

ETSI TS 126 230 V6.0.0 (2004-12)

Technical Specification

Digital cellular telecommunications system (Phase 2+);
Universal Mobile Telecommunications System (UMTS);

Cellular text telephone modem;
Transmitter bit exact C-code

(3GPP TS 26.230 version 6.0.0 Release 6)

GLOBAL SYSTEM FOR
MOBILE COMMUNICATIONS

R

�

ETSI

ETSI TS 126 230 V6.0.0 (2004-12) 1 3GPP TS 26.230 version 6.0.0 Release 6

Reference
RTS/TSGS-0426230v600

Keywords
GSM, UMTS

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).

In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2004.

All rights reserved.

DECTTM, PLUGTESTSTM and UMTSTM are Trade Marks of ETSI registered for the benefit of its Members.
TIPHONTM and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members.
3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

ETSI

ETSI TS 126 230 V6.0.0 (2004-12) 2 3GPP TS 26.230 version 6.0.0 Release 6

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or
GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under
http://webapp.etsi.org/key/queryform.asp .

http://webapp.etsi.org/IPR/home.asp
http://webapp.etsi.org/key/queryform.asp

ETSI

ETSI TS 126 230 V6.0.0 (2004-12) 3 3GPP TS 26.230 version 6.0.0 Release 6

Contents

Intellectual Property Rights ..2

Foreword...2

Foreword...4

0 Scope ..5

1 Normative references ...5

2 Definitions and Abbreviations..5

3 C code structure..5
3.1 Contents of the C source code ..6
3.2 Program execution..6
3.3 Code hierarchy ...10
3.3.1 Initialization routines ..10
3.3.2 Signal Processing Functions ...11
3.4 Description of global constants used in the C-code..12
3.5 Type Definitions...13
3.6 Functions of the C Code...13

Annex A (informative): Change history ...27

History ..28

ETSI

ETSI TS 126 230 V6.0.0 (2004-12) 4 3GPP TS 26.230 version 6.0.0 Release 6

Foreword
This Technical Specification has been produced by T1P1.

The contents of the present document are subject to continuing work within the 3GPP TSG and may change following
formal 3GPP approval. Should the 3GPP TSG modify the contents of this TS, it will be re-released by the 3GPP TSG
with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x the first digit:

1 presented to 3GPP for information;

2 presented to 3GPP for approval;

3 Indicates 3GPP approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,
updates, etc.

z the third digit is incremented when editorial only changes have been incorporated in the specification;

ETSI

ETSI TS 126 230 V6.0.0 (2004-12) 5 3GPP TS 26.230 version 6.0.0 Release 6

0 Scope
This Technical Standard (TS) contains an electronic copy of the ANSI-C code for the Cellular Text Telephone Modem
(CTM) for reliable transmission of text telephone text via the speech channel of cellular networks. While CTM is
generally usable with text in UCS coding, the example application linked to CTM in this document is limited to use the
signals and character set of the Baudot type.

1 Normative references
This TS incorporates by dated and undated reference, provisions from other publications. These normative references
are cited at the appropriate places in the text and the publications are listed hereafter. For dated references, subsequent
amendments to or revisions of any of these publications apply to this TS only when incorporated in it by amendment or
revision. For undated references, the latest edition of the publication referred to applies.

[1] 3GPP TS 26.226: "Cellular text telephone modem; General description".

[2] ISO/IEC 10646-1: "Information technology – Universal Multiple-Octet Coded Character Set
(UCS) – Part 1: Architecture and Basic Multilingual Plane".

2 Definitions and Abbreviations
For the purposes of this TS, the following abbreviations apply:

CTM Cellular Text Telephone Modem
FEC Forward Error Correction
FSK Frequency Shift Key
HCO Hearing Carry Over, (individual may be able to hear, but cannot speak) Alternating transmission

of speech and text.
PCM Pulse Code Modulation
RX Receive
TX Transmit
TTY Text Telephone
UCS Universal Multiple-Octet Coded Character Set
UTF UCS transformation format
VAD Voice Activity Detection
VCO Voice Carry Over, Alternating transmission of speech and text

3 C code structure
This clause gives an overview of the structure of the bit-exact C code and provides an overview of the contents and
organization of the C code attached to this document.

The C code has been verified on the following system.

- Sun Microsystems workstations with SUN SolarisTM operating system and the the Gnu C Compiler (gcc version
2.7.2.3) and GNU Make 3.77;

The C code has also been successfully compiled and used in the following environment, with the exception that it
cannot be guaranteed that the upper part of the UCS code table in file ucs_functions.c will be compiled
correctly since it depends on the codepage setting of the environment.

- IBM PC/AT compatible computers with WindowsTM NT 4.0 operating system and Microsoft Visual C++ 6.0TM
compiler.

ETSI

ETSI TS 126 230 V6.0.0 (2004-12) 6 3GPP TS 26.230 version 6.0.0 Release 6

3.1 Contents of the C source code
The distributed files with suffix "c" contain the source code and the files with suffix "h" are the header files. All these
files are in the root level of the ZIP-archive.

Makefiles are provided for the platforms in which the C code has been verified (listed above). They are called 'Makefile'
for GNU Make and 'Makefile.vc' for Microsoft Visual C++TM.

For the Sun Microsystems platform, an example shell script for a transmission via two signal adaptation modules is
given in "test_negotiation". For the Microsoft WindowsTM platform, no shell script or batch program is provided.

The software can be compiled using the commands

make all or gmake all in case of Gnu Make

nmake /f Makefile.vc in case of Microsoft Visual C++.

