recent subband CQI report for bandwidth part				
Note 6:	n the case wh	ase where wideband CQI is reported, data is to be led according to the most recently used subband CQI				

Table 9.3.4.2.2-2 Minimum requirement (TDD)

	Test 1	Test 2
γ	1.15	1.15
UE Category	≥1	≥1

9.3.5 Additional requirements for enhanced receiver Type A

The purpose of the test is to verify that the reporting of the channel quality is based on the receiver of the enhanced Type A. Performance requirements are specified in terms of the relative increase of the throughput obtained when the transport format is that indicated by the reported CQI subject to an interference model compared to the case with a white Gaussian noise model, and a requirement on the minimum BLER of the transmitted transport formats indicated by the reported CQI subject to an interference model.

9.3.5.1 Minimum requirement PUCCH 1-0 (Cell-Specific Reference Symbol)

9.3.5.1.1 FDD

For the parameters specified in Table 9.3.5.1.1-1, and using the downlink physical channels specified in Annex C, the minimum requirements are specified in Table 9.3.5.1.1-2 and by the following

- a) the ratio of the throughput obtained when transmitting the transport format indicated by each reported wideband CQI index subject to an interference source with specified DIP and that obtained when transmitting the transport format indicated by each reported wideband CQI index subject to a white Gaussian noise source shall be $\geq \gamma$;
- b) when transmitting the transport format indicated by each reported wideband CQI index subject to an interference source with specified DIP, the average BLER for the indicated transport formats shall be greater than or equal to 2%.

Table 9.3.5.1.1-1 Fading test for single antenna (FDD)

Parameter	Unit	Cell 1	Cell 2
Bandwidth	MHz	10 MHz	
Transmission mode		1 (p	ort 0)
Cyclic Prefix		Normal	Normal
Cell ID		0	1
SINR (Note 8)	dB	-2	N/A
$N_{oc}^{(j)}$	dB[mW/15kHz]	-98	N/A
Propagation channel		EPA5	Static (Note 7)
Correlation and antenna configuration		Low (1 x 2)	(1 x 2)
DIP (Note 4)	dB	N/A	-0.41
Reference measurement channel		Note 2	R.2 FDD
Reporting mode		PUCCH 1-0	N/A
Reporting periodicity	ms	$N_{pd} = 2$	N/A
CQI delay	ms	8	N/A
Physical channel for CQI reporting		PUSCH (Note 3)	N/A
PUCCH Report Type		4	N/A
cqi-pmi- ConfigurationIndex		1	N/A
Max number of HARQ transmissions		1	N/A
subframe SF than SF#(n-4	orts in an available #n based on CQI e), this reported wid < before SF#(n+4)	stimation at a dow	nlink SF not later t be applied at the

- Note 2: Reference measurement channel RC.1 FDD according to Table A.4-1 for Category 2-8 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1 and RC.4 FDD according to Table A.4-1 for Category 1 with one/two sided dynamic OCNG Pattern OP.1/2 FDD as described in Annex A.5.1.1/2.
- Note 3: To avoid collisions between CQI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1, #3, #7 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#5, #7, #1 and #3.
- Note 4: The respective received power spectral density of each interfering cell relative to N_{oc} ' is defined by its associated DIP value as specified in clause B.5.1.
- Note 5: Two cells are considered in which Cell 1 is the serving cell and Cell 2 is the interfering cell. The number of the CRS ports in both cells is the same. Intefering cell is fully loaded.
- Note 6: Both cells are time-synchronous.
- Note 7: Static channel is used for the interference model. In case for white Gaussian noise model Cell 2 is not present.
- Note 8: SINR corresponds to \hat{E}_s/N_{oc} of Cell 1 as defined in clause 8.1.1.

Table 9.3.5.1.1-2 Minimum requirement (FDD)

γ	1.8
UE Category	≥1

9.3.5.1.2 TDD

For the parameters specified in Table 9.3.5.1.2-1, and using the downlink physical channels specified in Annex C, the minimum requirements are specified in 9.3.5.1.2-2 and by the following

- a) the ratio of the throughput obtained when transmitting the transport format indicated by each reported wideband CQI index subject to an interference source with specified DIP and that obtained when transmitting the transport format indicated by each reported wideband CQI index subject to a white Gaussian noise source shall be $\geq \gamma$;
- b) when transmitting the transport format indicated by each reported wideband CQI index subject to an interference source with specified DIP, the average BLER for the indicated transport formats shall be greater than or equal to 2%

Table 9.3.5.1.2-1 Fading test for single antenna (TDD)

Parameter	Unit	Cell 1	Cell 2	
Bandwidth	MHz	10 MHz		
Transmission mode		1 (port 0)		
Uplink downlink			2	
configuration		4		
Special subframe			4	
configuration				
Cyclic Prefix		Normal	Normal	
Cell ID		0	1	
SINR (Note 8)	dB	-2	N/A	
$N_{oc}^{(j)}$	dB[mW/15kHz]	-98	-98	
Propagation channel		EPA5	Static (Note 7)	
Correlation and		Low (1 x 2)	(1 x 2)	
antenna configuration		` '	` '	
DIP (Note 4)	dB	N/A	-0.41	
Reference measurement channel		Note 2	R.2A TDD	
Reporting mode		PUCCH 1-0	N/A	
Reporting periodicity	ms	$N_{\rm pd} = 5$	N/A	
CQI delay	ms	10 or 11	N/A	
Physical channel for		PUSCH (Note	·	
CQI reporting		3) `	N/A	
PUCCH Report Type		4	N/A	
cqi-pmi- ConfigurationIndex		3	N/A	
Max number of HARQ transmissions		1	N/A	
ACK/NACK feedback		Multiplexing	N/A	
mode	uta in an availatete :			
subframe SF#	orts in an available u on based on CQI es on this reported wide	timation at a dowr	nlink SF not later	
	s before SF#(n+4)		ne applied at tile	

- Reference measurement channel RC.1 TDD according to Table Note 2: A.4-1 for Category 2-8 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1 and RC.4 TDD according to Table A.4-1 for Category 1 with one/two sided dynamic OCNG Pattern OP.1/2 TDD as described in Annex A.5.2.1/2.
- Note 3: To avoid collisions between CQI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#3 and #8 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#7 and #2.
- Note 4: The respective received power spectral density of each interfering cell relative to $N_{\it ac}$ is defined by its associated DIP value as specified in clause B.5.1.
- Two cells are considered in which Cell 1 is the serving cell and Cell Note 5: 2 is the interfering cell. The number of the CRS ports in both cells is the same. Intefering cell is fully loaded.
- Note 6: Both cells are time-synchronous.
- Static channel is used for the interference model. In case for white Note 7: Gaussian noise model Cell 2 is not present.
- SINR corresponds to \hat{E}_s/N_{oc} of Cell 1 as defined in clause Note 8: 8.1.1.

Table 9.3.5.1.2-2 Minimum requirement (TDD)

γ	1.8
UE Category	≥1

9.3.5.2 Minimum requirement PUCCH 1-1 (CSI Reference Symbol)

9.3.5.2.1 FDD

For the parameters specified in Table 9.3.5.2.1-1, and using the downlink physical channels specified in Annex C, the minimum requirements are specified in Table 9.3.5.2.1-2 and by the following

- a) the ratio of the throughput obtained when transmitting the transport format indicated by each reported wideband CQI index subject to an interference source with specified DIP and that obtained when transmitting the transport format indicated by each reported wideband CQI index subject to a white Gaussian noise source shall be $\geq \gamma$;
- b) when transmitting the transport format indicated by each reported wideband CQI index subject to an interference source with specified DIP, the average BLER for the indicated transport formats shall be greater than or equal to 2%.

Table 9.3.5.2.1-1 Fading test for two antennas (FDD)

Parameter	Unit	Cell 1	Cell 2	
Bandwidth	MHz	10 MHz		
Transmission mode		9		
Cyclic Prefix		Normal	Normal	
Cell ID		0	1	
SINR (Note 8)	dB	-2	N/A	
$N_{oc}^{(j)}$	dB[mW/15kHz]	-98	N/A	
Propagation channel		EPA5	Static (Note 7)	
Correlation and antenna configuration		Low (2 x 2)	(1 x 2)	
Beamforming Model		As specified in Section B.4.3 (Note 10, 11)	N/A	
DIP (Note 4)	dB	N/A	-0.41	
Cell-specific reference signals		Antenna ports 0,1	Antenna port 0	
CSI reference signals		Antenna ports 15,16	N/A	
CSI-RS periodicity and subframe offset		5/1	N/A	
CSI-RS reference signal configuration		2	N/A	
Zero-power CSI-RS configuration IcsI-RS / ZeroPowerCSI-RS bitmap	Subframes / bitmap	N/A	1 / 001000000000 000	
CodeBookSubsetRestr iction bitmap		001111	N/A	
Reference measurement channel		Note 2	R.2 FDD	
Reporting mode		PUCCH 1-1	N/A	
Reporting periodicity	ms	$N_{\rm pd} = 5$	N/A	
CQI delay	ms	8	N/A	
Physical channel for CQI/PMI reporting		PUSCH (Note 3)	N/A	
PUCCH Report Type for CQI/PMI		2	N/A	
PUCCH channel for RI reporting		PUCCH Format 2	N/A	
PUCCH Report Type for RI		3	N/A	
cqi-pmi- ConfigurationIndex		2	N/A	
ri-ConfigIndex		1	N/A	
Max number of HARQ transmissions		1	N/A	

Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink SF not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4)

Note 2: Reference measurement channel RC.11 FDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1.

Note 3: To avoid collisions between CQI/ PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1 and #6 to allow periodic CQI/ PMI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#0 and #5.

Note 4: The respective received power spectral density of each interfering cell relative to N_{oc} is defined by its associated DIP value as specified in clause B.5.1.

Note 5: Two cells are considered in which Cell 1 is the serving cell and Cell 2 is the interfering cell. Intefering cell is fully loaded.

Note 6:	Both cells are time-synchronous.
Note 7:	Static channel is used for the interference model. In case for white Gaussian noise model Cell 2 is not present.
Note 8:	SINR corresponds to \hat{E}_s/N_{oc} of Cell 1 as defined in clause 8.1.1.
Note 9:	N/A
Note 10:	The precoder in clause B.4.3 follows UE recommended PMI.
Note 11:	If the UE reports in an available uplink reporting instance at
	subrame SF#n based on PMI estimation at a downlink SF not later
	than SF#(n-4), this reported PMI cannot be applied at the eNB
	downlink before SF#(n+4).

Table 9.3.5.2.1-2 Minimum requirement (FDD)

γ	1.8
UE Category	≥2

9.3.5.2.2 TDD

For the parameters specified in Table 9.3.5.2.2-1, and using the downlink physical channels specified in Annex C, the minimum requirements are specified in 9.3.5.2.2-2 and by the following

- a) the ratio of the throughput obtained when transmitting the transport format indicated by each reported wideband CQI index subject to an interference source with specified DIP and that obtained when transmitting the transport format indicated by each reported wideband CQI index subject to a white Gaussian noise source shall be $\geq \gamma$;
- b) when transmitting the transport format indicated by each reported wideband CQI index subject to an interference source with specified DIP, the average BLER for the indicated transport formats shall be greater than or equal to 2%.

Table 9.3.5.2.2-1: Fading test for single antenna (TDD)

Parameter	Unit	Cell 1	Cell 2		
Bandwidth	MHz	10 MHz			
Transmission mode		9			
Uplink downlink		2			
configuration		2			
Special subframe			4		
configuration			-		
Cyclic Prefix		Normal	Normal		
Cell ID		0	1		
SINR (Note 8)	dB	-2	N/A		
$N_{oc}^{(j)}$	dB[mW/15kHz]	-98	-98		
Propagation channel		EPA5	Static (Note 7)		
Correlation and		Low (2 x 2)	(1 x 2)		
antenna configuration		` '	(1 ^ 2)		
Beamforming Model		As specified in Section B.4.3 (Note 11, 12)	N/A		
DIP (Note 4)	dB	N/A	-0.41		
Cell-specific reference signals		Antenna ports 0,1	Antenna port 0		
CSI reference signals		Antenna ports 15,16	N/A		
CSI-RS periodicity and subframe offset		5/3	N/A		
CSI-RS reference signal configuration		2	N/A		
Zero-power CSI-RS configuration IcsI-RS / ZeroPowerCSI-RS bitmap	Subframes / bitmap	N/A	3 / 001000000000 0000		
CodeBookSubsetRestr iction bitmap		001111	N/A		
Reference measurement channel		Note 2	R.2A TDD		
Reporting mode		PUCCH 1-1	N/A		
Reporting periodicity	ms	$N_{pd} = 5$	N/A		
CQI delay	ms	10	N/A		
Physical channel for CQI/PMI reporting		PUSCH (Note 3)	N/A		
PUCCH Report Type for CQI/PMI		2	N/A		
Physical channel for RI reporting		PUCCH Format 2	N/A		
PUCCH Report Type for RI		3	N/A		
cqi-pmi- ConfigurationIndex		3	N/A		
ri-ConfigIndex		805 (Note 9)	N/A		
Max number of HARQ transmissions		1	N/A		
ACK/NACK feedback mode		Multiplexing	N/A		
Note 1: If the LIF reno	rte in an available u	plink reporting inc	tanco at		

Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink SF not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4)

Note 2: Reference measurement channel RC.11 TDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1.

Note 3: To avoid collisions between CQI/ PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#3 and #8 to allow periodic CQI/ PMI to multiplex with the HARQ-ACK on PUSCH in

Note 4:	uplink subframe SF#2 and #7. The respective received power spectral density of each interfering
	cell relative to N_{oc} is defined by its associated DIP value as
Note 5:	specified in clause B.5.1. Two cells are considered in which Cell 1 is the serving cell and Cell 2 is the interfering cell. Intefering cell is fully loaded. Both cells are time-synchronous.
Note 7:	Static channel is used for the interference model. In case for white Gaussian noise model Cell 2 is not present.
Note 8:	SINR corresponds to \widehat{E}_s/N_{oc} of Cell 1 as defined in clause
Note 9:	8.1.1. RI reporting interval is set to the maximum allowable length of 160ms to minimise collisions between RI, CQI/PMI and HARQ-ACK reports. In the case when all three reports collide, it is expected that CQI/PMI reports will be dropped, while RI and HARQ-ACK will be multiplexed. At eNB, CQI report collection shall be skipped every 160ms during performance verification and the reported CQI in subframe SF#7 of the previous frame is applied in downlink subframes until a new CQI (after CQI/PMI dropping) is available.
Note 10: Note 11: Note 12:	If the UE reports in an available uplink reporting instance at
	subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Table 9.3.5.2.2-2 Minimum requirement (TDD)

γ	1.8
UE Category	≥2

9.3.6 Minimum requirement (With multiple CSI processes)

The purpose of the test is to verify the reporting accuracy of the CQI and the UE processing capability for multiple CSI processes. Each CSI process is associated with a CSI-RS resource and a CSI-IM resource as shown in Table 9.3.6-1. For UE supports one CSI process, CSI process 2 is configured and the corresponding requirements shall be fulfilled. For UE supports three CSI processes, CSI processes 0, 1 and 2 are configured and the corresponding requirements shall be fulfilled. For UE supports four CSI processes, CSI processes 0, 1, 2 and 3 are configured and the corresponding requirements shall be fulfilled.

Table 9.3.6-1: Configuration of CSI processes

	CSI process 0	CSI process 1	CSI process 2	CSI process 3
CSI-RS resource	CSI-RS signal 0	CSI-RS signal 1	CSI-RS signal 0	CSI-RS signal 1
CSI-IM resource	CSI-IM resource 0	CSI-IM resource 0	CSI-IM resource 1	CSI-IM resource 2

9.3.6.1 FDD

For the parameters specified in Table 9.3.6.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.6.1-2 and by the following

- a) a sub-band differential CQI offset level of 0 shall be reported at least α % of the time but less than β % for each sub-band for CSI process 1, 2, or 3;
- b) a CQI index not in the set {median CQI -1, median CQI, median CQI +1} shall be reported at least δ % of the time for CSI process 0;
- c) the difference of the median CQIs of the reported wideband CQI for configurated CSI processes shall be greater or equal to the values as in Table 9.3.6.1-3;

- d) the ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set S shall be $\geq \gamma$;
- e) when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS, the average BLER for the indicated transport formats shall be greater or equal to 0.02.

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD. Sub-bands of a size smaller than full size are excluded from the test.

Table 9.3.6.1-1: Fading test for FDD

				Tes	et 1			To	et 2	
Parameter		Unit	TP		TI	2	Test 2 TP1 TP2			
Bandwidth		MHz	10 MHz			10 MHz				
Transmis	sion mode		10		1	0	10 10			
	$ ho_{\scriptscriptstyle A}$	dB		(0		Ö			
Downlink power	$ ho_{\scriptscriptstyle B}$	dB		(0		0			
allocation	P_c	dB	-3 0		-	-3 0)		
	σ	dB		_	3				3	
SNR (Note 7)	dB	10 11 7 8		14	15	9	10		
\hat{I}_{c}	(j) or	dB[mW/15kHz]	-88	-87	-91	-90	-84	-85	-89	-88
N	r(j) oc	dB[mW/15kHz]		-6	98			-6	98	
Propagation	on channel		EPA 5	Low	Clause $ \tau_d = 0 $ $ a = f_n = 0 $	th .45 <i>μ</i> s,	EPA 5 Low Clause E with $ au_d = 0.$		th .45 μ s,	
Antenna co	onfiguration		4x2	<u> </u>	2)		4:	x2	2)	
	ning Model				Section			_	Section	
Timing offset	between TPs	us	,))	
	et between TPs	Hz			0)	
Cell-specific re	eference signals				ports 0,1				ports 0,1	
	signal 0		Antenna 15,		N,	/A		na ports ,18	N/	/A
T _{CSI-RS}	v and subframe offset √ ∆csi-Rs		5/1		N.		5.	/1	N/	/A
CSI-RS 0 c	configuration		0 N/A			0		N/		
	signal 1		N/A		Antenna ports 15,16		N/A An		Antenn 15,	
	v and subframe offset √ ∆csi-Rs		N/A		5/1		N/A		5/	/1
CSI-RS 1 c	configuration		N/A	١		5	N/A 5			
Zero-power CSI-l I _{CSI-RS} / ZeroPow	RS 0 configuration verCSI-RS bitmap		N/A 111000000000 0000			/A	1 111000 00	000000		
	RS 1 configuration verCSI-RS bitmap		1 / 00100110000 N/A 00000		1 / 00100110000 N/A 00000		/A			
	and subframe offset / $\Delta_{\text{CSI-RS}}$		5/1 5/1		5.	/1	5/	/1		
	onfiguration		2		2	2	2	2	2	2
	and subframe offset $/$ $\Delta_{\text{CSI-RS}}$		5/1		N.	/A	5.	/1	N/	/A
CSI-IM 1 c	onfiguration		6		N.	Ά	(3	N/	/A
	and subframe offset $/$ $\Delta_{\text{CSI-RS}}$		N/A	١	5,	′1	N	/A	5/	/1
CSI-IM 2 c	onfiguration		N/A				N	/A	1	1
	CSI-RS			CSI-RS 0 CS			RS 0			
	CSI-IM				CSI-IM 0			CSI-IM 0		
	Reporting mode CodeBookSubsetR				CH 1-1				CH 1-1	
	estriction bitmap		0x0000 0000 0000 0001 0x0000 000		0 0000 0	001				
	Reporting periodicity	ms		$N_{pd} = 5$ N_p		N_{pd}	$N_{pd} = 5$			
CSI process 0	CQI delay	ms		·		1	1			
	Physical channel for CQI/ PMI reporting		F				(Note 6)			
	PUCCH Report Type for CQI/PMI			2		2				
	PUCCH channel		Р	PUCCH Format 2		PUCCH Format 2				

F						
	for RI reporting					
PUCCH report				3		3
	type for RI		`	<u> </u>	`	,
	cqi-pmi- ConfigurationIndex			4	4	1
	ri-ConfigIndex			2		2
	CSI-RS			 RS 1	CSI-	
	CSI-IM			·IM 0		IM 0
	Reporting mode		PUSC		PUSC	
	CodeBookSubsetR					
CSI process 1	estriction bitmap		000	001	000	001
001 p100033 1	Reporting interval					
	(Note 10)	ms		5		5
	CQI delay	ms	1	1	1	1
	Sub-band size	RB	6 (ful		6 (full	
	CSI-RS	KD			CSI-	
	CSI-RS CSI-IM			RS 0		
			CSI-		CSI-	
001 0	Reporting mode		PUSC	л 3-1	PUSC	л 3-1
CSI process 2	CodeBookSubsetR		0x0000 000	0 0000 0001	0x0000 0000	0 0000 0001
(For UE configured	estriction bitmap					
single process)	Reporting interval	ms		5	Į	5
	(Note 8)					
	CQI delay	ms	·	3	8 (full size) (Note 9)	
	Sub-band size	RB		e) (Note 9)		
	CSI-RS			RS 0	CSI-RS 0	
	CSI-IM		CSI		CSI-IM 1	
CSI process 2	Reporting mode		PUSC	CH 3-1	PUSC	CH 3-1
(For UE configured	CodeBookSubsetR estriction bitmap		0x0000 000	0 0000 0001	0x0000 000	0 0000 0001
multiple processes)	Reporting interval (Note 10)	ms		5	5	
	CQI delay	mo	14		11	
		ms	11 6 (full size) (Note 9)		6 (full size) (Note 9)	
	Sub-band size	RB				
	CSI-RS CSI-IM			RS 1	CSI-RS 1 CSI-IM 2	
				-IM 2		
	Reporting mode		PUSC	√H 3-1	PUSC	,H 3-1
001	CodeBookSubsetR		000	001	000	001
CSI process 3	estriction bitmap					
	Reporting interval (Note 10)	ms		5	5	
	CQI delay	ms	1	1	1	1
	Sub-band size	RB	6 (ful		6 (full	
CSI process for P				ocess 2	CSI pro	
	CSI process for PDSCH scheduling Cell ID		0	6	0	6
	Quasi-co-located CSI-RS		CSI-RS 0	CSI-RS 1	CSI-RS 0	CSI-RS 1
Quasi-co-located CSI-NS			Same Cell ID	Same Cell ID as Cell 2	Same Cell ID	Same Cell ID as Cell 2
PMI for subframe 2, 3, 4, 7, 8 and 9			as Cell 1 0x0000 0000	100000	as Cell 1 0x0000 0000	100000
PMI for subfi			0000 0001 0x0000 0000	100000	0000 0001 0x0000 0000	100000
			0001 0000		0001 0000	N1/A
Max number of HARQ transmissions			<u> </u>	N/A		N/A

Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink SF not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4)

Note 2: 3 symbols allocated to PDCCH

Note 3: Reference measurement channel RC.12 FDD according to Table A.4-1. PDSCH transmission is scheduled on subframe 2, 3, 4, 7, 8 and 9 from TP1.

Note 4: TM10 OCNG OP.8 FDD as specified in A.5.1.8 is transmitted on subframe 1 and 6 from TP1.

Note 5: TM10 OCNG OP.8 FDD as specified in A.5.1.8 is transmitted on subframe 1, 2, 3, 4, 6, 7, 8 and 9 from TP2

Note 6: To avoid collisions between CQI/PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#3 and #8 to allow periodic CQI/PMI to multiplex with the HARQ-ACK on PUSCH in uplink SF#2 and #7.

Note 7: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.

Note 8: PDCCH DCI format 0 with a trigger for aperiodic CQI shall be transmitted in downlink SF#1 and #6 to allow aperiodic CQI/PMI/RI to be transmitted in uplink SF#0 and #5.

Note 9: For these sub-bands which are not selected for PDSCH transmission, TM10 OCNG should be transmitted.

Note 10: PDCCH DCI format 0 with a trigger for aperiodic CQI shall be transmitted in downlink SF#2 and #7 to allow aperiodic CQI/PMI/RI to be transmitted in uplink SF#1 and #6.

Table 9.3.6.1-2: Minimum requirement (FDD)

	CSI process 0	CSI process 1	CSI process 2	CSI process 3	
α[%]	N/A	2	2	2	
β[%]	N/A	40	40	40	
δ [%]	10	N/A	N/A	N/A	
γ	N/A	N/A	1.02	N/A	
UE Category		≥1			

Table 9.3.6.1-3: Minimum median CQI difference between configured CSI processes (FDD)

	CSI process 1	CSI process 2	CSI process 3		
CSI process 0	N/A	1	3		
UE Category	≥1				

9.3.6.2 TDD

For the parameters specified in Table 9.3.6.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.6.2-2 and by the following

- a) a sub-band differential CQI offset level of 0 shall be reported at least α % of the time but less than β % for each sub-band for CSI process 1, 2, or 3;
- b) a CQI index not in the set {median CQI -1, median CQI, median CQI +1} shall be reported at least δ % of the time for CSI process 0;
- c) the difference of the median CQIs of the reported wideband CQI for configurated CSI processes shall be greater or equal to the values as in Table 9.3.6.2-3;
- d) the ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set S shall be $\geq \gamma$;
- e) when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS, the average BLER for the indicated transport formats shall be greater or equal to 0.02.

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD. Sub-bands of a size smaller than full size are excluded from the test.

Table 9.3.6.2-1: Fading test for TDD

B		Unit Test 1					Test 2			
Parameter			TF		TP2		TP1 TP2			
Bandwidth		MHz			MHz		10 MHz			
Transmission mode			_	0	10		10			0
Uplink downlink cor			2		2		2		2	
Special subframe co			4	1		4	4		l	4
	$ ho_{\scriptscriptstyle A}$	dB			0		0			
Downlink power allocation	$\rho_{\scriptscriptstyle B}$	dB			0)	
allocation	P_c	dB	-;	3)	-	3		0
SNR (Note 7)	σ	dB dB	10	11	3 7	8	14	15	3 9	10
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-88	-87	-91	-90	-84	-85	-89	-88
$N_{oc}^{(j)}$		dB[mW/15kHz]			98				98	
IV oc		ub[iiiw/i5kii2]		-:				-:		
Propagation channe	el		EPA (5 Low	$B.2.4.$ $\tau_d = 0$ $a = 0$	use 1 with 0.45 μs, = 1, = 5 Hz	EPA	5 Low	$B.2.4.$ $\tau_d = 0$ $a = 0$	ause .1 with).45 μs, = 1, = 5 Hz
Antenna configurati			4)			κ2		x2		x2
Beamforming Mode			As sp		Section	B.4.3	As sp	pecified in		B.4.3
Timing offset betwe		US	1		<u>) </u>)	
Frequency offset between TPs Cell-specific reference signals		Hz	Antenna p		0 ports 0.1		0 Antenna port			
CSI-RS signal 0			Antenna ports 15,, 18		N/A		Antenna ports			/A
CSI-RS 0 periodicity	y and subframe offset		5/3		N/A		15,, 18 5/3		N	/A
CSI-RS 0 configuration			()	N/A		(0	N	/A
CSI-RS signal 1			N/A		Antenna ports 15, 16		N/A			na ports , 16
$T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$	y and subframe offset		N,			/3		//A		/3
CSI-RS 1 configura	tion		N,	/A		5	N	/A		5
Zero-power CSI-RS Icsi-RS / ZeroPower(N,		111000	000000 000		//A	11100	3 / 000000 000
Zero-power CSI-RS I _{CSI-RS} / ZeroPower(3 / 00100110000 00000		N/A		00100	3 / 110000 000	N	/A
CSI-IM 0 periodicity $T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$	and subframe offset		5,	/3	5.	/3	5	/3	5	/3
CSI-IM 0 configurat			2	2	2	2		2	:	2
CSI-IM 1 periodicity $T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$	and subframe offset		5/	/3	N	/A	5	/3	N	/A
CSI-IM 1 configurat			(6	N	/A	(6	N	/A
CSI-IM 2 periodicity $T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$	and subframe offset		N.	/A	5.	/3	N	/A	5	/3
CSI-IM 2 configurat	ion		N,	/A		1	N	/A		1
	CSI-RS				RS 0		· ·		RS 0	
CSI-IM				CSI-	-IM 0			CSI-	·IM 0	
	Reporting mode			PUCC	CH 1-1			PUCC	CH 1-1	
	CodeBookSubsetR estriction bitmap		0x0	000 000	0 0000 0	001	0x0	000 000	0 0000 0	001
CSI process 0	Reporting periodicity	ms			= 5				= 5	
	CQI delay	ms		1	2			1	2	
	Physical channel for CQI/ PMI reporting			PUSCH	(Note 6)		PUSCH (Note 6)			
	PUCCH Report			- :	2		2			

			ı			
	Type for CQI/PMI					
	PUCCH channel		PUCCH	Format 2	PUCCH	Format 2
	for RI reporting					
	PUCCH report		3		3	3
	type for RI					
	cqi-pmi-		;	3	3	3
	ConfigurationIndex ri-ConfigIndex		00F (N	lata 40\	005 /N	ata 40\
				lote 10)	805 (N	
	CSI-RS CSI-IM			RS 1 -IM 0	CSI- CSI-	
	Reporting mode		PUSC	CH 3-1	PUSC	H 3-1
001	CodeBookSubsetR		000	0001	000	001
CSI process 1	estriction bitmap					
	Reporting interval	ms		5	5	5
	(Note 9)					•
	CQI delay	ms		2	1	
	Sub-band size	RB	6 (ful		6 (full	
	CSI-RS			RS 0	CSI-	
	CSI-IM			-IM 1	CSI-	
	Reporting mode		PUSC	CH 3-1	PUSC	SH 3-1
	CodeBookSubsetR		0x0000 0000 0000 0001		0x0000 0000	0,000,0001
CSI process 2	estriction bitmap		0,0000 0000 0000 0001		1113000 0000 0000	
	Reporting interval (Note 9)	ms		5		5
	CQI delay	ms	1	2	12	
	Sub-band size	RB	6 (full size	e) (Note 8)	6 (full size) (Note 8)	
	CSI-RS		CSI-	RS 1	CSI-RS 1	
	CSI-IM		CSI-	-IM 2	CSI-IM 2	
	Reporting mode			CH 3-1	PUSCH 3-1	
	CodeBookSubsetR					
CSI process 3	estriction bitmap		000001		000001	
·	Reporting interval (Note 9)	ms		5	5	5
	CQI delay	ms	1	2	1	2
	Sub-band size	RB			6 (full	
CSI process for PDSCH scheduling		ND		6 (full size) CSI process 2		ocess 2
Cell ID	Joon I scrieduling		0	6	0	6
Quasi-co-located C	SI-RS		CSI-RS 0	CSI-RS 1	CSI-RS 0	CSI-RS 1
			Same Cell ID	Same Cell ID	Same Cell ID	Same Cell ID
Quasi-co-located CRS			as Cell 1	as Cell 2	as Cell 1	as Cell 2
PMI for subframe 4	4 and 9		0x0000 0000 0000 0001	100000	0x0000 0000 0000 0001	100000
PMI for subframe 3	3 and 8		0x0000 0000 0001 0000	100000	0x0000 0000 0001 0000	100000
Max number of HA	RQ transmissions		1	N/A	1	N/A
ACK/NACK feedba			Multiplexing	N/A	Multiplexing	N/A
	= reports in an available	unlink reporting inc				

- Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink SF not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4)
- Note 2: 3 symbols allocated to PDCCH
- Note 3: Reference measurement channel RC.12 TDD according to Table A.4-1. PDSCH transmission is scheduled on subframe 4 and 9 from TP1.
- Note 4: TM10 OCNG OP.8 TDD is transmitted as specified in A.5.2.8 on subframe 3 and 8 from TP1.
- Note 5: TM10 OCNG OP.8 TDD is transmitted as specified in A.5.2.8 on subframe 3, 4, 8 and 9 from TP2
- Note 6: To avoid collisions between CQI/PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#3 and #8 to allow periodic CQI/PMI to multiplex with the HARQ-ACK on PUSCH in uplink SF#7 and #2.
- Note 7: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.
- Note 8: PDCCH DCI format 0 with a trigger for aperiodic CQI shall be transmitted in downlink SF#3 and #8 to allow aperiodic CQI/PMI/RI to be transmitted in uplink SF#7 and #2.
- Note 9: For these sub-bands which are not selected for PDSCH transmission, TM10 OCNG should be transmitted.
- Note 10: RI reporting interval is set to the maximum allowable length of 160ms to minimise collisions between RI, CQI/PMI and HARQ-ACK reports. In the case when all three reports collide, it is expected that CQI/PMI reports will be dropped, while RI and HARQ-ACK will be multiplexed. At eNB, CQI report collection shall be skipped every 160ms during performance verification and the reported CQI in subframe SF#7 of the previous frame is applied in downlink subframes until a new CQI (after CQI/PMI dropping) is available.

Table 9.3.6.2-2: Minimum requirement (TDD)

	CSI process 0	CSI process 1	CSI process 2	CSI process 3
α[%]	N/A	2	2	2
β[%]	N/A	40	40	40
δ[%]	10	N/A	N/A	N/A
γ	N/A	N/A	1.02	N/A
UE Category	≥1			

Table 9.3.6.2-3: Minimum median CQI difference between configured CSI processes (TDD)

	CSI process 1	CSI process 2	CSI process 3	
CSI process 0	N/A	1	3	
UE Category	≥1			

9.3.7 Minimum requirement PUSCH 3-2

9.3.7.1 FDD

For the parameters specified in Table 9.3.7.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.7.1-2 and by the following.

- a) the ratio of the throughput obtained when transmitting based on UE PUSCH 3-2 reported wideband CQI and subband PMI and that obtained when transmitting based on PUSCH 3-1 reported wideband CQI and wideband PMI shall be $\geq \alpha$;
- b) The ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS based on UE PUSCH3-2 reported subband CQI and subband PMI and that obtained when transmitting on a randomly selected sub-band in set S based on PUSCH 1-2 reported wideband CQI and subband PMI shall be $\geq \beta$;

The transport block sizes TBS for wideband CQI and subband CQI are selected according to RC.17 FDD for test 1 and according to RC.18 FDD for test 2.

Table 9.3.7.1-1 Sub-band test for FDD

Parameter		Unit	Test 1		Test 2	
Bandwidth		MHz	10M		ЛНz	
PDSCH resource allocation		RB	50PRB		a subband, 6PRB	
Transmiss	ion mode		T	M6	TM9	
	$ ho_{\scriptscriptstyle A}$	dB	-	-6	()
Downlink power	$ ho_{\scriptscriptstyle B}$	dB	-	-6	()
allocation	P_c	dB		-	-:	3
	σ	dB		3	-:	3
SNR (N	_	dB	0	1	5	6
$\hat{I}_{oi}^{()}$		dB[mW/15kHz]	-98	-97	-93	-92
N_a°	(j) oc	dB[mW/15kHz]	-98	-98	-98	-98
Propagatio	Propagation channel		EVA5		EVA5	
	Antenna configuration		4x2 ULA low		4x2 XP high (Note 4)	
Beamforming Model			-		B.4.3	
CRS referer	nce signals		Antenna ports 0, 1, 2, 3		Antenna ports 0, 1	
Time offset between 5	•	ns	65		-	
CSI referen	ice signals				Antenna ports 15, 16, 17, 18	
CSI-RS periodicity a	and subframe offset		-		5/ 1	
CSI-RS reference s	ignal configuration		-		4	
alternativeCodeboo	okEnabledFor4TX		No		Ye	es
CodeBookSubsetRestriction bitmap			0x0000 000	0 0000 FFFF	0x0000 0000 0000	0000 FFFF FFFF
Reporting inte	erval (Note 6)	ms	5		Ę	5
CQI c		ms	8		8	,
Reportin				, PUSCH 3-1		PUSCH 1-2
Sub-bar		RB	6 (ful	l size)	6 (full size)	
Max number of HA				1	,	l
Note 1: If the UF reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a						

- Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4)
- Note 2: Reference measurement channel RC.17 FDD / RC.18 FDD for Test 1 / 2 according to Table A.4-1 with one/two sided dynamic OCNG Pattern OP.1/2 FDD as described in Annex A.5.1.1/2.
- Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.
- Note 4: Randomization of the principle beam direction shall be used as specified in B.2.3A.4.
- Note 5: The values of time offset are [0ns 65ns 0ns 65ns] for antenna port [0, 1, 2, 3] respectively.
- Note 6: PDCCH DCI format 0 with a trigger for aperiodic CQI shall be transmitted in downlink SF#1 and #6 to allow aperiodic CQI/PMI/RI to be transmitted in uplink SF#0 and #5.

Table 9.3.7.1-2 Minimum requirement (FDD)

	Test 1	Test 2
α	1.05	-
β	-	1.15
UE Category	≥2	≥2

9.3.7.2 TDD

For the parameters specified in Table 9.3.7.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.7.2-2 and by the following.

a) the ratio of the throughput obtained when transmitting based on UE PUSCH 3-2 reported wideband CQI and subband PMI and that obtained when transmitting based on PUSCH 3-1 reported wideband CQI and wideband PMI shall be $\geq \alpha$;

b) The ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS based on UE PUSCH3-2 reported subband CQI and subband PMI and that obtained when transmitting on a randomly selected sub-band in set S based on PUSCH 1-2 reported wideband CQI and subband PMI shall be $\geq \beta$;

The transport block sizes TBS for wideband CQI and subband CQI are selected according to RC.17 TDD for test 1 and RC.18 TDD for test 2.

Table 9.3.7.2-1 Sub-band test for TDD

Parameter		Unit	Test 1		Test 2	
Bandwidth		MHz	10N		ИHz	
PDSCH resou	PDSCH resource allocation		50PRB		a subband, 6PRB	
Transmiss	sion mode		Т	M6	TN	Л 9
Uplink downlin	k configuration			1	•	1
Special subfram	ne configuration			4	4	4
	$ ho_{\scriptscriptstyle A}$	dB		-6	()
Downlink power	$ ho_{\scriptscriptstyle B}$	dB		-6	()
allocation	P_c	dB		-	-	3
	σ	dB		3	-	3
SNR (N	Note 3)	dB	0	1	5	6
$\hat{I}_o^{(i)}$	j) r	dB[mW/15kHz]	-98	-97	-93	-92
N	(j) oc	dB[mW/15kHz]	-98	-98	-98	-98
Propagation	Propagation channel		E۱	/A5	EVA5	
Antenna co	Antenna configuration		4x2 ULA low		4x2 XP high (Note 4)	
Beamform			-		B.4.3	
CRS refere			Antenna po	orts 0, 1, 2, 3	Antenna ports 0, 1	
Time offset between 5	n TX antenna (Note)	ns	65		-	
CSI referer					Antenna ports 15, 16, 17, 18	
CSI-RS periodicity a T_{CSI-RS}	and subframe offset $^{\prime}$ $\Delta_{\text{CSI-RS}}$		-		5/ 4	
CSI-RS reference signal configuration			-		4	4
alternativeCodebookEnabledFor4TX			١	No	Y	es
CodeBookSubsetRestriction bitmap			0x0000 0000 0000 FFFF		0x0000 0000 0000 FFFF 0000 FFFF	
Reporting into	erval (Note 6)	ms		5		5
CQI		ms		8		3
Reportir	ig mode			, PUSCH 3-1	·	PUSCH 1-2
Sub-ba		RB	6 (fu	l size)	6 (full	size)
Max number of HARQ transmissions				1	•	1

- Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4)
- Note 2: Reference measurement channel RC.17 TDD / RC.18 TDD for Test 1 / 2 according to Table A.4-1 with one/two sided dynamic OCNG Pattern OP.1/2 TDD as described in Annex A.5.2.1/2.
- Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.
- Note 4: Randomization of the principle beam direction shall be used as specified in B.2.3A.4.
- Note 5: The values of time offset are [0ns 65ns 0ns 65ns] for antenna port [0, 1, 2, 3] respectively.
- Note 6: PDCCH DCI format 0 with a trigger for aperiodic CQI shall be transmitted in downlink SF#4 and #9 to allow aperiodic CQI/PMI/RI to be transmitted in uplink SF#3 and #8.

Table 9.3.7.2-2 Minimum requirement (TDD)

	Test 1	Test 2
α	1.05	-
β	-	1.15
UE Category	≥2	≥2

9.3.8 Additional requirements for enhanced receiver Type B

The purpose of the test is to verify that the reporting of the channel quality based on the receiver of the enhanced Type B meets a minimum performance. Performance requirements are specified in terms of the relative throughput obtained when the transport format is that indicated by the reported CQI with NeighCellsInfo-r12 configured compared to the case without NeighCellsInfo-r12 configured. Cell 1 is the serving cell, and Cell 2 and Cell 3 are the interference cells.

9.3.8.1 Minimum requirement PUCCH 1-1 (Cell-Specific Reference Symbols)

9.3.8.1.1 FDD

For the parameters specified in Table 9.3.8.1.1-1, and using the downlink physical channels specified in Annex C, the minimum requirements are specified in Table 9.3.8.1.1-2 and by the following

Table 9.3.8.1.1-1 Fading test for FDD

Parameter		Unit	Cell 1	Cell 2	Cell 3		
Bandwidth		MHz		10			
Transmission mod	le		4				
	$ ho_{\scriptscriptstyle A}$	dB	-3				
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB		-3			
	σ	dB		0			
Cyclic Prefix			Normal	Normal	Normal		
Cell ID			0	1	6		
SNR		dB	8.34	N/A	N/A		
\hat{E}_s/N_{oc}			N/A	3.28	0.74		
$\hat{I}_{or}^{(j)}$		dB [mW/15kHz]	-89.66	-94.72	-97.26		
N_{oc}		dB [mW/15kHz]	-98				
Propagation channel			EPA5	EPA5	EPA5		
Correlation and antenna configuration			Low 2 x 2	Low 2 x 2	Low 2 x 2		
Cell-specific refere	ance signals		Antenna ports	Antenna ports	Antenna ports		
Och Specific refere	Tice signals		0,1	0,1	0,1		
Interference mode	l		N/A	As specified in clause B.6.3	As specified in clause B.6.3		
Reporting periodic	ity	ms	$N_{pd} = 5$	N/A	N/A		
	for CQI/PMI reporting		PUCCH Format 2	N/A	N/A		
PUCCH Report Ty	pe for CQI/PMI		2	N/A	N/A		
PUCCH Report Ty	pe for RI		3	N/A	N/A		
cqi-pmi-ConfigurationIndex			6	N/A	N/A		
ri-ConfigurationIndex			1 N/A		N/A		
CodeBookSubsetRestriction bitmap			000001	N/A	N/A		
Max number of HARQ transmissions			1	N/A	N/A		
NeighCellsInfo-	p-aList-r12		N/A	{dB-6, dB-3, dB0}	{dB-6, dB-3, dB0}		
r12 (Note 4)	transmissionModeList -r12		N/A	{2,3,4,8,9}	{2,3,4,8,9}		

Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink SF not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4)

Note 2: Reference measurement channel RC.2 FDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1.

Note 3: All cells are time-synchronous.

Note 4: NeighCellsInfo-r12 is described in subclause 6.3.2 of [7].

Table 9.3.8.1.1-2 Minimum requirement (FDD)

	Test
γ	0.925
UE Category	≥2

9.3.8.1.2 TDD

For the parameters specified in Table 9.3.8.1.2-1, and using the downlink physical channels specified in Annex C, the minimum requirements are specified in 9.3.8.1.2-2 and by the following

Table 9.3.8.1.2-1 Fading test for TDD

Parameter		Unit	Cell 1	Cell 2	Cell 3	
Bandwidth		MHz	10			
Transmission mode			4			
Uplink downlink co	onfiguration		2			
Special subframe	configuration			4		
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	-3			
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3			
	σ	dB		0		
Cyclic Prefix			Normal	Normal	Normal	
Cell ID			0	1	6	
SNR		dB	8.34	N/A	N/A	
\hat{E}_s/N_{oc}			N/A	3.28	0.74	
$\hat{I}_{or}^{(j)}$		dB [mW/15kHz]	-89.66	-94.72	-97.26	
N_{oc}		dB [mW/15kHz]	-98			
	Propagation channel		EPA5	EPA5	EPA5	
Correlation and ar	ntenna configuration		Low 2 x 2	Low 2 x 2	Low 2 x 2	
Cell-specific reference signals			Antenna ports 0,1	Antenna ports 0,1	Antenna ports 0,1	
Interference mode	el		N/A	As specified in clause B.6.3	As specified in clause B.6.3	
Reporting periodic	city	ms	$N_{pd} = 5$	N/A	N/A	
Physical channel f	for CQI/PMI reporting		PUSCH (Note 3)	N/A	N/A	
PUCCH Report Ty	/ре		2	N/A	N/A	
cqi-pmi-Configura	tionIndex		3	N/A	N/A	
ri-ConfigIndex			805 (Note 5)	N/A	N/A	
CodeBookSubsetRestriction bitmap			000001	N/A	N/A	
Max number of HARQ transmissions			1	N/A	N/A	
ACK/NACK feedback mode			Multiplexing	N/A	N/A	
NeighCellsInfo- r12 (Note 6)	p-aList-r12		N/A	{dB-6, dB-3, dB0}	{dB-6, dB-3, dB0}	
	transmissionModeList -r12		N/A	{2,3,4,8,9}	{2,3,4,8,9}	
				•		

- Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink SF not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4)
- Note 2: Reference measurement channel RC.2 TDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1.
- Note 3: To avoid collisions between CQI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#3 and #8 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#7 and #2.
- Note 4: All cells are time-synchronous.
- Note 5: RI reporting interval is set to the maximum allowable length of 160ms to minimise collisions between RI, CQI/PMI and HARQ-ACK reports. In the case when all three reports collide, it is expected that CQI/PMI reports will be dropped, while RI and HARQ-ACK will be multiplexed. At eNB, CQI report collection shall be skipped every 160ms during performance verification.
- Note 6: NeighCellsInfo-r12 is described in subclause 6.3.2 of [7].

Table 9.3.8.1.2-2 Minimum requirement (TDD)

	Test
γ	0.925
UE Category	≥2

9.3.8.2 Minimum requirement PUCCH 1-1 (CSI Reference Symbols)

9.3.8.2.1 FDD

For the parameters specified in Table 9.3.8.2.1-1, and using the downlink physical channels specified in Annex C, the minimum requirements are specified in Table 9.3.8.2.1-2 and by the following

Table 9.3.8.2.1-1 Fading test for FDD

Parameter		Unit	Cell 1 Cell 2		Cell 3		
Bandwidth		MHz	10				
Transmission mode			9				
	$ ho_{\scriptscriptstyle A}$	dB	0				
Downlink	$\nu_{\scriptscriptstyle D}$		0				
power allocation	Pc	dB	0				
	σ	dB	0				
Cyclic Prefix			Normal	Normal	Normal		
Cell ID			0	1	6		
SNR		dB	8.34	N/A	N/A		
\hat{E}_s/N_{oc}			N/A 3.28		0.74		
$\hat{I}_{or}^{(j)}$		dB [mW/15kHz]	-89.66	-94.72	-97.26		
N_{oc}		dB [mW/15kHz]		-98			
Propagation (EPA5	EPA5	EPA5		
Correlation a configuration			Low 2 x 2	Low 2 x 2	Low 2 x 2		
	reference signals		Antenna ports 0,1	Antenna ports 0,1	Antenna ports 0,1		
Beamforming	Model			specified in Section B	.4.3		
CSI reference signals			Antenna ports 15,16	N/A	N/A		
	CSI-RS periodicity and subframe offset		5/1	N/A	N/A		
CSI-RS refer configuration	ence signal		2	N/A	N/A		
Zero-power C		Subframes / bitmap	N/A	1 / 00010000000000 00	1 / 00010000000000 00		
CodeBookSu bitmap	bsetRestriction		000001	N/A	N/A		
Interference	model		N/A	As specified in clause B.6.4	As specified in clause B.6.4		
Reporting pe		ms	$N_{pd} = 5$	N/A	N/A		
Physical cha reporting	nnel for CQI/PMI		PUSCH (Note 3)	N/A	N/A		
PUCCH Report Type for CQI/PMI			2	N/A	N/A		
PUCCH channel for RI reporting			PUCCH Format 2	N/A	N/A		
PUCCH Report Type for RI			3	N/A	N/A		
cqi-pmi-ConfigurationIndex			2	N/A	N/A		
ri-ConfigIndex			1	N/A	N/A		
Max number of HARQ transmissions			1	N/A	N/A		
	n al int r12		N/A	{dB-6, dB-3, dB0}	{dB-6, dB-3, dB0}		
NeighCellsInf -r12 (Note 5)	transmission ModeList-r12		N/A	{2,3,4,8,9}	{2,3,4,8,9}		
N							

- Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink SF not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4)
- Note 2: Reference measurement channel RC.11 FDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1.
- Note 3: To avoid collisions between CQI/PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1 and #6 to allow periodic CQI/ PMI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#0 and #5
- Note 4: All cells are time-synchronous.
- Note 5: NeighCellsInfo-r12 is described in subclause 6.3.2 of [7].

Table 9.3.8.2.1-2 Minimum requirement (FDD)

	Test
γ	0.925
UE Category	≥2

9.3.8.2.2 TDD

For the parameters specified in Table 9.3.8.2.2-1, and using the downlink physical channels specified in Annex C, the minimum requirements are specified in 9.3.8.2.2-2 and by the following

Table 9.3.8.2.2-1 Fading test for TDD

Parameter		Unit	Cell 1	Cell 2	Cell 3		
Bandwidth		MHz	10				
Transmission mode			9				
$\rho_{\scriptscriptstyle A}$		dB	0				
Downlink power	$ ho_{\scriptscriptstyle B}$	dB	0				
allocation	Pc	dB	0				
	σ	dB	0				
Uplink downlin	nk configuration			2			
	ame configuration			4			
Cyclic Prefix			Normal	Normal	Normal		
Cell ID			0	1	6		
SNR		dB	8.34	N/A	N/A		
\hat{E}_s/N_{oc}			N/A	3.28	0.74		
$\hat{I}_{or}^{(j)}$		dB [mW/15kHz]	-89.66	-94.72	-97.26		
N_{oc}		dB [mW/15kHz]		-98			
Propagation of			EPA5	EPA5	EPA5		
Correlation ar configuration	nd antenna		Low 2 x 2	Low 2 x 2	Low 2 x 2		
Cell-specific reference signals			Antenna ports 0,1 Antenna ports 0,1		Antenna ports 0,1		
Beamforming	Model		As spe	ecified in Section B.4			
CSI reference	signals		Antenna ports 15,16	N/A	N/A		
CSI-RS periodicity and subframe offset			5/3	N/A	N/A		
CSI-RS refere	CSI-RS reference signal		2 N/A		N/A		
configuration I _{CSI-RS} / Ze bitmap	Zero-power CSI-RS configuration I _{CSI-RS} / ZeroPowerCSI-RS		N/A	3 / 0001000000000 000	3 / 0001000000000 000		
CodeBookSul bitmap	osetRestriction		000001 N/A		N/A		
Interference n	nodel		N/A As specified in clause B.6.4		As specified in clause B.6.4		
Reporting per		ms	$N_{pd} = 5$ N/A		N/A		
reporting	nnel for CQI/PMI		PUSCH (Note 3)	N/A	N/A		
PUCCH Repo	rt Type for		2	N/A	N/A		
Physical channel for RI reporting			PUCCH Format 2 N/A		N/A		
PUCCH Report Type for RI			3	N/A	N/A		
cqi-pmi-ConfigurationIndex			3	N/A	N/A		
ri-ConfigIndex			805 (Note 5)	N/A	N/A		
Max number of HARQ transmissions			1 N/A		N/A		
ACK/NACK feedback mode			Multiplexing	N/A	N/A		
NeighCellsInfo	n al ict r12		N/A	{dB-6, dB-3, dB0}	{dB-6, dB-3, dB0}		
-r12 (Note 6)	transmission ModeList-r12		N/A	{2,3,4,8,9}	{2,3,4,8,9}		
Note 1: If the		and the last and the last	reporting inctance at cu	L. f OF #	001		

- Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink SF not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4)
- Note 2: Reference measurement channel RC.11 TDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1.
- Note 3: To avoid collisions between CQI/PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#3 and #8 to allow periodic CQI/ PMI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#2 and #7.
- Note 4: All cells are time-synchronous.

Note 5:	RI reporting interval is set to the maximum allowable length of 160ms to minimise collisions between
	RI, CQI/PMI and HARQ-ACK reports. In the case when all three reports collide, it is expected that
	CQI/PMI reports will be dropped, while RI and HARQ-ACK will be multiplexed. At eNB, CQI report
	collection shall be skipped every 160ms during performance verification and the reported CQI in
	subframe SF#7 of the previous frame is applied in downlink subframes until a new CQI (after
	CQI/PMI dropping) is available.
Note 6:	NeighCellsInfo-r12 is described in subclause 6.3.2 of [7].

Table 9.3.8.2.2-2 Minimum requirement (TDD)

	Test
γ	0.925
UE Category	≥2

9.3.8.3 Minimum requirement with CSI process

9.3.8.3.1 FDD

For the parameters specified in Table 9.3.8.3.1-1, and using the downlink physical channels specified in Annex C, the minimum requirements are specified in Table 9.3.8.3.1-2 and by the following

a) the ratio of the throughput obtained for the Type B receiver with NAICS assistance information when transmitting the transport format indicated by each reported wideband CQI index subject to interference sources with specified \hat{E}_s/N_{oc} and that obtained for the Type B receiver without NAICS assistance information when transmitting the transport format indicated by each reported wideband CQI index subject to interference sources with the same specified \hat{E}_s/N_{oc} shall be $\geq \gamma$;

before SF#(n+4)

Note 2:

Table 9.3.8.3.1-1 Fading test for single antenna (FDD)

	ameter	Unit	Cell 1	Cell 2	Cell 3
Bandwidth		MHz		10	1
Transmission mode			10 9		9
	$ ho_{\scriptscriptstyle A}$	dB		0	
Downlink power	$ ho_{\scriptscriptstyle B}$	dB		0	
allocation	Pc Ps	dB		0	
<u> </u>		dB		0	
Cyclic Prefix	σ	uБ	Normal	Normal	Normal
Cell ID			0	1	6
SNR		dB	8.34	N/A	N/A
\hat{E}_s/N_{oc}					
		dB	N/A	3.28	0.74
$\hat{I}_{or}^{(j)}$		dB [mW/15kHz]	-89.66	-94.72	-97.26
N_{oc}		dB[mW/15kHz]		-98	
Propagation channel		. ,	EPA5	EPA5	EPA5
Correlation and anten	na configuration		Low 2 x 2	Low 2 x 2	Low 2 x 2
Cell-specific reference			Antenna ports	Antenna port 0,	Antenna port 0,
Oeii-specific reference	s signals		0,1	1	1
Beamforming Model				pecified in Section	B.4.3
•			Antenna ports		
CSI reference signals			15,16	N/A	N/A
CSI-RS periodicity and	d subframe offset		5/1	N/A	N/A
CSI-RS reference sign	nal configuration		2	N/A	N/A
Zero-power CSI-RS co	onfiguration	Subframes /		1/	1 /
	rCSI-RS bitmap	bitmap	N/A	000100000000 0000	0001000000000 000
Interference model			N/A	As specified in	As specified in
interierence model				clause B.6.4	clause B.6.4
	CSI-RS		CSI-RS	N/A	N/A
	CSI-IM		CSI-IM	N/A	N/A
	Reporting mode		PUCCH 1-1	N/A	N/A
	CodeBookSubsetRestri ction bitmap		000001	N/A	N/A
	Reporting periodicity	ms	$N_{\rm pd} = 5$	N/A	N/A
	CQI delay	ms	8	N/A	N/A
	Physical channel for	-	PUSCH		
CSI process	CQI/ PMI reporting		(Note 3)	N/A	N/A
Coi piocess	PUCCH Report Type for CQI/PMI		2	N/A	N/A
	PUCCH channel for RI		PUCCH		
	reporting		Format 2	N/A	N/A
	PUCCH report type for				
	RI		3	N/A	N/A
	cqi-pmi- ConfigurationIndex		2	N/A	N/A
	ri-ConfigIndex		1	N/A	N/A
•	I subframe offset T_{CSI-RS} /		5/1	N/A	N/A
Δ _{CSI-RS} CSI-IM configuration			6	N/A	N/A
			CSI process	N/A N/A	N/A N/A
CSI process for PDSCH scheduling Quasi-co-located CSI-RS			CSI process CSI-RS	N/A N/A	N/A N/A
			Same Cell ID		
Quasi-co-located CRS			as Cell 1	N/A	N/A
Reference measurement channel			Note 2	N/A	N/A
Max number of HARQ transmissions			1	N/A	N/A
NeighCellsInfo-r12	p-aList-r12		N/A	{dB-6, dB-3, dB0}	{dB-6, dB-3, dB0}
(Note 5)	transmissionModeList- r12		N/A	{2,3,4,8,9} n based on CQI es	{2,3,4,8,9}

Reference measurement channel RC.11 FDD according to Table A.4-1 with one sided dynamic OCNG Pattern

OP.1 FDD as described in Annex A.5.1.1.

Note 3: To avoid collisions between CQI/ PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1 and #6 to allow periodic CQI/

PMI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#0 and #5.

Note 4: All cells are time-synchronous.

Note 5: NeighCellsInfo-r12 is described in subclause 6.3.2 of [7].

Table 9.3.8.3.1-2 Minimum requirement (FDD)

	Test
γ	0.925
UE Category	≥2

9.3.8.3.2 TDD

For the parameters specified in Table 9.3.8.3.2-1, and using the downlink physical channels specified in Annex C, the minimum requirements are specified in Table 9.3.8.3.2-2 and by the following

a) the ratio of the throughput obtained obtained for the Type B receiver with NAICS assistance information when transmitting the transport format indicated by each reported wideband CQI index subject to interference sources with specified \hat{E}_s/N_{oc} and that obtained for the Type B receiver without NAICS assistance information when transmitting the transport format indicated by each reported wideband CQI index subject to interference sources with the same specified \hat{E}_s/N_{oc} shall be $\geq \gamma$;

Table 9.3.8.3.2-1 Fading test for single antenna (TDD)

Parameter		Unit	Cell 1	Cell 2	Cell 3
Bandwidth Transmission mode		MHz	10	10 9	9
		dB	0		<u> </u>
Daniel III and a service	$\rho_{\scriptscriptstyle A}$				
Downlink power allocation	$\rho_{\scriptscriptstyle B}$	dB		0	
allocation	Pc	dB		0	
Liniale decodiale confin	σ	dB		0	
Uplink downlink config Special subframe confi				2 4	
Cyclic Prefix	iguration		Normal	Normal	Normal
Cell ID			0	1	6
SNR		dB	8.34	N/A	N/A
\hat{E}_s/N_{oc}		dB	N/A	3.28	0.74
$\hat{I}_{or}^{(j)}$		dB [mW/15kHz]	-89.66	-94.72	-97.26
N_{oc}		dB[mW/15kHz]		-98	
Propagation channel			EPA5	EPA5	EPA5
Correlation and anteni			Low 2 x 2	Low 2 x 2	Low 2 x 2
Cell-specific reference	signals		Antenna ports	Antenna port	Antenna port
Beamforming Model			0,1	0,1 pecified in Section	0,1
_			Antenna ports		
CSI reference signals			15,16	N/A	N/A
CSI-RS periodicity and			5/3	N/A	N/A
CSI-RS reference sign	nal configuration		2	N/A 3 /	N/A 3 /
Zero-power CSI-RS co	onfiguration rCSI-RS bitmap	Subframes / bitmap	N/A	000100000000	0001000000000
Interference model			N/A	As specified in clause B.6.4	As specified in clause B.6.4
	CSI-RS		CSI-RS	N/A	N/A
	CSI-IM		CSI-IM	N/A	N/A
	Reporting mode		PUCCH 1-1	N/A	N/A
	CodeBookSubsetRest riction bitmap		000001	N/A	N/A
	Reporting periodicity	ms	$N_{pd} = 5$	N/A	N/A
	CQI delay	ms	8	N/A	N/A
	Physical channel for		PUSCH	N/A	N/A
CSI process	CQI/ PMI reporting PUCCH Report Type		(Note 3)		
	for CQI/PMI PUCCH channel for RI		2 PUCCH	N/A	N/A
	reporting		Format 2	N/A	N/A
	PUCCH report type for RI		3	N/A	N/A
	cqi-pmi- ConfigurationIndex		3	N/A	N/A
	ri-ConfigIndex		805 (Note 5)	N/A	N/A
CSI-IM periodicity and subframe offset $T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$			5/1	N/A	N/A
CSI-IM configuration			6	N/A	N/A
CSI process for PDSCH scheduling			CSI process	N/A	N/A
Quasi-co-located CSI-RS			CSI-RS	N/A	N/A
Quasi-co-located CRS			Same Cell ID as Cell 1	N/A	N/A
Reference measurement channel			Note 2	N/A	N/A
Max number of HARQ transmissions			Multiples in a	N/A	N/A
ACK/NACK feedback mode			Multiplexing	N/A {dB-6, dB-3,	N/A
NeighCellsInfo-r12	p-aList-r12		N/A	(dB-6, dB-3, dB0}	{dB-6, dB-3, dB0}
(Note 6)	transmissionModeList-		N/A	{2,3,4,8,9}	{2,3,4,8,9}
Note 1: If the UE re	ports in an available uplinl	k reporting instance	e at subtrame SF#	n based on CQI es	timation at a

downlink SF not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink
before SF#(n+4)

Note 2: Reference measurement channel RC.11 TDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1.

Note 3: To avoid collisions between CQI/ PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1 and #6 to allow periodic CQI/ PMI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#0 and #5.

Note 4: All cells are time-synchronous.

Note 5: RI reporting interval is set to the maximum allowable length of 160ms to minimise collisions between RI, CQI/PMI and HARQ-ACK reports. In the case when all three reports collide, it is expected that CQI/PMI reports will be dropped, while RI and HARQ-ACK will be multiplexed. At eNB, CQI report collection shall be skipped every 160ms during performance verification and the reported CQI in subframe SF#7 of the previous frame is applied in downlink subframes until a new CQI (after CQI/PMI dropping) is available.

Note 6: NeighCellsInfo-r12 is described in subclause 6.3.2 of [7].

Table 9.3.8.3.2-2 Minimum requirement (TDD)

	Test
γ	0.925
UE Category	≥2

9.4 Reporting of Precoding Matrix Indicator (PMI)

The minimum performance requirements of PMI reporting are defined based on the precoding gain, expressed as the relative increase in throughput when the transmitter is configured according to the UE reports compared to the case when the transmitter is using random precoding, respectively. When the transmitter uses random precoding, for each PDSCH allocation a precoder is randomly generated and applied to the PDSCH. A fixed transport format (FRC) is configured for all requirements.

The requirements for transmission mode 6 and transmission mode 9 with 4 TX are specified in terms of the ratio

$$\gamma = \frac{t_{ue}}{t_{rnd}}.$$

In the definition of γ , for PUSCH 3-1 single PMI and PUSCH 1-2 multiple PMI requirements, t_{rnd} is 60% of the maximum throughput obtained at SNR_{rnd} using random precoding, and t_{ue} the throughput measured at SNR_{rnd} with precoders configured according to the UE reports;

For the PUCCH 2-1 single PMI requirement, t_{md} is 60% of the maximum throughput obtained at SNR_{md} using random precoding on a randomly selected full-size subband in set S subbands, and t_{ue} the throughput measured at SNR_{md} with both the precoder and the preferred full-size subband applied according to the UE reports;

For PUSCH 2-2 multiple PMI requirements, t_{rnd} is 60% of the maximum throughput obtained at SNR_{rnd} using random precoding on a randomly selected full-size subband in set S subbands, and t_{ue} the throughput measured at SNR_{rnd} with both the subband precoder and a randomly selected full-size subband (within the preferred subbands) applied according to the UE reports.

The requirements for transmission mode 9 with 8 TX and transmission mode 9 with 4TX enhanced codebook are specified in terms of the ratio

$$\gamma = \frac{t_{ue, follow1, follow2}}{t_{rnd1, rnd2}}$$

In the definition of γ , for PUSCH 3-1 single PMI, PUCCH 1-1 single PMI and PUSCH 1-2 multiple PMI requirements, $t_{follow1,follow2}$ is 70% of the maximum throughput obtained at $SNR_{follow1,follow2}$ using the precoders configured according to the UE reports, and $t_{md1,md2}$ is the throughput measured at $SNR_{follow1,follow2}$ with random precoding.

9.4.1 Single PMI

9.4.1.1 Minimum requirement PUSCH 3-1 (Cell-Specific Reference Symbols)

9.4.1.1.1 FDD

For the parameters specified in Table 9.4.1.1.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.4.1.1.1-2.

Table 9.4.1.1.1-1: PMI test for single-layer (FDD)

Parar	neter	Unit	Test 1
Band	width	MHz	10
Transmiss	sion mode		6
Propagation	on channel		EVA5
Precoding	granularity	PRB	50
	tion and Infiguration		Low 2 x 2
Downlink	$ ho_{\scriptscriptstyle A}$	dB	-3
power	$ ho_{\scriptscriptstyle B}$	dB	-3
allocation	σ	dB	0
	(j) oc	dB[mW/15kHz]	-98
Reportir	ng mode		PUSCH 3-1
Reporting	g interval	ms	1
PMI dela	y (Note 2)	ms	8
Measureme	ent channel		R. 10 FDD
OCNG Pattern			OP.1 FDD
Max number of HARQ transmissions			4
	cy version		{0,1,2,3}

Note 1: For random precoder selection, the precoder shall be updated in each TTI (1 ms granularity).

Note 2: If the UE reports in an available uplink reporting

instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the

eNB downlink before SF#(n+4).

Table 9.4.1.1.1-2 Minimum requirement (FDD)

Parameter	Test 1
γ	1.1
UE Category	≥1

9.4.1.1.2 TDD

For the parameters specified in Table 9.4.1.1.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in 9.4.1.1.2-2.

Table 9.4.1.1.2-1: PMI test for single-layer (TDD)

Parar	neter	Unit	Test 1
Band	width	MHz	10
Transmiss	sion mode		6
Uplink d	lownlink		1
configu			I
Special s	subframe		4
	uration		
	on channel		EVA5
	granularity	PRB	50
	tion and		Low 2 x 2
antenna co	nfiguration		2011 2 11 2
Downlink	$ ho_{\scriptscriptstyle A}$	dB	-3
power	$ ho_{\scriptscriptstyle B}$	dB	-3
allocation	σ	dB	0
N	(j) oc	dB[mW/15kHz]	-98
Reportir	ng mode		PUSCH 3-1
Reporting	g interval	ms	1
PMI delay	/ (Note 2)	ms	10 or 11
	ent channel		R.10 TDD
OCNG			OP.1 TDD
Max number of HARQ			4
transmissions			-
Redundancy version			{0,1,2,3}
coding sequence			(0, . ,=,0)
ACK/NACk			Multiplexing
Note 1: F	or random p	recoder selection, th	ne precoder

Note 1: For random precoder selection, the precoder shall be updated in each available downlink

transmission instance.

Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Table 9.4.1.1.2-2: Minimum requirement (TDD)

Parameter	Test 1
γ	1.1
UE Category	≥1

9.4.1.2 Minimum requirement PUCCH 2-1 (Cell-Specific Reference Symbols)

9.4.1.2.1 FDD

For the parameters specified in Table 9.4.1.2.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.4.1.2.1-2.

Table 9.4.1.2.1-1: PMI test for single-layer (FDD)

Parar	meter	Unit	Test 1
Bandwidth		MHz	10
Transmission mode			6
Propagation channel			EVA5
	tion and onfiguration		Low 4 x 2
Downlink	$ ho_{\scriptscriptstyle A}$	dB	-6
power allocation	$ ho_{\scriptscriptstyle B}$	dB	-6
allocation	σ	dB	3
N	(j) oc	dB[mW/15kHz]	-98
	delay	ms	8 or 9
	ng mode		PUCCH 2-1 (Note 6)
	periodicity	ms	$N_{pd} = 2$
CQI re			PUSCH (Note 3)
PUCCH Refor widebar	eport Type nd CQI/PMI		2
PUCCH Refor subb	eport Type and CQI		1
Measureme	ent channel		R.14-1 FDD
OCNG Pattern			OP.1/2 FDD
Precoding granularity		PRB	6 (full size)
Number of bandwidth parts (J)			3
ŀ	<		1
cqi-pmi-ConfigIndex			1
Max number of HARQ transmissions			4
Redundancy version coding sequence			{0,1,2,3}
		recoder selection, th	ne precoder shall be updated
Note 1: For random precoder selection, the precoder shall be updated every two TTI (2 ms granularity).			
Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).			
Note 3: To avoid collisions between HARQ-ACK and wideband CQI/PMI or subband CQI, it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1, #3, #7 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#5, #7, #1 and #3.			
Note 4: Reports for the short subband (having 2RBs in the last bandwidth part) are to be disregarded and instead data is to be transmitted on			
the most recently used subband for bandwidth part with j=1. Note 5: In the case where wideband PMI is reported, data is to be			
Note 6: T	transmitted on the most recently used subband. The bit field for PMI confirmation in DCI format 1B shall be mapped to "0" and TPMI information shall indicate the codebook index used in Table 6.3.4.2.3-2 of TS36.211 [4] according to the latest PMI report on PUCCH.		

Table 9.4.1.2.1-2: Minimum requirement (FDD)

	Test 1
γ	1.2
UE Category	≥1

9.4.1.2.2 TDD

For the parameters specified in Table 9.4.1.2.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.4.1.2.2-2.

Table 9.4.1.2.2-1: PMI test for single-layer (TDD)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Parar	neter	Unit	Test 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Band	width	MHz	10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Transmission mode			6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Uplink d	lownlink		1
configuration Propagation channel EVA5 Correlation and antenna configuration Low 4 x 2 Downlink power allocation \$\rho_A\$ dB -6 Downlink power allocation \$\rho_B\$ dB -6 allocation \$\rho_B\$ dB -6 \$\rho_{cc}\$ dB mW/15kHz] -98 PMI delay ms 10 Reporting mode PUCCH 2-1 (Note 6) Reporting periodicity ms \$N_P = 5 Physical channel for CQI reporting PUSCH (Note 3) PUSCH Report Type for wideband CQI/PMI 2 PUCCH Report Type for subband CQI 1 Measurement channel R.14-1 TDD OCNG Pattern OP.1/2 TDD Precoding granularity PRB 6 (full size) Number of bandwidth parts (J) 3 K 1 cqi-pmi-ConfigIndex 4 Max number of HARQ transmissions 4 Redundancy version coding sequence {0,1,2,3} ACK/NACK fedback mode Multiplexing				ı
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Propagation	on channel		EVA5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				Low 4 x 2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	antenna co	niiguration		_
allocationPB O <t< td=""><td>Downlink</td><td>$ho_{\scriptscriptstyle A}$</td><td>dB</td><td>-6</td></t<>	Downlink	$ ho_{\scriptscriptstyle A}$	dB	-6
G		$ ho_{\scriptscriptstyle B}$	dB	-6
PMI delay Reporting mode Reporting periodicity Reporting periodicity Physical channel for CQI reporting PUCCH Report Type for wideband CQI/PMI PUCCH Report Type for subband CQI Measurement channel OCNG Pattern Precoding granularity PRB Recoding granularity Rights Righ	allocation	σ	dB	3
Reporting mode Reporting periodicity Reporting periodicity Reporting periodicity Reporting periodicity Reporting Physical channel for CQI reporting PUCCH Report Type for wideband CQI/PMI PUCCH Report Type for subband CQI Measurement channel OCNG Pattern Precoding granularity PRB Right Size Number of bandwidth parts (J) K Cqi-pmi-ConfigIndex Max number of HARQ transmissions Redundancy version coding sequence ACK/NACK fedback mode PUCCH 2-1 (Note 6) R USCH (Note 3) PUSCH (Note 3) FUSCH (Note 6) A 1 Cqi-pmi-COH (Note 3) I 1 A 1 A 1 Cqi-pmi-ConfigIndex A 4 Max number of HARQ transmissions Redundancy version coding sequence ACK/NACK fedback mode	N_{\cdot}	(j) oc	dB[mW/15kHz]	-98
Reporting periodicity ms N _P = 5 Physical channel for CQI reporting PUCCH Report Type for wideband CQI/PMI PUCCH Report Type for subband CQI Measurement channel OCNG Pattern Precoding granularity PRB Right 1 Cqi-pmi-ConfigIndex Max number of HARQ transmissions Redundancy version coding sequence ACK/NACK fedback mode PUSCH (Note 3) A 1 for included in the state of the st	PMI (delay	ms	10
Physical channel for CQI reporting PUCCH Report Type for wideband CQI/PMI PUCCH Report Type for subband CQI Measurement channel OCNG Pattern Precoding granularity Number of bandwidth parts (J) K Cqi-pmi-ConfigIndex Max number of HARQ transmissions Redundancy version coding sequence ACK/NACK fedback mode PUSCH (Note 3) A therefore the companies of the sequence of the	Reportir	ng mode		PUCCH 2-1 (Note 6)
CQI reporting PUCCH Report Type for wideband CQI/PMI PUCCH Report Type for subband CQI Measurement channel OCNG Pattern Precoding granularity Number of bandwidth parts (J) K Cqi-pmi-ConfigIndex Max number of HARQ transmissions Redundancy version coding sequence ACK/NACK fedback mode PUCCH Report Type 2 R.14-1 TDD OP.1/2 TDD OP.1/2 TDD FRB 6 (full size) 1 4 1 4 1 4 4 4 4 4 4 4 4			ms	<i>N</i> _P = 5
PUCCH Report Type for wideband CQI/PMI PUCCH Report Type for subband CQI Measurement channel R.14-1 TDD OCNG Pattern OP.1/2 TDD Precoding granularity PRB 6 (full size) Number of bandwidth parts (J) K 1 cqi-pmi-ConfigIndex Max number of HARQ transmissions Redundancy version coding sequence ACK/NACK fedback mode 2 4 1 Cylindric Type 1 A 1 Cylindric Type 1 A 2 A 3 A 4 A 4 A 4 A 4 A 4 A 4 A 5 A 6 A 6 A 7 A 7 A 8 A 8 A 9 A 9 A 1 A 1 A 1 A 1 A 1 A 1				PUSCH (Note 3)
for wideband CQI/PMI PUCCH Report Type for subband CQI Measurement channel OCNG Pattern Precoding granularity Number of bandwidth parts (J) K 1 Cqi-pmi-ConfigIndex Max number of HARQ transmissions Redundancy version coding sequence ACK/NACK fedback mode 1 R.14-1 TDD OP.1/2 TDD FRB 6 (full size) A (f				0
for subband CQI Measurement channel R.14-1 TDD OCNG Pattern OP.1/2 TDD Precoding granularity PRB 6 (full size) Number of bandwidth parts (J) K 1 cqi-pmi-ConfigIndex Max number of HARQ transmissions Redundancy version coding sequence ACK/NACK fedback mode				2
Measurement channel R.14-1 TDD OCNG Pattern OP.1/2 TDD Precoding granularity PRB 6 (full size) Number of bandwidth parts (J) 3 K 1 cqi-pmi-ConfigIndex Max number of HARQ transmissions Redundancy version coding sequence ACK/NACK fedback mode Measurement channel R.14-1 TDD A (full size) A (full s				1
OCNG Pattern Precoding granularity PRB 6 (full size) Number of bandwidth parts (J) K 1 cqi-pmi-ConfigIndex Max number of HARQ transmissions Redundancy version coding sequence ACK/NACK fedback mode OP.1/2 TDD 6 (full size) A (ful				
Precoding granularity PRB 6 (full size) Number of bandwidth 3 Example 1				
Number of bandwidth parts (J) K cqi-pmi-ConfigIndex Max number of HARQ transmissions Redundancy version coding sequence ACK/NACK fedback mode ACK/NACK fedback mode 3 4 1 (0,1,2,3)				
parts (J) K cqi-pmi-ConfigIndex Max number of HARQ transmissions Redundancy version coding sequence ACK/NACK fedback mode 3 4 1 (0,1,2,3) Multiplexing			PRB	6 (full size)
K 1 cqi-pmi-ConfigIndex 4 Max number of HARQ 4 transmissions Redundancy version coding sequence ACK/NACK fedback mode K 1 Cqi-pmi-ConfigIndex 4 4 (0,1,2,3) Multiplexing				3
cqi-pmi-ConfigIndex 4 Max number of HARQ transmissions 4 Redundancy version coding sequence {0,1,2,3} ACK/NACK fedback mode Multiplexing	/			1
Max number of HARQ transmissions Redundancy version coding sequence ACK/NACK fedback mode ACK/NACK fedback mode ACK/NACK fedback mode	.,			-
transmissions Redundancy version coding sequence ACK/NACK fedback mode 4 {0,1,2,3} Multiplexing				
coding sequence ACK/NACK fedback mode ACK/NACK fedback Multiplexing	The state of the s			4
ACK/NACK fedback mode Multiplexing				(0.1.2.3)
mode				{U,1,2,3}
mode				Multiplexing
Note 1: For random precoder selection, the precoder shall be updated in	mode			
each available downlink transmission instance. Note 2: If the UE reports in an available uplink reporting instance at				
Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later				

- Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).
- Note 3: To avoid collisions between HARQ-ACK and wideband CQI/PMI or subband CQI it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#4 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#8 and #3.
- Note 4: Reports for the short subband (having 2RBs in the last bandwidth part) are to be disregarded and instead data is to be transmitted on the most recently used subband for bandwidth part with j=1.
- Note 5: In the case where wideband PMI is reported, data is to be transmitted on the most recently used subband.
- Note 6: The bit field for PMI confirmation in DCI format 1B shall be mapped to "0" and TPMI information shall indicate the codebook index used in Table 6.3.4.2.3-2 of TS36.211 [4] according to the latest PMI report on PUCCH.

Table 9.4.1.2.2-2: Minimum requirement (TDD)

	Test 1
γ	1.2
UE Category	≥1

9.4.1.3 Minimum requirement PUSCH 3-1 (CSI Reference Symbol)

9.4.1.3.1 FDD

For the parameters specified in Table 9.4.1.3.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.4.1.3.1-2.

Table 9.4.1.3.1-1: PMI test for single-layer (FDD)

Parar	neter	Unit	Test 1
Band	width	MHz	10
Transmiss	sion mode		9
Propagation channel			EPA5
Precoding	granularity	PRB	50
Correlat			Low
antenna co	nfiguration		ULA 4 x 2
Cell-specific			Antenna ports
sign	nals		0,1
CSI referer	nce signals		Antenna ports 15,,18
Beamform			Annex B.4.3
CSI-RS per subfram T _{CSI-RS} /	e offset		5/ 1
CSI-RS r signal con	eference		6
CodeBookS iction b			0x0000 0000 0000 FFFF
	$ ho_{\scriptscriptstyle A}$	dB	0
Downlink power	$ ho_{\scriptscriptstyle B}$	dB	0
allocation	Pc	dB	-3
	σ	dB	-3
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98
Reporting mode			PUSCH 3-1
Reporting interval		ms	5
PMI delay (Note 2)		ms	8
Measureme	ent channel		R.44 FDD
OCNG Pattern			OP.1 FDD
Max number of HARQ transmissions			4
Redundancy version coding sequence		i e	t

Note 1: For random precoder selection, the precoder shall be updated in each TTI (1 ms granularity).

Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Note 3: PDSCH_RA= 0 dB, PDSCH_RB= 0 dB in order to have the same PDSCH and OCNG power per subcarrier at the receiver.

Table 9.4.1.3.1-2: Minimum requirement (FDD)

Parameter	Test 1
γ	1.2
UE Category	≥1

9.4.1.3.2 TDD

For the parameters specified in Table 9.4.1.3.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.4.1.3.2-2.

Table 9.4.1.3.2-1: PMI test for single-layer (TDD)

Daras	motor	l ln:4	Toot 4
Parameter Bandwidth		Unit MHz	Test 1 10
Transmission mode		IVII IZ	9
Uplink downlink			9
configuration			1
	subframe		
configu			4
	on channel		EVA5
	granularity	PRB	50
Antenna co	onfiguration		8 x 2
Correlation	modeling		High, Cross
			polarized
	c reference		Antenna ports
sigr	nals		0,1
CSI refere	nce signals		Antenna ports
			15,,22
Beamform			Annex B.4.3
	iodicity and		5 / 4
	ne offset		5/ 4
	$\Delta_{\text{CSI-RS}}$		
signal cor			0
Signal COI	inguration		0x0000 0000
CodeBooks	SubsetRestr		001F FFE0
iction			0000 0000
.55.11			FFFF
	0	dB	0
	$ ho_{\scriptscriptstyle A}$	uБ	0
Downlink	$ ho_{\scriptscriptstyle B}$	dB	0
power allocation	Pc	dB	-6
allocation	10	QD.	0
	σ	dB	-3
A 7(i)			
N	())	dB[mW/15kHz]	-98
N		dB[mW/15kHz]	-98
Reportir	ng mode		PUSCH 3-1
Reporting Reporting	ng mode g interval	ms	PUSCH 3-1 5
Reporting Reporting	ng mode		PUSCH 3-1 5 10
Reporting Reporting	ng mode g interval	ms	PUSCH 3-1 5 10 R.45-1 TDD
Reportin Reportin PMI dela	ng mode g interval y (Note 2)	ms	PUSCH 3-1 5 10 R.45-1 TDD for UE
Reportin Reportin PMI dela	ng mode g interval	ms	PUSCH 3-1 5 10 R.45-1 TDD
Reportin Reportin PMI dela	ng mode g interval y (Note 2)	ms	PUSCH 3-1 5 10 R.45-1 TDD for UE Category 1,
Reportin Reportin PMI dela	ng mode g interval y (Note 2)	ms	PUSCH 3-1 5 10 R.45-1 TDD for UE Category 1, R.45 TDD for
Reportin Reportin PMI dela	ng mode g interval y (Note 2)	ms	PUSCH 3-1 5 10 R.45-1 TDD for UE Category 1, R.45 TDD for UE Category ≥2 OP.7 TDD for
Reporting Reporting PMI dela	ng mode g interval y (Note 2) ent channel	ms	PUSCH 3-1 5 10 R.45-1 TDD for UE Category 1, R.45 TDD for UE Category ≥2 OP.7 TDD for UE Category
Reporting Reporting PMI dela	ng mode g interval y (Note 2)	ms	PUSCH 3-1 5 10 R.45-1 TDD for UE Category 1, R.45 TDD for UE Category ≥2 OP.7 TDD for UE Category 1, and OP.1
Reporting Reporting PMI dela	ng mode g interval y (Note 2) ent channel	ms	PUSCH 3-1 5 10 R.45-1 TDD for UE Category 1, R.45 TDD for UE Category ≥2 OP.7 TDD for UE Category 1, and OP.1 TDD for UE
Reporting Reporting PMI dela	ng mode g interval y (Note 2) ent channel Pattern	ms	PUSCH 3-1 5 10 R.45-1 TDD for UE Category 1, R.45 TDD for UE Category ≥2 OP.7 TDD for UE Category 1, and OP.1
Reporting Reporting PMI dela	ng mode g interval y (Note 2) ent channel Pattern er of HARQ	ms	PUSCH 3-1 5 10 R.45-1 TDD for UE Category 1, R.45 TDD for UE Category ≥2 OP.7 TDD for UE Category 1, and OP.1 TDD for UE
Reporting Reporting PMI dela	ng mode g interval y (Note 2) ent channel Pattern er of HARQ issions	ms	PUSCH 3-1 5 10 R.45-1 TDD for UE Category 1, R.45 TDD for UE Category ≥2 OP.7 TDD for UE Category 1, and OP.1 TDD for UE Category ≥2
Reporting Reporting PMI dela	ent channel Pattern Pattern er of HARQ issions cy version	ms	PUSCH 3-1 5 10 R.45-1 TDD for UE Category 1, R.45 TDD for UE Category ≥2 OP.7 TDD for UE Category 1, and OP.1 TDD for UE Category ≥2
Reporting Reporting PMI delay Measurement OCNG Max number transmoment Redundant coding s	ent channel Pattern Pattern er of HARQ issions cy version equence	ms	PUSCH 3-1 5 10 R.45-1 TDD for UE Category 1, R.45 TDD for UE Category ≥2 OP.7 TDD for UE Category 1, and OP.1 TDD for UE Category ≥2 4 {0,1,2,3}
Reporting Reporting PMI delay Measurement OCNG Max number transmoment Redundant coding so ACK/NACK	ent channel Pattern Pattern Prof HARQ issions cy version equence K feedback	ms	PUSCH 3-1 5 10 R.45-1 TDD for UE Category 1, R.45 TDD for UE Category ≥2 OP.7 TDD for UE Category 1, and OP.1 TDD for UE Category ≥2 4
Reporting Reporting PMI delay Measureme OCNG Max number transm Redundant coding stack/NACH moderns	eng mode g interval y (Note 2) ent channel Pattern er of HARQ issions cy version equence K feedback	ms ms	PUSCH 3-1 5 10 R.45-1 TDD for UE Category 1, R.45 TDD for UE Category ≥2 OP.7 TDD for UE Category 1, and OP.1 TDD for UE Category ≥2 4 {0,1,2,3} Multiplexing
Reporting Reporting PMI delay Measureme OCNG Max number transm Redundant coding stack/NACH mich note 1: F	eng mode g interval y (Note 2) ent channel Pattern er of HARQ issions cy version equence K feedback ide for random p	ms ms	PUSCH 3-1 5 10 R.45-1 TDD for UE Category 1, R.45 TDD for UE Category ≥2 OP.7 TDD for UE Category 1, and OP.1 TDD for UE Category ≥2 4 {0,1,2,3} Multiplexing the precoder
Reporting Reporting PMI delay PMI de	ent channel Pattern Pattern Pattern Prof HARQ issions cy version equence K feedback ade for random p shall be updated in the control of t	ms ms	PUSCH 3-1 5 10 R.45-1 TDD for UE Category 1, R.45 TDD for UE Category ≥2 OP.7 TDD for UE Category 1, and OP.1 TDD for UE Category ≥2 4 {0,1,2,3} Multiplexing the precoder is granularity).
Reporting Reporting PMI delay Measureme OCNG Max number transm Redundant coding stack/NACkmother stacking st	eng mode g interval y (Note 2) ent channel Pattern er of HARQ issions cy version equence K feedback ide for random p chall be updat f the UE repo	ms ms	PUSCH 3-1 5 10 R.45-1 TDD for UE Category 1, R.45 TDD for UE Category ≥2 OP.7 TDD for UE Category 1, and OP.1 TDD for UE Category ≥2 4 {0,1,2,3} Multiplexing ne precoder s granularity). plink reporting
Reporting Reporting PMI delay PMI de	pg mode g interval y (Note 2) ent channel Pattern er of HARQ issions cy version equence K feedback ide for random p chall be updat f the UE reponstance at su	ms ms recoder selection, the ted in each TTI (1 monts in an available u	PUSCH 3-1 5 10 R.45-1 TDD for UE Category 1, R.45 TDD for UE Category ≥2 OP.7 TDD for UE Category 1, and OP.1 TDD for UE Category ≥2 4 {0,1,2,3} Multiplexing the precoder is granularity). plink reporting on PMI
Reporting Reporting PMI delay PMI de	pg mode g interval y (Note 2) ent channel Pattern Pattern er of HARQ issions cy version equence K feedback ide for random p chall be updat f the UE reponstance at su estimation at at e), this reporter	ms ms ms recoder selection, the ted in each TTI (1 morts in an available unbrame SF#n based a downlink SF not lated PMI cannot be applications.	PUSCH 3-1 5 10 R.45-1 TDD for UE Category 1, R.45 TDD for UE Category ≥2 OP.7 TDD for UE Category 1, and OP.1 TDD for UE Category ≥2 4 {0,1,2,3} Multiplexing ne precoder s granularity). plink reporting on PMI tter than SF#(n-
Reporting Reporting PMI delay PMI de	pg mode g interval y (Note 2) ent channel Pattern Pattern er of HARQ issions cy version equence K feedback ide for random p chall be update f the UE reponstance at su estimation at a el, this reporte NB downlink	ms ms ms recoder selection, the ted in each TTI (1 morts in an available unbrame SF#n based a downlink SF not lated PMI cannot be applied PMI cannot be ap	PUSCH 3-1 5 10 R.45-1 TDD for UE Category 1, R.45 TDD for UE Category ≥2 OP.7 TDD for UE Category 1, and OP.1 TDD for UE Category ≥2 4 {0,1,2,3} Multiplexing the precoder as granularity). plink reporting on PMI atter than SF#(n-oplied at the
Reporting Reporting PMI delay PMI de	pg mode g interval y (Note 2) ent channel Pattern Pattern er of HARQ issions cy version equence K feedback ide for random p chall be update f the UE reponstance at su estimation at a b), this reporte NB downlink PDCCH DCI f	ms ms ms recoder selection, the ted in each TTI (1 morts in an available unbrame SF#n based a downlink SF not lated PMI cannot be applicated PMI c	PUSCH 3-1 5 10 R.45-1 TDD for UE Category 1, R.45 TDD for UE Category ≥2 OP.7 TDD for UE Category 1, and OP.1 TDD for UE Category ≥2 4 {0,1,2,3} Multiplexing ne precoder is granularity). plink reporting on PMI iter than SF#(n- oplied at the er for aperiodic
Reporting Reporting PMI delay PMI de	pg mode g interval y (Note 2) ent channel Pattern Pattern Pattern Prof HARQ issions cy version equence K feedback ide For random p inall be update f the UE reponstance at su estimation at a postimation at	ms ms ms recoder selection, the ted in each TTI (1 morts in an available unbrame SF#n based a downlink SF not lated PMI cannot be applicated PMI cannot be applicated SF#(n+4).	PUSCH 3-1 5 10 R.45-1 TDD for UE Category 1, R.45 TDD for UE Category ≥2 OP.7 TDD for UE Category 1, and OP.1 TDD for UE Category ≥2 4 {0,1,2,3} Multiplexing ne precoder is granularity). plink reporting on PMI iter than SF#(n- oplied at the er for aperiodic ink SF#4 and #9
Reporting Reporting PMI delay PMI de	pg mode g interval y (Note 2) ent channel Pattern Pattern er of HARQ issions cy version equence K feedback ide for random p chall be update f the UE reponstance at su estimation at a es	ms ms ms recoder selection, the ted in each TTI (1 morts in an available unbrame SF#n based a downlink SF not lated PMI cannot be applicated PMI cannot be applicated PMI cannot be applicated in downlink SF not lated PMI cannot be applicated PMI c	PUSCH 3-1 5 10 R.45-1 TDD for UE Category 1, R.45 TDD for UE Category ≥2 OP.7 TDD for UE Category 1, and OP.1 TDD for UE Category ≥2 4 {0,1,2,3} Multiplexing ne precoder is granularity). plink reporting on PMI iter than SF#(n- oplied at the er for aperiodic ink SF#4 and #9
Reporting Reporting PMI dela Measureme OCNG Max number transm Redundant coding s ACK/NACK-motorial Note 1: F S Note 2: It III Redundant coding s ACK/NACK-motorial Note 1: F S Note 2: It III Redundant coding s ACK/NACK-motorial Note 1: F S Note 2: It III Redundant coding s ACK/NACK-motorial Note 1: F S Note 2: It III Redundant coding s ACK/NACK-motorial Note 3: F C It in the coding s ACK/NACK-motorial Note 3: F C It in the coding s ACK-motorial ACK-motorial Note 3: F C It in the coding s Note 3: F C It in the coding s ACK-motorial ACK-motorial Note 3: F C It in the coding s ACK-motorial ACK-motorial ACK-motorial ACK-motorial ACK-motorial Note 3: F C It in the coding s ACK-motorial ACK-motori	pg mode g interval y (Note 2) ent channel Pattern Pattern Pattern Prof HARQ issions cy version equence K feedback ide For random p inall be update f the UE reponstance at su estimation at a postimation at	ms ms ms recoder selection, the ted in each TTI (1 morts in an available unbrame SF#n based a downlink SF not lated PMI cannot be applicated PMI cannot be applicated PMI cannot be applicated in downlink SF not lated PMI cannot be applicated PMI c	PUSCH 3-1 5 10 R.45-1 TDD for UE Category 1, R.45 TDD for UE Category ≥2 OP.7 TDD for UE Category 1, and OP.1 TDD for UE Category ≥2 4 {0,1,2,3} Multiplexing ne precoder is granularity). plink reporting on PMI iter than SF#(n- oplied at the er for aperiodic ink SF#4 and #9

Note 4:	Randomization of the principle beam direction
	shall be used as specified in B.2.3A.4

Table 9.4.1.3.2-2: Minimum requirement (TDD)

Parameter	Test 1
γ	3
UE Category	≥1

9.4.1.4 Minimum requirement PUCCH 1-1 (CSI Reference Symbol)

9.4.1.4.1 FDD (with 4Tx enhanced codebook)

For the parameters specified in Table 9.4.1.4.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.4.1.4.1-2.

Table 9.4.1.4.1-1 PMI test for single-layer (FDD)

Davamat	La	I I mid	Toot 4
Parameter Bandwidth		Unit	Test 1
Bandwidth Transmission made		MHz	10
Transmission mode			9
Propagation channel		DDD	EPA5
Precoding gra		PRB	50
Correlation and			High XP 4 x 2
configura			
Beamforming			Annex B.4.3
Cell-specific re			Antenna ports 0,1
signals	5		Antonno norto
CSI reference	signals		Antenna ports
CCI DC marrie d	iaitri and		15,,18
CSI-RS period			
subframe o			5/ 1
$T_{\mathrm{CSI-RS}}$ / Δ_{C}	CSI-RS		
201.70			
CSI-RS referen			6
configura			0,0000 0000 0000
CodeBookSubse			0x0000 0000 0000
bitmap)		FFFF 0000 00FF
	$ ho_{\scriptscriptstyle A}$	dB	0
Downlink	0-	dB	0
power	$ ho_{\scriptscriptstyle B}$		<u> </u>
allocation	Pc	dB	-3
	σ	dB	-3
4.10		4.5	
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98
Reporting r	mode		PUCCH 1-1 submode1
Reporting in		ms	5
PMI delay (N	Note 2)	ms	10
Physical char		1110	
CQI/PMI rep			PUSCH (Note 3)
PUCCH Report			
CQI/second			2b
Physical chann			DUIGOU
reportin			PUSCH
PUCCH Report 1			_
first PM			5
cqi-pmi-Configur			4
ri-ConfigIr	ndex		1
Measurement			R.60 FDD
OCNG Pa	ttern		OP.1 FDD
Max number of			
transmiss	ions		4
Redundancy vers	sion coding		(U 1 2 2)
sequenc			{0,1,2,3}
alternativeCodeBookEnable			True
dFor4TX-r12			
	Note 1: For random precoder selection, the precoder shall be updated		
	in each TTI (1 ms granularity)		
Note 2: If the UE reports in an available uplink reporting instance			
subrame SF#n based on PMI estimation at a downlink SF n			
later than SF#(n-4), this reported PMI cannot be applied at t			cannot be applied at the
eNB downlink before SF#(n+4).			conarte and UADA ACV
Note 3: To avoid collisions between CQI/PMI reports and HARQ-A0 it is necessary to report both on PUSCH instead of PUCCH			
			B in order to have the
			subcarrier at the receiver.
			direction shall be used as
	ed in B.2.3A.		andotron origin be used as
Specified III B.2.3A.4			

Table 9.4.1.4.1-2 Minimum requirement (FDD)

Parameter	Test 1
γ	1.8
UE Category	≥1

9.4.1.4.2 TDD (with 4Tx enhanced codebook)

For the parameters specified in Table 9.4.1.4.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.4.1.4.2-2.

Table 9.4.1.4.2-1 PMI test for single-layer (TDD)

Parameter		Unit	Test 1
Parameter Bandwidth		MHz	10
		IVITZ	_
Transmission mode			9
Uplink downlink			1
configuration Special subframe			
configura			4
Propagation (EPA5
Precoding gra		PRB	50
Correlation and		FILD	30
configura			High XP 4 x 2
Beamforming			Annex B.4.3
Cell-specific re			Alliex B.4.5
signals			Antenna ports 0,1
_			Antenna ports
CSI reference	signals		15,,18
CSI-RS period	icity and		10,,10
subframe o			
			5/ 4
$T_{\mathrm{CSI-RS}}$ / Δ_{C}	CSI-RS		
CCL DC votovou			
CSI-RS referen			6
configura CodeBookSubse			0x0000 0000 0000
bitmap)		FFFF 0000 00FF
	$ ho_{\scriptscriptstyle A}$	dB	0
Downlink	$ ho_{\scriptscriptstyle B}$	dB	0
power allocation	Pc	dB	-3
	σ	dB	-3
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98
	mada		DUCCH 1.1 aubmodo1
Reporting in		mo	PUCCH 1-1 submode1
Reporting in		ms	5 15
PMI delay (I Physical char		ms	15
CQI/PMI rep	orting		PUSCH (Note 3)
PUCCH Repor			2b
CQI/second			25
Physical chann			PUSCH
reportin			
PUCCH Report Type for RI/			5
first PMI			4
cqi-pmi-ConfigurationIndex ri-ConfigIndex			4
Measurement channel			R.60 TDD
			OP.1 TDD
OCNG Pattern			OF.I IDD
Max number of HARQ			4
transmissions Redundancy version coding			
sequence			{0,1,2,3}
ACK/NACK feed			Multiplexing
alternativeCodeE			
dFor4TX-			True
Note 1: For random precoder selection, the precoder shall be updated			

Note 1: For random precoder selection, the precoder shall be updated in each TTI (1 ms granularity)

Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Note 3: To avoid collisions between CQI/PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH.

Note 4: PDCCH DCI format 0 with a trigger for aperiodic CQI shall be transmitted in downlink SF#4 and #9 to allow aperiodic

CQI/PMI/RI to be transmitted on uplink SF#3 and #8.

Note 5: Randomization of the principle beam direction shall be used as specified in B.2.3A.4.

Table 9.4.1.4.2-2 Minimum requirement (TDD)

Parameter	Test 1
γ	1.8
UE Category	≥1

9.4.1a Void

9.4.1a.1 Void

9.4.1a.1.1 Void

9.4.1a.1.2 Void

9.4.2 Multiple PMI

9.4.2.1 Minimum requirement PUSCH 1-2 (Cell-Specific Reference Symbols)

9.4.2.1.1 FDD

For the parameters specified in Table 9.4.2.1.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in 9.4.2.1.1-2.

Table 9.4.2.1.1-1: PMI test for single-layer (FDD)

Parameter		Unit	Test 1
Bandwidth		MHz	10
Transmis	sion mode		6
	on channel		EPA5
Precoding granularity (only for reporting and following PMI)		PRB	6
	tion and onfiguration		Low 2 x 2
Downlink	$ ho_{\scriptscriptstyle A}$	dB	-3
power	$ ho_{\scriptscriptstyle B}$	dB	-3
allocation	σ	dB	0
N	oc (j)	dB[mW/15kHz]	-98
Reportii	ng mode		PUSCH 1-2
Reportin	g interval	ms	1
PMI	delay	ms	8
Measurement channel			R.11-3 FDD for UE Category 1, R.11 FDD for UE Category ≥2
OCNG Pattern			OP.1/2 FDD
Max number of HARQ transmissions			4
Redundancy version coding sequence			{0,1,2,3}
Note 1: I Note 2: I i	ote 1: For random precoder selection, the precoders shall be updated in each TTI (1 ms granularity).		

4), this reported PMI cannot be applied at the

eNB downlink before SF#(n+4). One/two sided dynamic OCNG Pattern OP.1/2

Note 3: FDD as described in Annex A.5.1.1/2 shall be

used.

Table 9.4.2.1.1-2: Minimum requirement (FDD)

Parameter	Test 1
γ	1.2
UE Category	≥1

9.4.2.1.2 **TDD**

For the parameters specified in Table 9.4.2.1.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in 9.4.2.1.2-2.

Table 9.4.2.1.2-1: PMI test for single-layer (TDD)

Parameter		Unit	Test 1
Bandwidth		MHz	10
Transmission mode			6
Uplink downlink			1
config	uration		
	subframe uration		4
	on channel		EPA5
	granularity		21710
(only for re	porting and ng PMI)	PRB	6
	tion and onfiguration		Low 2 x 2
Downlink	$ ho_{\scriptscriptstyle A}$	dB	-3
power	$ ho_{\scriptscriptstyle B}$	dB	-3
allocation	σ	dB	0
N	oc (j)	dB[mW/15kHz]	-98
	ng mode		PUSCH 1-2
	g interval	ms	1
PMI	delay	ms	10 or 11
Measurement channel			R.11-3 TDD for UE Category 1 R.11 TDD for UE Category ≥2
OCNG	Pattern		OP.1/2 TDD
	er of HARQ		4
	issions		
	icy version equence		{0,1,2,3}
ACK/NACK feedback mode			Multiplexing
		recoder selection, th	ne precoders
Note 2:	shall be updated in each available downlink transmission instance.		
Note 3: 0	4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).		

Table 9.4.2.1.2-2: Minimum requirement (TDD)

Parameter	Test 1
γ	1.2
UE Category	≥1

9.4.2.2 Minimum requirement PUSCH 2-2 (Cell-Specific Reference Symbols)

9.4.2.2.1 FDD

For the parameters specified in Table 9.4.2.2.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.4.2.2.1-2.

Table 9.4.2.2.1-1: PMI test for single-layer (FDD)

Parameter		Unit	Test 1
Bandwidth		MHz	10
Transmiss	sion mode		6
Propagation	on channel		EVA5
	tion and onfiguration		Low 4 x 2
Downlink	$ ho_{\scriptscriptstyle A}$	dB	-6
power	$ ho_{\scriptscriptstyle B}$	dB	-6
allocation	σ	dB	3
N	(j) oc	dB[mW/15kHz]	-98
PMI (delay	ms	8
	ng mode		PUSCH 2-2
Reporting	g interval	ms	1
Measurement channel			R.14-2 FDD
OCNG Pattern			OP.1/2 FDD
Subband	d size (<i>k</i>)	RBs	3 (full size)
Number of preferred subbands (<i>M</i>)			5
Max number of HARQ transmissions			4
Redundancy version coding sequence			{0,1,2,3}

Note 1: For random precoder selection, the precoder shall be updated in each TTI (1 ms granularity)

Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4)

Table 9.4.2.2.1-2: Minimum requirement (FDD)

	Test 1
γ	1.2
UE Category	≥1

9.4.2.2.2 TDD

For the parameters specified in Table 9.4.2.2.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.4.2.2.2-2.

Table 9.4.2.2.2-1: PMI test for single-layer (TDD)

MHz		
IVI□Z	10	
	6	
	1	
	'	
	4	
	·	
	EVA5	
	Low 4 x 2	
dB	-6	
dB	-6	
dB	3	
dB[mW/15kHz]	-98	
ms	10	
	PUSCH 2-2	
ms	1	
	R.14-2 TDD	
	OP.1/2 TDD	
RBs	3 (full size)	
	5	
	4	
	{0,1,2,3}	
	Multiplexing	
	dB dB dB[mW/15kHz] ms	

Note 1: For random precoder selection, the precoders shall be updated in each available downlink transmission instance.

Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Table 9.4.2.2.2-2 Minimum requirement (TDD)

	Test 1
γ	1.15
UE Category	≥1

9.4.2.3 Minimum requirement PUSCH 1-2 (CSI Reference Symbol)

9.4.2.3.1 FDD

For the parameters specified in Table 9.4.2.3.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in 9.4.2.3.1-2.

Table 9.4.2.3.1-1: PMI test for single-layer (FDD)

Parameter		Unit Test 1	
Bandwidth		MHz	10
Transmission mode			9
Propagation			EVA5
	granularity porting and ng PMI)	PRB	6
	tion and		Low
antenna co			ULA 4 x 2
Cell-specifi sigr			Antenna ports 0,1
CSI referen	nce signals		Antenna ports 15,,18
Beamform			Annex B.4.3
subfram T _{CSI-RS}	$^{\prime}\Delta$ CSI-RS		5/ 1
CSI-RS r signal cor	nfiguration		8
CodeBookS iction I	SubsetRestr		0x0000 0000 0000 FFFF
	$ ho_{\scriptscriptstyle A}$	dB	0
Downlink power	$ ho_{\scriptscriptstyle B}$	dB	0
allocation	Pc	dB	-3
	σ	dB	-3
	(j) oc	dB[mW/15kHz]	-98
Reportir			PUSCH 1-2
Reporting		ms	5
PMI (delay	ms	8
Measurement channel			R.45-1 FDD for UE Category 1, R.45 FDD for UE Category ≥2
OCNG Pattern			OP.7 FDD for UE Category 1 OP.1 FDD for UE Category ≥2
Max number of HARQ transmissions			4
	cy version		{0,1,2,3}
T			

Note 1: For random precoder selection, the precoders shall be updated in each TTI (1 ms granularity).

Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the

eNB downlink before SF#(n+4).

Note 3: Void.

Note 4: PDSCH _RA= 0 dB, PDSCH_RB= 0 dB in order to have the same PDSCH and OCNG power per

subcarrier at the receiver.

Table 9.4.2.3.1-2: Minimum requirement (FDD)

Parameter	Test 1
γ	1.3
UE Category	≥1

9.4.2.3.2 TDD

For the parameters specified in Table 9.4.2.3.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in 9.4.2.3.2-2.

Table 9.4.2.3.2-1: PMI test for single-layer (TDD)

Parameter		Unit	Test 1
Bandwidth		MHz	10
Transmission mode			9
Uplink downlink configuration			1
	subframe uration		4
	on channel		EVA5
	granularity		
(only for re	porting and ng PMI)	PRB	6
Antenna co	onfiguration		8 x 2
Correlation	n modeling		High, Cross polarized
	ic reference nals		Antenna ports 0,1
	nce signals		Antenna ports
			15,,22
	ning model		Annex B.4.3
subfran	riodicity and ne offset / $\Delta_{\text{CSI-RS}}$		5/ 4
CSI-RS	reference nfiguration		4
orginal ool	garation		0x0000 0000
CodeBooks	SubsetRestr		001F FFE0
iction	bitmap		0000 0000 FFFF
	$ ho_{\scriptscriptstyle A}$	dB	0
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0
	Pc	db	-6
	σ	dB	-3
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98
	ng mode		PUSCH 1-2
	g interval	ms	5 (Note 4)
PMI	delay	ms	10
Measurement channel			R.45-1 TDD for UE Category 1, R.45 TDD for UE Category ≥2
OCNG Pattern			OP.7 TDD for UE Category 1 OP.1 TDD for UE Category ≥2
Max number of HARQ transmissions			4
Redundar	ncy version sequence		{0,1,2,3}
ACK/NACI	K feedback		Multiplexing
	ode For random n	roodor salastisis iti	-
5	shall be upda	recoder selection, the ted in each TTI (1 m	s granularity).
		orts in an available u Ibrame SF#n based	

instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Note 3: One/two sided dynamic OCNG Pattern OP.1/2 TDD as described in Annex A.5.2.1/2 shall be

used.

Note 4: PDCCH DCI format 0 with a trigger for aperiodic CQI shall be transmitted in downlink SF#4 and #9

to allow aperiodic CQI/PMI/RI to be transmitted

on uplink SF#3 and #8.

Note 5: Randomization of the principle beam direction

shall be used as specified in B.2.3A.4.

Table 9.4.2.3.2-2: Minimum requirement (TDD)

Parameter	Test 1
γ	3.5
UE Category	≥1

9.4.2.3.3 FDD (with 4Tx enhanced codebook)

For the parameters specified in Table 9.4.2.3.3-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in 9.4.2.3.3-2.

Table 9.4.2.3.3-1 PMI test for dual-layer (FDD)

Parameter		Unit	Test 1
Bandwidth		MHz	10
Transmission mode			9
Propagation channel			EVA5
Precoding gra			
(only for repor	ting and	PRB	6
following I			
Correlation and configura			High XP 4 x 2
Beamforming			Annex B.4.3
Cell-specific re			Alliex B.4.5
signals			Antenna ports 0,1
			Antenna ports
CSI reference	signais		15,,18
CSI-RS period	icity and		
subframe offset	T _{CSI-RS}		5/ 1
/ I _{CSI-RS}			
CSI-RS referen			8
configura			00000 0000 FFFF
CodeBookSubse			0x0000 0000 FFFF 0000 FFFF 0000
bitmap			
	$ ho_{\scriptscriptstyle A}$	dB	0
Downlink power	$ ho_{\scriptscriptstyle B}$	dB	0
allocation	Pc	dB	-3
	σ	dB	-3
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98
Reporting r	node		PUSCH1-2
Reporting in		ms	5
PMI delay (f	Note 2)	ms	8
			R.45-1 FDD for UE
Measurement	channel		Category 1, R.45 FDD
	(5566)		for UE Category ≥2
Rank Number of	Rank Number of PDSCH		2
			OP.7 FDD for UE
OCNG Pa	ttern		Category 1 OP.1 FDD for UE
			Category ≥2
Max number of HARQ			
transmissions			4
Redundancy vers	sion coding		(0.4.2.2)
sequen	ce		{0,1,2,3}
alternativeCodeE	ookEnable		True
dFor4TX-	r12		1100

Note 1: For random precoder selection, the precoder shall be updated in each TTI (1 ms granularity)

Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Note 3: Void.

Note 4: PDSCH_RA= 0 dB, PDSCH_RB= 0 dB in order to have the same PDSCH and OCNG power per subcarrier at the receiver.

Note 5: Randomization of the principle beam direction shall be used as specified in B.2.3A.4

Table 9.4.2.3.3-2 Minimum requirement (FDD)

Parameter	Test 1
γ	1.2
UE Category	≥1

9.4.2.3.4 TDD (with 4Tx enhanced codebook)

For the parameters specified in Table 9.4.2.3.4-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in 9.4.2.3.4-2.

Table 9.4.2.3.4-1 PMI test for dual-layer (TDD)

Parameter		Unit	Test 1		
Bandwidth		MHz	10		
Transmission mode		IVII IZ	9		
Uplink downlink			9		
configuration			1		
Special sub					
configura			4		
Propagation of			EVA5		
Precoding gra					
(only for repor		PRB	6		
following F			1		
Correlation and	antenna		VD High 4 v 2		
configura	tion		XP High 4 x 2		
Beamforming	model		Annex B.4.3		
Cell-specific re	eference		Antenna ports 0,1		
signals	3		Antenna ports 0, 1		
CSI reference	signals		Antenna ports		
			15,,18		
CSI-RS period subframe offset			5/ 4		
/ Icsi-Rs	T _{CSI-RS}		5/ 4		
CSI-RS referen					
configura			4		
CodeBookSubse			0x0000 0000 FFFF		
bitmap			0000 FFFF 0000		
	$\rho_{\scriptscriptstyle A}$	dB	0		
Downlink	$\rho_{\scriptscriptstyle R}$	dB	0		
power	Pc	dB	-3		
allocation	10	-			
	σ	dB	-3		
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98		
Reporting r	node		PUSCH1-2		
Reporting in	iterval	ms	5		
PMI delay (I	Note 2)	ms	10		
			R.61-1 TDD for UE		
Measurement	channel		Category 1, R.61 TDD		
			for UE Category ≥2		
Rank Number of	of PDSCH		2		
			OP.7 FDD for UE		
OCNG Pa	ttern		Category 1		
			OP.1 FDD for UE		
Max number of HARQ			Category ≥2		
transmissions			4		
Redundancy version coding			(0.4.0.0)		
sequence			{0,1,2,3}		
ACK/NACK feedback mode			Multiplexing		
alternativeCodeBookEnable			True		
dFor4TX-					
Note 1: For random precoder selection, the precoder shall be updated					

Note 1: For random precoder selection, the precoder shall be updated in each TTI (1 ms granularity)

Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Note3: Void.

Note 4: PDCCH DCI format 0 with a trigger for aperiodic CQI shall be transmitted in downlink SF#4 and #9 to allow aperiodic CQI/PMI/RI to be transmitted on uplink SF#3 and #8.

Note 5: Randomization of the principle beam direction shall be used as specified in B.2.3A.4.

Table 9.4.2.3.4-2 Minimum requirement (TDD)

Parameter	Test 1
γ	1.2
UE Category	≥1

9.4.3 Void

9.4.3.1 Void

9.4.3.1.1 Void

9.4.3.1.2 Void

9.5 Reporting of Rank Indicator (RI)

The purpose of this test is to verify that the reported rank indicator accurately represents the channel rank. The accuracy of RI (CQI) reporting is determined by the relative increase of the throughput obtained when transmitting based on the reported rank compared to the case for which a fixed rank is used for transmission. Transmission mode 4 is used with the specified CodebookSubSetRestriction in section 9.5.1, transmission mode 9 is used with the specified CodebookSubSetRestriction in section 9.5.2 and transmission mode 3 is used with the specified CodebookSubSetRestriction in section 9.5.3, and transmission mode 10 is used with the specified CodebookSubSetRestriction in section 9.5.5.

For fixed rank 1 transmission in sections 9.5.1, 9.5.2 and 9.5.5, the RI and PMI reporting is restricted to two single-layer precoders, For fixed rank 2 transmission in sections 9.5.1, 9.5.2 and 9.5.5, the RI and PMI reporting is restricted to one two-layer precoder, For follow RI transmission in sections 9.5.1 and 9.5.2, the RI and PMI reporting is restricted to select the union of these precoders. Channels with low and high correlation are used to ensure that RI reporting reflects the channel condition.

For fixed rank 1 transmission in section 9.5.3, the RI reporting is restricted to single-layer, for fixed rank 2 transmission in section 9.5.3, the RI reporting is restricted to two-layers. For follow RI transmission in section 9.5.3, the RI reporting is either one or two layers.

9.5.1 Minimum requirement (Cell-Specific Reference Symbols)

9.5.1.1 FDD

The minimum performance requirement in Table 9.5.1.1-2 is defined as

- a) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 1 shall be $\geq \gamma_1$;
- b) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 2 shall be $\geq \gamma_2$;

For the parameters specified in Table 9.5.1.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.5.1.1-2.

Table 9.5.1.1-1: RI Test (FDD)

Parameter		Unit	Unit Test 1 Test 2 Tes		Test 3	
Bandwidth		MHz	10			
PDSCH transmission mode			4			
$\rho_{\scriptscriptstyle A}$		dB	-3			
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB		-3		
	σ	dB		0		
Propagation condit antenna configur			2 x 2 EPA5			
CodeBookSubsetRestriction bitmap			000011 for fixed RI = 1 010000 for fixed RI = 2 010011 for UE reported RI		2	
Antenna correla	ation		Low	Low	High	
RI configuration			Fixed RI=2 and follow RI	Fixed RI=1 and follow RI	Fixed RI=1 and follow RI	
SNR		dB	0	20	20	
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98	-98	-98	
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-98	-78	-78	
Maximum number of transmission			1			
Reporting mo	de		PUC	CH 1-1 (Note 4)		
Physical channel for CQI/PMI reporting			PL	JCCH Format 2		
PUCCH Report Type for CQI/PMI			2			
Physical channel for RI reporting			PUSCH (Note 3)			
PUCCH Report Type for RI			3			
Reporting periodicity		ms	N_{pd} = 5			
PMI and CQI d		ms	8			
cqi-pmi-ConfigurationIndex			6			
ri-ConfigurationInd				1 (Note 5)		

- Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on PMI and CQI estimation at a downlink subframe not later than SF#(n-4), this reported PMI and wideband CQI cannot be applied at the eNB downlink before SF#(n+4).
- Note 2: Reference measurement channel RC.2 FDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1.
- Note 3: To avoid collisions between RI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#4 and #9 to allow periodic RI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#8 and #3.
- Note 4: The bit field for precoding information in DCI format 2 shall be mapped as:
 - For reported RI = 1 and PMI = 0 >> precoding information bit field index = 1
 - For reported RI = 1 and PMI = 1 >> precoding information bit field index = 2
 - For reported RI = 2 and PMI = 0 >> precoding information bit field index = 0
- Note 5: To avoid the ambiguity of TE behaviour when applying CQI and PMI during rank switching, RI reports are to be applied at the TE with one subframe delay in addition to Note 1 to align with CQI and PMI reports.

Table 9.5.1.1-2: Minimum requirement (FDD)

	Test 1	Test 2	Test 3
21	N/A	1.05	0.9
72	1	N/A	N/A
UE Category	≥2	≥2	≥2

9.5.1.2 TDD

The minimum performance requirement in Table 9.5.1.2-2 is defined as

- a) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 1 shall be $\geq \gamma_1$;
- b) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 2 shall be $\geq \gamma_2$;

For the parameters specified in Table 9.5.1.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.5.1.2-2.

Table 9.5.1.2-1: RI Test (TDD)

Parameter		Unit	Test 1	Test 2	Test 3
Bandwidth		MHz	10		
PDSCH transmission	PDSCH transmission mode		4		
Downlink power ρ_A		dB	-3		
allocation	$ ho_{\scriptscriptstyle B}$	dB		-3	
	σ	dB		0	
Uplink downlink conf				2	
Special subfra configuration				4	
Propagation condit antenna configur				2 x 2 EPA5	
CodeBookSubsetRe bitmap	estriction		000011 for fixed RI = 1 010000 for fixed RI = 2 010011 for UE reported RI		2
Antenna correla	ation		Low	Low	High
RI configuration	on		Fixed RI=2 and follow RI	Fixed RI=1 and follow RI	Fixed RI=1 and follow RI
SNR		dB	0	20	20
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98	-98	-98
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-98	-78	-78
Maximum number of transmission			1		
Reporting mo	de		PUSCH 3-1 (Note 3)		
Reporting inter		ms	5		
PMI and CQI de	elay	ms	10 or 11		
ACK/NACK feedback	ck mode			Bundling	

Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on PMI and CQI estimation at a downlink subframe not later than SF#(n-4), this reported PMI and wideband CQI cannot be applied at the eNB downlink before SF#(n+4).

Note 2: Reference measurement channel RC.2 TDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1.

Note 3: Reported wideband CQI and PMI are used and sub-band CQI is discarded.

Table 9.5.1.2-2: Minimum requirement (TDD)

	Test 1	Test 2	Test 3
21	N/A	1.05	0.9
72	1	N/A	N/A
UE Category	≥2	≥2	≥2

9.5.2 Minimum requirement (CSI Reference Symbols)

9.5.2.1 FDD

The minimum performance requirement in Table 9.5.2.1-2 is defined as

a) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 1 shall be $\geq \gamma_1$;

b) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 2 shall be $\geq \gamma_2$;

For the parameters specified in Table 9.5.2.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.5.2.1-2.

Table 9.5.2.1-1: RI Test (FDD)

Parameter		Unit	Test 1 Test 2 Tes				
Bandwidth		MHz		10	•		
PDSCH transmission	n mode			9			
	$ ho_{\scriptscriptstyle A}$	dB	0				
Downlink power	$ ho_{\scriptscriptstyle B}$	dB		0			
allocation	Pc	dB	0				
	σ	dB		0			
Propagation condit				2 x 2 EPA5			
antenna configur							
Cell-specific reference				ntenna ports 0			
Beamforming M				ified in Section B.	.4.3		
CSI reference sign			Ante	enna ports 15, 16			
CSI-RS periodicit subframe offs $T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-FS}}$	et RS			5/1			
CSI reference si configuration				6			
CodeBookSubsetRestriction bitmap			000011 for fixed RI = 1 010000 for fixed RI = 2 010011 for UE reported RI				
Antenna correla	ation		Low	Low	High		
RI configuration	on		Fixed RI=2 and follow RI	Fixed RI=1 and follow RI	Fixed RI=1 and follow RI		
SNR		dB	0	20	20		
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98	-98	-98		
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-98	-78	-78		
Maximum number o				1			
Reporting mod	de			PUCCH 1-1			
Physical channel for reporting	CQI/PMI		Pl	JSCH (Note 3)			
PUCCH Report Ty CQI/PMI	pe for			2			
Physical channel reporting	for RI		PUCCH Format 2				
PUCCH Report Type for RI			3				
Reporting period		ms	N _{pd} = 5				
PMI and CQI de		ms	8				
cqi-pmi-Configurati				2			
ri-Configuration				1 (Note 4)			
Note 1: If the UE re							

- CQI estimation at a downlink subframe not later than SF#(n-4), this reported PMI and wideband CQI cannot be applied at the eNB downlink before SF#(n+4).
- Note 2: Reference measurement channel RC.9 FDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1.
- Note 3: To avoid collisions between CQI/ PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1 and #6 to allow periodic CQI/ PMI to multiplex with the HARQ-ACK on PUSCH in uplink SF#0 and #5
- Note 4: To avoid the ambiguity of TE behaviour when applying CQI and PMI during rank switching, RI reports are to be applied at the TE with one subframe delay in addition to Note 1 to align with CQI and PMI reports.

Table 9.5.2.1-2: Minimum requirement (FDD)

	Test 1	Test 2	Test 3
21	N/A	1.05	0.9
72	1	N/A	N/A
UE Category	≥2	≥2	≥2

9.5.2.2 TDD

The minimum performance requirement in Table 9.5.2.2-2 is defined as

- a) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 1 shall be $\geq \gamma_1$;
- b) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 2 shall be $\geq \gamma_2$;

For the parameters specified in Table 9.5.2.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.5.2.2-2.

Table 9.5.2.2-1: RI Test (TDD)

Parameter		Unit	Test 1 Test 2 Test 3				
Bandwidth		MHz		10			
PDSCH transmission	on mode			9			
	$ ho_{\scriptscriptstyle A}$	dB		0			
Downlink power	$ ho_{\scriptscriptstyle B}$	dB	0				
allocation	Pc	dB	0				
	σ	dB		0			
Uplink downlink con	figuration			1			
Special subfra configuration	me			4			
Propagation condit antenna configur				2 x 2 EPA5			
Cell-specific reference			Aı	ntenna ports 0			
CSI reference si	gnals		Ante	enna ports 15, 16			
Beamforming M			As spec	ified in Section B.	.4.3		
CSI reference s configuration				4			
CSI-RS periodicit subframe offs $T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-I}}$	et		5/4				
CodeBookSubsetRe bitmap	estriction		000011 for fixed RI = 1 010000 for fixed RI = 2 010011 for UE reported RI				
Antenna correla	ation		Low	Low	High		
RI configuration	on		Fixed RI=2 and follow RI	Fixed RI=1 and follow RI	Fixed RI=1 and follow RI		
SNR		dB	0	20	20		
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98	-98	-98		
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-98	-78	-78		
Maximum number of transmission				1			
Reporting mo	de			PUCCH 1-1			
Physical channel for reporting	CQI/ PMI		Pl	JSCH (Note 3)			
PUCCH report type PMI		_	2				
Physical channel reporting			PUCCH Format 2				
Reporting period		ms	N _{pd} = 5				
PMI and CQI d		ms	10				
ACK/NACK feedback				Bundling			
cqi-pmi-Configurati				4			
ri-Configuration	nInd	1					

Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on PMI and CQI estimation at a downlink subframe not later than SF#(n-4), this reported PMI and wideband CQI cannot be applied at the eNB downlink before SF#(n+4).

Note 2: Reference measurement channel RC.9 TDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1.

Note 3: To avoid collisions between CQI/PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#4 and #9 to allow periodic CQI/PMI to multiplex with the HARQ-ACK on PUSCH in uplink SF#3 and #8.

Table 9.5.2.2-2: Minimum requirement (TDD)

	Test 1	Test 2	Test 3
71	N/A	1.05	0.9
γ2	1	N/A	N/A
UE Category	≥2	≥2	≥2

9.5.3 Minimum requirement (CSI measurements in case two CSI subframe sets are configured)

9.5.3.1 FDD

The minimum performance requirement in Table 9.5.3.1-2 is defined as

a) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 1 shall be $\geq \gamma_1$

For the parameters specified in Table 9.5.3.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.5.3.1-2.

Table 9.5.3.1-1: RI Test (FDD)

Donomotor		l lmit	To	est 1	Tes	st 2
Parameter		Unit	Cell 1	Cell 2	Cell 1	Cell 2
Bandwidth		MHz		10	1	_
PDSCH transmissio		ID.	3	Note 10	3	Note 10
Downlink power	$ ho_{\scriptscriptstyle A}$	dB		-3	-<	
allocation	$ ho_{\scriptscriptstyle B}$	dB		-3	-<	3
Dana and in a seculit	σ	dB		0	0	
Propagation conditi antenna configur			2 x 2	2 EPA5	2 x 2	EPA5
CodeBookSubsetRe bitmap	estriction		01 for fixed RI = 1 10 for fixed RI = 2 11 for UE reported RI	N/A	01 for fixed RI = 1 10 for fixed RI = 2 11 for UE reported RI	N/A
Antenna correla	tion			_OW	Lo	W
RI configuration	on		Fixed RI=1 and follow RI	N/A	Fixed RI=1 and follow RI	N/A
\widehat{E}_s/N_{oc2}		dB	0	-12	20	6
	$N_{\rm oc1}^{(j)}$		-98 (Note 3)	N/A	-102 (Note 3)	N/A
$N_{oc}^{(j)}$	$N_{oc2}^{(j)}$	dBmW/15kH z	-98 (Note 4)	N/A	-98 (Note 4)	N/A
	$N_{oc3}^{(j)}$		-98 (Note 5)	N/A	-94.8 (Note 5)	N/A
$\hat{I}_{or}^{(j)}$	$\hat{I}_{or}^{(j)}$		-98	-110	-78	-92
Subframe Configu	ration		Non- MBSFN	Non-MBSFN	Non-MBSFN	Non-MBSFN
Cell Id			0	1	0	1
Time Offset betwee	n Cells	μs	2.5 (synch	ronous cells) 10000000	2.5 (synchro	nous cells) 10000000
ABS Pattern (No	te 6)		N/A	10000000 10000000 10000000 10000000	N/A	10000000 10000000 10000000 10000000
RLM/RRM Measur Subframe Pattern (1000000 1000000 1000000 1000000 1000000	N/A	10000000 10000000 10000000 10000000 1000000	N/A
CSI Subframe Sets (Note 8)	Ccsi,0		1000000 1000000 1000000 1000000 1000000 0111111	N/A	10000000 10000000 10000000 10000000 1000000	N/A
Number of control Symbols	OFDM		3	3	3	3
Maximum number o	f HARO			<u> </u>	_	
transmissions	S			1	1	
Reporting mod			PUC	CH 1-0	PUCC	H 1-0
Physical channel for reporting	or CQI		PUCCH	l Format 2	PUCCH	Format 2
PUCCH Report Type	for COI			4		
		+	<u> </u>	•		

Physical	Physical channel for RI reporting		PUCCH Format 2		PUCCH Format 2	
PUCC	PUCCH Report Type for RI		3		3	
Re	eporting periodicity	ms	N _{pd} =	= 10	N _{pd} =	= 10
cqi-pi	mi-ConfigurationIndex		1	1	1	1
ri	i-ConfigurationInd			5	Į	5
cqi-pn	ni-ConfigurationIndex2		1	0	1	0
ri-	-ConfigurationInd2		2)	2	2
	Cyclic prefix		Normal	Normal	Normal	Normal
Note 1:	If the UE reports in an av	ailable uplink re	eporting instance	e at subframe	SF#n based on C	QI estimation at
	a downlink subframe not	later than SF#(n-4), this report	ed wideband (CQI cannot be app	lied at the eNB
	downlink before SF#(n+4	4).	•			
Note 2:	Reference measuremen	t channel in Cell	I 1 RC.2 FDD a	ccording to Ta	ble A.4-1 with one	sided dynamic
	OCNG Pattern OP.1 FD	D as described i	in Annex A.5.1.	1.		
Note 3:	This noise is applied in C	OFDM symbols a	#1, #2, #3, #5, ;	#6, #8, #9, # <mark>1</mark> 0	,#12, #13 of a sub	oframe
	overlapping with the agg	ressor ABS.				
Note 4:	This noise is applied in (OFDM symbols a	#0, #4, #7, #11	of a subframe	overlapping with t	he aggressor
	ABS.					
Note 5:	This noise is applied in a	II OFDM symbo	ls of a subfram	e overlapping	with aggressor no	n-ABS
Note 6:						
Note 7:	7: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7].					
Note 8:	·					or CSI
	measurements defined in	n [7].				
Note 9:	Cell 1 is the serving cell.	Cell 2 is the ag	gressor cell. Th	e number of th	ne CRS ports in Ce	ell 1 and Cell 2
1		•	-		•	

Table 9.5.3.1-2: Minimum requirement (FDD)

Note 10: Downlink physical channel setup in Cell 2 in accordance with Annex C.3.3 applying OCNG pattern as

	Test 1	Test 2
<i>7</i> 1	0.9	1.05
UE Category	≥2	≥2

9.5.3.2 TDD

is the same.

defined in Annex A.5.1.5.

The minimum performance requirement in Table 9.5.3.2-2 is defined as

a) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 1 shall be $\geq \gamma_1$.

For the parameters specified in Table 9.5.3.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.5.3.2-2.

Table 9.5.3.2-1: RI Test (TDD)

Parameter		Unit	Tes	st1	Test2	
			Cell 1	Cell 2	Cell 1	Cell 2
Bandwidth		MHz	3	•	10	
PDSCH transmission Uplink downlink conf			<u> </u>	Note 11	3	Note 11
Special subfra					4	
configuration	1				4	
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-(3	-3	3
allocation	$ ho_{\scriptscriptstyle B}$	dB	-3		-3	
Propagation condit	σ	dB	С)	0	
antenna configui			2 x 2 l	EPA5	2 x 2 l	EPA5
CodeBookSubsetRe bitmap	estriction		01 for fixed RI = 1 10 for fixed RI = 2 11 for UE reported RI	N/A	01 for fixed RI = 1 10 for fixed RI = 2 11 for UE reported RI	N/A
Antenna correla	ation		Lo	W	Lo	W
RI configuration			Fixed RI=1 and follow RI	N/A	Fixed RI=1 and follow RI	N/A
\widehat{E}_s/N_{oc2}		dB	0	-12	20	6
	$N_{oc1}^{(j)}$		-98 (Note 4)	N/A	-102 (Note 4)	N/A
$N_{oc}^{(j)}$	$N_{\rm oc2}^{(j)}$	dB[mW/15k Hz]	-98 (Note 5)	N/A	-98 (Note 5)	N/A
	$N_{oc3}^{(j)}$		-98 (Note 6)	N/A	-94.8 (Note 6)	N/A
$\hat{I}_{or}^{(j)}$		dB[mW/15k Hz]	-98	-110	-78	-92
Subframe Configu	uration		Non- MBSFN	Non- MBSFN	Non-MBSFN	Non-MBSFN
Cell Id			0 2.5 (sync	hronous	0	1
Time Offset between	en Cells	μs	2.5 (synchronous cells)		2.5 (synchronous cells)	
ABS Pattern (No	ote 7)		N/A	0000000 001 0000000 001	N/A	000000001 000000001
RLM/RRM Measu Subframe Pattern (00000000 01 00000000 01	N/A	0000000001 0000000001	N/A
CSI Subframe Sets	Ccsi,o		00000000 01 00000000 01	N/A	0000000001 0000000001	N/A
(Note 9)	C _{CSI,1}		11001110 00 11001110 00		1100111000 1100111000	14/73
Number of control Symbols	OFDM		3	3	3	3
Maximum number of			1		1	
transmission						
Reporting mo			PUCC		PUCC	
and RI reporti	ng		PUCCH I	Format 2	PUCCH	Format 2
PUCCH Report Type	e for CQI		4	ļ	4	

Physical channel for C _{CSI,1} CQI and RI reporting		PUSCH (Note 3) PUSCH (Note 3)		(Note 3)	
PUCCH Report Type for RI		;	3		3
Reporting periodicity	ms	N _{pd} :	= 10	N _{pd} =	= 10
ACK/NACK feedback mode		Multiplexing Multiplexing		lexing	
cqi-pmi-ConfigurationIndex		8 8		3	
ri-ConfigurationInd			5	5	
cqi-pmi-ConfigurationIndex2		9 9		9	
ri-ConfigurationInd2		0		()
Cyclic prefix		Normal	Normal	Normal	Normal

- Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4).
- Note 2: Reference measurement channel in Cell 1 RC.2 TDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1.
- Note 3: To avoid collisions between RI/CQI reports and HARQ-ACK it is necessary to report them on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#4 and #9 to allow periodic RI/CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#8 and #3.
- Note 4: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS
- Note 5: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.
- Note 6: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS
- Note 7: ABS pattern as defined in [9].
- Note 8: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7].
- Note 9: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].
- Note 10: Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell 1 and Cell 2 is the same.
- Note 11: Downlink physical channel setup in Cell 2 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.2.5.

Table 9.5.3.2-2: Minimum requirement (TDD)

	Test 1	Test 2
21	0.9	1.05
UE Category	≥2	≥2

9.5.4 Minimum requirement (CSI measurements in case two CSI subframe sets are configured and CRS assistance information are configured)

9.5.4.1 FDD

For the parameters specified in Table 9.5.4.1-1, the minimum performance requirement in Table 9.5.4.1-2 is defined as

- a) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 1 shall be $\geq \gamma_{1}$;
- b) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 2 shall be $\geq \gamma_2$;

In Table 9.5.4.1-1, Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggresso cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] including Cell 2 and Cell 3 is provided.

Table 9.5.4.1-1: RI Test (FDD)

Parameter		Unit	Cell 1	Cell 2	Cell 3
Bandwidth		MHz	10	10	10
PDSCH transmission mode			3	As defined in Note 1	As defined in Note 1
Downlink power allocation	$ ho_{\scriptscriptstyle A}$	dB	-3	-3	-3
	$ ho_{\scriptscriptstyle B}$	dB	-3	-3	-3
	σ	dB	0	N/A	N/A
Propagation condition and antenna configuration			2x2 EPA5 (Note 2)	2x2 EPA5 (Note 2)	2x2 EPA5 (Note 2)
CodeBookSubsetRestriction bitmap			01 for fixed RI = 1 10 for fixed RI = 2 11 for UE reported RI	As defined in Note 1	As defined in Note 1
N_{oc} at antenna port	N_{oc1}	dB[mW/15k Hz]	-98 (Note 3)	N/A	N/A
	N_{oc2}	dB[mW/15k Hz]	-98 (Note 4)	N/A	N/A
	N_{oc3}	dB[mW/15k Hz]	-93 (Note 5)	N/A	N/A
\hat{E}_s/N_{oc2}		dB	Reference Value in Table 9.5.4.1-2 for each test	12	10
$\hat{I}_{or}^{(j)}$		dB[mW/15k Hz]	Reference Value in Table 9.5.4.1-2 for each test	-86	-88
Subframe Configu	Subframe Configuration		Non-MBSFN	Non-MBSFN	Non-MBSFN
Time Offset between Cells		μs	N/A	3	-1
Frequency shift between Cells		Hz	N/A	300	-100
Cell Id			0	126	1
ABS pattern (Note 6)			N/A	1000000 1000000 1000000 1000000 1000000	1000000 1000000 1000000 1000000 1000000
RLM/RRM Measurement Subframe Pattern (Note 7)			10000000 10000000 10000000 10000000	N/A	N/A
CSI Subframe Sets (Note 8)	Ccsi,0		10000000 10000000 10000000 10000000 1000000	N/A	N/A
	Ccsi,1		01111111 01111111 01111111 01111111 0111111	N/A	N/A
Number of control symbols	OFDM		3	Note 9	Note 9
Maximum number of HARQ			1	N/A	N/A
transmissions Reporting mode			PUCCH 1-0	N/A	N/A
Physical channel for CQI			PUCCH format 2	N/A	N/A
reporting PUCCH Report Type for CQI			4	N/A	N/A
Physical channel for RI reporting			PUCCH Format 2	N/A N/A	N/A
PUCCH Report Type for RI			3	N/A	N/A
Reporting periodicity		ms	N _{pd} = 10	N/A	N/A

	cqi-pmi-ConfigurationIndex		11	N/A	N/A
ri-ConfigurationInd			5	N/A	N/A
cqi-pm	i-ConfigurationIndex2		10	N/A	N/A
ri-0	ConfigurationInd2		2	N/A	N/A
	Cyclic prefix		Normal	Normal	Normal
Note 1:	Downlink physical chan	nel setup in Cell	2 and Cell 3 in accor	rdance with Annex	c C.3.3 applying
	OCNG pattern OP.5 FD	D as defined in	Annex A.5.1.5.		
Note 2:	The propagation conditi	ons for Cell 1, C	ell 2 and Cell 3 are s	tatistically indeper	ndent.
Note 3:	This noise is applied in	OFDM symbols	#1, #2, #3, #5, #6, #8	3, #9, #10,#12, #1	3 of a subframe
	overlapping with the age				
Note 4:	This noise is applied in	OFDM symbols	#0, #4, #7, #11 of a s	subframe overlapp	oing with the
	aggressor ABS.				
Note 5:	This noise is applied in				
Note 6:	6: ABS pattern as defined in [9]. PDSCH other than SIB1/paging and its associated				
	PDCCH/PCFICH are tra				
	overlapped with the ABS		ggressor cell and the	subframe is availa	able in the
	definition of the reference				
Note 7:	Time-domain measuren	nent resource re	striction pattern for P	Cell measuremen	its as defined in
	[7]				
Note 8:	As configured according		nain measurement re	source restriction	pattern for CSI
1	measurements defined				
Note 9:	The number of control (•	s not available for AB	BS and is 3 for the	subframe
1	indicated by "0" of ABS				
Note 10:	If the UE reports in an a				
	estimation at a downlink subframe not later than SF#(n-4), this reported wideband CQI cannot				
	be applied at the eNB downlink before SF#(n+4).				
Note 11:	Reference measurement channel in Cell 1 RC.2 FDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1.				
N (40	,				
	The number of the CRS			e same.	
Note 13:	SIB-1 will not be transm	itted in Cell2 an	a Cell 3 in this test.		

Table 9.5.4.1-2: Minimum requirement (FDD)

	Test 1	Test 2	Test 3
\hat{E}_s/N_{oc2} for Cell 1 (dB)	4	20	20
$\hat{I}_{or}^{(j)}$ for Cell 1 (dB[mW/15kHz])	-94	-78	-78
Antenna correlation	High for Cell 1, low for Cell 2 and Cell 3	Low for Cell 1, Cell 2 and Cell 3	High for Cell 1, low for Cell 2 and Cell 3
μ	N/A	1.05	0.9
72	1.05	N/A	N/A
UE Category	≥2	≥2	≥2

9.5.4.2 TDD

For the parameters specified in Table 9.5.4.2-1, the minimum performance requirement in Table 9.5.4.2-2 is defined as

- a) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 1 shall be $\geq \gamma_{l}$;
- b) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 2 shall be $\geq \gamma_2$;

In Table 9.5.4.2-1, Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggresso cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] including Cell 2 and Cell 3 is provided.

Table 9.5.4.2-1: RI Test (TDD)

Parameter		Unit	Cell 1	Cell 2	Cell 3
Bandwidth		MHz	10	10	10
PDSCH transmissio	n mode		3	As defined in Note 1	As defined in Note 1
Uplink downlink conf	iguration		1	1	1
Special subframe con			4	4	4
	$\rho_{\scriptscriptstyle A}$	dB	-3	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3	-3	-3
anodaton	σ	dB	0	N/A	N/A
Propagation conditi antenna configur			2×2 EPA5 (Note 2)	2x2 EPA5 (Note 2)	2x2 EPA5 (Note 2)
CodeBookSubsetRe bitmap			01 for fixed RI = 1 10 for fixed RI = 2 11 for UE reported RI	As defined in Note 1	As defined in Note 1
	N_{oc1}	dB[mW/15k Hz]	-98 (Note 3)	N/A	N/A
N_{oc} at antenna port	N_{oc2}	dB[mW/15k Hz]	-98 (Note 4)	N/A	N/A
	N_{oc3}	dB[mW/15k Hz]	-93 (Note 5)	N/A	N/A
\hat{E}_s/N_{oc2}		dB	Reference Value in Table 9.5.4.2-2 for each test	12	10
$\hat{I}_{or}^{(j)}$	$\hat{I}_{or}^{(j)}$		Reference Value in Table 9.5.4.2-2 for each test	-86	-88
Subframe Configu	Subframe Configuration		Non-MBSFN	Non-MBSFN	Non-MBSFN
Time Offset betwee	n Cells	μs	N/A	3	-1
Frequency shift between	een Cells	Hz	N/A	300	-100
Cell Id			0	126	1
ABS pattern (No	te 6)		N/A	0000000001 0000000001	0000000001 0000000001
RLM/RRM Measur Subframe Pattern (l			0000000001 0000000001	N/A	N/A
CSI Subframe Sets	Ccsi,0		0000000001 0000000001	N/A	N/A
(Note 8)	C _{CSI,1}		1100111000 1100111000	N/A	N/A
Number of control symbols	OFDM		3	Note 9	Note 9
Maximum number o transmissions			1	N/A	N/A
Reporting mod	de		PUCCH 1-0	N/A	N/A
Physical channel for 0 and RI reporting	Physical channel for Ccsi,0 CQI		PUCCH format 2	N/A	N/A
Physical channel for C _{CSI,1} CQI and RI reporting			PUSCH (Note 14)	N/A	N/A
PUCCH Report Type for CQI			4	N/A	N/A
PUCCH Report Type for RI			3	N/A	N/A
Reporting periodicity		ms	N _{pd} = 10	N/A	N/A
ACK/NACK feedbac			Multiplexing	N/A	N/A
cqi-pmi-Configuratio			8	N/A	N/A
ri-Configuration			5	N/A	N/A
cqi-pmi-Configuration			9	N/A	N/A
ri-Configuration Cyclic prefix			0 Normal	N/A Normal	N/A Normal
Cyclic pielix		<u> </u>	INUITIAI	inullial	Nomal

- Note 1: Downlink physical channel setup in Cell 2 and Cell 3 in accordance with Annex C.3.3 applying OCNG pattern OP.5 TDD as defined in Annex A.5.2.5.
- Note 2: The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.
- Note 3: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.
- Note 4: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.
- Note 5: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS
- Note 6: ABS pattern as defined in [9]. PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.
- Note 7: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
- Note 8: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].
- Note 9: The number of control OFDM symbols is not available for ABS and is 3 for the subframe indicated by "0" of ABS pattern.
- Note 10: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4).
- Note 11: Reference measurement channel in Cell 1 RC.2 TDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1.
- Note 12: The number of the CRS ports in Cell1, Cell2 and Cell 3 is the same.
- Note 13: SIB-1 will not be transmitted in Cell2 and Cell 3 in this test.
- Note 14: To avoid collisions between RI/CQI reports and HARQ-ACK it is necessary to report them on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#4 and #9 to allow periodic RI/CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#8 and #3.

Test 2 Test 1 Test 3 E_s/N_{ac2} for Cell 1 (dB) 20 4 20 $\hat{I}_{cr}^{(j)}$ for Cell 1 (dB[mW/15kHz]) -94 -78 -78 High for Cell 1, low for Low for Cell 1, Cell 2 High for Cell 1, low for Antenna correlation and Cell 3 Cell 2 and Cell 3 Cell 2 and Cell 3 N/A 1.05 0.9 1.05 N/A N/A 1/2 UE Category ≥2 ≥2 ≥2

Table 9.5.4.2-2: Minimum requirement (TDD)

9.5.5 Minimum requirement (with CSI process)

Each CSI process is associated with a CSI-RS resource and a CSI-IM resource as shown in Table 9.5.5-1.

For UE supports one CSI process, CSI process 0 is configured for Test 1 and Test 2, but CSI process 1 is not configured for Test 2. The corresponding γ requirements for Test 1 and Test 2 shall be fulfilled. The requirement on reported RI for CSI process 1 in Test 2 is not applicable.

For UE supports multiple CSI processes, CSI process 0 is configured for Test 1 and CSI processes 0 and 1 are configured for Test 2. The corresponding γ requirements for Test 1 and Test 2 shall be fulfilled, and also the requirement on reported RI for CSI process 1 in Test 2.

Table 9.5.5-1: Configuration of CSI processes

	CSI process 0	CSI process 1
CSI-RS resource	CSI-RS signal 0	CSI-RS signal 1
CSI-IM resource	CSI-IM resource 0	CSI-IM resource 1

9.5.5.1 FDD

The minimum performance requirement in Table 9.5.5.1-2 is defined as

- a) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 1 shall be $\geq \gamma_1$;
- b) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 2 shall be $\geq \gamma_2$;
- c) For Test 2, the RI reported for CSI process 1 shall be the same as the most recent RI reported for CSI process 0 if UE is configured with multiple CSI processes.

For the parameters specified in Table 9.5.5.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.5.5.1-2.

Table 9.5.5.1-1: RI Test (FDD)

			Tes	c+ 1	To	st 2
Para	meter	Unit	TP1	TP2	TP1	TP2
Bandwidth		MHz		MHz	10 MHz	
Transmission mode			10	10	10	10
	$ ho_{\scriptscriptstyle A}$	dB	0		0	
Downlink power	$ ho_{\scriptscriptstyle B}$	dB	(0	()
allocation	P_c	dB	0	0	0	0
	σ	dB	_	<u>. </u>	()
SNR		dB	0	0	20	20
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-98	-98	-78	-78
$N_{oc}^{(j)}$		dB[mW/15kHz]	-9	98	-9	98
Propagation channe	el .		EPA 5 Low	EPA 5 Low	EPA 5 Low	EPA 5 High
Antenna configuration	on		2x2	2x2	2x2	2x2
Beamforming Mode			· · · · · · · · · · · · · · · · · · ·	Section B.4.3	•	Section B.4.3
Timing offset betwee		US		<u>0</u> 0)
Frequency offset be Cell-specific referen		Hz		a ports 0	Antenna	norte 0
	ice signais		Antenna ports		Antenna ports	
CSI-RS signal 0	and subfrage affect		15,16	N/A	15,16	N/A
$T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$	/ and subframe offset		5/1	N/A	5/1	N/A
CSI-RS 0 configurat	tion		0	N/A	0	N/A
CSI-RS signal 1			N/A	Antenna ports 15,16	N/A	Antenna ports 15,16
CSI-RS 1 periodicity $T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$	and subframe offset		N/A	5/1	N/A	5/1
CSI-RS 1 configurat	tion		N/A	3	N/A	3
Zero-power CSI-RS 0 configuration I _{CSI-RS} / ZeroPowerCSI-RS bitmap			N/A	1 / 10000010000 00000	N/A	1] / 10000010000 00000
Zero-power CSI-RS 1 configuration Icsi-RS / ZeroPowerCSI-RS bitmap			1 / 00110000000 00000	N/A	1 / 00110000000 00000	N/A
CSI-IM 0 periodicity $T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$	and subframe offset		5/1	N/A	5/1	N/A
CSI-IM 0 configurati			2	N/A	2	N/A
CSI-IM 1 periodicity $T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$	and subframe offset		N/A	5/1	N/A	5/1
CSI-IM 1 configurati	on		N/A	6	N/A	6
RI configuration			Fixed RI=2	N/A	Fixed RI=1	N/A
garano			and follow RI PUSCH (Note		and follow RI PUSCH (Note	PUSCH (Note
Physical channel for	r CQI/PMI reporting		6)	N/A	6)	6)
PUCCH Report Typ	e for CQI/PMI		2	N/A	2	2
Physical channel for	r RI reporting		PUCCH	N/A	PUCCH	PUCCH
PUCCH Report Typ	•		Format 2 3	N/A	Format 2	Format 2 3
. осотткерой тур	CSI-RS		CSI-RS 0	N/A	CSI-RS 0	N/A
	CSI-IM		CSI-IM 0	N/A	CSI-IM 0	N/A
	Reporting mode		PUCCH 1-1	N/A	PUCCH 1-1	N/A
CSI process 0	Reporting periodicity	ms	$N_{pd} = 5$	N/A	$N_{\rm pd} = 5$	N/A
(Note 7)	CQI delay	ms	8	N/A	10	N/A
	cqi-pmi- ConfigurationIndex		6	N/A	6	N/A
ri-ConfigIndex			1	N/A	1	N/A
	CSI-RS		N/A	N/A	N/A	CSI-RS 1
CSI process 1	CSI-IM		N/A	N/A	N/A	CSI-IM 1
(Note 7, Note 9)	Reporting mode		N/A	N/A	N/A	PUCCH 1-1
,	Reporting periodicity	ms	N/A	N/A	N/A	$N_{pd} = 5$

CQI delay	ms	N/A	N/A	N/A	10
cqi-pmi- ConfigurationIndex		N/A	N/A	N/A	4
ri-ConfigIndex		N/A	N/A	N/A	1
CSI process for PDSCH scheduling		CSI pro	ocess 0	CSI pro	ocess 0
Cell ID		0	6	0	6
Quasi-co-located CSI-RS		CSI-RS 0	CSI-RS 1	CSI-RS 0	CSI-RS 1
Quasi-co-located CRS		Same Cell ID	Same Cell ID	Same Cell ID	Same Cell ID
Quadi de legated erte		as Cell 1	as Cell 2	as Cell 1	as Cell 2
PMI for subframe 2, 3, 4, 7, 8 and 9		010000 for fixed RI = 2 010011 for UE reported RI	100000	000011 for fixed RI = 1 010011 for UE reported RI	N/A
PMI for subframe 1 and 6		100000	100000	100000	N/A
Max number of HARQ transmissions		1	N/A	1	N/A

- Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink SF not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4)
- Note 2: 3 symbols allocated to PDCCH
- Note 3: Reference measurement channel RC.13 FDD according to Table A.4-1. PDSCH transmission is scheduled on subframe 2, 3, 4, 7, 8 and 9 from TP1.
- Note 4: TM10 OCNG as specified in A.5.1.8 is transmitted on subframe 1 and 6 from TP1.
- Note 5: TM10 OCNG as specified in A.5.1.8 is transmitted on subframe 1, 2, 3, 4, 6, 7, 8 and 9 from TP2 for Test 1; TP2 is blanked for Test 2.
- Note 6: To avoid collisions between CQI/PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1 and #6 to allow periodic CQI/PMI to multiplex with the HARQ-ACK on PUSCH in uplink SF#0 and #5.
- Note 7: If UE supports multiple CSI processes, CSI process 0 is configured as 'RI-reference CSI process' for CSI process 1.
- Note 8: PDCCH DCI format 0 with a trigger for aperiodic CQI shall be transmitted in downlink SF#1 and #6 to allow aperiodic CQI/PMI/RI to be transmitted in uplink SF#0 and #5.
- Note 9: If UE supports one CSI process, CSI process 1 is not configured in Test 2.

Table 9.5.5.1-2: Minimum requirement (FDD)

	Test 1	Test 2
<i>γ</i> 1	N/A	1.0
72	1.0	N/A
UE Category	≥2	≥2

9.5.5.2 TDD

The minimum performance requirement in Table 9.5.5.2-2 is defined as

- a) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 1 shall be $\geq \gamma_1$;
- b) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 2 shall be $\geq \gamma_2$;
- c) For Test 2, the RI reported for CSI process 1 shall be the same as the most recent RI reported for CSI process 0 if UE is configured with multiple CSI processes.

For the parameters specified in Table 9.5.5.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.5.5.2-2.

Table 9.5.5.2-1: RI Test (TDD)

		Test 1		st 1	Te	Test 2	
Para	ameter	Unit	TP1	TP2	TP1	TP2	
Bandwidth		MHz		MHz	10 I	ИНz	
Transmission mode)		10	10	10	10	
	$ ho_{\scriptscriptstyle A}$	dB		0)	
Downlink power	$\rho_{\scriptscriptstyle B}$	dB		0	()	
allocation	P_c	dB	0	0	0	0	
			ļ	_	_		
Lie Colonia de con Colonia	σ	dB		0)	
Uplink downlink cor Special subframe c			2 4	2 4	2 4	2 4	
SNR	Offiguration	dB	0	0	20	20	
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-98	-98	-78	-78	
$N_{oc}^{(j)}$		dB[mW/15kHz]	-6	98	-6	98	
Propagation channe	el		EPA 5 Low	EPA 5 Low	EPA 5 Low	EPA 5 High	
Antenna configurati			2x2	2x2	2x2	2x2	
Beamforming Mode			As specified in	Section B.4.3	As specified in	Section B.4.3	
Timing offset between		us		0)	
Frequency offset be		Hz		0)	
Cell-specific referen	nce signals			a ports 0		a ports 0	
CSI-RS signal 0			Antenna ports 15,16	N/A	Antenna ports 15,16	N/A	
$T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$	y and subframe offset		5/3	N/A	5/3	N/A	
CSI-RS 0 configura	tion		0	N/A	0	N/A	
CSI-RS signal 1	CSI-RS signal 1		N/A	Antenna ports 15,16	N/A	Antenna ports 15,16	
CSI-RS 1 periodicit $T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$	y and subframe offset		N/A	5/3	N/A	5/3	
CSI-RS 1 configura	tion		N/A	3	N/A	3	
Zero-power CSI-RS Icsi-RS / ZeroPower			N/A	3 / 10000010000 00000	N/A	3 / 10000010000 00000	
Zero-power CSI-RS Icsi-RS / ZeroPower			3 / 00110000000 00000	N/A	3 / 00110000000 00000	N/A	
CSI-IM 0 periodicity $T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$	and subframe offset		5/3	N/A	5/3	N/A	
CSI-IM 0 configurat	tion		2	N/A	2	N/A	
	and subframe offset		N/A	5/3	N/A	5/3	
Tcsi-Rs / ∆csi-Rs	i.a.a		-				
CSI-IM 1 configurat	NOI		N/A Fixed RI=2	6	N/A Fixed RI=1	6	
RI configuration	T		and follow RI	N/A	and follow RI	N/A	
	CSI-RS		CSI-RS 0	N/A	CSI-RS 0	N/A	
CSI process 0	CSI-IM		CSI-IM 0	N/A	CSI-IM 0	N/A	
(Note 6, 7)	Reporting mode	ma	PUSCH 3-1 5	N/A N/A	PUSCH 3-1 5	N/A N/A	
	Reporting Interval CQI delay	ms ms	11	N/A N/A	11	N/A N/A	
	CSI-RS	1113	N/A	N/A	N/A	CSI-RS 1	
	CSI-IM		N/A	N/A	N/A	CSI-IM 1	
CSI process 1 (Note 6, 7, 8)	Reporting mode		N/A	N/A	N/A	PUSCH 3-1	
	Reporting Interval	ms	N/A	N/A	N/A	5	
	CQI delay	ms	N/A	N/A	N/A	11	
CSI process for PDSCH scheduling			•	ocess 0		ocess 0	
Cell ID			0	6	0	6	
Quasi-co-located C	SI-RS		CSI-RS 0	CSI-RS 1	CSI-RS 0	CSI-RS 1	
Quasi-co-located C	RS		Same Cell ID as Cell 1	Same Cell ID as Cell 2	Same Cell ID as Cell 1	Same Cell ID as Cell 2	
PMI for subframe 4	and 9		010000 for fixed RI = 2 010011 for UE	100000	000011 for fixed RI = 1 010011 for UE	N/A	

	reported RI		reported RI	
PMI for subframe 3 and 8	100000	100000	100000	N/A
Max number of HARQ transmissions	1	N/A	1	N/A
ACK/NACK feedback mode	Multiplexing	N/A	Multiplexing	N/A

- Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink SF not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4)
- Note 2: 3 symbols allocated to PDCCH
- Note 3: Reference measurement channel RC.13 TDD according to Table A.4-1. PDSCH transmission is scheduled on subframe 4 and 9 from TP1
- Note 4: TM10 OCNG as specified in A.5.2.8 is transmitted on subframe 3 and 8 from TP1.
- Note 5: TM10 OCNG as specified in A.5.2.8 is transmitted on subframe 3, 4, 8 and 9 from TP2 for Test 1; TP2 is blanked for Test 2.
- Note 6: Reported wideband CQI and PMI are used and sub-band CQI is discarded.
- Note 7: If UE supports multiple CSI processes, CSI process 0 is configured as 'RI-reference CSI process' for CSI process 1.
- Note 8: If UE supports one CSI process, CSI process 1 is not configured in Test 2.
- Note 9: PDCCH DCI format 0 with a trigger for aperiodic CQI shall be transmitted in downlink SF#3and #8 to allow aperiodic CQI/PMI/RI to be transmitted in uplink SF#7 and #2.

Table 9.5.5.2-2: Minimum requirement (TDD)

	Test 1	Test 2
21	N/A	1.0
72	1.0	N/A
UE Category	≥2	≥2

9.6 Additional requirements for carrier aggregation

This clause includes requirements for the reporting of channel state information (CSI) with the UE configured for carrier aggregation. The purpose is to verify that the channel state for each cell is correctly reported with multiple cells configured for periodic reporting.

9.6.1 Periodic reporting on multiple cells (Cell-Specific Reference Symbols)

9.6.1.1 FDD

The following requirements apply to UE Category ≥3. For CA with 2 DL CC, for the parameters specified in Table 9.6.1.1-1 and Table 9.6.1.1-2, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2 on each cell, the difference between the wideband CQI indices of Pcell and Scell reported shall be such that

 $wideband \; CQI_{Pcell} - wideband \; CQI_{Scell} \geq 2$

Table 9.6.1.1-1: Parameters for PUCCH 1-0 static test on multiple cells (FDD, 2 DL CA)

Parameter		Unit	Pcell	Scell	
PDSCH transmission mode			1		
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	0		
allocation	$ ho_{\scriptscriptstyle B}$	dB		0	
Propagation condition and antenna configuration			AWGN (1 x 2)		
SNR		dB	10 4		
$\hat{I}_{or}^{(j)}$ d		dB[mW/15kHz]	-88	-94	
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98	-98	
Physical channel for reporting	or CQI		PUCCH Format 2		
PUCCH Report Type			4		
Reporting periodicity		ms	$N_{\rm pd} = 10$		
cqi-pmi-ConfigurationIndex			11	16 (shift of 5 ms relative to Pcell)	

Note 1: 3 symbols are allocated to PDCCH. No PDSCH for user data is scheduled for the UE with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1.

Table 9.6.1.1-2: PUCCH 1-0 static test (FDD, 2 DL CA)

Test number		Bandwidth combination			
1		10MHz for both cells			
2		20MHz for both cells			
3		5MHz for both cells			
4		5MHz for PCell and 10MHz for SCell			
Note 1: The applicability of requirements for different CA configurations and bandwidth combination sets is defined in 9.1.1.2. The test coverage different number of component carriers is defined in 9.1.1.3. Note 2: Mapping of PCell and Scell to the CCs shall be constant for all the iterations during the test. Each execution of the test shall use the samapping.		dth combination sets is defined in 9.1.1.2. The test coverage for t number of component carriers is defined in 9.1.1.3. g of PCell and Scell to the CCs shall be constant for all the as during the test. Each execution of the test shall use the same			

The following requirements apply to UE Category ≥5. For CA with 3 DL CC, for the parameters specified in Table 9.6.1.1-3 and Table 9.6.1.1-4, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2 on each cell, the difference between the wideband CQI indices of PCell and SCell1 reported, and the difference between the wideband CQI indices of SCell 1 and SCell2 reported shall be such that

 $wideband \ CQI_{PCell} - wideband \ CQI_{SCell1} \geq 2$

wideband CQI_{SCell1} – wideband $CQI_{SCell2} \ge 2$

Table 9.6.1.1-3: Parameters for PUCCH 1-0 static test on multiple cells (FDD, 3 DL CA)

Parameter		Unit	Pcell	Scell1	Scell2
PDSCH transmission mode			1		
Downlink power $\rho_{\scriptscriptstyle A}$		dB	0		
allocation	$ ho_{\scriptscriptstyle B}$	dB	0		
Propagation condition and antenna configuration			AWGN (1 x 2)		
SNR		dB	12	6	0
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-86	-92	-98
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98	-98	-98
Physical channel for CQI reporting			PUCCH Format 2		
PUCCH Report Type			4		
Reporting periodicity		ms	$N_{pd} = 20$		
cqi-pmi-ConfigurationIndex			21	26 (shift of 5 ms relative to Pcell)	31 (shift of 10 ms relative to Pcell)

Note 1: 3 symbols are allocated to PDCCH. No PDSCH for user data is scheduled for the UE with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1.

Note 2: Void

Table 9.6.1.1-4: PUCCH 1-0 static test (FDD, 3 DL CA)

Test r	number	Bandwidth combination (MHz)		
	1	3x20		
	2	20+20+15		
	3	20+20+10		
	4	20+15+15		
	5	20+15+10		
	6	20+10+10		
	7	15+15+10		
	8	20+10+5		
Note 1:		ability of requirements for different CA ons and bandwidth combination sets is		
	defined in	9.1.1.2. The test coverage for different component carriers is defined in 9.1.1.3.		
Note 2: If more than one cell can be configured as PCell, choose one with the smallest bandwidth as PCell. Mapping of PCell and Scells to the CCs shall be constant for all the iterations during the test. Each				
	execution	of the test shall use the same mapping.		

9.6.1.2 TDD

The following requirements apply to UE Category \geq 3. For CA with 2 DL CC, for the parameters specified in Table 9.6.1.2-1 and Table 9.6.1.2-2, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2 on each cell, the difference between the wideband CQI indices of Pcell and Scell reported shall be such that

 $wideband \ CQI_{Pcell} - wideband \ CQI_{Scell} \geq 2$

Table 9.6.1.2-1: PUCCH 1-0 static test on multiple cells (TDD, 2 DL CA)

Parameter		Unit	Pcell	Scell	
PDSCH transmission mode			1		
Uplink downlink con	figuration			2	
Special subfra configuration			4		
Downlink power	$ ho_{\scriptscriptstyle A}$	dB		0	
allocation	$ ho_{\scriptscriptstyle B}$	dB		0	
Propagation condit antenna configur			AWGN (1 x 2)		
SNR		dB	10	4	
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-88	-94	
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98	-98	
Physical channel for CQI reporting			PUCCH Format 2		
PUCCH Report Type			4		
Reporting periodicity		ms	$N_{pd} = 10$		
cqi-pmi-ConfigurationIndex			8 13 (shift of 5 ms related to Pcell)		
Note 1: 3 symbols are allocated to PDCCH. No PDSCH for user data is scheduled for the LIE with one					

Note 1: 3 symbols are allocated to PDCCH. No PDSCH for user data is scheduled for the UE with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1.

Note 2: Void

Table 9.6.1.2-2: PUCCH 1-0 static test (TDD, 2 DL CA)

Test number	Bandwidth combination
1	20MHz for both cells
2	15MHz for PCell and 20MHz for SCell
and ba	plicability of requirements for different CA configurations andwidth combination sets is defined in 9.1.1.2. The test ge for different number of component carriers is defined 1.3.

The following requirements apply to UE Category \geq 5. For CA with 3 DL CC, for the parameters specified in Table 9.6.1.2-3 and Table 9.6.1.2-4, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2 on each cell, the difference between the wideband CQI indices of PCell and SCell1 reported, and the difference between the wideband CQI indices of SCell 1 and SCell2 reported shall be such that

 $wideband \; CQI_{PCell} - wideband \; CQI_{SCell1} \geq 2$

wideband CQI_{SCell1} – wideband $CQI_{SCell2} \ge 2$

Table 9.6.1.2-3: PUCCH 1-0 static test on multiple cells (TDD, 3 DL CA)

Parameter		Unit	Pcell	Scell1	Scell2
PDSCH transmission mode			1		
Uplink downlink conf	iguration			2	
Special subfra configuratior			4		
Downlink power	$ ho_{\scriptscriptstyle A}$	dB		0	
allocation	$ ho_{\scriptscriptstyle B}$	dB	0		
Propagation condition and antenna configuration			AWGN (1 x 2)		
SNR		dB	12	6	0
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-86	-92	-98
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98	-98	-98
Physical channel for CQI reporting			PUCCH Format 2		
PUCCH Report Type			4		
Reporting periodicity		ms	$N_{\rm pd} = 20$		
cqi-pmi-ConfigurationIndex			18	23 (shift of 5 ms relative to Pcell)	28 (shift of 10 ms relative to Pcell)

Note 1: 3 symbols are allocated to PDCCH. No PDSCH for user data is scheduled for the UE with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1.

Note 2: Void

Table 9.6.1.2-4: PUCCH 1-0 static test (TDD, 3 DL CA)

Test	number	Bandwidth combination (MHz)
1		3x20
	2	20+20+15
Note 1:	configuration defined in some	ability of requirements for different CA ons and bandwidth combination sets is 0.1.1.2. The test coverage for different component carriers is defined in 9.1.1.3.
Note 2: If more than		n one cell can be configured as PCell, e of the cells with the smallest bandwidth

9.6.1.3 TDD-FDD CA with FDD PCell

The following requirements apply to UE Category \geq 5. For TDD-FDD CA with FDD PCell with 2 DL CC, for the parameters specified in Table 9.6.1.3-1 and Table 9.6.1.3-2, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2 on each cell, the difference between the wideband CQI indices of PCell and SCell reported shall be such that

wideband CQI_{PCell} – wideband $CQI_{SCell} \ge 2$

Table 9.6.1.3-1: Parameters for PUCCH 1-0 static test on multiple cells (TDD-FDD CA with FDD PCell, 2 DL CA)

Parameter		Unit	PCell	SCell	
PDSCH transmission mode				1	
Uplink downlink con	figuration		N/A	2	
Special subfra configuration			N/A 4		
Downlink power	$ ho_{\scriptscriptstyle A}$	dB		0	
allocation	$ ho_{\scriptscriptstyle B}$	dB		0	
Propagation condition and antenna configuration			AWGN (1 x 2)		
SNR		dB	10	4	
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-88	-94	
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98	-98	
Physical channel for CQI reporting			PUCCH Format 2		
PUCCH Report Type			4		
Reporting periodicity		ms	$N_{pd} = 10$		
cqi-pmi-ConfigurationIndex			9 14 (shift of 5 ms rel		
Note 1: 3 symbols are allocated to PDCCH. No PDSCH for user data is scheduled for the UE with one					

Note 1: 3 symbols are allocated to PDCCH. No PDSCH for user data is scheduled for the UE with one sided dynamic OCNG Pattern OP.1 FDD and OP.1 TDD as described in Annex A.5.1.1 and

A.5.2.1. Note 2: Void

Void

Note 3:

Table 9.6.1.3-2: PUCCH 1-0 static test (TDD-FDD CA with FDD PCell, 2 DL CA)

Test number Bandwidth combination				
1 20MHz for FDD cell and 20MHz for TDD cell		20MHz for FDD cell and 20MHz for TDD cell		
2		10MHz for FDD cell and 20MHz for TDD cell		
3 15MHz for FDD cell and 20MHz for TDD cell		15MHz for FDD cell and 20MHz for TDD cell		
Note 1:	The app	oplicability of requirements for different CA configurations and		
		idth combination sets is defined in 9.1.1.2A. The test coverage		
	for diffe	rent number of component carriers is defined in 9.1.1.3.		

The following requirements apply to UE Category \geq 5. For TDD-FDD CA with FDD PCell with 3 DL CC, for the parameters specified in Table 9.6.1.3-3 and Table 9.6.1.3-4, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2 on each cell, the difference between the wideband CQI indices of PCell and SCell1 reported, and the difference between the wideband CQI indices of SCell1 and SCell2 reported shall be such that

 $wideband \ CQI_{PCell} - wideband \ CQI_{SCell1} \geq 2$

wideband CQI_{SCell1} – wideband $CQI_{SCell2} \ge 2$

Table 9.6.1.3-3: PUCCH 1-0 static test on multiple cells (TDD-FDD CA with FDD PCell, 3 DL CA)

Parameter	Parameter		PCell	SCell1	SCell2
PDSCH transmission mode				1	
Uplink downlink configuration			N/A	2 if Scell1 is TDD Cell N/A if Scell1 is FDD Cell	2
Special subframe configuration			4 if Scell1 is TDD Cell N/A N/A if Scell1 is FDD Cell		4
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	0		
allocation			0		
Propagation condition and antenna configuration			AWGN (1 x 2)		
SNR		dB	12	6	0
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-86	-92	-98
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98	-98	-98
Physical channel for CQI reporting			PUCCH Format 2		
PUCCH Report Type			4		
Reporting periodicity		ms		$N_{pd} = 20$	
cqi-pmi-ConfigurationIndex			19	24 (shift of 5 ms relative to Pcell)	29 (shift of 10 ms relative to Pcell)
Note 1: 3 symbols	are allocat	ed to PDCCH. No PDS	SCH for user dat	a is scheduled for the UE	with one sided

Note 1: 3 symbols are allocated to PDCCH. No PDSCH for user data is scheduled for the UE with one sided dynamic OCNG Pattern OP.1 FDD and OP.1 TDD as described in Annex A.5.1.1 and A.5.2.1.

Note 2: Void Note 3: Void

Table 9.6.1.4-4: PUCCH 1-0 static test (TDD-FDD CA with FDD PCell, 3 DL CA)

Test number		Bandwidth combination (MHz)			
1		20MHz for FDD cell and 2x20MHz for TDD cell			
2		15MHz for FDD cell and 2x20MHz for TDD cell			
3		10MHz for FDD cell and 2x20MHz for TDD cell			
Note 1: The applicability of requ		uirements for different CA configurations and bandwidth			
	combination sets is defi	ined in 9.1.1.2A. The test coverage for different number			
of component carriers is defined in 9.1.1.3.					

9.6.1.4 TDD-FDD CA with TDD PCell

The following requirements apply to UE Category \geq 5. For TDD-FDD CA with TDD PCell with 2 DL CC, for the parameters specified in Table 9.6.1.4-1 and Table 9.6.1.4-2, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2 on each cell, the difference between the wideband CQI indices of PCell and SCell reported shall be such that

wideband CQI_{PCell} – wideband $CQI_{SCell} \ge 2$

Table 9.6.1.4-1: Parameters for PUCCH 1-0 static test on multiple cells (TDD-FDD CA with TDD PCell, 2 DL CA)

Parameter		Unit	PCell	SCell	
PDSCH transmission mode				1	
Uplink downlink con	figuration		2	N/A	
Special subfra configuration			4 N/A		
Downlink power	$ ho_{\scriptscriptstyle A}$	dB		0	
allocation	$ ho_{\scriptscriptstyle B}$	dB		0	
Propagation condit			AWGN (1 x 2)		
SNR		dB	10	4	
$\hat{I}_{or}^{(j)}$	$\hat{I}_{or}^{(j)}$		-88	-94	
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98	-98	
Physical channel for CQI reporting			PUCCH Format 2		
PUCCH Report Type			4		
Reporting periodicity		ms	$N_{pd} = 10$		
cqi-pmi-ConfigurationIndex			8 13 (shift of 5 ms related to Pcell)		
Note 1: 3 symbols are allocated to PDCCH. No PDSCH for user data is scheduled for the UE with one					

Note 1: 3 symbols are allocated to PDCCH. No PDSCH for user data is scheduled for the UE with one sided dynamic OCNG Pattern OP.1 FDD and OP.1 TDD as described in Annex A.5.1.1 and

A.5.2.1. e 2: Void

Note 2: Void Note 3: Void

Table 9.6.1.4-2: PUCCH 1-0 static test (TDD-FDD CA with TDD PCell, 2 DL CA)

Test number Bandwidth combination				
1 20MHz for TDD cell and 20MHz for FD		20MHz for TDD cell and 20MHz for FDD cell		
2		20MHz for TDD cell and 10MHz for FDD cell		
3 20MHz for TDD cell and 15MHz for FDD cell		20MHz for TDD cell and 15MHz for FDD cell		
Note 1:	The app	oplicability of requirements for different CA configurations and		
		idth combination sets is defined in 9.1.1.2A. The test coverage		
	for diffe	rent number of component carriers is defined in 9.1.1.3.		

The following requirements apply to UE Category \geq 5. For TDD-FDD CA with TDD PCell with 3 DL CC, for the parameters specified in Table 9.6.1.4-3 and Table 9.6.1.4-4, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2 on each cell, the difference between the wideband CQI indices of PCell and SCell1 reported, and the difference between the wideband CQI indices of SCell1 and SCell2 reported shall be such that

 $wideband \ CQI_{PCell} - wideband \ CQI_{SCell1} \geq 2$

wideband CQI_{SCell1} – wideband $CQI_{SCell2} \ge 2$

Table 9.6.1.4-3: PUCCH 1-0 static test on multiple cells (TDD-FDD CA with TDD PCell, 3 DL CA)

Parameter		Unit	PCell	SCell1	SCell2
PDSCH transmission	on mode			1	
Uplink downlink configuration			2 if Scell1 is TDD Cell N/A if Scell1 is FDD Cell		
Special subfra configuration	oframe 4 If S N/A		4 if Scell1 is TDD Cell N/A if Scell1 is FDD Cell	N/A	
Downlink power	$ ho_{\scriptscriptstyle A}$	dB		0	
allocation	$ ho_{\scriptscriptstyle B}$	dB	0		
Propagation condit antenna configu			AWGN (1 x 2)		
SNR		dB	12	6	0
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-86	-92	-98
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98	-98	-98
Physical channel freporting	for CQI		PUCCH Format 2		
PUCCH Report	Туре		4		
Reporting perior	dicity	ms	$N_{pd} = 20$		
cqi-pmi-Configurati		ed to PDCCH. No PD	18 23 (shift of 5 ms relative to Pcell) 28 (shift of 10 relative to Pc		

Note 1: 3 symbols are allocated to PDCCH. No PDSCH for user data is scheduled for the UE with one sided dynamic OCNG Pattern OP.1 FDD and OP.1 TDD as described in Annex A.5.1.1 and A.5.2.1.

Note 2: Void Note 3: Void

Table 9.6.1.3-4: PUCCH 1-0 static test (TDD-FDD CA with FDD PCell, 3 DL CA)

	Test number	Bandwidth combination (MHz)			
1		2x20MHz for TDD cell and 20MHz for FDD cell			
2		2x20MHz for TDD cell and 15MHz for FDD cell			
3		2x20MHz for TDD cell and 10MHz for FDD cell			
Note 1:	Note 1: The applicability of requirements for different CA configurations and bandwidth combination sets is defined in 9.1.1.2A. The test coverage for different number				
	of component carriers is defined in 9.1.1.3.				

9.7 CSI reporting (Single receiver antenna)

The number of receiver antennas N_{RX} assumed for the minimum performance requirement in this clause is 1.

9.7.1 CQI reporting definition under AWGN conditions

9.7.1.1 FDD and half-duplex FDD

The following requirements apply to UE DL Category 0. For the parameters specified in Table 9.7.1.1-1, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2, the reported CQI value according to RC.16 FDD in Table A.4-1 shall be in the range of ± 1 of the reported median more than 90% of the time. If the PDSCH BLER using the transport format indicated by median CQI is less than or equal to 0.1, the BLER using the transport format indicated by the (median CQI + 1) shall be greater than 0.1. If the PDSCH BLER using the transport format indicated by the median CQI is greater than 0.1, the BLER using transport format indicated by (median CQI – 1) shall be less than or equal to 0.1.

Table 9.7.1.1-1: PUCCH 1-0 static test (FDD and half-duplex FDD)

Parameter		Unit	Tes	Test 1 Test		st 2	
Bandwidth		MHz	10				
PDSCH transmission	n mode			1			
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB			0		
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB			0		
	σ	dB			0		
Propagation condit antenna configur			AWGN (1 x 1)				
SNR (Note 2	SNR (Note 2)		0	1	6	7	
$\hat{I}_{or}^{(j)}$			-98	-97	-92	-91	
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98 -98			98	
Max number of H transmission					1		
Physical channel f reporting	or CQI		PUCCH Forr			H Format 2	
PUCCH Report Type			4				
Reporting periodicity		ms	$N_{pd} = 40$				
cqi-pmi-Configurati		1.00.40	41				

Note 1: Reference measurement channel RC.16 FDD according to Table A.4-1 with one/two sided dynamic OCNG Pattern OP.1/OP.2 FDD as described in Annex A.5.1.1/A.5.1.2.

Note 2: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.

9.7.1.2 TDD

The following requirements apply to UE DL Category 0. For the parameters specified in Table 9.7.1.2-1, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2, the reported CQI value according to RC.16 TDD in Table A.4-1 shall be in the range of ± 1 of the reported median more than 90% of the time. If the PDSCH BLER using the transport format indicated by median CQI is less than or equal to 0.1, the BLER using the transport format indicated by the median CQI + 1) shall be greater than 0.1. If the PDSCH BLER using the transport format indicated by the median CQI is greater than 0.1, the BLER using transport format indicated by (median CQI – 1) shall be less than or equal to 0.1.

Multiplexing

Parameter Unit Test 1 Test 2 Bandwidth MHz 10 PDSCH transmission mode 1 Uplink downlink configuration 2 Special subframe configuration 4 dB 0 $\rho_{\scriptscriptstyle A}$ Downlink power dB 0 $\rho_{\scriptscriptstyle B}$ allocation dB 0 σ Propagation condition and AWGN (1 x 1) antenna configuration SNR (Note 2) dB 0 $\hat{\boldsymbol{I}}^{(j)}$ -98 -97 -92 -91 dB[mW/15kHz] $N^{(j)}$ dB[mW/15kHz] -98 -98 Max number of HARQ 1 transmissions Physical channel for CQI PUSCH (Note 3) reporting PUCCH Report Type 4 Reporting periodicity $N_{pd} = 5$ ms cgi-pmi-ConfigurationIndex 3

Table 9.7.1.2-1: PUCCH 1-0 static test (TDD)

Note 1: Reference measurement channel RC.16 TDD according to Table A.4-1 with one/two sided dynamic OCNG Pattern OP.1/OP.2 TDD as described in Annex A.5.2.1/A.5.2.2.

Note 2: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.

Note 3: To avoid collisions between CQI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#3 and #8 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#7 and #2.

9.7.2 CQI reporting under fading conditions

9.7.2.1 FDD and half-duplex FDD

ACK/NACK feedback mode

For the parameters specified in Table 9.7.2.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.7.2.1-2 and by the following

- a) a sub-band differential CQI offset level of 0 shall be reported at least α % of the time but less than β % for each sub-band;
- b) the ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set S shall be $\geq \gamma$;
- c) when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS, the average BLER for the indicated transport formats shall be greater or equal to 0.05.

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD and in each available downlink transmission instance for half-duplex FDD.

Table 9.7.2.1-1 Sub-band test for single antenna transmission (FDD and half-duplex FDD)

Parameter		Unit	Tes	Test 1 Te		Test 2	
Bandwidth		MHz	10 MHz				
Transmiss	sion mode			1 (port 0)			
Downlink	$ ho_{\scriptscriptstyle A}$	dB		(0		
power	$ ho_{\scriptscriptstyle B}$	dB		(0		
allocation	σ	dB		(0		
SNR (Note 3)	dB	8	9	13	14	
	$\hat{I}_{or}^{(j)}$		-90	-89	-85	-84	
N	$N_{oc}^{(j)}$		-98 -98		98		
Danasasi			Clause B.2.4 with $\tau_d = 0.45$).45 <i>μ</i> s,		
Propagatio	Propagation channel		$a = 1, f_D = 5 \text{ Hz}$				
Antenna co	onfiguration		1 x 1				
Reportin	Reporting interval			8			
CQI delay		ms		8			
Reporting mode				PUSCH 3-0			
Sub-band size		RB		6 (full size)			
Max number of HARQ transmissions			1				

Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4)

Note 2: Reference measurement channel RC.16 FDD according to Table A.4-1 with one/two sided dynamic OCNG Pattern OP.1/2 FDD as described in Annex A.5.1.1/2.

Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.

Table 9.7.2.1-2 Minimum requirement (FDD and half-duplex FDD)

	Test 1	Test 2
α[%]	2	2
β[%]	55	55
γ	1.1	1.1
UE DL Category	0	0

9.7.2.2 TDD

For the parameters specified in Table 9.7.2.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.7.2.2-2 and by the following

- a) a sub-band differential CQI offset level of 0 shall be reported at least α % of the time but less than β % for each sub-band:
- b) the ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set S shall be $\geq \gamma$;
- c) when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS, the average BLER for the indicated transport formats shall be greater or equal to 0.05.

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each available downlink transmission instance for TDD.

Table 9.7.2.2-1 Sub-band test for single antenna transmission (TDD)

Parameter		Unit	Te	Test 1 Test 2								
Bandwidth		MHz		10 MHz								
Transmiss	Transmission mode		1 (port 0)									
Downlink	$ ho_{\scriptscriptstyle A}$	dB			0							
power	$ ho_{\scriptscriptstyle B}$	dB			0							
allocation	σ	dB			0							
Uplink o configu	lownlink uration				2							
Special s configu					4							
SNR (I	Note 3)	dB	8	9	13	14						
\hat{I}_{a}^{0}	$\hat{I}_{or}^{(j)}$		-90	-89	-85	-84						
N_{c}	$N_{oc}^{(j)}$		-98 -98		8							
Propagation channel			Clause B.2.4 with $ au_d=0.45\mu\mathrm{s},a$ = 1, $f_D=5\mathrm{Hz}$									
Antenna co	nfiguration			1 x 1								
Reporting	g interval	ms		5								
CQI delay		ms		10	or 11							
Reporting mode				PUS	CH 3-0							
Sub-band size		RB		6 (full size)								
Max number of HARQ transmissions					1							
	edback mode			Multi	plexing							
		an available uplink	reportir		Note 1: If the UE reports in an available uplink reporting instance at subframe							

- Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4)
- Note 2: Reference measurement channel RC.16 TDD according to Table A.4-1 with one/two sided dynamic OCNG Pattern OP.1/2 TDD as described in Annex A.5.2.1/2.
- Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.

Table 9.7.2.2-2 Minimum requirement (TDD)

	Test 1	Test 2
α[%]	2	2
β [%]	55	55
γ	1.1	1.1
UE DL Category	0	0

10 Performance requirement (MBMS)

10.1 FDD (Fixed Reference Channel)

The parameters specified in Table 10.1-1 are valid for all FDD tests unless otherwise stated. For the requirements defined in this section, the difference between CRS EPRE and the MBSFN RS EPRE should be set to 0 dB as the UE demodulation performance might be different when this condition is not met (e.g. in scenarios where power offsets are present, such as scenarios when reserved cells are present).

Unit Value **Parameter** Number of HARQ **Processes** None processes kHz 15 kHz Subcarrier spacing Allocated subframes per 6 subframes Radio Frame (Note 1) Number of OFDM 2 symbols for PDCCH Cyclic Prefix Extended For FDD mode, up to 6 subframes (#1/2/3/6/7/8) are available for MBMS, Note1:

Table 10.1-1: Common Test Parameters (FDD)

in line with TS 36.331.

10.1.1 Minimum requirement

The receive characteristic of MBMS is determined by the BLER. The requirement is valid for all RRC states for which the UE has capabilities for MBMS.

For the parameters specified in Table 10.1-1 and Table 10.1.1-1 and Annex A.3.8.1, the average downlink SNR shall be below the specified value for the BLER shown in Table 10.1.1-2.

Table 10.1.1-1: Test Parameters for Testing

Parameter		Unit	Test 1-4		
	$ ho_{\scriptscriptstyle A}$	dB	0		
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)		
	σ	dB	0		
N_{oc} at antenna port		dBm/15kHz	-98		
Note 1: $P_{B} = 0$.					

Table 10.1.1-2: Minimum performance

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Referen	ce value	MBMS
number		Channel	Pattern	condition	Matrix and	BLER	SNR(dB)	UE
					antenna	(%)		Category
1	10 MHz	R.37 FDD	OP.4				4.1	≥1
			FDD					
2	10 MHz	R.38 FDD	OP.4	MBSFN			11.0	≥1
			FDD	channel	1v2 low	4		
3	10 MHz	R.39 FDD	OP.4	model (Table	1x2 low	I	20.1	≥2
			FDD	B.2.6-1)				
	5.0MHz	R.39-1 FDD	OP.4	1			20.5	1
			FDD					

10.2 TDD (Fixed Reference Channel)

The parameters specified in Table 10.2-1 are valid for all TDD tests unless otherwise stated. For the requirements defined in this section, the difference between CRS EPRE and the MBSFN RS EPRE should be set to 0 dB as the UE demodulation performance might be different when this condition is not met (e.g. in scenarios where power offsets are present, such as scenarios when reserved cells are present).

Unit Value **Parameter** Number of HARQ **Processes** None processes kHz 15 kHz Subcarrier spacing Allocated subframes per 5 subframes Radio Frame (Note 1) Number of OFDM 2 symbols for PDCCH

Table 10.2-1: Common Test Parameters (TDD)

Note1: For TDD mode, in line with TS 36.331, Uplink-Downlink Configuration 5 is proposed, up to 5 subframes (#3/4/7/8/9) are available for MBMS.

Extended

10.2.1 Minimum requirement

Cyclic Prefix

The receive characteristic of MBMS is determined by the BLER. The requirement is valid for all RRC states for which the UE has capabilities for MBMS.

For the parameters specified in Table 10.2-1 and Table 10.2.1-1 and Annex A.3.8.2, the average downlink SNR shall be below the specified value for the BLER shown in Table 10.2.1-2.

Table 10.2.1-1: Test Parameters for Testing

Parameter		Unit	Test 1-4
	$ ho_{\scriptscriptstyle A}$	dB	0
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)
anocation	σ	dB	0
N_{oc} at antenna port		dBm/15kHz	-98
Note 1: $P_B = 0$.			

Table 10.2.1-2: Minimum performance

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Referen	ce value	MBMS
number		Channel	Pattern	condition	Matrix and antenna	BLER (%)	SNR(dB)	UE Category
1	10 MHz	R.37 TDD	OP.4 TDD				3.4	≥1
2	10 MHz	R.38 TDD	OP.4 TDD	MBSFN channel	1x2 low	4	11.1	≥1
3a	10 MHz	R.39 TDD	OP.4 TDD	model (Table B.2.6-1)	I XZ IOW	l I	20.1	≥2
3b	5MHz	R.39-1 TDD	OP.4 TDD				20.5	1

11 Performance requirement (ProSe Direct Discovery)

This clause contains the performance requirements for the Sidelink physical channels specified for ProSe Direct Discovery.

11.1 General

11.1.1 Applicability of requirements

The requirements in this clause are applicable to UEs that support ProSe Direct Discovery. Some of the tests defined in this clause are applicable only to UEs that additionally support transmission and reception of Sidelink synchronization signal (indicated using *disc-SLSS*). The test case applicability is in according to table 11.1.1-1 depending on UE capability.

Table 11.1.1-1: ProSe Direct Discovery test applicability

	ProSe Direct Discovery without support of SLSS	ProSe Direct Discovery with support of SLSS
FDD	11.2.1, 11.3.1, 11.5.1	11.3.1, 11.4.1, 11.5.1
TDD	11.2.2, 11.3.2, 11.5.2	11.2.2, 11.3.2, 11.5.2

For maximum Sidelink Processes test specified in clause 11.5, the UE is required to only meet the test for the maximum channel bandwidth over the ProSe operating bands supported by the UE.

11.1.2 Reference DRX configuration

Table 11.1.2-1: Reference DRX configuration

Parameter	Value	Comments		
onDurationTimer	psf1			
drx-InactivityTimer	psf1			
drx-RetransmissionTimer	psf1			
longDRX-CycleStartOffset	sf2560, 0			
shortDRX	disabled			
NOTE: For further information see clause 6.3.2 in TS 36.331.				

11.2 Demodulation of PSDCH (single link performance)

The purpose of the requirements in this subclause is to verify the PSDCH demodulation performance with a single active PSDCH link under different operating scenarios and channel conditions.

The active cell(s), when present, are specified in the test parameters specific to the test.

11.2.1 FDD

The minimum requirements are specified in Table 11.2.1-2 with the test parameters specified in Table 11.2.1-1. The receiver UE under test is associated with Cell 1.

Table 11.2.1-1: Test Parameters

Parameter			Unit	Test 1
Discovery resource pool configuration				As specified in Table A.7.1.1-1
Discovery resource poor configuration				(Configuration #1-FDD)
DRX configuration				As specified in Table 11.1.2-1
$N_{\it oc}$ at antenna port (NOTE 3)		dBm/15kHz	-98
Active cell(s)				Cell 1 (Serving cell)
	Cyclic prefix			Normal
	Cell ID			0
	Downlink	$ ho_{\scriptscriptstyle A}$	dB	0
0 11 4	power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (NOTE 1)
Cell 1		σ	dB	0
	OCNG Pattern (NOTE 2)			OP.1 FDD
	Propagation channel			AWGN
	Antenna configuration			1x2
	RSRP		dBm/15kHz	-92
Active Sidelink UE(s)				Sidelink UE 1
	Sidelink Trans	missions		PSDCH
	PSDCH RB allocation			PRB pairs {2i, 2i+1), where i is chosen randomly uniformly from [0,11] in each discovery period.
Cidalials LIE 4	Time offset (No	OTE 4)	μs	+1
Sidelink UE 1	Frequency offset (NOTE 5)		Hz	+200
	Propagation C	hannel		EPA5
	Antenna config			1x2 Low
NOTE 4 D 0			-	

NOTE 1: $P_{\scriptscriptstyle B}=0$.

NOTE 2: OCNG is used to fully allocate the available resource blocks to virtual UEs.

NOTE 3: Applicable to both DL channel and ProSe Direct Discovery Subframes on UL.

NOTE 4: Time offset of Sidelink UE receive signal with respect to Cell 1 downlink timing at the tested UE.

NOTE 5: Frequency offset of Sidelink UE with respect to Cell 1 uplink frequency.

Table 11.2.1-2: Minimum performance

Test num.	Sidelink UE	Band-width	Reference channel	Reference valu	ie
				BLER of PSDCH (%)	SNR (dB)
1	1	5 MHz	D.1 FDD	30	4.6

11.2.2 **TDD**

The minimum requirements are specified in Table 11.2.2-2 with the test parameters specified in Table 11.2.2-1. The receiver UE under test is associated with Cell 1.

Table 11.2.2-1: Test Parameters

Parameter			Unit	Test 1
Discovery resource pool configuration				As specified in Table A.7.1.2-1 (Configuration #1-TDD)
DRX configuration				As specified in Table 11.1.2-1
$N_{\it oc}$ at antenna port (NOTE 5)		dBm/15kHz	-98
Active cell(s)				Cell 1 (Serving cell)
	Cyclic prefix			Normal
	Uplink downlink configuration (N			0
	Special subfranconfiguration (N			4
	Cell ID			0
Cell 1	Downlink power allocation	$ ho_{\scriptscriptstyle A}$	dB	0
		$ ho_{\scriptscriptstyle B}$	dB	0 (NOTE 1)
		σ	dB	0
	OCNG Pattern NOTE 2			OP.1 TDD
	Propagation channel			AWGN
	Antenna configuration			1x2
	RSRP		dBm/15kHz	-92
Active Sidelink UE(s)				Sidelink UE 1
	Sidelink Transn	nissions		PSDCH
	RB allocation			PRB pairs {2i, 2i+1), where i is chosen randomly uniformly from [0,11] in each discovery period.
Sidelink UE 1	Time offset (NC	TE 6)	μs	+1
Sidelink UE 1	Frequency offse 7)		Hz	+200
	Propagation Ch	annel		EPA5
	Antenna config			1x2 Low
NOTE 4: P. O				

NOTE 1: $P_B = 0$.

NOTE 2: OCNG is used to fully allocate the available resource blocks to virtual UEs.

NOTE 3: As specified in Table 4.2-2 in TS 36.211 [4].

NOTE 4: As specified in Table 4.2-1 in TS 36.211 [4].

NOTE 5: Applicable to both DL subframes and UL subframes configured for ProSe Direct Discovery.

NOTE 6: Time offset of Sidelink UE receive signal with respect to Cell 1 downlink timing at the tested UE.

NOTE 7: Frequency offset of Sidelink UE with respect to Cell 1 uplink frequency.

Table 11.2.2-2: Minimum performance

Test num.	Sidelink UE	Band-width	Reference channel	Reference value		
				BLER of PSDCH (%)	SNR (dB)	
1	1	5 MHz	D.1 TDD	30	4.6	

11.3 Power imbalance performance with two links

The purpose of this test is to check the demodulation performance when receiving PSDCH transmissions from two Sidelink UEs with power imbalance in one subframe.

11.3.1 FDD

The minimum requirements are specified in Table 11.3.1-2 with the test parameters specified in Table 11.3.1-1. The receiver UE under test is associated with Cell 1. The Sidelink UE 1 and 2 are synchronized to Cell 1 and transmit PSDCH on adjacent RBs.

Table 11.3.1-1: Test Parameters

Parameter		Unit	Test 1	
Discovery resource pool configuration				As specified in Table A.7.1.1-1
				(Configuration #1-FDD)
DRX configuration				As specified in Table 11.1.2-1
$N_{\it oc}$ at antenna po	ort (NOTE 3)		dBm/15kHz	-98
Active cell(s)				Cell 1 (Serving cell)
	Cyclic prefix			Normal
	Cell ID			0
	Daniel Indiana	$\rho_{\scriptscriptstyle A}$	dB	0
	Downlink power allocation	$\rho_{\scriptscriptstyle B}$	dB	0 (NOTE 1)
Cell 1		σ	dB	0
	OCNG Pattern (N	OCNG Pattern (NOTE 2)		OP.1 FDD
	Propagation chan	Propagation channel		AWGN
	Antenna configura	Antenna configuration		1x2
	RSRP		dBm/15kHz	-92
Active Sidelink UE	E(s)			Sidelink UE 1, Sidelink UE 2
	Sidelink Transmis	Sidelink Transmissions		PSDCH
	PSDCH RB alloca	PSDCH RB allocation		PRB pairs (4, 5)
Sidelink UE 1	Time offset (NOT	Time offset (NOTE 3)		0
Sidelifik OE 1	Frequency offset	Frequency offset (NOTE 4)		0
	Propagation Char	nnel		AWGN
	Antenna configura	ation		1x2 Low
	Sidelink Transmis	sions		PSDCH
	PSDCH RB alloca	ation		PRB pairs (6, 7)
Sidelink UE 2	Time offset (w.r.t.	Cell 1 DL)	μs	0
	Frequency offset 1 UL)	(w.r.t. Cell	Hz	0
	Propagation Char	nnel		AWGN
	Antenna configura			1x2 Low
Applicability to UE				Discovery
NOTE 1: D = 0			•	•

NOTE 1: $P_B = 0$.

NOTE 2: OCNG is used to fully allocate the available resource blocks to virtual UEs.

NOTE 3: Applicable to both DL channel and ProSe Direct Discovery Subframes on UL.

NOTE 4: Time offset of Sidelink UE receive signal with respect to Cell 1 downlink timing at the tested UE.

NOTE 5: Frequency offset of Sidelink UE with respect to Cell 1 uplink frequency.

Table 11.3.1-2: Minimum performance

Test	Band-	Sidelink UE	Reference	Reference valu	е		
num.	width	Sidellik OL	channel	BLER of PSDCH (%)	SNR (dB)		
1	5 MHz	1	D.1 FDD	(NOTE 1)	24.3		
ı	3 IVITZ	2	D.1 FDD	30	6.9		
NOTE 1: There is no BLER requirement for Sidelink UE 1.							

11.3.2 **TDD**

The minimum requirements are specified in Table 11.3.2-2 with the test parameters specified in Table 11.3.2-1. The receiver UE under test is associated with Cell 1. The Sidelink UE 1 and 2 are synchronized to Cell 1 and transmit PSDCH on adjacent RBs.

Table 11.3.2-1: Test Parameters

Parameter			Unit	Test 1
Discovery resource pool configuration			As specified in Table A.7.1.2-1	
, ,				(Configuration #1-TDD)
DRX configuration				As specified in Table 11.1.2-1
$N_{\it oc}$ at antenna port (NOTE 5)		dBm/15kHz	-98
Active cell(s)				Cell 1 (Serving cell)
	Cyclic prefix			Normal
	Uplink downlink configuration (NC			0
	Special subframe configuration (NC			4
	Cell ID			0
Cell 1	Downlink	$ ho_{\scriptscriptstyle A}$	dB	0
	power	$ ho_{\scriptscriptstyle B}$	dB	0 (NOTE 1)
	allocation	σ	dB	0
	OCNG Pattern NOTE 2			OP.1 TDD
	Propagation channel			AWGN
	Antenna configuration			1x2
	RSRP		dBm/15kHz	-92
Active Sidelink UE(s)				Sidelink UE 1, Sidelink UE 2
	Sidelink Transmi			PSDCH
	PSDCH RB alloc			PRB pairs {4, 5)
	Time offset (NOT		μs	0
Sidelink UE 1	Frequency offset 7)	(NOTE	Hz	0
	Propagation Cha			AWGN
	Antenna configu	ration		1x2 Low
	Sidelink Transmi	ssions		PSDCH
	RB allocation			PRB pairs (6, 7)
	Time offset (NOT	TE 6)	μs	0
Sidelink UE 2	Frequency offset 7)	(NOTE	Hz	0
	Propagation Cha			AWGN
	Antenna configu	ration		1x2 Low
NOTE 1: D O			•	

NOTE 1: $P_{\scriptscriptstyle B}=0$.

NOTE 2: OCNG is used to fully allocate the available resource blocks to virtual UEs.

NOTE 3: As specified in Table 4.2-2 in TS 36.211 [4]. NOTE 4: As specified in Table 4.2-1 in TS 36.211 [4].

NOTE 5: Applicable to both DL subframes and UL subframes configured for ProSe Direct Discovery.

NOTE 6: Time offset of Sidelink UE receive signal with respect to Cell 1 downlink timing at the tested UE.

NOTE 7: Frequency offset of Sidelink UE with respect to Cell 1 uplink frequency.

Table 11.3.2-2: Minimum performance

Test	Band-	Sidelink UE	Reference	Reference valu	е		
num.	width	Sidellik OL	channel	BLER of PSDCH (%)	SNR (dB)		
1	5 MHz	1	D.1 TDD	(NOTE 1)	24.3		
	3 IVITZ	2	D.1 TDD	30	6.9		
NOTE 1:	NOTE 1: There is no BLER requirement for Sidelink UE 1.						

11.4 Multiple timing reference test

The purpose of this test is to check the demodulation performance when receiving from two Sidelink UEs that follow different timing references and transmitting on different resources (non-overlapping in time).

11.4.1 FDD

The test parameters are specified in Table 11.4.1-1. Sidelink UE 2 and the receiver UE under test are associated with Cell 1. Sidelink UE 1 and 3 are associated with another cell and use a different timing, and UE 1 acts as a synchronization reference. The minimum requirements are specified in Table 11.4.1-2.

Table 11.4.1-1: Test Parameters

Pa	arameter	Unit	Test 1
Discovery resource p	ool configuration		As specified in Table A.7.1.1-2
DRX configuration			(Configuration #2-FDD) As specified in Table 11.1.2-1
N_{ac} at antenna port (NOTE 3)	dBm/15kHz	-98
Active cell(s)		dBIII/TORI12	Cell 1 (Serving cell)
7101170 0011(3)	Cyclic prefix		Normal
	Cell ID		0
	Downlink $\rho_{\scriptscriptstyle A}$	dB	0
	power $\rho_{\scriptscriptstyle B}$	dB	0 (NOTE 1)
Cell 1	allocation σ	dB	0
	OCNG Pattern NOTE 2		OP.1 FDD
	Propagation channel		AWGN
	Antenna configuratio	n	1x2
	RSRP	dBm/15kHz	-92
Active Sidelink UE(s)			Sidelink UEs 1, 2, 3
, ,	Sidelink Transmissio	ns	SLSS
	networkControlledSy	ncTx	ON
	slssid		30
	Time offset (NOTE 4) μs	3511
Sidelink UE 1	Frequency offset (NC 5)	OTE Hz	-100
	Propagation channel		EPA5
	Antenna configuratio		1x2 Low
	\widehat{E}_{s} of SLSS at anter		-82
	port		
	Sidelink Transmissio		PSDCH
	Resource pool used transmissions	for	discRxPool(0)
0.1.1.1.1.5.0	RB allocation		PRB pairs {2i, 2i+1), where i is chosen randomly uniformly from [0,11] in each discovery period.
Sidelink UE 2	Time offset (NOTE 4) μs	+1
	Frequency offset (NC 5)	OTE Hz	+200
	Propagation Channe	1	EPA5
	Antenna configuratio		1x2 Low
	Sidelink Transmissio		PSDCH
	Resource pool used transmissions		discRxPool(1)
	RB allocation		PRB pairs (2i, 2i+1), where i is chosen randomly uniformly from [0,11] in each discovery period.
Sidelink UE 3	Time offset (NOTE 4) μs	3511
	Frequency offset (NC 5)		+300
	Propagation Channe		EPA5
	Antenna configuratio		1x2 Low
NOTE 1: D O	,garate		TAL LOW

NOTE 1: $P_B = 0$.

NOTE 2: OCNG is used to fully allocate the available resource blocks to virtual UEs.

NOTE 3: Applicable to both DL channel and ProSe Direct Discovery Subframes on UL.

NOTE 4: Time offset of Sidelink UE receive signal with respect to Cell 1 downlink timing at the tested UE.

NOTE 5: Frequency offset of Sidelink UE with respect to Cell 1 uplink frequency.

Table 11.4.1-2: Minimum performance

	Test num.	Band-width	Sidelink UE	Reference channel	Reference value		
					BLER of PSDCH (%)NOTE 1	SNR (dB)	
ſ	1	5 MHz	2	D.1 FDD	30	4.6	
	'	3 IVITZ	3	D.1 FDD	30	4.6	

NOTE 1: The BLER is measured after 5 D2D Discovery periods (1600 frames) of lead time during which the test UE detects and synchronizes to Sidelink UE 1 SLSS.

11.5 Maximum Sidelink processes test

The purpose of this test is to verify the maximum number of Sidelink processes supported by the UE as reported using UE capability signalling (*discSupportedProc*).

The UE is required to meet only the test for the maximum channel bandwidth over the ProSe operating bands supported by the UE.

11.5.1 FDD

The test parameters are specified in Table 11.5.1-1. Multiple discovery resource pools are interleaved. Each Sidelink UE transmits in one of the resource pools with 3 retransmissions. The minimum requirements are specified in Table 11.5.1-2.

Table 11.5.1-1: Test Parameters

Parameter		Unit	Test 1-7	
Discovery resource pool configuration			As specified in Table A.7.1.1-3 (Configuration #3-FDD) with parameters BW _{Channel} , NPools = Number of configured resource pools (as specified in Table 11.5.1-2), and N = discSupportedProc	
DRX configura	ation			As specified in Table 11.1.2-1
Active cell(s)				Cell 1 (Serving cell)
(-)	Cyclic prefix			Normal
	Cell ID			0
	Downlink	$\rho_{\scriptscriptstyle A}$	dB	0
	power	$ ho_{\scriptscriptstyle B}$	dB	0 (NOTE 1)
Cell 1	allocation	σ	dB	0
	OCNG Patte	OCNG Pattern NOTE 2		OP.1 FDD
		Propagation channel		Static propagation condition No external noise sources are applied
	Antenna con	Antenna configuration		1x2
	RSRP		dBm/15kHz	-85
Active Sideline	(UE(s)			Sidelink UE i, i = 0,, discSupportedProc-1
	Sidelink Transmission	าร		PSDCH (D.1 FDD)
	Resource po (NOTE 3)	Resource pool index (NOTE 3)		$\left\lfloor rac{i}{N_{ extit{MAX}_ extit{SF}}} ight floor$
Sidelink UE i	PSDCH RB (NOTE 3)	allocation		PRB pairs {2*(i % N _{MAX_SF}), 2*(i % N _{MAX_SF})+1}
	Time offset (NOTE 4)	μs	0
	Frequency o (NOTE 5)	ffset	Hz	0
	Propagation			Static propagation condition No external noise sources are applied
	Antenna con	figuration		1x2 Low

NOTE 1: $P_{\scriptscriptstyle B}=0$.

NOTE 2: OCNG is used to fully allocate the available resource blocks to virtual UEs..

NOTE 3: N_{MAX_SF} represents the maximum number of Sidelink UEs transmitting in one subframe. $N_{MAX_SF} = 12$ (5

MHz), 25 (10MHz), 37 (15MHz), 50 (10MHz).

NOTE 4: Time offset of Sidelink UE receive signal with respect to Cell 1 downlink timing at the tested UE.

NOTE 5: Frequency offset of Sidelink UE with respect to Cell 1 uplink frequency.

Table 11.5.1-2: Minimum performance

Test num.	Bandwidth	discSupportedProc	Number of configured resource pools	\hat{E}_{s} at antenna port (dBm/15kHz)	Reference value for Sidelink UE i=0discSupportedProc- 1 Fraction of maximum throughput (%)
1	5 MHz	50	5	-85	95
2	10 MHz	50	2	-85	95
3	15 MHz	50	2	-85	95
4	20 MHz	50	1	-85	95
5	10 MHz	400	16	-85	95
6	15 MHz	400	11	-85	95
7	20 MHz	400	8	-85	95

11.5.2 TDD

The test parameters are specified in Table 11.5.2-1. Multiple discovery resource pools are interleaved. Each Sidelink UE transmits in one of the resource pools with 3 retransmissions. The minimum requirements are specified in Table 11.5.2-2.

Table 11.5.2-1: Test Parameters

	Parameter		Unit	Test 1-7	
Discovery resource pool configuration				As specified in Table A.7.1.2-2 (Configuration #2-TDD) with parameters BW _{Channel} , NPools = Number of configured resource pools (as specified in Table 11.5.2-2), and N = discSupportedProc	
DRX configura	tion			As specified in Table 11.1.2-1	
Active cell(s)				Cell 1 (Serving cell)	
	Cyclic prefix			Normal	
	Uplink downli configuration 3)	(NOTE		0	
	Special subfraconfiguration 4)			4	
	Cell ID			0	
Cell 1	Downlink	$ ho_{\scriptscriptstyle A}$	dB	0	
	power	$ ho_{\scriptscriptstyle B}$	dB	0 (NOTE 1)	
	allocation	σ	dB	0	
	OCNG Patter	n ^{NOTE 2}		OP.1 TDD	
	Propagation channel			Static propagation condition No external noise sources are applied	
	Antenna configuration			1x2	
	RSRP		dBm/15kHz	-85	
Active Sidelink	:UE(s)			Sidelink UE i, i = 0,, discSupportedProc-1	
	Sidelink Transmissions			PSDCH (D.1 TDD)	
	PSDCH Resource pool (NOTE 5)			$\left\lfloor rac{i}{N_{ extit{MAX}_SF}} ight floor$	
Sidelink UE i	PSDCH RB allocation (NOTE 5)			PRB pairs {2*(i % N _{MAX_SF}), 2*(i % N _{MAX_SF})+1}	
	Time offset (N	NOTE 6)	μs	0	
	Frequency of (NOTE 7)	fset	Hz	0	
	Propagation Channel			Static propagation condition No external noise sources are applied	
	Antenna conf	iguration		1x2 Low	

NOTE 1: $P_B = 0$.

NOTE 2: OCNG is used to fully allocate the available resource blocks to virtual UEs.

NOTE 3: As specified in Table 4.2-2 in TS 36.211 [4]. NOTE 4: As specified in Table 4.2-1 in TS 36.211 [4].

NOTE 5: N_{MAX_SF} represents the maximum number of Sidelink UEs transmitting in one subframe. N_{MAX_SF} = 12 (5 MHz), 25 (10MHz), 37 (15MHz), 50 (10MHz).