The executables are compiled into the directory ./solaris (in case of Gnu Make) or into the actual directory in
case of Microsoft Visual C++TM.

The directory ./patterns provides the file baudot.pcm that serves as input signal for the test script
test_negotiation. All output data of test_negotiation will be stored into the directory ./output. If
required, this directory will be created by test_negotiation automatically.

3.2 Program execution
The CTM signal adaptation module is implemented in the execuable adaptation_switch (in case of Sun
SolarisTM platform) or adaptation_switch.exe (in case of the Micorsoft WindowsTM platform).

The program should be called like:

adaptation_switch -ctmin <file> -ctmout <file>
 -baudotin <file> -baudotout <file>

using the following parameters:

 -ctmin <input_file> input file with CTM signal

 -ctmout <output_file> output file for CTM signal

 -baudotin <input_file> input file with Baudot Tones

 -baudotout <output_file> output file for Baudot Tones
 -textout <text_file> output text file from CTM receiver (optional)
 -numsamples <number> number of samples to process (optional)
 -nonegotiation disables the negotiation (optional)

All files contain 16-bit linear encoded PCM audio samples, which are swapped according to the platform"s endian type
(Sun Microsystems platforms use big endian, Intel platforms use little endian). An example file baudot.pcm
containing a Baudot Code modem signal (big endian) is provided in the subdirectory ./patterns.

Due to the fact that the signal adaptation module expects a successful negotiation before Baudot Code signals can be
converted to CTM signals, the signal adaptation module has to be executed several times in two instances in order to
execute a successful negotiation. For the Sun Microsystems platform, a shell script test_negotiation is
provided for executing the following structure:

ETSI

ETSI TS 126 230 V6.0.0 (2004-12) 7 3GPP TS 26.230 version 6.0.0 Release 6

 ----------- ctm_forward -----------

 baudot.pcm --->| | ---------------->| |---> baudot_out.pcm

 | adapt#1 | | adapt#2 |

 /dev/null <---| | <----------------| |<--- /dev/zero

 ----------- ctm_backward -----------

First, the adaptation module #1 is executed. At this first run, the signal ctm_backward is not known. Therefore, the
negotiation does not get a positive acknowledge, so that the transmission falls back to Baudot Tones.

Then signal adaptation module #2 is executed for the first time.

After that, adaptation module #1 is executed for the second time. With this second run, the signal ctm_backward is
valid. Therefore, the negotiation receives a valid acknowledge, so that CTM signals are transmitted.

At last, adaptation module #2 is executed for the second time. With this run, adaptation module #2 receives a valid
CTM signal so that the baudot_out.pcm signal can be generated.

After executing each of the modules twice, the signal baudot_out.pcm is analyzed. This analysis is also performed by
the program adaptation_switch. First, the Baudot detector of adaptation_switch is used for this analysis in order to
examine whether the regenerated Baudot signal can be decoded correctly. In a second step it is examined whether the
regenerated signal still contains any CTM preambles. This investigation is performed by means of the CTM detector
that is integrated in adaptation_switch. This last test fails if the CTM detector is able to detect any CTM preamble in the
regenerated signal.

During the execution of the script test_negotiation the following text output shall be generated:

===

Execute adaptation module #1 (first pass)

===

**

 Cellular Text Telephone Modem (CTM) - Example Implementation for

 Conversion between CTM and Baudot Code (use option -h for help)

**

number of samples to process: 100000

>>> Enquiry Burst generated! <<<

THE>>> Enquiry Burst generated! <<<

 >>> Enquiry Burst generated! <<<

CELL

===

ETSI

ETSI TS 126 230 V6.0.0 (2004-12) 8 3GPP TS 26.230 version 6.0.0 Release 6

Execute adaptation module #2 (first pass)

===

**

 Cellular Text Telephone Modem (CTM) - Example Implementation for

 Conversion between CTM and Baudot Code (use option -h for help)

**

>>> CTM from far-end detected! <<<

>>> Enquiry From Far End Detected! <<<

THE>>> Enquiry From Far End Detected! <<<

 >>> Enquiry From Far End Detected! <<<

CELL

===

Execute adaptation module #1 (second pass)

===

**

 Cellular Text Telephone Modem (CTM) - Example Implementation for

 Conversion between CTM and Baudot Code (use option -h for help)

**

>>> Enquiry Burst generated! <<<

THE>>> CTM from far-end detected! <<<

 CELLULAR TEXT TELEPHONE MODEM (CTM) ALLOWS RELIABLE

TRANSMISSION OF A TEXT TELEPHONE CONVERSATION ALTERNATING

WITH A SPEECH CONVERSATION THROUGH THE EXISTING SPEECH

COMMUNICATION PATHS IN CELLULAR MOBILE PHONE SYSTEMS.

THIS RELIABILITY IS ACHIEVED BY AN IMPROVED MODULATION

TECHNIQUE, INCLUDING ERROR PROTECTION, INTERLEAVING AND

SYNCHRONIZATION.

===

Execute adaptation module #2 (second pass)

ETSI

ETSI TS 126 230 V6.0.0 (2004-12) 9 3GPP TS 26.230 version 6.0.0 Release 6

===

**

 Cellular Text Telephone Modem (CTM) - Example Implementation for

 Conversion between CTM and Baudot Code (use option -h for help)

**

>>> CTM from far-end detected! <<<

>>> Enquiry From Far End Detected! <<<

THE CELLULAR TEXT TELEPHONE MODEM (CTM) ALLOWS RELIABLE

TRANSMISSION OF A TEXT TELEPHONE CONVERSATION ALTERNATING

WITH A SPEECH CONVERSATION THROUGH THE EXISTING SPEECH

COMMUNICATION PATHS IN CELLULAR MOBILE PHONE SYSTEMS.