NOTE 6: Time offset of Sidelink UE receive signal with respect to Cell 1 downlink timing at the tested UE.

NOTE 7: Frequency offset of Sidelink UE with respect to Cell 1 uplink frequency.

95

Reference value **Number of** $\hat{E}_{arepsilon}$ at configured **Test Bandwidth** discSupportedProc antenna Fraction of maximum throughput (%) for resource num. port Sidelink UE i=0...discSupportedProc-1 pools (dBm/15kHz 5 MHz 95 50 -85 2 10 MHz 50 2 -85 95 15 MHz 50 -85 95 4 20 MHz 50 95 -85 5 400 16 95 10 MHz -85 6 15 MHz 400 11 -85 95

-85

Table 11.5.2-2: Minimum performance

12 Performance requirement (ProSe Direct Communication)

8

This clause contains the performance requirements for the Sidelink physical channels specified for ProSe Direct Communication in TS 36.211 [4].

12.1 General

20 MHz

12.1.1 Applicability of requirements

400

The requirements in this clause are applicable to UEs that support ProSe Direct Communication. Test cases defined for 5MHz channel bandwidth are applicable to UEs that support ProSe Direct Communication on only Band 31.

12.1.2 Reference DRX configuration

Table 12.1.2-1: Reference DRX configuration

Parameter	Value	Comments				
onDurationTimer	psf1					
drx-InactivityTimer	psf1					
drx-RetransmissionTimer	psf1					
longDRX-CycleStartOffset	sf2560, 0					
shortDRX	disabled					
NOTE: For further information see clause 6.3.2 in TS 36.331.						

12.2 Demodulation of PSSCH

The purpose of the requirements in this subclause is to verify the PSSCH demodulation performance with a single active PSSCH link.

12.2.1 FDD

The minimum requirements are specified in Table 12.2.1-2 with the test parameters specified in Table 12.2.1-1. This test specifies an out-of-coverge scenario where Sidelink UE 1 is the synchronization reference only and Sidelink UE 2 transmits PSCCH and PSSCH.

Table 12.2.1-1: Test Parameters

572

F	Parameter	Unit	Test 1
Communication	resource pool		As specified in Table A.7.2.1-1
configuration			(Configuration #1-FDD)
$N_{\it oc}$ at antenna port (NOTE 1)		dBm/15 kHz	-98
Active cell(s)			None
	Sidelink Transmissions		SLSS + PSBCH
	networkControlledSyn cTx		ON
	slssid		30
Sidelink UE 1	inCoverage (in MIB- SL)		FALSE
	syncOffsetIndicator		Set same as syncOffsetIndicator1 in Configuration #1-FDD
	Propagation channel		EPA5
	Antenna configuration		1x2 Low
	\widehat{E}_{s} at antenna port	dBm/15 kHz	-85
	Sidelink Transmissions		PSCCH + PSSCH
	PSCCH RMC		5MHz: CC.3 FDD 10 MHz: CC.4 FDD
	PSCCH subframe allocation		As defined by TS 36.213 with n_{PSCCH} chosen randomly
	PSCCH RB allocation		(uniformly) in $[0, \lfloor M_{RB}^{PSCCH} _^{RP} / 2 \rfloor L_{PSCCH} -1]$ every sc-period
	\widehat{E}_s of PSCCH at antenna port	dBm/15 kHz	-85
Sidelink UE 2	PSSCH RMC		As specificied in Table 12.2.1-2
Sidelink de 2	PSSCH subframe allocation		As per time repetition pattern specified in PSCCH
	PSSCH RB allocation		First transmission: Chosen randomly (uniformly) among the allowed RBs as per TS36.213 HARQ retransmission: As per frequency hopping indicated in PSCCH and specified in TS36.213
	Time offset (NOTE 2)	μs	+1
	Frequency offset (NOTE 3)	Hz	+200
	Propagation Channel		EVA70
	Antenna configuration		1x2 Low

NOTE 1: Applicable to both DL channel and ProSe Direct Communication Subframes on UL.

NOTE 2: Time offset of Sidelink UE 2 receive signal timing with respect to Sidelink UE 1 receive signal timing at the tested UE.

NOTE 3: Frequency offset of Sidelink UE 2 with respect to Sidelink UE 1 transmit frequency.

Table 12.2.1-2: Minimum performance

	Test	Sidelink	Sidelink Band-	PSSCH	Reference value		
	num.	UE	width	Reference channel	Fraction of maximum throughput (%) (NOTE 1)	SNR (dB) of PSSCH	
	1	0	10 MHz	CD.1 FDD	70	-3.4	
	1		5 MHz	70	-3.3		
N 1/	NOTE 4 THE RESERVE TO A SECOND TO THE RESERVE TO TH						

NOTE 1: The throughput is measured after 40 radio frames of lead time during which the test UE detects and synchronizes to Sidelink UE 1.

12.3 Demodulation of PSCCH

The purpose of the requirements in this subclause is to verify the PSCCH demodulation performance with a single active PSSCH link.

12.3.1 FDD

The minimum requirements are specified in Table 12.3.1-2 with the test parameters specified in Table 12.3.1-1. This test specifies an out-of-coverage scenario where Sidelink UE 1 is the synchronization reference only and Sidelink UE 2 transmits PSCCH and PSSCH.

Table 12.3.1-1: Test Parameters

Р	arameter	Unit	Test 1
Communication	resource pool		As specified in Table A.7.2.1-1
configuration			(Configuration #1-FDD)
$N_{\it oc}$ at antenna port (NOTE 1)		dBm/15 kHz	-98
Active cell(s)			None
	Sidelink Transmissions		SLSS + PSBCH
	networkControlledSyn cTx		ON
	slssid		30
Sidelink UE 1	inCoverage (in MIB- SL)		FALSE
	syncOffsetIndicator		Set same as syncOffsetIndicator1 in Configuration #1-FDD
	Propagation channel		EPA5
	Antenna configuration		1x2 Low
	$\widehat{E}_{\scriptscriptstyle s}$ at antenna port	dBm/15 kHz	-85
	Sidelink Transmissions		PSCCH + PSSCH
	PSCCH RMC		As specified in Table 12.3.1-2
	PSCCH subframe allocation		As defined by TS 36.213 with $n_{\it PSCCH}$ chosen randomly
	PSCCH RB allocation		(uniformly) in $[0, \lfloor M_{RB}^{PSCCH} \rfloor^{RP}/2 \rfloor L_{PSCCH} -1]$ every sc-period
	PSSCH RMC		CD.1 FDD
Sidelink UE 2	PSSCH subframe allocation		As per time repetition pattern specified in PSCCH
Sidellik de 2	PSSCH RB allocation		First transmission: Chosen randomly (uniformly) among the allowed RBs as per TS36.213 HARQ retransmission: As per frequency hopping indicated in PSCCH and specified in TS36.213
	Time offset (NOTE 2)	μs	+1
	Frequency offset (NOTE 3)	Hz	+200
	Propagation Channel		EVA70
	Antenna configuration		1x2 Low

NOTE 1: Applicable to both DL channel and ProSe Direct Communication Subframes on UL.

NOTE 2: Time offset of Sidelink UE 2 receive signal timing with respect to Sidelink UE 1 receive signal timing at the tested UE.

NOTE 3: Frequency offset of Sidelink UE 2 with respect to Sidelink UE 1 transmit frequency.

Table 12.3.1-2: Minimum performance

Test	Sidelink Band-		PSCCH Reference	Reference value		
num.	UE	width	channel	Probability of missed PSCCH (%) (NOTE 1)	SNR (dB) of PSCCH	
1	2	10 MHz	CC.4 FDD	1	4.7	
I		5 MHz	CC.3 FDD	1	4.8	
NOTE 4.	Tl l l. !!			and the solution of the soluti	III detecte end	

NOTE 1: The probability is measured after 40 radio frames of lead time during which the test UE detects and synchronizes to Sidelink UE 1.

12.4 Demodulation of PSBCH

The purpose of the requirements in this subclause is to verify the PSBCH demodulation performance with a single active link.

12.4.1 FDD

The minimum requirements are specified in Table 12.4.1-2 with the test parameters specified in Table 12.4.1-1.

Table 12.4.1-1: Test Parameters

	Parameter	Unit	Test 1
Communication res	ource pool configuration		As specified in Table A.7.2.1-1 (Configuration #1-FDD)
$N_{\it oc}$ at antenna por	t	dBm/15kHz	-98
Active cell(s)			None
	Sidelink Transmissions		SLSS + PSBCH (CP.1 FDD)
	networkControlledSyncTx		ON
	slssid		30
Sidelink UE 1	inCoverage (in MIB-SL)		FALSE
Sidelifik UE 1	syncOffsetIndicator		Set same as syncOffsetIndicator1 in Configuration #1-FDD
	Propagation channel		EPA5
	Antenna configuration		1x2 Low

Table 12.4.1-2: Minimum performance

Test				Reference value		
num.	Sidelink UE	Band-width	Reference channel	Probability of missed PSBCH (%) (NOTE 1)	SNR (dB)	
1	1	10 MHz	PSBCH	1	4.4	
1		5 MHz	(CP.1 FDD)	'	4.4	
NOTE :	t. The probabi		,	of load time during which the to		

NOTE 1: The probability is measured after 40 radio frames of lead time during which the test UE detects and synchronizes to Sidelink UE 1.

12.5 Power imbalance performance with two links

The purpose of this test is to check the demodulation performance when receiving PSSCH transmissions from two Sidelink UEs with power imbalance in one subframe.

12.5.1 FDD

The test parameters in Table 12.5.1-1 specifies an in-coverage scenario where Sidelink UE 1 and 2 are synchronized to Cell 1 and transmit PSSCH on adjacent RBs. The minimum requirements are specified in Table 12.5.1-2.

Table 12.5.1-1: Test Parameters

	Parameter		Unit	Test 1
Communication res	ource pool configurat	ion		As specified in Table A.7.2.1-2
	ource poor cornigural	.1011		(Configuration #2-FDD)
DRX configuration				As specified in Table 12.1.2-1
N_{oc} at antenna port (NOTE 3)			dBm/15kHz	-98
Active cell(s)				Cell 1 (Serving cell)
	Cyclic prefix			Normal
	Cell ID			0
	Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	0
• " •	Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (NOTE 1)
Cell 1		σ	dB	0
	OCNG Pattern (N	OTE 2)		OP.1 FDD
	Propagation chan			AWGN
	Antenna configura	ation		1x2
	RSRP		dBm/15kHz	-92
Active Sidelink UE(s	s)			Sidelink UE 1, Sidelink UE 2
	Sidelink Transmis	Sidelink Transmissions		PSCCH + PSSCH
	PSCCH RMC PSCCH subframe allocation			5 MHz: CC.1 FDD
				10 MHz: CC.2 FDD
				$n_{PSCCH}=0$ (as defined in TS 36.213)
	PSCCH RB alloca	PSCCH RB allocation		$m_{PSCCH} = \sigma$ (as defined in 10 66.216)
Sidelink UE 1	$ \widehat{E}_s \ \text{of PSCCH at antenna} $ 1 $ \frac{\text{port}}{\text{PSSCH RMC}} $		dBm/15kHz	-85
Sidelink UE 1				As specified in Table 12.5.1-2
	PSSCH subframe allocation			As per time repetition pattern specified in PSCCH
	PSSCH RB allocation			PRB pairs (4, 5)
	Time offset (NOTE 4)		μs	0
	Frequency offset (NOTE 5)		Ηz	0
	Propagation Channel		112	AWGN
	Antenna configura			1x2
	Sidelink Transmissions			PSCCH + PSSCH
				5 MHz: CC.1 FDD
	PSCCH RMC			10 MHz: CC.2 FDD
	PSCCH subframe	allocation		
	PSCCH RB alloca			$n_{\it PSCCH}=2$ (as defined in TS 36.213)
	\widehat{E}_{s} of PSCCH at	antenna	dBm/15kHz	-85
Sidelink UE 2	port			33
JIGOIIIN OL Z	PSSCH RMC			As specified in Table 12.5.1-2
	PSSCH subframe	allocation		As per time repetition pattern specified in PSCCH
	PSSCH RB alloca			PRB pairs (6, 7)
	Time offset (NOT	= 4)	μs	0
	Frequency offset	(NOTE 5)	Hz	0
	Propagation Channel			AWGN
	Antenna configura			1x2

NOTE 1: $P_B = 0$.

NOTE 2: OCNG is used to fully allocate the available resource blocks to virtual UEs. NOTE 3: Applicable to both DL channel and ProSe Direct Communication Subframes on UL.

NOTE 4: Time offset of Sidelink UE receive signal with respect to Cell 1 downlink timing at the tested UE. NOTE 5: Frequency offset of Sidelink UE with respect to Cell 1 uplink frequency.

Table 12.5.1-2: Minimum performance

Test	Band-		Reference		value					
num.	width	Sidelink UE	PSSCH Reference channel	Fraction of maximum throughput (%)	SNR (dB) of PSSCH					
1	5 / 10	1	CD.5 FDD	(NOTE 1)	24.35					
ı	1 MHz 2		CD.5 FDD	70	2.4					
NOTE 1	NOTE 1: There is no throughput requirement for Sidelink UE 1.									

12.6 Multiple timing reference test

The puporse of this test is to check the PSSCH demodulation performance when receiving from two Sidelink UEs that follow different timing references and transmitting on different resources (non-overalapping in time).

12.6.1 FDD

The test parameters are specified in Table 12.6.1-1. Sidelink UE 2 and the receiver UE under test are associated with Cell 1. Sidelink UE 1 and Sidelink UE 3 are associated with another cell and use a different timing, and Sidelink UE 1 acts as a synchronization reference only. The minimum requirements are specified in Table 12.6.1-2.

Table 12.6.1-1: Test Parameters

	Parameter		Unit	Test 1		
Communication reso		tion		As specified in Table A.7.2.1-3		
	urce poor cornigural			(Configuration #3-FDD)		
DRX configuration	(NOTE 0)			As specified in Table 12.1.2-1		
$N_{\it oc}$ at antenna port	(NOTE 3)		dBm/15kHz	-98		
Active cell(s)	10 " "			Cell 1 (Serving cell)		
l	Cyclic prefix Cell ID			Normal 0		
l	Cell ID		dB	0		
l	Downlink power	$\rho_{\scriptscriptstyle A}$		<u> </u>		
Cell 1	allocation	$\rho_{\scriptscriptstyle B}$	dB	0 (NOTE 1)		
1	OCNG Pattern NO	σ TE 2	dB	0 OP.1 FDD		
l	Propagation chan			AWGN		
	Antenna configura			1x2		
	RSRP		dBm/15kHz	-92		
Active Sidelink UE(s)				Sidelink UE 1, Sidelink UE 2, Sidelink UE 3		
	Sidelink Transmis			SLSS + PSBCH		
	networkControlled	dSyncix		ON		
l	slssid inCoverage (in MI	IR-SI)		30 TRUE		
l	<u> </u>	•		Set same as syncOffsetIndicator in Configuration		
Sidelink UE 1	syncOffsetIndicate	or		#3-FDD		
Oldellik OL 1	Time offset (NOT		ms	+12.51		
l	Frequency offset	(NOTE 6)	Hz	-100		
l	Propagation chan Antenna configura			EPA5 1x2 Low		
l	_		15 (45)			
	\overrightarrow{E}_s at antenna po		dBm/15kHz	-85		
l	Sidelink Transmis	sions		PSCCH + PSSCH		
l	Resource pool			commRxPool(0) 5MHz: CC.1 FDD		
l	PSCCH RMC			10 MHz: CC.2 FDD		
l				(NOTE 5)		
l	PSCCH subframe	allocation		As defined by TS 36.213 with $n_{\it PSCCH}$ chosen		
l	1 00011 Subiraine	anocation		randomly (uniformly) in		
1	PSCCH RB alloca	ation		$[0, M_{RB}^{PSCCH-RP}/2]L_{PSCCH}-1]$ every sc-period		
l	\hat{E} (Page 1)			I FSCCH I		
Sidelink UE 2	E_s of PSCCH at	antenna	dBm/15kHz	-85		
Oldonin OL L	port			As an afficient in Table 40.0.4.0		
l	PSSCH RMC PSSCH subframe	allocation		As specified in Table 12.6.1-2 As per time repetition pattern specified in PSCCH		
l	1 00011 Subirame	anocation		First transmission: Chosen randomly (uniformly)		
l	PSSCH RB alloca	ation		among the allowed RBs as per TS36.213		
l	1 30011 ND alloca	ation		HARQ retransmission: As per frequency hopping		
l	Time offset (NOT	E 1 5)		indicated in PSCCH and specified in TS36.213 PSCCH: +1µs PSSCH: +1µs – 288T _s		
1	Frequency offset		Hz	+200 +1μs +1μs +2001s		
İ	Propagation Char		112	EVA70		
	Antenna configura			1x2 Low		
	Sidelink Transmis	sions		PSCCH + PSSCH		
1	Resource pool			commRxPool(1)		
1	PSCCH RMC			5MHz: CC.5 FDD 10 MHz: CC.6 FDD		
1	PSCCH subframe	allocation		As defined by TS 36.213 with n_{PSCCH} chosen		
Sidelink UE 3				randomly (uniformly) in		
Oldonin OL O	PSCCH RB alloca	ation		$[0, M_{RB}^{PSCCH-RP}/2]L_{PSCCH}-1]$ every sc-period		
1				[O, LM RB / Z LPSCCH - 1] every sc-period		
1	\widehat{E}_s of PSCCH at	antenna	dBm/15kHz	-85		
			GDIII/ TORTIZ	-85		
ı	port PSSCH RMC					

PSSCH subframe allocation		As per time repetition pattern specified in PSCCH
PSSCH RB allocation		First transmission: Chosen randomly (uniformly) among the allowed RBs as per TS36.213 HARQ retransmission: As per frequency hopping indicated in PSCCH and specified in TS36.213
Time offset (NOTE 5)	ms	+12.509
Frequency offset (NOTE 6)	Hz	+300
Propagation Channel		EVA70
Antenna configuration		1x2 Low

NOTE 1: $P_B = 0$.

NOTE 2: OCNG is used to fully allocate the available resource blocks to virtual UEs.

NOTE 3: Applicable to both DL channel and ProSe Direct Communication Subframes on UL.

NOTE 4: Timing advance indication in PSSCH is set as 18 (= $288T_s$) in this test. PSSCH timing is advanced with respect

to PSCCH timing by the quantity (i.e., PSSCH timing shall be $+1\mu s - 288T_s$ in this test).

NOTE 5: Time offset of Sidelink UE receive signal with respect to Cell 1 downlink timing at the tested UE.

NOTE 6: Frequency offset of Sidelink UE with respect to Cell 1 uplink frequency.

Table 12.6.1-2: Minimum performance

	Band-	Sidelink	PSSCH	Reference value	
Test num.	Test num. width		Reference channel	Fraction of maximum throughput (%) (NOTE 1)	SNR (dB)
	10 MHz	2	CD.4 FDD	70	3.0
1	10 MHZ	3	CD.2 FDD	70	2.8
1	E MILI-	2	CD.3 FDD	70	2.9
	5 MHz	3	CD.2 FDD	70	2.8

NOTE 1: The throughput is measured after 40 radio frames of lead time during which the test UE detects and synchronizes to Sidelink UE 1.

12.7 Maximum Sidelink processes test

The purpose of this test is to verify the maximum number of Sidelink processes and the maximum number of bits per TTI supported by the UE.

12.7.1 FDD

The test parameters are specified in Table 12.7.1-1. Multiple communication resource pools are interleaved. Each active Sidelink UE transmits in one of the resource pools with 3 retransmissions. The minimum requirements are specified in Table 12.7.1-2.

Table 12.7.1-1: Test Parameters

Parameter		Unit	Test 1				
Communication roa	nource pool configure	lion		As specified in Table A.7.2.1-4			
	source pool configura	lion		(Configuration #4-FDD)			
DRX configuration				As specified in Table 12.1.2-1			
Active cell(s)			Cell 1 (Serving cell)				
	Cyclic prefix			Normal			
	Cell ID			0			
	Downlink power	$ ho_{\scriptscriptstyle A}$	dB	0			
	allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (NOTE 1)			
Cell 1		σ	dB	0			
	OCNG Pattern (N	OTE 2)		OP.1 FDD			
	Propagation chan	nel		Static propagation condition			
		. •		No external noise sources are applied			
	Antenna configura	ation		1x2			
	RSRP		dBm/15kHz	-85			
Active Sidelink UE				Sidelink UE i, 0 ≤ i ≤ 15			
	Sidelink Transmissions			PSCCH + PSSCH			
	Resource pool	Resource pool		$commRxPool(\left\lfloor rac{i}{8} ight floor)$			
	PSCCH RMC			5MHz: CC.1 FDD with I _{TRP} =i%8 (NOTE 3) 10 MHz: CC.2 FDD with I _{TRP} = i%8 (NOTE 3)			
Sidelink UE i,		PSCCH subframe allocation		As defined by TS 36.213 with $n_{\it PSCCH} = i$			
0 ≤ i ≤ 15	PSCCH RB alloca	ation					
	PSSCH RMC			As specified in Table 12.7.1-2			
	PSSCH subframe			As per time repetition pattern specified in PSCCH			
	PSSCH RB alloca	ation		Fully allocated			
	Time offset (NOT	E 4)	μs	0			
	Frequency offset	(NOTE 5)	Hz	0			
	Propagation Char	nnel		Static propagation condition No external noise sources are applied			
	Antenna configura	ation		1x2 Low			
NOTE 1. D. O.							

NOTE 1: $P_B = 0$.

NOTE 2: OCNG is used to fully allocate the available resource blocks to virtual UEs.

 $I_{TRP} = 1$ corresponds to a time repetition pattern of (0,1,0,0,0,0,0,0), etc.

NOTE 4: Time offset of Sidelink UE receive signal with respect to Cell 1 downlink timing at the tested UE.

NOTE 5: Frequency offset of Sidelink UE with respect to Cell 1 uplink frequency.

Table 12.7.1-2: Minimum performance

Test	Bandwidth	PSCCH Reference	$\hat{E}_{\scriptscriptstyle s}$ at	Reference value for Sidelink UE i=015				
num.	Danawiani	channel	antenna port (dBm/15kHz)	Fraction of maximum throughput (%)				
1	10 MHz	CD.7 FDD	-85	95				
'	5 MHz	CD.6 FDD	-85	95				

12.8 Sustained downlink data rate with active Sidelink

The purpose of this test is to verify the downlink data rate is not impacted when Sidelink resource are also configured. The test parameters are in Table 12.8.1-1. Cell 1 is the serving cell and UE 1 and UE 2 are transmitters of Prose Direct Communication. The test UE is expected to receive all PDSCH transmissions, and prioritize the transmission of ACK/NACK over the reception of UE 2's PSSCH.

The test cases apply to UE categories and bandwidth combinations with maximum aggregated bandwidth as specified in Table 12.8.1-2. The minimum requirements are specified in Table 12.8.1-3. The TB success rate in the cellular link shall be sustained during at least 300 frames.

Table 12.8.1-1: Test parameters for sustained downlink data rate (FDD 64QAM) with active Sidelink

	Parameter	Unit	Test 1, 2, 3A
Communication resu	ource pool configuration		As specified in Table A.7.2.1-5
			(Configuration #5-FDD)
Active cell(s)			Cell 1 (Serving cell)
Cell 1	Test parameters		As specified in clause 8.7.1: Table 8.7.1-1 and Test 1, 2, 3A in Table 8.7.1-2
Active Sidelink UE(s	s)		Sidelink UE 1, Sidelink UE 2
	Sidelink Transmissions		PSCCH + PSSCH
	PSCCH RMC		10 MHz: CC.2 FDD with I _{TRP} =0 (NOTE 1)
	PSCCH subframe allocation		As defined by TS 36.213 with $n_{PSCCH} = 0$
	PSCCH RB allocation		40 MIL OD 7 FDD
	PSSCH RMC		10 MHz: CD.7 FDD
Sidelink UE 1	PSSCH subframe allocation		As per time repetition pattern specified in PSCCH
Sidellink OE 1	PSSCH RB allocation		Fully allocated
	Time offset (NOTE 3)	μs	0
	Frequency offset (NOTE 4)	Hz	0
	Propagation Channel		Static propagation condition No external noise sources are applied
	Antenna configuration		1x2 Low
	$\widehat{E}_{\scriptscriptstyle s}$ at antenna port	dBm/15kHz	-85
	Sidelink Transmissions		PSCCH (NOTE 2)
	PSCCH RMC		10 MHz: CC.2 FDD with ITRP=1 (NOTE 1)
	PSCCH subframe allocation PSCCH RB allocation		As defined by TS 36.213 with $n_{PSCCH} = 1$
	Time offset (NOTE 3)	μs	0
Sidelink UE 2	Frequency offset (NOTE 4)	Hz	0
0.00mm 0L L	Propagation Channel	112	Static propagation condition No external noise sources are applied
	Antenna configuration		1x2 Low
	\widehat{E}_s at antenna port	dBm/15kHz	-85

NOTE 1: For N_{TRP} = 8 (FDD) and trpt-Subset = 001, I_{TRP} = 0 corresponds to a time repetition pattern of (1,0,0,0,0,0,0,0), I_{TRP} = 1 corresponds to a time repetition pattern of (0,1,0,0,0,0,0,0).

Table 12.8.1-2: Test cases for sustained data rate

CA config	Maximum supported Bandwidth/ Bandwidth combination (MHz)	Cat. 1	Cat. 2	Cat. 3	Cat. 4	Cat. 6,7	Cat. 9,10	Cat 11, 12
Single carrier	10	1	2	3A	3A	3A	3A	3A

NOTE 2: Sidelink UE 2 transmits PSCCH but not PSSCH.

NOTE 3: Time offset of Sidelink UE receive signal with respect to Cell 1 downlink timing at the tested UE.

NOTE 4: Frequency offset of Sidelink UE with respect to Cell 1 uplink frequency.

Table 12.8.1-3: Minimum requirements (FDD 64QAM) with active Sidelink

Test	Bandwidth (MHz)	Number of bits of a	Measurement	Reference value	
		DL-SCH transport block received within	channel	PDSCH TB success rate (%)	
		a TTI			
1	10	10296	R.31-1 FDD (NOTE 2)	95	
2	10	25456	R.31-2 FDD (NOTE 2)	95	
3A	10	36696 (NOTE 1)	R.31-3A FDD (NOTE	85	
			2)		
NOTE 1	: 35160 bits for sub-fram	ne 5.			
NOTE 2		ttern is changed as per the			

PDSCH scheduling subframe bitmap = {01110111 11110111 11110111 11111110}.

Annex A (normative): Measurement channels

A.1 General

The throughput values defined in the measurement channels specified in Annex A, are calculated and are valid per datastream (codeword). For multi-stream (more than one codeword) transmissions, the throughput referenced in the minimum requirements is the sum of throughputs of all datastreams (codewords).

The UE category entry in the definition of the reference measurement channel in Annex A is only informative and reveals the UE categories, which can support the corresponding measurement channel. Whether the measurement channel is used for testing a certain UE category or not is specified in the individual minimum requirements.

A.2 UL reference measurement channels

A.2.1 General

The measurement channels in the following subclauses are defined to derive the requirements in clause 6 (Transmitter Characteristics) and clause 7 (Receiver Characteristics). The measurement channels represent example configurations of physical channels for different data rates.

A.2.1.1 Applicability and common parameters

The UL reference measurement channels comprise transmission of PUSCH and Demodulation Reference signals only. The following conditions apply:

- 1 HARQ transmission
- Cyclic Prefix normal
- PUSCH hopping off
- Link adaptation off
- Demodulation Reference signal as per TS 36.211 [4] subclause 5.5.2.1.2.

Where ACK/NACK is transmitted, it is assumed to be multiplexed on PUSCH as per TS 36.212 [5] subclause 5.2.2.6.

- ACK/NACK 1 bit
- ACK/NACK mapping adjacent to Demodulation Reference symbol
- ACK/NACK resources punctured into data
- Max number of resources for ACK/NACK: 4 SC-FDMA symbols per subframe
- No CQI transmitted, no RI transmitted

A.2.1.2 Determination of payload size

The algorithm for determining the payload size A is as follows; given a desired coding rate R and radio block allocation N_{RB}

- 1. Calculate the number of channel bits N_{ch} that can be transmitted during the first transmission of a given sub-frame.
- 2. Find A such that the resulting coding rate is as close to R as possible, that is,

$$\min |R - (A + 24*(N_{CB} + 1))/N_{ch}|, where N_{CB} = \begin{cases} 0, & \text{if } C = 1\\ C, & \text{if } C > 1 \end{cases}$$

subject to

- a) A is a valid TB size according to section 7.1.7 of TS 36.213 [6] assuming an allocation of N_{RB} resource blocks
- b) C is the number of Code Blocks calculated according to section 5.1.2 of TS 36.212 [5].
- c) For RMC-s, which at the nominal target coding rate do not cover all the possible UE categories for the given modulation, reduce the target coding rate gradually (within the same modulation), until the maximal possible number of UE categories is covered.
- 3. If there is more than one A that minimises the equation above, then the larger value is chosen per default and the chosen code rate should not exceed 0.93.

A.2.1.3 Overview of UL reference measurement channels

In Table A.2.1.3-1 to A.2.1.3-1G are listed the UL reference measurement channels specified in annexes A.2.2 and A.2.3 of this release of TS 36.101. This table is informative and serves only to a better overview. The reference for the concrete reference measurement channels and corresponding implementation's parameters as to be used for requirements are annexes A.2.2 and A.2.3 as appropriate.

Table A.2.1.3-1: Overview of UL reference measurement channels (FDD, Full RB allocation, QPSK)

Duplex	Table	Name	вw	Mod	TCR	RB	RB Off set	UE Cat eg	Notes
FDD	Table A.2.2.1.1-1		1.4	QPSK	1/3	6		≥ 1	
FDD	Table A.2.2.1.1-1		3	QPSK	1/3	15		≥ 1	
FDD	Table A.2.2.1.1-1		5	QPSK	1/3	25		≥ 1	
FDD	Table A.2.2.1.1-1		10	QPSK	1/3	50		≥ 1	
FDD	Table A.2.2.1.1-1		15	QPSK	1/5	75		≥ 1	
FDD	Table A.2.2.1.1-1		20	QPSK	1/6	100		≥ 1	
FDD / HD-FDD	Table A.2.2.1.1-1a		1.4	QPSK	1/3	6		-	UE UL category 0
FDD / HD-FDD	Table A.2.2.1.1-1a		3	QPSK	1/5	15		-	UE UL category 0
FDD / HD-FDD	Table A.2.2.1.1-1a		5	QPSK	1/8	25		-	UE UL category 0
FDD / HD-FDD	Table A.2.2.1.1-1a		10	QPSK	1/10	36		-	UE UL category 0
FDD / HD-FDD	Table A.2.2.1.1-1a		15	QPSK	1/10	36		-	UE UL category 0
FDD / HD-FDD	Table A.2.2.1.1-1a		20	QPSK	1/10	36		-	UE UL category 0

Table A.2.1.3-1A: Overview of UL reference measurement channels (FDD, Full RB allocation, 16-QAM)

Duplex	Table	Name	BW	Mod	TCR	RB	RB Off set	UE Cat eg	Notes
FDD	Table A.2.2.1.2-1		1.4	16QAM	3/4	6		≥ 1	
FDD	Table A.2.2.1.2-1		3	16QAM	1/2	15		≥ 1	
FDD	Table A.2.2.1.2-1		5	16QAM	1/3	25		≥ 1	
FDD	Table A.2.2.1.2-1		10	16QAM	3/4	50		≥ 2	
FDD	Table A.2.2.1.2-1		15	16QAM	1/2	75		≥ 2	
FDD	Table A.2.2.1.2-1		20	16QAM	1/3	100		≥ 2	
FDD / HD-FDD	Table A.2.2.1.2-1a		1.4	16QAM	1/3	5		-	UE UL category 0
FDD / HD-FDD	Table A.2.2.1.2-1a		3	16QAM	1/3	5		-	UE UL category 0
FDD / HD-FDD	Table A.2.2.1.2-1a		5	16QAM	1/3	5		-	UE UL category 0
FDD / HD-FDD	Table A.2.2.1.2-1a		10	16QAM	1/3	5		-	UE UL category 0
FDD / HD-FDD	Table A.2.2.1.2-1a		15	16QAM	1/3	5		-	UE UL category 0
FDD / HD-FDD	Table A.2.2.1.2-1a		20	16QAM	1/3	5		-	UE UL category 0

Table A.2.1.3-1B: Overview of UL reference measurement channels (FDD, Partial RB allocation, QPSK)

						1			
Duplex	Table	Name	BW	Mod	TCR	RB	RB Off set	UE Cat eg	Notes
FDD	Table A.2.2.2.1-1		1.4 - 20	QPSK	1/3	1		≥ 1	
FDD	Table A.2.2.2.1-1		1.4 - 20	QPSK	1/3	2		≥ 1	
FDD	Table A.2.2.2.1-1		1.4 - 20	QPSK	1/3	3		≥ 1	
FDD	Table A.2.2.2.1-1		1.4 - 20	QPSK	1/3	4		≥ 1	
FDD	Table A.2.2.2.1-1		1.4 - 20	QPSK	1/3	5		≥ 1	
FDD	Table A.2.2.2.1-1		3 - 20	QPSK	1/3	6		≥ 1	
FDD	Table A.2.2.2.1-1		3 - 20	QPSK	1/3	8		≥ 1	
FDD	Table A.2.2.2.1-1		3 - 20	QPSK	1/3	9		≥ 1	
FDD	Table A.2.2.2.1-1		3 - 20	QPSK	1/3	10		≥ 1	
FDD	Table A.2.2.2.1-1		3 - 20	QPSK	1/3	12		≥ 1	
FDD	Table A.2.2.2.1-1		5 - 20	QPSK	1/3	15		≥ 1	
FDD	Table A.2.2.2.1-1		5 - 20	QPSK	1/3	16		≥ 1	
FDD	Table A.2.2.2.1-1		5 - 20	QPSK	1/3	18		≥ 1	
FDD	Table A.2.2.2.1-1		5 - 20	QPSK	1/3	20		≥ 1	
FDD	Table A.2.2.2.1-1		5 - 20	QPSK	1/3	24		≥ 1	
FDD	Table A.2.2.2.1-1		10 - 20	QPSK	1/3	25		≥ 1	
FDD	Table A.2.2.2.1-1		10 - 20	QPSK	1/3	27		≥ 1	
FDD	Table A.2.2.2.1-1		10 - 20	QPSK	1/3	30		≥ 1	
FDD	Table A.2.2.2.1-1		10 - 20	QPSK	1/3	32		≥ 1	
FDD	Table A.2.2.2.1-1		10 - 20	QPSK	1/3	36		≥ 1	
FDD	Table A.2.2.2.1-1		10 - 20	QPSK	1/3	40		≥ 1	
FDD	Table A.2.2.2.1-1		10 - 20	QPSK	1/3	45		≥ 1	
FDD	Table A.2.2.2.1-1		10 - 20	QPSK	1/3	48		≥ 1	
FDD	Table A.2.2.2.1-1		15 - 20	QPSK	1/3	50		≥ 1	
FDD	Table A.2.2.2.1-1		15 - 20	QPSK	1/3	54		≥ 1	
FDD	Table A.2.2.2.1-1		15 - 20	QPSK	1/4	60		≥ 1	
FDD	Table A.2.2.2.1-1		15 - 20	QPSK	1/4	64		≥ 1	
FDD	Table A.2.2.2.1-1		15 - 20	QPSK	1/4	72		≥ 1	
FDD	Table A.2.2.2.1-1		20	QPSK	1/5	75		≥ 1	
FDD	Table A.2.2.2.1-1		20	QPSK	1/5	80		≥ 1	
FDD	Table A.2.2.2.1-1		20	QPSK	1/5	81		≥ 1	
FDD	Table A.2.2.2.1-1		20	QPSK	1/6	90		≥ 1	
FDD	Table A.2.2.2.1-1		20	QPSK	1/6	96		≥ 1	
FDD / HD-FDD	Table A.2.2.2.1-1a		1.4 - 20	QPSK	1/3	1		-	UE UL category 0
FDD / HD-FDD	Table A.2.2.2.1-1a		1.4 - 20	QPSK	1/3	2		-	UE UL category 0
FDD / HD-FDD	Table A.2.2.2.1-1a		1.4 - 20	QPSK	1/3	3		-	UE UL category 0
FDD / HD-FDD	Table A.2.2.2.1-1a		1.4 - 20	QPSK	1/3	4		-	UE UL category 0
FDD / HD-FDD	Table A.2.2.2.1-1a		1.4 - 20	QPSK	1/3	5		-	UE UL category 0
FDD / HD-FDD	Table A.2.2.2.1-1a		3-20	QPSK	1/3	6		-	UE UL category 0
FDD / HD-FDD	Table A.2.2.2.1-1a		3-20	QPSK	1/3	8		-	UE UL category 0
FDD / HD-FDD	Table A.2.2.2.1-1a		3-20	QPSK	1/3	9		-	UE UL category 0
FDD / HD-FDD	Table A.2.2.2.1-1a		3-20	QPSK	1/3	10		-	UE UL category 0
FDD / HD-FDD	Table A.2.2.2.1-1a		3-20	QPSK	1/4	12		-	UE UL category 0
FDD / HD-FDD	Table A.2.2.2.1-1a	- 	5-20	QPSK	1/5	15		-	UE UL category 0

FDD / HD-FDD	Table A.2.2.2.1-1a	5-20	QPSK	1/5	16	-	UE UL category 0
FDD / HD-FDD	Table A.2.2.2.1-1a	5-20	QPSK	1/6	18		UE UL category 0
FDD / HD-FDD	Table A.2.2.2.1-1a	5-20	QPSK	1/6	20	-	UE UL category 0
FDD / HD-FDD	Table A.2.2.2.1-1a	5-20	QPSK	1/8	24	-	UE UL category 0
FDD / HD-FDD	Table A.2.2.2.1-1a	10-20	QPSK	1/8	25	-	UE UL category 0
FDD / HD-FDD	Table A.2.2.2.1-1a	10-20	QPSK	1/8	27		UE UL category 0
FDD / HD-FDD	Table A.2.2.2.1-1a	10-20	QPSK	1/10	30	-	UE UL category 0

Table A.2.1.3-1C: Overview of UL reference measurement channels (FDD, Partial RB allocation, 16-QAM)

Duplex	Table	Name	BW	Mod	TCR	RB	RB Off set	UE Cat eg	Notes
FDD	Table A.2.2.2.2-1		1.4 - 20	16QAM	3/4	1		≥ 1	
FDD	Table A.2.2.2.2-1		1.4 - 20	16QAM	3/4	2		≥ 1	
FDD	Table A.2.2.2.2-1		1.4 - 20	16QAM	3/4	3		≥ 1	
FDD	Table A.2.2.2.2-1		1.4 - 20	16QAM	3/4	4		≥ 1	
FDD	Table A.2.2.2.2-1		1.4 - 20	16QAM	3/4	5		≥ 1	
FDD	Table A.2.2.2.2-1		3 - 20	16QAM	3/4	6		≥ 1	
FDD	Table A.2.2.2.2-1		3 - 20	16QAM	3/4	8		≥ 1	
FDD	Table A.2.2.2.2-1		3 - 20	16QAM	3/4	9		≥ 1	
FDD	Table A.2.2.2.2-1		3 - 20	16QAM	3/4	10		≥ 1	
FDD	Table A.2.2.2.2-1		3 - 20	16QAM	3/4	12		≥ 1	
FDD	Table A.2.2.2.2-1		5 - 20	16QAM	1/2	15		≥ 1	
FDD	Table A.2.2.2.2-1		5 - 20	16QAM	1/2	16		≥ 1	
FDD	Table A.2.2.2.2-1		5 - 20	16QAM	1/2	18		≥ 1	
FDD	Table A.2.2.2.2-1		5 - 20	16QAM	1/3	20		≥ 1	
FDD	Table A.2.2.2.2-1		5 - 20	16QAM	1/3	24		≥ 1	
FDD	Table A.2.2.2.2-1		10 - 20	16QAM	1/3	25		≥ 1	
FDD	Table A.2.2.2.2-1		10 - 20	16QAM	1/3	27		≥ 1	
FDD	Table A.2.2.2.2-1		10 - 20	16QAM	3/4	30		≥ 2	
FDD	Table A.2.2.2.2-1		10 - 20	16QAM	3/4	32		≥ 2	
FDD	Table A.2.2.2.2-1		10 - 20	16QAM	3/4	36		≥ 2	
FDD	Table A.2.2.2.2-1		10 - 20	16QAM	3/4	40		≥ 2	
FDD	Table A.2.2.2.2-1		10 - 20	16QAM	3/4	45		≥ 2	
FDD	Table A.2.2.2.2-1		10 - 20	16QAM	3/4	48		≥ 2	
FDD	Table A.2.2.2.2-1		15 - 20	16QAM	3/4	50		≥ 2	
FDD	Table A.2.2.2.2-1		15 - 20	16QAM	3/4	54		≥ 2	
FDD	Table A.2.2.2.2-1		15 - 20	16QAM	2/3	60		≥ 2	
FDD	Table A.2.2.2.2-1		15 - 20	16QAM	2/3	64		≥ 2	
FDD	Table A.2.2.2.2-1		15 - 20	16QAM	1/2	72		≥ 2	
FDD	Table A.2.2.2.2-1		20	16QAM	1/2	75		≥ 2	
FDD	Table A.2.2.2.2-1		20	16QAM	1/2	80		≥ 2	
FDD	Table A.2.2.2.1		20	16QAM	1/2	81		≥ 2	
FDD	Table A.2.2.2.2-1		20	16QAM	2/5	90		≥ 2	
FDD	Table A.2.2.2.2-1		20	16QAM	2/5	96		≥ 2	
FDD / HD-FDD	Table A.2.2.2.1a		1.4 - 20	16QAM	3/4	1		-	UE UL category 0
FDD / HD-FDD	Table A.2.2.2.1a		1.4 - 20	16QAM	3/4	2		-	UE UL category 0
FDD / HD-FDD	Table A.2.2.2.1a		1.4 - 20	16QAM	2/5	4		-	UE UL category 0

Table A.2.1.3-1D: Overview of UL reference measurement channels (TDD, Full RB allocation, QPSK)

Duplex	Table	Name	BW	Mod	TCR	RB	RB Off set	UE Cat eg	Notes
TDD	Table A.2.3.1.1-1		1.4	QPSK	1/3	6		≥ 1	
TDD	Table A.2.3.1.1-1		3	QPSK	1/3	15		≥ 1	
TDD	Table A.2.3.1.1-1		5	QPSK	1/3	25		≥ 1	
TDD	Table A.2.3.1.1-1		10	QPSK	1/3	50		≥ 1	
TDD	Table A.2.3.1.1-1		15	QPSK	1/5	75		≥ 1	
TDD	Table A.2.3.1.1-1		20	QPSK	1/6	100		≥ 1	
TDD	Table A.2.3.1.1-1a		1.4	QPSK	1/3	6		-	UE UL category 0
TDD	Table A.2.3.1.1-1a		3	QPSK	1/5	15		-	UE UL category 0
TDD	Table A.2.3.1.1-1a		5	QPSK	1/8	25		-	UE UL category 0
TDD	Table A.2.3.1.1-1a		10	QPSK	1/10	36		-	UE UL category 0
-	Table A.2.3.1.1-1a		15	QPSK	1/10	36		-	UE UL category 0
TDD	Table A.2.3.1.1-1a		20	QPSK	1/10	36		-	UE UL category 0

Table A.2.1.3-1E: Overview of UL reference measurement channels (TDD, Full RB allocation, 16-QAM)

Duplex	Table	Name	BW	Mod	TCR	RB	RB Off set	UE Cat eg	Notes
TDD	Table A.2.3.1.2-1		1.4	16QAM	3/4	6		≥ 1	
TDD	Table A.2.3.1.2-1		3	16QAM	1/2	15		≥ 1	
TDD	Table A.2.3.1.2-1		5	16QAM	1/3	25		≥ 1	
TDD	Table A.2.3.1.2-1		10	16QAM	3/4	50		≥ 2	
TDD	Table A.2.3.1.2-1		15	16QAM	1/2	75		≥ 2	
TDD	Table A.2.3.1.2-1		20	16QAM	1/3	100		≥ 2	
TDD	Table A.2.3.1.2-1a		1.4	16QAM	1/3	5		-	UE UL category 0
TDD	Table A.2.3.1.2-1a		3	16QAM	1/3	5		-	UE UL category 0
TDD	Table A.2.3.1.2-1a		5	16QAM	1/3	5		-	UE UL category 0
TDD	Table A.2.3.1.2-1a		10	16QAM	1/3	5		-	UE UL category 0
TDD	Table A.2.3.1.2-1a		15	16QAM	1/3	5		-	UE UL category 0
TDD	Table A.2.3.1.2-1a		20	16QAM	1/3	5		-	UE UL category 0

Table A.2.1.3-1F: Overview of UL reference measurement channels (TDD, Partial RB allocation, QPSK)

Duplex	Table	Name	BW	Mod	TCR	RB	RB Off set	UE Cat eg	Notes
TDD	Table A.2.3.2.1-1		1.4 - 20	QPSK	1/3	1		≥ 1	
TDD	Table A.2.3.2.1-1		1.4 - 20	QPSK	1/3	2		≥ 1	
TDD	Table A.2.3.2.1-1		1.4 - 20	QPSK	1/3	3		≥ 1	
TDD	Table A.2.3.2.1-1		1.4 - 20	QPSK	1/3	4		≥ 1	
TDD	Table A.2.3.2.1-1		1.4 - 20	QPSK	1/3	5		≥ 1	
TDD	Table A.2.3.2.1-1		3 - 20	QPSK	1/3	6		≥ 1	
TDD	Table A.2.3.2.1-1		3 - 20	QPSK	1/3	8		≥ 1	
TDD	Table A.2.3.2.1-1		3 - 20	QPSK	1/3	9		≥ 1	
TDD	Table A.2.3.2.1-1		3 - 20	QPSK	1/3	10		≥ 1	
TDD	Table A.2.3.2.1-1		3 - 20	QPSK	1/3	12		≥ 1	
TDD	Table A.2.3.2.1-1		5 - 20	QPSK	1/3	15		≥ 1	
TDD	Table A.2.3.2.1-1		5 - 20	QPSK	1/3	16		≥ 1	
TDD	Table A.2.3.2.1-1		5 - 20	QPSK	1/3	18		≥ 1	
TDD	Table A.2.3.2.1-1		5 - 20	QPSK	1/3	20		≥ 1	
TDD	Table A.2.3.2.1-1		5 - 20	QPSK	1/3	24		≥ 1	
TDD	Table A.2.3.2.1-1		10 - 20	QPSK	1/3	25		≥ 1	
TDD	Table A.2.3.2.1-1		10 - 20	QPSK	1/3	27		≥ 1	
TDD	Table A.2.3.2.1-1		10 - 20	QPSK	1/3	30		≥ 1	
TDD	Table A.2.3.2.1-1		10 - 20	QPSK	1/3	32		≥ 1	
TDD	Table A.2.3.2.1-1		10 - 20	QPSK	1/3	36		≥ 1	
TDD	Table A.2.3.2.1-1		10 - 20	QPSK	1/3	40		≥ 1	
TDD	Table A.2.3.2.1-1		10 - 20	QPSK	1/3	45		≥ 1	
TDD	Table A.2.3.2.1-1		10 - 20	QPSK	1/3	48		≥ 1	
TDD	Table A.2.3.2.1-1		15 - 20	QPSK	1/3	50		≥ 1	
TDD	Table A.2.3.2.1-1		15 - 20	QPSK	1/3	54		≥ 1	
TDD	Table A.2.3.2.1-1		15 - 20	QPSK	1/4	60		≥ 1	
TDD	Table A.2.3.2.1-1		15 - 20	QPSK	1/4	64		≥ 1	
TDD	Table A.2.3.2.1-1		15 - 20	QPSK	1/4	72		≥ 1	
TDD	Table A.2.3.2.1-1		20	QPSK	1/5	75		≥ 1	
TDD	Table A.2.3.2.1-1		20	QPSK	1/5	80		≥ 1	
TDD	Table A.2.3.2.1-1		20	QPSK	1/5	81		≥ 1	
TDD	Table A.2.3.2.1-1		20	QPSK	1/6	90		≥ 1	
TDD	Table A.2.3.2.1-1		20	QPSK	1/6	96		≥ 1	
TDD	Table A.2.3.2.1-1a		1.4 - 20	QPSK	1/3	1		-	UE UL category 0
TDD	Table A.2.3.2.1-1a		1.4 - 20	QPSK	1/3	2		-	UE UL category 0
TDD	Table A.2.3.2.1-1a		1.4 - 20	QPSK	1/3	3		-	UE UL category 0
TDD	Table A.2.3.2.1-1a		1.4 - 20	QPSK	1/3	4		-	UE UL category 0
TDD	Table A.2.3.2.1-1a		1.4 - 20	QPSK	1/3	5		-	UE UL category 0
TDD	Table A.2.3.2.1-1a		3-20	QPSK	1/3	6		-	UE UL category 0
TDD	Table A.2.3.2.1-1a		3-20	QPSK	1/3	8		-	UE UL category 0
TDD	Table A.2.3.2.1-1a		3-20	QPSK	1/3	9		-	UE UL category 0
TDD	Table A.2.3.2.1-1a		3-20	QPSK	1/3	10		-	UE UL category 0
TDD	Table A.2.3.2.1-1a		3-20	QPSK	1/4	12		-	UE UL category 0
TDD	Table A.2.3.2.1-1a		5-20	QPSK	1/5	15		-	UE UL category 0

ETSI TS 136 101 V12.22.0 (2019-05)

TDD	Table A.2.3.2.1-1a	5-20	QPSK	1/5	16	-	UE UL category 0
TDD	Table A.2.3.2.1-1a	5-20	QPSK	1/6	18	1	UE UL category 0
TDD	Table A.2.3.2.1-1a	5-20	QPSK	1/6	20	1	UE UL category 0
TDD	Table A.2.3.2.1-1a	5-20	QPSK	1/8	24	1	UE UL category 0
TDD	Table A.2.3.2.1-1a	10-20	QPSK	1/8	25	-	UE UL category 0
TDD	Table A.2.3.2.1-1a	10-20	QPSK	1/8	27		UE UL category 0
TDD	Table A.2.3.2.1-1a	10-20	QPSK	1/10	30	-	UE UL category 0

Table A.2.1.3-1G: Overview of UL reference measurement channels (TDD, Partial RB allocation, 16-QAM)

Duplex	Table	Name	BW	Mod	TCR	RB	RB Off set	UE Cat eg	Notes
TDD	Table A.2.3.2.2-1		1.4 - 20	16QAM	3/4	1	301	≥ 1	
TDD	Table A.2.3.2.2-1		1.4 - 20	16QAM	3/4	2		≥ 1	
TDD	Table A.2.3.2.2-1		1.4 - 20	16QAM	3/4	3		≥ 1	
TDD	Table A.2.3.2.2-1		1.4 - 20	16QAM	3/4	4		≥ 1	
TDD	Table A.2.3.2.2-1		1.4 - 20	16QAM	3/4	5		≥ 1	
TDD	Table A.2.3.2.2-1		3 - 20	16QAM	3/4	6		≥ 1	
TDD	Table A.2.3.2.2-1		3 - 20	16QAM	3/4	8		≥ 1	
TDD	Table A.2.3.2.2-1		3 - 20	16QAM	3/4	9		≥ 1	
TDD	Table A.2.3.2.2-1		3 - 20	16QAM	3/4	10		≥ 1	
TDD	Table A.2.3.2.2-1		3 - 20	16QAM	3/4	12		≥ 1	
TDD	Table A.2.3.2.2-1		5 - 20	16QAM	1/2	15		≥ 1	
TDD	Table A.2.3.2.2-1		5 - 20	16QAM	1/2	16		≥ 1	
TDD	Table A.2.3.2.2-1		5 - 20	16QAM	1/2	18		≥ 1	
TDD	Table A.2.3.2.2-1		5 - 20	16QAM	1/3	20		≥ 1	
TDD	Table A.2.3.2.2-1		5 - 20	16QAM	1/3	24		≥ 1	
TDD	Table A.2.3.2.2-1		10 - 20	16QAM	1/3	25		≥ 1	
TDD	Table A.2.3.2.2-1		10 - 20	16QAM	1/3	27		≥ 1	
TDD	Table A.2.3.2.2-1		10 - 20	16QAM	3/4	30		≥ 2	
TDD	Table A.2.3.2.2-1		10 - 20	16QAM	3/4	32		≥ 2	
TDD	Table A.2.3.2.2-1		10 - 20	16QAM	3/4	36		≥ 2	
TDD	Table A.2.3.2.2-1		10 - 20	16QAM	3/4	40		≥ 2	
TDD	Table A.2.3.2.2-1		10 - 20	16QAM	3/4	45		≥ 2	
TDD	Table A.2.3.2.2-1		10 - 20	16QAM	3/4	48		≥ 2	
TDD	Table A.2.3.2.2-1		15 - 20	16QAM	3/4	50		≥ 2	
TDD	Table A.2.3.2.2-1		15 - 20	16QAM	3/4	54		≥ 2	
TDD	Table A.2.3.2.2-1		15 - 20	16QAM	2/3	60		≥ 2	
TDD	Table A.2.3.2.2-1		15 - 20	16QAM	2/3	64		≥ 2	
TDD	Table A.2.3.2.2-1		15 - 20	16QAM	1/2	72		≥ 2	
TDD	Table A.2.3.2.2-1		20	16QAM	1/2	75		≥ 2	
TDD	Table A.2.3.2.2-1		20	16QAM	1/2	80		≥ 2	
TDD	Table A.2.3.2.2-1		20	16QAM	1/2	81		≥ 2	
TDD	Table A.2.3.2.2-1		20	16QAM	2/5	90		≥ 2	
TDD	Table A.2.3.2.2-1		20	16QAM	2/5	96		≥ 2	
TDD	Table A.2.3.2.2-1a		1.4 - 20	16QAM	3/4	1		-	UE UL category 0
TDD	Table A.2.3.2.2-1a		1.4 - 20	16QAM	3/4	2		-	UE UL category 0
TDD	Table A.2.3.2.2-1a		1.4 - 20	16QAM	2/5	4		-	UE UL category 0

A.2.2 Reference measurement channels for FDD

A.2.2.1 Full RB allocation

A.2.2.1.1 QPSK

Table A.2.2.1.1-1 Reference Channels for QPSK with full RB allocation

Parameter	Unit			Va	lue				
Channel bandwidth	MHz	1.4	3	5	10	15	20		
Allocated resource blocks		6	15	25	50	75	100		
DFT-OFDM Symbols per Sub-Frame		12	12	12	12	12	12		
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK		
Target Coding rate		1/3	1/3	1/3	1/3	1/5	1/6		
Payload size	Bits	600	1544	2216	5160	4392	4584		
Transport block CRC	Bits	24	24	24	24	24	24		
Number of code blocks per Sub-Frame (Note 1)		1	1	1	1	1	1		
Total number of bits per Sub-Frame	Bits	1728	4320	7200	14400	21600	28800		
Total symbols per Sub-Frame		864	2160	3600	7200	10800	14400		
UE Category ≥1 ≥1 ≥1 ≥1 ≥1 ≥1 ≥									
Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached									
to each Code Block (otherwise	L = 0 Bit								

Table A.2.2.1.1-1a Reference Channels for QPSK with full/maximum RB allocation for UE UL category

Parameter	Unit			Va	lue		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6	15	25	36	36	36
DFT-OFDM Symbols per Sub-Frame		12	12	12	12	12	12
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding rate		1/3	1/5	1/8	1/10	1/10	1/10
Payload size	Bits	600	872	904	1000	1000	1000
Transport block CRC	Bits	24	24	24	24	24	24
Number of code blocks per Sub-Frame		1	1	1	1	1	1
(NOTE 1)							
Total number of bits per Sub-Frame	Bits	1728	4320	7200	10368	10368	10368
Total symbols per Sub-Frame		864	2160	3600	5184	5184	5184
UE UL Category		0	0	0	0	0	0

NOTE 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

NOTE 2: For HD-FDD UE, the uplink subframes are scheduled at the 4th, 5th, 6th, 12th, 13th, 14th, 20th, 21st, 22nd, 28th, 29th, 30th, 36th, 37th, and 38th subframes every 40ms. Information bit payload is available if uplink subframe is scheduled.

A.2.2.1.2 16-QAM

Table A.2.2.1.2-1 Reference Channels for 16-QAM with full RB allocation

593

Parameter	Unit			Va	lue				
Channel bandwidth	MHz	1.4	3	5	10	15	20		
Allocated resource blocks		6	15	25	50	75	100		
DFT-OFDM Symbols per Sub-Frame		12	12	12	12	12	12		
Modulation		16QAM	16QAM	16QAM	16QAM	16QAM	16QAM		
Target Coding rate		3/4	1/2	1/3	3/4	1/2	1/3		
Payload size	Bits	2600	4264	4968	21384	21384	19848		
Transport block CRC	Bits	24	24	24	24	24	24		
Number of code blocks per Sub-Frame (Note 1)		1	1	1	4	4	4		
Total number of bits per Sub-Frame	Bits	3456	8640	14400	28800	43200	57600		
Total symbols per Sub-Frame		864	2160	3600	7200	10800	14400		
UE Category		≥1	≥ 1	≥ 1	≥ 2	≥2	≥ 2		
Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)									

Table A.2.2.1.2-1a Reference Channels for 16-QAM with maximum RB allocation for UE UL category 0

Parameter	Unit			Va	lue		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		5	5	5	5	5	5
DFT-OFDM Symbols per Sub-Frame		12	12	12	12	12	12
Modulation		16QAM	16QAM	16QAM	16QAM	16QAM	16QAM
Target Coding rate		1/3	1/3	1/3	1/3	1/3	1/3
Payload size	Bits	872	872	872	872	872	872
Transport block CRC	Bits	24	24	24	24	24	24
Number of code blocks per Sub-Frame		1	1	1	1	1	1
Total number of bits per Sub-Frame	Bits	2880	2880	2880	2880	2880	2880
Total symbols per Sub-Frame		720	720	720	720	720	720
UE UL Category		0	0	0	0	0	0

NOTE 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.2.2.1.3 64-QAM

[FFS]

A.2.2.2 Partial RB allocation

For each channel bandwidth, various partial RB allocations are specified. The number of allocated RBs is chosen according to values specified in the Tx and Rx requirements. The single allocated RB case is included.

The allocated RBs are contiguous and start from one end of the channel bandwidth. A single allocated RB is at one end of the channel bandwidth.

For HD-FDD UE, the uplink subframes are scheduled at the 4th, 5th, 6th, 12th, 13th, 14th, 20th, 21st, 22nd, 28th, 29th, 30th, 36th, 37th, and 38th subframes every 40ms. Information bit payload is available if uplink subframe is scheduled.

A.2.2.2.1 QPSK

Table A.2.2.2.1-1 Reference Channels for QPSK with partial RB allocation

Parame ter	Ch BW	Allocat ed RBs	DFT- OFDM Symbol s per Sub- Frame	Mod'n	Target Coding rate	Payload size	Transp ort block CRC	Number of code blocks per Sub- Frame (Note 1)	Total number of bits per Sub- Frame	Total symbols per Sub- Frame	UE Category
Unit	MHz					Bits	Bits		Bits		
	1.4 - 20	1	12	QPSK	1/3	72	24	1	288	144	≥ 1
	1.4 - 20	2	12	QPSK	1/3	176	24	1	576	288	≥ 1
	1.4 - 20	3	12	QPSK	1/3	256	24	1	864	432	≥ 1
	1.4 - 20	4	12	QPSK	1/3	392	24	1	1152	576	≥ 1
	1.4 - 20	5	12	QPSK	1/3	424	24	1	1440	720	≥ 1
	3-20	6	12	QPSK	1/3	600	24	1	1728	864	≥ 1
	3-20	8	12	QPSK	1/3	808	24	1	2304	1152	≥ 1
	3-20	9	12	QPSK	1/3	776	24	1	2592	1296	≥ 1
	3-20	10	12	QPSK	1/3	872	24	1	2880	1440	≥ 1
	3-20	12	12	QPSK	1/3	1224	24	1	3456	1728	≥ 1
	5-20	15	12	QPSK	1/3	1320	24	1	4320	2160	≥ 1
	5-20	16	12	QPSK	1/3	1384	24	1	4608	2304	≥ 1
	5-20	18	12	QPSK	1/3	1864	24	1	5184	2592	≥ 1
	5-20	20	12	QPSK	1/3	1736	24	1	5760	2880	≥ 1
	5-20	24	12	QPSK	1/3	2472	24	1	6912	3456	≥ 1
	10-20	25	12	QPSK	1/3	2216	24	1	7200	3600	≥ 1
	10-20	27	12	QPSK	1/3	2792	24	1	7776	3888	≥ 1
	10-20	30	12	QPSK	1/3	2664	24	1	8640	4320	≥ 1
	10-20	32	12	QPSK	1/3	2792	24	1	9216	4608	≥ 1
	10-20	36	12	QPSK	1/3	3752	24	1	10368	5184	≥ 1
	10-20	40	12	QPSK	1/3	4136	24	1	11520	5760	≥ 1
	10-20	45	12	QPSK	1/3	4008	24	1	12960	6480	≥ 1
	10-20	48	12	QPSK	1/3	4264	24	1	13824	6912	≥ 1
	15 - 20	50	12	QPSK	1/3	5160	24	1	14400	7200	≥ 1
	15 - 20	54	12	QPSK	1/3	4776	24	1	15552	7776	≥ 1
	15 - 20	60	12	QPSK	1/4	4264	24	1	17280	8640	≥ 1
	15 - 20	64	12	QPSK	1/4	4584	24	1	18432	9216	≥ 1
	15 - 20	72	12	QPSK	1/4	5160	24	1	20736	10368	≥ 1
	20	75	12	QPSK	1/5	4392	24	1	21600	10800	≥ 1
	20	80	12	QPSK	1/5	4776	24	1	23040	11520	≥ 1
	20	81	12	QPSK	1/5	4776	24	1	23328	11664	≥ 1
	20	90	12	QPSK	1/6	4008	24	1	25920	12960	≥ 1
<u> </u>	20	96	12	QPSK	1/6	4264	24	1	27648	13824	≥ 1

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.2.1-1a Reference Channels for QPSK with partial RB allocation for UE UL category 0

Parame ter	Ch BW	Allocat ed RBs	DFT- OFDM Symbols per Sub- Frame	Mod'n	Target Coding rate	Payload size	Trans- port block CRC	Number of code blocks per Sub- Frame (Note 1)	Total number of bits per Sub- Frame	Total symbols per Sub- Frame	UE UL Category
Unit	MHz					Bits	Bits		Bits		
	1.4 - 20	1	12	QPSK	1/3	72	24	1	288	144	0
	1.4 - 20	2	12	QPSK	1/3	176	24	1	576	288	0
	1.4 - 20	3	12	QPSK	1/3	256	24	1	864	432	0
	1.4 - 20	4	12	QPSK	1/3	392	24	1	1152	576	0
	1.4 - 20	5	12	QPSK	1/3	424	24	1	1440	720	0
	3-20	6	12	QPSK	1/3	600	24	1	1728	864	0
	3-20	8	12	QPSK	1/3	808	24	1	2304	1152	0
	3-20	9	12	QPSK	1/3	776	24	1	2592	1296	0
	3-20	10	12	QPSK	1/3	872	24	1	2880	1440	0
	3-20	12	12	QPSK	1/4	840	24	1	3456	1728	0
	5-20	15	12	QPSK	1/5	872	24	1	4320	2160	0
	5-20	16	12	QPSK	1/5	904	24	1	4608	2304	0
	5-20	18	12	QPSK	1/6	776	24	1	5184	2592	0
	5-20	20	12	QPSK	1/6	872	24	1	5760	2880	0
	5-20	24	12	QPSK	1/8	872	24	1	6912	3456	0
	10-20	25	12	QPSK	1/8	904	24	1	7200	3600	0
	10-20	27	12	QPSK	1/8	968	24	1	7776	3888	0
	10-20	30	12	QPSK	1/10	808	24	1	8640	4320	0

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Note 2: For HD-FDD UE, the uplink subframes are scheduled at the 4th, 5th, 6th, 12th, 13th, 14th, 20th, 21st, 22nd, 28th, 29th, 30th, 36th, 37th, and 38th subframes every 40ms. Information bit payload is available if uplink subframe is scheduled.

A.2.2.2.2 16-QAM

Table A.2.2.2-1 Reference Channels for 16-QAM with partial RB allocation

Parame ter	Ch BW	Allocat ed RBs	DFT- OFDM Symbols per Sub- Frame	Mod'n	Target Coding rate	Payload size	Trans- port block CRC	Number of code blocks per Sub- Frame (Note 1)	Total number of bits per Sub- Frame	Total symbols per Sub- Frame	UE Category
Unit	MHz					Bits	Bits		Bits		
	1.4 - 20	1	12	16QAM	3/4	408	24	1	576	144	≥ 1
	1.4 - 20	2	12	16QAM	3/4	840	24	1	1152	288	≥ 1
	1.4 - 20	3	12	16QAM	3/4	1288	24	1	1728	432	≥ 1
	1.4 - 20	4	12	16QAM	3/4	1736	24	1	2304	576	≥ 1
	1.4 - 20	5	12	16QAM	3/4	2152	24	1	2880	720	≥ 1
	3-20	6	12	16QAM	3/4	2600	24	1	3456	864	≥ 1
	3-20	8	12	16QAM	3/4	3496	24	1	4608	1152	≥ 1
	3-20	9	12	16QAM	3/4	3880	24	1	5184	1296	≥ 1
	3-20	10	12	16QAM	3/4	4264	24	1	5760	1440	≥ 1
	3-20	12	12	16QAM	3/4	5160	24	1	6912	1728	≥ 1
	5-20	15	12	16QAM	1/2	4264	24	1	8640	2160	≥ 1
	5-20	16	12	16QAM	1/2	4584	24	1	9216	2304	≥ 1
	5-20	18	12	16QAM	1/2	5160	24	1	10368	2592	≥ 1
	5-20	20	12	16QAM	1/3	4008	24	1	11520	2880	≥ 1
	5-20	24	12	16QAM	1/3	4776	24	1	13824	3456	≥ 1
	10-20	25	12	16QAM	1/3	4968	24	1	14400	3600	≥ 1
	10-20	27	12	16QAM	1/3	4776	24	1	15552	3888	≥ 1
	10-20	30	12	16QAM	3/4	12960	24	3	17280	4320	≥ 2
	10-20	32	12	16QAM	3/4	13536	24	3	18432	4608	≥ 2
	10-20	36	12	16QAM	3/4	15264	24	3	20736	5184	≥ 2
	10-20	40	12	16QAM	3/4	16992	24	3	23040	5760	≥ 2
	10-20	45	12	16QAM	3/4	19080	24	4	25920	6480	≥ 2
	10-20	48	12	16QAM	3/4	20616	24	4	27648	6912	≥ 2
	15 - 20	50	12	16QAM	3/4	21384	24	4	28800	7200	≥ 2
	15 - 20	54	12	16QAM	3/4	22920	24	4	31104	7776	≥ 2
	15 - 20	60	12	16QAM	2/3	23688	24	4	34560	8640	≥ 2
	15 - 20	64	12	16QAM	2/3	25456	24	4	36864	9216	≥ 2
	15 - 20	72	12	16QAM	1/2	20616	24	4	41472	10368	≥ 2
	20	75	12	16QAM	1/2	21384	24	4	43200	10800	≥ 2
	20	80	12	16QAM	1/2	22920	24	4	46080	11520	≥ 2
	20	81	12	16QAM	1/2	22920	24	4	46656	11664	≥ 2
	20	90	12	16QAM	2/5	20616	24	4	51840	12960	≥ 2
	20	96	12	16QAM	2/5	22152	24	4	55296	13824	≥ 2

= 0 Bit)

Table A.2.2.2-1a Reference Channels for 16-QAM with partial RB allocation for UE UL category 0

Parame ter	Ch BW	Allocat ed RBs	DFT- OFDM Symbol s per Sub- Frame	Mod'n	Target Coding rate	Payload size	Transp ort block CRC	Numbe r of code blocks per Sub- Frame (Note 1)	Total number of bits per Sub- Frame	Total symbol s per Sub- Frame	UE UL Catego ry
Unit	MHz					Bits	Bits		Bits		
•	1.4 - 20	1	12	16QAM	3/4	408	24	1	576	144	0
	1.4 - 20	2	12	16QAM	3/4	840	24	1	1152	288	0
	1.4 - 20	4	12	16QAM	2/5	904	24	1	2304	576	0

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block Note 1: (otherwise L = 0 Bit)

For HD-FDD UE, the uplink subframes are scheduled at the 4th, 5th, 6th, 12th, 13th, 14th, 20th, 21st, 22nd, 28th, 29th, 30th, 36th, 37th, and 38th subframes every 40ms. Information bit payload is available if uplink subframe is scheduled. Note 2:

A.2.2.2.3 64-QAM

[FFS]

A.2.2.3 Void

Table A.2.2.3-1: Void

A.2.3 Reference measurement channels for TDD

For TDD, the measurement channel is based on DL/UL configuration ratio of 2DL:2UL.

A.2.3.1 Full RB allocation

A.2.3.1.1 QPSK

Table A.2.3.1.1-1 Reference Channels for QPSK with full RB allocation

Parameter	Unit			Va	lue		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6	15	25	50	75	100
Uplink-Downlink Configuration (Note 2)		1	1	1	1	1	1
DFT-OFDM Symbols per Sub-Frame		12	12	12	12	12	12
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3	1/3	1/5	1/6
Payload size							
For Sub-Frame 2,3,7,8	Bits	600	1544	2216	5160	4392	4584
Transport block CRC	Bits	24	24	24	24	24	24
Number of code blocks per Sub-Frame							
(Note 1)							
For Sub-Frame 2,3,7,8		1	1	1	1	1	1
Total number of bits per Sub-Frame							
For Sub-Frame 2,3,7,8	Bits	1728	4320	7200	14400	21600	28800
Total symbols per Sub-Frame							
For Sub-Frame 2,3,7,8		864	2160	3600	7200	10800	14400
UE Category		≥ 1	≥ 1	≥ 1	≥ 1	≥ 1	≥ 1

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Note 2: As per Table 4.2-2 in TS 36.211 [4]

Table A.2.3.1.1-1a Reference Channels for QPSK with full/maximum RB allocation for UE UL category

Parameter	Unit			Va	lue		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6	15	25	36	36	36
Uplink-Downlink Configuration (Note 2)		1	1	1	1	1	1
DFT-OFDM Symbols per Sub-Frame		12	12	12	12	12	12
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding rate		1/3	1/5	1/8	1/10	1/10	1/10
Payload size							
For Sub-Frame 2,3,7,8	Bits	600	872	904	1000	1000	1000
Transport block CRC	Bits	24	24	24	24	24	24
Number of code blocks per Sub-Frame							
(Note 1)							
For Sub-Frame 2,3,7,8		1	1	1	1	1	1
Total number of bits per Sub-Frame							
For Sub-Frame 2,3,7,8	Bits	1728	4320	7200	[1036	10368	10368
					8		
Total symbols per Sub-Frame							
For Sub-Frame 2,3,7,8		864	2160	3600	5184	5184	5184
UE UL Category		0	0	0	0	0	0

NOTE 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

NOTE 2: As per Table 4.2-2 in TS 36.211

A.2.3.1.2 16-QAM

Table A.2.3.1.2-1 Reference Channels for 16-QAM with full RB allocation

Parameter	Unit			Va	lue		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6	15	25	50	75	100
Uplink-Downlink Configuration (Note 2)		1	1	1	1	1	1
DFT-OFDM Symbols per Sub-Frame		12	12	12	12	12	12
Modulation		16QAM	16QAM	16QAM	16QAM	16QAM	16QAM
Target Coding rate		3/4	1/2	1/3	3/4	1/2	1/3
Payload size							
For Sub-Frame 2,3,7,8	Bits	2600	4264	4968	21384	21384	19848
Transport block CRC	Bits	24	24	24	24	24	24
Number of code blocks per Sub-Frame							
(Note 1)							
For Sub-Frame 2,3,7,8		1	1	1	4	4	4
Total number of bits per Sub-Frame							
For Sub-Frame 2,3,7,8	Bits	3456	8640	14400	28800	43200	57600
Total symbols per Sub-Frame							
For Sub-Frame 2,3,7,8		864	2160	3600	7200	10800	14400
UE Category		≥ 1	≥ 1	≥ 1	≥ 2	≥2	≥ 2

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Note 1: Code Block (otherwise L = 0 Bit) As per Table 4.2-2 in TS 36.211 [4]

Table A.2.3.1.2-1a Reference Channels for 16-QAM with maximum RB allocation for UE UL category 0

Parameter	Unit			Va	lue		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		5	5	5	5	5	5
Uplink-Downlink Configuration (Note 2)		1	1	1	1	1	1
DFT-OFDM Symbols per Sub-Frame		12	12	12	12	12	12
Modulation		16QAM	16QAM	16QAM	16QAM	16QAM	16QAM
Target Coding rate		1/3	1/3	1/3	1/3	1/3	1/3
Payload size							
For Sub-Frame 2,3,7,8	Bits	872	872	872	872	872	872
Transport block CRC	Bits	24	24	24	24	24	24
Number of code blocks per Sub-Frame (Note 1)							
For Sub-Frame 2,3,7,8		1	1	1	1	1	1
Total number of bits per Sub-Frame							
For Sub-Frame 2,3,7,8	Bits	2880	2880	2880	2880	2880	2880
Total symbols per Sub-Frame							
For Sub-Frame 2,3,7,8		720	720	720	720	720	720
UE UL Category		0	0	0	0	0	0

NOTE 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.2.3.1.3 64-QAM

[FFS]

A.2.3.2 Partial RB allocation

For each channel bandwidth, various partial RB allocations are specified. The number of allocated RBs is chosen according to values specified in the Tx and Rx requirements. The single allocated RB case is included.

The allocated RBs are contiguous and start from one end of the channel bandwidth. A single allocated RB is at one end of the channel bandwidth.

NOTE 2: As per Table 4.2-2 in TS 36.211[4]

A.2.3.2.1 QPSK

Table A.2.3.2.1-1 Reference Channels for QPSK with partial RB allocation

Parame ter	Ch BW	Allocat ed RBs	UDL Configu ration (Note 2)	DFT- OFDM Symbol s per Sub- Frame	Mod'n	Target Coding rate	Payloa d size for Sub- Frame 2, 3, 7, 8	Transp ort block CRC	Number of code blocks per Sub- Frame (Note 1)	Total number of bits per Sub- Frame for Sub- Frame 2, 3, 7, 8	Total symbol s per Sub- Frame for Sub- Frame 2, 3, 7,	UE Categor y
Unit	MHz						Bits	Bits		Bits		
	1.4 - 20	1	1	12	QPSK	1/3	72	24	1	288	144	≥ 1
	1.4 - 20	2	1	12	QPSK	1/3	176	24	1	576	288	≥ 1
	1.4 - 20	3	1	12	QPSK	1/3	256	24	1	864	432	≥ 1
	1.4 - 20	4	1	12	QPSK	1/3	392	24	1	1152	576	≥ 1
	1.4 - 20	5	1	12	QPSK	1/3	424	24	1	1440	720	≥ 1
	3-20	6	1	12	QPSK	1/3	600	24	1	1728	864	≥ 1
	3-20	8	1	12	QPSK	1/3	808	24	1	2304	1152	≥ 1
	3-20	9	1	12	QPSK	1/3	776	24	1	2592	1296	≥ 1
	3-20	10	1	12	QPSK	1/3	872	24	1	2880	1440	≥1
	3-20 5-20	12 15	1	12 12	QPSK QPSK	1/3 1/3	1224 1320	24 24	1	3456 4320	1728 2160	≥ 1 ≥ 1
	5-20	16	1	12	QPSK	1/3	1384	24	1	4608	2304	≥ 1
	5-20	18	1	12	QPSK	1/3	1864	24	1	5184	2592	≥ 1
	5-20	20	1	12	QPSK	1/3	1736	24	1	5760	2880	≥ 1
	5-20	24	1	12	QPSK	1/3	2472	24	1	6912	3456	≥ 1
	10-20	25	1	12	QPSK	1/3	2216	24	1	7200	3600	≥ 1
	10-20	27	1	12	QPSK	1/3	2792	24	1	7776	3888	≥ 1
	10-20	30	1	12	QPSK	1/3	2664	24	1	8640	4320	≥ 1
	10-20	32	1	12	QPSK	1/3	2792	24	1	9216	4608	≥ 1
	10-20	36	1	12	QPSK	1/3	3752	24	1	10368	5184	≥ 1
	10-20	40	1	12	QPSK	1/3	4136	24	1	11520	5760	≥1
<u> </u>	10-20	45	1	12	QPSK	1/3	4008	24	1	12960	6480	≥1
<u> </u>	10-20	48 50	1	12 12	QPSK QPSK	1/3	4264 5160	24 24	1	13824 14400	6912 7200	≥ 1
	15 - 20 15 - 20	54	1	12	QPSK	1/3 1/3	4776	24	1	15552	7776	≥ 1 ≥ 1
	15 - 20	60	1	12	QPSK	1/4	4264	24	1	17280	8640	≥ 1
1	15 - 20	64	1	12	QPSK	1/4	4584	24	1	18432	9216	≥ 1
	15 - 20	72	1	12	QPSK	1/4	5160	24	1	20736	10368	≥ 1
	20	75	1	12	QPSK	1/5	4392	24	1	21600	10800	≥ 1
	20	80	1	12	QPSK	1/5	4776	24	1	23040	11520	≥ 1
	20	81	1	12	QPSK	1/5	4776	24	1	23328	11664	≥ 1
	20	90	1	12	QPSK	1/6	4008	24	1	25920	12960	≥ 1
	20	96	1	12	QPSK	1/6	4264	24	1	27648	13824	≥ 1

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block

(otherwise L = 0 Bit)

Note 2: As per Table 4.2-2 in TS 36.211 [4]

Table A.2.3.2.1-1a Reference Channels for QPSK with partial RB allocation for UE UL category 0

Parame ter	Ch BW	Allocat ed RBs	UDL Config uration (Note 2)	DFT- OFDM Symbol s per Sub- Frame	Mod'n	Target Coding rate	Payloa d size for Sub- Frame 2, 3, 7, 8	Transp ort block CRC	Numbe r of code blocks per Sub- Frame (Note 1)	Total number of bits per Sub- Frame for Sub- Frame 2, 3, 7, 8	Total symbol s per Sub- Frame for Sub- Frame 2, 3, 7, 8	UE UL Catego ry
Unit	MHz						Bits	Bits		Bits		
	1.4 - 20	1	1	12	QPSK	1/3	72	24	1	288	144	0
	1.4 - 20	2	1	12	QPSK	1/3	176	24	1	576	288	0
	1.4 - 20	3	1	12	QPSK	1/3	256	24	1	864	432	0
	1.4 - 20	4	1	12	QPSK	1/3	392	24	1	1152	576	0
	1.4 - 20	5	1	12	QPSK	1/3	424	24	1	1440	720	0
	3-20	6	1	12	QPSK	1/3	600	24	1	1728	864	0
	3-20	8	1	12	QPSK	1/3	808	24	1	2304	1152	0
	3-20	9	1	12	QPSK	1/3	776	24	1	2592	1296	0
	3-20	10	1	12	QPSK	1/3	872	24	1	2880	1440	0
	3-20	12	1	12	QPSK	1/4	840	24	1	3456	1728	0
	5-20	15	1	12	QPSK	1/5	872	24	1	4320	2160	0
	5-20	16	1	12	QPSK	1/5	904	24	1	4608	2304	0
	5-20	18	1	12	QPSK	1/6	776	24	1	5184	2592	0
	5-20	20	1	12	QPSK	1/6	872	24	1	5760	2880	0
	5-20	24	1	12	QPSK	1/8	872	24	1	6912	3456	0
	10-20	25	1	12	QPSK	1/8	904	24	1	7200	3600	0
	10-20	27	1	12	QPSK	1/8	968	24	1	7776	3888	0
	10-20	30	1	12	QPSK	1/10	808	24	1	8640	4320	0

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Note 2: As per Table 4.2-2 in TS 36.211 [4]

A.2.3.2.2 16-QAM

Table A.2.3.2.2-1 Reference Channels for 16QAM with partial RB allocation

Parame ter	Ch BW	Allocat ed RBs	UDL Configu ration (Note 2)	DFT- OFDM Symbol s per Sub- Frame	Mod'n	Target Coding rate	Payloa d size for Sub- Frame 2, 3, 7, 8	Transp ort block CRC	Number of code blocks per Sub- Frame (Note 1)	Total number of bits per Sub- Frame for Sub- Frame 2, 3, 7, 8	Total symbol s per Sub- Frame for Sub- Frame 2, 3, 7, 8	UE Categor y
Unit	MHz						Bits	Bits		Bits		
	1.4 - 20	1	1	12	16QAM	3/4	408	24	1	576	144	≥ 1
	1.4 - 20	2	1	12	16QAM	3/4	840	24	1	1152	288	≥ 1
	1.4 - 20	3	1	12	16QAM	3/4	1288	24	1	1728	432	≥ 1
	1.4 - 20	4	1	12	16QAM	3/4	1736	24	1	2304	576	≥ 1
	1.4 - 20	5	1	12	16QAM	3/4	2152	24	1	2880	720	≥ 1
	3-20	6	1	12	16QAM	3/4	2600	24	1	3456	864	≥ 1
	3-20	8	1	12	16QAM	3/4	3496	24	1	4608	1152	≥ 1
	3-20	9	1	12	16QAM	3/4	3880	24	1	5184	1296	≥ 1
	3-20	10	1	12	16QAM	3/4	4264	24	1	5760	1440	≥ 1
	3-20	12	1	12	16QAM	3/4	5160	24	1	6912	1728	≥ 1
	5-20	15	1	12	16QAM	1/2	4264	24	1	8640	2160	≥ 1
	5-20	16	1	12	16QAM	1/2	4584	24	1	9216	2304	≥ 1
	5-20	18	1	12	16QAM	1/2	5160	24	1	10368	2592	≥ 1
	5-20	20	1	12	16QAM	1/3	4008	24	1	11520	2880	≥ 1
	5-20	24	1	12	16QAM	1/3	4776	24	1	13824	3456	≥ 1
	10-20	25	1	12	16QAM	1/3	4968	24	1	14400	3600	≥ 1
	10-20	27	1	12	16QAM	1/3	4776	24	1	15552	3888	≥ 1
	10-20	30	1	12	16QAM	3/4	12960	24	3	17280	4320	≥ 2
	10-20	32	1	12	16QAM	3/4	13536	24	3	18432	4608	≥ 2
	10-20	36	1	12	16QAM	3/4	15264	24	3	20736	5184	≥ 2
	10-20	40	1	12	16QAM	3/4	16992	24	3	23040	5760	≥ 2
	10-20	45	1	12	16QAM	3/4	19080	24	4	25920	6480	≥ 2
	10-20	48	1	12	16QAM	3/4	20616	24	4	27648	6912	≥ 2
	15 - 20	50	1	12	16QAM	3/4	21384	24	4	28800	7200	≥ 2
	15 - 20	54	1	12	16QAM	3/4	22920	24	4	31104	7776	≥ 2
	15 - 20	60	1	12	16QAM	2/3	23688	24	4	34560	8640	≥ 2
	15 - 20	64	1	12	16QAM	2/3	25456	24	4	36864	9216	≥ 2
	15 - 20	72	1	12	16QAM	1/2	20616	24	4	41472	10368	≥ 2
	20	75	1	12	16QAM	1/2	21384	24	4	43200	10800	≥ 2
	20	80	1	12	16QAM	1/2	22920	24	4	46080	11520	≥ 2
	20	81	1	12	16QAM	1/2	22920	24	4	46656	11664	≥ 2
	20	90	1	12	16QAM	2/5	20616	24	4	51840	12960	≥ 2
	20	96		12	16QAM	2/5	22152	24		55296	13824	

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Note 2: As per Table 4.2-2 in TS 36.211 [4]

Table A.2.3.2.2-1a Reference Channels for 16QAM with partial RB allocation UE UL category 0

Parame ter	Ch BW	Allocat ed RBs	UDL Config uration (Note 2)	DFT- OFDM Symbol s per Sub- Frame	Mod'n	Target Coding rate	Payloa d size for Sub- Frame 2, 3, 7, 8	Transp ort block CRC	Numbe r of code blocks per Sub- Frame (Note 1)	Total number of bits per Sub- Frame for Sub- Frame 2, 3, 7, 8	Total symbol s per Sub- Frame for Sub- Frame 2, 3, 7, 8	UE UL Catego ry
Unit	MHz						Bits	Bits		Bits		
	1.4 - 20	1	1	12	16QAM	3/4	408	24	1	576	144	0
	1.4 - 20	2		12	16QAM	3/4	840	24	1	1152	288	0
	1.4 - 20	4		12	16QAM	2/5	904	24	1	2304	576	0

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Note 2: As per Table 4.2-2 in TS 36.211 [4]

A.2.3.2.3 64-QAM

[FFS]

A.2.3.3 Void

Table A.2.3.3-1: Void

A.3 DL reference measurement channels

A.3.1 General

The number of available channel bits varies across the sub-frames due to PBCH and PSS/SSS overhead. The payload size per sub-frame is varied in order to keep the code rate constant throughout a frame.

No user data is scheduled on subframes #5 in order to facilitate the transmission of system information blocks (SIB).

The algorithm for determining the payload size A is as follows; given a desired coding rate R and radio block allocation N_{RR}

- 1. Calculate the number of channel bits N_{ch} that can be transmitted during the first transmission of a given sub-frame.
- 2. Find A such that the resulting coding rate is as close to R as possible, that is,

$$\min |R - (A + 24 * (N_{CB} + 1)) / N_{ch}|, where N_{CB} = \begin{cases} 0, & \text{if } C = 1 \\ C, & \text{if } C > 1 \end{cases}$$

subject to

- a) A is a valid TB size according to section 7.1.7 of TS 36.213 [6] assuming an allocation of N_{RB} resource blocks.
- b) C is the number of Code Blocks calculated according to section 5.1.2 of TS 36.212 [5].
- 3. If there is more than one A that minimizes the equation above, then the larger value is chosen per default and the chosen code rate should not exceed 0.93.
- 4. For TDD, the measurement channel is based on DL/UL configuration ratio of 2DL+DwPTS (12 OFDM symbol): 2UL

A.3.1.1 Overview of DL reference measurement channels

In Table A.3.1.1-1 to A.3.1.1-1Q are listed the DL reference measurement channels specified in annexes A.3.2 to A.3.10 of this release of TS 36.101. This table is informative and serves only to a better overview. The reference for the concrete reference measurement channels and corresponding implementation's parameters as to be used for requirements are annexes A.3.2 to A.3.10 as appropriate.

Table A.3.1.1-1: Overview of DL reference measurement channels (FDD, Receiver requirements)

Duplex	Table	Name	BW	Mod	TCR	RB	RB Off set	UE Cat eg	Notes
FDD	Table A.3.2-1		1.4	QPSK	1/3	6		≥ 1	
FDD	Table A.3.2-1		3	QPSK	1/3	15		≥ 1	
FDD	Table A.3.2-1		5	QPSK	1/3	25		≥ 1	
FDD	Table A.3.2-1		10	QPSK	1/3	50		≥ 1	
FDD	Table A.3.2-1		15	QPSK	1/3	75		≥ 1	
FDD	Table A.3.2-1		20	QPSK	1/3	100		≥ 1	
FDD / HD-FDD	Table A.3.2-1a		1.4	QPSK	1/3	6		1	UE DL Category 0
FDD / HD-FDD	Table A.3.2-1a		3	QPSK	1/3	14		ı	UE DL Category 0
FDD / HD-FDD	Table A.3.2-1a		5	QPSK	1/3	14		-	UE DL Category 0
FDD / HD-FDD	Table A.3.2-1a		10	QPSK	1/3	14		ı	UE DL Category 0
FDD / HD-FDD	Table A.3.2-1a		15	QPSK	1/3	14		ı	UE DL Category 0
FDD / HD-FDD	Table A.3.2-1a		20	QPSK	1/3	14		-	UE DL Category 0

Table A.3.1.1-1A: Overview of DL reference measurement channels (TDD, Receiver requirements)

Duplex	Table	Name	BW	Mod	TCR	RB	RB Off set	UE Cat eg	Notes
TDD	Table A.3.2-2		1.4	QPSK	1/3	6		≥ 1	
TDD	Table A.3.2-2		3	QPSK	1/3	15		≥ 1	
TDD	Table A.3.2-2		5	QPSK	1/3	25		≥ 1	
TDD	Table A.3.2-2		10	QPSK	1/3	50		≥ 1	
TDD	Table A.3.2-2		15	QPSK	1/3	75		≥ 1	
TDD	Table A.3.2-2		20	QPSK	1/3	100		≥ 1	
TDD	Table A.3.2-2a		1.4	QPSK	1/3	6		-	UE DL Category 0
TDD	Table A.3.2-2a		3	QPSK	1/3	14		-	UE DL Category 0
TDD	Table A.3.2-2a		5	QPSK	1/3	14		-	UE DL Category 0
TDD	Table A.3.2-2a		10	QPSK	1/3	14		-	UE DL Category 0
TDD	Table A.3.2-2a		15	QPSK	1/3	14		-	UE DL Category 0
-	Table A.3.2-2a		20	QPSK	1/3	14		-	UE DL Category 0

Table A.3.1.1-1B: Overview of DL reference measurement channels (FDD, Receiver requirements, Maximum input level)

Duplex	Table	Name	BW	Mod	TCR	RB	RB Off set	UE Cat eg	Notes
UE Catego	ories ≥ 3								
FDD	Table A.3.2-3		1.4	64QAM	3/4	6		-	
FDD	Table A.3.2-3		3	64QAM	3/4	15		-	
FDD	Table A.3.2-3		5	64QAM	3/4	25		-	
FDD	Table A.3.2-3		10	64QAM	3/4	50		-	
FDD	Table A.3.2-3		15	64QAM	3/4	75		-	
FDD	Table A.3.2-3		20	64QAM	3/4	100		-	
UE Catego	ories 1								
FDD	Table A.3.2-3a		1.4	64QAM	3/4	6		-	
FDD	Table A.3.2-3a		3	64QAM	3/4	15		-	
FDD	Table A.3.2-3a		5	64QAM	3/4	18		-	
FDD	Table A.3.2-3a		10	64QAM	3/4	17		-	
FDD	Table A.3.2-3a		15	64QAM	3/4	17		-	
FDD	Table A.3.2-3a		20	64QAM	3/4	17		-	
UE Catego	ories 2								
FDD	Table A.3.2-3b		1.4	64QAM	3/4	6		-	
FDD	Table A.3.2-3b		3	64QAM	3/4	15		-	
FDD	Table A.3.2-3b		5	64QAM	3/4	25		-	
FDD	Table A.3.2-3b		10	64QAM	3/4	50		-	
FDD	Table A.3.2-3b		15	64QAM	3/4	75		ı	
FDD	Table A.3.2-3b		20	64QAM	3/4	83		-	
UE DL Ca	tegories 0								
FDD	Table A.3.2-3c		1.4	64QAM	3/4	2		ı	
FDD	Table A.3.2-3c		3	64QAM	3/4	2		-	
FDD	Table A.3.2-3c		5	64QAM	3/4	2		-	
FDD	Table A.3.2-3c		10	64QAM	3/4	2		-	
FDD	Table A.3.2-3c		15	64QAM	3/4	2		=	
FDD	Table A.3.2-3c		20	64QAM	3/4	2		-	

Table A.3.1.1-1C: Overview of DL reference measurement channels (TDD, Receiver requirements, Maximum input level)

Duplex	Table	Name	BW	Mod	TCR	RB	RB Off set	UE Cat eg	Notes
UE Catego	ories ≥ 3								
TDD	Table A.3.2-4		1.4	64QAM	3/4	6		-	
TDD	Table A.3.2-4		3	64QAM	3/4	15		-	
TDD	Table A.3.2-4		5	64QAM	3/4	25		-	
TDD	Table A.3.2-4		10	64QAM	3/4	50		1	
TDD	Table A.3.2-4		15	64QAM	3/4	75		-	
TDD	Table A.3.2-4		20	64QAM	3/4	100		ı	
UE Catego	ories 1								
TDD	Table A.3.2-4a		1.4	64QAM	3/4	6		-	
TDD	Table A.3.2-4a		3	64QAM	3/4	15		-	
TDD	Table A.3.2-4a		5	64QAM	3/4	18		-	
TDD	Table A.3.2-4a		10	64QAM	3/4	17		-	
TDD	Table A.3.2-4a		15	64QAM	3/4	17		ı	
TDD	Table A.3.2-4a		20	64QAM	3/4	17		ı	
UE Catego	ories 2								
TDD	Table A.3.2-4b		1.4	64QAM	3/4	6		-	
TDD	Table A.3.2-4b		3	64QAM	3/4	15		-	
TDD	Table A.3.2-4b		5	64QAM	3/4	25		1	
TDD	Table A.3.2-4b		10	64QAM	3/4	50		ı	
TDD	Table A.3.2-4b		15	64QAM	3/4	75		ı	
TDD	Table A.3.2-4b		20	64QAM	3/4	83		-	
UE DL Ca	tegories 0								
TDD	Table A.3.2-4c		1.4	64QAM	3/4	2		ı	
TDD	Table A.3.2-4c		3	64QAM	3/4	2		-	
TDD	Table A.3.2-4c		5	64QAM	3/4	2		-	
TDD	Table A.3.2-4c		10	64QAM	3/4	2		-	
TDD	Table A.3.2-4c		15	64QAM	3/4	2		-	
TDD	Table A.3.2-4c		20	64QAM	3/4	2		-	
UE Catego	ories 11/12 and UE	DL categories	≥ 11						
FDD	Table A.3.2-5		1.4	256QAM	4/5	6		-	
FDD	Table A.3.2-5		3	256QAM	4/5	15		-	
FDD	Table A.3.2-5		5	256QAM	4/5	25		-	
FDD	Table A.3.2-5		10	256QAM	4/5	50		-	
FDD	Table A.3.2-5		15	256QAM	4/5	75		-	
FDD	Table A.3.2-5		20	256QAM	4/5	100		-	
UE Catego	ories 11/12 and UE	DL categories	≥ 11						
TDD	Table A.3.2-6		1.4	256QAM	4/5	6		-	
TDD	Table A.3.2-6		3	256QAM	4/5	15		-	
TDD	Table A.3.2-6		5	256QAM	4/5	25		-	
TDD	Table A.3.2-6		10	256QAM	4/5	50		-	
TDD	Table A.3.2-6		15	256QAM	4/5	75		-	
TDD	Table A.3.2-6		20	256QAM	4/5	100		-	

Table A.3.1.1-1D: Overview of DL reference measurement channels (FDD, PDSCH Performance, Single-antenna transmission (CRS))

Duplex	Table	Name	BW	Mod	TCR	RB	RB Off set	UE Cat eg	Notes
FDD	Table A.3.3.1-1	R.4 FDD	1.4	QPSK	1/3	6		≥ 1	
FDD	Table A.3.3.1-1	R.42 FDD	20	QPSK	1/3	100		≥ 1	
FDD	Table A.3.3.1-1	R.42-1 FDD	3	QPSK	1/3	15		≥ 1	
FDD	Table A.3.3.1-1	R.42-2 FDD	5	QPSK	1/3	25		≥ 1	
FDD	Table A.3.3.1-1	R.42-3 FDD	15	QPSK	1/3	75		≥ 1	
FDD	Table A.3.3.1-1	R.2 FDD	10	QPSK	1/3	50		≥ 1	
FDD	Table A.3.3.1-2	R.3-1 FDD	5	16QAM	1/2	25		≥ 1	
FDD	Table A.3.3.1-2	R.3 FDD	10	16QAM	1/2	50		≥ 2	
FDD	Table A.3.3.1-3	R.5 FDD	3	64QAM	3/4	15		≥ 1	
FDD	Table A.3.3.1-3	R.6 FDD	5	64QAM	3/4	25		≥ 2	
FDD	Table A.3.3.1-3	R.7 FDD	10	64QAM	3/4	50		≥ 2	
FDD	Table A.3.3.1-3	R.8 FDD	15	64QAM	3/4	75		≥ 2	
FDD	Table A.3.3.1-3	R.9 FDD	20	64QAM	3/4	100		≥ 3	
FDD	Table A.3.3.1-3a	R.6-1 FDD	5	64QAM	3/4	18		≥ 1	
FDD	Table A.3.3.1-3a	R.7-1 FDD	10	64QAM	3/4	17		≥ 1	
FDD	Table A.3.3.1-3a	R.8-1 FDD	15	64QAM	3/4	17		≥ 1	
FDD	Table A.3.3.1-3a	R.9-1 FDD	20	64QAM	3/4	17		≥ 1	
FDD	Table A.3.3.1-3a	R.9-2 FDD	20	64QAM	3/4	83		≥ 2	
FDD	Table A.3.3.1-6	R.41 FDD	10	QPSK	1/10	50		≥ 1	
Single PR	B (Channel edge)								
FDD	Table A.3.3.1-4	R.0 FDD	3	16QAM	1/2	1		≥ 1	
FDD	Table A.3.3.1-4	R.1 FDD	10 / 20	16QAM	1/2	1		≥ 1	
Single PR	B (MBSFN Configu	ration)							
FDD	Table A.3.3.1-5	R.29 FDD	10	16QAM	1/2	1		≥ 1	

Table A.3.1.1-1E: Overview of DL reference measurement channels (PDSCH Performance: Carrier aggregation with power imbalance)

Duplex	Table	Name	BW	Mod	TCR	RB	RB Off set	UE Cat eg	Notes
FDD									
FDD	Table A.3.3.1-7	R.49 FDD	20	64QAM	0.84- 0.87	100		≥ 5	
FDD	Table A.3.3.1-7	R.49-1 FDD	10	64QAM	0.84- 0.87	50		≥2	
FDD	Table A.3.3.1-7	R.49-2 FDD	5	64QAM	0.84- 0.86	25		≥2	
TDD									
TDD	Table A.3.4.1-7	R.49 TDD	20	64QAM	0.81- 087	100		≥ 5	
TDD	Table A.3.4.1-7	R.49-1 TDD	15	64QAM	0.80- 0.86	75		≥ 3	

Table A.3.1.1-1F: Overview of DL reference measurement channels (FDD, PDSCH Performance, Multi-antenna transmission (CRS))

Duplex	Table	Name	BW	Mod	TCR	RB	RB Off set	UE Cat eg	Notes
Two anter	nna ports								
FDD	Table A.3.3.2.1-1	R.10 FDD	10	QPSK	1/3	50		≥ 1	
FDD	Table A.3.3.2.1-1	R.11 FDD	10	16QAM	1/2	50		≥ 2	
FDD	Table A.3.3.2.1-1	R.11-1 FDD	10	16QAM	1/2	50		≥ 2	
FDD	Table A.3.3.2.1-1	R.11-2 FDD	5	16QAM	1/2	25		≥ 1	
FDD	Table A.3.3.2.1-1	R.11-3 FDD	10	16QAM	1/2	40		≥ 1	
FDD	Table A.3.3.2.1-1	R.11-4 FDD	10	QPSK	1/2	50		≥ 1	
FDD	Table A.3.3.2.1-1	R.30 FDD	20	16QAM	1/2	100		≥ 2	
FDD	Table A.3.3.2.1-1	R.30-1 FDD	15	16QAM	1/2	75		≥ 2	
FDD	Table A.3.3.2.1-1	R.35 FDD	10	64QAM	1/2	50		≥ 2	
FDD	Table A.3.3.2.1-1	R.35-1 FDD	20	64QAM	0.39	100		4	
FDD	Table A.3.3.2.1-1	R.35-2 FDD	15	64QAM	0.39	75		≥ 2	
FDD	Table A.3.3.2.1-1	R.35-3 FDD	10	64QAM	0.39	50		≥ 2	
FDD	Table A.3.3.2.1-2	R.35-4 FDD	10	64QAM	0.47	50		≥ 2	
FDD	Table A.3.3.2.1-2	R.46 FDD	10	QPSK		50		≥ 1	
FDD	Table A.3.3.2.1-2	R.47 FDD	10	16QAM		50		≥ 1	
FDD	Table A.3.3.2.1-2	R.11-5 FDD	1.4	16QAM	1/2	6		≥ 1	
FDD	Table A.3.3.2.1-2	R.11-6 FDD	3	16QAM	1/2	15		≥ 1	
FDD	Table A.3.3.2.1-2	R.11-7 FDD	15	16QAM	1/2	75		≥ 2	
FDD	Table A.3.3.2.1-2	R.11-8 FDD	10	QPSK	3/5	50		≥ 2	
FDD	Table A.3.3.2.1-2	R.11-9 FDD	10	QPSK	0.58	50		≥ 1	
FDD	Table A.3.3.2.1-2	R.11-10 FDD	10	QPSK	0.67	50		≥ 1	
FDD	Table A.3.3.2.1-2	R.10-2 FDD	5	QPSK	1/3	25		≥ 1	
FDD	Table A.3.3.2.1-2	R.65 FDD	10	256QAM	0.55	50		11- 15	
FDD	Table A.3.3.2.1-3	R. 62 FDD	10	16QAM	1/2	3		0	
FDD	Table A.3.3.2.1-3	R.63 FDD	10	64QAM	1/2	1		0	
Four anter	nna ports								
FDD	Table A.3.3.2.2-1	R.12 FDD	1.4	QPSK	1/3	6		≥ 1	
FDD	Table A.3.3.2.2-1	R.13 FDD	10	QPSK	1/3	50		≥ 1	
FDD	Table A.3.3.2.2-1	R.14 FDD	10	16QAM	1/2	50		≥ 2	
FDD	Table A.3.3.2.2-1	R.14-1 FDD	10	16QAM	1/2	6		≥ 1	
FDD	Table A.3.3.2.2-1	R.14-2 FDD	10	16QAM	1/2	3		≥ 1	
FDD	Table A.3.3.2.2-1	R.14-3 FDD	20	16QAM	1/2	100		≥ 2	
FDD	Table A.3.3.2.2-1	R.36 FDD	10	64QAM	1/2	50		≥ 2	
FDD	Table A.3.3.2.2-1	R.14-4 FDD	1.4	16QAM	1/2	6		≥ 1	
FDD	Table A.3.3.2.2-1	R.14-5 FDD	3	16QAM	1/2	15		≥ 1	
FDD	Table A.3.3.2.2-1	R.14-6 FDD	5	16QAM	1/2	25		≥ 1	
FDD	Table A.3.3.2.2-1	R.14-7 FDD	15	16QAM	1/2	75		≥ 2	

Table A.3.1.1-1G: Overview of DL reference measurement channels (FDD, PDSCH Performance (UE specific RS))