THIS RELIABILITY IS ACHIEVED BY AN IMPROVED MODULATION

TECHNIQUE, INCLUDING ERROR PROTECTION, INTERLEAVING AND

SYNCHRONIZATION.

==

Now we try to decode the regenerated Baudot signal. The text message

shall be decoded completely now...

==

**

 Cellular Text Telephone Modem (CTM) - Example Implementation for

 Conversion between CTM and Baudot Code (use option -h for help)

**

THE CELLULAR TEXT TELEPHONE MODEM (CTM) ALLOWS RELIABLE

TRANSMISSION OF A TEXT TELEPHONE CONVERSATION ALTERNATING

WITH A SPEECH CONVERSATION THROUGH THE EXISTING SPEECH

COMMUNICATION PATHS IN CELLULAR MOBILE PHONE SYSTEMS.

THIS RELIABILITY IS ACHIEVED BY AN IMPROVED MODULATION

TECHNIQUE, INCLUDING ERROR PROTECTION, INTERLEAVING AND

SYNCHRONIZATION.

ETSI

ETSI TS 126 230 V6.0.0 (2004-12) 103GPP TS 26.230 version 6.0.0 Release 6

===

Testing whether the regenerated Baudot signal is free of CTM headers.

No CTM burst shall be detected now...

===

**

 Cellular Text Telephone Modem (CTM) - Example Implementation for

 Conversion between CTM and Baudot Code (use option -h for help)

**

3.3 Code hierarchy
This section gives an overview of the hierarchy how the functions are used in the signal adaptation module. All standard
C functions: printf(), fwrite(), etc. have been omitted. Also, all functions related to the asynchronous transfer between
the signal processing functions by means of FIFO buffers (Shortint_fifo_push, Shortint_fifo_pop, etc.)
are not listed in the charts.

The following functions are not part of the actual CTM bit exact specification but are included to allow demonstration
of CTM in a Baudot environment:

• init_baudot_tonedemod
• init_baudot_tonemod
• baudot_tonedemod
• convertUCScode2char
• convertChar2TTYcode
• baudot_tonemod
• convertTTYcode2char
• convertChar2UCScode

3.3.1 Initialization routines

The following functions are called for the initialization of the signal adaptation module.

init_baudot_tonedemod
init_baudot_tonemod
init_ctm_transmitter init_interleaver generate_scambling_sequence
 m_sequence
 init_tonemod
 conv_encoder_init
 generate_resync_sequence m_sequence
 calc_mute_positions
init_ctm_receiver init_tonedemod sin_fip
 viterbi_init
 calc_mute_positions
 init_deinterleaver generate_scambling_sequence
 init_wait_for_sync m_sequence
 generate_scambling_sequence

ETSI

ETSI TS 126 230 V6.0.0 (2004-12) 113GPP TS 26.230 version 6.0.0 Release 6

3.3.2 Signal Processing Functions

The following functions are called during the main signal processing loop.

baudot_tonedemod iir_filt
ctm_receiver tonedemod rotate_right
 rotate_left
 wait_for_sync
 reinit_deinterleaver
 viterbi_reinit
 diag_deinterleaver
 shift_deinterleaver
 mutingRequired
 viterbi_exec
 reinit_wait_for_sync
 reinit_deinterleaver
 viterbi_reinit
 transformUTF2UCS
convertUCScode2char
convertChar2TTYcode
baudot_tonemod
convertTTYcode2char
convertChar2UCScode
ctm_transmitter transformUCS2UTF
 reinit_interleaver
 conv_encoder_exec
 mutingRequired
 diag_interleaver
 diag_interleaver_flush
 tonemod

ETSI

ETSI TS 126 230 V6.0.0 (2004-12) 123GPP TS 26.230 version 6.0.0 Release 6

3.4 Description of global constants used in the C-code
The following constants are defined in the file ctm_defines.h

Constant Value Description

MAX_IDLE_SYMB 5 Number of Idle Symbols at End of Burst
CHC_RATE 4 Rate of the Error Protection
CHC_K 5 Constraint Length of the Error Protection
SYMB_LEN 40 Length of one CTM symbol

LENGTH_TONE_VEC 1 frame size
LENGTH_TX_BITS 8 number of bits per 20 ms frame
BITS_PER_SYMB 8 bits per symbol

NCYCLES_0 2 Number of periods for symbol #0
NCYCLES_1 3 Number of periods for symbol #1
NCYCLES_2 4 Number of periods for symbol #2
NCYCLES_3 5 Number of periods for symbol #3

THRESHOLD_RELIABILITY_FOR_SUPPRESSING_OUTPUT 100 Characters with lower reliability are suppressed
THRESHOLD_RELIABILITY_FOR_XCORR 200 Bits with lower reliability don"t contribute to xcorr
THRESHOLD_RELIABILITY_FOR_GOING_OFFLINE 100 Threshold for regarding a bit as unreliable
MAX_NUM_UNRELIABLE_GROSS_BITS 400 Receiver goes offline after 400 unreliable bits
NUM_BITS_GUARD_INTERVAL 6 Number of muted bits between two bursts
WAIT_SYNC_REL_THRESHOLD_0 20316 (=0.62) rel. threshold for preamble
WAIT_SYNC_REL_THRESHOLD_1 17039 (=0.52) rel. threshold for preamble
WAIT_SYNC_REL_THRESHOLD_2 23065 (=0.71) dto. in case that RX is already online
RESYNC_REL_THRESHOLD 26542 Threshold for Resynchronization (=0.81)
GUARD_BIT_SYMBOL 10 magic number indicating that a bit shall be muted
intlvB 8 Interleaver block length (number of rows)
intlvD 2 Interleaver block distance (interlace factor)
demodSyncLns 1 Number of demodulator sync lines
deintSyncLns 0 Number of deinterleaver sync lines