Duplex	Table	Name	BW	Mod	TCR	RB	RB Off set	UE Cat eg	Notes		
Without C	SI-RS										
FDD	Table A.3.3.3.0-1	R.70 FDD	10	QPSK	0.65	50		≥ 1			
FDD	Table A.3.3.3.0-1	R.71 FDD	10	16QAM	0.6	50		≥ 2			
Two antenna ports (CSI-RS)											
FDD	Table A.3.3.3.1-1	R.51 FDD	10	16QAM	1/2	50		≥ 2			
Two anter	Two antenna ports (CSI-RS, non Quasi Co-located)										
FDD	Table A.3.3.3.1-2	R.52 FDD	10	64QAM	1/2	50		≥ 2			
FDD	Table A.3.3.3.1-2	R.53 FDD	10	64QAM	1/2	50		≥ 2			
FDD	Table A.3.3.3.1-2	R.54 FDD	10	16QAM	1/2	50		≥ 2			
Four ante	nna ports (CSI-RS)										
FDD	Table A.3.3.3.2-1	R.43 FDD	10	QPSK	1/3	50		≥ 1			
FDD	Table A.3.3.3.2-1	R.50 FDD	10	64QAM	1/2	50		≥ 2			
FDD	Table A.3.3.3.2-2	R.44 FDD	10	QPSK	1/3	50		≥ 1			
FDD	Table A.3.3.3.2-2	R.45 FDD	10	16QAM	1/2	50		≥ 2			
FDD	Table A.3.3.3.2-2	R.45-1 FDD	10	16QAM	1/2	39		≥ 1			
FDD	Table A.3.3.3.2-1	R.48 FDD	10	QPSK		50		≥ 1			
FDD	Table A.3.3.3.2-2	R.60 FDD	10	QPSK	1/2	50		≥ 1			
FDD	Table A.3.3.3.2-3	R.64 FDD	10	QPSK	1/3	6		0			
FDD	Table A.3.3.3.2-1	R.66 FDD	10	256QAM	0.77	50		11- 15			
FDD	Table A.3.3.3.2-4	R.69 FDD	10	QPSK	0.74- 0.8	50		≥ 1			

Table A.3.1.1-1H: Overview of DL reference measurement channels (TDD, PDSCH Performance, Single-antenna transmission (CRS))

Duplex	Table	Name	BW	Mod	TCR	RB	RB Off set	UE Cat eg	Notes		
TDD	Table A.3.4.1-1	R.4 TDD	1.4	QPSK	1/3	6		≥ 1			
TDD	Table A.3.4.1-1	R.42 TDD	20	QPSK	1/3	100		≥ 1			
TDD	Table A.3.4.1-1	R.2 TDD	10	QPSK	1/3	50		≥ 1			
TDD	Table A.3.4.1-1	R.2A TDD	10	QPSK	1/3	50		≥ 1			
TDD	Table A.3.4.1-1	R.42-1 TDD	3	QPSK	1/3	15		≥ 1			
TDD	Table A.3.4.1-1	R.42-2 TDD	5	QPSK	1/3	25		≥ 1			
TDD	Table A.3.4.1-1	R.42-3 TDD	15	QPSK	1/3	75		≥ 1			
TDD	Table A.3.4.1-2	R.3-1 TDD	5	16QAM	1/2	25		≥ 1			
TDD	Table A.3.4.1-2	R.3 TDD	10	16QAM	1/2	50		≥ 2			
TDD	Table A.3.4.1-3	R.5 TDD	3	64QAM	3/4	15		≥ 1			
TDD	Table A.3.4.1-3	R.6 TDD	5	64QAM	3/4	25		≥ 2			
TDD	Table A.3.4.1-3	R.7 TDD	10	64QAM	3/4	50		≥ 2			
TDD	Table A.3.4.1-3	R.8 TDD	15	64QAM	3/4	75		≥ 2			
TDD	Table A.3.4.1-3	R.9 TDD	20	64QAM	3/4	100		≥ 3			
TDD	Table A.3.4.1-3a	R.6-1 TDD	5	64QAM	3/4	18		≥ 1			
TDD	Table A.3.4.1-3a	R.7-1 TDD	10	64QAM	3/4	17		≥ 1			
TDD	Table A.3.4.1-3a	R.8-1 TDD	15	64QAM	3/4	17		≥ 1			
TDD	Table A.3.4.1-3a	R.9-1 TDD	20	64QAM	3/4	17		≥ 1			
TDD	Table A.3.4.1-3a	R.9-2 TDD	20	64QAM	3/4	83		≥ 2			
TDD	Table A.3.4.1-6	R.41 TDD	10	QPSK	1/10	50		≥ 1			
Single PR	Single PRB (Channel edge)										
TDD	Table A.3.4.1-4	R.0 TDD	3	16QAM	1/2	1		≥ 1			
TDD	Table A.3.4.1-4	R.1 TDD	10 / 20	16QAM	1/2	1		≥ 1			
Single PR	B (MBSFN Configu	ration)									
TDD	Table A.3.4.1-5	R.29 TDD	10	16QAM	1/2	1		≥ 1			

Table A.3.1.1-1I: Overview of DL reference measurement channels (TDD, PDSCH Performance, Multi-antenna transmission (CRS))

Duplex	Table	Name	BW	Mod	TCR	RB	RB Off set	UE Cat	Notes
Two anter	nna ports						361	eg	
TDD	Table A.3.4.2.1-1	R.10 TDD	10	QPSK	1/3	50		≥ 1	
TDD	Table A.3.4.2.1-1	R.11 TDD	10	16QAM	1/2	50		≥ 2	
TDD	Table A.3.4.2.1-1	R.11-1 TDD	10	16QAM	1/2	50		≥ 2	
TDD	Table A.3.4.2.1-1	R.11-2 TDD	5	16QAM	1/2	25		≥ 1	
TDD	Table A.3.4.2.1-1	R.11-3 TDD	10	16QAM	1/2	40		≥ 1	
TDD	Table A.3.4.2.1-1	R.11-4 TDD	10	QPSK	1/2	50		≥ 1	
TDD	Table A.3.4.2.1-1	R.30 TDD	20	16QAM	1/2	100		≥ 2	
TDD	Table A.3.4.2.1-1	R.30-1 TDD	20	16QAM	1/2	100		≥ 2	
TDD	Table A.3.4.2.1-1	R.30-2 TDD	20	16QAM	1/2	100		3	
TDD	Table A.3.4.2.1-1	R.35 TDD	10	64QAM	1/2	50		≥ 2	
TDD	Table A.3.4.2.1-1	R.35-1 TDD	20	64QAM	0.39	100		4	
TDD	Table A.3.4.2.1-2	R.35-2 TDD	10	64QAM	0.47	50		≥ 2	
TDD	Table A.3.4.2.1-2	R.46 TDD	10	QPSK		50		≥ 1	
TDD	Table A.3.4.2.1-2	R.47 TDD	10	16QAM		50		≥ 1	
TDD	Table A.3.4.2.1-2	R.11-5 TDD	1.4	16QAM	1/2	6		≥ 1	
TDD	Table A.3.4.2.1-2	R.11-6 TDD	3	16QAM	1/2	15		≥ 1	
TDD	Table A.3.4.2.1-2	R.11-7 TDD	5	16QAM	1/2	25		≥ 1	
TDD	Table A.3.4.2.1-2	R.11-8 TDD	10	16QAM	1/2	50		≥ 2	
TDD	Table A.3.4.2.1-2	R.11-9 TDD	15	16QAM	1/2	75		≥ 2	
TDD	Table A.3.4.2.1-2	R.11-10 TDD	10	QPSK	3/5	50		≥ 2	
TDD	Table A.3.4.2.1-2	R.11-11 TDD	10	QPSK	0.48- 0.58	50		≥ 1	
TDD	Table A.3.4.2.1-2	R.11-12 TDD	10	QPSK	0.54- 0.66	50		≥ 1	
TDD	Table A.3.4.2.1-3	R.62 TDD	10	16QAM	1/2	3		0	
TDD	Table A.3.4.2.1-3	R.63 TDD	10	64QAM	1/2	1		0	
TDD	Table A.3.4.2.1-4	R.65 TDD	20	256QAM	0.6	100		11- 15	
TDD	Table A.3.4.2.1-5	R.67 TDD	10	16QAM	0.4	50		≥ 1	
Four ante	nna ports								
TDD	Table A.3.4.2.2-1	R.12 TDD	1.4	QPSK	1/3	6		≥ 1	
TDD	Table A.3.4.2.2-1	R.13 TDD	10	QPSK	1/3	50		≥ 1	
TDD	Table A.3.4.2.2-1	R.14 TDD	10	16QAM	1/2	50		≥ 2	
TDD	Table A.3.4.2.2-1	R.14-1 TDD	10	16QAM	1/2	6		≥ 1	
TDD	Table A.3.4.2.2-1	R.14-2 TDD	10	16QAM	1/2	3		≥ 1	
TDD	Table A.3.4.2.2-1	R.43 TDD	20	16QAM	1/2	100		≥2	
TDD	Table A.3.4.2.2-1	R.36 TDD	10	64QAM	1/2	50		≥ 2	
TDD	Table A.3.4.2.2-1	R.43-1 TDD	1.4	16QAM	1/2	6		≥ 1	
TDD	Table A.3.4.2.2-1	R.43-2 TDD	3	16QAM	1/2	15		≥ 1	
TDD	Table A.3.4.2.2-1	R.43-3 TDD	5	16QAM	1/2	25		≥ 1	
TDD	Table A.3.4.2.2-1	R.43-4 TDD	10	16QAM	1/2	50		≥ 2	
TDD	Table A.3.4.2.2-1	R.43-5 TDD	15	16QAM	1/2	75		≥ 2	

Table A.3.1.1-1J: Overview of DL reference measurement channels (TDD, PDSCH Performance (DRS))

Duplex	Table	Name	BW	Mod	TCR	RB	RB Off set	UE Cat eg	Notes
Single ant	tenna port							- 3	
TDD	Table A.3.4.3.1-1	R.25 TDD	10	QPSK	1/3	50		≥ 1	
TDD	Table A.3.4.3.1-1	R.26 TDD	10	16QAM	1/2	50		≥ 2	
TDD	Table A.3.4.3.1-1	R.26-1 TDD	5	16QAM	1/2	25		≥ 1	
TDD	Table A.3.4.3.1-1	R.27 TDD	10	64QAM	3/4	50		≥ 2	
TDD	Table A.3.4.3.1-1	R.27-1 TDD	10	64QAM	3/4	18		≥ 1	
TDD	Table A.3.4.3.1-1	R.28 TDD	10	16QAM	1/2	1		≥ 1	
Two anter	nna ports								
TDD	Table A.3.4.3.2-1	R.31 TDD	10	QPSK	1/3	50		≥ 1	
TDD	Table A.3.4.3.2-1	R.32 TDD	10	16QAM	1/2	50		≥ 2	
TDD	Table A.3.4.3.2-1	R.32-1 TDD	5	16QAM	1/2	[25]		≥ 1	
TDD	Table A.3.4.3.2-1	R.33 TDD	10	64QAM	3/4	50		≥ 2	
TDD	Table A.3.4.3.2-1	R.33-1 TDD	10	64QAM	3/4	[18]		≥ 1	
TDD	Table A.3.4.3.2-1	R.34 TDD	10	64QAM	1/2	50		≥ 2	
TDD	Table A.3.4.3.2	R.70 TDD	10	QPSK	0.54- 0.65	50		≥ 1	
TDD	Table A.3.4.3.2	R.71 TDD	10	16QAM	0.5- 0.6	50		≥ 2	

Table A.3.1.1-1K: Overview of DL reference measurement channels (TDD, PDSCH Performance (UE specific RS))

Duplex	Table	Name	BW	Mod	TCR	RB	RB Off set	UE Cat eg	Notes
Two anter	nna ports (CSI-RS)								
TDD	Table A.3.4.3.3-1	R.51 TDD	10	16QAM	1/2	50		≥ 2	
Two anter	nna ports (CSI-RS, r	non Quasi Co-l	ocated)						
TDD	Table A.3.4.3.3-2	R.52 TDD	10	64QAM	1/2	50		≥ 2	
TDD	Table A.3.4.3.3-2	R.53 TDD	10	64QAM	1/2	50		≥ 2	
TDD	Table A.3.4.3.3-2	R.54 TDD	10	16QAM	1/2	50		≥ 2	
Four ante	nna ports (CSI-RS)								
TDD	Table A.3.4.3.4-1	R.44 TDD	10	64QAM	1/2	50		≥ 2	
TDD	Table A.3.4.3.4-1	R.48 TDD	10	QPSK		50		≥ 1	
TDD	Table A.3.4.3.4-2	R.60 TDD	10	QPSK	1/2	50		≥ 1	
TDD	Table A.3.4.3.4-2	R.61 TDD	10	16QAM	1/2	50		≥ 2	
TDD	Table A.3.4.3.4-2	R.61-1 TDD	10	16QAM	1/2	39		≥ 1	
TDD	Table A.3.4.3.4-3	R.64 TDD	10	QPSK	1/3	6		0	
TDD	Table A.3.4.3.4-1	R.66 TDD	20	256QAM		100		11- 15	
TDD	Table A.3.4.3.4-4	R.69 TDD	10	QPSK	0.61- 0.8	50		≥ 1	
Eight ante	enna ports (CSI-RS)								
TDD	Table A.3.4.3.5-1	R.50 TDD	10	QPSK	1/3	50		≥ 1	
TDD	Table A.3.4.3.5-2	R.45 TDD	10	16QAM	1/2	50		≥ 2	
TDD	Table A.3.4.3.5-2	R.45-1 TDD	10	16QAM	1/2	39		≥ 1	

Table A.3.1.1-1L: Overview of DL reference measurement channels (PDCCH / PCFICH Performance)

Duplex	Table	Name	BW	Mod	TCR	RB	RB Off set	UE Cat eg	Notes
FDD									
FDD	Table A.3.5.1-1	R.15 FDD	10	PDCCH					
FDD	Table A.3.5.1-1	R.15-1 FDD	10	PDCCH					
FDD	Table A.3.5.1-1	R.15-2 FDD	10	PDCCH					
FDD	Table A.3.5.1-1	R.16 FDD	10	PDCCH					
FDD	Table A.3.5.1-1	R.17 FDD	5	PDCCH					
TDD									
TDD	Table A.3.5.2-1	R.15 TDD	10	PDCCH					
TDD	Table A.3.5.2-1	R.15-1 TDD	10	PDCCH					
TDD	Table A.3.5.2-1	R.15-2 TDD	10	PDCCH					
TDD	Table A.3.5.2-1	R.16 TDD	10	PDCCH					
TDD	Table A.3.5.2-1	R.17 TDD	5	PDCCH					

Table A.3.1.1-1M: Overview of DL reference measurement channels (PHICH Performance)

Duplex	Table	Name	BW	Mod	TCR	RB	RB Off set	UE Cat eg	Notes
FDD / TDD	Table A.3.6-1	R.18	10	PHICH					
FDD / TDD	Table A.3.6-1	R.19	10	PHICH					
FDD	Table A.3.6.1	R.19-1	5	PHICH					
FDD / TDD	Table A.3.6-1	R.20	5	PHICH					
FDD / TDD	Table A.3.6-1	R.24	10	PHICH					

Table A.3.1.1-1N: Overview of DL reference measurement channels (PBCH Performance)

Duplex	Table	Name	BW	Mod	TCR	RB	RB Off set	UE Cat eg	Notes
FDD / TDD	Table A.3.7-1	R.21	1.4	QPSK	40/ 1920				
FDD / TDD	Table A.3.7-1	R.22	1.4	QPSK	40/ 1920				
FDD / TDD	Table A.3.7-1	R.23	1.4	QPSK	40/ 1920				

Table A.3.1.1-10: Overview of DL reference measurement channels (PMCH Performance)

Duplex	Table	Name	BW	Mod	TCR	RB	RB Off set	UE Cat eg	Notes
FDD									
FDD	Table A.3.8.1-1	R.40 FDD	1.4	QPSK	1/3	6		≥ 1	
FDD	Table A.3.8.1-1	R.37 FDD	10	QPSK	1/3	50		≥ 1	
FDD	Table A.3.8.1-2	R.38 FDD	10	16QAM	1/2	50		≥ 1	
FDD	Table A.3.8.1-3	R.39-1 FDD	5	64QAM	2/3	25		≥ 1	
FDD	Table A.3.8.1-3	R.39 FDD	10	64QAM	2/3	50		≥ 2	
TDD									
TDD	Table A.3.8.2-1	R.40 TDD	1.4	QPSK	1/3	6		≥ 1	
TDD	Table A.3.8.2-1	R.37 TDD	10	QPSK	1/3	50		≥ 1	
TDD	Table A.3.8.2-2	R.38 TDD	10	16QAM	1/2	50		≥ 1	
TDD	Table A.3.8.2-3	R.39-1 TDD	5	64QAM	2/3	25		≥ 1	
TDD	Table A.3.8.2-3	R.39 TDD	10	64QAM	2/3	50		≥ 2	

Table A.3.1.1-1P: Overview of DL reference measurement channels (Sustained data rate)

Duplex	Table	Name	BW	Mod	TCR	RB	RB Off set	UE Cat eg	Notes
FDD								_ J	
FDD	Table A.3.9.1-1	R.31-1 FDD	10	64QAM	0.40			≥ 1	
FDD	Table A.3.9.1-1	R.31-2 FDD	10	64QAM	0.59- 0.64			≥ 2	
FDD	Table A.3.9.1-1	R.31-3 FDD	20	64QAM	0.59- 0.62			≥ 2	
FDD	Table A.3.9.1-1	R.31-3A FDD	10	64QAM	0.85- 0.90			≥ 2	
FDD	Table A.3.9.1-1	R.31-3C FDD	15	64QAM	0.87- 0.91			≥ 3	
FDD	Table A.3.9.1-1	R.31-4 FDD	20	64QAM	0.87- 0.90			≥ 3	
FDD	Table A.3.9.1-1	R.31-4B FDD	15	64QAM	0.85- 0.88			≥ 4	
FDD	Table A.3.9.1-1	R.31-5 FDD	15	64QAM	0.85- 0.91			≥ 3	
FDD	Table A.3.9.1-2	R.31-6 FDD	5	64QAM	0.83- 0.85			≥ 2	
FDD	Table A.3.9.1-3	R.68 FDD	20	256QAM	0.74- 0.85			11- 12	
FDD	Table A.3.9.1-3	R.68-1 FDD	15	256QAM	0.74- 0.88			11- 12	
FDD	Table A.3.9.1-3	R.68-2 FDD	10	256QAM	0.74- 0.85			11- 12	
FDD	Table A.3.9.1-3	R.68-3 FDD	5	256QAM	0.77- 0.85			11- 12	
TDD				•					
TDD	Table A.3.9.2-1	R.31-1 TDD	10	64QAM	0.40			≥ 1	
TDD	Table A.3.9.2-1	R.31-2 TDD	10	64QAM	0.59- 0.64			≥ 2	
TDD	Table A.3.9.2-1	R.31-3 TDD	20	64QAM	0.59- 0.62			≥ 2	
TDD	Table A.3.9.2-1	R.31-3A TDD	15	64QAM	0.87- 0.90			≥ 2	
TDD	Table A.3.9.2-1	R.31-4 TDD	20	64QAM	0.87- 0.90			≥ 3	
TDD	Table A.3.9.2-1	R.31-4A TDD	20	64QAM	0.87- 0.90			≥ 3	
TDD	Table A.3.9.2-1	R.31-5 TDD	15	64QAM	0.85- 0.88			≥ 3	
TDD	Table A.3.9.2-1	R.31-5A TDD	15	64QAM	0.85- 0.88			≥ 3	
TDD	Table A.3.9.2-1	R.31-6 TDD	10	64QAM	0.85- 0.88			≥ 2	
TDD	Table A.3.9.2-2	R.68 TDD	20	256QAM				11- 12	
TDD	Table A.3.9.2-2	R.68-1 TDD	15	256QAM				11- 12	
TDD	Table A.3.9.2-2	R.68-2 TDD	10	256QAM				11- 12	
TDD	Table A.3.9.2-2	R.68-3 TDD	20	256QAM				11- 12	
TDD	Table A.3.9.2-2	R.68-4 TDD	15	256QAM				11- 12	
FDD, EPD	CCH scheduling								
FDD	Table A.3.9.3-1	R.31E-1 FDD	10	64QAM	0.40- 0			≥ 1	
FDD	Table A.3.9.3-1	R.31E-2 FDD	10	64QAM	0.59- 0.66			≥ 2	
FDD	Table A.3.9.3-1	R.31E-3 FDD	20	64QAM	0.59- 0.63			≥ 2	
FDD	Table A.3.9.1-1	R.31E-3C FDD	15	64QAM	0.87- 0.92			≥ 3	
FDD	Table A.3.9.3-1	R.31E-3A FDD	10	64QAM	0.85- 0.92			≥ 2	
FDD	Table A.3.9.3-1	R.31E-4 FDD	20	64QAM	0.87- 0.91			≥ 3	

FDD	Table A.3.9.1-1	R.31E-4B FDD	15	64QAM	0.87- 0.90		≥ 4	
TDD, EPD	CCH scheduling							
TDD	Table A.3.9.4-1	R.31E-1 TDD	10	64QAM	0.40- 0.41		≥ 1	
TDD	Table A.3.9.4-1	R.31E-2 TDD	10	64QAM	0.59- 0.65		≥ 2	
TDD	Table A.3.9.4-1	R.31E-3 TDD	20	64QAM	0.59- 0.63		≥ 2	
TDD	Table A.3.9.4-1	R.31E-3A TDD	15	64QAM	0.87- 0.92		≥ 2	
TDD	Table A.3.9.4-1	R.31E-4 TDD	20	64QAM	0.87- 0.90		≥ 3	

Table A.3.1.1-1Q: Overview of DL reference measurement channels (EPDCCH)

Duplex	Table	Name	BW	Mod	TCR	RB	RB Off set	UE Cat eg	Notes
FDD									
FDD	Table A.3.10.1-1	R.55 FDD	10	EPDCC H					
FDD	Table A.3.10.1-1	R.56 FDD	10	EPDCC H					
FDD	Table A.3.10.1-1	R.57 FDD	10	EPDCC H					
FDD	Table A.3.10.1-1	R.58 FDD	10	EPDCC H					
FDD	Table A.3.10.1-1	R.59 FDD	10	EPDCC H					
TDD									
TDD	Table A.3.10.2-1	R.55 TDD	10	EPDCC H					
TDD	Table A.3.10.2-1	R.56 TDD	10	EPDCC H					
TDD	Table A.3.10.2-1	R.57 TDD	10	EPDCC H					
TDD	Table A.3.10.2-1	R.58 TDD	10	EPDCC H					
TDD	Table A.3.10.2-1	R.59 TDD	10	EPDCC H					

A.3.2 Reference measurement channel for receiver characteristics

Tables A.3.2-1 and A.3.2-2 are applicable for measurements on the Receiver Characteristics (clause 7) with the exception of subclause 7.4 (Maximum input level).

Tables A.3.2-3, A.3.2-3a, A.3.2-3b, A.3.2-4, A.3.2-4a and A.3.2-4b are applicable for subclause 7.4 (Maximum input level).

Tables A.3.2-1 and A.3.2-2 also apply for the modulated interferer used in Clauses 7.5, 7.6 and 7.8 with test specific bandwidths.

Table A.3.2-1 Fixed Reference Channel for Receiver Requirements (FDD)

Parameter	Unit			Va	lue		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6	15	25	50	75	100
Subcarriers per resource block		12	12	12	12	12	12
Allocated subframes per Radio Frame		9	9	9	9	9	9
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding Rate		1/3	1/3	1/3	1/3	1/3	1/3
Number of HARQ Processes	Processes	8	8	8	8	8	8
Maximum number of HARQ transmissions		1	1	1	1	1	1
Information Bit Payload per Sub-Frame							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	408	1320	2216	4392	6712	8760
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits	152	872	1800	4392	6712	8760
Transport block CRC	Bits	24	24	24	24	24	24
Number of Code Blocks per Sub-Frame (Note 3)							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	1	1	1	1	2	2
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits	1	1	1	1	2	2
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	1368	3780	6300	13800	20700	27600
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits	528	2940	5460	12960	19860	26760
Max. Throughput averaged over 1 frame	kbps	341.6	1143.	1952.	3952.	6040.	7884
			2	8	8	8	
UE Category		≥ 1	≥ 1	≥ 1	≥1	≥1	≥ 1

2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10MHz channel BW. 3 symbols allocated to Note 1: PDCCH for 5 MHz and 3 MHz. 4 symbols allocated to PDCCH for 1.4 MHz
Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4]
If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to

Note 2:

Note 3:

each Code Block (otherwise L = 0 Bit)

Table A.3.2-1a Fixed Reference Channel for Receiver Requirements (FDD)

Parameter	Unit			Va	lue		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6	14	14	14	14	14
Subcarriers per resource block		12	12	12	12	12	12
Allocated subframes per Radio Frame		9	9	9	9	9	9
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding Rate		1/3	1/3	1/3	1/3	1/3	1/3
Number of HARQ Processes	Processes	8	8	8	8	8	8
Maximum number of HARQ transmissions		1	1	1	1	1	1
Information Bit Payload per Sub-Frame							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	408	1000	1000	1000	1000	1000
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0 (Note 3)	Bits	152	840	840	904	904	904
Transport block CRC	Bits	24	24	24	24	24	24
Number of Code Blocks per Sub-Frame							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	1	1	1	1	1	1
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits	1	1	1	1	1	1
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	1368	3528	3528	3864	3864	3864
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0 (Note 3)	Bits	528	2688	2688	3024	3024	3024
Max. Throughput averaged over 1 frame	kbps	341.6	884	884	890.4	890.4	890.4
UE DL Category		0	0	0	0	0	0

- Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10MHz channel BW. 3 symbols allocated to PDCCH for 5 MHz and 3 MHz. 4 symbols allocated to PDCCH for 1.4 MHz
- Note 2: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211.
- Note 3: For Sub-Frame 0, it is assumed the 6PRBs are allocated in the centre of the channel where some REs of the same PRBs are occupied by PBCH and synchronization signals.
- Note 4: For HD-FDD UE, the downlink subframes are scheduled at the 0th, 1st, 2nd, 8th, 9th, 10th, 16th, 17th, 18th, 24th, 25th, 26th, 32nd, 33rd, 34th subframes every 40ms. Information bit payload is available if downlink subframe is scheduled.

Table A.3.2-2 Fixed Reference Channel for Receiver Requirements (TDD)

Parameter	Unit			Va	lue		
Channel Bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6	15	25	50	75	100
Uplink-Downlink Configuration (Note 5)		1	1	1	1	1	1
Allocated subframes per Radio Frame (D+S)		3	3+2	3+2	3+2	3+2	3+2
Number of HARQ Processes	Processes	7	7	7	7	7	7
Maximum number of HARQ transmission		1	1	1	1	1	1
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target coding rate		1/3	1/3	1/3	1/3	1/3	1/3
Information Bit Payload per Sub-Frame	Bits						
For Sub-Frame 4, 9		408	1320	2216	4392	6712	8760
For Sub-Frame 1, 6		N/A	968	1544	3240	4968	6712
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0		208	1064	1800	4392	6712	8760
Transport block CRC	Bits	24	24	24	24	24	24
Number of Code Blocks per Sub-Frame							
(Note 4)							
For Sub-Frame 4, 9		1	1	1	1	2	2
For Sub-Frame 1, 6		N/A	1	1	1	1	2
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0		1	1	1	1	2	2
Binary Channel Bits Per Sub-Frame	Bits						
For Sub-Frame 4, 9		1368	3780	6300	13800	20700	27600
For Sub-Frame 1, 6		N/A	3276	5556	11256	16956	22656
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0		672	3084	5604	13104	20004	26904
Max. Throughput averaged over 1 frame	kbps	102.4	564	932	1965.	3007.	3970.
					6	2	4
UE Category		≥ 1	≥ 1	≥ 1	≥ 1	≥ 1	≥ 1

For normal subframes(0,4,5,9), 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz Note 1: channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For special subframe (1&6), only 2 OFDM symbols are allocated to PDCCH for all BWs. For 1.4MHz, no data shall be scheduled on special subframes(1&6) to avoid problems with

Note 2: insufficient PDCCH performance

Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4] Note 3:

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to Note 4: each Code Block (otherwise L = 0 Bit).

Note 5: As per Table 4.2-2 in TS 36.211 [4]

Table A.3.2-2a Fixed Reference Channel for Receiver Requirements (TDD)

Parameter	Unit	Value						
Channel Bandwidth	MHz	1.4	3	5	10	15	20	
Allocated resource blocks		6	14	14	14	14	14	
Uplink-Downlink Configuration (Note 5)		1	1	1	1	1	1	
Allocated subframes per Radio Frame (D+S)		3	3+2	3+2	3+2	3+2	3+2	
Number of HARQ Processes	Processes	7	7	7	7	7	7	
Maximum number of HARQ transmission		1	1	1	1	1	1	
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	
Target coding rate		1/3	1/3	1/3	1/3	1/3	1/3	
Information Bit Payload per Sub-Frame	Bits							
For Sub-Frame 4, 9		408	1000	1000	1000	1000	1000	
For Sub-Frame 1, 6		N/A	872	872	872	872	872	
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0		208	1000	1000	1000	1000	1000	
Transport block CRC	Bits	24	24	24	24	24	24	
Number of Code Blocks per Sub-Frame								
(Note 4)								
For Sub-Frame 4, 9		1	1	1	1	1	1	
For Sub-Frame 1, 6		N/A	1	1	1	1	1	
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0		1	1	1	1	1	1	
Binary Channel Bits Per Sub-Frame	Bits							
For Sub-Frame 4, 9		1368	3528	3528	3864	3864	3864	
For Sub-Frame 1, 6		N/A	3048	3048	3048	3048	3048	
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0		672	2832	2832	3168	3168	3168	
Max. Throughput averaged over 1 frame	kbps	102.4	474.4	474.4	474.4	474.4	474.4	
UE DL Category		0	0	0	0	0	0	

- Note 1: For normal subframes(0,4,5,9), 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For special subframe (1&6), only 2 OFDM symbols are allocated to PDCCH for all BWs.
- Note 2: For 1.4MHz, no data shall be scheduled on special subframes(1&6) to avoid problems with insufficient PDCCH performance
- Note 3: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4]
- Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).
- Note 5: As per Table 4.2-2 in TS 36.211 [4]

Table A.3.2-3 Fixed Reference Channel for Maximum input level for UE Categories ≥ 3 (FDD)

Parameter	Unit	Value						
Channel bandwidth	MHz	1.4	3	5	10	15	20	
Allocated resource blocks		6	15	25	50	75	100	
Subcarriers per resource block		12	12	12	12	12	12	
Allocated subframes per Radio Frame		8	9	9	9	9	9	
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM	
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4	
Number of HARQ Processes	Processes	8	8	8	8	8	8	
Maximum number of HARQ transmissions		1	1	1	1	1	1	
Information Bit Payload per Sub-Frame								
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	2984	8504	14112	30576	46888	61664	
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0	Bits	N/A	6456	12576	28336	45352	61664	
Transport block CRC	Bits	24	24	24	24	24	24	
Number of Code Blocks per Sub-Frame (Note 3)								
For Sub-Frames 1,2,3,4,6,7,8,9		1	2	3	5	8	11	
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0		N/A	2	3	5	8	11	
Binary Channel Bits Per Sub-Frame								
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	4104	11340	18900	41400	62100	82800	
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0	Bits	N/A	8820	16380	38880	59580	80280	
Max. Throughput averaged over 1 frame	kbps	2387.2	7448.8	12547	27294	42046	55498	

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW. 3 symbols allocated to PDCCH for 5 MHz and 3 MHz. 4 symbols allocated to PDCCH for 1.4 MHz.

Table A.3.2-3a Fixed Reference Channel for Maximum input level for UE Category 1 (FDD)

Parameter	Unit	Value						
Channel bandwidth	MHz	1.4	3	5	10	15	20	
Allocated resource blocks		6	15	18	17	17	17	
Subcarriers per resource block		12	12	12	12	12	12	
Allocated subframes per Radio Frame		8	9	9	9	9	9	
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM	
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4	
Number of HARQ Processes	Processes	8	8	8	8	8	8	
Maximum number of HARQ transmissions		1	1	1	1	1	1	
Information Bit Payload								
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	2984	8504	10296	10296	10296	10296	
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0	Bits	N/A	6456	8248	10296	10296	10296	
Transport block CRC	Bits	24	24	24	24	24	24	
Number of Code Blocks per Sub-Frame (Note 3)								
For Sub-Frames 1,2,3,4,6,7,8,9		1	2	2	2	2	2	
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0		N/A	2	2	2	2	2	
Binary Channel Bits Per Sub-Frame								
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	4104	11340	13608	14076	14076	14076	
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0	Bits	N/A	8820	11088	14076	14076	14076	
Max. Throughput averaged over 1 frame	kbps	2387.2	7448.8	9079.6	9266.4	9266.4	9266.4	

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW. 3 symbols allocated to PDCCH for 5 MHz and 3 MHz. 4 symbols allocated to PDCCH for 1.4 MHz.

Note 2: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Note 2: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Table A.3.2-3b Fixed Reference Channel for Maximum input level for UE Category 2 (FDD)

Parameter	Unit	Value					
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6	15	25	50	75	83
Subcarriers per resource block		12	12	12	12	12	12
Allocated subframes per Radio Frame		8	9	9	9	9	9
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4
Number of HARQ Processes	Processes	8	8	8	8	8	8
Maximum number of HARQ transmissions		1	1	1	1	1	1
Information Bit Payload							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	2984	8504	14112	30576	46888	51024
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits	N/A	6456	12576	28336	45352	51024
Transport block CRC	Bits	24	24	24	24	24	24
Number of Code Blocks per Sub-Frame (Note 3)							
For Sub-Frames 1,2,3,4,6,7,8,9		1	2	3	5	8	9
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0		N/A	2	3	5	8	9
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	4104	11340	18900	41400	62100	68724
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits	N/A	8820	16380	38880	59580	66204
Max. Throughput averaged over 1 frame	kbps	2387.2	7448.8	12547	27294	42046	45922

- Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW. 3 symbols allocated to PDCCH for 5 MHz and 3 MHz. 4 symbols allocated to PDCCH for 1.4 MHz.
- Note 2: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4].
- Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Table A.3.2-3c Fixed Reference Channel for Maximum input level for UE DL Category 0 (FDD)

Parameter	Unit			Va	lue		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		2	2	2	2	2	2
Subcarriers per resource block		12	12	12	12	12	12
Allocated subframes per Radio Frame		8	9	9	9	9	9
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4
Number of HARQ Processes	Processes	8	8	8	8	8	8
Maximum number of HARQ transmissions		1	1	1	1	1	1
Information Bit Payload							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	1000	1000	1000	1000	1000	1000
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0 (Note 3)	Bits	N/A	1000	1000	1000	1000	1000
Transport block CRC	Bits	24	24	24	24	24	24
Number of Code Blocks per Sub-Frame							
For Sub-Frames 1,2,3,4,6,7,8,9		1	1	1	1	1	1
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0		N/A	1	1	1	1	1
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	1368	1512	1512	1656	1656	1656
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0 (Note 3)	Bits	N/A	1512	1512	1656	1656	1656
Max. Throughput averaged over 1 frame	kbps	800	900	900	900	900	900

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW. 3 symbols allocated to PDCCH for 5 MHz and 3 MHz. 4 symbols allocated to PDCCH for 1.4 MHz.

Note 2: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211.

Note 3: For Sub-Frame 0, it is assumed that the allocated 2PRBs are scheduled on the RBs other than the center 6PRBs as most of the symbols are occupied by PBCH and synchronization signals.

Table A.3.2-4 Fixed Reference Channel for Maximum input level for UE Categories ≥ 3 (TDD)

Parameter	Unit	Value						
Channel bandwidth	MHz	1.4	3	5	10	15	20	
Allocated resource blocks		6	15	25	50	75	100	
Subcarriers per resource block		12	12	12	12	12	12	
Uplink-Downlink Configuration (Note 5)		1	1	1	1	1	1	
Allocated subframes per Radio Frame		2	3+2	3+2	3+2	3+2	3+2	
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM	
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4	
Number of HARQ Processes	Processes	7	7	7	7	7	7	
Maximum number of HARQ transmissions		1	1	1	1	1	1	
Information Bit Payload per Sub-Frame								
For Sub-Frames 4,9	Bits	2984	8504	14112	30576	46888	61664	
For Sub-Frames 1,6	Bits	N/A	6968	11448	23688	35160	46888	
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0	Bits	N/A	6968	12576	30576	45352	61664	
Transport block CRC	Bits	24	24	24	24	24	24	
Number of Code Blocks per Sub-Frame								
(Note 4)								
For Sub-Frames 4,9		1	2	3	5	8	11	
For Sub-Frames 1,6		N/A	2	2	4	6	8	
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0		N/A	2	3	5	8	11	
Binary Channel Bits per Sub-Frame								
For Sub-Frames 4,9	Bits	4104	11340	18900	41400	62100	82800	
For Sub-Frames 1,6		N/A	9828	16668	33768	50868	67968	
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0	Bits	N/A	9252	16812	39312	60012	80712	
Max. Throughput averaged over 1 frame	kbps	596.8	3791.2	6369.6	13910	20945	27877	

- Note 1: For normal subframes(0,4,5,9), 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For special subframe (1&6), only 2 OFDM symbols are allocated to PDCCH for all BWs.
- Note 2: For 1.4MHz, no data shall be scheduled on special subframes(1&6) to avoid problems with insufficient PDCCH performance.
- Note 3: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4].
- Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).
- Note 5: As per Table 4.2-2 in TS 36.211 [4].

Table A.3.2-4a Fixed Reference Channel for Maximum input level for UE Category 1 (TDD)

Parameter	Unit	Value						
Channel bandwidth	MHz	1.4	3	5	10	15	20	
Allocated resource blocks		6	15	18	17	17	17	
Subcarriers per resource block		12	12	12	12	12	12	
Uplink-Downlink Configuration (Note 5)		1	1	1	1	1	1	
Allocated subframes per Radio Frame		2	3+2	3+2	3+2	3+2	3+2	
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM	
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4	
Number of HARQ Processes	Processes	7	7	7	7	7	7	
Maximum number of HARQ transmissions		1	1	1	1	1	1	
Information Bit Payload per Sub-Frame								
For Sub-Frames 4,9	Bits	2984	8504	10296	10296	10296	10296	
For Sub-Frames 1,6	Bits	N/A	6968	8248	7480	7480	7480	
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0	Bits	N/A	6968	8248	10296	10296	10296	
Transport block CRC	Bits	24	24	24	24	24	24	
Number of Code Blocks per Sub-Frame								
(Note 4)								
For Sub-Frames 4,9		1	2	2	2	2	2	
For Sub-Frames 1,6		N/A	2	2	2	2	2	
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0		N/A	2	2	2	2	2	
Binary Channel Bits per Sub-Frame								
For Sub-Frames 4,9	Bits	4104	11340	13608	14076	14076	14076	
For Sub-Frames 1,6		N/A	9828	11880	11628	11628	11628	
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0	Bits	N/A	9252	11520	14076	14076	14076	
Max. Throughput averaged over 1 frame	kbps	596.8	3791.2	4533.6	4584.8	4584.8	4584.8	

- Note 1: For normal subframes(0,4,5,9), 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For special subframe (1&6), only 2 OFDM symbols are allocated to PDCCH for all BWs.
- Note 2: For 1.4MHz, no data shall be scheduled on special subframes(1&6) to avoid problems with insufficient PDCCH performance.
- Note 3: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4].
- Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).
- Note 5: As per Table 4.2-2 in TS 36.211 [4].

Table A.3.2-4b Fixed Reference Channel for Maximum input level for UE Category 2 (TDD)

Parameter	Unit	Value						
Channel bandwidth	MHz	1.4	3	5	10	15	20	
Allocated resource blocks		6	15	25	50	75	83	
Subcarriers per resource block		12	12	12	12	12	12	
Uplink-Downlink Configuration (Note 5)		1	1	1	1	1	1	
Allocated subframes per Radio Frame		2	3+2	3+2	3+2	3+2	3+2	
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM	
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4	
Number of HARQ Processes	Processes	7	7	7	7	7	7	
Maximum number of HARQ transmissions		1	1	1	1	1	1	
Information Bit Payload per Sub-Frame								
For Sub-Frames 4,9	Bits	2984	8504	14112	30576	46888	51024	
For Sub-Frames 1,6	Bits	N/A	6968	11448	23688	35160	39232	
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0	Bits	N/A	6968	12576	30576	45352	51024	
Transport block CRC	Bits	24	24	24	24	24	24	
Number of Code Blocks per Sub-Frame								
(Note 4)								
For Sub-Frames 4,9		1	2	3	5	8	9	
For Sub-Frames 1,6		N/A	2	3	5	7	7	
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0		N/A	2	3	5	8	9	
Binary Channel Bits per Sub-Frame								
For Sub-Frames 4,9	Bits	4104	11340	18900	41400	62100	68724	
For Sub-Frames 1,6		N/A	9828	16668	33768	50868	56340	
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0	Bits	N/A	9252	16380	39312	60012	66636	
Max. Throughput averaged over 1 frame	kbps	596.8	3791.2	6369.6	13910	20945	23154	

- Note 1: For normal subframes(0,4,5,9), 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For special subframe (1&6), only 2 OFDM symbols are allocated to PDCCH for all BWs.
- Note 2: For 1.4MHz, no data shall be scheduled on special subframes(1&6) to avoid problems with insufficient PDCCH performance.
- Note 3: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4].
- Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).
- Note 5: As per Table 4.2-2 in TS 36.211 [4].

Table A.3.2-4c Fixed Reference Channel for Maximum input level for UE DL Category 0 (TDD)

Parameter	Unit	Value						
Channel bandwidth	MHz	1.4	3	5	10	15	20	
Allocated resource blocks		2	2	2	2	2	2	
Subcarriers per resource block		12	12	12	12	12	12	
Uplink-Downlink Configuration (Note 5)		1	1	1	1	1	1	
Allocated subframes per Radio Frame		2	3+2	3+2	3+2	3+2	3+2	
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM	
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4	
Number of HARQ Processes	Processes	7	7	7	7	7	7	
Maximum number of HARQ transmissions		1	1	1	1	1	1	
Information Bit Payload per Sub-Frame								
For Sub-Frames 4,9	Bits	1000	1000	1000	1000	1000	1000	
For Sub-Frames 1,6	Bits	N/A	712	712	712	712	712	
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0	Bits	N/A	1000	1000	1000	1000	1000	
Transport block CRC	Bits	24	24	24	24	24	24	
Number of Code Blocks per Sub-Frame								
(Note 4)								
For Sub-Frames 4,9		1	1	1	1	1	1	
For Sub-Frames 1,6		N/A	1	1	1	1	1	
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0		N/A	1	1	1	1	1	
Binary Channel Bits per Sub-Frame								
For Sub-Frames 4,9	Bits	1368	1512	1512	1656	1656	1656	
For Sub-Frames 1,6		N/A	1224	1224	1368	1368	1368	
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0	Bits	N/A	1512	1512	1656	1656	1656	
Max. Throughput averaged over 1 frame	kbps	200	442.4	442.4	442.4	442.4	442.4	

- Note 1: For normal subframes(0,4,5,9), 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For special subframe (1&6), only 2 OFDM symbols are allocated to PDCCH for all BWs.
- Note 2: For 1.4MHz, no data shall be scheduled on special subframes(1&6) to avoid problems with insufficient PDCCH performance.
- Note 3: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4].
- Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).
- Note 5: As per Table 4.2-2 in TS 36.211 [4].

Table A.3.2-5 Fixed Reference Channel for Maximum input level for UE Categories 11/12 and UE DL categories ≥ 11 (FDD)

Parameter	Unit	Value						
Channel bandwidth	MHz	1.4	3	5	10	15	20	
Allocated resource blocks		6	15	25	50	75	100	
Subcarriers per resource block		12	12	12	12	12	12	
Allocated subframes per Radio Frame		8	9	9	9	9	9	
Modulation		256QAM	256QAM	256QAM	256QAM	256QAM	256QAM	
Target Coding Rate		4/5	4/5	4/5	4/5	4/5	4/5	
Number of HARQ Processes	Processes	8	8	8	8	8	8	
Maximum number of HARQ transmissions		1	1	1	1	1	1	
Information Bit Payload per Sub-Frame								
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	4392	12216	19848	42368	63776	84760	
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0	Bits	N/A	9912	17568	40576	63776	84760	
Transport block CRC	Bits	24	24	24	24	24	24	
Number of Code Blocks per Sub-Frame								
(Note 3)								
For Sub-Frames 1,2,3,4,6,7,8,9		1	2	4	7	11	14	
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0		N/A	2	3	7	11	14	
Binary Channel Bits Per Sub-Frame								
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	5472	15120	25200	55200	82800	110400	
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0	Bits	N/A	12210	22290	51840	79440	107040	
Max. Throughput averaged over 1 frame	kbps	3513.6	10764	17635.2	37952	57398.4	76284	

² symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW. 3 symbols allocated to PDCCH for 5 MHz and 3 MHz. 4 symbols allocated to PDCCH for 1.4 MHz. Note 1:

Note 2:

Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4].

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Note 3: Block (otherwise L = 0 Bit).

Table A.3.2-6 Fixed Reference Channel for Maximum input level for UE Categories 11/12 and UE DL categories ≥ 11 (TDD)

Parameter	Unit	Value							
Channel bandwidth	MHz	1.4	3	5	10	15	20		
Allocated resource blocks		6	15	25	50	75	100		
Subcarriers per resource block		12	12	12	12	12	12		
Uplink-Downlink Configuration (Note 5)		1	1	1	1	1	1		
Allocated subframes per Radio Frame		2	3+2	3+2	3+2	3+2	3+2		
Modulation		256QAM	256QAM	256QAM	256QAM	256QAM	256QAM		
Target Coding Rate		4/5	4/5	4/5	4/5	4/5	4/5		
Number of HARQ Processes	Processes	7	7	7	7	7	7		
Maximum number of HARQ transmissions		1	1	1	1	1	1		
Information Bit Payload per Sub-Frame									
For Sub-Frames 4,9	Bits	4392	12216	19848	42368	63776	84760		
For Sub-Frames 1,6	Bits	N/A	10680	17568	36696	55056	75376		
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A		
For Sub-Frame 0	Bits	N/A	9912	17568	42368	63776	84760		
Transport block CRC	Bits	24	24	24	24	24	24		
Number of Code Blocks per Sub-Frame									
(Note 4)									
For Sub-Frames 4,9		1	2	4	7	11	14		
For Sub-Frames 1,6		N/A	2	3	6	9	13		
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A		
For Sub-Frame 0		N/A	2	3	7	11	14		
Binary Channel Bits per Sub-Frame									
For Sub-Frames 4,9	Bits	5472	15120	25200	55200	82800	110400		
For Sub-Frames 1,6		N/A	13104	22224	45024	67824	90624		
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A		
For Sub-Frame 0	Bits	N/A	12336	22416	52416	80016	107616		
Max. Throughput averaged over 1 frame	kbps	878.4	5570.4	9240	20049.6	30144	40503.2		

- Note 1: For normal subframes(0,4,5,9), 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For special subframe (1&6), only 2 OFDM symbols are allocated to PDCCH for all BWs.
- Note 2: For 1.4MHz, no data shall be scheduled on special subframes(1&6) to avoid problems with insufficient PDCCH performance.
- Note 3: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4].
- Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).
- Note 5: As per Table 4.2-2 in TS 36.211 [4].

A.3.3 Reference measurement channels for PDSCH performance requirements (FDD)

A.3.3.1 Single-antenna transmission (Common Reference Symbols)

Table A.3.3.1-1: Fixed Reference Channel QPSK R=1/3

Parameter	Unit			Va	lue		
Reference channel		R.4	R.42	R.42-1	R.42-2	R.42-3	R.2
		FDD	FDD	FDD	FDD	FDD	FDD
Channel bandwidth	MHz	1.4	20	3	5	15	10
Allocated resource blocks (Note 4)		6	100	15	25	75	50
Allocated subframes per Radio Frame		9	9	9	9	9	9
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding Rate		1/3	1/3	1/3	1/3	1/3	1/3
Information Bit Payload (Note 4)							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	408	8760	1320	2216	6712	4392
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits	152	8760	1064	1800	6712	4392
Number of Code Blocks							
(Notes 3 and 4)							
For Sub-Frames 1,2,3,4,6,7,8,9		1	2	1	1	2	1
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0		1	2	1	1	2	1
Binary Channel Bits (Note 4)							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	1368	27600	3780	6300	20700	13800
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits	528	26760	2940	5460	19860	12960
Max. Throughput averaged over 1 frame	Mbps	0.342	7.884	1.162	1.953	6.041	3.953
(Note 4)							
UE Category		≥ 1	≥ 1	≥ 1	≥ 1	≥1	≥ 1

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Note 4: Given per component carrier per codeword.

Table A.3.3.1-2: Fixed Reference Channel 16QAM R=1/2

Parameter	Unit	Value					
Reference channel				R.3-1 FDD	R.3 FDD		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks				25	50		
Allocated subframes per Radio Frame				9	9		
Modulation				16QAM	16QAM		
Target Coding Rate				1/2	1/2		
Information Bit Payload							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits			6456	14112		
For Sub-Frame 5	Bits			N/A	N/A		
For Sub-Frame 0	Bits			5736	12960		
Number of Code Blocks per Sub-Frame (Note 3)							
For Sub-Frames 1,2,3,4,6,7,8,9				2	3		
For Sub-Frame 5				N/A	N/A		
For Sub-Frame 0				1	3		
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits			12600	27600		
For Sub-Frame 5	Bits			N/A	N/A		
For Sub-Frame 0	Bits			10920	25920		
Max. Throughput averaged over 1 frame	Mbps			5.738	12.586		
UE Category				≥ 1	≥2		

- Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz.
- Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].
- Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Table A.3.3.1-3: Fixed Reference Channel 64QAM R=3/4

Parameter	Unit	Value					
Reference channel			R.5	R.6	R.7	R.8	R.9 FDD
			FDD	FDD	FDD	FDD	
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks			15	25	50	75	100
Allocated subframes per Radio Frame			9	9	9	9	9
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4
Information Bit Payload							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits		8504	14112	30576	46888	61664
For Sub-Frame 5	Bits		N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits		6456	12576	28336	45352	61664
Number of Code Blocks per Sub-Frame							
(Note 3)							
For Sub-Frames 1,2,3,4,6,7,8,9			2	3	5	8	11
For Sub-Frame 5			N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0			2	3	5	8	11
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits		11340	18900	41400	62100	82800
For Sub-Frame 5	Bits		N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits		8820	16380	38880	59580	80280
Max. Throughput averaged over 1 frame	Mbps		7.449	12.547	27.294	42.046	55.498
UE Category	-		≥ 1	≥2	≥ 2	≥ 2	≥ 3

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Table A.3.3.1-3a: Fixed Reference Channel 64QAM R=3/4

Parameter	Unit			Va	lue		
Reference channel		F	₹.6-1	R.7-1	R.8-1	R.9-1	R.9-2
			FDD	FDD	FDD	FDD	FDD
Channel bandwidth	MHz		5	10	15	20	20
Allocated resource blocks (Note 3)			18	17	17	17	83
Allocated subframes per Radio Frame			9	9	9	9	9
Modulation		64	4QAM	64QAM	64QAM	64QAM	64QAM
Target Coding Rate			3/4	3/4	3/4	3/4	3/4
Information Bit Payload							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	1	0296	10296	10296	10296	51024
For Sub-Frame 5	Bits		N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits		8248	10296	10296	10296	51024
Number of Code Blocks per Sub-Frame							
(Note 4)							
For Sub-Frames 1,2,3,4,6,7,8,9			2	2	2	2	9
For Sub-Frame 5			N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0			2	2	2	2	9
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	1	3608	14076	14076	14076	68724
For Sub-Frame 5	Bits		N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits	1	1088	14076	14076	14076	66204
Max. Throughput averaged over 1 frame	Mbps	9	9.062	9.266	9.266	9.266	45.922
UE Category			≥ 1	≥1	≥ 1	≥1	≥ 2

- Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz.
- Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].
- Note 3: Localized allocation started from RB #0 is applied.
- Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Table A.3.3.1-4: Fixed Reference Channel Single PRB (Channel Edge)

Parameter	Unit	Value						
Reference channel			R.0 FDD		R.1 FDD			
Channel bandwidth	MHz	1.4	3	5	10/20	15	20	
Allocated resource blocks			1		1			
Allocated subframes per Radio Frame			9		9			
Modulation			16QAM		16QAM			
Target Coding Rate			1/2		1/2			
Information Bit Payload								
For Sub-Frames 1,2,3,4,6,7,8,9	Bits		224		256			
For Sub-Frame 5	Bits		N/A		N/A			
For Sub-Frame 0	Bits		224		256			
Number of Code Blocks per Sub-Frame (Note 3)								
For Sub-Frames 1,2,3,4,6,7,8,9			1		1			
For Sub-Frame 5			N/A		N/A			
For Sub-Frame 0			1		1			
Binary Channel Bits Per Sub-Frame								
For Sub-Frames 1,2,3,4,6,7,8,9	Bits		504		552			
For Sub-Frame 5	Bits		N/A		N/A			
For Sub-Frame 0	Bits		504		552			
Max. Throughput averaged over 1 frame	Mbps		0.202		0.230			
UE Category			≥ 1		≥ 1			

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Table A.3.3.1-5: Fixed Reference Channel Single PRB (MBSFN Configuration)

	Parameter	Unit	Value					
Reference	e channel		R.29 FDD					
			(MBSFN)					
Channel	bandwidth	MHz	10					
Allocated	resource blocks		1					
MBSFN (Configuration (Note 4)		111111					
Allocated	l subframes per Radio Frame		3					
Modulation	on		16QAM					
Target C	oding Rate		1/2					
Informati	on Bit Payload							
For Sub	o-Frames 4,9	Bits	256					
For Sub	o-Frame 5	Bits	N/A					
For Sub	o-Frame 0	Bits	256					
For Sub	o-Frame 1,2,3,6,7,8	Bits	0 (MBSFN)					
Number	of Code Blocks per Sub-Frame							
(Note 3)								
For Sub	o-Frames 4,9		1					
For Sub	-Frame 5		N/A					
For Sub	o-Frame 0		1					
For Sub	o-Frame 1,2,3,6,7,8		0 (MBSFN)					
Binary C	hannel Bits Per Sub-Frame							
For Sub	o-Frames 4,9	Bits	552					
For Sub	-Frame 5	Bits	N/A					
	o-Frame 0	Bits	552					
For Sub	o-Frame 1,2,3,6,7,8	Bits	0 (MBSFN)					
Max. Thr	oughput averaged over 1 frame	kbps	76.8					
UE Category ≥ 1								
Note 1: 2 symbols allocated to PDCCH.								
Note 2: Reference signal, synchronization signals and PBCH								
	allocated as per TS 36.211 [4].							
Note 3:	Note 3: If more than one Code Block is present, an additional							
CRC sequence of L = 24 Bits is attached to each Code								

CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit). MBSFN Subframe Allocation as defined in [7], one frame with 6 bits is chosen for MBSFN subframe allocation Note 4:

Table A.3.3.1-6: Fixed Reference Channel QPSK R=1/10

Parameter	Unit	Value						
Reference channel					R.41 FDD			
Channel bandwidth	MHz	1.4	3	5	10	15	20	
Allocated resource blocks					50			
Allocated subframes per Radio Frame					9			
Modulation					QPSK			
Target Coding Rate					1/10			
Information Bit Payload								
For Sub-Frames 1,2,3,4,6,7,8,9	Bits				1384			
For Sub-Frame 5	Bits				N/A			
For Sub-Frame 0	Bits				1384			
Number of Code Blocks per Sub-Frame								
(Note 3)								
For Sub-Frames 1,2,3,4,6,7,8,9					1			
For Sub-Frame 5					N/A			
For Sub-Frame 0					1			
Binary Channel Bits Per Sub-Frame								
For Sub-Frames 1,2,3,4,6,7,8,9	Bits				13800			
For Sub-Frame 5	Bits				N/A			
For Sub-Frame 0	Bits				12960			
Max. Throughput averaged over 1 frame	Mbps				1.246			
UE Category					≥ 1			

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Table A.3.3.1-7: Fixed Reference Channel for CA demodulation with power imbalance

Parameter	Unit		Value	
Reference channel		R.49 FDD	R.49-1 FDD	R.49-2 FDD
Channel bandwidth	MHz	20	10	5
Allocated resource blocks		100	50	25
Allocated subframes per Radio Frame		9	9	9
Modulation		64QAM	64QAM	64QAM
Coding Rate				
For Sub-Frame 1,2,3,4,6,7,8,9,		0.84	0.84	0.84
For Sub-Frame 5		N/A	N/A	N/A
For Sub-Frame 0		0.87	0.87	0.86
Information Bit Payload				
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	63776	31704	15840
For Sub-Frame 5	Bits	N/A	N/A	N/A
For Sub-Frame 0		63776	30576	14112
Number of Code Blocks per Sub-Frame (Note 3)				
For Sub-Frames 0,1,2,3,4,6,7,8,9	Code	11	6	3
	Blocks			
For Sub-Frame 5	Code Blocks	N/A	N/A	N/A
Binary Channel Bits Per Sub-Frame			5	3
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	75600		
For Sub-Frame 5	Bits	N/A	37800	18900
For Sub-Frame 0	Bits	73080	N/A	N/A
Max. Throughput averaged over 1 frame	Mbps	57.398	35280	16380
UE Category		≥5	≥2	≥2

Note 1: 3 symbols allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

A.3.3.2 Multi-antenna transmission (Common Reference Symbols)

A.3.3.2.1 Two antenna ports

Table A.3.3.2.1-1: Fixed Reference Channel two antenna ports

Parameter	Unit							lue					
Reference channel		R.10 FDD	R.11 FDD	R.11- 1 FDD	R.11- 2 FDD	R.11- 3 FDD Note 5	R.11- 4 FDD	R.30 FDD	R.30- 1 FDD	R.35- 1 FDD	R.35 FDD	R.35- 2 FDD	R.35- 3 FDD
Channel bandwidth	MHz	10	10	10	5	10	10	20	15	20	10	15	10
Allocated resource blocks (Note 4)		50	50	50	25	40	50	100	75	100	50	75	50
Allocated subframes per Radio Frame		9	9	8	9	9	9	9	8	8	9	8	8
Modulation		QPSK	16QA M	16QA M	16QA M	16QA M	QPSK	16QA M	16QA M	64QA M	64QA M	64QA M	64QA M
Target Coding Rate		1/3	1/2	1/2	1/2	1/2	1/2	1/2	1/2	0.39	1/2	0.39	0.39
Information Bit Payload (Note 4)													
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	4392	12960	12960	5736	10296	6968	25456	19080	30576	19848	22920	15264
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits	4392	12960	N/A	4968	10296	6968	25456	N/A	N/A	18336	N/A	N/A
Number of Code Blocks (Notes 3 and 4)													
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	1	3	3	1	2	2	5	4	5	4	4	3
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits	1	3	N/A	1	2	2	5	N/A	N/A	3	N/A	N/A
Binary Channel Bits (Note 4)													
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	13200	26400	26400	12000	21120	13200	52800	39600	79200	39600	59400	39600
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits	12384	24768	N/A	10368	19488	12384	51168	N/A	N/A	37152	N/A	N/A
Max. Throughput averaged over 1 frame (Note 4)	Mbps	3.953	11.66 4	10.36 8	5.086	9.266	6.271	22.91 0	15.26 4	24.46 1	17.71 2	18.33 6	12.21 1
UE Category		≥ 1	≥2	≥ 2	≥ 1	≥ 1	≥ 1	≥ 2	≥ 2	4	≥ 2	≥ 2	≥ 2

² symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and Note 1: 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz.

Note 2:

Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block Note 3: (otherwise L = 0 Bit).

Note 4:

Given per component carrier per codeword. For R.11-3 resource blocks of RB6–RB45 are allocated. Note 5:

Table A.3.3.2.1-2: Fixed Reference Channel two antenna ports

Parameter	Unit						Value				
e channel		R.46	R.47	R.35-4	R.11-5	R.11-6	R.11-7	R.11-8	R.11-	R.11-	R.65
		FDD	FDD	FDD	FDD	FDD	FDD	FDD	9 FDD	10	FDD
										FDD	
bandwidth	MHz	10	10	10	1.4	3	15	10	10	10	10
resource blocks (Note 4)		50	50	50	6	15	75	50	50	50	50
subframes per Radio Frame		9	9	9	8	9	9	9	8	8	9
number of PDCCH symbols		2	2	2	4	3	2	2	3	3	2
on		QPSK	16QA	64QA	16QA	16QA	16QA	QPSK	QPSK	QPSK	256QA
			M	M	М	М	M				М
oding Rate				0.47	1/2	1/2	1/2	3/5	0.58	0.67	0. 55
on Bit Payload (Note 4)											
-Frames 1,2,3,4,6,7,8,9	Bits	5160	8760	18336	1352	3368	19080	7992	6968	7992	31704
-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
-Frame 0	Bits	5160	8760	16416	N/A	2664	19080	6968	N/A	N/A	N/A
of Code Blocks											
and 4)											
-Frames 1,2,3,4,6,7,8,9	Bits	1	2	3	1	1	4	2	2	2	6
)-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
-Frame 0	Bits	1	2	3	1	1	4	2	N/A	N/A	N/A
hannel Bits (Note 4)											
-Frames 1,2,3,4,6,7,8,9	Bits	13200	26400	39600	2592	7200	39600	13200	12000	12000	57600
-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
-Frame 0	Bits	12384	24768	37152	N/A	5568	37968	12384	N/A	N/A	N/A
oughput averaged over 1	Mbps	4.644	7.884	16.310	1.082	2.961	17.172	7.0904	5.5744	6.3936	25.363
ote 4)											
gory		≥ 1	≥ 1	≥ 2	≥ 1	≥ 1	≥2	≥2	≥ 1	≥ 1	11-12
ategory		≥ 6	≥6	≥ 6	≥ 6	≥ 6	≥ 6	≥6			≥ 11
Void											

Void

Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit) Given per component carrier per codeword.

Table A.3.3.2.1-3: Fixed Reference Channel two antenna ports

Parameter	Unit	Va	lue
Reference channel		R.62	R.63
		FDD	FDD
Channel bandwidth	MHz	10	10
Allocated resource blocks (Note 4)		3	1
Allocated DL subframes per 4 Radio Frames		15	15
(Note 3)			
Modulation		16QAM	64QAM
Target Coding Rate		1/2	1/2
Information Bit Payload			
For Sub-Frames 0,1,2,3,4,5,6,7,8,9	Bits	744	408
Number of Code Blocks			
For Sub-Frames 0,1,2,3,4,5,6,7,8,9	Code	1	1
	blocks		
Binary Channel Bits			
For Sub-Frames 0,1,2,3,4,5,6,7,8,9	Bits	1584	792
Max. Throughput averaged over 4 frames	Mbps	0.279	0.153
UE DL Category		0	0

Note 1: 2 symbols allocated to PDCCH

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]

Note 3: The downlink subframes are scheduled at the 0th, 1st, 2nd, 8th, 9th, 10th, 16th, 17th, 18th, 24th, 25th, 26th, 32nd, 33rd, 34th subframes every 40ms. Information bit payload is available if downlink subframe is scheduled.

Note 4: Allocated PRB positions start from {9, 10, ..., 9+N-1}, where N is the number of allocated resource blocks.

A.3.3.2.2 Four antenna ports

Table A.3.3.2.2-1: Fixed Reference Channel four antenna ports

Parameter	Unit						Value					
Reference channel		R.12	R.13	R.14	R.14-	R.14-	R.14-	R.36	R.14-	R.14-	R.14-	R.14-
		FDD	FDD	FDD	1	2	3	FDD	4	5	6	7
					FDD	FDD	FDD		FDD	FDD	FDD	FDD
Channel bandwidth	MHz	1.4	10	10	10	10	20	10	1.4	3	5	15
Allocated resource		6	50	50	6	3	100	50	6	15	25	75
blocks (Note 4)												
Allocated subframes		9	9	9	8	8	9	9	8	9	9	9
per Radio Frame												
Modulation		QPS	QPS	16Q	16QA	16QA	16QA	64Q	16QA	16QA	16QA	16QA
		K	K	AM	М	M	M	AM	M	M	М	M
Target Coding Rate		1/3	1/3	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2
Information Bit Payload												
(Note 4)												
For Sub-Frames	Bits	408	4392	1296	1544	744	25456	1833	1192	3368	5736	19080
1,2,3,4,6,7,8,9				0				6				
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	n/a	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits	152	3624	1144 8	N/A	N/A	22920	1833 6	N/A	2664	4968	19080
Number of Code												
Blocks												
(Notes 3 and 4)												
For Sub-Frames		1	1	3	1	1	5	3	1	1	1	4
1,2,3,4,6,7,8,9												
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	n/a	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0		1	1	2	N/A	N/A	4	3	N/A	1	1	4
Binary Channel Bits												
(Note 4)												
For Sub-Frames	Bits	1248	1280	2560	3072	1536	51200	3840	2496	6960	11600	38400
1,2,3,4,6,7,8,9			0	0				0				
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	n/a	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits	480	1203	2406	N/A	N/A	49664	3609	N/A	5424	10064	36864
			2	4				6				
Max. Throughput	Mbp	0.34	3.87	11.5	1.235	0.595	22.65	16.5	0.954	2.961	5.086	17.17
averaged over 1 frame	S	2	6	13			6	02				2
(Note 4)												
UE Category		≥1	≥1	≥ 2	≥ 1	≥1	≥ 2	≥2	≥ 1	≥ 1	≥ 1	≥2

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz.

A.3.3.3 Reference Measurement Channel for UE-Specific Reference Symbols

A.3.3.3.0 Two antenna ports (no CSI-RS)

The reference measurement channels in Table A.3.3.3.0-1 apply with two CRS antenna ports and without CSI-RS.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Note 4: Given per component carrier per codeword.

Table A.3.3.3.0-1: Fixed Reference Channel without CSI-RS

Parameter	Unit		Value
Reference channel		R.70 FDD	R.71 FDD
Channel bandwidth	MHz	10	10
Allocated resource blocks		50	50
Allocated subframes per Radio		10	10
Frame			
Modulation		QPSK	16QAM
Target Coding Rate		0.65	0.6
Information Bit Payload			
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	6968	12960
For Sub-Frame 5	Bits	N/A	N/A
For Sub-Frame 0	Bits	N/A	N/A
Number of Code Blocks per Sub-			
Frame			
(Note 4)			
For Sub-Frames 1,2,3,4,6,7,8,9		2	3
For Sub-Frame 5		N/A	N/A
For Sub-Frame 0		N/A	N/A
Binary Channel Bits Per Sub-			
Frame			
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	10800	21600
For Sub-Frame 5	Bits	N/A	N/A
For Sub-Frame 0	Bits	N/A	N/A
Max. Throughput averaged over 1	Mbps	5.5744	10.368
frame			
UE Category		≥ 1	≥ 2
Note 1: 3 symbols allocated to PD	CCH		

Note 1: 3 symbols allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.3.3.3.1 Two antenna port (CSI-RS)

The reference measurement channels in Table A.3.3.3.1-1 apply for verifying demodulation performance for UE-specific reference symbols with two cell-specific antenna ports and two CSI-RS antenna ports.

Table A.3.3.3.1-1: Fixed Reference Channel for CDM-multiplexed DM RS with two CSI-RS antenna ports

	Parameter	Unit	Value					
Reference	ce channel		R.51 FDD					
Channel	bandwidth	MHz	10					
Allocated	resource blocks		50 (Note 3)					
Allocated	subframes per Radio Frame		9					
Modulation	on		16QAM					
Target C	oding Rate		1/2					
Informati	on Bit Payload							
For Sub	o-Frames 1,4,6,9	Bits	11448					
For Sub	o-Frames 2,3,7,8	Bits	11448					
For Sub	-Frame 5	Bits	N/A					
For Sub	o-Frame 0	Bits	9528					
Number	of Code Blocks (Note 4)							
For Sub	o-Frames 1,4,6,9	Code	2					
		blocks						
For Sub	o-Frames 2,3,7,8	Code	2					
		blocks						
	o-Frame 5	Bits	N/A					
	o-Frame 0	Bits	2					
Binary C	hannel Bits							
For Sub	o-Frames 1,4,6,9	Bits	24000					
For Sub	o-Frames 2,7		23600					
For Sub	o-Frames 3,8		23200					
For Sub	o-Frame 5	Bits	N/A					
For Sub	o-Frame 0	Bits	19680					
Max. Thr	oughput averaged over 1	Mbps	10.1112					
frame								
UE Cate			≥ 2					
Note 1:	Note 1: 2 symbols allocated to PDCCH.							
Note 2:	Note 2: Reference signal, synchronization signals and PBCH							
	allocated as per TS 36.211 [4]							
Note 3: 50 resource blocks are allocated in sub-frames 1, 2, 3,								

Note 3: 50 resource blocks are allocated in sub-frames 1, 2, 3, 4, 6, 7, 8, 9 and 41 resource blocks (RB0–RB20 and RB30–RB49) are allocated in sub-frame 0.

Note 4: If more than one Code Block is present, an additional

CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

The reference measurement channels in Table A3.3.3.1-2 apply for verifying demudlation performance for UE-specific reference symbols with two cell specific antenna ports and two CSI-RS antenna ports with ZP CSI-RS and NZP CSI-RS in same subframe.

Table A.3.3.3.1-2: Fixed Reference Channel for CDM-multiplexed DM RS with two CSI-RS antenna ports with ZP CSI-RS and NZP CSI-RS

Parameter	Unit	Value					
Reference channel		R.52 FDD	R.53 FDD	R.54 FDD			
Channel bandwidth	MHz	10	10	10			
Allocated resource blocks		50 (Note 3)	50 (Note 3)	50 (Note 3)			
Allocated subframes per Radio Frame		9	9	9			
Modulation		64QAM	64QAM	16QAM			
Target Coding Rate		1/2	1/2	1/2			
Information Bit Payload							
For Sub-Frames 1,3,4,6,8,9	Bits	18336	18336	11448			
For Sub-Frames 2,7	Bits	16416	16416	11448			
For Sub-Frame 5	Bits	n/a	n/a	n/a			
For Sub-Frame 0	Bits	14688	14688	9528			
Number of Code Blocks (Note 4)							
For Sub-Frames 1,3,4,6,8,9	Code	3	3	2			
	blocks						
For Sub-Frames 2, 7	Code	3	3	2			
	blocks						
For Sub-Frame 5	Bits	n/a	n/a	n/a			
For Sub-Frame 0	Bits	3	3	2			
Binary Channel Bits							
For Sub-Frames 1,3,4,6,8,9	Bits	36000	36000	24000			
For Sub-Frames 2,7		34200	33600	22800			
For Sub-Frame 5	Bits	n/a	n/a	n/a			
For Sub-Frame 0	Bits	29520	29520	19680			
Max. Throughput averaged over 1 frame	Mbps	15.7536	15.7536	10.1112			

Note 1: 2 symbols allocated to PDCCH.

A.3.3.3.2 Four antenna ports (CSI-RS)

The reference measurement channels in Table A.3.3.3.2-1 apply for verifying demodulation performance for UE-specific reference symbols with two cell-specific antenna ports and four CSI-RS antenna ports.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: 50 resource blocks are allocated in sub-frames 1, 2, 3, 4, 6, 7, 8, 9 and 41 resource blocks (RB0–RB20 and RB30–RB49) are allocated in sub-frame 0.

Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Table A.3.3.3.2-1: Fixed Reference Channel for CDM-multiplexed DM RS with four CSI-RS antenna ports

Parameter	Unit		Val	ue	
Reference channel		R.43 FDD	R.50 FDD	R.48 FDD	R.66 FDD
Channel bandwidth	MHz	10	10	10	10
Allocated resource blocks		50 (Note 3)	50 (Note 3)	50 (Note	50 (Note
				3)	3)
Allocated subframes per Radio Frame		9	9	9	9
Modulation		QPSK	64QAM	QPSK	256QAM
Target Coding Rate		1/3	1/2		0.77
Information Bit Payload					
For Sub-Frames 1,4,6,9	Bits	3624	18336	6200	36696
For Sub-Frames 2,3,7,8	Bits	3624	16416	6200	35160
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits	2984	14688	4968	30576
Number of Code Blocks (Note 4)					
For Sub-Frames 1,4,6,9	Code	1	3	2	6
	blocks				
For Sub-Frames 2,3,7,8	Code	1	3	2	6
	blocks				
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits	1	3	1	5
Binary Channel Bits					
For Sub-Frames 1,4,6,9	Bits	12000	36000	12000	48000
For Sub-Frames 2,7		11600	34800	11600	46400
For Sub-Frames 3,8		11600	34800	12000	46400
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits	9840	29520	9840	39360
Max. Throughput averaged over 1	Mbps	3.1976	15.3696	5.4568	31.800
frame					
UE Category		≥ 1	≥ 2	≥ 1	11-12
UE DL Category		≥ 6	≥ 6	≥ 6	≥ 11

Note 1: 2 symbols allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: 50 resource blocks are allocated in sub-frames 1, 2, 3, 4, 6, 7, 8, 9 and 41 resource blocks

(RB0-RB20 and RB30-RB49) are allocated in sub-frame 0.

Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached

to each Code Block (otherwise $\dot{L} = 0$ Bit).

The reference measurement channels in Table A.3.3.3.2-2 apply for verifying FDD PMI accuracy measurement with two CRS antenna ports and four CSI-RS antenna ports.

Table A.3.3.3.2-2: Fixed Reference Channel for four antenna ports (CSI-RS)

Parameter	Unit	Unit Value					
Reference channel		R.44	R.45	R.45-1	R.60		
		FDD	FDD	FDD	FDD		
Channel bandwidth	MHz	10	10	10	10		
Allocated resource blocks		50 ³	50 ³	39	50 ³		
Allocated subframes per Radio Frame		10	10	10	10		
Modulation		QPSK	16QAM	16QAM	QPSK		
Target Coding Rate		1/3	1/2	1/2	1/2		
Information Bit Payload							
For Sub-Frames (Non CSI-RS subframe)	Bits	3624	11448	8760	6200		
For Sub-Frames (CSI-RS subframe)	Bits	3624	11448	8760	6200		
For Sub-Frames (ZeroPowerCSI-RS	Bits	N/A	N/A	N/A	N/A		
subframe)							
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A		
For Sub-Frame 0	Bits	2984	9528	8760	N/A		
Number of Code Blocks per Sub-Frame							
(Note 4)							
For Sub-Frames (Non CSI-RS subframe)		1	2	2	2		
For Sub-Frames (CSI-RS subframe)		1	2	2	2		
For Sub-Frames (ZeroPowerCSI-RS	Bits	N/A	N/A	N/A	N/A		
subframe)							
For Sub-Frame 5		N/A	N/A	N/A	N/A		
For Sub-Frame 0		1	2	2	N/A		
Binary Channel Bits Per Sub-Frame							
For Sub-Frames (Non CSI-RS subframe)	Bits	12000	24000	18720	12000		
For Sub-Frames (CSI-RS subframe)	Bits	11600	23200	18096	11600		
For Sub-Frames (ZeroPowerCSI-RS	Bits	N/A	N/A	N/A	N/A		
subframe)							
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A		
For Sub-Frame 0	Bits	9840	19680	18720	N/A		
Max. Throughput averaged over 1 frame	Mbps	3.1976	10.1112	7.884	4.96		
UE Category		≥ 1	≥ 2	≥ 1	≥ 1		

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]

Note 3: For R.44, R.45 and R.60, 50 resource blocks are allocated in sub-frames 1,2,3,4,6,7,8,9 and 41 resource blocks (RB0–RB20 and RB30–RB49) are allocated in sub-frame 0. For R.45-1, 39 resource blocks are allocated in all subframes (RB0–RB20 and RB30–RB47).

Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

The reference measurement channels in Table A.3.3.3.2-3 apply for verifying demodulation performance for UE-specific reference symbols with two cell-specific antenna ports and four CSI-RS antenna ports.

Table A.3.3.3.2-3: Fixed Reference Channel for CDM-multiplexed DM RS with four CSI-RS antenna ports

	Parameter	Unit	Value
Reference	e channel		R.64
			FDD
Channel	bandwidth	MHz	10
Allocated	resource blocks (Note 4)		6
Allocated	subframes per 4 Radio Frames		15
Modulation	on		QPSK
Target C	oding Rate		1/3
Informati	on Bit Payload		
For Sub	o-Frames 0,1,4,5,6,9 (Note 3)	Bits	504
For Sub	o-Frames 2,3,7,8 (Note 3)	Bits	504
Number	of Code Blocks		
For Sub	o-Frames 0,1,4,5,6,9	Code	1
		blocks	
For Sub	o-Frames 2,3,7,8	Code	1
		blocks	
Binary C	hannel Bits		
For Sub	o-Frames 0,1,4,5,6,9	Bits	1440
For Sub	o-Frames 2,3,7,8	Bits	1392
Max. Thr	oughput averaged over 4 frames	Mbps	0.189
UE DL C	ategory		0
Note 1:	2 symbols allocated to PDCCH.		
Note 2:	Reference signal, synchronization si	ignals and F	PBCH
	allocated as per TS 36.211 [4].		
Note 3:	The downlink subframes are schedu		
	2nd, 8th, 9th, 10th, 16th, 17th, 18th,	, ,	,
	32nd, 33rd, 34th subframes every 40		
 	payload is availabe if downlink subfr		
Note 4:	Allocated PRB positions start from {		
1	where N is the number of allocated i	esource blo	cks.

The reference measurement channels in Table A.3.3.3.2-4 apply with two CRS antenna ports and four CSI-RS antenna ports.

Table A.3.3.3.2-4: Fixed Reference Channel for four antenna ports (CSI-RS)

Parameter	Unit	Value
Reference channel		R.69 FDD
Channel bandwidth	MHz	10
Allocated resource blocks		50
Allocated subframes per Radio Frame		8
Modulation		QPSK
Target Coding Rate		
For Sub-Frames 2,3,4,6,7,8,9		0.74
For Sub-Frame 1		0.8
Information Bit Payload		
For Sub-Frames 2,3,4,6,7,8,9	Bits	7992
For Sub-Frame 1	Bits	7992
For Sub-Frame 5	Bits	N/A
For Sub-Frame 0	Bits	N/A
Number of Code Blocks per Sub-Frame		
(Note 4)		
For Sub-Frames 2,3,4,6,7,8,9		2
For Sub-Frame 1		2
For Sub-Frame 5		N/A
For Sub-Frame 0		N/A
Binary Channel Bits Per Sub-Frame		
For Sub-Frames 2,3,4,6,7,8,9	Bits	10800
For Sub-Frame 1	Bits	10000
2 For Sub-Frame 5	Bits	N/A
For Sub-Frame 0	Bits	N/A
Max. Throughput averaged over 1 frame	Mbps	6.3936
UE Category		≥ 1
Note 1: 3 symbols allocated to PDCCH	•	

Note 1: 3 symbols allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]

If more than one Code Block is present, an additional CRC sequence of L=24 Bits is attached to each Code Block (otherwise L=0 Bit) Note 3:

A.3.4 Reference measurement channels for PDSCH performance requirements (TDD)

A.3.4.1 Single-antenna transmission (Common Reference Symbols)

Table A.3.4.1-1: Fixed Reference Channel QPSK R=1/3

Parameter	Unit	Init Value						
Reference channel		R.4	R.42	R.2A	R.2	R.42-1	R.42-2	R.42-3
		TDD	TDD	TDD	TDD	TDD	TDD	TDD
Channel bandwidth	MHz	1.4	20	10	10	3	5	15
Allocated resource blocks (Note 6)		6	100	50	50	15	25	75
Uplink-Downlink Configuration (Note 4)		1	1	2	1	1	1	1
Allocated subframes per Radio Frame (D+S)		3	3+2	5+2	3+2	3+2	3+2	3+2
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding Rate		1/3	1/3	1/3	1/3	1/3	1/3	1/3
Information Bit Payload (Note 6)								
For Sub-Frames 4,9	Bits	408	8760	4392	4392	1320	2216	6712
For Sub-Frames 1,6	Bits	N/A	7736	3240	3240	1128	1864	5992
For Sub-Frames 3,8	Bits	N/A	N/A	4392	N/A	N/A	N/A	N/A
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits	208	8760	4392	4392	1064	1800	6712
Number of Code Blocks								
(Notes 5 and 6)								
For Sub-Frames 4,9		1	2	1	1	1	1	2
For Sub-Frames 1,6		N/A	2	1	1	1	1	1
For Sub-Frames 3,8		N/A	N/A	1	N/A	N/A	N/A	N/A
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0		1	2	1	1	1	1	2
Binary Channel Bits (Note 6)								
For Sub-Frames 4,9	Bits	1368	27600	13800	13800	3780	6300	20700
For Sub-Frames 1,6	Bits	N/A	22656	11256	11256	3276	5556	16956
For Sub-Frames 3,8		N/A	N/A	13800	N/A	N/A	N/A	N/A
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits	672	26904	13104	13104	3084	5604	20004
Max. Throughput averaged over 1 frame	Mbps	0.102	4.175	2.844	1.966	0.596	0.996	3.212
(Note 6)								
UE Category		≥ 1	≥ 1	≥ 1	≥ 1	≥ 1	≥ 1	≥ 1

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.

Note 2: For BW=1.4 MHz, the information bit payloads of special subframes are set to zero (no scheduling) to avoid problems with insufficient PDCCH performance at the test point.

Note 3: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 4: As per Table 4.2-2 in TS 36.211 [4].

Note 5: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Note 6: Given per component carrier per codeword.

Table A.3.4.1-2: Fixed Reference Channel 16QAM R=1/2

Parameter	Unit	Value					
Reference channel				R.3-1	R.3		
				TDD	TDD		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks				25	50		
Uplink-Downlink Configuration (Note 3)				1	1		
Allocated subframes per Radio Frame (D+S)				3+2	3+2		
Modulation				16QAM	16QAM		
Target Coding Rate				1/2	1/2		
Information Bit Payload							
For Sub-Frames 4,9	Bits			6456	14112		
For Sub-Frames 1,6	Bits			5160	11448		
For Sub-Frame 5	Bits			N/A	N/A		
For Sub-Frame 0	Bits			5736	12960		
Number of Code Blocks per Sub-Frame							
(Note 4)							
For Sub-Frames 4,9				2	3		
For Sub-Frames 1,6				1	2		
For Sub-Frame 5				N/A	N/A		
For Sub-Frame 0				1	3		
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 4,9	Bits			12600	27600		
For Sub-Frames 1,6	Bits			11112	22512		
For Sub-Frame 5	Bits			N/A	N/A		
For Sub-Frame 0	Bits			11208	26208		
Max. Throughput averaged over 1 frame	Mbps			2.897	6.408		
UE Category				≥ 1	≥ 2		

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]

Note 3: As per Table 4.2-2 in TS 36.211 [4].

Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Table A.3.4.1-3: Fixed Reference Channel 64QAM R=3/4

Parameter	Unit			Val	ue		
Reference channel			R.5	R.6 TDD	R.7	R.8	R.9
			TDD		TDD	TDD	TDD
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks			15	25	50	75	100
Uplink-Downlink Configuration (Note 3)			1	1	1	1	1
Allocated subframes per Radio Frame (D+S)			3+2	3+2	3+2	3+2	3+2
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM
Target Coding Rate			3/4	3/4	3/4	3/4	3/4
Information Bit Payload							
For Sub-Frames 4,9	Bits		8504	14112	30576	46888	61664
For Sub-Frames 1,6	Bits		6968	11448	23688	35160	46888
For Sub-Frame 5	Bits		N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits		6968	12576	30576	45352	61664
Number of Code Blocks per Sub-Frame							
(Note 4)							
For Sub-Frames 4,9			2	3	5	8	11
For Sub-Frames 1,6			2	2	4	6	8
For Sub-Frame 5			N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0			2	3	5	8	11
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 4,9	Bits		11340	18900	41400	62100	82800
For Sub-Frames 1,6	Bits		9828	16668	33768	50868	67968
For Sub-Frame 5	Bits		N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits		9252	16812	39312	60012	80712
Max. Throughput averaged over 1 frame	Mbps		3.791	6.370	13.910	20.945	27.877
UE Category	•		≥ 1	≥2	≥2	≥ 2	≥ 3

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]

Note 3: As per Table 4.2-2 TS 36.211 [4].

Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Table A.3.4.1-3a: Fixed Reference Channel 64QAM R=3/4

Parameter	Unit		Val	ue		
Reference channel		R.6-1	R.7-1	R.8-1	R.9-1	R.9-2
		TDD	TDD	TDD	TDD	TDD
Channel bandwidth	MHz	5	10	15	20	20
Allocated resource blocks (Note 3)		18	17	17	17	83
Uplink-Downlink Configuration (Note 4)		1	1	1	1	1
Allocated subframes per Radio Frame (D+S)		3+2	3+2	3+2	3+2	3+2
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM
Target Coding Rate		3/4	3/4	3/4	3/4	3/4
Information Bit Payload						
For Sub-Frames 4,9	Bits	10296	10296	10296	10296	51024
For Sub-Frames 1,6	Bits	8248	7480	7480	7480	39232
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits	8248	10296	10296	10296	51024
Number of Code Blocks per Sub-Frame						
(Note 5)						
For Sub-Frames 4,9		2	2	2	2	9
For Sub-Frames 1,6		2	2	2	2	7
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0		2	2	2	2	9
Binary Channel Bits Per Sub-Frame						
For Sub-Frames 4,9	Bits	13608	14076	14076	14076	68724
For Sub-Frames 1,6	Bits	11880	11628	11628	11628	56340
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits	11520	14076	14076	14076	66636
Max. Throughput averaged over 1 frame	Mbps	4.534	4.585	4.585	4.585	23.154
UE Category		≥ 1	≥ 1	≥ 1	≥ 1	≥ 2

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]

Note 3: Localized allocation started from RB #0 is applied.

Note 4: As per Table 4.2-2 TS 36.211 [4].

Note 5: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Table A.3.4.1-4: Fixed Reference Channel Single PRB

Parameter	Unit	1 500 500								
Reference channel			R.0		R.1 TDD					
			TDD							
Channel bandwidth	MHz	1.4	3	5	10/20	15	20			
Allocated resource blocks			1		1					
Uplink-Downlink Configuration (Note 3)			1		1					
Allocated subframes per Radio Frame (D+S)			3+2		3+2					
Modulation			16QAM		16QAM					
Target Coding Rate			1/2		1/2					
Information Bit Payload										
For Sub-Frames 4,9	Bits		224		256					
For Sub-Frames 1,6	Bits		208		208					
For Sub-Frame 5	Bits		N/A		N/A					
For Sub-Frame 0	Bits		224		256					
Number of Code Blocks per Sub-Frame										
(Note 4)										
For Sub-Frames 4,9			1		1					
For Sub-Frames 1,6			1		1					
For Sub-Frame 5			N/A		N/A					
For Sub-Frame 0			1		1					
Binary Channel Bits Per Sub-Frame										
For Sub-Frames 4,9	Bits		504		552					
For Sub-Frames 1,6	Bits		456		456					
For Sub-Frame 5	Bits		N/A		N/A					
For Sub-Frame 0	Bits		504		552					
Max. Throughput averaged over 1 frame	Mbps		0.109		0.118					
UE Category			≥ 1		≥ 1					

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]

Note 3: As per Table 4.2-2 in TS 36.211 [4].

Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Table A.3.4.1-5: Fixed Reference Channel Single PRB (MBSFN Configuration)

Parameter	Unit	Value
Reference channel		R.29 TDD
		(MBSFN)
Channel bandwidth	MHz	10
Allocated resource blocks		1
MBSFN Configuration (Note 5)		010010
Uplink-Downlink Configuration (Note 3)		1
Allocated subframes per Radio Frame (D+S)		1+2
Modulation		16QAM
Target Coding Rate		1/2
Information Bit Payload		
For Sub-Frames 4,9	Bits	0 (MBSFN)
For Sub-Frames 1,6	Bits	208
For Sub-Frame 5	Bits	N/A
For Sub-Frame 0	Bits	256
Number of Code Blocks per Sub-Frame		
(Note 4)		
For Sub-Frames 4,9	Bits	0 (MBSFN)
For Sub-Frames 1,6	Bits	1
For Sub-Frame 5	Bits	N/A
For Sub-Frame 0	Bits	1
Binary Channel Bits Per Sub-Frame		
For Sub-Frames 4,9	Bits	0 (MBSFN)
For Sub-Frames 1,6	Bits	456
For Sub-Frame 5	Bits	N/A
For Sub-Frame 0	Bits	552
Max. Throughput averaged over 1 frame	kbps	67.2
UE Category		≥ 1
Note 1: 2 symbols allocated to PDCCH		

Note 1: 2 symbols allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

as per Table 4.2-2 in TS 36.211 [4]. Note 3:

If more than one Code Block is present, an additional CRC Note 4:

sequence of L = 24 Bits is attached to each Code Block (otherwise

L = 0 Bit).

MBSFN Subframe Allocation as defined in [7], one frame with 6 bits is chosen for MBSFN subframe allocation Note 5:

Table A.3.4.1-6: Fixed Reference Channel QPSK R=1/10

Parameter	Unit			Va	alue		
Reference channel					R.41		
					TDD		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks					50		
Uplink-Downlink Configuration (Note 4)					1		
Allocated subframes per Radio Frame (D+S)					3+2		
Modulation					QPSK		
Target Coding Rate					1/10		
Information Bit Payload							
For Sub-Frames 4,9	Bits				1384		
For Sub-Frames 1,6	Bits				1032		
For Sub-Frame 5	Bits				N/A		
For Sub-Frame 0	Bits				1384		
Number of Code Blocks per Sub-Frame							
(Note 5)							
For Sub-Frames 4,9					1		
For Sub-Frames 1,6					1		
For Sub-Frame 5					N/A		
For Sub-Frame 0					1		
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 4,9	Bits				13800		
For Sub-Frames 1,6	Bits				11256		
For Sub-Frame 5	Bits				N/A		
For Sub-Frame 0	Bits				13104		
Max. Throughput averaged over 1 frame	Mbps				0.622		
UE Category					≥ 1		

- 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated Note 1: to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.
- Note 2: For BW=1.4 MHz, the information bit payloads of special subframes are set to zero (no scheduling) to avoid problems with insufficient PDCCH performance at the test point.
- Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4] Note 3:
- Note 4:
- As per Table 4.2-2 in TS 36.211 [4]. If more than one Code Block is present, an additional CRC sequence of L=24 Bits is attached to Note 5: each Code Block (otherwise L = 0 Bit).

Table A.3.4.1-7: Fixed Reference Channel for CA demodulation with power imbalance

Parameter	Unit	Val	ue
Reference channel		R.49 TDD	R.49-1
			TDD
Channel bandwidth	MHz	20	15
Allocated resource blocks		100	75
Uplink-Downlink Configuration (Note 1)		1	1
Allocated subframes per Radio Frame (D+S)		3+2	3+2
Modulation		64QAM	64QAM
Number of OFDM symbols for PDCCH			
per component carrier			
For Sub-Frames 0,4,5,9	OFDM symbols	3	3
For Sub-Frames 1,6	OFDM	2	2
	symbols		
Target Coding Rate			
For Sub-Frames 4,9		0.84	0.83
For Sub-Frames 1,6		0.81	0.80
For Sub-Frames 5		N/A	N/A
For Sub-Frames 0		0.87	0.86
Information Bit Payload			
For Sub-Frames 0, 4, 9	Bits	63776	46888
For Sub-Frame 1,6	Bits	55056	40576
For Sub-Frame 5	Bits	N/A	N/A
Number of Code Blocks per Sub-Frame (Note 2)			
For Sub-Frames 0, 4, 9	Code Blocks	11	8
For Sub-Frame 1,6	Code Blocks	9	7
For Sub-Frame 5	Code Blocks	N/A	N/A
Binary Channel Bits Per Sub-Frame			
For Sub-Frames 4,9	Bits	75600	56700
For Sub-Frame 1,6	Bits	67968	50868
For Sub-Frame 5	Bits	N/A	N/A
For Sub-Frame 0	Bits	73512	54612
Max. Throughput averaged over 1 frame	Mbps	30.144	22.182
UE Category		≥5	≥ 3

Note 1: Reference signal, synchronization signals and PBC allocated as per TS 36.211 [4].

Note 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

A.3.4.2 Multi-antenna transmission (Common Reference Signals)

A.3.4.2.1 Two antenna ports

Table A.3.4.2.1-1: Fixed Reference Channel two antenna ports

Parameter			Uı	nit					Va	lue
Reference channel		R.10 TDD	R.11 TDD	R.11-1 TDD	R.11-2 TDD	R.11-3 TDD Note 6	R.11-4 TDD	R.30 TDD	R.30-1 TDD	R.30-2 TDD
Channel bandwidth	MHz	10	10	10	5	10	10	20	20	20
Allocated resource blocks (Note 5)		50	50	50	25	40	50	100	100	100
Uplink-Downlink Configuration (Note 3)		1	1	1	1	1	1	1	1	1
Allocated subframes per Radio Frame (D+S)		3+2	3+2	2+2	3+2	3+2	2	3+2	2+2	2
Modulation		QPSK	16QAM	16QAM	16QAM	16QAM	QPSK	16QAM	16QAM	16QAM
Target Coding Rate		1/3	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2
Information Bit Payload (Note 5)										
For Sub-Frames 4,9	Bits	4392	12960	12960	5736	10296	6968	25456	25456	25456
For Sub-Frames 1,6		3240	9528	9528	5160	9144	N/A	22920	21384	N/A
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits	4392	12960	N/A	4968	10296	N/A	25456	N/A	N/A
Number of Code Blocks (Notes 4 and 5)										
For Sub-Frames 4,9		1	3	3	1	2	2	5	5	5
For Sub-Frames 1,6		1	2	2	1	2	N/A	4	4	N/A
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0		1	3	N/A	1	2	N/A	5	N/A	N/A
Binary Channel Bits (Note 5)										
For Sub-Frames 4,9	Bits	13200	26400	26400	12000	21120	13200	52800	52800	52800
For Sub-Frames 1,6		10656	21312	21312	10512	16992	10656	42912	42912	N/A
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits	12528	25056	N/A	10656	19776	12528	51456	N/A	N/A
Max. Throughput averaged over 1 frame (Note 5)	Mbps	1.966	5.794	4.498	2.676	4.918	1.39	12.221	9.368	5.091
UE Category		≥ 1	≥ 2	≥2	≥1	≥ 1	≥ 1	≥ 2	≥ 2	3

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: As per Table 4.2-2 in TS 36.211 [4].

Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (other

Note 5: Given per component carrier per codeword.

Note 6: For R.11-3 resource blocks of RB6-RB45 are allocated.

Table A.3.4.2.1-2: Fixed Reference Channel two antenna ports

Parameter	Unit						Value		•
Reference channel		R.46 TDD	R.47 TDD	R.35-2	R.11-5	R.11-6	R.11-7	R.11-8	R.11-
				TDD	TDD	TDD	TDD	TDD	TDD
Channel bandwidth	MHz	10	10	10	1.4	3	5	10	15
Allocated resource		50	50	50	6	15	25	50	75
blocks (Note 5)									
Uplink-Downlink		1	1	1	1	1	1	1	1
Configuration (Note									
3)									
Allocated number of		_	_	_	_	_	_	_	_
PDCCH symbols in		2	2	2	4	3	3	2	2
normal subframes									
Allocated number of				•					•
PDCCH symbols in		2	2	2	2	2	2	2	2
special subframes		0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Allocated subframes		3+2	3+2	2+2	2+2	2+2	2+2	2+2	2+2
per Radio Frame (D+S)									
Modulation		QPSK	16QAM	64QAM	16QAM	16QAM	16QAM	16QAM	16QA
Target Coding Rate		QFSK	TOWAIVI	0.47	1/2	1/2	1/2	1/2	1/2
For Sub-Frames 4,9				0.47	1/2	1/2	1/2	1/2	1/2
For Sub-Frames 1,6									
Information Bit									
Payload (Note 5)									
For Sub-Frames 4,9	Bits	5160	8760	18336	1352	3368	5736	12960	1908
For Sub-Frames 1,6	Dito	3880	7480	14688	1128	3112	5160	10680	1584
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits	5160	8760	N/A	N/A	N/A	N/A	N/A	N/A
Number of Code	Dita	3100	0700	IN//A	IN//A	IN//A	IN//A	IN/A	11/7
Blocks									
(Notes 4 and 5)									
For Sub-Frames 4,9		1	2	3	1	1	1	3	4
For Sub-Frames 1,6		1	2	3	1	1	1	2	3
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0		1	2	N/A	N/A	N/A	N/A	N/A	N/A
Binary Channel Bits		-			,		- 4.1	, .	
(Note 5)									
For Sub-Frames 4,9	Bits	13200	26400	39600	2592	7200	12000	26400	3960
For Sub-Frames 1,6		10656	21312	31968	2304	6192	10512	21312	3211
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits	12528	25056	N/A	N/A	N/A	N/A	N/A	N/A
Max. Throughput	Mbps	2.324	4.124	6.604	0.496	1.296	2.179	4.498	6.984
averaged over 1	-								
frame (Note 5)									
UE Category		≥ 1	≥ 1	≥ 2	≥ 1	≥ 1	≥ 1	≥ 2	≥ 2
Note 1: Void									

Note 1:

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3:

As per Table 4.2-2 in TS 36.211 [4].

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (other Note 4:

Given per component carrier per codeword Note 5:

Table A.3.4.2.1-3: Fixed Reference Channel two antenna ports

Parameter	Unit	Va	lue
Reference channel		R.62 TDD	R.63 TDD
Channel bandwidth	MHz	10	10
Allocated resource blocks (Note 4)		3	1
Uplink-Downlink Configuration (Note 3)		1	1
Allocated subframes per Radio Frame		4+2	4+2
(D+S)			
Modulation		16QAM	64QAM
Target Coding Rate		1/2	1/2
Information Bit Payload			
For Sub-Frames 0,4,5,9	Bits	744	408
For Sub-Frames 1,6	Bits	440	280
Number of Code Blocks			
For Sub-Frames 0,4,5,9	Code	1	1
	blocks		
For Sub-Frames 1,6	Clode	1	1
	blocls		
Binary Channel Bits			
For Sub-Frames 0,4,5,9	Bits	1584	792
For Sub-Frames 1,6		1296	648
Max. Throughput averaged over 1 frame	Mbps	0.3856	0.2192
UE DL Category		0	0

Note 1: 2 symbols allocated to PDCCH.

Reference signal, synchronization signals and PBCH allocated as per Note 2: TS 36.211 [4].

Note 3:

As per Table 4.2-2 in TS 36.211 [4]. Allocated PRB positions start from {9, 10, ..., 9+N-1}, where N is the Note 4: number of allocated resource blocks.

Table A.3.4.2.1-4: Fixed Reference Channel two antenna ports

Reference channel		Parameter	Unit	Va	lue					
Channel bandwidth MHz 20 Allocated resource blocks (Note 5) 100 Uplink-Downlink Configuration (Note 3) 1 Allocated subframes per Radio Frame (D+S) 2+2 (D+S) 256QAM Modulation 256QAM Target Coding Rate Information Bit Payload (Note 5) For Sub-Frames 4,9 Bits 63776 For Sub-Frames 1,6 46888 For Sub-Frame 5 Bits N/A For Sub-Frame 0 Bits N/A Number of Code Blocks (Notes 4 and 5) (Notes 4 and 5) 11 For Sub-Frames 4,9 11 11 For Sub-Frames 5 N/A N/A For Sub-Frame 0 N/A N/A Binary Channel Bits (Note 5) N/A 95424 For Sub-Frames 1,6 95424 95424 For Sub-Frame 0 Bits N/A Max. Throughput averaged over 1 frame (Note 5) Bits N/A Max. Throughput averaged over 1 frame (Note 5) E11 N/A UE DL Category ≥ 11 N/A	Reference			- 0	1					
Allocated resource blocks (Note 5)	Channel	bandwidth	MHz							
Uplink-Downlink Configuration (Note 3)	Allocated	resource blocks (Note 5)		100						
Allocated subframes per Radio Frame (D+S) Modulation 256QAM										
(D+S)				2+2						
Target Coding Rate Information Bit Payload (Note 5) For Sub-Frames 4,9 For Sub-Frames 1,6 For Sub-Frame 5 Bits N/A For Sub-Frame 0 Number of Code Blocks (Notes 4 and 5) For Sub-Frames 4,9 For Sub-Frames 4,9 For Sub-Frames 5 For Sub-Frames 6 For Sub-Frame 0 N/A For Sub-Frame 5 For Sub-Frame 5 For Sub-Frame 0 N/A Binary Channel Bits (Note 5) For Sub-Frames 4,9 For Sub-Frame 4,9 For Sub-Frames 4,9 For Sub-Frame 5 For Sub-Frames 4,6 For Sub-Frame 5 Bits N/A For Sub-Frame 5 Bits N/A For Sub-Frame 5 Bits N/A Max. Throughput averaged over 1 frame (Note 5) UE Category UE DL Category UE DL Category Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH. For 256QAM reference channel 1 symbol is allocated. Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]. Note 3: As per Table 4.2-2 in TS 36.211 [4]. Note 4: If more than one Code Block is present, an additional CRC sequence of										
Information Bit Payload (Note 5)	Modulation	on		256QAM						
Information Bit Payload (Note 5)	Target C	oding Rate								
For Sub-Frames 4,9 For Sub-Frames 1,6 For Sub-Frame 5 For Sub-Frame 0 Rumber of Code Blocks (Notes 4 and 5) For Sub-Frames 4,9 For Sub-Frames 5 For Sub-Frames 4,9 For Sub-Frames 6 For Sub-Frame 5 For Sub-Frame 6 For Sub-Frame 7 For Sub-Frame 8 For Sub-Frame 9 Binary Channel Bits (Note 5) For Sub-Frames 4,9 For Sub-Frames 4,9 For Sub-Frames 1,6 For Sub-Frames 1,6 For Sub-Frame 5 Bits N/A For Sub-Frame 6 Bits N/A For Sub-Frame 7 For Sub-Frame 8 For Sub-Frame 9 Bits N/A Max. Throughput averaged over 1 frame (Note 5) UE Category UE DL Category UE DL Category UE DL Category 11-12 UE DL Category □ 11-12 □ UE DL Category □ 11-12										
For Sub-Frame 5 For Sub-Frame 0 Number of Code Blocks (Notes 4 and 5) For Sub-Frames 4,9 For Sub-Frames 1,6 For Sub-Frame 5 For Sub-Frame 0 Binary Channel Bits (Note 5) For Sub-Frames 4,9 For Sub-Frames 4,9 Bits 115200 For Sub-Frames 4,9 For Sub-Frames 1,6 For Sub-Frames 5 For Sub-Frames 0 Bits N/A For Sub-Frame 0 Bits N/A For Sub-Frame 0 Bits N/A For Sub-Frame 0 Max. Throughput averaged over 1 frame (Note 5) UE Category UE DL Category Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH. For 256QAM reference channel 1 symbol is allocated. Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]. Note 4: If more than one Code Block is present, an additional CRC sequence of			Bits	63776						
For Sub-Frame 0 Number of Code Blocks (Notes 4 and 5) For Sub-Frames 4,9 For Sub-Frames 1,6 For Sub-Frame 0 Bits N/A For Sub-Frame 0 Bits N/A For Sub-Frame 0 Bits N/A Binary Channel Bits (Note 5) For Sub-Frames 4,9 For Sub-Frames 1,6 For Sub-Frames 1,6 For Sub-Frame 5 Bits N/A For Sub-Frame 5 Bits N/A Max. Throughput averaged over 1 frame (Note 5) UE Category UE DL Category Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH. For 256QAM reference channel 1 symbol is allocated. Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]. Note 3: As per Table 4.2-2 in TS 36.211 [4]. Note 4: If more than one Code Block is present, an additional CRC sequence of	For Sub	-Frames 1,6		46888						
Number of Code Blocks (Notes 4 and 5) For Sub-Frames 4,9 For Sub-Frames 1,6 For Sub-Frame 5 N/A For Sub-Frame 0 Binary Channel Bits (Note 5) For Sub-Frames 4,9 For Sub-Frames 4,9 For Sub-Frames 1,6 For Sub-Frames 5 For Sub-Frames 5 Bits N/A For Sub-Frame 0 Bits N/A For Sub-Frame 0 Bits N/A Max. Throughput averaged over 1 frame (Note 5) UE Category UE DL Category 11-12 UE DL Category 11-12 UE DL Category 11-12 UF DL Category 1	For Sub	-Frame 5	Bits	N/A						
(Notes 4 and 5) For Sub-Frames 4,9 For Sub-Frames 1,6 For Sub-Frame 5 N/A For Sub-Frame 0 N/A Binary Channel Bits (Note 5) For Sub-Frames 4,9 For Sub-Frames 1,6 For Sub-Frames 1,6 For Sub-Frame 5 Bits N/A For Sub-Frame 5 Bits N/A For Sub-Frame 0 Bits N/A Max. Throughput averaged over 1 frame (Note 5) UE Category UE DL Category UE DL Category Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH. For 256QAM reference channel 1 symbol is allocated. Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]. Note 3: As per Table 4.2-2 in TS 36.211 [4]. Note 4: If more than one Code Block is present, an additional CRC sequence of	For Sub	-Frame 0	Bits	N/A						
For Sub-Frames 4,9 For Sub-Frames 1,6 For Sub-Frame 5 For Sub-Frame 0 Binary Channel Bits (Note 5) For Sub-Frames 4,9 For Sub-Frames 4,9 For Sub-Frames 1,6 For Sub-Frame 5 Bits For Sub-Frame 5 Bits N/A For Sub-Frame 0 Bits N/A Max. Throughput averaged over 1 frame (Note 5) UE Category UE DL Category Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH. For 256QAM reference channel 1 symbol is allocated. Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]. Note 3: As per Table 4.2-2 in TS 36.211 [4]. Note 4: If more than one Code Block is present, an additional CRC sequence of	Number	of Code Blocks								
For Sub-Frames 1,6 For Sub-Frame 5 For Sub-Frame 0 Binary Channel Bits (Note 5) For Sub-Frames 4,9 For Sub-Frames 1,6 For Sub-Frames 1,6 For Sub-Frame 5 Bits N/A For Sub-Frame 0 Max. Throughput averaged over 1 frame (Note 5) UE Category UE DL Category Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH. For 256QAM reference channel 1 symbol is allocated. Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]. Note 3: As per Table 4.2-2 in TS 36.211 [4]. Note 4: If more than one Code Block is present, an additional CRC sequence of	(Notes 4	and 5)								
For Sub-Frame 5 For Sub-Frame 0 Binary Channel Bits (Note 5) For Sub-Frames 4,9 For Sub-Frames 1,6 For Sub-Frame 5 Bits N/A For Sub-Frame 5 Bits N/A Max. Throughput averaged over 1 frame (Note 5) UE Category UE DL Category Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH. For 256QAM reference channel 1 symbol is allocated. Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]. Note 3: As per Table 4.2-2 in TS 36.211 [4]. Note 4: If more than one Code Block is present, an additional CRC sequence of	For Sub	-Frames 4,9		11						
For Sub-Frame 0 Binary Channel Bits (Note 5) For Sub-Frames 4,9 For Sub-Frames 1,6 For Sub-Frame 5 For Sub-Frame 0 Max. Throughput averaged over 1 frame (Note 5) UE Category UE DL Category Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH. For 256QAM reference channel 1 symbol is allocated. Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]. Note 3: As per Table 4.2-2 in TS 36.211 [4]. Note 4: If more than one Code Block is present, an additional CRC sequence of	For Sub	p-Frames 1,6		9						
Binary Channel Bits (Note 5) For Sub-Frames 4,9 For Sub-Frames 1,6 For Sub-Frame 5 Bits N/A For Sub-Frame 0 Bits N/A Max. Throughput averaged over 1 frame (Note 5) UE Category UE DL Category Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH. For 256QAM reference channel 1 symbol is allocated. Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]. Note 3: As per Table 4.2-2 in TS 36.211 [4]. Note 4: If more than one Code Block is present, an additional CRC sequence of	For Sub	-Frame 5		N/A						
For Sub-Frames 4,9 For Sub-Frames 1,6 For Sub-Frame 5 Bits N/A For Sub-Frame 0 Bits N/A Max. Throughput averaged over 1 frame (Note 5) UE Category UE DL Category UE DL Category Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH. For 256QAM reference channel 1 symbol is allocated. Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]. Note 3: As per Table 4.2-2 in TS 36.211 [4]. Note 4: If more than one Code Block is present, an additional CRC sequence of										
For Sub-Frame 5 Bits N/A For Sub-Frame 0 Bits N/A Max. Throughput averaged over 1 frame (Note 5) UE Category 11-12 UE DL Category 211 Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH. For 256QAM reference channel 1 symbol is allocated. Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]. Note 3: As per Table 4.2-2 in TS 36.211 [4]. Note 4: If more than one Code Block is present, an additional CRC sequence of	Binary Channel Bits (Note 5)									
For Sub-Frame 5 Bits N/A For Sub-Frame 0 Bits N/A Max. Throughput averaged over 1 frame (Note 5) UE Category UE DL Category Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH. For 256QAM reference channel 1 symbol is allocated. Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]. Note 3: As per Table 4.2-2 in TS 36.211 [4]. Note 4: If more than one Code Block is present, an additional CRC sequence of										
For Sub-Frame 0 Max. Throughput averaged over 1 frame (Note 5) UE Category UE DL Category Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH. For 256QAM reference channel 1 symbol is allocated. Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]. Note 3: As per Table 4.2-2 in TS 36.211 [4]. Note 4: If more than one Code Block is present, an additional CRC sequence of										
Max. Throughput averaged over 1 frame (Note 5) Mbps 22.133 UE Category 11-12 UE DL Category ≥ 11 Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH. For 256QAM reference channel 1 symbol is allocated. Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]. Note 3: As per Table 4.2-2 in TS 36.211 [4]. Note 4: If more than one Code Block is present, an additional CRC sequence of	For Sub	o-Frame 5		N/A						
(Note 5) UE Category UE DL Category Dote 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH. For 256QAM reference channel 1 symbol is allocated. Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]. Note 3: As per Table 4.2-2 in TS 36.211 [4]. Note 4: If more than one Code Block is present, an additional CRC sequence of										
UE Category UE DL Category Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH. For 256QAM reference channel 1 symbol is allocated. Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]. Note 3: As per Table 4.2-2 in TS 36.211 [4]. Note 4: If more than one Code Block is present, an additional CRC sequence of		oughput averaged over 1 frame	Mbps	22.133						
UE DL Category ≥ 11 Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH. For 256QAM reference channel 1 symbol is allocated. Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]. Note 3: As per Table 4.2-2 in TS 36.211 [4]. Note 4: If more than one Code Block is present, an additional CRC sequence of										
Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH. For 256QAM reference channel 1 symbol is allocated. Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]. Note 3: As per Table 4.2-2 in TS 36.211 [4]. Note 4: If more than one Code Block is present, an additional CRC sequence of										
channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH. For 256QAM reference channel 1 symbol is allocated. Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]. Note 3: As per Table 4.2-2 in TS 36.211 [4]. Note 4: If more than one Code Block is present, an additional CRC sequence of		ategory								
symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH. For 256QAM reference channel 1 symbol is allocated. Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]. Note 3: As per Table 4.2-2 in TS 36.211 [4]. Note 4: If more than one Code Block is present, an additional CRC sequence of	Note 1:									
OFDM symbols are allocated to PDCCH. For 256QAM reference channel 1 symbol is allocated. Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]. Note 3: As per Table 4.2-2 in TS 36.211 [4]. Note 4: If more than one Code Block is present, an additional CRC sequence of										
channel 1 symbol is allocated. Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]. Note 3: As per Table 4.2-2 in TS 36.211 [4]. Note 4: If more than one Code Block is present, an additional CRC sequence of										
Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]. Note 3: As per Table 4.2-2 in TS 36.211 [4]. Note 4: If more than one Code Block is present, an additional CRC sequence of			JUCH. For	256QAM refer	ence					
TS 36.211 [4]. Note 3: As per Table 4.2-2 in TS 36.211 [4]. Note 4: If more than one Code Block is present, an additional CRC sequence of	Note O		-:							
Note 3: As per Table 4.2-2 in TS 36.211 [4]. Note 4: If more than one Code Block is present, an additional CRC sequence of	Note 2:		signais and	PRCH alloca	ieu as per					
Note 4: If more than one Code Block is present, an additional CRC sequence of	Note 3:		1							
	NOIG 4.									
Note 5: Given per component carrier per codeword	Note 5:				٥.٠.,٠					

Table A.3.4.2.1-5: Fixed Reference Channel two antenna ports when *EIMTA-MainConfigServCell-r12* is configured

Parameter Unit Value									
Reference channel		R.67 TDD							
Channel bandwidth	MHz				10				
Allocated resource blocks (Note 5)					50				
Modulation		16QAM							
Target Coding Rate					0.4				
Dynamic Uplink-Downlink Configuration (Note 3)		0	1	2	3	4	5	6	
Allocated subframes per Radio Frame (D+S)		1+2	3+2	5+2	5+1	6+1	7+1	2+2	
Information Bit Payload (Note 5)									
For Sub-Frame 0	Bits	9912	9912	9912	9912	9912	9912	9912	
For Sub-Frame 1	Bits	7480	7480	7480	7480	7480	7480	7480	
For Sub-Frame 2	Bits	NA	NA	NA	NA	NA	NA	NA	
For Sub-Frame 3	Bits	NA	NA	9912	NA	NA	9912	NA	
For Sub-Frame 4	Bits	NA	9912	9912	NA	9912	9912	NA	
For Sub-Frame 5	Bits	NA	NA	NA	NA	NA	NA	NA	
For Sub-Frame 6	Bits	7480	7480	7480	9912	9912	9912	7480	
For Sub-Frame 7	Bits	NA	NA	NA	9912	9912	9912	NA	
For Sub-Frame 8	Bits	NA	NA	9912	9912	9912	9912	NA	
For Sub-Frame 9	Bits	NA	9912	9912	9912	9912	9912	9912	

Number of Code Blocks (Notes 4 and 5)								
For Sub-Frame 0		2	2	2	2	2	2	2
For Sub-Frame 1		2	2	2	2	2	2	2
For Sub-Frame 2		NA						
For Sub-Frame 3		NA	NA	2	NA	NA	2	NA
For Sub-Frame 4		NA	2	2	NA	2	2	NA
For Sub-Frame 5		NA						
For Sub-Frame 6		2	2	2	2	2	2	2
For Sub-Frame 7		NA	NA	NA	2	2	2	NA
For Sub-Frame 8		NA	NA	2	2	2	2	NA
For Sub-Frame 9		NA	2	2	2	2	2	2
Binary Channel Bits (Note 5)								
For Sub-Frame 0	Bits	25056	25056	25056	25056	25056	25056	25056
For Sub-Frame 1	Bits	21312	21312	21312	21312	21312	21312	21312
For Sub-Frame 2	Bits	NA	NA	NA	NA	NA	NA	NA
For Sub-Frame 3	Bits	NA	NA	26400	NA	NA	26400	NA
For Sub-Frame 4	Bits	NA	26400	26400	NA	26400	26400	NA
For Sub-Frame 5	Bits	NA	NA	NA	NA	NA	NA	NA
For Sub-Frame 6	Bits	21312	21312	21312	26112	26112	26112	21312
For Sub-Frame 7	Bits	NA	NA	NA	26400	26400	26400	NA
For Sub-Frame 8	Bits	NA	NA	26400	26400	26400	26400	NA
For Sub-Frame 9	Bits	NA	26400	26400	26400	26400	26400	26400
Max. Throughput averaged over 1 frame (Note 5)	Mbps	2.49	4.47	6.45	5.70	6.70	7.69	3.48
Max. Throughput averaged over 1 frame and	Mbps				5.28			
over all dynamic UL-DL configurations (Note 5)		5.28						
UE Category					≥ 1			

Note 1:

Note 2:

Note 3:

2 OFDM symbols are allocated to PDCCH in all subframes
Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].
As per Table 4.2-2 in TS 36.211 [4].
If more code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Note 4: Block (otherwise L = 0 Bit).

Given per component carrier per codeword. Note 5:

A.3.4.2.2 Four antenna ports

Table A.3.4.2.2-1: Fixed Reference Channel four antenna ports

Reference channel	Parameter	Unit						1	/alue					
Channel bandwidth	Reference channel		R.12	R.13	R.14	R.14-	R.14-		R.36	R.43-	R.43-	R.43-	R.43-	R.43-
Allocated resource blocks (Note 6)			TDD	TDD	TDD	1 TDD	2 TDD	TDD	TDD	1 TDD	2 TDD	3 TDD	4 TDD	5 TDD
Dilocks (Note 6) Dilocks (Note 6) Dilocks (Note 6) Dilocks (Note 6) Dilocks (Note 6) Dilocks (Note 6) Dilocks (Note 6) Dilocks (Note 6) Dilocks (Note 6) Dilocks (Note 5 and 6) Dilocks (Note 5 and 6) Dilocks (Note 6) Dilocks (Note 5 and 6) Dilocks (Note 6) Dilocks (Note 6) Dilocks (Note 5 and 6) Dilocks (Note 6) Dilock	Channel bandwidth	MHz	1.4			10	10			1.4		5	10	15
Uplink-Downlink	Allocated resource		6	50	50	6	3	100	50	6	15	25	50	75
Configuration (Note 4) Allocated subframes per Radio Frame (D+S) Modulation QPS QPS 16Q 16QA MM M M M M M M M M M M M M M M M M M	blocks (Note 6)													
4) Allocated subframes per Radio Frame (D+S) 3 3+2 2+2 2 2+2			1	1	1	1	1	1	1	1	1	1	1	1
Allocated subframes per Radio Frame (D+S)	Configuration (Note													
per Radio Frame (D+S) QPS (D+S) QPS (D+S) 16Q (D+S) 16QA (D+S) <th< td=""><td>4)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	4)													
CD+S CD+S			3	3+2	2+2	2	2	2+2	2+2	2	2+2	2+2	2+2	2+2
Modulation														
Target Coding Rate K K K AM M AM AM M														
Target Coding Rate 1/3 1/3 1/2	Modulation		QPS	QPS		16QA				16QA		16QA		
Information Bit														
Payload (Note 6) Bits 408 4392 1296 0 1544 0 744 2545 6 6 1833 6 6 1192 3368 5736 12960 19080 12960 19080 For Sub-Frames 1,6 Bits N/A 3240 9528 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A			1/3	1/3	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2
For Sub-Frames 4,9 Bits 408 4392 1296 1544 744 2545 1833 1192 3368 5736 12960 19080 For Sub-Frames 1,6 Bits N/A 3240 9528 N/A N/A 1584 N/A 1584 N/A 2436 5160 10680 15840 For Sub-Frame 5 Bits N/A N/A <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>														
For Sub-Frames 1,6 Bits N/A 3240 9528 N/A N/A 2138 1584 N/A 2856 5160 10680 15840 For Sub-Frame 5 Bits N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A														
For Sub-Frames 1,6 Bits N/A 3240 9528 N/A N/A 2138 4 0 1584 0 N/A 2856 5160 10680 15840 For Sub-Frame 5 Bits N/A N/	For Sub-Frames 4,9	Bits	408	4392	1296	1544	744	2545	1833	1192	3368	5736	12960	19080
For Sub-Frame 5 Bits N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A														
For Sub-Frame 5 Bits N/A	For Sub-Frames 1,6	Bits	N/A	3240	9528	N/A	N/A	2138	1584	N/A	2856	5160	10680	15840
For Sub-Frame 0 Bits 208 4392 N/A														
Number of Code Blocks (Notes 5 and 6) For Sub-Frames 4,9 1 1 3 1 1 5 3 1 1 1 3 4 For Sub-Frames 1,6 N/A 1 2 N/A N/A 4 3 N/A 1 1 2 3											N/A			
Blocks (Notes 5 and 6) Image: Control of the control of		Bits	208	4392	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
(Notes 5 and 6) Image: Control of the con														
For Sub-Frames 4,9 1 1 3 1 1 5 3 1 1 1 3 4 For Sub-Frames 1,6 N/A 1 2 N/A N/A 4 3 N/A 1 1 2 3														
For Sub-Frames 1,6 N/A 1 2 N/A N/A 4 3 N/A 1 1 2 3														
						-				-		1		
For Sub-Frame 5														
	For Sub-Frame 5		N/A	N/A			N/A				N/A	N/A		N/A
For Sub-Frame 0 1 1 N/A N/A <th< td=""><td></td><td></td><td>1</td><td>1</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td></th<>			1	1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Binary Channel Bits														
(Note 6)														
For Sub-Frames 4,9 Bits 1248 1280 2560 3072 1536 5120 3840 2496 6960 11600 25600 38400	For Sub-Frames 4,9	Bits	1248	1280	2560	3072	1536	5120	3840	2496	6960	11600	25600	38400
				_				_						
For Sub-Frames 1,6 N/A 1025 2051 N/A N/A 4131 3076 N/A 5952 10112 20512 30912	For Sub-Frames 1,6		N/A	1025	2051	N/A	N/A	4131	3076	N/A	5952	10112	20512	30912
For Sub-Frame 5 Bits N/A														
For Sub-Frame 0 Bits 624 1217 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	For Sub-Frame 0	Bits	624	1217	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
6														
Max. Throughput Mbp 0.10 1.96 4.49 0.309 0.149 9.36 6.83 0.238 1.245 2.179 4.728 6.984		Mbp				0.309	0.149			0.238	1.245	2.179	4.728	6.984
averaged over 1 s 2 6 8 8 5		S	2	6	8			8	5					
frame (Note 6)														
UE Category														

- Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.
- Note 2: For BW=1.4 MHz, the information bit payloads of special subframes are set to zero (no scheduling) to avoid problems with insufficient PDCCH performance at the test point.
- Note 3: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].
- Note 4: As per Table 4.2-2 in TS 36.211 [4].
- Note 5: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).
- Note 6: Given per component carrier per codeword.

A.3.4.3 Reference Measurement Channels for UE-Specific Reference Symbols

A.3.4.3.1 Single antenna port (Cell Specific)

The reference measurement channels in Table A.3.4.3.1-1 apply for verifying demodulation performance for UE-specific reference symbols with one cell-specific antenna port.

Table A.3.4.3.1-1: Fixed Reference Channel for DRS

Parameter	Unit			Val	ue		
Reference channel		R.25 TDD	R.26 TDD	R.26-1 TDD	R.27 TDD	R.27-1 TDD	R.28 TDD
Channel bandwidth	MHz	10	10	5	10	10	10
Allocated resource blocks		50 ⁴	50 ⁴	25 ⁴	50 ⁴	18 ⁶	1
Uplink-Downlink Configuration (Note 3)		1	1	1	1	1	1
Allocated subframes per Radio Frame (D+S)		3+2	3+2	3+2	3+2	3+2	3+2
Modulation		QPSK	16QAM	16QAM	64QAM	64QAM	16QAM
Target Coding Rate		1/3	1/2	1/2	3/4	3/4	1/2
Information Bit Payload							
For Sub-Frames 4,9	Bits	4392	12960	5736	28336	10296	224
For Sub-Frames 1,6	Bits	3240	9528	4584	22920	8248	176
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits	2984	9528	3880	22152	10296	224
Number of Code Blocks per Sub-Frame (Note 5)							
For Sub-Frames 4,9		1	3	1	5	2	1
For Sub-Frames 1,6		1	2	1	4	2	1
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0		1	2	1	4	2	1
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 4,9	Bits	12600	25200	11400	37800	13608	504
For Sub-Frames 1,6	Bits	10356	20712	10212	31068	11340	420
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits	10332	20664	7752	30996	13608	504
Max. Throughput averaged over 1 frame	Mbps	1.825	5.450	2.452	12.466	4.738	0.102
UE Category		≥ 1	≥ 2	≥ 1	≥ 2	≥ 1	≥ 1

- Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.
- Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].
- Note 3: as per Table 4.2-2 in TS 36.211 [4].
- Note 4: For R.25, R.26 and R.27, 50 resource blocks are allocated in sub-frames 1, 4, 6, 9 and 41 resource blocks (RB0–RB20 and RB30–RB49) are allocated in sub-frame 0. For R.26-1, 25 resource blocks are allocated in sub-frames 1, 4, 6, 9 and 17 resource blocks (RB0–RB7 and RB16–RB24) are allocated in sub-frame 0.
- Note 5: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).
- Note 6: Localized allocation started from RB #0 is applied.

A.3.4.3.2 Two antenna ports (Cell Specific)

The reference measurement channels in Table A.3.4.3.2-1 apply for verifying demodulation performance for CDM-multiplexed UE specific reference symbols with two cell-specific antenna ports.

Table A.3.4.3.2-1: Fixed Reference Channel for CDM-multiplexed DM RS

Reference channel		R.31 TDD	R.32 TDD	R.32-1 TDD	R.33 TDD	R.33-1 TDD	R.34 TDD
Channel bandwidth	MHz	10	10	5	10	10	10
Allocated resource		50 ⁴	50 ⁴	25 ⁴	50 ⁴	18 ⁶	50 ⁴
blocks							
Uplink-Downlink		1	1	1	1	1	1
Configuration (Note 3)							
Allocated subframes		3+2	3+2	3+2	3+2	3+2	3+2
per Radio Frame (D+S)							
Modulation		QPSK	16QAM	16QAM	64QAM	64QAM	64QAM
Target Coding Rate		1/3	1/2	1/2	3/4	3/4	1/2
Information Bit Payload							
For Sub-Frames 4,9	Bits	3624	11448	5736	27376	9528	18336
For Sub-Frames 1,6		2664	7736	3112	16992	7480	11832
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits	2984	9528	3496	22152	9528	14688
Number of Code Blocks							
per Sub-Frame							
(Note 5)							
For Sub-Frames 4,9		1	2	1	5	2	3
For Sub-Frames 1,6		1	2	1	3	2	2
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0		1	2	1	4	2	3
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 4,9	Bits	12000	24000	10800	36000	12960	36000
For Sub-Frames 1,6		7872	15744	6528	23616	10368	23616
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits	9840	19680	7344	29520	12960	29520
Max. Throughput	Mbps	1.556	4.79	2.119	11.089	4.354	7.502
averaged over 1 frame	-						
UE Category		≥ 1	≥ 2	≥ 1	≥2	≥ 1	≥ 2
Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.							
Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]. Note 3: as per Table 4.2-2 in TS 36.211 [4].							
	2-2 in TS 1	36 211 [/]					

Note 4: For R.31, R.32, R.33and R.34, 50 resource blocks are allocated in sub-frames 4,9 and 41 resource blocks (RB0–RB20 and RB30–RB49) are allocated in sub-frame 0 and the DwPTS portion of sub-frames 1,6. For R.32-1, 25 resouce blocks are allocated in sub-frames 4,9 and 17 resource blocks (RB0–RB7 and RB16–RB24) are allocated in sub-frame 0 and the DwPTS portion of sub-frames 1, 6.

Note 5: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Note 6: Localized allocation started from RB #0 is applied.

The reference measurement channels in Table A.3.4.3.2-2 apply with two CRS antenna ports.

Table A.3.4.3.2-2: Fixed Reference Channel for CDM-multiplexed DM RS

Parameter	Unit	٧	alue
Reference channel		R.70 TDD	R.71 TDD
Channel bandwidth	MHz	10	10
Allocated resource blocks		50 (Note 4)	50 (Note 4)
Uplink-Downlink Configuration (Note 3)		1	1
Allocated subframes per Radio Frame (D+S)		2+2	2+2
Modulation		QPSK	16QAM
Target Coding Rate			
For Sub-Frames 4,9		0.65	0.6
For Sub-Frames 1,6		0.54	0.5
Information Bit Payload			
For Sub-Frames 4,9	Bits	6968	12960
For Sub-Frames 1,6	Bits	4264	7736
For Sub-Frame 5	Bits	N/A	N/A
For Sub-Frame 0	Bits	N/A	N/A
Number of Code Blocks per Sub-Frame			
(Note 5)			
For Sub-Frames 4,9		2	3
For Sub-Frames 1,6		1	2
For Sub-Frame 5		N/A	N/A
For Sub-Frame 0		N/A	N/A
Binary Channel Bits Per Sub-Frame			
For Sub-Frames 4,9	Bits	10800	21600
For Sub-Frames 1,6	Bits	7872	15744
For Sub-Frame 5	Bits	N/A	N/A
For Sub-Frame 0	Bits	N/A	N/A
Max. Throughput averaged over 1 frame	Mbps	2.2464	4.1392
UE Category		≥ 1	≥ 2

- Note 1: 3 symbols allocated to PDCCH in normal subframes and 2 symbols allocated to PDCCH in special subframes
- Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].
- Note 3: As per Table 4.2-2 in TS 36.211 [4].
- Note 4: For R.63, and R.64, 50 resource blocks are allocated in sub-frames 4,9 and 41 resource blocks (RB0–RB20 and RB30–RB49) are allocated in the DwPTS portion of sub-frames 1,6.
- Note 5: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

A.3.4.3.3 Two antenna ports (CSI-RS)

The reference measurement channels in Table A.3.4.3.3-1 apply for verifying demodulation performance for CDM-multiplexed UE specific reference symbols with two cell-specific antenna ports and two CSI-RS antenna ports.

Table A.3.4.3.3-1: Fixed Reference Channel for CDM-multiplexed DM RS with two CSI-RS antenna ports

	Parameter	Unit	Value		
Reference	e channel		R.51 TDD		
	bandwidth	MHz	10		
Allocated	resource blocks		50 (Note 5)		
	ownlink Configuration (Note 3)		1		
Allocated	subframes per Radio Frame		3+2		
(D+S)	•				
Modulation	on		16QAM		
Target Co	oding Rate		1/2		
	on Bit Payload				
For Sub	-Frames 4,9 (non CSI-RS	Bits	11448		
subframe	2)				
For Sub	-Frame 4,9	Bits	11448		
	-Frames 1,6	Bits	7736		
	-Frame 5	Bits	N/A		
	-Frame 0	Bits	9528		
	of Code Blocks				
(Note 4)					
For Sub	-Frames 4, 9 (non CSI-RS	Code	2		
subframe	2)	blocks			
For Sub	-Frames 4,9	Code	2		
		blocks			
For Sub	For Sub-Frames 1,6		2		
		blocks			
For Sub	-Frame 5		N/A		
For Sub	-Frame 0	Code	2		
		blocks			
	nannel Bits				
For Sub	-Frames 4, 9 (non CSI-RS	Bits	24000		
subframe					
	-Frames 4,9		22800		
	-Frames 1,6		15744		
	-Frame 5	Bits	N/A		
For Sub	-Frame 0	Bits	19680		
Max. Thr	oughput averaged over 1	Mbps	4.7896		
frame					
UE Cate			≥ 2		
Note 1:	2 symbols allocated to PDCCH				
Note 2:	Reference signal, synchronizat		s and PBCH		
allocated as per TS 36.211 [4].					
	Note 3: as per Table 4.2-2 in TS 36.211 [4].				
Note 4: If more than one Code Block is present, an additional					
	CRC sequence of L = 24 Bits is attached to each Code				
Note F	Block (otherwise L = 0 Bit).	ا است منام	roman 10		
Note 5:	50 resource blocks are allocate	ta ili SAD-I	raines 4,9 and		
	41 resource blocks (RB0–RB2) allocated in sub-frame 0 and the	u and KBC	nortion of		
		IE DWF 12	ροιτίστι σι		
sub-frames 1,6.					

The reference measurement channels in Table A3.4.3.3-2 apply for verifying demudlation performance for UE-specific reference symbols with two cell specific antenna ports and two CSI-RS antenna ports with ZP CSI-RS and NZP CSI-RS in same subframe.

Table A.3.4.3.3-2: Fixed Reference Channel for CDM-multiplexed DM RS with two CSI-RS antenna ports with ZP CSI-RS and NZP CSI-RS

Parameter	Unit	Value			
Reference channel		R.52 TDD	R.53 TDD	R.54 TDD	
Channel bandwidth	MHz	10	10	10	
Allocated resource blocks		50 (Note 5)	50 (Note 5)	50 (Note 5)	
Uplink-Downlink Configuration (Note 3)		1	1	1	
Allocated subframes per Radio Frame		3+2	3+2	3+2	
(D+S)					
Modulation		64QAM	64QAM	16QAM	
Target Coding Rate		1/2	1/2	1/2	
Information Bit Payload					
For Sub-Frame 4,9	Bits	16416	16416	11448	
For Sub-Frames 1,6	Bits	11832	11832	7736	
For Sub-Frame 5	Bits	n/a	n/a	n/a	
For Sub-Frame 0	Bits	14688	14688	9528	
Number of Code Blocks					
(Note 4)					
For Sub-Frames 4,9	Code	3	3	2	
	blocks				
For Sub-Frames 1,6	Code	2	2	2	
	blocks				
For Sub-Frame 5		n/a	n/a	n/a	
For Sub-Frame 0	Code	3	3	2	
	blocks				
Binary Channel Bits					
For Sub-Frames 4,9		34200	33600	22800	
For Sub-Frames 1,6		23616	23616	15744	
For Sub-Frame 5	Bits	n/a	n/a	n/a	
For Sub-Frame 0	Bits	29520	29520	19680	
Max. Throughput averaged over 1	Mbps	7.1184	7.1184	4.7896	
frame					
UE Category		≥ 2	≥ 2	≥ 2	

Note 1: 2 symbols allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: as per Table 4.2-2 in TS 36.211 [4].

Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Note 5: 50 resource blocks are allocated in sub-frames 4, 9 and 41 resource blocks (RB0–RB20 and RB30–RB49) are allocated in sub-frame 0 and the DwPTS portion of sub-frames 1, 6.

A.3.4.3.4 Four antenna ports (CSI-RS)

The reference measurement channels in Table A.3.4.3.4-1 apply for verifying demodulation performance for CDM-multiplexed UE specific reference symbols with two cell-specific antenna ports and four CSI-RS antenna ports.

Table A.3.4.3.4-1: Fixed Reference Channel for CDM-multiplexed DM RS with four CSI-RS antenna ports

Parameter	Unit	Value			
Reference channel		R.44 TDD	R.48 TDD	R.66 TDD	
Channel bandwidth	MHz	10	10	20	
Allocated resource blocks		50 (Note 4)	50 (Note 4)	100	
Uplink-Downlink Configuration (Note 3)		1	1	1	
Allocated subframes per Radio Frame (D+S)		3+2	3+2	3+2	
Modulation		64QAM	QPSK	256QAM	
Target Coding Rate		1/2			
Information Bit Payload					
For Sub-Frames 4,9 (non CSI-RS subframe)	Bits	18336	N/A	N/A	
For Sub-Frames 4,9 (CSI-RS subframe)	Bits	16416	6200	71112	
For Sub-Frames 1,6		11832	4264	48936	
For Sub-Frame 5	Bits	N/A	N/A	N/A	
For Sub-Frame 0	Bits	14688	4968	66592	
Number of Code Blocks per Sub- Frame (Note 5)					
For Sub-Frames 4,9 (non CSI-RS subframe)		3	2	N/A	
For Sub-Frames 4,9 (CSI-RS subframe)		3	2	12	
For Sub-Frames 1,6		2	1	8	
For Sub-Frame 5		N/A	N/A	N/A	
For Sub-Frame 0		3	1	11	
Binary Channel Bits Per Sub- Frame					
For Sub-Frames 4,9 (non CSI-RS subframe)	Bits	36000	12000	N/A	
For Sub-Frames 4,9 (CSI-RS subframe)	Bits	33600	11600	89600	
For Sub-Frames 1,6		23616	7872	67584	
For Sub-Frame 5	Bits	N/A	N/A	N/A	
For Sub-Frame 0	Bits	29520	9840	84480	
Max. Throughput averaged over 1 frame	Mbps	7.1184	2.5896	30.669	
UE Category		≥ 2	≥ 1	11-12	
UE DL Category		≥ 6	≥ 6	≥ 11	

Note 1: 2 symbols allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: as per Table 4.2-2 in TS 36.211 [4].

Note 4: For R.44 and R.48, 50 resource blocks are allocated in sub-frames 4,9 and 41 resource blocks (RB0–RB20 and RB30–RB49) are allocated in sub-frame 0 and the DwPTS portion of sub-frames 1,6. For R.66, 100 resource blocks are allocated in sub-frames 4, 9 and 88 resources blockes (RB0–RB43 and RB56–RB99) are allocated in sub-frame 0 and the DwPTS portion of sub-frames 1,6.

Note 5: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

The reference measurement channels in Table A.3.4.3.4-2 apply for verifying TDD PMI accuracy measurement with two CRS antenna ports and four CSI-RS antenna ports.

Table A.3.4.3.4-2: Fixed Reference Channel for four antenna ports (CSI-RS)

Parameter	Unit		Value	
Reference channel		R.60	R.61	R.61-1
		TDD	TDD	TDD
Channel bandwidth	MHz	10	10	10
Allocated resource blocks		50 ⁴	50 ⁴	39 ⁵
Uplink-Downlink Configuration (Note 3)		1	1	1
Allocated subframes per Radio Frame		4+2	4+2	4+2
(D+S)				
Allocated subframes per Radio Frame		10	10	10
Modulation		QPSK	16QAM	16QAM
Target Coding Rate		1/2	1/2	1/2
Information Bit Payload				
For Sub-Frames 4 and 9	Bits	N/A	N/A	N/A
(Non CSI-RS subframe)				
For Sub-Frames 4 and 9	Bits	6200	11448	8760
(CSI-RS subframe)				
For Sub-Frames 1,6	Bits	N/A	7736	7480
For Sub-Frame 5	Bits	N/A	N/A	N/A
For Sub-Frame 0	Bits	N/A	9528	8760
Number of Code Blocks per Sub-Frame				
(Note 6)				
For Sub-Frames 4 and 9		N/A	N/A	N/A
(Non CSI-RS subframe)				
For Sub-Frames 4 and 9		2	2	2
(CSI-RS subframe)				
For Sub-Frames 1,6		N/A	2	2
For Sub-Frame 5		N/A	N/A	N/A
For Sub-Frame 0		N/A	2	2
Binary Channel Bits Per Sub-Frame				
For Sub-Frames 4 and 9	Bits	N/A	N/A	N/A
(Non CSI-RS subframe)				
For Sub-Frames 4 and 9	Bits	11600	23200	18096
(CSI-RS subframe)				
For Sub-Frames 1,6	Bits	N/A	15744	14976
For Sub-Frame 5	Bits	N/A	N/A	N/A
For Sub-Frame 0	Bits	N/A	19680	18720
Max. Throughput averaged over 1 frame	Mbps	1.24	4.7896	4.1240
UE Category		≥ 1	≥ 2	≥ 1

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.

- Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].
- Note 3: As per Table 4.2-2 in TS 36.211 [4].
- Note 4: For R. 60 and R.61, 50 resource blocks are allocated in sub-frames 4,9 and 41 resource blocks (RB0–RB20 and RB30–RB49) are allocated in sub-frame 0 and the DwPTS portion of sub-frames 1,6.
- Note 5: For R. 61-1, 39 resource blocks (RB0–RB20 and RB30–RB47) are allocated in subframe 0. 1, 4, 6 and 9.
- Note 6: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).
- Note 7: Localized allocation started from RB #0 is applied.

The reference measurement channels in Table A.3.4.3.4-3 apply for verifying demodulation performance for CDM-multiplexed UE specific reference symbols with two cell-specific antenna ports and four CSI-RS antenna ports.

Table A.3.4.3.4-3: Fixed Reference Channel for CDM-multiplexed DM RS with four CSI-RS antenna ports

Parameter	Unit	Value
Reference channel		R.64 TDD
Channel bandwidth	MHz	10
Allocated resource blocks (Note 4)		6
Uplink-Downlink Configuration (Note 3)		1
Allocated subframes per Radio Frame (D+S)		4+2
Modulation		QPSK
Target Coding Rate		1/3
Information Bit Payload		
For Sub-Frames 4,9 (non CSI-RS subframe)	Bits	504
For Sub-Frames 4,9 (CSI-RS subframe)	Bits	504
For Sub-Frames 1,6		256
For Sub-Frames 0,5	Bits	504
Number of Code Blocks per Sub-Frame		
For Sub-Frames 4,9 (non CSI-RS subframe)	Code	1
	blocks	
For Sub-Frames 4,9 (CSI-RS subframe)	Code	1
	blocks	
For Sub-Frames 1,6	Code	1
	blocks	
For Sub-Frames 0,5	Code	1
	blocks	
Binary Channel Bits Per Sub-Frame		
For Sub-Frames 4,9 (non CSI-RS subframe)	Bits	1440
For Sub-Frames 4,9 (CSI-RS subframe)	Bits	1352
For Sub-Frames 1,6		1152
For Sub-Frames 0,5	Bits	1440
Max. Throughput averaged over 1 frame	Mbps	0.2528
UE DL Category		0

Note 1: 2 symbols allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH

allocated as per TS 36.211 [4].

Note 3: as per Table 4.2-2 in TS 36.211 [4].

Note 4: Allocated PRB positions start from {9, 10, ..., 9+N-1}, where

N is the number of allocated resource blocks.

The reference measurement channels in Table A.3.4.3.4-4 apply for verifying demodulation performance for CDM-multiplexed UE specific reference symbols with two cell-specific antenna ports and four CSI-RS antenna ports.

Table A.3.4.3.4-4: Fixed Reference Channel for CDM-multiplexed DM RS with four CSI-RS antenna ports

Parameter	Unit	Value
Reference channel		R.69 TDD
Channel bandwidth	MHz	10
Allocated resource blocks		50 (Note 4)
Uplink-Downlink Configuration (Note 3)		1
Allocated subframes per Radio Frame (D+S)		2+2
Modulation		QPSK
Target Coding Rate		
For Sub-Frame 4(CSI-RS subframe)		0.8
For Sub-Frame 9 (non CSI-RS subframe)		0.74
For Sub-Frames 1,6		0.61
Information Bit Payload		
For Sub-Frame 4(CSI-RS subframe)	Bits	7992
For Sub-Frame 9 (non CSI-RS subframe)	Bits	7992
For Sub-Frames 1,6	Bits	4776
For Sub-Frame 5	Bits	N/A
For Sub-Frame 0	Bits	N/A
Number of Code Blocks per Sub-Frame		
(Note 5)		
For Sub-Frame 4(CSI-RS subframe)		2
For Sub-Frame 9 (non CSI-RS subframe)		2
For Sub-Frames 1,6		1
For Sub-Frame 5		N/A
For Sub-Frame 0		N/A
Binary Channel Bits Per Sub-Frame		
For Sub-Frame 4(CSI-RS subframe)	Bits	10000
For Sub-Frame 9 (non CSI-RS subframe)	Bits	10800
For Sub-Frames 1,6	Bits	7872
For Sub-Frame 5	Bits	N/A
For Sub-Frame 0	Bits	N/A
Max. Throughput averaged over 1 frame	Mbps	2.5536
UE Category		≥ 1
Note 1: 3 symbols allocated to PDCCH.		

Note 1: 3 symbols allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: As per Table 4.2-2 in TS 36.211 [4].

Note 4: 50 resource blocks are allocated in sub-frames 4,9 and 41 resource blocks (RB0–RB20 and RB30–RB49) are allocated in the DwPTS portion of sub-frames 1,6.

Note 5: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

A.3.4.3.5 Eight antenna ports (CSI-RS)

The reference measurement channels in Table A.3.4.3.5-1 apply for verifying demodulation performance for CDM-multiplexed UE specific reference symbols with two cell-specific antenna ports and eight CSI-RS antenna ports.

Table A.3.4.3.5-1: Fixed Reference Channel for CDM-multiplexed DM RS with eight CSI-RS antenna ports

Parameter	Unit	Value
Reference channel		R.50 TDD
Channel bandwidth	MHz	10
Allocated resource blocks		50 (Note 4)
Uplink-Downlink Configuration (Note		1
3)		
Allocated subframes per Radio		3+2
Frame (D+S)		
Modulation		QPSK
Target Coding Rate		1/3
Information Bit Payload		
For Sub-Frames 4,9 (non CSI-RS	Bits	3624
subframe)		
For Sub-Frames 4,9 (CSI-RS	Bits	3624
subframe)		
For Sub-Frames 1,6		2664
For Sub-Frame 5	Bits	N/A
For Sub-Frame 0	Bits	2984
Number of Code Blocks per Sub-		
Frame		
(Note 5)		
For Sub-Frames 4,9 (non CSI-RS		1
subframe)		
For Sub-Frames 4,9 (CSI-RS		1
subframe)		
For Sub-Frames 1,6		1
For Sub-Frame 5		N/A
For Sub-Frame 0		1
Binary Channel Bits Per Sub-Frame		
For Sub-Frames 4,9 (non CSI-RS	Bits	12000
subframe)		
For Sub-Frames 4,9 (CSI-RS	Bits	10400
subframe)		
For Sub-Frames 1,6		7872
For Sub-Frame 5	Bits	N/A
For Sub-Frame 0	Bits	9840
Max. Throughput averaged over 1	Mbps	1.556
frame		
UE Category		≥ 1
Note 1: 2 symbols allocated to PDC	CH.	

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

as per Table 4.2-2 in TS 36.211 [4]. Note 3:

Note 4: 50 resource blocks are allocated in sub-frames 4,9 and 41 resource blocks (RB0-RB20 and RB30-RB49) are allocated in sub-frame 0 and the DwPTS portion of sub-

frames 1,6.

If more than one Code Block is present, an additional Note 5: CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

The reference measurement channels in Table A.3.4.3.5-2 apply for verifying TDD PMI accuracy measurement with two CRS antenna ports and eight CSI-RS antenna ports.

Table A.3.4.3.5-2: Fixed Reference Channel for eight antenna ports (CSI-RS)

Parameter	Unit	Val	ue
Reference channel		R.45	R.45-1
		TDD	TDD
Channel bandwidth	MHz	10	10
Allocated resource blocks		50 ⁴	39
Uplink-Downlink Configuration (Note 3)		1	1
Allocated subframes per Radio Frame		4+2	4+2
(D+S)			
Allocated subframes per Radio Frame		5	5
Modulation		16QAM	16QAM
Target Coding Rate		1/2	1/2
Information Bit Payload			
For Sub-Frames 4 and 9	Bits	N/A	N/A
(Non CSI-RS subframe)			
For Sub-Frames 4 and 9	Bits	11448	8760
(CSI-RS subframe)			
For Sub-Frames 1,6	Bits	7736	7480
For Sub-Frame 5	Bits	N/A	N/A
For Sub-Frame 0	Bits	9528	8760
Number of Code Blocks per Sub-Frame			
(Note 5)			
For Sub-Frames 4 and 9		N/A	N/A
(Non CSI-RS subframe)			
For Sub-Frames 4 and 9		2	2
(CSI-RS subframe)			
For Sub-Frames 1,6		2	2
For Sub-Frame 5		N/A	N/A
For Sub-Frame 0		2	2
Binary Channel Bits Per Sub-Frame			
For Sub-Frames 4 and 9	Bits	N/A	N/A
(Non CSI-RS subframe)			
For Sub-Frames 4 and 9	Bits	22400	17472
(CSI-RS subframe)	Dite	45744	4.4070
For Sub-Frames 1,6	Bits	15744	14976
For Sub-Frame 5	Bits	N/A	N/A
For Sub-Frame 0	Bits	19680	18720
Max. Throughput averaged over 1 frame	Mbps	4.7896	4.1240
UE Category	1	≥ 2	≥ 1

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: As per Table 4.2-2 in TS 36.211 [4].

Note 4: For For R.45, 50 resource blocks are allocated in sub-frames 4,9 and 41 resource blocks (RB0–RB20 and RB30–RB49) are allocated in sub-frame 0 and the DwPTS portion of sub-frames 1,6. For R.45-1, 39 resource blocks are allocated in sub-frames 0,4,9 and the DwPTS portion of sub-frames 1,6 (RB0–RB20 and RB30–RB47).

Note 5: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Note 6: Localized allocation started from RB #0 is applied.

A.3.5 Reference measurement channels for PDCCH/PCFICH performance requirements

A.3.5.1 FDD

Table A.3.5.1-1: Reference Channel FDD

Parameter	Unit	Value				
Reference channel		R.15 FDD	R.15-1 FDD	R.15-2 FDD	R.16 FDD	R.17 FDD
Number of transmitter antennas		1	2	2	2	4
Channel bandwidth	MHz	10	10	10	10	5
Number of OFDM symbols for PDCCH	symbols	2	3	2	2	2
Aggregation level	CCE	8	8	8	4	2
DCI Format		Format 1	Format 1	Format 1	Format 2	Format 2
Cell ID		0	0	0	0	0
Payload (without CRC)	Bits	31	31	31	43	42

A.3.5.2 TDD

Table A.3.5.2-1: Reference Channel TDD

Parameter	Unit	Value				
Reference channel		R.15 TDD	R.15-1 TDD	R.15-2 TDD	R.16 TDD	R.17 TDD
Number of transmitter antennas		1	2	2	2	4
Channel bandwidth	MHz	10	10	10	10	5
Number of OFDM symbols for PDCCH	symbols	2	3	2	2	2
Aggregation level	CCE	8	8	8	4	2
DCI Format		Format 1	Format 1	Format 1	Format 2	Format 2
Cell ID		0	0	0	0	0
Payload (without CRC)	Bits	34	34	34	46	45

A.3.6 Reference measurement channels for PHICH performance requirements

Table A.3.6-1: Reference Channel FDD/TDD

Parameter	Unit			Value		
Reference channel		R.18	R.19	R.19-1	R.20	R.24
Number of transmitter antennas		1	2	2	4	1
Channel bandwidth	MHz	10	10	5	5	10
User roles (Note 1)		W I1 I2	W I1 I2	W I1 I2	W I1 I2	W I1
Resource allocation (Note 2)		(0,0) (0,1) (0,4)	(0,0) (0,1) (0,4)	(0,0) (0,1) (0,4)	(0,0) (0,1) (0,4)	(0,0) (0,1)
Power offsets (Note 3)	dB	-4 0 -3	-40-3	-40-3	-40-3	+3 0
Payload (Note 4)		ARR	ARR	ARR	ARR	AR

Note 1: W=wanted user, I1=interfering user 1, I2=interfering user 2.

Note 2: The resource allocation per user is given as (N_group_PHICH, N_seq_PHICH).

Note 3: The power offsets (per user) represent the difference of the power of BPSK modulated symbol per PHICH relative to the first interfering user.

Note 4: A=fixed ACK, R=random ACK/NACK.

A.3.7 Reference measurement channels for PBCH performance requirements

Table A.3.7-1: Reference Channel FDD/TDD

Parameter	Unit	Value						
Reference channel		R.21	R.22	R.23				
Number of transmitter antennas		1	2	4				
Channel bandwidth	MHz	1.4	1.4	1.4				
Modulation		QPSK	QPSK	QPSK				
Target coding rate		40/1920	40/1920	40/1920				
Payload (without CRC)	Bits	24	24	24				

A.3.8 Reference measurement channels for MBMS performance requirements

A.3.8.1 FDD

Table A.3.8.1-1: Fixed Reference Channel QPSK R=1/3

Parameter			Р	МСН			
	Unit			Val	ue		
Reference channel		R.40 FDD			R.37 FDD		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6			50		
Allocated subframes per Radio		6			6		
Frame (Note 1)							
Modulation		QPSK			QPSK		
Target Coding Rate		1/3			1/3		
Information Bit Payload (Note 2)							
For Sub-Frames 1,2,3,6,7,8	Bits	408			3624		
For Sub-Frames 0,4,5,9	Bits	N/A			N/A		
Number of Code Blocks per		1			1		
Subframe (Note 3)							
Binary Channel Bits Per Subframe							
For Sub-Frames 1,2,3,6,7,8	Bits	1224			10200		
For Sub-Frames 0,4,5,9	Bits	N/A			N/A		
MBMS UE Category		≥ 1			≥ 1		

Note 1: For FDD mode, up to 6 subframes (#1/2/3/6/7/8) are available for MBMS, in line with TS 36.331.

Note 2: 2 OFDM symbols are reserved for PDCCH; and reference signal allocated as per TS

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Table A.3.8.1-2: Fixed Reference Channel 16QAM R=1/2

Parameter				PMC	CH		
	Unit				Value		
Reference channel					R.38 FDD		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks					50		
Allocated subframes per Radio Frame (Note 1)					6		
Modulation					16QAM		
Target Coding Rate					1/2		
Information Bit Payload (Note 2)							
For Sub-Frames 1,2,3,6,7,8	Bits				9912		
For Sub-Frames 0,4,5,9	Bits				N/A		
Number of Code Blocks per Subframe (Note 3)					2		
Binary Channel Bits Per Subframe							
For Sub-Frames 1,2,3,6,7,8	Bits				20400		
For Sub-Frames 0,4,5,9	Bits				N/A		
MBMS UE Category			•		≥ 1		

Note 1: For FDD mode, up to 6 subframes (#1/2/3/6/7/8) are available for MBMS, in line with TS 36.331.

Note 2: 2 OFDM symbols are reserved for PDCCH; and reference signal allocated as per TS 36.211.

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Table A.3.8.1-3: Fixed Reference Channel 64QAM R=2/3

Parameter				PMCH			
	Unit			Va	alue		
Reference channel				R.39-1 FDD	R.39 FDD		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks				25	50		
Allocated subframes per Radio Frame(Note1)				6	6		
Modulation				64QAM	64QAM		
Target Coding Rate				2/3	2/3		
Information Bit Payload (Note 2)							
For Sub-Frames 1,2,3,6,7,8	Bits			9912	19848		
For Sub-Frames 0,4,5,9	Bits			N/A	N/A		
Number of Code Blocks per Sub-Frame (Note 3)				2	4		
Binary Channel Bits Per Subframe							
For Sub-Frames 1,2,3,6,7,8	Bits			15300	30600		
For Sub-Frames 0,4,5,9	Bits			N/A	N/A		
MBMS UE Category				≥ 1	≥ 2		

Note 1: For FDD mode, up to 6 subframes (#1/2/3/6/7/8) are available for MBMS, in line with TS 36.331.

Note 2: 2 OFDM symbols are reserved for PDCCH; and reference signal allocated as per TS 36.211.

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

A.3.8.2 TDD

Table A.3.8.2-1: Fixed Reference Channel QPSK R=1/3

Parameter				РМСН			
	Unit			Va	lue		
Reference channel		R.40 TDD			R.37 TDD		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6			50		
Uplink-Downlink Configuration(Note 1)		5			5		
Allocated subframes per Radio Frame		5			5		
Modulation		QPSK			QPSK		
Target Coding Rate		1/3			1/3		
Information Bit Payload (Note 2)							
For Sub-Frames 3,4,7,8,9	Bits	408			3624		
For Sub-Frames 0,1,2,5,6	Bits	N/A			N/A		
Number of Code Blocks per Subframe		1			1		
(Note 3)							
Binary Channel Bits Per Subframe							
For Sub-Frames 3,4,7,8,9	Bits	1224			10200		
For Sub-Frames 0,1,2,5,6	Bits	N/A			N/A		
MBMS UE Category		≥ 1			≥ 1		

Note 1: For TDD mode, in line with TS 36.331, Uplink-Downlink Configuration 5 is proposed, up to 5 subframes (#3/4/7/8/9) are available for MBMS.

Note 2: 2 OFDM symbols are reserved for PDCCH; reference signal allocated as per TS 36.211.

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Table A.3.8.2-2: Fixed Reference Channel 16QAM R=1/2

Parameter				PMC	CH		
	Unit				Value		
Reference channel					R.38 TDD		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks					50		
Uplink-Downlink Configuration(Note 1)					5		
Allocated subframes per Radio Frame					5		
Modulation					16QAM		
Target Coding Rate					1/2		
Information Bit Payload (Note 2)							
For Sub-Frames 3,4,7,8,9	Bits				9912		
For Sub-Frames 0,1,2,5,6	Bits				N/A		
Number of Code Blocks per Subframe (Note 3)					2		
Binary Channel Bits Per Subframe							
For Sub-Frames 3,4,7,8,9	Bits				20400		
For Sub-Frames 0,1,2,5,6	Bits				N/A		
MBMS UE Category					≥ 1	·	

Note 1: For TDD mode, in line with TS 36.331, Uplink-Downlink Configuration 5 is proposed, up to 5 subframes (#3/4/7/8/9) are available for MBMS.

Note 2: 2 OFDM symbols are reserved for PDCCH; reference signal allocated as per TS 36.211. Note 3: If more than one Code Block is present, an additional CRC sequence of L=24 Bits is

attached to each Code Block (otherwise L = 0 Bit).

Table A.3.8.2-3: Fixed Reference Channel 64QAM R=2/3

Parameter				PMCH			
	Unit			Val	ue		
Reference channel				R.39-1TDD	R.39 TDD		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks				25	50		
Uplink-Downlink Configuration(Note 1)				5	5		
Allocated subframes per Radio Frame				5	5		
Modulation				64QAM	64QAM		
Target Coding Rate				2/3	2/3		
Information Bit Payload (Note 2)							
For Sub-Frames 3,4,7,8,9	Bits			9912	19848		
For Sub-Frames 0,1,2,5,6	Bits			N/A	N/A		
Number of Code Blocks per Sub-Frame (Note 3)				2	4		
Binary Channel Bits Per Subframe							
For Sub-Frames 3,4,7,8,9	Bits			15300	30600		
For Sub-Frames 0,1,2,5,6	Bits			N/A	N/A		
MBMS UE Category				≥ 1	≥ 2		

For TDD mode, in line with TS 36.331, Uplink-Downlink Configuration 5 is proposed, up to 5 Note 1: subframes (#3/4/7/8/9) are available for MBMS.
2 OFDM symbols are reserved for PDCCH; reference signal allocated as per TS 36.211.

Note 2:

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

A.3.9 Reference measurement channels for sustained downlink data rate provided by lower layers

A.3.9.1 FDD

Table A.3.9.1-1: Fixed Reference Channel for sustained data-rate test (FDD 64QAM)

Parameter	Unit				Va	alue			
Reference channel		R.31-1	R.31-2	R.31-3	R.31-	R.31-3C	R.31-4	R.31-4B	R.31-5
		FDD	FDD	FDD	3A FDD	FDD	FDD	FDD	FDD
Channel bandwidth	MHz	10	10	20	10	15	20	15	15
Allocated resource blocks (Note 8)		Note 5	Note 6	Note 7	Note 6	Note 10	Note 7	Note 11	Note 9
Allocated subframes per Radio Frame		10	10	10	10	10	10	10	10
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM	64QAM	64QAM
Coding Rate									
For Sub-Frame 1,2,3,4,6,7,8,9,		0.40	0.59	0.59	0.85	0.87	0.88	0.85	0.85
For Sub-Frame 5		0.40	0.64	0.62	0.89	0.88	0.87	0.87	0.91
For Sub-Frame 0		0.40	0.63	0.61	0.90	0.91	0.90	0.88	0.88
Information Bit Payload (Note 8)									
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	10296	25456	51024	36696	51024	75376	55056	55056
For Sub-Frame 5	Bits	10296	25456	51024	35160	51024	71112	52752	52752
For Sub-Frame 0	Bits	10296	25456	51024	36696	51024	75376	55056	55056
Number of Code Blocks									
(Notes 3 and 8)									
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	2	5	9	6	9	13	9	9
For Sub-Frame 5	Bits	2	5	9	6	9	12	9	9
For Sub-Frame 0	Bits	2	5	9	6	9	13	9	9
Binary Channel Bits (Note 8)									
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	26100	43200	86400	43200	58752	86400	64800	64800
For Sub-Frame 5	Bits	26100	39744	82080	39744	57888	82080	60480	60480
For Sub-Frame 0	Bits	26100	40752	83952	40752	56304	83952	62352	62352
Number of layers		1	2	2	2	2	2	2	2
Max. Throughput averaged over 1 frame (Note 8)	Mbps	10.296	25.456	51.024	36.542	51.024	74.950	54.826	54.826
UE Categories		≥ 1	≥2	≥ 2	≥ 2	≥3	≥ 3	≥ 4	≥ 3
Note 1: 1 symbol allocated to DDCCH	for all to	10			•	·	•		

- Note 1: 1 symbol allocated to PDCCH for all tests.
- Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].
- Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).
- Note 4: Resource blocks n_{PRB} = 0..2 are allocated for SIB transmissions in sub-frame 5 for all bandwidths.
- Note 5: Resource blocks n_{PRB} = 6..14,30..49 are allocated for the user data in all sub-frames.
- Note 6: Resource blocks $n_{PRB} = 3..49$ are allocated for the user data in sub-frame 5, and resource blocks $n_{PRB} = 0..49$ in sub-frames 0,1,2,3,4,6,7,8,9.
- Note 7: Resource blocks $n_{PRB} = 4..99$ are allocated for the user data in sub-frame 5, and resource blocks $n_{PRB} = 0..99$ in sub-frames 0,1,2,3,4,6,7,8,9.
- Note 8: Given per component carrier per codeword.
- Note 9: Resource blocks nPRB = 4..74 are allocated for the user data in sub-frame 5, and resource blocks nPRB = 0..74 in sub-frames 0,1,2,3,4,6,7,8,9.
- Note 10: Resource blocks n_{PRB} = 4..71 are allocated for the user data in sub-frames 0,1,2,3,4,5,6,7,8,9.
- Note 11: Resource blocks $n_{PRB} = 4..74$ are allocated for the user data in sub-frame 5, and resource blocks $n_{PRB} = 0..74$ in sub-frames 0.1,2,3,4,6,7,8,9.

Table A.3.9.1-2: Fixed Reference Channel for sustained data-rate test (FDD 64QAM)

Parameter	Unit			Value		
Reference channel		R.31-6				
		FDD				
Channel bandwidth	MHz	5				
Allocated resource blocks (Note 5)		Note 4				
Allocated subframes per Radio Frame		9				
Modulation		64QAM				
Coding Rate						
For Sub-Frame 1,2,3,4,6,7,8,9,		0.85				
For Sub-Frame 5		N/A				
For Sub-Frame 0		0.83				
Information Bit Payload (Note 5)						
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	18336				
For Sub-Frame 5	Bits	N/A				
For Sub-Frame 0	Bits	15840				
Number of Code Blocks						
(Notes 3 and 5)						
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	3				
For Sub-Frame 5	Bits	N/A				
For Sub-Frame 0	Bits	3				
Binary Channel Bits (Note 5)						
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	21600				
For Sub-Frame 5	Bits	N/A				
For Sub-Frame 0	Bits	19152				
Number of layers		2				
Max. Throughput averaged over 1	Mbps	17.837				
frame (Note 5)						
UE Categories		≥ 2				

Note 1: 1 symbol allocated to PDCCH for all tests.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Note 4: Resource blocks $n_{PRB} = 0..24$ in sub-frames 0,1,2,3,4,6,7,8,9.

Note 5: Given per component carrier per codeword.

Note 6: Ng=1/6.

Table A.3.9.1-3: Fixed Reference Channel for sustained data-rate test (FDD 256QAM)

Parameter	Unit				Value	
Reference channel		R.68	R.68-1	R.68-2	R.68-3	
		FDD	FDD	FDD	FDD	
Channel bandwidth	MHz	20	15	10	5	
Allocated resource blocks (Note 4)		Note 5	Note 6	Note 7	Note 8	
Allocated subframes per Radio Frame		10	10	10	10	
Modulation		256QAM	256QAM	256QAM	256QAM	
Coding Rate						
For Sub-Frames 3,4,8,9		0.85	0.88	0.85	0.85	
For Sub-Frames 1,2,6,7		0.74	0.74	0.74	0.77	
For Sub-Frame 5		0.75	0.77	0.77	0.79	
For Sub-Frame 0		0.76	0.77	0.78	0.84	
Information Bit Payload (Note 4)						
For Sub-Frames 3,4,8,9	Bits	97896	75376	48936	24496	
For Sub-Frames 1,2,6,7		84760	63776	42368	21384	
For Sub-Frame 5	Bits	81176	61664	40576	19848	
For Sub-Frame 0	Bits	84760	63776	42368	21384	
Number of Code Blocks (Notes 3 and 4)						
For Sub-Frames 3,4,8,9	Bits	16	13	8	4	
For Sub-Frames 1,2,6,7		14	11	7	4	
For Sub-Frame 5	Bits	14	11	7	4	
For Sub-Frame 0	Bits	14	11	7	4	
Binary Channel Bits (Note 4)						
For Sub-Frames 3,4,8,9	Bits	115200	86400	57600	28800	
For Sub-Frames 1,2,6,7		115200	86400	57600	28800	
For Sub-Frame 5	Bits	109440	80640	52992	25344	
For Sub-Frame 0	Bits	111936	83136	54336	25536	
Number of layers		2	2	2	2	
Max. Throughput averaged over 1 frame (Note 4)	Mbp s	89.656	68.205	44.816	22.475	
UE Categories		11-12	11-12	11-12	11-12	
UE DL Categories		≥ 11	≥ 11	≥ 11	≥ 11	

- Note 1: 1 symbol allocated to PDCCH for all tests.
- Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].
- Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).
- Note 4: Given per component carrier per codeword.
- Note 5: Resource blocks $n_{PRB} = 4..99$ are allocated for the user data in sub-frame 5, and resource blocks $n_{PRB} = 0..99$ in sub-frames 0,1,2,3,4,6,7,8,9.
- Note 6: Resource blocks nPRB = 4..74 are allocated for the user data in sub-frame 5, and resource blocks nPRB = 0..74 in sub-frames 0.1,2,3,4,6,7,8,9. Note 7: Resource blocks $n_{PRB} = 3..49$ are allocated for the user data in sub-frame 5, and resource blocks $n_{PRB} = 0..49$ in sub-frames 0.1,2,3,4,6,7,8,9.
- Note 8: Resource blocks $n_{PRB} = 2..24$ are allocated for the user data in sub-frame 5, and resource blocks $n_{PRB} = 0..24$ in sub-frames 0,1,2,3,4,6,7,8,9.

A.3.9.2 TDD

Table A.3.9.2-1: Fixed Reference Channel for sustained data-rate test (TDD 64QAM)

Parameter	Unit					Value				
Reference channel		R.31-1	R.31-2	R.31-3	R.31-	R.31-4	R.31-	R.31-5	R.31-	R.31-6
		TDD	TDD	TDD	3A	TDD	4A	TDD	5A	TDD
					TDD		TDD		TDD	
Channel bandwidth	MHz	10	10	20	15	20	20	15	15	10
Allocated resource blocks	1	Note 6	Note 7	Note 8	Note 9	Note 8	Note 8	Note	Note	Note 7
								11	11	
Uplink-Downlink		5	5	5	1	1	2	1	2	1
Configuration (Note 3)							_			
Number of HARQ Processes	Proce	15	15	15	7	7	10	7	10	7
per component carrier	sses				-					-
Allocated subframes per		8+1	8+1	8+1	4	4	6+2	4	6+2	4
Radio Frame (D+S)					-					
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM	64QAM	64QAM	64QAM
Target Coding Rate	1									
For Sub-Frames 4,9		0.40	0.59	0.59	0.87	0.88	0.88	0.85	0.85	0.85
For Sub-Frames 3,8		0.40	0.59	0.59	N/A	N/A	0.88	N/A	0.85	N/A
For Sub-Frame 7		0.40	0.59	0.59	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frames 0		0.40	0.62	0.61	0.90	0.90	0.90	0.88	0.88	0.90
For Sub-Frames 1		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frames 5		0.40	0.64	0.62	0.88	0.87	0.87	0.87	0.87	0.88
For Sub-Frames 6		0.40	0.60	0.60	N/A	N/A	N/A	N/A	N/A	N/A
Information Bit Payload		0.40	0.00	0.00	IN/A	IN/A	IN/A	IN/A	IN/A	IN/A
For Sub-Frames 4,9	Bits	10296	25456	51024	51024	75376	75376	55056	55056	36696
For Sub-Frames 3,8		10296	25456	51024			75376		55056	
For Sub-Frame 7	Bits Bits	10296	25456	51024	0	0	N/A	0	N/A	0
For Sub-Frame 0					51024					36696
	Bits	10296	25456	51024		75376	75376	55056	55056	
For Sub-Frame 1	Bits	0	0	0	0	0	0	0	0	0
For Sub-Frame 5	Bits	10296	25456	51024	51024	71112	71112	52752	52752	35160
For Sub-Frame 6	Bits	10296	25456	51024	0	0	0	0	0	0
Number of Code Blocks per										
Sub-Frame										
(Note 4)		0	_	0	0	40	40	0	0	
For Sub-Frames 4,9		2	5	9	9	13	13	9	9	6
For Sub-Frames 3,8		2	5	9	N/A	N/A	13	N/A	9	N/A
For Sub-Frame 7		2	5	9	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0		2	5	9	9	13	13	9	9	6
For Sub-Frame 1		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 5	D:	2	5	9	9	12	12	9	9	6
For Sub-Frame 6	Bits	2	5	9	n/a	N/A	N/A	N/A	N/A	N/A
Binary Channel Bits Per Sub-										
Frame										
For Sub-Frames 4,9	Bits	26100	43200	86400	58752	86400	86400	64800	64800	43200
For Sub-Frames 3,8	Bits	26100	43200	86400	0	0	86400	0	64800	0
For Sub-Frame 7	Bits	26100	43200	86400	0	0	86400	0	64800	0
For Sub-Frame 0	Bits	26100	41184	84384	56736	84384	84384	62784	62784	41184
For Sub-Frame 1	Bits	0	0	0	0	0	0	0	0	0
For Sub-Frame 5	Bits	26100	40176	82512	58320	82512	82512	60912	60912	40176
For Sub-Frame 6	Bits	26100	42768	85968	N/A	N/A	0	N/A	0	N/A
Number of layers		1	2	2	2	2	2	2	2	2
Max. Throughput averaged	Mbps	8.237	20.365	40.819	20.409	29.724	52.337	25.330	38.309	14.525
over 1 frame (Note 10)										
UE Category		≥ 1	≥ 2	≥ 2	≥ 2	≥ 3	≥ 3	≥ 3	≥ 3	≥ 2
Note 1: 1 symbol allocated to	PDCCH	for all test	s.	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: As per Table 4.2-2 in TS 36.211 [4].

Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Note 5: Resource blocks n_{PRB} = 0..2 are allocated for SIB transmissions in sub-frame 5 for all bandwidths.

Note 6: Resource blocks npre = 6..14,30..49 are allocated for the user data in all subframes.

Note 7: Resource blocks $n_{PRB} = 3..49$ are allocated for the user data in sub-frame 5, and resource blocks $n_{PRB} = 0..49$ in the available downlink sub-frames according to uplink downlink configurations used .

Note 8:	Resource blocks n _{PRB} = 499 are allocated for the user data in sub-frame 5, and resource blocks n _{PRB} = 099 in sub-
	frames 0.3.4.6.7.8.9

- Note 9: Resource blocks $n_{PRB} = 4..71$ are allocated for the user data in all sub-frames
- Note10: Given per component carrier per codeword.
- Note11: Resource blocks n_{PRB} = 4..74 are allocated for the user data in sub-frame 5, and resource blocks n_{PRB} = 0..74 in other downlink sub-frames.

Table A.3.9.2-2: Fixed Reference Channel for sustained data-rate test (TDD 256QAM)

Parameter	Unit	Value					
Reference channel	- Cinc	R.68	R.68-1	R.68-2	R.68-3	R.68-4	
		TDD	TDD	TDD	TDD	TDD	
Channel bandwidth	MHz	20	15	10	20	15	
Allocated resource blocks	PRB	Note 6	Note 7	Note 8	Note 6	Note 7	
Uplink-Downlink Configuration (Note 3)		1	1	1	[2]	[2]	
Number of HARQ Processes per	Proces	7	7	7	[10]	[10]	
component carrier	ses	•	,	,	[10]	[10]	
Allocated subframes per Radio Frame	333	4+2	4+2	4+2	[6+2]	[6+2]	
(D+S)					[0.7]	[0]	
Modulation		256QAM	256QAM	256QAM	256QAM	256QAM	
Target Coding Rate			2000	2000	2000	2000,	
For Sub-Frame 0		0.76	0.77	0.78	0.76	0.77	
For Sub-Frame 1		N/A	N/A	N/A	N/A	N/A	
For Sub-Frames 3		N/A	N/A	N/A	0.74	0.79	
For Sub-Frames 4		0.74	0.79	0.74	0.74	0.79	
For Sub-Frame 5		0.74	0.76	0.76	0.74	0.76	
For Sub-Frame 6		N/A	N/A	N/A	[N/A]	[N/A]	
For Sub-Frame 7		N/A	N/A	N/A	[N/A]	[N/A]	
For Sub-Frames 8		N/A	N/A	N/A	0.85	0.88	
For Sub-Frames 9		0.85	0.88	0.85	0.85	0.88	
Information Bit Payload		0.00	0.00	0.00	0.00	0.00	
For Sub-Frame 0	Bits	84760	63776	42368	84760	63776	
For Sub-Frame 1	Bits	0	0	0	0	0	
For Sub-Frames 3	Bits	N/A	N/A	N/A	84760	63776	
For Sub-Frames 4	Bits	84760	63776	42368	84760	63776	
For Sub-Frame 5	Bits	81176	61664	40576	81176	61664	
For Sub-Frame 6	Bits	0	0	0	[0]	[0]	
For Sub-Frame 7	Dita	N/A	N/A	N/A	[N/A]	[N/A]	
For Sub-Frames 8	Bits	N/A	N/A	N/A	97896	75376	
For Sub-Frames 9	Bits	97896	75376	48936	97896	75376	
Number of Code Blocks per Sub-Frame	Dito	37030	73370	+0330	37030	73370	
(Note 4)							
For Sub-Frame 0		14	11	7	14	11	
For Sub-Frame 1		N/A	N/A	N/A	N/A	N/A	
For Sub-Frames 3		N/A	N/A	N/A	14	11	
For Sub-Frames 4		14	11	7	14	11	
For Sub-Frame 5		14	11	7	14	11	
For Sub-Frame 6		N/A	N/A	N/A	[N/A]	[11]	
For Sub-Frame 7		N/A	N/A	N/A	[N/A]	[11]	
For Sub-Frames 8		N/A	N/A	N/A	16	13	
For Sub-Frames 9		16	13	8	16	13	
Binary Channel Bits Per Sub-Frame				Ü		.0	
For Sub-Frame 0	Bits	112512	83712	54912	112512	83712	
For Sub-Frame 1	Bits	0	0	0	0	0	
For Sub-Frames 3	Bits	N/A	N/A	N/A	115200	86400	
For Sub-Frames 4	Bits	115200	86400	57600	115200	86400	
For Sub-Frame 5	2.10	110016	81216	53568	110016	81216	
For Sub-Frame 6	Bits	0	0	0	[0]	[0]	
For Sub-Frame 7	2110	N/A	N/A	N/A	[N/A]	[N/A]	
For Sub-Frames 8	Bits	N/A	N/A	N/A	115200	86400	
For Sub-Frames 9	Bits	115200	86400	57600	115200	86400	
Number of layers	Dito	2	2	2	2	2	
Max. Throughput averaged over 1 frame	Mbps	34.859	26.459	17.425	[53.125]	[40.374]	
(Note 5)	Minho	01.000	20.400	17.420	[00.120]	[10.074]	
UE Categories		11-12	11-12	11-12	11-12	11-12	
UE DL Categories		≥ 11	≥ 11	≥ 11	≥ 11	≥11	
Note 1: 1 symbol allocated to PDCCH for	r all tests						

Note 1: 1 symbol allocated to PDCCH for all tests.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: As per Table 4.2-2 in TS 36.211 [4].

Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Note 5: Given per component carrier per codeword.

Note 6: Resource blocks $n_{PRB} = 4..99$ are allocated for the user data in sub-frame 5, and resource blocks $n_{PRB} = 0..99$ in other

downlink sub-frames.

Note 7: Resource blocks $n_{PRB} = 4..74$ are allocated for the user data in sub-frame 5, and resource blocks $n_{PRB} = 0..74$ in other

downlink sub-frames.

Note 8: Resource blocks nprb = 3..49 are allocated for the user data in sub-frame 5, and resource blocks nprb = 0..49 in the

available downlink sub-frames according to uplink downlink configurations used.

A.3.9.3 FDD (EPDCCH scheduling)

Table A.3.9.3-1: Fixed Reference Channel for sustained data-rate test with EPDCCH scheduling (FDD)

Parameter	Unit				Value			
Reference channel		R.31E-	R.31E-	R.31E-	R.31E-	R.31E-	R.31E-	R.31E-
		1 FDD	2 FDD	3 FDD	3A FDD	3C FDD	4 FDD	4B FDD
Channel bandwidth	MHz	10	10	20	10	15	20	15
Allocated resource blocks (Note 8)		Note 5	Note 6	Note 7	Note 6	Note 9	Note 7	Note 10
Allocated subframes per Radio		10	10	10	10	10	10	10
Frame								
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM	64QAM
Coding Rate								
(subframes with PDCCH USS								
monitoring)								
For Sub-Frame 1,2,3,4,6,7,8,9,		0.3972	0.5926	0.5933	0.8533	0.8725	0.8763	0.8533
For Sub-Frame 5		0.3972	0.6441	0.6246	0.8889	0.8855	0.8702	0.8762
For Sub-Frame 0		0.3972	0.6282	0.6106	0.9046	0.9105	0.9018	0.8868
Coding Rate								ļ
(subframes with EPDCCH USS								
monitoring)								
For Sub-Frame 1,2,3,4,6,7,8,9,		0.4114	0.6047	0.5993	0.8707	0.8855	0.8851	0.8649
For Sub-Frame 5		0.4114	0.6584	0.6312	0.9086	0.8990	0.8794	0.8889
For Sub-Frame 0		0.4114	0.6418	0.6170	0.9242	0.9246	0.9112	0.8993
Information Bit Payload (Note 8)								
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	10296	25456	51024	36696	51024	75376	55056
For Sub-Frame 5	Bits	10296	25456	51024	35160	51024	71112	52752
For Sub-Frame 0	Bits	10296	25456	51024	36696	51024	75376	55056
Number of Code Blocks								
(Notes 3 and 8)								
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	2	5	9	6	9	13	9
For Sub-Frame 5	Bits	2	5	9	6	9	12	9
For Sub-Frame 0	Bits	2	5	9	6	9	13	9
Binary Channel Bits (Note 8)								
(subframes with PDCCH USS								
monitoring)	- D:	00400	40000	00400	10000		00400	0.4000
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	26100	43200	86400	43200	58752	86400	64800
For Sub-Frame 5	Bits	26100	39744	82080	39744	57888	82080	60480
For Sub-Frame 0	Bits	26100	40752	83952	40752	56304	83952	62352
Binary Channel Bits (Note 8)								
(subframes with EPDCCH USS								
monitoring)	D:+-	05000	40000	05500	40000	F7000	05500	00000
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	25200	42336	85536	42336	57888	85536	63936
For Sub-Frame 5	Bits	25200	38880	81216	38880	57024	81216	59616
For Sub-Frame 0	Bits	25200	39888	83088	39888	55440	83088	61488
Number of layers	N Alexandra	1 10.000	2	2	2	2	2	2
Max. Throughput averaged over 1 frame (Note 8)	Mbps	10.296	25.456	51.024	36.542	51.024	74.950	54.826
UE Categories	00117	≥ 1	≥ 2	≥2	≥ 2	≥ 3	≥ 3	≥ 4

Note 1: 1 symbol allocated to PDCCH for all tests.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211.

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Note 4: Resource blocks n_{PRB} = 0..2 are allocated for SIB transmissions in sub-frame 5 for all bandwidths.

Note 5: Resource blocks n_{PRB} = 6..14,30..49 are allocated for the user data in all sub-frames.

Note 6: Resource blocks n_{PRB} = 3..49 are allocated for the user data in sub-frame 5, and resource blocks n_{PRB} = 0..49 in sub-frames 0,1,2,3,4,6,7,8,9.

Note 7: Resource blocks n_{PRB} = 4..99 are allocated for the user data in sub-frame 5, and resource blocks n_{PRB} = 0..99 in sub-frames 0,1,2,3,4,6,7,8,9.

Note 8: Given per component carrier per codeword.

Note 9: Resource blocks nprB = 4..71 are allocated for the user data in sub-frames 0,1,2,3,4,5,6,7,8,9.

Note 10: Resource blocks $n_{PRB} = 4..74$ are allocated for the user data in sub-frame 5, and resource blocks $n_{PRB} = 4..74$

0..74 in sub-frames 0,1,2,3,4,6,7,8,9.

A.3.9.4 TDD (EPDCCH scheduling)

Table A.3.9.4-1: Fixed Reference Channel for sustained data-rate with EPDCCH scheduling (TDD)

Parameter	Unit			Value		
Reference channel		R.31E-1	R.31E-2	R.31E-3	R.31E-3A	R.31E-4
		TDD	TDD	TDD	TDD	TDD
Channel bandwidth	MHz	10	10	20	15	20
Allocated resource blocks		Note 6	Note 7	Note 8	Note 9	Note 8
Uplink-Downlink Configuration (Note		5	5	5	1	1
3)				_		
Number of HARQ Processes per	Processes	15	15	15	7	7
component carrier						
Allocated subframes per Radio		8+1	8+1	8+1	4	4
Frame (D+S)						
Coding Rate						
(subframes with PDCCH USS						
monitoring)						
For Sub-Frames 4,9		0.3972	0.5926	0.5933	0.8725	0.8763
For Sub-Frames 3,7,8		0.3972	0.5926	0.5933	N/A	N/A
For Sub-Frames 1		N/A	N/A	N/A	N/A	N/A
For Sub-Frames 5		0.3972	0.6372	0.6213	0.8790	0.8656
For Sub-Frames 6		0.3972	0.5986	0.5963	N/A	N/A
For Sub-Frames 0		0.3972	0.6216	0.6075	0.9036	0.8972
Coding Rate						
(subframes with EPDCCH USS						
monitoring)						
For Sub-Frames 4,9		0.4114	0.6047	0.5993	0.8856	0.8851
For Sub-Frames 3,7,8		0.4114	0.6047	0.5993	N/A	N/A
For Sub-Frames 1		N/A	N/A	N/A	N/A	N/A
For Sub-Frames 5		0.4114	0.6512	0.6279	0.8922	0.8748
For Sub-Frames 6		0.4114	0.6109	0.6024	N/A	N/A
For Sub-Frames 0		0.4114	0.6349	0.6138	0.9175	0.9065
Information Bit Payload						
For Sub-Frames 4,9	Bits	10296	25456	51024	51024	75376
For Sub-Frames 3,7,8	Bits	10296	25456	51024	N/A	N/A
For Sub-Frame 1	Bits	0	0	0	N/A	N/A
For Sub-Frame 5	Bits	10296	25456	51024	51024	71112
For Sub-Frame 6	Bits	10296	25456	51024	N/A	N/A
For Sub-Frame 0	Bits	10296	25456	51024	51024	75376
Number of Code Blocks per Sub-						
Frame (Note 4)						
For Sub-Frames 4,9		2	5	9	9	13
For Sub-Frames 3,7,8		2	5	9	N/A	N/A
For Sub-Frame 1		N/A	N/A	N/A	N/A	N/A
For Sub-Frame 5		2	5	9	9	12
For Sub-Frame 6	Bits	2	5	9	N/A	N/A
For Sub-Frame 0		2	5	9	9	13
Binary Channel Bits per Sub-Frame						
(subframes with PDCCH USS						
monitoring)		00/22	10555	00:00	505- 5	00:00
For Sub-Frames 4,9	Bits	26100	43200	86400	58752	86400
For Sub-Frames 3,7,8	Bits	26100	43200	86400	N/A	N/A
For Sub-Frame 1	Bits	0	0	0	N/A	N/A
For Sub-Frame 5	Bits	26100	40176	82512	58320	82512
For Sub-Frame 6	Bits	26100	42768	85968	N/A	N/A
For Sub-Frame 0	Bits	26100	41184	84384	56736	84384
Binary Channel Bits per Sub-Frame						
(subframes with EPDCCH USS						

monitoring)						
For Sub-Frames 4,9	Bits	25200	42336	85536	57888	85536
For Sub-Frames 3,7,8	Bits	25200	42336	85536	N/A	N/A
For Sub-Frame 1	Bits	0	0	0	N/A	N/A
For Sub-Frame 5	Bits	25200	39312	81648	57456	81648
For Sub-Frame 6	Bits	25200	41904	85104	N/A	N/A
For Sub-Frame 0	Bits	25200	40320	83520	55872	83520
Number of layers		1	2	2	2	2
Max. Throughput averaged over 1	Mbps	8.237	20.365	40.819	20.409	29.724
frame (Note 10)						
UE Category		≥ 1	≥ 2	≥ 2	≥ 2	≥ 3

- Note 1: 1 symbol allocated to PDCCH for all tests.
- Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].
- Note 3: As per Table 4.2-2 in TS 36.211 [4].
- Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).
- Note 5: Resource blocks n_{PRB} = 0..2 are allocated for SIB transmissions in sub-frame 5 for all bandwidths.
- Note 6: Resource blocks n_{PRB} = 6..14,30..49 are allocated for the user data in all subframes.
- Note 7: Resource blocks n_{PRB} = 3..49 are allocated for the user data in sub-frame 5, and resource blocks n_{PRB} = 0..49 in sub-frames 0,3,4,6,7,8,9.
- Note 8: Resource blocks $n_{PRB} = 4..99$ are allocated for the user data in sub-frame 5, and resource blocks $n_{PRB} = 0..99$ in sub-frames 0,3,4,6,7,8,9.
- Note 9: Resource blocks $n_{PRB} = 4..71$ are allocated for the user data in all sub-frames
- Note10: Given per component carrier per codeword.

A.3.10 Reference Measurement Channels for EPDCCH performance requirements

A.3.10.1 FDD

Table A.3.10.1-1: Reference Channel FDD

Parameter	Unit			Val	ue		
Reference channel		R.55 FDD	R.56 FDD	R.57 FDD	R.58 FDD	R.59 FDD	
Number of transmitter antennas		2	2	2	2	2	
Channel bandwidth	MHz	10	10	10	10	10	
Number of OFDM symbols for PDCCH	symbols	2	2	1	1	1	
Aggregation level	ECCE	4	16	2	8	2	
DCI Format		2A	2A	2C	2C	2D	

A.3.10.2 TDD

Table A.3.10.2-1: Reference Channel TDD

Parameter	Unit	Unit Value						
Reference channel		R.55 TDD	R.56 TDD	R.57 TDD	R.58 TDD	R.59 TDD		
Number of transmitter antennas		2	2	2	2	2		
Channel bandwidth	MHz	10	10	10	10	10		
Number of OFDM symbols for PDCCH	symbols	2	2	1	1	1		
Aggregation level	CCE	4	16	2	8	2		
DCI Format		2A	2A	2C	2C	2D		

A.4 CSI reference measurement channels

This section defines the DL signal applicable to the reporting of channel status information (Clause 9.2, 9.3 and 9.5).

In Table A.4-1 are specified the reference channels. Table A.4-13 specifies the mapping of CQI index to modulation coding scheme, which complies with the CQI definition specified in Section 7.2.3 of [6].

Table A.4-0: Void

Table A.4-1: CSI reference measurement channels

RMC Name	Duplex	CH-BW	Alloc. RB-s	UL/DL Config	Alloc. SF-s	MCS Scheme	Nr. HARQ Proc.	Max. nr HARQ Trans.	Notes
1 CRS Por	t								
RC.1 FDD	FDD	10	50	-		MCS.1	8	1	
RC.1A FDD	FDD	10	50			MCS.1A	8	1	
RC.1 TDD	TDD	10	50	Note 3		MCS.1	10	1	
RC.1A TDD	TDD	20	100	Note 3		MCS.1B	10	1	
RC.3 FDD	FDD	10	6	-		MCS.10	8	1	
RC.3 TDD	TDD	10	6	Note 3		MCS.10	10 or 7 (Note 9)	1	
RC.4 FDD	FDD	10	15	-		MCS.15	8	1	Note 6
RC.4 TDD	TDD	10	15	Note 3		MCS.15	10	1	Note 6
RC.5 FDD	FDD	10	3	-		MCS.17	8	1	
RC.5 TDD	TDD	10	3	Note 3		MCS.17	10	1	
RC.14 FDD	FDD	5	25	-		MCS.14	8	1	
RC.15 FDD	FDD	5	15	-		MCS.15	8	1	Note 6
RC.16 FDD	FDD/HD- FDD	10	2			MCS.20	8	1	Note 8,10
RC.16 TDD	TDD	10	2	Note 3		MCS.20	10	1	Note 8
2 CRS Por	ts								
RC.2 FDD	FDD	10	50	-		MCS.2	8	1	
RC.2 TDD	TDD	10	50	Note 3		MCS.2	10 or 7 (Note 9)	1	
RC.6 FDD	FDD	10	15	-		MCS.16	8	1	Note 6
RC.6 TDD	TDD	10	15	Note 3		MCS.16	7	1	Note 6
4 CRS Por	ts								
RC.17 FDD	FDD	10	50	-		MCS.18	8	1	
RC.17 TDD	TDD	10	50	Note 3		MCS.18	7	1	
1 CRS Por	t + CSI-RS								
RC.8 FDD	FDD	10	6	-	Non CSI-RS	MCS.11	8	1	
					2 CSI- RS	MCS.12			
RC.8A FDD	FDD	10	6	_	Non CSI-RS	MCS.11A	8	1	
FDD					2 CSI- RS	MCS.12A			
RC.8 TDD	TDD	10	6	Note 3	Non CSI-RS	MCS.11	10	1	
			_		2 CSI- RS	MCS.12			
RC.8A	TDD	20	8	Note 3	Non CSI-RS	MCS.11B	10	1	
TDD					2 CSI- RS	MCS.12B			
RC.9 FDD	FDD	10	50	_	Non CSI-RS	MCS.3	8	1	
	. 55	10			2 CSI- RS	MCS.4		,	
RC.9 TDD	TDD	10	50	Note 3	Non CSI-RS	MCS.3	7	1	
1.0.0 100	155	10		14010 0	2 CSI- RS	MCS.4		'	
2 CRS Por	t + CSI-RS								

DC 7 EDD	FDD	40	50		Non CSI-RS	MCS.5	8	4	
RC.7 FDD	FDD	10	50	-	4 CSI- RS	MCS.7	0	1	
RC.7 TDD	TDD	10	50	Note 3	Non CSI-RS	MCS.5	10	1	
RC.7 IDD	100	10	50	Note 3	8 CSI- RS	MCS.8	10	ļ ļ	
RC.11	FDD	10	50		Non CSI-RS	MCS.5	8	1	
FDD	FDD	10	50	-	2 CSI- RS	MCS.6	0	ı	
RC.11	TDD	10	50	Note 3	Non CSI-RS	MCS.5	10	1	
TDD	100	10	30	Note 3	2 CSI- RS	MCS.6	10	ı	
RC.18	FDD	10	6	_	Non CSI-RS	MCS.13	8	1	
FDD	FDD	10	0	-	4 CSI- RS	MCS.19	0	ı	
RC.18	TDD	10	6	Note 3	Non CSI-RS	MCS.13	7	1	
TDD	100	10	0	Note 5	4 CSI- RS	MCS.19	,	ı	
RC.17 TDD	TDD	10	6	Note 3	4 ZP- CSI-RS	MCS.21	10	1	
RC.18 TDD	TDD	10	6	Note 3	4 ZP- CSI-RS	MCS.22	10	1	
RC.19 TDD	TDD	10	41	Note3	4 ZP- CSI-RS	MCS.23	10	1	Note 11
					Non CSI-RS	MCS.24			
RC.20 TDD	TDD	10	50	Note3	2 CSI- RS,	MCS.25	10	1	
					4 ZP- CSI-RS	1000.23			
1 CRS Por	t + CSI-RS	+ CSI-IM							
RC.13 FDD	FDD	10	50	-	Non CSI- RS/IM	MCS.3	8	1	
100					CSI- RS/IM	N/A			
RC.13	TDD	10	50	Note 3	Non CSI- RS/IM	MCS.3	10	1	
TDD					CSI- RS/IM	N/A			
2 CRS Por	t + CSI-RS	+ CSI-IM							
					Non CSI-RS	MCS.5			
RC.10 FDD	FDD	10	50	-	4 CSI- RS,	MCC o	8	1	
					1 CSI process	MCS.8			
					Non CSI-RS	MCS.5			
RC.10 TDD	TDD	10	50	Note 3	8 CSI- RS,	MCCO	10	1	
					1 CSI process	MCS.9			
DO 40					Non CSI-	MCS.13			
RC.12 FDD	FDD	10	6	-	RS/IM CSI-		8	1	
					RS/IM	N/A			
					Non				
RC.12	TDD	10	6	Note 3	Non CSI- RS/IM	MCS.13	10	1	
RC.12 TDD	TDD	10	6	Note 3	CSI-	MCS.13	10	1	

Note 1: 3 symbols allocated to PDCCH.

Note 2: For FDD only subframes 1, 2, 3, 4, 6, 7, 8 and 9 are allocated to avoid PBCH and synchronization signal overhead.

Note 3: TDD UL-DL configuration as specified in the individual tests.

- Note 4: For TDD when UL-DL configuration 1 is used only subframes 4 and 9 are allocated to avoide PBCH and synchronizaiton signal overhead.
- Note 5: For TDD when UL-DL configuration 2 is used only subframes 3, 4, 8, and 9 are allocated to avoid PBCH and synchronization signal overhead.
- Note 6: Centered within the Transmission Bandwidth Configuration (Figure 5.6-1).
- Note 7: Only subframes 2, 3, 4, 7, 8 and 9 are allocated to avoid PBCH and synchronization signal overhead.
- Note 8: Allocate PDSCH on 5th and 6th PRBs within a subband.
- Note 9: The number of HARQ processes is 10 for TDD UL/DL configuration 2 and 7 for TDD UL/DL configuration 1.
- Note 10: The downlink subframes are scheduled at the 1st, 2nd, 8th, 9th, 16th, 17th, 18th, 24th, 26th, 32nd, 33rd, 34th subframes every 40ms. Information bit payload is available if downlink subframe is scheduled.(starting from 0th subframe)
- Note 11: 41 resource blocks (RB0-RB20 and RB30-RB49) are allocated in subframe 0 and 5 in RC.19 TDD.

Table		44.	1	1_	:
Ianie	• •	4-12	a- \	m	ın

Table A.4-1b: Void

Table A.4-1c: Void

Table A.4-1d: Void

Table A.4-1e: Void

Table A.4-2: Void

Table A.4-2a: Void

Table A.4-2b: Void

Table A.4-2c: Void

Table A.4-2d: Void

Table A.4-2e: Void

Table A.4-3: Void

Table A.4-3a: Void

Table A.4-3b: Void

Table A.4-3c: Void

Table A.4-3d: Void

Table A.4-3e: Void

Table A.4-3f: Void

Table A.4-3g: Void

Table A.4-3h: Void

Table A.4-3i: Void

Table A.4-3j: Void

Table A.4-3k: Void

Table A.4-3I: Void

Table A.4-3m: Void

Table A.4-4: Void

Table A.4-4a: Void

Table A.4-4b: Void

Table A.4-5: Void

Table A.4-5a: Void

Table A.4-5b: Void

Table A.4-6: Void

Table A.4-6a: Void

Table A.4-6b: Void

Table A.4-6c: Void

Table A.4-6d: Void

Table A.4-6e: Void

Table A.4-6f: Void

Table A.4-7: Void

Table A.4-8: Void

Table A.4-9: Void

Table A.4-10: Void

Table A.4-11: Void

Table A.4-12: Void

Table A.4-13: Mapping of CQI Index to Modulation coding scheme (MCS)

CQI	Index		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
Target C	oding R	Rate	00R	0.0762	0.1172	0.1885	0.3008	0.4385	0.5879	0.3691	0.4785	0.6016	0.4551	0.5537	0.6504	0.7539	0.8525	0.9258	Notes
Mode	ulation		OOR		<u>l</u>	QP	SK	i i			16QAM				640)AM			
MCS Scheme	PRB	Available RE-s									Imcs								
MCS.1	50	6300	DTX	0	0	2	4	6	8	11	13	16	18	21	23	25	27	27	
MCS.2	50	6000	DTX	0	0	2	4	6	8	11	13	15	18	20	22	24	26	27	
MCS.3	50	5700	DTX	0	0	2	4	6	8	10	13	15	17	19	21	23	25	26	
MCS.4	50	5600	DTX	0	0	2	4	6	7	10	12	14	17	19	21	23	25	26	
MCS.5	50	5400	DTX	0	0	2	3	5	7	10	12	14	17	19	21	23	24	25	
MCS.6	50	5300	DTX	0	0	1	3	5	7	10	12	14	17	19	21	22	24	25	
MCS.7	50	5200	DTX	0	0	1	3	5	7	10	12	14	17	18	20	22	24	25	
MCS.8	50	5000	DTX	0	0	1	3	5	7	10	12	13	17	18	20	22	23	24	
MCS.9	50	4800	DTX	0	0	1	3	5	7	10	12	13	17	18	20	22	23	24	
MCS.10	6	756	DTX	0	0	2	4	6	8	11	13	16	19	21	23	25	27	27	
MCS.11	6	684	DTX	0	0	2	4	6	8	11	13	14	17	20	21	23	25	27	
MCS.12	6	672	DTX	0	0	1	4	6	8	10	12	14	17	19	21	23	25	26	
MCS.13	6	648	DTX	0	0	1	3	5	7	10	12	14	17	19	21	22	24	25	
MCS.14	25	3150	DTX	0	0	2	4	6	8	11	13	16	18	21	23	25	27	27	
MCS.15	15	1890	DTX	0	0	2	4	6	8	11	13	16	18	21	23	25	27	27	
MCS.16	15	1800	DTX	0	0	2	4	6	8	11	13	15	18	20	22	24	26	27	
MCS.17	3	378	DTX	0	1	2	5	7	9	12	13	16	19	21	23	25	27	27	
MCS.18	50	5800	DTX	0	0	2	4	6	8	11	13	15	17	20	22	23	26	27	
MCS.19	6	624	DTX	0	0	1	3	5	7	10	12	14	17	18	20	22	24	25	
MCS.20	2	252	DTX	0	0	2	4	6	8	11	13	16	19	21	23	23	23	23	
MCS.21	6	696	DTX	0	0	2	4	6	8	11	13	15	18	20	21	24	25	27	

3GPP TS 36.101 version 12.22.0 Release 12

ETS696 136 101 V12.22.0 (2019-05)

MCS.22	6	624	DTX	0	0	1	3	5	7	10	12	14	15	19	20	22	24	24	
MCS.23	41	4264	DTX	0	0	1	3	5	7	10	12	14	15	18	20	22	24	24	
MCS.24	50	5400	DTX	0	0	2	3	5	7	10	12	14	15	19	21	23	24	25	
MCS.25	50	5100	DTX	0	0	1	3	5	7	8	12	13	15	18	20	22	23	24	

Note 1: Mapping between Imcs and TBS according to Tables 7.1.7.1-1 and 7.1.7.2.1-1 in TS 36.213 [6].

Note 2: 3 symbols allocated to PDCCH.

Note 3: Sub-frame#0 and #5 are not used for the corresponding requirement except for [MCS.23]. The next subframe (i.e. sub-frame#1 or #6) shall be used for potential retransmissions.

Table A.4-14: Mapping of CQI Index to Modulation coding scheme (Modulation and TBS index Table 2 and 4-bit CQI Table 2 are used)

С	QI Inde	x	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
Target Sp	ectral E	Efficiency	OOR	0.1523	0.3770	0.8770	1.4766	1.9141	2.4063	2.7305	3.3223	3.9023	4.5234	5.1152	7.		6.9141	7.4063	Notes
MCS Scheme	PRB	Available RE-s								Imcs	i								
MCS.1A	50	6300	DTX	0	1	3	5	7	10	11	14	16	18	20	22	24	26	26	
MCS.1B	100	12600	DTX	0	1	3	5	7	10	11	14	15	18	20	22	24	26	26	

Note 1: Mapping between Imcs and CQI Index according to Tables 7.1.7.1-1A, 7.1.7.2.1-1 and 7.2.3-2 in TS 36.213 [6].

Note 2: 3 symbols allocated to PDCCH.

Note 3: Sub-frame#0 and #5 are not used for the corresponding requirement. The next subframe (i.e. sub-frame#1 or #6) shall be used for potential retransmissions.

Table A.4-15: Mapping of CQI Index to Modulation coding scheme (Modulation and TBS index Table 2 and 4-bit CQI Table 2 are used)

С	QI Inde	x	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
Target Sp	ectral E	Efficiency	OOR	0.1523	0.3770	0.8770	1.4766	1.9141	2.4063	2.7305	3.3223	3.9023	4.5234	5.1152	5.5547	6.2266	6.9141	7.4063	Notes
MCS Scheme	PRB	Available RE-s		1					•	Imcs	;								
MCS.11A	6	684	DTX	0	1	3	5	7	8	10	13	14	16	18	20	22	24	25	
MCS.12A	6	672	DTX	0	1	3	5	6	8	10	12	14	16	18	20	22	24	25	
MCS.11B	8	912	DTX	0	1	3	5	7	9	10	13	14	16	18	19	22	24	26	
MCS.12B	8	896	DTX	0	1	3	5	6	8	10	12	14	16	18	19	22	24	25	

Note 1: Mapping between Imcs and CQI Index according to Tables 7.1.7.1-1A, 7.1.7.2.1-1 and 7.2.3-2 in TS 36.213 [6].

Note 2: 3 symbols allocated to PDCCH.

Note 3: Sub-frame#0 and #5 are not used for the corresponding requirement. The next subframe (i.e. sub-frame#1 or #6) shall be used for potential retransmissions.

A.5 OFDMA Channel Noise Generator (OCNG)

A.5.1 OCNG Patterns for FDD

The following OCNG patterns are used for modelling allocations to virtual UEs (which are not under test) and/or allocations used for MBSFN. The OCNG pattern for each sub frame specifies the allocations that shall be filled with OCNG, and furthermore, the relative power level of each such allocation.

In each test case the OCNG is expressed by parameters OCNG_RA and OCNG_RB which together with a relative power level (γ) specifies the PDSCH EPRE-to-RS EPRE ratios in OFDM symbols with and without reference symbols, respectively. The relative power, which is used for modelling boosting per virtual UE allocation, is expressed by:

$$\gamma_i = PDSCH_i RA / OCNG RA = PDSCH_i RB / OCNG RB$$

where γ_i denotes the relative power level of the *i:th* virtual UE. The parameter settings of OCNG_RA, OCNG_RB, and the set of relative power levels γ are chosen such that when also taking allocations to the UE under test into account, as given by a PDSCH reference channel, a constant transmitted power spectral density that is constant on an OFDM symbol basis is targeted.

Moreover the OCNG pattern is accompanied by a PCFICH/PDCCH/PHICH reference channel which specifies the control region. For any aggregation and PHICH allocation, the PDCCH and any unused PHICH groups are padded with resource element groups with a power level given respectively by PDCCH_RA/RB and PHICH_RA/RB as specified in the test case such that a total power spectral density in the control region that is constant on an OFDM symbol basis is targeted.

For the performance requirements of UE with the CA capability, the OCNG patterns apply for each CC.

A.5.1.1 OCNG FDD pattern 1: One sided dynamic OCNG FDD pattern

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the DL sub-frames, when the unallocated area is continuous in frequency domain (one sided).

Table A.5.1.1-1: OP.1 FDD: One sided dynamic OCNG FDD Pattern Relative power level $\gamma_{\it PRB}$ [dB]

Relative power level γ_{PRB} [d	B]	
Subframe		
5	1 – 4, 6 – 9	PDSCH
Allocation		Data
First unallocated PRB	First unallocated PRB	
Last unallocated PRB	Last unallocated PRB	
0	0	Note 1
	Subframe 5 Allocation	5 1 - 4, 6 - 9 Allocation First unallocated PRB First unallocated PRB Last unallocated PRB Last unallocated PRB

- Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. The parameter γ_{PRB} is used to scale the power of PDSCH.
- Note 2: If two or more transmit antennas with CRS are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas with CRS according to transmission mode 2. The parameter γ_{PRB} applies to each antenna port separately, so the transmit power is equal between all the transmit antennas with CRS used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.

A.5.1.2 OCNG FDD pattern 2: Two sided dynamic OCNG FDD pattern

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the DL sub-frames, when the unallocated area is discontinuous in frequency domain (divided in two parts by the allocated area – two sided), starts with PRB 0 and ends with PRB $N_{_{\it PR}}-1$.

Table A.5.1.2-1: OP.2 FDD: Two sided dynamic OCNG FDD Pattern

F	Relative power level $\gamma_{\it PRB}$ [dE	3]	
	Subframe		
0	5	1 – 4, 6 – 9	
	Allocation		PDSCH Data
0 – (First allocated PRB-1)	0 – (First allocated PRB-1)	0 – (First allocated PRB-1)	1 20011 2414
and	and	and	
(Last allocated PRB+1) –	(Last allocated PRB+1) –	(Last allocated PRB+1) –	
$(N_{RB}-1)$	$(N_{RB}-1)$	$(N_{RB}-1)$	
0	0	0	Note 1

Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. The parameter γ_{PRB} is used to scale the power of PDSCH.

Note 2: If two or more transmit antennas with CRS are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas with CRS according to transmission mode 2. The parameter γ_{PRB} applies to each antenna port separately, so the transmit power is equal between all the transmit antennas with CRS used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.

A.5.1.3 OCNG FDD pattern 3: 49 RB OCNG allocation with MBSFN in 10 MHz

Table A.5.1.3-1: OP.3 FDD: OCNG FDD Pattern 3

Allerand	Re	lative power	level $\gamma_{{\scriptscriptstyle PRB}}$ [d	B]		
Allocation		Subfi	rame		PDSCH Data	PMCH Data
$n_{\it PRB}$	0	5	4, 9	1 – 3, 6 – 8	Dutu	Dutu
1 – 49	0	0 (Allocation: all empty PRB-s)	0	N/A	Note 1	N/A
0 – 49	N/A	N/A	N/A	0	N/A	Note 2

Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. The parameter γ_{PRB} is used to scale the power of PDSCH.

Note 2: Each physical resource block (PRB) is assigned to MBSFN transmission. The data in each PRB shall be uncorrelated with data in other PRBs over the period of any measurement. The MBSFN data shall be QPSK modulated. PMCH subframes shall contain cell-specific Reference Signals only in the first symbol of the first time slot. The parameter γ_{PRB} is used to scale the power of PMCH.

Note 3: If two or more transmit antennas are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas according to transmission mode 2. The transmit power shall be equally split between all the transmit antennas used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.

N/A: Not Applicable

A.5.1.4 OCNG FDD pattern 4: One sided dynamic OCNG FDD pattern for MBMS transmission

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the DL sub-frames, when the unallocated area is continuous in frequency domain (one sided) and MBMS performance is tested.

Table A.5.1.4-1: OP.4 FDD: One sided dynamic OCNG FDD Pattern for MBMS transmission

	Re	lative power	evel $\gamma_{\it PRB}$ [dB]		
Allocation		Subfi	rame	PDSCH Data	PMCH Data
$n_{\it PRB}$	0, 4, 9	5	1 – 3, 6 – 8	Dutu	Dutu
First unallocated PRB Last unallocated PRB	0	0 (Allocation: all empty PRB-s)	N/A	Note 1	N/A
First unallocated PRB Last unallocated PRB	N/A	N/A	N/A	N/A	Note 2
•	•		ssigned to an arbitrary numb		
uncorre	lated pseudo ra	ındom data, wl	nich is QPSK modulated. The	e paramete	er $\gamma_{{\scriptscriptstyle PRB}}$ is
Note 2: Each pl each Pl measur	RB shall be unc ement. The MB	block (PRB) i orrelated with SFN data shal	s assigned to MBSFN transn data in other PRBs over the I be QPSK modulated. PMCI Is only in the first symbol of the	period of a	ny es shall

parameter γ_{PRB} is used to scale the power of PMCH.