IDLE_SYMB 0x16 UCS code for Idle Symbol

ENQU_SYMB 0x05 UCS code for Enquiry Symbol

ENQUIRY_TIMEOUT 3040 number of 20-ms frames for negotiation
NUM_ENQUIRY_BURSTS 3 number of enquiry attempts
NUM_MUTE_ROWS 4 Number of Intl. rows that shall be muted
RESYNC_SEQ_LENGTH 32 length of the resynchronization sequence,
 must be a multiple of 8
NUM_BITS_BETWEEN_RESYNC 352 Distance between two resync sequences, the value
 NUM_BITS_BETWEEN_RESYNC+RESYNC_SEQ_LENGTH

 must be a multiple of CHC_RATE, intlvB, and
 BITS_PER_CHAR, and must be greater than
 intlvB*((intlvB-1)*intlvD+NUM_MUTE_ROWS

BAUDOT_NUM_INFO_BITS 5 number of information bits per Baudot character
BAUDOT_SHIFT_FIGURES 27 code of shift to figures symbol
BAUDOT_SHIFT_LETTERS 31 code of shift to letters symbol
BAUDOT_BIT_DURATION 176 must be 176 (for 45.45 baud) or 160 (50 baud)

ETSI

ETSI TS 126 230 V6.0.0 (2004-12) 133GPP TS 26.230 version 6.0.0 Release 6

BAUDOT_LP_FILTERORDER 1 Order of the low-pass filters in function
 baudot_tonedemod()
BAUDOT_BP_FILTERORDER 2 Order of the according band-pass filters, must
 be equal to 2*BAUDOT_BP_FILTERORDER

3.5 Type Definitions
In order to make the C code platform-independent, the following type definitions have been used, which are defined in
typedefs.h:

defined type meaning corresponding constants

--

Char character (none)

Bool boolean true, false

Shortint 16-bit signed minShortint, maxShortint
UShortint 16-bit unsigned minUShortint, maxUShortint

Longint 32-bit signed minLongint, maxLongint
ULongint 32-bit unsigned minULongint, maxULongint

3.6 Functions of the C Code
void baudot_tonedemod(Shortint* toneVec, Shortint numSamples,
 fifo_state_t* ptrOutFifoState,
 baudot_tonedemod_state_t* state);

Purpose: Demodulator for Baudot Tones
Defined in: baudot_functions.c

Input Variables:
toneVec Vector containing the input audio signal
numSamples Length of toneVec

Input/Output Variables:
ptrOutFifoState Pointer to the state of the output shift register

containing the demodulated TTY codes
state Pointer to the state variable of baudot_tonedemod()

void baudot_tonemod(Shortint inputTTYcode,
 Shortint *outputToneVec,
 Shortint lengthToneVec,
 Shortint *ptrNumBitsStillToModulate,
 baudot_tonemod_state_t* state);

Purpose: Modulator for Baudot Tones
Defined in: baudot_functions.c

Input Variables:
inputTTYcode TTY code of the character that has to be modulated.

inputTTYcode must be in the range 0...63, otherwise

ETSI

ETSI TS 126 230 V6.0.0 (2004-12) 143GPP TS 26.230 version 6.0.0 Release 6

it is assumed that there is no character to
modulate.

lengthToneVec Indicates how many samples have to be generated.

Output Variables:
outputToneVec Vector where the output samples are written to.
ptrNumBitsStillToModulate Indicates how many bits are still in the fifo

buffer.

Input/Output Variables:
state Pointer to the state variable of baudot_tonedemod()

void calc_mute_positions(Shortint *mute_positions,
 Shortint num_rows_to_mute,
 Shortint start_position,
 Shortint B,
 Shortint D);

Purpose: Calculation of the indices of the bits that have to be muted

within one burst. The indices are returned in the vector
mute_positions.

Defined in: init_interleaver.c

Shortint convertChar2ttyCode(char inChar);

Purpose: Conversion from character into TTY code
Defined in: baudot_functions.c

Input Variables:
inChar character that shall be converted

Return Value: baudot code of the input or -1 in case that inChar

is not valid (e.g. inChar=='\0')

UShortint convertChar2UCScode(char inChar);

Purpose: Conversion from character into UCS code (Universal Multiple-

Octet Coded Character Set, Row 00 of the Multilingual plane
according to ISO/IEC 10646-1). This routine only handles
characters in the range 0..255 since that is all that is
required for demonstration of Baudot support.

Defined in: ucs_functions.c

Input Variables:
inChar character that shall be converted

Return Value: UCS code of the input or 0x0016 <IDLE> in case that

inChar is not valid (e.g. inChar=='\0')

char convertTTYcode2char(Shortint ttyCode);

ETSI

ETSI TS 126 230 V6.0.0 (2004-12) 153GPP TS 26.230 version 6.0.0 Release 6

Purpose: Conversion from TTY code into Character
Defined in: baudot_functions.c

Input Variables:
ttyCode Baudot code (must be within the range 0...63) or -1

if there is nothing to convert

Return Value:
character (or '\0' if ttyCode is not valid)

char convertUCScode2char(UShortint ucsCode);

Purpose: Conversion from UCS code into character (Universal Multiple-

Octet Coded Character Set, Row 00 of the Multilingual plane
according to ISO/IEC 10646-1). This routine only handles
characters in the range 0..255 since that is all that is
required for demonstration of Baudot support.