Note 3: If two or more transmit antennas are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas according to transmission mode 2. The transmit power shall be equally split between all the transmit antennas used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.

N/A: Not Applicable

A.5.1.5 OCNG FDD pattern 5: One sided dynamic 16QAM modulated OCNG FDD pattern

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of DL sub-frames, when the unallocated area is continuous in the frequency domain (one sided).

Table A.5.1.5-1: OP.5 FDD: One sided dynamic 16QAM modulated OCNG FDD Pattern

		Relative power level $\gamma_{\it PRB}$ [dl	3]						
		Subframe							
	0	5	1 – 4, 6 – 9	PDSCH					
		Allocation		Data					
First	unallocated PRB	First unallocated PRB	First unallocated PRB						
Last (unallocated PRB	Last unallocated PRB	Last unallocated PRB						
	0	0	0	Note 1					
Note 1:			arbitrary number of virtual UEs wit PDSCHs shall be uncorrelated ps						
	data, which is 16QA	AM modulated. The parameter γ	$_{PRB}$ is used to scale the power of ${ m F}$	PDSCH.					
Note 2:			I in the test, the OCNG shall be tra RS according to transmission mod						
	Delay CDD). The parameter γ_{PRB} applies to each antenna port separately, so the transmit power is								

A.5.1.6 OCNG FDD pattern 6: dynamic OCNG FDD pattern when user data is in 2 non-contiguous blocks

equal between all the transmit antennas with CRS used in the test. The antenna transmission

modes are specified in section 7.1 in 3GPP TS 36.213.

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the DL sub-frames, when the unallocated area is discontinuous in frequency domain (divided in two parts by the first allocated block). The second allocated block ends with PRB $N_{RB}-1$.

Table A.5.1.6-1: OP.6 FDD: OCNG FDD Pattern when user data is in 2 non-contiguous blocks

	Relative power level $\gamma_{\scriptscriptstyle PRB}$ [dB]				
	Subframe				
0	5	1 – 4, 6 – 9			
	Allocation				
0 – (First allocated PRB of	0 – (First allocated PRB of	0 – (First allocated PRB of	PDSCH Data		
first block -1)	first block -1)	first block -1)			
and	and	and			
(Last allocated PRB of first	(Last allocated PRB of first	(Last allocated PRB of first			
block +1) – (First allocated	block +1) – (First allocated	block +1) - (First allocated			
PRB of second block -1)	PRB of second block -1)	PRB of second block -1)			
0	0	0	Note 1		
Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK					
modulated. The parameter $\gamma_{\it PRB}$ is used to scale the power of PDSCH.					
Note 2: If two or more tran	nsmit antennas with CRS are us	ed in the test, the OCNG shall b	pe transmitted to the virtual		

A.5.1.7 OCNG FDD pattern 7: dynamic OCNG FDD pattern when user data is in multiple non-contiguous blocks

used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.

users by all the transmit antennas with CRS according to transmission mode 2. The parameter γ_{PRB} applies to each antenna port separately, so the transmit power is equal between all the transmit antennas with CRS

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data, EPDCCH or system information) of the DL sub-frames, when the unallocated area is discontinuous in frequency domain (divided in

multiple parts by the M allocated blocks for data transmission). The m-th allocated block starts with RPB $N_{Start,m}$ and ends with PRB $N_{End,m}-1$, where m=1,...,M. The system bandwidth starts with RPB 0 and ends with $N_{RB}-1$.

Table A.5.1.7-1: OP.7 FDD: OCNG FDD Pattern when user data is in multiple non-contiguous blocks

F			
	Subframe		
0	5	1 – 4, 6 – 9	
	Allocation		
0 – (PRB N _{Start,1} –1)	0 – (PRB <i>N</i> _{Start,1} –1)	0 – (PRB <i>N</i> _{Start,1} –1)	
$(PRB N_{End,(m-1)}) - (PRB$	$(PRBN_{End,(m-1)}) - (PRB$	$(PRBN_{End,(m-1)}) - (PRB$	PDSCH Data
$N_{Start,m}-1)$	$N_{Start,m}-1$)	$N_{Start,m}-1)$	
 (PRB N _{End,M}) – (PRB	(PRB N _{End,M}) – (PRB	(PRB N _{End,M}) – (PRB	
$N_{RB}-1$)	$N_{RB}-1$)	$N_{RB}-1$)	
0	0	0	Note 1

Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. The parameter γ_{PRB} is used to scale the power of PDSCH.

Note 2: If two or more transmit antennas with CRS are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas with CRS according to transmission mode 2. The parameter γ_{PRB} applies to each antenna port separately, so the transmit power is equal between all the transmit antennas with CRS used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.

A.5.1.8 OCNG FDD pattern 8: Dynamic OCNG FDD pattern for TM10 transmission

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the DL sub-frames, when the unallocated area is discontinuous in frequency domain where there are M unallocated PRB blocks labled from 1-st block to M-th block (M>1) and the m-th block starts with PRB $N_{Start.m}$ and end with PRB $N_{End.m}$, or

when the unallocated area is continuous in frequency domain where M=1 (one sided). The system bandwidth starts with RPB 0 and ends with N_{RB} -1. $N_{End,M}$ should be equal to or less than N_{RB} -1.

Note 1,2,3

			1	
Relative power level $\gamma_{\it PRB}$ [dB]				
Subframe				
0	5	1 – 4, 6 – 9		
	Allocation			
1-st unallocated PRB (PRB $N_{Start,1} \sim \text{PRB } N_{End,1}$) m -th unallocated PRB (PRB $N_{Start,m} \sim \text{PRB } N_{End,m}$) M -th unallocated PRB (PRB $N_{Start,M} \sim \text{PRB } N_{Start,M} \sim \text{PRB } N_{End,M}$)	1-st unallocated PRB $(PRBN_{Start,1} \sim PRBN_{End,1})$ $m\text{-th unallocated PRB} \\ (PRBN_{Start,m} \sim \\ \\ PRBN_{End,m})$ $m\text{-th unallocated PRB} \\ (PRBN_{Start,M} \sim \\ \\ (PRBN_{Start,M} \sim \\ \\ PRBN_{End,M})$	1-st unallocated PRB $(PRB N_{Start,1} \sim PRB N_{End,1})$ m -th unallocated PRB $(PRB N_{Start,m} \sim PRB N_{End,m})$ M -th unallocated PRB $(PRB N_{Start,M} \sim PRB N_{End,M})$	PDSCH Data	

Table A.5.1.8-1: OP.8 FDD: Dynamic OCNG FDD Pattern

- Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is 16QAM modulated. The parameter γ_{PRB} is used to scale the power of PDSCH.
- Note 2: The OCNG shall be transmitted to the virtual users by all the transmit antennas according to transmission mode10. The the transmit power is equal between all the transmit antennas used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.
- Note 3: The detailed test set-up for TM10 transmission i.e PMI configuration is specified to each test case.

A.5.2 OCNG Patterns for TDD

The following OCNG patterns are used for modelling allocations to virtual UEs (which are not under test). The OCNG pattern for each sub frame specifies the allocations that shall be filled with OCNG, and furthermore, the relative power level of each such allocation.

In each test case the OCNG is expressed by parameters OCNG_RA and OCNG_RB which together with a relative power level (γ) specifies the PDSCH EPRE-to-RS EPRE ratios in OFDM symbols with and without reference symbols, respectively. The relative power, which is used for modelling boosting per virtual UE allocation, is expressed by:

$$\gamma_i = PDSCH_i _RA / OCNG _RA = PDSCH_i _RB / OCNG _RB$$
,

where γ_i denotes the relative power level of the *i:th* virtual UE. The parameter settings of OCNG_RA, OCNG_RB, and the set of relative power levels γ are chosen such that when also taking allocations to the UE under test into account, as given by a PDSCH reference channel, a transmitted power spectral density that is constant on an OFDM symbol basis is targeted.

Moreover the OCNG pattern is accompanied by a PCFICH/PDCCH/PHICH reference channel which specifies the control region. For any aggregation and PHICH allocation, the PDCCH and any unused PHICH groups are padded with resource element groups with a power level given respectively by PDCCH_RA/RB and PHICH_RA/RB as specified in the test case such that a total power spectral density in the control region that is constant on an OFDM symbol basis is targeted.

A.5.2.1 OCNG TDD pattern 1: One sided dynamic OCNG TDD pattern

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the subframes available for DL transmission (depending on TDD UL/DL configuration), when the unallocated area is continuous in frequency domain (one sided).

Table A.5.2.1-1: OP.1 TDD: One sided dynamic OCNG TDD Pattern

Relative power level $\gamma_{\scriptscriptstyle PRB}$ [dB]			
Subframe (only if available for DL)			
5	3, 4, 7, 8, 9 and 6 (as normal subframe) ^{Note 2}	1 and 6 (as special subframe) ^{Note 2}	PDSCH Data
Allo	cation		
First unallocated PRB	First unallocated PRB	First unallocated PRB	
– Last unallocated PRB	– Last unallocated PRB	Last unallocated PRB	
0	0	0	Note 1
	Subframe (only in the second of the second o	Subframe (only if available for DL) 3, 4, 7, 8, 9 and 6 (as normal subframe) Note 2 Allocation First unallocated PRB Last unallocated PRB Last unallocated PRB	Subframe (only if available for DL) 3, 4, 7, 8, 9 and 6 (as normal subframe) Note 2 Allocation First unallocated PRB First unallocated PRB Last unallocated PRB

- Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. The parameter γ_{PRB} is used to scale the power of PDSCH.
- Note 2: Subframes available for DL transmission depends on the Uplink-Downlink configuration in Table 4.2-2 in 3GPP TS 36.211
- Note 3: If two or more transmit antennas with CRS are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas with CRS according to transmission mode 2. The parameter γ_{PRB} applies to each antenna port separately, so the transmit power is equal between all the transmit antennas with CRS used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.

A.5.2.2 OCNG TDD pattern 2: Two sided dynamic OCNG TDD pattern

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the subframes available for DL transmission (depending on TDD UL/DL configuration), when the unallocated area is discontinuous in frequency domain (divided in two parts by the allocated area – two sided), starts with PRB 0 and ends with PRB $N_{\rm RB}$ –1.

Table A.5.2.2-1: OP.2 TDD: Two sided dynamic OCNG TDD Pattern

Relative power level $\gamma_{\it PRB}$ [dB]				PDSCH Data
	Subframe (only it	f available for DL)		Zata
0	5	3, 4, 6, 7, 8, 9	1,6	
		(6 as normal subframe) Note 2	(6 as special subframe) Note 2	
	Alloc	ation		
0 –	0 –	0 –	0 –	
(First allocated PRB-1)	(First allocated PRB-1)	(First allocated PRB-1)	(First allocated PRB-1)	
and	and	and	and	
(Last allocated PRB+1) -	(Last allocated PRB+1) –	(Last allocated PRB+1) –	(Last allocated PRB+1) –	
$(N_{RB}-1)$	$(N_{RB}-1)$	$(N_{RB}-1)$	$(N_{RB}-1)$	
0	0	0	0	Note 1

- Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. The parameter γ_{PRB} is used to scale the power of PDSCH.
- Note 2: Subframes available for DL transmission depends on the Uplink-Downlink configuration in Table 4.2-2 in 3GPP TS 36.211
- Note 3: If two or more transmit antennas with CRS are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas with CRS according to transmission mode 2. The parameter γ_{PRB} applies to each antenna port separately, so the transmit power is equal between all the transmit antennas with CRS used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.

A.5.2.3 OCNG TDD pattern 3: 49 RB OCNG allocation with MBSFN in 10 MHz

Table A.5.2.3-1: OP.3 TDD: OCNG TDD Pattern 3 for 5ms downlink-to-uplink switch-point periodicity

		Relative power	level $\gamma_{\it PRB}$ [dB]			
Allocation		Subf	rame		PDSCH Data	PMCH Data
n_{PRB}	0	5	4, 9 ^{Note 2}	1, 6		
1 – 49	0	0 (Allocation: all empty PRB-s)	N/A	0	Note 1	N/A
0 – 49	N/A	N/A	0	N/A	N/A	Note 3

- Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. The parameter γ_{PRB} is used to scale the power of PDSCH.
- Note 2: Subframes available for DL transmission depends on the Uplink-Downlink configuration in Table 4.2-2 in 3GPP TS 36.211.
- Note 3: Each physical resource block (PRB) is assigned to MBSFN transmission. The data in each PRB shall be uncorrelated with data in other PRBs over the period of any measurement. The MBSFN data shall be QPSK modulated. PMCH symbols shall not contain cell-specific Reference Signals.
- Note 4: If two or more transmit antennas are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas according to transmission mode 2. The transmit power shall be equally split between all the transmit antennas used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.
- N/A Not Applicable

A.5.2.4 OCNG TDD pattern 4: One sided dynamic OCNG TDD pattern for MBMS transmission

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the DL sub-frames, when the unallocated area is continuous in frequency domain (one sided) and MBMS performance is tested.

Table A.5.2.4-1: OP.4 TDD: One sided dynamic OCNG TDD Pattern for MBMS transmission

		Relative power	level γ_{PRB} [dB]			
Allocation		Subframe (only for DL)			PDSCH Data	PMCH Data
$n_{\it PRB}$	0 and 6 (as normal subframe)	1 (as special subframe)	5	3, 4, 7 – 9	1 DOON Data	1 mort bata

First unallocate d PRB - Last unallocate d PRB	0	0 (Allocation: all empty PRB-s of DwPTS)	0 (Allocation: all empty PRB-s)	N/A	Note 1	N/A
First unallocate d PRB Last unallocate d PRB	N/A	N/A	N/A	N/A	N/A	Note2

- Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. The parameter γ_{PRB} is used to scale the power of PDSCH.
- Note 2: Each physical resource block (PRB) is assigned to MBSFN transmission. The data in each PRB shall be uncorrelated with data in other PRBs over the period of any measurement. The MBSFN data shall be QPSK modulated. PMCH symbols shall not contain cell-specific Reference Signals.
- Note 3: If two or more transmit antennas are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas according to transmission mode 2. The transmit power shall be equally split between all the transmit antennas used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.
- N/A Not Applicable

A.5.2.5 OCNG TDD pattern 5: One sided dynamic 16QAM modulated OCNG TDD pattern

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the sub-frames available for DL transmission (depending on TDD UL/DL configuration), when the unallocated area is continuous in frequency domain (one sided).

Table A.5.2.5-1: OP.5 TDD: One sided dynamic 16QAM modulated OCNG TDD Pattern

Relative power level γ_{PRB} [dB]				
Subframe (only if available for DL)				
0	5	3, 4, 7, 8, 9 and 6 (as normal subframe) ^{Note 2}	1 and 6 (as special subframe) ^{Note 2}	PDSCH Data
	Allo	cation		
First unallocated PRB	First unallocated PRB	First unallocated PRB	First unallocated PRB	
_	_	_	_	
Last unallocated PRB	Last unallocated PRB	Last unallocated PRB	Last unallocated PRB	
0	0	0	0	Note 1

- Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is 16QAM modulated. The parameter γ_{PRB} is used to scale the power of PDSCH.
- Note 2: Subframes available for DL transmission depends on the Uplink-Downlink configuration in Table 4.2-2 in 3GPP TS 36.211
- Note 3: If two or more transmit antennas with CRS are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas with CRS according to transmission mode 3 (Large Delay CDD). The parameter γ_{PRB} applies to each antenna port separately, so the transmit power is equal between all the transmit antennas with CRS used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.

A.5.2.6 OCNG TDD pattern 6: dynamic OCNG TDD pattern when user data is in 2 non-contiguous blocks

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the subframes available for DL transmission (depending on TDD UL/DL configuration), when the unallocated area is discontinuous in frequency domain (divided in two parts by the first allocated block). The second allocated block ends with PRB $N_{RB} - 1$.

Table A.5.2.6-1: OP.6 TDD: OCNG TDD Pattern when user data is in 2 non-contiguous blocks

Relative power level γ_{PRB} [dB]				PDSCH Data
Subframe (only if available for DL)				Dala
0	5	3, 4, 6, 7, 8, 9	1,6	
		(6 as normal subframe)	(6 as special subframe) Note 2	
	Alloc	ation		
0 - (First allocated PRB	0 – (First allocated PRB	0 – (First allocated PRB	0 – (First allocated PRB	
of first block -1)	of first block -1)	of first block -1)	of first block -1)	
and	and	and	and	
(Last allocated PRB of	(Last allocated PRB of	(Last allocated PRB of	(Last allocated PRB of	
first block +1) – (First	first block +1) – (First	first block +1) – (First	first block +1) – (First	
allocated PRB of second	allocated PRB of second	allocated PRB of second	allocated PRB of second	
block -1)	block -1)	block -1)	block -1)	
0	0	0	0	Note 1
 				

- Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. The parameter γ_{PRB} is used to scale the power of PDSCH.
- Note 2: Subframes available for DL transmission depends on the Uplink-Downlink configuration in Table 4.2-2 in 3GPP TS 36.211
- Note 3: If two or more transmit antennas with CRS are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas with CRS according to transmission mode 2. The parameter γ_{PRB} applies to each antenna port separately, so the transmit power is equal between all the transmit antennas with CRS used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.

A.5.2.7 OCNG TDD pattern 7: dynamic OCNG TDD pattern when user data is in multiple non-contiguous blocks

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data, EPDCCH or system information) of the DL sub-frames, when the unallocated area is discontinuous in frequency domain (divided in multiple parts by the M allocated blocks for data transmission). The m-th allocated block starts with RPB $N_{Start,m}$ and ends with PRB $N_{End,m}-1$, where m=1,...,M. The system bandwidth starts with RPB 0 and ends with $N_{RB}-1$.

Table A.5.2.7-1: OP.7 TDD: OCNG TDD Pattern when user data is in multiple non-contiguous blocks

Relative power level $\gamma_{{\scriptscriptstyle PRB}}$ [dB]				PDSCH Data
Subframe (only if available for DL)				
0	5	3, 4, 6, 7, 8, 9	1,6	
		(6 as normal subframe)	(6 as special subframe) Note 2	
	Alloc	ation		
$0 - (PRB N_{Start,1} - 1)$	$0 - (PRB N_{Start,1} - 1)$	$0 - (PRB N_{Start,1} - 1)$	$0 - (PRB N_{Start,1} - 1)$	
$(PRB N_{End,(m-1)}) -$	$(PRB N_{End,(m-1)}) -$	$(PRB N_{End,(m-1)}) -$	$(PRB N_{End,(m-1)}) -$	
(PRB $N_{Start,m} - 1$)	(PRB $N_{Start,m} - 1$)	(PRB $N_{Start,m} - 1$)	(PRB $N_{Start,m} - 1$)	
$(PRB N_{End,M}) - (PRB$	$(PRB N_{End,M}) - (PRB$	$(PRB N_{End,M}) - (PRB$	$(PRB N_{End,M}) - (PRB$	

$N_{RB}-1$)	$N_{RB}-1$)	$N_{RB}-1$)	$N_{RB}-1$)	
0	0	0	0	Note 1

- Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. The parameter γ_{PRB} is used to scale the power of PDSCH.
- Note 2: Subframes available for DL transmission depends on the Uplink-Downlink configuration in Table 4.2-2 in 3GPP TS 36 211
- Note 3: If two or more transmit antennas with CRS are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas with CRS according to transmission mode 2. The parameter γ_{PRB} applies to each antenna port separately, so the transmit power is equal between all the transmit antennas with CRS used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.

A.5.2.8 OCNG TDD pattern 8: Dynamic OCNG TDD pattern for TM10 transmission

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the DL sub-frames, when the unallocated area is discontinuous in frequency domain where there are M unallocated PRB blocks labled from 1-st block to M-th block (M>1) and the m-th block starts with PRB $N_{Start,m}$ and end with PRB $N_{End,m}$, or when the unallocated area is continuous in frequency domain where M=1 (one sided). The system bandwidth starts with RPB 0 and ends with N_{RB} –1. $N_{End,M}$ should be equal to or less than N_{RB} –1.

Table A.5.2.8-1: OP.8 TDD: Dynamic OCNG TDD Pattern

	Relative power level $\gamma_{{\scriptscriptstyle PRB}}$ [d	В]	
	Subframe		
0	5	1 – 4, 6 – 9	
	Allocation		
1-st unallocated PRB (PRB $N_{Start,1} \sim \text{PRB } N_{End,1}$) m -th unallocated PRB (PRB $N_{Start,m} \sim$ PRB $N_{End,m}$) M -th unallocated PRB (PRB $N_{Start,M} \sim$ PRB $N_{End,M}$)	1-st unallocated PRB $(PRBN_{Start,1} \sim PRBN_{End,1})$ $m\text{-th unallocated PRB} \\ (PRBN_{Start,m} \sim \\ \\ PRBN_{End,m})$ $m\text{-th unallocated PRB} \\ (PRBN_{Start,M} \sim \\ \\ (PRBN_{Start,M} \sim \\ \\ PRBN_{End,M})$	1-st unallocated PRB $(PRB N_{Start,1} \sim PRB N_{End,1})$ m -th unallocated PRB $(PRB N_{Start,m} \sim PRB N_{End,m})$ M -th unallocated PRB $(PRB N_{Start,M} \sim PRB N_{Start,M} \sim PRB N_{End,M})$	PDSCH Data
0	0	0	Note 1,2,3

- Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is 16QAM modulated. The parameter γ_{PRB} is used to scale the power of PDSCH.
- Note 2: The OCNG shall be transmitted to the virtual users by all the transmit antennas according to transmission mode10. The the transmit power is equal between all the transmit antennas used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.
- Note 3: The detailed test set-up for TM10 transmission i.e PMI configuration is specified to each test case.

A.6 Sidelink reference measurement channels

A.6.1 General

The algorithm for determining the payload size A is as follows; given a desired coding rate R and radio block allocation N_{RR}

- 1. Calculate the number of channel bits N_{ch} that can be transmitted during the first transmission of a given subframe.
- 2. Find A such that the resulting coding rate is as close to R as possible, that is,

$$\min |R - (A + 24 * (N_{CB} + 1)) / N_{ch}|, where N_{CB} = \begin{cases} 0, & \text{if } C = 1 \\ C, & \text{if } C > 1 \end{cases}$$

subject to

- a) A is a valid TB size according to section 7.1.7 of TS 36.213 [6] assuming an allocation of N_{RB} resource blocks.
- b) C is the number of Code Blocks calculated according to section 5.1.2 of TS 36.212 [5].
- 3. If there is more than one *A* that minimizes the equation above, then the larger value is chosen per default and the chosen code rate should not exceed 0.93.

A.6.1.1 Overview of ProSe reference measurement channels

In Table A.6.1.1-1 are listed the ProSe reference measurement channels specified in annexes A.6.2 to A.6.6 of this release of TS 36.101. This table is informative and serves only to a better overview. The reference for the concrete reference measurement channels and corresponding implementation's parameters as to be used for requirements are annexes A.6.2 to A.6.6 as appropriate.

Table A.6.1.1-1: Overview of ProSe reference measurement channels

Table	Name	BW	Mod	RB	UE Categ	Notes
Table A.6.2-1	-	5	QPSK	2	≥ 1	
Table A.6.2-1	-	10	QPSK	2	≥ 1	
Table A.6.2-1	-	15	QPSK	2	≥ 1	
Table A.6.2-1	-	20	QPSK	2	≥ 1	
Table A.6.2-2	-	5	QPSK	25	≥ 1	
Table A.6.2-2	-	10	QPSK	50	≥ 1	
Table A.6.2-3	-	5	16QAM	25	2-8	
Table A.6.2-3	-	10	16QAM	50	2-8	
Table A.6.2-4	-	5	16QAM	25	1	
Table A.6.2-4	-	10	16QAM	50	1	
Table A.6.3-1	D.1 FDD / D.1 TDD	5	QPSK	2	≥ 1	
Table A.6.3-1	D.1 FDD / D.1 TDD	10	QPSK	2	≥ 1	
Table A.6.3-1	D.1 FDD / D.1 TDD	15	QPSK	2	≥ 1	
Table A.6.3-1	D.1 FDD / D.1 TDD	20	QPSK	2	≥ 1	
Table A.6.4-1	CC.1 FDD	5	QPSK	1	-	
Table A.6.4-1	CC.2 FDD	10	QPSK	1	-	
Table A.6.4-1	CC.3 FDD	5	QPSK	1	-	
Table A.6.4-1	CC.4 FDD	10	QPSK	1	=	
Table A.6.4-1	CC.5 FDD	5	QPSK	1	-	
Table A.6.4-1	CC.6 FDD	10	QPSK	1	-	
Table A.6.5-1	CD.1 FDD	5/10	QPSK	10	-	
Table A.6.5-1	CD.2 FDD	5/10	16QAM	10	-	
Table A.6.5-1	CD.3 FDD	5	16QAM	25	=	
Table A.6.5-1	CD.4 FDD	10	16QAM	50	=	
Table A.6.5-1	CD.5 FDD	5/10	QPSK	2	=	
Table A.6.5-2	CD.6 FDD	5	16QAM	25	-	
Table A.6.5-2	CD.7 FDD	10	16QAM	50	=	
Table A.6.6-1	CP.1 FDD	5/10	QPSK	6	=	

A.6.2 Reference measurement channel for receiver characteristics

For ProSe Direct Discovery, Table A.6.2-1 is applicable for measurements on the Receiver Characteristics (clause 7) including the requirements of subclause 7.4D (Maximum input level).

For ProSe Direct Communication, Table A.6.2-2 is applicable for measurements on the Receiver Characteristics (clause 7) with the exception of subclause 7.4D (Maximum input level). Tables A.6.2-3, A.6.2-4, are applicable for subclause 7.4D (Maximum input level).

Table A.6.2-1: Fixed Reference measurement channel for ProSe Direct Discovery receiver requirements and maximum input level

Unit	Value					
MHz	1.4	3	5	10	15	20
			2	2	2	2
			12	12	12	12
			1	1	1	1
			11	11	11	11
			QPSK	QPSK	QPSK	QPSK
			232	232	232	232
Bits			24	24	24	24
			1	1	1	1
Bits			528	528	528	528
kbps			0.725	0.725	0.725	0.725
			≥ 1	≥ 1	≥ 1	≥ 1
	MHz Bits	MHz 1.4 Bits Bits	MHz 1.4 3 Bits Bits	MHz 1.4 3 5 2 12 12 11 11 QPSK 232 Bits 24 1 Bits 528 kbps 0.725	MHz 1.4 3 5 10 2 2 112 12 1 1 1 1 1 1 QPSK QPSK 232 232 Bits 24 24 1 1 1 Bits 528 528 kbps 0.725 0.725	MHz 1.4 3 5 10 15 2 2 2 2 2 12 12 12 12 1 1 1 1 11 11 11 11 11 11 11 11 1232 232 232 232 232 232 232 232 24 24 24 24 1 1 1 1 Bits 528 528 528 kbps 0.725 0.725 0.725

NOTE1: PSDCH transmissions are rate-matched for 12 DFT-OFDM symbols per subframe, and the last symbol shall be punctured as per TS 36.211.

NOTE2: Throughput is 232 bits per Discovey period. The discovery period is configured as 320ms in the test.

Table A.6.2-2: Fixed Reference measurement channel for ProSe Direct Communication receiver requirements

Parameter	Unit			Va	lue		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks				25	50		
Subcarriers per resource block				12	12		
Packets per SA period				1	1		
Modulation				QPSK	QPSK		
Transport Block Size				2216	4392		
Transport block CRC	Bits			24	24		
Maximum number of HARQ transmissions				4	4		
Binary Channel Bits	Bits			7200	14400		
Max. Throughput averaged over 1 SA period	kbps			55.4	109.8		
of 40ms							
UE Category	•			≥ 1	≥ 1		

NOTE 1: For PSSCH transmission, the last symbol shall be punctured as per TS 36.211.

NOTE 2: Throughput (in kbps) will depend on SA period configuration

Table A.6.2-3: Fixed Reference measurement channel for ProSe Direct Communication for maximum input power for UE categories 2-8

Parameter	Unit	Value					
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks				25	50		
Subcarriers per resource block				12	12		
Packets per SA period				1	1		
Modulation				16QAM	16QAM		
Transport Block Size				9912	18336		
Transport block CRC	Bits			24	24		
Maximum number of HARQ				4	4		
transmissions							
Binary Channel Bits	Bits			14400	28800		
Max. Throughput averaged over 1 SA period of 40ms	kbps			247.8	458.4		

NOTE 1: For PSSCH transmission, the last symbol shall be punctured as per TS 36.211.

NOTE 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

NOTE 3: Throughput (in kbps) will depend on SA period configuration

Table A.6.2-4: Fixed Reference measurement channel for ProSe Direct Communication for maximum input power for UE category 1

Parameter	Unit	Value					
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks				25	24		
Subcarriers per resource block				12	12		
Packets per SA period				1	1		
Modulation				16QAM	16QAM		
Transport Block Size				9912	10296		
Transport block CRC	Bits			24	24		
Maximum number of HARQ transmissions				4	4		
Binary Channel Bits	Bits			14400	13824		
Max. Throughput averaged over 1 SA period of 40ms	kbps			247.8	257.4		

NOTE 1: For PSSCH transmission, the last symbol shall be punctured as per TS 36.211.

NOTE 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

NOTE 3: Throughput (in kbps) will depend on SA period configuration

A.6.3 Reference measurement channels for PSDCH performance requirements Table A.6.3-1: Fixed Reference measurement channel for PSDCH performance requirement

Parameter	Unit	Value					
Reference channel).1 FDD /	D.1 TDD)	
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks				2	2	2	2
Subcarriers per resource block				12	12	12	12
DFT-OFDM Symbols per subframe (NOTE 1)				11	11	11	11
Modulation				QPSK	QPSK	QPSK	QPSK
Transport Block Size				232	232	232	232
Transport block CRC	Bits			24	24	24	24
Binary Channel Bits (NOTE 1)	Bits			528	528	528	528
Max. Throughput averaged over 1 Discovery	kbps			0.725	0.725	0.725	0.725
period of 320ms							
UE Category				≥ 1	≥ 1	≥ 1	≥1

NOTE1: PSDCH transmissions are rate-matched for 12 DFT-OFDM symbols per subframe, and the last symbol shall be punctured as per TS 36.211.

A.6.4 Reference measurement channels for PSCCH performance requirements

Table A.6.4-1: Fixed reference measurement channel for PSCCH performance requirement

	Parameter	Unit			Val	ue		
Reference ch	annel		CC.1 FDD	CC.2 FDD	CC.3 FDD	CC.4 FDD	CC.5 FDD	CC.6 FDD
Channel band	dwidth	MHz	5	10	5	10	5	10
Allocated res	ource blocks		1 1 1 1 1 1 1					
Subcarriers p	er resource block		12	12	12	12	12	12
DFT-OFDM S	Symbols per subframe		11	11	11	11	11	11
Modulation	/		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Transport Blo	ock Size	Bits	41	43	41	43	41	43
•	Frequency hopping flag		0	0	1	1	1	1
	RB assignment		5	Set as per PS	SSCH RB all	ocation spec	ific in the tes	t
					1	(1,1)	0	(1,0)
	Hopping bits		N/A	N/A	Type 2	Type 2	Type 1	Type 1
Information					Hopping	Hopping	Hopping	Hopping
bits	Time resource pattern (ITRP)			8 (unles	ss specified o NOT)		the test)	
	Modulation and coding scheme			Set as the	PSSCH MC	S specified	in the test	
	Timing advance indication			0 (unles	ss specified o	therwise in t	the test)	
	Group destination ID				As set by hi	gher layers		
Transport blo	ck CRC	Bits	16	16	16	16	16	16
Maximum nu	mber of HARQ transmissions		2 2 2 2 2					
Binary Chann	nel Bits (see NOTE 1,2)	Bits	264 264 264 264 264 264					
Max. Through period (bits/s	nput averaged over one sc- c-period)		41	43	41	43	41	43

NOTE 1: PSCCH transmissions are rate-matched for 12 DFT-OFDM symbols per subframe, and the last symbol shall be punctured as per TS 36.211.

NOTE 2: Binary channel bits per HARQ transmission.

NOTE 3: For $N_{TRP} = 8$ (FDD) and trpt-Subset = 010, $I_{TRP} = 8$ corresponds to a time repetition pattern of (1,1,0,0,0,0,0,0) as per TS 36.213.

A.6.5 Reference measurement channels for PSSCH performance requirements

Table A.6.5-1: Fixed reference measurement channel for PSSCH performance requirement

Parameter	Unit			Value		
Reference channel		CD.1 FDD	CD.2 FDD	CD.3 FDD	CD.4 FDD	CD.5 FDD
Channel bandwidth	MHz	5 / 10	5 / 10	5	10	5 / 10
Allocated resource blocks		10	10	25	50	2
Subcarriers per resource block		12	12	12	12	12
DFT-OFDM Symbols per subframe (see NOTE 1)		11	11	11	11	11
Modulation		QPSK	16QAM	16QAM	16QAM	QPSK
Transport Block Size		872	2536	6456	12960	328
Transport block CRC	Bits	24	24	24	24	24
Maximum number of HARQ transmissions		4	4	4	4	4
Binary Channel Bits (see NOTE 1,2)	Bits	2640	5280	13200	26400	528
Max. Throughput averaged over one sc-period (bits/sc-period)		872	2536	6456	12960	328

NOTE 1: PSSCH transmissions are rate-matched for 12 DFT-OFDM symbols per subframe, and the last symbol shall be punctured as per TS 36.211.

NOTE 2: Binary channel bits per HARQ transmission.

NOTE 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Table A.6.5-2: Fixed reference measurement channel for PSSCH for maximum Sidelink processes test

Parameter	Unit	Value			
Reference channel		CD.6 FDD	CD.7 FDD		
Channel bandwidth	MHz	5	10		
Allocated resource blocks		25	50		
Subcarriers per resource block		12	12		
DFT-OFDM Symbols per subframe (see NOTE 1)		11	11		
Modulation		16QAM	16QAM		
Transport Block Size		15840	25456		
Transport block CRC	Bits	24	24		
Maximum number of HARQ transmissions		4	4		
Binary Channel Bits (see NOTE 1,2)	Bits	13200	26400		
Max. Throughput averaged over one sc-period (bits/sc-period)		15840	25456		

NOTE 1: PSSCH transmissions are rate-matched for 12 DFT-OFDM symbols per subframe, and the last symbol shall be punctured as per TS 36.211.

NOTE 2: Binary channel bits per HARQ transmission.

NOTE 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

A.6.6 Reference measurement channels for PSBCH performance requirements

Table A.6.6-1: Fixed reference measurement channel for PSBCH performance requirement

Unit	Value
	CP.1 FDD
MHz	5 / 10
	6
	12
	7
	1
	QPSK
	40
Bits	16
	1
Bits	1008
kbps	1
	MHz Bits

NOTE 1: PSBCH transmissions are rate-matched for 8 DFT-OFDM symbols per subframe, and the last symbol shall be punctured as per TS 36.211.

NOTE 2: Binary channel bits per HARQ transmission.

A.7 Sidelink reference resource pool configurations

A.7.1 Reference resource pool configurations for ProSe Direct Discovery demodulation tests

A.7.1.1 FDD

Table A.7.1.1-1: ProSe Direct Discovery configuration for E-UTRA FDD (Configuration #1-FDD)

I	nformation Element		Value
discRxPool	cp-Len		Normal
	discPeriod		rf32
	numRetx		0
	numRepetition		1
	tf-ResourceConfig	prb-Num	12
		prb-Start	0
		prb-End	23
		offsetIndicator	160
		subframeBitmap	10000000
			00000000
			00000000
			00000000
			00000000
	txParameters		not present
	rxParameters		not present
discTxPoolCommon			not present
discTxPowerInfo			not present
SL-SyncConfig			not present
discInterFreqList			not present

Table A.7.1.1-2: ProSe Direct Discovery configuration for E-UTRA FDD (Configuration #2-FDD)

	nformation Element		Value
discRxPool(0)	cp-Len		Normal
	discPeriod		rf32
	numRetx		0
	numRepetition		1
	tf-ResourceConfig	prb-Num	12
		prb-Start	0
		prb-End	23
		offsetIndicator	150
		subframeBitmap	10000000
			00000000
			00000000
			00000000
			00000000
	txParameters		not present
	rxParameters		not present
discRxPool(1)	cp-Len		Normal
	discPeriod		rf32
	numRetx		0
	numRepetition		1
	tf-ResourceConfig	prb-Num	12
		prb-Start	0
		prb-End	23
		offsetIndicator	170
		subframeBitmap	10000000
			00000000
			00000000
			00000000
			00000000
	txParameters		not present
	rxParameters	tdd-Config	not present
		syncConfigIndex	0
discTxPoolCommon			not present
discTxPowerInfo			not present
SL-SyncConfig(0)	syncCP-Len		Normal
	syncOffsetIndicator		0 (160 mod
			40)
	slssid		30
	txParameters		not present
	rxParamsNCell	physCellId	1
		discSyncWindow	w1
discInterFreqList			not present

Table A.7.1.1-3: ProSe Direct Discovery configuration for E-UTRA FDD (Configuration #3-FDD)

I	nformation Element		Value
discRxPool(iPool), iPool = 0NPool-1	cp-Len		Normal
	discPeriod		rf32
	numRetx		3
	numRepetition		=2 if NPool > 10,
	·		=1 otherwise
	tf-ResourceConfig	prb-Num	5MHz: min{24, 2N-24*iPool} / 2
			10MHz: 25
			15MHz: min{74, 2N-74*iPool} / 2
			20MHz: 50
		prb-Start	0
		prb-End	5 MHz: min{24, 2N-24*iPool} - 1
			10 MHz: 49
			15 MHz: min{74, 2N-74*iPool} - 1
			20 MHz: 99
		offsetIndicator	160
		subframeBitmap	a(0), a(1),, a(39), s.t.
			a(i * NPool + iPool) = 1, i = 0,,K;
			a(k) = 0 otherwise
			where
			K = 1 is NPool > 10, $K = 3$ otherwise
	txParameters		not present
	rxParameters		not present
discTxPoolCommon			not present
discTxPowerInfo			not present
SL-SyncConfig			not present
discInterFreqList			not present

NOTE 1: The resource pool configuration description is parameterized using channel BW, number of configured resource pools (NPool), and maximum number of configured Sidelink UEs to be supported (N).

A.7.1.2 TDD

Table A.7.1.2-1: ProSe Direct Discovery configuration for E-UTRA TDD Config 0 (Configuration #1-TDD)

l	nformation Element		Value
discRxPool	cp-Len		Normal
	discPeriod		rf32
	numRetx		0
	numRepetition		1
	tf-ResourceConfig	prb-Num	12
		prb-Start	0
		prb-End	23
		offsetIndicator	163
		subframeBitmap	10000000
			00000000
			00000000
			00000000
			00000000
			00
	txParameters		not present
	rxParameters		not present
discTxPoolCommon			not present
discTxPowerInfo			not present
SL-SyncConfig			not present
discInterFreqList			not present

Table A.7.1.2-2: ProSe Direct Discovery configuration for E-UTRA TDD (Configuration #2-TDD)

l	nformation Element		Value
discRxPool(iPool), iPool = 0NPool-1	cp-Len		Normal
	discPeriod		rf32
	numRetx		3
	numRepetition		=2 if NPool > 10,
			=1 otherwise
	tf-ResourceConfig	prb-Num	5MHz: min{24, 2N-24*iPool} / 2
			10MHz: 25
			15MHz: min{74, 2N-74*iPool} / 2
			20MHz: 50
		prb-Start	0
		prb-End	5 MHz: min{24, 2N-24*iPool} - 1
			10 MHz: 49
			15 MHz: min{74, 2N-74*iPool} - 1
			20 MHz: 99
		offsetIndicator	163
		subframeBitmap	a(0), a(1),, a(39), s.t.
			a(i * NPool + iPool) = 1, i = 0,,K;
			a(k) = 0 otherwise
			where
			K = 1 is NPool > 10, $K = 3$ otherwise
	txParameters		not present
	rxParameters		not present
discTxPoolCommon			not present
discTxPowerInfo			not present
SL-SyncConfig			not present
discInterFreqList			not present

NOTE 1: The resource pool configuration description is parameterized using channel BWs, number of configured resource pools (NPool), and maximum number of configured Sidelink UE to be supported (N).

A.7.2 Reference resource pool configurations for ProSe Direct Communication demodulation tests

A.7.2.1 FDD

Table A.7.2.1-1: ProSe Direct Communication pre-configuration for E-UTRAN FDD for out-of-network coverage operation (Configuration #1-FDD)

Info	ormation Element / (BW config	juration)		Value (5MHz)	Value (10MHz)
preconfigSync	syncCP-Len-r12			No	rmal
	syncOffsetIndicator1				1
	syncOffsetIndicator2				2
	syncTxParameters			2	23
	-				0
	syncTxThreshOoC			(-110	dBm /
				15	κHz)
	filterCoefficient			f	00
	syncRefMinHyst			d	B0
	syncRefDiffHyst			d	B0
preconfigComm	sc-CP-Len				rmal
	sc-Period			st	40
	sc-TF-ResourceConfig	prb-Num		13	25
		prb-Start		0	0
		prb-End		24	49
		offsetIndicator			0
				0001	1000
					00000
		subframeBitmap			00000
					00000
					00000
	data-CP-Len				rmal
	dataHoppingConfig	hoppingParameter			04
		numSubbands			s2
		rb-Offset			0
	ue-	data-TF-	prb-Num	13	25
	SelectedResourceConfig	ResourceConfig	•		
			prb-Start	0	0
			prb-End	24	49
			offsetIndicator		0
					00000
				11111111	
			subframeBitmap		11111
					00000
		1			00000
		trpt-Subset-r12		0	10

Table A.7.2.1-2: ProSe Direct Communication configuration for E-UTRA FDD (Configuration #2-FDD)

Int	formation Element / (BW c	onfiguration)		Value (5MHz)	Value (10MHz)
commRxPool	sc-CP-Len			No	rmal
	sc-Period			S	f40
	sc-TF-ResourceConfig	prb-Num		13	25
		prb-Start		0	0
		prb-End		24	49
		offsetIndicator			0
		subframeBitmap		0000 0000 0000	11100 00000 00000 00000 00000
	data-CP-Len			No	rmal
	dataHoppingConfig	hoppingParameter		5	04
		numSubbands		ns2	
		rb-Offset			0
	ue- SelectedResourceConfig	data-TF- ResourceConfig	prb-Num	13	25
			prb-Start	0	0
			prb-End	24	49
			offsetIndicator		0
			subframeBitmap	00000000 11111111 11111111 00000000 000000	
		trpt-Subset-r12		0	10
	rxParametersNCell			not p	resent
	txParameters			not p	resent
commTxPoolNormalCommon				not p	resent
SL-SyncConfig				not p	resent

Table A.7.2.1-3: ProSe Direct Communication configuration for E-UTRA FDD (Configuration #3-FDD)

Int	formation Element / (BW c	onfiguration)		Value (5MHz)	Value (10MHz)	
commRxPool(0)	sc-CP-Len			Nor	mal	
	sc-Period			sf	40	
	sc-TF-ResourceConfig	prb-Num		13	25	
		prb-Start		0	0	
		prb-End		24	49	
		offsetIndicator		()	
				0011	0000	
					0000	
		subframeBitmap			0000	
					0000	
					0000	
	data-CP-Len				mal	
	dataHoppingConfig	hoppingParameter)4	
	l datar toppingcoring	numSubbands			52	
		rb-Offset		()	
	ue-	data-TF-	prb-Num	13	25	
	SelectedResourceConfig	ResourceConfig	·		_	
			prb-Start	0	0	
			prb-End	24	49	
			offsetIndicator)	
				0000	1111	
				1111	0000	
			subframeBitmap	0000	0000	
			·	1111	1111	
				0000	0000	
		trpt-Subset-r12			10	
	rxParametersNCell				esent	
	txParameters				esent	
commRxPool(1)	sc-CP-Len			Nor		
COMMITTEE COI(1)	sc-Period				40	
		na ula Nicciae				
	sc-TF-ResourceConfig	prb-Num		13	25	
		prb-Start		0	0	
		prb-End		24	49	
		offsetIndicator)	
					0000	
					0000	
		subframeBitmap		00000000		
					0000	
				0000	0000	
	data-CP-Len			Nor	mal	
	dataHoppingConfig	hoppingParameter		50)4	
		numSubbands		ns	s2	
		rb-Offset		()	
	ue-	data-TF-	and N	40	05	
	SelectedResourceConfig	ResourceConfig	prb-Num	13	25	
		<u> </u>	prb-Start	0	0	
			prb-End	24	49	
			offsetIndicator)	
			onsominator	0000		
					0000	
			subframeBitmap		1111	
			Submameditinap		0000	
		trot Cubaat #40			0000	
	w/Developer to the NO. II	trpt-Subset-r12			10	
	rxParametersNCell	tdd-Config			esent	
		syncConfigIndex		,)	
	txParameters				esent	
commTxPoolNormalCommon					not present	
SL-SyncConfig(0)	syncCP-Len			Nor	mal	
	0" " "				1	
	syncOffsetIndicator		<u> </u>		<u>' </u>	
	slssid			3	0	

rxParamsNCell	physCellId	1
	discSyncWindow	w1

Table A.7.2.1-4: ProSe Direct Communication configuration for E-UTRA FDD (Configuration #4-FDD)

In	formation Element / (BW c	onfiguration)		Value (5MHz)	Value (10MHz)
commRxPool(0)	sc-CP-Len				rmal
	sc-Period			sf	80
	sc-TF-ResourceConfig	prb-Num		13	25
		prb-Start		0	0
		prb-End		24	49
		offsetIndicator			0
					0000
					00000
		subframeBitmap			00000
					00000
				00000000	
	data-CP-Len				rmal
	dataHoppingConfig	hoppingParameter			04
		numSubbands			s2
		rb-Offset			0
	ue- SelectedResourceConfig	data-TF- ResourceConfig	prb-Num	13	25
			prb-Start	0	0
			prb-End	24	49
			offsetIndicator		0
				0000	00000
				1111	1111
			subframeBitmap	0000	0000
				1111	1111
				0000	0000
		trpt-Subset-r12		0	01
	rxParametersNCell			not p	resent
	txParameters			not present	
commRxPool(1)	sc-CP-Len			No	rmal
	sc-Period			sf	80
	sc-TF-ResourceConfig	prb-Num		13	25
		prb-Start		0	0
		prb-End		24	49
		offsetIndicator			0
				00001111	
				00000000	
		subframeBitmap		0000	0000
				0000	0000
					00000
	data-CP-Len			No	rmal
	dataHoppingConfig	hoppingParameter		5	04
		numSubbands		n	s2
		rb-Offset			0
	ue- SelectedResourceConfig	data-TF- ResourceConfig	prb-Num	13	25
			prb-Start	0	0
			prb-End	24	49
			offsetIndicator		0
					00000
					00000
			subframeBitmap		1111
			'	0000	0000
					1111
		trpt-Subset-r12		0	01
	rxParametersNCell				resent
T.D. IV.	txParameters				resent
commTxPoolNormalCommon					resent
SL-SyncConfig				not p	resent

Table A.7.2.1-5: ProSe Direct Communication configuration for E-UTRA FDD (Configuration #5-FDD)

In	formation Element / (BW c	onfiguration)		Value (5MHz)	Value (10MHz)
commRxPool	sc-CP-Len			No	rmal
	sc-Period			S	f40
	sc-TF-ResourceConfig	prb-Num		13	25
		prb-Start		0	0
		prb-End		24	49
		offsetIndicator			0
		subframeBitmap		0000 0000 0000	11000 00000 00000 00000 00000
	data-CP-Len			No	rmal
	dataHoppingConfig	hoppingParameter		5	04
		numSubbands		ns2	
		rb-Offset			0
	ue- SelectedResourceConfig	data-TF- ResourceConfig	prb-Num	13	25
			prb-Start	0	0
			prb-End	24	49
			offsetIndicator		0
			subframeBitmap	00000000 11111111 11111111 11111111 111111	
		trpt-Subset-r12		0	01
	rxParametersNCell			not p	resent
	txParameters			not p	resent
commTxPoolNormalCommon				not p	resent
SL-SyncConfig				not p	resent

Annex B (normative): Propagation conditions

B.1 Static propagation condition

For 1 port transmission the channel matrix is defined in the frequency domain by

$$\mathbf{H} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
.

For 2 port transmission the channel matrix is defined in the frequency domain by

$$\mathbf{H} = \begin{pmatrix} 1 & j \\ 1 & -j \end{pmatrix}.$$

For 4 port transmission the channel matrix is defined in the frequency domain by

$$\mathbf{H} = \begin{bmatrix} 1 & 1 & j & j \\ 1 & 1 - j & -j \end{bmatrix}$$

For 8 port transmission the channel matrix is defined in the frequency domain by

$$\mathbf{H} = \begin{bmatrix} 1 & 1 & 1 & 1 & j & j & j \\ 1 & 1 & 1 & 1 - j - j - j - j \end{bmatrix}$$

B.2 Multi-path fading propagation conditions

The multipath propagation conditions consist of several parts:

- A delay profile in the form of a "tapped delay-line", characterized by a number of taps at fixed positions on a sampling grid. The profile can be further characterized by the r.m.s. delay spread and the maximum delay spanned by the taps.
- A combination of channel model parameters that include the Delay profile and the Doppler spectrum, that is characterized by a classical spectrum shape and a maximum Doppler frequency
- A set of correlation matrices defining the correlation between the UE and eNodeB antennas in case of multi-antenna systems.
- Additional multi-path models used for CQI (Channel Quality Indication) tests

B.2.1 Delay profiles

The delay profiles are selected to be representative of low, medium and high delay spread environments. The resulting model parameters are defined in Table B.2.1-1 and the tapped delay line models are defined in Tables B.2.1-2, B.2.1-3 and B.2.1-4.

Table B.2.1-1 Delay profiles for E-UTRA channel models

Model	Number of channel taps	Delay spread (r.m.s.)	Maximum excess tap delay (span)
Extended Pedestrian A (EPA)	7	43 ns	410 ns
Extended Vehicular A model (EVA)	9	357 ns	2510 ns
Extended Typical Urban model (ETU)	9	991 ns	5000 ns

Table B.2.1-2 Extended Pedestrian A model (EPA)

Excess tap delay [ns]	Relative power [dB]
0	0.0
30	-1.0
70	-2.0
90	-3.0
110	-8.0
190	-17.2
410	-20.8

Table B.2.1-3 Extended Vehicular A model (EVA)

Excess tap delay [ns]	Relative power [dB]
0	0.0
30	-1.5
150	-1.4
310	-3.6
370	-0.6
710	-9.1
1090	-7.0
1730	-12.0
2510	-16.9

Table B.2.1-4 Extended Typical Urban model (ETU)

Excess tap delay [ns]	Relative power [dB]
0	-1.0
50	-1.0
120	-1.0
200	0.0
230	0.0
500	0.0
1600	-3.0
2300	-5.0
5000	-7.0

B.2.2 Combinations of channel model parameters

The propagation conditions used for the performance measurements in multi-path fading environment are indicated as EVA[number], EPA[number] or ETU[number] where 'number' indicates the maximum Doppler frequency (Hz).

Table B.2.2-1 Void

B.2.3 MIMO Channel Correlation Matrices

The MIMO channel correlation matrices defined in B.2.3 apply for the antenna configuration using uniform linear arrays at both eNodeB and UE.

B.2.3.1 Definition of MIMO Correlation Matrices

Table B.2.3.1-1 defines the correlation matrix for the eNodeB

Table B.2.3.1-1 eNodeB correlation matrix

	One antenna	Two antennas	Four antennas		
eNode B Correlation	$R_{eNB} = 1$	$R_{eNB} = \begin{pmatrix} 1 & \alpha \\ \alpha^* & 1 \end{pmatrix}$	$R_{eNB} = \begin{pmatrix} 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} & \alpha \\ \alpha^{\frac{1}{9}^*} & 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} \\ \alpha^{\frac{4}{9}^*} & \alpha^{\frac{1}{9}^*} & 1 & \alpha^{\frac{1}{9}} \\ \alpha^* & \alpha^{\frac{4}{9}^*} & \alpha^{\frac{1}{9}^*} & 1 \end{pmatrix}$		

Table B.2.3.1-2 defines the correlation matrix for the UE:

Table B.2.3.1-2 UE correlation matrix

	One antenna	Two antennas	Four antennas
UE Correlation	$R_{UE} = 1$	$R_{UE} = \begin{pmatrix} 1 & \boldsymbol{\beta} \\ \boldsymbol{\beta}^* & 1 \end{pmatrix}$	$R_{UE} = \begin{pmatrix} 1 & \beta^{\frac{1}{9}} & \beta^{\frac{4}{9}} & \beta \\ \beta^{\frac{1}{9}^*} & 1 & \beta^{\frac{1}{9}} & \beta^{\frac{4}{9}} \\ \beta^{\frac{4}{9}^*} & \beta^{\frac{1}{9}^*} & 1 & \beta^{\frac{1}{9}} \\ \beta^* & \beta^{\frac{4}{9}^*} & \beta^{\frac{1}{9}^*} & 1 \end{pmatrix}$

Table B.2.3.1-3 defines the channel spatial correlation matrix R_{spat} . The parameters, α and β in Table B.2.3.1-3 defines the spatial correlation between the antennas at the eNodeB and UE.

 $R_{spat} = R_{UE} = \begin{bmatrix} 1 & \beta \\ \beta^* & 1 \end{bmatrix}$ $2x1 \text{ case} \qquad R_{spat} = R_{eNB} \otimes R_{UE} = \begin{bmatrix} 1 & \alpha \\ \alpha^* & 1 \end{bmatrix}$ $R_{spat} = R_{eNB} \otimes R_{UE} = \begin{bmatrix} 1 & \alpha \\ \alpha^* & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & \beta & \alpha & \alpha \beta \\ \beta^* & 1 & \alpha \beta^* & \alpha \\ \alpha^* & \alpha^* \beta & 1 & \beta \\ \alpha^* & \beta^* & \alpha^* & \beta^* & 1 \end{bmatrix}$ $R_{spat} = R_{eNB} \otimes R_{UE} = \begin{bmatrix} 1 & \alpha & \alpha^{1/9} & \alpha^{1/9} & \alpha \\ \alpha^{1/9} & 1 & \alpha^{1/9} & \alpha^{1/9} \\ \alpha^{1/9} & \alpha^{1/9} & 1 & \alpha^{1/9} \\ \alpha^{1/9} & \alpha^{1/9} & \alpha^{1/9} & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & \beta & \alpha & \alpha \beta \\ \beta^* & 1 & \alpha \beta^* & \alpha \\ \alpha^* & \alpha^* \beta & 1 & \beta \\ \beta^* & 1 \end{bmatrix}$ $R_{spat} = R_{eNB} \otimes R_{UE} = \begin{bmatrix} 1 & \alpha^{1/9} & \alpha^{1/9} & \alpha \\ \alpha^{1/9} & 1 & \alpha^{1/9} & \alpha^{1/9} \\ \alpha^{1/9} & \alpha^{1/9} & 1 & \alpha^{1/9} \\ \alpha^{1/9} & \alpha^{1/9} & 1 & \alpha^{1/9} \\ \alpha^{1/9} & \alpha^{1/9} & 1 & \alpha^{1/9} \\ \alpha^{1/9} & \alpha^{1/9} & 1 & \alpha^{1/9} \\ \alpha^{1/9} & \alpha^{1/9} & 1 & \alpha^{1/9} \\ \alpha^{1/9} & \alpha^{1/9} & 1 & \alpha^{1/9} \\ \alpha^{1/9} & \alpha^{1/9} & 1 & \alpha^{1/9} \\ \alpha^{1/9} & \alpha^{1/9} & \alpha^{1/9} \\ \alpha^{1/9} & \alpha^{1/9} & 1 & \alpha^{1/9} \\ \alpha^{1/9} & \alpha^{1/9} & \alpha^{1/9} \\ \alpha^{1/9} &$

Table B.2.3.1-3: $R_{\it spat}$ correlation matrices

For cases with more antennas at either eNodeB or UE or both, the channel spatial correlation matrix can still be expressed as the Kronecker product of R_{eNB} and R_{UE} according to $R_{spat} = R_{eNB} \otimes R_{UE}$.

B.2.3.2 MIMO Correlation Matrices at High, Medium and Low Level

The α and β for different correlation types are given in Table B.2.3.2-1.

Table B.2.3.2-1

Low cor	relation	Medium C	orrelation	High Correlation		
α	β	α	β	α	β	
0	0	0.3	0.9	0.9	0.9	

The correlation matrices for high, medium and low correlation are defined in Table B.2.3.1-2, B.2.3.2-3 and B.2.3.2-4, as below.

The values in Table B.2.3.2-2 have been adjusted for the 4x2 and 4x4 high correlation cases to insure the correlation matrix is positive semi-definite after round-off to 4 digit precision. This is done using the equation:

$$\mathbf{R}_{high} = [\mathbf{R}_{spatial} + aI_n]/(1+a)$$

Where the value "a" is a scaling factor such that the smallest value is used to obtain a positive semi-definite result. For the 4x2 high correlation case, a=0.00010. For the 4x4 high correlation case, a=0.00012.

The same method is used to adjust the 4x4 medium correlation matrix in Table B.2.3.2-3 to insure the correlation matrix is positive semi-definite after round-off to 4 digit precision with a = 0.00012.

Table B.2.3.2-2: MIMO correlation matrices for high correlation

1x2 case		$R_{high} = \begin{pmatrix} 1 & 0.9 \\ 0.9 & 1 \end{pmatrix}$							
2x1 case		$R_{high} = \begin{pmatrix} 1 & 0.9 \\ 0.9 & 1 \end{pmatrix}$							
2x2 case		$R_{high} = \begin{pmatrix} 1 & 0.9 & 0.9 & 0.81 \\ 0.9 & 1 & 0.81 & 0.9 \\ 0.9 & 0.81 & 1 & 0.9 \\ 0.81 & 0.9 & 0.9 & 1 \end{pmatrix}$							
4x2 case	$R_{high} =$	0.8999 1.0000 0.9883 0.8894 0.8894 0.9883 0.9542 0.8587 0.8587 0.9542 0.8999 0.8099	0.98830.88940.88940.98831.00000.89990.89991.00000.98830.88940.88940.98830.95420.85870.85870.9542	0.85870.95420.98830.88940.88940.98831.00000.89990.89991.00000.98830.8894					
4x4 case	$R_{high} = \begin{cases} 0.9882 \ 1.0000 \ 0.9882 \ 1.0000 \ 0.9882 \ 1.000 \ 0.8899 \ 0.9541 \ 0.9882 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9882 \ 0.9430 \ 0.9767 \ 0.9 \ 0.8894 \ 0.9430 \ 0.9 \ 0.9541 \ 0.9430 \ 0.9 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9 \ 0.9105 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9 \ 0.8587 \ 0.9105 \ 0.9 \ 0.8894 \ 0.8894 \ 0.8894 \ 0.8899 \ 0.8894 \ 0.8994 \ 0.8894 $	882 0.9541 0.9767 0.900 0.9882 0.9430 0.8894 0.9430 0.8894 1.0000 0.8894 0.9430 0.9882 1.882 0.9767 0.9541 0.967 0.9882 0.8999 0.9541 0.9430 0.9430 0.9430 0.9430 0.9541 0.8894 0.8587 0.9884 0.9541 0.8894 0.8587 0.9430 0.9430 0.9430 0.9430 0.9541 0.8894 0.9541 0.8894 0.9541 0.8894 0.9587 0.9430 0.999 0.8894 0.9105 0.9999 0.8894 0.9105 0.9999 0.8894 0.9105 0.9999 0.8894 0.9105 0.9999 0.8894 0.9105 0.9894	9882 0.9767 0.9430 9767 0.9882 0.9767 9430 0.9767 0.9882 9882 0.9541 0.8999 .0000 0.9882 0.9541 .9882 1.0000 0.9882 .9541 0.9882 1.0000 .9767 0.9430 0.8894 9882 0.9767 0.9430 9767 0.9882 0.9767 .9430 0.9767 0.9882 .9541 0.9430 0.9105 .9430 0.9541 0.9430	0.9430 0.9541 0.9430 0.9105 0.9430 0.9541 0.8587 0.9105 0.9430 0.9882 0.9767 0.9430 0.9767 0.9882 0.9767 0.9430 0.9767 0.9882 0.8894 0.9430 0.9767 1.0000 0.9882 0.9541 0.9882 1.0000 0.9882 0.9541 0.9882 1.0000 0.8999 0.9541 0.9882 0.9767 0.9882 0.9767	0.8587 0.8999 0.8894 0.9105 0.8894 0.8999 0.8587 0.8894 0.9541 0.8099 0.8587 0.8894 0.9541 0.9430 0.9541 0.9430 0.9541 0.9105 0.9430 0.9541 0.9882 0.8587 0.9105 0.8999 0.9882 0.9767 0.9882 0.9767 0.9882 0.9430 0.9767 0.9882 0.9430 0.9882 0.9988	0.8894 0.8587 0.8999 0.8894 0.8894 0.8999 0.9105 0.8587 0.9430 0.9105 0.9541 0.9430 0.9430 0.9541 0.9430 0.8894 0.9767 0.9430 0.9882 0.9767 0.9767 0.9882 0.9541 0.8999 0.9882 0.9541 1.0000 0.9882			

Table B.2.3.2-3: MIMO correlation matrices for medium correlation

1x2	N/A																
case		IV/A															
2x1		N/A															
case																	
2x2	$R_{medium} = \begin{pmatrix} 1 & 0.9 & 0.3 & 0.27 \\ 0.9 & 1 & 0.27 & 0.3 \\ 0.2 & 0.27 & 1 & 0.0 \end{pmatrix}$																
case		$R_{medium} = \begin{bmatrix} 0.3 & 0.27 & 1 & 0.9 \end{bmatrix}$															
								(0.	27 0.3	0.9	1)						
				(1	.0000	0.900	00 0.	8748	0.787	3 0	5856	0.527	1 0.3	000	0.2700		
				0	.9000	1.000	0.00	7873	0.874	8 0	5271	0.5850	6 0.2	700	0.3000)	
				0	.8748	0.787	73 1.	0000	0.900	0 0.	8748	0.787	3 0.5	856	0.5271	-	
4x2		n		0	.7873	0.874	18 0.	9000	1.000	0 0.	7873	0.874	3 0.5	271	0.5856	i	
case		κ_{me}	edium =	0	.5856	0.527	71 0.	8748	0.787	3 1.0	0000	0.9000	0.8	748	0.7873	;	
				0	.5271	0.585	66 O.	7873	0.874	8 0.9	9000	1.0000	0.7	873	0.8748	;	
				0	.3000	0.270	00 0.	5856	0.527	1 0.	8748	0.787	3 1.0	000	0.9000)	
				0	.2700	0.300		5271	0.585		7873	0.874	8 0.9	0000	1.0000		
	1	1.0000	0.9882	0.9541	0.8999	0.8747	0.8645	0.8347	0.7872	0.5855	0.5787	0.5588	0.5270	0.3000	0.2965	0.2862	0.2700
		0.9882	1.0000	0.9882	0.9541	0.8645	0.8747	0.8645	0.8347	0.5787	0.5855	0.5787	0.5588	0.2965	0.3000	0.2965	0.2862
		0.9541	0.9882	1.0000	0.9882	0.8347	0.8645	0.8747	0.8645	0.5588	0.5787	0.5855	0.5787	0.2862	0.2965	0.3000	0.2965
												0.5787					
		0.8747	0.8645	0.8347	0.7872	1.0000	0.9882	0.9541	0.8999	0.8747	0.8645	0.8347	0.7872	0.5855	0.5787	0.5588	0.5270
												0.8645					
		0.8347	0.8645	0.8747	0.8645	0.9541	0.9882	1.0000	0.9882	0.8347	0.8645	0.8747	0.8645	0.5588	0.5787	0.5855	0.5787
4x4	R , =	0.7872	0.8347	0.8645	0.8747	0.8999	0.9541	0.9882	1.0000	0.7872	0.8347	0.8645	0.8747	0.5270	0.5588	0.5787	0.5855
case	R_{medium} =	0.5855	0.5787	0.5588	0.5270	0.8747	0.8645	0.8347	0.7872	1.0000	0.9882	0.9541	0.8999	0.8747	0.8645	0.8347	0.7872
		0.5787	0.5855	0.5787	0.5588	0.8645	0.8747	0.8645	0.8347	0.9882	1.0000	0.9882	0.9541	0.8645	0.8747	0.8645	0.8347
		0.5588	0.5787	0.5855	0.5787	0.8347	0.8645	0.8747	0.8645	0.9541	0.9882	1.0000	0.9882	0.8347	0.8645	0.8747	0.8645
		0.5270	0.5588	0.5787	0.5855	0.7872	0.8347	0.8645	0.8747	0.8999	0.9541	0.9882	1.0000	0.7872	0.8347	0.8645	0.8747
		0.3000	0.2965	0.2862	0.2700	0.5855	0.5787	0.5588	0.5270	0.8747	0.8645	0.8347	0.7872	1.0000	0.9882	0.9541	0.8999
		0.2965	0.3000	0.2965	0.2862	0.5787	0.5855	0.5787	0.5588	0.8645	0.8747	0.8645	0.8347	0.9882	1.0000	0.9882	0.9541
		0.2862	0.2965	0.3000	0.2965	0.5588	0.5787	0.5855	0.5787	0.8347	0.8645	0.8747	0.8645	0.9541	0.9882	1.0000	0.9882
		0.2700	0.2862	0.2965	0.3000	0.5270	0.5588	0.5787	0.5855	0.7872	0.8347	0.8645	0.8747	0.8999	0.9541	0.9882	1.0000

Table B.2.3.2-4: MIMO correlation matrices for low correlation

1x2 case	$R_{low} = \mathbf{I}_2$
2x1 case	$R_{low} = \mathbf{I}_2$
2x2 case	$R_{low} = \mathbf{I}_4$
4x2 case	$R_{low} = \mathbf{I}_8$
4x4 case	$R_{low} = \mathbf{I}_{16}$

In Table B.2.3.2-4, \mathbf{I}_d is the $d \times d$ identity matrix.

B.2.3A MIMO Channel Correlation Matrices using cross polarized antennas

The MIMO channel correlation matrices defined in B.2.3A apply for the antenna configuration using cross polarized (XP/X-pol) antennas at both eNodeB and UE. The cross-polarized antenna elements with \pm 45 degrees polarization

slant angles are deployed at eNB and cross-polarized antenna elements with +90/0 degrees polarization slant angles are deployed at UE.

For the cross-polarized antennas, the N antennas are labelled such that antennas for one polarization are listed from 1 to N/2 and antennas for the other polarization are listed from N/2+1 to N, where N is the number of transmit or receive antennas.

B.2.3A.1 Definition of MIMO Correlation Matrices using cross polarized antennas

For the channel spatial correlation matrix, the following is used:

$$R_{spat} = P(R_{eNB} \otimes \Gamma \otimes R_{UE})P^{T}$$

where

- R_{UE} is the spatial correlation matrix at the UE with same polarization,
- R_{eNB} is the spatial correlation matrix at the eNB with same polarization,
- Γ is a polarization correlation matrix, and
- $(\bullet)^T$ denotes transpose.

The matrix Γ is defined as

$$\Gamma = \begin{bmatrix}
1 & 0 & -\gamma & 0 \\
0 & 1 & 0 & \gamma \\
-\gamma & 0 & 1 & 0 \\
0 & \gamma & 0 & 1
\end{bmatrix}$$

A permutation matrix P elements are defined as

$$P(a,b) = \begin{cases} 1 & \text{for } a = (j-1)Nr + i & \text{and } b = 2(j-1)Nr + i, & i = 1, \dots, Nr, j = 1, \dots Nt/2 \\ 1 & \text{for } a = (j-1)Nr + i & \text{and } b = 2(j-Nt/2)Nr - Nr + i, & i = 1, \dots, Nr, j = Nt/2 + 1, \dots, Nt + 1, \dots, Nt/2 \\ 0 & \text{otherwise} \end{cases}$$

where N_r and N_r is the number of transmitter and receiver respectively. This is used to map the spatial correlation coefficients in accordance with the antenna element labelling system described in B.2.3A.

B.2.3A.2 Spatial Correlation Matrices using cross polarized antennas at eNB and UE sides

B.2.3A.2.1 Spatial Correlation Matrices at eNB side

For 2-antenna transmitter using one pair of cross-polarized antenna elements, $R_{eNB} = 1$.

For 4-antenna transmitter using two pairs of cross-polarized antenna elements, $R_{eNB} = \begin{pmatrix} 1 & \alpha \\ \alpha^* & I \end{pmatrix}$.

For 8-antenna transmitter using four pairs of cross-polarized antenna elements, $R_{eNB} = \begin{pmatrix} 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} & \alpha \\ \alpha^{\frac{1}{9}} & 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} \\ \alpha^{\frac{4}{9}} & \alpha^{\frac{1}{9}} & 1 & \alpha^{\frac{1}{9}} \\ \alpha^* & \alpha^{\frac{4}{9}} & \alpha^{\frac{1}{9}} & 1 \end{pmatrix}.$

B.2.3A.2.2 Spatial Correlation Matrices at UE side

For 2-antenna receiver using one pair of cross-polarized antenna elements, $R_{UE} = 1$.

For 4-antenna receiver using two pairs of cross-polarized antenna elements, $R_{UE} = \begin{pmatrix} 1 & \beta \\ \beta^* & 1 \end{pmatrix}$.

B.2.3A.3 MIMO Correlation Matrices using cross polarized antennas

The values for parameters α , β and γ for high spatial correlation are given in Table B.2.3A.3-1.

Table B.2.3A.3-1

High spatial correlation						
α β γ						
0.9	0.9	0.3				
Note 1: Value of α applies when more than one pair of cross-polarized antenna elements at eNB side						

Note 1: Value of α applies when more than one pair of cross-polarized antenna elements at eNB side Note 2: Value of β applies when more than one pair of cross-polarized antenna elements at UE side.

The correlation matrices for high spatial correlation are defined in Table B.2.3A.3-2 as below.

The values in Table B.2.3A.3-2 have been adjusted to insure the correlation matrix is positive semi-definite after round-off to 4 digit precision. This is done using the equation:

$$\mathbf{R}_{high} = [\mathbf{R}_{spat} + aI_n]/(1+a)$$

Where the value "a" is a scaling factor such that the smallest value is used to obtain a positive semi-definite result. For the 8x2 high spatial correlation case, a=0.00010.

Table B.2.3A.3-2: MIMO correlation	n matrices fo	or high spatia	I correlation
------------------------------------	---------------	----------------	---------------

				1.00	000 (0.0000	0.90	00 (0.0000	-0.30	000	0.0000	-0.27	700 (0.0000		
						.0000	0.00		0.9000	0.00		0.3000	0.00		0.2700		
						0.0000	1.00		0.0000	-0.27		0.0000	-0.30		0.0000		
4x2 case			$R_{high} =$	0.0	000 (0.9000			1.0000	0.00	000	0.2700	0.00	00	0.3000		
TAZ GUSC		•	high	-0.3	000 (0.0000	-0.2	700 (0.0000	1.00	00 (0.0000	0.90	00 (0.0000		
				0.0	000	0.3000	0.0	000	0.2700	0.00	00 1	.0000	0.00	00	0.9000		
				-0.2	700 (0.0000	-0.30	000	0.0000	0.90	00 0	0.0000	1.00	00 (0.0000		
				0.0	000	0.2700	0.0	000	0.3000	0.00	00 (0.9000	0.00	00 1	.0000		
		1.0000	0.0000	0.9883	0.0000	0.9542	0.0000	0.8999	0.0000	-0.3000	0.0000	0.2965	0.0000	-0.2862	2 0.0000	-0.2700	0.0000
		0.0000	1.0000	0.0000	0.9883	0.0000	0.9542	0.0000	0.8999	0.0000	0.3000	0.0000	0.2965	0.0000	0.2862	0.0000	0.2700
		0.9883	0.0000	1.0000	0.0000	0.9883	0.0000	0.9542	2 0.0000	-0.2965	0.0000	-0.3000	0.0000	-0.2965	0.0000	-0.2862	0.0000
		0.0000	0.9883	0.0000	1.0000	0.0000	0.9883	0.0000	0.9542	0.0000	0.2965	0.0000	0.3000	0.0000	0.2965	0.0000	0.2862
		0.9542	0.0000	0.9883	0.0000				0.0000								
		0.0000	0.9542	0.0000	0.9883				0.9883			0.0000					
		0.8999	0.0000	0.9542	0.0000				0.0000					0, 00			
8x2 case	$R_{hieh} =$	0.0000	0.8999	0.0000	0.9542				1.0000			0.0000		0.0000		0.0000	0.000
	nign	-0.3000	0.0000	0, 00					0.0000			0.9883				0.8999	0.0000
		0.0000		0.0000	0.2965				0.2700		1.0000			0.0000		0.0000	0.0777
		-0.2965	0.0000						2 0.0000			1.0000				0.9542	
		0.0000	0.2965						0.2862		0.9883		1.0000	0.0000		0.0000	
		-0.2862	0.0000	0.0000	0.0000				0.0000 0.2965			0.9883	0.0000	0.0000		0.9883	
		0.0000	0.2862		0, 00						0.0000						0.0000
		-0.2700							0.0000					0.9883			
		0.0000	0.2700	0.0000	0.2002	0.0000	0.2900	0.000) 0.3000	0.0000	0.0395	0.0000	0.9342	0.0000	0.9003	0.0000	1.0000

B.2.3A.4 Beam steering approach

Given the channel spatial correlation matrix in B.2.3A.1, the corresponding random channel matrix \mathbf{H} can be calculated. The signal model for the k-th subframe is denoted as

$$y = HD_{\theta_{L}}Wx + n$$

Where

- H is the Nr xNt channel matrix per subcarrier.
- $D_{\theta_{h}}$ is the steering matrix,

For 8 transmission antennas,
$$D_{\theta_k} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & e^{j\theta_k} & 0 & 0 \\ 0 & 0 & e^{j2\theta_k} & 0 \\ 0 & 0 & 0 & e^{j3\theta_k} \end{bmatrix};$$

For 4 transmission antennas,
$$D_{\theta_k} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 \\ 0 & e^{j3\theta_k} \end{bmatrix}$$
.

- θ_k controls the phase variation, and the phase for k-th subframe is denoted by $\theta_k = \theta_0 + \Delta\theta \cdot k$, where θ_0 is the random start value with the uniform distribution, i.e., $\theta_0 \in [0,2\pi]$, $\Delta\theta$ is the step of phase variation, which is defined in Table B.2.3A.4-1, and k is the linear increment of 1 for every subframe throughout the simulation,
- W is the precoding matrix for Nt transmission antennas,
- y is the received signal, x is the transmitted signal, and n is AWGN.

Table B.2.3A.4-1: The step of phase variation

Variation Step	Value (rad/subframe)
$\Delta heta$	1.2566×10 ⁻³

B.2.4 Propagation conditions for CQI tests

For Channel Quality Indication (CQI) tests, the following additional multi-path profile is used:

$$h(t,\tau) = \delta(\tau) + a \exp(-i2\pi f_D t)\delta(\tau - \tau_d)$$
,

in continuous time (t, τ) representation, with τ_d the delay, a a constant and f_D the Doppler frequency. The same $h(t, \tau)$ is used to describe the fading channel between every pair of Tx and Rx.

B.2.4.1 Propagation conditions for CQI tests with multiple CSI processes

For CQI tests with multiple CSI processes, the following additional multi-path profile is used for 2 port transmission:

$$H = \begin{bmatrix} 1 & j \\ 1 & -j \end{bmatrix} \circ H_{MP}$$

Where \circ represents Hadamard product, H_{MP} indicates the 2x2 propagation channel generated in the manner defined in Clause B.2.4.

B.2.5 Void

B.2.6 MBSFN Propagation Channel Profile

Table B.2.6-1 shows propagation conditions that are used for the MBSFN performance requirements in multi-path fading environment in an extended delay spread environment.

Table B.2.6-1: Propagation Conditions for Multi-Path Fading Environments for MBSFN Performance Requirements in an extended delay spread environment

Extended Delay Spread						
Maximum Doppler frequency [5Hz]						
Relative Delay [ns]	Relative Mean Power [dB]					
0	0					
30	-1.5					
150	-1.4					
310	-3.6					
370	-0.6					
1090	-7.0					
12490	-10					
12520	-11.5					
12640	-11.4					
12800	-13.6					
12860	-10.6					
13580	-17.0					
27490	-20					
27520	-21.5					
27640	-21.4					
27800	-23.6					
27860	-20.6					
28580	-27.0					

B.3 High speed train scenario

The high speed train condition for the test of the baseband performance is a non fading propagation channel with one tap. Doppler shift is given by

$$f_s(t) = f_d \cos \theta(t) \tag{B.3.1}$$

where $f_s(t)$ is the Doppler shift and f_d is the maximum Doppler frequency. The cosine of angle $\theta(t)$ is given by

$$\cos\theta(t) = \frac{D_s/2 - vt}{\sqrt{D_{\min}^2 + (D_s/2 - vt)^2}}, \ 0 \le t \le D_s/v$$
(B.3.2)

$$\cos \theta(t) = \frac{-1.5D_s + vt}{\sqrt{D_{\min}^2 + (-1.5D_s + vt)^2}}, \ D_s/v < t \le 2D_s/v$$
(B.3.3)

$$\cos\theta(t) = \cos\theta(t \mod (2D_s/v)), t > 2D_s/v$$
(B.3.4)

where $D_s/2$ is the initial distance of the train from eNodeB, and D_{\min} is eNodeB Railway track distance, both in meters; v is the velocity of the train in m/s, t is time in seconds.

Doppler shift and cosine angle are given by equation B.3.1 and B.3.2-B.3.4 respectively, where the required input parameters listed in table B.3-1 and the resulting Doppler shift shown in Figure B.3-1 are applied for all frequency bands.

Parameter	Value
D_s	300 m
$D_{ m min}$	2 m
ν	300 km/h
f_d	750 Hz

Table B.3-1: High speed train scenario

NOTE 1: Parameters for HST conditions in table B.3-1 including f_d and Doppler shift trajectories presented on figure B.3-1 were derived from Band 7 and are applied for performance verification in all frequency bands.

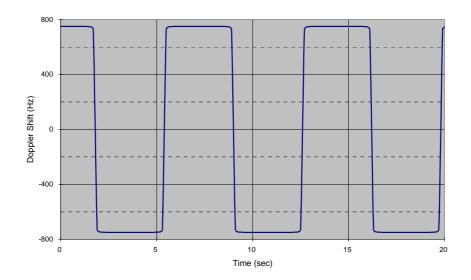


Figure B.3-1: Doppler shift trajectory

For 1x2 antenna configuration, the same $h(t,\tau)$ is used to describe the channel between every pair of Tx and Rx.

For 2x2 antenna configuration, the same $h(t,\tau)$ is used to describe the channel between every pair of Tx and Rx with phase shift according to $\mathbf{H} = \begin{pmatrix} 1 & j \\ 1 & -j \end{pmatrix}$.

B.4 Beamforming Model

B.4.1 Single-layer random beamforming (Antenna port 5, 7, or 8)

Single-layer transmission on antenna port 5 or on antenna port 7 or 8 without a simultaneous transmission on the other antenna port, is defined by using a precoder vector W(i) of size 2×1 randomly selected with the number of layers v=1 from Table 6.3.4.2.3-1 in [4] as beamforming weights. This precoder takes as an input the signal $y^{(p)}(i)$, $i=0,1,...,M_{\mathrm{symb}}^{\mathrm{ap}}-1$, for antenna port $p\in\{5,7,8\}$, with $M_{\mathrm{symb}}^{\mathrm{ap}}$ the number of modulation symbols including the

user-specific reference symbols (DRS), and generates a block of signals $y_{bf}(i) = \begin{bmatrix} y_{bf}(i) & \tilde{y}_{bf}(i) \end{bmatrix}^T$ the elements of which are to be mapped onto the same physical RE but transmitted on different antenna elements:

$$\begin{bmatrix} y_{bf}(i) \\ \widetilde{y}_{bf}(i) \end{bmatrix} = W(i)y^{(p)}(i)$$

Single-layer transmission on antenna port 7 or 8 with a simultaneous transmission on the other antenna port, is defined by using a pair of precoder vectors $W_1(i)$ and $W_2(i)$ each of size 2×1 , which are not identical and randomly selected with the number of layers v=1 from Table 6.3.4.2.3-1 in [4], as beamforming weights, and normalizing the transmit power as follows:

$$\begin{bmatrix} y_{bf}(i) \\ \tilde{y}_{bf}(i) \end{bmatrix} = \frac{1}{\sqrt{2}} (W_1(i)y^{(7)}(i) + W_2(i)y^{(8)}(i))$$

The precoder update granularity is specific to a test case.

The CSI reference symbols $a_{k,l}^{(p)}$ satisfying $p \mod 2 = 1$, $p \in \{15,16,...,22\}$, are transmitted on the same physical antenna element as the modulation symbols $y_{bf}(i)$. The CSI reference symbols $a_{k,l}^{(p)}$ satisfying $p \mod 2 = 0$, $p \in \{15,16,...,22\}$, are transmitted on the same physical antenna element as the modulation symbols $\widetilde{y}_{bf}(i)$.

B.4.2 Dual-layer random beamforming (antenna ports 7 and 8)

Dual-layer transmission on antenna ports 7 and 8 is defined by using a precoder matrix W(i) of size 2×2 randomly selected with the number of layers v=2 from Table 6.3.4.2.3-1 in [4] as beamforming weights. This precoder takes as an input a block of signals for antenna ports 7 and 8, $y(i) = \begin{bmatrix} y^{(7)}(i) & y^{(8)}(i) \end{bmatrix}^T$, $i=0,1,...,M_{\text{symb}}^{\text{ap}}-1$, with $M_{\text{symb}}^{\text{ap}}$ being the number of modulation symbols per antenna port including the user-specific reference symbols, and generates a block of signals $y_{bf}(i) = \begin{bmatrix} y_{bf}(i) & \widetilde{y}_{bf}(i) \end{bmatrix}^T$ the elements of which are to be mapped onto the same physical RE but transmitted on different antenna elements:

$$\begin{bmatrix} y_{bf}(i) \\ \widetilde{y}_{bf}(i) \end{bmatrix} = W(i) \begin{bmatrix} y^{(7)}(i) \\ y^{(8)}(i) \end{bmatrix},$$

The precoder update granularity is specific to a test case.

The CSI reference symbols $a_{k,l}^{(p)}$ satisfying $p \mod 2 = 1$, $p \in \{15,16,...,22\}$, are transmitted on the same physical antenna element as the modulation symbols $y_{bf}(i)$. The CSI reference symbols $a_{k,l}^{(p)}$ satisfying $p \mod 2 = 0$, $p \in \{15,16,...,22\}$, are transmitted on the same physical antenna element as the modulation symbols $\widetilde{y}_{bf}(i)$.

B.4.3 Generic beamforming model (antenna ports 7-14)

The transmission on antenna port(s) $p=7,8,...,\upsilon+6$ is defined by using a precoder matrix W(i) of size $N_{CSI}\times\upsilon$, where N_{CSI} is the number of CSI reference signals configured per test and υ is the number of spatial layers. This precoder takes as an input a block of signals for antenna port(s) $p=7,8,...,\upsilon+6$, $y^{(p)}(i)=\left[y^{(7)}(i)\quad y^{(8)}(i)\quad \cdots\quad y^{(6+\upsilon)}(i)\right],\ i=0,1,...,M_{\mathrm{symb}}^{\mathrm{ap}}-1$, with $M_{\mathrm{symb}}^{\mathrm{ap}}$ being the number of modulation symbols per antenna port including the user-specific reference symbols (DM-RS), and generates a block of signals $y_{bf}^{(q)}(i)=\left[y_{bf}^{(0)}(i)\quad y_{bf}^{(1)}(i)\quad \ldots\quad y_{bf}^{(N_{CSI}-1)}(i)\right]^T$ the elements of which are to be mapped onto the same time-frequency index pair (k,l) but transmitted on different physical antenna elements:

$$\begin{bmatrix} y_{bf}^{(0)}(i) \\ y_{bf}^{(1)}(i) \\ \vdots \\ y_{bf}^{(N_{CSI}-1)}(i) \end{bmatrix} = W(i) \begin{bmatrix} y^{(7)}(i) \\ y^{(8)}(i) \\ \vdots \\ y^{(6+v)}(i) \end{bmatrix}$$

The precoder matrix W(i) is specific to a test case.

The physical antenna elements are identified by indices $j = 0,1,...,N_{ANT}-1$, where $N_{ANT}=N_{CSI}$ is the number of physical antenna elements configured per test.

Modulation symbols $y_{bf}^{(q)}(i)$ with $q \in \{0,1,...,N_{CSI}-1\}$ (i.e. beamformed PDSCH and DM-RS) are mapped to the physical antenna index j=q.

Modulation symbols $y^{(p)}(i)$ with $p \in \{0,1,...,P-1\}$ (i.e. PBCH, PDCCH, PHICH, PCFICH) are mapped to the physical antenna index j=p, where P is the number of cell-specific reference signals configured per test.

Modulation symbols $a_{k,l}^{(p)}$ with $p \in \{0,1,...,P-1\}$ (i.e. CRS) are mapped to the physical antenna index j=p, where P is the number of cell-specific reference signals configured per test.

Modulation symbols $a_{k,l}^{(p)}$ with $p \in \{15,16,...,14+N_{CSI}\}$ (i.e. CSI-RS) are mapped to the physical antenna index j=p-15, where N_{CSI} is the number of CSI reference signals configured per test.

B.4.4 Random beamforming for EPDCCH distributed transmission (Antenna port 107 and 109)

EPDCCH distributed transmission on antenna port 107 and antenna port 109 is defined by using a pair of precoder vectors $W_1(i)$ and $W_2(i)$ each of size 2×1 , which are not identical and randomly selected per EPDCCH PRB pair with the number of layers v=1 from Table 6.3.4.2.3-1 in [4], as beamforming weights. This precoder takes as an input the signal $y^{(p)}(i)$, $i=0,1,...,M_{\text{symb}}^{\text{ap}}-1$, for antenna port $p\in\{107,109\}$, with $M_{\text{symb}}^{\text{ap}}$ the number of modulation symbols including the user-specific reference symbols (DMRS), and generates a block of signals $y_{bf}(i)=[y_{bf}(i) \ \tilde{y}_{bf}(i)]^T$. When EPDCCH is associated with port 107, the transmitted block of signals is deonted as

$$\begin{bmatrix} y_{bf}(i) \\ \widetilde{y}_{bf}(i) \end{bmatrix} = W_1(i) y^{(107)}(i).$$

When EPDCCH is associated with port 109, the transmitted block of signals is denoted as

$$\begin{bmatrix} y_{bf}(i) \\ \widetilde{y}_{bf}(i) \end{bmatrix} = W_2(i)y^{(109)}(i).$$

B.4.5 Random beamforming for EPDCCH localized transmission (Antenna port 107, 108, 109 or 110)

EPDCCH localized transmission on antenna port 107, 108, 109 or 110 is defined by using a precoder vector W(i) of size 2×1 randomly selected with the number of layers v=1 from Table 6.3.4.2.3-1 in [4] as beamforming weights. This precoder takes as an input the signal $y^{(p)}(i)$, $i=0,1,...,M^{ap}_{symb}-1$, for antenna port $p\in\{107,108,109,110\}$, with

 $M_{\text{symb}}^{\text{ap}}$ the number of modulation symbols including the user-specific reference symbols (DMRS), and generates a

block of signals $y_{bf}(i) = [y_{bf}(i) \ \tilde{y}_{bf}(i)]^T$ the elements of which are to be mapped onto the same physical RE but transmitted on different antenna elements:

$$\begin{bmatrix} y_{bf}(i) \\ \widetilde{y}_{bf}(i) \end{bmatrix} = W(i)y^{(p)}(i).$$

B.5 Interference models for enhanced performance requirements Type-A

This clause provides a description for the modelling of interfering cell transmissions for enhanced performance requirements Type-A including: definition of dominant interferer proportion, transmission mode 3, 4 and 9 type of interference modelling.

B.5.1 Dominant interferer proportion

Each interfering cell involved in enhanced performance requirements Type-A is characterized by its associated dominant interferer proportion (DIP) value:

$$DIP_i = \frac{\hat{I}_{or(i+1)}}{N_{oc}}$$

where is $\hat{I}_{or(i+1)}$ is the average received power spectral density from the i-th strongest interfering cell involved in the requirement scenario ($\hat{I}_{or(1)}$ is assumed to be the power spectral density associated with the serving cell) and

 $N_{oc}' = \sum_{j=2}^{N} \hat{I}_{or(j)} + N_{oc}$ where N_{oc} is the average power spectral density of a white noise source consistent with the

definition provided in subclause 3.2 and N is the total number of cells involved in a given requirement scenario.

B.5.2 Transmission mode 3 interference model

This subclause provides transmission mode 3 interference modelling for each explicitly modelled interfering cell in the requirement scenario. In each subframe, each interfering cell shall transmit randomly modulated data over the entire PDSCH region and the full transmission bandwidth. Transmitted physical channels shall include PSS, SSS and PBCH.

For each subframe and each CQI subband as defined in subclause 7.2 of [6], a transmission rank shall be randomly determined independently from other CQI subbands as well as other interfering cells. Probabilities of occurrence of each possible transmission rank are as specified in the requirement scenario.

For rank-1 transmission over a subband, precoding for transmit diversity for the number of antenna ports in the requirement scenario shall be applied to 16QAM randomly modulated layer symbols, as specified in subclause 6.3.4.3 of [4].

For rank-2 transmission over a subband, precoding for spatial multiplexing with large delay CDD over two layers for the number of antenna ports in the requirement scenario shall be applied to 16QAM randomly modulated layer symbols, as specified in subclause 6.3.4.2.2 of [4].

For unallocated REs in the control region, precoding for transmit diversity for the number of antenna ports in the requirement scenario shall be applied to QPSK randomly modulated layer symbols, as specified in subclause 6.3.4.3 of [4]. The EPRE ratio for these REs shall be as defined for PDCCH in Annex C.3.2.

B.5.3 Transmission mode 4 interference model

This subclause provides transmission mode 4 interference modelling for each explicitly modelled interfering cell in the requirement scenario. In each subframe, each interfering cell shall transmit randomly modulated data over the entire PDSCH region and the full transmission bandwidth. Transmitted physical channels shall include PSS, SSS and PBCH.

For each subframe and each CQI subband as defined in subclause 7.2 of [6], a transmission rank shall be randomly determined independently from other CQI subbands as well as other interfering cells. Probabilities of occurrence of each possible transmission rank are as specified in the requirement scenario.

For each subframe and CQI subband, a precoding matrix for the number of layers v associated to the selected rank shall be selected randomly from Table 6.3.4.2.3-1 of [4]. Note that codebook index 0 shall be excluded from random precoder selection when the number of layers is v = 2.

Precoding for spatial multiplexing with cell-specific reference signals for the number of antenna ports in the requirement scenario shall be applied to 16QAM randomly modulated layer symbols, as specified in subclause 6.3.4.2.1 of [4] with the selected precoding matrices for each subframe and each COI subband.

For unallocated REs in the control region, precoding for transmit diversity for the number of antenna ports in the requirement scenario shall be applied to QPSK randomly modulated layer symbols, as specified in subclause 6.3.4.3 of [4]. The EPRE ratio for these REs shall be as defined for PDCCH in Annex C.3.2.

B.5.4 Transmission mode 9 interference model

This subclause provides transmission mode 9 interference modelling for each explicitly modelled interfering cell in the requirement scenario. In each subframe, each interfering cell shall transmit randomly modulated data over the entire PDSCH region and the full transmission bandwidth. Transmitted physical channels shall include PSS, SSS and PBCH.

For each subframe and each CQI subband as defined in subclause 7.2 of [6], a transmission rank shall be randomly determined independently from other CQI subbands as well as other interfering cells. Probabilities of occurrence of each possible transmission rank are as specified in the requirement scenario.

For each subframe and each CQI subband, a precoding matrix for the number of layers v associated to the selected rank shall be selected randomly from Table 6.3.4.2.3-2 of [4].

The generic beamforming model in subclause B.4.3 shall be applied assuming cell-specific reference signals and CSI reference signals as specified in the requirement scenario. Random precoding with selected rank and precoding matrices for each subframe and each CQI subband shall be applied to 16QAM randomly modulated layer symbols including the user-specific reference symbols over antenna port 7 when the rank is one and antenna ports 7, 8 when the rank is two.

For unallocated REs in the control region, precoding for transmit diversity for the number of antenna ports in the requirement scenario shall be applied to QPSK randomly modulated layer symbols, as specified in subclause 6.3.4.3 of [4]. The EPRE ratio for these REs shall be as defined for PDCCH in Annex C.3.2.

B.6 Interference models for enhanced performance requirements Type-B

This clause provides a description for the modelling of interfering cell transmissions for enhanced performance requirements Type-B including: transmission mode 2, 3, 4 and 9 type of interference modelling and a definition of the random interference model.

B.6.1 Transmission mode 2 interference model

This subclause provides transmission mode 2 interference modelling for each explicitly modelled interfering cell in the requirement scenario. In each subframe, each interfering cell shall transmit randomly modulated data over the PDSCH region as specified in subclause B.6.6. Transmitted physical channels shall include PSS, SSS and PBCH.

The MCS shall be randomly determined with probabilities of occurrence of each possible MCS as specified in subclause B.6.6.

Precoding for transmit diversity for the number of antenna ports in the requirement scenario shall be applied to the randomly modulated layer symbols, as specified in subclause 6.3.4.3 of [4].

For unallocated REs in the control region, precoding for transmit diversity for the number of antenna ports in the requirement scenario shall be applied to QPSK randomly modulated layer symbols, as specified in subclause 6.3.4.3 of [4]. The EPRE ratio for these REs shall be as defined for PDCCH in Annex C.3.2.

B.6.2 Transmission mode 3 interference model

This subclause provides transmission mode 3 interference modelling for each explicitly modelled interfering cell in the requirement scenario. In each subframe, each interfering cell shall transmit randomly modulated data over the PDSCH region as specified in subclause B.6.6. Transmitted physical channels shall include PSS, SSS and PBCH.

The transmission rank shall be randomly determined for each user defined in section B.6.6 with probabilities of occurrence of each possible transmission rank as specified in subclause B.6.6.

The MCS shall be randomly determined with probabilities of occurrence of each possible MCS as specified in subclause B.6.6.

For rank-1 transmission, precoding for transmit diversity for the number of antenna ports in the requirement scenario shall be applied to the randomly modulated layer symbols, as specified in subclause 6.3.4.3 of [4].

For rank-2 transmission, precoding for spatial multiplexing with large delay CDD over two layers for the number of antenna ports in the requirement scenario shall be applied to the randomly modulated layer symbols, as specified in subclause 6.3.4.2.2 of [4].

For unallocated REs in the control region, precoding for transmit diversity for the number of antenna ports in the requirement scenario shall be applied to QPSK randomly modulated layer symbols, as specified in subclause 6.3.4.3 of [4]. The EPRE ratio for these REs shall be as defined for PDCCH in Annex C.3.2.

B.6.3 Transmission mode 4 interference model

This subclause provides transmission mode 4 interference modelling for each explicitly modelled interfering cell in the requirement scenario. In each subframe, each interfering cell shall transmit randomly modulated data over the PDSCH region as specified in subclause B.6.6. Transmitted physical channels shall include PSS, SSS and PBCH.

The transmission rank shall be randomly determined with probabilities of occurrence of each possible transmission rank as specified in subclause B.6.6.

The MCS shall be randomly determined with probabilities of occurrence of each possible MCS as specified in subclause B.6.6.

For each TTI, for each user defined in B.6.6, a single precoding matrix for the number of layers v associated to the selected rank shall be selected randomly from Table 6.3.4.2.3-1 of [4]. Note that codebook index 0 shall be excluded from random precoder selection when the number of layers is v = 2.

Precoding for spatial multiplexing with cell-specific reference signals for the number of antenna ports in the requirement scenario shall be applied to randomly modulated layer symbols, as specified in subclause 6.3.4.2.1 of [4] with the selected precoding matrices as specified in subclause B.6.6.

For unallocated REs in the control region, precoding for transmit diversity for the number of antenna ports in the requirement scenario shall be applied to QPSK randomly modulated layer symbols, as specified in subclause 6.3.4.3 of [4]. The EPRE ratio for these REs shall be as defined for PDCCH in Annex C.3.2.

B.6.4 Transmission mode 9 interference model

This subclause provides transmission mode 9 interference modelling for each explicitly modelled interfering cell in the requirement scenario. In each subframe, each interfering cell shall transmit randomly modulated data over the PDSCH region as specified in subclause B.6.6. Transmitted physical channels shall include PSS, SSS and PBCH.

The transmission rank shall be randomly determined with probabilities of occurrence of each possible transmission rank as specified in subclause B.6.6.

The MCS shall be randomly determined with probabilities of occurrence of each possible MCS as specified in subclause B.6.6.

For each TTI, for each user defined in B.6.6, a single precoding matrix for the number of layers v associated to the selected rank shall be selected randomly from Table 6.3.4.2.3-1 of [4]. Note that codebook index 0 shall be excluded from random precoder selection when the number of layers is v = 2.

The generic beamforming model in subclause B.4.3 shall be applied assuming cell-specific reference signals and CSI reference signals as specified in the requirement scenario. Random precoding with selected rank and precoding matrices for each subframe shall be applied to randomly modulated layer symbols including the user-specific reference symbols over antenna port 7 when the rank is one and antenna ports 7, 8 when the rank is two.

For each TTI, for each user defined in B.6.6, the scrambling ID value nSCID is randomly assigned from the set of $\{0,1\}$.

For unallocated REs in the control region, precoding for transmit diversity for the number of antenna ports in the requirement scenario shall be applied to QPSK randomly modulated layer symbols, as specified in subclause 6.3.4.3 of [4]. The EPRE ratio for these REs shall be as defined for PDCCH in Annex C.3.2.

B.6.5 CRS interference model

This subclause provides for the CRS interference modelling for each explicitly modelled interfering cell in the requirement scenario. In each subframe there is no PDSCH transmitted. Transmitted physical channels shall include PSS. SSS and PBCH.

For unallocated REs in the control region, precoding for transmit diversity for the number of antenna ports in the requirement scenario shall be applied to QPSK randomly modulated layer symbols, as specified in subclause 6.3.4.3 of [4]. The EPRE ratio for these REs shall be as defined for PDCCH in Annex C.3.2.

B.6.6 Random interference model

This subclause presents the interference model which defines the resource allocation, MCS and rank for the two interference cells. The model includes approximately 10% DTX on these interference cells. Table B.6.6-1 shows the resource allocation for four users in two different configurations for each of the two interferers. Table B.6.6-2 shows the resource allocation to be used for special subframes with TM9 interference. Table B.6.6-3 shows the probabilities for the MSC and rank for these users.

Table B.6.6-1: Resource allocation for the random interference model

Resource		Resour				
allocation User		Resource	Bitmap	Probability		
configurations Indexes	Index	allocation type	1st field bitmap	2nd field bitmap	3rd field bitmap	Fiobability
Configuration 1	User 0	1	00	0	10101000101010	
	User 1	1	00	0	01010101010101	50%
	User 2	0	01001001001001		30%	
	User 3	0	00100100100100			
Configuration 2	User 0	1	00	0	10101010101010	
	User 1	1	00	1	01010100010101	50%
	User 2	0	01001001001001			
	User 3	0	00100100100100			

NOTE 1: The 1st, 2nd, and 3rd field bitmaps are only valid for resource allocation type 1 which was defined in [6].

NOTE 2: The resource allocation model is used for both 1st and 2nd interfering cells and the resource allocation is independent for each interfering cell.

Table B.6.6-2: Resource allocation for the random interference model for TM9 special subframes

Resource		Resour					
allocation	User	Resource	Resource Bitmap for resource allocation (Note 1)				
configurations Indexes	Index	allocation type	1st field bitmap	2nd field bitmap	3rd field bitmap	Probability	
Configuration 1	User 0	1	00	0	10101000101010		
	User 1	1	00	0	01010101000001	50%	
	User 2	0	01001000001001001				
	User 3	0	00100100000100100				
Configuration 2	User 0	1	00	0	10101000101010		
	User 1	1	00	1	01010000010101	50%	
	User 2	0	01001000001001001				
	User 3	0		00100100000	100100		

NOTE 1: The 1st, 2nd, and 3rd field bitmaps are only valid for resource allocation type 1 which was defined in [6].

NOTE 2: The resource allocation model is used for both 1st and 2nd interfering cells and the resource allocation is independent for each interfering cell.

Table B.6.6-3 MCS and rank configuration for the random interference model

MC	S probability	Rank probability		
MCS5	MCS14	MCS25	Rank 1	Rank 2
50%	25%	25%	80%	20%

NOTE 1: The MCS and rank should follow the probability indicated in the table randomly per UE per TTI.

NOTE 2: The probabilities for MCS and rank configuration are used for both 1st and 2nd interfering cells.

The MCS and rank configurations are independent for each interfering cell.

Annex C (normative): Downlink Physical Channels

C.1 General

This annex specifies the downlink physical channels that are needed for setting a connection and channels that are needed during a connection.

C.2 Set-up

Table C.2-1 describes the downlink Physical Channels that are required for connection set up.

Table C.2-1: Downlink Physical Channels required for connection set-up

Physical Channel
PBCH
SSS
PSS
PCFICH
PDCCH
EPDCCH
PHICH
PDSCH

C.3 Connection

The following clauses, describes the downlink Physical Channels that are transmitted during a connection i.e., when measurements are done.

C.3.1 Measurement of Receiver Characteristics

Table C.3.1-1 is applicable for measurements on the Receiver Characteristics (clause 7).

Table C.3.1-1: Downlink Physical Channels transmitted during a connection (FDD and TDD)

Physical Channel	EPRE Ratio
PBCH	PBCH_RA = 0 dB
	PBCH_RB = 0 dB
PSS	$PSS_RA = 0 dB$
SSS	$SSS_RA = 0 dB$
PCFICH	PCFICH_RB = 0 dB
PDCCH	PDCCH_RA = 0 dB
	PDCCH_RB = 0 dB
PDSCH	PDSCH_RA = 0 dB
	PDSCH_RB = 0 dB
OCNG	OCNG_RA = 0 dB
	OCNG_RB = 0 dB

NOTE 1: No boosting is applied.

Table C.3.1-2: Power allocation for OFDM symbols and reference signals

Parameter	Unit	Value	Note
Transmitted power spectral density I_{or}	dBm/15 kHz	Test specific	1. I_{or} shall be kept constant throughout all OFDM symbols
Cell-specific reference		0 dB	
signal power ratio $E_{\it RS}$ / $I_{\it or}$			

C.3.2 Measurement of Performance requirements

Table C.3.2-1 is applicable for measurements in which uniform RS-to-EPRE boosting for all downlink physical channels, unless otherwise stated.

Table C.3.2-1: Downlink Physical Channels transmitted during a connection (FDD and TDD)

Physical Channel	EPRE Ratio
PBCH	PBCH_RA = ρ_A + σ
	PBCH_RB = ρ_B + σ
PSS	PSS_RA = 0 (Note 3)
SSS	SSS_RA = 0 (Note 3)
PCFICH	PCFICH_RB = ρ_B + σ
PDCCH	PDCCH_RA = ρ_A + σ
	PDCCH_RB = ρ_B + σ
EPDCCH	EPDCCH_RA = $\rho_A + \delta$
	EPDCCH_RB = $\rho_B + \delta$
PDSCH	PDSCH_RA = ρ _A
	PDSCH_RB = ρ_B
PMCH	$PMCH_RA = \rho_A$
	PMCH_RB = ρ _B
MBSFN RS	MBSFN RS_RA = ρ _A
	MBSFN RS_RB = ρ_B
OCNG	OCNG_RA = ρ_A + σ
	OCNG_RB = ρ_B + σ

NOTE 1: $\rho_A = \rho_B = 0$ dB means no RS boosting.

NOTE 2: MBSFN RS and OCNG are not defined downlink physical channels in [4].

NOTE 3: Assuming PSS and SSS transmitted on a single antenna port.

NOTE 4: ρ_A , ρ_B , σ , and δ are test specific.

Table C.3.2-2: Power allocation for OFDM symbols and reference signals

Parameter	Unit	Value	Note
Total transmitted power spectral density $I_{\it or}$	dBm/15 kHz	Test specific	1. I_{or} shall be kept constant throughout all OFDM symbols
Cell-specific reference		Test specific	1. Applies for antenna
signal power ratio $E_{\it RS}$ / $I_{\it or}$			port p
Energy per resource element EPRE		Test specific	1. The complex-valued symbols $y^{(p)}(i)$ and
			$a_{k,l}^{(p)}$ defined in [4] shall
			conform to the given EPRE value. 2. For TM8, TM9 and
			TM10 the reference point for EPRE is before the
			precoder in Annex B.4.

C.3.3 Aggressor cell power allocation for Measurement of Performance Requirements when ABS is Configured

For the performance requirements and channel state information reporting when ABS is configured, the power allocation for the physical channels of the aggressor cell in non-ABS and ABS is listed in Table C.3.3-1.

Table C.3.3-1: Downlink physical channels transmitted in aggressor cell when ABS is configured in this cell

Dhysical Channel	Parameters	Unit	EP	RE Ratio		
Physical Channel			Non-ABS	ABS		
PBCH	PBCH_RA	dB	ρΑ	Note 1		
PBCH	PBCH_RB	dB	ρв	Note 1		
PSS	PSS_RA	dB	ρΑ	Note 1		
SSS	SSS_RA	dB	ρΑ	Note 1		
PCFICH	PCFICH_RB	dB	ρв	Note 1		
PHICH	PHICH_RA	dB	ρΑ	Note 1		
Phich	PHICH_RB	dB	ρв	Note 1		
PDCCH	PDCCH_RA	dB	ρΑ	Note 1		
PDCCH	PDCCH_RB	dB	ρв	Note 1		
PDSCH	PDSCH_RA	dB	N/A	Note 1		
PDSCH	PDSCH_RB	dB	N/A	Note 1		
OCNG	OCNG_RA	dB	ρΑ	Note 1		
OCING	OCNG_RB	dB	ρв	Note 1		
Note 1: -∞ dB is allocated for this channel in this test.						

Table C.3.3-2: Downlink physical channels transmitted in aggressor cell when ABS is configured in this cell when the CRS assistance information is provided

Physical Channel	Parameters	Unit	EP	RE Ratio			
Physical Channel		Unit	Non-ABS	ABS			
PBCH	PBCH_RA	dB	ρΑ	ρΑ			
PBCH	PBCH_RB	dB	ρв	ρв			
PSS	PSS_RA	dB	ρΑ	ρΑ			
SSS	SSS_RA	dB	ρΑ	ρΑ			
PCFICH	PCFICH_RB	dB	ρв	Note 1			
PHICH	PHICH_RA	dB	ρΑ	Note 1			
PHICH	PHICH_RB	dB	ρв	Note 1			
PDCCH	PDCCH_RA	dB	ρΑ	Note 1			
PDCCH	PDCCH_RB	dB	ρв	Note 1			
PDSCH	PDSCH_RA	dB	N/A	Note 1			
PDSCH	PDSCH_RB	dB	N/A	Note 1			
OCNG	OCNG_RA	dB	ρΑ	Note 1			
CONG	OCNG_RB	dB	ρв	Note 1			
Note 1: -∞ dB is allocated for this channel in this test.							

C.3.4 Power Allocation for Measurement of Performance Requirements when Quasi Co-location Type B: same Cell ID

For the performance requirements related to quasi-colocation type B behaviour when transmission points share the same Cell ID, the power allocation for the physical channels of the serving cell is listed in Table C.3.4-1 and the power allocation for the physical channels of the cell transmitting PDSCH is listed in Table C.3.4-2

Table C.3.4-1: Downlink physical channels transmitted in the serving cell (TP1)

Physical Channel	EPRE Ratio
PBCH	PBCH_RA = ρ_A + σ
	PBCH_RB = ρ_B + σ
PSS	$PSS_RA = 0 (Note 2)$
SSS	$SSS_RA = 0$ (Note 2)
PDSCH	PDSCH_RA = ρ_A
	PDSCH_RB = ρ _B
PCFICH	PCFICH_RB = ρ_B + σ
PDCCH	PDCCH_RA = ρ_A + σ
	PDCCH_RB = ρ_B + σ

NOTE 1: $\rho_A = \rho_B = 0$ dB means no RS boosting.

NOTE 2: Assuming PSS and SSS transmitted on a single antenna port.

NOTE 3: ρ_A , ρ_B and σ are test specific.

Table C.3.4-2: Downlink physical channels for the transmission point transmitting PDSCH (TP2)

Physical Channel	Value
PDSCH	Test Specific

C.3.5 Simplified CA testing method

For CA tests which require more than 16 independent faders, if a test system cannot support a throughput measurement with fading on all carriers simultaneously, the simplified CA testing method shall be used.

In the simplified CA testing method, the resulting propagation channel(s) shall be generated by considering a number of independent faders needed for one carrier and connecting them to the signal of randomly chosen carrier(s). The maximum number of channel faders on the test will be less than or equal to 16. The remaining carrier(s) shall be connected without a channel fader but with AWGN. The throughput is then collected only for the carrier(s) connected to channel faders.

In the simplified CA testing method, the test shall be repeated by choosing carrier(s) excluding already chosen carrier(s) until all the carrier(s) are tested under fading conditions. All the collected throughtputs from each carrier shall be compared against the reference value of the requirements.

All supported carriers shall be configured and activated during the test.

Annex D (normative): Characteristics of the interfering signal

D.1 General

When the channel band width is wider or equal to 5MHz, a modulated 5MHz full band width E-UTRA down link signal and CW signal are used as interfering signals when RF performance requirements for E-UTRA UE receiver are defined. For channel band widths below 5MHz, the band width of modulated interferer should be equal to band width of the received signal.

D.2 Interference signals

Table D.2-1 describes the modulated interferer for different channel band width options.

Table D.2-1: Description of modulated E-UTRA interferer

	Channel bandwidth								
	1.4 MHz	1.4 MHz 3 MHz 5 MHz 10 MHz 15 MHz 20 MHz							
BW _{Interferer}	1.4 MHz	3 MHz	5 MHz	5 MHz	5 MHz	5 MHz			
RB	6	15	25	25	25	25			

Annex E (normative): Environmental conditions

E.1 General

This normative annex specifies the environmental requirements of the UE. Within these limits the requirements of the present documents shall be fulfilled.

E.2 Environmental

The requirements in this clause apply to all types of UE(s).

E.2.1 Temperature

The UE shall fulfil all the requirements in the full temperature range of:

Table E.2.1-1

+15°C to +35°	°C	for normal conditions (with relative humidity of 25 % to 75 %)
-10°C to +55°	С	for extreme conditions (see IEC publications 68-2-1 and 68-2-2)

Outside this temperature range the UE, if powered on, shall not make ineffective use of the radio frequency spectrum. In no case shall the UE exceed the transmitted levels as defined in clause 6.2 for extreme operation.

E.2.2 Voltage

The UE shall fulfil all the requirements in the full voltage range, i.e. the voltage range between the extreme voltages.

The manufacturer shall declare the lower and higher extreme voltages and the approximate shutdown voltage. For the equipment that can be operated from one or more of the power sources listed below, the lower extreme voltage shall not be higher, and the higher extreme voltage shall not be lower than that specified below.

Table E.2.2-1

Power source	Lower extreme voltage	Higher extreme voltage	Normal conditions voltage
AC mains	0.9 * nominal	1.1 * nominal	nominal
Regulated lead acid battery	0,9 * nominal	1.3 * nominal	1,1 * nominal
_ •	0,9 11011111111	1,3 Horriinai	1,1 Hominai
Non regulated batteries:			
Leclanché	0,85 * nominal	Nominal	Nominal
Lithium	0,95 * nominal	1,1 * Nominal	1,1 * Nominal
Mercury/nickel & cadmium	0,90 * nominal		Nominal

Outside this voltage range the UE if powered on, shall not make ineffective use of the radio frequency spectrum. In no case shall the UE exceed the transmitted levels as defined in clause 6.2 for extreme operation. In particular, the UE shall inhibit all RF transmissions when the power supply voltage is below the manufacturer declared shutdown voltage.

E.2.3 Vibration

The UE shall fulfil all the requirements when vibrated at the following frequency/amplitudes.

Table E.2.3-1

Frequency	ASD (Acceleration Spectral Density) random vibration
5 Hz to 20 Hz	$0.96 \text{ m}^2/\text{s}^3$
20 Hz to 500 Hz	0,96 m ² /s ³ at 20 Hz, thereafter –3 dB/Octave

Outside the specified frequency range the UE, if powered on, shall not make ineffective use of the radio frequency spectrum. In no case shall the UE exceed the transmitted levels as defined in TS 36.101 for extreme operation.

Annex F (normative): Transmit modulation

F.1 Measurement Point

Figure F.1-1 shows the measurement point for the unwanted emission falling into non-allocated RB(s) and the EVM for the allocated RB(s).

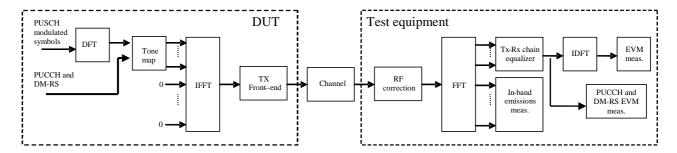


Figure F.1-1: EVM measurement points

F.2 Basic Error Vector Magnitude measurement

The EVM is the difference between the ideal waveform and the measured waveform for the allocated RB(s)

$$EVM = \sqrt{\frac{\sum_{v \in T_m} |z'(v) - i(v)|^2}{|T_m| \cdot P_0}},$$

where

 T_m is a set of $|T_m|$ modulation symbols with the considered modulation scheme being active within the measurement period,

z'(v) are the samples of the signal evaluated for the EVM,

i(v) is the ideal signal reconstructed by the measurement equipment, and

 P_0 is the average power of the ideal signal. For normalized modulation symbols P_0 is equal to 1.

The basic EVM measurement interval is defined over one slot in the time domain for PUCCH and PUSCH and over one preamble sequence for the PRACH.

F.3 Basic in-band emissions measurement

The in-band emissions are a measure of the interference falling into the non-allocated resources blocks. The in-band emission requirement is evaluated for PUCCH and PUSCH transmissions. The in-band emission requirement is not evaluated for PRACH transmissions.

The in-band emissions are measured as follows

$$Emissions_{absolute}(\Delta_{RB}) = \begin{cases} \frac{1}{|T_{s}|} \sum_{t \in T_{s}} \sum_{\substack{\max(f_{\min}, f_{l} + 12 \cdot \Delta_{RB} * \Delta f) \\ \min(f_{\max}, f_{h} + 12 \cdot \Delta_{RB} * \Delta f)}} |Y(t, f)|^{2}, \Delta_{RB} < 0 \\ \frac{1}{|T_{s}|} \sum_{t \in T_{s}} \sum_{\substack{f_{h} + (12 \cdot \Delta_{RB} - 11) * \Delta f \\ f_{h} + (12 \cdot \Delta_{RB} - 11) * \Delta f}} |Y(t, f)|^{2}, \Delta_{RB} > 0 \end{cases}$$

where

 T_s is a set of $|T_s|$ SC-FDMA symbols with the considered modulation scheme being active within the measurement period,

 Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g. $\Delta_{RB}=1$ or $\Delta_{RB}=-1$ for the first adjacent RB),

 f_{\min} (resp. f_{\max}) is the lower (resp. upper) edge of the UL system BW,

 f_l and f_h are the lower and upper edge of the allocated BW, and

Y(t, f) is the frequency domain signal evaluated for in-band emissions as defined in the subsection (ii)

The relative in-band emissions are, given by

$$Emissions_{relative}(\Delta_{RB}) = \frac{Emissions_{absolute}(\Delta_{RB})}{\frac{1}{\left|T_{s}\right| \cdot N_{RB}} \sum_{t \in T_{s}}^{f_{l} + \left(12 \cdot N_{RB} - 1\right) \Delta f} \left|Y(t, f)\right|^{2}}$$

where

 N_{RR} is the number of allocated RBs

The basic in-band emissions measurement interval is defined over one slot in the time domain. When the PUSCH or PUCCH transmission slot is shortened due to multiplexing with SRS, the in-band emissions measurement interval is reduced by one SC-FDMA symbol, accordingly.

In the evaluation of in-band emissions, the timing is set according to $\Delta \tilde{t} = \Delta \tilde{c}$, where sample time offsets $\Delta \tilde{t}$ and $\Delta \tilde{c}$ are defined in subclause F.4.

F.4 Modified signal under test

Implicit in the definition of EVM is an assumption that the receiver is able to compensate a number of transmitter impairments.

The PUSCH data or PRACH or Physical Sidelink Channel signal under test is modified and, in the case of PUSCH or Physical Sidelink Channel data signal, decoded according to:

$$Z'(t,f) = IDFT \left\{ \frac{FFT \left\{ z(v - \Delta \widetilde{t}) \cdot e^{-j2\pi \Delta \widetilde{f}v} \right\} e^{j2\pi f\Delta \widetilde{t}}}{\widetilde{a}(t,f) \cdot e^{j\widetilde{\varphi}(t,f)}} \right\}$$

where

z(v) is the time domain samples of the signal under test.

The PUCCH or PUSCH or Physical Sidelink Channel demodulation reference signal or PUCCH data signal under test is equalised and, in the case of PUCCH data signal decoded according to:

$$Z'(t,f) = \frac{FFT\left\{z(v - \Delta \tilde{t}) \cdot e^{-j2\pi\Delta \tilde{f}v}\right\} e^{j2\pi j\Delta \tilde{t}}}{\tilde{a}(t,f) \cdot e^{j\tilde{\varphi}(t,f)}} e^{j2\pi j\Delta \tilde{t}}}$$

where

z(v) is the time domain samples of the signal under test.

To minimize the error, the signal under test should be modified with respect to a set of parameters following the procedure explained below.

Notation:

 $\Delta \tilde{t}$ is the sample timing difference between the FFT processing window in relation to nominal timing of the ideal signal.

 $\Delta \tilde{f}$ is the RF frequency offset.

 $\widetilde{\varphi}(t,f)$ is the phase response of the TX chain.

 $\tilde{a}(t, f)$ is the amplitude response of the TX chain.

In the following $\Delta \tilde{c}$ represents the middle sample of the EVM window of length W (defined in the next subsections) or the last sample of the first window half if W is even.

The EVM analyser shall

- detect the start of each slot and estimate $\Delta \tilde{t}$ and $\Delta \tilde{f}$,
- \blacktriangleright determine $\Delta \tilde{c}$ so that the EVM window of length W is centred
 - on the time interval determined by the measured cyclic prefix minus 16 samples of the considered OFDM symbol for symbol 0 for normal CP, i.e. the first 16 samples of the CP should not be taken into account for this step. In the determination of the number of excluded samples, a sampling rate of 30.72MHz was assumed. If a different sampling rate is used, the number of excluded samples is scaled linearly.
 - on the measured cyclic prefix of the considered OFDM symbol symbol for symbol 1 to 6 for normal CP and for symbol 0 to 5 for extended CP.
 - on the measured preamble cyclic prefix for the PRACH

To determine the other parameters a sample timing offset equal to $\Delta \tilde{c}$ is corrected from the signal under test. The EVM analyser shall then

- ightharpoonup correct the RF frequency offset $\Delta \widetilde{f}$ for each time slot, and
- > apply an FFT of appropriate size. The chosen FFT size shall ensure that in the case of an ideal signal under test, there is no measured inter-subcarrier interference.

The carrier leakage shall be removed from the evaluated signal before calculating the EVM and the in-band emissions; however, the removed relative carrier leakage power also has to satisfy the applicable requirement.

At this stage the allocated RBs shall be separated from the non-allocated RBs. In the case of PUCCH and PUSCH EVM, the signal on the non-allocated RB(s), Y(t, f), is used to evaluate the in-band emissions.

Moreover, the following procedure applies only to the signal on the allocated RB(s).

- In the case of PUCCH and PUSCH and Physical Sidelink Channel, the UL EVM analyzer shall estimate the TX chain equalizer coefficients $\tilde{a}(t,f)$ and $\tilde{\varphi}(t,f)$ used by the ZF equalizer for all subcarriers by time averaging at each signal subcarrier of the amplitude and phase of the reference and data symbols. The time-averaging length is 1 slot. This process creates an average amplitude and phase for each signal subcarrier used by the ZF equalizer. The knowledge of data modulation symbols may be required in this step because the determination of symbols by demodulation is not reliable before signal equalization.
- In the case of PRACH, the UL EVM analyzer shall estimate the TX chain coefficients $\widetilde{a}(t)$ and $\widetilde{\varphi}(t)$ used for phase and amplitude correction and are seleted so as to minimize the resulting EVM. The TX chain coefficients are not dependent on frequency, i.e. $\widetilde{a}(t,f)=\widetilde{a}(t)$ and $\widetilde{\varphi}(t,f)=\widetilde{\varphi}(t)$. The TX chain coefficient are chosen independently for each preamble transmission and for each $\Delta \widetilde{t}$.

At this stage estimates of $\Delta \widetilde{f}$, $\widetilde{a}(t,f)$, $\widetilde{\varphi}(t,f)$ and $\Delta \widetilde{c}$ are available. $\Delta \widetilde{t}$ is one of the extremities of the window W, i.e. $\Delta \widetilde{t}$ can be $\Delta \widetilde{c} + \alpha - \left\lfloor \frac{W}{2} \right\rfloor$ or $\Delta \widetilde{c} + \left\lfloor \frac{W}{2} \right\rfloor$, where $\alpha = 0$ if W is odd and $\alpha = 1$ if W is even. The EVM analyser shall then

- ightharpoonup calculate EVM₁ with $\Delta \tilde{t}$ set to $\Delta \tilde{c} + \alpha \left| \frac{W}{2} \right|$,
- ightharpoonup calculate EVM_h with $\Delta \tilde{t}$ set to $\Delta \tilde{c} + \left\lfloor \frac{W}{2} \right\rfloor$.

F.5 Window length

F.5.1 Timing offset

As a result of using a cyclic prefix, there is a range of $\Delta \tilde{t}$, which, at least in the case of perfect Tx signal quality, would give close to minimum error vector magnitude. As a first order approximation, that range should be equal to the length of the cyclic prefix. Any time domain windowing or FIR pulse shaping applied by the transmitter reduces the $\Delta \tilde{t}$ range within which the error vector is close to its minimum.

F.5.2 Window length

The window length W affects the measured EVM, and is expressed as a function of the configured cyclic prefix length. In the case where equalization is present, as with frequency domain EVM computation, the effect of FIR is reduced. This is because the equalization can correct most of the linear distortion introduced by the FIR. However, the time domain windowing effect can't be removed.

F.5.3 Window length for normal CP

The table below specifies the EVM window length at channel bandwidths 1.4, 3, 5, 10, 15, 20 MHz, for normal CP. The nominal window length for 3 MHz is rounded down one sample to allow the window to be centered on the symbol.

Table F.5.3-1 EVM window length for normal CP

Channel Bandwidth MHz	Cyclic prefix length N_{cp} for symbol 0	Cyclic prefix length N_{cp} for symbols 1 to 6	Nominal FFT size	Cyclic prefix for symbols 1 to 6 in FFT samples	EVM window length W in FFT samples	Ratio of W to CP for symbols 1 to 6 ²
1.4			128	9	5	55.6
3			256	18	12	66.7
5	160	144	512	36	32	88.9
10	100	144	1024	72	66	91.7
15			1536	108	102	94.4
20			2048	144	136	94.4

Note 1: The unit is number of samples, sampling rate of 30.72MHz is assumed.

Note 2: These percentages are informative and apply to symbols 1 through 6. Symbol 0 has a longer CP and therefore a lower percentage.

F.5.4 Window length for Extended CP

The table below specifies the EVM window length at channel bandwidths 1.4, 3, 5, 10, 15, 20 MHz, for extended CP. The nominal window lengths for 3 MHz and 15 MHz are rounded down one sample to allow the window to be centered on the symbol.

Table F.5.4-1 EVM window length for extended CP

Channel Bandwidth MHz	$\begin{array}{c} \text{Cyclic} \\ \text{prefix} \\ \text{length}^{\text{1}} N_{cp} \end{array}$	Nominal FFT size	Cyclic prefix in FFT samples	EVM window length W in FFT samples	Ratio of W to CP ²
1.4		128	32	28	87.5
3		256	64	58	90.6
5	512	512	128	124	96.9
10	512	1024	256	250	97.4
15		1536	384	374	97.4
20		2048	512	504	98.4

Note 1: The unit is number of samples, sampling rate of 30.72MHz is assumed.

Note 2: These percentages are informative

F.5.5 Window length for PRACH

The table below specifies the EVM window length for PRACH preamble formats 0-4.

Table F.5.5-1 EVM window length for PRACH

Preamble format	$\begin{array}{c} {\rm Cyclic} \\ {\rm prefix} \\ {\rm length^1} \ N_{cp} \end{array}$	Nominal FFT size ²	EVM window length W in FFT samples	Ratio of <i>W</i> to CP*
0	3168	24576	3072	96.7%
1	21024	24576	20928	99.5%
2	6240	49152	6144	98.5%
3	21024	49152	20928	99.5%
4	448	4096	432	96.4%

Note 1: The unit is number of samples, sampling rate of 30.72MHz is assumed

Note 2: The use of other FFT sizes is possible as long as appropriate scaling of the window length is applied

Note 3: These percentages are informative

F.6 Averaged EVM

The general EVM is averaged over basic EVM measurements for n slots in the time domain.

$$\overline{EVM} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} EVM_{i}^{2}},$$

where n is

n = 20 for PUCCH, PUSCH, PSDCH, PSCCH, and PSSCH,

n = 48 for PBSCH.

The EVM requirements shall be tested against the maximum of the RMS average at the window W extremities of the EVM measurements:

Thus $\overline{\text{EVM}}_1$ is calculated using $\Delta \tilde{t} = \Delta \tilde{t}_l$ in the expressions above and $\overline{\text{EVM}}_h$ is calculated using $\Delta \tilde{t} = \Delta \tilde{t}_h$.

Thus we get:

$$EVM = \max(\overline{EVM}_1, \overline{EVM}_h)$$

The calculation of the EVM for the demodulation reference signal, EVM_{DMRS} , follows the same procedure as calculating the general EVM, with the exception that the modulation symbol set T_m defined in clause F.2 is restricted to symbols containing uplink demodulation reference signals.

The basic EVM_{DMRS} measurements are first averaged over 20 slots in the time domain to obtain an intermediate average EVM_{DMRS} .

$$\overline{EVM}_{DMRS} = \sqrt{\frac{1}{20} \sum_{i=1}^{20} EVM_{DMRS,i}^2}$$

In the determination of each $EVM_{DMRS,i}$, the timing is set to $\Delta \tilde{t} = \Delta \tilde{t}_l$ if $\overline{EVM}_l > \overline{EVM}_h$, and it is set to $\Delta \tilde{t} = \Delta \tilde{t}_l$ otherwise, where \overline{EVM}_l and \overline{EVM}_h are the general average EVM values calculated in the same 20 slots over which the intermediate average \overline{EVM}_{DMRS} is calculated. Note that in some cases, the general average EVM may be calculated only for the purpose of timing selection for the demodulation reference signal EVM.

Then the results are further averaged to get the EVM for the demodulation reference signal, EVM_{DMRS} ,

$$EVM_{DMRS} = \sqrt{\frac{1}{6} \sum_{j=1}^{6} \overline{EVM}_{DMRS,j}^{2}}$$

The PRACH EVM, EVM_{PRACH} , is averaged over two preamble sequence measurements for preamble formats 0, 1, 2, 3, and it is averaged over 10 preamble sequence measurements for preamble format 4.

The EVM requirements shall be tested against the maximum of the RMS average at the window *W* extremities of the EVM measurements:

Thus $\overline{\text{EVM}}_{\text{PRACH,h}}$ is calculated using $\Delta \widetilde{t} = \Delta \widetilde{t}_l$ and $\overline{\text{EVM}}_{\text{PRACH,h}}$ is calculated using $\Delta \widetilde{t} = \Delta \widetilde{t}_h$.

Thus we get:

$$EVM_{PRACH} = \max(\overline{EVM}_{PRACH,1}, \overline{EVM}_{PRACH,h})$$

F.7 Spectrum Flatness

The data shall be taken from FFT coded data symbols and the demodulation reference symbols of the allocated resource block.

Annex G (informative): Reference sensitivity level in lower SNR

This annex contains information on typical receiver sensitivity when HARQ transmission is enabled allowing operation in lower SNR regions (HARQ is disabled in conformance testing), thus representing the configuration normally used in live network operation under noise-limited conditions.

G.1 General

The reference sensitivity power level P_{SENS} with HARQ retransmission enabled (operation in lower SNR) is the minimum mean power applied to both the UE antenna ports at which the residual BLER after HARQ shall meet the requirements for the specified reference measurement channel. The residual BLER after HARQ transmission is defined as follows:

$$BLER_{residual} = 1 - \frac{A}{B}$$

A: Number of correctly decoded MAC PDUs

B: Number of transmitted MAC PDUs (Retransmitted MAC PDUs are not counted)

G.2 Typical receiver sensitivity performance (QPSK)

The residual BLER after HARQ shall be lower than 1% for the reference measurement channels as specified in Annexes G.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table G.2-1 and Table G.2-2

Table G.2-1: Reference sensitivity QPSK PSENS

			annel bar				
E-UTRA Band	1.4 MHz (dBm)	3 MHz (dBm)	5 MHz (dBm)	10 MHz (dBm)	15 MHz (dBm)	20 MHz (dBm)	Duplex Mode
1				[-102]			FDD
2				TBD			FDD
3				TBD			FDD
4				TBD			FDD
5				TBD			FDD
6				TBD			FDD
7				TBD			FDD
8				TBD			FDD
9				TBD			FDD
10				TBD			FDD
11				TBD			FDD
12				TBD			FDD
13				TBD			FDD
14				TBD			FDD
17				TBD			FDD
18				TBD			FDD
19				TBD			FDD
20				TBD			FDD
21				TBD			FDD
22				TBD			FDD
23				TBD			FDD
26				TBD			FDD
27				TBD			FDD
28				TBD			FDD
30				TBD			FDD
31			TBD				FDD
33				[-102]			TDD
34				[-102]			TDD
35				[-102]			TDD
36				[-102]			TDD
37				[-102]			TDD
38				[-102]			TDD
39				[-102]			TDD
40				[-102]			TDD
42				[-102]			TDD
43				[-102]			TDD
44				[-102]			TDD

Reference measurement channel is G.3 with one sided dynamic OCNG Pattern Note 2: OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1

Note 3: The signal power is specified per port

Note 5:

For the UE which supports both Band 3 and Band 9 the reference sensitivity Note 4: level is FFS.

For the UE which supports both Band 11 and Band 21 the reference sensitivity level is FFS.

Table G.2-2 specifies the minimum number of allocated uplink resource blocks for which the reference receive sensitivity requirement in lower SNR must be met.

Table G.2-2: Minimum uplink configuration for reference sensitivity

E-UTRA Band	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	Duplex Mode
1				[6] ¹			FDD
2				[6] ¹			FDD
3				[6] ¹			FDD
4				[6] ¹			FDD
5				[6] ¹			FDD
6				[6] ¹			FDD
7				[6] ¹			FDD
8				[6] ¹			FDD
9				[6] ¹			FDD
10				[6] ¹			FDD
11				[6] ¹			FDD
12				[6] ¹			FDD
13				[6] ¹			FDD
14				[6] ¹			FDD
17				[6] ¹			FDD
18				[6] ¹			FDD
19				[6] ¹			FDD
20				[6] ¹			FDD
22				[6] ¹			FDD
21				[6] ¹			FDD
23				[6] ¹			FDD
26				[6] ¹			FDD
27				[6] ¹			FDD
28				[6] ¹			FDD
30				[6] ¹			FDD
31			[5] ⁴				FDD
33				50			TDD
34				50			TDD
35				50			TDD
36				50			TDD
37				50			TDD
38				50			TDD
39				50			TDD
40				50			TDD
42				50			TDD
43				50			TDD
44				50			TDD

downlink operating band but confined within the transmission bandwidth configuration for the channel bandwidth (Table 5.6-1).
For the UE which supports both Band 11 and Band 21 the minimum

Note 2: uplink configuration for reference sensitivity is FFS.

For Band 20; in the case of 15MHz channel bandwidth, the UL resource Note 3: blocks shall be located at RBstart _11 and in the case of 20MHz channel bandwidth, the UL resource blocks shall be located at RBstart _16

For Band 31; in the case of 5MHz channel bandwidth, the UL resource Note 4: blocks shall be located at RBstart _10

Unless given by Table G.2-3, the minimum requirements specified in Tables G.2-1 and G.2-2 shall be verified with the network signalling value NS_01 (Table 6.2.4-1) configured.

Table G.2-3: Network Signalling Value for reference sensitivity

E-UTRA Band	Network Signalling value
2	NS_03
4	NS_03
10	NS_03
12	NS_06
13	NS_06
14	NS_06
17	NS_06
19	NS_08
21	NS_09
23	NS_03
30	NS_21
35	NS_03
36	NS_03

G.3 Reference measurement channel for REFSENSE in lower SNR

Tables G.3-1 and G.3-2 are applicable for Annex G.2 (Reference sensitivity level in lower SNR).

Table G.3-1 Fixed Reference Channel for Receiver Requirements (FDD)

Parameter	Unit		Va	lue		
Channel bandwidth	MHz		5	10		
Allocated resource blocks			25	50		
Subcarriers per resource block			12	12		
Allocated subframes per Radio Frame			9	9		
Modulation			QPSK	QPSK		
Target Coding Rate			1/3	1/3		
Number of HARQ Processes	Processes		8	8		
Maximum number of HARQ transmissions			[4]	[4]		
Information Bit Payload per Sub-Frame						
For Sub-Frames 1,2,3,4,6,7,8,9	Bits		2216	4392		
For Sub-Frame 5	Bits		N/A	N/A		
For Sub-Frame 0	Bits		1800	4392		
Transport block CRC	Bits		24	24		
Number of Code Blocks per Sub-Frame						
(Note 4)						
For Sub-Frames 1,2,3,4,6,7,8,9	Bits		1	1		
For Sub-Frame 5	Bits		N/A	N/A		
For Sub-Frame 0	Bits		1	1		
Binary Channel Bits Per Sub-Frame						
For Sub-Frames 1,2,3,4,6,7,8,9	Bits		6300	13800		
For Sub-Frame 5	Bits		N/A	N/A		
For Sub-Frame 0	Bits		5460	12960		
Max. Throughput averaged over 1 frame	kbps	_	1952.	3952.	_	
			8	8		
UE Category			1-8	1-8		

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10MHz channel BW. 3 symbols allocated to PDCCH for 5 MHz and 3 MHz. 4 symbols allocated to PDCCH for 1.4 MHz

Note 2: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4]

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Note 4: Redundancy version coding sequence is {0, 1, 2, 3} for QPSK.

Table G.3-2 Fixed Reference Channel for Receiver Requirements (TDD)

Parameter	Unit	Value
Channel Bandwidth	MHz	10
Allocated resource blocks		50
Uplink-Downlink Configuration (Note 5)		1 1
Allocated subframes per Radio Frame		4+2
(D+S)		
Number of HARQ Processes	Processes	7
Maximum number of HARQ transmission		[4]
Modulation		QPSK
Target coding rate		1/3
Information Bit Payload per Sub-Frame	Bits	
For Sub-Frame 4, 9		4392
For Sub-Frame 1, 6		3240
For Sub-Frame 5		N/A
For Sub-Frame 0		4392
Transport block CRC	Bits	24
Number of Code Blocks per Sub-Frame		
(Note 5)		
For Sub-Frame 4, 9		1 1
For Sub-Frame 1, 6		1
For Sub-Frame 5		N/A
For Sub-Frame 0		1
Binary Channel Bits Per Sub-Frame	Bits	
For Sub-Frame 4, 9		13800
For Sub-Frame 1, 6		11256
For Sub-Frame 5		N/A
For Sub-Frame 0		13104
Max. Throughput averaged over 1 frame	kbps	1965.
		6
UE Category		1-5

- Note 1: For normal subframes(0,4,5,9), 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For special subframe (1&6), only 2 OFDM symbols are allocated to PDCCH for all BWs.
- For 1.4MHz, no data shall be scheduled on special subframes(1&6) to avoid problems with Note 2: insufficient PDCCH performance
- Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4] Note 3:
- If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to Note 4: each Code Block (otherwise L = 0 Bit). As per Table 4.2-2 in TS 36.211 [4]
- Note 5:
- Redundancy version coding sequence is {0, 1, 2, 3} for QPSK. Note 6:

Annex H (normative): Modified MPR behavior

H.1 Indication of modified MPR behavior

This annex contains the definitions of the bits in the field *modifiedMPRbehavior* indicated in the IE UE Radio Access Capability [7] by a UE supporting an MPR or A-MPR modified in a later release of this specification.

Table H.1-1: Definitions of the bits in the field modifiedMPRbehavior

Index of field	Definition	Notes
(bit number)	(description of the supported functionality if indicator	
	set to one)	
0 (leftmost bit)	- The MPR for intra-band contiguous carrier	- This bit shall be set to 1 by
	aggregation bandwidth class C with non-contiguous	a UE supporting intra-band
	resource allocation specified in Clause 6.2.3A in	contiguous CA bandwidth
	version 12.5.0 of this specification	class C
1	- The A-MPR associated with NS_05 for Band 1 in	- This bit shall be set to 1 by
	Clause 6.2.4 in version 12.10.0 of this specification.	a UE supporting A-MPR
		associated to NS_05 for
		Band 1.
2	The A-MPR associated with NS_04 for Band 41 in	This bit can be set to 1 by a
	Table 6.2.4-4 in version 14.1.0 of this specification.	power class 3 UE
		supporting A-MPR
		associated to NS_04 for
		Band 41.

Annex I (informative): Change history

Table I.1: Change History

Date	Meeting	TDoc	CR	Re v	Cat	Subject/Comment	New version
11-2007	R4#45	R4-72206				TS36.101V0.1.0 approved by RAN4	
12-2007	RP#38	RP-070979				Approved version at TSG RAN #38	8.0.0
03-2008	RP#39	RP-080123	3			TS36.101 - Combined updates of E-UTRA UE requirements	8.1.0
05-2008	RP#40	RP-080325	4			TS36.101 - Combined updates of E-UTRA UE requirements	8.2.0
09-2008	RP#41	RP-080638	5r1			Addition of Ref Sens figures for 1.4MHz and 3MHz Channel bandwiidths	8.3.0
09-2008	RP#41	RP-080638	7r1			Transmitter intermodulation requirements	8.3.0
09-2008	RP#41	RP-080638	10			CR for clarification of additional spurious emission requirement	8.3.0
09-2008	RP#41	RP-080638	15			Correction of In-band Blocking Requirement	8.3.0
09-2008	RP#41	RP-080638	18r1			TS36.101: CR for section 6: NS_06	8.3.0
09-2008	RP#41	RP-080638	19r1			TS36.101: CR for section 6: Tx modulation	8.3.0
09-2008	RP#41	RP-080638	20r1			TS36.101: CR for UE minimum power	8.3.0
09-2008	RP#41	RP-080638	21r1			TS36.101: CR for UE OFF power	8.3.0
09-2008	RP#41	RP-080638	24r1			TS36.101: CR for section 7: Band 13 Rx sensitivity	8.3.0
09-2008	RP#41	RP-080638	26			UE EVM Windowing	8.3.0
09-2008	RP#41	RP-080638	29			Absolute ACLR limit	8.3.0
09-2008	RP#41	RP-080731	23r2			TS36.101: CR for section 6: UE to UE co-existence	8.3.0
09-2008	RP#41	RP-080731	30			Removal of [] for UE Ref Sens figures	8.3.0
09-2008	RP#41	RP-080731	31			Correction of PA, PB definition to align with RAN1 specification	8.3.0
09-2008	RP#41	RP-080731	37r2			UE Spurious emission band UE co-existence	8.3.0
09-2008	RP#41	RP-080731	44			Definition of specified bandwidths	8.3.0
09-2008	RP#41	RP-080731	48r3			Addition of Band 17	8.3.0
09-2008	RP#41	RP-080731	50			Alignment of the UE ACS requirement	8.3.0
09-2008	RP#41	RP-080731	52r1			Frequency range for Band 12	8.3.0
09-2008	RP#41	RP-080731	54r1			Absolute power tolerance for LTE UE power control	8.3.0
09-2008	RP#41	RP-080731	55			TS36.101 section 6: Tx modulation	8.3.0
09-2008	RP#41	RP-080732	6r2			DL FRC definition for UE Receiver tests	8.3.0
09-2008	RP#41	RP-080732	46			Additional UE demodulation test cases	8.3.0
09-2008	RP#41	RP-080732	47			Updated descriptions of FRC	8.3.0
09-2008	RP#41	RP-080732	49			Definition of UE transmission gap	8.3.0
09-2008	RP#41	RP-080732	51			Clarification on High Speed train model in 36.101	8.3.0
09-2008	RP#41	RP-080732	53			Update of symbol and definitions	8.3.0
09-2008	RP#41	RP-080743	56			Addition of MIMO (4x2) and (4x4) Correlation Matrices	8.3.0
12-2008	RP#42	RP-080908	94r2			CR TX RX channel frequency separation	8.4.0
12-2008	RP#42	RP-080909	105r1			UE Maximum output power for Band 13	8.4.0
12-2008	RP#42	RP-080909	60			UL EVM equalizer definition	8.4.0
12-2008	RP#42	RP-080909	63			Correction of UE spurious emissions	8.4.0
12-2008	RP#42	RP-080909	66			Clarification for UE additional spurious emissions	8.4.0
12-2008	RP#42	RP-080909	72			Introducing ACLR requirement for coexistance with UTRA 1.6MHZ channel from 36.803	8.4.0
12-2008	RP#42	RP-080909	75		1	Removal of [] from Section 6 transmitter characteristics	8.4.0
12-2008	RP#42	RP-080909	81			Clarification for PHS band protection	8.4.0
12-2008	RP#42	RP-080909	101			Alignement for the measurement interval for transmit signal quality	8.4.0
12-2008	RP#42	RP-080909	98r1			Maximum power	8.4.0
12-2008	RP#42	RP-080909	57r1	1		CR UE spectrum flatness	8.4.0
12-2008	RP#42	RP-080909	71r1	1		UE in-band emission	8.4.0
12-2008	RP#42	RP-080909	58r1	1		CR Number of TX exceptions	8.4.0
12-2008	RP#42	RP-080951	99r2	1		CR UE output power dynamic	8.4.0
12-2008	RP#42	RP-080951	79r1	1		LTE UE transmitter intermodulation	8.4.0
12-2008	RP#42	RP-080931	91			Update of Clause 8	8.4.0
12-2008	RP#42	RP-080910	106r1			Structure of Clause 9 including CSI requirements for PUCCH	8.4.0
12-2008	RP#42	RP-080911	59	1		mode 1-0 CR UE ACS test frequency offset	8.4.0
12-2008				-			8.4.0
1 /= /IIIX	RP#42	RP-080911	65	1		Correction of spurious response parameters	0.4.0

12-2008	RP#42	RP-080911	90r1	Introduction of Maximum Sensitivity Degradation	8.4.0
12-2008	RP#42	RP-080911	103	Removal of [] from Section 7 Receiver characteristic	8.4.0
12-2008	RP#42	RP-080912	62	Alignement of TB size n Ref Meas channel for RX characteristics	8.4.0
12-2008	RP#42	RP-080912	78	TDD Reference Measurement channel for RX characterisctics	8.4.0
12-2008	RP#42	RP-080912	73r1	Addition of 64QAM DL referenbce measurement channel	8.4.0
12-2008	RP#42	RP-080912	74r1	Addition of UL Reference Measurement Channels	8.4.0
12-2008	RP#42	RP-080912	104	Reference measurement channels for PDSCH performance requirements (TDD)	8.4.0
12-2008	RP#42	RP-080913	68	MIMO Correlation Matrix Corrections	8.4.0
12-2008	RP#42	RP-080915	67	Correction to the figure with the Transmission Bandwidth configuration	8.4.0
12-2008	RP#42	RP-080916	77	Modification to EARFCN	8.4.0
12-2008	RP#42	RP-080917	85r1	New Clause 5 outline	8.4.0
12-2008	RP#42	RP-080919	102	Introduction of Bands 12 and 17 in 36.101	8.4.0
12-2008	RP#42	RP-080927	84r1	Clarification of HST propagation conditions	8.4.0
03-2009	RP#43	RP-090170	156r2	A-MPR table for NS_07	8.5.0
03-2009	RP#43	RP-090170	170	Corrections of references (References to tables and figures)	8.5.0
03-2009	RP#43	RP-090170	108	Removal of [] from Transmitter Intermodulation	8.5.0
03-2009	RP#43	RP-090170	155	E-UTRA ACLR for below 5 MHz bandwidths	8.5.0
03-2009	RP#43	RP-090170	116	Clarification of PHS band including the future plan	8.5.0
03-2009	RP#43	RP-090170	119	Spectrum emission mask for 1.4 MHz and 3 MHz bandwidhts	8.5.0
03-2009	RP#43	RP-090170	120	Removal of "Out-of-synchronization handling of output power" heading	8.5.0
03-2009	RP#43	RP-090170	126	UE uplink power control	8.5.0
03-2009	RP#43	RP-090170	128	Transmission BW Configuration	8.5.0
03-2009	RP#43	RP-090170	130	Spectrum flatness	8.5.0
03-2009	RP#43	RP-090170	132r2	PUCCH EVM	8.5.0
03-2009	RP#43	RP-090170	134	UL DM-RS EVM	8.5.0
03-2009	RP#43	RP-090170	140	Removal of ACLR2bis requirements	8.5.0
03-2009	RP#43	RP-090171	113	In-band blocking	8.5.0
03-2009	RP#43	RP-090171	127	In-band blocking and sensitivity requirement for band 17	8.5.0
03-2009	RP#43	RP-090171	137r1	Wide band intermodulation	8.5.0
03-2009	RP#43	RP-090171	141	Correction of reference sensitivity power level of Band 9	8.5.0
03-2009	RP#43	RP-090172	109	AWGN level for UE DL demodulation performance tests	8.5.0 8.5.0
03-2009	RP#43	RP-090172	124	Update of Clause 8: additional test cases	8.5.0
03-2009	RP#43 RP#43	RP-090172 RP-090172	139r1 142r1	Performance requirement structure for TDD PDSCH Performance requirements and reference measurement channels for TDD PDSCH demodulation with UE-specific reference	8.5.0
03-2009	RP#43	RP-090172	145	Symbols Number of information bits in DwPTS	8.5.0
03-2009	RP#43	RP-090172	160r1	MBSFN-Unicast demodulation test case	8.5.0
03-2009	RP#43	RP-090172	163r1	MBSFN-Unicast demodulation test case for TDD	8.5.0
03-2009	RP#43	RP-090173	162	Clarification of EARFCN for 36.101	8.5.0
03-2009	RP#43	RP-090173	110	Correction to UL Reference Measurement Channel	8.5.0
03-2009	RP#43	RP-090369	114	Addition of MIMO (4x4, medium) Correlation Matrix	8.5.0
03-2009	RP#43	RP-090369	121	Correction of 36.101 DL RMC table notes	8.5.0
03-2009	RP#43	RP-090369	125	Update of Clause 9	8.5.0
03-2009	RP#43	RP-090369	138r1	Clarification on OCNG	8.5.0
03-2009	RP#43	RP-090369	161	CQI reference measurement channels	8.5.0
03-2009	RP#43	RP-090369	164	PUCCH 1-1 Static Test Case	8.5.0
03-2009	RP#43	RP-090369	111	Reference Measurement Channel for TDD	8.5.0
		111 000000			
03-2009	RP#44			Editorial correction in Table 6.2.4-1	8.5.1
05-2009	RP#44	RP-090540	167	Boundary between E-UTRA fOOB and spurious emission domain for 1.4 MHz and 3 MHz bandwiths. (Technically Endorsed CR in R4-50bis - R4-091205)	8.6.0
05-2009	RP#44	RP-090540	168	EARFCN correction for TDD DL bands. (Technically Endorsed CR in R4-50bis - R4-091206)	8.6.0
05-2009	RP#44	RP-090540	169	Editorial correction to in-band blocking table. (Technically	8.6.0

				Endorsed CR in R4-50bis - R4-091238)	
05-2009	RP#44	RP-090540	171	CR PRACH EVM. (Technically Endorsed CR in R4-50bis - R4-091308)	8.6.0
05-2009	RP#44	RP-090540	172	CR EVM correction. (Technically Endorsed CR in R4-50bis - R4-091309)	8.6.0
05-2009	RP#44	RP-090540	177	CR power control accuracy. (Technically Endorsed CR in R4-50bis - R4-091418)	8.6.0
05-2009	RP#44	RP-090540	179	Correction of SRS requirements. (Technically Endorsed CR in R4-50bis - R4-091426)	8.6.0
05-2009	RP#44	RP-090540	186	Clarification for EVM. (Technically Endorsed CR in R4-50bis - R4-091512)	8.6.0
05-2009	RP#44	RP-090540	187	Removal of [] from band 17 Refsens values and ACS offset frequencies	8.6.0
05-2009	RP#44	RP-090540	191	Completion of band17 requirements	8.6.0
05-2009	RP#44	RP-090540	192	Removal of 1.4 MHz and 3 MHz bandwidths from bands 13, 14 and 17.	8.6.0
05-2009	RP#44	RP-090540	223	CR: 64 QAM EVM	8.6.0
05-2009	RP#44	RP-090540	201	CR In-band emissions	8.6.0
05-2009	RP#44	RP-090540	203	CR EVM exclusion period	8.6.0
05-2009	RP#44	RP-090540	204	CR In-band emissions timing	8.6.0
05-2009	RP#44	RP-090540	206	CR Minimum Rx exceptions	8.6.0
05-2009	RP#44	RP-090540	207	CR UL DM-RS EVM	8.6.0
05-2009	RP#44	RP-090540	218r1	A-MPR table for NS_07	8.6.0
05-2009	RP#44	RP-090540	205r1	CR In-band emissions in shortened subframes	8.6.0
05-2009	RP#44	RP-090540	200r1	CR PUCCH EVM	8.6.0
05-2009	RP#44	RP-090540	178r2	No additional emission mask indication. (Technically Endorsed CR in R4-50bis - R4-091421)	8.6.0
05-2009	RP#44	RP-090540	220r1	Spectrum emission requirements for band 13	8.6.0
05-2009	RP#44	RP-090540	197r2	CR on aggregate power tolerance	8.6.0
05-2009	RP#44	RP-090540	196r2	CR: Rx IP2 performance	8.6.0
05-2009	RP#44	RP-090541	198r1	Maximum output power relaxation	8.6.0
05-2009	RP#44	RP-090542	166	Update of performance requirement for TDD PDSCH with MBSFN configuration. (Technically Endorsed CR in R4-50bis - R4-091180)	8.6.0
05-2009	RP#44	RP-090542	175	Adding AWGN levels for some TDD DL performance requirements. (Technically Endorsed CR in R4-50bis - R4-091406)	8.6.0
05-2009	RP#44	RP-090542	182	OCNG Patterns for Single Resource Block FRC Requirements. (Technically Endorsed CR in R4-50bis - R4-091504)	8.6.0
05-2009	RP#44	RP-090542	170r1	Update of Clause 8: PHICH and PMI delay. (Technically Endorsed CR in R4-50bis - R4-091275)	8.6.0
05-2009	RP#44	RP-090543	183	Requirements for frequency-selective fading test. (Technically Endorsed CR in R4-50bis - R4-091505)	8.6.0
05-2009	RP#44	RP-090543	199	CQI requirements under AWGN conditions	8.6.0
05-2009 05-2009	RP#44 RP#44	RP-090543 RP-090543	188r1 193r1	Adaptation of UL-RMC-s for supporting more UE categories Correction of the LTE UE downlink reference measurement	8.6.0 8.6.0
03-2009	101 #44	1090343	19311	channels	0.0.0
05-2009	RP#44	RP-090543	184r1	Requirements for frequency non-selective fading tests. (Technically Endorsed CR in R4-50bis - R4-091506)	8.6.0
05-2009	RP#44	RP-090543	185r1	Requirements for PMI reporting. (Technically Endorsed CR in R4-50bis - R4-091510)	8.6.0
05-2009	RP#44	RP-090543	221r1	Correction to DL RMC-s for Maximum input level for supporting more UE-Categories	8.6.0
05-2009	RP#44	RP-090543	216	Addition of 15 MHz and 20 MHz bandwidths into band 38	8.6.0
05-2009	RP#44	RP-090559	180	Introduction of Extended LTE800 requirements. (Technically Endorsed CR in R4-50bis - R4-091432)	9.0.0
09-2009	RP#45	RP-090826	239	A-MPR for Band 19	9.1.0
09-2009	RP#45	RP-090822	225	LTE UTRA ACLR1 centre frequency definition for 1.4 and 3 MHz BW	9.1.0
09-2009	RP#45	RP-090822	227	Harmonization of text for LTE Carrier leakage	9.1.0
09-2009	RP#45	RP-090822	229	Sensitivity requirements for Band 38 15 MHz and 20 MHz bandwidths	9.1.0
09-2009	RP#45	RP-090822	236	Operating band edge relaxation of maximum output power for Band 18 and 19	9.1.0
09-2009	RP#45	RP-090822	238	Addition of 5MHz channel bandwidth for Band 40	9.1.0
09-2009	RP#45	RP-090822	245	Removal of unnecessary requirements for 1.4 and 3 MHz bandwidths on bands 13 and 17	9.1.0
09-2009	RP#45	RP-090877	261	Correction of LTE UE ACS test parameter	9.1.0
09-2009	RP#45	RP-090877	263R 1	Correction of LTE UE ACLR test parameter	9.1.0
09-2009	RP#45	RP-090877	286	Uplink power and RB allocation for receiver tests	9.1.0

09-2009	RP#45	RP-090877	220	1 1	CD Consitiuity relevation for small DW	9.1.0
09-2009	RP#45	RP-090877 RP-090877	320 324		CR Sensitivity relaxation for small BW Correction of Band 3 spurious emission band UE co-existence	9.1.0
09-2009	RP#45	RP-090877	249R		CR Pcmax definition (working assumption)	9.1.0
09-2009	RP#45	RP-090877	330		Spectrum flatness clarification	9.1.0
09-2009	RP#45	RP-090877	332		Transmit power: removal of TC and modification of REFSENS note	9.1.0
09-2009	RP#45	RP-090877	282R 1		Additional SRS relative power requirement and update of measurement definition	9.1.0
09-2009	RP#45	RP-090877	284R		Power range applicable for relative tolerance	9.1.0
09-2009	RP#45	RP-090878	233		TDD UL/DL configurations for CQI reporting	9.1.0
09-2009	RP#45	RP-090878	235		Further clarification on CQI test configurations	9.1.0
09-2009	RP#45	RP-090878	243		Corrections to UL- and DL-RMC-s	9.1.0
09-2009	RP#45	RP-090878	247		Reference measurement channel for multiple PMI requirements	9.1.0
09-2009	RP#45	RP-090878	290		CQI reporting test for a scenario with frequency-selective interference	9.1.0
09-2009	RP#45	RP-090878	265R 2		CQI reference measurement channels	9.1.0
09-2009	RP#45	RP-090878	321R 1		CR RI Test	9.1.0
09-2009	RP#45	RP-090875	231		Correction of parameters for demodulation performance requirement	9.1.0
09-2009	RP#45	RP-090875	241R 1		UE categories for performance tests and correction to RMC references	9.1.0
09-2009	RP#45	RP-090875	333		Clarification of Ês definition in the demodulation requirement	9.1.0
09-2009	RP#45	RP-090875	326		Editorial corrections and updates to PHICH PBCH test cases.	9.1.0
09-2009	RP#45	RP-090875	259R 3		Test case numbering in section 8 Performance tests	9.1.0
12-2009	RP-46	RP-091264	335		Test case numbering in TDD PDSCH performance test (Technically endorsed at RAN 4 52bis in R4-093523)	9.2.0
12-2009	RP-46	RP-091261	337		Adding beamforming model for user-specfic reference signal (Technically endorsed at RAN 4 52bis in R4-093525)	9.2.0
12-2009	RP-46	RP-091263	339R 1		Adding redundancy sequences to PMI test (Technically endorsed at RAN 4 52bis in R4-093581)	9.2.0
12-2009	RP-46	RP-091264	341		Throughput value correction at FRC for Maximum input level (Technically endorsed at RAN 4 52bis in R4-093660)	9.2.0
12-2009	RP-46	RP-091261	343		Correction to the modulated E-UTRA interferer (Technically endorsed at RAN 4 52bis in R4-093662)	9.2.0
12-2009	RP-46	RP-091264	345R 1		OCNG: Patterns and present use in tests (Technically endorsed at RAN 4 52bis in R4-093664)	9.2.0
12-2009	RP-46	RP-091264	347		OCNG: Use in receiver and performance tests (Technically endorsed at RAN 4 52bis in R4-093666)	9.2.0
12-2009	RP-46	RP-091263	349		Miscellaneous corrections on CSI requirements (Technically endorsed at RAN 4 52bis in R4-093676)	9.2.0
12-2009	RP-46	RP-091261	351		Removal of RLC modes (Technically endorsed at RAN 4 52bis in R4-093677)	9.2.0
12-2009	RP-46	RP-091261	353		CR Rx diversity requirement (Technically endorsed at RAN 4 52bis in R4-093703)	9.2.0
12-2009	RP-46	RP-091261	355		A-MPR notation in NS_07 (Technically endorsed at RAN 4 52bis in R4-093706)	9.2.0
12-2009	RP-46	RP-091263	359		Single- and multi-PMI requirements (Technically endorsed at RAN 4 52bis in R4-093846)	9.2.0
12-2009	RP-46	RP-091263	363		CQI reference measurement channel (Technically endorsed at RAN 4 52bis in R4-093970)	9.2.0
12-2009	RP-46	RP-091292	364		LTE MBSFN Channel Model (Technically endorsed at RAN 4 52bis in R4-094020)	9.2.0
12-2009	RP-46	RP-091264	367		Numbering of PDSCH (User-Specific Reference Symbols) Demodulation Tests	9.2.0
12-2009	RP-46	RP-091264	369		Numbering of PDCCH/PCFICH, PHICH, PBCH Demod Tests	9.2.0
12-2009	RP-46	RP-091261	371 373R		Remove [] from Reference Measurement Channels in Annex A Corrections to RMC-s for Maximum input level test for low UE	9.2.0
12-2009	RP-46	RP-091264	1		categories	9.2.0
12-2009 12-2009	RP-46 RP-46	RP-091261 RP-091286	377 378		Correction of UE-category for R.30 Introduction of Extended LTE1500 requirements for TS36.101	9.2.0 9.2.0
12-2009	RP-46	RP-091286 RP-091262	384		CR: Removal of 1.4 MHz and 3 MHz channel bandwidths from additional spurious emissions requirements for Band 1 PHS protection	9.2.0
12-2009	RP-46	RP-091262	386R 3		Clarification of measurement conditions of spurious emission requirements at the edge of spurious domain	9.2.0
12-2009	RP-46	RP-091262	390		Spurious emission table correction for TDD bands 33 and 38.	9.2.0
12-2009	RP-46	RP-091262	392R		36.101 Symbols and abreviations for Pcmax	9.2.0

					_
12-2009	RP-46	RP-091262	394	UTRAACLR1 requirement definition for 1.4 and 3 MHz BW completed	9.2.0
12-2009	RP-46	RP-091263	396	Introduction of the ACK/NACK feedback modes for TDD requirements	9.2.0
12-2009	RP-46	RP-091262	404R 3	CR Power control exception R8	9.2.0
12-2009	RP-46	RP-091262	416R 1	Relative power tolerance: special case for receiver tests	9.2.0
12-2009	RP-46	RP-091263	420R	CSI reporting: test configuration for CQI fading requirements	9.2.0
12-2009	RP-46	RP-091284	421R 1	Inclusion of Band 20 UE RF parameters	9.2.0
12-2009	RP-46	RP-091264	425	Editorial corrections and updates to Clause 8.2.1 FDD demodulation test cases	9.2.0
12-2009	RP-46	RP-091262	427	CR: time mask	9.2.0
12-2009	RP-46	RP-091264	430	Correction of the payload size for PDCCH/PCFICH performance requirements	9.2.0
12-2009	RP-46	RP-091263	432	Transport format and test point updates to RI reporting test cases	9.2.0
12-2009	RP-46	RP-091263	434	Transport format and test setup updates to frequency-selective interference CQI tests	9.2.0
12-2009	RP-46	RP-091263	436	CR RI reporting configuration in PUCCH 1-1 test	9.2.0
12-2009	RP-46	RP-091261	438	Addition of R.11-1 TDD references	9.2.0
12-2009	RP-46	RP-091292	439	Performance requirements for LTE MBMS	9.2.0
12-2009	RP-46	RP-091262	442R 1	In Band Emissions Requirements Correction CR	9.2.0
12-2009	RP-46	RP-091262	444R 1	PCMAX definition	9.2.0
03-2010	RP-47	RP-100246	453r1	Corrections of various errors in the UE RF requirements	9.3.0
03-2010	RP-47	RP-100246	462r1	UTRA ACLR measurement bandwidths for 1.4 and 3 MHz	9.3.0
03-2010	RP-47	RP-100246	493	Band 8 Coexistence Requirement Table Correction	9.3.0
03-2010	RP-47 RP-47	RP-100246 RP-100246	489r1 485r1	Rel 9 CR for Band 14 CR Band 1- PHS coexistence	9.3.0 9.3.0
03-2010	RP-47	RP-100246	501	Fading CQI requirements for FDD mode	9.3.0
03-2010	RP-47	RP-100247	499	CR correction to RI test	9.3.0
03-2010	RP-47	RP-100249	451	Reporting mode, Reporting Interval and Editorial corrections for demodulation	9.3.0
03-2010	RP-47	RP-100249	464r1	Corrections to 1PRB PDSCH performance test in presence of MBSFN.	9.3.0
03-2010	RP-47	RP-100249	458r1	OCNG corrections	9.3.0
03-2010	RP-47	RP-100249	467	Addition of ONCG configuration in DRS performance test	9.3.0
03-2010	RP-47	RP-100249	465r1	PDSCH performance tests for low UE categories	9.3.0
03-2010	RP-47	RP-100250	460r1	Use of OCNG in CSI tests	9.3.0
03-2010	RP-47	RP-100250	491r1 469r1	Corrections to CQI test configurations	9.3.0
03-2010	RP-47	RP-100250 RP-100251	456r1	Corrections of some CSI test parameters TBS correction for RMC UL TDD 16QAM full allocation BW 1.4	9.3.0
03-2010	RP-47	RP-100262	449	MHz Editorial corrections on Band 19 REFSENS	9.3.0
03-2010	RP-47	RP-100262	470r1	Band 20 UE RF requirements	9.3.0
03-2010	RP-47	RP-100264	446r1	A-MPR for Band 21	9.3.0
03-2010	RP-47	RP-100264	448	RF requirements for UE in later releases	9.3.0
03-2010	RP-47	RP-100268	445	36.101 CR: Editorial corrections on LTE MBMS reference measurement channels	9.3.0
03-2010	RP-47	RP-100268	454	The definition of the Doppler shift for LTE MBSFN Channel Model	9.3.0
03-2010	RP-47	RP-100239	478r3	Modification of the spectral flatness requirement and some editorial corrections	9.3.0
06-2010	RP-48	RP-100619	559	Corrections of tables for Additional Spectrum Emission Mask	9.4.0
06-2010	RP-48	RP-100619	538	Correction of transient time definition for EVM requirements	9.4.0
06-2010	RP-48	RP-100619	557r2	CR on UE coexistence requirement	9.4.0
06-2010	RP-48	RP-100619	547r1	Correction of antenna configuration and beam-forming model for DRS	9.4.0
06-2010	RP-48	RP-100619	536r1	CR: Corrections on MIMO demodulation performance requirements	9.4.0
06-2010	RP-48	RP-100619	528r1	Corrections on the definition of PCMAX	9.4.0
06-2010	RP-48	RP-100619	568	Relaxation of the PDSCH demodulation requirements due to control channel errors	9.4.0
06-2010	RP-48	RP-100619	566	Correction of the UE output power definition for RX tests	9.4.0
06-2010	RP-48	RP-100620	505r1	Fading CQI requirements for TDD mode	9.4.0
06-2010	RP-48	RP-100620	521	Correction to FRC for CQI index 0	9.4.0
06-2010	RP-48	RP-100620	516r1	Correction to CQI test configuration	9.4.0
06-2010	RP-48	RP-100620	532	Correction of CQI and PMI delay configuration description for TDD	9.4.0
06-2010	RP-48	RP-100620	574	Correction to FDD and TDD CSI test configurations	9.4.0
06-2010	RP-48	RP-100620	571	Minimum requirements for Rank indicator reporting	9.4.0
06-2010	RP-48	RP-100628	563	LTE MBMS performance requirements (FDD)	9.4.0

06-2010	RP-48	RP-100628	564	LTE MBMS performance requirements (TDD)	9.4.0
06-2010	RP-48	RP-100629	553r2	Performance requirements for dual-layer beamforming	9.4.0
06-2010	RP-48	RP-100630	524r2	CR: low Category CSI requirement	9.4.0
06-2010	RP-48	RP-100630	519	Correction of FRC reference and test case numbering	9.4.0
06-2010				Correction of carrier frequency and EARFCN of Band 21 for	
	RP-48	RP-100630	526	TS36.101	9.4.0
06-2010				Addition of PDSCH TDD DRS demodulation tests for Low UE	0.40
	RP-48	RP-100630	508r1	categories	9.4.0
06-2010				Specification of minimum performance requirements for low UE	
00 2010	RP-48	RP-100630	539	category	9.4.0
06-2010	10	111 100000	900	Addition of minimum performance requirements for low UE	
00 2010	RP-48	RP-100630	569	category TDD CRS single-antenna port tests	9.4.0
06-2010	111 40	1000000	303	Introduction of sustained downlink data-rate performance	
00-2010	RP-48	RP-100631	549r3	requirements	9.4.0
00.0040					0.4.0
06-2010	RP-48	RP-100683	530r1	Band 20 Rx requirements	9.4.0
09-2010	RP-49	RP-100920	614r2	Add OCNG to MBMS requirements	9.5.0
09-2010	RP-49	RP-100916	599	Correction of PDCCH content for PHICH test	9.5.0
09-2010	RP-49	RP-100920	597r1	Beamforming model for transmission on antenna port 7/8	9.5.0
09-2010	RP-49	RP-100920	600r1	Correction of full correlation in frequency-selective CQI test	9.5.0
09-2010				Correction on single-antenna transmission fixed reference	
09-2010	RP-49	RP-100920	601	channel	9.5.0
00 2040				Reference sensitivity requirements for the 1.4 and 3 MHz	
09-2010	RP-49	RP-100914	605	bandwidths	9.5.0
09-2010	RP-49	RP-100920	608r1	CR for DL sustained data rate test	9.5.0
09-2010	1	1		Correction of references in section 10 (MBMS performance	1
55 25 10	RP-49	RP-100919	611	requirements)	9.5.0
09-2010	RP-49	RP-100914	613	Band 13 and Band 14 spurious emission corrections	9.5.0
09-2010	RP-49	RP-100914	617r1	Rx Requirements	9.5.0
09-2010	RP-49 RP-49	RP-100919 RP-100926		Clarification on DL-BF simulation assumptions	
			576r1		9.5.0
09-2010	RP-49	RP-100920	582r1	Introduction of additional Rel-9 scenarios	9.5.0
09-2010	RP-49	RP-100925	575r1	Correction to band 20 ue to ue Co-existence table	9.5.0
09-2010	RP-49	RP-100916	581r1	Test configuration corrections to CQI reporting in AWGN	9.5.0
09-2010	RP-49	RP-100916	595	Corrections to RF OCNG Pattern OP.1 and 2	9.5.0
09-2010	RP-49	RP-100919	583	Editorial corrections of 36.101	9.5.0
09-2010				Addition of minimum performance requirements for low UE	
	RP-49	RP-100920	586	category TDD tests	9.5.0
09-2010	RP-49	RP-100914	590r1	Downlink power for receiver tests	9.5.0
09-2010	RP-49	RP-100920	591	OCNG use and power in beamforming tests	9.5.0
09-2010	RP-49	RP-100916	593	Throughput for multi-datastreams transmissions	9.5.0
09-2010	RP-49	RP-100914	588	Missing note in Additional spurious emission test with NS_07	9.5.0
09-2010	RP-49	RP-100927	596r2	CR LTE_TDD_2600_US spectrum band definition additions to TS	10.0.0
03-2010	111-43	100321	39012	36.101	10.0.0
12-2010	RP-50	RP-101309	680	Demodulation performance requirements for dual-layer	10.1.0
12-2010	KF-30	KF-101309	660		10.1.0
40.0040	DD 50	DD 404005	070	beamforming	40.4.0
12-2010	RP-50	RP-101325	672	Correction on the statement of TB size and subband selection in	10.1.0
	L		<u> </u>	CSI tests	
12-2010	RP-50	RP-101327	652	Correction to Band 12 frequency range	10.1.0
12-2010	RP-50	RP-101329	630	Removal of [] from TDD Rank Indicator requirements	10.1.0
12-2010	RP-50	RP-101329	635r1	Test configuration corrections to CQI TDD reporting in AWGN	10.1.0
	<u> </u>			(Rel-10)	
12-2010	RP-50	RP-101330	645	EVM window length for PRACH	10.1.0
12-2010	RP-50	RP-101330	649	Removal of NS signalling from TDD REFSENS tests	10.1.0
12-2010	RP-50	RP-101330	642r1	Correction of Note 4 In Table 7.3.1-1: Reference sensitivity QPSK	10.1.0
				PREFSENS	
12-2010	RP-50	RP-101341	627	Add 20 RB UL Ref Meas channel	10.1.0
12-2010	RP-50	RP-101341	654r1	Additional in-band blocking requirement for Band 12	10.1.0
12-2010	RP-50	RP-101341	678	Further clarifications for the Sustained Downlink Data Rate Test	10.1.0
12-2010	RP-50	RP-101341	673r1	Correction on MBMS performance requirements	10.1.0
12-2010	RP-50	RP-101341	667r3	CR Removing brackets of Band 41 reference sensitivity to TS	10.1.0
12-2010	KF-50	KF-101349	00/13		10.1.0
10.0040	DD 50	DD 404050	666*0	36.101 Rend 42 and 42 negregators for LIMTS // TE 3500 (TDD) for TS	10.4.0
12-2010	RP-50	RP-101356	666r2	Band 42 and 43 parameters for UMTS/LTE 3500 (TDD) for TS	10.1.0
10000	L	DD 45:	1	36.101	
12-2010	RP-50	RP-101359	646r1	CR for CA, UL-MIMO, eDL-MIMO, CPE	10.1.0
12-2010	RP-50	RP-101361	620r1	Introduction of L-band in TS 36.101	10.1.0
12-2010	RP-50	RP-101379	670r1	Correction on the PMI reporting in Multi-Laye Spatial Multiplexing	10.1.0
	<u> </u>	<u> </u>	<u> </u>	performance test	<u> </u>
12-2010	RP-50	RP-101380	679r1	Adding antenna configuration in CQI fading test case	10.1.0
				Clause numbering correction	10.1.1
01-2011	RP-51	RP-110359	695	Removal of E-UTRA ACLR for CA	10.2.0
01-2011 03-2011			699	PDCCH and PHICH performance: OCNG and power settings	10.2.0
03-2011		RP-110338			10.2.0
03-2011 03-2011	RP-51	RP-110338			10 2 0
03-2011 03-2011 03-2011	RP-51 RP-51	RP-110336	706r1	Spurious emissions measurement uncertainty	10.2.0
03-2011 03-2011 03-2011 03-2011	RP-51 RP-51 RP-51	RP-110336 RP-110352	706r1 707r1	Spurious emissions measurement uncertainty REFSENSE in lower SNR	10.2.0
03-2011 03-2011 03-2011	RP-51 RP-51	RP-110336	706r1	Spurious emissions measurement uncertainty	

03-2011	RP-51	RP-110359	717	Introduction of requirement for adjacent intraband CA image rejection	10.2.0
03-2011	RP-51	RP-110343	719	Minimum requirements for the additional Rel-9 scenarios	10.2.0
03-2011	RP-51	RP-110343	723	Corrections to power settings for Single layer beamforming with simultaneous transmission	10.2.0
03-2011	RP-51	RP-110343	726r1	Correction to the PUSCH3-0 subband tests for Rel-10	10.2.0
03-2011	RP-51	RP-110338	730	Removing the square bracket for TS36.101	10.2.0
03-2011	RP-51	RP-110349	739	Removal of square brackets for dual-layer beamforming demodulation performance requirements	10.2.0
03-2011	RP-51	RP-110359	751	CR: Maximum input level for intra band CA	10.2.0
03-2011	RP-51	RP-110349	754r2	UE category coverage for dual-layer beamforming	10.2.0
03-2011	RP-51	RP-110343	756r1	Further clarifications for the Sustained Downlink Data Rate Test	10.2.0
03-2011	RP-51	RP-110343	759	Removal of square brackets in sustained data rate tests	10.2.0
03-2011	RP-51	RP-110337	762r1	Clarification to LTE relative power tolerance table	10.2.0
03-2011	RP-51	RP-110343	764	Introducing UE-selected subband CQI tests	10.2.0
03-2011 04-2011	RP-51	RP-110343	765	Verification framework for PUSCH 2-2 and PUCCH 2-1 reporting Editorial: Spec Title correction, removal of "Draft"	10.2.0 10.2.1
06-2011	RP-52	RP-110804	766	Add Expanded 1900MHz Band (Band 25) in 36.101	10.2.1
06-2011	RP-52	RP-110795	768	Fixing Band 24 inclusion in TS 36.101	10.3.0
06-2011	RP-52	RP-110788	772	CR: Corrections for UE to UE co-existence requirements of Band	10.3.0
06-2011	RP-52	RP-110812	774	Add 2GHz S-Band (Band 23) in 36.101	10.3.0
06-2011	RP-52	RP-110789	782	CR: Band 19 A-MPR refinement	10.3.0
06-2011	RP-52	RP-110796	787	REFSENS in lower SNR	10.3.0
06-2011 06-2011	RP-52 RP-52	RP-110789 RP-110792	805 810	Clarification for MBMS reference signal levels FDD MBMS performance requirements for 64QAM mode	10.3.0 10.3.0
06-2011	RP-52	RP-110792	814	Correction on CQI mapping index of RI test	10.3.0
06-2011	RP-52	RP-110789	824	Corrections to in-band blocking table	10.3.0
06-2011	RP-52	RP-110794	826	Correction of TDD Category 1 DRS and DMRS RMCs	10.3.0
06-2011	RP-52	RP-110794	828	TDD MBMS performance requirements for 64QAM mode	10.3.0
06-2011	RP-52	RP-110796	829	Correction of TDD RMC for Low SNR Demodulation test	10.3.0
06-2011	RP-52	RP-110796	830	Informative reference sensitivity requirements for Low SNR for TDD	10.3.0
06-2011	RP-52	RP-110787	778r1	Minor corrections to DL-RMC-s for Maximum input level	10.3.0
06-2011	RP-52	RP-110789	832	PDCCH and PHICH performance: OCNG and power settings	10.3.0
06-2011	RP-52	RP-110789	818r1	Correction on 2-X PMI test for R10	10.3.0
06-2011	RP-52	RP-110791	816r1	Addition of performance requirements for dual-layer beamforming category 1 UE test	10.3.0
06-2011	RP-52	RP-110789	834	Performance requirements for PUCCH 2-0, PUCCH 2-1 and PUSCH 2-2 tests	10.3.0
06-2011	RP-52	RP-110807	835r1	CR for UL MIMO and CA	10.3.0
09-2011	RP-53	RP-111248	862r1	Removal of unnecessary channel bandwidths from REFSENS tables	10.4.0
09-2011	RP-53	RP-111248	869r1	Clarification on BS precoding information field for RI FDD and PUCCH 2-1 PMI tests	10.4.0
09-2011	RP-53	RP-111248	872r1	CR for B14Rx requirement Rrel 10	10.4.0
09-2011	RP-53	RP-111248	890r1	CR to TS36.101: Correction on the accuracy test of CQI.	10.4.0
09-2011	RP-53	RP-111248	893	CR to TS36.101: Correction on CQI mapping index of TDD RI test	10.4.0
09-2011	RP-53	RP-111248	904	Correction of code block numbers for some RMCs	10.4.0
09-2011	RP-53	RP-111248	907	Correction to UL RMC for FDD and TDD	10.4.0
09-2011	RP-53	RP-111248	914r1	Adding codebook subset restriction for single layer closed-loop spatial multiplexing test	10.4.0
09-2011	RP-53	RP-111251	883	Sustained data rate: Correction of the ACK/NACK feedback mode	10.4.0
09-2011	RP-53	RP-111251	929	36.101 CR on MBSFN FDD requirements(R10)	10.4.0
09-2011 09-2011	RP-53 RP-53	RP-111251 RP-111252	938 895	TDD MBMS performance requirements for 64QAM mode Further clarification for the dual-layer beamforming demodulation	10.4.0 10.4.0
00 2044	DD 52	DD 144055	000r1	requirements	10.4.0
09-2011 09-2011	RP-53 RP-53	RP-111255 RP-111255	908r1 939	Introduction of Band 22 Modifications of Band 42 and 43	10.4.0 10.4.0
09-2011	RP-53	RP-111260	944	CR for TS 36.101 Annex B: Static channels for CQI tests	10.4.0
09-2011	RP-53	RP-111262	878r1	Correction of CSI reference channel subframe description	10.4.0
09-2011	RP-53	RP-111262	887	Correction to UL MIMO	10.4.0
09-2011	RP-53	RP-111262	926r1	Power control accuracy for intra-band carrier aggregation	10.4.0
09-2011	RP-53	RP-111262	927r1	In-band emissions requirements for intra-band carrier aggregation	10.4.0
09-2011	RP-53	RP-111262	930r1	Adding the operating band for UL-MIMO	10.4.0
09-2011	RP-53	RP-111265	848	Corrections to intra-band contiguous CA RX requirements	10.4.0
09-2011	RP-53	RP-111265	863	Intra-band contiguos CA MPR requirement refinement	10.4.0
09-2011	RP-53	RP-111265	866r1	Intra-band contiguous CA EVM	10.4.0
09-2011	RP-53	RP-111266	935	Introduction of the downlink CA demodulation requirements	10.4.0
09-2011 12-2011	RP-53 RP-54	RP-111266 RP-111684	936r1 947	Introduction of CA UE demodulation requirements for TDD Corrections of UE categories of Rel-10 reference channels for RF requirements	10.4.0
12 2011					

12-2011	RP-54	RP-111686	949	CR for TS36.101: Adding note to the function of MPR	10.5.0
12-2011	RP-54			Clarification on applying CSI reports during rank switching in RI	10.5.0
		RP-111680	950	FDD test - Rel-10	
12-2011	RP-54	RP-111734	953r1	Corrections for Band 42 and 43 introduction	10.5.0
12-2011	RP-54	RP-111680	956	UE spurious emissions	10.5.0
12-2011	RP-54	RP-111682	959	Add scrambling identity n_SCID for MU-MIMO test	10.5.0
12-2011	RP-54	RP-111690	960r1	P-MPR definition	10.5.0
12-2011	RP-54	RP-111693	962	Pcmax,c Computation Assumptions	10.5.0
12-2011	RP-54	RP-111733	963r1	Correction of frequency range for spurious emission requirements	10.5.0
12-2011	RP-54	RP-111680	966	General review of the reference measurement channels	10.5.0
12-2011	RP-54	RP-111691	945	Corrections of Rel-10 demodulation performance requirements	10.5.0
				This CR is only partially implemented due to confliction with CR 966	
12-2011	RP-54	RP-111684	946	Corrections of UE categories for Rel-10 CSI requirements This CR is only partially implemented due to confliction with CR 966	10.5.0
12-2011	RP-54	RP-111691	982r2	Introduction of SDR TDD test scenario for CA UE demodulation This CR is only partially implemented due to confliction with CR	10.5.0
12-2011	RP-54	RP-111693	971r1	966 CR on Colliding CRS for non-MBSFN ABS	10.5.0
12-2011	RP-54	VL-111099	וווופ	Introduction of elCIC demodulation performance requirements for	10.5.0
12-2011	NF-04	RP-111693	972r1	FDD and TDD	10.5.0
12-2011	RP-54	1033	01211	Adding missing UL configuration specification in some UE	10.5.0
12 2011	111 04	RP-111686	985	receiver requirements for case of 1 CC UL capable UE	10.0.0
12-2011	RP-54	1 111000		Correction and maintenance on CQI and PMI requirements (Rel-	10.5.0
		RP-111684	998	10)	10.0.0
12-2011	RP-54	RP-111735	1004	MPR for CA Multi-cluster	10.5.0
12-2011	RP-54	RP-111691	1005	CA demodulation performance requirements for LTE FDD	10.5.0
12-2011	RP-54			CQI reporting accuracy test on frequency non-selective	10.5.0
		RP-111692	1006	scheduling on eDL MIMO	
12-2011	RP-54	RP-111692	1007	CQI reporting accuracy test on frequency-selective scheduling on eDL MIMO	10.5.0
12-2011	RP-54	RP-111692	1008	PMI reporting accuracy test for TDD on eDL MIMO	10.5.0
12-2011	RP-54		1009r		10.5.0
		RP-111692	1	CR for TS 36.101: RI performance requirements	
12-2011	RP-54	RP-111692	1010r 1	CR for TS 36.101: Introduction of static CQI tests (Rel-10)	10.5.0
03-2012	RP-55	RP-120291	1014	RF: Updates and corrections to the RMC-s related annexes (Rel-	10.6.0
				10)	
03-2012	RP-55	RP-120300	1015r 1	On elCIC ABS pattern	10.6.0
03-2012	RP-55	RP-120300	1016r 1	On elCIC interference models	10.6.0
03-2012	RP-55	RP-120299	1017r 1	TS36.101 CR: on eDL-MIMO channel model using cross- polarized antennas	10.6.0
03-2012	RP-55	RP-120304	1020r 1	TS36.101 CR: Correction to MBMS Performance Test Parameters	10.6.0
03-2012	RP-55	RP-120303	1021	Harmonic exceptions in LTE UE to UE co-ex tests	10.6.0
03-2012	RP-55	RP-120304	1023	Unified titles for Rel-10 CSI tests	10.6.0
03-2012	RP-55	RP-120300	1033r	Introduction of reference channel for eICIC demodulation	10.6.0
03-2012	RP-55	RP-120304	1 1040r	Correction of Actual code rate for CSI RMCs	10.6.0
03-2012	RP-55	RP-120304	1 1041r	Definition of synchronized operation	10.6.0
03-2012	RP-55	RP-120296	1 1048r	Intra band contiguos CA Ue to Ue Co-ex	10.6.0
03-2012	RP-55	RP-120296	1 1049r 1	REL-10 CA specification editorial consistency	10.6.0
03-2012	RP-55	RP-120299	1053	Beamforming model for TM9	10.6.0
03-2012	RP-55	RP-120296	1054	Requirement for CA demodulation with power imbalance	10.6.0
03-2012	RP-55	RP-120298	1057	Updating Band 23 duplex specifications	10.6.0
03-2012	RP-55	RP-120298	1058r	Correcting UE Coexistence Requirements for Band 23	10.6.0
03-2012	RP-55	RP-120304	1059r 1	CA demodulation performance requirements for LTE TDD	10.6.0
03-2012	RP-55	RP-120304	1061	Requirement for CA SDR FDD test scenario	10.6.0
03-2012	RP-55	RP-120293	1064r 1	TS36.101 RF editorial corrections Rel 10	10.6.0
03-2012	RP-55	RP-120299	1067r 1	Introduction of TM9 demodulation performance requirements	10.6.0
03-2012	RP-55	RP-120304	1071r 1	Introduction of a CA demodulation test for UE soft buffer management testing	10.6.0
03-2012	RP-55	RP-120296	1072	MPR formula correction For intra-band contiguous CA Bandwidth	10.6.0

	1			Class C	
03-2012	RP-55	RP-120303	1077r	Class C CR for 36.101: B41 REFSENS and MOP changes to	10.6.0
00 2012	111 00	141 120000	1 1	accommodate single filter architecture	10.0.0
03-2012	RP-55	RP-120300	1082	TM3 tests for elCIC	10.6.0
03-2012	RP-55	RP-120300	1083r	Introduction of requirements of CQI reporting definition for ecICIC	10.6.0
03-2012	RP-55	RP-120304	1 1084	eDL MIMO CSI requirements	10.6.0
03-2012	RP-55	RP-120306	1070r	Introduction of Band 26/XXVI to TS 36.101	11.0.0
			1		
03-2012	RP-55	RP-120310	1074	Band 41 CA CR for TS36.101, section 5	11.0.0
03-2012	RP-55	RP-120310	1075r	Band 41 CA CR for TS36.101, section 6	11.0.0
03-2012	RP-55	RP-120310	1076	Band 41 CA CR for TS36.101, section 7	11.0.0
03-2012	KF-33	KF-120310	1076 1085r	Band 41 CA CR for 1336.101, Section 7	11.0.0
06-2012	RP-56	RP-120795	2	Modulator specification tightening	11.1.0
			1087r		
06-2012	RP-56	RP-120777	1	Carrier aggregation Relative power tolerance, removal of TBD.	11.1.0
06-2012 06-2012	RP-56 RP-56	RP-120783 RP-120780	1089 1092	UE spurious emissions for Band 7 and Band 38 coexistence	11.1.0
06-2012	KP-30	RP-120760	1092	Deleting square brackets in Reference Measurement Channels CR to TS36.101: Correction on parameters for the eDL-MIMO	11.1.0
06-2012	RP-56	RP-120779	1097	CQI and PMI tests	11.1.0
				CR to TS36.101: Fixed reference channel for PDSCH	
			1098r	demodulation performance requirements on eDL-MIMO - NOT	
06-2012	RP-56	RP-120780	1	implemented as it is based on a wrong version of the spec	11.1.0
06-2012 06-2012	RP-56 RP-56	RP-120774 RP-120774	1107 1108r	RMC correction on eDL-MIMO RI test FRC correction on frequency selective CQI and PMI test (Rel-11)	11.1.0 11.1.0
00-2012	101-30	101-120774	1	The correction of frequency selective equality finitest (Nei-11)	11.1.0
06-2012	RP-56	RP-120774	1111	Correction on test point for PMI test (Rel-11)	11.1.0
06-2012	RP-56	RP-120784	1114r	Corrections and clarifications on elCIC demodulation test	11.1.0
06-2012	RP-56	RP-120784	1 1117r	Corrections and clarifications on elCIC CSI tests	11.1.0
00-2012	KF-30	KF-120764		Corrections and clarifications on eloic CSI tests	11.1.0
06-2012	RP-56	RP-120783	1119r	Corrections on UE performance requirements	11.1.0
			1		
06-2012	RP-56	RP-120773	1120	Introduction of CA band combination Band1 + Band19 to TS	11.1.0
06-2012	RP-56	RP-120769	1127	36.101 Addition of ETU30 channel model	11.1.0
06-2012	RP-56	RP-120773	1140	Addition of Maximum Throughput for R.30-1 TDD RMC	11.1.0
06-2012	RP-56	RP-120779	1141	CR for 36.101: The clarification of MPR and A-MPR for CA	11.1.0
06-2012	RP-56	RP-120784	1142	Corrections for eICIC demod test case with MBSN ABS	11.1.0
06-2012	RP-56	RP-120785	1144	Removing brackets of contiguous allocation A-MPR for	11.1.0
06-2012	RP-56	RP-120784	1149r	CA_NS_04 Introduction of PDCCH test with colliding RS on MBSFN-ABS	11.1.0
00 2012	100	101-120704	1	introduction of a boot rest with containing the on wibor to Abo	11.1.0
06-2012	RP-56	RP-120784	1153r	Some clarifications and OCNG pattern for elCIC demodulation	11.1.0
	DD 50	DD 400770	1	requirements	44.4.0
06-2012 06-2012	RP-56 RP-56	RP-120773 RP-120795	1155 1156	Introduction of TDD CA Soft Buffer Limitation B26 and other editorial corrections	11.1.0 11.1.0
06-2012	RP-56	RP-120799	1161	Corrections on CQI and PMI test	11.1.0
06-2012	RP-56	RP-120780	1163	FRC for TDD PMI test	11.1.0
06-2012	RP-56	RP-120778	1165r	Clean-up of UL-MIMO for TS36.101	11.1.0
	DE -	1.55	1		
06-2012	RP-56	RP-120782	1171	Removal of unnecessary references to single carrier requirements from Interband CA subclauses	11.1.0
06-2012	RP-56	RP-120781	1174	PDCCH wrong detection in receiver spurious emissions test	11.1.0
101/11/					11.1.0
			1184	Corrections to 3500 MHz	
06-2012 06-2012	RP-56 RP-56	RP-120776 RP-120793	1184 1189r	Corrections to 3500 MHz Introduction of Band 44	11.1.0
06-2012 06-2012	RP-56 RP-56	RP-120776 RP-120793	1189r 2	Introduction of Band 44	11.1.0
06-2012	RP-56	RP-120776	1189r 2 1193r		
06-2012 06-2012 06-2012	RP-56 RP-56 RP-56	RP-120776 RP-120793 RP-120784	1189r 2 1193r 1	Introduction of Band 44 Target SNR setting for elCIC demodulation requirement	11.1.0
06-2012 06-2012 06-2012	RP-56 RP-56 RP-56	RP-120776 RP-120793 RP-120784 RP-120780	1189r 2 1193r 1 1196	Introduction of Band 44 Target SNR setting for elCIC demodulation requirement Editorial simplification to CA REFSENS UL allocation table	11.1.0 11.1.0 11.1.0
06-2012 06-2012 06-2012	RP-56 RP-56 RP-56	RP-120776 RP-120793 RP-120784	1189r 2 1193r 1	Introduction of Band 44 Target SNR setting for elCIC demodulation requirement	11.1.0
06-2012 06-2012 06-2012 06-2012 06-2012 06-2012	RP-56 RP-56 RP-56 RP-56 RP-56 RP-56	RP-120776 RP-120793 RP-120784 RP-120780 RP-120778 RP-120791	1189r 2 1193r 1 1196 1199 1200r	Introduction of Band 44 Target SNR setting for elCIC demodulation requirement Editorial simplification to CA REFSENS UL allocation table Correction of wrong table references in CA receiver tests Introduction of e850_LB (Band 27) to TS 36.101	11.1.0 11.1.0 11.1.0 11.1.0 11.1.0
06-2012 06-2012 06-2012 06-2012 06-2012 06-2012	RP-56 RP-56 RP-56 RP-56 RP-56 RP-56	RP-120776 RP-120793 RP-120784 RP-120780 RP-120778 RP-120791 RP-120764	1189r 2 1193r 1 1196 1199 1200r 1 1212	Introduction of Band 44 Target SNR setting for elCIC demodulation requirement Editorial simplification to CA REFSENS UL allocation table Correction of wrong table references in CA receiver tests Introduction of e850_LB (Band 27) to TS 36.101 Correction of PHS protection requirements for TS 36.101	11.1.0 11.1.0 11.1.0 11.1.0 11.1.0
06-2012 06-2012 06-2012 06-2012 06-2012 06-2012	RP-56 RP-56 RP-56 RP-56 RP-56 RP-56	RP-120776 RP-120793 RP-120784 RP-120780 RP-120778 RP-120791	1189r 2 1193r 1 1196 1199 1200r 1 1212 1213r	Introduction of Band 44 Target SNR setting for elCIC demodulation requirement Editorial simplification to CA REFSENS UL allocation table Correction of wrong table references in CA receiver tests Introduction of e850_LB (Band 27) to TS 36.101	11.1.0 11.1.0 11.1.0 11.1.0 11.1.0
06-2012 06-2012 06-2012 06-2012 06-2012 06-2012 06-2012 06-2012	RP-56 RP-56 RP-56 RP-56 RP-56 RP-56 RP-56 RP-56	RP-120776 RP-120793 RP-120784 RP-120780 RP-120778 RP-120791 RP-120764 RP-120793	1189r 2 1193r 1 1196 1199 1200r 1 1212 1213r 1	Introduction of Band 44 Target SNR setting for elCIC demodulation requirement Editorial simplification to CA REFSENS UL allocation table Correction of wrong table references in CA receiver tests Introduction of e850_LB (Band 27) to TS 36.101 Correction of PHS protection requirements for TS 36.101 Introduction of Band 28 into TS36.101	11.1.0 11.1.0 11.1.0 11.1.0 11.1.0 11.1.0 11.1.0
06-2012 06-2012 06-2012 06-2012 06-2012 06-2012 06-2012 06-2012	RP-56 RP-56 RP-56 RP-56 RP-56 RP-56 RP-56 RP-56	RP-120776 RP-120793 RP-120784 RP-120780 RP-120778 RP-120791 RP-120764 RP-120793	1189r 2 1193r 1 1196 1199 1200r 1 1212 1213r 1 1215r 1	Introduction of Band 44 Target SNR setting for elCIC demodulation requirement Editorial simplification to CA REFSENS UL allocation table Correction of wrong table references in CA receiver tests Introduction of e850_LB (Band 27) to TS 36.101 Correction of PHS protection requirements for TS 36.101 Introduction of Band 28 into TS36.101 Proposed revision of subclause 4.3A for TS36.101	11.1.0 11.1.0 11.1.0 11.1.0 11.1.0
06-2012 06-2012 06-2012 06-2012 06-2012 06-2012 06-2012 06-2012	RP-56 RP-56 RP-56 RP-56 RP-56 RP-56 RP-56 RP-56	RP-120776 RP-120793 RP-120784 RP-120780 RP-120778 RP-120791 RP-120764 RP-120793	1189r 2 1193r 1 1196 1199 1200r 1 1212 1213r 1 1215r 1 1217r	Introduction of Band 44 Target SNR setting for elCIC demodulation requirement Editorial simplification to CA REFSENS UL allocation table Correction of wrong table references in CA receiver tests Introduction of e850_LB (Band 27) to TS 36.101 Correction of PHS protection requirements for TS 36.101 Introduction of Band 28 into TS36.101	11.1.0 11.1.0 11.1.0 11.1.0 11.1.0 11.1.0 11.1.0
06-2012 06-2012 06-2012 06-2012 06-2012 06-2012 06-2012 06-2012 06-2012	RP-56 RP-56 RP-56 RP-56 RP-56 RP-56 RP-56 RP-56	RP-120776 RP-120793 RP-120784 RP-120780 RP-120778 RP-120791 RP-120764 RP-120793 RP-120781	1189r 2 1193r 1 1196 1199 1200r 1 1212 1213r 1 1215r 1 1217r 1	Introduction of Band 44 Target SNR setting for elCIC demodulation requirement Editorial simplification to CA REFSENS UL allocation table Correction of wrong table references in CA receiver tests Introduction of e850_LB (Band 27) to TS 36.101 Correction of PHS protection requirements for TS 36.101 Introduction of Band 28 into TS36.101 Proposed revision of subclause 4.3A for TS36.101 Proposed revision on subclause 6.3.4A for TS36.101	11.1.0 11.1.0 11.1.0 11.1.0 11.1.0 11.1.0 11.1.0 11.1.0
06-2012 06-2012 06-2012 06-2012 06-2012 06-2012 06-2012 06-2012	RP-56 RP-56 RP-56 RP-56 RP-56 RP-56 RP-56 RP-56	RP-120776 RP-120793 RP-120784 RP-120780 RP-120778 RP-120791 RP-120764 RP-120793	1189r 2 1193r 1 1196 1199 1200r 1 1212 1213r 1 1215r 1 1217r	Introduction of Band 44 Target SNR setting for elCIC demodulation requirement Editorial simplification to CA REFSENS UL allocation table Correction of wrong table references in CA receiver tests Introduction of e850_LB (Band 27) to TS 36.101 Correction of PHS protection requirements for TS 36.101 Introduction of Band 28 into TS36.101 Proposed revision of subclause 4.3A for TS36.101	11.1.0 11.1.0 11.1.0 11.1.0 11.1.0 11.1.0 11.1.0

06-2012	RP-56	RP-120778	1223	Correction of CSI configuraiton for CA TM4 tests R11	11.1.0
06-2012	RP-56	RP-120773	1225	CR on CA UE receiver timing window R11	11.1.0
06-2012	RP-56	RP-120784	1226	Extension of static elCIC CQI test	11.1.0
09-2012	RP-57	RP-121294	1230	Correct Transport Block size in 9RB 16QAM Uplink Reference Measurement Channel	11.2.0
09-2012	RP-57	RP-121313	1233r 1	RF: Corrections to power allocation parameters for transmission mode 8 (Rel-11)	11.2.0
09-2012	RP-57	RP-121304	1235	RF-CA: non-CA notation and applicability of test points in scenarios without and with CA operation (Rel-11)	11.2.0
09-2012	RP-57	RP-121305	1237	ACK/NACK feedback modes for FDD and TDD TM4 CA demodulation requirements (Rel-11)	11.2.0
09-2012	RP-57	RP-121305	1239	Correction of feedback mode for CA TDD demodulation requirements (resubmission of R4-63AH-0194 for Rel-11)	11.2.0
09-2012	RP-57	RP-121302	1241	ABS pattern setup for MBSFN ABS test (resubmission of R4-63AH-0204 for Rel-11)	11.2.0
09-2012	RP-57	RP-121302	1243	CR on eICIC CQI definition test (resubmission of R4-63AH-0205 for Rel-11)	11.2.0
09-2012	RP-57	RP-121302	1245	Transmission of CQI feedback and other corrections (Rel-11)	11.2.0
09-2012	RP-57	RP-121302	1247	Target SNR setting for eICIC MBSFN-ABS demodulation requirements (Rel-11)	11.2.0
09-2012	RP-57	RP-121335	1248	Introduction of CA_1_21 RF requirements into TS36.101	11.2.0
09-2012	RP-57	RP-121300	1251	Corrections of spurious emission band UE co-existence applicable in Japan	11.2.0
09-2012	RP-57	RP-121306	1253	Correction on RMC for frequency non-selective CQI test	11.2.0
09-2012	RP-57	RP-121306	1255	Requirements for the eDL-MIMO CQI test	11.2.0
09-2012	RP-57	RP-121302	1257	Clarification on PDSCH test setup under MBSFN ABS	11.2.0
09-2012	RP-57	RP-121316	1258	Update of Band 28 requirements	11.2.0
09-2012	RP-57	RP-121313	1262	Applicabilty of statement allowing RBW < Meas BW for spurious	11.2.0
09-2012	RP-57	RP-121298	1265	Clarification of RB allocation for DRS demodulation tests	11.2.0
09-2012	RP-57	RP-121304	1267	Removal of brackets for CA Tx	11.2.0
09-2012	RP-57	RP-121337	1268r 1	TS 36.101 CR for CA_38	11.2.0
09-2012	RP-57	RP-121327	1269	Introduction of CA_B7_B20 in 36.101	11.2.0
09-2012	RP-57	RP-121313	1271	Corrections of FRC subframe allocations and other minor problems	11.2.0
09-2012	RP-57	RP-121305	1274	Introduction of requirements for TDD CA Soft Buffer Limitation	11.2.0
09-2012	RP-57	RP-121307	1276	Correction of eDL-MIMIO CSI RMC tables and references	11.2.0
09-2012	RP-57	RP-121307	1278	Correction of MIMO channel model for polarized antennas	11.2.0
09-2012	RP-57	RP-121303	1280	Addition of 15 and 20MHz Bandwidths for Band 23 to TS 36.101 (Rel-11)	11.2.0
09-2012	RP-57	RP-121334	1283r 1	Add requirements for inter-band CA of B_1-18 and B_11-18 in TS36.101	11.2.0
09-2012	RP-57	RP-121304	1285r 1	CR for MPR mask for multi-clustered simultaneous transmission in single CC in Rel-11	11.2.0
09-2012	RP-57	RP-121447	1288r 2	Introduction of Japanese Regulatory Requirements to LTE Band 8(R11)	11.2.0
09-2012	RP-57	RP-121315	1289	CR for Band 27 MOP	11.2.0
09-2012	RP-57	RP-121315	1290	CR for Band 27 A-MPR	11.2.0
09-2012	RP-57	RP-121316	1291	CR to replace protected frequency range with new band number 27	11.2.0
09-2012	RP-57	RP-121215	1292r 1	Introduction of CA band combination Band3 + Band5 to TS 36.101	11.2.0
09-2012	RP-57	RP-121306	1300r 1	Requirements for eDL-MIMO RI test	11.2.0
09-2012	RP-57	RP-121306	1304	Corrections to TM9 demodulation tests	11.2.0
09-2012 09-2012	RP-57 RP-57	RP-121313 RP-121306	1306 1310r	Correction to PCFICH power parameter setting Correction on frequency non-selective CQI test	11.2.0 11.2.0
09-2012	RP-57	RP-121306	1 1313r	eDL-MIMO CQI/PMI test	11.2.0
00.2042	DD 57	DD 404040	1 1216	Correction of the definition of unaumabraniand according	11 2 0
09-2012 09-2012	RP-57	RP-121313 RP-121304	1316 1320r	Correction of the definition of unsynchronized operation Correction to Transmit Modulation Quality Tests for Intra-Band CA	11.2.0 11.2.0
			1	, ,	
09-2012	RP-57	RP-121338	1324r 2	36.101 CR for LTE_CA_B7	11.2.0
09-2012	RP-57	RP-121331	1325	Introduction of CA_3_20 RF requirements into TS36.101	11.2.0
09-2012 09-2012	RP-57 RP-57	RP-121316 RP-121304	1326 1332r	A-MPR table correction for NS_18 Bandwidth combination sets for intra-band and inter-band carrier	11.2.0 11.2.0
09-2012	RP-57	RP-121325	1339	aggregation Introduction of LTE Advanced Carrier Aggregation of Band 4 and Band 13	11.2.0
			1		1
09-2012	RP-57	RP-121326	1340r	Introduction of CA configurations CA-12A-4A and CA-17A-4A	11.2.0

09-2012	RP-57	RP-121328	1343	Introduction of Band 2 + Band 17 inter-band CA configuration into	11.2.0
09-2012	RP-57	RP-121306	1351	36.101 FRC for TM9 FDD	11.2.0
09-2012	RP-57	RP-121295	1352	Random precoding granularity in PMI tests	11.2.0
09-2012	RP-57	RP-121302	1358	Introduction of RI test for elCIC	11.2.0
09-2012	RP-57	RP-121304	1360	Notes for deltaTib and deltaRib tables	11.2.0
09-2012	RP-57	RP-121304	1361	CR for A-MPR masks for NS_CA_1C	11.2.0
12-2012	RP-58	RP-121884	1362	Introduction of CA_3_8 RF requirements to TS 36.101	11.3.0
12-2012	RP-58	RP-121870	1363	Removal of square brackets for Band 27 in Table 5.6.1-1	11.3.0
12-2012	RP-58	RP-121861	1366	Some changes related to CA tests and overview table of DL	11.3.0
				measurement channels	
12-2012	RP-58	RP-121860	1368	Correction of elCIC CQI tests	11.3.0
12-2012	RP-58	RP-121860	1370	Correction of elCIC demodulation tests	11.3.0
12-2012	RP-58	RP-121862	1374	Correction on CSI-RS subframe offset parameter	11.3.0
12-2012 12-2012	RP-58 RP-58	RP-121862 RP-121862	1376 1382	Correction on FRC table in CSI test Correction of reference channel table for TDD eDL-MIMIO RI test	11.3.0 11.3.0
12-2012	RP-58	RP-121850	1386	OCNG patterns for Sustained Data rate testing	11.3.0
12-2012	RP-58	RP-121867	1388r	Introduction of one periodic CQI test for CA deployments	11.3.0
12 2012	10 30	1007	1 1 1	introduction of one periodic our test for or deployments	11.5.0
12-2012	RP-58	RP-121894	1396	Introduction of CA_B5_B12 in 36.101	11.3.0
12-2012	RP-58	RP-121850	1401	Introducing the additional frequency bands of 5 MHz x 2 in 1.7	11.3.0
				GHz in Japan to Band 3	
12-2012	RP-58	RP-121887	1406r	Reference sensitivity for the small bandwidth of CA_4-12	11.3.0
			1	·	
12-2012	RP-58	RP-121860	1407	CR on elCIC RI test	11.3.0
12-2012	RP-58	RP-121862	1409	Cleaning of 36.101 Performance sections Rel-11	11.3.0
12-2012	RP-58	RP-121861	1416	Out-of-band blocking requirements for inter-band carrier	11.3.0
10.0010	DD 50	DD 404004	4440	aggregation	44.0.0
12-2012	RP-58	RP-121861	1418	Adding missed SNR reference values for CA soft buffer tests	11.3.0
12-2012	RP-58	RP-121890	1422	Introduction of CA_4A-5A into 36.101	11.3.0
12-2012 12-2012	RP-58 RP-58	RP-121867 RP-121867	1431 1436	Clean up of specification R11 Band 1 to Band 33 and Band 39 UE coexistence requirements	11.3.0 11.3.0
12-2012	RP-58	RP-121871	1437r	Editorial corrections for Band 26	11.3.0
12-2012	KF-30	KF-1210/1	14371	Editorial corrections for Baria 20	11.3.0
12-2012	RP-58	RP-121896	1438	Introduction of Band 5 + Band 17 inter-band CA configuration into 36.101	11.3.0
12-2012	RP-58	RP-121862	1442	Correction of eDL-MIMO RI test and RMC table for the CSI test	11.3.0
12-2012	RP-58	RP-121861	1444	Minor correction to ceiling function example - rel11	11.3.0
12-2012	RP-58	RP-121862	1449	Correction of SNR definition	11.3.0
12-2012	RP-58	RP-121860	1450	Brackets clean up for eICIC CSI/demodulation	11.3.0
12-2012	RP-58	RP-121860	1455	CR on elCIC RI testing (Rel-11)	11.3.0
12-2012	RP-58	RP-121862	1459	Correction on FRC table	11.3.0
12-2012	RP-58	RP-121879	1461r	CR for LTE B14 HPUE (Power Class 1)	11.3.0
12-2012	RP-58	RP-121862	1 1464	Adding references to the appropriate beamforming model (Rel-11)	11.3.0
12-2012	RP-58	RP-121898	1465r	Introduction of CA_8_20 RF requirements into TS36.101	11.3.0
12-2012	111-50	1030	1 1 1	introduction of GA_0_20 Nr requirements into 1030.101	11.5.0
12-2012	RP-58	RP-121882	1468r	Introduction of inter-band CA_11-18 into TS36.101	11.3.0
12-2012	RP-58	RP-121903	1472r	Introduction of advanced receivers demodulation performance (FDD)	11.3.0
12-2012	RP-58	RP-121903	1473r	Introduction of performance requirements for verifying the	11.3.0
			1	receiver type for advanced receivers (FDD/TDD)	
12-2012	RP-58	RP-121886	1474	CR to remove the square bracket of A-MPR in TS36.101	11.3.0
12-2012	RP-58	RP-121861	1476	Correction of some errors in reference sensitivity for CA in TS	11.3.0
12-2012	RP-58	RP-121903	1480r	36.101 (R11) Introduction of Advanced Receivers Test Cases for TDD	11.3.0
12-2012	RP-58	RP-121901	1 1490r	Introduction of Band 29	11.3.0
12-2012	1117-30	131 - 12 1901	14901	Introduction of Danie 23	11.3.0
12-2012	RP-58	RP-121849	1494	Low-channel Band 1 coexistence with PHS	11.3.0
12-2012	RP-58	RP-121861	1498r	Completion of the tables of bandwidth combinations specified for	11.3.0
-			1	CA	
12-2012	RP-58	RP-121861	1499r 1	Exceptions to REFSENS requrirements for class A2 CA combinations	11.3.0
12-2012	RP-58	RP-121892	1500	Introduction of carrier aggregation configuration CA_4-7	11.3.0
12-2012	RP-58	RP-121870	1504	Editorial corrections to Band 27 specifications	11.3.0
12-2012	RP-58	RP-121878	1505	Band 28 AMPR for DTV protection	11.3.0
12-2012	RP-58	RP-121852	1509r	UE-UE coexistence between bands with small frequency	11.3.0
40.0515	DD ===	DD 46:5::	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	separation	44.6.0
12-2012	RP-58	RP-121911	1510	Adding UE-UE Coexistence Requirement for Band 3 and Band 26	11.3.0
12-2012	RP-58	RP-121866	1513	Maintenance of Band 23 UE Coexistence	11.3.0
12-2012 12-2012	RP-58 RP-58	RP-121851 RP-121861	1515 1517	Corrections to TM4 rank indicator Test 3 Correction of test configuraitons and FRC for CA demodulation	11.3.0 11.3.0
	I IVE-20	NE-121001	1017	Correction of test configurations and FKC 101 CA defilodulation	I II.J.U