Defined in: ucs_functions.c

Input Variables:
ucsCode UCS code index, must be within the range 0...255

Return Value: character (or '\0' if ucsCode is not valid)

void conv_encoder_exec(conv_encoder_t* ptr_state, Shortint* in,
 Shortint inbits, Shortint* out);

Purpose: Execution of the convolutional encoder for error protection
Defined in: conv_encoder.c

Input Variables:
in Vector with net bits
inbits Number of valid net bits in vector in

Output variables:
out Vector with the encoded gross bits. The gross bits

are either 0 or 1. The vector out must have at
least CHC_RATE*inbits elements.

Input/output variables:
*ptr_state state variable of the encoder

void conv_encoder_init(conv_encoder_t* ptr_state);

Purpose: Initialization of the convolutional encoder
Defined in: conv_encoder.c

Output Variables:
*ptr_state Initialized state variable of the encoder

ETSI

ETSI TS 126 230 V6.0.0 (2004-12) 163GPP TS 26.230 version 6.0.0 Release 6

void ctm_receiver(fifo_state_t* ptr_signal_fifo_state,
 fifo_state_t* ptr_output_char_fifo_state,
 Bool* ptr_early_muting_required,
 rx_state_t* rx_state);

Purpose: Runs the CTM Receiver for a block of (nominally) 160 samples.
Due to the internal synchronization, the number of processed
samples might vary between 156 and 164 samples. The input of
the samples and the output of the decoded characters is
handled via fifo buffers, which have to be initialized
externally before using this function (see fifo.h for
details).

Defined in: ctm_receiver.c

input/output variables
*ptr_signal_fifo_state fifo state for the input samples
*ptr_output_char_fifo_state fifo state for the output characters
*ptr_early_muting_required returns whether the original audio signal must not

be forwarded. This is to guarantee that the
preamble or resync sequence is detected only by the
first CTM device, if several CTM devices are
cascaded subsequently.

rx_state pointer to the variable containing the receiver
states

void ctm_transmitter(UShortint ucsCode,
 Shortint* txToneVec,
 tx_state_t* tx_state,
 Shortint *ptrNumBitsStillToModulate,
 Bool sineOutput);

Purpose: Runs the CTM Transmitter for a block of 160 output samples,
representing 8 gross bits.
The bits, which are modulated into tones, are taken from an
internal fifo buffer. If the fifo buffer is empty, zero-valued
samples are generated. The fifo buffer is filled with channel-
encoded and interleaved bits, which are generated internally
by coding the actual input character. With each call of this
function one or less input characters can be coded. If there
is no character to for transmission, one of the following
codes has be used:
- 0x0016 <IDLE>: indicates that there is no character to
transmit and that the transmitter should stay in idle mode, if
it is currently already in idle mode. If the transmitter is
NOT in idle mode, it might generate <IDLE> symbols in order to
keep an active burst running. The CTM burst is terminated if
five <IDLE> symbols have been generated consecutively.
- 0xFFFF: although there is no character to transmit, a CTM
burst is initiated in order to signal to the far-end side that
CTM is supported. The burst starts with the <IDLE> symbol and
will be continued with <IDLE> symbols if there are no regular
characters handed over during the next calls of this function.
The CTM burst is terminated if five <IDLE> symbols have been
transmitted consecutively.
In order to avoid an overflow of the internal fifo buffer, the

ETSI

ETSI TS 126 230 V6.0.0 (2004-12) 173GPP TS 26.230 version 6.0.0 Release 6

variable *ptrNumBitsStillToModulate should be checked before
calling this function.

Defined in: ctm_transmitter.c

input variables:
ucsCode UCS code of the character or one of the code 0x0016

or 0xFFFF
sineOutput must be false in regular mode; if true, a pure sine

output signal is generated

output variables:
txToneVec output signal (vector of 160 samples)
input/output variables:
tx_state pointer to the variable containing the transmitter

states

void diag_deinterleaver(Shortint *out,
 Shortint *in,
 Shortint num_valid_bits,
 interleaver_state_t *intl_state);

Purpose: Corresponding deinterleaver to diag_interleaver. An arbitrary

number of bits can be interleaved, depending of the length of
the vector "in". The vector "out", which must have the same
length than "in", contains the interleaved samples.
All states (memory etc.) of the interleaver are stored in the
variable *intl_state. Therefore, a pointer to this variable
must be handled to this function. This variable initially has
to be initialized by the function init_interleaver, which
offers also the possibility to specify the dimensions of the
deinterleaver matrix.

Defined in: diag_deinterleaver.c

void diag_interleaver(Shortint *out,
 Shortint *in,
 Shortint num_bits,
 interleaver_state_t *intl_state);

Purpose: Diagonal (chain) interleaver, based on block-by-block

processing. An arbitrary number of bits can be interleaved,
depending of the value num_bits. The vector "out", which must
have the same length than "in", contains the interleaved
samples.
All states (memory etc.) of the interleaver are stored in the
variable *intl_state. Therefore, a pointer to this variable
must be handled to this function. This variable initially has
to be initialized by the function init_interleaver(), which
offers also the possibility to specify the dimensions of the
interleaver matrix.

Defined in: diag_interleaver.c

void diag_interleaver_flush(Shortint *out,

ETSI

ETSI TS 126 230 V6.0.0 (2004-12) 183GPP TS 26.230 version 6.0.0 Release 6

 Shortint *num_bits,
 interleaver_state_t *intl_state);

Purpose: Execution of the diagonal (chain) interleaver without writing

in new samples. The number of calculated output samples is
returned via the value *num_bits.