1				with power imbalance	
12-2012	RP-58	RP-121860	1518	Applicable OFDM symbols of Noc_2 for PDCCH/PCFICH ABS- MBSFN test cases	11.3.0
03-2013	RP-59	RP-130279	1519	OCNG patterns for Enhanced Performance Requirements Type A	11.4.0
03-2013	RP-59	RP-130277	1520	Corrections on in-band blocking for Band 29 for carrier aggregation	11.4.0
03-2013	RP-59	RP-130268	1523	Brackets removal in Rel-11 TM4 rank indicator Test 3	11.4.0
03-2013	RP-59	RP-130279	1524r	Cleanup of Advanced Receivers requirement scenarios for demodulation and CSI (FDD/TDD)	11.4.0
03-2013	RP-59	RP-130258	1528	Corrections to CQI reporting	11.4.0
03-2013	RP-59	RP-130262	1536	Corrections to Curreporting Corrections for eICIC performance requirements (rel-11)	11.4.0
03-2013	RP-59	RP-130264	1539	Correction of CA power imbalance performance requirements	11.4.0
03-2013	RP-59	RP-130287	1543	Correction of a symbol for MPR in single carrier for TS	11.4.0
03-2013	RP-59	RP-130287	1544r	36.101(R11) Correction of some inter-band CA requiements for TS 36.101	11.4.0
			1	(R11)	
03-2013	RP-59	RP-130276	1546	Correction of contigous allocation A-MPR for CA_NS_05	11.4.0
03-2013	RP-59	RP-130263	1547r 1	Clarification of spurious emission domain for CA in TS 36.101 (R11)	11.4.0
03-2013	RP-59	RP-130264	1548	CR for CA performance requirements	11.4.0
03-2013	RP-59	RP-130284	1553r 1	Introduction of downlink non-contiguous CA into REL -11 TS 36.101	11.4.0
03-2013	RP-59	RP-130263	1557	CA_1C: CA_NS_02 and CA_NS_03 A-MPR REL-11	11.4.0
03-2013	RP-59	RP-130287	1560	Editorial corrections to subclause 5	11.4.0
03-2013	RP-59	RP-130267	1562	Addition of UE Regional Requirements to Band 23 Based on New Regulatory Order in the US	11.4.0
03-2013	RP-59	RP-130272	1567	Band 26: modification of A-MPR for 'NS_15'	11.4.0
03-2013	RP-59	RP-130287	1571r	Band 41 requirements for operation in China and Japan	11.4.0
03-2013	RP-59	RP-130260	1574	Remove [] from CSI test case parameters	11.4.0
03-2013	RP-59	RP-130287	1575	Corrections to UE co-existence	11.4.0
03-2013	RP-59	RP-130287	1579	UE-UE co-existence between Band 1 and Band 33/39	11.4.0
03-2013	RP-59	RP-130287	1580	Correction on reference to note for Band 7 and 38 co-existence	11.4.0
03-2013	RP-59	RP-130263	1584r	Cleanup for CA UE RF requirements	11.4.0
03-2013	RP-59	RP-130263	1586	Corrections on UL configuration for CA UE receiver requirements	11.4.0
03-2013	RP-59	RP-130263	1588	Correction of Transmit modulation quality requirements for CA	11.4.0
03-2013	RP-59	RP-130268	1590	Revision of Common Test Parameters for User-specific Demodulation Tests	11.4.0
03-2013	RP-59	RP-130278	1595	Correction for a Band 27 A-MPR table	11.4.0
03-2013	RP-59	RP-130264	1597	Correction of CA CQI test setup	11.4.0
03-2013	RP-59	RP-130287	1600r 1	Correction of B12 DL Specification in Table 5.5A-2	11.4.0
03-2013	RP-59	RP-130263	1602	Correction of table reference	11.4.0
06-2013	RP-60	RP-130765	1604r	Complementary description for definition of MIMO Correlation Matrices using cross polarized antennas	11.5.0
06-2013	RP-60	RP-130763	1607	Correction of transport format parameters for CQI index 10 (15 RBs) - Rel 11	11.5.0
06-2013	RP-60	RP-130765	1610	Maintenance of Band 23 A-MPR (NS_11) in TS 36.101 (Rel-11)	11.5.0
06-2013	RP-60	RP-130770	1613	CR for 36.101 : Adding the definition of CA_NS_05 and	11.5.0
06-2013	RP-60	RP-130770	1619	CA_NS_06 for additional spurious emissions for CA CR for introducing UE TM3 demodulation performance	11.5.0
				requirements under high speed	
06-2013	RP-60	RP-130765	1623	Correction of test parameters for elCIC performance requirements	11.5.0
06-2013 06-2013	RP-60 RP-60	RP-130765 RP-130765	1625 1627	Correction of test parameters for elCIC CSI requirements Correction of resource allocation for the multiple PMI Cat 1 UE	11.5.0 11.5.0
06-2013	RP-60	RP-130766	1629	test Removal of note 2 from band 28	11.5.0
06-2013	RP-60	RP-130770	1641	Correction of the CSI-RS parameter configuration	11.5.0
06-2013	RP-60	RP-130770	1650r	Addition of Band 41 for intra-band non-contiguous CA for 36.101	11.5.0
06-2013	RP-60	RP-130770	1654r	MPR for intra-band non-contiguous CA	11.5.0
06-2013	RP-60	RP-130765	1656	Modification of configured output power to account for larger tolerance	11.5.0
06-2013	RP-60	RP-130769	1658r 1	Missing symbols in the NS_15 table	11.5.0
06-2013	RP-60	RP-130766	1673	Corrections to Rx requirements for inter-band CA configurations with REFSENS exceptions	11.5.0
06-2013	RP-60	RP-130770	1681r 1	Correction for TS 36.101	11.5.0
06-2013	RP-60	RP-130763	1684	RF: Corrections to RMC-s for sustained data rate test	11.5.0
06-2013	RP-60	RP-130770	1685	Non-contiguous intraband CA channel spacing	11.5.0
06-2013	RP-60	RP-130766	1689	Carrier aggregation in multi RAT and multiple band combination	11.5.0

				terminals	
06-2013	RP-60	RP-130766	1691	Completion of out-of-band blocking requirements for inter-band CA with one UL	11.5.0
06-2013	RP-60	RP-130767	1695r 1	CR on the bandwidth coverage issue of CA demodulation performance (Rel-11)	11.5.0
06-2013	RP-60	RP-130765	1697	Correction on UE maximum output power for intra-band CA (R11)	11.5.0
06-2013	RP-60	RP-130770	1698r 1	CR for introduction of FelCIC demodulation performance requirements	11.5.0
06-2013	RP-60	RP-130770	1701	Removing bracket from CA_11A-18A requirments	11.5.0
06-2013	RP-60	RP-130767	1703	CR on the bandwidth coverage issue of CA CQI performance (Rel-11)	11.5.0
06-2013	RP-60	RP-130766	1705	Corrections to ACLR for Rel-11 CA	11.5.0
06-2013	RP-60	RP-130765	1716	Corrections to NS 11 A-MPR Table	11.5.0
06-2013	RP-60	RP-130769	1717	Corrections to NS_12 A-MPR Table	11.5.0
06-2013	RP-60	RP-130771	1532r	Introduction of CA 1+8 into TS36.101(Rel-12)	12.0.0
06-2013	RP-60	RP-130781	1 1545r	Introduction of LTE Advanced inter-band Carrier Aggregation of	12.0.0
			1	Band 3 and Band 28 to TS 36.101	
06-2013	RP-60	RP-130785	1608r 1	Introduction of LTE Advanced inter-band Carrier Aggregation of Band 23 and Band 29 to TS 36.101	12.0.0
06-2013	RP-60	RP-130777	1642r 1	Introduction of CA B3+19 into TS36.101(Rel-12)	12.0.0
06-2013	RP-60	RP-130787	1687	Introduction of CA_4A-4A into 36.101	12.0.0
06-2013	RP-60	RP-130795	1712	Adding 5MHz CBW for B3 of Inter band CA of B3+26	12.0.0
06-2013	RP-60	RP-130775	1713r 1	Introduction of LTE Advanced Inter-Band Carrier Aggregation of Band 2 and Band 13	12.0.0
06-2013	RP-60	RP-130790	1723r	Introduction of the LTE 450 band to TS 36.101	12.0.0
06-2013	RP-60	RP-130791	1724r	Introduction of the WCS band to TS 36.101	12.0.0
06-2013	RP-60	RP-130784	1707r	Introduction of CA 19+21 into TS36.101(Rel-12)	12.0.0
09-2013	RP-61	RP-131300	1730r	36.101 CR for LTE_CA_C_B3	12.1.0
09-2013	RP-61	RP-131285	1732	CR on performance requirements of CA soft buffer managemen (Rel-12)	12.1.0
09-2013	RP-61	RP-131303	1733r 1	CR to introdue TM3 and TM4 test for 5MHz channel bandwidth	12.1.0
09-2013	RP-61	RP-131281	1736	CR on applicability of CA sustained data rate tests (Rel-12)	12.1.0
09-2013	RP-61	RP-131293	1739	Performance requirement for UE under EVA200	12.1.0
09-2013	RP-61	RP-131290	1743	CR for introduction of FeICIC PBCH performance requirement	12.1.0
09-2013	RP-61	RP-131290	1745	CR for introduction of FeICIC RI reporting requirements	12.1.0
09-2013	RP-61	RP-131292	1747	Beamforming model for EPDCCH test	12.1.0
09-2013	RP-61	RP-131303	1748	CR to introduce CSI tests for LTE450	12.1.0
09-2013	RP-61	RP-131303	1749	CR to extend UE category of the existing 5MHz performance requirements	12.1.0
09-2013	RP-61	RP-131281	1767	UE REFSENS when supporting intra-band CA and inter-band CA	12.1.0
09-2013	RP-61	RP-131279	1772	Correlation matrix for high speed train demodulation scenarios (Rel-12)	12.1.0
09-2013	RP-61	RP-131280	1776	Corrections to sustained data rate test (Rel-12)	12.1.0
09-2013	RP-61	RP-131303	1781	CR to introduce a new PHICH test based on 5MHz	12.1.0
09-2013	RP-61	RP-131303	1782	CR placeholder for applicability of new 5MHz tests	12.1.0
09-2013	RP-61	RP-131303	1783r	CR : Proposal of applicability of new 5MHz tests	12.1.0
09-2013	RP-61	RP-131303	1784	CR: PHICH tests for 5MHz	12.1.0
09-2013	RP-61	RP-131290	1786	CR for introduction of FelCIC CQI requirements	12.1.0
09-2013	RP-61	RP-131281	1794	Clarification of multi-cluster transmission	12.1.0
09-2013	RP-61	RP-131294	1800r	CA UE Coexistence Table update (Release 12)	12.1.0
09-2013	RP-61	RP-131302	1802	Coexistence between Band 27 and Band 38 (Release 12)	12.1.0
09-2013	RP-61	RP-131285	1803	Addional requirement for CA_1A-18A into TS36.101	12.1.0
09-2013	RP-61	RP-131296	1804	Add requirements for CA_1A-26A into TS36.101	12.1.0
09-2013	RP-61	RP-131281	1807	Incorrect REFSENS UL allocation for CA_1C	12.1.0
09-2013	RP-61	RP-131297	1808r	Introduction of CA_2A-4A into 36.101	12.1.0
09-2013	RP-61	RP-131281	1811	Contiguous intraband CA REFSENS with one UL	12.1.0
09-2013	RP-61	RP-131281	1822	The Pcmax clauses restructured: This CR was NOT implemented as it was based on the wrong version of the spec	12.1.0
09-2013	RP-61	RP-131298	1824	Introduction of inter-band CA Band 2+5	12.1.0
09-2013	RP-61	RP-131285	1831	MPR for intra-band non-contiguous CA	12.1.0
09-2013	RP-61	RP-131281	1832	Correction to Rel-10 A-MPR for CA_NS_04	12.1.0
09-2013	RP-61	RP-131285	1834	CR for 36.101 : Add the definition of 5+20MHz for spectrum emission mask for CA	12.1.0
09-2013	RP-61	RP-131303	1839	CR to introduce CSI tests for LTE450	12.1.0
JU 2010	01	101000		5.1. to 55555 561 toolo for ETE 100	

09-2013	RP-61	RP-131293	1840	Remianed Transmitter requirements for intra-band non- contiguous CA	12.1.0
09-2013	RP-61	RP-131303	1841	CR to introdue TM3 and TM4 test for 5MHz channel bandwidth	12.1.0
12-2013	RP-62	RP-131928	1847r 1	Corrections to the notes in the band UE co-existence requirements table (Rel-12)	12.2.0
12-2013	RP-62	RP-131924	1852	Clean-up of uplink reference measurement channels (Rel-12)	12.2.0
12-2013	RP-62	RP-131946	1857	Introduction of CA band combination Band2 + Band12 to TS 36.101	12.2.0
12-2013	RP-62	RP-131954	1858	Introduction of CA band combination Band12 + Band25 to TS 36.101	12.2.0
12-2013	RP-62	RP-131931	1867	CA_NS_05 Emissions	12.2.0
12-2013	RP-62	RP-131939	1869	NS signaling for CA refsens	12.2.0
12-2013	RP-62	RP-131965	1870	Introduction of CA_23A-23A RF requirements into 36.101	12.2.0
12-2013	RP-62	RP-131928	1877r 2	Intraband CA channel bandwidth combination table restructuring	12.2.0
12-2013	RP-62	RP-131940	1878	Addition of CA_3C missing UE to UE co-existence requirement and corection to SEM	12.2.0
12-2013	RP-62	RP-131959	1885	Introduction of LTE_CA_C_B27 to 36.101	12.2.0
12-2013	RP-62	RP-131939	1887	CR on correction of definition on Fraction of Maximum Throughput for CA	12.2.0
12-2013	RP-62	RP-131939	1889	CR on correction of test configurations of CA soft buffer tests	12.2.0
12-2013	RP-62	RP-131936	1893	CR for FelCIC demodulation performance requirements	12.2.0
12-2013	RP-62	RP-131936	1895r 1	CR on FelCIC PBCH performance requirement	12.2.0
12-2013	RP-62	RP-131936	1897r 1	CR on RI reporting requirement	12.2.0
12-2013	RP-62	RP-131938	1899	Beamforming model for EPDCCH localized test	12.2.0
12-2013	RP-62	RP-131938	1901	Downlink physical setup for EPDCCH test	12.2.0
12-2013	RP-62	RP-131926	1904	Correction on the UE category for elCIC CQI test	12.2.0
12-2013	RP-62	RP-131931	1906	CR for receiver type verification test of CSI-RS based advanced receivers (Rel-12)	12.2.0
12-2013	RP-62	RP-131956	1910r 1	Spurious emission band UE co-existence requirements for cross- region issue	12.2.0
12-2013	RP-62	RP-131928	1916r 2	Allowed power reductions for multiple transmissions in a subframe	12.2.0
12-2013	RP-62	RP-131967	1917r 1	The coexistence requirements between Band 39 and Band 3	12.2.0
12-2013	RP-62	RP-131967	1918r 1	The Pcmax clauses restructured and removal of addition of ΔTc to P-MPR	12.2.0
12-2013	RP-62	RP-131956	1919	Configured maximum output power for multiple TAG transmission	12.2.0
12-2013	RP-62	RP-131936	1927r 1	Configured maximum output power for multiple TAG transmission	12.2.0
12-2013	RP-62	RP-131927	1934	CR on correction of FRC of power imbalance test	12.2.0
12-2013	RP-62	RP-131927	1937	UE-UE coexistence for Band 40	12.2.0
12-2013	RP-62	RP-131957	1955r 1	Introduction of LTE Advanced intra-band contiguous Carrier Aggregation in Band 23 to TS 36.101	12.2.0
12-2013	RP-62	RP-131961	1956r 1	Introduction of CA_3A-3A into TS 36.101	12.2.0
12-2013	RP-62	RP-131937	1957	CR Minimum requirement with Different Cell ID and Colliding CRS (with single NZP CSI-RS resource)	12.2.0
12-2013	RP-62	RP-131937	1958	CR Minimum requirement with Same Cell ID (with multiple NZP CSI-RS resources)	12.2.0
12-2013	RP-62	RP-131936	1962	Introduction of reference SNR-s for FeICIC demodulation performance requirements	12.2.0
12-2013	RP-62	RP-131938	1964	OCNG pattern for EPDCCH test	12.2.0
12-2013	RP-62	RP-131931	1965	CA performance requirements for TDD intra-band NC CA	12.2.0
12-2013	RP-62	RP-131958	1966r	CA performance requirements for TDD intra-band NC CA	12.2.0
12-2013	RP-62	RP-131939	1968	Introduction of UE TM3 demodulation performance requirements under ETU300	12.2.0

12-2013	RP-62	RP-131937	1970	Introduction of test 1-A for CoMP	12.2.0
12-2013	RP-62	RP-131939	1972	Modification of TM9 test to verify correct SNR estimation	12.2.0
12-2013	RP-62	RP-131928	1984	Correction to blocking requirements and use of Delta_RIB	12.2.0
12-2013	RP-62	RP-131950	1985	Introduction of CA band combination Band5 + Band25 to TS 36.101	12.2.0
12-2013	RP-62	RP-131939	1988r	CR on test point clarification for CA demodulation test	12.2.0
12-2013	RP-62	RP-131937	1994	CR to Introduce fading CQI test for CoMP (TDD)	12.2.0
12-2013	RP-62	RP-131937	1996	CR to Introduce channel model for CoMP fading CQI tests	12.2.0
12-2013	RP-62	RP-131937	1998	CR to Introduce RI test for CoMP (FDD)	12.2.0
12-2013	RP-62	RP-131938	2001r	Distributed EPDCCH Demodulation Test	12.2.0
12-2013	RP-62	RP-131938	1 2003r	Localized EPDCCH Demodulation Test	12.2.0
12-2013	RP-62	RP-131938	2005r	Localized EPDCCH Demodulation Test	12.2.0
12-2013	RP-62	RP-131937	2007	Introduction of DL CoMP FDD static CQI test	12.2.0
12-2013	RP-62	RP-131937	2009	Introduction of DL CoMP TDD static CQI test	12.2.0
12-2013	RP-62	RP-131924	2014	P-max for Band 38 to Band 7 coexistence	12.2.0
12-2013	RP-62	RP-131948	2015	Introduction of CA band combination B5 + B7 to TS 36.101	12.2.0
12-2013	RP-62	RP-131952	2017	Introduction of CA band combination B7 + B28 to TS 36.101	12.2.0
12-2013	RP-62	RP-131937	2024	Minimum requirement with Same Cell ID (with multiple NZP CSI-	12.2.0
12-2013	RP-62	RP-131937	2026	RS resources) TDD CR Minimum requirement with Different Cell ID and Colliding CRS	12.2.0
12-2013	RP-62	RP-131936	2028	(with single NZP CSI-RS resource) TDD Editoral change on FelCIC PBCH Noc setup	12.2.0
12-2013	RP-62	RP-131937	2032	Introduction of test 1-A for CoMP	12.2.0
12-2013	RP-62	RP-131931	2035r	Correction of nominal guard bands for bandwidth classes A, B	12.2.0
12-2013	RP-62	RP-131937	2042	and C CR to Introduce RI test for CoMP (TDD)	12.2.0
12-2013	RP-62	RP-131937	2043	CR to Introduce fading CQI test for CoMP (FDD)	12.2.0
12-2013	RP-62	RP-131931	2045	Correction of TDD PCFICH/PDCCH test parameter table	12.2.0
12-2013	RP-62	RP-131939	2047	Add EVA200 to table of channel model parameters	12.2.0
12-2013	RP-62	RP-131963	2050r	Introduction of CA_7A-7A into TS 36.101	12.2.0
12-2013	RP-62	RP-131967	2057	Band 41 deployment in Japan	12.2.0
12-2013	RP-62	RP-131926	2059	CA_1C: Correction on CA_NS_02 A-MPR table	12.2.0
12-2013	RP-62	RP-131924	2060	Simplification of Band 12/17 in-band blocking test cases	12.2.0
12-2013	RP-62	RP-131967	2064	Correction of duplicated notes on table 7.3.1A-3	12.2.0
12-2013	RP-62	RP-131938	2066	Introduction of EPDCCH TM10 localized test R-12	12.2.0
12-2013	RP-62	RP-131938	2068	Introduction of SDR test for PDSCH with EPDCCH	12.2.0
03-2014	RP-63	RP-140377	2115	scheduling Editorial Correction for TS36.101 Rel-12	12.3.0
03-2014	RP-63	RP-140377 RP-140371	2115 2108	UL-DL configuration and other parameters for FelCIC TDD CQI	12.3.0
03-2014	RP-63	RP-140374	2097	fading test (Rel-12) CR on TM9 localized ePDCCH test	12.3.0
03-2014	RP-63	RP-140374	2101	CR on reference measurement channel for ePDCCH test	12.3.0
03-2014	RP-63	RP-140371	2110	CR for TS36.101 COMP demodulation requirements	12.3.0
03-2014	RP-63	RP-140371	2113	CR for Combinations of channel model parameters	12.3.0
03-2014	RP-63	RP-140374	2114	CR for EPDCCH power allocation (Rel-12)	12.3.0
03-2014	RP-63	RP-140371	2106	Cleanup of the specification for FelCIC (Rel-12)	12.3.0
03-2014	RP-63	RP-140375	2089	CR for introduction of 15MHz based single carrier and CA SDR	12.3.0
				tests in Rel-12	

03-2014	RP-63	RP-140375	2080r 1	CR on TM3 demodulation and soft buffer management test	12.3.0
03-2014	RP-63	RP-140371	2086	CR on reference measurement channel for TM10 PDSCH demodulation test	12.3.0
03-2014	RP-63	RP-140241	2174	Introduction of 3MHz in Band 8 for CA_8_20 RF requirements into TS36.101	12.3.0
03-2014	RP-63	RP-140417	2173r	Addition of bandwidth combination set for CA_2A-29A and	12.3.0
03-2014	RP-63	RP-140387	1 2071r	CA_4A-29A Introduction of TDD inter-band CA_B39_B41 into 36.101	12.3.0
03-2014	RP-63	RP-140378	2069	CA_3C is adding 100RB+75RB uplink configuration for reference	12.3.0
00.0044	DD 00	DD 440000	0070	sensitivity	40.0.0
03-2014 03-2014	RP-63 RP-63	RP-140388 RP-140386	2070	CR for TS36.101 on CA_C_B39 Introduction of CA band B3+B27 to TS36.101	12.3.0 12.3.0
03-2014	RP-63	RP-140366	2074	CR of EPDCCH localzied test with TM10 QCL Type-B	12.3.0
03-2014	KF-03	KF-140374	2074	configuration (Rel-12)	12.3.0
03-2014	RP-63	RP-140371	2142	Clarification of contiguous and non-contiguous intra-band UE capabilities in the same band	12.3.0
03-2014	RP-63	RP-140385	2161	Inrtroduction of additional bandwidth combination set for CA_2A-4A	12.3.0
03-2014	RP-63	RP-140371	2131r	CR to finalize RI test for CoMP	12.3.0
03-2014	RP-63	RP-140368	2147	Correction of coding rate for 18RBs in UL RMC table	12.3.0
03-2014	RP-63	RP-140366	2144	Channel spacing for non-contiguous intra-band carrier	12.3.0
03-2014				aggregation	
03-2014	RP-63	RP-140374	2163 2137	Distributed EPDCCH Demodulation Test	12.3.0
03-2014	RP-63 RP-63	RP-140368 RP-140368	2122	Configured transmitted power for CA CR for 36.101. Editorial correction on OCNG pattern	12.3.0 12.3.0
03-2014	RP-63	RP-140370	2160	Correction of table notes for NS_12-NS_15 spurious emissions requirements	12.3.0
03-2014	RP-63	RP-140371	2129r	CR to finalize fading CQI test for CoMP	12.3.0
03-2014	RP-63	RP-140375	2119	Introduction of requirements for SNR test for TM9	12.3.0
03-2014	RP-63	RP-140374	2125	CR on correction of downlink SDR tests with EPDCCH scheduling	12.3.0
03-2014	RP-63	RP-140371	2127	Correction on DL CoMP static CQI tests (Rel 12)	12.3.0
06-2014	RP-64	RP-140909	2177r 3	RF: Corrections to spurious emission requirements with NS different than NS_01 (Rel-12)	12.4.0
06-2014	RP-64	RP-140932	2187r	Additional bandwidth combination set for LTE Advanced interband Carrier Aggregation of Band 3 and Band 20	12.4.0
06-2014	RP-64	RP-140934	2188	Additional bandwidth combination set for LTE Advanced interband Carrier Aggregation of Band 7 and Band 20	12.4.0
06-2014	RP-64	RP-140943	2195r	CR for TS 36.101 on introduction CA_41D	12.4.0
06-2014	RP-64	RP-140943	2196r 3	CR to TS 36.101 on introduction of CA BW class D requirements	12.4.0
06-2014	RP-64	RP-140918	2198	CR on correction on TDD IRC CQI test	12.4.0
06-2014	RP-64	RP-140917	2207	CR of EPDCCH localzied test with TM10 QCL Type-B	12.4.0
30 2017	0-	1		configuration (Rel-12): correction of CSI-RS configurations	12. 1.0
06-2014	RP-64	RP-140918	2209	Clean up of TM9 SNR tests	12.4.0
06-2014	RP-64	RP-140933	2210r 1	Introduction of band B4+B27 CA to TS36.101	12.4.0
06-2014	RP-64	RP-140942	2213	Introduction of CA band combination B1+B20 to TS 36.101	12.4.0
06-2014	RP-64	RP-140917	2216	CR for EPDCCH test (Rel-12)	12.4.0
06-2014	RP-64	RP-140914	2218	CR of modification on FelCIC rank testing (Rel-12)	12.4.0
06-2014	RP-64	RP-140914	2220	CR on FelCIC PBCH performance requirement (Rel-12)	12.4.0
06-2014	RP-64	RP-140918	2222	Correction on out-of-band blocking for CA	12.4.0
06-2014	RP-64	RP-140918	2226	Update demodualtion performance requirements with new UE categories	12.4.0
06-2014	RP-64	RP-140911	2228	Correction for CA sustained data rate test (Rel-12)	12.4.0
06-2014	RP-64	RP-140945	2229	Correction on wrong annotation for close- loop spatial multiplexing performance	12.4.0
06-2014	RP-64	RP-140911	2233	Clarification of Intra-band contiguous CA class C Narrow band blocking requirements	12.4.0
06-2014	RP-64	RP-140911	2239	Correction for CA soft buffer test (Rel-12)	12.4.0
06-2014	RP-64	RP-140918	2241	CR on OCNG and propagation conditions for dual layer TM9 test (Rel-12)	12.4.0
06-2014	RP-64	RP-140911	2247	Remove [] from elCIC TDD RI requirement	12.4.0
06-2014	RP-64	RP-140914	2256	Verification of exceptions of REFSENS requirements for carrier aggregation	12.4.0
			2258	Applicability of exceptions to reference sensitivity requirements for	12.4.0
06-2014	RP-64	RP-140914	2256		12.4.0
06-2014				CA	
	RP-64 RP-64 RP-64	RP-140914 RP-140909 RP-140918	2269 2273		12.4.0

06-2014	RP-64	RP-140926	2282r	Editorial correction of note in clause 4.4	12.4.0
			1		
06-2014	RP-64	RP-140911	2283	Introduction of new bandwidth combination set for CA_1A-5A UE	12.4.0
06-2014 06-2014	RP-64 RP-64	RP-140914 RP-140914	2286 2288	CR for finalizing DL COMP CSI reporting requirements CR for adding DL CoMP CSI RMC tables (Rel-12)	12.4.0 12.4.0
06-2014	RP-64	RP-140914	2291	Simplification of 36.101 Table 5.6A.1-1 for LTE_CA_C_B27	12.4.0
06-2014	RP-64	RP-140914	2293	Finalization of CoMP demodulation test cases	12.4.0
06-2014	RP-64	RP-140918	2294	Editorial corrections for UE performance requirements for R12	12.4.0
06-2014	RP-64	RP-140937	2295	Introduction of CA performance requirements for Band 27 CA	12.4.0
06-2014	RP-64	RP-140931	2296	Introduction of CA 1+11 to 36.101 (Rel-12)	12.4.0
06-2014	RP-64	RP-140994	2309	Inclusion of the out of band emission limit concluded in CEPT into	12.4.0
				band 28	
06-2014	RP-64	RP-140911	2314	UE to UE co-existence between B42/B43	12.4.0
06-2014	RP-64	RP-140911	2318	Perf: Corrections to CA (Class C) performance with power	12.4.0
06-2014	RP-64	RP-140920	2319	imbalance (Rel-12) Introduction of CA performance requirements for Band 23 CA	12.4.0
06-2014	RP-64	RP-140914	2321	CR of modification on FelCIC rank testing (Rel-12)	12.4.0
06-2014	RP-64	RP-140914	2323	CR of introducing FeICIC TM9 testing (Rel-12)	12.4.0
06-2014	RP-64	RP-140917	2325	CR for EPDCCH SDR test (Rel-12)	12.4.0
06-2014	RP-64	RP-140911	2328	Clean-up CR for demodulation requirements (Rel-12)	12.4.0
06-2014	RP-64	RP-140945	2330r	Additional updates of UE categories for demodualtion	12.4.0
			1	performance requirements (Rel-12)	
06-2014	RP-64	RP-140911	2333	Throughput calculation for eICIC demodulation requirements	12.4.0
06-2014	RP-64	RP-140914	2335r	Introduction of Band 28 requirements for flexible operation in	12.4.0
00.0044	DD 04	DD 440044	1	Japan Control of the	40.40
06-2014	RP-64	RP-140911	2337r	Add missing Uplink downlink configuration to elCIC TDD RI	12.4.0
06-2014	RP-64	RP-140945	2338	requirement Add static propagation condition matrix for 1 x 2	12.4.0
06-2014	RP-64	RP-140945	2341	Cleanup of terminology for Rx requirements	12.4.0
06-2014	RP-64	RP-140945	2344	CR on separating CA UE demodulation tests from single carrier	12.4.0
00 2014	IXI OT	10343	2544	tests in Rel-12	12.4.0
06-2014	RP-64	RP-140911	2351	Test configuration for intra-band contiguous carrier aggregation	12.4.0
				power control	
06-2014	RP-64	RP-140935	2358	Addition of bandwidth combination sets for CA_2A-29A, CA_3A-	12.4.0
				5A, CA_4A-5A, CA_4A-12A, and CA_4A-29A into 36.101	
06-2014	RP-64	RP-140914	2362	Correction of test configurations for intra-band non-contiguous	12.4.0
00.0044	DD 04	DD 440044	0005	aggregation	40.40
06-2014 06-2014	RP-64 RP-64	RP-140911 RP-140917	2365 2374	Clarification on CA bandwidth classes CR on correction of downlink SDR tests with EPDCCH scheduling	12.4.0 12.4.0
06-2014	RP-64	RP-140917	2377	Correction on LTE_CA_C_B39	12.4.0
06-2014	RP-64	RP-140911	2378	Corrections on CA CQI tests	12.4.0
06-2014	RP-64	RP-140930	2381r	Introduction of LTE-Advanced CA of Band 8 and Band 40 to	12.4.0
		1	1	TS36.101	121110
06-2014	RP-64	RP-140927	2382r	FRC for DL MIMO enahncement PMI requirements	12.4.0
			1		
06-2014	RP-64	RP-140603	2384r	CR for TS 36.101 on introduction CA_40D	12.4.0
	55.01	55 440044	2		10.10
06-2014	RP-64	RP-140944	2385r	CR to TS 36.101 on introduction of 3DL intra-band non-	
06 2044			1 4 1 1	contiguous CA requirements	12.4.0
UD=71114	RP-64	RP-140938	2387	contiguous CA requirements	
06-2014 06-2014	RP-64 RP-64	RP-140938 RP-140927	2387	Introduction of CA_2A-2A into TS 36.101	12.4.0
06-2014	RP-64	RP-140927	2387 2392	Introduction of CA_2A-2A into TS 36.101 Introduction of 4Tx beam steering model	12.4.0 12.4.0
06-2014 06-2014	RP-64 RP-64		2387 2392 2394	Introduction of CA_2A-2A into TS 36.101 Introduction of 4Tx beam steering model CA_7C A-MPR Corrections	12.4.0 12.4.0 12.4.0
06-2014 06-2014 06-2014	RP-64 RP-64 RP-64	RP-140927 RP-140914	2387 2392 2394 2395r 2	Introduction of CA_2A-2A into TS 36.101 Introduction of 4Tx beam steering model CA_7C A-MPR Corrections Introduction of a new CA_7C bandwidth combination set into 36.101	12.4.0 12.4.0 12.4.0 12.4.0
06-2014 06-2014 06-2014 06-2014	RP-64 RP-64 RP-64	RP-140927 RP-140914 RP-140936	2387 2392 2394 2395r 2 2398	Introduction of CA_2A-2A into TS 36.101 Introduction of 4Tx beam steering model CA_7C A-MPR Corrections Introduction of a new CA_7C bandwidth combination set into 36.101 CR for TS36.101 CSI RMC table	12.4.0 12.4.0 12.4.0 12.4.0 12.4.0
06-2014 06-2014 06-2014 06-2014	RP-64 RP-64 RP-64 RP-64	RP-140927 RP-140914 RP-140936 RP-140918 RP-140940	2387 2392 2394 2395r 2 2398 2413	Introduction of CA_2A-2A into TS 36.101 Introduction of 4Tx beam steering model CA_7C A-MPR Corrections Introduction of a new CA_7C bandwidth combination set into 36.101 CR for TS36.101 CSI RMC table Introduction of LTE_CA_NC_B42 into 36.101	12.4.0 12.4.0 12.4.0 12.4.0 12.4.0 12.4.0
06-2014 06-2014 06-2014 06-2014	RP-64 RP-64 RP-64	RP-140927 RP-140914 RP-140936	2387 2392 2394 2395r 2 2398	Introduction of CA_2A-2A into TS 36.101 Introduction of 4Tx beam steering model CA_7C A-MPR Corrections Introduction of a new CA_7C bandwidth combination set into 36.101 CR for TS36.101 CSI RMC table	12.4.0 12.4.0 12.4.0 12.4.0 12.4.0
06-2014 06-2014 06-2014 06-2014 06-2014 06-2014	RP-64 RP-64 RP-64 RP-64 RP-64 RP-64	RP-140927 RP-140914 RP-140936 RP-140940 RP-140942	2387 2392 2394 2395r 2 2398 2413 2420	Introduction of CA_2A-2A into TS 36.101 Introduction of 4Tx beam steering model CA_7C A-MPR Corrections Introduction of a new CA_7C bandwidth combination set into 36.101 CR for TS36.101 CSI RMC table Introduction of LTE_CA_NC_B42 into 36.101 Introduction of CA band combination B1+B20 to TS 36.101	12.4.0 12.4.0 12.4.0 12.4.0 12.4.0 12.4.0 12.4.0
06-2014 06-2014 06-2014 06-2014	RP-64 RP-64 RP-64 RP-64	RP-140927 RP-140914 RP-140936 RP-140918 RP-140940	2387 2392 2394 2395r 2 2398 2413	Introduction of CA_2A-2A into TS 36.101 Introduction of 4Tx beam steering model CA_7C A-MPR Corrections Introduction of a new CA_7C bandwidth combination set into 36.101 CR for TS36.101 CSI RMC table Introduction of LTE_CA_NC_B42 into 36.101 Introduction of CA band combination B1+B20 to TS 36.101 CA_3C is deleting 75RB+75RB uplink configuration for reference	12.4.0 12.4.0 12.4.0 12.4.0 12.4.0 12.4.0
06-2014 06-2014 06-2014 06-2014 06-2014 06-2014 06-2014	RP-64 RP-64 RP-64 RP-64 RP-64 RP-64	RP-140927 RP-140914 RP-140936 RP-140940 RP-140942 RP-140919	2387 2392 2394 2395r 2 2398 2413 2420	Introduction of CA_2A-2A into TS 36.101 Introduction of 4Tx beam steering model CA_7C A-MPR Corrections Introduction of a new CA_7C bandwidth combination set into 36.101 CR for TS36.101 CSI RMC table Introduction of LTE_CA_NC_B42 into 36.101 Introduction of CA band combination B1+B20 to TS 36.101 CA_3C is deleting 75RB+75RB uplink configuration for reference sensitivity	12.4.0 12.4.0 12.4.0 12.4.0 12.4.0 12.4.0 12.4.0 12.4.0
06-2014 06-2014 06-2014 06-2014 06-2014 06-2014 06-2014	RP-64 RP-64 RP-64 RP-64 RP-64 RP-64 RP-64	RP-140927 RP-140914 RP-140936 RP-140940 RP-140942 RP-140919 RP-140914	2387 2392 2394 2395r 2 2398 2413 2420 2422	Introduction of CA_2A-2A into TS 36.101 Introduction of 4Tx beam steering model CA_7C A-MPR Corrections Introduction of a new CA_7C bandwidth combination set into 36.101 CR for TS36.101 CSI RMC table Introduction of LTE_CA_NC_B42 into 36.101 Introduction of CA band combination B1+B20 to TS 36.101 CA_3C is deleting 75RB+75RB uplink configuration for reference sensitivity CR on correction for TM10 CSI reporting requirements	12.4.0 12.4.0 12.4.0 12.4.0 12.4.0 12.4.0 12.4.0 12.4.0 12.4.0
06-2014 06-2014 06-2014 06-2014 06-2014 06-2014 06-2014	RP-64 RP-64 RP-64 RP-64 RP-64 RP-64	RP-140927 RP-140914 RP-140936 RP-140940 RP-140942 RP-140919	2387 2392 2394 2395r 2 2398 2413 2420	Introduction of CA_2A-2A into TS 36.101 Introduction of 4Tx beam steering model CA_7C A-MPR Corrections Introduction of a new CA_7C bandwidth combination set into 36.101 CR for TS36.101 CSI RMC table Introduction of LTE_CA_NC_B42 into 36.101 Introduction of CA band combination B1+B20 to TS 36.101 CA_3C is deleting 75RB+75RB uplink configuration for reference sensitivity	12.4.0 12.4.0 12.4.0 12.4.0 12.4.0 12.4.0 12.4.0 12.4.0
06-2014 06-2014 06-2014 06-2014 06-2014 06-2014 06-2014 06-2014	RP-64 RP-64 RP-64 RP-64 RP-64 RP-64 RP-64 RP-64 RP-65	RP-140927 RP-140914 RP-140936 RP-140940 RP-140940 RP-140942 RP-140919 RP-140914 RP-141197	2387 2392 2394 2395r 2 2398 2413 2420 2422 2422 2425 2458r 1	Introduction of CA_2A-2A into TS 36.101 Introduction of 4Tx beam steering model CA_7C A-MPR Corrections Introduction of a new CA_7C bandwidth combination set into 36.101 CR for TS36.101 CSI RMC table Introduction of LTE_CA_NC_B42 into 36.101 Introduction of CA band combination B1+B20 to TS 36.101 CA_3C is deleting 75RB+75RB uplink configuration for reference sensitivity CR on correction for TM10 CSI reporting requirements Introduction of CA_B1_B3_B19 into TS 36.101	12.4.0 12.4.0 12.4.0 12.4.0 12.4.0 12.4.0 12.4.0 12.4.0 12.4.0 12.5.0
06-2014 06-2014 06-2014 06-2014 06-2014 06-2014 06-2014	RP-64 RP-64 RP-64 RP-64 RP-64 RP-64 RP-64	RP-140927 RP-140914 RP-140936 RP-140940 RP-140942 RP-140919 RP-140914	2387 2392 2394 2395r 2 2398 2413 2420 2422 2425 2458r	Introduction of CA_2A-2A into TS 36.101 Introduction of 4Tx beam steering model CA_7C A-MPR Corrections Introduction of a new CA_7C bandwidth combination set into 36.101 CR for TS36.101 CSI RMC table Introduction of LTE_CA_NC_B42 into 36.101 Introduction of CA band combination B1+B20 to TS 36.101 CA_3C is deleting 75RB+75RB uplink configuration for reference sensitivity CR on correction for TM10 CSI reporting requirements Introduction of CA_B1_B3_B19 into TS 36.101 Updated REFSENS requirements for band combinations with Band 4 and Band 12	12.4.0 12.4.0 12.4.0 12.4.0 12.4.0 12.4.0 12.4.0 12.4.0 12.4.0
06-2014 06-2014 06-2014 06-2014 06-2014 06-2014 06-2014 06-2014	RP-64 RP-64 RP-64 RP-64 RP-64 RP-64 RP-64 RP-64 RP-65	RP-140927 RP-140914 RP-140936 RP-140940 RP-140940 RP-140942 RP-140919 RP-140914 RP-141197	2387 2392 2394 2395r 2 2398 2413 2420 2422 2422 2425 2458r 1	Introduction of CA_2A-2A into TS 36.101 Introduction of 4Tx beam steering model CA_7C A-MPR Corrections Introduction of a new CA_7C bandwidth combination set into 36.101 CR for TS36.101 CSI RMC table Introduction of LTE_CA_NC_B42 into 36.101 Introduction of CA band combination B1+B20 to TS 36.101 CA_3C is deleting 75RB+75RB uplink configuration for reference sensitivity CR on correction for TM10 CSI reporting requirements Introduction of CA_B1_B3_B19 into TS 36.101 Updated REFSENS requirements for band combinations with	12.4.0 12.4.0 12.4.0 12.4.0 12.4.0 12.4.0 12.4.0 12.4.0 12.4.0 12.5.0
06-2014 06-2014 06-2014 06-2014 06-2014 06-2014 06-2014 06-2014 09-2014 09-2014	RP-64 RP-64 RP-64 RP-64 RP-64 RP-64 RP-64 RP-65 RP-65	RP-140927 RP-140914 RP-140936 RP-140940 RP-140942 RP-140919 RP-140919 RP-141197 RP-1411428 RP-141468	2387 2392 2394 2395r 2 2398 2413 2420 2422 2422 2425 2458r 1 2568	Introduction of CA_2A-2A into TS 36.101 Introduction of 4Tx beam steering model CA_7C A-MPR Corrections Introduction of a new CA_7C bandwidth combination set into 36.101 CR for TS36.101 CSI RMC table Introduction of LTE_CA_NC_B42 into 36.101 Introduction of CA band combination B1+B20 to TS 36.101 CA_3C is deleting 75RB+75RB uplink configuration for reference sensitivity CR on correction for TM10 CSI reporting requirements Introduction of CA_B1_B3_B19 into TS 36.101 Updated REFSENS requirements for band combinations with Band 4 and Band 12 Introduction of 3 DL CA for Band 1+3+20	12.4.0 12.4.0 12.4.0 12.4.0 12.4.0 12.4.0 12.4.0 12.4.0 12.5.0 12.5.0
06-2014 06-2014 06-2014 06-2014 06-2014 06-2014 06-2014 06-2014 09-2014 09-2014 09-2014	RP-64 RP-64 RP-64 RP-64 RP-64 RP-64 RP-64 RP-65 RP-65	RP-140927 RP-140914 RP-140936 RP-140918 RP-140940 RP-140942 RP-140919 RP-140919 RP-141197 RP-1411428 RP-141468 RP-141469	2387 2392 2394 2395r 2 2398 2413 2420 2422 2422 2425 2458r 1 2568	Introduction of CA_2A-2A into TS 36.101 Introduction of 4Tx beam steering model CA_7C A-MPR Corrections Introduction of a new CA_7C bandwidth combination set into 36.101 CR for TS36.101 CSI RMC table Introduction of LTE_CA_NC_B42 into 36.101 Introduction of CA band combination B1+B20 to TS 36.101 CA_3C is deleting 75RB+75RB uplink configuration for reference sensitivity CR on correction for TM10 CSI reporting requirements Introduction of CA_B1_B3_B19 into TS 36.101 Updated REFSENS requirements for band combinations with Band 4 and Band 12 Introduction of 3 DL CA for Band 1+3+20 Correction to CA in Band 1+20	12.4.0 12.4.0 12.4.0 12.4.0 12.4.0 12.4.0 12.4.0 12.4.0 12.5.0 12.5.0
06-2014 06-2014 06-2014 06-2014 06-2014 06-2014 06-2014 06-2014 09-2014 09-2014	RP-64 RP-64 RP-64 RP-64 RP-64 RP-64 RP-64 RP-65 RP-65	RP-140927 RP-140914 RP-140936 RP-140940 RP-140942 RP-140919 RP-140919 RP-141197 RP-1411428 RP-141468	2387 2392 2394 2395r 2 2398 2413 2420 2422 2422 2425 2458r 1 2568 2508r 1 2571 2504r	Introduction of CA_2A-2A into TS 36.101 Introduction of 4Tx beam steering model CA_7C A-MPR Corrections Introduction of a new CA_7C bandwidth combination set into 36.101 CR for TS36.101 CSI RMC table Introduction of LTE_CA_NC_B42 into 36.101 Introduction of CA band combination B1+B20 to TS 36.101 CA_3C is deleting 75RB+75RB uplink configuration for reference sensitivity CR on correction for TM10 CSI reporting requirements Introduction of CA_B1_B3_B19 into TS 36.101 Updated REFSENS requirements for band combinations with Band 4 and Band 12 Introduction of 3 DL CA for Band 1+3+20 Correction to CA in Band 1+20 Perf: Cleanup and better description of DL-RMC-s with dynamic	12.4.0 12.4.0 12.4.0 12.4.0 12.4.0 12.4.0 12.4.0 12.4.0 12.5.0 12.5.0
06-2014 06-2014 06-2014 06-2014 06-2014 06-2014 06-2014 06-2014 09-2014 09-2014 09-2014 09-2014	RP-64 RP-64 RP-64 RP-64 RP-64 RP-64 RP-65 RP-65 RP-65 RP-65	RP-140927 RP-140914 RP-140936 RP-140940 RP-140942 RP-140919 RP-140914 RP-141197 RP-141428 RP-141468 RP-141469 RP-141525	2387 2392 2394 2395r 2 2398 2413 2420 2422 2425 2458r 1 2568 2508r 1 2571 2504r 1	Introduction of CA_2A-2A into TS 36.101 Introduction of 4Tx beam steering model CA_7C A-MPR Corrections Introduction of a new CA_7C bandwidth combination set into 36.101 CR for TS36.101 CSI RMC table Introduction of LTE_CA_NC_B42 into 36.101 Introduction of CA band combination B1+B20 to TS 36.101 CA_3C is deleting 75RB+75RB uplink configuration for reference sensitivity CR on correction for TM10 CSI reporting requirements Introduction of CA_B1_B3_B19 into TS 36.101 Updated REFSENS requirements for band combinations with Band 4 and Band 12 Introduction of 3 DL CA for Band 1+3+20 Correction to CA in Band 1+20 Perf: Cleanup and better description of DL-RMC-s with dynamic coding rate for CSI requirements (ReI-12)	12.4.0 12.4.0 12.4.0 12.4.0 12.4.0 12.4.0 12.4.0 12.4.0 12.5.0 12.5.0 12.5.0
06-2014 06-2014 06-2014 06-2014 06-2014 06-2014 06-2014 06-2014 09-2014 09-2014 09-2014 09-2014 09-2014	RP-64 RP-64 RP-64 RP-64 RP-64 RP-64 RP-65 RP-65 RP-65 RP-65 RP-65	RP-140927 RP-140914 RP-140936 RP-140918 RP-140940 RP-140942 RP-140919 RP-140914 RP-141197 RP-141428 RP-141468 RP-141469 RP-141525	2387 2392 2394 2395r 2 2398 2413 2420 2422 2425 2458r 1 2568 2508r 1 2571 2504r 1 2565	Introduction of CA_2A-2A into TS 36.101 Introduction of 4Tx beam steering model CA_7C A-MPR Corrections Introduction of a new CA_7C bandwidth combination set into 36.101 CR for TS36.101 CSI RMC table Introduction of LTE_CA_NC_B42 into 36.101 Introduction of CA band combination B1+B20 to TS 36.101 CA_3C is deleting 75RB+75RB uplink configuration for reference sensitivity CR on correction for TM10 CSI reporting requirements Introduction of CA_B1_B3_B19 into TS 36.101 Updated REFSENS requirements for band combinations with Band 4 and Band 12 Introduction of 3 DL CA for Band 1+3+20 Correction to CA in Band 1+20 Perf: Cleanup and better description of DL-RMC-s with dynamic coding rate for CSI requirements (ReI-12) Corrections to UE coex table	12.4.0 12.4.0 12.4.0 12.4.0 12.4.0 12.4.0 12.4.0 12.4.0 12.5.0 12.5.0 12.5.0
06-2014 06-2014 06-2014 06-2014 06-2014 06-2014 06-2014 06-2014 09-2014 09-2014 09-2014	RP-64 RP-64 RP-64 RP-64 RP-64 RP-64 RP-65 RP-65 RP-65 RP-65	RP-140927 RP-140914 RP-140936 RP-140940 RP-140942 RP-140919 RP-140914 RP-141197 RP-141428 RP-141468 RP-141469 RP-141525	2387 2392 2394 2395r 2 2398 2413 2420 2422 2425 2458r 1 2568 2508r 1 2571 2504r 1	Introduction of CA_2A-2A into TS 36.101 Introduction of 4Tx beam steering model CA_7C A-MPR Corrections Introduction of a new CA_7C bandwidth combination set into 36.101 CR for TS36.101 CSI RMC table Introduction of LTE_CA_NC_B42 into 36.101 Introduction of CA band combination B1+B20 to TS 36.101 CA_3C is deleting 75RB+75RB uplink configuration for reference sensitivity CR on correction for TM10 CSI reporting requirements Introduction of CA_B1_B3_B19 into TS 36.101 Updated REFSENS requirements for band combinations with Band 4 and Band 12 Introduction of 3 DL CA for Band 1+3+20 Correction to CA in Band 1+20 Perf: Cleanup and better description of DL-RMC-s with dynamic coding rate for CSI requirements (ReI-12)	12.4.0 12.4.0 12.4.0 12.4.0 12.4.0 12.4.0 12.4.0 12.4.0 12.5.0 12.5.0 12.5.0

09-2014	RP-65	RP-141527	2466	Unequal DL CC RB allocations in Maximum input level	12.5.0
09-2014	RP-65	RP-141527	2469	Intra-band contiguous CA ACS case 2 test clarification	12.5.0
09-2014	RP-65	RP-141527	2484	Corrections on delta Tc for UE MOP for intra-band contiguous CA	12.5.0
09-2014	RP-65	RP-141527	2487	Removal of Class B in UE TX requirement	12.5.0
09-2014	RP-65	RP-141527	2516r	CR for CA applicability rule in 36.101 in Rel-12	12.5.0
09-2014	RP-65	RP-141527	2519r	Editorial CR for CA performance tests in 36.101 in Rel-12	12.5.0
09-2014	RP-65	RP-141527	2548	Correction to NS 20 A-MPR for Band 23	12.5.0
09-2014	RP-65	RP-141530	2447	CR of introducing FeICIC TM9 testing (Rel-12)	12.5.0
09-2014	RP-65	RP-141530	2454	Maintenance of CoMP demodulation performance requirements	12.5.0
				(Rel-12)	
09-2014	RP-65	RP-141530	2456	Clean-up CR for EPDCCH and FelCIC PBCH (Rel-12)	12.5.0
09-2014	RP-65	RP-141530	2471	Throughput calculation for felCIC demodulation requirements	12.5.0
09-2014	RP-65	RP-141532	2439	CR on correction on CQI reporting TDD CSI meas in case two CSI subframe sets with CRS test (Rel-12)	12.5.0
09-2014	RP-65	RP-141532	2441	CR on correction on RI reporting CSI meas in case two CSI subframe sets with CRS tests (Rel-12)	12.5.0
09-2014	RP-65	RP-141532	2444	Clarification of high speed train scenario in 36.101 (Rel-12)	12.5.0
09-2014	RP-65	RP-141532	2478	CQI reporting under fading: CQI indices in set	12.5.0
09-2014	RP-65	RP-141532	2490	Correction on A-MPR table	12.5.0
09-2014	RP-65	RP-141532	2499	RF: Corrections to spurious emission band co-existence requirement for Band 44	12.5.0
09-2014	RP-65	RP-141535	2559	Addition of E-UTRA CA configurations and bandwidth	12.5.0
	L	<u> </u>	1	combination sets defined for inter-band CA for Band 4 and 27	15.5
09-2014	RP-65	RP-141537	2541	Band 42 contiguous CA channel bandwidth correction	12.5.0
09-2014	RP-65	RP-141546	2463r 1	Introduction of PMI reporting requirements for DL MIMO enhancement	12.5.0
09-2014	RP-65	RP-141548	2457r 2	Introduction of CA_B1_B3 into TS 36.101	12.5.0
09-2014	RP-65	RP-141549	2556	Addition of bandwidth combination set for CA_2A-4A	12.5.0
09-2014	RP-65	RP-141550	2566	Addition of 3MHz bandwidth for Band 12 , in the B2+B12 CA combination	12.5.0
09-2014	RP-65	RP-141551	2445	Introduction of CA 8+11 to 36.101 (Rel-12)	12.5.0
09-2014	RP-65	RP-141553	2491r	Introduction of a new bandwidth combination set for CA_25A-25A	12.5.0
09-2014	RP-65	RP-141554	1 2533r	into 36.101 Introduction of requirements for 3DL inter-band carrier	12.5.0
03-2014	111-05	101-141554	1	aggregation (FDD)	12.5.0
09-2014	RP-65	RP-141554	2534	Introduction of requirements for 3DL combinations with Band 30 (FDD)	12.5.0
09-2014	RP-65	RP-141557	2461r	Introduction of CA_B19_B42_B42 into TS 36.101	12.5.0
09-2014	RP-65	RP-141559	2460r	Introduction of CA_B1_B42_B42 into TS 36.101	12.5.0
09-2014	RP-65	RP-141560	2427	Adding 15MHz channel BW to B40 3DL and new bandwidth	12.5.0
09-2014	RP-65	RP-141561	2488r	combination set for the 2DL Corrections on Maximum input level for intra-band non-contiguous	12.5.0
00 20	1 00		1	3DL	
09-2014	RP-65	RP-141562	2436	Corrections on Maximum input level and ACS for intra-band CA	12.5.0
09-2014	RP-65	RP-141562	2481r	Introduction of CA band combination B41+ B42 to TS 36.101	12.5.0
09-2014	RP-65	RP-141562	2522	CR on CA power imbalance tests in Rel-12	12.5.0
09-2014	RP-65	RP-141562	2560	CR Reducing MPR for Contiguous CA with Non-Contiguous	12.5.0
				Resource Allocations	
09-2014	RP-65	RP-141563	2555r 1	UL configuration for CA_4A-12A reference sensitivity	12.5.0
09-2014	RP-65	RP-141563	2557	Addition of bandwidth combination set for CA_4A-12A	12.5.0
09-2014	RP-65	RP-141612	2494r 2	Introduction of inter-band CA_18-28 into TS36.101	12.5.0
09-2014	RP-65	RP-141635	2552r	Introduction of CA_1A-7A into 36.101(Rel-12)	12.5.0
09-2014	RP-65	RP-141636	2 2480r	Introduction of 3DLs CA band combination of Band1 +5 + 7 to TS	12.5.0
09-2014	RP-65	RP-141653	2 2435r	36.101 Rel-12 Introduction of 3 Band Carrier Aggregation (3DL/1UL) of Band 1,	12.5.0
09-2014	RP-65	RP-141682	3 2570r	Band 3 and Band 8 to TS 36.101 Introduction of CA band combination B1+B7+B20 to TS 36.101	12.5.0
09-2014	RP-65	RP-141708	1 2492r	Introduction of 3 Band Carrier Aggregation of Band 1,Band 3 and	12.5.0
			3	Band 5 to TS 36.101	
12-2014	RP-66	RP-142147	2671	Correction of CoMP TDD CSI tests (Rel-12)	12.6.0
12-2014	RP-66	RP-142144	2574	CR for REFSENSE in lower SNR and change history	12.6.0
12-2014 12-2014	RP-66	RP-142173	2581	CR on 4Tx codebook PMI testing	12.6.0
1/-/11/14	RP-66	RP-142142	2587	CR for 1 PRB allocation performance in presence of MBSFN (rel- 12)	12.6.0

				12)	
12-2014	RP-66	RP-142147	2592	Clean up for FelCIC demodulation performance requirements (Rel-12)	12.6.0
12-2014	RP-66	RP-142166	2600	Correction of placement of CA_40D in Table	12.6.0
12-2014	RP-66	RP-142162	2601	CQI test for TDD CL_C 20MHz+15MHz in Rel-12	12.6.0
12-2014	RP-66	RP-142162	2602	Sustained downlink data rate test for TDD CL_C 20MHz+15MHz in Rel-12	12.6.0
12-2014	RP-66	RP-142165	2611	Removal of square brackets for CA_B1_B3 and CA_B1_B3_B19	12.6.0
12-2014	RP-66	RP-142147	2620	CQI reporting in AWGN: CQI indices in set	12.6.0
12-2014	RP-66	RP-142147	2629	CR to fix error of CA capability for CA performance tests in 36.101 in Rel-12	12.6.0
12-2014	RP-66	RP-142144	2637	Definition of the bits in the bitmap for indication of modified MPR behavior	12.6.0
12-2014	RP-66	RP-142147	2641	Applicability of in-gap and out-of-gap measurements for intraband NC CA	12.6.0
12-2014	RP-66	RP-142183	2642	Introduction of additional bandwidth combination set for CA_2A-5A	12.6.0
12-2014	RP-66	RP-142164	2643	Corrections for 3DL inter-band CA band combinations	12.6.0
12-2014	RP-66	RP-142147	2661	Maintenance of TM10 demodulation test configurations on PQI set and ZP-CSIRS (Rel-12 test 8.3.1.3.2, 8.3.2.4.2)	12.6.0
12-2014	RP-66	RP-142173	2582r 1	Introduction of PUSCH 3-2 requirements into TS36.101	12.6.0
12-2014	RP-66	RP-142162	2603r	Normal demodulation test for TDD CL_C 20MHz+15MHz in Rel-	12.6.0
12-2014	RP-66	RP-142164	2576r	12 Corrections on Out-of-band blocking requirements for CA Class B	12.6.0
12-2014	RP-66	RP-142149	2678	and D CR to specify applicability of CoMP RI test (Rel-12)	12.6.0
12-2014	RP-66	RP-142144	2688	Removal of bracket for UL MIMO	12.6.0
12-2014	RP-66	RP-142164	2689	Corection of B29 REFSENS for CA_2A-29A-30A and CA_4A-	12.6.0
				29A-30A	
12-2014	RP-66	RP-142144	2700	Delete the incorrect notes for FDD DMRS demodulation tests (Rel-12)	12.6.0
12-2014	RP-66	RP-142160	2594r 3	Correcting requirements for inter-band CA_18-28 in TS36.101	12.6.0
12-2014	RP-66	RP-142173	2705	CR of modification on PMI reporting requirements for DL MIMO enhancement	12.6.0
12-2014	RP-66	RP-142144	2720	Band 22 correction in UE to UE co-existance table.	12.6.0
12-2014	RP-66	RP-142147	2722	Correction to non-contiguous downlink intraband CA receiver requirements	12.6.0
12-2014	RP-66	RP-142159	2752	Removal of dRib from CA_1A-7A	12.6.0
12-2014	RP-66	RP-142147	2723	Correction to table format of allowed channel bandwidths of non- contiguous intraband CA	12.6.0
12-2014	RP-66	RP-142164	2643r 1	Corrections for 3DL inter-band CA band combinations	12.6.0
12-2014	RP-66	RP-142146	2731	Modifications for NS_12 and NS_13	12.6.0
12-2014	RP-66	RP-142189	2739	Introduction of CA_5-13 into 36.101	12.6.0
12-2014	RP-66	RP-142173	2706r 1	CR of reference measurement channel for PUSCH3-2 test	12.6.0
12-2014	RP-66	RP-142144	2727r 1	CR for CA applicability rule in 36.101 in Rel-12	12.6.0
12-2014	RP-66	RP-142188	2676r 1	CR to remove CA capability column in CA performance test tables (Rel-12)	12.6.0
12-2014	RP-66	RP-142173	r3	Introduction of PUSCH 3-2 requirements into TS36.101	12.6.0
12-2014	RP-66	RP-142187	2690r	CR on sustained data rate test for 3DL CA	12.6.0
12-2014	RP-66	RP-142187	2681r 2	CR on normal demodulation test for 3DL CA	12.6.0
12-2014	RP-66	RP-142147	2747r	TS36.101 removal of brackets (RF)	12.6.0
12-2014	RP-66	RP-142144	2755	Correction to Transmit Modulation Quality for CA	12.6.0
12-2014	RP-66	RP-142144	2710r 1	Clarification on UL and DL CA	12.6.0
12-2014	RP-66	RP-142144	2717r	Clarification of notes relating to interferer offsets in intraband CA receiver requirement tables.	12.6.0
12-2014	RP-66	RP-142147	2735r	Band 28 and NS_24	12.6.0
12-2014	RP-66	RP-142179	2684r	CR for UE requirements for 256QAM	12.6.0
12-2014	RP-66	RP-142180	2729r	Introduction of Dual Connectivity to TS 36.101 Rel-12, RF part	12.6.0
12-2014	RP-66	RP-142184	2680r	Introduction of dual uplink inter-band CA in TS 36.101 rel-12	12.6.0
	1	1	I .	<u> </u>	L
12-2014	RP-66	RP-142182	2701r	Introduction of inter-band CA_1-28 into TS36.101	12.6.0

Г	1	T	T T	I Farianiana	1
12-2014	RP-66	RP-142144	2751r	Emissions Removal of brackets and TBD from CA feature	12.6.0
12-2014	RP-66	RP-142144	2 2697r	Maintenance of CA performance requirements (Rel-12)	12.6.0
12-2014	RP-66	RP-142187	2679r	CR to introduce CQI test for 3 DL CA	12.6.0
12-2014	RP-66	RP-142185	2 2721r	Addition of 2UL non-contiguous intraband CA feature	12.6.0
12-2014	RP-66	RP-142144	2704r	UE to UE co-existence between B42/B43	12.6.0
12-2014	RP-66	RP-142176	2 2685r	Introduction of LC MTC into TS 36.101	12.6.0
12-2014	RP-66	RP-142190	2 2759r	Introduction of additional band combinations for 3DL inter-band	12.6.0
03-2015	RP-67	RP-150387	2760r	CA Introduce additional bands of LC MTC	12.7.0
03-2015	RP-67	RP-150387	2761	CR on corrections to Dual-Layer Spatial Multiplexing with multiple	12.7.0
03-2015	RP-67	RP-150392	2765r	CSI-RS config Rel-12 CR for applicability and test rules for TDD-FDD CA performance	12.7.0
03-2015	RP-67	RP-150392	2766	requirements Introduction of CQI tests for TDD-FDD CA	12.7.0
03-2015	RP-67	RP-150395	2767r	CR to introduce the SU-MIMO whitening verification test	12.7.0
03-2015	RP-67	RP-150392	1 2768r	CR on power imbalance test for 3DL CA	12.7.0
	L	<u> </u>	1		10.5
03-2015	RP-67	RP-150392	2769	CR on sustained data rate test for TDD FDD CA	12.7.0
03-2015	KP-0/	RP-150394	2770r	CR for introduction of 256QAM demodulation performance requirements	12.7.0
03-2015	RP-67	RP-150393	2772r	CR: DC UE performance requirements	12.7.0
03-2015	RP-67	RP-150390	2773r	CR: MTC demodulation performance requirements	12.7.0
03-2015	RP-67	RP-150390	2774r	CR: MTC CSI requirements	12.7.0
03-2015	RP-67	RP-150396	2775r	Introduction of the eIMTA functional PDSCH demodulation test	12.7.0
03-2015	RP-67	RP-150387	2776r 3	CR on RF core requirements for D2D	12.7.0
03-2015	RP-67	RP-150387	2777	Modification of CSI reference measurement channel Rel-12	12.7.0
03-2015	RP-67	RP-150388	2779	Editorial correction for CA_18A-28A	12.7.0
03-2015	RP-67	RP-150388	2781	Removing brackets for CA_1A-28A MSD requirements	12.7.0
03-2015	RP-67	RP-150384	2783	Editorial correction on symbols for enhanced performance requirements type A	12.7.0
03-2015	RP-67	RP-150387	2784	Corrections on reference measurement channel	12.7.0
03-2015	RP-67	RP-150388	2792	Correction of TS 36.101 for the Pcell support of 25+41	12.7.0
03-2015	RP-67	RP-150395	2793r 1	CR for single cell demodulation test for SU-MIMO	12.7.0
03-2015	RP-67	RP-150391	2794	Introduction of CA_3A-42A and CA_3A-42C into 36.101 UL HARQ in PDSCH and PDCCH/PCFICH demod test cases for	12.7.0
03-2015	RP-67	RP-150384	2797	elCIC/felCIC with MBSFN ABS	12.7.0
03-2015	RP-67	RP-150382	2800	Correction to eICIC aggressor cell configurations	12.7.0
03-2015	RP-67	RP-150387	2801	R4-73AH-0040: Correction for uplik CA configuration in TS 36.101 Rel-12	12.7.0
03-2015	RP-67	RP-150387	2802r 1	Correction of MSD levels for CA_1A-8A in TS 36.101 rel-12	12.7.0
03-2015	RP-67	RP-150387	2805	Removal of eDL-MIMO term from specification	12.7.0
03-2015	RP-67	RP-150388	2809	Clarification of 2UL/3DL contiguous intraband CA REFSENS test	12.7.0
03-2015	RP-67	RP-150392	2811r 1	CR on TM4 normal demodulation test for 3DL CA	12.7.0
03-2015	RP-67	RP-150392	2812	CR on introducing new DL referece measurement channels	12.7.0
03-2015	RP-67	RP-150392	2813r 1	CR on normal demodulation test for TDD-FDD CA	12.7.0
03-2015	RP-67	RP-150388	2815	Additions of bandwidth combination set reference	12.7.0
03-2015	RP-67	RP-150388	2816	Correction of band number in Table 5.6A.1-2a for LTE_CA_B4_B12_B30	12.7.0
03-2015	RP-67	RP-150382	2819	UE to UE co-existence between B42/B43	12.7.0
03-2015	RP-67	RP-150382	2822	Corrections to CA in-band emissions requirement	12.7.0
03-2015	RP-67	RP-150381	2830	Uplink RMCs for sustained data rate test	12.7.0
03-2015	RP-67 RP-67	RP-150382	2833	Corrections to the CA power imbalance test CR for soft buffer tests for TDD-FDD CA in 36.101 in Rel-12	12.7.0 12.7.0
1 02 2045		RP-150392	2839r	CK for soil duffer lesis for TDD-FDD CA IN 36.101 IN Ref-12	12.7.0
03-2015		DD 450000	1	Editorial CD for CA LIE was farmance tooks in 00 404 in Dal 40	10.7.0
03-2015 03-2015 03-2015	RP-67 RP-67	RP-150392 RP-150387	1 2842 2847	Editorial CR for CA UE performance tests in 36.101 in Rel-12 UE spurious emissions structure correction for CA	12.7.0 12.7.0

00.007-				aggregation	
03-2015	RP-67	RP-150387	2851	Exceptions for spurious response for UL CA	12.7.0
03-2015	RP-67	RP-150388	2852r	Correction of REFSENS, OOBB and uplink configuration for 3DL/1UL CA	12.7.0
03-2015	RP-67	RP-150390	2853	SNR definition for category 0 UE	12.7.0
03-2015	RP-67	RP-150390	2854r	FRC for category 0 UE PDSCH performance requirements	12.7.0
			1		
03-2015	RP-67	RP-150390	2855r 1	Introduction of new PHICH and PBCH performance requirements for category 0 UE	12.7.0
03-2015	RP-67	RP-150387	2861	Correction to FOOB reference in definition of MPR for contiguous CA with non-contiguous resource allocation	12.7.0
03-2015	RP-67	RP-150387	2862	Band 31 update	12.7.0
03-2015	RP-67	RP-150384	2867	Implementation of CA configurations specified in later releases	12.7.0
06-2015	RP-68	RP-150958	2870r 2	Intra-band contiguous CA reference sensitivity definition for Class D	12.8.0
06-2015	RP-68	RP-150961	2881r 2	CR on MTC CQI tests	12.8.0
06-2015	RP-68	RP-150962	2882r 2	CR on 256QAM demodulation performance requirements	12.8.0
06-2015	RP-68	RP-150962	2883r 3	CR on 256QAM sustained data rate tests for single carrier and TDD or FDD CA	12.8.0
06-2015	RP-68	RP-150962	2885r 4	CR on 256QAM CQI test	12.8.0
06-2015	RP-68	RP-150963	2886r 3	CR on DC SDR tests	12.8.0
06-2015	RP-68	RP-150963	2887r 2	Maintenance CR for DC demodualtion performance requirements	12.8.0
06-2015	RP-68	RP-150958	2888	CR to restore R.10-2 FDD	12.8.0
06-2015	RP-68	RP-150961	2889r 3	Introduction of UE category 0 PDSCH/PHICH/PBCH performance requirements	12.8.0
06-2015	RP-68	RP-150954	2901	UE to UE co-existence between B42/B43	12.8.0
06-2015	RP-68	RP-150958	2902	Correction of maximum aggregated bandwidth for CA_26A-41A	12.8.0
06-2015	RP-68	RP-150957	2903r 2	Introduction of TDD SU-MIMO whitening verification test	12.8.0
06-2015	RP-68	RP-150958	2904	Correction of FRC table for CA demodualtion with power imbalance	12.8.0
06-2015	RP-68	RP-150958	2905r	Add SCell power levels for 2DL CA power imbalance test	12.8.0
06-2015	RP-68	RP-150955	2907	Corrections on UL transmit power for CA receiver requirements	12.8.0
06-2015	RP-68	RP-150958	2909	Corrections to the CA power imbalance test	12.8.0
06-2015	RP-68	RP-150957	2910r	Clarification on RMC for D2D UE	12.8.0
06-2015	RP-68	RP-150960	2911	Correction on TDD eIMTA PDSCH functionality test	12.8.0
06-2015	RP-68	RP-150954	2931	3.5 GHz out-of-band blocking	12.8.0
06-2015	RP-68	RP-150965	2933	Correction of FRC names	12.8.0
06-2015	RP-68	RP-150954	2936	Correction of the 3DL CA REFSENS	12.8.0
+			_		
06-2015	RP-68	RP-150962	2939r 1	CR on 256QAM sustained data rate tests for TDD FDD CA	12.8.0
06-2015	RP-68	RP-150958	2940r 1	Maintenance CR for 3DL CA performance requirements	12.8.0
06-2015	RP-68	RP-150958	2941r 1	Maintenance CR for TDD FDD CA demodulation performance requirements	12.8.0
06-2015	RP-68	RP-150965	2944	Corrections on 2UL intra-band non-contiguous CA requirements	12.8.0
06-2015	RP-68	RP-150958	2947	Updates to the definitions of CA capability (Rel-12)	12.8.0
06-2015	RP-68	RP-150955	2950	Clarification of PDSCH allocation in CSI PUSCH 3-0 felCIC tests (Rel-12)	12.8.0
				NS value for intra-band contiguous CA configurations not allowed	12.8.0
06-2015	RP-68	RP-150954	2956	A-MPR	
06-2015 06-2015	RP-68	RP-150954 RP-150957	2956		12.8.0
				A-MPR Receiver spurious emissions requirements for downlink-only	
06-2015	RP-68	RP-150957	2958	A-MPR Receiver spurious emissions requirements for downlink-only bands Amendments to MPR for uplink inter-band and intra-band non-	12.8.0
06-2015 06-2015	RP-68	RP-150957 RP-150958	2958 2959	A-MPR Receiver spurious emissions requirements for downlink-only bands Amendments to MPR for uplink inter-band and intra-band noncontiguous CA	12.8.0
06-2015 06-2015 06-2015 06-2015	RP-68 RP-68 RP-68	RP-150957 RP-150958 RP-150958 RP-150955	2958 2959 2960r 1 2961r 1	A-MPR Receiver spurious emissions requirements for downlink-only bands Amendments to MPR for uplink inter-band and intra-band non-contiguous CA NS values for secondary cells of non-contiguous CA configurations Corrections to test configurations for intra-band non-contiguous CA	12.8.0 12.8.0 12.8.0 12.8.0
06-2015 06-2015 06-2015	RP-68 RP-68	RP-150957 RP-150958 RP-150958	2958 2959 2960r 1 2961r	A-MPR Receiver spurious emissions requirements for downlink-only bands Amendments to MPR for uplink inter-band and intra-band non-contiguous CA NS values for secondary cells of non-contiguous CA configurations Corrections to test configurations for intra-band non-contiguous CA Corrections to test configurations for 3DL inter-band CA	12.8.0 12.8.0 12.8.0
06-2015 06-2015 06-2015 06-2015 06-2015 06-2015	RP-68 RP-68 RP-68 RP-68 RP-68 RP-68	RP-150957 RP-150958 RP-150958 RP-150955 RP-150954 RP-150958	2958 2959 2960r 1 2961r 1 2962 2967	A-MPR Receiver spurious emissions requirements for downlink-only bands Amendments to MPR for uplink inter-band and intra-band non-contiguous CA NS values for secondary cells of non-contiguous CA configurations Corrections to test configurations for intra-band non-contiguous CA Corrections to test configurations for 3DL inter-band CA Adding REFSENS exception requirements for 1+3+26	12.8.0 12.8.0 12.8.0 12.8.0 12.8.0 12.8.0
06-2015 06-2015 06-2015 06-2015 06-2015 06-2015 06-2015	RP-68 RP-68 RP-68 RP-68 RP-68 RP-68 RP-68 RP-68	RP-150957 RP-150958 RP-150958 RP-150955 RP-150954	2958 2959 2960r 1 2961r 1 2962	A-MPR Receiver spurious emissions requirements for downlink-only bands Amendments to MPR for uplink inter-band and intra-band non-contiguous CA NS values for secondary cells of non-contiguous CA configurations Corrections to test configurations for intra-band non-contiguous CA Corrections to test configurations for 3DL inter-band CA Adding REFSENS exception requirements for 1+3+26 Corrections to NS_22 and NS_23	12.8.0 12.8.0 12.8.0 12.8.0
06-2015 06-2015 06-2015 06-2015 06-2015 06-2015	RP-68 RP-68 RP-68 RP-68 RP-68 RP-68	RP-150957 RP-150958 RP-150958 RP-150955 RP-150954 RP-150958 RP-150954	2958 2959 2960r 1 2961r 1 2962 2967 2971	A-MPR Receiver spurious emissions requirements for downlink-only bands Amendments to MPR for uplink inter-band and intra-band non-contiguous CA NS values for secondary cells of non-contiguous CA configurations Corrections to test configurations for intra-band non-contiguous CA Corrections to test configurations for 3DL inter-band CA Adding REFSENS exception requirements for 1+3+26 Corrections to NS_22 and NS_23 Corrections to 41D fallback Corrections to EVM requirements for ProSe and Annex F of	12.8.0 12.8.0 12.8.0 12.8.0 12.8.0 12.8.0 12.8.0
06-2015 06-2015 06-2015 06-2015 06-2015 06-2015 06-2015 06-2015	RP-68 RP-68 RP-68 RP-68 RP-68 RP-68 RP-68 RP-68 RP-68	RP-150957 RP-150958 RP-150958 RP-150955 RP-150954 RP-150954 RP-150958	2958 2959 2960r 1 2961r 1 2962 2967 2971 2972	A-MPR Receiver spurious emissions requirements for downlink-only bands Amendments to MPR for uplink inter-band and intra-band non-contiguous CA NS values for secondary cells of non-contiguous CA configurations Corrections to test configurations for intra-band non-contiguous CA Corrections to test configurations for 3DL inter-band CA Adding REFSENS exception requirements for 1+3+26 Corrections to NS_22 and NS_23 Corrections to 41D fallback	12.8.0 12.8.0 12.8.0 12.8.0 12.8.0 12.8.0 12.8.0 12.8.0

	1	T	T 4 T		1
06-2015	RP-68	RP-150963	1 2978r	CR on corrections to D2D RF core requirements	12.8.0
00 20.0			1	·	
06-2015	RP-68	RP-150957	2979	CR clarification of RMC for DL category 0 UE HD-FDD	12.8.0
06-2015	RP-68	RP-150960	2980r 1	Introducation of TDD eIMTA CQI requirement	12.8.0
06-2015	RP-68	RP-150958	2985	Change of 1.4MHz single carrier SNR values for multiple CA configurations	12.8.0
06-2015	RP-68	RP-150954	2992	Clarification to spurious emission requirement for the edge of spurious domain	12.8.0
06-2015	RP-68	RP-150955	2996	Correction to CA_7C A-MPR in CA-NS_06	12.8.0
06-2015	RP-68	RP-150965	2998r 1	CR to update UE performance tests for UE DL category in 36.101 in Rel-12	12.8.0
06-2015	RP-68	RP-150965	2999	CR to update Annex for new DL category in 36.101 in Rel-12	12.8.0
06-2015	RP-68	RP-150958	3002	CR for updating CA applicability rule in 36.101 in Rel-12	12.8.0
06-2015	RP-68	RP-150957	3005r 1	CR for Rel-12 NAICS - Definitions	12.8.0
06-2015	RP-68	RP-150965	3012r	Clarification on uplink configuration for reference sensitivity of inter-band CA	12.8.0
06-2015	RP-68	RP-150954	3018	EVM for Intra-band contiguous UL CA for non-equal Channel BWs	12.8.0
06-2015	RP-68	RP-150958	3019	A-MPR correction for CA_39C CA_NS_07	12.8.0
09-2015	RP-69	RP-151482	3006r 3	CR for Rel-12 NAICS - Demodulation Test	12.9.0
09-2015	RP-69	RP-151482	3008r	CR for Rel-12 NAICS - Interference Models	12.9.0
09-2015	RP-69	RP-151482	3 3009r	CR for Rel-12 NAICS - CQI Tests	12.9.0
00.0045	DD 00	DD 451406	3	Outrosticos to OOI PHOOI La cartica and a Library Construction	40.00
09-2015	RP-69 RP-69	RP-151483 RP-151476	3024	Corrections to CSI PUCCH 1-0 static test 4 and PUSCH 3-2 tests Correction to RC.2 TDD Nr. HARQ Proc. into TS36.101	12.9.0
09-2015 09-2015	RP-69	RP-151476	3025 3027	Table 7.3.1A-0f (2UL CA MSD) notes numbering correction	12.9.0 12.9.0
09-2015	RP-69	RP-151479	3030r	Correction to TDD FDD CA	12.9.0
09-2015	RP-69	RP-151483	3032	Alignment of CA Receiver requirements parameters	12.9.0
09-2015	RP-69	RP-151476	3035	Correction to CoMP demodulation requirements	12.9.0
09-2015	RP-69	RP-151475	3039	Correction to RI test parameters in TS 36.101 (Rel-12)	12.9.0
09-2015	RP-69	RP-151483	3049	UE co-existence requirements between Band 42 and Japanese bands	12.9.0
09-2015	RP-69	RP-151483	3051	Introduction of relaxation rule for multiple 3DL inter-band CA configurations	12.9.0
09-2015	RP-69	RP-151483	3053	Removal of square brackets of B42 requirements in Rel-12 specification	12.9.0
09-2015	RP-69	RP-151479	3059r 1	Corrections on CA reference sensitivity requirements	12.9.0
09-2015	RP-69	RP-151480	3061r 1	Correction for eIMTA CQI tests	12.9.0
09-2015	RP-69	RP-151483	3062	Maintenance of eIMTA PDSCH demodulation test	12.9.0
09-2015	RP-69	RP-151479	3067r	Corrections of Spurious emission band UE co-existence for interband 2UL CA in Table 6.6.3.2A-0	12.9.0
09-2015	RP-69	RP-151483	3069r	Revisions of Spurious emission band UE co-existence in Table 6.6.3.2-1	12.9.0
09-2015	RP-69	RP-151475	3075	Correction to PDCCH/PCFICH test parameters in TS 36.101 (Rel-	12.9.0
00 2015	DD 60	DD 151/75	3079	(12)	12.0.0
09-2015 09-2015	RP-69 RP-69	RP-151475 RP-151479	3079	Correction to PMI delay in PMI test for TDD Maintanence CR for MTC CSI performance requirements	12.9.0 12.9.0
09-2015	RP-69	RP-151479	3084	Maintanence CR for SCE demodulation and CSI requirements	12.9.0
09-2015	RP-69	RP-151479	3086	Maintenance CR for DC demodulation performance requirements and SDR tests	12.9.0
09-2015	RP-69	RP-151479	3088r	Cleanup of TDD-FDD CA demodulation performance requirments	12.9.0
09-2015	RP-69	RP-151479	3090	Cleanup of R12 SU-MIMO Enhanced Performance Type C	12.9.0
09-2015	RP-69	RP-151482	3093r	requirments CR for Rel-12 NAICS - Fixed Reference Channels	12.9.0
09-2015	RP-69	RP-151481	3096r	CR on demodulation performance requirements for D2D	12.9.0
09-2015	RP-69	RP-151481	3097r	Discovery CR on demodulation performance requirements for D2D	12.9.0
09-2015	RP-69	RP-151475	3101	Communication Correction on UE maximum output power class of Band 22 for UL	12.9.0
09-2015	RP-69	RP-151479	3103	MIMO Removal of square brackets for Cat-0 UE demodulation	12.9.0
				requirements	
09-2015	RP-69	RP-151479	3105	Removal of square brackets for LTE-CA_B41_B42	12.9.0
09-2015	RP-69	RP-151479	3111r 1	Corrections on 3DL CA performance requirements	12.9.0

09-2015	RP-69	RP-151483	3119	Minor correction in 36.101	12.9.0
09-2015	RP-69	RP-151483	3120	CR adding clarification for Band 28 restrictions in 36.101	12.9.0
09-2015	RP-69	RP-151483	3126	CR for UE performance tests for intra-band contiguous CA with	12.9.0
09-2015	RP-69	RP-151483	3134r	minimum channel spacing on Band 41 Modification of test parameters for TM9 demodulation with	12.9.0
			1	256QAM (Rel-12)	
09-2015	RP-69	RP-151479	3136r 1	Spreading of harmonic for 2UL interband and 2 UL non- contiguous intraband CA	12.9.0
09-2015	RP-69	RP-151479	3140	Correction to FDD-TDD closed loop spatial multiplexing 3CC requirement table	12.9.0
09-2015	RP-69	RP-151479	3142r	Correction to DC supported testable bandwidth list	12.9.0
09-2015	RP-69	RP-151479	3144r	Clarification of UL configuration for CA demodulation requirements	12.9.0
09-2015	RP-69	RP-151479	3152	Corrections to CSI RMCs used for PUSCH 3-2 testing (Rel-12)	12.9.0
09-2015	RP-69	RP-151483	3154r 1	Corrections to applicability of CSI requirements for low UE categories (Rel-12)	12.9.0
09-2015	RP-69	RP-151349	3156r 4	CR for Rel-12 NAICS - TM10 Demodulation and CSI Test	12.9.0
09-2015	RP-69	RP-151475	3161	Correction of applicability of CA_NS_31	12.9.0
12-2015	RP-70	RP-152131	3176r	Release 12 CR to align NS_04 values to meet FCC OOBE	12.10.0
12-2015	RP-70	RP-152136	1 3179r	requirements Editorial correction for eIMTA CQI tests	12.10.0
			1		
12-2015	RP-70	RP-152135	3182r 1	CR to finalize demodulation performance requirements for D2D Communication	12.10.0
12-2015	RP-70	RP-152133	3185r 1	Simplified CA fading Test method becomes optional	12.10.0
12-2015	RP-70	RP-152135	3187r 1	CR on corrections for ProSe Direct Discovery demodulation requirements	12.10.0
12-2015	RP-70	RP-152133	3190	Correction of the applicable UE categories for 256QAM UE demodulation performance requirements (Rel-12)	12.10.0
12-2015	RP-70	RP-152133	3192r	Correction of TDD-FDD CA performance requirements (Rel-12)	12.10.0
12-2015	RP-70	RP-152133	3194	Correction on FDD CA and TDD TDD CA performance requirements (Rel-12)	12.10.0
12-2015	RP-70	RP-152130	3201r 1	CR: Removal of 1.4MHz MBMS test (Rel-12)	12.10.0
12-2015	RP-70	RP-152132	3204	Correction of the AMPR table for NS_14 in TS 36.101 R12	12.10.0
12-2015	RP-70	RP-152133	3213	Corrections to the CSI minimum requirement for PUSCH 3-2 (Rel- 12)	12.10.0
12-2015	RP-70	RP-152133	3215r 1	Corrections to MIMO Correlation Matrices using cross polarized antennas (Rel-12)	12.10.0
12-2015	RP-70	RP-152136	3224r 1	CR for UE performance tests for intra-band contiguous CA with minimum channel spacing on Band 41	12.10.0
12-2015	RP-70	RP-152136	3226r	Correction in SNR definition for CSI test	12.10.0
12-2015	RP-70	RP-152130	3231	Correction to reference channel for CQI requirements	12.10.0
12-2015	RP-70	RP-152164	3243	Introduction of 2 UL and 3 DL interband cases with MSD	12.10.0
12-2015	RP-70	RP-152132	3245	CR on FRC for CDM-multiplexed DM RS	12.10.0
12-2015	RP-70	RP-152132	3248	Correction to physical channel for CQI reporting in type A test case	12.10.0
12-2015	RP-70	RP-152133	3260	CR for Rel-12 NAICS - Demodulation Test	12.10.0
12-2015	RP-70	RP-152133	3262	Correction on CA_4A-4A-5A table reference	12.10.0
12-2015	RP-70	RP-152136	3268	Clarification of Pcell support in 36.101 in CA scenarios	12.10.0
12-2015	RP-70	RP-152132	3272	A-MPR correction for CA_NS_06 CA-7C non-contiguous RB allocation	12.10.0
12-2015	RP-70	RP-152136	3275r 1	Clarification on relative power tolereance for CA	12.10.0
12-2015	RP-70	RP-152133	3279	Correction of uplink configuration for CA_18-28	12.10.0
12-2015	RP-70	RP-152131	3284	Missing RB allocation and OCNG Pattern for Cat 1 UEs in Multiple PMI CSI Reference Symbol tests	12.10.0
12-2015	RP-70	RP-152131	3293r 1	Correction of supported sub-block frequency arrangement for CA_41-41	12.10.0
12-2015	RP-70	RP-152131	3295	Correction of test configuration for combinations of inter-band and intra-band CA	12.10.0
12-2015	RP-70	RP-152136	3310	Correction on CQI test 1A for TDD eIMTA	12.10.0
12-2015	RP-70	RP-152133	3313	Correction of the resource allocation in FRC for CAT0 UE demodulation tests	12.10.0
12-2015	RP-70	RP-152133	3328r	Removal of DC channel bandwidth combination set table	12.10.0
12-2015	RP-70	RP-152136	3330	CR on demodulation requirements of Dual Connectivity	12.10.0
12-2015	RP-70	RP-152133	3333	Correction of MSD levels for 2UL inter-band CA in TS 36.101 Rel-	12.10.0
	•	i .	1 1	1 14	

12-2015	RP-70	RP-152136	3351			CR: PDSCH ETU600 performance requirements	12.10.0
12-2015	RP-70	RP-152133	3374r			Correction to Pcmax for CA to include delta_T_ProSe	12.10.0
12-2015	RP-70	RP-152136	3377			NC OF modification for DLIC protection in January	12.10.0
01-2016	RP-70	KP-152130	3311			NS_05 modification for PHS protection in Japan Editorial correction to sections 6.6.3.3.18 (put back to void) and	12.10.0
01-2010	KF-70					renamed to section 6.6.3.3.19	12.10.1
03-2016	RP-71	RP-160488	3380			Correction to Type A CQI test parameters in TS 36.101	12.11.0
03-2016	RP-71	RP-160489	3383			Correction in beam steering rate for 4 Tx antenna in Rel-12	12.11.0
03-2016	RP-71	RP-160489	3385			CR for correction to syncOffsetIndicator parameter in D2D	12.11.0
						resource pool configuration	
03-2016	RP-71	RP-160489	3389			Correction for eIMTA CQI reporting tests	12.11.0
03-2016	RP-71	RP-160488	3392			Beamforming model correction on TM10 DPS UE tests	12.11.0
03-2016	RP-71	RP-160489	3398			[Rel-12] NS_05 modification for PHS protection in Japan	12.11.0
03-2016	RP-71	RP-160488	3404			CQI reports in CoMP fading test	12.11.0
03-2016	RP-71	RP-160489	3410r			Correction of Pcmax for Dual Connectivity	12.11.0
02.0046	RP-71	RP-160489	1 2440=			Alignment of later band CA with two bands	40.44.0
03-2016	RP-71	KP-100469	3418r 1			Alignment of Inter-band CA with two bands	12.11.0
03-2016	RP-71	RP-160489	3426			Corrections to Notes in 2UL spurious emission table	12.11.0
03-2016	RP-71	RP-160487	3428		1	Rel-12] Correction on Intra-band non-contiguous CA	12.11.0
03-2016	RP-71	RP-160489	3435			Correction on UE category in Annex of TS 36.101	12.11.0
03-2016	RP-71	RP-160489	3437			Removal of brackets for Maximum input level for 256QAM in TS	12.11.0
						36.101	
03-2016	RP-71	RP-160489	3439			Removal of brackets for Measurment channels for MTC in TS	12.11.0
						36.101	
03-2016	RP-71	RP-160489	3448			Removing DC_5-17 from 36.101 Rel 12	12.11.0
03-2016	RP-71	RP-160488	3451			Correction to TDD CQI Reporting for felCIC	12.11.0
03-2016	RP-71	RP-160488	3452			Maintenance CR for CA (Rel-12)	12.11.0
03-2016	RP-71	RP-160489	3454			Maintenance CR for DC (Rel-12)	12.11.0
03-2016	RP-71	RP-160489	3455			Maintenance CR for D2D (Rel-12)	12.11.0
03-2016	RP-71	RP-160489	3457r 1			CR: Correction of FRC for SDR test (Rel-12)	12.11.0
03-2016	RP-71	RP-160488	3472			CR of editorial change on PHICH group and Ng in Rel-12	12.11.0
2016/06	RP-72	RP-161141	3488		F	Correction on B39 coexistence spurious emission requirements	12.11.0
2016/06	RP-72	RP-161141	3490		F	Square brackets on B39 single carrier spurious emission	12.12.0
2010/00	141 72	N1-101141	0400			requirements for protecting B3	12.12.0
2016/06	RP-72	RP-161141	3495		F	CSI requirements for 2DL FDD-TDD for UE Cat 3 (Rel 12)	12.12.0
2016/06	RP-72	RP-161141	3497		F	Wrong RMC description in overview table (Rel-12)	12.12.0
2016/06	RP-72	RP-161141	3529		F	Correction on UE category for MTC in TS 36.101	12.12.0
2016/06	RP-72	RP-161140	3534		F	ACS for CA Bandwidth Class D: Case 2 wanted signal power	12.12.0
2016/06	RP-72	RP-161140	3537		F	Maintenance CR for demodulation performance requirements	12.12.0
						(Rel-12)	
2016/06	RP-72	RP-161141	3558	-	F	Corrections to 9.6.1.3 and 9.6.1.4 TDD FDD CQI Reporting test	12.12.0
2016/06	RP-72	RP-161141	3586	-	F	CR on Frequency bands for UE category 0	12.12.0
2016/06	RP-72	RP-161141	3613	-	F	CR: Maintenance CR for demodulation performance requirements	12.12.0
0040/00	DD 70	DD 464444	0000		_	(Rel-12)	40.40.0
2016/06	RP-72	RP-161141	3622	-	Α	Editorial correction for TM4 MMSE-IRC PDSCH demodulation	12.12.0
2016/09	RP-73	RP-161785	3643	-	F	test Correct UE DL category for 256QAM demodulation	12 12 0
2016/09	RP-73	RP-161632	3654	-	A	Improving the single antenna port description in UL-MIMO	12.13.0 12.13.0
2010/09	1(1-73	101032	3034	_	^	clauses	12.13.0
2016/09	RP-73	RP-161784	3661	-	Α	Correction of CA REFSENS harmonic formula	12.13.0
2016/09	RP-73	RP-161784	3670	-	Α	CR: Update the power level setting for tests 8.3.1.2 and 8.3.2.3	12.13.0
						(Rel-12)	
2016/09	RP-73	RP-161634	3745	-	F	Removal of square brackets for Cat-0 REFSENS configuration	12.13.0
2016/09	RP-73	RP-161633	3763	-	Α	CR for fixing power level for TM9 dual layer test in Rel-12	12.13.0
2016/09	RP-73	RP-161634	3774	-	F	2UL CA 5+17 correction	12.13.0
2016/09	RP-73	RP-161634	3792	-	F	Modification on E-UTRA Prose out of band blocking requirement	12.13.0
2016/09	RP-73	RP-161633	3797	-	F	Correction of OCNG	12.13.0
2016/09	RP-73	RP-161784	3802	-	F	CR: Correction of power parameter for demodulation tests	12.13.0
2016/09	RP-73	RP-161634	3822	-	F	Correction on subframe pair definition for PCMAX of DC	12.13.0
2016/09	RP-73	RP-161784	3825	-	F	Correction of CR Implementation error to 36.101	12.13.0
2016/09	RP-73	RP-161630	3828	-	F	Bracket removal for B3 and B39 UE co-existence	12.13.0
2016/12	RP-74	RP-162459	3874	2	F	Clarification on UE maximum output power	12.14.0
2016/12	RP-74	RP-162459	3899	1	В	CR for updating applicability rule for UE cat 9 Ues and DL	12.14.0
						Cat. 13 UEs in Rel-12	
2016/12	RP-74	RP-162412	3925	-	F	UE to UE co-existence for B42 with 2ULs	12.14.0
2016/12	RP-74	RP-162415	3994	1	F	Correction to cell mapping for periodic CQI reporting on	12.14.0
						multiple cells	
2016/12	RP-74	RP-162411	4020	-	Α	RMCs and applicabilility of core RF requirements	12.14.0
2016/12	RP-74	RP-162411	4029	-	Α	Correction of spurious emissions requirements for Band 9	12.14.0
						range and intra-band CA	
<u> </u>	1	1	1	Ī	1	1 -ango ana inita bana O/1	l .

2016/12	RP-74	RP-162420	4038	-	F	Optional PCell indication	12.14.0
2016/12	RP-74	RP-162413	4063	1	A	Corrections to CA table reference and header	12.14.0
2016/12	RP-74	RP-162459	4075	1	F	Corrections of CA Refsens exceptions in 7.3.1A (Rel-12)	12.14.0
2016/12	RP-74	RP-162459	4079	1	F		12.14.0
	RP-74				F	DeltaRIB for SDL CA	
2016/12		RP-162459	4083	1		CR for fixing soft buffer management test for TDD-FDD CA in Rel-12	12.14.0
2016/12	RP-74	RP-162404	4089	1	F	Introduction of MSD requirement for IMD5 on band3 of CA_3A-8A 2UL CA	12.14.0
2016/12	RP-74	RP-162406	4100	-	Α	Versioning indicator bit for NS_04 A-MPR table	12.14.0
2016/12	RP-74	RP-162420	4109	-	F	RF: Pb setting in power imbalance TCs (Rel-12)	12.14.0
2016/12	RP-74	RP-162420	4112	-	F	RF: Correction to RMC for UE Category 1 in CSI tests (Rel-12)	12.14.0
2016/12	RP-74	RP-162413	4116	-	F	RF: Beamforming model missing in chapter 9 TM9 receiver Type A tests (Rel-12)	12.14.0
2016/12	RP-74	RP-162459	4122	-	F	RF: Incorrect Number of EREGs per ECCE for special subframe mentioned for TC 8.7.4 (Rel-12)	12.14.0
2017/01	RP-74					Page header information update	12.14.1
2017/03	RP-75	RP-170585	4154		D	Split RMC overview table (R12)	12.15.0
2017/03	RP-75	RP-170583	4173	1	F	Correction to MPR table for intra-band 2UL CA	12.15.0
2017/03	RP-75	RP-170580	4211	•	A	Addition of missing note for bands 7 and 39 UE to UE co-	12.15.0
						ex	
2017/03	RP-75	RP-170580	4215		Α	Correction of CA_NS_06 non-contiguous resource allocation MPR formula	12.15.0
2017/03	RP-75	RP-170585	4230		F	Corrections for D2D resource configuration (Rel-12)	12.15.0
2017/03	RP-75	RP-170585	4241		F	CR for fixing requirement for soft buffer test for TDD-FDD CA in Rel-12	12.15.0
2017/06	RP-76	RP-171296	4307		F	Corrections for D2D FRCs	12.16.0
2017/06	RP-76	RP-171395	4316	1	F	Correction to SEM table for intra-band 2UL CA	12.16.0
2017/06	RP-76	RP-171297	4403		F	Correction of N_RB_agg for CA_41C in Table 7.3.1A-1	12.16.0
2017/06	RP-76	RP-171296	4410		F	Correction to Mapping of CQI Index to Modulation coding scheme for 256QAM	12.16.0
2017/06	RP-76	RP-171297	4471	2	F	Corrections for inCoverage configuration in ProSe direct communication (Rel-12)	12.16.0
2017/09	RP-77	RP-171965	4517	2	Α	Correction of band 43 spurious emissions limit (Rel-12)	12.17.0
2017/09	RP-77	RP-171967	4542	1	F	Band 31 modification to add DTV protection Rel-12	12.17.0
2017/09	RP-77	RP-171964	4595		A	Correction for EPA delay profiles of r.m.s delay spread (Rel-12)	12.17.0
2017/09	RP-77	RP-171965	4632	2	F	Apply CA demodulation performance requirements with 30us timing difference between two CCs to intra-band non-contiguous CA case	12.17.0
2017/09	RP-77	RP-171966	4637		F	Update to CA_NS_04 SEM and additional spurious emissions	12.17.0
2017/12	RP-78	RP-172606	4805		F	Corrections on operating band table for CA (Rel-12)	12.18.0
2017/12	RP-78	RP-172606	4816	2	F	Corrections on intra-band and inter-band CA operating bands (Rel-12)	12.18.0
2017/12	RP-78	RP-172606	4824	1	F	CR for updating overview table for Sidelink (Rel-12)	12.18.0
2017/12	RP-78	RP-172605	4854		F	Update to A-MPR for CA_NS_04	12.18.0
2018-03	RAN#79	RP-180290	4918		F	Correction for CA CQI tests (R12)	12.19.0
2018-03	RAN#79	RP-180285	4944		A	PC2 for CA_41C REL-12	12.19.0
2018-03	RAN#79	RP-180290	4945		F	Adding note about timing difference for TDD CA (2Rx)	12.19.0
2018-06	RAN#80	RP-181108	4989		F	CA_NS_08 correction for TS 36.101 R12	12.20.0
2018-06	RAN#80	RP-181108	5006	1	F	Clarification of Transmission Modes for REFSEN test R12	12.20.0
2018-06	RAN#80	RP-181108	5010	4	F	Correction for CA CQI tests (R12)	12.20.0
2018-06	RAN#80	RP-181105	5018	1	F	Cat.F CR for UE-to-UE co-existence for Band 3 in Japan (Rel-12)	12.20.0
2018-06 2018-06	RAN#80 RAN#80	RP-181106 RP-181107	5048 5111		Α	CR: Corrections for CSI tests (Rel-12) Update to CA NS 04 requirements	12.20.0 12.20.0
2018-06	RAN#80	RP-181107	5115		F	Update to NS_04 requirements	12.20.0
2018-09	RAN#81	RP-181909	5147	1	F	Correction on Table 6.6.3.2A-0 Requirements for uplink interband carrier aggregation (two bands)	12.21.0
		RP-181909	5156	1	F	Removal of square brackets for CA_4A-7A-12A	12.21.0
2018-09	RAN#81		0100				
2018-09 2018-09	RAN#81 RAN#81	RP-181908	5187	1	Α	Correction on Table 7.3.1-3 Network signalling value for reference	12.21.0
			5187 5258	1	F	correction on Table 7.3.1-3 Network signalling value for reference sensitivity Correction to frequency of CA_4A-7A for MSD with inter-band 2UL	12.21.0

History

Document history						
V12.5.0	November 2014	Publication				
V12.6.0	April 2015	Publication				
V12.7.0	May 2015	Publication				
V12.8.0	September 2015	Publication				
V12.9.0	October 2015	Publication				
V12.10.1	April 2016	Publication				
V12.11.0	May 2016	Publication				
V12.12.0	September 2016	Publication				
V12.13.0	December 2016	Publication				
V12.14.1	March 2017	Publication				
V12.15.0	April 2017	Publication				
V12.16.0	August 2017	Publication				
V12.17.0	November 2017	Publication				
V12.18.0	January 2018	Publication				
V12.19.0	April 2018	Publication				
V12.20.0	October 2018	Publication				
V12.21.0	January 2019	Publication				
V12.22.0	May 2019	Publication				