Defined in: diag_interleaver.c

void generate_resync_sequence(Shortint *sequence);

Purpose: Generation of the sequence for resynchronization. The length

of the sequence is defined by the global constant
RESYNC_SEQ_LENGTH. The vector sequence must be allocated
accordingly before calling this function.

Defined in: wait_for_sync.c

void generate_scrambling_sequence(Shortint *sequence, Shortint length);

Purpose: Generation of the sequence used for scrambling. The sequence

consists of 0 and 1 elements. The sequence is stored into the
vector *sequence and the length of the sequence is specified
by the variable length.

Defined in: init_interleaver.c

void init_baudot_tonedemod(baudot_tonedemod_state_t* state);

Purpose: Initialization of the demodulator for Baudot Tones
Defined in: baudot_functions.c

Input/Output Variables:
state Pointer to the initialized state variable (must be

allocated before calling init_baudot_tonedemod()

void init_baudot_tonemod(baudot_tonemod_state_t* state);

Purpose: Initialization of the modulator for Baudot Tones
Defined in: baudot_functions.c

Input/Output Variables:
state Pointer to the initialized state variable (must be

allocated before calling init_baudot_tonemod()

void init_deinterleaver(interleaver_state_t *intl_state,
 Shortint B, Shortint D);

Purpose: Initialization of the deinterleaver.
Defined in: init_interleaver.c

ETSI

ETSI TS 126 230 V6.0.0 (2004-12) 193GPP TS 26.230 version 6.0.0 Release 6

void init_ctm_receiver(rx_state_t* rx_state);

Purpose: Initialization of the CTM Receiver.
Defined in: ctm_receiver.c

output variables:
rx_state pointer to a variable of rx_state_t containing the

initialized states of the receiver

void init_ctm_transmitter(tx_state_t* tx_state);

Purpose: Initialization of the CTM Transmitter
Defined in: ctm_transmitter.c

input/output variables
tx_state pointer to a variable of tx_state_t containing

initialized states of the transmitter

void init_interleaver(interleaver_state_t *intl_state,
 Shortint B, Shortint D,

 Shortint num_sync_lines1, Shortint num_sync_lines2);

Purpose: Function for initialization of diag_interleaver and

diag_deinterleaver, respectively. The dimensions of the
interleaver must be specified:
B = (horizontal) blocklength, D = (vertical distance)
According to this specifications, this function initializes a
variable of type interleaver_state_t.
Additionally, this function adds two types of sync information
to the bitstream. The first sync info is for the demodulator
and consists of a sequence of alternating bits so that the
tones produced by the modulator are not the same all the time.
This is essential for the demodulator to find the transitions
between adjacent bits. The bits for this demodulator
synchronization simply precede the bitstream.
The second sync info is for synchronizing the deinterleaver
and of a m-sequence with excellent autocorrelation properties.
These bits are positioned at the locations of the dummy bits,
which are not used by the interleaver. In addition, even more
bits for this can be spent by inserting additional sync bits,
which precede the interleaver's bitstream. This is indicated
by choosing num_sync_lines2>0.

Defined in: init_interleaver.c

void init_tonedemod(demod_state_t *demod_state);

Purpose: Initialization of one instance of the Tone Demodulator. The

argument must contain a pointer to a variable of type

ETSI

ETSI TS 126 230 V6.0.0 (2004-12) 203GPP TS 26.230 version 6.0.0 Release 6

demod_state_t, which contains all the memory of the tone
demodulator. Each instance of tonedemod must have its own
variable.

Defined In: tonedemod.c

void init_wait_for_sync(wait_for_sync_state_t *ptr_wait_state,
 interleaver_state_t intl_state);

Purpose: Initialization of the synchronization detector. The dimensions
of the corresponding interleaver at the TX side must be
specified by the variables B, D, and num_sync_lines2.

Defined In: wait_for_sync.c

Input Variables:
B (horizontal) blocklength
D (vertical) interlace factor
num_Sync_line2 number of interleaver lines with additional sync

bits (see description of init_interleaver())

Output Variables:
ptr_wait_state pointer to the state variable of the sync detector

int main(int argc, const char** argv)

Purpose: main function of the signal adaptation Module
Defined in: adaptation_switch.c

Bool mutingRequired(Shortint actualIndex,
 Shortint *mute_positions,
 Shortint length_mute_positions);

Purpose: Determines whether the actual bit has to be muted, i.e.

whether it is contained in the vector mute_positions.
Defined in: init_interleaver.c

void m_sequence(Shortint *sequence, Shortint length);

Purpose: Calculates one period of an m-sequence (binary pseudo noise).

The sequence is stored in the vector sequence, which must have
a of (2^r)-1, where r is an integer number between 2 and 10.
Therefore, with this release of m_sequence, sequences of
length 3, 7, 15, 31, 63, 127, 255, 511, or 1023 can be
generated. The resulting sequence is bipolar, i.e. it has
values -1 and +1.

Defined in: m_sequence.c

void polynomials(Shortint rate, Shortint k,
 Shortint* polya, Shortint* polyb,
 Shortint* polyc, Shortint* polyd);

ETSI

ETSI TS 126 230 V6.0.0 (2004-12) 213GPP TS 26.230 version 6.0.0 Release 6

Purpose: Returns the polynomials for the convolutional encoder and the

Viterbi decoder for various rates and constraint lengths. The
following parameters are supported:
rate = {2, 3, or 4}
k = {3, 4, 5, 6, 7, 8, 9}

Defined in: conv_poly.c

Input Variables:
rate Rate of the convolutional encoder (2, 3, or 4)
k Constraint length (length of the impulse response

of the encoder)

Output Variables:
poly_a Vector with polynomials #1
poly_b Vector with polynomials #2
poly_c Vector with polynomials #3 (only if rate > 2)
poly_d Vector with polynomials #4 (only if rate > 3)

void reinit_deinterleaver(interleaver_state_t *intl_state);

Purpose: Re-Initialization of the deinterleaver.
Defined in: init_interleaver.c

void reinit_interleaver(interleaver_state_t *intl_state);

Purpose: Re-initialization of the deinterleaver
Defined in: init_interleaver.c

void reinit_wait_for_sync(wait_for_sync_state_t *ptr_wait_state);

Purpose: Reinitialization of synchronization detector. This function is
used in case that a burst has been finished and the
transmitter has switched into idle mode. After calling
reinit_wait_for_sync(), the function wait_for_sync() inhibits
the transmission of the demodulated bits to the deinterleaver,
until the next synchronization sequence can be detected.

Defined In: wait_for_sync.c

void shift_deinterleaver(Shortint shift,
 Shortint *insert_bits,

 interleaver_state_t *ptr_state);

Purpose: Shift of the deinterleaver buffer by <shift> samples.
shift>0 -> shift to the right

ETSI

ETSI TS 126 230 V6.0.0 (2004-12) 223GPP TS 26.230 version 6.0.0 Release 6

shift<0 -> shift to the left
The elements from <insert_bits> are inserted into the
resulting space. The vector <insert_bits> must have at least
abs(shift) elements.

Defined in: diag_deinterleaver.c

Shortint sin_fip(Shortint phase_value);

Purpose: Fixed Point sine function, returns the following value:

sin_fip(phase_value)
 = round(32767*sin(2*pi*50/8000*phase_value))
phase_value must be within the range [0...159]. This function
can be used for calculating sine waveforms of frequencies that
are integer-multiples of 50 Hz

Defined in: sin_fip.c

void tonedemod(Shortint *bits_out,
 Shortint *rx_tone_vec,
 Shortint num_in_samples,
 Shortint *ptr_sampling_correction,
 demod_state_t *demod_state);

Purpose: Tone Demodulator for the CTM using one out of four tones for

coding two bits in parallel within a frame of 40 samples (5
ms).
The function has to be called for every frame of 40 samples of
the received tone sequence. However, in order to track a
non-ideal of the transmitter's and the receiver's clock
frequencies, one frame might be shorter (only 39 samples) or
longer (41 samples). The length of the following frame is
indicated by the variable *sampling_correction, which is
calculated and returned by this function.

Defined in: tonedemod.c

input variables:

bits_out contains the 39, 40 or 41 actual samples of the
received tones; the bits are soft bits, i.e. they
are in the range between -1.0 and 1.0, where the
magnitude serves as reliability information

num_in_samples number of valid samples in bits_out

output variables:
bits_out contains the two actual decoded soft bits
sampling_correction is either -1, 0, or 1 and indicates whether the

next frame shall contain 39, 40, or 41 samples.
demod_state contains all the memory of tonedemod. Must be

initialized using the function init_tonedemod()

void tonemod(Shortint *tones_out,
 Shortint *bits_in,
 Shortint num_samples_tones_out,

ETSI

ETSI TS 126 230 V6.0.0 (2004-12) 233GPP TS 26.230 version 6.0.0 Release 6

 Shortint num_bits_in,
 mod_state_t *mod_state);

Purpose: Modulator for the CTM. The input vector bits_in must contain
the bits that have to be transmitted. The length of bits_in
must be even because always two bits are coded in parallel.
Bits are either unipolar (i.e. {0, 1}) or bipolar (i.e. {-1,
+1)}. The length of the output vector tones_out must be 20
times longer than the length of bits_in, since each pair of
two bits is coded within a frame of 40 audio samples.

Defined In: tonemod.c

void transformUCS2UTF(UShortint ucsCode,
 fifo_state_t* ptr_octet_fifo_state);

Purpose: Transformation from UCS code into UTF-8. UTF-8 is a sequence
consisting of 1, 2, 3, or 5 octets (bytes). See ISO/IEC
10646-1 Annex G.
This routine only handles UCS codes in the range 0...0xFF
since that is all that is required for the demonstration of
Baudot support.

Defined In: ucs_functions.c

Input Variables:
ucsCode UCS code index

Output Variables:
ptr_octet_fifo_state pointer to the output fifo state buffer for the

UTF-8 octets.

Bool transformUTF2UCS(UShortint *ptr_ucsCode,
 fifo_state_t* ptr_octet_fifo_state)

Purpose: Transformation from UTF-8 into UCS code.

This routine only handles UTF-8 sequences consisting of one or
two octets (corresponding to UCS codes in the range 0...0xFF)
since that is all that is required for the demonstration of
Baudot support.

Defined In: ucs_functions.c

Input/Output Variables:
ptr_octet_fifo_state pointer to the input fifo state buffer for the

UTF-8 octets.

Output Variables:
*ptr_ucsCode UCS code index

ETSI

ETSI TS 126 230 V6.0.0 (2004-12) 243GPP TS 26.230 version 6.0.0 Release 6

Return Value:
true, if conversion was successful
false, if the input fifo buffer didn"t contain enough

octets for a conversion into UCS code. The output
variable *ptr_ucsCode doesn"t contain a value in
this case.

void viterbi_exec(Shortint* inputword, Shortint length_input,
 Shortint* out, Shortint* num_valid_out_bits,
 viterbi_t* viterbi_state);

Purpose: Execution of the Viterbi decoder
Defined in: viterbi.c

Input Variables:
inputword Vector with gross bits
length_input Number of valid gross bits in vector inputword.

length_input must be an integer multiple of
CHC_RATE.

Output variables:
out Vector with the decoded net bits. The net bits are

either 0 or 1.
*num_valid_out_bits Number of valid bits in vector out.

Input/output variables:
*viterbi state state variable of the decoder

void viterbi_init(viterbi_t* viterbi_state);

Purpose: Initialization of the Viterbi decoder
Defined in: viterbi.c

Output Variables:
*viterbi_state Initialized state variable of the decoder

void viterbi_reinit(viterbi_t* viterbi_state);

Purpose: Re-Initialization of the Viterbi decoder. This function should

be used for re-setting a Viterbi decoder that has already been
initialized. In contrast to init_viterbi(), this reinit
function does not calculate the values of all members of
viterbi_state that do not change during the execution of the
Viterbi algorithm.

Defined in: viterbi.c

Output Variables:
*viterbi_state Initialized state variable of the decoder

Bool wait_for_sync(Shortint *out_bits,
 Shortint *in_bits,

ETSI

ETSI TS 126 230 V6.0.0 (2004-12) 253GPP TS 26.230 version 6.0.0 Release 6

 Shortint num_in_bits,
 Shortint num_received_idle_symbols,
 Shortint *ptr_num_valid_out_bits,
 Shortint *ptr_wait_interval,
 Shortint *ptr_resync_detected,
 Bool *ptr_early_muting_required,
 wait_for_sync_state_t *ptr_wait_state);

Purpose: This function shall be inserted between the demodulator and
the deinterleaver. The function searches the synchronization
bitstream and cuts all received heading bits. As long as no
sync is found, this function returns
*ptr_num_valid_out_bits=0 so that the main program is able to
skip the deinterleaver as long as no valid bits are available.
If the sync info is found, the complete internal shift
register is copied to out_bits so that wait_for_sync can be
transparent and causes no delay for future calls.
*ptr_wait_interval returns a value of 0 after such a
synchronization indicating that this was a regular
synchronization.

Regularly, the initial preamble of each burst is used as sync
info. In addition, the resynchronization sequences, which
occur periodically during a running burst, are used as "back-
up" synchronization in order to avoid loosing all characters
of a burst, if the preamble was not detected.

If the receiver is already synchronized on a running burst and
the resynchronization sequence is detected,
*ptr_resync_detected returns a non-negative value in the range
0...num_in_bits-1 indicating at which bit the
resynchronization sequence has been detected. If no
resynchronization has been detected, *ptr_resync_detected is -
1. If the receiver is NOT synchronized and the
resynchronization sequence is detected, the resynchronization
sequence is used as initial synchronization.
*ptr_wait_interval returns a value of 32 in this case due to
the different alignments of the synchronizations based on the
preamble or the resynchronization sequence, respectively.

In order to carry all bits, the minimum length of out_bits
must be
in_bits.size()-1 + ptr_wait_state->shift_reg_length

Defined In: wait_for_sync.c

InputVariables:
in_bits Vector with bits from the demodulator. The vector's

length can be arbitrarily chosen, i.e. according to
the block length of the signal processing of the
main program.

num_in_bits length of vector in_bits

Output Variables:
num_received_idle_symbols Number if idle symbols received coherently
out_bits Vector with bits for the deinterleaver. The number

of the valid bits is indicated by
*ptr_num_valid_out_bits.

*ptr_num_valid_out_bits returns the number of valid output bits
*ptr_wait_interval returns either 0 or 32
*ptr_resync_detected returns a value –1, 0,...num_in_bits

ETSI

ETSI TS 126 230 V6.0.0 (2004-12) 263GPP TS 26.230 version 6.0.0 Release 6

*ptr_early_muting_required returns whether the original audio signal must not
be forwarded. This is to guarantee that only the
first CTM device will detect the preamble or resync
sequence, if several CTM devices are cascaded
subsequently.

Input/Output Variables:
ptr_wait_state state information. This variable must be initialized with

init_wait_for_sync().

ETSI

ETSI TS 126 230 V6.0.0 (2004-12) 273GPP TS 26.230 version 6.0.0 Release 6

Annex A (informative):
Change history

Change history
Date TSG SA# TSG Doc. CR Rev Subject/Comment Old New
12-2000 10 SP-000570 Specification approved for Release 4 4.0.0
03-2001 11 SP-010108 001 Bug fix in source code of the CTM receiver 4.0.0 5.0.0
05-2001 Correct source code CTM attached 5.0.0 5.0.1
07-2004 Removed copyright terms and conditions in the

source code CTM attached
5.0.1 5.0.2

12-2004 26 Version for Release 6 5.0.2 6.0.0

ETSI

ETSI TS 126 230 V6.0.0 (2004-12) 283GPP TS 26.230 version 6.0.0 Release 6

History

Document history

V6.0.0 December 2004 Publication

	Intellectual Property Rights
	Foreword
	Foreword
	0 Scope
	1 Normative references
	2 Definitions and Abbreviations
	3 C code structure
	3.1 Contents of the C source code
	3.2 Program execution
	3.3 Code hierarchy
	3.3.1 Initialization routines
	3.3.2 Signal Processing Functions

	3.4 Description of global constants used in the C-code
	3.5 Type Definitions
	3.6 Functions of the C Code

	Annex A (informative): Change history
	History

